CONTROL DATA
[corporaTion

CORPORATION

CONTROL DATA®
6000 SERIES COMPUTER SYSTEMS
7600 COMPUTER SYSTEM

6000 COMPASS VERSION 2
7600 COMPASS VERSIONS 1 AND 2
REFERENCE MANUAL

CPU AND PPU INSTRUCTION INDEX

CPU-INSTRUCTIONS NSTRUCTIONS (cont'd) . "PPUINSTRUCTIONS (cont'd) =~
“Mnemonic - -~ - Operation . ~ Section- - - “Mnemonic - - ~Operation -~ - Section -~ 70 Operation - . Section:
.7 Code " Code (octal). ~ Number -} " Code:. > ~Code(octal)’ ~Number [Name - Code(octal) ~ Number.
CAX w0 otk - 84025 f - BRXD XXk 4Bijk - 8.4.42 - EIM m,d - 6ldm . 9.2.14 - |
A% By, Xk . 23kik .. o0 8427 b - BEXjoxk T 014jke. 784,80 § EIM ‘m,d 67dm 19.2.13 7
LBXL Xj os 10ijj 84,16 ‘SAL - AjxK - 504K oL 8.4.45 “EOM ni;d 65dm- - -+ -9,2,14 7
BXi - Xj*Xk - 11ijk - 8.4.17 . § sAi . ‘BjzK, 51K . . B.4.45 " J:ERN d 270d 9.2.8-
BXi Xj+Xk 121k - 0 8.4.18 SATT XjxKo . 52iK -~ . -8.4,45 F ESN d 7700 . 9.2.19 .
+ BXi Xj=Xk . - 18ijk 8.4.19 = . SAi Xj+Bk “53ijk " 8.445] ETN d 260d 9.2.8 .
BXi Xk 14ikk 8.4,20 Y SAiTAj+Bk : 54ijk '8.4.45 *. f EXN d 260d 9.2.6
CBXi -Xk*Xj - 15ijk 8.4.21 - SAi* Aj-Bk 551k 8.4.45 - FAN.-d 76d 9.2.18..
“BX1 =Xk+Xj 16ijk 8.4.22 SAi- -Bj+Bk 56ijk 8.4.45 FIM m,d 60dm 9.2.14
BXiI -Xk-Xj. 17ijk 8.4,23" SAi "Bj<Bk . .. 57ijk - 8.4.45 FJM m,d = 66dm 9.2,13
frexi xx 47ikk 8.4, 44- -SBi -AjzK . “60ijK 8.4.46 - | ENC m,d 77dm 9.2.18
DF Xj,K 036iK 8.4.14 ~ SBi~ BjxK - 614K 8.4.46 FOM m,d 64dm 9.2.14
DXi - Xj+Xk 32ijk 8.4.33 SBi- Xj+K 621K 8.446 -f 1AM m,d 71dm 9.2.16
DXi Xj-Xk 33ijk 8.4.33 SBi Xj+Bk - 63ijk 8.4.46 | IAN d 70d 9.2,15
DXi Xj*Xk 42ijk 8.4.38 SBi Aj+Bk 64ijk 8.446 | UM m,d 65dm 9.2.13
~EQ Bi,Bj,K 04ijK 8.4.15 SBi Aj-Bk 65ijk 8.4.46 IRM m,d 62dm 9,2,14 -
ES " K 00000 8.4.2 §Bi - Bj+Bk 66ijk . . - 8.4.46 LCN d 15d 9.2.3
FXi - Xj+Xk 30ijk 8.4.32 SBi Bj-Bk 67ijk 8.4.46 LDC ¢ 20dm 9.2.4
FXi Xj-Xk 31ijk 8.4.32 SXi AjzK 70ijK 8.4.47 LDD d 30d 9.2.9
FXi Xi*Xk 40ijk 8.4,36 SXi BjzK 71ijK 8. 447 LDI 4 404 9.2.10
| i xi/xk 44ijk 8.4.41 SXi XjzK 721jK 8. 447 LDM m,d 50dm 9.2.11
IGE Bi,Bj,K 06ijK 8.4.15 SXi Xj+Bk 73ijk 8,447 LDN d 14d 9.2.3
-GE Bi,K 0610K 8.4.15 SXi Aj+Bk 74ijk 8.447 LJM m,d 01dm 9.2.1
.GT Bj,Bi,K 07ijK 8.4.15 SXi - Aj-Bk 75ijk 8.447 LMC ¢ 23dm . 9.2.4
6T Bj,K 070;K 8.4.15 SXi Bj+Bk 76ijk 8. 4.47 LMD d 33d 9.2.9
IBj Bk 016jk 8.4.12 SXi Bj-Bk T7ijk 8. 4,47 LMI d 43d 9.2.10
D Xj,K 037K 8.4.14 TBj 016j0 8.4.10 LMM m,d 53dm 9.2.11
“R Xj,K 034jk 8.4.14 UXI Bj, Xk 26ijk 8.4.30 LMN d 11d 9.2.3
IXi Xj+Xk 36ijk 8.4.35 WE. Bj+K 012jK 8.4.4 LPC ¢ 22dm 9.2.4
IXi Xj-Xk 37ijk 8.4.85 WL Bj+K 012jK 8.4.5 LPN d 12d 9.2.3
fxi Xk 42ijk 8.4,39 WXj Xk 015§K 8.4.8 MJIN r 07d 9.2.1
JP BjzK | 02i0K 8.4.13 XJ BjzK 013jK 8.4.6 MXN d 261d 9.2.6
+E Bj,Bi,K 06ijK 8.4.15 V2R Xj,K 030jK 8.4.14 NIM m,d 63dm 9.2.14
<ET Bi,Bj,K 07ijK 8.4.15 1ZR Bi,K 040K 8.4.15 NJN r 05d 9.2.1
LXi #jk 20ijk 8.4.24 7ZXi Bj,Xk 25ijk 8.4.29 NOM m,d 67dm 9.2.14
LXi Bj,Xk 22ijk 8.4.26 OAM m,d 73dm 9.2.16
Ml Xj,K 033jK 8.4.14 OAN d 72d 9.2.15
MI Bi,K 07i0K 8.4.15 ORM m,d 66dm 9.2.14
MJ ‘ 01300 8.4.7 PIN r 06d 9.2.1
MJ BizK 013jK 8.4.7 PSN 2400 9.2.5
Juxi ik 43ijk 8.4.40 RAD d 354 9.2.9
.NE Bi,Bj,K 05ijK 8.4.15 RAI d 45d 9,2.10
+NG Bi,K 07i0K 8.4.15 PPU INSTRUCTIONS RAM m,d 55dm 9.2.11
gg iij,K Zgin 2 i- }é Operation Section RFN d 74d 2217
NXi Bj,Xk 24ifk 8.4.28 Name Code (octal) Number | U4 TR 0.2.7
“NZ Bi,K 05i0K 8.4.15 ACN d 74d 9,2.18 SBD d 32d 9.2.9
NZ Xj,K 031jK 8,4.14 ADC ¢ 21dm 9.2.4 SBI d 42d 9.2.10
OBj Bk 017jk 8.4.12 ADD d 31d 9.2.9 SBM m,d 52dm 9.2.11
OR Xj,K 035jK 8.4.14 ADI d 41d 9.2.10 SBN d 17d 9.2.3
PL Xj,K 032jK 8.4,12 ADM m,d 51dm 9.2.11 SCN d 13d 9.2.3
“PL " Bi,K 0610K 8.4.15 ADN d 16d 9.2.3 SHN r 10d 9.2.2
PS K 0000K 8.4.1 AJM m,d 64dm 9.2.13 SOD 4 37d 9.2.9
PXi Bj,Xk 27ijk 8.4.31 AOD d 36d 9.2.9 SOI d 47d 9,2.10
RE Bj+K 011jK 8.4.4 AOT d 46d 9.2.10 SOM m,d 57dm 9.2.11
RI Bk 0160k 8.4.9 AOM m,d 56dm 9.2.11 STD d 34d 9.2.9
“RI K 0100K 8.4.3 CRD d 60d 9.2.12 STI d 44d 9.2.10
RL BjzK 011jK 8.4.5 CRM m,d 61d 9.2.12 STM m,d 54dm 9.2.11
RO Bk 0170k 8.4.11 CWD d 62d 9.2.12 UIN r 03d 9.2.1
RXi Xj+Xk 34ijk 8.4.34 CWM m,d 63dm 9.2.12 7JN 1 04d 9,2.1
RXi Xj-Xk 35ijk 8.4.34 DCN d 75d 9.2.18
RXi Xj*Xk 41ijk s.4.37]

REVISION RECORD

REVISION DESCRIPTION
5/70 Original Printing
A
10/70 This printing obsoletes the Preliminary version of this Reference Manual,
B This revision corrects various typographical and technical errors and reflects changes resulting from
4/71 adding the colon to the available character set.
C This revision notes differences for 7600 COMPASS Version 2 on pages iii, 1-1, 1-3, 3-1, 3-2, 4-28, 5-2,
2/72 5-3, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, B-1, B-13, and B-15. Other changes are corrections to technical
content.
D .
8/172 This revision corrects various technical and typographical errorg and reflects changes resulting from

PSRs. Changes are on front cover and on pages vii, ix, 2-1, 2-6, 2-9, 2-17, 2-18, 2-26, 3-5, 3-10,

4-2, 4-3, 4-13, 4-16, 4-25, 4-28, 4-29, 4-34, 4-43, 4-49, 4-54, 4-57, 4-58, 4-59, 4-60, 4-61, 4-63,

4-66, 4-70, 5-7, 5-8, 5-9, 5-10, 5-16, 5-19, 6-4, 6-8, 7-1, 7-2, 7-3, 8-9, 8-10, 8-14, 8-20, 8-41, 8-42,

8-43, 8-44, 8-45, 8-46, 8-47, 9-17, 9-20, 9-21, 9-22, 11-9, 11-1Q, 11-11, 11-12, 11~13, A-7, 8-8,

A-9, A-10, B-3, B-14, D-1, D-2, D-3, Index-1, Index-2, Index-3, Index-4, Index~-5, Index-7, Index-8,

Index-9, Index-11, Index-13, Index-15, Index~16, Index-17, Index-18, Comment sheet and back cover. -

Pages 4-16.1, 4-62.1, 4-62,2, 8-14,1, and 10-10 are added.

Publication No.
60279900

© 1970, 1971, 1972

Address comments concerning this
manual to:
Control Data Corporation
Documentation Department
215 Moffett Park Drive
Sunnyvale, California 94086

by Control Data Corporation

or use Comment Sheet in the back of

Printed in the United States of America this manual,

PREFACE

This manual is directed at programmers using COMPASS Version 1 for the CONTROL DATA®7600
Computer System under control of the SCOPE 1, COMPASS Version 2 for the CONTROL DATA 7600
Computer System under control of SCOPE 2, and COMPASS Version 2 for the CONTROL DATA®
6000 Series Computer Systems under control of the SCOPE 3.3 Operating System.

This manual describes the principles, features, methods, rules, and techniques of producing a
COMPASS language program. It does not describe instructions unigue to CONTROL DATA® CYBER
70 Series Computer Systems.

The user is assumed to be familiar with either the CONTROL DATA 6000-Series Computer Systems
or with the CONTROL DATA 7600 Computer System and is assumed to be familiar with assemblers
in general. Familiarity with the related 6000 or 7600 Operating System is helpful.

Readers with no previous experience with 6000 COMPASS or 7600 COMPASS assemblers are encouraged
to direct their initial attentions to the following sections of this manual.

Chapter 1 Introduction

Chapter 2 Language Structure

Chapter 3 Program Structure, sections 3.1 through 3.3

Chapter 4 Pseudo Instructions, sections 4.1 and 4.2

Chapter 8 or 9 CPU or PPU Symbolic Machine Instructions, the chapter depending upon the

machine language the user requires.
Chapter 10 Program Execution
nann Inmnan fnnnn /nn na . Lo

s manual is not intended to replace the 6400/65060,/66006/6700 Computer Systems Reference Manus:
Pub. No. 60100000 or the 7600 Computer System Reference Manual, Pub. No, 60258200 to which the

t!
VSR, I Y P CRN 5 W T na GI\

user lb réierredq 1or (.lel,d.lle(.l llll()ImdBI()l'l on mdcmne lﬂbtlu(.«u()ﬂb. llllulllldl.ll)ll 1n rup. lVU. OUJ.UU v
and Pub. No. 60258200 takes precedence over information in this manual if discrepancies should arise

P, The e

between these publications.

2 1
Th 1,

[, | I TR, N E R NN gy a J. G . § P - [P |

In this manuai, numbers occurring in text are decimal unless otherwise noted. Low €
formats depict variables. The examples assume that assembler numeric mode is decimal and that
character mode is display code unless otherwise noted. In examples, statements ge d
assembler as a result of a call or a substitution are shown in shaded print.

60279900C iii

CHAPTER 1

CHAPTER 2

60279900A

CONTENTS

INTRODUCTION

1.1 Operating System Interface

1.2 Configuration

1.3 Assembler Execution

1.4 Relocatable Program Execution

LANGUAGE STRUCTURE

2.1

2.2

o 1o

D o 1o
T oo O

2.8

Statement Format

First Column
Location Field
Operation Field
Variable Field
Comments Field
Comments Statement
Statement Continuation
. Coding Conventions
Statement Editing

2.2.1 Concatenation

2.2,2 Micro Substitution
Names

Symbols

2.4.1 Linkage Symbols
2.4.2 Default Symbols
2.4,83 Previously Defined Symbols
2.4.4 Undéfined Symbols
2.4.5 Qualified Symbols
CPU Registers

Special Elements

Data Notation

2.7.1 Data Items

ISECECECENCNE

e e e e e
. .

0O =T Ol b WM

-
.

2.7.2 Constants

2.7.3 Literals

2.7.4 Character Data Notation
2.7.5 Numeric Data Notation
Expressions

2.8.1 Types of Expressions
2.8.2 Evaluation of Expressions

[R T T =
LR vy
GO O Lo o =

1[?')[?3&?9[‘01?9!\7!.\9[\3!,0

PERREYRYTYYRYYY
ggtbmm‘wm‘qﬂtmmlhlhlhwlt\?mll\')wl-‘i-‘l—‘i-‘h-‘

[CRN)
T
[T
- o

2-13
2-17
2-22
2-23
2-26

CHAPTER 3

CHAPTER 4

PROGRAM STRUCTURE

3.1

3.2

Subprogram Blocks
3.1.1 Absolute Biock

3.1.2 Zero Block

3.1.3 Literais Biock

3.1,4 User-Established Local Blocks
3.1.5 Labeled Common Biocks

3.1.6 Blank Common Blocks

Block Controi Counters

3.2.1 Origin Counter

3.2.2 Location Counter

3.2.3 Position Counter

3.2.4 Forcing Upper

Relocatable Program Structure
Absolute Program Structure

3.4.1 Absolute Overlays

3.4.2 Muitiple Entry Point Overlays

3.4.,3 Partial Binary

PSEUDO INSTRUCTIONS

4.1

4.2

4.4

Infroduction ito Pseudo Instructions
4.1.1 Types of Pseudo Instructions

4,1.2 Required Pseudo Instructions
4.1.3 First Statement Group

4.1.4 Permissible Anywhere Instructions
Subprogram Identification

4.2.1 IDENT-Subprogram Identification

4.2,2 END-End of Subprogram
Binary Control ,
4.3.1 ABS - Absolute CPU Program

o o DTTT onn DDTT
PPU - 7600 PPU Program

PERIPH - 6000 Series PPU Program

TIAT AT Y T kel s >
IDENT - Ideuntify and Generate Overlay

SEGMENT ~ Generate Binary Segment
SEG -~ Write Partial Binary

STEXT - Generate Systems Text Record
LCC ~ Loader Directive

COMMENT - Prefix Table Comment
NOLABEL ~ Delete Header Table

Mode Control

4. 4,1 BASE - Declare Numeric Data Base
CODE - Declare Character Data

QUAL - Qualify Symbols

Bl1=1 and B7=1 - Declare that B Register

Oontai
Contains One

COL - Set Comments Column

L
o
¢

L
© W I Uk WN

hh.

P
0 W W WL W W

W
.

N
-t
<

L

SNES

NN NS
B W DN

WS v’ih:FNVP)-Fh

!"
o

| S N T T U
PO DD MO NN

W W wW MWW WL Wwwwwow

\:.OC;J

|
| IS 1 T ST TS JU I JU R U

w ww
1 1 1
[

NN

‘,,Ih,,;;

TSNS
[} [

1

1
ot =t = = 00 10 UINNNDNDN R

e
e
WO W= U

rhlhwylh#k\»h

N N N N N N N
[I R T R Y S I N |

H W
[S}

4-21
4-22

4-25
4-25

60279900A

60279900D

4.5

4.6

4.7

4.8

4.9

1
[y
>

4.11

Block Counter Control

4,5.1 USE - Establish and Use Block

4.5.2 USELCM - Establish and Use LCM Block
4.5.3 ORG - Set Origin Counter

4.5.4 BSS - Block Storage Reservation

4,5.5 LOC - Set Location Counter

4.5.6 POS - Set Position Counter

Symbol Definition

4.6.1 EQU or = - Equate Symbol Value
4.6.2 SET - Set or Reset Symbol Value
4.6.3 MAX - Set Symbol to Maximum Value
4.6.4 MIN - Set Symbol to Minimum Value
4.6.5 MICCNT - Set Symbol to Micro Size
4,6.6 SST - System Symbol Table

Subprogram Linkage

4,7.1 ENTRY - Declare Enfry Symbols

4.7.2 EXT - Declare External Symbols

Data Generation

4,8.1 BSSZ and Blank Operation Field - Reserve
Zeroed Storage ‘

DATA - Generate Data Words

DIS - Generate Words of Character Data
LIT - Declare Literal Values

VFD - Variable Field Definition

CON - Generate Constants

. =1 [y Ny
R= - Conditional Increment Instruction

REP and REPI - Generate Loader Replication
Table

Conditional Assembly
4.9.1 ENDIF - End of IF Range

.

s
w1 O A WN

13

4.9.2 ELSE - Reverse Effects of IF

4.9.3 IFCP and IFPP - Test Environment

4.9.4 IFop - Compare Expression Values

4.9.5 IF - Test Symbol or Expression Atiribute

4.9.6 IFC - Compare Character Strings

4.9.7 IFPL and IFMI - Test Sign of Expression

4.9.8 SKIP - Unconditionally Skip Code

Error Centrol

4.10.1 ERR - Unconditionally Set Error Flag

4.10.2 ERRxx - Conditionally Set Error Flag

Listing Control

4.,11.1 LiST - Select List Options

4.11.2 EJECT - Eject Page and Begin New Sub~Subtitle

4,11.3 SPACE - Skip Lines and Begin New Sub-Subtitle

4,11.4 TITLE - Assembly Listing Title

4.11.5 TTL ~ New Assembly Listing Title

4.11.6 NOREF - Omit Symbol References

4,1i.7 CTEXT and ENDX - Disable/Enable Listing of
Common Deck Text

4.11.8 XREF - Reference Symbolic Address

»

LU U L
[- I (o T e SR)

[= Y031 IV QY-S

3

D O o

[~}

14-‘-#'-#-r#kbhlﬁilh#hrlhﬁihhﬂhlhﬂhlhbﬁhp#
[N N G B I I T I R L L T 6 T A T o B)

iy

[\

vii

CHAPTER 5

CHAPTER 6

CHAPTER7

CHAPTER 8

viii

DEFINITION OPERATIONS
5.1 External Text (XTEXT)
5.2 Remote Assembly
5.2.1 RMT - Save Remote Code
5.2,2 HERE - Assemble Remote Code
5.3 Code Duplication
5.3.1 DUP - Simple Duplication
5.3.2 ECHO - Echoed Duplication
5.3.3 STOPDUP - Stop Duplication
5.3.4 ENDD - End Duplication Sequence
5.4 Macros and Opdefs
5.4.1 ENDM - End Macro Definition
MACRO - Macro Heading
Macro Calls

0

01010101.0101@01
N N N N
W ~TOH WU N

Equivalenced Macro Call
OPDEF - Define CPU Operation
Opdef Call

LOCAL - Local Symbols

5.5 System Macro and Opdef Definitions

OPERATION CODE TABLE MANAGEMENT
6.1 Mnemonically Identified Instructions
PPOP ~ PPU Operation Code

6.1
6.1.
6.1
6.1 PURGMAC - Purge Macros
6.2 Syntactically Identified Instructions

6

6

6

CPOP - CPU Operation Code

MICROS
7.1 Micro Substitution
7.2 Micro Definition

7.2.1 MICRO - Define Micro

7.2,.2 DECMIC - Decimal Micro

7.2.3 OCTMIC - Octal Micro
7.3 Predefined Micro Names

7.3.1 DATE

7.3.2 TIME

CPU SYMBOLIC MACHINE INSTRUCTIONS

8.1 Machine Instruction Formats

8.2 Instruction Execufion
8.2.1 6600/6700 Execution
8.2.2 6400/6500 Execution
8.2.3 7600 Execution

8.3 Operating Registers
8.3.1 X Registers
8.3.2 A Registers
8.3.3 B Registers

MACROE -~ Equivalenced Macro Header

IRP - Indefinitely Repeated Parameter

1

2 OPSYN - Synonymous Mnemonic Operation
.3 NIL - Do Nothing Pseudo Instruction
4

2.1
.2,2 CPSYN - Synonymous CPU Instruction
2.3 PURGDEF - Purge CPU Operation Code

| S T I S U S J |
W WM

1
R R TS T T e s - =)

g

[
W TR Wwo

i
[\
57}

W W W
BN o

o Pt 1
DWW =03 01 W W+ @

03030303056'3056303@

o o NG99 -a9a99
1 1
I R IS T TN O R

oooooooo(}ooooooooooo
oo 00 0 U W N

60279900A

Symbolic Notation

B> wWw N

Foe

o

B W N =

o

© o~ o

=S

o]

1o W

~N >

o

©

(=]

ey

-
.

[\]

W

TS

o

N O R ol il ol ol N N N Rl T N N A N N N N N N NN N N NI NN

=]

g%wwwwwwwwl\?[\?l\?mwl\?MNIMH!—'H\HHHHHHImeQGCﬂ

©

==

=

N

[S
N O N N N N N
W G0

(%]

=]

-3

Program Stop Instruction (6000-Series Only)
Error Exit Instruction (7600 Only)

Return Jump Instruction

ECS Instructions (6000-Series Only)

LCM Block Copy Instructions (7600 Only)
Exchange Jump Instruction (6000-Series Only)
Exchange Exit Instruction (7600 Only
Direct 1.CM Transfer Instructions (7
Reset Input Channel Buffer Instruction (7600 Only)
Set Real-Time Clock Instruction (7600 Only

Reset Output Channel Buffer Instruction
Read Channel Status Instructions (7600 Only)
Unconditional Jump Instruction

X-Register Conditional Branch Instructions
B-Register Conditional Branch Instructions
Transmit Instruction

Logical Product Instruction

Logical Sum Instruction

Logical Difference Instruction

Complement Instruction

Logical Product and Complement Instruction
Complement and Logical Sum Instruction
Complement and Logical Difference Instruction
Logical Left Shift jk Places Instruction
Arithmetic Right Shift jk Places Instruction
Logical Left Shift (Bj) Places Instruction
Arithmetic Right Shift (Bj) Places Instruction
Normalize Instruction

Round and Normalize Instruction

Unpack Instruction

Pack Instruction

Unrounded SP Floating Point Add Instructions
DP Floating Point Add Instructions

Rounded SP Floating Point Add Instructions
Long Add (Fixed Point) Instructions
Unrounded SP Floating Point Multiply Instruction
Rounded SP Floating Point Multiply Instruction
DP Floating Point Multiply Instruction

Integer Multiply Instruction

Mask Instruction

Unrounded SP Floating Point Divide Instruction

Rounded SP Floating Point Divide Instruction

c» S
(=]
(=]
Q@
3,
A
~

Pass Instruction

Population Count Instruction
Set A Register Instructions
Set B Register Instruections
Set X Register Instructions

w0
I

1
DO bt ket pd bl ped ped el el (D
[T U =

(2]

-3

[
w O w

g

[}

oo

VL]

W

[}

(5]

-3

~3

co

o2}

I
«w

<]

<

o

Co Q0 Qo OO0 CO Q0 CO Oo OO0 Q0 €O QO Co Q0 Co Q0 OO QO GO O0 o 00 (0 QO

bt

har§

[ob4

VL]

[44]

~

(4]

=2}

(=)

-3

w 0 Co

o

)
Uy

a 00 O Co Co 00 Co OO0 CoO OO Co Co Co Q0 GO Q0 CO QO
Do

[V

[0]

[¢ o)

w
D W

W D S R S S s D s WD 00 00 0O WD O O CO O COCO LoD LD DL DNDIDD DI DN DD DD BB DD

[a 0]
|
~3

CHAPTER 9

CHAPTER 10

CHAPTER 11

PPU SYMBOLIC MACHINE INSTRUCTIONS

9.1
9.2

Machine Instruction Formats

Symbolic Notation

Branch Instructions

Shift Instructions

No Address Mode Instructions

Constant Mode Instructions

No Operation Instruction

Exchange Jump Instructions (6000-Series Only)

Read Program Address Instruction (6000-Series
Only)

8 6416 PPU Instructions

9 Direct Address Mode Instructions

10 Indirect Address Mode Instructions

11 Indexed Direct Address Mode Instructions

12 Central Read/Write Instructions (6000-Series

Only)

2.13 I/O Branch Instructions (6000-Series Only)

.14 1/0 Branch Instructions (7600 Only)

.15 A Register Input/Output Instructions

.16 Block Input/Output Instructions

.17 Set Output Record Flag Instruction (7600 Only)

.18 Channel Function Instructions (6000-Series Only)

.19 Error Stop Instruction (7600 Only)

PovooL®
PPN
Ok W

©®P oo
pRPPP

DN NNDNDDND

PROGRAM EXECUTION

10.1

10.2

Control Cards

10.1.1 Job Card

10.1. COMPASS Call Card
10.1, LGO Control Card

10.1. Program Call Card
10.1. End-of-Record Card
10.1. End-of-Information Card
Sample Decks

SO W

LISTING FORMAT

11.1
11.2

11.3
11.4
11.5
11.6
11.7
11.8

Page Heading

Header Information

11.2.1 Binary Control Card Summary
11.2.2 Block Usage Summary
11.2.3 Entry Point List

11.2.4 External Symbol List
Octal and Source Statement Listing
Literals

Default Symbols

Assembler Statistics

Error Directory

Symbolic Reference Table

QQCDQOQDQIDQDQDQD@
=0 W o WD

]
(=]

60279900A

APPEN

g
X

APP

=
Z
g
R
t

APPENDIX C

APPENDIX D

APPENDIX E

60279900C

6000 and 7600 Timing No

7600 CPU Timing Notes
6400/6700 CPU Timing Notes
6000-Series PPU Timing Notes
7600 PPU Timing Notes

BINARY FORMATS

Relocatable Subprogram

CPU Absolute Subprogram or Overlay

7600 PPU Absolute Program or Overlay
6000-Series PPU Absolute Program or Overlay
Systems Text

Compressed Compile File

FIGURES

COMPASS Coding Form

Relocatable Program Structure

Absolute Program Structure

IDENT-Type Overlay Structure
SEGMENT-Type Overlay Structure

SEG-Type Partial Binary

IDENT-Type Partial Binary

CPU 15-Bit Instruction Format

CPU 30-Bit Instruction Format
Arrangements of Instructions in a 60-Bit CPU Word
PPU 12-Bit Instruction Format

PPU 24-Bit Instruction Format

Format of Octal and Source Statement Listing
Format of Symbolic Reference Table

W N
1

ok OO 00 WWWLW W WwW

| e | | I S S R I |

LS T o T S I ST e S) S ST (R Y
[

TABLES

NN
- e

6600/6700 Functional Units

7600 Functional Units

PPU Instruction Designators

Fatal Errors

Informative Errors

Central Processor Instruction Times

Functional Unit Data Trunk Assignments and
Priority

6600 Register Reservation Control

Peripheral Processor Instruction Times

= O
]
v

> >
o

> >
)

ooc.lomwmwwm
DO F DD b e pd e e Op D QO

o w
[} [

‘:‘Dﬁo

xi

The CONTROL DATA COMPASS Assembler provides the user with a versatile, extensive language for

generation of object code to be loaded and executed on the central processor unit (CPU) or a peripheral
processor unit (PPU). The assembler executes on either a CONTROL DATA 7600 Computer System or
a CONTROL DATA 6000-Series Computer Sysiem.

Subprograms to be executed on a 7600 system can be assembled on a 6000-Series system and vice versa.
However, the user must use only instructions accepted by the system on which the object program is

to be executed.

From CPU source lwn.gl_age subprograms, the COMPASS assembler generates binary cutput acceptable
for loading and execution by a 6000 or 7600 central processor unit under SCOPE control. Subprograms
can be compiled d pendently for subsequent loading and execution as a single program,

sembler generates absolute code to be loaded

From PPU source language pr_lc;r_,,_nr;si the COMPA S
of a

Source statements consist of CPU or PPU symbolic machine instructions and pseudo mstructmns. The
symbolic machine instructions (chapters 8 and 9) are counterparts of the binary machine instructions;

CLidla (Lilaple

they provide a means of expressing symbolically all functions of the Computer System.
The pseudo instructions are oriented towards control of the assembler itself; they control the assembler
much the same as machine language instructions control the computer. The ability to control assembly

places COMPASS at a level of sophistication much higher than that of the conventional assembler.

Features inherent to COMPASS include:

o Free-field source Size of source statement fields is largely controlled by user.
statement format

e Control of local Programmer and system designate up to 255 areas to facilitate inter-
and common blocks program communication. In CPU programs, common areas can be

defined in small core memory (CM or SCM) or extended or large core
memory (ECS or LCM).

® Preloaded data Data areas may be specified and loaded in small core memory {CM or

pe

SCM) with the source program. T

® Data notation Data can be designated in integer, floating-point, and character code
notation. It can be introduced into the program as a dataitem, a
constant, or a literal.
® Address arithmetic Addresses can be specified making extensive use of constants, symbolic
addresses, and arithmetic expressions.
@ Symbol equation and Equation and redefinition of symbols allow extensive parameterization of
redefinition assembly and linkage of subprograms and subroutines.

TCOMPASS Version 2 under SCOPE 2 allows data to be loaded into LCM,

60279900C 1-1

Symbol qualification

Binary control

Selective assembly
of code sequences

Mode control

Listing control

Micro coding

Macro coding

Operation code table

Operation code
definition

Code repetition
Remote assembly

Library routine
calls

Diagnostics

Ability to associate a symbol qualifier with a symbol defined within a
qualified sequence to render the symbol unique to the sequence. An
unqualified symbol is global and can be referred to from within any
sequence without qualification.

The programmer can specify whether binary outfput is to be absolute or
relocatable. Absolute code can be generated for any PPU or CPU.
Relocatable code can be generated for any CPU. Binary can be written
as overlays or as partial records.

Assembly-time tests allow the user to select or alter code sequences.

Ability to specify the base to be used for numeric notation not explicitly
defined as octal or decimal, and to specify the code conversion to be
applied to character data as either display code, ASCII, internal BCD,

or external BCD.
Assembly-time control of list content,

the micro name is referenced. DATE and TIME are predefined by the

sys tem.

VoIl

Substitution of sequences of characters defined in the program whenever
i

Assembly of sequences of instructions defined in the program or on the
system library whenever the macro name is referenced. Macro
definitions can be redefined or purged from the operation code table.
The programmer can specify or respecify the syntax of a CPU or PPU
instruction. The assembler generates an entry in the operation code
table for the instruction. No macro or opdef definition is associated

with the ent

Assembly of sequences of instructions defined in the program or on the
system library whenever an operation code of the specified syntax is
referenced.

Sequences of code can be repeated during assembly or at load time.
Defers assembly of defined coding sequence until later in the assembly.

Routines can be called from the system library.

Diagnostics for source program errors are included on output listing.

60279900C

L1 OPERATING SYSTEM INTERFACE

COMPASS Version 1 executes on a 7600 CPU under coantrol of the SCOPE 1 Operating System; COMPASS
Version 2 executes on a 6000-series computer system CPU under control of the SCOPE 3.3 Operating
System or on a 7600 computer system under control of the SCOPE 2 Operating System.,

1.2 CONFIGURATION

The hardware requirements for executing COMPASS on a CPU are the minimum required for the
operating system.

1.3 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control card (chapter 10) or by a compiler
such as RUN or FTN upon encountering a COMPASS IDENT statement in the source input file.
Parameters on the card specify files used during the assembler run such as the file containing source
statements and the files to receive listable output and load-and-go output. The COMPASS assembler
executes as a CPU program.

The operating system allocates the input/output resources as needed and performs all input/output
required during the assembly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first
pass, it reads each source language instruction, expands and edits called sequences as needed,
interprets the operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fill in all valid symbol values
and produce the assembly listing and binary oufput. Finally, it prepares the symbolic reference table
and reinitializes itself preparatory to assembling the next subprogram.

lirements for tables used by the assembler are dynamically changed as requirements change

T
during assembly. If insufficient core is available for the program, the intermediate file and cross-
e transferred to the system mass storage device and assembly continues.

All nested processing of macros and similar definitions is handied in a single recursive push-down

TEEE =

stack. COMPASS has a recursion level of 400; that is, COMPASS allows nesting to a depth of 400.

1.4 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely processed the source deck, the programmer can use a SCOPE
control card to call for loading and execution of a CPU object program from the load-and-go file.

l.llﬂ I.Ud.uel. l.l.ll.h.ﬁ the i‘u‘:'w‘r'

assembled subprogram to any p:.cvxuum.y assembled SUOPITograms ana Suo-—

routines referred to by the new program and to programs on any other files specified by the programmer,

PRI - Y Py Aradd o adb a

After all subprograms are loaded and linked, the operating system begins program execution at a

location specified by one of the subprograms. Data for the object program may be on some programmer-
specified file. Normally, this loading and execution does not take place if the COMPASS assembler

detects fatal errors.

60279900C

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions; and comment lines. With the exception of the comment lines, each statement consists of
a location field, an operation field, a variable field, and a comments field. Each field is terminated by
one or more blank characters, However, a blank embedded in a character data item, parenthesized
macro parameter, or comments field does not terminate a field. The size of the variable field is re-
stricted by the maximum statement size only. Statement format is essentially free field.

Statements are 80-to-90-column lines. When punched on cards, each card is consideved a line. A
single statement may he composed of as many as ten lines. Information beyond column 72 is not
interpreted hy COMPASS but does appear on the assembly listing. Thus, columns 73-80 can be used
for additional comments or sequencing. Columns 81-90 are used for sequencing by library maintenance
programs; they are normally not used by the programmer. A line that contains two or more consecutive
?olons may be read and printed as two lines because o operating system conventions for delimiting line tI
images.

2.1.1 FIRST COLUMN

The contents of column one designate the type of line, as follows:

, (comma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a
plus sign (+) or a minus sign (-) (section 3. 2, 4).

2.1.3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters
between the location field and column 30. The following are legal field entries:
Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonic operation code

60279900D 2-1

Pseudo instruction mnemonic operation code

Macro name

B}.n nlr

2.1.4 VARIABLE FIELD

The contents of the operation field determine if any entry is required in the variable field which consists
of one or more subfields separated by commas. The variable field begins with the first nonblank
character following the operation field and is terminated by one or more blanks. It is blank if there are
no nonblank characters between the operation field and column 30.

L 1RUIIM L ReLWeeil Atlull 11cC

ield contains one of the following:

1 3
WL 1 1 Al

Data item

Expression

Register desi

Waisiel

Name
Special elemen

RPeCi Tl

t
Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30, The beginning comments column can be

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29.
Comments statements are listed in assembler output but have no other effect on assembly. A statement
beginning with * is not counted in line counts for IF-skipping (section 4. 9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma
in column one and continuing the field in column two. A maximum of nine continuation lines is permitted
for a statement. The break between lines need not coincide with a field or subfield separator; even a
symbol can be split between two lines. Continuation lines beyond the ninth, and continuation lines
following a terminated statement are considered comment lines.

2~2 60279900A

'2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column Contents

1 Blank, asterisk,or comma

o o - L

2-9 Location field entry o
10 Blank
11-16 Operation field entry left justified

17 Blank

P SO NI LR
tr ustified

9 Variable field entry left j

30 Beginning of comments

All examples in this manual abide by this convention.

ROUTINE DATE | Page oF
LOCATION EPERAT 10N VARIABLE COMMENTS IDENT.

24y isislslelvisloiwinulolululylwle]winlnlp]s]n]n{ulnlx] sl lnlelnlnlvis]wlelolalolulelelolelalnlnlnlnlulwlelulwlwlealololololnle]elslenlrlnfHluinls]rn]a]e)

T e VUGN NS B ENSUENTNIOS G VU S S N T S ST EUEY S0 VTS TS T U S S S H S S S ST S AN WU U WY W B U U W S B G A S SN SN R S

Lo o B e B VI S S T O O S W A T Y OSSO0 O S N Y S Y TS S T SN S0 S S SR SR S B S SRR R S|
T e U BN N5 SV SN A S SR U ST NN SRR S0 N U T U S S T S A VAN TN D S SO N BV AAC AN SIS WO B S U B B S S S A AN SR SN SR S SRR
S S0 WA U S NEVUN N T T PO N YT I SOV S S S S S G UV ST N Y S T S S B B VA M VAU O S S H R S S S S AU N NN N RO N N S AR
D e o U SSU SR W T NN OO | W VU N N U S T ST Y S T O Y Y T U N S SR AR U S U S N BN U W AU S G G SN S A AN A SRR S R RS
L it S S S BU T U U WU S OO YT VA U S SUUD T S YT DO T O U A T 0 T U U S Y T VA S A U U0 N U0 N N WU G S S B B S GRS AU S WY S
T I WIS AT R P N S S S S S S S S R N S ST SN W N S AT ST S S S U S S ST S Ldb i g

T

OSSR AR NIRRT ETE FTE N U U S SR S S T A G R S S R R T T A DU S M A S0 SIS 0 B0 B0 B ST VA AN U S S SN
WS Y ST VU UV T S S S Y HA R D D R O S SR SR S T S S S S A N O S S S S SRR T AN S TR
T IR R il IS U A Lbu g VI ST O O U S N S A A S S R RN A R WU B SRS T R
AN S R T YO T S U0 W S S SO VOO S S Y O S S S S RV WO N S ST S B ST O BT AN AT AR S S SR
""""""""" T oo T WA G A AR T S Y S ST T T N Y Y U S S T S0 S S G OO O AT S T A ST ST S U OV U WY G AR A
TINS5 SYS T S T H H T I T WO S T Y 0 S S S ST ST N0 STV S i N A SN AT A AU N O A
N WS T N S O N T U N N T S S0 ST S T T S S S 0 S T 0 10 0 G T T T L O W0 0 W N AT AT A A A D AT S ST O SO AN O A AT
(A S SN NS W NV WU AU R S TS T U R AT G T W Y S 0 O VS Y 0 O A T W T W A S WU W S SNV S S AR A RS UU RSN SRS NS S

TN IS SIS NN S i N T N N Y
IR IS A S A A I AT I A I A A A A A W A A e
) T T T A Y D TS T T T T Y T Y S U T W O VU T T N WY Y U N N N SN N N A N A BN Y W N B Y (I I N A
IS IS EIEEE W Wl i S N I A N i i A A Y N
AIIIIIIAIlllllllllllliltlIlllllllll||IIIIIIAIIlllkhllllllllllllllllIIIIIAI
TENEN S VI S UET T AR IR AT A S A I O A A A A A A A A A A W S A A S S A A A A AT AT AT TR
ENTEEEEE ST SR E e i N N e e N
NS IS N A

m ANANGanOC Innnnonn nameennemnn

AAZYST REV.0—49

60279900A

2.2 STATEME

COMPASS reads statements in sequence from the sourc D

statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
we r=)

s D wa N

(2) it is part of a definition, that is, it is a statement between a macro or
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are

tements within

1110 LIl

saved for editing and interpretation when the definition is referenced or expanded.
the range of a conditional (IF type) pseudo instruction are edited even when they are skipped, COMPASS
performs two types of editing: concatenation, and micro substituticn

2.2.1 CONCATENATION

XY A | LA]

COMPASS examines the statement for the concatenation character — and removes it from any field of
the statement so that the two adjoining columns are hnked The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the r—is superfluous and is removed by editing before the definition is interpreted.

removal of — shifts the remaining columns in the statement left one character. This could become

significant when comments follow a blank variable field because the comments could be shifted left and
™ r than comments.

jol}
o
_""5
u-.
=1

ran tha v»afaw, i
CES Ul reierence in the

€Xa
nitions (chapte
T

olumn 72 of the last card read

jR44 O C 1adst G ecal

is exceeded, ti to cards, beyond which it
discards excess w1th0‘u notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a non-fatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e., the two micro marks are adjacent) both micro marks are deleted and no
error flag is set.

The columnar dispiacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two or more consecutive colons after ed

of operating system conventions for delimiting print lines.

2.3 NAMES

A name is a sequence of characters that identifies one of the following:
Subprogram or overiay
Block
Macro definition

Remote definition

AT

Duplicated sequence {DUP or ECHO)
IF sequence

Micro

A comma or a blank terminates a name., Concatenation marks and pairs of micro marks are removed

el

before the name is scanned (see seciion 2,2 Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms. It must begin
with a letter (A-2) and is limited to seven characters maximum, Conventions imposed on names by the
operating system could restrict the use of certain characters in names. There is no restriction on the
first character for a PPU subprogram or overlay name. For a 7600 PPU assembly, the name can be
seven characters but for a 6000 Series assembly it is limited to three characters maximum. In all
cases, the last character of a subprogram or overlay name cannot be a colon.

0
[

% R

Any other type of name can consist of one to eight characters. A name does not have a value or
attributes and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, etc.

60279900B 2-5

2.4 SYMBOLS

A éymbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $ or = or a number; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters.

+-*/blank |, A or[™

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters
in symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional
restrictions (section 2. 4.1 Linkage Symbols).

Concatenation marks or pairs of micro marks are removed before a symbol is examined (Section 2.2
Statement Editing). In CPU assemblies, to avoid conflict with register designators, a symbol cannot
normally be An, Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.Xx,
or X.x, because X is assumed to be a data item by the assembler. However, symbols resembling
register designators can be used if each use of the symbol is prefixed by =S or =X (Section 2. 4. 2).
Register designators are described further in Section 2.5.

The process of associating a symbol with a value and attributes is known as symbol definition. This
can occur in five major ways.

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo
instructions is defined as an address having the current value of the location counter (section
3. 2. 2) and having an attribute defined as follows:

Absolute for the absolute block

a.
b. Common for labeled or blank common blocks (relocatable assemblies only)

e

Relocatable for local blocks other than absolute during pass one.

d. Absolute for local blocks during pass two of an absolute assembly.

2. A symbol used in the location field of definition pseudo instructions (section 4.6) is defined as
having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a
symbol. Unless a symbol is redefinable, a second attempt to define it with a different value
produces a duplicate definition fatal error flag.

3. An external symbol is defined outside the bounds of the current subprogram and is declared as
external in the current subprogram or is defined in relation to a symbol declared as external.
In either case it has the attribute of external. Unlike a systems symbol, the true value
definition is not known to the current subprogram.

4. Definitions of systems symbols that take place outside of the current program can be
carried over to the current program through the SST pseudo instruction. COMPASS uses
the true definitions but assigns the additional attribute of systems symbol.

2-8 60279900D

5, COMPASS defines a symbol by default if a reference to a symbol is preceded by =S and the
symbol is not otherwise defined in the subprogram. This feature is further described

in section 2. 4. 2 Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram,

Examples:
Legal Symbols Tllegal Symbols
P 5A First character numeric
R3 ABCDEFGHI Exceeds eight characters
PROGRAM ABE+15 Contains plus sign

=11 First character equal sign

2.4.1 LINKAGE SYMBOLS

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types
of linkage symbols are external symbols and entry point symbols. An external or entry point symbol
can be a maximum of seven characters, the first character must be a letter (A-Z), and the last
character must not be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the
current subprogram can be declared as an external symbol in the current subprogram. Any symbol
declared as an entry point in the current subprogram can be declared as an external symbol in some
other subprogram. The symbol has a zero value and an attribute of external, An external symbol can
be declared either through the EXT pseudo instruction or through default (a reference to the symbol is
preceded by =X, see section 2. 4. 2 Default Symbols),

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value
and attributes of an expression to a symbol. If the value of the expression reduces to an external
symbol * an integer, the location field symbol is defined as having an integer value and external
attribute. External symbols are not qualified (section 2. 4, 5).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S or =X and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as an external symbol, respectively, at the end of
assembly. The =X form is defined by default in relocatable assemblies only.

=Ssymbol If symbol is not defined, COMPASS assigns an address at the end of the zero
block. All subsequent references to the symbol, whether preceded by =S or not,
are to the location of the word, A default symbol cannot be used where a
previously defined symbol is required.

If the symbol is defined by a conventional method, COMPASS does not define it
again but uses the programmer definition.

=Xsymbol This option permits a programmer to define his symbols in a subroutine or link
to them in another subprogram. If the programmer defines the symbol, the
assembler uses the programmed definition. If the programmer does not define
the symbol, the assembler assumes that the symbol is external as though declared
in an EXT pseudo instruction. A symbol prefixed by =X must conform to the
requirements for external symbols.

602799008 2-7

The system does not define a default symbol and issues an error flag if a symbol is prefixed by both

=S and =X, or is prefixed by =X and is not defined conventionally in an absolute assembly. Default
symbols are qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (section 4.4.3) can be referred
to outside of the qualifier sequence in which it was defined through:

/qualifier/symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier

is in effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified
symbol can be referenced as // symbol.

The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier., Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. These registers are
described more fully in chapter-8., The designators are inherent to COMPASS and cannot be changed
during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence
of such a symbol is prefixed by =8 or =X (see section 2.4.2). However, a warning message is issued
when such symbols are defined. The prefix cannot be used in the location field of machine. instructions
and symbol defining, data generating, BSS pseudo instructions, in the variable field of ENTRY, EXT,
and SST pseudo instructions.

Register Type Designator
Address Anor A.n
Index Bnor B.n
Operand Xnor X.n

For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

2-8 60279900C

For the forms A.n, B.n, X.n, n can be a symbol or an integer. If the value of n or the value of the
symbol exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

COMPASS does not recognize registers in PPU assemblies; there, the designators are acceptable as
ordinary symbols.

Examples:
Al Designates address register 1
Al10 Interpreted as a symbol, not a register
Al Designates address register 1
A.NUM If the value of NUM is 6, it designates address register 6
A.10 Designates address register 2; however, it produces a warning flag because the

two was derived from the truncation of 12, the octal value for 10,

The following produce equivalent results. A SET pseudo instruction (section 4, 6. 2) defines SUM and
SUB as absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same
result as if the value had been used directly. -In this example, the address of ALPHA is 001000,

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
T) " 18 T30
6032001000 SB3 A2+ALPHA “7
i LOCATION OPERATION ! VARIABLE COMMENTS
1 n 18 130
3 SUM SET 3 |
2 SUR SET 2 |
6032001000 SB.SUM|A.SUB+ALPHA |

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as references to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a
value specified by the element in the expression. The control counters are discussed further in
section 3. 2.

Designator Significance
* or *L, The assembler uses the value of the location counter for

the block in use. The element is relocatable unless the
counter in use is for the absolute block.

*Q The assembler uses the value of the origin counter for the
block in use. The element is relocatable unless the counter
in use is for the absolute block.

$ The assembler uses one less than the absolute value of the
position counter for the block in use.
60279900D 2.0

Designator Significance
*p The assembler uses the absolute value of the
position counter for the block in use.

*F The assembler uses an absolute value obtained
as follows:

0 COMPASS was called by a COMPASS control

card

1 COMPASS was called by the FORTRAN RUN
compiler

2 COMPASS was called by the FORTRAN FTN
compiler

These designators are inherent to COMPASS and cannot be altered by the programmer during an
assembly.

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values,
line counts, control counter values, text for printing out messages, characters for forming symbols, etc.

The two types of data notation are character and numeric, The assembler allows the user to introduce
data in the program in three basic ways.

As a data item

As a constant in an expression

As a literal

2.7.1 DATA ITEMS

Character and numeric data items can be used in subfields of the DATA (section 4. 8. 2) and LIT
(section 4. 8. 4) pseudo instructions or as specifications of field lengths on VFD pseudo instructions.

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in octal, decimal, or
character notation, It resembles a data item but is restricted by its use as an expression element in
two ways:

1. The first character must be numeric, prohibiting the delimited type of character string
(section 2.7.4) and the preradix for numeric values.

2. The field size is determined by the destination field for an expression and can be a maximum
of 60 bits thus prohibiting double precision floating point numbers.

2-10 60279900A

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo instruction
or as an element in an expression.

The method of specifying a literal in an address expression is nearly identical to that for specifying a
data item in a DATA (section 4. 8, 2) or a LIT (section 4, 8, 4) pseudo instruction. The primary difference
is that the literal is prefixed with an equal sign, which indicates that a literal follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of
the literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see section 3.1.3).

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store
the data in the literals block using as many words as are required to hold the data. If the binary pattern
of the prefixed type of literal or of all the literals in a LIT declared sequence matches the binary
pattern of words previously entered in the literals block, an entry is not generated for the

data. This process eliminates duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries, Such entries
can be referenced symbolically or through use of a prefixed literal. However, to preserve the integrity
of the literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (section 4.11.1).

Example:

In the following example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the state-
ment at the lower part of 101,

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101

and 102, In this example, the LIT sequence duplicates a sequence of entries in the literals block
and does not cause new entries to be assembled.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated
1 0 18 [30
100 6120005555 + SB2 =1 |
6130005555 + se3 ={RA
101 6140805556 + SsSB4 =1RB |
5555 L LIT 1,2 [
65120005555 + sB2 L
102 6130005556 + S83 Lel |

CONTENT OF LITERALS BLOCK.

805555 00000000000000000001 A
005556 00000000000000000002 £

i 602799008 2-11

Continuing the previous example, a LIT sequence as illustrat\ed below, does not duplicate a sequence in
the literals block and causes entries to be generated in the literals block:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
5557 LIT 1,3,1R0,2 |
[
CONTENT CF LITERALS ELCCK,
005555 00N0000000000000000L A
005556 0000000NO0O000ON0O002 B
005557 000ND00ONOOODNONA0N001 A
005560 0000000000000 00000083 c
g05561 00000000000000000004 8]
005562 00000000000000000002 B

However, if the literals sequence in the first part of the example had been followed by a LIT that
duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added
to the block., Thus, if the following LIT sequence had been used in place of the LIT 1,3,1RD, 2, the
first two words of the sequence would match the last two words of the literals block so that only two
additional words would be required to complete the sequence.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) l 18 [30
5555 LIT 152434% |

CONTENT OF LITERALS BLOCK.

005555 Q0000000000000 N0B001 A

005%56 0000000000D0D00000002 8

005557 000N000000CAR00NN0003 c

00556N 00000000000NG0O00N00G D

2-12 602799008

2.7.4 CHARACTER DATA NOTATION

Character data strings are converted to the code in use at the time the string is evaluated (section 4.4. 2,
CODE pseudo instruction), -and:placed in a field indicated by the data type (data item, constant, or
literal). When no €ODE instruction has been issued, conversion is to display code representation.

Format: Example
Data Item Lsign | nl typeTstring | -3RABC
or

bignLtype l d—[string’ dl -R*ABC*
Constant ¥ Ln rtypel stringgl 3RABC
Literalt L= lsignl nltype l string—l =-3RABC

or
L=F1gn| typel d |string| d I =-R*ABC*

= Applies to literals used as expression elements only; signifies that a literal follows.

sign Optional for data item or literal. A sign with a constant is interpreted as an element
operator,.
+ or omitted The value is positive

- The complemented (negative) value is formed

n Signifies how the string is determined:
omitted The string is delimited by d. n cannot be omitted for a constant.
0 For data item or literal, the string consists of all characters following
type to:
~ blank or

’

For a constant, string consists of all characters following type to:
+-%*/blank , or A

n For a data item or literal, n is an integer count of the number of
characters in the string not counting guaranteed zeros. It is limited
only by statement size.

Fopr a constant, n is an integer count of the number of characters in the
string, It cannot exceed 1/6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right
justified constant if the most significant bit exceeds the field. Truncated
zeros do not cause an error in this case. A truncation error is flagged
for a left justified constant if the least significant bit positions are
truncated, even if they are zero.

The string consists of the n characters following type.

Regardless of base, COMPASS assumes that n is decimal.

T Expression element

60279900 A 2-13

type Character string justification. The characters formed by the data item
or constant are right or left justified into the destination field as follows:

Type Significance
C Left justified with zero fill. For data item or

literal, 12 zero bits are guaranteed at the end of
the string even if another word must be allocated.
for a constant, the zero bits: are not guaranteed; C
is the same as L.

H Left justified with blank fill

A Right justified with blank fill

R Right justified with zero fill

L Left justified with zero fill

Z Left justified with zero fill, For data item or
literal, six zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, the bits are not guaranteed; Z is
the same as L,

d A delimiting character used only when n is omitted. The characters

between the first occurrence of d and the second occurrence of d
comprise the string. d can be any character other than — or #.

string Characters from one of the COMPASS character sets (appendix D),
except for those characters that act as delimiters (see n and d), the
concatenation character (), and pairs of micro marks).

Concatenation marks and pairs of micro marks are removed by
editing before a string is examined. A single micro mark can be
used in a string,

An empty or omitted character string is defined under one of the
following conditions.

1. nis 0 and type is immediately followed by a delimiter (for
example, OL.)
2. nis omitted and the two delimiting characters are concurrent
(for example, H++)
Omission of a string in a DATA pseudo instruction is legal and does
not cause generation of a data word.
For a constant, an omission of the string is valid and has a zero value.
An omitted string in a LIT pseudo instruction is legal and does not cause

generation of a literal for that item; however, the LIT must contain at
least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces
an error.

It is not possible to generate empty strings using types C, Z, R or A.

2-14 60279900A

Examples of character-data:

In these examples, characters are converted to display code representation; all lines of code
generated by DATA are printed only if the D or G list option is selected.

Data Items

Location Code Generated
144 05222217225511165520
145 062155000000000000040
146 555555555555565555666
Location Code Generated
1100 1725
1101 2420
1102 2524
Constants
Location Code Generated
4722 7130000047
4723 7140000060
5110031117
k724 6260530000
1117240155
4725 0155555531
1725242025
4726 2400000001
0700000000

LOCATION OPERATION VARIABLE COMMENTS
n 18 {30
DATA [L*ERROR IN PDQ *,L..y10H
LOCATION 6mmou VARIABLE COMMENTS
n 18 [0
PPU |
: |
DATA |oLOUTPUT |
LOCATION OPERATION| VARIABLE COMMENTS
n 18 [0
Sx3 iR* ;
TAG SX4 |1Rme+q |
SA% 3RCIO |
SB6 X0+1L $ |
VFOD 30/4HIOTA,H6/1RA,2L/0AX+1
|
VFD 42/70L0UTPUT, 1871
]
VFO |15/0L6G,15/0L,

Note that the character constant in the expression in the second line consists of a decimal point

(57 in display code) to which 01 is added before the value is stored. Similarly, in the third field
of the first VFD, 1 is added to the display code representation of X right justified with blank fill
(65555530) so that 55555531 is generated.

60279900A

2-15

Literals

Location

Code Generated

100003765
100003770

2652 5110003772 +

5120003774 +

2653 5130003767 +

003765
003766
003767
8037790
003771
go37v72
003773
003774
803775
003776

LOCATION OPERATION | VARIABLE COMMENTS
" 18 130

TAG1 LIT RA+-*/{A,6L)8= ,.,0C0,0L
LIT 20HLITERALS
SA1 =0CTENCHARCTS
SA2 =H+LEFY JUSTIFY WITH BLANKS+
SA3 =0LD

CONTENT CF LITERALS EBLOCK.

00000000004546475051
5253545556570G0000000
33000000000000000000
15112405220114235555
56555555555655555555
24051603100122032423
0000N000V000000000000
14050624551225232411
0631552711241055021 %
011613235555555555566

T
) ¢= 90
0
LITERALS

TENCHARCTS
LEFT JuSTI

FY WITH BL
ANKS

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty
string and does not produce an entry. The second LIT pseudo instruction generates one two-word
entry. The expressions in the variable fields of the SAl, SA2, and SA3 instructions each consist of a

literal element.

The character strings in the SA1 and SA2 literals do not duplicate former literals

block entries so COMPASS generates new entries. However, since SA3 references an existing entry,
COMPASS places the address of the entry in the address field of the instruction.

2-16

602799008

2.7.5 NUMERIC DATA NOTATION

Numeric data can be specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:
Data Item Isign]preradix ' valuelmodjfierﬂ
Constant Iialuel modiﬁers1
Literal l=lsign l pneradixF/alue] modifiegl
= Applies to literals only; signifies that a literal follows.
sign Optional for data item or literal; a sign with a constant is interpreted as an element
operator.
+ or omitted The value is positive
- The complemented (negative) value is formed
preradix Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.
omitted Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.
BoroO Octal notation
D Decimal notation
value A series of octal or decimal digits optionally consisting of an integer, a decimal (or

octal) point, and a fraction. An integer value (fixed point) does not contain a point.
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point.

An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1,15 x 1018 (fixed point) or 7.9 x 1028 (floating point, ignoring the decimal
point). Extra significant digits cause erroneous results.

If value is omitted, it is assumed to be zero,

6027990012 2-17

modifiers

2-18

Associated with the value are the following optional modifiers specified in any sequence,

A specific type of modifier can be specified only once. A duplicate produces an error

flag.

postradix

decimal exponent

binary scale.

binary point
position

Indicates the notation used for the value. See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.

Defines a power of 10 scale factor

Einor Enor E Single precision

EE+n or EEn or EE Double precision

When the sign is plus or is omitted, the exponent (n) is positive.

When n is omitted, it is assumed to be 0, The value of n cannot exceed
32767 and is always assumed to be a decimal integer.

A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).

If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision.

The effect of the exponent is to multiply the value by 10 decimal raised
to the n power.

Defines a power of two scale factor and is specified as follows:
S+n or Sn or 8

When the sign is plus or is omitted, the scale factor (n) is positive. When
n is omitted, it is assumed to be 0. The value of n cannot exceed 32767
and is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the
n power.

Applies to floating point values only and is specified as follows:
P+n or Pn or P

When the sign is + or omitted, n indicates the number of bit positions
the point is to be shifted to the left of bit 0. When the sign is -, n
indicates the number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the n bit.

The exponent is adjusted to a value of - (+n)

For example, a value with P-6 will have a biased exponent of 20068; a
value with P10 will have an exponent of 17658.

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error,

60279900D

Although scale factors can exceed valid ranges, the ranges for numbers are restricted
by the hardware.

Example:

The number 1. 0E400058-1200 yields a number that is approximately 5. 8 x 1038

and is in range of the floating point representation.

All calculations are performed in 144-bit precision. The values are rounded to 96
bits for double precision and to 48 bits for single precision floating point numbers and
to 60 bits for integers.

The order in which the assembler acts on the modifiers, regardless of the sequence
in which they are specified is:
1. Decimal exponent (single or double)

2. Binary scaling

3. Binary point position (CPU assemblies only)

CPU Numeric Data Items

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [0
S000 7?TV7TRIVPVVVVINUTITIN? POOL DATA -29 Il
5004 172350000000000000090 NUM DATA 1.0€EE1
5002 16430000000000N0N0D0D0 I
5803 20000000000000000012 DATA 1.0F419PQ0 |
5004 17760000000N00000002 NATA 3.2P1S~-5E1
5005 1715465176763554L44L264 DATA 0.0151F+01 |
5006 17200314631463146314 NATA D.1P47,-E4,DEES
S08Q7 7777777777777V |
5010 00000000000000000000

CPU Numeric Constants

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
5001 + | [ALPHA) POOL +1 ;
555 VAL FQu 5550
5012 nSS? 1008 l
5112 20360 LX3 -14R |
43760 MX7 43
7150400000 SX5 1517 '

60279900A ' 2-19

CPU Numeric Literals

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
5113 65150005151 + SAS =200467550002340000048
5130085152 + SA3 =1.1 |
' 51532 ABLE LIY 1.0EE1 |
5155 LIY 0.1P4L7
5156 LIT -p19 |
5157 LIT 0.0151£+01,-E,DEES

CONTENT OF LITERALS BLOCK,

005151 200&4675500023400000% PDA B1 D
005152 17204314631463146315 oPBLILtILM
005153 172353900000060000000 os/

005154 16430000000000000000 NB

005155 17200314631463146314 oPCLL3L L
005156 TT7IT77777777777T7754 $3533358333=
005157 17154651767635544L264 OM=-("72=7%#
005160 7TTP77T7777TITITI?TII? 33933335333
005161 00090000000000C0080000

Examples of numeric data (assume default radix is decimal):

PPU Data Items

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30

PPU i

L] : * I

. . i
300 08 0% DATA 54-90,4813,14851,248FE~-1
301 7766 . 1
302 0013
303 8030
304 ggo2

2-20 602799008

PPU Constants

Location Code Generated
305 gaoo
306 0011
307 L4443
31
101
310 7777

PPU Literals

LOCATION OPERATION | VARIABLE COMMENTS
1 8 |30
CON 0,+11 ;
CON [-3334 |
ARC = 250
N LM SET 0101 |
CON 7777 |
LOCATION OPERATION | VARIABLE COMMENTS
n 18 [30
LDM =100 ;
ADM z=~1 !
LDM =7777 |

Location Code Generated
311 5000 1103

313 5100 1104

315 5000 1105

CCNTENT OF

1103 go12

1104 7776

1105 7777

60279900C

LITERALS PLCCK.

