CONTROL DATA®

6400/6500/6600 COMPUTER SYSTEMS
~ - COBOL Reference Manual

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales office.

CONTROL DATA CORPORATION

Documentation Department

June, 1967 3145 PORTER DRIVE ©1967, Control Data Corporation
Pub. No. 60191200 PALO ALTO, CALIFORNIA Printed in the United States of America

ACKNOWLEDGEMENT

The following acknowledgment is in accordance with the requirements of the official government
manual describing COBOL, Edition 1965.

""This publication is based on the COBOL System developed in 1959 by a committee composed of
government users and computer manufacturers. The organizations participating in the original
development were:

Air Materiel Command, United States Air Force

Bureau of Standards, United States Department of Commerce

Burroughs Corporation

David Taylor Model Basin, Bureau of Ships, United States Navy

Electronic Data Processing Division, Minneapolis-Honeywell Regulator Co.

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products, Inc,

UNIVAC Division of Sperry Rand Corporation
"In addition to the organizations listed above, the following other organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company

The Bendix Corporation, Computer Division

Chase Manhattan Bank

Control Data Corporation

DuPont Corporation

General Electric Company

General Motors Corporation

Honeywell

Lockheed Aircraft Corporation

National Cash Register Company

Owens-Illinois Incorporated

Philco Corporation

Royal McBee Corporation

iii

Space Technology Laboratories Incorporated
Southern Railway Company

Standard Oil Company (N.J.)

Sylvania Electric Products Incorporated
United States Steel Corporation

Westinghouse Electric Corporation

"Any organization interested in reproducing the COBOL report and specifications in whole or in part,
using ideas taken from this report as the basis for an instruction manual or for any other purpose is
free to do so. However, all such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review, are requested to
mention "COBOL'" in acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or group of companies, or of
any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as to
the accuracy and functioning of the programming system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL. Inquiries concerning the proce-
dures for proposing changes should be directed to the Executive Committee of the Conference on
Data Systems Languages.

"The authors and copyright holders of copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the
Univac (R) I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications.

Such authorization extends to the reproduction and use of COBOL specifications in programming
manuals or similar publications."

iv

CONTENTS

INTRODUCTION
NOTATIONS USED IN MANUAL

CHAPTER 1 IDENTIFICATION DIVISION

1.1 Specification of Identification Division

CHAPTER 2 ENVIRONMENT DIVISION

2.1 Specification of Environment Division
2.2 Configuration Section
2.3 Input-Output Section

CHAPTER 3 DATA DIVISION

Specification of Data Division

Data Description

Sections

File Description Entry

Record Description Entry

Alphabetic List of Data Division Clauses

LW wwwww
SO W N

CHAPTER 4 PROCEDURE DIVISION

.1 Specification of Procedure Division

Declaratives

Segmentation

Statements and Sentences

Conditions

Arithmetic Expressions and Statements

Options

Alphabetic List of Procedure Division Statements

NN NN N N NN
o ~1 O WU W

CHAPTER 5 THE REPORT WRITER

General Description

Data Division Entry Formats
Report Description Entry
Report Group Description Entry
Procedure Division Statements
Sample Program

[I <2 B<) B B &) V) |
SO W N

vii

ix

1
—

]
)

|
-
N o

|
T LI N \CJ R
PN

[=2]

B R R R

I
—
-3

CHAPTER 6

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

vi

SCOPE/COBOL INTERRELATION
6.1 Input-Output Control

6.2 Compilation
6.3 Execution
6.4 COBOL Source Library

THE COBOL LANGUAGE
COBOL DISPLAY AND COLLATING SEQUENCE
COBOL RESERVED WORD LIST

INTERMEDIATE RESULTS IN ARITHMETIC
EXPRESSIONS

CALLING SEQUENCE FOR ENTER
SAMPLE PROGRAMS
DIAGNOSTICS

CONVERSION HINTS

NUMBER REPRESENTATION

BINARY OUTPUT FROM COMPILER

INTRODUCTION

COBOL for the CONTROL DATA ® 6400, 6500, and 6600 computers is a language resembling English
designed to simplify the programming of business data processing problems. Use of the COBOL
language produces easily modifiable source programs resulting in shorter program development time
and low program conversion costs.

This manual describes the 6400/6500/6600 COBOL source language, including a description of the
Report Writer feature.

The 6400/6500/6600 COBOL source language is an upwards compatible subset of DOD COBOL, 1965,
and is highly compatible with the CONTROL DATA 3000 series Compatible COBOL. In addition to all
the features of the CONTROL DATA 3600 COBOL, the 6400/6500/6600 C OBOL provides the following
features:

® Mass Storage input and output

® SORT verb to sort files in conjunction with the 6400/6500,/6600 Sort/Merge system

o RERUN option to allow restarting jobs at any specified point in the program

o RENAME option (level 66) to provide alternate naming of elementary items

e COMMON-STORAGE to permit data sharing by separately compiled programs

e COPY and INCLUDE to provide access to a source library

e REPORT WRITER to facilitate flexible formats for printed reports

e Segmentation and overlay of the object program

e 18-digit arithmetic operands

e Exponentiation available with COMPUTE

e Qualification allowed within the PROCEDURE division
The 6400/6500/6600 COBOL compiler is a two-pass system which resides on disk and operates under

control of the SCOPE system. Programs generated by the compiler also operate under SCOPE con-
trol and use the input/output file manager, the sort, and the restart features provided by SCOPE.

vii

NOTATIONS USED IN THIS MANUAL

Throughout this manual, basic formats are described for the essential elements of the COBOL
language. These formats are intended to guide the programmer in writing statements according
to the rules of the COBOL language. The following editorial conventions have been used.

Material enclosed in square brackets [] may be included or omitted as required
by the programmer.

When material is enclosed in braces { } , one, and only one of the enclosed items
must be chosen; the others are to be omitted.

When a pair of braces or brackets is immediately followed by ... representing
ellipses, the material within the braces or brackets may be repeated at the user's
option,

All words printed entirely in capital letters are COBOL words and have preassigned
meaning to the COBOL processor.

All underlined COBOL words are required unless the portion of the format containing
them is itself optional. Such words are key words; if any is missing or misspelled,
it is considered an error in the program. These words are not underlined by the
programmer

All COBOL words not underlined may be included or omitted at the option of the
programmer. They are used only for readability. Misspelling such words when
they are included in a format constitutes an error in the program.

All words printed in small letters represent information which the programmer is

to supply. These words generally indicate the nature of the information they represent

(level-number, data-name).

Special characters are essential where shown. For clarity, they are not underlined
in the manual.

Punctuation, where shown, is essential, and must be included by the programmer.
Other punctuation marks may be included in accordance with the rules specified in
this manual.

The notation 4 indicates the position of an assumed decimal point in an item.

L .
A numeric character with a plus or minus sign above it (n) indicates an operational
sign is stored in combination with the numeric character.

Character positions in storage are shown by boxes, [A[BJC [D]. An empty

box means an unpredictable result.

A indicates a space (blank).

ix

IDENTIFICATION DIVISION 1

The Identification Division specifies the information to identify the source program and the output
from compilation. It must include the program name, and may also include the date the program
was written, the date compiled, and so forth. Information specified in this division is included in
the listing of the source program, but only the PROGRAM-ID clause affects the object program.

1.1 SPECIFICATION OF IDENTIFICATION DIVISION

IDENTIFICATION DIVISION |

PROGRAM-ID. program-name,

[AUTHOR. comment-sentences]

[INSTALLATION. comment-sentences]

[DATE-WRITTEN. comment-sentences]
[DATE-COMPILED. comment-sentences]
[SECURITY. comment-sentences]

[REMARKS. comment-sentences]

The header IDENTIFICATION DIVISION begins in column 8 of the first line, and is followed by a per-
iod. The name of each succeeding paragraph is specified on a new line, each begins in column 8 and
is followed by a period. Only the PROGRAM-ID paragraph is required.

PROGRAM-ID. program name,

Program name may be up to 30 alphanumeric characters; the first must be alphabetic. This name is
used in referring to the source program, the object program, and all associated documentation. The
first seven characters of the name are used by the SCOPE system to identify the program. When the
subcompile capability is used, the first six characters in the program name must differ from the first
six characters in the name of any other separately compiled subprogram that is part of the same
COBOL program. The SCOPE system and subcompile capability are described in Chapter 6.

Succeeding paragraphs in this division supply documentary information. Any paragraph specified
will appear in the source program listing.

ENVIRONMENT DIVISION 2

The Environment Division provides a method for describing any aspects of a COBOL program that
depend on the physical characteristics of a specific computer. This division must be included in
every COBOL source program.

The Environment Division must be rewritten and the entire source program recompiled when the
object program is to be run on different computers. Rewriting and recompilation may also be nec-
essary for different configurations of the same computer.

2.1 SPECIFICATION OF ENVIRONMENT DIVISION
The information in the Environment Division is specified in two sections:

The CONFIGURATION SECTION contains the computer specifications. The SOURCE-COMPUTER
paragraph specifies the name of the compiling computer. The OBJECT-COMPUTER paragraph
specifies the name of the executing computer. The SPECIAL-NAMES paragraph associates hard-
ware devices, switch positions and character controls with mnemonic names in the source program.
The INPUT-OUTPUT SECTION describes the external devices and the data storage techniques.

The FILE-CONTROL paragraph names the files and their associated external devices. The I-O-
CONTROL paragraph defines control techniques to be used in the object program.

ENVIRONMENT DIVISION,

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAMES. special-names-entry]

INPUT-OUTPUT SECTION.

FILE-CONTROL. file-control-entry

[I-O-CONTROL. input-output-control-entry]

The header, ENVIRONMENT DIVISION begins in column 8 on the first line of the division. The
section headers and paragraph names all must begin on new lines in column 8.

2.2 CONFIGURATION SECTION

The SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs must be included; however, they
are treated as notes and have no effect on the object program.
SOURCE-COMPUTER. COPY library-name.

6400
SOURCE-COMPUTER. {6600 }

OBJECT-COMPUTER. COPY library-name.
OBJECT-COMPUTER, [6400}

6600

2.2.1 SPECIAL-NAMES

This paragraph equates mnemonic-names with special control characters and standard names of
system files. It also equates switch-status-names with on or off status. Two clauses permit the
specification of non-standard currency conventions. If none of these features is required, SPECIAL-
NAMES may be omitted.

Format 1:

SPECIAL-NAMES. COPY library-name.

Format 1 is used only when the COBOL library contains the entire description of all SPECIAL-
NAMES used in the program.

Format 2:

SPECIAL-NAMES.
I:SWITCH integer-1

ON STATUS IS switch-status-name-1 [OFF STATUS IS switch-status-name-2]
{(_)E STATUS IS switch-status-name-2 [ON STATUS gswitch-status—name-l]]:l o
[implementor-name-1 IS mnemonic-name-1
[implementor-name-2 IS mnemonic-name-2].. .
[CONSOLE IS mnemonic-name-3j
[CURRENCY SIGN IS literal]
[DECIMAL-POINT IS COMMA]

[non-numeric-literal-1 IS mnemonic-name-4
[non-numeric-literal-2 IS mnemonic-name-5]...]

2-2

SWITCH

The SWITCH clause is used to test the ON/OFF status of a machine switch. SWITCH is followed by

a space and an integer from 1 to 6 corresponding to switches 1 to 6. ON STATUS, OFF STATUS, or
both may be specified for each switch depending on references in the Procedure Division. If a switch-
status-name is not unique, it must be qualified by a switch name, SWITCH integer-1, whenever it is
referenced. A reference to a switch-status-name in the Procedure Division is a reference to the
corresponding position of the switch.

Switches are set by the operator or by control card as specified by SCOPE.

implementor-name IS mnemonic-name

This clause equates mnemonic names in the COBOL source program to valid SCOPE file names.
The implementor name must conform to the naming conventions for SCOPE files (Chapter 6). All
implementor names appearing in the Special Names paragraph and in the ASSIGN TO clauses of the

File Control paragraph must be unique and may appear only once each. The special system files,
such as INPUT and OUTPUT, are valid implementor name entries.

CONSOLE IS mnemonic-name

This clause equates a mnemonic name specified in the DISPLAY statement to the display console.

CURRENCY SIGN IS literal
The literal in this clause replaces the dollar sign wherever it appears in the PICTURE clause and
the FLOAT DOLLAR SIGN wherever it appears in an editing clause. The literal is limited to a single

character and it cannot be any of the following:

0123456789
ABCDJKLPRSVX?Z

* o+ - ’ () .
DECIMAL-POINT IS COMMA

This clause exchanges the functions of the decimal point and the comma in the character string of
PICTURE clauses and in numeric literals.

2-3

non-numeric-literal IS mnemonic-name

This clause is used to associated special control characters with mnemonic names referenced in the
Procedure Division. It is required when a mnemonic name is specified in the WRITE BEFORE/
ATTER option of the WRITE statement, and when the CODE option of the Report Writer is used.

The non-numeric-literal is limited to one character, which must be enclosed in quotation marks.
The character may be any one of the COBOL character set except the quotation mark.

2.3 INPUT-OUTPUT SECTION

This section consists of the header INPUT-OUTPUT SECTION and the two paragraphs FILE-CON-
TROL and I-O-CONTROL. If ncither paragraph is needed, the entire section may be omitted.

2.3.1 FILE-CONTROL

This paragraph assigns implementor names to each file in the program. It may also be used to indi-
cate that extra input-output areas are required for buffers.

Format 1:

FILE-CONTROL. COPY library-name.

Format 1 is used only when the COBOL library contains the entire description of the FILE-CONTROL
paragraph.

Format 2:

FILE-CONTROL.

SELECT [OPTIONALJ file-name-1 [RENAMING file-name-2]

ASSIGN TO implementor-name

- REEL
FOR MULTIPLE 'UNIT]]

RESERVE {w } ALTERNATE {

AREA H
integer-1

AREAS

[FILE-LIMIT IS literal-1]

i SEQUENTIAL l]
ACCESS MODE IS [RANDOM

[PROCESSING MODE IS SEQUENTIAL]

ACTUAL)
H.s.ma@_ld KeY ls—data—name-o].
[SELECT...].

Each file described in the Data Division must be named and assigned to an implementor name in the
FILE-CONTROL paragraph.

SELECT

The entry file begins with the word SELECT and terminates with a period. Each file named must

be described in a DATA Division entry unless the RENAMING option is specified, and the file name
must be the same as that used in the Data Division; this name must be unique within the source pro-
gram. A single file name, however, may represent both an input and output file.

OPTIONAL

If an input file is named which will not necessarily be present when the object program is executed,
the word OPTIONAL immediately precedes the file name following the word SELECT.

RENAMING

When file and record descriptions are identical for two files , they are written only once in the
Data Division. (For example, a master file input to an updating run and the resulting new master
file.) Then the RENAMING option is included in the FILE CONTROL paragraph. File-name-2 is
the file described in the Data Division, file-name-1 is the file with the identical file and record
descriptions. File-name-2 must be named elsewhere in the FILE CONTROL paragraph as the
object of a SELECT entry; however, the SELECT clause must not contain a RENAMING option;
and file-name-2 must not be a SORT file. This option does not permit interchangeable file names,
each file name refers to a different file.

ASSIGN TO

A file named in a SELECT entry is assigned to an implementor name- specified by this clause.
Implementor-name must be a file name as specified by the SCOPE system (chapter 6). The special
SCOPE system files, such as INPUT and OUTPUT, are valid entries for implementor-name. If
such an association is specified, the system file name will become the external file name. The
implementor-names appearing in the ASSIGN TO clause and in the Special-Names paragraph must
be unique and each name may appear only once. The implementor name is formed like a data
name except that it must be unique in the first six characters and may not contain a hyphen. A
logical input-output device is assigned to the file named immediately following the word SELECT.
If the RENAMING option is used, the file within that option (file-name-2) is assigned to a logical
input-output device within its own SELECT entry.

A maximum of 53 files and reports can be specified in any one COBOL program. All files appearing
in FD and SD entries must be named in this paragraph.

MULTIPLE REEL

May be specified for a file that uses more than one tape reel. This phrase is not necessary since
multiple reels are handled automatically by the input-output control system which locates and assigns
physical units as needed.

RESERVE ALTERNATE AREAS

Permits the user to specify additional buffer area. One buffer area is used per file for buffering
data between the computer and the input-output devices. The one buffer area is circular; that is,
the highest addressed location is immediately followed by the lowest. The size of this buffer may be
increased by specifying additional alternate areas according to this formula:

S = (N*R) + (PRU-1)
where:

S = buffer size

N = number of alternate areas - 1

R = COBOL record size

PRU = physical record size, (see Chapter 6 for PRU)

FILE-LIMIT(S), ACCESS MODE, PROCESSING MODE, ACTUAL/SYMBOLIC KEY

These clauses may be specified for mass storage files only. ACCESS MODE is required for mass
storage files. When the mode is SEQUENTIAL, mass storage records are obtained or placed se-

quentially. Neither the ACTUAL/SYMBOLIC KEY nor the FILE-LIMIT need be specified for a file
with sequential access mode.

FILE-LIMIT must be used when the mode is RANDOM. It specifies the maximum number of records
that can be written on or read from a random access file. Literal-1 becomes the size of the file
index. The actual number of records written on a file determines when the INVALID KEY clause of
a READ for that file is executed. The INVALID KEY clause for a WRITE is determined by the
specified file limits,

When the mode is RANDOM, either ACTUAL KEY or SYMBOLIC KEY must be specified. The mass
storage control system obtains or writes each record randomly. The specified logical record is
located through data-name-5 of the ACTUAL/SYMBOLIC KEY clause and is made available on exe-
cution of a READ statement. When a WRITE statement is executed for a random access file, the
record is effectively placed at the location in the file specified by data-name-5 of the ACTUAL/
SYMBOLIC KEY clause. The user is responsible for setting the contents of data-name-5 prior to
each READ, WRITE, or SEEK statement executed for a random access mass storage file. If no
SEEK is issued prior to a READ or WRITE, the record is automatically located through the current
value of data-name-5. If a SEEK is issued, the location of the record as specified by data-name-5
is made available to the next READ or WRITE executed. If data-name-5 names or points to the
location of a record that is non-existent or outside the specified file limits, the INVALID KEY clause

2-6

of the READ or WRITE is executed. Data-name-5 of the ACTUAL/SYMBOLIC KEY clause must be
unique; it may be qualified, but not subscripted. If ACTUAL KEY is specified, data-name-5 is a
numeric item; at object time it contains a positive integer representing a position in the number index
of a random access file. This index number is a digit from 1 through the maximum size for the file
index specified by FILE-LIMITS. If SYMBOLIC KEY is specified, data-name-5 consists of one to
seven display code characters representing the name in the name index associated with a record.

The index tables resulting from this clause are described in chapter 6.

PROCESSING MODE IS SEQUENTIAL
This clause is for documentation purposes only. The sequential mode is used by the 6400/6500/6600
compiler to process all mass storage records. If both access and processing mode are sequential,

records are requested and processed as they appear on the file. If access is random and processing
is sequential, records may be requested in any order, and they are processed in the order requested.

2.3.2 |-O-CONTROL

This paragraph specifies the points at which rerun is to be made, the memory area to be shared
by different files, and the location of files on a multiple file tape reel. If none of these techniques
is needed, the I-O-CONTROL paragraph may be omitted.

Format 1:

I-O-CONTROL. COPY library-name.

Format 1 is used when the COBOL library contains the entire I-O-CONTROL paragraph. Otherwise
format 2 must be used.

Format 2:

I-O-CONTROL.

END OF REEL

[RERUN [ON file-name-1] EVERY integer-1 RECORDS

} OF file-name-2]

[SAME [[%BD }:l AREA FOR file-name-3, file-name-4... [file-name-5...]...]

[MULTIPLE FILE TAPE CONTAINS file-name-6 [POSITION integer-2] [file-name-7. ..

[POSITION integer-3...1]].

RERUN

This clause specifies complete checkpoint dumps at the end of each reel of file-name-2, or when the
specified number of records is reached. Upon request for restart, all files are automatically re-
positioned and the program may be restarted at thec most recent checkpoint. If file-name-2 is on a
tape unit, either the REEL or the RECORDS option may be specified. If it is not on a tape unit, only
the RECORDS option may be specified. If file-name-~2 is a SORT file, the entire clause is ignored .
File-name-1 is used for documentation only. The SCOPE system selects a disk file for the RERUN
output.

SAME

This clause allows two or more files to share the same record area in memory, and also the same
input-output areas for buffering. If the RECORD/SORT option is omitted, both the record and input-
output areas will be shared by the files specified. If the RECORD option is specified, only the record
area is shared; it is the area in storage affected by READ and WRITE statements.

SAME SORT AREA may be specified for documentation purposes only; it has no effect on the object
program, since the sort/merge system uses the same area for all files sorted.

Since the opening of a file initializes the input-output and record areas, it is illegal for more than one
of the files specified in a SAME clause to be open at the same time,

If two files specified in a RENAMING clause share the same record area, any reference to an item in
the record area must be qualified by the name of the appropriate file.

The SAME clause may be repeated as necessary.

MULTIPLE FILE

This clause is required when two or more files share the same rcel of tape. Regardless of the number
of files on a single reel, only those files that are used in the object program nced be specified. If all
files on a reel are listed in the exact order that they will be read or written with no files omitted, the
POSITION need not be given. Otherwise, POSITION is necessary to specify the position relative to
the beginning of the tape for all the files to be processed. If POSITION is used for one file, it must
be used for all other files on the reel.

2-8

DATA DIVISION 3

The Data Division, required in every COBOL program, contains a full description of data to be pro-
cessed by the object program. Every item referenced by name in the Procedure Division, except
the special registers and figurative constants (Appendix A), must be defined in the Data Division.
An item is a specific area in memory which is named and defined in this division and which contains
or will contain the data to be processed. Data may be divided into five types:

e Data stored or to be stored on an external device in the form of a file

e Data used to communicate between independently compiled programs

e Data developed internally during the operation of the program

® Data that has a fixed value

e Data to be output as reports

The Data Division, therefore, consists of File Section, Common-Storage Section, Working-Storage
Section, Constant Section, and Report Section.

3.1 SPECIFICATION OF DATA DIVISION

DATA DIVISION.
FILE SECTION.

COMMON-STORAGE SECTION.

WORKING-STORAGE SECTION.

CONSTANT SECTION.

REPORT SECTION.

The header DATA DIVISION is followed on a new line by a section header. Descriptions of elements
involved in processing begin on the next line. These are followed by the next section header, and so
forth. Each header is specified on a separate line, beginning in column 8, and is terminated by a
period.

If data comprising a particular section is not required by the program, the section header must be
omitted. When used, the sections must follow the order specified above.

3.2 DATA DESCRIPTION

3.2.1 ENTRY

The basic unit of description for the data in all sections is an entry. Each entry consists of a level
indicator or level number, a name which can be referenced elsewhere in the program, and one or
more clauses describing the data item.

Entries in the Data Division are of three types:

e File description entries describe physical characteristics of a file.
® Record description entries describe characteristics of items used in the program.

e Report, report group, and report element description entries describe items that are to
appear on a report.

All sections except the Report Section contain record descriptions; the File Section contains file
descriptions and record descriptions; the Report Section contains report descriptions only.

3.22 GROUPITEM

A group item congists of two or more related items. A record description entry is written for each
of the items in the group and the group itself must have at least a level number and a name. A
group item may itself be part of a larger group. The most inclusive group item is called a record
and must have the level number 01. (A record at the 01 level may be a single item.) When a record
is in the Working-Storage, Common-Storage, or Constant Section, each name associated with the
level number 01 must be unique. When a record is in the File Section the record name may be
qualified by the file name. Data names of group items not at the 01 level need not be unique if they
can be made unique by qualification.

3.2.3 ELEMENTARY ITEM

Elementary items, items that cannot be further subdivided, are preceded by a level number (2-49)
which must be the largest number in the group containing the item.

3-2

3.2.4 INDEPENDENT ITEM

An independent item is a single item, which does not include any items that can be referenced
independently, and is not contained in a larger item that can be referenced so as toinclude it.
Each independent item requires a separate record description entry consisting of level number,
data name, and descriptive clauses. Entries for independent items have the special level number
77. Level 77 items cannot occur in the File Section or in the Report Section.

3.2.5 LEVEL NUMBER

COBOL data description is based on the concept of levels of data. The more inclusive an item, the
higher its level. Each entry in a COBOL program has a level indicator or level number. A file,
which is the highest level of data, has a special level indicator, FD or SD, preceding the file name

in a file description entry. The record is the next highest level of data, and a record description
entry always has the level number 1 or 01 preceding the data name for the entry. A record may
contain group items which may in turn contain group items or elementary items. Group items within
a record and elementary items must have level numbers in the range 2-49. Level numbers need

not be consecutive as long as the less inclusive item has the higher number. The specific level
number is determined by the user.

Example: (This example gives only level number and data name; more clauses are required for
a complete record description entry.)

01 PAYROLL-RECORD

02 NAME
04 FIRST-INITIAL
04 SECOND-INITIAL
04 LAST-NAME

02 EMP-NUMBER

02 DATE
03 MONTH
03 DAY
03 YEAR

02 HOURS-WORKED

3.2.6 SPECIAL LEVEL NUMBERS

Three special level numbers, 77, 88, and 66, specify particular types of record description entries
rather than the hierarchy of the item. Level 77 identifies independent items in the Common-Storage,
Working~-Storage, and Constant Sections. Level 88 identifies record description entries for con-
dition names, which may appear in the Data Division anywhere except the Constant Section. Level 66
is used to rename elementary items or group items. A level 66 item cannot be used to rename an
item in another level 66 entry nor can it rename a 77, 88, or 01 level entry. A level 66 entry re-
quires the RENAMES clause.

3.2.7 DATA-NAME

Every record description entry must have a subject; that is, a name assigned to the item. This
name cannot be qualified or subscripted when used as the subject of a Data Divisionentry. The rules
for forming data names, report names, file names and condition names are as follows:

The name may contain any of the characters: 0, 1, ...9,
A, B, ...Z,
- (hyphen)

Each name must contain at least one, but not more than 30 characters and at least one character
in a data name must be alphabetic.

No name may contain a blank.

Names may neither begin nor end with a hyphen, although a hyphen may be used between other
characters in the name for readability.

Two or more consecutive hyphens are not permitted.

3.2.8 FILLER

The word FILLER may be used instead of a data name as the subject of an entry that is never re-
ferenced. It may only name an unused elementary item. FILLER cannot be used to replace any of

the following:
file name (FD)
report name (RD)
data name at the record level (01)
condition name or variable (88)
independent item name (77)
renamed item name (66)

An item assigned the name FILLER cannot be directly referenced from the Procedure Division,
although a group containing a FILLER item can be referenced.

3.2.9 CONDITION NAME

A condition name is assigned to a value or set of values that a data item may assume. The record
description entry for the data item is followed by one entry for each condition name associated with
the item. A condition name must conform to the rules for a data name. A condition name entry is
always preceded by the special level number 88 and must be followed by a VALUE clause specifying
the particular value the data item may assume. Any reference in a conditional statement to the
condition name becomes a reference to the value associated with it. Since each constant item has an
initial unchanging value, condition names cannot be used in the Constant Section.

3.2.10 INITIAL VALUE

An initial value is the value of any item at the beginning of object program execution. This is
specified by a VALUE clause in the record description entry in Working-Storage or Common Storage.
If a value is not specified, the initial value of the item is unpredictable. Any value, numeric or non-
numeric, may be assigned as the initial value of an item with the following restrictions:

The character used to specify the value must be in the same class as the item. Numeric items
can have only numeric initial values; alphabetic items only alphabetic initial values.

If the number of character positions occupied by the initial value exceeds the number of char-
acter positions specified for the item in the SIZE clause, truncation will occur. If the size of
the value is less, standard rules for justification apply.

Editing may not be performed on the initial value.

3.2.11 ASSIGNED VALUE

The value of a constant item is assigned by a VALUE clause in the entry. The value may be numeric
or non-numeric, within the same restrictions indicated for the initial value of a working-storage or
common-~storage item. Every elementary and independent item in the Constant Section must have a
value assigned unless it is within the scope of a REDEFINES.

3.2.12 LITERAL

Literals may be used wherever the format indicates. A literal is an explicit statement of the value
to be used in an operation performed by the object program. Literals may be numeric or non-
numeric. A complete definition of literals and the rules governing their formation is contained in
Appendix A.

3.2.13 FIGURATIVE CONSTANT
Figurative constants are predefined as a part of the COBOL language. They may be used wherever

a literal is allowed in the reference format. A complete list of figurative constants is contained in
Appendix A.

3.3 SECTIONS

3.3.1 FILE SECTION

The File Section in the Data Division defines the contents of data files stored on an external device.
One file description entry is specified for each file to be processed by the program. The section
header is followed by the file description entry which consists of a level indicator (FD or SD), a file

name, and a series of independent clauses. Each file description entry is followed by record
description entries for items associated with that file. These entries give the item patterns for
logical records of different types and describe the characteristics of each item.

If two or more files are identical except for the file name, the file description and record description
entries need not be repeated. These files are specified in the RENAMING clause of the FILE-CON-
TROL paragraph in the Environment Division. Sort files, however, may not appear in the RENAMING
clause but must be specified individually in the File Section.

FILE SECTION.
FD file-name-1...
01 data-name-1...
02 data-name-2...

03 data-name-3...
01 data-name-4
02 data-name-5

01 data-name-6
8D file-name-2

FD file-name-3

3.3.2 COMMON-STORAGE SECTION

During execution of an object program, independently compiled subprograms may communicate
through Common-Storage. Each item in a Common-Storage Section has a record description entry;
all entries are preceded by the header COMMON-STORAGE SECTION and a period. The entries
for independent items begin on new lines, and these are followed by entries for group items.

Each independently compiled subprogram which uses a Common-Storage Section for communication
must define common-storage items in its Data Division. Data in the common-storage sections must
be identical although the descriptions may differ. For instance, the same table fully described in
one section might be alternately described with an OCCURS clause in the common-storage section

of a separately compiled subprogram. The references from each subprogram differ, but the data
referenced is the same.

The Common-Storage Section is allocated to a labeled common block named CCOMMON.

3.3.3 WORKING-STORAGE SECTION

During execution of an object program, intermediate results and other information need to be stored
before being processed further or transferred out of memory. The storage areas, called Working-
Storage items, are contained in the Working-Storage Section. Each item must have a record descrip-
tion entry. Entries are preceded by the header WORKING-STORAGE SECTION. Independent items
are listed before grouped items.

WORKING-STORAGE SECTION.

{ COMMON-STORAGE SECTION.]

77 data-name-1
88 condition-name-1

77 data-name-2
01 data-name-3
02 data-name-4

66 data-name-5 RENAMES data-name-4
01 data-name-6
02 data-name-7
03 data-name-3
88 condition-name-2

3.3.4 CONSTANT SECTION

The Constant Section of the Data Division contains all the record description entries specifying the
named constants used in the program. A named constant is an item with a preassigned value that
does not change during processing. The section header, CONSTANT SECTION and a period is
followed on succeeding lines first by entries for independent constant items and then by entries for
grouped constant items.

Every independent and elementary item in the Constant Section must have a value specified by a
VALUE clause.

CONSTANT SECTION.

77 data~-name-1l...VALUE...

77 data-name-2...VALUE,..
01 data-name-3...VALUE...
02 data-name-4...VALUE...

01 data-name-5...VALUE...

02 data-name-6...VALUE...
03 data-name-7...VALUE...

3-7

3.3.5 REPORT SECTION

The Report Section is included when the Report Writer feature is used; it must be the last section in
the Data Division. The header REPORT SECTION and a period is followed on succeeding lines by
entries describing the physical format of each report to be produced. The level number RD and the
report name are followed by clauses specifying the page structure. The report name must be named
in the REPORT clause of the File Description Entry in the File Section. The Report Description
Entry is followed by one or more report group entries, which, in turn, may include group and ele-
mentary entries. A Report Group Description entry consists of the level number 01, an optional
data-name, and a series of independent clauses. Report Element Description entries, describing
elementary or group items within a report group, consist of a level number (2-49), an optional
data-name, and a series of independent clauses.

See Chapter 5 for a complete description of Report Writer entries.

REPORT SECTION.
RD report-name-1
01 [data-name-1]
02 [data-name-2]

02 [data-name-3]
01 [data-name-4]
01 [data-name-5]

01 [data-name-6]
RD report-name-2

3.4 FILE DESCRIPTION ENTRY

The file description entries are at the highest level in the File Section. The section header is
followed by a file description entry consisting of a level indicator (FD or SD), a file-name, and a
series of independent clauses.

The file description entry for an external file (level FD) indicates recording mode, block size,
labeling conventions, names of records or reports comprising the file, and so on. The object
program requires this information to correctly interpret or create the file. This entry must be
specified for each file.

The Sort File Description entry (level SD) is a special type of file description which gives informa-
tion about the name, size and number of data records in the sort file. A sort file is defined as a
set of records to be sorted by the SORT statement.

3-8

File Description Entry (FD):
FD file-name-1
Format 1:

COPY library-name.

Format 2:
HIGH
[RECORDING MODE IS['%L }][{ LOW ‘ DENSITY:| 1
e HYPER

[FILE CONTAINS ABOUT integer-1 RECORDS]

[BLOCK CONTAINS [integer-2 TO] integer-3 { RECORDS }

CHARACTERS

RECORD-MARK m

RECORD CONTAINS [integer-4 TQ] integer-5 CHARACTERS I:DEPENDING ON l
— — data-name-1

STANDARD
RECORDS ARE oA
LABEL {RECORD IS } {QI\QILE_Q]
- data-name-2
[M or [I—Q } IS l literal-1 l
IDENTIFICATION data-name-3
[DATE-WRITTEN IS {hteral-Z } |
data-name-4
[EDITION-NUMBER IS literal-3 l |
data-name-5
[REEL-NUMBER IS ’ literal -4] :
data-name-6

literal-5
[RETENTION-CYCLE IS [datamamio_n } 1]

literal-6 l |

[VALUE OF ENDING-TAPE-LABEL-IDENTIFIER IS ‘
—_ data-namc-8

RECORDS ARE
RECORD IS

{REPORTS ARE
REPORT IS

DATA [} data-name-9 [data-name-10...]

} report-name-1 [report-name-2...].

[SEQUENCED ON data-name-11 [data-name-12.,.]T

TThis clause is used for documentation purposes only.

Sort File Description Entry:
SD file-name-2
Format 1:
COPY library-name.
Format 2:

[FILE CONTAINS ABOUT integer-1 RECORDS]
[RECORD CONTAINS [integer-4 TO] integer-5 CHARACTERS]

RECORDS ARE

bala {RECORD IS

] data-name-9 [data-name-10]. ..

Specification of a File Description Entry

The level indicator (FD or SD) is written in columns 8 and 9; the file name, on the same line, starts
in column 12. Clauses may follow on the same line separated from the file name by one or more
spaces or on the next line starting in column 12. The order in which clauses are specified is un-
important; each clause is separated from the next by at least one space. No punctuation between
clauses is necessary, but the entire entry must be terminated by a period. Each line after the first
begins at or to the right of column 12.

The rules for continuing an entry on more than one line are given in Appendix A.

3.5 RECORD DESCRIPTION ENTRY

Every item referenced in a program must be described in a separate record description entry. Items
are essentially specific areas in storage; the record description entries define the areas in terms of
size, the manner in which they should be interpreted, and so on, based on the characteristics of the
data to be stored in them.

Format 1:

level-number data-name-1 [REDEFINES data-name-2] COPY data-name-3 [FROM LIBRARY].

3-10

Format 2:

data-name-4
level -number { FILLER } [REDEFINES data-name-5]

; CHARACTERS
[SIZE IS integer-1 {DIGITS }

[PICTURE IS character-string]

COMPUTATIONAL
[USAGE IS i COMPUTATIONAL-n]
DISPLAY

[OCCURS [integer-3 TO] integer-4 TIMES [DEPENDING ON data-name-6]]
[SIGNED]

[SYNCHRONIZED I—Lm }

RIGHT
LEFT
[POINT LOCATION IS RIGHT
ALPHABETIC
NUMERIC
ALPHANUMERIC]
AN

] integer-5 [PLACES]]

[CLASS IS

[JUSTIFIED RIGHT]

ZERO SUPPRESS
CHECK PROTECT
FLOAT DOLLAR SIGN
FLOAT CURRENCY SIGN

[VALUE IS literal-1].

[LEAVING integer-6 PLACES] | [BLANK WHEN ZERO]

Format 3:
66 data-name-7 RENAMES data-name-8 [THRU data-name-9].

Format 4:

VALUE IS

VALUES ARE} literal-2 [THRU literal-3] [literal-4 [THRU literal-5]].

88 condition-name {

Specification of a Record Description Entry

Level numbers may be one or two digits. They begin in column 8 (01 or 1) or they begin to the right
of column 11 (02 or 2 through 49).

With the exception of report groups and items, a data name must be specified on the same line as the

level number and separated from it by at least one space, it should not start before column 12. The
data name is optional in report groups and items.

3-11

The order of the clauses is unimportant, except where explicitly stated. The first clause is separated
from the data name by at least one space, and each clausc is separated from the next by at least one
space. Punctuation between clauses is not nccessary, but the entry is terminated by a period. The
rules for continuing an entry on more than one line are given in Appendix A.

The specification of Report Description Entries is given in Chapter 5.

3.6 ALPHABETIC LIST OF DATA DIVISION CLAUSES

The following pages contain a complete list in alphabetic order of the clauses used in the File,
Working-Storage, Common-Storage, and Constant Sections of the Data Division. FEach clause is
fully described.

3-12

BLOCK CONTAINS

RECORDS
. 2 . _o| JRECORDS
BLOCK CONTAINS [integer-2 TO] integer 3[{ CHARACTERS }:|
The basic input-output buffer size is specified in terms of logical records or characters. Logical
records may be arranged one per block or more or less than one per block. If alternate areas are
specified in the FILE-CONTROL paragraph of the Environment Division, this basic buffer size is
increased by the number of alternate areas times the size specified in this clause,

Integer-2 and integer-3 are numeric literals with positive integral values. Integer-3 determines
the maximum number of records or characters per block — the block size. Integer-2 may be used
for documentation purposes but has no effect on block size. When record size is fixed, the word
RECORDS is used; when record size is variable, the word CHARACTERS may follow integer-3 or
may be omitted. If the clause is omitted, the block size is 512 words.

If a logical record is greater than 512 words, it is read or written in blocks of 512. It may be
desired to specify a block size larger than record size so that an entire block may be read when
only part of that block is needed to complete the record. The block size should not exceed the
buffer size. In general, the buffer size should be:

S = (N*R) + (PRU-1)
where

S = buffer size

N = number alternate records - 1
R = COBOL record size

PRU = physical record size

3-13

CLASS

NUMERIC
ALPHABETIC
ALPHANUMERIC
AN

CLASS IS

Any data item can be classified as numeric, alphabetic, or alphanumeric. The CLASS clause
indicates this classification to the processor.

NUMERIC Ttems which consist only of digits 0-9; they may, however, also contain
an assumed decimal point and an operational plus or minus sign, though
none of these characters occupies a character position in the item in
memory.

ALPHABETIC Ttems which consist only of alphabetic characters and the blank (or space).

ALPHANUMERIC Items which consist of any characters from the COBOL character set;
numeric, alphabetic, and special characters (Appendix B).

AN Acceptable abbreviation of ALPHANUMERIC.

The CLASS clause may be written for an item at any level. For a group item, it indicates the class
for every item within that group and must not be contradicted by CLASS clauses within the group.

An ALPHANUMERIC group may contain both NUMERIC and ALPHABETIC items. A group referenced
in a move operation should be described as ALPHANUMERIC. If class is omitted, or specified

other than ALPHANUMERIC, group items are treated as ALPHANUMERIC when a move operation is
performed.

A CLASS clause is not necessary when an entry contains a PICTURE clause, but if both are included,
the PICTURE clause determines the class of the item; and the CLASS clause is used for documentation
purposes only.

The class of all elementary items must be specified or implied; the class of 77 level items must be
specified by either a PICTURE or CLASS clause.

The word CLASS is optional and may be omitted without altering the meaning of the clause. The
word is omitted when SIZE, CLASS, and USAGE are combined,

Example:

01 INPUT-TABLE CLASS IS ALPHANUMERIC.
03 PROG-NAME ALPHANUMERIC SIZE 10.
03 LINES SIZE IS 5§ NUMERIC COMPUTATIONAL-1 DIGITS.
03 OCTALS.
05 OCTAL-CHARS AN SIZE 1 OCCURS 6 TIMES.

3-14

CLAUSE EDITING

Two editing clauses permit the programmer to specify editing without using the PICTURE clause.
These clauses are used to describe report items, so that numeric data may be edited by moving it
to such items; neither may be used with a PICTURE clause. All of the editing specified by such
clauses can also be specified by the PICTURE clause.

Leading zeros may be suppressed and replaced in the edited data item by blanks or asterisks or
blanks and one dollar sign. Zero suppression terminates with the first occurrence of a non-zero
digit in the data or an assumed decimal point in the edited item whichever occurs first.

ZERO SUPPRESS
CHECK PROTECT
FLOAT DOLLAR SIGN
FLOAT CURRENCY SIGN

[LEAVING integer-6 PLACES)

ZERO SUPPRESS

All leading zeros in data moved are suppressed and replaced by blanks in the edited data item.

CHECK PROTECT

All leading zeros are suppressed and replaced by asterisks in the edited data item.

FLOAT DOLLAR SIGN

All leading zeros are suppressed and replaced by blanks, except the rightmost which is replaced
by a dollar sign in the edited data item.

FLOAT CURRENCY SIGN

Identical to FLOAT DOLLAR SIGN except that the replacement character is the currency sign
specified in the Special Names paragraph.

LEAVING integer-6 PLACES

Terminates suppression before the assumed decimal point is encountered. Suppression of leading

zeros terminates when integer-6 character positions remain to the left of the decimal point in the
edited data item. Integer-6 must be a positive integer.

3-15

CLAUSE EDITING

BLANK WHEN ZERO

This second editing clause is used for editing data items with a value of zero; it may be used in

conjunction with the first clause.

The edited data item is set to contain all blanks if the data value

is zero. When the data is all zero and BLANK WHEN ZERO is specified, any editing, except
check protect, specified in the first clause is overridden in favor of inserting blanks. If check pro-
tect is specified, the entire field is set to *; but if float dollar sign is specified with BLANK WHEN
7ZERO, the edited field contains all blanks with no dollar sign when the data value is zero.

Examples of Clause Editing:

Source Data
[0]o]3[4]
3]

] =] =] [#]
-

=
]

:

6

[o]o]oJo]9]5]8]

[oJofoJofo[2]

1

lofofoJo|s]s]
T

[o[o [0 [L[3l7]

[o]oJoJo]ofo]

The receiving field must be large enough to contain the edited item.

3-16

Editing Clause

ZERO SUPPRESS

ZERO SUPPRESS

CHECK PROTECT

CHECK PROTECT

FLOAT DOLLAR SIGN

FLOAT DOLLAR SIGN

ZERO SUPPRESS LEAVING 2 PLACES
ZERO SUPPRESS LEAVING 4 PLACES
CHECK PROTECT LEAVING 1 PLACE
FLOAT SIGN LEAVING 2 PLACES

BLANK WHEN ZERO

Edited Item

>
e |
|

3

=
o |

*
o] [%]
ERE

51
AL

3 4

3|2

o]

[a[afafo]9]s]s]

IAIOIOIOIOLZI
f*l*l*1013l8|

[aTalsgfofof4f7

L—

[alalala]al 4]

COPY

This clause is used to copy data description entries from the COBOL source library, or from another
part of the Data Division.

Format 1:
COPY library-name.

Format 1 is used to copy file description entries (FD and SD) when a complete description of the file
exists in the COBOL library. It may also be used to copy the Special-Names, File-Control, or I-O-
Control paragraphs in the Environment Division if a complete description of these files is in the
COBOL library. Library-name is formed in the same manner as a data-name; it is up to 30 alpha-
numeric characters at least one of which must be alphabetic., When this format is used, no other
description of a file is required.

Format 2:
level number data-name-1 COPY data-name-2 [FROM LIBRARY].

Format 2 is used to copy record description entries from elsewhere in the Data Division or from a
special library file. It eliminates the necessity of specifying such entries each time they occur.

Copying begins with the first clause in the data-name-2 entry; the clauses originally associated with
data-name-2 are subsequently associated with data-name-1. All subsequent entries are copied in
totality. Copying ends when an entry with a level number numerically equal to or less than the level
number of data-name-2 is encountered, or when the end of the library entry is reached if the FROM
LIBRARY option is used. Depending on the level structure of the information, one or more entries
may be copied with a single COPY clause.

If there are items subordinate to data-name-1, the user must insure that the resulting hierarchical
structure is correct. During the copying process, the level numbers of all inserted entries are
adjusted by an amount equal to the difference between the level numbers of data-name-1 and data-
name-2.

The copied entries may appear either before or after the entry referring to them. An entry being
copied may not itself contain a COPY clause unless it is in the library. The copied entry may not
contain a REDEFINES clause although the copying entry (data-name-1) may be redefined. Data-
name-2 must not be the name of an item that requires subscripting. If the FROM LIBRARY option
is specified, copying can be nested to a maximum of five levels.

Examples:

1. FD MASTER-FILE COPY FILEA.

FILEA is the library-name of the COBOL source library deck containing a complete file
description entry which will be copied into the source program as the description of the
file named MASTER-FILE.

3-17

COPY

2. 01 SUM-DATA COPY SUMMARY-A,
If SUMMARY-A is a record description entry of the following form:

02 SUMMARY-A.
03 COUNT PICTURE 9(3).
03 G-TOTAL PICTURE 9(5)V99.
03 O-TOTAL PICTURE 9(6)V99.
03 G-DEVIATION PICTURE 9(4)V99.
03 O-DEVIATION PICTURE 9(4)V99.
02 SUMMARY-B.

Then the following data description will be copied into the source program at the location of the
COPY clause:

01 SUM-DATA.
02 COUNT PICTURE 9(3).
02 G-TOTAL PICTURE 9(5)V99.
02 O-TOTAL PICTURE 9(6)V99.
02 G-DEVIATION PICTURE 9(4)V99.
02 O-DEVIATION PICTURE 9(4)V99.

3-18

DATA RECORDS
FILE CONTAINS

RECORDS ARE

DATA {RECORD IS

} data-name-3 [data-name-4...]

This clause must be specified for each file description entry. It permits the processor to correlate
file and record description entries.

When more than one name is specified, the file contains a corresponding number of different types
of logical records. The order in which the names are listed in the clause is not important.

The presence of more than one logical record type does not alter the basic concepts involved in
handling individual logical records. Irrespective of type, all logical records from the same file are
processed from a specific record area. The size of the record area is equivalent to the largest
logical record in the file.

When the file description entry is for a sort file (SD), the data names identify records named in
RELEASE statements.

This clause or the REPORT clause (Report Writer, Chapter 5), must be included in each File
Description Entry. However, both clauses may not be specified in the same File Description Entry.

Examples:

FD CARD-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-INPUT.

FD MASTER-FILE
LABEL RECORDS ARE OMITTED
DATA RECORDS ARE DETAIL SUMMARY.

SD OUT-OF-SORT-FILE
DATA RECORD IS INPUT-FILE.

FILE CONTAINS
FILE CONTAINS ABOUT integer-1 RECORDS
This clause indicates the approximate number of logical records in the file. It is optional and has no

effect on the object program. Since it is printed as part of the source program listing, it provides
documentation for this information.

3-19

JUSTIFIED

JUSTIFIED RIGHT

This clause specifies positioning when a receiving item contains more or fewer character positions
than there are in the data. Numeric data is aligned by decimal point. The justified clause, therefore,
cannot be used on a numeric or edited item. Non-numeric data is left justified unless specified to the
contrary by the JUSTIFIED RIGHT clause.

Justification occurs only when the data is transferred by any statement (except READ) that results
in data movement.

Example:
Picture Data Item Justified
S9(5) [1]2]5] [ololi]2[3 -- Right justified, zeros filled-in.
S9(4) V9]2 Jolofof1? - No justification, aligned by point.
S9(4)V9 [1]2 Right Illegal; item is numeric.
X(5) [a]Blc] [al|alalslc] Rignt Right justified; blanks filled-in.
X(5) lalB[c] [a]B]c]a]a] - Left justified normally.
X(2) (a|B[c| |B|c| Right Right justified, left character truncated.

3-20

LABEL RECORDS

Tape and disk files may contain label records which identify the file. A LABEL RECORD clause
must be included in every file description entry regardless of the presence or absence of label re-
cords; it specifies whether labels are standard SCOPE labels, non-standard user defined labels, or
omitted entirely. Only 1/2 inch coded magnetic tape files can have standard labels.

Format 1:
. RECORDS ARE D literal-1
LABEL RECORD IS STANDARD VALUE OF IDENTIFICATION } IS ldata—name—z }
[DATE-WRITTEN IS {11Leral-2 }1
data-name-3
[REAL-NUMBER IS [hteral'?’ }]
data-name-4
oral.
[EDITION-NUMBER 1§ | Literal-4 }]
data-name-5
[RETENTION-CYCLE TS {htera1'5 l]
data-name-6
Format 2:
RECORDS ARE literal-6
E —— - - F EN NG~ - - >
LABEL ‘ RECORD 1 } data-name-7 [VALUE OF ENDING-TAPE-LABEL-IDENTIFIER IS {data-name—S l]
Format 3:
RECORDS ARE
LABEL [RECORD .8 } OMITTED

Standard Label

If label records are standard, the first format is used. VALUE OF IDENTIFICATION must be in-
cluded. For an input file, the operating system checks the label record for equality with the specified
items. For an output file, it writes the specified items in the label record of the file. If DATE-
WRITTEN is not included by the user for an output file, SCOPE provides the date. In either case,

the date is converted and placed in the File Environment Table (Chapter 6) at the time an OPEN QUT-
PUT is executed for the file and prior to execution of any USE procedures for that file.

The data-names in the VALUE OF clause must be defined in the Common-Storage, Working-Storage,

or Constant Sections. The items or literals specified in this clause must have the following char-
acteristics:

3-21

LABEL RECORDS

1D 1-20 alphanumeric characters;

IDENTIFICATION the first must be alphabetic.

DATE-WRITTEN 6-digit integer, yymmdd = year, month, day

REEL-NUMBER 2-digit integer 01-99. If omitted, 01 is assumed. For subsequent

reels of the file, this number is incremented by 1.
EDITION-NUMBER 2-digit integer, 01-99. If omitted, 00 is assumed.
RETENTION-CYCLE 3-digit integer, 000-999 specifying number of days from date-written

that tape is to be saved; if omitted, 000 is assumed. 999 indicates
indefinite retention.

Non-Standard Label

Format 2 is used when labels are non-standard. The data-name option indicates the first record on
each reel is a separate physical record assumed to be a non-standard beginning label. Data-name-7
may not exceed 84 characters, but otherwise it is described like any other record in the file. For
an input file, the first record is available to the user in the area specified by data-name-7 after an
OPEN INPUT statement and before the first READ statement. The label record may be prepared
before the OPEN OUTPUT statement for the file in the area defined by data-name-7. Non-standard
label records may be processed and prepared with the USE statement.

VALUE OF ENDING-TAPE-LABEL-IDENTIFIER is used to distinguish between end-of-file and end-
of-reel labels when a multiple-reel tape input file is being processed. This clause is used only for
non-standard labels on multi-reel files; and it is effective only for input files. The literal or data
name is 1 to 7 display characters. An end-of-reel label contains this value as the first characters

of the ending label, but an end-of-file label does not. The value specified by literal-6 or data-name-8
is compared with the same number of characters at the beginning of the ending label to determine
whether it is an end-of-file or an end-of-tape.

Memory contains a 40-character area called FILE-LABEL which may be referenced at any time

from the Procedure Division; it is one area shared by all labels for all files. When labels are standard,
this area corresponds to the standard label area of the File Environment Table (Chapter 6), and the
format is identical to words 10-13 of the File Environment Table. When labels are non-standard, this
area may be used to process or prepare file labels, and the user is responsible for the format of
FILE-LABEL. Alternate names for FILE-LABEL are ENDING-FILE-LABEL, BEGINNING-FILE-
LABEL, ENDING-TAPE-LABEL, and BEGINNING-TAPE-LABEL. These names are all inter-
changeable.

Omitted Label
Format 3 is used when a file has no labels or label processing is not required. LABEL RECORD IS
OMITTED indicates no labels, and no information is transferred until the first READ statement for the

file, Disk files must specify LABEL RECORD as data-name-7 if label processing or preparation is
required, and LABEL RECORD IS OMITTED if not.

3-22

OCCURS

OCCURS [integer-3 TO] integer-4 TIMES [DEPENDING ON data-name-6]

When each itéem in a sequence is identical in every respect to the next one, except for value, the:
items need not be described in separate entries. The OCCURS clause indicates the number of times
an item occurs and eliminates the necessity of repeating the description. Subscripting then permits
an item in a sequence to be referenced by its position in the list. The manner in which an OCCURS
clause is used is illustrated under the heading TABLES.

If the item occurs a fixed number of times, integer-4 represents the exact number of occurrences.
If the exact number is not known, but it equals the value of a particular data item at object program
execution, the integer-3 and the DEPENDING ON options are both included in the clause. The
integer-3 and DEPENDING ON options do not indicate that an item is of variable length, only that
the number of times it appears varies according to the value of another item.

The OCCURS. .. DEPENDING ON option may describe only one item in a record. No other items
may follow this item in the record. The item described by OCCURS...DEPENDING ON may not be
a conditional variable, nor may it be within the range of another OCCURS.

When a file contains a record with OCCURS. .. DEPENDING ON clause, the fixed portion of the
record must be equal in length to all other records in the file, the key item (data-name-6) must be in
the same relative position in the fixed portion of the record as any other key items in other records
in the file, and the trailer items (occurring items) must all be equal in length

A=B=C
C17C27C

Integer-3 and integer-4 are numeric literals with positive integral values. When integer-3 is
included it must be less than or equal to integer-4. Integer-3 may be zero, indicating that an item
may not occur; if integer-3 is one, the item is present but may occur only once.

Data-name-6 is the name of an elementary item and it must be unique or made unique by qualifica-
tion; but it may never be subscripted. This item can assume only positive integral values in the
range defined by integer-3 and integer-4. The data-name-6 item must appear in Working-Storage,
Common-Storage or in the same logical record as the entry containing the associated OCCURS clause
and must precede the variable portion of the record. It must not appear in another file of the same
program. An OCCURS clause may not appear in the same entry as a REDEFINES clause; but it

may appear in an entry subordinate to an entry using REDEFINES,

Sequential items in an OCCURS clause can be referenced only by subscripting. If such items are
groups, all references to items within the groups must be subscripted. Subscripting can be used
only with items described by the OCCURS clause. All clauses in an entry that contains an OCCURS
clause apply to each repetition of the item in the sequence. An item containing an OCCURS clause
and SYNCHRONIZED clause will be synchronized at each occurrence. OCCURS may not be used

with items at levels 01 and 77. RECORD CONTAINS. ..DEPENDING ON is used for records at 01
level in the File Section which contain a fixed portion and a variable number of trailer items. VALUE

may not be specified in the OCCURS entry.

