CYBIL

User's Guide

NOTICEs

This document |Is proprietary to
Control Data., It is a restricted
document. for internal use onlys and
information contained herein is not
to be disseminated outside the
cCOmPpany.

DISCLAIMER:

This document is an internal working
paper only, It is  unapproved and
subject to changes, and does not
necessarily represent any official
intent on the part of (DC.

60456320-01 {preliminary) COMPANY PRIVATE



1.0
2.0

3.0

2»1 ALPHABET. +

CONTENTS

INTRODUCTION. » » »

[ ]
[ ]
»
»
»
[ ]
[ ]

LANGUAGE STRUCTURE.

242 CONSTANTS . »
IDENTIFIERS »
USE OF BLANKS
COMMENTSe o o » »
STATEMENT SEPARATOR
MODULE STRUCTURE. .
COMPILATION UNITS .
BLOCK STRUCTURE . «
SCOPE OF IDENTIFIERS,
REDEFINED IDENTIFIERS .

[ )
o & » ¥

& & » @
& & 4 & & &

>
-
*
>
»
» P
(
*
2
»

»
SEM

o 9 B B ¥ B4 P s 8 s e
(e ]
¢ 8 & 2 & )6 8 8 0 s b

* & & 9 s & b

Lo N o |

ABLES AND CONSTANTS « « » .
VARIABLE DECLARATION FQRHAT
TYPE‘ L * L] ® - - » * - » »
SCALAR TYPESe « o o o
3.3.1 INTEGER TYPE + »
343+.2 CHARACTER TYPE .
3.3.3 BODLEAN TYPE . »
3e3.4 ORDINAL TYPE . &

WNW( NNNNNNNNN

wmwn P‘N@Q‘\IO’“U‘J‘W

*
»
»
-
L4

¢ & 5 & 8 D 4 4 8 s »

6 9 & ¥ s b s s s

® & ® & e & 0 s e

W W
W &

3.3.5 SUBRANGE OF SCALAR
INITIALIZING VARIABLES» »
ATTRIBUTES’ L4 . » - - -* - » »
3.5.1 ACCESS ATTRIBUTE (READ).
3.5.2 STORAGE ATTRIBUTES (STATIC

Y

m

® & e & & & 5 ¢ & »

L
>
-
-
t 2
-
*
*
P
-

T

& & & & 5 8 & 6 s e

SECTION)
3e5.3

*

»

3.6 CONSTANT DECLARATION FORMAT.

4.0 TYPE DECLARATION., . o

.

»

L

L4

-

»

»

»

-

L4

SCOPE ATTRIBUTES {XDCL AND

»

® & 6 » 4 5 & s v b

5.0 EXPRESSIONS AND THE ASSIGNMENT STATEMENT.

5.1 OPERATORS 4+ »

5.2 SCALAR FUNCTIONS.

5201 PREDECESSOR AND SUCCESSGR FUMCTIBNS
5e2¢2 INTEGER CONVERSION FUNCTION {(ORD).
5+2+3 CHARACTER CONVERSION FUNCTION

EXPRESSIONS . .

-“w

CASE STATEMENT.
BEGIN STATEMENT
EXIT STATEMENT.

3.

5.

ELEM

6.1 IF STATEMENT. .
6.2

6.3

60456320-01 {preliminary)

¢« & o

*

-

»

ASSIGNMENT STATEMENT.

* o @

L

¢ & &

-

MENTARY COMPOUND STATEMENTS.

»
>
L ]

*

»

& & & & ¥

L4

»

»

& & & & &

-

-

& & & & @

s & & & @

COMPANY

e & & s

D6 8 & & ¥ & & 8 6 8 w8

« & & & ¥ ® b » e 6 & @

Ie & & & & ¢ & & 8 & ¢

»

-

*. & & s @

% & & & 9 & % 3 & b &

¢ & & 4 4 & & b ¢ &

»

-

s & & o »

® & & & 5 & S 4 4 ¥ e @

6 & & & & ¢ b ¢ b & b

*

»

-

(CHR)
54244 UPPERVALUE AND LOWERVALUE FUNCTIONS

»

. o o o

PRIVATE

Bage

ot
L]
ot

N I

I
WO U W N e e b OO DWW TN R e e

L UL

NNNNNNP;)NNNNN

I

wwwwwtfwwwwww

W
i
O ® W

S
|
[N

LN IR RS RN R RS IR R 1
L
OO W

'

[o = 004 R * e
]
P g 1

ii



CONTENTS

7«0 REPETITIVE STATEMENTS
7.1 WHILE STATEMENT .

7.2 REPEAT STATEMENT.

7-3 FOR STATEMENT . .
CYCLE STATEMENT .

& &4 & o
e ¢ & w @
®» & » ¢ @
® ¥ & ¢ @
¢« & & &
. % & ¥ @

8.0 STR“CTURED TYPES. » ‘ L » L - » » »
801 ARRAY TYPE: » L] » - * »
811 ARRAY INITIALIZATIGN

¢ & & &

8ele2 MULTI-DIMENSIONAL ARRAYS

Bsle3 INITIALIZING MULTI-DIMENSIO

ARRAYS . & 5 B = 9 » »

L

@ & b s @

. & ¥

>

* & & ¥
. & & ¥
. & & » &

& ¥ & »
& » @9

s ™w o &

NA

Balse4d REFERENCING MULTI-DIMENSIONAL

ARRAYS 2 @ & » 3 3 L] ]

Bela5 PACKING ATTRIBUTE FOR ARRAYS . &
Beleb ARRAY DATA STRUCTURE EXAMPLES. .
Bslebsl Micro-processor Memory.
BelebHe2 Character Translation .
81623 Table Manipulations

Be2 STRING TYPE o o o ¢ o 2 o o
Be2+s1 STRING REFERENCES. + &
Ba2.2 STRING ASSIGNMENTS « »
B8e2+3 ARRAYS OF STRINGSs «
Be2a4 STRING COMPARISONG. o
84245 STRING INITIALIZATION,
8.3 RECORD TYPE o o o 2 s o o 2 »
84341 RECORD REFERENCES. + »
Be3+.2 PACKING AND ALIGNMENT.
843+3 VARIANT RECORDSe » »
8-‘4 SETS. L L ] » L ] » . » L ] & » L ] *
Be4el SET DECLARATION. » o« »
B8u4e2 SET REFERENCES » « » «

Ba%e2+1 Set Value Constructo
Befe2e2 Set Initialization,.

8e4e3 SET OPERATIONS o o o+

9'0 PRBCEDURES' * L] * * - * * * -
9.1 DECLARATION AND USE »
9.2 NESTED PROCEDURES o o »
9‘3 PARAMETERS' * * - LIRS ] *

» 4 >
» * »
E L L
L d

* L4

9.3.1 FORMAL AND ACTUAL PARAMETERS

L]

® & » & 4 &6 & & & @ B

L]

® ® & & & & o 0 s v

-

¢ & ®

9+3.2 TWO-WAY {(VAR) PARAMETERS .
9+3¢3 KEVYWORD SPECIFICATION OF

PARAMETERS « o » »

9«3e4 DEFAULT PARAMETER VALUES

9.4 XDCL AND XREF ATTRIBUTES. «
9.5 INITIATING PROGRAM EXECUTION.
9.6 RETURN STATEMENTe o o o o o

*

ACTU

e & o @

60456320-01 (preliminary) COMPANY

- » »

@ & & & & & & & - ¥

s

e & » ¢ 5 & & b & S & & & O b e 4 4 B s e »

o & B & 6 ¢ & & b 6 5 b & B s

¢ % "™ e & 5 &5 & S & B s b " s s

» 8 ¢
“« & & O 9
e & » &5 o &

L

» & & 5
¢ 4 5 & » P & e 8 8
» & & ¢ 0
*» & & & @

PRIVATE

. » b



10.0 ADAPTABLE T*PES - - - - * » £ d £ Ed

CONTENTS

10.1 ADAPTYABLE TYPE DECLARATION,
10.2 ADAPTABLE FORMAL PARAMETERS
103 SIZE DETERMINING FUNCTIONS.,
10+3.1 LOWERBOUND and UPPER
10.3.2 STRLENGTH o s » » »
104 EXAMPLES» o o o o o s » o »

GUN

¢ 4 (Pe & s @
o » 6 o 4
¢ 8 Oe o &
e & v 5 & ¥
*« & ¢ 5 s & @
® o 8 & b b
& & ¢ ¢ & 0 @

11.0 POINTERS
11.1 POINTER DECLARATION
11.2 POINTER REFERENCE
11.3 POINTERS TO PROCEDURES
12.0 STORAGE MANAGEMENT
12.1 DESCRIPTION
12.2 SEQUENCE TYPE
12.3 RESET AND NEXT STATEMENTS
12.4 HEAP TYPE
12.5 ALLOCATE AND FREE STATEMENTS
12.6 ALLOCATING VARIANT RECORDS
12.7 SYSTEM STACK
12.8 PUSH STATEMENT
12.9 EXAMPLES
13.0 PROGRAM STRUCTURE
13.1 COMPILATION UNITS
13.2 MODULE CHARACTERISTICS
13.3 PROCEDURE CHARACTERISTICS
13.4 SCOPE DOF IDENTIFIERS
14,0 COMPILATION CONTROLS
14.1 PRAGMATS
14.2 TOGGLES
14.3 TOGGLE OPERATIONS
14.4 LAYOUT CONTROL
14.5 MAINTENANCE CONTROL
APPENDIXES
A. CHARACTER SET
Be REPRESENTATION DEPENDENT FEATURES
Bel CELL DATA TYPE
B.2 BASE/OFFSET ALIGNMENT
Bs3 ALIAS NAMING
Bes PRDGRAM PROCEDURE PARAMETERS
B.5 HARDWARE LIMITATIONS
C. SECTION DECLARATION AND ATTRIBUTES
De RESERVED WORD LIST

60456320-01 {(preliminary) COMPANY PRIVATE

iv



BREEACE

This document explains the {ontrol Data CYBIL programming
fangquage in a2 tutorial manner. The approach is to introduce
simple concepts firsty and then build upon these simple
concepts and introduce more complex concepts in fater sections.
Each section introduces new material and it is assumed that the
reader understands the material presented in the preceding
sections,

An assumption is made that the reader is familiar with
programming in generals and has some programming experience with
at teast one high—leve! fanguage {e.g.» FORTRANy COBDL» ALGOL»
etcede. It is not assumed that the reader is familiar with CYBIL
or has attended a CYBIL programming course.

This document does not take the place of a reference manual nor
does it describe features of the language that depend wholly on
a particutar implementations except to mention their existence
and treat them separately in an appendix., To make practical use
of CYBIL the reader must have available additional reference
materialy, including the LYBIL referance manual for the operating
system to be useds and a description of the operating systemts
input/output capabilities and how they are accessed from CYBIL
programs. Specifically, For NOS/VE and CYBER 180 development,
the reader shoutd bhave available {at minimum) the folfiowing
documentss availabte through the Document Control System (DCS).

Documeni Name RCS_ID
Ltanguage SpeciFication for CDC CYBIL ARH2298
CYBIL Impiementation Dependent Handbook ARH3078

External Reference Specification for CYBIL I/0 ARH2739
External Reference Specification for Simulated ARH3125
NQS/VE 1/0

CONVENTIONS

To distinguish CYBIL language elements and identifiers used in
the examples from the Engltish language text of this guide»

several conventions have been adopted. Specificaillys

0o Examples are presented as figures wherever possibiley
spatially distinct from surrounding text.

o Within texts reserved words and identifiers are printed
in full uppercase or enclosed in quotation marks.

60456320-01 (preliminary) COMPANY PRIVATE v



1.0 INIRODUCIION

To be supplied.

60456320-01 {pretiminary) COMPANY PRIVATE 1-1



2.0 LANGUAGE STRUCTIURE

2.1 ALBHABEI

The compiete CYBIL alphabet consists of characters with graphic
representations taken from the ASCII character set {(see appendix
A for the compliete Jist), CYBIL uses a subset of the alphabet
for specific purposess such as defining an identifier.

2.2 CONSTIANIS

Many types of constants are predefined to the compiler and
indicate the appropriate value. For example, integer constants
are known to the compiler, To represent the constant
twenty-fives the programmer urites 25. Negative integer
constants may also be used {(for examples -33)., Some constants
are programmer defined {(for examples string constants and
ordinal) constants; see section 3).

Boolean constants (TRUE and FALSE) may be used and have a
predefined meaning to the compiler {refer to section 3» Boolean
Typel,

Character constants are defined in terms of the ASCII character
set. A character constant iIs indicated by placing the character
within apostrophes {for examples 'BY refers to the character
constant uppercase B). Refer to section 3, Character Type.

A string constant consists of one or more adjacent characters
enclosed in apostrophes {for exampley YABCD1234?' is a string
constant consisting of eight characters), String constants are
always programmer defined, Refer to section 8 for examples
illustrating the use of string constants.

The pointer constant NIL indicates an unassigned pointer. NIL
can be assigned to a pointer variabte of any type. Refer to
section 11 for a discussion of pointerse.

Ordinal constants are lidentifiers defined by the programmer,
Refer to section 3, Ordinal Type.

2.3 IRDENTIEIERS

CYBIL uses reserved words (described in appendix D)» special
marks {for examples + - J)» digraphs or pairs of special marks
{for examples 3= <= <>}y and programmer defined identifiers,
Resarved wordss special markss and digraphs are predefined to
the CYBIL compiler and are not considered to be identifiers.,

The programmer may define identifiers as needed for module
namess procedure namess type namess variable namess constant

60456320-01 {pretiminary) COMPANY PRIVATE 2-1



namess and label names {all of which are defined in later
sections of this guide), The programmer—defined identifier may
not be the same as a reserved words A quick glance at appendix
D will familiarize the reader with the reserved wordse. Many
simple programming errors involve conflicts with reserved wordsa.

Programmer defined identifiers are limited in length to 31
charscters. Uppercase and fowercase characters {(for examples A
and a) are treated as the same character whepn used in an
jdentifier. For examples CYBIL treats NEWPROGRAMTEXT and
NeWpRoGrAmTeXt as the same identifier,

The first character of an identifier must be alphabetic {that
is» A thru Z or a thru 2). Vatlid subsequent characters include
A thru Z» a thru zs the digits 0 thru 9, and four additional
characters:? underline {_)s number sign {(#)s dollar sign ($)s and
commercial at (3},

Examples of identifiers are shown in figure 2-1,

¥Yalid Invalid
wheat_production 3rd_Test
A210 ONE+ONE
Syntax_Table 2S1GN
Z#_%9 JLARRY_
ABC Field_ 3.7
PETE___ I/0
TEST_deck3#215

NAMEPDINTER

Field_A

Figure 2~1. Identifiers

The valid identifiers in figure 2-1 need no explanation, The
invaliid identifiers are incorrect for the following reasons:
3rd_Test» first character not ailphabetic; ONE+ONEs contains an
itlegal character {#)}; 2SIGNs Ffirst character not alphabetic;
_LARRY_y first character not alphabetic; Field_3.7» contains an
itlegal character {,); I/0s contains an illegatl character{/}.

2.4 USE.QE_BLANKS

Identifierss reserved wordss and digraphs cannot contain
embedded blanks. Efsewheres bianks may be used freelys except
in string constants where a blank represents a character,

2.5 COMMENIS

A comment may be used anywhere that bltanks may be used {(except
in string constants). A comment is printed in the source
listing but does not atter the meaning of the source program
(that is» comments are ignored by the compiler).,

60456320~01 {(prelfiminary) COMPANY PRIVATE 2=2



A comment is bounded by left and right braces: { and }» A
comment may contain any character except a right brace {(}).
Comments that cross 1ine boundaries must be restarted at each
line as shown in figure 2=2.

{THIS COMMENT
{CROSSES LINE
{BOUNDARIES.}

Figure 2-2., Comment Example

If you forget to terminate a comment with 3 right brace (})»
CYBIL terminates the comment when it encounters the end of the
1ine,

2.6 STATEMENI _SERARAIQR_LSEMICOLON)

The semicolon {3} Is used to separate one statement from
another., Extra semicotons may be used and indicate one or more
empty statements. Since CYBIL ignores empty statementsy extra
semicolons have no effect on program execution {and de not
cause compilation errors).

2.7 MODULE_SIRUCTURE

Every CYBIL program must be bounded by the reserved words
MODULE and MODEND. The module®s name (an identifier) must be
specified after MODULE and can be repeated after MODEND.

MODULE sample;

-

{CYBIL source
{text

®
MODEND sample

Figure 2-3, Module Declaration

The acceptable structure jtlustrated in figure 2-3 shows 3

CYBIL moduie declaration which consists of a CYBIL source
program enclosed by MODULE and MODENDs The structure in figure
2=-3 also shows the use of an identifier (SAMPLE) to provide a
name for the modulie. It is good practice to provide meaningful
names for modules to enhance the readabitity of the source texte.

Additional implications of the MDDULE and MODEND statements with

respect to program structure and scope of identifiers are
described in section 13,

60456320~-01 {preliminary) COMPANY PRIVATE 2-3



2.8 COMPILATION UNIIS

The compitation unit consists of a module declaration and
optional compite~-time statements and comments. Module declara-
tion Is described more fully in section 13. Compile-~time decla-
rations and statements: are discussed in section 14. A pictoriatl
representation of a compilation unit Is given in flgure 2-4.