2-21

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a
combination of one or more texms. Each-term consists of one or more elements joined by operators.
A comma or a blank terminates the expression.

An expression element can be a:

Symbol

Numeric or character constant
Special element

Register designator (CPU only)
Literal

Examples of elements:

ALPHA A7 SHABC
$ X3 =10HOUTPUT
*Pp 77BS3

A term can be a single element or two or more elements joined by the following element operators:

* Multiplication
/ Division

An expression can be a single term or two or more terms joined by the following term operators:

+ Addition

- Subtraction

N Logical minus
Rules:

1. If the last element of a term is omitted, COMPASS provides an element of zero. For example,
if ABLE is a symbol, ABLE*+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first asterisk
is interpreted as an element, the second asterisk is interpreted as an operator, and the blank is

interpreted as a null element.

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is a
relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.
5. Division by zero results in zero with no error,

6. Two or more additive operators (+ or - or A) in sequence are interpreted as having a term of
zero value between them.

7. If an expression begins with an additive operator (+ or - or A), COMPASS provides a term
with zero value preceding the operator.

2-22 60279900C

The operator that immediately precedes a register designator is the register operator, regardless
of the placement of the designator in the expression. The register operator can be:

+ - * or /
Examples of expressions:

ABLE Single term
$-29 Two terms; $ and 29

14=3.14159EE+6 Two terms; a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

.3) Two terms; value of the location counter and numeric constant 3.

ABLE*4-72/NUM Two terms, each consisting of two elements; the value of ABLE times 4,
and 72 divided by the value of NUM.

188 Single term consisting of a numeric constant.
3+A6-NUM The components of the expression are register A6 and 3-NUM.
1R=A1R/ The character constants (= and /) are logically differenced.

2.8.1 TYPES OF EXPRESSIONS
Evaluation during assembly reduces an expression to:

An absolute value (absolute address or an integer value)
An external symbol + a 21-bit integer

+ relocatable value + a 21-bit integer

Register designators and one of the above

Register designators CPU assembly only

Absolute Expressions

An expression is absolute if its value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable terms, under these two conditions:
1. The expression contains an even number of relocatable elements

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.

Examples of absolute expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
The control counters are for the block that contains EASY and FOX.

60279900A ‘ 2-23

EASY-FOX+MIKE EASY and FOX cancel each other.

FOX-* FOX and the location counter cancel each other.
MIKE+16 The expression contains no relocatable elements.

EASY=FOX*2+%* EASY and the location counter cancel 2 times FOX.

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term or, under these two conditions, a combination of relocatable and

absolute terms:
1. The expression does not contain an even number of relocatable elements

2. All the relocatable elements but one must be organized in pairs that cancel each other. That is,
for all but one block, each relocatable element (or multiple thereof) in a block must be canceled
by another element (or multiple thereof) in the same block. The elements that form a pair
need not be contiguous in the expression.

3. The uncanceled element can have three kinds of relocation:
a. Positive program
b. Negative program

c. Positive common (negative common is not permitted by the loaders)

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
LIMA is relocatable in a different block. The control counters are for the block that contains
EASY and FOX.

LIMA+MIKE~16
FOX-EASY +FOX
3*FOX-2%EASY
EASY=-*¢+FOX
FOX-100B/MIKE
-MIKE®2+4LIMA
=10HMESSAGE 33

-%0

The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated
by the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

2-24 ’ 60279900C

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or under the

following conditions an external expression may consist of an external term, relocatable terms, and
absolute terms.

1. The expression contains an even number of relocatable terms.

2. The relocatable elements must cancel each other, That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.

Examples of external expressions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same
block. The control counters are for the block that contains LIMA, MIKE is absolute.

XYZ~*+FOX~EASY+LIMA The pairs * and LIMA, and FOX and EASY cancel each other,
FOX-3*EASY+2FFOX+XYZ The relocatable elements all cancel.

ABC+100B

XYZ+ABC Itlegal; both are external

=ABCH+*-LIMA Illegal; ABC is negative

XYZ+*Q Illegal; *O is an unpaired relocatable element

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register
designators and an operand. The attributes of the operand can be that of an absolute, external, or
relocatable expression. Use of register expressions is generally restricted to symbolic CPU
machine instructions (section 8.4). If the register designator is the first element in the expression,
the operator can be omitted and is assumed to be +.

Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.
X3+LIMA~-10B
LIMA+X3~-108 Produce identical results
 =10B+LIMA+X3
81+XYZ

¥+A.NUM

60279900 A 2-25

Evaluatable Expressions

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatable.

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS replaces each element with a 60-bit value. A character
constant is first right or left adjusted in a field the size of the destination field and then extended to
60 bits. Signs are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In
division, the integral portion of the quotient is retained; any remainder is discarded. Thus, 5/2*2
results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it
reaches a + or - or A operator. It then notes whether or not the newly formed term contains a
relocatable or external symbol or register designators. The value of the symbol is added, subtracted,
or differenced from the cumulative sum of the absolute elements, relocatable elements, or external
values. The assembler continues evaluating the expression until it is reduced to a symbol and/or a
value. An error is flagged if the expression cannot be reduced. The expression value is truncated, if
necessary, and placed in the destination field. I it is too large for the field, the system issues an
error flag. The maximum field size for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram.
It is the value relative to the external used in defining the symbol if the external symbol was defined
within the subprogram.

A zero value is used in place of a register designator.

For pass one evaluation, the system uses the value of a relocatable symbol relative to the block in
which the symbol was defined. For pass two evaluation, the system uses a value relative to program
or common block origin,

The field size for an expression depends upon the instruction and is determined as follows:

1. For a symbol definition pseudo instruction, the expression value (including character
constants) is justified in a 21-bit field.

2. In a VFD pseudo instruction, the expression is placed in a field of the size specified.

3. For a CON pseudo instruction, the field size is one word (12 bits for PPU assemblies,
60 bits for CPU assemblies).

4. In a symbolic machine instruction, values of expressions are placed in address fields (18 or
6 bits for CPU assemblies; 18, 12, or 6 bits for PPU assemblies).

Some relocatable program loaders may give unexpected results if relocatable or exfernal address

values are assembled into the same field of the same word more than once, as a result of ORGing
backward over the word, or by having more than one subprogram preset a common block.

2-26 60279900D

PROGRAM STRUCTURE 3

h

This chapter describes the general structure of a program. In some cases, it repeats information
described elsewhere and correlates it so that the programmer will obtain a better understanding of how
the program is assembled, loaded, and executed. Some mention is made of the SCOPE loader, but
for a complete description of the loader, refer to the reference manual for the operating system or
loader in use.

The first topic considered in this chapter is the subprogram block and how the assembler and the
programmer organize the object code into blocks. Following this is a brief description of the counters
that control the blocks,

Finally, there is a summary of the differences in the structure of absolute and relocatable programs
and the effect of these differences on block usage.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas
called blocks. As assembly of a subprogram proceeds, the assembler or the user designates that
object code be generated or that storage be reserved in specific blocks. By properly assigning code
sequences, data, or reserved storage areas to blocks through use of ORG and USE pseudo instructions,
a programmer can intersperse instructions for the different blocks. The assembler assigns locations
in a block consecutively as it encounters instructions destined for the block. A symbol defined within

a block is not local to the block. That is, it is global and can be referred to from any other block in
the subprogram. To render a symbol local to a sequence of code requires use of the QUAL pseudo
instruction (section 4. 4. 3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be
user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

All symbols are assigned absolute values, the table of block names is cleared, the list of USE and ORG
instructions is cleared, and block structuring restarts. For END, the symbol table is cleared before the
next subprogram is assembled. If the group does not contain a USE instruction or if object code is
generated (or storage reserved) before the first USE instruction, COMPASS places the code in the nominal
block (identified as PROGRAM* on the listing). For an absolute program, the nominal block is the
absolute block. For a relocatable prograin, the nominal block is the zero block., The user controls use
of the nominal block and any user-established blocks through USE and ORG pseudo instructions (section
4.5). Each occurrence of a non-redundant literal constant causes an entry in the literals block;
otherwise, the user has no control of this block.

60279900C 3-1

3.1.1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name PROGRAM*
on the listing. All code generated in the block is absolute. Each address symbol is defined during pass
one as an absolute value relative to zero which is block origin. The code generated must be loaded and
executed at the origin specified as the absolute block origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG request using an absolute value. The assembler generates
text tables specifying absolute block relocation. The loader loads the absolute text when it encounters
the text table, without manipulating any addresses. For a relocatable assembly, an absolute block is
identified on the assembly listing by the name ABSOLUTE*,.

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal block for a relocatable assembly. It is a local
block; that is, it is not accessible to other subprograms. Upon completion of assembly, the assembler
assigns any undefined default symbols at the end of the zero block. The zero block is identified by the

name PROGRANM* on the assembler listing.

An absolute program has a zero hlock only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM* block.

3.1.3 LITERALS BLOCK

COMPASS generates literal data entries in the literals block. It is local to a subprogram. The literals
block is identified by the name LITERALS* on the assembly listing,

3.1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE statements, a programmer can establish local blocks in addition to those previously
described for an absolute or relocatable subprogram. At the end of assembly, COMPASS assigns an
origin relative to the nominal block to each user-established local block, in the sequence in which they
are established.

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in 7600 SCM

or 6000 CM through the USEt pseudo instruction where the name of the block is the name enclosed
by slant bars i.e.,/name/. The tables are designed so that the loader can allocate space in
memory for the first subprogram that is loaded that declares the block. Thus, the first subprogram
that names a block sets the maximum size of the block. Each subprogram, as it is loaded, can

link to allocated blocks or can cause new blocks to be allocated. The contents of a labeled common
block can be generated by any of the subprograms having access to it.

If an absolute subprogram attempts to establish a labeled common block by using a USE/name/
instruction, COMPASS treats the block as a local block having the slant-bar enclosed name.

17600 COMPASS Version 2 allows presetting of data in L.CM through the USELCM /name/
instruction (section 4.5. 2).

3-2 60279900C

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not
load information into the area before the program is executed.

For a relocatable program, the blank common block is allocated 7600 SCM space or 6000 CM space by
the SCOPE relocatable loader after all subprograms are loaded, according to the largest block area
declared by any of the subprograms. The blank common block is established through a USE pseudo
instruction (section 4.5. 1); it has no name; a USE // indicates blank common.

If no relocatable subprogram declares a blank common block, there is none. If an absolute program
contains a USE // instruction, COMPASS treats the block as a local block named // and data can be
stored in this block.

Only a CPU program can use the USEL CM pseudo instruction to establish named 7600 L.CM or 6000
ECS blank common blocks. These blocks provide a means of symbolically addressing the job's
LCM or ECS field from a CPU program. In pass one, COMPASS assigns addresses in each block
starting with zero (RAL). At the end of assembly, COMPASS assigns an origin relative to zero

to each common block, in the sequence in which they are established. No code can be assigned to
the blocks; they can be used for storage reservation only. It is the responsibility of the user to
assure that sufficient LCM or ECS is scheduled on the job card to accommodate the blocks when the
program is executed. (For use of the LCM or ECS blocks refer to the USELCM pseudo instruction,
section 4, 5, 2),

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters, an origin counter, a location
counter, and a position counter. When a block is first established or its use is resumed, COMPASS uses
the counters for that block. During pass one, the origin and location counters are initially zero. During
pass two, as the assembler constructs the program, it assigns an initial value to each loeal block origin
counter and location counter. Thus, expressions containing relocatable symbols are not necessarily
evaluated the same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the
block. It is possible to reserve blank storage areas simply by using either the ORG or BSS pseudo
instructions to advance the origin counter; ORG also permits the programmer to reset the counter to
some lower location in the block or to change blocks. BSS allows the programmer to decrement the
counter but not to change blocks. The origin counter is incremented by one for each word assembled
or skipped forward and decremented by one for each word skipped in the reverse direction.

When the special element *O is used in an expression, the assembler replaces it by the current value of
the origin counter for the block in use.

60279900A 3-3

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counter
is incremented. It is possible through the LOC pseudo instruction to adjust the location counter so that
it differs from the origin counter. This may be desirable when the code being assembled is to be
loaded at one location and subsequently moved and executed at another location. In this case, the
programmer resets the location counter to reflect the actual location at which execution is to occur.

As another example of its use, the programmer assembling a large table may reset the location counter
to zero so that on the listing, the addresses alongside each word of the table reflect the word's position
in the table rather than in the block. Note that use of this technique does not alter the placement of code
in the block. (For an example of these applications, see the LOC pseudo instruction, section 4.5.5.)
When either of the special elements * or *L is used in an expression, the assembler replaces it by the
current value of the location counter for the block in use.

3.2.3 POSITION COUNTER

Assume that bits are numbered 59-00, from left to right within a 60-bit CPU word and numbered 11-00
within a 12-bit PPU word. Then, the position counter is initially 60 and 12, respectively, and indicates
the number of bits remaining in the word. The position counter, which is decremented by one for each
completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12
when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally
have values of 60, 45, 30,and 15 reflecting the placement in the word for the next instruction or
data word to be generated. For a PPU assembly, the normal value is 12,

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS pseudo instructions.

When the special element *P is used in an expression, the assembler replaces it with the current
value of the position counter.

When the special element $is used in an expression, the assembler replaces it with the current value
minus one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining
in a partially completed word with no-operation instructions (section 8.1), sets the position counter to
60, and increments the origin and location counters before it assembles code for the next instruction:

Insufficient room remains in a partially filled word for the next instruction or data to be generated

The current statement contains a symbolic address or + in the location field and the location field is
not ignored

The next symbolic instruction to be assembled is a 6000 Series RE, WE, PS, or XJ instruction.
(The programmer can negate this force upper by placing a minus sign in the location field of the
instruction.)

The current pseudo instruction is END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG or IDENT.

3-4 60279900A

The assembler forces upper after it assembles code for one of the following:

Jp

RJ

Unconditional EQ

Unconditional ZR

ES (7600 only) . l
MJ (7600 only)

PS (6000 Series only)

XJ (6000 Series only)

This post force upper is not done immediately, but is deferred until the next machine instruction or
data generating, storage allocating, or binary control pseudo instruction in the same USE block is en-
countered. The programmer can negate the force upper following the instruction by placing a minus
sign in the location field of the next instruction. Thus, pseudo instructions following one of the above
machine instructions and referencing the origin, location, or position counter will use the value before
the force upper.

In a PPU assembly, no forcing upper occurs; the assembler ignores a + in the location field on any
instruction other than a VFD. A plus or minus in the location field of a VFD in PPU assemblies forces
the VFD data to begin at the next full word.

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately,
either in the same computer run or in independent runs. The subprogram can all be written in
COMPASS source language, or can be written in any other source language available in the product set
of the operating system as long as the compiler or assembler produces relocatable binary output in a
form acceptable to the SCOPE loader. A COMPASS language subprogram is composed of instructions
beginning with an IDENT pseudo instruction and ending with an END pseudo instruction.

The COMPASS assembler repertoire includes pseudo instructions that facilitate relocatable subprogram
linkage. Through thesc linkages, subprograms loaded together can transfer control to each other and
can access common storage locations.

Upon completion of assembly of a relocatable subprogram, COMPASS assigns each local block an origin
rclative to the zero block (figure 3-1). Output is in the form of tables for the SCOPE Relocatable
Loader (appendix B)., Each local block thus becomes an extension of the zero block. The length of the
subprogram given on the assembly listing is the sum of the final values of the origin counters for the
local blocks, including the zero block and literals block, but not the absolute block. Any absolute text
is simply inserted at the absolute location relative to RAS (or RA).

60279900D 3-5

High Core

Blank Common

Subprogram n

S e N P N

I i N o N

Subprogram 3
Subprogram 2
Subprogram 1
Low Core
Address
Core Map of

Loaded Program

3-6

Figure 3-1.

}Size determined by
largest block declared
by any subprogram

Subprogram length

Sizes and locations
determined by first
subprogram declaring
them

A\ r

Blank Common Block

N N W P B

N NP W gy S N

Local Blockn

e N— T —

e N —— T T

Local Block 1

Literals Block

Zero Block

Labeled Common
Blocks

Organization of
Subprogram 1

Relocatable Program Structure

60279900A

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specifie core
locations. Because the absolute loader performs no address manipulation, absolute code can be
loaded more rapidly than relocatable code.

The programmer has the option of constructing his absolute program as a single unit, or of dividing
it into overlays. Each overlay consists of data, information, or instructions that are needed at
different times. Dividing a program into overlays allows several routines to occupy the same core
storage consecutively so that total storage requirements for a program are reduced.

During assembly of an absolute program or overlay, COMPASS creates a core image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute block. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute
block. Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays.

The binary output for the program consists of a record for each overlay. Note that the record for an

absolute program that is not divided into overlays has the same format as the main overlay of a program
divided into overlays. The user has the option of writing part of a binary record at a time by using

either a SEG pseudo instruction or an IDENT (other than the first IDENT) with a blank variable field.
An absolute record has three parts:

1. 77 8 prefix table

2. 508 or 51 overlay table, or a 6000 or 7600 PPU header table

8
3. Core image of the program

Record format is described more fully in appendix B.

The amount of binary written as a result of the binary control instruction (IDENT, SEGMENT, SEG, or
END) is subject to whether or not an entire block group is written.

If a complete block group is being written (everything between an IDENT and an END or between
two IDENT instructions), the core image of the program or overlay ends with the maximum origin

counter value for the last block established, that is, with the last word address.

If only a portion of the binary for the block group is being written, it consists of the core image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank IDENT complete a record and write an end of record. SEGMENT and
IDENT write header information for the overlay to follow.

60279900 A 3-7

- Identification and

50 or 51 Table Loader Control
or PPU Header

IBENT name —

Absolute Absolute
Block Block
PROGRAM * PROGRAM *
Default Symbols |] Default Symbols
Literals Literals
>Optional
Local Local
Blocks Blocks
END / « End-of-record
Program Binary Record

Block Structure

Low Core Addresses F
Origin :Control Table or Header:]
—p
Absolute
Default Symbols
Literals
' Local Blocks
High Core Addresses
Core Map of

Loaded- Program

Figure 3-2. Absolute Program Structure

3-8 60279900A

3.4.1 ABSOLUTE OVERLAYS

When an absolute program contains more than the one IDENTY pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one record of a2 core image of the program as it is
assembled, but, instead, generates a record for each overlay.

Dividing the program into overlays permits core to be sequentially overlayed by different subroutines
and data during program execution, reducing the maximum core requirements for the program.

For a CPU assembly, the overlay generated is either primary or secondary as determined by the

IDENT or SEGMENT pseudo instruction. The portion of the program following the first IDENT is
normally the main overlay and is identified by the level numbers 0,0. Secondary overlays can be

generated subsequent to the main overlay. A secondary overlay is identified by the level numbers
X,¥, where x is nonzero.

Conventionally, the main overlay is the first one loaded and contains calls to the operating system
loader to load one or more overlays as they are required during object time execution. Any overlay
can call the loader to load another overlay. Control transfers to an entry in the overlay or returns
to the calling overlay according to the format of the call. (For detailed information concerning CPU
loader calls, refer to the operating system reference manual.)

Because overlays are not all in core concurrently during program execution and because the sequence
in which overlays are loaded and executed is beyond the scope of the assembler, it is the user's
responsibility to assure that an overlay does not refer to symbols, instructions, or data that is not
concurrently in core.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects,

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays
generated by using SEGMENT instructions, as described below.

Binary formats for overlays are described in appendix B.

IDENT-Type Overlays

The portions of the program from IDENT to IDENT, and IDENT to END comprise the overlays. IDENT
provides the programmer with the option of specifying the overlay level numbers with each overlay,
including the overlay generated by the first IDENT.

If no level number is provided for a CPU assembly, the first overlay is numbered 0, 0 and any overlay

after that is numbered 1,0. IDENT allows each overlay to be assigned unique numbers. Thus, the
loader has a means of locating a specified overlay when several overlays are written on the same file.

¥ IDENT instructions discussed in this section are assumed to have nonblank parameters. The special
case of the blank IDENT is described in section 3. 4. 3.

{'60279900A 3-9

The first IDENT causes COMPASS to generate the program or overlay identification information
(appendix B) that precedes the absolute record. Upon encountering a second IDENT instruction before
an END instruc*tion, COMPASS generates output consisting of a core image of the overlay starting with
the overlay origin specified on the previous IDENT and normally ending with the maximum origin
counter value of the last block declared in the overlay, that is, it normally ends with the last word
address. An IDENT subsequent to a SEG or SEGMENT, however, generates binary that ends at the

location specified by the current origin counter. Following the core image, COMPASS writes an end
of record and the overlay identification information specified by the new IDENT for the overlay to follow.

For an IDENT-type overlay, COMPASS completes all blocks, including the literals block. Block
structuring starts fresh with each overlay. This means that each overlay can use the same block names
used by other overlays, and each overlay can contain a literals block. The USE table and control
counters are all reinitialized. The origin specified for an IDENT-type of overlay can be any place in a
previously generated overlay. This is possible because IDENT causes the assembler to assign an
absolute address to each symbol in the symbol table. It can do this because the sizes of all the blocks

are known.

Figure 3-3 illustrates a CPU program consisting of a main overlay and a secondary overlay. The main
overlay uses the absolute block and block A. Default symbols and literals cause the assembler to
generate a zero block and the literals block. Following the second nonblank IDENT instruction, the
program overlay origin is set back into the block A. The overlay generates a new literals block

and new blocks A, C, and D,

3-10 60279900D

IDENT, MAIN, X,Y

BETA —

IDENT, OV1
ORG BETA

—_—

END

Low Core Address

v

High Core Address

60279900 A

Identification and
loader control

word

J

> MAIN Overlay
0,0

—

End-of-record

¢ Identification
and loader

control information

Overlay OV1

P

End-of-record

ABSOLUTE
A
MAIN origin —*
ABSOLUTE ABSOLUTE
A 0 (Default)
LITERALS
ABSOLUTE
BETA —
A A
C Record One
ABSOLUTE'
D
' OV1 origin -
ABSOLUTE ABSOLUTE'
D LITERALS'
1
o A
A c
D D
Block Structure Record Two

0,0

ABSOLUTE

< 0

LITERALS

A

1,04

“Control Table

ABSOLUTE'

LITERALS'

\

Core Maps of Loaded
Overlays

Figure 3-3.

IDENT-Type Overlay Structure

Overlayed portion of 0,0

3-11

SEGMENT-Type Overlays

The portions of the program from the IDENT that identifies the program to SEGMENT, from SEGMENT.
fo SEGMENT, and from SEGMENT to END comprise the overlays. SEGMENT does not provide for
unique numbering of overlays, The first overlay has the identifier 0,0, All subsequent overlays are
numbered 1,0,

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a core image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the
first overlay), and ending with the current origin counter value of the block in use at the time the
SEGMENT was encountered. Following this, COMPASS writes an end-of-record and overlay identi-
fication information for the overlay to follow.

For SEGMENT, the last block used in the overlay is incomplete. If the overlay contains literals, it
must have a user-established block as the block in use when the SEGMENT is encountered. A PPU
overlay cannot contain literals. For a CPU assembly, the literals block is in the overlay that
contains the end of the absolute block. It is the responsibility of the user to assure that all blocks
other than the one in use are complete. The origin of the new overlay can be defined using symbols in
the block in use only, SEGMENT does not clear the symbol table or reinitialize the USE table.

Each new SEGMENT-created overlay must use unique block names because blocks established in
previous overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-4 illustrates a program consisting of a main overlay and a secondary overlay., The main
overlay uses the absolute block, the literals block, and block A. Default symbols cause the generation
of a zero block. Following the SEGMENT, an ORG instruction sets the overlay origin back into block A,
the block in use when the SEGMENT was encountered. The 1,0 overlay establishes new blocks C

and D.

3-12 ' 60279900 A

IDENT MAIN

ABSOLUTE

TAG™

Block A

ABSOLUTE

SEGMENT OV1 __ _
ORG TAG

Block A

f————— e]

Block C

END.

Block D

Block Structure

Origin ’
ABSOLUTE

Mai 0

ain -
Overlay J Literals
0,0 Block A
High Core
Addresses

60279900A

MAIN —]
Origin ABSOLUTE
0 (Default Block)
Literals
TAG —
Block A
Record One

ov1
Origin Block A
Block C
Block D
Record Two

Origin ™~

ABSOLUTE

0

Literals

ovi

Overlay.

1,0

Block D

Core Maps of Loaded Overlays

Figure 3-4,

SEGMENT-Type Overlay Structure

Identification
and Loader
Control
Information

MAIN overlay
0,0

End-of-record

Identification
and Loader
Control
Information

OV1 Overlay
1,0

End-of-record

} Overlayed

Portion of 0,0

3-13

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called,
it may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 51g overlay

table, This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 51g table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 518 table,

refer to appendix B.

Overlays of this type cannot be created or loaded by the 6000 SCOPE loader.

3.4.3 PARTIAL BINARY

When a CPU absolute program or an overlay contains SEG pseudo instructions or IDENT pseudo
instructions for which the parameters are omitted (blank), COMPASS writes a partial binary record
consisting of the binary generated since the previous IDENT, SEGMENT, or SEG instruction. However,
it does not write an end of record or a new 778 table. A SEGMENT, nonblank IDENT, or END
instruction completes the binary record.

SEG-Type Partial Binary

By writing partial binary using SEG, the programmer can reduce the assembler storage requirements.
A fatal error is issued if the user attempts to store data into a block previously written out or into a
block that will be written out later.

When the SEG is encountered, COMPASS writes binary beginning with the first block established in
that portion of binary and ending with the final count specified by the origin count for the current block.

SEG does not write a complete block group. The portion of the binary that contains the end of the
absolute block contains the literals block, if there is one. The symbol table and USE table are not
reinitialized.

Figure 3-5 illustrates how the binary for an absolute program can be written in three separate binary

writes to reduce the amount of core required to assemble the program. The resulting absolute record
is loaded and executed as a single program or overlay.

3-14 60279900A

—
IDENT Program
Identification
and Loader
ABSOLUTE Control
. SEGt, T ABSOLUTE
(w“b‘ziapr?‘; 1a ABSOLUTE
LITERALS
A
SEG _ _.] < LITERALS || bsolute
(writes partial Mmage
binary) B A
Largest partial assembly B
C > determines assembler
core requirements
END —_ . C
End-of-record
Block Structure Binary Record

Figure 3-5. SEG-Type Partial Binary

IDENT-Type Partial Binary

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG,
or SEGMENT to be written out without an end of record or a new 77g prefix table. The USE table

and the block counters are reinitialized, Each symbol in the symbol table is assigned an absolute
address. The blocks in each partial binary generated in this manner are allocated as if the section
were a new subprogram with its own absolute block, literals block, and local blocks. This allows
portions of a program to be self-contained units even though they are not overlays but are loaded as

a single unit, The origin of an absolute block for a new portion is the last word address plus one of the
last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends
with the maximum origin counter value of the last block declared in the block group, that is, it normally
ends with the last word address. If part of the block group has already been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current
block.

60279900A 3-15

COMPASS completes all blocks.

blocks with the same names are independent of each other.

The literals block is terminated. Block structuring starts fresh with
each section. Each new section created by a blank IDENT can use the same block names as are used
by the other section of IDENT-created overlays and each section can contain a literals block but the

An attempt to write into or to reset the origin counter to a location in a section written separately
causes a range error.

Figure 3-6 illustrates how the binary for an overlay can be written in three discrete sections to reduce
the amount of core required to assemble the program and divide the program into self-contained units.
The resulting absolute record is loaded and executed as a single overlay.

IDENT PGM...

IDENT

ABSOLUTE

LITERALS

Local
Blocks

IDENT

ABSOLUTE!

LITERALS'

Local
Blocks

IDENT OVLY...

3-16

ABSOLUTE"

LITERALS"

Local
Blocks

Figure 3-6,

ABSOLUTE

"LITERALS

Local
Blocks

ABSOLUTE'

LITERALS'

Local
Blocks

ABSOLUTE"

LITERALS"

Local
Blocks

IDENT-Type Partial Binary

Program

Identification
and Loader
Control

End-of-record

Identification
for OVLY

60279900A

PSEUDO INSTRUCTIONS ' 4

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

This chapter and chapters 5, 6, and 7 describe the pseudo instructions available in the COMPASS

language. It is impossible to write a program in the COMPASS language without using some of the
more basic pseudo instructions. The programmer who is new to the language should give special

attention to these instructions:

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute

IDENT 4.2.1 X X X
ABS 4.3.1 - X -
PPU or PERIPH 4,3.20r 4.3.3 - - X
ORG 4,5.3 - X X
ENTRY 4,7.1 X - -
BSS 4.5.4 X X X
CON 4.8.6 X X X
END 4.2,2 X X X

4.1.1 TYPES OF PSEUDO INSTRUCTIONS

Pseudo instructions discussed in this chapter are classed according to application as follows:

Subprogram identification (IDENT and END)

Binary control (ABS, PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, STEXT, COMMENT, and
NOLABEL)

Mode control (BASE, CODE, COL, Bi=1, B7=1, and QUAL)
Block counter control (USE, USELCM, ORG, BSS, LOC, and POS)
Symbol definition (EQU and =, SET, MAX, MIN, MICCNT, and SST)
Subprogram linkage (ENTRY and EXT)
Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP and REPI)
Assembly control (ELSE, ENDIF, IFCP and IFPP, IFop, IF, IFC, and SKIP)
Error control (ERR and ERRxx)
Listing control (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)
Later chapters describe pseudo instructions that involve definiti;)n operations, alterations to the

operation code table, and micros. In general, pseudo instructions can be summarized according to
where they can be placed in a subprogram.

60279900A

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, IDENT and END, are required for any assembly. IDENT must be the first
source statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basic characteristics of the assembly and provide the assembler
with required information. These instructions comprise the first statement group which must precede
any symbol definition, storage allocation, or object code generation. The following instructions, if used,
must be in the first statement group.

ABS
PERIPH
PPU
STEXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group.

BASE DECMIC HERE MICRO PPOP SST
Bil=1 EJECT IFC NIL PURGDEF TITLE
B7=1 ELSE IRP NOLABEL PURGMAC TTL
CODE END LIST NOREF QUAL XREF
COMMENT ENDD MACRO OCTMIC RMT

CPOP ENDIF MACROE OPDEF SKIP

CPSYN ENDM MICCNT OPSYN SPACE

Comments lines and references to macro definitions are also permitted anywhere.

CPU or PPU symbolic machine instructions and all other pseudo instructions cannot be placed in the
first statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPROGRAM IDENTIFICATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or
more subprograms are assembled in a single COMPASS run called through COMPASS control card,
the end of the source decks is indicated by an end-of-record card (7-8-9 punches in column 1),

4.2.1 IDENT — SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruction of the following form is the first statement of a subprogram recognized
by the assembler, Usually, any lines preceding the first IDENT or between an END and IDENT are
assumed to be comments. However, when COMPASS has been called by some other language processor
such as FORTRAN, the assembler returns control to the processor when the statement following END
is not IDENT. TFor a relocatable subprogram COMPASS flags any subsequent use of IDENT before
END as an error. For an absolute subprogram, a second form of IDENT described under BINARY
CONTROL is available for overlay generation.

4-2 60279900D

The format of IDENT varies according to the type of assembly.

CPU Relocatable Format:

LOCATION OPERATION VARIABLE SUBFIELDS

CPU Absolute Format:

IDENT name

LOCATION OPERATION VARIABLE SUBFIELDS

7600 PPU Absolute Format:

IDENT name, origin, entry, 21 of 2

LOCATION OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name,origin
name Name of the subprogram or overlay. The parameter is required. For a CPU

origin

60279900D

relocatable or absolute assembly, name can be 1-7 characters, of
which the first must be alphabetic (A=Z) and the last must not be a colon.

For a 7600 PPU assembly, name can be 1-7 characters. For a 6000-Series
PPU assembly, name can be 1-3 characters. In either case, there is no
restriction on the first character, but the last character must not be a colon.

An expression specifying the first word address of the absolute program or
overlay. The overlay loader table and all code assembled starting at this
address and ending with the next SEGMENT, nonblank IDENT, or END
instruction comprises the overlay. For a single entry point CPU program

the load address for the record is origin~1. The word at origin -1 is over-
layed by the 50 loader control table. For a multiple entry point CPU program,
the load address for the absolute record is origin~wec-1, where wc is the
number of entry points in the 51 3 loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table.

Data can be generated in locations starting with origin and above, but not below
origin. The origin subfield does not serve the same function as ORG nor does
it replace ORG for setting the origin counter.

entry

il,ﬂz

ppu

If the origin field is null for an absolute subprogram, the assembler uses
address 000000 (RAS) as the origin for a CPU program and 0000 as the
origin for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader automatically
relocates the first subprogram to be loaded starting at RAS+100g, the second
subprogram starting at the first available location following the first subprogram,
ete.

For a 7600 PPU assembly or an absolute CPU assembly, this subfield contains
an expression specifying the subprogram entry address, which can be symbolic.

Absolute expressions specifying the level numbers of the overlay. gy is the
primary level (0-63) and ¢_ is the secondary level (0-63). When the first IDENT
identifies the main overlay, ¢1 and £5 can be omitted. If %1 is omitted, it is set
to 00, 1If ¢, is omitted, it is set to 00.

Because the first IDENT precedes any use of the BASE pseudo instruction, the
level numbers on this IDENT are evaluated as decimal unless specifically
designated as octal by a post radix,

Absolute expression specifying the number of the PPU on which this program is
to be loaded. On the first IDENT, this number is evaluated as decimal unless
specifically designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control card, IDENT must be in columns 11-15.

When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field
entry as the main subprogram title on the assembly listing,

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 18 {30
IDENY [CT,CONTROL,CONTROL
[ARSOLUTE CPU PROGRAM
1108 |
C ONTROL n]DEFINES SYMBOL CONTROL

Absolute CPU program CT will be loaded at origin address 001108.

4-4

60279900A

4.2.2 END — END OF SUBPROGRAM

An END pseudo instruction must be the last instruction of each subprogram. It causes the assembler to
terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

For a relocatable subprogram, the assembler combines all local blocks into a relocatable subprogram
block, generates the relocatable binary tables (appendix B), and produces the listing.

For an absolute assembly, the assembler assigns each block an origin relative tc absolute zero,

combines all blocks into an absolute subprogram or overlay, generates the absolute binary record and
produces the listing.

END can also be used to signal the end of source statements from an external source (see XTEXT). In
this case, it does not terminate the subprogram.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym END trasym
sym Optional last word address symbol; if present, COMPASS defines it as the
total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one.
trasym A symbol specifying the entry point to which control transfers for a reloca-
table subprogram. This symbolmust be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled, At least
one subprogram must specify a transfer address or the loader signals an
error. If more than one subprogram indicates a transfer address, the loader
uses the last one encountered.
For an absolute assembly, trasym is ignored.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
IDENT [PROG1 |
ENTRY [BEGIN l
BFGIN SR 1 |
END BEGIN '

60279900A : 4-5

4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler are
summarized below and described fully in this section.

ABS Specifies CPU absolute binary output

PPU Specifies 7600 PPU binary output

PERIPH Specifies 6000 Series PPU binary output

IDENT Begins absolute overlay or writes partial binary record
SEGMENT Begins absolute overlay

SEG Writes partial binary record

STEXT Generates systems text overlay

COMMENT Inserts comments into the 77 8 prefix table

NOLABEL Suppresses header information on binary output

LCC Passes loader control information to the relocatable loader

4.3.1 ABS — ABSOLUTE CPU PROGRAM

An ABS instruction declares a CPU program to be absolute. If used, it must be in the first statement
group. Refer to appendix B for a description of the binary format.

The following instructions are illegal in an absolute program:

EXT
LCC
REP
REPI

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no
significance because a conventional definition takes precedence (section 2, 4. 2).

Format:

LOCATION QOPERATION VARIABLE SUBFIELDS

ABS

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS
and PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence.

4 - 60279900C

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 {30
IDENT |[CTY,CONTROL 4CIONTROL
ABS PBSOLUTE CPU PROGRAM
ORG 1108 l

CONTROL |BSS] bEFINES SYMBOL CONTROL
E] [] l
END I

4.3.2 PPU — 7600 PPU PROGRAM

A PPU instruction declares a program to be a 7600 absolute PPU program rather than a CPU program.
If used, PPU must be in the first statement group. For a description of binary format generated as
a result of this instruction, refer to appendix B.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY SEGMENT
EXT USELCM
LCC R=

REP B1=1

REPI B7=1

SEG

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence. PPU
programs permit symbols of the form used for CPU register designators; they are normal symbols

having no special significance. The following instructions are legal but are not applicable in a PPU
assembly:

OPDEF
CPOP
CPSYN
PURGDEF
Format:

LOCATION OPERATION VARIABLE SUBFIELDS
PPU J

J A character string beginning with J supplied in the variable field alters the way
that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
or PJN instructions. :

60279900A , 47

I J is not specified, COMPASS first tests the range of the expression against
the short jump limit (+31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the
location counter value. If the value is now in range, COMPASS assembles the
instruction using the expression value minus the location counter value.
However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value
that is a true relative address.

A symbol in the location field, if present, is ignored.

Example:
Location Code Generated - LOCATION OPERATION | VARIABLE COMMENTS
] " 18 ‘ 30
—
PPU |
. |
740 TAG BSS 208 !
760 0357 UJN TAG-* |EXPRESSION < 278
i
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 I30
PPU JUMP |
: |
;‘* 0 TAG BSS 208 |
60 0357 UIN TAG |[EXPRESSION-* < 377

4.3.3 PERIPH — 6000 SERIES PPU PROGRAM

' A PERIPH instruction declares a program to be a 6000 Series absolute PPU program rather than a CPU
program. If used, PERIPH must be in the first statement group. For a description of binary output
produced as a result of this instruction, see appendix B.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY
EXT
LCC
REP
REPI
SEG

USELCM
R=

A symbol can be prefixed by =X if it is also defined conventionally,

4-8

60279900A

PPU programs permit symbols of the form used for CPU register designators; they are normal
symbols having no special significance. The following instructions are legal but are not applicable
to PPU assemblies:

OPDEF
CPOP
CPSYN
PURGDEF
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PERIPH J
J A character string beginning with J supplied in the variable field alters the

way that COMPASS assembles the variable field expression on UJN, ZJN,
MJN, or PJN instructions.

If J is not specified, COMPASS first tests the range of the expression value
against the short jump limit (+31). If the value is in range, COMPASS assembles
the jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the location
counter value. If the value is now in range, COMPASS assembles the instruction
using the expression value minus the location counter value., However, if it is out
of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

4.3.4 IDENT — IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. First, it allows the specification of overlay
‘numbers. Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absolute zero. Thus, an ORG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference is
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGMENT can alter

this, however (see section 3. 4).

60279900A 4-9

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The
output is not terminated by an end of record or a new 77g table. However, the USE table and the
block counters are reinitialized and each symbol in the symbol table is assigned an absolute address.

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
partial can use the same block names as are used by other overlays or partial and each can have a
literals block.

For a blank IDENT, an attempt to write into or reset the origin counter to a location in a section
written separately causes a range error. Following the IDENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+1.

The format of the IDENT varies according to the type of assembly as follows:

CPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name, origin, entry, 21, i 9
or
LOCATION OPERATION VARIABLE SUBFIELDS
IDENT
7600 PPU Absolute Format:
LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name, origin, entry, ppu
6000 Series PPU Absolute Format:
LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name, origin
name Name of the overlay. For a CPU program, 1-7 characters, the first of which

must be alphabetic (A-Z); for a 6000 Series PPU program, 1-3 characters; for
a 7600 PPU program, 1-7 characters. In all cases, the last character must not
be a colon. A name is a loader linkage symbol required for overlays.

4-10 60279900 B

origin

entry

LR

ppu

An expression specifying the first word address of the overlay. The overlay
control word and all code assembled starting with this address and ending with
the next SEGMENT, nonblank IDENT, or END instruction comprises the overlay.
For a single entry point CPU program, the load address for the overlay is
origin-1. The word at origin-1 is overlayed by the 50_ loader table. For a
multiple entry point CPU program, the load address for the overlay is origin-
wc~1, where we is the number of entry points listed in the 51g loader table
(appendix B).

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader control table. Data can be generated in
locations starting with origin and above, but not below origin. The origin
subfield does not serve the same function as ORG nor does it replace ORG for
setting the origin coutter. The origin of an overlay can be below the origin
specified on any other IDENT or SEGMENT.

An expression specifying the overlay entry address. When the overlay is
called, control optionally transfers to this address.

Absolute expressions specifying the level numbers of the overlay for CPU
programs only. H is the primary level (00-778), ﬂz is the secondary level
(00-77g). If base is M, {; and {, are assumed to be octal. If ¢; and g, are not
specified, £, is set to 01 and ¢, is set to 00.

An absolute expression specifying the number of the PPU in which the overlay
is to be loaded. If base is M, ppu is assumed to be octal.

A location field symbol, if present, is ignored.

The binary is written on the file specified by the B parameter on the COMPASS control card. END
dumps the last overlay or completes a partially written record. Refer to appendix B for file formats.

60279900 A

4-11

Examples:

The following program uses IDENT for overlay creation. Symbols T.OVL, 0. DMP1, etc. are
defined on a system text overlay.

DeM

4-12

LOCATION QPERATION | VARIABLE COMMENTS
0 18 Ts0
T
IDENT [DMP.1,T.OVL,0.0MP1
ABS I
BASE |M |
COMMENT 10/07/70.CPNTROL CARD CALL.DMP.
LIST |6
SST | OVERLAY
ORG T.ovL OMP1
QUAL |DMP1 |
pMP SX0 B1 |
QuaL |pMP2 |
IDENT DHPZ,T.OVL,OrDMPZ 1 .
ORG T.0VL OVERLAYS DMP2
LRwW?2 Sx0 86+1 : THROUGH DMP8
L] L] I _J
QUAL |DMP9 [=
IDENT |DMP.9,T.0VL,0.0MPQ OVERLAY
ORG T.OVL | DMP9
SXO0 o.onpzor.noﬂ
. . l
END END oveRLAY OMPo]

60279900C

The following program uses IDENT instructions having. blank variable fields.

1617

3455

7116

Origin —

1617 —

7116 —

lwa —

60279900D

Local Blocks
ABSOLUTE!

LITERALS'

ABSOLUTE"

LITERALSY

Local Blocks

Core Map

LOCATION OPERATION | VARIABLE COMMENTS
i b 18 l30
I

TDENT | VWV, 110B,ENT |
ABS |
0ORG 110R l

ENT <X9 1 |
- - 1
. . | First
LIv 1,2,% [Partial Binary
TOENTY !
': IY ; 93 ‘ Second
. . | Partial Binary
INENT]

3

- . l
A Third
. . l Partial Binary
FND | -
ABSOLUTE]
LITERALS First

Partial Binary

1
Second
Partial Binary

J

Third
Partial Binary

J

4.3.5 SEGMENT — GENERATE BINARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time, It has many of the features of
IDENT and is included primarily to maintain compatibility with previous versions of 6000 COMPASS
and to provide another way of handling literals. Use of SEGMENT is intended for CPU absolute or
6000 Series PPU assemblies. It is illegal for 7600 PPU assemblies. For a relocatable subprogram,
a SEGMENT pseudo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables
to be written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDENT to be dumped as the main (0, 0)
overlay. Each subsequent SEGMENT generates a new overlay identified by the level 1,0. END dumps
the last overlay. Refer to appendix B for overlay record format. When COMPASS encounters a
SEGMENT pseudo instruction, it does not clear the symbol table or block declarations. All blocks
other than the block in use must be complete. For a CPU assembly, the literals block must be in one
overlay only but that overlay can be any overlay.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

name SEGMENT |origin, entry

name Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last
character must not be a colon. It is a required loader linkage symbol.

origin A relocatable expression specifying the first word address of the overlay. It
can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank IDENT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-1. The word
at origin-1 is overlayed by the 50g loader table.

For a PPU subprogram, the load address is origin-5, Five 12-bit PPU
words are overlayed by the 60-bit loader table. Data can be generated in
locations starting with origin and above, but not below origin. The origin
subfield does not serve the same function as ORG nor does it replace ORG
for setting the origin counter. The origin of an overlay can be below the
origin specified on any other IDENT or SEGMENT.

entry An expression specifying the overlay entry address. It is used for CPU

assemblies only. When the overlay is called, control optionally transfers
to this address.

4-14 60279900C

Example:

LOCATION OPERATION | VARIABLE COMMENTS
! N 18 T30
‘ IDENT [SAM,ENTA !

ABS
ORG 1108 !

ENTA fss 8 lENTRY POINT
- L] {

ovLOC 8Ss n |OVERLAY LOAD POINT
. - I

SEG1 SEGMENT STRT,ENTB |
ORG ovLOC
BSS 1 LOADER TARLE

STRY BSS 1 JFIRST WORD OF OVERLAY
L] E] ‘

ENTB RSS 9 'Exscurxon BEGINS HERE
END IEND OF OVERLAY

SEGL is loaded as an overlay upon a call for the loader from the program. The first word of the overlay
is loaded at OVLOC +1, following the loader table. The entry point to the overlay and the first executable

instruction is at ENTB. The overlay, when executed occupies the area of the main program beginning
at OVLOC.

4.3.6 SEG — WRITE PARTIAL BINARY

The SEG pseudo instruction permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
previous IDENT, SEGMENT, or SEG pseudo instruction., It does not write an end of record or begin
a new '778 prefix table. A SEGMENT, IDENT, or END instruction completes the binary record.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block,

See also, section 3.4.3 Partial Binary.

60279900A 4-15

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

SEG

Symbols in the location field and variable field, if present, are ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
) I 18 T30

IDENT | NAME,ORIGIN, ENTRY
ABS
USE A |
. - |
SEG
USE |8 |
. . |
. . |
SEG |
. . |
END :

4-16 60279900D

4.3.7 STEXT — GENERATE SYSTEMS TEXT RECORD

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols,
program macros, opdefs, and micros written in overlay format «t the end of pass one. The STEXT
instruction must be in the first statement group.

The systems text record becomes available in other assemblies through use of the S or-G option on
the COMPASS control card (chapter 10). Through this feature, information on the systems text record
need be processed only once for all COMPASS programs using the same system text record.

System text records cannot be generated and used in the same assembly batch; system text records
generated by one COMPASS control card call can be used only by assemblies performed by later
COMPASS control card calls,

The symbols included in the system text record written are all symbols defined in the assembly except
those for which at least one of the following is true:

The symbol value is relocatable or external,

The symbol is qualified.

The symbol is redefinable (that is, defined by SET, MAX, MIN, or MICCNT).

The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.

The symbol is 8 characters beginning with 1 I
All defined micros are included in the system text record.

All program-defined opcodes are also included, Machine and pseudo instructions automatically defined
by COMPASS and opcodes defined by system text input (if any) to the assembly are not included.

When a system text record is used as input to an assembly through the G or S option on a COMPASS
control card, all of the micros and opcodes in the system text are automatically defined at the start of
each assembly; however, the symbols in the system text are defined only for those assemblies that
contain the SST pseudo instruction.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rname STEXT

60279900D 4-16.1

rname Name assigned to overlay; 1-7 alphanumeric characters, of which the first must
be a letter (A-Z) and the last must not be a colon. It is placed in the prefix
table that precedes the overlay. Refer to appendix B for record format.

If rname is blank, COMPASS uses the name from the IDENT instruction and
generates the systems text only. Otherwise, the systems text is generated in
addition to the relocatable or absolute binary and precedes the binary output
on the binary file.

An entry in the variable field, if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 T30
IDENY | SYSTEXT i
STEXT |
BASE | MIXED
MPRS EQU 100 IT
'svsvsn CONSTANTS, SYMBOLS,
|AND COMMUNICATIONS AREAS
TRTS €QU 7777 I =
IXX/X OPDEF |I,J,K |
. . . (svsren-uerrnen MACROS
. . . 'AND OPDEFS
ENDM |
SYSCOM |MAGCRO |N |
S .
) .) i
ENDM ' n
DATE MICRO [1,10,%,,.%
. . . |SYSTEM-DEFINED MICROS
END L

4.3.8 LCC — LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

LCC directive

60279900C 4-17

directive First nonblank character following L.CC to the first blank. For directive
formats, refer to the operating system reference manual.

A location field symbol, if present, is ignored.

COMPASS writes a directive as a record in packed display code for subsequent interpretation by the

loader (appendix B). COMPASS does not edit the directive; the loader recognizes illegal forms at load
time.

4.3.9 COMMENT—PREFIX TABLE COMMENT

The COMMENT pseudo instruction inserts the character string specified in the variable field into the
third through fourteenth words of the prefix table in the binary record. The prefix table, and thus the
comment, is ignored by the loader but identifies the record for use by 7000 SCOPE utility programs
such as LIBEDIT and CATALOG. If a subprogram contains more than one COMMENT instruction, the
new comments are appended to the table for the most recent binary control card. If the subprogram
containg a NOILABEL instruction, this instruction is meaningless, COMMENT, instructions following
SEG and blank IDENT pseudo instructions are ignored without notification.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
COMMENT |string
string First nonblank character following COMMENT to the last nonblank character;

no more than 120 characters.

A location field symbol, if present, is ignored. Refer to section 4. 3.4 for an example.

4.3.10 NOLABEL — DELETE HEADER TABLE

The NOLABEL instruction modifies the format of the binary output produced by COMPASS for an
absolute assembly by optionally suppressing header information. It is particularly convenient for

generating deadstart programs which must be loaded at location zero or for writing Chippewa format
CPU programs.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

NOLABEL |I

4-18 60279900A

Optional; if the variable field contains a character string beginning with an I,
COMPASS suppresses all prefix (77 8) tables, but retains the other program
header tables.

If the I option is omitted, COMPASS suppresses all of the following:

Prefix tables (77_)

Overlay control tables (50)
Multiple entry point tables (51)
PPU header control tables

A location field symbol, if present, is ignored. NOLABEL is not permitted in a relocatable CPU

assembly.

4.4 MODE CONTROL

Mode control pseudo instructions influence the basic operating characteristics of the assembler.
Specifically, the instructions allow the programmer to alter the way in which the assembler:

Interprets binary data BASE pseudo instruction
Generates character data CODE pseudo instruction
Interprets the beginning of comments on statements COL pseudo instruction
Qualifies symbols or does not qualify them QUAL pseudo instruction
Interprets the R= instruction Bl=1 or B7=1 pseudo instruction

In each case, the assembler has a default mode which it uses if one of these instructions is never used.

4.4.1 BASE — DECLARE NUMERIC DATA MODE

The BASE pseudo instruction declares the mode of interpretation for numeric data for which a hase radix
is not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subprogram,
COMPASS evaluates unspecified numeric data as decimal.

An alternate application of BASE is to define the previous base as a micro.

Format:
LOCATION OPERATION VAK!ABLE SUBFIELDS
mname BASE mode
mname Optional 1-8 character micro name by which the previous BASE mode can

60279900D

be referenced in subsequent BASE instructions. If mname is present, the
value of the micro named mname is (re)defined to be a single letter D, M, or
O, corresponding to the BASE mode in effect prior to this BASE instruction.

mode Blank, in which case the base remains unchanged, or 1-8 characters, the
first of which designates the new base as follows:

o Octal assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B prefix or suffix is
evaluated as octal. For example, the constants 15 and 15B
are evaluated as 15g; constant 15D is evaluated as 17g. Any
item containing an 8 or 9 without a D radix is flagged as
erroneous. Exceptions are scale factors, character counts,
shift counts (S modifier), and binary point positions, which
are always considered decimal.

D Decimal assembly base; any subsequent use of a data item
not specifically identified by an O, D, or B prefix or suffix
is evaluated as decimal.,

M Mixed assembly base; any subsequent use of a data item not
specifically identified by an.O, D, or B is evaluated as decimal
if it is one of the following. Otherwise, it is evaluated as
octal.

VFD bit count

IF, ELSE, or SKIP line count

MICRO, OCTMIC, or DECMIC character count

B, C, or I subfield in REP or REPI

DUP or ECHO line count

Character count

Shift counts (S modifier)

Scale factors

Binary point position

COL column number

DIS word count

SPACE line count

* Use base in effect prior to current base. The assembler records

occurrences of BASE pseudo instructions. Each BASE * resumes
use of the most recent entry and removes it from the list. When

the subprogram contains more BASE * instructions than there are
entries in the stack, COMPASS used a decimal base.

other If the variable field is not blank and does not contain one of the
above, COMPASS sets an error flag.

4-20 60279900A

Examples:

This example illustrates the affect of BASE on a VFD instruction that defines a 48-bit field
containing 108.

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
DeO BASE | O ;
6000000000000010 VFO 60710 |
[] - '
OeD BASE D l
9000 VFO (Y.74.] |
000000000010
* - |
DeM BASE L] :
00000000 VFOD &48/10
00000010 [

The following example illustrates the micro capability of BASE:

LOCATION OPERATION | VARIABLE COMMENTS
) " 18 (30

DeM SAVESB BASE M iSlVE BASE IN USE

L] * * ‘

. . . ICODE USING BASE M

BASE £SAVEB:2 'RESTORE SAVED BASE

MeD BASE] RESTOR|E SAVED BASE

L] [] L]]

L d [] - I

4.4.2 CODE — DECLARE CHARACTER DATA CODE

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Character data can be generated in ASCIIT display, enternal BCD, or internal BCD, codes. If no
CODE instruction is used, COMPASS generated display code. Codes are given in appendix D.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

CODE char

tAmerican Standard Code for Information Interchange.

60279900C 4-21

char The first character of a string indicates the code conversion:

A ASCII

D Display

E External BCD
I Internal BCD

A location field symbol, if present, is ignored.

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
17252620252400000000 DATA oLOUTPUY ;
De A CODE ASCII |
57656460656400000000 DATA QLOUTPUTY I
ArE CODE EXTERNAL B8CD
L6242347242300000000 DATA oLoUTPUTY !
EnI CODE - | INTERNAL BC(
L66663476646300000090 DATA gLOUTPUT
Ie0 CODE | DISPLAY |
17252420252490000000 DATA gLouTPUT :

4.4.3 QUAL — QUALIFY SYMBOLS

The QUAL pseudo instruction signals the beginning of a sequence of code in which all symbols defined in
it are either qualified or are unqualified (global). If no QUAL is in use in a subprogram all symbols
are defined as global.

Within a QUAL sequence in which a symbol ic defined, a symbol reference need not be qualified.

Used outside the sequence, the symbol must be referenced as /qualifier/ symbol. Thus, a symbol
and a qualifier become a unique identifier local to the sequence in which the symbol was defined. The
same symbol used with a different qualifier is local to a different QUAL sequence. If a symbol is
defined with no qualifier as well as being defined as qualified, a reference to the symbol within the
QUAL sequence is assumed to be a reference to the qualified symbol rather than to the global symbol.

In this case, a reference to the global symbol must be preceded by a blank QUAL and followed by a
QUAL *,

Default symbols and linkage symbols are not qualified.

LOCATION OPERATION VARIABLE SUBFIELDS

QUAL qualifier

4-22 , 60279900C -

qualifier

A symbol qualifier or * or blank, as follows:

qualifier 1-8 character name, the first character of which cannot be $ or =

or numeric, The qualifier cannot contain the characters
+ = % / ,or Al
A blank terminates the qualifier.
Any symbol defined subsequent to this QUAL up to the next
QUAL must be referenced from outside the QUAL sequence as
/qualifier/symbol
The current qualifier appears as the third sub-subtitle on the

assembly listing (section 11.1),

The assembler resumes using the qualifier in use prior to the
most recent QUAL. Two or more consecutive QUAL * instructions
have the same effect as a single QUAL *,

blank A blank variable field causes any symbols defined up to the next

QUAL to be global. A global symbol does not require a qualifier.

A location field symbol, if present, is ignored.

NOTE

The first attempt to redefine a global symbol from
within a QUAL sequence results in A and U errors.
The symbol is defined local to the QUAL sequence
with a zero value. To avoid fatal errors, precede
any redefinition instruction (SET, MAX, MIN, or
MICCNT) within a QUAL sequence with a blank QUAL
and follow it with a QUAL *,

60279900A

LOCATION OPERATION | VARIABLE COMMENTS
] n 18 |30
j QuaL |z ' _
21 8sSs 2 |24 QuALIFIED BY 2
* L J ! *
QUAL |B EQUATE SYMBOLS SO THAT
21 = 72721 |Z4 IN 2 CAN BE REFERRED

|TO AS Z1 IN B

4-23

Examples:

LOCATION OPERATION | VARIABLE COMMENTS

) n 18 T30
T

QUAL PASSt |

BCDE SX6 F IBCDE QUALIFIED BY PASSH
» - I
EQ tock l
QUAL |PASS? '

RCDE EQU LOC?2 IBCDE QUALIFIED BY PASS2
QUAL |SYMBOLS GLOBAL FROM NOW ON
. . l
. - |

GLOB BSS 0 lGLOR IS GLOBAL
. . |
RJ /PASS1/8CDE |JUMP TO PASS1 ROUTINE
. . |
RJ ‘/PASSZ<BCDE|JUMP T0O PASS2 ROUTINE

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
} n 18 T0
ToR WACRO |BLOCK,KWAL |

USE BLOCK
QuUAL KWAL

TAGY RSS 108

YBG2 VFD 607-1
USE *
QUAL *
ENDM

TAB ONE , ONE
. crbpE e

|
n
I
|
|
|
|
n
!
|
|
|
I
|
I
|

THO, THO
THO
T™HO |
e |
ie07-1
. £
|
|

1wess
10865

4-24 ’ 60279900A

4.4.4 B1 =1 AND B7 =1 — DECLARE THAT B REGISTER CONTAINS ONE

The B1=1 and B7=1 pseudo instructions declare that in this CPU subprogram, the contents of the Bl
register or the B7 register, respectively, are one. These instructions do not produce code; they alter
the way in which code is generated by the R= instruction (section 4, 8.7) and define the symbol Bl=1

or B7=1. If more than one instruction is used, the assembler uses the last one encountered.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
Bl=1
B7=1

A symbol in the location or variable field is ignored.
Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= described under Data Generation.

4.4.5 COL — SET COMMENTS COLUMN

The COL pseudo instruction sets the column number at which the comments field can begin when the
variable field is blank. If no COL instruction is used in the subprogram, COMPASS uses 30.

LOCATION O’EIATION VARIABLE SUBFIELDS
COL n
]
n An absolute evaluatable expression designating the column number; n >12. When l

base is M, n is assumed to be decimal. If n is less than 12, COMPASS sets the

column at 12, If n is zero or blank, COMPASS sets the column to 30, the default
column,

A location field symbol, if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
[29 coL 36 Ve
USE {RETURN TO BLOCK O

In this example, subsequent statements for which the variable field is blank cannot have comments
beginning before column 36.

60279900D 4-25

4.5 BLOCK COUNTER CONTROL

Counter control pseudo instructions establish local blocks, labeled common blocks, and blank common
blocks in addition to the absolute, zero, and literal blocks established by the assembler; they control
use of all program blocks, and provide the user with a means of changing origin, location, and position

counters.

4.5.1 USE — ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established block. The block in use is the
- block into which code is subsequently assembled. A user may establish up to 252 blocks.

‘ Format:

LOCATION OPERATION VARIABLE SUBFIELDS
USE block
block Identifies block to be used, as follows:

0 or blank
//

/name/

name

Nominal block (absolute or 0)

Blank common block; for a relocatable subprogram, this block
cannot contain data. The only storage allocation instructions
that can follow are BSS and ORG. The BSSZ instruction is
illegal because it presets the block to zeros.

Labeled common block. A name can be a maximum of 7 characters
and cannot include blank or comma. The first and last characters
must not be colons. Conventions imposed by the loader or other
assemblers or compilers could further restrict the use of names.

Local block. A name can be 1-8 characters, excluding blank or
comma, Use of this name enclosed by brackets does not cause
the block to become a labeled common block. For example,
USE A and USE /A/ are different blocks.

Block in use prior to current USE, USELCM, or ORG. See
diseussion following.

A location field symbol, if present, is ignored.

The nominal program block contains the entire program if no USE or USELCM is encountered.

