60492600 L

(G2 CONTROL DATA

COMPASS VERSION 3
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1
NOS 2

NOS/BE 1
SCOPE 2

CPU AND PP INSTRUCTION INDEX

CPU INSTRUCTIONS: RX1 X3*xk 41ijk 8-40 CRM m,d 61dm 9-18
RX1 X3/ Xk 4513k 8-43 CWD d 62d 9-18
v RXj Xk 014k 8-20 CWM m,d 63dm 9-18
Mnemonic Operation Page SAd Aj+K 501 jK 8-44 OCN d 75d 9-24
Code Code (octal) Number SAi Bj#K 514jK 8-44 EIM m,d 61dm 9-21
B SAi X3+ 5213K 8-44 EM m,d 67dm 9-19
AXi +3k 2143k 8-32 SAi X3+Bk 53ijk 8-44 EOM m,d 65dm 9-21
AXi Bj.xk 2315k 8-33 SAi Aj+Bk 544 jk 8-44 ERN d 270d 9-14
BXi Xj 1013j 8-27 SAi Aj-Bk 551jk 8-44 ESN d 7700 9-25
BXi X3*Xk 114k 8-28 SAd Bj+Bk 561k 8-44 ETN d 260d 9-14
BXi Xj+Xk 12ijk 8-28 SA§ Bj-Bk 571k 8-44 EXN d 260d 9-12
BXi X3-Xk 13ijk 8-29 SBi Aj+K 601K 8-46 FAN d 76d 9-24
BXi Xk 14ikk 8-29 SBi Bj+K 611jK 8-46 FIM m,d 60dm 9-21
BXi -Xk*Xj 154k 8-30 SB1i XJ¥K 623K 8-46 FIM m,d 66dm 9-19
BXi -Xk+X3j 161jk 8-30 SBi Xj+Bk 63ijk 8-46 FNC m,d 77dm 9-24
BXi “Xk-Xj 1743k 8-31 SBi Aj+Bk 6413k 8-46 FOM m,d 64dm 9-21
CR Xj,Xk 6603k 8-46 SBi Aj-Bk 651k 8-46 IAM m,d 71dm 9-22
CW X3, Xk 6704k 8-46 SBi Bj+Bk 661jk 8-46 IAN d 70d 9-22
cXxi Xk 47 ikk 8-43 SBi Bj-Bk 671k 8-46 I0M m,d 65dm 9-19
DF X3.K 036K 8-24 SXi Aj+K 70i3jK 8-48 IRM m,d 62dm 9-21
DXi Xj+Xk 32ijk 8-38 SXi BJ+K 713K 8-48 LCN d 15d 9-10
DXi X3-Xk 33ijk 8-38 SXi X3+K 7213K 8-48 LDC c 20dm 9-1
DXi Xj*Xk 421k 8-40 SXi X3¥Bk 731k 8-48 L d 30d 9-15
EQ Bi,Bj,K 041ijK 8-26 SXi Aj+Bk 7413k 8-48 LDI d 40d 9-15
ES K 00000 8-14 SXi Aj-Bk 7513k 8-48 LM m,d 50dm 9-16
FXi Xj+xk 301k 8-37 SXi Bj+Bk 761 jk 8-48 LN d 14d 9-10
FXi Xj-Xk 31ijk 8-37 SXi Bj-Bk 7713k 8-48 LM m,d 0ldm 9-7
FXi Xi*Xk 401 jk 8-39 TBj 016j0 8-21 IMC ¢ 23dm 9-1
FXi X3/Xk 444 jk 8-42 uxi Bj, Xk 26ijk 8-35 LMD d 33d 9-15
GE Bi,Bj,K 0613K 8-26 WE Bj+K 0123K 8-15 LMI d 43d 9-15
GE Bi,K 0610K 8-26 WL Bj+K 012jK 8-16 MM m,d 53dm 9-16
GT Bj,Bi,K 071K 8-26 WXj Xk 015k 8-19 LMN d 11d 9-10
GT Bj,K 0703K 8-26 XJ Bj+K 013jK 8-17 LPC ¢ 22dm 9-11
1Bj Bk 016k 8-22 R Xi,K 030K 8-24 LPN d 12d 9-10
1D Xj,K 0373K 8-24 IR Bi,K 040K 8-26 LRD d 24d 9-12
IR X3,k 034 jk 8-24 Xi Bj, Xk 25ijk 8-35 MAN d 262d 9-12
it xjexe 361k 8-39 MIN r 07d g-'{z
IXi XJj-Xk 3743k 8-39 . MXN 261d =
IXi Xj*Xk 42ijk 8-41 CMU INSTRUCTIONS: NIM m,d 63dm 9-21
JpP Bi+K 021K 8-23 NN r 05d 9-7
LE Bi,Bi,K 061K 8-26 ~ NOM m,d 67dm 9-21
(T Bi.BiXK 073K 8-26 ¢ BokgsCaokpscy 853 | o md 73dm 9-22
LXi +jk 20ijk 8-31 cu £,k,,¢,,k ¢ 8-54 OAN d 72d 9-22
LXi Bj, Xk 221k 8-32 LT _ ORM m,0 66am 9-2i
MI %3,K 033K 8-24 DM !’Ks’cs’kd’cd 8-52 PIN r 06d 9-7
MI Bi,K .0710K 8-26 M Bj+K (4643K) 8-51 PSN 2400 S-11
MJ 01300 8-18 MD LkoCookyaCy 8-51 RAD d 35d 9-15
MJ Bj+K 013K 8-18 RAI d 45d 9-15
MXi +jK 43ijk 8-42 RAM m,d 55dm 9-16
NE Bi,Bj,K 051K 8-26 RFN d 74d 9-23
NG Bi,K 070K 8-26 | PP INSTRUCTIONS: RIM m,d 02dm 9-7
NG Xi,K 033K 8-24 RPN d 270d 9-13
NO n 46n 8-43 SBD d 32d 9-15
NXi B3, Xk 24143k 8-34 Operation Page SB1 d 42d 9-15
NZ Bi,K 0510K 8-26 Name Code (octal) Number | SBM m,d 52dm 9-16
NZ X3,k 031K 8-24 BN d 17d 9-10
0Bj Bk 0173k 8-22 ACN d 744 9-24 | SCF md saaamit 9-20
OR Xj,K 035K 8-24 ADC ¢ 21dm 9-1 SCN d 13d 9-10
PL X3.K 032K 8-24 ADD d 31d 9-15 | SPM m,d e6admit 9-20
PL 8i,K 060K 8-26 ADI d 41d 9-15 SHN r 10 9-9
PS K 0000K 8-13 ADM m,d 51dm 9-16 s d 37d 9-15
PXi Bj,Xk 271jk 8-36 ADN d 16d 9-10 S01 d 47d 9-15
RE Bj+K 011K 8-15 AM m,d 64dm 9-19 SOM m,d 57dm 9-16
RI Bk 0160k 8-21 AOD d 36d 9-15 SRD d 25d 9-12
RJ K G100K 8-14 A0I d 46d 9-15 STD d 34d 9-15
RL Bj+K 011K 8-16 AOM m,d 56dm 9-16 ST d 44d 9-15
RO Bk 0170k 3-22 CCF myd 65admil 920 | STM m,d S4dm 9-16
RXi X3+Xk 34ijk 8-38 CFM m,d 674dmiT 9-20 UIN v 03d 9-7
RXi Xj-Xk 3513k 8-38 CRD d 60d 9-17 N r 04d 9-7
TThere is also an integer divide macro {IXj Xj/xk).

11 The operation code occupies 7 bits. The d field occupies 5 bits.

60492600 H

60492600

(G2 CONTROL DATA

COMPASS VERSION 3
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1

NOS 2

NOS/BE 1
SCOPE 2

REVISION RECORD

Revision

A (11/01/75)

Descriptibn

Original Release.

B (03/05/76) Manual revised to reflect a new feature and to clarify existing material. The new
feature is: CPl47, LDSET pseudo instruction. See list of effective pages.

C (03/25/77) This reflects feature F7540, Model 176 support, feature CP154, Weak Externals, and
feature CP161, Fast Dynamic Loader, as well as miscellaneous techmical corrections, at
PSR level 446.

D (03/31/78) This revision documents COMPASS Version 3.5. . New features include the DEBUG preset
option and 8 lines/inch density on the load map.

E (10/31/78) This revision documents COMPASS Version 3.6, PSR level 485. New features include the PD
and PS control statement parameters and common common decks.

F (06/29/79) This revision reflects the introduction of SEGLOAD common blocks. An error list
parameter is added to the COMPASS call. Numerous minor technical corrections are made to
section 12.

G (07/07/80) This revision documents support for CYBER 170 Models 720, 730, 740, 750, and 760. An
example program 1s included. Minor technical corrections are made throughout.

H (04/26/82) Revised at PSR level 552 to document support of the CYBER 170 models 825, 835, and 855
Computer Systems, and to incorporate minor technical corrections. This is a complete
reprint.

J (09/24/82) Revised at PSR level 577 to document support of the CYBER 170 models 865 and 875 Computer
Systems and to incorporate minor technical correctionms.

K (10/21/83) Revised at PSR level 599 to document support of the CYBER 170 Model 845 Computer System,
support of PD, PS, and PW listing controls, and to incorporate minor technical
corrections.

L (05/25/84) Revised at PSR level 599 to document support of the CYBER 170 Model 815 and the CYBER 180
Computer Systems.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

OCOPYRIGHT CONTROL DATA CORPORATICON P. 0. BOX 3492

1975, 1976, 1977, 1978, 1979, 1980, 1982, 1983, 1984 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual

11 60492600 L

LIST OF EFFECTIVE PAGES

R T R L N S

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revigion Page Revision

Front Cover - 5-7 E 9-4 K
Inside Front Cover H 5-8 A 9-5 K
Title Page - 5-9 C 9-6 thru 9-10 H
ii L 5-i0 B 9-i1 L
iii/iv L 5-11 D 9-12 L
v L 5-12 A 9-13 H
vi L 5-13 A 9-14 L
vii/viii H 5-14 E 9-15 H
ix L 5-15 F 9-16 L
x L 5-16 thru 5-25 A 9-17 H
xi J 5-26 G 9-18 H
xii L 5-27 B 9-19 L
1-1 thru 1-4 G 5~28 thru 5-35 A 9-20 H
2-1 H 6-1 E 9-21 H
2-2 A 6-2 A 9-22 L
2-3 A 6-3 A 9-23 L
2-4 D 6-4 L 9-24 H
2-5 L 6-5 A 9-25 H
2-6 A 6~6 A 10-1 thru 10-4 H
2-7 [6-7 B 10-5 K
2-8 thrue 2-10 " 6-8 A 10-¢ 4
2-11 K 6-9 L 10-7 thru 10-11 G
2-12 H 6-10 A 11-1 thru 11-4 H
2-13 H 7-1 A 11-5 c
2-14 J 7-2 A 11-6 A
2-15 thru 2-18 H 7-3 G 11-7 thru 11-10 G
2-19 K 7-4 D 11-11 L
2-20 L 7-5 E 11-12 H
2-21 thru 2-27 ;4 7-6 F 11-13 G
3-1 G 7-7 A 11-14 D
3-2 G 8-1 L 12-1 H
3-3 H 8-2 L 12-2 F
3-4 L 8-3 A 12-3 thru 12-18 H
3-5 L 8-4 L 12-19 J
3-6 thru 3-15 G 8-5 J 12-20 thru 12-34 H
4-1 G 8-6 J A-1 thru A-4 A
4-2 G 8-7 H B-1 H
4-3 L 8-8 L B-~2 H
4-4 G 8-9 L B-3 G
4-5 A 8-10 thru 8-12 H B-4 G
4-6 thru 4-8 L 8-13 L B~5 A
4-9 A 8-14 H c-1 A
4-10 L 8-15 L D-1 J
4-11 A 8-16 thru 8-22 H D-2 thru D-8 H
4-12 L 8-23 thru 8-25 L E-1 L
4-13 thru 4-19 A 8-26 thru 8-31 H E-2 thru E-6 H
4-20 F 8-32 L F-1 thru F-3 H
4-21 thru 4-53 H 8-33 L F-4 K
4=54 J 8-34 thru 8-45 H Index~1 thru -7 H
4-55 thru 4-60 H 8-46 L Index-8 * J
4-61 L 8-47 thru 8-49 H Index-9 thru -13 H
4-62 thru 4-80 H 8-50 L Comment Sheet/Mailer L
5-1 A 8-51 G Summary Card L
5-2 C 8-52 thru 8-54 K Inside Back Cover H
5-3 C 8-55 G Back Cover -
5-4 A 9-1 L

5-5 A 9-2 L

5-6 E 9-3 H

60492600 L iii/iv

PREFACE

|

The CONTROL DATA® COMP ASS Version 3.6 Assembler provides the user with a versatile, extensive
language for generation of object code to be loaded and executed on the central processor unit {CPU) or a
peripheral processor (PP or PPU). The assembler executes on the following computer systems and

operating systems:

NOS 1 for the CDC® CYBER 170 Computer Systems; CYBER 70 Computer System models 71, 72, 73,
and 74; and 6000 Computer Systems

NOS 2 for the CDC CYBER 180 Computer Systems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and 6000 Computer Systems

NOS/BE 1 for the CDC CYBER 180 Computer Systems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and 6000 Computer Systems

SCOPE 2 for the CDC CYBER 170 Computer System model 176, CYBER 70 Computer System model
76, and 7600 Computer Systems

The CYBER 170 Computer Systems include the following 800 Series models: 815, 825, 835, 845, 855, 865,
and 875. The CYBER 180 Computer Systems include the following 800 Series models: 810, 830, 835, 845,

and 855, The CYBER 170 models 835, 845, and 855 are the same machines as the CYBER 180 models 835,
845, and 855. References in the text to 800 Series models usually do not distinguish between CYBER 170

and CYBER 180.

The CDC CYBER 170 Computer System models 720 and 730 have unified processors and use the
instructions noted in this publication for computer models with a Compare/Move Unit (CMU) such as the

CYBER 170 Computer System model 172. Models 825, 835, 845, and 855 also support the compare/move
instructions through simulation.

The CDC CYBER 170 Computer System models 740, 750, 760, 865, and 875 have functional units and use
instructions noted in this publication for computer models with functional units such as the CYBER 170
Computer System model 175.

The reader is assumed to be familiar with a Control Data ecomputer and operating system, and with
assemblers in general.

NOTE

Avoid continued use of COMPASS in creating application programs when
possible. COMPASS and other machine-dependent languages can complicate
migration to future hardware and software systems. Software mobility will be

restricted by continued use of COMP ASS for stand-alone programs, COMP ASS
subroutines embedded in programs using higher-level languages, and COMP ASS

owncode routines used with CDC standard products.

In this manual, the acronym ECS refers to all forms of extended memory unless otherwise noted, except in
the context of a multimainframe environment or distributive data path (DDP) access, in which case, models
76, 816, 815, 825, 830, 835, 845, 855, 865, and 875 are excluded.

Extended memory for the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600 is large central

memory (LCM) or large central memory extended (LCME). Extended memory for models 810, 815, 825,
830, 835, 845, 855, 865, and 875 is unified extended memory (UEM). Extended memory for models 865 and

60492600 L v

875 can also include extended core storage (ECS) or extended semiconductor memory (ESM). Extended
memory for all other CYBER 170, CYBER 70, and 6000 Series Computer Systems is extended core storage

(ECS) or extended semiconductor memory (ESM).

The CYBER 170 Model 176 supports direct LCM and LCME transfer instructions, as described in chapter 8.
LCM and LCME transfers initiate an error exit, not a half exit, as noted in ECS/UEM Instructions,

chapter 8.

Hardware descriptions and further programming information for the various forms of extended memory can
be found in the appropriate hardware reference manuals.

In this manual, numbers occurring in text are decimal unless otherwise noted. Lowercase letters in formats
depict variables. The examples assume that assembler numeric mode is decimal and that character mode is
display code unless otherwise noted. In examples, statements generated by the assembler as a result of a
call or a substitution are shown in shaded print.

General explanations of COMP ASS concepts have been limited to the initial pages of each chapter or
section, whenever possible. Subsequent material has been presented in a concise manner to aid in rapid
access to reference information. In keeping with this concept, instruction indexes have been included
inside the front and back covers.

Additional information essential to programming in the COMP ASS environment can be found in the
publications listed in this preface. The publications are listed alphabetically within groupings that indicate
their approximate importance to readers of this manual. Applicable operating systems are also indicated.

The applications programmer will need the CYBER Record Manager Basic Access Methods and Advanced
Access Methods manuals for information about the macros needed to define, access, and manipulate files.
Information necessary to create and manipulate program structures can be found in the appropriate Loader
reference manual (CYBER Loader for the NOS and NOS/BE operating systems, and the SCOPE 2 Loader for
the SCOPE 2 operating system).

In addition to the above, the systems programmer will need the appropriate operating system manual,
either the NOS 1 Reference Manual or the NOS 2 Reference Set, Volume 4, Program Interface, to obtain
information about system macros.

The Software Publications Release History serves as a guide to the revision level of software
documentation which corresponds to the Programming System Report (PSR) level of installed site software.

The following manuals are of primary interest:

Publication
Publication Number NOS1 NOS2 NOS/BE1 SCOPE2
COMPASS Version 3 Instant 60492800 X X X X
CYBER Loader Version 1
Reference Manual 60429800 X X
CYBER Record Manager
Advanced Access Methods
Version 2 Reference Manual 60499300 X X X
CYBER Record Manager
Basic Access Methods
Version 1.5 Reference Manual 60495700 X X X
NOS Version 1
Reference Manual, Volume 1 of 2 60435400 X
NOS Version 1
Reference Manual, Volume 2 of 2 60445300 X

vi 60492600 L

Publication

NOS Version 2 Reference Set,
Volume 4 Program Interface

NOS/BE 1 Reference Manual

SCOPE 2 Loader Version 2
Reference Manual

SCOPE 2 Reference Manual

Publieation
Number

NOSi NOS2 NOS/BE1 SCOPE 2

60459690

60493800

60454780
60342600

The following manuals are of secondary interest:

Publication

CYBER Interactive Debug Version 1
Reference Manual

Modify Version 1 Reference Manual
NOS Version 1 Diagnotic Index

NOS Version 2 Diagnostic Index
NOS/BE Version 1 Diagnostic Index
NOS Version 1 Manual Abstracts

NOS Version 2 Manual Abstracts
NOS/BE Version 1 Manual Abstracts
Software Publications Release History

Update Version 1 Reference Manual

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data ecannot be responsible for the proper
funectioning of undescribed features or parameters.

60492600 H

Publication
Number

NOS1 NOS2 NOS/BE1 SCOPE 2

X

60481400
60450100
60455720
60459390
60456490
84000420
60485500
84000470
60481000
60449900

X

X

vii/viii @

CONTENTS

1 INTRODUCTION 1-1 3.2 Block Control Counters 3-3
3.2.1 Origin Counter 3-3
3.2.2 Location Counter 3-4
1.1 Configuration 1-3 3.2.3 Position Counter 3-4
3.2.4 Forcing Upper 3-4
1.2 Assembler Execution 1-3
3.3 Relocatable Program Structure 3-5
1.3 Relocatable Object Program Execution 1-4
1.4 Interactive Program Debugging 1-4 3.4 Absolute Program Structure 3-6
3.4.1 Absolute Overlays 3-8
3.4.2 Multiple Entry Point Overlays 3-12
2 LANGUAGE STRUCTURE 2-1 3.4.3 Partial Binary 3-12
2.1 Statement Format 2-1
2.1.1 First Column 2-1 4 PSEUDO INSTRUCTIONS 4-1
2.1.2 Location Field 2-1
2.1.3 Operation Field 2-1 4.1 Introduction to Pseudo Instructions 4-1
2.1.4 Variable Field 2-2 4.1.1 Types of Pseudo Instructions 4-1
2.1.5 Comments Field 2-2 4.1.2 Required Pseudo Instructions 4-2
2.1.6 Comments Statement 2-2 4.1.3 First Statement Group 4=2
2.1.7 Statement Continuation 2-2 4.1.4 Permissible Anywhere Instructions 4-2
2.1.8 Coding Conventions 2-3
: 5.2 Subprogram Identification 4=2
2.2 Statement Editing 2-4 4.2.1 IDENT - Subprogram Identification 4-2
2.2.1 Concatenation 2-4 4.2.2 END - End of Subprogram 4-4
2.2.2 Micro Substitution 2-4
4.3 Binary Control 4-6
2.3 Names 2-4 4.3.1 ABS - Absolute CPU Program 4-6
4.3.2 MACHINE - Declare Object Processor
2.4 Symbols 2-5 Type 4-7
2.4.1 Linkage Symbols 2-6 4.3.3 PPU - CYBER 70 Model 76 or 7600
2.4.2 Default Symbols 2-7 PPU Program 4-8
2.4.3 Previously Defined Symbols 2-7 4.3.4 PERIPH - CYBER 180 Series; CYBER 170
2.4.4 Undefined Symbols 2-8 Series; CYBER 70 Models 72, 73, 74;
2.4.5 Qualified Symbols 2-8 or 6000 Series PPU Program 4-10
4.3.5 IDENT - Identify and Generate Overlay 4-11
2.5 CPU Registers 2-8 4.3.6 SEGMENT - Generate Binary Segment 4~15
4.3.7 SEG - Write Partial Binary 4-16
2.6 Special Elements 2-10 4.3.8 STEXT - Generate System Text Record 4-17
4.3.9 COMMENT -~ Prefix Table Comment 4-20
2.7 Data Notation 2-11 4,3.10 NOLABEL - Delete Header Table 4-20
2.7.1 Data Items 2-11 4.3.11 LCC - Loader Directive 4-21
2.7.2 Constants 2-11 4,3.12 LDSET - Generate LDSET Object
2.7.3 Literals 2-12 Directives 4-21
2.7.4 Character Data Notation 2-13 e . B
2.7.5 Numeric Data Notation 2-17 4.4 Mode Control 4-24
2.7.6 Hexadecimal Data Notatiom 2-22 4.4.1 BASE - Declare Numeric Data Mode 4-24
4.4.2 CHAR - Define Other Character Data
2.8 Expressions 2-23 Code 4-26
2.8.1 Types of Expressions 2-24 4.4,3 CODE - Declare Character Data Code 4-26
2.8.2 Evaluation of Expressions 2-27 4 4.4 QUAL - Qualify Symbols 4-28
4.4.5 Bl=1 and B7=1 - Declare that
B Register Contains One 4-30
3 PROGRAM STRUCTURE 3-1 4.4.6 COL - Set Comments Column 4-31
3.1 Subprogram Blocks 3-1 4.5 Block Counter Control 4-32
3.1.1 Absolute Block 3-2 4.5.1 USE - Establish and Use Block 4-32
3.1.2 Zero Block 3-2 4.5.2 USELCM - Establish and Use ECS/LCM
3.1.3 Literals Block 3-2 Block 4-34
3.1.4 User-Established Local Blocks 3-2 4.5.3 ORG and ORGC - Set Origin Counter 4-35
3.1.5 Labeled Common Blocks 3-2 4.5.4 BSS - Block Storage Reservation 4-37
3.1.6 Blank Common Blocks 3-3 4.5.5 LOC - Set Location Counter 4-38
3.1.7 Redundant Block Names 3-3 4,5.6 POS - Set Position Counter 4-40

60492600 L ix

4.11
4.11.1
4.11.2

4.11.3

Symbol Definition

EQU or = - Equate Symbol Value
SET - Set or Reset Symbol Value
MAX - Set Symbol to Maximum Value
MIN - Set Symbol to Minimum Value
MICCNT ~ Set Symbol to Micro Size
SST - System Symbol Table

Subprogram Linkage

ENTRY and ENTRYC - Declare Entry
Symbols

EXT - Declare External Symbols

Data Generation

BSSZ and Blank Operation Field -
Reserve Zeroed Storage

DATA - Generate Data Words

DIS - Generate Words of Character
Data

LIT - Declare Literal Values

VFD - Variable Field Definition

CON - Generate Constants
= — Conditional Increment
Instruction

REP, REPC, and REPI - Generate Loader
Replication Table

Conditional Assembly

ENDIF - End of IF Range

ELSE - Reverse Effects of IF

IFtype ~ Test Object Processor Type

IFop - Compare Expression Values

IFPL and IFMI - Test Sign of
Expression

IF - Test Symbol or Expression
Attribute

IFC - Compare Character Strings

SKIP - Unconditionally Skip Code

Error Control
ERR - Unconditionally Set Error Flag
ERRxx - Conditionally Set Error Flag

Listing Control

LIST - Select List Options

EJECT - Eject Page and Begin New
Sub-Subtitle

SPACE - Skip Lines and Begin New
Sub-Subtitle

TITLE - Assembly Listing Title

TTL - New Assembly Listing Title

NOREF - Omit Symbol References

CTEXT and ENDX - Disable/Enable
Listing of Common Deck Text

XREF - Reference Symbolic Address

DEFINITION OPERATIONS
External Text (XTEXT)

Remote Assembly
RMT - Save- Remote Code
HERE - Assemble Remote Code

Code Duplication

DUP - Simple Duplication

ECHO -~ Echoed Duplication
STOPDUP - Stop Duplication
ENDD - End Duplication Sequence

5-6
5-6
5-7
5-9
5-10

¢ v e « o e 0
e ® o o o o o
OV OONAWUBWN -~

(LR R RV RN N T RV R
)
EadE lE I Sl N)

5.5

~
.
[

NN NN
I Y
NN

« o
W N -

WWWWwLwWwwwww
.

NNSNSNSNN NN

VOO W -

(-]

8.2.3

Macros and Opdefs

ENDM - End Macro Definition

MACRO - Macro Heading

Macro Calls

MACROE - Equivalenced Macro Header
Equivalenced Macro Call

OPDEF - Define CPU Operation

Opdef Call

LOCAL - Local Symbols

IRP - Indefinitely Repeated Parameter

System Macro and Opdef Definitiomns

OPERATION CODE TABLE MANAGEMENT

Mnemonically Identified Instructions
PPOP - PPU Operation Code

OPSYN ~ Synonymous Mnemonic Operation
NIL - Do Nothing Pseudo Instruction
PURGMAC - Purge Macros

Syntactically Identified Instructions
CPOP - CPU Operation Code

CPSYN - Synonymous CPU Instruction
PURGDEF - Purge CPU Operation Code

MICROS
Micro Substitution

Micro Definition
MICRO - Define Micro
DECMIC - Decimal Micro
OCTMIC - Octal Micro

Predefined Micro Names
DATE

JDATE

TIME

BASE

CODE

QUAL

SEQUENCE

MODLEVEL

PCOMMENT

CPU SYMBOLIC MACHINE INSTRUCTIONS
Machine Instruction Formats

Instruction Execution

6600/6700 and CYBER 70 Model 74
Execution

CYBER 180 Computer Systems; CYBER 170
Models 171, 172, 173, 174, 720,
730, 815, 825, 835, 845, and 855;
CYBER 70 Models 71, 72, and 73; and
6200, 6400, 6500 Execution

CYBER 170 Models 175, 176, 740,
750, 760, 865, and 875; CYBER 70
Model 76; and 7600 Execution

Operating Registers
X Registers
A Registers
B Registers

5-13
5-14
5-15
5-18
5-24
5-25
5-27
5-29
5-31
5-33

5-35

6-3
6-3
6-5
6-6
6-7

6-7
6-7
6-10
6-10

NNN’\I\IT‘\I\IQ\I
NN~ OO0

©
[]
o

[+]
t
—

8-2

60492600 L

o
o« o
o
.
—

.
-

R S A N N N
.
—= WO~ EWN

00 00 00 0O 0O €0 0O &0 O

.
(=]

<o
.
P]
. .
——
o

°

™ &
.
&~
.
el o
(VR ")

.
&
. .
—
-2}

Y
.

.
o o o

0o 00 OO0 0O 00 00 =]
L R I
BN DD P e s
N~ OWo

8.4.23

8.4.24

Symbolic Notation

Program Stop or Exchange Jump
Instruction

Error Exit Instruction

Return Jump Instruction

ECS/UEM Instructions

LCM Block Copy Instructions

Exchange Jump Instruction

Exchange Exit Instruction

Direct LCM Transfer Instructions

Direct UEM Transfer Instructions

Reset Input Channel Buffer
Instruction

Set Real-Time Clock Instruction

Reset Output Channel Buffer
Instruction

Read Channel Status Instructions

Unconditional Jump Instruction

X-Register Conditional Branch
Instructions

B~Register Conditional Branch
Instructions

Transmit Instruction

Logical Product Imstruction

Logical Sum Instruction

Logical Difference Instruction

Complement Instruction

Toacfanl Domodinr an =1 am
Logical Product and Ccmylcment

Instruction

Complement and Logical Sum
Instruction

Complement and Logical Difference
Instruction

Logical Left Shift jk Places
Instruction

Arithmetic Right Shift jk Places
Ingtruction

Logical Left Shift (Bj) Places
Instruction

Arithmetic Right Shift (Bj) Places
Instruction

Normalize Instruction

Round and Normalize Instruction

Unpack Instruction

Pack Instruction

Unrounded SP Floating Point Add
Instructions

DP Floating Point Add Instructioms

Rounded SP Floating Point Add
Instructions

Long Add (Fixed Point) Instructions

Unrounded SP Floating Point Multiply
Instruction

Rounded SP Floating Point Multiply
Instruction

DP Floating Point Multiply
Instruction

Integer Multiply Instruction

Mask Instruction

Unrounded SP Floating Point Divide
Instruction

Rounded SP Floating Point Divide
Instruction

Pass Instruction

Population Count Imstruction

Set A Register Instructions

Direct Read/Write Central Memory

Set B Register Instructions

Set X Register Instructions

CMU Symbolic Machine Instructions
IM - Indirect Move
MD - Indirect Move Descriptor Word

60492600 J

8-8

8-13
8-14
8-14
8-15
8-16
8-17
8-18
8-19
8-20

8-21
8-21

8-22
8-22
8-23

8-24

8-26
8-27
8-28
8-28
8-29
8-29

8-30
8-30
8-31
8-31
8-32
8-32

8-33
8-34
8-35
8-35
8-36

8-37
8-38

8-38
8-39

8-39
8-40

8-40
8-41
8-42

8-42

8-43
8-43
8-43
8-44
8-46
8-46
8-48

8-50
8-51
8-51

[R-RY-]
.

M NN
.
et s
(5 W)

OO WO OO
« o = w8 e o
NN DN

“ s e 0
NN = et ot ot
—OWVWRN

DM - Direct Move
CC - Compare Collated
CU - Compare Uncollated

PP SYMBOLIC MACHINE INSTRUCTIONS
Machine Instruction Formats

Symbolic Notation

Branch Instructions

Shift Instruction

No Address Mode Imstructions

Constant Mode Instructions

No Operation Instruction

Load and Store R Register
Instructions

Exchange Jump Instructions

Read Program Address Iastruction

6416 PP Instructions

Direct Address Mode Instructions

Indirect Address Mode Instructioms

Indexed Direct Address Mode
Instructions

Central Read/Write Instructions

1/0 Branch Instructions

I/0 Test and Set Channel Flag
Instructions

I/0 Branch Instructions

A Register Input/Output Instructions

Block Input/Output Instructions

Set Output Record Flag Instruction

Channel Function Instructions

Error Stop Instruction

PROGRAM EXECUTION

Control Statements

Job Statement

COMPASS Control Statement

LGO Control Statement

Program Call Statement

7/8/9 Card

6/7/8/9 Card

USER Control Statement (NOS 1 Omnly)

Sample Decks

LISTING FORMAT

Page Heading

Header Information

Binary Control Card Summary
Block Usage Summary

Entry Point List

External Symbol List

Octal and Source Statement Listing
Literals

Default Symbols

Assembler Statistics

Error Directory

Symbolic Reference Table

8-52
8-53
8-54

9-7
9-9
9-10
9-11
9-11

9-12
9-12
$-13
9-14
9-15
9-15

9-16
9-17
9-19

9-20
9-21
9-22
9-22
9-23
9-24
9-25

10-1

10-1
10-1
10-2
10-6
10-6
10-7
10-7
10-7

10-8

xi

12.2.7
12.2.8
12.2.9

12.2.10
12.2.11
12.2.12
12.2.13
12.2.14
12.2.15
12.2.16

12.2.17

12.2.18
12.2.19
12.2.20
12.2.21

12.2.22
12.2.23
12.2.24

12.2.25
12.2.26

12.2.31
12.2.32

12.2.33

—
[
« o e o e o e .
w

® s o o s e

WWWwWwwwwww

.
o »
WAV WN R

bk bt et ot et bt e
NN NN DN

xii

COMMON COMMON DECKS
Access to the Common Common Decks

Description of the Common Common
Decks

COMCARG - Process Arguments

COMCCDD - Comvert Integer Constant
to Decimal Display Code

COMCCFD -~ Convert Comstant to
F10.3 Format

COMCCIO - Process I/0 Operation

COMCCOD ~ Convert Constant to Octal
Digplay Code

COMCCPT - Extract Comments Field
from PREFIX Table

COMCDXB - Convert Display Code to
Binary

COMCMNS - Move Non—Overlapping
Bit String

COMCMOS - Move Overlapping Bit
String

COMCMIM - Managed Table Macros

COMCMTP - Managed Table Processors

COMCMVE - Move Block of Data

COMCRDC - Read Coded Line, C Format

COMCRDE - Read Coded Line, H Format

COMCRDO - Read One Word

COMCRDS - Read Coded Line to String
Buffer

COMCRDW —~ Read Words to Working
Buffer

COMCRSR - Restore All Registers

COMCSFN - Space Fill Name
COMCSRT - Set Record Type
COMCSST - Sort Table Using Shell
Sort
COMCSTF - Set Terminal File
COMCSVR -~ Save All Registers
COMCSYS - Process System Request
COMCUPC - Unpack Control Card
COMCWOD - Convert Word to Octal
Display Code

COMCWIC - Write Coded Line, C Format

COMCWTH - Write Coded Line, H Format

COMCWTO — Write One Word

COMCWTS - Write Coded Line from
String Buffer

COMCWIW - Write Words from Working
Buffer

COMCXJR - Restore All Registers with
a System XJR Call

COMCZTB - Convert All 00 Characters
to Blanks

Macros That Call the Common Common
Decks

MESSAGE
MOVE

READC
READH
READO
READS
READW
RECALL
SYSTEM

12-1

12-1

12-3
12-3

12-4

12-4
12-5

12-5
12-6
12-6
12-7

12-7
12-8
12-9
12-13
12-13
12-14
12-15

12-16

12-16
12-17
12-18
12-18

12-18
12-20
12-20
12-21
12-22

12-23
12-23
12-23
12-24

12-25
12-25
12-26

12-26

12-27
12-28
12-29
12-29
12-30
12-30
12-30
12-31
12-31
12-32

12.3.10 WRITEC

12.3.11 WRITEH

12.3.12 WRITEO

12.3.13 WRITES

12,3.14 WRITEW

APPENDIXES

A Character Sets

B Assembly-Time I/0

C Binary Card Formats

D Hints on Using COMPASS

E Dayfile Messages

F Glossary

INDEX

FIGURES

2-1 COMPASS Coding Form

3-1 Relocatable Program Structure

3-2 Absolute Program Structure

3-3 Overlay Hierarchy

3-4 IDENT-Type Overlay Structure

3-5 SEGMENT-Type Overlay Structure

3-6 SEG Partial Binary

3-7 IDENT Partial Binary Records

8-1 CPU 15-Bit Instruction Format

8-2 CPU 30-Bit Instruction Format

8-3 Arrangements of Instructions in a 60-Bit
CPU Word

9-1 PP 12-Bit Instruction Format

9-2 PP 24-Bit Instruction Format

9-3 Central Memory Access Instruction
Address Relocation (Models 810, 815,
825, 830, 835, 845, 855, 865, and
875)

11-1 Format of Octal and Source Statement
Listing

11-2 Format of Symbolic Reference Table

TABLES

8-1 CYBER 70 Model 74 and 6000/7600
Functional Units

8-2 CYBER 170 Model 175, 176, 740, 750, 760,
865, and 875; CYBER 70 Model 76; and
7600 Functional Units

8-3 CPU Instruction/Machine Model
Correspondence

8-4 CPU Instruction/Functional Unit
Correspondence

9-1 Peripheral Processor Instruction
Designators

9-2 PP Instruction/Machine Model
Correspondence

11-1 Fatal Errors

11-2 Informative Messages

12-1 Summary of Common Common Decks

12-2 Type Codes Returned by COMCSRT

12-3 Macros That Call Common Common Decks

12-32
12-33
12-33
12-33
12-34

A-1
B-1
C-1
D-1
E-1
F-1

2-3
3-6
3-7
3-9
3-11
3-13
3-14
3-15
8-1
8-1

11-5
11-13

60492600 L

INTRODUCTION 1

This manual deseribes the features of the COMPASS Version 3 assembly language processor and the
principles, methods, rules, and techniques of coding a COMPASS program.

The user is assumed to be familiar with a Control Data computer and operating system, and is assumed to
be familiar with assemblers in general.

Readers with no previous experience with the COMPASS assembler are encouraged to direct their initial
attention to the following sections of the manual:

Chapter 1 Introduction

Chapter 2 Language Structure

Chapter 3 Program Structure, sections 3.1 through 3.3
Chapter 4 Pseudo Instructions, sections 4.1 and 4.2

Chapter 8 or 9 CPU or PP Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires

Chapter 10 Program Execution

Appendix D Hints on Using COMPASS (example program)

COMPASS, like other assemblers, is machine- and operating system-dependent, The user, therefore, should
be aware of restrictions imposed on COMPASS by the programming environment. Specifically, the user
should note:

Differences between CPU and PP program environments
Features of COMPASS not supported by a particular operating system

Machine and operating system limitations are outlined in the preface of this manual. The applicability of
instruction sets is shown in the instruetion indexes (inside front and back covers), and is addressed as
necessary throughout the manual.

A COMPASS program consists of one or more subprograms. From source language subprograms, the
assembler generates binary output acceptable for loading and execution. The programmer can divide a
subprogram, whether it is assembled as absolute or relocatable, into areas called blocks. Blocks are
assembled independently. Thus, they can be loaded and executed independently or linked by the system
loader preparatory to execution of the program. This capability provides much flexibility in combining,
segmenting, overlaying, and ordering blocks for execution.

Subprogram blocks consist of two types of source statements:
Symbolic machine instructions
Pseudo instructions
Symbolic machine instructions are the counterparts of the binary machine instructions. They provide a

means of expressing symbolically the data manipulation functions of the machine. Each symbolie
instruetion typically generates one machine instruction.

60492600 G 1-1

Pseudo instructions do not have a one-to-one relationship with binary machine instructions. They are used,
instead, to control aspects of the assembly process, such as:

Storage allocation
Symbol definition
Subprogram linkage
Listing options

Automatic generation of predefined code séquences {macros)

From CPU source language subprograms, COMPASS generates absolute or relocatable binary output
acceptable for loading and execution. From PPU source language subprograms, COMPASS generates
absolute binary output to be loaded and executed on a peripheral processor unit. The operating system
allows only specially privileged jobs to access a peripheral processor unit.

Features inherent to COMPASS include:

Free-field source
statement format

Control of local
and common blocks

Preloaded data

Data notation

Address arithmetic

Symbol equation and
redefinition

Symbol qualification

Binary control

Selective assembly of
code sequences

Mode control

Size of source statement fields is largely controlled by user.

Programmer and system can designate up to 255 areas to facilitate
interprogram communieation. In CPU programs, common areas can be
defined in small core memory (CM or SCM) or extended or large core
memory (ECS or LCM).

Data areas may be specified and loaded in core memory with the source
program.

Data can be designated in integer, floating-point, and character string
notation. It can be introduced into the program as a data item, a constant, or
a literal.

Addresses can be specified making extensive use of constants, symbolic
addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameterization
of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within a
qualified sequence to render the symbol unique to the sequence. An
unqualified symbol is global and can be referred to from within any sequence
without qualification.

The programmer can specify whether binary output is to be absolute or
relocatable. Absolute code can be generated for any PPU or CPU.
Relocatable code can be generated for any CPU. Binary can be written as
overlays or as partial records.

Assembly-time tests allow the user to select or alter code sequences.
Ability to specify the base to be used for numeric notation not explicitly
defined as octal or decimal, and to specify the code conversion to be applied

to character data as either display code, ASCII, internal BCD, or
external BCD.

60492600 G

Listing control Assembly-time control of list content.

Micro coding Substitution of sequences of characters defined in the program whenever the
miero name is referenced. Several mieros are predefined by the system for
user convenience.

Macro coding Assembly of sequences of instructions defined in the program or on the
system library whenever the macro name is referenced. Macro definitions
can be redefined or purged from the operation code table.

Operation code table The programmer can specify or respecify the syntax of a CPU or PPU
instruetion. The assembler generates an entry in the operation code table for
the instruction. No macro or opdef definition is associated with the entry.

Operation code Assembly of sequences of instructions defined in the program or on the

definition system library whenever an operation code of the specified syntax is
referenced.

Code repetition Sequences of code can be repeated during assembly or at load time.

Remote assembly Defers assembly of defined coding sequence until later in the assembly.

Library routine calls Routines can be called from the system library.

Diagnostics Diagnostics for source program errors are included on output listing.

1.1 CONFIGURATION

The hardware requirements for executing COMPASS on a CPU are the minimum required for the operating
system.

1.2 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control statement (chapter 10) or FORTRAN
compiler upon encountering a COMPASS IDENT statement in the source input file. Parameters on the
control statement specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as a
CPU program.

The operating system allocates the input/output resources as needed and performs all input/output required
during the assembly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first pass, it
reads each source language instruction, expands and edits called sequences as needed, interprets the
operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fill in all valid symbol values and
produce the assembly listing and binary output. Finally, it prepares the symbolic reference table and
reinitializes itself preparatory to assembling the next subprogram.

COMPASS alters its field length dynamically, thus ensuring that central memory requirements for tables
used by the assembler are satisfied. The assembler requests additional central memory as needed up to a
threshold field length. (The threshold value is determined by the installation.) When the threshold field
length is reached, the intermediate file and cross-references are transferred to the system mass storage
device. If additional core is needed, the assembler continues to request central memory up to the
maximum avaijlable to the job. (COMPASS may use any ECS/LCM space assigned to the job for table
space.) If core requirements are still not satisfied, COMPASS aborts and issues a diagnostic message.

60492600 G 1-3

All nested processing of macros and similar definitions is handled in a single recursive push-down stack.
COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a depth of 400.

1.3 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely processed the source deck, a control statement (for example, LGO) can
be used to call for loading and execution of a CPU object program from the load-and-go file. The loader
links the newly assembled subprogram to any previously assembled subprograms and subroutines referred to
by the new program and to programs on any other files specified by the programmer. After all
subprograms are loaded and linked, the operating system begins program execution at a location specified
by one of the subprograms. Data for the object program can be on some programmer-specified file.
Normally, this loading and execution does not take place if the COMPASS assembler detects fatal errors.

1.4 INTERACTIVE PROGRAM DEBUGGING

A COMPASS program that assembles without fatal errors can be executed under control of the (;YBER
Interactive Debug (CID) software. CID allows the programmer to correct errors in program logic from a
terminal. Using CID, the COMPASS programmer can:

Suspend program execution at a specific location or upon occurrence of a specifie trap condition, such
as execution of a return jump instruction

Alter location content during program suspension
Resume execution at a specified location or at the location where suspension ocecurred

A complete description of CID features and use is given in the CYBER Interactive Debug Reference
Manual listed in the preface.

1-4 60492600 G

LANGUAGE STRUCTURE 2

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolie machine instruetions, pseudo
instructions, and comment lines. With the exception of the comment lines, each statement consists of a
location field, an operation field, a variable field, and a comments field. Each field is terminated by one or
more blank characters. However, a blank embedded in a character data item, parenthesized macro
parameter, or comments field does not terminate a field. The size of the variable field is restricted by the

maximum statement size only. Statement format is essentially free field.
When punched on cards, each card is considered a line. A single statement may be composed of as many as
ten lines. Information beyond column 72 is not interpreted by COMPASS but does appear on the assembly

listing. Thus, columns 73 through 80 can be used for additional comments or sequencing. Columns 81

* through 90 are used for sequencing by library maintenance programs; they are normally not used by the
programmer. A line that contains two or more consecutive colons may be read and printed as two lines
because of operating system conventions for delimiting line images.
2.1.1 FIRST COLUMN
The contents of column one designate the type of line, as follows:

J{ecomma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If eolumns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a plus
sign (+) or a minus sign (-). (See Block Control Counters, chapter 3.)

2.1.3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters between
the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonie operation code

60492600 H 2-1

Pseudo instruction mnemonic operation code
Macro name

Blank

2.1.4 VARIABLE FIELD
The contents of the operation field determine if any entry is required in the variable field which consists of
one or more subfields separated by commas. The variable field begins with the first nonblank character

following the operation field and is terminated by one ore more blanks. It is blank if there are no nonblank
characters between the operation field and column 30.

A variable subfield contains one of the following:
Data item
Expression
Register designator
Name
Special element

Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30. The beginning comments column ean be changed
through the COL pseudo instruction (chapter 4).

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29.
Comments statements are listed in assembler output but have no other effect on assembly. A statement
beginning with * is not counted in line counts for IF-skipping (Section 4.9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma in
column one and continuing the field in column two. A maximum of nine continuation lines is permitted for
a statement. The break between lines need not coineide with a field or subfield separator; even a symbol
can be split between two lines. Continuation lines beyond the ninth, and continuation lines following a
terminated statement are considered comment lines.

9-2 60492600 A

2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column Contents

1 Blank, asterisk,or comma ’

2-9 Location field entrv or plus, or minus left justified
10 Blank

11-16 Operation field entry left justified

17 Blank

18-29 Variable field entry left justified

30 Beginning of comments

All examples in this manual abide by this convention.

COMPASS CODING FORM
PROGRAM NAME
RouTINE DATE | PAGE of
LOCATION RAT l0N| VARIABLE COMMENTS IDENT.
: .|.|.|-I-T:T-7T'£Eu'~'u o HOONGOOCOENINE DI D OIS DO
L PR
L e
i - . R e - O
L o . e ; ..
. . _ L . e .
P P _ e .
. _ S e N IR
N S b
JE J N i T L g I - - P a P e d . o
T N YO VO O U W Y ey O S S ey 7 T T T S S S T N 4 O U S O R S O R - -
i . J A S S A e e oAl _da e ..
N P , Lpi L . s USRI SR
S S U SRS AU
P PR e e
{ e DUDUVRNUN SO
. P T P . e e e D S
T NRTTE S T ——— . PRSI I
T ST . N PN e e s St tal, s
ST NS N s s i1 e L BN
T DT BT et bt o e it e e
[l = N R B DT HH DO S DB e D F N T P O O T T R

| aazver mEv.e-¢v

Figure 2-1. COMPASS Coding Form

60492600 A

]

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are

saved for editing and interpretaticn when the definition is referenced or expanded. ENDD and ENDM
are part of the definition they terminate and are not edited. Statements within the range of a conditional
(IF type) pseudo instruction are edited even when they are skipped. COMPASS performs two types of
editing: concatenation, and micro substitution.

2.2.1 CONCATENATION

COMPASS examines the statement for the concatenation character — and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the — is superfluous and is removed by editing before the definition is interpreted.

Each removal of — shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (#) that delimit references to micro
definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are
shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last statement
read is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it
discards excess without notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a nonfatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e., the two micro marks are adjacent) both micro marks are deleted and no
error flag is set.

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two or more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

2.3 NAMES

A name is a sequence of characters that identifies one of the following:
Subprogram or overlay

Block

2-4 60492600 D

Macro definition

Remote definition

Duplicated sequence (DUP or ECHO)
IF sequence

Micro

A comma or a blank terminates a name. Concatenation marks and pairs or micro marks are removed
before the name is scanned (see Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms. It must begin with a
letter (A-Z) and is limited to seven characters maximum. Conventions imposed on names by the operating

system could restrict the use of certain characters in names. There is no restriction on the first character
for a PPU subprogram or overlay name. For a CYBER 70 Model 76 or 7600 PPU assembly, the name can be

seven characters, but for a CYBER 180 Series, a CYBER 170 Series, a CYBER 70 Model 72, 73, 74, or 6000 l

Series PPU assembly it is limited to three characters maximum. In all eases, the last character of a
subprogram or overlay name cannot be a colon.

Any other type of name can consist of one to eight characters. A name does not have a value or attributes
and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a maero, or a subprogram can have the same name as a block, ete.

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $ or = or: or a number; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters:

+-%*/blank, [or A

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters in
symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional restrietions
(see Linkage Symbols).

Concatenation marks or pairs of miero marks are removed before a symbol is examined (see Statement
Editing). In CPU assemblies, to avoid conflict with register designators, a symbol cannot normally be An,
Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.x, or X.x, because x is
assumed to be a data item by the assembler. However, symbols resembling register designators ecan be used
if each use of the symbol is prefixed by =S or =X. Register designators are described further under CPU
registers.

The process of associating a symbol with a value and attributes is known as symbol definition. This can
oceur in five major ways.

60492600 L 2-5

1. A symbol used in the location field of a symbolic machine instruection or certain pseudo ingtructions is
defined as an address having the current value of the location counter (chapter 3) and having an
attribute defined as follows:

Absolute for the absolute block

Common for labeled or blank ecommon blocks (relocatable assemblies only)
Reloeatable for local blocks other than absolute during pass one

Absolute for local blocks during pass two of an absolute assembly

2. A symbol used in the location field of definition pseudo instructions (see Symbol Definition, chapter 4)
is defined as having the value and attributes derived from an expression in the variable subfield of the
instruetion. Certain of these pseudo instruections assign an attribute of redefinability to a symbol.
Unless a symbol is redefinable, a second attempt to define it with a different value produces a
duplicate definition fatal error flag.

3. An external symbol is defined outside the bounds of the current subprogram and is declared as external
in the current subprogram or is defined in relation to a symbol declared as external. In either case it
has the attribute of external. Unlike a systems symbol, the true value definition is not known to the
current subprogram.

4. Definitions of systems symbols that take place outside of the eurrent program can be carried over to
the current program through the SST pseudo instruction. COMPASS uses the true definitions but
assigns the additional attribute of systems symbol.

5. COMPASS defines a symbol by default if a reference to a symbol is preceded by =S and the symbol is
not otherwise defined in the subprogram. This feature is further described under Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:
Legal Symbols Illegal Symbols
P 5A First character numeric
R3 ABCEDEFGHI Exceeds eight characters
PROGRAM ABE+15 Contains plus sign

=11 First character equal sign

2.4.1 LINKAGE SYMBOLS

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types of
linkage symbols are external symbols and entry point symbols. An external or entry point symbol can be a
maximum of seven characters, the first character must be a letter (A-Z), and the last character must not
be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the current
subprogram can be declared as an external symbol in the current subprogram. Any symbol declared as an
entry point in the eurrent subprogram can be declared as an external symbol in some other subprogram.
The symbol has a zero value and an attribute of external. An external symbol can be declared either
through the EXT pseudo instruction or through default (a reference to the symbol is preceded by =X or =Y;
see Default Symbols).

9-6 60492600 A

An external symbol can be strong or weak. A strong external symbol reference causes the loader to fry to
find and load a subprogram having a matching entry point symbol. Failure of the loader to satisfy a strong
external in this way is flagged as a non-fatal error by the loader. A weak external does not require the
loader to search for a satisfying subprogram; however if one is loaded for some other reason, the loader
associates the matching linkage symbols in the usual way. At the end of loading, the existence of
unsatisfied weak external symbol refereneces is not an error.

External symbols ean be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value and
attributes of an expression to a symbol. If the value of the expression reduces to an external symbol + an
integer, the location field symbol is defined as having an integer value and external attribute. Entry point
symbols and external symbols are not qualified (see Qualified Symbols).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S, =X, or =Y and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as a strong or weak external symbol, respectively, at the end
of assembly. The =X and =Y forms are defined by default in relocatable assemblies only.

=Ssymbol If symbol is not defined, COMPASS assigns an address at the end of the zero block.
All subsequent references to the symbol, whether preceded by =8 or not, are to the
location of the word. A default symbol cannot be used where a previously defined
symbol is required.

If the symbol is defined by a conventional method, COMPASS does not define it again
but uses the programmer definition.

=Xsymbol This option permits a programmer to define his symbols in a subroutine or link to
them in another subprogram. If the programmer defines the symbol, the assembler
uses the programmed definition. If the programmer does not define the symbol, the
assembler assumes that the symbol is a strong external as though declared in an EXT
pseudo instruction. A symbol prefixed by =X must conform to the requirements for
external symbols.

=Ysymbol This option permits a programmer to define symbols in a subroutine or to link to them
in another subprogram that need not be loaded. If the programmer defines the
symbol, the assembler uses the programmed definition. If the programmer does not
define the symbol and if it is not referenced elsewhere with an =X or =8 prefix, or
declared in an EXT pseudo instruction, the assembler assumes that the symbol is a
weak external. A symbol prefixed by =Y must conform to the requirements for
external symbols.

The system does not define a default symbol and issues an error flag if a symbol is prefixed both by =S and
=X, or is prefixed by =X or =Y, and is not defined conventionally in an absolute assembly. Default symbols
are qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instruetions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

60492600 C 2-7

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect ddring assembly (see QUAL pseudo instruction,
chapter 4) can be referred to outside of the qualifier sequence in which it was defined through:

/qualifier /symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier is in
effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified symbol
can be referenced as // symbol

The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier. Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. The registers are described
more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence of
such a symbol is prefixed by =S, =X, or =Y (see Default Symbols). However, a warning message is issued
when such symbols are defined. The prefix cannot be used in the location field of machine instruetions and
symbol defining, data generating, BSS pseudo instructions, in the variable field of ENTRY, EXT, and SST
pseudo instructions.

Register Type Designator
Address An or A.n
Index Bn or B.n
Operand Xn or X.n

For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

For the forms A.n, B.n, X.n, n can be a symbol or an integer. If the value of n or the value of the symbol
exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

Registers designated by Al through A5 or A.1 through A.5 are used for addressing to obtain information

from central memory. Registers designated by A6, A7, A.6, or A.7 are used for addressing to place
information into central memory.

2-8 60492600 H

COMPASS does not recognize registers in PP assemblies; there, the designators are acceptable as ordinary
symbols.

Examples:
Al Designates address register 1
Al0 Interpreted as a symbol, not a register
Al Designates address register 1

A.NUM If the value of NUM is 6, it designates address register 6

A.10 Designates address register 2; however, it produces a warning flag because the two was
derived from the truncation of 12, the octal value for 10.

The following produce equivalent results. A SET pseudo instruction (chapter 4) defines SUM and SUB as
absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same result as if
the value had been used directly. In this example, the address of ALPHA is 001000.

60492600 H 92-9

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 1 T30

I

6032001000 <R3 A2 +ALPHA ,'
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
3 SUM SET 3 |
2 sue SET 2 |
6032001000 | SB.SUM|A.SUB+ALPHA |

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as reference to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a value
specified by the element in the expression. The control counters are discussed further in chapter 3.

Designator Significance
* or *L The assembler uses the value of the location counter for the block in use.

The element is relocatable unless the counter in use is for the absolute block.

*0 The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

$ The assembler uses one less than the absolute value of the position counter
for the block in use.

*p The assembler uses the absolute value of the position counter for the block
in use.

*F The assembler uses an absolute value obtained as follows:

0 COMPASS was called by a COMPASS control statement
1 COMPASS was called by the RUN compiler (no longer supported)
2 COMPASS was called by the FTN4 compiler

3 COMPASS was called by the FTN5 compiler

*F can be redefined by the COMPASS control statement F parameter
(chapter 10).

These designators are inherent to COMPASS and cannot be altered by the programmer during an assembly.

2-10 60492600 H

Examples:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18
e ¥+ 1+R7
Q X3 9 - 1

(o]
9]

FO0-2ES+PPR

[30
l
I
!
i
|
|
|
|
|
|
]
|
I
|

s s e s o oo o 6™ o e o o

£n *p/
F2 $/70,1/1
; FEQ |*F,2

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values, line
counts, control counter values, text for printing out messages, characters for forming symbols, ete.

The two types of data notation are character and numeric. The assembler allows the user to introduce data
in the program in three basic ways:

As a data item
As a constant in an expression

As a literal

2.7.1. DATA ITEMS
Character and numeric data items can be used in subfields of the DATA and LIT pseudo instructions or as
specifications of field values on VFD pseudo instructions.

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in octal, decimal, hexadeeimal,
or character notation. It resembles a data item but is restricted by its use as an expression element in two
ways:)

60492600 K - 2-11

1. The first character must be numeric, prohibiting the delimited type of character string (see Character
Data Notation) and the preradix for numeric values.

2. The field size is determined by the destination field for an expression and can be a maximum of 60 bits
thus prohibiting double precision floating point numbers.

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo instruetion or
as an element in an expression.

The method of specifying a literal in an address expression is nearly identical to that for specifying a data
item in 2 DATA or a LIT pseudo instruction. The primary difference is that the literal is prefixed with an
equal sign, which indicates that a literal follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of the
literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see chapter 3.)

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store the
data in the literals block using as many words as are required to hold the data. If the binary pattern of the
prefixed type of literal or of all the literals in a LIT declared sequence matches the binary pattern of words
previously entered in the literals block, an entry is not generated for the data. This process eliminates
duplication of read-only data.

The LIT pseudo instruetion permits symbols to be associated with literals block entries. Such entries can
be referenced symbolically or through use of a prefixed literal. However, to preseve the integrity of the
literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (see Listing
Control, chapter 4).

Example:

In the following example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the
statement at the lower part of 101.

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one~-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101

and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block and
does not cause new entries to be assembled.

2-12 60492600 H

Location

Code Generated

100 6120005555 +

6130005555 +

10t 6140005556 +

5555
£120005555 +

LOCATION

102

6130005556 +

OPERATION | VARIABLE COMMENTS
1" 18 !30
T
sn2 =1 l
SB3 =1RA
S84 =1RA |
L LIT 1,2
R:¥ L
S83 L+1

CONTENT OF LITERALS BLOCK,.

0000000M0N0N300700901 L}
cn00000c0oNCN00000002 B

005555
005556

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in the

literals block and causes entries to be generated in the literals block:

LOCATION

OPERATION

VARIABLE

COMMENTS

n

18

[30
T

LIT

CONTENT CF LITERALS ELCCK,

Location Code Generated

5567
005555 0G0ON0000GON000000000L
005555 H06000NN000000NGN0G2
§005557 000ngO0ONO000NA0N0N001L
005561 9000000000079 0N000003
005561 0001000Nn000NA0N0000G
005562 NNN0NOOO00000N0NO00DN?

WIIpWMW>

1,3,1P0,2 |

However, if the literals sequence in the first part of the example had been followed by a LIT that
duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added to the
bloek. Thus, if the following LIT sequence had been used in place of the LIT 1,3,1RD,2, the first two words
of the sequence would match the last two words of the literals block so that only two additional words

would be required to complete the sequence.

Location

oo
[=X=1=T=)
N N
NN
.
"N I

Code Generated

5555

2.7.4 CHARACTER DATA NOTATION

LOCATION

OPERATION

VARIABLE

COMMENTS

18

[30

LIY

[l el

1,293,

1

I

Character data strings are converted to the code in use at the time the string is evaluated (see CODE

pseudo instruction, chapter 4), and placed in a field indicated by the data type (data item, constant, or
literal). When no CODE instruetion has been issued, eonversion is to display code representation.

60492600 H

2-13

Format:

Example
Data Item l sign I n[typel string—l ~3RABC
or

l sign]typel d [string[dl -R*ABC*
Constant ¥ [n |type| string | 3RABC
Literalt | =|sign| n|type | string] =-3RABC

or)
l = lsignl typel d Istringl d ’ =-R*ABC*

= Applies to literals used as expression elements only; signifies that a literal follows.
sign Optional for data item or literal. A sign with a constant is interpreted as an element operator.
+ or omitted The value is positive

- The complemented (negative) value is formed

n Signifies how the string is determined:
omitted The string is delimited by d. n cannot be omitted for a constant.
0 For data item or literal, the string consists of all characters following type
to:
blank or ,

For a constant, string consists of all characters following type to:
+-%/blank, or A

The A (caret) is in the CDC character set. In the ASCII character set, use
the & (ampersand).

n For a data item or literal, n is an integer count of the number of characters
in the string not counting guaranteed zeros. It is limited only by statement
size.

For a constant, n is an integer count of the number of charaeters in the
string. It cannot exceed 1/6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right justified
constant if the most significant bit exceeds the field. Truncated zeros do
not cause an errer in this case. A truncation error is flagged for a left
justified constant if the least significant bit positions are truncated, even if
they are zero.

The string consists of the n characters following type.
Regardless of base, COMPASS assumes that n is decimal.

TExpression element

2-14 60492600 J

type

string

60492600 H

Character string justification. The characters formed by the data item or constant are right
or left justified into the destination field as follows:

Type Significance
C Left justified with zero fill. For data item or literal, 12 zero bits are

guaranteed at the end of the string even if another word must be
allocated. For a constant, C is the same as L; the 12 zero bits are not
guaranteed.

Left justified with blank fill

Right justified with blank fill

Right justified with zero fill

Left justified with zero fill

N o om

Left justified with zero fill. For data item or literal, six zero bits are
guaranteed at the end of the string even if another word must be
allocated. For a constant, Z is the same as L; the six zero bits are not
guaranteed.

A delimiting character used only when n is omitted. The characters between the first
ocecurrence of d and the second occurrence of d form the string. d can be any character other
than r>or #

Characters from one of the COMPASS character sets (appendix A), except for those
characters that act as delimiters (see n and d), the concatenation character (™), and pairs of
miero marks (#).

Concatenation marks and pairs of micro marks are removed by editing before a string is
examined. A single micro mark can be used in a string.

An empty or omitted character string is defined under one of the following conditions:
n is 0 and type is immediately followed by a delimiter, for example, 0L.
n is omitted and the two delimiting characters are adjacent, for example, H+ +,

Omission of a string in a DATA pseudo instruction is legal and does not cause generation of a
data word.

For a constant, an omission of the string is valid and has a zero value,

An omitted string in a LIT pseudo instruction is legal and does not cause generation of a
literal for that item; however, the LIT must contain at least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces an error.

It is not possible to generate empty strings using types C, Z, R, or A.

2-15

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code generated
by DATA are printed only if the D or G list option is selected.

Data Items
Location Code Generated lOéAﬂON OPERATION | VARIABLE COMMENTS
' 1 n 18 [30
144 05222217225511165520 DATA L*ERROR IN PDQ *sleeyllH
145 04215500000N000000000
146 55556555555555555555
Location Code Generated LOCATION . | OPERATION [VARIABLE COMMENTS
1 n 8 T30
PPU |
. |
’ |
1100 172% DATA OLOUTPUT |
1101 2420
1102 2524
Constants
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) N 18 I30
4722 7130000047 SX3 1R* ;
4723 7140000060 TAG SX& 1Re.+1 1
5110031117 SA1 3RCIO]
4724 260530000 S8s X0+1L § |
1117240155 VFU 30/4HICTA,6/1RA,2L/0AX+1
4725 0155555531 1
1725242025 VFD 42/0L0UTPUT,1871
4726 2400000001 |
0700030000 VFD 15/0LG6,15/70L,

Note that the character constant in the expression in the second line eonsists of a deecimal point (57 in
display code) to which 01 is added before the value is stored. Similarly, in the third field of the first VFD,
1 is added to the display code representation of X right justified with blank fill (55555530) so that 55555531
is generated.

9-16 60492600 H

Literals

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 T30
100003765 TAGH LIT RA«=-¥/(A,6L)I 3= 4,.497C9,0L
100003770 LIT 20HLITERALS
2652 51i0703772 + <Al =NCTENCHARCTS
51208003774 + SA2 =H4LFFY JUSYIFY WITH PLANKS+
2653 5130003767 + <A =1L0

CONTENT OF LITERALS BLOCK.

003765 0000N000004546475051 +=-%/(
003766 5253%5455565700100000 YE= .
003767 330000000N00290000000 i

003770 16112405220114235555
003771 55555555555555555555
003772 240516021N0122032423 TENCHARCTS

003772 000M0Q00000000700000

ITERALS

003774 1405062L5512252324611 LEFT JusTl
003775 06315527112410550214 FY WITYH PL
003776 01161323555555555555 ANKS

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty string
and does not produce an entry. The second LIT pseudo instruction generates one two-word entry. The
expressions in the variable fields of the SA1, SA2, and SA3 instructions each consist of a literal element.
The character strings in the SA1 and SA2 literals do not duplicate former literals block entries so
COMPASS generates new entries. However, since SA3 references an existing entry, COMPASS places the
address of the entry in the address field of the instruection.

2.7.5 NUMERIC DATA NOTATION

Numeric data ean be specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:
| | R . T T ps
Data Item lsxgn]preradlx|valuelmodxﬁers I
Constant lgluel modifiers !
Literal [flgnl preradixl value] modifiers]

60492600 H 2-17

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element

sign
operator.
+ or omitted The value is positive
- The complemented (negative) value is formed
preradix Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.
omitted Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.
BorO Octal notation
D Decimal notation
value A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fraction. An integer value (fixed point) does not contain a point.
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point.
An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1,15 x 1018 (fixed point) or 7,9 x 1028 (floating point, ignoring the decimal
point). Extra significant digits cause erroneous results.
If value is omitted, it is assumed to be zero.
modifiers Associated with the value are the following optional modifiers specified in any sequence.
A specific type of modifier can be specified only once. A duplicate produces an error
flag.
postradix Indicates the notation used for the value. See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.
decimal exponent Defines a power of 10 scale factor
Enor Enor E Single precision
EE+n or EEn or EE Double precision
When the sign is plus or is omitted, the exponent (n) is positive,
When n is omitted, it is assumed to be 0. The value of n cannot exceed
32767 and is always assumed to be a decimal integer.
A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).
If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision,
The effect of the exponent is to multiply the value by 10 decimal raised
to the n power.
2-18 60492600 H

binary scaie Defines a power of two scale factor and is specified as foilows:

Sin of Sn or S

When the sign is plus or is omitted, the scale factor (n) is positive. When n
is omitted, it is assumed to be 0. The value of n cannot exceed 32767 and
is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the n
power.

binary point Applies to floating point values only and is specified as follows:

position

60492600 K

Pin or Pn or P

When the sign is + or omitted, n indicates the number of bit positions the
point is to be shifted to the left of bit 0. When the sign is -, n indicates the
number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the nth bit.

The exponent is adjusted to a value of - (+n)

For example, a value with P-6 will have a biased exponent of 2006g; 5
value with P10 will have an exponent of 1765g,

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error.

Although scale factors can exceed valid ranges, the ranges for numbers are restricted by
the hardware.

Example:

The number 1.0E400S-1200 yields a number that is approximately 5.8 x 1038 and is
in range of the floating point representation.

All caleulations are performed in 144-bit precision. The values are rounded to 96 bits for
double precision and to 48 bits for single precision floating point numbers and to 60 bits for
integers.

The order in which the assembler acts on the modifiers, regardless of the sequence in which
they are specified, is:

1. Decimal exponent (single or double)
2. Binary scaling

3. Binary point position (CPU assemblies only)

2-19

CPU Numeric Data Items

Location

5020
50101
5002
5003
5004
50085
5006
5007
5008

Code Generated

TI?TIPTINITNNNTIVIVT42
172350300¢0C0C0CC000
1/4300000C000COC00CC
2017090000€0C60C0C0012
177600000G0000000002
1715646517€7€35544264
1720n0314631463146314
777NN
N0J30900000000C0C0000C0

CPU Numeric Constants

Location Code Generated
5001 +
555
5012
5112 20369
4376C
715C4C0000

CPU Numeric Literals

Location

5113

no5151
005152
005153
005156
N0% 155
205156
no5157
305160
505161

® 2-20

Code Generated

5150005151 +
513C005152 +
5153
5155
5156
5157

LOCATION OPERATION | YARIABLE COMMENTS
" 18 ‘ [30
POCL DATA |-29 i
NUM DATA [1.CEF1 |
‘|OATA |1.CE+1P0O ,
DATA |3.2P1S=5F1
DATA 0.C151F+01 |
DATA 0.1P&7,=E» DEES
|
LtOCATION OPERATION | VARIABLE COMMENTS
" 18] T30
ALPHA EQU POOL 41 !
VAL E0U 5558 '
BSSZ |10CR |
LX3 -148 |
MX7 48 '
$XS 1517 !
LOCATION OPERATION | VARIABLE COMMENTS
N 18 [30
SAS =2200467550002340000048
SA3 2l.1 :
ABLE LIT 1.CE€1 l
LIT GelP47
LITY -D1§
LIT 0.0151E+C1 ,~Es DEES

CONTENT OF LITERALS BLOCK.

20046755000234000C04
17204314631463146315
1723500€000000000000
16643000€000€00000000
17700314631463146314
772777177777 7154
17154651767635544264
TITTIVIRTIITIITAITINNNY
2000000€000C0C000C00

PDA 81 D
NPBLIL2IL:M
gsv
NE

OPCLILsL:L
B R AR RE
OM=(72=T#

RSB IRERRE]

60492600 L

Examples of numeric data {assume default radix is decimal):

PP Data Items

Location

300
301
302
303
304

PP Constants

Location

315
376
317

310

PP Literals

Location

311
313
315

1103
1104
1105

60492600 H

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
PPU i
L. L] i
. o |
0005 DATA 5,-9D0,+B13,148S1,24BF-1
7766 |
0013
0030
o002
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] 1 18 [30
goan roM Jy+t1 f
00ii |
LLlL? oM 3324 !
31 AnC = 26N
101 MM SET G101 |
7777 con 7777 [
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 IJO
2000 1103 Loc =180 |
2100 1104 ADC =-1 :
2000 1105 LOC =7777 |
CONTENT OF LITERALS BLOCK.
o012 J
7776 IR EEE R R A R
7777 HH

2-21

2.7.6 HEXADECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation. The value is converted to an integer in single
precision.

Formats:
Data Item sign | 0|preradix| value |modifiers
Constant 0|preradix|value| modifiers
Literal =| sign |0 |preradix|value | modifiers
= Applies to literals only; signifies that a literal follows.
sign ' Optional for data item or literal; a sign with a constant is interpreted as an element
operator.
+ or omitted Value is positive,
- Complemented (negative) value is formed.
0 The zero is optional for data items and literals but must be present for constants, so the

preradix will not be taken as the first character of a symbol.

preradix Must be present to indicate that a hexadecimal value follows. The preradix character is =
or # depending on the printer used.

value A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is either a
decimal digit 0-9 or a letter A-F. The digits 0-9 represent values 0-9 and the letters A-F
represent the decimal values 10-15,

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

modifiers The binary scale (S) modifier is optional and has the same form and meaning as for octal
and decimal data (see Numeric Data Notation).

The binary point position (P) modifier is permitted but ignored, since it does not apply to
integer values.

Examples of hexadecimal data:

LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated
) n 18 T30
== -
0 00000000000004435274 : DATA | =123ABC,-=,-0=AAAAA,=1234512
1 TTIITOVTATNNINNITNNY ‘ -
2 T7TTTTITTITT?75252525 !
3 00000000000110640000 : ‘
4 00000N00000053012566 X ; CoN 0=A01576
5 7130000006 + HEX | sx3 =-=1234582
CONTENT OF LITERALS BLOCK. |
6 TTTTTIIITITT76671353 55733 NKS i
i

9-92 60492600 H

2.8 EXPRESSIONS

Entries in subfieids of most source statements are interpreted as expressions consisting cf a combination of
one or more terms. Each term consists of one or more elements joined by operators. A ecomma or a blank
terminates the expression.

An expression element can be a:

Symbol Register designator (CPU only)
Numeric or character constant Literal
Special element

Examples of elements:

ALPHA A7 3HABC
$ X3 =10HOUTPUT
*p 77BS3

A term can be a single element or two or more elements joined by the following element operators:

* Multiplication
/ Division

An expression can be a single term or two or more terms joined by the following term operators:

+ Addition
- Subtraction

A Exclusive or

The exelusive or operator is printed as A (carat) in the CDC character set or as & (ampersand) in the ASCII
character set.

Rules:

1. If the last element of a term is omitted, COMPASS provides an element of zero. For example, if
ABLE is a symbol, ABLE*+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first asterisk is
interpreted as an element, the second asterisk is interpreted as an operator, and the blank is
interpreted as a null element.

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is a
relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.

5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or A) in sequence are interpreted as having a term of zero
value between them.

7. If an expression begins with an additive operator (+ or - or A), COMPASS provides a term with zero
value preceding the operator.

8. Al arithmetic in expression is performed in integer mode, even if an element is a floating point

constant such as 2.3. Results are restricted to 60 bits; that is, if a term or value exceeds 60 bits, the
excess high-order bits are discarded without comment.

60492600 H 2-23

The operator that immediately precedes a register designator is the register operator, regardless of the
placement of the designator in the expression. The register operator can be:

+-%or/

Examples of expressions:

ABLE Single term

$-29 Two terms: $ and 29

1+=3.14159EE+6 Two terms: a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

*+3 Two terms: value of the location counter and numeric constant 3.

ABLE*4-72/NUM Two terms, each consisting of two elements: the value of ABLE times 4,
and 72 divided by the value of NUM.

10B Single term consisting of a numeric constant.

3+A6-NUM The ecomponents of the expression are register A6 and 3-NUM.

1R= A 1R/ The character constants (= and /) are logically differenced.

2.8.1 TYPES OF EXPRESSIONS
Evaluation during assembly reduces an expression to:
An absolute value (absolute address or an integer value)
An external symbol * a 21-bit integer
+ relocatable value * a 21-bit integer
Register designators and one of the above (CPU assembly only)

Register designators (CPU assembly only)

Absolute Expressions

An expression is absolute if its value is unaffected by program relocation. An expression can be absolute,
even though it contains relocatable terms, under two conditions:

The expression contains an even number of relocatable elements.
The relocatable elements must cancel each other. That is, each relocatable element (or multiple
thereof) in a block must be canceled by another element (or multiple thereof) in the same bloek. In

other words, pairs of elements in the same block must have signs that oppose each other. The
elements that form a pair need not be contiguous in the expression.

2-24 60492600 H

Examples of absolute expressions:

L

in the following exampies, EASY and FOX are relocatable in the same bilock. MIKE is absolute. The
control counters are for the block that contains EASY and FOX.

EASY-FOX+MIKE EASY and FOX cancel each other.

FOX-* FOX and the loeation counter cancel each other.
MIKE+16 The expression contains no relocatable elements.
*-EASY-FOX*2 EASY and the location counter cancel 2 times FOX.

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term or, under the following two conditions, a combination of relocatable
and absolute terms:
The expression does not contain an even number of relocatable elements
All the relocatable elements but one must be organized in pairs that cancel each other. That is, for all
but one block, each relocatable element (or multiple thereof) in a block must be canceled by another
element (or multiple thereof) in the same block. The elements that form a pair need not be contiguous
in the expression.
The uncanceied reiocatable element can have three kKinds of relocation:
Positive program
Negative program
Positive common (Negative common relocation is not permitted by the loader.)
Examples of relocatable expressions:
In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute. LIMA
is relocatable in a different block. The control counters are for the block that contains EASY and
FOX.
LIMA+MIKE-16
FOX-EASY+FOX
3*FOX-2*EASY
EASY-*+FOX
FOX-100B/MIKE
-MIKE*2+LIMA
=10HMESSAGE 33
-*0
The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated by

the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

60492600 H 2-25

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or, under the
following conditions, an external expression may consist of an external term, relocatable terms, and
absolute terms.

The expression contains an even number of relocatable terms.

The relocatable elements must cancel each other. That is, each relocatable element (or multiple
thereof) in a block must be cancelled by another element (or multiple thereof) in the same block. In
other words, pairs of elements in the same block must have signs that oppose each other. The
elements that form a pair need not be contiguous in the expression.

Examples of external expressions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same block.
The control counters are for the block that contains LIMA. MIKE is absolute.

XYZ-*+FOX-EASY+LIMA The pairs * and LIMA, and FOX and EASY cancel each other.
FOX-3*EASY+2*FOX+XYZ The relocatable elements all eancel.

ABC+100B+MIKE MIKE and 100B are absolute; no relocatable elements.
XYZ+ABC Illegal; both are external.

-ABC+*-LIMA Illegal; ABC is negative.

XYZ+*0 Illegal; *O is an unpaired relocatable element.

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register designators
and an operand. The attributes of the operand can be that of an absolute, external, or relocatable
expression. Use of register expressions is generally restricted to symbolic CPU machine instructions. If
the register designator is the first element in the expression, the operator can be omitted and is assumed to
be +,
Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.

X3+LIMA-10B

LIMA+X3-10B Produce identical results

-10B+LIMA+X3

B1+XYZ

*+A.NUM

Evaluatable Expressions

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instruetions require that the expressions be evaluatable.

2-26 60492600 H

2.8.2 EVALUATION OF EXPRESSIONS

g T ot

When evaluating an expression, COMPASS replaces each element with a 60-bit vaiue. A character constant
is first right or left adjusted in a field the size of the destination field and then extended to 60 bits. Signs
are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In division, the integral
portion of the quotient is retained; any remainder is disearded. Thus, 5/2%*2 results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it reaches
a+or-or Aoperator. It then notes whether or not the newly formed term contains a relocatable or
external symbol or register designators. The value of the symbol is added, subtracted, or differenced from
the cumulative sum of the absolute elements, relocatable elements, or external values. The assembler
continues evaluating the expression until it is reduced to a symbol and/or a value. An error is flagged if
the expression cannot be reduced. The expression value is truneated, if necessary, and piaced in the
destination field. If it is too large for the field, the system issues an error flag. The maximum field size
for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram. It is
the value relative to the external used in defining the symbol if the external symbol was defined within the
subprogram.

A zero value is used in place of a register designator.

For pass one evaluation, COMPASS uses the value of a relocatable symbol relative to the block in which
the symbol was defined. For pass two evaluation, COMPASS uses a value relative to program or common
block origin.

The field size for an expression depends upon the instruction and is determined as follows:

For a symbol definition pseudo instruction, the expression value (including character constants) is
justified in a 21-bit field.

In a VFD pseudo instruction, the expression is placed in a field of the size specified.

For a CON pseudo instruction, the field size is one word (12 bits for PP assemblies, 60 bits for CPU
assemblies).

In a symbolic machine instruction, values of expressions are placed in address fields (18 or 6 bits for
CPU assemblies; 18, 12, or 6 bits for PP assemblies).

Some relocatable program loaders may give unexpected results if relocatable or external address values are
assembled into the same field of the same word more than once, as a result of ORGing backward over the
word, or by having more than one subprogram preset a common block. The ORGC pseudo instructon (see
Block Counter Control, chapter 4) can be used to avoid such problems.