{

{

{

|
+*

»
{Compile~time statements
{and comments

-

*
MODULE sample_prog;

o N G GE e G SE W B G BS SE e S SR e

-

L {Additional compile-time H Compilation

: {statements and H © Unit
Source | {comments H
Program< {CYBIL source text} >Module

] ]

; : :

ok ° :

MODEND sample_prog -4+

W e G N NS GG B EE BN R A SR LN NS B e
W R ae aE e e el e Y we Sl e e e S e

Figure 2-4, C(Compitation Unit

A number of compifation units may existy one after another, in
the source input flle. The compiler reads the source input fife
and produces one or more object modules on the object file. The
number of obJject modules produced will be equal! to the number of
compilation units if there are no errors during the compilation
processs, Certain errors {(within one compitation unit) may
suppress the corresponding object module. In generaly one

ob ject module is produced for each compilation unit. It shoulild
be clear that a compilation unit and a module are not identical.
Each compilation unit contains one module declaration,

The compiiation processs thens transforms compilation units on

the source input fite into object modules on the object file
{see figure 2-5).

60456320-01 (preliminary) COMPANY PRIVATE 2-4



Source Input File Object File

+ - e
1 0+ + 3 P temm——— -t 3
i iCompitationi | i i0bjecti
- Unit HEH o e i iModule}
| temmm——e————t : : 1 temmm—— ]
: H i CYBRIL H » :
H {ewmeme=>iCompilori ———we——— >3 » H
H R : : H : » H
LS + ! b m———— ! femm———t 2
? iCompilation} |} i 10bjecti |
I Unit HIH '3 $Moduile! !
HEE + 1 I tem——— ]
E L TN RS pom——————

Figure 2-5, Compilation Process

2.9 BLOCK_STRUCTURE

In CYBIL» the programmer can create and identify unique blocks
{groups) of source statements. The purpose of blocks is
primarily to provide a structure to a sequence of statements.
For examples a3 given program performs input» computes a resultl,
and prints the result. An obvious organization for this program
consists of three blockss To change the computational method
used in this sample programs the programmer concentrates his
efforts on the computational blocke If the program were not
block structureds the programmer must first find the source
l1ines dealing with the computation. This may not be easys since
the computational instructions might not be grouped together.

In addition to simple groupings CYBIL provides for the
declaration of yariables inside blockss These variables are
considered to be local to the block in which they are defined.
The programmer can use this block structure to manage storage
requirements. When execution of a program enters a blocks
memory {storage space) is set aside for the variables dectlared
in the blocks, ¥When the program finishes a btocks the storage
space reserved for the Jlocal variables iIs released,

One advantage of this approach is that storage space for
variables exists only when It is neededs A disadvantage is that
extra storage manasgement code must be generated and tater
executed to accompiish this management functions thereby slowing
both compifation and executions as weill as increasing storage
requirements for the program itself,

A CYBIL program may be written with lots of block structure or
fittte block structure. The choice is up to the programmer.
Liberal use of block structure makes a source program easier to
maintain or changesy and for this reasons use of block structure
is recommended wherever possible.

Block structure is introduced by the use of procedure decla-
rationsy described in section 9,

60456320-01 (preliminary) COMPANY PRIVATE 2=-5



2.10 JC0PE_QE _IDENTIEIERS

The scope of an identifier is the domain of a CYBIL program
over which all references to an identifier are associated uith
the same definition of that identifier. The scope of
identifiers is affected by the use of blocks {(procedure
decliarations). An identifier may be referenced only in the
block in which it iIs declared and blocks contained within the
defining blocks There are a3 few methods for ayoiding this rule
{known as scope attributes); they are discussed in section 3.

Flow of Program Execution

-

Block 1

Identifier A

+ +
] ]
] EH]
H Block 2 H
H b - + H
H $Identifier B 3} H
$ t § ] 3
] ]
H : H :
H + + + H
] k] E ]
] ]
] 3 ]
] E 4
E ] L] E]
E L] 1 ]
: v Block 3 H
H + —— - H
H tIdentifier C 3} :
E ] E ] E ] 4
L 3 E ] 4 ]
E ] ]
* ] ] ]
? Fom—— + + H
H : H
» 3 ]
E ] 4 |

4

L ]

v Block 4
+ - S +
iIdentifier D H
] ]
| 1
] ]
1 ]
o - + L e, +

:

]

L |

v

Flgure 2-6+. Scope of Identifiers

Four blocks appear in figure 2-6. Each block contalins an
identifier (A» By C» and D). These identifiers could be names
of typess varliabless constantss or procedures, The particutar
kind of identifier is not important to this discussion.

60456320-01 (preiiminary) COMPANY PRIVATE 2-6



Identifiers can be local or global, depending upon their
position in the module and the point of references The
following discussion describes where a reference to a given
identifier is valid,

The Jdentifier A is defined ins or 1ocal tos block 1.
Identifier A is global to blocks 2 and 3, which are contained
within block 1 {the defining block), Source program statements
may refer to {make valid references to) all variables local to
their block and also to variables global to their blocks So»
for examples statements in block 1 can refer to identifier A»
and so can statements in blocks 2 and 3. Howevery statements
in block 4 cannot refer to identifier A,

Identifier C is 1ocal to block 3. Statements in block 3 can
refer to identifier C because it is 1ocal to block 3» and to
identifier A because It is global to block 3. Howevery
statements in block 3 may not refer to identifiers 8 or D
because these identifiers (B and D) are neither 1ocal nor global
to block 3.

Table 2-1 indicates the scope of the identifiers 1tlustrated in
figure 2-6.
TABLE 2-1. SCOPE OF IDENTIFIERS

Defined in Can be referenced

' ' '
Identifier ; and local to ; Global to ; by statements in
A E Biock 1 3 Blocks 2 and 3 3 Blocks 1» 2» and 3
B % Btock 2 % none % Block 2 only
C % Block 3 % none % Block 3 only
D % Block 4 % none é Biock & only
H : :

Figure 2-6 shows that block 1 is entered firsts 1If A denoted a
variables CYBIL would find space for variable A. Nextsy block 2
is entereds If B denoted a variabley, (VYBIL would find storage
space for variable B. Nexts an exit from block 2 occurs. Upon
exit from block 2» the space reserved for variabte B is
released. Note that the space for variable A is not released.

Upon entry to block 3, space is reserved for variable C
{assuming C is a variable)l. Upon exit from block 3» the space
reserved for variable C is relfeaseds Upon exit from block 1»
space reserved for variable A is releaseds The process
continues for variable D as block 4 is entered and exited.,

Notice that each of the variables (A Bs C» and D) has a

specific lifetimes Each comes into existence upon block entry
and disappears upon the appropriate block exite.

60456320-01 (preliminary) COMPANY PRIVATE 2=7



For this reasons variables declared within blocks are cailed
automatic variables, That is» CYBIL automatically establishes
storage space for these variables upon block entry and releases
it upon block exit.

2.11 REDEEINED_IDENIIEIERS

When an identifier name is defined in more than one blocks

CYBIL uses well formed rules to determine which definition of
the identifier applies to a particular reference. The following
paragraphs describe what happens when a reference is made to an
identifier for which both local and global definitions exists as
itlustrated in figure 2-7.

Flow of Program Execution
E |

]

:

: Biock 11
+ ‘- ———
tldentifler X :
H v Block 12 H
H b + H
H t1dentifier X | :
: H : :
H H : :
3 - + + M
: H :
H : :
E 3 $ ]
L) 3 )
H v Block 13 :
H + - + H
H t1ldentifier Y :
H H : :
H : H H
H + o + H
: H H
| 2 L]
] 3 ]
* H -t

H

v Block 14
$1Identifler X H
H :
: H
P e e ot e s e e +

:

L]

]

v

Figure 2-7. Identifier Conflicts

In figure 2-7 identifier X is declared in three different blocks
{11y 12» and 14). Assume that atl identiflers (X?s and Y) are

60456320-01 {(preliminary) COMPANY PRIVATE 2-8



variabless Tracing the flow of program execution shows that
block 11 is entered first where storage space is obtained for
the variable identifier X In block 11. Nexts block 12 is
entered and space is obtained for the variable X dectared in
block 12,

At this pointy there are two variables identified X in
existence. Statements within block 12 can refer only to the
variable identifier X l1ocal to block 12, When an exit occurs
from block 12» the block 12 local variable X is releaseds but
the block 11 variable X remains., Statements in block 13 can
reference variable X from block 1l1.

Finallyy, when the flow of program execution exits block 11,
space for the local variable X in block 11 is released.s Thens
biock 14 is entered and a new variable jdentifier X for block 14
is established,

White all this may seem a little confusing at Firsts there are
some benefits derived from block structure., Because of the way
CYBIL treats local variables and lidentifiers, blocks can share
variabtes and identifiers when they are giobal to the blockse.
Identifiers can be as global as necessary to provide the amount
of sharing needed {(for exampley identifier A in block 1y figure
2-6)s Conversely, by declaring a variable or ldentifier within
an inner block (for exampies, identifier Y in block 13» figure
2=7) or within a separate block {(for examplesy identifier X in
block 14y figure 2-7)y the programmer shields the space reserved
for the variabte identifier from being referenced from any other
blocke This protection can improve program reliability and ease
the burden of making program correctionss. When an identifier is
shielded From other blockss a programmer can make changes to the
focal (shielded) variable with full confidence that he is not
destroying an essential variable referenced elsewhere in the
programa.

60456320~01 (preliminary) COMPANY PRIVATE 2-9



3.0 YARIABLES AND_CONSTANIS

3.1 VARIABLE DECLARATION_EDRMAL

All variable declarations follow the general Fformat shoun in
figure 3-1,

VAR identifier 3 [attributes] type 3= initialization

Figure 3-1, Varlable Declaration Format

When the attributes and initialization (refer to figure 3-1)
are omitteds, the variable declaration format takes the simple
form shoun in figure 3-2,.

VAR identifier : type

Figure 3-2, Simplified Variable Declaration

The reserved word VAR introduces the variable dectaration. The
programmer declared identifier {or name) used to refer to the
variable is given nexts followed by the type of the variable,

3.2 IYRE

In the variable declaration each variable identifier is :
associated with a type. The type of the variable determines the
operations aljowed with the variables, With this information the
compiler performs many compile time checkss resutting in more
comprehensive error checking. For examples the assignment of an
integer constant to a variable is valid only if the variable is
deciared to be type integer {or a subrange of the integers).

Any other assignment is iltlegale. This may seem trivial in the
case of type integer; howevery checking types at compite time
can be extremely valuable when dealing with pointers or
structured types.

3.3 JCALABR_IYRES

A scalar type is one in which the values can be ordered
{scaled)s The scalar types are integer» characters boolean,
ordinals and subrange. Scalars have the property that given any
specific value one cany» in generaly find the next value
{successor) or the preceding value {(predecessor) of the scalar.,
For exampler given the integer eights the predecessor is seven
and the successor is nine. A scalar variable is a variable
declared to have a scalar type.

60456320~-01 (preliminary) COMPANY PRIVATE 3-1



3.3.1 INTEGER TYPE

The integer type {INTEGER) consists of positive and negative
integers in the range allowed by the computer hardware.
Appendix B discusses these limitations. The folowing statement
declares a variable COUNT to be type INTEGER.

VAR count 3 integer;

Figure 3-3, Integer Variable Declaration

Notice {in figure 3-3) the use of the reserved word VAR to
introduce the declaration. The identifier {COUNT) appears nexts
separated from the type {INTEGER) by a colon., The semicolon
separates this declaration from subsequent decliarations or
statements.,

To decliare three variables (COUNT, ROOTs, and XSQUARE) to be
integer one could write three VAR statements with one
declaration in each statement or one VAR statement with three
declaration parts.

Jheee DReclarations Qpe_Deciaration
VAR count : integer; VAR

VAR root 2 integer; count ¢ integers
VAR xsquare t integer; root 3 integers

xsquare ¢ integers;

Figure 3-4, Multiple Variable Dectarations

In figure 3-4s the three~declaration approach requires three VAR
reserved words and each VAR declaration is separated from the
next declaration by a semicolon.

With the one-declaration approachs only one VAR statement
appearss It occupies four {ines but it is one declaration
{starting with VAR and ending at the semicoion). The
decltarations for COUNT» ROOTs and XSQUARE are separated by the
commas This form of the variable declaration eliminates the
need to write the reserved word VAR over and over again.

CYBIL altows an additional form of the variable declaration,
Wwhen many variable ddentifiers are the same types the

identifiers may be written on the {eft of the colon separated
from each other by commas (see figure 3-5).

VAR
county rooty, xsquare 3 integer;

Figure 3-5., Muttiple Variable Declarations

60456320-01 {(pretliminary) COMPANY PRIVATE 3-2



When declared in a blocks and in the absence of any attributes
{see figure 3-1)» the variable declarations in figures 3-3, 3-4,
and 3~5 are automatic variables., The system allocates space for
these variables when the block in which the variables are
declared is entered at execution time. The storage space for
‘these automatic variables disappears when an exit from the
containing block occurs. These rules define the lifetime of the
varjabless, The scope of the variable identifiers Is the block
containing the decliarations.

3+3.2 CHARACTER TYPE

The character type {abbreviated CHAR) consists of a character
set of 256 distinct characters; the first 128 are ASCIIs the
remainder are unassigned. Some characters have graphic
representations (for exampies the letters A through Z» a
through Zs the numbers 1 through 9); many do not, The ASCII
character set and assoclated values are iltustrated in appendix
A

When a varijable is declared to be type CHAR it may assume {be
assigned) any character value. A character value is represented
by the character graphic enclosed in apostrophes {for exampies
YA' to represent the character value A)s or by the value of a
conversion function described in section 5 {CHR)e A value of
type other than character may not be assigned to a character
variables This kind of error is detected during program
compilation,

The statement in Ffigure 3-6 declares a variable (MIDDLEINITIAL)
to be type character.

VAR
middleinitial 3 char;

Figure 3-6. Character Variable Declaration

The rules governing variabte lifetime and identifier scope are
the same as described for the integer variable.

3.3.3 BOOLEAN TYPE

The boolean type {(BODLEAN) provides a mechanism for
representing logical values. The two boolean values are TRUE
and FALSE. TRUE and FALSE are reserved identifiers and
represent the values associated with the boolean type. A
variable declared to be type bootean may be assigned one of two
values (TRUE or FALSE). Any other assignment {such as the
assignment of an integer value) to a boolean variable is an
error detected during compilation, Variable identifiers
INHIBIT_READ and NOT_BUSY could be decltared to be boolean
variables with the statement shown in figure 3-7.,

60456320-01 (preliminary) COMPANY PRIVATE 3-3



VAR
inhibit_reads not_busy 3 boolean;

Figure 3-7, Boolean Variable Declarations

Dperations that produce boolean results are discussed further in
other sections.

3.3.4 DRDINAL TYPE

An ordinal is an ordered {(scalar) sequence of user—-defined
jdentifiers., These ordinal identifiers are then values which
may be assigned to the ordinal variable.

The ordinal type is a convenient way of introducing meaning into
a program. For examples assume that, in writing a program to
drive a line printers a wvariable (STATUS) is needed to contain
the current status of the printer. For this vparticular printer
there are four possible statuses: readys not readys parity
errors and fost data. In a conventional programming language
one might declare a variable STATUS to be type integer and
assign a value {1 to 4) to represent the actual status,.

Now consider program maintenance (sometime in the future). When
a statement says assign the value 3 to the variable STATUS» the
meaning may not be clear, Either program comments or auxiliary
documentation are needed to specify that the value 3 represents
the parity error status. CYBIL offers a better solutions shown
in figure 3-8,

VAR
status ¢ {(readys not_readys parity_errors lost_data);

Figure 3-8, 0Ordinal Variable Dectlaration

Figure 3-8 {ltustrates how an ordinal is declared. An ordinsai
is an ordered list of (user-defined) identifiers enclosed in
parenthesess In this examples the variasble STATUS is declared
to be of ordinal type. The specific possible ordinal values
{user defined constants) are written in parentheses. The term
ordinal refers to the ordered list of user—defined identifiers;
the term ordinal identifier (or ordinal constant) refers to a
particular identifier used to define an ordinal.

Ordinal identifiers are declared in ascending order. Once
declareds they cannot be used in any way other than to denote an
element of the ordinal (within the scope of the ordinal
declaration)es Given an ordinal identifiery, say PARITY_ERRQORy it
Is possible to find the predecessor (NOT_READY) and the
successor {(LOST_DATA) just {ike any other scaftar type. The
major difference between ordinals and other scalar types is that
the programmer defines the values constituting an ordinal by the
order in which they are specified,

60456320—01 {preliminary) COMPANY PRIVATE 3-4



The first ordinal identifier (for examples READY in figure 3-8)
may be thought of as having the value zeros the second
identifier (NOT_READY in figure 3-8) has the value oney and so
one Section 5 Scalar Functionss discusses explicit methods of
translating between an ordinal constant and its equivalent
value.

3.3.5 SUBRANGE OF SCALAR TYPES

When declaring a variable, one does not always want the variable
to be ablie to take on all possible values normally associated
with the type. Sometimes it is desirable to define a subrange
of a given {scalar} type.