4-26

6027990B

In particular, redundancy between block names is permitted as follows:

A labeled common block designated by /0/ can coexist with the program block designated by 0.
Blank common designated by // can coexist with a labeled common block designated as ////.

When a block is first established, its origin and location counters are zero and its position counter is
either 60 (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is
indicated, COMPASS saves the values of the current origin and position counters along with an
indicator as to whether the next instruction is to be forced upper. If the most recently assembled
instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is forced upper. When the designated block has been
previously established, COMPASS resumes assembly in the block using the last known values for

the origin and position counters. The value of the location counter is not saved. Upon resumption of
the block, it is set to the value of the origin counter. If a LOC had been used previously, resetting
of the location counter to produce the desired results is the responsibility of the programmer.

The assembler records occurrences of USE, USELCM, and ORG pseudo instructions (except USE *
and USELCM *) and maintains a USE table of the most recent 50 occurrences. Each USE * and
USELCM * resumes use of the most recent entry and removes it from the table. When the subprogram
contains more USE * or USELCM * instructions than there are entries in the stack, COMPASS uses
the nominal block.

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30

USE |
13 0100000000 GAMMA RJ ALPHA IBLOCK 0 IN USE

USE DATA1 IBLOCK OATA1 IN USE
35 17204000000000000000 SAR DATA 1.0 !

USE * |RESUME USE OF BLOCK O
14 5130000000 SA3 SAM |

Note that the SA3 is forced upper because the RJ causes a force upper of the next instruction in the
block.

Location Code Generated LOCATION OPERATION [VARIABLE COMMENTS
1 n 18 J30. ‘
USE TABLE USE TABLE LOCAL BLOCK
2615 00 VFO 6/0 |
USE ¥ IRESUME PREVIOUS BLOCK
|
L4 » | *
. L | L
USE TABLE :RESUHE USING TABLE
30002600 + VFD 6/1RX118/S
USE * RESUME PREVIOQUS BLOCK

Note how separate blocks can be used to facilitate packing of partial-word bytes into a table residing in
a block other than the one primarily being used.

60279900A 4-27

4.5.2 USELCM — ESTABLISH AND USE LCM BLOCK

The USELCM pseudo instruction establishes or resumes use of a block assigned to 6000 Series Extended
Core Storage (ECS) or 7600 Large Core Memory (LCM). For all but COMPASS Version 2 under SCOPE
2, data generating instructions and symbolic machine instructions are illegal; only storage reservation
pseudo instructions are allowed, that is, BSS and ORG. The USELCM instruction is illegal in PPU

assemblies.,

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

I block

USELCM block

Required; identifies the ECS/LCM block as follows:

name

//

/name/

Common block name; 1-7 characters excluding blank or comma.
The first and last characters must not be colons. This form is
illegal for SCOPE 2.

Blank common block; allowed only by SCOPE 2. This block cannot
contain data. The only storage instructions that can follow are
BSS and ORG. The BSSZ instruction is illegal here because it
presets the block to zeros.

Labeled common block; allowed only by SCOPE 2. A name can
be 1 - 7 characters and cannot include blank or commas. The first
and last characters must not be colons.

Block in use prior to current USE, USELCM, or ORG. Each
USELCM * or USE * resumes use of the most recent entry in the
USE table and removes it from the table,

A location field symbol, if present, is ignored.

The blocks provide a means of symbolically addressing (and for SCOPE 2, presetting) the job's ECS/
LCM field from a CPU program. Use of a block can be resumed through use of ORG or USELCM.

Examples:
LOCATION OPERATION | VARIABLE COMMENTS
) i 18 |30
BASE 0 |
1
USELCM|LCM JESTABLISH AND USE LLM BLOCK f
LCMC BSS 0 JUEFINE SYMBOL LCMC
BLOC1 BSS 100 |RESERVE 100 WORDS
B8LOC?2 BS3 200 |RESERVE 200 WORDS
USE * |RESUME PREVIOUS BLOUK
L |
ORG gLoci+10008 !
BLOC3 BSS 20 IRESERVE 20 MORE WORDS
USE . IRESUME PREVIOUS BLOLK

TThis form is illegal under SCOPE 2.

4-28

602799G0D

4.5.3 ORG — SET ORIGIN COUNTER

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ORG exp
exp Expression specifying the address to which the origin and location counters are

to be set., Following ORG, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows:

1.

If the expression contains a symbolic address, COMPASS uses the block
in which the symbol was defined.

COMPASS uses the current block if the value of the expression is *, *L,
or *O. If the origin and location counters are the same value, and no
code has been assembled in the current location, the only effect of *, *L,
or *O is to force the next instruction upper. If a word is partially
assembled, however, the code already assembled into the location is lost.

If the counter values differ, * or *L sets the origin counter to agree with
the location counter value; *O sets the location counter to the origin counter
value,

An absolute expression causes use of the absolute block. In a relocatable
assembly, this is the only way to establish the absolute block. All symbols
defined in the absolute block are absolute.

Any symbols in the expression must be already defined in the assembly and must not result in a
negative relocatable value. It is not possible to ORG into the literals block.

A location field symbol, if present, is ignored.

60279900D

4-29

4-30

LOCATION

OPERATION

VARIABLE COMMENTS

n

18 |30

I

ABC

xXY2

USE

ALPHA [

L] ‘.
20,100,1000 [LOCATED IN ALPHA

I

BETA [

0 |LOCATED IN BETA

. .

- l.

ABC : ISETS ALPHA COUNTERS TO ABC
. {AND RESUMES USE OF ALPHA

- I-

1000 '

. I

50 ISETS ABSOLUTE BLOCK COUNTER
o |TO 50 AND BEGINS ITS USE
XYZ+100 ISETS BETA COUNTERS TO XYZ+100
. 'o

. X

» IRESUMES ABSOLUTE B8LOCK

fHe » &

IRESUMES BLOCK ALPHA

“e s

|RESUMES BLOCK BETA

I

l'

I

[RESUMES BLOCK ALPHA
'c

I

;Resunes NOMINAL BLOCK

®a o o

%"e o o

60279900A

4.5.4 BSS—BLOCK STORAGE RESERVATION

The BSS instruction reserves core in the block in use by adjusting the origin and location counters. It
does not generate data to be stored in the reserved area. A primary application is for reserving blank
common storage. It can also be used to reserve an area to receive replicated code (see REP and REPI
section 4. 8. 8).

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym BSS aexp
sym If present, sym is defined as the value of the location counter after the force
upper occurs. It is the beginning symbol for the storage area.
aexp Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp connot contain external symbols.
The value of the expression can be negative, zero, or positive and the value
is added to both the origin counter and the location counter. A BSS 0 or an
erroneous expression causes a force upper and symbol definition but no storage
is reserved.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 Y 18 I30
USE 7/ !
COMMON BSS 10008 | RESERVE 512 WORDS OF BLANK COMMON
USE * |
L] L] -
[] l L]
L L] | *
SA6 COMMON+5008
. . L
L) * ' L)
TAG BSS 0 :DEFINE SYMBOL TAG
60279900C

4-31

4.5.5 LOC — SET LOCATION COUNTER

A LOC pseudo instruction sets the value of the current location counter to the value in the variable
field expression. The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter. Thus, any addresses defined while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LOC exp
exp Relocatable expression specifying the address to which the location counter

is to be set. Any symbols in the expression must be already defined in the
assembly and must not result in negative relocation.

A location field symbol, if present, is ignored.

Following a LOC, if the value of the location counter differs from the origin counter, the location field
is flagged with an L on the listing until a LOC *O, USE, ORG, or USELCM instruction resets the
location counter to the value of the origin counter.

A LOC instruction does not cause the assembler to switch from the current block to another. LOC
causes the next instruction in the block to be forced upper. The only effect of LOC * or LOC *L is to
force upper. Because COMPASS does not save the value of the location counter when it switches
blocks, a USE, ORG, or USELCM for a different block effectively resets the location counter to the
origin counter value. When use of the block is resumed, it is the responsibility of the user to reset
the location counter to produce the desired results.

4-82 ' 60279900A

Example:

In the following example, the first LOC is used to generate PPU code that is to be loaded into one

PPU and transmitted to a different PPU for execution. The second LOC is used so that on the listing

the address field contains the table ordinal rather than a load address.
instruction changes the location counter to resume counting under the first LOC. At the end of the

program, LOC *O returns the location counter to the value of the origin counter.

Location

7100
7100
100
108
101
102
103

Iafatalad o
~N
2
"

~reecerrecrCrre
NOWMEFGNROO

215
21%
240
7240

~re

60279900A

Code Generated

2400
2400
2400

6100 0100

0100
0114
6121
0132
0136
0147
02490
1000

(=0

At the end of the table, a LOC

LOCATION

OPERATION

VARIABLE

COMMENTS

It

(T

CH
RES
P PR

PPRA

FND

EQU
EQU
ORG
BSS
LoC
PSN
PSN
PSN
EIM

BSS
LoC
€ON
CTON
CON
CON
CON
CON
CON
CON

LoC
BSS
BSS

Loc

END
1000

L

*0-RES+PPR
240-*

*0

[30
1
i
|
|
|
|
|
|
|
|
|
|
|
|
!
|
I
I
I
|
|
]

4-33

4.5.6 POS — SET POSITION COUNTER

The POS pseudo instruction sets the value of the position counter for the block in use to the value
specified by the expression in the variable field.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
POS aexp
aexp An absolute evaluatable expression having a positive value less than or equal to the

assembly word size (60 for CPU, 12 for PPU)., A negative value, or a value
greater than 60 (or 12), causes an error, The value indicates the bit position
within the current word at which the assembler is to assemble the next code
generated. Use caution, because if the new position counter value is greater than
the old position counter value, part of the word is reassembled. (New code is
ORed with previously assembled data.) If the new position counter value is less
than the old position counter value, the assembler generates zero bits to the
specified bit position. If the value of aexp is zero, COMPASS assembles the next
code in the following word.

A location field symbol, if present, is ignored.
CAUTION

If the POS instruction is used on a word containing re-
locatable or external addresses, undefined results may
occur with no diagnostics.

The POS instruction does not alter the origin and location counters. The position counter is never 0
at the beginning of an instruction. At the beginning of a new operation, if a data value has been
stored into bit 0 (the rightmost bit) of a word, COMPASS increments the origin counter and the
location counter and resets the position counter to 60 (or 12),

A POS *P has no effect whereas a POS $ subtracts one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instructions EQU, =, SET, MAX, MIN, and MICCNT permit direct assignment of 21-bit
values to symbols. The values can be absolute, relocatable, or external. Register designators are
not valid in the expressions. Subsequent use of the symbol in an expression produces the same result
as if the value had been used as a constant. In the listing of the symbolic reference table, a refer-
ence to an EQU, =, SET, MAX, MIN, or MICCNT instruction is flagged with a D. Symbols defined
using EQU and = cannot be redefined; symbols defined using any of the other symbol definition
instructions can be redefined.

4-34 60279900D

4.6.1 EQU OR =—EQUATE SYMBOL VALUE

An EQU or = pseudo instruction: permanently defines the symbol in the location field as having the value

and attributes indicated by the expression in the variable field.

The expression cannot contain symbols

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
sym EQU exp
or
sym = exp
sym A location symbol is required. See section 2.4 for symbol requirements.
exp An evaluatable expression. Any symbols in the expression must be previously
defined or declared as external.
prefixed by =8 or =X unless the symbols have also been defined conventionally.
If the expression is erroneous, COMPASS does not define the location symbol
but flags an error.
Examples:

60279900 A

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
20437 OPS = 204378 ;
74 LINP = 748 |
3 CH EQu 3 }
74 PAGESIZ |= LINP I
64271 LGOPS EQU *-0PS |

4-35

4.6.2 SET — SET OR RESET SYMBOL VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the expression in the variable field. A subsequent SET using the same symbol redefines
the symbol to the new value and attributes. SET can be used to redefine symbols defined by SET, MAX,
MIN, or MICCNT, only.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym SET exp
sym A location symbol is required. See section 2.4 for symbol requirements.
exp An evaluatable expression. The expression cannot include symbols as yet

undefined and cannot contain symbols prefixed by =S or =X unless the symbols
are also defined conventionally.

If the expression is erroneous, COMPASS does not define the symbol but
issues a warning flag,

The symbol in the location field cannot be referred to prior to its first definition.

Examples:

17
74
22
76
24

20

4-36

LOCATION OPERATION | VARIABLE COMMENTS
n 18 130
A EQu 15 | A HAS VALUE OF 15
B SEf »p :a HAS VALUE OF POSITION COUNTER
c SET Ae3 :c HAS VALUE A+3 OR 18
) = B+2 | ILLEGAL, B IS DOUBLY DEFINED
l
c SET c+2 | LEGAL, C CHANGES FROM 18 T0 20
D SET Fep :ILLEGAL, F AS YET UNDEFINED
8ss AR | ILLEGAL, REFERENCE PRECEDES
| FIRST DEFINITION
AR SET 16

60279900A

4.6.3 MAX — SET SYMBOL TO MAXIMUM VALUE

The MAX pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the largest (most positive) value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value,
Conversely, MAX can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MAX €XP;,€XPgs e v s expn
sym A location field symbol is required. See section 2. 4 for symbol requirements.
expi An evaluatable expression. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =S or =X unless
the symbols are also defined conventionally.

The expressions should have similar attributes. No test is made for attributes. The test for maximum

value is made in passone. T testing for the maximum value in pass one, COMPASS uses values for
relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and these values are

used for the final value of the expression selected in the
first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag.
The symbol in the location field cannot be referred to prior to its first definition.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
5 PT3 EQU 5 |
6 PT31 EQu 6 !
2 PT32 EQuU 2 :
|
6 SYM MAX PT3,PT31,PT3|2
60279900A

4-37

4.6.4 MIN — SET SYMBOL TO MINIMUM VALUE

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum or least positive value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value,
Conversely, MIN can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MIN €XPy,€XPgs .+« + s €XPy
sym A location symbol is required (section 2, 4).
exp An evaluatable expression. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =S or =X unless
the symbols are also defined conventionally.

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass one.
COMPASS uses values for relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is

used.

The relocatable symbols have been reassigned

values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning

flag.

The symbol in the location field cannot be referred to prior to its first definition.

4-38

60279900A

4.6.5 MICCNT — SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruction defines the symbol in the location field as having a value equal to the
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX,
MIN, or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT

can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MICCNT mname
sym A location symbol is required (section 2. 4).
mname Name of a previously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warning flag is issued.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
[Ms6 MICRO | 14,*STRING* IDEFINE 6-CHARACTER MICRO
: . [.
S X
6 MSIZE MICCNT | MSG IMSIZE EQUALS 6
. - |
. . |e
MSG MICRO 1,,*ALPHANUMERIC #MSGZ* 19 CHAR. MICRO
MSG. | MICRO |1,,®ALPHANUMERIC STRING*
23 MSIZE MICCNY |MSG !HSIZE EQUALS 19

60279900A

4-39

4.6.6 SST — SYSTEM SYMBOL TABLE

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
symbols had been defined in the subprogram.

The symbols are in 2 systems overlay or on a systems text file accessed through the S or G list
options on the COMPASS control card (section 10. 1. 2).

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
SST Sym,, SyMg, ..., SYm,
symy One or more symbols on the file that are not to be defined.

A location field symbol, if present, is ignored.

Refer to section 4. 3.4 for an example of use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY and EXT do not define symbols but either declare symbols defined within
the subprogram as being available outside the subprogram or declare symbols referred to in the
subprogram as being defined outside the subprogram.

4-40

60279900A

4.7.1 ENTRY — DECLARE ENTRY SYMBOLS

The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram can
be referred to by subprograms compiled or:assembled independently; ENTRY lists entry points to the
current subprogram. ENTRY is illegal in PPU assemblies.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ENTRY sym1 »SYMyyeee,s symn
Symi Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the

last must not be a colon. The symbol cannot include the following characters:

+

* / blank , or Al

Each symbol must be defined in the subprogram as nonexternal (cannot begin
with =X or be listed on an EXT pseudo instruction). Entry point symbols
must be unqualified (section 2.4. 5).

A location field symbol, if present, is ignored.

A list of all entry points declared in the subprogram precedes the assembly listing.

Example:
Location Code Generated
110
110
110 5120000100

72720
111 5110000002
60279900B

LOCATION OPERATION | VARIABLE COMMENTS

1 T 18 [30
I
|

IDENT |GT,CONTROL ,CONTROL
ABS |

ENTRY |MODE

ENTRY |ONSW

ENTRY |OFFSH

ENTRY [ROLLOUT

ENTRY |SETPR

ENTRY [SETTL

ENTRY |SWITCH

|
|
|
|
|
CONTROL [BSS 0 |
[
|
|
|
|

ORG 1100
MODE SA2 ACTR

SX7 X2

SA1 2

4-41

4.7.2 EXT — DECLARE EXTERNAL SYMBOLS |

The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled
or assembled subprograms for which references can appear in the subprogram being assembled.
The EXT pseudo instruction is illegal in an absolute subprogram.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
EXT sym_,S .oy SYmM
Yy 1? sz, » SY n
sym.

Linkage symbol, 1-7 characters of which the first must be alphabetic (A-Z) and the
last must not be a colon, The symbol cannot include the following characters;

+ - * / blank , or A

These symbols must not be defined within the subprogram. External symbols
are unqualified.

A location field symbol, if present, is ignored.

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listing.

4-42

602799008

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generated through symbolic machine instructions. An instruction that

generates data cannot be used in a blank common block. The pseudo instructions that generate data
are:

BSSZ - Generates zeroed words

blank operation field ' Generates one zeroed word

DATA Generates one or more words of data

DIS Generates one or more words of data I
LIT Generates literals block entries

VFD Places expression values in user-defined fields

CON Places expression values in full words

R= For use in macros; R= assumes that either (B1)=1 or (B7)=1 and

generates increment instructions accordingly

REP or REPI Does not actually generate object code at assembly time but
causes the relocatable loader to repeatedly load a sequence of
code into a reserved blank storage area.

4.8.1 BSSZ AND BLANK OPERATION FIELD—RESERVE ZEROED STORAGE

The BSSZ instruction reserves zeroed core in the block in use. The origin and location counters are
adjusted by the requested number of words and the assembler generates data words of zero to be
loaded into the reserved area. An instruction that contains a symbol in the location field but has a
blank operation field has the same effect as a BSSZ of one word.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym BSSZ aexp
sym If present, sym is defined as the value of the location counter after the force
upper occurs. The symbol identifies the beginning of the reserved storage area.
aexp Absolute evaluatable expression specifying the number of zeroed words of

storage to be reserved. The expression cannot contain external symbols or
result in a relocatable or negative value.

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is
reserved.

60279900D - 448

A BSSZ or group of BSSZ instructions of six or more words produces an REPL table in object code to
reduce the physical size of the object program (appendix B).

Only the first word appears on the listing.

4.8.2 DATA — GENERATE DATA WORDS

The DATA pseudo instruction generates one or more complete 60-bit or 12-bit data words inthe
current block for each item listed in the variable field.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym DATA iteml, itemz, cany itemn
sym If present, sym is assigned the value of the current location counter after
the force upper occurs. It becomes the symbolic address of the first item
listed.
itemi Character, octal numeric, or decimal numeric data item, according to

specifications described in section 2.7, Floating point notation is illegal in
PPU assemblies. Items are separated by commas and terminated by a blank.
A literal cannot be used as an item.

A DATA pseudo instruction always forces upper. A blank item does not cause generation of a data word.

Unless the D list option is selected, only item1 appears on the listing,

Examples:
Location Code Generated LOCATION OPERATION [VARIABLE COMMENTS
1 N 18 [30
$52 14071790000000000080 orPT8 DATA aLL GO i
$63 4000000000600000000800 oPTY DATA 1B8S59 |
854 03171520111405000000 orPTY DATA BLCOMPILE |
§55 172524202524085000080 OPYD DATA BLOUTPUT, O |
€56 00000000008000000080 |
557 172051453146314631546 oPTY DATA 1.3E€E !

560 164031463146314631%6

60279900A

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
PERIPH |
DO BASE D |
td 3 [
1250 7070 AT DATA [F070,-7,0,1R{
1251 770 [
1252 0000 l
1253 0036 |
125% 5501 DATA RC A,OLEF
1255 6000 |
1256 0506 |
1257 0123 DATA 123,-4 ‘
1260 7773
1261 0401 DATA £'UATA* l
1262 2401

4.8.3 DIS—GENERATE WORDS OF CHARACTER DATA
The DIS pseudo instruction generates words containing character data. The instruction can be used
conveniently when a character data string is to be used repeatedly. Unless the D list option is selected

only the first word of character data appears on the listing. The instruction has two formats:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DIS n, string

sym If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

n An absolute evaluatable expression specifying an integer number of words to be

generated. When base is M, COMPASS assumes that n is decimal.
string Character string

For a CPU program, COMPASS takes 10 times n characters from the string and packs them as they occur
10 characters per word into n words. For a PPU program, COMPASS takes two times n characters from
the string and packs them as they occur two characters per word into n words. If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks,

If nis 0, COMPASS assumes the instruction is in format two.

602799008 4-45

Format two:

LOCATION QOPERATION VARIABLE SUBFIELDS

sym DIS ,dstringd

If present, sym is assigned the location counter value after the force upper

occurs, It is the symbolic address of the first word containing the character

sym
string,

d Delimiting character

string

In this form, the string must be bounded by delimiters.

The comma is required.

Character string; any character other than delimiting character

the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them.
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an
word for them. If COMPASS detects the end of the statement before it detects a second

delimiting character, it produces a fatal error.

additional

Examples:
Location Code Generated

561 07851605220124055535
562 55032025552717220423
563 07051605220124055535
564 55032025552717220423
565 00000000000000000000

4-46

LOCATION OPERATION | VARIABLE COMMENTS
n 18 130
ONE DIS 2,GENERATE 2l CPU WORDS
|
THO DIS »*GENERATE 2/ CPU WORDS*

|
|

60279900B

The characters between

Location

i402
1403
1404
1405
1406
1407
1410
1411
1412
1413
i414
. 1415
" 1416
1417
1420
1421
1422
1423
1424
1425
1426

Code Generated

0705
1605
2201
2405
5534
3355
2020
5527
1722
0423
0705
1605
2201
2405
5534
3355
2020
5527
1722
0423
nooo

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
PPU i
1
DM BASE |M |
DIS 10,GENERATE 10 PP WORUS
[
u
|
[
|
|
|
t
DIS »*GENERATE 10 PP WORDS*
!
|
|
|
|

4.8.4 LIT — DECLARE LITERAL VALUES

A LIT pseudo instruction generates data words in the literals block, This instruction and the
= prefix to a data item provide the only means of generating data in the literals block. The LIT
pseudo instruction assures sequential entries for a table of values.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym LIT iteml, itemz, e ,it:emn
sym ¥ present, sym is assigned the value of the literals block location counter
it;emi At least one and not more than 100 words of character, octal numeric, or

60279900A

decimal numeric data items.

Section 2. 7.3 contains specifications.

are separated by commas and terminated by a blank. Floating point data
items are illegal in PPU assemblies.

Items

4-47

COMPASS enters data items into the literals block in the order specified.

If the converted binary values for all the data items listed with a single LIT match an existing literal
block sequence, they are not duplicated. If, however, any item in the list does not match an entry in
the block, the entire sequence is generated. A literal item subsequently referred to through an

= prefix is not duplicated. A null item (e.g. H** or 0L) does not cause a word to be generated.

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] " 18 [30
611 POOL LIT 3.1,1.59265,2.7182182,57.,2957795EE1
CONTENT CF LITERALS BLOCK,
000611 17216146314631463146 0Q[~-Y=-Y~Y-
000612 17206275576L41776271 OP12.,26%1+
000613 17215337351136014426 0Q#2I3A9YV
00061% 17314363651440663121 0YBtal5vYQ
000615 16513333033540576566 N(0DC25,.pv
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30
7447 N2 LIT 1R1,70704,7,0
7453 LIT 2C A,O0LEF |
7456 | LIT H¥* LITERALS* |
CONTENT CF LITFRALS BLOCK. '
76447 g0034% 1
7450 7070 e
7451 8007 G
78452 0000
TL53 5501 A
7454 gooo :
7455 0506 EF
7456 1411 LI
TH57 2405 TE
7460 2201 RA
7461 1423 LS

4-48

602799008

4.8.5 VFD — VARIABLE FIELD DEFINITION

The VFD instruction generates data in the current block by placing the value of an expression into a
field of the specified size.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym VFD iteml/expl, itemz/expz, .o oitemy /expn

sym For a CPU assembly, the location field can contain sym, plus, minus, or
blank, as follows:

sym If a symbol is provided in the location field, a force upper occurs
and the value of the location counter following the force upper is
assigned to the symbol. The symbol identifies the first word of
data generated by the VFD.

+ Causes a force upper. Data generation begins in a new word.

~ COMPASS generates zero bits to the next quarter word boundary,
at which point the first field begins.

blank COMPASS begins the first field at the current value of the position
counter,

For a PPU assembly, if the location field contains a plus, minus, or a symbol,
data generation begins in a new word. If the location field is blank, the first
field begins at the current value of the position counter.

itemi An unsigned constant or previously defined symbol having a value specifying
a positive integer number of bits for the field to be generated; maximum field
size is 60 bits for both CPU and PPU assemblies (60 being the maximum
number of significant bits for an expression value). When base is M, ii:emi
is assumed to be decimal notation.

exp; An absolute, relocatable, or external expression, the value of which will be
inserted into the field specified by itemj. For CPU assemblies, if exp; is a
relocatable or external value, itemj must be at least 18 bits and must end at
bit 30, 15, or 00, the only legal positions for addresses in 30-bit CPU
instructions.

The expression is evaluated using the specified field size. Character constants
are right or left adjusted in the field according to the type of justification
indicated.

Each field is generated as it occurs. For a CPU assembly, if the next instruction that generates code
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of a quarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary.
These zero bits do not show on the assembly listing. Remaining parcels are then filled with no-
operation instructions.

60279900D 4-49

When a VFD instruction that does not have a location field entry immediately follows another VFD in
the same block, no padding with zeros or forcing upper occurs; fields are generated sequentially as
they are specified.

Following a VFD, the position counter contains the number of bits remaining to be assembled in the
last word in which data was generated by the VFD.

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30
31 ALPHA SET 25 |
566 24010200000023000551 TABLE VFD 36/3CTAB,6/19,18/TABLOC
567 00000005665555555565 VFD 30/%~1,30/5H sALPHAZ -0
570 777777774]
pooooongoo0nog VFD *py i
571 11172401550155555531 VFD 30/0HIOTA,6/1RA,24/0AX+1
572 00000015052323010705% VFD H0/0RMESSAGE,30/73LGCI0,15/0R0
573 031117000000033 !
Location Code Generated LOCATION QPERATION | VARIABLE COMMENTS
I " 18 [30
PPU '
OrM BASE - |M l
1310 3334 N& VFD 60/10R0123456789
1311 3536 |
1312 3740 |
1313 4142
1314 43414 I
1315 g010 ALl VFD 12/710,12711,12/-12,4,12/7-7870
1316 00114 |
1317 7765 |
1320 6707

4.8.6 CON — GENERATE CONSTANTS

The CON pseudo instruction generates one or more full words of binary data in the block in use. It
differs from DATA in that it generates expression values rather than data items and differs from VFD
in that the field size is fixed.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym CON expl,expz, vee ,expn
sym If present, sym is assigned the value of the location counter after the force
upper occurs.
expi An absolute, relocatable, or external expression the value of which will be
inserted into a field having a size of one word. For PPU assembly, floating
point is not allowed; for CPU assembly, double precision is not allowed.
4-50

60279900A

Examples:

Location Code Generated LOCATION OPERANON | VARIABLE COMMENTS
1 n 18 T30
1460 0000 ‘IMSG1 Jcown 0 '
1461 0006 CON 6 I
1462 0003 Con 3 I
1463 2204 CoN FATL
1464 0024 1CON 20 |
1465 0000 MSG2 CoN 0
1466 0006 con e |
1467 0003 CON 3
1470 2172 CON | PASS |
1471 0024 ConN 20 |
Location Code Generated 1 | Location OPERATION | VARIABLE COMMENTS
1 n 18 [0
574 TAD BSS 1
L o LOC 0 !
L 9 00000000000000000055 CON 1R |BB
L 1 00000000000000000062 CON 1R 01
L 2 00000000000000000064 CON 1R2 IDZ
L 3 00000000000000000060 CON iR: l03
. [] { -
. - I .
L 75 00000000000000000066 CON 1Rv l7rs
L 76 00000000000000000076 CON 1R™ |76
L 77 00000000000000000055 CON 1R 471
67% Lo0C *0 b

4.8.7 R = — CONDITIONAL INCREMENT INSTRUCTION

The R~ pseudo instruction generates a CPU increment unit instruction depending on the contents of the

variable subfields and on whether or not the subprogram earlier contained a Bl=1 or B7=1 pseudo
instruction (section 4. 4. 4).

Use of R= augments macro definitions and increases optimization of object code. It is illegal in a
PPU program.

The A list option controls listing of substituted instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym R~ reg,exp
sym Optional, if present, sym is assigned the value of the location counter after

the force upper occurs. This force upper occurs whether the R= generates an
instruction or not.

60279900 A 4-51

reg A register designator (A. X, or B) and a digit (0-7) which COMPASS
concatenates with S to form the instruction operation code.

exp Operand register or value expression. If the second subfield is the same two
characters as reg, no instruction is generated.

If the expression value is 0, the variable field is BO.

If the Bl=1 instruction has been assembled prior to this instruction and the

expression value is 1, 2, or -1, the variable field of the instruction is B1,

B1+B1, or -Bl, respectively.

If the B7=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field for the instruction is B7,

B7+B7, or -B7, respectively.

In all other cases, the variable field is the register or value indicated by the
expression.

Examples:

1. R~ used with BI=1

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

2. R=used with B1#1

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) N 18 {30
_ O A LT T S
. T s sy !

4-52 . 60279900A

3. Expression is same as register designator:

LOCATION OPERATION | VARIABLE COMMENTS
] 1 18 {30
RFG ‘MICRO |1,,%BS5%* }
R= |85y 2REGZ)
R= . 85,85

No instruction is generated; SB5 B5 would be a no operation instruction.

4.8.8 REP AND REPI-GENERATE LOADER REPLICATION TABLE

The REP and REPI instructions cause the assembler to generate an REPL loader table so that when the
subprogram being assembled is loaded, the loader will load one or more copies of a data sequence.
For the REPI instruction, the loader generates the copies immediately upon encountering the table;

for REP, the replication takes place at the end of loading.

Replication of object code is valid in relocatable assemblies only. It is particularly useful for setting
one or more blocks of storage to a given series of values or for generating tables.

Data to be replicated must not contain any external references or common block relocatable addresses.
For REPI, data must be in previously assembled text.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
|REP .
REPI §/saddr, D/daddr, C/rep, B/bsz, /inc

A location field symbol, if present, is ignored.
The variable field subfields can be in any order.
S/saddr Relocatable expression specifying first word address of code to be copied.
The S/saddr subfield must be provided. If it is zero, or omitted, the assembler
flags the instruction as erroneous and does not generate an REPL loader table.
D/daddr Relocatable expression specifying the destination of the first word of the first
copy. If D/daddr is omitted, the assembler sets daddr to zero, and, when

daddr is zero, the loader uses saddr plus bsz for the destination address.

Note that room for the repeated data must be reserved in the destination block.

60279900A 4-53

C/rep _ Absolute expression specifying the number of times code is to be copied. When
base is M, COMPASS assumes that rep is a decimal value. If C/rep is
omitted, the assembler sets rep to zero. When rep is zero or one the loader
makes one copy.

B/bsz Absolute expression specifying the number of words to be copied (block size).
When base is M, COMPASS assumes that bsz is decimal.

If B/bsz is omitted, the assembler sets bsz to zero. When bsz is zero or one,
the loader copies one word.

I/inc Absolute expression specifying the increment size in words. When base is M,
COMPASS assumes that inc is in decimal.

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses bsz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+ine,
the third at daddr + 2 x inc, etc. until the rep count is exhausted.

The origin and location counters for the block containing the daddr are not advanced by a value of
inc x rep. Storage reservation for replicated code is the responsibility of the user.

Rules for replication:
1. The S subfield cannot be omitted
2. Room must be reserved for the copies in the destination block (for exaiple, through ORG or BSS)
3. REP and REPI can be used in relocatable assemblies only

4. Data to be replicated must not contain any external references or common block relocatable
addresses

5. For REPI, data must be in previously loaded text

Example:
LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated
- - 1 n 18 I30
10 RC = 10]
USE NEWP !
5017 000000000000G000001S BA DATA | 15,20,70708,1+5,3.14
5020 0000000D0N0N00DOND0020 |
5021 0N000000000006007070Q
5022 00000000000000n00001 |
5023 00000000000000000005 |
5024 17216300000000000000 |
13 1 QU *-BA+5
USE DBLOCK |
5251 DA RSS RC*1 |
USE .
REPI [S/BA,D/DA,B/I-5,C/RC,I/1I

4-54 60279900D

4.9 CONDITIONAL ASSEMBLY

The following pseudo instructions permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional skipping, COMPASS provides IF test instructions that:

Test for assembly environment (IFCP and IFPP)
Compare values of two expressions (IFop)
Compare values of two character strings (IFC)
Test the attribute of a single symbol or an expression (IF)
Immediately following the test instruction are instructions that are assembled when the tested condition

is true and skipped when the condition is false. Skipping is terminated either by a source statement
count on the IF instruction, or by an ENDIF, an ELSE, or an END.

The statement count, when used, is decremented for instruction lines only; comment lines (identified by
* in column one) are not counted. Determining the IF range with a statement count produces slightly
faster assembly than using the ENDIF.

The results of an IF test are determined by the values of expressions in pass one; the value of a
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol
is 0 if the symbol was declared as external. If the symbol was defined relative to a declared external,
the value is the relative value.

4.9.1 ENDIF — END OF IF RANGE

An ENDIF causes skipping to terminate and assembly to resume. When the sequence containing the
ENDIF is being assembled, or is controlled by a statement count, the ENDIF has no effect other than
to be included in the count.

Skipped instructions such as macro references are not expanded. Thus, any ENDIF that would have
resulted from an expansion is not detected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ENDIF
ifname Name of an IF, SKIP, or ELSE sequence; or blank

Skipping of a sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF, Any ENDIF terminates
skipping of an unnamed sequence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect
that are not under line count control.

602799004 4-55

4.9.2 ELSE — REVERSE EFFECTS OF IF
Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction
following the ELSE. An ELSE detected while a sequence is being assembled initiates skipping of source
code following the ELSE, Skipping continues until:

1. A statement count specified on the ELSE is exhausted

2. A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ELSE met
ifname Name of an IF, SKIP, or ELSE sequence, or blank.
met Optional absolute expression specifying integer number of source lines to be

skipped. It has no effect if the ELSE resumes assembly. When the base is
M, COMPASS assumes that fnet is decimal.

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence
initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macro
references are not expanded; any ELSE that would have resulted from the expansion is not detected.

4.9.3 IFCP AND IFPP — TEST ENVIRONMENT

The IFCP instruction tests for a CPU assembly; the IFPP instruction tests for a PPU assembly. When
the test is satisfied, COMPASS assembles instructions in the IF range. When the test is not satisfied,
COMPASS skips the instruction.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname IFCP or mct
IFPP
ifname Optional 1-8 character name.

4-56 60279900A

fnct Optional absolute evaluatable expression specifying an integer count of the I
number of statements to be skipped. When base is M, COMPASS assumes
that gnet is decimal,

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

4.9.4 |Fop — COMPARE EXPRESSION VALUES

An IFop pseudo instruction compares the values of two expressions according to the relational
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname 1Fop €Xp, , eXp,, et
ifname Optional 1-8 character name.
op Specifies comparative test:
op Condition causing assembly
EQ Equality ;. the expressions are equal in all respects. That is,they

not only have the same numeric value but have the same attributes *
as well. For example, both are names that are common
relocatable, or absolute, or external, and so forth,

NE Inequality; the expressions are not equal in all respects. They
differ in value or in some attribute.

GT The first expression is greater in value than the second expression.
No other attributes are tested.

GE The first expression is greater than or equal in value to the second
expression, No other attributes are tested.

LT The first expression is less in value than the second expression.
No other attributes are tested.

60279900D 4-57

exp,

inct

LE The first expression is less than or equal in value to the

second expression. No other attributes are tested.
For these tests, positive zero and negative zero are equal.
An expression. When the value of exp is tested, exp can include only previously
defined symbols and the result can be absolute, relocatable, or external, If an
undefined symbol is used, the expression value is set to zero, the IF instruction
is flagged as erroneous, and assembly continues with the next instruction.

Optional absolute evaluatable expression specifying an integer count of the
humber of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal. When gnct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1.

If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

A demonstration of one use of IF statements in a PPU program:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 8 l30
T

IF DEF,LO0P

IFLT *~-L00Py408

ZJN LOur

ELSE 2

NJUN *+3

LuM LageP

This code assembles a zero jump to the symbol LOOP if LOOP has been defined within 37¢ words (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJM are assembled.

4.9.5 IF-TEST SYMBOL OR EXPRESSION ATTRIBUTE

‘The IF pseudo instruction tests a symbol or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied.

60279900D

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
ifname IF att, exp, mct
ifname Optional 1-8 character name
att

60279900D

Specifies attribute test. A minus prefix to the attribute causes assembly on
the false rather than the true condition.

att

SET
-SET
ABS
-ABS

REL

-REL
REG
-REG
COM
-COM

EXT

LCM
-LCM
LOC
-LOC

Condition causing assembly

The symbol given in the second subfield was defined by a SET,
MAX, MIN, or MICCNT

The symbol given in the second subfield was defined other than
by a SET, MAX, MIN, or MICCNT

The expression in the second subfield reduces to a value that is
not relocatable or external

The expression in the second subfield reduces to either a
relocatable or an external address

The expression in the second subfield reduces to a local or
common relocatable address

The expression in the second subfield does not reduce to a local
or common relocatable address

The expression in the second subfield contains one or more
register names

The expression in the second subfield does not contain a register
name

The expression in the second subfield reduces to a common
relocatable address

The expression in the second subfield is not a common
relocatable address

The expression in the second subfield contains one or more
external symbols

The expression in the second subfield does not contain an
external symbol

The expression reduces to an LCM address
The expression does not reduce to an LCM address
The expression reduces to a program relocatable address

The expression does not reduce to a program relocatable address

4-59

exp

fnct

DEF All the symbols in the expression in the second subfield are

defined

-DEF One or more of the symbols in the expression in the second
subfield is undefined

MIC The name in the second subfield is a micro

-MIC The second subfield does not contain a micro name

SST The second subfield does not contain a system symbol

-SST The second subfield contains a system symbol

For SET, SST, -SET, and -SST, exp must be a single defined symbol. For
MIC and -MIC, exp must be a name. For any other test, it is an expression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,
-REG, EXT, or -EXT only. If an undefined symbol is used with any other
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assembly continues with the next instruction.

Optional absolute expression specifying an integer count of the number of
statements to be skipped. When base is M, COMPASS assumes that fnct is
decimal. When ¢nct is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1. I a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first,

2. If neither a count nor a name is supplied, the IF range is termmated by the first ENDIF or
ELSE encountered, whether named or unnamed.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

Examples
LOCATION OPERATION | VARIABLE COMMENTS
i 18 ’
ABLE 20 |
- L] ‘
. . |
TEST REL,ABLE+15 |
; ; '
. . !
TEST ENDIF I
COM,DTA,2 ERRONEOUS, OTA AS YET UNDEFINED
|
L]
o]
. |
F 44 |
0TA 1 |
|

4-60

60279900D

4.9.6 IFC — COMPARE CHARACTER STRINGS

The IFC pseudo instruction compares two character strings according to the operator specified
and assembles instructions in the IF range if the comparison is satisfied.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFC op, dstringldstringzd, fmct

ifname Optional 1-8 character name

d Delimiting character. Characters between the first and second occurrence of this
character constitute the first character string; characters between the second and
third occurrence constitute the second character string.

op Specifies comparative test:
op Condition causing assembly
EQ or -NE sf:ring;1 has the same value as string2
NE or -EQ stringl does not equal string,
GT or -LE stringl is greater than string2
GE or -LT string, is greater than or equal to string2
LT or -GE string1 is less than stringg
LE or -GT string; is less than or equal to string,

string‘i Character string, When IFC is within a macro definition, each character string
can be a formal parameter,

met Optional absolute evaluatable expression specifying an integer count of the

number of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal. When gnet is blank, the comma can be omitted.

The ifname and et parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IT range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

3. H aname but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not mateh has no effect,

60279900D

4-61

Each character in string;

is compared with the corresponding character in stringy progressing from

left to right until an inequality is found or both strings are exhausted. When one string is shorter than
the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings.

Examples:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 130
TEST1 IFC EQ,ABCABC$: ABC EQUALS ABC
TEST2 IFC LT, *AB*ABC* | AB IS LESS THAN ABC
TEST3 IFC 6T, XAXX A IS GREATER THAN NULL
IFC ~GE,¥2%8%,3 | Z IS LESS THAN 8

The IFC in the following example checks for an empty parameter string.

LOCATION OPERATION | VARIABLE COMMENTS
] " 18 [30
XX MACRO [P1,P2 |
IFC EQ,**P2% ,1 |
P ERR : FLAG ERROR
. I
. !
i
ENDM {

The following example illustrates an invalidly terminated character string. The asterisk was omitted
following P1 causing an error flag when the comma is interpreted.

LOCATION

QPERATION

VARIABLE COMMENTS

1 n

18 [0

IFC

4-62

FQ,*0D*P1,28P2

60279900A

4.9.7 IFPL AND IFMI - TEST SIGN OF EXPRESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus (MI). The pseudo
instructions allow positive zero to be distinguished from negative zero.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFPL exp, fnct

ifname IFMI exp, fnct

ifnaume Optional 1-8 character name

cxp An expression. It can include only previously defined symbols and the result
can be absolute, relocatable, or external. If an undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

fnct Optional absolute evaluatable expression specifying an integer count of the number

of statements to be skipped. When base is M, COMPASS assumes that gnct is
decimal. When gnct is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1. I a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed,

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE, An ENDIF or ELSE with a name that does

not match has no effect.

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero;
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero.

60279900D

4-62,1

Example:

The following opdef defines the CPU instruction MXi jk so that the address value is 60 if the expression
value is negative zero or a positive nonzero multiple of 60, otherwise it is the address expression

value modulo 60,

LOCATION OPERATION | VARIABLE COMMENTS
i n 18 a0
MXQ OPDEF | REG, VAL l
LOCAL | A !
A SET VAL [
A SET A-A/6GD'600|
IFPL A,3 J
IFEQ A,0,3 |
IFLE VAL,0,1
SKIP 1
A SET A+630 |
VFD 6/438B,3/REG,5/A
ENDM |
!
i
Example of call:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 It 18 [0
MX6 =52 |
7777713 ++000001 SET =52 |
|
7777713 ++000001 SET ++000001~++000001/60D%*60D
IFPL 44000001,3 |
IFEQ 4++000001,0,3 |
IFLE -52,0,1 |
SKIP 1 ,
10 ++000001 SET ++000001+60D
43610 VFD 6/438,3/6 ,6/4+000003
ENDM :
|

4-62,2

60279900D

4.9.8 SKIP — UNCONDITIONALLY SKIP CODE

The SKIP instruction causes COMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format
LOCATION OPERATION VARIABLE SUBFIELDS
ifname SKIP mct
ifname Optional 1-8 character name
gnct Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes

that gnct is decimal,

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping

terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does

not match has no effect.

410 ERROR CONTROL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally
set an error flag.

4.10.1 ERR — UNCONDITIONALLY SET ERROR FLAG

An ERR pseudo instruction produces an assembly error but does not affect other code. Usually, it is
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly
hased on an assembly time test. One application is to use a test and ERR to detect illegal macro
parameters.

60279900D 4-63

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
flag ERR
flag A single alphanumeric character denoting the error type. The flag is placed

in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control
card. If no flag is specified, or the character is not one of those given in
section 11.7, COMPASS uses P.

A variable field entry, if present, is ignored.

Example:
LOCATION QPERATION | VARIABLE COMMENTS
1 n 18 |30

NNN MACRO | P1,P2,P3,P4]|
IFEQ | P1,0 [

A ERR ,
. . |
ENDM :
* * }
* []
NNN _ | 05A,8,C '

4.10.2 ERRxx — CONDITIONALLY SET ERROR FLAG

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second
pass of the assembler is true.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
flag ERRxx aexp
flag A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11.7,
COMPASS uses P.
4-64

60279900A

XX Defines condition under which aexp value is erroneous.

XX Error Condition
NG Value of expression is negative
NZ Value of expression is nonzero
PL Value of expression is positive
ZR Value of expression is zero
aexp Absolute expression. It cannot contain external symbols or references to blank

common. The test is made in pass two of the assembler. Relocatable addresses
are assigned values relative to program origin rather than to the block in which
they are defined.

NOTE
ERRxx is the only conditional instruction for which the
test is made in pass two. Therefore, this is the only
pseudo instruction that can be used to determine PPU
overflow if the PPU program has literals and USE
blocks.

Example:

Test for memory overflow in PPU assembly

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 130
PERIPH ;
Th&T LASTYAG. [BSS] l
TT77447 R ERRPL LhSTYAG-?T??i
7462 END I

4.11 LISTING CONTROL

The instructions described in this section permit extensive control of the assembly listing format,

4.11.1 LIST — SELECT LIST OPTIONS

The LIST pseudo instruction controls the content and format of the assembler listing. LIST instructions
are disabled under either of the following conditions:

When the list parameter (L) on the COMPASS control card (section 10.1. 2) is zero, or
When the list option parameter {LO) is used on the COMPASS control card.

60279900 A 4-65

Use of the LIST pseudo instruction is optional. If it is not used in the subprogram, COMPASS list
output is according to the L and LO parameters on the COMPASS control card. If the LO parameter
is omitted or LO-0, the list options are as if L, B, N, and R only are selected and the listing contains
heading information, assembly text, assembler statistics, an error directory (upon occurrence of an
error only), and a symbholic reference table. Formats of this output are described in detail in
chapter 11 and brief summaries are given below.

Heading information

Assembly text

Assembler statistics

Error directory

Symbolic reference table

Program length, origin, and length of each block, entry points
and external symbols.

Line, and assembly results of each line assembled (not skipped)
from the input device (excludes code generated by RMT, DUP,
ECHO, XTEXT, or a macro or opdef expansion). For data
generating pseudo instructions DATA, DIS, BSSZ that produce
more than one word of object code, only the first word is listed.
For VFD and CON, all words of object code are listed. For R=,
only the pseudo instruction is listed.

Each occurrence of the LIST instruction is listed.

Amount of storage used, counts of assembled statements,
defined symbols, invented symbols, and references to symbols.

Lists fatal and nonfatal errors and summarizes the causes of each.
List of all symbols defined in the program according to symbol

qualifier, if any, followed by an index to every reference to the
symbol in the listed statements.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
LIST OP;50Pgs -+ 50D,
or
LIST *

A location field symbol, if present, is ignored.

Op.
II

4-66

A list option represented by a single letter or a letter prefixed
by a minus sign. The unprefixed letter selects the option; the
prefixed letter cancels the option. Options are separated by
commas and terminated by a blank.

A List statements actually assembled

When A is not selected, a line containing concatenation

and micro substitution marks is listed with the marks in it
exactly as presented to the assembler. When the A option

is selected, however, the assembler lists the line before and
after the editing takes place. Selecting A also causes the
listing of lines of code resulting from the R= pseudo instruction.

60279900D

B List binary control statements

When B is selected, the listing includes SEG, SEGMENT, IDENT, and
END pseudo instructions.

C List listing control statements

When C is selected, the listing includes EJECT, SPACE, TTL, and
TITLE pseudo instructions. A listing instruction that causes an EJECT
is listed as the first line of the new page after the EJECT takes place

D Include details

Selection of the D option causes listing of the following items not normally
listed:

Second and subsequent lines of DATA and DIS

Code assembled remotely when HERE or END causes its assembly
Literals block

Default symbols

E Include echoed lines

Selection of E causes listing of all iterations of code duplicated as a result
of DUP and ECHO.

F List IF-skipped lines

When F is selected, the listing includes all lines skipped by IF, IFop,
IFC, IFPP, IFCP, SKIP, and ELSE, In addition, the Symbolic Reference
Table contains references to symbols in IF statements.

G List generated code

Selection of this option causes listing of all code generating lines regardless
of list controls other than L. Instructions listed include symbolic machine
instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

L. DMaster list control
This option is normally selected. When L is canceled, the long list contains
error-flagged lines, an error directory, and LIST pseudo instructions only,
regardless of selection of any other options on LIST.

M List macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

60279900C 4-67

List non-referenced symbols

This option is normally selected. Cancellation of this option causes

any non-system symbol for which no reference has been accumulated
(e.g., all occurrences are in IF statements with the F option deselected,
or are between CTEXT or ENDX with the X option deselected) to be
omitted from the symbolic reference table.

Accumulate and List references

This option is normally selected. When R is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired., If R is canceled at assembly end, no
symbolic reference table is produced.

List systems macros and opdefs

Selection of S causes all lines generated by calls to systems-defined
macros and opdefs to be listed.

List non-referenced system symbols

Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumu-
lated references.

List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a means
of alternately turning this external designator off and on.

An asterisk in the variable field causes selection of the options specified by
the previous LIST pseudo instruction. Two or more consecutive LIST *
instructions produce the same results as one LIST *,

For list options A, C, D, E, F, M, 8, and X, all applicable options must be selected for a specific
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires
selection of both M and E. Similarly, an expansion causes by an XTEXT within a system macro call

is listed only when both X and S are selected. To obtain a listing showing g+ and # marks removed from
external text inside a DUP range requires that A, X, and E all be selected.

Example:

4-68

16403146314631463146

16403146314631463146

LOCATION OPERATION | VARIABLE COMMENTS
] n 18 |30
LIST |aA T
DATA |1.3sEE ‘
17205146314631463146 DATA | 1.3EE '
LIST |D '
DATA |1.3eE€ !
17205146314631463146 DATA |1.3EE
| 1
LIST | ~-A,-D |
17205146314631463146 DATA | 1.3eEE |
LIST » |
DATA | 1.3sEE2? |
1720514631 4631463146 DATA | 1.3€E |

60279900A

4.11.2 EJECT—EJECT PAGE AND BEGIN NEW SUB.TITLE

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page
headings are printed and listing continues.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name EJECT
name New program sub-subtitle for the page will be printed in character positions

70-79 of the second line of the page. A blank name clears the sub-subtitle.

An entry in the variable field, if present, is ignored.

4.11.3 SPACE — SKIP LINES AND BEGIN NEW SUB-TITLE

The SPACE pseudo instruction spaces the assembler listing. When a page is full, an eject occurs and
listing resumes on the next page. A SPACE immediately following an EJECT is ignored.

LOCATION OPERATION VARIABLE SUBFIELDS
name SPACE scnt, rent
name New subprogram sub-subtitle will be printed in characters 70-79 on the second

line of the next page heading. A blank name clears the sub-subtitle.

sent An absolute expression specifying a positive integer number of spaces between
the most recent line and the next line of printout. If baseis M, scnt is assumed
to be decimal. If scnt is omitted or zero, no line is skipped.

rent An absolute expression specifying a positive integer number of lines that must
be remaining on the page following spacing. If base is M, rent is assumed to
be decimal. '

If scnt + rent exceeds the number of lines on the page before spacing occurs, the SPACE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both.

Blank cards can also be used to space the listing.

60279900A 4-69

4.11.4 TITLE — ASSEMBLY LISTING TITLE

The first TITLE pseudo instruction establishes the title that will be printed on each page of the listing.

A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction

as the title. A TITLE instruction without a character string produces an untitled listing. A name in

the location field introduces a new subprogram sub-subtitle.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name TITLE string
name New subprogram sub-subtitle to be printed in character positions 70-79
on the second line of the page. A blank name clears the sub-subtitle:
string COMPASS searches the columns following the blank that terminates the
operation field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one, up to the end of the
statement. Otherwise, the title or subtitle begins with the first nonblank
character following TITLE and continues to the end of the statement or to
62 characters., Any characters beyond the 62nd are lost. A blank string
produces an untitled listing.
l Example:
LOCATION OPERATION | VARIABLE COMMENTS
1] 18 l30
IDENT [MTD X
LISY c |
TITLE |MT DRIVER I
]
° |
*]
hd [
TITLE [I/0 ROUTINES;
* |
. |
First page: MT DRIVER
Subsequent pages: M7 DRIVER

170 ROUTINES

4-70 602799001

4.11.5 TTL — NEW ASSEMBLY LISTING TITLE

The TTL pseudo instruction introduces a new main title to be printed on each page of the listing, and
clears the subtitle.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS

name TTL string

string COMPASS searches the columns following the blank that terminates the
operating field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one, up to the statement
end. Otherwise, the title begins with the first nonblank character follow-
ing TTL and continues to the end of the statement or to the 62nd character.
Any characters beyond the 62nd are lost. A blank string produces an
untitled listing.

name New sub-subtitle to be printed in character positions 70-79 on the second

line of the pages. A blank name clears the sub-subtitle.

TTL does not cause a page eject.

4.11.6 NOREF — OMIT SYMBOL REFERENCES

The NORET pseudo instruction causes the symbols named in the variable field to be suppressed from
the symbolic reference table.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
NOREF Sym,, Symy, ..., sy"mn
sym, One or more symbols defined in the subprogram. If a symbol qualifier is in
i

effect when the NOREF is encountered, the symbols are assumed to be qualified
by the qualifier in use. Alternatively, sym. can be a non-blank qualifier symbol
enclosed by slant bars, /qualifier/, in whiclh case all symbols qualified by the
specified qualifier are suppressed from the sumbolic reference table.

A location field-symbol, if present, is ignored.

60279900C 4-71

4.11.7 CTEXT AND ENDX — DISABLE/ENABLE LISTING OF COMMON DECK TEXT

The CTEXT pseudo instruction sets the XTEXT flag for list control.

NOTE

When the flag is set, external text is listed only if
the X list option is selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name CTEXT string
name If X list option is selected, name (optional) is treated as a sub subtitle;
otherwise it is ignored.
string

If the variable field is nonblank and the X list option is selected, the CTEXT
is treated as a subtitle. The CTEXT instruction generates a subtitle and
causes a page eject. If X is not selected, the CTEXT does not affect titling.

The subtitle begins with the first nonblank character following CTEXT
and continues to the end of the statement or to 62 characters. Any characters
beyond the 62nd are lost.

The ENDX pseudo instruction clears the XTEXT flag for list control and causes listing to resume,
starting with the instruction after ENDX, when the X list option has not been selected.

Format:

LOCATION

QPERATION

VARIABLE SUBFIELDS

ENDX

Entries in the location field or variable field, if present, are ignored.

602799008

4.11.8 XREF—REFERENCE SYMBOLIC ADDRESS

The XREF pseudo instruction provides the options of having the symbolic reference table contain
references to symbols according to 1) location counter address, 2) page and line number, or
3) both. For the format of the symbolic reference table, refer to section 11. 8.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
XREF string
string

An optional character string, the first character of which indicates how symbols
are to be referenced.

A
B

The symbolic reference table lists addresses only. Flags are not included.

The symbolic reference table lists references to symbols according to
page number, line, and address. Flags are included.

A location field symbol, if present, is ignored.

If the string is omitted or if no XREF is issued, the symbolic reference table contains references
according to page and line numbers and includes flags. The last XREF encountered in a subprogram
determines the form of the listing for the entire subprogram.

60279900C

4-73

DEFINITION OPERATIONS 5

This chapter describes pseudo instructions that involve definition operations. These pseudo
instructions cause sequences of instructions to be saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly can be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred to for assembly (MACRO, MACROE or OPDEF).

Any instructions other than END, including other definitions or calls, can be in the body of a definition.

Each request for assembly of one of the saved sequences of code, such as a reference to a macro,
causes an entry in the assembler recursion stack. The most recent entry in the stack points to the
source of statements (the definition) to be assembled. When the definition contains an inner, nested,
reference to a saved definition, the stack pointer is changed so that the source of statements is the
inmermost definition. The stack allows nesting of definitions to a maximum level of 400. When the
end of a definition is reached, the assembler switches to the preceding entry in the stack. When the
stack is empty, the assembler resumes assembly of the next statement in the input source deck.

A nested definition must be wholly contained by its next outer definition.

Definitions are saved compressed but otherwise unedited (with micro and concatenation marks). Editing
occurs each time the definition is processed. Compression removes blanks and replaces them with
coded bytes as follows:

A single space is represented by 55g; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 spaces replaced by 5555
3 spaces replaced by 0002
4 spaces replaced by 0003

8

. . .
. . .

64 spaces replaced by 00774
65 spaces replaced by 0077558

66 spaces replaced by 007755558
67 spaces replaced by 007700028, ete.

Trailing spaces are considered as embedded and are included in the image. The 00 character
(colon) is represented by the 12-bit code 0001, A 12«-bit zero byte marks the end of the statement.

The listing identifies the source of statements and the Pecursion level for all definition operations.

602799008 5-1

For XTEXT, DUP, and ECHO, assembly ocecurs as soon as a definition is saved. Unless the definition
contains a USE, USELCM, or ORG instruction, code is assembled into the block in use when the
XTEXT, DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and
assembly take place in two steps. The block in use at definition time does not determine where code

in the definition will be assembled. That is, code is assembled into the block in use when the definition
is assembled if the definition does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is
encountered applies to symbols defined in the sequence (assuming the sequence does not contain a
QUAL). For RMT, macros, and opdefs, however, because definition and assembly take place in two
steps, the qualifier in use at definition time does not affect symbols in the definition. The qualifier,
if any, in effect when the definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only. It does not apply to block names or to the names of DUP, ECHO,
RMT, or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol,
block name, or symbols to be qualified as substitutable parameters. (For an example, refer to
example 7 under Macro Call.)

5.1 EXTERNAL TEXT (XTEXT)

The XTEXT pseudo instruction provides a means of obtaining source statements frem a fite-other than
that being used for input. COMPASS transfers the text from the external source and assembles it
before taking the next statement from the interrupted source of statements. The file may be a sequential

file, an indexed file with named records, or an UPDATE or MODIFY f random-access program library
file.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
file XTEXT rname

t SCOPE 2 does not support MODIFY format.

5-2 ' 60279900C

file

rname

Name of a file containing source statements. If file is omitted, COMPASS
assumes the file named in the X parameter on the COMPASS control card
(section 10.1.2). If no X parameter was specified, COMPASS assumes OL DPL.

If rname is blank, COMPASS assumes that the file is sequential; it rewinds

the file and reads the first logical record. If rname is not blank, it is the name
of the record to be read. The file must be an indexed file with named records,
a random-access program library file in UPDATE format, a random-access
program library file in MODIFY | format, or a random access text record.

Text records may be in any of the following formats.

1. Normal text.

If the first line contains rname starting in column 1, it is skipped.

2. A common deck in a random-access program library file. If the file is in UPDATE format,
the first line (*COMDECK rname) is always skipped. If the file is in MODIFY format , the
record may be a COMMON deck or a text record.

COMPASS reads source statements to an end-of-record mark or an END pseudo instruction.

5.2 REMOTE ASSEMBLY

Definition and assembly of remote code takes place in two steps. A pair of RMT pseudo instructions
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction directs
COMPASS to assemble a specific sequence of remote code or to assemble all unlabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

3.2.1 RMT — SAVE REMOTE CODE

A RMT pseudo instruction signals the beginning or the end of a sequence of code to be assembled

remotely.
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname RMT
rmtname

Optional 1-8 character name identifying the remote sequence., It is
significant on the beginning RMT only. The field is ignored for a terminating
RMT. If supplied, rmtname can be used on a subsequent labeled HERE,

If the sequence is unlabeled, an unlabeled HERE or END causes its assembly.

A variable field entry, if present, is ignored.

TSCOPE 2 does not support MODIFY format.

60279900C

5-3

Any instruction legal when the remote lines are called for assembly is legal between the RMT pair.
If expansion of an RMT reveals a second RMT pair implicit to:the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END.
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through a HERE rather than the END, etc.

Any labeled remote code present when END is processed is discarded without notice.

5.2.2 HERE — ASSEMBLE REMOTE CODE

A HERE pseudo instruction causes the labeled remote sequence to be assembled or unlabeled saved
remote sequences to be assembled. In the absence of a USE, USELCM, IDENT, or an ORG within
the saved sequence, the remote code is assembled under the block in use at the time the HERE is

encountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it

is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no
effect on assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname HERE
rmtname Optional; the name of a previously saved RMT sequence. Only the named

sequence will be assembled at this fime.

A variable field entry, if present, is ignored.
If unlabeled remote sequences still remain to be assembled when the END card signaling the end of

assembly is encountered, COMPASS assembles them before it terminates assembly. However, any

RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote
code is lost.