60492600 H 2-27

PROGRAM STRUCTURE 3

This chapter is designed to give the programmer a better understanding of how a program is assembled,
loaded, and executed. This discussion of program structure is at the machine executable level, the level at
which code is loaded into memory and executed.

A COMPASS subprogram consists of statements beginning with an IDENT pseudo instruction and ending
with an END pseudo instruction. The user can designate a subprogram to be a main program by specifying
a transfer address in its END pseudo instruction.

The programmer can control the assembly of COMPASS source statements so that subprograms are divided
into bloeks of binary code. These blocks can be controlled during the loading process. The first section of
the chapter presents subprogram block concepts and how the programmer and the assembler organize
object code into blocks. Following this is a brief description of the counters used to control the blocks.

A subprogram loaded into central memory can be either absolute or relocatable. An absolute subprogram is
loaded at the same fixed address every time; a relocatable subprogram can be loaded into different
locations, according to the available central memory at load time. Seetions 3.3 and 3.4 discuss the
structure of absolute and relocatable programs, respectively, and show the differences in block usage for
both types.

Limited available central memory occasionally requires the use of overlays and partial binary sections in
lengthy programs. Section 3.4 covers the use of these important programming tools.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas called
blocks. As assembly of a subprogram proceeds, the assembler or the programmer designates that object
code be generated or that storage be reserved in specific blocks. By properly assigning code sequences,
data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM, a programmer
can intersperse instructions for the different blocks. The assembler assigns locations in a block
consecutively as it encounters instructions destined for the block. A symbol defined within a block is not
local to the block. That is, it is global and can be referred to from any other block in the subprogram. To
render a symbol local to a sequence of code requires use of the QUAL pseudo instruction (section 4.4.3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be

user-established. When COMPASS interprets an IDENT or END pseudo instruction, it bégins pass two
processing of the completed block group.

In pass two all symbols are assigned absolute values, the table of block names is cleared, the list of USE,
USELCM, ORG, and ORGC instructions is cleared, and bloek strueturing restarts. For END, the symbol
table is cleared before the next subprogram is assembled. If the group does not contain a USE instruction
or if object code is generated (or storage reserved) before the first USE instruction, COMPASS piaces the
code in the nominal block (identified as PROGRAM#* on the listing). For an absolute program, the nominal
block is the absolute block. For a relocatable program, the nominal block is the zero block. The user
controls use of the nominal block and any user-established bloeks through USE, USELCM, ORG, and ORGC
pseudo instructions (section 4.5). Each occurrence of a non-redundant literal constant causes an entry in
the literals block; otherwise, the user has no control of this block.

60492600 G) 3-1

3.1.1 ABSOLUTE BLOCK ‘

The absolute block is the nominal block for an absolute assembly. It is identified by the name PROGRAM*
on the listing. All code generated in the block is absolute. Each address symbol is defined during pass one
as an absolute value relative to zero which is block origin. The code generated must be loaded and
executed at the origin specified as the absolute block origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assemblfer
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an absolute
block is identified on the assembly listing by the name ABSOLUTE*. There is no ECS/LCM absolute block.

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block for a relocatable assembly. It is a
local block; that is, it is not accessible to other subprograms. Upon completion of assembly, the assembler
assigns any undefined default symbols at the end of the zero block. The zero block is identified by the
name PROGRAM* on the assembler listing.

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM* block. The zero block is also
named PROGRAM*.

There is no ECS/LCM zero block.

3.1.3 LITERALS BLOCK

COMPASS generates literal data entries in the literals bloek. It is local to a subprogram. The literals
bloek is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage to
the literals block immediately following the zero block. There is no ECS/LCM literals block.

3.1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM statements, a programmer can establish local blocks in addition to those
previously described for an absolute or relocatable subprogram. At the end of assembly, COMPASS assigns
an origin relative to the nominal block to each user-established local block, in the sequence in which they
are established.

All of the CM/SCM local blocks are concatenated to form a single block, which is treated by the loader as
a CM/SCM block whose name is unique to the subprogram. Similarly, all of the ECS/LCM local blocks are
concatenated to form a single block which is treated by the loader as an ECS/LCM block whose name is
unique to the subprogram. (SCOPE 2 does not currently allow LCM local blocks.)

The length of each ECS/LCM block, including the combined loeal block, is rounded up, if necessary, to an
integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048,568 words.

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCM or ECS/LCM
through the USE and USELCM pseudo instructions respectively, where the name of the block is the name
enclosed by slashes; that is, /name/. The tables are designed so that the loader can allocate space in
memory for the first subprogram that is loaded that declares the block. Thus, the first subprogram that
names a block sets the maximum size of the block. Each subprogram, as it is loaded, can link to allocated
blocks or can cause new blocks to be allocated. The contents of a labeled common block can be generated
by any of the subprograms having access to it.

3-2 60492600 G

If an absolute subyrogram attempts to establish a labeied common block by using a USE /name/ or USELCM
/name/ pseudo instruction, COMPASS treats the block as a local block having the slash-enclosed name.

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not load
information into the area before the program is executed.

For a relocatable program, the CM/SCM and ECS/LCM blank common blocks are allocated space by the
loader after all subprograms are loaded, according to the largest block area declared by any of the
subprograms. A CM/SCM blank common block is established through use of the USE pseudo instruction
(chapter 4). An ECS/LCM blank common block is established through use of the USELCM pseudo
instruction (chapter 4). A blank common block has no name. A USE // indicates blank common in
CM/SCM; A USELCM // indicates blank common in ECS/LCM.

If no relocatable program declares a blank common block, there is none. If an absolute program contains a
USE // or USELCM // pseudo instruction, COMPASS treats the block as a local block named // and data can
be stored in this block.

The USELCM pseudo instruetion ean occur only in CPU programs.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with the
same name and the same block type if they have different memory types (CM/SCM or ECS/LCM). Thus,
altogether, there may be up to four different blocks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters: an origin counter, a location
counter, and a position counter. When a block is first established or its use is resumed, COMPASS uses the
counters for that block. During pass one, the origin and location counters are initially zero. During pass

two, as the assembler constructs the program, it assigns an initial value to each local block origin counter
and location counter. Thus, expressions containing relocatable symbols are not necessarily evaluated the

same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the block.
It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or BSS pseudo
instructions to advance the origin counter; ORG and ORGC also permit the programmer to reset the
counter to some lower location in the block or to change blocks. BSS allows the programmer to decrement
the counter but not to change blocks. The origin counter is incremented by one for each word assembled or
skipped forward. The origin counter is decremented by one for each word skipped in the reverse direction.

When the special element *O is used in an expression, the assembler replaces it by the current value of the
origin counter for the block in use.

60492600 H 3-3

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counter is
incremented. It is possible through the LOC pseudo instruection to adjust the location counter so that it
differs from the origin counter. This may be desirable when the code being assembled is to be loaded at
one location and subsequently moved and executed at another loeation. In this case, the programmer resets
the location counter to reflect the actual location at which execution is to occur. As another example of
its use, the programmer assembling a large table may reset the location counter to zero so that on the
listing, the addresses alongside each word of the table reflect the word's position in the table rather than in
the block. Note that use of this technique does not alter the placement of code in the bloek. (For an
example of these applications, see the LOC pseudo instruction in chapter 4) When either of the special
elements * or *L is used in an expression, the assembler replaces it by the current value of the location
counter for the bloek in use.

3.2.3 POSITION COUNTER

Assume that bits are numbered 59 through 00, from left to right within a 60-bit CPU word and numbered 11
through 00 within a 12-bit PPU word. Then, the position ecounter is initially 60 or 12, respectively, and
indicates the number of bits remaining in the word. The position counter, which is deecremented by one for
each completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12
when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally have
values of 60, 45, 30, and 15 reflecting the placement in the word for the next instruction or data value to
be generated. For a PPU assembly, the normal value is 12.

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS pseudo instructions.

When the special element *P is used in an expression, the assembler replaces it with the current value of
the position counter.

When the special element $ is used in an expression, the assembler replaces it with the current value minus
one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining in a
partially completed word with no-operation instructions (section 8.1), sets the position counter to 60, and
increments the origin and location counters before it assembles code for the next instruection:

Insufficient room remains in a partially filled word for the next instruction or data to be generated.

The current statement is a machine instruction, or a VFD pseudo instruction, with a location symbol or
+ in the location field.

The current statement is an RE, WE, PS, XJ, CC, CU, DM, or IM (or RL or WL on NOS and NOS/BE)
instruction for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74, or 6000
Series. (The programmer can negate this force upper by placing a minus sign in the location field of
the instruction.)

The current statement is an END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC, LOC,
ORG, or MD pseudo instruetion.

3-4 60492600 L

The assembler forces upper after it assembies code for one of the following:

Jp

RJ

Unconditional EQ

Unconditional ZR

ES (CYBER 70 Model 76 or 7600)

MJ (CYBER 70 Model 76 or 7600) _

PS (CYBER 180 Series, CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
XJ (CYBER 180 Series, CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
IM (CYBER 70 Model 72 and 73)

This post force upper does not occur immediately, but is deferred until the assembler encounters the next
machine instruction or data generating, storage allocating, or binary control pseudo instruetion in the same
USE bloek. The programmer can negate the force upper following the instruetion by placing a minus sign in
the location field of the next instruetion. Thus, pseudo instructions following one of the above machine
instructions and referencing the origin, location, or position counter will use the value before the force
upper.

In a PPU assembly, no foreing upper occurs; the assembler ignores a + in the location field on any
instruction other than a VFD. A plus or minus in the location field of a VFD in PPU assemblies forces the
VFD data to begin at the next full word.

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately, either
in the same job run or in independent runs. The subprograms can ail be written in COMP ASS source
language, or can be written in any other source language available in the product set of the operating
system as long as the compiler or assembler produces relocatable binary output in a form acceptable to the
loader. A COMPASS language subprogram is composed of instructions beginning with an IDENT pseudo
instruction and ending with an END pseudo instruction. A subprogram can be either a main program or a
subroutine, depending on how its END pseudo instruction has been written.

When a program is loaded into memory, its subprograms occupy contiguous blocks of words. The first word
in the first block is known as the reference address (RA). The total number of words in the blocks is the
job field length.

When a subprogram is relocated, each machine instruction in it that references a specific address must be
adjusted. Because of this necessity, relocatable subprograms are assembled as though they begin at address
zero; they are not assigned specific origins. In this way the loader can load subprograms independently, yet
contiguously; their origins are relative to RA. Since all addresses within the subprogram are relative to the
first word address of the subprogram, each address in the program effectively becomes a function of RA.

A nonblank IDENT pseudo instruction that does not specify a fixed load address indicates a relocatable
subprogram. Upon completing assembly of a relocatable subprogram, COMP ASS assigns each local block an
origin relative to the zero block. Each block thus becomes an extension of the zero block (figure 3-1).

COMPASS also provides for subprogram linkage. Through pseudo instructions such as ENTRY, ENTRYC,
and EXT, subprograms can transfer control to each other and access common storage locations.

The loader is thus able to load subprogram blocks independently, as required. Program execution is not
affected by the relocation process.

The length of the subprogram given on the assembly listing is the sum of the final values of the origin
counters for the local blocks, including the zero block and literals block, but not the absolute block. Any
absolute text is simply inserted at the absolute location relative to RA.

COMP ASS binary output for a relocatable subprogram consists of one section for each LCC pseudo
instruetion (if any) in the source program, followed by one section containing the subprogram loader tables.

60492600 L 3-5

Low -
Address IDENT Sizes and locations ‘

Subprogram 1 determined by first)| Labeled Common
be subprogram declaring Blocks
~—END them h : IDENT
Subprogram 2 (Program¥*
(Zero Block)
Subprogram 3 LITERALS*
T — O Local Block 1
P g N Subprogram length <
P N N
Subprogram n D Nl N
Size determined by
Blank Common largest block declared
Address \ END
Map of Organization of
Loaded Program Subprogram 1

Figure 3-1. Relocatable Program Structure

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific memory
locations. Because the loader performs no address manipulation for absolute programs, absolute code can
be loaded more rapidly than relocatable code.

A CPU program can be either relocatable or absolute. PPU programs are always absolute. PPU programs
are parts of the operating system that reside in the peripheral processors; they are normally the concern of
only system analysts. Any user can assemble PPU code, but cannot execute it without speecial system
access privilege.

The programmer has the option of constructing an absolute program as a single unit, or of dividing it into
overlays. Each overlay consists of data, information, or instructions that are needed at different times.
Dividing a program into overlays allows several routines to occupy the same central memory storage
consecutively so that total storage requirements for a program are reduced. For maximum program
efficiency, the reduction of storage requirements must be weighed against an increase in execution delay
while loading parts of the program.

During assembly of an absolute program or overlay, COMPASS creates a memory image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute block. Any relocatable
symbol is reassigned an absoiute address; each block effectively becomes an extension of the absolute block.

Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays. The absolute
block is the nominal block for the program (labeled PROGRAM* on the listing). The use of default symbols
and literals causes the generation of the zero biock and the literals block, respectively. Local bloeks A, B,
and C follow the literals block. The transfer symbol in the END pseudo instruetion indicates a main
subprogram. In the binary load module the'prefix (PRFX or 7700g) table and the header table precede

the binary section that is the memory image of the program.

3-6 60492600 G

IDENT name

Low Address

\
High Address

60492600 G

PROGRAM*

b3

C

Source Program
Block Strueture

Origin
PROGRAM*
. LITERALS*
Binary
Section A
B
K C
Binary

Crigin

PROGRAM*

!

LITERALS*

A

C

Map of

Loaded Program

Load Module

Zero Block

(Default)

Figure 3-2. Absolute Program Structure

Program
identification

and Loader Control
Information

Zero Block

(Default)

The binary output for the program consists of a section for each overlay. Note that the binary section for
an absolute program that is not divided into overlays has the same format as the main overlay of a program
divided into overlays. The user has the option of writing part of a binary section at a time by using either a
SEG pseudo instruction or an IDENT (other than the first IDENT) with a blank variable field.

An absolute binary load module usually has three parts: a prefix (PRFX or 7700g) table, a header tabie,
and the binary image of the program or overlay. A header table can be one of the following:

ASCM or 5000g.
EASCM or 5100g.
ACPM or 5300g.

EACPM or 5400g.

Tables are shown on a COMPASS listing by their octal numbers. The table formats are described in the
Loader reference manual.

The amount of binary written as a result of the binary control instruction (IDENT, SEGMENT, SET, or END)
is subject to whether or not an entire block group is written, as follows:

If a complete block group is being written (everything between an IDENT and an END or between two
IDENT instructions), the memory image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

If only a portion of the binary for the block group is being written, it consists of the memory image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank IDENT complete one overlay and write an end of section. SEGMENT and
IDENT write header information for the overlay to follow.

3.4.1 ABSOLUTE OVERLAYS

When an absolute program contains more than the one mENTT pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a memory image of the program as it is
assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits memory to be sequentially overlaid by different subroutines and
data during program execution, reducing the maximum memory requirements for the program.

Three levels of overlays can be generated for a CPU assembly: main, primary, and secondary. Each
overlay is identified by a level number specified in the IDENT or SEGMENT pseudo instruction. The level
number consists of an ordered pair of octal numbers, each of which can be 0 through 77g. The first
number is known as the primary level number; the second is known as the secondary level number. The
level number 0,0 signifies the main overlay (normally the portion of the program following the first
IDENT). A primary overlay is indicated by a nonzero primary number paired with a zero secondary level
number. For a secondary overlay both the primary and the secondary level numbers are nonzero.

Conventionally, the main overlay is loaded first and remains in central memory throughout execution. Only

two other overlays can remain loaded concurrently: these are usually one primary overlay and one of its
associated secondary overlays.

1'IDENT instructions described in this section are assumed to have nonblank parameters. The special case
of the blank IDENT is described in section 3.4.3.

3-8 60492600 G

The hierarchy of overlay association is depicted by figure 3-3. The primary,overiay 1,0 has three
associated secondary overlays numbered 1,i; 1,2; and 1,3. A primary overiay and aii of its associated
secondaries have the same primary ievel number. The next branch of overlays {indicated by level
numbers 77,y) shows that the level numbers of the overlays are not required to be consecutive nor to be
indicative of the order in which they were generated.

1,3 \ 77,2 \ 23,40 \
1,2 \\ 77,20 \\\ ‘ 23,30 \\ > Secon‘dary
VoL Overiays
1,1 71,7 23,10
o\ AN __
AL\ \\ AL o
rimary
1,0 71,0 23,0 Overlays
Main
0,0 Overlay

Figure 3-3. Overlay Hierarchy

The main overlay can call both primary and secondary overlays into main memory via the operating system
loader. (For detailed information concerning loader calls, see the Loader reference manual.) Once a
primary overlay is loaded, it can call any of its associated secondary overlays. Overlay 23,0, for example,
can call overlays 23,10; 23,30; and 23,40 in any order.

The main overlay can have multiple entry points: execution can begin at any one of them. Usually,
primary and secondary overlays have a single entry point which provides the transfer address. A secondary
overlay can reference entry points in its primary and in the main overlay. A primary overlay can reference
entry pointsin the main overlay. The programmer must ensure that the necessary entry points have not
been overwritten.

These conventions eoncerning the numbering, hierarchy, loading, and execution of overlays are not
enforced by COMPASS. Any overlay can call the operating system loader to load another overlay, and any
overlay can reference addresses in any other overlay. However, overlays are not all in central memory
during program execution and the sequence in which the overlays are loaded and executed is beyond the
scope of the assembler; therefore, it is the user's responsibility to assure that an overlay does not refer to
symbols, instructions, or data not concurrently in central memory.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects. However, a PPU overlay with assembled code in locations 7774g through 7777g may load
incorrectly due to wraparound to location 0000.

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays generated
by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader reference manual.

60492600 G 3-9

IDENT-Type Overlays

An IDENT-type overlay consists of the portions of the program from:
One IDENT to (but not including) the next IDENT
The last IDENT in the overlay to the END

IDENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file.. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

The first IDENT causes COMPASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second IDENT instruction before an END instruction,
COMPASS generates output consisting of a memory image of the overlay, starting with the overlay origin
specified on the previous IDENT and normally ending with the maximum origin counter value of the last
block declared in the overlay; that is, the overlay normally ends with the last word address of its last
block. An IDENT subsequent to a SEG or SEGMENT, however, generates binary that ends at the location
specified by the current origin counter. Following the memory image, COMPASS writes an end-of-section
(or end-of-record) and the overlay identification information specified by the new IDENT for the overlay to
follow.

For an IDENT-type overlay, COMPASS completes all blocks, including the literals block. Block structuring
starts fresh with each overlay. This means that each overlay can use the same block names used by other
overlays, and each overlay can contain a literals block. The USE table and control counters are all
reinitialized. The origin specified for an IDENT-type overlay can be any place in a previously generated
overlay. This is possible because IDENT causes the assembler to assign an absolute address to each symbol
in the symbol table. It can do this because the sizes of all the blocks are known.

Figure 3-4 illustrates a CPU program in which a second IDENT is used prior to an END pseudo instruction
to generate a main overlay and a primary overlay. Between the two IDENT instructions, block usage
alternates between the absolute block (labeled PROGRAM* on the listing) and block A, as depicted in the
block structure diagram. Note that in the main overlay (the first section of binary generated, labeled
MAIN), the assembler has concatenated the portions of each bloek. Concatenation also occurs in the
primary overlay, OV 1, for the portions of the absolute block ABSOLUTE' and for those of blocks A', B,
and C.

The occurrence of literals and default symbols causes the assembler to generate a zero block and a literals
block, respectively, in both of these overlays. Following the second nonblank IDENT, the program overlay
origin is set back into block A, as shown in the map of the two loaded overlays. Note that the loader
control table is loaded in memory below the address specified in the ORG pseudo instruetion (BETA, in the
figure), as shown in the map of the loaded overlays.

The first IDENT pseudo instruction assigns the level number 0,0 to the first overlay (MAIN). COMPASS
assigns level number 1,0 to overlay OV1 by default.

SEGMENT-Type Overlays

A SEGMENT-type overlay consists of the portions of a program from:
The IDENT that identifies the program to a SEGMENT pseudo instruection
One SEGMENT to the next SEGMENT

The last SEGMENT to the END pseudo instruction

3-10 60492600 G

Sl

IDENT MAIN,O,0—0r ——————— . —
BETA ABSOLUTE MAIN origin
A ABSOLUTE
ABSOLUTE MAIN overlay
nn
A ZERO :
: LITERALS
IDENT OV1—> ABSOLUTE - BETA —=
ORG BETA A' < T — A
B N — /
. ~ First Binary
ABSOLUTE N Load Module
? C N e e e et
T Prefix Table:
' ABSOLUTE!
B
t
END —! A 4 |
i t
Source Program ' ABSOLUTE
Block Structure N N
N ZERQC'
Low > LITERALS' > OV1overlay
Address™ _ | 1.0
N i '
AN | A
AN !
N
.. " \ B
Overlaid portion) & Loader Control : N
of MAIN overlay : Information N C)
, Second Binary
ABSOLUTE Load Module
ZERO'
LITERALS' (i\gl
Al
! B
| 1&
i C / High Address

60492600 G

Map of Loaded
Overlays

Figure 3-4. IDENT-Type Overlay Structure

SEGMENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a memory image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the first
overlay), and ending with the current origin counter value of the block in use at the time the SEGMENT
was encountered. Following this, COMPASS writes an end-of-section and overlay identification
information for the overlay to follow.

SEGMENT does not clear the symbol table or reinitialize the USE table. Thus, when a SEGMENT is
encountered, the block in use is incomplete. It is the responsibility of the user to assure that all blocks
other than the one in use are complete at that time. Also, the only symbols that can be used to define the
origin of the new overlay are those valid for the block in use.

Each new SEGMENT-created overlay must use unique block names because blocks established in previous
overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-5 illustrates a program consisting of a main overlay, MAIN, and a primary, OV1. The use of
default symbols causes generation of a zero block. The use of literals causes generation of a literals
block. Both of these blocks oceur in the overlay MAIN, because it contains the end of the absolute block.
Block A begins in the main overlay, but is incomplete when COMPASS encounters the SEGMENT. The
ORG pseudo instruction causes the origin of the primary overlay OV1, to be set at load time to TAG, at a
lower address in block A. (Note that the loader control information is loaded at an address lower than the
origin of the overlay.) OV1 establishes new blocks C and D.

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called, it
may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 5100g overlay
table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 5100g table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 5100g
table, refer to the Loader reference manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or overlay contains SEG pseudo instructions or IDENT pseudo instructions for
which the parameters are omitted (blank), COMPASS writes a partial binary section consisting of the
binary generated since the previous IDENT, SEGMENT, or SEG instruction. However, it does not write an
end-of-section (or end-of-record) or a new prefix table. A SEGMENT, nonblank IDENT, or END instruction
completes the binary section.

SEG Partial Binary Record

By writing partial binary records using SEG, the programmer can reduce the assembler storage
requirements. SEG does not write a complete block group. When the SEG is encountered, COMPASS writes
binary beginning with the first block established in that portion of binary and ending with the final count
specified by the origin count for the current block. A fatal error is issued if the user attempts to store
data into a block not in the current partial binary record.

The portion of the binary that contains the end of the absolute block contains the literals block, if there is
one. The symbol table and USE table are not reinitialized.

3-12 60492600 G

MAIN

Origin
IDENT MAN—p i — ——————— — — — — — —
ABSOLUTE
ABSOLUTE
TAG—= A MAIN
ABSOLUTE ZERO > Overlay
LITERALS ’
SEGMENT OV1 A
ORGTAG ~— |~~~ 771 N — A
(o AN ~ /
D N First Binary
END N Load Module
Source Program AN
Block Structure N AN
AN
N N
N
oVl \
\Ongm OO v 11
N verlay
N C 1,0
N D
Second Binary
Load Module
Low Address
MAIN
Origin
ABSOLUTE ABSOLUTE
ZERO ZERO
MAIN< LITERALS LITERALS
A _______
% Loader Control ,
A QOverlaid
- — —TAG— — Portion oVvi
A of MAIN \ oyerlay
J Overlay 0
: C 1,
High Address N | 0
D
Map of Loaded
Overlays MAIN and OV1
Figure 3-5. SEGMENT-Type Overlay Structure
60492600 G 3-13

Figure 3-6 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of memory required to assemble the program. The resulting absolute section

is loaded and executed as a single program or overlay.

Loader Control
IDENT PROG—
ABSOLUTE
ABSOLUTE
SEG
(writes partial—= - - - - - - - -~ —; Absolute Binary
binary) ABSOLUTE LITERALS Section
SEG A A
(writes partigl—=t - - - - - - - - - -
binal
inary) B Largest partial assembly B
determines assembler
C storage requirements C
END / End-of-section
Source Program Binary Load
Block Structure Module

Figure 3-6. SEG Partial Binary

IDENT Partial Binary

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG, or
SEGMENT to be written out without an end-of-section (or end-of-record) or a new 7700g prefix table.

The USE table and the block counters are reinitialized. Each symbol in the symbol table is assigned an
absolute address. The blocks in each partial binary section generated in this manner are ailocated as if the
partial binary section were a new subprogram with its own absolute block, literals block, and local blocks.
This allows portions of a program to be self-contained units even though they are not overlays but are
loaded as a single unit. The origin of an absolute block for new portion is the last word address plus one of
the last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends
with the maximum origin counter value of the last block declared in the block group; that is, it normally
ends with the last word address. If part of the block group has already been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current
block.

COMPASS completes all blocks. The literals block is terminated. Bloek structuring starts fresh with each
IDENT. Each new partial binary section created by a blank IDENT can use the same block names as are
used by the other blank IDENT-created partial binary sections and non-blank IDENT-created overlays and
each IDENT can contain a literals block but the blocks with the same names are independent of each other.

An attempt to write into or to reset the origin counter to a location in a partial binary section written
separately causes an assembler range error.

3-14 60492600 G

Figure 3-7 illustrates how the binary for an overlay can be written in three discrete partial binary sections
to reduce the amount of central memory required to assemble the program and divide the program into

o £ - PO, L Mha w «sl41 128
self-contained units. The resuwling aosd

IDENT PGM

IDENT

IDENT

IDENT OVLY

60492600 G

Jiiéa see a
AULT JSTU LIV D 1vaucu aimva ©

ABSOLUTE

LITERALS

Local Blocks

ABSOLUTE'

LITERALS'

,ocal Blocks

ABSOLUTE"

LITERALS"

Local Blocks

Source Program
Block Structure

+3i~n ia 1aadad

nd executed as @ sin

CLluLTu do a

refix Table

IDENT PGM

IDENT OVLY —»>—~_ _— ~_i

ABSOLUTE

LITERALS

Local Blocks

ABSOLUTE'

LITERALS'

Local Blocks

ABSOLUTE"

LITERALS"

Local Blocks

Prefix Table

: CEn trol TaBl

Loade

Binary Load
Modules

Figure 3-7. IDENT Partial Binary Records

g]n overlay
i€ overiay.

End-of-section

identification
for OVLY

3-15

PSEUDO INSTRUCTIONS . 4

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

The format of the COMPASS pseudo instruction is the same as that of the symbolic machine instruction; it
includes the location field, the operation field, the variable field, and the comments field. The pseudo
instruction differs from the symbolic machine instruction in that it is used te control the actions of the
assembler at assembly time, rather than those of the machine at execution time.

The pseudo instructions available in the COMPASS language are presented in this chapter and in

chapters 5, 6, and 7. Programmers with little COMPASS experience should give special attention to a few
important pseudo instructions, which are listed in the following table. It is not possible to write a
COMPASS program without using some of them. The table indicates the type of assemblies in which the
pseudo instructions can be used.

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute

IDENT 4.2.1 X X X
ABS 4.3.1 - -
PPU or PERIPH 4.3.3 or 4.3.4 - - X
ORG 4.5.3 X X X
ENTRY 4.7.1 X - -
BSS 4.5.4 X X X
CON 4.8.6 X X X
END 4,2,2 X X X

4.1.1 TYPES OF PSEUDO INSTRUCTIONS
Pseudo instructions discussed in this chapter are classed according to application as follows:
Subprogram identification (IDENT and END)

Binary control (ABS, MACHINE, PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, LDSET, STEXT,
COMMENT, and NOLABEL)

Mode control (BASE, CHAR, CODE, COL, B1=1, B7=1, and QUAL)

Bloek counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS)
Symbol definition (EQU and =, SET, MAX, MIN, MICCNT, and SST)
Subprogram linkage (ENTRY, ENTRYC, and EXT)

Data)generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC, and
REPI

Assembly control (ELSE, ENDIF, IFtype, IFop, IF, IFC, IFPL, IFMI, and SKIP)
Error control (ERR and ERRxx)

Listing eontrol (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)

60496200 G 41

Later chapters describe pseudo instructions that involve definition operations, alterations to the operation
code table, and micros. In general, pseudo instructions can be summarized according to where they can be

placed in a subprogram.

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, IDENT and END, are required for any assembly. IDENT must be the first source
statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basic characteristics of the assembly and provide the assembler with
required information. These instruetions make up the first statement group which must precede any
symbol definition, storage allocation, or object code generation. The following instructions, if used, must
be in the first statement group:

ABS
MACHINE
PERIPH
PPU
STEXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group:

BASE CPSYN ENDM MACROE OPDEF SKIP
Bl=1 DECMIC HERE MICCNT OPSYN SPACE
B7=1 EJECT IFC MICRO PPOP SST
CHAR ELSE IRP NIL PURGDEF TITLE
CODE END LDSET NOLABEL PURGMAC TTL
COMMENT ENDD LIST NOREF QUAL XREF
CPOP ENDIF MACRO OCTMIC RMT

Comment lines and references to maero definitions are also permitted anywhere.

CPU or PPU symbolic machine instructions and all other pseudo instructions cannot be placed in the first
statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPROGRAM IDENTIFICATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or more
subprograms are assembled in a single COMPASS run called through the COMPASS control statement, the
end of the source decks is indicated by an end-of-seetion, such as a 7/8/9 card.

4.2.1 IDENI — SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruetion of the following form is the first statement of a subprogram recognized by
the assembler. Usually, any lines preceding the first IDENT or between an END and IDENT are assumed to
be comments. However, when COMPASS has been called by some other language processor such as
FORTRAN, the assembler returns control to the processor when the statement following END is not
IDENT. For a relocatable subprogram, COMPASS flags any subsequent use of IDENT before END as an
error. For an absolute subprogram, a second form of IDENT deseribed under BINARY CONTROL is
available for overlay generation.

4-2 60492600 G

The format of IDENT varies according to the type of assembly.

“PU Reiocatabie Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name

CPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ,!‘1 I 2

7600 PPU Absolute Format:

{OCATION

OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

name

origin

60492600 L

IDENT name,origin

Name of the subprogram or overlay. The parameter is required. For a CPU relocatable

or absolute assembly, name can be 1 through 7 characters, of which the first must be

alphabetic (A through Z) and the last must not be a colon.

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1 through 7 characters.

For CYBER 180 Series or CYBER 170 Series or CYBER 70/Model 72, 73, 74 or 6000

Series PPU assembly, name can be 1 through 3 characters. In either case, there is no

restriction on the first character, but the last character must not be a colon.

An expression specifying the first word address of the absolute program or overlay. The

overlay loader table and all code assembled starting at this address and ending with

next SEGMENT, nonblank IDENT, or END instruction make up the overlay. For a single

entry point CPU program, the load address for the overlay is origin-1. The word at

the

origin-1 is overlaid by the 5000g loader control table. For a multiple entry point CPU

program, the load address for the absolute overlay is origin-we-1, where we is the
number of entry points in the 5100g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words are overlaid

by the 60-bit loader table.

Data can be generated in locations starting with origin and above, but not below origin.
The origin subfield does not serve the same funtion as ORG, nor does it replace ORG

for setting the origin ecounter.

If the origin field is null for an absolute subprogram, the assembler uses address
000000 RAC(S) as the origin for a CPU program and 0000 as the origin for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader automatically
relocates the first subprogram to be loaded starting at RA(S)+100g, the second
subprogram starting at the first available location following the first subprogram, and so

forth.

entry For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU assembly, this
subfield contains an expression specifying the subprogram entry address, which can be
symbolic.

L5 2y Absolute expressions specifying the level numbers of the overlay. £; is the primary

level (0 through 63) and £9 is the secondary level (0-63). When the first IDENT
identifies the main overlay, £1 and £9 can be omitted. If £; is omitted, it is set
to 00. If £ is omitted, it is set to 00.

Because the first IDENT precedes any use of the BASE pseudo instruction, the level
numbers on this IDENT are evaluated as decimal unless specifically designated as octal
by a post radix.

pPpu Absolute expression specifying the number of the PPU on which this program is to be

loaded. On the first IDENT, this number is evaluated as decimal unless specifically
designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control statement, IDENT must be in columns 11 through 15.

When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field entry
as the main subprogram title on the assembly listing.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

) n 18 T30
INDENT |CT,"ONTROL,CONTR0OL
ARS JARSOLUTE CPU PROGRAM
006G 1199 [

COMTROL |BSS n 'DF_FINFS SYMRQOL GCONTPOL
FND

Absolute CPU program CT will be loaded at origin address 00110g.

4.2.2 END — END OF SUBPROGRAM
An END pseudo instruction must be the last instruction of each subprogram. It causes the assembler to

terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

4-4 60492600 G

For a relocatable subprogram, the assembler combines all local blocks into a relocatable subprogram
block, generates the relocatabie binary tables and produces the listing.

For an absolute assembly, the assembler assigns each block an origin relative to absolute zero,

combines all blocks into an absolute subprogram or overlay, generates the absolute binary section and
produces the listing.

END can alsc be used to signal the end of source statements from an external source (see XTEXT). In
this case, it does not terminate the subprogram.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym END trasym

sym Optional last word address symbol; if present, COMPASS defines it as the
total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one.

trasym A symbol specifying the entry point to which control transfers for a reloca-
table subprogram. This symbolmust be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled. At least
one subprogram must specify a transfer address or the loader signals an

error, If more than one subprogram indicates a transfer address, the loader
uses the last one encountered.

For an absolute assembly, trasym is ignored.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18

IDENT [PROG1
ENTRY [|RFGTM

30

!
|
I
l
|
|

RFGIN <R1 1
n

EGIN

60492600 A 125

4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler are
summarized below and described fully in this section.

ABS Specifies CPU absolute binary output
MACHINE Specifies processor type v
PPU Specifies CYBER 70 Model 76 or 7600 PPU binary output

PERIPH Specifies CYBER 180 Series; CYBER 170 Series; CYBER 70 Model 71, 72, 73, or 74; or
6000 Series PP binary output

IDENT Begins absolute overlay or writes partial binary section
SEGMENT Begins absolute overlay

SEG Writes partial binary section

STEXT Generates system text overlay

COMMENT Inserts comments into the 7700g prefix table

NOLABEL Suppresses header information on binary output

LccC Passes loader control information to the relocatable loader

LDSET Generates loader directive LDSET

4.3.1 ABS — ABSOLUTE CPU PROGRAM
An ABS instruction declares a CPU program to be absolute. If used, it must be in the first statement group.
The following instructions are illegal in an absolute program:

EXT

LCcC

REP
REPC
REPI

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no significance
because a eonventional definition takes precedence (see Default Symbols in chapter 2).

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
ABS

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS and
PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence.

4-6 60492600 L

Example:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
TOENT |CY,CONTROL 4CIONTROL
ags IARSOLUTE CPU PROGRAM
NRG 1190 |
CONTROL [BSS b} lJEFINES SYMBOL CONTROL
L] L] !
[] >
. : |
FND '

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer system on which the object program can
be executed successfully and optionally specifies hardware features needed by the object program. When
the loader loads the object program, the required hardware features specified with MACHINE are
reconciled against actual hardware features present; a missing feature causes the loader to issue a fatal
diagnostic message. If used, MACHINE must be in the first statement group.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

MACHINE |type, b ,h ,bf,, ... hf

A location field symbol, if present, is ignored.

type Character string designating object processor type. The subfield can be any length and
may contain any characters other than blank or comma. The first character identifies
processor type, as follows:

6 The object program is restricted to the following computer systems: CYBER
180 Series; CYBER 170 Series; CYBER 70 Model 71, 72, 73, and 74; and 6000
Series. All machine instructions unique to the CYBER 70 Model 76 or 7600
Computer Systems are undefined.

7 The object program is restricted to a CYBER 70 Model 76 Computer System or
to a 7600 Computer System. With the exception of the PS instruction (often
used for subroutine entry points in CPU assemblies), all instructions unique to
the following computer systems are undefined: CYBER 180 Series; CYBER |
170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series. :

60492600 L 4-7

8 The object program is restricted to a model 810, 815, 825, 830, 835, 845, 855,
865, or 875 Computer System. All machine instruetions unique to other
computer systems are undefined. This pseudo instruction should not be used
if SSAIDTEXT has been specified on the COMPASS control statement.

In a CPU assembly, if the MACHINE pseudo instruction is omitted, or the type subfield
is blank, or its first character is not 6, 7, or 8, then all CPU instructions are defined,
and the target and valid fields of the PRFX table in the object program are blanks. If
the type subfield is present and its first character is 6, 7, or 8, the valid field contains
6X, 7X, or 8X. If the type subfield is at least two characters, the first character is 6,
7, or 8, and the second character is a digit (0-9), the target field contains those two
characters.

In a PP assembly, if the MACHINE pseudo instruction is omitted, or the type subfield is
blank, or its first character is not 6, 7, or 8, then: if the PERIPH pseudo instruction is
present, MACHINE 6 is assumed; if the PPU pseudo instruction is present, MACHINE 7
is assumed. The target field of the PRFX table contains blanks, and the valid field
contains 6P, 7P, or 8P.

hf; Optional subfield, a character string designating an optional hardware feature required
for successful execution of the object program. The subfield may be any length and
may contain any characters other than blank or comma. It has no effect on assembly of
the program. The first character of the subfield is placed in the
hardware-instruction-dependencies field in the PRFX table in the object program.
Recommended mnemonic letters are:
] Compare/Move Unit
D Distributive Data Path
I Integer Multiply Instruetion
L ECS/LCM
R Interlock Register
X Central and Monitor Exchange Jumps
Up to nine hf; subfields are processed; any additional subfields are ignored. If the
hf;j subfields are omitted, the comma following type can also be omitted.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30

MACHINE 6,CMU,LCM,X]
]

f

4.3.3 PPU - CYBER 70 MODEL 76 OR 7600 PPU PROGRAM

A PPU instruction declares a program to be a CYBER 70 Model 76 or 7600 absolute PPU program rather
than a CPU program. If used, PPU must be in the first statement group. For a description of binary
format generated as a result of this instruetion, refer to the Loader reference manual.

4-8

60492600 L

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY SEGMENT
ENTRYC USELCM
EXT R=

LCC Bl1=1

REP ‘B7=1
REPC

REPI

SEG

A symbol can be prefixed by = X if it is also defined conventicnally,

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence.

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but are not applicable in a PPU
assembly:

OPDEF

CPOP -

CPSYN

PURGDEF

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PPU J
J A character string beginning with J supplied in the variable field alters the way

that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJN instructions.

If J is not specified, COMPASS first tests the range of the expression against
the short jump limit (+31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the
location counter value. If the value is now in range, COMPASS assembles the
instruction using the expression value minus the location counter value.
However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression,

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value

that is a true relative address.

A symbol in the location field, if present, is ignored.

60492600 A -9

Example:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 T30
PPy |
. :
760 TAG I 2R |
760 0357 UJIN TAG-* |[EXPRESSION < 378
t
Iocation Code Generated LtOCATION OPERATION | VARIABLE COMMENTS
1 " N [0
Py JUMP :
. |
740 786 RSS 20n |
760 02s7 UIN TAG [EXPRESSINN-* < 371

4.3.4 PERIPH - CYBER 180 SERIES; CYBER 170 SERIES; CYBER 70
MODELS 72, 73, 74; OR 6000 SERIES PPU PROGRAM

l A PERIPH instruction declares a program to be a CYBER 180 Series or a CYBER 170 Series or CYBER 70
Model 72, 73, 74, or 6000 Series absolute PPU program rather than a CPU program. If used, PERIPH must

be in the first statement group. For a descripton of binary output produced as a result of this instruction,
refer to the Loader Reference Manual.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY LCC REPI R=
ENTRYC REP SEG B1l=1
EXT REPC USELCM B7=1

A symbol can be prefixed by =X if it is also defined conventionally.

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols

having no special significance. The following instructions are legal but are not applicable to PPU
assemblies:

OPDEF

CPOP

CPSYN

PURGDEF

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PERIPH J

J A character string beginning with J supplied in the variable field alters the way that
COMPASS assembles the variable field expression on UJN, ZJN, MJN, or PJN
instruetions.

4-10 60492600 L

If J is not specified, COMPASS first tests the range of the expression value

against the short jump limit (+31). If the value is in range, COMPASS assembles
the jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the location
counter value. If the value is now in range, COMPASS assembles the instruction
using the expression value minus the location counter value. However, if it is out

of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an exampie illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

4.3.5 IDENT - IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. First, it allows the specification of overlay
numbers. Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absolute zero. Thus, an ORG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference is
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGMENT can alter

this, however (Section 3.4).

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The
output is not terminated by an end-of-section or a new 77, table. Ilowever, the USE table and the
block counters are reinitialized and each symbol in the symbol table is assigned an absolute address.

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
partial can use the same block names as are used by other overlays or partial and each can have a
literals block.

For a blank IDENT, an attempt to write into or reset the origin counter to a location in a partial section
written separately causes a range error. Following the IDENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+1.

The format of the IDENT varies according to the type of assembly as follows:

CPU Absolute Format:

LOCATION CPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, 21 s 2

60492600 A ‘ 4-11

or

(OCATION

OFERATION VARIABLE SUBFIELDS

IDENT

7600 PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name,origin, entry, ppu

6000 Series PPU Absoiute Format:

4-12

LOCATION

OPERATION VARIABLE SUBFIELDS

name

origin

entry

2,19

IDENT name,origin

Name of the overlay. For a CPU program, 1-7 characters, the first of which must be
alphabetic (A-Z); for CYBER 180 Series or CYBER 170 Series or a CYBER 70/Model 72,
73, or 74, or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76 or
7600 PPU program, 1-7 characters. In all cases, the last character must not be a

colon. A name is a loader linkage symbol required for overlays.

An expression specifying the first word address of the overlay. The overlay control
word and all code assembled starting with this address and ending with the next
SEGMENT, nonblank IDENT, or END instruction comprises the overlay. For a single
entry point CPU program, the load address for the overlay is origin-1. The word at
origin-1 is overlayed by the 50g loader table. For a multiple entry point CPU
program, the load address for the overlay is origin-we-1, where we is the number of
entry points listed in the 51g Joader table. '

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words are
overlayed by the 60-bit loader control table. Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does not serve
the same function as ORG nor does it replace ORG for setting the origin counter. The
origin of an overlay can be below the origin specified on any other IDENT or SEGMENT.

An expression specifying the overlay entry address. When the overlay is called, control
optionally transfers to this address.

Absolute expressions specifying the level numbers of the overlay for CPU programs
only. 2[31 is the primary level (00-77g), £ is the secondary level (00-77g). If

base is M, £1 and {9 are assumed to be octal. If £1 and £9 are not specified,

2 is set to 01 and £9 is set to 00.

60492600 L

ppu An absolute expression specifying the number of the PPU in which the overlay
is to be loaded. Iif base is M, ppu is assumed {o be octal.

A location ’field symbol, if present, is ignored.

The binary is written on the file specified by the B parameter on the COMPASS control statement. END
dumps the last overlay or completes a partially written section.

Examples:

The following program uses IDENT for overlay creation. Symbols T.OVL, O.DMP1, etc. are
defined on a system text overlay.

ORG T.0VL OVERLAYS DMP2

LOCATION OPERATION | VARIABLE COMMENTS
] " 18 {30
IDENT [DMP.1,T.OVL,0.NMP1
ABS |
DeM BASE M |
COMMENT 10/07/70.CONTROL CARD CALL.DMP.
LIST |6 I
SST | OVERLAY
ORG T.OVL OMP1
QUAL |DMP1 |
DMP SX0 B1 |
QUAL [DMP2 1
IDENT DNPZ,T.OVL,OrDMPZ 1
|

JAW2 SX0 86+1 THROUGH OMP8
QUAL |DMP9 | 5
IDENT |OMP.9,T.OVL,0.0MP9 OVERLAY
ORG T.OVL ! DMP9
SX0 o.onpz+r.noﬁ
L] L] i
* [
END FND OVERLAY DMPQ]

60492600 A 1-13

The following program uses IDENT instructions having blank variable fields.

LOCATION OPERATION | VARIABLE COMMENTS
! n 18 [0
IDENT | VVV,110B,ENT 1
ABS |
ORG 1108 |
ENT X0 1 |
L] L] l
o : - | First
1617 LIT 1,2,3 | Partial Binary
TNENT !
I 2
3455 LIV 2,3 ' Second
. . | Partial Binary
* L]
L] L] I
IDENT |
7 . I T . '
116 L 1,2 I Third
. . Partial Binary
FND | y
Origin—
g ABSOLUTE]
1617 LITERALS First
Partial Binary
_ Local Blocks
ABSOLUTE! . Bl
3455 — Second
LITERALS' Partial Binary

M J
ABSOLUTE" 'I

7116 — LITERALS" Third
Partial Binary
Local Blocks]
lwa —
Core Map

414 60492600 A

4.3.6 SEGMENT - GENERATE BIiNARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of
IDENT and is included primarily to provide another way of handling literals. Use of SEGMENT is
intended for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEG-
MENT pseudo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be
written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDENT to be dumped as the main (0, 0)
overlay. Each subsequent SEGMENT generates a new overlay with the specified level numbers. END
dumps the last overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the
symbol table or block declarations. All blocks other than the block in use must be complete. For a

CPU assembly, the literals block must be in one overlay only but that overlay can be any overlay.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
name SEGMENT | origin,entry, £1 ' !2

name Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last
character must not be a colon. It is a required loader linkage symbol,

origin A relocatable expression specifying the first word address of the overlay.
It can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank IDENT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-1. The word at
origin-1 is overlayed by the 50g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table, Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does
not serve the same function as ORG nor does it replace ORG for setting the
origin counter. The origin of an overlay can be below the origin specified on
any other IDENT or SEGMENT.

entry An expression specifying the overlay entry address. It is used for CPU
assemblies only. When the overlay is called, control optionally transfers to
this address.

11, 12 Absolute expressions specifying the level numbers of the overlay for CPU
programs only. !1 is the primary level (00-778), !2 is the secondary level

(00—7‘78). If base is M, !1 a.ndf2 are assumed to be octal. If 21 and 12

are not specified, !1 is set to 01 and 22 is set to 00.

60492600 A

Example:

LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30

IDENT [SAM,ENTA |
ABS
ORG 110n |

ENTA fss n |gNTRv POINT
. - '

ovLoC asS n |OVERLAY LOAD POINT
. - |

SEG1 SEGMEN] STRT,ENTR |
ORG ovLee
RSS 1 LOADER TAPLE

STRY eSS 0 JFIRST WORD OF OVERLAY
L] [] I

ENTB RSS n 'EXECUTION BEGINS HERE
END | gEND OF OVERLAY

SEG1 is loaded as an overlay upon a call for the loader from the program. The first word of the overlay
is loaded at OVLOC +1, following the loader table. The entry point to the overlay and the first executable
instruction is at ENTB. The overlay, when executed occupies the area of the main program beginning

at OVLOC.

4.3.7 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruction permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
previous IDENT, SEGMENT, or SEG pseudo instruction. It does not write an end-of-section or begin
a new PRFX table. A SEGMENT, IDENT, or END instruction completes the binary section.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block.

4-16 : 60492600 A

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
' SEG

Symbols in the location field and variable field, if present, are ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 L)
IDENY | NAME,ORIGIN, ENTRY
ARS
USE A [
. .
. . l
[] ® '
SEG
USE |8 |
L]) '
L] L]
®] l
SEG '
L] L
[] [|
: |
END |

4.3.8 STEXT - GENERATE SYSTEM TEXT RECORD

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols,
micros, and opcodes (macros, opdefs, and machine and pseudo instructions), written in overlay
format at the end of pass one, The STEXT instruction must be in the first statement group.

The system text overlay becomes available in other assemblies through use of the G or S option on the
COMPASS control statement (chapter 10). Through this feature, information in the system text overlay
need be processed only once for all COMPASS programs using the same system text. System text over-
lays cannot be generated and used in the same assembly batch; system text overlays generated by one
COMPASS control statement call can be used only by assemblies performed by later COMPASS control
statement calls,

The symbols included in the system text overlay written are all symbols defined in the assembly except
those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

60492600 A 4-17

The symbol is redefinable (i.e., defined by SET, MAX, MIN, or MICCNT).
The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.
The symbol is defined by SST (i.e., is a system symbol input to the present system text assembly).

The symbol is 8 characters beginning with 1 }.
All defined micros are included in the system text overlay.

All program-defined opcodes are also included. Machine and pseudo instructions automatically
defined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
included.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS con-
trol statement, all of the micros and opcodes in the system text are automatically defined at the start of

each assembly; however, the symbols in the system text are defined only for those assemblies that
contain the SST pseudo instruction.

A system text overlay on the library is an absolute overlay that has the following control table:
59 48 42 36 00
[5000 | o] o1] 000000000000

Format of Text:

System Symbol
——————————————————————————————— >~ Table
2 words per entry

)
m %> Micro Definitions

I3
\\/\/—\—/ . Macro/opdef Definitions

4y

Operation Table
m " Entries (2 words per entry)

L= Number of words in each part of overlay

4-18 . 60492600 A

LOCATION OFERATION VARIABLE SUBFIELDS
rname STEXT
rname Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a

letter {A-2) and the last must not be a colon. It is placed in the prefix table that

precedes the overlay,

If rname is blank, COMPASS uses the name from the IDENT instruction and generates
the system text only. Otherwise, the system text is generated in addition to the re-
locatable or absolute binary and precedes the binary output on the binary file,

An entry in the variable field, if present, is ignored.

Example:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 '30
IDENT | SYSTEXT |
STEXT
BASE | MIXED '_
MPRS £0U 100 I
|svsrgn CONSTANTS, SYMAOLS,
|aAND COMMUNICATIONS A2EAS
TRTS £0U 7777 |
IXX/X OPDEF | I,J,K |
L] L] L]
. . . lsysTem-oeFIneD MACROS
. . . 'AND OPDEFS
ENDM |
SYSCOM |MACRO [N {
L] L L]
L] L] * I
. . . I
ENDOM | -
DATE MICRO [1,10,%...*%
L] L] L] |
. . . |SYSTEM-DEFINED MICROS
END t

60492600 A 1-19

4.3.9 COMMENT—PREFIX TABLE COMMENT

The COMMENT pseudo instruction inserts the character string specified in the variable field into

the eighth through fourteenth words of the PRFX table in the object program. The prefix table, and
thus the comment, is ignored by the loader but identifies the section. If a subprogram contains more
than one COMMENT instruction, the new comments are appended to the table for the most recent

binary control statement.

If the subprogram contains a NOLABEL instruction, the COMMENT instruc-

tion is meaningless. COMMENT instructions following SEG and blank IDENT pseudo instructions are
ignored without notification.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
COMMENT | string
string COMPASS searches the columns following the blank that terminates the operation

field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one. Otherwise, the character string begins with the first
nonblank character following the operation field. In either case, the last character
of the string is the last nonblank character of the statement. 1 to 10 blanks are
appended on the right so that the string is followed by at least one blank and the
length of the string is a multiple of 10 characters. If the variable and comment fields
are all blanks, the string consists of 10 blanks. If the string length is more than 70
characters, all characters beyond the 70th are lost.

A location field symbol, if present, is ignored. Refer to section 4. 3.5 for an example.

4.3.10 NOLABEL — DELETE HEADER TABLE

The NOLABEL instruction modifies the format of the binary output produced by COMPASS for an
absolute assembly by optionally suppressing header information. It is particularly convenient for
generating deadstart programs which must be loaded at location zero.

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

4-20

NOLABEL |1

60492600 F

1 Optional; if the variable field contains a character string beginning with an I, COMPASS
suppresses all prefix (7700g) tables, but retains the other program header tables.

If the I option is omitted, COMPASS suppresses all of the following:
Prefix tables (7700g)

Overlay control tables (5000g)

Multiple entry point tables (§1008)

PP header control tables

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly.

4.3.11 LCC—LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

LCC directive

directive First nonblank character following LCC to the first blank. For directive formats, refer to
the Loader reference manual.
A location field symbol, if present, is ignored.

COMPASS writes a directive as a section in packed display code for subsequent interpretation by the
loader. COMPASS does not edit the directive; the loader recognizes illegal forms at load time.

4.3.12 LDSET—GENERATE LDSET OBJECT DIRECTIVES

The LDSET pseudo instruction generates loader LDSET directives for a relocatable program. A program
may contain any number of LDSET instructions. COMPASS collects all LDSET options and writes a single

LDSET (7000g) table in the relocatable binary output between the PRFX (7700g) table and the PIDL
(3400%) tables. The LDSET table is not written if LDSET instructions do not appear in the program.

LDSET is not allowed in a PP or absolute CPU assembly.
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LDSET options
options One or more options separated by commas. See the Loader reference manual for further
information, including applicability to a particular operating system.
LIB Cleear local library set.

€0492600 H 4-21

4-22

LIB=libname

MAP
MAP=p

MAP=p/Ifn
MAP=/ifn

PS=p

PD=p

PRESET=p

PRESETA=p

Add the specified libraries to the local library set. More than one library can
be specified by separating library names with a slash, in the form:

libnamej /libnameg/.../libnamep
Write load map to file OUTPUT.

Write load map to file OUTPUT. Map items are selected by p:

NOS and NOS/BE SCOPE 2

N No map. Oor O No map.

S Statisties. S Statisties.

B Block list. B Statistics and block list.

E Entry point list. E Statistics, bloek list, and entry
point list.

X Cross reference map. X Statistics, block list, entry

point list, and eross reference
map.

For NOS and NOS/BE, p can be written as N or as any combination of SBEX
in any order.

Write load map to file named Ifn. p is as above.

Write load map to file named 1fn. Installation default determines items on -
the map.

Select page size for load map by a specification of number of lines. p can be
decimal 10 through 999999. A value outside this range results in the
installation default page size. This option is not supported by SCOPE 2.

Select print density for load map by a specification of decimal number of
lines per inch. This option is not supported by SCOPE 2. p can be:

6 6 lines per inch.

8 8 lines per inch.

other Installation default.
Preset memory to the value specified by p. Under NOS/BE, p canbe a 1
through 20 digit octal number with an optional + or - prefix and an optional B

suffix.

p can also be one of the following key words:

NONE No presetting for ECS (or for LCM and SCM under SCOPE 2);
same as ZERO for CM

ZERO 0000 0000 0000 0000 0000

ONES T TNT TN M

INDEF 1777 0000 0000 0000 0000

INF 3777 0000 0000 0000 0000

NGINDEF 6000 0000 0000 0000 0000
NGINF 4000 0000 0000 0000 0000
ALTZERO 2525 2525 2525 2525 2525
ALTONES 5252 5252 5252 5252 5252
DEBUG 6000 0000 0004 0040 0000

p can be as defined for PRESET. The lower 17 bits (CM/SCM) or lower 24
bits (ECS/LCM/LCME) of each word contains its address.

60492600 H

ERR=ALL
ERR=FATAL
ERR=NONE
REWIND

NOREWIN

EPT=eptname

USEP=pname

USE=eptname

COMMON

COMMON=blkname

SUBST=pair

OMIT=eptname

Select ioader abort for any loader errors.
Select loader abort only for fatal loader errors.
Select loader abort only for catastrophic loader errors.

Reset the default REWIND/NOREWIN option for load files to REWIND. The
NR parameter on LOAD and SLOAD directives can override this default for
individual files.

Reset the default REWIND/NOREWIN option for load files to NOREWIN.
The R parameter on LOAD and SLOAD directives can override this default
for individual files.

If the symbol eptname is defined, declare it an entry point of the CAPSULE

or OVCAP binary subsequently generated by the loader. This parameter can
be used to specify more than one entry point; entry point names must be

separated by a slash in the form eptnamej/eptnamesy/. .. /eptnamey,.

Do not declare eptname as an entry point of the CAPSULE or OVCAP binary
subsequently generated by the loader. This parameter can be used to specify
more than one entry point. In this case, entry point names must be separated
by a slash in the form eptnamej/eptnamesy/. .. /eptnamey,.

Cause the designated object modules to be loaded whether or not they are
needed to satisfy external references. More than one module can be
specified by separating module names by a slash in the form pname;j/
pnameg/. . . /pnamen,

Cause the load of object modules containing the specified entry points
whether or not they are needed to satisfy external references. More than one
entry point can be specified by separating entry point names by a slash in the
form eptnamej /eptnamey/. . . /eptname,.

Assign all labeled blocks to a segment such that the blocks are available to
all segments that reference them. Valid for segment loads only.

Assign the labeled common block named blkname to a segment such that it is
available to all segments that reference it. Valid for segment loads only.

More than one block name can be specified by separating the individual block
names with a slash in the form blknamej /blkname2/. .. /blknamey,,

Treat external references to eptname; as though they were references to
eptnameg, where the entry point names are specified as a pair in the form
eptnamej -eptnamesg,

More than one pair of entry point names can be specified by separating the
pairs with a slash in the form pairy/pairy/. . . /pairp.

Omit satisfying external references to the specified externals., More than
one entry point name can be specified by separating the names with a slash in
the form eptnamej/eptnamey/. .. /eptnamep.

A location field symbol, if present, is ignored.

60492600 H

4-23

See the Loader reference manual for details of these parameters, including the operating system to which a
given option applies.
4.4 MODE CONTROL

Mode control pseudo instructions influence the basic operating characteristies of the assembler.
Specifically, the instructions allow the programmer to alter the way in which the assembler:

Interprets binary data BASE pseudo instruction
Generates character data CODE pseudo instruetion
Interprets the beginning of comments on statements COL pseudo instruction
Qualifies symbols or does not qualify them QUAL pseudo instruection
Interprets the R=instruetion B1=1 or B7=1 pseudo instruction

In each case, the assembler has a default mode which it uses if one of these instructions is never used.

4.4.1 BASE — DECLARE NUMERIC DATA MODE

The BASE pseudo instruction declares the mode of interpretation for numeric data for which a base radix is
not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subprogram, COMPASS
evaluates unspecified numeric data as decimal.

An alternate application of BASE is to define the previous base as a micro.
In addition, if no program or system micro named BASE has been defined, COMPASS changes the

predefined BASE micro to be a single letter D, M, or O, ecorresponding to the new mode established by this
BASE instruction.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

mname BASE mode

mname Optional 1 through 8 character micro name by which the previous BASE mode can be
referenced in subsequent BASE instructions. If mname is present, the value of the micro
named mname is (re)defined to be a single letter D, M, or O, corresponding to the BASE
mode in effect prior to this BASE instruction.

mode Blank, in which case the base remains unchanged, or 1 through 8 characters, the first of

which designates the new base as follows:

0 Octal assembly base; any subsequent use of a data item not specifically
identified by an O, D, or B prefix or suffix is evaluated as octal. For
example, the constants 15 and 15B are evaluated as 15g; constant 15D is
evaluated as 17g. Any item containing an 8 or 9 without a D radix is
flagged as erroneous. Exceptions are scale factors, character counts, shift
counts (S modifier), and binary point positions, which are always considered
decimal.

D Decimal assembly base; any subsequent use of a data item not specifically
identified by an O, D, or B prefix or suffix is evaluated as decimal.

4-24 60492600 H

M Mixed assembly base; any subsequent use of a data item not specifically
identified by an O, D, or B is evaluated as decimal if it is one of the
following. Otherwise, it is evaluated as octal.

VFD bit count

IF, ELSE, or SKIP line count
MICRO, OCTMIC, or DECMIC character count
B, C, or I subfield in REP or REPI
DUP or ECHO line count
Character count

Shift counts (S modifier)

Scale factors

Binary point position

COL column number

DIS word count

SPACE line count

* Use base in effect prior to current base. The assembler records occurrences
of BASE pseudo instructions and maintains a table of the most recent 50
occurrences. Each BASE * resumes use of the most recent entry and
removes it from the list. When the subprogram contains more BASE *
instruetions than there are entries in the stack, COMPASS uses a decimal

base.

other If the variable field is not blank and does not contain one of the above,
COMPASS sets an error flag.

Examples:

This example shows the effect of BASE on a VFD instruction defining a 48-bit field containing 10g.

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) T 18 130
DrO BASE |0 ‘
0000000N00D00010 VFD 60711 |
. . |
L] - 1
OeD RASE |D |
2000 VFD 68/8
000000000010 l
. . |
DeM BASE | M ‘
00000000 VEN &8/10 |
00000010 |

60492600 H 4-25

The following example illustrates the micro capability of BASE:

LOCATION CPERATION | VARIABLE COMMENTS
1 n 18]30
DrM SAVER BASE | M “ISAVE BASE IN USE
. . . :coos USING BASE M
2 SAVED RASE

442 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruetion defines character data codes to be used when the CODE O (for Other) mode
is in effect.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
CHAR expl,exp2
expl Evaluatable absolute expression whose value is 00 to 77g. The value of expl is the
display code value of the character to be redefined.
exp2 Evaluatable absolute expression whose value is 00 to 77g, The value of exp2 is the new

code other value of the character designated by expl.
A location field symbol, if present, is ignored.

Initially, all code other values are the same as display code. CHAR need be used only for those characters
whose code other values are different from display code. Characters may be redefined as many times as
desired by subsequent CHAR pseudo instruetions.

Example:
LOCATION OPERATION VARIABLE SUBFIELDS
00~63 CHAR 0,638 INTERCHANGE COLON AND
6300 CHAR 63890 PERCENT FUR CODE OTHER

4.4.3 CODE — DECLARE CHARACTER DATA CODE

The CODE pseudo instruetion declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Character data can be generated in ASCII (American Standard code for Information Interchange), display,
external BCD, or internal BCD, codes. If no CODE instruction is used, COMPASS generates display code.
Codes are given in appendix A.

4-26

60492600 H

An alternative applieation of CODE is to define the previous code as a miero.

In addition, if no program or system micro named CODE has been defined, COMPASS changes the
predefined CODE micro to be a single letter A, D, E, I, or O, corresponding to the new mode established by
this CODE instruection.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname CODE char
mname Optional 1-8 character micro name by which the previous CODE mode can be referenced
in subsequent CODE instructions. If mname is present, the value of the miero named
mname is (re)defined to be a single letter A, D, E, I, or O, corresponding to the CODE
mode in effect prior to this CODE instruction.
char The first character of a string indicates the code conversion:
A ASCII six-bit subset
D Display
E External BCD
I Internal BCD
0 Other code, defined by CHAR pseudo instructions
* Use code in effect prior to current code. The assembler records
occurrences of CODE pseudo instructions and maintains a table of the most
recent 50 occurrences. Each CODE * resumes use of the most recent entry
and removes it from the list. When the subprogram contains more CODE *
instructions than there are entries in the stack, COMPASS generates display
code.
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 I30
17252420325245300uC03 DATA gLouTPUT l
DeA CN0E ASCII
576564606564 030ud30(DATA OLOUTRUT I
ApE CIADE EXTERNAL BCD
462423472623G60000000 DATA gLouUTPUT !
Erl CODE INTERNAL 8CD
466463476663 14l L0000 DATA |oLOUTPUT |
I»D CODE Y| DISPLAY
172524202524 ud04uldd i DATA gLoUTPUT I
Oel CINE - i
4LH66463470LO635U0CUuTL DATA cLOuTPUT
| |

60492600 H 4-27

444 QUAL — QUALIFY SYMBOLS

The QUAL pseudo instruction signals the beginning of a sequence of code in which all symbols defined in it
are either qualified or are unqualified (global). If no QUAL is in a subprogram, all symbols are defined as
global.

An alternative application of QUAL is to define the previous qualifier as a micro.

In addition, if no program or system micro named QUAL has been defined, COMPASS ctzanges the
predefined QUAL micro to be the new qualifier name established by this QUAL instruetion.

Within a QUAL sequence in which a symbol is defined, a symbol reference need not be qualified. Used
outside the sequence, the symbol must be referenced as/qualifier/symbol. Thus, a symbol and a qualifier
become a unique identifier local to the sequence in which the symbol was defined. The same symbol used
with a different qualifier is local to a different QUAL sequence. If a symbol is defined with no qualifier as
well as being defined as qualified, a reference to the symbol within the QUAL sequence is assumed to be a
reference to the qualified symbol rather than to the global symbol. In this case, a reference to the global
symbol must be written as // symbol. However, in a NOREF statement when the unqualified symbol.is‘
previously defined and the qualified symbol is not, COMPASS assumes the reference is to the unqualified
symbol.

Default symbols and linkage symbols are not qualified.

LOCATION OPERATION VARIABLE SUBFIELDS
mname QUAL qualifier
mname Optional 1-8 character micro name by which the previous qualifier ean be referenced in

subsequent QUAL instructions or symbol references. If mname is present, the value of
the micro named mname is (re)defined to be the 0-8 characters comprising the qualifier in
effect prior to this QUAL instructions.

qualifier A symbol qualifier or * or blank, as follows:

qualifier 1-8 character name, the first character of which cannot be $ or = or : or
numerie. The qualifier ecannot contain the characters

+-%/.0r A
A blank terminates the qualifier.

Any symbol defined subsequent to this QUAL up to the next QUAL must be
referenced from outside the QUAL sequence as

/qualifier/symbol

The current qualifier appears as the third sub-subtitle on the assembly
listing (section 11.1).

* The assembler resumes using the qualifier in use prior to the current
qualifier. The assember records occurrences of QUAL pseudo instructions
and maintains a table of the most recent 50 occurrences. Each QUAL *
resumes use of the most recent entry and removes it from the list. When the
subprogram contains more QUAL * instructions than there are entries in the
stack, COMPASS uses the null (global) qualifer.

4-28 60492600 H

blank A blank variable field causes any symbols defined up to the next QUAL to be global.
A global symbol does not require a qualifier.
NOTE
The first attempt to redefine a global symbol from within a
QUAL sequence results in A and U errors. The symbol is
defined local to the QUAL sequence with a zero value. To
avoid fatal errors, precede any redefinition instruetion (SET,
MAZX, MIN, or MICCNT) within a QUAL sequence with a
blank QUAL and follow it with a QUAL*.
Examples:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
QUAL | PASS1 |
BrOF X6 F IRCNE QUALIFIED B3y PASSH
- L] i
FN LOC1 !
ouaL | PASS? '
RCDE £qu Loc? IPCDE QUALIFIED RY PASS?
ouaL |SYMROLS GLORAL FP20M NOW 0N
. . l
* - l
GLOR 8SSs n |GLOB IS GLOBAL
. . |
RJ /PASS1/8CDF |JUMP TO PASS1 ROUTINF
b |
RJ /PASS?/RCOE} JUMP TO PASS? ROUTINE

60492600 H

4-29

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30
1
TaP MARON [aLOCK,XWAL |
1ISF aLarK |
QUAL WAL |
TAGY R<< 100 i
TAR? ven /-1 |
USF’ » |
nuAL . |
FNAM |
; |
L] ,
TAR

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
T
quatL Z !
71 ’SS 0 |21 QUALIFIED RY 7

(EQUATE SYMBOLS SO THAT
2/71 1Z1 IN Z CAN BF REFERRED
|TO AS Z1 IN B

71 =

4.4.5 B1 =1 AND B7 = 1 — DECLARE THAT B REGISTER CONTAINS ONE

The B1=1 and B7=1 pseudo instructions declare that in this CPU subprogram, the contents of the Bl
register or the B7 register, respectively, are one. These instructions do not produce code; they alter
the way in which code is generated by the R= instruction (section 4. 8.7) and define the symbol Bl 1

or B7=1. If more than one instruction is used, the assembler uses the last one encountered.

4-30 60492600 H

Formats:

LOCATION OPERATION VARIABLE SUBFIELDS

Bl=1
B7=1

A symbol in the location or variable field is ignored.
Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= (section 4.8.7).

4.4.6 COL— SET COMMENTS COLUMN

The COL pseudo instruction sets the column number at which the comments field can begin when the
variable field is blank. If no COL instruction is used in the subprogram, COMPASS uses 30.

LOCATION CPERATION VARIABLE SUBFIELDS
COL n
n An absolute evaluatable expression designating the column number; n 12. When base is M, n

is assumed to be decimal. If n is less than 12, COMPASS sets the column at 12. If n is zero
or blank, COMPASS sets the column to 30, the default column.

If the current operation field extends past the current comments column, COMPASS
substitutes a very large number for n in the current instruction only; that is, if n is less than
or equal to the last column of the operation field, a variable field must be present if a
comment is present.

A location field symbol, if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
bt coL 36 i
USE :RETURN TO BLOCK 0
I

In this example, subsequent statements for which the variable field is blank eannot have comments
beginning before ecolumn 36.

60492600 H 4-31

4.5 BLOCK COUNTER CONTROL
Counter control pseudo instructions establish local blocks, labeled common blocks, and blank common

bloeks in addition to the absolute, zero, and literal blocks established by the assembler; they control use of
all program blocks, and provide the user with a means of changing origin, location, and position counters.

4.5.1 USE — ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established block. The block in use is the block
into which code is subsequently assembled. A user may establish up to 252 blocks in a block group.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
USE block
block Identifies block to be used, as follows:

0 or blank Nominal bloek (absolute or 0).

/! Blank common block; for a relocatable subprogram, this block cannot
contain data. The only storage allocation instructions that can follow are
BSS and ORG. The BSSZ instruction is illegal because it presets the block
to zeros.

/name/ Labeled common block. A name can be a maximum of 7 characters and
cannot include blank or comma. The first and last characters must not be

colons. Conventions imposed by the loader or other assemblers or
compilers could further restrict the use of names.

name Local block. A name can be 1 through 8 characters, excluding blank or
comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to become a labeled common
block. For example, USE A and USE/A/ are different blocks.

* Block in use prior to current USE, USELCM, ORG, or ORGC. See
discussion following.

A location field symbol, if present, is ignored.
The nominal program block contains the entire program if no USE or USELCM is encountered.
Redundancy between block names is permitted as follows.

A labeled common block designated by /0/ can coexist with the program block designated by 0. Blank
common designated by // can coexist with a labeled common block designated as ////.

4-32 60492600 H

A CPU subprogram may have two biocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two biocks
with the same name and the same block type if they have different memory types (CM/SCM or

ECS/LCM). Thus, altogether, there may be up to four different blocks with the same name.

When a block is first established, its origin and location counters are zero and its'position counter is
either 60 (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is
indicated, COMPASS saves the values of the current origin and position counters along with an
indicator as to whether the next instruction is to be forced upper. If the most recently assembled
instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is forced upper. When the designated block has been
previously established, COMPASS resumes assembly in the block using the last known values for

the origin and position counters. The value of the location counter is not saved. Upon resumption of
the block, it is set to the value of the origin counter. If a LOC had been used previously, resetting
of the location counter to produce the desired results is the responsibility of the programmer.

The assembler records occurrences of USE, USELCM, ORG, and ORGC pseudo instructions (except
USE * and USELCM *) and maintains a USE table of the most recent 50 occurrences. Each USE * and
USELCM * resumes use of the most recent entry and removes it from the table, When the subprogram
contains more USE * or USELCM * instructions than there are entries in the stack, COMPASS uses
the nominal block,

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) N 18 I

USE |
1* o0tg0000000 GAMMA RrJ ALPHA 1BLOCK N IN USE

USF DATAL IeLCrK DAYAL IN USF
35 1720%000000N000000000 SAR NATA 1.0 |

Use ¥ |RESUME USF OF BLOCK 0
14 5130000000 SA3 Sau |

Note that the SA3 is forced upper because the RJ causes a force upper of the next instruction in the
block.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 {30
» USE TABLE (USE TABLE LOCAL BLOCK
2615 00 VFD 6/0 |
USE » RESUME PREVIOUS BLOCK

USE TABLE RESUME USING TABLE
30002600 + VFD 6/1RX418/S
.

| USE

I
I
1
!
!
IResUME PRZVIOUS BLOCK

Note how separate blocks can be used to facilitate packing cf partial-word bytes into a table residing in
a block other than the one primarily being used.

60492600 H » 4-33

4.5.2 USELCM - ESTABLISH AND USE ECS/LCM BLOCK

The USELCM pseudo instruction establishes or resumes use of a block assigned to extended core
storage (ECS) or large core memory (LCM). For all ECS/LCM blocks in an absolute CPU assembly,
and for the ECS/LCM blank common block in a relocatable assembly, data generating instructions
(including BSSZ) and symbolic machine instructions are illegal; only storage reservation pseudo
instructions (BSS, ORG,and ORGC) are allowed. The USELCM pseudo instruction is illegal in PPU
assemblies.

Format:
LOCATION OPERATION VARIABLE SUlHELD’S
USELCM block
block: Identifies block to be used, as follows:
0 or blank Illegal.
// Blank common block, A subprogram can have two blank common

blocks if one of them is in ECS/LCM,

/name/ Labeled common block. The name can be a maximum of 7
characters and cannot include blank or comma. The first and last
characters must not be colons. The loader or other assemblers or
compilers could further restrict the use of names.

name Local block. { The name can be 1-8 characters, excluding blank or
comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to become a labeled
common block. For example, A and /A/ are different blocks. All
of the local ECS/LCM blocks are concatenated to form a single block,
which is treated by the loader as an ECS/LCM common block whose
name is unique to the subprogram.

* Block in use prior to current USE, USELCM, ORG, or ORGC.

A location field entry, if present, is ignored.
The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048, 568

words,

Further rules for USELCM are the same as for USE.

T SCOPE 2 does not currently allow local blocks in LCM.

4-34 : 60492600 H

Examples:

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 {30
BASE |O |
|
USELCM| LCM JESTABLISH AND USE LUM BLOCK
LCMC 8ss 0 JDEFINE SYMBOL LCMC
BLOCH SS 100 jRESERVE 100 HORDS
BLOC2 Bss 200 |RESERVE 200 WORDS
USE . |RESUME PREVIOUS BLOUK
L] ® i
ORG sLoc1+10008 !
|BLoc3 BSS 20 IRESERVE 20 MORE WORDS
USE . IRESUME PREVIOUS BLOLK

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

ORGC t indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the
same as ORG. In a relocatable CPU assembly, ORGC is the same as ORG if the USE block specified
by the address expression is not a common block; otherwise, code following an ORGC is ignored by

the linking loader if that common block was first declared by a previously loaded subprogram. If two
or more programs in a load sequence preset relocatable text within the same common block, the ORGC
must be used; otherwise, multiple relocation of those words can occur.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
ORG exp
ORGC exp
exp Expression specifying the address to which the origin and location counters are to be

set. Following ORG or ORGC, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows:

t Not supported by SCOPE 2 Loader.

60492600 H 4-35

1. If the expression contains a symbolic address, COMPASS uses the block in
which the symbol was defined. '

2. COMPASS uses the current block if the value of the expression is *, *L, or
*Q, If the origin and location counters are the same value, and no code has
been assembled in the current location, the only effect of *, *L, or *O is to
force the next instruction upper. If a word is partially assembled, however,
the code already assembled into the location is lost.

If the counter values differ, * or *L sets the origin counter to agree with the
location counter value; *O sets the location counter to the origin counter value.

3. An absolute expression causes use of the absolute block. In a relocatable
assembly, this is the only way to establish the absolute block. All symbols
defined in the absolute block are absolute,

Any symbols in the expression must be already defined in the assembly and must not result in a
negative relocatable value. It is not possible to ORG or ORGC into the literals block.

A location field symbol, if present, is ignored.
Once an ORGC pseudo instruction has established the conditional loading indication for a given common

block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that block.

LOCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
USE ALPHA |
. e ' P
[] I .
L L] l L]
ABC OATA 20,100,1000 |[LOCATED IN ALPHA
|
L) - ‘ L
L] * ' *
USE BETA |
xyY? 8ss 0 |LOCA'ED IN BETA
S E :
* L J I L]
ORG ABC ISETS ALPHA COUNTERS 70 ABC
Ps . |AND RESUMES USE OF ALPHA
- - I [
BSS 1000 |
. . I

4-36 60492600 H

LOCATION OPERATION | VARIABLE COMMENTS
1 1] 18 630
ORG |S0 |SETS ABSOLUTE BLOCK COUNTER
. . [TO 50 AND BEGINS ITS USE
ORG XYZ+100 ISETS BETA COUNTERS TO XYZ+101
. Y lo :
L ;
USE » IRESUMES ABSOLUTE SLOCK
e - ie
i
S X
USE v IRESUMES BLOCK ALPHA
* L J ' ®
L] * l L]
e [] ' °
USE . JRESUMES BLOCK BETA
S h
l []
L J L] []
[] L] | []
USE . |RESUMES BLOCK ALPHA
* L3 |o
L] L] E]
- iﬁ
USE . ;RESUHES NOMINAL BLOCK
USE /DATA/ i
DATA 83S 0 |
OWC | DATA
DATA | 1,2,3 ICONDITTONALLY PRESST DATA
|
TR ANYSLOCK |
fON 3RXYZ fUNCONDITIONAL DATA
USF . |
FOUR DATA | & |[RETURN T0 /DATA/ STILL
NATA | 5,6 SONDITIONALLY SKIPPING
|
0’6 FOUR A
ZR X1,ERROR lUNCONDITIONALLY LOADED
RJ SUB4 | INSTRUCT IONS
: [
. I

4.5.4 BSS—BLOCK STORAGE RESERVATION

The BSS instruction reserves core in the block in use by adjusting the origin and location counters. It
does not generate data to be stored in the reserved area. A primary application is for reserving blank

common storage. It can also be used to reserve an area to receive replicated code (see REP, REPC,
and REPI, section 4.8.8).

80492600 H 4-37

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
sym BSS aexp
sym If present, sym is defined as the value of the location counter after the force

upper occurs. It is the beginning symbol for the storage area.

aexp Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp cannot contain external symbols.
The value of the expression can be negative, zero, or positive and the value
is added to both the origin counter and the location counter. A BSS 0 or an

erroneous expression causes a force upper and symbol definition but no storage
is reserved.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
! w 18 [0
USE 77 ! v .
COMMON 8ssS 10008 !RESERVE 512 WORDS OF BLANK COMMON
USE *
L L] L]
- L] | L]
L] » | *
SAs COHHONO—SUURI
L] * l []
L] * I L]
TAG BSS 0 IDEFINE SYMBOL TAG
o L]

4.5.5 LOC — SET LOCATION COUNTER

A LOC pseudo instruction sets the value of the current location counter to the value in the variable
field expression. The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter. Thus, any addresses defined while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

Formgt-

LOCATION OPERATION VARIABLE SUBFIELDS

LOC exp

4-38 60492600 H

exp Relocatable expression specifying the address to which the location counter
is to be set. Any symbols in the expression must be already defined in the
assembly and must not resuit in negative reiocation.

