CONTROL DATA®
6400/6500/6600 COMPUTER SYSTEMS
| COMPASS Reference Manual

REVISION RECORD

REVISION DESCRIPTION
A This manual obsolefes all previous editions.
(10-9-68)
B This manualupdates COMPASS to the level of SCOPE 3.1.5.
(3-20-69)

Publication No.
60190900

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

©1968, 1969
Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Documentation Department

3145 PORTER DRIVE
PALO ALTO, CALIFORNIA 94304

or use Comment Sheet in the
back of this manual

CONTENTS

SECTION 1

SECTION 2

SECTION 3

SECTION 4

60190900A

INTRODUCTION

1.1 COMPASS Defined
1.2 Computer Hardware Configuration
1.3 The Operating System

PROGRAM STRUCTURE AND ORGANIZATION

2.1 CP and PP Coding
2.2 Subprogram Structure
2.2.1 Local Blocks
2.2.2 Common Blocks
2.3 Counters
2,3.1 Origin Counter
2.3.2 Location Counter
2,3.3 DPosition Counter
2.4 Forcing Upper

COMPASS LANGUAGE CODING

3.1 Source Statements
3.1.1 Coding Format

3.1.2 Catenation and Micro Substitution

3.1.3 Statement Types
3.2 Instruction Elements
3.3 Symbols
3.4 Registers
3.5 Deferred Symbol Definition
3.6 Names
3.7 Absolute Data
3.7.1 Character Data
3.7.2 Numeric Data
3.8 Literals
3.9 Constants
3
3

.
=
o

Special Elements
Address Expressions
3.11.1 Evaluation of Expressions

.
=
=

OPERATION CODES

4,1 Central Processor Instructions
4.1.1 Instruction Formats
4.1.2 Operating Registers
4.1.3 Execution

=
i

==
]
I

MN[\’J[\?N[}D[\D[\DM[\D

)
LW N

1
= O U LN

=

1
[ay
w

wcfawﬁcwwwwwwwwwwwww w
1 |

e

o Ul w»

|
Y
[=2]

!-P»hr!rrh N
O N =

iii

SECTION 5

iv

4.1.4 Operation Codes 4-7
Increment Unit 4-8
Branch Unit 4-12
Boolean Unit 4-16
Shift Unit 4-18
Add Unit 4-21
Long Add Unit 4-23
Multiply Unit 4-24
Divide Unit 4-24
Extended Core Storage Unit 4-25
4.2 Peripheral Processor Instructions 4-26
4,2,1 Instruction Format 4-27
4.2,2 Address Modes 4-27
4,2.3 Operation Codes 4-28
No Operation Code 4-28
Data Transmission Codes 4-28
Arithmetic Codes 4-29
Shift Code 4-30
Logical Codes 4-31
Replace Codes 4-33
Branch Codes 4-34
Central Processor and Central Memory Codes 4-35
Input/Output Codes 4-38
PSEUDO INSTRUCTIONS 5-1
5.1 Assembler Control 5-2
5.1.1 IDENT 5-2
5.1.2 END 5-2
5.1.3 ABS 5-3
5.1.4 PERIPH 5-3
5.1.5 BASE 5-8
5,1.6 SEGMENT 5-4
5,2 Counter Control 5-4b
5.2,1 USE 5-4b
5.2.2 ORG 5-6
5.2.3 LOC 5-7
5.3 Linkage Control 5-7
5.3.1 ENTRY 5-7
5.3.2 EXT 5-7
5.4 Storage Allocation 5-8
5.4.1 BSS 5-8
5.4.2 BSSZ 5-8§
5.5 Symbol Definition 5-8
5.5.1 EQU 5-8
5.5.2 SET 5-9
5.6 Data Generation 5-9
5.6.1 DATA 5-9
5.6.2 DIS 5-9

60190900 Rev. B

INTRODUCTION 1

1.1
COMPASS
DEFINED

1.2

COMPUTER
HARDWARE
CONFIGURATION

60190900A

6400/6500/6600 COMPASS, a comprehensive assembly system, provides a
symbolic program language for the CONTROL DATA® 6400/6500/6600 com-
puters. COMPASS is designed for efficient utilization of all computer re-
sources and maximum flexibility in program construction.

COMPASS expresses symbolically all hardware functions of the 6400, 6500,
and 6600 computers. The following features enable the programmer to con-
trol the assembly process:

e Iree-field source format

e Assembly-time access to symbol table information

e Programmer control over local and common code blocks

e Macros (both programmer and system defined)

e OPDET, a special macro form for redefining machine mnemonics

e Micro coding

The basic computer includes one or two central processors, 10 peripheral
processors (PP), 12 channels to which input/output devices can be connected,
and central memory. The central processor (CP) is a high speed arithmetic
device which handles the CP computational load programs held in central
memory. The 6400 and 6500 systems have a unified arithmetic unit for
sequential execution of instructions; the 6600 computer has ten arithmetic and
logical units for simultaneous execution instructions,

Central memory (CM) stores executable programs together with the data the
programs require.

Each of the ten peripheral processors (PPs) has separate memory and can
execute programs independently of each other or the CP, The PPs transfer
the programs to be executed by the CP from peripheral equipment to central
memory and transfer input data as required. Similarly, PPs transfer output
data generated by the central programs from central memory to peripheral
equipment. The difference in functions associated with the CP and PPs
coupled with a different instruction word-size capacity has resulted in the
development of two distinct operation code sets.

1-1

1.3

OPERATING

SYSTEM COMPASS operates under control of the SCOPE operating system, which is in
constant control of all jobs, handling storage allocation, job scheduling,
accounting, I/0 control and operator communication.

1-2 60190900A

PROGRAM STRUCTURE AND ORGANIZATION 2

2.1

CP AND PP

CODING A COMPASS program consists of either central processor (CP) code or
peripheral processor (PP) code. The machine instructions for the two
processors are different and may not be intermixed within a program, but
most of the pseudo instructions are used in both CP and PP programs.
Pseudo instructions may differ in specification, significance, or result,
according to whether the program is a CP or PP program.

2.2

SUBPROGRAM

STRUCTURE The programmer or COMPASS assigns to each subprogram one or more local
or common blocks into which all code is assembled. A local block contains
code accessible to the subprogram only; a common block contains code acces-
sible to all subprograms loaded together. A program may use a maximum of
252 local and common blocks in addition to those defined by the assembler.

As assembly proceeds, all locations and references to locations within a block
are considered relative to the start of that block. COMPASS maintains the
origin of each block, the current position within each block, and the final
length of each block. The programmer may manipulate origin, location, and
position counters to control position. At the end of assembly, COMPASS
assigns an origin, relative to the start of the first program block, to each
local block in the order in which its name was introduced. The length of a

subprogram is the sum of the maximum origin counter values of all local
blocks.

2.2.1
LOCAL BLOCKS Code within local blocks is accessible only to the subprogram itself. Three
local blocks, pre-defined by COMPASS in every subprogram, need not be
declared by the programmer:
Absolute block, used for all absolute code

Zero block, used by COMPASS when no programmer assigned block is
specified in a relocatable CP assembly

Literals block, contains all literal data values

60190900A 2-1

2.2.2
COMMON BLOCKS

2.3
COUNTERS

2.3.1
ORIGIN COUNTER

2-2

The absolute block is the nominal block for all absolute subprograms as well
as the block for absolute origins in relocatable subprograms. The zero block
is the hominal block for all relocatable subprograms. PP subprograms are
always absolute; CP subprograms may be absolute or relocatable. All code
in a subprogram will be in either the zero block or the absolute block, unless
the programmer requests or uses another block. The programmer may refer
to the zero block in a USE statement, he may refer to the absolute block only
with the ORG statement.

All data literals are assigned to the literals block which may not be referenced
by the programmer. At the end of assembly, the literals block is assigned an
origin at the end of the zero block.

The programmer may define and use additional local blocks with the USE
statement. Named local blocks are considered extensions of the zero block;
they are assigned origins by COMPASS at the end of the zero block (after any
literals), in the order in which they are declared.

Code assigned to common blocks is accessible by all subprograms loaded
together. Common blocks are assigned origins by the loader at load time
(unlike local blocks which are assigned origins by COMPASS at assembly

time), They may be labeled common or blank common. Iabeled common
includes blocks designated with a numeric name.

Data may be pre-loaded into labeled common but not into blank common.
Space may be reserved in blank common by using only the BSS or ORG
pseudo instructions.

Origin, location, and position counters are maintained by COMPASS to define
the location of code and the current position within a word. These counters
may be;reset by pseudo instructions, and their values may be tested at any
point.

COMPASS maintains the origin counter to indicate the location of loader-
placed instructions. For each block, the origin counter starts at zero
relative to the block origin or at the last known size of that block if it has
been previously used.

60190900A

2.3.2
LOCATION

COUNTER

233
POSITION
COUNTER

24
FORCING UPPER

60190900A

The origin counter is incremented by one for each completed word of
assembled data. Its value may be reset with the ORG pseudo instruction.
When the special element *O is selected, the current value of the origin
counter is the value used.

Normally, the location counter has a value identical to the origin counter
and gives definition to location symbols. It may be adjusted, however, to
differ from the origin counter if succeeding data is to be executed in a
memory area different from its assigned load time area. For example,

a block loaded in ECS might be subsequently moved and executed in another
area. The location counter should reflect the actual location at which execu-
tion occurs.

The location counter may be reset with the LOC pseudo instruction. When
either of the special elements * or *L is selected, the current location
counter value is the value used.

This counter maintains a position within a 60-bit or 12-bit word of assembly.
As each code generating instruction is encountered, the position counter is
updated to reflect the next available bit position. The position counter con-
tains the number of the high order bit of the field, numbered from 59

to 0. In CP instructions, it has a value of 59, 44, 29, or 14. In PP in-
structions, 11 is the normal value. These values may be modified by the
VFD pseudo instruction (section 5.6.4).

Whenever the special element $ is selected, the current position counter
value is used.

In central processor assemblies, assembled data is packed sequentially into

a 60-bit word in bytes of 15, 30, or 60 bits. If there is not room in a partially
filled 60-bit word for the instruction or data currently being evaluated, the
remainder of that word is filled with 15-bit no-operation instructions (46000g),
and the current instruction is assigned the first position in the next word.
Packed data can be manipulated with the VFD pseudo instruction.

2-3

2-4

COMPASS also forces upper when any of the following occurs:

® A symbol or + appears in the location field of the current statement

® Current instruction is PS, RE, WE, or XJ, unless the location field
contains a minus sign

® Current instruction is one of the pseudo instructions END, LOC,
BSS, BSSZ, DATA or DIS. ORG also forces upper in the block
which it references (section 5.2, 2).

Forcing upper is automatic after JP, RJ, PS, XJ and an EQ or ZR with a
gsingle address (the unconditional EQ or ZR). The ECS instructions WE and
RE mt:mt appear in the upper 30 bits of an instruction, and, when executed
succeéssfully, execution continues at the beginning of the next 60-bit word.
The lower half of the WE or RE word presumably contains a jump to an error
routine to be taken if WE or RE is rejected. COMPASS does not force upper
after WE or RE.

In a PP assembly, no forcing upper occurs; a + in the location field is
ignored except on a VFD line, the position counter is reset to the beginning
of a PP word.

Automatic forcing upper after JP, RJ, PS, EQ, and ZR as well as forcing
upper on PS, RE, WE, or XJ can be negated by using a minus sign in the
location field of the next instruction. When a minus sign appears, the current
line ig assembled into the next position large enough to contain it.

60190900A

COMPASS LANGUAGE CODING 3

3.1
SOURCE
STATEMENTS

3.1.1
CODING FORMAT

60190900A

A COMPASS program consists of a sequence of symbolic statements. Each
statement contains a maximum of four fields in the order listed below. The
format is essentially free field.

Location field must begin in column 1 or 2.

Operation field may begin in any column from 3 to 35.

Variable field must begin before column 36.

Comments field may begin after the termination of the variable field,
or no earlier than column 36 if the variable field is empty.

Columns 73-90 may be used only for comments; generally they are used for
sequencing. Columns 81-90 are used for sequencing by library maintenance
programs; they are normally not used by the programmer.

Fields are separated by one or more blanks. Blanks are interpreted as
field separators except when embedded in the comments field, in character
data items, or in a parenthesized macro parameter.

A statement may be a comment or an instruction; it may contain as many as
ten 90-column lines. Column 1 indicates the type of line: an asterisk identi-
fies a comment statement; a comma indicates a continuation of the previous
line. Any other character in column 1, including blank, indicates the begin-
ning of a new statement,

A comment statement may be introduced either by an asterisk in column 1 or
by blanks in columns 1-35. Comment lines are listed in assembler output;
they have no other effect on assembly.

A line introduced by a column 1 comma is considered a continuation of the
preceding line. A maximum of 9 continuation lines are permitted. Column 2

of each continuation line is interpreted as an immediate continuation of column
72 of the preceding line. The break between lines neednot coincide with a fieldor
subfield separator; even a symbol may be split between the two lines. Con-
tinuation lines beyond the ninth are considered comments.

3.1.2

CATENATION AND
MICRO
SUBSTITUTION

3-2

A line with an entry in the location field but not the operation field creates a
word of zeros and is equivalent to the instruction:

loec BSSZ 1

Example of a standard format for source lines:

Column
1 Blank, asterisk, or comma
2-9 Location field, left justified
10 Blank
11-16 Operation field, left justified
17 Blank
18- Variable field, terminated by 1 or more blanks
36~ Comments field

Any line not containing a column 1 asterisk is examined for the two special
characters — and # before COMPASS attempts any other interpretation. The
catenation character — indicates that two adjoining columns are to be linked
(section 6.1.2). The # mark indicates micro substitution (section 7). The
line which is changed as a result of catenation or micro substitution may be
any type: a comment line, an instruction, or a continuation of an instruction.

Substitution may require generation of continuation lines or cards. The free
field format generates continuation cards automatically. During catenation
or micro substitution COMPASS preserves as many blanks as were written
between fields and subfields; the original columnar arrangement of fields
can be altered after substitution occurs. Micro substitution might itself
cause a continuation line to be produced.

Statements which are part of definitions (section 3.1.3) are not examined for
the two special marks # and —. TFor this type of statement, catenation or
micro substitution occurs at the time of execution rather than at the time of
definition. Therefore, an ENDM cannot be created which would terminate a
micro definition by using micro substitution or catenation.

Catenation and micro substitution do occur on lines which are being skipped.

60190900 Rev. B

3.1.3

STATEMENT
TYPES Statements processed by COMPASS fall into three categories:
e A normal statement which is assembled and may produce output
e A statement which is bypassed because of a conditional instruction
test which failed
® A statement which is part of a definition: those lines contained
between a MACRO and ENDM, between a DUP and ENDD, between
a RMT and a terminating RMT
3.2
INSTRUCTION
ELEMENTS Location Tield

The location field may be blank or may contain one of the following:

Symbol
Name

F

Operation Field

The operation field must be present, and may contain one of the following:

Central processor operation code
Peripheral processor operation code
Pseudo instruction

Macro name

Variable Field

Contents of the variable field are dictated by the operation code. TFor
COMPASS machine instructions, this field consists of one, two, or three
subfields separated by commas. A subfield in CP instructions may contain
register names separated by the operators + - * /. COMPASS determines
the octal value of the instruction from these operators; they may not be re-
placed by any other characters.

60190900A 3-3

3.3
SYMBOLS

3-4

Comments Field

This field is optional and may contain any combination of characters. The
catenation mark (—) and the micro mark (#) produce the same results in
the comments field as in any other field.

A symbol is a sequence of 1 to 8 characters representing a value. Symbol
value is determined according to its use as follows:

In the location field of a machine instruction and certain pseudo instruc-
tions, the value assigned to the symbol is the current value of the location
counter.

In. the location field of an EQU or SET pseudo instruction, the value in
the address field is assigned to the symbol.

In a list of external symbols, both symbol definition and value assignment
are accomplished outside the bounds of the current program.

By default. If the symbol is preceded by =S or =X and has no other
definition, COMPASS defines it.

Absolute symbols may be defined with the EQU or SET pseudo instructions
or as location symbols in code with an absolute origin. They are assigned
a 21-bit value.

Relocatable symbols are assigned a value relative to an unknown base address
either in common storage or within the subprogram. For the purpose of sym-
bol definition, relocatable symbols may be represented in absolute code in all
blocks!other than the zero block.

Symbols acceptable to COMPASS may contain characters which are illegal
identifiers under other systems such as UPDATE, COPYN, A symbol may
not include any of the following characters:

* / , + - or blank
The first character may not be $ or = or numeric. Other special characters
must be used with care. In CP programs, a decimal point will produce a
register name if the decimal point is the second character and A, B, or X is

the first. Refer to macro definition rules in section 6.

A symbol in a CP assembly may not be An, Bn, or Xn, where n is a single
digit from 0 to 7.

60190900A

Examples of legal symbols:

A Al0 A1.75
A=B AAAAAAAA A(B)
ABCDEF.3 A$$$.01

Some symbol names are further restricted if they are used as the following:

Subprograms names
External symbols
Entry points

Common block names

These are called linkage symbols since they are used by the loader. Such
symbols must begin with a letter (A-Z), and may not exceed seven characters.
PP subprogram names may begin with a letter or a number and may not exceed
three characters.

3.4

REGISTERS Register names are symbolic. representations of the 24 operating registers.
Register names are predefined in central processor COMPASS assemblies and
may not be redefined in the program. They are of two forms:

An, Bn or Xn, n is a single digit from 0 to 7. Any other term for n is
interpreted as a symbol rather than a register name.

A.n, B.n, or X.n, n may be a single symbol or an integer. If the value
of n exceeds 7, it is truncated to the low order 3 bits and a warning flag
is issued.

Register names of either form are considered ordinary symbols in a PP

assembly.

Examples:
Al Accumulator register 1
Alo Symbol, not a register name
A.l Accumulator register 1

A,10 Accumulator 2; produces a warning flag
(1010 = 128 which truncates to 2)

60190900A 3-5

The following produce equivalent results:

SB3 A2+ATLPHA SUM SET 3
SUB SET 2
SB.SUM A, SUB+ALPHA

3.5
DEFERRED SYMBOL

DEFINITION Definition of a symbol may be deferred until end of assembly. At that time,
COMPASS defines all deferred symbols not defined by conventional methods.

Deferred symbols may be indicated in an address expression by the forms:
=Ssymbol normal relocatable symbol which results in the following:

If a symbol is not defined, it represents a location which COMPASS
assigns at the end of the zero block. All subsequent references to
that symbol, whether preceded by =S or not, are to that assigned
location. Any symbol so defined may not be used where a previously
defined symbol is required.

If the symbol is defined, COMPASS does not define it again as a
deferred symbol. The programmer-defined value of the symbol is
used instead.

=Xsymbol external symbol which results in the following:

If the symbol is not defined, the symbol is assumed to be external
as though declared in an EXT pseudo instruction. It must conform
to the rules for linkage symbols.

If the symbol is defined, it represents the value assigned by the
programmer COMPASS does not define it again as a deferred external
symbol.

If a symbol appears as both =S and =X, or as =X in an absolute assembly and
has no other definiticn, it is undefined and produces an error.

3.6
NAMES A name is a symbol which indicates one of the following:

block instruction bracket

macro micro

3-6 60190900A

3.7
ABSOLUTE DATA

3.7.1
CHARACTER DATA

60190900A

Names do not conflict with ordinary symbols since they are used differently.
Names may not be used in address expressions but the rules for forming them
are less strict than for ordinary symbols. A name may be any combination of
1 to 8 characters except blank or comma.

Examples of legal names:

2 3A A+B*C
X*Y /7 $+A =48
2+6 *LA$+SF 1.5

Absolute data is used in literals, LIT and DATA pseudo instructions, and as
constants in address expressions. COMPASS supplies a format for data
specification which is common to all these usages, with minor exceptions.

Data item describes an absolute item which produces one or more full-word
values. The following are data items:

A subfield of the DATA pseudo instruction

A subfield of the LIT pseudo instruction

A literal (the portion which follows = if the item

is not =Ssymbol or =Xsymbol)

Address constant describes a constant with a maximum length of 60 bits which
may appear in an address expression. Constants appear in machine and pseudo
instruction subfields, including VFD.

Absolute data may be character data or numeric data. Numeric data may be
octal, decimal, single-precision floating point, double-precision floating point
or fixed point.

Each character data item whether it is used as a data item or an address
constant takes the following form:

<:haracter string>

=]
HWpema

3-7

nis a character count. The character string is justified within the given
field length as follows:

C Left justified with zero fill; 12 zero bits are guaranteed at end
of string even if another word must be allocated

H Left justified with trailing blanks

A Right justified with leading blanks
Right justified with leading zeros

L Left justified with trailing zeros

Field length for a character string is determined according to the following
rules:

In data items (DATA, LIT, literals), the characters are justified within
a 60-bit (CP) or 12-bit (PP) word.

In any EQU or SET address field, characters are justified within an
18-bit field.

In a VFD pseudo instruction, characters are justified within the field
size specified by the VFD subfield.

As a constant in an address expression, characters are justifiedin a
field which is equal in length to the address size (18 or 6 bits in CP;
18, 12, or 6 bits in PP).

In address expressions, the C and L options are handled the same; the 12
trailing zero bits are not guaranteed on C character strings in address
fields.

The catenation character — is not converted to its octal equivalent (65) in a
character data string.

The following characters are special and should not be included in character
strings:

| ; cannot be used; this character is used by COMPASS as an internal
delimiter; in macro definitions as a parameter marker. A non-
fatal error is issued when ; is used

- produces catenation; symbol is eliminated
produces a micro substitution if a legal character micro name is

enclosed between two of these characters

COMPASS interprets the character string in a character data subfield
according to the value of n.

3-8 60190900 Rev. B

(a) If nis missing, the programmer may specify delimiters for the
character string:

any character
string not
including d
;— or #

HEema
o

d is any single character. All characters between the first and
second occurrence of d are considered the character string.

This form of character specification is restricted to data items
(a DATA or LIT subfield or a literal) since address items begin-
ning with an alphabetic character are considered symbols rather
than constants.

A minus sign may precede C, H, A, R, or L to complement the
character string.

(b) If nis zero, the character string is considered ended when a
subfield terminator is encountered:

ny character string not
including blank , ; —
for data items, or + -, * / ; —
r blank for address constants

[
B oo

A blank or comma terminates this character string if it is used in
LIT, DATA, or a literal (a data item). Blank, comma, + - * or /
terminates an address constant in this format. When n is preceded
by a minus sign, the character string is complemented.

When used as an address constant, the string may not exceed ten
characters.

(¢) If non-zero, n is the count of characters in the string.

C
H any characters
n| A not including
R s —
I,
For address constants, (1 =n sfleld length). For data items,

n may be any value. When n is preceded by a minus sign, the
character string is complemented. For the C designation, the
zero bits to be added are not included in the character count n.

60190900A 3-9

3-10

If the character count for a data item is greater than the number of
columns remaining, including maximum allowable continuation
cards, an A error will result.

(d) Empty character strings:
In either case (a) or (b) above, it is possible to generate empty
character strings. For example:
H++ oL
As address constants, empty character strings are valid and have
a zero value. As literals, they are illegal and produce an error.
As an item in DATA or LIT, they are legal and produce no values.
In LIT, however, one or more of the items listed must be non-
empty.
Examples of Character Data Use Data Produced (octal)
SA1 X3+3RCIO 5213031117
SB6 X0+1L$ 6260530000
VFD 30/0HIOTA,6/1RA, 24/0AX+1 11172401550155555531
SA1 =H+LEFTAJUSTIFYAWITHA BLANKS+ 14050624551225232411
06315527112410550214
0116132355555556555565
SA1 =0CTENCHARCTS 24051603100122032423
00000000000000000000
LIT RA+-*/(A,6L)$=4,.,0C0,0L,20HLITERALS
00000000004546475051
52535455565700000000
33000000000000000000
14112405220114235555
55555555555555555555

DATA L*ERRORAINAPDQA*,15B, 10HAAAAAAAAAA

SX3

05222217225511165520
04215500000000000000
00000000000000000015
55555555555555555555

1R -, +1 7130000060

VFD 42/0LOUTPUT, 18/1 17252420252400000001

60190900A

3.7.2
NUMERIC DATA

60190900A

Numeric data items define values.

parts:

A data item may consist of the following

Specified with
(1) Sign e + -
(2) Pre-radix o D B e
(3) Integer e n
(4) TFraction .e .n
(5) Scale(base 10)-single precision | E En E#n
(6) Scale(base 10)-double precision | E EEn EE®n
(7) Binary scale (base 2) S Sn S#n
(8) Binary point position P Pn Pin
(9) Post-radix O D B e

e indicates empty or not present; n is a numeric string

(1)

(2)

(3,4)

(5,6)

Sign: + or - may appear as the first character of a data item; if no
sign is present, +is assumed.

Pre-radix: Alternative to post-radix. D indicates the value section
is expressed in decimal notation; B or O indicates octal notation.
The radix pertains only to the value section — integer and fraction.
Only one radix specification may be included in a numeric data item.

Value Section: A string of digits identifies an integer value; a decimal
point identifies a floating point value. When the radix is octal, neither
(8) or (9) may appear in the value section.

The value section may contain no more than 32 significant digits if
octal or not exceed 7.9 x 1028, Extra significant digits may cause
erroneous results.

The modifier section is part of the value section. The modifiers
(E or EE, S, P, post-radix) may appear in any order, but a given
modifier may appear only once.

Decimal Scale: A modifier of the form E+n or EE+n defines a power
of 10 scale factor. E denotes a single precision value; EE a double
precision value. The sign is optional; if omitted, +is assumed. The
scale value is a decimal integer (regardless of the nominal base).

The effect of this scale is to multiply the number by 10 raised to the
specified value. The scale value must not exceed +32767. Both

fixed and floating point numbers may be scaled. If the scale specifier
EE is used with a fixed point number, it still produces a fixed point
number in single precision.

3-11

(1) Binary Scale: A modifier of the form S+n defines a power of 2
scale factor. The sign is optional; if omitted, +is assumed. The
scale value is a decimal integer. The effect of this scale is to
multiply the number by 2 raised to the specified value. The scale
value must not exceed 32767 in absolute value. Both fixed and
floating point numbers may be binary scaled.

(8) Binary Point Position: A modifier of the form P+n places the binary
point in a floating point number to represent an unnormalized float-
ing point number. The sign is optional if omitted, +is assumed.
Placing the binary point is equivalent to fixing the exponent.

With a P scale, the exponent is adjusted to a value of -(P scale
factor). Thus, a number with P-6 will have a biased exponent
of 2006g, and P10 will have an exponent of 1765g. The value
is shifted accordingly.

Another way of explaining P scale:

The number is aligned so that the binary point occurs to the
right of the nth bit (counting from low order). The exponent
will be adjusted accordingly. Thus a PO number is an un-
normalized integer in floating point notation.

P scales may be specified only for floating point numbers of single
or double precision. To avoid an error indication, the high order
significant bit must be within the fraction portion of the number.

9) Radix: D, O, or B defines the radix of the value section. D defines
radix 10; O or B defines radix 8. FEither a pre-radix or a post-radix
may appear, not both. When radix is not specified, the base of the
number is derived from the BASE pseudo instruction.

The valid ranges for numbers are restricted by the hardware, although scale
factors may exceed valid ranges:

The number 1.0E4005-1200 yields a number which is approximately
5.8 x 1038 and is in range of the floating point representation.

All scaling calculations are performed in 144-bit precision and rounded to
96-bit precision. For single precision, addition rounding is performed to

yield 48-bit precision.

In PP assemblies, only fixed point values are permitted.

3-12 60190900A

3.8
LITERALS

60190900 Rev. B

Examples of numeric data (assume decimal radix):

7 0000 0000 0000 0000 0007
-9 7777 77T 1777 OTTVT V766
+B13 0000 0000 0000 0000 0013
14BS1 0000 0000 0000 0000 0030
24BE-1 0000 0000 0000 0000 0002
1.0 1720 4000 0000 0000 0000
1.0EE1 1723 5000 0000 0000 0000

1643 0000 0000 0000 0000
1.0E+1P0 2000 0000 0000 0000 0012

3.2P1S-5E1 1776 0000 0000 0000 0002
0.0151E+01 1715 4651 7676 3554 4264

0.1P47 1720 0314 6314 6314 6314
-D19 777 777 777 U7UT 1754
-E 7T OTTTT 7TV 07T 170
DEES 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

A literal may be defined as a read-only constant. A literal is stored by the
assembler at the end of the zero block, and the address of that data is sub-
stituted in the instruction referring to the literal. The process eliminates
duplication of read-only data item values and obviates searching for duplicate
values.

In an address expression, literals are specified by =n where n is a character
or numeric data item. At the first appearance of a value in a literal, COM-
PASS enters that value into a literal table. Contents of the table entry are
used when a subsequent literal refers to that particular value.

Example:
SB2 =1
SB3 =1RA
SB4 =2

3-13

3-14

The first statement creates a word in the literal table containing the

value 00000000000000000001.

The address of that entry is then used in

the address field of both statements SB2 and SB3. (The literal in state-
ment SB3 specifies a right justified character A, which also has the
value 1.) The SB4 statement creates an entry in the literal table with
the value 00000000000000000002, and the address of that entry is in the

address field of statement SB4,

COMPASS also permits symbolic reference to literal table entries. Data
values can be entered into the literal table and symbols associated with

them through the LIT pseudo instruction.

Then these entries may be sym-

bolically referenced. The following code sequence will produce the same

results'as the example above:

A LIT 1,2
SB2 A
SB3 A
SB4 A+l

Data items in a LIT variable field always appear in the literal table in the
order listed. Literal data values may be character or numeric and are
specified just like data items, as follows:

Type Format
Character [C] character string not
' H including blank , ; — fox
Delimited by subfieldend | =0 | A data items or +-, */;)
R —or blank for adress/
| L_| onstants
—c™
H
Delimited by character =n | A < .any ch‘aracters not >
including ; —
count R
|_L_|
—c
H any character
Delimited by delimiter = A string not includ—> d
R ing d;— or #
L L_

60190900A

3.9
CONSTANTS

3.10
SPECIAL ELEMENTS

60190900A

Type Format
Numeric
Octal =Bnumeric
Octal =Onumeric
Decimal =Dnumeric
Octal =pumericB
Octal =numericO
Decimal =numericD
numeric may be an integer, fixed point, or floating point data item, and
+or - may immediately follow =. If no B, O, or D appears, the base is

assumed to be whatever is currently in use.

A constant is a string of characters which specifies an octal, decimal, or
character value. Constants may be used in address expressions of machine
and pseudo instructions. Size of a constant depends on the subfield size.

To be recognized as a constant, an item must begin with a numeric character;
otherwise it follows the rules for data items. If B, O, or D is not specified,
the base is assumed to be whatever is currently in use.

Example of address constants:

SA1 Xi1+1R

XY EQU 3HXXX
VFD 60/0RMESSAGE, 30/31LCIO, 30/0R0
SA2 01(Z)

The character * represents the value of the location counter at the beginning
of the field. The characters *L and * are equivalent.

The character *O represents the current value of the origin counter.

The character $ represents the position counter value. In an instruction
which does not generate code, such as a conditional, the value of $is
usually 59, 44, 29, or 14 in CP assembly, or 11 in PP assembly; however
it may be another value if the previous instruction in the block was a VFD.
$ reflects next available bit position and is one less than the number of
bits still available in a word.

3.1
ADDRESS
EXPRESSIONS

3.11.1
EVALUATION OF
EXPRESSIONS

3-16

An address expression may appear as a subfield in the variable field of a
machine or pseudo instruction. An address expression consists of terms
joined by the operators + and -. A term consists of elements joined by the
operators * and /.

An element, the basic component of an address expression, is one of the
following:

symbol

constant

special element: *, *L, *O, or $

deferred symbol: =Ssymbol or =Xsymbol
A term is a combination of elements and a term operator * (multiplication)
or / (division), A term must begin with an element and may consists of
any number of elements joined by * or /. Two successive elements are
illegal., However, ** is permitted since only one of the asterisks is con-

sidered an operator. The last element in a term may be omitted; COMPASS
then provides an element with zero value,

Examples:
A A*B 7 2%%
*1L/2 $

An expression is composed of a single term or a number of terms joined by
the additive operators + and -. If two or more of the additive operators
appear together, a term with a zero value between them is assumed.

A literal (=n) may be used as a term only if it is the last term in the expression.
(This avoids confusion regarding the use of +n at the end of a literal.)

Examples:
A +-A*A AXB-T72%*
$-29 1+=1 *+3

1+=3,.14159EE

When an expression is evaluated, each element is replaced with its 60-bit
value: constants are replaced with their values; and for address elements,
which are 21-bit quantities (literals, *, symbols), the signs are extended
to 60 bits.

60190900A

Within a term, calculation is performed from left to right according to the
following rules:

In division, the integral part of the quotient is retained and any
remainder is discarded; thus, 5/2*2 results in 4,
Division by zero results in zero and no error.

Only one relocatable or external element may be used in a term;
thus **A is illegal in a relocatable assembly if A and * are
relocatable.

To the left of a division (divisor), only absolute values may appear.
After terms are evaluated, they are combined, left to right, into an

expression. As a result of calculation, only the following forms are
permitted:

Absolute value
External value * constant
1+ Relocatable % constant
Terms may cancel relocation values. For example, if A, B, and C are

defined as program relocatable symbols, relative to the same base,
3*A-B-C is a permissible expression resulting in single program relocation.

60190900A. 3-17

OPERATION CODES 4

4.1

CENTRAL
PROCESSOR
INSTRUCTIONS

4.1.1
INSTRUCTION
FORMATS

60190900A

Instructions are either 15 or 30 bits in length, except XJ which is 60 bits.
Both formats use a 6-bit operation code and 3-bit result register. The
number of bits used for the operand varies with the instruction.