For exampley assume the task is to write a payroll program. All
the employees have been assigned employee numbers and the
payroll department guarantees that employee numbers are always
integers that never exceed 5 digitse A variable identifler
{EMPLOYEE_NO) declared to be type integer could be mistakenly
assigned an illegal employee number {(any integer value greater
than 99999), A better deciaration for the employee number is
shown in fligure 3-G,

VAR
empioyee_no 3 1 . 99999;

Figure 3-9, Subrange of Integer

Instead of a type {(INTEGER» in this case)s the declaration in
flgure 3-9 specifies 1 .. 99999, This means that the variable
EMPLOYEE_NO is limited in range to the values between 1 and
99999 inclusives The compiter will generate object code to
check that all assignments to variable EMPLOYEE_ND fall in this
range., If an assignment is found {(at execution time) to be
outside this ranges an execution time error will occur and the
program will terminate. The execution time error checking may
be optionally disabled (refer to section 14)., If CYBIL detects
an invalid assignment during compitationy it issues an
appropriate diagnostic message.

The symbol .« » In figure 3-9, defines a subrange. A scalar
value {not necessarily an integer) must appear on the left and
right of the . symbols The left value must be less than or
equal to the right value. The type of the subrange is assumed
from the type of the teft or right arguments, Either teft or
right may be used since they must both be the same type, For
examples in figure 3-9, EMPLOYEE_NO is said to be a subrange of
the type integer.

Subranges of other types are also possibles Suppose that a
variable were needed that could be assigned any uppercase letter
{not any character). This could be accomplished as shoun in
figure 3-10.

6045632001 (preliminary) COMPANY PRIVATE 3-5



VAR
alphabetic 3 A ,, 1713

Figure 3-10. Subrange of Character

The +» {in figure 3-10) indicates that the type is to be a
subrange, The 'A' and %71' indicate the lower and upper bounds
of the subrange. This subrange is a3 subrange of characters.
Note that the character A is speciflied by enclosing the
character in apostrophes {(%'A?),

A subrange of type boolean is possible but not too meaningful as
shown in figure 3-11,

VAR
data_flag ¢ FALSE .. TRUE3;

Figure 3-11. Subrange of Booclean

Since there are only two values associated with type boolean
{FALSE and TRUE) the type of DATA_FLAG in figure 3-11 is realily
booleans 1In the scalar orderings FALSE is defined {by the
CYBIL specification) to precede TRUE.

CYBIL also permits subranges of ordinals.

VAR
hardware 3 {tackss nails», splikess boltss nuts)»
hammer_stuff : tacks .. spikess

Figure 3-12. Subrange of Ordinal

In flgure 3-12, an ordinal variables HARDWAREs is declared to
contain TACKS» NAILS» SPIKES, BOLTS» or NUTS. The stuff that
can be hit with a hammer (HAMMER_STUFF) 1is declared to be a
subrange of the preceding ordinal (TACKS .. SPIKES).,

In all subrange declarations the values included in the subrange
can be determined {(by the compiler or programmer) by finding
the successor of each value starting with the first (TACKS in
figure 3-12) and ending with the 1ast {SPIKES).

3.4 INITIALIZING_VARIABLES

Many programming situations require 3 variable to have 23
particular vatue when program execution begins. This is done by
specifying an inftial value for the variable when it Is declared
{refer to figure 3-1 for the general variable deciaration
format).,

60456320-01 {prefiminary) COMPANY PRIVATE 3-6



VAR
voltage ¢t {lows mediumy high) 2= medium,
next_char : char := 1B,
initial_vatue 3 integer 32 =-3721946,
year 3 1900 .. 2000 = 1978,
first_pass : boolean := TRUE;

Figure 3-13, Initiatlization of Variables

After the variable identifier and type {(in figure 3-13)s an

initial value Is specified after the 3=z symbols The initial
vatue must be the proper type for the variahle declareds and
must be in the proper range.

VOLTAGE is a variable {in Figure 3-13) declared to be an
ordinal, The initial value is the ordinal value MEDIUM., The
other variables in figure 3-13 need no explanation.

3.5 AIIRIBUIES

Attributes are used to control the method of accesss method of
storages and scope of programmer defined variables, Refer to
figure 3-1 to review how attributes are specified.

3.5.1 ACCESS ATTRIBUTE (READ)

The access attribute (READ) is used to indicate read-only
access for a variable. Assignments to read-only variables are
not alloweds. A read-only variable must be Initialized as this
is the only way to provide a vatue.,

VAR
foop_timit : {READ]Y integer 2= 25,
end_char : [READ] char := %%x?;

Figure 3-14, Access Attribute

In the example above {Ffigure 3-14)s the variable LOOP_LIMIT is
defined to be a read—only variable of type integer with the
vajue 25. Subsequent program statements (within the scope of
this variable identifier) may access {refer to) the jidentifier
LOOP_LIMIT whose value is 25, No statement may make an
assignment to (or alter) the value of this variable.

{Read—-only variables are usually structured variablesy described
in section 8. Constant declarationsy described later in this
sections are usually more sultablte than read—-onily scalar
variables.)

60456320-01 (preliminary) COMPANY PRIVATE 3~7



3.5.2 STORAGE ATTRIBUTES (STATIC AND SECTIGON)

When a variable is given the static attributes normal storage
allocation and returning {associated with automatic varlables)
is not performed. In effectsy this makes a variable
nonautomatice. The storage for a static variable is obtained no
{ater than the entry to the block containing the declaration.

Uniike automatic variablesy the storage space for a static
variable is not returned upon block exit., The storage space is
static. The static attribute can be used to extend the {ifetime
of a variable. An example might be a counter whose value
indicates how many times that the block in which it is dectared
Is entered.,

Only a static variable declaration may contain an
initiatizations If s0» the initialization occurs oniy onces
when the storage space is first made avaliable.

The scope of the static variables however, does follow normal
scope rules. That iss» the identifier may be accessed only in
the block containing the declaration {and nested blocks). An
example of the static attribute is shown in figure 3-15.

VAR
blockl3_count 8 [STATIC] iInteger := 0,
master_flag * {STATICY boolean;

Figure 3-15, Static Attribute

3.5.3 SCOPE ATTRIBUTES {(XDCL AND XREF)

Scope attributes extend the scope of an identifier defined In a
variable declaration statement. Any variable given a scope
attribute automatically has the storage attribute STATIC. The
programmer need not specify the static attribute.

Normallys the scope of a variable is the block in which the
identifier is declareds, If the identifler Is to be used in many
blocksy it is made gltobal enough to accompiish this objective.
But the scope of the most global identifier {without a scope
attribute) is still the module in which it is declared.

Scope attributes altiow an identifier to be known {or shared)
between modules. When the toader Jloads the moduless it 1inks
together the variables with scope attributes.

The XDCL attribute indicates that an identifier is declared in a
module and may be referenced from any other module. Variables
with the XDCL attribute may be initialized and assignments are
al iowed.

60456320-01 (preliminary) COMPANY PRIVATE 3-8



The XREF attribute indicates that an identifier is declared in
some other module and is referenced from this module., Variables
with the XREF attribute may not be initializedy but assignments
are aliowed,

When the loader loads moduilesy it resolyes XDCL and XREF
variables, XDCL wariables are allocated space {as static
variables) and XREF variables in other modules with the same
identifier share the same storage space as the equivatent XDCL
variable.

The toader issues an error message if an XREF variable has no
XDCL counterpart.

MODULE firsts; MODULE last;

VAR VAR
count : I[XDCL] Integer := 03 count 3 I[XREF] integer;
MODEND firsts MODEND flasts;

Figure 3-16. Scope Attributes (XDCL and XREF)

In figure 3-16s two modules are compiled producing two separate
object modules. The loader then loads both modules prior to
program executions The variabie COUNT in module FIRST is type
Iintegers XDCLy, initialized to the value zeros» and static by
default,

When the 1oader encounters variable COUNT in module LAST, it
assigns the same storage space as that used for COUNT in module
FIRSTs In this ways references to variable COUNY from either
module will refer to the same storage location{(s).

Variable identifiers used with XDCL and XREF attributes must
conform to the loader requirements for jdentifiers,

3.6 CONSTANI_DECLARALION_EQRMAL

A1} constant declarations follow the general format shown in
figure 3-17.

CONST identifier = constant expression;

Figure 3~-17., Constant Declaration Format

The constant declaration is introduced with the reserved word
CONST. Nokte the use of the equal sign between the identifier
and the constant expression.

6046456320-01 (prefiminary) COMPANY PRIVATE 3-9



The constant identifier follows the same scope rules that apply
to other identifiers. The constant expression is evaluated at
compiie time and Is associated with the constant identifier,
The constant identifier may then be used {(subject to scope
rules) instead of the constant expression,

A constant cannot be altered by subsequent assignment in the
programs It iss» in effects a read only constant,

In a program there may be many references to values known at
compile time. Examples include the tengths of arrays and
stringss the number of iterations to performy, and S0 on.

A good programming practice is to decltare constants where
appropriates and then use the constant identifier throughout the
program {(instead of the constant value)., This approach makes
changing the constants in the program easy. All one needs to do
is change one constant declaration at one place in the source
texts

Some sample constant declarations are illustrated Iin figure
3-18,

CONST
one = 1,
unity = 1,
number _of_elements = 3721,
array_size = {number_of_eclements + 9) / 10
First_letter = A,
flag_up = TRUE;

Figure 3-18, Constant Decliarations
The type of the constant identifier is the same as the type of
the constant expression. For exampiey constants ONE and UNITY

are type integers constant FIRST_LETTER is type characters and
constant FLAG_UP is type boolean.

60456320-01 (prediminary) COMPANY PRIVATE 3-10



4.0 JYRE_QECLARAIICON

Section 3 discussed variable identifiers and the syntax for
estabiishing a type for the variable identifiers. A scalar
variable was defined to be one whose corresponding type was a
scalar type {(that is» integers, characters booleans ordinal, or
subrange).

CYBIL provides a mechanism to separate the definition of a type
from the declaration of variables, In addition to the CYBIL
predefined scalar types (integer, characters and boole2an), the
programmer can define a type and establish a type identifier.
When variables are declareds their type must always be
specifieds But nows the variable may be a CYBIL predefined
scalar type (for examples INTEGER, BOOLEANs CHAR) or a
programmer declared type. The general format of a type
declaration is shown in figure 4-1.

TYPE identifier = type specification

Figure 4-1, Type Declaration Format

The reserved vword TYPE introduces the type declaration
statement.,. The identifier must conform to the rules governing
fength and valid characters for identifierss The type specifi-
cation is a programmer deciared {(vatid CYBIL) type.,

The type declaration is a compile time declaration. It does not
occupy storage space during program execution., The type
declaration does folilow the rules of scope of identifiers, A
type identifier may be referenced {(at compile time) only in the
block in which it is declared and blocks contained in the
defining block.

Figure 4-2 illustrates a simple use of the type declaration.

TYPE
tape_position = (beginning middies ltast);
VAR
scratch_tape 3 tape_position 2= beginning,
out_tape 3 tape_position 3= last;

»

'Flgure 4~-2+ Type Declaration Example

In the example in figure 4-2» a type identifier (TAPE_POSITION)
is declared to denote an ordinal whose values are BEGINNING»
MIDDLEs and LAST, The type identifier (TAPE_PDSITION) means {or

60456320-01 {(preliminary) COMPANY PRIVATE 4-1



stands for) the ordinal wherever it is used within the block in
which it is declareds The variable SCRATCH_TAPE has been
declared to be type TAPE_POSITION and will be initialized to the
ordinal value BEGINNING, The variable QUT_TAPE is also declared
to be type TAPE_POSITION and is initialized to the ordinal value
LAST.

In the variable decliaration one could write the ordinal itseilf
(the parenthesized list of user-defined identifiers) instead of
a reference to the defined ordinal type (TAPE_POSITION}. This
approach would require that the ordinal be written tuice, as
shown in figure 4-3,

VAR
scratch_tape: (beginning, middies fast) 2= beginning,
out_tape: {beginnings middies last) = last;

*

Figure 4-3, Incorrect Ordinal Variable Type Declaration

In figure 4-3 the ordinal (BEGINNINGs MIDDLE, LAST) is defined
twicey once for each variable identifier.s, Using the type
declaration {(as in figure 4-2)y one avoids writing a user
declared type over and overe.

Type declarations are even more useful with more complicated
typess Type declarations facifiitate the creation of non-scalar
types such as cells {appendix B) and pointers {(section 9)s the
structured types such as setss stringss arrayss and records
{section. 8)» and the storage types such as sequences and heaps
{section 12). Type dectlarations also help in the decliaration of
adaptable types and formal types for procedures, These
additional uses of the type deciaration will be covered in later
sectionss This section is intended to be an introduction to the
use of types.,

In summarys type dectiarations follow all the rules pertaining to
scope of identifiers. A type declaration does not occupy
storage at execution times but is used to declare an identifier
that stands for a programmer defined types. The type!s
identifler is typically used in a variable declaration or
procedure dectaration to refer to the programmer defined type.

60456320-01 (pretiminary) COMPANY PRIVATE 4=-2



5.0 EXBRESSIONS_AND _THE ASSIGNMENI STATEMENT

5.1 QRERAIORS

CYBIL provides five classes {or levels) of operators. Each
operator performs an operation on a value or pair of values to
produce a result., The following list shows the operator classes
in descending order of evaluation precedence.

NOT operator
Multiplicative operators
Sign operators

Additive operators
Relational operators

When an expression involves several operatorss CLYBIL determines
the order of evaluation from the order of precedence. For
examples If a statement contains multiplicative and additive
operators {and no parentheses) the multiplicative operations are
performed before the additive operations. Parentheses can be
used when necessary to change the normal order of evaluation,

The NOT operator negates a boolean operand; that iss NOT TRUE
equals FALSE» and NOT FALSE equals TRUE. NOT can be used only
with a boolean operand,

DOperators in the other classes perform various operations on
other scalar types as well as on types that have not ya2t been
discussed {nonscalar types). The following tables summarize the
operatorss their meaningss and their operand and result types.,
Operations on nonscalar types are described in the sections that
introduce the types. This section presents detailed
descriptions {where necessary) of operations on scalar types
only.

The multiplicative operators include multiplication (*),
division (DIV)y remainder (MOD)» and logical and {AND), and are
summarized in table 5-1., The logical and operator {(AND)
results in TRUE if and only if both of its operands are TRUE,

TABLE 5-1. MULTIPLICATIVE OPERATORS

Operandsi Resuit

t Operator 1} Meaning H H
HE e 2 + -4 -3
: % ? Multiptlication H : H
: DIV ! Integer quotient § Integer § Integer
: MOD ! Remainder 5 : H
e ——— + - - e 3
: AND t Logical and i Bootean | Boolean !

i
i
i
]
]
|
!
t

60456320-01 (preliminary) COMPANY PRIVATE 5-1



The sign operators include integer identity {(+) and integer sign
inversion (-)» and are summarized in table 5-2,

TABLE 5-2. SIGN OPERATORS

${ Operator | Meaning 1§ Operand § Result :
H + - - + -1
: + i} Identity H H :
H - { Negation t Integer { Integer |}

|
]

The additive operators include addition (+)s subtraction (-),
fogical difference (~-)y inclusive logical or (OR)s and
exclusive logical or {XOR)» and are summarized in table 5-3,

TABLE 5-3. ADDITIVE OPERATORS

i
|

{ Operator ! Meaning ! Dperandsi Result |
H o ———— —— .
: + { Addition : : H
: - + Subtraction i Integer i Integer 1
H + e e + o —————— H
H ORrR t Logical or {inclusive)i : H
H XOR i Logical or {exclusive): Boolean §{ Boolean }
: - i Logical difference H : H

The boolean operators in table 5-3 are defined as follous?

0 Inclusive or {OR}) - TRUE if either or both operands
are TRUE; FALSE otherwise

0 Exclusive or {X0OR) - TRUE if operands are unequals;
FALSE otherwise '

o0 Logical difference {~) - TRUE if left operand is TRUE
and right operand ¥s FALSE; FALSE otherwise

The refational operators include less than (<), less than or
equal to (<=)s greater than {(>)», greater than or equal to {(>=),
equal to (=)s and not equal to (<D>})s and are summarized in
table 5-4. :

60456320-01 {preliminary) COMPANY PRIVATE 5-2



TABLE 5-4. RELATIONAL OPERATORS

i0peratori Condition H Oper ands i Result H
H + + - b -
H £ iLess than H : H
] Ll ] [ 4
E ] 4 ] ] 1
I L= tLtess than H H H
H 1 or equatl to H H H
: H H Both must :
: > tGreater than : be same H H
: H H scalar ¥+ Booclean |}
: >= t6reater than H type H :
: t or equal to : H :
H H H : H
H s 1Equal to : : H
E ] E ] 4 E ] E ]
] * k] $ E ]
H <> iNot equal to H : :

5.2 JCALAR_EUNCTIIONS

5.2«1 PREDECESSOR AND SUCCESSOR FUNCTIQGNS {(PRED AND SUCC)

The predecessor function determines the predecesseor of the
scalar argument X, If the predecessor of X does not exists the
program is in error. For examples PRED(7) is the value 6»
PRED{O) is the vatlue -1y PRED(?*B') is the character 9%A?,
PRED(TRUE) is FALSEs and so on.,

This function is often used to determine the predecessor of an
ordinal identifier.,

VAR
x 3 {Iinsy outy» holdy, action);

x 3= hold;
X 3= PRED(x);

Figure 5-1. Predecessor Function {(PRED)

In figure 5-1s the ordinal variable X is assigned the ordinal
constant HOLD. The statement "x 3= PRED{(x);" determines the
poredecessor of HOLD (which is QUT) and assigns the value DUT to
the varijable X.