A location ﬁéld symbol, if present, is ignored.

Following a LOC, if the value of the location counter differs from the origin counter, the location field
is flagged.with an L on the listing until a LOC *O, USE, ORG, ORGC, or USELCM instruction resets the
location counter to the value of the origin counter.

A LOC instruction does not affect the origin counter except that it causes the next instruction to be
forced upper. The only effect of LOC* or LOC *L is to force upper. Because COMPASS does not
save the value of the location counter when it switches blocks, a USE, ORG, ORGC, or USELCM for
a different block effectively resets the location counter to the origin counter value. When use of the
block is resumed, it is the responsibility of the user to reset the location counter to produce the desired
results.

Example:

In the following example, the first LOC is used to generate PPU code that is to be loaded into one
PPU and transmitted to a different PPU for execution. The second LOC is used so that on the listing
the address field contains the table ordinal rather than a load address. At the end of the table, a LOC
instruction changes the location counter to resume counting under the first LOC. At the end of the
program, LOC *O returns the location counter to the value of the origin counter.

LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated] n 18 [30
1 T1 EQU 1 !
0 CH EQu o I
7100 ORG 7100 1
7100 RES BSS 0
L 100 Loc 100 ‘
L 100 2600 P PR PSN 0 |
L 10t 2400 PSN 0 |
L 102 2400 PSN 0
L 103 6100 0100 EIM PPR,CH |
[] [] L] :
L 205 PPRA ass |o |
L 0 Loc 0 I
L 0 0100 CON PPR .
L 1 011k CON STM |
L 2 0121 CON DPM |
L 3 0122 CON EXR
L 4 0136 : - CON CHS |
L 5 0147 CON OHP |
L 6 0240 CON END
L 7 1000 CON 1000 |
. o o |
.) . '
L 215 Loc €0-RES+PPR |
L 215 - ASS 240-%
L 260 END BSS |
7240 Loc % I

60492600 H 139

4.5.6 POS — SET POSITION COUNTER

The POS pseudo instruction sets the value of the position counter for the block in use to the value
specified by the expression in the variable field.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
POS aexp
aexp An absolute evaluatable expression having a positive value less than or

equal to the assembly word size (60 for CPU, 12 for PPU). A negative value, or
a value greater than 60 (or 12), causes an error. The value indicates the bit
position within the current word at which the assembler is to assemble the next
code generated. Use caution, because if the new position counter value is greater
than the old position counter value, part of the word is reassembled. (New code
is ORed with previously assembled data.) If the new position counter value is less
than the old position counter value, the assembler generates zero bits to the
specified bit position. If the value of aexp is zero, COMPASS assembles the next
code in the following word.

A location field symbol, if present, is ignored.
NOTE

If the POS instruetion is used on a word containing relocatable or external
addresses, undefined results can occur with no diagnosties.

The POS instruction does not alter the origin and location counters. The position counter is never 0
at the beginning of an instruction. At the beginning of a new operation, if a data value has been -
stored into bit 0 (the rightmost bit) of a word, COMPASS increments the origin counter and the
location counter and resets the position counter to 60 (or 12).

A POS *P has no effect whereas a POS $ subtracts one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instructions EQU, =, SET, MAX, MIN, and MICCNT permit direct assignment of 21-bit
values to symbols. The values can be absolute, relocatable, or external. Register designators are
not valid in the expressions. Subsequent use of the symbol in an expression produces the same result
as if the value had been used as a constant. In the listing of the symbolic reference table, a refer-
ence to an EQU, =, SET, MAX, MIN, or MICCNT instruction is flagged with a D. Symbols defined
using EQU and = cannot be redefined; symbols defined using any of the other symbol definition
instructions can be redefined.

4-40 60492600 H

4.6 EQU OR = —EQUATE SYMBOL VALUE

An EQU or = pseudo instruction permanently defines the symbol in the location field as having the value
and attributes indicated by the expression in the variable field.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
sym EQU exp
or
sym = exp
sym A location symbol is required. See section 2.4 for symbol requirements.
exp An evaluatable expression. Any symbols in the expression must be previously
defined or declared as external. The expression cannot contain symbols
prefixed by =S, =X, or =Y unless the symbols have also been defined conven-
tionally. If the expression is erroneous, COMPASS does not define the location
symbol but flags an error.
Examples:

LOCATION OPERATION | VARIABLE COMMENTS
1 W 18 T30
20637 OPS = 204378 ;
74 LINP = 748 ,
3 CH EQu 3 |
74 PAGESIZ |= LINP ,
64271 LGOPS |EGJ |*-0PS |

4.6.2 SET — SET OR RESET SYMBOL VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the expression in the variable field. A subsequent SET using the same symbol redefines
the symbol to the new value and attributes. SET can be used to redefine symbols defined by SET, MAX,
MIN, or MICCNT, only.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym SET exp

60492600 H 4-41

sym

exp

A location symbol is required. See section 2.4 for symbol requirements.

An evaluatable expression. The expression cannot include symbols as yet undefined
and cannot contain symbols prefixed by =S, =X, or =Y, unless the symbols are
also defined conventionally.

If the expression is erroneous, COMPASS does not define the symbol but
issues a warning flag.

The symbol in the location field cannot be referred to prior to its first definition.

Examples:

17
74
22
76

24

20

LOCATION OPERATION | VARIABLE . COMMENTS
n 18 l30
A EQu 15 | A HAS VALUE OF 15
8 SEY *p :a MAS VALUE OF POSITION COUNTER
c SET Ae3 :c HAS VALUE A+3 OR 1A
8 = B+2 | ILLEGAL, B IS DOUBLY DEFINED
[
c SET c+2 | LEGAL, C CHANGES FROM 18 TO 20
D SET FeA | ILLEGAL, F AS YET UNDEFINED
|
8Ss AR | ILLEGAL, REFERENCE PRECEDES
| FIPST DEFINITION
AR SET 16 |

4.6.3 MAX — SET SYMBOL TO MAXIMUM VALUE

The MAX pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the largest (most positive) value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MAX can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MAX €XP,,€XPy; ..« ,€XP
sym A location field symbol is required. See section 2.4 for symbol requirements.
exp, An evaluatable expression. Any symbols in the expression must be previously
defined. The expression cannot contain symbols prefixed by =S, or =X, or =Y
unless the symbols are also defined conventionally.
4-42

60492600 H

The expressions should have similar attributes. No test is made for attributes. The test for maximum
value is made in passone. In testing for the maximum value in pass one, COMPASS uses values for
relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and these values are
used for the final value of the expression selected in the
first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag.
The symbol in the location field cannot be referred to prior to its first definition.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
5 PT3 EQU 5 ;
6 PT31 EQu 6 |
2 PT32 EQu 2 !
6 SYM MAX 973.9131.913.:2

4.6.4 MIN — SET SYMBOL TO MINIMUM VALUE

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum or least positive value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MIN can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MIN €XPy,€XPgs- .. s €XPy
sym A location symbol is required (section 2. 4).
exp, An evaluatable expression. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =8, =X, or =Y,
unless the symbols are also defined conventionally.

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass ohe.
COMPASS uses values for relocatable symbols relative to block origins.

60452600 H 4-43

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning

flag.

The symbol in the location field cannot be referred to prior to its first definition.

4.6.5 MICCNT — SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruction defines the symbol in the location field as having a value equal to the
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX,
MIN, or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT
can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MICCNT mname
sym A location symbol is required (Section 2,4).
mname Name of a previously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warning flag is issued.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
] n 18 T30
MSG MICRO | 14,*STRING* iDFFINE 6~CHARACTER MICRO
. . | .
e ;
6 MSIZE MICCNT | MSG IMSIZE EQUALS 6
. . I °
L] - l L
. . K]
MSG MICRO ' 1,,%ALPHANUMERIC #MSG#* 19 CHAR., MICRO
MSG | MICRO 11,,%ALPHANUMERIC STRING® 13 CHAR. MICRO
23 MSIZE MICCNT | MSG ,'HSIZE EQUALS 19

4-44

60492600 H

4.6.6 SST — SYSTEM SYMBOL TABLE

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
symbols had been defined in the subprogram.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all micros and opcodes in the system text overlay are defined automatically at the start
of each agsembly: however, the symbols in the system text overlay are defined only for assemblies
that contain the SST pseudo instruction.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
SST sym,,sym,,...,sym
sym, One or more symbols on the file that are not to be defined.

A location field symbol, if present, is ignored.

Refer to section 10. 2 for an example of SST use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY, ENTRYC, and EXT do not define symbols but either declare symbols
defined within the subprogram as being available outside the subprogram or declare symbols referred
to in the subprogram as being defined outside the subprogram,

47.1 ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS

_The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram
can be referred to by subprograms compiled or assembled independently; ENTRY lists entry points to
the current subprogram. ENTRY is illegal in PPU assemblies.

The ENTRYC { pseudo instruction conditionally specifies which of the symbolic addresses defined in
the subprogram can be referred to by subprograms compiled or assembled independently; ENTRYC
lists conditional entry points to the current subprogram. ENTRYC is illegal in PPU assemblies and
is synonymous with ENTRY in absolute CPU assemblies. In a relocatable assembly, an entry point
symbol declared by ENTRYC is ignored by the linking loader if the value of the symbol is relative to a
common block and that common bloek was first declared by a previously loaded subprogram.

TNot supported by SCOPE 2 Loader.

60492600 H 445

Formats:

LOLATION OPERATION VARIABLE SUBFIELDS
ENTRY syml, sym2, ooy symn
ENTRYC syml, symz, ceey symu
symi Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the

last must not be a colon.

+=%*/blank , or A

The symbol cannot include the following characters:

Each symbol must be defined in the subprogram as nonexternal (cannot begin with
=X or =Y or be listed on an EXT pseudo instruction).
unqualified (section 2. 4.5).

A location symbol, if present, is ignored.

A list of all entry points declared in the subprogram precedes the assembly listing.

appears to the right of each conditional entry point.

Example:

Location Code Generated

110

110

110 5120000100
' 7720

111 5110000002

Entry point symbols must be

An asterisk
LOCATION OPERATION | VARIABLE COMMENTS
1 " 8 [30
IDENT |6T,CONTROL,CONTROL
A8s |
ENTRY [MODE I
ENTRY |ONSW
ENTRY |OFFSHW '
FNTRY |ROLLOUTY |
ENTRY |SETPR
ENTRY [SETTL |
ENTRY |[SWITCH |
ORG 110R
[ONTROL |RSS 0 |
MODE SA2 ACTP |
SX7 X2
SAL ? |
.] '
. . |
. -]

60492600 H

4.7.2 EXT — DECLARE EXTERNAL SYMBOLS

The EXT pseudo insiruction lisis symbols that are defined as entry points in independently compiled or
assembled subprograms for which references can appear in the subprogram being assembled. The
EXT pseudo instruction is illegal in an absolute subprogram. In a relocatable subprogram, EXT
defines symbols as strong externals (section 2.4. 1).

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
EXT syml.symz,...,symn
sym, Linkage symbol, 1-7 characters of which the first must be alphabetic (A-Z) and the

last must not be a colon. The symbol cannof include the following characters;
+ - * / blank , or A

These symbols must not be defined within the subprogram.,
are unqualified.

External symbols

A location field symbol, if present, is ignored.

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listing.

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generated through symbolic machine instructions. An instruction that
generates data cannot be used in a blank common block. The pseudo instructions that generate data
are:

BSSZ Generates zeroed words

blank operation field
DATA

DIS

LIT

VFD

CON

R-

REP, REPC, or REPI

60492600 H

Generates one zeroed word

Generates one or more words of data
Generates one or more words of data
Generates literals block entries

Places expression values in user-defined fields
Places expression values in full words

For use in macros; R= assumes that either (Bl)=1 or (B7)=1 and
generates increment instructions accordingly

Does not actually generate object code at assembly time but
causes the relocatable loader to repeatedly load a sequence of
code into a reserved blank storage area.

4-47

4.8.1 BSSZ AND BLANK OPERATION FIELD—RESERVE ZEROED STORAGE

The BSSZ instruction reserves zeroed core in the block in use. The origin and location counters are
adjusted by the requested number of words and the assembler generates data words of zero to be
loaded into the reserved area. An instruction that contains a symbol in the location field but has a
blank operation field has the same effect as a BSSZ of one word.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym BSSZ aexp
sym If present, sym is defined as the value of the location counter after the force
upper occurs. The symbol identifies the beginning of the reserved storage area.
aexp Absolute evaluatable expression specifying the number of zeroed words of

storage to be reserved. The expression cannot contain external symbols or
result in a relocatable or negative value.

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is
reserved,

A BSSZ or group of BSSZ instructions of six or more words produces an REPL table in object code to
reduce the physical size of the object program (appendix B).

For a blank operation field the listing shows one zero word of data; for a BSSZ instruction the listing
shows the word count.

4.8.2 DATA — GENERATE DATA WORDS

The DATA pseudo instruction generates one or more complete 60-bit or 12-bit data words inthe
current block for each item listed in the variable field.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym DATA iteml,itemz, cee ,il;emn
sym If present, sym is assigned the value of the current location counter after
the force upper occurs. It becomes the symbolic address of the first item
listedo
4-48 60492600 H

A DATA pseudo instruction always forces upper.

specifications described in section 2. 7.

PPU assemblies.

Character, octal numeric, or decimal numeric data item, according to
Floating point notation is illegal in

Items are separated by commas and terminated by a blank.
A literal cannot be used as an item.

Uniess the D list option is selecied, only iteml appears on the listing.

Examples:

Location Code Generated
562 14071790000000000000
553 &0000000000000000000
$54 03171520111950900000
555 17252420252400000000
556 000000000008000000000
557 17205146314631463146
560 16403146314631463146

Location Code Generated

DeO

1250 ro70

1251 7770

1252 0000

1253 003%

12564 5501

125% 0000

1256 0506

1257 0123

12610 7773

i261 04014

1262 26401

A blank item does not cause generation of a data word.

LOCATION OPERATION | VARIABLE COMMENTS
n 8 T30
oPTH DATA | OLLGO i
oPT DATA | 1BSS9 !
oPTT DATA aLcomPILE |
oPTD DATA | OLOUTPUT,O ;
oPTY DATA | 1.3€E {
LOCATION OPERATION | VARIABLE COMMENTS
) " 18 [30
PERIPH i
BASE D
|
L |
DAT DATA 7070.-7.0,1&%
|
DATA PC A,OLEF :
!
DATA 123,-4 ‘
haTA *OATA* |

4.8.3 DIS—GENERATE WORDS OF CHARACTER DATA

The DIS pseudo instruction generates words containing character data. The instruction can be used
conveniently when a character data string is to be used repeatedly. Unless the D list option is selected

only the first word of character data appears on the listing.

60492600 H

The instruction has two formats:

4-49

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DIS n, string

If present, sym is assigned the location counter value after the force upper

sym
occurs. It is the symbolic address of the first word containing the character
string.

n An absolute evaluatable expression specifying an integer number of words to be
generated. When base is M, COMPASS assumes that n is decimal.

string Character string

For a CPU program, COMPASS takes 10 times n characters from the string and packs them as they occur
10 characters per word into n words. For a PPU program, COMPASS takes two times n characters from
the string and packs them as they occur two characters per word into n words. If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks,

Ifnis 0, COMPASS assumes the instruction is in format two.

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DIS ,dstringd

sym If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

d Delimiting character

string Character string; any character other than delimiting character

In this form, the string must be bounded by delimiters. The comma is required. The characters between
the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them,
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an
additional word for them. If COMPASS detects the end of the statement before it detects a second
delimiting character, it produces a fatal error.

4-50 ‘ 60492600 H

Examples:

Location =~ Code Generated

561 07051605220124055535
562 55032025552717220423
563 07051605220124055535
564 55032025552717220%2Z3
565 09000000000000000080

Location Code Generated

OrM
1402 07cC5
1403 165
1404 2201
1405 2405
1406 5534
1407 3355
1410 2020
14114 5527
16412 1722
1613 Juc3
1414 0705
16415 1605
1416 2201
1417 2405
1420 5534
1421 3355
1422 2020
1423 5527
1424 1722
1425 06423
1426 0¢0d

4.8.4 LIT — DECLARE LITERAL VALUES

LOCATION OPERATION | VARIABLE COMMENTS
" 18 |30
ONE DIS 2,GENERATE 2 CPU WORDS
I
THO DIS »*GENERATE 2| CPU WORDS*
i
{
LOCATION OPERATION | VARIABLE COMMENTS
) n 18 l30
FPJ '
1
BASE | M \
UIs 10+sGENERATE 1y PP WORUS

uIs

sy *GENERATE

]
i
i
|
|
1
t
[}
16 P WORDS*
i
[
|
|

A LIT pseudo instruction generates data words in the literals block. This instruction and the
= prefix to a data item provide the only means of generating data in the literals block. The LIT
pseudo instruction assures sequential entries for a table of values.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym LIT iteml,itemz, ces ,it,emn

60492600 H

4-51

sym

item

If present, sym is assigned the value of the literals block location counter.

At least one and not more than 100 words of character, octal numeric, or

decimal numeric data items.
are separated by commas and terminated by a blank. Floating point data

items are illegal in PPU assemblies.

COMPASS enters data items into the literals block in the order specified.

Section 2. 7.3 contains specifications. Items

If the converted binary values for all the data items listed with a single LIT match an existing literal
block sequence, they are not duplicated. If, however, any item in the list does not match an entry in
the block, the entire sequence is generated. A literal item subsequently referred to through an

= prefix is not duplicated. A null item (e.g. H** or OL) does not cause a word to be generated.

OPERATION | VARIABLE

COMMENTS

h 18

[30

1

LIT 3.191.59265,2.7182182,57.2957795E€1
CONTENT CF LITERALS BLOCK,

00Qf=Y=Y=¥-
OP12.2631+
0Q%u2I3A9V
0YBteL5vYQ
N(0DEC25,pv
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 Ta0
N2 LIT 1R1,7070,7,0
LIT 2C A,o0LEF |
LIT H* LITERALS® |
I

CONTENT CF LITERALS BLOCK.

Examples:
Location Code Generated LOCATION
1
611 POOL

008611 17216146314631463146

000612 17206275576441776271

000613 17215337351136014426

00061% 173143636514640663121

000615 16513333033540576566

Location Code Generated

7447

7453

7456
7&47 9034
7650 7070
7551 8007
78652 0000
7453 5501
7454 gono
7455 0506
7456 1611
7457 2405
7%60 2201
7461 1423

4-52

60492600 H

4.8.5 VFD — VARIABLE FIELD DEFINITION

The VFD instruction generates data in the current block by placing the value of an expression into a
field of the specified size.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym VFD iteml/expl,ibemz/expz, ... itemy /expn

. sym For a CPU assembly, the location field can contain sym, plus, minus, or
blank, as follows:

sym If a symbol is provided in the location field, a force upper occurs
and the value of the location counter following the force upper is
assigned to the symbol. The symbol identifies the first word of
data generated by the VFD.

+ Causes a force upper. Data generation begins in a new word.

- COMPASS generates zero bits to the next quarter word boundary,
at which point the first field begins.

blank COMPASS begins the first field at the current value of the position
counter.

For a PPU assembly, if the location field contains a plus, minus, or a symbol,
data generation begins in a new word. If the location field is blank, the first
field begins at the current value of the position counter.

item, An unsigned constant or previously defined symbol having a value specifying a
positive integer number of bits for the field to be generated; maximum field
size is 60 bits for both CPU and PPU assemblies (60 being the maximum
number of significant bits for an expression value). When base is M, item,
is assumed to be decimal notation. !

exp; An absolute, relocatable, or external expression, the value of which will be
inserted into the field specified by itemj. The expression is evaluated using
the specified field size. Character constants are right or left justified in the
field according to the type of justification indicated. In a relocatable CPU
assembly, no field that contains a relocatable or external address expression
can cross a 60-bit word boundary, and no 60-bit word can have more than
four fields that contain relocatable or external address expressions.

Each field is generated as it occurs. For a CPU assembly, if the next instruction that generates code
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of a quarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary.
These zero bits do not show on the assembly listing. Remaining parcels are then filled with no-
operation instructions.

60492600 H : 4-53

When a VFD instruction that does not have a Iocation field entry immediately follows another VFD in the
same block,.no padding with zeros or foreing upper oceurs; fields are generated sequentially as they are

specified.

Following a VFD, the position counter contains the number of bits remaining to be assembled in the last
word in which data was generated by the VFD.

Examples:
In the first example, the symbol TABLOC has been defined earlier in the program and associated with
000551. _ - o _
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18)
: 31 ALPHA SFT 25 i
566 24010200000023000551 TABLE VFD 36/73CTAB,6/7/19,18/TABLOC
567 00000005665555555555 VFN 30/7%-1,30/5H sALPHAZ =D
570 777777774 \
000000000000 VFN *py |
571 11172401550155555531 VFD 30/0HIOTA,E/1RA,24/0AX+1
572 00000015052323010705 VFD 60/NRMESSAGE 430/73LCIN,15/70R0
573 031117000000033 !
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 T30
PPU T
OrM BASE |M |
1310 333% N& VFD 60/10R0123456789
1311 3536 |
1312 3740 |
1313 142
1314 8344 |
1315 0010 Al1l VFD 12/710,12711,12/-12,12/-7070
1316 0011 |
1317 7765 |
1320 0707

4.8.6 CON — GENERATE CONSTANTS

The CON pseudo instruction generates one or ore full words of binary data in the block in use. It differs
from DATA in that it generates expression values rather than data items and differs from VFD in that the
field size is fixed. For relocatable or external addresses, CON generates a 60-bit address constant that is
not appropriate for routines built into capsules or overlay capsules.

Format
LOCATION OPERATION VARIABLE SUBFIELDS
sym CON exp1 ,expz, cees exprl
sym If present, sym is assigned the value of the location counter after the force upper oceurs.
exp; An absolute, relocatable, or external expression the value of which will be inserted into a
field having a size of one word. For PPU assembly, floating point is not allowed; for CPU
assembly, double precision is not allowed.
4-54

60492600 J

Examples:

In the first example, the symbols FAIL and PASS have been defined earlier in the program and associated
with 2204 and 2172, respectively.

Imaﬁon Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
1460 n0ao 14Sr1 (o) % 1
1461 none P . |
l ‘67 ng 93 C e] '
14613 2294 A Fary
1464 no24 A 20 !
1468 anng MSn? (o XY 0
1466 00ne Cow~ ¢ |
1467 LR con 3
le70 217> cn PaSS |
1671 nor4 [olal) zZh]
Location Code Generai;ed LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30
574 TAD B35S 0 —
L 7 LoC n |
L 1 00000000000NND0OD0OSS COoN 1R |00
L 1 0000N000000N00000062 CON 121 n1
L 2 000000000N000NOND0RG coN | 12% lo2
L 3 00000000000000000060 CoN 1R= o3
. - l L]
. . l .
L 75 00000000000070000966 r.ON 19v t7s
L 76 000D0000NQO00N0OON0000T6 CON 1o~ | 76
L 77 00000000000000000055 ' con 1° |77
67% LOf L 4] .

4.8.7 R=— CONDITIONAL INCREMENT INSTRUCTION

The R~ pseudo instruction generates a CPU increment unit instruction depending on the contents of the
variable subfields and on whether or not the subprogram earlier contained a Bl=1 or B7=1 pseudo
instruction (section 4. 4.4). '

Use of R= augments macro definitions and increases optimization of object code. It is illegal in a
PPU program.

The A list option controls listing of substituted instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym |R= reg, exp
sym Optional, if present, sym is assigned the value of the location counter after

the force upper occurs. This force upper occurs whether the R= generates an
instruction or not.

60492600 H 4-55

reg

exp

Examples:

1.

2,

A register designator (A, X, or B) and a digit (0-7) which COMPASS
concatenates with S to form the instruction operation code.

Operand register or value expression. If exp is the same two characters
as reg, no instruction is generated.

If the expression value is 0, the variable field is BO.

If the B1=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field of the instruction is B1,
B1+B1, or -Bl1, respectively.

If the B7=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field for the instruction is B7,
B7+B7, or -B7, respectively.

In all other cases, the variable field is the register or value indicated by the
expression.

R= used with Bl1=1

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

R=used with B1#1

T
Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30

TAR

4-56

60492600 H

3. Expression is same as register designator:

LOCATION OPERATION | VARIABLE COMMENTS

RFG

No instruction is generated; SB5 B5 would be a no operation instruction.

4.8.8 REP, REPC, AND REPI - GENERATE LOADER REPLICATION TABLE

The REP, REPC, and REPI instructions cause the assembler to generate an REPL loader table so
that when the subprogram being assembled is loaded, the loader will load one or more copies of a
data sequence. For the REPI instruction, the loader generates the copies immediately upon encoun-
tering the table; for REP, the replication takes place at the end of loading. For RE PC¥the loader
ignores the REPL table if the destination data address is in 2 common block that was first declared
by a previously loaded subprogram; otherwise, the loader generates the copies immediately upon
encountering the tables. ‘

Replication of object code is valid in relocatable assemblies only. It is particularly useful for setting
one or more blocks of storage to a given series of values or for generating tables.

Data to be replicated must not contain any external references or common block relocatable addresses.
For REPC and REPI, data must be inpreviously assembled text.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
REP S/saddr, D/daddr, C/rep, B/bsz, /inc
REPC¥
REPI

A location field symbol, if present, is ignored.
The variable field subfields can be in any order.
S/saddr Relocatable expression specifying first word address of code to he copied.
The S/saddr subfield must be provided. If it is zero, or omitted, the assembler
flags the instruction as erroneous and does not generate an REPL loader table.
D/daddr Relocatable expression specifying the destination of the first word of the first
copy. If D/daddr is omitted, the assembler sets daddr to zero, and, when
daddr is zero, the loader uses saddr plus bsz for the destination address,

Note that room for the repeated data must be reserved in the destination block.

¥ Not supported by SCOPE 2 Loader.

60492600 H 4-57

C/rep

B/bsz

I/inc

Absolute expression specifying the number of times code is to be copied. When

base is M, COMPASS assumes that rep is a decimal value. If C/rep is
omitted, the assembler sets rep to zero.

makes one copy.

When rep is zero or one, the loader

Absolute expression specifying the number of words to be copied (block size).

When base is M, COMPASS assumes that bsz is decimal.

If B/bsz is omitted, the assembler sets bsz to zero. When bsz is zero or one,
the loader copies one word.

COMPASS assumes that inc is in decimal.

Absolute expression specifying the increment size in words. When base is M,

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses bsz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+inc,
the third at daddr + 2 x inc, etc. until the rep count is exhausted.

The origin and location counters for the block containing the daddr are not advanced by a value of
Storage reservation for replicated code is the responsibility of the user.

inc x rep.

Rules for replication:

Room must be reserved for the copies in the destination block (for example, through

REP, REPC, and REPI can be used in relocatable assemblies only

Data to be replicated must not contain any extertal references or common block relocatable

For REPC and REPI, data must be in previously loaded text

1. The S subfield cannot be omitted
2.
ORG, ORGC, or BSS)
3.
4,
addresses
5.
Example:
Location Code Generated
10
5017 o000n0g0COOONOQNONN1S
5027 ANQ000O0ONNNCNOONND020
5021 000009200000090007070
5022 0000000MP0OD00ONONON00Y
5023 o(QononoorOonNOOCCNO000S
5024 172167000000600000000D
1z
5251

4-58

LOCATION OPERATION | VARIABLE COMMENTS
n 18 [30
er = 11 H
USE NEWP !
RS NATA 16,20,7070724145,3.14
' I
f
!
I FQu ¥-NA+S !
use naLerK |
na As< poRY
USE * I
RFPT |S/RALD/NA,P/I=-6,C/RC,I/I

60492600 H

4.9 CONDITIONAL ASSEMBLY

The following pseudo instructions permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional skipping. COMPASS provides IF test instructions that:

Test for assembly environment (IFtype)

Compare values of two expressions (IFop)

Compare values of two character strings (IFC)

Test the attribute of a single symbol or an expression (IF)
Test the sign of an expression (IFPL and IFMI)

Immediately following the test instruction are instructions that are assembled when the tested condition
is true and skipped when the condition is false. Skipping is terminated either by a source statement
count on the IF instruction, or by an ENDIF, an ELSE, or an END.

The statement count, when used, is decremented for instruction lines only; comment lines (identified by
* in column one) are not counted. Determining the IF range with a statement count produces slightly
faster assembly than using the ENDIF.

The results of an IF test are determined by the values of expressions in pass one; the value of a
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol
is 0 if the symbol was declared as external. If the symbol was defined relative to a declared external,
the value is the relative value.

4.9.1 ENDIF — END OF IF RANGE

An ENDIF causes skipping to terminate and assembly to resume. When the sequence containing the
ENDIF is being assembled, or is controlled by a statement count, the ENDIF has no effect other than
to be included in the count.

Skipped instructions such as macro references are not expanded. Thus, any ENDIF that would have
resulted from an expansion is not detected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ENDIF
ifname Name of an IF, SKIP, or ELSE sequence; or blank. ifname can be used as any

other type of symbol elsewhere in the program.

Skipping of a sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF, Any ENDIF terminates
skipping of an unnamed sequence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect
that are not under line count control.

60492600 H 4-59

4.9.2 ELSE — REVERSE EFFECTS OF IF

Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test
An ELSE detected during skipping causes assembly to resume at the instruction
following the ELSE. An ELSE detected while a sequence is being assembled initiates skipping of source

within the IF range.

code following the ELSE.

SXkipping continues until :

1. A statement count specified on the ELSE is exhausted

2. A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ELSE fmct
ifname Name of an IF, SKIP, or ELSE sequence, or blank.
mct

Optional absolute evaluatable expression specifying integer number of source
lines to be skipped. It has no effect if the ELSE resumes assembly. When the
base is M, COMPASS assumes that gnct is decimal.

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence
initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macro
references are not expanded; any ELSE that would have resulted from the expansion is not detected.

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE

IFtype pseudo instructions test for the type of processor that will execute the object program, as
declared by MACHINE, and PERIPH or PPU pseudo instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname IFtype et
4-60

60492600 H

ifname Optional i-8 character name.
type Mnemonic specifying type of object processor.
Type Condition Causing Assembly

CP Any central processor unit

CPs Neither PERIPH nor PPU nor MACHINE 7 has been specified. CPU code is
assembled for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71,
72, 73, or 74, or 6000 Series Computer System.

CP7 Neither PERIPH nor PPU nor MACHINE 6 has been specified. That is, CPU
code is assembled for a CYBER 70/Model 76 or a 7600 Computer System.

PP Any peripheral processor unit
PP6 One of the following is true:
1. PERIPH has been specified but MACHINE 7 has not been specified.
2. PPU and MACHINE 6 have both been specified. PPU code is assembled
for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 72,
73, or 74, or a 6000 Series Computer System.
PP7 One of the following is true:
1. PPU has been specified but MACHINE 6 has not been specified.

2. PERIPH and MACHINE 7 have both been specified. That is, PPU code is
assembled for a CYBER 70/Model 76 or a 7600 Computer System.

fnet Optional absolute evaluatable expression specifying an integer count of the number of
statements to be skipped. When base is M, COMPASS assumes that £nct is decimal.

The ifname and £nct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only effect of an
ENDIF in a count controlled sequence is to be included in the count. Skipping terminates when the
(f:ount is exhausted or when an ELSE with a matching or blank name is encountered, whichever ocecurs

irst.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether named or
unnamed, or by a unnamed ELSE, whichever is encountered first. A named ELSE has no effect.

60492600 L 4-61

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that

does not match has no effect.

Example:

Code Generated

0

173 0130000000

LOCATION OI;EQATION VARIABLE COMMENTS
1 n 8 T30

THENT [XYZ |
MACHINE 6 |
* |
B8SS 123 |
IFCPs |2 i
XJ 0 |
ELSE 1
MJ] i

]

4.9.4 IFOP- COMPARE EXPRESSION VALUES

An IFop pseudo instruction compares the values of two expressions according to the relational
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied.

Equality, the expressions are equal in all respects. That is,they
not only have the same numeric value but have the same attributes

The first expression is greater in value than the second expression.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname 1Fop exp, , exp,,, mect
ifname Optional 1-8 character name
op Specifies comparative test:
op Condition causing assembly
EQ
as well. For example, both are names that are common
relocatable, or absolute, or external, etc.
NE Inequality, the expressions are not equal in all respects. They
differ in value or in some attribute.
GT
No other attributes are tested.
4-62

60492600 H

GE The first expression is greater than or equal in value to the second
expression. No other attributes are tested.

LT The first expression is less in value than the second expression.
No other attributes are tested.

LE The first expression is less than or equal in value to the
second expression. No other attributes are tested.
or these tests; positive zero and negative zero are equal.,

exp An expression. When the value of exp is tested, exp can include only previously
defined symbols and the result can be absolute, relocatable, or external. If an
undefined symbol is used, the expression value is set to zero, the IF instruction
is flagged as erroneous, and assembly continues with the next instruction.

fnct Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal., When gnct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. I a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

A demonstration of one use of IF statements in a PPU program:

LOCATION OPERATION | VARIABLE COMMENTS
" n 18 T30
if DEF ,LOOP -
IFLTY *~-L00P,y,403
ZJIN Lour
ELSE 2
NJN *+3
LuM Louce

‘This code assembles a zero jump to the symbol LOOP if LOOP has been defined within 37_ words (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJM are assembled.

60492600 H 4-63

49.5 IFPL AND IFMI —TEST SIGN OF EXPRESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus (MI). The pseudo
instructions allow positive zero to be distinguished from negative zero.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFPL exp, nct

ifname IFMI €xp, fnct

ifname Optional 1-8 character name

exp An expression., It can include only previously defined symbols and the result

can be absolute, relocatable, or external. If an undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

fnct Optional absolute expression specifying an integer count of the number of

statements to be skipped. When base is M, COMPASS assumes that gnct is
decimal. When gnct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count, Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2, If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect,

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a

matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero;
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero.

4-64

60492600 H

Example:

The following opdef defines the CPU instruction MXi jk so that the address value is 80 if the expression
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression
value modulo 60.

IFEQ Ayis3
IFLE VAL, 0,1

LOCATION OPERATION | YARIABLE COMMENTS
1 n 18 T30
MXQ OPDEF | REG, VAL l
LOCAL | A |
A SET VAL |
A SET | A-Az63D%60n!
IFPL | A,3 I
I
!

SKIp b §
A SET A+600D i
VFD 6/ 438y 3/REG,5K/A
ENDM |
i
[
Example of call:
(_«‘Od;ew_q LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 Tao
MX6 | -52 |
7777713 +4000001 SET -52 |
7777713 '+4000001 SET ¢+ 000001-¢4000001/60D*60D
IFPL +4000001,3
IFEQ +4000001,0,3
IFLE -52,0.1
SKIP 1
10 +4000001 SET +4000001+60D
43610 VFD 6/438,3/6,6/4000001
ENDM |
|

49.6 IF - TEST SYMBOL OR EXPRESSION ATTRIBUTE

The IF pseudo instruction tests a symbol or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied.

60492600 H 4-65

Format:

The expression in the second subfield does not contain a register

The expression in the second subfield is not a common relocatable

The expression does not reduce to a program relocatable address

LOCATION OPERATION VARIABLE SUBFIELDS
ifname IF att, exp, fnct
ifname Optional 1-8 character name
att Specifies attribute test. A minus prefix to the attribute causes assembly on
the false rather than the true condition. '
att Condition causing assembly
SET The symbol given in the second subfield was defined by a SET,
MAX, MIN, or MICCNT .
-SET The syml;ol given in the second subfield was defined othgr than
by a SET, MAX, MIN, or MICCNT
ABS The expression in the second subfield reduces to a value that is
not relocatable or external
-ABS The expression in the second subfield reduces to either a
relocatable or an external address
REL The expression in the second subfield reduces to a local or
common relocatable address
-REL The expression in the second subfield does not reduce to a local
or common relocatable address
REG The expression in the second subfield contains one or more
register names
-REG
name
COM The expression in the second subfield reduces to a common re-
locatable address (any blank or labeled common block)
-COM
address (any blank or labeled common block)
EXT The expression in the second subfield contains one or more
external symbols
-EXT The expression in the second subfield does not contain an
external symbol
LCM The expression reduces to an LCM address
-LCM The expression does not reduce to an LCM address
LOC The expression reduces to a program relocatable address
-LOC
4-66

60492600 H

DEF All the symbols in the expression in the second subfield are

' -DEF One or more of the symbols in the expression in the second
subfield is undefined

MAC The name in the second subfield is an opcode name
-MAC The name in th‘. second subfield does not contain an opcode name
MIC The name in the second subfield is a micro
-MIC The second subfield does not contain a micro name
SST The second subfield contains a system symbol
-SST The second subfield does not contain a system symbol
exp For SET, SST, -SET, and -SST, exp must be a single defined symbol. For

mct

MIC and -MIC, exp must be a name. For any other test, it is an expression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,
~-REG, EXT, or -EXT only. If an undefined symbol is used with any other
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assembly continues with the next instruction. Note that if

a symbol is never defined conventionally but only by use of =S or =X prefix

(see section 2.4.2), COMPASS does not define the symbol until the end of

the assembly, and IF tests will consider the symbol undefined.

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that ¢nct is decimal. When gnct is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1.

3.

If a count is supplied, it takes precedence over any ENDIF but not over an ELSE., The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is en~
countered, whichever occurs first.

If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first, A named ELSE
has no effect.

If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

60492600 H 4-67

Examples

lOCA'lIO':I OPERATION | VARIABLE COMMENTS
) n i {30
ABLE 8ss 20 |
[] [* I
. . . '
TEST IF REL,ABLEois:
L] ® L] I
L] L] L] '
[] L] *
TEST ENDIF |
IF COM,DTA,2 ERRONEOUS, OTA AS YET UNDEFINED
. . |
. . |
. . |
USE 77 |
DTA ass 1 |
|

49.7 IFC - COMPARE CHARACTER STRINGS

The IFC pseudo instruction compares two character strings according to the operator specified
and assembles instructions in the IF range if the comparison is satisfied.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname IFC op, dstring;ds tringod, mct
ifname Optional 1-8 character name
d Delimiting character. Characters between the first and second occurrence of this
character constitute the first character string; characters between the second and
third occurrence constitute the second character string.
op Specifies comparative test:
op Condition causing assembly
EQ or -NE sl:ring1 has the same value as string2
NE or -EQ stringl does not equal string,
GT or -LE string 1 is greater than sl:ring2
4-68

60492600 H

GE or -LT string, is greater than or equal to string_
b 4

LT or -GE string1 is less than strings

LE or -GT string; is less than or equal to string,

stringi Character string. When IFC is within a macro definition, each character string
can be a formal parameter. '

mct Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that gnct is
decimal. When fnct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first. :

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect,

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect

Each character in sl;ring1 is compared with the corresponding character in stringy progressing from
left to right until an inequality is found or both strings are exhausted. When one string is shorter than
the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings.

Examples:

LOCATION OPERATION | VARIABLE COMMENTS

) N 18 T30

TEST1 IFC EQ,SABCABC; ABC EQUALS ABC

TEST?2 IFC LT,*AB®ABC* | AB IS LFSS THAN ABC
TEST3 IFC 6Ty XAXX A IS GREATER THAN NULL
IFC ~GE,*2%8%,3 | Z IS LESS THAN 8

The IFC in the following example checks for an empty parameter string.

60492600 H 4-69

lOCATIOr! OPERATION | VARIABLE COMMENTS
1 n 18 fa0
XX MACRO [P1,P2 !
IFC FQ,**P2% ,1 |
P ERR I FLAG EPROR
. I
|
L]
o 1
I
ENDM 1

The following example illustrates a character string terminated incorrectly. When COMPASS reaches
end of statement without finding a third asterisk, the asterisk omitted following P1 causes an error flag.

LOCATION

OPERATION

VARIABLE COMMENTS

n 18 [30

IFC EQ,*0N*PL1,28P2

4.9.8 SKIP — UNCONDITIONALLY SKIP CODE

The SKIP instruction causes COMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format
LOCATION OPERATION YARIABLE SUBFIELDS
ifname SKIP mct
ifname Optional 1-8 character name
fnct

Optional absolute evaluatable expression specifying an integer count of the number

of s

tatements to be skipped. When base is M, COMPASS assumes that gnct is

decimal.

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping

terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

4-70

60492600 H

2, If neither a count nor a name is supplied, the SKIP range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the SKIP range is terminated by an ENDIF or ELSE with

a matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

4.10 ERROR CONTROL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally
set an error flag.

4.10.1 ERR — UNCONDITIONALLY SET ERROR FLAG

An ERR pseudo instruction produces an assembly error but does not affect other code. Usually, it is
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly
based on an assembly time test. One application is to use a test and ERR to detect illegal macro
parameters.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
tﬂag ERR
flag A single alphanumeric character denoting the error type. The flag is placed

in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control
card. If no flag is specified, or the character is not one of those given in
section 11.7, COMPASS uses P.

A variable field entry, if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 i 18 {30
NNN MACRO | P1,P2,P3,P4]
IFEQ P1,0 |
A ERR |
. . |
ENDOM l
® . l
. - |
L] []
NNN 0,A,8,C I

60492600 H 41

4'.10.2 ERRxx — CONDITIONALLY SET ERROR FLAG

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second
pass of the assembler is true.

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

flag

flag

aexp

Example:

ERRxx aexp

A single alphanumeric character denoting the error type. The flag is placed

in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11.7,
COMPASS uses P.

Defines condition under which aexp value is erroneous.

XX Error Condition

NG or MI Value of expression is negative
NZ Value of expression is nonzero
PL Value of expression is positive

ZR Value of expression is zero

Absolute expression. It cannot contain external symbols or references to blank
common. The test is made in pass two of the assembler. Relocatable addresses
are assigned values relative to program origin rather than to the block in which
they are defined.

NOTE

ERRxx is the only conditional instruction for which the
test is made in pass two. Therefore, this is the only
pseudo instruction that can be used to determine PPU
overflow if the PPU program has literals and USE
blocks.

Test for memory overflow in PPU assembly

Location

76647

76462

4-72

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30

PERIPH T

. ‘ |

LASTTAG (8SS 9 ‘ »
R

ERRPL |LASTTAG-7777|
END |

7777447

60492600 H

4.11 LISTING CONTROL

The instructions deseribed in this section permit extensive control of the assembly listing format.

4.11.1 LIST — SELECT LIST OPTIONS

The LIST pseudo instruction controls the content and format of the assembler listing. LIST instructions are
“disabled under either of the following conditions:

When the list parameter (L) on the COMPASS control statement (chapter 10) is zero, or

When the list option parameter (LO) on the COMPASS control statement is used and is other than
LO=0.

Use of the LIST pseudo instruction is optional. If it is not used in the subprogram, COMPASS list output is
according to the L and LO parameters on the COMPASS control statement. If the LO parameter is omitted
or LO=0, the list options are as if L, B, N, and R only are selected and the listing contains heading
information, assembly text, assembler statisties, an error directory (upon occurrence of an error only), and
a symbolic reference table. Formats of this output are deseribed in detail in chapter 11 and brief

[9,021% 21T

summaries are given below.

Heading Information Program length, origin, and length or each bloek, entry points and
external symbols.

Assembly text Line, and assembly results of each line assembled (not skipped)
from the input device (excludes code generated by RMT, DUP,

ECHO, XTEXT, or a maero or opdef expansion). For data
generating pseudo instructions DATA, DIS, BSSZ that produce more
than one word of object code, only the first word is listed. For
VFD and CON all words of objeet code are listed. For R=, only the
pseudo instruction listed.

Each occurrence of the LIST instruction is listed.

Assembler statisties Amount of storage used, counts of assembled statements, defined
symbols, invented symbols, and references to symbols.

Error directory List of fatal and nonfatal errors and summary of the causes of each.

Symbolic reference table List of all symbols defined in the program according to symbol

qualifier, if any, followed by an index to every reference to the
symbol, whether in explicit or generated (for example, by MACRO
or MICRO calls) statements.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
LIST OD;50Pgs -+ 50D,
or
LIST *

60492600 H 4-73

A location field symbol, if present, is ignored.

4-74

op,

A list option represented by a single letter or a letter prefixed by a minus sign.
The unprefixed letter selects the option; the prefixed letter cancels the option.
Options are separated by commas and terminated by a blank.

A

List statements actually assembled

When A is not selected, a line containing concatenation and micro substi-
tution marks is listed with the marks in it exactly as presented to the
assembler. When the A option is selected, however, the assembler lists
the line before and after the editing takes place. Selecting A also causes
the listing of lines of code resulting from the R= pseudo instruction.

List binary control statements

When B is selected, the listing includes SEG, SEGMENT, IDENT, and
END pseudo instructions. '

List listing control statements

When C is selected, the listing includes EJECT, SPACE, TTL, and
TITLE pseudo instructions. A listing instruction that causes an EJECT
is listed as the first line of the new page after the EJECT takes place

Include details

Selection of the D option causes listing of the following items not normally
listed:

Second and subsequent lines of DATA and DIS

Code assembled remotely when HERE or END causes its assembly
Literals block

Default symbols

Include echoed lines

Selection of E causes listing of all iterations of code duplicated as a result
of DUP and ECHO.

List IF-skipped lines

When F is selected, the listing includes all lines skipped by IF, IFop,
IFC, IFPP, IFCP, SKIP, and ELSE. In addition, the Symbolic Reference
Table contains references to symbols in IF statements.

List generated code

Selection of this option causes listing of all code generating lines regardless
of list controls other than L. Instructions listed include symbolic machine
instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

Master list control

This option is normally selected. When L is canceled, the long list contains
error flagged lines, an error directory, and LIST and END pseudo instruc-
tions only, regardless of selection of any other options on LIST.

List macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

60492600 H

N List nonreferenced symbols
This option is normaily selected. Cancellation of this option causes
any nonsystem symbol for which no reference has been accumulated
(e.g., all occurrences are in IF statements with the F option deselected,
or are between CTEXT or ENDX with the X option deselected) to be
omitted from the symbolic reference table.

R Accumulate and List references
This option is normally selected. When R is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired. If R is canceled at the end of
assembly, no symbeolic reference fable is produced.

S List systems macros and opdefs
Selection of S causes all lines generated by calls to systems-defined
macros and opdefs to be listed.

T List nonreferenced system symbols
Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumulated
references.

X List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a
means of alternately turning this external designator off and on.

$ A dollar sign in the variable field selects all options.

An asterisk in the variable field causes selection of the options in effect prior
to the current selection, The assembler records occurrences of LIST pseudo
instructions and maintains a table of the most recent 50 occurrences. Each
LIST * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more LIST * instructions than there are entries
in the stack, COMPASS selects the default list options (B, L, N, and R).

For list options A, C, D, E, F, M, S, and X, all applicable options must be selected for a specific
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires
selection of both M and E. Similarly, an expansion caused by an XTEXT within a system macro call is
listed only when both X and S are selected. To obtain a listing showing [~ and # marks removed from
external text inside a DUP range, A, X, and E must all be selected.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
) n 18 ED)

LIST |[A T
OATA | 1.3eEE '

0 17205146314631463146 DATA | 1.3EE !
LIST |D '
UDATA | 1,.3eEE !

2 17205146314631463146 DATA |1.3€€ |

3 16403146314631463146 |
LIST | =-4,-0 ;

4 17205146314631463146 ! UATA | 1.3eEE |
LIST |'# |
DATA | 1.3+EE## |

6 17205146314631463146 DATA | 1.3€E

7 16403146314631463146 !

60492600 H , 4175

4.11.2 EJECT—EJECT PAGE AND BEGIN NEW SUB-SUBTITLE

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page
headings are printed and listing continues. EJECT has no effect, other than setting the sub-subtitle,
if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor-
responding LIST options are not all selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name EJECT
name New program sub-subtitle for the page will be printed in character positions

70-79 of the second line of the page. A blank name clears the sub-subtitle.

An entry in the variable field, if present, is ignored.

4.11.3 SPACE — SKIP LINES AND BEGIN NEW SUB-SUBTITLE

The SPACE pseudo instruction spaces the assembler listing. When a page is full, an eject occurs
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPACE
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT,
XTEXT, or a macro or opdef expansion, and the corresponding LIST options are not all selected.

LOCATION OPERATION VARIABLE SUBFIELDS
name SPACE sent, rent
name New subprogram sub-subtitle will be printed in characters 70-79 on the second

line of the next page heading. A blank name clears the sub-subtitle.

scnt An absolute expression specifying a positive integer number of spaces between
the most recent line and the next line of printout. If baseis M, scnt is assumed
to be decimal. If scnt is omitted or zero, no line is skipped.

rent An absolute expression specifying a positive integer number of lines that must
be remaining on the page following spacing. If base is M, rent is assumed to
be decimal.

If scnt + rent exceeds the number of lines on the page before spacing occurs, the SPACE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both.

Blank cards or statements can also be used to space the listing.

476 60492600 H

4.11.4 TITLE —ASSEMBLY LISTING TITLE

The first TITLE pseudo instruction establishes the titie that will be printed on each page of the listing.

A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction

as the title. A TITLE instruction without a character string produces an untitled listing. A name in

the location field introduces a new subprogram sub-subtitle.

A TITLE instruction has no effect when LIST option X is deselected and the TITLE instruction is
in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions

(except the first which sets the main title) cause a page eject, even when generated by a macro
expansion, unless LIST option L is deselected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name TITLE string
name New subprogram sub-subtitle to be printed in character positions 70-79
on the second line of the page. A blank name clears the sub-subtitle.
string COMPASS searches the columns following the blank that terminates the
operation field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one up to the end of the
statement. Otherwise, the title or subtitle begins with \the first nonblank
character following TITLE and continues to the end of the statement or to
62 characters. Any characters beyond the 62nd are lost. A blank string
produces an untitled listing.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [0 4
IVENT [MTD ,
LIST c |
TITLE [MT DRIVER I
- I
o |
|
* 1
TITLE |I/0 ROUTINES
. [
* [
L J
60492600 H

4-17.

First page:

Subsequent pages:

MT DRIVER

MT DRIVER
170 ROUTINES

4.11.5 TTL — NEW ASSEMBLY LISTING TITLE

The TTL pseudo instruction introduces a new main title to be printed on each page of the listing, and

clears the subtitle.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmme TTL string
name New sub-subtitle to be printed in character positions 70-79 on the second
line of the pages. A blank name clears the sub-subtitle.
string COMPASS searches the columns following the blank that terminates the operating

field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one up to the statement end. Otherwise, the title begins
with the first nonblank character following TTL and continues to the end of the
statement or to the 62nd character. Any characters beyond the 62nd are lost.

A blank string produces an untitled listing.

TTL does not cause a page eject.

4.11.6 NOREF — OMIT SYMBOL REFERENCES

The NOREF pseudo instruction causes the symbols named in the variable field to be suppressed from
the symbolic reference table.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
NOREF sym, , SyMgs ...y sym
sym One or more symbols defined in the subprogram. If a symbol qualifier is in

effect when the NOREF is encountered, the symbols are assumed to be
qualified by the qualifier in use, unless an unqualified symbol of that name
is defined before the NOREF and the qualified symbol is not defined before
the NOREF. Alternatively, sym, , can be a nonblank qualifier symbol en-
closed by slant bars, /qualifier/, in which case all symbols qualified by
the specified qualifier are suppressed from the symbolic reference table.

A location field symbol, if present, is ignored.

4-78

60492600 H

4.11.7 CTEXT AND ENDX — DISABLE/ENABLE LISTING OF COMMON DECK TEXT

The CTEXT pseudo instruction sets the XTEXT flag for list control.

NOTE

When the flag is set, external text is listed and symbol
references are recorded, only if the X list option is selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name CTEXT string
name If X list option is selected, name is treated as a sub-subtitle; other-
wise it is ignored.
string

If the variable field is nonblank and the X list option is selected, the CTEXT
is ireated as a subtitle., The CTEXT instruction generates a subtitle and
causes a page eject. If X is not selected, the CTEXT does not affect titling.

The subtitle begins with the first nonblank charqcter following CTEXT
or in the default comments column (see COL pseudo instruction) minus
one, whichever comes first, and continues to the end of the statement
or to 62 characters. Any characters beyond the 62nd are lost.

The ENDX pseudo instruction clears the XTEXT flag for list control and causes listing to resume,
starting with the instruction after ENDX, when the X list option has not been selected.

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

ENDX

Entries in the location field or variable field, if present, are ignored.

60492600 H

4-79

4.11.8 XREF—REFERENCE SYMBOLIC ADDRESS

The XREF péeudo instruction provides the options of having the symbolic reference table contain
references to symbols according to (1) location counter address, (2) page and line number, or (3) both.
For the format of the symbolic reference table, refer to section 11, 8.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
XREF string
string An optional character string, the first character of which indicates how symbols

are to be referenced.

A
B

P

The symbolic reference table lists addresses only. Flags are not included.

The symbolic reference table lists references to symbols according to
page number, line, and address. Flags are included.

The symbolic reference table lists réferences to symbols according to
page and line numbers. Flags are included.

A location field symbol, if present, is ignored.

If the string is omitted or if no XREF is issued, the symbolic reference table contains references
according to page and line numbers and includes flags. The last XREF encountered in a subprogram
determines the form of the listing for the entire subprogram.

4-80

60492600 H

DEFINITION OPERATIONS 5

This chapter describes pseudo instructions that involve definition operations. These pseudo
instructions cause sequences of instructions to be saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly can be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred-to for assembly (MACRO, MACROE or OPDEF).

Any instructions other than END, including other definitions or calls, can be in the body of a definition.

Each request for assembly of one of the saved sequences of code, such as a reference to a macro,
causes an entry in the assembler recursion stack. The most recent entry in the stack points to the
source of statements (the definition) to be assembled. When the definition contains an inner, nested,
reference to a saved definition, the stack pointer is changed so that the source of statements is the
innermost definition. The stack allows nesting of definitions to a maximum level of 400. When the
end of a definition is reached, the assembler switches to the preceding entry in the stack. When the
stack is empty, the assembler resumes assembly of the next statement in the input source deck.

A nested definition must be wholly contained by its next outer definition.

Definitions are saved compressed but otherwise unedited (with micro and concatenation marks). Editing
occurs each time the definition is processed. Compression removes blanks and replaces them with
coded bytes as follows:

A single space is represented by 55g; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 spaces replaced by 5555
3 spaces replaced by 0002
4 spaces replaced by 0003

8

64 spaces replaced by 0077 s
65 spaces replaced by 0077558

66 spaces replaced by 007755558
67 spaces replaced by 007700028’ ete.

Trailing spaces are considered as embedded and are included in the iimage. The 00 character
(colon) is represented by the 12-bit code 0001. A 12-bit zero byte marks the end of the statement.

The listing identifies the source of statements and the recursion level for all definition operations.

60492600 A 5-1

For XTEXT, DUP, and ECHO, assembly occurs as soon as a definition is saved. Unless the definition
contains a USE, USELCM, or ORG instruction, code is assembled into the block in use when the
XTEXT, DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and
assembly take place in two steps. The block in use at definition time does not determine where code

in the definition will be assembled. That is, code is assembled into the block in use when the definition
is assembled if the definition does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is
encountered applies to symbols defined in the sequence (assuming the sequence does not contain a
QUAL). For RMT, macros, and opdefs, however, because definition and assembly take place in two
steps, the qualifier in use at definition time does not affect symbols in the definition. The qualifier,
if any, in effect when the definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only. It does not apply to block names or to the names of DUP, ECHO,
RMT, or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol,
block name, or symbols to be qualified as substitutable parameters. (For an example, refer to
example 7 under Macro Call.)

5.1 EXTERNAL TEXT (XTEXT)

The XTEXT pseudo instruction provides a means of obtaining source statements from a file other than
that being used for input. COMPASS transfers the text from the external source and assembles it

before taking the next statement from the interrupted source of statements. The file may be a sequential
file, an indexed file with named records, or an UPDATE or MODIFY' random-access program library
file.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
file XTEXT rmame
file Name of a file containing source statements, If file is omitted, COMPASS
assumes the file named in the X parameter on the COMPASS control statement
(section 10.1.2). If no X parameter was specified, COMPASS assumes OLDPL.
rname If rname is blank, COMPASS assumes that the file is sequential; it rewinds the

file and reads the first section. If rname is not blank, it is the name of the
section to be read. The file must be a SCOPE 3 indexed file with named
records, a record indexed file with named records, a random-access program
library file in UPDATE format, or a random-access program library file in
MODIFY format,

T MODIFY is not supported by NOS/BE 1 and SCOPE 2.

5-2 60492600 C

Text records may be in any of the following formats:
1. Normal text. If the first line confains rname starting in column i, it is skipped.
2. A common deck in an UPDATE or MODIFYT random-access program library file. If the file
is in UPDATE format, the first line (*COMDECK rname) is always skipped. If the file is in
MODIFY format, the identification (7700) and modification (7702) tables are skipped. COMPASS
does not recognize UPDATE or MODIFY directives such as *IF in the common deck.

+
3. An UPDATE or MODIFY' compressed compile file section.

COMPASS reads source statements to an end-of-section mark or an END pseudo instruction.

5.2 REMOTE ASSEMBLY

Definition and assembly of remote code takes place in two steps. A pair of RMT pseudo instructions
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction directs
COMPASS to assemble a specific sequence of remote code or to assemble all unlabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

5.2.1 RMT — SAVE REMOTE CODE

A RMT pseudo instructicn signals the beginning or the end of a sequence of code to be assembled
remotely.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname RMT
rmtname Optional 1-8 character name identifying the remote sequence. It is

significant on the beginning RMT only. The field is ignored for a terminating
RMT. If supplied, rmtname can be used on a subsequent labeled HERE.
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly,

A variable field entry, if present, is ignored.

Any instruction legal when the remote lines are called for assembly is legal between the RMT pair.
If expansion of an RMT reveals a second RMT pair implicit to the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END.
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through a HERE rather than the END, etc,

Any labeled remote code present when END is processed is discarded without notice.

TMODIFY is not supported by NOS/BE 1 and SCOPE 2.

60492600 C 5-3

5.2.2 HERE — ASSEMBLE REMOTE CODE

A HERE pseudo instruction causes the labeled remote sequence to be assembled or unlabeled saved
remote sequences to be assembled. In the absence of a USE, USELCM, IDENT, or an ORG within
the saved sequence, the remote code is assembled under the block in use at the time the HERE is

encountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it

is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no
effect on assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname HERE
rminame Optional; the name of a previously saved RMT sequence. Only the named

sequence will be assembled at this time.

A variable field entry, if present, is ignored.
If unlabeled remote sequences still remain to be assembled when the END statement signaling the end of

assembly is encountered, COMPASS assembles them before it terminates assembly. However, any

RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote
code is lost.

Examples:

The following example illustrates use of RMT within a macro definition. Following the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

60492600 A

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS

e T30

T
MACRO | TABLEs TINAMoEQ]LV
IFC EQe##EQIVH
TNAM EQU #=0RIGINS
0.TNAM CON BUCKET
ELSE 2
TNAM EQu eIV
Oe.TNAM EQuU O.EQIV

RMT
LeTNAM EQu TNAM+SIZES
RMT

spTAS. .o T AN

i NRN&d ‘,

JLonrTAB | EQU |

CaeT2 L HEGING
4673 ‘ '

CIntemesizEs o easme

¥ LAS ES. . eraTe o]
”'ﬁVNRIﬁB#$£ZE§TF““”““Fb*ﬁMT*~ el

60492600 A

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30

RMT |

FLD DECMIC| HUF vBUFL-WSA+ENUS

PRS LIT CrzrLD2 OECIMAL REQUIRED.®

I
|
LIST C l

5.3 CODE DUPLICATION

This section describes two pseudo instructions (DUP and ECHO) that cause a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles
a macro reference. Actual parameters supplied in a list are substituted for formal parameters on
each repetition of the code sequence. The number of repetitions is determined by the number of
actual parameters provided on the ECHO instruction.

Every inner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHO,
or a fatal E error is flagged.

5.3.1 DUP — SIMPLE DUPLICATION

The DUP pseudo instruction specifies repeated assembly of the statements immediately following.

The range of the DUP is specified either hy a source statement count on the DUP instruction or by an
ENDD.

Format:
LOCATION OPERATION VARIABLE SUSFIELDS
dupname DUP rep, (nct
|
]
|
dupname Optional name of the DUP sequence; 1-8 chavacters. When supplied, it can he
used in an ENDD. When no name is supplied, the range of the DUP is determined
hy a statement count or by anv unnamed ENDD.
rep Absolute evaluatable expression specifving the integer number of times state-
ments in the DUP range are to be assembled. If rep is null or zero, the instruc-
tions in the range are not assembled; that is, code is skipped. When base is M,
COMPASS assumes that rep is decimal,
> -0

60492600 E

NOTE

A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can be used for indefinite duplication
of code.

et An evaluatable expression specifying an integer count of the number of
statements to be assembled repeatedly. When base mode is M, COMPASS
assumes that fnct is decimal. The count is decremented for statements only;
comment lines (identified by * in column one) are not counted. On each
iteration, the assembler copies the source statements and then assembles
them, Thus, any recursive statements within the sequence are counted
before they are expanded.

The dupname and fnct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to
be included in the count. Under count control, a name is irrelevant.

2. If neither a count nor a name is supplied, the DUP range is terminated only by an unnamed
ENDD.

3. If a name but no count is supplied, the DUP range is terminated by an ENDD with a matching
name or by an unnamed ENDD, An ENDD with a name that does not match does not effect the
range.

5.3.2 ECHO — ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions immediately following. On each
iteration, the assembler copies the source statements substituting an actual parameter in the list for
each formal parameter until the shortest list is exhausted, and then assembles the statements. ECHO
offers many of the features of macros but does not require separate definition and reference. The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
instruction, or by an ENDD, The statement count, when used, is decremented for instructions only;
comment lines, identified by * in column one, are not part of the definition and are not counted.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ECHO fnct, p1=(list1),p2=(list2), ceosB) =(listn)
dupname Optional name of the ECHO sequence; 1-8 characters. When supplied,
it can be used in an ENDD. When no name is supplied, the range of the
ECHO is determined by a statement count or by any unnamed ENDD,
60492600 E

[
1
-a

mct

Optional absolute evaluatable expression specifying an integer count of the number
of source statements to be assembled repeatedly. If base mode is M, the

count is assumed to be decimal. If gnct is zero or omitted, the comma must

be present and the ECHO range is defined by an ENDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
E error is flagged.

The dupname and ¢nct parameters are related.

1.

If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count. Under count control a name
is irrelevant.

If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed
If 2 name but no count is supplied, the ECHO range is terminated by an ENDD with a matching

name or by an unnamed ENDD. An ENDD with a name that does not match does not terminate
the sequence.

Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic. A name cannot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name is ignored. A name that begins with a number is ignored. The substi-
tutable parameter name can occur in any field within a definition.

The separator between p; and (list;) is conventionally an = but can be any of the
following:

+-*/ () $=,o0r.

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+ - */ () $=">blank , . # or ~

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i.e., with
micro and concatenation marks. Use of the semicolon is restricted in the
definition because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (778).

60492600 A

The character * flags the cccurrence of a name not bounded by any other
special character and, thus, not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the second with 7702, etc. the programmer can use the display characters
34, ;B, etc. directly in place of his substitutabie parameter names in the
definition and achieve the same results as if the assembler had replaced the

name with the flag. (Example 8, section 5. 4. 3 illustrates a similar application
of this technique.)

(listi) Actual parameter list in the form 2158550058 where a; is substituted for P
on the first assembly of the ECHO sequence, agy is substituted on the second

assembly, etc. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be
entered. An actual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before

substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are null, COMPASS assembles the
ECHO sequence zero times, effectively skipping it.

5.3.3 STOPDUP — STOP DUPLICATION

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count
is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the

end of the range for the current iteration and then continues with the next source statement. Only the
innermost duplication is affected.

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If a DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

STOPDUP

An entry in the location or variable field is ignored.

60492600 C 5.9

5.3.4 ENDD — END DUPLICATION SEQUENCE

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is
unspecified on the DUP or ECHO.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ENDD
dupname Name of a DUP or ECHO sequence, or blank. A named DUP or ECHO

sequence can be terminated by an ENDD specifying the sequence by name,
or by any unnamed ENDD. An unnamed DUP or ECHO sequence that is not
controlled by statement count is terminated only by an unnamed ENDD.

An ENDD does not terminate a sequence controlled by a statement count.
The ENDD is included in the count but has no other effect.

An ENDD outside the range of a DUP or ECHO has no effect on assembly.

ENDD is part of the definition it terminates; consequently, it is not edited at ECHO definition time.
The following definition is in error:

T r—1ECHO
Code
T ~ 1ENDD
In this code, the location field of the edited ECHO statement is T1, but the location field of the un-
edited ENDD statement remains at Tr=1.

Examples:

In the following examples, the statements that result from expansion are shown shaded. They are
listed only when the E list option is selected. Source statements are shown in bold characters.

1. This example illustrates use of a simple DUP instruction.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
000005 O
DATA 1
5153 0000000000C00000GCO1 CaTa 1 #NUP e 1
5154 00000000000003000001 NDATA 1 #pypP# 1
515% 0000960000000G0000001 DATA 1 *DUP# 1
5156 (0000000000000G000001 DATA 1 wpUP e 1
5157 00000000000000000001 DATA 1 ®DP# 1

5-10 : 60492600 E

2. This example illustrates a nested DUP instruction with one of the DUP duplications terminated
by a STOPDUP,

LOCATION OPERATION | VARIABLE COMMENTS

] n 18 {30

GO MACRO |

TAG MICRO | NOsls/zALPHAHETZ/
IFC EQs/2TAGE/E/) ASSEMBLE STOPDUP WHEN TAG=E
STQPDUP

MO SET NO+1 NO IS & IN LAST ITERATION

(~0 ENDM

ALPHARET [MICRO | 199/ARCDEFGHIJUKY/

NG SEY 1
oup -1 UNOBTAINARLE ITERATION COUNT
GO
ENDD

60492600 D

3. This example illustrates nested ECHO instructions. A statement count terminates the second
level ECHO The ENDD terminates the first level. Notice how COMPASS assembles each

copy before it begins the next iteration.

Location Code Generated

LOCATION

OPERATION

VARIABLE COMMENTS

18 30

QTM

5 8060

i
5415 0036
1460

1463 00
Yubs oo
1466
lab?

Ia‘7?: "

5415 0037 |

5415 0040

Cenn
{LDN

lenun

STM

lEwvo |

o |EcHD
Sluon.
e o
LON

STM
STM

<T

545415+

Mg oF
sCM=(XqYeZ)
24P 1= (AyR4C)|
CM

Pl |

|
i
|
|
|

l2epi=tasmecrl

*

TN BANTNN D<m<s

5415 1524

60492600 A

5.4 MACROS AND OPDEFS

A macro or nnrln-F definition is a seaquence of source statements that are saved and then assembled

£8 CpQCOL QLI s & =0 “v‘-vv 01 =08 waleiil siiaL alT SaVel &40 Ll assCilioied

whenever needed through a macro or opdef call. A macro call consists of the occurrence of the

macro name in the operation field of a statement. It usually includes parameters to be substituted

for formal parameters in the macro code sequence so that code generated can vary with each assembly
of the definition.

An opdef call differs from a macro call in that the assembler interprets the call hy examining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to be substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of a macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling
of the definition.

A definition consists of three parts: heading, body, and terminator.

Heading A macro definition is headed by a MACRO or MACROE pseudo instruction
stating the name of the macro and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

Body The body begins with the first statement in a definition that is not a LOCAL
statement or a comment line. A comment line can be either identified by *
in column one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by * in column 1 are ignored.)

Use of the semicolon is restricted because when a definition is expanded a
semicolon is interpreted as a substitutable parameter mark or a local symbol
flag.

The body consists of a series of symbolic instructions. All instructions other
than END, lncl_urhqg other macro and deef definitions and calls are leoq'l within

a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot be called before

the outer definition is called.

A name of a substitutable parameter or local symbol listed in the heading can
occur in any field within the body. A reference to a substitutable parameter or
local symbol is recognized when it is between two of the following characters in
an expression or field:

: + - */ () $=Dlank , . # or —

The character— flags the occurrence of a name not bounded by any other special

60492600 A 5-13

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembler
substitutes an actual parameter value for the substitutable parameter and
removes the — so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters . () :

$ and =in symbols, but when he does, he must be careful
that these characters are not interpreted as delimiters in
macro definitions (example 4 under macro calls). A symbol
should not begin with a colon; if it does, the colon is
ignored and no error message is issued.

The macro body optionally contains IRP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different
parameter value.

An ENDM pseudo instruction terminates a macro or opdef definition.

A macro or opdef can be defined anywhere in a subprogram before it is called.
When COMPASS encounters a definition, it places the name of the macro or the
svntax of the opdef along with the number of substitutable parameters and local
symbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 77xx (where xx is a number assigned to the substitutable parameter or local

symbol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symbol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition. However, if the macro includes an RMT
sequence which contains local symbols, the local symbols will have meaning
where the remote code is assembled outside of the definition.

5.4.1 ENDM — END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname ENDM
mname Name of a macro sequence, syntax of an OPDEF sequence, or blank.

5-14

60492600 E

An ENDM specifying a2 macre by name terminates the named macro definition and any unterminated
macro or opdef definitions within it. An ENDM that does not specify a macro by name terminates all
unterminated definitions. An ENDM outside the range of any macro sequence has no effect other than
to be included in statement counts.

ENDUW is part of the definition it terminates; consequently, it is not edited at MACRO definition time.
The following definition is in error:
T—1 MACRO
Code
Tr*1 ENDM

In this code, the location field of the edited MACRO statement is T1, but the location field of the
unedited ENDM statement remains at Tr*1.

Example:
LOCA"QN : OPERATION | VARIABLE COMMENTS
) n 18 T30

JAY MACRO | P1,P2,P3 |
. |
. |
. |

KAY | MACROE| PK2,PK2,PK3,PK Y

P |

i
P e |

JPX/7XQ | OPDEF | OP1,0P2,0P2,
. ‘ |
l

t

KAY ENOM - TERMINATFS KAY AND
THE OPDEF JEFINITIOCN

|
I
ENDM : TERMINATES JAY

5.4.2 MACRO — MACRO HEADING
A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the
macro in a table of macro definitions for assembly upon call and place the macro name in the operation

code table.

The MACRO pseudo instruction has two forms:

Format one:
LOCATION OPERATION VARIABLE SUBFIELDS
mname MACRO parameters

60492600 F 5-15

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

MACRO mname, parameters

The blank location field identifies the second format.

mname A legal name other than END, ENDD, IRP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the macro call. A
redefinition causes an informative flag to be issued but the new definition
holds.

parameters Names of substitutable parameters. The order in which names are listed
determines the order in which parameters must occur in the macro call.
Each name is 1-8 characters, the first of which must be alphabetic. A name
cannot be END, IRP, LOCAL, ENDD, ENDM, or the same as a local symbol.
A name that begins with a number, or a second or later occurrence of a para-
meter name in the list is ignored.

Any of the following special characters separate parameters in the list:
+ - */ () $=,o0r.

These characters have no meaning other than as separators. A blank
terminates the list of parameters. Also, any of these characters can be used
to separate the mname from parameters in format two.

The total number of unique parameter names and local symbols must not
exceed 63 for any one macro definition.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue afatal error and

ignore the definition.

The assembler ignores a blank parameter produced by two adjacent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

5-16 60492600 A

Exampies of macro instructions:

1. Legal MACRO instructions:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
ABC MACRO [P1,P2,P3 !
MACRO DEF"‘LOC"ONE“{I’HO"'TEN
MESSAGE | MACRO | A
2. MACRO instructions having identical parameter lists.
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
SM MACRO | X=Y+Z+¢X iSECOND X PARAMETFR IS IGNORED
SUM MACRO [X(Y+2) |
SUM MACRO | X=Y+Z
SUM. MACRO [X,Y,(Z¢X) INULL PARAMETER AND SECOND
Ix ARE IGNORED
RAO MACRO | X f
RAO MACRO ' X=X41

3. Illegal use of format two:

|SECOND X AND NUMERIC
'PARAMETER ARE IGNORED

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
MACRO |ABC | NO SUBSTITUTABLE PARAMETER
MACRO |ABC,,FP | NULL PARAMETER FIELD
MACRO IABC»16+FP , NUMERIC PARAMETER FIELD
60492600 A

5-17

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the fqllowing format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym mname P1sPgs« Py

sym Optional; depends on definition (see discussion following)

o] Parameter list composed of alphanumeric strings. Parameters are separated

by commas and terminated by a blank. Two consecutive commas constitute
a null parameter. An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence
in which its formal substitutable name is given in the MA CRO pseudo instruction.

When the definition MACRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the second substitutable parameter occurs in the definition, etc. When the definition MACRO
is in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etc.

If null parameters are interspersed with legal parameters, the correct positions must be established
with commas. When the list terminates before the last possible parameter, all remaining parameters
are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as an iterative
parameter. It is an iterative parameter when the substitutable parameter has been named in an IRP
pseudo instruction (gection 5.4.9). Otherwise, it is an embedded parameter.

The assembler removes the outer pair of parentheses before substituting the enclosed character string
in a line. Embedded parenthetical items must be properly paired. A parenthetical item can contain

blanks and commas.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 [0

MESSAGF| {=C*PROGRAM| ABORT, *)
1

After substitution, spacing between fields is the same as it was before substitution. One effect is that

a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as

a variable subfield.

5-18 : 60492600 A

Processing of 2 location symbol and forcing upper of the first macro instruction depend on the MACRO
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable ficld and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument. The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion. In the macro call, the location
field argument cannot be more than 8 characters. Parentheses are not given the special meaning used
in the variable field of a macro call line.

Example:

1. An illustration of concatenation

Location Code LOCATION OPERATION | VARIABLE COMMENTS
Generated |1 n 18 T30
MACK MACRO | Fl4F¢

SePl PlelkeP?

60492600 A 5-19

2. An illustration of nested definitions and calls

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 I30
1
NAME 1 MACRO ;
o . ‘
e [] '
NAME 2 MAGRC :
* 1
. I
. I
NAME 2 ENUM |
. |
L]]
. IaT THIS 1IME, THIS LIdE
NAME2 'ITs PART CGF & JEFINI1TION
. IKATHER THAN 3EING 4 CALL.
* |
L4 1
. 1
NAMEL ENOM | [
. |]
. |
- |
NAME1L INAMEL IS CALLEU ANL EXPANUED.
1
!
i |
!
.]
NAME2 :anL TO NAME2 IS VALID
!

3. The following example illustrates two calls to a definition headed by a MACRO in format two
using the location argument. The macro is named TABLE; its substitutable arguments are
TABNAM, VALUE1, and VALUE2, where TABNANMI is the location argument.

. LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated

1 n 18 [30
H

MACRO | TABLE+TABNAMyVALUE] sVALUE2
TIABNAM VFD 60/VALUE1+60/VALUER
ENDM

5-20 60492600 A

4., An illustration of embedded parameters:

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
i il 18 [30
—
X AM MACRO | A,R !
Ln™ A |
IR a X
ENOM !
Call:
LOCATION OPERATION | VARIABLE COMMENTS
1 0 18 [30
I
Y AM (SM,102), (SAM,TNN?)
Expansion:
Location Code CGenerated LOCATION OPERATION | VARIABLE COMMENTS
1 i 18 30

5. The following example illustrates use of R=- in macros:

|
I
|
|
|

LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30
I
ONSHW MACRO (N i
| R= X1,N
- | SX2 118 |
i IRY =XOPM= |
I { ENOM |
' IDFFSW MAGRO | N »
i i R= X14N |
P lsx2 1128 |
[l -5 | =xrPM= [
P | ENDM |

60492600 A

6. The following example illustrates a character in a symbol erroneously heing interpreted as a
delimiter for a parameter.

LOCATION OPERATION | VARIABLE COMMENTS
] n 18 T30
ABC MACRO |[Z,VAL,P5 !
z SET VAL |
SA7 Z +ALPHA [TLLEGAL SYMBOLs TOO LONG
Lo |
L] L] l
ENDM
ABC o1
ILLEGAL SYMBOLs TOO LONG ABC .l
ABC .1

7. The following example illustrates changing of control blocks and symbol qualifiers through
substitutable parameters in a macro. (The same call could be used by using micros to
change actual parameters.)

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18]30
TAB MACRO | BLOCK 4KWAL '
USE B8LOCK l
QUAL KwAL I
TAGI BSS 108 1
TAG2 VFD 60/-1 |
USE 2
QUAL | = |
ENDM {
|
|
|

TWO,»TWO

5-22 60492600 A

8. The ﬂﬂlovinu'exqr‘)h:‘UU<ﬁrﬂle<‘ztechnique that an experienced programmer mayv wish to
use to gave time in processing of definitions. Remember that the assembler repluces the
first substituiable parameier with 7701, the second with 7702, cte, Note that 7701 i= ;A in
display characters, 7702 is ;B, ete. This means that the programmer can use the display
characters directly in place of his substitutable parameter names in the body of the definition
and achieve the same results as if the assembler had made the substitution when it saved the
definition. At the time the definition is assembled, the assembler replaces cach 77sx with the
actual parameter whether the code was inserted by the assembler when it saved the definition
or by the programmer when he coded the definition.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 Tao
CHAR MACRD 1ASCIT«INTERIAL EXTERNAL s&CU
con INDSCIR
ENDM

639492600 A

5.4.4 MACROE — EQUIVALENCED MACRO HEADER

A MACROEpseudo instruction can be used instead of a MACRO instruction to notify the assembler to
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro

call

The MACROE pseudo instruction has two forms:

Format one:

LOCATION

OPERATION VARIABLE SUBFIELDS

mname

Format two:

MACROE parameters

LOCATION

OPERATION VARIABLE SUBFIELDS

MACROE mname, parameters

The blank location field identifies the second format.

5-24

mname

parameters

. A legal name other than END, ENDD, IRP, LOCAL, or ENDM. It canbe
1-8 characters. A name that is identical to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction. The most recent definition is the one that applies
for the macro call. A redefinition causes an informative flag to be issued but the
new definition holds.

Names of substitutable parameters. Unlike MACRO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters, the first of which must be alphabetic.

A name cannot be END, ENDD, LOCAL, IRP, ENDM, or the same as a local
symbol. A name that begins with a number, or a second or later occurrence of
a parameter name in the list is ignored. Any of the following special characters
separate parameters in the list:

+ - * / () $ = ’ or
These characters have no meaning other than as separators. A blank terminates
the list of parameters. Also, any of these can be used to separate the mname

from parameters in format two.

