
•

0
0

0

0

0
0

~ c:\ CONTl\.OL DATA
\:I r::J CO~ORf\TION

CYBIL
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE

60455280

REVISION

A
(08-03-84)

Publication No.
60455280

REVISION RECORD

DESCRIPTION

Manual released.

REVISION LETTERS I, 0, Q, S, X AND Z ARE NOT USED.

© 1984
by Control Data Corporation
All rights reserved
Printed in the United States of America

2

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

0
0

C>

c.

()

•

•

0
0

c

0

0

...

0
0

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number If the entire page is affected. A bar by the page number indicates pagination rather than content has changed •

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - 4-26 A 8-10 A
Title Page - 4-27 A 8-11 A
2 A 4-28 A 8-12 A
3/4 A 4-29 A 8-13 A
5 A 5-1 A 8-14 A
6 A 5-2 A A-1 A
7 A 5-3 A A-2 A
8 A 5-4 A A-3 A
9/10 A 5-5 A A-4 A
1-1 A 5-6 A A-5 A
1-2 A 5-7 A B-1 A
2-1 A 5-8 A B-2 A
2-2 A 5-9 A C-1 A
2-3 A 5-10 A D-1 A
2-4 A 5-11 A D-2 A
2-5 A 5-12 A D-3 A
2-6 A 5-13 A Index-I A
2-7 A 5-14 A Index-2 A
2-8 A 5-15 A Index-3 A
2-9 A 5-16 A Index-4 A
2-10 A 5-17 A Index-5 A
3-1 A 5-18 A Index-6 A
3-2 A 5-19 A Index-7 A
3-3 A 5-20 A Index-8 A
3-4 A 5-21 A Comment Sheet A
3-5 A 5-22 A Back Cover -
3-6 A 5-23 A
3-7 A 5-24 A
3-8 A 5-25 A
3-9 A 5-26 A
3-10 A 5-27 A
3-11 A 6-1 A
3-12 A 6-2 A
3-13 A 6-3 A
4-1 A 6-4 A
4-2 A 6-5 A
4-3 A 6-6 A
4-4 A 6-7 A
4-5 A 6-8 A
4-6 A 6-9 A
4-7 A 7-1 A
4-8 A 7-2 A
4-9 A 7-3 A -
4-10 A 7-4 A
4-11 A 7-5 A
4-12 A 7-6 A
4-13 A 7-7 A
4-14 A 7-8 A
4-15 A 7-9 A
4-16 A 7-10 A
4-17 A 8-1 A
4-18 A 8-2 A
4-19 A 8-3 A
4-20 A 8-4 A
4-21 A 8-5 A
4-22 A 8-6 A
4-23 A 8-7 A
4-24 A 8-8 A
4.:..25 A 8-9 A

60455280 A 3/4

0
0

0

(~)

0

•

•

0
0

0

0

0

•

. PREFACE

This manual describes the CYBIL programming language for the CDC® Network Operating System
(NOS) Version 2 and the CDC Network Operating System/Batch Environment (NOS/BE). NOS and
NOS/BE control the operation of CDC CYBER 170 Computer Systems, CDC CYBER 70 Computer
Systems Models 71, 72, 73, and 74; and CDC 6000 Computer Systems.

AUDIENCE

This manual is written as a reference for CYBIL programmers. It assumes that you understand
general concepts of the operating system you are using. Reference manuals for both systems
are listed under Related Publications, later in this preface, along with ordering
information.

ORGANIZATION

This manual is organized by topic, based on elements of the CYBIL language. The first
section introduces the basic elements of the language and refers you to the section in which
each is further described.

CONVENTIONS

Within the formats for declarations, type specifications, and statements shown in this
manual, uppercase letters represent reserved words; they must appear exactly as shown.
Lowercase letters represent names and values that you supply.

Optional parameters are enclosed by braces, as in:

{PACKED}

If the parameter is optional and can be repeated any number of times, it is also followed by
several periods, as in:

{name} •••

For example, the notation {digit} means zero digits or one digit can appear; {digit} •••
means zero, one, or more digits can appear. Braces also indicate that the enclosed
parameters are used together. For example,

{ALIAS 'alias_name'}

is considered a single parameter. Except for the braces and periods indicating repetition,
all other symbols shown in a format must be included.

Numbers are assumed to be decimal unless otherwise noted.

60455280 A 5

RELATED PUBLICATIONS
Following is a list of manuals you may want to have available for reference.

Control Data Publication

CYBIL Handbook

NOS Version 2 Diagnostic Index

NOS Version 2 Manual Abstracts

NOS Version 2 Reference Set, Volume 1,
Introduction to Interactive Usage

NOS Version 2 Reference Set, Volume 2,
Guide to System Usage

NOS Version 2 Reference Set, Volume 3,
System Commands

NOS Version 2 Reference Set, Volume 4,
Program Interface

NOS/BE Version 1 Diagnostic Handbook

NOS/BE Version 1 Diagnostic Index

NOS/BE Version 1 Manual Abstracts

NOS/BE Version 1 Reference Manual

SES User's Handbook

Software Publications Release History

Publication Number

60457290

60459390

60485500

60459660

60459670

60459680

60459690

60457400

60456490

84000470

60493800

60457250

60481000

You will need the SES User's Handbook for information on how to compile and debug CYBIL
programs and perform input and output.

The CYBIL Handbook contains information on topics such as data mappings and the CYBIL
run-time environment.

The manual abstracts booklet is a pocket-sized manual written for each operating system; it
contains brief descriptions of the contents and intended audience of the manuals for a
particular system. The abstracts can be useful in determining which manuals are appropriate.

The Software Publications Release History lists all of the software manuals and revision
packets Control Data has issued. The history specifies the revision level of a particular
manual that corresponds to the level of software installed at the site.

All of the manuals listed are available through Control Data sales off ices or through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

DISCLAIMER

This product is intended for use only as described in this document. Control Data cannot be
responsible for the proper functioning of undescribed features or undefined parameters.

6 60455280 A

()

0

()

!"-~"-,

(~u

()
(."')

.,,I

•

•

•

•

0

0
0

1. INTRODUCTION

2. PROGRAM STRUCTURE

Elements Within a Program
Valid Characters
CYBIL-Defined Elements
User-Defined Elements

Names
Constants
Constant Expressions

Syntax
Blanks
Comments
Punctuation
Spacing

Structure of a Program
Module Structure
Scope
Module Declaration
Program Declaration

3. CONSTANT, VARIABLE, TYPE, AND
SECTION DECLARATIONS

Constant Declaration
Variable Declaration

Attributes
Access
Scope
Storage

Initialization
Type Declaration
Section Declaration

4. TYPES

Using Types
Equivalent Types
Basic Types

Scalar Types
Integer
Character
Boolean
Ordinal

60455280 A

CONTENTS

1-1

2-1

2-1
2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-8
2-9

3-1

3,...1
3-2
3-4
3-5
3-6
3-7
3-9
3-11
3-13

4-1

4-2
4-2
4-2
4-2
4-3
4-3
4-4
4-5

Subrange
Floating-Point Type

Real
Pointer Types

Pointer to Cell
Cell Type

Structured Types
Strings

Substrings
Assigning and Comparing

String Elements
Arrays

Initializing Elements
Referencing Elements

Records

Sets

Invariant Records
Variant Records
Initializing Elements
Referencing Elements
Alignment

Initializing and Assigning
Elements

Storage Types
Sequences
Heaps

Adaptable Types
Adaptable Strings
Adaptable Arrays
Adaptable Records
Adaptable Sequences
Adaptable Heaps

5. EXPRESSIONS AND STATEMENTS

Expressions
Operands
Operators

Negation Operator
Multiplication Operators
Sign Operators
Addition Operators
Relational Operators
Set Operators

Statements
Assignment Statement
Structured Statements

BEGIN Statement
FOR Statement

4-6
4-7
4-7
4-7
4-10
4-11
4-11
4-11
4-12

4-13
4-14
4-15
4-15
4-17
4-17
4-18
4-21
4-22
4-23
4-23

4-23
4-24
4-25
4-25
4-26
4-26
4-27
4-28
4-29
4-29

5-1

5-1
5-1
5-1
5-2
5-2
5-4
5-4
5-6
5-9
5-12
5-12
5-13
5-14
5-14

7

REPEAT Statement 5-16
WHILE Statement 5-17

Control Statements 5-18
IF Statement 5-18
CASE Statement 5-19
CYCLE Statement 5-21
EXIT Statement 5-22
RETURN Statement 5-22

Storage Management Statements 5-22
RESET Statement 5-24
NEXT Statement 5-25
ALLOCATE Statement 5-26
FREE Statement 5-26
PUSH Statement 5-27

6. FUNCTIONS 6-1

Standard Functions 6-1
$CHAR Function 6-1
$INTEGER Function 6-2
llLOC Function 6-2
LOWERBOUND Function 6-2
LOWERVALUE Function 6-3
PRED Function 6-3
$REAL Function 6-4
//SIZE Function 6-4
STRLENGTH Function 6-4
SUCC Function 6-4
UPPERBOUND Function 6-5
UPPERVALUE Function 6-5

User-Defined Functions 6-6
Function Declaration 6-6
Parameter List 6-8
Referencing a Function 6-9

7. PROCEDURES 7-1

Standard Procedures 7-1
STRINGREP Procedure 7-1

Integer Element 7-2

8

Character Element 7-3
Boolean Element 7-3
Ordinal Element 7-3
Subrange Element 7-3
Floating-Point Element 7-4
Pointer Element 7-5
String Element 7-6

User-Defined Procedures 7-6
Procedure Declaration 7-6
Parameter List 7-8
Calling a Procedure 7-9

8. COMPILATION FACILITIES 8-1

CYBIL Compilation on NOS/BE 8-1
CYBIL Control Statement 8-1

Compilation Declarations and
Statements 8-5

Compile-Time Variables 8-5
Compile-Time Expressions 8-6
Compile-Time Assignment Statement 8-6
Compile-Time IF Statement 8-6

Compile-Time Directives 8-7
Toggle Control 8-8

SET Directive 8-8
PUSH Directive 8-9
POP Directive 8-10
RESET Directive 8-10

Layout Control 8-11
LEFT and RIGHT Directives 8-11
EJECT Directive 8-11
SPACING Directive 8-12
SKIP Directive 8-12
NEWTITLE Directive 8-12
TITLE Directive 8-13
OLDTITLE Directive 8-13

Maintenance Control 8-13
COMPILE Directive 8-13
NOCOMPILE Directive 8-14

Comment Control 8-14
COMMENT Directive 8-14

60455280 A

()
0

0

f .""' v

c·\ "' J

•

...

't-,

()
0

•

f;

0
c

•

"

0

0

0
0

APPENDIXES
A. CHARACTER SET A-1 C. RESERVED WORDS

B. GLOSSARY B-1 D. DATA REPRESENTATION IN MEMORY

INDEX

FIGURES
2-1 Scope of Variables Within a Block

Structure 2-7

3-1 Attributes and Initialization
5-1 Multiplication Operators
5-2 Sign Operators
5-3 Addition Operators
5-4 Relational Operators
5-5 Operations That Produce Sets

60455280 A

TABLES
3-10
5-3
5-4
5-5
5-8
5-10

5-6 Operations That Produce Boolean
Results

8-1 Listing Toggles
8-2 Run-Time Checking Toggles
A-1 ASCII Character Set
D-1 Data Representation in Memory

C-1

D-1

5-11
8-9
8-10
A-2
D-1

9/10

•

IC\
)

c

0
0

•

0
0

c,

0

•

0
0

INTRODUCTION

A CYBIL program consists essentially of two kinds of elements: declarations and
statements. Declarations describe the data to be used in the program. Statements describe
the actions to be performed on the data.

Declarations and statements are made up of predefined reserved words and user-defined names
.and values. The way you form these elements is described in section 2, as is the general
structure for forming a CYBIL program.

Data can be either constant or variable. You can use the constant value itself or give it a
name using the constant declaration (CONST). Variables are named, initialized, and given
certain characteristics with the variable declaration (VAR). One of the characteristics of
a variable is its type, for example, integer or character. You can use CYBIL's predefined
types or define your own types. To define a new type or redefine an existing type with a
new name, you use the type declaration (TYPE). Once you have defined a type, CYBIL will
treat it as a standard data type; you can specify your new type name as a valid type in a
variable declaration and CYBIL will perform standard type checking on it. You can also
declare where you want certain variables to reside by defining an area called a section.
This is done with the SECTION declaration. All of these data-related declarations are
described in section 3.

Many standard types are available, including integers, floating-point numbers, characters,
and boolean values, to name a few. In addition, you can use combinations of the standard
types to define your own data types, for example, a record that contains several fields.
The next few paragraphs summarize the types that are predefined by CYBIL. They are
described in detail in section 4.

Among the basic types are scalar types, that is, those that have a specific order. Besides
integer, character, and boolean values, you can declare an ordinal type in which you define
the elements and their order. You can also specify a subrange of any of the scalar types by
giving a lower and upper bound. Floating-point (real) numbers are also available. A
pointer is a type that points to a variable, allowing you to access the variable by location
rather than by name. A cell, which represents the smallest addressable unit of memory, can
also be specified as a type. These are the basic types: scalar, floating point, pointer,
and cell. With these basic types you can construct the structured types: strings, arrays,
records, and sets.

A string is a sequence of characters. You can reference a portion of a string (called a
substring) or a single character within a string. An array is a structure that contains
components all of the same type. The components of an array have a specific order and each
one can be referenced individually. A record is a structure that contains a fixed number of
fields, which may be· of different types. Each field has a unique name within the record and
can be referenced individually. You can also declare a variant record that has several
possible variations (variants). The current value of a field common to all variants, or the
latest assignment to a specific variant field determines which of the variants should be
used for each execution. A set is a structure that contains elements of a single type. Yet
unlike an array, elements in a set have no order and individual elements cannot be
referenced. A set can be operated on only as a whole.

Storage types are structures to which variables can be added, referenced, and deleted under
explicit program control using a set of storage management statements. The two storage
types are sequences and heaps.

60455280 A 1-1

All of the types already mentioned are considered fixed types; that is, there is a definite
size associated with each one when it is declared. If you want to delay specifying a size
until execution time, you can declare it as an adaptable type. Then, sometime during
execution, you assign a fixed ~ize or value to the type. A string, array, record, sequence,
or heap can be adaptable.

All of these types are described in section 4.

Statements define the actions to be performed on the data you've defined. The assignment
statement changes the value of a variable. Structured statements contain and control the
execution of a list of statements. The BEGIN statement unconditionally executes a statement
list. The WHILE, FOR, and REPEAT statements control repetitive executions of a statement
list.

Control statements control the flow of execution. The IF and CASE statements execute one of
a set of statement lists based on the evaluation of a given expression or the value of a
specific variable. CYCLE, EXIT, and RETURN statements stop execution of a statement list
and transfer control to another place in the program.

Storage management statements allocate, access, and release variables in sequences (using
the RESET and NEXT statements), heaps (using the RESET, ALLOCATE, and FREE statements), and
the run-time stack (using the PUSH statement).

All of the preceding statements are described in detail in section 5, along with the
operands and operators that can be used in expressions within statements and declarations.

Statements can appear within a program (as described in section 2), a function, or a
procedure.

A function is a list of statements, optionally preceded by a list of declarations. It is
known by a unique name and can be called by that name from elsewhere in the program. A
function performs some calculation and returns a value that takes the place of the function
reference. There are many standard functions defined in CYBIL and you can also create your
own. Standard functions and rules for forming your own functions are described in section 6.

A procedure, like a function, is a list of statements, optionally preceded by a list of
declarations. It also is known by a unique name and can be called by that name from
elsewhere in the program. A procedure performs specific operations and may or may not
return values to existing variables. You can use the standard procedures and also define
your own. Section 7 describes the standard procedures and rules for forming your own
procedures.

Section 8 describes directives that are available at compilation time to specify listing
options, run-time options, the layout of the source text and resulting object listing, and
what specific portions of the source text to compile.

In summary, sections 2 through 7 describe the elements within a CYBIL program. Section 8
describes the directives that control how the program is actually compiled.

1-2 60455280 A

0
0

•

•-

()

0
0

cl

0

c

•

•

0
0

PROGRAM STRUCTURE 2

This section describes how to form the individual elements used within a program and how to
structure the program itself.

ELEMENTS WITHIN A PROGRAM

V AUD CHARACTERS

The characters that can be used within a program are those in the ASCII character set that
have graphic representations (that is, can be printed). This character set is included in
appendix A. It contains uppercase and lowercase letters. In names that you define, you can
use uppercase and lowercase letters interchangeably. For example, the name LOOP COUNT is
equivalent to the name loop_count.

CYBIL-DEFINED ELEMENTS

CYBIL has predefined meanings for many words and symbols. You cannot redefine or use these
words and symbols for other purposes.

A complete list of CYBIL reserved words is given in appendix C. In the formats for
declarations, type specifications, and statements shown in this manual, reserved words are
shown in uppercase letters.

The following list includes the reserved symbols and a brief description of the purpose of
each. The reserved symbols are discussed in more detail throughout this manual.

+, -, *, /, =, <, <=,
>, >=, <>, : = , (,)

60455280 A

Purpose

These symbols are primarily operators used in
expressions. They are discussed in section 5.

The semicolon separates individual declarations and
statements.

The colon is used in declarations as described in section 3 •

The comma separates repeated parameters or other elements.

A single period indicates a reference to a field within a
record as described in section 4.

Two consecutive periods indicate a subrange as described in
section 4.

The circumflex indicates a pointer reference as described in
section 4.

2-1

Symbol

[]

{ }

? or ??

Purpose

Apostrophes delimit strings.

Brackets enclose array subscripts, indefinite value
constructors, and set value constructors as described in
section 4.

Braces delimit comments. (Within the formats shown in this
manual, they are also used to enclose optional parameters.)

A single question mark or a pair of consecutive question
marks indicate compile-time statements and directives a_s
described in section 8.

USER~DEFINED ELEMENTS

Names

You define the names for elements, such as constants, variables, types, procedures, and so
on, that you use within a program. A name:

• Can be from 1 to 31 characters in length •

• Can consist of letters, digits, and the· special characters # (number sign),
@ (commercial at sign), (underline), and $ (dollar sign).

• Must begin with a letter. (There is an exception to this rule for system-defined
functions and procedures that begin with the # or $ character.)

• Cannot contain blanks.

In the formats included in this manual, names that you supply are shown in lowercase
letters. Within a program, however, there is no distinction between uppercase and lowercase
letters. The name my_file is identical to the name MY FILE.

There is considerable flexibility in forming names, so you should make them as descriptive
as possible to promote readability and ·maintainability of the program. For example,
LAST FILE ACCESSED is more obvious than LASTFIL.

Examples:

Valid Names

SUM
REGISTER#3
POINTER TABLE

Invalid Names

ARRAY
FILES&POSITIONS
2ND

The valid names need no explanation. Among the invalid names, ARRAY cannot be used because
it is a reserved word; FILES&POSITIONS contains an invalid character (the ampersand); and
2ND does not begin with a letter.

2-2 60455280 A

0
0

•

.r--·,
·~L/

•

0

0

•

•

0
0

Constants

A constant is a fixed value. It is known at compilation time and does not change throughout
the execution of a program. It can be an integer, character, boolean, ordinal,
floating-point number, pointer, or string.

Integer constants can be binary, octal, decimal, or hexadecimal. The base is specified by
enclosing the radix in parentheses following the integer, as follows:

integer (radix)

Examples are 1011(2) and 19A(16). If the radix is omitted, the integer is assumed to be
decimal. Integer constants must start with a digit; therefore, 0 (zero) must precede any
hexadecimal constant that would otherwise begin with a letter, for example, OFF(l6).
Negative integer constants must be preceded by a minus sign. Positive integer constants can
be preceded by a plus sign but need not be.

Integer constants are restricted to 48 bits.

A character constant can be any single character in the ASCII character set. The character
is enclosed in apostrophes in the following form:

'character'

Examples are 'A' and'?'. The apostrophe character itself is specified by a pair of
apostrophes.

A boolean constant can be either FALSE or TRUE, each having its usual meaning.

An ordinal constant is an element of an ordinal type that you have defined. For further
information, refer to Ordinal under Scalar Types in section 4.

Floating-point (real) constants can be written in either decimal notation or scientific
notation. A real number written in decimal notation contains a decimal point and at least
one digit on each side, for example, 5.123 or -72.18. If the number is positive, the sign
is optional; if negative, the sign is required.

A real number written in scientific notation is represented by a number (the coefficient),
which is multiplied by a power of 10 (the exponent) in the form:

coef f icientEexponent

The prefix E is read as "times 10 to the power of"; for example,

5.1E6

is 5.1 times 10 to the power of 6, or 5,100,000. The decimal point in the coefficient is
optional. A decimal point cannot appear in the exponent; it must be a whole number. If the
coefficient or exponent is positive, the sign is optional; if negative, the sign is required.

The pointer constant is NIL. It indicates an unassigned pointer. NIL can be assigned to a
pointer of any type.

String constants consist of one or more characters enclosed in apostrophes in the following
form:

'string'

60455280 A 2-3

An example is 'USER1234', a string of eight characters. An apostrophe in a string constant
is specified by a pair of apostrophes, for example, 'DON''T'.

String constants can be concatenated with the reserved word CAT, as in:

'characters 1' CAT 'characters 2' - -
The result is the string 'characters lcharacters 2'. The CAT operation can be used only for
initialization, not for assignment during program execution.

A string constant can be empty, that is, a null string.

You cannot reference parts (substrings) of string constants.

Constant Expressions

Expressions are combinations of operands and operators that are evaluated to find scalar or
string type values. In a constant expression, the operands must be constants, names of
constants (that you declare using the CONST declaration described in section 3), or other
constant expressions within parentheses. Computation is done at compile time and the
resulting value used in the same way a constant is used.

The general rules for forming and evaluating expressions are described under Expressions in
section 5. These rules apply to constant expressions with the following exceptions:

• Constant expressions must be simple expressions; terms involving relational
operators must be delimited with parentheses.

• The only functions allowed as factors in constant expressions are the $INTEGER,
$CHAR, SUCC, and PRED functions with constant expressions as arguments.

• Substring references are not allowed.

SYNTAX

The exact syntax of the language is shown in the formats of individual declarations and
statements descr:i,bed in the remainder; of this manual. The following paragraphs discuss
general syntax rules.

Blanks

Blanks can be used freely in programs with the following exceptions:

• Names and reserved words cannot contain embedded blanks. Normally, constants cannot
contain blanks either, but a character constant or string constant may.

• A name, reserved word, or constant cannot be split over two lines; it must appear
completely on one line.

• Names, reserved words, and constants must be separated from each other by at least
one blank, or one of the other delimiters such as a parenthesis or comma.

For further information, refer to Spacing later in this section.

2-4 60455280 A

0
()

•

()

•

••

c

0

0

•

0
0

Comments

Comments can be used in a program anywhere that blanks can be used (except in string
constants). They are printed in the source listing but otherwise are ignored by the
compiler.

A comment is enclosed in left and right braces: { }. It can contain any character except
the right brace (}). To extend a comment over several lines, repeat the left brace ({) at
the beginning of each line. If the right brace is omitted at the end of the comment, the
compiler ends it automatically at the end of the line.

Example:

{this comment
{appears on
{several lines.}

Within this manual, the formats for declarations, type specifications, and statements use
braces to indicate an optional parameter.

Punctuation

A semicolon separates individual declarations and statements. It must be included at the
end of almost every declaration and statement. The single exception is MODEND which can,
but need not, end with a semicolon if it is the last occurrence of MODEND in a compilation.
Punctuation for specific declarations and statements is shown in the formats in the
following sections.

Two consecutive semicolons indicate an empty statement, which the compiler ignores. Spacing
,between the semicolons in this case is unimportant.

Spacing

Declarations and statements can start in any column. In this manual, indentations are used
in examples to improve readability. It is recommended that similar conventions be used in
your programs to aid in debugging and documentation for yourself and other users.

The LEFT and RIGHT directives, described in section 8, can be used at compilation time to
specify the left and right margins of the source text. All source text outside of those
margins is then ignored.

A name, reserved word, or constant cannot be split over two lines; each must appear
completely on one line •

60455280 A 2-5

STRUCTURE OF A PROGRAM

MODULE STRUCTURE

The basic unit that can be compiled is a module and, optionally, compile-time statements and
directives. A module can, but need not, contain a program. The general structure of a
module is:

MODULE module name;
declarations
PROGRAM program name;

declarations -
statements

PROCEND program name;
MODEND module_name;

Declarations can be constant, type, variable, section, function, and procedure declara­
tions. A module can contain any number and combination of declarations, but it can contain
at most one program. The program contains the code (that is, the statements) that are
actually executed. The required module and program declarations are described later in this
section.

The structure within a module determines the scope of the elements you declare within it.

SCOPE

The scope of an element you declare, such as a variable, function, or procedure, is the area
of code where you can refer to the element and it will be recognized. Scope is determined
by the way the program and procedures are positioned in a module and where the elements are
declared.

In terms of scope, the programs, procedures, and functions are often referred to as blocks
(that is, blocks of code). Generally, if an element is declared within a block, its scope
is just that block. Outside the block, the element is unknown and references to it are not
valid. A variable declared within a block is said to be local to the block and is called a
local variable.

An element declared at the module level (that is, one that is not declared within a program,
procedure, or function) has a scope of the entire module. It can be referred to anywhere
within the module. A variable declared at the module level is said to be global and is
called a global variable.

A block can contain one or more subordinate blocks. A variable declared in an outer block
can always be referenced in a subordinate block. However, if a subordinate block declares
an element of the same name, the new declaration applies while inside that block. Figure
2-1 illustrates these rules.

2-6 60455280 A

0
0

•

(--.~,
}'

0
0 1

.

0

c

()

0

BLOCK 1

A DECLARATION

BLOCK 2

B DECLARATION

BLOCK 3

C DECLARATION
D DECLARATION

BLOCK 4

D DECLARATION

....__Variable A can be referred to anywhere
in block 1, including blocks 2, 3, and 4.

.....__Variable B can be referred to only in
block 2.

,.___ Variables C and D can be referred to
anywhere in blocks 3 and 4. •

-4-- However, block 4 again declares a
variable named D. This second
declaration identifies a different
variable D and is in effect within
block 4 only. Outside of block 4,
yet within block 3, the original
declaration for D applies.

Figure 2-1. Scope of Variables Within a Block Structure

Storage space is allocated for a variable when the block in which it is declared is
entered. Space is released when an exit is made from the block. Because space is allocated
and released automatically, these variables are called automatic variables. You can specify
that storage for a variable remains throughout execution by including the STATIC attribute
when you declare the variable. A variable declared in this way is called a static
variable. A global variable is always static. Because it is declared at the outermost
level of a module (consider the module to be a block), storage for a global variable is
allocated throughout execution of the module (block). For further information on automatic
and static variables, refer to Variable Declaration in section 3. •

The one exception to the preceding rules is an element declared with the XDCL (externally
declared) attribute. This attribute means the element is declared in one module but can be
referred to in another. In this case, the loader handles the links between modules. For
further information on the XDCL attribute, refer to section 3.