The parameters used in the instructions are defined as follows:

fm Operation code (6 bits)

i Result register or X register condition for a branch (3 bits)
j First operand register (3 bits)
k Second operand register (3 bits)

jk Constant, indicating number of shifts (6 bits)
Constant, indicating branch destination or second operand (18 bits)
One of eight 18-bit address registers

One of eight 18-bit increment registers

® oo > R

One of eight 60-bit operand registers
The instruction formats are as follows:

® For a 15-bit instruction:

f m i j k
3 3 3 3 3
14 0]
ope;jgleon L—— 2nd operand
register (1 of 8)
result register — — 1st operand
(1 of 8) register (1 of 8)

4.1.2
OPERATING
REGISTERS

® For a 30-bit instruction:

f m i i K
3 3 3 3 18
ig_./—N | °
Opiiaétéon —— 1st operand 2nd operand
register (1 of 8)

—— Result register
(1 of 8)

® For a 60-bit instruction:
(applies to Central Exchange Jump only)

fmi j k not used
59 50 47 29 [0}

The 24 operating registers are identified by letters and digits:

AQ,Al,...AT7 Address registers
BO,Bl1,...B7 Increment registers
X0,X1,...X7 Operand registers

A Register

Execution of the SAi (i = 1-5) instruction produces an immediate memory
reference to the address contained in Ai and reads the contents of that loca-
tion into the corresponding operand register Xi (i = 1-5). When SAi

(i= 6-or 7) is executed, contents of the corresponding X register are stored
at the address specified by Ai. The address register A0 is used for
temporary storage; execution of SA0 does not affect XO0.

Examples:

SA3 A4+10 Adds 10 to the address in A4 and sets the A3 register
to this sum. The X3 register is set to the contents
of the location specified by the new A3.

SA6 A2-15 Stores the contents of X6 into the location obtained

by subtracting 15 from the address in A2.

60190900A

4.1.3
EXECUTION

60190900A

B Register

The increment register BO is set permanently to an 18-bit positive zero whick
is used to compare for a zero value as an unconditional jump modifier.
B1-B7 are used for modifying and program indexing.

The modifying function of the B register is demonstrated by the following
example:

SB3 B5+B4 Adds the values contained in the two increment
registers, B5 and B4, and places the result in B3.

Example of B register used as an index register:

SAl ALFA+B3 Sets Al to the value ALFA plus the contents of B3.

JP LOC+B6 Causes a program jump to LOC modified by the
contents of B6.

X Register

Any of the registers X0-X7 may be used as a result or operand register.
X1-X5 hold operands read from central memory; X6 and X7 hold results
sent to central memory. The operand registers may be used and changed
without causing a change in the corresponding address registers.

Examples:
BX2 X2+X4 Performs the logical addition of X2 and X4 and
places the resultant sum in X2.
5X6 A2-B5 Subtracts the contents of B5 from the contents of

A2 and stores the result in X6.

Execution times for instructions are listed in Appendix G. Execution times
include readying the next instruction.

6600

After an exchange jump start by a PP and CP program, CP instructions are
sent automatically, in the original sequence, to an instruction stack, which
holds up to 32 instructions.

Instructions are read from the stack one at a time and issued to the functional
units for execution. A scoreboard reservation system in CP control keeps

a current log of which units and operating registers are reserved for computa-
tion results from functional units.

Each unit executes several instructions, but only one at a time. Some branch
instructions require two units, the second unit receives direction from the
branch unit.

The rate of issuing instructions may vary from a theoretical maximum of
one instruction every 100 nanoseconds (one minor cycle). Sustained issuing
at this rate may not be possible because of unit and CM conflict or because of
serial rather than simultaneous operation of units. Program running time
can be decreased by efficient use of the units. Instructions that are not de-
pendent on previous steps may be arranged or nested in program areas
where they may be executed concurrently with other operations to eliminate
dead spots in the program and increase the instruction issue rate.

The following steps summarize instruction issuing and execution:

® An instruction is issued to a function unit when:
Specified functional unit is not reserved
Specified result register is not reserved for a previous result

® Instructions are issued to functional units at minor cycle intervals
when no reservation conflicts are present.

® Instruction execution starts in a functional unit when both operands
are available. Execution is delayed when an operand is a result of
a previous step which is not complete.

® No delay occurs between the end of a first unit and the start of a
second unit which is waiting for the results of the first.

® After a branch instruction no further instructions are issued until
instruction has been executed. In the execution of a branch instruc-
tion, the branch unit uses:

Increment unit to form the instructions GO TO K + Bi and
GOTOKIifBi...

Long add unit to perform the instruction GO TO K if Xj ...

Time spent in the long add or increment units is part of total
branch time.

Read central memory access time is computed from the end of increment
unit time to the time an operand is available in X operand register. Mini~
mum time is 500 nanoseconds assuming no central memory bank conflict.

44 60190900A

60190900A

6400/6500

The 6400 and 6500 systems CP has a unified arithmetic unit, rather than
separate functional units as in the 6600 system. Instructions in the 6400 and
6500 CP are executed sequentially.

For efficient coding in the 6400 and the 6500 central processor:

Always attempt to place jump instructions in the upper portion of the
instruction word to avoid both the additional time for RNI (2 minor cycles)
and the possibility of a memory bank conflict with (P + 1).

Where possible, place load/store instructions in the lower two portions
to avoid lengthening execution times.

Reading the next instruction words of a program from central memory, RNI,
is partially concurrent with instruction execution. RNI is initiated between
execution of the first and second instructions of the word being processed.
Initiating RNI operation requires two minor cycles; the remainder of the RNI
is parallel in time with execution of the remaining instructions in the word:

Initiate

R
NI Execution of

+ "'—\[\—— instructions ‘\[\-F'

2 and 3

RNI

200 <—\I* minimum of ——\[\-.-
—_— -
NSEC 800 NSEC

o Total RNI time -

In calculating execution times, two minor cycles are added to each instruction
word in a program to cover the RNI initiation time. Exceptions are the return
jump and the jump instructions (in which the jump condition is met) when they
occupy the upper position of the instruction word. Since the times for these
instructions already include the time required to read the new instruction word
at the jump address, no additional time is consumed (Appendix G).

Example:

P |Jump toK (met) | Pass Pass
K| Add1 | Add2 | Load Load

Instruction Minor Cycles Required

Jump 13

Add 1 5

RNI Initiation 2

Add 2 5

Load 12

Store 10

Total Time 47 Minor Cycles

After RNI is initiated (between the first and second instructions of the word),
a minimum of eight minor cycles elapses before the next instruction word is
available for execution. Even if the lower order positions of the word should
require less than eight minor cycles, a minimum of eight minor cycles is

allowed regardless of the execution times stated in Appendix G.

Example:

Jump to K
(not met)

Pass

Pass

P+1

60190900A

4.1.4
OPERATION
CODES

60190900A

Instruction Minor Cycles Required

Jump (not met) 5
RNI Initiation 2
Pass=3

Pass=3} -RNI minimum 8

Minimum time before
word at P+1 is available
for execution 15

The return jump instruction, all jump instructions in which the jump condition
is met, and load/store memory instructions require additional time when
they are in the second position of an instruction word. This additional time
requirement results from hardware limitations rather than memory bank
conflicts.

Additional Time for Second

Instruction Instruction in Word
Jumps 02-07 (jump 1 minor cycle
condition met)

Return Jump 010 2 minor cycles
Load/Store 2 minor cycles

(65X with i # 0)

If the second instruction of a word references the memory bank containing
(P+1), a bank conflict requires an additional three minor cycles.

If a store (not load) as the first instruction of a word causes a bank conflict
with (P+1), three minor cycles are added to the execution time.

Instructions for the central processor are listed below; they are arranged by
unit function and mnemonic code. Each mnemonic is followed by a format
model, a mnemonic description, the instruction bit size in parentheses and
the octal code. In the examples, K represents a variable which may be coded
as one of the following:

® One or more decimal or octal integers, symbolic constants, or
ordinary symbols, connected by operators
e External symbol

® Common block segment name, alone or followed by a plus sign and
an integer or symbolic constant

e Literal

Subfields within the variable field may appear in any order.

INCREMENT UNIT

NO No operation (pass) 15) 46000

A do-nothing instruction used typically
to pad between program steps. A
comment on the same card should begin
with a period; otherwise it will appear
to be an address field and may cause
an error flag.

Performs one's complement addition and subtraction of 18-bit numbers. The
following instructions perform one's complement addition and subtraction of
18-bit operands and store an 18-bit result in Ai.

Operands are obtained from address (A), increment (B), and operand (X)
registers as well as the K portion of the instruction. K is an 18-bit signed
constant. If the sign of K is minus in instructions 50xxx, 51lxxx, and 52xxx,
the 18-bit one's complement of K is placed in the K portion of the instruction
word. Operands obtained from an X register are the truncated lower 18 bits
of the 60-bit register. The operands may appear in any order.

An immediate memory reference to the address specified by the final contents
of address register Ai is effected by the execution of a SAi (i = 1-7) instruction.
The operand read from memory address specified by A1-A5 is sent to the
corresponding operand register X1-X5. The operand from X6 or X7 is stored
at the address specified by the corresponding A6 or A7. There is no corre-
sponding relation between the A0 and X0 registers.

SAi AjxK Sum/difference Aj+K to Ai (30) 50ijk
Examples:

SA2 A2+K Adds K value to con-
tents of A2 register
and places result in
A2 register. X2
register contains the
contents of address
referenced in A2 reg-
ister.

SA7 A2+K Adds K value to con-
tents of A2 register
and places result in
AT register. Contents
of X7 register are
stored at address
referenced in A7
register.

SA2 K+A2

SA2 A3-K

60190900A

SAi K

SAi BjK

SAi Xj+K

SAL Xj

SAi Xj+Bk

SAi Aj

SAi Aj+Bk

60190900A

(K+BO to Ai)

(30) 51i0k

Sum/difference BjK to Ai (30) 51ijk
Examples:
SA2 B3+K Adds increment value
in B3 register to K
value and places re-
sult in A2 register.
X2 register contains
the contents of ad-
dress referenced in
A2 register.
SA2 K+B3
SA2 B2-K
SA2 K
Sum/difference Xj+K to Ai (30) 52ijk
Examples:
SA2 X3+K Adds lower 18 bits
(only) of X3 register
to value of K and
places result in A2
register. X2 register
contains the contents
of address referenced
in A2 register.
SA2 K+X3
SA2 X3-K
(Xj+B0 to Ai) (15) 53ij0
Sum Xj+Bk to Ai (15) 53ijk
Examples:
SA2 X3+B4
SA2 B4+X3
SA2 X3
(Aj+BO to Ai) (15) 54ij0
Sum Aj+Bk to Ai (15) 54ijk

Examples:

SA2 A3+B4
SA2 B4+A3
SA2 A3

SAi Aj-Bk Difference Aj-Bk to Ai 15) 55ijk
Examples:
SA2 A3-B4
SA2 -B4+A3
SAi Bj (Bj+BO0 to Ai) (15) 56ij0

SAi Bj+Bk Sum Bj+Bk to Ai (15) 56ijk
Examples:

SA2 B3+B4
SA2 B3

SAi -Bk (-Bk+B0 to Ai) (15) 57i0k

SAi Bj-Bk Difference Bj-Bk to Ai (15) 57ijk
Examples:

SA2 B3-B4
SA2 -B4+B3
SA2 -B4

The following instructions perform one's complement addition and subtraction
of 18-bit operands and store an 18-bit result in Bi.

Operands are obtained from address (A), increment (B), and operand (X)
registers as well as the K portion of the instruction. K is an 18-bit signed
constant. If the sign of K is minus in instructions 60xxx, 6lxxx and 62xxx,
the 18-bit one's complement of K is placed in the K portion of the instruction
word. Operands obtained from an X register are the truncated lower 18 bits
of the 60-bit register.

The operands may appear in any order and are formatted in the same manner
as the parallel SAi instructions.

SBi AjtK Sum/difference Aj=K to Bi (30) 60ijk
SBi K Value of K (K+B0) to Bi (30) 61i0k
SBi Bj+K Sum/difference BjzK to Bi (30) 61lijk
SBi Xj+K Sum/difference XjtK to Bi (30) 62ijk
SBi Xj Value of Xj (Xj+B0) to Bi (15) 63ij0
SBi Xj+Bk Sum Xj+Bk to Bi . (15) 63ijk

4-10 60190900A

60190900A

SBi Aj Value of Aj (Aj+B0) to Bi (15) . 64ij0

SBi Aj+Bk Sum Aj+Bk to Bi (15) 64ijk
SBi Aj-Bk Difference Aj-Bk to Bi (15) 65ijk
SBi Bj Value of Bj (Bj+B0) to Bi (15) 66ij0
SBi Bj+Bk Sum Bj+Bk to Bi (15) 66ijk
SBi -Bk Value of -Bk (-Bk+B0) to Bi (15) 6710k
SBi Bj-Bk Difference Bj-Bk to Bi (15) 67ijk

The following instructions perform one's complement addition and subtraction
of 18-bit operands and store an 18-bit result in Xi. (Boolean instructions
must be used to perform arithmetic operations on 60-bit operands.)

Operands are obtained from address (A), increment (B), and operand (X)
registers as well as the K portion of the instruction. K is an 18-bit signed
constant. If the sign of K is minus in instructions 70xxx, 71lxxx and 72xxx,
the 18-bit one's complement of K is placed in the K portion of the instruction
word.

Operands obtained from an Xj register are the truncated lower 18 bits of the
60-bit register. Conversely, an 18-bit result placed in Xi carries the sign
bit extended to the remaining bits of the 60-bit register.

The operands may appear in any order and are formatted in the same manner
as the parallel SAi instructions.

SXi Aj=K Sum/difference Aj+K to Xi (30) 70ijk
SXi K Value of K (K+B0) to Xi (30) 71i0k
SXi BjxK Sum/difference Bj+K to Xi (80) 71lijk
SXi Xj+K Sum/difference Xj+K to Xi (30) 72ijk
SXi Xj Value of Xj (Xj+B0) to Xi (15) 731j0
SXi Xj+Bk Sum Xj+Bk to Xi (15) 73ijk
SXi Aj Value of Aj (Aj+B0) to Xi (15) 74ij0
SXi Aj+Bk Sum Aj+Bk to Xi (15) 74ijk

4-11

SXi Aj-Bk
SXi Bj
SXi -Bj
SXi Bj+Bk

SXi Bj-Bk

Difference Aj-Bk to Xi (15) 75ijk
Value of Bj (Bj+B0) to Xi 15) 761j0
Value of -Bj (-Bj+B0) to Xi (15) 76i0k
Sum Bj+Bk to Xi (15) 76ijk
Difference Bj-Bk to Xi (15) 77ijk

BRANCH UNIT Handles all jumps or branches from the program.

PS

XJ Bj+K

4-12

Program stop. (30) 0000000000

Stops the CP at the current instruction.
An exchange jump is necessary to re-
start the CP. The program stop
instruction is forced upper and forces
the next instruction upper.

Return jump to K. (30) 0100k

Stores an unconditional jump (0400)
and the current program address plus
one in the upper 30 bits of K and then
branches to K+1 for the next instruc-
tion. As a result the contents of K
appear as follows:

EQ BO, B0, L+1
PS

where L is the address of the executed
RJ instruction.

Central exchange jump to K (60) 0130000000

4600046000
Unconditionally exchange jumps to the

CP, regardless of the state of the
monitor flag bit. Depending on whether
the monitor flag bit is set or clear,
operation is as follows:

If the monitor flag bit is clear, the
starting address (absolute) for the ex-
change is taken irom the 18-bit monitor
address register. During the exchange,
the monitor flag bit is set.

60190900A

XJ Bj+K If the monitor flag bit is set, the

(Cont'd) starting address (absolute) for the
exchange is the 18-bit result formed
by adding K to the contents of register
Bj. During the exchange, the monitor
flag bit is cleared.

JP Bi+K Jump to Bi+K (30) 0210k

Adds the contents of Bi to K and
branches to the address specified by
the sum. When Bi = B0, the branch
address is K. Addition is performed
modulo 218-1.

The following instructions all branch to K when the word in operand register Xj
meets the conditions specified.

ZR Xj,K Jump to K if Xj = 0 (30) 030jk

Branches to K if Xj is equal to zero.

If the condition is not met, the next
consecutive instruction step is executed.
The test is made in the long add unit.
Minus zero and plus zero both satisfy
the test.

NZ Xj,K Jump to K if Xj # 0 (30) 031jk

Branches to K if Xj is not equal to zero.
If the condition is not met, the next
consecutive instruction step is executed.
The test is made in the long add unit.
Plus zero and minus zero do not satisfy
the test.

PL Xj,K Jump to K if Xj is positive (30) 032jk

Branches to K if Xj is positive. If the
condition is not met, the next consecutive
instruction step is executed.

NG Xj,K Jump to K if Xj is negative (30) 033jk

Branches to K if Xj is negative. If the
condition is not met, the next consecutive
instruction step is executed.

60190900A 4-13

IR Xj,K Jump to K if Xj is in range (30) 034jk
Branches to K if Xj is less than
infinity (377700. . '08)'
OR Xj,K Jump to K if Xj is out of range (30) 035jk
Branches to K if Xj is greater than or
equal to 377700. . '08'
DF Xj,K Jump to K if Xj is definite (30) 036jk
Branches to K if Xj is definite. The
test is a comparison against an inde-
finite quantity (177700. . .08).
ID Xj,K Jump to K if Xj is indefinite (30) 037jk

Branches to K if Xj is indefinite. The
test is a comparison against an inde-
finite quantity (177700. .. 08).

The following instructions all branch to K when the word in register Bi meets
the condition specified in register Bj:

ZR K Jump to K (30) 0400k

ZR Bi,K Jump to K if Bi = B0 (30) 04i0k

Compares Bi with BO and branches to K
if Bi is zero. Minus zero in Bi does
not satisfy this test.. ZR K, B2 is
equivalent to EQ B0,B2,K

EQ K Jump to K (30) 0400k
EQ K assembles as EQ B0,B0,K an
unconditional jump.

EQ Bi,K Jump to K if Bi =0 (30) 04i0k

EQ Bi,Bj,K Jump to K if Bi = Bj (30) 04ijk

Compares Bi with Bj and branches to K ~
if Bi is equal to Bj. Minus zero is not
equal to plus zero. EQ Bi, K assembles
as EQ Bi,B0,K

4-14 60190900A

60190900A

NE

NE

NZ

LE

PL

GE

GE

LE

GT

LT

Bi,K

Bi,Bj,K

Bi,K

Bj,K

Bi,K

Bi,K

Bi, Bj,K

Bj,Bi,K

Bj,K

Jump to K if Bi # 0 (30)

Jump to K if Bi # Bj (30)

Compares Bi with Bj and branches to
K if Bi is not equal to Bj. Minus zero
is not equal to plus zero. NE Bi,K
assembles as NE Bi, B0,K

Jump to K if Bi # BO (30)

Compares Bi with B0 and branches to K
if Bi is not zero. Minus zero in Bi
satisfies this test. NZ K,B2 is
equivalent to NE BO0,B2,K

Jump to K if Bj =0 (30)

Compares Bi with B0 and branches to K
if result is negative. LE K, Bl is
equivalent to LE B1,B0,K

Jump to K if Bi= B0 (30)

Compares Bi with BO and branches to K
if the result is positive. PL K, Bl is
equivalent to GE B1,B0,K

Jump to K if Bi= 0 (30)

Jump to K if Bi = Bj (30)

Compares Bi with Bj and branches to K
if Bi is greater than or equal to Bj.
Plus zero is greater than minus zero.

Jump to K if Bj =< Bi (30)

Compares Bi with Bj and branches to K
if Bj is less than or equal to Bi. Plus
zero is greater than minus zero.

Jump to K if Bj > 0 (30)

Compares Bi with B0 and branches to K
if the result is greater than 0. GT K, Bl
is equivalent to GT B1,B0,K

Jump to K if Bi < 0 (30)

Compares Bi with B0 and branches to K
if the result is negative. LT K,BI is
equivalent to LT B1,B0,K

0510k

05ijk

05i0k

060k

06i0k

06ijk

06ijk

06ijk

070jk

07i0k

4-15

NG Bi,K Jump to K if Bi < B0 (30) 07i0k

Compares Bi with BO and branches to K
if Bi is negative. NG K, Bl is
equivalent to LT Bi,B0,K

GT Bj,Bi,K Jump to K if Bj > Bi (30) 07ijk

Compares Bj with Bi and branches to K
if Bi is greater than Bj. Plus zero is
greater than minus zero.

LT Bi,Bj,K Jump to K if Bi < Bj (30) 07ijk

Compares Bi with Bj and branches to K
if Bi is less than Bj. Minus zero is less
than plus zero.

BOOLEAN UNIT Handles the basic logical operations of transfer, logical product, logical sum
and logical difference.

BXi Xj Transmit Xj to Xi (15) 10ijj

Transfers the 60-bit word in operand
register Xj to Xi.

BXi Xj*Xk Logical product of Xj and Xk to Xi (15) 11ijk

Forms the logical product (AND function)
of the 60-bit words in operand registers
Xj and Xk and places the result in Xi.
(Bits of register Xi are set to 1 when
the corresponding bits of the Xj and Xk
registers are 1.)

Xj 0101
Xk 1100
Xi 0100
BXi Xj+Xk Logical sum of Xj and Xk to Xi (15) 12ijk

Forms the logical sum (inclusive OR) of
the 60-bit words in operand registers
Xj and Xk and places the result in Xi.
(Bits of register Xi are set to 1 if the
corresponding bits of the Xj or Xk
register are 1.)

Xj 0101
Xk 1100
Xi 1101

4-16 60190900 Rev. B

BXi Xj-Xk Logical difference of Xj and Xk to Xi ~ (15) 13ijk

Forms the logical difference (exclusive
OR) of the 60-bit words in operand
registers Xj and Xk and places the result
in Xi. (Bits of register Xi are set to 1
if the corresponding bits in the Xj and
Xk registers are unlike.)

Xj 0101
Xk 1100
Xi 1001

BXi -Xk Transmit the complement of Xk to Xi (15) 14ikk

Extracts the 60-bit word from operand
register Xk, complements it, and
transmits the complement to operand
register Xi. The contents of Xk are
not changed.

BXi -Xk*Xj Logical product of Xj and complement (15) 15ijk
of Xk to Xi

Forms in Xi the logical product (AND
function) of Xj and the complement of Xk.
Contents of Xk and Xj are not changed.

Step1 Xj 0101 Step2 Xj 0101

Xk 1100 -Xk 0011
Xi 0001
BXi -Xk+Xj Logical sum of Xj and complement (15) 16ijk
of Xk to Xi

.Complements the 60-bit word in Xk,
forms the logical sum (inclusive OR)
of this quantity and Xj, and places the
result in Xi. Contents of Xk and Xj
are not changed.

Step1 Xj 0101 Step2 Xj 0101
Xk 1100 Xk 0011
Xi 0111

60190900A 4-17

BXi -Xk-Xj

Logical difference of Xj and (15)
complement of Xk to Xi

Complements the 60-bit word in Xk,
forms the difference (exclusive OR) of
this quantity and Xj, and places the
result in Xi. Contents of Xk and Xj
are not changed.

Stepl Xj 0101 Step2 Xj 0101
Xk 1100 -Xk 0011
Xi 0110

17ijk

SHIFT UNIT Handles shifting operations including left (circular) and right (end-off/sign

extension) shift, normalize, pack and unpack floating point operations.

unit provides also a mask generator.

LXi jk

AXi jk

LXi Xk

4-18

Shift Xi left jk places 15)

Shifts the 60-bit word in Xi left circular
jk places. Each step moves the leftmost
bit of Xi into the rightmost position of Xi.

The 6-bit shift count jk is coded as an
octal or decimal number. A complete
circular shift of Xi is possible (jk = 60).

Example: LX2 36

Arithmetic right shift Xi, jk places (15)

Shifts the 60-bit word in Xi right jk
places. The rightmost bits of Xi are
discarded and the sign bit is extended.
The 6-bit shift count jk is coded as an
octal or decimal number.

Example: AX2 36

Transmit Xk to Xi 15)

Transfers the 60-bit word in operand
register Xk to Xi.

Equivalent to the BXi Xj except this
instruction executes in the shift unit and
is, therefore, preferable if the Boolean
unit is busy. The BXi Xj is always
preferable in a 6400 or 6500, as it is
faster.

The

20ijk

21ijk

22i0k

60190900A

60190900A

LXi Bj,Xk

AXi Bj,Xk

NXi Xk

NXi Bj, Xk

Left shift Xk nominally Bj places to Xi (15)

Shifts the 60-bit word in Xk the number
of places specified by the low order
6 bits of Bj and places the result in Xi.

If Bj is positive, Xk is shifted
left circular.

If Bj is negative, Xk is shifted
right (end off with sign extension)
and the complement of the low
order 6 bits of Bj gives the number
of places to be shifted.

Example: LX2 B1,X3

Arithmetic right shift Xk nominally (15)
Bj places to Xi

Shifts the 60-bit word in Xk the number
of places specified by the low order
6 bits of Bj and places the result in Xi.

If Bj is positive, Xk is shifted right
(end off with sign extension).

If Bj is negative, Xk is shifted left
circular; and the complement of the
low order 6 bits of Bj gives the
number of places to be shifted.

Example: AX2 B3,X4
Normalize Xk to Xi (15)

Normalize Xk in Xi and Bj (15)

Normalizes the floating point quantity in
Xk and places it in Xi. The number of
left shifts required is placed in Bj
during the operation. If the coefficient
of Xk is zero, Xi is cleared to all zeros
and Bj is set to 48. If the size of the
exponent is less than the number of leading
zeros in the coefficient of Xk, underflow
occurs during normalizing and the ex-
ponent and coefficient of Xi are both
cleared.

Example: NX2 B3,X4

22ijk

23ijk

2410k

24ijk

4-19

ZXi Xk Round and normalize Xk in Xi 15) 2510k

ZXi Bj,Xk Round and normalize Xk in Xi and Bj (15) 25ijk

Performs the same operation as NX
(24 ijk) except that the quantity in Xk is
rounded before it is normalized. Nor-
malizing a zero coefficient places the
round bit in bit 47 and reduces the
exponent by 48.

Example: ZX2 B3,X4
UXi Xk Unpack Xk to Xi (15) 26i0k

UXi Bj,Xk Unpack Xk to Xi and Bj (15) 26ijk

Unpacks the floating point quantity in Xk
and sends the sign and 48-bit coefficient
to Xi and the 11-bit exponent minus 2000
to Bj which then contains the true one's
complement representation of the ex-
ponent. Xk may be an unnormalized
number.

Example: UX2 B3,X4
The exponent and coefficient are sent to

the low order bits of the registers as
shown in the following diagram.

Sign Biased
_'1 Exponent Coefficient
Packed Quantity 1 11 48 (K Xk
59 47 [o}
Unbiased
Exponent Exponent
Sign Extended _—vl P *
Unpacked Bj
7 9 [¢]
Coefficient

Sign Extended

4-20 60190900A

60190900

ADD UNIT

PXi Bj,Xk

MXi jk

Pack Xi from Xk and Bj (15) 27ijk

Packs a floating point number in Xi.
The coefficient of the number is ob-
tained from the sign and low order 48
bits of Xk and the exponent is obtained
by adding 2000g to the low order 11
bits of Bj. The coefficient is not
normalized.

Exponent and coefficient are obtained
from the low order bits of the register
and packed as shown in the above
diagram. During pack, overflow occurs
when Bj is a positive number of more
than 10 bits; exit on overflow is optional.
Underflow occurs (no exit) when Bj is a
negative number of more than 10 bits.

Example: PX2 B3,X4

Form mask in Xi, jk bits (15) 43ijk

Forms a mask in Xi. The 6-bit quantity
jk defines the number of ones in the mask
as counted from the highest order bit in Xi.

Performs floating point addition and subtraction on floating point numbers or
their rounded representation.

FXi Xj+Xk

Floating sum of Xj and Xk to Xi (15) 30ijk

Forms the sum of the floating point
quantities in Xj and Xk and packs the
result in Xi. The packed result is the
upper half of a double precision sum.

Both arguments are unpacked, and the
coefficient of the argument with the
smaller exponent is entered into the upper
half of a non-programmable 96-bit
accumulator. The coefficient is shifted
right by the difference of the exponents.
The other coefficient is then added into
the upper half of the accumulator. If
overflow occurs, the sum is shifted right
one place, and the exponent of the result
is increased by one. The upper half of
the accumulator holds the coefficient of

4-21

FXi Xj+Xk
(Cont'd)

FXi Xj-Xk

DXi Xj+Xk

DXi Xj-Xk

RXi Xj+Xk

4-22

the sum, which is not necessarily nor-
malized. The exponent and upper
coefficient are then repacked in Xi.

If both exponents are zero and no
overflow occurs, the instruction
effects an ordinary integer addition.

Floating difference of Xj and Xk to Xi (15)

Forms the difference of the floating point
quantities in Xj and Xk and packs the
result in Xi. Alignment and overflow
operations are similar to the floating
sum (30ijk) instruction, and the differ-
ence is not necessarily normalized.

The packed result is the upper half of

a double precision difference.

An ordinary integer subtraction is
performed when the exponents are zero.

Floating double precision sum of Xj 15)
and Xk to Xi

Forms the sum of two floating point
numbers as in the floating sum (30ijk)
instruction, but packs the lower half
of the double precision sum with an
exponent 48 less than the exponent of
the upper sum.

Floating double precision difference (15)
of Xj and Xk to Xi

Forms the difference of two floating
point numbers as in the floating
difference (31ijk) instruction, but packs
the lower half of the double precision
difference with an exponent of 48 less
than the exponent of the upper difference.

Round floating sum of Xj and Xk to Xi (15)

Forms the round sum of the floating point
quantities in Xj and Xk and packs the
upper sum of the double precision result
in Xi.

31ijk

32ijk

33ijk

34ijk

60190900A

RXi Xj+Xk
(Cont'd)

RXi Xj-Xk

LONG ADD UNIT Performs one's
numbers.

IXi Xj+Xk

IXi Xj-Xk

60190900A

The sum is formed in the same manner
as the floating sum (30ijk) instruction
except that the operands are rounded
before the addition to produce a round
sum. If both operands are normalized
or the operands have unlike signs, a
round bit is attached at the right end of
both operands. Otherwise, a round bit
is attached at the right end of the
operand having the larger exponent.

Round floating difference of Xj and (15) 3bijk
Xk to Xi

Forms the round difference of the floating
point quantities in Xj and Xk and packs

the upper difference of the double precision
result in Xi.

The difference is formed in the same
manner as the floating difference (31ijk)
instruction except that the operands are
rounded before subtraction to produce a
round difference.

If both operands are normalized or the
operands have like signs, a round bit is
attached at the right end of both operands;
otherwise, a round bit is attached at the
right of the operand with the larger exponent.

complement addition and subtraction of 60-bit fixed point

Integer sum of Xj and Xk to Xi (15) 36ijk

Forms a 60-bit one's complement sum
of the quantities in Xj and Xk and stores
the result in Xi. An overflow condition
is ignored.

Integer difference of Xj and Xk to Xi (15) 37ijk

Forms the 60-bit one's complement diff-
erence of the quantities in Xj (minuend)
and Xk (subtrahend) and stores the result
in Xi.

MULTIPLY UNIT Performs floating point multiplication on floating point numbers or their
rounded representations.

FXi Xj*Xk

RXi Xj*Xk

DXi Xj*Xk

Floating product of Xj and Xk to Xi (15)

Multiples the floating point quantities

in Xj (multiplier) and Xk (multiplicand)
and packs the upper product result in Xi.
The result is a normalized quantity only
when both operands are normalized; the
exponent is then the sum of the exponents
plus 47 (or 48). The result is unnor-
malized when either or both operands
are unnormalized; the exponent is then
the sum of the exponents plus 48.

Round floating product of Xj and (15)
Xk to Xi

Attaches a round bit to the floating point
number in Xk (multiplicand), multiplies
this number by the floating point number
in Xj, and packs the upper product
result in Xi. (No lower product is
available.) The result is a normalized
quantity only when both operands are
normalized; the exponent is then the sum
of the exponents plus 47 (or 48). The
result is unnormalized when either or
both operands are unnormalized; the
exponent is then the sum of the exponents
plus 48.

Floating double precision product of Xj (15)
and Xk to Xi

Multiplies the floating point quantities in
Xj and Xk and packs the lower product
in Xi with an exponent 48 less then the
exponent of the upper product. The
result is not necessarily normalized.

40ijk

41ijk

42ijk

DIVIDE UNIT Performs floating point division of floating point quantities or their rounded

representation. Also, sums the number of ones in a 60-bit word.

4-24

60190900A

EXTENDED CORE
STORAGE UNIT

60190900A

FXi Xj/Xk

RXi Xj/Xk

CXi Xk

Floating divide Xj by Xk to Xi (15)

Divides the floating point quantities in
Xj (dividend) by Xk (divisor) and packs
the quotient in Xi. The exponent of
the result in a no-overflow case is the
difference of Xj and Xk exponents
minus 48. A one-bit overflow is com-
pensated by shifting the coefficient
right one place and increasing the ex-
ponent by one. The exponent is then
the difference of the Xj and Xk exponents
minus 47. The result is a normalized
quantity when both Xj and Xk are
normalized.

Round floating divide Xj by Xk to Xi (15)

Divides the floating point quantity in Xj
(dividend) by Xk (divisor) and packs the
round quotient in Xi. A 1/3 round bit

is added to the least significant bit of
the dividend (Xj) .before division starts.
The result exponent in a no-overflow
case is the difference of Xj and Xk
exponents minus 48. A one-bit overflow
is compensated by shifting the coefficient
right one place and increasing the ex-
ponent by one. The exponent is then

the difference of Xj and Xk exponents
minus 47. The result is a normalized
quantity when both Xj and Xk are
normalized.

Count the number of ones in Xk to Xi (15)

Counts the number of ones in Xk and
stores the count in the lower order 6 bits
of Xi. Bits 6 through 59 are cleared

to zero.

Provides communication with extended core storage (ECS).

RE Bj+K

Read extended core storage (30)

Initiates a read operation to transfer
[(Bj)*K] 60-bit words from ECS to CM.
The initial ECS address is [(X0)+RA ECS];
the initial CM address is [(A0)*RA CM].
This instruction must be located in the
upper position of the instruction word.