The total number of unique parameter names and local symbols must not exceed
63 for any one macro definition.

Format one does not require parameters.

60492600 A

Format two requires at least one substitutabie parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value, Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error flag and
ignore the definition.

The assembler ignores a blank barameter produced by two adjacent separators
or by a separator at the end of the list.

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a MACROE pseudo instruction can be called by an instruction of the

following format:

iOCATION OPERATION VARIABLE SUBFIELDS
Sym mname plzal ’pzzazy LR 9pn:an
mname Name of MACROE definition
sym Optional symbol. A symbol in the location field causes the location counter
to be forced upper. The symbol is then assigned the value of the location
counter. A location field symbol on the first line in the definition that generates
code is assigned the same address. If the location field of the macro call does
not contain a symbol, the manner of the force upper is a function of the first-
code-generating line in the macro expansion.
p,=a, An equivalenced parameter. Each p is the name of a substitutable parameter.

60492600 A

The a; is an actual parameter to be substituted for ;- The parameters need not
be listed in the same order as they are listed on the MACROE instruction.
Equivalenced parameters in the list are separated by commas and terminated
by a blank.

A null value is substituted for any parameter omitted from the list.

When the first character of an actual parameter is a left parenthesis, the
assembler considers all the characters between it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parameter has been named in an IRP pseudo
instruction (section 5.4.9, IRP). Otherwise, it is an embedded parameter. The
assembler removes the outer pair of parentheses before substituting the enclosed
character string in a line. Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas.

After substitution, spacing between fields is the same as it was before substitution. One cffeet is that

a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could he erroncously interpreted as

a variable subfield.

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACROLE
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field @if any) on the line in the
definition that generates the code is assigned the same address., If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the maecro name is in the variable field and the first
parameter is a location argument, the location symbol of the call is substituted for the first parameter or
location argument. The fact that this argument came from the location field rather than the variable field
has no special significance in the macro expansion. After substitution, spacing between fields is the same
as it was before substitution.

Example, format one:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
—
) n lig 30
SAM MACROE|A,B,C
CON A
CON B
CON C

~ 0000000000000 L
©..00000000000000000000 | |
~.00009000000000000000 | |

Example, format two:

: LOCATION PERATION | VARIABLE COMMENTS
Location Code Generated '© OFERATIO
' n g 3¢

MAZRIE]l SAMyxXs A3, C

oo A

Can

CLIN C

D

2 COOCOo200uCoC2u2ul S AM A=lyp=lp(=2

5-26 60492600 G

5.4.6 OPDEF — DEFINE CPU OPERATION

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition
in a table of definitions for assembly upon call and place the instruction syntax in the operation code
table. There is no way of removing the definition from the table. It can, however, be bypassed
through redefinition, or disabled through PURGDEF. If the syntax duplicates a CPU instruction already
in the table, the OPDEF definition takes precedence.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
syntax OPDEF parameters
syntax The syntax consists of a mnemonic operator and variable field descriptors.

60492600 B

The mnemonic operator consists of two characters. The first can be any
character except blank. The second character can be a register designator:
A, B, or X in which case the operation field of the opdef call is recog-
nized as cAn, cXn, or c¢Bn (c is a unique character; n is 0-7); or the second
character can be any other character, in which case the operation field of
the opdef call is recognized simply by a two-character mnemonic, such as

EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
opdef call. It consists of none, one, two, or three of the following 22 subfield
descriptors. Q represents an expression. An r represents a register letter
(A, B, or X). A comma separates two descriptors; a blank terminates the

syntax.

void Q

r rQ

-r -rQ
rl+r2 ry +r2Q
-r, Ty -ry TT,Q
rl *r2 r 1 *er
-1; *r2 -ry *r2Q
ry /Ty ry/reQ
—rl/r2 -ry /r2Q
1Ty T7TeQ
—rl —r2 -r1 -er

5-27

For example, -r.*r_ would be written as -X*B to describe -X3*B1 whereas rQ
would be written as BQ to describe B2+ALPHA. The first descriptor immedi-
ately follows the mnemonic operator.

A substitutable parameter for each register designator (r) and expression
parameters designator (Q) in the syntax in the order in which they occur in the syntax

(and, consequently, in the calling instruction). Each name is 1-8 characters,

the first of which must be alphabetic. A name cannot be END, ENDD, ENDM,

IRP, LOCAL, or the same as a local symbol. A name that begins with a num-

ber, or a second or later occurrence of a parameter name in the list is ignored.

Parameters can be separated by any of the characters:

+-*/()y$=, or.

These characters have no meaning other than as separators. A blank terminates
the list of parameters.

The total number of unique parameter names and local symbols must not exceed
63 for any one OPDEF definition.

The assembler ignores a blank parameter produced by two concurrent separators
or by a separator at the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

Examples:

1. Listed below are some instructions that could be defined through OPDEF:

Calling Instruction Opdef
Operation Variable Subfields Syntax

Jpt K JPQ
Jpt - Bn+K JPBQ
JP Bn+Bn+K JPB+BQ
Jp Bn, K JPB, Q
JP Xn/Xn+K JPX/XQ
NET Bn, Bn, K NEB, B,Q
LJ Bn-Bn, An-Xn, K LJB-B, A-X,Q
BXnt -Xn*Xn BX-X*X
SBn? Xn+Bn SBX+B
LXn* Bn, Xn LXB, X
Jp¥ Bj+K JPBQ
NET Bj, Bk, K NEB,B,Q
BXit - Xk *Xj BX-X*X
SBit Xj+Bk SBX+B
SBi T ' Bj+Xk SBB+X

T Legal COMPASS CPU instructions
K represents an expression.

5-28 60492600 A

2. The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 8 130
JPQ OPDEF : P4 |
EQ P |
ENDM 1

Each subsequent JP instruction that matches the syniax JPQ is assembied as an EQ. A JP
instruction having a different syntax, such as the following, is not affected.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
T
10002 0233000005 + Je AT+ALPHA ;

3. The following definition traps all floating point double-precision subtraction instructions
(DXi Xj-Xk) and jumps to an error-check routine for debugging. I, J, and K are substitutable
parameters used within the definition.

LOCATION OPERATION | VARIABLE COMMENTS
30

! n 18 |
OXY=YX OPNEF | T,J,K ;
‘ |
|
|
|

*

RJ cKruy
ENNM

4. The following sequence causes RXi K to be defined as AXi K. It does not affect the standard
RXi instructions involving registers.

LOCATION OPERATION | VARIABLE COMMENTS
) " 8 T30
-
RXQ OPNEF |P1,P2 T
ax.°p1 |p2 I
ENDM 1

5.4.7 OPDEF CALL

An opdef call resembles a CPU mnemonic machine instruction. The mnemonic code, quantity and
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions)
must match the syntax described in the OPDEF for the definition to be called.

60492600 A 5-29

NOTE

If the Q in a descriptor is combined with register letters,
a plus or minus must precede an expression in the call.

OPDEF Syntax Call

JPQ JP K Not combined
JPBQ JP Bn-K Combined
JPB, Q JP Bn, K Not combined
JPX/XQ JP Xn/XnzK Combined

An OPDEF call can occur any place after the definition is saved. In substituting parameters, the
assembler uses only the register values given in the call. It does not substitute the register designators.

A location symbol on the opdef call line forces the first word of generated code upper. The location field
symbol is assigned the current value of the current location counter after the force upper. A location
field on the line in the definition that generates code is assigned the same value. . If the location field of
the opdef call does not contain a symbol, the manner of the force upper is a function of the first code-
generating instruction in the expansion. If the call location field and the code-generating instruction
field both contain symbols they are assigned the same value.

Only a line having the correct syntax calls the definition.
Examples:

The following opdef defines an instruction having the syntax IXX/X. On the call, the assembler
substitutes 3, 4, and DIV (not X3, X4, and X. DIV) for P1, P2, and P3, respectively.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
| T 18 [0
[XX/X OPDEF [PloP24P3

PXe.P2 [XeP2

PXeP3 [XeP3

NX.P2 [XeP2yB4G
Nxop3 XOP3QB‘#
FX.P1 XeP2/XeP3
UX.P1l [X.Plsba
LX.Pl [XePlyBa
ENDM

Ix3 X4/X DIV

~30 60492600 A

w

The following OPDEF selectively traps the SXi Xj+Bk instructions.

Definition:

LOCATION OPERATION | VARIABLE COMMENTS

) n 18 130

SXX+B OPDEF |IyJ,K

ENDCM

Statements that call the definition:

LOCATION OPERATION | VARIABLE COMMENTS

SXx3 X1+82

1 n 18 T30
—T
|
|
|
|
1
|

sSYn SX«.NN [X6+B.XXX

Statements that do not call the definition:

LOCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
SX5 X4 ENO R DESIGNATOR 0OR +.
SX6 B3+X4 IREGISTEPS INTERCHANGED
SX.Y |83 END X DESTIGNATOR OR OPFRAND
SY X4 +RY IMNEMONIC CODE NOT SX.

5.48 LOCAL—LOCAL SYMBOLS

One or more LOCAL instructions that list symbols local to the definition optionally follows the MACRO,
MACROE, or OPDEF pseudo instruction. The only lines that can separate the first header statement
from LOCAL are comment lines.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LOCAL symbols
symbols List of local symbols. Each symbol must begin with an alphabetic character.
Symbols must be separated by and must not include the following characters:
+—*/()$:,OI‘.
60492600 A

A blank terminates the list. The assembler ignores a null syimbol produced hy

two adjacent separators or hy a separator at the end ot the list. COMPASS ignores
the use of a substitutable parameter name, another local symbol name, or a name
beginning with a number in the local symbollist. A local symbo!l cannot he FND,
ENDD, ENDM, IRP, or LOCAL. The total number of unique parameter names and
local symbols must not exceed 63 for any one muacro or GPDEL definition.

A location field symbol, if present, is ignored.

A symbol in the list is considered local to the macro; that is, it is known only within the macro definition.
On each expansion of the macro, COMPASS creates a new syvmbol for each local symbol and substitutes it
for each occurrence of the local symbol in the definition (other than in comment lines identified by * in
column 1). Thus, invented symbols replace LOCA L-named symbols wherever they appear in a macro
definition in a manner similar to the way substitutable parameters are replaced. The chief difference
between substitutable parameters and local syvmbols is that COMPASS automatically supplies the value C
(character string to be substituted for) a local symbol so that it is unique for each macro call.

A user passes a local symbol to inner macro definitions or inner macro calls when he does not declare
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a
macro can be referred to in any inner macro that does not also declare it as local (see example 2).

A symbol not defined as local is accessible from outside the macro definition. An invented symbol is
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change the
structure of the line.

On the listing, each invented symbol is shown as tisym, where sym is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can
define a different symbol A elsewhere.

Examples:

1. In the following example, C is local to macro ABC and is passed to inner macro definitions.
In the definition, each occurrence of formal parameter A is replaced by the parameter mark
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703. Then, when ABC is called, COMPASS assigns invented symbol
$000001 to C and replaces each occurrence of 7703 in definitions ABC and XY Z.

{OCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
ABC MACRO | A, B |)
LOCAL | € |
c RSS 108 [
L] * I
. . : | DEFINITION
. . : OF ABC
X YZ MACRO | D !
SA1 ' 'DFFINITION
. \OF XYZ

|

|

t
V68 : EXPANSION
-\

I

] OF ABC
DEFINITION
| OF XYZ

|

5-32 60492600 A

2. In the following example, C is local to each level.

preceding one.

LOCATION OPERATION | VARIABLE COMMENTS
1 11 18 !30
RCD MACRO | A, ;)
LOCAL | € | !
c ass | tonA | |
! I
. . f LDEFTNITION
. . ; FoF 3rp
Y7A MACRO ; :
LocAL | ¢ N !
sa1 . | DFFINITION
. [10F vza 1
. i | !
c 8ssz |1 . J
i | FNNOM)i

Note how this example differs from the

On the call to BCD, the assembler replaces each occurrence of C with the invented symbol,

$000002 including the use of the symbol in the LOCAL instruction for macro XYZ.

LOCATION

OPERATION | VARIABLE

COMMENTS

[30

A6 OR T
VTR 1k

EXPANSTION OF »Cu

+e000002

_|ry000002

.

ol
Ll B O

2

el

1

Finally, on a call to YZA, 000002 is defined as local and the assembler replaces each

eese. T

+000002 with another invented symbol.
instruction does not result in a reference to the BSS in the outer macro.

el

Thus, each reference to C in the source code SA1

LOCATION

OPERATION | VARIABLE

COMMENTS

[30

I

5.4.9 IRP — INDEFINITELY REPEATED PARAMETER

An IRP pseudo instruction in a macro definition sighals the beginning or end of a sequence of code to be
assembled repeatedly with one parameter varied with each repetition.

It has two formats:

LOCATION OPERATION VAR:ABLE SUBFIELDS
IRP parameter
(IRP
60492600 A

5-33

The first form introduces the <equence and names the substitutable parameter; the sccond form
terminates the repeated sequence. In either form, a location field symbol, if present, is ignored.

The parameter name must be listed as a substitutable parameter on the MACRO or MACROE pseudo
instruction for the definition.

On the macro call, the indefinitely repeated parameter consists of one or more subparameters enclosed
by parentheses and separated by commas. The assembler assembles the sequence for each subparameter;
the number of copies of the sequence depends on the number of subparameters (mone at all when the

actual parameter is null). When the list of subparameters is exhausted, the assembler continues with

the next line in the definition. If the named substitutable parameter does not occur between the two

IRP instructions, the assembler repeats the code unchanged for each subparameter provided in the call.
An IRP outside of the range of a macro has no effect on assembly other than to be included in statement
counts.,

IF-skips of IRP sequences should be controlled by instruction bracket names rather than statement
counts hecause IRP expansions are done even when an IF-skip is used and hecause the number of
statements generated by IRP is variable.

Anything that can be done with an IRP pair can be done with ECHO and ENDD. IRP is faster at assembly
time but ECHO is more flexible (it is not expanded during IF-skips, allows multiple arguments, and

can be nested), IRP should be used when greater speed is desired and the expanded capabilities of
ECHO are not needed.

Examples:

1. Repeat sequence within macro

LOCATION OPERATION ! VARIABLE COMMENTS
) N g [30
‘ 7 F
| Z88 MACKO [ARGB |
| IRP |AKG)
; SAY (ARG f DEFINITION
| SX6 X1sB REPEATED OF A3
| SAk ARG SEAUENCE
| :Ipp
1 ENDM
a -
& | :
2 ! ZAR '(J4K4L) 4CON ZAR .

! e »FN{)M '>

5-34 60492600 A

2. Assign symbol at every 10(}8 words of zeroed storage:

LOCATION OPERATION | VYARIABLE COMMENTS
1 n 18 [0

USE STORAGE

BUF MACRO | P}
IRP Pl

P1 BSSZ 1008
IRP
ENDM
BUF (PeQosRySeT)

s = s i s e

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions of such general usefulness that they should be available to any program without each
program defining them can be placed on the system text file as system macros or can be placed on
a file accessible through an XTEXT pseudo instruction.

System macros provide for such system functions as reading and writing files and specifving parameters
for file environment tables, etc. Svstems macro definitions are available to COMPASS for cach
assembly. The programmer can use a macro call for a system macro at any time in his program.
Descriptions of system macros are given in the operating system reference manual.

Systems definitions can include any legal macro or opdef definition., An expansion of a call for a

system definition is not normally included on the assembler listing. Use of the S option of the LIST
pseudo instruction(Section 4.11, 1) enables listing of expansions of system definitions.

60492600 A

i
1
7

OPERATION CODE TABLE MANAGEMENT 6

[P S R
The COMPASS operation code table contains the information that COMPASS requires for interpreting legal
operation field entries for COMPASS instructions.
When assembly begins, the operation code table contains these entries:

Pseudo instructions (except LOCAL)

CPU symbolie instructions (chapter 8)

CMU symbolie instructions (chapter 8)

PPU symbolic instructions {chapter 9)

System maecro and opdef definitions
The MACRO, MACROE, and OPDEF pseudo instructions (chapter 5) cause entries to be made in this tabie.

In addition, the programmer has the capability of ereating entries through the following instructions
discussed later in this chapter:

CPOP CPU operation

PPOP PPU operation

OPSYN Synonymous PPU or pseudo operation or maero
CPSYN Synonymous CPU operation or opdef

If a new entry redefines an instruction already in the table, the obsolete entry is not physically removed
from the table. Instead, it is saved so that the table can be reconstructed between assemblies. COMPASS
reconstruets the operation code table using all the original system macros, opdefs, pseudo instructions, and
symbolic machine instructions. No programmer-created entry is preserved from assembly to assembly.
The number of entries in the table is limited to 4123.

The only pseudo instructions that logically remove entries from the operation code table are PURGMAC
and PURGDEF.

Entries in the operation code table are in two distinet formats permitting a logical division of the table.
One type of entry permits identification of an instruction by finding a match for the contents of the
operation field, thus, it provides mnemonie recognition. The other type of entry is looked at only if the
search for a mnemonic operator fails to yield a match during a CPU assembly.

This type of entry provides for recognition of an instruction according to its syntax. COMPASS analyzes
the statement to be interpreted, determines the syntax of the operation and variable subfields, and again
searches the table.

60492600 E 6-1

Instructions recognized in the mnemonic search and the information provided to the assembler for
each instruction are as follows:

Pseudo instructions The entry contains addresses to routines that perform
pass one and pass two operations

PPU symbolic instructions The entry describes the format of the instructions to
be assembled

Instructions described through PPOP The entry describes the format of the instruction to
be assembled

Macro instructions The entry directs the assembler to the location of the
saved definition

Instructions described through OPSYN The entry is a copy of the synonymous entry

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a match,
COMPASS searches the operation code table again for an entry with a matching syntax. Instructions
recognized in the syntactical search and the information provided to the assembler for each instruction
are as follows:

CPU symbolic instructions The entry describes the format of the CPU instruction
to be assembled

Instructions described through CPOP The entry describes the format of the CPU instruction
to be assembled

Instructions defined through OPDEF The entry directs the assembler to the location of the
definition

Instructions described through CPSYN The entry is a copy of the synonymous instruction

The action taken depends on the synonymous entry

If, following the second search of the operation code table, the statement still has not been identified,
the assembler takes the following action: .

For a PPU assembly, it generates a 24-bit instruction of which the first 12 bits are zero.

For a CPU assembly, it generates a 30-bit zero instruction,

Although OPSYN and CPSYN pseudo instructions provide a means of rendering more than one
instruction synonymous, only instructions of the same type can become synonymous. The logical
division of the table between the two types of entries prevents mnemonically identified instructions from
being made synonymous with syntactically identified instructions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already

in the table for a different instruction, the new entry takes precedence over the old entry. Similarly,
when a OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction,
the new entry takes precedence over the old entry. As a result, the order of precedence for operation
field recognition is, from highest to lowest:

1. Programmer-created entries for mnemonically identified instructions

6-2 : ‘ 60492600 A

2. System macros, pseudo instructions, PPU symbolic machine instructions, and CMU

instructions other than the IM instruction,

3. Programmer-created entries for syntactically identified instructions
4. CPU symbolic instructions and the CMU IM instruction

Example:

The following example illustrates a special ease in which 2 macro name takes precedence over one

pLes il

form of a machine instruction, i.e., the form using SB4 as an operation code.

LOCATION OPERATION | VARIABLE COMMENTS

] n 18 [30

SBY MACRO | P1,P2 IDEFINE MACRO NAMED S84
. ‘ I
. |

|

° |
ENOM !
L
: :
L
SAY AL+BLE |CALL T0 MACRC. NOT 6Py INST2UCTION
. t
. |
ie !
sn3 AL+ARLE 'MACHINE INSTRUCTIONM

i .]

SR oPSYN | NIL |DISABLES MACRC 3UT DOFS NOT
. {RESTURE NOPMAL USE CF SA4
. {AS AN OPEPATION CODE. *VEMN [F
. IT WERE REDEFINED WITH OPDEF
. ! [IT WOULD NOT RE RECOGNIZSD,
. | THE MACRO FORM ALWAYS TAKFS
. 3 | PRECEDENCE .
PURGMAS SR | RESTORES NORMAL USE OF S34

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

Mnemonically identified instructions include all pseudo instructions, macro instructions, and PPU
symbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PURGMAC
provide the programmer with a means of creating or removing operation code table entries that are in
the mnemonically identified format.

6.1.1 PPOP — PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of 2 PPU symbolic machine
instruction and creates an operation code table entry for the instruction. COMDPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPODP
instruction is used. If the operation code table already contains an entry for the name, the new
definition takes precedence over the old during assembly of the subprogram or until it is redefined.
No error is flagged. Any illegal parameter in PPOP causes COMPASS to ignore the PPOP and issuc
a 7-type error flag.

60492600 A G-3

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
name PPOP ctl, val, type
name Mnemonic name, 1 through 8 characters
etl Control of instruction assembly
ctl Significance
0 Nlegal; if used, COMPASS ignores the PPOP
1 24-bit instruction with 12-bit address and no indexing
2 12-bit instruction with signed relative address or absolute address
(e.g., UIN)
3 24-bit instruetion with 18-bit address (e.g., LDC)
4 12-bit instruetion with 6~bit address (e.g., LDN)
5 24-bit instruetion with 12-bit address and optional indexing (e.g., LDM)
6 12-bit instruction with signed relative address (e.g., SHN)
7 24-bit instruction with 12-bit address and required second field (e.g.,
1AM)
val An evaluatable expression specifying the octal 4-digit operation code value; usually,
only the two leftmost digits are significant. If the assembly base is M, the field is
assumed to be octal.
type An evaluatable expression specifying an integer value that COMPASS interprets as
follows:
6 Restriet the instruction being defined to the CYBER 180 Series,
CYBER 170 Series, CYBER 70/Models 71, 72, 73, and 74; COMPASS
sets an error flag if the instruction being defined is used in a CYBER
70/Model 76 PPU assembly.
7 Restriet the instruetion being defined to the CYBER 70/Model 76;
COMPASS sets an error flag if the instruction being defined is used in
a CYBER 180 Series, CYBER 170 Series, CYBER 70/Models 71, 72, 73,
and 74 PPU assembly.
other or
omitted The instruetion is not restricted to either machine type. If the base is
M, type is assumed to be octal. If type is omitted, the comma
preceding it can be omitted also.
6-4 60492600 L

Example:

7311

Code Generated

5415 0040

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
PFRIPH ;
Ne0 RASF n '
: |
. I
16 LA Fuy 15 |
59 c c0u 69 i
S T™ PPNP SQSQOO*LA i
. 1
* |
* I
QT™ ¢ i

- 6.1.2 OPSYN — SYNONYMOUS MNEMONIC OPERATION

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous with the

macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name;q OPSYN nameoy

The name in the variable subfield must be previously defined as a standard instruction code.
OPSYN, either name produces equivalent results.
macro or operation code, the new definition takes precedence over the old without notification.
a macro defined by a name that is subsequently used in an OPSYN location field is not called when
the macro name is used in the operation field. The instruction actually called is the instruction

After an
If the location field specifies a previously defined
Thus,

named in the variable subfield of the OPSYN. On the other hand, the old macro definition is not lost

and can be restored by purging the new definition with PURGMAC.,

Exampie:

1. An operation named CALL is synonymous with RJM,

LOCATION OPERATION | VARIABLE COMMENTS

] " 18 |30

CALL OPSYN |RJM |
- |
. |
. [
CALL | =XSUBR= 'lPPODUCES SAME RESULTS

i ' IAS IF IT WERE AN RUM
60492600 A

6-5

2, In the following example, a programmer wishes to use a macro named LJM for part of the

program and use the real LJM for the remainder of the program.

6.1.3 NIL — DO NOTHING PSEUDO INSTRUCTION

LOCATION OPERATION | VARIABLE COMMENTS

) " 18 |30

LJM. OPSYN |LJM 'SAVE ORIGINAL DEFINITION AS LJM.
PURGMAG LJM FURGE ORIGINAL NDEFINITION
N I
* |

L JM MACRO XX :
: |
. |

LJM ENDM |
. |
. ; {CODE USING LJM MACRO
. |

L JM OPSYN [LJM. RESTORES ORIGINAL LJM
. |
. CODE USING ORIGINAL LJM

The NIL pseudo instruction resembles a no-op; it produces no code and conveys no information to the

assembler. It is primarily designed for disabling a macro; it cannot be used with CPSYN.

following instructions could be used in place of NIL as nil instructions:

ENDM
ENDD
ENDIF
IRP

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

NIL

A location field symbol if present is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 u 18 '30
MACK OPSYN |NIL H
o |
. 1
I
o I
"G "ACK A'B,6'73 |
. I
|
6-6

The

60492600 A

The assembier interprets each caii to MACK as a NIL instruction. TAG is not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURGMAC—PURGE MACROS

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named
instructions for the duration of the current assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGMAC name,,nameo,...,name,
name, Names of mnemonic operation codes for macro definitions, pseudo instructions,
i

or PPU instructions.

A location field symbol if present is ignored.

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS

Syntactically identified instructions apply to CPU assemblies only. The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.1 CPOP — CPU OPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbolic machine instruction and
creates an operation code table entry for the instruction. An instruction of the defined format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contains an entry for the instruction, the new definition takes precedence over the
old during assembly of the subprogram. Any illegal parameter in CPOP causes COMPASS to ignore
the CPOP and issue an error flag.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sytx CPOP ctl, val, reg, type
sytx The syntax consists of a mnemonic operator and variable field descriptors.

The mnemonic operator consists of two characters. The first can be any
character except blank. The second character can be a register designator:

A, B, or X, in which case, the operation field of the instruction is recognized
as cAn, cXn, or ¢Bn, (c is a unique character; n is 0-7); or the second
character can be any other character except blank, in which case the operation
field of the instruction is recognized simply by a two-character mnemonic, such
.as EQ.

60492600 B 6-7

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
It consists of none, one, two, or three of the

instruction being described.

following 22 subfield descriptors. Q represents an expression. Anr
a register letter (A, B, or X). A comma separates two descriptors; a blank

terminates the syntax.

void
T
-r

T *re

T try

*
T

- *r
1 T2

rl/r2
-1'1/’r2
17T

T T

For example, to describe -X3*B1, the descriptor,
describe B2+ALPHA, the descriptor rQ would be written as BQ.

6-8

ctl

Q

rQ

-rQ
rtryQ
—rl +r2Q
r1 *r2Q
-rl *r2Q
ry / r,Q
-Ty / r,Q
rl -r 2Q
TR

represents

-ry *r2, would be written as -X*B whereas, to

Control of instruction assembly.

ctl

G W =

Significance

15-bit instruction

30-bit instruction

15-bit instruction, force upper before assembly

30-bit instruction, force upper before assembly

15 bit instruction, force upper after assembly

30-bit instruction, force upper after assembly

15-bit instruction, force upper before and after

assembly

30-bit instruction, force upper before and after

assembly

60492600 A

val An evaluatabie expression specifying a S-bit operation code; if the baseis M, val is
assumed to be octai.

reg Three octal digits specifying the order from left to right into which register numbers are
to be insertedinto the i, j, k portions of a 15-bit instruction, or into the i and j portions
of a 30-bit instruction. If the assembly base is M, reg is assumed to be octal.

1 Register number obtained from operation field

z Number of second register or only register in variabie
field

3 Number of first two registers in variable field

0 Set fieldto 0

type An evaluatable expression specifying an integer value that COMPASS interprets as
follows:

6 Restrict the instruction being defined to the 6000 Series,
CYBER 180 Series, CYBER 170 Series, and CYBER
70/Models 71, 72, 73, and 74; COMP ASS sets an error
flag if the instruction being defined is used when
MACHINE 7 has been specified.

7 Restrict the instruction being defined to the 7600 or the
CYBER 70/Model 76; COMPASS sets an error flag if the
instruction being defined is used when MACHINE 6 has
been specified.

other

or

omitted The instruction is not restricted to a machine type.

If base is M, type is assumed to be octal. If type is omitted, the comma preceding it can
be omitted also.

Example:

Code Generﬂted LOCATION OPERATION | VARIABLE COMMENTS
M n 18 l3°

1

SAX+Ds LFOP | 0,5308,1328 WLFINES 541 XJ+BK
1
i

SXX G CrUP | 1,7208,1206 UcFINES SXI KUtk

-]
R i
|
¢ |
53731 Saz Xx3eu1 I
|
146 Sx3 X143 |

722 7231000033

60492600 L

6-9

6.2.2 CPSYN — SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instruction renders an instruction with the syntax given in the location field
synonymous with the instruction having the syntax specified in the variable ficld. The only limit to
the number of CPU instructions that can be made synonymous is the size of the operation code table

(4123 entries).

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

syt

sytx

sytx

CPSYN

sytx2

Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is
already in the operation code table, the table entry for sytx2 takes precedence
over the old table entry for sytx. without notification.

1

Syntax of a CPU instruction for which there must be an entry in the operation
code table. Following the CPSYN, an instruction in cither sytxl or syix,
produces an octal instruction of the format deseribed by the entry for syix,,.

6.2.3 PURGDEF —PURGE CPU OPERATION CODE

The PURGDEF pseudo instruction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGDEF |sytx
sytx Syntax of a CPU instruction (see CPOP for legal forms).

A location field symbol, if present, is ignored.

6-10

60492600 A

MICROS 7

#

STATTNTTT inatwviiation mi

string. When used in conjunction with IFC, DUP, STOPDUP, and SET pseudo ins
strings provide for varied manipulation of character strings -- testing for a particular character,
counting characters, concatenation of strings, etc.

The COMPASS micro capability enables the programmer to symbolically refer to a defined character

trucilions, mic

Use of a micro definition requires two steps: definition of the character string, and substitution. In
this discussion, substitution rather than definition is discussed first so that the reader has a better
understanding of how a definition is used when it is described.

7.1 MICRO SUBSTITUTION

Wherever a micro name between micro marks (#) occurs in a statement other than a comment
line (* in column 1), the assembler substitutes the micro before it interprets the statement. If

column 72 of the last statement read is exceeded as a result of micro substitution, the assembler creates
up to a maximum of 9 continuation statements, beyond which it discards excess characters without noti-
fication on the listing. No replacement takes place if the micro name is unknown or if one of the micro
marks has been omitted. If the micro name is unknown, the assembler flags a nonfatal assembly error.
If the micro name is null (that is, the two micro marks are adjacent), then

1. Both micro marks are deleted, uud

2. No error flag is set

Example:
A micro identified as NAM is defined as the 7 characters:

ADDRESS

A reference to NAM is in the variable field of a line:

LOCATION OPERATION | VARIABLE COMMENTS
i n 18 30
LocC SAl ENAMZ+ 4

However, before the line is interpreted, COMPASS substitutes the definition for NAM producing the
following line:

LOCATION OPERATION | VARIABLE COMMENTS

: I 18 T30
I
1
1

Loc SA1 ADDRESS+U4

Unless the A option of the LIST pseudo instruction is
enabled, the listing depicts the instruction as it was
before the substitution took place.

60492600 A 71

7.2 MICRO DEFINITION

Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and
DECMIC.. In addition, the following pseudo instructions optionally define micros: BASE, CODE, and
QUAL. Also, system or built-in micros are automatically defined by COMPASS at the start of each
subprogram assembly.

_7.2.1 MICRO — DEFINE MICRO

The MICRO pseudo instruction defines a character siring and assigns a name to that string.

Format:
.

LOCATION OPERATION VARIABLE SUBFIELDS

micname MICRO ny,0,, dstringd

micname Name by which definition is called; 1-8 characters

n; Absolute evaluatable expression specifying starting character in string; when the
base is M, COMPASS assumes that n1 is decimal.

n, Absolute evaluatable expression specifying number of characters; when the base
is M, COMPASS assumes that n2 is decimal.

dstringd Delimited character string. The delimiter d is a character not used in the
string.

Counting the first character after d as character 1, the assembler forms the string by extracting n,
characters starting with character n. If the second delimiting character occurs before count n, is
exhausted, the defined string terminates at that point. If ny is greater than zero and no is omitted, zero,
or negative, the defined string includes all the characters from n, to the closing delimiter (see second
example).

If n; is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to. That is, n, and the character string are ignored.

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of another (see third example).

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined

originally as one character string can he redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

If ny or n2 is negative, the assembler generates a 7-type error.
Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30
T
N AME MICRO | 1419,*ALPHANUMFRIC STRINGE*

7-2 60492600 A

2. This example iliustrates a blank character count.

The defined string begins with A and is

terminated by the closing delimiter.

LOCATION OPERATION | VARIABLE COMMENTS
! T 18 Ts0
T
MICKY MICRO 1y y FALPHANUMERILL ST2ini®

3. One micro can be defined as a substring of another.
LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30
T —_—
NAM1 MINRN 1.?:,*%AJFQ%ALUHANUMfPIC STRINGY
. . . :
L] . . \
. L. . |
NAM? [MICOD |7, ,*#NAVL* [SAMF ST2TING A4S [N oXA4 LF5 1 ann 2
4. Omne micro can combine others.
LOCATION OPERATION | VARIABLE COMMENTS - o T
1 1 18 [0
T IMICPO | 1,12,88LPHANYM 2 7
COIMAM2 SMITRD 147 ,X STRIMGX
P MAMZ CMINPD 1, +ZNAMLZEINAM? £y Cralnes M) a0
5. A micro name can he redefined.
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
%7
MSHh MICRO [14F,*STRINGS
| L] N . e N
. P . . LT yYSTr FIRST nrpTairoy
e e : jo
Imse IMICON 1,10, FALTUENNFO © guc g
‘i . [. bl
1. . e s COTE USING S-ONT DEETITTION,
Lioe . P FISSE QFEYNTTIION T8 INAOCSTSTALe,
6. Alicro substitution takes place before a line is assembled or examined for syntax. Thus,
the following is possible,
LOCATION OPERATION | VARIABLE COMMENTS
1 H 18 30
NAM MICRD 1,25,*% LLOC SA1 ADDRESS+*
FINAMET
oo SATY ADDRESS+1

H=sztto G

7.2.2 DECMIC — DECIMAL MICRO

U'~ing a decimal conversion, the DECMIC pseudo instruction converts the expression into a character
stiing to be saved under the name specified.

I'ormat:
LOCATION OPERATION VARIABLE SUBFIELDS
michame DECMIC aexp,n
micname Name by which definition is called; 1-8 characters
aexp Absolute evaluatable expression
n

Example:

Optional absolute evaluatable expression specifying number of characters
in the defined string. The defined string is a maximum of 10 characters
regardless of the magnitude of n. When hase is M, COMPASS assumes that
n is decimal

If n is omitted or has a zero value, the micro contains the number of characters
indicated by the conversion to a maximum of 10 characters. If the converted
expression has more than n (or 10) digits, the most significant digits arc
truncated. If the value has fewer than n digits, the string is right justified and
filled with leading zeros. All numbers are treated as positive.

B has the value 1024 decimal or 2000 octal before conversion.

LOCATION OPERATION | VARIABLE COMMENTS
1 i 18 30
v DECMIC |B,6 |

MICRO *#V #

7.2.3 OCTMIC — OCTAL MICRO

Using an octal conversion, the OCTMIC p=cudo instruction converts the value of the expression into a
character string to be saved under the name specified.

60492600 D

Format:

LOCATION QPERATION VARIABLE SUBFIELOS
micname OCTMIC aexp, n
micname Name by which definition is called; 1-8 characters
aexp Absolute evaluatable expression
n Optional absolute evaluatable expression specifving number of characters

in the string. The defined string is 2 maximum ol 10 characters regardless
of the magnitude of n. When base is M, COMPASS assumes n as a decimal.
If n is omitted or has a zero value, the micro contains the number of
characters indicated by the conversion to a maximum of 10 charactérs.

If the converted expression has more than n (or 10) digits, the most significant digits are truncated.

If the value has fewer than n digits, the string is right justified and filled with leading zeros. All
numbers are treated as positive.

Example:

B has the value 1024 decimal or 2000 octal befcre conversion.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18
Vi 0CTMIC 8,6

[30
T
1
|
|
I
[}
|

MICRO |1,,%¥2V1iz ANDDITIQONAL STORAGS NECOED*

7.3 PREDEFINED MICRO NAMES

Several standard micros are predefined by the COMPASS assembler. Thev ave available for every
assembly. The programmer simply writes the micro reference as desired.

These micros are automatically defined at the beginning of each assembly, and have the default values

i £ R P N VPN B I, e BN i e 3ter a1y e e T U SR S
specified below until they are redefined by the progrummer; thereafter, the programmer’s definition

holds until the start of the next assembly.

7.3.1 DATE

The DATE micro contains the current date in 10 characters in one of the following forms as obtained
from the operating svstem:

Avyr/mo/dy., or Amo/dy/vr.

The micro reference is #DATE#,

60492600 E

-1
]
1l

7.3.2 JDATE

The automai:ic value of the JDATE micro is five digits yyddd, where yy is the year and ddd is the day
of year at the time of assembly. Thus, JDATE is the Julian date form of DATE.

The micro reference is #JDATE#.

7.3.3 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained

from the operating system:

Athr.min, sec.

4

The micro reference is #TIME#.

Example:

LOCATION OPERATION | VARIABLE COMMENTS
) " 18 {30
TITLE |[PROGRAM ASSEMBLED ON #DATEZz AT2zTIME%
7.3.4 BASE

The automatic value of the BASE micro is a single letter D, M, or O, corresponding to the number
base currently in effect(specified by the most recent BASE pseudo instruction); it is initially D.

The micro reference is #BASE#.

7.3.5 CODE

The automatic value of the CODE micro is a single letter A, D, E, O, or I, corresponding to the
character code currently in effect (specified by the most recent CODE pseudo instruction); it is

initially D.

The micro reference is #CODE#.

7.3.6 QUAL

The automatic value of the QUAL micro is 0 to 8 characters comprising the qualifier symbol
currently in effect (specified by the most recent QUAL pseudo instruction); it is null initially and
whenever the blank qualifier is in effect.

The micro reference is #QUAL#.

60492600 F

7.37 SEQUENCE

The automatic value of the SEQUENCE micro is 18 characters comprising the sequence field

(columns 73-90) of the first line of the COMPASS source statement most recently read from the main
source input file. Thus, if the current statement was read from the main source input file, SEQUENCE
is the sequence field of the first line of the statement. However, if the current statement is generated
(i.e., part of a macro call expansion, DUP expansion, etc.) or is read from a different file via the
XTEXT pseudo instruction, then SEQUENCE is the sequence field of the first line of the statement most
recently read from the main source input file.

The micro reference is #SEQUENCE#.

7.3.8 MODLEVEL

The automatic value of the MODLEVEL micro is the value (up to 9 characters) specified by the ML pa-
rameter on the COMPASS control statement. If no ML parameter is present, the automatic value of the

MODLEVEL micro is equal to that of the JDATE micro. When COMPASS is cailed by a compiler to
process embedded COMPASS subprograms, the automatic value of the MODLEVEL micro is supplied
by the calling compiler. The MODLEVEL micro is intended to be used when assembling a compiler
(or COMPASS itself), to provide the compiler modification level to be placed in word 6 of each PRFX
table in the binary output written by the compiler,

The micro reference is #MODLEVEL#,

'7.3.9 PCOMMENT

The automatic value of the PCOMMENT micro is the value specified by the PC parameter on the
COMPASS control statement, with characters truncated from the right or blanks appended to the right, as
necessary, so that the micro's length is exactly 30 characters. If no PC parameter is present, the auto-
matic value of the PCOMMENT micro is 30 blanks. When COMPASS is called by a compiler to process
embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied by the call-
ing compiler. The PCOMMENT micro is intended to be used in a COMMENT pseudo instruction to
specify words 8 through 10 of the PRFX table in the binary output. It may also be used, in conjunction
with the *F special symbol, to determine compiler options (debug mode, rounded arithmetic, etc.) in
effect at the time of assembly. .

The micro reference is #PCOMMENT#.

60492600 A T-7

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

COMPASS recognizes symbolie notation for all eentral processor unit (CPU) instructions for the CYBER
180 Series, CYBER 170 Series, CYBER 70 Series, 7600, and 6000 Series. For COMPASS to recognize the
symbolic notation for models 810, 815, 825, 830, 835, 845, 855, 865, and 875 CPU instructions, the
programmer must ensure that SYSTEXT is available to the assembler.

Some instructions in existing COMPASS programs are not valid for execution on models 810, 815, 825, 830,
835, 845, 855, 865, and 875. To detect these instructions, the programmer can specify S=AIDTEXT in the
COMPASS control statement. COMPASS prints a listing of the program, flagging the invalidated
instructions with a type O error. S=AIDTEXT should not be specified if the 8 option is chosen for the
MACHINE pseudo instruction.

The assembler identifies each symboiic instruction aceording to its syntax and generates a one-parcel
15-bit instruction or a two-parcel 30-bit instruction. The object code for an instruction is generated in the
block in use when the instruetion is encountered.

8.1 MACHINE INSTRUCTION FORMATS

Figures 8-1 and 8-2 illustrate the formats for CPU 15-bit and 30-bit instructions generated by the
assembler.

14 8 5 2 0
fm i j k

[N N N -] - |

Figure 8-1. CPU 15-Bit Instruction Format

29 23 20 17 0
fm i j K

Lt 1 I I 11 1 L ¢ 1 & & ' ¢ & & 2 4 .t 1 ¢ & i

Figure 8-2. CPU 30-Bit Instruction Format

fm 6-bit instruction code

fmi 9-bit instruction eode

i 3-bit code (0 through 7) specifying one of eight designated registers (for example, Ai)

j 3-bit code (0 through 7) specifying one of eight designated registers (for example, Bj)

k 3-bit code (0 through 7) specif ying one of eight designated registers (for example, Xk)

K 18-bit integer value used as an operand, address of an operand, or branch destination address
jk 6-bit integer value specifying a shift count or mask count

Figure 8-3 illustrates possible arrangements of one- and two-parcel instruetions in a 60-bit CPU instruction
word. Generally, the assembler does not allow a two-parcel instruction to begin in the fourth parcel of a
word.

60492600 L 8-1

First Second Third Fourth
Parcel (Parcel 0) Parcel (Parcel 1) Parcel (Parcel 2) Parcel (Parcel 3)

16 15 15 15
59 44 29 14 00
30 , 15 15
59 29 14 00
15 : 30 15
59 44 14 00
15 15 30
59 44 29 00
30 30
59 29 co

Figure 8-3. Arrangements of Instructions in a 60-bit CPU Word

When a two-parcel instruction begins in the last parcel of a word, the CYBER 170 Models 175, 176, 740,
750, 760, 865, and 875; the CYBER 70 Model 76; and the 7600 execute it as if the instruction word had a
fifth parcel containing all zeros. On the CYBER 180 Computer Systems; the CYBER 170 Models 171, 172,
173, 174, 720, 730, 815, 825, 835, 845, and 855; and the CYBER 70 Models 71, 72, and 73; and the 6400, this
condition causes an error exit. On the 6600 and the CYBER 70 Model 74, the CPU takes the first parcel of
the current instruetion.

Before it assembles an instruction that must begin in the first parcel (forced upper) and af ter it assembles
an instruction that requires the instruction following it to be forced upper, the assembler completes a word
as follows:

Lower 15 bits remain They are packed with a one-parcel NO (pass) instruetion.
Lower 30 bits remain They are packed with a two-parcel SB0 B0+K instruction.
Lower 45 bits remain They are packed with a NO instruction and an SB0 B0+K instruction.

8.2 INSTRUCTION EXECUTION

8.2.1 6600/ 6700 AND CYBER 70 MODEL 74 EXECUTION

After an exchange jump start by a peripheral processor (PP) and CPU program, CPU instructions issue
automatically in the original sequence, to an 8-word instruction stack. The stack can hold a program loop
consisting of up to twenty-six 15-bit instructions and one 30-bit instruction.

Instructions are read from the stack, one at a time, and issued to the functional units (table 8-1) for

execut_ion. A_scoreboard reservation system in CPU control keeps a current log of which units and
operating registers are reserved for computation results from functional units.

The 6700 also includes a 6400-type central processor unit

8-2 60492600 L

TABLE 8-1. CYBER 70 MODEL 74 AND 6000/7600 FUNCTIONAL UNITS

Unit General Function
Branch Handles all jumps or branches from the program.
Boolean Handles the basic logical operations of transfer, logical product,

logical sum, and logiczil difference.

Shift Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and normalize, pack, and
unpack floating point operations. The unit alse inciudes a mask
generator.

Floating Add Performs single or double precision floating point addition and

subtraction on floating point operands.
Long Add Performs addition and subtraction of two 60-bit fixed point operands

Floating Multiply Performs single or double precision floating point multiplication on
floating point operands

Floating Divide Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a 60-hit word.

Increment Performs one's complement addition and subtraction of 18-hit operands.

Each functional unit executes several instructions, but only one at a time. Some branch instruections
require two units; the second unit receives direction from the branch unit.

The rate of issuing instructions varies from the maximum of one instruction every 100 nanoseconds (one
minor cycle). Sustained issuing at this rate may not be possible because of funetional unit and CM confliet
or because of serial rather than simultaneous operation of units. Program run time can be decreased by
efficient use of the units. Instructions that are not dependent on previous steps may be arranged or nested
in program areas where they may be executed concurrently with other operations to eliminate dead spots in
the program and increase the instruction issue rate.
The following steps summarize instruction issuing and execution:
An instruetion is issued to a funetion unit when:
Specified functional unit is not reserved.
Specified result register is not reserved for a previous result.

Instruetions are issued to functional units at minor cycle intervals when no reservation conflicts are
present.

Instruction execution starts in a functional unit when both operands are available. Execution is
delayed when an operand is a result of a previous step which is not complete.

No delay occurs between the end of a first unit and the start of a second unit which is waiting for the
results of the first.

60492600 A 8-3

After a branch instruction is initiated, no further instructions are issued until the branch has been
executed. In the execution of a branch instruction, the branch unit uses:

Increment unit to form the instructions that branch to K + Bi and branch to K if Bi...
Long add unit to perform the instructions that branch to K if Xj...
Time spent in the long add or increment units is part of total branch time.

Read central memory access time is computed from the end of increment unit time to the time an operand
is available in X operand register. Minimum time is 500 nanoseconds assuming no central memory bank

conflict.

8.2.2 CYBER 180 COMPUTER SYSTEMS; CYBER 170
MODELS 171, 172, 173, 174, 720, 730, 815, 825, 835, 845, AND 855,
CYBER 70 MODELS 71, 72, AND 73; AND 6200, 6400, 6500 EXECUTION

| The CYBER 180 Computer Systems; the CYBER 170 Models 172, 173, 174, 720, 730, 815, 825, 835, 845, and
855; the CYBER 70 Models 71, 72, and 73; and the 6200, 6400, and 6500 systems CPU has a unified
arithmetic unit, rather than separate functional units as in the 6600 system. Instruections in the CPU are
executed sequentially.

NOTE

Unless otherwise stated, the remainder of this section applies to all the models
I listed above, except models 810, 815, 825, 830, 835, 845, and 855.

Fer efficient coding in the central processor unit:

Always attempt to place jump instructions in the upper portion of the instruction ward to avoid both
the additional time for RNI (read next instruction, 2 minor cycles) and the possibility of a memory
bank conflict with (P + 1).

Where possible, place load/store instructions in the lower two portions to avoid lengthening execution
times.

Reading the next instruction words of a program from central memory, RN], is partially concurrent with
instruction execution. RNI isinitiated between execution of the first and second instructions of the word
being processed. Initiating RNI operation requires two minor cycles; the remainder of the RNI is parallel in
time with execution of the remaining instruetions in the word:

P 1 2 3

Initiate \ m

RNI Execution of
¢ "_\H——instructions
2 and 3

RNI
— | 200 <j];———minimum of —_—\I;_>
nsec <

800 nsec

A

Total RNI time

Y

84 60492600 L

In caleulating execution times, two minor eycles are added to each instruction word in a program to cover
the RNI initiation time. Exceptions are the return jump and the jump instructions (in which the jump
condition is met) when they occupy the upper position of the instruction word. Since the times for these
instructions already include the time required to read the new instruetion word at the jump address, no
additional time is consumed.

Example:
P |Jump to K (met) Pass Pass
K |Add1 Add 2 Load | Store
Instruction Minor Cycles Required
Jump 13
Add1 5
RNI Initiation 2
Add 2 5
Load 12
Store 10
Total Time 47 minor cycles

After RNI is initiated (between the first and second instructions of the word), a minimum of eight minor
cycles elapses before the next instruction word is available for execution. Even if the lower order positions
of the word should require less than eight minor eycles, a minimum of eight minor cyeles is allowed.

Example:
Jump to K
P (not met) Pass Pass
P+1
8.2.3 CYBER 170 MODELS 175, 176, 740, 750, 760, 865, AND 875; |

CYBER 70 MODEL 76; AND 7600 EXECUTION

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in the
computation section of the CYBER 170 Models 175, 176, 740, 750, 760, 865, and 875; the CYBER 70 Model |
76; and the 7600 CPU. Each is a specialized unit with algorithms for a portion of the CPU instruction
execution. Table 8-2 lists the general function of each unit. A number of functional units can be in

operation at the same time. .

60492600 J 8-5

TABLE 8-2. CYBER 170 MODELS 175, 176, 740, 750, 760, 865, AND 875;
CYBER 70 MODEL 76; AND 7600 FUNCTIONAL UNITS

Unit General Function

Boolean Handles the basic logical operations of transfer, logical product, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations.

Shift Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and mask generation.

Normalize Performs the normalize operations.

Floating Add Performs single or double precision floating point addition or subtraction|
on floating point operands.

Long Add Performs integer addition or subtraction of two 60-bit fixed point
operands.

Floating Multiply Performs single or double precision floating point multiplication on
floating point operands.

Floating Divide Performs single precision floating point division of floating point
operands.

Population Count Counts the number of 1 bits in a 60-bit word.

Increment Performs one's complement addition and subtraction of 18-bit operands.

A functional unit receives one or two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the function. The functional
units do not retain any information for reference in subsequent instructions. The units operate in
three-address mode with source and destination addressing limited to the operating registers.

Except for the floating multiply and divide units, all functional units have one clock period segmentation.
This means that the information arriving at the unit, or moving within the unit, is captured and held in a

new set of registers at the end of every clock period. It is therefore possible to start a new set of operands
for unrelated computation into a functional unit each cloek period even though the unit may require more

than one clock period to complete the calculation. This process may be compared to a delay line in which
data moves through the unit in segiments to arrive at the destination in the proper order but at a later
time. All functional units perform their algorithms in a fixed amount of time. No delays are possible once
the operands have been delivered to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter the multiply unit in
any clock period providing there was no multiply operation initiated in the preceding clock period.

The floating divide unit is the only functional unit in which an iterative algorithm is executed. There is
little segmentation possible in this unit. However, to increase execution speed, the beginning of a new
divide operation can follow a previous divide operation by 18 clock periods for a gain of 2 clock periods.

Instructions involving storage references for operands or program branching are difficult to time. Program

branching within the instruction stack causes no storage references and small program loops ean therefore
be precisely timed.

8-6 60492600 J

8.3 OPERATING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length Number
Operand Registers X0 - X7 60 Bits 8 |
[
Address Registers A0 - A7 18 Bits 8 i
Index Registers B0 - B7 18 Bits 8 {

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed. A register is free in the clock period (or minor cycle) following the store into it.

8.3.1 X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated X0, X1, ...,X7 are the principal
data handling registers for computation. Data flows from these registers to the SCM (CM) and the LCM
(not ECS). Data also flows from SCM (CM) and LCM (not ECS) into these registers. All 60-bit operands
involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM) into
correspording address registers.

On the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600, the X registers also serve as address
registers for referencing single words from LCM. X0 is used as the LCM relative starting address in a
block copy operation.

8.3.2 A REGISTERS

Eight 18-bit A registers in the computation section of the CPU, designated as A0, Al,...,A7, are
essentially SCM (CM) operand address registers. With the exception of A0 and X0, A registers are

associated one-for-one with the X registers. Placing a quantity into an address register A1 - A5 causes an
immediate SCM (CM) read reference to that relative address and sends the SCM (CM) word to the

corresponding operand register X1 - X5. Similarly, placing a value into address register A6 or A7 causes
(the \)NOl‘d in the corresponding X6 or X7 operand register to be written into that relative address of SCM
CcM).

The AD and X0 registers operate independently of each other and have no connection with SCM (CM). A0 is

used as the relative SCM (CM) starting address in a bloek copy operation and for serateh pad or
intermediate results,

8.3.3 B REGISTERS

Eight 18-bit B registers in the computation section of the CPU designated as B0, B1,...,B7 are primarily
indexing registers for controlling program execution. Program loop counts can be ineremented and
decremented in these registers.

60492600 H 8-7

Program addresses may be modified on the way to an A register by adding or subtracting B register
quantities. The B register also holds shift counts for pack and normalize operations and the channel

number for channel status requests.

B0 always contains positive zero; that is, B0 is held clear. Often as a programming convention, B1 or B7
contains positive 1. See the B1=1, the B7=1, and the R= pseudo instructions.

8.4 SYMBOLIC NOTATION

This section describes notation used for coding symboliec CPU machine instructions. Instructions are listed
in groups according to function. Instructions unique to a computer system are identified as such in

table 8-3. These instructions can be assembled on any machine but will execute properly on the noted
machine only. Table 8-4 lists the functional unit, if any, in which each instruction executes. For details
and special eonditions arising during instruction execution, refer to the relevant hardware system reference

manual.

TABLE 8-3. CPU INSTRUCTION/MACHINE MODEL CORRESPONDENCE

Machine Model Number
Mnemonic 171, 172, 173, 174, 175
810, 815, 825, 830 ? 4 4 ? 4
C d 3 ’ 3 ’ -
ode 835, 845, 855, 865, | 76 and 7600 7231 733’ ;‘3‘0’ 730;4‘3“‘1 ;60’ 176
and 875 » 18, 1oy and 45 an
6000 Series
AXi X X X X
BXi X X X X
cct
CR X
cut
cw X
cxi X X X X
DF X X X X
pMT
DXi X X X X
EQ X X X X
ES X
FXi X X X X
GE X X X X
GT X X X X
1Bj X X
19)) X X X X
441
R X X X X
IXi X X X - X
Jp X X X X
LE X X X X
LT X X X X
LXi X X X X

8-8 60492600 L

TABLE 8-3. CPU INSTRUCTION/MACHINE MODEL CORRESPONDENCE (Contd)

Machine Model Number
Mnemonic 171, 172, 173, 174, 175,

810, 815, 825, 830
Code > ’ ’ ’, 720, 730, 740, 750, and 760;

835, 8?5, 855, 865," | 76 and 7600 71,7720 73, and 74s and 176

and 875 6000 Series

wof
MI X X X X
MJ X X
MXi X X X X
NE X X X X
NG X X X X
NO X X X X
NXi X X X X
NZ X X X X
OBj X X
OR X X X X
PL X X X X
PS X X
PXi X X X X
RE X X
RI X X
RJ X X X X
RL X X
RO X X
RXi X X X X
RXj X X X
SAi X X X X
SBi X X X X
SXi X X X X
TBj X X
Uxi X X X X
WE X X
WL X X
WXj X X X
XJ X X X
ZR X X X X
ZXi X X X X

TCMU instruction: Compare/Move Unit available on CYBER 170 Models 172, 173, 174,
720, and 730. Models 810, 815, 825, 830, 835, 845, and 855 support CMU instruc-
tions through simulation.

60492600 L

TABLE 8-4. CPU INSTRUCTION/FUNCTIONAL UNIT CORRESPONDENCE
Functional Unit
. Operation 740
Mnemonic Code 74, 6600, 175, 176, 740,
d 6700 750, and 760;
an 76; and 7600

AXi Shift Shift

BXi Boolean Boolean

CR None None

CW None None

CXi Divide Pop

DF Branch None

DXi 32ijk FP Add FP Add

DXi 33ijk FP Add FP Add

DXi 421jk Multiply Multiply

EQ Branch None

ES T None

FXi 301ijk FP Add FP Add

FXi 31ijk FP Add FP Add

FXi 40ijk Multiply Multiply

FXi 441k Divide Divide

GE Branch Noae

GT Branch None

1Bj 1 None

I Branch None

IR Branch None

IXi 36ijk Long Add Long Add

IXi 371k Long Add Long Add

IX1i 4213k Multiply Multiply

JP Branch None

LE Branch None

LT Branch None

LXi Shift Shift

MI Branch None

MJ ¥ None -

MXi Shift Shift

NE Branch None

NG Branch None

NO None None

NXi Shift Rormalize

Nz Branch None

OBj None

OR Branch None

PL Branch None

PS Branch T

PXi Shift Boolean

60492600 H

TABLE 8-4.

CPU INSTRUCTION/FUNCTIONAL UNIT CORRESPONDENCE {Contd)

Functional Unit
Mnemonic Operation 175, 176, 740,
Code 74, 6600, .
1 6700 750, and 760;
an 76; and 7600
RE Branch T
RI T None
RJ Branch Ncne
RL None
RO T None
RXi 341jk FP Add FP Add
RXi 35ijk FP Add FP Add
RXi 41ijk Multiply Multiply
RXi 4513k Divide Divide
RXj T None
SAL Tncrement Increment
SBi Increment Increment
SXi Increment Increment
TBj ¥ None
UXi Shift Boolean
WE Branch None
WL T None
WXj 015 jk T None
XJ 01300 None None
XJ 013jk Branch T
ZR Branch None
ZX1 Shift Normalize
Tinstruction not supported for this model.

The location field of a symbolic machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter after the force upper (if any) occurs.

The operation field of a symbolic CPU machine instruction contains a mnemonic operator, the last two
characters of which are often a register designator.

The variable field contains one, two, or three subfields. For 15-bit instructions, subfields take the forms:

r
-r r is a register designator
r,r
ropr . - =
ropr } op is a register operator + /
jk jk is an absolute expression specifying a shift count or mask bit count. If the

expression value is in the range -60 to -0, inclusive, COMPASS adds 60 to it. If
it is less than -60 or greater than 63, COMPASS sets a warning flag and uses the
low-order 6 bits of the expression value.

60492600 H 8-11

For a 30-bit instruetion, subfields take the forms:

K The single subfield contains an absolute, relocatable, or external expression
that does not include a register.

ropK The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

-y

r,K One subfield contains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator.

r,r,K Two subfields contain register designators; a third contains an absolute,
relocatable, or external expression that does not include a register.

In the formats and examples, K reduces to an 18-bit value that represents one of the following in pass two:
An absolute address or a word count
An external symbol + an integer value
An address that is relocatable relative to the program origin or common block origin.
An address of a literal

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the
instruetion.

In the descriptions of the formats, + K designates that the evaluation of all nonregister elements can result
in a positive or negative value for the expression (see Evaluation of Expressions in chapter 2). Use of + K
to represent the integer portion of the expression does not imply that the first term operator in the
expression is an expression operator. If you consider that a and b are terms in expression K, then +K
indicates that the sum of the values of a and b is positive and -K indicates that the sum of the values is
negative. Thus, -K does not mean that a-b would become -a+b.

In the following example, the symbol XRAY has the value 407g. The first term operator (-) forms the
value 777370g. Subtracting 1 from this results in 777367g or a -K (-410g).

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
! n 8 [30
7212777367 SX1 X2-XRAY-1 i

Unless otherwise noted, subfields can be in any order. COMPASS also allows an added degree of flexibility
by allowing the variable subfields of an instruction to be written in the operation field with each subfield
preceded by a comma. For example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1] 18 I 30
26123 UX1 B2,X3 i

8-12 60492600 H

can be written

Code Generated

26123

0423010641
0423010641

0423010641
0423010641

LOCATION

OPERATION

VARIABLE

COMMENTS

[}l 18

|30

T

The instructions are identical to the assembler.

UX1,B2 /X3

t
i

Similarly, the following instructions are regarded as identical. Use of this feature is optional.

LOCATION

CPERATION

VARIABLE

COMMENTS

n 18

T30

EQ B2,B3,K

EQ,B2 |B3,K
EQ,B2,B3 K
EQ,B2,B3,K

=2
f
|
[
|
!
|
|
|
|

8.4.1 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION

The CEJ/MEJ Panel Switch determines whether this instruction causes the central processor unit to halt or
to execute an exchange jump. The DISABLE position disables the central exchange jump or the monitor
exchange jump. In this case, the instruction is illegal for a CYBER 170 Model 175. For all other systems,
PS halts the central processor unit at the current step in the program. An exchange jump is necessary to
restart the central processor unit. The ENABLE position enables the jump capabilities for all systems. In
this case, PS causes an exchange jump to monitor address (MA) in the exchange package. For the CYBER
180 Computer Systems and the CYBER 170 Models 176, 815, 825, 835, 845, and 855, exchange jumps are
always enabled. For 6000 series systems, the CRJ/MEJ switch is ignored; PS always causes the central
processor unit to halt. The job continues to hold a control point until the time limit is satisfied; at that
time the job aborts.

The contents of the location field become a sub-subtitie on the assembler listing. The assembler forces

upper before and after assembling a PS instruction.

Format:
Operation Variable | Description Size Octal Code
PS Program stop or exchange jump to (MA) 30 hits 00000 00000
PS K Program stop or exchange jump to (MA) 30 bits 0000K
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 il 18 I30
T —_—
0000000000 PS |
60492600 L 8-13

8.4.2 ERROR EXIT INSTRUCTION

ES execution is treated as an error condition and the machine sets the program range condition flag in the
~ PSD register. The condition flag then generates an error exit request which causes an exchange jump to

address (EEA). All instruetions issued prior to this instruction are run to completion. Any instruction
following this instruction in the current instruction word is not executed. When all operands have arrived
at the operating registers as a result of previously issued instruetions, an exchange jump occurs to the
exchange package designated by (EEA).

The i, j, and k designators, which are ignored by the computation section, are set to zero by the assembler.
The program address stored in the exchange package on the terminating exchange jump is advanced one
count from the address of the current instruction word (P=P+1). This is true regardless of which parcel of
the current instruction word contains the error exit instruction.

The error exit instruection is not intended for use in user program code. The program range condition flag is
set in the PSD register to indicate that the program has jumped to an area of the SCM field which may be
in range but is not valid program code. This should occur when an incorrectly coded program jumps into an
unused area of the SCM field or into a data field. The program range condition flag is also set on the
condition of a jump to address zero. These conditions can be determined on the basis of the register
contents in the exchange package. The existence of an error exit condition resulting from execution of this
instruction can thus be deduced.

The location field of an ES instruction becomes a sub-subtitle on the assembler listing.

A force upper occurs after the ES instruction.

Format:
lOperation Variable Description Size Octal Code
ES Error exit to EEA 15 hits 00000
ES K Error exit to EEA 15 bits 00000
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) " 18 [30
00000 €< |

8.4.3 RETURN JUMP INSTRUCTION

When this instruction is executed, an unconditional jump to the current address plus one (P)+1 is stored in
the upper half of relative address K in SCM and control then transfers to K+1 for the next instruction. The
lower half of the stored word is all zeros. The instruction always branches out of the instruction stack and
voids all instruetions currently in the instruction stack.

After the instruetion is executed the octal word at K is:

Address K |0 400 P+ 1 T 0000000000 |
59 29 50
Bi=B]

8-14 60492600 H

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the foliowing instruction word. Instructions appearing after the return jump
instruetion in the current instruction are not execiited. The called subroiitine must exit at address K in
(SCM). A jump to address K of the branch routine returns the program to the original sequence. The

assembler sets the unused j designator to zero.

in A1
o

¥i

A forece upper occurs after the instruetion is assembled.

Format:
Operation Variable Description Size Octal Code
RJ K Return jump to K 30 bits 0100K
Example:
C()de Generated LOCATION QPERATION | VARIABLE COMMENTS
1 n 18 T30
0100002374 + RJ HELP |

8.4.4 ECS/UEM INSTRUCTIONS

These instruections initiate either a read or write operation to transfer (Bj)+K 60-bit words between
extended memory (ECS or UEM) and central memory (CM). The initial extended memory address is
(XO)}+RAg; the initial CM address is (AO+RA(.

NOTE

For the CYBER 180 Computer Systems and the CYBER 170 Models 815, 825, 835,
845, and 855, these instructions are UEM block copy instructions. For the CYBER
170 Models 865 and 875, the selection of the ECS or UEM depends on the state of
the UEM enable flag. This flag is one bit in the 6-bit flag register in the exchange
sequence. If the enable flag is set, transfer is between UEM and CM; if the enable
flag is clear, transfer is between ECS and CM.

The assembler forces upper before assembling an RE or WE instruetion.

If no error occurs, the next instruction executed is the first instruetion in the current address plus one

(PH1.

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word containing the
RE or WE instructions. These 30 bits should always hold a jump to an error routine. The conditions are:

Parity errors when reading ECS. If a parity error is detected, the entire block of data is transferred
before the exit is taken.

The ECS bank from/to which data is to be transferred is not available because the bank is in
maintenance mode, or the bank has lost power. If either of these conditions exists on an attempted
read or write, an immediate error exit is taken.

An attempt to reference a nonexistent address. On an attempted write operation, no data transfer
ocecurs and an immediate error exit is taken. If the attempted operation is a read, and addresses are in
range, zeros are transferred to central memory. This is a eonvenient high-speed method of clearing
blocks of central memory.

60492600 L 8-15

On a CYBER 170 Model 176, action in the case of error depends on the operating system being run. Under
SCOPE 2, error processing is just as for the RL and WL instructions (see LCM Block Copy Instructions).
Under NOS, an error causes the job to abort. Under NOS/BE, an error exit to the lower 30 bits of the
instruction word takes place. This action is provided by the operating system, not by the hardware.

For additional information about ECS instruetions, refer to the 7030 Extended Core Storage Reference
Manual.

Format:
Operation Variable Description Size Octal Code
RE Bj Read extended memory 30 bits 01150 00000
RE K Read extended memory 30 bits 0110K
RE Bj*+K Read extended memory 30 bits 011jK
WE Bj Write extended memory 30 bits 012j0 00000
WE K Write extended memory 30 bits 0120K
WE Bj+K Write extended memory 30 bits 012jK
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
-] n 18 [30
0110002000 RE 20008 !
0117001000 RE B7+1000B :
0125001000 WE 1000B+B5 |

8.4.5 LCM BLOCK COPY INSTRUCTIONS

Block copy instructions move quantities of data between LCM and SCM as quickly as possible. All activity
in the CPU other than I/O word requests is stopped during a block copy operation. All instructions issued
prior to a bloek copy instruction are executed to completion and no further instruetions issue until the
block copy is nearly completed. As a result of these restrictions the data flow between LCM and SCM can
proceed at the rate of one 60-bit word each clock period. When an I/O multiplexer word request for SCM
oceurs during this transfer, the data flow is interrupted for one clock period. The I/O word address is
inserted in the stream of addresses to the SAS, and the addresses for the block copy are resumed with a
minimum of a one clock period delay. An additional delay will occur if the 1/O reference causes a bank
confliet in SCM.

The length of the block is determined by adding the quantity K to the contents of register Bj. Either
quantity may be used as an increment or decrement. The result is an 18-bit integer which is trunecated to a
10-bit quantity. Thus, a maximum block size is 1777g. (For example, if the result of the add is

003000g, the instruction transfers 1000g words.) No error indications are given when this occurs unless

the field length is exceeded causing a block range error. If the block length is zero, the instruction
becomes a do-nothing instruction; the condition is not error flagged.

Relative source or destination addresses begin at (A0) in the SCM and at the relative LCM address

determined from the lowest order 19 bits of (X0). If (X0) is negative, the 19 bits are treated as a positive
integer. If the sum of (X0;g_pg) and the block count exceeds the (FLL), the copy is not executed and the

8-16 60492600 H

LCM block range condition flag is set in the PSD register. Similarly, if the sum of (A0} and the block
exceeds (FLS), the copy is not executed and the SCM block range condition flag is set in the PSD register.

Under SCOPE 2, COMPASS will truncate a bloek copy instruction if it begins in the last parcel and its
K field is zero. Under such conditions, a block copy is a 15-bit instruetion.

Under NOS and NOS/BE, COMPASS forees upper after assembling an RL or WL instruction.

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the
PSD register but does not interrupt the block copy instruction. No further instructions are issued during
block transfer of data. Instructions already issued are completed; all other activity, with the exeeption of
I/0 word requests, stops.

On a CYBER 170 Model 176, if no error takes place, the next instruction executed is the first instruction
in the current address plus one (P)+1 . Aection in the case of error depends on the operating system being
run. Under SCOPE 2, error processing is just as for any program running on the CYBER 70 Model 76, as
described in the SCOPE 2 Reference Manual listed in the preface. Under NOS, an error causes the job to
abort. Under NOS/BE, an error exit to the lower 30 bits of the instruction word takes place. This action is
provided by the operating system, not by the hardware.

Format:
Operation Variable Description Size Octal Code
RL 1 Bj Block copy (Bj) words from LCM to SCM 30 bits 011j0 00000
RL 'K Block copy (K) words from LCM to SCM 30 hits 0110K
{
RL . Bj+K Block copy (Bj) + K words from LCM to
; SCM 30 hits 011jK
WL ;K Block copy (K) words from SCM to LCM 30 hits 0120K
|
WL ;Bj Block copy (Bj) words from SCM to LCM 30 hits 012j0 00000
WL | Bj+K Block copy (Bj) + K words from SCM to
i LCM : 30 bits 012jK
Example:
Code Generated LOCATION OPERATION.| VARIABLE COMMENTS
) n 18 T30
0115001000 'RL 1000B+B5 |
0110002000 3 IRL 12000B :
| ! !
0124777677 | WL B4-100B |

8.4.6 EXCHANGE JUMP INSTRUCTION

This'instructio.n unconditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit. Instruction action differs, however, depending on whether the monitor flag bit is set or
clear.

This instructior.l is not legal for CYBER 170 Models 175, 740, 750, and 760 if the MEJ/CEJ switch is in the
DISABLE position or if the instruction does not reside in parcel 0 of the instruction word.

60492600 H 8-17

Operation is as follows:

Monitor flag bit clear: The starting address for the exchange is taken from the 18-bit Monitor Address
register. This starting address is an absolute address. During the exchange, the monitor flag bit is set.

Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding K to
the eontents of register Bj. This starting address is an absolute address. During the exchange, the
monitor flag bit is cleared.

For additional information, refer to the appropriate hardware reference manual.

The assembler foreces upper before and after assembling an XJ instruction.

Format:
Operation Variable Description Size Octal Code
XJ Exchange jump to MA if in program mode 30 bits 01300 00000
XJ Bj Exchange jump to (Bj); flag set 30 bits 013j0 00000
XJ K Exchange jump to K; flag set 30 bits 0130K
XdJ BjtK Exchange jump to (Bj) + K; flag set 30 bits 013jK
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1] 18 |30
0130000000 XJ Ir
0130001000 XJ 1000B l
I
0135000600 XJ B5+600B |

8.4.7 EXCHANGE EXIT INSTRUCTION

This instruection is used for calling a system monitor program for input/output, monitor calls, ete. and has
priority over all other types of exchange jump requests. If an I/O interrupt request or an error exit request
occurred prior to execution of this instruction, it is denied and the exchange jump specified by the MJ is
executed. The rejected interrupt request is not lost, however. The conditions that caused it are reinstated
when the exchange package enters its next execution interval.

The normal termination for an exchange package execution interval is through execution of an exchange
instruction (MJ). The MJ instruction voids the instruction word stack. Any instructions remaining in the
stack are not executed. The exit mode flag in the PSD register determines the source of the exchange
package as follows:

Exit mode flag set: When the exit mode flag is set, the MJ instruction causes the current program
sequence to terminate with an exchange jump to a relative address in the SCM field for the current
program. The exchange package is located at relative address (Bj) + K. An overflow of the lowest
order 16 bits of this result causes an error condition that is not sensed in the hardware. Should a
program erroneously execute an exchange exit instruction with an overflow condition, the exchange
jump sequence begins at the absolute SCM address corresponding to the lowest order 16 bits of this
sum. This 30-bit form of MJ is privileged to a monitor program.

8-18 60492600 H

Exit mode flag not set: When the exit mode flag is not set, the object program terminates the
execution interval with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the
absolute address of the exchange package. This is an absolute address in SCM and is generally not in
the SCM field for the current program. This form of the MJ instruction has a blank variable field; the
assembler sets the j and k designators to zero.

The system makes no protective tests on the exchange jump address.

All operating register values, program addresses, and mode selections are preserved in the exchange
package for the object program so that the object program can be continued at a later time. The program
address in the objeet program exchange package is advanced one count from the address of the instruetion
word containing the exchange exit instruetion. The monitor program normally resumes the object program
at this address.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than 16 bits
of significance, the upper bits are discarded and the lower 16 bits are used as the absolute address in SCM
for the exchange jump. A force upper occurs after the instruection is assembled.

Format:
Operation Variable Description Size Octal Code
MJ Exchange exit to NEA if exit flag clear 15 hits 01300
MJ Bj Exchange exit to (Bj) if exit flag set 30 hits 013j0 00000
MJ Bj+K Exchange exit to (Bj) + K if exit flag set 30 bits 013jK
MJ K Exchange exit to K if exit flag set 30 bits 0130K
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 8 [30
01300 MJ |
|
0134000500 MJ B4+500B :
01367TT4TT MJ -300B+B6 |
|
0130000600 ' MJ '600B

8.4.8 DIRECT LCM TRANSFER INSTRUCTIONS

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register or
writes one 60-bit word directly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on whether the requested
word already resides in one of the bank operand registers. A read LCM instruction for a word not currently
residing in a bank operand register will require 17 clock periods for delivering a field of eight 60-bit words
to the designated X register. A read LCM instruction for a word already residing in an LCM bank operand
register as a result of a previous instruction will require three clock periods to deliver the requested word
to the designated X register. Thus, although the first 60-bit word will require 17 clock periods, the second
through eighth words in the same LCM word require three clock periods each. This means that consecutive
LCM operands are available, on an average, every five clock periods as opposed to SCM operands at eight
clock periods.

60492600 H 8-19

The LCM address is determined from the low order 19 bits of Xk. Even if (Xk) is negative, the 19 bits are
treated as a positive integer. If the address exceeds the field length (FLL), the word transfer does not take
place and the LCM direct range condition flag is set in the PSD register. Xj is either the source or
destination register.

Instructions are buffered to the extent that each issues in one minor eycle unless a previous LCM reference
is in process. When an RX instruction issues, the LCM busy flag is set and remains set until the requested

word is delivered.

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand
register, it is held in the LCM write register until the bank operand register is free.

Format:
Operation Variable Description Size Octal Code
RXj Xk Read LCNM at (Xk) and set Xj 15 bits 014jk
WXj Xk Write (Xj) into LCM at (Xk) 15 bits 015jk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
01465 RX6 X5 }
01570 WX7 X0 |

8.4.9 DIRECT UEM TRANSFER INSTRUCTIONS

A single word transfer either reads one 60-bit word from UEM and enters that word into the specified X

register, or writes one word into UEM from the specified X register.

Format:
Operation V ariable Description Size Octal Code
RXj Xk Read UEM at (Xk) + RAg to Xj 15 bits 014jk
WXj Xk Write (Xj) to UEM at (Xk) + RAg 15 bits 015jk
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated ; n " 30
01412 RX1 X2
01512 wX1 X2

60492600 H

8.4.10 RESET iNPUT CHANNEL BUFFER INSTRUCTION

This instruction initiates a new record transmission from a PPU to SCM. This instruction prepares the
input channel (Bk) buffer for a new record transmission from a PPU to SCM. The instruction clears the
input channel buffer address and resets the input channel assembly counter to the first 12-bit position in
the SCM word.

This instruction is intended to be privileged to an input routine, that is, one that terminates a record of
incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruection to
prepare the buffer for the next incoming record. This instruetion is effective only if the monitor mode flag
is set in the program status register. If the monitor mode flag is cieared, this instruction becomes a pass
instruction. When this instruction issues, it will execute the required channel functions without regard to
the current status or activity at the input channel buffer.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If higher
order bits are set in (Bk) the lowest order four bits are masked out and used to determine the channel
number. If (BKk) is zero, this instruction becomes a pass instruction.

Two or more consecutive RI instructions referring to different channels will issue in consecutive clock
periods with no interference resulting in the multiplexer. If two consecutive instruections refer to the same
channel, they repeatedly perform the same function but do not cause interference in the multiplexer.

Format:
Operation Variable Description Size Octal Code
RI Bk Reset input channel (Bk) buffer 15 hits 0160k
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 130
T
01607 RI B7 i

8.4.11 SET REAL-TIME CLOCK INSTRUCTION

This instruetion reads the contents of the CPU clock period counter (real-time cloek) and places them

m B1 The 18-bit clock counter advances one count in iwo's complement mode for each clock period. The
7 bit is the overflow bit. The CPU is interrupted when the overflow bit is set. When the interrupt is

handled the bit is cleared. It permits measurement of CPU execution.

Format:

Operation Variable Description Size Octal Code
TBj Set Bj to current clock time 15 bits 016Gj0

TBj K Set Bj to current clock time; K is ignored. 15 bits 01Gj0

60492600 H 8-21

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) n 18 [30

I
T

01670 TBT]

8.4.12 RESET OUTPUT CHANNEL BUFFER INSTRUCTION

This instruetion initiates a new record transmission from SCM to PPU. It clears the output channel (Bk)
pbuffer address and disassembly counter, transmits a record pulse over the output channel data path to the
PPU, and initiates an SCM reference for the first word to be transmitted.

This instruetion is intended for execution in an output routine to initiate a new record transmission over an
output channel data path. The output channel buffer is normally inactive when this instruction is
executed. The output channel buffer is loaded with the data for the next record, and this instruction is
executed to initiate the transmission. The record pulse is transmitted along with the word pulse as soon as
the first word of data from the SCM is entered in the output channel disassembly register.

This instruetion is effective only if the monitor mode flag is set in the program status register. If the
monitor mode flag is cleared, this instruction beecomes a pass instruction. When this instruction issues, it
will execute the required channel functions without regard to the current status or activity at the output
channel.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If higher
order bits are set in (Bk), the lowest order four bits are masked out and used to determine the channel
number. If (BK) is zero, this instruction becomes a pass instruction.

Normally, the output channel buffer is inactive when this instruction is executed, the program having
checked for completion of the previous record before issuing an RO. The program can detect the end of
record in two ways. First, it can compare the output channel buffer address with a known record length.
The alternative is to obtain a response from the peripheral unit over the corresponding input channel data
path. If data is moving over the output channel data path when an RO is issued, the RO instruction takes
priority, with a resulting loss of data in the previous record. Two or more consecutive RO instructions
referring to different channels will issue in consecutive clock periods with no interference resulting in the
multiplexer. If two consecutive instructions refer to the same channel, they transmit a record pulse over
the output path and restart the buffer repeatedly. A data word may or may not be transmitted depending
on the timing of the instructions and confliets that occur.