60455280 A 2-7

MODULE DECLARATION

The module declaration marks the beginning of a module. MODEND marks the end of a module.
A module can contain at most one program and any combination of type, constant, variable,
section, function, and procedure declarations. If two or more modules are compiled and
linked together for execution, there can be only one program declaration in all the linked
modules.

The format of the module declaration is:

MODULE name {ALIAS 'alias_name'};t

name

alias name

The format of MODEND is:

MODEND {name};

name

Required; the name of the module.

An alternate name for the module, which can be used outside of the
compilation unit in which it is defined. The name must be enclosed
in apostrophes. The keyword ALIAS and alias name are optional.

The name of the module. This parameter is optional. If used, the
name must be the same as that specified in the module declaration.

When compiling more than one module, a semicolon is required after each occurrence of MODEND
except the last one. There it is not required but is recommended.

Examples:

The following module declaration defines a module named TEST with an alias of SYS.123. The
name SYS.123 is not valid in CYBIL because of the period but is valid as a NOS file name and
may be required by the operating system. Outside the compilation unit, the module will be
known and referred to by the name SYS.123.

MODULE test ALIAS 'sys.123';

The following example shows a module named ONE that contains various declarations and a
program named MAIN. The module name and semicolon could be omi..tted following MODEND, but it
is recommended that they both be included.

MODULE one;
declarations
PROGRAM main;

declarations
statements

PROCEND main;
MODEND one;

t Some variations of CYBIL available on other operating systems ignore the alias name.
Check CYBIL documentation f 9r the particular system.

2-8 60455280 A

"

/,(___ \ 1, j

()_,,
l

(\
i

0
0

•

0

0

0

•

()

0

The following example shows a compilation consisting of three modules named ONE, TWO, and
THREE. All three modules can be compiled and the resulting object modules linked together
to form a single object module that can then be executed. For readability, the module names
are included in all occurrences of MODEND. The semicolon could be left off the last
occurrence of MODEND, but it is a good practice to include it.

MODULE one;
declarations/statements

MODEND one;
MODULE two;

declarations/statements
MODEND two;
MODULE three;

declarations/statements
MODEND three;

PROGRAM DECLARATION

The program declaration marks the beginning of a program. The end of a program is marked by
a PROCEND statement. A program can contain any combination of type, constant, variable,
section, function, and procedure declarations, and any statements. If two or more modules
are compiled and linked together for execution, there can be only one program declaration in
the linked modules.

The format of the program declaration is:

PROGRAM name {ALIAS 'alias_name'}t

name

alias name

The format of PROCEND is:

PROCEND {name};

name

Required; the name of the program.

An alternate name for the program, which can be used outside of
the compilation unit in which it is defined. The name must be
enclosed in apostrophes. The keyword ALIAS and alias name are
optional.

The name of the program. This parameter is optional. If used,
the name must be the same as that specified in the program
declaration •

t Some variations of CYBIL available on other operating systems ignore the alias name.
Check CYBIL documentation for the particular system.

60455280 A 2-9

Examples:

The following program declaration defines a program named SORT with an alias of SRTMRG9.
Outside the compilation unit, the program will be known and referred to by the name SRTMRG9.

PROGRAM sort ALIAS 'srtmrg9';

The following example shows a program named MAIN that contains various declarations,
including a procedure named SUB 1.

PROGRAM main;
declarations
PROCEDURE sub 1;

declarations
statements

PROCEND sub 1;
statements -

PROtEND main;

2--10 60455280 A

()
()

•

({-\

__/'

•

-_1

()
()

0
0

0

0
0

CONSTANT, VARIABLE, TYPE, AND SECTION DECLARATIONS 3

This section describes the constant declaration, which defines a name for a value that never
changes; the variable declaration, which defines a name for a value that can change; and the
type declaration, which defines a new type of data and gives a name to that type. In
addition, it also describes the section declaration, which groups variables that share
common access characteristics.

CONST ANT DECLARATION

A constant, as described in section 2, is a fixed value that is known at compile time and
doesn't change during execution. A constant declaration allows you to associate a name with
a value and use that name instead of the actual constant value. This provides greater
readability because the name can be descriptive of the constant. It also provides greater
maintainability because the constant value need only be changed in one place, the constant
declaration, not every place it is used in the code.

The format of the constant declaration is:

CONST name= value {,name =value} ••• ;

name

value

Required; the name associated with the constant value.

Required; the constant value. It can be an integer, character,
boolean, ordinal, floating-point, pointer, string, or constant
expression. Rules for forming these values are given under
Constants and under Constant Expressions in section 2.

You can write several constant declarations, each declaring a single constant, or a single
declaration declaring several constants where each "name = value" combination is separated
by a comma.

Type is not specified in a constant declaration. The type of the constant is the same as
the type of the value assigned to it.

If used, an expression is evaluated during compilation. The expression itself can contain
other constants.

60455280 A 3-1

Examples:

Rather than repeat the value of pi throughout a program, you can use a constant declaration
to assign a descriptive name (in this case, PI) to the value and use that name in subsequent
expressions and operations. The constant declaration is:

CONST pi = 3.1415927;

The following example shows a constant declaration containing several different types.

CONST
first = 1,
last = 80,
hex = Oa8C16>,
bit pattern= 10110101<2>,
stop character= '.',
continue = TRUE,
message= 'end of line',
last pointer = NIL,
length = last - first;

Each constant has the same type as the value assigned to it. For example, FIRST and LAST
are integer types, as is LENGTH, which is the result of an expression containing integers.
Notice that the value of HEX begins with a 0 (zero) because integers must begin with a digit.

A variable is an element within a program whose value can change during execution. The name
of the variable stays the same; it is only the value contained in the variable that
changes. To use a variable, you must declare it.

The format for a variable declaration is:

VAR name {ALIAS 'alias name'} {,name{ALIAS 'alias name'}} ••• :
{[attributes]Ttype {:= initial_value} -

{,name {ALIAS 'alias name'} {,name{ALIAS 'alias name'}} ••• :
{[attributes]} type{:= initial_value}}.7.; t

name

alias name

Required; the name of the variable. Specifying more than one
name indicates that all of the named variables will have the
characteristics that follow (attributes, type, and
initial_value).

An alternate name for the variable, which can be used outside of
the compilation unit in which it is defined. The name must be
enclosed in apostrophes. When the alias name is included in the
variable declaration, the XDCL attribute-must also be
specified. The keyword ALIAS and alias name are optional.

t Some variations of CYBIL available on other operating systems ignore the alias name.
Check CYBIL documentation for the particular system.

3-2 60455280 A

0
0

()

0
0

0

()

0

attributes

type

initial value

One or more of the following attributes. If more than one are
specified, they are separated by commas.

Attribute

READ

XDCL

XREF

STATIC

Meaning

Access attribute specifying that the variable is a
read-only variable; the compiler checks to ensure
that the value of the variable is not changed. If
READ is specified, an initial value is required.

Scope attribute specifying that the variable is
declared in this module but can be referenced from
another module.

Scope attribute specifying that the variable is
declared in another module but can be referenced
from this module.

Storage attribute specifying that storage space
for the variable is allocated at load time and
remains when control exits from the block. Static
storage is assumed when any attributes are
specified.

section name Storage attribute specifying the name of the
section in which the variable resides. The result
is that the variable resides with static
variables. The section name and its read/write
attributes must be declared using the section
declaration (discussed later in this section).

Attributes are described in more detail later in this section.

The attributes parameter is optional. If omitted, CYBIL assumes
the variable can be read and written; can be referenced only
within the block where it is created; and, unless it is declared
at the outermost level of a module, is automatic.

Required; data type defining the values that the variable can
have. Only values within this data type are allowed. Types are
described in section 4.

Initial value assigned to the variable. It can be a constant
expression, an indefinite value constructor (described under
Initialization later in this section), or a pointer to a global
procedure. Only a static variable can be assigned an initial
value. Initialization is discussed later in this section.

This parameter is optional. If omitted, the variable is
undefined.

Any variable referenced in a program must be declared with the VAR declaration. A variable
can be declared only once at each block level although it can be redefined in another block
or in a contained (nested) block.

The type assigned to a variable defines the range of values it can take on and also the
operations, functions, and procedures that can use it. CYBIL checks to ensure that the
operations performed on variables are compatible with their types.

60455280 A 3-3

Examples:

The following declarations define a variable named SCORES that can be any integer number, a
variable named STATUS that can be either of the boolean values FALSE or TRUE, and two
variables named ALPHA! and ALPHA2 that can be characters.

VAR scores
VAR status
VAR alpha1
VAR alpha2

integer;
boolean;
char;
char;

The declarations for the two character type variables, ALPHA! and ALPHA2, could be combined
as follows:

VAR alpha1, alpha2 : char;

To combine all of the variables in one declaration, you could use:

VAR scores : integer,
status : boolean,
alpha1,"alpha2: char;

The following variable declaration defines a set named DEVICE ALLOCATION TABLE. The name
DEVICE ALLOCATION TABLE is too long to be used in either NOS or NOS/BE, which allows a
maximu°i of seven characters in a file name, so the set has an alias of DAT. Outside the
compilation unit, the variable will be known and referred to by the name DAT.

VAR
device allocation table ALIAS 'dat' rxocLJ set of o •• 999; - -

ATTRIBUTES

Attributes control three characteristics of a variable:

Access - whether the variable can be both read and written

Scope - where within the program the variable can be referenced

Storage - when and where the variable is stored

3-4 60455280 A

0
0

0
()

0
0

•

C!'

'

0

0
0

Access

.The access attribute that you can specify is READ. A variable declared with the READ
attribute can only be read. It must be initialized in the declaration and cannot be
assigned another value later. It is called a read-only variable. If the READ attribute is
omitted, CYBIL assumes the variable can be both read and written (changed) •

A variable with the READ attribute specified is assumed to be static. (For further
information on static variables, refer to Storage later in this section.) A read-only
variable can be used as an actual parameter in a procedure call only if the corresponding
formal parameter is a value parameter; that is, a read-only variable can be passed to a
procedure only if the procedure makes no attempt to assign a value to it. (Procedure
parameters are described in section 7.)

A read-only variable is similar to a constant, but can't always be used in the same places.
For example, the initial value that can be assigned to a variable (as described earlier in
this section) must be a constant expression, an indefinite value constructor, or a pointer
to a global procedure. In this case, even though a read-only variable has a constant value,
it cannot be used in place of a constant expression. Also, as mentioned in section 2, you
cannot reference a substring of a constant. You can, however, reference a substring of a
variable and, thus, a read-only variable. There are other differences similar to these.
The descriptions in this manual state explicitly whether constants and/or variables can be
used.

Examples:

In this example, the variable DEBUG is a read-only variable set to the constant value of
TRUE. NUMBER can be read and written.

VAR
debug : [READJ boolean := TRUE,
number : integer;

The following example illustrates a difference between constants and read-only variables.
To declare a string type, you must specify the length of the string in parentheses following
its name. As defined in section 4, the length must be a positive, integer constant
expression.

CONST
string_size 1 = 5;

VAR
string_size 2 : [READJ integer := 5,
string1 string (string size 1),
string2 : string Cstring:size:2>;

The declaration of STRING! is valid; the length of the string is 5, which is the value of
the constant STRING SIZE 1. However, STRING2 is invalid; even though STRING SIZE 2 does not
change in value, it-is still a variable and cannot be used in place of a constant-expression.

60455280 A 3-5

Scope

The scope attributes define the part or parts of a module to which a variable declaration
applies. If no scope attributes are included in the declaration, the scope of a variable is
the block in which it is declared. A variable declared in an outermost block applies to
that block and all the blocks it contains. However, a variable declared even at the
outermost level of a module cannot be used outside of that module. The scope attributes,
XDCL and XREF, are used to extend the scope of a variable so that it can be shared among
modules.

To use the same variable in different modules, you must specify the XDCL and XREF
attributes. The XDCL attribute indicates that the variable being declared can be referenced
from other modules. The XREF attribute indicates that the variable is declared in another
module. When the loader loads modules, it resolves variable declarations so that each XDCL
variable is allocated static storage and the XREF variable shares the same space. This is
known as satisfying externals. The loader issues an error if an XREF variable does not have
a corresponding XDCL variable. In one compilation unit or group of units that will be
combined for execution, a specific variable can have only one declaration that contains the
XDCL attribute.

Declarations for a shared variable must match except for initialization. A variable
declared with the XDCL attribute can be initialized and have different values assigned
during program execution. A variable declared with the XREF attribute cannot be initialized
but can be assigned values.

If any attributes are declared, the variable is assumed to be static in storage. If no
attributes are declared, the variable is assumed to be automatic, unless it is declared at
the outermost level of the module. (A variable declared at the outermost level is always
static.)

Example:

Assume the following two modules have been compiled. When the loader loads the resulting
object modules and satisfies externals, it allocates storage to FLAG, an XDCL variable, and
initializes it to FALSE. When the loader finds the XREF variable FLAG in module TWO, it
assigns the same storage. Thus, references to FLAG from either module refer to the same
storage location.

3-6

MODULE one:

VAR
f hg

.
MODENO one;

MOl>ULE two;
•

VAi
flag

MOOEND two;

[XDCLl boolean := FALSE;

CXREF] boolean;

60455280 A

0
0

C:

•

0
()

0 \
'

0

..

Cl
y

0
0

Storage

The storage attributes determine when storage is allocated and where storage is allocated.

When Storage Is Allocated

There are two methods.of allocating storage for variables: automatic and static. For an
automatic variable, storage is allocated when the block containing the variable's
declaration begins execution. Storage is released when execution of the block ends. If the
block is executed again, storage is allocated again, and so on. When storage is released,
the value of the variable is lost.

For a static variable, storage is allocated (and initialized, if that parameter is included)
only once, at load time. Storage remains allocated throughout execution of the module.
However, even though storage remains allocated, a static variable still follows normal scope
rules. It can be accessed only within the block in which it is declared. A reference to a
static variable from an outer block is an error even though storage for the static variable
is still allocated.

The ability to declare a static variable is important, for example, in the case where an
XDCL variable is referenced by a procedure before the procedure that declares the variable
is executed. Because an XDCL variable is static (refer to Scope earlier in this section for
further information), it is allocated space and is initialized immediately at load time;
therefore, it is available to be referenced before execution of the procedure that actually
declares it as XDCL.

A variable can be declared static explicitly with the STATIC attribute. It is assumed to be
static implicitly if it is in the outermost level of a module or if it has any attributes
declared. In all other cases, CYBIL assumes the variable is automatic. Only a static
variable can be initialized.

The period between the time storage for a variable is allocated and the time that storage is
released is called the lifetime of the variable. It is defined in terms of modules and
blocks. The lifetime of an automatic variable is the execution of the block in which it is
declared. The lifetime of a static variable is the execution of the entire module. An
attempt to reference a variable beyond its lifetime causes an error and unpredictable
results.

The lifetime of a formal parameter in a procedure is the lifetime of the procedure in which
it is a part. Storage space for the parameter is allocated when the procedure is called and
released when the procedure finishes executing.

The lifetime of a pointer must be less than or equal to the lifetime of the data to which it
is pointing.

The lifetime of a variable that is allocated using the storage management statements
(described in section 5) is the time between the allocation of storage and the release of
storage. A variable allocated by an automatic pointer (using the ALLOCATE statement) must
be explicitly freed (using the FREE statement) before the block is left, or the space will
not be released by the program. When the block is left, the pointer no longer exists and,
therefore, the variable cannot be referenced. If the block is entered again, the previous
pointer and the variable referenced by the pointer cannot be reclaimed.

60455280 A 3-7

Example:

In this example, the variables COUNTER and FLAG will exist during execution of the entire
module; however, they can be accessed only within program MAIN.

PROGRAM main;
VAR

counter : [STATIC] integer := O,
flag : [STATICJ boolean;

PROCEND main;

Where Storage Is Allocated

You can optionally specify that storage for a variable be allocated in a particular
section. A sec~ion is a storage area that can hold variables sharing common access
attributes, that is, read-only variables or read/write variables. You define the section
and its access attributes yourself using the section declaration (discussed later in this
section). The result of assigning a variable to a section is that it resides with static
variables; storage is allocated for the variable throughout execution of the program.t

When you specify the name of a read-only section in a variable declaration, you must also
include the variable access attribute READ.

Example:

This example defines a read-only section named NUMBERS. The variable INPUT NUMBER is a
read-only variable that also resides in the section NUMBERS. In the variable declaration,
the READ attribute causes the compiler to check that the variable is not written; the
read-only section name, NUMBERS, ensures that the variable resides with static variables.

SECTION
numbers : READ;

VAR
input_number : [READ, numbers] integer := 100;

t The capability to define sections is available for compatibility with variations of CYBIL
that are supported by other operating systems. Some operating systems allow you to define
and use an actual read-only section in the hardware. Data that resides in a physical area
of the machine designated as a read-only section is protected by hardware, not by software.

3-8 60455280 A

0
0

•

,,,,.--\

'4,, __ .. j
I

0
()

0
0\

c

0

0
0

INITIALIZATION

An initial value can be assigned to a variable only if it is a static variable. The value
can be a constant expression, an indefinite value constructor (described next), or a pointer
to a global procedure. The value must be of the proper type and in the proper range. If no
initial value is specified, the value of the variable is undefined.

An indefinite value constructor is essentially a list of values. It is used to assign
values to the structured types sets, arrays, and records. It allows you to specify several
values rather than just one. Values listed in a value constructor are assigned in order
(except for sets, which have no order). The types of the values must match the types of the
components in the structure to which they are being assigned. An indefinite value
constructor has the form

[value {,value} •••]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list).

• The phrase

•

REP number OF value

which indicates the specified value is repeated the specified number of times.

The asterisk character (*), which indicates the element in the corresponding
position is uninitialized.

The REP phrase can be used only in arrays. The asterisk can be used only in arrays and
records. For further information, refer to the descriptions of arrays and records in
section 4.

If an initial value is assigned to a string variable and the variable is longer than the
initial value, blanks are appended on the right of the initial value to fill the field. If
the initial value is longer than the variable, the initial value is truncated on the right
to fit the variable.

In a variant record, fields are initialized in order until a special variable called the tag
field name is initialized. The tag field name is then used to determine the variant for the
remaining field or fields in the record, and they are likewise initialized in order.

Depending on the attributes defined in the variable declaration, initialization is required,
prohibited, or optional. Table 3-1 shows the initialization possible for various attributes.

60455280 A 3-9

Table 3-1. Attributes and Initialization

Attributes Specifiedt Initialization

None Optional if static variable;
if automatic variable

READ Required

READ,STATIC Required

READ,XDCL Required

READ, S.TATIC ,XDCL Required

READ,section_name Required

READ,XDCL,section_name Required

XREF Prohibited

XREF,READ Prohibited

XREF,STATIC Prohibited

XREF,READ,STATIC Prohibited

STATIC Optional

XDCL Optional

XDCL,STATIC Optional

section name Optional

section name,XDCL Optional

tThe static attribute is assumed if any attributes are specified.

3-10

prohibited

.

60455280 A

0
0

(-'\
I

_j

.r--"
1\-c_,/'

0
()

0
0

C:
'

0

c

0
0

Example:

The variables declared in this example are inside program MAIN. Therefore, they are
automatic unless declared with an attribute. TOTAL is automatic and as such cannot be
initialized. COUNT is declared static and can be initialized. ALPHA and BETA are also
static and can be initialized because they have other attributes declared.

PROGRAM main;

VAR
total : integer,
count : ESTATICJ integer := O,
alpha, beta : [XDCL,READJ char := 'p';

PROCEND main;

TYPE DECLARATION

The standard data types that are defined in CYBIL are described in section 4. Any of these
can be declared as a valid type within a variable declaration. The type declaration allows
you to define a new data type and give it a name, or redefine an existing type with a new
name. Then that name can be used as a valid type within a variable declaration.

The format of the type declaration is:

TYPE name = type {,name =type} ••• ;

name

type

Required; name to be given to the new type.

Required; any of the standard types defined by CYBIL or another
user-defined type.

Once you define a type, you can use it to define yet another type. Thus, you can build a
very complex type that can be referred to by a single name.

The type declaration is evaluated at compilation time. It does not occupy storage space
during execution.

60455280 A 3-11

Examples:

In this example, INT is defined as a type consisting of all the integers; it is just a
shortened name for a standard type. LETTERS is defined as a type consisting of the
characters A through Z only; this is a selective subset of the standard type characters.
DEVICES is an ordinal type that in turn is used to define EQ TABLE, a type consisting of an
array of 10 elements. Any element in the type EQ_TABLE can have one of the ordinal values
specified in DEVICES.

TYPE
i·nt = integer,
letters= 'a' •• 'z',
devices = Clp512, dk844, mt667, nt669),
eq_table =array [1 •• 10J of devices;

VAR
i : int,
alpha : letters,
table 1 : eq table,
status_table-: array C1 •• 3J of eq_table;

All of the variables in the preceding example could have been declared strictly using
variable declarations, as in:

VAR
i : integer,
alpha : 'a' •• 'z',
table_1 : array [1 •• 10J of Clp512, dk844, mt667, nt669>,
status table : array [1 •• 3J of array C1 •• 10J of Clp512, dk844,

mt667, nt669);

However, it obviously becomes quite cumbersome t.o declare a complex structure using only
standard types. Defining your own types lets you avoid needless repetition and the
increased possibility of errors. In addition, it makes code easier to maintain; to add a
new device, you need add it only in the type declaration, not in every variable declaration
that contains devices.

3-12 60455280 A

0
0

,f1f'--\

\"~-j'

'iii .1

'-J

0
0

•

0
0 I

0

0

0
0

SECTION DECLARATION

A section is an optional working storage area that contains variables with common access
attributes. Including the section name in a variable declaration causes the variable to
reside with static variables.t

The format of the section declaration is:

SECTION name {,name} ••• : attribute
{,name {,name} ••• : attribute} ••• ;

name Required; name of the section.

attribute Required; the keyword READ or WRITE.

A section defined with the READ attribute can be assigned read-only variables. In this
case, the variable access attribute READ must also be included in the variable declaration.
A section defined with the WRITE attribute can be assigned only variables that can be both
read and written.

The initialization of variables declared with a section name depends on their attributes, as
shown in table 3-1.

Example:

Two sections are defined in this example: LETTERS is a read-only section and NUMBERS is a
read/write section. The variable CONTROL LETTER is a read-only variable that is assigned to
LETTERS. The READ attribute is required because of the read-only section name.
UPDATE NUMBER is a variable that can be read or written, and is assigned to the section
NUMBERS. In this example, it is also declared as an XDCL variable but this is not required.

SECTION
letters
numbers

VAR

READ,
WRITE;

control letter : [READ,lettersJ char := 'p',
update_number : CXDCL,numbersJ integer;

tThe capability to define sections is available for compatibility with variations of CYBIL
that are supported by other operating systems. Some operating systems allow you to define
and use an actual read-only section in the hardware. Data that resides in a physical area
of the machine designated as a read-only section is protected by hardware, not by software.

60455280 A 3-13

0
0

0
0

•

•

0
0,

0

0

0
0

TYPES 4

There are many standard types defined within CYBIL. A variable can be assigned to (that is,
an element of) any of these types. The type defines characteristics of the variable and
what operations can be performed using the variable. In general, operations involving
nonequivalent types are not allowed; one type cannot be used where another type is
expected. Exceptions are noted in the descriptions of types that follow.

In this section, types are grouped into three major categories: basic types, structured
types, and storage types.

Basic types are the most elementary. They can stand alone but are also used to build the
more complex structures. The basic types are:

• Scalar types (integer, character, boolean, ordinal, and subrange)

• Floating-point types (real)

• Pointer types

• Cell types

Structured types are made from combinations of the basic types. The structured types are:

• Strings

• Arrays

• Records

• Sets

Storage types hold groups of components of various types. The storage types are:

• Heaps

• Sequences

Most types, when they are declared, have a fixed size. Strings, arrays, records, sequences,
and heaps can also be declared with an adaptable size that is not fixed until execution.
For this reason, they are sometimes called adaptable types. Adaptable strings, arrays,
records, sequences, and heaps are discussed at the end.of this section.

60455280 A 4-1

USING TYPES
Types are used as parameters in two kinds of declarations: the variable declaration (to
associate a type with a variable name) and the type declaration (to associate a type with a
new type name). Both declarations are described in detail in section 3, but their basic
formats are:

VAR name : {[attributes]} type{:= initial_value};

TYPE name = type;

The description of each type shown in, this section will give the keyword and any additional
information necessary to specify that type as a parameter. They replace the generic word
"type" in the variable and type declarations. For example, the keyword to specify an
integer type is INTEGER. The variable declaration would be:

VAR name : {[attributes]} INTEGER {:=_initial_value};

The type declaration would be:

TYPE name = INTEGER;

EQUIVALENT TYPES

As mentioned earlier in this section, operations involving nonequivalent types are not
allowed. Two types can be equivalent, though, even if they don't appear to be identical.
For example, two arrays can have different expressions defining their sizes, but the
expressions may yield the same value. Rules for determining whether types are equivalent
are given in the following descriptions of types.

Adaptable types and bound variant record types (described under Records later in this
section) actually define classes of related types that vary by a characteristic, such as
size. Adaptable type variables, bound variant record type variables, and pointers to both
types are fixed explicitly at execution time. These types are said to be potentially
equivalent to any of the types to which they can adapt. That is, during compilation,
references to adaptable types and bound variant record types are allowed wherever there is a
reference to one of the types to which they can adapt. However, further type checking is
done during execution when each type is fixed (assigned to a specific type). It is the
current type of an adaptable or bound variant record type that determines what operations
are valid for it at any given time.

BASIC TYPES

SCALAR TYPES

All scalar types have an order; that is, for every element of a scalar type you can find its
predecessor and successor.

Scalar types are made up of five types:

• Integer

• Character

• Boolean

• Ordinal

• Subrange

4-2 60455280 A

()
0

/r ,
,,j

'()

(
~).

'}

•

0
0:

0

·o

0
0

Integer

The keyword used to specify an integer type is:

INTEGER

Integers range in value from -(248-1) to 248-1.

In general, the subrange type should be used rather than the integer type. This allows the
compiler to perform more rigorous type-checking and reduces the amount of storage needed to
hold the value.

The following operations are permitted on integers: assignment, addition, subtraction,
multiplication, division (both quotient and remainder), all relational operations, and set
membership. Refer to Operators in section 5 for further information on operations.

The functions $INTEGER and $REAL, described in section 6, convert between integer type and
real type. The $CHAR function, also described in section 6, converts an integer value from
0 to 255 to a character according to its position in the ASCII collating sequence.

Example:

This example shows the definition of a new type named INT, which consists of elements of the
type integer. The variable declaration declares variable I to be of type INT, which is the
integer type just declared. Also declared as a variable is NUMBERS, which is explicitly of
integer type. Because NUMBERS is static, it can be initialized.

TYPE
int = integer;

VAR
i : int,
numbers : [STATIC] integer := 100;

Character

The keyword used to specify a character type is:

CHAR

An element of the character type can be any of the characters in the ASCII character set
defined in appendix A. It is always a single character; more than one character is
considered a string. (A string is a structured type that is discussed later in this
section. A string of length 1 can sometimes be used as a character. Refer to Substrings
later in this section.)