Examples:

The following example illustrates use of RMT within a macro definition. Following the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

5-4 60279900A

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [0
MACRO | TABLE»TNAM,EQIV
IFC EQ,**EQIV*
TNAM EQU *-0RIGINS |
O.TNAM CON BUCKET |
ELSE 2 |
TNAM EQJ EQlyv |
U.TNAM EQu 0.EQLIV |
{
RMT !
LoTNAM | EQU | TNAM#SIZES |
RMT |
¢ i
) !
ENUM |
. I
. I
. |
4727 e , . UL INVER TABLE s |
. i 1FC | EQyeee 1
: , 1334 INTER EQU *=0RIGINS
4727 -00000000000000032304 G+INTER CON BUCKETY
i ELSE 2 |
RMT !
L+ INTER EQU INTERASIZES
RMT 1
ENOM |
4730 LASTAB TABLE l
P IFC | EQ,%es ABL
1332 LASTAB EQU - #=ORIGINS| 10
4730 00000000000000032304 O.LASTAB CON BUCKEY | ABL
o - ELSE 2 e
. (l { :
1 RMT I . TABLE
L+LASTAB EQU LASTAB+SIZES . TABLE
: RMT : TABLE
ENUH [TABLE
4731 NRTAB TABLE | LASTASB i
v ‘ IFC | EQy**LASTAB® TABLE '
G 1o TELSE 12 : 2 TABLE:
1332 NRTAB EQU LASTAB ’ TABLE
w730 . GoﬂRYAB EQU | O.LASTAB “"TABLE
| o L ; ‘ TABLE
. RMT ' ! TABLE
L.NRIAB £EQU NRTAB+SIZES TABLE
RMT : ! CTABLE
ENOM | TABLE
. |
R |
HERE ’ _ ,
h672 LaINTER EQU INTER#SIZES ERMI*
4673 LLASTAB £QuU LASTAB#SIZES *RMT*
673 | ILWNRTAB | EQU NRTAB#SIZES T FRMT*

60279900A 5-5

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION OPERATION | VARIABLE COMMENTS
) N 18 N
RMT |
FLD NDECMIC| BUF+BUFL=-WSA+ENDS
PRS LIT C¥2FLD2 DECIMAL REQUIRED.*®
RMT |
1
|

FLEWSA+ENDS 7o o TTaRYTS
, 'DECIMAL REQUIRED.® SRMT®
25759 DECIMAL REQUIRED.® *RMT®

-

5.3 CODE DUPLICATION

This section describes two pseudo instructions (DUP and ECHO) that cause a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles
a macro reference. Actual parameters supplied in a list are substituted for formal parameters on
each repetition of the code sequence. The number of repetitions is determined by the number of
actual parameters provided on the ECHO instruction.

Every imner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHO,
or a fatal E error is flagged.

5.3.1 DUP — SIMPLE DUPLICATION

The DUP pseudo instruction specifies repeated assembly of the statements immediately following.
The range of the DUP is specified either by a source statement count on the DUP instruction or by an
ENDD.

5-6 60279900A

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

dupname

dupname

rep

fct

DUP rep, Mmct

Optional name of the DUP sequence; 1-8 characters. When supplied, it can be
used in an ENDD. When no name is supplied, the range of the DUP is determined
by a statement count or by any ENDD.

Absolute evaluatable expression specifying the integer number of times state-
ments in the DUP range are to be assembled. If rep is null or zero, the
instructions in the range are not assembled; that is, code is skipped. When
base is M, COMPASS assumes that rep is decimal.

NOTE

A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can be used for indefinite duplication
of code.

An evaluatable expression specifying an integer count of the number of
statements to be assembled repeatedly. When base mode is M, COMPASS
assumes that fnct is decimal. The count is decremented for statements only;
comment lines (identified by * in column one) are not counted. On each
iteration, the assembler copies the source statements and then assembles
them. Thus, any recursive statements within the sequence are counted
before they are expanded.

The dupname and fnct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to
be included in the count. Under count control, a name is irrelevant.

2. If neither a count nor a name is supplied, the DUP range is terminated only by an unnamed

ENDD.

3. If a name but no count is supplied, the DUP range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not effect the

range,

5.3.2 ECHO — ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions immediately following. On each
iteration, the assembler copies the source statements substituting an actual parameter in the list for
each formal parameter until the shortest list is exhausted, and then assembles the statements. ECHO
offers many of the features of macros but does not require separate definition and reference. The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
instruction, or by an ENDD. The statement count, when used, is decremented for instructions only;

60279900D

5-7

comment lines, identified by * in column one, are not part of the definition and are not counted.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ECHO mct,p1=(list1),p2=(list2), ceesBy =(11stn)
dupname Optional name of the ECHO sequence; 1-# ~haracters. When supplied,
it can be used in an ENDD. When no na.: . suprlied, the range of the
ECHO is determined by a statement count or by any ENDD.
fnct Optional absolute evaluatable expression specifying an integer count of the

number of source statements to be assembled repeatedly. If base mode is
M, the count is assumed to be decimal. If gnct is zero or omitted, the comma
must be present and the ECHO range is defined by an ENDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
E error is flagged.

The dupname and gnct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count., Under count control a name

is irrelevant.

2, If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed

ENDD.

3. If a name but no count is supplied, the ECHO range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not terminate

the sequence.

5-8

Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic. A name cannot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name is ignored. A name that begins with a number is ignored.

The separator between P; and (listi) is conventionally an = but can'be any of the
following:

+ - %/ () $=,o0r.

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+ - %/ () $="bblank , . # or -~

The substitutable parameter name can occur in any field within a definition.

60279900D

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i.e., with
micro and concatenation marks. Use of the semicolon is restricted in the
definition because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (778).

The character —+ flags the occurrence of a name not bounded by any other
special character and, thus, not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the + so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the second with 7702, etc. the programmer can use the display characters

;A, 3B, etc. directly in place of his substitutable parameter names in the
definition and achieve the same results as if the assembler had replaced the
name with the flag. (Example 8, section 5.4, 3 illustrates a similar application
of this technique.)

aisti) Actual parameter list in the form a5895..058) where a; is substituted for p;
on the first assembly of the ECHO sequence, a, is substituted on the second
assembly, etc. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be
entered. An actual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before
substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are null, COMPASS assembles the
ECHO sequence zero times, effectively skipping it.

5.3.3 STOPDUP — STOP DUPLICATION

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count

is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the
end of the range for the current iteration and then continues with the next source statement. Only the
innermost duplication is affected.

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

STOPDUP

An entry in the location or variable field is ignored.

60279900D 5-9

5.3.4 ENDD — END DUPLICATION SEQUENCE

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is
unspecified on the DUP or ECHO.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ENDD
dupname Name of a DUP or ECHO sequence, or blank, A named DUP or ECHO
sequence can be terminated by an ENDD specifying the sequence by name,
or by any unnamed ENDD, An unnamed DUP or ECHO sequence that is not
controlled by statement eount is terminated only by an unnamed ENDD, An
ENDD does not terminate a sequence controlled by a statement count. The
ENDD is included in the count but has no other effect.
An ENDD outside the range of a DUP or ECHO has no effect on assembly.
Examples:

In the following examples, the statements that result from expansion are shown faded. They are
listed only when the E list option is selected. Source statements are shown in bold characters.

1. This example illustrates use of a simple DUP instruction.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
008005 puP Sy1 |

DATA |1 | _
BI5T S9809000000090000801 .. |oATA g Lopype.
SISA 89083000000 000000001 e DAYA [t | spyps
5 990000000000000001 | . |oara |8 | spyps
919 00900000000000000L | |OATA |1 . | *DUP*
»” 9900000000090000083 | loata 1 | spupe

5-10 60279900D

2. This example illustrates a nested DUP instruction with one of the DUP duplications terminated

by a STOPDUP,
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
60 MACRO
TAG MICRO NOe) o /#ALPHARET £/
IFC EQe/#TAG#/E /1 ASSEMBLE STOPDUP WHEN TAG=E
STOPDUPR
NO SET NO+) NO IS 6 IN LAST ITERATION
60 :
ALPHABET 129 /ABCDEFGHTI UK/
NO 1
-] UNORTAINABLE ITERATION COUNT
TAG 47 - i 5
TAG *19 /2 1dks = . ! «
' ea./afas¢zez.1 . ASSEMBLE STOPDUP WHEN TAGSE
~EQ,/£/?I.1 _ASSEMBLE STOPDUP WHEN TAG=E
NO NO+i NO IS 6 IN LAST ITERATION
TAG NO!}»!#ALPHABETil
TAG NOs1¢/ABCDEFGHI UK/
, EQy/#TAGR/E/,1 ASSEMBLE STOPDUP WHEN TAG=E
EQv/B/E/»] ASSEMBLE STOPDUP WHEN TAG=E
NO NOei NO IS 6 IN LAST ITERATION
= G
TAG NOs s /iALFHABET#/ . |
TAG NO+1y/ABCDEFGHIJK/ b
Lo EQe/#TAG#/E/s] ASSEMBLE STOPDUP WHEN faaae
EQs/E/E/91 ASSEMBLE STOPDUP WHEN TAGaE
N NO*i ' ne 18 6 IN LAST szRAT:ou

60279900A

*pUP#

80

Go
<o)
GO
GO
6o
DUP
DUP

6o
GO
60
80
60
80
'DUP'

'GUP*
6o .
G0

GO

GO

80

6o

_apUPe

5-11

3.

Location

;1452
1453

1455
1456

1460
1461

1463
1464
1466
1467
1471
1872

1474

1475

1u77
1500
1502

1snsf

1505

5-12

This example illustrates nested ECHO instructions.
level ECHO. The ENDD terminates the first level.

copy before it begins the next iteration.

A statement count terminates the second
Notice how COMPASS assembles each

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
I 18 T30
PPU |
. |
. 1
STM PPOP |5,5415B !
LIST |M,D,E ,
ECHO [yCM=(X,Y,2) |
ECHO 29P1=(A’89C)I
LDN cM [
STM P1 |
ENODD | .
.aguo 25P1=(AyByCly *EGHO® d
o LON . . . ®ECHO* 1 :
;. STM . PL ; . ®ECHO* :
1450 LON X { *ECHO* >
5415 0036 Stu . A | . ®ECHO* 2
1450 , LDN X | *ECHO* 2
5415 0037 STM B | ™ECHO*® 2
1450 LUN X *EGHO* 2
5415 0040 STH ¢ } $ECHO* 2
ENDD SECHO* 1
ECHO 2,P1=(A,B,C){ *ECHO® 1
LON Y *ECHO* 1
SIM Pi [*ECHO* 1
1460 LON Y |- *ECHO* 2
5415 0036 STM A | *ECHO¥* 2
1460 LON Y *ECHO* 2
5415 0037 STH B | »EGHO® 2
1460 LON Y | *gcHo* 2
5415 0040 STM c | *ECHO* 2
, ENDD [*ECHO* 1
ECHO [2,P1=(A4B4C); *ECHO* 1
LON Z ¥ECHO* i
STH P1 : ¥ECHO* 1
1470 LON 1 | *ECHO* 2
5415 0036 STM A [“ECHO* 2
1470 LDN . |2 *ECHO® 2
5445 0037 SIM. B [pCcHo* 2
1470 LDN z b sgcHO* 2
5415 0040 STH IC | *EcHO* 2
» {ENDD ! *ECHO* 1
5415 1524 STM TAG ;

60279900A

5.4 MACROS AND OPDEFS

A macro or opdef definition is a sequence of source statements that are saved and then assembled
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the
macro name in theé operation field of a statement. It usually includes parameters to be substituted

for formal parameters in the macro code sequence so that code generated can vary with each assembly

of the definition.

An opdef call differs from a macro call in that the assembler interprets the call by examining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to be substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of a macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling

of the definition.

A definition consists of three parts: heading, body, and terminator.

Heading

Body

60279900 B

A macro definition is headed by a MACRO or MACROE pseudo instruction
stating the name of the macro and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

The body begins with the first statement in a definition that is not a LOCAL
statement or a comment line. A comment line can be either identified by *
in ¢olumn one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by * in column 1 are ignored.)

Use of the semicolon is restricted because when a definition is expanded a
semicolon is interpreted as a substitutable parameter mark or a local symbol
flag.

The body consists of a series of symbolic instructions. All instructions other
than END, including other macro and opdef definitions and calls are legal within
a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot be called before
the outer definition is called.

A name of a substitutable parameter listed in the heading can occur in any field
within the body. A reference to a substitutable parameter is recognized when it
is between two of the following characters in an expression or field:

+ - * /() $=nDblank , . # or —

The character— flags the occurrence of a name not bounded by any other special

5-13

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembler
substitutes an actual parameter value for the substitutable parameter and
removes the — so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters . ():

$ and = in symbols but when he does, he must be careful
that these characters are not interpreted as delimiters in
macro definitions (example 4 under macro calls).

The macro body optionally contains IRP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different
parameter value.

An ENDM pseudo instruction terminates a macro or opdef definition.

A macro or opdef can be defined anywhere in a subprogram before it is called.
When COMPASS encounters a definition, it places the name of the macro or the
syntax of the opdef along with the number of substitutable parameters and local
symbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 77xx (where xx is a number assigned to the substitutable parameter or local

symbol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symbol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition. However, if the macro includes an RMT
sequence which contains local symbols, the local symbols will have meaning
where the remote code is assembled outside of the definition.

5.4.1 ENDM — END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname ENDM
mname Name of a macro sequence, syntax of an OPDEF sequence, or blank,

5-14

60279900.B

An ENDM specifying a macro by name terminates the named maero definition and any unterminated

macro or opdef definitions within it. An unnamed ENDM terminates all unterminated definitions.
An ENDM outside the range of any macro sequence has no effect other than to be included in statement

counts,
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n I8 130
JAY MACRO |P1,P2,PZ |
. 1
. |
o]
KAY MACROE| PK2,PK2,PK3,PKh
o |
. ° ,
JPX/XQ | OPDEF | OP1,0P2,0P3 |
° |
. I
KAY ENDM ! TERMINATES KAY AND
. | YHE OPDEF DEFINITION
. {
ENDM ; TERMINATES JAY

5.4.2 MACRO — MACRO HEADING

A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the
macro in a table of macro definitions for assembly upon call and place the macro name in the operation

code table.

The MACRO pseudo instruction has two forms:

Format one:

LOCATION

OPERATION

VARIABLE SUBFIELDS

mname

60279900A

MACRO

parameters

5-15

Format two:

LOCATION

QOPERATION VARIABLE SUBFIELDS

MACRO mname, parameters

The blank location field identifies the second format.

mname

parameters

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the macro call. A
redefinition causes an informative flag to be issued but the new definition
holds.

Names of substitutable parameters. The order in which names are listed
determines the order in which parameters must occur in the macro call. Each
name is 1-8 characters, the first of which must be alphabetic. A name cannot
be END, IRP, LOCAL, ENDD or ENDM. A name that begins with a number, or
a second or later occurrence of a parameter name in the list is ignored.

Any of the following special characters separate parameters in the list:

+ - %/ ()Y $=, o0r.

These characters have no meaning other than as separators. A blank
terminates the list of parameters. Also, any of these characters can be used
to separate the mname from parameters in format two.

The total number of unique parameter names and local symbols must not
exceed 63 for any one macro definition.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argumentbecause the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error flag and
ignore the definition.

The assembler ignores a blank parameter produced by two concurrent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

60279900D

Examples of macro instructions:

1. Legal MACRO instructions:

LOCATION

.| OPERATION

VARIABLE

COMMENTS

n

[30

ABC

MESSAGE

'MACRO
MACRO
MACRO

PL,P2,P3

A

t

DE F"LOG‘ONE"'THO‘TEN

2. MACRO instructions having identical parameter lists.

3. Illegal use of format two:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30 .

SUM MACRO |X=Y+2%X ;sscoNo X PARAMETER IS IGNORED
SUM MACRO | X(Y+2) !

SUM MACRO | X=Y+2Z

SUM MACRO [X,Y,(Z+#X) 'NULL PARAMETER AND SECOND

. X ARE IGNORED
RAO MACRO | X !
RAG MACRO | X=X+1 |SECOND X AND NUMERIC

'PARAMETER ARE IGNORED

LOCATION

OPERATION

VARIABLE

COMMENTS

n

8

I30

60279900A

MACRO |ABC ;NO SUBSTITUTABLE PARAMETER
MACRO |ABC,,FP { NULL PARAMETER FIELD
MACRO |ABCy16+FP » NUMERIC PARAMETER FIELD

5-17

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format:

LOCATION OPERATION VARIABLE SUBFIELDS
sym mname P1sPgss+s . Py
sym Optional; depends on definition (see discussion following)
o Parameter list composed of alphanumeric strings. Parameters are separated

by commas and terminated by a blank, Two consecutive commas constitute
a null parameter., An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence
in which its formal substitutable name is given in the MA CRO pseudo instruction.

When the definition MACRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the second substitutable parameter occurs in the definition, etc, When the definition MACRO
is in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etc.

If null parameters are interspersed with legal parameters, the correct positions must be established
with commas. When the list terminates before the last possible parameter, all remaining parameters
are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as an iterative
parameter. It is an iterative parameter when the substitutable parameter has been named in an IRP
pseudo instruction (section 5.4.9). Otherwise, it is an embedded para:netér.

The assembler removes the outer pair of parentheses before substituting the enclosed character string
in a line. Embedded parenthetical items must be properly paired., A parenthetical item can contain

blanks and commas.

Example:

LOCATION OPERATION | VARJABLE COMMENTS

1 n 18 [30

MESSAGE| (=C*PROGRAM : ABORT,.*)

After substitution, spacing between fields is the same as it was before substitution. One effect is that

a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as

a variable subfield.

5-18- 60279900A

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACRO
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the locationh counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument. The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion. In the macro call, the location
field argument cannot be more than 8 characters, and parentheses are not given the special meaning
used in the variable field of a macro call line,

Example:

1. An illustration of concatenation

Location Code LOCATION OPERATION | VARIABLE COMMENTS
Generated | " N T30
MACK MACRO |P1,P2 !

SeP1 P1+1ReP2

|
I
|
{
|
I
I
!
!

60279900D . 5-19

2. An illustration of nested definitions and calls

LOCATION OPERATION | VARIABLE COMMENTS
! n 18
NAME1 MACRO
* L]
L] »

|
T
|
|
|
NAME2 | MACRO :
i
|
[
I
1

NAMEZ |ENDM

. |

. IAT THIS TIME» THIS LINE
NAME2 'IS PART OF A DEFINITION
o ,RATHER THAN BEING A CALL.

NAMEL ENDM

!
1
!
!
]
1
{
NAME1L :NAHEI IS CALLED AND EXPANDED.
1
1.
]
1
|

NAME2 CALL TO NAMEZ IS VALID

1

3. The following example illustrates two calls to a definition headed by a MACRO in format two -
using the location argument. The macro is named TABLE; its substitutable arguments are
TABNAM, VALUE1, and VALUE2, where TABNAM is the loration argument.

. LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated

1 I 18 [30

- "|MACRO [TABLE,TABNAMsVALUELs VALUEZ
FABNAM [VFD 60/VALUE1,60/VALUE2
ENDM I

SRVAL TABLE 1 092 0] CALL ONE

;&7&-} 17204000000000000
4 n-aaaoaanusauaaua

ALL THO

5-20 60279900A

4. An illustration of embedded parameters:

Definition:
LOCATION QOPERATION | VARIABLE COMMENTS
1 1 18 [30
X AM MACRO | A,B |
LOM) 1
LJIM B |
ENDM |
Call:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
XAM (SUM,10B) 4, (SAM,TIND3)
Expansion:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS

n

5. The following example illustrates use of R= in macros:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30

ONSH MACRO | N |
R= X1i4N i
SX2 118 I
RJ =XCPM= |
ENDM]

OFFSH MACRO [N i
R= X1 4N |
sx2 128 |
RJ =XCPM= |
ENOM |

60279900A 5-21

6. The following example illustrates a character in a symbol erroneously being interpreted as a
delimiter for a parameter.
LOCATION OPERATION | VARIABLE COMMENTS
| n 18 30
pRC MACRO [Z,VAL,PS
4 SET VAL
SA? Z.ALPHA

ILLEGAL SYMBOL, YOO LONG

7. The following example illustrates changing of control blocks and symbol qualifiers through
substitutable parameters in a macro. (The same call could be used by using micros to
change actual parameters.)

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 [30 ¢

TAB MACRO | BLOCK,KWAL |
USE 8LOCK I
QUAL KHAL !
TAG1 8SS 108 :
TAG2 VFD 60/-1 |
USE * [
l
f
|
o

5-22

60279900A

The following example illustrates a technique that an experienced programmer may wish to
use to save time in processing of definitions. Remember that the assembler replaces the
first substitutable parameter with 7701, the second with 7702, etc. Note that 7701 is ;A in
display characters, 7702 is ;B, etc. This means that the programmer can use the display
characters directly in place of his substitutable parameter names in the body of the definition
and achieve the same results as if the assembler had made the substitution when it saved the
definition. At the time the definition is assembled, the assembler replaces each 77xx with the
actual parameter whether the code was inserted by the assembler when it saved the definition
or by the programmer when he coded the definition.

LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30
CHAR MACRO |ASCII,INTERNAL,EXTERNAL,BCD
CON 3D2C3BTA
ENDM
De0 0

o R [43,10,10,30 8
8000008830191 ‘ \ /3010103 = CHAR e
, . o o 4%,11,11,31 9 i
oosenansgoea3itiiies . R RREETE . CHAR 1

7) . 45%5,60,20 ,13 +
3 00800000000013206085 | | 113206085 CHAR 1
. b v "CHAR i
)] . “6,40,‘00 ’15 -)
4 BRBNODODIVGNLISHORINGE | TON 15404086 - GHAR 5
. Bogn ENDM : CHAR L

. o) CHAR |47 ,54,54,12 *
1 -DOO0DOBDOO0NI2548H%7 || 0 ITON | 125454N7 : CHAR 1

N ‘ | CHAR [|50,21,61,17 7)

5 pouUbOOBOUNENLITRLI21% TON 117612180 CHAR &
e eNoM | _CHAR 1

60279900 A 5-23

5.4.4 MACROE — EQUIVALENCED MACRO HEADER

A MACROE pseudo instruction can be used instead of a MACRO instruction to notify the assembler to
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro

call.

The MA CROE pseudo instruction has two forms:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS
mname MACROE parameters
Format two:
LOCATION OPERATION VARIABLE SUBFIELDS
MACROE mname, parameters

The blank location field identifies the second format.

5-24

60279900A

mname

parameters

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. It can be

1-8 characters. A name that is identical to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction. The most recent definition is the one that applies
for the macro call, A redefinition causes an informative flag to be issued but the
new definition holds.

Names of substitutable parameters., Unlike MACRO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters, the first of which must be alphabetic.
A name cannot be END, ENDD, LOCAL, IRP, or ENDM. A name that begins
with a number, or a second or later occurrence of a parameter name in the list
is ignored. Any of the following special characters separate parameters in the
list:

+ - */ () $=, or.

These characters have no meaning other than as separators. A blank terminates
the list of parameters. The total number of unique parameter names and local
symbols must not exceed 63 for any one macro definition. Also, any of these
can be used to separate the mname from parameters in format two.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a warning flag and
ignore the definition.

The assembler ignores a blank parameter produced by two concurrent separators
or by a separator at the end of the list.

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a MACROE pseudo instruction can be called by an instruction of the

following format:

LOCATION OPERATION VARIABLE SUBFIELDS
sym mname P1=21sPy=29;.. 5P, =02
mname Name of MACROE definition

60279900 B

5-25

sym Optional symbol. A symbol in the location field causes the location counter
to be forced upper. The symbol is then assigned the value of the location
counter. A location field:symbol on the first line in the definition that generates
code is assigned the same address. If the location field of the macro call does
not contain a symbol, the manner of the force upper is a function of the first-
code-generating line in the macro expansion.

p;=a, An equivalenced parameter, Each p is the name of a substitutable parameter.
The a; is an actual parameter to be substituted for p;. The parameters need not
be listed in the same order as they are listed on the MACROE instruction.
Equivalenced parameters in the list are sgparated by commas and terminated
by a blank,

A null value is substituted for any parameter omitted from the list.

When the first character of an actual parameter is a left parenthesis, the
assembler considers all the characters between it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parameter has been named in an IRP pseudo
instruction (section 5.4, 9, IRP). Otherwise, it is an embedded parameter. The
assembler removes the outer pair of parentheses before substituting the enclosed
character string in a line, Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas.

After substitution, spacing between fields is the same as it was before substitution. One effect is that

a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as

a variable subfield.

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACROE
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument, The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion.

CAUTION

After substitution, spacing between fields is the same
as it was before substitution.

5-26 60279900A

Example:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30

SAM MACROF [A,8,C |
CON A |
CON B |
CON C l
ENDM |
¢ |
* I

A=1’ C=5’,\=D : _

e - SAM
5 4 SAM

5.4.6 OPDEF — DEFINE CPU OPERATION

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition
in a table of definitions for assembly upon call and place the instruction syntax in the operation code
table. There is no way of removing the definition from the table. It can, however, be bypassed
through redefinition, or disabled through CPSYN. If the syntax duplicates a CPU instruction already
in the table, the OPDEF definition takes precedence.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
syntax OPDEF parameters
syntax The syntax consists of a mnemonic operator and variable field descriptors.

The mnemonic operator consists of two letters. The first can be any letter.
The second letter can be a register designator: A, B, or X in which case the
operation field of the opdef call is recognized as cAn, ¢Xn, or ¢Bn (cis a
unique character; n is 0-7); or the second letter can be any other letter, in
which case the operation field of the opdef call is recognized simply by a
two-letter mnemonic, such as EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
opdef call. It consists of none, one, two, or three of the following 22 subfield
descriptors. Q represents an expression. An r represents a register letter
(A, B, or X). A comma separates two descriptors; a blank terminates the
syntax.

60279900 A 5-27

void ' Q

r rQ

~-T -rQ

r ry Ty +ryQ
Ty +T, -y +r2Q
r1 *r2 r l*er
Ty *r2 —rl*er
Ty /1y ry/r9Q
—rl/r2 -y /er
1‘1—r2 r 1-r2Q
—rl -r2 —r1 —r2Q

For example, —rl*r 2 would be written as -X*B to describe -X3*Bl1 whereas rQ
would be written as BQ to describe B2+ALPHA.

The first descriptor immediately follows the mnemonic operator.

parameters A substitutable parameter for each register designator (r) and expression
designator (Q) in the syntax in the order in which they occur in the syntax
(and, consequently, in the calling instruction). Parameters can be separated
by any of the characters:

+"*/()$=,01‘.
A blank terminates the list.
The assembler ignores a blank parameter produced by two concurrent separators

or by a separator at the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

5-28 : ' 60279900A

Examples:

1. Listed below are some instructions that could be defined through OPDEF and the syntax entries
that would describe them:

Calling Instruction Opdef

Operation Variable Subfields Syntax

Jpt K JPQ

Jpt Bn+K JPBQ

JP Bn+Bn+K JPB+BQ

Jp Bn, K JPB,Q

JP Xn/Xn+K IPX/XQ

NEt Bn, Bn, K NEB, B,Q

LJ Bn-Bn, An-Xn, K LJB-B, A-X,Q

BXnt -Xn*Xn BX-X*X

SBnt Xn+Bn SBX+B

LXn* Bn, Xn LXB, X

Jpt Bj+K JPBQ

NEt Bj, Bk, K NEB,B,Q

BXit - Xk *Xj BX-X*X

SBit Xj+Bk SBX+B

sBit Bj+Xk SBB+X

T Legal COMPASS CPU instructions

K represents an expression.

60279900A

5-29

2. The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
JPa OPDEF | P1 |
EQ P1 |
ENOM |

Each subsequent JP instruction that matches the syntax JPQ is assembled as an EQ. A JP
instruction having a different syntax, such as the following, is not affected.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 {30
T
10002 0230007755 + Je A3 +ALPHA |

3. The following definition traps all floating point double-precision subtraction instructions
(DXi Xj-Xk) and jumps to an error-check routine for debugging. I, J, and K are substitutable
parameters used within the definition.

LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 |30
DXX=X OPDEF | T,J,K ;
. |
o [
RJ cxouT '
ENDM f

4, The following sequence causes RXi K to be defined as AXi K. It does not affect the standard
RXi instructions involving registers.

5.4.7 OPDEF CALL

LOCATION OPERATION | VARIABLE COMMENTS
] n 18 |30
RXQ OPDEF |P1,P2 '
AX.P1 |P2 !
ENDM {

An opdef call resembles a CPU mnemonic machine instruction. The mnemonic code, quantity and
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions)
must match the syntax described in the OPDEF for the definition to be called.

5-30

60279900A

NOTE

I the Q in a descriptor is combined with register letters,
a plus or minus must precede an expression in the call.

OPDEF Syntax Call

JPQ Jp K Not combined
JPBQ JP BnitK Combined
JPB,Q JP Bn,K Not combined
JPX/XQ JP Xn/XntK Combined

An OPDEF call can occur any place after the definition is saved. In substituting parameters, the
assembler uses only the register values given in the call. It does not substitute the register designators.

A location symbol on the opdef call line forces the first word of generated code upper. The location field
symbol is assigned the current value of the current location counter after the force upper. A location
field on the line in the definition that generates code is assigned the same value. If the location field of
the opdef call does not contain a symbol, the manner of the force upper is a function of the first code-
generating instruction in the expansion. If the call location field and the code-generating instruction
field both contain symbols they are assigned the same value.

Only a line having the correct syntax calls the definition.
Examples:

The following opdef defines an instruction having the syntax IXX/X. On the call, the assembler
substitutes 3, 4, and DIV (not X3, X4, and X. DIV) for P1, P2, and P3, respectively.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18

|

IXX7X OPDEF | P1,P2,P3 '

PX.P2 | X.P2 ‘

PX.P3 | X.P3 :

NX.P2 | X.P2,B4 |
NX.P3 | X.P3,B4

FX.P1 | XoP2/X.P3 |

UX.P1 | X.P1,B% !

LX.P1 | X.P1,B4 }

ENDM |

X3 X4/X.DIV |

’ e

v 1

i

|

1

|

{

|

60279900A 5-31

The following OPDEF selectively traps the SXi Xj+Bk instructions.

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
SXX+B | OPDEF |Isd,K |
.]
) f
. |
| ENDM |
Statements that call the definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
SX3 X1+B2 X
. |
.)
. |
SYM SX.NN | X6+B.XXX |

Statements that do not call the definition:

5.48 LOCAL—LOCAL SYMBOLS

{OCATION -OPERATION { VARIABLE COMMENTS
1 n 18 l30
SX5 Xt jﬂo B DESIGNATOR OR +.
SX6 B3+Xt4 [REGISTERS INTERCHANGED
SX.Y |83 Eno X DESIGNATOR OR OPERAND
SY X4+B4 IMNEMONIC CODE NOT SX.

One or more LOCAL instructions that list symbols local to the definition optionally follows the MACRO,

MACROE, or OPDEF pseudo instruction.

from LOCAL are comment lines.

The only lines that can separate the first header statement

Each symbol must begin with an alphabetic character.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LOCAL symbols
symbols List of local symbols.
Symbols must be separated by and must not include the following characters:
+ - %/ () $=, or.
5-32

60279900A

A blank terminates the list. The m aximum number of local symbols and
substitutable parameters is 63, COMPASS ignores the use of a substitutable
parameter name in the local symbol list.

A location field symbol, if present, is ignored.

A symbol in the list is considered local to the macro; that is, it is known only within the macro
definition. On each expansion of the macro, COMPASS creates a new symbol for each local symbol
and substitutes it for each occurrence of the local symbol in the definition (other than in comment lines
identified by * in column 1). Thus, invented symbols replace LOCAL~-named symbols wherever they
appear in a macro difinition in a manner similar to the way substitutable parameters are replaced.

A user passes a local symbol to inner macro definitions or inner macro calls when he does not declare
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a
macro can be referred to in any inner macro that does not also declare it as local (see example 2).

A symbol not defined as local is accessible from outside the macro definition. An invented symbol is
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change the
structure of the line.

On the listing, each invented symbol is shown as Hsym, where sym is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can
define a different symbol A elsewhere.

Examples:

1. In the following example, C is local to macro ABC and is passed to inner macro definitions.
In the definition, each occurrence of formal parameter A is replaced by the parameter mark
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703, Then, when ABC is called, COMPASS assigns invented symbol
#000001 to C and replaces each occurrence of 7703 in definitions ABC and XY Z.

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
ABC MACRO | A,B |]
LOCAL |C |
c 8SS 108 :
. . | | DEFINITION
. . | OF ABC
X YZ MACRO | D |
SAL c |DEFINITION
. N | OF XY Z
o { /
ENDM |
ABC 3,4 : ‘
| EXPANSION
' r OF ABC
:DEFINITION
| OF xvZ J
1

~ 60279900B 5-33

2. In the following example, C is local to each level. Note how this example differs from the
preceding one.
LOCATION OPERATION | VARIABLE COMMENTS
) M 18 a0
8CD MACRO | A,.B T R
LOCAL { € [
c 8SS 108 l
. . I
. . : DEFINITION
. o OF BCD
YZA MACRO |
| LocaL | ¢ }
SA1 C ’DEFINITION
. OF YZA
| f
c BSSZ 1 !
ENDM !
On the call to BCD, the assembler replaces each occurrence of C with the invented symbol,
+000002 including the use of the symbol in the LOCAL instruction for macro XYZ.
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
e 1546 IEXPANSION OF BCD
_, . |e+D00002 | BCD
. |*e000002 | BCD
. Bssz. 1. BCO
. : 8cn

Finally, on a call to YZA, #000002 is defined as local and the assembler replaces each
H000002 with another invented symbol. Thus, each reference to C in the source code SA1
instruction does not result in a reference to the BSS in the outer macro.

LOCATION

OPERATION

VARIABLE

COMMENTS

T30

EXPANSION OF YZA
e b YZA

Ll . YZA

:5.4.9 IRP — INDEFINITELY REPEATED PARAMETER

An IRP pseudo instruction in a macro definition signals the beginning or end of a sequence of code to be
assembled repeatedly with one parameter varied with each repetition.

It has two formats:

LOCATION OPERATION VARIABLE SUBFIELDS
IRP parameter
IRP

5-34 60279900A

The first form introduces the sequence and names the substitutable parameter; the second form
terminates the repeated sequence. In either form, a location field symbol, if present, is ignored.

The parameter name must be listed as a substitutable parameter on the MACRO or MACROE pseudo
instruction for the definition,

On the macro call, théindefinitely repeated parameter consists of one or more subparameters enclosed
by parentheses and separated by commas. The assembler assembles the sequence for each subparameter;
the number of copies of the sequence depends on the number of subparameters (none at all when the

actual parameter is null). When the list of subparameters is exhausted, the assembler continues with

the next line in the definition. If the named substitutable parameter does not occur between the two

IRP instructions, the assembler repeats the code unchanged for each subparameter provided in the call,
An IRP outside of the range of a macro has no effect on assembly other than to be included in statement
counts.,

Examples:

1. Repeat sequence within macro

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 T30

ZAB MACRO | ARG,8B |
IRP ARG |
SAL ARG ! DEFINITION
SX6 X1 +8 REPEATED OF ZAB
SAG ARG SEQUENCE
IRP
ENDM ‘
: |

s 61615133 . '
516001 131

szznq&a;sz o

,’72@101 ‘sz *,ﬁ_~

X14CON

60279900B 5-35

2. Assign symbol at every 1004 words of zeroed storage:

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18

USE STORAGE

30

BUF MACRO | P1
IRP P1
P1 BSSZ 1008
IRP
ENDNM

|
|
|
|
1
|
|
!
LRI
:
|
!
|
|
I

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions of such general usefulness that they should be available to any program without each
program defining them can be placed on the systems text file as system macros or can be placed on
a file accessible through an XTEXT pseudo instruction.

System macros provide for such system functions as reading and writing files and specifying parameters
for file environment tables, etc. Systems macro definitions are available to COMPASS for each
assembly. The programmer can use a macro call for a system macro at any time in his program.
Descriptions of system macros are given in the operating system reference manual,

Systems definitions can include any legal macro or opdef definition. An expansion of a call for a

system definition is not normally included on the assembler listing. Use of the S option of the LIST
pseudo instruction (section 4,11, 1) enables listing of expansions of system definitions.

5-36 60279900 B

OPERATION CODE TABLE MANAGEMENT 6

The COMPASS operation code table contains the information that COMPASS require's for interpreting
legal operation field entries for COMPASS instructions.

When assembly begins, the operation code table contains these entries.

Pseudo instructions (except LOCAL)
CPU symbolic instructions (Chapter 8)
PPU symbolic instructions (Chapter 9)
System macro and opdef definitions
The MACRO, MACROE, and OPDEF pseudo instructions (Chapter 5) cause entries to be made in this

table. In addition, the programmer has the capability of creating entries through the following
instructions discussed later in this chapter:

cpPOP CPU ope;‘ation

PPOP PPU operation

OPSYN Synonymous mnemonic operation
CPSYN Synonymous CPU operation

If a new entry redefines an instruction already in the table, the obsolete entry is not physically removed
from the table. Instead, it is saved so that the table canbe reconstructed between assemblies.
COMPASS reconstructs the operation code table using all the original system macros, opdefs, pseudo
instructions, and symbolic machine instructions. No programmer-created entry is preserved from
assembly to assembly. The number of entries in the table is limited to 4123.

The only pseudo instruction that logically removes entries from the operation code table are PURGMAC
and PURGDEF.

Entries in the operation code table are in two distinct formats permitting a logical division of the
table. One type of entry permits identification of an instruction by finding a match for the contents of
the operation field, thus, it provides mnemonic recognition. The other type of entry is looked at only
if the search for a mnemonic operator fails to yield a match during a CPU assembly.

This type of entry provides for recognition of an instruction according to its syntax. COMPASS

analyzes the statement to be interpreted, determines the syntax of the operation and variable subfields,
and again searches the table.

60279900C 6-1

Instructions recognized in the mnemonic search and the information provided to the assembler for
each instruction are as follows:

Pseudo instructions The entry contains addresses to routines that perform
pass one and pass two operations

PPU symbolic instructions The entry describes the format of the instructions to
be assembled

Instructions described through PPOP The entry describes the format of the instruction to
be assembled

Macro instructions The entry directs the assembler to the location of the
saved definition

Instructions described through OPSYN The entry is a copy of the synonymous entry

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a match,
COMPASS searches the operation code table again for an entry with a matching syntax. Instructions
recognized in the syntactical search and the information provided to the assembler for each instruction
are as follows:

CPU symbolic instructions The entry describes the format of the CPU instruction
to be assembled
Instructions described through CPOP The entry describes the format of the CPU instruction
: to be assembled
Instructions defined through OPDEF . The entry directs the assembler to the location of the
definition
Instructions described through CPSYN The entry is a copy of the synonymous instruction

The action taken depends on the synonymous entry

It, following the second search of the operation code table, the statement still has not been identified,
the assembler takes the following action:

For a PPU assembly, it generates a 24-bit instruction of which the first 12 bits are zero.

For a CPU assembly, it generates a 30-bit zero instruction.

Although OPSYN and CPSYN pseudo instructions provide a means of rendering more than one
instrurtion synonymous, only instructions of the same type can become synonymous. The logical
division of the table between the two types of entries prevents mnemonically identified instructions from
being made synonymous with syntactically identified instructions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already

in the table for a different instruction, the new entry takes precedence over the old entry, Similarly,
when a OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction,
the new entry takes precedence over the old entry. As a result, the order of precedence for operation
field recognition is, from highest to lowest:

1. Programmer-created entries for mnemonically identified instructions

6-2 60279900A

2. System macros, pseudo instructions, and PPU symbolic machine instructions
3. Programmer-created entries for syntactically identified instructions

4, CPU symbolic instructions

Example:

The following example illustrates a special case in which a macro name takes precedence over one
form of a machine instruction, i.e., the form using SB4 as an operation code.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {a0
SBY MACRO PL,P2 ;DEFINE MACRO NAMED SB&4
. |
ENDM
‘e
S84 A1+ABLE CALL T0O MACRO. NOY CPU INSTRUCTION

I
t
r
i
|
[
l
|
|
[
1
!
|
|
1

s83 AL+ABLE MACHINE INSTRUCTION
SsSB4 OPSYN | NIL 'DISABLES MACRO BUT DOES NOT
. |RESTORE NORMAL USE OF SBU&
. |AS AN OPERATION CODE. EVEN IF
. |IT WERE REDEFINED WITH OPDEF
. |IT WOULD NOT BE RECOGNIZED.
. THE MACRO FORM ALWAYS TAKES
. }PRECEDENCE.
PURGMAC, SB& | RESTORES NORMAL USE OF S84

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

Mnemonically identified instructions include all pseudo instructions, macro instructions, and PPU
symbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PURGMAC
provide the programmer with a means of creating or removing operation code table entries that are in
the mnemonically identified format.

6.1.1 PPOP — PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of a PPU symbolic machine
instruction and creates an operation code table entry for the instruction. COMPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPOP
instruction is used. If the operation code table already contains an entry for the name, the new
definition takes precedence over the old during assembly of the subprogram or until it is redefined.
No error is flagged. Any illegal parameter in PPOP causes COMPASS to ignore the PPOP and issue
a T-type error flag.

60279900A 6-3

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
name PPOP ctl, val
name Mnemonic name, 1-8 characters
ctl Control of instruction assembly
ctl Significance
0 Nlegal; if used, COMPASS ignores the PPOP
1 24-bit instruction with 12-bit address and no indexing
2 12-bit instruction with signed relative address or absolute address
(for example, UJN)
3 24-bit instruction with 18-bit address (for example, LDC)
4 12-bit instruction with 6-bit address (for example, LDN)

24-bit instruction with 12-bit address and optional indexing
(for example, LDM)

6 12-bit instruction with signed relative address (for example, SHN)
7 24-bit instruction with 12-bit address and required second

(for example, IAM)

val An evaluatable expression specifying the 4-octal digit operation code value;
usually, only the two leftmost digits are significant. If the assembly base is M,
the field is assumed to be octal.

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n T l30
PERIPH }
0e0 RASE 0 i
: |
. |
15 LA FQu 15 |
Lo C FQu 40 |
ST™ PPOP S,5400+LA I
. 1
. |
.]
7311 S415 0040 ST™ (o] '

6-4 60279900D

6.1.2 OPSYN — SYNONYMOUS MNEMONIC OPERATION

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous with the
macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name; OPSYN names

The name in the variable subfield must be previously defined as a standard instruction code. After an
OPSYN, either name produces equivalent results. If the location field specifies a previously defined
macro or operation code, the new definition takes precedence over the old without notification. Thus,
a macro defined by a name that is subsequently used in an OPSYN location field is not called when

the macro name is used in the operation field. The instruction actually called is the instruction
named in the variable subfield of the OPSYN. On the other hand, the old macro definition is not lost
and can be restored by purging the new definition with PURGMAC.

Example:

1. An operation named CALL is synonymous with RTM.

LOCATION OPERATION | VARIABLE COMMENTS
) N 18 [30
CALL OPSYN |RJIM |
- |
. |
. [
CALL |=XSUBR= 'PRODUCES SAME RESULTS
[AS IF IT WERE AN RUM

2. In the following example, a programmer wishes to use a macro named LJM for part of the
program and use the real LJM for the remainder of the program.

LOCATION OPERATION | VARIABLE COMMENTS

) n 18 [30

LJM. OPSYN [LJM 'SAVE ORIGINAL DEFINITIOM AS LJM.
PURGMAG LJM kURGE ORIGINAL DEFINITION
* |
¢ I

L JM MACRO [XX :
i |
. |

om ENDM |
. l
. ([CODE USING LJM MACRO
. I

LJM OPSYN [LJM. RESTORES ORIGINAL LJM
. [
. (CODE USING GRIGINAL LJM

60279900A 6-5

6.1.3 NIL — DO NOTHING PSEUDO INSTRUCTION |

The NIL pseudo instruction resembles a no-op; it produces no code and conveys no information to the
assembler, It is primarily designed for disabling a macro; it cannot be used with CPSYN. The
following instructions could be used in place of NIL as nil instructions:

ENDM
ENDD
ENDIF
IRP

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
NIL

A location field symbol if present is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30

MACK OPSYN |NIL :
° 1

}

*]

® |

TAG MACK AyBy6,73]
. i

i

The assembler interprets each call to MACK as a NIL instruction. TAG is not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURGMAC—PURGE MACROS

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named
instructions for the duration of the current assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGMAC name; ,name,,... sname,
namei Names of mnemonic operation codes for macro definitions, pseudo instructions,

or PPU instructions.

A location field symbol if present is ignored.

6-6 60279900A

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS

Syntactically identified instructions apply to CPU assemblies only, The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.1 CPOP — CPU OPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbolic machine instruction and
creates an operation code table entry for the instruction. An instruction of the defined format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contains an entry for the instruction, the new definition takes precedence over the
old during assembly of the subprogram. Any illegal parameter in CPOP causes COMPASS to ignore
the CPOP and issue an error flag,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sytx CPOP ctl, val, reg
sytx The syntax consists of a mnemonic operator and variable field descriptors.

The mnemonic operator consists of two letters. The first can be any letter.
The second letter can be a register designator: A, B, or X, in which case,
the operation field of the instruction is recognized as cAn, cXn, or c¢Bn,

(c is a unique character; n is 0-7); or the second letter can be any other letter,
in which case the operation field of the instruction is recognized simply by a
two-letter mnemonic, such as EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
instruction being described. It consists of none, one, two, or three of the
following 22 subfield descriptors. Q represents an expression, An r represents
a register letter (A, B, or X). A comma separates two descriptors; a blank
terminates the syntax.

void Q

r rQ

-r -rQ

r 41y r1+r2Q
—r1 +r2 -r1 +r 2Q
r *r2 r.l *er
--r1 *r2 —r1 *er
ry / r, r; / r,Q

60279900A 6-7

-1, /Ty -T)/T,Q
Ty r,oTQ

-rl--r2 -rl-er

For example, to describe ~X3*B1, the descriptor, -ry *rz, would be written as -X*B whereas, to
describe B2+ALPHA, the descriptor rQ would be written as BQ.

ctl Control of instruction assembly,

ctl Significance

0 15-bit instruction

1 30-bit instruction

2 15-bit instruction, force upper before assembly

3 30-bit instruction, force upper before assembly

4 15 bit instruction, force upper after assembly

5 30-bit instruction, force upper after assembly

6 15-bit instruction, force upper before and after
assembly

7 30-bit instruction, force upper before and after
assembly

I val An evaluatable expression specifying a 9-bit operation code; if the base is M,

val is assumed to be octal.

reg Three octal digits specifying the order from left to right into which register
numbers are to be inserted into the i, j, k portions of a 15-bit instruction, or
into the i and j portions of a 30-bit instruction. If the assembly base is M,
reg is assumed to be octal.
1 Register number obtained from operation field

2 Number of second register or only register in
variable field

3 Number of first of two registers in variable field

0 Set field to 0

6-8 60279900D

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

] n 18 [30

SAX+B CpopP 0,5308,1328 EDEFINES SAI XJ+BK

SXXQ CPOP |1,7208,1208 DEFINES SXI XJ+K
. |
. |
|
53731 Sa7 X3+81 I
1
722 7231000003 TAG SX3 [x1+3 }

6.2.2 CPSYN — SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instruction renders an instruction with the syntax given in the location field
synonymous with the instruction having the syntax specified in the variable field. The only limit to
the number of CPU instructions that can be made synonymous is the size of the operation code table
(4123 entries).

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sytx1 CPSYN sytx2
sytx1 Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is
already in the operation code table, the table entry for sytx2 takes precedence
over the old table entry for sytx1 without notification.
sytxz Syntax of a CPU instruction for which there must be an entry in the operation

code table. Following the CPSYN, an instruction in either sytx1 or sytxo
produces an octal instruction of the format described by the entry for sytxz.
6.2.3 PURGDEF—PURGE CPU OPERATION CODE

The PURGDET pseude instruction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGDEF |sytx
sytx Syntax of a CPU instruction (see CPOP for legal forms).

A location field symbol, if present, is ignored.

60279900A 6-9

MICROS

D,

The COMPASS micro capability enables the programmer to symbolically refer to a defined character
string. When used in conjunction with IFC, DUP, STOPDUP, and SET pseudo instructions, micro
strings provide for varied manipulation of character strings -- testing for a particular character,

counting characters, concatenation of strings, etc.

Two instructions related to micros are discussed

elsewhere. They are BASE (section 4.4.1) which allows optional micro definition of the base, and
MICCNT (section 4. 6.5) which allows a micro size to be defined as a symbol.

Use of a micro definition requires two steps: definition of the character string, and substitution. In
this discussion, substitution rather than definition is discussed first so that the reader has a better
understanding of how a definition is used when it is described.

7.1 MICRO SUBSTITUTION

Wherever a micro name between micro marks (#) occurs in a statement other than a comment line

(* in column 1), the assembler substitutes the micro before it interprets the statement.

If column 72

of the last card read is exceeded as a result of micro substitution, the assembler creates up to a
maximum of 9 continuation cards, beyond which it discards excess characters without notification on

the listing.

No replacement takes place if the micro name is unknown or if one of the micro marks has

been omitted. If the micro name is unknown, the assembler flags a non-fatal assembly error.
If the micro name is null, that is, the two micro marks are adjacent, then

1. Both micro marks are deleted, and

2. No error flag is set

Example:

A micro identified as NAM is defined as the 7 characters:

ADDRESS

A reference to NAM is in the variable field of a line:

LOCATION

OPERATION | VARIABLE COMMENTS

n 18 Ta0

However, before the line is interpreted, COMPASS substitutes the definition for NAM producing the

Loc

following line:

SAL FNAMZE+4

60279900D

LOCAT\ON OPERATION | VARIABLE COMMENTS
1 i 8 l 30
Loc sa1 ADDRESS+4 |
NOTE

Unless the A option of the LIST pseudo instruction is
enabled, the listing depicts the instruction as it was
before the substitution took place.

7.2 MICRO DEFINITION

COMPASS provides four pseudo instructions that define micros, MICRO, OCTMIC, DECMIC, and
BASE (section 4. 4.1).

7.2.1 MICRO — DEFINE MICRO

The MICRO pseudo instruction defines a character string and assigns a name to that string.

Format:

LOCATION OPERATION VARIABLE SUBFIELOS

micname MICRO n,,n, ,dstringd

micname Name by which definition is called; 1-8 characters

n, Absolute evaluatable expression specifying starting character in string; when the base
is M, COMPASS assumes that n is decimal.

n2 Absolute evaluatable expression specifying number of characters; when the base is M,
COMPASS assumes that n, is decimal.

dstringd Delimited character string. The delimiter d is a character not used in the

string.

Counting the first character after d as character 1, the assembler forms the string by extracting n,

characters starting with character n. If the second delimiting character occurs before count n,, is

exhausted, the defined string terminates at that point. If n; is greater than zero and n, is omitted, zero,

or negative, the defined string includes all the characters from ny to the closing delimiter (see second example)

If n, is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to. That is, ny and the character string are ignored.

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of another (see third example).

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined
originally as one character string can be redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

LOC{ TION OPERATION | VARIABLE COMMENTS
1 n 8 |30
N AME MICRO | 1,19,*ALPHANUMFRIC STRING*

7-2 60279900 D

2,

This example illustrates a blank character count.

The defined string begins with A and is

terminated by the closing delimiter.

LOCATION OPERATION | VARIABLE COMMENTS
) W 18 T30
MICKY MICRO | 1,4,*ALPHANUMERIC STRING*
3. One micro can be defined as a substring of another.
LOCATION OPERATION | VARIABLE COMMENTS
1 " 8 |30
NAM1 MICRO | 1,25,¥MAJOR :ALPHA NUMERIC STRING®*
L] L] L] I
* L] L] l
L] L] L] I
NAM2 MICRO | 7,,*#NAM1z* [SAME STRING AS IN EXAMPLES {1 AND 2
4. One micro can combine others.
LOCATION OPERATION | VARIABLE COMMENTS
1 N 8 T30
[Tnama MICRO |1,12,SALPHANUMERICS
NAM2 MICRO [1,474X STRINGX
!NAMS MICRO |1,,+ZNAM12ZNAM22: COMBINES NAM1 AND NAM2

5. A micro name can be redefined.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
MSG MICRO |1,6,*STRING¥
* L L] [
. . . |CODE USING FIRST DEFINITION
i L] . L] '
llHSG MICRO 1,19,*ALPHANUMERIC #MSGz*
|
i. . . :CODE USING SECOND DEFINITION,
L. o . ‘FIRST DEFINITION IS INACCESSIBLE.
| [
6. Micro substitution takes place before a line is assembled or examined for syntax;
thus, the following is possible.
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 IJO
NAM MICRO 1,,* LOC SA1 ADDRESS+*
L

60279900D

7-3

7.2,.2 DECMIC — DECIMAL MICRO

Using a decimal conversion, the DECMIC pseudo instruction converts the expression into a character
string to be saved under the name specified.

Format:
LOCATION OPERATION VAR_IABLE SUBFIELDS
micname DECMIC aexp,n
micname Name by which definition is called; 1-8 characters
aexp Absolute expression to be converted
n Optional absolute expression specifying number of charaecters in the defined
string. The defined string is a maximum of 10 characters regardless of the
magnitude of n, When base is M, COMPASS assumes that n is decimal,
If n is omitted or has a zero value, the micro contains the number of characters
indicated by the conversion to a maximum of 10 characters. If the converted
expression has more than n (or 10) digits, the most significant digits are
truncated. If the value has fewer than n digits, the string is right justified and
filled with leading zeros. All numbers are treated as positive.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18
v DECMIC|B,6
MICR

7.2.3 OCTMIC — OCTAL MICRO

Using an octal conversion, the OCTMIC pseudo instruction converts the value of the expression into a
character string to be saved under the name specified.

7-4

60279900A

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

micname OCTMIC aexp,n

micname Name by which definition is called; 1-8 characters

aexp Absolute expression to be converted

n Optional absolute expression specifying number of characters in the string,

The defined string is a maximum of 10 characters regardless of the magnitude
of n. When base is M, COMPASS assumes n as a decimal. ¥ n is omitted or

has a zero value, the micro contains the number of characters indicated by the
conversion to a maximum of 10 characters.

If the converted expression has more than n (or 10) digits, the most significant digits are truncated.
If the value has fewer than n digits, the string is right justified and filled with leading zeros. All
numbers are treated as positive.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18
v 0CTMIC [B,6

{a0
i
|
|
i
|
I

y9*#V1iz ADDITIONAL STORAGE NEEDED*

7.3 PREDEFINED MICRO NAMES
Two standard micros (DATE and TIME) are predefined by the COMPASS assembler. They are available

for every assembly. The programmer simply writes the micro reference as desired.

7.3.1 DATE

The DATE micro contains the current date in 10 characters in the following form as obtained from the
operating system:

Ayr/mo/dy.

The micro reference is #DATE#.

60279900A . 7-5

7.3.2 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained
from the operating system:

A hr.min. sec.
The micro reference is ZTIME#.

Example:

LOCATICN OPERATION | VARIABLE COMMENTS

1 " 18 |30

TITLE |PROGRAM ASSEMBLED ON #DATE2 AT2TIME:

7-6 60279900A

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

“

6000/7000 COMPASS recognizes symbolic notation for all 7600 Central Processor Unit instructions and
all 6000-Series Computer Systems Central Processor Unit instruetions.

The assembler identifies each symbolic instruction according to its syntax and generates a one parcel
15-bit instruction or a two parcel 30-bit instruction. The object code for an instruction is generated
in the block in use when the instruction is encountered.

8.1 MACHINE INSTRUCTION FORMATS

Figures 8-1 and 8-2 illustrate the formats for CPU 15-bit and 30-bit instructions generated by the
assembler.

gh li l j k
14 08 05 02 00

Figure 8-1. CPU 15-Bit Instruction Format

gh [+ [| | K
29 23 20 17 14 00

Figure 8-2, CPU 30-Bit Instruction Format

gh 6~-bit instruction code

ghi 9-bit instruction code

i 3-bit code specifying one of eight designated registers (e. g. , Ai)

j 3-bit code specifying one of eight designated registers (e. g. , Bj)

k 3-bit code specifying one of eight designated registers (e. g. , Bk)
18-bit integer value used as an operand, address of an operand, or branch destination
address.

jk 6-bit integer value specifying a shift count or mask count

Figure 8-3 illustrates possible arrangements of one and two parcel instructions in a 60-bit CPU
instruction word. Generally, the assembler does not allow a two-parcel instruction to begin in the
fourth parcel of a word. However, the assembler may generate a 30-bit instruction in a fourth
parcel when all of the following are true:

1. The assember is at the fourth parcel (position counter is 15)

60279900A 8-1

2. The instruction does not include K. Note that if K is included in the syntax and reduces to zero,
it requires 30 bits because the evaluation of K takes place in the second pass whereas the space
for the instruction is reserved in the first pass.

3. The instruction does not have a location field symbol or is not otherwise forced upper.

When a two parcel instruction begins in the last parcel of a word, the 7600 executes it as if there

were a fifth parcel in the instruction word and that parcel contained all zeros.

On the 6400, this

condition causes an error exit. On the 6600, the CPU takes the first parcel of the current instruc-

tion.

Before it assembles an instruction that must begin in the first parcel (forced upper) and after it
assembles an instruction that requires the instruction following it to be forced upper, the assembler

completes a word as follows:

Lower 15 bits remain They are packed with a one parcel NO (pass) instruction
Lower 30 bits remain They are packed with a two parcel SB0O B0+46000B instruction
Lower 45 bits remain They are packed with a NO instruction and an SB0O B0+46000B instruction
First Second Third Fourth
Parcel Parcel Parcel Parcel
15 15 15 15
59 44 29 14 00
30 15 15
59 29 14 00
15 30 15
59 14 14 00
15 15 30
59 44 29 00
B 30 30 |
59 29 00

Figure 8-3. Arrangements of Instructions in a 60-bit CPU Word

60279900€C

8.2 INSTRUCTION EXECUTION

Execution times for all instructions are listed in Appendix A.

8.2.1 6600/6700 EXECUTION

After an exchange jump start by a PPU and CPU program, CPU instructions issue automatically in the
original sequence, to an 8-word instruction stack. The stack can hold a program loop consisting of up to
26 15-bit instructions and one 30-bit instruction.

Instructions are read from the stack one at a time and issued to the functional units (table 8-1) for
execution. A scoreboard reservation system in CPU control keeps a current log of which units and
operating registers are reserved for computation results from functional units.

Each functional unit executes several instructions, but only one at a time. Some branch instructions
require two units, the second unit receives direction from the branch unit,

The rate of issuing instructions varies from the maximum of one instruction every 100 nanoseconds
(one minor cycle). Sustained issuing at this rate may not be possible because of functional unit and CM
conflict or because of serial rather than simultaneous operation of units. Program run time can be
decreased by efficient use of the units. Instructions that are not dependent on previous steps may be
arranged or nested in program areas where they may be executed concurrently with other operations to
eliminate dead spots in the program and increase the instruction issue rate.

The following steps summarize instruction issuing and execution:

@ An instruction is issued to a function unit when:
Specified functional unit is not reserved
Specified result register is not reserved for a previous result

e Instructions are issued to functional units at minor cycle intervals when no reservation conflicts
are present.

® Instruction execution starts in a functional unit when both operands are available. Execution is
delayed when an operand is a result of a previous step which is not complete.

® No delay occurs between the end of a first unit and the start of a second unit which is waiting for
the results of the first.

e After a branch instruction no further instructions are issued until instruction has been executed.
In the execution of a branch instruction, the branch unit uses:

Increment unit to form the instructions that branch to K + Bi and branch to Kif Bi ...
Long add unit to perform the instructions that branch to Kif Xj ...

Time spent in the long add or increment units is part of total branch time.

Read central memory access time is computed from the end of increment unit time to the time an
operand is available in X operand register. Minimum time is 500 nanoseconds assuming no central
memory bank conflict.

+ The 6700 also includes a 6400-type central processor unit

60279900.B 8-3

TABLE 8-1. 6600/6700 FUNCTIONAL UNITS

UNIT GENERAL FUNCTION
Branch Handles all jumps or branches from the program.
Boolean Handles the basic logical operations of transfer, logical product,
logical sum, and logical difference.
Shift Executes operations basic to shifting. This includes left (circular)

Floating Add

Long Add
Floating Multiply

Floating Divide

Increment

and right (end-off sign extension) shifting, and normalize, pack, and
unpack floating point operations. The unit also includes a mask
generator.

Performs single or double precision floating point addition and
subtraction on floating point operands.

Performs addition and subtraction of two 60-bit fixed point operands

Performs single or double precision floating point multiplication on
floating point operands

Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a 60-bit word.

Performs one's complement addition and subtraction of 18-bit operands.