The successor function {SUCC) returns a result that is the

successor of the scalar argument X. It is anatogous to the
predecessor function described above,

..... AnA Aa o L ae % _ . AOAMDAMY DOTUWATEC 1 ~g |



5+.2.2 INTEGER CONVERSION FUNCTION {ORD)

This function returns the integer representation of its
argument. The argument must be of type characters booleans or
ordinal.,

This function is often used to convert a character argument into
the ASCII collating sequence ordinal number of the character,

VAR
I 2 0 o0 255,
¢ 3 char;
»
c 1= 1743
i 3= ORD{c);

Figure 5-2. Integer Lonversion Function {(DRD)

In figure 5-2s the character variable C contains the character
17, The statement "i := ORD{c);"™ converts the character 27
into its integer representation (that is, the vatue 90 in the
ASCII coltating sequence) and assigns the value 90 to the
variable I. A complete list of the correspondence between ASCII
characters and their collating sequence ordinal numbers is given
in appendix A.

The integer conversion function also converts an ordinal
identifier into its integer eguivalent.

VAR
airport : (boss mspr» sf0» dcar» dfu)s
value 3 0 .o 4;

alrport 3= bos;

value 2= [ORD{airoort);

Figure 5-3, Integer Conversion fFunction {0ORD)

In figure 5-3 AIRPORT is a variabie of type ordinal with five
ordinal ldentifiers declared. Later, the variable AIRPORT is
assigned the vatue B0S. The statement "value := DRD{airporti;™
converts the current ordinal value of the variable AIRPORT into
its integer representation {zero in figure 5-3, because ordinal
identifiers are numbered from zero) and assigns the value Zero
to the variable VALUEs. Since ordinal identifiers are numbered
from zero» ORDIMSP) has the value ones and ORD{(DFW)} has the
value four.

60456320~01 (preliminary) COMPANY PRIVATE 5=4



The integer conversion function also finds the integer
equivalent of a boolean {TRUE or FALSE) argument, This is
rarely neededs but for completeness it must be added that
ORDIFALSE) has the value zero and ORD(TRUE) has the value one.

5¢2+3 CHARACTER CONVERSION FUNCTION (CHR)

The character conversion function converts an argument (whose
value is in the range 0 £ X £ 255) into a character whose
ordinal number in the ASCII collating sequence is X. Refer to
appendix A for a3 complete list of the ASCII collating segquence.

This function is often used to create ASCII characters that have
no graphic representations For examples CHRI7) creates the
ASCII code assocliated with activating an audible signal at a
terminal. Seven is the ordinal value of the BEL control
function in the ASCII coliating sequence.

The CHR function can also be used in constant declarations and
variable initializations as shown in the following examples,

CONST ! CONST
nul = CHR{O)» : nul = 0y
soh = CHR(1)» : soh = 1,
stx = CHRI{2)» : stx = 2»
etx = CHR(3), H etx = 3
eot = CHR{4), : eot = &4,
enq = CHRI(5), : enqg = 5y
ack = CHR{6), H ack = 6»
bel = CHRI(7); : bel = 73
L]
TYPE i TYPE
cti_char = nul .. bel; i cti_char = CHR{nul) .. CHR(bel);
2
]
VAR 7 VAR
c 2 cti_char 3= nul; : ¢ 3 cti_char $= CHR{nul);
L]
: P
L J : »
c 3= bel; 1 ¢ 2= CHR{(bel);
4
:
:

*

Figure 5-4, Character Conversion Function Examples

The examples in figure 5-4 consist of valid CYBIL statements;
both examples produce the same results, In the example on the
fefts NULs» SOHs and so ons are defined as character constants in
the CONST statewment, These constants are subsegquently used to
define a type {(subrange of CHARs NUL <« BEL)» initialize a
variable {C initially equals NUL)» and to assign a new value to
C (C = BEL)e The TYPE» VARs and assignment statements in the

60456320-01 (preliminary) COMPANY PRIVATE 5=5



example on the right in figure 5-4 perform the same functions as
their counterparts on the tefty but in a stightly different way.
Because the identiflers NULs, SOHs» STXs and so ons represent
integer constantssy the CHR function must be used wherever a
character value is needed. The method employed in the example
on the {eft is preferred because it enhances readability in a
targer portion of the program,

5244 UPPERVALGE AND LOWERVALUE FUNCTIONS

To be supplied.

5.3 EXRRESIIONS

Operators and operands form expressions. The operands must have
types suitable for the operator applied to them, For examples
the division operator {(DIV) must have integer (or integer
subrange) left and right operands., It is invalid {a compilation
error) to use the division operator to try to divide variables
of type integer and boolean.

The order of precedence can sometimes cause unexpected results.

VAR
i» jJ 2 0 +4. 100
as b : boolean;

i 32 3 # 5 % 4 + 13 {i 2= 24}
Js= {3 + 5) % (& + 1); {J 2= 40}

a t= §i < 93 {a 3= FALSE)}
b 3= § < 9 AND j < 43 {Error}

Figure 5-5, Order of Precedence Examples

The sampie expressions shoun in figure 5-5 provide some insights
into the meaning of the order of precedence, The statement "i
t= 3 +# 5 % 4 + 1" resuits in the vatue 2% being assigned to 1
{equivalent to the statement "i = 24"), Since the operators
are not the same precedences the multiplication (5 ¥ 4) is done
firsts resulting in a value of 20, Then 3 and 1 are added (to
20) giving 24, The value 24 is then assigned to the variable
I.

In the statement "j 3= (3 + 5) * (4 #+ 1)" parentheses are used
to alter the normal order of evaluation. In this statement the
feft (3 + 5) and right (4 + 1) operands are evaluated before
performing the multipliications The result of the muitiptication
(40) is assigned to the variable J.

60456320~-01 (preliminary) COMPANY PRIVATE 5-6



The statement "a 3= i < 9" jnvolves a relational operator {<)
and assligns the value TRUE to boolean variable A iIf I is less
than nine. If I is equal to or greater than nines the statement
assigns FALSE to the boolean variable A,

The statement b 3= | < 9 AND Jj > 4" produces a compllation
error. The operator AND is a multiplicative operator {(with a
higher precedence than < or >) and is evaluated first. However,
the jeft and right operands of the AND operator are 9 and J.

The AND operator requires operands of type boolieans. To produce
results that reflect the intultive meaning of this statement,

jt must be rewritten "b 2= (i < 9) AND (J > 4)". Parentheses
force evaluation of (I < 9) foliowed by evaluation of {(J > %)
resulting in two boolean values. Finallyy the AND operator is
applied to the boolean values. In this examples the parentheses
are needed to express the statement correctly and avold
compitation errors.

When the value of certain boolean operations can be determined
after evaluation of only the teft operands CYBIL does not
evaluate the right operand. Consider the examplie in figure 5-~6.

VAR
k 30 «+ 1000
valid : booleans
max_char ¢t chars

k :=382;
max_char 3= ?_1*;
valid 3= {(k <= 255) AND {(CHR{(k) <= max_char);

Figure 5-6., Boolean QOperation Evaluation

Since K is greater than 255» the AND operator?s left operand is
FALSEs There is no need {(in this case) to evatuate the right
operand: the value assigned to VALID must be FALSEs regardless
of the right operand's value, If CYBIL were to evaluate both
operandss howevers the program would be in error because CHR
requires an argument from O through 255%5. CHR{382) would
produce an error If its evaluation were attempted,

504 ASSIGNMENI STATEMENI

The coion—-equal symbol {2:=) indicates assignment, Colon—-equal
is created from the two symbols colon (3) and equals (=)
adjacent to one another. Blanks or comments cannot appear
between the colon and the equals sign.

One use of the assignment operator was presented in section 32
the initial assignment (initialization) of a value to a variabie
in a VAR statement. The asslgnment operator is also used in an
assignment statement to assign a value to a variabie, The type
of the value {or expression) on the right of the assignment
operator must be assignabie to the type of variable on the Jeft
of the assignment operator.

60456320~01 (preliminary) COMPANY PRIVATE 5-7



VAR
monthiy_salary 2 0 +¢ %4000y
pay_status : (exempts non_exempt),
sex 3 (male, female);

»

monthiy_salary 3= 2163;
pay_status = exempt;
sex 3= females

Figure 5-7. Assignment Examples

The example in figure 5-7 illustrates some assignment
statementss The VAR statement (first & lines) declares three
variable identifiers and their respective types. MONTHLY_SALARY
is type subrange of integer {the specific subrange being 0 ..
4000). PAY_STATUS is type ordinal with the programmer declared
ordinal constants EXEMPT and NON_EXEMPT. SEX also is an
ordinal.

The assignment statement "monthly_salary 3= 2163;" assigns the
value 2163 {type integer) to the variable MONTHLY_SALARY {(type
subrange of integer). The assignment is valid because type
conformability is maintained.

If type conformance is not maintaineds the statement is in
errors The incorrect assignment may be caught during
compilation if constants are invalid, If the error cannot be
caught during compilations it is diagnosed during program
execution and causes the program to terminates The execution
time checking can be disabledy but this is not recommended
during program development,

VAR
monthiy_salary 2 0 .+ 4000y
current_raise 2 0 «» 2003
monthty_salary 2= 8000;
current_raise 3= 150;
monthliy_satary 3= monthly_salary + current_raise;

Figure 5-8, Incorrect Assignments

In figure 5-8s the assignment statement "monthly_salary 3= 8000"
is incorrect because the value on the right of the assignment
operator {8000) is outside the dectared type (subrange of
integer 0 .+ 4000) of the variable on the left of the

assignment operator (MONTHLY_SALARY). CYBIL diagnoses this
error during program compilation. Declaring a type for each
variable enables the compiler to provide this kind of error
checkinge

60456320-01 (preliminary) COMPANY PRIVATE 5-8



If this error is corrected the program will compile properilys
but another error may occur during program execution. An
execution=time error occurs if the value of "monthly_salary +
current_raise"™ exceeds 4000, This kind of error cannot be
caught during program compilations but will be diagnosed during

program execution,

60456320~01 {(pretiminary) COMPANY PRIVATE 5-9



6.0 ELEMENTARY COMPOUND_STAIEMENIS

CYBIL provides a variety of statements to control the execution
of a programe. Among them are the compound statements IFs CASE»
BEGIN, WHILE» REPEATs and FOR. Each of these consists in part
of one or more sequences of statementsy, called statement tists;
hence the term compound statements. The precise way Iin which
each compound statement controls execution of its component
statement listi{s) Is the subject of this section and the next,

This section describes the operation of the IFy CASEs and BEGIN
statements. These statements each cause {at most) a singie
execution of a2 statement list. (WHILEs REPEATs and FOR provide
mechanisms for repeated execution of a statement f1ist and are
described In section 7» Repetitive Statements.) The description
of the BEGIN statement also introduces the subjects of statement
fabels and the EXIT statements» both of which are described
further in section 7.

6«1 IE_SIAJEMENI

The IF statement causes {or prevents) execution of a statement
tist depending upon whether a specified condition is true or
false, IF statement processing is diagrammed in figure 6-1,

1F
:
! THEN
e m——— b ——— —
! Condition 3 TRUE i Statement }
: Test 4 e o e e e i o >3 List H
H ? H H 1 :
+ + + pmm—————f——
: :
FALSE :
i H
H ELSE :
M o o o o e H
H ! Statement |} :
+ - -->1 List : H
H 2 : :
R s 1
H :
D >4
:
v
IFEND

Figure 6-1, IF Statement

The IF statement begins with the reserved word IF followed by a
condition {a boolean expression)s The boolean value of the

60456320-01 (preliminary) COMPANY PRIVATE 6-1



expression {at the time the IF statement is executed)
determines which of two statement lists §Is executed.s If the
condition is TRUE» the THEN portion of the IFf statement
{statement tist 1) is executed and the IF statement is
terminated {at IFEND).: If the condition is FALSE, the ELSE
partion of the IF statement is executed {(statement list 2).
{An alternate form of the IF statements, without the ELSE
portions is described shortiy.)

Note that either statement Jist 1 or statement list 2 is
executed as a result of the condition test.

Figure 6=2 illustrates the syntax of the IF statement.

VAR
X» ¥ ¢ integers;
»
»

L

IF x < 0 THEN
y 3= x ¥ x3
x 3= x - 13
ELSE
y 2= DIV 23
x 3= x = 23
IFEND;

®»

Figure 6-2, IF Statement Syntax

The IF statement in figure 6-2 consists of seven lines (from IF
to IFEND) but it is one statementy even though it includes other
statements. In this examples the condition test answers the
questionsy "Is the value of X less than zero?%., If the result is
TRUE the THEN portion of the IF statement ("y 2= x * x3 x 3= x -
1;") is executed and the IF statement terminates. The next
statement executed is the one following IFEND.

If the result of the condition is FALSEs the ELSE portion of the
IF statement is executed ("y $= x DIV 25 x t= x = 23%") and the

IF statement terminates. The next statement executed is the one
following IFEND.

An alternate form of the IF statement alliows the ELSE to be
omitteds, This form is diagrammed in figure 6-3,

60456320-01 (preliminary) COMPANY PRIVATE H=2



THEN

Fom e
TRUE ! Statement
-——>1 List

]
x
]
3
1 1
H
+

W en we pu

* ..... y
. Condition
Test

?

- o — v

R

]
1

1
{
HE D +
¥
4

w» e e ew
* s

<

IFEND

Figure 6-3, IF Statement ¥Without ELSE

The short form of the IF statement has only one statement list.
If the condition is TRUEs the statement list is executed. 1If
the condition is FALSEs no statements {(within the IF-IFEND) are
executed,

The short IF statement has many uses. 0One example is to control
the writing (by the program) of debug informations as shoun in
figure 6-4.,

CONST
debug = TRUE;

IF debug THEN
fMrite debug informationd}
IFEND; _

Figure 6-%4, Short If Statement Example

In figure 6—~4 DEBUG is a boolean constant with the value TRUE.
The IF statement tests the value of DEBUG., If it is TRUEs» the
statements after THEN are executed {(represented by the comment
{Nrite debug information}). To disable debug informations the
programmer must change the value of DEBUG to FALSE. Then the

IF statement umould not execute the instructions that write debug
information,

The IF statement controliting the production of debug information
could be reproduced as often as required in the source programs.
DEBUG must be as global as necessary to be accessible by aill
appropriate IF statementse.

Sometimes a program requires many nested tests to properly
determine which statement fist to execute. The THEN or ELSE
portion of an IF statement can contain additional {(nested) IF
statementss as illustrated in Ffigure 6-5.

60456320-01 (preliminary) COMPANY PRIVATE 65-3



IF
]

: THEN

e e bmm———

FALSE 3§ s TRUE iStatement

pmm———) yz]  je- : -=-3 List H

H : : : 1 :

H pom———— s e
ELSE H H
+ H - + 1
H 11IF : :
- H THEN H :
: e e H H
H FALSE 3 t TRUE iStatementi : :
H -1 y=1 H - : List : : :
: : H H H 3 : : :
g : Prm———— pomm—— o —— H H
H H H : :
i ELSE! H H :
IR S il Setttd 4 : : H
t iStatement? H : H
1 7 List H H : H
HIEH 4 H H : H
IR et At H H H
H H H H :
H + —Depmlm——— e et H :
H H : :
H v IFEND H H
+ - - —— !
H :
1 < - -+

v
IFEND

Figure 6-5. Nested IF Statements

In figure 6-5» statement list 1 is executed when X equals 1.
Statement list 3 is executed when X is not 1 and Y is 1.
Statement list 4 is executed when neither X nor Y js 1. The
apparent omission of "statement list 2" is not an oversighte.
This was done to point out that the second (nested) IF
statement js the statement list which constitutes the ELSE
portion of the first (outer) IF statement. Translating the
example in figure 6~5 into CYRIL statements produces figure
6"6-

IF x = 1 THEN
{Statement list 1}
ELSE
IF y = 1 THEN
{Statement fist 3}
ELSE
{Statement Jist 43}
IFEND;
IFEND;

Figure 6-6s Nested IF Statements

60456320-01 (preliminary) COMPANY PRIVATE 5-4



6e2 CASE_STATEMENI

The CASE statement selects one and only one of several statement
lists depending upon the value of a scalar expression. One or
‘more IF statements can always replace a CASE statement. In many
instances thoughs the CASE statement formulation represents the
intent of the programmer more clearly and may improve program

claritye.

Figure 6~8 lljustrates the flow of control in a CASE statement.