The following operations are permitted on characters: assignment, all relational
operations, and set membership. Characters can be assigned to and compared to strings.
Ref er to Operators in section 5 for further information on operations and to Strings later
in this section for further information on string assignment.

The $INTEGER function described in section 6 converts a character value to an integer value
based on its position in the ASCII collating sequence. The $CHAR function, also in section
6, converts an integer value from 0 to 255 to a character in the ASCII collating sequence.

60455280 A 4-3

Example:

This example shows the definition of a new type named LETTERS, which consists of elements of
the type character. The variable declaration declares variable ALPHA to be of type LETTERS,
which is the type character; it is static and initialized to the character J. The variable
IDS is explicitly declared to be of the type character.

TYPE
letters = char;

VAR
alpha (STATIC] letters :=
ids : char;

Boolean

' . ' J ,

The keyword used to specify a boolean type is:

BOOLEAN

An element of the boolean type can have one of two values: FALSE or TRUE. As with other
scalar types, boolean values are ordered. Their order is FALSE, TRUE. FALSE is always less
than TRUE.

You get a boolean value by performing a relational operation on integers, characters,
ordinals, floating-point numbers, or boolean values.

The following operations are permitted on boolean values: assignment, all relational
operations, set membership, and boolean sum, product, difference, exclusive OR, and
negation. Refer to Operators in section 5 for further information on operations.

The $INTEGER function described in section 6 converts a boolean value to an integer value.
Zero (0) is returned for FALSE; one (1) is returned for TRUE.

Example:

This example shows the definition of a new type named STATUS, which. consists of the boolean
values FALSE and TRUE. The variable declaration declares variable CONTINUE to be of type
STATUS; that is, it can be either FALSE or TRUE. The variable DEBUG is explicitly declared
to be boolean and, because it is a read-only variable and therefore static, it can be
initialized.

4-4

TYPE
status = boolean;

VAR
continue : status,
debug : (READJ boolean := TRUE;

60455280 A

0
0

()

•

/(~

~"\._;/

0
0

•

();

0

0

0

0

0
0

Ordinal

The ordinal type differs from the other scalar types in that you, the user, define the
elements within the type and their order. The term ordinal refers to the list of elements
you define; the term ordinal name refers to an individual element within the ordinal •

The format used to specify an ordinal is:

(name, name {,name ••• })

name Required; name of an element within the ordinal. There must be at
least two ordinal names.

The order is given in ascending order from left to right.

Each ordinal name can be used in just one ordinal type. If a name is used in more than one
ordinal, a compilation error occurs.

Ordinals are used to improve the readability and maintainability of programs. They allow
you to use meaningful names within a program rather than, for example, map the names to a
set of integers that are then used in the program to represent th~ names.

The following operations are permitted on ordinals: assignment, all relational operations,
and set membership.

Two ordinal types are equivalent if they are defined in terms of the same ordinal type names.

The $INTEGER function described in section 6 converts an ordinal value (name) to an integer
value based on its position within the defined ordinal.

Examples:

In this example, the type declaration defines a type named COLORS, which is an ordinal that
consists of the elements RED, GREEN, and BLUE. The variable PRIMARY COLORS is of type
COLORS and therefore has the same elements. The variable WORK DAYS explicitly declares the
ordinal consisting of elements MONDAY through FRIDAY.

TYPE
colors = (red, green, blue>;

VAR
primary colors : colors,
work_days : Cmonday, tuesday, wednesday, thursday, friday>;

In the ordinal type COLORS, the following relationships hold:

RED < GREEN

RED < BLUE

GREEN < BLUE

You can find the predecessor and successor of every element of an ordinal. You can also map
each element onto an integer using the $INTEGER function (described in section 6). For
example, $INTEGER(RED) = O; this is the first element of the ordinal.

The type declaration

TYPE
primary colors = Cred, green, blue>,
hot_colors = <red, orange, yellow>;

is in error because the name RED appears in two ordinal definitions.

60455280 A 4-5

Subrange

A subrange is not really a new type but a specified range of values within an existing
scalar type. A variable defined by a subrange can take on only the values between and
including the specified lower and upper bounds.

The format used to specify a subrange is:

lowerbound •• upperbound

lower bound

upper bound

Required; scalar expression specifying the lower bound of the
subrange.

Required; scalar expression specifying the upper bound of the
subrange.

The lower bound must be less than or equal to the upper bound. Both bounds must be of the
same scalar type.

The type of a subrange is the type of its lower and upper bounds. If a subrange completely
encompasses its own type, it is said to be an improper subrange type. For example, the
subrange

FALSE •• TRUE

is of type boolean and also contains every element of type boolean. It is equivalent to
specifying the type itself. An improper subrange type is always equivalent to its own type.

Two subranges are equivalent if they have the same lower and upper bounds.

Subranges allow for additional error checking. Compilation options are available that cause
the compiler to check assignments during program execution and issue an error if it finds a
variable not within range. (For further information on these options, refer to Compile-Time
Directives in section 8.) In addition, subranges improve readability. Because a subrange
defines the valid range of values for a variable, it is more meaningful to the user for
documentation and maintenance.

The operations permitted on a subrange are the same as those permitted on its type (the type
of its lower and upper bound).

Example:

This example shows the definition of a new type named LETTERS, which consists of the
characters A through Z only. It also defines an ordinal named COLORS consisting of the
colors listed. The variable declaration declares variable SCORES to consist of the numbers
0 through 100. The lower and upper bounds are of integer type, so the subrange is also an
integer type. STATUS is a subrange of boolean values, which could have been declared simply
as BOOLEAN. HOT COLORS is a subrange of the ordinal type COLORS. It consists of the colors
RED, ORANGE, and-YELLOW.

4-6

TYPE
letters= 'a' •• 'z',
colors = Cred, orange, yellow, white, green, blue>;

VAR
scores = 0 •. 100,
status = FALSE •• TRUE,
hot_colors = red •• yellow;

60455280 A

0
()

0
0

•

OJ
Qi

0

C'1

i

0
0

FLOATING-POINT TYPE

The floating-point type defines real numbers.

Real

The keyword used to specify a real type is:

REAL

Real numbers range in value from 6.2630(10-294) to 1.2650(10322).

The following operations are permitted on real types: assignment, addition, subtraction,
multiplication, division, and all relational operations.

The functions $INTEGER and $REAL, described in section 6, convert between integer type and
real type.

POINTER TYPES

A pointer represents the location of a value rather than the value itself. When you
reference a pointer, you indirectly reference the object to which it is pointing.

The format for specifying a pointer type is:

"" type

type Required; type to which the pointer can point. It can be any
defined type. With the exception of a pointer to cell type
(discussed later in this section), the pointer can point to objects
of this specified type only.

For example,

VAR intptr = A integer;

defines a pointer ri.amed INTPTR that can point only to integers.

INTPTR I any
~~---.. ~~---in_t_e_ue_r __ _...

The format for specifying the object of a pointer (that is, what the pointer points to) is:

pointer_name ""

pointer_name The name you gave the pointer in the variable declaration.

60455280 A 4-7

This preceding notation is called a pointer reference; it refers to the object to which
pointer_name points. It can also be referred to as a dereference. For example,

intptr ..

identifies a location in memory; it is the location to which INTPTR points.

INTPTR"'

INTPTR I ~ny
~~--·~--~in_t_eg_e_r __ ~

You can initialize or assign a value to the object of a pointer as you would any other
variable; that is:

pointer_name "' := value;

This assigns the specified value to the object that the pointer points to. For example,

intptr .. := 5;

assigns the integer value 5 to the location INTPTR points to:

INTPTR"'

INTPTR --....-1 ____ 5_

You can assign the object of a pointer to a variable in the same way:

variable := pointer_name "';

This takes the value of what pointer_name points to and assigns it to the variable. For
example,

i : = i ntpt r .. ;

assigns to I the contents of what INTPTR points to, that is, 5.

If a pointer reference is to another pointer type variable, meaning that the pointer points
to a pointer that in turn points to a variable, you can specify the variable with the form:

pointer_name

For example, the declarations

TYPE
intptr = · integer;

VAR
ptr2 : • intptr;

can be pictured conceptually as follows:

PTR2"'

PTR2 a pointer
(INTPTR) -

PTR2"'"'

any
integer

PTR2 points to a pointer of type INTPTR. INTPTR points to integers. A reference to PTR2 A

refers to the locationof the pointer that in turn points to an integer. A reference to
PTR2 AA refers to the location of the integer.

4-8 60455280 A

0
0

0)
()

•

0
0

c

0

c

0
0

The value assigned to a pointer can be:

• The pointer constant NIL.

• The pointer symbol A followed by a variable of the type to which the pointer can
point.

• A pointer variable •

• A pointer-valued function •

NIL is the value of a pointer variable without an object; the variable is not currently
assigned to any location. It can be assigned to or compared with any pointer of any type.

Pointers allow you to manipulate storage dynamically. Using pointers, you can create and
destroy variables while a program is executing. Memory is allocated when the variable is
created and released when it is destroyed. Pointers also allow you to reference the
variables without giving each a unique name.

A pointer variable can be a component of a structured type as well as a valid parameter in a
function. A function can return a pointer variable as a value.

Permissible operations on pointers are assignment and comparison for equality and inequality.

Pointers to adaptable types (adaptable strings, arrays, records, sequences, and heaps)
provide the only method for accessing objects of these types other than through formal
parameters of a procedure. In particular, pointers to adaptable types and pointers to bound
variant records are used to access adaptable variables and bound variant records whose types
have been fixed by an ALLOCATE, PUSH, or NEXT statement (described in section 5).

Pointers are equivalent if they are defined in terms of equivalent types. A pointer to a
fixed type (as opposed to an adaptable type) can be assigned and compared to a pointer to an
adaptable type or bound variant record if the adaptable type is potentially equivalent to
the fixed type. (Refer to Equivalent Types earlier in this section for further information
on potentially equivalent types.)

60455280 A 4-9

Example:

The following example shows the declaration and manipulation of two pointer type variables.
Comments appear to the right.

TYPE ptr = Ainteger;
VAR i, j, k : integer,

p1 ptr,
p2 : Ap1,

b1, b2 : boolean;

ALLOCATE p1;

ALLOCATE p2;

p1 A := 10;
p2A := p1;

j : = p1 A;

k := p2AA;

b1 := j = k;
b2 := p1A = p2AA;

p1 := NIL;
k := p1 A;

IF p2 = NIL THEN
k := k + 1

I FEND;
p1 := A(i + j + 2 * k);

Pointer to Cell

PTR is a type that can contain pointers to integers.

Pl is a variable that can contain pointers to integers.
P2 is a variable that can contain pointers to Pl (that
is, pointers that point to pointers to integers). It
could have been written as P2 : -- INTEGER.

Allocates space for an integer (because that is what Pl
points to) and sets Pl to point to that space.
Allocates space for a pointer that points to an integer
and sets P2 to point to that pointer.
The space pointed to by Pl is set to 10.
The space pointed to by P2 is set to the value of the
pointer Pl.
The integer variable J is set to what Pl points to: the
integer 10.
The integer variable K is set to the object of the
pointer that P2 points to. (Think of P2 as "P2
points to a pointer; that pointer points to an object."
You are assigning that object to K.) P2 points to Pl,
which points to the integer 10.
J and K are both 10. Bl is TRUE.
Pl points to an integer. P2 points to the pointer (Pl)
that points to the same integer. Their values are the
same and B2 is TRUE.
Pl no longer points to anything.
The statement is in error because Pl does not point to
anything.
A valid statement. K is not incremented because P2
still points to Pl.

An invalid statement. The location of an expression
cannot be found.

A pointer to cell type can take on values of any type.t

The format for declaring a pointer to a cell is:

"'CELL

A variable declared simply as a pointer type variable can take on as values only pointers to
a single type, which is specified in the pointer's declaration. A variable declared as a
pointer to cell variable has no such restrictions. It can take on values of any type.
Also, any fixed or bound variant pointer variable can assume a value of pointer to cell.

t A cell is the smallest storage location that can be addressed directly by a pointer.
The cell type is discussed next.

4-10 60455280 A

0
0

0
(~)

,,

0
0

0

0
0

Permissible operations on a pointer to a cell are assignment and comparison for equality and
inequality. In addition, a pointer to a cell can be assigned to any pointer to a fixed or
bound variant type. But the pointer to the fixed or bound variant type cannot have as its
value a pointer to a variable that is not a cell type or, furthermore, whose type is not
equivalent to the type to which the target of the assignment points. A pointer to a cell
can be the target of assignment of any pointer to a fixed or bound variant type.

CELL TYPE

The cell type represents the smallest storage location that is directly addressable by a
pointer. For computer systems on which NOS and NOS/BE operate, a cell is a 60-bit memory
word.

The keyword used for specifying a cell type is:

CELL

Operations permitted on a cell type are assignment and comparison for equality and
inequality.

STRUCTURED TYPES

Structured types are combinations of the basic types already described in this section
(integer, character, boolean, ordinal, subrange, real, pointer, and cell). Even the
structured types discussed here can be combined with each other but they are still
essentially groups of the basic types. The structured types described in this section are:

• Strings

• Arrays

• Records

·• Sets

STRINGS

A string is one or more characters that can be identified and referenced as a whole by one
name.

The format used to specify a string type is:

STRING (length)

length Required; a positive integer constant expression from 1 to 65,535.

If an initial value is specified in the variable declaration for a string, it can be:

• A string constant.

• The name of a string constant declared with the CONST declaration.

• A constant expression (as described in section 2).

60455280 A 4-11

A string cannot be packed. Two string types are equivalent if they have the same length.

The following operations are permitted on string types: assignment and comparison (all six
relational operations). For further information, refer to Assigning and Comparing String
Elements later in this section.

Substrings

You can reference a part of a string (this is called a substring) or a single character of a
string.

The format for referencing a substring or single character is:

name (position {, length})

name

position

length

Required; name of the string.

Required; position within the string of the first character of the
substring. (The position of the first character of the string is always
1.) It must be a positive integer expression less than or equal to the
length of the string plus 1; that is,

0 < position ~ string length + 1

If the string length plus 1 is specified, the substring is an empty
string.

Number of characters in the substring. It must be a nonnegative integer
expression or * (the asterisk character). If * is specified, the
substring consists of all remaining characters in the string following
the "position" character. If 0 (zero) is specified, the substring is an
empty string. If the parameter is omitted, a length of 1 is assumed.

A substring reference in the form

()

,1'--,,

name(position) f~

is a substring of length 1, a single character. In this form, it can be used anywhere a
character expression is allowed. It can be:

4-12

• Compared with a character.

• Tested for membership in a set of characters.

• Used as the initial and/or final value in a FOR statement that is controlled by a
character variable.

• Used as a value in a CASE statement.

• Used as an argument in the standard functions $INTEGER, SUCC, and PRED.

• Assigned to a character variable.

• Used as an actual parameter to a formal parameter of type character •

• Used as an index value corresponding to a character type index .in an array.

60455280 A

0
()

0
0

C,, ,,

0

0
0

A string constant, even if it is declared with a name in a CONST declaration, is not a
variable. Therefore, substrings cannot be referenced in a string constant.

Examples:

If a string variable LETTERS is declared and initialized as follows

VAR letters : string C6) := 'abcdef';

the following substring references are valid:

Substring Comments

LETTERS(l) Refers to 'a'
LETTERS(6) Refers to 'f'
LETTERS(l,6) Refers to the entire string
LETTERS (1 , *) Refers to the entire string
LETTERS(2,5) Refers to 'bcdef'
LETTERS(2,*) Refers to 'bcdef'
LETTERS(2,0) Refers to an empty string
LETTERS(7,*) Refers to an empty string

LETTERS(O), LETTERS(8) and LETTERS(8,0) are illegal.

If a pointer variable is declared and initialized as follows

VAR string_Ptr : Astring (6) := Al~tters;

then STRING PTR points to the string LETTERS and the pointer variable STRING PTRA can be
used to make substring references just like the variable LETTERS.

Substring Comments

STRING PTRA(l) Refers to 'a'
STRING-PTr(6) Refers to 'f'
STRING=PTr(l,6) Refers to the entire string
STRING_PTRA(2,*) Refers to 'bcdef'
STRING_PTRA(2,0) Refers to an empty string

Assigning and Comparing String Elements

You can assign or compare a character, substring, or string to a substring, string variable,
or character variable. A character is treated as a string of length 1.

If you are assigning a value that is longer than the substring or variable to which it is
being assigned, the value is truncated on the right. If you are assigning a value that is
shorter, blanks are appended on the right to fill the field. This method is also used for
comparing strings of different lengths.

If a substring is being assigned to a substring of the same variable, the fields cannot
overlap or the results are undefined.

The concatentation operation, CAT, cannot be used to construct new strings during program
execution; it is only valid for constructing initial values.

60455280 A 4-13

Examples:

Assume the string variable DAY is declared and initialized as follows:

VAR
day : string (6) := 'monday';

The following assignments can be made:

short := day .C1,3>;
empty := day C1,0>;

SHORT is assigned the string 'mon'. EMPTY is assigned a null string.

ARRAYS

An array in CYBIL is a collection of data of the same type. You can access an array as a
whole, using a single name, or you can access its elements individually.

The format used for specifying an array type is:

{PACKED} ARRAY [subscript_bounds] OF type

PACKED

subscript_bounds

type

Optional packing parameter. When specified, the elements of the
array are mapped in storage in a manner that conserves storage
space, possibly at the expense of access time. If omitted, the
array is unpacked; that is, the elements are mapped in storage
to optimize access time rather than to conserve space. (The
array itself is always mapped into an addressable memory
location; that is, it starts on a word boundary or, in the case
of a packed array in a record, on a byte boundary.) For further
information on how data is stored in memory, refer to appendix
D, Data Representation in Memory.

If the array contains structured types (such as records), the
elements of that type (the fields in the records) are not
automatically packed. The structured type itself must be
declared packed.

Required; value that specifies the size of the array and what
values you can use to refer to individual elements. The bounds
can be any scalar type or subrange of a scalar type, except
REAL; the bounds is often a subrange of integers.

Required; type of the elements within the array. The type can
be any defined type, including another array, except an
adaptable type (that is, an adaptable string, array, or
record). All elements must be of the same type.

Elements of a packed array cannot be passed as reference (that is, VAR) parameters in:
programs, functions, or procedures.

Two array types are equivalent if they have the same packing attribute, equivalent subscript
bounds, and equivalent component types.

The only operation permitted on an array type is assignment.

4-14 60455280 A

l1
()

,·~

()
(~)

•

0
0

c

0

C·

0
0

Initializing Elements

An array can be initialized using an indefinite value constructor. An indefinite value
constuctor is a list of values assigned in order to the elements of an array. The first
value in the list is assigned to the first element, and so on. The number of values in the
value constructor must be the same as the number of elements in the array. The type of the
values must match the type of the elements in the array. An indefinite value constructor
has the form

[value {,value} •••]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list) •

• The phrase

REP number OF value

which indicates the specified value is repeated the specified number of times.

• The asterisk character (*), which indicates the element in the corresponding
position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot be used to
assign values during program execution. Individual elements can be assigned during
execution using the assignment statement (described in section S).

Referencing Elements

The array name alone refers to the entire structure. The format for referring to an
individual element of an array is:

array_name[subscript]

subscript

60455280 A

Required; a scalar expression within the range and of the type
specified in the subscript bounds field of the array
declaration. This subscript specifies a particular element.

4-15

Examples:

This example shows the definition of a type named POS TABLE, which is an array of 10
elements that can take on the values defined in POSITION. The variable declaration declares
variable NUMBERS to be an array of five elements initialized to the values 1, 2, 3, 4, and
5, where 1 is the value of the first element, and so on. LETTERS is an array of 26 elements
that can be any characters. BIG TABLE is a 100-element array, each element of which is an
array of 10 elements.

TYPE
position = Cboi, asis, eoi),
pos table= array [1 •• 10J of position;

VAR -
i : integer := 5,
number : array [1 •• SJ of integer := [1, 2, 3, 4, SJ,
letters= array ['a' •• 'z'J of char,
big_table = array [1 •• 100J of pos_table;

The declaration of BIG_TABLE is equivalent to:

VAR big_table =array [1 •• 100] of array [1 •• 10] of position;

Individual elements can be referenced using the following statements.

numbers [iJ This reference is the same as NUMBERS [5]; it refers to
the fifth element of the array NUMBERS.

letters ['b'J := 2; This statement sets the second element of the array
LETTERS to 2.

big_table [13J[10J := asis; This statement sets the tenth element of the thirteenth
array to ASIS.

The following example shows the declaration and initialization of a two-dimensional array
named DATA TABLE. All of the components of the third element of the array (which is an
array itself) are set to 0 (zero). Notice that the third element of the last array,
TWODIM [4][3], is uninitialized.

TYPE
innera rray = array [1 •• SJ of integer,
twodim = array [1 •• 4J of innerarray;

VAR
data table

4-16

twodim := [[5, -10, 2, 6, 3J,
[4, 11, 19, -3, 6J,
[rep 5 of OJ,
[3, -9, *, 4, 15JJ;

60455280 A

0
()

-:<~·~"­

.I,~~)

0
(~)

0
0

0

0

()

0

RECORDS

Records are collections of data that can be of different types. You can access a record as
a whole using a single name, or you can access elements individually.

A record has a fixed number of components, usually called fields, each with its own unique
name. Different .fields are used to indicate different data types or purposes.

There are two types of records: invariant records and variant records. Invariant records
consist of fields that don't change in size or type. Variant records can contain fields
that vary depending on the value of ~ key variable. Formats used for specifying both kinds
of records are given later in this section.

Operations permitted on record types are assignment and, for invariant records only,
comparison for equality and inequality. The invariant records being compared cannot contain
arrays as fields.

Invariant Records

An invariant record consists of fields that do not vary in size or type. They are called
fixed or invariant fields.

The format used for specifying an invariant record is:

{PACKED} RECORD
field name : {ALIGNED} type

{,field_name : {ALIGNED} type} •••
RECEND

PACKED

field name

ALIGNED

type

60455280 A

Optional packing parameter. When specified, the fields of a
record are mapped in storage in a manner that conserves storage
space, possibly at the expense of access time. If omitted, the
record is unpacked; that is, the fields are mapped in storage to
optimize access time rather than to conserve space. For further
information on how data is stored in memory, refer to appendix D,
Data Representation in Memory.

If one of the fields is a structured type (such as another
record), the elements of that type are not packed automatically.
The structured type itself must be declared packed.

Required; name identifying a particular field. The name must be
unique within the record. Outside of the record declaration, it
can be redefined.

Optional alignment parameter. When a field is aligned, it is
mapped in storage so that it is directly addressable. This means
the field begins on an addressable boundary to facilitate rapid
access to the field. This may negate some of the effect of
packing the record. For further information, refer to Alignment
later in this section.

Required; any defined type, including another record, but not an
adaptable type.

4-17

Elements of a packed record cannot be passed as reference (that is, VAR) parameters in
programs, functions, or procedures unless they are aligned.

The only operations possible on whole invariant records are assignment and comparison. A
record can be assigned to another record if they are both of the same type. A record can
also be compared to another record for equality or inequality if they are both of the same
type. Invariant record types are the same if they have the same packing attributes, the
same number of fields, and corresponding fields have the same field names, same alignment
attribute, and equivalent types.

Example:

This example shows the definition of two new types, both records. The record named DATE has
three fields that can hold, respectively, the day, month, and year. The record named
RECEIPTS appears to contain two fields, NAME and PAYMENT; but PAYMENT is itself a record
consisting of the three fields in DATE, just described. Initialization of fields within
records is discussed under Initializing Elements later in this section.

TYPE
date = RECORD

day : 1 •• 31,
month : string (4),
year : 1900 •• 2100,

RECEND,

receipts = RECORD

Variant Records

name : string C40>,
payment : date,

RECEND;

A variant record contains fields that may vary in size, type, or number depending on the
value of an optional tag field. These different fields are called variant fields or simply
variants.

The format used for specifying a variant record is:

{PACKED} {BOUND} RECORD
{fixed_field_name : {ALIGNED} type} ••• t

CASE {tag_field_name :} tag_field_type OF

= tag field value
variant field

{= tag field value
variant field} •••

CASEND -
RECEND

twhen more than one fixed field is specified, they must be separated by commas.

4-18 60455280 A

0
0

/'"- '

~"j

()
()

•

0
0

0

0

0

0
0

PACKED

BOUND

fixed field name - -

ALIGNED

type

tag_f ield_name

tag_field_type

tag_field_value

variant field

60455280 A

Optional packing parameter. When specified, the fields of a
record are mapped in storage in a manner that conserves storage
space, possibly at the expense of access time. If omitted, the
record is unpacked; that is, the fields are mapped in storage to
optimize access time rather than to conserve space. For further
information on how data is stored in memory, refer to appendix D,
Data Representation in Memory.

If a field is a structured type (such as another record), the
elements of that type are not packed automatically. The
structured type itself must be declared packed.

Optional parameter indicating that this is a bound variant
record. If specified, the tag field name parameter is required.
Additional information on bound variant records follows the
parameter descriptions.

The name of a fixed field (one that does not vary in size), as
described under Invariant Records earlier in this section. The
name must be unique within the record. Outside of the record
declaration, it can be redefined. There can be zero or more fixed
fields.

Optional alignment parameter; the same as that for an invariant
record. When a field is aligned, it is mapped in storage so that
it is directly addressable. This means the field begins on an
addressable boundary to facilitate rapid access to the field.
This may negate some of the effect of packing the record. For
further information, refer to Alignment later in this section.

Required only if a fixed field name is specified. Any defined
type, including another record-:- but not an adaptable type.

Optional parameter specifying the name of the variable that
determines the variant. The current value of this variable
determines which of the variant fields that follow will actually
be used. If omitted, the variant that had the last assignment
made to one of its fields is used. This parameter is required if
the record is a bound variant record (BOUND is specified).
Additional information is given following the parameter
descriptions.

Required; any scalar type. This type defines the values that the
tag_field_value can have.

Required; a constant scalar expression or subrange. It must be
one of the possible values that can be assigned to the variable
specified by tag field name. It must be of the type and within
the range specified by-tag field type. Specifying a subrange has
the same effect as listing-each V"alue separately.

Required; zero or more fixed fields of the same form as that shown
in the second line of this format. This field exists only if the
current value of tag field name is the same as that in the
tag_field_value associated-with the variant field. The last field
can be a variant itself.

4-19

The variant fields.must follow all invariant (fixed) fields in the record. The field
following the reserved word CASE is called the tag field name. The tag field name can take
on different values during execution. When its value matches one of the values specified in
a tag field value, the variants associated with that tag field value are used. Variants
themse"lves consists of zero or more fixed fields optionally followed by another variant. If
the last field is itself a variant, it can have another CASE clause, tag_field_name, and so
on.

The tag field name is an optional field. When it is omitted, no storage is assigned for the
tag field. If the record has no tag field, you choose a variant by making an assignment to
a subfield within a variant. The variant containing that subfield becomes the currently
active variant. In a variant record without a tag field, all fields in a new active variant
become undefined except the subfield that was just assigned. An attempt to access a variant
field that is not currently active produces undefined results.

Space for a variant record is allocated using the largest possible variant.