Format:
Operation Variable Description Size Octal Code
RO Bk Reset output channel (Bk) buffer 15 bits 0170k
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
- 1 n 18 I30
01705 RO BS i

8.4.13 READ CHANNEL STATUS INSTRUCTIONS

These instructions copy the contents of the input or output channel buffer address register indicated by
masking the low order 4 bits of Bk and enter the value in Bj. The instructions are used for monitoring the
progress of an input channel buffer or an output channel buffer.

8-22 60492600 H

A channel buffer area is divided into fields by the threshold testing mechanism. The first half of the buffer
area constitutes one field and the last half of the buffer area the other field. An I/C multiplexer interrupt

request is generated by the threshold testing mechanism whenever the channel buffer address is advanced

across a field boundary. This oceurs at the center of the buffer area and at the end of the buffer area.

The IBj instruction is the only vehicle for a program to determine whether an I/0 multiplexer interrupt

request was generated by a buffer threshold test or by a record flag. The program must retain the input
channel buffer address from one interrupt period to the next. If the buffer address is in the same field as

for the previous interrupt, the interrupt request was from a record flag. If the buffer address is in the
opposite field from the previous interrupt, the interrupt request was from a threshoid test.

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored. If
higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) = 0, the IBj instruction reads the contents of the CPU cloek period counter.
However, the OBj instruction places all zeros into Bj.

Two or more IBj instruetions or OBj instructions may occur in consecutive program instruction locations
referencing the same or different channels. These instructions may issue in consecutive clock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multiplexer
in these situations.

If correct results are to be obtained, an IBj instruction must not immediately follow an RI instruction nor
may an OBj instruction immediately follow an RO instruction. A delay of one clock period is sufficient.

Format:
Operation Variable Description - Size Octal Code
IBj Bk Bj =—Read input channel (Bk) status 15 bits 016jk
OBj Bk Bj «— Read output channel (Bk) status 15 hits 017jk
Example:
Code Generated LOCATION OFERATION | VARIABLE COMMENTS
1 I 18 [30
01664 IB6 BY ;
: i
01756 loss Igs !

8.4.14 UNCONDITIONAL JUMP INSTRUCTION

This instruction adds the contents of index register Bi to K and branches to the relative CM (SCM) address
specified by the sum. The remaining instructions, if any, in the current instruction word are not executed.
The branch address is K when i is zero.

Addition is performed in an 18-bit one's complement mode. On the CYBER 180 Series, the CYBER 170
Series (except Model 176), the CYBER 70 Models 71, 72, 73, and 74, and 6000 Series systems, this
instruction voids the stack. On the CYBER 70 Model 76, the 7600, and the CYBER 170 Model 176, the
instruetion word stack is not altered by execution of this instruction. The instruction is intended to allow
computed branch point destinations. It is the only CPU instruetion in which a computed parameter can
specify a program branch destination address. All other jump instructions have preassigned destination
addresses at execution time.

The assembler sets the unused j designator to the same value as the i designator. A foree upper occurs
after the instruction is assembled.

60492600 L 8-23

Format:

Operation Variable Description Size Octal Code
JP Bi+K Jump to (Bi)+K 30 bits 02iiK
JP Bi Jump to (Bi) 30 hits 02ii0 00000
JP K Jump to K ’ 30 hits 0200K
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 1] 18 |30
0255002373 + JP B5+GOTO ;
I
0277000000 JP B7 |

8.4.15 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

Thes

e instructions cause the program sequence to branch to K or to continue with the current program

sequence depending on the contents of operand register Xj. The decision is not made until the Xj register
is free. These instructions do not void the stack.

The following rules apply to tests made in this instruction group:

8-24

The ZR and NZ operations test the full 60-bit word in Xj. The words 00..... 00 and 77..... 77g are
treated as zero. All other words are non-zero. Thus, these instructions are not a valid test for
floating point zero coefficients. However, they can be used for underflow of floating point quantities.

The PL and NG operations examine on? the sign bit (bit 59) of Xj. If the sign bit is zero, the word is
positive; if the sign bit is one, the word is negative. Thus, the sign test is valid for fixed point words

or for coefficients in floating point words.

The IR and OR operations examine the upper-order 12 bits of Xj.

On the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600, the following octal quantities
are detected as being out of range:

3777x.....x (positive overflow)
4000x.....Xx (negative overflow)
1777%..... x (positive indefinite)
6000x.....x (negative indefinite)

All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.

On CYBER 70 Models 71, 72, 73, and 74; CYBER 180 Series; CYBER 170 Series (except Model 176);
and 6000 Series computer systems, the octal quantities 3777x.. .x and 4000x . . .x are out of range; all
other words are in range.

The DF and ID operations examine the upper-order 12 bits of Xj. Both positive and negative indefinite
forms are detected:

1777x.....x and 6000x.....x are indefinite.

All other words are definite. The value of the coefficient is ignored in making this test.

60492600 L

An error exit oecurs on 6000 Series; CYBER 180 Series; CYBER 170 Series; and CYBER 70 Models 71,
72, 73 and 74 systems when an indefinite or out of range value is used as an operand of an arithmetic
instruction. Siich error €xits can be avoided by using DF, ID, IR, or OR instructions to test for such

values before using them as operands.

On a 7600 or CYBER 70 Model 76 system, an error exit oceurs as soon as an indefinite or out of range
value is produced as the result of an arithmetic instruction. The DF, ID, IR and OR instructions are
useful only when a MODE control statement is used to suppress such error exits.

Format:
Operation ! Variable Description Size Octal Code
ZR Xj,K Branch to K if (Xj) = 0 30 bits 030jK
NZ Xj,K Branch to K if (Xj) # 0 30 bits | 031jK
PL Xj, K Branch to K if (Xj) sign is plus 30 bhits 032jK ‘
NG Xj, K Branch to K if (Xjj sign is minus | 30bits 033K 3
MI Xj, K Branch to K if (Xj) sign is minus 30 bits ; 033jK
IR Xj, K Branch to K if (Xj) in range 30 hits 034jK
OR Xj, K | Branch to K if (X}) out of range 30 bits | 035jK |
DF - Xj,K | Branch to K if (Xj) definite 30 bits | 036jK |
D | %3,K | Branch to K if (Xj) indefinite 30 bits i 037jK
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30
0305002363 + ZR X5,ZERO :
0313002364 + NZ X3,NONZERO |
0324002365 + i PL X4,PLUS }
0331002366 + | NG X1,NEG j
0331002366 + | MI |X1,NEG i
0340002367 + \ IR X0, INRANGE E
0351002370 + x OR |X1,0UTRNGE '
0365002371 + X DF X5,DEFINT
0377002372 + i ID X7,INDEFNT

60492600 L 8-25

8.4.16 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS
The following rules apply in the tests made by these instruetions:
Positive zero is recognized as unequal to negative zero.
Positive zero is recognized as greater than negative zero.

A positive number is recognized as greater than a negative number.

The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in a
19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous results
caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the (Bi). The

branch decision is based on the sign bit in the 19-bit result.

For these instructions, Bi and Bj must be specified in the order indicated below.

These instruetions do not void the instruction stack.

Format:

Operation Variable Description Size Octal Code
ZR K Branch to K 30 bits 0400K
ZR Bi,K Branch to K if (Bi) = 0 30 bits 04iOK
EQ K Branch to K 30 bits 0400K
EQ Bi,K Branch to K if (Bi) = 0 30 bits 04i0K
EQ Bi, Bj,K Branch to K if (Bi) = (Bj) 30 bits 04ijK
NE Bi,K Branch to K if (Bi) # 0 30 bits 05i0K
NE Bi, Bj, K Branch to K if (Bi) # (Bj) 30 bits 05ijK
NZ Bi,K Branch to K if (Bi) # 0 30 bits 05i0K
PL Bi,K Branch to K if (Bi) > 0 30 bits 06i0K
GE Bi,K Branch to K if (Bi) > 0 30 bits 060K
GE Bi, Bj, K Branch to K if (Bi) > (Bj) 30 bits 06ijK
LE Bj, Bi, K Branch to K if (Bj) < (Bi) 30 bits 06ijK
LE Bj,K Branch to K if (Bj) < 0 30 bits 060jK
NG Bi, K Branch to K if (Bi)< 0 30 bits 07i0K
MI Bi,K Branch to K if (Bi)< 0 30 bits 07i0K
GT . Bj, Bi, K Branch to K if (Bj) > (Bi) 30 bits 07ijK
GT - Bj,K Branch to K if (Bj) >0 30 bits 070jK
LT Bi,K Branch to K if (Bi) <0 30 bits 07i0K
LT Bi, Bj,K Branch to K if (Bi) < (Bj) 30 bits 07ijK
8-26 60492600 H

Example:

Code Generated

0450005221
0405005222
0453005223
0400005223
0515005224
0560005225
0620005226
0645005227
0650005230
0676005231
0770005232
0730005233
0767005234
0705005235
0712005236

LOCATION OPERATICN

VARIABLE

COMMENTS

18

LE

NG

GT

| GT

i | LT

8.4.17 TRANSMIT INSTRUCTION

This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a ecopy
instruetion intended for moving data from X register to X register as quickly as possible. No logical
funetion oceurs. The assembler sets the k designator to the value specified for j.

B5,BZERO
B5,B3, JUMP

JUMP

B6,BNOTZR
B2,BPLUS
B4 ,B5,GEQ
B5,GEBO

B7,BNEG
B3,B3LTO
B7,B6,B7GT

B5,B5GTO

B1,B2,BLTB

BO,B5,EQUAL

B1,B5,NOTEQ

B6,BT,LTHAN

[30
1
|
|
|
.
[
|
i
|
|
!
!
|
]
1
i
1
|
]
I
i
I
|
1]
|
1
i
|
]
|
|
|

Format:

Operation Variable Description Size Octal Code
BXi Xj Transmit (Xj) to Xi 15 bits 10ijj
Example:

Code Generated

10622

60492600 H

LOCATION

OPERATION

VARIABLE

COMMENTS

]

18

[0

T

BX6

X2

T
'

8-27

8.4.18 LOGICAL PRODUCT INSTRUCTION

This instruetion forms the logical product (AND function) of 60-bit words from operand registers Xj and Xk
and places the product in operand register Xi. Bits of register Xi are set to 1 when the corresponding bits
of the Xj and Xk registers are 1 as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) =0100

This instruetion is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, the instruction becomes a transmit instruetion.

Format:
Operation Variable Description Size Octal Code
BXi Xj*Xk Logical product of (Xj) and (Xk) to Xi 15 bits 11ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [0
11553 BX5 X5%X3 i

8.4.19 LOGICAL SUM INSTRUCTION

This instruetion forms the logical sum (inclusive OR) of 60-bit words from operand registers Xj and Xk and
places the sum in operand register Xi. A bit of register Xi is set to 1 if the corresponding bit of the Xj or
Xk register is a 1, as in the following example:

(Xj) =o0101
(Xk) =1100
(Xi) =1101

This instruetion is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the instruction degenerates into a transmit
instruetion.

Format:

Operation Variable Description Size Octal Code
BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bits 12ijk
Example:

Code Generated

12767

8-28

LOCATION

OPERATION

VARIABLE

COMMENTS

18

T30

T
T

BX7

X6+X7

60492600 H

8.4.20 LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the mgieai gifference {exclusive OR) of 60-bit words {i Lror operand registers Xj and
Xk and places the difference in operand reglster Xi. A bit in register Xi is set to 1 if the corresponding
bits in the Xj and Xk registers are unlike, as in the following example:

(Xj) =o101
(Xk) =1100
(Xi) =7001

This instruetion is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, the result will be a word of all zeros written
into register Xi.

Format:
Operation Variable Description Size Octal Code
BXi Xj-Xk Logical difference of (Xj) and (Xk) to Xi 15 bits 13ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
i n 18 [30
13601 BX6 X0-X1 I

8.4.21 COMPLEMENT INSTRUCTION

This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or
floating point quantity as quickly as possible.

The assembler sets the unused j designator of the instruetion to k.

Format:
Operation Variable Description Size Octal Code
BXi -Xk Transmit complement of (Xk) to Xi 15 bits 14ikk
Example:
Code Generated LOCATION OPERATION { VARIABLE COMMENTS
1 N 18 [30
14311 BX3 = [-x1 i

60492600 H ’ 8-29

8.4.22 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical product (AND function) of the 60-bit quantity from operand register X
and the complement of the 60-bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the
complement of the Xk register are 1, as in the following example:

(Xj) =o0101
Complemented (Xk) = 0011
(Xi) =0001

This instruetion is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, a logical product is formed between two complementary quantities. The
result will be a word of all zeros.

Format:
Operation Variable Description Size Octal Code
BXi -Xk *Xj Logical product of (Xj) and complement
of (XKk) to Xi 15 bits 15ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) n 18 [30
15432 BX4 -X2%X3 i

8.4.23 COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand register Xj and
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the corresponding bit of the
Xk register is a 0, as in the following example:

(Xj) =o0101
(Xk) =1100
(Xi) =0111

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the result is a word of all ones.

Format:
Operation Variable Description Size Octal Code
BXi -Xk+Xj Logical sum of (Xj) and complement of
(XK) to Xi 15 bits 16ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 30
16654 BX6 |-X4+X5 ?

8-30 60492600 H

8.4.24 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

naa {avalucive NR) r\f the quantitv from onerand recister Xi and

mL 2 e Panmao th 1 re
1 i {(-¥ 3 uu.;cl LT \CAVIUOLTU Wi/ wi N N ivivgy hd a2 P vl Ly [

his instruction forms the logic
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
1if t

Thus, bits of Xi are set to the corresponding bits of Xj and register Xk are alike, as in the following

example:
(Xj) =o0101
(Xk) =1100

{Xij =011

<D

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, a logical difference is formed between two
complementary quantities. The result is a word of all ones.

Format:
Operation Variable Description Size Octal Code
BXi -Xk-Xj Logical difference of (Xj) and compiement
of (Xk) to Xi 15 bits 17iik
i

Example:

COdE Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 T30
T
17731 BXT7 -X1-X3 ‘

8.4.25 LOGICAL LEFT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi left circular jk places if expression jk is
positive or left circular 60+jk places if jk is negative. Bits shifted off the left end of operand register Xi
replace those shifted from the right end.

The 6-bit shift count jk allows a complete eircular shift of (Xi).

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6 bits of
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields.
Thus, a negative value effectively designates a logical right shift. A positive value designates a left shift.

If the negative shift count is less than -60, the assembler generates a type 7 error.

Format:
Operation Variable Description Size Octal Code
LXi ik Logical shift (Xi) by + jk places 15 bits 20ijk

60492600 H 8-31

Example:

Code Generated

20325
20362

8.4.26 ARITHMETIC RIGHT SHIFT jk PLACES INSTRUCTION

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
LX3 25B |
|
LX3 -12B]
I

This instruetion shifts the 60-bit word in operand register Xi right jk places if expression jk is positive and
right 60+jk places if expression jk is negative. The rightmost bits of Xi are discarded and the sign bit is

extended.

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit. If the
operand is positive, a positive zero results. If the operand is negative, a negative zero results.

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6 bits of
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields.
Thus, a negative value effectively designates the number of high order bits of the operand that are to be
retained. If the negative shift count is less than -60, a type 7 error is generated.

Format:
Operation Variable Description Size Octal Code
AXi jk Arithmetic shift (Xi) by + jk places 15 bits 21ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [0
21537 AXS 37B i

8.4.27 LOGICAL LEFT SHIFT (Bj) PLACES INSTRUCTION

This instruetion shif ts the 60-bit quantity from operand register Xk the number of places specified by the
quantity in index register Bj and places the result in operand register Xi. The direction of the shift
operation is determined by the sign of Bj, as follows:

If (Bj) is positive (that is, bit 17 of Bj=0), the quantity from Xk is shif ted left circular. The low order 6

bits of (Bj) specify the shift count. The higher order bits are ignored.

If (Bj) is negative (that is, bit 17 of Bj=1), the quantity from Xk is shif ted right (end off with sign
extension). For the CYBER 180 Series; the CYBER 170 Series (except Model 176); the CYBER 70
Series Models 71, 72, 73, and 74; and the 6000 Series, the one's complement of the low order 11 bits of
(Bj) specify the shift count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal),
the result stored in the Xi register consists of 60 copies of the operand sign bit. If the shift count is 64
(decimal) ar greater, the result register Xi is cleared to 60 zeros. For the CYBER 170 Model 178,
CYBER 70 Model 76 and the 7600, the one's complement of the low order 12 bits of (Bj) specifies the
shift count. The higher order bits are ignored. If the shift count is 59 (decimal) or greater, the result

stored in the Xi register consists of 60 copies of the operand sign bit.

8-32

60492600 L

If -Bj is specified, the assembler converts the instruction to an arithmetic right shift. The (Bj) might be
the result of an unpack instruetion, in which ease it is the unbiased exponent and (Xi) is the coefficient.

instruction is used for shifting a coefficient from a floating point number to the integer position after

an unpack operation.

Format:
i o B I '
i Operation Variable Description i Size | Octal Code
LXi Xk, Bj Logically shift {Xk) by {Bj) places to Xi 15 bits | 22ijk !
| LXi Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 bits = 22ijk
LXi Xk | Transmit (Xk) to Xi 15bits | 22i0k
LXi Bj | Logically shift (Xi) by (Bj) places to Xi ' 15 bits E 221ji
|LXi -Bj,Xk Arithmetic right shift (Xk) by (Bj) i
‘ ~ places to Xi 15 bits 23ijk
|Lxi Xk,~Bj | Arithmetic right shift (Xk) by (Bj) |
f ' places to Xi 15 bits } 23ijk
| LXi -Bj | Arithmetic right shift (Xi) by (Bj) \
! | places to Xi | 15 bits 23iji
L i i | L
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS T
1 h 18 m
22675 LX6 X5,B7 i
|
22534 LX5 B3, X4 |
!
22302 LX3 X2 |

8.4.28 ARITHMETIC RIGHT SHIFT (Bj) PLACES INSTRUCTION

This

instruction shifts the 60-bit quantity from operand register Xk the number of places specified by the

quantity in index register Bj and places the result in operand register Xi. The direction of the shift
operation is determined by the sign of Bj, as follows:

If (Bj) is positive (that is, bit 17 of Bj=0), the quantity from register Xk is shifted right (end off with

sign extension). For the CYBER 180 Series; the CYBER 170 Series (except Model 176); the CYBER 70
Models 71, 72, 73, and 74; and the 6000 Series computer systems, the low order 11 bits of (Bj) specify I
the shift count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal), the Xi

register contains 60 copies of the (Xk) sign bit. If the shift count is 64 (decimal) or more, the Xi

register is zeroed. For the CYBER 170 Model 176, CYBER 70 Model 76, or 7600 computer systems,

the low order 12 bits of (Bj) specify the shift count. The higher order bits are ignored. If the shift

count is 59 (decimal) or more, the Xi register contains 60 copies of the sign of the operand.

If (Bj) is negative (that is, bit 17 of Bj=1), the quantity from register Xk is shif ted left circular. The
complement of the lower order 6 bits of Bj specify the shift count. The higher order bits are ignored.

60492600 L 8-33

If -B is specified, the assembler converts the instruction to a logical left shift. This instruction is intended
for use in data processing where the amount of shift is derived in the computation. This instruetion is also

useful for adjusting the coefficient of a floating point number while it is in its unpacked form.

Format:
Operation Variable Description Size Octal Code
AXi XKk, Bj Arithmetic shift of (Xk) by (Bj) places to Xi 15 bits 23ijk
AXi Bj, Xk Arithmetic shift of (Xk) by (Bj) places to Xi 15 hits 23ijk
AXi Xk Transmit (Xk) to Xi 15 hits 2310k
AXi Bj Arithmetic shift of (Xi) by (Bj) places to Xi 15 bits 23iji
AXi -Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
AXi Xk, -Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
AXi -Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 22iji
Example:
LOCATION OPERATION | VARIABLE COMMENTS

Code Generated

23764
23211
23502
23424

1 n 8

AXT X4,B6

'AX2 |B1,X1

(AXS X2

i
iAXll B2

8.4.29 NORMALIZE INSTRUCTION

[30
T
I
l
]
l
|
|

This instruction normalizes the floating gmint quantity from operand register Xk and places it in operand

register Xi. Normalizing consists of shi

ting the coefficient the minimum number of positions required to

make bit 47 different from bit 59. This places the most significant bit of the coefficient in the highest

order position of the coefficient portion of the word. The exponent portion of the word is then decreased
by the number of bit positions shifted. The number of shifts required to normalize the quantity is entered
in index register Bj.

Format:
o |
Operation Variable Description Size Octal Code
NXi Xk Normalize (Xk) to Xi 15 hits 24i0k
NXi Bj, Xk Normalize (Xk) to Xi; shift count to Bj 15 hits 24ijk
NXi XKk, Bj Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
NXi Normalize (Xi) to Xi 15 hits 24101
NXi Bj Normalize (Xi) to Xi; shift count to Bj 15 bits 24iji
8-34 60492600 H

Example:
Code Generated
24575

24505

24552

LOCATION

CPERATICN

YARIABLE

COMMENTS

18

30

NX5
NX5

NX5,B5

8.4.30 ROUND AND NORMALIZE INSTRUCTION

X5,B7
X5
X2

I
T
T
l
1
i
!
|

This instruction performs the same operation as the NXi instruetion with the exception that the quantity
from operand register Xk is rounded before it is normalized. Rounding is accomplished by placing a 1 round
bit immediately to the right of the least significant coefficient bit. The resulting coefficient is increased
by one-half the value of the least significant bit. Normalizing a zero coefficient places the round bit in bit
47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow, infinite, and

indefinite results,

If (Xk) is an infinite quantity (3777x. . .Xg or 4000x. ..xg) or an indefinite quantity (1777x...xg or
6000x .. .xg), no shift takes place. The contents of Xk are copied into Xi, and Bj 1s set to zero.

Format:
, Operation Variable Description Size Octal Code
; ZXi Xk Round and normalize (Xk) to Xi 15 bits 2510k
| ZXi Bj, Xk Round and normalize (Xk) to Xi; shift
w count to Bj 15 bits 25ijk
| 7xi | Xk, Bj Round and normalize (Xk) to Xi; shift
‘ ' count to Bj 15 bits 25ijk
ZXi Bj Round and normalize (Xi) to Xi; shift
count to Bj 15 bits 25iji
ZXi Round and normalize (Xi) to Xi 15 bits 25i01
Example:
Code Generated LOCATION OPERATICN | VARIABLE COMMENTS
: I 18 T30
25474 ZXu X4,B7 1
|
25404 ZX4y I
. I
25361 iZX3,B6 |X1 |

8.4.31 UNPACK INSTRUCTION

This instruetion unpacks the floating point quantity from operand register Xk and sends the 48-bit
coefficient to operand register Xi and the 11-bit exponent to index register Bj. The exponent packing is
removed during unpack so that the quantity in Bj is the true one's complement representation of the
exponent. The contents of Xk need not be normalized.

60492600 H

8-35

The exponent and coefficient are sent to the low-order bits of the respective registers, as shown below:

Sign Packed Exponent Coefficient
Packed Quantity |_l_ l] Xk
5958 48 00
Unpacked
E xponent
Exponent Sign Coefficient
Extended v Sign Extended
Unpacked Bj /77777 | 274 |xi
17 10 9 00 59 4847 00
Special operand formats are treated in the same manner as normal operands.
Format:
Operation Variable Description Size Octal Code
UXi Xk Unpack (Xk) to Xi 15 bits 26i0k
UXi Bj, Xk Unpack (Xk) to Xi and Bj 15 bits 26ijk
UXi Xk, Bj Unpack (Xk) to Xi and Bj 15 bits 26ijk
UXi Unpack (Xi) to Xi 15 bits 26i0i
UXi Bj Unpack (Xi) to Xi and Bj 15 bits 26iji
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] 0 18 T30
26777 UX7 X7,B7 |
26342 UX3,X2 |BY :
|
26707 Ux7 ' |
26777 ux7 |B7 |
I

8.4.32 PACK INSTRUCTION

This instruction packs a floating point number in operand register xi. The coefficient of the number is
obtained from operand register Xk and the exponent is obtained from index register Bj. The exponent is
packed by reversing the setting of bit 10 of the exponent during the pack operation. The pack instruction
does not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective registers and
packed in reverse order as shown in the illustration for the unpack instruetion. Thus, bits 58 through 48 of
Xk and bits 17 through 11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in
the PSD register by this instruction.

8-36 60492600 H

Note that if (Xk) is positive, the packed exponent occupying bits 58 through 48 of Xi is obtained from bits
10 through 00 of Bj by complementing bit 10; if {Xk) is negative, bit 10 is not complemented but bits 09
through 00 are compiemented.

The j designator can be set to zero in this instruction to pack a fixed point integer into floating point
format without using one of the active B registers (exponent=0).

Format:
Operation Variable Description Size Octal Code
PXi Xk Pack {Xk) to Xi 15 bits 2710k
PXi Xk, Bj Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Bj, Xk Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Pack (Xi) to Xi 15 bits 27101
PXi Bj Pack (Xi) and (Bj) to Xi 15 bits 27iji
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) 1 18 [30
27565 PX5 X5,B6 |
27671 ' |PX6,B7 X1 :
t ! .‘
27505 (PX5 i |
27565 ipxs IB6 |

8.4.33 UNROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the unrounded sum or difference of the floating point quantities from operand

registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of a
double precision sum or difference.

At the start both arguments are unpacked, and the coefficient of the argument with the smaller exponent
is entered into the upper half of the accumulator. The coefficient is shifted right by the difference of the
exponents. The other coefficient is then added to or subtracted from the upper half of the accumulator. If
overflow oceurs, the result is right-shifted one place and the exponent of the result increased by one. The
upper half of the aceumulator holds the coefficient of the result, which is not necessarily in normalized
form. The exponent and upper coefficient are then repacked in operand register Xi.

Format:
Operation Variable Description Size Octal Code
FXi Xj+Xk Floating point sum of (Xj) and (Xk) to Xi 15 bits 30ijk
FXi Xj-Xk Floating point difference of (Xj) minus
(Xk) to Xi : 15 bits 31lijk

60492600 H 8-37

Example:

Code Generated

30345
31213

LOCATION OPERATION | VARIABLE

COMMENTS

1 }] 18

FX3 XU4+X5

FX2 X1-X3

8.4.34 DP FLOATING POINT ADD INSTRUCTIONS

These instructions form the sum or difference of two floating point numbers as in the single precision
instruetions, but pack the lower half of the double precision result with an exponent 48 less than the upper
sum. The result is not necessarily normalized.

Format:
Operation Variable Description Size Octal Code
DXi Xj+Xk Fioating DP sum of (Xj) and (XKk) to Xi 15 bits 32ijk
DXi Xj-Xk Floating DP difference of (Xj) and (Xk)
to Xi 15 bits 33ijk
Example:
COde Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 I30
32323 DX3 X2+X3 ;
|
33414 DX4 X1-X4 !

8.4.35 ROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the rounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi. These
instructions are intended for use in floating point calculations involving single precision acecuracy.

Format:
Operation Variable Description Size Octal Code
RXi Xj+Xk Rounded floating sum of (Xj) and (XKk)
to Xi 15 bits 34ijk
RXi Xj-Xk Rounded floating difference of (Xj) minus
(Xk) to Xi 15 bits 35ijk

8-38

60492600 H

Example:

pd A a=d LOCATION QOPERATION | VARIABLE COMMENTS
: " 18 [30
:
34534 RXS5 | X3+X4 1
35653 RX6 |X5-X3 :

8.4.36 LONG ADD (FIXED POINT) INSTRUCTIONS

These instructions form the 60-bit one’s complement integer sum or integer difference of quantities from
operand registers Xj and Xk and store the result in operand register Xi. An overflow condition is ignored.

The instructions are intended for addition or subtraction of integers too large for handling in the increment
unit. They are also useful for merging and comparing data fields during data processing.

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero (all

zeros), the result is a positive zero quantity. If both operands are minus zero (all ones), the result is a
negative zero quantity.

Format:
Operation Variable Description Size Octal Code
IXi Xj+Xk Integer sum of (Xj) and (Xk) to Xi 15 bits 36ijk
IXi Xj-Xk Integer difference of (Xj) minus (XKk)
to Xi 15 bits 37ijk
Example:
Code G-enerated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 |30
- T
36545 IX5 X4+X5 |
|
37631 i 1 IX6 X3-x1 !

8.4.37 UNROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj (multiplier) and
Xk (multiplicand) and packs the upper product result in operand register Xi.

In this operation, the exponents of the two operands are unpacked from the floating point format and are
added with a correction factor of 48 to form the exponent for the result. The coefficients are multiplied
as signed integers to form a 96-bit integer product. The upper half of this product is then extracted to
form the coefficient of the result. The result is a normalized quantity only when both operands are
normalized; the exponent in this ease is the sum of the exponents plus 47 (or 48). The result is not
normalized when either or both operands are not normalized.

60492600 H 8-39

Format:

Operation Variable Description Size Octal Code
FXi Xj*Xk Floating point product of (Xj) and
(Xk) to Xi 15 bits 40ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30
40011 FX0 |X1%#X1 ;
i

8.4.38 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies the floating point number from operand register Xk (multiplicand), by the
floating point number from operand register Xj. The upper product result is packed in operand

register Xi. (No lower product is available.) The multiply operation is identical to that of the single
precision instruction except that a rounding bit is added in bit position 46 of the 96-bit produet. The upper
half of the produet is then extracted to form the coefficient for the result. An alternate output path is
provided with a left shift of one bit position to normalize the result coefficient if the original operands
were normalized and the double preeision produet has only 95 bits of significance. The exponent for the
result is decremented by one count in this case.

Format:
Operation Variable Description Size Octal Code
RXi Xj*Xk Rounded floating point product of (Xj)
and (Xk) to Xi 15 bits 41ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
: i n 8 f30
—+
41232 RX2 X3%#X2 |
|

8.4.39 DP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj and Xk and
packs the lower product in operand register Xi. The two 48-bit coefficients are multiplied together to
form a 96-bit product. The lower order 48 bits of the product (bits 47 through 0) are then packed together
with the resulting exponent. The result is not necessarily normalized. The exponent of this result is 48 less
than the exponent resulting from an unrounded single precision instruction using the same operands.

8-40 60492600 H

This instruction is intended for use in multiple precision floating point calculations. It may also be used to
form the product of two integers providing the resulting product does not exceed 48 bits of significance.
The operands must be packed in floating point format before executing this instruction. The results must
be unpacked to obtain the integer produect.

Format:
Operation Variable Description Size Octal Code
DXi Xj*Xk Floating point DP product of (Xj) and
(Xk) to Xi 15 bits 42ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
42345 DX3 Xu*xs
|

8.4.40 INTEGER MULTIPLY INSTRUCTION

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision floating point
multiply instruction. Regardiess of how it is written in COMPASS, the 42ijk instruction is executed as
follows: If each operand register has all zeros or all ones in its leftmost 12 bits, the 47-bit integer produect
is formed in Xi with sign extension in its leftmost 12 bits. (Exception: if each operand has bit 47 different
from its sign bit, the result is shifted left one bit position.) Otherwise, a double precision floating point
multiplication is performed. Thus, there is no need to pack exponents into the operands, and unpack the
result, for an integer multiply. COMPASS provides the alternate symbolic representations IXi Xj*Xk and
DXi Xj*Xk for the 42ijk instruction as an aid to program readability, so the programmer can indicate
whether or not the instruetion is being used for integer multiplication.

Format:
Operation Variable Description Size Octal Code
IXi Xj*Xk Integer product of (Xj) and (Xk) to Xi 15 bits | 42ijk
! 4 i
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
| I 18 [30
i
L2234 [x2 X3%*X4 |
i 1

60492600 H 8-41

8.4.41 MASK INSTRUCTION

This instruction clears register Xi and forms a mask in it. A positive value for expression jk defines the
number of ones in the mask as counted from the highest order bit in Xi. A negative value for expression jk
defines the number of 0 bits (unmasked) ecounted from the low order bit in Xi. The completed masking
word consists of ones in the high order bit positions of the word and zeros in the remainder of the word.

The contents of operand register i are zero when jk is zero. The contents of operand register i are all ones
when jk is 60.

This instruction is intended for generating masks for logical operations. Used with the shift instruction,
this instruction creates an arbitrary field mask faster than by reading a previously generated mask from
storage.

In COMPASS notation, if the value of absolute expression jk is positive, the assembler inserts it into the jk

field of the assembled instruction. If the value of absolute expression jk is negative, the assembler adds 60
to the expression value and places the sum in the jk field of the assembled instruetion.

A negative jk value less than -60 results in a type 7 assembly error.

Format:
Operation Variable Description Size Octal Code
MXi jk Form mask in Xi, + jk bits 15 bits 43ijk
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated
e) 0 8 [30
43042 MX 0 42b |
|
43360 MX3 -l4b |

8.4.42 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides two normalized floating point quantities obtained from operand registers Xj
(dividend) and Xk (divisor) and packs the quotient in operand register Xi.

Format:
Operation Variable Description Size Octal Code
FXi Xj/Xk Floating point divide of (Xj) by (Xk)
to Xi 15 hits 44ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

} n 18 [0

LLE31 FXe XT/X1 i

8-42 60492600 H

8.4.43 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruetion divides the floating quantity from operand register Xj (dividend) by the floating ?oint
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi.

Format:
Operation Variable Description Size Octal Code
RXi Xj/ Xk Rounded floating point division of (Xj)
by (Xk) to Xi 15 bits 45ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

; I 18 [0
45724 RXT X2/ X4 |

8.4.44 PASS INSTRUCTION

The no-operation (pass) instruction is not associated with a functional unit. This instruction is a do-nothing
instruction used typically to pad the program between steps. An integer value in the variable field
(optional) is inserted into the lower 8 bits of the instruetion. The assembler automatically pads the
remainder of a word whenever a force upper oceurs; in this case, the programmer is not required to insert
the NO.

On a machine with a Compare/Move Unit (CMU), a value of n greater than or equal to 400g causes the
instruction to be interpreted as a CMU instruction.

On CYBER 170 Models 175, 740, 750, and 760, a value of n greater than or equal to 400g is illegal.

Format:
Operation Variable Description Size Octal Code
INO Pass ’ 15 hits 16000
NO n Pass 15 bhits 46n
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 T30
T
46000 | NO |

8.4.45 POPULATION COUNT INSTRUCTION

This instruetion counts the number of 1 bits in operand register Xk and stores the count in the lower order
6 bits of operand register Xi. Bits 59 through 06 are cleared.

60492600 H 8-43

If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register. If Xk is a word of all
zeros, a zero word is delivered to the Xi register.

The assembler sets the unused j designator to k.

Format:
Operation Variable Description : Size Octal Code
CXi Xk Count of number of 1's in (Xk) to Xi 15 bits 47ikk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] " 18 T30
47700 CX7 X0 :

8.4.46 SET A REGISTER INSTRUCTIONS

These instructions are intended for fetching operands from storage for computation and for delivering
results back into storage. The instructions have two destination registers: the Ai register, which receives
the address formed from the operands, and either the Xi register or a CM (SCM) storage location.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is nonzero, a storage reference is made using the lower 15, 16, or 17 bits of the resulting
sum or difference as the relative storage address depending on machine size. The upper bits are ignored.
The type of storage reference is a function of the i designator value, as follows:

i = 0; no storage reference

i

1, 2, 3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi

[oh
i]

6 or 7; contents of register Xi stored at CM (SCM) relative address (Ai)

8-44 60492600 H

Format:

Operation Variable Description Size |! Octal Code
SAi Aj+K Set Ai to (Aj) + K 30 hils 50ijK
SAi K Set Ai to K 30 bits 51i0K
SAi Bj+K Set Ai to (Bj) : K 30 bits 51ijK
SAi Xj+K Set Ai to (Xj) - K 30 bits 52ijK
SAi Xj Set Ai to (Xj) 15 bits 53ij0
SAi Xj+Bk Set Ai to (Xj) + (Bk) 15 bits 53ijk
SAi Bk+Xj Set Ai to (Xj) : (Bk) 15 hits 53ijk
SAi Aj Set Ai to (Aj) 15 hits 54ij0
SAi Aj+Bk Set Ai to (Aj)+ (Bk) 15 bits 54ijk
SAi Bk +Aj Set Ai to (Aj) + (Bk) 15 hits 54ijk
SAi Aj-Bk Set Ai to (Aj) - (Bk) 15 bits 55ijk
iSAi -Bk+Aj Set Ai to (Aj) - (Bk) 15 bits 55ijk
'sAi ' Bj Set Ai to (Bj) 15 bits 56ij0
{SAi Bj+Bk Set Ai to (Bj) ' (Bk) 15 bits | 56ijk
A | -Bk Set Ai to (BO) - (Bk) 15 bits 57Ti0k
%SAi Bj-Bk Set Ai to (Bj) - (Bk) 15 hits 57ijk
gSAi | -BkBj Set Ai to (Bj) - (BK) 15 bits | 57k
i | N
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30

5010000001 SA1 A0+1 T

5100777774 ' SAO -3 :

5121000003 SA2 3+B1 ;

5231777771 'sa3 |x1-6 ‘

53411 | SAH X14B1 :

54541 | SAS | A4+B1 ;

54641 | {SA6 Al+B1 !

54540 § SA5 A4 :

55641 | ‘ SA6 |-Bl+Al '

56711 E | SAT |B14B1 |

57721 || SAT |B2-B1 |

60492600 H

8-45

8.4.47 DIRECT READ/WRITE CENTRAL MEMORY

These instructions permit information to be stored into central memory from the specified X register or to
be loaded from central memory into the X register. The lower 21 bits of Xk specify the central memory
address relative to RAc. The other bits of Xk are unused.

Format:
Operation Variable Description Size Octal Code
CR Xj, Xk Read CM at (XK) to Xj 15 bits 660jk
Cw Xj, Xk Write Xj to CM at (Xk) 15 bits 670jk
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated] il 18 30
66012 CR X1,X2
67012 CwW X1,x2

8.4.48 SET B REGISTER INSTRUCTIONS

These instructions perform one's complement addition and subtraction of 18-bit operands and store an
18-Dbit result in index register Bi. Note the result will never be negative zero (all ones) unless negative
zero is added to negative zero.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is a zero, the instruction is a do-nothing instruction, exeept on the models 810, 815, 825,
830, 835, 845, 855, 865, and 875 for which two forms of the SBO instruction (SB0 Bj+Bk and SB0 Bj-Bk)
are invalid. On models 810, 815, 825, 830, 835, 845, 855, 865, and 875 the octal operation codes 660 and
670 are interpreted as the CR and CW instructions, respectively.

8-46 60492600 L

Format:

Operation Variab}e Description Size Octal Code
SBi Aj*K Set Bi to (Aj) + K 30 bits 60ijK

SBi K Set Bi to K 30 bits 61i0K

SBi Bj+K Set Bi to (Bj) + K 30 bits 81ijK

SBi Xj+K Set Bi to (Xj) + K 30 bits 62ijK

SBi Xj Set Bi to (Xj) 15 bits 63ij0

SBi Xj+Bk Set Bi to (Xj) + (Bk) 15 bits 63ijk

SBi Bk+Xj Set Bi to (Xj) + (Bk) 15 bits 63ijk

SBi Aj Set Bi to (Aj) 15 bits 64ij0

SBi Aj+Bk Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Bk+Aj Set Bi to (Aj) + (Bk) 15 bits 64ijlk

SBi Aj-Bk Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi -Bk+Aj Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi Bj Set Bi to (Bj) 15 hits 66ij0
SBi Bj+Bk Set Bi to (Bj) + (Bk) 15 bits 66ijk 4
SBi - Bk Set Bi to (B0) - (Bk) 15 bits ¢« 67i0k

SBi Bj-Bk Set Bi to (Bj) - (Bk) 15 bits 67ijk

SBi - Bk+Bj Set Bi to (Bj) - (Bk) 15 bits !i 67ijk
60492600 H 8-47

Example:

Code Generated

6011777772
6110777772
6121000011
6231000100
63427
64541
64540
65641
656u3
66711
67751

LOCATION

OPERATION

VARIABLE

COMMENTS

30

8.4.49 SET X REGISTER INSTRUCTIONS

SB1
SB1
SB2
SB3
SB4
SBS
SB5
SB6
SB6
SB7

3+B1+6
X1+100B
X2+BT
Al44+B1
A4
-B1+AY
A4-B3
B1+B1

SB7

B5-B1

!
I
|
|
|
i
I
I
|
l
!
l
I
l
!
|
l

The SXi instructions perform one's complement addition and subtraction of 18-bit operands and store an
18-bit result into the lower 18 bits of operand register Xi. The sign of the result is extended to the upper
42 bits of operand register Xi. An overflow condition is ignored.

Operands are obtained from address (A), index (B), and operand (X) registers as well as the instruction
itself (K = 18-bit operand). Operands obtained from an Xj register are the truncated lower 18 bits of the

60-bit word. The highest order bits are ignored.

8-48

60492600 H

Format:

Operation Variable Description Size Octal Code
Xi Aj~K Set Xi to (Aj) + K 30 bits | 70ijK
SXi K Set Xi to K 30 bits | 710K
SXi Bj:K Set Xi to (Bj) + K 30 bits | 714jK
SXi Xj+K Set Xi to (Xj) : K 30 bits | 72ijK
SXi Xj Set Xi to (Xj) 15 bits | 73ij0
SXi Xj+Bk Set Xi to (Xj) + (Bk) 15 bits | 73ijk
SXi Bk Xj Set Xi to (Xj) + (Bk) 15 bits | 73ijk
SXi Aj Set Xi to (Aj) 15 bits | 74ij0
SXi Aj+Bk Set Xi to (Af) + (BK) 15 bits | 74ijk
SXi Bk-Aj Set Xi to (Aj) + (Bk) 15 bits | 74ijk
SXi Aj-Bk Set Xi to (Aj) - (BK) 15 bits | 75ijk
SXi -Bk-Aj Set Xi to (Aj) - (Bk) b 15bits | 75ijk '
SXi Bj Set Xi to (Bj) . 15bits | 76ij0 |
SXi Bj* Bk Set Xi to (Bj) - (Bk) i 15bits | 76ijk ?
ISXi -Bk Set Xi to (B0) - (Bk) 15 bits 77i0k
SXi Bj-Bk Set Xi to (Bj) - (Bk) 15 bits | 77ijk
SXi -Bk-Bj Set Xi to (Bj) - (Bk) 15 bits | 77ijk
Example:
Code Generated LOCATION OPERATION | vaRiABLE COMMENTS
) " 18 [3c
7000005233 + sXo0 BNEG+AO+1 T
7110775755 SX1 -2022B ;
7121000005 SX2 B145 :
7233777744 SX3 X3-33B l
73442 | SX4 | XU4s+B2 |
74553 : ; SX5 |A5+B3 |
74540 | SX5 |A4 1
75604 SX6 A0-BU ‘
75641 SX6 -B1+Al E
76776 SXT7 B7+B6 :
77751 SX7 B5-B1
60492600 H 8-49

8.5 CMU SYMBOLIC MACHINE INSTRUCTIONS

The Compare/Move Unit (CMU) is a standard CPU hardware component of the CYBER 70 Models 72 and
73, and the CYBER 170 Models 172, 173, 174, 720, and 730. The models 810, 815, 825, 830, 835, 845, and
855 support compare/move instructions through simulation. These central processor instructions are used
for moving and comparing data fields that consist of strings of 6-bit characters. Data fields can span word
boundaries and can begin and end at any character position within a word. A data field is specified by its
length in characters and the location of its leftmost character (acecording to word address and character
position). Data fields cannot be in the operating registers nor in ECS.

Each 60-bit word of a data field contains 10 character positions numbered 0 to 9 from left to right (high
order to low order). :

COMPASS provides symbolie forms of the four CMU instructions plus a pseudo instruction used to generate
a descriptor word to be referenced by the indirect move instruetion. Of the four instruetions, the indirect
move (IM) instruction is the only one that syntactically resembles other CPU instructions. The other three
instructions have formats dissimilar to CPU instructions and are generated through COMPASS pseudo
instructions. All of these instructions must begin at the top of a 60-bit word; COMPASS automatically
forces upper before each of them unless the location field contains a minus sign. All but IM are 60 bits in
length. IM is 30 bits, but the hardware requires that the instruction be in the upper half of its word. The
lower half of the word is not executed. COMPASS automatically forces upper following IM, unless the next
instruction has a minus sign in its loeation field.

8-50 60492600 L

8.5.1 IM - iNDIRECT MOVE

i'he indirect move instruction moves the contentis of a data field to another location. It is a 30-bit
instruetion that specifies the address of a descriptor word which, in turn, contains the length and address of
the data fields.

The assembler forces upper before and after the IM instruction.

The descriptor word is fetched from storage location (Bj)+K. If the data field lengtn is zero, the
instruction is executed as a pass but the execution time is longer. Otherwise, the contents of the source
field are moved to the destination field. If the two fields overlap, the results are undefined. The X0
register is used for intermediate storage during execution of the instruetion, and is cleared upon
completion of the instruetion.

Operation Variable Description Octal Code
IM K Move data according to word at K 4640K
IM Bj:zK Move data according to word at (Bj)+ K 464jK
IM Bj Move data according to word at (Bj) 464j 000000

8.5.2 MD - INDIRECT MOVE DESCRIPTOR WORD
The MD pseudo instruction generates a descriptor word for use by the indirect move (IM) instruction.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym MD i,ks,cs,kd,cd

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the descriptor word.

[Absolute address expression specifying the field length in characters (0 through 8191). The
upper 9 bits (2) are placed in bits 56 through 48 of the deseriptor word; the lower 4 bits (2) are
placed in bits 29 through 26.

kg An expression specifying the first word address of the source field in CM.

Cg An absolute expression (0 through 9) specifying the starting character position of the source
field within the word at location kg. Characters are numbered from left to right.

kd An expression specifying the first word address of the destination field in CM.

cq An absolute expression (0 through 9) specifying the starting character position of the

destination field within the word at location kg.

60492600 G 8-31

Indirect Move Descriptor Word format:
59 48 30 26 22 18 00

0 source src |des destination
£12.4 address 13-(J)ch ch address

Example:

Code Generated

LOCATION OPERATION | VARIABLE COMMENTS
1 i 18 T30
i
00760050054«:}050070&0 IWORD M] IDU},BUFFA,{E,BUFFF,S
. I
4540010665 ' i“l owo?n !

BUFFA is at address 2560; BUFFB is at address 3584.

8.5.3 DM - DIRECT MOVE

The direct move (DM) symbolic instruetion generates a CMU instruction that moves the contents of a data
field to another data field. The machine instruction occupies one full word. The instruction includes its
own data field descriptor.

The assembler forces upper bef ~e a DM instruction.

If the data field length is zero, the instruction is executed as a pass, but the execution time is longer.
Otherwise, the contents of the source field are moved to the destination field. If the two fields overlap,
the results are undefined. The X0 register is used for intermediate storage during execution of the
instruction and is cleared upon completion of the instruction.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DM !l,ks,cs,kd, 4

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruction word.

2 Absolute address expression specifying the field length in characters (0 through 127).
kg An expression specifying the first word address of the source field in CM.

Cg An absolute expression (0 through 9) specifying the starting charaecter position of the source
field within the word at loeation kg,

kg An expression specifying the first word address of the destination field in CM.

¢4 An absolute expression (0 through 9) specifying the starting character position of the
destination field within the word at location k4. Characters are numbered from left to right.

852 60492600 K

Octal format of instruction:

59 51 48 1 26 22 18 00
465 L6-4 source address |Af3-0 | ST¢ | des destination
ch ch address
Example:
Code Generated LOCATION |oPERATION |vARmiABLE COMMENTS
1 11 18 130
46570050007405007000 DM 127,BUFFA,0,BUFFB,5
!
1

85.4 CC - COMPARE COLLATED

The compare eollated (CC) symbolic instruction generates a CMU instruetion that compares the contents l
of two data fields, one character at a time, from left to right, until a pair of corresponding characters is
found to have unequal collating values or until the data fields are exhausted. It is a 60-bit instruction that
occupies one full word. It eannot be split between two words. The instruction includes its own data field
descriptor. Register A0 contains the first word address of a table in storage that contains the collating
values to be used in comparing characters. The result of the comparison is placed in register X0.

The first word address of the collating table is obtained from register A0. The contents of the data fields
are compared from left to right, one character at a time from each field, until two unequal characters are
found. The collating value of each character is obtained from the collating table. If these values are
equal, the compare continues until another character pair is unequal or until all characters have been
compared. If the collating values are unequal, the two data fields are unequal and the field with a larger
collating value is the greater of the two fields. The collating values are treated as 6-bit unsigned integers.
Note that two unequal characters could have the same collating value and would compare equal.

Upon instruction completion, register X0 contains a 60-bit signed integer as follows:

(Field A)>(Field B) (X0)=1£-n; (X0)>0
(Field A)=(Field B) (X0)=0
(Field A)<(Field B) (X0)=n-£; (X0)<0

n is the number of pairs of characters that compared equal. If £=0, then (X0) is 0.

The format of the collating table for 6-bit characters is:

59 53 47 41 35 29 23 17
(A0) 00 01 02 03 04 05 06 07
(A0)+1 10 11 12 13 14 15 16 17
: 3 4 z 1 2 7 3 $
(A0)+7 70 71 72 73 74 75 76 77

60492600 K 8-53

Format:

LOCATION OPERATION |VARIABLE SUBFIELDS

sym cc Lk ,ca-kp cp

sym If present, sym is assigned the value of the location counter after the force upper oceurs. It
becomes the symbolic address of the instruection.

i Absolute address expression specifying the field length in characters (0 through 127).
kg An expression specifying the first word address of the first data field in CM.

Cg An absolute expression specifying the starting character position of the first data field within
the word at location k;. Characters are numbered from left to right.

Kp An expression specifying the first word address of the second data field in CM.

c An absolute expression (0 through 9) specifying the starting character position of the second
b data field witi(upn the word at location lI)q,

Octal format of instruction:

59 51 48 30 26 22 18 00
_ first string _ fs ss second string
466 Le-4 address £3-0 ch ch address
Example:
Code Generated LOCATION |OPERATION |VARIABLE COMMENTS
1 1 18 130
I
5100003120 SAQ TABLE]
46670050007405007000 cc 127 ,BUFFA,QD ,B'UF FB,5
]

8.5.5 CU - COMPARE UNCOLLATED

l The compare uncollated (CU) symbolie instruction generates a CMU instruction that compares the econtents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters are
found to have unequal values or until the data fields are exhausted. The machine instruetion is a 60-bit
instruction that occupies one full word and cannot be split between two words. It includes its own data
field descriptor. The result of the comparison is placed in register X0.

Execution resembles the CC instruction except that A0 and the collating table are not used. Instead, the

characters are compared directly with each character regarded as a 6-bit unsigned binary integer.
Register X0 is set in the same manner as by the CC instruction.

8-54 60492600 K

Format:

sym

LOCATION

OPERATION VARIABLE SUBFIELDS

sym

cu L, ka’ Ca’ kb' %

If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruction.

Absolute address expression (0 through 127) specifying the field length in characters.

An expression specifying the first word address of the first data field in CM.

An absolute expression (0 through 9) specifying the starting character position of the first data

field within the word at location kq. Characters are numbered from left to right.

An expression specifying the first word address of the second data field in CM.

An absolute expression (0 through 9) specifying the starting character position of the second

data field within the word at location kp,.

Octal format of instruection:

Example:

59 51 48 30 26 22 18 00
first string fs| ss| second string
467 16]4 address 23‘q ch | ch| address
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
467703050007405007000 cu 127.8UFFA,0,;RUFPB,5

60492600

G

8-55

PP SYMBOLIC MACHINE INSTRUCTIONS 9

The COMPASS assembler recognizes symbolic notation for peripheral processor (PP or PPU) instructions.
For COMPASS to recognize symbolic logic for models 810, 815, 825, 830, 835, 845, 855, 865, and 875 PP |
instruetions, the NOS programmer must ensure that NOSTEXT is available to the assembler. When a PPU

or PERIPH pseudo instruetion is in the first statement group, the assembler identifies each symbolic
instruetion by name and generates a one word (12 bit) or two word (24 bit) object code machine instruction
under control of the current origin, location, and position counters. All PP code is absolute. Numeric data
must be in integer notation. Floating point notation is illegal.

NOTE

No special job validation is required to assemble peripheral processor programs, but to be
executed, such programs require system origin privileges.

i1 pPLAViL

Some instructions in existing COMPASS programs are not valid for execution on models 810, 815, 825, 830, l
835, 845, 855, 865, and 875. To detect these instructions, the programmer can specify SSAIDTEXT in the
COMPASS control statement. COMPASS prints a listing of the program, flagging the invalidated

instructions with a type O error. S=AIDTEXT should not be specified if the 8 option is chosen for the
MACHINE pseudo instruction.

9.1 MACHINE INSTRUCTION FORMATS
An assembled instruction has a 12-bit or 24-bit format. The 12-bit format has a 6-bit operation code f and
a 6-bit operand d. A PP accomplishes program indexing and manipulates operands in several modes. The
12-bit and 24-bit instruction formats provide for 6-bit, 12-bit, or 18-bit operands and 6-bit or 12-bit
addresses. Figures 9-1 and 9-2 illustrate the 12-bit instruction format and the 24-bit instruction format,
respectively.

Direct Mode:

d = memory address of operand

. Indirect Mode:
operation
code d = memory address of the address of the
11 5 0 operand
(P) i d

No Address Mode:

d = 6-bit operand, shift count, or relative
address
Other:
d = special value; for example, channel

designator

Figure 9-1. PP 12-bit Instruction Format

60492600 L 9-1

Indexed Mode:

f = operation code (7 bits for
CCF, CFM, SCF, SFM; 6 bits

g};gzatlon for all others)
r —A \ d = address of the index for
modifying the address of the
1 :5 .4 0 operand
(P) f P d
- m = base address of the operand
(d) + m = address of operand
11
(P+1) m
Constant Mode:

dm = 18-bit operand

Other:

dm = special values; for
example, d = channel
designator and m = 12-bit
address of word count on
IAM and OAM instructions

Figure 9-2. PP 24-bit Instruction Format

The 24-bit format uses the 12-bit quantity m, which is the contents of the next program address (P + 1),
with d or the contents of d to form an 18-bit operand or a 12-bit operand address.

The central memory access instructions for models 810, 815, 825, 830, 835, 845, 855, 865, and 875 provide
the capability of reading and writing central memory words to and from the PP memory.

The R register is a 22-bit register used to accomplish address relocation during central memory read and
write instructions. This relocation occurs only if bit 17 of the A register is set to one.

When relocation is to be done, the absolute central memory address is formed by appending six zeros to the
lower end of the contents of the R register and adding to the result bits 0 through 16 of the contents of the
A register. Figure 9-3 illustrates this process.

21 0
R I 000000 I Relocation register with
6 zero bits concatenated
16 0 plus
Low order 17 bits of A
r A] register

Figure 9-3. Central Memory Access Instruction Address Relocation
(Models 810, 815, 825, 830, 835, 845, 855, 865, and 875)

9.2 SYMBOLIC NOTATION

This section describes notation used for coding symbolic PP machine instructions. Instructions are
deseribed in octal operation code sequence which generally reflects the mode of addressing. Instruetions
unique to a computer system are identified as such,

9-2 60492600 L

The loeation field of a symbolic PP machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter.

The operation field of a symbolic PP machine instruction contains a three-character name.

The variable field contains one or two subfields. Each subfield contains an absolute or relocatable
expression that reduces to a 6-bit, 12-bit, or 18-bit value.

Designators used in this section are listed in table 9-1.

TABLE 9-1. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use

A 18-bit A register.

c An expression that reduces to an 18-bit operand value.

d A 6-bit operand or operand address expression. This field is 5
bits long for the SCF, CCF, SFM, and CFM instructions.

m A 12-bit expression value used with d or (d) to form an 18-bit
operand or 12-bit operand address.

P 12-bit Program Address register.

Q 12-bit Q register.

r An e*pr?ssion that reduces to a 6-bit value (—3785;r < 378)
specifying relative address or shift count.

R 22-bit R register.

O Contents of a register or location.

«n Refers to indirect addressing.

Generally, the third charaeter of the instruction mnemonie (N, D, M, C, or I) indicates the mode of

addressing:

N No operand address reference

Direct operand address: d contains operand

D
M Memory address m or m + (d) contains operand
C

18-bit constant

—

Indirect; operand address is (d)

Some PP instructions can be executed only on specific machine models. Table 9-2 lists each instruetion
and the machine models to which it corresponds.

60492600 H

9-3

TABLE 9-2. PP INSTRUCTION/MACHINE MODEL CORRESPONDENCE

Mnemonic
Code

Machine Model Number

825, 835, 845, 855,
865, and 875

171, 172, 173, 174, 175,
720, 730, 740, 750, and 760;
71, 72, 73, and 74; and
6000 Series

76 and 7600

176

ACN

ADD
ADI

ADN

AOD
AO1

CFM

CRD
CRM

DCN
EIM

EOM
ErNT
ESN
ernt
EXN

FAN
FIM
FIM
FNC
FOM
IAM

IAN
IJM
IRM
LCN
LDC
LDD

LDI
LDM
LDN

9-4

B 2 D4 D4 pd 4

bd D4 D4 D4 DA Bd D4 D B4 Bd 4

>4 M L L]

R]

D4 D4 D D4 M

P4 pd D Dl 4

PO Dd A D D DA Dd D4 MK

b pd b

P >4 D M4 ¢

M M M
Lol]

> D4 pd M
MM MM M

b >4 D4 D M
D4 b4 D4 D M

DA D4 bd D4 DA D4 D4 DM

P4 D4 4 ¢ M

L] L > >4 e

D4 D4 24 b dd M

60492600 K

TABLE 9-2. PP INSTRUCTION/MACHINE MODEL CORRESPONDENCE (Contd)

Machine Model Number

Mnemonic
Code

825, 835, 845, 855,
865, and 875

171, 172, 173, 174, 175,

720, 730, 740, 750, and 760;
76 and 7600 71, 72, 73, and 74; and

6000 Series

176

IMI

LPC
LPN
LRD

NJIN

SBI
SBM
SBN
SCF
SCN
SFM

SOD
SHN
SOI
SOM
SRD
STD

STI
STM
UJN
2JN

Pbd DDA B4 D g M

» bd 4 L I »d

]

Pdodd b4 b4 P4 M b >4 oM

LR I

Lol R
Ppd D4 D4 b M4

xtt

X

P4 D4 b4 pd M4

PB4 D4 B4 D DI P DA DA BB D4 M
P MDA MM M LR]

>

> e D D4
> P4 >4 4

Ll I B
b4 D44 M

P4 D4 D4 pd

P

>4 L B] M MM LR] Lol el bd bd D4

L e

to416 only.

TNot supported for 6000 Series.

60492600 K

9-5

Some of the instructions provide similar functions using different modes of addressing. They can be
grouped according to function as shown below:

9-6

Function

Data transmission

Arithmetic

Logical

Description

The following instructions either load data into the A register or store data
from it. A load instruction loads a 6-bit, 12-bit, or 18-bit value as indicated by
the instruction; any remaining upper bits of A are zeroed, except for the LCN
instruction, for which remaining bits are set to one.

A store instruction stores the lower 12 bits of the A register contents into a
memory location indicated by the instruction.

The contents of A are not altered.

Instruction Octal Code
LDN 14
LCN 15
LDC 20
LDD 30
STD 34
LDI 40
STI 44
LDM 50
ST™M 54

A PP arithmetic instruction adds or subtraets a 6-bit, 12-bit, or 18-bit quantity
from the contents of the A register and enters the result in A.

Instruction Octal Code
ADN 16
SBN 17
ADC 21
ADD 31
SBD 32
ADI 41
SBI 42
ADM 51
SBM 52

A logical instruction forms a logical value in A using the contents of A as one
of the operands and a 6-bit, 13-bit, or 18-bit value indicated by the instruction
as the second operand. When the second operand is fewer than 18 bits, the
remaining upper bits of A are unaltered, except for the LPN instruetion for
which the upper 12 bits are zeroed.

Formation of a logical difference is equivalent to setting each bit in A that is
unlike the corresponding bit in the second operand. For example:

Initial (A) = 0101
Operand = 1100
Final (A) = 1001

Formation of a logical product is equivalent to setting a bit in A when the
original setting of the bit in A and the corresponding bit in the second operand
are both ones.

60492600 H

For example:

Initial (A)
Operand

Final (A)

= 0101
= 1100

= 0100

A selective clear sets a bit zero in the A register wherever a bit is set in the
second operand. For example:

Initial (A)
Operand

Final (A)

Logical instructions include the following:

Instruction Octal Code
LMN 11
LPN 12
SCN 13
LPC 22
LMC 23
LMD 33
LMI 43
LMM 53
Replace A replace instruction performs an arithmetic operation and returns the results

to the A register and the memory location from which one operand was

obtained. The lower 12 bits of the result replaces the operand obtained from a

memory location. Replace instructions include the following:

Instruction

RAD
AOD
SoD
RAI
AOI
SO1
RAM
AOM
SOM

9.2.1 BRANCH INSTRUCTIONS

For branch instructions, the r subfield is a numeric value that indicates the number of loeations to be
jumped (maximum 31). When r is positive (01 through 37g), the jump is forward r locations. Whenr is
negative (-76g through -40g), the jump is backward 77g-r locations. In the following tests, negative
zero (777777) is nonzero. For conditional instructions, when the test condition is true, the jump takes
place. When the condition is not met, execution continues with the next instruction.

The jump count must not be 00 or 77. If it is, execution

Octal Code

35
36
37

NOTE

loops on the jump instruetion.

60492600 H

The J option of the PPU instruction and the PERIPH instruction (chapter 4) cause the value of the location
counter to be subtracted from the value of the symbolic address (tag) before it is placed in the d field of

the object code instruction.

Format:
Operation Variable ~ Description Size Octal Code
— |

LJM m,d Long jump to m+(d); if d = 0, m is not

modified 24 bits 01dm
RIJIM m,d Return jump to m+(d); Store P+2 at m+(d)

and jump to m+(d)+1. 24 bits 02dm
UJN rt Unconditional jump to P+ r locations 12 bits 03d
UJN tag Unconditional jump to tag 12 bits 03d
ZJN rt Zero jump; jump to P+r locations if

(A) =0 12 bits 04d
ZJIJN tag Zero jump to tag 12 bits 04d
NJIN rt Nonzero jump; jump to P+r locations if

A)#0 12 bits 05d
NJN tag Nonzero jump to tag 12 bits 05d
PJN rt Positive jump; jump to Ptr locations if

A)>0 12 hits 06d
PJN tag Positive jump to tag 12 hits 06d
MJN rt Minus jump; jump to P:r locations if

(A)<0 12 bits 07d
MJN tag Minus jump to tag 12 hits 07d
TIf PPU J or PERIPH J option has been selected, r is not valid. The contents of the variable

field must be a symbolic address (tag).

60492600 H

Exampie:

Code Generated

1100 1362

0271 0000

COMMENTS

LOCATION OPERATION | VARIABLE
n 18
LJM STARTY
PJIM g,CT0
UJIN TAGL1-¥
7Ju eé
NJUN TAGT
PUN TAG?-%
MJN TAGSL

130
i
i
1
i
|
|
i
i
!
|
i
|
'.

In the above example, the LJM instruction is at address 0014g. TAGLI is address0012g, TAG2 has a
value of 13g, TAGS has a value of 25g, and TAG4 has a value of 26g.

Code Generated

0347
0and
0556
gen2

0743

9.2.2 SHIFT INSTRUCTION

COMMENTS

30

LOCATION OPERATION | VARIABLE

1 n 18
PPU J
UJN TAG1
7UN TAG?
NJN TAR2?2+110
PUN -1+TAGY
MUN TAG1

address 0040. TAG1 is address
0010, TAG2 is 0011, TAGS is
address 0045, and TAG4 is

address 0046.

i
|
|
l
|
| In this example, the UJN is at
|
I
|
I
|

The SHN instruction shifts the contents of the A register right or left r places. If r is positive +1 to +31),
the shift is left circular r places; if r is negative (-31 to -1), the shift is end off r places to the right with no
sign extension. No shift takes place whenr is + 0. The assembler places the value of the r expression in
the 4 field. If -31>r>31, the assembler generates an address error.

Format:

Operation Variable Description Size Octal Code
SHN r Shift (A) by + (left) or - (right) r bits 12 bits 104
60492600 H 99

Example:

1. Shift contents of A left circular 6 places

Code Generated

1006

2. Shift contents of A right end off 6 places

Code Generated

1071

9.2.3 NO ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field are interpreted as a 6-bit positive
operand. This mode eliminates the need for storing many constants in memory.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 Ta0
SAN |6 ;
LOCATION OPERATION | VARIABLE COMMENTS
) " 18 [30
SCNT SET. |6 f
SHN -SCNT :

Format:
Operation Variable Description Size Octal Code
LMN d Logical difference (A)-d—A 12 bits 11d
LPN d Logical product (A)*d —A 12 bits 12d
SCN d Selective clear (A) 12 bits 13d
LDN d Load d— A 12 bits 14d
LCN d Load complement d —A 12 bits 15d
ADN d Add (A)+d—A 12 bits 16d
SBN d Subtract (A)-d—A 12 bits 17d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 T30
1112 (v [12R r*
1207 LPN 7 I
1221 SCN 21n :
15 LY SFT 158 |
1615 LON Al |
1514 LCN AA-1 |
1601 aON |1 '
17n2 SAN 2 :
9-10 60492600 H

9.2.4 CONSTANT MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d and m fields are taken directly as an

operand. This mode also eliminates the need for storing many constants. The assembler reduces absolute
or relocatable expression ¢ to an 18-bit value and stores the upper six bits in d and the lower 12 bits in m.

Format:
Operation Variable Description Size Octal Code
LDC c Load ¢ —A 24 hits 20dm
ADC c Add (A)+c—A 24 bits 21dm
LPC c Logical product (A)*c —A 24 bits 22dm
LMC c Logical difference (A)-c —A 24 bits 23dm
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
2070 7970 Lnn 7n7n70a ;
I
0 VAL = 3 :
2177 777¢6 Anc VAL -1 i
i
22er 0797 Len nrn7r7n !
|
79707 MASK _ET 3707774 I
22C7 0797 LMC MACTK :

9.2.5 NO OPERATION INSTRUCTION

The PSN instruction specifies that no operation is to be performed.

program.

It provides a means of padding a

For the models 810, 815, 825, 830, 835, 845, 855, 865, and 875, the variable field of the PSN instruction
must be blank. Otherwise it is interpreted as an LRD instruction.

Format:
Operation Variable Description Size Octal Code
PSN No operation (Pass) 12 hits 2400
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 30
2unp PSN '
60492600 L 9-11

Other octal operation codes (not generated by COMP ASS) that act as pass instructions are:

CYBER 180 Series; CYBER 170 Series; CYBER 70
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series Model 76 and 7600
00 25
25 (2500 for Models 810, 815, 825, 830, 835, 845, 855, 865, and 875) 27
2700 (Models 810, 815, 825, 830, 835, 845, 855, 865, and 875 only) 76

9.2.6 LOAD AND STORE R REGISTER INSTRUCTIONS

The LRD instruction loads the R register. Bits 0 through 11 of the R register are loaded from d+1; bits 12
through 21 of R are loaded from bits 0 through 9 of d.

SRD stores the contents of the R register into d and d+1. Bits 0 through 11 of R are stored into d+1; bits
12 through 21 of R are stored into bits 0 through 9 of d.

If the variable field is set to zero, LRD and SRD execute as pass instructions.

Format:
Operation Variable Description Size Octal Code
LRD d Load (R) from d and d+1 12 bits 24d
SRD d Store (R) into d and d+1 12 bits 25d
Example:
LOCATION OPERATION VARIABLE COMMENTS
Code Generated l - . n
2400 LRD I PASS INSTRUCTION
|
2500 SRD I PASS INSTRUCTION
i
2412 LRD 128 I
I
2512 SRD 128 1
1

9.2.7 EXCHANGE JUMP INSTRUCTIONS

The EXN instruction transmits an 18-bit (absolute) address from the A register to the CPU with a signal
notifying the CPU to execute an exchange jump. The address in A is the starting location of the 16-word
exchange package which contains information about the CPU program to be executed. The 18-bit initial
address must be entered in A before the EXN instruction is executed. The CPU replaces the file with
similar information from the interrupted CPU program. The PP is not interrupted. The EXN instruction
does not affect the monitor flag bit.

9-12 60492600 L

The MXN instruction conditionally exchange jumps to the CPU and initiates CPU monitor activity. If the
monitor flag bit is clear, this instruetion sets the flag and initiates the exchange. If the monitor flag bit is

cnt +his jmctmitndiam cante oo s nace Incdnitadian Mha abantdine ..da.mm. fan thia ,“",hmv.e ic tha 18 _hit aAddnang
S€1, UNiS INSITUCLION aCUS 85 a PASS INSITUCTIoN. 1€ Staliing adadress ior winis eXinange is ui€ 1601t address

in the PP A register. This address must be entered in A before the MXN instruction is executed.

Execution of MAN resembles MXN. However, the exchange package address is taken from the 18-bit
Monitor Address (MA) register in CPU d, rather than from the PP A register.

In a system with dual central processors, d can be 0 or 1 and specifies which CPU the exchange jump will
interrupi. In single processor systems, this value is not interpreted.

Format:
Operation Variable Description Size Octal Code
EXN d Exchange jump CPU d to (A) 12 bits 260d
MXN : d Monitor exchange jump CPU d to (A) 12 bhits 261d
MAN d Monitor exchange jump CPU d to (MA) 12 bits 262d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) 1 18 T30
2601 EXN 1 I
|
2610 MXN i |
2623 MAN 3 :
|

9.2.8 READ PROGRAM ADDRESS INSTRUCTION

This irs.truction transfers the contents of the CPU P register to the PP A register; this allows the PP to
determine whether the CPU is in execution. In a dual central processor system, the lowest order bit of the

instruction format speeifies which CPU P register is to be examined. This bit is not interpreted for a
single central processor system.

Format:
Operation Variable Description Size Octal Code
RPN d Read program address CPU d - A 12 hits 270d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
2700 RPN |
1

60492600 H 9-13

For the 6000 and CYBER 70 Series, the largest value that (P) can be is 17 bits. An ECS transfer is in
progress when bit 17 of the A register is set. For the CYBER 170 series, the P register is 18 bits.

The RPN instruction is not valid for the models 810, 815, 825, 830, 835, 845, and 855. The 2700 octal code
executes as a pass instruction.

9.2.9 6416 PP INSTRUCTIONS

COMPASS assembles the following instructions for execution on a 6416 computer system only. The ETN

instruction initiates memory transfer operations by transmitting an 18-bit address from the PP A register
to the 6416 16K memory. This address points to a word having the following format:

59 35 17
L X0 | A0 K B
« v 7\ 7 N v >4
Starting Address Starting Address Word Count
in ECS in 16 K Memory

Expression d of this instruction specifies the transfer to be performed:
e If dis 0, K words are transferred from ECS to 16K memory.
e Ifdis1, K words are transferred from 16K memory to ECS.

Note that addresses contained in the word are absolute addresses. Operating systems may require
relocation (adding RA to an address) and field length testing, e.g., Is address + RA>FL? The Exchange
Jump package contains RA and FL values for central memory and for extended memory. The 6416 has no
hardware for automatie relocation and field length testing; it is therefore incumbent upon the program to
perform these functions whenever required by an operating system.

The ERN instruction examines the status of the data trunk between 16K memory and the extended core
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit
position of the A register. If the trunk is free (not busy), the A register remains cleared. The d portion of
this instruetion is ignored.

After execution of this instruction the program would typically test the A register for a sign before
executing an instruction that initiates an ECS operation.

Format:
Operation Variable Description Size Octal Code
ETN - d Extended core transfer 12 bits 260d
ERN d Read extended core coupler status 12 bits 270d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [0
2600 ETN ;
27C0 ERN :

9-14 | 60492600 L

9.2.10 DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d ficld specify the address of the operand.
During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that specifies
one of the first 100g addresses in memory (0000 through 0077g). During instruction execution, {d) is

treated as a positive 12-bit quantity.

Format:
Operation Variable Description Size Octal Code
ILDD d Load (d)—A 12 bits 30d
ADD d Add (A) + (d)—A 12 bits 31d
SBD d Subtract (A) - (d) —A 12 bits 32d
LMD d Logical difference (A) and (d) —A 12 bits 33d
STD d Store (A)—d 12 bits 34d
RAD d Replace add (d) + (A)—d and A 12 bits 35d
AOD d Replace add (d) : 1—d and A 12 hits 36d
SOD d Replace subtract one (d) - 1—d and A 12 bits 37d
Example;

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 T30

30172 LOD TAG1 i

3102 DD TAG2-108 {

3240 S3n 4R :

3327 L0 TAN14+15R :

2401 STH 1 l

1565 ran 55R :

3n12 AND TAGY ll

27132 <nn TAG2 ;

|

9.2.11 INDIRECT ADDRESS MODE INSTRUCTIONS

In this mosie, during instruetion execution, d specifies an address, the contents of which specify the address
of the desired operand. Thus, d specifies the operand address indirectly.

During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that specifies
one of the first 100g addresses in memory (0000 through 0077g).

On the 7600 (or CYBER 70 Model 76), the address formed permits referencing of memory locations 0000
through 7776g. Location 7777g cannot be referenced.

60492600 H 9-15

On a 6000 Series Computer System (as well as CYBER 180 Series or CYBER 170 Series or CYBER 70 Model
71, 72, 73, or 74) PP, the address formed in indirect address mode permits referencing of all memory
locations, including address 7777g,

Format:
Operation Variable Description Size Octal Code
LDI d Load ((d))—A 12 hits 40d
ADI d Add (A) ' (d)—A 12 bits 41d
SBI d Subtract (A) - ((d))—A 12 bits 42d
LMI d Logical difference (A) - ((d))—A 12 hits 43d
STI d Store (A)—(d) 12 bhits 44d
RAI d Replace add ((d)) + (A)—(d) and A 12 bits 45d
AOI d Replace add one ((d)) * 1—(d) and A 12 bhits 46d
So1 d Replace subtract one ((d)) - 1 —=(d) and A 12 hits 47d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS

: 1 N 18 [30

Ln12 LN TA%Y J}

4103 ROY TAG2-11 :

L240 snr W :

4327 LMY TAGI 4150 |

4401 ST 1 :

4555 AT 56n :

4h12 AOT TAGH :

4713 SnT TAG? :

9.2.12 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, The value formed by m + (d) is used as the address of the
operand. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 100g addresses in memory (0000 through 0077g). The value of absolute or
relocatable expression m is a 12-bit base address.

NOTE

The address formed in indexed addressing permits
referencing of all memory locations but one (0000
through 7776g). Although m and/or (d) can have a
value of 7777g, the computer system does not permit
m + (d) to reference address 7777g.

9-16 60492600 L

When in indexed direct address mode, if d is nonzero the contents of address d are added to m to produce a
12-bit operand address {indexed addressing). If d is zero, m is taken as the operand address.

Format:.
Operation | Variable Desecription Size Octal Code
LDM m,d Load (m+(d))—A 24 bits 50dm
ADM m,d Add (A) + (m+(d))—A 24 bits 51dm
SBM m,d Subtract (A) - (m+(d)) ~A 24 bits 52dm
LMM m,d) Logical difference (A) - (m+(d))—A 24 bits 53dm
STM m,d Store (A}—m-+(d) 24 bits 54dm
RAM m,d Replace add (m+(d)) + (A)—m+(d)and A 24 bits 55dm
AOM m,d Replace add one (m+(d)) + 1—~m+(d) and A 24 bits 56dm
SOM m,d Replace subtract one (mHd)) -1 m+d) and A| 24 bits 57dm
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated ; " " T3

5ﬁ7? 0203 LOM TAGo,778B ?

5106 0202 ADM TAGS, 6 !

5200 0202 SuM TAGS :

5315 7000 L MM 700034158 |

5410 0272 STM TAGS*?OB,TAGli-Z

5500 0342 RAM 1%08#”&65.0:

5600 0173 | AOM | -10B+TAGE |

5712 0203 SGM | TAGE, TAGL f

9.2.13 CENTRAL READ/WRITE INSTRUCTIONS

The CRD instruction transfers a 60-bit word from central memory to five consecutive PP locations. The
18-bit address of the central memory location must be loaded into A prior to executing this instruction.
(Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit words beginning at
the left. Location d receives the first 12-bit word. The remaining 12-bit words go to successive locations.
The contents of A are not altered.

The CRM instruction reads a block of 60-bit words from central memory. The contents of location d give

the block length. The 18-bit address of the first central word must be loaded into A prior to executing this
instruetion. (Note that this is an absolute address.) During the execution of the instruction, the contents

of P go to processor address 0 and P holds m. Also, the block length (from d) goes to the Q register where

60492600 H 9-17

it is reduced by one as each central word is processed. The original content of P is restored at the end of
the instruction. The new contents of P are fetched from word 0. If the read operation overwrote the
contents of word 0, the restored value of P will be different from the original contents.

The contents of A are incremented by one to provide the next central memory address after each 60-bit
word is disassembled and stored. The contents of the Q register are also reduced by one. The bloek
transfer is complete when (Q)=0. The block of central memory locations proceeds from address (A) to
address (A)Hd)-1. The block of processor memory locations proceeds from address m to m+5(d)-1.

Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The first
word is stored at processor memory location m. The content of P (which is holding m) is advanced by one
to provide the next address in the processor memory as each 12-bit word is stored. If P overflows,
operation continues as P is advanced from 7777g to 0000g. These locations will be written into as if
they were consecutive.

The CWD instruction assembles five successive 12-bit words into a 60-bit word and stores the word in
central memory. The 18-bit address word designating the central memory location must be in A prior to
execution of the instruction. (Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears as the higher
order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken from
successive addresses.

The CWM instruction assembles a block of 60-bit words and writes them in central memory. The content
of location d gives the number of 60-bit words. The content of the A register gives the beginning central
memory address. (Note that this is an absolute address.) During the execution of this instruction (P) goes
to processor address 0, and P holds m. Also, (d) goes to the Q register, where it is reduced by one as each
central word is assembled. The original content of P is restored at the end of the instruction.

The content of P (the m portion of the instruction) gives the address of the first word to be read out of the
processor memory. This word appears as the higher order 12 bits of the first 60-bit word to be stored in
central memory.

The content of P is advanced by one to provide the next address in the processor memory as each 12-bit
word is read. If P overflows, operation continues as P is advanced from 7777g to 0000g. These
locations will be read from as if they were consecutive.