44ijk

45ijk

47ikk

011jk

4-25

4.2

PERIPHERAL
PROCESSOR
INSTRUCTIONS

4-26

WE Bj+tK Write extended core storage (30) 012jk

Initiates a write operation to transfer
[(Bj)*K] 60-bit words from CM to
ECS. The initial CM address is
[(AO)+RA CM]; the initial ECS address
is [X0)+RA ECS]. This instruction
must be located in the upper order
position of the instruction word.

The lower order 30 bits of the instruction word containing the ECS read or
write instruction is an error exit and should always hold a jump to an error
routine. Two conditions cause an error exit:

e Parity error when reading ECS. If a parity error is detected, the
entire block of data is transferred before the exit is taken.

e The ECS bank from/to which data is to be transferred is not available
because the bank is in maintenance mode, or the bank is not present
in the system.

When either condition exists and an attempt is made to perform a write
operation, no data transfer occurs. If the operation is a read and addresses
are in range, zeros are transferred to CM.

If an exchange jump occurs while an ECS transfer is in progress, the exchange
waits until completion of a record. If the record just completed is the last
record of the block transfer, and the transfer was error-free, the CP exits to
(P)+1, and the exchange jump takes place; however if an error condition exists,
the CP exits to the lower instruction, executes it, and then exchange jump is
performed. If the record just completed does not complete the block transfer,
the exchange jump occurs, and the contents of P are stored in the exchange
jump package. A return exchange jump to this program begins execution with
the ECS read or write instruction and restarts the transfer. The transfer
does not resume at the point it was truncated; rather, the entire transfer must
be repeated.

The ten PP processors can communicate with each other and exchange data
with CM. Generally, the processors are not used for solving complex
arithmetic and logical problems; they are used to perform input/output opera-
tions for CP programs, to organize problem data, and to store it in CM.

All activity with input/output equipment is directed by PP input/output
instructions.

60190900A

4.2.1

INSTRUCTION FORMAT A PP instruction may be 12 or 24 bits; a 12-bit PP instruction accommodates
a 6-bit or 18-bit operand or operand address; a 24-bit PP instruction accom-
modates a 6-bit, 12-bit or 18-bit address.

The 12-bit format has a 6-bit operation code and a 6-bit operand or operand

address.
Operation Operand or
Code Operand Address
f d
T
6 | 6
{
1] [0)

The 24-bit format requires two memory words. The 6-bit quantity, d, of
the first word is used with the 12-bit quantity, m, of the next consecutive
word to form an 18-bit operand or operand address, c.

Operation Operand or Operand Address
Code —
f d m
6 6 12
1] oll [o)
e —————— m—"
p P+1
4,2.2
ADDRESS MODES Program indexing is accomplished and operands manipulated in three modes:

No address

d or dm is an operand
d = 12-bit number (upper 6 bits = 0)

dm = 18-bit number
Direct address

d or m plus contents of d is the address of an operand
d = address in memory locations 0000—00778

m +.(d) = 12-bit address referencing all possible peripheral memory locations.
If d # 0, d + m is the operand address; if d = 0, m is the operand address.

Thus, location d may be used for an index quantity to modify operand addresses
(direct index addressing).

60190900A 4-27

Indirect address

d = address containing the address of the operand

4.2.3

OPERATION CODES The instructions for the PPs are listed below. They are arranged by unit
function and mnemonic code. Each mnemonic code is followed by a variable
field description. Subfields are separated by commas. A mnemonic
description, the instruction bit size in parentheses and the octal code are
shown. The variable subfield symbols are:

d Index location, 6 bits
m Address value, 12 bits
c Address value, 18 bits

T Numeric value in jump instructions to indicate number of steps
to jump

In the variable field, in parentheses indicate the contents of a register or
location. Double parentheses indicate indirect addressing. M = indexed
direct address (m+(d)).

NO OPERATION
CODE The following instruction specifies that no operation be performed; it provides

a means of padding out a program.

PSN Pass. 12) 2400

DATA TRANSMISSION
CODES 1IDN d Load d (12) 14dd

Clears the arithmetic (A) register and
loads d into the lower 6 bits of A. The
upper 12 bits of A are zero.

LCN d Load complement d 12) 15dd

Clears the A register and loads the
complement of d into the lower 6 bits
of A. The upper 12 bits of A are set
to ones.

LDD d Load (d) (12) 30dd

Clears the A register and loads the
contents of location d into the lower 12
bits of A. The upper 6 bits of A are
Zero.

4-28 60190900A

STD d

LDI d

STI d

LDC ¢

LDM m,d

STM m,d

ARITHMETIC CODES ADN d

SBN d

60190900A

Store (d) (12)

Stores the lower 12 bits of the A register
into location d. The contents of A are not
altered.

Load ((d)) 12)

Clears the A register and loads into A
the 12-bit quantity obtained by indirect
addressing. The upper 6 bits of A are
zero. Location d is read out of memory,
and the word obtained is used as the
operand address.

Store ((d)) (12)

Stores the lower 12 bits of the A register
into the location specified by the contents
of d. The contents of A are not altered.

Load c (24)

Clears the A register and loads the 18-bit
quantity consisting of d as the upper 6 bits
and m as the lower 12 bits.

Load M (24)

Clears the A register and loads the 12-bit
operand obtained by indexed direct
addressing (m+(d)) into the lower 12 bits
of A. The upper 6 bits of A are zero.
The quantity m, put into memory location
P+1, is read out of P+1 and serves as the
base operand address to which d is added.

Store M (24)

Stores the lower 12 bits of the A register
in the location determined by indexed
direct addressing. The contents of A are
not altered.

Add d 12)

Adds the 6-bit positive quantity d to
the contents of the A register.

Subtract d (12)

Subtracts the 6-bit positive quantity d
from the contents of the A register.

34dd

40dd

44dd

20cc ccee

50dd mmmm

54dd mmmm

16dd

17dd

4-29

ADD d

SBD d

ADI d

SBI d

ADC c¢

ADM m,d

SBM m,d

SHIFT CODE SHN r

4-30

Add (d) (12)

Adds to the A register the 12-bit
positive quantity in location d.

Subtract (d) (12)

Subtracts from the A register the 12-bit
positive quantity in location d.

Add ((d)) (12)

Adds to the contents of the A register a
12-bit positive operand obtained by
indirect addressing. Location d is
read out of memory and the word ob-
tained is used as the operand address.

Subtract ((d)) (12)

Subtracts from the A register a 12-bit
positive operand obtained by indirect
addressing. Location d is read out of
memory, and the word obtained is used
as the operand address.

Add ¢ (24)
Adds to the A register the 18-bit quantity c.

Add M (24)

Adds to the contents of the A register a
12-bit positive operand obtained by
indexed direct addressing.

Subtract M (24)

Subtracts from the A register a 12-bit
positive operand obtained by indexed
direct addressing.

Shift r 12)

Shifts contents of A register right or left r
places. If r is positive (00-37g), shift is
left circular; if r is negative (40-77g), A is

31dd

32dd

41dd

42dd

2lcc ccce

51dd mmmm

52dd mmmm

10rr

shifted right (end off with no sign extension).

A left shift of 6 places results when r = 6
and a right shift of 6 places results when

r= 718.

60190900 Rev. B

LOGICAL CODES LMN d Logical difference d (12) 11ldd

Forms in the A register the bit-by-bit
logical difference of d and the lower 6
bits of A. Equivalent to complementing
the individual bits in A which correspond
to one bits in d. The upper 12 bits of A
are not altered.

A 001110101011001001
d 001010
001110101011000011

LPN d Logical product d (12) 12dd

Forms in the A register the bit-by-bit
logical product of d and the lower 6 bits
of A. The upper 12 bits of A are zero.

A 001110101011001001
d 001010
000000000000001000

SCN d Selective clear (12) 13dd

Clears the lower 6 bits of the A register
where corresponding bits of d are ones.
The upper 12 bits of A are not altered.

A 001110101011001001
d 001010
001110101011000001

LMD d Logical difference (d) (12) 33dd

Forms in the A register the bit-by-bit
logical difference of the lower 12 bits
of A and the contents of location d.
Equivalent to complementing individual
bits of A which correspond to one bits
in the contents of d. The upper 6 bits
of A are not altered.

A 001110101011001001
d 010100001010
001110111111000011

60190900A 4-31

4-32

ILMI D

LPC c

LMC c

LMM m,d

Logical difference ((d)) (12)

Forms in the A register the bit-by-bit
logical difference of the lower 12 bits

of A and the 12-bit operand obtained by
indirect addressing. Equivalent to
complementing individual bits of A which
correspond to one bits in the operand.
The upper 6 bits of A are not altered.

A 001110101011001001
() 010100001010
001110111111000011

Logical product ¢ (24)

Forms in the A register the bit-by-bit
logical product of the contents of A and
the 18-bit quantity c.

A 001110101011001001
¢ 001110000011001010
001110000011001000

Logical difference c (24)

Forms in the A register the bit-by-bit
logical difference of the contents of A
and the 18-bit quantity c. Equivalent
to complementing the individual bits in
A which correspond to one bits in c.

A 001110101011001001
c 000010000000001010
001100101011000011

Logical difference M (24)

Forms in the A register the bit-by-bit
logical difference of the lower 12 bits
of A and a 12-bit operand obtained by
indexed direct addressing. Equivalent
to complementing individual bits of A
which correspond to one bits in the
operand. The upper 6 bits of A are
not altered.

A 001110101011001001
M 010100001010
001110111111000011

43dd

22¢ce ccee

23cc cece

53dd mmmm

60190900A

REPLACE CODES Place results of an arithmetic operation in the A register and destroy original
contents of A register.

RAD d Replace add (d) 12) 35dd

Adds the 12-bit quantity in location d to
the contents of the A register and stores
the lower 12 bits of the result back in
location d. The result is left also in the
A register at the end of the operation.

AOD d Replace add one (d) 12) 36dd

Adds one to the original value in location
d and stores the lower 12 bits of the
result back in location d. The result

is left also in the A register at the end
of the operation.

SOD d Replace subtract one (d) (12) 37dd

Subtracts one from the original value in
location d and stores the lower 12 bits
of the result back in location d. The
result is left also in the A register at
the end of the operation.

RAI d Replace add ((d)) (12) 45dd

Adds A register contents to the operand
from the location specified by the contents
of d. The resultant sum is left in the A
register at the end of the operation, and
the lower 12 bits of A replace the

original operand in memory.

AOI d Replace add one ((d)) 12) 46dd

Adds one to the operand obtained from

the location specified by the contents of d.
The resultant sum is left in the A register
at the end of the operation, and the lower
12 bits of A replace the original operand
in memory.

SOI d Replace subtract one ((d)) 12) 47dd

Subtracts one from the operand obtained
from the location specified by the con-
tents of d. The resultant difference is
left in the A register at the end of the
operation, and the lower 12 bits of A
replaces the original operand in memory.

60190900A 4-33

BRANCH CODES

4-34

RAM m,d

AOM m,d

SOM m,d

Replace add M (24)

Adds A register contents to the operand
obtained from the location determined by
indexed direct addressing. The resultant
sum is left in the A register at the end

of the operation, and the lower 12 bits

of A replace the original operand in
memory.

Replace add one M (24)

Adds one to the operand obtained from
the location determined by indexed direct
addressing. The sum is left in the A
register at the end of the operation, and
the lower 12 bits of A replace the
original operand in memory.

Replace subtract one M (24)

Subtracts one from the operand obtained
from the location determined by indexed
direct addressing. The result is left in
the A register at the end of the operation,
and the lower 12 bits of A replace the
original operand in memory.

55dd mmmm

56dd mmmm

57dd mmmm

-The r subfield is a numeric value indicating the number of locations to a
maximum of 313 (37g) to be jumped. If r is positive (01-37g) the jump is
forward r locations. If r is negative (40-76g) the jump is backward r loca-
tions, If r equals 00 or 77g, the program stops.

UJN r

ZJN r

Unconditional jump r locations 12)

Unconditional jump of up to 31 steps for-
ward or backward from current program
address, depending on value of r.

Zero jump: jump r locations if (A) =0 (12)

Conditional jump of up to 31 steps forward
or backward from current program address
if A register is zero. If A is nonzero, the
next instruction is executed. Negative zero
(777777) is treated as nonzero.

03rr

04rr

60190900A

NJN r

PJN r

MJN r

LIJIM m,d

RIM m,d

CENTRAL PROCESSOR
AND CENTRAL
MEMORY CODES EXN d

60190900A

Nonzero jump: jump r locations 12)
if (A)#0

Conditional jump of up to 31 steps forward
or backward from current program
address if A register is nonzero. If A

is zero, the next instruction is executed.
Negative zero (777777) is treated as
nonzero.

Plus jump: jump r locations (12)
if (A)= +0

Conditional jump of up to 31 steps forward
or backward from current program
address if A register is positive. If A

is negative, the next instruction is
executed.

Minus jump: jump r locations 12)
if A)= -0

Conditional jump of up to 31 steps forward
or backward from the current program

address if A register is negative. If A is
positive, the next instruction is executed.

Long jump to M (24)

Jumps to sequence beginning at address
m + (d). Ifd=0, mis not modified.

Return jump to M (24)

Stores the current program address plus
two (P + 2) at location m + (d), and
jumps to location m + (d) + 1.

Exchange jump 12)

Transmits an 18-bit address from the A
register to the central processor and
directs the central processor to perform
an exchange jump. The address in A is
the starting location of a 16-word file
containing information about the CP
program to be executed. The 18-bit
initial address must be entered in A be-
fore this instruction is executed. The

05rr

06rr

07rr

01dd mmmm

02dd mmmm

260d

4-35

4-36

EXN d
(Cont'd)

MXN d

RPN

CRD d

CRM m,d

central processor replaces the file with
similar information from the interrupted
CP program. The PP program is not
interrupted.

Monitor exchange jump (12)

Conditional exchange jump to the CP
initiates CP monitor activity. If the
monitor flag bit is clear, this instruction
sets the flag and initiates the exchange.
If the monitor flag bit is set, this
instruction acts as a pass instruction.
The starting address for this exchange
is the 18-bit address in the PP A
register which is an absolute address.
The PP program must have loaded its
A register with an appropriate address
prior to executing this instruction.

Read program address 12)

Transfers contents of the central proc-
essor program address (P) register to
the PP A register. Allows the PP to
determine whether the central processor
is running.

Central read from (A) to d 12)

Transfers a 60-bit central memory word
to 5 consecutive PP memory locations.
The A register must contain the 18-bit
absolute CM address before the instruc-
tion is executed. The 60-bit CM word

is disassembled into five 12-bit words
beginning at the left. Location d receives
the first 12-bit word. The remaining
12-bit words go to succeeding locations.
The A register contents are unchanged.

Central read (d) words from (A) to M (24)

Reads a block of 60-bit words from CM
into PP memory. The A register contains
the 18-bit CM starting address and must
be loaded prior to the execution of this
instruction. The contents of A are
increased by one as each 60-bit CM

word is disassembled and stored. The

261d

2700

60dd

61dd mmmm

60190900A

60190900A

CRM m,d
(Cont'd)

CWD d

CWM m,d

block length or number of CM words to
be read is contained in location d. The
number also goes to the Q register, an
indexing register, where it is reduced by
one as each CM word is processed.
Transfer is complete when @ = 0.

The current contents of the (P) register
are stored in PP location 0000, and the
PP starting address m in the P register,
which is increased by one as each 12-bit
word is stored. Five words are required
for each CM word read, since each CM
word is disassembled into five successive
PP words. The original contents of P
are restored upon completion of the
transfer.

Central write from d to (A) 12) 62dd

Assembles five successive 12-bit words
into a 60-bit word and stores it in CM.
The 18-bit CM address must be in the A
register prior to the execution of the
instruction and remains there unchanged.

The first word to be read out of PP memory
is contained in location d. It appears as

the leftmost 12 bits of the 60-bit word.

The remaining 12-bit groups are taken

from successive addresses in PP memory.

Central write (d) words from M to (A) (24) 63dd mmmm

Assembles a block of 60-bit words and
writes them in CM. The A register con-
tains the beginning CM address and must
be loaded prior to the execution of this
instruction. The number in A is increcased
by one after each 60-bit word is assembled
to provide the next CM address.

The contents of location d specify the
number of 60-bit words to write. The
number also goes to the Q register where
it is reduced by one as each CM word is
assembled. Transfer is complete when

Q=0.

4-37

4-38

INPUT/OUTPUT
CODES

CWM m,d
(Cont'd)

AJM m,d

IJM m,d

FJIM m,d

The original contents of the P register
are stored in PP location 0000. The
address of the first word to be read from
PP memory, m, goes to the P register
which is increased by one as each 12-bit
word is read to provide the next PP
memory address. The original contents
of the P register are restored at the
completion of the transfer.

Jump to m if channel d active (24)

Conditional jump to a new program se-
quence beginning at address m if the
channel specified by d is active. If
the channel is inactive, the current
program sequence continues.

Jump to m if channel d inactive (24)

Conditional jump to a new program se-
quence beginning at address m if the
channel specified by d is inactive. If
the channel is active, the current
program sequence continues.

Jump to m if channel d full - (24)

Conditional jump to a new program se-
quence beginning at address m if the
channel specified by d is full. If the
channel is empty, the current program
sequence continues.

An input channel is full when the input
equipment has sent a word to the channel
register and sets the full flag. The
channel remains full until the PP accepts
the word and clears the flag. An

output channel is full when a PP sends

a word to the channel register and sets
the full flag. The channel is empty
when the output equipment accepts the
word and notifies the PP.

64dd mmmm

65dd mmmm

66dd mmmm

60190900A

EJM m,d Jump to m if channel d empty (24) 67dd mmmm

Conditional jump to a new program se-
quence beginning at address m if the
channel specified by d is empty. If the
channel is full, the current program
sequence continues.

IAN d Input to A from channel d (12) 70dd

Transfers a word from input channel d
to the lower 12 bits of the A register.
The upper 6 bits are cleared. If this
instruction is executed when the channel
is inactive, the PPs will become
inoperative until deadstart.

IAM m,d Input (A) words to m from channel d (24) 71dd mmmm

Transfers a block of words from input
channel d to PP memory beginning at a
location specified by m. The A register
contains the block length which is re-
duced by one as each word is read.

The input operation is complete when
A=0.

The current contents of the P register
are stored in PP location 0000 and the
starting address, m, in P. As each
word is stored P is increased by one to
give the next address. The original
contents of the P register are restored
at the end of the operation. If this
instruction is executed when the data
channel is inactive, no input operation
is accomplished; the program continues
at P+2.,

OAN d Output from A on channel d 12) 72dd

Transfers a word from the lower 12 bits
of the A register to output channel d.
The A register remains unaltered. If
this instruction is executed when the
channel is inactive, the PPs will become
inoperative until deadstart.

60190900A 4-39

4-40

OAM m,d

ACN d

DCN d

Output (A) words from m on (24)
channel d

Transfers a block of words on output
channel d from PP memory beginning
at the location specified by m. The
number of words is specified by the
contents of the A register, which is
reduced by one as each word is
transferred. The output operation is
completed when A = 0.

The current contents of the P register,
m, are stored in PP location 0000.

P is increased by one as each word

is read to give the next address.

The original contents of the P register
are restored at the end of the operation.
If this instruction is executed when the
data channel is inactive, no output
operation is accomplished; the program
continues at P+2.

Activate channel d (12)

Activates the channel specified by d.

This instruction must precede instructions
70dd-73dd mmmm. Activating a channel
alerts the input/output equipment for the
exchange of data. Activating an already
active channel causes the PP to become
inoperative until deadstart.

Disconnect channel d 12)

Deactivates the channel specified by d.
Stops the input/output equipment and
terminates the buffer. Deactivating an
already inactive channel causes the PP
to become inoperative until deadstart.
Care must be taken to avoid disconnecting
the channel before first sensing for
Channel Empty, deactivating a channel
before stopping the associated processor,
and deactivating a channel before putting
a useful program in the associated proc-
essor. After deadstart, PPs wait on an
input channel. Deactivating a channel
after deadstart causes an exit to address
0001 and execution of program.

73dd mmmm

74dd

75dd

60190900A

60190900A

FAN d

FNC m,d

Function (A) on channel d (12)

The external function code in the lower
12 bits of the A register is sent out on
channel d. Executing this instruction
when the channel is active causes the

PP to become inoperative until deadstart.

Function m on channel d (24)

The external function code specified by
m is sent out on channel d.

76dd

77dd mmmm

4-41

PSEUDO INSTRUCTIONS 5

60190900A

Pseudo instructions are grouped here according to general function. Their
appearance in a subprogram is governed by the following rules:

1. Operations required:

IDENT must be the first line
END must be the last line

2., When the following operations are used, they must appear before any
operations listed at 4. They must also appear before a macro call or
the pseudo operation HERE if either generates an operation listed at 4.

ABS
PERIPH

3. The following operations may appear anywhere between IDENT and END:

MACRO, its definition, and ENDM
Comments lines

LIST, EJECT, SPACE, TITLE, ERR, LCC, XTEXT, RMT and
its bracketed code

HERE and XTEXT, only if code generated does not include
operations listed at 4.

A macro call only if it does not expand into any of the operations
listed at 4.

4. The first appearance of these operations makes illegal the subsequent
appearance of ABS or PERIPH,

USE, LOC, ORG

MICRO

Any machine instruction

ENTRY, EXT

EQU, SET

BSS, BSSZ

DATA, VFD, REP, DIS

DUP, ENDD, STOPDUP

All conditional pseudo instructions
SST

5.1
ASSEMBLER
CONTROL

The mode of assembly is controlled by these instructions.

The first operation of every subprogram must be IDENT,

Location | Operation | Variable
|

ignored | IDENT 1, 2, or 3 subfields
IDENT can occur only once in each subprogram. Any additional occurrence
is considered an error. If it is omitted, an error will result. The first
variable subfield must contain a linkage symbol which becomes the name of
the subprogram only and is not defined in the assembly (see section 3. 3).
For relocatable assemblies, the second and third subfields are ignored.

If the assembler is called by FORTRAN rather than a COMPASS control
card, IDENT must appear in columns 11-15.

In absolute assemblies, the second subfield defines the first word address

of the absolute binary program image. During assembly, data may be
originated at a location higher than the base origin address, but not below it.
This first word address does not serve the same function as an ORG nor

does it replace ORG to set the origin counter value. A second subfield on the
IDENT line is evaluated as a decimal number unless specifically designated
octal.

In absolute CP subprograms, the third subfield contains the entry address.
Assembler binary output is explained in section 8.

If the TITLE instruction is omitted, the IDENT variable field is used for
the main subprogram title.

END is required as the last operation of each subprogram.

Location l Operation | Variable
symbol or END I blank or a linkage symbol
blank

This operation terminates a subprogram deck. It causes the assembler to
terminate any counter, conditional assembly, macro generation or code
duplication in progress. Any waiting remote text is assembled; all local
blocks are assigned an origin relative to the program origin in the order in

60190900 Rev. B

5.1.3
ABS

5.14
PERIPH

60190900A

which they were first introduced. If the location field of END contains a
symbol it is defined as having a relocatable value equal to the total sub-
program length, or at last word address + 1. Total subprogram length
includes the length of the literals block. A symbol in the variable field
of END is considered a transfer address and is relevant only for relocat-
able assemblies. This transfer address defines the starting point of
execution of a program when it is loaded.

A non-relocatable CP program may be assembled with this instruction:

Location | Operation | Variable

ignored I ABS I ignored

ABS declares the program to be absolute; if used, it must appear at the
beginning of the assembly. The assembler assigns all blocks an origin
relative to absolute zero. Although the output is absolute, relocatable
symbols may exist during assembly. Any literal or any symbol defined in a
block other than the zero block is considered relocatable. This is a relevant
consideration for symbol definition, storage allocation, and the IT' pseudo
instruction.

In absolute assemblies, ENTRY, REP, REPI and EXT are illegal.

PP code is assembled with this instruction:

Location Operation | Variable

ignored PERIPH I ignored

PERIPH declares the program to be a PP program and absolute. The rules
stated under ABS apply; in addition, LCC is illegal.

Within PERIPH assemblies, the register names of CP assemblies are treated
as.normal symbols. Any CP instruction will cause an operand error.

With BASE, the programmer can change the mode of numeric data.

Location I Operation | Variable

ignored I BASE l OorD

5-3

5.1.6
SEGMENT

5-4

A variable field symbol beginning with the letter O denotes octal assembly
mode; a symbol beginning with D denotes decimal mode. Any other entry
will be flagged as an error, and assembly will be decimal.

In succeeding lines, all numeric address constants and data items consisting
of digits without O, D or B prefix or suffix are subject to the base mode
control. Under BASE O, for example, the constant 15 is considered 15g,

as is 15B, and constant 15D is evaluated as 17g. In octal assembly mode,
any numeric item containing an 8 or 9 without a D prefix or suffix is flagged
as an error. Decimal assembly mode is always assumed if no BASE is
encountered.

All numeric items are under base control (except scale factors and binary
point position which are always considered decimal items). For example,
using’ the octal assembly mode, VFD 60/-1 defines a 48-bit field. A second
subfield on the IDENT line is evaluated as a decimal number unless specifi-
cally designated octal.

This pseudo instruction is used for producing central processor and peripheral
processor overlays at assembly time. SEGMENT can be used only in a PP
assembly or an absolute CP assembly.

Location I Operation | Variable

Segname I SEGMENT I orgbase, eptname

Segname is the name of the overlay and must be present for the loader as a
linkage symbol. Segname is not defined in the assembly.

Orgbase defines the first word address of the absolute binary program image.
During assembly, data may be originated at a location higher than the base
origin address, but not below it, This first word address does not serve the
same function as an ORG nor does it replace ORG to set the origin counter
value.

Eptname indicates the entry address to the segment. The SEGMENT pseudo
instruction causes COMPASS to write, to the binary output file, all binary
information accumulated since the previous IDENT or SEGMENT card was
encountered and to write an end-of-record. The binary information consists
of blocks, literals, and assembled code. The symbol table is not cleared
after encountering SEGMENT.

SEGMENT should be used in conjunction with a USE or ORG pseudo operation
to indicate the location where the segment is to be loaded.,

In a CP assembly, a BSS 1 is required as the first instruction in the segment
(after ORG and USE) to allow room for a control word to be loaded into the
first word prior to the orgbase. (appendix F)

60190900 Rev. B

Examples ;

1. OVLOC BSS 0 Location where
segment is loaded
SEG1 SEGMENT STRTLOC,ENTPNT
ORG OVLOC
BSS 1 First address of
STRTLOC BSS 0 segment binary
information
(tables)
ENTPNT BSS 0 Entry point of
segment
(program)

The segment, SEG1, will be loaded as an overlay. The first word
address of the binary information to be loaded is STRTLOC. The
entry point to the overlay and the first executable instruction is
location ENTPNT. The overlay, when executed, will occupy the
area beginning at location OVLOC.

2. SEGA SEGMENT STRTLOC,ENTPNT
USE BLOCK1 assemble in block
BSS 1 1 used by loader
STRTLOC BSS 0
: (tables)
ENT BSS 0
(program)

The segment, SEGA, will be loaded as an overlay. The first word
address of the binary information to be loaded is STRTLOC. The
entry point and first executable instruction is ENTPNT. The over-
lay will be assembled in the block, BLOCK1, and when executed will
occupy an area relative to the block origin.

All segment overlays are level (1,0). If errors occur or if word count
is zero, no binary data will be dumped.

The programmer must set up the necessary loader call, overlay
level, and the type of load requested. (See SCOPE 3.1 Reference
Manual.)

60190900 Rev. B 5-4a

5.2
COUNTER CONTROL These pseudo instructions control the origin, location and position counters.

5.2.1
USE USE declares a block into which succeeding instructions are to be placed.

ocation eration ariapble
Locati Operati Variabl

ignored | USE | block name

Upon encountering USE, the assembler places succeeding assembled values
in the block named in the variable field. The first appearance of a block
name in USE causes a force upper, subsequent USE statements for that
block do not. The values of the current origin and position counters are
saved to indicate the last known length of the block being assembled. An
indication as to whether the next instruction is to be forced upper is also
saved. If the block name in the USE statement is enclosed in slashes, that
block is a common block, and subsequent uses of that name in USE need
not be enclosed in slashes. If the block name is never enclosed in slashes,
it is a local block.

The following notations may be used to set the origin of data:
USE Data origin is in zero block
USE 0 Data origin is in zero block

USE // Use blank common block
I USE * Use block in effect prior to current USE

5-4b 60190900 Rev. B

A common block can be declared with the same name as a local block. In
such cases, the common block name must be enclosed in slashes in subsequent
USE statements to distinguish it from the local block. Thus, common block
zero can coexist with the program's zero block if it is referenced always in
the following manner:

USE /0 /

The zero block, the nominal program block, contains the entire program if no
other USE is encountered.

If the blank common block is named in a USE statement, BSS and ORG are
the only storage allocation instructions that may follow USE; BSSZ is not
permitted since it presets the block to zero.

The assembler maintains a record of USE and ORG pseudo operations since
each occurrence of these pseudo operations (except USE*) adds an entry to
this record. Each use of USE * restores the most recent entry and removes
it from the list. In this way, a push-down list is maintained. Only the last
50 entries are maintained. When the list is exhausted (more USE * instruc-
tions than entries), the zero block is used.

Any symbol used as a block name has definition as a block name only, and
may be defined elsewhere without ambiguity.

If a USE statement introduces a block name that has not appeared previously
in a USE statement, the origin and location counters are started at zero
relative to the block origin, and the position counter is set to the beginning
of a new word. Block type is considered local unless the block name is
enclosed in slashes.

If the block name has previously appeared in a USE operation, or is the zero
block, the origin, location, and position counters are started at their last
known values.

If the last instruction assembled under this block was one which forces the
next instruction upper, that last instruction will be forced upper. For

example:
GAMMA RJ ALPHA
USE DATA
SAN DATA 1.0
USE *
SA3 SAM

The SA3 instruction will be foreed upper.

60190900A 5-5

5.2.2
ORG

5-6

If the last instruction did not indicate a force upper, forcing upper is deter-
mined by the instructions which follow USE. With this facility, partial-word
bytes may be packed into a table which resides in a block other than the one
currently being used. For example:

USE /TABLE/
VFD 6/CODE
USE *

.

USE /TABLE/
VFD 6/1RX, 18/ADDR
USE *

The value of the location counter is not saved; if LOC has been employed,
caution must be exercised to produce the desired results.

When assembly takes place within a block, that block name in a USE statement

has the effect of forcing the location counter to agree with the origin counter
and recording this block as the last known block for a subsequent USE *,

With ORG, the origin and location counters may be reset.

Location I Operation ' Variable

ignored I ORG I address expression

The ORG instruction causes the location and origin counters to be reset to

the value stated in the address field. As in USE, the current origin, location,
and position counters are saved. ORG starts the assembly at the upper
position of a word.

The only effect of * in the variable field of ORG is to force the current block
upper. The USE pseudo instruction must return control to the last used
block.

The expression in the variable field of ORG must not contain symbols not yet
defined; the expression may not result in a negative relocatable value.

60190900A

523

LOC The location counter may be set with this instruction.
Location I Operation | Variable
ignored I LOC I address expression

The location counter is set to the value of the variable field expression, but
the origin counter is not reset. Normally the location counter value is the
same as the origin counter, since instructions are executed normally at
the location into which they were loaded. LOC allows the location counter
to be adjusted so that code may be loaded into one place, and executed at
another. The location counter is reset to origin counter value when a sub-
sequent USE or ORG is encountered.

Symbols in the variable field expression of LOC must have been previously
defined. LOC causes the next instruction to be forced upper. The only
effect of LOC * is to force upper.

53

LINKAGE CONTROL Names to be passed to the loader for subprogram linkage are declared with
these instructions. They are valid for relocatable code only, and may not
exceed seven characters in length.

5.3.1
ENTRY An entry point name is passed to the loader with this statement.
Location I Operation l Variable
ignored | ENTRY | symbols separated by commas
The linkage symbols listed in the variable field are declared to the loader as
entry points. Each must be defined in the assembly as a non-external symbol.
5.3.2
EXT This instruction declares symbols external to the subprogram.
Location l Operation l Variable
ignored | EXT I symbols separated by commas

The linkage symbols listed in the variable field are passed to the loader as
external symbols., These symbols must not be defined within the subprogram.

60190900A 5-7

54
STORAGE
ALLOCATION

5.4.1
BSS

5.4.2
BSSZ

5.5
SYMBOL
DEFINITION

5.5.1
EQU

5-8

These pseudo instructions cause adjustment of both the location and origin
counters. All operations force upper.

A storage area is reserved with this statement:

Location | Operation | Variable

BSS

symbol or absolute address expression

blank

A location field symbol is defined as the current value of the location counter.
The expression in the address field is evaluated and the location and origin
counters are incremented by that amount. Symbols in the expression must
have been previously defined. If the address expression is incorrect, no
space will be reserved, but a force upper will occur. BSS 0 forces upper
without allocating storage.

BSSZ reserves an area of zero-filled words in storage. The specification
of BSSZ is similar to BSS, and the effect is the same, except that allocated
storage is preset to zeros at load time. BSSZ 0 forces upper without
allocating storage.

These operations permit the direct definition of symbols.

Location IOperation |Variable

symbol I EQU l address expression

The symbol in the location field is defined as having the same value as the
address expression. Once defined, the symbol retains that definition through-
out assembly. An undefined symbol may not appear in the variable field
expression. (=Ssymbol and =Xsymbol may not be used in the address field
unless the symbols have been defined by some other conventional method.)
The address expression may result in an absolute, relocatable, or external
value. If the address field is incorrect, the location symbol of the EQU is

not defined, and a warning flag is issued.

60190900A

5.5.2
SET

5.6
DATA GENERATION

5.6.1
DATA

5.6.2
DIS

60190900A

Location I Operation | Variable

symbol I SET | address expression

SET redefines the value of the location symbol to the value of the variable
field expression. Such symbols are called redefinable and may be defined
only with the SET instruction; they have this definition only until reset.
Symbols in the address expression must have been previously defined. A
SET-defined symbol may not be referenced before it is first defined by a
SET. (=Ssymbol and =Xsymbol may not be used in the address field unless
the symbols have been defined by some other conventional method.) The
address expression may result in an absolute, relocatable or external value.
If the address field is incorrect, the location symbol is not redefined, and

a warning flag is given.