Variant record types are equivalent if they have the same packing attribute, their fixed
fields are equivalent (as defined for invariant record types), they have the same tag field
names, their tag field types are equivalent, their tag field values are the same, and their
corresponding variant fields are equivalent.

A bound variant record is specified by including the BOUND parameter; the tag field name is
also required. A bound variant record type can be used only to define pointers for-bound
variant record types (that is, bound variant pointers). A variable of this type is always
allocated in a sequence or heap, or in the run-time stack managed by the system.

When allocating a bound variant record, you must specify the tag field values that select
the variation of the record. Only the specified space is allocated. The ALLOCATE statement
in this case returns a bound variant pointer.

If a formal parameter of a procedure is a variant record type, the actual parameter cannot
be a bound variant record type.

A record cannot be assigned to a variable of bound variant record type.

Bound variant record types are equivalent if they are defined in terms of equivalent,
unbound records. A bound variant record type is never equivalent to a variant record type.

4-20 60455280 A

(,,r·~,

\'"'-._,./

0
()

0
0

0

0

0
0

Example:

This example defines a type named SHAPE, which becomes the type of the tag field, in this
case a variable named s. When S is equal to TRIANGLE, the record containing fields SIZE,
INCLINATION, ANGLEl, and ANGLE2 is· used as if it were the only record available. When the
value of S changes, the record variant being used changes too.

TYPE
shape = (triangle, rectangle, circle>,
angle = -180 •• 180,
figure = RECORD

x,
y,
area : real,

CASE s : shape OF
= triangle =

size : real,
inclination,
angle1,
angle2 : angle,

= rectangle =
side1,
side2 : integer,
skew,
angle3 : angle,

= circle =
diameter : integer,

CASEND,
RECEND;

Initializing Elements

A record can be initialized using an indefi~ite value constructor. An indefinite value
constructor is a list of values assigned in order to the fields of a record. The first
value in the list is assigned to the first field, or first element in a field, and so on.
The type of the values must match the type of the elements in the field. An indefinite
value constructor has the form

[value {,value} •••]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list).

• The asterisk character (*), which indicates the element in the corresponding
position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot be used to
assign values during program execution. Individual fields can be assigned during execution
using the assignment statement (described in section 5).

60455280 A 4-21

Referencing Elements

The record name alone refers to the entire structure. The format for accessing a field in a
record is:

record name.field name {.sub_field_name} •••

record name

field name

Required; name of the record as declared in the variable declaration.

Required; name of the field to be accessed. If the field is an
array, a reference to an individual element can also be included
using the form:

field_name[subscript]

sub_field_name Optional field name. This parameter is used if the field previously
specified is itself a structured type, for example, another record.
If the contained field is an array, a reference to an individual
element can be included using the form:

sub_field~name[subscript]

Examples:

The variable PROFILE is a record with the fields described in the record type STATS. In
this example, PROFILE is initialized with the values in the indefinite value constructor in
the variable declaration.

TYPE stats = RECORD
age : 6 •• 66,
married : boolean,
date : RECORD

day : 1 •• 31,
month : 1 •• 12,
year : 80 •• 90,
RECEND,

RECEND;

VAR profile : stats := C23,FALSE,[3,5,82JJ;

The following references can be made to fields.

profile.age This field contains 23.
profile.married This field contains FALSE.
profile.date.day This field contains 3.
profile.date.month This field contains 5.
profile.date.year This field contains 82.

4-22 . 604.55280 A

0
0

,(.,~\

£ '
'-~J

1-\.

~---j

;r··
I

\"-~/

0
0 '

..,.

0
0

0

0

0

Alignment

Unpacked records and their fields are always aligned (that is, directly addressable). Even
if it is packed, a record itself is always aligned (that is, the first field is directly
addressable) unless it is an unaligned field within another packed structure. Fields in a
packed record, however, are not aligned unless the ALIGNED attribute is explicitly
included. Aligning the first field of a record aligns the entire record.

Unpacked records and their fields, because they are aligned, can always be passed as
reference (that is, VAR) parameters in programs, functions, and procedures. Packed records
must be aligned to be valid as reference parameters. Packed, unaligned records cannot be
used.

SETS

A set is a collection of elements that, unlike arrays and records, is always operated on as
a single unit. Individual elements are never referenced.

The format used to specify a set type is:

SET OF scalar_type

scalar_type Required; type of all elements that will be within the set. It
can be a scalar type or a subrange of a scalar type.

All members of a set must be of the same type. Members within a set have no specific order;
that is, order has no effect in any of the operations performed on sets.

Set types are equivalent if their elements have equivalent types.

Permissible operations on sets are assignment, intersection, union, difference, symmetric
difference, negation, inclusion, identity, and membership. Refer to Operators in section 5
for further information on set operations. The SUCC and PRED functions are not defined for
set types.

The difference (-) or symmetric difference (XOR) of two identical sets is the empty set.
The empty set is contained in any set. For a given set, the complement of the empty set,
-[], is the full set. .

Initializing and Assigning Elements

Values can be assigned to a set using an indefinite value constructor or a set value
constructor. An indefinite value constructor can be used only for initialization; a set
value constructor can be used for both initialization and assignment during program
execution.

An indefinite value constructor is a list of values assigned to the set. The type of the
values must match the type of the set. An indefinite value constructor has the form:

[value {,value} •••]

value Required; a constant expression or another indefinite value constructor
(that is, another list).

60455280 A 4-23

A set value constructor constructs a set through explicit assignment. A set value
constructor has the form: -

$name [{value {,value} ••• }]

name Required; name of the set as declared in the variable declaration. The
dollar sign ($) is required preceding the name to indicate a set value
constructor.

value An expression of the same type as that specified for the set. When used
in initialization, only constants or constant expressions are valid.
The empty set can be specified by [].

A set value constructor can be used wherever an expression can be used.

Example:

This example shows the declaration of a variable named ODD that is a type of a set of
integers from 0 to 10. It is initialized with an indefinite value constructor assigning the
integers 1, 3, and 5 to the set. The variable VOWELS is a set that can contain any of the
letters A through z. It is assigned the letters A, E, I, O, and U using a set value
constructor. It constructs a set of type C, which contains the specified letters; then that
set is assigned to the set VOWELS.

TYPE
a = set of o .. 10,
c =set of 'a' •• 'z';

VAR
odd : a := [1, 3, SJ,
vowels : c;

vowels := Sc['a', 'e', 'i', 'o', 'u'J;

STORAGE TYPES

Storage types represent structures to which variables can be added, deleted, and referenced
under program control. (The statements used to access the storage types are described under
Storage Management Statements in section S.) There are two storage types:

• Sequences

• Heaps

4-24 60455280 A

0
0

rr 1, __ j

0

0
0

()

0

0

0
0

SEQUENCES

A sequence type is a storage structure whose components are referenced sequentially using
pointers. These pointers are constructed by the NEXT and RESET statements (described in
section 5).

The format used for specifying a sequence type is:

SEQ ({REP number OF} type {,{REP number of} type} •••)

number

type

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

Required. A fixed type that can be a user-defined type name; one of
the predefined types integer, character, boolean, real, or cell; or a
structured type using the preceding types.

The phrase "REP number OF type" can be repeated as many times as desired. It specifies that
storage must be available to hold the indicated number of occurrences of the named types
simultaneously. The types that are actually stored in a sequence do not have to be the same
as the types specified in the declaration, but adequate space must have been allocated to
hold those types in the declaration. In other words, if a sequence is declared with several
repetitions of integer type, the space to hold these integers has to be available, but it
might actually hold strings or boolean values.

Sequence types are equivalent if they have the same number of REP phrases and corresponding
phrases are equivalent. Two REP phrases are equivalent if they have the same number of
repetitions of equivalent types.

Assignment to another sequence is the only operation permitted on sequences.

HEAPS

A heap type is a storage structure whose components are allocated explicitly by the ALLOCATE
statement and released by the FREE and RESET statements (described in section S). They are
referenced by pointers constructed by the ALLOCATE statement.

The format used for specifying a heap type is:

HEAP ({REP number OF} type {,{REP number of} type} •••)

number

type

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

Required. A fixed type that can be a user-defined type name; one of
the predefined types integer, character, boolean, real, or cell; or a
structured type using the preceding types.

The phrase "REP number OF type" can be repeated as many times as desired. It specifies that
storage must be available to hold the indicated number of occurrences of the named types
simultaneously. The types that are actually stored in a heap do not have to be the same as
the types specified in the declaration, but adequate space must have been allocated to hold
those types in the declaration. In other words, if a heap is declared with several
repetitions of integer type, the space to hold these integers has to be available but it
might actually hold strings or boolean values.

60455280 A 4-25

Heap types are equivalent if they have the same number of REP phrases and corresponding
phrases are equivalent. Two REP phrases are equivalent if they have the same number of
repetitions of equivalent types.

The default heap can be managed with the ALLOCATE and FREE statements in the same way as a
user-defined heap. For further information, refer to the descriptions of these statements
in section 5.

ADAPT ABLE TYPES

An adaptable type is a type that has indefinite size or bounds; it adapts to data of the
same type but of different sizes and bounds. The types described thus far in this section
are fixed types. An adaptable type differs from a fixed type in that the storage required
for a fixed type is constant and can be determined before execution. Storage for an
adaptable type is determined during program execution.

An adaptable type can be a string, array, record, sequence, or heap. An adaptable type can
be used to define formal parameters in a procedure and adapatable pointers. Pointers are
the mechanism used for referencing adaptable variables.

The size of an adaptable type must be fixed during execution. This can be done in one of
three ways:

• If the adaptable type is a formal parameter to a procedure or function, the size is
fixed by the actual parameters when the procedure or function is called. You can
determine the length of an actual parameter string using the STRLENGTH function, and
the bounds of an actual parameter array using the UPPERBOUND and LOWERBOUND
functions. (For further information, refer to the description of the appropriate
function in section 6.) All three functions return integer values.

• An adaptable pointer type on the left side of an assignment statement is fixed by
the assignment operation. It can be assigned any pointer whose current type is one
of the types that the adaptable type can take on.

• An adaptable type can be fixed explicitly using the storage management statements
(described in section 5).

An adaptable type is declared with an asterisk taking the place of the size or bounds
normally found in the type or variable declaration.

ADAPT ABLE STRINGS

The format used for specifying an adaptable string is:

STRING (* {<=length})

length Optional parameter specifying the maximum length of the adaptable
string. If omitted, 65,535 characters is assumed.

If the string exceeds the maximum allowable length, an error occurs.

Two adaptable string types are always equivalent.

4-26 60455280 A

()
0

rf--\
"\,_)

()
()

0
0

cl

0

0

0
0

ADAPTABLE ARRAYS

The format used for specifying an adaptable array is:

{PACKED} ARRAY [{lower_bound •• } *] OF type

PACKED

lower bound

type

Optional packing parameter. When specified, the elements of the
array are mapped in storage in a manner that conserves storage
space, possibly at the expense of access time. If omitted, the
array is unpacked; that is, the elements are mapped in storage to
optimize access time rather than to conserve space. (The array
itself is always mapped into an addressable memory location.) For
further information on how data is stored in memory, refer to
appendix D, Data Representation in Memory.

If the array contains structured types (such as records), the
elements of that type (the fields in the records) are not
automatically packed. The structured type itself must be declared
packed.

A constant integer expression that specifies the lower bound of the
adaptable array. This parameter is optional, but its use is
encouraged. Omission of this parameter (only the * appears)
indicates it is an adaptable bound of type integer.

Required; type of the elements within the array. The type can be
any defined type except an adaptable type (that is, an adaptable
string, array, record, sequence, or heap). All elements must be of
the same type.

Only one dimension can be adaptable in an array and that dimension must be the outermost
(first one in the declaration).

Adaptable arrays adapt to a specific range of subscripts. An adaptable array can adapt to
any array with the same packing attribute, equivalent subscript bounds, and equivalent
component types. If a lower bound is specified in the adaptable array declaration, both
arrays must also have the same lower bound.

Adaptable array types are equivalent if they have the same packing attributes and equivalent
component types, and if their corresponding array and component subscript bounds are
equivalent. Two subscript bounds that contain asterisks only are always equivalent. Two
subscript bounds that contain identical lower bounds are equivalent.

60455280 A 4-27

ADAPT ABLE RECORDS

An adaptable record contains zero or more fixed fields followed by one adaptable field that
is a field of an adaptable type.

The format used for specifying an adaptable record is:

{PACKED} RECORD

{fixed_field_name : {ALIGNED} type} ••• t

adaptable_field_name : {ALIGNED} adaptable_type

RECEND

PACKED

fixed field name

ALIGNED

type

Optional packing parameter. When specified, the fields of a
record are mapped in storage in a manner that conserves storage
space, possibly at the expense of access time. If omitted, the
record is unpacked; that is, the fields are mapped in storage to
optimize access time rather than to conserve space. For further
information on how data is stored in memory, refer to appendix
D, Data Representation in Memory.

If a field is a structured type (such as another record), the
elements of that type are not packed automatically. The
structured type itself must be declared packed.

Name identifying a particular fixed field. The name must be
unique within the record.

Optional alignment parameter. When a field is aligned, it is
mapped in storage so that it is directly addressable. This
means the field begins on an addressable boundary to facilitate
rapid access to the field. This may negate some of the effect
of packing the record. For further information, refer to
Alignment earlier in this section.

Required only if a fixed field name is specified. Any defined
type, including another t:"ecord-; but not an adaptable type.

adaptable_field_name Required; name identifying the adaptable field.

adaptable_type Required; an adaptable type.

An adaptable record can adapt to any record whose types are the same except for the last
field. That last field must be one to which the adaptable field can adapt.

Two adaptable record types are equivalent if they have the same packing attributes, the same
alignment, the same number of fields, and corresponding fields with identical names and
equivalent types.

t If more than one fixed (nonadaptable) field is specified, they must be separated by
commas.

4-28 60455280 A

0
0

,/-,,

\,~

()
()

0

0

c

0
0

ADAPT ABLE SEQUENCES

The format used for specifying an adaptable sequence is:

SEQ (*)

An adaptable sequence can adapt to a sequence of any size.

Two adaptable sequence types are always equivalent.

ADAPT ABLE HEAPS

The format used for specifying an adaptable heap is:

HEAP (*)

An adaptable heap can adapt to a heap of any size.

Two adaptable heap types are always equivalent.

60455280 A 4-29

0
0

("~

\\."j

()
(--)-,

,

0
0

0

0
0

EXPRESSIONS AND STATEMENTS ·

EXPRESSIONS

Expressions are made up of operands and operators. Operators act on operands to produce new
values. (Constant expressions are evaluated to provide values for constants. Refer also to
Constant Expressions in section 2.)

In general, operations involving nonequivalent types are not allowed; one type cannot be
used where another type is expected. Exceptions are noted in the following descriptions.

OPERANDS

Operands hold or represent the values to be used during evaluation of an expression. An
operand can be a variable, constant, name of a constant, set value constructor, function
reference (either standard function or user-defined function), pointer to a procedure name,
pointer to a variable, or another expression enclosed in parentheses.

The value of a variable being used as an operand is the last value assigned to it. A
constant name is replaced by the constant value associated with it in the CONST declaration.

A function reference causes the function to be executed; the value returned by the function
takes the place of the function reference in the expression.

OPERATORS

Operators cause an action to be performed on one operand or a pair of operands. Many of the
operators can be used only on basic types; they will be noted in their individual
descriptions. Some operators can be used on sets. Although they are discussed in the
individual descriptions that follow, there is also a separate description in this section on
set operations.

An operation on a variable or component of a variable that has an undefined value will
produce an undefined result.

5

60455280 A 5-1

There are five kinds of operators,- many of which are identlfied by reserved symbols. They
are listed here in the order in which they are evaluated from highest to lowest precedence.

• Negation operator (NOT)

• Multiplication operators (* , DIV, I , MOD, and AND)

• Sign operators (+ and -)

• Addition operators (+ - , OR, and XOR)

• Relational operators (< , <= , > ,)= , = , <> , and IN)

In the relational operators that consist of two symbols (that is, <=, >=, and <>), the
symbols cannot be separated by a space or by any other character; they must appear together.

When an expression contains two or more operators of the same precedence, operations are
performed from left to right. The only way to explicitly change the order of evaluation is
to use parentheses. Parentheses indicate that the expression inside them should be
evaluated first.

Negation Operator

The negation operator, NOT, applies only to boolean operands.

NOT TRUE equals FALSE. NOT FALSE equals TRUE.

Multiplication Operators

The multiplication operators perform multiplication and set intersection (*), integer
quotient division (DIV), real quotient division(/), remainder division (MOD), and the
logical AND operation (AND). Table 5-1 shows the multiplication operators, the permissible
types of their operands, and the type of result they produce.

5-2 60455280 A

0
0

,~·· .. \ ,,_,j

0
0

0
0

I Cl

0

0
0

Table 5-1. Multiplication Operators

Operator Operation Type of Operands Type of Result

* Multiplication Integer or subrange Integer
of integer

Real Real

* Set intersection Set of a scalar type Set of the

DIV Integer quotientt Integer or subrange Integer
of integer

I Real quotient Real Real

MOD Remainder functiontt Integer or subrange Integer
of integer

AND Logical ANDttt Boolean Boolean

tinteger quotient refers to the whole number that results from a division
operation. The remainder is ignored. A more formal definition is: for
positive integers a, b, and n,

a DIV b = n

where n is the largest integer such that b * n <= a.

For one or two negative integers,

(-a) DIV b = (a) DIV (-b) = -(a DIV b) and
(-a) DIV (-b) = a DIV b

same type

ttRemainder function refers to the remainder of a division operation. A more
formal definition is:

a MOD b = a - (a DIV b) * b

tttTRUE AND FALSE = FALSE
TRUE AND TRUE = TRUE
FALSE AND FALSE = FALSE
FALSE AND TRUE = FALSE

When the first operand is FALSE, the second operand is never evaluated.

60455280 A 5-3

Sign Operators

The sign operators perform the identity operation (+) and sign inversion and set complement
operation (-). Table 5-2 shows the sign operators, the permissible types of their operands,
and the type of result they produce.

Table 5-2. Sign Operators

Operator Operation Type of Operands Type of Result

+ Identity (indicates Integer Integer
a positive operand)

Real Real

- ~ign inversion (indi- Integer Integer
cates a negative
operand) Real Real

- Set complement Set of a scalar type Set of the same type

Addition Operators

The addition operators perform addition and set union (+), subtraction, boolean difference,
and set difference (-), the logical OR operation (OR), and the exclusive OR operation
(XOR). Table 5-3 shows the addition operators, the permissible types of their operands, and
the type of result they produce.

5-4 60455280 A

,r\
"'-o-~/'

0
()

0
0

()

0

0
0

Table 5-3. Addition Operators

Operator Operation

+ Addition

+ Set union

- Subtraction

- Boolean differencet

- Set difference

OR Logical OR tt

XOR Exclusive ORttt

Symmetric difference

t TRUE - TRUE = FALSE
TRUE - FALSE = TRUE
FALSE - TRUE = FALSE
FALSE - FALSE = FALSE

tt TRUE OR TRUE = TRUE
TRUE OR FALSE = TRUE
FALSE OR TRUE = TRUE
FALSE OR FALSE = FALSE

Type of Operands

Integer or subrange
of integer

Real

Set of a scalar type

Integer or subrange
of integer

Real

Boolean

Set of a scalar type

Boolean

Boolean

Set of a scalar type

Type of Result

Integer

Real

Set of the same type

Integer

Real

Boolean

Set of the same type

Boolean

Boolean

Set of the same type

When the first operand is TRUE, the second operand is never evaluated.

ttt TRUE XOR TRUE = FALSE
TRUE XOR FALSE = TRUE
FALSE XOR TRUE = TRUE
FALSE XOR FALSE = FALSE

60455280 A 5-5

Relational Operators

The relational operators (<, <=, >, >=, =, <>, and IN) test for the truth or falsity of
these given conditions: less thari (<), less than or equal to or subset of a set (<=),
greater than (>), greater than or equal to or a superset of a set (>=), equal to or set
identity (=), not equal to or set inequality(<>), and set membership (IN).

Because relational operators are valid on so many different types, some special points about
each type are noted next. Following these comments, table 5-4 lists the relational
operators and the permissible types of their operands; they always produce a boolean type
result.

Comparison of Scalar Types

The comparison operators (< , <= , > , >= , = , and <>) are allowed only between operands
of the same scalar type or between a substring of length 1 and a character.

For integer type operands, the relationships all have their usual meaning.

For character type operands, each character is essentially mapped to its corresponding
integer value according to the ASCII collating sequence. (This is the same operation
performed by the $INTEGER function described in section 6.) The operands and relational
operators are then evaluated using the characters' integer values.

For boolean type operands, FALSE is always considered to be less than TRUE.

For ordinal type operands, operands are equal only if they are the same value; otherwise,
they are not equal. For the other relational operators, each· ordinal is essentially mapped
to the corresponding integer value of its position in the ordinal list where it is defined.
(This is the same operation performed by the $INTEGER function described in section 6.) The
opera~ds and relational operators are then evaluated using the ordinals' integer values.
For an example, refer to the discussion of ordinal types under Scalar Types in section 4.

Operands that are a subrange of a scalar type can be compared with operands of the same
type, including another subrange of the same type.

Comparison of Floating-Point Types

All of the comparison operators are valid between operands of the real type.

Comparison of Pointer Types

Two pointers can be compared if they are pointers to equivalent or potentially equivalent
types. (For further information on equivalent types, refer to Equivalent Types in section
4.) For potentially equivalent types, one or both of the pointers can be pointers to
adaptable or bound variant types. The current type of such a pointer must be equivalent to
the type of the pointer with which it is being compared; if it is not, the operation is
undefined.

Pointers can be compared for equality and inequality only. Two pointers are equal if they
designate the same variable or if they both have the value NIL. A pointer of any type can
be compared with the value NIL. Two pointers to a procedure are equal if they designate the
same declaration of a procedure.

5-6 60455280 A

0
0

rf---.,
I
\'--·j

0

0
0

0

0

0

0
0

Comparison of String Types

All of the comparison operators are valid between operands that are strings. If the lengths
of the two string operands are unequal, blanks are appended to the right of the shorter
string to fill the field.

Strings are compared character by character from left to right; that is, each character from
one string is compared with the character in the corresponding position of the second
string. Each character is compared using the same method as for operands of character type;
the integer value of the character when mapped to the ASCII collating sequence is used.

Comparison of Sets and Set Membership

Comparison operators have slightly different meanings for sets than for other types. The
only comparison operators valid for sets are: =(meaning identical to), <> (meaning
different from), <= (meaning the left operand is contained in the right operand), and>=
(meaning the left operand contains the right operand). These operators are valid between
two sets of the same type. Their exact meanings are detailed later in this section under
Set Operators.

The other relational operator for sets is IN. A specified operand is IN a set if that
operand is a member of the set. The set must be the same type or a subrange of the same
type as the operand. The operand can be a subrange of the type of the set.

Comparison of Other Types

Invariant~records can be compared for equality and inequality only. Two equivalent records
are equal if their corresponding fields are equal.

The following types cannot be compared:

• Arrays or structures that contain an array as a component or field

• Variant records

• Sequences

• Heaps

• Records that contain a field of one of the preceding types

However, pointers to these types can be compared.

60455280 A 5-7

Table 5-4. Relational Operators

Operator Operation Type of Left Operand

5-8

<
<=

>
>=

<>

IN

=

<>
<=
>=

=
<>

Less than
Less than or equal to

Greater than
Greater than or equal to
Equal to

Not equal to

Set membership

Equality (also
called identity)
Inequality
Is contained in
Contains

Equality
Inequality

tThe string of length 1 has the form

STRING(position)

Any scalar type

A string

A string of length lt

A character

Any scalar type

A string of length lt

A set of any scalar
type

A nonvariant record
type containing no
arrays

Any pointer type or
the value NIL

where the length is implied. The form

STRING(position,1)

is not valid in this case.

Type of Right Operand

The same scalar type

A string of the same
length

A character

A string of length lt

A set of the same type

A set of character type

A set of the same type

The'same type

The same type or the
value NIL

60455280 A

0
0

1""r"~' ··, \, __ /

0
()

-;,·•

0
0

0

0

0

0
0

Set Operators

The set operators have already been mentioned briefly in the preceding sections on
multiplication, sign, addition, and relational operators. This section discusses all of the
set operators and details how they are used with sets.

The set operators perform assignment, union (+), intersection (*), difference (-), symmetric
difference (XOR), negation(-), identity or equality (=), inequality (<>), inclusion (<=),
containment (>=), and membership (IN).

Assignment is discussed under Sets in section 4. The next five operations (union,
intersection, difference, symmetric difference, and negation) all produce results that are
sets. They are described in table 5-5. The remaining operations (identity, inequality,
inclusion, containment, and membership) produce boolean results. They are described in
table 5-6. The relational operations described in table 5-6 take place only after any
operations described in table 5-5 have been performed.

60455280 A 5-9

Operator

+

*

XOR

5-10

Table 5-5. Operations That Produce Sets

Operation

Union

Difference

Intersection

Negation
(complement)

Symmetric
difference

Description of Operation

The resulting set consists of all members of
both sets. The result of A + B is all elements
of sets A and B.

The resulting set consists of the members in the
lefthand set that are not in the righthand set.
The result of A - B is the elements of A that
are not in B. This operation differs from
negation in that two operands are present.

The resulting set consists of the members that
are in both sets. The result of A * B is all
elements that are in both A and B.

The resulting set consists of the members of the
set's type that are not in the set. The result
of -A is all elements of A's type that are not
in A. This operation differs from the
difference operation in that only one operand is
present.

The resulting set consists of the members of
either but not both sets. The result of A XOR B
is all elements in A or B that are not common to
both A and B.

60455280 A

()
0

rr-"'
',~./'

()

•

0
0

0

0

0

0
0

Operator

<>

<=

>=

IN

60455280 A

Table 5-6. Operations That Produce Boolean Results

Operation

Equality
(identity)

Inequality

Inclusion

Containment

Membership

Description of Operation

The resulting value is TRUE if every member of
one set is present in the other set and vice
versa. A = B is TRUE if. every element of A is
in B and every element of B is in A. It is also
TRUE if A and B are both empty sets. In any
other case, it is FALSE.

The resulting value is TRUE if not every member
of one set is a member of the other set. A <> B
is TRUE if A = B is FALSE.

The resulting value is TRUE if every member of
the lef thand set is also a member of the
righthand set. A <= B is TRUE if every element
of A is in B. It is also TRUE if A is an empty
set. In all other cases, it is FALSE.

The resulting value is TRUE if every member of
the righthand set is also a member of the
lefthand set. A >= B is TRUE if every element
of B is in A (that is, B <=A).

This operation differs somewhat from the others
in that it can specify as an operand a value or
a variable rather than a set. It has the form

scalar IN set

where scalar can be a value (including a
subrange) or a variable. The resulting value is
TRUE if the scalar is of the same type as the
type of the set, and is an element within the
set. A IN B is TRUE if A is the same type as
the set B and A is an element of B •

5-11

STATEMENTS

Statements indicate actions to be performed. Unlike declarations, statements can be
executed. They can appear only in a program, procedure, or function.