3-23

PICTURE

PICTURE IS any-allowable-combination-of-characters-and-symbols

Many of the clauses in a report description entry may be specified in an alternative, more compact
manner with the PICTURE clause. The PICTURE clause specifies size and class, the presence or
absence of an operational sign, assumed decimal point, and so on. It can specify editing of data
(PICTURE EDITING). The PICTURE clause essentially specifies a picture of the data item,
assembled from a set of code characters and symbols. Any item can be fully described using the
PICTURE clause. Throughout this manual pictures are used to describe items which might in
practice be described by other clauses.

Only elementary items can be described by the PICTURE clause. When PICTURE appears in an
entry, it alone determines the description of the data item. If SIZE, CLASS, POINT LOCATION,
Editing clauses (except BLANK WHEN ZERO) appear in the same entry, they are used for docu-
mentation only.

The number of occurrences of any of the characters indicates the size of an item described by the
PICTURE clause. The size may be indicated either by repetition of the character, or in a short-
hand way by writing the character once and putting the number of its occurrences in parentheses.
Thus, P(10)9(2) is equivalent to PPPPPPPPPP99.

A maximum of 30 characters is allowed in a PICTURE clause. This limit does not refer to the num-

ber of characters in the item itself but only to the number of characters used in the picture specifying)
the item, including parentheses. For instance, the same item may be described by a picture con- ‘
taining 12 characters, PPPPPPPPPP99, or by a picture containing only 9 characters, P(10)9(2).

In either case, the actual size of the item is only two characters. An item containing 75 alphabetic

characters may be specified by the picture, A(75), which only uses 5 characters but the same item

may not be specified by a picture in which A is repeated 75 times.

The size of an item described by the picture is limited to a maximum of 255 characters.

The characters and symbols in a PICTURE clause depend on the class of the data item: numeric,
alphabetic, and alphanumeric.

Numeric Items

The PICTURE clause for a numeric item may contain only combinations of the following characters:
9 SV P.

9 This character indicates that the corresponding character position in the item will always
contain a numeric character.

S This character indicates the presence of an operational sign, and is equivalent to the use
of the SIGNED clause. When included, it is the leftmost character of the picture. An
operational sign does not occupy a character position in the item, so it is not counted in
the size of an item.

3-24

PICTURE

This character indicates the position of an assumed decimal point for aligning items during
computation. An actual decimal point can never appear in a numeric item. An assumed
decimal point does not occupy a character position in the item and is not counted in the size
of an item. The V is specified in the picture between the code characters which represent
the characters on either side of the assumed decimal point in the item.

For example, if a data item is described as having a picture of 9V999 and it contains the
digits 2567 at reference time, then the size of the item is considered to be four characters,
and its value would be 2.567 for calculation, although it would be displayed as 2567 because
the decimal point character is not actually present. A V directly to the right of all 9's is
redundant.

This character specifies the position of an assumed decimal point when this position does

not occur within the characters that actually comprise the data item. If the assumed decimal
point is to the right of the rightmost character in the item, one P is specified in the picture
for each implied character position between the assumed decimal point and the rightmost
character. Similarly, if the assumed decimal point is to the left of the leftmost character in
the item, one P is specified in the picture for each implied character position between the
assumed decimal point and the leftmost character. The item is treated as if a zero were
substituted for each P and a decimal point placed to the right or to the left of the last P.

The character P is never considered in determining the size of the item.

For example, an item composed of the digits 2567 is treated as 256700. in computations
if the picture is 9999PP or as .002567 if the picture is PP9999.

If an entry contains a VALUE clause and a PICTURE clause, the literal in the VALUE clause must
exactly reflect the picture even though a sign or decimal point will not actually be placed in the
associated item.

For example, if an item is described by the picture SPP9999, and is initially to contain the char-

acters 4513, the VALUE clause in the entry must be specified as VALUE IS .004513, or VALUE IS
+,004513.

Alphabetic Items

The PICTURE clause for an alphabetic item may contain only the code character A, although this
may be specified as many times as required.

A This character indicates that the corresponding character position in the item will always

contain either a letter of the alphabet or a blank (space).

3-25

PICTURE

Alphanumeric Items

Alphanumeric items which do not specify editing may contain only the characters X, 9, and A. The
use of the characters 9 and A in alphanumeric items is the same as in numeric and alphabetic items.

X This character indicates that the corresponding character position in the item may contain
any character in the COBOL character set. An A or 9 in an alphanumeric item, although
not illegal, is treated exactly as an X; neither character need be used in the picture of
such an item.

Examples:

Picture of Ttem Characters in Item Item

999 123 [1]2]3]

99V999 12345 34

S99V99 1234 2[3[4]

PPP9999 1234 00 of[L][2]3
SPPP9999 1231 000

S999PPP 123 [1]2]50 0 o,
AAAAA or A(5) ABCDE
XXXXXXXX or X(8) ABCD-*%* [A[B]c[D[-[*[*[*]
XXXXXXXX or X(8) 123.4567 [1]2]3]. [4]5]6]7]

3-26

PICTURE

The table below shows the possible legal combinations of characters in a PICTURE clause. Diag-
nostic tests will be made for most of the conditions represented in the table. The characters A, X,
9 are described above; the remaining characters are described under PICTURE EDITING.

Is this character
legal any- z 5 ;
Given wherfa to *3 % %
character right :’n; % %
in picture A X 9 8 VvV P zZ * $, . B 0 - + C D R @ g g
Alx | X [x | No|No|No|No|No|No|No|[No| x| x |No|No|No|No|No|No|No|No
X| x| x| x |No|No|[No|No|NofNo|[No|No| x | x [No|[NofNo|No|No|No|No|No
91X | x| x[No|lx | x|NofNo|No|fx|x|x]|x|x]|x xw ‘;(X | No | No |No
S [No|No| x |No| x | x [No|No|No|No|No|No| x |No No— Eﬁo No |No| No |No |No
V|[No|No| x |[No(No| x| 2 2 [No|f x |No| x| x| x| x | x ‘ xA Nx 2 212
PINo|No| x [No| x| x| x| x |No| x |[No| x| x| x| x wx‘ X 1 ﬁx X | x| x
Z|No|No| x |No| x| x| x [NolNo| x| x| x| x| x x“ ‘xi ~;~ X | No |No | No
¥ INofNo| x |[Nofj x| x |No|x |[No|x|x|[x|x|=x]|x] x| x ‘ X | No No« N-:
$INo|No| x {Nof x| x| x|x|[x|x|[x]|x]|x]x xw —x x | x | x |Yes|Yes
, INofNo| x [No| x| x| x| x |No|x|x|=x]| x| x xr_ .x ;{ | x| x| x| x
No| No| x | No|No|No| 2 No| x [No| x| x| x| x| x ;; x 2 2
Bix| x| x|Nolx!x|x|x|x|x|x]|]x]|x]|x]|x | ‘x X | x | No|[No|No
Olx| x| x|No|x|x|x |x|x|x|x|x]|x|[x|x}x] x| x]|No|NolNo
Leading - [No|Nof x [No| x | x| x| x| x| x| x| x| x . No [No| No|No|No| x | x | No
Leading + [No[No| x |No| x | x | x | x| x| x| x| x| x | No|No|No|No|No| x |No| x
C|No| No| No| No|No|Yes| No|No|No|No|No|No|No|No|No|lNo|No|[x |No|Noj|No
D|No| No| No| No|No|Yes| No|[No|No|No[No| x | No|No|No| No|No|No|[No|No|No
R|No| No|No|No|[No| 1 |No|No|No|No|No|[No|No|No|No ;\Io No | No| No [No | No
Trailing - [No| No| No| No|No| 1 | No|No|No| No|No|No| No|No|No| No|No|No| No|Nol|No
Trailing + |No| No| No| No|No| 1 | No|No|No| No|No|No| No|No|No| No| No|No| No|No|No
X Yes

1 Yes if all digits to the right are the same
2 Yes if all digits both to the right and left are the same

PICTURE EDITING

Editing alters the format and the punctuation of data in an item; characters can be suppressed or
added.

Editing is accomplished by moving a data item to an item described as containing editing symbols.
Movement may be direct or indirect. The programmer can specify a MOVE statement or he can
specify arithmetic statements in which the result of computation is stored in such an item.

Since the main function of editing is to arrange data in a convenient format for reading, as for
example in a report, an item described as containing editing symbols is a report item.

A report item, like any other item, is a storage area in memory, except the editing specified in the
picture of the report item is performed on any data moved into the item. The following restrictions

apply:
1. A report item can receive only numeric data; it is sometimes known as a numerically
edited item.
2. A maximum of 18 numeric characters can be moved to a report item.
3. Editing clauses cannot be used with a computational-n item.

4, Editing clauses cannot be used with FILLER items.
The characters which may be used in a picture of a report item are as follows:
9 V$+-.,0BCRDBZ*

The characters 9 and V are discussed above. Their use in report items is exactly the same as in
numeric items. The remainder are insertion and replacement characters.

The character $ may be replaced with a special currency sign whether it is used as an insertion or
replacement character. The special currency sign must be defined in the SPECIAL-NAMES para-
graph of the Environment Division. It is defined as a literal, limited to a single character which
cannot be one of the following:

012 3 456 7 89
ABCDJEKULPRSYVIXZ
*+',()

Insertion Characters

When an insertion character is specified in the picture of a report item, it appears in the edited data
item; therefore the s ze of the report item must reflect these additional characters. The insertion
characters are as follows:

$ +- ., 0B CR DB

3-28

(deci-
mal
point)

’

PICTURE EDITING

When a single dollar sign is specified as the leftmost symbol in a report item picture, it
appears as the leftmost character in the edited data item. This character is counted in the
size of the report item. A special currency sign may replace the $ sign; it must be defined
in the SPECIAL-NAMES paragraph. '

When a plus sign is specified as the first or last symbol of a report item picture, a display
plus sign is inserted in the indicated character position of the edited data item, provided
the data is positive (contains a positive operational sign) or is unsigned. If the data is
negative, a minus sign is inserted in the indicated character position. This sign is counted
in the size of the report item.

When a minus sign is specified as the first symbol or last symbol of a report item picture,
a display minus sign is inserted in the indicated character position of the edited data item,
provided the data is negative (contains a negative operational sign). If the data is not
negative, a blank is inserted in the indicated character position. This sign or blank is
counted in the size of the report item.

This character is used in a report item picture to represent an actual decimal point as
opposed to an assumed decimal point. When it is used, a decimal point appears in the edited
data item as a character in the indicated character position. Therefore, the decimal point
is counted in the size of the report item. A picture of a report item can never contain more
than one decimal point, actual or assumed.

When a comma is used in the picture of a report item, a comma is inserted in the corre-

(comma) sponding character position of the edited data item. It is counted in the size of the report

CR

DB

item.

When a zero is used in the picture of a report item, a zero is inserted in the corresponding
character position in the edited data item. It is counted in the size of the report item.

When this character is used in the picture of a report item, a blank is inserted in the
corresponding character position in the edited data item. It is counted in the size of the
report item.

This symbol, which represents credit, may be specified only at the right end of the picture
of a report item. The symbol is inserted in the last two character positions of the edited
data item, provided the value of the data is negative. If the data is positive or unsigned
these last two character positions are set to blanks. Since this symbol always results in

two characters, CR or blanks, it is included as two characters in the size of the report item.

This symbol, which represents debit, may be specified only at the right end of the picture of
a report item. It has the same results as the credit symbol.

PICTURE EDITING

Examples of Insertion Characters:

Source data

] =]
o] o]
X

=] (=]

=B
o | o] [
= =] [

o] [+]
<] [<]
] [

no

] =] =] 5]
= =] [=] [=]
=[] 5] [=F
[\V]

— & [=

=
™

w

W1

-]
=

SR

Replacement Characters

A replacement character in the picture of a report item suppresses leading zeros in data and replaces
them with other characters in the edited data item. The replacement characters are as follows:

Z*$+-

Only one replacement character may be used in a picture, although Z or * may be used with any one

Editing Picture
$99
$99.99
9,999
+999
+999
+999
999-
-999
999-
$BB999. 99
$00999. 99
99.99CR
99.99CR
99.99DB

99.99DB

of the insertion characters.

3-30

Edited Item

o] [
=

Do

HRENEIRES

o] o | oo} |- |
o] o] [e] []
[\V]

][]
o |]
o |]
o] []

PICTURE EDITING

One Z character is specified at the left end of the report item picture for each leading zero
that is to be suppressed and replaced by blanks in the edited data item. Z's may be preceded
by one of the insertion characters $ + or - and interspersed with any of the insertion char-
acters decimal point, comma, zero, or B.

Only the leading zeros that occupy a position specified by Z will be suppressed and replaced
with blanks. No zeros will be suppressed to the right of the first non-zero digit whether

a Z is present or not, Nor will any zeros to the right of an assumed or actual decimal point
be suppressed unless the value of the data is zero and all the character positions in the item
are described by a Z. In this special case, even an actual decimal point is suppressed and
the edited item consists of all blanks.

If a $ +or - is present preceding the Z's, it is inserted in the far left character position of
the item even if succeeding zeros in the item are suppressed. In the special case where
the value of the data is zero and all the character positions following the $ + or - are speci-
fied by Z's, the $ + or - will be replaced by blanks.

If a comma, zero, or B in the picture of a report item is encountered before zero suppression
terminates, the character is not inserted in the edited data item, but is suppressed and a
blank inserted in its place.

The asterisk causes the leading zeros it edits to be replaced by an asterisk instead of a
blank. It is specified in the same way as the editing character, Z, and follows the same
rules.

When the dollar sign is used as a replacement character to suppress leading zeros, it acts

as a floating dollar sign and will be inserted directly preceding the first non-suppressed
character. One more dollar sign must be specified than the number of zeros to be suppressed.
This dollar sign will always be present in the edited data whether or not any zero suppression
occurs. The remaining dollar signs act in the same way as Z's to effect the suppression of
leading zeros. No other editing character may precede the initial dollar sign. Each dollar
sign specified in a picture is counted in determining the size of the report item. A special
currency sign may replace the $; it must be defined in the SPECIAL-NAMES paragraph.

When a plus sign is used as a replacement character, it is a floating plus sign. The plus sign
is specified one more time than the number of leading zeros to be suppressed. It functions

in the same way as the floating dollar sign; a plus sign is placed directly preceding the first
non-suppressed character if the edited data is positive or unsigned, and a minus sign is
placed in this position if the edited data is negative.

When a minus sign is used as a replacement character, it is a floating minus sign. The
minus sign is specified one more time than the number of leading zeros to be suppressed.
It functions in the same way as the floating plus sign except that a blank is placed directly
preceding the first non-suppressed character if the edited data is positive or unsigned.

3-31

PICTURE EDITING

Examples of Replacement Characters:

Examples of Picture Editing:

3-32

Source Data

Data to be Edited

Editing Picture

77999
27799
27277.77
$Hkk, 99
$$$9. 99
--=9.99

$$3.99

Picture of Report Item

[o]1]2]3][4]5
[o]o]1]2]3]4
[oJoJo]1[2]3]
[oJoJoJo]1]2]
[oJoJ1i]2]3]4
(1]2]3]4]5]6
[1]213]4][5]s6
Lolofolol1]2

folofofof1]2

1]121sl4]516]

Lololol1]2l3

Z77,999. 99
799, 999.99
$Z7272,779.99
$227,7Z77.99
$rkk, k%9, 99
GHkk Kk Q9
Grawk kK 99
+999, 999
-222,27Z7
$2727,72729.99CR
$2272,7279.99DB
$(4), $$9.99

$(4), $$3.99

$$3$, $22. 99

Edited Item

[a]a]o]2]3]
[A]A]9]2]3]
(a[a]a[a[a]A] 4]

(S*[*]9]. [2]3]

[a]afs[s]. [2]4]
[a]a]-]5]. [2]6]
$]3]2]. [6]5]

Edited Iftem

[al1]2], [3]4]5].]0]0]
[afoJof, JoJt]2].]3]4]
[$]ala[afa]afa1]. T2]3]
[$]a]A[a[a]a]a]a]. [1]2]
[s[*[*[1]. [2]3]4].T0]0]
[$]1]2]3]. J4]5]6].J0]0]
[x[*[r[*[*[*]1]. [2]3]
[+]oJoJo], JoJ1]2]
[-Ta[a]aa[A]1]2]
[$]1]2]3], [4]5]6]. [o[0[C]R]
[s]afa]afa]afali].2]3]a[a]
[A]AJA[A[$]1]2[3].T4]0]
[a[ala[a]afaaTs]. Jo]o]
[a]afa[a]afa]al-T.]1]2]
[a[a]a[ala]alala]. [1]2]

illegal picture

PICTURE EDITING

Summary of Rules for Picture Editing Clauses

1.

Only one of the characters of the set Z * $ -+ and - can be used within a single picture as a
replacement character, though it may be specified more than once.

If one of the replacement characters Z or * is used with one of the insertion characters $ +
or -, the plus or minus sign may be specified as either the leftmost or rightmost character
in the picture.

A plus sign and a minus sign may not be included in the same picture.

A leftmost plus sign and a dollar sign may not be included in the same picture.

A leftmost minus sign and a dollar sign may not be included in the same picture.

The character 9 may not be specified to the left of a replacement character.

Symbols which may appear only once are: V, S, decimal point, CR, and DB.

The decimal point may not be the rightmost character in a picture.

3-33

POINT

LEFT

POINT LOCATION IS {RIGHT

} integer-2 [PLACES]

The POINT LOCATION clause specifies the position of an assumed decimal point in a numeric item
(see PICTURE clause). An actual decimal point (one that occupies a character position in memory)
cannot be specified by this clause; instead, a PICTURE clause must be used.

This clause can be used only in the description of an elementary item. When specified, the decimal
point for the item is assumed to be integer-2 digit positions to the right (or left) of the rightmost digit
in the item. Integer-2 is a numeric literal with positive integral value.

If a PICTURE clause is included in the entry, the POINT LOCATION clause is documentary only.
If neither the PICTURE clause nor the POINT LOCATION clause is specified, the item is assumed
to be an integer (no decimal point).

Example

If the digits 12345 are stored in an item of size 5, they are treated in accordance with the position
of the assumed decimal point in that item, even though these digits are stored in exactly the same
way in each case.

Assumed Decimal

Storage POINT LOCATION
(1]2[3]4]5
LEFT 2
1]2]3f4]5]
LEFT 5
0 o[1]2[3]4]5]
t LEFT 7
[1]2[s]4]5]0
— RIGHT 1
[1]2]3]4[5]0 0 0
| t RIGHT 3
[1[2{3]4]5
None

3-34

RECORD CONTAINS

RECORD-MARK l]
data-name-1

RECORD CONTAINS [ingeger-4 TO] integer-5 CHARACTERS [DEPENDING ON l

This clause specifies record size. If all the records in a file are the same size, integer-5 specifies
the exact number of characters in each. When integer-5 only is used, the clause provides docu-
mentary information and has no effect on the object program.

When the records in a file are not all the same size, the RECORD CONTAINS clause or the OCCURS
clause is used to specify record size. There are three ways to specify variable length records:

® RECORD CONTAINS clause with DEPENDING ON RECORD-MARK
o RECORD CONTAINS clause with DEPENDING ON data-name
® OCCURS clause with DEPENDING ON data-name

Only one type of variable length record may be used in a single file.

OCCURS is used to describe a file with records that have a fixed length base portion and a variable
number of fixed length trailer portions.

RECORD CONTAINS with DEPENDING ON option is used to describe all other variable length records.
Integer-4 and integer-5 mark the limits of record length in a particular file. Integer-4 is the num-
ber of characters contained in the smallest record in the file and integer-5 is the number of char-
acters in the largest record.

DEPENDING ON RECORD-MARK is used when each record in a file is terminated by the special
record-mark character |. For an input file, the RECORD-MARK character must be contained in
the last item of each record in the file. To use this option with an output file, a single character
item is defined with the value RECORD-MARK, and moved to the last character position in the
record, or the statement, MOVE RECORD-MARK TO. .. may be used to place the record mark
character in the last character position in the record.

DEPENDING ON data-name is used for a file in which each record contains a key item giving the
record length in characters; data-name specifies this key item. It must be an elementary item,
not exceeding 7 characters; it must appear as an entry in each record description; and occupy the
same relative position in each record. Each key item must be the same in every respect including
name, and the name must be unique to the whole DATA division.

A file described with this option may not be the subject of the RENAMING clause, nor may the COPY
clause be used with any of the record descriptions.

3-35

RECORDING MODE
REDEFINES

HIGH
RECORDING MODE IS H%IE%%L H “ LOW } DENSITY]
-l e HYPER

The format phrase, the density phrase, or the entire clause may be omitted. When the clause is
omitted, DECIMAL and HIGH are assumed. If format is omitted, DECIMAL is assumed; and if
density is omitted, HIGH is assumed,

REDEFINES

The REDEFINES clause provides for specifying data in an alternate manner. It does not change the
data, only the method of referencing it; this includes giving the item a new name. Both the original
item and its redefinition occupy the same physical area in memory.

level-number data-name-4 REDETINES data-name-5

This clause may be used at any level in a record description entry in the Constant, Working-Storage,
or Common-Storage Sections. It may not be used at the 01 level in the File Section because each
record named in the DATA RECORDS clause of a file description entry implies automatic redefinition
of the record area. Independent items with level number 77 can be redefined, but items with level
numbers 66 or 88 cannot be redefined. The level numbers and the sizes of data-name-4 and data-
name-5 entries must be equal.

The data-name-4 entry must immediately follow the data-name-5 entry, or the last item within it
if data-name-5 is a group item. Data-name-4 may be the name of a group or an elementary item
regardless of the nature of the data~name-5 item. If it is a group item, data-name-4 is followed
by the entries for all the items in the group. Redefinition ends when a level number less than or
equal to that of data-name-4 is encountered. If data-name-4 is an elementary item it completely
redefines the original area.

An OCCURS clause with the DEPENDING ON option cannot be specified for any entries in the original
item or its redefinition. In addition, data-name-5 cannot contain any OCCURS qlause nor be sub-
ordinate to an item containing an OCCURS. No value may be specified in the redefinition of an item.

When an area is redefined, all descriptions of the area remain in effect for the entire program. The
one that is selected depends on the particular reference made to the area. TFor example, if two items
A and B share the same area, MOVE X TO A moves X to the area according to the description of

A and MOVE Y TO B moves Y to the same area according to the description of B. These statements
could be executed anywhere in a program; the final contents of the area depends on the order in
which they are executed.

An example of a use of the REDEFINES clause is given in the discussion of TABLES.

RENAMES

This clause permits alternate naming of elementary or group items not at the 01 level.
66-data-name-7 RENAMES data-name-8 [THRU data-name-9].

Data-name-7 may be used to refer to the item defined as data-name-8 or to the group of items from
data-name-8 through data-name-9. One or more RENAMES entries can be written for any record
description entry. All RENAMES associated with an entry must be written immediately following the
last item description in that entry. The renamed items must be in the associated record description.

If the THRU option is included, data-name-7 is treated as a group item which includes all the ele-
mentary items beginning with data-name-8 or the first elementary item in data-name-8 if it is a
group item, and concluding with data-name-9 or with the last elementary item in data-name-9 if it
is a group item. When data-name-9 is specified, none of the elementary items within the range
defined by THRU can be of variable length, nor may any item within the range have a lower level
number than data-name-8. Data-name-8 and data-name-9 may not have the same name nor may
data-name-9 be subordinate to data-name-8.

When the THRU option is not included, data-name-7 is treated as a group item if data-name-8 is a
group item and as elementary if data-name-8 is elementary. Data-name-7 assumes the level num-
ber, class and usage of data-name-8.

A level 66 entry cannot rename another level 66 entry nor may it rename an independent level 77
entry, a condition name level 88 entry, or record level 01 entry. The REDEFINES clause may be
used to provide alternate names for any 01 level entry not in the File Section. Data-name-7 cannot
be a qualifier; data-name-8 and data-name-9 cannot be qualified or require qualification. Neither
data-name-8 nor data-name-9 may contain an OCCURS clause or be subordinate to an item containing
an OCCURS clause.

Examples:

1) 01 DATE-WORD,
02 YEAR-1 PICTURE 99.
66 YEAR-2 RENAMES YEAR-1.
02 MONTH-1 PICTURE 99.
66 MONTH-2 RENAMES MONTH-1.
02 DAY-1 PICTURE 99.
66 DAY-2 RENAMES DAY-1,
66 DAY-3 RENAMES DAY-1,

2) 01 DETAIL,
03 ITEM-NUMBER PICTURE 9 (4).
03 VENDOR-IDENT,
05 VENDOR-CLASS PICTURE 9(3).
05 VENDOR-NUMBR PICTURE 9(5).
03 CUST-IDENT,
05 CUST-CLASS PICTURE 9(3).
05 CUST-NUMBR PICTURE 9(5).
66 ALL-IDENT RENAMES VENDOR-IDENT THRU CUST-IDENT.

3-37

SIGNED

SIGNED

This clause indicates an operational plus or minus sign. If it is omitted, the item is assumed to be
unsigned and positive. When this clause is specified, the processor assumes that an operational
sign does not appear as a separate character on the external device, but is combined with the right-

most character in the item.

The SIGNED clause can be used only in describing elementary items, and an item specified as signed
is assumed to be numeric; therefore, when SIGNED is included, CLASS may be omitted. If a PIC-
TURE clause which specifies an operational sign is included in the entry, the SIGNED clause is not
needed. SIGNED cannot be used in an entry which specifies editing since such an item must not

have an operational sign. An operational sign, since it is not specified as a separate character on
the external device, nor stored as a separate character in memory, is not counted in determining
the size of the item.

Examples:

Computational Item in Storage

3-38

SIZE

. CHARACTERS
SIZE IS integer-1 [{DIGITS }:l
The size of an elementary item is specified in terms of the number of character positions it
occupies in memory. The size of every elementary item must be specified either in this clause or
in a PICTURE unless the item is a floating point binary number (USAGE IS COMPUTATIONAL-2).
SIZE for a group item is used for documentation only. If both SIZE and PICTURE clauses are
specified, the size of the item is determined by PICTURE, and SIZE is used as documentation only.

The size of a numeric item is specified in DIGITS, and the size of an alphabetic or alphanumeric
item in CHARACTERS; both words are optional in this context. The maximum size for an elementary
item is 255 characters or digits. If the item is used in arithmetic calculations or is moved to an
edited field, the maximum size is 18 digits. The maximum size of a numeric literal is 30 digits.

Operational signs and decimal points associated with numeric items do not occupy actual character
positions in memory and are not counted in the size of an item. However, when the alphanumeric
characters + or -, or the actual decimal point are stored as part of an edited item, they are counted
in determining the size (PICTURE EDITING).

Examples:

SIZE IS 1 CHARACTER
SIZE IS 80 CHARACTERS
SIZE IS 5 DIGITS

SIZE IS 254.

3-39

SIZE-CLASS-USAGE

NUMERIC

SI7E 1S interer-1 | | ALEUABETIC A [[crsnsorzs)]
& ALPHANUMERIC DIGITS
AN DISPLAY

Since CLASS and USAGE are both optional COBOL words, they can be omitted. If the SIZE clause
is followed by class and usage clauses, and if the optional words are omitted from the last two
clauses, the result is a single clause combining specifications of all three.

Examples:
Clause

SIZE IS 12 ALPHABETIC DISPLAY CHARACTERS
SIZE IS 3 NUMERIC COMPUTATIONAL DIGITS
SIZE IS 6 NUMERIC COMPUTATIONAL DIGITS
SIZE IS 9 ALPHANUMERIC DISPLAY CHARACTERS
SIZE IS 7 AN DISPLAY CHARACTERS

SIZE IS 8 COMPUTATIONAL DIGITS

3-40

Example in Storage

[E[r[r[o]r]M][E]s[s[A[c]E]
[1]6]o]2]4]3]
[s[T]ofcIx]-]4]6]3]
[$[*[*Ja]. [8 o]

[ofoJoJoJ1]2]3]4]

SYNCHRONIZED

SYNCHRONIZED {L@—T]

RIGHT

The SYNCHRONIZED clause specifies space allocation for an elementary item transmitted by a move
operation. Normally, for compatability with external devices, data items are packed without regard
for machine words. This may make an item relatively inaccessible and require several instructions

to reference the item, increasing running time. When an item is referenced often, it is sometimes

preferable to specify exactly how it should be stored.

If SYNCHRONIZED LEFT is specified, the leftmost character of the item is allocated to the leftmost
character position in the next available whole machine word; subsequent characters are allocated to
successive character positions to the right. If the item occupies more than one machine word (ten
character positions), succeeding characters are allocated to consecutive machine words, from left
to right, as for the first word.

If SYNCHRONIZED RIGHT is specified, the item is allocated to as many of the next available whole
machine words as are needed to contain it. The rightmost character of the item is allocated to the
rightmost character position in the last word; preceding characters are allocated to successive
character positions to the left in this word. If the item is allocated to more than one machine word,
preceding characters are allocated to the preceding machine words, from right to left, as for the
first word. The SYNCHRONIZED clause need not be used in the description of 2 COMPUTATIONAL-n
item. All level 77 items are full word synchronized.

A group containing synchronized elementary items occupies more storage than is implied by the
individual elementary items. If such a group is referenced (by a MOVE statement), the whole area
occupied by the group is referenced, not just the portions containing the data. The receiving item
must be large enough to contain the whole group not just the data. If synchronized elementary items
are referenced individually, only the data is referenced, and the excess positions occupied by the
item may or may not be ignored. No synchronization occurs when data is read or written.

When an entry contains both OCCURS and SYNCHRONIZED clauses, each occurrence of the item is
synchronized. The initial contents of implied filler areas will not be guaranteed.

In the examples on the next page, shaded areas indicate unused portions of machine words.

3-41

SYNCHRONIZED

Picture Data Item (machine words) SYNCHRONIZED
S9(3)V l1]2]3 lo]o]olo]o] lo]1]2]3 RIGHT
S9(3)V LEFT
S9(3)V l1]2]3] RIGHT
S9(3)V 1]2|3 LEFT
$9(5) l1]2]3 RIGHT
S9(5) 1123 LEFT
Picture Data Item (machine words)

X(9) [A[B[cIp[E[F[c[u[1] [a[B[c[D[E[F[G[H]I
X(9) [a]B[c[D|E[F[G|H]I]

X(11) [ATB[C][D[E]F[G[H]I]

X(11) [a]B][c[p[E[F[c[H]T]

3-42

JUSTIFIED SYNCHRONIZED

LEFT

RIGHT

LEFT

RIGHT

TABLES

Data is often organized in a table constructed as a group of constants. There are two methods for
describing a table and for referencing items from a table. In the first method, each item is named
and described individually, so that any item can be referenced by a name. In the second method,
the table is redefined and the OCCURS clause is used to specify a shorthand description of the area
in memory; an item in the table may then be referenced by subscripting instead of by name.

Consider a table that consists of the male and female populations of each of the 50 states for 1956,
1957, 1958, 1959, and 1960. These figures are arranged so that the male population of Alabama

in 1956 is the first number in the table, followed by the female population of Alabama in 1956, and
then by the corresponding pairs for Alabama in 1957, 1958, 1959, and 1960. This set of ten numbers
is followed by the corresponding set of ten numbers for Alaska, Arizona, and so on, ending with the
ten numbers for Wyoming. The 500 numbers in the table are organized according to alphabetic order
of the states, then by order of year, then by sex, with the male number preceding the female number
for each year within each state. Each population figure is an 8-digit number. This table could be
described in the constant section of the Data Division as a constant record, as follows:

0l POP-RECORD
02 ALABAMA
03 FIRST-YEAR
04 MALE PICTURE 99999999 VALUE IS xXXXXXXXX.
04 FEMALE PICTURE 99999999 VALUE IS XXXXXXXX.
03 SECOND-YEAR
04 MALE PICTURE 99999999 VALUE IS XXXXXXXX.
04 FEMALE PICTURE 99999999 VALUE IS XXXXXXXX.
03 THIRD-YEAR
04 MALE PICTURE 99999999 VALUE IS XXXXXXXX.
04 FEMALE PICTURE 99999999 VALUE IS XXXXXXXX.,
03 FOURTH-YEAR
04 MALE PICTURE 99999999 VALUE IS XXXXXXXX.
04 FEMALE PICTURE 99999999 VALUE IS XXXXXXXX.
03 FIFTH-YEAR
04 MALE PICTURE 99999999 VALUE IS XXXXXXXX.
04 FEMALE PICTURE 99999999 VALUE IS XXXXXXXX.
02 ALASKA
03 FIRST-YEAR
04 MALE PICTURE 99999999 VALUE IS XXXXXXXX,
04 FEMALE PICTURE 99999999 VALUE IS XXXXXXXX,
03 SECOND-YEAR
04 MALE PICTURE 99999999 VALUE IS XXXXXXXX.
04 FEMALE PICTURE 99999999 VALUE IS xXXXXXXXX,

3-43

TABLES

During compilation, the processor associates the 500 values with particular areas in memory. At
execution time, all of the numbers are stored in memory and are available for reference by the object
program. The items are referenced by name. However, because of the manner in which the data
names have been assigned, nearly all references to this table require qualification. For example,

to refer to the female population of Arizona in 1959, the programmer specifies FEMALE OF
FOURTH-YEAR OF ARIZONA. FIRST-YEAR OF ARKANSAS refers to the pair of population numbers
for Arkansas in 1956. OHIO is a reference tothe ten population numbers for that state. To refer to
all 500 numbers in the table, the programmer simple specifies the name of the record, that is,
POP-RECORD.

This is the first method of describing and referencing a table. A shorthand method for describing
this table and permitting subscript references is possible using the REDEFINES and OCCURS clauses.

A particular item or set of items can be referenced by its position in the table rather than by its
name. For example, the female population of Alabama in 1960 is the second number in the fifth
pair of numbers in the first set of numbers (referenced by name as FEMALE OF FIFTH-YEAR OF
ALABAMA). The constant area consists of 50 similar items, each called POPULATION; and each
item consists of 5 similar items, each called YEAR. Each item called YEAR consists of 2 similar
items, each called MALE-FEMALE and each having a picture of 99999999.

To refer to this table with subscript numbers, the constant area must be redefined, by means of -~
the REDEFINES clause, as a table using the OCCURS clause. The new table is specified as follows:)

01 POP-TABLE REDEFINES POP-RECORD,
02 POPULATION OCCURS 50 TIMES,
03 YEAR OCCURS 5 TIMES
04 MALE-FEMALE PICTURE 99999999 OCCURS 2 TIMES,

Redefinition of an area does not change any information in that area; it simply provides a different
way for the object program to interpret that area.

A table of binary numbers can be constructed, but an OCCURS clause cannot be specified for a com-
putational-n item; therefore, a dummy group name must be set up for a table of binary numbers.

01 TABLE
02 GROUPF OCCURS n TIMES
03 FI SIZE 8 COMPUTATIONAL-1 CHARACTERS

Computational (BCD) and computational-n (binary) items may not be included in the same table.

SUBSCRIPT NUMBERS

Any item described by OCCURS can be referenced by subscript numbers. Subscript numbers are
specified in parentheses following the name of the type of item required. They are written in
descending order of inclusiveness and are separated from each other by a comma and a space.

3-44

TABLES

A single item in the table, POP-TABLE, is refercnced by three subscript numbers; one to indicate
the POPULATION item, one to indicate the YEAR item, and one to indicate which of the two items
within the chosen YEAR is required. For example, the male population of Alaska in 1960 is refer-
enced by MALE-FEMALE (2,5,1). A pair of items is referenced by two subscript numbers; one to
indicate in which particular POPULATION item the required pair occurs, and one to indicate which
YEAR item is required. The pair of numbers for Wyoming in 1957 is referenced by YEAR (50, 2).
Similarly, a set of five pairs of numbers is referenced by just one subscript number; the ten numbers
for Arizona are referenced by POPULATION (3). Similarly, all 500 numbers are referenced by the
name of the table, with no subscripting numbers, that is, by POP-TABLE. This second method of
describing and referencing a table requires that the table be described in the longhand manner as
well as in the shorthand manner.

Tables to be handled by COBOL must not require more than three subscript numbers to refer to any
particular item. Any table can require one, two, or three subscript numbers, and any reference to
an item in such a table is said to require one, two, or three levels of subscripting.

It is not necessary to state the subscript directly in numeric form. The subscript specified in
parentheses can be the name of a data item in the program. When the table reference is executed
in the object program, the current value of the data item used as a subscript is used to calculate the
table item required. The data-name used as a subscript may not be qualified, although qualified
items can be subscripted. A data-name defined as binary and a data-name defined as decimal may
both be used as subscripts. Subscripts may be positively signed and have implied point locations
but they must be integral in value. Literals must be positive integers; they are converted to binary
at compile time.

3-45

USAGE

COMPUTATIONAL
USAGE IS { DISPLAY
COMPUTATIONAL-n

Although this clause specifies that an item will be used primarily for computation or display; it does
not necessarily limit it to that usage. Computational-n items may not be used for display. If usage
is not specified it is assumed to be display. The USAGE clause can describe an item at any level.
At the group level it is inclusive and cannot be contradicted by any item in the group. USAGE is an
optional COBOL word; it is omitted when SIZE, CLASS and USAGE are combined, (see SIZE-CLASS-
USAGE).

DISPLAY describes items involved in operations that edit or otherwise prepare data for reading;
they may be alphabetic, alphanumeric, or numeric. A numeric display item may be used for
computations as well as display, and COMPUTATIONAL items may be used for display.

A COMPUTATIONAL item is a decimal numeric value. It is packed automatically, although the user
may control placement with the SYNCHRONIZED and JUSTIFIED clauses. This usage provides
efficient storage but requires conversion to binary during multiplication, division and exponentiation.
Addition and subtraction is done in display arithmetic and no conversion is required.

Both computational and computational-n items must be numeric and size may not exceed 18 decimal
digits.

COMPUTATIONAL-n items may be COMPUTATIONAL-1 or COMPUTATIONAL-2, and are stored
as binary numbers. When Common-Storage, Working-Storage, or Constant items are defined as
COMPUTATIONAL-n (binary) and contain an initial value, this value is converted to binary.
Computational-n items may not be used for display; nor may they be synchronized left or used to
describe an item that is to be edited.

COMPUTATIONAL-1 items are stored as un-normalized, floating, single precision integers for 14
or less digits; and stored as normalized, floating, double precision integers for 15-18 digits.

COMPUTATIONAL-2 items are stored as floating-point binary numbers, in single precision, occupying
one computer word. The decimal point is carried within the item as a binary exponent. Size is
immaterial for such an item, and a PICTURE or equivalent clause has no meaning.

The computational-n option reduces the number of conversions in an arithmetic statement, as all
internal arithmetic operations are performed in the binary mode. Double precision arithmetic may
be avoided by specifying computational-2 or by reducing the size of a computational-1 item to less
than 15 decimal digits.

3-46

USAGE

Examples:
Picture Item in Memory
SIZE IS 18 COMPUTATIONAL-2 DIGITS {1726 [7540} 0000 [0000 | 0000]
VALUE IS 123.
SIZE IS 18 COMPUTATIONAL-1 DIGITS 1726]7540] 0000]0000] 0000
VALUE IS 123. 1646] 0000] 0000 | 0000 0000
SIZE IS 18 COMPUTATIONAL DIGITS olofoJololofo]o
VALUE IS 123. ofofofofofofol1]2]3
SIZE IS 13 COMPUTATIONAL~1 DIGITS [2000[0000} 0000 0000] 0173]

VALUE IS 123.

173

In the above examples 123 =
P (10) ®

See Appendix I for a full explanation of the 6000 Series floating point format as it pertains to
COBOL computational usage.

3-47

VALUE

The VALUE clause sets initial values and specifies values associated with condition names.
Tformat 1:
VALUE IS literal-1
Format 2:

{%Q—EE—ESISARE } literal-2 [THRU literal-3] [literal-4 [THRU literal-5]]. ..

The first format is always used to define the value of a constant-item, or the initial contents of a
working-storage or common-storage item. VALUE must be specified for each item in the Constant
Section. In the Common-Storage or Working-Storage Sections, VALUE may be used to define
initial values or values associated with a condition name. Initial values are set at the start of
program execution; they are not affected by editing specifications.

The second format defines the value or range of values associated with a condition name. When

a single value is associated with a condition name, only literal-2 is specified. When condition names
represent more than one value or a range of values, as many THRU options may be used as needed.
In the File Section, VALUE may be used only to define values associated with a condition name.

It is ignored in any attempt to define initial values.

In the Report Section, VALUE is used in an clementary item description; it acts as a constant and
is not changed during execution. The specified value is output each time the associated report
group is output, (Chapter 5, SOURCE-SUM-VALUE).

If a VALUE clause is used at a group level, it may not appear in any entry for an item within that
group; nor may a VALUE clause appear in an entry which contains an OCCURS clause or which is
subordinate to one containing an OCCURS.

Literal-1 may be a literal or figurative constant of the same class as the item assigned a value.
The literals in Format2 must be the same class as the item with which the condition is associated.
The maximum size of a non-numeric literal is 255 characters or digits; the maximum size of a
numeric literal is 30 digits. Any digits over the number specified as the field size must be zeros
required to locate the decimal point.

Examples:

1) The value of an independent constant item is defined:

77 FICA-MAX SIZE IS 5 NUMERIC DIGITS POINT LOCATION IS LEFT 2 VALUE IS 150.00.

The constant item will appear as follows synchronized within a word of storage:

[1]5]o0]o]o]

assumed decimal point location

3-48

2)

3)

VALUE

Value is specified for the range of values of a condition name associated with an item:

01 YEARS PICTURE IS 9(4)
88 SIX-YEARS VALUES ARE 1951 THRU 1956.

Value is specified for the initial value of an item:

01 HEADING-A.
03 FIRST-WORD PICTURE X(10) VALUE IS "COBOL-LIST".

3-49

PROCEDURE DIVISION 4

Statements in the Procedure Division describe the operations to be performed by the object program.
These statements are combined to form sentences and paragraphs; paragraphs may be combined to
form sections. Paragraphs and sections are both referred to as procedures, and paragraph names
and section names are both called procedure names. The elements of the statements are COBOL
words, user-defined names, and literals. A summary description of these elements and of pro-
cedure-names is contained in Appendix A.

The Procedure Division may also contain Declaratives (see 4. 2).
Execution of the object program begins with the first statement of the Procedure Division, excluding

Declaratives. Statements are then executed in order of appearance except where the sequence is
altered according to a rule specified in this chapter.

4.1 SPECIFICATION OF PROCEDURE DIVISION

PROCEDURE DIVISION.

DECLARATIVES,

section-name-1 SECTION.
introductory-sentence-1.
paragraph-name-1

L END DECLARATIVES. |
[section-name-2 SECTION [priority-number]].
paragraph-name-2.

paragraph-name-3.
[section-name-n SECTION [priority-numberi]].
paragraph-name-n.

The division begins with the header on the first line. When declaratives are included, the entire
declarative portion of the specification is written immediately following the division header. If
declaratives are not included, the next line is the section name followed by a space and the word
SECTION.

The paragraph names and texts are then specified for all paragraphs in the first section; each
paragraph name is written on a new line. After the last sentence of the first section, the second

section header is specified on a new line, followed by the paragraph names and texts, and so on
for the entire division.

All paragraphs following a section header are assumed to be part of that section. Paragraphs that
are not part of sections must be written at the beginning of the division, preceding the first section
header. The user may specify that the program contains no sections by omitting section headers
and writing the paragraphs consecutively.

A priority number following the word SECTION in the header indicates that the division is segmented.
When segmentation is used, all the paragraphs in the division must be contained in sections, priority
numbers may be specified for the sections (Segmentation 4.3).

The division header and all section and paragraph headers begin in column 8 and are terminated

by a period, the remainder of each header line must be blank unless it is a paragraph name. The
text of a paragraph may begin on the same line as the paragraph name, separated from it by at
least one space, or it may begin on a subsequent line starting in column 12, All lines in the text of
a paragraph begin in or to the right of column 12. The rules for splitting a word or literal between
two lines are given in Appendix A.

4.2 DECLARATIVES

Declaratives define procedures to be executed in addition to standard error and label record handling
procedures of the control system. A declarative consists of an introductory sentence containing one
of the statements USE or ENTRY and the associated procedures. The introductory sentence defines
the conditions under which these procedures should be executed, and is specified according to a
fixed format. Procedures specified in a declarative are executed automatically under the input-
output control system, according to the conditions specified in the USE sentence.

Each declarative is specified in a section by itself; it is preceded by a section header. The intro-
ductory sentence follows the header. The procedures are specified according to the same rules as
all other procedures in the program. All declarative sections are grouped at the beginning of the
Procedure Division under the collective header DECLARATIVES. They are followed by the collective
termination header END DECLARATIVES.

Declarative procedures may reference or be referenced by procedures in the main body of the Pro-
cedure Division or in another declarative scction. These references may be made only by the
PERFORM statement. A referenced procedure in the main program must not contain a call to a
declaratives procedure, as this could cause the return of control to or from the main program to be
destroyed.

Input-output verbs must not be used in a declaratives section except that a non-standard tape output
file may be closed in a USE BEFORE ENDING file label procedure.

4.3 SEGMENTATION

At execution time, sections of the Procedure Division may be separated into overlayable segments.
Each segment becomes a separate subroutine in the relocatable binary output from compilation.
The user indicates the overlay requirements with priority numbers following each section header,
and the compiler provides the necessary controls.

The Declarative portion of the Procedure Division may not be segmented, nor may the Identification,
Environment, and Data Divisions be segmented.

Segmentation does not affect the logical sequence of the program as specified in the source program.
If any reordering of the object program is required to handle the flow from segment to segment,

the compiler provides the control transfers to maintain the logic flow specified in the source program,
An automatic jump is made when the succeeding section is in a different segment. Control may be
transferred to any paragraph in a section, and it is not mandatory to transfer control to the beginning
of a section. Any reference to another segment causes the referenced segment to be accessed from

a storage device and loaded into memory with attendant delay in execution. The number of transfers
should, therefore, be kept to a minimum.

Priority Numbers

Segmentation is accomplished through a system of priority numbers. The priority number is in-
cluded in the section header. When segmentation is used, the entire Procedure Division will be in
sections; each section is classified as belonging to the fixed or main segment or to one of the over-
layable segments of the object program. The format for the section header is:

section-name SECTION [priority-number].

The section name is formed exactly as any procedure name; the priority number is 1-99. If the
priority number is 1-49, or omitted, the section is part of the fixed or main segment. Overlayable
segments are specified by priority numbers 50-99: In the above 50-99 range, all sections having
the same priority number are combined into one segment. Each time a GO TO or PERFORM refer-
ences a procedure in an overlay segment containing a group of sections with the same priority
number, the entire segment is loaded.

The fixed or main segment is kept in memory at all times. It is, therefore preferable to give any
frequently referenced sections priority numbers in the range 1-49. The overlayable segments of
any subprogram must be compiled at the same time.

If a SORT is part of an overlayable segment, the input-output procedures associated with it must be
in the same overlayable segment (sections with the same priority number) as the SORT statement,
or they must be in the main segment. If the SORT statement is in the main segment, the associated
input and output procedures must be in the main segment. The input and output procedures may not
transfer control to another segment.

4-3

Example:

PROCEDURE DIVISION.
START-PROGRAM SECTION 1.

READ-INPUT SECTION 2.
START.

STEP-2.

INPUT—lTO—SORT SECTION 6.
SOR’i‘-MASTER SECTION 50,
OUTi’UT—FROM—SORT SECTION 7.
UPDATE—MASTER SECTION 51.

PRINT-REPORT SECTION 8.

4.4 STATEMENTS AND SENTENCES

The Procedure Division may contain imperative, conditional, and processor-directing statements.
Each must be part of a sentence. Sentences must be terminated by a period and may contain a
separator: the word THEN, or the semi-colon. A separator must not be followed by another
separator. Separators may be used between statements, or in an IF statement.

Imperative Statements

These statements indicate operations for the object program to perform. They may consist of a
series of statements separated by a space or a separator. The imperative verbs are:
ACCEPT ADDt ALTER CLOSE COMPUTET DISPLAY DIVIDET EXIT GO TO
GENERATETT INITIATETT MOVE MULTIPLYY OPEN PERFORM RELEASE
SEEK SORT STOP SUBTRACTT TERMINATETT USE WRITETTT

T Without the SIZE ERROR option
T Report Writer only
1T Without the INVALID KEY option

Conditional Statements

A conditional statement specifies that a condition is to be evaluated for truth and subsequent action
of the object program is dependent on this truth value. A conditional statement may be preceded by
an imperative statement in the same sentence. The conditional verbs are:

IF READ RETURN arithmetic statements with ON SIZE ERROR
WRITE with INVALID KEY

Processor-Directing Statements

These statements indicate operations for the processor to perform at compilation time. The
processor-directing verbs are:

ENTER INCLUDE NOTE

4.5 CONDITIONS

Conditional expressions specify the conditions under which operations are to be performed or by-
passed. In simple conditional expressions, truth or falsity depends upon one condition only. A
compound conditional expression is two or more simple conditional expressions connected by the
logical operators AND and OR.

4.5.1 SIMPLE RELATIONAL CONDITION

The five simple conditions are:

relational

sign

class
condition-name

switch-status-name

RELATIONAL

Using this method, the truth or falsity of the expression depends upon the relative magnitudes of two
operands. Comparison of the operands is made by relational operators.

(GREATER THAN (or >)
GR

LESS THAN (or <)

LS

identifier-1 GREATER-EQUAL TO identifier-2
literal-1 (15 [NOT] { 6o b | (literal-2
formula-1 LESS-EQUAL TO formula-2
LQ
EQUAL TO

Illlg

IS UNEQUAL TO
EQUALS

EXCEEDS
NQ

NGR

NLS

When a simple relational condition is specified, a comparison is made between two operands
according to the relational operator. The operands may be literals, named data items, or formulas.
Each is referred to as "item" in the following discussion. The manner in which two values are com-
pared depends on whether they are numeric or non-numeric.

NUMERIC ITEMS

When both items are BCD numeric, the comparison is based directly on their algebraic values. Any
difference in item length is ignored; 076000 is considered to be equal to 00000760, provided assumed
decimal points in the two items correspond. If no assumed decimal point exists, each item is an
integer and the first is considered 76,000 and the second 760.

Binary to binary comparison — a binary number can be compared to another binary number provided
they are data-names specified COMPUTATIONAL-n.

Binary to literal comparison — the literal is converted to binary at compile time and a binary to
binary test is made at execution time.

Binary to decimal comparison — the decimal is converted to binary at execution time and a binary
to binary test is made.

A COMPUTATIONAL-n field can be used in POSITIVE, NEGATIVE, and ZERO tests. Since zero is
considered a unique value, neither positive nor negative items with zero values are considered to be
equal, regardless of length, decimal points, and sign.

NON-NUMERIC ITEMS

Two non-numeric, or one non-numeric and one numeric items are compared according to the CO-
BOL collating sequence (Appendix B). The sequence is an ordering of the COBOL character set;
each character has a specific place or position in the set.

Items of equal length are compared character by character as specified by the relational operator.
Comparison begins at the left and terminates when inequality is encountered or the end of the items
is reached, whichever occurs first. If no unequal pairs are detected, the items are equal. Unequal
characters are compared according to their relative positions in the collating sequence. The item
which contains the higher character in the collating sequence is considered to be the greater.

If items are of unequal length, comparison proceeds as above, with the following difference. If
unequal characters are not detected before the end of the shorter item, the longer item is considered
to be greater. If, however, the remaining characters are all blanks (or spaces); the items are con-
sidered to be equal.

SIGN CONDITION

The user may test whether the value of an item or formula is positive, negative, or equal to zero.
CLASS must be numeric, and for the positive or negative test, the item must be signed. The value
zero, whether signed or not, is considered to be neither positive nor negative.

identifier POSITIVE
IS [NOT] NEGATIVE
formula
ZERO

CLASS CONDITION

This expression is used when the condition is to be based on the class of an item (CLASS clause,
Chapter 3). A numeric or alphanumeric item may be tested for being NUMERIC, or an alphabetic
or alphanumeric item for being ALPHABETIC.
. . NUMERIC
identifier IS [NOT] {_—_ALPHABETIC]

CONDITION-NAME CONDITION

Only the condition-name associated with the required value of an item is specified.
[NOT] condition-name

This expression is used to test whether the value of a conditional variable is equal to the value(s)
associated with the condition name. Condition name entries require an 88 level number identification
and a VALUE clause. A condition name may be qualified by the elementary condition variable with
which it is associated and the qualifiers of the condition variable.

SWITCH-STATUS-NAME CONDITION

Only the switch-status-name associated with the switch setting is required.
[NOT] switch-status-name

This expression is used when the condition is based on the status of a machine switch (SWITCH
clause, Chapter 2).

4.5.2 COMPOUND CONDITIONAL EXPRESSIONS

Any two simple conditional expressions, specified according to any of the five methods described
above, may be connected by a logical operator, AND or OR, to form a compound conditional ex-
pression. Turther simple conditional expressions may be connected to this compound expression
by logical operators to form complex conditional expressions.

AND Both expressions must be true if the whole expression is to be true. A AND B is true when
both conditional expressions A and B are true.

OR One or both expressions must be true if the whole expression is to be true. A OR B is
true when A is true, or when B is true, or when both A and B are true. -~

Parentheses indicate the order in which conditions in an expression are to be evaluated. Parentheses
must always be paired; evaluation begins with the innermost pair and proceeds to the outermost pair.
When the order of evaluation is not specified by parentheses, the expression is evaluated according
to the logical operators AND and OR as follows: beginning at the left of the entire expression, each
AND expression is evaluated and then each OR expression is evaluated.

For example, the conditional expression A AND B OR C AND D is considered as (A AND B) OR

(C AND D). (A AND B) is evaluated first, followed by (C AND D). The whole expression is true if
either A AND B is true (both A and B must be true) or if C AND D is true (both C and D must be true)
or if both A AND B and C AND D are true.

The word NOT may be used in two ways. In simple conditional expressions, it indicates an opposite ,
condition. For example, A IS NOT LESS THAN B, is the opposite of A IS LESS THAN B. The word

NOT may also precede a conditional expression to indicate that when the expression is evaluated, the

opposite condition is desired, as in NOT EXEMPT, where EXEMPT is a condition name. Similarly,

NOT may precede the left parenthesis indicating that the opposite of the compound conditions is de-

sired. NOT (A EQUALS B OR A EQUALS C) means that the condition is true only when A does not

equal both B and C. NOT (A EQUALS B AND A EQUALS C) means that the condition is true when

A does not equal either B or C.