With these instructions, data items may be included in the subprogram.

The DATA operation declares numeric and character data items.

Location I Operation | Variable
blank or DATA | absolute data items
symbol

If a location symbol is present, it is defined as the current value of the
location counter. The data items may be octal, decimal, or display code
characters, and must be full-word values. They are separated by commas
and terminated by a blank. Literals may not be used in the variable field
list. The DATA pseudo instruction forces upper. Refer to section 3 for
specification of data items.

DIS provides a convenient means of writing display code lines when more
than one COMPASS statement is involved.

Location | Operation | Variable
blank or DIS word count, and a
symbol character string

5-9

5.6.3
LT

5.64
VFD

5-10

The word count must result in an absolute value., COMPASS extracts n.10
characters beyond the comma following the address expression, and packs
them, as they ocecur, into n words. If the statement ends before n.10 is
satisfied, the remainder of the words requested will be filled with blanks
(55g). (For PP, n-2is the character count.)

If the count subfield is missing or has a zero value, the character string
must be bounded by delimiters. The comma must always be present. The
first character after the comma is the delimiter. All characters between
the delimiter and its next occurrence are packed into as many words as

are necessary. Two zeros are guaranteed at the end of the character string;
COMPASS allocates another word to accommodate them if required. If the
delimiter character is not encountered again, COMPASS will produce a fatal
error.

The DIS pseudo instruction forces upper.

Absolute values are entered into the literal table with the LIT statement.

Location I Operation I Variable
LIT

blank or
symbol

up to 100 words of data items

A location symbol indicates the location of the first mentioned value. Data
items 'are separated by commas and terminated by a blank. Data items are
entered in the literal table in the order specified. Duplications in data items
may occur in the literal table if there are duplicate values in the LIT variable
field which occur in a different sequence; but if all data items listed for one
LIT are identical to an existing sequence in the literal table, they will not be
duplicated. Subsequently defined literals (defined either with LIT or the =n
form) will not be duplicated in the literal table if they exist in a LIT declared
sequence.

The specification of data items in the LIT variable field is the same as for

DATA. No =is used before LIT-declared literals. At least one data item
must be specified.

Fields of binary data are generated with the VFD statement.

Location Operation Variable

blank, VFD a list of subfields separated
+, -, or by commas

symbol

60190900A

When plus or a symbol appears in the location field, data begins in a new
word. A symbol is given the new value of the location counter. A minus
sign in the location field causes the position counter to be set at the next
quarter word boundary in a CP assembly, or at a new word in a PP
assembly.

The subfields are of the format n/v where n is a bit count of field length and
may be any single, previously defined, absolute element. It must be positive
and may not exceed 60. The value expression, v, consists of any valid address
expression. If a non-absolute value (v) occurs (relocatable or external), it
must be within a field that is at least 18 bits long and ends at bit 0, 15, or 30.

Absolute data items follow all rules indicated in section 3.7 and are right
or left justified within the field length.

Example:

ALPHA SET 15

TABLE VFD 36/4CTAB1,6/9,18/TABLOC
VFD 30/%-1,30/5HAAAAA, ALPHA/-0
VFD $/0,1/1

Word1 [240102340000[11TABLOC
Word2 0000 TABLE|5555555555

Word 3 77T7T771000000000000001

VFD leaves the position counter pointed at the next available bit position. If
the last VFD byte ends to the left of a quarter word boundary, zero bits will
be inserted up to a quarter word boundary. If one VFD instruction is followed
immediately by another which has no location field entry or if the two VFDs
are separated only by a USE...USE * routine, values are packed into words
with no padding or forcing upper.

A plus or minus in the location field of a VFD in PP forces the VFD data to
begin at the next full word boundary.

5.6.5
REP REP defers data generation until load time. It is valid only in relocatable
assemblies.
Location | Operation I ‘Vafiable
ignored REP 1 to 5 subfields separated

by commas

60190900 Rev. B 5-11

5-12

Information is passed by the assembler to the loader. This replication
control is used when a block of storage is to be set to a given series of
values, yet is not to be represented in its duplicated state in the COMPASS
binary output. A BSSZ instruction with an address area greater than five
is output in a REPI table. First a set of data is placed in consecutive loca-
tions, established by the programmer using normal assembler techniques.
Then the loader is instructed to move blocks of data in storage. For this,
five values are specified in the REP or REPI instruction, For REPI the
non-relocatable data must appear in previously loaded text. This data
must not contain any external references or common relocatable addresses.
Each subfield consists of a letter, S, D, C, B, I, and a slash, followed by
a non-external address expression.

Source address
Destination address

Repetition count

W QO g ©n

Code block size

I Increment

The operation at load time is to move B words from location S to location D,
B words from location S to location D +I, B words from S to location D + 2I,
etc. This operation is repeated C times. An omitted specification, except
S, is passed to the loader as zero. Only one specification of each type may
appear. If a subfield is zero, the loader will make the following assumptions,
in the order shown:

os}
]

1l

1l

1
I1=B
C=1
D = value of S subfield plus value of B subfield

If the value of Sis zero, the assembler will flag the REP or REPI instruction
as an error and will not pass REP or REPI to loader.

The loader tables produced by the REP and REPI instructions differ only in
one byte., The REPI table is processed by the loader upon encounter, whereas

the processing of the REP table is delayed until the closing out of load.

The assembler error-flags the REP instruction if the value of Sis zero, and
does not pass REP to the loader.

At load time, REPs are deferred until all other loading is finished.

60190900A

5.7

CONDITIONAL

OPERATIONS These pseudo instructions control the conditional assembly of code; succeeding
instructions are assembled only if the condition stated is true. When a value
of an address expression is involved, only previously defined symbols may be
used, and the result must not be relocatable. If undefined elements are used,
the expression has a zero value, the conditional is flagged as an error and
assembly proceeds with the next instruction.

The number of instructions to be assembled or skipped may be controlled by

a line count or by brackets (an IF to a matching ENDIF), A count of the num-
ber of statements assembled under control of an IF statement can be included
as the last subfield. If the count field is missing or zero, the assembler looks
for a bracketing ENDIF, and assembly resumes with the instruction immediatly
following it. Comment lines with an asterisk in column 1 are not included in
the count. The skip count is decremented only for instruction lines. Comments
which occur before the first instruction following the skipped instruction are
skipped also.

If there is an instruction bracket name, the corresponding ENDIF is the first
one encountered which has either the same name as the IF or no name. If
there is no instruction bracket name on the conditional instruction and no line
count is given, the first ENDIF encountered, with or without a name, termin-
ates the bracket. Instruction brackets have significance only if coding is not
to be assembled. An ENDIF encountered during assembly is ignored. An
END card terminates the skipping process. During the skipping process,
macros are not expanded: an ENDIF which would have had effect in the
macro expansion is ignored.

Conditional pseudo instructions can:

Test comparative value of two address expressions
Test assembly environment
Test the attribute of a single symbol or address expression

Test the value of character strings

5.7.1

IF: COMPARE

EXPRESSION

VALUES Location Operation Variable

blank or IFxx 2 or 3 address expressions
instruction separated by commas
bracket name

xx is EQ, NE, GT, GE, LT, or LE. The values of the first two address
expressions are compared. The third is the number of lines to be assembled
if the comparison is satisfied.

60190900A 5-13

IFEQ: Succeeding code is assembled if the values are equal.
IFNE: Succeeding code is assembled if the values are not equal.

In IFEQ and IFNE tests, all information pertinent to the value of the two
address expressions is compared for equality. Not only must the expres-
sions have the same numeric value, but they must have equal attributes.
For example, both must be common relocatable, program relocatable,
absolute, external, or register names.

IFGT: Succeeding code is assembled if the value of the first subfield is
greater than the second.

IFGE: Succeeding code is assembled if the value of the first subfield is
greater than or equal to the second.

IFLT: Succeeding code is assembled if the value of the first subfield is
less than the second.

IFLE: Succeeding code is assembled if the value of the first subfield is
less than or equal to the second.

In the last four tests, only the values of the expressions are compared.
Relocation and other attributes are not tested for equality.

57.2
IF: TEST
ASSEMBLY
ENVIRONMENT Location Operation Variable
Blank or IFPP or A single optional address
instruction IFCP expression
bracket name
IFPP tests for a PP assembly; IFCP tests for a CP assembly. The variable
field expression results in a count of lines to be skipped if the test is not
satisfied.
573
IF: TEST SYMBOL
ATTRIBUTE Location Operation Variable
blank or IF 2 or 3 subfields, separated by commas:
instruction attribute mnemonic, symbol or address
bracket name expression; address expression

5-14 60190900A

The attribute mnemonic is SET, ABS, REL, REG, EXT, COM, LOC or
DEF. The symbol or address expression depends on the mnemonic used.
The address expression results in the line count. The line count and its
preceding comma may be omitted if ENDIF is used.

Negative attribute may be specified by preceding the attribute mnemonic
with a minus sign.

The following tests are made:

SET Satisfied (true) if the symbol in the second subfield has been pre-
viously defined by the SET pseudo instruction; -SET is satisfied
if the symbol is defined by any other method. The second subfield
must be a single symbol.

ABS Satisfied if the address expression is absolute (not relocatable or
external). -ABS is satisfied if the expression value is not absolute.

REL Satisfied if the address expression is common or program relocatable.
-REL is satisfied if the address expression is other than program or
common relocatable.

REG Satisfied if any symbol in the address expression is a register name.
-REG is satisfied if no symbol is a register name.

COM True if the expression is common relocatable. -COM is true if the
expression is not common relocatable.

EXT True if any symbol in the address expression is an external symbol.
-EXT is true if there is no external symbol.

LOC Satisfied if the expression is program relocatable. -LOC is true
if the expression is not program relocatable.

DEF Satisfied if all symbols in the expression have been defined. -DEF
is satisfied if any expression symbol has not yet been defined.

The attributes listed, except -DEF and REG are known to the assembler only
after the symbols in the expression have been defined. For example, if a
common block name has not yet been declared in a USE pseudo instruction,

a test for COM on that name will fail. Any test on an undefined symbol,
except for DEF, REG or EXT, results in an error.

60190900A 5-15

574

IFC . This option tests the equality of two character strings.
Location Operation Variable
blank or IFC 2 or 3 subfields separated by commas;
instruction (if no third subfield, second comma is
bracket name omitted): a relational mnemonic, 2
delimited character strings, and an
optional address expression

Relational mnemonics:

EQ or -NE equal

NE or -EQ not equal

GT or -LE greater than

GE or -LT greater than or equal
LT or -GE less than

LE or -GT less than or equal

The delimited character strings are of the format:
deccce. . .ccdeece. . .ced

d is any character. Characters between the first and second d constitute
the first character string; characters between the second and third d con-
stitute the second character string.

The optional third subfield is an address expression which results in line
count. It must be preceded by a comma. If ENDIF is used, the line count
and its preceding comma may be omitted.

Each character in the first string is compared with the corresponding charac-
ter in the second string, progressing from left to right, until an inequality is
found: or both strings are exhausted. If one string is shorter than the other,
the short string is padded with a character which is smaller than any other
character in the string.

The truth condition is evaluated on the relative magnitudes of the strings.

Example:
ABCABCS is equal AS is greater than
$SABSABCS is less than $7$8% is less than
3 is equal

The collating sequence is given in Appendix A,

5-16 60190900A

575
IF: PP USAGE

60190900A

When IFC is used within a macro definition, one or both of the character
strings may be a formal parameter name. For example, an IFC to check
for an empty parameter string:

XX MACRO P1,P2

IFC EQ,**P2*, 1
ERR

ENDM
Since the character * is recognized as a formal parameter name delimiter,
the catenation character — (sections 3.1.2 and 6.1.2) is not necessary. It
would be required if the IFC delimiter character were not one of the charac-

ters+-*/$.,)(=A. For example:

IFC EQ,X—PIXX

The following example demonstrates a use of IF statements in a PP program:

IF DEF,LOOP, 3
IFLT *-1.OOP,40B,1
ZJIN LOOP

IF2 IFGE *-LOOP,40B
NJIN *+3
LJM LOOP

IF2 ENDIF

This code assembles a zero jump to the symbol LOOP if LOOP has been
defined within 31 (37 octal)i words prior to the occurrence of this code.
The first conditional causes the next three statements to be assembled
only if LOOP has been defined. If LOOP has not been defined, the other
two conditional statements and the zero jump are skipped and a nonzero
long jump is assembled. IFLT and IFGE are mutually exclusive; the code
following only one of them can be assembled.

TThe range of a short jump.

- 5-17

The IFGE conditional uses an ENDIF to bracket the code to be omitted if the
test is not satisfied. The bracket name IF2 associates the ENDIF with the
conditional. If, as in this example, other conditional coding is not over-
lapping, the bracket name is not required.

5.7.6
ENDIF ENDIF terminates the range of a conditional assembly operation.

Location Operation Variable

blank or ENDIF ignored
instruction
bracket name

ENDIF terminates an instruction bracket; if it does not follow an instruction
bracket, it is ignored. An ENDIF with no name terminates any conditional
in effect. A named ENDIF terminates a conditional with the same bracket
name, or a conditional with no name. ENDIF is ignored if it appears with-
in a range controlled by line count.

5.8
LIST CONTROL These instructions control the listing format. The listable output from a
COMPASS assembly normally contains the following:

Heading information Program length, origin and length of each
block, entry points, external symbols.

Assembly text Line and assembly results of each line
assembled (not skipped) from the input
device (not generated by RMT, DUP,
XTEXT, or a macro expansion). For
generative pseudo instructions (DATA,
DIS, VFD), only one line is listed. Any
line with an error flag is listed. Each
line with the instruction LIST is listed.

Assembler statistics Size of unused storage, a count of statements
generated in assembly; if nonzero, a count
of references discarded because of restricted
core storage.

5-18 60190900A

5.8.1
LIST

60190900 Rev. B

Error directory Explanation of each error as well as the page
on which it occurred. If no errors occur, the
error directory is suppressed.

Reference table List of each symbol, its definition, and for each
reference, the value of the origin counter at the
place of reference.

Primary list control is specified on the COMPASS control card. When L=0,
only the heading information, assembler statistics, error-flagged lines and
the error directory are listed. When L is other than 0, more extensive
listings may be specified with the LIST pseudo instruction,

This instruction controls the listable output from COMPASS, and is relevant
only if listings are being produced.

Location l Operation I Variable

LIST list control options,

separated by commas

ignored

Each option is represented by a single letter. Specifying the letter selects
the option; the option may be discontinued by specifying the letter preceded
by a minus sign. Normally the L and R options are on, all other options
are off,

L List Control

Master list control. When not selected, only error-flagged lines
and the LIST pseudo instruction are listed. The accumulation and
listing of the reference table is not affected by this option.

R Reference Accumulation and List

When this option is not selected, no references are accumulated,
If a complete reference listing is to be obtained, R should never
be turned off. If off at the end of assembly, the reference table

listing is suppressed.

G Code Generation List

When this option is selected, code generating lines are listed
regardless of other list controls (except L). In this way, the
code generated from macro calls may be listed without listing
the entire macro expansion. Operations controlled by G include:
machine operations, DATA, BSS, BSSZ, VFD, DIS.

5-19

A Assembly List

Normally (A not selected), when a — or # mark appears in a line

that would be listed, the line appears with the — and # marks in

it exactly as presented to the assembler. When the A option is

selected, the catenation marks are removed and micros substituted.
N Symbol List

If selected,non-referenced programmer-defined symbols are listed.

T SST Symbol List

If selected,the non-referenced system symbols (SST) are listed.

C Control Card List
EJECT, SPACE, and TITLE are listed when this option is selected.

D Detail
The following items are listed when this option is selected: second
and subsequent lines of VFD, DATA, DIS; code is assembled re-
motely when HERE or END causeg its assembly; a list of literals
and deferred symbols at the end of the assembly.

E Echoed Lines
When this option is selected, all iterations of duplicated code are
listed.

F IF-skipped Lines
This option generates the lines skipped by IF-type instructions.

M Macro
When selected, this option lists the lines generated by macro calls.
This does not include system macro list control.

8 Systems Macros
When the S option is selected, lines generated by systems macros
are listed.

X XTEXT Lines

When selected, the X option lists lines generated as a result of an
XTEXT pseudo instruction.

5-20 60190900A

5.8.2
EJECT

5.8.3
SPACE

5.84
TITLE

60190900A

The list options A, C, D, E, F, M, N, S, T, and X cause a line to be listed
only if all the options which apply to it are on. For example, if a DUP appears
within a macro, its expansion will be listed only if both M and E are on. If

a systems macro call is made within XTEXT text, its expansion will be listed
only if X and S are both on. If the marks — or # appear in external text in-
side a DUP bracket, the lines will be listed with —and # removed only if A

and X and E are all on.

EJECT is an operation field entry; location and variable fields are ignored.
EJECT advancespaper before printing; page headings are printed and listing
continues.

Location | Operation | Variable

ignored | SPACE | address expression
The address field expression indicates line spacing for the listing. If the

listing exceeds the number of lines on the page, an eject occurs, and listing
resumes after the titles are printed on the next page.

With this instruction the programmer establishes titles for listings.

Location | Operation | Variable

ignored I TITLE I character string

The character string starts at the column immediately following a blank after
the E of the operation code and continues for 79 columns, or to end of the
statement. The title is filled with blanks if less than 79 columns of text

are provided. Beyond 79 columns, text is lost. The first TITLE instruc-
tion in a subprogram defines the primary title which appears on every

page. Subsequent TITLE instructions generate subtitles. Except for the
first TITLE, this instruction causes a page eject. A card containing only
the word TITLE results in untitled listings. If TITLE is not specified, the
variable field of the IDENT line is used as the main title,

5-21

59
CODE DUPLICATION

5.9.1
bup

5.9.2
ENDD

5-22

A sequence of lines may be replicated with this instruction.

Location Operation Variable
blank or DUP 1 or 2 address expressions
instruction separated by a comma

bracket name

The first address expression specifies how many times a series of lines
following DUP is to be assembled. Each assembly is identical to the first
one. The lines to be assembled may be indicated in one of two ways: by
an instruction bracket (DUP to an ENDD), or by a line count on the DUP
instruction, which is the second address expression.

Code is skipped, not assembled, if theiteration count is zero.
Any legal operation is permissible within the range of DUP, except END. A
comment card with a column 1 * will not be counted in the line count, if one

is given and will not be duplicated.

Indefinite duplication of code is specified by an unobtainable iteration count
and the STOPDUP statement. ENDD or line count is still necessary.

ENDD terminates the range of a DUP if a line count is zero or not used.

Location Operation Variable
blank or ENDD ignored
instruction

bracket name

ENDD should follow the last line to be duplicated or skipped as specified

in the DUP statement. An ENDD with no location field entry terminates

any DUP in effect, including any inner DUP. An ENDD with an instruction
bracket name terminates a DUP with the same name or a DUP with no name,
and every inner DUP.

ENDD is ignored if it appears anywhere except as a DUP terminator.

60190900A

593
STOPDUP

5.10
REMOTE ASSEMBLY

5.10.1
RMT

60190900A

STOPDUP may be used to stop the duplication process. Normally, it is
used after a conditional operation which, when satisfied, indicates that no
more duplications are needed.

Location l Operation | Variable

ighored | STOPDUP I ignored

When STOPDUP is encountered, duplication stops with the current iteration
regardless of the iteration count. Once STOPDUP is encountered, code is
assembled to the proper ENDD or to the end of line count.

STOPDUP is ignored outside a DUP range.

RMT generates symbolic instructions for assembly at a later time or place;
it supplements the USE facility. Code following USE is assembled when it
is encountered; code following RMT is assembled later at a point specified
by the programmer. COMPASS stores the code, unassembled, until it is
called. Symbols, macro definitions, micros, and block names defined with-
in a remote section do not become defined until the remote section is
assembled.

RMT introduces the section of symbolic instructions to be saved for later
assembly.

Location I Operation I Variable

ignored I RMT | ignored

All instructions between the first and second RMT statements are saved

for later assembly. Any instructions, except RMT, may be contained within
RMT sections as long as their use is legal when the remote lines are assem-
bled. COMPASS takes no note of remote code at the time it is saved, except
to recognize a second RMT instruction, which acts as an off switch. Alter-
nate appearances of RMT act as on/off switches. However, within remote
sequences, macro calls, catenation or micro substitution may specify RMT
sequences, since expansion and substitution occur at assembly time and not
at remote definition time,

5.10.2
HERE

5.11
LOADER CONTROL:
LCC

5.12
ERR

When HERE is encountered, all saved remote code is assembled. HERE also
clears the remote retention table so that the code is not called again. The
instru¢tion consists simply of the operation field entry HERE. Other fields
are ighored. If, in the assembly of remote sequences, RMT pairs occur,

the bracketed lines will be saved for later assembly when another HERE or
END is encountered.

In the absence of USE within the remote sequence, the remote code is
assembled under whatever block is in effect at the time HERE is encountered.

If HERE does not occur in a subprogram, any waiting remote lines are
assembled when END is encountered but before END is processed. Any
remote lines which might have been saved as a result of this last remote
assembly will be lost.

Loader directives may be included only in a relocatable source program.
They are passed along in the binary output file for subsequent loader recog-
nition. Loader directives are specified by LCC.

Location | Operation l Variable

ighored I LCC | any string of non-blank characters
All characters in the variable field from the first non-blank to the first
blank are considered the directive. They are moved to the first position
(column 1) of a loader table in packed display code. COMPASS does not
edit the directive. Illegal forms are recognized at load time by the loader.

All loader directives appear before any of the binary output for a subpro-
gram.! For loader directive formats, refer to SCOPE documents.

ERR introduces a fatal error into the subprogram to inhibit subsequent loading.

Location I Operation | Variable

ighored | ERR I ignored

The appearance of ERR in a subprogram does not affect other code. It may
be used in conjunction with a conditional assembly pseudo operation to force
an error into the assembly based on a time test. This combination can be
used effectively to check for illegal macro parameters.

60190900A

5.13
EXTERNAL TEXT

5.14
SYSTEM SYMBOLS

60190900A

XTEXT provides a method of introducing records from a file other than that
being used for input.

Location | Operationl Variable

file name | XTEXT I blank or a record name

COMPASS gains access to the file named in the location field and searches
for the named record. The contents of that record to an END card or end-
of-record, are brought into the subprogram for assembly at the point where
XTEXT is encountered. The text may contain any legal library macros for
assembly, including macro definitions.

If the record name is not specified, COMPASS rewinds the file and reads
only the first record in the file. If the record name is given, the file must
be an indexed file with named records. If the file or the record cannot be
found, an error flag is issued. The file must be a standard coded file
exactly like an input file. Text brought in by XTEXT is not listed (except
for lines with assembly errors) unless the X list option is selected.

SST permits definition of system symbols from the system file in the routine.

Location | Operation I Variable

ignored I SST | ignored

The system symbols define system functions such as system table pointers,
PP resident entry pointers, monitor functions and direct PP locations. These
symbols are used in system communication between the PPs and central
memory resident.

The symbols exist on a system text file. The file is accessed through the S
option on the COMPASS control card.

MACROS 6

6.1

A macro is a sequence of code that may be called whenever needed by a
single instruction — a macro name. A macro name in the operation field
of a statement (a macro call) results in the macro code sequence being
assembled at that point in the program. The macro call may also contain
parameters which are substituted for defined parameters in the macro code
sequence. The use of a macro requires two steps: defining the macro se-
quence and calling the macro.

MACRO DEFINITION A macro definition consists of three parts:

6.1.1
MACRO HEADING

60190900 Rev. B

Macro heading MACRO pseudo instruction which states the name of
the macro and identifies its substitutable parameters.
The LOCAL pseudo instruction may also be used to
identify local parameters.

Macro body Symbolic instructions which constitute the macro
code sequence.

Macro terminator ENDM pseudo instruction which terminates the
definition.

A macro definition may appear anywhere in a subprogram before the macro is
called. The definition is governed by the rules for pseudo instructions given
in section 5,

A macro may be redefined at any time, the latest definition of a macro name

applies to a macro call. For any redefinition, including redefining a
mnemonic, a flag is issued but the new definition is valid.

The macro heading line has two forms.

Standard Form

Location I OperationIVariable

macro | MACRO |up to 63 parameters

name

The location field contains the macro name which may be any legal name
except END, LOCAL, or ENDM; it may be the same as other program-
defined symbols since it has meaning only in the operation field. For
example, ABC may be a symbol as well as a macro name.

If a macro name is identical to a machine or pseudo instruction mnemonic,
the mnemonic is redefined as the macro. For example, definition of a
macrp name SB3 overrides the machine mnemonic SB3; an SB3 in the opera-
tion field of a subsequent statement is interpreted as a macro call. K SB3
appears in the macro body it also is interpreted as a macro call and an
infinite macro expansion may occur. Once a mnemonic has been redefined as
a macro, there is no way of returning that name to mnemonic status. The
macro may be redefined, however, to produce equivalent results by using

a VFD.

The variable field of the MACRO line contains the name of substitutable
parameters in the order in which they occur on the macro call instruction.
Each is a symbol of one to eight alphanumeric characters beginning with a
letter. Parameters are separated by any one of the following special
characters; and the list is terminated by a blank. These special characters
have no meaning other than as separators.

L, h=*/) (8=

ENDM, LOCAL, or END may not be used as parameter names. Parameter
names may occur more than once in the parameter list but subsequent appear-
ances are ignored. Parameter names beginning with a number are ignored.
The total number of unique parameter names plus LOCAL symbols may not
exceed 63 for any one macro definition.

The following notations are all equivalent:
SUM MACRO X=Y+Z+X
SUM MACRO X(Y+Z)
SUM MACRO X=Y+Z
SUM MACRO X,Y,(Z+X)
The following are equivalent also:
RAO MACRO X
RAO MACRO X=X+1

Alternate Form

Location I Operation I Variable
blank | MACRO

2 or more subfields

60190900A

60190900A

This form is identified by the blank location field of the MACRO line. The
macro name is the first subfield of the variable field. Subsequent subfields
are the substitutable parameters, listed with the rules that govern the normal
MACRO header form. The first of these substitutable parameters must be
present in the alternate form macro. It is called the location argument since
the location field entry of the macro call is its substituted value.

Example:
MACRO TABLE,TABNAM,VALUEL,VALUE2,
TABNAM VFD 60/VALUEL, 60/VALUE2
ENDM

The macro is. named TABLE, its substitutable parameters are
TABNAM, VALUEL, and VALUE2. TABNAM is the location
argument. TABLE might be called with an instruction like this:
SPVAL TABLE 1.0,2.0
which will result in the expansion
SPVAL VFD 60/1.0,60/2.0
If it had been called with this instruction:
TABLE 1.0
the expansion would be
VFD 60/1.0,60/
since the location argument and VALUE2 are null.
If the location argument is not present on the MACRO line, a warning flag

will be given and the definition ignored. Therefore, the following examples
of definition headers are illegal:

MACRO ABC
MACRO ABC,,FP

One or more LOCAL pseudo instructions may immediately follow the
MACRO line of either form.

Location I Operation | Variable

ignored | LocaL |tist of symbols
The listed symbols may be separated by any one of the special characters:
s =%/) (3=

Therefore a local symbol may not contain any of those characters.

6-3

The symbols are to be considered local to the macro, or known only within
the macro definition. The list of formal and local parameters are identified
at definition time and replaced with the parameter markers (character 77)
so that the names of the substitutable arguments (formal and local) need not
be retained after definition time. If a substitutable parameter name appears
in the LOCAL list, it is ignored. The total number of local symbols plus
substitutable parameters may not exceed 63. For each local symbol defined
within the macro, the assembler creates a symbol and substitutes it for each
use: of the declared symbol. The created symbols appear as *+{ nnnnnn,
where n is unique for each local symbol in a subprogram. The symbol A,
for example, if it is declared local to the macro, may co-exist with another
symbol A defined elsewhere in the subprogram.

Created symbols are substituted for local symbols wherever they appear in
the macro except on comment lines with an * in column 1. Created symbols
are not listed in the symbol reference table. Blanks are preserved in created
symbol substitution; COMPASS makes no attempt to compress the line.

All symbols defined within the macro which are not local are global. Global

symbols are accessible outside the macro definition, but local symbols are
not.

A local symbol may be passed to inner macro definitions or inner macro calls.
Example:
ABC MACRO A,B

LOCAL ¢C
C BSE 10

XYZ MACRO D
SA1 C

ENDM

If the representation of C is 4000010, when COMPASS defines the
macro XYZ (when ABC is called), it is as if the definition were:

XYZ MACRO D
SAl $#000010

ENDM

60190900 Rev. B

6.1.2
MACRO BODY

60190900A

Note the difference, however, between the above examples and the
following:

ABC MACRO A,B

LOCAL C
C BSS 10
XYZ MACRO D
LOCAL C
SAl C
ENDM

When XYZ is defined, it appears as follows to COMPASS:

XYZ MACRO D
LOCAL 000010
SAl 000010

ENDM

The symbol 4000010 will be replaced with another invented symbol,
and the reference to C in the SAl instruction will not result in a
reference to the C of the outer macro.

Thus, like substitutable parameters, invented symbols will replace LOCAL-
named symbols wherever they appear in a macro definition, including inner
macro definitions and inner macro calls.

Following MACRO, the first line which is not a LOCAL statement or a
comment is the start of the macro body. The macro body consists of a series
of symbolic instructions. Within these lines, in any field, may appear the
name of a substitutable parameter listed on the MACRO line. To be recog-
nized as such, the parameter must be bounded by two of the following
characters:

=.7F-*%/8%,—) (A

Beginning of statement (column 1 or 2) or end of statement is also a delimiter.

The character — may be used to catenate a substitutable parameter name with
some other item, or to flag a parameter name not bounded by any other special
characters and might not otherwise be recognized. Each — in the definition

is removed when the macro is called, and the items it connects are catenated.

For example, if the parameter Pl is substituted in the expansion by A2,
and P2 by A, then

S—Prl P1+1R — P2 becomes SA2 A2+1RA

As this example indicates, the substitutable parameters may appear in any
field of a statement in the macro body. However parameters are ignored ‘
in a comment line with an * in column 1. Likewise, comment cards within a
macro definition are ignored and not reproduced when the macro is called.

Any instructions, except END, including other macro definitions and/or
macro calls, may appear within a macro definition. Macro definitions
appearing within another macro definition are not defined by COMPASS until
the outer macro is called; therefore, inner macros may not be called before
the outer macro is called, and must be called according to general macro
rules.

Example:

NAMEl1 MACRO

A

SB1 A
NAME2 MACRO A
SB4 A

NAME2 ENDM
NAME2 ALPHA NAME?2 is a valid call since it is not
recognized as a macro call until
. NAMEL has been called and expanded.
NAME1 ENDM
: NAME2 may not be called in this

NAMEl X part of the subprogram.

NAME2 X NAME?2 is a valid call since NAME1
. has been called already.
Since the characters = . $) (act as delimiters in the macro body for formal

parameters, the programmer must be careful if he uses these characters
in symbols. For example, given the macro definition:

ABC MACRO Z,VAL

Z SET VAL
SA7 Z.ALPHA
ENDM

and the macro call:

ABC IOTA,1

60190900A

6.1.3
MACRO TERMINATOR

6.2
MACRO CALL

60190900A

The reference in the SA7 instruction is not to the symbol Z.ALPHA but
to IOTA.ALPHA and is illegal since the symbol name is too long.
The entire expansion is:

IOTA SET 1
SA7 IOTA,ALPHA

ENDM terminates a macro definition.

Location | Operationl Variable

blank or ENDM
macro name

ignored

To be recognized as a macro definition terminator, the ENDM location field
mustbe blank or contain the name of a macro being defined. An ENDM with
a blank location field terminates any and all macros being defined; a named
ENDM terminates a macro with the same name together with its inner
macros. An ENDM which terminates a definition also terminates any inner
macro definitions for which a matching ENDM was not found.

A macro name in an operation field constitutes a macro call; it may contain
a symbol in the location field, and a parameter list in the variable field.
The parameter list of the macro call is scanned to identify and extract the
character strings to be substituted for parameters of the macro definition.
The parameter list has the following form:

P:P:Ps-- P

p is a character string denoting an actual parameter. p may contain any
characters except blank or , which are allowed only when enclosed within
parentheses.

Parameters of the macro call are listed in the same order as the formal
parameters in the macro definition. Missing actual parameters are empty,
or null, and extra actual parameters are discarded. An explicit zero, if
desired, must be entered as a parameter. A blank terminates the parameter
list unless the blank is contained within parentheses.

When the left parenthesis is the first character of any parameter, all char-
acters between it and the matching right parenthesis are considered part of
that parameter. The outer pair of parentheses is removed when the param-
eter is substituted in a line. Parenthesized items may be embedded provided
parentheses are properly paired. Parenthesized items may contain blanks
and commas.

6-7

Example: If the macro XAM is defined:

XAM MACRO A,B

LDM A
LJM B
ENDM

and a call is issued:
XAM (SUM, 10B),(SAM, IND3)
COMPASS will expand the call as:

LDM SUM, 10B
LIJIM SAM, IND3

Using the same macro XAM but with a call:
XAM SUM, SAM
COMPASS will expand the call as:

LDM SUM
LIM SAM

Procéssing of a location symbol on the macro call is dependent on the way the
macro was defined:

Standard Form Macro Definition (macro name appeared in the location field):

A location symbol on the macro call line causes a force upper and the symbol
is defined as the value of the location counter. For example, if the macro
XAM is defined:

XAM MACRO A,B,C

SB1 A
SB2 B+C
ENDM

and a call is issued:
LOC XAM X,Y

COMPASS expands the call as if it were:
LOC BSS

0
SB1 X
SB2 Y

60190900A

60190900A

If, however, there is no location symbol on the call, no force upper occurs
and the SB1 operation falls into the first available space.

Alternate Form Macro Definition (macro name appeared as the first variable

field subfield):

The location symbol of the macro call is passed as the actual parameter to be
substituted for the first formal parameter (the location argument) in the
definition. Forcing upper is determined by the first instruction of the ex-
pansion. If there is no location field symbol on the macro call, the first
argument is null or blank.