CASE
H
P ———— D +
iCase selector]
+ - +
DF: + +
$I= Case spec 1 = {Statement 1}
>% List 1 i—-——1
¥ SN ——— +
+ - +
= Case spec 2 = jStatement |
- T List 2 jm==>

= Case spec 3 = {Statement
->§ List 3 -
+

;%
v

DO P BE e G Be P S e S e e
+*
!
|
|
[}
|
|
]
L]
|
!
]
+*

! +

+
= Case spec n = {Statement 3}
*-‘-‘—’—’—a-—‘—-->= L H s t n :

ELSE

> as bn wn cw

W G A A BE LS B GE B U SE B NS GBS LSS LE B S G S ee NS e

+ - - -
]
1

v
CASEND
Flgure 6-8, CASE Statement

The syntax of the CASE statement is shown in fligure 6-9,

60456320-01 {(preliminary) COMPANY PRIVATE 6-5



CASE {Lase selector} OF

= {Case specification 1)}
{Statement 1ist 1}

= {Case specification 2}
{Statement list 2}

= {Case specification n}
{Statement tist n}
ELSE
{Statement tist)
CASEND

Flgure 6-9. CASE Statement Syntax

The case selector {between the reserved words CASE and 0OF)
determines which of the CASE statement?s statement fists is
executed; the selector must be a scalar variable or expression.
The statement list that is executed is the one that follows the
case specification containing the case selector?s value at
execution time.,

A case specification describes what value or values the case
selector can have to cause execution of a statement list., A
case specification has the following general form:

= value_specy value_specs esee =

Each "value_spec™ is elther a scalar constant, a scalar
expression containing constants onlys, or a range of constants.
For examples the statement {ist following

2 39 541y =24+40s 114.9 =

would be executed if the value of the case seiector were =25 -1,
Oy 35 65 95 10s or 1ll.

If the value of the case selector does not equal a value
specified in any case specifications the statement tist
following the ELSE is executeds The ELSE clause is» howevers
optional. If it is omitted and the case selector value does not
match a value in 3 case specifications the program is in error.

50456320~-01 (preliminary) COMPANY PRIVATE 6-6



The exanpie Iin figure 6~10 iltustrates the CASE statement.

VAR
code : chars
column 2 1 .. 100>
line_# 2 1 «¢ 60y
margin 2 1 .. B0 2= 10;

CASE code OF
- 'p.’ 'Pf =
column 3= margin + 4;
tine_# 3= line_# + 1;
= 'lol, !a' =
column = column - 1;
= 1 3 =
{ Another statement fist }

»

ELSE
{ Default statement tist }
CASEND

Figure 6-10s, CASE Statement Example

The CASE statement in figure 6~10 executes one of several
statement tists according to the value of CODE (as determined
during program execution), If CODE equals uppercase or
lowercase Py the first statement fist is executed; if CODE
equals uppercase or lowercase O» the second statement list (a
single statement in the example) is executed; if CODE equals 2
spaces the third statement {ist is executeds If code does not
match any of the values in the three case specificationss the
statement list following ELSE is executed.

The following features of the CASE statement in figure 6-10
should be noted.,

o0 The scalar type of the case values matches the type of
the case selector., In this examptiey they are type CHAR,

o0 The case selector is a variable {or an expression
containing variables); the individual cases {%pl?, tp?,
19y and so on) are constants (or expressions containing
only constants).

0 0Onily one statement fist is executed, No constant
appears more than once among all the cases.

6.3 BEGIN_STATEMENT
The BEGIN statement provides a mechanism for the logical
grouping of statementss The BEGIN statement is introduced with

60456320-01 (preliminary) COMPANY PRIVATE 6-7



the reserved word BEGIN and terminated with the reserved word
ENDs. Source program statements whichs taken as a group» perform
some ldentifiable function are typically placed within a BEGIN
statement. The BEGIN statement Flowchart is shoun in figure
6"11:

BEGIN
L

s
v

Statement list

W e e ww P
b vn 26 an P

|
|
'

-

v
END

Figure 6-11. BEGIN Statement Filowchart

The flouwchart in Figure 6-11 shows that the flow of control in a
BEGIN statement is from BEGIN to END., No repetitions occure.

The flow of controd would be the same (for the statement tist)
even if the BEGIN statement {BEGIN and END reserved words) were
omitted, Declarations {such as variable declarationss type
declarationss constant declarationsy and so on) are not altowed
fn a BEGIN statement.

The syntax of the BEGIN statement is shown in figure 6-12.

/ 1abel /
BEGIN
{ Statement tist }

*

END 7/ tabetl /

Figure 6-12, BEGIN Statement Syntax

The tabel that (optionally) precedes and follows the BEGIN
statement is a unlique identifier whose construction follows the
rules given in section 2. The tabel following END is optionals;
if usedy, it must match the tabel preceding BEGIN. Labels can
add much to the understandability of a program when used wisely.
As suchs their use is strongly recommendedy especially when the
labeled statement is many lines long.

Labels cannoty, howevers be used with all CYBIL statements.

They precede {that iss fabel) only the BEGIN statement and the
repetitive statements described in section 7. Reference to
fabeled statements is made by specifying the tabel as part of an

60456320-01 (preliminary) COMPANY PRIVATE 6~8



EXIT or CYCLE statement onlys {The EXIT statement is described

at the end of this section; the CYCLE statement is described at
the end of section 7.)

An example of a fabeled BEGIN statement is shown in figure 6-13.

TYPE
sizes = {small, mediums targe)s
formats = {lines coordinates);

CONST
default_size = mediums
default_format = coordinates;

VAR
size 3 sizes 3= default_sizes
format ¢ formats = default_format;
freset_defaults/
BESIN
size 3= default_size;
format = default_format;
END /reset_defaults/:

Figure 6-13. BEGIN Statement Example

The description of the BEGIN statement thus far depicts a rather
useless statements The Jjudicious use of blank linesy
indentations, and comments serves to group statements and to
document their functions perhaps better than the BEGIN
statement. The BEGIN statement'!s utility will increases
howevery as additional topics are presented., Specificallys

o0 The cross-reference listing {an inventory of
identifiers together with other useful information
about a CYBIL program) includes label identifiers
and their location, easing the search for a smail
portion of a large program. The cross-reference
fisting s discussed in detail in a later section
of this guide.

o0 Execution of a BEGIN statement can be prematureily

terminated by an EXIT statement executed within the
BEGIN statement.

60456320-01 (preliminary) COMPANY PRIVATE 6-9



EX]II _Statement

The EXIT statement terminates execution of a BEGIN {or
repetitivel)* statement. It has no meaning outside such 3a
statement; CYBIL dliagnoses such use as a compitlation error.,

The syntax of the EXIT statement is shown in figure 6-14.

EXIT /1iabel/
Figure 6-14, EXIT Statement

Execution of an EXIT statement terminates execution of the BEGIN
statement with the matching ltabels The use of labels allows
exiting a BEGIN statement from within several tevels of nesting.
Execution resumes with the statement that follows the exited
statement.

The example in figure 6-15 illustrates the BEGIN and EXIT
statements,

VAR
more_args 3 booleans
no_of_args ! integers;

L]
{ Determine no_of_args and }
{ actual argument values }

/process_arguments/
BEGIN
more_args 3= no_of_args > 0;
IF NOT more_args THEN
EXIT /process_arguments/;
IFEND;

{ Process first argument }
more_args 3= no_of_args > 13
IF NOT more_args THEN

EXIT /process_arguments/;
IFEND;
{ Process second argument )}

END /process_arguments/

Figure 6~15. BEGIN and EXIT Statements Example

- - —— . —

* The remainder of this section describes the use of the EXIT
statement within a BEGIN statement., Its use within repetitive
statements is analogous to this and is discussed further in
section 7.

60456320~01 (preliminary) COMPANY PRIVATE 6-10



The example in figure 6-15 is a much-simplified representation
of the pretliminary processing and validation of items in some
hypothetical order—~dependent argument 1list. Statements that
perform the actual processing of each argument are not shown,
but it is assumed that each argument requires some unigue
processing¥not required by the others.

The details of the example are {(hopefully) seif-expianatory, In
briefs the BEGIN statement processes arguments until one of the
following conditions exists:

¢ There are no arguments left to process (MODRE_ARGS is
FALSE)

o The BEGIN statement processes the fast argument

that it must process {the BEGIN statement ends
normatiy)

60456320-01 (preliminary) COMPANY PRIVATE 6-11



7.0 RERETITIVE STAIEMENIZ

Each of the three repetitive statements WHILEs REPEAT» and FOR
causes a statement list to be repeated; the different ways in
vwhich they perform this task is the main topic of this section.

Like BEGIN» a 1abel can precede a repetitive statements and an
EXIT statement can prematurely terminate execution of a
repetitive statement, Additionally, a CYCLE statement can
affect a repetitive statement's function in a manner suggested
by its name: the repetitive statement is "cycleds” thereby
repeating its statement lists, This brief mention of labels and
the EXIT and CYCLE statements is made for two reasons: to
introduce topics that are covered in detail later in the
sections and to ittuminate somewhat the flowcharts that
accompany the descriptions of the repetitive statements., Each
flouchartsy in addition to iflustrating the operation of a
particular statements indicates where control is transfered upon
execution of an EXIT or CYCLE statement.

7.1 WHILE_SIAIEMENI

The WHILE statement evaluates a condition (boolean expression)
prior to executing its statement list. If the condition is
falsey the statement tist is not executedy the WHILE statement
endsy and processing continues with the statement after the
WHILE statement. (The statement 1list is not executed even once
if the boolean condition is initially FALSE.) If the condition
Is trues the statement list is executed and the WHILE statement
is repeateds beginning with the re-evaluation of the condition
following MHILE. The flowchart in figure 7-1 illustrates the
operation of the WHILE statement.

60456320-01 (preliminary) COMPANY PRIVATE 7-1



FALSE

QR —

Booiean
Condition
?
......-..g PEG——
1 TRUE
DO H
4 e s e e
1 Statement |}
H List :
pmm—m——f———

CYCLE->?

Y S

> s e i P
* 06 ne oo $

A SS mE SRS Ll S L G Be Be G Se wE e

A e BR B AR e B SN SE BE Se e

s wp

v
WHILEND
EXIT==>}

Figure 7-1, WHILE Statement

The reserved word NHILEND terminates the WHILE statement. If an
EXIT statement is executed within the WHILE statements execution
continues with whatever follows the WHILE statement {that is»
whatever follows WHILEND). If a tabel precedes the WHILE
statementsy it can be repeated after WHILEND.

An example of the WHILE statement is shown in figure 7-2.

VAR
N 2 0 oo 84 3= 5,
factorial ¢ integer 3= 13
{Compute factorial of n}
fcompute_¥factorial/
WHILE N > 0 DO
factortal := factorial * nj
n t=n - 1;
WHILEND /compute_factorial/

Figure 7-2. WHILE Statement Example

In figure 7-2» N is declared to be a subrange of the integers

O s 84y with an initial value of 53 FACTORIAL is an integer
variable with an initial valtue of 1., N was not declared to be a
constant because the program alters the valtue of N» and
constants cannot be altered.

60456320-01 {(preliminary) COMPANY PRIVATE 7-2



The first operation in the WHILE statement is to determine if N
Is greater than zero. If N is not greater than zeros the
statement list of the WHILE statement is not executed and
FACTORIAL remains one (recail that zero factorial eguals one).
If N is greater than zero» the WHILE statement performs the
necessary iterations to compute the proper value of FACTORIAL.

7.2 REREAI_STAIEMENI

A unique feature of the REPEAT statement is that the statement
list Is always executed once upon entering the REPEAT statement.
Thereafters the boolean condition determines If additional
repetitions will be performed.

The fiowchart in figure 7-3 illustrates the flow of control in a
REPEAT statement.

REPEAT
1

>

———

Statement
List

CYCLE=>:

e B e -

P B we P
o s wm

UNTIL
+ -

4* e e

FALSE

- - -

WP AN NE AN S G BE G aE Bl we

Boolean
Condition
E'S
1 TRUE
EXIT~=>}
v

P we on s P

P oaE e s

Figqure 7-3. REPEAT Statement Flowchart

In the flowchart in figqure 7-35 note that the statement tist is
executed once upon entry into the REPEAT statement. After the
statement tist is executed onces the boolean condition is
evaluateds If the condition is truey the REPEAT statement
terminates and execution proceeds with the statement after the
REPEAT statement (that iss after the UNTIL clause); this is also
where execution transfers if an EXIT statement is executed
within the REPEAT statement., If the condition is falses the
statement list repeats.

The statement tist may contain any executable statement

inctuding nested REPEAT statements. The REPEAT statement can be
read "Repeat the statement {ist until the boolean condition is

60456320-01 {preliminary) COMPANY PRIVATE 7-3



true”, Unlike the other statements that can be preceded by 2
labels a3 Jabel cannot follow a REPEAT statement {that is, cannot
follonw the UNTIL clause that terminates a REPEAY statement). An
example of the REPEAT statement is shown in figure 7-4.

CONST
limit = 553 {Maximum odd integer}

VAR
sum:- 3 integers
current 3 1 .., limit + 23

{Find sum of odd integers 1 to limit}

sum = 03
current 3= 13
/sum_odd_integers/
REPEATY
sum 3= sum + current;
current = current + 2;
UNTIL current > linmit;

Figure 7-4. REPEAT Statement Example

The program in figure 7-4 finds the sum of the odd integers 1 to
LIMIT. Notice that LIMIT is a constant and the variable items
in the program are expressed in terms of this constant, To find
the sum of odd integers up to a value other than 55 only the
constant decliaration need be changed.

7.3 EOR_STIAIEMENT

The FOR statement uses a control variable and programmer-
specified initial and final values to control the number of
iterations of its statement list. A simple FDOR statement is
shown in figure 7-5.

VAR
index t 1 .. 100;

/for_statement_example/
FOR index = 1 70 100 DD

{Statement tist}

FOREND /For_statement_example/

Figure 7-5+, FOR Statement Syntax

60456320-01 {preliminary) COMPANY PRIVATE T-4



The FOR statement is introduced with the reserved word FOR. The
variable INDEX {(from "FOR index =1 T0O 100 DO")s is calied the
control variable because its value is used to control the number
of iterations of the FOR statement. The values 1 and 100 are
the initial and final valuesy respectively. In this examptie the
initial and final values are constants. In generals howevery
they can be expressions involving scaltar variables and constants
that are evatuated at execution time. The FOR statement in
figure 7-5 would cause jits statement fist to be executed 100
times,

The end of the FOR statement is designated by the reserved word
FOREND, A1l statements between FOR and FOREND constitute the
statement list of the FOR statement. CYBIL places no
restriction. on the statements comprising the statement list
except that no statement can assign a value to the control
variable. CLYBIL diagnoses such use as an error. The FOR
statement can be preceded and followed by a tabel.

The example in figure 7-5 does not exptain all Ffeatures of the

FOR statemente The flowchart in figure 7-6 further explains the
operation of a FOR statement,

60456320-01 {(preliminary) COMPANY PRIVATE -5



!
t
)
t

iFind successor of;

FOR
E |
E ]
v
+ +
i1Compute initial vatuel}
3 and assign to temp 1}
* - — - +
H
v
- +
iCompute final value!
+ - -
H
+ -
4 2
k] E
H e e o o e e e
: H t FALSE
: i temp <= final j-———e—-—-
: H ? H
H + + -
H i TRUE
: H
H DO H
H o - -+ —
H icontrol variable 3= temp}
H - + - e e e
E ] £l
2 2
: v
H o e o e e i +
: {Statement list}
H - $om—— +
: CYCLE~>]
H v
H + -
4
]
+

Figure 7-6.

-==1 temp and assign 3
: to temp H
- -
T ——
H
]
FOREND
EXIT==->1}

FOR Statement

#i“.‘.‘."..-"Q.‘ﬁ..bd“ﬂ.“..ﬂ‘.“.i.ﬂ‘-h‘ +

As shown Iin figure 7-6» the FOR statement involves many steps.
The initlial value is evaluated first and assigned to a temporary

variable [ TEMP in figure 7-6)

{it is assigned by the CYBIL compiler).
a test is made to determine
value of TEMP (the Initial value)
If the result is false (that is»

then determined.

final value.

Next,

that the programmer cannot access

The fi

is 1ess than

nal value is
if the
or equal to the
the value of

TEMP is greater than the final value) the FOR statement is

terminated.
control variable.

60456320~-01 (preliminary)

Note that in this casey no assignment

COMPANY PR

is made to the

IVATE 7-6



If the vatue of TEMP {(the initial value) is less than or egual
to the final wvalues the FOR statement continues and the value of
TEMP is assigned to the control! variable, The statement list is
then: executed, The statement list may contain any valid
executable statement including additional FOR statements.

Finatlys the successor of the value in TEMP is determined and
assigned to TEMP. The FOR statement continues by testing to see
if the value in TEMP has exceeded the final value., The FOR
statement terminates when the value in TEMP exceeds the final
value,

When the FOR statement terminates normallys the control variable
equals the final vatue. If an EXIT statement terminates a FOR
statementy execution proceeds with mhatever Ffollows FOREND and
the control variable retains the value it had when the EXIT
statement was executed.

The contro} variables, initial value, and final value need not be
type integer as shown: in figure 7-5, They may be any scatar
types but they must all be the same type or subranges of the
same type, {(Note that the successor function determines the
next value of TEMP; see the last box of the flouwchart in figure
7"60 )

The use of the successor function is more apparent in the
example in figure 7-7,

VAR
hardware ¢ {tacks» nailsy spikess boltss nuts);

*

FOR hardware := nails 70 bolits DO

{Statement list}

FOREND;
Fligure 7-7. FOR Statement With DOrdinal

In figure 7—-7» HARDWARE is an ordinal variable. The permissible
ordinal constants for HARDWARE are dectfared in parentheses. The
FOR statement iterates three times. Initialtly, the variable
HARDWARE has the value NAILS. The second iteration is made with
the control variable {HARDWARE) set to SPIKES. The third and
final iteration is made with the control! variable set to BOLTS.