(A) is advanced by one to provide the next central memory address after each 60-bit word is assembled.
Also, Q is reduced by one. The block transfer is complete when (Q)=0.

Format:
Operation Variable Description Size Octal Code
CRD d Central read from (A) to d 12 bits 60d
CRM m,dT Central read (d) CM words beginning
at CM (A)» PP m 24 bits 61dm
CWD d Central write from d to (A) 12 bits 62d
CWM m,dT Central write (d) words beginning
at PP m-»CM (A) 24 bits 63dm

TExpression d is required.

9-18 60492600 H

Example:

Code Generated

6015

6125

nn12

9.2.14 1/0 BRANCH INSTRUCTIONS

The following instructions are conditional long jump instructions, each of which tests for a condition on
channel d. When the condition is true, the jump to address m takes place. When the condition is not met,
execution continues with the next instruction. The d expression is required.

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 {30
1
cRn i15¢ :
I
CPM |TAG1,258
!
Cwh 320 |
|
fCwM TAGY,508 |
I

For the FJM instruction, an input channel is full when the input equipment has sent a word to the channel
register and sets the full flag. The channel remains full until the PP accepts the word and clears the flag.
An output channel remains full when a PP sends a word to the channel register and sets the full flag. The
channel is empty when the output equipment accepts the word and notifies the PP.

On the models 810, 815, 825, 830, 835, 845, 855, 865, and 875, d must be less than 40g,

Format:
Operation Variable Description Size Octal Code
AJM m,d Jump to m if channel d active 24 bhits G4dm
IJM m,d Jump to m if channel d inactive 24 bits 65dm
FIM m,d Jump to m if channel d full 24 bits 66dm
EJM m,d Jump to m if channel d empty 24 hits 67dm
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 I30
bu02 9N12 AgM TAG1,2 :
]
6502 0217 IJM™ TAG2 ,CHAN=?
|
Hhob 0025 FJH TAG3,‘0 i
1
A7164 00?76 LIV b TAGGL ,CHAN i
1

60492600 L

9-19

9.2.15 1/O TEST AND SET CHANNEL FLAG INSTRUCTIONS

The SCF instruction branches to the location specified by m if the channel d flag is set; otherwise, it sets
the channel flag and exits. The programmer can unconditionally set the channel flag by setting m to P+2.

The CCF instruction clears the flag in the channel specified by d. The m field is required, but not used.

The SFM instruction branches to the location specified by m if the channel d error flag is set, and clears
the error flag.

The CFM instruction branches to the location specified by m if the channel d error flag is clear; otherwise,
it clears the error flag.

Format:
Operation Variable! | Description Size Octal Codelt
SCF m,d Branch to m if channel d flag set 24 bits 644dm
CCF m,d Clear channel d flag 24 bits 654dm
SFM m,d Branch to m if channel d error flag 24 bits 664dm
set
CFM m,d Branch to m if channel d error flag 24 bits 674dm
clear

TThe veriable d is a 5-bit field containing the channel number.
ﬁThe operation code occupies 7 bits.

Example:

Code Generated I LOCATION IO'EIA!ION VARIABLE COMMENTS
e e 1 18 30
6445 0100 SCF 1008,5 1
6545 0100 CCF 1008,5 :
6645 0100 SFM 1008.,5 :
6745 0100 ' CFMm 1008,5 :
6453 0100 SCF 100B,13B :
6553 0100 CCF 100B,138B :
6653 0100 SFM 1008,138B :
6753 0100 CFM 1008,13B E

9-20 60492600 H

9.2.16 1/O BRANCH INSTRUCTIONS

The following instructions are conditional long jump instruetions, each of which tests a condition on
channel d. When the condition is true, the jump to address m takes place. When the condition is not met,
execution continues with the next instruction. These instructions are exclusively 7600 PPU instructions.

The d expression is required.

Format:
Operation Variable Description Size Octal Code
FIM m,d Jump to m on channel d input word flag 24 biis 6Odm
EIM m,d Jump to m if no input word flag on channel df 24 bits Gldm
IRM m,d Jump to m on channel d input record flay 24 bhits 62dm
NIM m,d Jump to i if no input record flag on

channel d 21 bits 63dm
FOM m,d Jump to m on channel d output word flag 2.1 bits G-4dm
EOM m,d Jump to m if no output word flag on

channel d 2.1 bits G5dm
ORM m,d Jump to m on channel d output record fiag 2.1 bits GGdm
NOM m,d Jump to m if no output record {lag on

channel d 24 bits G7dm
Example:

Code Generated

A0S 1368
6102 1745

62M1 136F

6F04 17266
6415 7090
6500 1528
66T1 1266

6715 1366

60492600 H

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
FTv TAGE ,6 i
T TAGE .2 :
IM TAGF L1 :
cHEM N A :
MM TAGH,GHAN :
FOoM 7010n,158 |
X
EOM 1h"n¢11cn,3;
a2 -Hﬂsnrnr;_a.rlum--J
NOM i TAGH JCHA M Y ;

9-21

9.2.17 A REGISTER INPUT/OUTPUT INSTRUCTIONS
The following instructions transfer a word to or from channel d and the lower 12 bits of the A register.

On the CYBER 70 Model 76 and the 7600, the IAN instruetion is not executed until the input channel d
word flag is set. If the flag is not set when the instruction is read, execution halts until an g:xternal. signal
sets the flag. The input channel d record flag does not affect the IAN execution. The JAN instruction
clears the input channel d word flag and record flag and transmits a resume signal over the input cable
after the word is entered in the A register.

On the CYBER 70 Model 76 and the 7600, the OAN instruction is not executed while the output chann_el d
word flag is set. If the flag is set, execution stops until an external resume signal clears the flag. This
instruction sets the output channel d word flag and transmits a work pulse over the output channel cable.

§ On a CYBER 180 Series; a CYBER 170 Series; CYBER 70 Model 71, 72, 73, 74; or 6000 Series machine,
executing either of these instructions when the channel is inactive causes the peripheral processor to
become inoperative until some other peripheral processor activates the channel or the system is
deadstarted.

Format:

Operation Variable Description Size Octal Code
IAN d Input: channel d to A 12 bits 70d

OAN d Output: (A) to channel d 12 bits 72d
Example:

LOCATION OPERATION | VARIABLE COMMENTS
Code Generated ; " " T3
7003 1 AN > J;
7204 caN CHAN ;

9.2.18 BLOCK INPUT/OUTPUT INSTRUCTIONS

The following instructions transfer a block of 12-bit words on channel d to or from a starting PP memory
location specified by m. The number of words transferred is specified by the contents of the A register
which is reduced by one as each word is transferred. The operation is completed when (A)=0 or the channel
becomes inactive (CYBER 170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 only).

I On the CYBER 180 Series; the CYBER 170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
machines, the input operation is complete when the contents of A equal 0 or the data channel becomes
inactive. If the operation is terminated by the channel becoming inactive, the next location in the
processor memory is set to all zeros. The word count is not affected by this empty word. Therefore, the
contents of the A register give the block length minus the number of real data words actually read in.

During execution of either of these instructons, address 0000 temporarily holds P, while the P register

holds m. The contents of P advance by one to give the address for the next word as each word is
transferred.

If a read operation overwrites word 0 (address 0000), the restored value of P may be different from the
contents of P before the operation.

9-22 60492600 L

NOTE

If this instruetion is executed on a CYBER 180 Series;
CYBER 170 Series; a CYBER 70 Model 71, 72, 73, or 74;
or 6000 Series machine when the data channel is
inactive, no operation is accomplished and the program
continues at P + 2. However, the location specified by m

is set to all zeros for the IAM instruction.

On a OVRE
iiduviouaie

76 Model 78 or a 7600, the IAM instruetion is not executed until the input channel d word flag

is set. If the flag is not set when the instruetion is read, execution halts until an external signal sets the
flag. The presence of an input channel d record flag is ignored for the first word of the block but
terminates the block input at any word after the first. In this case, the next location in the PP bloek input
storage area contains a noise word; any remaining locations are unaitered. Note that the storage location
can be incremented through location 7776g to 000g on a 7600 (or CYBER 70 Model 76), or location

7777g through 0000 on a 6000 Series machine (or a CYBER 180 Series; a CYBER 170 Series; CYBER 70

Mod

71, 72, 73, or 74), which could destroy existing data or a program.

On a CYBER 70 Model 76 or a 7600, the OAM instruetion is not executed until the output channel d word
flag is cleared. If the flag is set when the instruetion is read, execution halts until a resume pulse clears
the flag. An output channel d record flag does not affect OAM execution.

Format:

Operation Variable Description Size Octal Code
1AM m,d_T Input: (A) words to m from channel d 24 bits 71dm

OAM m,dT Output: (A) words to channel d from m 24 bits 3dm

TExpression d is required.

Example:
Code Generated

71C2 1364

704 1364

LOCATION OPERATION | VARIABLE COMMENTS
) W 18 [30
) §
1AM TAG.3 |
|
oaM TAG 4 |

9.2.19 SET QUTPUT RECORD FLAG INSTRUCTION

The RFN instruetion sets the output channel d record flag and transmits a record pulse over the cable. The
instruetion ignores the previous status of the channel d flags; the instruction is executed even if the output

channel d record flag is set.

Format:

Operation Variable Description Size Octal Code
RFN d Set output record flag on channel d 12 bits T-1d

60492600 L 9-23

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
: 1 It 18 I30
- ¥
7u,06 REN 6 !
)

9.2.20 CHANNEL FUNCTION INSTRUCTIONS

The ACN instruetion activates the channel specified by d. This instruction must precede the IAN, 1AM,
OAM, or OAN instructions. Aectivating a channel alerts the input/output equipment for the exchange of
data. Activating an already active channel causes the PP to become inoperative until another PP or an
external equipment deactivates the channel, or the system is deadstarted.

The DCN instruction deactivates the channel specified by expression d. It stops the input/output
equipment and terminates the buffer. Deactivating an already inactive channel causes the PP to become
inoperative until deadstart or until the channel is activated. Avoid disconnecting the channel before first
sensing for channel empty, deactivating a channel before stopping the associated processor, or deactivating
a channel before placing a useful program into the associated processor. After deadstart, PPs wait on an
input channel. Deactivating a channel after deadstart causes an exit to address 0001 and execution of the
program.

The FAN instruction sends the external function code from the lower 12 bits of the A register on channel d.

The FNC instruction sends the external function code specified by m on channel d. For this instruection,
expression d is required.

Execution of a FAN or FNC instruction when the channel is active causes the PP to become inoperative
until another PP or an external equipment deactivates the channel, or the system is deadstarted.

Format:
iOperation Variable Description Size Octal Code
=
ACN d Activate channel d 12 bits 74d
DCN d Disconnect channel d 12 bits 75d
FAN d Function (A) on channel d 12 bits 76d
FNC c,d Function ¢ on channel d 24 bits 77dm
Example:
LtOCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
7405 ACN 5 T
7504 CCN CHAN :
7605 FAN CHAN®1 '
|
7705 0020 FNC 20F,5 !
: |

9-24 60492600 H

9.2.21 ERROR STOP INSTRUCTION

The ESN instruection halts execution of the peripheral processor program and indicates a program error
condition to the monitor control unit. The PPU must be restarted by a deadstart sequence from the MCU,

only.

Format:

Operation Variable Description Size Octal Code
ESN d Error Stop 12 bits 7700
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30
7700 ESN ;
60492600 H 9-25

PROGRAM EXECUTION 10

COMPASS can be called from the library and placed in execution through a COMPASS compiler call
statement or through an IDENT statement {section 4) in a FORTRAN source deck. Ordinarily, when
COMPASS is called through FORTRAN, the parameters specified on the statement apply also to COMPASS.

10.1 CONTROL STATEMENTS

Normally, assembly of COMPASS source programs or the execution of CPU binary object decks is done
from a job file. A file is usually submitted in the form of card decks or card images. The first section of
the file must contain the control statements deseribed in this section. Other optional statements are
deseribed in the operating system reference manual. Following the control statement section are one or

SUTin LCLCITHCC (S LY el

more sections containing source statements and data.

A control statement begins with the first nonblank character. A comma or a left parenthesis or blank
marks the beginning of a parameter string. Parameters in the string are separated by commas. A period or
right parenthesis terminates a parameter string. Comments optionally follow the terminator. Within the
parameter strings, blanks are ignored. Ordinarily, a parameter can contain only letters and digits. When a
perameter is enclosed between dollai signs, all characters are permitted and blanks are not ignored. Within
sueh a dollar-sign delimited parameter, two consecutive dollar signs represent a single dollar sign.

10.1.1 JOB STATEMENT

A job statement of the following format must be the first statement in the deck. The parameters following
name can be in any order or can be omitted. For any omitted field, a default value is supplied which is an
installation option.

Format:

(name,Tt,E Clem,

name 1 through 7 letters or digits by which the job is identified.
The first character must be a letter.

Tt CPU time limit in seconds (NOS/BE 1, SCOPE 2: 1 through 77777g; NOS 1: 1 through
327604¢). Must be sufficient to process all control statements for the job, including
assembly and execution.

EClem (NOS/BE 1, SCOPE 2 only). Estimate of maximum amount of LCM or ECS in octal
thousands, required for assembly or execution (1 through 1400g).

COMPASS notes storage used in the job dayfile. For subsequent runs, the field lengths can be decreased
accordingly.

60492600 H 10-1

Examples:

‘/JOBI, T100, EC30.

(TESTER.

10.1.2 COMPASS CONTROL STATEMENT

The following statement causes the COMPASS assembler to be loaded from the library and executed.
Parameters specify modes and files.

Format:

(COMPASS(pl,pz, cee ,pn)

The optional parameters, p, may be in any order within the parentheses. A parameter can be omitted or
can be in one of the following forms:

mode
mode=0
mode=1fn

Mode is one or two characters as described below; Ifn is a 1 through 7 character name of a file or a
character string.

Mode S@' ificance
A - Abort mode.

A Abort job step at end of run if any assembly errors occurred.
omitted Do not abort job step for assembly errors.

B - Binary output.

omitted or B Binary on the load-and-go file (LGO).
B=0 No binary output.
B=1fn Binary on the named file.

BL - Burstable listing.
BL Generates output listing easily separable into components:

° Issues page ejects between listing segments (storage allocation map,
source code, and cross reference table).

° Assures an even number of pages (page parity) for each program unit
listing, issuing a blank page at end if necessary.

omitted or BL=0 Generates listings in compact format. Page parity and listing segment page
ejects are suppressed.

10-2 60492600 H

D - Debug mode.

D

omitted

Binary is generated on the file indicated by B parameter in spite of assembly
errors and regardless of the abort mode (A parameter). The A parameter is
ignored when the D parameter is selected.

D is ignored if B=0.

Assembly errors inhibit binary output. In abort mode (A parameter present),
no binary output is written at all for a subprogram containing assembly errors.
Otherwise (A parameter omitted), the message ERRORS IN ASSEMBLY is
written to the file indicated by the B parameter for each subprogram
eontaining assembly errors.

E - Error list. Suppressed if full list is directed to the same file or if no assembly errors oceur.
However, if the full list and error list are on different files (for example, the full list is written to
OUTPUT and the error list is written on the named file), the error list will contain all statements
having error flags. If an error line was generated by a macro call, the macro call ean also appear in
the error list. Specification of both the E and the O parameter results in a control statement error.

omitted
E

E=1fn
E=0

Error list on file OUTPUT.
Error list on file ERRS.
Error list on named file.

No error list is generated (equivalent to directing error list to the same file as
full list).

F - FORTRAN mode. Establishes value of special element *F.

omitted or F
F=number

F=name

G - Getsystem text.

omitted or G=0

*F is 0.
*F is number (one decimal digit).

*F is a number corresponding to name as follows:

COMPASS =0

RUN =1 (The RUN compiler is no longer supported.)
FTN4 =2

FTN5 =3

Load no system text from a sequential binary file.

G Load the first system text overlay, if any, from file named SYSTEXT.

G=1fn Load the first system text overlay, if any, in the specified sequential binary
file.

G=lfn/ovl Search the specified sequential binary file for a system text overlay whose
name is ovl and load the first such overlay.

I- Source of assembler input.

omitted Source deck is on INPUT file.

I Source deck is on COMPILE file in either compressed (see the UPDATE
control statement X option, in the Update reference manual) or expanded
format.

60492600 H 10-3

LO -

ML -

10-4

1=0 Nlegal.

I=lfn Source deck is on named file.

Full list.

omitted or L List output on OUTPUT file.

L=lfn List output on named file. When the full list is on a different file than the

short list (see O option) and the P option is not specified, the listing for each
subprogram is a separate section beginning with a one-word header consisting
of an asterisk and the first six charaecters of the subprogram name. This

header identifies the subprogram as a convenience for sorting and cataloging.

L=0 No full list will be generated.

List options. Selects or deselects a maximum of nine of the list options A, B, C, D, E, F, G, L, M, N,
R,S, T, or X.

omitted or LO=0 Same as selecting B, L, N, and R only.

LO Selects list options C, F, G, and X, and deselects R.

LO=cje9...c, A list of up to nine characters. Inclusion of B, L, N, or R deseleects the
corresponding option. Otherwise, inclusion of a character selects the option.
For options, refer to LIST pseudo instruction, chapter 4.

LO=$$$$ Selects all list options.

Initial Value of MODLEVEL Micro.

omitted or ML MODLEVEL is defined equal to JDATE (chapter 7) at the start of each
assembly.

MLs=string MODLEVEL is defined as string (nine characters maximum) at the start of
each assembly.

No eject.

omitted Explicit ejects are honored.

N Explicit ejects (from TITLE or EJECT pseudo instruction) are suppressed.

Short list. Suppressed if full list is directed to the same file or if no assembly errors occur.
However, if the full list and short list are on different files (for example, the full list is written on
OUTPUT and the short list is written on the named file), the short list will contain all statements
having error flags. If an error line was generated by a maecro call, the maero eall may also be in the
short list. Specification of both the O parameter and the E parameter results in a control statement
error.

omitted or O List output on OUTPUT file.
O=1fn List output on named file.
0=0 No short list will be generated (equivalent to directing short list to the same

file as full list).

60492600 H

PD -

PS -

Continue page.

p

omitted

Page numbering continues from subprogram to subprogram, creating a single
continuous listing file. End-of-record is also suppressed between routines on
the L file.

Page numbering begins with 1 at the start of each subprogram.

Initial Vaiue of PCOMMENT Miecro.

omitted or PC

PC=strir

PCOMMENT is defined as 30 blanks at the start of each assembly.

PCOMMENT is defined as string at the start of each assembly. Characters are
truncated from the right or blanks are appended to the right, as necessary, so
that the length of the micro value is exactly 30 characters.

Print Density. Job default print density is assumed upon entry. This option affects only the listing I

files.
PD=6
PD=8 or PD

PD=other or
omitted

Page Size.

PS=x

PS=other or
omitted

System Text Name,

omitted

S=0
S

S=ovl

S=lib/ovl

Print density is six lines per inch.
Print density is eight lines per inch.

Print density defaults to job default (an installation parameter, user
changeable) lines per inch.

Page size is x lines per page. Acceptable values of x are 4<x<99.
If PD is not specified, page size defaults to job default lines per page.

If PD is specified, page size defaults to PS=(PD*job default page size)/job
default print density.

If there are no G parameters other than G=0, load the overlay named
SYSTEXT from the job's current global library set.

Load no system text from a library.
Load system text overlay named SYSTEXT from job's current global library set.

Load the system text overlay named ovl from the job's current global library
set.

Load the system text overlay named ovl from the library named lib, which may
be a user library file or a system library.

Source of external text (XTEXT) when location field of XTEXT pseudo instruetion is blank.

omitted
X=1fn
X=0

X

60492600 K

External text OLDPL file.

External text on named file.

Nlegal.
External text on OPL file.

10-5

Example:

Reads source from INPUT, writes the binary output to LGO,
and the listing to OUTPUT. Assemble in debug mode with

ﬁOMPASS(B,D, S=0VI)
system text from overlay OVI in the global library set.

Disables LIST pseudo instruction and sets LIST options
A, S, G, X, and D.

/ U ard d ions.
COMPASS. ses the standard default options

MULTIPLE SYSTEM TEXT OVERLAYS

(COMPASS(LO=ASGXD)

COMPASS allows up to seven system text overlays to be used for an assembler run. They are specified by
G and S parameters on the COMPASS control statement. Each G parameter (except G=0) specifies loading
of a system text overlay from a sequential binary file, and each S parameter (except S=0) specifies loading
of a system text overlay from a user library file or a system library. The G and S parameters can be used
in any combination and in any order, and can be intermixed freely with other parameters, provided the
total number of system text overlays specified does not exceed seven. COMPASS loads the system text
overlays in the order in which the G and S parameters oceur on the COMPASS statement. If a system
maero, micro, or symbol is defined by more than one system text, only the last definition is used. S=0 has
no effect if there are any other S or G parameters.

Example:

Reads source from file COMPILE and gets system
text from overlays SYSTEXT and PFMTEXT in the
global library set, and from the local file MYTEXT.

(COM PASS(1,S,5=PFMTEXT, G=MYTEXT)

Get svstem text from overlay SCPTEXT
COMPASS(G=FILE/SCPTEXT, S=MYLIB/TEXT) on the file FILE, and from overlay TEXT

in library MYLIB.

10.1.3 LGO CONTROL STATEMENT

An LGO control statement calls for the loading and execution of CPU binary output produced by the
assembler unless the B option on the COMPASS control statement is set to 0 or to some other file name.
When binary output is on some file other than LGO, the statement is replaced by a program call statement
for that file. The file is automatically rewound before loading. The LGO file is temporarys; it is released

at job termination.

NOTE

A peripheral processor program can be executed only by the operating system. This type of
program execution requires system origin privileges.

Format:

{ LGO.

(LGO(pl’pz’p:}’.‘.’pn) or l

10.1.4 PROGRAM CALL STATEMENT

The program call statement direects the operating system to search for a file or CPU program that has the
specified name, load it into central memory (CM or SCM), and execute it as a CPU program.

10-6 60492600 H

Formats:

(name(pl,pz,.--,pn)
(name.

name Program name.

P; Parameters in a format acceptable to the program being called.

When the operating system locates the file, it rewinds and loads the file. When loading is complete, it
executes the program as a CPU program.

10.1.5 7/8/9 CARD

A card with rows 7, 8, and 9 punched in ecolumn one separates sections in the job deck. The level is
assumed zero unless columns 2 and 3 econtain an octal level number punched in Hollerith code. The
remaining columns optionally contain comments.

As an example, a deck consisting of & control statement section and a COMPASS source input section

would include two 7/8/9 cards. The first {erminates the control statements and the second terminates
COMPASS input. A 7/8/9 card of level 17 is interpreted by the operating system as a 6/7/8/9 card.

- 10.1.6 6/7/8/9 CARD
A card with rows 6, 7, 8, and 9 punched in column one signals the end of the job deck. Columns 2 through

80 optionally contain comments.

10.1.7 USER CONTROL STATEMENT (NOS 1 ONLY)

The user control statement format is:

(USER , usernam, passwrd, famname.

usernam User number or name
passwrd User password
famname Name of user permanent file device family name

The USER statement, required by NOS 1, follows the job control statement and specifies user access
information. The user name is used in system bookkeeping and defines the user's file catalog area. The
user can specify a different permanent file catalog during job processing by issuing another USER control
statement.

60492600 G 10-7

10.2 SAMPLE DECKS

The following job calls for assembly of the source program and execution of the binary object program
produced by the assembly. The USER control statement (for NOS 1 only) provides required user access
information. COMPASS reads source statements from file INPUT, writes the listing on QUTPUT, and
writes a binary object deck on file LGO. Control statement LGO ecalls for execution of the binary object
program, which obtains its data from file INPUT.

6
7
8 Z
9 Z
Data for j L
Execution l (L
7
8
9
(END TEST i
—
Subprogram H
Test Paa _JJ
.
//
(IDENT TEST
(7
8
"/
LGO.
Control 0 |
Section | cowpass. i

/CHARGE statement.
/USER statement.
\ / SAMPLE, T100.

10-8 60492600 G

in the following job, the COMPASS assembier is called twice. During the first assembly, binary object
decks for subprograms TEST1 and TEST2 are written on file LGFILEl. The source decks for these

subprograms are in the second section of the INPUT file. During the second assembly, COMPASS writes 2
binary object deck for subprogram CDA on file LGFILE2. Each assembler run produces a full listing.
Following the second assembly, LGFILE2 is repositioned to the beginning of the file. Then, the COPYBR
program is called to copy the contents of LGFILE2 to a punch file (PUNCHB). The LGFILE1 statement
then calls for the loading and execution of subprograms TEST1 and TEST2 from LGFILE1. Following
successful execution of the subprograms, the file is rewound and copied to the punch file, after which the

job terminates.

(9 I)
g '; 11 } Data for execution
1 » l
9 (END CDA |
|__ ,J-' =11 } Subprogram CDA
{ IDENT CDA

Nefoonni

END TEST2 1
= 1 } Subprogram TEST2
(IDENT TEST?2] "
END TEST1 1

>~

Vs
s
Y

} Subprogram TEST1

IDENT TEST1 m”

% I N

9 (COPYBR(LGFILE1, PUNCHB)
{ REWIND(LGFILE1)
(LGFILEL.
(COPYBR(LGFILE2, PUNCHB) Control
{ REWIND(LGFILE2) — Section
(COMPASS (B=LGFILE2)
(COMPASS(B=LGFILE) —
SAMPLE, T500, EC50. —
o P
—

60492600 G) 10-9

In the following example, the IDENT statement causes FTN to call COMPASS to process the COMPASS
source deck. If the COMPASS END statement is not followed by another IDENT statement, then

COMPASS returns control to the compiler that called it.

WOoo~1;»

IGND

(COMPASS Source Deck

IDENT begins in IDENT
column 11—

LFORTRAN Source Deck

7
8
(i

(FTN.

JOB,EC100,

The following sample programs illustrate how to assemble and use a system text overlay.

IDENT MYTEXT

STEXT
1 ONE EQU 1
46 HALF EQU 30
SHIFT MACRO ALPHA.BETA
1FC NE s DALPHASX2%9 1
SAZ ALPHA
IFC NE»SBETADB2S 1
s8e SETA
LX6 X282
ENDM
END

10-10

CONSTANT ONE
PUS CONSTANT

POSITIONING MACRO

60492600 G

IDENT TEST
ENTRY TEST

SST
6110000001 TEST SB1 ONE CONSTANT ONE FROM TEXT
5126000004 ¢ SA2 INBUF PICK UP VALUE FROM STORAGE
6120000036 SHIFT X2sHALF POSITION . WORD IN X6
5160000006 + SA6 OUTBUF RETURN NEW WORD TO STORAGE
7160247021 ENDRUN
2 INBUF BSS P
1 OUTBUF BSS 1
END TEST
The deck for this job could be set up as follows:
6 l
T, '
8 f’
9 /-
(IDENT TEST
7
8 L
9 /£
(IDENT MYTEXT
7 |
9 (COMPASS (G=MYTEXT,)

(COMPASS (5=0, B=MYTEXT)

L_ TEXT, Ti7.

60492600 G 10-11

LISTING FORMAT n

This section describes assembly listing format. Control of the contents of the listing is deseribed in
section 4.11 Listing Control, and in section 10.1.2 COMPASS Control Statement.

1.1 PAGE HEADING

Each page of the assembly listing contains a title line and a subtitle line in the following format:

title COMPASS Version date time PAGE X
subtitle sub-sub block symbm /////
title name qual //
title Up to 62 characters taken from the first TITLE pseudo instruction or from a
TTL pseudo instruction or, in lieu of these, from the IDENT instruction
date Date of assembly
time Time of assembly in hours, minutes and seconds
PAGE x Page number of listing, Pagination begins with 1 for each END instruction

unless the P option is selected on the COMPASS control statement

subtitle Up to 62 characters taken from second and subsequent TITLE pseudo
instructions or a CTEXT pseudo instruction

sub-subtitle Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or
TTL pseudo instruction or the location field of an ES or PS machine instruction.
If the instruction that introduces the new sub-subtitle also causes a page eject,
the instruction immediately follows the heading (assuming the C list option is
also selected).

block name Name of the block in use at beginning of page

symbol qual Qualifier in use (see QUAL pseudo instruction)

1.2 HEADER INFORMATION

The first page of the assembly listing for each subprogram contains a summary of binary control cards
(optional), a list of all the blocks established for the subprogram, and lists of entry points and
external symbols.

11.2.1 BINARY CONTROL CARD SUMMARY

A binary control card summary in the following format is generated for each IDENT instruction when the

60492600 H 11-1

COMPASS control statement or the LIST instruction selects the B list option:

ADDRESS LENGTH BINARY CONTROL CARDS
addr1 21 binary card1
i d
addr2 12 b‘“ary card,
addry, L, binary card
eop (teop) END card or blank
binary card, The binary card that caused generation of the binary for the overlay, partial
! binary, or subprogram. The list includes SEG, SEGMENT, and IDENT instruc-
tions.
addr.1 The central memory or peripheral processor memory origin address for the
subprogram, overlay, or partial binary written out as a result of the binary
card.
L. The octal length of the subprogram, overlay or partial binary, in central

memory words for a central processor assembly, or in peripheral processor
words for a peripheral processor assembly.

. eop The octal central memory or peripheral processor address for the end of the
4 program unit begun by the previous IDENT.
feop The octal length in central memory words of a peripheral assembly; not present

in a listing of a central processor assembly.

Examples:
ANDRESS LENGTH RTINARY CONTR0L rAFDS,
101 71 TNENT COMPASS, LOVER,CMP
17?2 5241 SEG
5637 1242 <SEG
778 L1u5 SFG
13242 517 SEG
20437 1352 SEG
22011 FND COMPASS
ADDRESS LENGTH B8INARY CONTRIL CARDS.
0 7761 IDENT DSDs0

T7€1 (1462}

11-2 60492600 H

11.2.2 BLOCK USAGE SUMMARY

A block usage summary of the following format is generated in the assembly listing under control of the

B list option:
BLOCKS
name,

1

name
2

name
n

name

type

baddri
lengthi

Examples:
BLOCKS

PROGRAM®
LITERALS®
TONTROL
PSFUDN
suss
BUFFERS

60492600 H

TYPE

t

1
PN

n

ADDRESS LENGTH
baddr bll1
baddr 2 blz
baddrn b!n

Name of the block used in the subprogram, as follows:
PROGRAM*

ABSOLUTE*

LITERALS*
other

For a relocatable assembly, indicates the zero block. For an
absolute assembly, the first PROGRAM#* indicates the absolute
block, the second indicates the default symbols block.

Appears in a relocatable assembly only and indicates the use
of an absolute block.

Identifies the literals block.

identifies a local, labeled common, or blank common block,

The type of the block as follows:
ABSOLUTE

+LOCAL

+COMMON

All addresses in the block are relative to absolute zero. For
an absolute asembly, all blocks are ABSOLUTE.

Addresses in the block are relative to the origin assigned to
block zero. The + is present for an ECS/LCM block.

Addresses in the block are relative to the origin of the common
block. The + is present for an ECS/LCM block.

Beginning address of the block according to type.

Number of words in the block.

TYPF

ARSOLUTE
ARSQLUTF
ARSOLUTF
ARSNOLUTF
ABSOLUTF
BRSOLUTF

APPRESS

n
5416
5632
7075

13242
204L37

LENGTH

5416
215
1242
4145
5175
11140

11-3

PLOCKS TYPE

A3SOLUTE® A3ISOLUTE

PROGRAM* LOCAL
DATAL LICAL
LCM +LNCAL
TABLE +L0NCAL
TABLE +COMMON
TABLE Locat
TABLE CIAMMON
/77 CIMMON

11.2.3 ENTRY POINT LIST

ADORESS LENGTH

62
35

w

w
S AN N R N S S
wn

<
[
L4
[
«©

If the subprogram declares entry points, a list of entry point symbols in the following format follows the

block usage summary.
ENTRY POINTS.

sym *+addr1+block1

1
sym, *+a.ddr2 +bloc:k2

E 3
sym +addrn+blockn

Where n is one-third the number of entry points.

sym_ ., *+addrn 11 +blockn 1 sym, 4 *+addr2n+1 +block2n
symn+2 * +addrn +2 +b100kn+2 s ym2n+2 *-'ﬁddrzn.pz +b100k2n
sym 2n*+addr2n+block2n Sym3n*+addr3n+block3n

+1

+2

The asterisk to the right of sym. is present if sym. is a

conditional entry point (declared by ENTRYC). The + to the left of addr, is presen‘t if block. is an ECS/LCM

block. The + to the right of addri is present if addr is relocatable,

name surrounded by slashes.

If the symbol is undefined, addri is wkdolokk,

Example:
ENTRY POINTS,

Bl()‘ck.l is blank or a common block

SNAPL 1345+ CALL 72+ 2FQRDER 2375+

SNAP2 1352+ GOoTo 156+ 2PF 2431+

SNAP3 1357+ IF 224+ RPH 2434
JUMPVEC * C+/JUMPVEC/ LA3EL 372+ LCM + 4+
BEGIN g+ READ 435+ LOMS ¥+ 100+/7L M0/
RYTESIZ 6 RECORS 24+/DATAY/

11.2.4 EXTERNAL SYMBOL LIST

If external symbol references are declared in the subprogram, a list of the following format follows the
list of entry point symbols:

EXTERNAL SYMBOLS.

sym, sym .4 sym, 4 SyMg 1 = - - sym. .4

sym,, sym .o

11-4 60492600 H

symgq symy,.q

sym sym
Where n is one-eighth the number of external symbols. If a symbol is a weak external it is
followed by an asterisk.

Exampie.

FYTERNAL

FRMSG

2n

SYMROL S,

CONEXTT YNfFeRY

SYMRQL rCGOTO cec

11.3 OCTAL AND SOURCE STATEMENT LISTING

The contents of the octal and source statement listing depends on the options selected.

The list is 130 characters wide with fields assigned as shown in figure 11-1.

Titie Line

Subtitle Line

60492600 C

Error Location Octal Source Lines Sequence
Flags Addresses Code
Figure 11-1. Format of Octal and Source Statement Listing

11-5

11-6

Error Flags

Location
Addresses

Octal Code

Error flags indicating that errors of the type indicated have been detected on the
source line or in a subsequent statement that is not listed. These flags are
described more fully under Error Directory. Lines containing errors are always
listed.

The value of the location counter with leading zeros suppressed. If no code is
generated or no location symbol is defined by the statement, this field is blank.
If at the time the value is assigned, the value of the location counter differs from
the value of the origin counter, an L precedes the address.

The actual code generated by this statement. Depending on options selected, the
listing shows just the first word or all words generated for data generation
instructions. The field does not include NO instructions (46000_) packed for a
force upper or zeros packed for a completed parcel on a VFD. A 24-bit PPU
instruction is shown two words of data per line.

If the word contains an address, the octal code is flagged as follows:

- Negative relocatable address
Positive relocatable address

Common relocatable address
External address

X O+

For a statement that does not generate code, this field is normally blank.
Exceptions are as follows:

For a LIT instruction the field contains the address of the first word of
the literals generated.

For a COL instruction, the field contains the new beginning-of-comments
column number.

For a symbol defined through SET, MAX, MIN, EQU, =, or MICCNT,
this field contains the octal value of the symbol right justified with leading
zeros suppressed.

For an instruction resulting in a change of base, the notation by=b, is right
justified in the field. by indicates the old base and by indicates the new base.
For an instruction resulting in a change of code conversion, the notation
¢yr—=cy is right justified in the field. c; indicates the old code and cy
indicates the new code.

For a DUP instruction, the field contains the repeat count.

For a BSS or BSSZ instruction, the field contains the octal value of the word
count right justified with leading zeros suppressed. If the word count is
zero the field is blank.

For a DECMIC or OCTMIC instruction, the field contains the octal value of
the expression right justified with leading zeros suppressed.

60492600 A

Source Code Source statement image {columns 1 through 72)
Sequence Columns 73 through 90 of the card image or an identifier for an expansion of a
definition operation as follows:
Macro macro name
Remote code *RMT*
Duplicated code *DUP*
Echoed code *ECHO*
XTEXT file name
OPDEF Operation field of opdef call, such as SB1

The recursion level is indicated in the right half of the field.

Example:
COMPASS 3.71210 - CYBER 70/ COMPREHENSIVE ASSEMALER. COMPASS 3.712%is JB/2.771 16425004, L 13 32
COMMON AND UTILITY SUBROUTIMES. aLe
hdd ALC = TASBLE MANAGEP AWN ELLOCATNR, CIMOASS
. AL LOCATOR WILL MOVE TAPLES TOQ ACQUIRF POOY. ALSO MAY Jur»
A INTERMEDIATE 02 C2NS3S-FEFF2cnlrS ONTO SCRATOM FILF,
= EMTRY {A3) = TASLEL IHDEX.
. {X1) = CHANGE (+ 2 =) TO TA3LF SI7F.
Ad EXIY tX2) = 03I4TH OF TAOLE,
. {X3) = NcW LENGTH CF TeSLr.
5466 5020003462 ALCX sS4z ORIGINS+AG PETLATM VALULIS FOP EXIT 2fpLy !
5030003516 U SAT SIZES+AS
5467 $J00008300 aL® RS RETURN EYTIT
5470 6120000834 ALCL s12 HTABLES eRrEerT THQEY RERTISTE2R
5020003462 S87 ORIGTNSHAS CU2PTHT CRATATNM
5471 54322 SA3 A2+32 CURRFNT LTHSTH
S4421 SAs A2471 NEXT TAD ORIGIN
36613 X5 X14X3 NEW ST7F
. 37942 IxX3 Xi=X2 T:QT IF 2704 F12 CYPINSTIN
5472 37006 IX, X0 -X6
13300054746 N3 XuyyALC2 JUMP TO 2E-ALLJCATE nnor
54630 546 a3 STORE MKW “1Iv
5473 04u0005L65 (3] aLax FxXTT
. MIVE TABLFS.
54764 5120033172 aLC2 SA2 SIZCORE STE TF THOURH 270M
{1588 LECY X1
67721 si7 Bz-n1
5475 67771 ALCy $37 A7-31
5157003516 SA5 SI7ESed?
36445 Ixi X++X5
5476 0574005475 Nz 17,4023 Loae
5130003345 343 PASS
5477/ 63730 S3i7 X3
37024 I3 X2-Xt
53440 Sy X4 (M%) = TOTAL LFUGTH
67 sa7

1.4 LITERALS
When the D list option has been selected, the assembly listing includes a listing of the literals block

following the default symbols listing. Following each literal address are the octal contents of the word and
a display code conversion of the contents of the word.

60492600 G 11-7

Examples:

CONTENT OF LITERALS BLOCK.
011121 17485772752000000000 0+.>2X
01N127 16659007000000000000 N
01912 15052327010705553636 MESTARE 23
010124 550L40503111501145522 PECIMAL R
010125 N5212511220504570000 ENUIRFN,
D10126 5522N05212511220504L00 RFOAUIRFEN
010127 0000n00000N000000000N i
0101397 202217n722011555G102 PROGRAM A9
010131 17222457000000000000 ORY,
CONTENT OF LITERALS BLOCK.
7315 an24 1
7316 707N *r
72317 aonz G
73217 anon
7321 565n1 A
7322 anoo
7323 gsne FF
7324 1411 LI
7325 2405 TF
7326 22n1 RA
7327 1232 LS

1.5 DEFAULT SYMBOLS

When the D list option is selected, a list of default symbols immediately precedes the literals block.

Example:
DEFAULT SYMBOLS DEFINED BY COMPASS
000000 X MSG=
005461 TAGY
005462 TAG2
OPSLAT anr
TNSLEN Sym

1.6 ASSEMBLER STATISTICS

Assembler statistics are printed at the end of the octal and source statement listing or, if the D list option
is selected, following the default symbols. Information includes the following:

Amount of storage used (octal)

Number of source statements

Number of symbols defined

Number of invented symbols

Number of symbol references

CPU type in which COMPASS executed and assembly time
Number of errors encountered during assembly

Number of lost references, that is, references to symbols that have been omitted from the symbolic
reference table

11-8 60492600 G

1.7 ERROR DIRECTORY

The assembly listing includes an error directory if any errors are detected during assembly. The
directory begins a new page identified with the subtitle ERROR DIRECTORY. Each type of error that
occurred is called out with a two-line message of the following format:

x TYPE ERROR description
OCCURRED ON PAGES Pqs B, Pys +vo B,

4 i

Types and descriptions are given in Tables 11-1 and 11-2. Errors flagged with an alphabetic character
are fatal, A fatal error causes suppression of binary output. Nonfatal warning flags are numeric; they
are informative only.

TABLE 11-1. FATAL ERRORS

Type Message Significance Action
A ADDRESS FIELD An error exists in a variable subfield Refer to the
BAD. entry. The following is a list of manual for the
possible errors: correct address
' field format
The CODE character is not A, D, E, I, for the opera-
0, or *, tion code
specified.

The symbol or name is greater than 8
characters.

The expression does not reduce to one
external term.

The relocatable terms do not cancel
properly.

The instruction requires an absolute
expression.

The instruction disallows register
designators.

A data error; 8 or 9 is encountered in
octal data and the modifier is not S,
P, 0, E, D, or B.

No data is found in the variable field
of a LIT instruction.

No symbol is following an =S, =X, or
=Y prefix.

The relative jump is out of range
(-31>r>31) on a PPU instruction.

The BASE character is not 0, M, D,
or *,

60492600 G 11-9

TABLE 11-1. FATAL ERRORS (Contd)

Type Message Significance Action
A ADDRESS FIELD A register is illegal in a CON
BAD. (Contd) instruction.

A synonymous instruction for OPSYN or
CPSYN cannot be located.

The micro count is less than zero or
greater than ten.

The NOLABEL character is not I.

A negative relocation is specified on
ORG or ORGC.

The POS value is less than 0 or
greater than word size.

The OPDEF reference is erroneous.

No comma is following the DIS word
count.

An illegal entry is in the variable
field of IDENT.

D DOUBLY A symbol has been previously defined Rename the
DEFINED or declared external. duplicate
SYMBOL. symbol in the
THE FIRST program.
DEFINITION
HOLDS.

E ECHO, DUP, . The definition of ECHO, DUP, RMT, or Correct the
RMT, OR MACRO is not entirely within the next program.
MACRO outer definition.
ILLEGALLY
NESTED.

F NUMBER OF One of the following error conditions Correct error
ENTRIES exists: condition and
EXCEEDS rerun the job.
PERMISSIBLE LIT generates more than 100 words.
AMOUNT.

Data is missing or erroneous on XTEXT
file.

More than 63 formal parameters and
local names are in a macro definitionm.

There are more than 255 blocks.

There are more than 511 external

symbols.

11-10 60492600 G

TABLE 11-1. FATAL ERRORS (Contd)
Type Message Significance Action
L LOCATION The required location field entry is Correct the
FIELD BAD. errocneous. The format two macro defi- location field
nition has no substitutable parameters. entry.
N NEGATIVE An entry point may not be negatively Change to use
RELOCATION ON relocated. positive or
ENTRY POINT. absolute
relocation for
entry points.
Rerun job.
0 OPERATION One of the following error conditions Correct the
FIELD BAD. exists in the operation field: operation
field.
The instruction is unrecognizable.
The instruction is out of sequence,
such as ABS or PPU not in the first
statement group.
The instruction is illegal for binary
mode.
The relational mnemonic on the IF
statement is erroneous.
AIDTEXT has determined that the instruc- Replace
tion has changed or is not valid for the instruction.
models 810, 815, 825, 830, 835, 845,
and 855.
P CONSULT A user-generated error flag from an Action to be
LISTING FOR ERR or ERRxx instruction has been taken depends
REASON BEHIND encountered. upon source of
P-ERROR error.
R DATA ORIGIN An attempt was made to set data into Use labeled
QUTSIDE BLOCK blank common or beyond block limits. common or
OR IN BLANK increase block
COMMON .. size and rerun
job.
U UNDEF INED There is a reference to a symbol that Define the
SYMBOL. is not defined; for example, an IF symbol.
VALUE statement line count, a DIS word
ASSUMED 0. count, an unrecognizable attribute on
an IF statement, or an undefined
qualifier.
v BIT COUNT The VFD field size is erroneous. Correct the
ERROR ON VFD size of the VFD
(MUST BE field.
0 COUNT 60).

60492600 L

11-11

TABLE 11-2. INFORMATIVE MESSAGES
Type Message Significance Action

1 LOCATION SYMBOL The location field is erroneous. The in- Define or
BAD. SYMBOL NOT struction does not require an entry. eliminate the
DEFINED. symbol in the

location field.

2 ADDRESS ERROR The variable field entry is erroneous. Correct the sym-
ON SYMBOL The location field symbol is not defined. bol definition.
DEFINITION.

3 DUPLICATE MACRO The macro, opdef, or synonymous operation Rename the
DEFINITION. NEW redefines the operation code. duplicate macro
ONE OVERRIDES. name.

4 BAD FORMAL The macro or ECHO formal parameter name is Correct the
PARAMETER NAME repeated or illegal. formal pa-
IGNORED. rameter name.

5 CPU OPERATION The OPDEF, CPOP, CPSYN, or PURGDEF speci- Correct the
SYNTAX INCOR- fies an illegal syntax. syntax of the
RECTLY SPECIFIED. pseudo

instruction.

6 LOCATION FIELD The entry in the location field is Correct the
MEANINGLESS. erroneous; it is ignored. location field.

7 ADDRESS VALUE The value of the address is erroneous; Check the
EXCEEDS FIELD one of the following conditions exists: possible values
SIZE, RESULT of the variable
TRUNCATED. The value of the expression exceeds the subfield.

size of the destination field.

The BSS address expression value is
negative.

The MICRO starting character position
or character count is negative.

8 MISSING OR EXTRA The variable subfield entry is missing Correct the
ADDRESS SUBFIELD. or superfluous. variable

subfield.

9 MICRO SUBSTITU- The micro reference is unrecognizable. Correct the
TION ERROR. NO micro reference.
SUBSTITUTION.

11.8 SYMBOLIC REFERENCE TABLE

The assembler generates a symbolic reference table (figure 11-2) if the L list option is on at the end of

assembly. The table is not complete if the option was turned off at an
table lists symbols according to the qualifier, if any,
are listed first.

11-12

SYMBOL QUALIFIER = qualifier

0 y time during the assembly. The
under which they were defined. The global symbols
A new heading of the following form introduces each new list of qualified symbols.

60492600 H

The qualifiers are in the order declared in the subprogram. Symbols are listed alphabetically.

When symbol references are lost because table space has been exceeded, the subtitle line includes
notification in the form n LOST REFERENCES.

Format 1 reflects the XREF P effect; P is the default for the XREF pseudo instruction. Formats 2 and 3
reflect the effects of XREF B and XREF A, respectively.

Title Line } }
SYMBOLIC REFERENCE TABLE. Il
Format 1 (XREF P):
o o 80 o o
symbol value block | page/line | & | page/line | & | page/line | & age/line| & | page/line | &
Format 2 (XREF B): 1]
o | ¥ ¥ ¥
symbol value block | page/line 8 address, page/line | / / address,| page/line |
Format 3 (XREF A):
symbol value block address, address, address, address, address,

symbol

value

block

page/line

address

60492600 G

Figure 11-2. Format of Symbolic Reference Table

Alphabetical list of symbols defined under the qualifier.

Absolute value of the symbol or the address assigned to this symbol relative to
the block named.

If the symbol was defined by the SST pseudo instruction, block is the system
text file or overlay name., Otherwise, this field is blank in an absolute assembly
or, in a relocatable assembly, it contains the name of the block containing the

symbol.

From left to right and from top to bottom, a list of indices sequenced according
to page number. Each index points to a statement containing references to the
symbol or defining the symbol. Present when XREF B or P is in effect.

The location counter address of the instruetion containing the reference. Pres-
ent when XREF A or B is in effect.

11-13

flag

Identifies page/line index to a statement that defines the symbol or uses it in an

IF statement as follows:

o M O

—

Definition statement; EQU, =, SET, MAX, MIN, or MICCNT
ENTRY or ENTRYC pseudo instruction

Symbol used in conditional test

Symbol used for indirect storage (applies only to PPU or PERIPH
assemblies)

Symbol used in location field of the statement

‘Symbol used for storage

EXT pseudo instruction

When XREF A is in effect, the table does not include the flags.

Example:
GOMPASS 3.71210 - NYRER 707 COMPRPEHENSIVL ASSEMALER. COMPASS 3,.71213 B72u/7E 16.23.46. PAGE Lhg
SYMBOLIC REFERFNCE TASLE. [114: D)}
SNTENP 5115 72712 ¢ 74751 S Tess 76s7 3 79724
ShuNB 5621 73788 8ful Tw/12 T8/ Teld2 5780 757%) 78746 L
SNUMBL 5416 TA68 L /53 78756
SHWLIN 5423 73728 77741 LAYV Turyv2 -Pos22 79700 L Tosay
SNWLINL 5425 79714 L 79714
SnML IN2 5427 79713 79717 L
SNX 5136 72716 L rR139 S T/l 77/1% 77/%
72732 S 2742 S 76716 /3, 77738
N SYHMROL QUALIFIER = CATA
AF 6675 115739 L 11h/%6 121737 131782 32713 132237
ces 7326 132760 133757 1337218 173751 13364 1%/22 135768 L 123/ 6
ccst 7332 135752 13.7%6 L N
cese L7323 135738 ¢ 13R701
1} 7256 137732 121723 13721 L
csc 7287 111728 121217 132716 L
CSH 7259 117723 121714 132762 L
csL T26% 117717 21711 123767 L
csr 7266 117711 121248 1313757 L
(474 7261 117/7.8 121708 133729 L
ocs 1222 1177.9 117712 117714 117/ 11727 137732 131727 ¢
nest r22% 13172 L 131745
oL 6674 115738 L 125735 13672,
00 6673 115/37 L 115746 3 11565/3% 126735 134719
ov 6653 115716 L 12./2% 3 122/61) 127258 126727 1327.°%
€F 6651 115721 L 122721 125711 1267133 1277:5 S
ERR 6715 116736 L' 121735 122224 122755 1267.,5 A2r7.7 131752 1327186
116753 121754 122747 123738 126711 276719 1327.8
118757 122758 12271 125750 126740 128760 132712
€S 6662 115727 t
ESC Tinut 122722 129704 L .
(3 6653 115723 ¢ 122743 123727 § 123742
FC 6660 115719 L 12,735 § 1227e9
4] 6676 115760 L 135/03 135747
GTS 1275 132749 137759 133722 1337% 133747 1367.5 136719 L
GOS1 7275 136736 L 134737
6Cs2 7277 136232 1364739 L
6CS3 7336 1367861 L "136/64
GCS4 7303 136 sbi 1397485 L
6CSS 730& 136768 L 136/81
GCSH 7306 1764746 13753 L
6C57 337 136753 136755 L
GCSe 7316 1357u2 135711 135715 L
INT 7135 125768 126755 L
LRS 6740 117215 117726 117736 119706 L
NCS 233 121706 121769 121712 121715 128718 121721 ISZIQSL\/___J
3o/
11-14

60492600 D

COMMON COMMON DECKS 12

PRSI e |

The ecommon common decks are a set of COMPASS subroutines which are powerful tools for use by
COMPASS programmers. The common common decks perform functions such as:

Data conversion

Dynamie table management

Saving/restoring registers

Providing an input/output interface at the CIO and FET level

All of the common common decks run under NOS and NOS/BE; a subset of them run under SCOPE 2.
Table 12-1 shows each deck name, relocatable program name, entry point names, and the decks supported
under SCOPE 2.

12.1 ACCESS TO THE COMMON COMMON DECKS

The ecommon common decks are available in two forms:
As relocatable subroutines

In source code form as a set of common decks
Both methods of accessing the common common decks are illustrated in the sample program in appendix D.

All the common common decks except the table management decks COMCMTM and COMCMTP are
available as relocatable subroutines that reside on the system library SYSLIB. In this form the common
common decks are easy to use; relocatable COMPASS programs need only include external references to
entry point names in the common common decks. These external references are satisfied from SYSLIB at

load time. (The CYBER loader searches SYSLIB by default when satisfying external references, but the
SCOPE 2 Loader does not; under SCOPE 2, SYSLIB must be explicitly included in the library set.)

Occasionally, the programmer may need to access the source code of the common common decks. That
source code resides on the COMCPL old program library as a set of common decks (see the Update
reference manual). The source code of these common decks can be made available to a COMPASS program
in three ways:

Update-based procedures can use the COMCPL old program library as a secondary old program library
(see the Update reference manual). The decks are called just as one would call a common deck from
one's own old program library.

Modify-based products can convert the COMCPL old program library to an OPL via the UPMOD
statement (see the NOS reference manual); the OPL is then used as the source for the common
common decks.

The programmer can use the COMPASS XTEXT pseudo-instruction in the program to obtain the source
code from either an old program library or an OPL {(see the X file option of the COMPASS control
statement).

The system texts required to assemble the common common decks residing on the COMCPL old program
library are IPTEXT and CPUTEXT. These texts can be made available to the program via the S parameter
on the COMPASS control statement.

60492600 H 12-1

TABLE 12-1. SUMMARY OF COMMON COMMON DECKS
cpmgmn | ommmn | meee | SR
COMCARG CPU.ARG ARG= Yes
COMCCDD CPU.CDD CDD= Yes
COMCCFD CPU.CFD CFD= Yes
COMCCIO CPU.CIO CIO= No
COMCCOD CPU. COD COD= Yes
COMCCPT CPU.CPT CPT= Yes
COMCDXB CPU.DXB DXB= Yes
COMCMNS CPU.MNS MNS= Yes
COMCMOS CPU.MOS MOS= Yes
COMCMTM Yes
COMCMTP Yes
COMCMVE CPU.MVE d Yes
COMCRDC CPU.RDC RDC= No
COMCRDH CPU.RDH RDH= No
COMCRDO CPU.RDO RDO= No
COMCRDS CPU.RDS RDS= No
COMCRDW CPU.RDW RDW= RDX= LCB= No
COMCRSR CPU.RSR RSR= Yes
COMCSFN CPU.SFN SFN= Yes
COMCSRT CPU.SRT SRT= Yes
COMCSST CPU.SST SST= Yes
COMCSTF CPU. STF STF= No
COMCSVR CPU.SVR SVR= Yes
COMCSYS CPU. SYS SYS= RCL= WNB= MSG= No
COMCUPC CPU.UPC UPC= Yes
COMCWOD CPU.WOD WOD= Yes
COMCWTC CPU.WTC WIC= No
COMCWTH CPU.WTH = No
COMCWTO CPU.WTO WTO= No
COMCWTS CPU.WTS WIS= No
COMCWTW CPU.WIW WIW= WTX= DCB= No
COMCXJR CPU.XJR XJR= No
COMCZTB CPU.ZTB ZTB= Yes

12-2

60492600 F

12.2 DESCRIPTION OF THE COMMON COMMON DECKS

A detailed external reference description of each common common deck follows. The decks are described

in alphabetical order. Each description lists entry and exit conditions, registers used, and routines
explicitly called.

The following rules apply to the use of all common common decks:

Any input/output buffers, string buffers, exchange package save areas, and so forth, to be used by any

of the common common decks should not be located with the last 10g words of the field iength.
Some fetch loops, move loops, and so forth, may encounter a hardware fault (out of range address)
the above restriction is not adhered to.

Registers that are not used by the common common decks are not modified.

Entry and exit conditions are only those listed in the deseriptions below.

12.2.1 COMCARG — PROCESS ARGUMENTS

COMCARG processes a list of arguments (in the format generated by COMCUPC) by the use of an
equivalence table. The equivalence table must be terminated by a word of all zeros and must be in the
following format:

12/op,18/asv,12/st,18/addr

op One or two character keywords (left justified, zero filled)
asv Address of assumed value
st Status

addr Address where argument is placed

This format is generated by the COMPASS VFD pseudo instruction. ARG= is the only entry point for
COMCARG.

Entry conditions:

(B1) 1

(B4) Argument count

(A4) Address of first argument
(X4) First argument

(B5) Address of equivalence table

Exit conditions:

(X1)#0
1 Option not found in table
2 Single argument equivalenced
3 Illegal re-entry of argument
Registers used:
A2, A3, A4, AT
B2, B3, B4

X0, X1, X2, X3, X4, X6, X7

60492600 H

if

12-3

The following conditions apply to the use of COMCARG:

If a keyword=value form is found in the argument list, addr is set to the upper 42 bits of the argument
value (in bits 59-18) and the lower 18 bits of asv (in bits 17-0).

If only a keyword is found in the argument list, addr is set to the full 60 bits of asv.
If asv 0, the argument cannot be equivalenced.

If status=4000g, a zero value is retained as a display code zero. Otherwise, a value of zero (full
word) is stored at addr.

If asv=addr, only one entry of that argument is allowed and op is set to -0.

12.2.2 COMCCDD - CONVERT INTEGER CONSTANT TO DECIMAL DISPLAY CODE

COMCCDD converts an integer constant to decimal display code. Up to ten digits are converted with
leading zero suppression. The econverted integer contains space fill. One register contains the display code
right justified; another register contains it left justified. CDD= is the only entry point for COMCCDD.

Entry conditions:

(B1) 1
(xX1) Number to be converted

Exit conditions:

(B2) 6*count of digits converted)
(X4) Conversion left justified
(Xs) Conversion right justified

Registers used:
A2, A3, A4

B2, B3, B4
X1, X2, X3, X4, X6, X7

12.2.3 COMCCFD - CONVERT CONSTANT TO F10.3 FORMAT

COMCCFD converts a 30 bit integer to display code in FORTRAN F10.3 format. The value returned is
equal to the input value divided by 1000. The result is returned in two forms: left justified and right
justified. Leading zeros in the integer portion of the result are suppressed. If the 30-bit input value
exceeds 999999.999(7346544777g), the result iseseeesessse . An input value greater than 30 bits is
truncated to the lower 30 bits, CFD= is the only entry point for COMCCEFD.

Entry conditions:

(B1) 1
(X1) Integer to be converted

Exit conditions:
(B3) - (number of blank fill bits in result)
(X4) Conversion left justified
(X6) Conversion right justified
Registers used:
Al, A2, A3, A4
B2, B3, B4, BS
X1, X2, X3, X4, X6, X7

12-4 60492600 H

12.2.4 COMCCIO - PROCESS /O OPERATION
COMCCIO performs input/output operations via the peripheral processor program CIO. An operation is

performed when the buffer is not busy. If the file-status-word is zero, the operation is not processed and
IN and OUT are set to FIRST. CIO= is the only entry point for COMCCIO.

Entry conditions:

(X2) 24/unused, 18/skip count to CIO, 18/FET address for file
(XT7) Function code; if <0, X7 is the complement of the request and auto reeall is requested

Exit conditions:

(X2) FET address
(X7) 0

If ERP$ is defined:

(X2) FET address
(X7) FET error code:

0 No error, operation performed, normal exit
other Error code from FET; operation not performed, exit to ERP$

If ERP1$ is defined:

(X2) FET address
x7 FET error code:

0 No error, operation performed, normal exit
other Error code from FET; operation not performed, normal exit
Registers used:
Al, A6, A7
X1, X2, X6, X7

12.2.5 COMCCOD — CONVERT CONSTANT TO OCTAL DISPLAY CODE

COMCCOD converts an integer constant to octal display eode with leading zero suppression. Up to ten
digits can be converted. The converted integer contains space fill. One register contains the display code
right justified, another register contains it left justified. COD= is the only entry point for COMCCOD.
Entry conditions:

(B1) 1
(X1) Number to be converted

Exit conditions:
(B2) 6*(count of digits converted)
(X4) Conversion left justified
(X6) Conversion right justified
Registers used:
Ad

B2, B3, B4
X1, X2, X3, X4, X6, X7

60492600 H 12-5

12.2.6 COMCCPT — EXTRACT COMMENTS FIELD FROM PREFIX TABLE

COMCCEPT copies the comments field of a prefix (7700g) table to a working storage area. Either the old
or new forms of the prefix table can be used. COMCCPT differentiates between the forms by checking
word FWA+3 of the table to see if it looks like a time-of-day word. The copy terminates on end-of-table,
zero byte, or COPYRIGHT. The working storage area is terminated by a zero word. CPT= is the only
entry point for COMCCPT.

Entry conditions:
(A1) Prefix table address
(A6) Address of working storage - 1
(B1) 1
(X1) Control word
Registers used:
A2, A3, A4, A6

B3, B4
X1, X2, X3, X4, X6

12.2.7 COMCDXB — CONVERT DISPLAY CODE TO BINARY

COMCDXB converts a string of display code digits up to one word in length (left-justified and zero-filled)
into internal integer format. Either a base 10 or a base 8 string of digits can be converted as specified in
the call. This specification, however, is overridden if an explicit B (octal) or D (decimal) is the last
character of the value to be converted. DXB= is the only entry point for COMCDXB.
The assembly option DXB1$ controls the processing of an 8 or 9 when octal is specified for the display code
value and no explicit B or D appears in the value. If DXB1$ is not defined, an error occurs. If DXB1$ is
defined, the value is considered to be decimal.
Entry conditions:

(B1) 1

(B7) Base; if >0, decimal base; if 0, octal base.

(X5) Word to be converted (left justified, zero filled)
Exit conditions:

(X6) Converted digits
(X4) Error code:

0 No error
other Error in assembly

Registers used:

B2, B3, B4, B5
Xo, X1, X2, X3, X4, X5, X6, X7

The presence of one or more of the following always causes an error:
A non-digit in the word to be converted
A character after the post radix

An 8 or 9 with the post radix equal to B

12-6 60492600 H

12.2.8 COMCMNS — MOVE NON-OVERLAPPING BIT STRING

COMCMNS moves a specified source string from one location to another in central memory. The only bits
disturbed in the destination field are those extracted to aceept the source string. The destination field
must not overlap the source field in any way; results are undefined if overlapping occurs; COMCMOS can
be used for overlapping moves. MNS= is the only entry point for COMCMNS.

Entry conditions:

(B1) 1

(B2) Source first bit (0,1, ..., 59)

(B4) Destination first bit (0, 1,..., 59)
(X0) Number of bits to move

(X2) Source first word address

(X4) Destination first word address

Exit conditions:

(B1) 1

(B2) Source next bit (0,1, ..., 59)

(B4) Destination next bit (0, 1,..., 59)
(X2) Source next word address

(X4) Destination next word address

Registers used:

Al, A2, A3, A5, A6
B1, B2, B3, B4, B5, B§
X0, X1, X2, X3, X4, X5, X6, X7

12.2.9 COMCMOS — MOVE OVERLAPPING BIT STRING

COMCMOS moves a specified source string from one location to another in central memory. The only bits
disturbed in the destination field are those extracted to accept the source string. COMCMOS allows the
user to move strings where the destination field overlaps (lies partly or completely within) the source

field. If the move is not an overlap move, COMCMOS calls the faster common common deck COMCMNS to
do the move. For this reason, COMCMNS should always be called whenever COMCMOS is. MOS= is the
only entry point for COMCMOS.

Entry conditions:

(B1) 1

(B2) Source first bit (0,1, ..., 59)

(B4) Destination first bit (0, 1,..., 59)
(X0) Number of bits to move

(X2) Source first word address

(X4) Destination first word address

Exit conditions:

(B1) 1

(B2) Souree next bit (0, 1, ..., 59)

(B4) Destination next bit (0, 1,..., 59)
(X2) Source next word address

(X4) Destination next word address

60492600 H 12-7

Registers used:

Al, A2, A3, AS, A6, AT

B1, B2, B3, B4, B5, B6

X0, X1, X2, X3, X4, X5, X6, X7
Calls:

MNS=

12.2.10 COMCMTM — MANAGED TABLE MACROS

COMCMTM contains four macros, ADDWRD, ALLOC, SEARCH, and TABLE, for generation, allocation,
and processing of managed tables. COMCMTM is intended to be used with COMCMTP.

ADDWRD - ADD WORD TO TABLE
ADDWRD adds a word to a managed table. ADDWRD calls ADW and uses A0 and X1.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ADDWRD table, reg

table Table number
reg Register name or expression for word to be added

ALLOC - ALLOCATE TABLE SPACE

ALLOC allocates table space. ALLOC calls ATS and uses A0 and X1.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ALLOC table, words

table Table number
words Word count (+ or -) to be added
SEARCH - SEARCH MANAGED TABLE
SEARCH searches for a specified entry. SEARCH calls EQS or MES and uses A0, B7, and X6.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

SEARCH tname, entry, mask

tname Table name
entry Entry to be searched for
mask Search mask in X0; if not present, defaults to all bits.

12-8 60492600 H

TABLE - GENERATED MANAGED TABLE
TABLE generates a managed table.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

TABLE tname, count, equiv

tname Table name

count Word count per entry (1 if not specified)

equiv Equivalent table name; allows certain tables to be used by different processors
After the table is generated:

F.tname is the name of the word containing the table FWA.,

L.tname is the name of the word containing the table length.

C.tname is the word count per entry.

12.2.11 COMCMTP — MANAGED TABLE PROCESSORS
COMCMTP contains the following routines for processing managed tables:

ADW Adds a word to the table.

AMU Returns the total memory used by the tables.

ATS Allocates table space.

EQS Searches table for equal entries.

MES Searches a table for equal entries using a mask.

MTD Moves the table down.

MTU Moves the table up.
Macros for calling these routines and for table generation are contained in COMCMTM.
The managed table processors allow the partitioning of central memory into variable regions called tables.
These tables are referenced by pointers that indicate the first word address of the table and the table
length. Memory is allocated to each table as it is required; the user can delete space from the tables.
Each table is allowed at least one word of expansion space to allow a dummy word between each table, thus

ensuring efficient search methods.

The caller of the table processors is expected to provide certain constants for use by the processors. Other
data is provided by COMCMTM.

Data provided by the caller:
MEML Lowest address of managed memory

TOV Address of the table overflow processor

60492600 H 12-9

Data provided by COMCMTM:
NTAB Number of managed tables
FTAB Start of table addresses
LTAB Start of table lengths
F.tnam Address pointer for table tnam
L.tnam Length pointer for table tnam

Data dynamically changeable:

TN Number of managed tables. Set to NTAB by COMCMTM. TN must be less than NTAB
during use,

TO Table overflow processor. Set to TOV by COMCMTM.

LM Low memory limit. Set to MEML by COMCMTM. If this value is increased, MTU should be

called to allow room for change.

F.TEND High memory limit. F.TEND must be initialized by the user. If this value is decreased,
MTD should be called to allow room for change.

TOVT TOV threshold. If the word is defined, it should contain the threshold for calling TOV; ATS
calls TOV when the tables must be moved and less than TOVT free words remain. If TOVT is
not defined, an effective value of zero is used.

ADW - ADD WORD TO TABLE
ADW adds a word to a managed table.
Entry conditions:

(A0) Table number
(x1) Word to be added

Exit conditions:
(A6) Address of added word
(x1) Added word
(X2) FWA of table
(X3) Length of table
(X6) Added word
Registers used:

Al, A2, A3, A4, A6, A7
X1, X2, X3, X4, X6, X7

Calls:
ATS
AMU - ACCUMULATE MEMORY USED

AMU returns the amount of memory used by the managed tables or the current length, whichever is the
largest. The variable MU is set to this value.

12-10 60492600 H

Exit eonditions:
MU MAX{memory used, current assigned length)
Registers used:
Al, A2, A6
B2
X1, X2, X3, X6
ATS - ALLOCATE TABLE SPACE
ATS alloeates table space. The table length can be increased or decreased as specified.
Entry conditions:

(A0) Table number
(X1) Change (+ or -) to the table size

Exit conditions:
(X1) Change made to the table size
(X2) FWA of table
(X3) New length of table
(X7) Less than 0 if tables moved
Registers used if tables are not moved.

A2, A3, A4, A6
X2, X3, X4, X6, X7

Registers used if tables are moved:
Al, A2, A3, A4, A6, AT
B2, B3, B4, B5, B6, B7
X0, X1, X2, X3, X4, X5, X6, X7
Registers restored:

B2, B3, B4, B5, B6, B7 (except -0 restored as +0)
X0, X1, X5

Calls:
AMU, MVE=, TOV

TOV, the user provided table overflow processor, is described below.

Entry conditions:
(B1) 1
(BS) Complement of number of words required
(B6) Return address to continue processing

The location TOV must contain executable code. TOYV is entered via a JP instruection.

Exit from TOV via a JP B6 instruction.

60492600 H 12-11

Exit conditions:

Only B1 must be preserved.

A pointer word must be incremented by the number of words newly available. If TN has not been
altered during execution, the address of the pointer word is F.TEND. If TN has changed, the address

of the pointer word is FTAB-1 plus the contents of TN.
EQS - EQUALITY SEARCH TABLE
EQS searches for a specified entry.
Entry conditions:
(A0) Table number
(B7) Word count per entry
(X6) Entry for search
Exit conditions:
(X2)

(x2)
(A2)

0 if entry not found
entry, if found
address of entry found

Registers used:

Al, A2, A
X1, X2, X3, X7

MES - MASKED EQUALITY SEARCH TABLE
MES searches for a specified entry using a mask.
Entry conditions:

(A0) Table number

(B7) Word count per entry

(x0) Mask

(X6) Entry for search
Exit conditions:

(X2)
(X2)
(A2)

0 if entry not found
entry, if found
address of entry found

Registers used:

Al, A2, A6
X1, X2, X3, X4, X7

MTD - MOVE TABLES DOWN
MTD moves the tables down (away from RA) to eliminate unused memory.
Exit eonditions:

(B2) Number of tables

12-12

60492600 H

Registers used:

Al, A2, A3, AT

B2, B3

X0, X1, X2, X3, X4, X7
Calls:
MVE=
MTU - MOVE TABLES UP
MTU moves the tables up (toward RA) to eliminate unused memory.
Registers used:

Al, A2, AT

B3

X0, X1, X2, X3, X7
Calls:

MVE=

12.2.12 COMCMVE — MOVE BLOCK OF DATA

COMCMVE moves a block of data to a specified location. COMCMVE moves the data from the source
address through the source address plus the word count minus one to the destination address through the
destination address plus the word count minus one. The move can be in either direction. MVE= is the only

entry point for COMCMVE.
Entry eonditions:

(B1) 1

(X1) Word count

(X2) Source address
(X3) Destination address

Registers used:
A2, A4, A6, A7

B7
X1, X2, X3, X4, X6, X7

12.2.13 COMCRDC — READ CODED LINE, C FORMAT

Before a data transfer routine is called, a CIO read function maero (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is called.

When an EOR or EOF is sensed while performing the data transfer, the CIO read function maero must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description

of the CIO macros.

COMCRDC reads a coded line terminated by a zero byte from a CIO buffer to a working buffer. RDC= is
the only entry point for COMCRDC.

60492600 H 12-13

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is less than zero, then the complement of B7 is the word count of the working buffer; COMCRDC
will not read and discard words until an end-of-line for lines longer than the working buffer,

Exit conditions:

(B1) 1
(B6) Address of last word transferred to working buffer plus one
(X1) Status of transfer:
0 Transfer completed

-1 EOF detected on file

-2 EOI detected on file

B6 EOR detected on file before transfer completed
(X2) Address of FET for file
(X4) Contents of last data word transferred before EOL guaranteed
(X7) Level number of EOR

Registers used:
Al, A2, A3, A4, A6, AT
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

LCB=, RDX=

12.2.14 COMCRDH — READ CODED LINE, H FORMAT

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is called.

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be

called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description
of the CIO macros.

COMCRDH reads a coded line terminated by a zero byte from a CIO buffer to a working buffer with
trailing space fill. RDH= is the only entry point for COMCRDH.

Entry conditions:
(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

Exit conditions:

(B1) 1
(B6) Address of last word transferred to working buffer plus one

12-14 60492600 H

(X1) Status of transfer:
] Transfer completed

-1 EOF detected on file

-2 EOI detected on file
B6 EOR detected on file before transfer completed

(X2) Address of FET for file
(X7) Level number of EOR

Registers used:
Al, A2, A3, A4, AB
B1, B2, B3, B4, B5, B6, B7
Xi, X2, X3, X4, X6, X7
Calls:

LCB=, RDX=
12.2.15 COMCRDO — READ ONE WORD

Before a data transfer routine is called, a CIO read funetion macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO funetion is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is called.

When an ECR or EOF is sensed while performing the data transfer, the CIO read function maero must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a deseription

of the CIO macros.

COMCRDO reads one word from a CIO buffer into X6. RDO= is the only entry point for COMCRDO.
Entry conditions:

(A1) Address of IN pointer
(x1) IN

Exit conditions:

. (B1) 1

(X1) Status of transfer:
0 Transfer completed
1 EOR detected on file
-1 EOF detected on file
-2 EQI detected on file

(X2) Address of FET for file

(X6) Word read

Registers used:
Al, A2, A3, A4, A6, AT
Bl
X1, X2, X3, X4, X8, X7
Calls:

CIo=

60492600 H 12-15

12.2.16 COMCRDS — READ CODED LINE TO STRING BUFFER

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is called.

When an EOR or EOF is sensed while performing the data transfer, the CIO read funetion maero must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description
of the CIO macros.

COMCRDS reads a coded line from a CIO buffer to a working buffer. Words in the eircular buffer are
unpacked and stored one character per word in the working buffer. This process is continued until the
end-of-line byte is detected. If the coded line terminates before the working buffer is filled, the working

buffer is padded with spaces; the buffer is not padded if the complement of the word count of the buffer is
used. If the coded line exceeds the size of the working buffer, the excess characters are ignored. RDS= is
the only entry point for COMCRDS.

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is less than 0, B7 is the complement of the buffer length and the string buffer will not be space
filled.

Exit conditions:

(B1) 1
(B6) Address of the last character from the coded line in the working buffer plus one
(X1) Status of transfer:

0 Transfer completed
-1 EOF detected on file

-2 EOI detected on file
B6 EOR detected on file before transfer completed

(X2) Address of FET for file
(X7) Level number of EOR
Registers used:
Al, A2, A3, A4, A6, A7
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

LCB=, RDX=

12.2.177 COMCRDW — READ WORDS TO WORKING BUFFER

Before a data transfer routine is called, a CIO read funetion maero (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is called.

12-16 60492600 H

When an EOR or EOF is sensed while performing the data transfer, the CIO read function maero must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a deseription
of the CIO macros. :

COMCRDW reads a specified number of words from a CIO buffer to a working buffer. COMCRDW also
contains the load CIO buffer and read exit routines required by COMCRDC, COMCRDH, and COMCRDS.
RDW=, LCB=, and RDX= are the entry points for COMCRDW. The RDX$ assembly option controls
read-ghead. The programmer can prevent read-ahead by defining the symbol RDXS$.

Entry conditions:
(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

Exit conditions:

(B1) 1
(BS§) Address of last word transferred to the working buffer plus one
(B7) Word count remaining to be transferred

(X1) Status of transfer:
0 Transfer completed
-1 EOF detected on file
-2 EOI detected on file
-3 CIO= was called to read more data and returned an error status
B6 EOR was detected on file before transfer was completed
(X2) Address of FET for file
(X7 Error status if X1 is -3, otherwise level number of EOR

Registers used:
Al, A2, A3, A4, As, AT
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:
CIO=

12.2.18 COMCRSR — RESTORE ALL REGISTERS
COMCRSR restores the B, A, and X registers from a specified register save area. The format of the
registers in the save area is B0, Bl1,..., B7, A0, Al,..., A7, X0, X1,..., X7. Each register occupies a full
word with the B and A register values in bits 17 through 0. RSR= is the only entry point for COMCRSR.
Entry conditions:

(X1) Address of register save area
Exit conditions:

All registers are set to the content of the register save area.
Registers used:

A0, Al, A2, A3, A4, A5, A6, A7

B1, B2, B3, B4, B5, B6, BT
X0, X1, X2,X3, X4, X5, X6, X7

60492600 H 12-17

12.2.19 COMCSFN — SPACE FILL NAME
COMCSFN converts trailing 00 characters in a word to blanks. SFN= is the only entry point for COMCSFN.
Entry conditions:

(xX1) Name left justified, zero fill
(B1) 1

Exit conditions:

(X6) Name space filled
X7 Final character mask

Registers used:
A3
B2
X3, X6, X7
12.2.20 COMCSRT — SET RECORD TYPE
COMCSRT attempts to identify the format of a record, given the initial part of that record (64 words are
usually sufficient) in a working buffer. The type ecodes returned are listed in table 12-2. SRT= is the only
entry point for COMCSRT.
Entry conditions:
(B1) 1
(X1) LWA+1 of block
(X2) FWA of current record
Exit conditions:

(X6) 42/0Lr*name, 12/0, 6/type number
(X7 Record name in L format

If type number and record name are zero, the record is zero length.
Registers used:

Al, A2, A3, AT

B2, B3

X0, X1, X2, X3, X4, X6, X7
12.2.21 COMCSST — SORT TABLE USING SHELL SORT

COMCSST sorts a table of one word entries into aseending order using a shell sort. All of the entries
should be of the same sign. SST= is the only entry point for COMCSST.,

Entry conditions:
(B1) 1
(B7) Address of table to be sorted
(X1) Number of elements in the table
Exit conditions:

The table is sorted.

12-18 60492600 H

TABLE 12-2. TYPE CODES RETURNED BY COMCSRT
Type Number Format Determined by
TEXT 0 Text record No 7700g table and first word with
all zeros in bits 0 through 17
6PP 1 6000-series peripheral processor 7700g table with three-character
overlay name in header word
OVCAP 2 Overlay Capsuie 7700g table followed by 6300g
table with bit 18=1
REL 3 Relocatable subprogram 3400g table
OVL 4 Central processor overlay 5000g table, 5300g table with bit
17=0, or 5400g table with non-(0,0)
overlays
ULIB 5 NOS user library 7600g table
OPL 6 Modify program library deck 7001g table with 0 word count
OPLC 7 Modify program library common 7002g table with O word count
deck
OPLD 8 Modify program library directory 7000g table with O word count
ABS 9 Multiple entry point overlay 5100g table, 5300g table with bit
17=1, or 5400g table with (0,0)
overlays
7PP 10 7000-series peripheral processor 5200g table
overlay
UPLX 11 Update sequential program No 7700g table and characters CHECK
library with X master control in bits 30 through 59 (control
character character obtained from bits 0
through 5)
UCF 12 Update compressed compile file 7700g table with 0 word count
ACF 13 Modify compressed compile file Bits O through 17 in second word of
7700g table are non-zero
CAP 14 Fast dynamic load capsule 7700g table followed by 6000g
table
DATA 15 Arbitrary data Unrecognizable by criteria defined
in these tables
PROC 16 Procedure record PROC followed by delimiter
17 CDC reserved
SDR 18 Special deadstart record NOS/BE 1 deadstart tape position
UPLR 19 Update random program library 7700g table followed by 6000g table
followed by COMDECK, YANK, or DECK

60492600 J

12-19

Registers used:

Al, A2, A6, A7
B2, B3, B4, B5
X1, X2, X3, X4, X6, X7

12.2.22 COMCSTF — SET TERMINAL FILE

COMCSTF detects if a file is assigned to an interactive terminal. STF= is the only entry point for

COMCSTF.
Entry conditions:
(B1) 1

(X2) Address of FET

The FET must be greater than five words in length.