8-4

60279900A

8.2.2 6400/6500 EXECUTION

The 6400 and 6500 systems CPU has a unified arithmetic unit, rather than separate functional units as
in the 6600 system. Instructions in the 6400 and 6500 CPU are executed sequentially.

For efficient coding in the 6400 and the 6500 central processor unit:

Always attempt to place jump instructions in the upper portion of the instruction word to avoid both
the additional time for RNI (2 minor cycles) and the possibility of a memory bank conflict with
P + 1),

Where possible, place load/store instructions in the lower two portions to avoid lengthening
execution times.

Reading the next instruction words of a program from central memory, RNI, is partially concurrent
with instruction execution. RNI is initiated between execution of the first and second instructions of the
word being processed. Initiating RNI operation requires two minor cycles; the remainder of the RNI
is parallel in time with execution of the remaining instructions in the word:

itiate \
RNI Executmn of
\

ZE

1nstruct10ns —%»

2 and 3

RNI

— | 200 <+— [\ minimum of —ﬂ;»
NSEC

800 NSEC

Total RNI time

Y

A

In calculating execution times, two minor cycles are added to each. instruction word in a program to
cover the RNI initiation time., Exceptions are the return jump and the jump instructions (in which the
jump condition is met) when they occupy the upper position of the instruction word. Since the times for
these instructions already include the time required to read the new instruction word at the jump
address, no additional time is consumed (AppendixA),

60279900A 8-5

Example:

P |Jump to K (met) Pass Pass
K |Add1 Add 2 Load | Load
Instruction Minor Cycles Required
Jump 13
Add1 5.
RNI Initiation 2
. Add 2 5
Load 12
Store 10
Total Time 47 Minor Cycles

After RNI is initiated (between the first and second instructions of the word), a minimum of eight
minor cycles elapses before the next instruction word is available for execution. Even if the lower
order positions of the word should require less than eight minor cycles, a minimum of eight minor
cycles is allowed regardless of the execution times stated in Appendix A.

Example:

Jump to K

(not met) Pass Pass

P+1

8.2.3 7600 EXECUTION

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in
the computation section of the 7600 CPU. Each is a specialized unit with algorithms for a portion of

the CPU instruction execution. Table 8-2 lists the general function of each unit. A number of funetional
units may be in operation at the same time.

8-6 60279900A

TABLE 8-2. 7600 FUNCTIONAL UNITS

UNIT GENERAL FUNCTION

Boolean Handles the basic logical operations of transfer, logical product, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations.

Shift Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and mask generation.

Normalize Performs the normalize operations.

Floating Add Performs single or double precision floating point addition or subtraction]
on floating point operands.

Long Add Performs integer addition or subtraction of two 60-bit fixed point
operands.

Floating Multiply Performs single or double precision floating point multiplication on
floating point operands.

Floating Divide Performs single precision floating point division of floating point
operands.

Population Count Counts the number of 1 bits in a 60-bit word.

Increment Performs one's complement addition and subtraction of 18-bit operands.

A functional unit receives one or two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the function. The functional
units do not retain any information for reference in subsequent instructions. The units operate in three-
address mode with source and destination addressing limited to the operating registers.

Except for the floating multiply and divide units, all 7600 functional units have one clock period
segmentation. This means that the information arriving at the unit, or moving within the unit, is
captured and held in a new set of registers at the end of every clock period. It is therefore possible

to start a new set of operands for unrelated computation into a functional unit each clock period even
though the unit may require more than one clock period to complete the calculation. This process may
be compared to a delay line in which data moves through the unit in segments to arrive at the destination
in the proper order but at a later time. All functional units perform their algorithms in a fixed amount
of time. No delays are possible once the operands have been delivered to the front of the unit.

The 7600 floating multiply unit has a two clock period segmentation. Operands may enter the multiply
unit in any clock period providing there was no multiply operationinitiated in the preceding clock period,

The floating divide unit is the only 7600 functional unit in which an iterative algorithm is executed. There
is little segmentation possible in this unit. However, to increase execution speed, the beginning of a new
divide operation can follow a previous divide operation by 18 clock periods for a gain of 2 clock periods.

Instructions involving storage references for operands or program branching are difficult to time.

Program branching within the instruction stack causes no storage references and small program loops
can therefore be precisely timed.

602799008 8-17

8.3 OPERATING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length | Number
Operand Registers X0 - X7 60 Bits 8
Address Registers AOQ - AT 18 Bits 8
Index Registers B0 - B7 18 Bits 8

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed. A register is free in the clock period (or minor cycle) following the store into it.

8.3.1 X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated X0, Xl,...,X7 are the
principal data handling registers for computation. Data flows from these registers to the SCM (CM)
and the LCM (7600 only). Data also flows from SCM (CM) and LCM (7600 only) into these registers.
All 60-bit operands involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM)
into corresponding address registers.

On the 7600, the X registers also serve as address registers for referencing single words from LCM.
X0 is used as the LCM relative starting address in a block copy operation.

8.3.2 A REGISTERS

Eight 18-bit A registers in the computation section of the CPU, designated as A0, Al,..., A7, are
essentially SCM (CM) operand address registers. With the exception of A0 and X0, A registers are
associated one-for-one with the X registers. Placing a quantity into an address register Al - A5
causes an immediate SCM (CM) read reference to that relative address and sends the SCM (CM) word
to the corresponding operand register X1 - X5, Similarly, placing a value into address register A6
or A7 causes the word in the corresponding X6 or X7 operand register to be written into that relative
address of SCM (CM).

The A0 and X0 registers operate independently of each other and have no connection with SCM (CM).

A0 is used as the relative SCM (CM) starting address in a block copy operation and for scratch pad or
intermediate results.

8.3.3 B REGISTERS
Eight 18-bit B registers in the computation section of the CPU designated as B0, Bl1,...,B7 are

primarily indexing registers for controlling program execution. Program loop counts can be incremented
and decremented in these registers.

8-8 602799008

Program addresses may be ‘modified on the way to an A register by adding or subtracting B register
quantities. The B register also holds shift counts for pack and normalize operations and the channel
number for channel status requests,

BO always contains positive zero; that is, BO is held clear. Often, as a programming convention, Bl
or B7 contains positive 1. See the B1=1, the B7=1, and the R= pseudo instructions.

8.4 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CPU machine instructions. Instructions are
listed according to octal sequence. Instructions unique to a computer system are identified as such.
These instructions can he assembled on any machine but will execute properly on the noted machine only.
For details and special conditions arising during instruction execution, refer to the relevant hardware
system reference manual.

The location field of a symbolic machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter after the force upper (if any) occurs.

The operation field of a symbolie CPT, machine instruction contains a mnemonic operator, the last two
characters of which are often a register designator.,

The variable field contains one, two, or three subfields, For 15-bit instruction, subfields take the
forms:

r
-r } r is a register designator
r,r
ropr . .
5 b tor + - *
ropr } op is a register operator /
+ik jk is an absolute expression specifying a shift count or mask bit count.

If the expression value is in the range -60 to -0, inclusive, COMPASS
adds 60 to it. If it is less than -60 or greater than 63, COMPASS sets
a warning flag and uses only the low-order 6 bits of the expression value.

For a 30-bit instruction, subfields take the forms:

K The single subfield contains an absolute, relocatable, or external expression
that does not include a register.

ropK The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

+ - * /

r,K One subfield contains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator,

r,r,K Two subfields contain register designators; a third contains an absolute,

relocatable, or external expression that does not include a register.

60279900D 8-9

In the formats and examples, K reduces to an 18-bit value that represents one of the following in pass
two:

An absolute address or a word count
An external symbol + an integer value

An address that is relocatable relative to the program origin or common block origin

An address of a literal

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the
instruction.

In the descriptions of the formats, +K designates that the evaluation of all nonregister elements can
result in a positive or negative value for the expression (see section 2. 8. 2 Evaluation of Expressions).
Use of +K to represent the integer portion of the expression does not imply that the first term oper-
ator in the expression is an expression operator. If you consider that a and b are terms in expression
K, then +K indicates that the sum of the values of a and b is positive and -K indicates that the sum of
the values is negative. Thus, -K does not mean that a-b would become -a+b.

In the following example, the symbol XRAY has the value 407 . The first term operator (-) forms the
value 7773708. Subtracting 1 from this results in 7773678 or a -K (-4108).

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) N 1 T30
13 7212777367 Sxi1 X2-XRAY-1 E

Unless otherwise noted, subfields can be in any order, COMPASS also allows an added degree of
flexibility by allowing the variable subfields of an instruction to be written in the operation field with
each subfield preceded by a comma. For example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n N [30
L
ux1 B2,X3 i

can be written

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
26123 UX1,R2 |X3 J

The instructions are identical to the assembler.

8-10 60279900D

. Similarly, the following instructions are regarded as identical. Use of this feature is optional.

Code Generated

0423004507
0423004507
0423004507
0423004507

8.4.1

PROGRAM STOP INSTRUCTION {6000-SERIES ONLY)

LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30
EQ B2+33+K N
EQ,B2 [B3,K |
€Q,B2,83 K |
EQ,B2,83 ,K ;

This instruction stops the central processor unit at the current step in the program. An exchange jump

is necessary to restart the central processor unit.

The contents of the location field become a sub-

subtitle on the assembler listing. The assembler forces upper before and after assembling a PS

instruction.
Formats: 6600 Functional Unit: Branch
Operation Variable Description Size Octal Code
PS Program stop 30 bits 00000 00000
PS K Program stop 30 bits 0000K
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) " 18 T30
a0n0nQ0NoN PS i

BO2TORCOC

8-11

8.4.2 ERROR EXIT INSTRUCTION (7600 ONLY)

This instruction is exclusive to the 7600. Its execution is treated as an error condition and the machine
sets the program range condition flag in the PSD register. The condition flag then generates an error
exit request which causes an exchange jump to address (EEA). All instructions issued prior to this
instruction are run to completion. Any instruction following this instruction in the current instruction
word is not executed. When all operands have arrived at the operating registers as a result of previously
issued instructions, an exchange jump occurs to the exchange package designated by (EEA).

The i, j, and k designators, which are ignored by the computation section, are set to zero by the
assembler. The program address stored in the exchange package on the terminating exchange jump is
advanced one count from the address of the current instruction word (P=P+1). This is true regardless
of which parcel of the current instruction word contains the error exit instruction.

The error exit instruction is not intended for use in user program code.. The program range condition
flag is set in the PSD register to indicate that the program has jumped to an area of the SCM field which
may be in range but is not valid program code. This should oceur when an incorrectly coded program
jumps into an unused area of the SCM field or into a data field. The program range condition flag is
also set on the condition of a jump to address zero. These conditions can be determined on the basis

of the register contents in the exchange package. The existence of an error exit condition resulting
from execution of this instruction can thus be dediuced.

The location field of an ES instruction becomes a sub-subtitle on the assembler listing.

Format: Functional Unit: None
iOperation Variable Description Size Octal Code
ES Error exit to EEA 15 bits 00000
ES K Error exit to EEA 15 bits 00000
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) N 18 [30
00000 €S {
60279900A

8-12

8.4.3 RETURN JUMP INSTRUCTION

When this instruction is executed, an unconditional jump to the current address plus one [(P)+1)] is
stored in the upper half of relative address K in SCM and control then transfers to K+1 for the next
instruction. The lower half of the stored word is all zeros. The instruction always branches. out of
the instruction stack and voids all instructions currently in the instruction stack.

After the instruction is executed the octal word at K is:

Address K [0400 | P+1 | 0000000000
59 S~ 29 00
Bi=Bj

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the following instruction word. Instructions appearing after the return jump
instruction in the current instruction are not executed. The called subroutine must exit at address K

in CM (SCM). A jump to address K of the branch routine returns the program to the original sequence.
The assembler sets the unused j designator to zero.

A force upper occurs after the instruction is assembled.

6600 Functional Unit: Branch

Format: 7600 Functional Unit: None
Operation Variable Description .| Size Octal Code
RJ K Return jump to K 30 bits 0100K
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
0100005250 + _ RJ HELP |

60279900A . 8-13

8.4.4 ECS INSTRUCTIONS (6000-SERIES ONLY)

These instructions initiate either a read or write operation to transfer (Bj) + K 60-bit words between
extended core storage (ECS) and central memory (CM). The initial ECS address is (X0) + RAECS;
the initial CM address is (A0O) + RACM'

The assembler forces upper before assembling an RE or WE instruction,

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word containing

the RE or WE instructions. These 30 bits should always hold a jump to an error routine. The conditions
are:

1. Parity error(s) when reading ECS. If a parity error is detected, the entire block of data is
transferred before the exit is taken.

2. The ECS bank from/to which data is to be transferred is not available because the bank is in
maintenance mode, or the bank has lost power, If either of these conditions exists on an
attempted read or write, an immediate error exit is taken,

3. An attempt to reference a nonexistent address. On an attempted write operation, no data
transfer occurs and an immediate error exit is taken. If the attempted operation is a read,
and addresses are in range, zeros are transferred to central memory. This is a convenient
high-speed method of clearing blocks of central memory.

For additional information about these instructions, refer to the CONTROL DATA® 6400/6500/6600
Computer Systems Extended Core Storage Reference Manual, Publication No. 60225100.

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
RE Bj Read extended core storage 30 bits 011j0 00000
RE K Read extended core storage 30 bits 0110K
RE Bjt+K Read extended core storage 30 bits 011jK
WE Bj Write extended core storage 30 bits 012j0 00000
WE K Write extended core storage 30 bits 0120K
WE Bj'K Write extended core storage 30 bits 012jK
Examples:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated
1 0 18 [0
0110002000 RF 20008 |
!
0117001000 PE n7+109198 i
0125901000 WF 1000R+R5 {

60279900D

8.4.5 LCM BLOCK COPY INSTRUCTIONS (7600 ONLY)

Block copy instructions move quantities of data between LCM and SCM as quickly as possible. All
activity in the CPU other than I/O word requests is stopped during a block copy operation. All
instructions issued prior to a block copy instruction are executed to completion and no further
instructions issue until the block copy is nearly completed. As a result of these restrictions the

data flow between LCM and SCM can proceed at the rate of one 60-bit word each clock period.

When an [/O multiplexer word request for SCM occurs during this transfer, the data flow is
interrupted for one clock period. The I/O word address is inserted in the stream of addresses to

the SAS, and the addresses for the block copy are resumed with a minimum of a one clock period delay.
An additional delay will occur if the I/O reference causes a bank conflict in SCM.

60279900D 8-14.1

The length of the block is determined by adding the quantity K to the contents of register Bj. Either
quantity may be used as an increment or decrement. The result is an 18-bit integer which is truncated
to a 10-bit quantity. Thus, a maximum block size is 17778. (For example, if the result of the add is
0030008, the instruction transfers 10008 words.) No error indications are given when this occurs unless
the field length is exceeded causing a block range error. If the block length is zero, the instruction
becomes a do-nothing instruction; the condition is not error flagged.

Relative source or destination addresses begin at (A0) in the SCM and at the relative LCM address
determined from the lowest order 19 bits of (X0), If (X0) is negative, the 19 bits are treated as a
positive integer. If the sum of (X018-00) and the block count exceeds the (FLL), the copy is not
executed and the LCM block range condition flag is set in the PSD register. Similarly, if the sum of
(A0) and the block exceeds (FLS), the copy is not executed and the SCM block range condition flag is
set in the PSD register.

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the
P8D register but does not interrupt the block copy instruction. No further instructions are issued during
block transfer of data. Instructions already issued are completed; all other activity, with the exception
of I/0 word requests, stops.

Formats: Functional Unit: None
Operation Variable Description ' Size Octal Code
RL Bj Block copy (Bj) words from LCM to SCM 30 bits 011j0 00000
RL K Block copy (K) words from LCM to SCM 30 bits 0110K
RL Bj+K Block copy (Bj) + K words from LCM to
SCM 30 bits 011K
WL K Block copy (K) words from SCM to LCM 30 bits 0120K
WL Bj Block copy (Bj) words from SCM to LCM 30 bits 012j0 00000
WL Bj+K Block copy (Bj) + K words from SCM to
LCM 30 bits 012jK
Example:
Code Generated LOCATION OPERATION | VARIABLE CQMMENTS
1 n 18 [30
0115001000 RL 1000B+RS5 |
|
01106002000 RL 20608 |
|
0124777¢77 WL q4-1008 |

60279900A 8-15

8.4.6 EXCHANGE JUMP INSTRUCTION (6000-SERIES ONLY)

This instruction unconditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit, Instruction action differs, however, depending on whether the monitor flag bit is
set or clear.

Operation is as follows:

1. Monitor flag bit clear: The starting address for the exchange is taken from the 18-bit Monitor
Address register. This starting address is an absolute address. During the exchange, the
monitor flag bit is set.

2. Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding
K to the contents of register Bj. This starting address is an absolute address. During the

exchange, the monitor flag bit is cleared. ‘

For additional information, refer to the Standard Option 10104-A/B/C/D Central and Monitor Exchange
Jumps for 6600 Reference Manual, Pub, No. 60203200,

The assembler forces upper before and after assembling an XJ instruction.

Formats: Functional Unit: Branch
Operation Va.rialblej Description Size Octal Code
XJ Exchange jump to MA if in program mode 30 bits 01300 00000
XJ Bj Exchange jump to (Bj); flag set 30 bits 013j0 00000
XJ K Exchange jump to K; flag set 30 bits 0130K
XJ Bj+K Exchange jump to (Bj) + K; flag set 30 bits 013jK
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 M30
I
0120000000 XJ ;
0130001000 XJ 10008 ‘
l
8135000600 XJ B5+6008 [

8-16 602799004

8.4.7 EXCHANGE EXIT INSTRUCTION (7600 ONLY)

The normal termination for an exchange package execution interval is through execution of an exchange
instruction (MJ). The exit mode flag in the PSD register determines the source of the exchange package.

This instruction has priority over all other types of exchange jump requests. If an I/O interrupt request
Or an error exit request occurred prior to execution of this instruction, it is denied and the exchange
jump specified by the MJ is executed. The rejected interrupt request is not lost, however. The
conditions that caused it are reinstated when the exchange package enters its next execution interval.

The MJ instruction voids the instruction word stack. Any instructions remaining in the stack are not
executed,

The system makes no protective tests on the exchange jump address.

Exit Mode Flag Set: When the exit mode flag is set, the MJ instruction causes the current program
sequence to terminate with an exchange jump to a relative address in the SCM field for the current
program. The exchange package is located at relative address (Bj) + K. An overflow of the lowest
order 16 bits of this result causes an error condition that is not sensed in the hardware. Should a
program erroneously execute an exchange exit instruction with an overflow condition, the exchange
jump sequence begins at the absolute SCM address corresponding to the lowest order 16 bits of this
sum. This 30-bit form of MJ is privileged to a monitor program.

Exit Mode Flag Not Set: When the exit mode flag is not set, the object program terminates the execution
interval with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the absolute address
of the exchange package. This is an absolute address in SCM and is generally not in the SCM field for,
the current program. This form of the MJ instruction has a blank variable field; the assembler sets the
j and k designators to zero.

This instruction is used for calling a system monitor program for input/output, monitor calls, etc.

All operating register values, program addresses, and mode selections are preserved in the exchange
package for the object program so that the object program can be continued at a later time. The program
address in the object program exchange package is advanced one count from the address of the

instruction word containing the exchange exit instruction. The monitor program normally resumes the
object program at this address.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than

16 bits of significance, the upper bits are discarded and the lower 16 bits are used as the absolute
address in SCM for the exchange jump. A force upperoccurs after the instruction is assembled.

60279900A 8-17

Formats: Functional Unit: None

Operation Variable Description Size Octal Code
MJ Exchange exit to NEA if exit flag clear 15 bits 01300
MJ Bj Exchange exit to (Bj) if exit flag set 30 bits 013j0 00000
MJ Bj+K Exchange exit to (Bj) + K if exit flag set 30 bits 013jK
MJ K Exchange exit to K if exit flag set 30 bits 0130K
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30
01300 MJ l:
|
0134000500 MJ B4+5008 |
[
013Fr777477 MJ ~-3008B+86 |
|
0130000600 MJ 6008 !

8.4.8 DIRECT LCM TRANSFER INSTRUCTIONS(7600 ONLY)

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register
or writes ene 60-bit word directly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on whether the
requested word already resides in one of the bank operand registers. A read LCM instruction for a
word not currently residing in a bank operand register will require 17 clock periods for delivering a
field of eight 60-bit words to the designated X register. A read LCM instruction for a word already
residing in a LCM bank operand register as a result of a previous instruction will require three clock
periods to deliver the requested word to the designated X register. Thus, although the first 60-bit
word will require 17 clock periods, the second through eighth words in the same LCM word require
three clock perods each. This means that consecutive LCM operands are available, on an average,
every five clock periods as opposed to SCM operands at eight clock periods.

The LLCM address is determined from (Xkig-¢g). Even if (Xk) is negative, the 19 bits are treated as
a positive integer. If the address exceeds the field length (FL.L), the word transfer does not take
place and the LCM direct range condition flag is set in the PSD register. Xj is either the source or
destination register.

Instructions are buffered to the extent that each issues in one minor cycle unless a previous LCM
reference is in process. When an RX instruction issues, the LCM busy flag is set and remains set

until the requested word is delivered.

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand
register, it is held in the LCM write register until the bank operand register is free.

8-18 602799008

Formats: Functional Unit: None

Operation Variable Description Size Octal Code
RXj Xk Read LCM at (Xk) and set Xj 15 bits - 014jk
WXj Xk Write (Xj) into LCM at (Xk) 15 bits 0153k
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
01465 RX6 X5 :
01570 WX7 X0 }

8.4.9 RESET INPUT CHANNEL BUFFER INSTRUCTION {7600 ONLY)

This instruction is exclusively a 7600 instruction. It initiates a new record transmission from a PPU
to SCM. This instruction prepares the input channel (Bk) buffer for a new record transmission from a
PPU to SCM. The instruction clears the input channel buffer address and resets the input channel
assembly counter to the first 12-bit position in the SCM word.

This instruction is intended to be privileged to an input routine, that is, one that terminates a record
of incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruction to
prepare the buffer for the next incoming record. This instruction is effective only if the monitor mode
flag is set in the program status register. If the monitor mode flag is cleared, this instruction
becomes a pass instruction. When this instruction issues, it will execute the required channel functions
without regard to the current status or activity at the input channel buffer,

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If

higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

60279900A ' 8-19

Two or more consecutive Rl instructions referring to different channels will issue in consecutive

clock periods with no interference resulting in the multiplexer. If two consecutive instructions refer to
the same channel, they repeatedly perform the same function but do not cause interference in the
multiplexer.

Functional Unit: None

Format:
Operation Variable Description Size Octal Code
RI Bk Reset input channel (Bk) buffer 15 bits 0160k
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 T30
n1607 PI a7 i

8.4.10 SET REAL-TIME CLOCK INSTRUCTIONS (7600 ONLY)

This instruction reads the contents of the CPU clock period counter (real-time clock) and places them in
Bf'. The 18-hit clock counter advances one count in two's complement mode for each clock period. The
217 bit is the overflow bit. The CPU is interrupted when the overflow bit is set. When the interrupt
is handled, the bit is cleared. It permits measurement of CPU execution.

Format: Functional Unit: None
Operation Variable Description Size Octal Code
TBj Set Bj to current clock time 15 bits 01Gj0
TBj K Set Bj to current clock time; K is ignored. 15 bits 016j0

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 0 18 T30
I
01672 T™H? 4

8-20 : ’ 60279900D

8.4.11 RESET OUTPUT CHANNEL BUFFER INSTRUCTION (7600)

This instruction initiates a new record transmission from SCM to PPU. It clears the output channel
(Bk) buffer address and disassembly counter, transmits a record pulse over the output channel data
path to the PPU, and initiates an SCM reference for the first word to be transmitted.

This instruction is intended for execution in an output routine to initiate a new record transmission
over an output channel data path. The output channel buffer is normally inactive when this instruction
is executed. The output channel buffer is loaded with the data for the next record, and this instruction
is executed to initiate the transmission. The record pulse is transmitted along with the word pulse as
soon as the first word of data from the SCM is entered in the output channel disassembly register.

This instruction is effective only if the monitor mode flag is set in the program status register, If the
monitor mode flag is cleared, this instruction becomes a pass instruction. When this instruction issues,
it will execute the required channel functions without regard to the current status or activity at the
output channel,

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored., H
higher order bits are set in (Bk), the lowest order four bits are masked out and used to determine the
channel number. I (Bk) is zero, this instruction becomes a pass instruction.

Normally, the output channel buffer is inactive when this instruction is executed, the program having
checked for completion of the previous record before issuing an RO. The program can detect the end
of record in two ways. First, it can compare the output channel buffer address with a known record
length. The alternative is to obtain a response from the peripheral unit over the corresponding input
channel data path. If data is moving over the output channel data path when an RO is issued, the RO
instruction takes priority, with a resulting loss of data in the previous record. Two or more
consecutive RO instructions referring to different channels will issue in consecutive clock periods with
no interference resulting in the multiplexer. If two consecutive instructions refer to the same channel,
they transmit a record pulse over the output path and restart the buffer repeatedly. A data word may
or may not be transmitted depending on the timing of the instructions and conflicts that ocecur.

Format: Functional Unit: None
Operation Variable - Description Size Octal Code
RO Bk Reset output channel (Bk) buffer 15 bits 0170k
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

- 1 " 18 [30

01705 v RO 85 ?

60279900A 8-21

8.4.12 READ CHANNEL STATUS INSTRUCTIONS (7600 ONLY)

These instructions copy the contents of the input or output channel buffer address register indicated by
masking (Bkyg_go) and enter the value in Bj. The instructions are used for monitoring the progress of
an input chamnel buffer or an output channel buffer,

A channel buffer area is divided into fields by the threshold testing mechanism. The first half of the
buffer area constitutes one field and the last half of the buffer area the other field. An I/O multiplexer
interrupt request is generated by the threshold testing mechanism whenever the channel buffer address
is advanced across a field boundary. This occurs at the center of the buffer area and at the end of the
buffer area.

The IBj instruction is the only vehicle for a program to determine whether an I/O multiplexer interrupt
request was generated by a buffer threshold test or by a record flag. The program must retain the
input channel buffer address from one interrupt period to the next. If the buffer address is in the same
field as for the previous interrupt, the interrupt request was from a record flag. If the buffer address
is in the opposite field from the previous interrupt, the interrupt request was from a threshold test.

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored.
If higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) = 0, the IBj instruction reads the contents of the CPU clock period counter.
However, the OBj instruction places all zeros into Bj.

Two or more IBj instructions or OBj instructions may occur in consecutive program instruction locations
referencing the same or different channels. These instructions may issue in consecutive clock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multi-
plexer in these situations.

If correct results are to be obtained, an IBj instruction must not immediately follow an RI instruction
nor may an OBj instruction immediately follow an RO instruction. A delay of one clock period is
sufficient.

Formats: Functional Unit: None
Operation Variable Description , Size Octal Code
IBj Bk Bj «+—Read input channel (Bk) status 15 bits 016jk
OBj Bk Bj «——Read output channel (Bk) status 15 bits 017jk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30
N1664 IR6 By |
t
01756 085 lae }

8-22 60279900A

8.4.13 UNCONDITIONAL JUMP INSTRUCTION

This instruction adds the contents of index register Bi to K and branches to the relative CM (SCM)
address specified by the sum. The remaining instructions, if any, in the current instruction word are
not executed. The branch address is K when i is zero.

Addition is performed in an 18-bit one's complement mode. On a 6000-Series system this instruction
voids the stack, On a 7600, the instruction word stack is not altered by execution of this instruction.
The instruction is intended to allow computed branch point destinations. It is the only CPU instruction
in which a computed parameter can specify a program branch destination address. All other jump
instructions have preassigned destination addresses at execution time.

The assembler sets the unused j designator to 0. A force upper occurs after the instruction is
assembled.

6600 Functional Unit: Branch

Format: 7600 Functional Unit: None
Operation Variable Description Size Octal Code
JP Bi+K Jump to (Bi)+K 30 bits 02i0K
JP Bi Jump to (Bi) 30 bits 02i00 00000
JP K Jump to K 30 bits 0200K
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 0 18 I30
0250005247 + JP B5+GOTO |
|
0270000000 JP R? |

8.4.14 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions cause the program sequence to branch to K or to continue with the current program
sequence depending on the contents of operand register Xj. The decision is not made until the Xj
register is free. These instructions do not void the stack.

The following rules apply to tests made in this instruction group :

1. The ZR and NZ operations test the full 60-bit word in Xj. The words 00..... 00 and 77.....77
are treated as zero. All other words are non-zero. Thus, these instructions are not a valid
test for floating point zero coefficients. However, they can be used to test for underflow of
floating point quantities.

2. The PL and NG operations examine only the sign bit (259) of Xj. If the sign bit is zero, the

word is positive; if the sign bit is one, the word is negative, Thus, the sign test is valid for
fixed point words or for coefficients in floating point words.

60279900A 8-23

3. The IR and OR operations examine the upper-order 12 bits of Xj.
On the 7600, the following quantities are detected as being out of range:
37TTXe o o s « X (positive overflow)
4000x.....X (negative overflow)
1777%. o o o o X {positive indefinite)
6000x.....X (negative indefinite)
All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.
On a 6000-Series computer system, 3777x...x and-4000x...x are out of range; all other words
are in range,
4. The DF and ID operations examine the upper-order 12 bits of Xj. Both positive and
negative indefinite forms are detected:
1777%.....x and 6000x.Xx are indefinite
All other words are definite. The value of the coefficient is ignored in making this test.
6600 Functional Unit: Branch
Formats: 7600 Functional Unit: None
Operation Variable Description Size Octal Code
ZR Xj,K Branch to K if Xj)=0 30 bits 030jK
NZ Xj, K Branch to K if (Xj) # 0 30 bits 031jK
PL | Xj,K Branch to K if (Xj) positive 30 bits 032jK
NG Xj,K Branch to K if (Xj) negative 30 bits 033jK
MI Xj, K Branch to K if (Xj) negative 30 bits 033jK
IR Xj,K Branch to K if (Xj) in range 30 bits 034jK
OR Xj, K Branch to K if (Xj) out of range 30 bits | 035jK
DF Xj, K Branch to K if (Xj) definite 30 bits 036jK
D Xj,K Branch to K if (Xj) indefinite 30 bits 037jK
8-24 60279900B

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 Y 18 !30

0305002363 + ZR X54ZERO :
0313002364 + NZ X3,NONZERO
0324002365 + PL X&,PLUS E
0331002366 + NG X1,NEG |
0331002366 + MI X1sNEG :
0340002367 + IR X0, INRANGE |
0351002370 + OR X1,0UTRNGE :
0365002371 + UF X5sDEFINT :
0377002372 + v X7y INUEFNT

60279900B 8-24~-1

8.4.15 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions test an 18-bit word from register Bi against an 18-bit word from register Bj for the
condition specified. They branch to address K on a successful test. Otherwise, the program sequence
continues at the next instruction. The decision is not made until both B registers are free. For the
tests against zero (all zeros), the assembler sets either the i or the j designator to 0 indicating BO.

The following rules apply in the tests made by these instructions:

1. Positive zero is recognized as unequal to negative zero, and

2. Positive zero is recognized as greater than negative zero, and

3. A positive number is recognized as greater than a negative number.
The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in
a 19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous

results caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the
(Bi). The branch decision is based on the sign bit in the 19-bit result.

For these instructions, Bi and Bj must be specified in the order indicated below.

These instructions do not void the stack.
6600 Functional Unit: Branch

Formats: 7600 Functional Unit: None
Operation Variable Description Size Octal Code
ZR¥ K Branch to K 30 bits 0400K

ZR Bi,K Branch to K if (Bi) = 0 30 bits 04i0K
EQY K Branch to K 30 bits 0400K

EQ Bi,K Branch to K if (Bi) = 0 30 bits 04i0K

EQ Bi, Bj, K Branch to K if (Bi) = (Bj) 30 bits 04ijK

NE Bi, K Branch to K if (Bi) # 0 30 bits 0510K

NE Bi, Bj, K Branch to K if (Bi) # (Bj) 30 bits 05ijK

NZ Bi,K Branch to K if (Bi) # 0 30 bits 05i0K

PL Bi,K Branch to K if (Bi)> 0 30 bits 06i0K

GE Bi,K Branch to K if (Bi) > 0 30 bits 06i0K

GE Bi, Bj, K Branch to K if (Bi) > (Bj) 30 bits 06ijK

LE Bj; Bi,K Branch to K if (Bj) < (Bi) 30 bits 06ijK

LE Bj,K Branch to K if (Bj) < 0 30 bits 060jK

NG Bi,K Branch to K if (Bi)< 0 30 bits 07i0K

MI Bi,K Branch to K if (Bi)< 0 30 bits 07i0K

+ The assembler forces the position counter upper after assembling the instructions.

60279900A 8-25

Formats (cont'd):

Operation Variable Description Size Octal Code
GT Bj, Bi,K Branch to K if (Bj) > (Bi) 30 bits 07ijK
GT Bj,K Branch to K if (Bj) >0 30 bits 070jK
LT Bi,K Branch to K if (Bi) <0 30 bits 07i0K
LT Bi, Bj, K Branch to K if (Bi) < (Bj) 30 bits 07ijK
Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 30

05450005221 + IR 85 ,BZERD

0405005222 + EQ B80,R5, EQUAL

0453005223 + EQ 85,83, JUMP

0400005223 + EQ JUMP

051500522% + NE B1,B5,NOTEQ

8560005225 + NZ B6,BNOTZR

0620005226 + PL B2,RPLUS

0645005227 + GE B4, 85,GEQ

0650005230 + GE 85,GEBD

0676005231 + LE 86,87,LTHAN

0770005232 + NG B7 5 BNEG

0730005233 + M1 B83,83LT0

8767005234 + GT B74B6,B7GT

0705005235 + GT B5,B5GT0

0712005236 + LT B1,R2,BLTH
8-26 60279900A

8.4.16 TRANSMIT INSTRUCTION

This instruetion transfers the 60-bit word in operand register Xj to register Xi.

It is essentially a

copy instruction intended for moving data from X register to X register as quickly as possible. No

logical function occurs.

The assembler sets the k designator to the value specified for j.

Format: 6600 Functional Unit: Boolean
7600 Functional Unit: Boelean
Operation Variable Description Size Octal Code
BXi Xj Transmit (Xj) to Xi 15 bits 10ijj
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30
10622 BX6 X2 (

8.4.17 LOGICAL PRODUCT INSTRUCTION

This instruction forms the logical product (AND function) of 60-bit words from operand registers Xj and

Xk and places the product in operand register Xi.
bits of the Xj and Xk registers are 1 as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0100

Bits of register Xi are set to 1 when the corresponding

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and
k designators have the same value, the instruction becomes a transmit instruction.

6600 Functional Unit: Boolean

Format: 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi Xj*Xk Logical product of (Xj) and (Xk) to Xi 15 bits 11ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30
11553 RXS X5%X3 |
60279900A 8-27

8.4.18 LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand registers Xj and
Xk and places the sum in operand register Xi.

(Xj) = 0101
(Xk) = 1100
(Xi) = 1101

A bit of register Xi is set to 1 if the corresponding bit
of the Xj or Xk register is a 1 as in the following example:

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the instruction degenerates into a transmit

instruction,

6600 Functional Unit: Boolean
Format: 7000 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bits 12ijk
Example:

Code Generated

12767

LOCATION

OPERATION

VARIABLE

COMMENTS

1

18

30

RX7?

8.4.19 LOGICAL DIFFERENCE INSTRUCTION

X6+X7

1
1

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand registers
Xj and Xk and places the difference in operand register Xi, A bit in register Xi is set to 1 if the
corresponding bits in the Xj and Xk registers are unlike as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1001

‘This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value the result will be a word of all zeros written

into register Xi.

6600 Functional Unit: Boolean

Format: 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code

BXi Xj-Xk Logical difference of (Xj) and (Xk) to Xi 15 bits 13ijk

Example:

Code Generated

13601

8-28

LOCATION

OPERATION

VARIABLE

COMMENTS

n

i8

[30

T

BX6

X0-X1

i

60279900A

8.4.20 COMPLEMENT INSTRUCTION
This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or

floating point quantity as quickly as possible.

The assembler sets the unused j designator of the instruction to k.

6600 Functional Unit: Boolean

Format: 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk Transmit complement of Xk) to Xi 15 bits 14ikk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 N 18 [30

14311 AX3 -X1 i

8.4.21 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical product (AND function) of the 60-bit quantity from operand register

Xj and the complement of the 60~bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the comple-
ment of the Xk register are 1 as in the following example:

(Xj) = 0101
Complemented (Xk) = 0011
(Xi) = 0001

This instruction is intended for extracting portions of a 60-bit word during data processing., If the j and
k designators have the same value, a logical product is formed between two complementary quantities.
The result will be a word of all zeros.

6600 Functional Unit: Boolean

Format: 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi - Xk *Xj Logical product of (Xj) and complement
of (Xk) to Xi 15 bits 15ijk

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) N 18 [30

15432 AXY -X2*X3 i

60279900A 8-29

8.4.22 COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand register

Xj and the complement of the 60-bit word from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the
corresponding bits of the Xk register is a 0 as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0111

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value the result is a word of all ones.
6600 Functional Unit: Boolean

Format: 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk+Xj Logical sum of (Xj) and complement of
(Xk) to Xi 15 bits 16ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 {30
16654 BX6 -X4+X5 ;

8.4.23 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of the quantity from operand register Xj
and the complement of the 60-bit word from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike as
in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0110

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, a logical difference is formed between two
complementary quantities. The result is a word of all ones.

6600 Functional Unit: Boolean

Format: 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk-Xj Logical difference of (Xj) and complement
of Xk) to Xi 15 bits 17ijk
60279900A

8-30

Example:

Code Genera_ted LOCATION OPERATION | VARIABLE COMMENTS
] n 18 |30
17731 BX7 |-X1-X3 :

8.4.24 LOGICAL LEFT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi left circular jk places if expression jk is
positive or left circular 60-jk places if jk is negative, Bits shifted off the left end of operand register
Xi replace those shifted from the right end.

The 6-bit shift count jk allows a complete circular shift of (Xi),

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6 bits
on the value in the jk fields. If it is negative, COMPASS subtracts jk from 60 and places the result in
the jk fields. Thus, a negative value effectively designates a logical right shift. A positive value
designates a left shift.

If the negative shift count is less than -60, the assembler generates a 7-type error.
6600 Functional Unit: Shift

Format: 7600 Functional Unit: Shift
Operation Variable Description Size Octal Code
LXi jk Logical shift (Xk) by + jk places 15 bits 20ijk
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated) n 18 [30
203225 LX3 258 |
|
2n362 Lx3 -12R |
|

8.4.25 ARITHMETIC RIGHT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi right jk places if expression jk is positive
and right 60-jk places if expression jk is negative. The rightmost bits of Xi are discarded and the sign
bit is extended.

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit, If
the operand is positive, a positive zero results. If the operand is negative, a negative zero results.

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower

6 bits of the value in the jk fields. If it is negative, COMPASS subtracts jk from 60 and places the
result in the jk fields. Thus, a negative value effectively designates the number of high order bits
of the operand that are to be retained. If the negative shift count is less than -60, a 7-type error is
generated.

602799008 8-31

6600 Functional Unit: Shift

Format: 7600 Functional Unit: Shift
Operation Variable Description Size Octal Code
AXi jk Arithmetic shift (Xk) by + jk places 15 bits 21ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
21537 AXS 378 |

8.4.26 LOGICAL LEFT SHIFT (Bj) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by
the quantity in index register Bj and places the result in operand register Xi.

1. If (Bj) is positive (i.e., bit 17 of Bj = 0), the quantity from Xk is shifted left circular.
order six bits of (Bj) specify the shift count.

The low

The higher order bits are ignored.

2. If (Bj) is negative (i.e., bit 17 of Bj = 1), the quantity from Xk is shifted right (end off with sign

extension).

The one's complement of the low order 12 bits of (Bj) specify shift count. The

higher order bits are ignored. If the shift count is greater than 60 (decimal) the result stored

in the Xi register consists of 60 copies of the operand sign bit,

The (Bj) might be the result of an unpack instruction; in which case it is the unbiased exponent and (Xi)

is the coefficient.

integer position after an unpack operation,

This instruction is used for shifting a coefficient from a floating point number to the

6600 Functional Unit: Shift

Format: 7600 Functional Unit: Shift
Operation Variable Description Size Octal Code |
LXi Xk, Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
LXi Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 hits 22ijk
LXi Xk Transmit (Xk) to Xi 15 bits 2210k
Example:

Code Generated LOCATION OPERATION vuzum . COMMENTS

i " 18 I30
22675 LX6 X54R7 I
1
22534 LX5 B3 4X4 |
8-32 60279900A

8.4.27 ARITHMETIC RIGHT SHIFT (Bj) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by
the quantity in index register Bj and places the result in operand register Xi.

1. If (Bj) is positive (i.e., bit 17 of Bj = 0), the quantity from register Xk is shifted right (end
off with sign extension). The lower order 12 bits of (Bj) specify the shift count. The higher
order bits are ignored. If the shift count is greater than 60 (decimal) the 7600 result stored
in the Xi register consists of 60 copies of the operand sign bit. The 6000 series result con-
sists of all zeros.

2. If (Bj) is negative (i.e., bit 17 of Bj = 1), the quantity from register Xk is shifted left circular.
The complement of the lower order six bits of Bj specify the shift count, The higher order bits
are ignored.

This instruction is intended for use in data processing where the amount of shift is derived in the
computation. This instruction is also useful for adjusting the coefficient of a floating point number
while it is in its unpacked form.

6600 Functional Unit: Shift

Format: 7600 Functional Unit: Shift
Operation Variable Description Size Octal Code
AXi Xk, Bj Arithmetic shift of (Xk) by (Bj) places
to Xi 15 bits 23ijk
AXi Bj, Xk Arithmetic shift of (Xk) by (Bj) places |
to Xi 15 bits 23ijk
AXi Xk Transmit (Xk) to Xi 15 bits 23i0k
Example:
Code Gencerated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 ISO
22764 _ AY7 X4, A6h ;
|
220 AX 2 11 ,x1 i

8.4.28 NORMALIZE INSTRUCTION

This instruction normalizes the floating point quantity from operand register Xk and places it in
operand register Nio Normalizing consists of shifting the coefficient the minimum number of positions
required to make bit -7 different from bit 539, This places the most significant bit of the coefficient

in the highest order position of the coefficient portion of the word. The exponent portion of the word

i= then decreased by the number of bit positions shifted. The number of shifts required to normalize
the quantity is entered in index regizter Bj.

60279900C 8-33

Format: 6600 Functional Unit: Shift
7600 Functional Unit: Normalize

Operation Variable Description Size Octal Code
NXi Xk Normalize (Xk) to Xi 15 bits 24i0k
NXi Bj, Xk Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
NXi Xk, Bj Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 N 18 T30

24575 MX5 X5,B7 :

24505 NX5 X5 :

24552 NX5,85 [x2 |

8.4.29 ROUND AND NORMALIZE INSTRUCTION

This instruction performs the same operation as the NXi instruction with the exception that the quantity
from operand register Xk is rounded before it is normalized. Rounding is accomplished by placing a

1 round bit immediately to the right of the least significant coefficient bit. The resulting coefficient is
increased by one-half the value of the least significant bit. Normalizing a zero coefficient places the
round bit in bit 47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow,
infinite, and indefinite results.

I (XKk) is an infinite quantity (3777x...x or 4000x...x) or an indefinite quantity (1777x...x or 6000x...Xx),
no shift takes place. The contents of Xk are copied into Xi, and Bj is set to zero.

6600 Functional Unit: Shift

Formats: 7600 Functional Unit: Normalize
Operation Variable Description Size Octal Code
ZXi Xk Round and normalize (Xk) to Xi 15 bits 25i0k
ZXi Bj, Xk Round and normalize (Xk) to Xi; shift

count to Bj 15 bits 25ijk
ZXi Xk, Bj Round and normalize (Xk) to Xi; shift

count to Bj 15 bits 25ijk

8-34 ' 60279900A

Example:
Code Generated
25474

2540

25361

LOCATION

OPERATION

VARIABLE

COMMENTS

18

8.4.30 UNPACK INSTRUCTION

This instruction unpacks the floating point quantity from operand register Xk and sends the 48-bit
coefficient to operand register Xi and the 11-bit exponent to index register Bj. The exponent packing
is removed during unpack so that the quantity in Bj is the true one's complement representation of the

exponent,

X%

7X4

ZX3,4R6

The contents of Xk need not be normalized.

X4,R7
X4

X1

[30
1
1
|
|
|
[
I

The exponent and coefficient are sent to the low-order bits of the respective registers as shown below:

SIGN PACKED EXPONENT COEFFICIENT
PACKED QUANTITY | | |] X
5958 48 00
UNPACKED
EXPONENT
EXPONENT SIGN COEFFICIENT
EXTENDED SIGN EXTENDED
UNPACKED Bj (7 W7 Xi
17 10 9 0 59 4847

Special operand formats are treated in the same manner as normal operands.

6600 Functional Unit: Shift

Formats: 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
UXi Xk Unpack (XK) to Xi 15 bits 2610k
UXi Bj, Xk Unpack (Xk) to Xi and Bj 15 bits 26ijk
UXi Xk, Bj Unpack (Xk) to Xi and Bj 15 bits 26ijk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 N 18 T30
26777 ux7 X7 4R7
26342 UX3,4X2 (Bh :
8-35

60279900A

8.4.31 PACK INSTRUCTION

This instruction packs a floating point number in operand register Xi. The coefficient of the number is
obtained from operand register Xk and the exponent is obtained from index register Bj. The exponent is
packed by toggling bit 210 during the pack operation. The instruction does not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective registers and
packed in reverse order as shown in the illustration for the unpack instruction. Thus, bits 58-48 of

Xk and bits 17-11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in the
PSD register by this instruction.

Note that if (Xk) is positive, the packed exponent occupying Xigg.4g is obtained from Bjjg-gg by
complementing bit 10; if (Xk) is negative, bit 10 is not complemented but bits 09-00 are complemented.

The j designator may be set to zero in this instruction to pack a fixed point integer into floating point
format without using one of the active B registers (exponent = 0),
6600 Functional Unit: Shift

Format: 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
PXi Xk Pack (Xk) to Xi 15 bits 27i0k
PXi Xk, Bj Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Bj, Xk Pack (Xk) 15 bits 27ijk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 [30
27565 PX5 X5,R6 E
27671 PX6,B7 (X1 :

8.4.32 UNROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the unrounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of
a double precision sum or difference.

At the start both arguments are unpacked, and the coefficient of the argument with the smaller exponént
is entered into the upper half of the accumulator. The coefficient is shifted right by the difference

of the exponents. The other coefficient is then added to or subtracted from the upper half of the
accumulator. If overflow occurs, the result is right-shifted one place and the exponent of the result
increased by one. The upper half of the accumulator holds the coefficient of the result, which is not
necessarily in normalized form. The exponent and upper coefficient are then repacked in operand
register Xi.

8-36 60279900B

Formats: 6600 Functional Unit: Floating Add
7600 Functional Unit: Floating Add

Operation Variable Description Size Octal Code
FXi Xj+Xk Floating point sum of (Xj) and (Xk) to Xi 15 bits 30ijk
FXi Xj-Xk Floating point difference of (Xj) minus
(Xk) to Xi 15 bits 3lijk

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 . no 18 T30
30345 FXx3 Xb+X5 |
31213 FX2 |x1-x3 :

8.4.33 DP FLOATING POINT ADD INSTRUCTIONS

These instructions form the sum or difference of two floating point numbers as in the single precision
instructions, but pack. the lower half of the double precision result with an exponent 48 less than the
upper sum. The result is not necessarily normalized.

6600 Functional Unit: Floating Add

Formats: 7600 Functional Unit: Floating Add
Operation Variable Description ' Size Octal Code
DXi Xj+Xk Floating DP sum of (Xj) and (Xk) to Xi 15 bits 32ijk
DXi Xj-Xk Floating DP difference of (Xj) and (Xk)
to Xi 15 bits 33ijk
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
! n 18 f30
22323 DX3 X2+X3 ;
!
33414 nxy X1=-X4 :

60279900A 8-37

8.4.34 ROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the rounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi.
These instructions are intended for use in floating point calculations involving single precision
accuracy.

6600 Functional Unit: Floating Add
7600 Functional Unit: Floating Add

Formats:
Operation Variable Description Size Octal Code
RXi Xj+Xk Rounded floating sum of (Xj) and (Xk)
to Xi 15 bits 34ijk
RXi Xj-Xk Rounded floating difference of (Xj) minus
Xk) to Xi 15 bits 35ijk
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30
}
353y RXS X3 +Xh]
|
35663 RX6 X5-X3 j

8.4.35 LONG ADD (FIXED POINT} INSTRUCTIONS

These instructions form the 60-bit one's complement integer sum or integer difference of quantities from
operand registers Xj and Xk and store the result in operand register Xi. An overflow condition is
ignored.

The instructions are intended for addition or subtraction of integers too large for handling in the
increment unit. They are also useful for merging and comparing data fields during data processing.

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero

(all 0's), the result is a positive zero quantity. If both operands are minus zero (all 1's), the result
is a negative zero quantity.

8-38 60279900A

6600 Functional Unit: Long Add

Format: 7600 Functional Unit: Long Add
Operation Variable Description Size Octal Code
Xi Xj+Xk Integer sum of (Xj) and Xk) to Xi 15 bits 36ijk
IXi Xj-Xk Integer difference of (Xj) minus (Xk)
to Xi 15 bits 37ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1] 18]30
26545 X5 X44+X5 |
|
37631 IX6 X3-X1 |

8.4.36 UNROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj (multiplier)
and Xk (multiplicand) and packs the upper product result in operand register Xi.

In this operation, the exponents of the two operands are unpacked from the floating point format and are
added with a correction factor of 48 to form the exponent for the result. The coefficients are multiplied
as signed integers to form a 96-bit integer product. The upper half of this product is then extracted

to form the coefficient of the result. The result is a normalized quantity only when both operands are
normalized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is not
normalized when either or both operands are not normalized,

6600 Functional Unit: Floating Multiply

Formats: 7600 Functional Unit: Floating Multiply
Operation Variable Description Size Octal Code
FXi Xj*Xk Floating point product of (Xj) and
(Xk) to Xi 15 bits 40ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [0
L0011 FXa X1*X1 ;
i

60279900A , 8-39

8.4.37 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies the floating point number from operand register Xk (multiplicand), by the
floating point number from operand register Xj. The upper product result is packed in operand
register Xi. (No lower product is available.) The multiply operation is identical to that of the single
precision instruction except that a rounding bit is added in bit position 46 of the 96-bit product. The
upper half of the product is then extracted to form the coefficient for the result. An alternate output
path is provided with a left shift of one-bit position to normalize the result coefficient if the original
operands were normalized and the double precision product has only 95 bits of significance. The
exponent for the result is decremented by one count in this case.

Format: 6600 Functional Unit: Floating Multiply
7600 Functional Unit: Floating Multiply
Operation Variable Description Size Octal Code
RXi Xj*Xk Rounded floating point product of (Xj)
and (Xk) to Xi 15 bits 41ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
i n 18 l30
41232 RX2 X3%X2 ;
|

8.4.38 DP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj and Xk

and packs the lower product in operand register Xi. The two 48-bit coefficients are multiplied together
to form a 96-bit product. The lower-order 48 bits of this product (bits 47-00) are then packed together
with the resulting exponent. The result is not necessarily normalized. The exponent of this result is
48 less than the exponent resulting from an unrounded single precision instruction using the same
operands.

This instruction is intended for use in multiple precision floating point calculations. It may also be
used to form the product of two integers providing the resulting product does not exceed 48 bits of
significance. The operands must be packed in floating point format before executing this instruction.
The results must be unpacked to obtain the integer product.

6600 Functional Unit: Floating Multiply

Format: 7600 Functional Unit: Floating Multiply
Operation Variable Description Size Octal Code
DXi Xj*Xk Floating point DP product of (Xj) and

(Xk) to Xi 15 bits 42ijk

8-40 60279900A

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
42 345 0X3 X4 » X5 '
|

8.4.39 INTEGER MULTIPLY INSTRUCTION

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision
floating point multiply instruction. Regardless of how it is written in COMPASS, the 42ijk
instruction is executed as follows: If each operand register has all 0's or all 1's in its leftmost
12 bits, the 48-bit integer product is formed in Xi with sign extension in its leftmost 12 bits.
(Exception: If each operand has bit 247 different from its sign bit, the result is shifted left one
bit position.) Otherwise, a double precision floating point multiplication is performed. Thus,
there is no need to pack exponents into the operands and unpack the result for an integer multiply.
COMPASS provides the alternate symbolic representations IXi Xj*Xk and DXi Xj*Xk for the 42ijk
instruction as an aid to program readability, so the programmer can indicate whether the instruc-
tion is being used for integer multiplication.

Format: 6600/6700 Functional Unit: Floating Multiply
or 7600 Functional Unit: Floating Multiply
Operation Variahle Description Size Octal Code
IXi Xj* Xk Integer product of (Xj) and (Xk) to Xi 15 bhits | 42ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30
|
L2234 IXx2 X3*¥X4 [
|

8.4.40 MASK INSTRUCTION

This instruction clears register Xi and forms a mask in it. A positive value for expression jk
defines the number of 1's in the mask as counted from the highest order bit in Xi, A nega-
tive value for expression jk defines the number of 0 bits (unmasized) counted from the low order
bit in Xi, The completed masking word consists of 1's in the high order bit positions of the
word and 0's in the remainder of the word.

60279900D 8-41

The contents of operand register i are zero when jk is zero, The contents of operand register i
are all 1's when jk is 60,

This instruction is intended for generated variable width masks for logical operations. Used with the
shift instruction, this instruction creates an arbitrary field mask faster than by reading a pregenerated
mask from storage.

In COMPASS notation, if the value of absolute expression jk is positive, the assembler inserts it into

the jk field of the assembled instruction,

If the value of absolute expression jk is negative, the

assembler subtracts the expression value from 60 and places the difference in the jk field of the
assembled instruction.

A negative jk value less than -60 results in a 7~type assembly error.

An MXi 0 is the fastest instruction for clearing an X register.

Format: 6600 Functional Unit: Shift
7600 Functional Unit: Shift
Operation Variable Description Size Octal Code
MXi jk Form mask in Xi, + jk bits 15 bits 43ijk
Example:
LOCATION OPERATION [VARIABLE COMMENTS

1 H 18

MXN L?

MX3 ~14n

[30
i
|
|

I 8.4.41 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides two normalized floating point quantities obtained from operand registers Xj

(dividend) and Xk (divisor) and packs the quotient in operand register Xi.

6600 Functional Unit:

Floating Divide

Format:
7600 Functional Unit: Floating Divide
Operation Variable Description Size Octal Code
FXi Xj/Xk Floating point divide of (Xj) by (Xk)
to Xi 15 bits 44ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

| T 18 T30

Lueq FX6 X3/X1 i

8-42 60279900D

8.4.42 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides the floating quantity from operand register Xj (dividend) by the floating point
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi.

Format: 6600 Functional Unit: Floating Divide
7600 Functional Unit: Floating Divide
Operation Variable Description Size Octal Code
RXi Xj/ Xk Rounded floating point division of (Xj)
by (Xk) to Xi 15 bits 45ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1] 18 [30
45724 RX7 X2/X4 ;

8.4.43 PASS INSTRUCTION

The no-operation (pass) instruction is not associated with a functional unit.

This instruction is a do-

nothing instruction used typically to pad the program between steps. An integer value in the variable
field (optional) is inserted into the lower 9 bits of the instruction.
the remainder of a word whenever a force upper occurs; in this case, the programmer is not required
to insert the NO.

The assembler automatically pads

6600 Functional Unit: None

Format; 7600 Functional Unit: None
Operation Variable Description Size Octal Code
NO Pass 15 bits 46000
NO n Pass 15 bits 46n
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 I30

46000 ND |

60279900D 8-43

l 8.4.44 POPULATION INSTRUCTION

This instruction counts the number of 1 bits in operand register Xk and stores the count in the lower
order 6 bits of operand register Xi. Bits 59-06 are cleared

If Xk is a word of all 1's, a count of 60 (decimal) is delivered to the Xi register. ¥ Xk is a
word of all 0's, a zero word is delivered to the Xi register,

The assembler sets the unused j designator to k.

6000 Functional Unit: Floating Divide

Formats: 7600 Functional Unit: Population Count
Operation Variable Description Size Octal Code
CXi Xk Count of number of 1's in (Xk) to Xi 15 bits 47ikk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS T
) n 18 [0
47700 Cx7 X0 (

l 8.4.45 SET A REGISTER INSTRUCTIONS

These instructions are intended for fetching operands from storage for computation and fqr delivgring
results back into storage. The instructions have two destination registers: the Ai registér which .
receives the address formed from the operands and either the Xi register or a CM (SCM) storage location.

If the i designator is nhonzero, a storage reference is made using the lower 15, 16, or 17 bits of the
resulting sum or difference as the relative storage address depending on machine size. The upper
bits are ignored. The type of storage reference is a function of the i designator value.

i = 0; no storage reference

i=1, 2, 3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi
6 or 7; contents of register Xi stored at CM (SCM) relative address (Ai)

[y
1

8-44 60279900D

6600 Functional Unit: Increment

Formats: 7600 Functional Unit: Increment
Operation Variable Description Size Oc¢tal Code
SAi Aj+K Set Al to (Aj) + K 30 bits 50ijK
SAi K Set Ai to K 30 bits | 51i0K
SAi Bj+K Set Ai to (Bj) + K 30 bits 51ijK
SAi Xj+K Set Ai to (Xj) + K 30 bits 52ijK
SAi Xj Set Ai to (Xj) 15 bits 53ij0
SAi Xj+Bk - Set Ai to (Xj) + (Bk) 15 bits 53ijk
SAi Bk+Xj Set Ai to (Xj) + (Bk) 15 bits 53ijk
SAi Aj Set Ai to (Aj) 15 bits 54ij0
SAi Aj+Bk Set Ai to (Aj)+ (Bk) 15 bits 54ijk
SAi Bk +Aj Set Ai to (Aj) + (Bk) - 15 bits 54ijk
SAi Aj-Bk Set Ai to (Aj) - (Bk) 15 bits 55ijk
SAi -Bk+Aj Set Ai to (Aj) - (Bk) 15 bits 55ijk
SAi Bj Set Ai to (Bj) 15 bits 56ij0
SAi Bj+Bk Set Ai to (Bj) + (Bk) 15 bits 56ijk
SAi -Bk Set Ai to (B0) - (Bk) : 15 bits 5710k
SAi Bj-Bk ‘Set Ai to (Bj) - (Bk) 15 bits 57ijk -
SAi - Bk+Bj Set Ai to (Bj) - (Bk) 15 bits 57ijk
Exainples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 T30

5010000001 <A1 AG+1 i

5100777774 SAQ -3 :

5121000003 SA2 3+B1 ;

5231777771 SA3 X1-6 !

53411 SAL X1+81 :

54541 SAS AL+B1 :

54641 SA6 [At+R1 |

54540 SAS A4 :

55641 Sa6 - B14+AL :

56711 SAT B1+RB1 I

57721 SA7 B2-f1 :

60279900D 8-45

I 8.4.46 SET B REGISTER INSTRUCTIONS

These instructions perform one's complement addition and subtraction of 18-bit operands and store an
18-bit result in index register Bi.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the
truncated lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition
is also ignored.

If the i designator is a zero, the instruction is a do-nothing instruction.

6600 Functional Unit: Increment

Formats: 7600 Functional Unit: Increment
Operation Variable Description Size Octal Code
SBi Aj+K Set Bi to (Aj) + K 30 bits 60ijK

SBi K Set Bi to K 30 bits 61i0K

SBi Bj+K Set Bi to (Bj) + K 30 hits 61ijK

SBi Xj+K Set Bi to (Xj) + K 30 bits 62ijK

SBi Xj Set Bi to (Xj) 15 bits 63ij0

SBi Xj+ Bk Set Bi to (Xj) + (Bk) 15 bits 63ijk

SBi Bk+Xj Set Bi to (Xj) + (Bk) 15 bits 63ijk

SBi Aj Set Bi to (Aj) 15 bits 64ij0

SBi Aj+Bk Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Bk+Aj Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Aj-Bk Set Bi to (Aj) - (Bk) 15 hits 65ijk

SBi -Bk+Aj Set Bi to (Aj) -~ (Bk) 15 bhits 65ijk

SBi Bj Set Bi to (Bj) 15 bhits 66ij0

SBi Bj+Bk Set Bi to (Bj) + (Bk) 15 bits 66ijk

SBi -Bk Set Bi to (B0) - (Bk) 15 bits 6710k

SBi Bj- Bk Set Bi to (Bj) - (Bk) 15 bits 67ijk

SBi -Bk+Bj Set Ai to (Bj) - (Bk) 15 bits 67ijk

8-46 60279900D

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) " 18 {30
6011777772 SA1 A1-5 ;
6110777772 S81 -5 :
6121000011 L) 3+B1+6 :
6231000100 <83 X1+100R ;
63427 <AL X2+R7 I
AUSL] <BS AL eR1 }
64540 SRS AL |
65641 SB6 |~Ri+As |
656432 °R6 AL-P2 i
66711 SB? BL4+P1 !
hT751 <87 a5-ng :

8.4.47 SET X REGISTER INSTRUCTIONS

The SXi instructions perform one's complement addition and subtraction of 18-bit operands and store
an 18-bit result into the lower 18 bits of operand register Xi. The sign of the result is extended to the
upper 42 bits of operand register Xi. An overflow condition is ignored.