After the FOR statement is completed (after three iterations),
the variable HARDWARE witl have the value BOLTS.,

Another example illustrating the FOR statement is shown in
figure 7-8,

60456320-01 (preliminary) COMPANY PRIVATE 7-7



TYPE-
range = 0 <0 9;

-*
VAR
index 3 ranges
init 3 range 3= 8,
final : range = 33

FOR index 2= init TO final DO

»

{Statement list}

FOREND;

Figure 7-8., FOR Statement (No Iterations)

In the FOR statement in figure 7-8 the initial vajue {INIT) is
greater than the final value {(FINAL)e The Flowchart in figure
7~6 shows that the statement. list is not executed. The value of
the control variabtle is undefined (never initiatized) in this
cases This is just one way that undefined variables can be
created In a program.

Descending FOR statements are indicated by the use of the
reserved word DOWNTO instead of the reserved word TD. 1In a
descending FOR statements the initial value is normalily greater
than the finatl value. The predecessor function is used instead
of the successor function to determine the values of the control
variables An example of a descending FOR statement is shown in
figure 7-9.

VAR
counter 2 B31 .. 925;

»

FOR counter = 900 DOWNTO 850 DO

{Statement tist}

FOREND3;

Ffigure 7-9, Descending FOR Statement

CYCLE Sftatement

The CYCLE statement iterates a repetitive statement in which it
is containeds It has no meaning outside such a statement;
CYBIL diagnoses such use as a compilation error,

60456320~-01 {(preliminary) COMPANY PRIVATE 7-8



The syntax of the CYCLE statement is shown in figure 7-10.

CYCLE /1abel/
Figure 7-10., CYCLE Statement

The CYCLE statement causes the remaining statements in a
repetitive statement to be skipped, After skippings execution
continues with whatever function normally follows execution of
the statement Vtist. The diagrams in figures 7-1s 7-3» and 7-6
indicate this function for the WHILE» REPEAT» and FOR
statementssy respectively.

The example in figure 7-11 iltustrates the CYCLE statement.
{The WHILE statement is used In this exampie; any repetitive
statement can encompass a CYCLE statements however.,)

/lexample/ : /example/
WHILE x < y DO H WHILE x < y DO
» H /bgn/
. : BEGIN
IF ¢ THEN H »
CYCLE /exampile/ »
IFEND; : IF ¢ THEN
» : EXIT /bgn/
» : IFEND;
WHILEND /example/ H .
E ]
L] L ]
H END /bgn/
]

WHILEND /Zexample/

Figure 7=-11. CYCLE Statement Example

In figure 7-11» X and Y are scalar variabless C is a boolean
varlabte. The statement list of the WHILE statement on the left
consists of several statements; the statement list of the WHILE
statement on the right consists of a singte BEGIN statement.
Assuming that the statements inside the WHILE statement on the
left are the same as the statements inside the BEGIN statement
on the right -- except for the IF statements shown =-- the two
WHILE statements perform identicallye (The structure on the
right should never be used in practice; it is shown here only to
illustrate the operation of the CYCLE statement.)

SUMMARY: Labelss CYCLE» and EXII

The follouwing points summarize the use of labels and the CYCLE
and EXIT statements,

0o Labels can precede (Jabel) only the BEGIN statement and
the repetitive statements.

6$0456320-01 {(preliminary) COMPANY PRIVATE 7-9



0 The reserved word that terminates a BEGINs WHILE>»
or FOR statement {(END», WHILEND, FOREND) can {and
should) be followed by the Jabel of the statement
that it terminates. This practice improves program
readability especially when many levels of nesting
and/or lengthy statements are used,

0 A label should be used to identify the function of
the statement that it labels whenever possibie,
This not only makes the program easier to
understands but aids in locating a particular
portion of a program via the cross—reference
tisting. :

o The labels on an EXIT or CYCLE statement can specify
which of several nested statements is to be cycled or
exited.,

o The EXIT statement terminates execution of an
enclosing BEGIN or repetitive statement; the CYCLE
statement causes the remaining statements inside a
repetitive statement to be skippeds thereby cycling
{iterating) the repetitive statement.

6045632001 {preliminary) COMPANY PRIVATE 7-10



8.0 JIRUCTURED TYPES

This section examines data types that consist of collections of
components.s Unlike scalar types {discussed in sections 3 and
4)s the successor and predecessor of a given structured type
cannot (in general) be found.

The structured types include arrays records sety and strings
Each of these types provides a unique capability for organizing
and referencing data.

8.1 ARRAY_IYPE

The array type provides random access to its elementss all of
which are of the same type, An array is defined in terms of an
index and a component type. The general form of an array type
definition is shown in figure 8-1.

TYPE
identifier = packing ARRAY [index] OF component type

Figure 8-1, ARRAY Type Definition

The type identifier is declared by the programmer. The equal
sign indicates an equivalence between the identifier {on the
left) and the type declaration (on the right). The packing
specification Is optional and is used to indicate programnmer
declared trade-offs between the storage space required to
contain the array and the access time needed to reference an
array component., The packing specification {PACKED) is
explained tater in this sections. An array type declaration
begins with the reserved word ARRAYs includes a specification
for the index enciosed in bracketss and uses the reserved word
DF to introduce the component type. The programmer must suppily
an identifiery, indexs and component type to complete the array
type declarations:

The index is restricted to scalar types other than integer
{booleans, characters and ordinal) and subranges of scalar types.
The component type may be a scalar type (discussed in section
3)» a structured typer or a pointer type {(discussed in section
9). The component type is the type of all elements comprising
the array..

Perhaps the simplest array structure is one that is one

dimensionals has integer indexesy and contains integer
components. This type of array is it1lustrated in figure 8-2.

60456320-01 (preliminary) COMPANY PRIVATE 8-1



——

Integer valuye

Integer vatlue

A T O T 1 T T T G 20

Integer value

- -~

Integer value

W ome o sl P e p s
ERCTE T T T

.o W N o

-+
Integer value 3

- o i s o s 0 0 o s

Integer value 1§
Integer value 3
+

98
99

100

P wa e we e S P

Figure 8-2. Array Representation (Simpile)

In this examples the indexes are the values 1 to 100. The
components are the integer valtues., This arrays in CYBIL
syntaxs is shown in figure 8-3,

TYPE
simplearray = ARRAY [1 .. 1001 OF integer;

VAR
data_arrayls data_array2 ¢ simplearray;

Figure 8-3. Array Syntax {Simpie)

In figure 8-3, the type declaration (SIMPLEARRAY) identifies

the structure of the data (it takes no storage space at execute
time)s The variables DATA_ARRAY1 and DATA_ARRAYZ2 are each
arrays of type SIMPLEARRAY. Recall {from sections 3 and &%)

that variables occupy storage space during program execution.
When the variables are automatics the storage space required to
contain the variable exists during execution of the block In
which the variable is declareds Type declarations are used oniy
to assocliate an identifier with a type declaration. Type
identifiers never occupy any storage.

The entire array can be referenced by using the array name {(for
examples DATA_ARRAY1). The only operation permitted on an
entire array is assignment (to an array of identical typel.
Individual components of an array may be accessed by specifying
the array name followed by the index of the component enclosed
in brackets {(for examples DATVTA_ARRAY2[10C1)., Examples of both
array references and component references are illustrated in
figure 8-4,

60456320-01 (preliminary) COMPANY PRIVATE 8-2



CONST
Jimit = 10;

TYPE
oddtype = ARRAY{l .. limit)l OF 1 ., (1imit * 2 - 13

VAR
odd_table ¢ oddtypes
index t 1 .4 1imity
extra_table 3 oddtype;

FOR index := 1 70 Jimit DO
odd_tabtlelindex] = index % 2 - 1;
FOREND;

L ]

extra_table 3= odd_table;

Figure 8~-4, Array References

In figure 8-4, the FOR statement initializes each element of the
array ODD_TABLE to an odd integer {(via the statement
“odd_tablelindex] 3= index ¥ 2 - 13"). A few lines laters the
statement "extra_table 3= odd_table;" performs an array
assignment of the array ODD_TABLE to EXTRA_TABLE. Execution
time error checking of array indexes is optional and may be
selected or deselected using the compile time facilities
described in section 14,

8.1.1 ARRAY INITIALIZATION

Array variables are initialized in a fashion similar to the
initialization of scalar varfables {(discussed in section 3).
Since an: array variable consists of many componentss the
fnitialization expression contains many values. The
initialization expression for an array variable is enclosed in
brackets.,

CONST
limit = 33

TYPE
oddtype = ARRAY (1 +. limit] OF 1 .. {(limit * 2 - 1)3

VAR
base_table : oddtype = {1l 3, 51;

Figure B=5, Array Inittiatization

60456320-01 {(preliminary) COMPANY PRIVATE 8-3



In figure B8-5, BASE_TABLE is defined to be type ODDYTYPE and is
initiatized to the wvalues Tl» 35 5], The initiatization is
equivalent to BASE_TABLEI1] := 1, BASE_TABLEL2] 2= 3, and
BASE_TABLEL3) 2= 5.

In the initiatization expressions an asterisk may be used to
indicate uninitiatized componentss In figure 8-5, changing the
initialization expression to [1l» *, 53 would initialize the
first and third elements of the array BASE_TABLE to 1 and 5»
respectively. The second ejement of BASE_TABLE is not
initiatized.

When initialization values are to be repeateds» a repetition
specification can be used,

VAR
zero_and_one_array 3 ARRAY{l1 .. 100) OF integer
$= [REP 50 OF O0» REP 50 OF 113

Figure 8-6. Array Initiatization (REP)

In figure 8-6y the initiatization value "REP 50 OF O" means
fifty repetitions of the value zero. These fifty values of zero
are followed by fifty repetitions of the value one, The result
of the initialization expression Is to initialize the array of
100 elements so that the first fifty elements have the value
zero and the second fifty elements have the value one,

In an initialization expressions the repetition specification
{REP)» the asterisks and vafues may be used in any order to
represent the initialization for the array.

8.1s2 MULTI-DIMENSIONAL ARRAYS

Mujti-dimensional arrays are allowed in CYBIL. There is no
arbitrary timit on the number of dimensionss An array with two
dimensions is iflustrated here because of its simplicity.

A two-dimensional array is thought of as an array whose
components are single dimensional arrayse. For exampley consider
the two-dimensional array shouwn in figure 8-7,

Column
1 2 3 4 5

temmpmm e e f

135 1-108 2 ¢ 6 % 3 %

o o T T T

2 1 4 1 117 19 =31 6

Row T S e S
338211471 -57718 4

R T e e Saata

& § 3 % -9% 171 4 3 15¢

Y QU PUE Y WS R

Figure 8-7. Two-Dimensional Array Structure (Conventional)

60456320-01 {pretiminary) COMPANY PRIVATE 8-4



In figure 8~7» the array structure consists of four rows and
Five columnse In CYBIL, this structure is thought of as an
array of four components where each component is itself an array
of five components. This conceptualization is shown in figure
8“80

[ QU U WIS SN SR §

PO S U R —— S Y

.

+ +
) (]
H s
] 4
H 1
14385 31-100 2 3 61§ 3 11
IR e g Rt et stk S
+ +
2 1 % 4 3 113 193 -37 6 1 3
I e O t S St Satuh 2
| $mmmprmmpmmnpmmnpm——y  §
3112113850711 812
I s St et X LA T S S S
+- - +
R R . e b s Rt 2
4 ¢ 8 3 1 =91 178 4 1 158 3
] :
] s
U 1
+ +

Figure 8~8. Two-Dimensional Array Structure (CYBIL)

When transliated into CYBIL syntax the structure shown in figure
8-8 Is expressed as shown in figure 8-9,

TYPE
twodim = ARRAY [1 .+ 431 OF ARRAY {1 .. 51 OF integer;

VAR
datatable : twodim;

Figure 8-9., Two-Dimensional CYBIL Syntax
Figure 8-9 iflustrates one way of defining an array whose

component type is type array. Another method of defining this
two-dimensional array is shown in figure 8-10.

TYPE
innerarray = ARRAY {1 +. 5] 0OF integer,
twodim = ARRAY [1 .. 4] OF innerarray;

VAR
datatable : twodims
alternatetable ¢t ARRAY [1 .+ 43 OF innerarrays;

Figure 8-10, Two-Dimensional CYBIL Syntax

60456320-01 (preliminary) COMPANY PRIVATE 8=-5



In figure 8-10s the array type TWODIM is declared as a four
etement array whose components are type INNERARRAY, INNERARRAY
is declared to be an array type consisting of five elements of
component type integer. The type TWODIM in figure 8-10 is
equivalent to the type TWODIM in figure 8«9, Similariys the
variable DATATABLE in figure B-10 is equivaltent to the yariable
DATATABLE in figure 8~9, The variable ALTERNATETABLE in figure
8~10 is equivalent to the variable DATATABLE in figures 8-9 and
8"180

841le3 INITTIALIZING MULTI-DIMENSIOGNAL ARRAYS

Multi-dimensional array variables can also be initializedes The
jnitiatization expression contains 1eft and right brackets
encliosing the initial vatues for each array.

TYPE
twodim = ARRAY [1 .. &1 OF
ARRAY {1 ++ 51 OF integer;

VAR
datatable 2 twodim
3= [{55 ~-10y 25 69 31»
f4» 115 195 =35 61»
{2 1 =55 75 81,
{3» =95 175 4, 1511;

Figure 8-11. Array Initialization {(Two-Dimensional)

In figure 8-11, the variable declaration for DATATABLE is the
CYBIL syntax representation of the structure shown in figure
8-8. Note that each array inftialization is enclosed in
brackets { and 1.

Bele4s REFERENCING MULTI-DIMENSIONAL ARRAYS

Multi-dimensional array references can be constructed to access
any required array element or the entire array itseif. For
examples the identifier DATATABLE (in figure 8-11) refers to
the entire two-dimensional array (all 20 integers). The
reference DATATABLEL1] refers to the first element of the array
DATATABLE which is an array of five integers. The reference
DATATABLEL3]1 {41 refers to the fourth element in the array which
Is the third siement of the variable DATATABLE (initialized to

7 in figure 8-111},

Note that the type of DATATABLEL3]) (4] is integer {(the value 7

in figure 8~11). DATATABLEC3] is type array of integer ({2, 1»
~-59 79 8) in figure B-11). DATATABLE Is type array of array

of integer {(that iss a two—-dimensional array of integers). The
programmer may use any of these references in a program as long
as the use of the type is correcte.

60456320-01 {preliminary) COMPANY PRIVATE 8~56



CONST
fimit = 4;

TYPE
twodim = ARRAY{1l .. 1limitl] OF
ARRAYIL1 +» 1imit] OF 1 o+ tinit + timit;

VAR
datatable 2 tuwodim,
rovs cofumn 2.1 ,. limit;

FOR row 3= 1 70 timit DO
FOR cotumn := 1 TO limit DO
datatabiefrow] {columnl]l 2= row + column;
FOREND;
FOREND;
datatablef4] 3= datatablelll;

Figure B-12., Two-Dimensional Array Manipulations

In figure B8-12» DATATABLE is a two-dimensional array. The FOR
statements reference each element in the two-dimensional array.
Yhe statement "“datatablelrow] {column) 3= row + column®™ assigns
an integer value {row + column) to an element of the two-
dimensional arrays At the end of the example the statement
"datatablel4] 3= datatablefll" assigns the array DATATABLEI1l to
the array DATATABLEL4). This has the effect of making row four
in the data structure identical to row one.

8+.1+.5 PACKING ATTRIBUTE FOR ARRAYS

The packing attribute (PACKED) specifies that storage space for
array components is to be conserved at the expense of access
time. An unpacked array is mapped onto memory so as to conserve
access time at the expense of memory spaces When the packing
attribute is not specifieds the array is unpackeds An iInner
array does not inherit the packing of the structured variable in
which it is contained unless packing of the inner structure is
explicitly specified,

TYPE
chardata = ARRAY[1l .. 1001 OF *A*' ., "I,
booidata = PACKED ARRAYI{l .. 501 OF boolean;

VAR
sfouchartable
siowbooltable
fastchartable

*%

PACKED chardata,
booldatas
chardata;

e e

Figure 8-13. Array Packing Attributes

60456320~01 (pretiminary) COMPANY PRIVATE  8-7



The type and varlable declarations in figure 8-13 illustrate
methods of using the packing attribute. Note that the attribute
can be used In the type declaration or the variable dectaration.

In the example in figure 8-13s the programmer specifies that the
array SLOWCHARTABLE is packeds. This choice minimizes the amount
of memory space required for the array SLOWCHARTABLE at the
expense of additional access time to reference each element of
the array.. The array FASTCHARTABLE is not packeds s0 access
time is minimized at the expense of storage space.

Bsle6 ARRAY DATA STRUCTURE EXAMPLES

Arrays are used to represent various kinds of data. The
examples that follow examine some interesting array structures
and iltustrate how these arrays might be Impiemented in CYBIL.