Exit conditions:

(X2) Address of FET
(x6) 0 if file is assigned to a terminal

Registers used:

Al, A4, A6
X1, X3, X4, X6

Calls:
CIO=

12.2.23 COMCSVR — SAVE ALL REGISTERS

COMCSVR saves the B, A, and X registers in a specified register save area. The registers are saved in the

following order:

B0, B1, ..., B7, A0, Al,..., A7, X0, X1,...

Each register occupies a full word with the B and A register values in bits 17 through 0. B and A registers

are sign extended. SVR= is the only entry point for COMCSVR.

Entry conditions:

Bits 17 through 0 of the word from which SVR= was called contain the address of the register save

area.

Exit conditions:

(save thru save+7) B registers

(save+8 thru save+15) A registers

(save+16 thru save+23) X registers
Registers used:

A0, Al, A2, A3, A4, A5, A6, AT
B1, B2, B3, B4, B5, B6, B7
X0, X1, X2, X3, X4, X5, X6, X7

12-20

60492600 H

i2.2.24 COMCSYS — PROCESS SYSTEM REQUEST

.....

1
-
w2
gl
i
g
A
)
[0}
]
]
@
-
o
]
o
o~
o
<

COMCSYS issues a system monitor request through RA+1. 5YS=, RCL=,
points for COMCSYS.

SYS= - PROCESS SYSTEM REQUEST

SYS= waits for RA+1 to clear before issuing the desired request. Central exchange jump hardware is used
if it is available. If the hardware is not available and the auto-recall bit is set, SYS= waits for the monitor
to process the call before returning.

Entry conditions:

(X6) System request
Exit conditions:

Request accepted by monitor
Registers used:

Al, A6
X6 (Contents restored upon exit)

RCL= - PLACE PROGRAM ON RECALL
RCL= issues a single system request for periodic recall. If RA+1 is busy, no request is issued.
Exit econditions:
Request processed.
Registers used:

Al
X1, X6

WNB= - WAIT NOT BUSY
WNB= waits for a specified status word, bit 0, to be set. If the word is initially 0, WNB= returns.
Entry conditions:
(X2) Address of status word
Exit conditions:
Returns when bit 0 of status word is set.
Registers used:

Al
X1, X6

MSG= - SEND MESSAGE
MSG= formats and issues a system request to send a message (80 characters or less) to the job dayfile. The

message appears in the dayfile as two lines (if necessary) of 40 characters each. Messages exceeding
80 characters are truncated.

60492600 H 12-21

Entry conditions:
(X1) Address of first word of data (data must be packed in sequential locations, and should not
exceed 80 characters)
(X6) Message options:
bit 16 - Auto recall if on
bits 11 through 0 - Message option code (see MESSAGE macro in operating system
reference manual)
Exit conditions:
Returns when operation is complete.
Registers used:

Al, A6
X1, X6

12.2.25 COMCUPC — UNPACK CONTROL CARD

COMCUPC unpacks a control statement into the keyword and individual parameters. The following
conditions apply to the use of COMCUPC:

If B7 is negative on entry, a blank after the keyword is considered to be a separator; otherwise, blanks
are ignored.

The characters) and . are considered as the termination of the control statement.
Characters with display code values 0 or 60g through 77g are illegal before the terminator.
The parameter must contain 7 or fewer characters.

The parameters are stored left-justified with zero fill.

The separator character is placed in the lower 18 bits of the parameter unless it is a *,* in which
case the lower 18 bits are zero.

Two successive separators or a separator followed by a terminator results in a parameter of all zeros.
UPC= is the only entry point for COMCUPC.

Entry conditions:

(A5) Address of first word of control statement

(B1) 1

(B7) First word address of buffer containing parameter information
(X5) First word of control statement

If B7 is negative, B7 contains the complement of the first word address of the parameter buffer.

Exit conditions:

(B6) Parameter count
(X6) 0 if no error during unpacking
Registers used:

Al, A2, A5, A6, A7
B2, B3, B4, B5, B6
X0, X1, X2, X3, X4, X5, X6, X7

12-22 60492600 H

12.2.26 COMCWOD — CONVERT WORD TO OCTAL DISPLAY CODE
COMCWOD converts a word into octal dispiay code. WOD= is the only entry point for COMCWOD.
Entry conditions:

(X1) Word to be converted

Exit conditions:

(B1) 1
(X6, X7) Conversion

Registers used:
A2, A3, A4, A5
X0, X1, X2, X3, X4, X5, X6, X7

12.2.27 COMCWTC — WRITE CODED LINE, C FORMAT

COMCWTC writes a zero byte delimited line from a working buffer to a CIO buffer. If the CIO buffer
becomes sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTC
performs a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO funetion that is in
the FET is reissued. WTC= is the only entry point for COMCWTC.

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flush) the working buffer.

Entry conditions:

(B6) FWA of working buffer
(X2) Address of FET for file

Exit conditions:

(B1) 1
(X2) Address of FET for file

Registers used:
Al, A2, A3, A4, A6, AT
B1, B2, B3, B4, B5, Bé
X1, X2, X3, X4, X6, X7
Calls:

DCB=, WTX=

12.2.28 COMCWTH — WRITE CODED LINE, H FORMAT

COMCWTH writes a coded line in H format from a working buffer to a CIO puffer. Trailing spaces are
deleted. If the buffer becomes sufficiently full to require writing, or the device type indicates a NOS/BE
terminal, COMCWTH performs a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO
function that is in the FET is reissued. If the line to be written terminates with 6 bits of zero, a word

containing a blank byte is appended to preserve the 00 character as a colon. If the line terminates on an
end-of-line, it is written as is. WTH= is the only entry point for COMCWTH.

60492600 H 12-23

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain

the final contents of (to flush) the working buffer.

Entry conditions:

(B6) FWA of working buffer

(B7) Word count of working buffer

(x2) Address of FET for file

If B7 is 0, no transfer is performed.

Exit conditions:

(B1) 1
(X2) Address of FET for file

Registers used:
Al, A2, A3, A4, A6, A7
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

DCB=, WTX=

12.2.29 COMCWTO — WRITE ONE WORD

COMCWTO writes one word to a CIO buffer from X6. If the buffer becomes sufficiently full to require
writing, COMCWTO performs a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO

function that is in the FET is reissued. WTO= is the only entry point for COMCWTO.

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain

the final contents of (to flush) the working buffer.

Entry conditions:
(A1) Address of IN pointer
(X1) IN
(X8) Word to write

Exit conditions:

(B1) 1
(X2) Address of FET for file

Registers used:
Al, A2, A3, A4, A6, AT

B1
X1, X2, X3, X4, X6, X7

12-24

60492600 H

12.2.30 COMCWTS — WRITE CODED LINE FROM STRING BUFFER

COMCWTS writes a coded line from a working buffer to a CIO buffer with trailing space suppression.
Characters in the working buffer are packed and stored in the circular buffer. If the buffer becomes
sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTS performs
a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO function that is in the FET is
reissued. WTS= is the only entry point for COMCWTS.

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flush) the working buffer.

Entry conditions:
(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is 0, no transfer is performed.

(B1) 1

{B6) Word count of data written

(X2) Address of FET for file
Registers used:

Al, A2, A3, A4, AG, A7

B1, B2, B3, B4, B5, B6, B7

X1, X2, X3, X4, X6, X7
Calis:

DCB=, WTX=

12.2.31 COMCWTW — WRITE WORDS FROM WORKING BUFFER

COMCWTW writes data from a working buffer to a CIO buffer. If the buffer becomes sufficiently full to

require writingbor if the device type indicates a NOS/BE terminal, COMCWTW performs a WRITE funetion
unless the symbol WRIF$ is defined. The WIX$ assembly option controls write-behind. The programmer

can prevent write-behind by defining the symbol WT'X$. In this case, the CIO function that is in the FET is
reissued. WTW=, DCB=, and WI'X= are the entry points for COMCWTW.

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flush) the working buffer.

Entry conditions:
(B6) FWA working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is 0, no transfer is performed.

60492600 H 12-25

Exit conditions:

(B1) 1
(B6) Address of next word to be transferred from working buffer
(B7) Status of transfer:
0 Transfer completed
other Remaining word count if CIO= was called to write data and returned an error
status

(X2) Address of FET for file
(X7 Error status if BT is 0

Registers used:
Al, A2, A3, A4, A6, AT
B1, B2, B3, B4, BS, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

CIO=

12.2.32 COMCXJR — RESTORE ALL REGISTERS WITH A SYSTEM XJR CALL
COMCXJR restores all registers from a register save area with a system XJR call. The format of the
registers in the save area is B0, Bl, ..., B7, A0, Al,..., A7, X0, X1,..., X7. Each register occupies a full
word with the B and A register values in bits 17-0. XJR= is the only entry point for COMCXJR.
Entry conditions:

(X1) Address of the register save area.
Exit conditions:

All registers are set to the contents of the register save area.
Registers used:

A0, Al, A2, A3, A4, A5, A6, AT

B0, B1, B2, B3, B4, B5, B6, B7

X0, X1, X2, X3, X4, X5, X6, X7
12.2.33 COMCZTB — CONVERT ALL 00 CHARACTERS TO BLANKS
COMCZTB converts all 00 characters in a word to blanks. ZTB= is the only entry point for COMCZTB.
Entry conditions:

(B1) 1
(X1) Word to be converted

Exit conditions:

(X6) Converted word
(xX7) Final character mask

Registers used:
A3
X3, X6, X7

12-26 60492600 H

12.3 MACRCS THAT CALL THE COMMON COMMON DECKS

Entry points in the common common decks can be called by using system macros. Table 12-3 shows which
macros call entry points in the common common decks. All of the macros are supported under NOS and
NOS/BE. Only the MOVE macro is supported under SCOPE 2. All macros applicable to a given operating
system exist in the system text CPUTEXT. Each macro is described in detail in the following paragraphs.

TABLE 12-3. MACROS THAT CALL COMMON COMMON DECKS

, . Entry Points Description
Macro Called P

MESSAGE MSG= Displays a message on the system
console and enters it in a dayfile.

MOVE MVE= Moves a block of data from one
address to another.

READC RDC= Reads one coded line from the input/output
buffer to the working buffer.

READH RDH= Reads one coded line with space fill from
the input/output buffer to the working
buffer.

READO RDO= Reads one word from the input/output
buffer to X6.

READS RDS= Reads a line image to a character
buffer.

READW RDW= Fills the working buffer from an
input/output buffer.

RECALL RCL= Relinquishes the CPU until a

WNB= function is completed or the CPU

recall time has elapsed.

SYSTEM SYS= Requests the system to process
any three-character request.

WRITEC WTC= Writes a coded line image from the working
buffer to the input/output buffer.

WRITEH WTH= Writes a coded line, deleting all
trailing spaces, from the working
buffer to the input/output buffer.

WRITEO WTO= Writes one word from X6 to the
input/output buffer.

WRITES WTS= Writes a line image from the
character buffer.

WRITEW WIW= Writes data from the working
buffer to the input/output buffer.

60492600 H 12-27

12.3.1 MESSAGE

MESSAGE displays a message on the system console display and enters it into a dayfile. If the job is of
system origin, the message can be flashed on the B display by including a dollar sign as the first character
of the message. MESSAGE requires the common common deck COMCSYS.

The maximum length that a message can be is 80 characters; up to 40 characters per line are displayed.
The message ends with either the first word containing 12 bits of zeros in any byte or at the eightieth
character. The user must pack the display code message in sequential locations before calling MESSAGE.

The format of the RA+1 call for this maero is:

17 0

RA+HL Eg MSG o | « |230 | adar]

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

MESSAGE addr,x,r

addr Beginning address of the message. If the upper 12 bits of the location specified by this
address are zero, then the next 18 bits (47 thru 30) of this location are assumed to contain
the beginning address of the message.

X Message routing option:

0 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of
the control point.

1 Message is displayed at line 1 of the control point.

2 Message is displayed at line 2 of the control point.

3 Message is placed in the user dayfile and displayed at line 1 of the control point.

4 Message is placed in the error log dayfile if the job is a special system job (that is, has
Zgysf?lJe_Tentry point) or is of system origin; otherwise, the message is placed in the user

5 Message is placed in the aceount dayfile if the job is a special system job or is of
system origin; otherwise, the message is placed in the user dayfile.

6 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of
the control point.

7 Message is placed in the user dayfile and displayed at line 1 of the control point.

If x is not specified or is an illegal value, x=0 is assumed. If x is not defined, x=1 is
assumed. If x is the character string LOCAL, x=3 is used.

r -If r is specified, control is not returned until the operation is complete.

12-28 60492600 H

The control point message areas (lines 1 and 2) provide the user with the ability to display
concurrently messages that enter the dayfile and those that require operator action. Line Z is
normally used to display information about the current status of the executing program.

Only messages that do not refer to the job, such as the control statements processed and ecompilers
used, should be placed in the system dayfile (x=0). All messages that refer to the job, such as the
path taken by the programs and the number of records copied, should be placed only in the user
dayfile (x=3). All messages placed in the user dayfile (x=0 and x=6) are counted by the system. If
the number of messages issued by the job exceeds the limit for which the user is validated, the error
message MESSAGE LIMIT; is issued to the user dayfile and the job is aborted.

12.3.2 MOVE

MOVE moves a block of data from one address to another. MOVE requires the common common deck
COMCMVE for absolute assemblies.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

MOVE count, addr1, addr2

count Number of words in the block to be moved
addrl Address of the first word of the block to be moved
addr2 Address of the first word of the destination

MO VE allows overlap in data moves (addr2 can be less than addr1 plus count).

12.3.3 READC

READC reads one coded line from the input/output buffer to the working buffer. Data is transferred until
the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of words are
transferred. READC requires the common common deck COMCRDC.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READC addr, buf, n

addr FET address
buf Working buffer address

n Working buffer word count

60492600 H 12-29

12.3.4 READH

READH reads a coded line with space fill from the input/output buffer to the working buffer. Data is
transferred until the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of
words are transferred. READH requires the common common deck COMCRDH.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READH addr, buf, n

addr FET address
buf Working buffer address
n Working buffer word count

12.3.5 READO

READO reads one word from the input/output buffer to X6. READO requires the common common deck
COMCRDO.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READO addr

addr FET address

12.3.6 READS

READS reads a line image to a character buffer. The words are unpacked and stored in the working buffer
right justified, one character per word, until the end-of-byte (0000) is detected. If the coded line

terminates before the specified number of characters are stored, the working buffer is blank filled.
READS requires the common common deck COMCRDS.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READS addr, buf,n

addr FET address
buf Working buffer address

n Working buffer word count

12-30 60492600 H

12.3.7 READW

—— A

READW filis the working buffer from an input/cutput circular buffer. READW reads ghead in the
input/output buffer. This could cause the program to abort if the last word address of the input/output
buffer is within four words of the FL. If the word count is greater than the length of the working buffer,
READW writes beyond the end of the working buffer. READW requires the common eommon deck
COMCRDW.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READW addr, buf, n

addr FET address
buf Working buffer address

n Working buffer word count

12.3.8 RECALL

RECALL enables the user to relinquish the CPU until a function is completed or the CPU recall time has
elapsed (delay time depends on the operating system and the site). If the stat parameter is included in the

call, control is not returned to the program until bit 0 of the word specified by stat is set. If stat is not
included in the macro call, the program relinquishes the CPU only until the next pass through the recall
loop. RECALL requires the common common deck COMCSYS,

The format of the RA+1 call for this macro is:

59 40 17
RA+1 RCL 1 0 stat

.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

RECALL stat

stat If this parameter is present, control is returned to the program when bit 0 of the word specified
by the address stat is set.

60492600 H 12-31

12.3.9 SYSTEM

SYSTEM processes a three-letter request. The request can be either the functions that MTR performs or a
PP program. A PP program can be called from a CPU program if the first character of the name is
alphabetic. SYSTEM requires the common common deck COMCSYS.

The format of the RA+1 call for this macro is:

40 35 I L 0

59
RA+1 r W p2 pl

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

SYSTEM req,r,pl,p2

req Three-character system request

r If specified, control is returned only after the request is completed
pl Bits 17 through 0 of the request

p2 Bits 35 through 18 of the request

12.3.10 WRITEC

WRITEC writes a coded line image from the working buffer to the input/output buffer. Data is transferred

until the end of the line (0000 in bits 11 through 0) is sensed. WRITEC requires the common common deck
COMCWTC.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEC addr, buf

addr FET address

buf Working buffer address

12-32 60492600 H

12.3.11 WRITEH

WRITEH writes a coded line, deleting all trailing spaces, from the working buffer to the input/output
buffer. WRITEH requires the common common deck COMCWTH.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEH addr,buf,n

addr FET address

buf Working buffer address

n Working buffer word count

12.3.12 WRITEO

WRITEO writes one word from X6 to the input/output buffer. WRITEO requires the common common deck
COMCWTO.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEO addr

addr FET address

12.3.13 WRITES

WRITES writes a line image from the working buffer. Charaecters are packed ten characters per word.

glgklli(r:%ls_gaces are deleted before the characters are packed. WRITES requires the common common deck

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITES addr,buf,n

addr FET address
buf Working buffer address

n Working buffer word count

60492600 H 12-33

12.3.14 WRITEW

WRITEW writes data from the working buffer to the input/output circular buffer. WRITEW writes ahead in
the input/output buffer. This could cause the program to abort if the last word address of the input/output
buffer is within four words of the FL. If the word count is greater than the length of the working buffer,

WRITEW reads beyond the end of the working buffer. WRITEW requires the common common deck
COMCWTW.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEW addr,buf,n

addr FET address
buf Working buffer address

n Working buffer word count

12-34 60492600 H

1.

2.

3.

5.

9.

10.

11.

12.

13.

CHARACTER SETS A

NOTES

The terms upper case and lower case apply only to the case conversions, and
do not necessarily reflect any true case.

When translating from display code to ASCII/EBCDIC the upper case equivalent
character is taken.

When translating from ASCII/EBCDIC to display code, the upper case and lower
case characters fold together to a single display code equivalent character.

All ASCII and EBCDIC codes not listed are translated to display code 55 (space).

Where two display code graphics are shown for a single octal code, the leftmost
graphic corresponds to the CDC 64-character set (system assembled with IP CSET
set to C64.1), and the rightmost graphic corresponds to the CDC 64-character
ASCII subset (system assembled with IP CSET set to C64,2).

In a 63-character set system, the display code for the : graphic is 63, The %
character does not exist, and translations from ASCII/EBCDIC % or ENQ yield
blank (558). The display code value 00 is undefined in 63-character set systems.

Twelve or more zero bits at the end of a 60-bit word are interpreted as an
end-of-line mark rather than two colons. An end-of-line mark is converted to
external BCD 1632 and internal BCD 1672 by operating systems when writing
7-track magnetic tape in even parity (coded) mode, and converted back to 0000
when reading.

This code is changed to 12 when written on a 7-track magnetic tape in even
parity (coded) mode.

11-0 and 11-8-2 are equivalent on input. The character will be punched as
11-0 on output,

12-0 and 12-8-2 are equivalent on input. The character will be punched as
12-0 on output.

12-8-7 and 11-0 are equivalent on input. The character will be punched as
12-8-7 on output.

12-8-4 and 12-0 are equivalent on input. The character will be punched as
12-8-4 on output.

CODE pseudo selects 6-bit octal code as follows:

ASCII

Display Code (default)
External BCD
Internal BCD

EO»

60492600 A A-1

CODE D (default)

CODE E

CODE 1

CODE A

Display Hollerith BCD ASCII EBCDIC

Code Punch Upper Case Lower Case Upper Lower

(026) 6-Bit)
Octal | Char. Ext. | Int.!Octal| Hex. | Char. | Punch | Hex. | Char. Punch | Hex, {Char.| Hex.| Char.
B O (029) |
00 :@ 8-2 oo@D 12! 32 3A 8-2 1A | suB 9-8-17 7A E SUB
o1 A 12-1 61 21| 41 41 A 12-1 61 a 12-0-1 c1 | A 81 ; a
02 B 12-2 62 22| 42 42 B 12-2 62 b 12-0-2 cz | B 82 ! b
03 c 12-3 63 23| 43 43 c 12-3 63 c 12-0-3 c3 | C 83 ¢
04 D 12-4 64 24| 44 14 D 12-4 64 d 12-0-4 c4 | D 84 d
05 E 12-5 65 25 | 45 45 E 12-5 65 e 12-0-5 c5 | E 85 ’! e
06 F 12-6 66 26| 46 46 F 12-6 66 f 12-0-6 c6 | F 8 ! f
07 G 12-7 67 27! 41 47 G 12-7 67 g 12-0-7 c7T | G 87 g
10 H 12-8 70 30| 50 48 H 12-8 68 h 12-0-8 c8 | H 88 ' h
11 I 12-9 7 31| 51 49 1 12-9 69 i 12-0-9 ce |1 89 i
12 J 11-1 41 41| 52 4A J 11-1 6A [} 12-11~1 | D1 5 J 91 j
13 K 11-2 42 42| 53 4B | K 11-2 6B k 12-11-2 | D2 ! K 92 k
14 L 11-3 43 43| 54 4c L 11-3 6C 1 12-11-3 ! D3 | L 93 1
15 M 11-4 44 4| 55 4D M 11-4 6D m 12-11-4 D4 M 94 m
16 N 11-5 45 45| 56 4E | N 11-5 6E n 12-11~5 | D5 | N 95 n
17 o 11-6 46 46} 57 4F | O 11-6 6F o 12-11-6 | D6 ;| O % °
20 P 11-7 47 47| 60 50 P 11-7 70 p 12-11-7 | D7 | P 97 p
21 Q 11-8 50 50| 61 51 Q 11-8 71 q 12-11-8 | D8 | Q 98 q
22 R 11-9 51 51| 62 52 R 11-9 | 72 r 12-11-9 | D9 | R 99 r
23 s 0-2 22 62| 63 53 s 0-2 73 s 11-0-2 E2 | S A2 | s
24 T 0-3 23 63| 64 54 T 0-3 74 t 11-0-3 ES | T A3 |t
25 U 0-4 24 64| 65 55 U 0~4 75 u 11-0-4 E4 | U A4 | u
26 A 0-5 25 65| 66 56 \ 0-5 76 v 11-0-5 ES | V A5 | v
27 w 0-6 26 66 | 67 57 w 0-6 7 w 11-0-6 E6 | W A6 | w
30 X 0-7 27 67| 70 58 X 0-17 78 x 11-0-7 ET | X AT | x
31 Y 0-8 30 0 N 59 Y 0-8 79 y 11-0-8 E8 | Y A8 |y
32 z 0-9 31 ni{ 72 SA z 0-9 7A z 11-0-9 E9 | Z A9 | 2
33 0 (i 12 00| 20 30 0 0 10 DLE |12-11-9-8-1{ FO | © 10 | DLE
4 1 1 01 01| 21 31 1 1 11 DpCl | 11-9-1 F1 | 1 11 | pCl
85 2 2 02 02| 22 32 2 2 12 DC2 | 11-9-2 F2 | 2 12 | DC2
36 3 3 03 03| 23 33 3 3 13 DC3 | 11-9-3 P | 3 13 |TM
37 4 4 o4 |oaf 24 | 34| 4 4 4 | Doa| 11-9-4 | Fe | 4 | 3c |DCe
60492600 A

CODE E

CODE D (default) CODE I 1w,
.
Display Hollerith BCD ASCIH EBCDIC
Code Punch Upper Case Lower Case Upper Lower
(026) §-Bii :

Octal | Char. Ext. | Int. | Octal | Hex. | Char. Punch |Hex. | Char. Punch | Hex. | Char.| Hex.| Char.
@ (029)

40 5 5 05| 05 | 25 | 35 5 5 15 [NAK | 9-8-5 | F5 5 | 3D | NAK
41 6 6 06 | 06 | 26 | 36 6 6 16 | SYN 9-2 F6 6 | 32 SYN
42 7 7 07 | 07 | 27 37 7 7 17 |ETB| 0-9-6 | F7 7 | 26 ETB
43 8 8 10 | 10 | 30 | 38 8 8 18 | CAN | 11-9-8 | F8 8 | 18 CAN
44 9 9 1 | 11| 31 39 9 9 19 | EM | 11-9-8-1 | F9 9 |19 EM
45 + 12 60 | 20 | 13 2B + 12-8-6 | OB | VT |12-9-8-3 [4E | + | 0B | VT
46 - 1 40 | 40 | 15 2D - 11 0D | CR | 12-9-8-5 | 60 - |op | CR
47 « | 11-8-4 54 | 54| 12 | 2a * 11-8-4 | 0A |LF 0-9-5 |5C * | 25 LF
50 / 0-1 21 | 61| 17 2F / 0-1 OF |sI 12-9-8-7 | 61 / Lor | s
51 (0-8-4 34 | 74| 10 | 28 (12-8-5 | 08 | BS 11-9-6 | 4D (|16 BS
52) | 12-8-4 74 | 3 | n 29 |) 11-8-5 | 09 | HT 12-9-5 5D |) |05 HT
53 $ 11-8-3 53 | 53 | 04 | 24 ! $ 11-8-3 | 04 | EOT 9-7 5B 1 $ | 37 ‘ EOT

i ! |
54 = 8-3 13 {13 |3 | 3D . = 86 | 1D |GS |11-9-8-5 [7E | = | 1D . IGS
55 Espace space 20 , 60 | 00 20 space | space 00 | NUL 12—0—9-8-1i 40 . space | 00 NUL
56 | , 0-8-3 | 33 73 |14 | 2¢ | , 0-8-3 | 0C | FF [12-9-8-4 6B | , | 0C | FF
51 | . 12-8-3 73 | 83 | 16 | 2E . | 12-8-3 | OE ,so 12-6-8-6 | 4B . OE | SO
60 |m#® 0-s6 36 176 | 03 | 23 # | 83 |03 'ETX| 12-8-3 | 7B # | o3 ETX
61 [8-7 17 |17 | 718 T 5B [12-8-2 | 1C | F§ | 11-9-8-4 | 4A ¢ |1c | 1Fs
62] 0-8-2 3217|175 | 5D] 11-8-2 | 01 | SOH | 12-9-1 | 5A t o SOH
63 %@ 8-6 16 | 16 | 05 | 25 % 0-8-4 | 05 | ENQ | 0-9-8-5 | 6C % | 2D | ENQ
64 | #" 8-4 14 | 14 | 02 22 " 8-7 02 |STX | 12-9-2 | TF v oz | sTX
65 |- 0-8-5 35 |15 | ™M 5F _ 0-8-5 | 7F | DEL | 12-9-7 | 6D _ o DEL
6 V! ;1‘-9@ 52 (52 00 | 21 1 |12-8-7 D] 11-0 | 4F | | Do | }
61 A& 0-8-7 37T {17 106 | 26 & 12 | 06 | ACK| 0-9-8-6 | 50 & i 2E | ACK
70 (1 |11-85 55 | 55 | 07 27 i 8-5 07 |BEL | 0-9-8-7 | 7D ' | 2F | BEL.
nm i]? |11-8-6 56 | 56 | a7 3F ? 0-8-7 | 1F | US | 11-9-8-7 | 6F ? i IF | IUS
72 < 12-0 72 |32 | 34 | sC < |12-8-4 7B { 12-0 | 4C < | co ‘
73 > | 11-8-7 57 | 57 | 36 | 3E > 0-8-6 | 1IE | RS | 11-9-8-6 | 6E > ! 1E | IRS
4 (<@ | 85 |15 |15 |4 |4 | @ 84 |60 | &1 (7c | e | 9 |t
7% >\ |12-8-5 75 |35 | 14 | sC N 0-8-2 | 7C 1 12-11 | E0 N | ea :
7% | A | 12-8-6 76 | 36 | 76 | 5E A 11-8-7 [7E | v 11-0-1 |[5F | ™ i Al v
4] ; 12-8-7 77 {31 {338 | 3B ; 11-8-6 | 1B | ESC 0-9-7 | 5E ; i 27 ESC
]
60492600 A A-3

HEXADECIMAL—OCTAL CONVERSION TABLE

First Hexadecimal Digit
0 1 2 3 4 5 6 7 8 9 A B c D E F

Second 0] 000|020 | 040 | 060 | 100 | 120 | 140 | 160 } 200]| 220 | 240 | 260 | 300 | 320 | 340 | 360
Hexadecimal

Digit 1] 001021041 | 061 | 101 | 121 {141 | 161 | 201 | 221 | 241 | 261 | 301 | 321 | 341 | 361

21002022042 | 062 102 | 122 | 142 | 162 | 202 | 222 | 242 | 262 | 302 | 322 | 342 | 362

31003023043 | 063 | 103 |'123 | 143 | 163 | 203 | 223 | 243 | 263 | 303 | 323 | 343 | 363

4|1 004 1024 044 | 064 | 104 | 124 | 144 | 164 | 204 | 224 | 244 | 264 | 304 | 324 | 344 | 364

51005 (025|045 | 065 [105 | 125 | 145 | 165 | 205 | 225 | 245 | 265 | 305 | 325 | 345 | 365

6| 006 | 026 | 046 | 066 | 106 | 126 | 146 | 166 | 206 | 226 | 246 | 266 | 306 | 326 | 346 | 366

71007 | 027 | 047 | 067 1107 | 127 | 147 | 167 | 207 | 227 | 247 | 267 | 307 { 327 | 347 | 367

8 1010 | 030 | 050 | 070 {110 | 130 | 150 { 170 | 210 | 230 | 250 | 270 | 310 | 330 | 350 | 370

90111031 |051 | 071 | 111 | 131 | 151 | 171 | 211] 231 | 251 | 271 | 311 | 331 | 351 | 371

A | 012 032|052 | 072 | 112 | 132 | 152 | 172 | 212 | 232 | 252 | 272 | 312 | 332 | 352 | 372

B | 013|033 053 |073 | 113 | 133 | 153 | 173 | 213] 233 | 253 | 273 | 313 | 333 | 353 | 373

C|014 0341054 |074 | 114 | 134 | 154 | 174 | 214} 234 | 254 | 274 | 314 | 334 | 354 | 374

D] 015]035 ;055 {075 [115 | 135 | 155 | 175 } 215 | 235 | 255 | 275 | 315 | 335 | 355 | 375

E]016 | 036 | 056 | 076 | 116 | 136 | 156 | 176 | 216] 236 | 256 | 276 | 316 | 336 | 356 | 376

F 1017 } 037 | 057 | 077 | 117 | 137 |157 | 177 | 217 | 237 | 257 | 277 | 317 | 337 | 357 | 377

Octal 000 — 040 — 100 — 140 —~ 200 — 240 - 300 — 340 —
037 077 137 177 237 277 337 377

A-4 60492600 A

ASSEMBLY-TIME I/0 : B

SCOPE 2

COMPASS 3 under SCOPE 2 uses the Record Manager for all of its I/O operations. Thus, COMPASS 3 can
read and write files with a variety of external formats. For each of the files used by COMPASS, the
default format, and the combinations of file format desecription parameters that may be specified in FILE
control statements to override the defaults, are given below.

Main Source Input File

The ma.in source iqpqt file may be a normal source input file or a compressed compile file; COMPASS
determines which it is by inspecting the data in the file. A normal source input file under SCOPE 2
comprises the following:

File Organization (FO) sequential (SQ)
Block Type (BT) unblocked
Maximum Block Length (MBL) none

Record Type (RT) control word (W)
Maximum Record Length (MRL) 160 characters
Conversion Mode (CM) NO

Label Type (LT) unlabeled (UL)

The only other formats that may be specified by FILE control statements are as follows (X means allowed):

Block Record Type
Type F w zZ
unblocked X X
C X X X
I X

File Organization (FO) must be sequential (SQ).
Maximum Record Length (MRL) must not exceed 160 characters.
Label Type (LT) may be any value supported by the operating system.

Although the maximum record length may be as large as 160 characters, only the first 90 characters of
each record are reproduced in the listing output files.

60492600 H B-1

If the file is a compressed compile file (written by UPDATE in X mode or MODIFY in A mode), COMPASS
sets the file format description parameters to resemble normal input; however, MRL = 5120 characters.

Modify is not available on SCOPE 2.

Listing Output Files

The default format under SCOPE 2 comprises the following:

File Organization (FO) sequential (SQ)
Bloek Type (BT) unblocked
Maximum Block Length (MBL) none

Record Type (RT) control word (W)
Maximum Record Length (MRL) 137 characters
Conversion Mode (CM) NO

Label Type (LT) Unlabeled (UL)

The only other formats that may be specified by FILE control statements are as follows (X means allowed):

Block Record Type
Type F w VA
f—
unblocked X X
C X X X
I X

File Organization (FO) must be sequential (SQ).
Maximum Record Length (MRL) must not exceed 137 characters.

Label Type (LT) may be any value supported by the operating system.

Binary Output File

FILE control statements can be used under SCOPE 2 to specify the format of binary output files for any of
the operating systems, such that a program can be assembled under SCOPE 2 and the object program
executed under a different system if so desired.

B-2 60492600 H

File Characteristics 3COPE 2 NOS and NOS/BE 1

File Organization (FO) sequential SQ) sequential (SQ)

Block Type (BT) unblocked character count (C)
Maximum Block Length (MBL) none 5120 chars.

Record Type (RT) control word (W) system-logical-record (S)
Maximum Record Length (MRL) 1,310,710 chars. none

Conversion Mode (CM) NO NO

Label Type (LT) Unlabeled (UL) ANY

No other formats are allowed, except that the label type (LT) can be any value supported by the operating
system used for assembly. The format shown above under SCOPE 2 is the default binary output file format

under that system.

Scratch Files
COMPASS uses two scratceh files named ZZZZZRL and ZZZZZRM, when table storage space overflows.
Regardless of what is specified by FILE control statements, COMPASS sets the file format description
parameters for these files under SCOPE 2 as follows:

File Organization (FO) = sequential (SQ).

Conversion Mode (CM) = NO.
For file ZZZZZRL:

Block Type (BT) = unblocked.

Maximum Block Length = 5120 characters.

Record Type (RT) = undefined (U) Maximum Record Length = 2550 characters.
For file ZZZZZRM:

Block Type (BT) = character count (C), Maximum Block Length = 5120 characters.

Record Type (RT) = SCOPE logical (S), no Maximum Record Length.

ALL OPERATING SYSTEMS
System Text Input Files

A user library file designated by an S parameter on the COMPASS control statement must have the
standard library file format for the system on which COMPASS is being used.! COMPASS uses the
operating system overlay loader to access these files.

For a sequential binary (non-library) file designated by a G parameter on the COMPASS control statement,
the default and permitted formats are the same as those given above for the COMPASS binary output file.

1hOverlaly residence in user libraries is not currently supported by NOS.

60492600 G

XTEXT Input Files

A file read by COMPASS when processing an XTEXT pseudo instruction can have any of several formats.
COMPASS determines the file format (a) by whether the XTEXT pseudo instruction variable field is empty
and (b) by inspecting the data in the file.

If the variable field is empty, the File Organization (FO) must be sequential (SQ). COMPASS rewinds the
file and reads until end of section or a COMPASS END statement is encountered, whichever comes first.
The default and permitted formats under SCOPE 2 are the same as those given above for the main source
input file.

If the XTEXT variable field is non-empty, the file organization can be any of three non-standard types:
Record indexed with name index (under SCOPE 2 only).
SCOPE 3.3 style random file with name index (not supported under SCOPE 2).
Update or ModifyT random program library file.

In each case, COMPASS sets the file format description parameters to the appropriate values; no FILE

control statement is needed.

The record indexed file organization is actually the word addressable (WA) file organization with a set of
format conventions superimposed on it. Such a file can be created by a FORTRAN program by using the
library subroutines OPENMS, STINDX, WRITMS, and CLOSMS with a name index, or by a COBOL program
specifying ORGANIZATION IS WORD-ADDRESS, WORD-ADDRESS IS data-name. When COMPASS detects
such a file under SCOPE 2, it sets the file format description parameters as follows (no FILE card is
needed):

File Organization (FO) = word addressable (WA).

Block Type (BT) = unblocked.

Record Type (RT) = control word (W); Maximum Record Length (MRL) = 160 characters.

Conversion Mode (CM) = NO.

COMPASS positions the file at the record pointed to by the index entry containing the name given in

the XTEXT statement variable field, and then reads records sequentially until end of section or a

COMPASS END statement is encountered, whichever comes first.
The SCOPE 3.3 style random file with name index is permitted for compatibility with previous versions of
COMPASS. When COMPASS detects such a file, it searches the file index and positions the file at the
beginning of the specified section, and then reads sequentially until end of section or a COMPASS END
statement is encountered, whichever comes first. Such files cannot be used with SCOPE 2.
An Update or Modify'r random program library file is processed similarly. The name in the variable field of

the XTEXT statement must be the name of a common deck. When COMPASS detects such a file under
SCOPE 2, it sets the file format description parameters as follows (no FILE control statement is needed):

TModify is not available under SCOPE 2 or NOS/BE 1.

B-4 60492600 G

File Organization (FO) = word addressable (WA),

Block Type (BT) = unblocked

Record Type (RT) = control word (W), Maximum Record Length (MRL) = 5120 characters
Conversion Mode (CM) = NO

COMPASS positions the file at the first card image of the designated section (common deckj. For
an UPDATE program library, the first active card image (the *COMDECK card} is skipped.
COMPASS then reads card images sequentially, ignoring inactive card images, until end of section
or a COMPASS END statement is encountered, whichever comes first.

50492600 A B-5

BINARY CARD FORMATS

Column 1

7,8,9 levels 0 to 16 : End-of-section

6,7,9 End-of-partition {(NOS only)
6,7,8,9 or 7,8,9 level 17 End-of-information

7,9 Binary card

7 and 9 not both in column 1 Coded card

/l 2 3 4 5
12{ |
1] | <
0 ‘g’ 0 < Column Binary Information > e
7]
1/81|% g
=1 Q 1
2183 o
) -§ 2
388 <Ss g
3% 3— 2
5 208
5L 12 gl §
i & 3
6 2 -E §'
7k o 8
8 -
9

A binary card can contain up to 15 60-bit CPU words starting at column 3. Column 1 also contains
a count of 60-bit words in rows 0, 1, 2, and 3plus a check indicator in row 4, If row 4 of column 1 is
zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on

input. '

Column 78 of a binary card is not used, and columns 79 and 80 contain a binary serial number, If a
section is punched, each card has a checksum in column 2 and a serial number in columns 79 and 80,
which sequences it within the logical record. '

60492600 A Cc-1

HINTS ON USING COMPASS

1

2.

Within a maero definition:

Use comment statements having * in column one. These are not saved, whereas other types of

comments are saved.

Whenever possible, minimize the number of lines of code.

IRP is faster than either ECHO or DUP.

Use the substitute parameter flags ;A, ;B, and so forth, for macros, to avoid a second line.
Within macros, use symbols such as .1, .2, and so forth, instead of local symbols.

If possible, avoid recursive maecro structure to increase assembly speed.

If a macro call is the cause of an error, direct full list output to a file other than OUTPUT
(L=filename) to obtain a list of the erroneous maero call with the error listing.

In IF sequences:
Use line counts rather than ENDIF to terminate sequences.
Use SKIP rather than IFPP to skip code.
Micros:
Micro replacement is time-consuming.
Avoid using local symbols for micros.
Use ## for a null substitution.
Minimize SYSTEXT size.
To reduce core requirements, use SEG statements in absolute programs.
Use NOREF for symbols for which listing is not required.
Use QUAL for all overlays.

The program EXAMPLE (figures D-1 and D-2) presents fundamental program organization. It also
demonstrates some COMPASS coding conventions and illustrates efficient coding practice. The program
obtains numbers from six successive locations, adding the numbers one at a time to the running sum. The
total is then printed with a label.

60492600 J

D-1

-a

H 00926%09

00 ~3 T U b O DD

25
26
27

28

29
30
31
32
33

0 301
301 17252420252400000001
306 6110000001

66200
307 6130000006
43100
310 5122000321 +«
66221
36121
311 0523000310 +
0100000443
312 5160000331 +
6160000327
315 7120000301 +
317 7160247021
321 00000000000000000001
322 00000000000000000002
323 00000000000000000003
324 00000000000000000004
325 00000000000000000005
326 00000000000000000006
327 55241005550116232705
331 1
~ 3
v
Octal Code
Assembled
332
372
425
440
452
N —
Octal Location 512008 CM

Addresses

THE ANSWER IS

0BUF
auteur
BEGIN

Loap

TABLE

*

*

WORDS
ANS

LEN
*

IDENT
ENTRY
B8SS
FILEC
S8l
sB2
SB3
MX1

SA2
$82
IX1
NE

RJ

SA6
WRITEH
WRITER
ENDRUN

DATA
DATA
DATA
DATA
DATA
DATA

DATA
BSS
EQU

EXAMPLE

BEGIN

3018 QUTPUT BUFFER

0BUF, 3018

1 .

80 INITIALIZE ADDRESS COUNTER TO ZEROQ

6 SET FOR USE AS A LOOP LIMIT

0 INITIALIZE RUNNING SUM TOD ZERO

TABLE+B2 GET NEXT MEMORY ADDRESS

B2+81 INCREMENT THE ADDRESS COUNTER

X2+X1 ADD NEW NUMBER TO RUNNING SUM

B2yB83,L00P LOOP [F ADDRESS CNTR # (83)

=XCD0D CONVERT BINARY NUMBER TO DISPLAY CODE

ANS STORE THE DISPLAY CODED NUMBER IN ANS

ODUTPUT, WORDS,LEN WRITES TO THE OUTPUT BUFFER

ouTPUT PRINTS CONTENTS OF OUTPUT BUFFER
END OF EXECUTABLE CODE

1 -

2 THESE ARE

3 THE NUMBERS

4 TO TOTAL.

5

6

H® THE ANSWER IS *
1
*-WORDS

* ACCESS TO EXTERNAL TEXT,

*

*

RNCPL
RNCPL
RNCPL
RNCPL

STORAGE USED

7600-TYPE CPU

SST TO DEFINE SYSTEM SYMBOLS
XTEXT COMCSYS

XTEXT COMCWTH

XTEXT COMCCIO

XTEXT COMCCOD

END BEGIN END OF PROGRAM

443 STATEMENTS 78 SYMBOLS
ASSEMBLY 0.216 SECONDS 25 REFERENCES

Figure D-1. Example COMPASS Program (NOS and NOS/BE)

H 009Z6¥%0¢9

W-IMNU -

11
12

13
14
15
16
17
18

19
20
21
22
23
24

25
26
27

28

29
33

—— —— m— m— om—— — —— m— — — w— — o ot — i p— Samwme S —— — oom— — ——— m— ——— — — —— —— o—— -

£-a

20

21

22

L ¥4
£l

€110CCC001
66200

6130000006
431GC

122000031 +
66221
36121
0523C00C22 +

0100000045
£160000GC41 +
01300€CCC1000000C054
013000L0C3CIVCCCLO55
€1300€00C2000U0000060
0130¢C01040306000000

€eCcoc000Cc00000000001
€0c0Co0C00€000000002
dale delalo [l v Tel el of e of s Lo 1}
CCoOC000CC0QC0000004
€000€00000000000C005
€000CC0000000000C006

55241005550116232705
1
3

W

Octal Code
Assembled

Octal Location
Addresses

THE ANSWER IS

guTPUT
BEGIN

Loop

>+

TABLE

WORDS
ANS
LEN

- %

IDENT
ENTRY
FILE
S8l
sB2
S83
MX1

SA2
sB82
Ix1
NE

RJ

SAé
OPENM
PUTW
CLOSEM
ENDRUN

DATA
DATA
DATA
DATA
DATA
DATA

DATA
BSS
EQU

SST

XTEXT
END

EXAMPLE
BEGIN
LFN=QUTPUT»FO=SQ» BT=p RT=WsMRL=137,0F=N»CF=Ny PO=QUTPUT
1
B8O INITIALIZE ADDRESS COUNTER TOQ ZERO
6 SET FOR USE AS A LOOP LIMIT
0 INITIALIZE RUNNING SUM TO ZERD
TARLE+B2 GET NEXT MEMORY ADDRESS
B2+B1 INCREMENT THE ADDRESS COUNTER
X2+X1 ADD NEW NUMBER TO RUNNING SUM
B2,83,L00P LOOP IF ADDRESS CNTR # (B3)
=XCOD CONVERT BINARY NUMBER TO DISPLAY CODE
ANS STORE THE DISPLAY CODED NUMBER IN ANS
outpPUT
OUTPUT»WORDSeLEN WRITES TD THE QOUTPUT RUFFER
ouTPuT PRINTS CONTENTS OF OUTPUT BUFFER

END OF EXECUTABLE CODE
1
? THESE ARE
3 THE NUMBERS
4 TO TOTAL.
5
6

H* THE ANSWER IS *
1
*-WORDS

ACCESS TC EXTERNAL TEXT,

TO DEFINE SYSTEM SYMEOLS

COMCCDD
BEGIN END OF PROGRAM

Figure D-2. Example COMPASS Program (SCOPE 2)

One

of the main considerations in assembly language programming is the reduction of execution time. The

instruetion repertoire of COMPASS often allows an operation to be coded in several ways. The
programmer, therefore, should give careful consideration to the instructions used in the program to
perform specific funetions.

D-4

Line 1. The IDENT pseudo instruction is always the first instruction in a program. It specifies a
program name (EXAMPLE, in this case) to identify the program to the assembler.

Line 2. The ENTRY pseudo instruction declares the point in the program at which execution is to
begin. The main entry point in a program is the control transfer address.

Line 3. NOS and NOS/BE - figure D-1. The BSS instruction establishes the output buffer OBUF. The
programmer has allocated 301g words of storage for the buffer, as shown in the assembled octal

code listed to the left of the source code. Note that the octal code format for the pseudo instructions
will differ from the format for the symbolic machine instructions because pseudo instructions do not
have single machine instruction equivalents.

Line 4. NOS and NOS/BE - figure D-1. The operating system macro FILEC is called to create a file

environment table (FET) for the output buffer. Only the first word of the FET is shown in the octal
code, but examination of the location addresses reveals that the table is actually five words in length

(the minimum length of a FET). For more information about FETSs, see the appropriate operating
system reference manual.

SCOPE 2 - figure D-2. The FILE maecro is used to establish a file information table (FIT) for the
output buffer.

Line 5. The first executable line of code has been designated the main entry point for the program.
Incrementing by one oceurs so often within a program that it has become a COMPASS coding
convention for register B1 to always be initialized to one, and to remain one throughout the entire
program. This is particularly important during the use of the common common decks (chapter 12), and
can be a factor in execution time (see B1=1 pseudo instruction) as well as in assembly time.

Line 6. A counter is initialized to zero by setting the contents of a B register (chapter 8) equal to the
contents of the B0 register. B0 is hard-wired to zero, thereby avoiding the need for repeated
processing of the literal or constant zero.

Line 7. Comparing the octal code for lines 6 and 7, the programmer can see the difference between
two forms of register-setting instructions. The 15-bit form of the instruction is used in line 6, where
only three bits are required to represent the B0 register as the source of an operand. The 30-bit form
of set B register instruction is required for line 7, where the constant 6 is represented by the lower 18
bits of the instruction.

Line 8. The mask instruction is normally used to extract fields from a register. Here, it is used
instead of the slower set X register instruction to initialize an X register.

Another important feature of COMPASS is illustrated here. The octal code seems to indicate that the
lower 15 bits of the current word in memory have been left blank. This is the result of a force upper.
The next instruction is too large to fit in the remaining 15-bit parcel, so COMPASS packs that parcel
with a ng-;))peration instruction. The next instruction is placed at the beginning of the next word (see
section 8.1).

Line 9. The use of the set A register instruction to obtain a word of data is demonstrated here. As
seen in the octal code, the address of the word (321g) is placed in the specified A register. The data
itself is ph)aced in the corresponding X register (X2 in this instance). (See Set A Register Instructions,
chapter 8.

The plus sign (+) after the octal eode indicates that the address or K portion of the instruetion (the
lower 18 bits in this case) is relocatable.

60492600 H

Line 10. The 15-bit format of the set B instruction is illustrated here. The first six bits contain the
operation code for the instruction (66 in this instance). The next three bits designate the
destination register (B2) for the results of the instruction. The next three bits indicate the register
containing the first source operand (B2). The final three bits indicate the source register for the
second source operand (B1).

Line 11. The number obtained in the previous instruction is added to the running sum kept in X1. This
is a 60-bit add instruction, as opposed to the SXi instruction, which adds only 18-bit operands.

Line 12. The NE instruction shows another use of the B registers in testing for a conditional branch.
In each iteration of the loop, the source operands are compared. While they are unequal, control is
transferred from this instruetion back to LOOP. When the operands become equal, control passes to
the next instruction.

Line 13. The return jump (RJ) instruction is used here to access a common common deck,

COMCCDD, as a relocatable subroutine. The programmer has taken advantage of the COMPASS
default method of defining external symbols. The =X indicates to the assembler that CDD, the entry

point to the subroutine, is external to EXAMPLE.

The use of common common decks is important to the programmer. Note that the decks require
certain entry conditions. Specific arguments are expected to be in certain registers, for example,
upon entry to the routines. An efficient program will establish these conditions with a minimum of
data transfers by using the registers judiciously prior to the eall. COMCCDD, for example, converts
an octal word to decimal display code; that word is expected to be in register X1. For this reason, the
running total has been kept in X1, avoiding the need for extra data transfers.

Line 14. The method of storing an operand in memory is illustrated here. Setting register A6 or A7

to a valid address causes the contents of X6 or X7, respectively, to be stored in the address specified.
When COMCCDD has converted the word, it places the result in register X6, ready for storage upon

return to the calling routine.

Line 15. NOS and NOS/BE - figure D-1. Another method of accessing a common common deck is
shown here. A call is made to a system macro, WRITEH, which utilizes the common common deck
COMCWTH to write a line from a working buffer to an output buffer.

SCOPE 2 - figure D-2. The Record Manager macro OPENM is used to open the output buffer in
preparation for processing.

Line 16. NOS and NOS/BE - figure D-1. A call is made to the operating system macro WRITER to

write the contents of the buffer OBUF (with which the system communicates through the FET
OUTPUT) to the system default output file, also named OUTPUT. (For more information about

operating system macros, see the appropriate operating system reference manual.)

SCOPE 2 - figure D-2. The Record Manager macro PUTW is used to transfer data into the output
buffer.

Line 17. SCOPE 2 - figure D-2. The Record Manager macro CLOSEM is used to close the output
buffer and to print its contents.

Line 18. The operating system macro ENDRUN is called to terminate program execution.

Lines 19 through 24. DATA pseudo instructions are used here to establish a table comprising six
consecutive words in memory, starting at location TABLE. The default base mode is base 10 in

COMPASS (see Mode Control, chapter 4).

Line 25. DATA is used here to set in memory a display-coded image of the characters specified, for
use in the output line. Ten 6-bit characters can be stored per word in this fashion. Therefore, more
than one word is required here, as seen from the location address on the next line.

60492600 H D-5

The dayfile for the program EXAMPLE as run on NOS is shown in figure D-3.
The dayfile for the program EXAMPLE as run on NOS/BE is shown in figure D-4.
The dayfile for the program EXAMPLE as run on SCOPE 2 is shown in figure D-5.

- D-6

Line 26. One word of memory is reserved for the final sum. This word is labeled ANS. Note that this
word is not initialized by the BSS instruetion.

Line 27. The symbol LEN is equated with the value of the origin counter minus the address of

WORDS. This yields the length of the output line specified in line 15.

Line 28. The SST instruction ensures that symbols from the system texts used by the program are

defined.

Lines 29 through 32. These XTEXT pseudo instructions tell COMPASS to search the system-defined
program library OPL for the common common decks named. Declarations of this type are normally

grouped together after the end of the executable code for easy reference.

Line 33. The END instruction signifies the end of the program. Control is released through the

transfer address at BEGIN,

15.18.00.EXAMPLE.

15-1800‘-UCCR’

7641, 0.048KCODS.

15.18.00. USER statement.
15.18.01. CHARGE statement.
15.18.01.ATTACH» COMCPL /UNs= xxX.

15418402, COMPASS(SeS=IPTEXTsS=CPUTEXT, X=COMCPL)

15.18.09. ASSEMBLY COMPLETE,.

15.18.09. 0.244 CPU SECONDS

15.18,09.L50.

15.18.1‘0UE‘D!
15.18410.UEPF,
15.18.10.UENS,
15018010'UECP,
15.18410,AESR>
15.22.18.UCLP>»

0 .002KUNS,
0+ 014KUNS,
0+784KUNS.
0.252S5ECS.
2.622UNTS,

7645, 0.256KLNS.

The parameter xxx is the site-defined NOS user name.

Figure D-3. Dayfile of EXAMPLE under NOS

ASSEMBLY TIME.

60492600 H

60492600 H

09.17.2C.EXAMP2P FROM
€9.17.2C.iP COCU032C WORDS - FILE INPUT » DC G4
09.17.20.EXAMPLE.

09.17.2C . ACCOUNT statement.
09.17.23.ATTACH,COMCPL» ID= yyy.

09.17.23,PFN IS

09.17.23,COMCPL

09.17.24.,AT CYs CO1 SN=PFOQSFT
09418,36.CCHPASS(S»SeTPTEXT,S=CPUTEXT, X=COMCPL)
09.18.51. ASSEMBLY COMPLETE. £7600B CM USED,
09.1P,51. 2.492 CPU SECONNS ASSEMBLY TIME.
09.18.51.160. ‘

€9.18,51,0P CCLC1G24 WORDS - FILE OUTPUT , DC 4C
09.18.51.MS 2584 WCRNS 7168 MAX USED)

(9.18,52.CP2 1.497 SEC. 1.497 ADJ.
C9.1R.52.CPR 2.?61 SEC. 2.2¢1 ACYJ.
09.18.52.10 «4G% SEC. <495 ADJ.
09.18.52.CM 121.287 KWS. T.402 ADJ,
09.16.52.58 11.65¢

09.18.52.PP 4.B49 SEC, DATE 0270¢/81

€9.16.52.EJ END OF N8, #*x

The>value yyy is the site-defined ID under which COMCPL has
been catalogued.

Figure D4. Dagyfile of EXAMPLE under NOS/BE

15.5C.32
15.50.32
15450.33
15.50.33
15.50.33
15.5C.33
15.50.34
15.50.34
15.50.34
15.50.34
15.5C.34
15.5C435
15.50.35
15.50.35
15.50.35
15.50.35
15.50.35
15.50.35
1550435
15.5C.35
15.50.35
15.50.35
15.50435
15.50.35
15.50.35
15.5C.35
15.50.35
15.50.35
15.50.35

00C00.003
G0G0C. 004
00000.039
00600.029
00000.043
G00006.043
€0000.206
0600C.306
¢000G.206
0000C. 320
00000.321
€000C.323
00000.324
00L0C.324
€0060C.324
60C00.324
€0000.324
00600,325
GoCdcC.32¢
00000.32%
00000.325
0000C.325
00000.32%
€0C0C.326
00C00.22#
00000.326
00000.326
00C00.326
€0C0C.326

MFZ.
JoRn,
JOB.
MFZ.
MFZ.
LOD.
USP.
USR.
Lan.
MFZ.
MFZ.
MFETZ,
MFZ.
MFZ.
MFZ.
MFZ.
MFZ.
MFZ.
MEZ.
MFZ.
MFZ.
MFZ.
MFZ.
MET7.
MFZ.
MFZ.
MFZ.
MF7,.
MFZ.

-EXAMPLE,STSC2.

The value zzz is the site-defined ID under which COMCPL has been catalogued.

‘D-8

~ACCOUNT istatement.
~ATTACHeCONCPL,s 1D = 2z22,
PF053 - LFN IS comceL
PF254 -~ CYCLE 1 ATTACHED FROM SN=SYSTEM
-COMPASS{S»SsIPTEXT»S=CPUTEXT,XsCOMCPL)
ASSEMBLY COMPLETE. 560008 SCM USED.
0.249 CPU SEC. 341008 LCM USED.
-LGO.
LD&10 - FLS REQUIRED TO LOAD - 0007771 DU.COE
 LD603 - EXECUTION INITIATED QS.EXP
JM166 = MAXIMUM USER SCwm 705008 WORDS
JMN167 - MAXIMUM USER LCM 400008 WORDS
JM170 - MAXIMUM JS+I0 LCM 358 BUFFERS
RMT770 = MAXYIMUM ACTIVE FILES 2
RM771 - OPEN/CLDSE CALLS 19
RM772 = DATA TRANSFER CALLS 374
RM773 = CONTROL/POSITIONING CALLS 8
RM774& - BM DATA TRANSFER CALLS 258
RM775 - BM CONTROL/POSITIONING CALLS 67
RMT776 -~ OQUEUE MANAGER CALLS 62
RMT777 = RECALL CALLS 61
SCHM 7.048 KWS
LCM 3,463 KWS
I1/0 C.004 MW
RMS C.003 MWS
USER C.198 SEC
Jas 0.328 SEC
SC050 - 000015 SC/LC SWAPS
Figure D-5. Dayfile of EXAMPLE under SCOPE 2
60492600 H

DAYFILE MESSAGES

The dayfile messages that can be issued by COMPASS gre listed in table E-1.

The following message, with xxxxxxx denoting the name of the subprogram being assembled, is displayed at
the system operator's console only; it is not written to the dayfile. COMPASS updates the display when-
ever it processes an IDENT statement with a non-blank variable field.

ASSEMBLING XXXXXXX

TABLE E-1.

DAYFILE MESSAGES

Message

Significance

Action

ASSEMBLY ABORTED - ECS READ ERROR.

This message can occur only
when the job has an ECS field
length and is used on a CYBER
180 or a CYBER 170 or CYBER
70 Model 71, 72, 73, or 74.
COMPASS may store some of

its internal tables in ECS.
When an ECS error persists
through four attempts to

read the data, the message

is issued, and the job is
aborted. For the CYBER 70
Model 76, LCM errors are
handled by the operating
system.

Rerun job. If
condition persists,
contact a system
analyst.

ASSEMBLY ABORTED - ECS WRITE ERROR.

This message can occur only
when the job has an ECS field
length and is used on a CYBER
180 or a CYBER 170 or CYBER
70 Model 71, 72, 73, 74.
COMPASS may store some of

its internal tables in ECS.
When an error occurs in
writing data to ECS, no retry
attempt is made. The message
is issued, and the job is
aborted. For the CYBER 70
Model 76, LCM errors are
handled by the operating
system.

Rerun job. If
condition persists,
contact a system
analyst.

60492600 L

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Significance

Action

ASSEMBLY ABORTED - PASS n TABLE
OVERFLOW ASSEMBLING XXXXXXX

While processing the program
indicated by xxxxxxx, an
irrecoverable table overflow
condition has occurred in
assembly pass n (1 or 2).
COMPASS allocates memory
space dynamically to all of
its internal tables. If omne
table overflows, they all do.
When the tables do not fit in
the available SCM space,
COMPASS will request addi-
tional central memory up to a
threshold at which time the
intermediate file and cross-
references are dumped to mass
storage scratch files. If
table space is still inade-
quate, COMPASS will request
additional central memory up
to the maximum available to
the job. When insufficient
SCM exists after all such
possibilities have been
exhausted, COMPASS issues the
message and aborts the job.

Rerun job inmserting
an RFL statement
specifying suffi-
cient field length
to assemble.

ECS

XXXX.xxx CPU {
LCM

SEC.nnnnnnB {

ASSEMBLY COMPLETE. nnnnnnB{vgzn

SECONDS ASSEMBLY TIME.
}USED.

}USED.

|

If COMPASS did not detect any
fatal errors during assembly,
this message is issued at the
completion of processing of
all source programs on the
input file. The minimum
field length needed to per-
form the assemblies success-
fully is the octal number of
SCM words, nnnnon. If this
number is larger than the
actual field length, it is
the minimum field length
needed to avoid lost refer-
ences. The second line of
the message can be suppressed
by an installation parameter;
XXXX.XXX represents the total
central processor time, in
seconds, used by COMPASS.

If any ECS/LCM space was
assigned to the job, nnnnnn
is the octal number of words
used.

No action required.

60492600 H

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Significance

Action

ASSEMBLY ERRORS. nnnnnnB{ ggM}>USED.

SECONDS ASSEMBLY TIME.

ECS
lsnc. nnnnnnB { oM } USED.

xxxX.xxx CPU

|

If COMPASS detected at least
one fatal error during assem-
bly, this message is issued
at the completion of proces-
sing of all source programs
on the input file. If the A
option was specified on the
COMPASS control statement,
the job is aborted after this
message is issued. The mini-
mum field length needed to
perform the assemblies suc-
cessfully is the octal number
of SCM words, nnonnn. The
second line of the message
can be suppressed by an
installation parameter;
XXXX.XXX represents the total
central processor time, in
seconds, used by COMPASS.

If any ECS/LCM space was
assigned to the job, nnnnnn
is the octal number of words
used.

Correct the fatal
errors and
reassemble.

BAD CONTROL STATEMENT ARGUMENT - xx

The COMPASS control statement
contains an unrecognized or
invalid argument. The
offending argument is named
in the message.

Refer to chapter 10
of this manual to
correct the COMPASS
control statement.

CANT LOAD COMP3$

The operating system loader
reported a fatal error when

COMPASS attempted to load its
primary overlay. This mes-—

sage. should be preceded by an
explanatory message from the
loader.

Refer to the loader
diagnostics in the

loader reference
manual for informa-

tion about the
specific loader
error.

COMPASS NEEDS AT LEAST nannnB SCM.

The SCM field length for the
job is too small for COMPASS.
The number of octal words
needed by COMPASS before it
can begin processing is
nnnnnn. This number varies
depending on the version of
COMPASS used and the listing
and binary output options
specified on the control
statement. It is an absolute
minimum number of words; it
does not include whatever
space may be required for
system text, local macro and
micro definitions, and so
forth.

Rerun job inserting
an RFL statement
specifying suffi-
cient field length.

60492600 H

(95

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Significance

Action

nnnnnnnnn ERRORS IN xxxxxxXx

COMPASS issues this message
for each source program in
which fatal errors are de-
tected; nnnnnnnnn is the
number of errors and XXXXXXX
is the sub-program name.

Correct the fatal
errors and
reassemble.

FILE USE CONTRADICTION.

Control statement specifies
the same file name for two or
more of the following:

Source input
List output (full or short

list)
Binary output
XTEXT source

Correct contra—
diction.

IDENT STATEMENT MISSING.

COMPASS issues this message
for each source program in
which an END statement is
encountered before an IDENT
statement is found. This is
a fatal error.

Correct the source
program to include
an IDENT and END
statement for each
subprogram.

IMPROPER SYSTEM TEXT FORMAT.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

A system text overlay does
not have the internal format
required by this version of
COMPASS. This may be caused
by a system error. COMPASS
ignores the bad overlay but
does not abort the job. The
expression, x=yyyyyyy/
zzzzzzz, identifies the
offending overlay in the same
form in which it is specified
in the COMPASS control state-
ment; it may be any of the
following:

G=filename

G=filename/overlay
=overlay

S=library/overlay

Correct the internal
format of the system
text overlay.

INPUT FILE EMPTY OR MISPOSITIONED.

When attempting to read the
first line from the source
input file, COMPASS encoun-
tered end of data and
aborted.

Correct the name of
the source input
file or reposition
the file.

INPUT FILE RECORD TYPE NOT ALLOWED.

The record type of the

source input file is not
allowed. COMPASS aborts
the job step.

Convert source input
to acceptable record
type.

E-4

60492600 H

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Significance

Action

INSUFFICIENT STORAGE FOR SYSTEM TEXT.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

When an irrecoverable table
overflow occurs, COMPASS
issues this message before
the first assembly is begun.
It does not abort the job
step. The expression,
x=yyyyyyy/zzzzzzz, identifies
the system text being loaded
at the time.

Increase the SCM
field iength for the
job.

nnnnnB LCM NEEDED TO CONTINUE.

The specified amount of
memory (nnnnnB) is required
for the job to complete. The
job step is aborted.

Increase the LCM
field length for the
job.

nnannnnnn LOST REFERENCES IN xXXXXXX

The symbolic cross-reference
table is sorted before it is
printed. If the table does
not fit in the job's SCM
field length for sorting,
COMPASS discards some of the
references. A message is
issued; nnnnnnnnn is the num-
ber of references discarded,
and xxxxxxx is the subprogram
name. The job step is not
aborted. The ASSEMBLY
COMPLETE message gives
field length needed to
lost references.

the
avoid

Increase the SCM
field length for the
job.

MORE THAN 7 SYSTEM TEXTS SPECIFIED.

COMPASS issues this message
and aborts the job step, when

the G and S parameters on the
COMPASS control statement

specify a total of more than
seven system text overlays.

Restructure the job
to reduce the number

of system text over-
lays required.

NO CONTROL STATEMENT TERMINATOR.

Before finding a parenthesis
or period not in a $-delimi-
ted string, COMPASS read con-—
tinuation control statements
and encountered an end-of-
section. This is not a fatal
error.

Correct the control
statement.

60492600 H

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Significance

Action

RECURSION DEPTH EXCEEDED 400.

COMPASS maintains a pushdown
stack for source input con-
trol. This stack has one
entry for each active DUP,
ECHO, HERE, XTEXT, or macro
call. The maximum depth of
the stack is set by an
installation parameter; it is
400 in the released system.
When this limit is exceeded,
COMPASS sets a fatal error
and clears the stack. The
next statement can then be
read from the source input
file. The job step is not
aborted. This error is usu-
ally caused by a source pro-
gram in which a macro calls
itself indefinitely.

Correct the macro
call program error.

SYSTEM TEXT NOT FOUND.

BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

When it cannot load the sys-
tem text overlay identified
by x=yyyyyyy/zzzzzzz, COMPASS
issues this message. It does
not abort the job step. For
an overlay loaded from a
library file (S parameter),
this message should be pre-
ceded by an explanatory
message from the operating
system loader. For an over-
lay loaded from a non-library
file (G parameter), COMPASS
could not find the overlay on
the file.

For an overlay
loaded from a
library file, refer
to the diagnostics
in the loader refer-
ence manual. For an
overlay loaded from
a non-library file,
check that the over-
lay name is speci-
fied correctly and
that the overlay is
located on the file.

nnnnnnnnn WARNING MESSAGES IN xxxxxxx

COMPASS issues this message
for each source program in
which nonfatal errors are
detected; nnnnnnnnn is the
number of errors, and xxxxxxx
is the subprogram name.

Correct the non—
fatal errors and
reassemble.

60492600 H

GLOSSARY F

Absolute Bloek -
A block of object code generated in an absolute assembly. The ABS pseudo instruetion is used to

declare a program absolute.

Assembler -
A computer language that prepares an executable program from a source language program by
substituting machine operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

Blank Common Bloek -
A common block into which no data is stored at load time. The first declaration of a blank common
block need not be the largest declaration for the common block.

Block -
A grouping of words of object code or storage within a subprogram for a specific purpose.

Capsule -
A relocatable collection of one or more programs bound together in a special format that allows the
programs to be loaded and unloaded dynamically to form an executing program by the Fast Dynamic
Loading facility.

Central Processor Unit (CPU) -
The high-speed arithmetic unit that performs the addition, subtraction, multiplication, division,
incrementing, logical operations, and branching instructions needed to execute programs.

Comment Line - :
A statement providing documentary information for a section of code. Comment lines are indicated
by either an asterisk in column 1 or blanks in columns 1 through 29, and are listed but not otherwise
processed by the assembler.

Comments Field -
The field in a COMPASS statement providing documentary information for the statement. It is listed
but not otherwise processed by the assembler. This field begins with the first nonblank character
following the variable field, or in column 30 if the variable field is blank.

Common Block -
An area of memory that can be declared by more than one subprogram and used for storage of shared

data.

Constant -
An expression element consisting of a value represented in octal, decimal, hexadecimal, or character
notation.

Data Item -
A type of character or numeric value that can be used in subfields of the DATA and LIT instructions,
and as specifications of field lengths on VFD pseudo instruections.

Entry Point -

A location within a subprogram that can be referenced from other subprograms. Each entry point has
a name with which it is associated.

60492600 H F-1

External Reference -
A reference in one subprogram to an entry point in another subprogram.

Force Upper -
To guarantee that an instruction begins on a word boundary by packing the parcels remaining in &
partially completed word with no-op instruetions and beginning to assemble the specified instruction in
the next word. The assembler automatically forces upper in some cases, and the user program can
specify that a given instruction be forced upper.

Labeled Common Block -
A common block into which data can be stored at load time. The first program declaring a labeled
common block determines the amount of memory alloeated.

Linking -
The process of matching external references to entry points of the same names and inserting the
addresses of the entry points into the external references.

Literal -
A read-only constant. Conventionally, it is the only element in an expression. Literals are stored in
the program’s literals block to avoid duplication of read-only data.

Literals Block -
A block of literal data entries local to a subprogram.

Load Sequence -
One or more consecutive control statements proeessed by the loader as a unit. A load sequence can be
& single name call statement, or it can consist of loader statements (such as LOAD and LDSET) that
are terminated by NOGO, EXECUTE, or a name call statement.

Local Block -
A storage area defined by a USE or USELCM pseudo instruction.

Location Counter -
Normally the same as the origin counter. Can be reset by the programmer to relocate code or data
without affecting relative positions within the block.

Location Field -
The first field in a COMPASS statement, usually providing a name for the address of the instruction or
for the entity defined by the statement. The location field begins in column 1 or 2.

Machine Instruction -
A string of bits capable of being interpreted directly by a central processor or peripheral processor as
an instruction to perform some operation.

Macro -
A sequence of source statements that are saved and then assembled whenever needed through a macro
call.

Miero -
A character string identified by a symbolic name. Wherever the name is encountered in the program,
the character string is substituted.

OPDEF -~
A sequence of source statements that are saved and then assembled whenever needed through an opdef
call. Differs from a macro in that the assembler interprets the call by examining the format or syntax
of the instruction rather than the contents of the operation field alone.

F-2 . 60492600 H

Operation Code -
A mnemonic operator, used in the operator field of a COMPASS statement, to indicate a specific

machine instruction.

Operation Field -
The field in a COMPASS statement indicating the operation to be performed. It begins with the first
nonblank character following the location field; or, if the location field is blank, it begins with the
first nonblank character after column 2.

Origin Counter -
A pointer indicating the relative location of the next word to be assembled or reserved in a given block.

Overlay -
One or more relocatable programs that were relocated and linked together into a single absolute

program.

Parcel -
One of the 15-bit sections of a central memory word. A CPU machine instruction occupies one, two,
or four parcels.

Peripheral Processor Unit (PP or PPU) -
An individual computer with its own memory, used for high-speed transfer of information (input and
output) between peripheral devices and central memory.

Position Counter -
A pointer indicating the bit position within the word of the next item to be assembled in a given block.

Program -
One or more subprograms capable of being executed as a unit.

Pseudo Instruetion -
An assembler-defined instruction appearing in the operation field of a statement. It normally does not
specify the assembly of a single machine instruction, but instead specifies some other assembly
process (such as symbol definition, listing control, and so forth).

Qualified Symbol -
A symbol defined when a qualifier is in effect during assembly. Through qualification, the same
symbol can be referred to in different subprograms without conflict.

Reference Address (RAy) and (RAg) -
RA, is the absolute central memory address that is the starting or zero relative address assigned to
a program. Addresses within the program are relative to RA. RAg is the absolute extended memory
starting address assigned to a program.

Register -
A unit within the central processor used to held operands. The A registers contain the addresses of
words within central memory; the X registers contain operands used in calculations; the B registers
are used for inecrementing and indexing.

Relocation -
Placement of object code into central memory in locations that are not predetermined, and adjusting
the addresses accordingly.

Remote Assembly -
An operation in which code is assembled, saved, and then inserted into the object code when specified.

Strong External -
An external reference whose satisfaction is obligatory for program loeding.

60492600 H F-3

Subprogram -
A group of COMPASS statements beginning with an IDENT pseudo instruction and ending with an END
pseudo instruection.

Symbol -
A set of characters that identifies a value and its associated attributes.

Symbolic Instruction -
An assembler-defined instruction appearing in the operation field of a statement. It provides a means
of expressing symbolically the data manipulation funetions of the machine. Each symbolic instruction
typically generates one machine instruction.

System Text -
A set of tables containing symbol, micro, macro, and opdef definitions that can be saved on a file to be
accessed by other programs.

Transfer Address -
The address of the entry point to which the loader jumps to begin program execution.

Variable Field -
The field in a COMPASS statement identifying operands for the statement. It consists of one or more
subfields, and begins with the first nonblank character after the operation field.

Weak External -

An external reference that is ignored by the loader during library searching and cannot cause any other
program to be loaded. A weak external is linked, however, if the corresponding entry point is loaded
for any other reason.

Zero Block -
The nominal central memory block for a relocatable assembly. It is local to a sub-program. Also, a
zero block is created for an absolute assembly if default symbols are used.