Operands are obtained from address (A), index (B), and operand (X) registers as well as the instruction

itself (K = 18-bit operand). Operands obtained from an X]j register are the truncated lower 18 bits of the
60-bit word. The highest order bits are ignored.

60279900D 8-47

6600 Functional Unit: Increment
Formats: 7600 Functional Unit: Increment
Operation Variable Description Size Octal Code
SXi A+K - Set Xi to (Aj) + K 30 bits 70ijK
SXi K Set Xi to K 30 bits 71i0K
SXi Bj+K Set Xi to (Bj) + K 30 bits 71ijK
SXi Xj+K « Set Xi to (Xj) + K 30 bits 72ijK
SXi Xj Set Xi to (Xj) 15 bits 73ij0
SXi Xj+Bk + Set Xi to (Xj) + (Bk) 15 bits 73ijk
SXi Bk+Xj. Set Xi to (Xj) + (Bk) 15 bits 73ijk
SXi Aj Set Xi to (Aj) 15 bits 74ij0
18Xi Aj+Bk - Set Xi to (Aj) + (Bk) 15 bits 74ijk
SXi Bk+Aj Set Xi to (Aj) + (Bk) 15 bits 74ijk
SXi Aj-Bk Set Xi to (Aj) - (Bk) 15 bits 75ijk
SXi -Bk+Aj Set Xi to (Aj) - (Bk) 15 bits 75ijk
SXi Bj Set Xi to (Bj) 15 bits 7610
SXi Bj+Bk s Set Xi to (Bj) + (Bk) 15 bits 76ijk
SXi -Bk Set Xi to (B0) - (Bk) 15 bits 7710k
SXi Bj-Bk - Set Xi to (Bj) - (Bk) 15 bits 77ijk
SXi -Bk+Bj Set Xi to (Bj) - (Bk) 15 bits | 77ijk
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
7000005233 + SX0 BNEG+AG+ 1 i
7110775755 SX1 -20228 :
7121000005 Sx2 R1+5 |
7232777744 SX3 X3-338 :
73042 SX4 X4+R2 :
74553 SX5 AE4+03 :
74540 SX5 AL I
75641 SX6 ~R1+A4 :
75604 SX6 AD-BY4 |
76776 SX7 |B7+Re :
77751 SX7 B5-R1 I
8-48 60279900A

PPU SYMBOLIC MACHINE INSTRUCTIONS 9

The 6000/7000 COMPASS assembler recognizes symbolic notation for peripheral processor unit
instructions. The assembler identifies each symbolic instruction by name and generates a one word
(12 bit) or two word (24 bit) object code machine instruction under control of the current origin,
location, and position counters. All PPU code is absolute. Numeric data must be in integer notation.
Floating point notation is illegal.

9.1 MACHINE INSTRUCTION FORMATS

An assembled instruction has a 12-bit or 24-bit format. The 12-bit format has a 6-bit operation code £
and a 6-bit operand d. A PPU accomplishes program indexing and manipulates operands in several
modes, The 12-bit and 24-bit instruction formats provide for 6-bit, 12-bit, or 18-bit operands and
6-bit or 12-bit addresses. Figures 9-1 and 9-2 illustrate the 12-bit instruction format and the 24-bit
instruction format, respectively.

Direct Mode:

d = memory address of operand

operation Indirect Mode:

code

d = memory address of the address
of the operand

P) f d
11 06 05 00 No Address Mode:

d = 6-bit operand, shift count, or
relative address

Other:
d = special value; e.g., channel designator

Figure 9-1. PPU 12~bit Instruction Format

60279900 A 9-1

The 24-bit format uses the 12-bit quantity m, which is the contents of the next program address (P + 1),
with d or the contents of d to form an 18-bit operand or a 12-bit operand address.

Indexed Mode:

d = address of the index for
modifying the address of
the operand

operation
code

A

P) f d m = base address of the operand
11 06 05 00 (d) + m = address of operand

(P+1) m Constant Mode:
11 00

dm = 18-bit operand
Other:
dm = special values; e.g., d = channel
designator and m = 12-bit address
of word count on IAM and OAM

instructions

Figure 9-2. PPU 24-bit Instruction Format

9.2 SYMBOLIC NOTATION

This section describes notation used for coding symbolic PPU machine instructions, Instructions are
described in octal operation code sequence which generally reflects the mode of addressing.
Instructions unique to either the 7600 or 6000-series computer systems are identified as such.

The location field of 2 symbolic PPU machine instruction optionally contains a location symbol. When
the symbol is present, it is assigned the value of the location counter.

The operation field of a symbolic PPU machine instruction contains a three-character name.

The variable field contains one or two subfields. Each subfield contains an absolute or relocatable
expression that reduces to a 6-bit, 12-bit, or 18-bit value.

Designators used in this section are listed in Table 9-1.

9-2 60279900A

TABLE 9-1. PERIPHERAL PROCESSOR INSTRUCTION DESIGNA TORS

Use

18-bit A register
An expression that reduces to an 18-bit operand value.
A 6-bit operand or operand address expression.

A 12-bit expression value used with d or (d) to form an 18-bit operand or 12-bit
operand address.

12-bit Program Address register
12-bit Q register

An expression that reduces to a 6-bit value (—3785 r< 37g)
specifying relative address or shift count

Contents of a register or location

Refers to indirect addressing

tructions provide similar functions using different modes of addressing. They can be
ing to function as shown below:

Description

nission The following instructions either load data into the A register or store
data from it. A load instruction loads a 6-bit, 12-bit, or 18-bit value
as indicated by the instruction; any remaining upper bits of A are zeroed
except for the LCN instruction for which the upper 6 bits are set to one.

A store instruction stores the lower 12 bits of the A register contents into
a memory location indicated by the instruction.

The contents of A are not altered,

Instruction Octal Code Section
LDN 14 9.2.3
[.CN 15 9.2.3
LDC 20 9.2.4
LDD 30 9.2.9
STD 34 9.2.9
1.DI 40 9.2,10
STI 44 9.2.10
I.DM 50 9.2.11
STM 54 9.2.11

9-3

Function (cont'd)

Arithmetic

Logical

Description (cont'd)

A PPU arithmetic instruction adds or subtracts a 6-bit, 12-bit, or
18-bit quantity from the contents of the A register and enters the result
in A,

Instruction Octal Code Section
ADN 16 9.2.3
SBN 17 9.2.3
ADC 21 9.2.4
ADD 31 9.2.6
SBD 32 9.2.6
ADI 41 9.2.7
SBI 42 9.2.7
ADM 51 9.2.8
SBM 52 9.2.8

A logical instruction forms a logical value in A using the contents of A
as one of the operands and a 6-bit, 12-bit, or 18-bit value indicated by
the instruction as the second operand. When the second operand is
fewer than 18 bits, the remaining upper bits of A are unaltered for all
but the LPN instruction for which the upper 12 bits are zero.

Formation of a logical difference is equivalent to setting each bit in A
that is unlike the corresponding bit in the second operand. For example,

Initial (A) 0101
Operand 1100
Final (A) 1001

Formation of a logical product is equivalent to setting a bit in A when
the original setting of the bit in A and the corresponding bit in the second
operand are both one's.

For example,

Initial (A) 0101
Operand 1100
Final (A) 0100

A selective clear sets a bit zero in the A register wherever a bit is set
in the second operand. For example,

Initial (A) 0101
Operand 1100
Final (A) 0001

60279900C

Function (cont'd) Description (cont'd)

Logical (cont'd) Logical instructions include the following:
Instruction Octal Code Section

LMN 11 9.2.3
LPN. 12 9.2.3
SCN 13 9.2.3
LPC 22 9.2.4
LMC 23 9.2.4
LMD 33 9.2.9
LMI 43 9.2,10
LMM 53 92,11

Replace A replace instruction performs an arithmetic operation and refurns the

results to the A register and the memory location from which one operand
was obtained. The lower 12 bits of the result replaces the operand
obtained fro.n a memory location.

Instruction Octal Code Section
RAD 35 9.2.9
AOD 36 9.2.9
SOD 37 9,2.9
RAI 45 9.2.10
AQOI 46 9.2.10
501 417 9.2.10
RAM 55 9.2.11
AOM 56 9.2.11
SOM 57 9.2.11

9.2.1 BRANCH INSTRUCTIONS

For branch instructions, the r subfield is a numeric value that indicates the number of locations to be
jumped (maximum 31). When r is positive (01—378), the jump is forward r locations. When r is
negative (76 -40g), the jump is backward 77g-r locations. In the following tests, negative zero
(777777) is nonzero. For conditional instructions, when the test condition is true, the jump takes place.
When the condition is not met, execution continues with the next instruction.

CAUTION

The jump count must not be 00 or 77. If it is, execution
loops on the jump instruction,

The J option of the PPU instruction (section 4. 3. 2) and the PERIPH instruction (section 4. 3. 3) cause
the value of the location counter to be subtracted from the value of the symbolic address (tag) before it
is placed in the d field of the object code instruction.

60279900A 9-5

Formats:

Operation Variable Description Size Octal Code
LJM m,d Long jump to m+(d); ifd = 0, m is not

modified 24 bits 01dm
RJIM m,d Return jump to m+(d); Store P+2 at m+(d)

and jump to m-+(d)+1. 24 bits 02dm
UJN rt Unconditional jump to P+ r locations 12 bits 03d
UJN tag Unconditional jump to tag 12 bits 03d
ZJIN rt Zero jump; jump to P+r locations if

A)y=20 12 bits 04d
ZIN tag Zero jump to tag 12 hits 04d
NJIN rt Nonzero jump; jump to Pir locations if

(A) #0 12 bits 05d
NJIN tag Nonzero jump to tag 12 bits 05d
PJN rt Positive jump; jump to P+r locations if

(A)>0 12 bits 06d
PJIN tag Positive jump to tag 12 bits 06d
MJIN rt Minus jump; jump to P+r locations if

(A)<0 12 bits 07d
MJIN tag Minus jump to tag 12 bits 07d

TIf PPU or PERIPH J option has been selected, r is not valid, The contents of the variable field must

be a symbolic address (tag).

Examples:

In the above examples, the LJM instruction is at address 0014g. TAGI is address 0012

Code Generated

7100 1362

0271 0000

0371
ouny
0525
0667

0726

value of 13g, TAG3 has a value of 25g, and TAG4 has a value of 268.

9-6

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
LIM START E
RUM 0,070 :
UJN TAGY-* |
ZJN + ;
NJN TAG3 I
PUN TAG2-* :
MUN TAGL |

g’ TAG2 has a

602799004

Code Generated

0347
OLPy
6556
0en?

07432

9.2.2 SHIFT INSTRUCTION

LOCATION OPERATION | VARIABLE COMMENTS
0 18 [30
PPy J :
|
|
UJN TAG1 |
7JN TAG? | In this example, the UJN is at
| address 0040, TAG1 is address
NJN TAG2+10 | 0010, TAG2 is 0011, TAGS is
| address 0045, and TAG4 is
PUN -14+TAGY | address 0046.
MJIN TAGL :

The SHN instruction shifts the contents of the A register right or left r places, If r is positive (+1 to
+31), the shift is left circular r places; if r is negative (-31 to ~1), the shift is end off r places to the
right with no sign extension. No shift takes place when r is + 0. The assembler places the value of
If -31 »r >31, the assembler generates an address error.

the r expression in the d field.

Format:

Operation Variable Description Size Octal Code
SHN r Shift (A) by + (left) or - (right) r bits 12 bits 10d
Examples:

1. Shift contents of A left circular 6 places

Code Generated

1006

2. Shift contents of A right end off 6 places

Code Generated

1071

602799008

LOCATION OPERATION | VARIABLE COMMENTS
] n 18]30
SHN 6 f
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30
SPNT SFT A f
SHN -SONT }

9-7

9.2.3 NO ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field are interpreted as a 6-bit

positive operand. This mode eliminates the need for storing many constants in core.

Formats:
Operation Variable Description Size Octal Code
LMN d Logical difference (A)-d—A 12 bits 11d
LPN d Logical product (A)*d —A 12 bits 12d
SCN d Selective clear (A) 12 bits 13d
LDN d Load d— A 12 bits 14d
LCN d Load complement d—A 12 bits 15d
ADN d Add (A)+d— A 12 bits 16d
SBN d Subtract (A)-d— A 12 bits 17d
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 8 !30

1112 LMN ten "

1207 LPN 7 |

12214 SCN 210 :

15 aA SET 158 |

1415 LN nA |

1514 LCN AA-1 {

1A01 ADN 1 !

1702 <N K4 :

9~§

60279900C

9.2.4 CONSTANT MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d and m fields are taken directly as an
operand. This mode also eliminates the need for storing many constants. The assembler reduces

absolute or relocatable expression ¢ to an 18-bit value and stores the upper six bits in d and the lower
12 bits in m.

Format:
Operation Variable Description Size Octal Code
LDC c Load ¢ —A 24 bits 20dm
ADC c Add (A)y+c —A 24 bits 21dm
LPC c Logical product (A)*c —A 24 bits 22dm
LMC c Logical difference (A)-c —A 24 bits 23dm
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] N 18 [30
2070 7070 LDC 70670708 |
|
0 VAL = 0 !
2177 7776 ADC VAL-1 |
|
2207 D707 LPC p707078 1
|
70707 MASK SET 0707078 {
23207 97107 LMC MASK }

9.2.5 NO OPERATION INSTRUCTION

The PSN instruction specifies that no operation is to be performed. It provides a means of padding
a program.

Format:
Operation Variable Description Size Octal Code
PSN No operation (Pass) 12 bhits 2400
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30
2un0 PSN i

60279900A 9-9

Other octal operation codes (not generated by COMPASS) that act as pass instructions are:

6000 Series 7600
00 25
25 26
27
75
76

9.2.6 EXCHANGE JUMP INSTRUCTIONS (6000-SERIES ONLY]

The EXN instruction transmits an 18-bit (absolute) address of which only 17 bits are used from the A
register to the CPU with a signal notifying the CPU to execute an exchange jump. The address in A is
the starting location of the 16-word exchange package which contains information about the CPU program
to be executed. The 18-bit initial address must be entered in A before the EXN instruction is executed.
The CPU replaces the file with similar information from the interrupted CPU program. The PPU is not
interrupted.

The MXN instruction conditionally exchange jumps to the CPU and initiates CPU monitor activity. If the
monitor flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor flag
bit is set, this instruction acts as a pass instruction. The starting address for this exchange is the
18-bit address in the PPU A register. This address must be entered in A before the MXN instruction
is executed.

In 6500 systems with dual central processors, d can be 0 or 1 and specifies which CPU the exchange
jump will interrupt. In 6300, 6400 and 6600 systems, this value is not interpreted.

Formats:
Operation Variable Description Size Octal Code
EXN d Exchange jump to CPU d 12 bits 260d
MXN d Monitor exchange jump CPU d 12 bits 261d
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
|
I
2601 EXN 1 :
i
2610 M XN‘ 0 :

9-10 60279900A

9.2.7 READ PROGRAM ADDRESS INSTRUCTION (6000-SERIES ONLY)

This instruction transfers the contents of the CPU P register to the PPU A register; this allows the

PPU to determine whether the CPU is in execution.

In a 6500 system with dual central processors,

the lowest order hit of the instruction format specifies which CPU P register is to be examined. In
6400 and 6600 systems, this bit is not interpreted. The largest value that (P) can be is 17 bits. An

ECS transfer is in progress when hit 17 of this instruction is set.

However, bit 17 of P is not set.

Format:
Operation Variabhle Description Size Octal Code
RPN d Read program address CPU d—A 12 bits 270d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1] 18 30
2700 RPN X
i
60279900C

9.2.8 6416 PPU INSTRUCTIONS

COMPASS assembles the following imstructions for execution on a 6416 computer system only. The
ETN instruction initiates memory transfer operations by transmitting an 18-bit address from the
PPU A register to the 6416 16K memory. This address points to a word having the following format:

X0 A0 K
59 36 18 00
. v \ Y — v —
Starting Address Starting Address Word Count
in Extended Core Storage in 16 K Memory

Expression d of this instruction specifies the transfer to be performed:

If dis 0, K words are transferred from ECS to 16K memory.

If dis 1, K words are transferred from 16K memory to ECS.

Note that addresses contained in the word are absolute addresses., Operating systems may require
relocation (adding RA to an address) and field length testing, e. g., Is address + RA FL? The
Exchange Jump package contains RA and FL values for central memory and for extended core storage.
The 6416 has no hardware for automatic relocation and field length testing; it is therefore incumbent
upon the program to perform these functions whenever required by an operating system.

The ERN instruction examines the status of the data trunk between 16K memory and the extended core
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit
position of the A register. If the trunk is free (not busy), the A register remains cleared. The d
portion of this instruction is ignored.

After execution of this instruction the program would typically test the A register for a sign before
executing an instruction that initiates an ECS operation.

Formats:
Operation Variable Description Size Octal Code
ETN d Extended core transfer 12 bits 260d
ERN d Read extended core coupler status 12 bits 270d
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
2600 ETN |
i
2700 ERN |

9-12 60279900A

9.2.9

DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field specify the address of the operand.
During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that

specifies one of the first 100g addresses in core memory (0000 - 0077g). During execution of LDD,
ADD, and SBD, (d) is treated as a 12-bit positive quantity.

Format:
Operation Variable Description Size Octal Code
LDD d Load (d)—A 12 bits 30d
ADD d Add (A) + (d)—A 12 bits 31d
SBD d Subtract (A) -(d) — A 12 bits 32d
LMD d Logical difference (d) and (A)— A 12 bits 33d
STD d Store (A)—d 12 bits 34d
RAD d Replace add (d) + (A)—d and A 12 bits 35d
AOD d Replace add (d) + 1—~d and A 12 bits 36d
SOD d Replace subtract one (d) - 1-—+d and A 12 bits 37d
Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 I 18 T30

3012 LoD TAG1 f

3103 ADD TAG2-108 :

32490 S8N 408 :

3327 LMD TAG1+15R :

2401 st |1 ‘

585 RAD 568 :

3612 AOD TAGY :

37132 SoD TAG? :

I

60279900C 9-13

9.2.10

INDIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, d specifies an address, the contents of which specify the
address of the desired operand. Thus, d specifies the operand address indirectly.

During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that

specifies one of the first 100, addresses in core memory (0000 - 0077g).

On the 7600, the address formed permits referencing of all memory locations but one (0060 - 77768).

On a 6000-Series Computer System PPU, the address formed in indirect address mode permits
referencing of all memory locations, including address g,

Formats:
Operation Variable Description Size Octal Code
LDI d Load ((d))—~A 12 bits 40d
ADI d Add (A) + (d)—A 12 bits 41d
SBI d Subtract (A) - ((d))—A 12 bits 42d
LMI d Logical difference (A) - ((d))—A 12 bits 43d
STI d Store (A)—>(d) 12 bits 44d
| RAT d Replace add ((d)) + (A)—(d) and A 12 bits 45d
1AOI d Replace add one ((d)) + 1==(d) and A 12 bits 46d
S01 d Replace subtract one ((d)) - 1—(d) and A 12 bits 47d
Examples:
Code Generated LOCATION OPERATION [VARIABLE COMMENTS
1 N 18 T30

4n12 LNt TAG1 7

4103 ADI TAGZ2-10 :

4240 SRI woe l

4377 LMI TAGL+15P |

Lunl STI 1 :

4559 RAT 56R :

4612 AOT TAG1 ;

4713 S0l TAG?2 :
9-14 6 0279900C

9.2.11 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the value formed by m+(d) is used as the address of the
operand. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit
value that specifies one of the first 100, addresses in core memory (0000 - 0077g). The value of
absolute or relocatable expression m is a 12-bit base address.

NOTE

The address formed in indexed addressing permits
referencing of all memory locations but one
(0000-776g). Although m and/or (d) can have a
value of T777gs the computer system does not
permit m+(d) to reference address 7777g.

When in indexed direct address mode, if d is nonzero the contents of address d are added to m to
produce a 12-bit operand address (indexed addressing). If d is zero, m is taken as the operand address.

Formats:
Operation Variahle Description Size Octal Code
LDM m,d Load (m+(d))—A 24 bits 50dm
ADM m,d Add (m+(d))—A 24 bits 51dm
SBM m,d Subtract (m+(d))—A 24 bits 52dm
LMM m,d Logical difference (A) - (m+(d))—A 24 bits 53dm
STM m,d Store (A)— m-+(d) 24 bits 54dm
RAM m,d Replace add (m+(d)) + (A)—m+(d) and A 24 bits 55dm
IAOM m,d Replace add one (m+(d)) + 1—m+(d) and A 24 bits 56dm
SOM m,d Replace subtract one (m+(d)) - 1—m+(d) 24 bits 57dm
and A
Examples:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated
— = 1 n 18 [30
5077 0203 LOM TAG6, 778 |
|
5106 0202 ADM TAGS, b !
5200 0202 SBM | TAGS !
5315 7000 LMM 700084158 |
[
5410 0272 STM TAGS5+708B,TAGL-2
|
5500 0342 RAM 1#080”&(}5,9l
5600 0173 AOM . =10B+TAGH !
!
5712 0203 SOM TAGHs TAGL !

60279900C 9-15

9.2.12 CENTRAL READ/WRITE INSTRUCTIONS (6000-SERIES ONLY)

The CRD instruction transfers a 60-bit word from central memory to five consecutive PPU locations.
The 18-bit address of the central memory location must be loaded into A prior to executing this
instruction. (Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit
words beginning at the left. Location d receives the first 12-bit word. The remaining 12-bit words
go to successive locations. The (A) are not altered.

The CRM instruction reads a block of 60-bit words from central memory. The content of location d
gives the block length. The 18-bit address of the first central word must be loaded into A prior to
executing this instruction. (Note that this is an absolute address.) During the execution of the instruc-
tion, (P) goes to processor address 0 and P holds m. Also, (d) goes to the Q register where it is
reduced by one as each central word is processed. The original content of P is restored at the end of
the instruction.

(A) is advanced by one to provide the next central memory address after each 60-bit word is
disassembled and stored. The contents of the Q register are also reduced by one. The block transfer
is complete when (Q)=0. The block of central memory locations proceeds from address (A) to

address (A) + (d) -1. The block of processor memory locations proceeds from address m to m+5(d)-1.

Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The
first word is stored at processor memory location m. The content of P (which is holding m) is
advanced by one to provide the next address in the processor memory as each 12-bit word is stored.
If P overflows, operation continues as P is advanced from 77778 to 00008. These locations will be
written into as if they were consecutive.

The CWD instruction assembles five successive 12-bit words into a 60-bit word and stores the word
in central memory. The 18-bit address word designating the central memory location must be in A
prior to execution of the instruction. (Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears as the
higher order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken
from successive addresses.,

The CWM instruction assembles a block of 60-bit words and writes them in central memory. The content
of location d gives the number of 60-bit words. The content of the A register gives the beginning

central memory address. (Note that this is an absolute address.) During the execution of this instruction
(P) goes to processor address 0, and P holds m. Also, (d) goes to the Q register, where it is reduced

by one as each central word is assembled. The original content of P is restored at the end of the
instruction.

The content of P (the m portion of the instruction) gives the address of the first word to be read out of
the processor memory. This word appears as the higher order 12 bits of the first 60-bit word to be
stored in central memory.

The content of P is advanced by one to provide the next address in the processor memory as each
12-bit word is read. If P overflows, operation continues as P is advanced from 77778 to 0000,.

8
These locations will be read from as if they were consecutive.

(A) is advanced by one to provide the next central memory address after each 60-bit word is assembled.
Also, Q is reduced by one. The block transfer is complete when (Q)=0.

9-16 60279900C

Formats:

Operation Variable Description Size Octal Code
CRD d Central read from (A) to d 12 bits 60d
CRM m,d¥ Central read from (d) CM words begin-

ning at CM (A)— PPU m 24 bits 61dm
CWD d Central write from d to (A) 12 bits 62d
CwWM m,dt Central write (d) words beginning at

PPU m- CM (A) 24 bits 63dm

TExpression d is required

Examples: -
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated ; " " T30

6015 CRD [15E '
6125 0012 CRM |TAG1,258 |

!
6232 CWO 328 !

I
6350 0012 ChM TAG1,508 I

[

9.2.13 1/O BRANCH INSTRUCTIONS (6000-ONLY)

The following instructions are conditional long jump instructions, each of which tests for a condition
on channel d. When the condition is true, the jump to address m takes place. When the condition is
not met, execution continues with the next instruction. These instructions are exclusively 6000-series
PPU instructions. The d expression is required.

For the FIM instruction, an input channel is full when the input equipment has sent a word to the channel
register and sets the full flag. The channel remains full until the PPU accepts the word and clears the
flag. An output channel remains full when a PPU sends a word to the channel register and sets the

full flag. The channel is empty when the output equipment accepts the word and notifies the PPU,

Formats:

Operation Variable Description Size Octal Code
AJM m,d Jump to m if channel d active 24 bits 64dm

IJM m,d Jump to m if channel d inactive 24 bits 65dm

FIM m,d Jump to m if channel d full 24 bits 66dm

EJM m,d Jump to m if channel d empty 24 bits 67dm

90279900D : 9-17

Examples:

Code Generated

9.2.14

6402

6502

6604

6704

go12
0013
002s

0026

LOCATION OPERATION | VARIABLE COMMENTS
n 18 T30
agN [TAGL,2 |
|
IJM TAG2 yCHAN=2 |
|
FuM TAG3,4 |
|
EJM TAG4,CHAN !
|

I/O BRANCH INSTRUCTIONS (7600 ONLY)

The following instructions are conditional long jump instructions each of which tests a condition on

channel d. When the condition is true, the jump to address m takes place.
met, execution continues with the next instruction.

When the condition is not
These instructions are exclusively 7600 PPU

instructions. The d expression is required.
Formats:
Operation Variable Description Size Octal Code
FIM m,d Jump to m on channel d input word flag 24 bits 60dm
EIM m,d Jump to m if no input word flag on channel d| 24 bits 61dm
IRM m,d Jump to m on channel d input record flag 24 bits 62dm
NIM m,d Jump to m if no input record flag on
channel d 24 bits 63dm
FOM m,d Jump to m on channel d output word flag 24 bits 64dm
EOM m,d Jump to m if no output word flag on
channel d 24 bits 65dm
ORM m,d Jump to m on channel d output record flag 24 bits 66dm
NOM m,d Jump to m if no output record flag on
channel d 24 bits 67dm
9-18 60279900A

Examples:

Code Generated

6005
6102

6201

6304
6415
6500
6601

67Nn5

60279900A

1365

1365

1366

1366

7000

1525

1266

1366

LOCATION OPERATION | VARIABLE COMMENTS
n 18 [0
FIM TAGS,5 i
FIM TAGS ,2 :
IRM TAGH,1 :

CHAN SET N :
NTM TAGH,CHAN :
FOM 7000R,15R |
EOM 1&UB+TAGS,O{
ORM 1 20R+TAGE, CHAN=3
NOM TAGE,CHAN+1§

9-19

9.2.15 A REGISTER INPUT/OUTPUT INSTRUCTIONS

The following instructions transfer a word to or from channel d and the lower 12 bits of the A register.

On the 7600, the IAN instruction is not executed until the input channel d word flag is set. If the flag
is not set when the instruction is read, execution halts until an external signal sets the flag. The
input channel d record flag does not affect the IAN execution. The IAN instruction clears the input
channel d word flag and record flag and transmits a resume signal over the input cable after the
word is entered in the A register.

On the 7600, the OAN instruction is not executed while the output channel d word flag is set. If the
flag is set, execution stops until an external resume signal clears the flag. This instruction sets
the output channel d word flag and transmits a work pulse over the output channel d cable.

On a 6000-series machine, executing either of these instructions when the channel is inactive
causes the peripheral processor unit to become inoperative until some other peripheral processor
activates the channel, or the system is deadstarted

Formats:
Operation Variable Description Size Octal Code
IAN d Input: channel d to A 12 bits 70d
OAN d Output: (A) to channel d 12 bits 72d
Examples:
LOCATION OPERATION | VARIABLE COMMENTS

Code Generated " ” " 0

7003 IsN |3 |

7204 0AN CHAN ;

9.2.16 BLOCK INPUT/OUTPUT INSTRUCTIONS

The following instructions tranfer a block of 12-bit words on channel d to or from a starting PPU
memory location specified by m. The number of words transferred is specified by the contents of the
A register which is reduced by one as each word is transferred. The operation is completed when (A)
= 0 or the channel becomes inactive (6000 only).

On 2 6000-series machine, the input operation is complete when (A) = 0 or the data channe] becomes
inactive, If the operation is terminated by the channel becoming inactive, the next location in the
processor memory is set to all 0's. The word count is not affected by this empty word. There-
fore, the contents of the A register gives the block length minus the number of real data words
actually read in.

During execution of either of these instructions, address 0000 temporarily holds P, while the P register
holds m. The contents of P advances by one to give the address for the next word as each word is
transferred,

9-20 60279900D

NOTE

If this instruction is executed on a 6000-series machine
when the data channel is inactive, no operation is accom~
plished and the program continues at P + 2, However,
the location specified by m is set to all zeros for the IAM
instruction.

On a 7600, the IAM instruction is not executed until the input channel d word flag is set. If the flag is
not set when the instruction is read, execution halts until an external signal sets the flag. The
presence of an input channel d record flag is ignored for the first word of the block but terminates the
block input at any word after the first. In this case, the next location in the PPU block input storage
area contains a noise word; any remaining locations are unaltered. Note that the storage location can
be incremented through location 7776_ to 0000_ on a 7600, or location 7777 through 0000 on a 6000~
series machine which could destroy existing data or a program,

On a 7600, the OAM instruction is not executed until the output channel d word flag is cleared. If the
flag is set when the instruction is read, execution halts until a resume pulse clears the flag. An out-
put channel d record flag does not affect OAM execution.

Formats:

Operation Variable Description Size Octal Code
IAM m,dJr Input: (A) words to m from channel d 24 bits 71dm
OAM m,dJr Output: (A) words fromm to channel d 24 bits 73dm

tExpression d is required

Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
i n 18 IJO
7103 1364 TAM TAG, 2 [
7304 1364 OAM TAG, 4 f

60279900D 9-21

9.2.17 SET OUTPUT RECORD FLAG INSTRUCTION (7600 ONLY)

The RFN instruction sets the output channel d record flag and transmits a record pulse over the cable.
The instruction ignores the previous status of the channel d flags; the instruction is executed even if the
output channel d record flag is set.

Format:
Operation Variable Description Size Octal Code
RFN d Set output record flag on channel d 12 bits 74d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
. 1 N 18 [0
7411 RFN 11R }

9.2.18 CHANNEL FUNCTION INSTRUCTIONS (6000-SERIES ONLY)

The ACN instruction activates the channel specified by d. This instruction must precede the 1AN,
IAM, OAM, or OAN instructions. Activating a channel alerts the input/output equipment for the
exchange of data. Activating an already active channel causes the PPU to become inoperative until
another PPU or an external equipment deactivates the channel, or the system is deadstarted.

The DCN instruction deactivates the channel specified by expression d. It stops the input/output
equipment and terminates the buffer. Deactivating an already inactive channel causes the PPU to
become inoperative until deadstart or until the channel is activated. Avoid disconnecting the channel
before first sensing for channel empty, deactivating a channel before stopping the associated processor,
or deactivating a channel before placing a useful program into the associated processor. After dead-
start, PPUs wait on an input channel. Deactivating a channel after deadstart causes an exit to address
0001 and execution of the program.

The FAN instruction sends the external function code from the lower 12 bits of the A register on
channel d.

The FNC instruction sends the external function code specified by m on channel d. For this instruc-
tion, expression d is required.

Execution of a FAN or FNC instruction when the channel is active causes the PPU to become
inoperative until another PPU or an external equipment deactivates the channel, or the system
is deadstarted.

Formats:

Operation Variable Description , Size Octal Code
ACN d Activate channel d 12 bits 74d

DCN d Disconnect channel d 12 bits 75d

FAN d Function (A) on channel d 12 bits 76d

FNC c,d Function ¢ on channel d 24 bits 77dm

9-22

60279900D

Examples:

7405
7504

7605

7705 0020

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
ACN 5 ;
OCN CHAN :
FAN CHAN#+1 :
FNC 20B,5 :

9.2.19 ERROR STOP INSTRUCTION (7600 ONLY)

The ESN insfruction halts execution of the 7600 peripheral processor program and indicates a program
error condition to the monitor control unit.
the MCU, only. This instruction is exclusively a 7600 PPU instruction.

The PPU must be restarted by a deadstart sequence from

Format:
Operation Variable Description Size Octal Code
ESN d Error Stop 12 bits 7700
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 {30

7700 ESN !

60279900A 9-23

PROGRAM EXECUTION 10

COMPASS can be called from the library and placed in execution through a COMPASS call card or
through an IDENT card (section 4.2.1) in a FORTRAN source deck, When COMPASS is called through
FORTRAN, parameters are ordinarily specified on the RUN or FTN card and are the same as for the
FORTRAN program.

10.1 CONTROL CARDS

Normal assembly of COMPASS source programs under SCOPE and execution of CPU binary object
decks requires generation of a SCOPE job file. A file is usually submitted in the form of card decks
or card images. The first record 1 of the file must contain the SCOPE control cards described in

this section. Other optional cards are described in the operating system reference manual. Follow-
ing the control card record are one or more records containing source statements and data. A control
card key word, i.e., name on the job card, begins in column one. A comma or a left parenthesis
begins a parameter string. Parameters in the string are separated by commas. A period or right
parenthesis terminates a parameter string. Comments optionally follow the terminator.

10.1.1 JOB CARD
A job card of the following format must be the first card in the deck. The parameters following name
can be in any order or can be omitted. For any omitted field, SCOPE supplies a default value, which

is an installation option.

Control card format:

(name, Pp, Tt, CMscm, EClmc.

name 1-7 character alphanumeric name by which the job is identified .
The first character must be a letter.
Pp Job priority
SCOPE 1
P4 Express job
P3 Preferred job; the job will be placed in execution before a job of
lower class.
P2 or Normal job; the job will be placed inexecution before any deferred
omitted job but after any priority job.
Pl Deferred job; may be assigned to a job that has a high proportion

of CPU time to 1/0 time.

Other The system uses an installation option.

TSection for SCOPE 2.

60279900C 10-1

SCOPE 2 and SCOPE 3.3

Pp p = priority level in octal. 1 < p ¢ Zk, where k is an installation
option less than or equal to 8, The lowest priority is 1.

Tt CPU time limit in octal seconds (1-7777_), must be sufficient to process all control
cards for the job, including assembly and execution.

CMscm Estimate of maximum amount of 7600 SCM or 6000 CM required for execution (1 - 6
octal digits). The estimate for COMPASS is a minimum of 40000, The 7600 operating
system rounds the value to the next higher multiple of 1000. The 6000 operating
system round this value to the next higher multiple of 100.

EClcm Estimate of maximum amount of 7600 LCM or 6000 ECS in octal thousands, required for
assembly or execution (1 -~ 1400g). The estimate for COMPASS is a minimum of none
for SCOPE 1 and SCOPE 3.3 and is 14 for SCOPE 2 (i.e., 140008).

COMPASS notes storage used on the listable output. For subsequent runs, the field lengths can be
decreased accordingly.

Examples:

rJOBl, b2, T100, CM40000, EC30.

I TESTER.

10.1.2 COMPASS CALL CARD

The following control card causes the COMPASS assembler to be loaded from the ‘SCOPE library and
executed. Parameters specify modes and files.

Control card format:

rCOMPASS(pl,pz, seesP)

The optional parameters, p,, may be in any order within the parentheses. A parameter can be omitted
or can be in one of the following forms,

mode
mode = 0
mode = filename

Mode is one or two characters as described; and filename is a 1-7 character name of a file or a
charaeter string.

10-2 60279900C

Mode Significance
A - Abort mode

A Abort job at end of run if any assembly errors occurred.

omitted Do not abort job for assembly errors.

B - Binary output
omitted or B Binary on the load-and-go file (L.GO)
B=0 No binary output

B=filename Binary on the named file

D - Debug mode

D Binary is generated on the file indicated by B parameter in spite of assembly errors
and regardless of the abort mode (A parameter).

D is ignored if B=0,

omitted Assembly errors inhibit binary output. In abort mode (A parameter present), no
binary output is written at all for a subprogram containing assembly errors, Other-
wise (A parameter omitted), the message ERRORS IN ASSEMBLY is written to the
file indicated by the B parameter for each subprogram containing assembly errors.

E - Extended binary table mode (SCOPE 2 only)

omitted or Tables are generated as described in Loader Reference Manual,
E=1 Publication No. 60344200,
E or E=0 Tables are generated non-extended as described in Appendix B.

F - FORTRAN mode; establishes value of special element *F

omitted or F *Fis0

F=number *F is number (one decimal digit)

F=name *F is a number corresponding to name as follows:
COMPASS =0
RUN =1
FTN =2

G - Get text; takes precedence over S if both G and S options are selected.

G Load systems text from file SYSTEXT 7
G=filename Load systems text from named file
oGn_l(i)tted or Load systems text from overlay named in S option

I - Source of assembler input:

omitted Source deck is on INPUT file

I Source deck is on COMPILE file in either compressed or expanded format,
1=0 Illegal

I=filename Source deck is on named file

TV2TEXT for SCOPE 2.

10-3
60279900C

Mode

L - Full List
omitted or L

L=filename

L=0

Significance

List output on OUTPUT file

List output on named file. When the full list is on a different file than the short
list, the listing for each subprogram is preceded by a one-word header consisting
of an asterisk and the first six characters of the subprogram name., This header

identifies the subprogram as a convenience for sorting and cataloging. Also
see O option.

No full list will be generated

LO-List options; selects or deselects a maximum of seven of the list options A, B, C, D, E, F, G,
L, M, N, R, S, T, orX

omitted or LO=0 Same as selecting B, L, N, and R only

LO

L
O=clc2 cn

Selects list options C, F, G, and X, and deselects R

A list of up to seven characters. Inclusion of B, L, N, or R deselects the corre-
sponding option. Otherwise, inclusion of a character selects the option. For
options, refer to LIST pseudo instruction, section 4.11.1.

N - No eject; suppresses ejects caused by normal listing control, The only page ejects are at the
beginning of new subprograms.

N

omitted

No eject

Normal ejects

O - Short list; suppressed if full list is directed to the file or if no assembly errors occur. However,
if the full list and short list are on different files (e.g., the full list is written on OUTPUT and the
short list is written on the named file), the short list will be augmented by the addition of any error
lines originating with a macro call,

omitted or O
O=filename
O=0

P - Continue page
p

omitted

List output on OUTPUT. file
List output on named file

No short list will be generated

Page numbering continues from subprogram to subprogram.

Page numbering begins with 1 for each END instruction.

8 - Source of SYSTEXT { information

omitted or S
S=0

S=overlay

Information is on SYSTEXT t overlay
No source of SYSTEXT T information

Information is on named library overlay

TV2TEXT for SCOPE 2.

10-4

60279900C

X - Source of external text (XTEXT) when location field of XTEXT pseudo instruction is blank.

omitted External text OLDPL file

X=filename External text on named file

X=0 Illegal

X External text on OPL{ile |
Examples:

(COMPASS(B, D, S=OVI)

ﬁ:OM PASS(LO=ASGXD)

I COMPASS,

10.1.3 LGO CONTROL CARD

An LGO control card calls for the loading and execution of CPU binary output produced by the assembler
when the B option on the COMPASS card is selected. When binary output is on some file other than LGO,

the card is replaced by a program call card for that file. SCOPE automatically repositions the LGO at
load point before loading. The LGO file is temporary; it is released at job termination.

Format:

(LGO. comments

10.1.4 PROGRAM CALL CARD
The program call card directs the operating system to search for a file or CPU program that has the
name specified on the card, load it into the user's small core memory, and execute it as a CPU

program,

Formats:

rname(pl ‘p2 yesee ’pn)

| name.

name Program name

P Parameters in a format acceptable to the program being called.

When the operating system locates the file, it repositions the file to load point, loads it, and, when
loading is complete, executes the program as a CPU program.

TMODIFY is not supported by SCOPE 2.

60279900C 10-5

10.1.5 END-OF-RECORD CARD

An end-of-record T card is characterized by having rows 7, 8, and 9 punched in column one.

Columns

2-80 optionally contain comments. The card separates records in the job deck. For example, a deck
consisting of control cards, a source language deck for one or more subprograms, and a data deck,
would include two end-of-record cards. The first terminates the control cards and the other terminates
the source deck. A deck consisting of control cards only does not require an end-of-record card; an

end-of-information card is used in its place.

/l 2 3 4 5 6 1 &8 9 0 i IZ‘GMIﬁ'G I I O R S R S N O I L I I A A S L L T 575!54555651505360‘

[Gi 62 63 58 65 65 H1 A5 €3 00N 72 I3 M4 15 6 71 78 8 UU'

9000000000O00000000000000006G300006000C600000000060000006D00000CD0000G0B000020002

? ? 2 ? E E U9 N0 12131415 16 17 I 197020 2223 26 2576 20 38 1 30 30 1230 B 5 36 30 30 3043 81 42 348 4§ %0 47 30 4950 515753 54 85 56 57 58 39 09 G 62 3 GS B GGG BA N0 N M IITA IS 06 7T I8 19 M0
R R R R R A R R R R R R R R R R R RN R A R R R

2222222222212222222212222222222222222202221222272%2222222221222212222221222222122121121121

T2 345 608 SN 13T mI9200 22324252620 28293031 1233385554 2432807 A4550 4555657 B90EI6ZEIEIEIEEET R NN 2N U WIS

3333333333333333333333°33
A4 44044804844 44004444 0484404424444 204444448382444444044844444444444840444444444

T2 45 &7 3 YW NIHIBETBINNTBUBBW8YINNUBHIIATVL 0L LHETQDMNI 205 HSTHFEDEEEMBENEESNIERBUBHENNIETN

555955655555565555555555584539
666666666666666666C6666666666666666666666G6666666666G6666666666C666666665666666666

P23 43§18 80 IZHHHIE”I'l!]ﬂﬂZIZJZIZ&ZGUNZ!IIN3131“3535311‘39‘0”"”“45(6“0549505I5153.’\&55565)5!595051616]54ESBSEIHSEHIHHH!(1515711!7!"

[FRRERER AR R R R DR R R
Beosso88888885368088888R658B088883888888850880888086888803088088808886868980860808888¢88

127345 6 1 8 %1000 2131415 16 1715 192621 2223 74 25 26 20 28 29 39 31 37 33 34 33 36 37 34 1940 41 €2 43 44 45 4G 47 49 43 50 53 57 55 54 53 56 57 58 31 68 §1 67 5 64 £ 65 67 6B §3 M 1 42 73 03 M5 %6 11 12 1B 0

B999699999953599890598959999909890999999989999999959995999999899999999999990999939499

\ COC/LKY S084

10.1.6 END-OF-INFORMATION CARD

An end-of-information card is characterized by having rows 6, 7, 8, and 9 punched in column one.

Its use signals the end of the job deck. Columns 2-80 optionally contain comments.

o

28 M 26 2 28 29 S0 31 32 3 M 35 36 5T 3R 33 40 41 42 43 44 65 45 47 48 49 S0 51 52 53 54 55 56 57 S8 59 Iﬂl

[I23(56169IOIIIZEHISIGI!(BW?UZI?I?Z

[62 & 64 e5 65 o1 a8 69 0 7 12 15 W TS 76 11 0™ 4]

00000000000000000000000G000000C000C00000000000000006000000000000060000000C0

0e
3OS 0B 00 213041516 17 1819 20 20 222324 25 76 20 28 2% 30 31 3233 34 35 36 37 30 33 40 41 47 43 44 45 4G 47 43 49 50 51 57 53 54 55 56 57 56 59 60 6¢ 62 63 6§ BN NIIUEET IR
11

R R R R AR AR R R R R AR R R R R R R R R RN RE R ER RN
222222222222222222122722122222222222222222221222222227222122212222212222222222222221212112

123458718300 |2|3|4|§I5|HI|31011Z]Z]leﬁlBﬂHZ!:iDll3133141535]]3]3!40“‘7““lSlE‘”lﬂlQSBSI52535!5555515'55‘0“515!“iSiﬁﬂﬂi!ll”71137175"”"7!"

3333333333333337333
AAA4 44444044 4840444 4804444444888 0448 480488444444 484 4048480404 80048 0484488008404

123458789100 lZHHlﬁKHIBV!IﬂZI1213“151577ZIZ!JD3|]INM3536])3!3940”‘1““l5l6”"l!505|515]5l5555315'5!50“51ﬂ“ﬁ“il"ﬁ!ll"717]“75"77""“

5555535555 55565555555556555
' 11X 66666666666 66666G666666666666666666666666G6666666666666666666666G66666666

666
123456183100 RIBMIST6 1718192020 22320252627 28 293031 323034 3536 31 0 13 40 41 A7 434 4546 47 40495050 52 53 S S5 Sh ST S SO GO G B2 B3 GA BS B GTGU AN TN R A M IS KT A IO M
111

| ERRE T1I111I 1137131111111 11111 it i1t 1i11111111
Iiﬂﬂlﬂﬂﬂﬂﬂﬂﬂsﬂﬁaﬂﬂﬂssﬂ5888888388088B&BBHBBBBBBOBHBGHBBBBlﬂBll!lﬂB!ﬁlll]lllllllll

113456878300 ”HI‘!'J!EHIBWM?I2’22114757517ZlZ!JD}IiZZ]H3535UJKMlll””l!“lﬁlﬁ“lll!ﬁﬂil51515‘55555)5'5!“5]Hi]ilii“ﬂili!ll”’1”")575""7"

I99999999993999999399939990999999999999999999999999999999999!!99!99!59999!!99!!9‘)

\ COC/LKY 5084

TEnd of section for SCOPE 2.

10-6

$0279900€

10.2 SAMPLE DECKS

The following job calls for assembly of the source program and execution of the binary object program
produced by the assembly, COMPASS reads source statements from file INPUT, writes the listing on
OUTPUT, and writes a binary object deck on file LGO. Control card LGO calls for execution of the

binary object program, which obtains its data from file input.

g (end of information)
8
9
’
/
/
4
/
/
—/
g (end of record)
9
d / END TEST
Subprogram =
TEST 3

e
\ (/ IDENT TEST
7

/
8 (end of record)
Control (LGO.
Record
(COMPASS.

~ /SAMPLE,TlOOO,S40,L100.

60279900A

Data for
execution

10-7

In the following job, the COMPASS assembler is called twice. During the first assembly, binary
object decks for subprograms TEST1 and TEST2 are written on file LGFILEl. The source decks

for these subprograms are on the second record of the INPUT file. During the second assembly,
COMPASS writes a binary object deck for subprogram CDA on file LGFILE2, Each assembler run
produces a full listing. Following the second assembly, both files containing binary output are re-
positioned to the beginning of the file. Then, the COPYBR program is called to copy the contents

of LGFILEZ to a punch file (PUNCHB). The LGFILEL card then calls for the loading and execution of
subprograms TEST1 and TEST2 from LGFILEl. Following successful execution of the subprograms,
the file is rewound and copied to the punch file, after which the job terminates.

f’? {end of information) |
58) ,.’ﬁ'i] } Data for execution
g ;nd of record) I
9 (END CDA |
ﬁﬁ" = } Subprogram CDA
(IDENT CDA
g (end of record) l
9 END TEST2 -
'r’ﬁ — } Subprogram TEST2
IDENT TEST2 | ll
END TEST1 |
= } Subprogram TEST1
IDENT TEST1 Illl
g {end of record) I 7
9 (COPYBR(LGFILEL, PUNCHB)
{ REWIND (LG FILE1)
(LGFILEL.
(COPYBR(LGFILE2, PUNCHB) Control
(REWIND(LGFILE2) — Record
(REWIND (LG FILE1) —
(COMPASS(B-LGFILE2) —
(COMPASS(B=LGFILE1) —
SAMPLE, T500, EC50, CM50000, — /

10-8 602799004

In the following example, COMPASS is called from within a FORTRAN program. The source program
follows the FORTRAN program in the same record.

No parameters on the RUN card cause:
1. Compilation and execution
2. Object program SCM and LCM fields to be set
3. Source decks on INPUT
4. Listings to be written on OUTPUT
5. Binary object programs to be written on LGO

6., No cross reference list is produced

6
7
8 {end of information)
9
. | Data
(é (end of record)
(END
COMPASS Source Deck ==
IDENT begins in IDENT

column 11 — —>

FORTRAN Source Deck

(Z (end-of-record)
9

(RUN
JOB, EC100, CM100000, P2,

60279900B 10-9

The following sample job deck illustrates how to assemble and use a system text overlay.

TEXT, CM60000, T300.
COMPASS(S=0, B=TEXT)
COMPASS(G=TEXT)

7/8/9
IDENT TEXT
STEXT
Contains definitions for
system macros, micros,
. and symbols.
END
7/8/9
IDENT PROGRAM
SST Defines symbols from TEXT.
Programs using definitions
in TEXT.
END
6/7/8/9

10-10 60279900D

LISTING FORMAT n

This section describes assembly listing format. Control of the contents of the listing is described in
section 4,11 Listing Control, and in section 10.1.2 COMPASS Control Card.

1.1 PAGE HEADING

Each page of the assembly listing contains a title line and a subtitle line in the following format:

title COMPASS - VER n, date time PAGE x
2
subtitle sub-sub | block symbol %/
| - title name qual
title Up to 62 characters taken from the first TITLE pseudo instruction or from a
TTL pseudo instruction or, in lieu of these, from the IDENT instruction.
date Date of assembly
time Time of assembly in hours, minutes and seconds.
PAGE x Page number of listing. Pagination begins with 1 for each END instruction

unless the P option is selected on the COMPASS control card

subtitle Up to 62 characters taken from second and subsequent TITLE pseudo
instructions or a CTEXT pseudo instruction.

sub-subtitle Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or
TTL pseudo instruction or the location field of an ES or PS machine instruction.
If the instruction that introduces the new sub-subtitle also causes a page eject,
the instruction immediately follows the heading (assuming the C list option is
also selected).

block name Name of the block in use at beginning of page

symbol qual Qualifier in use (see QUAL pseudo instruction) at beginning of page

1.2 HEADER INFORMATION

The first page of the assembly listing for each subprogram contains a summary of binary control cards
(optional), a list of all the blocks established for the subprogram, and lists of entry points and
external symbols.

11.2.1 BINARY CONTROL CARD SUMMARY

A binary control card summary in the following format is generated for each IDENT instruction when the

60279900C . 11-1

COMPASS control card or the LIST instruction selects the B list option:

ADDRESS LENGTH BINARY CONTROL CARDS.
addry 4 binary cardy
addry s binary card,
addrn [binary cardn
binary card; The binary card that caused generation of the binary for the overlay, partial
binary, or subprogram. The list includes SEG, SEGMENT, and END instruc-
tions.
addri The origin address for the subprogram, overlay, or partial binary written out
as a result of the binary card.
4 The length of the subprogram, overlay or partial binary.
Example:
ADDRESS LENGTH BINARY CONTROL CARDS,
iNt 271 INENT COMPASS,LOVER,CMP
372 5241 SEG
5632 1242 SEG
7075 4145 SEG
13242 5175 <EG
20437 1352 SEG
22011 FNO COMPASS

11-2

60279900A

11.2.2 BLOCK USAGE SUMMARY

A block usage summary of the following format is generated under control of the B list option.

BLOCKS

name
1

namez

namen

namei

type

baddri

leng;thi

60279900q

TYPE ADDRESS LENGTH
£y baddr, by
ty baddr, b,
tn baddr, bay

Name of the block used in the subprogram, as follows:

PROGRAM* For a relocatable assembly, indicates the zero
block. For an absolute assembly, the first
PROGRAM* indicates the absolute block, the
second indicates the default symbols block.

ABSOLUTE* Appears in a relocatable assembly only and
indicates the use of an absolute block.

LITERALS* Identifies the literals block.

other Identifiers a local, labeled common, or blank

common block.

The type of the block as follows:

ABSOLUTE All addresses in the block are relative to absolute
zero. For an absolute assembly, all blocks are
ABSOLUTE.

LOCAL Addresses in the block are relative to the origin

assigned to block zero.

COMMON Addresses in the block are relative to the origin
of the common block.

LCM Addresses in the block are relative to the named
LCM block for a relocatable program and are
relative to RAL for an absolute program.

Beginning address of the block according to type.

Number of words in the block.

11-3

Examples:
BLOCKS

PROGRAM*
LITERALS®*
TONTROL
PSEUDD
suBs

BUFF ERS

BLOCKS

ABSOLUTE*
PROGRAM*
DATAL
TABLE
TABLE
LCM

ALPHA
BETA

7/

TYPE

ARSOLUTE
ABSOLUTE
ABSOLUTF
ABSOLUTF
ABSOLUTT
ABSOLUTE

TYPE

ABSOLUTE
LoCcAL
LOCAL
COMMON
LOCAL
LCH
LOCAL
LOCAL
COMMON

11.2.3 ENTRY POINT LIST

If the subprogram declares

block usage summary.

ENTRY POINTS.

sym, - addr1 sym .. - addrn
sym,, - addr2 sym .,
sumn - addrn sym on

If the symbol is undefined, addri is FFrrkkk

11-4

APDRESS

0
5416
5622
7075

13242
20437

ADDRESS

0
0

- addr2n

LENGTH

5416
215
1242
4145
5175
11140

LENGTH

62
35

1

1

1
400
1751
144
1000

sym

sym2n+2

sSym 3n

on+l adern

- addr on

+1

+2

addr3n

sym3n+1 - addr3

8y

Man+o

- addr3n

entry points, a list of entry point symbols in the following format follows the

n+1

+2

60279900A

Example:

ENTRY POINTS,

SNAPL
SNAP2
SNAP3
SNAPL
SNAPS
SNAPG

125
1352
1357
1364
1510
1632

CONOUT
ADD
ADDOR
BEGIN
BYTESIZ
CALL

11.2.4 EXTERNAL SYMBOL LIST

If external symbol references are declared in the subprogram, a list of the following format follows the
list of entry point symbols:

EXTERNAL SYMBOLS.

sym,
sym,

symg

sym

symn+1

symn+2

sy mn +3
sym 2n

SYMon+1

1175

1347
1247

SyMgn+1

where n is 1/8th the number of external symbols.

Example:

FXTYERNAL SYMBOLS.,

FRMSG

CONEXTY

XNFrRy

SYMROL

GOTO
IfF
KEY
LABEL
LEVEL
LIMIT

co6G0T0

1.3 OCTAL AND SOURCE STATEMENT LISTING

- 16
- 1354

- 21
- 21

SyMan+1

READ

RECOPN
RFORDFP
RPF

RPH

sC

The contents of the octal and source statement listing depends on the options selected.

The list is 130 characters wide with fields assigned as shown in figure 11-1.

60279900C

3¢
37
41

L2
42

11-5

Title Line

Subtitle Line

[Error
Flags

Location
Addresses

Octal Source Lines Sequence
Code

Error Flags

Location
Addresses

Octal Code

11-6

Figure 11-1. Format of Octal and Source Statement Listing

Error flags indicating that errors of the type indicated have been detected on the
source line or in a subsequent statement that is not listed. These flags are
described more fully under Error Directory. Lines containing errors are always
listed.

The value of the location counter with leading zeros suppressed. If no code is
generated or no location symbol is defined by the statement, this field is blank.
If at the time the value is assigned, the value of the location counter differs from
the value of the origin counter, an L precedes the address.

The actual code generated by this statement. Depending on options selected, the
listing shows just the first word or all words generated for data generation
instructions. The field does not include NO instructions (46000,) packed for a
force upper or zeros packed for a completed parcel on a VFD. A 24-bit PPU
instruction is shown two words of data per line.

60279900A

If the word contains an address, the octal code is flagged as follows:

- Negative relocatable address
Postive relocatable address

+
C Common relocatable address
X External address

For a statement that does not generate code, this field is normally blank.
Exceptions are as follows:

For a LIT instruction the field contains the address of the first word of
the literals generated.

For a COL instruction, the field contains the new beginning-of-comments
column number,

For a symbol defined through SET, MAX, MIN, EQU, =, or MICCNT,
this field contains the octal value of the symbol right justified with leading
zeros suppressed.

For an instruction resulting in a change of base, the notation by=b, is right
justified in the field. bq indicates the old base and by indicates the new base.

For an instruction resulting in a change of code conversion, the notation
cir*cy is right justified in the field. ¢y indicates the old code and cy
indicates the new code.

For a DUP instruction, the field contains the repeat count.

Source Code Source statement image (columns 1-72)

Sequence Columns 73-90 of the card image or an identifier for an expansion of a definition
operation as follows:

Macro macro name

Remote code *RMT*

Duplicated code *DUP*

Echoed code *ECHO*

XTEXT file name

OPDEF Operation field of opdef call, e.g.,SB1

The recursion level is indicated in the right half of the field.

60279900A 11-7

Example:

COMPASS

4132
%133
4134

%135
4136

4137
4140

biuy

L3 T
G167
LS
4145
L1uh

Wi4u7
4151

MAIN BATCH CONTROL.

6110000001
0100022354
0400007334
0unngg7s71
1103004137
040NN0L133

anencanang
5110003147
5120110062

5110003075
6120000077

5130000042
5141006566

03110746152
0232004150

st2p000070
1312004137

5120106567
10622

S1ARONDILT71

9400004137
L3044

N.4 LITERALS

COMPASS - 6000/700R ASSEMBLER - VER

2]

COMPASS SAtL

RJ
COMPASSL FQ

COMPASS - VER .
COMPASS

COMPASS - MAIN CONTROL.

1 91} =
PASSO INITIALIZE COMPASS
/PASSL1/PASST EXECUTE PASS1

CONSTANT 1

FXITPY EQ /PASS2/PASSZ EXECUTE PASS2

EXITP2 RJ TFE TEST FOR END
Q COMPASSH CONTINUE

e TFE - TEST FOR END.

TFE PS PETURN EXIT
sAa1 ERECNT PPOPAGATE ERPOR COUNT
Sa2 ERPFLG
IXé X1¢X?
SAG A2
SAL EOFINP CHEGK FO2 EGR ON INPUY
SAZ BATrH
SA3 INRUF+1
SAL =6LIDENT
MZ X1,TFF2 TF EOR HAS BEENM FOUND
NG X2,TFEL IF NOT COMPASS ONLY
sa2 LISTFG
MNZ X2, TFE IF LIST ON
SA2 =10H-
RXh X2 SET DOUALE SPACE
San TITPUF
En TFe RETURN
TFEL MXn 36

Rx1 X3*x0 NEXT CARD F

70 /05/705.) 09.58.29,

PAGE 3s
COM~ ASS a7
COMP ASS a0y
COMFASS 809
COMPASS 810
COM>ASS 8it
CONF ASS [$%4
COMi- ASS 813
COMFASS 81y
COMPASS 815
COMF ASS 817
COMP ASS 818
COMPASS 819
COMF ASS 820
COMF ASS 821
COM-ASS 822
COMP ASS 423
COMPASS 826
COM?ASS 825
COM~ASS 826
COM: ASS 827
COMPASS 82s
COM-ASS 829
COMFASS 830
COM: ASS 831
COMF ASS a32
COMFASS 833
COMF ASS 836
COM- ASS 835
COMFASS 836
COMPASS 837

S 838

When the D list option has been selected, the assembly listing includes a listing of the literals block
following the default symbols listing. Following each literal address is the octal contents of
the word and a display code conversion of the contents of the word.

Examples:

[=l=T=Y==Y" =YY =]
el aed el ad pad ot =t o 2
DOIODDDD DD
el e o B e s ok b
WANNININNINI N
> SND N AV

N NN NN N NN
£ €l ol O S G ol 0 Cd G O
NI AININD NININ b = b
N NE WD IV

11-8

(@}
(=]
z

D 1D S b e
N DN~
OO NE
NNDN IO N
N 3 DN NI N
S NoNNIIWo ~
VIO OMNF DN N
ENENT =T Y NEN -1 4]
DNV OO
= RN Y18 RV TR I |
OO IO
DO NINNOD
D ONICIO DI

FNNHOONOONGD
(]
o

FENFENDNTOOD
NN DD D DN
W N DO @D N

OoF

—d
m
-4
-

DNOAN LS+ T
DN E NI
QUIDVINENOD
OODODONNDD
[~ T —¥ =18 To X T]
DOCOAONNOD
DNDDANNNDIO

LITERALS BLOCK.