The following table illustrates the rules for legal symbol pairs in compound conditional expressions.
The letter C indicates a conditional expression. The letter P indicates that the specified pair is
permissible, and the dash indicates that they are not.

Second Symbol

C OR AND NOT ()

C - P P - - P

OR P - - P P -
g

g AND P - - P P -
N
n

E NOT P - - - P -
a

(P - - P P -

) - P P - - P

4.5.3 IMPLIED ELEMENTS

The data-name, literal, or formula to the left of the relational operator is the subject of the con-
ditional expression, and the item to the right is the object. If a single conditional sentence contains
a sequence of fully-stated simple conditional expressions (either consecutively, as in a compound
conditional expression, or separately by verbs, key words, etc., some elements may be omitted
without altering the meaning. The same subject and/or the same object, and/or the same rela-
tional operator must be specified for each expression. All but the first occurrence of such common
elements may be omitted within the limitations explained below. Elements omitted in this way are
implied elements.

Three types of omissions can be made: subject only is omitted, both subject and relational operator
are omitted, or both subject and object are omitted. The processor derives the missing elements
from the last preceding conditional expression in which subject, relation, and object are explicitly
stated. Therefore, all but the first of any common elements in a sentence may be omitted. The
presence or absence of parentheses in the unabbreviated form does not affect the use of abbreviated
forms.

IMPLIED SUBJECT

The conditional expressions in a sentence have a common subject:

IF A EQUALS B OR A IS LESS THAN C
can be abbreviated to

IF A EQUALS B OR IS LESS THAN C

IF A EQUALS B MOVE M TO N OTHERWISE IF A IS LESS THAN C ADDX TO Y
can be abbreviated to

IF A EQUALS B MOVE M TO N OTHERWISE IF LESS THAN C ADDX TO Y

IMPLIED SUBJECT and RELATION

The conditional expressions in a sentence have a common subject and a common relation:

IF A EQUALS B OR A EQUALS C
can be abbreviated to

IF A EQUALS BORC

IF A EQUALS B ADD X TO Y OTHERWISE IF A EQUALS C AND A EQUALS D MOVE M TO N
can be abbreviated to

IF A EQUALS B ADD X TO Y OTHERWISE IF C AND D MOVE M TO N

IMPLIED SUBJECT and OBJECT

The conditional expressions in a sentence have a common subject and a common object:

IF A EQUALS B OR A IS GREATER THAN B MOVE C TO A IF A IS GREATER THAN B ADD B TO A
can be abbreviated to

IF A EQUALS B OR IS GREATER MOVE C TO A IF GREATER ADD B TO A
In the unabbreviated form, A is the subject in the EQUALS and the two GREATER THAN conditional
expressions, and B is the object in all three expressions. After their first explicit occurrence, both
A and B may be implied. The value of A in the seccond GREATER THAN conditional expression is C,

since C is moved to A by the previous statement. This sentence also illustrates the concept of
nested conditionals.

4-10

IMPLIED LOGICAL OPERATOR

A logical operator may be implied when subjects, relations, and logical operators are common to
all the conditional expressions. Only the first occurrence of subject and relation is stated explicitly;
all objects are stated explicitly in a series (commas are optional) following the relation; the last
object is preceded by an explicit specification of the common logical operator.

IF X EQUALS 2 OR X EQUALS Y OR X EQUALS Z MOVE M TO N
can be abbreviated to

IFXEQUALS 2, Y, OR Z MOVE M TO N

If the subject, relation, and logical operator are implied; none of the objects may be formula.

4.5.4 NESTED CONDITIONAL STATEMENTS
The general form of the conditional statement is as follows:

IF conditional-expression

statement-1 OTHERWISE statement-2
NEXT SENTENCE ELSE NEXT SENTENCE

Each of statement-1 and statement-2 can be an imperative statement, a series of imperative state-
ments, or imperative statements followed by a conditional statement. If either or both statement-1
and statement-2 contain a conditional statement, then the conditional statement is said to be nested.
A nested conditional statement may also contain conditional statements in the same way, and these
too are said to be nested. Conditional statements may be nested to depth of 25 levels. The fullest
form of nested conditional statements may be represented as follows:

IF (C1) (IF (C2) <-<-<-< IF (Cp) EISE >->->~> EISE > ELSE

Each (C;) represents a conditional expression, each represents an imperative statement or a
series of imperative statements, and each box represents an imperative statement or a conditional
statement (which itself may contain conditional statements, and so on) or NEXT SENTENCE. (Cy
represents the conditional expression in the first conditional statement that does not itself contain
any further conditional statements.

In a conditional statement, the word ELSE (or OTHERWISE) and a statement is specified once for

each specification of the word IF and a conditional expression. The number of occurrences of the

word ELSE (or OTHERWISE) in any conditional statement, however complicated by nestings, must
be equal to the number of occurrences of the word IF, with the following exception.

If the phrase ELSE (or OTHERWISE) NEXT SENTENCE directly precedes the terminal period of
a sentence, the entire phrase may be omitted and the period specified at the end of the previous
phrase. The same rule may be applied to the resulting sentence, and so on.

In this discussion, IF represents the word IF and its associated conditional expression and ELSE
represents the word ELSE (or OTHERWISE) and its associated statement. For each ELSE, the
associated statement is executed only when the conditional expression in the corresponding IF is
found to be false. The numbers specified in the boxes and the number indicated with the conditional
expressions show the association between the two elements in a conditional statement. For example,
the statement represented by is executed only when the conditional expression (Cj) is false.

The processor scans the conditional statement for the first occurrence of ELSE and associates this
with the first preceding IF. It associates the second occurrence of ELSE with the next preceding IF
not previously associated with another ELSE, and so on for all the IF and ELSE pairs in the state-
ment. If there are more occurrences of IF than ELSE in the statement, the processor infers that
the programmer omitted that number of ELSE NEXT SENTENCE phrases at the end of the sentence.
The curved lines in the illustration indicate the IF and ELSE pairs.

When the conditional statement is executed, (C 1) is evaluated first. If it is true, is executed,
if this is specified, and (Cz) is evaluated. If this is true, is executed, if this is specified,
and (03) is evaluated; and so on until (Cn) is reached. If this is true, is executed and control

passes to the next sentence. No save for should specify a GO TO statement or NEXT ‘@
SENTENCE, otherwise no subsequent conditional expressions can be evaluated. can be any

type of imperative statement or NEXT SENTENCE, since no conditional expressions follow it.

If one of the conditional expressions (C,) is found to be false, the corresponding is not executed
nor are any subsequent conditional expressions in that nest evaluated; instead, the sfatement
associated with the corresponding ELSE is executed. The remainder of the sentence is executed
normally, unless the first word following the statement is ELSE, in which case, control passes
directly to the next sentence. A sentence can contain more than one independent conditional state-
ment, each of which can contain nested conditional statements.

The following sentence contains two independent nests of conditional statements. The first nest ends
after the statement PERFORM procedure-name-2; the second nest consists of the remainder of the
sentence and has an implied ELSE NEXT SENTENCE before the period. A,B,C,D,E,F each corre-
sponds to a conditional expression.

IF A THEN IF B PERFORM procedure-name-1 ELSE NEXT SENTENCE ELSE IF C NEXT
SENTENCE ELSE PERFORM procedure-name-2 IF D PERFORM procedure-name-3 IF E
PERFORM procedure-name-4 IF F PERFORM procedure-name-5 ELSE PERFORM procedure-
name-6 ELSE STOP RUN.

The following flow-chart indicates the execution of this sentence.

True

Procedure-
name-1

]

Next
Sentence

False

Next
Sentence

AN

True

Next
Sentence

False

nam

Procedure-

T
o

o

J

False

Next
Sentence

True

nam

¢}

Procedure-

[SV]

E?

¥

False

Stop

True

Procedure~-
name-4

5

g

False

Procedure-

name-6

True

name

Procedure-

Next
Sentence

Next
Sentence

4.6 ARITHMETIC EXPRESSIONS AND STATEMENTS

EXPRESSIONS

An arithmetic expression is a combination of data names, numeric literals, and the figurative con-
stant ZERO(S) (ES) connected by arithmetic operators such that the expression reduces to a single
value when it is evaluated at program execution time. An arithmetic expression may be used in the
COMPUTE statement or as a subject or object in a conditional statement. The operators are as
follows:

+ Addition * Multiplication
- Subtraction / Division

** Exponentiation

The manner in which an arithmetic expression is to be evaluated may be specified. by paired paren-
theses. Evaluation begins with the inhermost pair and proceeds to the outermost pair. The terms
within the parentheses are evaluated according to the order of precedence specified below.

A +or - used as a sign is considered first; then exponentiation is performed, then multiplication
and division. Addition and subtraction are performed last. Evaluation begins at the left of each
term and moves to the right. Thus, expressions which appear to be ambiguous algebraically, are
permitted in COBOL. For example, A - B * C is interpreted by COBOL as A - (B * C). When no
parentheses are specified, the whole of the arithmetic expression is evaluated according to the
rules just stated. The processor assumes parentheses enclose the pairs of items on either side of
multiplication and division signs, and the pairs of items on either side of addition and subtraction

signs.

For example, the expression A /B - C* D ** H+E + I / G is interpreted by the processor as
(A/B)~-(C*D* H)+E+(F/G). Spaces must appear on either side of any operator included
in an arithmetic expression.

The rules for specifying the operators, parentheses, and a variable (date name, literal, figurative

constant), are given in the following table. P indicates that a specified pair of symbols is permitted;
a dash indicates that it is not.

4-14

Second Symbol
Variable| * or / -or + ok ()
Variable - P P P - P
= * or / P - PT - P -
Q
g
s -or + P - - - P -
~ S
)
i ok P - Pt - p -
P S R
(P - P - P -
) - P P P - P

tThis is permitted when + or - indicates the sign of a numeric literal.

ARITHMETIC STATEMENTS

Basic arithmetic operations are specified by ADD, SUBTRACT, MULTIPLY, and DIVIDE. With
COMPUTE, the user may specify any of the basic operations with arithmetic expressions.

Internal arithmetic operations are usually performed in the binary mode, except when both addition
or subtraction operands are defined as display. If the composite size is ten or less, display
operands are not converted and object time subroutines are provided to do the arithmetic in Display
Code. For computational-1, single precision arithmetic operations are performed on operands

of 14 digits or less, and double precision on operands of 15 to 18 digits. Single precision floating
point operations are performed on computational-2 operands. (See USAGE for difference between
computational-1 and computational-2.)

Rules for Arithmetic Verbs

The following general rules apply to all five arithmetic verbs:
All literals specified in arithmetic statements must be numeric. Wherever it is legal to specify
a literal, the figurative constant ZERO(S) (ES) may be used. Other figurative constants, in-
cluding ALL any-literal, may not be used since they are considered alphanumeric.

An identifier in an arithmetic statement must be a numeric elementary item.

The maximum size of an operand is 18 decimal digits. If the entry in the Data Division for an
operand specifies a size greater than 18 digits, an error is indicated at compilation time.

4-15

No rounding will take place if the receiving field has more places to the right of the decimal
point than is indicated by the pictures of the intermediate result.

The items in an arithmetic statement may be mixed in usage, (computational, computational-n,
or display) as long as they are all numeric. Any necessary linkage to conversion routines is
supplied by the compiler. Decimal point alignment is supplied automatically throughout compu-
tations.

No item used in computations may contain symbols; such an item will produce a compilation
diagnostic. Operational signs and assumed decimal points are not editing symbols. An item
that is to receive results may contain editing symbols if it is not used in subsequent computa-
tions as an operand. When an item that receives results contains editing symbols, the result
is edited before it is moved to the item.

4.7 OPTIONS

Several options appear frequently in the statement descriptions that follow: ROUNDED, ON SIZE
ERROR, and CORRESPONDING. The latter option is discussed specifically in the ADD, SUBTRACT,
and MOVE statements. ROUNDED and ON SIZE ERROR options apply to all arithmetic statements.

ROUNDED Option

If the number of decimal positions (right of the decimal point) in a computed result exceeds the num-
ber of decimal positions in the format of the item receiving the result, truncation occurs when the
object program is executed. Excess digits are dropped in accordance with the format of the item
storing the result. If the ROUNDED option is specified following the name of a result item, excess
digits are truncated and rounding takes place; the least significant digit specified by the format of
the result item is increased by 1 when the most significant truncated digit is 5 or greater.

The degree of accuracy (the number of significant decimal positions) depends on the operation and
the operands involved. For example, if a result item is specified with 5 decimal positions (point
location is 5 left) the degree of accuracy is up to 5 positions beyond the decimal point. If an opera-
tion does not produce the accuracy requested, the remaining positions are filled with zeros. For
example, if an operation produces a degree of accuracy of 2 and the result item is specified as
above, the low-order 3 positions are filled.

ON SIZE ERROR Option

This option applies only to size errors in the final result. When the number of integral positions

(left of the decimal point) in a COMPUTE result might exceed the number of integral positions in a
receiving item, a diagnostic at compilation time specifies an apparent error in the program. Because
the processor takes into account the maximum number of digits that could occur as the result, this
diagnostic does not necessarily imply that there will be an error. Action at object program execution
time depends on the ON SIZE ERROR specification.

1. When the result field is defined as decimal and the ON SIZE ERROR clause is specified, if
a computed result appears to have more integral positions than are permitted in the result
field, the high order excess digits are tested for being equal to zero. If they are all equal
to zero, the computed result is delivered to the result field, zero digits are truncated, and
no size error is considered to have occurred. If excess digits are not all equal to zero,
the result field retains its current value and does not receive the computed result; a size
error is considered to have occurred.

2, When the result field is binary floating point and the ON SIZE ERROR clause is specified,
a gize error is considered to have occurred only if the exponent is out of range or indefinite.

This option applies to size errors in the final result only.

4.8 PROCEDURE DIVISION STATEMENTS

All statements used in the Procedure Division (except Report Writer statements) are described in
alphabetical order below. The Report Writer statements are described in Chapter 5.

ACCEPT

This verb causes the transfer of low-volume data from an appropriate external device to the computer.

Format 1:

ACCEPT identifier-1

Format 2:

ACCEPT identifier-2 [FROM mnemonic-name]

Format 1 is used when data is to come from the system file, INPUT. If data is to be accepted from
a file other than the system file, INPUT, format 2 must be specified. The mnemonic name must be
equated to a SCOPE file name in the Environment Division (implementor-name IS mnemonic-name
clause of the Special-Names paragraph). This mnemonic-name is effectively a file and is counted in
determining the maximum number (53) of files and reports allowed for a COBOL program. The file
used by ACCEPT (INPUT or mnemonic-name) must not be used in any other part of the COBOL pro-
gram or a fatal error will result.

The identifier specified with the ACCEPT verb can be the name of a group or an elementary item
and it can be subscripted. The input format must be that of an 80 column card in BCD form. If the
identifier is 80 characters or less, they are the first characters on the card image. If the size is
greater than 80 characters, several card images will be read and moved to the identifier until the
number of characters specified in the description of the identifier has been accepted. If there is
any remaining space on the last card, it is inaccessible; the next ACCEPT statement will begin at
column 1 of a new card image.

4-18

ADD

This verb adds two or more numeric values and sets the result as the value of one or more items.

Format 1:
. ps identifier—-2
ADD [1fien“ﬁer 1 Hlfien“ﬁer .. .identificr-n [ROUNDED] [ON SIZE ERROR
~— (literal-1 literal-2
imperative-statement]
Format 2:
identifier-3 identifier-4 GIVING
\ . . T
ADD lliteral—3][{Iiteral—él }:l _—,175—— identifier-m [ROUNDED] [identifier-n
[ROUNDED]]. .. [ON SIZE ERROR imperative-statement]
Format 3:
identifier-5 identifier-6 identifier-7
G i ifier— IDF
ADD lliteraI-S , [:(Iiteral—G l] ©— |literal-7 } GIVING identifier-m [RQUNDED]
[identifier-n [ROUNDED]] ..[ON SIZE ERROR imperative-statement}
Format 4:

ADD CORRESPONDING identifier-8 TO identifier-9 [ROUNDED] [identifier-10 [ROUNDEDJ]. ..
[ON SIZE ERROR imperative-statement)]

The composite size of the operands cannot exceed 18 digits. If this limit is exceeded, a diagnostic
will be printed at compile time, and at object program execution time, the result may be unpre-
dictable.

Rounding cannot take place if the number of places to the right of the decimal point in the receiving
field is greater than or equal to the number of places to the right of the decimal point of the inter-
mediate result.

An ADD statement must name at least two addends: the minimum ADD statement is ADD literal-1
identifier-2 or ADD [CORRESPONDING] identifier-8 TO identifier-9.

When the first format is specified, the literals and/or the values of the items named (including
identifier-n) are summed and the result is set as the value of the identifier-n item.

The second format stores the result of an addition as the value of one or more items. When GIVING
is specified, the literals and/or the values of the items preceding GIVING are summed and the result
is set as the value of the identifier-m item. The same result is also set as the value of all other
items after identifier-m (such as identifier-n). When TO is specified, the literals and/or the values
of the items preceding TO are summed, and the total is added to the value of the identifier-m item;
the final result is set as the value of the identifier-m item. The same total is added to the value of
each item named after identifier-m (such as identifier-n) and the final result in cach case is set

as the value of the named item.

ADD

The third format stores the result of an addition as the value of one or more items. The literals or
the values of the items named preceding TO and the identifier-7 or literal-7 following TO are added.
The total is set as the value of the identifier-m item and all following items.

In formats 1, 2, and 3 all items named must be described in the Data Division as elementary numeric

items. If a name encountered during compilation is not an elementary item, the processor issues a
diagnostic and compilation of the ADD statement terminates. All literals specified must be numeric.

ADD CORRESPONDING

The fourth format adds the values of one or more elementary items within a group to the values of
one or more selected elementary items within other groups. No literals may be included in this
format, and all identifiers must be the names of groups. The groups are considered in pairs for
the process of selecting one or more items from within each group to be added. The identifier-8
group is paired in turn with each of the other groups named. For any pair of groups, the values
of a selected pair of elementary items are added and the result is set as the value of the selected
item in the identifier-9 group and all following groups.

A pair of items from a pair of groups is selected for addition if:

Their names are the same

b. The names of all higher-level items in each group (the qualifiers for each item), up to
but not including the names of the groups, are identical

c. Both items are elementary
After a pair has been selected for addition, the operation is the same as if an ADD statement of the

second option using TO had been specified. The sames rules apply to the addition of the selected
items as to addition of items specified by the user.

After all matched pairs have been added for the identifier-8 and identifier-9 groups, the matched
pairs are added for the identifier-8, identifier-10 groups, and so on.

The following rules apply to ADD CORRESPONDING only:

1. No item described by an OCCURS clause in the Data Division can be involved in the addition.

2. Within a specified group, any item with a REDEFINES clause in the Data Division entry is
ignored, as are all items within the same redefinition.

3. Independent data items with level number 77 cannot be referenced.

4. Within a specified group, any item with a RENAMES clause in the Data Division entry is
ignored.

4-20

Examples:

ADD

ADD MONTHLY-EARNINGS OVERTIME-EARNINGS GROSS-YEAR-TO-DATE

ADD MONTHLY-EARNINGS OVERTIME-EARNINGS GIVING MONTHLY-GROSS-PAY

WORK-MONTHLY-GROSS-PAY

ADD HOS-INSURANCE LIFE-INSURANCE STATE-UNEMPLOYMENT UNITED

MISCELLANEOUS GIVING TOTAL-DEDUCTIONS

ADD CORRESPONDING UPDATE-RATE-TABLE TO RATE-TABLE ON SIZE ERROR

PERFORM RATE-OVERFLOW-PROC

UPDATE-RATE-TABLE and RATE-TABLE are described as follows:

01 UPDATE-RATE-TABLE
03 EASTERN-REG
05 NEW-YORK
07 RATE
05 BOSTON
07 RATE
03 WESTERN-REG
05 LOS-ANGELES
07 RATE

01

RATE-TABLE

03

03

03

EASTERN-REG

05 NEW-YORK
07 RATE

05 BOSTON
07 RATE

05 PHILADELPHIA
07 RATE

WESTERN-REG

05 LOS-ANGELES
07 RATE

05 SAN-FRANCISCO
07 RATE

MIDWEST-REG

The rates for New York, Boston, and Los Angeles in the RATE-TABLE are added to the rates
for these three cities in the UPDATE-RATE-TABLE, and the results are the new rates. No

other alteration occurs in the RATE-TABLE.

If one or more of the additions results in a size error, the procedure RATE-OVERFLOW-PROC is
performed after completion of the whole ADD statement. Each receiving item that has a size error
retains its current value instead of the computed result. Control returns to the statement following

ADD statement.

ALTER

The purpose of this verb is to complete the meaning or modify the effect of one or more GO TO state-
ments specified elsewhere in the program.

ALTER procedure-name-1 TO PROCEED TO procedure-name-2
[procedure-name-3 TO PROCEED TO procedure-name-4]. ..

Procedure-name-1 is the name of a paragraph which contains the GO TO statement to be altered.
Similarly, procedure-name-3 is the name of a paragraph which contains another GO TO statement
to be altered.

The effect of the ALTER statement is to insert procedure-name-2 as the procedure name in the

GO TO statement in the procedure-name-1 paragraph, if this statement does not contain an explicit
procedure name. If it does contain an explicit procedure name, the effect of the ALTER statement
is to replace that name by procedure-name-2. Since a GO TO statement is meaningless without a
procedure name, the ALTER statement which supplies the name must be executed before the GO TO
statement is executed. A maximum of 100 procedure-names may appear in an ALTER statement.

Examples:

ALTER CC1 TO PROCEED TO CC5; CC5 TO PROCEED TO FINAL-RESULT.
CC0. ADD 001 TO COUNTR.
IF COUNTR IS LESS THAN OVFLW GO TO CC2.
CcC1l. GO TO.
CC2. MOVE CORRESPONDING INPUT-TABLE TO WORK-AREA.
ADD INP1 OF WORK-AREA TO I-TOTAL.
ADD INP2 OF WORK-AREA TO P-TOTAL.
GO TO CCO.
CC5. GO TO CC10.

When the ALTER statement is executed, the paragraph name CCS5 is inserted as the object of the
GO TO in paragraph CC1; and the paragraph name FINAL-RESULT is inserted in place of CC10
as the object of the GO TO in paragraph CC5. FINAL-RESULT and CC10 must be procedure
names in the COBOL program .

4-22

CLOSE

When processing has been completed, the file must be made unavailable for further use, or closed.
Before a file can be closed, it must have been opened by an OPEN statement.

CLOSE file-name-1 [REEL [WITH {i—gcm}%EWIND ”[file—name—m REEL} {WITH {%%C'I;{EWINDH“

Each file named in a CLOSE statement must be defined in a File Description entry (FD) in the Data
Division of the source program. The CLOSE statement can name any number of files; at least one
must be named. If the file is specified as optional in the FILE-CONTROL, paragraph of the
ENVIRONMENT division, the closing operations will not be performed if the file is not present at
object program execution time.

When a CLOSE statement without any options is executed, the file is rewound. If the label record
is standard, an end-of-file label is written before the file is rewound. If the NO REWIND option is
included, none of the currently mounted reels is rewound. If the LOCK option is included, the file
is rewound with interlock, making it unavailable for further use until operator action is taken.

The function of the statement differs if the file referenced by CLOSE is associated with one of the
system files: INPUT, OUTPUT, PUNCH, and PUNCHB. The reel is not rewound and an ending
label is not present; all other processing is performed. If the LOCK option is used, the reel will
not be rewound, but all further references to the file will be ignored. That is, the system file will
be closed but not rewound.

End-~of-file procedures specified by the USE verb are executed before or after the checking or
writing of the label record, depending on the specifications in the USE statement.

The REEL option of the CLOSE statement may be used to stop processing on a particular reel of a
multiple-reel tape file (input or output) before the normal end. CLOSE...REEL has no meaning
for the system units INPUT, OUTPUT, PUNCH, and PUNCHB. CLOSE...REEL does not affect
the whole file; it applies only to the reel currently being processed. For an input file, further pro-
cessing of the current reel is prevented. For an output file, the end-of-reel label is written if label
records are standard and the file is not a system unit. Ending label procedures specified by the
USE statement are executed before or after writing the label record, depending on the USE state-
ment. Then CLOSE...REEL causes the next reel in sequence to be mounted for reference by sub-
sequent statements. It checks or writes any standard beginning-of-reel label records for the new
reel and executes any beginning label procedure specified by the USE statement. Procedures for
checking or writing non-standard beginning or ending labels are discussed under USE.

Each reel terminated by the REEL option is rewound unless NO REWIND is specified. 1f LOCK is
specified, the reel is rewound with interlock, making it unavailable for further use. CLOSE...
REEL is meaningless for the last reel of a file since the final reel should be controlled by the
CLOSE statement for the file. When the CLOSE statement is not specified for each reel, the
input-output control system automatically performs the necessary actions.

4-23

COMPUTE

Arithmetic operations on numeric values may be specified by arithmetic expressions. The final
result of the operations is set as the value of one or more items.

FROM
COMPUTE identifier-1 [ROUNDED] [identifier-2 [ROUNDED]]. . . { = }
EQUALS

literal
[any-arithmetic-expression ; [ON SIZE ERROR any-imperative-statement]
identifier-3
The arithmetic expression is first evaluated according to the rules in 4.6. The resulting numeric
value is set as the value of the identifier-1, and all subsequent items. FROM, =, or EQUALS are
chosen according to readability; they are equivalent in meaning.

All identifiers in the statement (including those in the arithmetic expression) must be described in
the Data Division as elementary numeric items. If the compiler encounters a name that is not an
elementary item, it issues a diagnostic and compilation of the COMPUTE statement terminates.
Literals specified in the arithmetic expression must be numeric.

The arithmetic expression may be simple or complex. If it consists of a single identifier or numeric
literal, the COMPUTE statement is equivalent to a MOVE statement, and the identifier-1 item is

set to the value of this single item.

Most operations that can be specified by ADD, SUBTRACT, MULTIPLY, and DIVIDE statements can
also be specified by the COMPUTE statement.

Example:
COMPUTE COST-PRICE FROM (HOURS * RATE + PARTS-COST) * (1 + PROFIT-FACTOR)

The intermediate results of a COMPUTE statement are discussed in Appendix D.

DISPLAY

This verb causes data to be transferred in low volume from the computer to an output file or the
system console.
literal-2 literal-2

DISPLAY lldentlfler—l} [1dent1fler-2

]] ... [UPON mnemonic-name]

When the DISPLAY statement is executed, the character in the identifiers or any literals specified
are displayed consecutively. Spaces appear between characters only when spaces are specified as
characters. The number of characters specified as identifiers and/or literals in any one DISPLAY
statement may not exceed 72. Any characters over 40 are continued on the second line of the day~
file; the dayfile is the system history output with the normal listing. No more than five identifiers
may be included in one DISPLAY statement; any number of literals, including figurative constants,
may be specified within the limit of characters allowed.

If a mnemonic-name is used, it must be defined as a SCOPE file name or as the CONSOLE in the
Special-names paragraph of the Environment Division. Either implementor-name IS mnemonic-
name or CONSOLE IS mnemonic-name may be used. When mnemonic-name is not included in the
DISPLAY statement, data is automatically sent to the OUTPUT file.

The identifier may name a group or an elementary item, and it may be subscripted. If an identifier
is defined as computational-n, results are unpredictable. A literal in a DISPLAY statement may be

numeric or non-numeric.

The first position following the quotes in a non-numeric literal is reserved for a carriage control
character. This position should not contain part of the message as it will be lost.

The carriage control characters are:

(blank) space 1 line
0 space 2 lines
1 page eject

+ no advance

Any other character has the same meaning as blank.

4-25

DIVIDE

This verb divides one numeric value into one or more numeric values and sets the quotient as the
values of one or more items.

Format 1:

identifier-1

DIVIDE ' literal-1

J INTO identifier-2 [ROUNDED]

[identiﬁer—3 [ROUNDED]] ... [ON SIZE ERROR any-imperative-statement]
Format 2:

identifier-5
literal-3

identifier-4

DIVIDE {IiteraI-Z

, INTO [l GIVING identifier-6 [ROUNDED] [identifier—7

Format 3:

GIVING identifier-10 [ROUNDED] [identi.ﬁer—ll

DIVIDE {1dent1f1er—8} (identifier-9

literal-4 | literal-5
[ROUNDED]] ...[ON SIZE ERROR any-imperative-statement]

In the first format one or more divide operations may be specified by a single statement, with the
quotients stored as the values of different items. Literal-1 or the value of identifier-1 is divided
into the value of identifier-2; the quotient is set as the value of identifier-2. A similar quotient

is formed with the value of identifier-3 as the dividend, and the result set as the value of this item,
and so on for every item named in the statement.

The second format stores the result of a division as the value of one or more items. Literal-2 or
the value of identifier-4 is divided into literal-3 or the value of identifier-5, as specified, the
quotient is set as the value of identifier-6 and also as the value of all items named after identifier-6.

As in the second format, the third format stores the result of a division as the value of one or more
items. Literal-4 or the value of identifier-8 is divided by literal-5 or the value of identifier-9.

All items must be described in the Data Division as elementary numeric items. If the compiler en-
counters a name that is not an elementary item, it issues a diagnostic and compilation of the DIVIDE
statement terminates. Literals specified in the statement must be numeric, and they cannot be
specified as dividends in the first option.

The identifier to the right of the word GIVING, in Formats 2 and 3, may be an edited numeric item.

The composite size of items for which a result is stored must not exceed 18 decimal digits. The
ROUNDING option may be specified. Example:

DIVIDE 1.8 INTO CONVERTED-TEMP1 CONVERTED-TEMP-2
CONVERTED-TEMP3 CONVERTED-TEMP4

4-26

ENTER

The ENTER statement allows the COBOL program to branch to a closed assembly language subrou-
tine during execution of the object program.

[data-name-1 [data-name-2]...]

ENTER subroutine-name-1 { [procedure-name-1 [procedure-name-2].. .]}

[file-name-1 [file-name-2}...]

The subroutine name is the entry point and must be defined by the subroutine. It may not exceed
seven characters. The first six characters must be unique, with the first alphabetic. The data
names are used for transmittal of data between the COBOL program and the subroutine. They must
be defined in the Data Division and may be subscripted but the subscript must be a literal. The
procedure names are entry points in the Procedure Division of the COBOL program to which the
subroutine may return. They must conform to the SCOPE standards for entry point names; the
first six characters must be unique with the first alphabetic, The file names are files, defined by
File Description Entries in the COBOL program, which may be used for input or output by the
subroutine entered.

The need for data names, procedure names, or file names depends entirely on the subroutine to be
entered and the use made of it. Any subroutine that can be loaded can be referenced by the ENTER
statement. Appendix E contains a description of the calling sequence generated by the ENTER
statement,

4-217

ENTRY

ENTRY defines entry points for separately compiled COBOL subprogram.

ENTRY procedure-name-1 [procedure-name-2]. ..

The procedure names areused as entry points in separately compiled subprograms (Subcompile
Capability, Chapter 6). The procedure names must be unique in the first six characters with the
first alphabetic.

ENTRY is not an executable statement and must be the first entry in the Declaratives Section of the

subprogram containing the procedure names.

Example:

4-28

COBOL program A contains the following statement:
PERFORM BBl1.
If BB1 is in program B, an ENTRY statement is included in the Declaratives in B:
PROCEDURE DIVISION.
DECLARATIVES.
ENTRY BBI1.
END DECLARATIVES.

BBI1....

R

EXAMINE

The EXAMINE verb is used to replace a character in a data item and/or to count the number of

times a character appears in the item. Each character in the item is examined beginning at the
left. / \

ALL
TALLYING { LEADING literal-1
UNTIL FIRST) [REPLACING BY literal-2]

EXAMINE identifier-1 < ALL
REPLACING { LEADING literal-3 BY literal-4
[UNTIL] FIRST

~

/

TALLYING ALL Occurrences of the literal-1 character in the item are counted and the result is

stored as the current value of an 8-character special register, TALLY, which can be
referenced by name.

TALLYING LEADING Occurrences of the literal-1 character prior to a character other than
literal-1 are counted, and the count is stored in TALLY.

TALLYING UNTIL FIRST The number of characters other than literal-1 which occur before the
literal-1 character are counted, and the count stored in TALLY.

The REPLACING option used in conjunction with the TALLYING option produces the following
additional effects:

For TALLYING ALL, literal-2 is substituted for each occurrence of literal-1.

For TALLYING LEADING, literal-2 is substituted for each leading literal-1.

Substitution terminates upon the occurrence of a character other than literal-1.

For TALLYING UNTIL FIRST, literal-2 is substituted for every character in the item until the
first occurrence of a literal-1 character.

REPLACING ALL A literal-4 character is substituted for each occurrence of literal-3 in the item.

REPLACING LEADING A literal-4 character is substituted for each leading literal-3 character,
until the occurrence of a character other than literal-3.

REPLACING UNTIL FIRST A literal-4 character is substituted for every character in the item
until the first occurrence of a literal-3 character.

REPLACING FIRST A literal-4 character is substituted for only the first appearance of literal-3.

Each literal may consist of only 1 character which is a member of the set associated with the CLASS
of the named item. If CLASS is NUMERIC the literal may be only 0-9, for ALPHABETIC it may be
only A-Z or blank, for ALPHANUMERIC it may be any character in the COBOL character set. A
non-numeric literal must be enclosed in quotation marks. Every group item is treated as an alpha-
numeric item. No special rules apply to non-numeric elementary items. Plus and minus signs are
stripped from numeric elementary items before examination.

4-29

EXIT

This verb provides a common end point for a procedure executed as a result of a PERFORM state-
ment. The statement format is simply:

EXIT,

This statement must be terminated with a period; it stands by itself as a paragraph and is assigned
a procedure name. EXIT is not needed when there is only one possible exit from a procedure per-
formed as a result of a PERFORM statement. When one or more conditional exits are possible,
EXIT must be specified following the last significant paragraph of the procedure, to ensure that all
paths through the procedure have the same ending point. The PERFORM statement must name the
EXIT paragraph, so that EXIT is the last statement executed. Any conditional statement that in-
volves an exit from the procedure must also name the EXIT paragraph as the place to which control
transfers when the exit branch of the conditional is taken. Irrespective of the results of conditional
statements, all exits from the procedure are the same; namely, following the execution of the EXIT
paragraph. Since any READ statement, or a WRITE with the INVALID KEY clause is a conditional
statement, the user must insure that the imperative statement following either clause contains a
proper exit whenever such a statement is used within a procedure controlled by PERFORM.

In reality, since EXIT is a processor-directing verb, the processor does not compile instructions
from a statement using it. The purpose is to return control to the statement following the PER-
IFORM statement. The processor sets up the control instructions whenever the EXIT paragraph is
referenced, directly or in-line, under control of a PERFORM statement. If such control instruc-
tions are encountered when the procedure is executed normally and not under control of a PERFORM
statement, they have no effect and do not cause transfer of control. If EXIT is not alone in a para-
graph, the complete paragraph will be compiled and executed.

4-30

GO TO

This verb specifies a permanent transfer of control to another point in the program.
Format 1:

GO TO [procedure-name-1].
Format 2:

GO TO procedure-name-1 [procedure-name-2}. .. DEPENDING ON identifier-1.

The first format results in an unconditional transfer of control to the beginning of the paragraph or
section specified by the procedure name. This name may be omitted when it is supplied by an ALTER
statement prior to execution of the GO TO statement. If, at execution time, this GO TO statement

is not completed by an ALTER statement before execution, an error diagnostic is produced and the
job is terminated.

The ALTER statement can be used to supply the procedure name in a GO TO statement or to alter
a specified procedure name in a GO TO statement. A statement to be altered in either way should
comprise a paragraph by itself. The paragraph is assigned a procedure name so that the ALTER
statement can reference to GO TO statement. A normal GO TO statement (when the procedure
name is not to be modified) can appear as one of several statements in a paragraph, but it can

be used only as the final statement in a sequence because of its sequence changing effect. I it
appears in any other position, statements following it would be bypassed.

The second format permits transfer of control to one of several procedures in the program, de-
pending on the value of a particular data item at execution time. Control is transferred to the
paragraph or section specified by procedure-name-1, -2, or n, depending on whether the item
value is equal to 1, 2, or n. The identifier-1 value must be a positive integer. If the item value
is not within the range 1 through n, no transfer occurs: instead, control passes to the statement
following the GO TO. A maximum of 100 procedure names may be used in one GO TO statement.
The identifier may be of any USAGE, and it may be subscripted.

Example:

ADD 1 TO COUNT.
IF COUNT GR 3 GO TO CONTINUE.
GO TO PR1 PR2 PR3 DEPENDING ON COUNT.

The IF statement defines operations to be executed or bypassed depending on whether a stated con-
dition is true or false. A condition is evaluated, and subsequent sequence of execution depends on
whether the condition is true or false.

statement-1 OTHERWISE

IF conditional-expression [THEN] {NEXT SENTENCE} [[THEN] {ELSE

statement-2
[NEXT SENTENCE }]

An IF statement may be preceded by an imperative statement, which is executed regardless of the
result of the conditional statement. Both statement-1 and -2 can be one or more imperative state-
ments or a conditional statement, or both. Either statement-1 or -2 may contain conditional state-
ments that contain conditional statements, and so on, to the depth of 25 levels. Conditional state-
ments contained in other conditional statements are said to be nested.

The phrase NEXT SENTENCE can be specified in place of either statement-1 or -2 or both, The
conditional expression is evaluated first. If true, statement-1 or NEXT SENTENCE is executed and
control passes to the beginning of the next sentence. If the conditional expression is false, state-
ment-2 or NEXT SENTENCE is executed followed by the execution of the remainder of the sentence. *

A sentence may contain any number of independent conditional statements, nested or not. If the
phrase OTHERWISE (or ELSE) NEXT SENTENCE directly precedes the period that terminates the
sentence, the whole phrase may be omitted. This rule may then be applied to the resulting sentence,
and so on. In this manner, the simplest form of the conditional sentence (IF conditional-expression
imperative-statement) may be derived from the general form.

A discussion of the interpretation and specification of conditional expressions is given in section 4. 5.
Examples:
1) IF COUNTER IS GREATER THAN 5 GO TO RESET ELSE ADD 1

TO COUNTER GO TO UPDATE-PROC.

2) IF A IS NUMERIC MULTIPLY A BY B THEN IF B IS LESS THAN 50
ADD A B TO C ELSE ADD A B TO D ELSE GO TO BADCLASS.

3) IF PERFORM-COUNT IS POSITIVE GO TO START ELSE NEXT SENTENCE.,

4 DATA DIVISION,
01 PASSING-GRADE,
88 PASS VALUE 75 TO 100.
88 FAIL VALUE 0 TO 75.

PROCEDURE DIVISION.

. @
IF PASS GO TO X.

4-32

INCLUDE

The INCLUDE statement is used to incorporate routines from the COBOL source library into the
Procedure Division of the source program.

literal-1 literal-2
INCLUDE procedure-name [REPLACING { routine-word-1; BY { routine-word-2
identifier-1 identifier-2

literal-3 literal-4
routine-word-3: BY 4routine-word-4 B
identifier-3 identifier-4

The INCLUDE statement must always be in a sentence by itself., The procedure-name is a library
routine, that is, a procedure stored in the COBOL source library, This library routine may either
be one paragraph or one section which is incorporated into the source program at compile time for
in-line execution at object time. If the library routine is a single paragraph, INCLUDE must be the
only statement in the source program paragraph; if the library routine is a single section, INCLUDE
must be the only statement in the source program section.

When a paragraph is included it replaces the INCLUDE statement; but the paragraph-name associ-
ated with INCLUDE replaces the name of the library routine. The name of the section containing
the INCLUDE statement is the only qualifier for the procedure names within the library routine.

If the routine is a section, it replaces the INCLUDE section in the source program; but the section
name and priority of the INCLUDE statement replace those of the library routine. When an included
paragraph is subordinate to a section, the paragraph-name must be qualified by the section-name
even if the paragraph-name is unique to the library.

When INCLUDE is part of the DECLARATIVES portion of the Procedure Division:

® The library routine must be a USE declarative

® INCLUDE must be on the same line as and immediately following the section header.

The REPLACING option is used to specify which words, identifiers, and literals in the library rou-
tine are to be replaced by corresponding words, identifiers, and literals when the INCLUDE state-
ment is executed.

A routine word is any word in the library routine that is neither qualified nor subscripted. It may
be any COBOL word or user-defined word of 30 alphanumeric characters or less. An identifier
may be qualified and/or subscripted. The replacement of an identifier includes all associated
qualifiers and subscripts. The REPLACING option must result in correct COBOL syntax.

INCLUDE

Example:

Source Program:
A SECTION.
123. INCLUDE X REPLACING C OF D BY H OF J OF K, Y BY MOVE, 3BY G, 5 BY ADD,4 BY F.

Library routine.
X.ADD1TOBOFCOFD. Y1ITO354TOF.
MOVE 6 TO C OF D. IF F LESS THAN 100 GO TO X.

Resulting source routine:
ADD 1 TO B OF H OF J OF K. MOVE 1 TO G ADD F TO F. MOVE 6 TO H OF J OF K,
IF F LESS THAN 100 GO TO 123 OF A,

4-34

b]

MOVE

The MOVE verb transfers data from one storage area or item to another, If the receiving item
specifies editing symbols (Chapter 3), PICTURE and clause editing occurs concurrently with data
movement.

{I-CORRESPONDING] identifier-l’m identifier-2 [identifier—S]. ..
MOVE -
= | literal-1

This statement moves the data in identifier-1 or the specified literal to identifier-2. Literal-1
may be a numeric, alphanumeric or figurative constant. Figurative constants, with the exception
of ZERO(S)ES), are treated as alphanumeric items. The same information may be moved simul-
taneously to additional areas, as specified by identifier-3, and so forth. Such movement does not
destroy original data, but copies it in the designated areas. Identifier-1 or literal-1 is the source
item; identifier-2, -3, and so on, are the receiving items or areas. Both source and receiving
items can be elementary items or groups. (For the purpose of the MOVE statement, a literal is
considered an elementary item.) Four types of moves may be specified.

1, elementary item...—elementary item 3. group.--—elementary item

2. elementary item....—group 4. group---group

The manner in which the move is performed depends not only on the type of source and receiving
items, but also on their classes:

Type of MOVE Manner of MOVE

Elementary When source and receiving items are both elementary and:

a. source and receiving items are numeric, the move is performed
according to rules for numeric items.

b. source item is numeric and receiving item is numerically edited (a report
item), the move is performed according to rules for edited items.

¢. source item is numeric, alphabetic, or alphanumeric, and receiving
item is alphanumeric, the move is performed according to rules for
alphanumeric items.

d. the sourceitem is alphabetic and the receiving item is alphabetic, the
move is performed according to the rules for alphanumeric items.

Group When either the source or the receiving item is a group, the move is per-
formed according to rules for alphanumeric items. Data is moved without
regard for the level structure, point location, and so forth; data is treated
simply as a sequence of alphanumeric characters or binary bits.

4-35

MOVE

Numeric Items

When the source data is moved to the receiving area, it is aligned according to its decimal point
and the decimal point in the receiving area. If the source is an identifier, the decimal point can
only be an assumed one. If the source is a literal, it is treated as if it were an identifier with an
assumed decimal point. If no decimal point is specified for either the source data or the receiving
item, the data is right justified. This is equivalent to decimal point alignment, assuming the deci-
mal points to be after the rightmost position in the source data and the receiving item. If the source
data contains a decimal point, but the receiving item does not, data is aligned by decimal point,
with the decimal point in the receiving area assumed to be after the rightmost position.

Alignment by decimal points may result in the loss of leading or trailing digits, or both. If a MOVE
statement will cause leading digits to be lost, the processor issues a diagnostic at compilation time.
At object program time, however, the statement is executed normally, insofar as is possible, with
the resulting loss of significance.

In all cases, whether or not the MOVE is legal, any positions in the receiving area not filled with
data are automatically filled with zeros. Such a situation could arise because of the decimal point
alignment, the difference in sizes between the source and the receiving items, or both.

Examples:
Picture of

Source Data Receiving Item Receiving Item
23] 99V9
[1T2]3] 999V 99 [o]1]2]3
[1]2]3 9999 [o[1]2]3
Z,Ev 9999 [oJo]1]2
-1.23 (literal) S9V99
1]2]s] 9V9

12 9Vv9

If source data is signed and the receiving item format specifies a sign, the operational sign is
moved with data into the receiving area where it is stored as part of the low-order character. If
the low-order character in the source is truncated because of decimal point alighment or size
difference, the sign is stored as part of the low-order character actually stored in the receiving
item. If source data is signed and the receiving item format does not specify a sign, it is stripped
from the source data and not moved into the receiving area. If source data is not signed, but the
receiving item format specifies a sign, source data is assumed to be positive, and a plus sign is
stored as part of the low-order character in the receiving item.

MOVE

Computational-1 and computational-2 items are always signed. They are stored in one or two com-
puter words depending on whether its size is 14 digits or less; or 15 to 18 digits.

If a binary item is moved to a BCD field, or vice versa, conversion will be done by the MOVE state-
ment.

Examples:
Picture of

Source Data Receiving Item Receiving Ttem
[[213] 5999 []]3]
[1]2]5] 5999 1 []3]

999 1]zl

999 3

+123 (literal) S999 ._2 I 3

Edited items

If receiving item format specifies editing, source data is edited concurrently with data movement
after decimal point alignment. Editing symbols in the receiving item (dollar signs, commas, and
so on) make this item alphanumeric. If it is subsequently referenced as a source item in a MOVE
statement, it is moved in accordance with the rules for alphanumeric items.

Examples:
Picture of
Source Data Receiving Ttem Receiving Ttem

$+%9.99 [s[aT2Ts]. T4[5]
3 999.9 3[.]4]
[0]oJo]1]2] $%%9.99 [$[**To].T1]2]

Further examples of editing are given in the diseussion of the PICTURE clause, Chapter 3.

1

If the receiving item is numeric or numerically edited, the literal can be any numeric literal or the
figurative constant ZERO(S) (ES).

MOVE

Examples:

Picture of
Source Data Receiving [tem Receiving Item

+1.23 S9V99 m:&E
+1.23 S9V9 EE
123 9(5) [ofof1T2l3]
ZEROS 599999

QUOTES 9999 illegal (alphanumeric to
+37 $999V99 Lols[7]0l0] numeric)
ALL 37 S999V 99 illegal (no quotes)

ALL "37" S999V99 illegal (alphanumeric to
03737.3 $**%9.9 (B[3[7]3]7] 3] ~umerio

Alphanumeric Items

Source data is stored left justified in the receiving area unless the receiving item is an elementary
item that specifies JUSTIFIED RIGHT. If a group is moved, left justification is standard; any
specification to the contrary is overridden. If the receiving area is not completely filled by data,
remaining positions are filled with spaces. If the receiving item is alphabetic, it is treated as
alphanumeric.

Examples:
Picture of
Source Data Receiving Ttem Receiving Ttem

[A[B]C[D] A(4) or X(4)
[A[B[c[D] A(5) or X(5)
[A[B[C[1]2]3] X(8) [a]B[c[1]2]3]a[a]
X(8) [2[5 [A]A[A]A[A]

If in a MOVE operation the receiving area is too small to contain the source data, the processor
issues a diagnostic at compilation time, At object program execution, such a move is performed
insofar as is possible, and terminates when the receiving area is filled.

4-38

MOVE

Examples:
Picture of
Source Data Receiving Item Receiving Item

NEEBE A(4) or X(4) [a]B[c]D]
[a]B]1]2]3] X(3) A[B[1]

If the receiving item is alphanumeric, the literal may be any literal or figurative constant. If the
figurative constant takes the form of ALL any-literal, the literal must be enclosed in quotation
marks; it is considered to be an alphanumeric item. Size of an ALL any-literal item is determined
by size of the receiving item; the characters are repeated from left to right.

Examples:
Picture of

Source Data Receiving Ttem Receiving Item
"ABCD" X(4) [A[B[c]D]
ALL "ABCD" X(7) [A[B]C[DJA]B]C]
"ABC-123" X(7) [AlB]c[-]1]2]3]
123" X(2)
ALL 123" X(7) [1]2]3[1]2]3]1]
ALL 123 X(7) illegal (no quotes)
123 X(5)
[aLL] TquoTES X(6) 3 B EN N K
[aL1] fLOw-vALUES X(4) [a]afa]a)]
[ALL] THIGH-VALUES X(5) [9]9[9[9]9]
RECORD-MARK ’ X [M]

It is illegal for an alphabetic or alphanumeric item to be moved to a binary numeric item or an item
that contains numeric editing symbols. It is also illegal for a binary numeric item, or literal to be
moved to an alphabetic item. If such moves are specified, the processor issues a diagnostic, and
the move is performed or not according to the move matrix on the following page. A trivial diag-
nostic will be issued for an alphanumeric to alphabetic move.

T The word ALL may be used but is redundant; if ALL is omitted, the result is the same.

4-39

MOVE

MOVE CORRESPONDING

The CORRESPONDING option in the MOVE statement is used to move one or more items within one
group to selected areas within one or more other groups. The source area must be a data item
(specified by identifier-1). The items moved depend on the names of the items within the source and
the receiving items. An item is selected for movement if:

There is a like-named item in the receiving area.
The names of all higher-level items in each area (qualifiers for the pair of items) up to but

not including identifier-1 and identifier-2, identifier-3, and so on, are also identical.

Each selected item. is moved from the source area to the corresponding item in the receiving area;
editing according to the receiving area format takes place concurrently with the move. The above
rules for the simple MOVE statement apply to each move when the CORRESPONDING option is used.
A MOVE CORRESPONDING statement has the same effect as a series of simple MOVE statements.

The following rules apply to the MOVE CORRESPONDING statement only:

1. No item described by an OCCURS clause in the Data Division can be involved in the move.

2. Data items with level number 77 (independent working-storage or constant items) cannot
be referenced.

3. Within any group specified, an item with a REDETINES clause in the Data Division entry
is ignored, as are all items within the same redefinition.

4. Within a specified group, any item with a RENAMES clause in the Data Division entry
is ignored.

Example:

If a record named MASTER contains information to be written as part of a record called MAST-REP,
the MOVE CORRESPONDING statement can specify movement of all relevant data.

01 MASTER 01 MAST-REP
03 ITEM-NUMBER 03 ITEM-NUMBER
03 ITEM-NAME 03 ITEM-NAME
05 GENERAL-CLASS 05 GENERAL-CLASS
05 DETAIL-NAME 05 DETAIL-NAME
03 ON-HAND-QUAN 03 YEAR-TO-DATE-SALES
03 REORDER-LEVEL 03 LAST~-YEAR-SALES
03 RETAIL-PRICE 03 YEAR-TO-DATE-PROFIT
03 WHOLESALE-LEVEL 03 PROJECTED-PROFIT
03 WHOLESALE-PRICE 03 LAST-YEAR-PROFIT
03 YEAR-TO-DATE-SALES 03 SALES-COMP
03 YEAR-TO-DATE-PROFIT 03 PROFIT-COMP

03 LAST-YEAR-SALES
03 LAST-YEAR-PROFIT

MOVE CORRESPONDING MASTER TO MAST-REP results in movement of items: ITEM-NUM-
BER, ITEM-NAME (GENERAL-CLASS and DETAIL-NAME), YEAR-TO-DATE-SALES, LAST-
YEAR-SALES, YEAR-TO-DATE-PROFIT, and LAST-YEAR-PROFIT.

4-40

-,

MOVE

When a group containing synchronized items is referenced by a MOVE statement, the entire group

is moved, including characters not used because of synchronization. If a synchronized elementary
item is referenced, only the information is moved; unused positions are ignored. These rules also
apply to each individual move resulting from a MOVE CORRESPONDING statement.

Rec, Fileld| » | & . >
;&] % 8 .-g o] = = g
R 2L % | O g v g £ | 9%
» aa | A A < A Z & S A = 58
. . 9 O
S ol E%| ES | £ | Eg| B | g | B g g =
Source & 28| 25 2 25 2 25 ¥ & [o g
Field Hag | Ba | =] =] = 5] o <) & 8
Elem. Binary | Num Num. ilegal Conv, | Conv.f | Conv. PD PD PD (legal
Single-Prec. | Bin. | Bin. 881 | Num. | AN Edit AN AN AN | Mes?
Elem. Binary | Num, Num, illegal Conv, | Conv.} | Conv. PD PD PD lewal
Double-Prec. | Bin. | Bin. 88 | Num. | AN | Edit AN AN AN | P
,) PD PD D | .
Elem, Alpha |illegal | illegal AN AN AN illegal AN AN AN illegal
Elem. BCD Conv. | Conv. PD . PD PD .
Num. Bin. | Bin, AN | Num. | ANT | Edit) ANY AN an | ileeal
) . PD PD . PD PD .
Elem. AN illegal | illegal AN AN AN illegal AN AN AN illegal
Elem. Edit . . PD . . PD PD .
Num., illegal | illegal AN illegal AN illegal AN AN AN illegal
PD PD PD PD . PD PD .
Group AN AN AN AN AN AN illegal AN AN AN illegal
. PD PD PD PD PD PD PD 017 -
Group Binary AN AN AN AN AN illegal AN AN AN illegal
s PD PD PD PD PD s PD PD PD .
Group Mixed AN AN AN AN AN illegal AN AN AN illegal
Num. Num. | . ; i
Zero . . illegal | Num. AN Edit AN AN AN illegal
Bin, Bin,
Other Fig. R s PD . . PD PD .
Cons. illegal | illegal AN illegal AN illegal AN AN AN illegal
s ; s PD . . PD PD .
Literal AN illegal | illegal AN illegal AN illegal AN AN AN illegal
Conv Conv PD PD
Literal Num. Bin, Bin, illegal um AN} Edit AN AN AN illegal

t Valid MOVE only when source is integer; others, precautionary diagnostic.
PD Precautionary diagnostic will be issued.

4-41

MULTIPLY

This verb multiplies two numeric values and sets the resulting product as the value of one or more
items.

Format 1:

identifier-1

MULTIPLY l literal-1

l BY identifier-2 [ROUNDED] [identi;fier—3 [ROUNDED]| ce
[ON SIZE ERROR any-imperative-statement]

Format 2:
i 3 i - = s e —'_
MULTIPLY [1eRIOrt] py (e ier?

literal-2 literal-3 } GIVING identifier-6 [ROUNDED] [1dent1f1er—7

[QOUNDED]]. .. [ON SIZE ERROR any-imperative-statement |

In the first format one or more different multiplications may be specified by a single statement,
with the products stored as the values of different items. Literal-1 or the value of identifier-1

is multiplied by the value of identifier-2; the product is set as the value of identifier-2. A pro-

duct is formed with the value of identifier-3, and the result set as the value of this item, and so
on for every item named in the statement.

The second format stores the product of a multiplication as the value of one or more items.