For example, if macro XAM is defined:

MACRO XAM,A,B,C

A SB1 B
SB2 C
ENDM

and a call is issued:
LOC XAM XY
the expansion appears as:

LOC 8Bl X
SB2 Y

A force upper occurs because of the location field entry in the first line.
If, however, macro XAM is defined:

MACRO XAM,A,B,C

SB1 B
A SB2 C
ENDM

and a call is issued:
LOC XAM X, Y
the expansion appears as:

SB1 X
LOC SB2 Y

No force upper occurs for the SB1 operation but it does occur for the
SB2.

6-9

6.3
OPDEF

6.3.1
OPDEF DEFINITION

6-10

Also if the macro XAM is defined:

MACRO XAM,A,B,C

A SB1 B
SB2 C
ENDM

and a call is issued:
XAM X,Y
then the expansion appears as:

SB1 X
SB2 Y

No force upper occurs since parameter A is null.

The OPDEF macro permits definition or redefinition of instructions in the
COMPASS format of central processor machine instructions; the macro call
is written in the same format as central processor operations. OPDEF
provides more extensive control than the standard macro form.

The pseudo instruction OPDEF is used in place of MACRO. The OPDEF
heading line is followed by the macro definition (if needed), and ENDM
specified in the manner described for MACRO.

The OPDET heading line indicates the mnemonic name and variable field
format which are recognized as an OPDEF call, and lists the substitutable

parameters as follows:

Location Operation| Variable

Description of (OPDEF | parameter list
operation
field and
variable field
of the
OPDEF call

60190900A

Location Field of the OPDEF Line

This field contains an abbreviated description of the entire instruction to be
recognized as an OPDET call, including operation code, registers and/or
address expressions which constitute the variable field, and subfield
separators of the variable field in the macro call.

The first part of the location field entry describes the operation field of the
OPDEF call; it consists of two letters. The first may be any letter; the
second may be a register designator: A, B, or X. In this case, the operation
field of the OPDEF macro call is defined to be aAn, aXn, or aBn.

a = a unique identifier

n = 0-7

If the second letter is not A, B, or X, the operation field of the OPDEF macro
call is defined as a two-letter mnemonic, such as EQ.

The second part of the location field entry describes the variable field of the
OPDEF call. It includes all registers and/or address expressions which
constitute the variable field as well as all subfield separators. This part of
the OPDEF name may contain none, one, two, or three of the following 22
subfield descriptors, each descriptor separated by a comma; r represents
a register letter, A, B, or X; Q represents an address expression.

void Q
r rQ

-r -rQ
r+r r+rQ
-r+r -r+rQ
r*r r¥rQ
-r*r -I‘*I‘Q
r/r r/rQ
-r/T -r/rQ
r-r r-rQ
-r-r -r-rQ

For example, -r*r could describe -X3*X0; rQ could describe B2+ALPHA.

The two parts of the OPDEF location field — op code description and variable
field descriptors — are not separated by a special character unless this
character is the operator of the first descriptor. Examples of the OPDEF
name field (location field of the OPDET line) and the macro call described
are as follows:

60190900A 6-11

6-12

Name Field Call Described

Single descriptor, of the form Q

JPQ JP address expression
Single descriptor of the form rQ

JPBQ JP Bntaddress expression
Single descriptor of the form r+rQ

JPB+BQ JP BntBn+address expression
Three descriptors of the form r,r, and Q

NEB, B,Q NE Bn, Bn, address expression
Three descriptors of the forms r-r, r-r, and Q

LJB-B,A-X,Q LJ Bn-Bn,An-Xn, address expression
One descriptor of the form -r*r

BX-X*X BXn -Xn*Xn
Single descriptor of the form r+r

SBX+B SBn Xn+Bn
Two descriptors of the forms r and r

LXB,X IXn Bn,Xn

In the OPDEF call, an address expression must be preceded by a plus or
minus unless the Q in the descriptor is not combined with register letters.

Examples:
OPDEF Name Field Call
JPQ JP address expression
JPBQ JP Bn+address expression
JPB,Q JP Bn, address expression
JPX/XQ JP Xn/Xn+address expression

In the following examples of OPDEF location field entries, all instruc-
tions have been made to resemble legal COMPASS machine mnemonics.

To identify the JP instruction with

a single address expression JPQ
To identify JP Bj+K JPB+Q
To identify NE Bj, Bk, K NEB, B,Q

60190900A

To identify Bxi -Xk*Xj BX-X*X
To identify SBi Xj+Bk SBX+B
To identify SBi Bj+Xk SBB+X

Operation Field of OPDEF Line
OPDEF

Variable Field of OPDEF Line

parameter list

The number of formal parameters listed in the OPDET instruction variable
field must match the total number of register and expression designators
(A, B, X, and Q) in the parameter list and must appear in the same order.
Parameters may be separated by any of the characters

, t =X/) (%=
The list is terminated by a blank.

Examples of Complete OPDEF Definitions

To redefine the single-address long jump, JP, as the fast jump, EQ;

JPQ OPDEF Pl
EQ Pl
ENDM

All JP instructions subsequently encountered which match the format
described by the OPDEF location field are expanded as EQ. JP
instructions not of that format, such as JP B3+ALPHA, are not
effected.

To trap all floating double precision subtraction instructions (DXi Xj-Xk)
and jump to an error check routine for debugging: I, J, and K are substitutable
parameters used within the definition prototype.

DXX-X OPDEF I,J,K

RJ CKOUT
ENDM

60190900A 6-13

To define a new instruction as a set of code which performs a complete
integer divide each time it is called and expanded:

XX/X OPDEF P1,P2,P3
integer divide code

ENDM

Each time an instruction of the format IXn Xn/Xn is used, the macro is

expanded.

To define RXi k to be the same as AXi k

RXQ OPDEF P1,P2

AX. Pl P2
ENDM
—+
The instruction RXi Xj| , | Xk are not effected.
/

6.3.2

OPDEF CALLS The registers and/or address expressions used in the macro call must match

exactly the number and order of registers and/or expressions indicated in the
OPDET location field description or the line is not considered an OPDEF
macro call. For example, given the definition header:

SXX+B OPDEF I,J,K

The following lines do not cause an expansion of the macro:

SX5 X4
SX5 B3+X4
SX5 B3

Only a line of the format SXn Xn+Bn causes an expansion.

Location field entries on an OPDEF or MACRO-defined call are equivalent
on a normal MACRO-defined macro call.

OPDET definitions may appear anywhere in a subprogram, OPDEF calls are
recognized at any place after the definition.

6-14 60190900 Rev. B

6.4
SYSTEM MACROS

60190900A

OPDEF-defined and MACRO-defined macros differ in the following
characteristics:

® Unlike MACRO-defined macros, only the register value given in the
call of an OPDEF-defined macro is used in the substitution of
parameters. For example, using the IXX/X macro illustrated above,
the following code might be included in its definition:

XX/X OPDEF Pi,P2,P3
PX. P2 X.P2
PX.P3 X.P3
NX.P2 X.P2,B4

ENDM
The instruction which calls the IXX/X macro might be:

X3 X4/X.DIV

The parameters passed along to the macro body are 3, 4, and
DIV; X3, X4, and X.DIV are not passed along to the macro body.

e Actual parameters of an OPDEF call are separated by + - * / or
comma according to the definition of the OPDEF macro; only the
comma may be used to separate parameters of a MACRO-defined
macro.

Macros of such general usefulness that they should be available to any pro-
gram without each program defining them may be defined as system macros;
or they may be defined as a result of the XTEXT definitions contained on a
separate file accessible to COMPASS.

System macros are defined by SCOPE for communication with the operating
system. They include such system functions as opening and closing files,
reading, writing, and specifying parameters for a file environment table.

The definitions of these macros exist on a system-maintained file, and are
available to COMPASS for every assembly. The programmer simply writes
a macro call whenever a system macro is needed. Use of the system macros
is detailed in SCOPE reference documents. T The file of systems text may

T 6400/6500/6600 SCOPE 3.1 Reference Manual, Publication number 60189400.

6-15

6.5

OPERATION CODE
RECOGNITION
ORDER

contain any kind of legal macro definition, including OPDEF. The system
macro definitions are not included in the subprogram listing. The expansion of
a system macro call may be obtained by using the S option on the LIST pseudo
instruction. System macros cannot redefine COMPASS mnemonics.

COMPASS interprets an operation code according to the following order of
precedence:

1. Programmer macro (highest)
2. System macro

3. COMPASS machine or pseudo instruction (lowest)

The entry in operation code field is compared with the operation code table
which contains all system and programmer defined MACRO names, all PP
machine instructions, all COMPASS pseudo instructions (except IDENT and
LOCAL). If the instruction or macro is contained in the operation code table,
the operation has been identified. If no match is found and a CP assembly is
in progress, a syntactic analysis of the entire address field and operation
code is made. COMPASS attempts to match this entry with another table
which includes all CP instructions and all system and programmer defined
OPDEF macro names/descriptions. If the search fails to produce a match,
an operation code error is issued.

With an OPDEF or MACRO definition, COMPASS searches the operation code
table first for a match. For a MACRO definition, the macro name is used in
the search. If a MACRO name matches any other name in the table, a
duplicate definition flag is issued, and the new definition replaces the old omne.
For an OPDEF definition, the entry for the search is a descriptor of the same
format as the CP machine and other OPDET descriptions in the operation
code table. If an OPDEF descriptor matches any other descriptor in the
table, a like replacement occurs. OPDEF descriptors do not match any name
in the table: an OPDEF will not redefine a MACRO name, a PP machine
instruction mnemonic, or a pseudo instruction name. Conversely, a MACRO
name will not match any of the OPDEF or CP mnemonic descriptors in the
table: a MACRO will not cause duplicate definition of any OPDEF defined
macro or CP mnemonic. A duplicate macro definition flag is produced when
a macro name is the same as a previous macro name (System or programmer
defined), a PP machine instruction (if PP assembly), or a pseudo instruction.

A duplicate definition flag is produced also when an OPDEF name/description
is the same as a CP instruction or a previous OPDEF name/description
(system or programmer defined). A MACRO definition SB4 will redefine the
machine instruction SB4 but only because the SB4 macro exists at the same
time as the description of all other SBx or SB.x CP instructions. The entry
SB4 in the operation code table will be found before COMPASS tries the
syntactic analysis to find a CP mnemonic.

60190900A

60190900A

For example, if a macro named SX5 is defined, duplicate definition of other
SXn CP instructions does not result. If a later OPDEF definition occurs
which redefines all instructions of the form SXr+r, a duplicate definition

of all other SXn rn+rn instructions results and the duplicate definition flag
is issued. Thereafter, if a SX5 instruction is encountered, the SX5 macro
is expanded since it has not been redefined. However, if a SXm rntrn
instruction is encountered where m is not 5 the OPDEF definition will be
expanded since all instructions of the format SXn rntrn were redefined by
the OPDEF.

MICROS 7

7.1
MICRO
SUBSTITUTION

60190900A

The COMPASS micro capability enables the programmer to reference
symbolically a defined character string. Use of a micro definition requires
two steps: defining the character string and substituting the micro. At
assembly time, the defined character string is substituted at any point in
the line where the micro name appears prior to any other interpretation of
the statement.

At any place in a statement a micro mark () may appear followed by a string
of characters and another micro mark. The intervening characters constitute
a micro name and signal a micro substitution is to be made at that point.
Example: The micro NAME might be defined as the characters
LOC SA1 ADDRESS+
then, a symbolic instruction introduced as follows, in column 2
#NAME#4
would be changed by COMPASS into
LOC SA1 ADDRESS+4
where LOC begins in column 2.
If the second micro mark does not appear or if the micro name is unknown,
a non-fatal assembly error results and no substitution is made. Micro
marks are not processed if they appear in comment lines (* in column 1),
but they are processed if they are written in the comment field of an instruc-
tion line.
If, as a result of micro substitution, column 72 of the last card read is

exceeded, the assembler creates continuation cards up to a maximum of 9.
Any excess is discarded without comment,

7-1

7.2
MICRO DEFINITION The MICRO pseudo instruction is used to define a character string and to

assign a name to that micro string.

Location I Operation I Variable

micro name I MICRO | 3 subfields separated by commas
The variable field subfields are, in order:

Absolute address expression ng
Absolute address expression ng

Delimited character string, dcecc...ccd. The delimiter d is any
character, and ccc...cc is a string of any characters other
than character d.

Counting the first character after d as character 1, the string is formed by
extracting ny characters starting with character n;. For example:

NAME MICRO 1,19, *ALPHANUMERIC STRING*

If the second delimiter occurs before count n, is exhausted, the string is
terminated at that point. If nj is non zero, and ny is zero or absent, the
character string is considered to include all characters between character
n; and the closing delimiter. The following example is therefore equiva-
lent to the above.

NAME MICRO 1, ,*ALPHANUMERIC STRING*

If n, is zero or absent, the character string is empty, and no substitution
takes place when this micro name is given in an instruction line. ng and the
character string are ignored.

Previously defined micros may appear as part of a micro definition; one
micro may be defined as a substring of another. For example, assuming
the micro

NAME1 MICRO 1,25 ,*MAJOR ALPHANUMERIC STRING*

has been defined in the program, an equivalent micro to the examples above
can be achieved by the micro:

NAME MICRO 7,,*NAME1#*

7-2 60190900A

Also a micro may be defined as a combination of multiple, previously defined
micros. The following series would result in another equivalent to the pre-
vious examples:

NAME1 MICRO 1,12, *ALPHANUMERIC*
NAME2 MICRO 1,7,*ASTRING*
NAME MICRO 1, ,*#NAME1££NAME 2/£*%
The delimiter (* in the example) may not appear in either of the character

strings substituted for NAME1 or NAMEZ2, If the delimiter is encountered
before the count ng is satisfied, the string will be ended.

A micro may be redefined; NAME may be originally defined as one character
string and subsequently defined, with a different character string. After

the redefinition, the original character string is no longer known to the
assembler. The original micro may also be used as part of the redefinition.

Example:

NAME MICRO 1,6, *STRING*

series of statements (A)
NAME MICRO 1,19, *ALPHANUMERICANAME#*

series of statements (B)

During statement series A the first definition of NAME prevails. During
statement series B the redefinition of NAME prevails and the original
string no longer exists.

Micros of different names but with identical character strings may co-exist
at any time., Varied manipulation of character strings — testing for a
particular character, counting characters, catenating strings, etc. — is
possible in COMPASS with the use of MICRO in conjunction with IFC, DUP,
STOPDUP, and SET pseudo instructions.

60190900A 7-3

ASSEMBLER INPUT/OUTPUT 8

8.1
COMPASS CONTROL
CARD

8.2
INPUT AND
OUTPUT FILES

60190900 Rev. B

The files COMPASS uses are specified on the control card:
COMPASS(L=fname,I=fname, B=fname, S=rname or SCPTEXT)

The specifications may be in any order; the characters = , (may be used

interchangeably as separators; the characters . and) are card terminators.

L, I, B and S may not be used as file names,

Each option is specified as follows:

L option: absent Full listings on OUTPUT
L Full listings on OUTPUT
=0 Brief listings on OUTPUT
L=fname Full listings on file fname
I option: absent Input from INPUT
I Input from INPUT
I=fname Input from file fname
B option: absent Binary on LGO
B Binary on LGO
B=0 Suppress binary l
B=fname Binary on file fname
S option: absent Systems text from SYSTEXT
S Systems text from SYSTEXT
S=rname Systems text from library overlay named rname

S=SCPTEXT Systems text from library overlay named
SCPTEXT which contains the system symbols
definitions.

COMPASS assembles all statements beginning at the current position of the
input file until an end-of-record or end-of-file, If the input file is positioned
at an end-of-file mark (file is empty), COMPASS produces a fatal error.

Other input is from the system text record and XTEXT files. All input cards
may be 90 columns; longer cards are truncated. All input files are coded.
The assembly output consists of one logical record of listable output for
136-column printers, and several logical records of binary output.

8.3
FIELD LENGTH
REQUIREMENTS

8.4
LISTABLE OUTPUT

8.4.1
HEADER
INFORMATION

8-2

Scratch File

For large assemblies, a magnetic tape scratch file may be used to eliminate
disk conflicts. Use of a magnetic tape scratch file has a negligible effect
upon CP time, but improves throughput time considerably. This may be
accomplished by assigning a file named CMPSCR to tape, or a scratch file
may be maintained in mass storage. Care must be taken with the use of a
scratch file; it must be re-read by COMPASS exactly as written. If a write
or read error occurs, it should not be bypassed; the job should be restarted.

All COMPASS tables are variable; it is not possible to specify an exact field
length, For most assemblies, a field length of 34000g should be sufficient.
As part of the listable output, COMPASS gives the amount of storage not
needed for the assembly. The field length can then be decreased for sub-
sequent runs.

When COMPASS does not have enough storage to complete processing, part
or all of the reference table is discarded. If this fails to release enough
storage, assembly terminates with a dayfile message.

COMPASS list output contains as minimum header information: program
name and length, block names and length, external symbol names, entry
points. In addition, any lines which cause an error flag to appear are un-
conditionally listed. At the end of assembly, an error directory and
assembler statistics appear.

At the beginning of the listing, all blocks are listed as shown below (all
programmer defined blocks, even zero length, are listed).

Origin Length Name Type

nnnnnn nnnnnn ABSOLUTE* local

nnnnnn nnnnnn PROGRAM* local
nnnnnn nnnnnn LITERALS* local
nnnnnn nnnnnn NAME 1 local or common

(programmer-declared blocks)

nnnnnn nnnnnn NAMEn local or common

60190900A

8.4.2
ASSEMBLED CODE

8.4.3
DIAGNOSTICS,
REFERENCE TABLE,
AND STATISTICS

60190900A

The LIST pseudo instruction specifies the contents of the listing; however, the
COMPASS control card provides an external list control which overrides any
LIST directives. If the external option to list is not selected (L=0) only
header information and error diagnostics are listed; if the external option to
list is selected, listing control is directed by the internal LIST options.

Each line of the listing will contain the following items after the header
information:

Error flags, if any

LOC flag (an L if location counter is different from origin counter)
Location counter value

Octal value of code

Address relocation indicator

Card image (columns 1-72)

Columns 73-90 of the source line, or an indication of source if
generated line

Errors detected by COMPASS are fatal or non-fatal. Any fatal error will
suppress binary output as well as terminate the job when assembly is finished.
Non-fatal errors are merely warnings. Errors flagged with an alphabetic
character are fatal; non-fatal warning flags are numeric. All lines with
errors are listed. A one-character indication of each error on the line
appears to the left. At the end of the assembly an error directory is listed.
The pages on which each error occurred are noted, and a brief description

of the error is given.

FATAL ERROR FLAGS

L Location field bad. Occurs only on instructions which require a location
field entry. Illegal entries in other location fields produce a non-fatal
error flag since the illegality might not affect the rest of the assembly.

(0] Operation field bad:

Unrecognized entry in the operation field
Operation and address fields do not describe a valid CP instruction
Unrecognized modifier in IF or IFC

Operation not in correct place, such as ABS or PERIPH

8-3

8-4

Address field bad. A general flag indicating an illegality in the variable
field. Can occur on any operation.

Doubly defined symbol. Appears on all operations which attempt to
define a symbol with a value different than its previous value.

Data origins outside block; data is loaded outside the block ranges, or
into blank common.
Number of entries exceeds permissible amount:

Total number of words required for any one literal, data item,
or the entire address field of a LIT operation exceeds 100

More than 63 parameters appear in a macro definition

Assembler symbol table limit exceeded. This limit is 4096-4350
depending upon the symbols used

An undefined symbol is referenced. The value of the symbol and the
expression in which it appears are set to zero.

Invalid bit count on a VFD instruction. It must be an absolute value
between 0 and 60.

Produced by an ERR instruction.

Segment error, word count zero.

NON-FATAL ERROR FLAGS

1

Bad location field entry. The symbol will not be defined.

Bad address element on a symbol definition instruction. The location
symbol will not be defined.

Macro redefines a previously known operation.

Bad parameter name is ignored.

OPDETF is incorrectly specified.

Location field is meaningless.

Address value exceeds field size; the result is truncated.
Address subfield is missing, or there are too many subfields.

Micro substitution error, no substitution will be made; or attempt
was made to use a semicolon in a source statement.

60190900 Rev. B

Following the error directory the assembler statistics are listed:

Decimal count of statements processed by COMPASS, including all
generated lines

Indication of storage unused by the assembler which permits adjustment
of field length in subsequent assemblies

Decimal count of reference table entries discarded because of restricted
storage, if any

If a symbol reference table is requested, it is listed next. The reference table
contains all symbols in alphabetical order (sorted according to the collating
sequence in Appendix A), with their relocation value, and all reference loca-
tions. Undefined symbols also appear, with a U error.

8.5

EXAMPLES OF JOBS (1) Assembly with listing and binary output; subprogram execution with
data input. Source logical record is on file INPUT, listing on file
OUTPUT, binary on file LGO, execution data on file INPUT.

g (end of file)

VA

O 0=

/[
é data for execution

(end of record)

END TEST

L] SUBPROGRAM

II VITESTH
(/ IDENT TEST

g (end of record)
9 / LGO.
(COMPASS.

SAMPLE,T1000,CM35000, P3.

T1In the examples SCOPE operating system control cards have been included.
For description of their parameters and use, see the 6400/6500/6600
SCOPE 3.1 Reference Manual (Pub. No. 60189400).

60190900A 8-5

8-6

(2) Batch assemble with listing and binary output; punch the binary output

and execute the first program.

? (end of file)
8 /-
9 /~
Ili
Z (end of record)
o / END CDA

(IDENT CDA

] data for execution

:I SUBPROGRAM "CDA"

g (end of record)
9 END TEST2 !
L
=]SUBPROGRAM "TEST2"
L
/ IDENT TEST2
/ END TEST1
p:] SUBPROGRAM
If VlTESTlH
/ IDENT TEST1
g (end of record)
9 (COPY‘BR(LGFILEl,PUNCHB)
/ﬁEWIND(LGFILEl)

[LGFILEL.

(COPYBR(LGFILEZ , PUNCHB)

(REWIN D(LGFILE2)

(REWIND(LGFILE1)

/COMPASS (B=LGFILE2)

/ COMPASS(B=LGFILE1)

/SAMPLE , T500,CM40000, P10

60190900A

60190900A

(3) Create a compressed symbolic deck (via EDITSYM) of a subprogram.
Assemble with listing.

Nele b en)

(end of file)

/*END
END
/
/
/
/
Vi
/ IDENT TEST
*DECK, TEST
/g (end of record)

SUBPROGRAM

"TEST"

9 / COMPASS@I=COMPILE)

(EDITSYM(NPL=COSY)

/REQUEST ,COSY, HY.

SAMPLE,T1000,CM50000, P7.

8-7

(4) Update the compressed symbolic record COSY created in the previous
record; write corrected compressed record on file COSYA and a corrected
source record on file CSOURCE. Assemble the file CSOURCE and execute.

(end of file)

Nelle R for)

/ *EDIT, TEST

(;DELETE,26,30

g (end of record)
9 /1GO0.

COMPASS(I=CSOURCE)

]
(E DITSYM (OPL=COSY ,NPL=COSYA,C=CSOURCE)
/REQUEST ,COSYA ,HY.

REQUEST,COSY,HY.
SAMPLE,T250,CM60000, P1.

60190900A

APPENDIX SECTION

CHARACTER CODES COLLATING SEQUENCE

60190900A

Character
A

T o =2 ®H Jd o w

O N KM S < anH®vEOYO Z 2 H RS

Display
Code

01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34

External

BCD

61
62
63
64
65
66
67
70
71
41
42
43
44
45
46
47
50
51
22
23
24
25
26
27
30
31
12
01

Hollerith Punch
Positions

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2
0-3

Character

© o N e v B W N

+

*

~

©® T~

it

blank

IA

I\

Display
Code
35
36

37
40

41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76

External Hollerith Punch

BCD Punch
02 2
03 3
04 4
05 5
06 6
07 7
10 8
11 9
60 12
40 11
54 11-8-4
21 0-1
34 0-8-4
74 12-8-4
53 11-8-3
13 8-3
20 space
33 0-8-3
73 T 12-8-3
36 0-8-6
17 8-7
32 0-8-2
00 8-2
14 8-4
35 0-8-5
52 11-0
37 0-8-7
55 11-8-5
56 11-8-6
72 12-0
57 11-8-7
15 8-5
75 12-8-b6
76 12-8-6

60190900A

CARD FORMAT B

Column 1
7,8,9 End of logical record
6,7,8,9 End of file
7,9 Binary card
7 and 9 not both in column 1 Coded card
Columns
1 2 3 4 5 77 80
12 /|
11 | < < E
0 ‘é Column Binary Information o
1|38)
ol s o
2 o | ()
S oo et
25|23 LN £
) <] g E Z
i s 2l2ls
iy HHE
— @
6 S &
o} 1%}
7 -S g
8 < s 0
9

A binary card can contain up to 15 central memory words starting at column 3. Column 1 also
contains a central memory word count in rows 0, 1, 2 and 3 plus a check indicator in row 4. If
row 4 of column 1 is zero, column 2 is used as a checksum for the card on input; if row 4 is one,
no check is performed on input.

Columns 78 and 79 of a binary card are not used, and column 80 contains a binary serial number.
If a logical record is output on the card punch, each card has a checksum in column 2 and a serial
number in column 80, which orders it within the logical record.

Coded cards are translated on input from Hollerith to display code, and packed 10 columns per
central memory word. A central memory word with a lowest byte of zero marks the end of a coded
card (it is a coded record), and the full length of the card is not stored if it has trailing blanks. A
compact form is thereby produced if coded cards are transferred to another device.

60190900A B-1

Card Files
Any punched cards can be read: standard types or free-form cards.
Four types of cards are considered standard:

A card with 0017 octal in column 1 is recognized as an end-of-file marker.

A card with 0007 octal in column 1 is recognized as an end-of-record marker. The level is
assumed to be zero unless columns 2 and 3 contain a level number punched in Hollerith form.
The level number is read as octal. The following are valid punches (b represents a blank):

09 or Ob 04 or 4b 10 14

0l or 1b 05 or 5b 11 15

02 or 2b 06 or 6b 12 16

03 or 3b 07 or 7b 13 17
Any card other than the above with 7,9 punches in column 1 is assumed to be binary. It must
contain 0105, 0205, 0305....... 1605, or 1705 in column 1 and a correct checksum in column
2; or 0145, 0245...... 1645, or 1745 in column 1, in which case column 2 is ignored. The

first two digits, 01 or 17, give the word count of the card. Each word occupies 5 columns, and
the first word of informdtion begins in column 3. Columns after the last word of information,
up to and including column 78, are ignored. The lower 5 bits of column 79, and all 12 bits of
column 80 constitute a 17-bit serial number for the card within its record. If the cards of a
binary record do not have these numbers in correct sequence (beginning at 1 for the first card),
a message is given but the cards are accepted. The checksum is the one's complement of the
sum of all information columns; this sum is formed as if in a 12~bit accumulator with circular
carry.

Any card that does not have 7 and 9 punched in column 1 is assumed to contain Hollerith-punched
information, one 6-bit character per column, or eight 60-bit words per card. Any column that
does not contain a valid Hollerith combination is read as a blank, and a message containing the
record number and the card number within the record is given. To be a valid Hollerith combina-
tion, a column must contain one of the following:

12 and 0, or 11 and 0, and no other punches
or
Not more than one of the punches 12, 11, and 0, with
No additional punch, or any one punch from 1 to 9
or
An 8 punch with one more punch from 2, 3, 4, 5, 6, 7

Binary and Hollerith-punched (coded) cards may be mixed within one record, but a message is
given containing the number of any record containing one or more mode changes.

B-2 60190900 Rev. B

CENTRAL PROCESSOR MNEMONICS

Instructions are listed in order of octal operation value. In the operation field and variable field
subfield notations, the following symbology is used:

A,B,X register symbols i,i,k register number
K address expression (18 bits) n absolute address (6 bits)

Octal Mnemonic Variable Field Length (bits) Page
0000000000 PS 30 4-12
0100k RJ K 30 4-12
011jk RE Bj+K 30 4-25
012jk WE Bj+K 30 4-26
0130000000 XJ Bj+tK 60 4-12
4600046000
0210k JP Bi+tK 30 4-13
030jk ZR Xj,K 30 4-13
031jk NZ Xj,K 30 4-13
032jk PL Xj, K 30 4-13
033jk NG Xj,K 30 4-13
034jk IR Xj,K 30 4-14
035jk OR Xj, K 30 4-14
036jk DF Xij, K 30 4-14
037jk D Xj, K 30 4-14
0400k ZR K 30 4-14
0400k EQ K 30 4-14
04i0k EQ Bi,K 30 4-14
04i0k ZR Bi,K 30 4-14
04ijk EQ Bi, Bj,K 30 4-14
05i0k NZ Bi,K 30 4-15
0510k NE Bi,K 30 4-15
05ijk NE Bi, Bj,K 30 4-15

60190900 Rev. B

Octal

060jk
06i0k
06i0k
06ijk
06ijk
070jk
07i0k
07i0k
07ijk
07ijk
10ijj

11ijk
12ijk
13ijk
14ikk
15ijk
16ijk
17ijk
20ijk
21ijk
2210k
22ijk
23ijk
2410k
24ijk
2510k
25ijk
26i0k
26ijk
27ijk
30ijk
31ijk

Mnemonic Variable Field
LE Bj,K
PL Bi,K
GE Bi,K
GE Bi, Bj,K
LE Bj,Bi,K
GT Bj,K
LT Bi,K
NG Bi,K
LT Bi, Bj,K
GT Bj,Bi,K
BXi Xj
BXi Xj*Xk
BXi Xj+Xk
BXi Xj-Xk
BXi -Xk
BXi -Xk*Xj
BXi -Xk+Xj
BXi -Xk-Xj
LXi jk
AXi jk
LXi Xk
LXi Bj, Xk
AXi Bj,Xk
NXi Xk
NXi Bj, Xk
ZXi Xk
ZXi Bj, Xk
UXi Xk
UXi Bj, Xk
PXi Bj, Xk
FXi Xj+Xk
FXi Xj-Xk

Length (bits)

30
30
30
30
30
30
30
30
30
30
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

Page

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-16
4-16
4-17
4-17
4-17
4-17
4-18
4-18
4-18
4-18
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-21
4-21
4-22

60190900 Rev. B

Octal

32ijk
33ijk
34ijk
35ijk
36ijk
37ijk
40ijk
41ijk
42ijk
43ijk
44ijk
45ijk
46000
47ikk
50ijk
51i0k
51ijk
52ijk
53ij0
53ijk
54ij0
54ijk
55ijk
56ij0
56ijk
57i0k
57ijk
60ijk
6110k
61ijk

60190900A

Mnemonic Variable Field
DXi Xj+Xk
DXi Xj-Xk
RXi Xj+Xk
RXi Xj-Xk
IXi Xj+Xk
IXi Xj-Xk
FXi Xj* Xk
RXi Xj*Xk
DXi Xj*Xk
MXi jk
FXi Xj/Xk
RXi Xj/Xk
NO
CXi Xk
SAi Aj+K
SAi K
SAi BjzK
SAi Xj+K
SAi Xj
SAi Xj+Bk
SAi Aj
SAi Aj+Bk
SAi Aj-Bk
SAi Bj
SAi Bj+Bk
SAi -Bk
SAi Bj-Bk
SBi AjEK
SBi K
SBi BjzK

Length (bits)

15
15
15
15
15
15
15
15
15
15
15
15
15
15
30
30
30
30
15
15
15
15
15
15
15
15
15
30
30
30

Page

4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-24
4-24
4-21
4-25
4-25
4-8

4-25
4-8

4-9

4-9
4-9
4-9
4-9
4-9
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10

Octal Mnemonic Variable Field Length (bits) Page

62ijk SBi Xj+K 30 4-10
63ij0 SBi Xj 15 4-10
63ijk SBi Xj+Bk 15 4-10
64ij0 SBi Aj 15 4-11
64ijk SBi Aj+Bk 15 4-11
65ijk SBi Aj-Bk 15 4-11
66ij0 SBi Bj 15 4-11
66ijk SBi Bj+Bk 15 4-11
6710k SBi -Bk 15 4-11
67ijk SBi Bj-Bk 15 4-11
70ijk SXi AjzK 30 4-11
71i0k SXi K 30 4-11
71ijk SXi BjzK 30 4-11
72ijk SXi Xj+K 30 4-11
73ij0 SXi Xj 15 4-11
73ijk SXi Xj+Bk 15 4-11
74ij0 SXi Aj 15 4-11
74ijk SXi Aj+Bk 15 4-11
75ijk SXi Aj-Bk 15 4-12
761j0 SXi Bj 15 4-12
76i0k SXi -Bk 15 4-12
76ijk SXi Bj+Bk 15 4-12
77ijk SXi Bj-Bk 15 4-12

60190900A

PERIPHERAL PROCESSOR MNEMONICS

Octal Value Machine Instruction Length (bits) Page
0000 ¥
0ldd mmmm LJIM m,d 24 4-35
02dd mmmm RIM m,d 24 4-35
03rr UJN r 12 4-34
04rr ZJN r 12 4-34
05rr NJN r 12 4-35
o6rr PIN r 12 4-35
07rr MJIN r 12 4-35
10rr SHN r 12 4-30
11dd LMN d 12 4-31
12dd LPN d 12 4-31
13dd SCN d 12 4-31
14dd ILDN d 12 4-28
15dd LCN d 12 4-28
16dd ADN d 12 4-29
17dd SBN d 12 4-29
20cc ccce LDC c¢ 24 4-29
2lcc ceccce ADC ¢ 24 4-30
22cc ccce LPC ¢ 24 4-32
23cc ccce LMC c 24 4-32
2400 PSN 12 4-28
25001

T Notations: ¢ 18-bit address value
d 6-bit index value
m 12-bit address value
r number of steps to jump

TTNOP instruction must be generated by data statement.