A statement list is an ordered sequence of statements. In a statement list, a statement is
separated from the one following it by a semicolon. Two consecutive semicolons indicate an
empty statement, which means no action.

Statements can be divided into four types depending on their purpose or nature:

• Assignment

• Structured

• Control

• Storage management

ASSIGNMENT STATEMENT

The assignment statement assigns a value to a variable.

The format of the assignment statement is:

name := expression

name Required; name of a variable previously declared.

expression Required; an expression that meets the requirements stated earlier
in this section. Any constant or variable contained in the
expression must be defined and have a value assigned.

This statement is similar to the initialization part of the VAR declaration where you can
assign an initial value to a variable. (For further information on initialization, refer to
Variable Declaration in section 3.) The assignment statement allows you to change that
value at any point in the program. The expression is evaluated and the result becomes the
current value of the named variable.

The variable cannot be:

• A read-only variable.

• A formal value parameter of the procedure that contains the assignment statement.

• A bound variant record.

• The tag field name of a bound variant record.

• A heap.

• An array or record that contains a.heap.

The type of the expression must be equivalent .to the type of the variable with the
exceptions discussed next. Both types can be subranges of.equivalent types.

5-12 60455280 A

0
0

,.- \

\\.._)

0

0
0

0

0

0
0

A character, string, or substring variable can be assigned the value of a character
expression, a string, or a substring. If you assign a value that is shorter than the
variable or substring to which it is being assigned, blanks are added to the right of the
shorter string to fill the field. If you assign a value that is longer than the variable or
substring, the value is truncated on the right. Assigning strings or substrings that
overlap is not a valid operation, for example, STRING 1 := STRING 1(3,7); results are
unpredictable. -

If the variable is a pointer, its scope must be less than or equal to the scope of the data
to which it is pointing. For example, a static pointer variable should not point to an
automatic variable local to a procedure. When the procedure is left, the pointer variable
will be pointing at undefined data.

A pointer to a bound variant record can be assigned a pointer to a variant record that is
not bound and is otherwise equivalent.

An adaptable pointer can be assigned either a pointer to a type to which it can adapt, or an
adaptable pointer than has been adapted to one of those types. Both the type of the
expression and its value are assigned, thus setting the current type of the adaptable
pointer.

Any fixed pointer except a pointer to sequence can be assigned a pointer to cell. After the
assignment, the #LOC function (described in section 6) performed on the fixed pointer would
return the same value as the pointer to cell.

A pointer to cell can be assigned any pointer type. The value assigned is a pointer to the
first cell allocated for the variable to which the pointer being assigned points.

When assigning pointers, remember that generally the object of a pointer has a different
lifetime than the pointer variable. Automatic variables are released when the block in
which they are declared has been executed. Allocated variables no longer exist when they
are explicitly released with the FREE statement. An attempt to reference a variable beyond
its lifetime causes an error and unpredictable results to occur.

A variant record can be assigned a bound variant record of types that are otherwise
equivalent.

The colon (:) and equals sign (=) together are called the assignment operator. When used as
the assignment operator, there can be no spaces or comments between the two symbols.

STRUCTURED STATEMENTS

A structured statement is one that actually contains one or more statements. The statements
contained in a structured statement are called, collectively, a statement list. The
structured statement determines when the statement list contained in it will be executed.

There are four structured statements:

BEGIN

FOR

REPEAT

WHILE

60455280 A

Provides a logical grouping of statements that performs a specific function.

Executes a list of statements while a variable is incremented or decremented
from an initial value to a final value.

Executes a list of statements until a specified condition is true. The test
is made after each execution of the statements.

Executes a list of statements while a specified condition is true. The test
is made before each execution of the statements.

5-13

BEGIN Statement

The BEGIN statement executes a single statement list once; there is no repetition. This
statement provides for a logical grouping of statements that performs a particular function
and can improve readability.

The format of the BEGIN statement is:

{/label/}
BEGIN

statement list;
END {/label/};

label Name that identifies the BEGIN statement and the statement list
within it. Use of labels is optional. If a label is used before
BEGIN, it is not required after END but is encouraged. If labels
are used in both places, they must match. The label name must be
unique within the block in which it is used.

statement list Required; one or more statements.

Declarations are not allowed within the BEGIN statement. Execution of the BEGIN statement
ends when either the last statement in the list is executed or control is explicitly
transferred from within the list.

FOR Statement

The FOR statement executes a statement list repeatedly as a special variable ranges from an
initial value to a final value. There are two formats for the FOR statement: one that
increments the variable and one that decrements the variable.

The format that increments the variable is:

{/label/}
FOR name := initial value TO final value DO

statement list;
FOREND {/label/};

The format that decrements the variable is:

{/label/}
FOR name := initial value DOWNTO final value DO

statement list;-
FOREND {/label/};

label

name

5-14

Name that identifies the FOR statement and the statement list in
it. Use of labels is optional. If a label is used before FOR,
it is not required after FOREND but is encouraged. If labels
are used in both places, they must match. The label name must
be unique within the block in which it is used.

Required; name of the variable that controls the number of
repetitions of the statement list. It keeps track of the number
of iterations performed or the current position within the range
of values.

60455280 A

()

0

()
()

0
0

0

0

0

0
0

initial value

final value

statement list

Required; scalar expression specifying the initial value
assigned to the variable.

Required; scalar expression specifying the final value to be
assigned to the variable if the statement ends normally. If the
statement ends abnormally or as the result of an EXIT statement,
this may not be the actual final value.

Required; one or more statements.

The variable, initial value, and final value must be of equivalent scalar types or subranges
of equivalent types. The variable cannot be assigned a value within the statement list, or
be passed as a reference parameter to a procedure called within the statement list. Either
condition causes a fatal compilation error. The variable cannot be an unaligned component
of a packed structure.

When CYBIL encounters a FOR statement that increments (one containing the TO clause), it
evaluates the initial value and final value. If the initial value is greater than the final
value, the FOR statement ends and execution continues with the statement following FOREND;
the statement list is not executed. If the initial value is less than or equal to the final
value, the initial value is assigned to the control variable and the statement list is
executed. Then the control variable is incremented by one value and; for each increment,
the statement list is executed. This sequence of actions continues through the final
value. For example, the statement

FOR = 1 TO 5 DO

FOREND;

causes the statement list to be executed five times, that is, while I takes on values from 1
to 5. Then the FOR statement ends and execution continues with the statement following
FOREND.

When CYBIL encounters a FOR statement that decrements (one containing the DOWNTO clause), it
performs essentially the same process. If the initial value is less than ~he final value,
the FOR statement ends and execution continues with the statement following FOREND. If the
initial value is greater than or equal to the final value, the initial value is assigned to
the control variable and the statement list is executed. The control variable is then
decremented by one value and, for each decrement, the statement list is executed. When the
control variable reaches the final value and the statement list is executed the last time,
the FOR statement ends.

The initial value and final value expressions are evaluated once, when the statement is
entered; the values are then held in temporary locations. ·Thus, subsequent assignments to
initial value and final value have no effect on the execution of the FOR statement.

When a FOR statement completes normally, the value of the control variable is that of the
final value specified in the statement. This may not be the case if the statement ends
abnormally or ends as a result of an EXIT statement•

60455280·A 5-15

Example:

Integer values are often used in FOR statements, but any scalar type can be used. The
following example executes a statement list while the value of a character variable is
incremented.

FOR control := 'a' TO 'z' DO

FOREND;

Each time the statement list is performed, the value of CONTROL increases by one value,
following the normal sequence of alphabetic characters from A to Z; that is, after the
statement list is executed once, the value of CONTROL changes to B, and so on until the list
has been executed 26 times.

REPEAT Statement

The REPEAT statement executes a statement list repeatedly until a specific condition is true.

The format of the REPEAT statement is:

{/label/}
REPEAT

statement list;
UNTIL expression;

label

statement list

expression

Name that identifies the REPEAT statement and the statement list in
it. Use of the label before REPEAT is optional; a label is not
permitted after UNTIL. The label name must be unique within the
block in which it is used.

Required; one or more statements.

Required; a boolean type expression.

The statement list is always executed at least once. After the last statement in the list,
the expression is evaluated. Every time the expression is FALSE, the statement list is
executed again. When the expression is TRUE, the REPEAT statement ends and execution
continues with the statement following the UNTIL clause.

The statement list can contain nested REPEAT statements.

Example:

In this example, the statement list (mod operation and assignments) is executed once. If J
is not equal to 0 (zero), it is executed again and continues until J is equal to 0 (zero).

REPEAT
k := MOD j;
i := j
j := k

UNTIL j O;

5-16 60455280 A

0
0

()
0

0
0

c

0

c

•

0
0

WHILE Statement

The WHILE statement executes a statement list repeatedly while a specific condition is true.

The format of the WHILE statement is:

{/label/}
WHILE expression DO

statement list;
WHILEND {/label/};

label Name that identifies the WHILE statement and the statement list in
it. Use of labels is optional. If a label is used before WHILE, it
is not required after WHILEND but is encouraged. If labels are used
in both places, they must match. The label name must be unique
within the block in which it is used.

expression Required; a boolean type expression.

statement list Required; one or more statements.

If the boolean expression is evaluated as TRUE, the statement list is executed. After the
last statement in the list, the expression is again evaluated. Every time the expression is
TRUE, the statement list is executed. When the expression is FALSE, the WHILE statement
ends and execution continues with the statement following WHILEND. If the expression is
FALSE in the initial evaluation, the statement list is never executed.,

Example:

In this example, the expression TABLE[I] <> 0 is evaluated; an element of the array TABLE is
compared to 0 (zero). While the expression is true (the element is not 0), I is
incremented. This causes the next element of the array to be checked. When the expression
is false, the statement list is not executed. Execution continues with the statement
following WHILEND. I is the position of an element in the array that is 0 (zero).

/check for zero/
WHILE tableC:iJ <> 0 DO

i := i + 1;
WHILEND /check_for_zero/;

The preceding example assumes, of course, that the array contains an element with the value
0 (zero). If not, the WHILE statement list executes in an infinite loop. In either the
WHILE expression or the statement list, there must be a check. One solution is to set a
variable, TABLE MAX, to the maximum number of elements in the array and check it before
executing the statement list, as in:

WHILE Ci < table_max) AND CtableC:iJ <> 0) DO

Now both expressions must be true before the statement list is executed. If either is
false, execution continues following WHILEND.

60455280 A 5~17

CONTROL STATEMENTS

A control statement can change the flow of execution of a program by transferring control
from one place in the program to another.

There are five control statements:

IF

CASE

CYCLE

EXIT

Executes one statement list if a given condition is true; ends the statement or
executes another statement list if the condition is false.

Executes one statement list out of a set of statement lists depending on the
value of a given expression.

Causes the remaining statements in a repetitive statement (FOR, REPEAT, or
WHILE) to be skipped and the next iteration of the statement to take place.

Unconditionally stops execution within a procedure, function, or a structured
statement (BEGIN, REPEAT, WHILE, and FOR).

RETURN Returns control from a procedure or function to the point at which it was called.

Procedure and function calls also transfer control of an executing program. Functions are
discussed in section 6 and procedures are discussed in section 7.

''-./

IF Statement (,)

The IF statement executes or skips a statement list depending on whether a given condition
is true or false.

The format of the IF statement is:

IF expression THEN
statement list;

{ELSEIF expression THEN
statement list;} •••

{ELSE
statement list;} 1"-~/

!FEND;

expression Required only at the beginning of the statement; a boolean
expression.

statement list Required only at the beginning of the statement; one or more
statements.

The ELSEIF and ELSE clauses are optional. The ELSEIF clause contains another test condition
that is evaluated only if the preceding condition (express·ion) is false. The ELSE clause
provides a statement list that is executed unconditionally when the preceding expression is
false.

When an expression is evaluated as true, the statement list following the reserved word THEN
is executed. When the list is completed, execution continues with the first statement
following !FEND. If the expression is false, execution continues with the next clause or
reserved word in the IF statement format (that is, ELSEIF, ELSE, or !FEND).

5-18 60455280 A

•

()
()

0
0

0

If the next reserved word in the IF statement format is !FEND, execution continues with the
first statement following it.

If the next reserved word is ELSEIF, the expression contained in that clause is evaluated;
if true, the statement list that follows is executed. Otherwise, execution continues with
the next reserved word in the IF statement format.

If the next reserved word is ELSE, the statemertt list that follows is always executed. You
get to this point only if the preceding expression(s) is false.

Additional IF statements can be contained (nested) in any of the statement lists. A
consistent style of indentation or spacing greatly improves readability of such statements.

If the ELSE clause is included in a nested IF statement, the clause applies to the most
recent IF statement.

Examples:

In this example, Y is assigned to X if and only if X is less than Y.

IF x < y THEN
x := y;

I FEND;

In the next example, Z is always assigned one of the values 1, 2, 3, or 4 depending on the
value of X.

IF x <= 5 THEN
z := 1;

ELSEIF x > 30 THEN
z := 2;

ELSEIF x = 15 THEN
z := 3;

ELSE
z := 4;

I FEND;

CASE Statement

The CASE statement executes one statement list out of a set of lists based on the value of a
given expression.

The format of the CASE statement is:

CASE expression OF
=value {,value} •••

statement list;
{=value {,value} •••

statement list;} •••
{ELSE statement list;}
CASEND;

60455280 A 5-19

expression

value

statement list

Required; a scalar expression. The expression must be of the
same type as the value or values that follow.

Required; one or more constant scalar expressions or a subrange
of constant scalar expressions. A subrange indicates that all
of the values included in the subrange are acceptable values.
If two or more values are specified, they are separated by
commas. The.values must be of the same type as the expression.
Values can be in any order, not strictly sequential. Values
must be unique within the CASE statement.

Required; one or more statements.

You define a set of possible values that a variable or expression can have. With one or
more of the values you associate a statement list using the format:

()
0

value '-._/
statement list;

When the CASE statement is executed, the expression is evaluated and the statement list
associated with the current value of the expression is executed. If the current value is
not found among those in the CASE statement, execution continues with the ELSE clause. If
ELSE is omitted and the value is not found in the CASE statement, an error occurs at
execution time. After any one of the statement lists is executed, execution continues with
the statement following CASEND.

Examples:

In this example, I is a variable that is expected to take on one of the values 1 through 4.
If its value is 1, the first statement list (X := X + 1) is executed and control goes to the
statement following CASEND. If the value of I is 2, the second list is executed, and so on.

CASE i OF
= 1 =

x := x + 1;
= 2 =

x := x + 2;
= 3 =

x := x + 3;
= 4 =

x := x + 4;
CASEND;

In the next example, OPERATOR is a variable that is expected to take on values of PLUS,
MINUS, or TIMES. Depending on the current value of OPERATOR, the associated statement is
executed.

CASE operator OF
= plus =

x := x + y;
= minus =

x := x - y;
= times =

x := x * y;
CASEND;

5-20 60455280 A

;1-··\

'"-._/

1<
,,_.f'

0
(-)

..

0
0

0

0

()

0

CYCLE Statement

The CYCLE statement is included in the statement list of a repetitive statement (FOR,
REPEAT, or WHILE) and causes any statements following it to be skipped and the next
iteration of the repetitive statement to take place.

The format of the CYCLE statement is:

CYCLE /label/

label Required; name that identifies the repetitive statement in which the
CYCLE statement is contained.

The CYCLE statement is usually used in conjunction with an IF statement, as in:

/label/
repetitive statement

IF expression THEN
CYCLE /label/;
!FEND;
remainder of statement list;

end of repetitive statement;

The IF statement tests for a condition that, if true, causes the CYCLE statement to be
executed. Then the remaining statements of the repetitive statement are skipped and
execution continues with whatever would normally follow the statement list, either another
cycle of the repetitive statement or the next statement following the end of the repetitive
statement. If the condition in the IF statement is false, the remaining statements in the
repetitive statement are executed.

If not contained in a repetitive statement, the CYCLE statement is diagnosed as a
compilation error.

Example:

This example finds the smallest element of an array TABLE. On the first execution, X (the
first element of the array) is assumed to be smallest. If X is smaller than succeeding
elements of the array, the CYCLE statement is executed; the remainder of the statements are
then skipped, and the next iteration of the FOR statement occurs. If an element smaller
than X is found, the CYCLE statement is ignored and the rest of the statement list is
processed; X is replaced by the smaller element. If N has not yet been reached, the FOR
statement continues. When N is reached, X will contain the smallest element of the array.

x : = tableC1J;

/find smallest I
FOR k : = 2 TO n DO

IF x < table[kJ THEN
CYCLE /find smallest/;

I FEND; -
x := table[kJ;

FOREND /find_smallest/;

60455280 A 5-21

EXIT Statement

The EXIT statement causes an unconditional exit from a procedure, function, or a structured
statement (BEGIN, FOR, REPEAT, and WHILE).

The format of the EXIT statement is:

EXIT name;

name Required; name that identifies the procedure, function, or statement. For a
procedure or function, it is the procedure or function name. For a
structured statement, it is the statement label; in this case the format
could be shown as EXIT /label/.

When the EXIT statement is encountered, execution of the named procedure, function, or
statement is automatically stopped and execution resumes with the statement that would
follow normal completion. For a procedure or function, it is the statement that would
normally follow the procedure or function call. For a structured statement, it is the
statement following the end of the structured statement (END, FOREND, UNTIL expression, and
WHILEND).

The EXIT statement must be within the scope of the procedure, function, or statement it
names. Otherwise, it has no meaning and is diagnosed as a programming error.

With a single EXIT statement, you can exit several levels of procedures, functions, or
statements; they need not be exited separately. If the EXIT statement' is executed in a
nested recursive procedure or function, it is the most recent invocation of the procedure or
function and any intervening procedures or functions that are exited.

RETURN Statement

The RETURN statement completes the execution of a procedure or function and returns control
to the program, procedure, or function that called it.

The format of the RETURN statement is:

RETURN;

STORAGE MANAGEMENT STATEMENTS

Storage management statements allow you to manipulate components of sequence and heap types,
and put variables in the run-time stack.

There are five storage management statements:

RESET

NEXT

ALLOCATE

FREE

PUSH

5-22

Resets the pointer in a sequence or releases all the variables in a
user-defined heap.

Creates or accesses the next element of a sequence given a starting
element.

Allocates storage for a variable in a heap.

Releases a variable from a heap•

Allocates storage for a variable in the run-time stack.

60455280 A

()
0

•

()
()

..

0
0

•

Ci

()

0

Sequences use the RESET and NEXT statements. Heaps use the RESET, ALLOCATE, and FREE
statements. The run-time stack uses the PUSH statement. (Refer to Storage Types in section
4 for further information on sequences and heaps.)

In the NEXT, ALLOCATE, and PUSH statements, you must specify a pointer to the variable to be
manipulated so that sufficient space can be allocated for that type. This pointer can be a
pointer to a fixed type, a pointer to an adaptable type, or a pointer to a bound variant
record type. Space is then allocated for a variable of the type to which the pointer can
point. This pointer is also used to access the variable. When space is allocated, CYBIL
returns the address of the variable to the pointer. Therefore, to reference a variable in a
sequence, heap, or the run-time stack, you indicate the object of the pointer in the form:

pointer_name "'•

If a fixed type pointer is specified, the statement uses a variable of the type designated
by that pointer variable. If an adaptable type pointer or bound variant record type pointer
is specified, you must also indicate the size of the adaptable type or the tag field of the
variant record to be used. This causes a fixed type to be set and the adaptable or bound
variant record pointer designates a variable of that fixed type. That particular fixed type
is designated until it is reset by a subsequent assignment or another storage management
statement.

To indicate the size of an adaptable pointer or the tag field of a bound variant record
pointer, you use the format:

pointer : [size]

pointer

size

60455280 A

Required; name of an adaptable pointer variable or a bound variant
record pointer variable.

Required; fixed amount of space required for the variable designated by
pointer. You set the size of the adaptable type the same way you
specify the size of the corresponding unadaptable (fixed) type. For
example, in a variable or type declaration, you specify the size of a
fixed array with subscript bounds, usually a subrange .of
"scalar expression •• scalar expression". You set the size of an
adaptable array here using the same form. The forms used to set the
size of all possible adaptable types are summarized as follows. For
more detailed information, refer to the descriptions of the
corresponding fixed types in section 4.

Pointer Type

Adaptable array

Adaptable string

Adaptable heap

Adaptable sequence

Adaptable record

Bound variant
record

Form Used to Set Size

scalar expression •• scalar expression

A positive integer expression specifying the
length of the string

[{REP positive integer expression OF} fixed type
name {,{REP positive integer expression OF}
fixed type name} •••]

[{REP positive integer expression OF} fixed type
name {,{REP positive integer expression OF}
fixed type name} •••]

One of the forms used for an adaptable array,
string, heap, or sequence

A scalar expression or one or more constant
scalar expressions followed by an optional
scalar expression

5-23

If an adaptable array had a lower bound specified in its original declaration, the lower
bound specified here must match that value. For an adaptable record, the form used must be
a value and type to which the record can adapt. For a bound variant record, the orde~,
types, and values used must be valid for a variant of the record; all but the last of the
expressions must be constant expressions.

Example:

This example declares a type that is an adaptable array named ADAPT ARRAY. PTR is a pointer
to that type. BUNCH is a heap with space for 100 integers. The heap BUNCH is reset; that
is, any existing elements are released. Space is then allocated in the heap for a variable
of the type designated by PTR. That variable is of type ADAPT ARRAY (an array of integers)
and it has fixed subscript bounds of from 1 to 15. PTR now points to that array.

TYPE
adapt array= array [1 •• •J of integer;

VAR -
ptr : A adapt array,
bunch heap Crep 100 of integer>;

RESET bunch;
ALLOCATE ptr

RESET Statement

[1 •• 15J IN bunch;

The RESET statement operates on both sequences and heaps. In a sequence, it resets the
pointer to the beginning of the sequence or to a specific variable within the sequence. In
a heap, it releases all the variables in the heap.

The RESET statement must appear before the first NEXT statement (for a sequence) or ALLOCATE
statement (for a user-defined heap). This ensures that the sequence is at the beginning or
the heap is empty. If space is allocated before the RESET statement, the program is in
error.

RESET in a Sequence

This statement sets the current element being pointed to in a sequence.

The format of the RESET statement in a sequence is:

RESET sequence_pointer {TO variable_pointer}

sequence_yointer

variable_yointer

Required; name of a pointer to a sequence. This specifies the
particular sequence.

Name of a pointer to a particular variable within the sequence.
If omitted, the pointer points to the first element of the
sequence.

The value of the pointer variable must have been set with a NEXT statement for the same
sequence or an error occurs. An error also occurs if the value of the pointer variable .is
NIL.

The RESET statement must appear before the first occurrence of a NEXT statement to reset the
sequence to its beginning; otherwise, the program is in error.

5-24 60455280 A

0
10

•

,,4"~~\

/~)

0
0

0
0

c

0
0

RESET in a Heap

This statement releases the variables currently in a heap.

The format of the RESET statement in a heap is:

RESET heap

heap Required; name of a heap type variable.

Space for the variables is released and their values become undefined.

The RESET statement must appear before the first occurrence of an ALLOCATE statement for a
user-defined heap to ensure that the heap is empty; otherwise, the program is in error.

NEXT Statement

The NEXT statement sets the specified pointer to designate the current element of the
sequence and then makes the next element in the sequence the current element. This
essentially moves the pointer along the sequence allowing you to assign values to and access
elements.

The format of the NEXT statement is:

NEXT pointer {: [size]} IN sequence_pointer

pointer

size

sequence_pointer

Required; name of a pointer to a fixed type, pointer to an
adaptable type, or pointer to a bound variant record type. The
type pointed to by the pointer is the type of the variable in
the sequence. These pointers are described in detail under
Storage Management Statements earlier in this section.

Size of an adaptable type or tag field of a bound variant record
type. If omitted, the pointer must be a pointer to a fixed
type. The forms used to specify size are described in detail
under Storage Management Statements earlier in this section.

Required; name of a pointer to a sequence. This specifies the
particular sequence.

After a RESET statement, the current element is always the first element of the sequence. A
NEXT statement assigns to the specified pointer the address of the current (first) element,
and then makes the next element (the second) the new current element. Thus, the order of
variables in a sequence is determined by the order in which the NEXT statements are executed.

If the NEXT statement causes the new element to be outside the bounds of the sequence, the
pointer is set to NIL. Before attempting to reference an element in a sequence, check for a
NIL pointer value first. Using a pointer variable with a value of NIL to access an element
causes an error to occur.

The type of the pointer specified when data is retrieved from the sequence must be
equivalent to the type of the pointer used when the same data was stored in the sequence;
otherwise, the program is in error.

60455280 A 5-25

ALLOCATE Statement

The ALLOCATE statement allocates storage space for a variable of the specified type in the
specified heap and then sets the pointer to point to that variable.

The format of the ALLOCATE statement is:

ALLOCATE pointer {: [size]} {IN heap}

pointer

size

heap

Required; name of a pointer to a fixed type, adaptable type, or
bound variant record type. These pointers are described in detail
under Storage Management Statements earlier in this section.

Size of an adaptable type or tag field of a bound variant record
type. If omitted, the pointer must be a pointer to a fixed type.
The forms used to specify size are described in detail under Storage
Management Statements earlier in this section.

Name of a heap type variable. If omitted, the default heap is
assumed.

If there is not enough space for the var-iable to be allocated, the pointer is set to NIL.
Before attempting to reference a variable in a heap, check for a NIL pointer value first.
Using a pointer variable with a value of NIL to access data causes an error to occur.

The RESET statement must appear before the first occurrence of an ALLOCATE statement for a
user-defined heap to ensure that the heap is empty; otherwise, the program is in error.
(This is not allowed for the default heap.)

The lifetime of a variable that is allocated using the storage management statements is the
time between the allocation of storage (with the ALLOCATE statement) and the release of
storage (with the FREE statement). A variable allocated using an automatic pointer must be
explicitly freed (using the FREE statement) before the block is left, or the space will not
be released by the program. When the block is left, the pointer no longer exists and,
therefore, the variable cannot be referenced. If the block is entered again, the previous
pointer and the variable referenced by the pointer cannot be reclaimed.

FREE State~ent

The FREE statement releases the specified variable from the specified heap.

The format of the FREE statement is:

FREE pointer {IN heap}

pointer

heap

Required; name of the pointer variable that designates the variable to
be released.

Name of a heap type variable. If omitted, the default heap is assumed.

The variable's space in the heap is released and its value becomes undefined. The pointer
variable designating the released variable is set to NIL. If the specified variable is not
currently allocated in the heap, the effect ~s undefined.

Using a pointer variable with the value NIL to access data causes an error to occur.
Releasing the NIL pointer is also an error.

5-26 60455280 A

0
()

11,r",,,--'\\

1\1 '

''"-- J

0
0

0
0

•.

0

0

0
0

PUSH Statement

The PUSH statement allocates storage space on the run-time stack for a variable of the
specified type and then sets the pointer to point to that variable.

The format of the PUSH statement is:

PUSH pointer {: [size]}

pointer Required; name of a pointer to a fixed type, adaptable type, or
bound variant record type. These pointers are described in detail
under Storage Management Statements earlier in this section.

size Size of an adaptable type or tag field of a bound variant record
type. If omitted, the pointer must be a pointer to a fixed type.
The forms used to specify size are described in detail under Storage
Management Statements earlier in this section.