Literal-2 or the value of identifier-4 is multiplied by literal-3 or the value of identifier-5, whichever
is specified. The product is set as the value of identifier-6, and also as the value of all items

named after identifier-6.

All items must be described in the Data Division as elementary numeric items. If a name en-
countered during compilation is not an elementary item, the processor issues a diagnostic and
compilation of the MULTIPLICATION statement terminates. Literals specified must be numeric.
Literals cannot be specified as multipliers in the first option.

The composite size of the items in which a result is stored must not exceed 18 decimal digits. The
ROUNDING option may be specified.

Example:

MULTIPLY 1.05 BY MONTHLY-EARNINGS, OVERTIME-RATE,
SOC-SEC, FEDERAL-TAX

4-42

NOTE

This verb allows the user to write explanatory statements in the Procedure Division of the source
program. They are reproduced in the source program listing but have no effect on the object pro-

gram,

NOTE any-comment.

The word NOTE is followed by any combination of characters in the COBOL set; they may constitute
a sentence or a paragraph, according to the following rules:

1. If NOTE is the first word of a paragraph, the entire text is considered notes. The para-
graph must be named and proper format rules for the structure of the paragraph must be

observed, however;

2. If NOTE is not the first word of a paragraph, the commentary is considered to end with
the first period following the word NOTE. This period must be followed by a space before
the first character of the next specification is written.

Example:

CC10. PERFORM SUMMARIZE.
NOTE THIS PROCEDURE WILL SUMMARIZE THE FINAL RESULTS.

NOTE-PARAG. NOTE SINCE THE FIRST WORD IN THE PARAGRAPH IS A NOTE, NO

MATTER WHAT THE FOLLOWING SENTENCES SAY, THEY ARE ACCEPTED AS
COMMENTARY ONLY.

4-43

OPEN

Before data can be obtained from an input file or written on an output file by the READ and WRITE
statements, the file must be made available by the OPEN verb,

\ REVERSED . _ REVERSED
[INPUT file-name-1 [[———WITH NO REWIN’D]] file-name-2 [IW——ITH NO REWIND ” ..]

OPEN [QUTPUT file-name-3 [WITH NO REWIND] [file-name-4 [WITH NO REWIND]]. ..]
[{ INPUT-OUTPUT

-0 } file-name-5 [file-name-6]. ..

Only one of each of the clauses (INPUT, OUTPUT, I-O or INPUT-OUTPUT) may be included in one
statement. If two files are to share record and input-output areas, they should not both be open at
the same time; the contents of these areas would then be dependent on the order in which READ or
WRITE statements were issued for these files. An OPEN statement must be executed for a file
before a READ or WRITE statement pertaining to that file can be executed.

The I-O and INPUT-OUTPUT options pertain only to mass storage files. These options permit the
opening of a mass storage file for both input and output operations. It is illegal to OPEN a mass
storage file specified as ACCESS MODE IS RANDOM if that file is assigned to a tape by a REQUEST
card,

Each file named in an OPEN statement must be defined by a file (FD) description entry in the Data
Division or by a RENAMING clause in the Environment Division. If label records are STANDARD,
executing an OPEN statement causes the beginning-of-file label record to be checked for an input
file or written for an output file. When label records are STANDARD, beginning procedures speci-
fied by the USE verb are executed before or after the checking or writing of the label record as
specified, Refer to Chapter 6 for a further discussion on file labels.

A second OPEN statement mentioning the same file name cannot be executed unless it has been
preceded by a CLOSE statement for that file.

The REVERSED option is not implemented at this time and will produce a diagnostic stating so.

NO REWIND may be specified when a file on a multiple file magnetic tape reel is opened. The reel
is positioned at the beginning of the file. This option should be included for any file except the first
on a multiple-file reel.

Examples:

OPEN INPUT CARD-FILE.
OPEN OUTPUT PRINT-FILEA WITH NO REWIND PRINT-FILEB,
OPEN INPUT-OUTPUT MASTER-FILE.

4-44

PERFORM

This verb specifies a temporary departure from the normal execution sequence to execute one or
more procedures a number of times or until a specified condition is satisfied. A return of control
is automatically set up.

When instructions compiled from a PERFORM statement are executed, they transfer control to the
first statement of a specified procedure. Instructions set up during compilation return control to
the statement following PERFORM after execution of the last statement in the procedure (para-
graph, section, or combination of these).

The sentence executed just before control is returned should not contain a GO TO statement, other-
wise any statements following it will be bypassed and return to the statement following PERFORM
will never occur.

Execution sequence proceeds from the beginning of the procedure-name-1 to the last statement of
the procedure-name-2. GO TO and PERFORM statements are permitted between these points,
provided that the execution sequence ultimately returns to the final statement of the procedure-
name-2,

If the PERFORM statement transfers control to a procedure which contains conditional exits before
the end of the procedure, procedure-name-2 must be the name of an EXIT paragraph and every con-
ditional exit must refer to this name. In this way, all of the foregoing requirements are satisfied
and all paths through the procedure eventually lead to this EXIT paragraph. This paragraph must
consist solely of a sentence containing only the verb EXIT., This ensures control is always returned
to the statement following the PERFORM statement from every exit.

A procedure may be referenced by more than one PERFORM statement in the same program and it
also may be executed in the normal sequence.

Format 1; simple PERFORM:
PERFORM procedure-name-1 [THRU procedure-name-2]

A procedure referenced by this statement is executed once, and control returns to the statement
following the PERFORM statement.

Format 2; TIMES option:

identifier-1

PERFORM procedure-name-3 [THRU procedure-name-4] {.
—_— —_— integer-1

TIMES

In this option, a procedure is executed repetitively. The number of executions may be specified
explicitly as an integer or it may be specified as the value of an elementary data item.

An identifier may be of any usage, and it may be subscripted, but it should be a positive integer.
When this option is included in a PERFORM statement, a counter is set up with a value equal to the

value of the identifier-1 item or integer-1. Before each execution, the counter is tested against
the value zero. If it is not equal to zero, the procedure is executed and the value of the counter

4-45

PERFORM

decreased by 1; the counter is again tested. When the value of the counter is zero, the procedure
has been executed the specified number of times and control transfers to the statement following
the PERFORM statement. Since the counter is tested before the first execution, the procedure is
not performed for zero execution.

Format 3; UNTIL option:

PERFORM procedure-name-5[THRU procedure-name-6] UNTIL condition-1

In this option the number of times the procedure is executed is dependent on the truth or falsity
of a condition rather than a stated value.

Condition-1 can be any simple or compound conditional expression, which is evaluated before the
specified procedure is executed. If it is found to be false, the procedure is executed and the ex-
pression is evaluated again (since the values are altered by execution) and tested, this process is
repeated until the conditional expression is found to be true, at which point control transfers to the
statement following the PERFORM statement. If the conditional expression is found to be true when
the PERFORM statement is encountered, the procedure is not executed.

Format 4; VARYING option:

PERFORM procedure-name-7 [THRU procedure-name-8] VARYING identifier-2 FROM

literal-1 literal-2 e [. i literal-3
{identifier—S} {identifier-4} UNTIL condition-2| AFTER identifier-5 FROM {identifier~6]
BY {hteral—z}

serat- UNTIL condition-3 [AFTER identifier-8 FROM | teral-5
ldent].fler"7 - T A

identifier-9
literal-6 - r
BY {identiﬁer-lo} UNTIL cond1t10n—4]]
The VARYING option in the PERFORM statement is used to augment the value of one or more

identifiers in a nested fashion in conjunction with repetitive executions of a particular procedure.
A maximum of three levels may be varied in a given PERFORM statement.

When one identifier is varied, identifier-2 is set equal to its starting value, identifier-3 or literal-1;
if the condition is false, the sequence of procedures, procedure-name-7 through procedure-name-8,
is executed once. The value of identifier-2 is augmented by the specified increment or decrement,
identifier-4 or literal-2 and condition-2 is evaluated again. The cycle continues until this expression
is true; at which point control passes to the statement following the PERFORM statement. If the
condition is true at beginning of execution of the PERFORM, control passes directly to the statement
following the PERFORM statement.

4-46

PERFORM

The following diagram illustrates the PERFORM statement with one varying identifier.

Entrance
(from statement previously executed)

Set identifier-2 equal to
initial value as specified

following FROM
-
1 T
- rue
l condition-2 I—-—————— To statement following
‘ False PERFORM statement

L Execute specified procedure I
1

Increment or decrement
identifier-2 as specified
following BY

When two identifiers are varied (optional clause beginning with AFTER is included), the item
associated with identifier-5 assumes every value in the range defined by FROM, BY, and UNTIL
specifications, for every value that the identifier-2 item assumes in the range defined by the
FROM, BY, and UNTIL specifications. When three identifiers vary, the identifier-8 assumes
every value in the range for every value of identifier-5 and so on. For each combination of
values ,the specified procedure is executed once.

4-417

PERFORM

This diagram illustrates the PERFORM statement with two varying identifiers.

Entrance
(from statement previously executed)

Set identifier-2 and identifier-5
to initial values as specified
following the two uses FROM

|

- " 1 True
l Condition~2 i To statement following

J‘ Talse PERFORM statement
1 True

| Condition-3 |

‘ False

Execute specified procedure
j Set identifier-5 item to its

initial value as specified
following FROM

Augment identifier-5 by value
specified following BY
{ ™

Augment identifier-2 by value
specified following BY

1

After the two identifiers are set to initial values, condition-2 is evaluated. If false, condition-3 is
evaluated. If condition-3 is also false, the specified procedure is executed, identifier-5 is aug-
mented in value and condition-3 is again tested. The procedure is executed for each new value of
identifier-5 until condition-3 is found to be true. At this point identifier-5 will have assumed
various values for one particular value of identifier-2 and the procedure will have been executed
once for each value. Identifier-5 is reset to its initial value, identifier-2 is augmented in value,

and condition-2 is again evaluated. If condition-2 is still false, the procedure is again executed

for each value of identifier-5 until condition-3 is true. This process continues until condition-2 is
found to be true following an augment in the value of identifier-2 after condition-3 is found to be true.

The PERFORM statement is complete when the specified procedure has been executed for each
combination of the various values assumed by the identifier-2 and the identifier-5; control transfers
to the statement following the PERFORM statement.

The following diagram shows how the PERFORM statement functions when three identifiers are to

be varied. Operation is the same as above, except that a third level is added. The three items

identifier-2, identifier-5, and identifier-8 are first set to initial values. The value of identifier-8

goes through a complete cycle for each value of identifier-5 which in turn goes through a cycle for

each value of identifier-2. o~

4-48

PERFORM

Entrance
(from statement previously executed)

Set identifier-2, identifier-5, and identifier-8
to initial values as specified following
corresponding use of FROM

='1
l Condition-2 —I True To statement following
] False PERFORM statement
-t
[Condition-3 | True
—-11 False True
Condition-4 l
* False
Execute specified Set identifier-8 to Set identificr-5
procedure initial value specified to initial value
following FROM specified
following FROM
Augment identifier-8 j
by value specified
following BY Augment identifier-5 Augment
by value specified identifier-2 by
following BY value specified
q following BY

i

Regardless of the number of identifiers in the VARYING option, the PERFORM statement is com -
pleted as soon as condition-2 is found to be true. Condition-2 is evaluated before the procedure is
executed for the first time and if it is true, the procedure will not be executed even though other
conditions (-3, -4) may not be true. After completion of the PERFORM statement, the value of
identifier-2 differs from its last-used value by one increment (or decrement), Identifier-5 and -8
have their initial values. The following rules also apply:

1. The increment (as specified following the word BY) should be a non-zero integer. It may
be negative, however, making it a decrement.

2. Identifier-2, -5, and -8 should not refer to the same item; they should not be alternative
names for the same data item.

4-49

PERFORM

The following discussions apply to all four options of the PERFORM statement:

After execution of the procedure under control of the PERFORM statement, control returns to the
statement following the PERFORM statement. The procedure to be executed by a PERFORM state-
ment should not appear directly following that statement. If it does, it will probably be executed
one more time than intended.

If a procedure referenced by a PERFORM statement includes within it another PERFORM statement,
the procedure associated with the second PERFORM must be either entirely included in, or entirely

excluded from, the procedure referenced by the first PERFORM.

Correct Specifications

x PERFORM a THRU m x PERFORM a THRU m
a a

d PERFORI\;I f THRU j d PERFORM f THRU j
f . h

i . m

m ' f

I

Incorrect Specifications

x PERFORM a THRU m
a
d PERFORM f THRU j
f

m

j

4-50

PERFORM

A procedure associated with one PERFORM statement can overlap or intersect the procedure
associated with another PERFORM statement, if neither procedure includes the PERFORM state-
ment associated with the other procedure.

Correct Incorrect
x PERFORM a THRU m x PERFORM b THRU n
a b
f d PERFORM g THRU k
m g
j n
d PERFORM f THRU j k

Examples:

PERFORM SUMMARY.
PERFORM CALCULATION 4 TIMES.
PERFORM ISSUE NO-COPIES TIMES.

PERFORM REORDER UNTIL ON-ORDER + SUPPLY = AV-USE * 2 OR SUPPLY
GR AV-USE * 2.

PERFORM RATE-CALC VARYING QUAN FROM 50 BY 5 UNTIL QUAN GR 200.

4-51

READ

This statement stores one logical record from an input file in the record area in memory associated
with that file.

Format 1: (used to read sequential files from any device)

READ file-name-1 RECORD [INTO identifier-l] AT END any-imperative-statement
Format 2: (used to read random-access mass storage files only)
READ file-name-2 RECORD [INTO identiﬁer—Z] INVALID KEY any-imperative-statement

An OPEN statement for the file must be executed prior to the first READ statement. The formats
differ in the method used to determine the limits of the file. The first format is used to read all
tape files and any mass storage files specified as sequential access; the AT END statement is exe-
cuted when an end of file mark is read. The second format reads mass storage files specified as
random access; the INVALID KEY statement is executed when the limit as specified in the FILE-
LIMIT clause of the Environment Division is exceeded, or when the ACTUAL or SYMBOLIC KEY
indicates that the requested record is not present.

When any READ statement is executed, the next logical record in the file is stored in the record
area assigned to the file, The stored record remains in the record area until the next READ state-
ment stores the next record in the area and overwrites some or all of the first record. Therefore
if two records are required concurrently, the first must be moved from the record area before the
second is read.

When the INTO option is used, the logical record is stored in both the record area and the area in
memory specified by the identifier. If the format of this area differs from that of the record, the
record is stored in accordance with the rules for a simple MOVE without CORRESPONDING. The
INTO option makes one logical record available in both the record area and in an area in memory;
of if the next logical record is read into the record area, two consecutive logical records are
available concurrently.

The AT END option or the INVALID KEY option must be included with every READ statement speci-
fied in a COBOL source program. These options indicate, by their associated imperative statements,
the action to be taken when the last record of a file has been read, or when a record with an invalid
key is requested. Any attempt to execute a READ statement after an AT END or INVALID KEY
option has been executed is an error unless a subsequent CLOSE and OPEN have been executed for
the same file.

When a READ statement is executed for a random access mass storage file, the current value of
data-name-5 in the ACTUAL/SYMBOLIC KEY clause determines the location of the next available
record; except if a SEEK is executed prior to the READ, the value of data-name-5 at the time of
SEEK determines the location of the next record. The contents of data-name-5 must be set by the
user prior to the SEEK or prior to READ if SEEK is omitted. If the key is ACTUAL, data-name-5
is a numeric integer index to the position of the record in the file index; if the key is SYMBOLIC,
data-name-5 is a seven-character name assigned to the record in the file index. If the contents of

READ

the key are invalid or if the file limits are exceeded, the statement associated with the INVALID
KEY clause is executed.

It is the user's responsibility to determine which condition caused execution of the INVALID KEY
statement. The following example shows how this might be done.

Examples:

1. ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION.
FILE-CONTROL.

FILE-LIMIT IS 20.
SYMBOLIC KEY IS KEY-FILEA,

DATA DIVISION,
WORKING-STORAGE SECTION,
77 KEY-FILEA PICTURE X(7).

PROCEDURE DIVISION.

IF COUNT NOT GR FILE-LIMIT ADD 1 TO COUNT
ELSE GO TO REC-OUT-OF-RANGE,

MOVE "BLIVET" TO KEY-FILEA.

READ FILEA INVALID KEY GO TO NON-EXIST-REC,

In the above example, the procedure REC-OUT-OF-RANGE will be executed when the file limit
is exceeded, and NON-EXIST-REC will be executed when the contents of the key are invalid
for any other reason. This could occur if a record is requested that is within the file limits as
specified by FILE LIMIT but which was not generated on the file by a previous WRITE,

2, READ MASTER-FILE AT END MOVE 1 TO MASTER-ENDED-IND
GO TO END-MASTER.
3. READ DETAIL-FILE AT END GO TO END-DETAIL,.
4. READ INVENT-FILE AT END ADD 1 TO INVENT-IND GO TO END-INVENT.
5. READ DATA-TFILE INTO ITEM-1 INVALID KEY DISPLAY "END DATA".

4-53

RELEASE
RETURN

The RELEASE statement transfers records to the initial phase of a sort operation.
RELEASE record-name-1 [FROM identifier-1]

The RELEASE statement applied to a sort file is equivalent to a WRITE statement. Record-name-1
must be named in the DATA RECORDS clause of a sort file description entry (SD). Identifier-1 must
be a Working-Storage area or an input record area, and a different data item than record-name-1.

RELEASE causes the record named by record-name-1 to be released to the initial phase of a sort.
If the FROM option is included, the contents of the data area identified by identifier-1 are moved to
record-name-1 and then released to the sort file. The move is made according to the rules for a
simple MOVE. After a RELEASE statement is executed, the contents of the record area named by
record-name-1 are no longer available; however, the contents of the data area identified in the
FROM option will be available if that option is specified.

RELEASE must be part of an input procedure in the SORT statement (see SORT). When control
passes from the input procedure, the file consists of all those records placed in it by execution of
RELEASE statements.

RETURN
The RETURN statement obtains the sorted records from the final phase of a SORT operation.
RETURN file-name-1 RECORD [INTO identifier-1] AT END any-imperative-statement

RETURN is equivalent to a READ statement for a sorted file. It may be used only within the range
of an ouput procedure associated with a SORT statement for file-name-1 (see SORT). File-name-1
must be described in a sort file description entry (SD). The identifier-1 must be a Working-Storage
area or an output record area.

Execution of the RETURN statement causes the next record, in the order specified by the ASCENDING/
DESCENDING key, to be made available for processing in the record area associated with the sort
file. The move is made according to the rules for a simple MOVE,

If INTO is specified, the data is available in both the input record area and the data area associated
with identifier-1. The INTO option may be used only when the input file contains just one type of
record,

After execution of the imperative statement specified in the AT END phrase, no RETURN statement
may be executed within the current output procedure.

SEEK

The SEEK statement initiates record accessing on a random access mass storage file for subsequent
reading or writing.

SEEK file-name-1 RECORD

SEEK uses the contents of data-name-5 in the ACTUAL/SYMBOLIC KEY clause in the FILE-
CONTROL paragraph of the Environment Division for the location of the record. At the time of
execution, the validity of the contents of data-name-5 is determined. If the key is invalid, the
program will execute the imperative statement in the INVALID KEY clause of the next executed
READ or WRITE for the associated file. The contents of data-name-5 are the responsibility of
the user.

Example:
ACTUAL KEY IS MAST-FILE-KEY.
77 MAST-FILE-KEY PICTURE 9(3) USAGE IS COMPUTATIONAT.
ADD 1 TO MAST-FILE-KEY,
SEEK MASTER-FILE.
READ MASTER-FILE INVALID KEY GO TO INVALID-PROC,
Contents of MAST-FILE-KEY at SEEK execution are a numeric index to the location of the de-

sired record in the file index. If contents of the key are invalid, no record is read and control
transfers to INVALID-PROC.

SORT

DESCENDING

SORT file-name~-1 ON {w

] KEY identifier-1 [identifier-2]...
DESCENDING
[ASCENDING
{INPUT PROCEDURE IS section-name-1 [THRU section-name-Z]
USING file-name-2
OUTPUT PROCEDURE IS section-name-3 [THRU section—name—AL]’
{ GIVING file-name-3

I KEY identifier-3 [identifier-4]..]

The SORT statement creates a sort-file by executing input procedures or by transferring records
from another file, sorts the records in the sort-file on a set of specified keys, and in the final
phase of the sort operation, makes available each record from the sort-file, in sorted order, to
some output procedures or to an output file.

The ASCENDING clause specifies a sorting sequence from lowest to highest value of KEY; DE-
SCENDING specifies a highest to lowest sequence. The order of values is specified in the COBOL
collating sequence in Appendix B.

File-name-1 is the sort file which must be described in a sort file description entry (SD). Each
identifier must represent data items described in records associated with file-name-1, Section-
name-1 is the name of an input procedure; section-name-2 is the name of an output procedure.
File-names-2 and -3 must be described in the file description entries (FD); they are not sort files
and must not be described in an SD entry. Identifiers following the word KEY are listed from left
to right in decreasing significance without regard to how they are divided into KEY clauses. The
KEY identifiers may not be variable length items, and cannot contain or be subordinate to entries
that contain an OCCURS clause. If KEY identifiers appear in more than one record, the data de-
scriptions must be equivalent and must start in the same relative position in each record.

An INPUT PROCEDURE must contain at least one RELEASE, and an OUTPUT PROCEDURE must
contain at least one RETURN. They cannot contain SORT statements, nor may they transfer con-
trol outside the procedure or be transferred into from another part of the Procedure Division.

SORT is equivalent to the following operations when the INPUT and OUTPUT PROCEDURES are
used:

e Opens sort file.

e Executes the INPUT PROCEDURE which prepares records and writes them into the sort
file by executing RELEASE statements.

® Records collected by the RELEASE statement are sorted when the program allows control
to go to the end of the INPUT PROCEDURE. The sort file is then closed, the data sorted,
and the sort file is opened for input which takes place in the OUTPUT PROCEDURE.

® Control is given to the OUTPUT PROCEDURE and a record is read from the sort file
each time a RETURN statement is executed.

4-56

SORT
STOP

® When the end of the sorted file is reached, the AT END statement of the last RETURN
statement executed within the OUTPUT PROCEDURE is executed.

® When control is allowed to go to the end of the OUTPUT PROCEDURE, the sorting operation
is terminated even if all the data in the sorted file has not been read. Control then proceeds
to the statement following the SORT statement.

If the USING option is specified, all the records in file-name-2 are transferred automatically to
file-name-1. When the SORT statement is executed, file-name-2 must not be open. The SORT
statement automatically performs the function of the OPEN, READ, USE, and CLOSE statements
for file-name-2.

If the GIVING option is used, all the sorted records in file-name-1 are automatically transferred to
file-name-3 as the implied output procedure for this SORT statement. When the SORT statement is
executed file-name-3 is automatically opened before transferring the records and closed after the
last record in the sort-file is returned.

STOP

This verb specifies a temporary or final halt in the execution of the object program.
literal-1
STOP {RUN } .

If a literal is specified, the object program displays the literal and halts temporarily. The word
RUN after the word STOP produces an end-of-program exit to the supervisory control system.

This option terminates program execution. A STOP RUN statement should be used only as the final
statement of a sequence. A program will compile correctly without a STOP RUN statement; how-
ever, execution will not terminate normally,

To continue after a halt, the operator must type in X.GO for interpretation by the SCOPE system.
X indicates the control point number 1-7 under which a program is running.

4-5T7

SUBTRACT

This verb subtracts one or the sum of more than one numeric value from a specified value and sets
the result as the value of one or more items.

Format 1:

SUBTRACT [1dent1f1er~1] [{ identifier-2 }]

literal-1 literal-2 FROM identifier-m [ROUNDED]

[identifier—n ROUNDED]] ...[ON SIZE ERROR any-imperative-statement].
Format 2:

FROM { identifier-m| - o1y10G identifier-n

SUBTRACT lldentlfler-3] [{ 1dent1.f1er—4}] - .
S literal-m

literal-3 literal-4
[ROUNDED] [identifier—o [ROUNDEDI]. .. [ON SIZE ERROR any-imperative-statement.]

Format 3:

SUBTRACT CORRESPONDING identifier-5 FROM identifier-6 [ROUNDED]
[identifier—7 |ROUNDED|] ... [ON SIZE ERROR any-imperative-statement],

In the first format one or more subtractions may be specified by a single statement, with the results
as the values of different items. The literals and/or the values of the items named preceding FROM
are summed and the total is subtracted from the value of the identifier-m item; the difference is

set as the value of the identifier-m item. The same total is subtracted from the value of each item
named after identifier-m (such as identifier-n) and the difference in each case is set as the value

of the named item.

The second format stores the result of a subtraction as the value of one or more items. The literals
and/or the values of the items named preceding FROM are summed and the total is subtracted from
literal-m or from the value of the identifier-m, whichever is specified. The difference is set as

the value of the identifier-n, and also as the value of all other items named after identifier-n (such
as identifier-o).

In both formats 1 and 2, all items must be described in the Data Division as elementary numeric
items. If a name encountered during compilation is not an elementary item, the processor issues
a diagnostic and compilation of the SUBTRACT statement terminates. All literals specified must
be numeric.

SUBTRACT

SUBTRACT CORRESPONDING

The values of one or more elementary items within a group are subtracted from the values of one
or more selected elementary items within other groups. No literals may be included and all identi-
fiers must be the names of groups. The groups are considered in pairs for the process of selecting
one or more items from within each group for subtraction. The group named identifier-5 is paired
in turn with each of the other groups named. For any pair of groups, the value of the elementary
item selected from the identifier-5 group is subtracted from the value of the corresponding ele-
mentary item from the second-named group and the difference is set as the value of the item in the
second-named group.

A pair of elementary items from a pair of groups is selected for subtraction if:

Their names are the same

b. Names of all higher-level items in each group (qualifiers for each item), up to but not
including the names of the groups, are identical

c. Both items are elementary
After a pair of items has been selected for subtraction, the operation is the same as if a SUBTRACT

statement of the first option had been specified. The same rules apply to subtraction of selected
items as to subtraction of items specified in format 1.

After all matched pairs have been subtracted for identifier-7 and identifier-6 groups, the matched
pairs are subtracted for identifier-5 and identifier-7 groups, and so on.

The following rules apply to subtract corresponding only:

1. No item described by an OCCURS clause in the Data Division can be involved in subtraction.

2. Within a specified group, any item with a REDEFINES clause is ignored, as are all items
within the redefinition.

3. Data items with level number 77 (independent working storage or constant items) cannot
be referenced.

4. Within a specified group, any item with A RENAMES clause in the Data Division entry
is ignored.
Example:
SUBTRACT SOC-SEC FEDERAL-TAX TOTAL-DEDUCTIONS FROM MONTHLY-GROSS
GIVING MONTHLY-NET.
SUBTRACT CORRESPONDING UPDATE-RATE-TABLE FROM RATE-TABLE.

SUBTRACT DAY OF CURRENT-DATE FROM 30 GIVING DAYS-LEFT ON SIZE ERROR ADD 1
TO ERROR-COUNTER.

USE

This verb introduces procedures to be executed in addition to the standard input-output error and
label record handling procedures, and specifies Procedure Division statements to be executed just
prior to producing a report group named in the Report section. The USE statement must be a
sentence immediately following the section header for the declarative procedures which it introduces.
The remainder of the section consists of paragraphs which define the operations.

SORT files must not be specified in a USE statement,

Format 1: file-name
INPUT

USE AFTER STANDARD ERROR PROCEDURE ONJ OUTPUT
INPUT-QUTPUT
1-O

The procedures included with a USE Sentence of format-1 are executed after the standard input-
output error procedures of the input-output control system.

TFormat 2:
BEFORE [(BEGINNING [(REEL

USE \AFTER lSTANDARD _[ENDING l] _lFILE]]
(file-name-2)
INPUT

Lapy, [PROCEDURES) o) oyrpor

—_— INPUT-OUTPUT

(=9 y

The USE sentence in format 2 introduces the procedures to be executed in conjunction with those
provided by the operating system. The procedures will be executed before or after input labels
are checked, before output labels are prepared, or after output labels are written on tape. If
label records are specified as STANDARD, the procedures are performed in addition to the label
checking and writing handled by the operation system. If neither BEGINNING nor ENDING is
specified, the procedures are executed for both beginning and ending labels. If neither REEL nor
FILE is specified, the procedure is executed for both reel and file labels.

Format 3:

USE BEFORE REPORTING identifier-1 [identifier-2]. ..

Format 3 is used only on conjunction with the Report Writer. It is described in Chapter 5 with the
Report Writer statements.

USE

USE with Standard Labels

The following table shows the effect of changes made by USE procedures on the label area of the
File Environment Table. This table applies only to USE procedures with standard label processing.

USE Statement Options File Type Label Area Use

BEFORE BEGINNING FILE OUTPUT Changes will be reflected in opening labels.
REEL
FILE INPUT Changes will effect checking of opening labels.
REEL

AFTER BEGINNING FILE OUTPUT Changes will have no effect
REEL
FILE INPUT Actual label information from beginning labels
REEL is available.

BEFORE ENDING REEL OouUTPUT Changes will be reflected in ending label.
FILE
REEL INPUT Changes effect checking of label.
FILE

AFTER ENDING FILE ouTPUT Changes have no effect.
REEL
FILE INPUT No information available here.
REEL

Label information from beginning

for input when any USE...REEL... labels still available.

Immediately after a file has been opened }
statement applies to this file.

USE With Non-Standard Labels

USE procedures have less meaning for label records with the data-name option (non-standard labels).
When this option is used, the first record of the file is assumed to be a data-name-7 type record.

It is read or written when OPEN occurs without a READ or WRITE in the COBOL source program.

It can be referenced in a manner similar to all data records and is placed in the same area. Effec-
tively, an OPEN INPUT corresponds to an OPEN INPUT and a READ, and OPEN OUTPUT corre-
sponds to an OPEN OUTPUT and a WRITE data-name-7. USE procedures may be used, but are not
the only way a user has access to the label record.

Non-standard end-of-reel labels on input files may be checked only if the VALUE OF ENDING-
TAPE-LABEL-IDENTIFIER clause is specified in the label records clause. This identifier is
used to distinguish between end-of-file and end-of-reel labels. If this option is used, USE pro-
cedures referring to reels may be used for input tapes with non~-standard labels. The results of
USE procedures for such files are outlined in detail in section 6.1.5.

4-61

WRITE

This statement releases one logical record from the output record area to the input-output control
system; the system then writes the record on an external device.

Format 1:

BEFORE

WRITE record-name-1 [FROM identifier-1] AFTER

] ADVANCING

{ integer }

identifier-2 LINES
mnemonic-name

Format 2:

WRITE record-name-2 [FROM identifier-2] INVALID KEY any-imperative-statement

An OPEN statement giving the name of the file containing the record to be written must be specified
before a WRITE statement may be executed.

Format 1 of the WRITE statement is used with all files; Format 2 is used with mass storage

files. The statement associated with INVALID KEY is executed when the key in the ACTUAL or

SYMBOLIC KEY clause is found invalid. This key is the contents of data-name-5 in the ACTUAL/ @
SYMBOLIC KEY clause and must be a numeric index to the location of the record (ACTUAL KEY)

or a seven-character name identifying the record in the name index (SYMBOLIC KEY). A key is

invalid when limits specified in the FILE LIMITS clause of the Environment Division are exceeded

or when the key specifies a non-existent record.

The FROM option is used to move a record from the area in memory specified by the identifier to
the output record area and simultaneously release this record to the input-output control system.
The record is moved in accordance with the rules for a simple MOVE. The name of the record may
not be the same as the identifier in the FROM option.

The ADVANCING option controls positioning of each record on a printed page; it is used only with
the printer. When LINES is used, the printer spaces the number of lines specified by the integer
or identifier. The integer must be positive and the identifier must result in a positive integer at
object time. The mnemonic-name is always associated with a carriage control character. The
particular character must be specified in the non-numeric-literal IS mnemonic-name clause of
the Special-Names paragraph in the Environment Division. Even if a carriage control character
is not specified, the user must always reserve a character position for the carriage control in any
record to be printed. The legal control characters are:

(blank) space 1 line 1 page eject
0 space 2 lines + no advance
Any character other than those specified above has the same meaning as blank when used in the

carriage control position. No negative spacing is permitted, and spacing in excess of 66 lines re-~
sults in ejection to a new page.

4-62

WRITE

WRITE statements may be mixed with WRITE BEFORE/AFTER ADVANCING statements. The
WRITE with ADVANCING option stores the spacing information in the first character position of the
record. It replaces any contents of that position previously supplied by the user. WRITE without
ADVANCING will not disturb this first character position.

Mixed use of WRITE, WRITE BEFORE, and WRITE AFTER ADVANCING will result in the spacing
shown in the table below:

New
Statement WRITE BEFORE WRITE AFTER
Previous WRITE c d
Statement
WRITE PRINT LINE 1. PRINT LINE 1. PRINT LINE 1.

Space according
to char 1 of line 1.
PRINT LINE 2,

Space according
to char 1 of line 1.
PRINT LINE 2.

Space according
to char 1 of line 1
followed by d
spaces,

PRINT LINE 2.

WRITE BEFORE

PRINT LINE 1,

| PRINT LINE 1.

PRINT LINE 1,

a a spaces. a spaces. a+ d spaces.
PRINT LINE 2. PRINT LINE 2. PRINT LINE 2,
Overprint. Overprint, PRINT LINE 1.

WRITE AFTER

d spaces.

b

PRINT LINE 2,

If the ADVANCING option is not used, and if the records are to be printed, the first character of
each record must contain a print control character.

Examples:

WRITE MASTER-REC.

WRITE DETAIL OF MASTER-OUT FROM DETAIL OF WORK-AREA,

WRITE PRINT-LINE AFTER ADVANCING 2 LINES.

WRITE HEADER-LINE BEFORE ADVANCING 3.

WRITE ERROR-REC INVALID KEY ADD 1 TO ERR-COUNT GO TO ERROR-PROC.

4-63

THE REPORT WRITER 5

The Report Writer enables the user to specify the format of printed reports to be output from the
COBOL program. Each report is defined in the Report Section of the Data Division using the for-
mats described in this chapter. Once a report is defined, the Report Writer statements in the
Procedure Division place the report in the specified format on an intermediate storage device for
printing. More than one report can be generated from a single source program.

When the Report Writer is used, the Report Section must be included as the last section of the Data
Division, and File Description entries (FD) in the File Section must contain the names of the reports
to be output.

The Report Writer will be implemented first in version 2.0 of 6400/6500/6600 COBOL.

5.1 GENERAL DESCRIPTION

A report is a pictorial presentation of data. In preparing a report, the format is differentiated
from the content. The format must be planned in terms of page width and length, organization of
report items on the page, and the hardware device on which the report will be written.

Each report is divided into report groups, which may be further divided into group items and
elementary items. A report group is a set of related data within a report. Any group or item
within a report group which contains subordinate items is referred to as a group item. An item
that contains no subordinate items is an elementary item.

The concept of levels is used in organizing a report. The highest level is the report itself, level
indicator RD followed by the report name. Next are report groups at 01 level. They may contain
lower level group and/or elementary items with level numbers from 2-49. Each group at the 01
level is defined according to type. The type may be a heading group, footing group, control group,
or detail group. A report group may extend over several lines of a page.

The user may refer from the Procedure Division to the report-name and to 01 level detail report
groups; he may refer from the Declaratives Section to other 01 level report groups. He may refer
from the Declaratives Section or the Procedure Division to any elementary item that is named and
contains a SUM clause.

Every report description must contain a report description entry, and a report group description
entry. The report description entry (RD) specifies the overall format: characteristics of the page
are outlined; limits are prescribed for the page and for footings, headings, and detail information
within the page. This entry also specifies data items that act as control factors during printing.
Each report associated with an output file must be defined in an RD entry.

5-1

Each report group is a set of one or more data items; it may consist of one or several-lines. A
report group must contain an 01 level number and a TYPE clause. The data-name is optional; how-
ever, it must be specified with any report group, group item, or elementary item description if it
is referred to by GENERATE or USE statements in the Procedure Division. The order in which
report groups are specified is important only if subcompiled programs refer to the same report.
Otherwise the position of a group in the report is determined by the TYPE clause. Any elementary
item descriptions must be written in the order (left to right) in which the items they describe are
to appear on the printed page.

5.1.1 CONTROL GROUPS

Summary information may be presented within the body of a report. The concept of a control
hierarchy makes it possible to automatically produce required summary information together with
any heading, detail and footing information in a control group. Control items are specified in the
report description in the same order as the control hierarchy. Any change in the contents of a con-
trol item produces a control break. Changes are recognized between executions of GENERATE
statements and they set in motion the automatic production of control footing and heading report
groups associated with the item, The set of control heading, control footing, and associated detail
report groups constitute a control group for a given control data-name. Within the hierarchy,
lower level heading and/or footing report groups are included in a higher level control group.

5.1.2 PAGE/OVERFLOW CONDITIONS

Page and overflow heading and footing report groups are mutually exclusive, and are effective only
when the condition occurs. When, following the rules associated with "last detail line,™ a control
group is completed on one page and the next control group is to be started on the next page, thena
"page condition" exists. If a page is completed any other way, an overflow condition exists. The
page footing group is printed following the last detail or control footing group if the page condition
exists, else the overflow footing is printed. If only one overflow specification is given, either
footing or page, both are assumed.

If neither page nor overflow headings and/or footings are specified, none are printed when a page
break occurs.

5.1.3 SPECIAL REGISTERS

The fixed data names, LINE-COUNTER and PAGE-COUNTER are generated automatically by the
Report Writer according to specific entries in a report description.

LINE-COUNTER is used by the Report Writer to determine when a page/overflow heading and/or
footing report group is to be presented, and to control spacing of information on the page. One line
counter is supplied for each report described in the Report Section; it is a numeric item set to a
fixed size by the compiler. The line counter may be referred to by Procedure Division statements;
however, if it is changed with a Procedure Division statement, page format control may be unpre-
dictable. If more than one line counter exists because more than one report name (RD) entry is

specified, the line counter may be qualified by the report name. Initially, the line counter is set to
zero by the Report Writer. It is automatically tested and incremented during execution according
to the PAGE LIMIT clause and the values specified by LINE NUMBER and NEXT GROUP. The line
counter is reset to zero when the page limit is exceeded during execution. The line counter is also
reset to zero when a page break occurs. After generation of any specified report groups, the-line
counter is set to the value of the absolute LINE NUMBER or absolute NEXT GROUP, if this value
is less than or equal to the contents of the line counter at that time.

During execution, the value of the line counter represents the number of the last line of the previous
report group, or it represents the number of the last line skipped by NEXT GROUP specification.
This value of the line counter is tested from the Procedure Division.

PAGE-COUNTER is a special register automatically generated by the Report Writer as a data
item to number the pages within a report. One page counter item is supplied for each report. It is
a numeric item set to a fixed size by the compiler.

The page counter may be referenced by the Procedure Division statements. Since the Report Section
may contain more than one report description entry, the user may qualify the page counter by the
report name to make it unique.

The page counter is automatically set to one when the Report Writer begins a report. With a Pro-
cedure Division statement immediately following the INITIATE statement, the user may set the page
counter to an initial value greater than one. The Report Writer automatically increments the page
counter by one at each page break. Tt is incremented after any page or overflow footing and before
any page or overflow heading.

5.2 DATA DIVISION ENTRY FORMATS

Formats used by the Report Writer are specified below in the order of appearance in a COBOL
program. The report must be named in the File Section and described in the Report Section of the
Data Division. Statements which generate a report are specified in the Procedure Division.

File Section

An output file used by the Report Writer must be described in a File Description Entry in the Data
Division. The FD entry must name the reports in the REPORT IS clause. No data records named
by a DATA RECORD clause may be included in the same FD entry. The format of the File Descrip-
tion Entry is described in Chapter 3.

REPORT

REPORTS ARE report-name-1 [report-name-2]...
REPORT IS

A report name may be specified in exactly the same way as a data name. However, if subcompile
is used, the report name must be unique in the first six characters, must begin with an alphabetic
character, and may not contain hyphens. If more than one report name is included in an FD entry,
the file will contain more than one report. I separate files are required for each report, an FD
entry must be specified for each file.

Report Section

Each report named in an FD entry must be defined in a report description entry in the Report Section
which must be the last section in the Data Division. The header REPORT SECTION followed by a
period must precede any report descriptions, and the header must be alone on a line. This section
specifies the layout of each page. The report description entry (level indicator RD) is required,

and report group description entries (level number 01) are required to divide the report into groups.

5.3 REPORT DESCRIPTION ENTRY

The physical structure and overall format of a report is specified as follows:
Format 1:
RD report-name-1 [WITH CODE mnemonic-name-1] COPY library-name.
This format is used only when the complete RD entry is contained in the COBOL library.
Format 2:

RD report-name-2 [WITH CODE mnemonic-name-2]

[3 CONTROL IS % { g:?aér%ame—l [data-name-2] }]
CONTROLS ARE FINAL data-name-3 [data-name-4]...

PAGE {LIM’IT IS LINE }

LIMITS ARE} integer-1 {LINES

[HEADING integer-2]
[FIRST DETAIL integer-3]
[LAST DETAIL integer-4]
[FOOTING integer-5]

The RD level indicator is required; it starts in column 8 and precedes the report name. The
unique report name must be specified here and in an FD entry in the File Section.

All clauses following report name in this entry are optional.

CODE
CONTROL

CODE is used when more than one report will be generated and stored on the same intermediate file
for subsequent printing. It specifies a unique character that identifies this report.

WITH CODE mnemonic-name-1

This clause immediately follows the report name in the RD entry. The mnemonic-name must be
equated to a non-numeric literal in the Special-Names paragraph of the Environment Division. The
literal must be one character (in quotation marks) and it may not itself be a quotation mark.

This is a unique identifier so that, following execution, a report selection program can inspect a
file and print only the reports required. Report selection programs must be supplied by the user.

CONTROL

This clause specifies data-names associated with the hierarchy of control within a report.

data-name-1 [data-name-2]...
CONTROLS ARE FINAL data-name-1 [data-name-2]...

{CONTROL 1S } {M }
Since the data names indicate the control hierarchy, they must be listed in order from major to
minor. FINAL is the highest control, data-name-1 is the major control, data-name-2 is next in
order, and the last name is the minor control. The data names must be defined in the File, Working-
Storage, or Common-Storage Section of the Data Division.

This clause is optional; however, it must be included when the TYPE clause specifies control footing
or control heading. Control footings and headings are printed automatically as a result of control
breaks defined in this clause. A control break occurs whenever the value of a data-name specified
in this clause changes. The CONTROL clause must also be included when the RESET clause is
specified in a report element description to reset the sum counters associated with data names
listed with CONTROL.

5-5

PAGE LIMIT

This clause is required if PAGE HEADING, PAGE FOOTING, OVERFLOW HEADING, or OVER-
FLOW FOOTING are specified in the TYPE clause or if LINE NUMBER or NEXT GROUP is speci-
fied for an item. The PAGE LIMIT clause may be omitted if no automatic positioning of report
groups on the page is desired.

Only one PAGE LIMIT clause may be specified for each RD entry, it gives specific line control for
positioning reports on a page. All the integers must be positive numbers.

LIMIT IS \ . LINE
PAGE {LIMITS ARE} integer -1 {LINES}

[HEADING integer-2]
[FIRST DETAIL integer-3]
[LAST DETAIL integer-4]
[FOOTING integer-5].

Integer-1 indicates the maximum lines to be printed on a page. It must be equal to or greater than
integer-5 which specifies the last line on which a control footing group can appear.

HEADING specifies the number of the first line on which the heading can appear; it must be greater
than or equal to 1. I HEADING is not specified, it is assigned a value of 1.

FIRST DETAIL specifies the first line on which a detail report group can start. If a heading extends -~
beyond the line specified by integer-3, the detail group will follow the last heading line. Integer-3 ;
must be equal to or greater than integer-2. If FIRST DETAIL is omitted, it is assigned the value

of integer-2. The detail line can begin on the first line following the heading; or, if no heading is

specified, on the first line.

LAST DETAIL specifies the last line on which a detail group report can be printed. Integer-4 must
not be less than integer-3. I LAST DETAIL is not specified it is assigned the value of integer-5.
The last line on which detail information can appear is either the last line on which a control footing
group can appear (integer-5); or, if no footing is specified, the last line of detail information may
be the same as the last line of the page (integer-1).

FOOTING specifies the number of the last line on which a control footing group can appear. It
must be equal to or greater than integer-4. If not specified, it is assigned the value of integer-4;
if neither footing nor last detail is specified, both the integers are set to the value of integer-1.

No centrol footing may begin before the first line of detail information (integer-3) or extend beyond
the line specified by integer-5. Page and overflow footings may start with the line specified by
integer-5, but they must not extend beyond the last line on the page (integer-1). A diagnostic is
provided at compile time if page or overflow footings do not fit within the page limits specified.

1f absolute line spacing is desired for all groups in the report, only the integer-1 LINES need be
specified. In this case, no page or overflow footings or headings should be specified.

Example:

REPORT SECTION.
RD RATIO-REPORT

PAGE LIMIT IS 55 LINES.

PAGE LIMIT

The following chart represents the limits of page format when all options of the PAGE LIMIT clause

are specified:

integer-2
integer-3
integer-4
integer-5

integer-1

Report
Heading/
Footing

Page/

Overflow
Heading

—1

Detail
Control
Heading

Control
Footing

Page/
Overflow
Footing

5-7

5.4 REPORT GROUP DESCRIPTION ENTRY

This entry defines the characteristics of each report group and of any group or elementary items
within the report group.

Format 1:
01 [data-name-1] COPY data-name-2 [FROM LIBRARY].

Format 1 is used only when data-name-2 names an item in the COBOL library or in the Data Division.
Format 2:

01 [data-name-2]

\
(REPORT HEADING

RH
PAGE HEADING
PH
OVERFLOW HEADING
OH

CONTROL HEADING data-name-2
{ CH } { FINAL }
DETAIL >
DE

CONTROL FOOTING data-name-3
{,C_F_ } { FINAL }
OVERFLOW FOOTING
ov
PAGE FOOTING
PF
REPORT FOOTING

(RE.

TYPE IS <

integer-1
[LINE NUMBER IS {PLUS integer—z}]
NEXT PAGE
integer-3
[NEXT GROUP IS { PLUS integer-4} 1
NEXT PAGE

ALPHABETIC
NUMERIC
ALPHANUMERIC
AN

[CLASS IS

CHARACTERS)\
DIGITS f

[USAGE IS DISPLAY].

[SIZE IS integer-5 {]

Format 2 indicates a report group; a report group is always at the 01 level and includes all items
between this entry and the next level 01 entry. Data-name-2 is optional but it must be included if
it is referenced from the Procedure Division. The TYPE clause is required for all report groups.

5-8

Format 3:

nn [data-name-3)]
[COLUMN NUMBER IS integer-1]
B integer-2
LINE NUMBER IS { PLUS i.nteger—3}]
NEXT PAGE

[GROUP INDICATE]
[SELECTED data-name-2
SOURCE IS { LINE-COUNTER }}
PAGE-COUNTER
[SUM data-name-3 [data-name-4]...[UPON data-name-5
[VALUE IS literal-1]

data-name-6
FINAL }

ALPHABETIC
NUMERIC
ALPHANUMERIC
AN

[RESET ON {

[CLASS IS

CHARACTERS }]
DIGITS

[USAGE IS DISPLAY]
[PICTURE IS character-string]

ZERO SUPPRESS
CHECK PROTECT
FLOAT DOLLAR SIGN
FLOAT CURRENCY SIGN

[SIGNED]
[JUSTIFIED RIGHT]

[SIZE IS integer-4 {

[LEAVING integer-5 PLACES] | [BLANK WHEN ZERO]

LEFT
RIGHT

[POINT LOCATION IS { } integer-6 PLACES].

Format 3 defines a group or elementary item within a report group. If a report group consists of
only one elementary item, format 3 may include the TYPE and NEXT GROUP clauses in order to
specify the report group and elementary item in the same entry. In this case, level number nn must
be 01.

If LINE NUMBER is not specified in format 2, it must be specified for the first item within the
report group. If LINE NUMBER is specified for a group item, the entire group is presented on the
line indicated. If LINE NUMBER is specified for an elementary item, all subsequent items are
presented on the line indicated until a new line number is specified. The line number for an item at
a lower level may not contradict that specified for an item at a higher level.

5-9

The level number (nn) can be 01-49; it must be specified. Level numbers in a report description
imply the same system of hierarchy as level numbers in a record description (Chapter 3, Data
Division). The special level numbers: 77, 66, and 88 arc illegal in Report Writer entries.
Data-name-3 need be specified only if the item it identifies is referenced in the Procedure Division
or mentioned in the SUM clause of another report element description. The data-name of a report
element need not be unique if it can be qualified by a higher level data-name to make it unique.

The following clauses have the same meaning for a report description entry and a record description
entry; they are defined in Chapter 3:

COPY

CLASS

SIZE

USAGE

PICTURE and Editing Clauses

JUSTIFIED

SIGNED

POINT LOCATION

VALUE
Exceptions: USAGE must be specified as DISPLAY for all report items. CLASS is treated as

ALPHANUMERIC for report items regardless of the specification. VALUE may
not be used to specify a condition name.

Clauses peculiar to the Report Writer are described in the following pages; they appear in the order
they are presented in the Report Group Description Entry formats:

TYPE

LINE NUMBER

NEXT GROUP

COLUMN NUMBER

GROUP INDICATE

SOURCE SUM-VALUE

RESET

5-10

TYPE

This clause which determines the type of a report group, is required for every report group. A
report usually consists of a title or heading for the whole report, headings and/or footings for each
page, and at least one line or group containing the detail information, repeated as often as required.
In addition, summary information can be printed at control breaks in the form of control headings
and/or footings. Each type of report group must be specified in a TYPE clause.

(REPORT HEADING
RH
PAGE HEADING
PH
OVERFLOW HEADING
OH
CONTROL HEADING€ 3data—name—4$

CH FINAL
DETAIL P
DE

CONTROL FOOTING é idata-name—S %

TYPE IS <

cr FINAL
OVERFLOW FOOTING
ov
PAGE TTOOTING
PF
REPORT FOOTING
B)

If type is DETAIL (DE), the GENERATE statement is required in the Procedure Division to produce
the named report group. GENERATE will produce the specified page or overflow headings and/or
footings, and any control headings and/or footings when control breaks occur. The INITIATE state-
ment will produce any specified report heading group followed by any control heading final. The
TERMINATE statement will produce the report footing if specified, as well as any control footing
final.

REPORT HEADING/REPORT FOOTING

REPORT HEADING (RH) may be specified for only one report group; it is printed once at the be-
ginning of the report. Similarly, REPORT FOOTING (RF) may be specified for only one group; it
is printed once at the end of the report. An INITIATE statement is required to produce a report
heading and a report footing. If SOURCE is specified in the description of a report footing, it
refers to the value of the items at the time TERMINATE is executed. A SOURCE for a report
heading group refers to the value of the items at the time INITIATE is executed. Nothing may
precede the report heading or follow the report footing.

-11

[}

TYPE

PAGE HEADING/PAGE FOOTING

PAGE HEADING (PH) is a report group printed at the beginning of each page. PAGE FOOTING (PF)
is a report group printed at the end of each page following a page condition. A report may have only
one page heading report group and one page footing report group.

OVERFLOW HEADING/OVERFLOW FOOTING

OVERFLOW HEADING (OH) is a report group printed at the beginning of a page following an over-
flow condition; OVERFLOW FOOTING (OV) is a report group printed at the end of a page following
an overflow condition. Only one report group of either type may be specified for a report. The
LAST DETAIL option of the PAGE LIMIT clause must be specified in the RD entry for this report
if either an overflow heading or footing is specified.

A page or overflow heading group is printed according to the rules given for the page /overflow con-
ditions. Similarly, the choice of a page or overflow footing is determined by page and overflow
conditions. No one page may have both page and overflow headings or footings. If a report has no
overflow groups, any page headings and footings specified are printed on every page regardless of
the existence of an overtlow condition.

CONTROL HEADING/CONTROL FOOTING

Any CONTROL FOOTING (CF) report group is printed following the control break specified by
data-name-3 or any higher level control break; and any CONTROL HEADING (CH) report group is
printed following the control break specified by data-name-2 or any higher level control break.
Only one report group may be specified as a control heading for each data-name-2, and only one
group may be specified as a control footing for each data-name-3.

CONTROL HEADING FINAL specifies a report group to be printed between the report heading and
the first control heading group. Only one report group of this type is allowed in a report. A CON-
TROL FOOTING FINAL report group is printed between the end of a report and the report footing.
Only one group of this type may be specified for a report.

If CONTROL HEADING or FOOTING is specified, the data names and/or FINAL must be specified
in the CONTROL clause of the RD entry for the report. A control break must occur for either of

these report groups to be printed.

A SOURCE clause in a control footing final report group refers to item values at the time the
TERMINATE statement is executed.

5-12

TYPE

DETAIL

A report group specified as DETAIL (DE) is printed each time a GENERATE statement referring
to that group is executed. A detail type report group must have a unique data-name at the 01 level,
which may be referenced by GENERATE, GENERATE will also print any applicable headings and
footings automatically,

If all above report group types are specified, the Report Writer will print them in the following
order:

REPORT HEADING (once only)
PAGE HEADING or OVERFLOW HEADING

CONTROL HEADING
DETAIL
CONTROL FOOTING

PAGE FOOTING or OVERFLOW FOOTING
REPORT FOOTING (once only)

CONTROL HEADING report groups are presented in the following order:
Final Control Heading
Major Control Heading
Minor Control Heading

CONTROL FOOTING report groups are presented in the following order:
Minor Control Footing

Major Control Footing
Final Control Footing

5-13

LINE NUMBER

This clause is required for every report group. It indicates the line on which the report group is
to be printed. It may be specified at the report group level or for the first elementary item in the
group.

integer-1
LINE NUMBER IS {PLUS integer—2}
NEXT PAGE

When LINE NUMBER is absolute, the line-counter register is set to the value of integer-1 and all
items within the report group are printed at this line number until a new value for line-counter is
specified. If integer-1 is equal to or less than the previously specified value of line-counter, a
page or overflow condition exists and the report group is printed on the next page.

When LINE NUMBER is a relative value, the line-counter is incremented by integer-2 for this

item and remains the same for subsequent items within the report group until a new LINE NUMBER
clause resets the line-counter. When LINE NUMBER is specified for an elementary item, all sub-

sequent elementary items appear on the same line until a new LINE NUMBER clause is encountered.
LINE NUMBER for an elementary item may not contradict that specified for a group item. Within

a report group, entries must be assigned line numbers in ascending order. Therefore, an absolute

line number (integer-1) cannot be preceded by a relative line number (PLUS integer-2).

NEXT PAGE specifies the item that is the first to be printed on the following page. NEXT PAGE may
be specified only at the 01 level.