60190900 Rev. B

Octal Value Machine Instruction Length (bits) Page

260d EXN d 12 4-35
261d MXN d 12 4-36
2700 RPN 12 4-36
30dd LDD d 12 4-28
31dd ADD d 12 4-30
32dd SBD d 12 4-30
33dd LMD d 12 4-31
34dd STD d 12 4-28
35dd RAD d 12 4-33
36dd AOD d 12 4-33
37dd SOD d 12 4-33
40dd LDI d 12 4-29
41dd ADI d 12 4-30
42dd SBI d 12 4-30
43dd LMI d 12 4-31
44dd STI d 12 4-28
45dd RAT d 12 4-33
46dd AOI d 12 4-33
47dd Sor d 12 4-33
50dd mmmm LDM m,d 24 4-29
51dd mmmm ADM m,d 24 4-30
52dd mmmm SBM m,d 24 4-30
53dd mmmm LMM m,d 24 4-32
54dd mmmm STM m,d 24 4-29
55dd mmmm RAM m,d 24 4-34
56dd mmmm AOM m,d 24 4-34
57dd mmmm SOM m,d 24 4-34
60dd CRD d 12 4-36
61dd mmmm TCRM m,d 24 4-36
62dd CWD d 12 4-37

Ta warning flag will be given if d is absent.

60190900A

Octal Value

63dd
64dd
65dd
66dd
67dd
70dd
71dd
72dd
73dd
74dd
75dd
76dd
77dd

T A warning flag will be given if d is absent.

60190900A

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

Machine Instruction

fcwMm
TAIM
f1Im
TrIM
TEIM
IAN
1AM
OAN
TOAM
ACN
DCN
FAN
TFNC

m,d
m,d
m,d
m,d
m,d
d
m,d
d
m,d
d
d
d

m,d

Length (bits)

24
24
24
24
24
12
24
12
24
12
12
12
24

Page
4-37
4-38
4-38
4-38
4-39
4-39
4-39
4-39
4-40
4-40
4-40
4-41
4-41

PSEUDO INSTRUCTIONS

Instruction

ABS
BASE
BSS
BSSZ
DATA
DIS
DUP
EJECT
END
ENDD
ENDIF
ENDM
ENTRY
EQU
ERR
EXT
HERE
IDENT
IFxx

Ir

IFPP,IFCP
IFC

LCC

LIST

LIT

60190900A

Operation

Declares absolute assembly

Declares mode of integers - octal or decimal
Allocates a block of storage

Allocates a zero-filled block of storage
Defines absolute data items

Defines display code data

Duplicates a sequence of code

Ejects a page

Ends a subprogram

Ends a DUP range

Ends a conditional range

Ends a macro definition

Declares subprogram entry points

Equates a symbol to a value

Produces a fatal error flag

Defines symbols external to the subprogram
Calls for remote coding to be assembled

Identifies beginning of a subprogram

Compares two values for EQ, NE, GT, GE, LT, LE,

and conditionally assembles a code sequence

Tests a symbol for the attributes, absolute, relocatable,
common, external, local SET, register, defined, and

conditionally assembles a code sequence
Tests assembly environment (PP or CP)
Compares two character strings for equality
Loader Control

Declares assembly listing control parameters

Declares literals

Page No.

Instruction

LOC
LOCAL
MACRO
macro name
MICRO
OPDEF
ORG
PERIPH
REP

REPI
RMT
SEGMENT
SET
SPACE
SST
STOPDUP
TITLE
USE

VI'D
XTEXT

Operation

Resets location counter

Declares symbols local to a macro
Introduces a macro definition

calls a macro

Defines a micro (character string)

Defines a macro

Resets origin counter

Declares a peripheral processor subprogram
Declares loader-controlled code duplication
Declares loader-controlled code duplication
Introduces a sequence of remote code
Produces CP and PP overlays at assembly time
Equates a redefinable symbol to a value
Spaces output listing

Introduces system symbol definition

Stops a DUP process

Defines listing title or subtitle

Names a block to receive subsequent code
Assigns data in variable byte sizes

Calls for text from an external source

Page No.
5-7
6-3
6-1

F-7
5~23

60190900 Rev. B

RELOCATABLE SUBROUTINE FORMAT F

The deck of one subprogram (subroutine) as it is output from an assembler or compiler comprises
one logical record. Each logical record is made up of an indefinite number of tables. Each table is
preceded by an identification word which specifies to the loader the procedure to be followed in
loading the table. The identification word has the format:

CN wC IR L
59 53 47 35 26 17 0

CN = Code number identifying type of data in table (text, entry points, external references, etc).
WC = Word count in table excluding identification word

LR = Method of relocation for the load address

L. = Load address, 18-bits as defined for each type of table

LR and other relocation fields in the tables are nine bits long. Six of the nine are used currently;
the other three are reserved for future expansion.

Prefix Table

The prefix table, if present, is the first table in a subroutine. It is bypassed by the loader. The
prefix table is used by EDITLIB in constructing or modifying the SCOPE library. The format of
the table is:

CN = 778 LR and L are ignored.

word 1 name of subprogram
59 17 0

The binary output from an assembly consists of all loader control cards (LCC) written as individual
records, then an identification table of 14 words is written (77-table), followed by the deck. If
errors occur in assembly, no binary output, except the 77-table and any LCC records, will appear.

60190900A

¥or absolute programs, following the 77 table is another control word followed by the absolute
program. This control word contains:

CP Programs: 5000 Lle fEff fftt tttt
Ll’ L2 = 00 for first overlay
= 01 for subsequent overlays
ffffff = origin -1 as specified on the IDENT line
tttttt = entry point address as specified on IDENT line

PP Programs: nnnn nn00 ffff 0000 ccce

nnnnnn = program name
ffff = origin -5 as specified on the IDENT line
ccecc = program length (including this control word) in central memory: (program
length+9)/5
Segment Overlays: 5000 Ll, L2 ‘ ffff £f tt tttt
59 47 41 33 17 0
Ll’ L2 =0100 for all segment overlays
ffffff =origin -1 as specified on the segment line
titttt =entry point address as specified on the segment line
L.1 =primary overlay level
L =secondary overlay level

2

PIDL

Program identification and Length table contains the subprogram identification and declarations
concerning common block allocation.

Identification Word

CN 344
LR Unused
L 0
word 1 name of subprogram PL
59 17 0

F-2 60190900 Rev. B

PL Program length

words 2-WC name of common block BL
59 17 0

If blank common, name is 7 display code blank characters.

BL Block length

If WC=1, no common references appear in the program. Subprogram length is relevant only in the
first PIDL table. All PIDL tables must appear before any other tables for a given subprogram. The
names of common blocks may not be duplicated in a PIDL table. The list of common block names is
called the Local Common Table (LCT). Since relocation of addresses relative to common blocks is
designated by positions in LCT, the order of the common block names is significant.

The first word in the LCT is referred to as position 1.

ENTR

The entry point table contains a list of all the named entry points to the subprogram and its
associated labeled common blocks. The ENTR table must immediately follow the PIDL table.

Identification Word

CN = 36g
LR = Ignored
L = Ignored

Words 1 through WC

Each entry in the table is 2 words long. The first word contains the name of the entry point.
The second word contains the location of the entry point.

first word entry point name
59 17 0
d

secon RL LOG
word

59 26 17 0
RL = relocation of the address specified by LOC;

0 absolute, relative to RA (no relocation)

1 program relocatable

3—778 relative to common block M, where M is in position RL-2 of LCT. M must
not refer to blank common.

LOC= address of entry point

60190900 Rev. B F-3

TEXT

Text and data tables contain data comprising the subprogram and information necessary for properly
relocating the data. The table consists of: an origin for the data, the data itself, and indicators
describing relocation (if any) of the three possible locations in a data word which may refer to
addresses in memory. TEXT tables may appear in any order and any numbers.

WC must be in the range 2 through 20g.

Identification word

CN = 404

LR = relocation of load address (L)
0 absolute, relative to RA
1 relative to program origin
3-77g relative to labeled common block M; M is in position LR-2 of LCT. Values of

2 and n, where n refers to blank common, are not permitted.

L = load address. Initial location of data appearing in the second word of the table. L will

be relocated using LR,
First Word

Relocation word consists of a series of 4-bit bytes describing the relocation of each of the three
possible address references in a 60-bit data word. The first byte (bits 56-59) describes the re-
location for the data word in the second word of the TEXT table, etc. The number of relevant

bytes and data words is determined by WC. Relocation is relative to program origin or the comple-
ment of the program origin (negative relocation). The value and relocation for each byte follows:

000X no relocation
10XX upper address, program relocation

11XX upper address, negative relocation

010X middle address, program relocation
011X middle address, negative relocation
1X10 lower address, program relocation
1X11 lower address, negative relocation

0010 same as 1X10
0011 same as 1X11

The above designations permit independent and simultaneous relocation of both upper and lower
addresses.

F-4 60190900A

Words 2 through WC

Data words are loaded consecutively beginning at .. Their addresses are relocated as specified by
the corresponding byte in the relocation word.

Note that with the text table all addresses are relocated absolute or relative to program origin,
never relative to a labeled common block. As a result, addressing relative to labeled common for

text must be accomplished through FILL tables.

FILL

The FILL table contains information necessary to relocate previously loaded address fields.
References to common are relocated through this table. Program relocation may also be effected
using the FILL table, although the usual method (with fewer words) is to use the TEXT table.

Identification Word

Words 1 through WC

All remaining words are partitioned into sets of 30-bit contiguous bytes, each set is headed
by one control byte and followed by an indefinite number of data bytes. The last byte may be
zero. The control byte contains information concerning each of the subsequent data bytes
until another control byte is encountered.

A zero byte is treated as a control byte in the format:

0

AR

29

AR is the relocation of the value in the address position of a word specified in the succeeding data
bytes. AR has the value:

0
1
2
3—778

60190900A

absolute, relative to RA (no relocation)
program relocation
negative relocation

relative to common block M where M is in position AR-2 of LCT.

One control byte suffices for several data bytes. The format of the data byte is:

1P RL LOC
29 26 17 0
P = Position within word of address specified by RL and LOC.
10 upper
01 middle
00 lower

RL = Relocation of address specified by LOC.

RL has the same range of values as AR in the control
byte except that 2 and any reference to blank common
are illegal.

LOC = Address of data word to be modified.
The contents of address field position (P) at location
LOC relative to RL is added to the origin as specified
by AR in the control byte.

LINK

The LINK table indicates external references within the subprogram. Each reference to an external
symbol must appear as an entry in LINK,

Identification Word

CN = 44g
LR = Ignored
L =0

All remaining words are partitioned into sets consisting of one 60-bit name word and a series of
30-bit contiguous data bytes indicating address positions which refer to the external symbol described
in the name word. It is possible for the name word to be split between two computer words.

name of external symbol
59 17 0

F-6 6019090A

Names of external symbols (7 characters) must begin with a character for which the display code

representation has a high order bit equal to zero.

LOC

1P

RL

LOC

29 26

Position within the word of the reference to the external symbol:

10
01
00

Relocation of address specified by LOC

0
1
3-T1g

Address of the word containing the reference to the external symbol

upper

17

middle

lower

absolute, relative to RA
program relocation

relative to common block M where M is in position RL-2 of LCT.

REPL — Replication Table

The data bytes have the form:

The REPL table permits the repetition of a block of data without requiring one word per location in
a TEXT table.

Identification Word

CN = 43¢
LR = Ignored
L =1 if replication is not to be deferred until all text is loaded.

Words 1 through WC

Each entry in the table consists of two words in the format:

word 1

word 2

60190900A

(Instant replication)

SR

DR

59

41

26

17

SR

D

DR

C
IfC=0
IfB=0
IfI=0
IfD=0

1l

1l

I

Initial address of the source data, must be non-zero
Relocation of the address specified by S.

0 Absolute, relative to RA

1 Program relocation

3-77g Relative to common block M, where M is in position SR-2 of LCT. M must
not refer to blank common

Initial address of destination of data

Relocation of address specified by D; range of values same as SR-
Size of data block

Number of times data block is to be repeated

Increment to be added to D before each data block is repeated, first repetition of
block is at D, second at D+I, etc. The data block (B-long) with origin at S is
repeated C times beginning at D the first time, and beginning at the previous
origin plus I thereafter.

C is interpreted as 1
B is interpreted as 1
I is interpreted as B

D is interpreted as S+B

XFER — Transfer Table

The XFER table indicates the end of a subroutine and a pointer address.

Identification Word

CN
LR
L

46

Ignored

Ignored

entry point name

59

17 0

The entry point name need not be in the subprogram. If name is blank, there is no named XFER.

The location of the entry point is returned following a loader request. If a named XFER is en-
countered prior to an EXECUTE, control is transferred to that entry point. Otherwise, the job
is aborted with the comment NO TRANSFER ADDRESS. If more than one subprogram has a
named XFER, control is given to the last encountered XFER name.

60190900A

SYSTEXT — Systems Text

Normally, systems text is derived from the library overlay named SYSTEXT, and is assembled prior
to assembly of the source program, although this may be changed through the S option. Systems text
overlays on the library look like loader overlays with the following control word:

5000 0101 0000 0000 V000

Data consists of coded lines. A minus zero word follows the last coded line.

Systems text can be deleted by using the S option with a dummy (non-existent) record name. A non-
fatal loader message is produced when COMPASS attempts to load the overlay.

60190900A

CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES G

Central Processor instruction execution times for the 6400, 6500 and 6600 systems are tabulated
below. Instructions are arranged according to the functional units in which they are executed for
the 6600 system. Time is counted from operand input to instruction result in the specified result
register and includes readying the next instruction for execution. CM access time is not considered
in increment instructions which result in memory references to read operands or store results.
Instruction execution times are listed in minor cycles (one minor cycle = 100 nanoseconds); 4 minor
cycles is an execution time of 400 nanoseconds.

INSTRUCTION EXECUTION TIMES: CENTRAL PROCESSOR

Octal BRANCH UNIT 6400
Code 6500 6600
00 STOP - -
01 RETURN JUMP to K Tt 21 13
011 READ Extended Core Storage Tivt T
012 WRITE Extended Core Storage it it
02 GO TO K + Bif 13 14
030 GO TO K if Xj = zero 13 9T
031 GO TO K if Xj # zero 13 97
032 GO TO K if Xj = positive 13 of
033 GO TO K if Xj = negative ~ 13 of
034 GO TO K if Xj is in range Tt 13 9t
035 GO TO K if Xj is out of range Tt 13 9f
036 GO TO K if Xj is definite 13 of
037 GO TO K if Xj is indefinite 13 9t
04 GO TO K if Bi = Bj¥ 13 8t
05 GO TO K if Bi = Bjt 13 8t
06 GO TOKif Bi Bjt K 13 8
07 GO TO K if Bi < Bjf 13 8t

TTests made in Increment unit.
t1Tests made in Long Add Unit.

t11Add 6 minor cycles to branch time for a branch to an instruction which is out of stack (no
memory conflict considered); add 2 minor cycles for a no branch condition in the stack. Add
5 minor cycles for a no branch condition out of the stack.

1111 Execution times for ECS operations depend on several factors.

1111 When jump condition is met include time to obtain new instruction word from storage and ready
it for execution.

60190900A G-1

Octal
Code

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27
43

30
31
32
33
34
35

36
37

40
41
42

BOOLEAN UNIT

TRANSMIT Xj to Xi

LOGICAL PRODUCT of Xj and Xk to Xi

LOGICAL SUM of Xj and Xk to Xi

LOGICAL DIFFERENCE of Xj and Xk to Xi
TRANSMIT Xk COMP, to Xif

LOGICAL PRODUCT of Xj and Xk COMP. to Xi
LOGICAL SUM of Xj and Xk COMP, to Xi
LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi

SHIFT UNIT

SHIFT Xi LEFT jk places

SHIFT Xi RIGHT jk places

SHIFT Xk NOMINALLY LEFT Bj places to Xi
SHIFT Xk NOMINALLY RIGHT Bj places to Xi
NORMALIZE Xk in Xi and Bj

ROUND AND NORMALIZE Xk in Xi and Bj
UNPACK Xk to Xi and Bj

PACK Xi from Xk and Bj

FORM jk MASK in Xi

ADD UNIT

FLOATING SUM of Xj and Xk to Xi

FLOATING DIFFERENCE of Xj and Xk to Xi
FLOATING DP SUM of Xj and Xk to Xit
FLOATING DP DIFFERENCE of Xj and Xk to Xi
ROUND FLOATING SUM of Xj and Xk to Xi

ROUND FLOATING DIFFERENCE of Xj and Xk to Xi

LONG ADD UNIT

INTEGER SUM of Xj and Xk to Xi
INTEGER DIFFERENCE of Xj and Xk to Xi

MULTIPLY UNITTT

FLOATING PRODUCT of Xj and Xk to Xi
ROUND FLOATING PRODUCT of Xj and Xk to Xi
FLOATING DP PRODUCT of Xj and Xk to Xi

T COMP. = Complement; DP = Double Precision.

71 Duplexed units — instruction goes to free unit.

6400
6500

91 B <) W7 B @) B &) B W) RS B} |

(oI I Ve B =2 B e e 2]

11
11
11
11
11
11

LW wwwwwww

W W Wk Wwwww

NN N NN

10
10
10

60190900A

Octal
Code

44
45
47

46

50
51
52
53
54
55
56
57

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77

DIVIDE UNIT

FLOATING DIVIDE Xj by Xk to Xi
ROUND FLOATING DIVIDE Xj by Xk to Xi
SUM of 1's in Xk to Xi

PASS

INCREMENT UNITT

SUM of Aj and K to Ai

SUM of Bj and K to Ai

SUM of Xj and K to Ai

SUM of Xj and Bk to Ai

SUM of Aj and Bk to Ai
DIFFERENCE of Aj and Bk to Ai
SUM of Bj and Bk to Ai
DIFFERENCE of Bj and Bk to Ai

SUM of Aj and K to Bi

SUM of Bj and K to Bi

SUM of Xj and K to Bi

SUM of Xj and Bk to Bi

SUM of Aj and Bk to Bi
DIFFERENCE of Aj and Bk to Bi
SUM of Bj and Bk to Bi
DIFFERENCE of Bj and Bk to Bi

SUM of Aj and K to Xi

SUM of Bj and K to Xi

SUM of Xj and K to Xi

SUM of Xj and Bk to Xi

SUM of Aj and Bk to Xi
DIFFERENCE of Aj and Bk to Xi
SUM of Bj and Bk to Xi
DIFFERENCE of Bj and Bk to Xi

tDuplexed units - instruction goes to free unit.

T1i = 0 execution time is 6 minor cycles;
i = 1-5 time is 12 minor cycles;
i =6 or 7 time is 10 minor cycles.

60190900A

[or I« >R« PR « PR« PR« MR« i@ [B) B) B B B B

WWWwwWwwwww W wWwwwwwww

WwWwwwwwww

PERIPHERAL AND CONTROL PROCESSOR

The execution time of PP and CP instructions is influenced by the following factors:

Number of memory references — indirect addressing and indexed addressing require
an extra memory reference. Instructions in 24-bit format require an extra reference
to read m.

Number of words to be transferred — in I/0 instructions and in references to CM the
execution times vary with the number of words to be transferred. The maximum theoretical
rate of flow is one word/major cycle. I/0 word rates depend upon the speed of external
equipments, normally much slower than the computer.

References to CM may be delayed if there is conflict with CP memory requests.
Following an exchange jump instruction, no memory references (nor other exchange jump

instructions) may be made until the CP has completed the exchange jump.

PERIPHERAL AND CONTROL PROCESSOR INSTRUCTION EXECUTION TIMES
(6400, 6500 and 6600)

TimeT

Octal (Major
Code Name Cycles)

00 Pass 1

01 Long jump to m + (d) 2-3

02 Return jump to m + (d) 3-4

03 Unconditional jump d 1

04 Zero jump d 1

05 Nonzero jump d 1

06 Plus jump d 1

07 Minus jump d 1

10 Shift d 1

11 Logical difference d 1

12 Logical product d 1

13 Selective clear d 1

14 Load d 1

15 Load complement d 1

16 Add d 1

17 Subtract d 1

TA major cycle is 1000 nanoseconds.

G-4 60190900A

Octal
Code

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

60
61

Name

Load dm

Add dm

Logical product dm
Logical difference dm
Pass

Pass

Exchange jump

Read program address

Load (d)

Add ()

Subtract (d)

Logical difference (d)
Store (d)

Replace add (d)

Replace add one (d)
Replace subtract one (d)

Load ((d))

Add ((d))

Subtract ((d))

Logical difference ((d))
Store ((d))

Replace add ((d))

Replace add one ((d))
Replace subtract one ((d))

Load (m + (d))

Add (m + (d))

Subtract (m+ (d))

Logical difference (m + (d))
Store (m + (d))

Replace add (m + (d))

Replace add one (m + (d))
Replace subtract one (m + (d))

Central read from (A) to d
Central read (d) words
from (A) to m

T A major cycle is 1000 nanoseconds.

60190900A

| O
(SIS) R A O

B R 00 00 0O O Lo M D A 0O W00 W W WL WNDNDNDNDND H

min. 6
5 plus
5/word

CONVERSION TABLES

60190900A

Octal/Decimal Integer Conversion Table
Octal/Decimal Fraction Conversion Table
Powers of Two

Decimal/Binary Position Table

Constants

Indefinite Forms

H-11

H-13

OCTAL/DECIMAL INTEGER

CONVERSION TABLE

o 1 2 3 4 5 6 1 o 1 2 3 4 &5 6 17
0000 | 000C 0001 0002 00D3 0004 0005 0006 0007 0400(D256 0257 0256 0259 0260 0261 0262 0263 [000D 0000
0010| 0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270 0271 © 1o
0020 | 0016 0017 0018 0019 0020 0021 0022 0023 0420| 0272 0273 0274 0275 0216 0217 0218 0219 | (797 0511
0030 0024 0025 0026 0027 0028 0029 0030 0031 0430 0260 0281 0282 0283 0284 0285 0286 0287 | o0 oo
0040 | 0032 0033 0034 0035 0036 0037 0038 0039 0440| 0288 0289 0290 0291 0292 0293 0294 0295 | (Octahl (Decimal)
0050| 0040 0041 0042 0043 0044 0045 0046 0047 0450| 0296 0297 0298 0299 0300 0301 0302 0303
0060 | 0048 0049 0050 0061 0052 0053 0054 0055 0460| 0304 0305 0306 0307 0308 0309 0310 0311
0070 | 0056 0057 0058 0058 0060 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 0319 | Octal Decimal

10000 - 4096
0100 | 0064 0065 0066 0067 0068 0069 0070 0071 0500| 0320 0321 0322 0323 0324 0325 0326 0327 20000 - 8192
0110| 0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 0330 0331 0332 0333 0334 0336 30000 - 12288
0120 | 0080 0081 0082 0083 0084 0085 0086 0087 0520\ 0336 0337 0338 0339 0340 0341 0342 0343 20000 . 16334
0130 | 0088 0083 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 0348 0349 0350 0351 ;
0140 | 0096 0097 0098 0089 0100 0101 0102 0103 0540| 0352 0353 0354 0355 0356 0357 0358 0359 50000 - 20480
0150 | 0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362 0363 0354 0365 0366 0367 60000 - 24576
0160| 0112 0113 0i14 0115 0116 0117 0118 0119 0560{ 0368 0369 0370 0371 0372 0373 0374 0375 70000 - 28672
0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 0380 0381 0382 0383
0200 0128 0129 0136 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0338 0389 0390 0391
0210 0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398 0399
0220 0144 0145 0146 0147 0148 0149 0150 0151 0620/ 0400 0401 0402 0403 0404 0405 0406 0407
0230} 0152 0153 0154 0155 0156 0157 0158 0158 0630| 0408 0409 0410 0411 0412 0413 0414 0415
0240 | 0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 0420 0421 0422 0423
0250 | 0168 0169 0170 0171 0172 0173 0174 0175 0650| 0424 0425 0426 0427 0428 0429 0430 0431
0260 | 0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438 0439
0270 | 0184 0185 0186 0187 0188 0189 0130 0191 0670 0440 0441 0442 0443 0444 0445 0446 0447
0300 0192 0193 0194 0195 0196 0197 0198 0199 0700 0448 0449 0450 0451 0452 0453 0454 0455
0310} 0200 0201 0202 0203 0204 0205 0208 0207 0710{ 0456 0457 0458 0459 0460 0461 0462 0463
0320 0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466 0467 0468 0469 0470 0471
0330 | 0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 0476 0477 0478 0479
0340 | 0224 0225 0226 0227 0228 0229 0230 0231 0740| 0480 0481 0482 0483 0484 0485 0486 0487
0350 | 0232 0233 0234 0235 (0236 0237 0238 0239 0750| 0488 0489 0490 0491 0492 0493 0494 0495
0360 | 0240 0241 0242 0243 0244 0245 0246 0247 0760| D496 0497 0498 0499 0500 0501 0502 0503
0370 | 0248 0243 0250 0251 0252 0253 0254 0255 0770| 0504 0505 0506 0507 0508 0509 0510 0511

o 1 2 3 4 & 6 1 o 1 2 3 4 5 6 17
1000 | 0512 0513 0514 0515 0516 0517 0518 0519 1400 | 0768 0769 0770 0771 0772 0773 0774 0775 1000 0512
1010 | 0520 0521 0522 0523 0524 0525 0526 0527 1410 0776 0777 0778 0779 0780 0781 0782 0783 1o 1o
1020 | 0528 0529 0530 0531 0532 0533 0534 0535 1420 0784 0785 0786 0787 0788 0789 0790 0791 un 1023
1030 | 0536 0537 0538 0533 0540 0541 0542 0543 1430| 0792 0783 0794 0795 0796 0797 O798 0799 | g oo
1040 | 0544 0545 0546 0547 0548 0543 0550 0551 1440 080C 0801 0802 0803 0804 0805 0806 0807
1050 | 0552 0553 0564 0555 0556 0557 0558 0559 1450 | 0808 0809 0810 0811 0812 0813 0814 0815
1060 | 0560 0561 0562 0563 0564 0565 0566 0567 1460] 0816 0817 0818 0819 0820 0821 0822 0823
1070 | 0568 0569 0570 0571 0572 0573 0574 0575 1470 | 0824 0825 0826 0827 0828 0829 0830 0831
1100 | 0576 0577 0578 0579 0580 0581 0582 0583 1500| 0832 0833 0834 0835 0836 0837 0838 0839
1110 | 0584 0585 0586 0587 0588 0589 0590 0591 1510| 0840 0841 0842 0843 0844 0845 0846 0847
1120 | 0592 0593 0594 0595 0596 0597 0598 0599 1520 | 0848 0849 0850 0851 0852 0853 0854 0855
1130 | 0600 0601 0602 0603 0604 0605 0606 0607 1530 | 0856 0857 0858 0859 0860 0861 0862 0863
1140 { 0608 0609 0610 0611 0612 0613 0614 0815 1540 | 0864 0865 0866 0867 0868 0869 0870 0871
1150 | 0616 0617 0618 0619 0620 0621 0622 0623 1550 | 0872 0873 0874 0875 0876 0877 0878 0879
1160 | 0624 0625 0626 0627 0628 0629 0630 0631 1560 | 0880 0881 (0882 0883 0884 0885 0886 0887
1170 | 0632 0633 0634 0635 0636 0637 0638 0639 1570 | 0888 0889 0890 0891 0892 0893 0894 0895
1200 | 0640 0841 0642 0643 0644 0645 0646 0647 1600 | 0896 0897 0898 0899 0900 0901 0902 0903
1210 | 0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906 0907 0908 0909 0910 0911
1220 | 0656 0657 0658 0653 0660 0661 0662 0663 1620| 0912 0913 0914 0815 0916 0917 0918 0919
1230 | 0864 0665 0666 0667 0668 0669 0670 0671 1630 | 0920 0921 0922 0923 0924 0925 0926 0927
1240 | 0672 0673 0674 0675 0676 0677 0678 0675 1640 0928 0928 0930 0931 0932 0933 0934 0935
1250 | 0680 0881 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 0940 0941 0942 0943
1260 | 0688 0689 0630 0691 0692 0693 0694 0695 1660 | 0944 0945 0946 0947 0948 0949 0950 0951
1270 | 0696 0697 0698 0698 0700 0701 0702 0703 1670 | 0952 0953 0954 0955 0956 0957 0958 0959
1300 | 0704 0705 0706 0707 0708 0709 0710 0711 1700 | 0980 0961 0962 0963 0964 0965 0966 0967
1310 | 0712 0713 0714 0715 0716 0717 0718 0719 1710| 0968 0969 0970 0971 0972 0973 0974 0975
1320 | 0720 0721 0722 Q0723 0724 0725 0726 0727 1720| 0976 0977 0978 0979 0980 0981 0982 0983
1330 | 0728 0729 0730 0731 0732 0733 0734 0735 1730| 0984 (0985 0986 0987, 0988 0989 0990 0991
1340 | 0736 0737 0738 0738 0740 0741 0742 0743 1740| 0992 0993 0994 0995 0995 0997 0998 0999
1350 | 0744 0745 0746 0747 0748 0749 0750 0751 1760 | 1000 1001 1002 1003 1004 1005 1006 1007
1360 | 0752 G753 0754 0755 0756 0757 0758 0759 1760| 1008 1009 1010 1011 1012 1013 1014 1015
1370 | 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019 1020 1021 1022 1023

60190900A

OCTAL/DECIMAL INTEGER CONVERSION TABLE (Cont'd)
o 1 2 3 4 5 6 7 o 1 2 3 4 & 6 7

000 1024 2000 | 1024 1025 1026 1027 1028 1028 1030 1031 2400 | 1260 1281 1282 1283 1204 1285 1286 1267
to to 2010 (1032 1033 1034 1035 1036 1037 1038 1039 2410 | 1288 1289 1290 1201 1282 1293 1294 1295
21m 1535 2020 | 1040 1041 1042 1043 1044 1045 1046 1047 2420 [1296 1297 1298 1299 1300 1301 1302 1303
(Octal) (Decimal) 2030 (1048 1049 1050 1051 1052 1053 1054 1055 2430 | 1304 1305 1306 1307 13086 1309 1310 131
2040 | 1056 1057 1058 1059 1060 1061 1062 1063 2440 | 1312 1313 1314 1315 1316 1317 1318 1319

2050 |1064 1065 1066 1067 1068 1063 1070 1071 2450 | 1320 1321 1322 1323 1324 1325 1326 1327

Octal Decimal 2060 {1072 1073 1074 1075 1076 1077 1078 1079 2460 | 1328 1329 1330 1331 1332 1333 1334 1335
10000 . 4096 2070 {1080 1081 1082 1083 1084 1085 1086 1087 2470 | 1336 1337 1338 1339 1340 1341 1342 1343
20000 - 8192 2100 | 1088 1089 1090 1091 1092 1093 1094 1095 2500 | 1364 1345 1346 1347 1348 1349 1350 1351
30000 - 12288 2100 (1096 1087 1098 1099 1100 1101 1102 1103 2510 | 1352 1353 1354 1356 1356 1357 1358 1359
40000 - 16384 2120 [1104 1105 1106 1107 1108 1103 1110 1111 2520 | 1360 1361 1362 1363 1364 1365 1366 1367
50000 - 20480 2130 | 1112 1113 1114 1116 1116 1117 1118 1119 2530 | 1368 1369 1370 1371 1372 1373 1374 1375
60000 . 24576 2140 11120 121 1122 1123 1124 1125 1126 127 2540 [1376 1377 1378 1379 1380 1381 1382 1383
70000 - 28672 2150 (1128 1129 1130 1131 1132 1133 1134 1135 2650 | 1384 1385 1386 1387 1388 1389 1390 1391
2160 (1136 1137 1138 1139 1140 1181 1142 1143 2560 | 1392 1393 1394 1395 1396 1397 1398 1399

2170 (1144 1145 1146 1147 1148 1149 1150 1151 2570 | 1400 1401 1402 1403 1404 1405 1406 1407

2200 {1152 1153 1154 1155 1156 1157 1158 1159 2600 | 1408 1409 1410 1411 1412 1413 1414 1415

2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 | 1416 1417 1418 1419 1420 1421 1422 1423

2220 {1168 1169 1170 1171 1172 1173 1174 1175 2620 | 1424 1425 1426 1427 1428 1429 1430 143

2230 {1176 1177 1178 1179 1180 1181 1182 1183 2630 | 1432 1433 1434 1435 1436 1437 1438 1439

2240 |1184 1185 1186 1187 1188 1189 1190 1191 2640 | 1440 1441 1842 1443 1444 1445 1446 1447

2250 (1192 1193 1194 1195 1196 1197 1198 1199 2650 | 1448 1449 1450 1451 1452 1453 1454 1455

2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 | 1456 1457 1458 1459 1460 1461 1462 1463

2270 |1208 1209 1210 1211 1212 1213 1214 1215 2670 | 1464 1465 1466 1467 1468 1469 1470 147

2300 (1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478 1479

2310 (1224 1225 1226 1227 1228 1229 1230 1231 2710 | 1480 1481 1482 1483 1484 1485 1486 1487

2320 |1232 1233 1234 1235 1236 1237 1238 1239 2720 | 1488 1483 1490 149} 1492 1493 1494 1495

2330 {1240 1241 1242 1243 1244 1245 1246 1247 2730 | 1496 1497 1498 1499 1500 1501 1502 1503

2340 {1248 1249 1250 1251 1252 1253 1254 1255 2740 | 1504 1505 1506 1507 1508 1519 1510 1511
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 | 1612 1513 1514 1515 1516 1517 1518 1519

2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 | 1520 1521 1522 1523 1524 1525 1526 1527