8.1.6.1 Migrozerogcessor_Memory

Occasionally it Is necessary to represent the memory of some
computer in a program, In this examples the memory of a
micro-processor {256 wordss 8 bits per word) is represented in
cYBIL.

CONST
memsize = 256, {number of words}
maxword = OFF{16); {Word size (largest storable vatluel)l}

TYPE
micromem = ARRAY [0 .. memsize - 11
OF O «» maxword;

VAR
memory * PACKED micromem;

Figure 8-14. Array Structure {(Microprocessor Memory)

In the example in figure 8-14s the variable MEMORY is a packed
array {type MICROMEM). The type MICROMEM is declared in terms
of the two constants MEMSIZE and MAXWORD. Using the
declarations iIn figure 8-14s the example in figure 8-15
itlustrates one method of filling the simulated microprocessor
memory with ones {(turning on all bits in the simuiated memory).

60456320-01 (preliminary) COMPANY PRIVATE 8~8



CONSTY
ones = maxword;

VAR
word 3 0 »» memsize - 13

»

FOR word 2= 0 TO memsize - 1 DD
memorylword}l 3= ones;

FOREND;

Figure 8-15. Initializing an Array {Microprocessor Memory)

8.1.6.2 (hacactec Iranslation

When converting from one character set to anothers tabile lookup
is often used. A table of characters is created containing the
final {(new) characters. 7The (old) characters to be
transiated comprise the indexes of the array.

This exampie converts }owercase charscters into uppercase
characters.,

TYPE
chartbl = ARRAY [%a? ,, '2%] OF *A' ., 77

VAR
uppercase $ chartbl 3= {['Av, 182, (Y, I, g1,
TR, G, CHE, 1]V, g, KT, T 1, ¥MY,
INT, "0, Ip1, 1Q0, 1Re, Se, 1T, t1ya,
Tyr, N, v, 1yt, 73],
testchar 3 char;

»

IF {testchar >= 13%) AND (testchar <= 'z') THEN
testchar := uppercaseltestcharl;

IFEND;
L ]

»

Figure 8~16, Character Translation

In the example in fligure B-16, the type CHARTBL denotes an array
with indexes of the subrange fa' .. '2' and components of the
subrange 'A% ,, 'Z%, The variable UPPERCASE has the array type
CHARTBL and is initialized as shown. TESTCHAR is the character
to be translated if necessary. The IF statement determines If
the value of TESTCHAR is in the subrange %a' ., '2%, If sos the
value of TESTCHAR jis used as an index into the array UPPERCASE
and the contents of the array element is assigned to the
variable TESTCHAR» thereby converting a lowercase letter into an
uppercase Jetter,

A0456320~01 (preliminary) COMPANY PRIVATE 8-9

e o — —— A . . . . e




CONST
ones = maxword;

[

VAR
word 2 0 .. memsize - 13

FOR word 2= 0 TO memsize - 1 DO
memorylwordl 3= oness;
FDREND;

Figure 8-15. Initializing an Array {(Microprocessor Memory)

8+1.642 Chacacter Iranslatijon

When converting from one character set to anothers table lookup
is often used.s A table of characters is created containing the
final {(new) characterss. 7The (0old) characters to be
transiated comprise the indexes of the arraye.

This exampie converts Jlowercase characters into uppercase
characters.,

TYPE
chartbl = ARRAY ['a? ,, "2%'] OF 'A' ,, 127

VAR
uppercase : chartbl 3= [vA', %BY, 1CY, D%, g1,
TF', G'y 'YHY'y IV, 13ty K'Y, LT, MDY,
INY, T, t1pr, 1Q1, IR, 50, ITe, YN,
TYe, TYr, X, 1Yy1, 7],
testchar : char;
IF (testchar >= %a') AND (testchar <= '2') THEN
testchar := uppercaseltestcharl;
IFEND;
»

»

Figure 8-~16, Character Translation

In the example in figure B-16y the type CHARTBL denotes an array
with indexes of the subrange fa' .. '2' and components of the
subrange *A' ., '2%, The variable UPPERCASE has the array type
CHARTBL and is initialized as shown, TESTCHAR is the character
to be translated if necessary. The IF statement determines If
the value of TESTCHAR is in the subrange %*a?' ,, 12', If sos the
value of TESTCHAR Js used as an Index into the array UPPERCASE
and the contents of the array element is assigned to the
variable TESTCHAR» thereby converting a lowercase letter into an
uppercase letter,

60456320~01 {(preliminary) COMPANY PRIVATE 8~-9



8.1.6+3 Iable Manipulations

When representing data in the form of an arrays the indexes of
the array can help clarify the program. This is accomplished
using ordinal indexes.

The array in this example contains vslues that represent the

farm production {(in thousands of doltars) for various grains by
state. The table structure is shown in figure 8-17,

Corn Wheat QJats Barley

$- + e e . e o o o e +
Iowa H : H H :
[ - B T, S e 3
Kansas 3} H H H H
+ - B 'y
Idaho H H H :
+ - o - PR TSR
Maine i H H : H
+ + + + +
Texas | H H : H
+ —————— * ...... +‘ - - *—_—-—- ’-

Figure 8-~17. Array Structure {Farm Production)

For program claritys the array should be defined in terms of the
states and crops shown in figure 8-17.

TYPE .
value_in_thousands = 0 .. 10000
grain_type = {corns mwheaty oatsy barley),
farm_states = {iowas kansass idahos mainey texas),
state_produce_value = ARRAY{farm_states]) OF
ARRAYI[grain_typel OF value_in_thousands;

VAR

state : farm_statess

grain 3 grain_types

value_table 3 state_produce_valuey

value 3 value_Iin_thousands;

*

value = 03

FOR state := iowa TO texas DO
FOR grain t= corn TO barley DO

value 3=z value + value_tablelstate]l (grainl;

FOREND;

FOREND;

Figure 8-18, Using Ordinals With Arrays

60456320~-01 (pretiminary) COMPANY PRIVATE 8-10



With the declarations shown in figure 8-18, the produce value
of DATS in MAINE couid be determined by accessing
VALUE_TABLELMAINE] [OATS]I.

8.2 JIRING_IYPE

The string data type provides a way of defining and manipulating
strings of characters. The use of a string usualily implies that
the string be treated as a unit (one string)e. Strings are
ynique in that they alliow the programmer to access any substring
{group of characters) of the referenced string. An example of a
string declaration is shown in figure 8-19,

VAR
inputiine 2 string (80);

Figure 8~19, String Variable Decilaration

In the example in figure 8~19, the variable is INPUTLINE» and
the type is STRING (80). The 1ength of the string is 80
characterse STRING is a reserved worde. Packing attributes are
not atlowed in a string type definition.

84241 STRING REFERENCES

When the name (identifier) of the string variable is used, it
refers to the entire string. For exampies INPUTLINE in figure
8=19 refers to the entire string of 80 characterse.

Any individual character may be referenced by giving the
position of the character in the string in parentheses., For
exampies INPUTLINE (1) is a reference to the first character of
the string INPUTLINE. INPUTLINE (80) is a reference to the last
character in the string INPUTLINE.

References can also be made to a portion of a string variables
catted substring references. The format of a substring
reference Is as follows:

string identifier {(starting positions length)

For exampies INPUTLINE (1,10) refers to the substring starting
at position one and having a length of ten characters. The
iength parameter of the substring reference can be an asterisk
indicating that the substring extends to the end of the string.
For examples INPUTLINE (75,%) is a substring consisting of the
1ast six characters in the string INPUTLINE. Reference to an
entire string can be made in 2 number of ways. Ffor exampies
INPUTLINEs INPUTLINE (1»580)s and INPUTLINE (1,%) atlt refer to
the entire 80 character string INPUTLINE declared in figure
8“19.

60456320-01 {pretliminary) COMPANY PRIVATE 8-11



String constants are denoted by enclosing the characters
comprising the string in apostrophes., For exampier *To be?! is a
string constant whose iength is five. CYBIL does nots» howevers
allow substring references of string constants. The example in
figure 8-20 itlustrates this.,

CONST
strcon = 'inviolate?;

VAR :
strvar 3 string (9)»
shortstr ¢ string (5);

{1} shortstr 2= strcon {3, 5); {Invalid substring reference}

{2} strvar := strcon; {Valid }
{3} shortstr := strvar (35 5)3 { string }
{4} shortstr t= 'yjolat; { assignments 3}

Figure 8-20. String Constantss Invatid Substring

The presumed object of the program segment in figure 8-20 is to
assign the string %viola' to the string variable SHORTSTR. The
first assignment statement contains an invalid substring
referencey because STRCON is a string constants To reference
the third through seventh characters of STRCON an intermediate
string variable must be useds The second and third assignment
statements itlustrate this processs Of courses the apostrophe-
delimited string constant may also be assigned to a string
varjiables as shown in the fourth assignment statement. String
assignment is described further in the following pvparagraphs.

Be2+42 STRING ASSIGNMENTS

Assignments to string variables operate under rules that refax
the requirement for strict type equivalence of destination
variable and value. Brieflys a characters strings or substring
value can be assigned to a substrings string variables or
character variable. If the lengths of the valuye and the
destination variable are differents the length of the valtue is
ad Justed (truncated or extended) to match the length of the
destination variabte, CYBIL truncates a string by removing
characters from the rights CYBIL extends a string {(or
character) by appending blanks on the right. The examples in
figure B8-2]1 ittustrate these string assignment concepts.

60456320-01 {(oreliminary) COMPANY PRIVATE 8-12



VAR
ch ¢t chars
s8 2 string{8)»
s9 2 stringi9);
$9 3= 'fourscore';
s8 31z 59({5,%);
ch 3= 583
s8(7y *) 3= ¥3457;
s8{6y 2) = ch;

tscore L
151 }
fscore 34" }
tscores 4' }

X Em ]

Figure 8~21. String Assignments

The comments in figure 8-21 indicate the value of the
destination yariable after each assignment statement.

When substrings of the same string variabie are involved on both
sides of the assignment operators the substrings must not
overtap; the results of such an assignment are undefined, For
examples using the variables in figure 8-21y the statement

$9{1s 3) = s9{2, 3)

is in error; CYBIL issues a diagnostic message during
compilations, Ifs howevers the substrings involved are defined
in terms of variablesy the legality of the assignment cannot be
determined until the statement is executed. For examples the
statement

s9{1ls 3) = s9(starts 3)

{where START is an integer variable) is in error if START has a
value less than 4. In such a case the resuilts are
unpredictable.

8.243 ARRAYS OF STRINGS
An array of strings is commoniy used to construct a table of

namess EFach component of the array is defined to be a string of
the necessary length.

CONST
tableiength = 29, {Max names in table}
stringlength = 13; {Max chars per namel}

VAR
nametbi 3 ARRAY [1 .. tabtelengthl)] OF
STRING {(stringlength);

Figure 8-22., Array of Strings

60456320~-01 {preliminary) COMPANY PRIVATE 8-13



In figure 8-22, the array NAMETBL consists of 29 strings of 13
characters eachs The identifier NAMETBL refers to the entire
array of strings. An individual string of characters is
referenced as NAMETBLIIl, where I is a value in the subrange

1l «o 29, It is also possible to reference any substring in the
array. For exampley NAMETBLIZ29] {(13) 3= *7?, assigns the letter
7% to the 1ast character in the 1ast string of the array of
strings.

8.2.4 STRING COMPARISON

To be supplied

8e2+5 STRING INITIALIZATION

A string variable is initiatized by specifying a string constant
after the string variable declaration.

CONST
strl = 'ABCDE?;

VAR
strvar : STRING {6) = strl,
strs 3 STRING {3) 2= *XYZ?,
neatstr ¢ STRING (7) 2= strl CAT ?'QRS?';

Figure 8-24, String Initiatization

Figure 8~24 jllustrates various methods of declaring and
initializing strings. The constant declaration declares the
identifier STR1 to be a string of five characters (?ABCDE?').
When the lengths of the string variabte and the constant are
unegquals the initiatlization behaves tike string assignment: the
string constant is truncated or extended on the right to fit the
length of the string variable. In flgure 8«24, STRVAR is
initialized to *ABCDE '; CYBIL adds a biank to the vatue of the
STR1 to form a six-character strings NEATSTR is initialized to
*ABCDEQR?; CYBIL deletes the S to form a seven—-character
string.,

8.3 RECORD.IXYRE

The data structures discussed so far have consisted of
homogeneous components. That iss all the elements have been the
same type. The record type alliows for the creation of a data
structure {(called a record) that contains nonhomogeneous
components. These components are called fieldse.

60456320-01 {(preliminary) COMPANY PRIVATE 8-14



Eield Iype.

+ +
surname istring (11) :
age 10 «» 115 :
married iboolean :
sex i{males female)d!
fingers 10 .0 11 H

F—— +

Figure 8-25, Record Concepts

As shown in figure B-25 aboves a record consists of many fields.
Each field Is associated with a type and has 3 unique field
identifier (SURNAMEs AGE» and so on). The field identifiers
must be unique within the record. The reserved words RECORD and
RECEND define the beginning and end of the record definition.

TYPE

personal = RECORD
surname 3 string (11),
age 3 0 o 115,
married : booleans
sex 3 {maley female),
fingers 2 0 .. 11,

RECEND;

VAR
recvar 3 personals
recarray 3 array [1 .. 100) OF personal;

Figure B8-26, Record Syntax

The type PERSONAL in fligure 8-26 is a record with five fields.
fach field has a field identifier followed by a colon and a
Field typees The record itself is bounded by the reserved words
RECORD and RECEND.

The variable RECVAR is defined to be type PERSONAL. <CYSBIL
allocates to this variable sufficient storage space to contain
all the declared fieldse An array of records can be created to
allow access to many occurrences of the records An array of
records Is illustrated with the variable RECARRAY in Ffigure
8’26.

8+3.1 RECORD REFERENCES

In figure 8-26s RECVAR lIdentifies a record of type PERSONAL.
Whenever the identifier RECVAR is useds it refers to the entire
records A record can be assigned to another record of the same
type and two records of the same type can be compared for
equality or inequality. No other operations are permitted on
entire records.

60456320-01 (preliminary) COMPANY PRIVATE 8-15



A field of a record is referenced by using the record identifier
followed by a period and the fleld name., For example,
RECVARSURNAME refers to the field SURNAME (STRING (11)) in the
record varlable RECVAR {(refer to figure 8-26)s The first five
characters of the field SURNAME in the variabie RECVAR are
referenced RECVARLSURNANME {(1,5).,

Consider the array of records RECARRAY in figure 8-26. The
reference RECARRAYIS1]) refers to the 51st record in the array.
RECARRAYIS5114.SURNAME refers to the field SURNAME in the 51st
record in the array RECARRAY., Similarly,

RECARRAYI51).SURNAME {6»%) refers to the last six-character
substring in the field SURNAME in the 51st record of the array’
RECARRAY,

Be3e42 PACKING AND ALIGNMENT

Packing and alignment attributes are used to specify storage
space versus access time trade offs for fields of records.
Fields of packed records are mapped onto storage so as to
conserve storage space at the expense of execution {access)
time. Regardiess of packings aligned flelds are mapped with
storage so as to be directly addressabie. When a field is made
directly addressables the fleld begins on an addressable
boundary to facilitate rapid access to the field. Records
themselves {(the colltection of fields) are always aligned

uniess they are unaligned fields of a packed structure.

Record packing Is specified with the reserved word PACKED,
Alignment of fields is specified with the reserved word ALIGNED,

TYPE
data = PACKED RECORD
name : string {(11)»
addr 3 ALIGNED L[O MOD 81 string {(31),
age 3 0 oo 115,
grades 3 array {1 .. 10 OF 'AY ,, 'F?
RECEND;

VAR
class_data : array [1 +. 301 OF data;

Figure 8-27. Packing and Alignment {Record)

In figure 8~27, DATA is defined to be a packed record type.
This means that the fieids of this record will be structured to
reduce storage space at the expense of access time. The field
ADDR is aligneds however. ADDR will begin on an addressable
boundary to facilitate rapid access to this field at the
expense of storage space, The materiail following the ALIGNED
keyword —- [0 MOD 8) -- specifies how the field is to be
aligned, Refer to appendix B, Representation Dependent
Featuress for further information.

60456320-01 {preliminary) COMPANY PRIVATE 8-16



B+3+3 VARIANT RECORDS

Tables for system software often require a record with fixed
information {or fietds) followed by variable (variant) fields.
Figure 8-28 shows this pictoriaily.

b= e ——————— prm————— -3 -
I H ! integer } A H
Fixed <3 1 name H e R H 1> Short
pPart - H H { boolean I B { Form
- 3 - : : Fmm——— -
: type : :
+- 3 - H :
- 1 ——————— +
Variant <i 1§ attributes {=——rm——-t bmm—————— -1
Part I H H { ordinal { C
$m bmmmmm———————t ! lemmmmemee :
Record +==>} boolean { D > Long

Form

. S S BS W

[}

{

i

t

|

1

)

}

'
+*
i

!
+

Figure 8-28., Variant Record Concept

Figure 8-28 shous a record consisting of iwo major parts: a
name and a set of attributes. Depending upon the type of the
records the attributes portion of the record can be one of two
forms (the short form or the fong form).