Examples:

1) 01 GROUP A TYPE DETAIL LINE IS NEXT PAGE.,
03 PART-1 LINE 01 ...
03 PART-2 LINE PLUS 01 ...

Each detail report group starts on a new page; the first entry in the group is on the first line, the
second on the next line.

2) 01 TYPE RH LINEIS1...
NEXT GROUP IS PLUS 2.
01 TYPE DE LINE PLUS1...
01 TYPE CF DATA-LIST LINE PLUS2...

The report heading group is printed on line 1; 3 lines are skipped before the first detail group is
printed, each subsequent detail line is printed on the next line; 2 lines are skipped before the
control footing group is printed.

NEXT GROUP

This clause may appear only at the 01 level. It determines the spacing between report groups.

integer-3
NEXT GROUP IS { PLUS integer—4}
NEXT PAGE

Integer-3 and integer-4 must be positive, and integer-3 may not exceed the maximum number of
lines specified by the PAGE LIMIT clause.

The line counter is set to the value of integer-3 after the last line of the preceding report group is
printed. This value indicates the line preceding the one on which the next report group is to be
printed. If integer-3 is less than or equal to the previous value of the line-counter register, a
page or overflow condition exists.

The line counter is incremented by the value of integer-4 which indicates the number of lines
skipped before the next report group is printed.

NEXT PAGE produces an automatic skip to the next page following the last line of the current
report group. Page or overflow headings and footings are produced as required.

Example:

01 DETAIL-LINE
TYPE DETAIL
LINE PLUS 01...
NEXT GROUP PLUS 3.

DETAIL-LINE is printed on the line following the preceding group; and DETAIL-LINE will be
followed by three blank lines before the next group is printed.

COLUMN NUMBER

This clause indicates the absolute column number on the printed page of the leftmost character of
the elementary item; it may be specified only at the elementary item level.

COLUMN NUMBER IS integer-1

This clause must be included in the description of every elementary item to be presented, otherwise,
the elementary item is suppressed when the report is produced. Integer-1 must be positive, For a
particular line, COLUMN NUMBER entries must be presented in the order in which the items are

to appear on the page, from left to right. Column number 01 may not be used by the COLUMN
NUMBER clause; it is reserved for spacing information supplied by the Report Writer.

When COLUMN NUMBER is specified, the elementary item description must also contain a PIC-
TURE or SIZE clause and one of the clauses, SOURCE, SUM, or VALUE. However, if SOURCE
IS SELECTED is specified at the group level and the elementary item is included in the selected
group, only PICTURE or SIZE need be specified.,

Example:

01 DETAIL-LINE
TYPE DETAIL LINE PLUS O1.
03 COLUMN 02 PICTURE X(10) SOURCE IS PROG-NAME,
03 COLUMN 13 PICTURE ZZZZ9 SOURCE IS COBOL-LINES,
03 COLUMN 20 PICTURE ZZZZ9 SOURCE IS GMAP-LINES,
03 COLUMN 27 PICTURE Z9.99 SOURCE IS G-RATIO.
03 COLUMN 34 PICTURE Z(5)9 SOURCE IS O-LINES,
03 COLUMN 42 PICTURE ZZZ9.99 SOURCE IS O-RATIO,

5-16

GROUP INDICATE

This clause indicates the elementary item is to be produced only once at the first occurrence of
the item following a control break or at the beginning of a new page. This clause may be specified
only at the elementary item level within a DETAIL report group.

GROUP INDICATE

When GROUP INDICATE is specified, the elementary item is printed the first time the detail
report group is printed following a control break. If a control break does not occur, this item is
printed with the first detail report group containing the item on a new page. Regardless of the
number of times the detail report group appears on a page, this item within the group only appears
following a control break or at the first appearance of the group on a page.

Example:

01 DETAIL-ITEM TYPE DETAIL LINE PLUS 1.
02 DEPT PICTURE X COLUMN 20 SOURCE DEPT-NO
GROUP INDICATE,
02 SECT PICTURE X(3) COLUMN 30 SOURCE SECT-NO
GROUP INDICATE.
02 GRP-NO PICTURE X(3) COLUMN 40 SOURCE GROUP-NO,
02 AMOUNT PICTURE 9(5) COLUMN 45 SOURCE AMNT-NO,

In the above detail report group, the items called DEPT and SECT will only be printed the first
time the detail group appears on a page and whenever a control break occurs. The other items
in the group will be printed each time the detail group is printed.

5-17

SOURCE-SUM-VALUE
SOURCE

The SOURCE, SUM, or VALUE clauses define the purpose of an item within the report group; only
one may be included in the description of any one item.

LINE-COUNTER
SOURCE IS {[SELECTED] data—name-S}
PAGE-COUNTER

SUM data-name-9 [data-name-10]...[UPON data-name-11)
VALUE IS literal-1

A data-name indicates an item appearing in the File, Working-Storage, Common-Storage, or
Constant Sections; or a data-name may be the name identifying a SUM counter in the Report Section.
The literal specified in the VALUE clause may be numeric, non-numeric, or a figurative constant.

SOURCE without SELECTED, and the SUM and VALUE clauses may appear only at the elementary
level; SOURCE IS SELECTED may appear only at the group level, SUM specifies an item to be
summed, and may appear only with an item in a control footing report group.

SOURCE, SUM, or VALUE must be specified for every elementary item unless SOURCE IS
SELECTED is specified for the group containing the elementary item.

SOURCE and SUM are described below; VALUE is described in Chapter 3, Data Division.

SOURCE

Indicates a data item to be used as the source for the report item. PICTURE or SIZE must also
be specified in the entry for the report item. The value of the SOURCE data item is effectively
moved to the report item and presented according to the PICTURE or SIZE specified in the report
item description.

Data-name-8 is an item in the File, Working-Storage, Common-Storage, or Constant section whose
value at object time is the effective value of the report item. If LINE-COUNTER is specified, the
current value of the line-counter is the source; this value is the number of the last line printed or
skipped., K SOURCE IS PAGE-COUNTER is specified, the current value of the page-counter is the
source.

When SOURCE IS SELECTED, data-name-8 must be a group item. This option corresponds to a
MOVE CORRESPONDING statement. The elementary level items within data-name-8 are matched
against the data-names specified at the elementary level within the report group. Matching data
items are selected as source items to be included and presented within the report group according
to PICTURE or SIZE, CLASS and USAGE specifications given for the data items in the report group
entry. The data names of the elementary items in the report group must be unique.

SUM

SUM indicates values to be accumulated when a control break occurs at object time; it may appear
only in a control footing report group at the elementary level. Any item containing a SUM clause
generates a binary accumulator used for summing. This accumulator (the SUM counter) may be
referenced by using the data-name specified for the item containing the SUM clause. The data-
names specified with SUM indicate items to be summed. They must appear as operands of a
SOURCE clause, or they must name an item containing a SUM clause at an equal or lower level of
control. Any lower level item that is the operand of a SUM clause at a higher control level must
have a data-name as the subject of its entry. The data-names specified with SUM may be subscripted,
and they must be qualified to make them unique. SIZE or PICTURE must be specified for each SUM
counter; editing characters or clauses may be specified. Any editing occurs immediately before the
contents of the SUM counters are printed. If editing is not specified, the SUM counter is treated as
a numeric data item. When the SUM counter is referenced from the Procedure Division, a non-
integral binary representation of the current contents of the SUM counter is returned.

The operands, specified in a SUM clause, are added to the SUM counter at each execution of a
GENERATE statement unless SOURCE IS SELECTED was specified; in this case only the selected
items containing SUM operands are summed.

The UPON option is used for selective summation. Data-name-9, -10, etc., must be SOURCE
data items in data-name-~11. Data-name-11 must be the name of a detail report group. The values
of data-name-9, -10, etc., are added to the SUM counter only when data-name-11 is referenced by
a GENERATE statement.

When GENERATE is executed for a detail report group, all summing takes place automatically as
follows:

® The CONTROL data-name specified in the control footing report group is tested.

e If the data~-name is unchanged, each SOURCE item in the DETAIL report group is added
to each SUM counter in any higher level control footing report group which names the
SOURCE item. Then the detail line is produced.

® If the data-name has changed, a control break has occurred. Each SUM counter in the
lowest level report group is added to every SUM counter in the same report group that
names the SUM counter as an operand. Then the control footing report group is produced.

® Each SUM counter within the report group just produced is added to each SUM counter in
any higher level control footing report group which names the SUM counter just produced.
Then, unless reset is suppressed with the RESET clause, each SUM counter at the level
just produced is reset to zero. If RESET is specified, the higher level SUM counters are
updated, but the SUM counters at the level just produced are not reset to zero.

® The last two steps are repeated as necessary for each level control footing until the level
is reached at which the original control break occurred.
Example:

0l TYPE IS CONTROL FOOTING SECT-NO LINE PLUS 2.
02 COLUMN 20 PICTIURE X(10) VALUE IS 'SEC TOTAL'.
02 COLUMN 30 PICTURE ZZZ,ZZZ.99 SUM AMNT-NO.

5-19

RESET

This clause may be used in an elementary item in a control footing report group to override the
automatic resetting of the SUM counter following the associated control break.

RESET ON 3data-name—7§

FINAL

It can be used only at an elementary item level in conjunction with the SUM clause. Data-name-7
must be one of the data names described in the CONTROL clause in the RD entry, and it must be a
higher level data-name than the CONTROL data-name associated with the control footing report
group containing the SUM and RESET clauses.

When RESET is not specified, the SUM counters are automatically reset to zero after the control
footing report group is presented. RESET prevents the automatic resetting of the SUM counters
until the control footing report group associated with data-name-7 has been presented. This clause
permits progressive totaling of data while presenting subtotals at lower levels of control.

RESET FINAL indicates that the counter is not to be reset until the final control footing report group
has been printed. With this option, cumulative totals will be presented throughout the report.

Example:

RD REPORT-A
CONTROLS ARE FINAL, DEPT, SECT, GROUP, MAN.

(.)1 GROUP-TOTALS TYPE IS CONTROL FOOTING GROUP
LINE NUMBER IS PLUS 2.
03 COLUMN 30 PICTURE 9(10)
SUM GRP-HRS RESET ON SECT,.
GRP-HRS are summed for this control footing group and the subtotal is incremented and presented
with each group total until there is a control break at the SECT level of the control hierarchy. The

subtotal is added to the sum at the SECT level and then reset to zero before the SECT control footing
report group is presented.

-20

(93]

INITIATE

5.5 PROCEDURE DIVISION

To produce a report defined in the Report Section, three Procedure Division statements are re-
quired: INITIATE, GENERATE, and TERMINATE. A USE BEFORE REPORTING statement may
introduce a Declarative Section through which the user may manipulate, alter, or inspect data
immediately before it is printed.

This statement initiates all counters prior to producing a report and begins the processing of a
report.

INITIATE { ALL

report-name-1 [report-name-2]... }

The report-names are the reports to be initiated. Each name must be defined by a Report Descrip-
tion (RD) entry in the Report Section. ALL specifies that all report-names defined by RD entries
in the Report Section of this program are to be initiated.

Only one INITIATE statement can be executed for each report name. If a report name is to be
initiated a second time, an intervening TERMINATE statement must be executed for that report
name. The INITIATE statement does not open the file with which the report is associated. An
OPEN statement for the file must be executed. INITIATE performs Report Writer functions for
individually described reports analogous to the input-output functions that OPEN performs for
individually described files. These functions are:

e Set all SUM counters to zero; all data name entries containing SUM clauses associated
with this report are set to zero.

e Set up the control hierarchy; controls are set up for all report groups associated with
this report according to types.

e DPreset the page-counter; the page-counter is set to one prior to or during execution of
INITIATE. If some other initial value is desired, the user may reset this counter following
execution of INITIATE.

® Preset the line-counter; if specified, the line-counter is set to zero prior to or during
exccution of INITIATE.

If a report heading group contains SOURCE clauses, the values of the specified data-names used
in the report heading are the values during execution of the INITIATE statement.

5-21

GENERATE

GENERATE

This statement links the Procedure Division to the Report Writer at process time. It presents a
report entry under Procedure Division control.

GENERATE data-name-1

If data-name-1 names a detail report group, GENERATE handles all relevant automatic operations
and produces an output detail report group. This is called detail reporting.

1f data-name-1 names an RD entry, GENERATE handles all the relevant automatic operations and
updates the footing report groups in the report without producing an actual detail report group
(Summary reporting). If the report includes more than one detail report group, all SUM counters
are incremented each time GENERATE is executed.

A GENERATE statement, implicitly in both detail and summary reporting, produces the following
automatic operations as needed:

e Steps and tests the line-counter and/or page-counter to produce page or overflow footing
and/or page or overflow heading report groups.

e Recognizes any specified control breaks to produce control footing and/or control heading
report groups.

e Accumulates into the SUM counters all specified data-names. Resets the SUM counters
at control break. TPerforms an updating procedure between control break levels for each
set of SUM counters.

® [Executes any specified routines defined by USE before generation of the report groups.

During the execution of the first GENERATE statement referring to a report or to a detail report
group within a report, all control heading report groups specified for the report are produced in
the order: final, major,and minor, immediately followed by any detail report group specified in
the statement. If a control break is recognized when a GENERATE statement is executed (other
than the first for a report), all control footing report groups specified for the report are produced
from the minor report group up to and including the report group specified for the data-name which
caused the control break. The control heading report groups specified for the report, from the
report group specified for the data-name which caused the control break down to the minor report
group, are then produced in that order. The detail report group specified in the GENERATE state-
ment is then produced.

When data is moved to a report group it is edited according to the rules described under the MOVE
verb.

™~

TERMINATE
USE BEFORE REPORTING

This statement ends processing of a report.

TERMINATE report-name-1 [report-name-2j,..
—— JALL

The report names are reports to be terminated. FEach report name must be defined by a Report
Description (RD) entry in the Report Section of the Data Division. ALL specifies that all report
names defined in the RD entries are to terminate.

TERMINATE produces all the control footing report groups associated with the report as if a control
break had just occurred at the highest level (FINAL), and completes the Report Writer functions for
the named reports.

TERMINATE produces the appropriate page and report footings for the named reports including the
last page footing and report footing associated with each report. Appropriate page/overflow heading
and/or footing report groups are prepared in their respective order for the report description.

If SOURCE clauses are included in the final control footing or report footing groups, the values for
the SOURCE data-names are the values of the data items during execution of the TERMINATE state-
ment.

A second TERMINATE for a particular report may not be executed unless an intervening INITIATE

has been executed for that report. TERMINATE does not close the file with which the report is
associated; the CLOSE statement for the file must be specified by the user.

USE BEFORE REPORTING

This statement must follow a section header in the Declarative Section. It introduces procedures to
be performed immediately before the specified report groups are produced.

USE BEFORE REPORTING identifier-1 [identifier-2]...

The identifiers may be any type report group (01 level) except DETAIL. An identifier must not
appear in more than one USE statement. The report writer verbs, GENERATE, INITIATE,
TERMINATE, may not be used in any procedure introduced by USE BEFORE REPORTING.

This USE implies a PERFORM of the sentences between the USE statement and the end of the section
or the END DECIARATIVES for each report group specified by the identifiers. The sentences are
executed immediately before the report group is produced after any summing, and after data has
been moved into the line image, but before the line-counter is incremented. All logical paths within
this section of the declaratives must lead to a common exit point. PERFORM, GO TO or ALTER
are the only statements that may reference procedure names within the Declarative Section, in
another Declarative Section, or in the non-declarative part of the program.

USE BEFORE REPORTING is particularly helpful to check whether summing is correct, or to add
to or alter the SUM counter.

5-23

5.6

5-24

SAMPLE REPORT WRITER PROGRAM

IDENTIFICATION DIVISION,
PROGRAM-ID, REPORT-WRITER-EXAMPLE,
AUTHOR, CDC, .
DATE-WRITTEN, MARCH 7, 1967.
DATE-COMPILED,
ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE-COMPUTER, 6400,
OBJECT-COMPUTER, 6400.
INPUT-OUTPUT SECTION,
FILE-CONTROL, SELECT FILE-B ASSIGN TO OUTPUT,
SELECT FILE-A ASSIGN TO TAPE-O01,
DATA DIVISION,
FILE SECTION,
FD FILE-A
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-IMAGE,
01 CARD-IMAGE,
02 DEPT-NO PICTURE X(5).
02 SECT-NO PICTURE X(5).
02 GROUP-NO PICTURE X(5).
02 AMNT-NO PICTURE 9(5).
FD FILE-B
LABEL RECORDS ARE OMITTED
REPORT IS REPORT-A,

REPORT SECTION, n

RD REPORT-A E
CONTROLS ARE FINAL, DEPT-NO, SECT-NO
PAGE LIMIT IS 60 LINES
HEADING 1
FIRST DETAIL 10
LAST DETAIL 55
FOOTING 60.
01 TYPE IS REPORT HEADING LINE 02,
02 COLUMN 02 SIZE 2 VALUE IS 'RH',
02 COLUMN 52 SIZE 15 VALUE IS 'EXPENSE ACCOUNT'.
01 TYPE IS PAGE HEADING,
02 LINE PLUS 02,
03 COLUMN 03 SIZE 2 VALUE IS 'PH'.
03 COLUMN 110 SIZE 4 VALUE IS 'PAGE'.
03 COLUMN 115 PICTURE 999 SOURCE IS PAGE-COUNTER,
02 LINE PLUS 01
03 COLUMN 90 SIZE IS 8 VALUE IS 'GROUP NO'.
03 COLUMN 100 SIZE IS 7 VALUE IS 'EXPENSE',
01 TYPE IS OVERFLOW HEADING LINE PLUS 02.
02 COLUMN 03 SIZE IS 2 VALUE IS 'OH',
02 COLUMN 20 SIZE IS 28 VALUE IS 'CONTINUED FROM PREVIOUS PAGE',
02 COLUMN 110 SIZE IS 4 VALUE IS 'PAGE'.
02 COLUMN 115 PICTURE 999 SOURCE 1S PAGE-COUNIER,
01 TYPE IS CONTROL HEADING FINAL LINE PLUS 02,
02 COLUMN 04 SIZE 03 VALUE IS 'CHF'.
02 COLUMN 60 SIZE IS 17 VALUE IS 'ITEMIZED BY GROUP'.
01 TYPE IS CONTROL HEADING DEPT-NO LINE PLUS 02.
02 COLUMN 05 SIZE 03 VALUE IS 'CHA',
02 COLUMN 70 SIZE IS 7 VALUE IS 'DEPE-NO'.

01l

01

01

01

01

01

0l

01

TYPE IS CONTROL HEADING SECT-NO LINE PLUS Ol NEXT GROUP PLUS

02 COLUMN 06 SIZE IS 03 VALUE IS 'CHB'.
02 COLUMN 80 SIZE IS 7 VALUE IS 'SECTION'.
DETAIL-ITEM TYPE DETAIL LINE PLUS 1.
02 COLUMN 07 SIZE IS 2 VALUE IS 'DE'.
02 DEPT PICTURE X COLUMN 70 SOURCE DEPT-NO
GROUP INDICATE,
02 SECT PICTURE X(3) COLUMN 80 SOURCE SECT-NO
GROUP' INDICATE,
02 GRP-N PICTURE X(3) COLUMN 90 SOURCE GROUP-NO,
02 AMOUNT PICTURE 9(5) COLUMN 100 SOURCE AMNT-NO,.
TYPE IS CONTROL FOOTING SECT-NO LINE PLUS 02,
02 COLUMN 06 SIZE IS 03 VALUE IS 'CFB'.
02 COLUMN 80 PICTURE X(10) VALUE IS 'SEC TOTAL'.
02 COLUMN 100 PICTURE ZZZ,Z2ZZ,ZZ SUM AMNT-NO,
TYPE IS CONTROL FOOTING DEPT-NO LINE PLUS 02.
02 COLUMN 05 SIZE IS 03 VALUE IS 'CFA',
02 COLUMN 70 PICTURE X(10) VALUE IS 'DEPT, TOTAL'.
02 COLUMN 100 PICTURE ZzZ,ZZZ.99 SUM AMNT-NO,
TYPE IS CONTROL FOOTING FINAL LINE PLUS 02,
02 COLUMN 04 SIZE 03 VALUE 1S 'CFF'.
02 COLUMN 60 PICTURE X(1l1) VALUE IS 'GRAND TOTAL'.
02 COLUMN 100 PICTURE ZZZ,ZZZ,ZZ SUM AMNT-NO,
TYPE IS OVERFLOW FOOTING LINE PLUS 02.
02 COLUMN 03 SIZE IS 02 VALUE IS 'OV'.

02 COLUMN 20 SIZE IS 22 VALUE IS 'CONTINUED ON NEXT PAGE',

TYPE IS PAGE FOOTING LINE PLUS 02,

02 COLUMN 03 SIZE IS 02 VALUE IS 'PF'.

02 COLUMN 110 SIZE IS 4 VALUE IS 'PAGE'.

02 COLUMN 115 PICTURE 999 SOURCE IS PAGE-COUNTER,

TYPE IS REPORT FOOTING LINE PLUS 02,

02 COLUMN 02 SIZE IS 02 VALUE IS 'RF'.

02 COLUMN 30 SIZE IS 41 VALUE IS 'THIS COMPLETES THE
'"MONTHLY EXPENSE REPORT'.

PROCEDURE DIVISION,

START,

OPEN INPUT FILE-A,
OPEN OUTPUT FILE-B,
INITIATE REPORT-A,

STEP-2.

READ FILE-A AT END GO TO STOP-IT,
GENERATE DETAIL-ITEM,
GO TO STEP-2.
STOP-IT,
TERMINATE REPORT-A,
CLOSE FILE-A, FILE-B,
STOP RUN,

The data for the report produced by the sample program is input on FILE-A in card format, and is
output on FILE-B. The printed format of the report at the highest (FINAL) control break is shown

below:

5-25

0zl 0Tl 00T 06 08 0/ 09 43 0g 8195%£21
IMOdHY ASNIIXEH ATHINOW HHI SILITANOD SIHI g
666 IV ad
122" 272" 227 araow ANV it
66" 222° 227 TVIOL " IdHq| D
7z 222" 727, [TVIOL '0dS| teikig
66666 XXX k4l
|
66666 XXX
66666 XXX XXX X
NOILOES D
2z 222" 7277 MvIOL "0dS D)
66666 XXX
66666 XXX
66666 XXX aa
66666 XXX e
66666 XXX XXX X
NOIIDES D]
'ON "Ida3d VD
dNo¥D X4 TAZIWALI ti tio
ASNAAXHA "ON dNo¥s)
666 AV Hd
INNOJOV| ASNEIXH [Hd
0¢t 01T 00T 06 08 0L 09 23 o€ 8795%€C1T
suumiyo)

sutT

5-26

SCOPE/COBOL INTERRELATION 6

6400/6500/6600 COBOL runs under control of the SCOPE system. The COBOL programmer should
be familiar with four general areas of SCOPE control:

Input/output control; including file and label handling

Compilation and subcompilation of source programs

Execution of object programs

Library preparation and maintenance

6.1 INPUT-OUTPUT CONTROL

6.1.1 SCOPE FILES
File Name

All files immediately available to the SCOPE system at any time are called active files and are listed
in the File Name/File Status table resident in central memory. A logical file name of one to seven
display code characters is associated with each active file. Whenever the COBOL user specifies a
SCOPE file as an implementor name in the SPECIAL-NAMES paragraph or the FILE-CONTROL para-
graph of the Environment Division, this name must be 1-7 characters in length. Each SCOPE file
name used in a COBOL source program must be unique. A maximum of 53 files arc allowed the
COBOL user, including SCOPE system files, FD entries, SD entries, and report file RD entries.

Special System Files

The special SCOPE system files INPUT, OUTPUT, PUNCH, and PUNCHB are available to the COBOL
user. They may be specified wherever the user may specify a SCOPE file as an implementor name,
INPUT is the immediate source of card input, OUTPUT is the immediate destination of printer out-
put, and PUNCH (Hollerith) and PUNCHB (binary) are the immediate destination of card output.

When a job terminates, INPUT is released to the system and the three output files are assigned to

the job just terminated.

TFile Format

All SCOPE files are organized into logical records. A SCOPE logical record is always equal to one
or more physical records. The physical record size of SCOPE files is determined by the particular
device. The BLOCK CONTAINS specifies size in terms of characters, this size should be at least
as large as the minimum physical record size for the particular hardware device. If the clause is
omitted, the system assigns 512 words to a block,

The size required by the hardware devices is shown below:

Minimum Size Hardware Device

64 words 6638 Disk

64 words 6603 Disk

64 words Card Punch

64 words Line Printer

128 words 1/2-inch Magnetic Tape (Display Code/BCD)Y
512 words 1/2-inch Magnetic Tape (Binary)

512 words 1-inch Magnetic Tape (Binary)

6.1.2 FILE INDEX

Every file specified as ACCESS MODE IS RANDOM has a file index. If the SYMBOLIC KEY clause is
specified, this index contains the names and addresses of the records in the file, If the ACTUAL KEY
clause is specified, it contains only the addresses of the records. The name and number indexes are

shown below:

Name Index:

bits 59 29 17 0
Word 1 -1
Word 2 7 character display code name 0
Word 3 0 logical disk address
Word 4 7 character display code name 0
Word 5 0 logical disk address
Word n W

Each random access record with a symbolic key has one two-word entry in the name index. Word
one of the name index is set to -1 when the file is opened; it is zero until the file is opened.

+ Within the SCOPE system, all coded information is carried in display code and converted to ex~
ternal BCD before writing on coded tape. (See Appendix B for the Conversion).

6-2

Each record name is 1-7 characters left justified with zero fill in bits 0-17 of the first word of the
entry. Its corresponding logical disk address is placed in bits 0-29 of the second word of each entry;
it is a pointer to system tables where the actual address is found. When a new record is written with
the same name as the one that is already in the index, the new record takes the place of the existing
record. If the name is not already in the index, the system puts the name in the lowest numbered
position with no name, and assigns the number of that position to the record. If there is no room for
a new name, the index is full and an INVALID KEY will be executed. When a record is read by name,
the name must be present in the index or an INVALID KEY is executed.

Number Index:

bits 59 29 0
Word 1 + 1
Word 2 0 logical disk address
Word 3 0 logical disk address

.

Each random access record with an actual key has a one-word entry in the number index. Word 1
of the number index is set to +1 when the file is opened; it is zero until the file is opened. In the
index the logical disk address of a record is in bits 0-29 of the word assigned to the record. For an
actual key record, the key must be computed by the user to result in a positive integer which is the
index position in the number index for the record.

6.1.3 FILE ENVIRONMENT TABLE

Each file index, whether a number or name index, has corresponding entries in the File Environment
Table (FET) for the file. The FET is generated by SCOPE for every file name specified in a COBOL
source program. In addition to file index information, it also contains label information for tape
files with standard labels: the file name, device type, physical record unit size, and so forth. The
format of the FET is shown on page 6-4 .

The augmented FET table has three main parts: The COBOL compiler uses the words ~D+1 through
FD+11, The SCOPE system uses the first 13 words of the actual FET, FET 1 through FET 13; and
the SORT system and the COBOL user use words FET 14 through FET 20.

The COBOL compiler sets the fields in FD+1 through FD+13 from information supplied by the source
program. This section is self explanatory except for words FD+6 through FD+11, These words

6-3

P ol L sel | fanl | sol 1 faz) | laa) @ Qo f lasl 1o fasl 1 B2l L Ll sl I % O O D YV O - O O - B |
11“"“““"‘“ bata type Link to next item in source sequence 0 0 Link to next item with same name
Tevel mmber ey lop ool Alt. areas assigned Line number File number Buffor record Block size FD o+ 1
9 0 0 0 0 file number
Tength of actual [_ _ _ __ e e = _———— 1 Usage of actua) ot used ve
key ficld File/Sectlon number key fleld
Size date~ Size edition- Size reel- Sive relcase-
! WL for 1D ficld +3
Size ID field written fiold number ficld | number field date field Ber File/Section number BRWL for 1D fiel
F] BCP of date written | File/Section number RRWL for date-written ficld BCP File/Section number RRWL for edition-number field +4
H
£ BCP of reel number | File/Section number RRWL for reel-number fleld BCP File/Section number RRWL for retention-cycle field +5
54
3 a |p o j a |p ° y a |p o j a |p o] +6
£
g
s} a |p o j a e o j a |p o j a |p o j 7
P o i a |p o j a |p o] a |p o i 8
a | a i 2 | o 1 a |p o i a |» o 5 +9
a |p o i a e o] a |p o i a |p ° i +10
a |p a i a P o j a |[p o i a |p o 3 411
SCOPE file name - /fn - (7 characters) Code and status
2 Device type rin : '; [l Disposition code L FIRST
30 0 N
i 0 our
£
g FNT pointer Record black size l Physical record unit size LMIT
i3
[Worlking storage first word address Working storage lnst word address + 1
7 Record request/Return information
L] Record number Index length Index nddress
9 HOT address Error address
N 10 Catalag file name (frst 10 characters)
3
H 1 catalog tile name (second 10 characters)
3 12 Edition number Retention eyele Crention date
2]
3
13 Tosition number AMulti-file name Recl number
u Blocker address Deblocker address
Disposa
15 :"‘:‘i’f l ‘ Minimu record length (ogi Logical status I Use code Record type
. e e . ’ .
3 16 | Record mark vilue Maximum record length (logical) Blocker byte Blocker byte Size of single occurrence of trailer
5
E 17 | M-usage bE Il;.inll:i ox Key position (relocatable address) | eblocker byte Deblocker byte Length of variable record key field
o T Tahel] & 3
H 1 | Tave Tahel[lm I 51 s| Spacing eontrol Address of OPTIONAL file
g wpe |al |8
] 1 TRevard count
H 20 Fixed record length (logical) Record count rerun perlod
2n m=| Virst word address (beginning of record arca) Address of main element for SAME area
L= Symbolic or actual key not used
MAXIMUM RECORD AREA
IREI T Tl T 1T T Tal T Taf [a7 T TssT T [320 T (27 T Tee[17 T2 [[0l [[l | [l 17T 187 77717 127 Ta

BCP ~ Beginning character position

RRWL - Relative relocatable word locatlon

8B - 1= Actual Key, 0 * Symbolic Key

describe any USE procedures to the COBOL I/O package. Each word contains four entries consisting
of the following items:

a= 0 Use with File

1 INPUT

3 OUTPUT

4 INPUT and OUTPUT
p= 0 TUSE BEFORE

1 TUSE AFTER

o= 00 Error Procedure
05 Ending File Label
06 Ending Reel Label
07 Ending File/Reel Label
11 Beginning File Label
12 Beginning Reel Label
13 Beginning File/Reel Label
15 Beginning and Ending File Label
16 Beginning and Ending Reel Label
17 Beginning and Ending File/Reel Label

j = Location within Jump Table of the Base Package

In the part of FET used by SCOPE (FET 1 through FET 13), the file indexing fields, FET 7 and 8,
and the fields used with labeled tape files, FET 10 through 13, are of most concern to the COBOL
user.

During random file processing, the record request/return information field is set to the location of
the word in the file index containing the logical disk address of the record being processed. The re-
cord number field contains a binary integer, indicating the last logical record read or written. The
index length field contains a positive integer. It is used by SCOPE to define the amount of memory
saved on disk for the index when a CLOSE OUTPUT is executed, and to bring the index back to mem-
ory from disk when an OPEN OUTPUT is executed. The index address field is set to the location of
the file index in memory. This location is an absolute address relative to the relocatable address
(RA) of the beginning of memory.

FET 10 through 13 are set to the contents of a standard label specified by the user in the VALUE OF
clause of the LABEL RECORDS. These words are set only for standard SCOPE labels. If the UP

bit (FET 2) is zero, all label processing proceeds automatically; if the UP bit is set, USE routines
have been specified to perform additional checking in conjunction with standard SCOPE label routines.

FET 14 through 22 are set by SORT and the COBOL user. They contain file control and sort file in-
formation. Generally, these entries are self explanatory. A detailed description of all the FET
fields are in the 6400/6500/6600 SCOPE Reference Manual.

6.1.4 STANDARD LABELS

SCOPE labels are specified as STANDARD in the LABEL RECORDS clause of an FD description.
Standard labels are provided by SCOPE only for files written on 1/2-inch magnetic tape. The labels
are in the coded mode. The user must request such a file with a REQUEST card (See Equipment
Assignment). Each label is checked by the system for identification by file name, reel number,
creation date, expiration date, and edition number. SCOPE does not provide label processing for
non-standard system labels.

Labels are of four types:

Volume Header Label (VOLY)
File Header Label (HDR1)
Volume Trailer Label (EOVY)
File Trailer Label (EOFY)

In this context, volume is a reel of magnetic tape; thus, the volume header label is equivalent to a
beginning reel label. One volume may contain one file or several files; several consecutive volumes
may contain one file or several files.

Each type of label is separated from the data in a file by a tape mark, which consists of a one char-
acter record (17 8 external BCD) plus a check character recorded in even parity.

Every reel of tape is preceded by a volume header label which is the first physical record in the
volume. Every file is preceded by a file header label. If a volume ends within a file (multi-reel-
file), the continuation of the file into the next volume is also preceded by a file header label following
the volume header label. Every file header label is immediately followed by a tape mark (*). The
last record of every file is followed by a file trailer label preceded and followed by a tape mark.

The last file trailer label in a volume is followed by two tape marks. A volume trailer label is used
whenever a volume ends within a file (multi-reel file), The last physical record of the file in a
volume is followed by a volume trailer label preceded by one tape mark and followed by two tape
marks.

The following shows possible organization of labels, data, and tape marks on a magnetic tape file:

Single-Reel File

VOL1 HDR1 * ., . . Data Blocks . . . ¥ EOF1* *

Multi-File Reel

VOL1HDR1* ., . FileA.. .*EOFL*HDR1*. ., . FileB...*. ., EOF1**

Multi-Reel File

VOL1 HDRL * . ., . First Volume Data . . . * EOV1 * *
VOL1 HDR1 * ., . . Last Volume Data . . . * EOF1 * *

Multi-Reel Multi-File

VOL1 HDR1* .., . FileA...* EOF1*HDR1*, .. FileB. . . * EOV1 * *
VOL1 HDR1 * , , . Continuation of File B. . . * EOV1 * *
VOL1HDR1*, .. Lastof File B. . . * EOF1* HDR1* ., .. FileC . . . * EQOF1 * %

Whenever the end of a reel and the end of a file coincide, the label configuration is one of the follow-
ing:

. FileA. .. * EOVL **
VOL1 HDR1 * * EOF1 * HDR1 * , . . FileB . . .
(&)) ®B)
... FileA...* EOF1* HDR1 * ¥ EOV1 * *
) (B)
VOL1 HDR1 * . . . FileB . . .
(B)

Label Record Formats

A standard label is one 80-character physical record. In the formats below:

n = any numeric digit 0-9

a = any character in the COBOL character set in DISPLAY format.

Volume Header Label

Character Content Description

1-3 VOL Label identifier; volume header

4 1 Label number

5-10 nnnnnn Visual reel number; 6 characters giving the number stamped on the

tape reel.
11 a Security: blank, not protected.
non blank, protected.

12 a Volume density; blank or 0 = 556 BPI
1= 200 BPI
2 = 800 BPI

13-80 spaces Reserved for system use

File Header Label

Character Content Description

1-3 HDR Label identifier; file header
4 1 Label number
5-24 20(a) File 1abel name; up to 20-character identification, it must begin

with a letter. -
25-27 aaa File set ident. ; up to three characters starting with a letter. The

same identification must be used for every file in the multi-file set. -
28-31 nnnn Reel number; 0001 to 9999, incremented by 1 after each volume

trailer label is written.
32-35 nnnn Multi-file position number; gives position of file in a set of files.
36-39 spaces Reserved for system use
40-41 nn Edition number; 00 to 99, distinguishes different editions of same

file.
42 space Reserved for system use
43-47 YYDDD Creation date; YY = year,

DDD = Julian Date (001 to 366) F an

48 space Reserved for system use
49-53 YYDDD Expiration date. When this is equal to or less than today's date,

the file is expired and the volume may be erased.
54 a Security; blank = not protected

non-blank = protected

55-60 Zeros Block count
61-80 spaces Reserved for system use

File Trailer Label

Character Content Description
1-3 EOF Label identifier; end of file
4 1 Label number
5-54 optional Identical to corresponding characters in file header label.
55-60 nnnnn Block count; number of physical records including labels and tape

marks since last file header label.

61-80 spaces reserved for system use

Volume Trailer Label

Character Content Description
1-3 EOV Label identifier; end of volume
4 1 Label number
5-54 optional Identical to corresponding characters in volume header label.
55-60 nnnnn Block count, number of physical records excluding labels and tape

marks since last volume header label.

61-80 spaces Reserved for system use

6.1.5 NON-STANDARD LABELS

SCOPE standard labels are provided and checked on 1/2-inch magnetic tape. The user may prepare
and check his own 1/2-inch magnetic tape labels (non-standard) by specifying a data-name in the
LABEL RECORDS clause of the File Description Entry (FD). This data name identifies the label which
the user may write on an output file or read from an input file.

If this option is used, the first physical record of the file is assumed to be the record defined by the
data-name entry. It is read or written when the OPEN statement is executed prior to the first READ
or WRITE for the file. It can be referenced by data-name in the same way as any other data record
in the program. OPEN INPUT corresponds to OPEN INPUT with READ INTO data-name~2, and
OPEN OUTPUT corresponds to OPEN OUTPUT with WRITE FROM data-name~2. USE procedures
may be included for label checking with non-standard labels, but they are not necessary.

End-of-reel labels on input files may be checked automatically only if the VALUE OF ENDING-TAPE-
LABEL~IDENTIFIER clause is specified in the LABEL RECORDS clause. This identifier is used to
distinguish between end-of-file and end-of-reel labels., If this option is used, USE procedures re-
ferring to reels may be applied for input tapes. They are executed under the following conditions:

Before Ending Reel

This procedure is executed after reading the tape mark and prior to reading the label record when it
is not yet determined, whether it is end-of-reel or end-of-file. Therefore, this is not a very useful
procedure,

After Ending Reel And Before Beginning Reel

These procedures are executed after the first 40 characters of the label record have been read into
the TAPE-LABEL area. (This area may be referenced at any time from the Procedure Division,
which corresponds to words 10-13 of the File Environment Table).

At this point, it has not yet been determined whether the tape mark is end-of-reel or end-of-file.
These procedures could be used to make a test of the first 40 characters of the ending label and to
change them if desired.

After Beginning Reel

This procedure is executed after reels have been swapped. The first 40 characters of the first re-
cord (label) of the new reel are in the TAPE-LABEL area (execept for the first reel of a file).

There is no built-in facility to handle non-standard label multi-reel files for output tapes. Sensing of
physical end-of-reel on a file being written without standard labels will force the file to be closed.
Any applicable USE BEFORE ENDING FILE LABEL PROCEDURE will be executed first, however.

If such a procedure does not exist or does not close the file, it will be automatically closed with re-
wind.

A programmer can employ a USE BEFORE/AFTER ENDING FILE procedure if he wishes to be pre-
pared for the end of tape. He will be informed of reaching the end of tape by execution of the USE
procedure, and he will then have the opportunity to execute a CLOSE or CLOSE WITH NO REWIND for
the file. Otherwise, the compiler will automatically execute a close, rewinding the tape.

6.1.6 OMITTED LABELS

If labels are specified as OMITTED in the LABEL RECORDS clause, it is assumed that the user is
not concerned with labels or that he intends to handle the label by means of source program coding.
The OPEN, READ, and WRITE requests function in the normal manner. Following the first OPEN, a
label record will not be available in the label record area. The first READ transfers the first logical
record directly to the data record area, and the first WRITE writes the logical record in the record
area onto the file. If this first record is to be treated as a label, it must be handled exactly as any
other logical record in the file.

6.2 COMPILATION

The COBOL source program is written on a COBOL coding sheet according to the specifications in
this manual. (Coding rules are summarized in Appendix A.) Information on the coding sheets is
punched character for character on standard 80-column cards, one line for each card. The resulting
source program card deck is used as input to the COBOL compiler. It is presented in the following
order: IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, and PROCEDURE
DIVISION, Depending on the requirements of the user, additional control cards are included with the
source program deck to control the form of compilation.

Compilation may be accomplished without a resulting object program, or it may be followed immedia-
tely by execution of the object program. In addition, sections of a program may be compiled sepa-
rately and then linked by the SCOPE loader into one object program. This subcompile capability allows
a single large COBOL program to be created at object time from several smaller COBOL programs.

6.2.1 OUTPUTS FROM COMPILATION

The outputs from compilation include a listing of the source program with error diagnostics, listing
of the object programs, and the binary object program itself ready for execution. The user may

6-10

indicate no object program output is required, the object program is to be written on a specified file,
or object program cards are to be produced for later execution.

Source Program Listing

Each line on a printed listing of the source program corresponds to one card in the source program
deck or to one line on the COBOL coding sheet, The format and order of each line on the listing is
identical to that of the COBOL coding sheet. Within this listing, errors in the source program are
indicated by a diagnostic message and a code number. Diagonstics are preceded by a series of aster-
isks. The code number is associated with an error condition. Appendix G includes the codes, error
conditions, and corrective measures.

This listing with major diagnostics is the normal listing produced with every compilation. It may be
suppressed or additional output may be requested with the list parameter of the COBOL control card.

Additional Outputs from Compilation

Cross reference pointers to source lines

Listing of items copied from library

Object program in relocatable binary form writted on specified file
Octal listing of object program

Listing of extended diagnostics

Suppression of all listing

Data map

If a list of items copied from the library is requested, they will appear in the listing at the point where
they occur; following either a COPY clause or an INCLUDE statement.

If the object program is requested on a load and go file, it is ready for execution with real data or test
data. Any correction to the program should be made at the source program level.

An octal listing of the object program can be obtained but it is of no particular value to the user since
all corrections should be made at the source program level. The object program listing is primarily
an aid to the maintenance of the system and {o debugging.

The extended diagnostics listing includes messages with code letters T and U; they do not drastically
affect the running of the program. These trivial diagnostics usually point out errors in syntax or
moves that require additional time or space. They will not cause program termination but may be
useful in improving the execution time of a program. No diagnostics recognize errors in programmer
logic unless the error also results in an infraction of one or more rules of the COBOL language.

Suppression of all listing may be requested. This is primarily useful when the program is out of the
debugging stage and no changes are expected in the COBOL source program.

6-11

When a data map is requested, it will appear between the source listing of the Data Division and the
source listing of the Procedure Division. This map is essentially a map of the Data Division and
covers fields in the File Section, the Common-storage Section, the Working-storage Section, and the
Constant Section. Line number, level number, name, and location relative to the beginning of the
file or section are given for each field.

6.2.2 COBOL CONTROL CARD

The COBOL control card calls the COBOL compiler, specifies the files to be used for input and out-
put, and indicates the kind of output to be produced.

The control card consists of the word COBOL optionally followed by a parameter list enclosed in
parentheses. The card columns following the right parentheses may be used for comments, they are
ignored by the system.

If no parameter list is given, a period must be used to separate the word COBOL from any comments
on the card. If no comments are given, the period is unnecessary. Blank columns may be used any-
where for readability; they will be squeezed out and ignored by the system. The formats for the con-

trol card are given below,

COBOL (p1, Pgs P3, Pgs Pg, Pg) comments
COBOL. comments “g‘

The parameters may be any or all of the following:

Py Source Input Parameter

If no source input parameter is present, file INPUT is assumed. If the source input is a file other
than INPUT, a source input parameter of the following form must be provided:

I=1fn

fn is the file name where the source input appears.

I = INPUT, and I, are equivalent to omitting this parameter.
Py Binary Output Parameter

If no binary output parameter is present, a relocatable binary file will be written on a file named LGO.
If binary output is on another file, a binary output parameter of the following form must be provided:

B = fn

fn is the file name on which the binary output is to be written. B = 0 will suppress binary out-
put. B = LGO, or B is equivalent to omitting a binary output parameter.

6-12

pg List Parameter

If no list parameter is provided a normal listing is provided on OUTPUT. It includes source language
(excluding library copies) and major diagnostics. Other list options may be selected with the follow-
ing parameters:

£ = fn; ¢ may be one of the following:

L normal listing

L may be suffixed by any combination of the following parameters, to provide the following
features in addition to the normal listing.

extended diagnostics

cross reference pointers to source lines

items copied from library

O a =W KM

object code in octal

M data map

fn = file name on which list output is to be written, fn = 0 suppresses all list output. If = fn

is omitted, the list output will be on file OUTPUT.
py Source Library Parameter
If no COBOL source library parameter is present and library is required by a COPY or INCLUDE
clause in the COBOL source program, the COBOL system will obtain source library information from
the file named COLIB. If the COBOL source library is on a file other than COLIB, a COBOL library
parameter of the following form must be provided:

S=1fn

fn is the file name where the COBOL source library appears.

S = COLIB, and S, are equivalent to omitting the source library parameter.

Pg Subcompile Parameter

A parameter may be included to suppress certain output for compilations to be used as subprograms
with another compilation.

SUB
This parameter suppresses all data division binary output except from working storage and con-

stant storage for a subcompiled program which would duplicate output from a separately compiled
main program. This enables them to be loaded together properly.

Pg Overlay Binary Parameter

This parameter may be included to separate overlay segments from main programs so that separately
compiled programs can be loaded properly.

OB = fn

This parameter causes the binary output segments to be put on a file fn. The form OB is equiv-
alent to OB = LGO2.

Examples:

COBOL (LX)

This control card calls for compilation with normal listing plus extended diagnostics on OUTPUT,
relocatable binary on LGO, and source input from INPUT, If the source program requests items
from the library, they will be taken from the file COLIB,

COBOL (I= MYTAPE, S=SRCLIB, B=0, LO)

This control card calls for compilation with no binary output, normal listing plus octal object
code listing on OUTPUT, and source input from the file named MYTAPE, with SRCLIB as the

COBOL source library.

The end of a COBOL source program is indicated by an end of record card (7,8,9 punch in column
1.)

6.2.3 SUBCOMPILE CAPABILITY

When a COBOL system is being prepared, the subcompile feature allows changes or modifications to

be made to one program without affecting other programs compiled separately. Each program con-

sists of at least the Identification Division, a File Section, or a Common-Storage Section of the Data .
Division and the particular procedures in the Procedure Division which are to be compiled separately.

The main COBOL program containg the full Data Division and the Environment Division, if required.

Program Identification

The program name in the Identification Division of a program compiled separately must be distin-
guished from the program name of any other program within the first six characters of the name. The
first character must be alphabetic. The nest five may be alphabetic ¢ numeric; a hyphen may not be
included. COBOL permits the program name to be up to 30 characters, alphabetic or numeric, but
SCOPE places this further restriction on the program name, when the subcompile capability is used.

6-14

Entry Points

If a procedure within one program references a procedure within a separately compiled program,
entry points must be provided in the referenced program., When a sequence control statement (PER-
FORM, GO TO, or ALTER) references a procedure name that is not defined in the program contain-
ing these statements, SCOPE generates linkage instructions to entry points in a separately compiled
program. Entry points are defined by the statement:

ENTRY procedure-name-1 [procedure-name-2]. . .
The procedure names may be up to 30 alphanumeric characters, but each name must be unique within

the first six characters and the first must be alphabetic. ENTRY must be the first Declarative in
the Declaratives Section of the Procedure Division of the referenced program.

€ommon Storage and File Areas

When several programs are compiled separately they may communicate through common storage and
file areas. Each program must contain its own Common-Storage Section and File Description entries,
but only the common storage area and the file and record areas associated with the main program

are loaded, In addition, if the SAME RECORD AREA is specified for any files used in common, this
clause either must be in all the programs using the file, or it must be in the program loaded first.
When USE statements are associated with a file all must be contained in the main program.

Overlay Segments

Priority sections which generate separate overlays segments may appear in any compilations run
together (main or subcompiled), but each overlay segment must be wholly contained in one subcom-
pilation,

Overlay Loading

To load overlays, an overlay card must be the first input to the loader. Since the order of compila-
tion is not restricted, the compiler cannot supply this card in the general case. The compiler sup-
plies an overlay card only when neither a subcompile nor overlay binary parameter is present, and
then only if overlays are called for by section priority numbers over 50. If SUB or OB is specified
on the COBOL card, the programmer may supply the card by copying the following card onto his
binary output prior to all compilations: i

OVERLAY (COBCODE, 0, 0)

Subcompilation Compatibility

To produce a main program and subcompiled programs that are compatible and can run together with-
out special manipulations, the following restrictions hold:

6-15

Restrictions on Main Program

It must contain:

all file descriptions

all report descriptions

all common storage

all USE sections (in DECLARATIVE sections)

a Procedure Division where the program starts
It may contain:

overlay sections (priority numbers must be unique to main program)
working storage (not shared)

constant storage (not shared)

Restrictions on a Subprogram

It must contain:

a complete file description for any file referenced in any way

a complete file description for any file sharing storage with a file whose description is given
a complete report description for any report referenced in any way

a common storage description complete from start to any fields referenced

at lease one ENTRY statement
It may not contain:

any USE sections
It may contain:

overlays (Priority numbers must be unique to this sub program)
worldng storage (not shared)
constant storage (not shared)

procedures not in overlays

Execution with Subcompile Capability

The order of loading is determined by the execution control cards. The last program call card or

6-16

load card specifies the first program loaded, the preceding card specifies the next program loaded,
and so forth with the first card specifying the last program loaded. Any EXECUTE card in the deck
overrides any other control cards and specifies the first program loaded and its entry points. The

execution control cards are described in Section 6.3. The following diagrams show typical deck
set-ups for two cases.

Program A is the main program to be compiled, and programs B and C are subprograms which have
been previously compiled;

(end of job)

=
r(Data Deck
7
8

9

Nefookn o

7
(g > empty record = end of file

F Binary Subprogram
pd

(c
7 (eor) j
8 /.
9 ,b Binary Subprogram

f B
'87 / (eor)]

9 4 COBOL Source Deck

L

()

(eor)
/1LGO.

/ LOADINPUT)
COBOL(SUB)

7
8
9

(job card)

Program A is compiled and then the three binary decks are executed in order: A,B,C.

If program A, the main program, and subprogram C have been compiled, and subprogram B is to be
compiled, the following deck set up can be used:

? (end of job)
3 .
Binary Subprogram“l.l
. 1
(c
g (eor)
9 /- 1

Source Subprogram —h

-

7
8
9 |
empty record = § 4 !
end of file Binary Program -4
II
A
7
8 (eor)
9
/XX.
/ LOAD(LGO)
/ LOAD(INPUT)
/ COBOL.
/COPYBF(INPUT,XX,2)

(job card)

COPYBF copies the binary record containing program A onto the file named XX. Subprogram B is
then compiled and placed on the load-and-go file. The programs are executed in the order specified
by the control cards, the last card specifies the first program executed and the first card, the last.

A third case in which three programs are initially compiled in the same job is given in the sample
subcompile program (Appendix F). A COBOL card is required to compile each program and one LGO
card indicates that they will be loaded in the order compiled which is the same as the order they appear
in the ligting.

The table in Appendix J shows the possible binary output from a COBOL compilation.

6.3 EXECUTION

Execution of a COBOL program will follow immediately upon compilation if the binary output para-
meter is specified on the COBOL control card as B = LGO or if B is omitted. Binary output is placed
on the load~and-go file and the object program is executed. If the binary output from compilation is
placed on another file, it may be executed immediately, or at a later date, or not at all depending on
whether compilation revealed the necessity for changes to the COBOL source program. Finally, the
object program can be contained on a file listed in the File Name/File-Status table and may be called
by name for execution at any time.

6.3.1 JOB CARD

All jobs under control of the SCOPE system must begin with a job card. This card precedes any other
control cards. All control cards for a SCOPE job are placed together at the beginning of the deck and
they comprise the first logical record of a job. The end of the control card record is signalled by an

end of record card (7,8,9 punches in column 1). The first field of a control card begins in column 1.

The job card has the following formats:

n,Tt,CMfl, ECh, P .

The fields are separated by commas and the last is terminated by a period. Blanks are ignored. n,
must be first; others may follow in any order and are identified by initial characters. If only n is
specified, installation-declared values are assumed.

Field Description
n Job name; 1-7 alphanumeric characters beginning with a letter. SCOPE replaces

positions 6 and 7 with a unique system generated value; zero fill is provided if
job name is less than 5 characters.

Tt Total time limit for the job in seconds including compilation and execution. t =
1-5 octal digits, maximum 77777g.

Tield Description

CMs1 Field length; storage requirement for job; rounded up to a multiple of 100g by
system; f1 = 1-6 octal digits, maximum 360,000,

ECb Extended core storage blocks; number of ECS blocks required by the job. One
block = 1000g words maximum. b = 1-4 octal digits

Pp Priority level in octal at which job enters system. p is in the range 1sp_<_2k—1
where k ig an installation provided constant=8. 1 is lowest priority.

When compilation is followed by immediate execution of the resulting object program, only the COBOL
control card and the LGO card are needed following the job card.

Fxample:
g (end of job)
8
9]
]
]
1
Data Deck
(g (eor)
9
|/ COBOL Source Deck
7
8 (eor)
9
/ 1GO.
¢ COBOL(LX)

JCJ001,T264.

The job named JCJ001, with a maximum time limit of approximately 3 minutes, expects the COBOL
source input on INPUT file. It will compile the program and place the binary output on the load-and-
go file; a listing with extended diagnostics will be placed on file OUTPUT; and if a source library is
assumed, it will be on file COLIB. The job will execute the COBOL object program using the COBOL
data deck provided.

6-20

6.3.2 EXECUTION CONTROL CARDS

If the program is not compiled and executed in the same job, a program call card or LOAD and EXE-
CUTE cards are required.

(LOAD(lfn)

This card directs the system to load the logical file named, 1fn. 1fn must be 1-7 alphanumeric charac-
ters; the first is alphabetic. If lfn is the system file INPUT, loading begins from the current position.
Otherwise file 1fn is rewound prior to loading. ILoading terminates when an end of information card
(6,7,8,9 punches in column 1) or an empty record is encountered (2 successive cards with 7,8, 9 punches
in column 1), More than one LOAD card is needed if subprograms are loaded from more than one

file, for instance, if the COBOL program has overlay segments or the subcompile capability is used.
The first file always determines the type of loading for all subsequent LLOAD cards in the same job.

LOAD card

EXECUTE card

(EXECUTE(name,pl,pz,. LoaD)

The parameter, name, is the entry point of the program to be executed once loading is completed;

if name is omitted, the system supplies the last transfer address encountered. P; are parameters
that are passed to the program to be executed., The EXECUTE card causes completion of loading.

It will provide entry points from the system library if undefined references remain following execu-
tion of the LOAD card. If a program is segmented, execution begins with the main or fixed portion of
the program. Subsequent segments are loaded as a result of user calls from the main program.