2370 1272 1273 1274 125 1216 1277 1278 1279 2770 | 1528 1529 1530 1531 1532 1533 1534 1535

o 1 2 3 4 5 & 7 o 1 2 3 a4 s & 7

3000 1538 3000 | 1536 1537 1538 1539 1540 1541 1542 1543 3400 | 1792 1793 1794 1795 1796 1797 1798 1799
to to 3010 | 1544 1545 1546 1547 1548 1549 1550 1561 3410 | 1800 1801 1802 1803 1804 1805 1806 1807
317 20417 3020 1552 1563 1554 1565 1556 1557 1558. 1559 3420 | 1808 1809 1810 1811 1812 1813 1814 1815
(Octal) (Decimal) 3030 | 1560 1561 1562 1563 1564 1565 1566 1567 3430 | 1816 1817 1818 1819 1820 1821 1822 1823
3040 {1568 1569 1570 1571 1572 1573 1574 1575 3440 | 1824 1825 1826 1827 1828 1829 1830 1831
3050 |1576 1577 1578 1579 1580 1581 1582 1583 3450 | 1832 1833 1834 1835 1836 1837 1838 1839
3060 |1584 1585 1586 1587 1588 1589 1590 1591 3460 | 1840 1841 1842 1843 1844 1845 1846 1847
3070 |1592 1593 1594 1595 1596 1697 1598 1599 3470 | 1848 1849 1850 1851 1852 1863 1854 1855
3100 |1600 1601 1602 1603 1604 1605 1606 1607 3500 | 1856 1857 1858 1859 1860 1861 1862 1863

3170 |1608 1609 1610 1611 1612 1613 1614 1615 3610 | 1864 1865 1866 1867 1868 1869 1870 1871
3120 |1616 1617 1618 1619 1620 1621 1622 1623 3520 | 1872 1873 1874 1875 1876 1817 1878 1879
3130 |1624 1625 1626 1627 1628 1629 1630 1631 3530 | 1880 1881 1882 1883 1884 1885 1886 1887
3140 1632 1633 1634 1635 1636 1637 1638 1639 3540 | 1888 1889 1890 1891 1892 1893 1894 1895
3150 |1640 1641 1642 1643 1644 1645 1646 1647 3550 | 1896 1897 1898 1899 1900 1901 1902 1903

3160 1648 1649 1650 1651 1652 1653 1654 1656 3560 | 1904 1905 1906 1907 1908 1909 1910 1911
3170 |1656 1657 1658 1659 1660 1661 1662 1663 3570 | 1912 1913 1914 1915 1916 1917 1918 1919
3200 |1664 1665 1666 1667 1668 1669 1670 1673 3600 | 1920 1921 1922 1923 1924 1925 1926 1927
3210 |1672 1673 1674 1675 1676 1677 1678 1679 3610 | 1928 1929 1930 1931 1932 1933 1934 1935
3220 |1680 1681 1682 1683 1684 1685 1686 1687 3620 | 1936 1937 1938 1939 1940 1941 1942 1943

3230 {1688 1689 1690 1691 1692 1693 1694 1695 3630 | 1944 1945 1946 1947 1948 1949 1950 195
3240 [1696 1697 1698 1699 1700 1701 1702 1703 3640 | 1952 1953 1954 1955 1956 1957 1958 1959
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 | 1960 1961 1962 1963 1964 1965 1966 1967
3260|1712 1713 1714 1715 1716 1717 1718 1719 3660 | 1968 1969 1970 1971 1972 1973 1974 1975
3270 {1720 V721 1722 1723 1724 1125 1726 1727 3670 | 1976 1977 1978 - 1979 1380 1981 1982 1983

3300 |1728 1729 1730 1731 1732 1733 1734 1735 3700 | 1984 1985 1986 1987 1988 1989 1990 199
3310 [1736 1737 1738 1739 1740 1741 1742 1743 3710 | 1992 1993 1994 1995 199 1997 1998 1999
3320 |1744 1745 1746 1747 1748 1749 1750 1751 3720 | 2000 2001 2002 2003 2004 2005 2006 2007

3330 [1752 1753 1754 1755 1756 1757 1758 1759 3730 | 2008 2009 2010 2011 2012 2013 2014 2015
3340 [1760 1761 1762 1763 1764 1765 1766 1767 3740 | 2016 2017 2018 2019 2020 2021 2022 2023

3350 [1768 1769 1770 1771 1772 1773 1774 1775 3750 | 2024 2026 2026 2027 2028 2029 2030 2031
3360 [1776 1777 1778 1779 1780 1781 1182 1783 3760 | 2032 2033 2034 2035 2036 2037 2038 2039
3370 (1784 1785 1786 1787 1788 1789 17%0 1791 3770 | 2040 2041 2042 2043 2044 2045 2046 2047

60190900A

OCTAL/DECIMAL INTEGER CONVERSION TABLE (Cont'd)

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 17
4000 | 2048 2049 2050 2051 2052 2053 2054 2055 4400 | 2304 2305 2306 2307 2308 2309 2310 2311 | 4000 2048
4010 | 2056 2057 2058 2058 2060 2061 2062 2063 4410| 2312 2313 2314 2315 2316 2317 2318 2319 o 0
4020 | 2064 2085 2066 2067 2068 2069 2070 2071 4020|220 2321 2322 2323 2324 2325 233 227 | 0. 2550
4030 2072 2073 2074 2075 2076 2077 2078 2079 4430 | 2328 2329 2330 2331 2332 2333 2334 2335
4040 | 2080 2081 2082 2083 2084 2085 2086 2087 4440 | 2336 2337 2338 2333 2340 2341 2342 2343 | (Octall (Decimal)
4050 | 2088 2089 2090 2091 2092 2093 2094 2095 4450 | 2344 2345 2346 2347 2348 2349 2350 2351
4060 | 2096 2097 2098 2099 2100 2101 2102 2103 4460 [2352 2353 2354 2355 2356 2357 2358 2359
4070 | 2104 2105 2106 2107 2108 2109 2110 2111 4470 | 2360 2361 2362 2363 2364 2365 2366 2367 Octal Decima
10000 - 4096
4100 | 2012 2113 2114 2115 2116 2117 2118 2119 4500 | 2368 2369 2370 2371 2372 2313 2314 2375 20000 - 8192
4110 12120 2121 2122 2123 2124 2125 2126 2127 4510| 2376 2377 2318 2379 2380 2381 2382 2383 30000 . 12288
4120 (2128 2129 2130 2131 2132 2133 2134 2135 4520 | 2384 2385 2386 2387 2388 2389 2390 239
4130 {2136 2137 2138 2133 2140 2141 2142 2143 4530 | 2392 2393 2394 2395 2396 2397 2398 2399 40000 - 16384
4140 | 2144 2145 2146 2147 2148 2149 2150 2151 4540 [2400 2401 2402 2403 2404 2405 2406 2407 50000 - 20480
4150 [2152 2153 2154 2155 2156 2157 2158 2159 4550 | 2408 2403 2410 2411 2412 2413 2414 2415 60000 - 24576
4160 {2160 2161 2162 2163 2184 2165 2166 2167 4560 | 2416 2417 2418 2419 2420 2421 2422 2423 70000 - 28672
4170 | 2168 2169 2170 2171 2172 2173 2174 2115 4570 | 2424 2425 2426 2427 2428 2429 2430 243]
4200 [2176 2177 2178 2179 2180 2181 2182 2183 4600 | 2432 2433 2434 2435 2435 2437 2438 2439
4210 | 2184 2185 2186 2187 2188 2189 2190 2191 4610 | 2040 2841 2442 2443 2444 2445 2046 2447
4220 (2192 2193 2192 2195 2196 2197 2198 2199 4620 | 2448 2449 2450 2451 2452 2453 2454 2455
4230 | 2200 2201 2202 2203 2204 2205 2206 2207 4630 | 2456 2457 2458 2459 2460 2461 2462 2463
4240 [2208 2209 2210 2211 2212 2213 2214 2215 4640 | 2464 2465 2466 2467 2468 2469 2470 2471
4250 | 2216 2217 2218 2219 2220 2221 2222 2223 4650 | 2472 2473 2474 2475 2476 2477 2478 2479
4260 | 2226 2225 2226 2227 2228 2229 2230 2231 4660 | 2480 2481 2482 2483 2484 2485 2486 2487
4270 | 2232 2233 2234 2235 2236 2237 2238 2239 4670 | 2488 2489 2490 2491 2432 2493 2494 2495
4300 | 2240 2241 2242 2243 2244 2245 2246 2247 4700 | 2496 2497 2498 2499 2500 2501 2502 2503
4310 | 2248 2249 2250 2251 2252 2253 2254 225§ 4710 | 2504 2505 2506 2507 2508 2509 2510 2511
4320 | 2256 2257 2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519
4330 | 2264 2265 2266 2267 2268 2269 2270 2271 4730| 2520 2521 2522 2523 2524 2525 2526 2527
4340 (2272 2273 2214 2215 2276 2217 2218 2279 4740| 2528 2529 2530 2531 2532 2533 2534 2535
4350 | 2280 2281 2282 2283 2284 2285 2286 2287 4750| 2636 2537 2538 2539 2540 2541 2542 2543
4360 | 2288 2289 2290 2291 2292 2293 2294 2295 4760 | 2544 2545 2546 2547 2548 2549 2550 2551
4370 | 2296 2297 2298 2299 2300 2301 2302 2303 4770| 2552 2553 2554 2556 2566 2557 2558 2569
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
5000 | 2660 2561 2562 2563 2564 2665 2566 2567 5400 | 2816 2817 2818 2819 2820 2821 2822 2823 | s5ogg 2560
5010 | 2568 2569 2570 2571 2572 2573 2674 2575 5410 | 2824 2825 2826 2827 2828 2829 2830 2831 0 0
5020 | 2576 2577 2578 2579 2580 2581 2582 2583 5420 | 2832 2833 2834 2835 2835 2837 2838 2839 | 0 071
5030 | 2584 2585 2586 2587 2588 2589 2500 2591 5430 | 2840 2841 2842 2843 2844 2845 2846 2847
5040 | 2592 2593 2594 32595 2596 2597 2598 2599 5440 | 2848 2849 2850 2851 2852 2853 2854 2855 | (Octal) (Decimal)
5050 | 2600 2601 2602 2603 2604 2605 2606 2607 5450 | 2856 2857 2858 2850 2860 2861 2852 2863
5060 | 2608 2609 2610 2611 2612 2613 2614 2615 5460 | 2864 2865 2866 2867 2868 2869 2870 2871
5070 | 2616 2617 2618 2619 2620 2621 2622 2623 5470 | 2872 2873 2874 2875 2876 2877 2878 2879
5100 | 2624 2625 2626 2627 2628 2629 2630 2631 5500 | 2880 2881 882 2883 2884 2885 2886 2887
5110 | 2632 2633 2634 2635 2636 2637 2638 2639 5510 | 2888 2889 2890 2891 2892 2893 2894 2895
5120 | 2640 2641 2642 2643 2644 2645 2646 264] 5620 | 2896 2897 2898 2899 2900 2901 2902 2903
5130 | 2648 2649 2650 2651 2652 2653 2654 2655 5630 | 2904 2905 2906 2907 2908 2909 2910 2911
5140 | 2656 2657 2658 2659 2660 2661 2662 2663 5540 | 2012 2913 2914 2915 2916 2917 2918 2919
5150 | 2664 2665 2666 2667 2668 2669 2670 2671 5650 | 2020 2921 2922 2923 2924 2925 2926 2927
5160 | 2672 2673 2674 2675 2676 2677 2678 2679 5560 | 2928 2929 2930 2931 2932 2933 2934 2935
5170 | 2680 2681 2682 2683 2684 2685 2686 2687 5570 | 2936 2937 2938 2039 2940 2941 2942 2943
5200 | 2688 2689 2630 2691 2692 2693 2694 2695 5600 2944 2945 2046 2047 2948 2949 2950 2951
5210 | 2696 2697 2698 2699 2700 2701 2702 2703 5610| 2952 2953 2954 2956 2956 2957 2958 2959
5220 | 2704 2705 2706 2707 2708 2709 2710 2711 5620 | 2960 2951 2962 2963 2964 2965 2966 2967
5230 | 2712 2713 2714 2715 2716 2717 2718 2719 5630 | 2968 2969 2070 2971 2972 2973 2974 2975
5240 | 2720 2721 2722 2723 2724 27125 2726 2727 5640| 2976 2977 2978 2979 2980 2981 2982 2983
5250 | 2728 2729 2730 2731 2732 2733 2734 2735 5650 | 2084 2085 2086 2987 2988 2989 2990 2991
5260 | 2736 2737 2738 2739 2740 2741 2742 2743 5660| 2992 2993 2994 2995 2096 2997 2998 2999
5270 | 2744 2745 2746 2747 2748 2749 2750 2751 5670 | 3000 3001 3002 3003 3004 3005 3006 3007
5300 | 2752 2753 2754 2755 2756 2757 2158 2759 5700 3008 3009 3010 3011 3012 3013 3014 3015
5310 | 2760 2761 2762 2763 2764 2765 2766 2767 5710| 3016 3017 3018 3019 3020 3021 3022 3023
5320 | 2768 2769 2770 2771 2772 2773 2174 2775 5720| 3024 3025 3026 3027 3028 3028 3030 3031
5330 | 2776 2777 2778 2779 2780 2781 2782 2783 5730| 3032 3033 3034 3035 3036 3037 3038 3039
5340 | 2784 2785 2786 2787 2788 2783 2790 2791 5740| 3040 3041 3042 3043 3044 3045 3046 3047
5350 | 2792 2793 2794 2795 2796 2797 2798 2793 5750(3048 3049 3050 3051 3052 3053 3054 3065
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 5760| 3056 3057 3058 3059 3060 3061 3062 3063
5370 | 2808 2809 2810 2611 2812 2813 2814 2815 5770| 3064 3065 3066 3067 3068 3069 3070 3071
60190900A

OCTAL/DECIMAL INTEGER CONVERSION TABLE (Cont'd)
0 1 2 3 4 5 6 7] 1 2 3 4 5 6 7

6000 3072 6000 | 3072 3073 3074 3075 3076 3077 3078 3079 6400 | 3328 3329 3330 3331 3332 3333 3334 3336

to to 6010 | 3080 3081 3082 3083 3084 3085 3086 3087 6410 | 3336 3337 3338 3339 3340 3341 3342 3343

6777 3583 6020 | 3088 3089 3090 3091 3092 3093 3094 3095 6420 | 3344 3345 3346 3347 3348 3349 3350 3351

{Octal) (Decimal) 5030 | 3096 3097 3098 3099 3100 3101 3102 3103 6430 | 3352 3353 3354 3355 3356 3357 3358 3359

6040 | 3104 3105 3106 3107 3108 3109 3110 31N 6440 | 3360 3361 3362 3363 3364 3365 3366 3367

6050 | 3112 3113 3114 3115 3116 3117 3118 3119 6450 | 3368 3369 3370 3371 3372 3373 3374 3375

6060 | 3120 3121 3122 3123 3124 3125 3126 3127 6460 | 3376 3377 3378 3379 3380 3381 3382 3383

Octal Decimal 6070 | 3128 3129 3130 3131 3132 3133 3134 3135 6470 | 3384 3385 3386 3387 3388 3383 3390 3391
10000 - 4096

20000 - 8192 6100 | 3136 3137 3138 3139 3140 3141 3142 3145 6500 | 3392 3393 3394 3395 3396 3397 3398 3399

30000 - 12288 6110 | 3144 3145 3146 3147 3148 3149 3150 3151 6510 | 3400 3401 3402 3403 3404 3405 3406 3407

40000 - 16384 6120 | 3152 3153 3154 3155 3166 3167 3158 3159 6520 | 3408 3409 3410 3411 3412 3413 3414 3415

50000 - 20480 6130 | 3160 3161 3162 3163 3164 3165 3166 3167 6530 | 3416 3417 3418 3419 3420 3421 3422 3423

6140 | 3168 3169 3170 3171 3172 3173 3174 3175 6540 | 3424 3425 3426 3427 3428 3429 3430 3431

60000 - 24576 6150 | 3176 3177 3178 3179 3180 3181 3182 3183 6550 | 3432 3433 3434 3435 3436 3437 3438 3439

70000.- 28672 6160 | 3184 3185 3186 3187 3188 3183 3190 3191 6560 | 3440 3441 3442 3443 3444 3445 3446 3447

6170 | 3192 3193 3194 3195 3196 3197 3198 3199 6570 { 3448 3449 3450 3451 3452 3453 3454 3455

6200 | 3200 3201 3202 3203 3204 3205 3206 3207 6600 | 3456 3457 3458 3453 3460 3461 3462 3463

6210 | 3208 3209 3210 3211 3212 3213 3214 3215 6610 | 3464 3465 3466 3467 3468 3469 3470 347N

6220 | 3216 3217 3218 3219 3220 3221 3222 3223 6620 | 3472 3473 3474 3475 3476 3477 34718 3479

6230 | 3224 3225 3226 3227 3228 3229 3230 3231 6630 (3480 3481 3482 3483 3484 3485 3486 3487

6240 | 3232 3233 3234 3235 3236 3237 3238 3239 6640 | 3488 3489 3490 3491 3492 34893 3494 3495

6250 | 3240 3241 3242 3243 3244 3245 3246 3247 6650 | 3496 3497 3498 3499 3500 3501 3502 3503

6260 | 3248 3249 3250 3251 3252 3253 3254 3255 6660 [3504 3505 3506 3507 3508 3509 3510 3511

6270 | 3256 3257 3258 3259 3260 3261 3262 3263 6670 [3512 3513 3514 3515 3516 3517 3518 3519

6300 | 3264 3265 3266 3267 3268 3269 3270 327% 6700 | 3520 352! 3522 3523 3524 3525 3526 3527

6310 | 3272 3273 3274 3215 3276 3277 3218 3219 6710 | 3528 3529 3530 3531 3532 3533 3534 3535

6320 | 3280 3281 3282 3283 3284 3285 3286 3287 6720 | 3536 3537 3538 3539 3540 3541 3542 3543

6330 | 3288 3289 3290 3291 3292 3293 3294 3295 6730 | 3544 3545 3546 3547 3548 3549 3550 3551

6340 | 3296 3297 3298 3299 3300 3301 3302 3303 6740 | 3552 3553 3554 3555 3556 3557 3558 3559

6350 | 3304 3305 3306 3307 3308 3309 3310 3311 6750 | 3560 3561 3562 3563 3564 3565 3566 3567

6360 | 3312 3313 3314 3315 3316 3317 3318 3319 6760 | 3568 3569 3570 3571 3572 3573 3574 3575

6370 | 3320 3321 3322 3323 3324 3325 3326 3327 6770 | 3576 3577 3578 3579 358U 3581 3582 3583

0 1 2 3 4 5 6 7] 1 2 3 4 5 6 7

7600 3584 7000 | 3584 3585 3586 3587 3588 3589 3590 3591 7400 | 3840 3841 3842 3843 3844 3845 3846 3847

to 10 7010 | 3592 3593 3594 3595 3496 3497 3598 3599 7410 | 3848 3849 3850 3851 3852 3853 3854 3855

1771 4095 7020 | 3600 360t 3602 3603 3604 3605 3606 3607 7420 | 3856 3857 3858 3859 3860 3861 3862 3863

(Octal) (Decimal) 7030 | 3608 3609 3610 3611 3612 3613 3614 3615 7430 | 3864 3865 3866 3867 3868 3869 3870 3871

7040 | 3616 3617 3618 3619 3620 3621 3622 3623 7440 | 3872 3873 3874 3875 3876 3877 3878 3879

7050 | 3624 3625 3626 3627 3628 3629 3630 3631 7450 [3880 3881 3882 3883 3884 3885 3886 3887

7060 | 3632 3633 3634 3635 3636 3637 3638 3639 7460 | 3888 3883 3890 3891 3892 3893 3894 3895

7070 | 3640 3641 3642 3643 3644 3645 3646 3647 7470 | 3896 3897 3898 3899 3900 3901 3902 3803

7100 { 3648 3649 3650 3651 3652 3653 3654 3655 7500 | 3904 3905 3906 3907 3908 3909 3910 39N

7110 {3656 3657 3658 3659 3660 3661 3662 3663 7510 | 3912 3913 3914 3915 3916 3917 3918 3919

7120 | 3664 3665 3666 3667 3668 3669 3670 3671 7520 | 3920 3921 3922 3923 3924 3925 3926 3927

7130 | 3672 3673 3674 3675 3676 3677 - 3678 3679 7530 | 3928 3929 3930 3931 3932 3933 3934 3935

7140 | 3680 3681 3682 3683 3684 3685 3686 3687 7540 13936 3937 3938 3939 3940 3941 3942 3943

7150 | 3688 3689 3690 3691 3692 3693 3694 3695 7550 | 3944 3945 3946 3947 3948 3948 3950 3951

7160 | 3696 3697 3698 3699 3700 3701 3702 3703 7560 | 3952 3953 3954 3955 3956 3957 3958 3959

7170 | 3704 3705 3706 3707 3708 3709 3710 3711 7570 | 3960 3961 3962 3963 3964 3965 3966 3967

7200 | 3712 3113 3714 3/15 3716 3717 3718 3719 7600 |3968 3969 3970 3971 3972 3973 3974 3975

7210 | 3720 3721 3722 3723 3724 3725 3726 3727 7610 {3976 3977 3978 3979 3980 3981 3982 3983

7220 | 3728 3729 3730 3731 3732 3733 3734 3735 7620 | 3984 3985 3986 3987 3988 3989 3990 3991

7230 | 3736 3737 3738 3739 3740 3741 3742 3743 7630 [3992 3933 3994 3995 3996 3997 3998 3999

7240 | 3744 3745 3746 3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 4005 4006 4007

7250 | 3752 3783 3754 3755 3756 3757 3758 3759 7650 | 4008 4009 4010 4011 4012 4013 4014 4015

7260 | 3760 3761 3762 3763 3764 3765 3766 3767 7660 {4016 4017 4018 4019 4020 4021 4022 4023

7270 | 3768 3769 3770 3771t 3772 3713 3774 3775 7670 4024 4025 4026 4027 4028 4029 4030 4031

7300 | 3776 3777 3778 3779 3780 3781 3782 3783 7700 {4032 4033 4034 4035 4036 4037 4038 4039

7310 | 3784 3785 3786 3787 3788 3789 3730 3791 7710 |4040 4041 4042 4043 4044 4045 4046 4047

7320 | 3792 3793 3794 3795 3796 3797 3798 3799 7720 |4048 4049 4050 4051 4052 4053 4054 4055

7330 | 3800 3801 3802 3803 3804 3805 3806 3807 7730 |4056 4057 4058 4053 4060 4061 4062 4063

7340 | 3808 3809 3810 3811 3812 3813 3814 3815 7740 |4064 4065 4066 4067 4068 4069 4070 4071

7350 | 3816 3817 3818 3819 3820 3821 3822 3823 7750 |4072 4073 4074 4075 4076 4077 4078 4079

7360 | 3824 3825 3826 3827 3828 3829 3830 3831 7760 |4080 4081 4082 4083 4084 4085 4086 4087

7370 | 3832 3833 3834 3835 3836 3837 3838 3839 7770 {4088 4089 4090 4091 4092 4093 4094 4095

60190900A

OCTAL/DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC,
000 000000 100 125000 200 250000 300 375000
001 001953 101 126953 201 251953 301 376953
002 1003906 102 128906 202 253906 302 1378906
003 005859 103 130859 203 255859 303 380859
004 007812 104 132812 204 257812 304 382812
005 009765 105 134765 205 259765 305 384765
006 011718 106 136718 206 261718 306 386718
007 013671 107 138671 207 263671 307 388671
010 015625 110 140625 210 265625 310 1390625
011 017578 1M1 142578 211 267578 311 392578
012 019531 112 144531 212 269531 312 394531
013 021484 113 146484 213 271484 313 396484
014 023437 114 148437 214 273437 314 398437
015 025390 115 150390 215 275390 315 1400390
016 027343 116 152343 216 277343 316 402343
017 029296 117 154296 217 279296 317 404296
020 031250 120 156250 220 281250 320 406250
021 033203 121 158203 221 283203 321 1408203
022 035156 122 160156 222 285156 322 410156
023 037109 123 162109 223 287109 323 412109
024 039062 124 1164062 224 289062 324 414062
025 041015 125 166015 225 291015 325 416015
026 042968 126 167968 226 292968 326 417968
027 044921 127 169921 227 294921 327 419921
030 046875 130 171875 230 296875 330 421875
031 048828 131 173828 231 298828 331 423828
032 050781 132 175781 232 300781 332 425781
033 052734 133 177734 233 302734 333 427734
034 054687 134 179687 234 304687 334 429687
035 056640 135 181640 235 306640 335 431640
036 058593 136 183593 236 308593 336 433593
037 060546 137 185546 237 310546 337 435546
040 062500 140 187500 240 312500 340 437500
041 064453 141 189453 241 314453 341 439453
042 066406 142 191406 242 316406 342 441406
043 068359 143 193359 243 318359 343 443359
044 070312 144 195312 244 320312 344 445312
045 072265 145 197265 245 322265 345 447265
046 074218 146 199218 246 324218 346 449218
047 076171 147 201171 247 326171 347 451171
050 078125 150 203125 250 328125 350 453125
051 080078 151 205078 251 330078 351 455078
052 082031 152 207031 252 332031 352 457031
053 083984 153 208984 253 333984 353 458984
054 085937 154 210937 254 335937 354 460937
055 087890 155 212890 255 337890 355 462890
056 089843 156 214843 256 339843 356 464843
057 091796 157 216796 257 341796 357 466796
060 093750 160 218750 260 343750 360 468750
061 095703 161 220703 261 345703 361 470703
062 097656 162 222656 262 347656 362 472656
063 099609 163 224809 263 349609 363 474609
064 101562 164 226562 264 351662 364 476562
065 103515 165 228515 265 353515 365 478515
066 105468 166 230468 266 355468 366 480468
067 107421 167 232421 267 357421 367 482421
070 109375 170 234375 270 359375 370 484375
071 111328 171 236328 271 361328 371 486328
072 113281 172 238281 272 363281 372 488281
073 115234 173 240234 273 365234 373 490234
074 117187 174 242187 274 367187 374 492187
075 119140 175 244140 275 369140 375 494140
076 121093 176 246093 276 371093 376 1496093
077 123046 177 248046 277 373046 377 1498046

60190900A

OCTAL/DECIMAL FRACTION CONVERSION TABLE (Cont'd)

OCTAL DEC. OCTAL DEC. - OCTAL DEC. OCTAL DEC.
.000000 .000000 .000100 .000244 000200 .000488 .000300 .000732
.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736
.000002 000007 .000102 .000251 000202 000495 000302 .000740
.000003 .000011 .000103 .000265 000203 .000499 .000303 .000743
.000004 000015 .000104 .000259 .000204 .000503 000304 .000747
.000005 .000019 000106 .000263 000205 .000507 .000305 .000751
.000006 .000022 .000106 .000267 .000206 000511 .000306 .000755
000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759
.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762
.000011 .000034 .000111 .000278 .000211 000522 .000311 .000766
.000012 .000038 000112 .000282 .000212 .000526 .000312 .000770
.000013 .000041 000113 .000286 .000213 .000530 .000313 000774
000014 .000045 000114 .000289 .000214 .000534 .000314 .000778
000015 .000049 000115 .000293 .000215 .000537 .000315 000782
.000016 .000063 .000116 .000297 000216 .000541 .000316 000785
.000017 .000057 000117 .000301 .000217 .000545 000317 .000789
000020 .000061 .000120 .000305 000220 .000549 .000320 .000793
.000021 000064 000121 000308 .000221 .000553 000321 000797
.000022 000068 .000122 .000312 .000222 000556 000322 .000801
000023 .000072 .000123 .000316 .000223 .000560 000323 .000805
.000024 000076 000124 .000320 .000224 .000564 .000324 .000808
000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812
.000026 .000083 000126 000328 .000226 .000572 .000326 .000816
.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820
.000030 .000091 .000130 .000335 .000230 000579 .000330 .000823
.000031 .000095 .000131 .000339 .000231 .000583 000331 .000827
.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831
.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835
.000034 .000106 .000134 000350 .000234 .0005956 .000334 .000839
.000035 .000110 000135 .000354 000235 .000598 .000335 .000843
000036 .000114 000136 .000358 .000236 .000602 .000336 .000846
.000037 000118 .000137 .000362 .000237 000606 .000337 .000850
.000040 .000122 .000140 .000366 .000240 .000610 000340 .000854
.000041 000125 .000141 000370 .000241 .000614 .000341 .000858
.000042 .000129 000142 .000373 .000242 .000617 .000342 .000862
.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865
.000044 .000137 000144 .000381 .000244 .000625 .000344 .000869
000045 000141 000145 .000385 .000245 000629 .000345 .000873
.000046 .000144 .000146 .000389 000246 .000633 .000346 .000877
.000047 .000148 .000147 .000392 .000247 000637 .000347 .000881
.000050 .0001562 .000150 .000396 .000250 .000640 .000350 .000885
.000051 .000166 0001561 .000400 .000251 000644 .000361 .000888
.000052 .000160 000152 .000404 .000252 .000648 000362 .000892
.000053 000164 .000153 000408 .000253 .000652 .000353 .000896
.000054 .000167 000154 .000411 .000254 .000656 000354 .000900
.000055 .000171 000165 .000415 .000255 000659 000365 .000904
.000056 .000175 000156 000419 .000256 000663 000356 .000907
.000057 .000179 .0001567 .000423 000257 .000667 .000357 .000911
.000060 .000183 000160 000427 .000260 .000671 000360 .000915
.000061 .000186 000161 .000431 .000261 000675 000361 .000919
.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923
.000063 .000194 .000163 000438 .000263 .000682 .000363 .000926
000064 .000198 000164 .000442 000264 .000686 000364 .000930
000065 .000202 .000165 000446 000265 000690 .000365 .000934
.000066 .000205 .000166 .000450 000266 .000694 .000366 .000938
000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942
.000070 .000213 .000170 000457 000270 .000701 .000370 .000946
.000071 .000217 .000171 000461 .000271 .000705 .000371 .000949
.000072 000221 .000172 000465 000272 .000709 .000372 .000953
.000073 .000225 .000173 .000469 .000273 .000713 .000373 0009857
.000074 .000228 .000174 .000473 .000274 000717 .000374 .000961
.000075 000232 .000175 .000476 .000275 000720 .000375 .000965
.000076 .000236 .000176 .000480 .000276 000724 .000376 .000968
.000077 .000240 000177 000484 .000277 000728 .000377 .000972

60190900A

OCTAL/DECIMAL FRACTION CONVERSION TABLE (Cont'd)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.
.000400 000976 000500 001220 000600 001464 .000700 001708
000401 000980 000501 001224 000601 001468 000701 001712
000402 .000984 000502 001228 000602 001472 000702 001716
000403 000988 000503 001232 000603 001476 .000703 001720
000404 000991 .000504 001235 000604 001480 .000704 001724
000405 000995 .000505 001239 000605 001483 000705 001728
.000406 .000999 000506 001243 000606 001487 .000706 001731
.000407 001003 000507 001247 000607 001491 000707 001735
000410 001007 000510 001251 000610 001495 .000710 001739
000411 001010 000511 001255 000611 001499 000711 001743
.000412 001014 000512 007258 000612 .001502 000712 001747
000413 001018 000513 001262 .000613 001506 .000713 001750
000414 001022 000514 001266 000614 001610 .000714 001754
000415 001026 000515 001270 000615 001514 000715 001758
000416 001029 000516 001274 000616 001518 000716 001762
000417 001033 000517 001277 000617 001522 .000717 001766
000420 001037 .000520 001281 000620 001525 000720 001770
000421 001041 000521 001285 000621 001529 000721 001773
000422 001045 000522 001289 000622 001533 000722 001777
000423 001049 .000523 001293 000623 001537 .000723 001781
000424 .001052 .000524 001296 000624 001541 000724 001785
.000425 .001056 000525 001300 000625 001544 000725 001789
000426 .001060 000526 .001304 000626 001548 000726 001792
.000427 001064 000527 001308 000627 0015562 000727 .001796
000430 001068 000530 .001312 000630 .001556 000730 .001800
000431 001071 000531 001316 000631 .001560 000731 001804
000432 001075 000532 001319 .000632 001564 .000732 001808
000433 001079 .000533 001323 000633 001567 .000733 001811
.000434 .001083 000534 001327 000634 001671 .000734 001815
000435 001087 .000535 001331 000635 .001575 .000735 001819
000436 001091 000536 001335 000636 .001579 000736 001823
000437 001094 .000537 .001338 .000637 001583 .000737 001827
.000440 001098 .000540 001342 000640 001586 000740 001831
.000441 .001102 .000541 .001346 000641 001590 000741 .001834
000442 001106 000542 001350 .000642 001594 .000742 001838
000443 .001110 000543 001354 .000643 001598 .000743 .001842
000444 001113 .000544 001358 .000644 001602 000744 .001846
.000445 001117 000545 001361 .000645 001605 .000745 .001850
000446 001121 000546 001365 .000646 001609 000746 0018563
000447 001125 .000547 001369 000647 001613 000747 001857
.000450 001129 000550 .001373 000650 .001617 .000750 001861
000451 001132 0005561 001377 000651 001621 .000751 001865
000452 001136 000552 001380 .000652 001625 000752 001869
000453 .001140 .000553 .001384 000653 .001628 000753 001873
.000454 001144 .000554 .001388 000654 001632 000754 001876
000455 001148 000555 001392 000655 001636 000755 001880
000456 001152 000556 .001396 000656 001640 .000756 001884
000457 001165 .000557 .001399 000657 001644 .000757 001888
000460 001169 000560 001403 .000660 .001647 000760 .001892
000461 001163 .000561 001407 000661 001651 000761 001895
000462 001167 000562 001411 .000662 001655 000762 001899
000463 001171 .000563 001415 000663 001659 .000763 001903
000464 001174 .000564 001419 000664 .001663 000764 001807
000465 001178 000565 001422 .000665 001667 .000765 001911
000466 001182 000566 001426 000666 001670 000766 001914
000467 001186 000567 001430 000667 001674 .000767 001918
000470 001190 .000570 001434 000670 001678 .000770 001922
000471 001194 .000571 001438 000671 001682 .000771 001926
000472 .001197 000572 001441 000672 001686 .000772 001930
000473 001201 000573 001445 000673 .001689 000773 001934
.000474 001205 000574 .001449 .000674 .001693 .000774 .001937
000475 .001209 .000575 001453 .000675 001697 .000775 .001941
000476 001213 000576 001457 000676 001701 .000776 001945
.000477 .001216 000577 001461 000677 001705 000777 .001949