If there is not enough space for the variable to be allocated, the pointer is set to NIL.
The value of the variable that has just been allocated is undefined until a subsequent
assignment to the variable is made.

You cannot release space on the run-time stack explicitly. It is released automatically
when the procedure containing the PUSH statement is completed and control leaves the
procedure. At that time, space for the variable is released and its value becomes undefined.

Example:

This example shows the declaration of a pointer variable named ARRAY PTR that points to an
adaptable array. The PUSH statement allocates space in the run-time-stack for a fixed array
of from 1 to 20 elements. Elements of the array can be referenced by PTR~[i], where i is an
integer from 1 to 20.

VAR array_Ptr Aarray [1 •• *J of integer;

PUSH array_Ptr : [1 •• 20J;

60455280 A 5-27

()
()

,.

.f'",- '

·,__Y

,r1·----.,

:'-.--/

()
0

()

0

0

0

0

0
0

FUNCTIONS

. A function is one or more statements that perform a specific action and can be called by
name from a statement elsewhere in a program. A reference to a function causes actual
parameters in the calling statement to be substituted for the formal parameters in the
function declaration and then the function's statements to be executed. Usually the
function computes a value and returns it to the portion of the program that called it.

A function differs from a procedure in that the value returned for a function replaces the
actual function reference within the statement. A function is a valid operand in an
expression; the value returned by the function replaces the reference and becomes the
operand.

The value of a function is the last value assigned to it before the function returns to the
point where it was called. The reason for its return doesn't matter; it could complete
normally or abnormally. If the function returns for any reason before a value is assigned
to the function name, results are undefined.

Functions can be recursive; that is, a function can call itself. In that case, however,
there must be some provision for ending the calls.

You can call standard functions that are already defined in the language or you can define
your own functions. This section describes both.

STANDARD FUNCTIONS

The functions described in this section are standard CYBIL functions. They can be used
safely in variations of CYBIL available on other operating systems.

The functions are described in alphabetical order according to the first alphabetic
character.

$CHAR FUNCTION

The $CHAR function returns the character whose ordinal number within the ASCII collating
sequence is that of a given expression.

The format of the $CHAR function call is:

$CHAR(expression)

expression Required; an integer expression whose value can be from 0 to 255.

If the value of the integer expression is less than 0 or greater than 255, an error occurs.

6

60455280 A 6-1

$tNTEGER FUNCTION

The $INTEGER function returns the integer value of a given expression.

The format of the $INTEGER function call is:

$INTEGER(expression)

expression Required; an expression of type integer, subrange of integer,
boolean, character, ordinal, or real.

If the expression is an integer expression, the value of that expression is returned.

If the expression is a boolean expression, 0 (zero) is returned for a false expression and 1
is returned for a true expression.

If the expression is a character expression, the ordinal number of the character in the
ASCII collating sequence is returned.

If the expression is an ordinal expression, the ordinal number associated with that ordinal
value is returned.

If the expression is a real expression, the value of the expression is truncated to a whole
number. If the number is in the range defined for integers, that number is returned;
otherwise, an out-of-range error occurs.

#LOC FUNCTION

The #LOC function returns a pointer to the first cell allocated for a given variable.

The format of the #LOC function call is:

/ILOC(name)

name Required; name of a variable.

LOWERBOUND FUNCTION

The LOWERBOUND function returns the lower bound of an array's subscript bounds.

The format of the LOWERBOUND function call is:

LOWERBOUND(array)

array Required; an array variable or the name of a fixed array type.

The type of the value returned is same as the type of the array's subscript bounds.

6-2 60455280 A

()
0

/,---.'\
I '

''_)

()
()

0
0

0

0

0
0

Example:

Assuming the following declaration has been made

VAR
x array [1 •• 100J of boolean,
y array ['a' •• 't'J of integer;

the value of LOWERBOUND(X) is 1; the value of LOWERBOUND(Y) is 'a'.

LOWERVALUE FUNCTION

The LOWERVALUE function returns the smallest possible value that a given variable or type
can have.

The format of the LOWERVALUE function call is:

LOWERVALUE(name)

name Required; a scalar variable or name of a scalar type.

The type of the value returned is the same as the given type.

Example:

Assuming the following declaration has been made

VAR
dozen : 1 •• 12;

the value of LOWERVALUE(DOZEN) is 1.

PRED FUNCTION

The PRED function returns the predecessor of a given expression.

The format of the PRED function call is:

PRED(expression)

expression Required; a scalar expression.

If the predecessor of the expression does not exist, the program is in error.

60455280 A .. 6-3

$REAL FUNCTION

The $REAL function returns the real number equivalent of a given integer expression.

The format of the $REAL function call is:

$REAL(expression)

expression Required; an integer expression.

#SIZE FUNCTION

The #SIZE function returns the number of cells required to contain a given variable or a
variable of a specified type.

The format of the #SIZE function call is:

#SIZE(name)

name Required; name of a variable, fixed record type, or bound variant
record type.

If the name of a bound variant record type is specified, the variant that requires the
largest size is used.

STRLENGTH FUNCTION

The STRLENGTH function returns the length of a given string.

The format of the STRLENGTH function call is:

STRLENGTH(string)

string Required; a string variable, name of a string type, or adaptable
string reference.

For a fixed string, the allocated length is returned as an integer subrange. For an
adaptable string, the current length is returned.

SUCC FUNCTION

The SUCC function returns the successor of a given expression.

The format of the SUCC function call is:

SUCC(expression)

expression Required; a scalar expression.

If the successor of the expression does. not exist, the program is in error.

6-4 60455280 A

(~)

0

r

(_;

0
0

()

0

0

0

0

0
0

UPPERBOUND FUNCTION

The UPPERBOUND function returns the upper bound of an array's subscript bounds.

The format of the UPPERBOUND function call is:

UPPERBOUND(array)

array Required; an array variable or the name of a fixed array type.

The type of the value returned is the same as the type of the array's subscript bounds.

Example:

Assuming the following declaration has been made

VAR
x array [1 •• 100] of boolean,
y array ['a' •• 't'] of integer;

the value of UPPERBOUND(X) is 100; the value of UPPERBOUND(Y) is 't'.

UPPERVALUE FUNCTION

The UPPERVALUE function returns the largest possible value that a given variable or type can
have.

The format of the UPPERVALUE function call is:

UPPERVALUE(name)

name Required; a scalar variable or name of a scalar type.

The type of the value returned is the same as the given type.

Example:

Assuming the following declaration has been made

VAR
dozen : 1 •• 12;

the value of UPPERVALUE(DOZEN) is 12.

60455280 A 6-5

USER-DEFINED FUNCTIONS

FUNCTION DECLARATION

You define your own functions with function declarations.

The format used for specifying a function is:

FUNCTION {[attributes]} name {ALIAS 'alias_name'}{(formal_parameters)}
{declaration list}

result;._ type; t

statement list
FUNCEND {name} ;

attributes

name

alias name

One or more of the following attributes. If more than one are
specified, they are separated by commas.

Attribute

XREF

Meaning

The function has been compiled in a different
module. In this case, the function declaration can
contain the name and formal parameters, but no
declaration list or statement list. In the other
module, the function must have been declared with
the XDCL attribute and an identical parameter list.
If omitted, the function must be defined within the
module where it is referenced.

XDCL The function can be referenced from outside of the
module in which it is located. This attribute can
be included only in a function declared at the
outermost level of a module; it cannot be contained
in a program, procedure, or another function. Other
modules that reference this function must contain
the same function declaration with the XREF
attribute specified.

If no attributes are specified, the function is assumed to be in
the same module in which it is called.

Required; name of the function. The function name is optional
following FUNCEND.

An alternate name for the function, which can be used outside of
the compilation unit in which it is defined. The name must be
enclosed in apostrophes. When the alias name is included in a
function declaration, the XDCL attribute-must also be
specified. The keyword ALIAS and alias_name are optional.

t Some variations of CYBIL available on other operating systems ignore the alias name.
Check CYBIL documentation for. the particular system.

6-6 60455280 A

0
0

,,.~-,,

('-_)

()
0

0
0

0

0

0
0

formal_parameters

result_type

declaration list

statement list

One or more parameters in the form:

VAR name {,name} ••• : type
{,name {,name}... : type} •••

and/or:

name {,name} ••• : type
{,name {,name} ••• : type} •••

The first form is called a reference parameter; the second form
is called a value parameter. There is essentially no difference
between them in the context of a function. However, procedures
do treat them differently. Both kinds of parameters can appear
in the formal parameter list; if so, they are separated by
semicolons (for example, !:INTEGER; VAR A:CHAR). Reference and
value parameters are discussed in more detail later in this
section under Parameter List.

Required; the type of the result to be returned. It can be any
scalar, floating-point, pointer, or cell type.

Zero or more declarations.

Required; one or more statements.

In an assignment statement within a function, the lefthand side of the·statement (the
variable to receive the value) cannot be:

• A nonlocal variable.

• A formal parameter of the function.

• The object of a pointer variable.

User-defined functions cannot contain:

• Procedure call statements that call user-defined procedures •

• Parameters of type pointer to procedure.

• ALLOCATE, FREE, PUSH, or NEXT statements that have parameters that are not local
variables.

60455280 A 6-7

PARAMETER LIST

A parameter list is an optional list of variable declarations that appears in the first
statement of the function declaration. In the function declaration format shown earlier,
they are shown as "formal parameters". Declarations for formal parameters must appear in
that first statement; they cannot appear in the declaration list in the body of the function.

A parameter list allows you to pass values from the calling program to the function. When a
call is made to a function, parameters called actual parameters are included with the
function name. The values of those actual parameters replace the formal parameters in the
parameter list. Wherever the formal parameters exist in the statements within the function,
the values of the corresponding actual parameters are substituted. For every formal
parameter in a function declaration, there must be a corresponding actual parameter in the
function call.

There are two kinds of parameters: reference parameters and value parameters. A reference
parameter has the form:

VAR name {,name}... type
{,name {,name} ••• : type} •••

A value parameter has the form:

name {,name} ••• : type
{,name {,name} ••• : type} •••

Procedures make a distinction between the two types of parameters, but·functions do not.
(In a procedure, the value of a reference parameter can change during execution of the
procedure; a value parameter cannot change.) In a function, neither reference parameters
nor value parameters can change in value. A formal reference parameter can be any fixed or
adaptable type. A formal value parameter can be any fixed or adaptable type, except a heap
or an array or record that contains a heap.

Reference parameters and value parameters can be specified in many combinations. When both
kinds of parameters appear together, they must be separated by semicolons. Parameters of
the same type can also be separated by semicolons instead of commas, but in this case, VAR
must appear with each reference parameter. All of the following parameter lists are valid.

VAR i, j : integer; a, b : char;

VAR i : integer; VAR j integer; a : char; b char;

a : char; VAR i, j integer; b : char;

VAR i : integer, j real; a : char, b boolean;

In each of the preceding examples, I and J are reference parameters; A and B are value
parameters.

6-8 60455280 A

()
0

1(

0
()

0
0

c;

0

0
0

REFERENCING A FUNCTION

The call to the function is usually contained in an expression. The call consists of the
function name (as given in the function declaration) and any parameters to be passed to the
function in the following format:

name ({actual_yarameters})

name

actual_yarameters

Required; name of the function.

Zero or more expressions or variables to be substituted for
formal parameters defined in the function declaration. If two
or more are specified, they are separated by commas. They are
substituted one-for-one based on their position within the list;
that is, the first actual parameter replaces the first formal
parameter, the second actual parameter replaces the second
formal parameter, and so on. For every formal parameter in a
function declaration, there must be a corresponding actual
parameter in the function call.

If there were no formal parameters specified in the function
declaration, there can be no actual parameters included in the
function call. However, left and right parentheses are required
to indicate the absence of parameters. In this case, the call
is:

name()

The function can be anywhere that a variable of the same type could be. The value returned
by a function is the last value assigned to it. If control is returned to the calling point
before an assignment is made, results are undefined.

The only types that can be returned as values of functions are the basic types: scalar,
floating point, pointer, and cell.

Example:

The following function finds the smaller of two integer values represented by formal value
parameters A and B. The smaller value is assigned to MIN, the name of the function, and
that integer value is returned.

FUNCTION min Ca, b : integer)
IF a > b THEN

min := b;
ELSE

min := a;
IFENO;

FUNCENO min;

integer;

This function could be called using the following reference.

smaller := minCfirst,second>;

The value of the variable FIRST is substituted for the formal parameter A; the value of
SECOND is substituted for B. The value returned, the smaller value, replaces the entire
function reference; the variable SMALLER is assigned the smaller value.

60455280 A 6-9

()
()

,,,,,----· .. ,,

l'_i

0
()

0
0

()

0

0
0

PROCEDURES

A procedure is one or more statements that perform a specific action and can be called by a
single statement. A procedure allows you to associate a name with the statement list so
that by specifying the name itself as if it were a statement, you cause the list to be
executed. Declarations can be included and take effect when the procedure is called. A
procedure call can optionally cause actual parameters included in the call to be substituted
for the formal parameters in the procedure declaration before the procedure's statements are
executed.

A procedure differs from a function in that:

• A procedure can, but does not always, return a value.

• The call to a procedure is the procedure's name itself; a function call by contrast
must be part of an expression in a statement.

• There can be no value assigned to the procedure name as there is to a function name.

You can call standard procedures that are already defined in the language or you can define
your own procedures. This section describes both.

STANDARD PROCEDURES

The STRINGREP procedure described in this section is a standard CYBIL procedure. It can be
used safely in variations of CYBIL available on other operating systems.

STRINGREP PROCEDURE

The STRINGREP procedure converts one or more elements to a string of characters, then
returns that string and the length of the string.

The format of the STRINGREP procedure call is:

STRINGREP(string_name, length, element {,element} •••)

string_ name Required; name of a string type variable. The result is returned
here. It will contain the character representations of the named
element(s).

7

length Required; name of an integer variable. Its value will be the length
in characters of the resulting string variable, string name. It
will be less than or equal to the declared length of the string
variable.

element

60455280 A

Required; name of the element to be converted. The element can be a
scalar, floating-point, pointer, or string type. Formats for
specifying particular types and rules for conversion of those types
are discussed in more detail later in this section.

7-1

The named elements are converted to strings of charac.ters. Those strings are then
concatenated and returned left-justified in the named string variable. The length of the
string variable is also returned. If the result of concatenating the string representations
is longer than the length of the string variable, the result is truncated on the right; the
length that will be returned is the length of the string variable.

Each individual element is converted and placed in a temporary field before concatenation
with other elements. The length of the temporary field can be specified as part of the
element parameter that is described in the following sections. Generally, numeric values
are written right-justified in the temporary field with blanks added on the left to fill the
field, if necessary. String or character values are written left-justified in the temporary
field with blanks added on the right to fill the field, if necessary. For both numeric and
alphabetic values, the field is filled with asterisk characters if it is too short to hold
the resulting value. The value of the field length, when specified, must be greater than or
equal to zero; otherwise, an error occurs.

The following paragraphs describe how the STRINGREP procedure converts specific types and
how they appear in the temporary fields.

Integer Element

The format for specifying an integer element is:

expression {: length} {: #(radix)}

expression

length

radix

Required; an integer expression to be converted.

A positive integer expression specifying the length of the teml'orary
field. The length must be greater than or equal to 2. If omitted,
the temporary field is the minimum size required to hold the integer
value and the leading sign character.

Radix of expression. Possible values are 2, 8, 10, and 16. If
omitted, 10 (decimal) is assumed.

The value of the integer expression is converted into a string representation in the desired
radix. The resulting string representation is right-justified in the temporary field. If
the expression is positive, a blank character precedes the leftmost significant digit. If
the integer expression is negative, a minus sign precedes the leftmost significant digit.
The leading blank or hyphen must be considered a part of the length. (Thus, the length must
be greater than or equal to 2 in order to hold the sign character and at least one digit.)

If a field length larger than necessary is specified, blanks are added on the left to fill
the field. If the field length is not long enough to contain all digits and the sign
character, the field is filled with a string of asterisk characters. If the field length is
less than or equal to zero, an error occurs.

7-2 60455280 A

;("·~-. '\

'--~· ,.~

()

0
0

0
0

0

0

0

•

0
0

Character Element

The format for specifying a character element is:

expression {: length}

expression Required; a character expression to be converted.

length A positive integer expression specifying the length of the temporary
field. If omitted, a length of 1 is assumed.

A single character is left-justified in the temporary field. If a field length larger than
necessary is specified, blanks are appended to the right to fill the field. Including a
radix for a character element causes a compilation error.

Boolean Element

The format for specifying a boolean element is:

expression {: length}

expression Required; a boolean expression to be converted.

length A positive integer expression specifying the length of the temporary
field. If omitted, a length of 5 is assumed.

Either of the five-character strings ' TRUE' or 'FALSE' is left-justified in the temporary
field. If a field length larger than necessary is specified, blanks are appended on the
right to fill the field. If the field length is not long enough to contain all five
characters, the temporary field is filled with asterisk characters. Including a radix for a
boolean element causes a compilation error to occur.

Ordinal Element

The integer value of an ordinal expression is handled the same way as an integer element.
Refer to the discussion under Integer Element earlier in this section.

Subrange Element

A subrange element is handled the same way as the element of which it is a subrange •

60455280 A 7--3

Floating-Point Element

The format for specifying a floating-point element is:

expression {: length {: fraction}}

expression

length

fraction

Required; a real expression to be converted. If the value is
INFINITE or INDEFINITE, an error occurs.

A positive integer expression specifying the length of the temporary
field. If omitted, the temporary field is the minimum size required
to hold the integer value and the necessary leading character.

Positive integer expression specifying the number of fractional
digits to be included in a fixed point format. Its value must be
less than or equal to "length - 2". If omitted, conversion to
floating-point format is assumed.

A floating-point expression can be converted into either a fixed-point format or a
floating-point format, depending on the fraction parameter. If it is included, the
expression is converted to fixed-point format; if omitted, the expression is converted to
floating-point format.

Fixed-Point Format

The form

expression : length : fraction

causes the specified expression to be converted to a string in fixed-point format. The
string will have the specified length with the specified number of fractional digits to the
right of the decimal place. The expression is rounded off so that the specified number of
fractional digits are present. If no positive digit appears to the left of the decimal
point, a 0 (zero) is inserted. When figuring the length required to hold the expression,
the compiler counts all digits to the left of the decimal point (including 0 if it appears
alone), the decimal point, and the specified number of fractional digits appearing to the
right of the decimal point. If the expression is negative, an extra space is required for
the minus sign. If a field length larger than necessary is specified, blanks are added the
left to fill the field. If the field length specified is not long enough to contain all
digits, the sign character, and the decimal point, the field is filled with a string of
asterisk characters.

Example:

Value of Expression E

7-4

1.23456
-1.23456

0

Format of Element

E:6:2
E: 6.: 3
E:5:2

Resulting String

1.23'
'-1.235'
• o.oo•

60455280 A

;e-- '\
i '··-l

()
J

0

0
0

0

0

0
O'

Floating-Point Format

The form

expression : length

causes the specified expression to be converted to a string in floating-point format.

The length of the temporary field is determined somewhat differently from the other
elements. The system defines a maximum number of digits that can be contained in the
mantissa of a real number and the number of digits that can be in the exponent. When the
compiler figures the number of digits that will be in the mantissa, it first determines the
number of spaces that must be present in the string. The number of digits in the exponent
is required as are four additional spaces: one for the sign of the expression (a blank if
positive, - if negative), one for the decimal point in the mantissa, one for the exponent
character (E), and one for the sign of the exponent (+or-). The total number of required
spaces is subtracted from the specified field length. The compiler then compares the result
(field length minus required spaces) and the maximum number of digits allowed in the
mantissa, and takes the smaller of the two. That number is used for the number of digits in
the mantissa when the compiler rounds the floating-point expression.

If a field length larger than necessary is specified, blanks are added on the left to fill
the field. If the fixed size of the exponent is larger than necessary, zeroes are added on
the left to fill the field. If the number that results from the subtraction of required
spaces from the field length is less than 1, the field is filled with a string of asterisk
characters.

Example:

Value of Expression E Format of Element Resulting String

123.456
-123.456

Pointer Element

E: 10
E: 11

I 1.23E+002'
'-1.235E+002'

The format for specifying a pointer element is:

pointer {: length} {: #(radix)}

pointer

length

radix

Required; a pointer reference to be converted.

A positive integer expression specifying the length of the temporary
field. If the field length is omitted, the temporary field is the
minimum size required to contain the pointer value.

Radix of the pointer value. Possible values are 2, 8, 10, and 16.
For NOS and NOS/BE, the default radix is 8.

The value of a pointer expression is converted into a string representation in the specified
radix. It is right-justified in the temporary field. If a field length larger than
necessary is specified, blanks are added on the left to fill the field. If the field length
is not long enough to contain all the digits, the field is filled with a string of asterisk
characters.

60455280 A 7-5

String Element

The format for specifying a string element is:

expression {: length}

expression

length

Required; a string variable, string constant, or substring to be
converted.

A positive integer expression specifying the length of the temporary
field. If omitted, the field is the minimum size required to
contain the string expression.

A string expression is left-justified in the temporary field. If a field length larger than
necessary is specified, blanks are appended on the right to fill the field. If the field
length is shorter than the length of the string, the temporary field is filled with a string
of asterisk characters.

USER-DEFINED PROCEDURES

PROCEDURE DECLARATION

You define your own procedures with procedure declarations.

The format used for specifying a procedure is:

PROCEDURE {[attributes]} name {ALIAS 'alias_name'}{(formal_parameters)}; t
{declaration list}
{statement list}

PROCEND {name}-

attributes One or more of the following attributes. If more than one are
specified, they are separated by commas.

Attribute Meaning

XREF The procedure has been compiled in a different
module. In this case, the procedure declaration can
contain the name and formal parameters, but no
declaration list or statement list. In the other
module, the procedure must have been declared with
the XDCL attribute and an identical parameter list.
If omitted, the procedure must be defined within the
module where it is called.

t Some variations of CYBIL available on other operating systems ignore the alias name.
Check CYBIL documentation for the particular system.

7-6 60455280 A

0
0

.r\
r\,. __ /

(_)

0
0

0
0

0

0

0
0

name

alias name

formal_parameters

declaration list

statement list

60455280 A

Attribute

XDCL

INLINE

Meaning

The procedure can be called from outside of the
module in which it is located. This attribute can
be included only in a procedure declared at the
outermost level of a module; it cannot be contained
in a program, function, or another procedure. Other
modules that call this procedure must contain the
same procedure declaration with the XREF attribute
specified.

Instead of calling the procedure, the compiler
inserts the actual procedure statements at the point
in the code where the procedure call is made.

If no attributes are specified, the procedure is assumed to be
in the same module in which it is called.

Required; name of the procedure. The procedure name is optional
following PROCEND.

An alternate name for the procedure, which can be used outside
of the compilation unit in which it is defined. The name must
be enclosed in apostrophes. When the alias name is included in
a procedure declaration, the XDCL attribute-must also be
specified. The keyword ALIAS and alias name are optional.

One or more parameters in the form:

VAR name {,name} ••• : type
{,name {,name} ••• : type} •••

and/or:

name {,name} ••• : type
{,name {,name} ••• : type} •••

The first form is called a reference parameter; its value can be
changed during execution of the procedure. The second form is
called a value parameter; its value cannot be changed by the
procedure. Both kinds of parameters can appear in the formal
parameter list; if so, they are separated by semicolons (for
example, !:INTEGER; VAR A:CHAR). Reference and value parameters
are discussed in more detail later in this section under
Parameter List.

Zero or more declarations.

~ero or more statements.

7-7

PARAMETER LIST

A parameter list is an optional list of variable declarations that appears in the first
statement of the procedure declaration. In the procedure declaration format shown earlier,
they are shown as "formal_parameters". Declarations for formal parameters must appear in
that first statement; they cannot appear in the declaration list in the body of the

· procedure.

A parameter list allows you to pass values from the calling program to the procedure. When
a call is made to a procedure, parameters called actual parameters are included with the
procedure name. The values of those actual parameters replace the formal parameters in the
parameter list. Wherever the formal parameters exist in the statements within the
procedure, the values of the corresponding actual parameters are substituted. For every
formal parameter in a procedure declaration, there must be a corresponding actual parameter
in the procedure call.

There are two kinds of parameters: reference parameters and value parameters. A reference
parameter has the form:

VAR name {,name}... type
{,name {,name} ••• : type} •••

When a reference parameter is used, the formal parameter represents the corresponding actual
parameter throughout execution of the procedure. Thus, an assignment to a formal parameter
changes the variable that was passed as the corresponding actual parameter. An actual
parameter corresponding to a formal reference parameter must be addressable. A formal
reference parameter can be any fixed or adaptable type. If the formal· parameter is a fixed
type, the actual parameter must be a variable or substring of an equivalent type. If the
formal parameter is an adaptable type, the actual parameter must be a variable or substring
whose type is potentially equivalent. (For further information on potentially equivalent
types, refer to Equivalent Types in section 4.)

A value parameter has the form:

name {,name} ••• : type
{,name {,name}... type} •••

When a value parameter is used, the formal parameter takes on the value of the corresponding
actual parameter. However, the procedure cannot change a value parameter by assigning a
value to it or using it as an actual reference parameter to another procedure or function.
A formal value parameter can be any fixed or adaptable type except a type that cannot have a
value assigned, that is, a heap, or an array or record that contains a heap. If the formal
parameter is a fixed type, the actual parameter can be any expression that could be assigned
to a variable of that type. Strings must be of equal length. If the formal parameter is an
adaptable type, the current type of the actual parameter must be one to which the formal
parameter can adapt. If the formal parameter is an adaptable pointer, the actual parameter
can be any pointer expression that could be assigned to the formal parameter. Both the
value and the current type of the actual parameter are assigned to the formal parameter.

7-8 60455280 A

()
0

\

!\'··--·_,,)·-/

0
0 '

0
0

0

0

•

0
0

Reference parameters and value parameters can be specified in many combinations. When both
kinds of parameters appear together, they must be separated by semicolons. Parameters of
the same type can also be separated by semicolons instead of commas, but in this case; VAR
must appear with each reference parameter. All of the following parameter lists are valid.

VAR i, j : integer; a, b : char;

VAR i : integer; VAR j integer; a ~ char; b c~ar;

a : char; VAR i, j integer; b : char;

VAR i : integer, j real; a : char, b boolean;

In each of the preceding examples, I and J are reference parameters; A and B are value
parameters.

CALLING A PROCEDURE

A call to a procedure consists of the procedure name (as given in the procedure declaration)'
and any parameters to be passed to the procedure in the following format:

name {(actual_parameters)}

name

actual_parameters

Required; name of the procedure or a pointer to a procedure.

One or more expressions or variables to be substituted for
formal parameters defined in the procedure declaration. If two
or more are specified, they are separated by commas. They are
substituted one-for-one based on their position within the list;
that is, the first actual parameter replaces the first formal
parameter, the second actual parameter replaces the second
formal parameter, and so on. For every formal parameter in a
procedure declaration, there must be a corresponding actual
parameter in the procedure call.