Program Call Card

The program call card may replace the LOAD and EXECUTE cards if the name is in the File Name/
Status Table.

name (pPy,Pg, - » + » Pp)

The program name specified is searched for in the FNT/FST table; and if found, subprograms are
loaded by LOAD cards. The file is rewound before loading. The system library is searched for files
not found in the FNT/FST table and the subprograms are loaded. Loading is completed and execution
begun; p; are parameters that are passed to the program to be executed.

Examples:

If a prior compilation has produced a COBOL object program on the file named ACCOUNT, the
following control cards may be used to execute the program:

LOAD (ACCOUNT)
EXECUTE.

These control cards are equivalent to using the program call card: ACCOUNT,

If the file named ACCOUNT contains more than one segment, the following control cards would
indicate the entry point, START, at which execution is to begin:

LOAD (ACCOUNT)
EXECUTE (START).

If a subprogram had been compiled separately and is now on a different file, this subprogram can
replace a subprogram of the same name on the original file with the following cards:

LOAD (SUM)

ACCOUNT.,.

This will result in any subprogram on the file SUM being loaded, and any subprogram with the

same name on file ACCOUNT is bypassed.
6.3.3 EQUIPMENT ASSIGNMENT
The SCOPE system assigns all files to disk unless a different assignment is specified by the REQUEST
card. Any tape files used by a COBOL program must be specified on a REQUEST card. Since the
control cards of a job are processed in order, a REQUEST card for a file must precede any reference
to that file. The user need not request the card reader, printer, or card punch for normal input/out-
put.
REQUEST Card

(REQUEST,Ifn,dt,dc,X.
This card requests the operator at the console to assign a peripheral unit to a file and describes the
file and unit, The job waits for operator action before processing.
™

6-22

The parameter may be listed in any order. Successive blanks, commas , periods, and parentheses
are ignored. If a parameter is listed more than once or is in error, a message is given and the job

is terminated.

Parameter

1fn

dt

de

Description

Logical file name; name used in the source program for the file. 1-7 alpha-
numeric characters with the first character alphabetic. This parameter may
not be omitted.

Device type; specifies type of device to which 1fn is assigned. The form is
yxx,Xx may be any of the following.

CP card punch

LP line printer

MT 1/2-inch magnetic tape
LO 1/2-inch magnetic tape

HI 1/2-inch magnetic tape
HY 1/2-inch magnetic tape
WT 1-inch magnetic tape

CR card reader

Dnnn disk, nnn is the disk typef

If xx = MT, density on an input tape is determined by volume header label and
output density is installation dependent. Density is normally 556. If the tapc
is unlabeled, density of 556 bpi is assumed.

¥ has no significance if xx is other than MT, LO, HI, or HY. y maybe 1, 2,
or blank.

Ify= 2andxx = MT, LO, HI, or HY, two units are provided and end-of-
reel processing is automatic.

If y = 1 or blank and xx = MT, LO,HI, or HY, the system will rewind and
unload the unit when an end-of-reel condition is reached, and request a new
unit,

Disposition Code; special optional properties of a file are specified by dc
through one of the following values:

PR Print file at job termination; OUTPUT is automatically assigned,

PU Punch file at job termination; PUNCH is automatically assigned.

PB Punch file in binary at job termination; PUNCHB is automatically assign-
ed.

CK Check-point dump file.

File Declaration Code; this parameter is required if SCOPE system label pro-
cessing is to be performed on 1/2-inch magnetic tape. X may = E, N, or X.

t See SCOPE manual FET description for values of nnn.

6-23

=

Existing file; initial use is input. SCOPE checks the label.

New file; initial use is output. SCOPE writes a standard volume header
label.

X External file; tape file created by system other than SCOPE 3.0. X may
be given for input file only. Entire record will be read and transferred
to CM circular buffer without examining the last 8 characters of record
for level number.

Example:

REQUEST, MASTER, 2MT, E.

The input tape file, called MASTER, has standard labels and SCOPE will check the volume
header label to insure that the correct file is referenced.

6.4 COBOL SOURCE LIBRARY

Any COBOL source program that uses COPY library-name, COPY data-name FROM LIBRARY clauses,

or the INCLUDE statement assumes a knowledge of the contents of the COBOL source library. The

user may create the library using the COPYCL program of the SCOPE system, he may update the

library with the EDITSYM program of the SCOPE system, or he may simply use a listing of the exist- ~
ing library. The COBOL source library consists of text decks which are distinguished from other 1
decks by a special indicator, the number 4, in the first word of the prefix attached to all library decks.

This indicator is provided by the system. The first card following the prefix cards in every COBOL

text deck must contain the library-name by which this deck is referenced. The library-name starts

in column 8 and may be up to 30 alphanumeric characters. It must be the only entry on the card.

Anything after column 38 of the card is ignored. The remainder of the text deck contains the material

to be copied or included in the source program and must be in standard COBOL source library format.

When the COPY library-name clause is used in the Environment Division Sections: SOURCE-COM-
PUTER, OBJECT-COMPUTER, SPECIAL-NAMES, FILE-CONTROL, and I-O CONTROL, the deck
referenced by library-name will be copied into the Environment Division. Only one section may appear
in a deck.

When the COPY library-name clause is used to copy an FD, SD, or RD into the Data Division, the deck
referenced by library-name will be copied into the Data Division. Only one FD, SD, or RD may appear
in a deck. Record descriptions may not be included in the deck.

When COPY data-name FROM LIBRARY is used in a record or item description the deck referenced
by data-name will be copied into the Data Division. Only one record or item description may appear
in a deck.

6.4.1 TEXT DECKS

Each file description entry, report entry, set of data items or procedures in the library is contained
on a separate text deck. A COBOL library text deck is preceded by a two word prefix of the following

format. gﬁ

6-24

59 53 47 35 11 0

0 1 4
778 0
59 17 11 0
edition
deck name 00 number

The number 4 is placed in bit positions 11-0 of the first word to indicate a COBOL library deck. The
deck-name in the second word of the prefix is the name used by the system to identify the deck; it
contains a maximum of 7-display code characters. The edition number is increased by one each time
a new program library is requested. The remainder of the deck consists of 90 display code characters
in the following format:

Column Content

1-72 one line in source language

73-79 identifying deck name

80-84 primary sequence number

85 period if a secondary sequence number is present
86-90 secondary sequence number

The primary and secondary sequence numbers indicate the level of editing, Primary level editing
permanently removes, inserts, or changes a line and the deck will be resequenced when a new pro-
gram library is requested. Secondary level editing marks a card cancelled but does not actually
delete it; rather it inserts a card with a secondary sequence number.

Example:

The following portion of a text deck has the library-name FILEA and contains a File Description
Entry. The deck-name is COB1 and the sequence numbers are primary.

Source Image Deck-Name Sequence
Number
FILEA
FD REPORT-FILE COB1 00001
LABEL RECORDS ARE STANDARD COB1 00002
VALUE OF ID IS FILE-1 COB1 00003
DATA RECORD IS REPORT-A COB1 00004

If the user wishes to change the second linc and delete the third, he may use a primary or sec-
ondary edit. The primary edit will produce the following:

FILEA

FD REPORT-FILE COB1 00001
LABEL RECORDS ARE OMITTED. COB1 00002
DATA RECORD IS REPORT-A COB1 00003

A secondary edit produces the following:

FILEA

FD REPORT-FILE COB1 00001
LABEL RECORDS ARE STANDARD COB1 00002
VALUE OF ID IS FILE-1 COB1 00003
LABEL RECORDS ARE OMITTED. COB1 00003.00001
DATA RECORD IS REPORT-A COB1 00004

Cards 2 and 8 are marked cancelled and left in the deck, and the new card is given a secondary
sequence number. This deck will not be resequenced when a new program library is requested.

The control cards used to produce primary and/or secondary editing of a text deck are described in
6.4.3.

6.4.2 COPYCL

The COBOL source library text decks as described above are maintained on a COBOL library file.
This is a standard SCOPE random access file. The program COPYCL is required to produce a
COLIB file and to produce a new COBOL library file following any updating or secondary editing by
the EDITSYM program. The program COPYCL is called by the following control card:

(COPYCL(input-file-name, output-file-name)

The input-file-name is a standard EDITSYM library file. (If the library is being created, the EDITSYM
control card will indicate this). The output-file-name is the COBOL library random access file that

will contain the library in a form that the COBOL source program can reference. This file-name is

also specified in the source library parameter of the COBOL control card. If no name is specified

on the COBOL control card, COLIB will be the name assigned to the COBOL library. The COPYCL

control card is also required when an existing COBOL source library is updated and a new program

library is requested. ™M

6-26

6.4.3 EDITSYM

The EDITSYM program must be called when a source program library is being created or maintain-
ed. The EDITSYM control cards used to edit an existing deck are described below. The EDITSYM
program is called by the following SCOPE control card:

rEDITSYM(pl,pZ »PgsP, sP;)

Parameters are free field.

Parameter

I

OPL

NPL

Meaning

Correction Input

Compile

List

Old Program Library

New Program Library

Description

absent

I

INPUT

I= 1fn
INPUT = 1fn

absent

C

COMPILE
C=0
COMPILE = 0
C =1l
COMPILE = lfn

absent

L

LIST"
L=20
LIST = 0
L= lin
LIST = lfn

absent
OPL = 0
OPL

OPL = 1fn

absent
NPL =0
NPL

NPL = 1Ifn

corrections on INPUT
corrections on INPUT
corrections on INPUT
corrections on 1fn
corrections on lfn

no compile output

compile output on COMPILE
compile output on COMPILE
no compile output

no compile output

compile output on Ifn
compile output on lfn

no list

list on OUTPUT
list on OUTPUT
no list

no list

list on lfn

list on 1fn

no old program library

no old program library

old program library on OPL
old program library on 1fn

no new program library

no new program library

new program library on NPL
new program library on 1fn

6-27

New decks are introduced by the following control card:

(*DECK,dn,AL

This card is placed directly in front of a COBOL text deck to be inserted in the library. dn is the
deck name that identifies this deck in the deck prefix and in columns 73-80 of the card image. The
number 4 identifies this deck as a COBOL source deck.

A text deck is terminated by the control card:

(*END

An entire text deck or set of text decks may be copied from the program library onto the compile file
with the following control card:

(*COPY,lol,p2

The parameters may be deck names or an asterisk. If p,isa deck name copying begins with the deck
identified by that name and continues up to and including Py - If po is not specified, only the deck id-
entified by py is copied. If pj is an asterisk, copying begins at the present position and continues
through Py- If Py is an asterisk, copying begins with p; and continues to the end of the program
library.

Common and text deck names are listed in the order they appear in an old or new program library
with the following control card:

r *CATALOG,1fn

Ifn is the name of the old or new program library. All common and text deck names contained on ifn
are listed on OUTPUT.

6-28

Edit Control Cards

An existing library deck may be edited. The control cards specify the card to be altered, or deleted,
or the point where new cards are to be inserted.

The EDIT card must be specified last in the set of control cards to modify a deck. It specifies the
deck name of the text deck to which the sequence numbers refer.

fEDIT,dn

dn is the deck name of the deck to be edited.

Editing may be done at the primary or secondary level, *INSERT, *DELETE, and *RESTORE are
primary level edit cards; *CANCEL, and *ADD are secondary level edit cards.

r *INSERT,n

Correction cards are inserted in the deck following the card with primary sequence number (integer
n). The corrections are terminated by the *EDIT card. Inserted cards are primary text and the
text deck will be resequenced if a new library is requested.

(*DELETE,m,n

The portion of the text with primary sequence numbers m through n, inclusive are deleted. m and
n must be integers. If nis omitted, only card m is deleted. Source cards may follow the DELETE
card; they will be inserted into the deck following the last deleted card. Deletions and insertions
are primary corrections, deleted cards are removed and the remaining cards are resequenced when
the new program library is requested.

*RESTORE,m,n

When a deck is altered by secondary level editing, the old cards remain in the deck with their original
primary sequence numbers. This card is used to restore the portion of a deck, m through n inclusive,
that has been altered by secondary editing. All cards within the range of m through n that have been
canceled as a result of secondary editing are restored as normal primary text cards; all added sec-
ondary text cards within the range m through are removed.

6-29

=

Secondary level editing is accomplished with the following cards:

(*CANCEL,mn

m and n may be of form j.k where j is a primary number, and k is a secondary sequence number.
All cards are canceled inclusive between m and n. Primary cards are marked canceled but not
removed; secondary cards are removed. Source cards may follow the *CANCEL control card and
are inserted after the last canceled card. The insertions are marked as secondary text. Cancel-
ation does not cause re-sequencing of the primary cards when a new program library is requested.

r*ADD,n

This is a secondary editing control card; n may be of the form j.k as defined above. Ensuing cards
are inserted as secondary text. Addition does not result in re-sequencing of primary cards when a
new program library is requested.

An additional EDITSYM control card allows the user to compile or assemble specific decks from dif- i
ferent files:

r *COMPILE ,1fn

*COMPILE, 1fn allows the user to write a compile file on Ifn. When this card is read from the
correction input, the compile file for the deck specified on the following *EDIT, *DECK, or *COPY
card is written on Ifn, Once a *COMPILE card has been encountered, compile files for all remain-
ing text decks must be requested by a *COMPILE control card.

~

6-30

Example:

Typical deck setup for compilation with new COBOL source library decks:

(end of job)

NeXe o\ Neop)

COBOL Source Deck

g (eor)
9

/*WEOR
/*END

yd
/l(COBOL Source Library Deck 2)
Z
/ *DECK,CODECK2,4
]

(COBOL Source Library Deck 1) —4

1

“DECK, CODECK1,4
1 (end of record)]
9 / LGO.

~ (COBOL(I=MYTAPE,S=SRCLIB, B=0, 1.O)
(COPYCL(COBA ,SRCIIB)
EDITSYM(NPL= LIBA,C=COBA , L= COLIST)

(iob card)

The EDITSYM program places the two COBOL source library decks on the library file LIBA, prepares
a compile file COBA, and a listing of the library on the print file COLIST. The COPYCL program
prepares a random access file SRCLIB for use by the COBOL compiler from the library file COBA
produced by EDITSYM. The COBOL control card indicates to the COBOL compiler that this library
will be found on SRCLIB.

6-31

Should the user wish to change the text deck named CODECK1, the deck setup for altering and pre-
paring a new COBOL library file from the altered decks would be:

g (end of job)
8
9 (4
1
]
1
Data Deck
7
/8 (eor)
9
o
ya
[/
(COBOL Source Deck
7 (eor) |
8 (*EDIT,CODECKl l
9

/*DELETE, 20,36 |

Insert cards to COBOL Source Library
(¥INSERT, 20

NeJe N

/ COBOL(I=MYTAPE,S=SRCLIB,B=0, LO)
/ COPYCL(COBB,SRCLIB)
EDITSYM(OPL= LIBA,, C=COBB, L= COLIST)

(job card)

This deck setup updates the first COBOL text deck CODECK1 on the program library file IIBA and
prepares a new compile file, COBB. Since editing is done on the primary sequence numbers, the

new program library file is resequenced, and the omitted cards are permanently deleted rather than
canceled, COPYCL puts the new deck on the special random access file SCRLIB for use by the
COBOL compiler. This particular deck setup runs with a deck of data for use by the COBOL program.
A listing of the updated COBOL source library is again output on COLIST.

6-32

APPENDIX SECTION

™

THE COBOL LANGUAGE A

This appendix contains a general description of the COBOL language. It contains the following
information:

1. The COBOL character set

2, Words
User-defined words:
data-names
procedure-names
condition-names
qualifiers

literals

COBOL words:
Reserved Words
Key Words
Optional Words
Figurative Constants

Connectives and Separators
3. Punctuation

4, Rules for using the COBOL Coding Sheet

The COBOL Character Set

The COBOL language contains a set of characters which the programmer may combine according to
specified rules to form the names and values for the source program. The COBOL character set
consists of the numerals 0 through 9, the 26 letters of the alphabet, and the following special
characters:

Blank or Space $ Dollar Sign
+ Plus Sign , Comma
- Minus Sign or Hyphen . Period or Decimal Point
* Asterisk " Quotation Mark
/ Stroke or Slash (Left Parentheses
= Equal Sign) Right Parenthesis

Some of these characters have additional uses, as follows:

Characters used in Arithmetic Expressions

+ Addition * Multiplication

- Subtraction / Division

Characters used in Relations

= Equality
< Less than

> Greater than

Characters used in Punctuation

" Quotation Mark Blank or Space
(Left Parenthesis . Period
) Right Parenthesis , Comma

Characters used in Editing

$ Dollar Sign , Comma

* Check Protection . Actual Decimal Point

A-2

-,

WORDS

Words are either specified by the user or they are COBOL words. In the COBOL format, COBOL
words are represented by full capitalization. User specified words include all names assigned by
the user to elements in the program, and they must never be from the set of COBOL reserved words
(Appendix C). User-defined names include:

data-names identifiers
procedure-names file-names
condition-names mnemonic-names

library-names

Literals and named constants are also considered to be user specified words. Rules are given
below .

Data-Names
Data-names are formed by combining any of the following characters:

0,1,...,9

A,B,...,Z

- (the hyphen)
A data-name may contain up to 30 of these characters with no imbedded blanks. Hyphens may be
used freely within the name except they may not be the first or last character in a name, or used

consecutively. All data-names must contain at least one alphabetic character; it need not be the
first character unless explicitly stated.

Examples:
QUANTITY-ON-HAND MESSAGE
LAST-YEAR-PROFIT 100A
ITEM-NUMBER FILE-1

Procedure-Names

Procedure-names identify a paragraph or section in the Procedure Division. Procedure-names are
formed the same as data-names except that they may consist exclusively of numeric characters.
Numeric names are equivalent only if they have the same number of digits and the same value; 0023
is not equivalent to 023. All procedure-names must be unique in themselves or be made unique by
qualification. Procedure-names are terminated by a period or the word SECTION, an optional
priority number, and a period.

Examples:
PROC-1. A-INPUT SECTION.
002, 100 SECTION 55.

Condition-Names

Condition-names are assigned to the values an item may assume. A condition-name is formed the
same as a data-name, but it must always be preceded by the level number 88.

Example:

03 GRADE

88 GRADE-ONE VALUE IS 1.
88 GRADE~-TWO VALUE IS 2.

88 GRADE-SCHOOL VALUES ARE 1 THRU 6.

88 JUNIOR-HIGH VALUES ARE 7 THRU 9.

88 HIGH-SCHOOL VALUES ARE 10 THRU 12.

88 GRADE-ERROR VALUES ARE 13 THRU 99. P

File~-Names/Implementor Names

File-names assigned to a file in the File Description entry of the Data Division are formed exactly
like data-names. Files may also be specified as implementor names in the Environment Division.
Implementor names are slightly different since they must conform to SCOPE system standards.
The first seven characters must be unique, the first character must be alphabetic, and no hyphen is
allowed within the first seven characters.

Qualifier

Every name in a source program must be unique, either because no other name has the identical
spelling, or because the name exists within a hierarchy of names, such that it can be made unique
by mentioning one or more of the higher levels of the hierarchy. The higher levels are called
qualifiers when used in this way. The qualification process is performed by writing IN or OF after
the name followed by a qualifier. The choice between IN or OF is based on readability; they are-
logically equivalent. Only sufficient qualification must be mentioned to make the name unique.
Whenever the data item or paragraph is referenced, any necessary qualifiers must be written as
part of the name.

A-4

Identifier

Identifiers are used throughout the Procedure Division to reference items defined in the Data Divi-
sion. Identifiers are data-names followed by the qualifiers or subscripts needed to make reference
to the item unique. If no qualification or subscripting is required, the identifier is a simple data-
name.

Examples:

DAY OF MASTER-DATE
FIRST IN GRADE-ONE
MALE-FEMALE(2, 5, 1)

Literal

A literal is an explicit specification of the value used in the object program. Literals are numeric
and non-numeric. A numeric literal is any combination of 0 through 9; it may be preceded by a
plus or minus sign, and may contain a decimal point. The decimal point may not be the rightmost
character. If no sign is specified, the literal is positive.

Examples of numeric literals:

15067893251459
-12572.6
+25675
1435.89
A non-numeric literal may be any character from the COBOL set, including blanks. A non-numeric

literal must be enclosed in quotation marks. The quotation marks are not part of a non-numeric
literal, and may not be used in forming such a literal.

Examples of non-numeric literals:

"LINE-COUNTER"
"PAGE 144 IS MISSING"
"ABCDETF"

""-125. 56"

"PAGE NUMBER IS "

The literal ""-125.56" is not the same as the literal -125.56; the quotation marks make it a non-
numeric literal and prevent it from being used for computation.

Named Constants

A name may be assigned to a specific value and used wherever the value is required. This is a
named constant; it is used like any other data name except that it refers to a constant value rather
than to a value that varies during processing.

COBOL Reserved Words

The COBOL language contains a set of reserved words which have particular significance to the
processor, and which may be used only in the presented manner. They may not be used as data
names, procedure names, condition names, and so forth. The two categories of reserved words
are optional words and key words.

The notation used in this manual distinguishes between COBOL optional and key words in the follow-
ing manner: All COBOL reserved words are printed entirely in capital letters; the key words are
underlined, the optional words are not.

Optional COBOL words may be included in the source program to improve readability. They are
recognized by the processor but are ignored since they are not needed to compile the object coding.
Some words are optional in certain situations but not in others. An optional word must be correctly
spelled. When an optional word is omitted, it may be replaced only by a word explicitly stated to be
its equivalent.

Key words, on the other hand, are those COBOL words which are essential to convey the meaning
of a clause or statement. A key word may not be omitted. All verbs, for example, are key words
which must be included to designate the operation to be performed.

Examples:

A IS GREATER THAN B
A IS GREATER B

A GREATER THAN B

A GREATER B

All these expressions are correct and have the same meaning whether or not the optional words IS
and THAN are used.

Irigurative Constants

Certain names in the COBOL set of reserved words represent constants. The constant values
associated with these names are known as figurative constants. The singular and plural forms of
the names are equivalent and may be used interchangeably.

The names and class associated with the figurative constants are listed below. They generate
strings of homogeneous information, the length of which is determined by the size of the receiving
item. A figurative constant may be used wherever a literal of the same class is indicated in the

COBOL format.

Name Class

ZERO Numeric
ZEROS

ZEROES

SPACE(S) Alphanumeric

HIGH-VALUE(S) Alphanumeric
UPPER-BOUND(S)

LOW-VALUE(S) Alphanumeric
LOWER-BOUND(S)

RECORD-MARK Alphanumeric

QUOTE(S) Alphanumeric

ALL any-literal Alphanumeric
or Numeric

In computations, all three figurative constants represent
the numeric value zero. Used any other way, they re-
present a series of zero characters.

Either word represents a series of spaces (blanks).

Any of the words represents a series of the character
with the highest value in the COBOL display code collating
sequence.

Any of the words represents a series of the character
with the lowest value in the COBOL display code collating
sequence.

A special character which indicates the end of a logical
record.

Either word represents a series of the quotation mark
character. The word QUOTE may not be substituted for
the symbol " enclosing a non-numerical literal.

The word ALL followed by any literal results in a se-
quence of all characters comprising the literal repeated

in the order in which they occur. If used in a move
operation, or a conditional statement, the literal, numeric
or non-numeric, must be enclosed in quotation marks; it
is'always alphanumeric. Used otherwise (EXAMINE)

only a non-numeric literal need be enclosed in quotation
marks; ALL any-literal, in this case, could be either
numeric or alphanumeric. ALL followed by a figurative
constant is redundant.

Examples of the use of figurative constants:

MOVE QUOTES TO AREA-A

DISPLAY QUOTE "NAME" QUOTE

Assuming AREA-A consists of five character positions,
this statement moves the configuration '"'''""''' to AREA-A.

This statement results in "NAME'" being displayed.

™

MOVE SPACES TO TITLE The item named TITLE is set to all spaces (or blanks).

MOVE ALL '"4" TO COUNT-FIELD Assuming COUNT-FIELD has a picture of X(4), a 4is
placed in each position of the item named COUNT-FIELD.

IF ALL "4" EQUALS COUNT-FIELD... Assuming COUNT-FIELD is a conditional item with a
picture of 9(4) or X(4), this compares 4444 with the value
of COUNT-FIELD.

MOVE ZEROS TO REGISTER This places 0 in each position of the item named
REGISTER.
MOVE ALL "NO-OP'" to EMPTY Assuming EMPTY consists of 12 character positions,

EMPTY is filled with repetitions of the characters of
the non-numeric literal, NO-OPNO-OPNO.

Special Registers

Special registers used for particular purposes within a COBOL program are defined by the COBOL
words:

TALLY 4
PAGE-COUNTER
LINE-COUNTER

TALLY is a Computational-1 item automatically gencrated in a special Common-Storage Section so
that it will be available to all segments of a COBOL program. Its size iseightdigits. TALLY is used
with the TALLYING option of the EXAMINE statement to receive the numbers resulting from exe-
cution of the statement.

PAGE-COUNTER is a fixed data name used as a page counter by the Report Writer. It is automati-
cally generated as part of the Report Section for use as a source item to present page numbers
within a report group. One page counter is supplied for each report if the word PAGE-COUNTER is
specified in the SOURCE item of a report description.

LINE-COUNTER is a fixed data-name used as a line counter by the Report Writer. It is automati-
cally generated as part of the Report Section for use in determining any page or overflow HEADING
and FOOTING report groups. One line counter is supplied for each report if a PAGE LIMIT clause
is included in the Report Description Entry.

Connectives
Connective words are used to connect series of names or expressions indicating the relationship
between the elements. The logical connectives AND and OR join simple conditional expressions to
form compound conditional expressions. The truth or falsity of compound conditional expressions

will depend not only on the truth or falsity of the constituent simple conditional expressions, but
also on the particular logical connective used.

Series Separators

Two or more words written in a series must be separated by a space; they may be separated by
the following separators:

AND , (comma) » AND (comma followed by space and AND)
The following separators may be used between statements in a sentence to improve readability:
THEN ; (semicolon) ; THEN (semicolon followed by space and THEN)

Any of the above separators may be used between items, but may not be followed immediately
by another such separator.

Punctuation

Most punctuation marks are optional in COBOL. The inclusion or omission of a comma does not
affect the compilation process. The general rule concerning punctuation marks is as follows:

When a period, semicolon, or comma is used, it immediately follows a word; but it must be
followed by at least onc space before the first character of the next word is specified. In a non-
numeric literal, the beginning quotation mark may not be followed by a space, nor may the ending
quotation mark be preceded by a space, unless such spaces are required as part of the literal.

Left and right parentheses specify the order in which conditional and arithmetic expressions are to
be evaluated. A left parenthesis may not be immediately followed by a space unless it is followed
by +, -, or another left parenthesis, in which case a space is required; nor may a right parenthesis
be immediately preceded by a space unless it is preceded by a right parenthesis. Parentheses must
be specified in pairs. The same punctuation rules apply to words contained in parentheses as to
separate words. Punctuation marks after the right parenthesis are followed by at least one space
before the left parenthesis of the next expression.

The COBOL Coding Shect

The specifications for the source program are written on COBOL coding sheets according to the
formats contained in this manual.

All division names, section names, and paragraph names start in column 8 of the coding shect.
Division names are followed by a period and the rest of the line must be blank. Section names are
followed by the word SECTION and a period. If priority is specified, it follows the word SECTION
before the period. The remainder of the line is blank, except if the section is a DECLARATIVE, it
may be followed by a USE statement. Paragraph names are followed by a period and at least one
space. The text may follow or may start at column 12 of the next line.

The level indicators FD, SD, RD and 01 begin in column 8, they are followed by one or more spaces
and the associated entry. All other level indicators begin in or after column 12 followed by a space
and associated entry.

Sequence numbers, if specified, are in columns 1 through 6. Program identification is placed in
columns 73 through 80. Lines may be broken at any convenient point, spaces may remain at the end
of the line. When a word or a numeric literal is split between two lines, ahyphen must be specified
in column 7 of the second line. If a non-numeric literal is split between two lines, a quotation mark
must be specified in or after column 12 of the second line in addition to a continuation hyphen in
column 7 of the second line. In this case only, the blanks at the end of the first line are considered
part of the literal.

4@

Rules for using the COBOL coding sheet are summarized below:

Element Type Division Column Position Remarks
Division-name ALL 8 Name must be followed by a
period; remainder of the line
must be blank.
Section-name ENVIRONMENT 8 Name must be followed by a
Name DATA space, the word SECTION,
PROCEDURE priority if specified, and a
period; remainder of the line
must be blank, or contain a USE
sentence.
Paragraph- IDENTIFICATION 8 Name must be followed by a
name ENVIRONMENT pefiod and at least one space.
PROCEDURE Text may follow on same line or
at column 12 on next line.

File Description DATA 8 Descriptions begin with level

Sort Description indicator, FD, SD, or RD,

Report Description two or more spaces separate it

Data from data name. Clauses are
Description separated by one or more
Entry spaces.

Record Description | DATA At 8 or after 11, Same as file description entry.
depending on the Level number 01-49, 66, 77 and
identification. 88. Only 01 entries may begin

in column 8.

First sentence IDENTIFICATION Following period

of a paragraph ENVIRONMENT and 1 space after

or section PROCEDURE paragraph name
or section name,or

Sentence :
on next line at or
after column 12,
All other IDENTIFICATION Following period Sentences may be written in
sentences ENVIRONMENT and 1 space after columns 12 through 72 only.
PROCEDURE the previous
sentence.
Data description DATA At or after 12. Line breaks may occur at any
entry convenient point, with spaces at
Continued Sentence IDENTIFICATION | At or after 12. end of Line if desired. 1If a word
Elements ENVIRONMENT o'r literal is split between twc?
PROCEDURE lines, a hyphen must be speci-
fied in column 7 of the second line.

Sequence ALL 1-6 Sequence number does not affect

Non-Program Number the object program; processor .
does check for correct sequencing.
Entry

Program Ident- ALL 73-80 Identification information does

ification not affect object program.

A-11

@q

COBOL DISPLAY CODE AND COLLATING SEQUENCE B

The following table shows the relationship between the characters of the COBOL set and their equiva-

lent machine, printer, tape, or card representation. They are listed according to ascending collation
sequence.

Characters shown with an asterisk are not available in COBOL source language but would be treated
in the sequence indicated if present in data. They are part of the COBOL character set.

Collating Display Internal BCD Hollerith
Sequence Character Representation Tape Punch
00 A 55 20 space bar
01 = 74 15 8-5

02 T* 61 17 8-17

03 — ¥ 65 35 -

04 = * 60 36 0-8-6
05 A ¥ 67 37 0-8-7
06 tox 70 55 11-8-5
07 V¥ 71 56 11-8-6
08 > * 73 57 11-8-7
09 = % 75 75 12-8-5
10 1 * 76 76 12-8-6
11 . (period) 57 73 12-8-3
12) 52 74 12-8-4
13 ; ¥ 77 77 12-8-7
14 + 45 60 12

15 $ 53 53 11-8-3
16 * 47 54 11-8-4
17 - 46 40 11

18 / 50 21 0-1

19 , (comma) 56 33 0-8-3
20 (51 34 0-8-4
21 = 54 13 8-3

Collating Display Internal BCD Hollerith

Sequence Character Representation Tape Punch
22 # 64 14 8-4 %
23 < * 72 72 12-0 or 12-8-2
24 A 01 61 12-1
25 B 02 62 12-2
26 C 03 63 12-3
27 D 04 64 12-4
28 E 05 65 12-5
29 F 06 66 12-6
30 G 07 67 12-7
31 H 10 70 12-8
32 I 11 71 12-9
33 v ox 66 52 11-0 or 11-8-2
3¢ J 12 41 11-1
33 K 13 42 11-2
36 L 14 43 11-3
37 M 15 44 11-4
38 N 16 45 11-5
39 0] 17 46 11-6
40 P 20 47 11-7
41 Q 21 50 11-8
42 R 22 51 11-9
43 1 62 32 0-8-2 7
44 S 23 22 0-2
45 T 24 23 0-3
46 U 25 24 0-4
47 v 26 25 0-5
48 w 27 26 0-6
49 X 30 27 0-17
50 Y 31 30 0-8
51 Z 32 31 0-9

¥ This is the COBOL quotation mark,
T This is the COBOL record mark.

Collating Display Internal BCD Hollerith

Sequence Character Representation Tape Punch
52 : 63 00 8-2
53 0 33 12 0
54 1 34 01 1
55 2 35 02 2
56 3 36 03 3
57 4 37 04 4
58 5 40 05 5
59 6 41 06 6
60 7 42 07 7
61 8 43 10 8
62 9 44 11 9
_— % or ? 0046 16 8-6
—_ —_ 00 — ESCAPE

The ESCAPE punch defines an escape to the display code following '00'. '00' may ESCAPE to any
code except '00' which defines an end of line or card. The only codes defined are:

0000 - end of line

0046 - % or ? (depending on printer)

COBOL RESERVED WORD LIST

The reserved words of the COBOL language are listed below. They have preassigned meanings and
are interpreted in a particular way by the COBOL processor. They must be used only as described
in this manual. Words preceded by an asterisk represent an unimplemented feature not described
in this manual. Both key words and optional words are listed, since certain words are key words
in some contexts and optional in others, no distinction is made in the list.

ABOUT

ACCEPT

ACCESS

ACTUAL

ADD
*ADDRESS

ADVANCING

AFTER

ALL

ALPHABETIC

ALPHANUMERIC

ALTER

ALTERNATE

AN

AND
*APPLY

ARE

AREA

AREAS

ASCENDING

ASSIGN

AT

AUTHOR

BEFORE
BEGINNING
BINARY

*BITS
BLANK
BLOCK
BY

CF
CH
CHARACTERS

CHECK
CLASS
*CLOCK-UNITS
CLOSE
COBOL
CODE
COLUMN
COMMA
COMMON-STORAGE
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTE
CONFIGURATION
CONSOLE
CONSTANT
CONTAINS
CONTROL
CONTROLS
* CONVERSION
COPY
CORRESPONDING
CURRENCY

DATA
DATE~COMPILED
DATE-WRITTEN
DE
DECIMAL
DECIMAL-POINT
DECLARATIVES
*DEFINE
DENSITY
DEPENDING
DESCENDING
DETAIL

DIGITS
DISPLAY
DIVIDE
*DIVIDED
DIVISION
DOLLAR
*DOWN

EDITION-NUMBER

ELSE

END

ENDING

ENTER

ENVIRONMENT

EQ

EQUAL

EQUALS

ERROR

EVERY

EXAMINE

EXCEEDS

EXIT
*EXPONENTIATED

FD

FILE
FILE-CONTROL
FILE-LIMIT
FILE-LIMITS
FILLER
FINAL

FIRST
FLOAT
FOOTING
FOR

*FORMAT
FROM

GENERATE
GIVING

GO

GQ

GR

GREATER
GREATER-EQUAL
GROUP

*HASHED
HEADING
HIGH
HIGH-VALUE
HIGH-VALUES

*HOLD
HYPER

D

IDENTIFICATION

IF

IN

INCLUDE
*INDEX
*INDEXED

INDICATE

INITIATE

INPUT

INPUT-OUTPUT

INSTALLATION

INTO

INVALID

Q

1-0
1-O-CONTROL
IS

JUSTIFIED

KEY
*KEYS

LABEL

LAST

LEADING

LEAVING

LEFT

LESS

LESS-EQUAL

LIBRARY

LIMIT

LIMITS

LINE

LINE-COUNTER

LINES

LOCATION

LOCK

LOW

LOW-VALUE

LOW-VALUES
*LOWER-BOUND
*LOWER-BOUNDS

LQ

LS

*MEMORY
*MINUS
MODE
*MODULES
MOVE
MULTIPLE
*MULTIPLIED
MULTIPLY

NEGATIVE
NEXT

NGR

NLS

NO

NOT

NOTE

NQ

Cc-2

NUMBER
NUMERIC

OBJECT-COMPUTER
*OBJECT-PROGRAM

OCCURS

OF

OFF

OH

OMITTED

ON

OPEN

OPTIONAL

OR

OTHERWISE

OUTPUT

ov

OVERFLOW

PAGE
PAGE-COUNTER
PERFORM
PF
PH
PICTURE
PLACES
PLUS
POINT
POSITION
*PREPARED
PRIORITY
PROCEDURE
PROCEDURES
PROCEED
*PROCESS
PROCESSING
PROGRAM-ID
PROTECT
PUNCH
PUNCHB

QUOTE
QUOTES

RANDOM
*RANGE

RD

READ

RECORD

RECORD-MARK
RECORDING
RECORDS
REDEFINES
REEL
REEL-NUMBER
RELEASE
REMARKS
RENAMES
RENAMING
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
RETENTION-CYCLE
RETURN
REVERSED
REWIND

RF

RH

RIGHT
ROUNDED

RUN

*SA
SAME
SD

*SEARCH
SECTION
SECURITY
SEEK

*SEGMENT-LIMIT
SELECT
SELECTED
SENTENCE
SEQUENCED
SEQUENTIAL

*SET

SIGN

SIGNED

SIZE

SORT

SOURCE
SOURCE-COMPUTER
SPACE

SPACES

SPECIAL-NAMES

STANDARD

STATUS

STOP

SUBTRACT

SUM
*SUPERVISOR

SUPPRESS

SWITCH
*SYMBOLIC

SYNCHRONIZED

TALLY
TALLYING
TAPE
TERMINATE
THAN
THEN
THROUGH
THRU
TIMES

TO

TYPE

UNEQUAL
*UP
*UPPER-BOUND
*UPPER-BOUNDS

UNIT

UNTIL

UPON

USAGE

USE

USING

VALUE
VALUES
VARYING

WHEN
WITH

*WORDS
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

INTERMEDIATE RESULTS IN ARITHMETIC EXPRESSIONS D

COMPUTATIONAL-2

The operations specified in an arithmetic expression or statement is accomplished in single-precision
rounded floating point (COMPUTATIONAL-2) for all operations succeeding the first encounter of a
COMPUTATIONAL-2 operand item or exponentiation in the arithmetic expression.

When all result items are COMPUTATIONAL-2, all computation is performed in COMPUTATIONAL-2.

COMPUTATIONAL and COMPUTATIONAL-1

When all operand items are COMPUTATIONAL or COMPUTATIONAL-1 and at least one of the results
is COMPUTATIONAL or COMPUTATIONAL-1, and the arithmetic expression contains no exponent-
iation, computation is performed either in COMPUTATIONAL or COMPUTATIONAL-1, usually
COMPUTATIONAL-1. Either single or double precision will be used to obtain up to 14 or 28 deci-
mal digits of precision to accommodate the size of the intermediate sum, product, or quotient.

When more than 28 decimal digits of precision would be required, loss of accuracy may occur in the
intermediate result. Outlined below is the method by which the compiler determines the size and
decimal point location of the intermediate results.

The size and point location for an intermediate result is computed from the size and point location of
the two operands. One of the operands may be the result of a previous operation of the same COM-
PUTE statement.

If the intermediate result field exceeds 28 digits, an extended diagnostic is printed at compute time
and at object time if all 28 digits are actually used; the result is truncated by dropping binary bits.

The following formulas are used in computing the size and point location for an intermediate result.

Let S, be the size of the operand 1 in number of digits and let P_ be the point location or the number
of decimal places. Let Sgand Py be the size and point location of operand 2.

If the operation is plus (+) or minus (-), the size of the sum is:

5, =max (S, - P)),(8

The point location is:

9~ PZ)) + max (Pl’Pz)

= *
Pt max (Pl’Pz)

* When a series of operands is to be added or subtracted, the compiler will increase the size to take
care of any possible carry.

If the operation is multiply (*), the size of the product is:

5751+ 5
The point location is:

Pt=Pl+P2

If the operation is divide (/), the size of the quotient is:

St = S1 + S2

The point location is:
Py=Py*8 -7

where operand 1 is the divisor.

Example:

Ttem PICTURE

9(5) V9(5)
9(11)
9(6)

V99
PPP99

A
B
C
D 9(3)
E
F
G 9(5)

COMPUTE A = B*(((C/D)/E) + F/G)

The processing steps would be:

1. C/D —~T,

2. T 1/E -1,
3. T2 — Temp-Cell-1
4 —
F/G T,
5. + —-
3} T2 T3 T4

* —
6. BT4 A

Value
Unknown
500.

11.

333.
0.03

. 0007

(first intermediate result, T 1)
(second intermediate result, T 2)

(first temporary storage cell)

Size and point location would be determined as follows:

1. ¢/D ——T1 method C
S. =6 SD =
P_ =0 PD =

PTl=P2+Sl—P1=PC+SD —PD=0+3 -0=3
The intermediate picture would be: 9(6)V9(3)

2. Tl/E —»T2 method C
S =9 S_ =
Tl E
— = 2
PT 3 PE

S,, =S_+8_=8 +SE=9+2=11

PT1=P2+Sl-—P1=PT1+SE—PE=3+2—2=3

3 T2 —Temp-Cell-1 no scaling is involved
4. F/G ~T, method C
SF =2 SG =
- P =
PF 5

— K - = + - = - =
PT P2+S1 Pl PF SG PG 5+5-0=10

The intermediate picture would be: PPPY(7)

5. T +T3—>T4 method A

2

S, =11 S,.. =7
T2 T3

P =3 P, =10
T2 T3

St = max ((S1 - Pl),(S2 - Pz)) + max (Pl’Pz) + 1 (see footnote, p. D-1)

=max ((S -P_),(S,., -P_) +max (P, , P,) +1
T2 TZ T3 T3 TZ T3

=max ((11-3), (7-10)) + max (3, 10) +1

=max (8,-3) + max (3, 10)

=8+ 10
=18
Pt = max (Pl’Pz) = max (PTZ,PT3) =max (3,10) = 10
The intermediate picture would be: 9(8)V9(10)
6. B*T : method B
=11 =18
SB ST4
P = P, =10
B T4
S, =85 _+8 =11+ 18 =29

p =51 ¥ 8, =85 + 8y
4
B =P +P, =P +P =0+10=10

2 4

The resulting picture would be: 9(19)V9(10); however, since this is the final result, the picture given
for A, 9(5)V9(5), is used. When the move to A is executed, the assumed decimal points are aligned
resulting in a loss of 14 high order digits plus 5 fractional digits to the value placed in A.

1If there were yet another step in the computation, the intermediate picture could still result in a
loss of digits due to the size limitation for intermediate results. The intermediate picture would be:
9(19)V9(10), but because low order binary bits may possibly be dropped at object time, approximate-
ly one decimal place might be lost.

Using the data set forth in the original example, the following steps would take place (parentheses
indicate contents of location):

Result PICTURE Contents
Step 1: (C) / (D) = 11/833. = . 03303 Ty = 9(6)V9(3) .033
Step 2: (T;) / (E) = .033/.08 = 1.1 Ty = 9(8)VY(3) 1.100

Step 3: Tg — Temp-Cell-1 No computation involved

Step 4: (F) / (G) = .0007/1. = . 0007 T
Step 5: (T2) + (T3) = 1.100+ .0007 = 1.1007 T4
Step 6: (B)*(T) = 500.x1.1007000000

PPP9(7) .0007000000
9(8)V9(10) 1.1007000000
550.3500000000 A = 9(5)V9(5) 00550,35000

D-4

Temporary Result Field

A maximum of 9 reusable fields are provided for storage of intermediate results.

Use of Arithmetic Expressions in Comparisons

When no result field is defined, as in a comparison, the method of computation and the size and point
location of both the intermediate and final result are determined by the rules given above for inter-
mediate results.

D-5

CALLING SEQUENCE FOR THE ENTER STATEMENT E

The ENTER subroutine-name statement generates the following sequence:

SA1 location of parameter list

+RJ subroutine-name

The parameter list consists of one full word for each data-name, procedure name, or file name
specified in the source statement. The list is terminated by a full word of binary zeros. The loca-
tion of the parameter list is followed by a return jump to the subroutine referenced by the ENTER
statement. Parameter formats are shown below. There are four possible formats for data-name
depending on whether it is a group item or, if not, is a computational-2, numeric, or non-numeric
elementary item.

Data-Name Formats

Group Name

size BCP type use address

36 30 24 E 118
class

Non-Numeric Item-name

size BCP type use address
57 55153 36 30 24 121 18
Z |_ just class
synch

Numeric Item-name
I 0 size BCP type use address
5 51 | 48 45 36 30 24 |21 18
sign synch class

point location

COMPUTATIONAL-2 Item

Binary Zeros address

18

Procedure-name

101 address

File-name

address (of FET)

The parameter fields from right to left are defined as follows:

Address This field is always in bit positions 17-0. It is the address of the data-name
item, or the file environment table (FET) for a file-name, or it is the address
of a procedure or an indirect reference to this procedure.

Indirect If this field is non-zero, the procedure address is indirect; it points to an index
word used by the compiler for overlays. It will occur only when the procedure is
not in memory.

S S =1 Section

0 Paragraph

Usage Usdge of data-name item

1 Display

2 Computational

4 Computational-1
6 Mixed (group)

Class Class of data-name item

Not specified
Alphabetic
Numeric
Alphanumeric
Mixed (group)

~N W N =O

Type Octal Value

4x Group item; x can be any value but 4
44 File
5x Elementary item; x can be any value

24 Paragraph
26 Section

BCP Beginning Character Position
0 Starting position is 0
1 Starting position is 6
2 Starting position is 12
9 Starting position is 54
Size SIZE of a data-name item as defined in the Data Division; computational-1

items may be one or two words.

Synch Synchronization of a data-name item as defined in the Data Division
0 Not synchronized
1 Synchronized right
2 Synchronized left
Just Justification of a data-name item as specified in the Data Division
0 Not justified (justified left)
1 Justified right
Sign Sign of a numeric item
0 Unsigned
1 Sighed
Point Point Location of a numeric item

bit position in field

1st 0 assumed point
2nd 1 actual point
3rd - 7th value of positions from right

Unassigned fields do not necessarily contain specific values.

SAMPLE PROGRAMS

Four sample programs are included in this appendix. The first is a typical COBOL program for
updating a master file and producing a report. The other three brief examples illustrate new fea-

tures in 6400/6500/6600 COBOL: mass storage input-output, sort, and subcompile.

the Report Writer is given in Chapter 5.

EXAMPLE OF COBOL PROGRAM

001010 IDENTIFICATION DIVISION,

001020 PROGRAM-ID. PUBLICATION-EXAMPLE,

001030 AUTHOR, CONTROL DATA CORPORATION,

001040 INSTALLATION, PALO ALTO.

001050 DATE-WRITTEN, MARCH-1963.

001060 DATE-COMPILED, 01/03/66 VERSION 2.1 3400P3600 COBOL COMPILER
001070 SECURITY. NONE,

001080 REMARKS. THIS IS A MASTER UPDATE EXAMPLE WITH A SPECIAL REPORT
001090 FILE,

002010 ENVIRONMENT DIVISION.

002020 CONFIGURATION SECTION.

002030 SOURCE-COMPUTER. 6600.

002040 OBJECT-COMPUTER. 6600.

002050 INPUT-OUTPUT SECTION.

002060 FILE-CONTROL, SELECT MASTER-FILE ASSIGN TO TAPEOL FOR

002070 MULTIPLE REEL, SELECT UPDATED-MASTER-FILE RENAMING MASTER-
002080~ FILE ASSIGN TO TAPEQO2 FOR MULTIPLE REEL, SELECT REPORT-
002090~ FILE ASSIGN TO PTAPEOL, SELECT DETAIL-FILE ASSIGN TO
002100 INPUT, SELECT ERROR-FILE ASSIGN TO OUTPUT.

002110 I-O-CONTROL, SAME RECORD AREA FOR MASTER-FILE, UPDATED-MASTER-
002120~ FILE.

003010 DATA DIVISION,
003020 FILE SECTION,
003030 FD MASTER-FILE RECORDING MODE IS DECIMAL LABEL RECORDS ARE

003040 STANDARD VALUE OF IDENTIFICATION IS #INVENT-MASTER =
003050 DATE-WRITTEN IS DATE-WORD DATA RECORD IS MASTER.
003070 01 MASTER SIZE IS 72 ALPHANUMERIC CHARACTERS.
003080 03 ITEM-NUMBER PICTURE IS 9(4)-.

003090 03 ITEM-NAME SIZE IS 20 AN DISPLAY CHARACTERS,
003100 05 GENERAL-CLASS PICTURE IS X(10).
003110 05 DETAIL-NAME PICTURE IS X(10).
003120 03 ON-HAND-QUAN PICTURE IS 9(5).

003130 03 REORDER-LEVEL PICTURE IS 9(4).

003140 03 RETAIL-PRICE PICTURE IS 9(3)V99.
003150 03 WHOLESALE-LEVEL PICTURE IS 9(3).

003160 03 WHOLESALE-PRICE PICTURE IS 9(3)V99.
003170 03 YEAR-TO-DATE-SALES PICTURE IS 9(5).

003180 03 YEAR-TO-DATE-PROFIT PICTURE IS 9(6)V99.
003190 03 LAST-YEAR-SALES PICTURE 1S 9(5).

003200 03 LAST-YEAR-PROFIT PICTURE IS 9(6)V99.
003210 FD DETAIL-FILE RECORDING MODE IS DECIMAL LABEL RECORDS ARE
003220 OMITTED DATA RECORD IS DETAIL,

NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX

A sample of

003230 01 DETAIL,

003240 03
003250 03
003260
003270
003280 03
003290 03
003300
003310
003320 03
003330
003340

ITEM-NUMBER
ACTION-CODE

88 SALE VALUE IS 1.
88 RECEIPT VALUE IS 2.

QUANTITY PICTURE IS 9(3).
VENDOR-IDENT SIZE IS 8 NUMERIC DIGITS,
06 VENDOR-CLASS PICTURE IS 9(3).

06 VENDOR-NUMBER PICTURE IS 9(5).
CUSTOMER-IDENT SIZE IS 8 NUMERIC DIGITS,
08 CUST-CLASS PICTURE IS 9(3).

08 CUST-NUMBER PICTURE IS 9(5).

PICTURE IS 9(4).
PICTURE IS 9.

003350 FD REPORT-FILE RECORDING MODE IS DECIMAL LABEL RECORDS ARE

003360 OMITTED DATA RECORD IS RECORD-LINE,

003370 01 RECORD-LINE SIZE IS 120 AN DISPLAY CHARACTERS,
003380 03 FILLER PICTURE IS X{5).

003390 03 ITEM-NUMBER PICTURE IS 9(4).

003400 03 FILLER FICTURE IS X(4).

003410 03 ITEM-NAME SIZE IS 20 AN DISPLAY CHARACTERS,
003420 05 GENERAL-CLASS PICTURE IS X(10).
003430 05 DETAIL-NAME PICTURE IS X(10).
¢03440 03 FILLER PICTURE IS X(4).

003450 03 YEAR-TO-DATE-SALES PICTURE IS Z(5).

003460 03 FILLER PICTURE IS X(4).

C03470 03 PROJECTOR-SALES PICTURE IS Z(5).

003480 03 FILLER PICTURE IS X(4).

003490 03 LAST-YEAR-SALES PICTURE IS Z(5).

003500 03 FILLER PICTURE IS X(4).

03510 03 YEAR-TO-DATE-PROFIT PICTURE IS $§¥¥%%%x9 99,
003520 03 FILLER PICTURE IS X(4).

003530 03 PROJECTED-PROFIT PICTURE IS $¥%¥%%9 99,
003540 03 FILLER PICTURE IS X(4).

003550 03 LAST-YEAR-PROFIT PICTURE IS $¥#¥¥%%9 99,
003560 03 FILLER PICTURE IS X(4).

003570 03 SALES-COMP PICTURE IS X(3).

003580 03 FILLER PICTURE IS X(4).

003590 03 PROFIT-COMP PICTURE IS X(3).

003600 03 FILLER PICTURE IS X(4).

003610 FD ERROR-FILE RECORDING MODE IS DECIMAL LABEL RECORDS ARE OMIT
003620- TED DATA RECORD IS ERROR-REC,

003630 01 ERROR-REC SIZE IS 120 AN DISPLAY CHARACTERS.
003631 02 FILLER PICTURE IS X,

003640 02 BAD-REC PICTURE IS X(72).
003650 02 MESSAGE PICTURE IS X(32).
003651 02 FILLER PICTURE IS X(15).
003660 WORKING-STORAGE SECTION,

003670 77 PATTERN-WORD PICTURE IS X(8).

003680 77 DAY-OF-WEEK PICTURE IS X(8).

003690 77 HEADER-LINE-COUNTER SIZE IS 1 NUMERIC DIGIT VALUE IS O.
003700 77 TITLE-LINE-COUNTER SIZE IS 2 NUMERIC DIGITS VALUE IS O.
003710 77 NEW-YEAR-IND SIZE IS 1 NUMERIC DIGIT VALUE IS O,
003720 77 WORK-PROJ-SALES PICTURE IS 9(5).

003730 77 SALES-DIFF PICTURE IS 9(5).

003470 77 PERCENT-SALES-DIFF PICTURE IS 9(3).

003750 88 LO VALUES ARE 0 THRU 10,

-2

NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX

003760 88 AVERAGE VALUES ARE 11 THRU 20,

003770 88 GOOD VALUES ARE 21 THRU 50,

003780 88 VERY-GOOD VALUES ARE 51 THRU 75.

003790 77 WORK-PROJ-PROFIT PICTURE IS 9(6)V99.

003800 77 PROFIT-DIFF PICTURE IS 9(6)V99.

003810 77 PERCENT-PROFIT-DIFF PICTURE IS $999

003820 88 P-LOW VALUES ARE O THRU 10,

003830 88 P-AVERAGE VALUES ARE 11 THRU 20.

003840 88 P-GOOD VALUES ARE 21 THRU 50,

003850 88 P-VERY-GOOD VALUES ARE 51 THRU 75.

003860 77 MASTER-END-IND SIZE 1 NUMERIC COMPUTATIONAL DIGIT VALUE
003861 Is 0.

003862 77 RESULT PICTURE IS 9(6)V99.

003863 77 RESULT-A PICTURE IS 9(6)V99.

003864 77 INT-RESULT PICTURE IS 9(8).

003865 77 INT-RESULT-A PICTURE IS 9(3).

003866 77 WORK-RESULT PICTURE IS 9(8).

003867 77 INTER-RESULT PICTURE IS 9(8).

003868 77 INTER-RESULT-A PICTURE IS 9(3).

003869 77 WORKING-RESULT PICTURE IS 9(10).

003870 01 DATE-WORD SIZE IS 8 AN CHARACTERS.

003880 02 MONTH SIZE IS 2 NUMERIC COMPUTATIONAL DIGITS.
003890 02 FILLER SIZE IS 1 AN CHARACTER,

003900 02 DAY SIZE IS 2 NUMERIC COMPUTATIONAL DIGITS.
003910 02 TFILLER SIZE IS 1 AN CHARACTER,

003920 02 YEAR SIZE IS 2 NUMERIC COMPUTATIONAL DIGITS,.
003930 01 HEADER-LINE SIZE IS 120 AN CHARACTERS.