60190900A

POWERS OF TWO

wH N

303
606

685
370

481
963

927
855

423
846

128

256
612
024
048

096
192
384
768

536
072
144
288

576
162
304
608

216
432

728

458
912
824
648

296
692
184
368

736
472
944
888

776
662

208

416
832
664
328

656

624
248

496

984
968

936

744
488

976

k]

— 0 W@ NN WN-=O0

0000

0.000
0.000
0.000
0.000

0.000
0000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0000
0.000

0.000

25
625
812

906
953

488

244
122

030

0156
007

001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000

000
000

25

1256
562
281

140
070
035
517

258
629
814
907

953

238
19

059
029
014
007

003
001
000
0co

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000

000
000
000
000

000
000
000
000

000
000

000
000

25

625
312
156
678

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000
000
000
000

000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

5561
27%
637
818

909

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

484

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

350
675
837

478
709
854
427

713
356
178
089

044
022
511
7565

877
938
469
734

867

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772
886
443
721

860
430
715
357

678
839
419
209

604
302
151
675

787
893
446
723

361

25
125

062
031
515
267

628

5
25
625
812

906
453
226
613

806
903
951
475

237
118
059
029

014
007
003
001

500
250
125
062

031
515
257
628

814
907

976
988

25

625
312
156
078

039
519

379

683
844
422
711

356
677
338
169

084
042
021
510

765
377
188
094

547

25
125

062
631

882

941
970
485
242

621
810
905
452

726
363
181
590

295
647
823
411

205

25
625
812

406
703
351
675

337
668
334
667

333
166
583
791

395
697
848
924

962

25

125
562
781

890
945
472
236

618
809
404
702

851
925
962
481

240

25

625
312
656
328

164
082
541
270

135
567
783
391

695

25
125

062
031
015
507

253
626
813
906

9563

5

25
625
812 6

906 25
953 125
476 562 5
738 281 25

369 140 625

60190900A

DECIMAL/BINARY POSITION TABLE

X Number
. Decimal of
Largest Decimal Digits 8i Largest Decimal Fraction
Integer Req'd* inary
Digits
1 1 5
3 2 15
7 3 875
15 1 4 937 8
3 5 968 75
63 6 .884 375
127 2 7 992 187 &
255 8 .96 093 75
511 9 998 046 875
1023 3 10 .999 023 437 5
2 047 1 999 511 718 75
4 095 12 .999 755 859 375
8 191 13 .899 877 929 687 5
16 383 4 14 .999 938 964 843 75
32 767 18 999 969 482 421 875
65 535 16 .999 984 741 210 937 5
131 071 5 17 993 992 370 605 468 75
262 143 18 .999 996 185 302 734 375
524 287 19 .999 898 092 651 367 187 5
1 048 575 6 20 .999 999 046 325 683 593 75
2 097 151 n 999 999 523 162 841 796 875
4 194 303 22 999 999 761 581 420 898 437 5
8 388 607 23 999 999 880 790 710 449 218 75
16 777 215 7 24 .999 999 940 395 355 244 609 375
33554 431 25 "999 999 970 137 677 612 304 687 5
67 108 863 26 999 999 985 098 838 806 152 343 75
134 217 127 8 27 999 999 992 549 419 403 076 171 875
268 435 455 28 -939 339 996 274 709 701 538 085 937 5
536 870 911 29 .999 999 998 137 354 850 769 042 968 75
1 073 741 823 9 30 .999 999 999 068 677 425 384 521 484 375
2 147 483 647 31 .999 999 999 534 338 712 692 260 742 187 5
4 294 967 295 32 899 999 999 767 169 356 346 130 371 093 75
8 589 934 591 33 .899 999 999 883 584 678 173 065 185 546 875
17 179 869 183 10 34 .899 999 999 941 792 339 086 532 592 773 437 &
34 359 738 367 35 .999 999 999 970 896 169 543 266 296 386 718 75
63 719 476 735 36 .999 999 999 985 448 034 771 633 148 193 359 375
137 438 953 471 1 37 .899 999 999 992 724 042 385 816 574 096 679 687 5
274 877 906 943 38 999 999 999 996 362 021 192 908 287 048 339 843 75
549 755 813 887 39 .999 999 999 998 181 010 596 454 143 524 169 921 875
1099 511 627 775 12 40 .999 999 999 999 090 505 298 227 071 762 084 960 937 5
2 199 023 255 551 41 1999 999 999 999 545 252 649 113 535 881 042 480 468 75
4 398 046 511 103 42 .999 999 999 999 772 626 324 556 767 940 521 240 234 375
8 796 093 022 207 43 993 999 999 999 886 313 162 278 383 970 260 620 117 187 &
17 592 186 044 415 13 44 .999 999 999 999 943 156 581 139 191 985 130 310 058 593 75
35 184 372 088 831 45 .999 999 999 999 971 578 290 569 595 992 565 155 029 296 875
70 368 744 177 663 46 .999 999 999 999 985 789 145 284 797 996 282 577 514 648 437 5
140 737 488 355 327 14 47 .999 999 999 999 992 894 572 642 398 998 141 288 757 324 218 75
281 474 976 710 655 48 .999 999 999 999 996 447 286 321 199 499 070 644 378 662 109 375
562 949 953 421 3N 49 .999 999 999 999 998 223 643 160 599 749 535 322 189 331 054 687 §

1125 899 906 842 623 15 50 .999 999 999 999 999 111 821 580 299 874 767 661 094 665 527 343 75

2 251 799 813 685 247 51 .999 999 999 999 999 555 910 790 149 937 383 830 547 33Z 763 671 875

4 503 599 627 370 495 52 .999 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 §

9 007 199 254 740 991 53 .998 999 999 999 999 888 977 697 537 484 345 957 636 833 190 917 968 75
18 014 398 509 481 983 16 54 .999 999 999 999 999 944 488 848 768 742 172 978 818 416 595 453 984 375
36 028 797 018 963 967 55 .999 998 999 999 999 972 244 424 384 371 086 489 409 208 297 729 492 187 §
72 057 594 037 927 935 56 .999 999 999 999 999 986 122 212 192 185 543 244 704 604 148 864 746 093 75

144 115 188 075 855 871 17 57 .999 999 999 999 999 993 061 106 096 092 771 622 352 302 074 432 373 046 875

288 230 376 151 711 743 58 .999 989 999 999 999 996 530 553 048 046 385 811 176 151 037 216 186 523 437 6

576 460 752 303 423 487 59 .999 999 999 999 999 998 265 276 524 023 192 905 588 075 618 608 093 261 718 75
1 152 921 504 606 846 975 18 60 -999 999 999 999 999 999 132 638 262 011 596 452 794 037 759 304 046 630 859 375

*Larger numbers within a digit group should be checked for exact number of decimal digits required.

Examples of use:

H-10

1. Q. What is the largest decimal value that can be expressed by 36 binary digits?
A. 68,719,476,735.
2. . How many decimal digits will be required to express a 22-bit number?
A. 7 decimal digits.

60190900A

60190900A

m
V3

V10

e

In2

In 10

logio 2
logio e
logio logio e
logio

1 degree

1 radian
log10(5)

7
8

“-4dadd
'a OO PWN 2O ®

o]
o

-3 ” Y w S

<

= = = = ey
w ~ - =]

IS

EEEEEEEEEEEEE

CONSTANTS

3.14159
1.732 05
3.162 27
2.71828
0.69314
2.30258
0.30102
0.43429
9.63778
0.49714
001745
57.29577
0.69897

5040
40320
362,880
3.628.800
39.916.800

26535
0 807
7 660
18284
71805
50929
99956
44819
43113
98726
32925
95131
00043

479,001,600
6.227.020.800
87.178.291.200

1,307.674.368,000

89793 23846 26433 83279 50

569

1683

59045 23536
599453
94045 68402
63981

03251 82765
00537 - 10
94133 85435
19943 radians
degrees
36019

20.922.729.888.000

0.01745 32925 19943 29576 92369 07684 9

24674 01100 27233 96

3.8757

6.0880

96631

15.0217

23.5960

37.0645

58.2208

91.4531

143.6543

2256516

354.4527

556.7731

84585

68189

15149

06149

40842

72481

971356

71363

05651

55645

91822

43417

03747 74

62515 20

54004 49

61413 07

00618 62

52567 57

‘63712 59

36231 53

31374 956

350

91051 47

624

H-11

H-12

7(2

272
32
4x?
572
672
7m?
87?
972

\,"2—

1 4+ 2

(1 4+ v2)2

(1 4+ 2)4

(1 + v2)8

1+ 2)8

(1 4+ \/2)1°

(1 4+ 22

(1 4+ v2)

(1 + v2)s

(1 + V2)s

Sin .5

Cos .5

Tan .5

Sin 1

Cos 1

Tan 1

Sin 1.5

Cos 1.5

Tan 1.5

CONSTANTS (Cont'd)

9.86960
19.73920
29.60881
39.47841
49.34802
59.21762
69.08723
78.95683
88.82643

44010
88021
32032
76043
20054
64065
08076
52087
96098

1.414 213
2.414 213

5.828 427
33.970 562
197.994 949
1153.999 133
6725.999 851
39201.999 974
228485.999 995
1331713.999 999
7761797.999 999

0.47942
087758
0.54630

0.84147
0.54030
1.565740

0.99749
0.07073
14.10141

55386
25618
24898

09848
23058
77246

49866
72016
99471

89358
78717
68075
57434
46793
36151
25510
14868
04227

562
562
124
748
366
448
323
491
622
246
884

61883
23766
85680
47533
09417
71300
33184
95067
56950

373
373
746
477
116
220
208
027
956
711
751

04203

9037
4379

0789

3
0

6

68140

5490

0405

4

67708

707

095 048 801
095 048 801

18
08
30
72
02
40
38

43909
87819
31729
75639
19549
63459
07369
51279
95189

9988
9976
9964
9952
9940
9928
9916
9904
9892

688
688

60190900A

DIVIDE

x®)+ o) =177700...
(©):+ (N)=1377700...
(@) (-N) = 400000. ..
(-o@): (N)=400000...
+ 0)# (x @)= 000000..
(+0)% (+ N)=000000...
(+ N) ¢+ (£ ®©)=000000...
(N)s: (0)=377700..
(-N)+ (0)=400000...
(N)+ (-0)=400000..
(-N)# (-0)=377700...

(+ Indef.) * (+ N) = 177700. ..
(+ Indef.) ¢+ (£ ©)= 177700...
(+ Indef.) * (+ 0)= 177700...

Underflow: #
Overflow: (right shift

00
00
00
00

.00

00
00

.00

00

.00

00

& sign record)

(right shift

& sign record)
Right shift one

NORMALIZE

60190900A

(+o)=3777TXX...XX
(-0) = 4000XX...XX
(+ Indef.) = 1777XX.,..XX

Underflow = 0000... 00

W WwWw W

.

st el

00
00
00

000000...00
4000 (coefficient = coefficient Xj coefficient Xk)

3777 (coefficient = coefficient X]. coefficient Xk)

does not take the exponent out of underflow

000000
000000
000000

Shift count

H-13

FLOATING ADD

(to)+ (+®)=377700...
(+®)+ (-o)=177700...
(-®)+ (- @) =400000...
(-o)+ (+o)=177700...
+®)-(+w)=177700...
(+o) - (-®)=377700...
(-®) - (+ ®) = 400000. ..
(-o) - (-o)=177700...
(+®)+ (x N)=377700...
(-0)+ (x N) = 400000.

00
00
00
00
00
00
00
00
00

. 00

INDEFINITE FORMS

(+ Indef.) + (+ N) =177700...00
(+ Indef.) + (£ @) =177700...00
(+ Indef.) £ (+ 0) =177700...00

Underflow = 0000 (coefficient = coefficient X, + coefficient Xk)

Overflow on right shift one

MULTIPLY
- (+©)=2377700...
- (- @) =400000...
- (£ 0)=177700...
- (£ 0) = 000000...
- (£ N) = 000000.

+o)
(+ o)
& @)
®o)
®€o)

00
00
00
00

.00

= 37T7T7XXX. .. XX (coefficient positive)
4000XXX...XX (coefficient negative)

(Indef.) - (+ N) = 177700...00
(+ Indef.) - (+ @) =177700...00
(+ Indef.) - (+ 0)=177700...00

Underflow: (no left shift one)

(left shift one

& sign record)

(left shift one

& no sign record)

Overflow:# (sign record)
(no gign record) = 37700...00
Left shift one does not take the exponent out of overflow

H-14

000000...00
= 7777 (coefficient = coefficient Xj coefficienth)

= 0000 (coefficient = coefficient Xj coefficient Xk)

= 40000...00

60190900A

SUPPLEMENT TO TABLE OF INDEFINITE FORMS
(Coefficient Fields for Indefinite Operands in XJ'
and/or X, May Be Any Value in Any Flt. Pt.Unit)

FLOATING ADD UNIT USING 30, 31, 34 or 35 INSTRUCTION

X.
J

37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
40000000000000000000
40000000000000000000
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000
17770000000000000000

60190900A

+ + o+ o+

1+ 4+

+ + + + Vo o+ + 4

Xx

37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
17206000000000000000
605717TTTTTTTINININT
17206000000000000000
6057177777TTTTIITITTT
17257000000000000000
6052077777TTTTTIITTT
17257000000000000000
60520777TTTTTIITTINT
16204500000000000000
615732777777 777TTTTT
16204500000000000000
615732777777 1TTTTTT
162064500000000000000
61573277777T717TTTTTT
16204500000000000000
61573277777TTNTTVTTT
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000

X3

37770000000000000000
17770000000000000000
40000000000000000000
17770000000000000000
17770000000000000000
37770000000000000000
40000000000000000000
17770000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
40000000000000000000
40000000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000

H-16

FLOATING ADD (Cont'd)

X,
J

60000000000000000000
60000000000000000000

37765400000000000000
40012377777777777777

FLOATING ADD UNIT

00574320000000000000
772034577777777777177
00564320000000000000
772134577777777771777

Xy

37770000000000000000
40000000000000000000

37764000000000000000
4001377717T77T1T177777

USING 32 or 33 INSTRUCTION

+ + + +

00575400000000000000
77202377777777777777
00555400000000000000
7722237771T71771777777

X

17770000000000000000
17770000000000000000

37774600000000000000
40003177777777777777

00004750000000000000
7777302777777
00000000000000000000
00000000000000000000

60190900A

MULTIPLY UNIT USING 40 or 41 INSTRUCTION

X.
J

37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
00000000000000000000
17777700
00000000000000000000
TN NNNI77
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
00305000000000000000
00305000000000000000
T747277T7TTT1TTT77777
T74727777TTTT0TTTTTT
07214000000000000000
7056377777777 777777
30007000000000000000
30007000000000000000

60190900A

Xk

57773177777777777777
20004600000000000000
20004600000000000000
5777317777TT1777T77177
37770000000000000000
40000000000000000000
00000000000000000000
TTTTTTTITTTITTIITTT
00000000000000000000
T7TTTTTTTTTTTITNITNT
17154370000000000000
17154370000000000000
606234077777777777717
606234077777777777717
20606543000000000000
57171234777777777777
20606543000000000000
57171234777777777171
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
16277000000000000000
61500777777777177771
16277000000000000000
615007777777777T71777
07777000000000000000
07777000000000000000
27174000000000000000
50603777777777717777

Xy

40000000000000000000
37770000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00007000000000000000
77770777TTTTTTITITTTT
37770000000000000000
40000000000000000000

H-17

H-18

DIVIDE UNIT USING 44 OR 45 INSTRUCTION

X.
J

00000000000000000000
00000000000000000000
1711777777
177177111170V
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
377700000000060000000
37770000000000000000
40000000000000000000
40000000000000000000
00000000000000000000
00000000000000000000
TN
771777111100
00000000000000000000
00000000000000000000
17777017V
1T
16717400000000000000
16717400000000000000
61060377777T7777777TTT
6106037777777T77777%7
32044540000000000000
4573323777771 TTTTTTT
20615567000000000000
571622107777777177777
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000

T e T T

Xy

00000000000000000000
T1TTTTNNTTIIN0N77
00000000000000000000
AR I
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
20424321000000000000
573534567777777777777
20424321000000000000
5735345677717177777777
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
17347560000000000000
60430217777777777777
17347560000000000000
60430217777777777777
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
00000000000000000000
00000000000000000000
7117111077777
11117000
17367540000000000000
60410237000000000000
17756677000000000000
60021100777777777777
37770000000000000000

X,
i

17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
000000000060000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000

60190900A

DIVIDE (Cont'd)

X.
J

17770000000000000000
60000000000000000000
60000000000000000000
07776000000000000000
300060000000006000000
477717TTTTTTTTTITT7T7

NORMALIZE

Xy

37770043200000000000
40007734577777777777
17770002100000000000
6000777567777T7777777
00000000000000000000
*00000000000000000000
00040006000000000000
TN
77777771777 7T77T77T771777
T7737771177TINTTTINT
20000000000000000000
*20000000000000000000
STT1MTT7777777T7T7T7777
*STTTTTTTTI1T777177777

_— NN Y Y e~

Xy

40000000000000000000
37770000000000000000
40000000000000000000
27204000000000000000
07214000000000000000
07214000000000000000

B,
J

000000
000000
000000
000000
000060
000060
000011
000060
000060
000011
000060
000060
000060
000060

* Results due to rounded normalize

60190900A

X;

17770000000000000000
17770000000000000000
17770000000000000000
00000000000000000000
37776000000000000000
40001777777777777717

X

37770043200000000000
4000773457TTT17TTTT7
17770002100000000000
60007775677 TT7777777
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
17174000000000000000
00000000000000000000
606037777T7177777T777

H-19

INDEX

A register 4-2 Branch codes 4-34
ABS 5-3 Branch instruction 4-4
Absolute block 2-1 Branch unit 4-12
Absolute data 3-7 BSS 2-2; 5-4, 8 i
Absolute programs IF-2 BSSZ 5-8
Absolute symbols 3-4
Access time, central memory (CM) G-1 Call, macro 6-1, 7
Add unit 4-21 Calls, OPDEF 6-4
long 4-23 Card, COMPASS control 8-1
Additive operators 3-16 Card files B-2 1
Address constant 3-7 Card format B-1
Address expressions 3-16 Cards, loader control I'-1
Address modes 4-27 Cards, types B-2 . |
Address registers 4-2 Catenation 3-2, 8; 5-17; 6-5
Allocation, storage 5-8 Central memory access time G-1
BSS 5-8 Central memory codes 4-35
BSSZ 5-8 Central processor 2-1
Arithmetic codes 4-29 codes 4-35
Assembled code 8-3 coding 2-1
Assembler control 5-2 instructions 4-1, 7
ABS 5-3 execution times G-1
BASE 5-3 mnemonics C-1
END 5-2 Character codes collating sequence A-1
IDENT 5-2 Character data 3-7
PERIPH 5-3 Character string 3-8
SEGMENT 5-4 | Characters, special 3-8 I
Assembler input/output 8-1 Checksum B-2
Assembler statistics 8-2 CM access time G-1
Assembly, remote 5-23 CM codes 4-35
HERE 5-24 CMPSCR 8-2
RMT 5-23 Code, assembled 8-3
Code, central processor 2-1
B register 4-3 . Code duplication 5-24
BASE 5-3 DUP 5-22
Blank common 2-2 ENDD 5-22
Block STOPDUP 5-23
absolute 2-1 Code, no operation 4-8, 28
common 2-1, 2 Code, peripheral processor 2-1
literal 2-1 Code, recognition order, operation 6-16
local 2-1 Code, shift 4-30
zero 2-1 Code~-generating instruction 2-3

Body, macro 6-1, 5
Boolean unit 4-16, 19

60190900 Rev. B Index-1

Codes Control, list 5-18

arithmetic 4-29 EJECT 5-21

branch 4-34 LIST 5-19

central memory 4-35 SPACE 5-21

central processor 4-35 TITLE 5-21

character collating sequence A-1 Control, loader 5-24

CP operation 4-7 Control processor execution times G-4

data transmission 4-28 Conversion table

input/output 4-38 octal-decimal fraction H-5

1/0 4-38 octal-decimal integer H-1

logical 4-31 I Counter control 5-4b

operation 4-1, 7, 28 LOC 5-7

replace 4-33 ORG 5-6
Coding USE 5-4

central processor (CP) 2-1 Counters 2-2

COMPASS 3-1 location 2-3

efficient 4-5 origin 2-2

format 3-1 position 2-3

peripheral processor (PP) 2-1 CP 2-1

source statements 3-1 CP codes 4-35
Collating sequence, character codes A-1 CP definitions 4-1
Comments field 3-1, 4 CP instructions 4-1, 7
Common, blank 2-2 execution 4-3
Common block 2-1, 2 format 4-1
Common, labeled 2-2 CP mnemonics C-1
COMPASS 1-1 CP operation codes 4-7

coding 3-1 Created symbols 6-4

control card 8-1

tables 8-2 DATA 3-7; 5-9
Computer hardware configuration 1-1 Data, absolute 3-7
Conditional operations 5-13 Data, character 3-7

ENDIF 5-18 : Data generation 5-9

IF 5-13 DATA 5-9

IFC 5-16 DIS 5-9

IFCP 5-14 LIT 5-10

IFPP 5-14 REP 5-11
Configuration, hardware 1-1 VFD 5-10
Constant, address 3-7 Data item 3-7
Constants 3-15; H-10 Data literals 2-2
Continuation 3-1 Data, numeric 3-11
Control, assembler 5-2] Data origin 5-4b
Control card, COMPASS 8-1 Data table F-4
Control, counter 5-4 Data transmission codes 4-28

Control, linkage 5-7 Debugging, OPDEF 6-13

Index-2 60190900 Rev. B

Decimal/binary position table H-9
Deferred symbols 3-6
Definition
CP 4-1
macro 6-1
alternate form 6-7
standard form 6-8
micro 7-1
OPDEF 6-10
Definition, symbol 5-8
EQU 5-8
SET 5-9
Diagnostics 8-3
Direct address 4-27
Directives, loader 5-24
Directory, error 8-2
DIS 5-9
Divide unit 4-24
Double precision 4-22; 6-13
DUP 5-22
Duplicate macro definition flag 6-16
Duplication, code 5-22
DUP 5-22
ENDD 5-22
STOPDUP 5-23

ECS 2-3; G-1
ECS unit 4-25
EDITLIB F-1
Efficient coding 4-5
EJECT 5-21
Elements 3-16
instruction 3-3
special (*, *L, *O, $) 2-3;3-15, 16
END 5-2
ENDD 5-22
ENDIF 5-18
ENDM 6-7
ENTR F-3
ENTRY 5-7
Entry, operation code field 6-16
Entry point table -3
EQU 5-8
ERR 5-24
Error directory 8-2
Error exit 4-26

60190900 Rev. B

Error flags,
fatal 8-3
non-fatal 8-4
Error, operation code 6-16
Evaluation, expressions 3-16
Examples of jobs 8-5
Execution, CP instruction 4-3
Execution time
central processor instruction G-1
control processor G-4
peripheral processor G-4
Exit, error 4-26
Expressions 3-16
address 3-16
evaluation 3-16
EXT 5-7
Extended core storage unit 4-25
External symbol 3-6
External text instruction 5-25

Fatal error flags 8-3
Field
comments 3-1, 4
entry, operation code 6-16
length requirements 8-2
location 3-1, 3
operation 3-1, 3
separator 3-8
variable 3-1, 3
Files
card B-2
input 8-1
output 8-1
scratch 8-2
FILL F-5
FILL table F-5
Flag
duplicate macro definition 6-16
fatal error 8-3
non-fatal error 8-4
Forcing upper 2-3, 4; 5-4b, 5, 8; 6-8
Formal parameter 6-4

Index-3

Format Instruction

card B-1 elements 3-3
coding 3-1 execution (CP) 4-3
CP instruction 4-1 times G-1
PP instruction 4-27 external text 5-25
relocatable subroutine F-1 XTEXT 5-25
Forms, indefinite H-13 loader control 5-24
Fraction conversion table no operation 2-3
octal/decimal H-5 pass 4-8
system symbols 5-25
Generation, data 5-9 SST 5-25
DATA 5-9 Instructions, assembler control
DIS 5-9 ABS 5-3
LIT 5-10 BASE 5-3
REP 5-10 END 5-2
VFD 5-10 IDENT 5-2
Global symbols 6-4 ' PERIPH 5-3
] SEGMENT 5-4
Hardware configuration 1-1 Instructions, branch 4-4
Header information 5-18; 8-2 Instructions, central processor (CP) 4-1, 7
Heading, macro 6-1 formats 4-1
HERE 5-24 Instructions, code duplication
: DUP 5-22
IDENT 5-2 : ENDD 5-22
Identification word F-1 STOPDUP 5-23
IF : Instructions, code-generating 2-3
test assembly environment 5-14 Instructions, conditional operation
compare expression values 5-13 ENDIF 5-18
test symbol attribute 5-14 IF 5-13
PP usage 5-17 IFC 5-16
IFC 5-16 IFCP 5-14
IFCP 5-14 IFPP 5-14
IFPP 5-14 Instructions, counter control
IFxx 5-13 LOC 5-7
Increment registers 4-2 ORG 5-6
Increment unit 4-8 I USE 5-4b
Indefinite forms H-13 Instructions, CP 4-1, 7
Index register 4-3 Instructions, data generation
Indirect address 4-28 DATA 5-9
Information, header 5-18; 8-2 DIS 5-9
Input, assembler 8-1 LIT 5-10
Input codes 4-38 REP 5-11
Input files 8-1 VFD 5-10

Input/ogtput, assembler 8-1
Input/output codes 4-38

Index-4 60190900 Rev. B

Instructions, linkage control
ENTRY 5-7
EXT 5-7

Instructions, list control
EJECT 5-21
LIST 5-19
SPACE 5-21
TITLE 5-21, 24

Instructions, peripheral processor (PP) 4-26

formats 4-27

Instructions, pseudo 2-1; 5-1; E-1

LIST 8-3
VIFD 2-3
Instructions, remote assembly
HERE 5-24
RMT 5-23
Instructions, storage allocaticn
BSS 5-8
BSSZ 5-8
Instructions, symbol definition
EQU 5-8
SET 5-9
Integer conversion table
octal/decimal H-1
1/0 codes 4-38
Items, numeric data 3-11
Items, data 3-7

Job examples 8-5

Labeled common 2-2
LCC 5-24; F-1
Length requirements, field 8-2
Library, SCOPE F-1
LINK F-6
LINK table F-6
Linkage control 5-7
ENTRY 5-7
EXT 5-7
Linkage symbols 3-5
LIST 5-19
List control 5-18
EJECT 5-21
LIST 5-19
SPACE 5-21
TITLE 5-21
LIST pseudo instructions 8-3

60190900 Rev. B

Listable output 5-18; 8-2

assembled code 8-3
assembler statistics 5-18
assembly text 5-18; 8-3
diagnostics 8-3

error directory 5-19

header information 5-18; 8-2
reference table 5-19; 8-3
statistics 8-3

LIT 3-7;5-10
Literal table 3-13
Literals 3-13

block 2-1
data 2-1

Loader control cards (LCC) 5-24; F-1
Loader directives 5-24
LOC 2-3;5-7

LOCAL 6-3

Local block 2-1

Local parameters 6-4
Local symbol 6-3
Location counter 2-2, 3
Location field 3-1, 3
Logical codes 4-31
Logical record F-1
Long add unit 4-23, 29

MACRO 6-1
macro
body 6-1, 5
call 6-1, 7

definition 6-1
alternate form 6-9
standard form 6-8

heading 6-1

name 6-1

terminator 6-1, 7

system 6-15

Markers, parameter 6-4
Masking 4-20, 21
MICRO T-2

Micro

definition 7-1, 2
substitution 3-2, 8; 7-1

Mnemonics

central processor (CP) C-1
peripheral processor (PP) D-1

Index-5

Modes, address 4-27
Multiply unit 4-24, 29

Names 3-6

macro 6-1

register 3-5
No address 4-27
Non-fatal error flags 8-4
No operation code 4-8, 28
No operation instruction 2-3
Numeric data 3-11

Octal-decimal fraction conversion table H-5
Octal-decimal integer conversion table H-1
OPDEF 6-10
calls 6-14
debugging 6-13
definition 6-10
Operand registers 4-2, 3
Operating registers 4-2
Operating system, SCOPE 1-2
Operation codes 4-1, 28
CP 4-7
error 6-16
field entry 6-16
recognition order 6-16
table 6-16
Operations, conditional 5-13
ENDIT" 5-18
IF 5-13
IFC 5-16
IFCP 5-14
IFPP 5-14
Operation field 3-1, 3
Operators, additive 3-16
Operators, term 3-16
Order, recognition operation code 6-16
ORG 2-2, 3;5-4, 6
Origin counter 2-2
Origin, data 5-4b
Origins 2-2
Output, assembler 8-1
Output codes 4-38
Output files 8-1

Index-6

| Output, listable 5-19;8-2
assembled code 8-3

assembler statistics 5-18

assembly text 5-18; 8-3
diagnostics 8-3
error directory 5-19
header information 5-18;
reference table 5-19; 8-2
statistics 8-3

Overlays, CP 5-4

Overlays, PP 5-4

Packing 4-20, 21
Parameters
formal 6-4
local 6-4
markers 6-4
Pass instruction 4-8
PERIPH 5-3
Peripheral processor 2-1
coding 2-1
execution time G-4
instructions 4-26
- mnemonics D-1
PIDL F-2
Position counter 2-2

8-2

Position table, decimal/binary H-9

Post-radix 3-11

Powers of two H-8

PP 2-1
instruction format 4-27
instructions 4-26
mnemonics D-1

I Precision, double 4-22;6-13

Prefix table F-1

Pre-radix 3-11

Processor, central (CP) 2-1
instruction execution time
instructions 4-1
mnemonics C-1

Processor, peripheral (PP) 2
instruction execution time
instructions 4-26
mnemonics D-1

s G-1

-1
s G-4

60190900 Rev. B

Program identification and length table F-2 SEGMENT 5-4 |

Program structure 2-1 Separator, field 3-8
Programs, absolute F-2 Sequence, character code collating A-1
Pseudo instructions 2-1; 5-1; E-1 SET 5-9
BSS 2-2 Seventy-seven table F-1
DATA 3-7 Shift code 4-30
LIST G-3 Shift unit 4-18
LIT 3-7 Source statements, coding 3-1
LOC 2-3 SPACE 5-21
MICRO 7-2 Special characters 3-8 1
ORG 2-2 . Special elements 2-3; 3-15
VFD 2-3 SST 5-25
Statements
Radix 3-2 source 3-1
Recognition order, operation code 6-16 types 3-3
Record, logical F-1 USE 2-2; 5-4
Reference table 5-19; 8-3 Statistics 8-3
Registers 3-5 assembler 8-2
address 4-2 STOPDUP 5-23
increment 4-2 Storage allocation 5-8
index 4-3 BSS 5-8
names 3-5 BSSZ 5-8
operand 4-2, 3 String, character 3-7 l
operating 4-2 Structure, program 2-1
result 4-3 Subroutine format, relocatable F-1
Relocatable subroutine format F-1 Substitution, micro 3-2, 8; 7-1
Relocatable symbols 3-4, 6 Symbol definition
Remote assembly 5-23 EQU 5-8
HERE 5-24 SET 5-9
RMT 5-23 Symbols 3-4, 16
REP 5-11 absolute 3-4
REPI 5-12; F-7 l created 6-4
Replace codes 4-33 deferred 3-6
Replication table F-7 external 3-6
Requirements, field length 8-2 global 6-4
Reservation system 4-4 linkage 3-5
Result register 4-3 local 6-3
RMT 5-23 relocatable 3-4, 6
system 5-25
SCOPE 1-2; 6-15 System
library F-1 operating 1-2
Scratch file 8-2 symbols 5-25
text F-9

macros 6-15
SYSTEXT F-9

60190900 Rev. B) Index-7

Tables Unpacking 4-20, 21

COMPASS 8-2 Upper, forcing 2-3; 5-4b, 5, 8; 6-8
conversion H-1 USE statement 2-2; 5-4, 4b
data F-4

decimal/binary position H-9 Variable field 3-1, 3

entry point F-3 VFD 2-3; 5-10

FILL F-5

LINE F-6 Word, identification F-1
literal 3-13

octal-decimal fraction conversion H-5 X register 4-3
octal-decimal integer conversion H-1 XFER F-8

operation code 6-16 XTEXT 5-25; 6-15

prefix F-1

program identification and length F-2 Zero block 2-1

reference 5-19; 8-3

REPI F-7

replication F-7
seventy-seven F-1
text F-4
transfer F-8
Term 3-16
Term operator 3-16
Terminator, macro 6-1, 7
TEXT F-4
text
external 5-25
systems F-9
tables F-4
Times
central processor instruction execution G-1
control processor execution G-4
peripheral processor execution G-4
TITLE 5-21 3
Transfer table F-8
Transmission codes, data 4-28
Two, powers of H-8
Types of statements 3-3

Unit
add 4-21
Boolean 4-16
branch 4-12
divide 4-24
ECS 4-25
extended core storage 4-25
increment 4-8
long add 4-23
multiply 4-24
shift 4-18

Index-8 ’ 60190900 Rev. B

CUT ON THIS LINE

COMMENT SHEET CONTROL DATA
[comroration

CORPORATION

TITLE: 6400/6500/6600 COMPASS Reference Manual

PUBLICATION NO. 60190900 REVISION B

Control Data Corporation solicits your comments about this manual with a view to improving its usefulness in later
editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements do you recommend to hetter serve your purpose?

Note specific errors discovered (please inciude page number reference).

General comments:

FROM nNAME: POSITION:

BUSINESS
ADDRESS:

NO POSTAGE STAMP NECESSARY |F MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

FOLD

STAPLE

B

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department

3145 PORTER DRIVE
PALO ALTO, CALIFORNIA 94304

STAPLE

CUT ON THIS LINE

7|

1/2—
1
1-1/4

4

L

» »CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 60190900

CONTROL DATA

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	5-01
	5-02
	5-03
	5-04
	5-04a
	5-04b
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	A-00
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	I-8
	replyA
	replyB
	zBack