A procedure is a type, like the types described in section 3. Procedure types are used for
declaration of pointers to procedures; there are no procedure variables.

The lifetime of a formal parameter is the lifetime of the procedure in which it is a part.
Storage space for the parameter is allocated when the procedure is entered and released when
the procedure is left.

The lifetime of a variable that is allocated using the storage management statements
(described in section 5) is the time between the allocation of storage (with the ALLOCATE
statement) and the release of storage (with the FREE statement).

Two procedure types are equivalent if corresponding parameter segments have the same number
of formal parameters, the same methods of passing parameters (reference or value), and
equivalent types •

60455280 A 7-9

Example:

This example calculates the greatest common divisor X of M and N. M and N are passed as
value parameters; that is, their values are used but M and N themselves are not changed. X,
Y, and Z are reference parameters (preceded by the VAR keyword). Their original values have
no meaning in the procedure; they are assigned new values in the procedure that destroy
their previous values.

PROCEDURE gcd Cm,n : integer; VAR x, y, z : integer>;

VAR a1, a2, b1, b2, c, d, q, r : integer;

a1 := O;
a2 := 1;
b1 := 1 • ,
b2 := O;
c := m;
d := n;

WHILE d <> 0 DO
q := c DIV d;
r := c MOD d;
a2 := a2 - q * a1;
b2 := b2 - q * b1;
c := d;
d := r;
r := a1;
a1 := a2;
a2 := r;
r := b1;
b1 := b2;
b2 := r;

WHILEND;

x := c;
y := a2;
z := b2;

PROCEND gcd;

7--10 60455280 A

0
0

•

~-.,

: I ' :;)

;if··."'
, ____ i

/,,--~

\~i

0
0

0
0

•

0

0

0

0
0

COMPILATION FACILITIES 8

This section describes how to compile a CYBIL program on NOS/BE. Instructions for compiling
a CYBIL program on NOS are given in the SES User's Handbook. The CYBIL control statement
described here and the procedure described in the handbook are used to compile one or more
CYBIL modules.

This section also describes the declarations, statements, and directives that can be used at
compilation time to construct the unit to be compiled and to control that process. They are
available on both operating systems. If a compiler call and a directive specify conflicting
options, the option encountered most recently is used.

The CYBIL compiler expects 6/12-bit display code as input and produces 6/12-bit display code
as output. Internally, the compiler uses 8-bit ASCII representation.

CYBIL COMPILATION ON NOS/BE

To use the CYBIL compiler on NOS/BE, enter the command:

ATTACH,CYBIL,ID=LP3

To use the run-time library, enter:

ATTACH,CYBCLIB,ID=LP3

The compiler can be called using the CYBIL control statement described next.

CYBIL CONTROL ST A TEMENT

The CYBIL control statement calls the compiler, specifies the files to be used for input and
output, and indicates the type of output to be produced. The control statement can be in
any of the following forms:

• CYBIL,parameter !,parameter 2, ••• ,parameter n. comments

• CYBIL. comments

• CYBIL (parameter !,parameter 2, ••• ,parameter n) comments

• CYBIL) comments

When parameters are specified, they can be in any order but must be separated by commas.
The parameter list must conform to the syntax for job control statements as defined in the
NOS/BE Reference Manual, with the added restriction that the comma, right parenthesis, and
period are the only valid parameter delimiters. If no parameters are specified, CYBIL is
followed by a period or right parenthesis.

60455280 A 8-1

Comments are optional. If included, they must follow the period or right parenthesis.
Comments are ignored by the compiler but printed in the dayfile.

8-2

Parameter

A
or

A= 0

B,
B = O,
or

B = filename

CHK
or

CHK = string

Description

Exit option parameter. This parameter determines what happens
at the end of compilation if fatal errors have been found. It
can be either of these options:

A

A=O (zero)

The system searches the control statement record
for an EXIT stat~ment at the end of compilation.
If an EXIT statement is not present, the job ends.

The system advances to the next control statement
at the end of compilation.

If omitted, A=O (advance to next statement) is assumed.

Binary (object code) file parameter. This parameter specifies
the file on which the compiler writes object code. It can be
one of these options:

B

B=O (zero)

B=f ilename

Writes object code on file LGO.

Performs a full syntactic and semantic scan of
the program but does not generate object code,
map data, or detect machine-dependent errors.

Writes object code on the specified file.

If omitted, B (write object code on LGO) is assumed.

Checking mode parameter.
checks to be performed.
options:

This parameter specifies run-time
It can be from 1 to 3 of these

N

R

s

Produces compiler-generated code that checks for
a NIL value when a reference is made to the
object of a pointer.

Produces compiler-generated code to check
ranges. Range checking code is generated for
assignment to integer subranges, ordinal
subranges, and character variables. It verifies
that all assignments in sets are within the
bounds of that set. It checks all CASE
statements to ensure that the selector expression
corresponds to one of the variant values
specified if no ELSE clause is provided. It
verifies all references to substrings. If an
offset (variable pointer) is specified on a RESET
statement, it checks to ensure that the offset is
valid for the specified sequence.

Produces compiler-generated code to test the
subscripting of arrays.

60455280 A

()
0

:f··.\

~-/

r·"· ('

_/

0
0

c·1

0

0

0
0

Parameter

D string

I
or

I = filename

L,
L = O,

or
L = filename

60455280 A

Description

0 (zero) No run-time checks are selected.

Checks that are not specifically included are not performed.

When CHK is specified without any parameters, the effect is the
same as choosing options N, R, and S.

If omitted, N (check for NIL value), R (check ranges), and S
(test array subscripts) are assumed.

Debugging option parameter. This parameter determines whether
debugging statements are compiled. It can be either of these
options:

DS Compiles all debugging statements. A debugging
statement is any statement in the source text
that is ignored unless this option is specified.
These statements are enclosed by the compile-time
directives COMPILE and NOCOMPILE. (For further
information, refer to Maintenance Control under
Compile-Time Directives later in this section.)

OFF Debugging statements are not compiled.

If omitted, OFF (debugging statements are not compiled) is
assumed.

Input file parameter. This parameter specifies the file from
which the compiler reads the source text. It can be either of
these options:

I Reads source text from the file COMPILE.

I=f ilename Reads source text from the indicated file.

Source input ends when an end-of-record, end-of-file, or
end-of-information is encountered on the source text input file.

If omitted, the source text is read from file INPUT.

Listing file parameter. This parameter specifies the file on
which the compiler writes the compilation listing. It can be
one of these options:

L Writes the compilation listing on file OUTPUT.

L=O (zero) Suppresses all compile-time output. List control
toggle directives are ignored.

L=f ilename Writes the compilation listing on the indicated
file.

If omitted, L (listing is written on file OUTPUT) is assumed.

8-3

Parameter

LO = string

Description

Listing options parameter. This parameter specifies listing
options to be written on the listing (L parameter) file. It can
be from 1 to 6 of these options:

A

F

0

R

RA

s

w

x

0 (zero)

Produces an attribute list of source input block
structure and relative stack. The attribute
listing is produced following the source listing
on the file specified by the L (listing)
parameter or, if the L parameter is omitted, on
the file OUTPUT.

Produces a full listing. This option selects
options A, S, and R.

Lists compiler-generated object code. This
listing includes an assembly-like listing of the
generated object code. This option has no effect
if the B (binary object file) parameter is set to
0 (zero).

Produces a symbolic cross-reference listing
showing the location of a program entity
definition and its use within a program.

Produces a symbolic cross-reference listing of
all program entities whether they are referenced
or not.

Lists the source input file.

Lists fatal diagnostics. If omitted, informative
diagnostics are listed as well as fatal
diagnostics.

Used in conjunction with the compile-time·
directive LISTEXT so that listings can be
externally controlled using the CYBIL control
statement. (For further information, refer to
Toggle Control under Compile-Time Directives
later in this section.)

When specified, no listing options are selected.

If omitted, S (list the source input file) is assumed.

If the CYBIL control statement specifies an option that differs from a directive, the latest
occurrence of either the command or the directive takes precedence.

8-4 60455280 A

0
0

,{~--"

\L1

0
0

0
0

0

0

0
0

Examples:

The following control statement compiles source code from a file named COMPILE, writes the
compilation file on file LIST, and writes the object code on file BINl. The comment COMPILE
TEST CASES is included for documentation.

CYBILCI=COMPILE,L=LIST ,B=BIN1) COMPILE TEST CAS.ES

The following interactive commands show the compilation and execution of a CYBIL program on
NOS/BE.

Command Description

This statement gets the CYBIL source program text.
This statement attaches the CYBIL compiler.
This statement compiles the CYBIL source text.
This statement gets a data file.
This statement gets the CYBIL run-time library.

ATTACH,SOURCE,ID=MINE
ATTACH,CYBIL,ID=LP3
CYBIL,I=SOURCE,L=LISTING
ATTACH,DATA,ID=MINE
ATTACH,CYBCLIB,ID=LP3
LGO This statement executes the program. It assumes that

the CYBIL program references a file named DATA. The
file LGO was produced by the earlier CYBIL compilation
call (CYBIL, !=SOURCE, L=LISTING).

COMPILATION DECLARATIONS AND STATEMENTS

Many program elements defined in CYBIL have counterparts that can be used to control the
compilation process. They include variable declarations, expressions, and the assignment
and IF statements. The IF statement is used to specify certain areas of code to be
compiled. The IF statement requires the use of expressions, which in turn require
variables. Assignment statements are used to change the value of variables and, thus,
expressions.

COMPILE-TIME VARIABLES

Only boolean type variables can be declared.

The format used to specify a boolean type compile-time variable is:

? VAR name {,name} ••• : BOOLEAN :=expression
{,name {,name} ••• : BOOLEAN :=expression} ••• ?;

name Required; name of the compile-time variable. This name must be unique
among all other names in the program.

expression Required; a compile-time expression that specifies the initial value of
the variable.

A compile-time declaration must appear before any compile-time variables are used. The
scope of such a variable extends from the point at which it is declared to the end of the
module. Compile-time variables can be used only in compile-time expressions and
compile-time assignment statements.

60455280 A 8-5

COMPILE-TIME EXPRESSIONS ,

Compile-time expressions are composed of operands and operators like CYBIL-defined
expressions. An operand can be:

• Either of the constants TRUE or FALSE.

• A compile-time variable.

• Another compile-time expression.

The operators are NOT, AND, OR, and XOR. Their order of evaluation from highest to lowest
is:

e NOT

• AND

• OR and XOR

These operators have their usual meanings, as described under Operators in section 5.

COMPILE-TIME ASSIGNMENT STATEMENT

A compile-time assignment statement assigns a value to a compile-time variable.

The format of the compile-time assignment statement is:

? name := expression ?;

name Required; name of a compile-time variable.

expression Required; a compile-time expression.

COMPILE-TiME IF STATEMENT

The compile-time IF statement compiles or skips a certain area of code depending on whether
a given expression is true of false.

The format of the compile-time IF statement is:

8-6

? IF expression THEN
code

{? ELSE
code}

? !FEND

expression Required; a boolean compile-time expression.

code Required; an area of CYBIL code or text.

60455280 A

0
0

0
0

()

0

0

0

0

0
0

When the expression is evaluated as true, the code following the reserved word THEN is
compiled. When compilation of that code is completed, compilation continues with the first
statement following IFEND. When the expression is false, compilation continues following
the ELSE phrase, if it is included, or following IFEND.

The ELSE clause is optional. If included, the ELSE clause designates an area of code that
is compiled when the preceding expression is false.

Example:

The following example shows the declaration of a compile-time variable named SMALL SIZE that
is initialized to the value TRUE. A line of CYBIL code declaring an array named TABLE is
compiled. Then a compile-time IF statement checks the value of SMALL SIZE. If it is TRUE,
the line of CYBIL code calling a procedure named BUBBLESORT is compiled in the program. If
it is FALSE, the CYBIL line calling procedure QUICKSORT is inserted instead. Because
SMALL_SIZE was initialized to TRUE, the call to BUBBLESORT is included in the compiled
program.

? VAR small_size : boolean := TRUE ?;

VAR table : array [1 •• SOJ of integer;

? IF small size = TRUE THEN

bubblesort <table);

? ELSE

quicksort (table>;

? I FEND

COMPILE-TIME DIRECTIVES

Compile-time directives allow you to perform the following activities during compilation.

• Set toggles that turn on or off listing options such as source code listing and
object code listing (SET, PUSH, POP, and RESET directives when they contain one or
more of the listing options).

• Set toggles that turn on or off run-time options such as range checking and array
subscript checking (SET, PUSH, POP, and RESET directives when they contain one or
more of the run-time checking options).

• Specify the layout of the source text to be used (LEFT and RIGHT margin directives).

e Specify the layout of the resulting listing (EJECT, SPACING, SKIP, NEWTITLE, TITLE,
and OLDTITLE directives).

• Specify what code to compile (COMPILE and NOCOMPILE directives).

• Include comments in the object module (COMMENT directive).

60455280 A 8-7

You can specify one or more directives with the format:

?? directive {,directive} ••• ??

directive Required; one of the directives discussed in the remainder of this
section. They can be broken down into four categories:

• Toggle control (SET, PUSH, POP, and RESET)

• Layout control (LEFT, RIGHT, EJECT, SPACING, SKIP, NEWTITLE,
TITLE, and OLDTITLE)

• Maintenance control (COMPILE and NOCOMPILE)

• Object code comment control (COMMENT)

Directives must be bounded by a pair of consecutive question marks. These delimiters are
not shown in the formats for individual directives, but they are required around one or more
directives.

If a directive differs from an option specified on a compiler command, the latest occurrence
of either the directive or the command takes precedence.

TOGGLE CONTROL

Toggle controls can set the values of individual toggles, save and restore preceding toggle
values in a last in/first out manner, and reset all toggles to their initial values.

SET Directive

The SET directive specifies the setting of one or more toggles.

The format of the SET directive is:

SET (toggle_name :=condition {,toggle_name := condition} •••)

toggle_name

condition

Required; name of the toggle being set. Listing toggles are
described in table 8-1. Run-time checking toggles are described in
table 8-2. The names of toggles can be used freely outside of
directives.

Required; specify ON or OFF. If a toggle is ON, the activity
associated with it is performed during compilation; if it is OFF,
the activity is not performed.

All settings specified in the SET directive are performed together. If the directive list
contains more than one setting for a single toggle, the rightmost setting in the list is
used.

8-8 60455280 A

0
0

~-~
I .
·~)

•

0
0

()

0

•

c

0

PUSH Directive

The PUSH directive specifies the setting of one or more toggles like the SET directive, but
before the settings are put into effect, a record of the current state of all toggles is
saved for later use.

The format of the PUSH directive is:

PUSH (toggle_name :=condition {,toggle_name :=condition} •••)

toggle_name

condition

Required; name of the toggle being set. Listing toggles are
described in table 8-1. Run-time checking toggles are described in
table 8-2. The names of toggles can be used freely outside of
directives.

Required; specify ON or OFF. If a toggle is ON, the activity
associated with it is performed during compilation; if it is OFF,
the activity is not performed.

Settings in the PUSH list are performed in the same manner as a SET list. If the directive
list contains more than one setting for a single toggle, the rightmost setting in the list
is used.

The POP directive, described later in this section, restores the original toggle settings in
a last in/first out manner (that is, the last record to be saved is the first to be
restored).

Table 8-1 describes the listing toggles and gives their initial settings.

Toggle

LIST

LISTOBJ

Initial
Value

ON

OFF

Table 8-1. Listing Toggles

Description

Determines whether other listing toggles are read.
When ON, a source listing is produced and the other
listing toggles are used to control other aspects of
listing. When OFF, no listing is produced; the other
listing toggles are ignored.

Controls the listing of generated object code. When
ON, object code is interspersed with source code
following the corresponding source code line.

Controls the listing of the listing toggle directives
and layout directives.

When ON, the listing of source statements is
controlled by a list option on the CYBIL compiler
command.

This option represents all of the listing
toggles. When ON, all other listing toggles are ON;
when OFF, all other listing toggles are OFF.

8-9

Table 8-2 describes the run-time checking toggles and gives their initial settings.

Toggle

CHKRNG

CHKSUB

CHKNIL

CHKALL

POP Directive

Initial
Value

ON

ON

OFF

Not
applicable

Table 8-2. Run-Time Checking Toggles

Description

Controls the generation of object code that performs
range checking of scalar subrange assignments and
case variables.

Controls the generation of object code that checks
array subscripts (indexes) and substring selections
to verify that they are valid.

Controls the generation of object code that checks
for a NIL value when a reference is made to the
object of a pointer.

This option represents all run-time checking
toggles. When ON, all other run-time checking
toggles are ON; when OFF, all other run-time checking
toggles are OFF.

The POP directive restores the last toggle settings that were saved by the PUSH directive.

The format of the POP directive is:

POP

If no record was kept (such as when a SET directive is performed), the initial settings are
restored.

RESET Directive

The RESET directive restores the initial toggle settings.

The format of the RESET directive is:

RESET

When the RESET directive is performed, any record of previous settings is destroyed.

8-10 60455280 A

()
0

•

,{-'\

1i\~. l

•

0
0

0
0

0

0

0
0

LAYOUT CONTROL

Layout controls are used to specify the margins of the source text and to control the layout
of the listing.

LEFT and RIGHT Directives

The LEFT and RIGHT directives specify the column number of the left and right margins of the
source text, respectively.

The formats of the LEFT and RIGHT directives are:

LEFT := integer

RIGHT := integer

integer Required; an integer value that represents the column number of the left
and right margins, respectively.

The left margin must be greater than 0 (zero); that is,

left margin > 0

The right margin must be greater than or equal to the left margin plus
10, and less than or equal to 110; that is,

left margin + 10 <= right margin <= 110

All source text left of the left margin and right of the right margin is ignored.

If the margin directives are not used, the left margin is assumed to begin in column 1 with
the right margin in column 79.

Example:

This example sets the left margin at column 1 and the right margin at column 110.

?? LEFT := 1, RIGHT := 110 ??

EJECT Directive

The EJECT directive causes the paper to be advanced to the top of the next page.

The format for specifying the EJECT directive is:

EJECT

60455280 A 8-11

SPACING Directive

The SPACING directive specifies the number of blank lines between individual lines of the
listing.

The format of the SPACING directive is:

SPACING := spacing

spacing Required; one of the values 1, 2, or 3 specifying single,
double, and triple spacing, respectively.

An undefined value has no effect on spacing, but an error message is issued.

If the SPACING directive is not used, single spadng (no intervening blank lines) is assumed.

SKIP Directive

The SKIP directive specifies that a given number of lines is to be skipped.

The format of the SKIP directive is:

SKIP := lines

lines Required; integer value specifying the number of lines to skip.
It must be greater than or equal to 1.

If the number of lines specified is larger than the number of lines on the page, or if it
would cause the paper to skip past the bottom of the current page, the paper is advanced to
the top of the next page.

NEWTITLE Directive

The NEWTITLE directive specifies a new, additional title to be used on a page while saving
the current title.

The format of the NEWTITLE directive is:

NEWTITLE := 'character_string'

character_string Required; a character string specifying the title to be used. A
single quote mark is indicated by two consecutive quote marks
enclosed by quote marks (that is, '''').

The current title is saved and the given character string becomes the current title. A
standard page header is always the first title printed on a page, followed by user-defined
titles in the order in which they were saved. This means that titles are saved and restored
in a last in/first out order, but they are printed in a first in/first out order. There is
always a single empty line between the standard page header and any user-defined titles.
There is always at least one empty line between the last title and the text.

8-12 60455280 A

()
0

•

{,,--\
i' i

~j

•

0
()

0
0

..

0

0

•

0
0

The maximum number of titles that can be specified is 10. Any attempts to add more titles
is ignored •

Titling does not take effect until the top of the next printed page.

TITLE Directive

The TITLE directive replaces the current user-defined title with the given character string.

The format of the TITLE directive is:

TITLE := 'character_string'

character_string Required; a character string specifying the title to be used. A
single quote mark is indicated by two consecutive quote marks
enclosed by quote marks (that is, '''').

If there is no user-defined title currently, the character string becomes the current title.

A standard page header is always the first title printed on a page. There is always a
single empty line between the standard page header and any user-defined titles. There is
always at least one empty line between the last title and the text.

Titling does not take effect until the top of the next printed page.

OLDTITLE Directive

The OLDTITLE directive restores the last user-defined title that was saved, making it the
current title.

The format of the OLDTITLE directive is:

OLDTITLE

If there is no saved title, no action occurs.

MAINTENANCE CONTROL

COMPILE Directive

The COMPILE directive causes compilation to occur, or to resume after the occurrence of a
NOCOMPILE directive •

The format of the COMPILE directive is:

COMPILE

If neither the COMPILE nor NOCOMPILE directive is used, the COMPILE directive is assumed;
source code-is compiled.

60455280 A 8-13

NOCOMPILE Directive

The NOCOMPILE directive causes compilation to stop until the occurrence of a COMPILE
directive or the end of the module.

The format of the NOCOMPILE directive is:

NOCOMPILE

NOCOMPILE continues listing source code and text according to the listing toggles and layout
directives, interpreting and obeying directives, but source code is not compiled until a
COMPILE directive is encountered or a MODEND statement is encountered.

COMMENT CONTROL

COMMENT Directive

The COMMENT directive causes the compiler to include the given character string in the
commentary portion of the object module generated by the compilation process.

The format of the COMMENT directive is:

COMMENT := 'character_string'

character_string Required; a character string of up to 40 characters that
specifies a compile-time comment.

This directive allows you to include comments in object modules so that the comments appear
in the load maps. Any number of comments can be included, but only the last comment
encountered appears.

Example:

?? COMMENT := 'Copyright Control Data Corporation 1984' ??

8-14 60455280 A

•.

•

()
()

0
0

•

c

0

0

•

0
0

CHARACTER SET

This appendix lists the ASCII character set.

NOS and NOS/BE support the American National Standards Institute (ANSI) standard ASCII
character set (ANSI X3.4-1977). Each 7-bit ASCII code is represented in an 12-bit byte.
The 7 bits are right-justified in each byte. Refer to volume 3 of the NOS 2 Reference Set,
System Commands, or to the NOS/BE Reference Manual, for further information on character
sets.

A

60455280 A A-1

Decimal

000
001
002
003

004
005
006
007

008
009
010
011

012
013
014
015

016
017
018
019

020
021
022
023

024
025
02,6
027

028
029
030
031

032
033
034
035

A-2

Table A-1. ASCII Character Set (Sheet 1 of 4)

ASCII Code Graphic or
Hexadecimal Octal Mnemonic Name or Meaning

00 000 NUL Null
01 001 SOH Start of heading ..
02 002 STX Start of text
03 003 ETX End of text

04 004 EOT End of transmission
05 005 ENQ Enquiry
06 006 ACK • Acknowledge
07 007 BEL Bell

08 010 BS Backspace
09 011 HT Horizontal tabulation
OA 012 LF Line feed
OB 013 VT Vertical tabulation

oc 014 FF Form feed
OD 015 CR Carriage return
OE 016 so Shift out
OF 017 SI Shift in

10 020 DLE Data link escape
11 021 DCl Device control 1
12 022 DC2 Device control 2
13 023 DC3 Device control 3

14 024 DC4 Device control 4
15 025 NAK Negative acknowledge
16 026 SYN Synchronous idle
17 027 ETB End of transmission block

18 030 CAN Cancel
19 031 EM End of medium
lA 032 SUB Substitute
lB 033 ESC Escape

lC 034 FS File separator
lD 035 GS Group separator
lE 036 RS Record separator
lF 037 us Unit separator

20 040 SP Space
21 041 ! Exclamation point
22 042 " Quotation marks
23 043 II Number sign

60455280 A

()
0

•

(,---·~\\

\J'L_j

,,r,
"\._.!

•

0
()

0
0

•

0

0

0
0

Decimal

036
037
038
039

040
041
042
043

044
045
046
047

048
049
050
051

052
053
054
055

056
057
058
059

060
061
062
063

064
065
066
067

068
069
070
071

072
073
074
075

60455280 A

Table A-1. ASCII Character Set (Sheet 2 of 4)

ASCII Code Graphic or
Hexadecimal Octal Mnemonic Name or Meaning

24 044 $ Dollar sign
25 045 % Percent sign
26 046 & Ampersand
27 047

, Apostrophe

28 050 (Opening parenthesis
29 051) Closing parenthesis
2A 052 * Asterisk
2B 053 + Plus

2C 054 '
Comma

2D 055 - Hyphen
2E 056 . Period
2F 057 I Slant

30 060 0 Zero
31 061 1 One
32 062 2 Two
33 063 3 Three

34 064 4 Four
35 065 5 Five
36 066 6 Six
37 067 7 Seven

38 070 8 Eight
39 071 9 Nine
3A 072 : Colon
3B 073 ; Semicolon

3C 074 < Less than
3D 075 = Equals
3E 076 > Greater than
3F 077 ? Question mark

40 100 @ Commercial at
41 101 A Uppercase A
42 102 B Uppercase B
43 103 c Uppercase C

44 104 D Uppercase D
45 105 E Uppercase E
46 106 F Uppercase F
47 107 G Uppercase G

48 110 H Uppercase H
49 111 I Uppercase I
4A 112 J Uppercase J
4B 113 K Uppercase K

A-3

Decimal

076
077
078
079

080
081
082
083

084
08S
086
087

088
089
090
091

092
093
094
09S

096
097
098
099

100
101
102
103

104
lOS
106
107

108
109
110
111

112
113
114
115

A-4

Table A-1. ASCII Character Set (Sheet 3 of 4)

ASCII Code Graphic or
Hexadecimal Octal Mnemonic Name or Meaning

4C 114 L Uppercase L
4D llS M Uppercase M
4E 116 N Uppercase N
4F 117 0 Uppercase 0

so 120 p Uppercase p

Sl 121 Q Uppercase Q
S2 122 R Uppercase R
S3 123 s Uppercase s

S4 124 T Uppercase T

SS 12S u Uppercase U
S6 126 v Uppercase V
S7 127 w Uppercase W

S8 130 x Uppercase X
S9 131 y Uppercase Y
SA 132 z Uppercase Z
SB 133 [Opening bracket

SC 134 \ Reverse slant
SD 13S] Closing bracket
SE 136 Circumflex
SF 137 Underline -
60 140 ... Grave accent
61 141 a Lowercase a
62 142 b Lowercase b
63 143 c Lowercase c

64 144 d Lowercase d
6S 14S e Lowercase e
66 146 f Lowercase f
67 147 g Lowercase g

68 lSO h Lowercase h
69 lSl i Lowercase i
6A 1S2 j Lowercase j
6B 1S3 k Lowercase k

6C 1S4 1 Lowercase 1
6D lSS m Lowercase m
6E 1S6 n Lowercase n
6F 1S7 0 Lowercase o

70 160 p Lowercase p
71 161 q Lowercase q
72 162 r Lowercase r
73 163 s Lowercase s

604SS280 A

0
0

•

r-,"
~~1·

•

0
()

0
0

•

0

0

•

0
0

Decimal

116
117
118
119

120
121
122
123

124
125
126
127

60455280 A

Table A-1. ASCII Character Set (Sheet 4 of 4)

ASCII Code Graphic or
Hexadecimal Octal Mnemonic Name or Meaning

74 164 t Lowercase t
75 165 u Lowercase u
76 166 v Lowercase v
77 167 w Lowercase w

78 170 x Lowercase x
79 171 y Lowercase y
7A 172 z Lowercase z
7B 173 { Opening brace

7C 174 I Vertical line
7D 175 } Closing brace
7E 176 - Tilde
7F 177 DEL Delete

A-5

0
0

•··

0
0

•

0

0

0

•

0
0

GLOSSARY B

Access Attribute

A characteristic of a variable that
determines whether the variable can be
both read and written. Specifying the
access attribute READ makes the variable
a read-only variable.