003940 02 HEADER SIZE IS 112 AN CHARACTERS VALUE IS # 1
003950- # SALES AND PROFIT IN
003960~ # DICATOR

003970 02 CURRENT-DATE COPY DATE-WORD,

003980 01 TITLE-LINE SIZE IS 120 AN CHARACTERS,

003990 02 PRINTING-CONTROL SIZE IS 1 NUMERIC CHARACTER VALUE
004000 1s 0.

004010 02 TITLE SIZE IS 119 AN CHARACTERS VALUE IS # ITE
004020 - #M DESCRIPTION YTD-SAL PROJSAL LASTSAL YTD-PR
004030 - #OFIT PROJPROFIT LAST-PROFIT S-COMP PCOMP #.

004040 PROCEDURE DIVISION.
004050 START. ACCEPT DATE-WORD, OPEN INPUT

004060 MASTER-FILE DETAIL-FILE, ACCEPT CURRENT-DATE, ACCEPT

004070 DAY-OF-WEEK, IF YEAR OF CURRENT-DATE IS GREATER THAN YEAR
004080 OF DATE-WORD MOVE 1 TO NEW-YEAR-IND ELSE NEXT SENTENCE,
004090 MOVE CURRENT-DATE TO DATE-WORD, MOVE DAY-OF-WEEK TO PATTERN-
004100- WORD, OPEN OUTPUT UPDATED-MASTER-FILE REPORT-FILE ERROR.
004110~ FILE, READ MASTER-FILE AT END GO TO END-MASTER. READ DETAIL-
004115- FILE AT END GO TO END-DETAIL, IF NEW-YEAR-IND IS

004120 EQUAL TO 1 GO TO NEW-YEAR-PROC ELSE GO TO TEST.

004130 TEST. IF ITEM-NUMBER OF MASTER-FILE IS EQUAL TO ITEM-NUMBER OF
004140 DETAIL GO TO UPDATE, IF ITEM-NUMBER OF MASTER-FILE LESS THAN
004150 ITEM-NUMBER OF DETAIL GO TO WRITEOUT ELSE GO TO BADSEQ.
004160 UPDATE, IF SALE NEXT SENTENCE ELSE GO TO RECEIVED, SUBTRACT
004170 QUANTITY FROM ON-HAND-QUAN OF MASTER-FILE. IF ON-HAND-QUAN
004180 OF MASTER-FILE IS LESS-EQUAL TO REORDER-LEVEL OF MASTER-FILE
004190 PERFORM REORDER ELSE NEXT SENTENCE, ADD QUANTITY TO YEAR-TO-D

NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW -EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX

NEW -EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX

004200~ ATE-SALES OF MASTER-FILE, IF QUANTITY IS GREATER-EQUAL WHOLES
004210~ ALE-LEVEL OF MASTER-FILE GO TO WHOLESALE ELSE GO TO RETAIL.
004220 RECEIVED, IF NOT RECEIPT GO TO BADCODE ELSE NEXT SENTENCE, ADD
004230 QUANTITY TO ON-HAND-QUAN OF MASTER-FILE, GO TO RETURN,
004240 RETAIL, MULTIPLY QUANTITY BY RETAIL-PRICE OF MASTER-FILE GIVING
004250 RESULT, MULTIPLY RESULT BY .07 GIVING RESULT-A ROUNDED,., ADD
004260 RESULT-A TO YEAR-TO-DATE-PROFIT OF MASTER-FILE ROUNDED.
004265 GO TO RETURN,

004270 WHOLESALE. MULTIPLY QUANTITY BY WHOLESALE-PRICE OF MASTER-FILE GI
004280- VING RESULT, MULTIPLY RESULT BY .05 GIVING RESULT-A ROUNDED.
004290 ADD RESULT-A TO YEAR-TO-DATE-PROFIT OF MASTER-FILE, GO TO
004295 RETURN,

004300 BADCODE, MOVE DETAIL TO BAD-REC. MOVE # BAD ACTION CODE # TO
004310 MESSAGE, WRITE ERROR-REC. GO TO RETURN,

004320 BADSEQ, MOVE DETAIL TO BAD-REC MOVE # NO MASTER REC FOR DETAIL R
004330- #EC# TO MESSAGE, WRITE ERROR-REC. GO TO RETURN,

004340 REORDER, MOVE MASTER OF MASTER-FILE TO BAD-REC, MOVE #REORDER# TO
004350 MESSAGE, WRITE ERROR-REC,

004360 NEW-YEAR-PROC, MOVE YEAR-TO-DATE-SALES OF MASTER-FILE TO LAST-YEA
004370~ R-SALES OF UPDATED-MASTER-FILE, MOVE YEAR-TO-DATE-PROFIT OF
004380 MASTER-FILE TO LAST-YEAR-PROFIT OF UPDATED-MASTER-FILE, MOVE
004390 ZEROS TO YEAR-TO-DATE-SALES OF UPDATED-MASTER-FILE, MOVE ZERO
004410~ S TO YEAR-TO-DATE-PROFIT OF UPDATED-MASTER-FILE, GO TO TEST,
004430 WRITEOUT, IF HEADER-LINE-COUNTER IS NOT EQUAL TO O

004440 MOVE 1 TO PRINTING-CONTROL THEN IF

004450 TITLE-LINE-COUNTER IS NOT EQUAL TO 30 GO TO ANALYSIS-PROC
004460 ELSE MOVE ZEROS TO TITLE-LINE-COUNTER GO TO TITLES-PROC ELSE
004470 GO TO HEADER-PROC,

004480 HEADER-PROC. WRITE RECORD-LINE FROM HEADER-LINE. ADD 1 TO HEADER-
004490- LINE-COUNTER,

004500 TITLES-PROC, WRITE RECORD-LINE FROM TITLE-LINE,
004510 ANALYSIS-PROC, MOVE SPACES TO RECORD-LINE, MOVE CORRESPONDING

004520 MASTER OF MASTER-FILE TO RECORD-LINE, MULTIPLY YEAR-TO-DATE-S
004530~ ALES OF MASTER-FILE BY 360 GIVING INT-RESULT, MULTIPLY MONTH
004540 OF CURRENT-DATE BY 30 GIVING INT-RESULT-A. ADD DAY OF CURRENT
004550~ =DATE, -30 TO INT-RESULT-A. DIVIDE INT-RESULT-A INTO INT-RESU
004560~ LT GIVING WORK-PROJ-SALES. SUBTRACT LAST-YEAR-SALES OF MASTER
004570~ =FILE FROM WORK-PROJ-SALES GIVING SALES-DIFF, MULTIPLY SALES-
004580- DIFF BY 100 GIVING WORK-RESULT, DIVIDE LAST-YEAR-SALES OF
004590 MASTER-FILE INTO WORK-RESULT GIVING PERCENT-SALES-DIFF ROUNDE
004600 - D. IF PERCENT-SALES-DIFF IS LESS O MOVE #DEC# TO SALES-COMP,
004610 IF LO MOVE #LOW# TO SALES-COMP, IF AVERAGE MOVE #AVG# TO
004611 SALES-COMP,

004620 IF GOOD MOVE #GD.# TO SALES-COMP, IF VERY-GOOD MOVE #VGD# TO
004630 SALES-COMP ELSE MOVE #EXC# TO SALES-COMP, MULTIPLY YEAR-TO-
004640~ DATE-PROFIT OF MASTER-FILE BY 360 GIVING INTER-RESULT, MULTIP
004650~ LY MONTH OF CURRENT-DATE BY 30 GIVING INTER-RESULT-A. ADD DAY
004660 OF CURRENT-DATE, -30 TO INTER-RESULT-A., DIVIDE INTER-RESULT-A
004670 INTO INT-RESULT GIVING WORK-PROJ-PROFIT, SUBTRACT LAST-YEAR-
004680- PROFIT OF MASTER-FILE FROM WORK-PROJ-PROFIT GIVING PROFIT-
004690- DIFF, MULTIPLY PROFIT-DIFF BY 100 GIVING WORKING-RESULT
004700 DIVIDE LAST-YEAR-PROFIT OF MASTER-FILE INTO WORKING-RESULT
004710 GIVING PERCENT-PROFIT-DIFF ROUNDED., IF PERCENT-PROFIT-DIFF IS
004720 NEGATIVE MOVE #DEC# TO PROFIT-COMP, IF P-LOW MOVE #LOW# TO
004730 PROFIT-COMP, IF P-AVERAGE MOVE #AVG# TO PROFIT-COMP, 1IF

F-4

NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW -EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX

NEW-EX

NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX

,gﬁ!

PLS

004740 P-GOOD MOVE #GD # TO PROFIT-COMP, IF P-VERY-GOOD MOVE #VGD#

004750 TO PROFIT-COMP ELSE MOVE #EXC# TO PROFIT-COMP, MOVE WORK-PROJ
004760 -SALES TO PROJECTED-SALES., MOVE WORK-PROJ-PROFIT TO

004770 PROJECTED-PROFIT. GO TO WRITM.

004780 WRITM, WRITE RECORD-LINE, ADD 1 TO TITLE-LINE-COUNTER, WRITE MAS
004790- TER OF UPDATED-MASTER-FILE, READ MASTER-FILE AT END MOVE 1 TO
004800 MASTER-END-IND GO TO END-MASTER. IF NEW-YEAR-IND IS EQUAL TO
004810 1 GO TO NEW-YEAR-PROC ELSE GO TO TEST.

004820 RETURN, READ DETAIL-FILE AT END GO TO END-DETAIL. GO TO TEST.
004830 END-DETAIL, IF MASTER-END-IND IS EQUAL TO 1 GO TO CLOSE-FILES

004840 ELSE MOVE 9999 TO ITEM-NUMBER OF DETAIL GO TO WRITEOUT.
004850 END-MASTER., READ DETAIL-FILE INTO BAD-REC AT END GO TO END,
004860 - DETAIL. MOVE #NO MASTER REC FOR DETAIL REC# TO MESSAGE,
004870 WRITE ERROR-REC, GO TO END-MASTER,

004880 CLOSE-FILES, CLOSE MASTER-FILE DETAIL-FILE ERROR-FILE UPDATED-
004890 - MASTER-FILE REPORT-FILE, STOP RUN,

NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW -EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW-EX
NEW -EX

EXAMPLE OF SORT

The program SORT-1 establishes a file which program SORT-2 uses. The same file is sorted on
two different keys in two different programs,

RMM, 100, 75000, 17.
REQUEST, TAPEOL, MI.
REQUEST, TAPE02, MT,
COBOL,

LGO,

(7,8,9 card)
IDENTIFICATION DIVISION,
PROGRAM-ID, SORT-1.
AUTHOR, CONTROL DATA SORT EXAMPLE PART 1.
DATE-COMPILED,
ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE -COMPUTER, 6400
OBJECT-COMPUTER, 6400
SPECIAL-NAMES.
OUTPUT IS PRINT,
INPUT-OUTPUT SECTION,
FILE-CONTROL.
SELECT GEN-FILE ASSIGN TO TAPEOL.
SELECT SORT-FILE ASSIGN TO TAPEO2.
DATA DIVISION.
FILE SECTION, ﬂ‘%
FD GEN-FILE '
BLOCK CONTAINS 10 RECORDS.
TLABEL RECORDS OMITTED,
DATA RECORD IS GEN-REC.
01 GEN-REC,
02 IDENT-1 PICTURE 9(8).
02 FILL-1 PICTURE X(20).
02 IDENT-2.
03 ID-2A PICTURE 99.
03 ID-2B PICTURE XXX,
02 FILL-2 PICTURE X(60).
02 IDENT-3 PICTURE X(6).
SD SORT-FILE
DATA RECORD IS SORT-REC,
01 SORT-REC COPY GEN-REC,
WORKING-STORAGE SECTION.

77 A PICTURE 9(8) VALUE 00250000.
77 B PICTURE 9(2) VALUE 00.

77 C PICTURE XXX VALUE SPACES,
77 N PICTURE 9 VALUE O,

77 X PICTIURE 9(8) VALUE ZEROS.

77 Y PICTURE X(5) VALUE SPACES,

77 Z PICTURE X(6) VALUE SPACES,
77 RC PICTURE 9999 VALUE ZERO.
01 TABLPHB PICTURE X(24) VALUE #ABCDEFGHIJKLMNOPQRSTUVWX#.
01 TABLPHA REDEFINES TABLPHB,
02 TA PICTURE X(6) OCCURS 4,

{!Q

PROCEDURE DIVISION,
START SECTION,
N1. NOTE THIS SECTION WILL GENERATE A FILE TO BE USED BY SORT-1
AND SORT-2,
ST. DISPLAY #1 BEGIN SORT-1# UPON PRINT,
OPEN OUTPUT GEN-FILE,
MOVE ALL #GEN-FILE# TO FILL-1, IN GEN-REC,
MOVE ALL #MORE-GEN-FILE# TO FILL-2, IN GEN-REC,
PERFORM ST1 THRU ST3 250 TIMES. GO TO ST4,
ST1.
PERFORM ST2 VARYING N FROM 1 BY 1 UNTIL N GR 4.
GO TO ST3.
ST2.
MOVE TA (N) TO IDENT-3 OF GEN-REC,
MOVE TA (N) TO ID-2B OF GEN-REC,
ADD 1 TO B, IF B = 99 MOVE ZERO TO B,
MOVE B TO ID-2A, IN GEN-REC,
SUBTRACT 5 FROM A,
MOVE A TO IDENT-1, IN GEN-REC,
WRITE GEN-REC,
ST3. EXIT
ST4. MOVE 255000 TO A.
PERFORM ST1 THRU ST3 250 TIMES,
CLOSE GEN-FILE,
SORT SORT-FILE ON ASCENDING KEY,
IDENT-1 OF SORT-REC, IDENT-2 OF SORT-REC, IDENT-3 OF
SORT-REC,
INPUT PROCEDURE IS IN1 THRU IN2,
OUTPUT PROCEDURE IS OUTL.
IN1 SECTION.
IMP. OPEN INPUT GEN-FILE,
I1. READ GEN-FILE AT END GO TO IN2P.
MOVE CORRESPONDING GEN-REC TO SORT-REG,
MOVE ALL #SORT-FILE# TO FILL-1 OF SORT-REC,
RELEASE SORT-REC.
GO TO I1.
IN2 SECTION,
IN2P.
CLOSE GEN-FILE,
OUT1 SECTION,
OT1.
RETURN SORT-FILE, AT END GO TO ENDITL.
ADDL TO RC,
IF IDENT-1 OF SORT-REC GQ X AND IDENT-2 OF SORT-REC GQ Y
AND IDENT-3 OF SORT-REC GQ Z PERFORM PASS ELSE PERFORM FAIL.
GO TO OTL.
ENDIT SECTION,
ENDITL,
IF RC = 2000 GO TO ENDIT2.
DISPLAY #0%#% FATLURE ON RECORD COUNT, RC SHOULD = 2000, RC =
- # # RC UPON PRINT.
ENDIT2.
DISPLAY #0 END SORT-1= IF NO FAIL MESSAGES TEST OK# UPON
PRINT,

STOP RUN,
P-F SECTION,
PASS,
MOVE IDENT-1 OF SORT-REC TO X,
MOVE IDENT-2 OF SORT-REC TO Y.
MOVE IDENT-3 OF SORT-REC TO Z
FAIL.

.

DISPLAY #0%¥% FAILURE ON SEQUENCE CHECK OF SORTED

UPON PRINT,

FILE.#

DISPLAY #0 IDENT-1 = # IDENT-1 OF SORT-REC # X = # X

UPON PRINT,
DISPLAY #0 IDENT-2 =
UPON PRINT,
DISPLAY #0 IDENT-3 =
UPON PRINT,

(6,7,8,9 card)

(7,8,9 card)

IDENTIFICATION DIVISION
PROGRAM-ID, SORT-2.
AUTHOR, CONTROL DATA SORT EXAMPLE PART 2,
DATE-WRITTEN, 5 JANUARY 1967.
DATE -COMPILED,
ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE -COMPUTER, 6400,
OBJECT -COMPUTER, 6400,
SPECIAL-NAMES,
OUTPUT IS PRINT,
INPUT-OUTPUT SECTION,
FILE-CONTROL,
SELECT SORT-FILE-1 ASSIGN TO TAPEOL.
SELECT FILE-2 ASSIGN TO TAPEO2.
SELECT FILE-3 ASSIGN TO TAPEO3.
SELECT SORT-FILE-2 ASSIGN TO TAPEO4.
DATA DIVISION.
FILE SECTION,
FD TFILE-2 BLOCK CONTAINS 10 RECORDS
LABEL RECORDS ARE OMITTED
DATA RECORD IS TWOFILE,

01 TWOFILE.
02 ID-1 PICTURE 9(8).
02 FILL-1 PICTURE X(20).
02 1ID-2 PICTURE X(5).

03 1ID-2A PICTURE 99.
03 1ID-2B PICTURE XXX,
02 TFILL-2 PICTURE X(60).
02 1ID-3 PICTURE X(6).
FD FILE-3 BLOCK CONTAINS 20 RECORDS
LABEL RECORDS ARE OMITTED
DATA RECORD IS TREFILE,

IDENT-3 OF SORT-REC # Z

IDENT-2 OF SORT-REC # Y - # Y

#Z

o1
SD

01
SD

01

TREFILE COPY TWOFILE,
SORT-FILE-1

DATA RECORD IS ONESORT,
ONESORT COPY TWOFILE,
SORT-FILE-2

DATA RECORD IS TWOSORT.
TWOSORT COPY TWOFILE,

WORKING-STORAGE SECTION,

77 1-1 PICTURE IS 9(8) VALUE IS O,

77 1-2 PICTURE IS X(5) VALUE IS BLANK.
77 1-3 PICTURE IS X(6) VALUE IS ZZ77%7%.
77 COUNTER PICTURE IS 9(4) VALUE IS O.

PROCEDURE DIVISION.
START SECTION.

ST.

DISPLAY #1 BEGIN TEST # UPON PRINT,
SORT SORT-FILE-1 ON ASCENDING KEY I-1 I-2 ON DESCENDING
KEY I-3 USING FILE-2 GIVING FILE-3,

VERIFICATION-1,

OPEN INPUT FILE-3.
READ FILE-3 AT END GO TO END-1.
IF ID-1 is GQ I-1 AND
ID-2 IS GQ I-2 AND
ID-3 IS 1.Q I-3 PERFORM PASS ELSE PERFORM FAIL,

PASS,

MOVE ID-1 TO I-1, MOVE ID-2 TO I-2, MOVE ID-3,
ADD 1 TO COUNTER,

FAIL.

DISPLAY #TEST OF SORT FAILURE# UPON PRINT.
DISPLAY #I-1 EQUALS # I-1 UPON PRINT,
DISPLAY #I-2 EQUALS # I-2 UPON PRINT,
DISPLAY #I-3 EQUALS # I-3 UPON PRINT.

DISPLAY #COUNT EQUALS # COUNTER UPON PRINT,

END-1,

IF COUNTER EQUALS 2000 GO TO END-2 ELSE NEXT SENTENCE.
DISPLAY #RECORD COUNT FAILURE

#COUNTER SHOULD BE 2000

#COUNTER IS # COUNTER UPON PRINT.
GO TO END-2,

END-2., CLOSE FILE-3, GO TO BEGIN SECTION,
BEGIN SECTION,

SORT SORT-FILE-2 ON ASCENDING KEY I-1 I-2 ON DESCENDING
KEY I-3 INPUT PROCEDURE IS STEP-1 SECTION
OUTPUT PROCEDURE IS STEP-2 SECTION,

STEP-1 SECTION,

MOVE TWOFILE TO TWOSORT,
RELEASE TWOSORT,

STEP-2 SECTION,

RETURN SORT-FILE-2 AT END GO TO AT END,
IF ID-1 IS GQ I-3 AND
ID-2 IS GQ I-2 AND
ID-3 IS LQ I-3 PERFORM PASS ELSE PERFORM FAIL,
AT END, IF COUNTER EQUALS 2000 DISPLAY #END OF TEST# ELSE
DISPLAY #RECORD COUNT FAILURE
COUNTER SHOULD BE 2000

- #COUNTER IS # COUNTER UPON PRINT,

STOPIT,
STOP RUN.

(7,8,9 card)

EXAMPLE USING MASS STORAGE 1/0

RMM, 100,75000,17 .,

REQUEST ,DISK-1,D0100.

REQUEST ,DISK-2,D0100,

COBOL.

LGO.

(7,8,9 card)
IDENTIFICATION DIVISION,
PROGRAM-ID, MASS-TWO.

AUTHOR, CONTROL DATA MASS STORAGE EXAMPLE,

DATE-WRITTEN, 12 JANUARY 1967.
DATE-COMPILED,

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SOURCE-COMPUTER, 6400,
OBJECT-COMPUTER., 6400.
SPECIAL-NAMES.

OUTPUT IS PRINT, INPUT IS PUT-IN,

INPUT-OUTPUT SECTION,
FILE-CONTROL,
SELECT TWIGGS ASSIGN TO DISKO1l
FILE LIMIT IS 2000
ACCESS MODE IS RANDOM
PROCESSING MODE IS SEQUENTIAL
SYMBOLIC KEY IS SYM-KEY-1.
SELECT HOHUM ASSIGN TO DISKO2
FILE LIMIT IS 100
ACCESS MODE IS RANDOM
SYMBOLIC KEY IS SYM-KEY-2.
DATA DIVISION.
FILE SECTION,
FD TWIGGS
LABEL RECORDS ARE OMITTED
DATA RECORD IS ROOTS,
01 ROOTS.
02 KEY-1 PICTURE X(7).

02 GARBAGE-1 PICTURE X(113).

FD HOHUM
LABEL RECORDS ARE OMITTED
DATA RECORD IS YAWN.
01 YAWN.
02 KEY-2 PICTURE X(5).
02 GARBACE-2 PICTURE

F-10

WORKING-STORAGE,
77 SYM-KEY-1 PICTURE X(7).
77 SYM-KEY-2 PICTURE X(5).

77 N PICTURE 9999,

77 COUNT PICTURE 9999 VALUE IS 0.

01 TABLE,
02 TABLE-A PICTURE X(25) VALUE IS #ABCDEFGHIJKLMNOPQRST
#FUVWXY#.
02 TABLE-B REDEFINES TABLE-A PICTURE X(5) OCCURS 5
TIMES,

01 CARD-IN-1,
02 CARD-KEY-1 PICTURE X(7).
02 FILLER PICTURE X(113),
01 CARD-IN-2,
02 CARD-KEY-2 PICTURE X(5).
02 FILLER PICTURE X(115).
PROCEDURE DIVISION,
START,
OPEN INPUT-OUTPUT TWIGGS, HOHUM.
PERFORM ABC 1900 TIMES, GO TO NEXT-STEP,
ABC,
MOVE #COUNTER# TO KEY-1.
MOVE ALL #FILE-1# TO GARBAGE-1,
ADD 1 TO #COUNTER#.
MOVE KEY-1 TO SYM-KEY-1.
WRITE ROOTS INVALID KEY PERFORM ERROR-OP,
NEXT-STEP,
PERFORM XYZ VARYING N FROM 1 BY 1 UNTIL N = 6., GO TO FINISH,
XYZ,
MOVE TABLE-B(N) TO KEY-2,
MOVE ALL #FILE-2# TO GARBAGE-2.
MOVE KEY-2 TO SYM-KEY-2,
WRITE YAWN INVALID KEY PERFORM ERROR-OP,
FINISH,
CLOSE TWIGGS,
BEGIN,
OPEN I-0 TWIGGS.
READ-CARDS-1.
ACCEPT CARD-IN-1 FROM PUT-IN,
MOVE CARD-KEY-1 TO SYM-KEY-1,
READ TWIGGS INVALID KEY PERFORM ERROR-OP,
IF CARD-KEY-1 = KEY-1
AND GARBAGE-1 = ALL #FILE-1# THEN PERFORM PASS-1
ELSE PERFORM FAIL-1.
ADD 1 TO COUNT,
IF COUNT IS LESS THAN 20 GO TO READ-CARDS-1,
CLEAN-UP,
DISPLAY #COUNT SHOULD BE 20 COUNT IS # COUNT UPON PRINT,
MOVE O TO COUNT,
READ-CARDS-2,
ACCEPT CARD-IN-2 FROM PUT-IN.
MOVE CARD-KEY-2 TO SYM-KEY-2.
READ HOHUM INVALID KEY PERFORM ERROR-OP,
IF CARD-KEY-2 = KEY-2

I'-11

AND GARBAGE-2 = ALL #FILE-2¢# THEN PERFORM PASS-1
ELSE PERFORM FAIL-2.
ADD 1 TO COUNT,
IF COUNT IS LESS THAN 5 GO TO READ-CARDS-2.
CLEAN-UP-2.
DISPLAY #COUNT SHOULD BE 5 COUNT IS # COUNT UPON PRINT,
MOVE O TO COUNT. :
STOPIT.
CLOSE TWIGGS, HOHUM,
STOP RUN.
ERROR-OP.
DISPLAY #INVALID KEY ERROR,#.
PASS-1.
DISPLAY #TEST OK# UPON PRINT,
FAIL-1.
DISPLAY #MASS STORAGE FAILURE# UPON PRINT,
DISPLAY #CARD-KEY-1 SHOULS EQUAL KEY-1# UPON PRINT,
DISPLAY #CARD-KEY-1 IS # CARD-KEY-1 UPON PRINT,
DISPLAY #KEY-1 IS # KEY-1 UPON PRINT,
DISPLAY #GARBAGE-1 SHOULD BE ALL FILE-1, GARBAGE-1 IS #
GARBAGE-1 UPON PRINT.
FATL-2
DISPLAY #MASS STORAGE FAILURE# UPON PRINT,
DISPLAY #CARD-KEY-2 SHOULD EQUAL KEY-2# UPON PRINT,
DISPLAY #CARD-KEY-2 IS # CARD-KEY-2 UPON PRINT,
DISPLAY #KEY-2 IS # KEY-2 UPON PRINT,
DISPLAY #GARBAGE-2 SHOULD BE ALL FILE-2, GARBAGE IS #
GARBAGE-2 UPON PRINT,

(7,8,9 card)

0000327 \
0001854
0001492
0001066
0001776
0001642
0000812
0001010
0000001
0000020
0000893
0000412)
0001111 These are data cards for mass storage test program.
0001234
0000808
0000307
0000064
0001550
0001883
0001396
FGHIJ

ABCDE

PQRST

KLMNO

UVWXY /

(6,7,8,9 card)

F-12

EXAMPLE OF SUBCOMPILE CAPABILITIES

RMM,T100, CH75000, P17,
COBOL,
COBOL,
COBOL,
LGO.
(7,8,9 card)
IDENTIFICATION DIVISION,
PROGRAM-ID, BSUBCOMPILE.
AUTHOR, CONTROL DATA SUBCOMPILE EXAMPLE,
DATE-WRITTEN. 31 JANUARY 1967.
DATE-COMPILED.
REMARKS,
THIS IS PROGRAM-B WHICH UTILIZES PARA-1 OF ASUBCOMPILE.
ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE-COMPUTER, 6400,
OBJECT-COMPUTER, 6400,
SPECIAL NAMES,
OUTPUT IS PRINT,
DATA DIVISION,
COMMON STORAGE,
77 A PICTURE IS 9(3) VALUE IS 1.
77 B PICTURE IS 9(3) VALUE IS 2.
77 C PICTURE IS 9(3) VALUE IS O,
PROCEDURE DIVISION,
DECLARATIVES,
BSUBCOM SECTION,
INSERT-POINT,
ENTRY PNB-1.
END DECLARATIVES.
BEGINNING SECTION,
PNB-1.
DISPLAY #TEST OF BSUBCOMPILE PROGRAM,# UPON PRINT,
MOVE 2 TO B,
MOVE O TO C,
PERFORM PARA-1,
IF C IS NOT EQUAL TO 147 DISPLAY #ERROR IN ARITH OR
- #SUBCOMP FEATURE - C SHOULD EQUAL 147, C IS # C UPON PRINT,
(7,8,9 card)
IDENTIFICATION DIVISION.
PROGRAM-ID, CSUBCOMPILE,
AUTHOR, CONTROL DATA SUBCOMPILE SAMPLE.
DATE-WRITTEN, 31 JANUARY 1967.
DATE-COMPILED,
REMARKS.
THIS IS PROGRAM-C WHICH UTILIZES PARA-2 OF ASUBCOMPILE.
ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE-COMPUTER, 6400,
OBJECT-COMPUTER, 6400,
SPECTAL NAMES,
OUTPUT IS PRINT,.

F-13

DATA DIVISION.
COMMON STORAGE,
77 A PICTURE IS 9(3) VALUE IS 1.
77 B PICTURE IS 9(3) VALUE IS 2.
77 C PICTURE IS 9(3) VALUE IS O.
PROCEDURE DIVISION,
DECLARATIVES,
CSUBCOM SECTION,
INSERTION,
ENTRY PNC-1.
END DECLARATIVES,
FURST SECTION,
PNC-1.
DISPLAY #TEST OF CSUBCOMPILE PROGRAM,# UPON PRINT,
MOVE 147 TO C.
PERFORM PARA-2.
IF C IS NOT EQUAL TO 50 DISPLAY #ERROR IN ARITH OR SUBCOMP
#FEATURE - C SHOULD EQUAL 50, C IS # UPON PRINT,
GO TO PNC-1,

(7,8,9 card)

F-14

IDENTIFICATION DIVISION,
PROGRAM-ID. ASUBCOMPILE.
AUTHOR. CONTROL DATA SUBCOMPILE SAMPLE,
DATE-WRITTEN. 31 JANUARY 1967.
DATE -COMPILED. ,
ENVIRONMENT DIVISION, f‘.
CONFIGURATION SECTION,
SOURCE -COMPUTER. 6400,
OBJECT-COMPUTER, 6400,
SPECIAL NAMES,
OUTPUT IS PRINT,
DATA DIVISION,
COMMON STORAGE,
77 A PICTURE IS 9(3) VALUE IS 1.
77 B PICTURE IS 9(3) VALUE IS 2.
77 C PICTURE IS 9(3) VALUE IS O.
PROCEDURE DIVISION,
DECLARATIVES,
SUBCOMP SECTION,
ENTRY-POINTS.
ENTRY PARA-1, PARA-2,
END DECLARATIVES.
START SECTION,
BEGIN,
DISPLAY #1 BEGIN TEST OF SUBCOMPILE,# UPON PRINT,
PERFORM PARA-1. GO TO CONTINUE SECTION,
PARA-1.
ADD A TO B GIVING C,
MULTIPLY C BY 49,
CONTINUE SECTION,
INITIAL.
IF C IS NOT EQUAL TO 147 DISPLAY #ARITHMETIC ERROR - C SHOULD
#EQUAL 147, C IS # C UPON PRINT,
PERFORM PARA-2, GO TO ENDING SECTION,

PARA-2,

SUBTRACT 47 FROM C.

DIVIDE C BY 2.
ENDING SECTION.

IF C IS NOT EQUAL TO 50 DISPLAY #ARITHMETIC ERROR - C SHOULD
- #EQUAL 50, C IS # C UPON PRINT.

PERFORM PNB-1.

ENTER PNC-1.

DISPLAY #END OF TEST,# UPON PRINT,

STOP RUN,
(6,7,8,9 card)

COBOL DIAGNOSTICS G

Compiler diagnostics are printed on the source program listing. Generally, only the catastrophic
diagnostics are listed; those that will cause program termination. However, the user may request
a listing of extended diagnostics through the LX option on the COBOL control card. A series of
asterisks and a diagnostic number are placed before or after the line in error and just to the left

of the line number column in the listing. The number is followed by a diagnostic comment. If cross
reference line numbers are requested by the LR option, they are printed just to the right of the
diagnostic comment. A cross reference indicates the line number in which the referenced item
appears.

The compiler recognizes only errors in COBOL syntax; faulty programming logic is not recognized
unless it produces a syntax error.

If sequence numbers are specified in columns 1-6, a diagnostic is issued each time the sequence
does not ascend. If columns 1-6 are blank, no sequence check is made.

Execution time diagnostics are also produced by the COBOL system. These are displayed on the
console when the error is detected. Such errors may or may not cause program termination.

COMPILER DIAGNOSTIC MESSAGES

The types of diagnostic messages produced during compilation are listed below. These types are
indicated by a code letter associated with the message.

Code Meaning

T Trivial; syntax error, program continues

E Error; syntax error, program continues

U Unconventional; syntax error, program continues
C Catastrophic; program execution terminates

All diagnostic messages produced by the system are separated into functional areas according to
the portion of the source program or phase of compilation. The diagnostic numbers fall serially
within four arbitrary ranges associated with these functional areas.

Range
1-99

100-129
130-199
200-499
500-799
800-999

Diagnostic messages with corresponding number and type are listed in order in the following pages.

G-2

Area

SCAN2

Identification & Environment Divisions
General

Data Division

Procedure Division (Passl)

Procedure Division (Pass2)

‘paeo snotasad
woaj 3d1Iosgns 10 BNWL.IOJ B snunuod o} jdwsny

jutod UOTJENUIIUOD B PIJBOUNI) 9 [[IA [BIOIIT

‘paxoust
) UWN]0O Ul YUBlq JI0 USYdAY UBY)J ISY30 I910BIBYD

‘uoryenjound moriof jsnw 9ovdS

* (moy107 3snw poraad & xo juelq

‘youndAey peg J0F J00UD

‘WNWIXEW SI9)OBIBYD GGF

‘WNUWIXBUW JI9JOBIBYD (€

* I9)0BIBYD

[e109ds 10 }os I9]0BIBYD S} UI J0U ST I9}0BIBYD
*103BOIpUl poLIad I9)B oIIoWNU J0 90BdS ON

*(ax0J0q pomo[e ooeds oN

') opooead jsnw eordg

"UOISTAIp Jodoad ur pesn jou pIom PoAIssay

:£11094100UI POST UO[OOIWSS JO BUIWIO))

‘SUISIBW g puB ¥ usemioq surdeq our|

uoISSnosig

AAANLLNOD d9d AVIN (MON) YAHLIAN

TVEILIT TVOIHHIINAN-NON A0 ddVD
NOLLVANLLNOD NO dLONAY® HNISSIN

ATHONDI
= L NINQTOD NI HELOVYVHD TVOHTTI

NOLLVALONAd HNIMOTIOL IDVdS ON
AOVdS X9 dAMOTTIOA LON (

quaom
J0 YALOVIVHD LSUId A9 LONNVD (

- SHALOVYVHD §6% NVH.L
JILVEYD TVEULIT DIYHNAN-NON

LHOIY HHL NO dALVONAYL
- SHALOVUVHO 0€ NVHL HILVIYD
JYNLOId 4O TVHHALIT 4O JWNVN-VIVd

HNVN SV AILVILL
- QHOM NI Q)YALOVEVHD AI'TVANI

aomdad dd OL ddNNsSSv
- dO0Iddd 4dLAV HOVdS ON

SISHHILNHYVd
LHOIY H8044d9 dDVdS TVvOdTTl

SISHHL
“NHIVd LAdT 90439 IOVdS ON

HNVN SV CHLVIYL
-qHOM IAEHASTY A0 JSN TVDHTTI

agom 40
LAHT OL NOILVALONAd LOTHHODNI

¢TI NIWN'TOD TH0oddd
NINOQTOD DNILYVLS LOHYYOINI

orjsouserq

ST0

¥10

€10
¢10
TIT10

010

600

800

L00

900

G00

700

€00

200

100

"ON

G-3

‘owrBU 9[qB}dedor UB

jou ST SNJe)S-YOIMS Y} Jo 309[q0 8YL ¢
"9 ySnoayy

1 1e8ejur UE j0U SI PAIBOIPUI YOyMs SYL ¥
‘peaInbal se [BI9)I] OlIOWNU-UOU B

jou st uSts £ouadano oy} Jo 300lqo oYL g
"VININOD
pIoM 8Y} UI'BIUOD 10U $90p VININOD

ST LNIOd TVINIDAA $,98Ne[0 dYL ¢
‘pIom

£o3 & s1 asnelo AJ00 9y} Jo 309lqo oyl T

:IN000 SJI0IIo SUIMOT[OF 9Y} JO OUO S9)BIIPUL

‘uopB[1dwoo 309JJ8 10U S0P SOUSSE SII
10900 Aq peainbal pue Surssiwt ST §I USYM USATDH

sweu wexdoxd ayy s 700D
-1 suSisse gorrdwoo ‘s3s1xo (I wei8oxd ou JI

'@l wexsoad
o P[NOYS UOISIAI(J UOIJBOIJIIUSpPl 8y} Ul Wl ISIL

-Sursseo0ad aWNSaL UL I YOTYM WOI] pIom £3Y B
puty 0} Surfa} sT Io1IdwWOO SIYM POISJUNOIUS SPIOM
a0y uoa1d osTy ‘piom oyeridoxddeur ue xo aziu
-S000J 10U SOOp J1 PIOM B poJojunoous Iordwio)

‘peaI 9 []IM PIBO JXSU JISPBOY UOISIAID
® 10U ST 11 JI 'JI0pBaY UOISIAI(J UOI}BOIJIIUSPL o9
03 weigoad 20an0s Ul PIBO }SITY saammbax 70900

‘poousnbasel useq
10U 9ABY SPAEBO PoSueIIBLI I0 POOBIASTW ST PIBD

-sureu ydeadeird 10 uol}oss aanpeooxd
‘ JopBOY UOISIAID © I0] UIdaq ulsiew Vv ped

“PIBO MU UO UOT}BNUNUOD OU JI POIBOUNI) ST 18IS

uoISSnosiq

AIYONDI ISAVTIO
-dSNAVID SHINVN TVIOAdS dvd

ONISSIN S SLi FH0M

104900
JINDISSV - AINVN.NVEDO0dd ON

NOISIAIA dI NI HAVHD
-y4vd LSYld LON aI-INvydOodd

NOILLVZINOYHONAS
J0 LNO YATIdINOD 4O QHOM avd

WVYH0dd 40 a4vO
I1SYId LON YAaVAH NOLLVOLALLNHAL

ANVN VIVA SV AALdIDDV - NOISIAIQ
SIHL YoM dIAHISTY DAD-NON

auyvd LXIAN NO siviIdd L-1
SNINATOO NI HAGIWAN FONIANDAS

8 NINNTOOD NI NIDII dT1NOHS
auvO LXIN NO dgOM LSdld

TVHAILIT DISANAN
-NON d0 ONJ LV ZLOND ONISSIN

osouselqg

901

SOT

701

€0T

G0t

T0T

(44

8T0

L10

©
-
(=4

<
4

0
2

G-4

'8 uwnjoo ul Juilaels paom A9y jxou puij o} jndur
sugos JoT1dwod ¢ LOHATHAS I0 Xd0D o9 1snw
ydeaSeaed TOYLLNOD-ATIA Ul 9SNBIO I}SII]

‘SVAYV ALVNYALIV ON sewnsse zoidwo)
"za8ejur 10 ON 99 jsnw uonndo FAYASHY Jo 309[qO

‘paJoudl ST 9sNBIO ‘109[qo se I188a3ur
300(qo urejuod jou soop uorydo LINIT - AT1d

TIVIININOAS sewnsse go1tdwos INOANVY 10
TVLINAIN®IS oq jsnw uorydo §SHADDV Jo 109(qO

‘uonydo HNISSADOHJ 103 pajuswo(dwt Ajussoad
j0u ST WOANVY ~Joridwoo £q peuwmsse ‘uorjdo
HNISSADOUJ oY} woxy Surssiw st TVLLNANDIS

‘poumsse ST THAY ‘uonydo
HTJLLTAW woay Sursstuwi sT LINQ 10 TIAY

"HT SSVd JI9)®
sojeulWLIS] IOTIdWOD 8y, oW} peoj 109lqo

AJ00S ydnoayy jun (otsdAyd & 03 pousdisse

ST swBu Jojuswardwil SIYL, 'NDISSV Jo 109[qo
se (owreu xojuswajduwr) aweu o1 odL3-odoos
® Jo Juowudisse soainboa welsds §d0DS
"osne[d LOHTHS Surmorjoy uopdo NDISSV ON

‘poaoust st uorydo Surmreusa (91qe1dosor
jou st asne[do LOHTAS Ul ONINVNIY 0 309[q0

*90U9)USS JO PUS 0} SUBOS
Joidwo) 'paJoulr ST OSEN[O JO JOPUIBWOI OWBU
a11] 91qB1deoo® oa®Y j0U S90pP 9snB[d LOHATHS

‘paxousll ST 9SNB[O 2JIIUD
‘{103ojur J0 owBU o]qB)deoor UBY] IOY}BI PIOM

Loy ® ST 9sne[o AJ0D JO 309[q0 usym USATY)

uorssnosiq

HdVYDVHVd TOHLNOD-JTId avd

VHIYV HLVNUHLIV
ON HINNSSY - ISNAVID HAHASHY Avd

ATHONDI
HSAVIO-HESAVTID LINIT-HT1I4d avd

TVIINANOJIS
ANASSY - ASAVID SSADOV Avd

AINNSSV SI
INg DNISSII ST TVIININDAS, agom

THIYE JINNSSVY
—ONISSIIN SI , LINQ. O J/IHHEYH, agOom

TVLVA - DNISSIIN SI NOLLJO NDISSV

HSAVTIO ONINVNHY 40 LOHLIO ON

JHLOITIS SHTIIA ON

HINVN 04 qyOom
JIAYISHY 10 dSO TVDHATTII

o1180U3BI(q

911

STT

4%

ETT

498

ITT

01T

601

801

G-5

. L.

DNISSIN SI HAVEODVEVA TOYILNOD-HTIA

=

Le

"HUT ssed
Jo pue e sojeurwas} Jofidwo) ydeadeaed
TOUYLNOD-ATIA STy} WIYILM paloolas j0u LOHTHS TVLIVA - AILOATIS
ul ONINVNIY jo 100[qo ST Jey) SaWBU JO SUQ HYIM SHTIIA AINVNHIY TTV LON 9] 921

‘osneIo
SAY0OT Y V.ILVA ureiuos jsnw (qg) uorpdrrose(
110§ “1j0q j0ou ‘9snB[O LHOJIY ® 10 SAYODIY NOILAIYOSHd AT NI ISNVTID
V.V ureuoo isnuw (@4) vondriosed ol v LY0ddYd YO Q40D dY VIVA HNISSTIN L SzT

‘oUIBU SWIBS Y)IM POUIep Juioq So]qB} 91 0M] UL
jmsax [1im STyl ydeiSeied TOHLNOO-ATII
oy} ul LOATHS snorasad Aq pouryep ouwreu o114 QALOITAS AAVIHTY ANVN-TTII CI $21

-19£ s® suoN ezt

‘194 s® auON 1 221

‘poJoulr ST osne(o aanjuy - Iofojul 10 SUWIBU OfIf
a1qeideooeur xo paoridsiw surejuoo ydeadered ATHONDI

TOYLNOD-O-I ut asne[d F1Id ATdILTIANW HSAVID - dSAVID dHTIA dTdILTAN avd q T2t

‘uorpe(idwoo uo 3109JJ0 ou SBy
‘osne(o 114 ATJLLTAN woay Sursstw st JIId QINNSSY SI LAd DNISSIIN SI ,JTLd, AHOM L 021

*£1UO UOIJBIUS WM OOP J0J ST ISNB[O

STY} pue ‘SO 1408 [|B IOJ BDOIB SWIBS 9} Sash
LYHOS 9ouls 1001100 oq [[Is4 uorje[iduroo Jo 1jnsag
oy} ‘®aJe L[YOS JIO0J ST 9sne[o JINVS JT I0A0MOH
‘paaoust st esnelo ‘oqeideoor j0u ST oWkl 9] JI

"OUIBU S[I B 9q }SNW osNe[d TINVS JO 199[q0 JIYONDI ASNVID - HSAVTID HINVS avd q 6TT

‘paxoul! st osne[D ‘porfoads £]1001400 j0U
st ydeasered TOYLNOD-O-1 Ul osne[d NAYAY QIHONDI FSAVID - ISAVIO NAYFH avd q 8TT

‘oA0qE SE owes ndul suros Ja[idwoo pue
paaouslt st asne[d AJ0D "dSAVID LOATHAS

NTY AT TITATT N AN N1 TITAMT TYTITCITIT AT f
1] o3 woaj poidos og 03 WOl AUVUCQIT NO T

UOTSSNO SI(JT1SouseI(Q odX T, "ON

G-6

104 se ouoN

‘UoISTAIQ BlRd Ul I9pBOY
UoI}098 apadead 10U S90p JIopEay UOISIAIQ Ble(

‘104 S® ouoN

I9pEBaY
JI0 90US}USS UL poor[dsiw J0 SUISSTW ST poLIad

"POJOUSI ST 90ULjULS SIIUS SIoqWINU
[049] 103 o8uea pe1deoo. UI J0U ST ISGWINU [9AS]

‘uorjoeg jroday uey)
JI9Y3j0 UOISTIAI(] BJB(JO UOI}09s ul pairodde qy

‘sonury
-U0d UOTIB[IdUI0D {pIom paIinbal € ST NOLLDAS

‘104 s® QUON

‘rsenur}
-u0d uorje[dwos {piom paxrnbed ® s1 NOISIAIQ

“19711dwod "TOFOD STy} ur pojuswerduwr
104 j0uU paEo parfoads TOFOD Od JO 9INFBS} V

"d1 SS®BJ JO pue 1B
sojeUlULI9] J9[1dWO) -oousnbes xedoad ur jou
UOISTAI(BJB(Q I0 ‘JUSWIUOIIAUF ‘UOIIBOIJIIUSPL
"BUISSTW ST J9PBOY UOISIAIP IO UOISIAID JoleIy

‘11w IOU senull
-uoo uorteyrdwoy ‘ydeaSeaed TOHILNOD-O-1

ur 9sne[o Beae LYOS AN VS oSh 0} jugpunp
-9d ST 1 {Seyl} [[B J0] BOJIB SWIES Sosn [YOS

UOISSNosI(q

HHAVHH NOISIAIQ HNISSIIN

aordiad aIdVvVIdSIA YO DNISSIN

THIEONDI WHLI - ¥IFINAN TIATT Avd
NOILDJS Ly0dayd
-NON NI dNNOJ NOLLAI¥DSHd LIO0ddY

HHAVHH NO DNISSIIN {NOLLOJS: QHOM

HHAVHEH NO DNISSIN ,NOISIAIQ, GI0M

TALNINWATAAI LON J4QLVAL

TVLVA - NOISIAIQ
AdLVOI'TdNd 0 AZDVIdSIIN ‘DONISSIN

vIgv
JNVS HHL JYVHS SAVMTV SATII LYOS

TALVOI'TdAd HO 44ayo
40 LNO HAVHOVEVd TOYILNOD-TTIA

J11SOUSBIQ

adk,

012

6032

80¢

L0g

902

§0g

€032

G0g

T0g

002

0€T

62T

8aT

0N

G-7

'Pa1ITWO 1ogB] YA
o1y ® seonpoad pue Surssesoad sonuiuoo Jard
-wo) ‘SurssiwW ST [9qe] 9y} JI0J osne[do dNTVA
1nq pedejunosus asneo TAG VI oiqerdeooe uy

*SSEB[O Ul orIaWnU
-eyd[e S€ POJOPISUO0D 9] [[IM [BISII] SLISWNU
oY} puE poIouoy oq T4 TV {[€89] j0U ST [BIN]
otaewnu € Surpeooad ssne(o ANTVA B Ul TIV

‘ueniam Ajaedoadwr sem asne]o 10 uorjdraosep
. ur poaeodde asne(d TAGVT OU JoYIH

‘punoj usaq j0U SBY J9qUInu
[9AS] ® MOT[OJ 03 paaInbad SI Yorym oweu Byeq

‘qT SSBd JO pue }B So1BUL
-wxey o1y Jo Sursseooad LDATHS SI93UNOJUD 1
uoym xerrdwioo £q dn jas AeIjIUl ST 9]q®)} OII 93
o0uIS "UOISTAI(] jUuswuoliAug ul LOITIS Sutpuod
—-S9J.J00 OU $BY UO[}1098 9I] Ul poJajunodua 04

- I910®IBYD o1}3qeydle
2UO 9ABY 1SNW UOISTAL(B)B(9Y} Ul SWEBU BIBp V
‘UOISTAI(] B1e(Ul poJeadde sBy sWeu-oInpaooid

‘194 S®B QUON

Twelt ds 40 (04 ue

9q }SnuW UOoI}098 AL Ul Wl ISaryq ‘uorydizosop
911 uBY} Joyjed uordiIosep pIodad aq 01
sxeeddz uorjoeg o[l Ul WOl 91qrIdedE 1SIT]

1SSTIoS1Q

TAIVT UVANV.LS 404 HNTVA AVd

OIYAINNNVHATY HNASSY - TVOITII
SI J/ITV, TVYHLIT ODIHINNON

asaviD Tddvl
WOHA HNISSIN SI ,JHODHY, ddOMm

ILIINO HNNASSV
-dSNVTIO THIVT DNISSIN 40 dvd

YAIdIWNN TIATT ONIMOTIOL HINVN ON

IVLVA - T1I4 904 LDATHS ON

YIAVIH AL
AaIaIdAdd LON dNVN-THHINdFIO0dd

agoddyd
ONIQIOHdYd NOLLAIYDSHA AT1IA ON

61¢

8T¢

L1g

91¢

S1¢

1434

(84

(484

ITe

.
Q
4

G-8

‘paJaoudr SI 9sne[o
‘owreu 21qe}daoo® Uk jou ISne[d Xd0D Jo 192(q0

"LUOS 2y} £q paaoust oq [[Ia g AJ[BWIOU
poasseooad st asne[) - I03draosep oy LUOS B SE
a1eradoadde jou st uorjdiaosop (IS Ul 9SNB[O V

‘poxous! SI oSne[o ‘owrBU-BIED 9[qB}deodr
ue jou ST SANIIZAAY SuIMO|[0F PIOM YL

‘powINSSE ST
$9 JO 9zIS ® {0ZIS 300]q sk xedejur oiqeideooe

ULBIUOD 10U $90p 9sne[o SNIV.ILNOD MD0Td

‘paaoudl Ajjuasaad SI 9SNB[D 20UlS
uorye[rduwoo 309]J6 jou s90p ‘ao3ajul 91qeidaooe
UTBlu0o 30U S20P 9sSn7[d SNIV.ILNOD HTIL

‘pedoudt st ucpdo NO HNIANIAJAA
"owreu 91qe)1da0o’ I0 ‘HIBW PIOJSI ‘pIOM

Koy £q pamorrog jou st uorydo NO DNIANAIIA
J0 J030jul a1qe1dedor UIBIUO0D J0U S80p ((.0)

uorydraosep o[y Ul 9sne[d SNIVLNOD Q90dd Yy

TsonuIuod
uorrelidwo) -esned GNTVA Ul Susstw st 40

" SONUIIU0D
uonjeridwio) osmMe[O ANTVA Ul Surssiw st 0O

‘paaoudr st osnBlo {309(qo
SB 9WRBU-BJEP JO [BISI] 91qe1doooe aARY j0U

s90p (1) uorydraosep o1 oy3 ur asnB[O FNTVA

uorsSnosiq

dHYONDI WHLI
— ESNVTID AdOD NI NIAID FIWNVN ON

ATId
LIOS NO ILVIHdOYddV LON ISNAVID

AIYONDI IASAVTID
- ASAVTIO SUNILIAIY NI HINVN avd

ISNVIO SNIVILNOD D014 avd

HSAVIO SNIVLNOD J1Id avd

HSNVTIO SNIVILNOD dTIA
INOYd DNISSIIN ST ,.SAYODHTY, AYOM

DNISSIN ,OL:, a4OMm

ASAVTIO SNIVINOD a400dy avd

ASNVTID SAYODHY

VLVA NO DNISSIIN SI .A¥4ODHY: ad0Mm

HSAVIO HNTVA NO DNISSIA ST 40 dd4OMm

ASOVTIO HNTVA Ava

onsouserq

0€3

633

823

Lgg

922

(144

1244

44

[444

122

02¢

"ON

G-9

‘powmnsse ST AV I1dSIA °190[go s& piom
o1qe3deoor UIBIUOD JOU S0P @SNE[D ADVSI

' 108e7ul oy} sopooaxd piom oY} YSnoyl sB 9sNE[O
oy} sessoooad aepidwio) -esne(d NOILLVDOT
INIOd sof[o] 3ou proys LAHT 40 LHDIY

" (1ySra 01 3301) seoeld T¢g ST UOHBOO] jutod WNUWIXB]

‘1¢ Speeoxs osne[d NOLLVOOT LNIOJ uf 1o89ul

‘weoy AIBJUSUWISOTS UB J0] 9ZIS WNUIIXBW (GGg 0}
198 aq [1IM "Wej JI0J 9818] 00] SI pOIeRIS OZIS

‘pexoul] -AIBIQI] 9} UO puUNoj
j0u XYVYAIT WOUA AdOD £q perjroeds swreN

'194 SB SUON

‘POPJIBOSIP SI WOJl Y} ‘Sosed
1sowr ul ‘Jxeedde jou soop sweu Suldyi|enb Inq
‘gorjeorJiTenb SurA(dwi oureu 8 smo[0f 10

‘sonupjuoo Jursssooad pue

pewnsse ST AYVYLIT pIom oyl ‘AYVHL
-T'T 70U Ing WOY.I SUIBIUOD 8sNB]d XAdOD V

€

AVIdSIA HNASSY - ASAVID HDVSN aAve

INNSSVv
WLAET, HSAVID AAZINOHEHONAS
NOYd DNISSIN LHOIY, d0 +LJAdT,

AIOVIdSIN ;LAHAT, O ,LHDIY, adOM

OY¥HZ OL LIS - HIDHALNI
NIVLNOD ION SHOQ ISAVTID LNIOd

OdHZ OL LdS - dOYV'1
OOL NOILVDOT LNIOd dH.LVOIAaNI

INASSY
WLAHT, - 3SAVID LNIOd WOdd
DONISSIN LHOIY, ¥0 +LAAT, Ad0M

JHIDHALNI
NIVLNOD LON SHOA dSAVID HZIS

66z 10 WNNIXVIN OLL
LdS - dOUVT OOL HZIS AdLVOIANI

A4vyadIT NO
aNAOd 9 LONNVD HWVN dHLVOIANI

ANVN IT1dYIIIOOV
NV X9 dAMOTTO0L LON 10 QIOM

QHIINNSSY
, AgVYdIT, -, A9vdadIT, adoMm
A9 @IMOTTIOL LON \INOHd, Ad0OM

onsouserd

(424

1v¢

(U4

6€2

8€¢2

LEC

9€2

154

1494

€8¢

434

€28

G-10

‘poJousdr sI
uorjdQ -owBU-EBIEP 91qBI1d000E UIBIUOD J0U SOOP
9sMB[d SHNDDO ut uorydo NO HNIANAJHA

" (paaouslt

s1 uorssaaddns J930BIBY)) ‘poAOW onjeA
Jo ssotpaedaa ‘uorssaaddns ou ur Sunnsox
‘jurod jRWITIOSP JO 3J9] 0} sooeld Jo JoquuInu
UuBy)} I93I8] ST 9SNB[O HNIAVAT Ul Io80jul