O+.>2X

Np

MESSAGE 23
NECIMAL R

EQUIRFEN,
RFQUIRFN

PRCGRAM AS
ORY.

NTENT OF LITERALS PLOCK.

>

0 -
NDPEM=M I VP re

602799008

1.5 DEFAULT SYMBOLS

When the D list option is selected, a list of default symbols immediately precedes the literals block.

Example:
DEFAULT SYMBOLS DEFINED BY COMPASS
000000 X MSG=
"N5461 TAGL
005462 TAG2
00546 ARC
TO5L6%. SYM

1.6 ASSEMBLER STATISTICS

Assembler statistics are printed at the end of the octal and source statement listing or, if the D list
option is selected, following the default symbols. Information includes the following:

Amount of storage used (octal)

Number of source statements

Number of symbols defined

Number of invented symbols

Number of symbol references

Machine on which COMPASS executed and assembly time

Number of errors encountered during assembly

Number of lost references, that is, references to symbols that have been omitted from the
symbolic reference table.

1.7 ERROR DIRECTORY

The assembly listing includes an error directory if any errors are detected during assembly. The
directory begins n new page identified with the subtitle ERROR DIRECTORY. Each type of error that
occurred is called out with a two-line message of the following format:

x TYPE ERROR description
OCCURRED ON PAGES Py» Py s Py --¢ By

Types and descriptions are given in Tables 11-1 and 11-2, Errors flagged with an alphabetic character
are fatal. A fatal error causes suppression of binary output. Nonfatal warning flags are numeric; they
are informative only.

60279900D 11-9

TABLE 11-1. FATAL ERRORS

Error
Type

Definition

ADDRESS FIELD BAD.

Indicates any of a number of possible errors in a variable subfield entry.
For example:

CODE character not A, D, E, orl

Symbol or name greater than 8 characters

Expression does not reduce to one external term, relocatable terms do
not cancel properly, instruction disallows register designators,
instruction requires absolute expression, etc.

Data error; 8 or 9 encountered in octal data, modifier not S, P, O, E, D,
or B.

No data in variable field of LIT instruction

No symbol following an =8 or =X prefix

Relative jump out of range (-31>r >31) on PPU instruction

BASE character not O, M, D, or *

Register illegal in CON instruction

Unable to locate synonymous instruction for OPSYN or CPSYN

Micro count less than zero or greater than ten

NOLABEL character not I

Negative rclocation on ORG

POS value less than 0 or greater than word size

VFD attempts to place relocatable address in CPU instruction when
position counter is not 30, 15, or 0

Erroneous OPDEF reference

DOUBLY DEFINED SYMBOL. THE FIRST DEFINITION HOLDS.

Symbol previously defined or declared external

ECHO, DUP, RMT, OR MACRO ILLEGALLY NESTED.

Definition not wholly within next outer definition

NUMBER OF ENTRIES EXCEEDS PERMISSIBLE AMOUNT.

LIT generates more than 100 words

Data missing or erroneous on XTEXT file

More than 63 formal parameters and local names in macro definition
More than 255 blocks

11-10

60279900D

TABLE 11-1. FATAL ERRORS (cont'd)

Error
Type Definition

L LOCATION FIELD BAD.
Required location field entry is erroneous.
Format two macro definition has no substitutable parameters.

N NEGATIVE RELOCATION ON ENTRY POINT.

O OPERATION FIELD BAD,
Instruction unrecognizable, out of sequence (e.g., ABS or PPU not in
first statement group
relational mnemonic on IF statement is erroneous. Location symbol
begins beyond column two.

P CONSULT LISTING FOR REASON BEHIND P-ERROR,
User-generated error flag (ERR or ERRxx instruction)

R DATA ORIGIN OUTSIDE BLOCK OR IN BLANK COMMON.
Range error

U UNDEFINED SYMBOL. VALUE ASSUMED 0,
Reference to a symbol that is not defined; e.g., IF statement line count,
DIS word count, unrecognizable attribute on IF statement, and undefined
qualifier,

Vv BIT COUNT ERROR ONVFD (MUST BE 05 COUNT = 60),
VFD field size erroneous.

60279906D 11-11

TABLE 11-2. INFORMATIVE ERRORS

Error
Type

Description

LOCATION SYMBOL BAD. SYMBOL NOT DEFINED.

Location field entry erroneous. The instruction does not require an entry.

ADDRESS ERROR ON SYMBOL DEFINITION,

Erroneous variable field entry. The location field symbol is not defined.

DUPLICATE MACRO DEFINITION. NEW ONE OVERRIDES.

Macro, opdef, or synonymous operation redefines operation code.

BAD FORMAL PARAMETER NAME IGNORED.

Macro or ECHO formal parameter name repeated or illegal.

CPU OPERATION SYNTAX INCORRECTLY SPECIFIED.
OPDEF, CPOP, CPSYN, or PURGDEF specifies illegal syntax.

LOCATION FIELD MEANINGLESS.

Entry in location field is ignored.

ADDRESS VALUE EXCEEDS FIELD SIZE, RESULT TRUNCATED.

Value of expression exceeds size of destination field.

BSS address expression value is negative.
MICRO starting character position or character count is negative.

MISSING OR EXTRA ADDRESS SUBFIELD.

Variable subfield entry missing or superfluous.

MICRO SUBSTITUTION ERROR. NO SUBSTITUTION.,

Micro reference unrecognized.

11-12

60279900D

1.8 SYMBOLIC REFERENCE TABLE

The assembler generates a symbolic reference table (figure 11-2) if the L list option is on at the end of
assembly, The table is not complete if the option was turned off at any time during the assembly. The

table lists symbols according to the qualifier, if any, under which they were defined. The global

symbols are listed first. A new heading of the following form introduces each new list of qualified

symbols,

SYMBOL QUALIFIER = qualifier

The qualifiers are in the crder declared in the subprogram. Symbols are listed alphabetically.

When symbol references are lost because table space has been exceeded, the subtitle line includes l

notification in the form n LOST REFERENCES.
Title Line //

SYMBOLIC REFERENCE TABLE. K(

page,;line
and;or

symbol value block page/line page/line page, line

ad/or o and,’or & |and/or A e
address = | address & jaddress | & address | =

Figure 11-2. Format of Symbolic Reference Table

symbol Alphabetical list of symbols defined under the qualifier.

value Abhsolute value of the symbol or the address assigned to this symbol relative to
the block named.

block For an absolute assembly, this field is blank, For a relocatable assembly, it

identifies the block containing the symbol.

60279900D 11-13

page/line

address

flag

From left to right and from top to bottom, a list of indices sequenced according
to page number. Each index points to a statement containing references to the
symbol or defining the symbol.

When the XREF pseudo (section 4. 11, 8) has been used, the page line field contains
the location counter address of the instruction containing the reference. Page
and line numbers are optionally included with the address.

Identifies page/line index to a statement that defines the symbol or uses it in an
IF statement as follows:

Definition statement; EQU, =, SET, MAX, MIN, or MICCNT.

ENTRY pseudo instruction

Symbol used in conditional test

Symbol used in location field of the statement

Symbol used for storage

X 0 o = O

EXT pseudo instruction

When XREF A is in effect, the table does not include the flags.

Example:

FAMPASS = &NAN/7NAN ASSEMALFP - YEP $OMPASS - VER 70/05/05. 21.46443. PAGF Lt
SYMONLIN REFENENMNE TANLE, RSS2
7TLUSYM 2N41y 159720 317/31 324743 360/410 2u1/25

16R724 233/27 340/29 L 341/14
ZTLUSYML 20422 n/3? 3407646 L
PTLUSYNMD 204219 2Ln/s37 3un/61 b
TTLUSYM? 20477 Iu1/0h 3ut/06 Int/17 L
TTLUSYML 2N4L?2 IS 2t/11 L
TYLUSYM™A 20479 381701 2u1/05
7TLUS ner 341/22 Iut/2n L
7TL1 ?NTRAH 23a/21 L 339/26
7T= 7T6RT 12n723 120737 L
TyeLnr LT 132/09 Ju1/% L 341742
TUSPL 13R2%3 228754 229/71 L
71HSP2 13625 229/014 229/05 L
7Yse3 17719 228754 229/03 229799 229711 ¢
TVFNA 16005 231721 S 231/24 234734 L
TvEnNt 11702 231708 L 233/48 231/51
IVFEN2 13704 231717 L 23%/15
TVFN? 1779 221/%50 231/57 L
TVFNTa 17724 2IL/44 231/47 L 232745
TVFNY 13754 212/ 232748 L
TVFNLA 12707 ?23%/065 233711 L
vens 177714 233701 233/716 L
7VFDRA 1772 23r/06 2331/07 221711 232/1F L
TYFN7 16917 231715 23%/52 L
7vFnsg 1un2t 233/53 236/087 L
7100 TALYL 119749 L 128/25 122/41 14671¢ 138749 234701 3139/2A

126714 128/45 143707 146751 218/71¢ 331714
7101 TRu? 119730 119/510 L
7110 76510 12nr/702 120704 L
in1=1 10124 134723 D 366727

SYMRCL QUALTICIRR = DATA
aF A el) RA/O L 67746 72737 R2/%? 3712 93/32
nee AN56 T/44 au/n3 A4/18 RL/2Y A/ bl A5 /02 AB/4S L &7s703
nrey ENR2 LLYAY] Bh/5L L
rfne? ANS3 AR/3S L LLVA-1Y
nee AING fR722 72721 Ay/01 L
nee AN40 ER/2K 72/17 R4Y/715 L N
nSH fnny HAI2N 72714 AT/42 L \’\
nSL LB R &R/17 72711 Pusb2 L
fse AN T RA/11 72708 Buss5? L
ns7? ANY 2 BR/OR . 727 Ru/?3 L
nes) L=
11-14 60279900B

6000 AND 7600 TIMING NOTES A

7600 CPU TIMING NOTES

1.

3.

Times given in Table A-1 include clock period known to occur before instruction issue, but do not
consider register conflict conditions that might delay issue.

Except for the multiply and divide units, all functional units permit new instructions to enter them
every clock period. A new instruction may enter the multiply unit in any clock period, provided
there was no multiply operation initiated in the preceding clock period. A new instruction can
enter the divide unit two clock periods prior to completion of a previous divide operation. Once
an instruction issues to a functional unit, it is executed in a fixed amount of time. No delays are
possible.

Times given for instructions 01 to 07 and 50 to 57 do not consider memory conflict conditions or
SAS backup conditions caused by bank conflicts.

Execution of Block Copy instructions (011 and 012) will be delayed until the following conditions
are satisfied:

a. All operating registers are free.

b. No SCM bank conflicts exist.

c. LCM is not busy.

d. All LCM banks have completed previously initiated read/write cycles.

A delay will occur during instructions 011, 012, and 013 when an I/O multiplexer request is made.
A minimum delay of one clock period is required to enter the I/0 word address in the address

stream to the SAS. An additional delay will occur if the I/O reference causes a bank conflict in
SCM.

A delay will occur in the execution of the Exchange Exit instruction (013) until two conditions are
satisfied:

a. All operating registers are free.

b. No SCM bank conflicts exist.

The Read LCM and Write LCM instructions (014 and 015) will not issue until three conditions are
satisfied:

a. LCM is not busy.

b. Xj register is free.

c. Xk register is free.

60279900A A-1

10.

11,

12,

13.

A Read LCM instruction (014) for a word already residing in an LCM bank operand register as a
result of a previous instruction will require three clock periods. For a word not currently residing
in one of the LLCM bank operand registers, the instruction requires 17 clock periods.

The Reset Buffer instructions and Read Channel Status instructions (016 and 017) will not issue
and begin execution until the required B registers are free.

Jump instruction 02i0K will not begin execution until the Bi register is free. Instruction
execution will also be delayed if an instruction fetch is in process.

The execution of a branch instruction (030 to 037, 04ijk, 05ijk, 06ijk, and 07ijk) may be delayed if
an instruction fetch is in process.

Instructions 10 to 47 and 60 to 77 will not issue until the following conditions are satisfied: '

a. The required A, B, and X registers are free.

b. X and B register input paths will be free during the required clock period.

c¢. No SAS backup condition exists.

d. The multiply unit is free (instructions 40, 41, and 42 only).

e. The divide unit is free (instructions 44 and 45 only).

Instructions 50 to 57 will not issue until the following conditions are satisfied:

a. The required A, B, and X registers are free.

b. No SAS backup condition exists.

A delay may occur in the execution of the Return Jump instruction (0100K) if the instruction stack

control has requested one or more instruction words that have not arrived at the instruction stack
(likely to occur in straight line coding). Average execution time is 18 clock periods.

A register is reserved if it is the destination of an instruction that has been initiated but has not
completed. A register is free in the clock period following the store into it.

60279900A

6600/6700 CPU TIMING NOTES

1.

The times given in Table A-1 are computational times - the time needed after the execution start
until the result is computed and ready to be stored into the result register.

The functional units are not freed until one minor cycle after the result has been stored into the
result register.

A result register value may be used as an operand to another instruction as soon as the result has

been stored into the register (same minor cycle). This result register will not be freed to be used
as a result register of another instruction until one cycle after the result has been stored into that

register (no trunk priority considered).

An instruction is issued to a functional unit if:

a. The word containing the instruction is in the stack and the U registers,
b. The functional unit(s) needed are free, and

¢. The result register(s) needed are free (note Table A-2 and A-3).

If these three conditions are not met, all further instruction issues are held until they are satisfied.
Each issued 15-bit instruction requires one minor cycle before the next instruction is available for
issue. FEach issued 30-bit instruction requires two minor cycles before the next instruction is
available for issue.

Execution within a functional unit does not start until the operands are available (note Table A-3),
The two operands required are fetched from the registers at the same time (one operand is not
loaded while the unit waits for a second operand).

In instructions 02-07, where more than one functional unit is used, the instruction is not issued
until both functional units involved are free.

Times given for instructions 01-07 and 50-57 do not consider any memory conflict conditions.

In instructions 50-57, ifi =1,2...5 (load from memory instructions), the Xi register value is

not available until 8 minor cycles after the start of the instruction execution (assuming no memory
conflicts), When two load instructions begin execution one minor cycle apart, one extra minor
cycle is required for execution of the later instruction. Therefore, the second executed instruction
would require 9 cycles for the load, 5 cycles for the increment unit, and 4 cycles for the A
register,

In instructions 50-57, if i = 6 or 7 (store to memory instructions), the Xi register is not available
for a result register until 10 minor cycles after the instruction begins execufion (assuming no
memory conflicts). When two store instructions begin execution one minor cycle apart, one extra
minor cycle is required for execution of the later instruction. Therefore, the second executed
instruction would require 11 cycles for the store, 5 cycles for the increment unit, and 4 cycles for
the A register.

t The 6700 also includes a 6400-type CPU,

60279900A A-3

10,

11.

12,

13.

14.

15.

16.

17.

18.

19.

When executing sequential instructions that are not in the stack, the minimum time is one word of
instructions every 8 cycles. The time of issue of the last parcel of an instruction word to the time

of issue of the frist parcel of the next instruction word (while executing sequential instructions
that are not in the stack) requires a minimum of 4 cycles. If the last instruction in an instruction
word is a 80-bit instruction, a minimum of 5 cycles is required from the time of issue to a
functional unit of this instruction to the time of issue of the first instruction in the next word.

An instruction word is parcelled as shown below:

Parcel 0 Parcel 1 Parcel 2 Parcel 3
59 45 30 15 00

When a branch is taken out of the stack, 15 minor cycles are normally required for a 03ijk
instruction, and 14 minor cycles are normally required for other branch instructions (considering
no memory conflict). The latter timing is from the start of branch instruction execution to the
point where the instruction at the branch address is ready for issue to a functional unit.

Nine cycles are required for 03ijk instructions when the branch is taken within the stack. The
next sequential word is recognized as being within the stack.

Eight cycles are required for 04ijk to 07ijk instructions when the branch is taken within the stack.
The next sequential word is recognized as being within the stack.

Eleven cycles are required for 03ijk instructions when the branch is not taken (time from branch
execution to issue of next instruction) if in the stack or if falling through to the same word. Out of
the stack fall-through to the next word takes 14 cycles.

Ten cycles are required for 04ijk to 07ijk instructions when the branch is not taken (time from
branch execution to issue of next instruction) if in the stack or if falling through to the same word.
Out of the stack fall-through to the next word takes 13 cycles.

The BO register is handled as any other Bi register for timing purposes (e.g., B0 delays execution
of an instruction if it is a result register of a previous non-completed instruction).

Neither increment unit may be involved in a load operation if a store operation is to be issued, and
neither increment unit may be involved in a store operation if a load operation is to be issued. The
sequential loading of instruction words does not affect the load/store conditions of the increment
units. Increments of A0 are considered neither loads nor stores.

The operand registers are available to more than one functional unit in the same minor cycles if the
units are in different groups.

Group 1 Group 2 Group 3
Boolean Shift Increment 1
Divide Floating Add Increment 2
Multiply 1 Long Add

Multiply 2

The time needed for a functional unit to operate on indefinite, out-of-range, or zero values is the
same as for normal, in-range values (i.e., no gain or loss in execution time due to a unit
recognizing an indefinite operand and setting an indefinite result).

6 0279900A

20. An Index Jump instruction (02) always voids the stack. If an unconditional jump back in the stack is
desired, a 0400K instruction may be used (to save memory access time for instructions).

21. A Return Jump instruction (01) always voids the stack.

22. After a result has been computed by a functional unit, the result register is checked to see if it is
still needed as an operand register for a previously issued instruction. This is done so that a
result will not overlay an operand to a previously issued instruction. If a unit (#1) is waiting for
an operand to be fetched by another unit (#2) before storing its result, for timing considerations,

a. the result register is available to a third unit (#3) as an operand, the cycle following the
fetch, and

b. the unit (#1) is freed two cycles following the fetch.

23. In cases of bank conflict, unaccepted addresses get a chance at access every three minor cycles.
If the address can then be accessed, the memory operation proceeds. If the bank is still busy,
the address circulates in the hopper, while access is permitted for any other source requesting
access.

6000-SERIES PPU TIMING NOTES

The execution time of peripheral and control processor instructions (Table A-4) is influenced by the
following factors:

1. Number of memory references. Indirect addressing and indexed addressing require an extra
memory reference. Instructions in 24-bit format require an extra reference to read m.

2. Number of words to be transferred. In I/O instructions and in references to central memory the
execution times vary with the number of words to be transferred. The maximum theoretical
rate of flow is one word/major cycle. 1/0 word rates depend upon the speed of external
equipments which are normally much slower than the computer.

3. References to central memory may be delayed if there is conflict with central processor
memory requests.

4. Following an exchange jump instruction, no memory references (nor other exchange jump
instructions) may be made until the central processor has completed the exchange jump.

60279900A A-5

7600 PPU TIMING NOTES

1. Where more than one time is given, the shorter time is obtained when full use of bank phasing
(back-to-back storage references to alternate banks) is made.

2. Conditional jump instructions list times for the jump not taken case. Add 3 or 5 clock periods
for the jump taken case, depending on the value of d.

3. For the 10 (shift) instruction: Minimum time required if the shift count < 3; for shift counts > 3,
add 1 clock period per shift beyond 3 to the minimum time.
4. 71 Instruction:’

Case 1: Assume - a. a block input terminated by a record flag rather than by decrementing
(A) to zero.

b. a 2-clock period response time between the resume and the word
flag.

c. a 3-word block followed by a record flag.
d. the channel d input word flag is set at instruction initiation, and

e. the first data reference is to the alternate storage bank.
Execution Time = 42 Clock Periods

Case 2: Assume - a. a block input terminated by reducing (A) to zero.
b. same response as in Item b, Case 1.
c. a count of 2 in the A register, and

d. items d and e in Case 1 are true.

Execution Time = 24 Clock Periods

Case 3: Assume - a. a block input initiated with (A) = zero.
Execution Time = 10 Clock Periods
5. 73 Instruction:

Case 1: Assume - a. a count of 3 in the A register.

b. the device has a 2-clock period response time from receipt of word
pulse to transmission of resume pulse.

c. the output channel d word flag is clear, and

d. the first word of the block is read from the alternate storage bank.
Execution Time = 34 Clock Periods
Case 2: Agsume - a. a block output initiated with (A) = zero.

Execution Time = 10 Clock Periods

A6 602799004

“UOTBEWLIONG] SUTWLl} 10§ |ENUEHY 90USISjIY ©8el10jg 810D PIPUSIXT Of I9JAl {SI0JOE] [BIIAIS uodn puadap suorjeaado adri0)g AI0) PAPUANXY J0J SOWT) :oﬁnonm I
. . . (0 = N 31 spotxad 30010 ¥} "3oOlq UL SpIom JO JaquNN =N > T H

*gajoN Sutwl], 0 9§89y 1

p
- yousig 9duex ur ({x) 31 31 03 Youeag pe (2]
os0qE 5T ourEg 4002 58 owrEg - youeag aanedau ({x) J1 31 03 yousag stfego
- g |TPUEE aantsod ([x) JT 31 0} youeag sifzgo
(e3¢ 30 0 yInoayy - ppy [9PUeE 0 # (£x) J1 31 03 youeag sf1eo
(s0e)8 JO 1183 Youeaq) H1 UIn 8uo <
mo youexq) T UIN 3 (yoey8 at
JO N0 Youriq) GT UIN apeIy
(oeys 389%,
ur youeaq) g ugy (4088 UI Youel1g) 6 UIN (youeaq) €T WIW
(ySnoay + (Wors ut ySnoayy (u3noayy
18] yousiq) g umy 118} youeIq) T UmA 11} YouBIq) § UIN - \yoreag 0 = ([x) J1 31 03 Youeag sifogo
+(dwnf
(dwn(30BlS JO IN0) (Z UDA
joe)s up § Uy } (dwm(soe3s uy) $1 umn 49 - (yrun
JUAWAIOU]
uf spewt
' yousag (1) + 3 03 dwmnp 510120
€ - - - - o# L
(g o3 smess (g) [euuEyo INdINO pef HL10
91 - - - - 0="{13
J1 JemNq (Jg) |9uueyd Indino jesay H0LT0
g - - - - oAl
fa o3 swyeys (yg) ouueyo Indur peay H{l9To
i - - - - [
Jayng (3g) (suueyo Jndur o8y 10910
g - - - - (%) e WO'T ojul ([X) otam b (843 (1}
L1 ‘e - - - - [z 03 (3X) 8 WO'T PESY AlsTo
ri umy - - - - 198 Sey
%9 J1 (fd) + 3 03 %9 a8ueyoxy sifeto
- - - - - VI 20 3] + (fe) 09 3¥@ alueyoxy sfg10
82 = U - - - - agap S8yl
31X9 J1 VAN 03 31X8 adueyoxy 00810
TT+ N = umy - - - - WOT 0} WOS
woay spxos ({(q) + 3 4doo yooig b: (k4 1)
i W - ek $OF 03 WO
woay spxos (fg) + 3 4dod xpoig P (t41)
ST+ N = UIN - - - - WOS 03 WO
H woy spros (Ig) + 3 &doo yoorg b (44800}
- W W - $0d WO ©180d
woay spxom ({g) + 3 £doo yporg 110
Fmﬁ ury £1 13 - youeag 31 03 dunf{ wImay 310010
- - - - - VHT 03 J1%3 J0I1g 00000
- - - - goueag dois 00000
(Saocmad M00710) (STTDXD YONIW) (ST TOXD WONIW) AWIL LINN LINO INVN qAOD
HWIL NOILNDAXF 009L | AWIL NOILADAXE 0099 NOLLODEXA 0059/%9 TYNOLLONAA 0092 | TYNOLLONOA 0099 NOLLONY.LSNI

SAWILL/NOILONYLSNI HOSSHOOYd TVHINIO

‘I-V d19VL

A-7

60279900D

*§3j0N Bulwry, 03 1939Y 1

4 €] BN NS 1x 03 {{g) £q (3[x) Brus 3oL Aql1zg
3z € 9 Bus Bus Al £q (1x) 13198 Sy Hl11g
€ 9 BS BN Al £q (1) WS oI b (45714
H4 g g ugeloog ueajoog ¥ 0] (qx) dwoo snurux
(£x) 3o @ouaxapyp 1eotsoy AqlLT
4 g G ueajoog ueajoogq X 03 (¥x) duroo
snyd (fx) wns [eotdot Al191
4 g [ueoloogq ueajocoq ™ 01 (3x) dwroo
pue ([x) jo jompoad 1eor8oT HlreT
H4 £ [ueajood uesjooq IX 03 (%) Jo juewsjdwod AdoD MO T
H4 g g ueojoog ueajooq X 0} (3X) snmjur
(fX) o souaaapIp [eo1So1 Hl1eT
4 € g ugajooyg usaroogq X 03 (%)
smid ([x) jo wms [eordot Al
4 € g usajoog ugajoog X 03 (3X) pue
(£x) J0 j0ompoad teorso] Alry
2 € g ugejooq uesjooq 1% 03 ({x) AdoD ofrot
s - ~youeag (fe) > (1) 31 31 0} yourag 120
ﬁ - yousag (fa) < (19) 1 31 03 yoweag 3i{190
mun
JA0(B SB dWes juswx
-31ouy
L - amoﬂ youeag (fg) # (1) 31 31 03 yourag sifreo
asoge se cE«mA (3oe38 Jo INO 9A0(E g8 JULEg J
N0 Youeay) $1 U
Joujs
up youeq) £1 UIN
(g8noay
18] youraq) 0T umn - ~youeag (fg) = (1D J1 I 03 yourag pide]
asoqe s¢ ureg A - youexg eymugepurt ({X) J1 3 01 yousig s1fego
L \ - youeag aruyzap ([X) 31 31 03 youeag sifogo
4 (0¥38 Jo Mo ySnoxy;
118} youeaq) T Gl
(10e38 JOo 4 (30¥38 Jo mo g
Mo Youraqg) TT WIN yourIq) g1 WA PPV
Buog
(3joe38 L(doEs ur
ur youeaq) ¢ umn Ul QOUBXQ) 6 UL (gousxq) £1 ULy oprz
(y8noxyy 4 (P®s ur ydnoay (48noxyy EELRA
ey Youeaq) g urm 1%} youelq) I1 aIN 118} qousaq) ¢ uy - yousg aduex 3o jno (%) J1 3] 03 youexg sifgeo
~
(Saoyad 007I0) (STTOAD YONIIW) (STTORO YONIW) HWIL LINA LINN TWVYN AAOD
HWIL NOILNOAXE 009L | TWIL NOLLADAXHA 0099 NOLLADEXT 0099/%9 TTVNOILONNA 0092 | "I¥YNOLLONAA 0099 NOLLONY.LSNI

(P.3u0d) SAWIL/NOILONYLSNI HOSSAOOMd TVELINIO

‘I-V 19Vl

60279900D

A-8

JTun 9913 03 $908 UOIONIISUI - SJIUN Paxaldng «

i1 1 g - - ssed 0009%

(114 62 LS apraiq Suneold op1ald Suneold X 03 (%)
4q (fx) oprarp Suneoy punoy Hligy

02 62 L9 9prAlq Sunjeold 9pIAlQ Suneolq IX 03
(1) 4q (fx) opiatp Suneoll AHHy
Z 4 9 3 s IX 0} s31q 3{ Jo yseuwr w0 Algy

] 01 LS A1dny Suneolq L1dpi Suneol g IX 01 (3X) sewy
(fx) 30 1o1poad ga Buneold Hlizy

S 01 LS Adunp Suneold LA Bunieoly IX 0} (x) sown3 ([X)
30 jonpoad Suijeoly punoy b (88574

] 01 LS Aldnny Burjeoly Adpmig Surjeold IX 0} (%) sown
(fx) 3o jonpoad Bunzold H{l10¥

g g 9 PPy Suog PPY Suog IX 0} (3X) snurwm
(IX) 3o eouaaaypzp 1e8sju] HlLg

4 € 9 ppy Suo ppy 8uog X 03
(1x) snid ([x) yo wns x98ayul sfigg

b4 4 1t PPY Buneold + PPV Suneopd X 03 (iX) snutw ((X)
Jo souaaajyp Suryeoy] puncy Hlieg

¥ i 4 11 PPV Suneold +PPY Suneoly X 0} (x) snid
({x) 3o wns Sujeo) punoy Ape

¥ 4 T PPy Suneolq + PPV Sunyeory 1X 0} (X} snupwm
(fx) Jo souszepIp 4 Buneold jlrge

b4 v It PPy Suneold +PPY 3uneolq X 03 (X)
snyd ([X) jo ums gq Suneold Hligg

IX 0} (X) snurw
i b4 11 ppy Sugeold PPV 3uneolq ([X) 30 souarayyip Suneoll Hlig

4 i4 11 ppY Sunjeold » PPV Surjeoly X 0} (%)
snd (fx) yo wms Suneold H10€
4] L ueajooq FIAU S X 03 ({g) pue (X) oed b (194
4 € L uesjooq wws fg pue 1x 03 (IX) yordun (192

€ 2 L 9zZ1[eULION RS (g pue 1x 03
(IX) @z1jeULIOU pue punoy Hlrgz
g 4 L QZI{BULION NS g pue 1X 99 (MX) SZr{RULION sfive
4 g 9 Bus 7S X 01 (fg) 4q () Bus WSy jlieg
(sgordad 100710) (SATOAD YONIW) (STTOAO HONIW) TWIL LIND LINN AWVYN AAOD

FIWIL NOILNOAXT 0092 | IWIL NOLLNADAXT 0099 | NOILNOIAXA 0059/¥9 TVNOILLONNA 009 | TVNOLLONAJA 0099 NOILLONYLSNI

(P,3u02) SAWIL/NOILIAMLSNI HOSSTOOUd TVHINAD 'I-v ATdVL

A-9

60279900D

}IUN 9913 01 803 UOPONIISUI — SjIUN pexeldng

4 € 9 jusuraIou] *JUSUISIOU] 1X 0} (yg) snurw ([g) juswazou] b (197

4 € 9 Jusuraaouy *JusWAIOU] IX 03 (4) snid (fg) juewmarouy b {857

4 € 9 JuawIaIoUf *JUDWBIOU] IX 03 (g) snutw ([y) juswexoug Alrgy

'8 g 9 JUIUWAAOU] *JUSULIIOU] IX 03 () snid ({y) jusumazoug b (457

4 g 9 JusWaXOU] *JUBBIOU] X 03 () snyd ([x) jusumeaouy g

4 € 9 JUSWRIOU] sJuduIaIou] IX 0 3 snid ([x) juswaIouf Sz L

2 € 9 JUSWAIOU] xJjuaurexouy X 01 ¥ snid ({g) juowexou] Sift1s

2 € 9 JUSUIBIDUL xJuswaIouy X 01 3 snid ([y) juewmasoul SI10L

4 € S JuSWRIOU] xJuauragou] 1g 03 (jg) snunw ([g) juawmezou] Hlrrg

4 € g JusUaIdUL *Judmagou] 1 0} (yg) snid ([g) juswrerou] Hlr99

g € S JUSWAIOU] 1 JUdUIaIOU] 19 o3 (g) snurw ({y) juourezou] slrgg

14 g] JUBSWAIOU] SJuduIaIoUl g 03 (3g) snid ([vy) juewoxouy Hl1$9

3 g] JUBWBIOU] xJuouIeou] 19 03 (3g) snid ([x) JuawaIou] Hlrgg

4 £ g JUSULSIIU] *JUSWAIOU] 1g 03 3] snid () juswazou] si{1z9

4 € g juswaIouy *xJUBUIDLOU] 18 03 3 snid (fg) juswazou] pitec:]

H4 [[JUSUWAIOUT RLELER B 1g 03] snid ({y) jusweaouf S1{109

r g 8 JUBWSIOU] MLELEN B 1y 01 () snurur ({g) juawsxou] b (19X 4]

¢ JUBWAIOU] ¥JuauIexouy ¥ 0} () snid (fg) yuswmeaou] Al19g

JUaUIBIOU] «Juaurexou] 1y 03 (M) snutut {[v) juewxaxou] Hf16g

9A0QE g8 auwIes < e dA0QE SE dWES « JUSWAADU] KxJusuaIOu] 1y 03 (3g) snid ({v) juswaxou] Alipg

[JUWIDAU] PRUEL R bl v 01 () snid ([x) yuauraxour sligg

g juswaIou] xJuauraxou] v 03 3 snid ([x) juowrexou] sif1zg

L [L JUAUIAIOU] xJusWAIOU] v 03 ¥ snid ([g) juewaxou] 116
(IX woa] oxog) g (L°9=0 01
(IX 03 peoy) g WIN (g~1=1 21

(fv 198) 2 g (0= 9 JusWAIOU] JuswWaIOU] 1y 03 3 snd ([y) Jueuraaouy sifrog

4 8 89 junoy uoneindod ap1alq Suneoly 1X 03 (X) Jo junoo uope[ndod T0LLY

(saorgdd 3001D) (SATOXD YONINW) (SATOAD YONIW) JWIL LINQ LINN JNVN c{etee)

IWIL NOLLADAXH 0094 | AWIL NOILLADAXA 0099 [NOLLNDAXA 0089/%9 TVNOLLONNAA 0094 TVYNOILLONAA 0099 NOLLOYLSNI

(P,3u09) SAWIL/NOILOIYLSNI HOSSHO0Ud TVH.LNID

‘1-V 4719V.L

60279900D

A-10

TABLE A-2,

FUNCTIONAL UNIT DATA TRUNK ASSIGNMENTS AND PRIORITY

FUNCTIONAL UNIT RESULT (i) OPERAND (j) OPERAND (k)
Trunk Priority Trunk Priority Trunk Priority
Group 1: Shift 3 (X) 1 1 2 2 2
4 @ T
Add 3 2 1 1 2 1
Long Add 3 3 1 3 2 3
Group 2: Boolean 7 1 5 4 6 4
Divide 7 2 5 1 6 1
Multiply 1 7 3 5 2 6 2
Multiply 2 i 4 5 3 6 3
Group 3: Increment 1 10 1 8 1 9 1
Increment 2 10 2 8 2 9 2

t The Shift Unit is sometimes required to store two results at one time: one into an X register and one

intoa B

60279900A

register.

A-11

TABLE A-3.

6600/6700 REGISTER RESERVATION CONTROL

XBA RESULT Q OPERAND
INSTRUCTION REGISTER (ISSUE) REGISTER (EXECUTION)
Branch Unit

02ijK - Bi & Bj
03ijK - Xi & Xj
04ijK - Bi & Bj
Boolean Unit
10ijk - 17ijk Xi Xj & Xk
Shift Unit
20ijk - 23ijk Xi Bj & Xk
24ijk - 26ijk Xi & Bj Bj & Xk
27ijk & 43ijk Xi Bj & Xk
Add Unit (Floating)
30ijk - 35ijk Xi Xj & Xk
Long Add (Integer)
36ijk - 37ijk Xi Xj & Xk
Multiply (2 Units)
40ijk - 42ijk Xi Xj & Xk
Divide Unit
44ijk - 47ijk Xi Xj & Xk
Increment (2 Units)
50ijK Ai g xit Aj & Bkt
51ijK Ai & Xit Bj & Bkt
52ijK Ai & Xit Xj & Bkit
53ijk Ai & Xit Xj & Bk
54ijk & 55ijk Ai & Xit Aj & Bk
56ijk & 57ijk Ai & Xit Bj & Bk
60ijK Bi Aj & Bkit
61ijK Bi Bj & BkT¥
62ijK Bi Xj & Bk ¥
63ijk Bi Xj & Bk
64ijk & 65ijk Bi Aj & Bk
66ijk & 67ijk Bi Bj & Bk
70ijK Xi Aj & Bkt
71ijK Xi Bj & Bkt
72ijK Xi Xj & Bkt
73ijk Xi Xj & Bk
74ijk & 75ijk Xi Aj & Bk
76ijk & 77ijk Xi Bj & Bk

+ The Xi register is considered only wheni=1, 2...7.

H k here refers to the high order 3 bits of 18-bit address field.

A-12

60279900A

TABLE A-4. PERIPHERAL PROCESSOR INSTRUCTION TIMES

7600 6000-SERIES
INSTRUCTION CODE EXECUTION TIME TIME (MAJOR
(OCTAL) NAME (CLOCK PERIODS) CYCLES)
00 Error stop - -
0100 Long jump to m 10 or 15 2o0r3
01xx Long jump to m + (d) 15,20,25
0200 Refurn jump to m 15 or 20 3-4
02xx Return jump to m + (d) 20, 25,30
03 Unconditional jump d 8,10 1
04 Zero jump d 5 1
05 Nonzero jump d 5 1
06 Positive jump d 5 1
o7 Negative jump d 5 1
10 Shift d Min 6, Max 34 1
11 Logical difference (A) - d 5 1
12 Logical product (A) *d 5 1
13 Selective clear (A) 5 1
14 Load to A 5 1
15 Load complement d to A 5 1
16 Adddto A 5 1
17 Subtract (A) ~d to A 5 1
20 Load dm fo A 10 2
21 Add dm to A 10 2
22 Logical product (A)* dm to A 10 2
23 Logical difference (A)-c to A 10 2
24 Pass 5 1
25 Pass 5 1
26 Pass 5 1
260 Exchange jump - 1+
260 6416 Extended transfer -
261 Monitor exchange jump CPU d -
27 Pass 1
270 Read program address of CPUd -
270 6416 Extended read status -
30 Load (d) to A 15 2
31 Add (d) to A 15 2
32 Subtract (A)-(d) to A 15 2
33 Logical difference (A)-(d) to A 15 2
34 Store (A) to d 15 2
35 Replace add (d) + (A) to d 25 3
36 Replace add one (d) + 1 to d 25 3
37 Replace subtract one (d) -1 to d 25 3
40 Load ({(d)) to A 15,25 3
41 Add ((d)) + (A) to A 15,25 3
42 Subtract (A) - (@) to A 15,25 3
43 Logical difference (A) - ((d)) to A 15,25 3
44 Store (4) to (d) 15,25 3
45 Replace add (A) to ((d)) to (d) 25,35 4
46 Replace add one ((d)) + 1 to (d) 25,35 4
47 Replace subtract one ((d)) -1 to (d) 25,35 4
5000 Load (m) to A 20 3
50xx Load (m + (d)) + (A) to A 20,30 3,4
5100 Add (m) 20 3
51xx Add (m + (d)) 20,30 3,4
5200 Subtract (m) 20 3
52xx Subtract (m + (d@)) 20,30 3,4
5300 Logical difference (m) 20 3

t Though the execution time for this instruction in the Peripheral and Control Processor is only 1 major cycle,

a minimum

of 2 major cycles is required to complete the Exchange operation in Central Memory. Thus, Central Memory honors no
requests for access for a minimum of 2 major cycles during an Exchange Jump.

60279900A

A-13

TABLE A-4. PERIPHERAL PROCESSOR INSTRUCTION TIMES (cont'd)

7600 6000 SERIES
INSTRUCTION CODE EXECUTION TIME TIME (MAJOR
(OCTAL) NAME (CLOCK PERIODS) CYCLES
53xx Logical difference (m + (d)) 20, 30 3,4
5400 Store (m) 20 3
54xx Store (m + (d)) 20,30 3,4
5500 Replace add (m) 30 4
55xx Replace add (m + (Q)) 30,40 4,5
5600 Replace add cone (m) 30 4
56xx Replace add one (m + (d)) 30,40 4,5
5700 Replace subtract one (m) 30 4
57xxX Replace subtract one (m + (d)) 30,40 4,5
60 Central read (A) to d - Min 6
60 Jump on input word flag 10+% -
61 Central read (d) words (A) to m - 5 + 5/word
61 Jump if no input word flag 10 -
62 Central write (A) words - Min 6
62 Jump on input record flag 10 -
63 Central write (d) words to (A) from m - 5 + 5/word
63 Jump if no input record flag 10 -
64 Jump to m if channel d active - 2
64 Jump on output word flag 10 -
65 Jump to m if channel d inactive - 2
65 Jump if no output word flag 10 -
66 Jump to m if channel d full - 2
66 Jump on output record flag 10 -
67 Jump to m if channel d empty - 2
67 Jump if no output record flag 10 -
70 Input to A from channel d ot 2
71 Input (A) words to m from channel d ki1l 4 +1/word
72 Output from A on channel d g7 2
73 Output (A) words from m on channel d 4 4 + 1/word
74 Activate channel d ~ 2
74 Output record flag on channel d 5 -
75 Disconnect channel d - 2
75 Pass 5 -
76 Function (A) on channel d 2
76 Pass -
77 Function m on channel d - 2
7 Error stop (restart
only by a
deadstart) -

¥ Assume input channel d word flag is set; if not set, add the time waiting for flag to set.
¥ Jump instruction times are for the jump not taken case. The jump taken execution time is identical if the jump is to an

alternate bank. If the jump is t:

A-14

en to the same bank, add 5 clock periods.
T Timing for these instructiens are sample times only for various cases.
M Assumes output channel d word flag is clear; if not clear, add the time waiting for flag to clear.

60279900A

BINARY FORMATS B

This appendix describes the various binary formats that can be generated by the COMPASS assembler t.
The types of binary formats are as follows:

CPU relocatable

CPU absolute

7600 PPU absolute

6000 Series PPU absolute

RELOCATABLE SUBPROGRAM

Output for a relocatable subprogram consists of a logical record composed of an indefinite number of
tables. Each table is preceded by an identification word of the following form:

59 54 36 27 18 00
cn we fr 2

ID Word Format
Bits Field Description

59-54 cn Octal code Number identifying table type as follows:

77 Prefix table
34 Program identification and length table (PIDL)
36 Entry point table (ENTR)
40 Text and data table (TEXT)
42 Fill common area table (FILL)
44 External reference table (LINK)
43 Replication table (REPL)
46 Transfer table (XFER)
53-36 wc Octal count of number of 60-bit words in the table, excluding the identification word.

35-27 none Reserved for future system use.

26-18 fr In TEXT table, indicates method of relocation for the load address; otherwise, the field
is ignored by the loader.

17-00 ¢ In TEXT table, indicates beginning location for data in the table; in the REPL table,
this field indicates immediate or deferred replication. For all other tables, the field
is zero and is ignored by the loader.

TFor SCOPE 2, 7600 COMPASS Version 2 generates the tables described here when the E or E=0 option
is selected on the COMPASS control statement. Extended tables are described in the Loader Reference
Manual, Publication No. 60344200,

60279900C B-1

Prefix Table (prefix)

The prefix table is described here for all binary formats. Generation of the table can be suppressed
through use of the NOLABEL pseudo instruction.

Prefix Table:

ID Word
1

ey b WD

16

Word

3-16

Bits

59-18

17-00
59-00

59 54

48 36 18 00

77

00 | 0016 0000 0000 0000

name | 000000

Field

name

date

comments

Description

Name of record in display code from IDENT or SEGMENT
pseudo instruction left justified with zero fill.

Reserved for future system use.
Date of assembly in the form
& yr/mo/dy.

where month (mo), day (dy), and year (yr) are each two display
code digits.

Display code text from COMMENT pseudo instruction, left
justified with zero fill.

60279900 B

Program Identification and Length Table (PIDL)

The PIDL table contains the name and length of the subprogram block and each of the common blocks.
The only table that can precede it is the PREFIX table. The entries starting with the third word
comprise a table within the PIDL, called the Local Common Table (LCT). This embedded table lists
labeled common and blank common blocks in the order in which they are established in the subprogram.
Relocation of addresses in subsequent loader tables is relative to common blocks according to the
position of the block name in the LCT. The first word in the LCT is position 1.

PIDL Table:
ID Word
1
2
3
4
\.IVC-l
we
Word Bits
1D 53-36
59-18
1
17-00
59-18
2-wce
17-00
60279900D

59 54 48 36 18 00
34 00 we 0000 0000 0000
subp name pe
common name; bgy)
common name,, b,
- common name, by \LCT
—-_-———-—\
\——/__-———/—// bgx-2
common hamey_1 bgx-1
common name, bg . J
Field Description
we Length of LCT plus 1, in octal
subp name Name of subprogram in display code as taken from IDENT pseudo
instruction, left justified with zero fill.
pe Length of subprogram including all local blocks with exception of

absolute block if there is one.

commonname; Name of common block as declared on USE pseudo instruction.
For blank common, name is 7 display code blank characters.

blli Length of the common block, in octal.

For COMPASS 2 under SCOPE 2, blocks declared by USELCM
have bit 17 set to one and bits 16-00 contain the integer part of
(block length + 7) / 8. For all other systems, blocks declared by
USELCM are not recorded in the PIDL table.

Entry Point Table (ENTR)

An entry point table lists each entry point symbol to the subprogram as declared on an ENTRY pseudo
instruction, and the labeled common block containing the entry point symbol., ENTR table must
immediately follow the PIDL table. Each entry is two words.

ENTR Table: 59 54 48 36 24 18 00
D Word 36 | 00 we 000000000000
Word 1 eptsymy - 000000
2 000000000000 | oy locy
0
3 eptsym, 00000
4 009009090000 L loca
we-1 - eptsym, 000000
we 000000000000 N locy
Word Bits Field Description
1.3 59-18 epl:symi Name of entry point symbol in display code specified on ENTRY
1ee pseudo instruction, left justified with zero fill.
A]
we-1
17-00 none Reserved for future use.
59-27 none Reserved for future use.
26-18 Ty Relocation for address loc:
000 Absolute relative to RAS (no relocation)
001 Program relocation
2,4
SR 003-077 Relative to the common block named in position
wce r¢-2 in the LCT. It cannot be the number for the
blank common block.
{ 17-00 loc, Address of entry point relative to block origin.

B-4 602799008

Text and Data Table (TEXT)

A TEXT table contains an origin for data, indicators for relocating the data in the table, and data. The
subprogram can contain any number of TEXT tables which can be in any order.

TEXT Table:
ID Word
Word 1
2
3
4
we-1
we
Word Bits
r 53-36
26-18
D ﬁ
L 17-00
1 59-56
J 55-52,
ey
03-00

60279900A

59 54 48 36 27 18 00
40 00 we 000 r {
T T] L) A T L v L] i
wluA L I IR AR A
data wordl
data wordg
data word3

ﬁ

data word,, c-1

Field

we

r

rbj

Description

Number of data words in the table plus one; wec must be in the
range 2-20g.

Relocation of load address 1.
000 Absolute relative to RAS (no relocation)
001 Relative to subprogram origin

003-077 Relative to common block named in position r¢-2 in the
LCT. It cannot be the number for the blank common
block.

Beginning load address relative to block origin for data beginning
in Word2, The load address is relocated according to rf.

Up to 15 4-bit relocation bytes describing address relocation
according to the three possible positions of addresses in a 60-bit
word. The first byte (bits 59-56) describes the relocation for the
first data word (Word 2). The second byte describes the re-
location for the second data word (Word 3), etc. The bhytes
permit independent and simultaneous relocation of both upper and
lower addresses. Relocation is relative to program origin
(positive) or to the complement of program origin (negative) as
follows:

Byte Significance

000x No address relocation

10xx Upper address, program relocation

11xx Upper address, negative relocation

010x Middle address, program relocation
011x Middle address, negative relocation
1x10 Lower address, program relocation
1x11 Lower address, negative relocation
0010 Lower address, program relocation
0011 Lower address, negative relocation

Note that an address is either not relocated (absolute) or it

is relocated relative to program origin. It cannot be relocated
relative to a labeled common block. Thus, TEXT tables cannot
be used to relocate addresses relative to labeled common. This
must be accomplished through FILL tables.

2-we 59-00 data worcli Data words to be stored beginning at absolute address or
relocated address indicated in the ID word.

Fill Common Area Table (FILL)

The FILL table specifies relocation of addresses in words already loaded through TEXT tables.
References to common blocks are relocated through this table. Although program relocation is also
possible through use of the FILL table, the usual method requiring fewer words is through the TEXT
table.

FILL Table: 59 54 48 36 30 00
ID Word 42 | 00| we 000000000000
Word 1 byte; , byte,
2 byte3 byteq
- g \
;NC byte, .1 byte,

Words 1 through we are divided into two types of 30-bit bytes, control bytes and data bytes.

60279900A

Control Bytes - Each control byte (indicated by a 0 in bit 29) specifies the relocation of addresses in
the data bytes following it until the next control byte. A control byte has the following format:

lsz///////////A08 ar % 0

ar Relocation of addresses in words already loaded.
000 Absolute relative to RAS (no relocation)
001 Positive program relocation relative to program origin.
002 Negative program relocation relative to program origin.
003-077 Relative to common block named in position ar-2 in the LCT.

Data Bytes - Each data byte (indicated by a 1 in bit 29) identifies a word containing a reference address
that requires relocation and specifies where the word containing the reference is located. The format
of a data byte is as follows:

loc

1| pl
2 26

Bits Field
28,27 »p
26-18 1¢
17-00 loc

17 — 00
Description
Position within word of address to be relocated

102 Upper

012 Middle

00 Lower _
Relocation of address loc:

000 Absolute relative to RAS
001 Program relocation relative to program origin
003-077

Relative to block named at position r¢-2 in the LCT,

Address of word containing the address to be modified. The address is modified
by adding the relocated origin for the block specified by ar. A word that contains
two addresses requires two data bytes.

Replication Table (REPL)

The REPL table directs the loader to generate one or more copies of data immediately or at the end of
loading so that fewer TEXT tables are required. Each entry contains two words of information obtained
from a REP or a REPI pseudo instruction or resulting from 5 or more BSSZ instructions.

60279900A

REPL Table:

ID Word
Word 1
2
3
4
we-1
we
Word Bits
D 00
59-27
1,3,5,{ 26-18
LR]
we-1
\ 17-00
59-42
41-27
2,4,6,<
o 26-18
we
, 17-00

59 54 48 42 36 27 18 00
3] o0l we | 00000000000 i
incy sTy saddr1
repy I bszq dry daddry
incy STy saddr,
repy I bsz2 dr, daddr,
inc R sesm—
[incn srn saddrn
rep | n dr daddrn
Field Description
i Indicates whether text is to be duplicated immediately (1)
or is to be deferred until all text is loaded (0).
inci Number of words in each copy of the text. If inci is 0, the
loader uses bszi as the increment size. The loader writes
the first copy starting at daddx’i, the second starting at
daddr; + inci, the third at b:szi + 2 incy, etc. until the rep;
count is exhausted.
sT; Relocation of saddri
000 Absolute relative to RAS
001 Relative to program origin
003-077 Relative to block named in position sr-2 of the LCT.
saddri First word address of source data (text to be copied); must be
nonzero,
Tep, Number of times text is to be copied. When rep; is 0, the loader
! makes one copy.
bsz, Number of words to be copied (block size)., When bszi is 0, the
! loader copies one word.
dri Relocation of daddri; range of values same as sr.
daddri Destination address of first word of first copy. If daddri is 0,

the loader uses saddr; + bsz;.

602799008 .

External Reference Table (LINK)

The LINK table contains an entry for each external symbol reference declared in the subprogram. Each
entry consists of a 60-bit field for the symbol followed by an indefinite number of 30-bit contiguous data
bytes.

LINK Table: 59 54 48 36 30 18 00
ID Word 44 00 | we 000000000000
Word 1 external symboly J 000000
2 byteq byteo
3 byteg byte,
) byte5 yte _——
yte external
symbol, 000000 byte
byte byte
Wm
we byte byte

It is possible for a symbol to be split between two words. However, if the upper half of a word is a
data byte and the lower half is all zeros, the loader takes the zeros as filler rather than the first half
of an external symbol; this may be used to avoid having an external symbol split between two words.
Each symbol must begin with a character for which the display code representation is not greater than
37 (has a high order bit of 0). The 1-7 character symbol is placed in the 60-bit field left justified with
zero fill.. :

Each byte (indicated by a 1 in bit 29) identifies a word containing a reference to the external symbol and
specifies the position at which the address for the symbol is to be inserted. The format of a data byte
is as follows:

(1{p | re] loc]
29 26 17 00
Bits Field Description
28,27 p Position within word of external symbol reference
102 Upper
01, Middle
00 Lower
26-18 1y Relocation of address loc:
000 Absolute relative to RAS
001 Relative to subprogram origin
003-077 Relative to block named at position r¢-2 in the LCT.
17-00 loc Address of word containing the external reference. The address of the external

symbol is inserted at the position indicated.

602799008 B-9

Transfer Table (XFER)

The last table in a relocatable subprogram is the XFER table.

XFER Table: 59 54 48 36 18 00

ID Word 46| 00 | 0001 | 000000000000

Word 1 eptsym l 000000
eptsym symbol to which control transfers when loading is complete. It is a 1-7 character

entry point symbol in display code, left justified with zero fill. It need not be in the
same subprogram as the XFER table. At least one subprogram of a program must
name a transfer point; otherwise, SCOPE aborts the job with the comment NO
TRANSFER ADDRESS. If more than one of the subprograms has a transfer point,
the loader gives control to the last one encountered.

The location of the entry point is returned following a loader request.

If the first character of eptsym is blank (558) the XFER table is ignored.

B-10 602799008

CPU ABSOLUTE SUBPROGRAM OR OVERLAY

The binary output for an absolute CPU subprogram or overlay consists of a logical record that may
contain:

A prefix table (optionally suppressed through NOLABEL)
A 50g or 51g table (optionally suppressed through NOLABEL)

An absolute image of text.

For a description of the prefix table, refer to the Relocatable Subprogram descripition.

Single Entry Point Table (50)

Following the prefix table but preceding the absolute text for a subprogram or overlay containing a
single entry point is a control table of the following format:

59 54 48 42 36 18 00
50 | o0 2] 2 fwa eptaddr |
Bits Field Description
47-42 ' Indicates primary level of the subprogram or overlay. It is determined by an
‘ IDENT or SEGMENT pseudo instruction as follows:
00 First IDENT
01 SEGMENT, or IDENT other than first that does not specify a primary
level.
n 2 octal digit specified on IDENT
41-36 L, Indicates secondary level of the subprogram or overlay. It is determined by an
IDENT or SEGMENT pseudo instruction as follows:
00 First IDENT, »rIDENT that does not specify a secondary level, or any
SEGMENT.
n 2-octal digit specified on IDENT
35-18 fwa Origin -1 - address where 50~table is loaded as specified on the IDENT or
SEGMENT pseudo instruction,
17-00 eptaddr Absolute address of entry point specified on the IDENT or SEGMENT pseudo

instruction,

602799008 B-11

Multiple Entry Point Table (51)

A CPU overlay that has multiple entry points has a 51 table in place of a 50 table. The table has
the following format:

59 54 48 42 36 18 00
ID Word 51 L) 211 229 fwa wc
Word 1 eptsym1 eptaddr1
eptsym2 epl:addr2
M&M/‘
: [eptsymy,,_o T
we-1 eptsymwc_ 1 epl:addrwp_L
we eptsymg, eptaddry, .
Word Bits Field Description
47-36 489 Same as £4 and Lo in 50 control word.
ID 35-18 fwa Origin -wc-1-address where 51-table is loaded as specified on the
IDENT pseudo instruction
17-00 we Length of table in octal, excluding ID word.
1.2.3 { 59-18 eptsymi Entry point symbol in display code, left justified with zero fill.
9 Loy iy
oo 17-00 eptaddri Absolute address of eptsym;
we

7600 PPU ABSOLUTE PROGRAM OR OVERLAY

Binary output for a 7600 PPU program or overlay is a logical record that may contain the following:

A'prefix table (optionally suppressed through NOLABEL)
A 528 binary control table (optionally suppressed through NOLABEL)

Absolute image of all text generated since previous IDENT pseudo instruction.

PPU text is generated 5 PPU words per 60-bit CPU word.

The format of the control table is as follows:

59 54 48 36 _ 24 12 00
| s52] oo] PPuno. | twa [eptadar length |
Bits Field Description
47-36 PPU no. Number of PPUs in which program or overlay is to be executed.
35-24 fwa Origin -5 as specified on the IDENT pseudo instruction; address at which 52-table
is loaded
23-12 eptaddr Absolute address of the entry point specified on the IDENT pseudo instruction.
11-00 length Number of CPU words in the program or overlay image including the 52 table

(1/5 the number of PPU words).

B-12 602799008

6000 SERIES PPU ABSOLUTE PROGRAM OR OVERLAY

Binary output for a 6000 Series PPU program or overlay is a logical record that may contain the following:

A prefix table (Optionally suppressed through NOLABEL)
A 6000 Series PPU program control table (Optionally suppressed through NOLABEL)
An absolute image of all text generated since previous IDENT or SEGMENT pseudo instruction.

PPU text is generated 5 PPU words per 60-bit CPU word.

The format of the control table is as follows:

59 42 36 24 12 00
l name T 00 L fwa J 0000 l length j
Bits Field Description
59-42 name Program name, 1-3 display code characters, left justified with zero fill.
41-36 none Reserved for future system use.
35-24 fwa Origin -5 as specified on IDENT or SEGMENT pseudo instruction; at which table
is loaded
23-12 none Reserved for future system use.
11-00 length Number of CPU words in program image (1/5 the number of PPU words)

SYSTEM TEXT (SYSTEXT)

Normally, system text is derived from the library overlay named SYSTEXT t and is assembled prior to
assembly of the source program. However, the source of system text can be changed through the S
option on the COMPASS card (section 10.1.2). A system text overlay on the library is an absolute
overlay that has the following control table:

59 48 42 36 00
| 5000 [o] o1] 000000000000 |

T V2TEXT for SCOPE 2,

60279900C B-13

Format of Text:

System Symbol
——————————————————————————————— >~ Table
2 words per entry

)
W L Micro Definitions
I3
m > Macro/opdef definitions
<
| 4

L Operation Table
m Entries

2 words per entry

!i= Number of words in each part of record.

COMPASS produces a systems text record as a result of encountering an STEXT pseudo instruction

during assembly. If the rname is blank no binary is generated. If rname is nonblank, both the binary
and the systems text are generated.

The System Symbol Table does not include the following symbols:

Local symbols

Qualified symbols

SE T-defined symbols

Relocatable symbols (not in the absolute block)

External text symbols, that is, library input symbols and symbols read from XTEXT or
occurring between CTEXT and ENDX

SST-defined symbols

60279900D
B-14

COMPRESSED COMPILE FILE

Source statement input for COMPASS assembly can be in the form of a 6000/7000 UPDATE or a
7600 MODIFY T created compressed compile file.

A compressed compile file record written by MODIFY T in A mode has the following format:

modname;
sequence no. ;

compressed card

18 00

v w | | 6 W A

modname1 sequence no.;

59

compressed card1

modname 2 I sequence no.,

compressed calrd2

o o — — e - mm = e . e w— =

modnamen T sequence no. .

1-7 character name identifying latest modification for the card.
Sequence number of the card relative to the modification set identified by modname.

A COMPASS source card in compressed form. That is, two or more consecutive
blanks (to a maximum of 64) are replaced by a byte of the form 0001 through
00778. A single blank is represented in display code (55g). If the source card
contains 65 consecutive blanks, the 65¢ is represented by a display code

blank (55g). 66 or more successive blanks are represented by 0001, etc.

A zero byte (0000) signifies an end of line (EOL).

TMODIFY is not supported by SCOPE 2.

60279900C

B-15

A compressed compile file record written by UPDATE in X mode is in the following format:

59 18 00

e o Lo 222277

sequence field;

o

compressed cardy

sequence fieldn

\WW\

sequence fieldi 17 characters comprising card columns74-90 (column 73 is always blank).
nw; Binary number of words in compressed cardi.
compressed card; Columns 1-72 of a COMPASS source card in compressed form. That is,

each 00 character is replaced by the 12-bit value 0001, and three or more
consecutive blanks (to a maximum of 64) are replaced by a 12-bit value
0002 through 00778' A single blank is represented in display code (558);
two consecutive blanks are represented by the 12-bit value 55558. If the
last word is not full, it is padded on the right with binary zeros. Because
word count nw; is present, an extra all-zero is not required to guarantee
12 zero bits.,

B-16 60279900B

BINARY CARD FORMATS

Column 1
7,8,9 End of logical record
6,7,9 End of file
6,7,8,9 End of information
7,9 Binary card
7 and 9 not both in column 1 Coded card
1 2 3
12 | |
11| | 5™
0lg|n|e Column Binary Information >
4E
1lol=
2|2 |2
o\l
3|28 <<
= e
4 % g
g 3
5 « o
—% e
6 ' g
7 O
8 <
i

el
]
7]
=1
5|,
)]
:
__az
Q
Q
=]
g
T g
5 @
&)

A binary card can contain up to 15 60-bit CPU words starting at column 3.
a count of 60-bit words in rows 0, 1, 2 and 3 plus a check indicator in row 4.

Column 1 also contains
If row 4 of column 1 is

zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on

input.

Column 78 of a binary card is not used, and columns 79 and 80 contain a binary serial number. If

a logical record is punched, each card has a checksum in column 2 and a serial number in columns 79
and 80, which sequences it within the logical record.

Coded cards are translated on input from Hollerith to display code, and packed 10 columns per CPU
word. A CPU word with a lowest byte of zero marks the end of a coded card (it is a coded record), and
the full length of the card is not stored if it has trailing blanks. A compact form is thereby produced

if coded cards are transferred to another device.