F4 60492600 K

INDEX

A abort mode 10-2 Arrow

A code option 4-27 Parameter separator 5-8, 5-13
A error 11-8 Special character 2-4
A list option 4-74 ASCII code
A reference table option 4-80 Character set A-1
A register Option 4-27
Description 8-7 Assembler 1-1
Designators 2-8 Centrai memory requirements 1-3, i8-1
Setting 8-44 Statisties 4-73, 11-8
Used for CM relocation 9-2 Assembly environment test 4-60
ABS attribute 4-66 Assembly listing
ABS pseudo Detailed description 11-1
Description 4-6 General description 4-73
Example 4-4, 4-7, 4-13, 4-14, 4-16, 4-17 Generation 1-3
First statement group 4-2 Assembly, remote code 5-3
Absolute block Assembly time 11-8
Absolute program 3-6 Asterisk
Description 3-2 BASE instruetion 4-25
Establishment 4-32 Element operator 2-22
Relocatable program 3-5 First column 2-1, 2-2
Using 4-32, 4-33 Local symbol separator 5-31
Absolute program Location counter 2-9, 3-4
Declaration 4-6 Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28
Structure 3-6 Special element 2-9, 2-32, 3-4
Absolute text 3-5 USE instruction 4-32
ACN instruction 9-24 USELCM instruction 4-34
ADC instruction Attribute, symbol 2-5
Arithmetic function 9-6 Attribute test 4-66
Description 9-11 AXi instruction 8-32, 8-34
Example 2-20, 9-11
ADD instruction
Arithmetic function 9-6 B base 2-17, 2-18, 4-22
Description 9-15 B binary mode 10-2
Add unit B list option 4-74
Floating point 8-3, 8-6 B reference table option 4-80
Long 8-3 B register
Address Conditional jumps 8-26
Absolute 4-4 Contents of 4-30
Direct 9-15 Description 8-7
Entry point 4-4, 4-5, 4-45 Designators 2-8
External 4-6, 4-9, 4-47 Setting 8-46
Indexed direct 9-16 Base, assembly 4-23
Indirect 9-15 COL column count 4-31
Address modes, PP 9-1 DIS word count 4-49
ADI instruction DUP count 5-6
Arithmetie function 9-6 ECHO count 5-7
Description 9-15 Line count 4-60, 4-61, 4-63, 4-64, 4-67,
ADM instruction 4-69, 4-70
Arithmetic function 9-6 Micro count 7-2, 7-4
Description 9-16 Numeric value 2-16
ADN instruction Overlay level numbers 4-4
Arithmetic function 9-6 PP number 4-4
Description 9-10 REP counts 4-57
AIDTEXT 8-1, 9-1, 11-11 Setting through BASE 4-24
AJM instruction 9-19 SPACE line count 4-76
AOD instruetion String count 2-13
Description 9-15 VFD count 4-53
Replace function 9-7 BASE micro 7-6
AOI instruetion BASE pseudo
Description 9-15 Description 4-24
Replace funetion 9-7 Example 4-13, 4-19, 4-26, 4-49, 4-51
AOM instruction Permissible anywhere 4-2
Description 9-16 Binary card formats C-1
Replace function 9-7 Binary control statements 4-1, 4-74, 11-1
Arithmetic functions, PP 9-6 Binary load module 3-8
Arithmetic shift 8-33 Binary mode 10-2

60492600 H Index-1

Binary output generation 1-3, 3-7, 3-9, 3-11,
3-13, 10-2
Binary write 3-8 '
Blank
Compressed 5-1
Embedded 2-1
Expression terminator 2-1
Name terminator 2-5
Operation field 2-1
Parameter separator 5-8, 5-13
Statement terminator 2-1
String terminator 2-14
Use in character data 2-14
Variable field 2-2, 2-3, 3-8
Blank card 4-76
Blank common
CM 4-32
Description 3-3
ECS 4-34
Establishment 4-32, 4-34
Example 4-38
LCM 4-34
SCM 4-32
Blank fill 2-14
DIS 4-49
Blank operation field 4-47
Block
Absolute 3-1, 4-34, 4-38
Blank common 3-3, 4-34, 4-36
Labeled common 3-2, 4-32
Literals 2-11, 3-2, 3-5 thru 3-15
Local 3-2, 4-32
Maximum number 3-1, 4-32
Origin assigned 1-2, 3-5, 3-7
Subprogram 3-1
Used for definition operation 5-2
User established 3-2, 4-32, 4-34
Zero 3-2, 4-32, 4-34
Block copy instruction 8-16
Block grouwp 3-1, 3-12, 3-14
Block group listing 11-2
Block name 3-3, 4-32, 4-34
Block name listed 11-1
Block origin 1-2, 3-5
Block usage summary 11-2
Boolean unit
Description 8-3, 8-6
Instructions 8-27 thru 8-31, 8-35, 8-36
Branch instructions
CPU 8-13, 8-14, 8-17, 8-23, 8-24, 8-26
PP 9-7
Branch unit
Description 8-3
Instructions 8-10, 8-14, 8-17, 8-23, 8-24, 8-26
BSS Pseudo
Description 4-37
Effect on origin counter 3-3
Example 4-4, 4-7, 4-10, 4-16, 4-30, 4-35,
4-38, 4-39, 4-42, 4-46,
5-22, 5-32
Force upper 3-4
BSSZ pseudo
Description 4-48
Dumped by SEGMENT 4-16
Example 2-19, 5-33, 5-35
Force upper 3-4
BXi instruction 8-27 thru 8-31
Byte, guaranteed zero 2-14, 4-50
B1=1 or B7-1 pseudo instruction
Description 4-30
Effect on R= 4-55
Example 4-56
Illegal for PP 4-9, 4-10

Index-2

C hardware feature code 4-8
C list option 4-74
C on octal listing 11-6
Call
Equivalenced maero 5-25
Macro 5-18
Opdef 5-29
CC instruction 8-53
CCF instruction 9-20
Central memory
Read instruction 8-46
Requirements 1-3, 10-1
Write instruction 8-46
Access instructions, PP 9-2
Central processor unit
Functional units 8-3, 8-6, 8-8
Instructions 8-1
Registers 8-7
CFM instruction 9-20
Channel buffer instruction
Read status 8-22
Reset input 8-21
Reset output 8-22
Channel flag instructions 9-20
CHAR -
Define other character 4-26
Character sets A-1
Character data 2-13
Code conversion 4-26
Evaluation 2-27
Examples 2-12, 2-15
CMU 8-50
Code
CPU operation 6-7, 8-1
Duplication 56
Code other 4-26
PP operation 6-3, 9-1
Remote assembly 5-3
Replication 4-57
CODE micro 7-6
CODE pseudo
Description 4-26
Effect on character data 2-13, 4-49
Example 4-27
Permissible anywhere 4-2
Coding form 2-3
COL pseudo
Description 4-9
Octal listing 11-6
Column one 2-1
COM attribute 4-66
Comma
Character string 2-13
Column one 2-1
Continuation 2-1
Expression terminator 2-21
Local symbol separator 5-31
Name terminator 2-5
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28
String terminator 2-13
Subfield delimiter 2-1
COMMENT pseudo
Description 4-20
Example 4-13
First statement group 4-2
Comments column control 4-31
Comments field 2-2, 2-3, 4-31
Comments, prefix table 4-20
Comments statement 2-2
Heading of definition 5-13
Micros not substituted 7-1
Not counted 4-59, 5-7, 5-8
Permissible anywhere 4-2

60492600 H

Common common decks

COMCARG
COMCCDD
COMCCFD
COMCCIO
COMCCOD
COMCCPT
COMCDXB
COMCMNS
COMCMOS
COMCMTM
COMCMTP
COMCMVE
COMCRDC
COMCRDH
COMCRDO
COMCRDS
COMCRDW
COMCRSR
COMCSFN
COMCSRT
COMCSST
COMCSTF
COMCSVR
COMCSYS
COMCUPC
COMCWOD
COMCWTC
COMCWTH
COMCWTO
COMCWTS
COMCWTIW
COMCXJR
COMCZTB

Compare character strings 4-68
Compare expression values 4-62
Compare/Move unit 8-50
COMPASS control statement

Description

Effect on LIST 4-79

12-3
12-4
12-4
12-5
12-5
12-6
19-8

12-7
12-7
12-8
12-9
12-13
12-13
12-14
12-15
12-16
12-16
12-17
12-18
12-18
12-18
12-20
12-20
12-21
12-22
12-23
12-23
12-23
12-24
12-25
12-25
12-25
12-25

10-2

Compile file 10-4

Complement and logical difference instruction 8-31
Complement and logical sum instruction 8-30
Complement instruction 8-29

Compressed code 5-1

CON pseudo
Description

Example 2-22, 4-55, 5-5, 5-23, 5-26

4-54

Force upper 3-4
Concatenation 2-4

Concatenation mark 2-4
Example of use 5-19

In definition 5-1

Conditional assembly 4-59

Conditional jump
B register 8-26

PP 9-7
X register

8-24

Configuration 1-3

Constant
Character
Description

Expression element 2-21, 2-26

2-14
2-11

Field size 2-12

Generated by pseudo 4-54

Numeric 2-16
Read only 2-11

Continuation, statement 2-2
Generation of lines 2-4, 7-1

Control statements

COMPASS

Job statement 10-1

60492600 H

10-2

Counter control
BSS 4-37
Forecing upper 3-4
LOC 4-38
ORG 4-35
ORGC 4-35
POS 4-40
USE 4-32
USELCM 4-34
Counters, block control 3-3, 3-10, 3-12
CPOP pseudo 6-7
CPSYN pseudo
Description 6-10
Permissible anywhere 4-2
CPU instructions
Block copy 8-18
Boolean 8-27 thru 8-31, 8-35, 8-36
Branching 8-10, 8-14, 8-17, 8-23, 8-24, 8-26
Channel buffer 8-21, 8-22
Channel status 8-22
Complement 8-29, 8-31
Conditional 8-24, 8-26
Direct LCM transfer 8-19
Divide 8-42
Double precision 8-38, 8-40
ECS 8-15
Error exit 8-14
Exchange exit 8-18
Exchange jump 8-1T
Fixed point 8-39
Floating point 8-34 thru 8-40
Increment 8-44, 8-46, 8-48
Left shift 8-31, 8-32
Logical 8-28 thru 8-32
Long add 8-39
Mask 8-42
Multiply 8-39, 8-40, 8-41
No operation 8-43
Normalize 8-34
Pack 8-36
Pass 8-43
Population 8-43
Program stop 8-13
Real-time clock 8-21
Return jump 8-14
Right shift 8-32, 8-33
Set register 8-44, 8-46, 8-48
Set time 8-21
Shift 8-31 thru 8-33
Single precision 8-37 thru 8-40, 8-42, 8-43
Transmit 8-27
Unconditional jump 8-23
Unpack 8-35
CPU program execution 1-3, 10-1
CPU register designators 2-8, 8-11
CRD instruction 9-17
Created symbol 5-31, 11-8
CRM instruction 9-18
Cross reference table
{see symbolie reference table)
CTEXT pseudo 4-79
CR Instruction 8-46
CU Instruction 8-54
CW Instruction 8-46
CWD Instruction 9-18
CWM Instruction 9-18
CXi Instruction 8-43

D base 2-17, 4-24
D code option 4-26
D debug mode 10-3

Index-3

D definition flag 11-14
D error 11-10
D hardware feature code 4-7
D list option 4-74
Data generation 4-47
Data item
Character format 2-13
DATA pseudo 4-49
General description 2-10
LIT pseudo 4-51
Numeric format 2-17
VFD pseudo 4-53
Data notation
Character 2-13
Constant 2-11, 2-13, 2-16
Decimal 2-17
Element 2-10, 2-21
Fixed point 2-17
Floating point 2-17
Hexadecimal 2-22
Item 2-11, 2-13, 2-16
Literal 2-12, 2-13, 2-16
Numerie 2-17
Octal 2-17
DATA pseudo
Description 4-48
Example 2-15, 2-19, 2-20, 4-27, 4-33,
4-37, 4-49
Force upper 3-4
Data transmission, PP 9-6
DATE micro 7-5
Date of listing 11-1
Dayfile messages E-1
DCN instruction 9-24
Debug, interactive 1-4
Debug mode 10-3
Decimal exponent 2-17
Decimal notation 2-17
DECMIC pseudo
Description 7-4
Example 5-6, 7-4
Permissible anywhere 4-2
DEF attribute 4-67
Default symbols
Definition 2-7
Listing 11-9
Unqualified 4-27
Zero block 3-2
Deferred symbols
(see default symbols)
Definition
Equivalenced macro 5-24
Maero 5-13, 5-15, 5-24
Micro 7-2
Opdef 5-13, 5-27
Processing 5-13
Purging 6-9
Reference 5-18, 5-25, 5-30
Symbol 2-6, 4-44
System 5-35
Definition operation
Duplicated code 5-6
Equivalenced macro 5-13
External text 5-2
Maero 5-13
Operation code 5-13
Processing 5-14
Recursion level 5-1
Remote text 5-3
Delimiter
Actual parameter 5-18, 5-26
Data item 2-15, 2-16
Expression element 2-21

Index-4

Delimiter (Contd)
Field 2-1, 2-2
Substitutable parameter 5-8, 5-13, 5-16
Term 2-22
Descriptor, variable field 5-27
Destination field 2-26
Detailed listing 4-74
DF instruction 8-24
Direct address mode 9-15
Directives, loader 4-21
Directory, error 11-9
DIS pseudo
Description 4-47
Example 4-49, 4-51
Force upper 3-4
Display code option
Character set A-1
Default mode 2-13
Option 4-27
Divide instructions 8-42, 8-43
DM instruction 8-52
Dollar sign
Local symbol separator 5-31
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28
Special element 2-5
Double precision instructions 8-38, 8-40
DUP pseudo
Description 5-6
Example 5-10, 5-11
Listing of count 11-6
Duplication
Code 5-6
Echoed 5-7
Indefinite 5-7, 5-9
DXi instructions
Add 8-38
Multiply 8-40

E code option 4-27
E entry point flag 11-14
Eerror 11-10
E list option 4-74
E numeric data modifier 2-17
ECHO pseudo
Description 5-7
Example 5-12
ECS blocks 4-34
Editing 2-4
EE numeric data modifier 2-17
EIM instruction 9-21
EJECT pseudo 4-76
Permissible anywhere 4-2
Eject suppression 10-4
EJM instruction 9-19
Element
Absolute 2-24
Data 2-11
Expression 2-23, 2-26
External 2-26
Operator 2-23
Register 2-26
Relocatable 2-9, 2-25
Special 2-9, 2-23
ELSE pseudo
Description 4-60
Example 5-5
Permissible anywhere 4-2
END pseudo
Assembly of remote code 5-3
Binary generation 3-6
Description 4-4
Effect on blocks 3-1, 3-6, 3-8, 3-10, 3-12

60492600 H

END pseudo (Contd)
Example 4-4, 5-7, 5-13, 5-14, 5-16
External text use 5-3
Force upper 3-4
Illegal definitions 5-1
Permissible anywhere 4-2
ENDD pseudo
Acting as nil 6-6
Description 5-10
Example 5-11
Permissible anywhere 4-2
Used with DUP 5-7
Used with ECHO 5-8
ENDIF pseudo
Acting as nil 6-6
Description 4-59
Permissible anywhere 4-2
ENDM pseudo
Acting as nil 6-6
Description 5-14
Example 4-31, 5-11, 5-15, 5-19, 5-20, 5-21
Permissible anywhere 4-2
End-of-line mark 5-1
ENDX pseudo 4-79
Entry address
Absolute 4-3
Declaration 4-45
Muitipie 3-iZ
Relocatable 4-4
ENTRY pseudo
Description 4-45
Example 4-5, 4-46
Entry point list 11-4
ENTRYC pseudo 4-45
Environment test 4-60
EOM instruction 9-21
EQ IF operator 4-62
IFC operator 4-68
EQ instruction
Description 8-26
Example 8-27
Force upper 3-4
EQU pseudo
Description 4-41
Example 2-19, 2-21, 4-19, 4-39, 4-41, 4-64, 5-6
Listing 11-6
Equal sign
Default symbol prefix 2-7
Instruction 4-41
Literals prefix 2-11, 2-13, 2-17
Local symbol separator 5-31
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28
ERN instruction 9-14
ERR pseudo
Description 4-71
Error, assembly
Fatal 11-9
Informative 11-12
Programmer controller 4-71, 4-72
Error directory
Detailed description 11-9
General description 4-73
Error exit instruetion 8-14
Error flags
Conditionally set 4-71
Fatal 11-9
Informative 11-12
Unconditionally set 4-72
Where on listing 11-6
ERRxx pseudo 4-72
ES instruction 8-14
ESN instruetion 9-25
ETN instruction 9-14
Evaluation of expression 2-26

60492600 H

Exchange exit instruetion 8-18
Exchange jump instruetion 8-17
Execution, CPU program 1-3
EXN instruetion §-12
Exponent 2-17
Expression
Absclute 2-24
Attribute 4-66
Comparison 4-62
CON use 4-54
Description 2-23
Evaluatable 2-26
Evaluation 2-21, 2-27, 3-3
Examples 2-24, 2-55
External 2-26
Maximum size 2-27
Operators 2-23
Pass one value 2-27, 3-3
Pass two value 2-27, 3-3
Register 2-26, 8-9
Relocatable 2-25
Rules 2-22
Size 2-26
Types 2-24
Value 2-23, 2-26, 3-3, 8-5
VFD 4-53
EXT attribute 4-66
EXT pseudo
Description 4-47
lilegal in absolute code 4-6, 4-9, 4-10
External BCD
Character set A-1
Option 4-27
External symbol
Declaration 4-47
Description 2-5
Strong 2-7
Weak 2-7
External symbol list 11-4
External text
Assembly 5-2
File declaration 10-3
Listing 4-79

F conditional flag 11-14
F error 11-10
F FORTRAN mode 10-3
F list option 4-74
FAN instruction 9-24
Fatal error flag 11-9
Features of COMPASS 1-2
Field
Comments 2-2, 4-31
Conventional 2-3
Delimiter 2-1, 2-2
Destination 2-25, 4-53
Free 2-1
Length, threshold 1-3
Location 2-1
Operation 2-1
Size 2-1
Subfield 2-2
Terminator 2-1
Variable 2-2
File
COMPILE 10-3
INPUT 10-3
LGO 10-2
List output 10-3
Load and go 10-2
OLDPL 10-5
OPL 10-5
OUTPUT 10-3

Index-5

File (Contd)
Source 10-3
SYSTEXT 4-17, 10-3, 10-4, 10-5
System text overlay 10-5
Fill
Blank 2-14
Zero 2-14
FIM instruction 9-21
First column 2-1
First statement growp 4-2
Fixed point data notation 2-17
Fixed point instructions 8-39, 8-41
FJM instruction 9-19
Flag, error
Listing 11-6
Setting 4-71
Type 11-14
Floating point data notation 2-16
Floating point unit 8-3, 8-6
Add 8-37, 8-38
Divide 8-43
Multiply 8-39, 8-40
FNC instruction 9-24
FOM instruction 9-21
Forcing upper 3-4
BSS 4-37
CPU instructions 8-2
LOC 4-38
Macro call 5-18, 5-25
Opdef call 5-27
ORG 4-35
ORGC 4-35
R= 4-55
USE 4-32
USELCM 4-34
VFD 4-53
Form, COMPASS coding 2-3
Format
Control statement 10-1
CPU instruction 8-1
Line 2-1
Listing 11-1
PP instruction 9-1
FORTRAN 4-4, 10-3
Full list 10-3
Functional units 8-3, 8-6, 8-10
Functions, PP
Arithmetic 9-6
Data transmission 9-6
Logical 9-6
Replace 9-7
FXi instruction
Add 8-37
Divide 8-42
Multiply 8-39

G assembly mode 10-3
G list option 4-74
GE IF operator 4-62

IFC operator 4-68
GE instructions 8-26
Generated code listing 4-74
Generation, data 4-48
Get text mode 10-3
Glossary P-1
GT IF operator 4-69

IFC operator 4-74
GT instruction 8-26
Guaranteed zero 2-14, 4-50

Hardware configuration 1-3
Hardware feature dependency 4-7

Index-6

Heading
Information 11-1
Listing 4-73, 11-1
Macro 5-13
Opdef 5-13
Page 11-1
HERE pseudo
Deseription 5-4
Permissible anywhere 4-2
Hexadecimal data 2-22

I code option 4-21

I hardware feature code 4-8

Iinput mode 10-3

I NOLABEL option 4-21

IAM instruction 9-22

IAN instruction 9-22

IBj instruction 8-22

ID instruction 8-24

IDENT pseudo
Binary generation 3-8 thru 3-10
Blank variable field 3-14, 4-11
Description 4-2, 4-11

Example 4-4, 4-7, 4-13, 4-14, 4-16, 4-17, 4-19

Force upper 3-4
Overlay generation 3-8, 3-9, 3-10
Program identification 4-2
IF pseudo 4-65
IF skipped lines listed 4-74
IFC pseudo
Description 4-68
Example 5-5, 5-11
Permissible anywhere 4-2
IFCP pseudos 4-61
IFOP pseudo 4-62
IFPP pseudo 4-61
IFtype pseudo 4-61
IJM instruction 9-19
IM instruction 8-51

Increment unit 8-3, 8-6, 8-44, 8-46, 8-48

Index register 8-7
Indexed address, PP 9-16
Indirect address, PP 9-15
Input, assembler 10-3
Instruetions
Coding of 2-1
CMU 8-50
CPU 8-1
Mnemoniecally identified 6-3
Nil 6-6
No-operation 8-43, 9-11
PP 9-1
Pseudo 4-1
Redefinition 5-16, 5-25
Synonymous 6-5, 6-10
Syntactically identified 6-7
Integer add 8-39
Integer subtract 8-39
Integer multiply 8-41
Integer value 2-17
Interactive debugging 1-4
Internal BCD
Character set D-1
Option 4-27
Invented symbol 5-32, 11-8
IR instruction 8-24
IRM instruction 9-21
IRP pseudo
Acting as nil 6-6
Description 5-33
Example 5-34, 5-35
Permissible anywhere 4-2
IXi instructions 8-39, 8-41

60492600 H

J option 4-9, 4-10, 9-8

JDATE micro 7-6

Job statement 10-1

JP instruetion
Description 8-23
Foree upper 3-5

L control statement option
Description 10-3
Related to LIST 4-74
L error 11-11
L hardware feature code 4-8
L list option 4-74
L location flag 4-38, 11-14
Labeled common
Description 3-2
Establishment 4-32, 4-34
LCC pseudo
Description 4-23
Illegal if absolute 4-6, 4-9, 4-10
LCM attribute 4-66
LCM blocks 3-2, 4-34
LCM transfer instructions 8-16, 8-19
LCN instruetion
Data transmission 9-6
Description 9-10
LDC instruction
Data transmission 9-6
Description 9-11
Example 2-20
LDD instruction
Data transmission 9-6
Description 9-15
LDI instruction
Data transmission 9-6
Description 9-15
LDM instruction
Data transmission 9-6
Description 9-16
Example 5-21
LDN instruction
Data transmission 9-6
Description 9-10
Example 5-12, 9-10
LDSET pseudo
Description 4-21
Permissible anywhere 4-2
LE IF operator 4-62
IFC operator 4-68
LE instruction 8-26
Left shift instruction 8-31, 8-32
LGO control statement 10-6
Library maintenance programs 2-1
Linkage symbols 2-6, 4-45
List, full 10-3
List, parameter
ECHO 5-8
Equivalenced macro 5-25
Macro 5-18
LIST pseudo
Description 4-73
Example 4-13, 5-6, 5-12
Permissible anywhere 4-2
List, short 10-4
Listable output
Assembled code 11-5
Assembler statistics 11-8
Binary control cards 11-1
Block usage 11-2
Control statement 10-3
Default symbols 11-8
Entry point symbols 11-4

60492600 H

Listable output (Contd)
Error directory 11-9
Error flags 11-9 thru 11-12
External symbols 11-4
Header information 11-1
Literals 11-7
QOctal 11-5
Source statements 11-5
Statisties 11-8
Subtitles 11-1
Symbolic reference table 11-12
Titles 11-1
User control 4-79, 10-3, 10-4
Listing control
Control statement 10-3, 10-4
Pseudo 4-73
LIT pseudo
Description 4-51
Example 2-12, 2-17, 2-21, 4-15, 4-58, 5-6
Listing 11-6, 11-7
Literals
Absolute program 3-6, 3-7, 3-10, 3-11
Description of block 3-1, 3-2
IDENT 3-10, 3-14
Listing 11-7
Location 1-3, 3-1, 3-2
Notation 2-12
Protection 4-35
SEGMENT overlay 3-10
SEG partial binary 3-12
Symbol (default) 2-7
LJM instruction
Description 9-6
Example 5-21
LMC instruction
Description 9-11
Logical function 9-6
LMD instruction
Description 9-15
Logical function 9-6
LMI instruction
Description 9-15
Logical function 9-6
LMM instruction
Description 9-16
Logical function 9-6
LMN instruction
Description 9-10
Logical function 9-6
LO control statement option 10-4
Load address 4-3
Load-and-go file 1-3, 10-2
Loader control statement 4-21
LOC attribute 4-66
LOC pseudo
Description 4-38
Example 4-39, 4-55
Location counter changed 3-4
Local blocks 3-2
Absolute program 3-6
Description 3-2
Establishment 4-32, 4-34
Relocatable program 3-5
LOCAL statement
Description 5-31
Example 5-32
Heading 5-13
Local symbol
Macro body 5-13
Subprogram 3-1, 4-29
Location counter
BSS 4-37
Control 4-38

Index-7

Location eounter (Contd)
Description 3-4
Forced upper 3-4
ORG 4-35
ORGC 4-35
Special element 2-9, 34
USE 4-32
USELCM 4-34
Location field
Listing 11-6
Statement 2-1
LO control card option
Description 10-4
Related to LIST 4-73
Logical difference instruction 8-29
Logical functions, PP 9-6
Logical minus 2-22
Logical product and complement instruction 8-30
Logical product instruction 8-28
Logical shift instruetion 8-31, 8-32
Logical sum instruction 8-28
Long add unit
Description 8-3, 8-4, 8-6
Instructions 8-39
LPC instruction
Description 9-11
Logical function 9-6
LPN instruction
Description 9-10
Logical function 9-6
LRD instruction 9-12
LT IF operator 4-62
IFC operator 4-66
LT instruction 8-26
LXi instruetion
Desecription 8-31, 8-32
Example 2-19

M base option 4-25
M list option 4-74
MACHINE pseudo 4-7
Machine test 4-60
Macro :
5-13
Call 5-18, 5-25
Equivalenced 5-24
Definition 5-13
Header 5-14
List control 4-74
Name 2-2, 5-15, 5-18, 5-25, 6-1
Permissible anywhere 4-2
Processing 5-1, 5-14
System defined 4-75, 5-35
Terminator 5-14
MACRO pseudo
Description 5-15
Example 4-31, 4-76, 5-5, 5-19 thru 5-22,
5-32 thru 5-34
IRP related 5-33
Operation code table entry 6-1
Permissible anywhere 4-2
MACROE pseudo
Description 5-24
Example 5-26
IRP related 5-33
Operation code table entry 6-1
Permissible anywhere 4-2
MAN instruetion 9-12
Mask instruction 8-42
Mass storage, system 1-3
Master list control 4-73

® Index-8

MAX pseudo
Description 4-42
Listing 11-6

MD instruction 8-51

MESSAGE macro 12-25

MI instruction 8-24, 8-26

MIC attribute 4-67

MICCNT pseudo
Deseription 4-44
Example 4-44
Listing 11-6
Permissible anywhere 4-2

Miero :

Decimal 7-4

Definition 4-24, 4-27, 4-28, 7-2
Editing 2-4

Mark 2-4, 5-1

Octal 7-4

Predefined names 7-5
Reference 7-1

Size 4-44, 7-2

Substitution 7-1

System defined 4-17, 7-2, 7-5
Test for 4-67

MICRO pseudo
Description 7-2
Example 4-44, 5-11, 7-2, 7-3
Permissible anywhere 4-2

MIN pseudo
Description 4-43
Listing 11-6

Minus as local symbol separator 5-31

Minus as parameter separator 5-8, 5-13, 5-16,

5-24, 5-28

Minus on listing 11-6

Minus operator 2-21, 2-22, 8-11, 8-12

Minus sign in location field
CPU instruction 3-4, 3-5, 4-53
PP instruction 3-4, 4-53
VFD instruction 4-53

MJ instruction 8-18
Force upper 3-4

MJN instruction
Description 9-6 .

Effectof J 4-9, 4-11

ML control statement option 10-4

Mnemonic operation code
Legal operation field entry 2-1
OPDEF defined 5-27
Search for 6-1

Modifiers, numeric data 2-17

MODIFY common decks 5-2

MODLEVEL micro 7-7

MOVE macro 12-28

Multiple entry point table

ression 4-20
Used for overlays 3-12

MXi instruction
Description 8-42
Example 2-19, 8-42

MXN instruction 9-12

N eject mode 10-4

Nerror 11-11

N list option 4-75

Name
Block 4-32, 4-34
Different types 2-4
Duplicate code 5-7, 5-8
General description 2-4
IF sequence 4-59

60492600 J

Name {Contd)
Maero 5-16
Miero 4-24, 4-27, 4-28, 7-2, 7-4, 7-5
Mnemonic operation 6-1
Overlay 4-11, 4-15
Parameter 5-8
Remote code 5-3
NE IF operator 4-62
IFC operator 4-68
NE instruction 8-26
Nesting, level of 1-3
NG instruction 8-24, 8-26
NIL pseudo 6-6
Permissible anywhere 4-2
NIM instruction 9-21
NJN instruction
Description 9-7
Effect of J 4-9, 4-10
NO eject option 10-4
NO instruction 8-43
NOLABEL pseudo
Description 4-20
Permissible anywhere 4-2
NOM instruction 9-21
NOREF pseudo 4-78
Permissible anywhere 4-2
Normalize instruction 8-34
Normalize unit
Description 8-6
Instructions 8-34, 8-35
Not equal sign
Parameter separator 5-8, 5-13
Special character 2-4
Numeric data 2-17
NXi instruction 8-34
NZ instruction 8-24, 8-26

O base 2-18, 4-24
O error
Description 11-11
With AIDTEXT 8-1, 9-1
O mode 10-4
OAM instruction 9-22
OAN instruction 9-22
OBj instruction 8-22
Octal listing 11-5
Octal notation 2-16
OCTMIC pseudo 7-4
Permissible anywhere 4-2
OLDPL file 10-3
Opdef
Body 5-13
Call 5-29
Definition 5-13
Heading 5-13
List control 4-72, 4-73
Processing 5-14
System defined 4-17, 4-33
OPDEF pseudo
Description 5-27
Example 5-29 thru 5-32
Operation code table entry 6-1
Permissible anywhere 4-2
Operand register 8-7
Operation code table 6-1
Operation code value
CPU 6-7, 8-1
PP 6-3,9-1
Operation, definition
Compressed 5-1
Duplicated text 5-6
External text 5-2
General description 5-1

60492600 H

Operation, definition (Contd)
Macro definition 5-13
Opdef definition 5-13
Remote text 5-3
System 5-35
Operation field
Blank 4-48
Description 2-1
Search 6-1
Operator
Element 2-22
Mnemonic 5-27, 6-3
Register 2-21, 5-28, 6-7
Term 2-22
Operator with constant 2-13, 2-16
OPL file 5-2, 10-3, 12-1
OPSYN pseudo
Description 6-5
Permissible anywhere 4-2
OR instruction 8-24
ORG pseudo
Description 4-35
Determine blocks 3-1
Establish absolute blocks 3-2, 4-35
Example 4-4, 4-7, 4-13, 4-14, 4-16
Location counter changed 4-35
Origin counter changed 3-3, 4-35
ORGC pseudo 4-35
Origin
Multiply entry point 4-3
Overlay 4-12, 4-15
Program 4-3
Origin counter
BSS 4-37
Control 3-3, 4-35, 4-37
Description 3-3
Final value, absolute 3-6
Final value, relocatable 3-5
Forced upper 3-4
ORG 4-35
ORGC 4-35
Special element 2-9, 3-3
USE 4-32
ORM instruction 9-21
Overflow error 2-17
Overlay
Absolute 3-8
Control tables 4-21
Entry point 4-12, 4-15
General description 3-6, 3-8
Level numbers 4-4, 4-12, 4-15
Multiple entry point 3-12
Name 4-12, 4-15
Origin 4-12, 4-15
PP 3-7,3-9
Primary 3-8, 3-9, 3-11, 3-13, 4-12, 4-15
Secondary 3-6, 3-8, 3-9, 4-12, 4-15

P error 11-11

P numeric data modifier 2-17

P pagination mode 10-4

Pack instruction 8-36

Padding of CPU word 3-4, 4-53, 8-2

Page heading 11-1

Page number 11-1

Pagination control 10-4

Parameter
Actual 5-7, 5-18, 5-25
Embedded 5-18, 5-25
Formal 5-8, 5-13
Indefinitely repeated 5-34
Iterative 5-18, 5-25, 5-34

Substitutable 5-8, 5-13, 5-16, 5-25, 5-28, 5-34

Index-9

Parameter mark 5-9, 5-13
Parameter, null 5-9, 5-18, 5-25
Parameter separator
Actual 5-18, 5-25
Formal 5-8, 5-13, 5-16
Parcel 8-1
Parentheses
Local symbol separator 5-31
Nested 5-9
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28
Partial binary
IDENT type 3-14
SEG type 3-12
Pass instruction
CPU 8-43
PP 9-9
Pass one
Expression evaluation 2-23, 2-26, 2-28, 3-3
General description 1-3
Maximum test 4-42
Minimum test 4-43
Symbol definition 2-6
Pass two
Expression evaluation 2-22, 2-26, 3-3
General description 1-3
Symbol definition 2-5
Value for MAX 4-42
Value for MIN 4-43
PC control statement option 10-4
PCOMMENT miero 7-7
PD control statement option 10-4
PERIPH pseudo
Description 4-10
Effect on branch instructions 9-8
Example 4-49, 6-5
First statement group 4-2
PJN instruction
Deseription 9-7
Effectof J 4-9, 4-10
PL instruction 8-24, 8-26
Plus as local name separator 5-31
Plus as parameter separator 5-8, 5-13, 5-16,
5-25, 5-28
Plus in location field
CPU instruction 3-4
PP instruction 3-5
VFD instruction 4-53
Plus on listing 11-6, D-2, D-3
Plus operator 2-21, 2-23, 8-11
Point
Binary 2-18, 2-19
Decimal 2-18, 2-19
Octal 2-18, 2-19
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28
Register designator 2-8
Population unit 8-43
POS pseudo 4-40
Position counter
Control 4-40, 4-53
Description 3-4
Special element 2-9, 3-4
Post radix 2-17
PP instructions 9-1
A-register I/0 9-22
Block I/0 9-22
Branch /0 9-19, 9-21
Branch 9-7
Central read/write 9-18
Channel function 9-24
Constant mode 9-11
Designators 9-3
Direct address 9-15
Error stop 9-25
Exchange jump 9-12
Format 9-1

Index-10

PP instructions (Contd)
Funections 9-6
Indexed direct address 9-16
Indirect address 9-15
No address 9-10
No operation 9-11
Output record flag 9-23
Shift 9-9
PPOP
Description 6-3
Example 5-12, 6-5
Permissible anywhere 4-2
PPU pseudo
Description 4-8
Effect on branch 9-8
Example 4-10, 4-54
First statement group 4-2
Prefix table
Comments 4-20
Generation 3-6 thru 3-8
Suppression 4-21
Preradix 2-17
Program, absolute 3-6, 4-6
Program example D-1 thru D-8
Program execution 10-5
Program identification 4-2
Program origin 4-3
Program, relocatable 3-5
Program stop instruction 8-13
Program structure 3-1
PS control statement option 10-4
PS instruction
Description 8-13
Force upper 3-4
Pseudo instruetions
Binary control 4-6
Block counter control 4-32
Conditional assembly 4-59
Data generation 4-47
Definition operation 5-1
Error control 4-71
First statement group 4-2
Introduction 4-1
Listing control 4-73
Miero 7-1
Mode control 4-24
Operation code table management 6-1
Operation field entry 2-2
Permissible anywhere 4-2
Required 4-2
Subprogram identification 4-2
Subprogram linkage 4-45
Symbol definition 4-40
Types 4-1
PSN instruection 9-11
PURGDEF pseudo
Description 6-10
Permissible anywhere 4-2
PURGMAC pseudo
Description 6-7
Example 6-6
Permissible anywhere 4-2
Push down stack 1-3
PXi instruction 8-36

Q to represent expression 5-27, 6-8
QUAL micro 7-6
QUAL pseudo
Description 4-28
Example 4-13, 4-30, 5-22
Permissible anywhere 4-2
Qualifier, symbol 4-28
Used for definition operations 5-2

60492600 H

R error 11-11 RL instruction 8-16

R hardware feature code 4-8 RMT pseudo
R list option 4-75 Description 5-3
R register $-2, 9-3 Example 5-5, 5-6
RAD instruction Permissible anywhere 4-2
Desecription 9-15 RO instruction 8-22
Replace function 9-7 Round and normalize instruction 8-35
Radix 2-17 RPN instructions 9-13
RAI instruetion RXi instructions
Description 9-15 Add 8-38
Replace function 9-7 Divide 8-43
RAM instruetion Multiply 8-40
Description 9-16 RXj instruction 8-20
Replace function 9-7 R= pseudo
RE instruction Description 4-55
Deseription 8-15 Example 4-38, 5-21
Force upper 3-4 Dllegal in PP program 4-9, 4-10

Read central memory instruction 8-46, 9-17
Real-time clock set instruction 8-21

Record name, external text 5-3 S list option 4-75
Recursion level 1-4, 5-1 S numeric data modifier 2-18
Recursion stack 1-4, 5-1 S storage flag 11-14
Reference S system text mode 10-5
Macro 5-18 SAi instructions
Macroe 5-24 Description 8-44
Nested 5-1 Example 2-15, 2-16, 2-19, 4-33, 4-38, 5-22,
Opdef 5-27 33, 8-45
Reference table, symbolic 11-13 SBD instruction
Register designators Arithmetic function 9-6
CPOP 6-7 Description 9-15
Description 2-8, 8-7 SBI instruction
Not symbols 2-5 Arithmetie function 9-6
OPDEF 5-27 Description 9-15
OPSYN 6-5 SBi instructions
PURGDEF 6-10 Description 8-46
Registers, CPU 2-8, 8-7 Example 2-9, 2-12, 8-47
READC maecro 12-28 SBM instruction
READH macro 12-28 Arithmetic function 9-6
READO macro 12-29 Description 9-16
READS macro 12-29 SBN instruction
READW macro 12-29 Arithmetic function 9-6
RECALL macro 12-30 Description 9-10
REL attribute 4-66 Scale, binary 2-18
Relocatable program structure 3-5 SCF instruction 9-20
Relocatable test 4-66 SCM blank common 3-3
Relocation, CM access 9-2 SCM labeled common 3-2
Relocation register SCN instruction
Description 9-2, 9-3 Description 9-10
Load and store instructions 9-12 Logical function 9-6
Remote assembly 5-3 SEG pseudo
REP pseudo 4-57 Binary generation 3-12
REPC pseudo 4-57 Description 4-15
Repeat count Example 4-16
DUP 5-7 Force upper 3-4
Replication 4-57 Illegal in PP program 4-9, 4-10
REPI pseudo SEGMENT pseudo
Example 4-57 Binary generation 3-8 thru 3-10, 3-12
Description 4-37 Description 4-16
Illegal if absolute 4-6, 4-9, 4~10 Example 4-17
REPL table Force upper 3-4
Result of BSSZ 4-48 Dlegal in PP program 4-9, 4-10
Result of REP, REPC, or REPI 4-57 Overlay structure 3-10, 3-12
Written by SEGMENT 4-15 Semicolon in definition 5-8, 5-13
Replace functions, PP 9-7 SEQUENCE miero 7-7
Replication of code 4-57 Sequencing
Return jump, CPU 8-14 Listing 11-7
RFN instruction 9-23 Statement 2-1
Rl instruction 8-21 SET attribute 4-66
Right shift 8-32, 8-33 Set register instructions 8-44 thru 8-49
RJ instruction SET pseudo
Description 8-14 Description 4-41
Example 4-33, 5-21, 8-15 Example 2-9, 2-20, 5-11, 5-22
Force upper 3-5 Listing 11-6
RJM instruction 9-7 SFM instruction 9-20

60492600 H Index-11

Shift
Description of unit 8-3, 8-6
CPU instructions 8-31 thru 8-33
PP instruetion 9-9
SHN instruetion 9-9
Short jump limit 4-9, 4-11
Short list 10-4
Single precision instructions
Add rounded 8-38
Add unrounded 8-37
Divide rounded 8-43
Divide unrounded 8-42
Multiply rounded 8-40
Multiply unrounded 8-39
SKIP pseudo
Description 4-70
Permissible anywhere 4-2
Slant bar
Local symbol separator 5-31
Operator 2-22

Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28

SOD instruction
Description 9-15
Replace function 9-7
SOI instruction
Description 9-15
Replace funetion 9-7
SOM instruction
Description 9-16
Replace function 9-7
Space, embedded (see blank)
SPACE pseudo
Description 4-76
Permissible anywhere 4-2
Special elements
FORTRAN call 2-9
General description 2-9
In variable field 2-2
Loeation counter 3-4
Origin counter 3-3
Position counter 3-4
SRD instruction 9-12
SST attribute 4-67
SST pseudo 4-45
Example 4-13
Permissible anywhere 4-2
Stack, recursion 1-4, 5-1
Statement
Coding conventions 2-3
Comments 2-2
Compressed 5-1
Continuation 2-2
External source 5-2
First column 2-1
First growp 4-1
Format 2-1
Listing 11-5
Number assembled 11-8
Size 2-1
Source of 5-1, 10-3
Statistics, assembler 11-8
STD instruction
Data transmission function 9-6
Description 9-15
STEXT pseudo
Description 4-17
Example 4-19
First statement group 4-2
STI instruction
Data transmission function 9-6
Description 9-15
STM instruction
Data transmission function 9-6
Description 9-16

Index-12

STOPDUP pseudo
Description 5-9
Example 5-11

Storage reservation 4-37, 4-48

String, character
Comparison 4-68
Data generation 4-49
Delimited 2-11, 2-14
Empty 2-14
Micro 2-4
Notation 2-13

Strong external 2-7

Subprogram length 3-5

Substitution, micro 7-1

Subsubtitle

CTEXT 4-79
EJECT 4-76
Listing of 11-1
QUAL 4-28
SPACE 4-76
TITLE 4-77
TTL 4-78
Subtitle
CTEXT 4-79
Listing of 11-1
TITLE 4-77
SXi instruction
Description 8-48
Example 2-15, 2-19, 5-21, 5-31, 8-49
Symbol
Attribute 2-6, 4-40, 4-66
Created 5-32
Default 2-7
Definition 2-5, 4-40
Duplicate 2-6
Entry point 2-6
External 2-7
Invented 5-32, 11-8
Literals 2-6
Local to maero 5-13, 5-31
Local to QUAL 3-1
Location field 2-6
Lost 11-8,11-13
Number defined 11-8
Number referenced 11-8
Previously defined 2-7
Qualified 2-7, 4-27
Redefinition 4-29, 4-41
System-defined 2-6, 4-45
Undefined 2-7
Value 2-6, 4-39
Symbol qualifier listed 11-1
Symbol table
Clesring 3-10, 3-12
System text 4-17
Symbolic notation 8-1, 9-1
Symbolic reference table
Address reference 4-80
Detailed description 11-12
General description 4-73
Generation 1-3
List control 4-73, 10-3
Omit symbol 4-78
Synonymous operation
CPU 6-10
Mnemonic 6-5
PP 6-5
Syntactic 6-7
Syntax definition 5-27, 6-7, 6-10
Syntax search 6-1
SYSTEM macro 12-30
System text 4-19
SYSTEXT option 10-4
Related to G mode 10-4
Related to STEXT 4-17

60492600 H

T list option 4-73 Variable field 2-2

Table Variable field definition 4-53
Operation code 6-1 VFD pseudo
Symbolic reference 11-12 Description 4-53
USE 4-32 Example 2-15, 4-25, 4-30, 4-33, 4-54, 5-22
TBj instruction 8-21
Term 2-22
Term operator 2-22 WE instruetion
Terminator, macro 5-13 Description 8-15
Test symbol attribute 4-66 Force upper 3-4
Time limit 10-1 Weak external 2-7
TIME micro 7-6 WL instruction 8-16
Time of assembly 11-1 Write central memory instruction 8-46
Title WRITEC macro 12-31
ES 8-14 ‘WRITEH macro 12-31
IDENT 4-3 WRITEQC macre 12-31
Listing of 11-1 WRITES macro 12-32
PS 8-13 WRITEW macro 12-32
TITLE 4-77 WXj instruction 8-20

TITLE pseudo 4-77
Permissible anywhere 4-2
Transfer symbol 4-4

Transmit instruction 8-27 X external flag 4-47, 11-6

Truncation, character data 2-13 X external text mode 10-5
Expression value 2-26 X file option

TTL pseudo 4-78 Description 10-5
Permissible anywhere 4-2 XTEXT default 5-3

X hardware feature code 4-8
X list option 4-75

Uerror 11-11 X register
UEM Conditional instructions 8-24
Block copy instructions 8-15 Description 8-7
Direct transfer instructions 8-20 Designator 2-8
UJN instruction Setting 8-48
Effect of J 4-9, 4-10 XJ instruction
Description 9-7 Description 8-17
Unconditional jump FPorce upper 3-4
CPU 8-23 XREF pseudo
PP 9-7 Description 4-80
Underflow error 2-18 Permissible anywhere 4-2
Unpack instruction 8-35 XTEXT pseudo 5-1
USE pseudo Related to CTEXT/ENDX 4-79
Change blocks 3-1 thru 3- 3, 3-5, 4-32 XTEXT source 10-5

Description 4-32
Establish common blocks 3-2, 3-3, 4-32

Establish local blocks 3-2, 4-32 Zero block
Example 4-17, 4-30, 4-31, 4-33, 4-36, 4-38 Absolute program 3-2, 3-6, 3-7
USE table Description 3-2
Entry 4-32, 4-34, 4-35 Relocatable program 3-5
Reinitialization 3-10, 3-12, 4-11 Zero fill 2-14, 4-53
USELCM pseudo Zero guaranteed
Description 4-34 Data item 2-14
Establish common blocks 3-2, 3-3 DIS item 4-50
Example 4-35 Zeroed words 4-48
Illegal in PP program 4-9, 4-10 ZJN instruction
USER control statement 10-7 Deseription 9-8
UXi instruetion 8-35 Effect of J 4-9, 4-10
ZR instruetion
Deseription 8-24, 8-26
V error 11-11 Force upper 3-4
V alue, numeric 2-17 ZXi Instruction 8-35

60492600 H Index-13 @

INIT ONOTV LND

COMMENT SHEET

MANUAL TITLE: COMPASS Version 3 Reference Manual

PUBLICATION NO.: 60492600

REVISION: L

This form 1is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested

additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary
FOLD FOLD
NO POSTAGE
NECESSARY
IF MANED
IN THE
UNITED STATES
T
BUSINESS REPLY MAIL e —
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]
.
POSTAGE WilL BE PAID BY b R
CONTROL DATA CORPORATION e——
L]
Publications and Graphics Division
L
P.0O. BOX 3492 e —
Sunnyvale, California 94088-3492 [—
]
]

FOLD FOto

NO POSTAGE STAMP NECESSARY IF MAILED IN U.5.A.
FOLD ON DOTTED LINES AND TAPE

NAME:
COMPANY :
STREET ADDRESS:

CITY/STATE/ZIP:

TAPE TAP

=

CUT ALONG HERE

CUT ALONG HERE

COMPASS VERSION 3

G2

STANDARD CHARACTER SETS

LANGUAGE
ELEMENTS

PSEUDO

INSTRUCTIONS

—_— e e e — ——

SPECIAL CHARACTERS

Any Field
= Micro substitution

~ Concatenation

First Column
* Comments line
Continuation

Location Field

+ Force Upper
- Negate Force Upper
Variable Field
=item Literal
=Ssym Deferred Symbol

=Xsym Strong External Symboi
=Ysym Weak External Symbo!
e} Origin Counter
or "L Location Counter
“P Position Counter
Position Counter — 1
*F Caller: COMPASS 0
RUN 1
FTN4 2
FTNS 3
Subfield Delimiter
/name/ Symbol Qualifier

PROGRAM DEFINITION

CONDITIONAL ASSEMBLY

att

ABS

comM
DEF
EXT
LCM™
LoC
MIC

REG
REL
SET

SST

CHARACTER NOTATION

| sign t | string

or

sign jt dd

Constant | ni tistring |
—— .

— T T
| =1sign| n]| t]string

or

Data
Item

Literal

[X .
“:‘ysrgn}‘tid‘strmg:‘d[

Left, 12 zero bits
Left, blank fili
Right, blank fill
Right, zero fili
Left, zero fill
Left, 6 zero bits
d = delimiter character

n = no. of characters
string = Code characters

NrI»ITO

IDENT name, fwa,eptsym name \Fop exp;.exp, inct
Syirt END rrasym name~ 1FMI exp,Lnct
narne IFPL exp, Qnct
name {FCP Qnct
name IFCP6 Cnct
BINARY CONTROL name IFCP7 Qnct
name \FPP 2net
name \FPP6 enct
ABS name IFPP7 nct
N",E\MSEL,_ e, | name 1F att,exp Lnct
MACHINE wypenf, nf, ... hf, name IF _att,exp fnct
pnf‘./pe =6 7 or8 Afi=CDILX name 1FC op,dstring, dstring2d, ¢nct
Y J name IFC —op,dstring, dstring,d, £ nct
PERIPH J name ENDIF : :
CiPPU - name ELSE Lnct
IDENT name, org, entry, , % name SKIP Qnct
IDENT name, org, entry, ppu
name SEGMENT fwa.eptsym
SET
record STEXT
LDSET py.pa....,P;
Lcc directive LIST CONTROL
COMMENT string
NOLABEL |
LIST Pi.P2, . P, or ¥
p=A Assembiy
B Binary control
MODE CONTROL C Control statements
] Detaii
E Echoed lines
mname BASE OorDorMor* F IF - Skipped lines
CODE AorDorEorior* G Code generation
QUAL name or ¥ L Reference table only
B1=1 M User macros
B7=1 N Referenced symbols only
coL n R No references
S Systermn macros
T SST symbols
X XTEXT fines
COUNTER CONTROL
name EJECT
name SPACE aexp,aexpa
USE * or name or // or /name/ name TITLE string
USELCM *or name or // or /name/s NOREF sy, ... sym
ORG exp name TTL string "
ORGC exp name CTEXT string
sym BSS exp ENDX
LOC exp XREF Aor8
POS aexp

SUMMARY C%%'}()L
Pub. No. 60492600 M 1984, 1986 ASCH Hollerith- External ASCIt
~ cbc Graphic Display Punch BCD Punch ASCH
CDC®OPERATING SYSTEMS: NOS 2, NOS/BE 1, SCOPE 2 Graphic Subset Code {026) Code {029} Code
T : oot 8-2 00 8-2 3A
CONTROL STATEMENT | . o - o ST
COMPASS (p1 Pgrenn pn) or COMPASS. B B 02 12-2 62 12-2 42
c c 03 12-3 63 12-3 43
A omitted Do not abort ML omitted or ML MODLEVEL returns JDATE o o 04 12-4 64 124 o
A Abort on assembly errors ML=string MODLEVEL returns 9- E E 05 12-5 65 12-5 a5
B itted or B Binary on LGO character string F F 06 12-6 66 12-6 46
omr
= No binary N omitted or O Normal ejects G G 07 12-7 67 12-7 a7
B=lfn Binary on Ifn N No ejects H H 10 12-8 70 12-8 48
BL omitted or BL=0 Compact listing format 0 omitted or O Short list on OUTPUT ! ! n 12-9 n 12-9 49
BL Burstable listing format O=ifn Short list on Ifn J 4 12 11-1 41 113 4A
D omitted No debug mode 00 No shortfist K « 1 -2 42 n-2 b
D Debug mode P omitted New pagination on END L L 4 11-3 43 -3 ac
£ itred Error i OUTPUT e Continue pagination #i M i5 114 44 11-4 4D
omitt rror list on
! N N 16 1 a5 115 4
E Error list on ERRS PC omitted or PC PCOMMENT is 30 blanks o 0 17 11-2 46 116 4F
§=I0fn E‘rror list on Ifn PC=string PCOMMENT is 30- h
=| o error list character string
F gr_nmed or F :E returns 0 decimal PD omitted or other Print density default P P 20 17 47 -7 50
F:n £ returns n (f eﬁlma.) PD=6 Print density 6 lines/inch Q Q 21 11-8 50 11-8 51
=name é%wl'gsAaSsS ° OOW& PD=8 Print density 8 lines/inch R R 2 11-9 51 11-9 52
?%JN =1 PS omitted or other Page size default S s 23 0-2 22 0-2 53
FT“‘; = § =X Page size is x lines/page, T T 24 0-3 23 0-3 54
b where 4=x=98 u u 25 0-4 24 04 55
GT omitted or G=0 No system text st omitted SYSTEXT overlay v v 26 0-5 25 0-5 56
g=|fn g\csetrelg‘oer):tlﬁwn SYSTEXT S 0 SYSTEXT on global library w w 27 0-6 26 0-6 57
- S= No system text X X 30 0-7 27 0-7 58
G=lfn/av! Named overlay on Ifn g=,°‘"/ “amed over:ay on library " Y o os 2 s s
. =lib/ovl lamed overlay on named -
| ?mmed ggtﬁ: grr: !C"g)n’/hlgl LE library v z z 32 6-9 31 0-9 5A
- 0 0 33 0 12 0 30
1=Ifn Source on ifn X gz(mli;ted §.-||:EXT on CLDPL .] 2 . o ; =
. . =ifn XT on Ifn
L aLr:l;tr:ed orL Et‘;t' g:\tl?: ouTPUT X XTEXT on OPL 2 2 35 2 02 2 32
=0 No full list 3 3 % 3 03 3 3
4 4 37 4 04 4 34
Lo t’é"t;:::’ LO=0 &“ig glﬁg;”d R TSeven G and S parameters allowed
LO=! Selects all list options
LO=cc,...c, Deselectsifc, is B,LN, or R: ° > e s % 3 ®
selects if c; is other & M “ M oe & %
7 7 42 7 07 7 37
8 8 43 8 10 8 33
9 9 4 9 1" 9 9
+ + 45 12 60 12-8-6 28
- - 45 1 40 1 2D
MOBDEL 72, 73, 74 EXIT MODES * * 47 1184 54 1184 | 2a
/ / 50 0-1 21 0-1 2F
Bit 50 Bit 49 Bit 48 { (51 0-8-4 34 12-8-5 28
)) 52 12-8-4 74 11-8-5 29
INDEFINITE OPERAND ADDRESS $ $ 53 11-8-3 53 11-8-3 24
OPERAND OUT OF RANGE OUT OF RANGE = = 54 5.3 13 56 30
blank blank 55 no punch 20 no punch 20
{comma} {comma) 56 0-8-3 33 0-8-3 2C
{period) (period) 57 12-8-3 73 12-8-3 2E
MODEL 76 PSD REGISTER = # 60 0-8-6 36 8-3 23
{ { &1 8-7 17 12-8-2 58
r : ! l \ 7 ' CONDITIO _I * 1 1 62 0-8-2 32 11-8-2 5D
LExit ; Mon lStepi Ind | Ovf i Undfl LPar | SPar I LBk SBﬂf I LDir I SDir | Prog | Bkp rStep Ind | Ovf UndTI %TT % 63 8-6 16 0-8-4 25
i ! ! I i # “{quote) 64 8-4 14 8-7 22
a
17 1% 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 N tunderline] o5 0825 3 085 | s
v ! 66 11-0 52 12-8-7 21
A & 67 0-8-7 37 12 26
¢ *(apostrophe) 70 11-8-5 55 85 27
FATAL ERRORS INFORMATIVE ERRORS 4 . n RGN DO el
A ADDRESS FIELD BAD 1 LOCATION SYMBOL BAD. SYMBOL NOT > > 73 11-8-7 57 0-8-6 3E
8 DOUBLY DEFINED SYMBOL. THE FIRST DEFINED. < @ 74 -5 15 84 20
DEFINITION HOLDS. 2 ADDRESS ERROR ON SYMBOL DEFINITION. S \ 75 12-8-5 7 082 | sc
E ECHO, DUP, RMT, OR MACRO iLLEGALLY 3 DUPLICATE MACRO DEFINITION. NEW ONE Alei flex) 6 76 1
NESTED. OVERRIDES. o creumtext 1 7 1256 IOA
F NUMBER OF ENTRIES EXCEEDS PERMISSIBLE | 4 BAD FORMAL PARAMETER NAME IGNORED., ¢ teemizolon) [; (semicolon) | 77 1287 7 R
AMQUNT. 5 CPU OPERATION SYNTAX INCORRECTLY
L LOCATION FIELD BAD. SPECIFIED.
N NEGATIVE RELOCATION ON ENTRY POINT. 6 LOCATION FIELD MEANINGLESS.
O OPERATION FIELD BAD. 7 ADDRESS VALUE EXCEEDS FIELD SIZE, tTwelve or more zero bits at the end of a 60-bit word are interpreted
P CONSULT LISTING FOR REASON BEHIND RESULT TRUNCATED. i i i
as end-of-line mark rather than two colons. End-of-line mark is
P-ERROR. 8 MISSING OR EXTRA ADDRESS SUBFIELD. onverted to external BCD 1632
R DATA ORIGIN QUTSIDE BLOCK OR IN 9 MICRO SUBSTITUTION ERROR. NO ¢)
BLANK COMMON BLOCK. SUBSTITUTION.
U UNDEFINED SYMBOL. VALUE ASSUMED 0. tHin |n_stallat|ons using the CIZ_)C 63—graphvlc set, display c_odc 00 has no
V. BIT COUNT ERROR ON VFD (MUST BE associated graphic or Hollerith code; display code 63 is the colon

0 <COUNT < 60).

{8-2 punch).

NUMERIC NOTATION

Data T ——F 3
Ttem | sign . prerx | value moas

Literal ‘ =I sign l prerxl valuel mods‘
Mods Spec Default
Sign +or — +
Radix QorB BASE

(pre/post) or D Pseudo
Integer n 0
Fraction .;nor. none
Pwr 10 st Eor€En

or Etn none
Pwr 10 db! EE or EEn

or EEtr none
Pwr 2 SorSn

or Stn none
Binary pt PorPn

or Pzn none

SYMBOL DEFINITION

DEFINITION OPERATIONS

SYSTEM MICROS

DATE QUAL
JDATE SEQUENCE
TIME MODLEVEL
BASE PCOMMENT
CODE

sym = exp
sym EQU exp file XTEXT record
sym SET exp name DUP rep,nct
sym MAX expy.exps, .. ., exp, name ECHO Qnct,p, =llist, },py=(listy), . ..
sym MIN expi.expy, .. exp, name ENDD
sym MICCNT mname ’ STOPDUP
SST sym. .. name RMT
name HERE
T name. MACRO. . py.o4 il
MACRO name,p,.,ps,. P
name MACROE p,;.pa2, ...,
LINKAGE CONTROL MACROE momeripin
sytx OPDEF Pr.P2, .. P,
name ENDM
Y symisyma, .. sym, LOCAL sym,
YC symy,symy, . .S » I'R"P" - ;; o
Sym, ., symsz,sym,
DATA GENERATION OP CODE MANAGEMENT
sym BSSZ exp
sym DATA itemy, .. item name PPOP ctl val,type
sym DIS n,string namer OPSYN name-
sym DIS L dstringd NiL
sym LIT itemy, . . item PURGMAC name, name:,. . ,name,
sym VFD item; /expy,exp, PURGDEF sytx
sym CON item, /exp, .,exp, sytx CPOP ctl,vai.reg type
sym R= reg,exp sytx, CPSYN sytxz
REP Syaddr,D/addr,C/rep,B/bsz,1/inc
REPC S/addr,D/addr,C/rep,B/bsz,1/inc
REP! S/addr,D/addr,Cirep B/bsz |linc
MICRO
ERROR FLAG
mname MICRO ny.ny dstringd
mname MICRO ny . dstringd
t ERR mname DECMIC aexp,n
t ERRop aexp mname QCTMIC aexp,n

op =ZR,NZ,PL, NG, MI

@ CYBER 70 Model 76, and 7600 Instruction Operation Variable Description Instruction Operation Variable Description
® CYBER 170 Models 171, 172, 173, 174, 175, 720, 730, 740, 750, and 760; ;
CPU CYBER 70 Models 71, 72, 73, and 74; and 6000 Series 42ijk DXi Xj *Xk Double-precision product of {Xj} times (Xk) to Xi 17d SBN d Subtract (A)—d =>A
@ CYBER 170 Model 176 43ijk MXi *jk Form mask of % jk bits in Xi 20d m LDC c Load c—> A
INSTRUCTIONS @ CYBER 170 Models 815, 825, 835, 845, and 855; and CYBER 180 Series 44ijk FXi Xj/Xk Divide [Xj) by [XK) to Xi) 21dm ADC c Add (A} + c—>A
® Privileged to monitor ’ R 45ijk RXi Xj/Xk Rounded divide (Xj} by (Xk) to Xi 22d m LPC c Logical product; [{A) * c—> A
46000 NO Pass (do-nothing) _ 23d m LMC c Logical difference; (A)—c—>A
R . L 47ikk CXi Xk Population count of (Xk) to Xi 2400 PSN Pass
Op Variable Description 50ijK SAi Aj*K (Aj) plus K to Ai 24d LRD d @ Load (R) from d and d+1
51ijK SAi BjxK {Bj) plus K to Ai 25d SRD d @ Store (R) into d and d+1
00000 ES (D® Error exit to EEA 51i0K SAi K K plus 0 to Ai 260d EXN d @Q@®@ | Exchange jump CPU d unconditionally to (A}
0000K PS @@ K Program stop 52ijK SAi XjtK (Xj) plus K to Ai 260d ETN d @ 6416 Extended transfer
0100K RJ K Return jump to K 53ijk SAi Xj+Bk (Xj) plus {Bk} to Ai 261d MXN d Monitor exchange jump CPU d to (A}
011jK RL OB BjtK Block-copy K plus (Bj) words from LCM to SCM 53ijk SAi Bk+Xj (Bk) plus (Xj) to Ai 262d MAN d @Q@ | Monitor exchange jump CPU d to (MA)
011jK RE Q@ BjtK Read extended core storage 53ij0 SAi Xj (X} plus 0 to Ai FUNCTIONAL UNITS 270d RPN d @0 Read program address of CPU d to A
012jK wL DO BjtK Block-copy K plus (Bj) words from SCM to LCM S4ijk SAi Aj+Bk (Aj) plus (Bk) to Ai 270d ERN d @ 6416 Extended read status
012jK WE @ BjtK Write extended core storage 54ijk SAi Bk+Aj (Bk) plus (Aj) 10 Ai Model 74 Model 76 30d LDD d toad (d) —+A
01300 My ® Exchange-exit to NEA if exit flag clear 54ij0 SAi Aj (Aj}plusOto Ai - Octal Octal 31d ADD ¢ Add (A) + ()= A
013K M DRG Bj+K Exchange-exit to K + (Bj) if exit flag set 55ijk SAi Aj—Bk (Aj) minus (BK) to Ai Cod ¢ da 32d SBD d Subtract (A} —(d}— A
013K x4 @R@@® BJtK Central exchange jump to Bj+K 55ijk SAi —Bk+A] (Aj) minus (BK) to Ai es odes 33d LMD d Logical difference; (A} and {d)— A
014jk RXj DR®@ Xk Read LCM at (XK} to X 56ijk SAi Bj+Bk (Bj} plus {Bk) to Ai Branch Boolean 34d STD d Store (A)—d
0155k wXj D@ Xk Write {Xj) into LCM at (Xk) 96ij0 SAi Bi (Bj) plus O to Ai 0007 ~0.17 35d RAD d Replace add; (d} + (A)—d and A
0160k Rl OR® Bk Reset channel (Bk) input butfer 57ijk SAi Bj—Bk (Bj) minus (Bk) to Ai Boolean 26.27 36d AOD d Replace add one; (d) + 1—>d and A
016jk B ®® Bk Read channei (Bk} input status to Bj if j # 0; 57i0k SAi -Bk 0 minus (Bk) to Ai 7017 Shift 37d SO0 d Replace subtract one; (d}—~1—>d and A
)) otherwise, same as Rl 57ijk SAi —Bk+Bj (Bj) minus (Bk) to A Shift =0.23 40d LD} d Load ((d))—> A
016i0 78] ®Q Set B to current clock time 603K SBi AitK (A plus K to Bi, 2027 43 41d ADI d Add (A) + ({d))—> A
0170k RO %@ Bk Reset channel (Bk) output buffer 61ijK SBi Bj:K (Bj} plus K to Bi * 23 Normalize 42d S8l d Subtract (A} —((d))—> A
017jk o8] DO® Bk Read channel (Bk) output status to Bj if j % O; otherwise, 61i0K SBi o Kplus 010 Bi FP Add T 2425 43d LM d Logical difference; (A} ={(d)) = A
same as RO 62ijK SBi XK (Xj) plusK t0 Bi 30.35 EP Add 444 STI d Store (A)—* (d)
02i0K P Bi+K Jump to K plus (Bi) 63ijk SBi Bk+Xj {BK} plus (Xj) to Bi Long Add 30-35 45d RAI d Replace add; (A) + {(d))—> (d) and A
030jK ZR Xi.K Branch to K if (Xj) = 0 63i0k SBi §@+ . (Xj) plusOto Bi 36,37 Long Add 46d A0l d Replace add one: ((d}) + 1 (d} and A
031jK NZ Xj.K Branch to K if (Xj} # 0 64ijk SBi o &, {Aj) plus (BK) to Bi T 47d SO! d Replace subtract one; {(d}—1->(d)
032K PL Xj K Branch to K if (Xj) sign is plus 64ijk SBi k+Aj (BK} plus (Aj) to Bi —2042 | FP Multiply 50d m LoMm m, d Load {m + (d))—> A
033jK M Xj.K Branch to K if {X]) sign is minus 64ij0 SBi o Bk (A plusOtoBI EP Divide —a547 51d m ADM m, d Add (m + (d)) + (A)=> A
033jK NG Xj,K Branch to K if (Xj) sign is minus 65ijk SBi 'B—k+A’ {Aj) minus {Bk) to Bi 44, 45, 47 FP Divide S52d m SBM m,d Subtract {A)—(m + {d})}) > A
034jK IR Xj.K Branch to K if (Xj} in range 85ijk SBi oA (Aj) minus (Bk) to Bi Increment 44 45 53d m LMM m, d Logical difference: {A)—(m + (d))—> A
035jK OR Xi.K Branch to K if {Xj) not in range - 660jk R @ J, Xk Read central memory 5077 Population 54d m ST™ m, d Store (A}=>m + (d)
036jK DF Xi.K Branch to K if {Xj) definite Logical 66ijk SBi Bj+Bk {Bj} plus (Bk) to Bi —a 55d m RAM m, d Repiace add; (A) + (m + {d))—> m + (d) and A
037jK 1D Xi.K Branch to K if {Xj) indefinite Operators 66ij0 SBi Bi {Bj) plus 0 to Bi Increment 56d m AOM m.d Replace add one; (m + (d)) + 1-» m + (d} and A
0400K EQ K Branch to K 6705k w@ Xj. Xk Write central memory 85077 57d m SOM m, d Replace subtract one; (m + (d))—1—= m + (d) and A
0400K ZR K Branch to K * 0100 67ijk SBi Bj—Bk (Bj} minus (Bk) to Bi 60d m FIM m, d DB Jump to m on input word flag on channel d
04ijK EQ Bi, Bj, K Branch to K if {Bi) = {Bj) 1101 67i0k SBi —Bk 0 minus (Bk) to Bi 60d CRD d * @@ | Central read from (A) 10 d
04i0K ZR Bi, K Branch to K if {Bi) = 0 0100 67ijk SBi —Bk+Bj (Bj) minus (Bk) to Bi 61dm EIM m,d % Jump to m if no input word flag on channel d
05ijK NE Bi, Bj, K Branch to K if (Bi) # (Bj) 70ijK SXi Ajzk (Aj) plus K to Xi 61d CRM m,d @@@ | Central read (d) CM words beginning from CM address (A) to beginning PPU address m
05i0K NZ Bi, K Branch to K if (Bi} # 0 * 0100 7K SXi Bj=K {Bj) plus K 1o Xi 62d IRM m,d DG Jump to m on input record flag on channet d
06ijK GE Bi, Bj, K Branch to K if {Bi} > (8j) 1101 710K SXi K K plus 0 to Xi m : P to m on Inpu 9
! i, Bj, if (Bi) > 1107 . ! XitK B X 62d CcwWD d @@@ | Central write from d to (A)
060K GE Bi, K Branch to K if (Bi) > 0 72ijK SXi X!+Bk (Xj) plus K to Xi 63d m NiM m,d DG Jump to m if no input record flag on channel d
06iiK LE Bj. Bi, K Branch to K if (Bj) < (Bi) - 0100 73ijk SXi rox {Xj) plus (Bk) to Xi 63d m cwm m, d @@@ | Central write {d) CM words beginning from PPU address m to beginning CM address {A)
el LE Bj, K Branch to K if {Bj) <0 101 ;gfg‘ SXi BlXi :g‘.‘,’ plus {Xi) xa Xi 644d m SCF m, d @ Branch to m if d flag set
) PL Bi, K Branch to K if {Bi) >0 1001 i0k SXi] 1) plus 0 to Xi .
07i0K LT Bi, K Branch to K if (B} < 0 74ijk SXi AirBk (Al plus (Bk) to Xi o AN ™ d %@ o T oty on chanmel d
07ijK LT Bi, Bj, K Branch to K if (Bi) < (Bj) 14ijk SXi Bk+Aj {BK) plus (Aj) to Xi 8544 m 0CF g Clear chamnel 3 1 !
07i0K NG Bi. K Branch to K if (Bi} <0 74ij0 SXi A! "Aé) D"-Js Oto Xi . 65d m EOM m' d(®E Jump tom if no :gtput word flag on channel d
07ijK GT 8j, 8i. K Branch to K if (Bj) > (Bi) 75ijk SXi Ai~Bk {Aj) minus (B) to Xi 65d m (M m.d %@ lump to m if channel d is inactive
070iK GT Bj, K Branch to K if (8j) >0 75ijk SXi —Bk+Aj {Aj) minus (BK) to Xi 664d m SFM m.d Branch to m if channel d error flag set
07i0K Mi Bi, K Branch to K if {Bi) <0 7Bijk SXi Bj+Bk (Bj) plus (BK) to Xi ’
. g c v o : H H) 66d m ORM m.d (O Jump to m on output record flag on channel d
10iij BXi X Copy (Xi) to Xi 76ij0 SXi Bi (Bj) plusOto Xi 66d m FJM m.d Q@@ | Jump to m if channel d is full
11ijk 8Xi Xj *Xk Logical product of (Xi) and (Xk) to Xi ;;iik SXi Bl-kﬂk (‘)31‘,"*'"‘(‘;“(3"' . Xi 674d m CFM m.d Branch to m if channel d error flag clear
::2;:': B:' Xj+Xk Logical sum of (Xj) plus {Xk] to Xi . 77;‘-2:(g;: :gk**Bi (Brj')":'::ls'\us 'é:') to'Xi 67d m NOM m,d Jump to m if no output record flag on channel d
A i Icotimar i e ! A 79@00 | tom f cma oo
.. ! - nput to rom channel
15ijk BXi —Xk* Xj Logical product of (X;) and complement of (Xk) to Xi 71dm 1AM m, d Input {A) words to m from channel d
16ijk BXi —XKk+Xj Logical sum of (Xj) plus complement of (Xk) to Xi 72d OAN d QOutput from A on channel d
17ijk BXi —~Xk—Xj Logical difference of {Xj) minus complernent of (Xk) to Xi 73dm 0AM m, d Output (A} words from m on channel d
20ijk LXi ik Logical-shift {Xi) by * jk CMU INSTRUCTIONS 74d RFN d ® Send record flag on channel d
21ijk AXi 3 Arithmetic-shift {Xi) by * jk 74d ACN d @@@ | Activate channel d
22ijk LXi Bj, Xk Logical-shift (Xk) by (Bj) to Xi 75d DCN d @@ | Disconnect channel d
22iji LXi 8j Logical-shift (Xi) by (Bj) to Xi 76d FAN d 3 Function (A) on channel d
22i0K LXi Xk Transmit (Xk) to Xi Instruction Operation Variable Description 77d m FNC m, d DR@ Function m on channel d
gg{!: LXi Xk, Bj Logical-shift {Xk) by (Bj) to Xi 7700 ESN d G) Error stop
i AXi B, Xk Arithmetic-shift [Xk) by (Bj i -
23 axi 8] Arithmetic shift :xn)bvy('gil)) i 464 0 1K M K Move data according to word at K Y0014 Rber g otk b bonr b :jot‘oA(ZM
23i0k AXi Xk Transmit (Xk) to Xi 464 |j K M Bj+K Move data according to word at Bj+K 10224 LPDL d Logical product (d) long
23ijk AXi Xk, 8j Arithmetic-shift {Xk) by (Bj) to Xi 464 |j 000000 M Bj Move data according to word at Bj 1023d LPIL d Logical product {{d}) long
24ijk NXi, Bj Xk Normalize (Xk) to Xi and Bj 0] oy [k 9 LICstd MD 2.kg.Co.kg.Cq Indirect move descriptor word 1024d m LPML m, d Logical product {m + (d}) fong
pay. N, B Normaize (X1 0 X and B L0 T P T 27 om Rksdkgeg | Direct move 10300 oo ; Cond ("
. rmaiz] i an o,
2410k NXi Xk Normalize {XK) to Xi ! 66 joy | kg 2L]%aC cc 2 k3 .Ca.kp,cy Compare collated 1031d kg%t d Add «L\) +(d)—=A
24ijk NXi Bj, Xk Normalize (Xk) to Xi and Bj 47 1eu | ka eLfCat cu 2 kaCakp.ch Compare uncollated 1032d SBDL d Subtract (A - (d)—A
24ijk NXi Xk, Bj Normalize (Xk) to Xi and Bj - 1033d LMDL d Logical difference (A) and (d}—A
;?lg ZXi, Bj Xk Round and normalize (Xk) to Xi and Bj 1034d STDL d Store (A)—d
10 ZXi Round and normalize {Xi) to Xi 1035d RADL d Replace add (d) + {A)—d and A
25iji ZXi, 8 Round and normalize (Xi) to Xi and Bj @ CYBER 70 Model 76, and 7600 1036d AODL d Replace add () + 1—=d and A
25i0k ZXi Xk Round and normatize {Xk) to Xi @ CYBER 170 Models 171, 172, 173, 174, 175, 720, 730, 740, 750, and 760; | 10374 SODL d Replace subtract one [d) - 1—d and A
25ijk ZXi Bj, Xk Round and normalize (Xk) to Xi and Bj PP CYBER 70 Models 71, 72, 73, and 74; and 6000 Series 1040d LDIL d Load ((d))—A
25ijk ZXi Xk, Bj Round and normalize {Xk) to Xi and Bj @ CYBER 170 Model 176 ' 1041d ADIL d Add (A) + ([d)—A
gﬁg;k Uxi, Bj Xk Unpack (XK) to Xi and Bj INSTRUCTIONS @ CYBER 170 Models 825, 835, and 855 1042d SBIL d Subtract {A) - ((d)}—A
6i0i UXi Unpack (Xi) to Xi 3 . 1043d LMIL d Logical difference (A) - {(d))—=A
26iji UXi, Bj Unpack {Xi) to Xi and Bj ® dis required 1044d STIL d Store (A}={d)
26i0k uXi Xk Unpack {Xk} to Xi 1045d RAIL d Replace add {{d}} + {A)—=(d) and A
ggf!: UXi Bj, Xk Unpack {Xk} to Xi and Bj 1046d AOIL d Replace add one {{d}) + 1—=({d} and A
U] UXi Xk, Bj Unpack (Xk} to Xiand Bj . . Vari e 1047d SOIL d Replace subtract one ((d)) - 1==(d} and A
27ijk PXi Bj, Xk Pack (Xk) and (Bj) to Xi iretraction Operation radle Dereripton 1050d m LDML m. d Load {m + {d))—A
27i0i PXi Pack (Xi) to Xi 1051d m ADML m, d Add (A) + {m + {d]}=rA
27iji PXi Bj Pack (Xi) and (Bj) to Xi 01d m LM m,d Long jump to m + (d} 1062d m SBML m, d Subtract (A) - (m + (d)}==A
2710k PXi Xk Pack (XK to Xi 02d m RIM m. d Return jump to m + (d) 1053d m LMML m, d Logical difference (A} - {m + {d))—~A
27ijk PXi Xk, Bj Pack (Xk) and (Bj) 10 Xi 03d UIN 4 Unconditionat jump to p + r 1054d m STML m, d Store {A)—=m + (d)
30ijk FXi Xj+ Xk Sum of (Xj} plus {Xk) to Xi 04d ZJN r Zero jumptop + ¢ 1055d m RAML m, d Replace add (m + (d}) + (A)=m + (d) and A
3Tijk FXi Xj—~Xk Difference of (Xj) minus (Xk) to Xi 05d NIN r Nonzero jump to p + 1 1056d m ADML m, d Replace add one (m + (d)) + T=em + (d} and A
32ijk DXi Xj+Xk Double-precision sum of {Xj} plus {Xk} to Xi 06d PIN v Positive jump to p + 1 1057d m SOML m, d Replace subtract one (m + (d)) ~ T—=m + (d) and A
33ijk DXi Xj—Xk Double-precision difference of {Xj) minus (Xk) to Xi 07d MJIN 4 Negative jumptop + 1 1060d CRDL d @@®@ | Central read from {A) to d
34ijk RXi Xj+Xk Rounded sum of {Xj) plus (Xk) to Xi 10r SHN T Shift (A) left.circular (+r) or right-end off (—r} 1061d m CRML m, d @ | Central read (d) CM words beginning at CM (A}=PP m
35ijk RXi Xj—Xk Rounded difference ot {Xj) minus (Xk) to Xi 11d LMN d Logical difference; (A)—d —>A 10620 CwDL d @ | Central write from d to (A}
36ijk I1Xi Xj+Xk Integer sum of {Xj} plus (Xk) to Xi 12d LPN d Logical product; (A) * d—* A 1063d m CWML m, d@@@® | Central write {d) words beginning at PP m—CM (A}
37ijk 1Xi Xj—Xk Integer difference of {Xj} minus {Xk} to Xi 13d SCN d Selective clear; (A) at each d bit set 1064X cm FSIM m, c Jump to m if channel c flag set
40ijk FXi Xj * Xk Product of (Xj) times {Xk) to Xi 14d LDN d Load d =>A 1065X cm FCJM m, ¢ Jump to m if channel ¢ flag clear
41ijk RXi Xj* Xk Rounded product of {Xji times (Xk) to Xi 15d LCN d Load complement d —~>A 1071X cm IAPM m,c Input A words to m from channel ¢ packed
pi
42ijk IXi Xj* Xk Integer product of {Xj) times (Xk} to Xi 16d ADN d Addd+ (A)— A 1073X cm OAPM m, ¢ Output A words from m on channel ¢ packed
eger p i

JH3H ONOV LND

JHIH ONOTV LND

PSEUDO INSTRUCTION INDEX

Name

ABS
BASE
BSS
BSSZ
B1=1
B7=1
CHAR
CODE
coL
COMMENT
CON
cPop
CPSYN
CTEXT
DATA
DECMIC
DIS
puP
ECHO
EJECT
eLset
enpt
ENDD
ENDIFT
ENDM
ENDX
ENTRY
ENTRYC
£QU
ERR
ERRMI
ERRNG
ERRNZ
ERRPL
ERRZR
EXT
HERE
IDENT

IF
IFC
IFCP
IFCP6
IFCP7
IFEQ
IFGE
IFGT
IFLE
IFLT
IFMI
IFNE
IFPL
IFPP
IFPP6
IFPP7
IRP
LCC
LDSET
LIST
LIT

Placement

first group
anywhere
normal
normal
anywhere
anywhere
anywhere
anywhere
normal
anywhere
normal
anywhere
anywhere
normal
normal
anywhere
normal
normal
normal
anywhere
anywhere
required last
anywhere
anywhere
anywhere
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
anywhere

required first

normal
anywhere
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
anywhere
normal
anywhere
anywhere
normal

Usage

Page
Number

CPA
cpP,pP
cp,ppP
cP,PP
cp

cP
cp,pp
CP,PP
CP,PP
cp,PP
cP,PP
cP

cP

cP
cP,PP
cpP,pPP
CP,pP
cp,pp
cP,pp
cp,pPP
cp,pP
cP,PP
cp,ppP
cp,PP
cP,PP
CP,PP
cP,pPP
cP,PP
CP,PP
CP,PP
cp,pp
cP,PP
cP,PP
cP,PP
cP,PP
CP,pPP
CP,pPP
cP,pPP

cP,PP
cp,pP
cP,PP
CP,PP
cP,PP
cP,PP
cP,PP
cP,PP
cP,PP
CP,PP
cP,PP
cP,PP
cP,PP
CP,PP
CP,PP
cP,pP
cp,PP
CPR

CPR

cP,PP
CP,PP

and

' RN .
m\lmmwmc\c\c\mmc\cﬁc\mmc\mc\mm—am.D.J:.\J\A\:\l\J\l-b-béw—lm—t-bm\lwmbb#\l—'\lmmwmmwwgwl\)m
w 00w o HO—-O0ONTO O ~ S

'

[L] L R R T A O A A A A A e T T e O R
NNRMNNNON e MO OO oo

R N I E e A A aE a A e el AR R

—W == OO PR ENNNNNONOOO0OT—

Name

LocC
LOCAL
MACHINE
MACRO
MACROE
MAX
MICCNT
MICRO
MIN
NIL
NOLABEL
NOREF
O0CTMIC
OPDEF
OPSYN
ORG
ORGC
PERIPH
POS
PPOP
PPU
PURGDEF
PURGMAC
QUAL
REP
REPC
REPI
RMT

R=

SEG
SEGMENT
SET
SKIP
SPACE
SST
STEXT
STOPDUP
TITLE
TTL

USE
USELCM
VFD
XREF
XTEXT
(blank)

Placement

normal

macro or opdef

first group
anywhere
anywhere
normal
anywhere
anywhere
normal
anywhere
anywhere
anywhere
anywhere
anywhere
anywhere
normal
normal
first group
normal
anywhere
first group
anywhere
anywhere
anywhere
normal
normal
normal
anywhere
normal
normal
normal
normal
anywhere
anywhere
anywhere
first group
normal
anywhere
anywhere
normal
normal
normal
anywhere
normal
normal
normal

Tlooked for during IF skipping.

Legend

cP
cp
cP
PP

A
R

Usage

cP,PP
cP,PP
cp,pp
cP,PP
CP,PP
cpP,pp
cp,pp
cp,pp
cP,PP
CP,PP
CPA,PP
CP,PP
cP,pPP
cP
cp,ppP
cp,ppP
cp,ppP

cP,PP
PP

PP

cp
PP,CP
cP,PP
CPR
CPR
CPR
cP,PP
cP
CPA, PP
CPA,PP
CP,PP
CP,PP
cP,PP
CP,PP
CP,PP
cP,PP
CP,PP
CP,PP
CP, PP
cp
CP,PP
cP,PP
cpP,PP
cP,PP
cP,PP

[R I |
o ~

| 1
PO WWNNO—=B NN WO N—00 WD — WP

i 1]] L LI I] [| ooyt
CWPRON NOOO ~nohn

bbmbbhbbbu‘l-&&##bbbbmbbbf@mbo\bhhbc\m\l—bhcﬂb\lbbwwbm#

Absolute or relocatable CPU program
Absolute CPU program
Relocatable CPU program
Absolute PPU program

60492600 H

CORPORATE HEADQUARTERS, P.0. BOX O, MINNEAPOLIS, MINN 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

(GD) CONTROL DATA

LITHO IN US.A.