" SONUIU0D uorje[Iduroo pue PoaWNSse ST
11 $9sne[o LVO'IJ Ul PoI9Iunosus 10u ST NHIS

*pagoust
ST SNE[O 9YL "} MSod J0u [[IM SSHIddNS
OYHZ "SSTUJIANS £q pemoy[of jou ST OUIZ

‘O4dZ NIHM 3INVId I0]
ojnrIsqns ' se pejuewe(dwi useq sBY ZMd

‘poxoudt s1
osnEe[D " LHOHIY Aq pomoy[of jou sem qAIALLSNL

*paxoult

S1 9sn®Bo 9], '3Jo1 polyiisnl L(jeuwiIou oIB
swo)l o1jeqeydie pue oraouwmueydyy - 1ysia
patfiisnl sABM[B 9I8 SWO)I OLISWNN “OSNB[O
LAHT AHIAILSL MO0T[® 30U 80P TOIOD

‘powmsse ST DISANANVHATY "199(qo s®
pIom o1qe1de0or UIBIUOD 10U S80p 9SNB[O SSVID

Torssnosta

HWVN NO DNIANIJHA aAvd

AHEONDI HENQVTO DNILIAT ONIAIDHYd
- HDYVTI OOL HADILNI DNIAVIT

ATYONDI NOLLdO - ¥IDHLNI
Ad dIMOTTOJ LON ONIAVHT, dHOM

HINASSV ST LN9 ESNAVTID
LVOTd WOYd HNISSIIN ST NDIS, TdOM
0ddZ, AdOM AIDOVIdSIN

O ISNVIDO SSHUddNS OdZ Avd

OdHdZ NIHM
JINVIG 04 dHINASSY ,0ddZ, Ad0M

o4z
NHHM JINVII SV ALLdIDDV ZM4

HSNVTIO AAIAILSAL avd

LAIAT dATJILSAL
SV d4LVNDISHA 39 LON NVD IWHLI

OIMHINANVHATV
HINNSSV - HSNVIO SSVIO avd

orpsouserq

4514

T¢g

042

672

8V¢

Yhid

9%¢

Sve

1444

1544

‘ON

G-11

‘NYHL Jo 100(qo s® [eIaI]
orerxdoadde aa®y j0U SOOpP 8SNEB[O ADHNVYH

*19A S®B QUON

TIsSNBIO Xd0OD

oY) mo[10J ABW 9snB[d ON “AJOD spoooaad
few SANIAAQAY AuQ ‘osne[d SANIAAAAY
MO[[OF J0U S90p WISl UOISIAIQ Bled B Ul AdOD

‘poIoust ST Wo)l ‘9SBO

puooss ul -oSuel SHINVNAY 9I1jUs SB pasn SI
owiBU JSII “SWRU-BIEp 91qBIdedor A pamo[]0]
jou SHINVYNAY ‘osne[o SHINVNHAY Ul NYHL

‘paxoust ST weIl
‘wregr 99 [9A91 uo Jeadde Afuo ued SHWVYN
- 99 19A9] pOuBISSE 10U UOISTAI(Q BIB(Q
w weyl ypm pereedde SHINVNAY pPIom £a3

*9SNE[D MaU

® soziudoosa ao1idwoo oY) 1jun payeadaa oq
Aew sorpsouSerp owlos pue ‘paiculdl St osny[o
oY} Jo jsex oy, -Jeodde jou soop Jng [BISI] ©
Surd1dwr esneo FNTVA ul saeadde NYHL

‘paaoudl ‘esnelo
ANTVA Jo 109(qo se [eIall] o1qe1desor oN

"18303 SN OO0 S® pasn ST 10803ul 38I1d

- 10801ul o1qBIda0oR Aq PaMO[0] 10U ST g
‘YN D0 ut xe8ejur 3saiy 19378 sagadde O,

‘paaoull ST osnelo
¢ 10897ut a1qEIdesor Aq pamollo] 10U SYNDDO

uoIssNosIq

ASAVTIO HONVYH Avd

dIHONDI
WALI - 3SQVID AdOD TEOVIASIN

SHNVNI Y, 5O
JNYHL, @E0OM DNIMOTTOL HINVN ON

AIYONDI
-INELI TIATT 99-NON V NO SHINVNIH

TVHELIT
V A9 AIMOTTIO0A LON (Q14HL, AdOMm

TVEILIT d1dVLdIODV
NV HIAVH LON SHOd dSNVTID HNTVA
HEDILNI

A9 AIMOTTIOI LON ,OL: adOm

AIYONDI FASNVTIO - HIOALNI AL
aamoT17T0Jd LON ;841000 AgoMm

amsoudria

@
% =

19¢

092

662

86¢

LG3g

962

GGe

14514

€6%¢

2|

b
’

G-12

‘paJsjunoous ST L) I0 ‘TQ ‘i s®

yons Jsquunu [9A9] [1JUN poAoJ}Sop 918 SWaII
JI9YIny pUe Pakoq)sep ST W9l I8qUINU [9AS]
o1gB}dooor Aq pamo[o] J0U (I JO ISPBSY UOI10aS

"UuO0[3008 o114 Ul [BSS][l oIB SWSII L) [9A9T

‘pa009x
1801801 ur aeadde jou ABWI 3] -UOI199S B UI
woll 18a1] oY} sk Jeadde jsnl Wl L) 19A9T

‘poaoudt
ST weyl - o1qeideooer jou ST Wl ur jdrrosqng

‘194 s® QUON

-AJewaou senurjuoo Suisseooad “{(dA)
uo13diIosop 9[I] PO1BIOOSSE J0 9SNB[0 SUHODAY
V.LVQ Ul peIst] jou (10) pI099I 1821307 JO dWEN

‘genurjuoo Sursseooad

pue powmsse ST YATIIA - JOqUNU [9A8]
Surmorof YATITIA J0 swru o[qeldsoor oAy 10U
S20p ja0doy UBY) JOYIO UOI}OOS B Ul WOIT UY

*104 s ouoN

104 SB 9UON

‘s3nsag

Jadoad soonpouad zo1idwioo ‘aIopao Jo o st
UO0I109S ©JIJUd J['SNOJUOIID 2JB SISO
‘oo1m] saeadde uor}09s B J['JI0p.IO JO INO

ST J0 ‘901M] paaeadde UOISIAL(B}B(UI UOI}O9S

uoIssnostq

JIIINON THATT HTIVLAIDOV
Ad dIMOTTIOL LON ¥HIAVIH NOILOJS

IYONDI
IWHLI - NOILDHS HTIA NI 22 THAHAT

dIHONDI WHLI
- NOILDJS NI LSHId LON L THAAT

AIHONDI WHLI - LdI¥0SdASs avd

HASAVIO S@Y4O0DEY
VIVA NI dHELSIT LON HIWVN qH400HYd

AT,
HNNSSV - YHIINAN THAHT MOTTIO0AL
LON SHOQ HIWVN HT1dVIdIDDV NV

J4a40
40 LNO 0 ddLvOI'TdNd NOILDAS

NOILODJS SIH.IL NI
ZLVIEdOdddV LON HHdINAN THAHTT

orsousera

§6¢

¥6¢

€62

4314

162

063

€9¢

¢9¢

o
4

G-13

pPozZIuOIYOuULs
sfkempe ST woyl u-TeucrIBIdwos {juepunpoy

*$SB[O DIYANN Sownsse
Io71dwiod oYL OIYANAN 30U ST pauljep SSBID

‘paaoull sI osne[)

'POMO[I® J0U SWo)T SLISWNU UC uoljedrfsnl 3391
- zo11dwoo oy3 Aq Ajreorjewome 3ysia peryysnl
‘Swejl oldawmu uo 1B39[[l St @sne[o AHIJLLSAL

‘paxousdt
ST osne(o ‘Wl YHATTIL uo [BS9][! ST ONILIAH

*Auo oSesn AVTJSIA 9ABY UBD WYl ALIAH

‘paaoudt st osnelo ANDIS "9Sne[d
DNILIAA yism Suoie peaeadde osne[d AINDIS

‘paxoudt ST 9sne[d INDIS
‘pojdeooe ST 9sne[d FUALOId 'S UB 8ABY

j0u so0p FYUNLOIJ USTYyM J0f 8sne[d JUNDIS

UoISSnosI(l

AHYONDI
IHLI - 88 PUB L. NO TVDHTII HHTTIA

AATYONDI s¥NDD0 - NWHLL
YHATIIA NO TVOHTTII SAVIO SHNDD0

AIIONDI SANIAIdHY - IWHLI
YATTIIA NO TVOITTI 3SAVTID SINIIHATY

QIYONDI HNTVA - ESAVTID
SUNDD0 YO SANIAAAHY V NO HNTVA

AIZINOYHONAS
SAVMTVY SI N-TVNOILVLAdIWODO dDVSQ

DIYHINNN TINASSY - SSVID DIdINAN
SHYINOGIY TVNOILVINJANWOD dDVSN

QIYONDI dSAVTID - WHLI OIHHINAN
NO TVOITII EISAVTID AHIJLLSAL

TIYONDI HSOVID
- WALl §ITTI4 NO TVOITTII ONLLIAA

AVTIdSIA dHDVsN INNSSY - SESAVIO
AOVSA ANV HONILIAH DNILOITINOD

daLddOOV DNLLIAH - SHSAVTIO
QANDIS ANV ONILIAH ONILLOITANOD

AdLdIDIV JYNLOId - SEHSAVID

HAYNLOId ANV QINDIS DNILOITANOD.

orsouSerq

L0g

90€

G0€

70¢€

€0¢

50¢€

10¢€

00¢€

66¢

86¢

L6%

"ON

G-14

*19£ s® QuoN

‘9sneo

AYNLOId JI0 HZIS 9A®Y 1SNW SW)l AIBIUS WO

‘194 sB QuoN

*(welr JuBUTWOP S7T JI0) S[QEIIBA
UOIJIPUOD WIOJIJ USY B} ST WIS) 88 JO 9ZIS

UOISSNosI(q

JHYONDI HSAVTIO AANDIS - IWTLI
dNOdd NO TVIHETTII ASNVID AANDIS

= HZIS JNNSSV - DNISSIN S1

TIATT AYVININATI NO ESAVTID HAZIS

AIHONDI WHLI
- WHLI SHNVNHY ¥V LON SI 99 THAJT

JIHONDI WHLI
= DNISSIAL SI NOILLDJS LNV.ILSNOD
NI WHLI 42 NO ¥SAVIO HATVA

IYONDII S4NDD0 - WHLI
LL NO TVOHTTII ASNAVTID SHNDD0

HYONDI WHLI - DNISSIN
SI WH.LI 88 NO ASNVTID HANTVA

JHIHONDI DNILIAH - WHLI
88 NO TVDHTTII dSAVTID ONILLIAH

AHYONDI SENIAHTATY - WH.LI
88 NO TVDHTII HSNVID SANIIHAAY

JHYONDI HDVS - WHLI
88 NO TVDHTTII ESNVTID HDVSN

AIHONDI SHNOD0 - WHLI
88 NO TVDHTII SAVIO SHNDD0

AIYONDI HZIS
- IWHLI 88 NO TVDHATTII ASAVID HZIS

oysouderq

odLy,

0z2¢€

6T€E

8T¢€

LT1¢

9T1¢

1€

y1¢€

€1¢

(485

11¢€

01¢

60¢

80¢€

*ON

G-15

‘BaIB PIOODI
sures asn [[& A9y} 90UlS JOYJO YOBO OSUIJopod
K[1eoryRWOINE S[I] B UIYIIM SPI0D0I [BOI30] IV

NOILDHS dTId
NI TO NV NO TVDHUTTII SEANIAHATY

AHYONDI WHLI - 99-NON NO SHNVNHYH

AIHONDI IWH.LI

- NOILDHS HTIA NI 88-NON NO HNIVA

AHYONDI IWHLI - SESNAVTID YHHLO

HLIIM QALVIDOSSV 9 LONNVDO SHINVNHY

*1SI1] 9y} JO J9IJi[enb B
9q 01 pewmsse 9 [[IM SWRBU puodas ‘NI 10 0
Surueagour ue jnoytm paaeadde sewrru om]J,

*PO1BIDOSSE ST 31 YoIyMm 0} pIooad TeorSo]
MO[[0] A[91BIPOWW] JSNUW WO STINVNHY PI00dd

NI, 40 10, X9
AAAAOTUd LON IIWVN HNIAAITVAO

10 HINNSSV
- 10 NV LON JTId NI WHLI LSHId

THYONDI WHLI

1801801 B UIYIIA POPPaqUI 94 JOUUBD SWLI 99 (24971 - AQHODHY NI WHLI LSVT LON 99 THAAT

AIYONDI ISAVTIDO - WHLI 4d110YDO

NO TVOHTII ISNAVTID AAZINOYHONAS

AIYONDI HSAVIO - WAL

dNOoY¥D NO TVDITTII ASAVID dUIJLLSAr

AIYONDI

ASNVTID - WHLI dN0OY¥YD NO TVOHTII

SASNAVID HHNLIId ANV ONILIAH

AHIHONDI

NOILLVOOT INIOd - WHLI 400D NO
TVOITTII 3SAVTID NOILVDOT LNIOd

\J.ﬂao)ddmsd

el
LSS oy

q
E#

i =
o

4

T€¢

0€e€

({149

8%¢

LzZg

92¢

Gge

1449

€¢e

(443

G-16

‘pa10adxe ST SUOU oJ8yMm UINISI QUIINOIGNG

‘oweu uorjoes 0} sdoys Jerrdwo)
*90USIUSS MAU B J0J JUryoo] o[IyM punoj aNH

‘pownsse st
porred ¥ ‘90oU9IULS 1SB[UO SUISSTW porIag

"POIMIIISQNS ST SWEBU PIBPUBIS B ‘OWIBU SABY
10U SOOP UOISTAI(J 9INPSd0IJ UT UOIID9S ISITT

‘poInlIisqns ST oWRU pIBPUBR]S
V UOISTAL(J ©anpadodd ur yderdeaed 3sIry 1oy
oweu ydeadered Jou oWeU NOILOHAS I9UIION

‘pIed I1xou 03 dij)g "SUISSTW porIsg

"paed 1x¥ou 03 drys Sursstw NOISIAIA PIOM

104 sB auoN

‘pauriep
£pyuesoad jou uorior Joridwio) -uoridIIossp
aJd ue ur seadde ABW SOSNBIO 9Y) JO 9UO ATUQ

UOISSNOST(

YHTIAWOD TAHSINIA
NI ¥10D00 LON dINOHS ¥O¥Yd SIHL

‘ONHT @IDVIdSIN

AVID0Ud JO UONHT HHNILVINIYd

*DNISSIIN ST HIWVN NOILLDHS

"HNISSTIN AWVN JHQAID0dd
HIAVHIH NOISIAId ¥HdOYdINI

"HEAVIH NOISIAIA HIdOYdINI

THNNSSYV ST
LNd DNISSTIN ST VWINOD aZIIndIy

aav) LXIN Ol dISS - doIgdd
HLIM dNH LON SHOQ dSNVID AdOD

ad HINVS NO dSAVID SaY00Hyd
VIVA ANV 3SAVTID LY0ddd HLO9

THIYONDI ¥SNV'ID - HTI4d LY0S NO
TEZMOTTIV LON dSNVTID NO DNIANAJIHA

orjsouserd

odAy,

90¢
G0S
¥0G
£0¢
G0¢

T0S

00G
98¢

9€¢
gee

1439

€€¢

4949

G-17

*SIUS WIO)RIS
TBUOT}IpUOD J0 9ATIRISdWI JO pus 8 JUISSTN

"poddrys HANTONI
"poddrss IANTONI
"poddrys AANTONI

“LIXH 1913V

‘9ouLUes FSN JO pue 1V
-Sursstw ydeadeaed Jo 1xo,
-SUISSTW ST UOT109S JO X T,
FuissTW ST UOT}09S JO 1X9],

‘poraad xof
yoaeog -I9pBoy NOILOWAS woiy Surssiwt porasd

"HSN 10f oo NOLLOJS I03fe SurssTl poriad
‘paeo 1xau 01 dIS ~SurssIw poraed

"paed Ixou 03 IS PUNoOJ 10U SHAILVUVIOHA
'SHALLVYVIOAJ AN ON

*SOATJBIB[OOD
ur Uor09s 1sa1y uo Sursstw NOLLOJS

*9WIBU UOI03S JOJ YOJIBSS ‘SOAIJRIBIISP UIT
uorjoes 1sary ayj 1oy SUISSTW 9WRU 9INPad0IJ

*piBO JXou 01
diyg "JIopeay S9AITBIBIOSP UO SUISSTW POTISdg

UOISSNOSI(

" ONISSIN dOoTddd
" DNISSIIN dOIYdd

"HONISSIIN HIVd INHINIDVIdHYE

"DNISSIIN HINVN FENaED0odd

"DNISSIIN dorgdd

"ONISSIN dorddad

‘HAVEDVIVd TTON

*NOLLDHS TTIAN

"NOILDJIS TTAN

"ONISSTIN dOoTddd

"ONISSIIN doIddd

"SHAILVAVIOIA ANH HIdOYdINI

‘SHAILVEVIODHA ANH HIdOUdNI

NVYD0Ud 40 ANH JENLVINIdJ

*DNISSIN ST HINVN NOILOJS

"ONISSIIN HINVN NOLLOHS

“MAAVIH NOILOIS HAJOUJINI
orisouserd

adiL

1444
1444

(44
TGS
0gSs
6TS
8TG
LTS

91¢

G1¢
€IS
ST1S
T1¢

0TS

60S

806

Lo¢

ON

G-18

"ANIMIY 10} Sursjoo] ‘avd aNIMHY ON HIIM

‘ON 0¥ Bursjoor] ‘avd aNIMIY ON HILIM

"sweu aanpeooid puooss Ioj Suryoory ‘avg Asavio dagoodd
‘aTAD0Ud I83e OJ x0f Surjoog ‘avd HsAvId aado0odd
"QIADOUJ I0} Burjoor] ‘avd Isnvio daddodd

‘O 10y Buryoo ‘avd dsnvio aaddodd

"UoT3IpUcd oY} I0y Suryoo| "avd ISNVID DONIXAUVA
“TIILNQ X0} Sursjoo] ‘avd dSNVTID ONIAYVA

‘A9 I9YE pIom I0J Julyjoo] ‘avd JSAVTIO DNIAYVA

‘Xd 10§ Suryooy ‘avd dSAVIO HNIAYVA

"WOYA I8 e pIom Ioj Sursjoory ‘avd dSAVIO HDNIAYVA
‘WOYJ 10] Sursoort ‘avd HSAVTID HNIXAYVA

"STH o porrad o}
dois AIM AITVANI I0 ‘ONH LV ‘HOWMT
AZIS NO I9Je sArjerodwir 3se] SUIMOT[O] "DNISSIN ASTE Y0 QOIYAd

AT AI'TVANI 4O HZIS NO ‘NT IV NIHIIM
TIMOTTV LON INIWILVIS TVYNOLLIANOD

"NYHL Surmor[oq "ONISSIIN HINVN HYNATO0Yd

"(pxom peaxesax oq prnod) Jo Surmoriog "ONISSTIN IINVN HYNdIDOYd

"MOYYd dZIS NO Sursseooad o1tym ‘WVYIDH0Ud A0 ONE TYALVINALL
UoISShoSIq o11Sougelq

187241

0%¢

6€6

8€S

LeS

9¢¢

Ggs

¥€6

€€S

(43¢

TeS

0€¢

66G

8¢S

L2S

9¢¢s

144

G-19

a7 W

“daI Ul

"AV1dSId wolg

‘peso[d oq Jsnw SI 9uUO 1SBA] IV

‘LdIDOV Wordg

‘LdHEDOV WoIq

*durpuodsediod qQV WOIJ
-Gurpuodsaraods @y WOIJ
‘Surpuodsoxiod Ay WoId
uewele]s 9ndwiod Wod g
"HILAJIWOD I8PV

‘osmne[o AdM ILHOS Ul
"ONIANHDSY 191V
"ANIMIY 10] Sursoo]

"ON 10} Surjooy

UOTSSNOSIq

« .

"DNISSIIN SINIWHLVIS H04L

"ITIVZINDODHIYUNN NOLLIANOD

"ATIVZINDOOTUNN ANWVN DINOWINW

"DNISSIIN IIWVN HTId

*ONISSTIN ISAVID OL dadd0dd

"HTIVZINDOOTUNN HIWVN DINOWINIA

"ONISSIIN Y HIATINIAI
*ONISSIN L'INSHYA

"ONISSIIN OL

*DNISSIIN YHIATILNIAI
"ONISSIIN STVADH YO WOoHd

*DNISSTIN YHTJLLNIAI

"ONISSTIN DNIANIDSHA YO DNIANADISY

*ONISSIN YHIJLLNIAI
'avd aNIMHY ON HIIM
"avda aNIMIY ON HIIM

*ONISSITIN HINVN dHTId4
‘avd dsnNvid LAdLNO

‘avd IsSnNviIo LOdNI

orpsouselq

09¢

6G¢

8G¢G

LGS

96¢

GG¢

766

€65

(494

166

0G¢

6%S

8%S

LS

9%§

524

¥¥S

€%S

(4724

G-20

"THONHINAS
IXAN woly Sursstw FONALNAS AT Ul

‘poraed Io HSTH oIojog

UoISsSNosig

THTAIDITTHLNINA NOIS
TYNOILVHHJO YILAV NOILLVINYOJINI

"DNISSIIN ONIMIY ON

"HLIM ¥HILJAV DNISSTIN ASAVTID

"HLIM ¥ILJAV DNISSIW ISAVTIO

TISAVTIO LONIXYVA, avd

TISAVTIO WONIAYVAL avd

‘HSAVTID LODNIAYVA, avd

TILINQ 9314V ONISSIIN NOLLIANOD

"ONISSIIN . SHWILL,,

‘NYHL
YEILAV DNISSIN TFWVN HAVIOHVUIVI

‘IWdOoJ9dd
HALAV DNISSIN TIIWVN HAVYDVIVA

u THIONHLNAS
LXUN: INOYd ONISSTIN AONHALNAS
"ONISSIIN SINHWHLVIS ASTVA

o HONHLNHS
LXIN, HHLAV YVIddV SININALVIS

4 "HONHINAS
LXUN: ZNOYA DNISSIW AONAILNAS,

STISouserq

TLS

0LS

696

896G

196G

999

G96

796

€96

G9¢

96

G-21

C

‘INHNHLVIS HLVAINID
WO¥d DNISSIN dNO¥D LIOddd

*ONISSIN (LHOTY

"ONISSIN NOLLIANOD

' HdAL NOILVIAHYGIdVY avd

‘¢ AdAL NOILVIAZYAdV avd
*(LHOIY HNISSIIN

“(LHOIY VUIXA

"INANOXA avd

'/ 40 % YILAV WYL avd

‘SHYHA
Al 40 HONVYd NI SINIWHLVIS dvd

"ONISSIN (LHOT™

"ONISSIIN IWHAL LJIY0S9Ns qUIHL
"ONISSIN WHAL LJI¥0sdNs aNODIs
"ONISSIN WY AL IJI¥0s9Ns

"ONISSIIN NOLLIONOD A0 ILDALdO

0TIV, YALAV ONISSIN TVHILIT VHATVY
MATATIVA® avd

‘NDIS TEINOILLISOd ATAvd

UOISSTOSTQ STJSOUSEI(

€66
c6S
166G
06S
686G
88¢
L8S
98¢

Gg¢

8¢
€8¢
28s
186
08¢
616G
815

LLS

G-22

'90USIUSS QWBS oYl Ul
Io1[aee Jeodde isnui uolBIaI 919[dwoo Y

'8
uwn[od Ur ST pIom oY) Io0 poraod B OABY
10U PIp 9oU9lUSS SNOIALJId JT USAD ‘QWBU

oanpeooxd B I0] IXoU SIOO] I ‘pIiom
-foy ® 9zrufoosa jouuro JoTidwion weyM

UOISSTOST(q

‘NOILVIAAYAIV

INTIIVAAV SIHL NI HINLILS

-40S OL ATAVIIVAV ION SI LOALHO
‘NOLLVIAY ‘ILDIrdNs ALITIJNOD V

"ONISSTIN ST NYNLIY
NI ESOVID XHI TVANI 4O ONH LV

"DNISSTIN ST Aviay
NI 3SAVID AH3 dI'TVANI ¥O NI 1V

"TATTIASIIA ST QHOMAHTY ¥O
JddH ILOMdXH HWVN H¥Naiadodd

‘LOArLdO A9 dHIMOTIOL LON ANV

"HONHINAS HNO NVHI HYOW SNIVL
-NOO HAVUDVEVd INHIWILVIS HNO

dTIsouderq

669

86G

L6S

96¢

G6¢

766

G-23

‘ojur IAIAIQ X91je SUuISSIW Iaquunu 10 JOTITIUSPT

"DNIAID HAIAIA I9YV

Ad HAIAIQ
I0 OLNI HAIAIA

*ONIAID 2arnbag saaquinu
‘juswrelels HAIAIA Ul

“Juowerels AVIdSId uI

*309.1100Ul ST STVADH 10 = WOUA
Jurmo1[o] BINWIO] IO ‘ASTIIUSPI ‘[BISI]

10900 dod
jou ST JuSWivjels dwes Ul HDNIAID Pue OL

*[IOI[-OTISWNU O, 1918 POMO[[E DNIAID ATUO

*I9quInt IO
JIBTJTIUSPI SB PIZIUS00ad j0U ST O, 193J8 PIOM

‘arqezIudooaiun ST AV 19338 A[91BIpOWIWI PIOM

" I9TJTIUSPT
UB 10U ST JUsWoje)s ppe ur pueaado puoosg

A LEOS Ul ANV 193V

UOISSTNOSIQ

ONISSTIN HHTATLNIAI

ONISSTIN YHTATLNIAI

DNISSTIN YHTATILNAAI LTASHYE

ONISSTIN ONIATD

DNISSIN Ad YO OLNI

DNISSTIN HHTATLLNHAI

DNISSTIN YHTJALLNHAAI

avd ST NOISSHUdXH JDILAWHLIYY

avd SI NOISSHYdXHd JILANWHLIYY

10400 dOd NON

DNISSIIN ONIAID

ONISSTIN HHTATLNHAI

DONISSIIN HHTALLNIJI

ATJILTNN NI XVINAS LOHYHOINI

ONISSTIN HHTALLNHIAI

DNISSIIN HITATLNIAI

S1Isoudeiq

odAT,

G19

719

€19

G19

T19

019

609

809

L09

909

S09

709

€09

209

T09

009

G-24

‘osTEBIO AHI LYOS Ul

‘INOHA JASVATHY 40 WOHA
ILIYM 10 OINI NUNLIY J0 OLNI AvViY Ul

*LYOS 10 JHHAS 10 NYNLHY 10 avdd U

"HLVLLINI WI

‘NO ONIONZIJdHA OL OD uI

TUNIINVXY Ul

"INTIN VXA Surmoriod

“juswalels YHINM Ul

“Juewerels AYINH UI

UOISSNOSIQ

INEWILVLS dOLS NI XVINAS LOHEHOONI
LYO0S NI XVINAS LOHYYOONI
ONISSIIN XH31 LHOS

DNISSTIN YHTALLNIAI

DONISSTIN HHIALLNIAI
DNISSTIN HIWVN HTIdA

TTVNOILIANOD YO HNISSIN AUV ASAVTID
AZIS NO 4O XA AI'TVANI ‘ONT LV NI

NHIJO NI DNISSIN LA4LAO YO0 LAdNI
HAOW NI XVINAS LOTHHOONI
DNISSTIN HHIATLNHIAI

HASAVTID A9 ONIDVIdHY. LOTYHOONI
ONISSTN SHIATLNIAT

OL 0D NI XVINAS LOHHIOONI
TVHHLIT ¥4dOddNI

ANIIWVXH NI XVINAS LOTHHOONI
DNISSTIN HHIATLLNIAI

DNISSIN HIWVN INILAOYdAS

DNISSTIN WVN TINATO0Md
orsouderq

odiy,

€e9

Ge9

1€9

0€9

629

8¢9

L29

9269

Gg9

729

€69

639

129

029

619

819

LT9

919

“ON

G-25

"aTdId
J0 LNO ATALITANOD QHELAIHS TVIHILIT

"LOTYHOONI HDAOHL ‘TIdII DTYINAN
OL QIAONW A9 TTIM TVHILIT OIYHININ-NON

‘SLIDIA 81
SAAAOXH SANVHIJO 4O HZIS TANIHINOD

‘dTATA OLNI LId
TTIM LI 08 LJIHET NO AELLVONAYL JATVA

‘a1dId OLNI LId
TTIM II OS LHDIY NO AILVONAYL INTVA

‘ANVHIJO TVOITTI
‘QTEIL LINSHEY TVOITTI

VINWHOJd V NI
ATYIJOUYdINI dISN HWVN NOILIANOO

XVINXAS LOTHYHOONI
A0 ISAVOdId AIddINS SgHOM

TLVNINYAL NI XVINAS LOHTTHOINI

AITIM NI XVINAS LOTYYOONI

"ASVATEY 10 HLIYM U DNISSIIN HINVN qHO0Hd
dSN NI XVINAS LOHYHOONI

aod JON SI SHIYHES HIWVN VIVd
WOHJI DNIANOJSTYHOD LOVHLSLINS

LOVaIsdNS NI XVINAS LOTHHOONI
mowmmﬂomwm jiéajﬂdmﬂﬂm

Qs ORLeor

908

G08

708

€08

¢08

108

008

€79

79

79

0%9

LE9

9¢€9

G-26

‘NOILVONAYL
IHDIY NI I'TASHY AVIN HAONW DITYHNAN

*NOILVONNYL
LAHT NI L'TOSHTY AVIN HAOW DISHIINAN

"LOUSHHALNI AVIL
HAOWW J0 STTHIL ONIATHDHY ANV ONIONHS

"TIVYHLIT V 39 LONNVD T4 DNIAIHDHYH
"OTEHINAN OL - HAOW TVOHATTI
" QULIYE DILIIVHATV OL - HAOW TVOUTTII

‘SHSAVTIO SU1DD0
HYIM HYHIHL NVHL S1dTH40S9dNS JHOW

TESAVTIO S¥N000
Xd @IEINODIY NHHM LJdT90S9AS ON

TdTHEI
I IdI90sdns V 404 LdT90S4ds ON

*ATHIA TVDHTTI OL
HIAON d9 TTIM TVHELIT DTHANNAN

UOISSTOST(Q orjsouserq

odAy,

918

G18

V18
€18
¢18

T18

018

608

808

L08

"ON

G-27

CONVERSION HINTS H

These conversion hints attempt to point out the areas where conversion problems are most often en-
countered or where a significant amount of the effort in any conversion is spent. The following
comments apply to virtually all programs from all machines, but are aimed specifically at con-
version from the CONTROL DATA 3600/3800 machines to the CONTROL DATA 6400/6500/6600
machines.

Each program will require the following changes:

1. All control cards and end-of-file cards must reflect 6000 usage.

2, The source computer and object computer statements must state the computer number
6400, 6500, or 6600.

3. In the SPECIAL-NAMES Section, names having special significance as defined by other
compilers must be changed to reflect their new names. Example: SYSTEM-OUTPUT-
TAPE used by 3600/3800 becomes OUTPUT for 6400,/6500/6600.

4. The SELECT statement must refer to implementor names having one to seven characters
conforming to SCOPE restrictions.

(1]

Generating several files onto a single output tape will require unique names which are
assigned by the request control cards.

6. JUSTIFIED LEFT is illegal in 6400/6500/6600.

7. ENTER statements will probably need changing to reflect the machine language subroutine
to be used.

8. The data-name option of labels must be used in place of the term NON-STANDARD.

A further problem arises when a COBOL source program written for a word-oriented computer is
to be input to a character-oriented computer such as the 6000 series computers. In the 6000 com-
puters, the number of characters in a record need not be a multiple of the number of characters

in a machine word. The 6000 series computers can transfer the precise number of characters de-
fined in the Data Division. However, in many machines, including the 3600/3800, a record must
be a multiple of a machine word; and the smallest unit that can be read or written is a word. If an
entry in the Data Division does not use all characters of the last word on a data record, the whole
word will be output by a word-oriented machine. When this record is read back into a word-oriented
machine, the extra characters that filled up the last word are ignored. However, if such a record
is read into a character-oriented machine, such as the 6000 computers, the extra filler characters
which were not part of the COBOL source language would be read as the beginning of the succeeding
record.

The solution to this problem is to use the COBOL word FILLER to define the full record to the pre-
cise length of the machine word if the source machine is word-oriented.

For example:

If computer A is word-oriented, eight characters per word, a data record should be defined
as follows:

01 DATA-ITEM-1
03 WORD-1 PICTURE X(10).
03 WORD-2 PICTURE X(3).
03 FILLER PICTURE X(3).

DATA-ITEM-1 takes up two full computer words of computer A and can be read by a character-
oriented machine with complete accuracy. If FILLER were not included, the next record would
contain three characters of unknown content when read by computer B, a character-oriented
machine, 10-character-per-word.

Synchronized fields in a record output from one machine and input to another may cause similar
conversion problems.

AUTOMATIC PROCESSING OF MULTI-REEL FILES

To process multi-reel files without difficulty, a special feature added to the 6000 COBOL processor
differentiates between end-of-reel and end-of-file on input tapes. This feature looks for a special
identifier in the end-of-reel label. The identifier is given by the value in the statement: END-OF-
REEL-IDENTIFIER IS data-name. Depending on the source machine, the identifier represents the
number of characters that allow the COBOL program to differentiate between an end-of-reel and an
end-of-file.

For example, the difference between EOR and EOF. If the programmer sets the data-name to the
value EOR, when the program encounters a tape mark at the end of a reel, it will read the following
record and compare the first three characters to the value EOR. If the value does compare, the
reel is assumed to be an end-of-reel rather than an end-of-file; and an end-of-reel process is
initiated with attendant tape swapping. Finally, upon encountering a tape mark, the following com-
parison will fail; and the assumption will be made that end-of-file has been encountered. In this
manner, one-shot on-line conversion can be done without making a special program merely to copy
large files. The structure of the files can be read and converted during a regular production run
simply by changing a few statements in the original COBOL program.

=)
This appendix contains a description of the 6000 series floating point format and number representa-
. tion. In addition, it contains the specific format and number representation for the three possible
COBOL usages when the class is numeric: DISPLAY or COMPUTATIONAL usage are represented
by display code integers, COMPUTATIONAIL-1 is represented by unnormalized biased floating
. point numbers, and COMPUTATIONAL-2 by normalized floating point numbers.
Floating Point Word Format
The 6000 Series 60-bit floating point format is shown below:
595857 4847 0
111 10 48
- l l—o— coefficient magnitude
exponent magnitude
-exponent sign
L= coefficient sign
The lower 48 bits are reserved for expressing the magnitude of the coefficient. The computer
assumes the binary point to be to the right of the coefficient, thereby providing a 48-bit integer
coefficient which is equivalent to about 15 decimal digits. Bit 259 is used to express the sign of
- the coefficient. The following rules apply to signed coefficients:
Sign 259 = Magnitude (bits 0-47)
Positive 0 True (uncomplemented) form
Negative 1 Complement form
e,

NUMBER REPRESENTATION

I-1

-
The table below summarizes the configurations of bits 208 and 259, and the implications, regarding

signs, of the possible combinations.

1

59 5
Z; 8 Coefficient Sign Exponent Sign
0 1 Positive Positive
0 0 Positive Negative
1 0 Negative Positive
1 1 Negative Negative
6000 SERIES FLOATING POINT REPRESENTATION
+00 Positive Overflow (infinity) = 3777 X—X
Largest:
F.P. =
< Positive Integers 3176 7 7
Smallest:
+1. F.P. =2000 0——01
Largest:
cLPLo= 1 R —
- Positive Fractions F.P trlr T 7
Smallest:
+.1 F.P. = 0000 0——01
Positive Underflow = 0000 0 ——0
0 Positive F.P. Zero = 2000 0 ——0
Negative F.P. Zero = 5777 T—17
Negative Underilow = 7777 7——f
-1 Smallest: T
F.P. =7777T 7T—— 176
4+ Negative Fractions
Largest:TT
F.P. = 6060 0——0
-1. Smallest:TT
.P. = JR—
< Negative Integers F STTT T 76
Largest:TT
F.P. =4001 0—0
-00 Negative Overflow (infinity) = 4000 X——X

T The machine packs all zeros (positive underflow) for this case.
Tt In absolute value.

1-2

L]

COBOL USAGE

COMPUTATIONAL-1 items of less than 15 decimal digits in size will be expressed as binary, fixed
exponent, integers in an unnormalized floating point format. For example, an item with

PICTURE IS 99V99 and VALUE IS 010.000 would appear in memory as 2000 0000 0000 0000 1750.
Notice that this is 1000 decimal, it is an integer, it is in unnormalized floating point format, and

it occupies one computer word. The exponent of 2000 indicates that the decimal point follows the
1750. The exponent bias is 2000 octal.

Assuming the same item is COMPUTATIONAL-2 the following memory word represents the item:
1731 7650 0000 0000 0000. This is a normalized floating point number. Normalized means that the
most significant bit of the integer is moved left to bit 47. Each shift left causes the exponent,
which started at 2000, to be reduced by one. The number is completely described using the ex-
ponent, coefficient magnitude, and sign of coefficient (bit 59).

If the size of a COMPUTATIONAL-1 item reaches or exceeds 15 decimal digits, an additional
computer word is used to hold the number in the double precision, normalized, floating point
format. If the number shown above (2000 0000 0000 0000 1750) had exceeded 14 decimal digits it
would appear in memory as follows:

word 1 1731 7650 0000 0000 0000

word 2 1651 0000 0000 0000 0000
The table below shows the particular number representations tabulated by the USAGE clause. The
largest representation in one usage is not the same as the largest representation in another usage.

Numbers carried in display code (COMPUTATIONAL) are assumed positive unless specifically
defined as carrying a sign by the SIGNED clause or the editing character S.

1-3

Number

COMPUTATIONAL
(display code
integers only)

COMPUTATIONAL-1
(unnormalized biased
floating point)

COMPUTATIONATL-2
(normalized
floating point)

59 bits 0l59 W7 bits 0|59 (47 bits 0
0 (not applicable) 3777 (not applicable) |3777| (not applicable)
largest positive 4444 4444120007 737767 7
largest positive -A 4444 4443120001 ———— 76| 3776|7 ————— 76
largest positive -2A (4444 4442120007 ———— 75| 3776|71 ————— 75
2 33 : 330220000 : 021721140 0
1+2A 33 333620000 03[1720j40 02
1+A 33 3335 (2000/0 ———— 02| 172040 01
1 33 3334 (20000 011720440 0
1-A - - 17177 7
1/2 - - 1717140 0
1/4 - - 1716/40 0
1/8 - - 171540 0
+0 3333 3333]2000(0 0120000 0
-0 - 57717 757777 7
-1/8 - - 606237 7
-1/4 - - 6061(37 7
-1/2 - - 6060|137 7
-1+A - - 6060[0 0
-1 33 331257717 76 (6057|37 7
-1-A 33 3313|5777 75605737 76
-1-24A 33 331457777 7416057(37 75
-2 33 3313|5777 75| 6056|37 7
largest neéative + 2A (44 - : 4420157770 0214001{0 02
largest negative +A |44 4421157770 01140010 —————01
largest negative 44 4422157770 0{4001/0 0
-0 (not applicable) 4000 (not applicable) 4000 (not applicable)

A is assumed the smallest positive increment for the particular representation.

Examples:

No. of Digits Value Octal Dump Format if Usage Is
COMPUTATIONAL-1 COMPUTATIONATL-2
4 10.00 2000 0000 0000 0000 1750 1731 7640 0000 0000 0000
4 1000. 2000 0000 0000 0000 1750 1731 7640 0000 0000 0000
15 00.50 1717 4000 0000 0000 0000

1637 0000 0000 0000 0000 T 1717 4000 0000 0000 0000

14 .25000000000000 2000 0043 2254 7242 4000 1716 4000 0000 0000 0000
3 123. 2000 0000 0000 0000 0173 1726 7540 0000 0000 0000
5 32768 2000 0000 0000 0010 0000 1737 4000 0000 0000 0000

Negative numbers are formed by taking the one's complement of positive numbers

5 digits -32768 STTT 7777 7777 7767 7777 6040 3777 TTTT TTTT 7777

TDepending upon machine operation, the low order part of a COMPUTATIONAL-1 item may have
other equivalent representations. It may be normalized. Zero may have another representation.

I-5

BINARY OUTPUT FROM COMPILER

*suoryerrdwos
Jurnsue Aue Aq pejorep
PUB I9A0 US}LIM O [[IM saew ode], V/N | V/N SIew JOF
|
T
‘$91QB) 20UDIDIAI-SS0ID 'S, XUINT |

“06 + u Aj1ao1ad ypm uor}oRg

SUO01199S UOISTAIP SINPoD0IJ

£q pourgep sy ! swreu-uoross -

09 alqejeo0[ey

*0¢ + u frxorad ypm uoryoog

(0t ‘TA0DI0D) AVIHAAO

V/N

AVIHHIAO

pIed

‘uorjeIdwoo
Kue 10f Juesead shemyy

*S9qB} 90USIOJOI-SSOID
SUOT109S UOISIAIP 9INPSI0IJ

‘S, AHdLNA
£Aq peurjop sy

SWBU-UOI}00S * D)

9°q 91qBIBOO[OY

- suorgeidwooqns
ur Juasaad jJo0N

‘SeoI® Joymnq OID

V/N

Uowwoy) Juerg

(3xodoa yoes
I0J suQ) - suorjeridwos
-qns ul uasoad joN

sgoae ndino dnox§ jiodey
sa9)unoo o8ed ‘oui] ‘wmg
1xoday popoouy

owreu-jxodoy

sweu-jrodoy

08(S1qBYBI0TO

(o117 yoeo xojeorput uado Iayng QID
o0y auQ) ‘suorjeriduron BOIY 98BI0}S PIOSaY QUWIBU sweu

-gns ut juesaad joN LAd -J0juswardwy —-Jojuswajdury 99 9 gB)BOOIaY
suoneiidwoogns 0o 91(B}BO0IOY
ur Juesead 30N | SATAIL IDVIOLS NOWINOO NOWINODD NOWINODO uowrwo) pareqe

LSI'T LY0d 34

LSIT LHA

SLSI'T OL SHALNIOA

' suorjerrdwooqns THIVI-JTIA
ur juesexd joN ATIVL NOWOD 'd NOWOD'd Joo(1 91qeIeD0TaY
(00 ‘@A0DI0D) AVIYAAO V/N Ke11040 pIed
90U8SaId 0] SUOIIIPUOD uaju0D uiod Axjuy SWIBN LAy

J-1

ACCEPT 4-18
ACCESS MODE 2-4
ACTUAL KEY 2-4, 6; 6-2
ADD 4-19
*ADD 6-30
ADD CORRESPONDING 4-20
ALL A-7
ALTER 4-22
AND 4-8; A-9
Arithmetic expressions 4-14
Arithmetic statements 4-15
ASCENDING KEY, sort 4-56
ASSIGN TO 2-4, 5
Assigned value 3-5
AT END

read 4-52

return 4-54
AUTHOR 1-1

Binary output from compiler J-1
BLANK WHEN ZERO 3-11, 16; 5-9

BLOCK CONTAINS 3-9, 13

*CANCEL 6-30
*CATALOG 6-28
CF 5-8, 12
CH 5-8, 12

CHECK PROTECT 3-11, 15; 5-9

CLASS 3-11, 14; 5-8, 9, 10
Clause editing 3-11, 15
CLOSE 4-23

CURRENCY SIGN 2-23; 3-29, 31

COBOL
character set A-1
coding sheet A-9, 11
collating sequence B-1
control card 6-12
diagnostics G-1
display code B-1
language A-1

INDEX

COBOL reserved words A-6, list C-1
COBOL source library 6-24
CODE 5-4, 5
CODING SHEET A-9, 11
COLUMN 5-9, 16
COMMON-STORAGE SECTION 3-1, 6
Common storage 6-15
COMPILATION 6-10
*COMPILE 6-30
Combpiler diagrostics G-1
COMPUTATIONAL-1 3-46
intermediate results D-1
number representation I-3
COMPUTATIONAL-2 3-46
intermediate results D-1
number representation I-3
COMPUTE 4-24
intermediate results D-1
CONFIGURATION SECTION 2-1, 2
Condition name 3-4; A-4
Conditional statements 4-5
Conditions 4-5
class condition 4-7
compound conditions 4-8
condition-name condition 4-7
implied elements 4-9
nested conditional statements 4-11
relational condition 4-5
sign condition 4-7
simple relational condition 4-5
switch-status~name condition 4-8
Connectives A-8
CONTROL(S) 5-4, 5
CONTROL FOOTING 5-8, 12
Control groups 5-2
CONTROL HEADING 5-8, 12
Control hierarchy 5-2
CONSOLE 2-2, 3
CONSTANT SECTION 3-1, 7
Constants
figurative 3-5; A-6
named A-6

Index-1

Conversion hints H-1

COPY 2-2, 4; 3-9, 17; 5-4, 10
*COPY 6-28

COPYCYL 6-26

CURRENCY SIGN 2-2, 3

DATA DIVISION 3-1

clauses 3-12
Data names 3-4; A-3
DATA RECORDS 3-9, 10, 19
DATE-COMPILED 1-1
DATE-WRITTEN 1-1
DE 5-8, 13
*DECK 6-28
DECIMAL-POINT IS COMMA 2-2, 3
DECLARATIVES 4-1, 2
*DELETE 6-29
DESCENDING KEY (SORT) 4-56
DETAIL 5-8, 13
Diagnostics, COBOL compiler G-1
Display code B-1
DISPLAY, USAGE IS 3-46; 5-8, 9
DISPLAY verb 4-25
DIVIDE 4-26

*EDIT 6-29
Edit control cards 6-29
Editing clauses 3-28; 5-10
EDITSYM 6-27
Elementary item 3-2
ELSE (IF) 4-32
*END 6-28
ENTER

verb 4-27

calling sequence E-1
ENTRY 4-28; 6-15
Entry 3-2
Entry points 6-15
ENVIRONMENT DIVISION 2-1
EQ 4-6
EQUAL(S) 4-6
Jquipment assignment 6-22
EXCEEDS 4-6
EXAMINE 4-29
EXECUTE 6-21
Execution, control cards 6-19, 21
EXIT 4-30

Index-2

FET 6-3
Figurative constant 3-5; A-6
FILE CONTAINS 3-9, 10, 19
FILE-CONTROL 2-1, 4
File description entry 3-8
FD format 3-9
SD format 3-10
gpecification 3-10
File environment table 6-3
File format 6-1
TFile header label 6-6, 8
File index 6-2
FILE-LIMIT(S) 2-4, 6
File name
SCOPE 6-1
COBOL A-4
FILE SECTION 3-1, 5; 5-3
File trailer label 6-6, 8
FILLER 3-4
FIRST DETAIL 5-4, 6
FLOAT CURRENCY SIGN 3-11, 15; 5-9
FLOAT DOLLAR SIGN 3-11, 15; 5-9
Floating point
format I-1
representation I-2
FOOTING 5-4, 6

GENERATE 5-22

GO TO 4-31

GQ 4-6

GR 4-6

GREATER 4-6
GREATER-EQUAL 4-6
GROUP INDICATE 5-9, 17
Group item 3-2

HEADING 5-4, 6
HIGH-VALUE(S) A-7

IDENTIFICATION DIVISION 1-1
Identifiers A-5

IF 4-32

Imperative statements 4-4
Implementor-name 2-23; A-4
Implied elements 4-9
INCLUDE 4-33

Independent item 3-3
Initial value 3-5
INITIATE 5-21

INPUT PROCEDURE (SORT) 4-56

Input/output control 6-1

INPUT-OUTPUT SECTION 2-1, 4

*INSERT 6-29
Insertion characters 3-28
INSTALLATION 1-1
Intermediate results D-1
INVALID KEY
(READ) 4-52
(WRITE) 4-62
I-O-Control 2-1, 7
Item
group 3-2
elementary 3-2
independent 3-3

Job card 6-19
JUSTIFIED 3-11, 20; 5-9

Label record formats 6-7
LABEL RECORDS 3-9, 21
LAST DETAIL 5-4, 6
LEAVING 3-11, 15
LESS 4-6
LESS-EQUAL 4-6
Level number 3-3

special level numbers 3-3
LINE NUMBER 5-8, 9, 14
LINE-COUNTER 5-2; A-8
Literal 3-5; A-5
LOAD 6-21
LOW-VALUE(S) A-7
LOWER-BOUND(S) A-7
LQ 4-6
LS 4-6

Mass storage I/O, sample program F-10

MOVE 4-35

matrix of valid MOVES 4-41

MOVE CORRESPONDING 4-40
MULTIPLE FILE 2-7, 8
MULTIPLE REEL 2-4, 6
MULTIPLY 4-42

Name index 6-2

Named constants A-6

NEXT GROUP 5-8, 15

NEXT PAGE 5-14, 15

NEXT SENTENCE (IF) 4-32
NGR 4-6

NLS 4-6

Non-numeric literal IS 2-2, 4
Non-standard labels 3-22; 6-9
NOT 4-6, 8

Notation used in manual ix
NOTE 4-43

NQ 4-6

Number index 6-3

Number representation I-1

OBJECT-COMPUTER 2-1, 2
OCCURS 3-11, 23; 3-35; 3-44
OFF STATUS 2-2, 3

OH 5-8, 12

Omitted label 3-22; 6-10

ON SIZE ERROR option 4-16
ON STATUS 2-2, 3

OPEN 4-44

OPTIONAL 2-4, 5

OR 4-8

OTHERWISE (IF) 4-32

Output from compilation 6-10, 11
OUTPUT PROCEDURE (SORT) 4-56

OV 5-8, 12

OVERFLOW FOOTING 5-8, 12
OVERFLOW HEADING 5-8, 12
OVERLAY 6-15

Overlay loading 6-15

Overlay segments 4-2; 6-15

PAGE 5-4

PAGE FOOTING 5-8, 12

PAGE HEADING 5-8, 12

PAGE LIMIT 5-4, 6

PAGE-COUNTER 5-2; A-8

Page/overflow condition 5-2

PERFORM 4-46

PF 5-8, 12

PH 5-8, 12

PICTURE 3-10, 24; 5-9, 10
editing 3-28; 5-10

Index-3

POINT 3-11, 34; 5-9, 10 RESERVE ALTERNATE AREAS 2-4, 6

POSITION 2-7, 8 Reserved word list C-1
Priority numbers 4-3 RESET 5-9, 20
PROCEDURE DIVISION 4-1 *RESTORE 6-29

statements 4-17 RETURN 4-54
Procedure names A-3 RF 5-8, 11
PROCESSING MODE 2-4, 7 RH 5-8, 11
Processor-directing statements 4-5 ROUNDED option 4-16
Frogram call card 6-21 Rules for arithmetic verbs 4-15

Program execution control cards 6-21
PROGRAM-ID 1-1

Program identification 6-14 SAME 2-7, 8
Punctuation A-9 Sample programs F-1
Sample program
COBOL F-1
Qualifiers A-4 mass storage I/O F-10
QUOTE(S) A-7 report writer 5-24
SORT F-6
subcompile F-13
RANDOM MODE 2-4, 6 SCOPE 6-1
RD 5-6, 7 SCOPE files 6-1
READ 4-52 SECTION 4-1, 2
RECORD CONTAINS 3-9, 10, 35 Sections 3-1, 5
Record description entry 3-10 SECURITY 1-1
formats 3-11 SEEK 4-55
specification 3-11 Segmentation 4-2
RECORD-MARK A-7 SELECT 2-4, 5
RECORDING MODE 3-9, 36 SELECTED 5-12, 26
REDEFINES 3-10, 11, 36 Separators A-12
RELEASE 4-54 SEQUENCED 3-9
REMARKS 1-1 SEQUENTIAL MODE 2-4, 6
RENAMES 3-11, 37 SIGNED 3-11, 37; 5-9, 10
RENAMING 2-4, 5 SIZE 3-10, 39; 5-8, 9, 10
REPLACING SIZE-CLASS-USAGE 3-40
(EXAMINE) 4-29 SORT
(INCLUDE) 4-33 verb 4-56
Replacement characters 3-30 sample program F-6
REPORT(S) 3-9; 5-4 SOURCE 5-9
Report description entry 5-4 SOURCE IS SELECTED 5-18
REPORT FOOTING 5-8 Source program listing 6-11
Report group 5-1 SOURCE-COMPUTER 2-1, 2
Report group description entry 5-8 SOURCE-SUM-VALUE 5-18
REPORT HEADING 5-8, 11 SPACE(S) A-T7
REPORT SECTION 3-1, 8; 5-4 Special registers A-11
Report writer Special system files 6-1
description 5-1 SPECIAL-NAMES 2-1, 2
sample program 5-24 Standard labels 3-21; 6-6
REQUEST 6-22 Statements and sentences 4-4
RERUN 2-7, 8 STOP 4-57

Index-4

SUB 6-13
Subcompile capability
description 6-14
execution 6-16
sample program F-13
Subscripts 3-44
SUBTRACT 4-58
SUBTRACT CORRESPONDING 4-59
SUM 5-9, 18, 19
SWITCH 2-2, 3
SYMBOLIC KEY 2-4, 6; 6-2
SYNCHRONIZED 3-11, 41

Tables 3-43
TALLY 4-29; A-8
TALLYING 4-29
TERMINATE 5-23
Text decks 6-24
THEN 4-32; A-9
TYPE 5-8, 11

UPPER-BOUND(S) A-7

USAGE 3-11, 46; 5-8, 9

USE 4-60; 6-9

USE BEFORE REPORTING 4-60; 5-23

VALUE 3-11, 48; 5-9, 10

VALUE OF ENDING-TAPE-LABEL 3-9, 21; 6-11
VALUE OF IDENTIFICATION 3-9, 21

Volume header label 6-6, 7

Volume trailer label 6-6, 8

Words A-3
WORKING-STORAGE SECTION 3-1, 6
WRITE 4-62

ZERO(S) (ES) A-7
ZERO SUPPRESS 3-11, 15; 5-9

Index~5

FROM

CORPORATION

CONTROL DATA
L comronaTion

COMMENT AND EVALUATION SHEET
6400/6500/6600 COBOL

Reference Manual

Pub. No. 60191200 June, 1967

THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

NAME

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A.

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

STAPL.E

FOLD

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S,A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA

.
I
I
I
I
M
]
|
|
|
I
|
I
Fo
STAPLE

CORPORATION

CONTROL DATA
[comromaTion]

CORPORATE HEADQUARTERS, 8100 34th AVE. S0., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Pub. No. 60191200 Litho in U.S.A.