602799008

CHARACTER SETS D

R e S e

NOTES

1. The terms upper case and lower case apply only to the case conversions, and do
not necessarily reflect any true case.

2. When translating from display code to ASCI/EBCDIC the upper case equivalent
character is taken.

3. When translating from ASCII/EBCDIC to display code, the upper case and lower
case characters fold together to a single display code equivalent character.

4. All ASCII and EBCDIC codes not listed are translated to display code 55 (space).

5. Where two display code graphics are shown for a single octal code, the leftmost
graphic corresponds to the CDC 64-character set (system assembled with IP.CSET
set to C64,2), and the rightmost graphic corresponds to the CDC 64 character
ASCII subset (system assembled with IP CSET set to C64.2).

6. In a 63-character set system, the display code for the : graphic is 63. The %
character does not exist, and translations from ASCII/EBCDIC % or ENQ yield
blank (558). The display code value 00 is undefined in 63-character set systems.

7. Twelve or more zero bits at the end of a 60-bit word are interpreted as an
end-of-line mark rather than two colons. An end-of-line mark is converted to
external BCD 1632 and internal BCD 1672 by operating systems when writing
7-track magnetic tape in even parify (coded) mode, and converted back to 0000
when reading.

8. This code is changed to 12 when written on a 7-track magnetic tape in even
parity (coded) mode.

9, 11-0 and 11-8-2 are equivalent on input. The character will be punched as
11-0 on output.

10. 12-0 and 12-8-2 are equivalent on input. The character will be punched as
12-0 on outfput.

11. 12~8-7 and 11-0 are equivalent on input. The character will be punched as
12-8-7 on output.

12, 12-8-4 and 12-0 are equivalent on input. The character will be punched as
12-8~4 on output.

18. CODE pseudo selects 6-bit octal code as follows:

ASCIL

Display Code (default)
External BCD
Internal BCD

il > B w i

60279900D D-1

CODE E

CODE D (default) CODE 1 CODE A
Display Hollerith BCD AScl EBCDIC
Code Punch Upper Case Lower Case Upper Lower
(026) 6-Bit
Octal | Char. Ext. | Int, |Octal {Hex. | Char.| Punch Hex. |Char. Punch |Hex. | Char, | Hex. | Char,
(029)
00 :® 8-2 00 12 32 3A : 8-2 1A SUB 9-8-7 TA 3F | SUB
01 A 12-1 61 21 41 41 A 12-1 61 a 12-0-1 Cl A 81 a
02 B 12-2 62 22 42 42 B 12-2 62 b 12~-0-2 C2 B 82 b
03 (o} 12-3 63 23 43 43 C 12-3 63 c 12-0-3 C3 C 83 c
04 D 12-4 64 24 44 44 D 12-4 64 d 12-0-4 C4 D 84 d
05 E 12~5 65 25 45 45 E 12-5 65 e 12-0-5 C5 E 85 e
06 F 12-6 66 26 46 46 F 12-6 66 f 12-0-6 C6 F 86 f
07 G 12-7 67 27 47 47 G 12-7 67 g 12~0-7 Cc7 G 87 g
10 H 12-8 70 30 50 48 H 12-8 68 h 12-0~8 Cc8 H 88 h
11 I 12-9 71 31 51 49 I 12-9 69 i 12-0-9 C9 I 89 i
12 J 11~1 41 41 52 4A J 11-1 6A j 12-11-1 D1 J 91 j
13 K 11-2 42 42 53 4B K 11-2 6B k 12-11-2 D2 K 92 k
14 L 11-3 43 43 54 4C L 11-3 6C 1 12-11-3 D3 L 93 1
15 M 11-4 44 44 55 4D M 11-4 6D m | 12-11-4 D4 M 94 m
16 N 11-5 45 45 56 4E N 11-5 6E n 12-11-5 D5 N 95 n
17 o 11-6 46 46 57 4F o] 11-6 6F o 12-11-6 D6 [0} 96 o
20 P 11-7 47 47 60 50 P 11-7 70 p 12-11-7 D7 P 97 P
21 Q 11-8 50 50 61 51 Q 11-8 71 q 12-11-8 D8 Q 98 q
22 R 11-9 51 51 62 52 R 11-9 72 T 12-11-9 D9 R 99 r
23 S 0-2 22 62 63 53 S 0-2 73 s 11-0-2 E2 S A2 s
24 T 0-3 23 63 64 54 T 0-3 74 t 11-0-3 E3 T A3 t
25 U 0~4 24 64 65 55 U 0-4 75 u 11~-0-4 E4 [¢) Ad u
26 v 0-5 25 65 66 56 V 0-5 76 v 11-0-5 E5 v A5 v
27 w 0-6 26 66 67 57 w 0-6 7 w 11-0-6 E6 w A6 w
30 X 0-7 27 67 70 58 X 0-7 78 X 11-0-7 E7 X A7 X
31 Y 0-8 30 70 71 59 Y 0-8 79 y 11-0-8 E8 Y A8 y
32 Z 0-9 31 71 72 5A Z 0-9 7A z 11-0-9 E9 Z A9 z
33 0 0 12 00 20 30 0 0 10 DLE |12~11-9-8-1 FO0 0 10 DLE
34 1 1 01 01 21 31 1 1 11 DC1L | 11-9-1 F1 1 11 DC1
35 2 2 02 02 22 32 2 2 12 DC2 | 11-9-2) F2 2 12 DC2
36 3 3 03 03 23 33 3 3 13 DC3 | 11-9-3 F3 3 13 ™
37 4 4 04 04 24 34 4 4 14 DC4 | 11-9-4 F4 4 3C DC4
D-2 60279900D

CODE D (default)

CODE E

CODE 1

1 l CODE A
A
Display Hollerith BCD ASCH EBCDIC
Code Punch Upper Case Lower Case Upper Lower
(026) 6-Bit
Octal| Char, Ext. | Int. | Octal| Hex. | Char. Punch | Hex. | Char. Punch |{Hex. | Char. | Hex. | Char.
13 (029)
40 5 5 05 05 25 35 5 5 15 NAK 9-8-5 F5 5 3D NAK
41 6 6 06 06 26 36 6 6 186 SYN 9-2 Fé6 6 32 SYN
42 7 7 07 07 27 37 7 7 17 ETB 0-9-6 F7 7 26 ETB
43 8 8 10 10 30 38 8 8 18 CAN 11-9-8 F8 8 18 CAN
44 9 9 11 11 31 39 9 9 19 EM 11-9-8-1 F9 9 19 EM
45 + 12 60 20 13 2B + 12-8-6 0B vT 12-9-8-3 | 4E + 0B |'VT
46 - 11 40 40 15 2D - 11 0D CRk 12-9-8-5 | 60 - 0D CR
47 * 11-8-4 54 54 12 2A * 11-8-4 0A LF 0-9-5 5C * 25 LF
50 / .0-1 21 61 17 2F / 0-1 OF SI 12-9-8-7 | 61 / oF SI
51 (0-8-4 34 74 10 28 (12-8-5 08 BS 11-9-6 4D (16 BS
52) 12-8-4 4 34 11 29) 11-8-5 09 HT 12-9-5 5D) 05 HT
53 $ 11-8-3 53 53 04 24 $ 11-8-3 04 EOT 9-7 5B $ 37 EOT
54 = 8-3 13 13 35 3D = 8-6 1D GS 11-9-8-5 | TE = ID IGS
55 space space 20 60 00 20 space space 00 NUL |12-0-9-8-1{ 40 |space 00 NUL
56 , 0-8-3 33 73 14 2C s 0-8-3 oC FF 12-9-8-4 | 6B , 0cC FF
57 . 12-8-3 73 33 16 2E 12-8-3 (39 850 12-9-8-6 | 4B OE SO
60 |= #@ 0-8-6 36 76 03 23 # 8-3 03 ETX | 12-9-3 7B # 03 ETX
61 [8-7 17 | 17 73 | 5B [12-8-2 | 1C | FS 11-9-8-4 | 4A ¢ 1C | IFS
62 1 0-8-2 32 72 75 5D] 11-8-2 01 SOH 12-9-1 5A ! 01 SOH
63 %© 8-6 16 16 05 25 % 0-8-4 05 ENQ | 0-9-8-5 6C % 2D ENQ
64 #1 8-4 14 14 02 22 " 8-7 02 STX 12-9-2 F " 02 STX
66 - 0-8-5 35 75 M 5F _ 0-8-5 7F DEL | 12-9-7 6D _ 07 DEL
66 V! 11-0 52 52 01 21 ! 12-8-7 7D ’ 11-0 4F I DO }
67 NE 0-8-7 37 7 06 26 & 12 06 ACK | 0-9-8-6 50 & 2E ACK
70 1 11-8-5 55 55 07 27 ' 8-5 07 BEL | 0-9-8-7 7D ' 2F BEL
71 } 2 11-8-6 56 56 37 3F ? 0-8-7 1F Us 11-9-8-7 6F ? 1F IUS
72 < 12-0 72 32 34 3C < 12-8-4 7B { 12-0 4C < Co {
3 > 11-8-7 57 57 36 3E > 0-8-6 1E RS 11-9~-8-6 6E > 1E IRS
4 |<@ 8-5 15 |15 40 | 40 @ 8-4 60 | ° 8-1 c| e 79 A\
75 >\ |12-8-5 75 |35 | 74 |5C N 0-8-2 | 7C | 12-11 EO | N\ 6A :
76 VAN 12-8-6 76 36 76 5E A 11-8-7 7E ~ 11-0-1 5F L Al n
77 H 12-8-7 77 37 33 3B H 11-8-6 iB ESC 0-9-7 5E H 27 ESC
60279900D D-3

HINTS ON USING COMPASS

1. Within a macro definition:

a. Use comment cards having * in column one. These are not saved whereas other types of
comments are saved.

b. Whenever possible minimize the number of lines of code.

c. IRP is faster than either ECHO or DUP,

d. Use the substitutable parameter flags ;A, ;B, etc., for macros to avoid a second line.

e. Within macros, use symbols such as .1, .2, etc. instead of local symbols.

f. If possible, avoid recursive macro structure to increase assembly speed.

g. If a macro call is the cause of an error, direct full list output to a file other than OUTPUT
(L=filename) to obtain a list of the erroneous macro call with the error listing.

2. In IF sequences:

a. Use line counts rather than ENDIF to termihate sequences.

b. Use SKIP rather than IFPP to skip code.
3. Micros:

a. Micro replacement is time consuming.
b. Avoid using local symbols for micros.

c. Use # # for a null substitution.
4. Minimize SYSTEXT size.
5. To reduce core requirements, use SEG cards in absolute programs.
6. Use NOREF for symbols for which listing is not required.

7. TUse QUAL for all overlays.

60279900A

DAYFILE MESSAGES F

nERRORS IN name

COMPASS issues this message for each source program in which fatal errors are detected.

mnnmmB L, C M NEEDED TO CONTINUE.

During initialization, the 7600 COMPASS Version 2 assembler estimates the number of LCM words
required to begin processing. If the estimated number (in octal) is less than the job's L.CM field
length and if the job is in user controlled FLL mode, this message is issued and the job aborted.

nLOST REFERENCES IN name

COMPASS issues this message for each source program whose symbolic cross-reference table does
not fit in the job's CM T field length for sorting just before it is printed. Rather than aborting the job,
COMPASS discards some of the references. The ASSEMBLY COMPLETE message gives the field
length needed to avoid lost references.

nnnmnnB S C M NEEDED TO CONTINUE,

During initialization, the 7600 COMPASS Version 2 assembler estimates the number of SCM words
required to begin processing. If the estimated number (in octal) is less than the job's SCM field
length and if the job is in user controlled FLS mode, this message is issued and the job aborted.

nWARNING MESSAGES IN name

COMPASS issues this message for each source program in which non-fatal errors are detected.

ASSEMBLING name

This message is displayed at the system operator's console only. It is not written in the dayfile.
COMPASS updates the display whenever it processes an IDENT statement with a non-blank variable
field.

ASSEMBLY COMPLETE. nB SCMttUSED,

COMPASS issues this message when it has completed processing of all source programs on the input
file without having detected any fatal errors. n.is the octal number of SCM words needed. For instance,
the minimum field length needed to perform the assemblies successfully. It may be larger than the
actual field length, in which case, it is the minimum field length needed to avoid lost references.

TLCM for the 7600 COMPASS Version 2 assembler.

T1For the 7600 COMPASS Version 2 assembler, SCM is replaced by LCM and is the octal number of
LCM words required for the internal tables maintained in LCM.

60279900C F-1

ASSEMBLY ERRORS. nB SCM+ USED.

COMPASS issues this message when it has completed processing of all source programs on the input
file and detected at least one fatal error., If the A option was specified on the COMPASS control card,
COMPASS aborts the job after issuing this message. n is the same as in the ASSEMBLY COMPLETE
message.

BAD SYSTEMS TEXT.

The system text overlay does not have the internal format required by this version of COMPASS. This
may be caused by a system error. COMPASS ignores the overlay but does not abort the job.

CANT LOAD COMP1$

The operating system loader reported a fatal error when COMPASS attempted to load its primary
overlay. This message should be preceded by an explanatory message from the loader.

ERROR IN COMPASS ARGUMENTS.

The COMPASS control card contains an unrecognized or invalid argument. The job is aborted.

IDENT CARD MISSING.

COMPASS issues this message for each source program in which an END statement is encountered
before an IDENT statement. This is a fatal error.

INPUT FILE EMPTY OR MISPOSITIONED.

COMPASS encountered end of data when it attempted to read the first line from the source input file.
After issuing this message, COMPASS generates an END card which causes the IDENT CARD MISSING
message and a fatal error. This message is issued by 7600 COMPASS Version 2 only.

INSUFFICIENT STORAGE FOR SYSTEMS TEXT,

COMPASS issues this message and aborts the job when an irrecoverable table overflow occurs during
system text loading, before the first assembly is begun. For 6000 COMPASS Version 2 and 7600
COMPASS Version 1, a substantial increase in the job's CM/SCM field length may be needed. The
message is also issued if system text specified by the G option is of such length that it cannot be read
into the job's field length. In this case, the job is not aborted but the system text is ignored. For the
7600 COMPASS Version 2 assembler, an increase may be needed for either LCM or SCM if the job

is in user controlled FL mode. This message will be followed by MORE S C M NEEDED, or MORE
L C M NEEDED.

+For the 7600 COMPASS Version 2 assembler, SCM is replaced by LCM and n is the octal number
of LCM words required for the internal tables maintained in L.CM.

F-2 60279900C

INSUFFICIENT STORAGE. JOB ABORTED,

The job's CM field length is too small for COMPASS to begin processing. This message is issued not
issued by 7600 COMPASS Version 2.

MORE L C M NEEDED.

This message is issued by the 7600 COMPASS Version 2 assembler after a message concerning table
overflow has been issued in order to emphasize that the internal tables require 1.CM.

NO SYSTEM TEXT FOUND.

COMPASS issues this message, but does not abort the job, when it cannot load the system text specified
on the COMPASS control card. For an overlay loaded from a library (S parameter), this message
should be preceded by an explanatory message from the operating system loader. For an overlay
loaded from non-library file (G parameter), COMPASS cannot find the overlay on the file.

RECURSION DEPTH EXCEEDED 400.

COMPASS maintains a push-down stack for source input control, with one entry for each active DUP,
ECHO, HERE, XTEXT, OPDEF, or macro call. The maximum depth of this stack is set by an installa-
tion parameter, 400 in the released system. When this limit is exceeded, COMPASS sets a fatal error
and clears the stack so that the next statement will be read from the source input file, but does not
abort the job. This error is usually caused by a source program error in which a macro calls itself
-indefinitely.

TABLE OVERFLOW IN PASSn.

An irrecoverable table overflow condition has occurred in assembly pass 1 or 2 while processing a
source program. COMPASS allocates memory space dynamically to all of its internal tables, so that
when one overflows, all do. When the tables do not all fit in the available CM | space, COMPASS
stores some of them on mass storage scratch files.

COMPASS issues the above message, and aborts the job, when CM T is insufficient after all such files
have been written to mass storage.

TLCM for the 7600 COMPASS Version 2 assembler.

60279900C F-3

INDEX

D .

A code option 4-22

A error 11-10

A list option 4-66

A reference table option 4-73

A register
description 8-8
designators 2-8
setting 8-44

ABS attribute 4-59

ABS pseudo
description 4-6
example 4-4,7,8,12,13,15,41
first statement group 4-2

Absolute block
absolute program 3-7
description 3-2
establishment 4-28
relocatable program 3-5
using 4-26,28

Absolute program
declaration 4-6
structure 3-7

Absolute text 3-5, B-5

ACN instruction 9-22

ADC instruction
arithmetic function 9-4
description 9-9
example 2-21,9-9

ADD instruction
arithmetic function 9-4
description 9-13

Add unit
floating point 8-3, 31
long 8-3
Address modes, PPU 9-1
Address
absolute 4-4
direct 9-13

entry point 4-4,5,41; B-4,11,12
external 4-6,7,8,42; B-9
indexed 9-15

indirect 9-14

relocatable 4-5

60279900D

ADI instruction
arithmetic function 9-4
description 9-14
ADM instruction
arithmetic function 9-4
description 9-15
ADN instruction
arithmetic function 9-4
description 9-8
AJM instruction 9-17
AOD instruction
description 9-13
replace function 9-5
AOI instruction
description 9-14
replace function 9-5
AOM instruction
description 9-15
replace function 9-5
Arithmetic functions, PPU 9-4
Arithmetic shift 8-31,33
Arrow
parameter separator 5-8,13
special character 2-4
Assembler 1-1
core requirements 1-3; 10-2
statistics 4-66; 11-9
Assembly environment test 4-56
Assembly listing
detailed description 11-1
general description 4-66
generation 1-3
Assembly, remote code 5-3
Assembly time 11-9
Asterisk
BASE instruction 4-26
element operator 2-22
first column 2-1,2
local symbol separator 5-32
location counter 2-9, 22
parameter separator 5-8,13,16,25,28
special element 2-9,22
USE instruction 4-20
USELCM instruction 4-28

Index-1

Attribute, symbol 2-6 embedded 2-1

Attribute test 4-58 expression terminator 2-22
AXi instruction 8-31,33 name terminator 2-5
operation field 2-1
B base 2-17,18; 4-20 parameter separator 5-8,13
B binary mode 10-3 statement terminator 2-1
B list option 4-67 string terminator 2-13
B reference table option 4-73 use in character data 2-13
B register variable field 2-2,4; 3-7
conditional jumps 8-25 Blank card 4-69
contents of Bl, B7 4-25 Blank common
description 8-4 description 3-3
designators 2-8 establishment 4-26
setting 8-46 example 4-31
Bl 1 or B7 1 preudo instruction LCM 4-28
description 4-25 SCM 4-26
effect on R- 4-51 Blank fill 2-14
example 4-52 DIS 4-45
illegal for PPU 4-7,8 Blank operation field 4-43
Base, assembly 4-19 Block copy instruction 8-14
COL column count 4-25 Block group 3-1,10,12,14,15
DIS word count 4-45 Block group listing 11-3
DUP count 5-6 Blocks
LCHO count 5-7 absolute 3-2; 4-26,29
linc count 4-56,57,59,61,63 blank common 3-3; 4-26, 28
micro count 7-2,4,5 labeled common 3-2; 4-26
numeric value 2-17 literals 2-11; 3-2,6,7,10,12,14,15
overlay level numbers 4-4 local 3-2; 4-26
PPU number 4-4 maximum number 3-1; 4-26
REPI counts 4-53 origin assigned 1-3; 3-5,7
setting through BASE 4-20 subprogram 3-1
SPACE line count 4-69 used for definition operation 5-2
string count 2-13 user established 3-2; 4-26,28
VFD count 4-49 zero 3-2, 4-26,28
BASE pseudo Block name 4-26
deseription 4-19 Block name listed 11-1
example 4-12,17,21, 45,47 Block origin 1-3; 3-5
permissible anywhere 4-2 Block usage summary 11-3
Binary control statements 4-67; 11-1 Boolean unit
Binary format description 8-4,7
absolute B-11 instructions 8-27,28, 29,30, 35,36
card C-1 Branch instructions
loader tables B-1 CcPU 8-11,13,16,23, 24,25
overlay B-11 PPU 9-5
PPU, 6000 B-13 Branch unit
PPU,7600 B-12 description 8-4
reloecatable B-1 instructions 8-11,13,16,23, 24,25
systems text 4-17, B-13 BSS pseudo
Binary mode 10-3 description 4-31
Binary output generation 1-3; 3-7,10,12,14; 10-3 effect on origin counter 3-3
Binary write 3-7 example 4-4,8,15,24,30,31; 5-22,33
Blank force upper 3-5

compressed 5-1

Index-2 60279900D

BSSZ pseudo
description 4-43
dumped by SEGMENT 4-14
example 2-19; 5-34, 36
force upper 3-5
REPL table B-8
BXi instruction 8-27,28,29,30
Byte
control B-7
data B-7
guaranteed zero 2-14; 4-45

C list option 4-67
C on octal listing 11-7
Call
equivalenced macro 5-25
macro 5-18
opdef 5-30
Central processor unit
execution times A-1
functional units 8-4,7
instructions 8-1
registers 8-8
Channel buffer instruction
read status 8-22
reset input 8-19
reset output 8-21
Character codes D-1
Character data 2-13
code conversion 4-21
evaluation 2-26
examples 2-11,15
Code
CPU operation 6-7; 8-1
duplication 5-6
PPU operation 6-3; 9-1
remote assembly 5-3
replication 4-53
CODE pseudo
description 4-21
effect on character data 2-13; 4-45
example 4-22
permissible anywhere 4-2
Coding form 2-3
COL pseudo
description 4-25
octal listing 11-7
Column one 2-1
COM attribute 4-59

60279900D

Comma

character string 2-13

column one 2-1

continuation 2-1

expression terminator 2-22

local symbol separator 5-32

name terminator 2-5

parameter separator 5-8,13,16, 25,28

string terminator 2-22

subfield delimiter 2-1
COMMENT pseudo

description 4-18

example 4-12

first statement group 4-2
Comments column control 4-25
Comments field 2-2,3; 4-25
Comments statement 2-2

heading of definition 5-13

micros not substituted 7-1

not counted 4-55; 5-7,8

permissible anywhere 4-2
Comments, prefix table 4-18
Compare character strings 4-61
Compare expression values 4-57
COMPASS call card

description 10-2

effect on LIST 4-65
Compile file 10-3, B-15
Comp and log difference instruction 8-30
Comp and log sum instruction 8-30
Complement instruction 8-29
Compressed code 5-1; B-15
CON pseudo

description 4-50

example 2-21; 4-51; 5-6, 23, 27

force upper 3-5
Concatenation 2-4
Concatenation mark 2-4

example of use 5-19

in definition 5-1
Conditional assembly 4-55
Conditional jump

B register 8-25

PPU 9-7

X register 8-23
Configuration 1-3
Constant

character 2-13

Index-3

description 2-10
expression element 2-22,26
field size 2-10
generated by pseudo 4-50
mimeric 2-17
read only 2-11
Continuation, statement 2-2
generation of lines 2-4; 7-1
Control cards
COMPASS 10-2
end of information 10-6
end of record 10-5
job card 10-1
SCOPE cards 10-1
Core requirements 1-3; 10-2
Counters, block control 3-3,10,12
Counter control
BSS 4-31
forcing upper 3-4
LOC 4-32
ORG 4-29
POS 4-34
USE 4-26
USELCM 4-28
CPOP pseudo 6-7
CPSYN pseudo
description 6-9
permissible anywhere 4-2
CPU instructions
block copy 8-14
Boolean 8-27,28,29, 30,31
branching 8-23,25
channel buffer 8-19,21
channel status 8-22
complement 8-29
conditional 8-23, 25
direct LCM transfer 8-18
divide 8-42
double precision 8-37,40
ECS 8-14
error exit 8-12
exchange exit 8-17
exchange jump, 6000 8-16
execution times A-1
fixed point 8-38
floating point 8-37, 38, 39, 40,42, 43
increment 8-44,46,47
left shift 8-31, 32
logical 8-27,28,29,30,31
long add 8-38
mask 8-41
multiply 8-39, 40
no operation 8-43

Index-4

normalize 33,34
pack 8-36
pass 8-43
population 8-43

program stop, 6000 8-11

real time clock 8-20
return jump 8-13

right shift 8-31, 33

set register 8-44,46,47
set time 8-20

shift 8-31,32,33

single precision 8-36, 38, 39, 40, 42

transmit 8-27
unconditional jump 8-23
unpack 8-35

CPU program execution 1-3; 10-1
CPU register designators 2-8; 8-8

CRD instruction 9-17
Created symbol 5-33, 11-9
CRM instruection 9-17
Cross reference table

(see symbolic reference table)

CTEXT pseudo 4-72
CWD instruction 9-17
CWM instruetion 9-17
CXi instruction 8-43

D base 2-17,18; 4-20

D code option 4-22

D debug mode 10-3

D definition flag 11-14

D error 11-10

D list option 4-67

Data generation 4-43

Data item
character format 2-13
DATA pseudo 4-44

general description 2-10

LIT pseudo 4-47
numeric format 2-17
VFD pseudo 4-49
Data notation
character 2-13
constant 2-10,13,17
decimal 2-17
element 2-10,22
fixed point 2-17
floating point 2-17
item 2-10,13,17
literal 2-11,13,17
numeric 2-17
octal 2-17

60279900D

DATA pseudo
description 4-44
example 2-15,19,20; 4-22,27,30,44
force upper 3-5
Data transmission, PPU 9-3
DATE micro 7-5
Date of listing 11-1
DCN instruction 9-22
Debug mode 10-3
Decimal exponent 2-18
Decimal notation 2-17
DECMIC pseudo
description 7-4
example 5-6;7-4
permissible anywhere 4-2
DEF attribute 4-60
Default symbols
definition 2-7
listing 11-9
unqualified 4-22
zero block 3-2
Deferred symbols
(see default symbols)
Definition
equivalenced macro 5-24
macro 5-13,15,24
micro 7-2
opdef 5-13,27
processing 5-13
purging 6-9
reference 5-18,25,30
symbol 2-6; 4-34
system 5-36
Definition operation
duplicated code 5-6
equivalenced macro 5-13
external text 5-2
macro 5-13
operation code 5-13
processing 5-14
recursion level 5-1
remote text 5-3
Delimiter
actual parameter 5-18, 26
data item 2-13,17
expression element 2-22
field 2-1,2
substitutable parameter 5-8,13,16
term 2-22
Descriptor, variable field 5-27; 6-7

60279900D

Destination field 2-26
Detailed listing 4-67; 11-1
DF instruction 8-24
Direct address 9-13
Directives, loader 4-17
Directory, error, 11-9
DIS pseudo
description 4-45
example 4-45,46
force upper 3-5
Display code option
character set D-1
default mode 2-13
option 4-22
Divide instructions 8-42
Dollar sign
local symbol separator 5-32
parameter separator 5-8,13,16, 25,28
special element 2-6
Double precision instructions 8-37,40
DUP pseudo
description 5-6
example 5-10,11
listing of count 11-7
Duplicate symbol
definition 2-6
flag 11-14
Duplication
code 5-6
echoed 5-7
indefinite 5-7,9
DXi instructions
add 8-37
multiply 8-40

E code option 4-22
E entry point flag 11-14
E error 11-10
E list option 4-67
E numeric data modifier 2-18
ECHO pseudo
description 5-7
example 5-12
ECS blocks 4-28
Editing 2-4
EE numeric data modifier 2-18
EIM instruction 9-18
EJECT pseudo 4-69
permissible anywhere 4-2
Eject suppression 10-4
EJM instruction 9-17

Index-5

Element
absolute 2-23
data 2-10,11
expression 2-22,26
external 2-25
operator 2-22
register 2-25
relocatable 2-9,24
special 2-9

ELSE pseudo
description 4-56
example 5-5
permissible anywhere 4-2

END pseudo
assembly of remote code 5-3
binary generation 3-7
description 4-5
effect on blocks 3-1,7,10,14,15
example 4-4,5,14,65
external text use 5-3
force upper 3-5
illegal definitions 5-1
permissible anywhere 4-2
ENDD pseudo
acting as nil 6-6
description 5-10
example 5-11
permissible anywhere 4-2
used with DUP 5-7
used with ECHO 5-8
ENDIF pseudo
acting as nil 6-6
description 4-55
permissible anywhere 4-2
ENDM pseudo
acting as nil 6-6
description 5-14
example 4-24; 5-11,15,19, 20,21, 22,23, 27,
30,31, 32,33,35,36
permissible anywhere 4-2
End-of-information card 10-6
End-of-line mark 5-1
End-of-record
card 4-2; 10-5
external text 5-3
ENDX pseudo 4-72
ENTR table B-4
Entry address
absolute 4-4
declaration 4-41
multiple 3-14; B-12
relocatable 4-5
table B-4,11,12

Index-6

ENTRY pseudo
description 4-41
example 4-5,41
Entry point list 11-4
Entry point table
absolute B-11,12
relocatable B-4
Environment test 4-56
EOM instruction 9-18
EQ instruction
description 8-25
example 8-26
force upper 3-5
EQ IF operator 4-57
IFC operator 4-61
EQU pseudo
description 4-35
example 2-19,21; 4-17, 24,35, 36,54; 5-6
listing 11-7
Equal sign
default symbol prefix 2-7
instruction 4-35
literals prefix 2-11,13,19
local symbol separator 5-32
parameter separator 5-8,13,16,25,28
ERN instruction 9-12
ERR pseudo
description 4-63
Error, assembly
fatal 11-14
informative 11-15
programmer controlled 4-63
Error directory
detailed description 11-9
general description 4-66
Error exit instruction 8-12
Error flags
conditionally set 4-64
fatal 11-10
informative 11-12
unconditionally set 4-63
where on listing 11-6
ERRxx pseudo 4-64
ES instruction 8-12
ESN instruction 9-23
ETN instruction 9-12
Evaluation of expression 2-26; 3-3
Exchange exit instruction 8-17
Exchange jump instruction 8-16
Execution, CPU program 1-3
EXN instruction 9-10
Exponent 2-18

60279900A

Expression
absolute 2-23
attribute 4-58
comparison 4-57
CON use 4-50
description 2-22
evaluation 2-23,26; 3-3
examples 2-23, 24,25
external 2-25
maximum size 2-26
operators 2-22
pass one value 2-26; 3-3
pass two value 2-26; 3-3
register 2-25; 8-2,10
rules 2-22
size 2-26
types 2-23
value 2-23,26; 3-3; 8-6
VFD 4-49
EXT attribute 4-59
External BCD
character set D-1
option 4-22
External reference table B-9
External symbol
declaration 4-42
description 2-6,7
relocatable table B-9
External symbol list 11-5
External text
assembly 5-2
file declaration 10-4
listing 4-68
EXT pseudo
description 4-42
illegal in absolute code 4-6,7,8

F conditional flag 11-14
Ferror 11-11
F FORTRAN mode 10-3
F list option 4-67
FAN instruction 9-22
Fatal error flag 11-10
Features of COMPASS 1-2
Field
comments 2-2; 4-25
conventional 2-3
delimiter 2-1,2
destination 2-26; 4-49
free 2-1
location 2-1
operation 2-1
size 2-1

60279900D

subfield 2-2
terminator 2-1
variable 2-2
File
COMPILE 10-3, B-15
INPUT 10-3
LGO 10-3
list output 10-3
load and go 10-3
OPL 10-4
OUTPUT 10-3,4
source 10-3
SYSTEXT 4-16; 10-3,4
FILL table
description B-6
written by SEGMENT 4-14
Fill, blank 2-14
Fill common area table B-6
Fill, zero 2-14
FIM instruction 9-18
First column 2-1
First statement group 4-2
Fixed point data notation 2-17
Fixed point instructions 8-38
FJM instruction 9-17
Flag, error
listing 11-6
setting 4-63
type 11-14,15
Floating point data notation 2-17
Floating point units 8-4,7
add 8-37,38
divide 8-42, 43
multiply 8-39,40
FNC instruction 9-22
FOM instruction 9-18
Forcing upper 3-4
BSS 4-31
CPU instructions 8-2
LOC 4-32
macro call 5-19, 26
opdef call 5-31
ORG 4-29
R= 4-51
USE 4-26
USELCM 4-28
VFD 4-49
Form, COMPASS coding 2-3
Format
binary B-1
control card 10-1
CPU instruction 8-1
line 2-1

Index-7

listing 11-1
PPU instruction 9-1
FORTRAN 2-6; 4-4; 10-3
Full list 10-3
Functional units 8-4,7
Functions, PPU
arithmetic 9-4
data transmission 9-3
logical 9-4
replace 9-5
FXi instruction
add 8-36
divide 8-42
multiply 8-39

G assembly mode 10-3
G list option 4-67
GE instructions 8-25
GE IF operator 4-57
IFC operator 4-61
Generated code listing 4-67
Generation, data 4-44
Get text mode 10-3
GT instruction 8-25
GT IF operator 4-57
IFC operator 4-61
Guaranteed zero 2-14; 4-46

Hardware configuration 1-3
Heading

listing 4-66; 11-1

macro 5-13

opdef 5-13

record B-11,12,13
HERE pseudo

description 5-4

permissible anywhere 4-2

I code option 4-22
I input mode 10-3
I NOLABEL option 4-19
IAM instruction 9-21
IAN instruction 9-20
IBj instruction 8-22
ID instruction 8-24
IDENT pseudo
binary generation 3-7,9

blank variable field 3-15; 4-10

block groups 3-3
description 4-2,9

Index-8

example 4-4,12,13,15,16,17,41

force upper 3-5
overlay generation 3-7,9
program identification 4-2
IF pseudo 4-57
IF skipped lines listed 4-67
IFC pseudo
description 4-61
example 5-5,11
permissible anywhere 4-2
IFCP pseudo 4-56
IFop pseudo 4-57
IFPP pseudo 4-56
IJM instruction 9-17
Increment unit 8-4,7,44,46,47
Indexed address, PPU 9-15
Index register 8-8
Indirect address, PPU 9-14
Input, assembler 10-2,3
Instructions
coding of 2-1
CPU 8-1
mnemonically identified 6-3
nil 6-6
no-operation 8-43; 9-9
PPU 9-1
pseudo 4-1
redefinition 5-16, 25
synonymous 6-5,9
syntactically identified 6-7
Integer value 2-17
Internal BCD
character set D-1
option 4-22
Invented symbol 5-33; 11-9
IR instruction 8-24
IRM instruction 9-18
IRP pseudo
acting as nil 6-6
description 5-34
example 5-35, 36
permissible anywhere 4-2
IXi instructions 8-38

J option 4-7,8; 9-5

dob card 10-1

Job priority 10-1

JP instruction
description 8-23
force upper 3-5

60279900D

L control card option
description 10-3
related to LIST 4-65

L error 11-10

L list option 4-67

L location flag 4-32; 11-14

Labeled common
description 3-2
establishment 4-26
tables B-3

LCC pseudo
description 4-17
illegal if absolute 4-6,7,8

LCM attribute 4-59

LCM blocks 3-3; 4-28

L.CM transfer instructions 8-14,18

LCN instruction
data transmission 9-3
description 9-8

LCT table B-3

LDC instruction
data transmission 9-3
description 9-9
example 2-21

LDD instruction
data transmission 9-3
description 9-13

LDI instruction
data transmission 9-3
description 9-14

L.DM instruction
data transmission 9-3
description 9-15
example 5-21

LDN instruction
data transmission 9-3
description 9-8
example 5-12; 9-8

Left shift instruction 8-31,32

LE IF operator 4-57
IFC operator 4-61

LE instruction 8-25

Library maintenance programs 2-1

LINK table

description B-9

written by SEGMENT 4-14
LGO control card 10-4

60279900D

Linkage symbols 2-7; 4-40; B-9
Listable output
assembled code 11-6
assembler statistics 11-9
binary control cards 11-1
block usage 11-3
control card control 10-3,4
default symbols 11-9
entry point symbols 11-4
error directory 11-9
error flags 11-10,11
external symbols 11-5
header information 11-1
literals 11-8
source statements 11-6
statistics 11-9
subtitles 11-1
symbolic reference table 11-13
titles 11-1
user control 4-65; 10-3,4
List, full 10-3
Listing control
control card 10-3,4
pseudo 4-65
List, parameter
ECHO 5-8
equivalenced macro 5-25
macro 5-18
LIST pseudo
description 4-65
example 4-12:;5-6,12
permissible anywhere 4-2
List, short 10-4
Literals
absolute program 3-8
description of block 3-1,2
IDENT 3-10,16
listing 11-8
location 1-3; 3-1,2
notation 2-11
PPU overlay 3-12
protection 4-29
SEGMENT overlay 3-16
SEG partial binary 3-14
symbol 2-7
LIT pseudo
description 4-47

example 2-11,16, 20; 4-13,48; 5-6

listing 11-7,8

Index-9

LJM instruction
description 9-6
example 5-21

LMC instruction
description 9-9
logical function 9-5

LMD instruction
description 9-13
logical function 9-5

LMI instruction
description 9-14
logical function 9-5

LMM instruction
description 9-15
logical function 9-5

LMN instruction
description 9-8
logical function 9-5

Load address 4-3

Load-and-go file 1-3; 10-3

Loader cotitrol card 4-17

Loader tables B-1

LOC attribute 4-59

Local blocks 3-2
absolute program 3-7
description 3-2
establishment 4-26
relocatable program 3-5

Local common table B-3

LOCAL statement
description 5-32
example 5-33
heading 5-13

Local symbol
CPU instruction 8-5
macro body 5-13
subprogram 3-1; 4-22

Location counter
BSS 4-31
control 4-26
description 3-4
forced upper 3-5
ORG 4-29
special element 2-9; 3-4
USE 4-27
USELCM 4-28

Location field
listing 11-6
statement 2-1

L.O control card option
description 10-4
related to LIST 4-65

Index-10

LOC pseudo
description 4-32
example 4-33,51

location counter changed 3-4
Logical difference instruction 8-28

Logical functions, PPU 9-4
Logical minus 2-13,22

Logical product ins truction 8-27
Logical prod and comp instruc 8-29

Logical record B-1

Logical shift instruction 8-31,32

Logical sum instruction 8-28
Long add unit
description 8-4,7
instructions 8-38
LPC instruction
description 9-9
logical function 9-5
LPN instruection
description 9-8
logical function 9-5
LT IF¥ operator 4-57
IFC operator 4-61
LT instruction 8-25
LXi instruction 8-31,32
example 2-19

M base option 4-20

M list option 4-67

Macro
body 5-13
call 5-18,25
equivalenced 5-24
definition 5-13
header 5-14
list control 4-67

name 2-2; 5-15,18,25; 6-1

permissible anywhere 4-2

processing 5-1,14

system defined 4-16; 5-36

terminator 5-14
MACROE pseudo

description 5-24

example 5-27

IRP related 5-35

operation code table entry 6-1

permissible anywhere 4-2
MACRO pseudo
description 5-15

example 4-24,62; 5-5,19, 20, 21, 22, 33, 35, 36

IRP related 5-35

operation code table entry 6-1

permissible anywhere 4-2

60279900A

Mask instruction 8-41
Mass storage, system 1-3
Master list control 4-67
MAX pseudo
description 4-37
listing 11-7
MI instruction 8-24,25
MIC attribute 4-60
MICCNT pseudo
description 4-39
example 4-39
listing 11-7
permissible anywhere 4-2
MICRO
BASE 4-19
DATE 7-5
decimal 7-4
definition 4-19; 7-2
editing 2-4
mark 2-4; 5-1
octal 7-4
reference 7-1
size 4-39; 7-2
system defined 4-16; 7-2
test for 4-60
MICRO pseudo
description 7-2
example 4-39; 5-11; 7-2,3
permissible anywhere 4-2
MI instructions 8-23, 25
MIN pseudo
description 4-38
listing 11-7
Minus as local separator 5-32

Minus as parameter separator 5-8,13,16,

25,28
Minus on listing 11-7
Minus operator 2-22,23; 8-5
Minus sign in location field
CPU instruction 3-4,5; 4-49
PPU instruction 3-5; 4-49
VFD instruction 4-49
MJ instruction 8-17
force upper 3-5
MJN instruction
description 9-6
effect of J 4-7
Mnemonic operation code
legal operation field entry 2-1
OPDEF defined 5-27
search for 6-1
Modifiers, numeric data 2-19
MODIFY common decks 5-2

60279900D

Multiple entry point table
description B-12
suppression 4-19
used for overlays 3-14

MXi instruction
description 8-41
example 2-19; 8-41

MXN instruction
description 9-10

N eject mode 10-4
N error 11-11
N list option 4-68
Name
block 4-26
different types 2-5
duplicate code 5-7,8
general description 2-5
IF sequence 4-55
macro 5-16
micro 4-19; 7-2,4,5
mnemonic operation 6-1
overlay 4-10,14
paraméter 5-8
remote code 5-3
NE instruction 8-25
NE IF operator 4-57
IFC operator 4-61
Nesting, level of 1-3
NG instruction 8-24, 25
NIL pseudo 6-6
permissible anywhere 4-2
NIM instruction 9-18
NJN instruction
description 9-6
effect of J 4-7
NO eject option 10-3
NO instruction 8-43.
NOLABEL pseudo
description 4-18
permissible anywhere 4-2
NOM instruction 9-18
NOREF pseudo 4-71
permissible anywhere 4-2
Normalize instruction 8-33, 34
Normalize unit
description 8-7
instructions 8-33, 34

Index-11

Not equal sign
parameter separator 5-8,13
special character 2-4
Numeric data 2-17
NXi instruction 8-34
NZ instruction 8-23,25

O base 2-19,20; 4-19

O error 11-10

O mode 10-4

OAM instruction 9-21

OAN instruction 9-20

OBj instruction 8-22

Octal listing 11-6

Octal notation 2-19

OCTMIC pseudo 7-4
permissible anywhere 4-2

Opdef
body 5-13
call 5-30

definition 5-13

heading 5-14

list control 4-67

processing 5-14

system defined 4-16
OPDEF pseudo

description 5-27

example 5-29,30,31,32

operation code table entry 6-1

permissible anywhere 4-2
Operand registers 8-8
Operation code table 6-1
Operation code value

CPU 6-8; 8-1

PPU 6-4;9-1
Operation, definition

compressed 5-1

duplicated text 5-6

external text 5-2

general description 5-1

macro definition 5-13

opdef definition 5-13

remote text 5-3

system 5-36
Operation field

blank 4-43

description 2-1

search 6-1

Index-12

Operator
element 2-22
mnemonic 5-27; 6-7
register 2-23; 5-28; 6-7
term 2-22
Operator with constant 2-13,17
OPL file 5-2; 10-3
OPSYN pseudo
description 6-5
permissible anywhere 4-2
ORG pseudo
description 4-29
determine blocks 3-1
establish absolute blocks 3-2; 4-29
example 4-4,7,12,15,28,29,41
location counter changed 4-29
origin counter changed 3-3; 4-29
Origin
multiply entry point 4-3; B-12
overlay 4-11,14; B-12
program 4-3; B-12
Origin counter
BSS 4-31
control 3-3, 4-29
description 3-3
final value, absolute 3-7
final value, relocatable 3-5
forced upper 3-4,5
maximum value 3-7
ORG 4-29
special element 2-9: 3-3
USE 4-27
OR instruction 8-24
ORM instruction 9-18
Overflow error 2-18
Overlay
absolute 3-7
binary format B-11
entry point 4-10,14
general description 3-7
level numbers 3-9; 4-4,10,13
multiple entry point 3-14
name 4-10,14
origin 4-10,13
PPU 3-9
primary 3-9; 4-11,14
secondary 3-9; 4-11,14

60279900A

Overlay control table
description B-11
suppression 4-19

P error 11-11
P numeric data modifier 2-18
P pagination mode 10-4
Pack instruction 8-36
Padding of CPU word 3-4; 4-49; 8-2
Page heading 11-1
Page number 11-1
Pagination control 10-4
Parameter
actual 5-7,18,26
embedded 5-18, 26
formal 5-8,13
indefinitely repecated 5-35
iterative 5-18,26,35
substitutable 5-8,13,16,25,28,35
Parameter mark 5-9,13
Parameter, null 5-9,18,26
Parameter separator
actual 5-18,26
formal 5-8,13,16
Parcel 8-1
Parentheses
local symbol separator 5-32
nested 5-9
parameter separator 5-8,13,16, 25,28
Partial binary
IDENT type 3-15
SEG type 3-14
Pass instruction
CPU 8-43
PPU 9-9
Pass one
expression evaluation 2-23, 265 3-3
general description 1-3
maximum test 4-37
minimum test 4-38
symbol definition 2-6
Pass two
expression evaluation 2-23,26; 3-3; 8-2
general description 1-3
symbol definition 2-6
value for MAX 4-37
value for MIN 4-38
PERIPH pseudo
description 4-9
effect on branch instructions 9-5
example 4-45,65
first statement group 4-2

60279900D

PIDL table B-3
PJN instruction
description 9-6
effect of J 4-7
PL instruction 8-24,25
Plus in location field
CPU instruction 3-4
PPU instruction 3-5
VFD instruction 4-49
Plus as parameter separator 5-8,
Plus as local name separator 5-32
Plus on listing 11-7
Plus operator 2-22,23; 8-5
Point
binary 2-17,18
decimal 2-18
octal 2-18
parameter separator 5-8,13,16, 25,28
register designator 2-8
Population unit 8-44
Position counter
control 4-34,49
description 3-4
special element 2-9; 3-4
POS pseudo 4-34
Post radix 2-18
PPOP pseudo
description 6-3
example 5-12; 6-4
permissible anywhere 4-2
PPU instructions 9-1
A-register /O 9-20
block I/O 9-20
branch 1/0 9-17,18
branch 9-5
central read/write 9-16
channel function 9-22
constant mode 9-9
designators 9-3
direct address 9-13
error stop 9-23
exchange jump 9-10
execution times A-1
format 9-1
functions 9-3
indexed direct address 9-15
indirect address 9-14
jump 9-7
no address 9-8
no operation 9-9
output record flag 9-22
shift 9-7

13,16,25, 28

Index-13

PPU pseudo
description 4-7
effect on branch 9-5
example 4-8,47
first statement group 4-2
Prefix table
binary format B-2
comments 4-18
generation 3-7
suppression 4-19
Preradix 2-19
Program, absolute 3-7; 4-6
Program execution 10-5
Program identification 4-3; B-3
Program origin 4-3
Program, relocatable 3-5
Program stop instruction 8-11
Program structure 3-1
Pseudo instructions
binary control 4-6
block counter control 4-26
definition operation 5-1
first statement group 4-2
introduction 4-1
micro 7-1
mode control 4-19
operation code table management 6-1
operation field entry 2-2
permissible anywhere 4-2
required 4-2
subprogram identification 4-2
types 4-1
PS instruction
description 8-11
force upper 3-4,5
PSN instruction 9-9
PURGDEF pseudo
description 6-9
permissible anywhere 4-2
PURGMA C pseudo
description 6-6
example 6-5
permissible anywhere 4-2
Push down stack 1-3
PXi instruction 8-36

Q to.represent expression 5-27; 6-7
Qualifier, symbol 4-22

used for definition operations 5-2
QUAL pseudo

description 4-22

example 4-12,23; 5-22

permissible anywhere 4-2

Index-14

R error 11-10
R list option 4-68
R~ pseudo

description 4-51

example 4-52; 5-21

illegal in PPU program 4-7,8
RAD instruction

description 9-13

replace function 9-5
Radix 2-19,20
RAI instruction

description 9-14

replace function 9-5
RAM instruction

description 9-15

replace function 9-5
Real-time clock set instruction 8-20
Record name, external text 5-3
Recursion level 1-3; 5-1
Recursion stack 1-3; 5-1
Reference

macro 5-18

macroe 5-25

nested 5-1

opdef 5-30
Reference table, symbolic 11-13
Registers, CPU 2-8; 8-8
Register designators

CPOP 6-7

description 2-8; 8-8

not symbols 2-6

OPDEF 5-27

OPSYN 6-9

PURGDEF 6-9
RE instruction

description 8-14

force upper 3-4
REL attribute 4-59
Relocatable binary format B-1
Relocatable program structure 3-5
Relocation bytes B-5,8
Remote assembly 5-3
Repeat count

DUP 5-7

replication 4-54; B-7
REPI pseudo

description 4-53

illegal if absolute 4-6,7,8
REPL table B-7

result of BSSZ 4-44

result of REP or REPI 4-53

written by SEGMENT 4-14

60279900A

Replace functions, PPU 9-5
Replication of code 4-54
Replication table B-7
REP pseudo
description 4-53
illegal if absolute 4-6,7,8
Return jump, CPU 8-13
RFN instruction 9-22
BRI instruction 8-20
Right shift 8-31,33
RJ instruction
description 8-13
example 4-27; 5-21; 8-13
force upper 3-5
RJM instruction $-6
RL instruction 8-15
RMT pseudo
description 5-3
example 5-5,6
permissible anywhere 4-2
RO instruction 8-21
Round and normalize instruction 8-34
RPN instruction 9-11
RXi instructions
add 8-38
divide 8-43
multiply 8-40
RXj instruction 8-18

S list option 4-68
S numeric data modifier 2-18
S storage flag 11-14
S systems text mode 10-4
SAi instructions
description 8-44
example 2-15,16, 20; 4-27, 31; 5-22, 35; 8-45
SBD instruction
arithmetic function 9-4
description 9-13
SBI instruction
arithmetic function 9-4
description 9-14
SBi instructions
description 8-46
example 2-11,15; 4-52; 8-47
SBM instruction
arithmetic function 9-4
description 9-15

60279900D

SBN instruction
arithmetic function 9-4
description 9-8
Scale, binary 2-18
SCM blank common 3-3
SCM labeled common 3-2
SCN instruction
description 9-8
logical function 9-5
SEG pseudo
binary generation 3-7
description 4-15
example 4-16
force upper 3-5
illegal in PPU program 4-7,8
SEGMENT pseudo
binary generation 3-7
description 4-14
example 4-15
force upper 3-5
illegal in PPU program 4-7,8
overlay structure 3-12
Semicolon in definition 5-9,13
Sequencing
listing 11-7
statement 2-1
SET attribute 4-59
Set instructions 8-44,46, 47
SET pseudo
description 4-36
example 2-9,20; 5-11, 22
listing 11-7
Shift
description of unit 8-4,7
CPU instructions 8-31, 32, 33, 34, 35, 36, 41
PPU instructions 9-7
SHN instruction 9-7
Short jump limit 4-8
Short list 10-4
Single precision instructions
add rounded 8-38
add unrounded 8-36
divide rounded 8-42
divide unrounded 8-42
multiply rounded 8-40
multiply unrounded 8-39
SKIP pseudo
description 4-63
permissible anywhere 4-2

Index-15

Slant bar
local symbol separator 5-32
operator 2-22,23; 8-5
parameter separator 5-8,13,16, 25,28
SOD instruction
description 9-13
replace function 9-5
SOI instruction
description 9-14
replace function 9-5
SOM instruction
description 9-15
replace function 9-5
Space, embedded (see blank)
SPACE pseudo
description 4-69
permissible anywhere 4-2
Special elements
FORTRAN call 2-9
general description 2-9°
in variable field 2-2
location counter 3-4
origin counter 3-3
position counter 3-4
SST attribute 4-60
SST pseudo 4-40
example 4-12
permissible anywhere 4-2
Stack, recursion 1-3,5-1
Statement
coding conventions 2-3
comments 2-2
compressed 5-1
continuatiogn 2-2
external source 5-2
first column 2-1
first group 4-1
format 2-1
listing 11-5
number assembled 11-9
size 2-1
source of 5-1; 10-3
Statistics, assembler 11-9
STD instruction
data transmission function 9-3
description 9-13

Index-16

STEXT pseudo
description 4-16
example 4-17
first statement group 4-2
STI instruction
data transmission function 9-3
description 9-14
STM instruction
data transmission function 9-3
_description 9-15
STOPDUP pseudo
description 5-9
example 5-11
Storage reservation 4-31,43
String, character
comparison 4-61
data generation 4-54
delimited 2-10,14
empty 2-14
micro 2-4
notation 2-14
Subprogram length 3-5
Substitution, micro 7-1
Subsubtitle
EJECT 4-69
listing of 11-1
QUAL 4-23
SPACE 4-69
TITLE 4-70
TTL 4-71
Subtitle
CTEXT 4-70
listing of 11-1
TITLE 4-69
SXi instruction
description 8-47
example 2-15,19; 5-21, 35; 8-48
Symbol
attribute 2-6; 4-58, 34
created 5-33
default 2-7
definition 2-6; 4-34
duplicate 2-6
entry point 2-6
external 2-7
invented 5-33; 11-9
literals 2-7
local to macro 5-13, 33
local to QUAL 3-1
location field 2-6
lost 11-9,13

60279900D

number defined 11-9
number referenced 11-9
previously defined 2-8
qualified 2-8; 4-22
redefinition 4-34
system defined 2-7; 4-40
undefined 2-8
value 2-6; 4-34
Symbol qualifier listed 11-1
Symbol table
clearing 3-10,12
systems text 4-16
Symbolic reference table
address reference 4-72
detailed description 11-13
general description 4-66
generation 1-3
list control 4-67; 10-3,4
omit symbol 4-70
Synonymous operation
CPU 6-9
mnemonic 6-5
PPU 6-5
syntactic 6-9
Syntax definition 5-27; 6-7,9
Syntax search 6-1
Systems text 4-16; B-13
SYSTEXT option 10-4
related to G mode 10-3
related to STEXT 4-16
T list option 4-68
Table
loader B-1
operation code 6-1
symbolic reference 11-13
USE 4-10,15,26,28,29
TBj instruction 8-20
Term 2-22
Term operator 2-22
Terminator, macro 5-13
Test symbol attribute 4-59
Text and data table B-5
TEXT table B-5
Time limit 10-2
TIME micro 7-5
Time of assembly 11-1
Times of execution A-1
CPU instructions A-7
PPU instructions A-13

60279900D

Title

ES 8-12

IDENT 4-4

listing of 11-1

TITLE 4-70

Ps 8-11
TITLE pseudo 4-70

permissible anywhere 4-2
Transfer symbol 4-5
Transfer table B-10
Transmit instruction 8-27
Truncation, character data 2-13

expression value 2-26
TTL pseudo 4-71

permissible anywhere 4-2

U error 11-11
UJN instruction
effect of J 4-7
description 9-6
Unconditional jump
CPU 8-23
PPU 9-6
Underflow error 2-18
Unpack instruction 8-35
USASCII code
character set D-1
option 4-22
USELCM pseudo
description 4-28
establish common blocks 3-3
example 4-28
illegal in PPU program 4-7,8
USE pseudo
change blocks 3-1; 4-26
description 4-26
establish common blocks 3-3,4; 4-26
establish local blocks 3-2; 4-26
example 4-16,24,27,28,30; 5-22,36
USE table
entry 4-27,28,29
reinitialization 3-10,12; 4-9
UXi instruction 8-35

Verror 11-11
Value, numeric 2-17
Variable field 2-2
Variable field definition 4-49
VFD pseudo
description 4-49
example 2-15; 4-21, 24, 27,50; 5-22

Index-17

WE instruction
description 8-14
force upper 3-4

WL instruction 8-15

WXj instruction 8-18

X external flag 4-42; 11-7
X external text mode 10-4
X file option
description 10-4
XTEXT default 5-3
X list option 4-68
X register
conditional instructions 8-23
deseription 8-4
designator 2-8
setting - 8-47
XFER table B-10
XJ instruction
description 8-16
force upper 3-4,5
XREF pseudo
description 4-73
permissible anywhere 4-2
XTEXT pseudo 5-1
related to CTEXT/ENDX 4-72
XTEXT source 10-4 N

Zero block
absolute program 3-2
description 3-2
relocatable program 3-5

Zeroed words 4-43

Zero fill 2-14; 4-49

Zero guaranteed
data item 2-14
DIS item 4-45

ZJN instruction
description 9-6
effect of J 4-7

ZR instruction

AN description 8-24, 25

force upper 3-5

ZX instruction 8-34

Index-18 60279900D

CUT ON THIS LINE

— — — ' — S——

COMMENT SHEET CONTROL DATA

CORPORATION

6000 COMPASS Version 2
7000 COMPASS Versiors 1 and 2 Reference Manual

PUBLICATION NO. 60279900 REVISION D

TITLE:

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME :

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department

215 Moffett Park Drive

Sunnyvale, California 94086

T ADRL

CUT ON THIS LINE

'PSEUDO INSTRUCTION INDEX SRR s

o ~first group =3
~:anywhere - (- :’'normal’ 4
anywhere - P 4 . anywhere: PP - 6.1.2
“dnywhere © . CPPP - - R PPUS T first group - ‘PP T 4.3.2-
~omormal ;o CP,PP . . PURGDEF ' “anywhere ~CP 6.2.3-
anywhere - CRPP. " J PURGMAC ‘anywhere PP’ 6.1.4°
normal .o CR/PP. CQUAL . . . anywhere "~ .CP,PP - 4, 4.3
" -anywhere . . cP .- 2.1 L REP: =~ normal . "CPR 4.8.8: 7
anywhere - CP -2.2 - REPI" - _ normal’ CPR 4.8.8-
€ , normal - CP LT B CRMT ¢ anywhere © “CP,PP 5.2:1 - .
“DATA -~ normal ; CP,PP. 8.2 g R normal. cP 4.8,7 If
~DECMIC: - anywhere CP,PP - 12,2 ¥ SEG normal CPA, PP 4:3:6..1
DIS. o mormal o CP; PP: 4.8.3 Y} SEGMENT . normal . CPA,PP C4.3.5
SDUP . normal CP,PP 5.3.1 § SET normal CP,PP - - 4.6.2
ECHO - . - normal . CP,PP 5.3.2 SKIP anywhere CP,PP 4.9.8
"EJECT anywhere ; - CP,PP 4.11.2 § SPACE anywhere CP,PP 4.11.3
ELSEY . anywhere CP,PP . 4.9.2 QRssT anywhere CP, PP . 4.6.6
END* . . required last CP,PP '~ 4.2.2) STEXT first group - CP,PP 4.3.7
FNDD anywhere e CP,PP 5.3.74 STOPDUP normal CP, PP 5.3.3.
ENDIFY anywhere CP, PP 4.9.1 TITLE anywhere CP, PP 4.11.4
ENDM anywhere CP, PP. 5.4.1 TTL anywhere } CP, PP 4,11,5
ENDX _normal CP,PP - 4.11.7 USE normal) CP,PP 4,5,1
'ENTRY normal CP, PP 4.7.1 ¥ uSELCM normal cp 4.5.2
EQU normal CP,PP 4.6.1 VFD normal CP,PP 4.8.5
ERR normal CP, PP 4,10.1 XREF anywhere CP, PP 4,11.8
ERRNG normal CP,PP 4.10.2 § XTEXT normal CP, PP 5.1
ERRNZ normal CP, PP 4.10.2 § mlank) normal CP,PP 4.8.1
ERRPL normal CP,PP 4.10,2 | = normal CP, PP 4,6.1
ERRZR normal CP, PP 4,10.2
EXT normal CcP, PP 4.7.2
HERE anywhere CP, PP 5.2,2
IDENT required first CP,PP 4.2.1 and 4.3.4
IF normal CP, PP 4.9.5
IFC anywhere CP, PP 4.9.6
IFCP normal CP, PP 4.9.3
1FGE normal CP, PP 4.9.4
IFGT normal CP, PP 4.9.4
IFLE normal CP, PP 4.9.4
IFLT normal CP, PP 4.9.4
IFMI normal CP,PP 4.9,7
IFNE normal CP, PP 4.9.4
IFPL normal CP, PP 4.9,7
IFPP normal CP, PP 4.9.3
IFEQ normal CP, PP 4.9.4
IRP anywhere CP, PP 5.4.9
LCC normal CPR 4.3.8
LIST anywhere CP, PP 4,11.1 Legend
LIT normal CP, PP 4.8.4
L.OC normal CP,PP 4.5.5 CP Absolute or relocatable CPU program
L.OCAL macro or opdef CP,PP 5.4.8 CPA Absolute CPU program
MACRO anvwhere CP, PP 5.4.2 CPR Relocatable CPU program
MACROF anywhere CP, PP 5.4.4 PP = Absolute PPU program
MAX normal CP, PP 4.6,3
AMICCNT anywhere CcP,PP 4.6.5
MICRO anywhere CP, PP 7.2.1
MIN normal CP, PP 4.6.4
NIIL. anywhere CP, PP 6.1.3
NOLABFL anywhere CP, PP 4.3.10
NORETF anywhere CP, PP 4.11.6
QCTMIC anyvwhere CP, PP 7.2,3

1 ovoked for diarine IF cliinmi mo

	0001
	0001a
	0002
	0003
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-16_1
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-62_1
	04-62_2
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-14_1
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-24_1
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-1
	D-1
	D-2
	D-3
	E-1
	F-1
	F-2
	F-3
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	replyA
	replyB
	xBack