Alphabetic Character

One of the following letters.

A through Z

a through z

See Character and Alphanumeric Character.

Alphanumeric Character

An alphabetic character or a digit. See
Character, Alphabetic Character, and
Digit.

Boolean

Type of value. The boolean values are
the boolean (logical) constants TRUE and
FALSE.

Boolean Expression

Byte

An expression that, when evaluated,
results in a boolean value.

A group of bits. For NOS and NOS/BE,
one byte is equal to 12 bits. An ASCII
character code uses one byte.

Byte Off set

A number corresponding to the number of
bytes beyond the beginning of a line,
procedure, module, or section.

Character

A graphic character or control character
that is ·represented by a code in a

60455280 A

character set. A graphic character is
printable; a control character is
nonprintable and is used to control an
input or output operation.

Also, a byte when used as a unit of
block length, record length, and so
forth.

See Alphabetic Character and
Alphanumeric Character.

Character Constant

A fixed value that represents a
character.

Comment

Any character or sequence of characters
that is preceded by a left brace and
terminated by a right brace or an end of
line. A comment is treated exactly as a
space.

Delimiter

An indicator that separates and
organizes data.

Digit

One of the following characters:

0 1 2 3 4 5 6 7 8 9

See Hexadecimal Digit.

Entry Point

Point within a module at which execution
of the module begins when called by
another module •

Expression

A notation that represents a value. A
constant or variable appearing alone, or
combinations of constants and/or
variables with operators.

B-1

External Reference

Call to an entry point in another module.

Field

A subdivision of a record that can be
referenced by name.

For example, the field SEQUENCE POINTER
in a record named SEQUENCE RECORD is
referenced as follows: -

SEQUENCE_RECORD.SEQUENCE_POINTER

Hexadecimal Digit

One or more of the following characters.

Decimal digits 0 through 9

A through F

a through f

Integer Constant

One or more digits, the first of which
must be a decimal digit. A preceding
sign and subsequent radix are optional.

Integer Expression

An expression that, when evaluated,
results in an integer.

Load Module

Module reformatted for code sharing and
efficient loading. When the user
generates an object library, each object
module in the module list is reformatted
and written as a load module on the
object library.

Module

Name

B-2

Unit of text accepted as input by the
loader, linker, or object library
generator. See Object Module and Load
Module.

A name is a combination of from 1 to 31
characters chosen from the following set.

A through Z

a through z

Decimal digits 0 through 9

Special characters #, @, $, and

The first character of a name cannot be
a digit.

Object Code

Executable machine instructions.

Object Module

Compiler-generated unit containing
object code and instructions for loading
the object code• It is accepted as
input by the system loader and the
object library generator.

Pointer

Address of a value.

Range

A value represented as two values
separated by an ellipsis. The element
is associated with the values from the
first value to the second high value.
For example:

value •• value

Source Code

Instructions written for input to a
compiler.

Statement List

One or more statements separated by
delimiters.

String Constant

Sequence of characters delimited by
apostrophes ('). An apostrophe can be
included in the string by specifying two
consecutive apostrophes.

Variable

Represents a data value.

Variable Attribute

A characteristic of a variable.

See Access Attribute.

60455280 A

0
·o

•

•

0
0

•

•

0

0

0

•

0
0

The following are reserved words

ALIAS HEAP
ALIGNED IF
ALLOCATE I FEND
AND IN
ARRAY INLINE
BEGIN INTEGER
BOOLEAN LEFT
BOUND LIST
CASE LI STALL
CASE ND LISTCTS
CAT LISTEXT
CELL LISTOBJ
CHAR LOWERBOUND
CHKALL LOWERVALUE
CHKNIL MOD
CHKRNG MOD END
CHKSUB MODULE
CHKTAG NEWTITLE
CHR NEXT
COMMENT NIL
COMPILE NOCOMPILE
CONST NOT
CYCLE OF
DIV OFF
DO OLDTITLE
DOWNTO ON
EJECT OR
ELSE ORD
ELSE IF PACKED
END POP
EXIT PRED
FALSE PROCEDURE
FOR PROCEND
FORE ND PROGRAM
FREE PUSH
FUNCEND READ
FUNCTION REAL

60455280 A

RESERVED WORDS c

in CYBIL •

REC END
RECORD
REL
REP
REPEAT
RESET
RETURN
RIGHT
SECTION
SEQ
SET
SKIP
SPACING
STATIC
STRING
STRLENGTH
succ
THEN
TITLE
TO
TRUE
TYPE
UNTIL
UPPERBOUND
UPPERVALUE
VAR
WHILE
WHILE ND
WRITE
XDCL
XOR
XREF
llLOC
//SIZE
$CHAR
$INTEGER
$REAL

C-1

•

•

r-..
I \ ,_.)

•

0
()

0
0

•

01

0

0

•

0
0

DAT A REPRESENTATION IN MEMORY

For the computer systems on which NOS and NOS/BE operate, memory is made up of 12-bit bytes
with five bytes to one 60-bit word. (A 60-bit word is the smallest storage location that is
directly addressable and is synonymous with a cell.) Table D-1 summarizes how different
data types are represented in memory. The columns under Alignment include information about
how a variable of the data type is stored in packed and unpacked format. The word Bit in
the Packed column means the variable is stored in the first available bit.

Table D-1. Data Representation in Memory

Alignment

Type Size Unpacked Packed

Integer 1 word Word Word

Character 12 bits/8 bits Right-justified in a Bit
word

Boolean 1 bit Left-justified in a Bit
word

Ordinal As needed for Right-justified in a Bit
components word

Subrange As needed for Right-justified in a Bit
components word

Real 1 word Word Word

Fixed pointer 18 bits Right-justified in a Bit
word

Cell Word Word Word

String 12 bits for each Left-justified in a Every 12th bit
character word

Array Depends on type Word Components are unaligned
of components

Record Depends on type Word Components are unaligned
of components

Set As needed for Left-justified in a Bit
components word

D

60455280 A D-1

The following examples show how a record would look in memory in various formats: first
unpacked, then packed, and finally packed with some positioning changes.

The unpacked record is:

TYPE
table = RECORD

name : stringC7>,
file : Cbi, di, lg, pr),
number of accesses : integer,
users: 0:-.100,
ptr iotype : Aiotype,
b :-boolean,

RECEND;

This record would appear in memory as follows (slashes indicate unused memory):

Byte 4 Byte 3

Character Character

D-2

Byte 2

NAME
Character

Byte 1

Character

Byte 0

Character

60455280 A

0
0

•

,(ff'··-.,,\

~j

•

0
(J

0
0

0

0

)

0
0

The packed record is:

TYPE
table = PACKED RECORD

name : string(7),
file : Cbi, di, lg, pr),
number of accesses : integer,
users: 0:-.100,
ptr iotype : Aiotype,
b :-boolean,

RECEND;

This record would appear in memory as follows (slashes indicate unused memory):

Byte 4 Byte 3

Character Character

Character

PTA IOTYPE
USERS

Byte 2
NAME

Character

Byte 1

Character

Byte 0

Character

The record, as follows, is now rearranged slightly to make more efficient use of the space.

TYPE
table = PACKED RECORD

name : stringC7>,
file : Cbi, di, lg, pr),
users : O •• 100,
b : boolean,
unused space : 0 •• 255,
ptr iotype : Aiotype,
number of accesses : integer,

RECEND; - -

This record would appear in memory as follows:

Byte 4 Byte 3 Byte 2 Byte 1

NAME
Character Character Character Character

\ UN-
Character Character FILE USERS B USED

NUMBER - OF _ACCESSES

60455280 A

Byte 0

Character

PTR IOTYPE -

D-3

0
0

rr . . , ___ /

/,,,-~'\

~-j

0
0

0
0

.
:1

(

0

0

0

••

Access attribute 3-5; B-1
Actual parameters

Function 6-8,9
Procedure 7-8,9

Adaptable array
Definition 4-27
Example 5-24
Format 4-27
Size 5-23

Adaptable heap
Definition 4-29
Format 4-29
Size 5-23

Adaptable pointer size 5-23
Adaptable record

Definition 4-28
Format 4-28
Size 5-23

Adaptable sequence
Definition 4-29
Format 4-29
Size 5-23

Adaptable string
Definition 4-26
Format 4-26
Size 5-23

Adaptable types
Definition 4-25
Equivalent 4-2
Example 5-24

Addition operation 5-5
Addition operators 5-4
Advance page directive 8-11
Alias name 2-8,9; 3-2; 6-6; 7-7
ALIGNED parameter 4-17,19,23,28
Alignment

Examples D-2
Of elements in memory D-1
Parameter 4-17,19,23,28

ALLOCATE statement
Definition 5-26
Example 5-24
Format 5-26

Alphabetic character
Alphanumeric character
AND operator 5-3
Array

Adaptable
Definition
Elements
Examples

60455280 A

4-27
4-14

4-15
4-16

B-1
B-1

INDEX

Format 4-14
Initializing elements
LOWERBOUND function
Referencing elements
Size 4-14

4-15
6-2

4-15

Subscript bounds 4-14
Two-dimensional 4-16
UPPERBOUND function 6-5

ASCII character set A-1
Assigning

Elements 4-23
Strings 4-13

Assignment operator 5-13
Assignment, set 4-23
Assignment statement

Compile-time 8-6
Definition 5-12

ATTACH command 8-1
Attribute(s)

Access 3-5
Effect on initialization by
Function 6-6
Procedure 7-6
READ 3-3,5
Scope 3-6
Section name 3-3,8
STATIC 2-7; 3-3,7
Storage 3-7
XDCL 2-7; 3-3,6
XREF 3-3,6

Automatic variable 2-7; 3-7

BEGIN statement
Definition 5-14
Format 5-14

Binary file 8-2
Blanks in syntax 2-4
Blocks 2-6
Boolean

Constant 2-3
Definition 4-4; B-1
Difference 5-5
Example 4-4
Expression B-1
Format 4-4

BOUND parameter 4-19
Bound variant record

Definition 4-19,20
Equivalent 4-2

3-10

Index-1

Tag field size 5-23
Byte B-1
Byte off set B-1

Calling
Function 6-9
Procedure 7-9

CASE statement
Definition 5-19
Examples 5-20
Format 5-19

CASEND 5-19
CAT 2-4
Cell

Definition 4-10
Format of type 4-11
Pointer to 4-10
Type 4-11

$CHAR function 6-1
Character

Constant 2-3; B-1
Definition 4-3; B-1
Example 4-4
Format 4-3
Valid 2-1

Character set A-1
CHKALL toggle 8-10
CHKNIL toggle 8-10
CHKRNG toggle 8-10
CHKSUB toggle 8-10
Coefficient 2-3
Comment control directive 8-14
COMMENT directive 8-14
Comments 2-5; B-1
Comparing strings 4-13
Compilation

Call 8-1
Declarations
On NOS 8-1
On NOS/BE

8-5

8-1,5
8-5

8-13
Statements

COMPILE directive
Compile-time

Assignment statement
Directives 8-7
Expressions 8-6
IF statement 8-6
Variables 8-5

8-6

Compiler checking of subranges
Complement operation 5-10
Concatenation 2-4
CONST format 3-1
Constant

Boolean 2-3
Character 2-3
Declaration 3-1

Index-2

4-6

Definition 2-3
Examples 3-2
Expression 2-4
Floating-point 2-3
Format 3-1
Integer 2-3
Ordinal 2-3
Pointer 2-3
Real 2-3
String 2-3

Control statements
CASE 5-19
CYCLE 5-21
EXIT 5-22
IF 5-18
Overview 5-18
RETURN 5-23

Conventions 5
CYBIL control statement

8-2 Binary file parameter
Checking mode parameter
Debugging option parameter

8-2

Examples 8-5
Exit option parameter
Format 8-1

8-2

Input file parameter
Listing file parameter
Listing options parameter
Object code parameter 8-2
Source input file 8-3

8-3
8-3

CYBIL-defined elements 2-1
CYBIL reserved words C-1
CYBIL syntax 2-4
CYCLE statement

Definition 5-21
Example 5-21
Format 5-21

Data declarations 1-1
Data in memory

Alignment D-1
Examples D-2
Size requirements D-1

Debugging 8-3
Decimal notation 2-3
Declarations

Compilation 8-5
Overview 1-1

Declarations, data 1-1
Delimiter B-1
Dereference, pointer 4-8
Digit B-1
Directives, compile-time

COMMENT 8-14
Comment control 8-14
COMPILE 8-13

8-3

8-4

60455280 A

()
(0

;fl.
I \

'-.. .l

,tf--"­
i
_j

/,.,--~'-,

~)

)

•

0
·()

0
0\

(

0

0

0

0
0

Definition 8-7
EJECT 8-11
General format 8-8
Layout control 8-11
LEFT 8-11
Maintenance control 8-13
NEWTITLE 8-12
NOCOMPILE 8-14
OLDTITLE 8-13
POP 8-10
PUSH 8-9
RESET 8-10
RIGHT 8-11
SET 8-8
SKIP 8-12
SPACING 8-12
TITLE 8-13
Toggle control 8-8

DIV operator 5-3

EJECT directive 8-11
Elements

CYBIL-defined 2-1
Scope of 2-6
Syntax of 2-4
User-defined 2-2

Elements in a program
ELSE 5-18

1-1; 2-1

ELSEIF 5-18
Empty statement
END 5-14
Entry point B-1

2-5; 5-12

Equal to operator 5-6,8
Equivalent types 4-2
Error checking of subranges 4-6
Exclusive OR operation 5-5
Execution 8-1
EXIT statement

Definition 5-22
Format 5-22

Exponent 2-3
Expression

Compile-time 8-6
Constant 2-4
Definition 5-1; B-1
Operands 5-1
Operators 5-1

External reference B-2
Externally declared variable
Externally referenced variable

FALSE 4-4
Field 4-17; B-2
Floating-point

Constant 2-3

60455280 A

2-7; 3-3
3-3

Type 4-7
FOR statement

Definition 5-14
Examples 5-15,16
Format 5-14

FOREND 5-14
Formal parameters

Function 6-7,8
Procedure 7-7,8

Format 5
FREE statement

Definition 5-26
Format 5-26

Functions, see also User-defined functions
Calling 6-9
$CHAR 6-1
Definition 1-2; 6-1
Format 6-6
$INTEGER 6-2
/ILOC 6-2
LOWERBOUND 6-2
LOWERVALUE 6-3
Parameters 6-7
PRED 6-3

6-1
$REAL 6-4
Recursive
//SIZE 6-4
Standard 6-1
STRLENGTH 6-4
succ 6-4
UPPERBOUND
UPPERVALUE
User-defined

6-5
6-5

6-6

Global variable 2-6
Glossary B-1
Greater than operator 5-6,8
Greater than or equal to operator

Heap
Adaptable 4-29
Definition 4-25
Example 5-24
Format 4-25
Management 5-23

Hexadecimal digit B-2

5-4 Identity operation
IF statement

Compile-time
Definition

8-6
5-18

5-19 Examples

5-6,8

Index-3

Format 5-18
!FEND 5-18
Improper subrange type 4-6
IN operator 5-6,8,11
Indefinite value constructor 3-9;

4-15,21,23
Initializing

Array 4-15
Effect of attribute on 3-10
Record 4-21
Set 4-23
Variable 3-9

Input 8-1
Input file 8-3
Integer

Constant 2-3; B-2
Definition 4-3
Example 4-3
Format .4-3
Quotient division 5-3
Range 4-3

Integer expression B-2
$INTEGER function 6-2
Intersection operation 5-10
Invariant record

Definition 4-17
Example 4-18
Format 4-17

Label, statement 5-14,16,17,21
Language syntax 2-4
Layout control directives 8-11
LEFT directive 8-11
Less than operator 5-6,8
Less than or equal to operator 5-6,8
Lifetime of a variable 3-7
LIST toggle 8-9
LISTALL toggle 8-9
LISTCTS toggle 8-9
LISTEXT toggle 8-9
Listing file 8-3
Listing toggles 8-9
LISTOBJ toggle 8-9
Load module B-2
#LOC function 6-2
Local variable 2-6
Logical AND operation 5-3
Logical OR operation 5-5
LOWERBOUND function 6-2
Lower bounds 4-6
LOWERVALUE function 6-3

Maintenance control directives 8-13
Manuals, related 6

Index-4

Margins, set 8-11
Memory

Alignment of elements D-1
Cell D-1
Examples of representation D-2
Size requirements for elements

MOD operator 5-3
MODEND format 2-8
Module

Declaration 2-8
Definition 2-6; B-2
Examples 2-8
Format 2-8
Level 2-6
Name 2-8
Structure 2-6

MODULE format 2-8
Multiplication operation 5-3
Multiplication operators 5-2

Name
Definition B-2
Examples 2-2
Rules for forming 2-2

Negation operation 5-10
Negation operators 5-2
NEWTITLE directive 8-12
NEXT statement

Definition 5-25
Format 5-25

NIL pointer constant
NOCOMPILE directive
Not equal to operator
NOT operator 5-2
Null string 2-4

2-3; 4-9
8-14

Object code 8-2
Definition B...:.2
Listing 8-9

5-6,8

Object module B-2
Object of a pointer 4-7
OLDTITLE directive 8-13
Operands 5-1
Operators

Addition 5-4
Definition 5-1
Multiplication 5-2
Negation 5-2
Order of evaluation 5-2
Relational 5-6
Set 5-9
Sign 5-4

OR operator 5-5
Ordinal

Constant 2-3

D-1

60455280 A

)

f

()
0

<

0

0

0

Definition 4-5
Example 4-5
Format 4-5

Output 8-1
Overview of language 1-1

Packed elements in memory D-1
PACKED parameter 4-14,17,19,27,28
Packing parameter 4-14,17,19,27,28
Page advance directive 8-11
Parameter list 6-8; 7-8
Pointer

Adaptable types 4-9
Constant 2-3
Definition 4-7; B-2
Dereference 4-8
Example 4-10
Format 4-7
NIL 4-9
Object 4-7
Pointer to cell 4-10
Reference 4-7

Pointer to cell 4-10
POP directive 8-10
Potentially equivalent types 4-2
PRED function 6-3
Predecessor of an expression 6-3
Procedures, see also User-defined procedures

Calling 7-9
Definition 1-2; 7-1

7-7
7-1

Format 7-6
Parameters
Standard
STRINGREP
User-defined

PROCEND format
Program

7-1
7-6

2-9

Declaration 2-9
Elements 2-1
Example 2-10
Execution 8-1
Format 2-9
Name 2-9
Structure 2-6
Syntax 2-4

Program elements 1-1
PROGRAM format 2-9
Punctuation 2-5
PUSH directive 8-9
PUSH statement

Definition 5-27
Example 5-27
Format 5-27

Radix 2-3
Range B-2

60455280 A

Range checking
READ attribute
Read-only

Section
Variable

Real
Cons·tant
Definition

8-2' 10
3-3,5

3-8,13
3-3,5

2-3
4-7

Format 4-7
Quotient division
Range 4-7

$REAL function
Record

6-4

5-3

Adaptable 4-28
Alignment 4-17,19,23,28
Bound variant 4-19,20
Definition 4-17
Examples 4-18,21,22
Fields 4-17
Format 4-17,18
Initializing elements 4-21
Invariant 4-17
Referencing elements 4-22
Variant 4-18

Reference parameters
Function 6-7,8
Procedure 7-7,8'

Reference, pointer 4-7
Related manuals 6
Relational operators 5-6
Remainder division operation 5-3
REP format 3-9; 4-15
REPEAT statement

Definition 5-16
Exampre 5-16
Format 5-16

Reserved words
RESET directive
RESET statement

2-1; C-1
8-10

Definition 5-24
Example 5-24
Format for a heap 5-25
Format for a sequence 5-24

RETURN statement
Definition 5-23
Format 5-23

RIGHT directive 8-11
Run-time check 8-2
Run-time checking 8-10
Run-time stack management 5-23,27

Scalar types 4-2
Scientific notation 2-3
Scope attributes 3-6
Scope of elements 2-6
Section

Attribute 3-3,8

Index-5

Declaration 3-13
Definition 3-8,13
Example 3-13
Format 3-13
Name 3-3,8

SECTION format 3-13
Semicolon 2-5
Sequence

Set

Adaptable 4-29
Definition 4-25
Format 4-25
Management 5-23

Complement 5-4,10
Containment 5-11
Difference 5-5,10
Identity 5-6,8,11
Inclusion 5-11
Inequality 5-6,8,11
Intersection 5-3,10
Membership 5-6,8,11
Negation 5-10
Operations 5-9
Subset 5-6,8
Superset 5-6,8
Union 5-5 , 10

SET directive 8-8
Set type

Assigning elements 4-23
Definition 4-23
Example 4-24
Format 4-23
Initializing elements 4-23

Set value constructor
Definition 4-24
Format 4-24

Sign inversion 5-4
Sign operators 5-4
#SIZE function 6-4
SKIP directive 8-12
Source code B-2
Source text 8-3
Spacing 2-5
SPACING directive 8-12
Stack, see Run-time stack management
Standard functions 6-1
Standard procedures 7-1
Statement(s)

ALLOCATE 5-26
5-12 Assignment

BEGIN 5-14
CASE 5-19
Compilation 8-5
Control 5-18
CYCLE 5-21
Definition 5-12
Empty 2-5; 5-12

Index-6

5-22
5-14

5-26

EXIT
FOR
FREE
IF
Label
List
NEXT

5-18
5-14,16,17,21

5-12 , 13 , 14 ; B-2
5-25

Overview 1-1,2
PUSH 5-27
REPEAT 5-16
RESET 5-24
RETURN 5-23
Storage management 5-22
Structured 5-13
WHILE 5-17

STATIC attribute 2-7; 3-3,7
Static variable 2-7; 3-7
Storage allocation 2-7
Storage attributes 3-7
Storage management statements

ALLOCATE 5-26
Example 5-24
.FREE 5-26
NEXT 5-25
Overview 5-22
PUSH 5-27
RESET 5-24

Storage types 4-24
String

Adaptable 4-26
Assigning 4-13
Comparing 4-13
Constant 2-3; B-2
Definition 4-11
Examples 4-13,14
Format 4-11
Length 6-4
STRLENGTH function 6-4
Substring 2-4; 4-12

STRINGREP procedure
Boolean element
Character element
Definition 7-1

7-3
7-3

Floating-point element
Format 7-1
Integer element
Ordinal element
Pointer element
String element
Subrange element

STRLENGTH function
Structured statements

BEGIN 5-14
FOR 5-14
Overview
REPEAT
WHILE

5-13
5-16

5-17

7-2
7-3
7-5

7-6
7-3

6-4

7-4

60455280 A

()
0

;r-,
I'

'\,_~j

0
()

)

0
0

C"
'

0

c

0
0

Structured types 4-11
Subrange

Definition 4-6
Error checking
Example 4-6
Format 4-6

4-6

Subscript bounds
Subset of a set
Substring

4-14
5-6,8

Definition 4-12
4-13

4-12
Examples
Format
Of string constant 2-4

Subtraction operation 5-5
SUCC function 6-4
Successor of an expression 6-4
Superset of a set 5-6,8
Symmetric difference operation
Syntax 2-4

Tag field
Definition 4-19
Size 5-23

TITLE directive 8-13
Titles 8-12,13
Toggle control directives

Definition 8-8
Listing toggles 8-9
Run-time checking toggles

TRUE 4-4
Type

Declaration 3-11
Example 3-12
Format 3-11

TYPE format 3-11
Types

4-27
4-29

4-28
4-29

4-26

Adaptable 4-25
Adaptable array
Adaptable heap
Adaptable record
Adaptable sequence
Adaptable string
Array 4-14
Boolean 4-4
Cell 4-11
Character 4-3
Equivalent 4-2
Floating-point
Formats for using
Heap 4-25
Integer 4-3
Ordinal 4-5

4-7
4-2

Overview 1-1; 4-1
Pointer 4-7
Pointer to cell 4-10
Potentially equivalent

60455280 A

4-2

5-10

8-10

Real
Record
Scalar

4-7

Sequence

4-17
4-2

4-25
Set 4-23
Storage 4-24
String 4-11
Structured 4-11
Subrange 4-6

Union operation 5-10
Unpacked elements in memory
UNTIL 5-16
UPPERBOUND function 6-5
Upper bounds 4-6
UPPERVALUE function 6-5
User-defined elements

Constants 2-3
Definition 2-2

User-defined functions
Actual parameters 6-8,9
Attributes 6-6
Calling 6-9
Examples 6-8,9
Formal parameters· 6-7,8
Format 6-6
Parameters 6-7,8

D-1

Reference parameters 6-7,8
Value parameters 6-7,8

User-defined procedures
Actual parameters 7-8,9
Attributes 7-6
Calling 7-9
Examples 7-9,10
Formal parameters 7-7,8
Format 7-6
Parameters 7-7,8
Reference parameters 7-7,8
Value parameters 7-7,8

Value constructor, see Indefinite value
constructor
Value parameters

Function 6-7,8
Procedure 7-7,8

VAR format 3-2
Variable

Attributes 3-3; B-2
2-7

8-5
3-2

Automatic
Compile-time
Declaration
Definition 3-2; B-2

3-4,5,6,8,11
3-2

Examples
Format

Index-7

Global 2-6
Initialization 3-9
Lifetime 3-7
Local 2-6
Read-only 3-3,5
Static 2-7
Types 4-1

Variant record
Bound 4-19,20
Definition 4-18
Example 4-21
Format 4-18

Index-8

WHILE statement
Definition 5-17

· Example 5-17
Format 5-17

WHILEND 5-17

XDCL attribute 2-7; 3-3,6
XOR operator 5-5
XREF attribute 3-3,6

60455280 A

0
'V

I

(--\
~ .. J

''-../

0
()

'

0
0

0

0

0
0

w
z
:::;

~
z
0
<(

I-
::::>
u

COMMENT SHEET

MANUAL TITLE: CDC CYBIL Reference Manual

PUBLICATION NO.: 60455280 REVISION: A

STREET ADDRESS=-------------------------------

CITY: _______________ STATE: _______ ZIP CODE:---------

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

D. Please Reply 0 No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
r
I
I
I
I
t
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
1-
t
I

• I
I
I
I
I
I

FOLD FOLD I
---~

I II II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POST AGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

ARH219

4201 North Lexington Avenue
(

Saint Paul, Minnesota 55112

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~
FOLD FOLD I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I

I
I
I
l
t
I
t
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
!

UJ
z
::::;

<.'.>
z
0
-:i.
I­
=>
u

0
Cl

0
()