In any one occurrence of the records only one of the two forms
will exists. Howevers some occurrences of the record may be the
short form and others may be the long form.

This kind of structure‘is dectared in CYBIL as shown in figure
8‘"29.

TYPE
form = {shorty, tong)»
color = {(reds greensy blue),
rectype = record
name 32 string (11)

CASE t : form OF
=short= a integers
booleans
color
booleansy
integers

L]

=jlong=

o Q0o
se 6 e «s

CASEND
RECEND;

VAR onerecy tworec : rectype;

Figure 8-29, CYBIL Variant Record Syntax

60456320-01 {(preliminary) COMPANY PRIVATE 8-17



The record structure declared by the exampie in figure 8-29 wiil
be one of the two illustrated in figure 8-3C.

- -

name 3 string (11) name 3 string (11)
t i short : t ! tong H
o ————————— : !
a i integer H c { color H
: -1 : H
b { boolean H d i boolean :
e 1 integer H
Short variant -

Long variant

Figure 8-30, Variant Record Layout

As §iltlustrated in figure 8-30s there are two forms {or wvariants)
for the record (LONG or SHORT), The identifier T {the tag
fietd) is included in the record itseif.

Information Is stored into the record variable one field at a
time., To declare which variant is being useds a value (LONG or
SHORT) is assigned to the tag field To This is illustrated for
each record type {(variant) in figure 8-31, which assumes the
type declarations made in figure 8-29,

VAR onerecsy tworec ! rectype;
*

{Initiatize onerec as short record}
onerecename tx= VIDENTIFIER1?';
onerec.t := short; '
onerecesa = 63
onerecesb := TRUE;

{Inttialize tworec as long record}
tworec.name = 'IDENTIFIER2?;
tworec.t := long;
tworecs.c := blue;
tworec.d 3= FALSE;
tuorec.e = 53

E d

L ]

Flgure 8-~31, Variant Record Initialization

Since the tag field of the record is stored in the records» one
can determine at execution time which variant is contained in
the recorde.

60456320-~01 (preliminary) COMPANY PRIVATE 8-18



8.4 JEI3

The CYBIL notion of a set follows closely the mathematical
cencept of a set; that is» a set §is an sccumulation of elements
{members). In CYBIL, the elements can be ordinal values
{identifiers)s charactersy integerss or boolean values. The set
members have no order; one cannot say that some member is the
first member in the set. Hovevers it is possible to place
members in a sety delete members from a sets and determine
whether a given member exists in a set. 0One can create both

empty and full sets. )

8.4.1 SEI_DECLARAIIDN

Figure 8~32 illustrates the kinds of sets allowed and the syntax
for declaring sets.

TYPE
a = set OF (redy greens blue)
b = set OF 0 .o 17>
c = set OF A ,, '7%;

VAR
ordset 3 a»
intset ¢ by
vowelset % c¢;

Figure 8~-32., Declaration of Sets

In figure 8-32 type A denotes a set of the ordinal identifiers
{REDs GREEN» BLUE). A variable of type A {ORDSET in figure
8-32) is a set variable andy in this examples can contain up to
three memberse If ORDSET is empty then it contains no members.
If ORDSET is full then the members RED» GREEN» and BLUE are all
present in the set,

8.4.2 SEI_REEERENCES

A set variable takes on a valtue in the same manner as variables
of other types: by assignment or by initializations The two
methods employ siightly different mechanisms for specifying {or
constructing) the set value to be assigned to the set variables;
thereforey each is described separatelys beginning with
assignment statements involving set variables.

When assigning a value to a variable of type sets the value
assigned {(what appears to the right of the assignment operator)
must have the same type as the variables The value can be any
expression containing set variables and/or set value
constructors {described shortiy)y as ltong as all set variables
and set value constructors are of the same type.

60456320-01 {preliminary) COMPANY PRIVATE 8-19



Beahe2s1 Set Value Constructors

A set value constructor denotes {constructs) a set through an
explicit itemization of the elements to be incliuded in the set.
Its general format is as follows:

$set type identifierflist of set elements]

The set elementss enclosed in bracketss are separated by commas.
Each must be an expression {(containing variables and/or
constants) whose type matches the component type of the set.
The exampies in figure 8-33 illustrate set value constructors.

VAR
ils
i2 2 0 o0 17;
i1 3= 73
i2 = i1l;
intset 3= $blill; {7 }
intset = $bfil, i21; {7 }
intset 3= $blils, i1 + i2y i1 - 3133 £ 75 14 4 3}
intset = $blil - i21; {o }
intset 3= 3$bl1; { empty set }
ordset $= $alblues PRED {green})l; { blues red }

vowelset = Scl'A', 'E%, t]t, 0%, y'];

Figure 8-33, Set Valtue Constructors

Variabtes I1 and 12 are subrange of integer type; all other
jdentifiers in figure 8-33 retain the meaning associated with
them by the declarations in figure 8~32, Comments appearing to
the right of the assignment statements in figure 8~33 indicate
the elements of the set variable after each assignment. Note
that the empty set is denoted by a set value constructor nith no
values specified within the bracketss (Methods for creating a
full set are discussed in the paragraphs describing set
operations.)

Befhe?2s2 Set Initiatization
Set variable initiallization is similar to array and record
initiatlization: the elements comprising the initial set value

are listed between brackets and separated from the variable type
declaration by 2= as shown in Ffigure 8-34,

VAR
set_var : set OF 0 +o 15 3= (35, 7y 8-7y 41};

Figure 8-34, Set Variable Initiatization

60456320-01 {(preliminary) COMPANY PRIVATE 8-20



Set variable initializati

on is also similar to the set vatue

constructor described eartiers with the folliowing differences?

0 The 1list of set el

ements must be constants or

expressions involving constants only.

0o No set type identi

fier precedes the bracketed tist

of set elements because the set type is specified

as part of the var

The varliable declaration
identifier (defined in a

iable declaration.

in figure 8-3% does not employ a type
TYPE statement) to denote the type of

SET_VAR. Insteads its type is explicitly defined by “set OF
0 +s 15", Defining a set variable in this way is valid but,

without a set type identi

fier declaredy it can restrict future

assignments to the variable to expressions without set vafue

constructors.

8.4e3 SEI_OQPERATIONS

CYBIL provides two groups

of operators that operate on sets.,

Members of the first group operate on set operands and produce

set resultss These opera
second group comprises fi
boolean resuitss These o

tors are summarized in table B-1, The
ve refational operators that produce
perators are summarized in table 8~-2,

{two operands)

St B Gl B O

]
E ]
t all etements of the

t left operand that are
! not also elements of
]
]

B e S S S»

TABLE 8-1., SET~-VALUED OPERATORS
{0per=} H Resuit { Evaluation |
tator 3 Name H Definition i Precedence 3
:383833"8'3’3288.88838‘8333:3::8:88:3‘3‘83;8838228882883388‘838‘883 :
! % | Set intersection i The set consisting of } 1 H
: : i all elements common to} {(highest) 1}
H : + the two operand sets 3} H
: - . - - -1
i = 3 Set complement : The set of all H 2 :
: { (single operand) | elements of the base | H
: H 1 type not in the : H
H : t specified operand set 1 :
H - - -
T + 1 Set union i The set consisting : 3 H
: : { of all elements of H :
H : } both operand sets H :
- -1
t XOR | Symmetric ! The set consisting of } 3 :
H i difference i all etements contained; :
H H $ in either set but not :
H : s in both sets H H
: - - - — - - e |
HE Set difference The set consisting of 3 H
[ ] 3
: :
: H
L ] [
8 []

!
¢

the right operand

60456320-01 {(preliminary)

- v - -

COMPANY PRIVATE 8-21



TABLE 8-2, RELATIONAL SET OPERATORS

- - - _ - - -

{TRUE; TRUE otherwise
t ]
*

setl <= set2 {tTRUE if all members of
isetl are members of
iset2s or If setl is
tempty; FALSE

iotherwise
]

{0per-¢ H Sample :
fator { Tests for H Expression + Result Definition
:3833»33‘33‘8833838838883388323:38::3323832:33'==8‘88!8=3=:333&
= jIdentity setl = set2 STRUE if all members
H iof se2tl are in set2
: iand atll members of
: iset?2 are in setly or
: $1f setl and set2 are
: 1empty; FALSE otherwise
] 4
] s
<> iInequality setl <> set?2 IFALSE if setl=set2 is
]
:
]

=
i{left operand
icontained in
iright operand)

- we

L ]
setl >= set? $TRUE if set2<=setl is
ttrue; FALSE otherwise

>= (Containment
i{right operand
icontained in
$left operand)
IN TRUE if scalar value
is a member of setls;
FALSE otherwise

- o e

Set membershipt scaltar IN setl

BB B EE R Gl e Be BB B BE BE L6 BE B PR be BE NS B Be Bk B G G e S B

W il B B ME BN NS e B GG DS RS S Se WD BE SR GD S B B S S e
B M W WG SRS B G0 B SD G W B B B W WE G B G W R N e W

e wE B SR 4B B

e WO e &8

CYBIL performs the operations in table 8-1 according to the
precedence shown (and before relational operations) wmhen an
expression involves operators of different precedence,

The operands used with each of the operators in tables 8-1 and
8~-2 (except INy which is described short!y) must be of the same
types The result type of the operations in table 8-~1 is the
same as that of the operand{s) involveds. An operand can be a
set value constructors a set variabley or a set-valued
expression,

The IN operator tests whether a value is a member of a set. The
type of the value and the component type of the set must be the
sames or one must be a subrange of the other. Each can also be
a subrange of the same type. If the vatue is outside the
subrange that defines the set's component type when the IN test
is performeds the booiean resuit is FALSE. Sef operations are
itlustrated in figures 8-35 and 8-36,.

60456320-01 (preliminary) COMPANY PRIVATE 8-22



TYPE
toe = 1 ¢ 5>
toes = set 0OF toe;

VAR
ift 3 toes 3= [2s 4y 51,
rft 3 toes 3= [1y 29 35 41)»

ft : toes;
ft 1= 1€t % rft;
ft 2= - 1ft;
ft 1= Ift + rft;
ft = 1ft XOR rft;
ft = IfL - rft;

O BN
(S RN RN ISR

w
&~
o)

Wl bl o g byl g byl i e b

ft 1= - $toes(i; 1 2
£t 3=
fL =
ft 2=
£t =
ft &=
ft :=

Ift % rft;
(Ift * rft);
- 1ft) * rft;
Ift + rft;

- 1ft) + rft;
(iIft + rft);

1
1
p

N OO~ o LSRN R
NN b b

o bt g b hd b bl g g g e W
N Py e g p Py pey pee e

e lalelala e e lalainln
b
N WwWmwWwWw

Lo~
S Pbwan Wy

Empt:

-«

e

Figure 8~-35, Set-valued Operations

The foilowing discussion uses the reference numbers that appear
to the left of the assignment statements in figure 8-35, To the
right of each vatid assignment statement is a comment that
indicates the valuel{s) assigned to the result variable,

Statements 1 through 5 illustrate the set-valued operators
intersections complementations unions symmetric differences and
set differences respectively., These operators are defined in
table 8~1,

Statement 6 shows a straightforward method of denoting a full
set: by complementing an empty set. A set vatue constructor
fisting all elements of a set's component type also produces a
full sety, but diminishes program readability. Denoting a full
set by itemizing the set contents could also increase the
program maintenance effort:s {if the component type of a set were
changed (by addition or removal of elements)s any reference to a
full set of this type woutd require modification if its elements
were explicitly listed,

The next six statements in figure 8=35 ilfustrate the way in
which CYBIL evatuates set-valued expressions without

parentheses, The flrst group {(statements 7» 8» and 9) involves
set intersections the second inveolves set union. The first
statement in each group {(statements 7 and 10) has no parentheses;
the second statement in each group is equivalent to the first,
but includes parentheses. The third statement in each group
fllustrates the consequences of incorrectiy applying the
precedence rules for set operators. Because set compiementation

60456320-01 (preliminary) COMPANY PRIVATE 8-23



is performed after set intersectionsr but before set unions it is
good practice to use parentheses to determine the evatuation
order of a set-valued expression. This practice not only
improves readabilitys but heips prevent unintentional
misevaluation of an expression,

The statements in figure 8-36 demonstrate some fundamental
properties of sets and contrast the IN operator with the
containment operator. As befores the Ffollowing discussion uses
the numbers appearing to the 1eft of each statement for
reference,

TYPE
toe = 1 4o 5>
toes = set OF toe;

VAR
1t : toes 2= [2s 45 51>
rft 3 toes = {1y 2y 35 41>
ft : toes,
t3 ¢ toe = 3,
t6 ¢ integer = Hy

b 2 boolean;

1= $toesll = Ift XOR 1f¢L;

{211} b { TRUE }
{22} b 1= $toesl) = rft - rFt; { TRUE 2}
{ 23} b = stoeslly 4] <= rft; { TRUE 1}
{ 24} b = §ift >= 3$toes{]; { TRUE }
{ 253 b 2= £3 IN rft; { TRUE }
{ 26 3 b 2= $toesit3] <= rft; { TRUE 2}
{273} b 2= 6 IN Ift; { FALSE 3}
{ 28} b 3= t6 IN 1ft; { FALSE }
£ 293} b 2= $toesftsl <= |IFft; { Error }

Figure B-36, Relational Set Operations

Statements 22 through 24 illustrate two basic boolean

operations on setsy identity and containment. (Inequatity is
omitted as it derives its definition from set identity; set
membership is illustrated in statements 25 through 29.)
Statements 21, 22y and 24 also demonstrate some properties of the
empty set: the symmetric difference or set difference of two
identical sets jis the empty sety and the empty set is a subset

of (contained in) any set.

The remaining statements in figure 8-36 illustrate the IN
operator. Statements 25 and 26 are functionally equivalent:

the value assigned in each case depends on whether the value of
variable T3 Is a member of RFT. {(In this examples T3's valuye is
in RFT» so the result is TRUE«) As will be shown shortiys the

60456320-01 (pretiminary) COMPANY PRIVATE 8-24



equivalence of these two statements is due not only to their
constructions but also to the fact that T3's type matches the
component type of RFT's type {(both are TOE)e Afthough the two
statements are equivalent, the Fform used in statement 25 is
recommendeds as its meaning is more Iimmediately recognizabie.

Statements 27 and 28 show the result of testing for set
membership {(via IN) when the scalar?s type differs from the
set's component type with respect to subrange {that iss the
parent type —— integer -- is the sames but the subranges
differ). If the scalar value is outside the subrange of the
set?s component types the expression is FALSE; otherwise the
expression's value is dependent on the scalar's membership in
the set,

Statements 28 and 29 have the same equivalence in construction
as statements 25 and 26» but are not equivalent in meaning.
T6's type is integer and can therefore take on values outside
the subrange comprising LFT?s component type. The set value
constructor In statement 29 is invalid whenever the vatue of T6
is not of the same type {subrange) as LFT's component type;
therefores statement 29 is in errory because T6%s value is 6.

60456320~01 {preliminary) COMPANY PRIVATE 8

25



9.0 RROCEDURES

The essence of a procedure is the association of an identifier
with a statement list such that specifying the identifier causes
the execution of the statement fist, The association of the
statement list with the fdentifier constitutes the procedure
declaration; specification of the identifier {(the procedure
name) as an element of a statement 3ist constitutes a procedure
calli statement, Procedures (when used properily) subdivide a
farge program into manageable taskss thereby making plain the
program?s overall structure,

9.1 DECLARAIION AND_USE

The most general form of a procedure is shown In figure 9-1.

PROCEDURE [attributes] procedure name (parameter fist)s

*

{ Procedure body }

PROCEND procedure name

Figure 9-1, General Structure of a Procedure

In figure 9-1y the reserved word PRDCEDURE introduces the
proceduresy optional attributes specify how the procedure is to
be useds the procedure name identifies the procedures and the
optional parameter list specifies arguments passed to or
returned by the procedure. The reserved word PROCEND and
{optionally) the procedure name indicate the end of a procedure
declaration. The procedure body contains the statement list
(and other elements that will be discussed shortly) that is
executed when the procedure Is called, Without its optional
partsy the structure iflustrated in figure 9-1 has the simple
form shown in figure 9-2,

PROCEDURE procedure names

>
{Statement 1ist)}

»
PROCEND procedure name

Figure 9=-2, Simplified Procedure Format

60456320-01 {(preliminary) COMPANY PRIVATE 9-1



{The procedure name following PROCENDs while not required,
improves a program's readability and is highly recommended. For
this reason it is included in figure 9-2 and in all other
procedure declarations illustrated in this guide.)

Procedures are declared {(like wariablesy» constantss and so on)
before the statement list in which they are used. Figure 9-3

illustrates the relationship between procedure declaration and
US s

PROCEDURE do_it;

———— -

-=== { Procedure body }

PROCEND do_it;

VAR
condition 3 boolean;
Execution
Begins here ———e——=——=>

{1} do_its;

{2} IF condition THEN
do_1it;
IFEND;

L

Figure 9-3. Execution»Flbu

The program segment in figure 9-3 shows a procedure declaration
and a variable dectaration. When the statement {ist that
follous these declarations is executeds the procedure call
statement at {1} Initiates execution of procedure DO_IT. When
procedure DD_IT completess execution resumes with the statement
following the procedure caltl at {1}. If CONDITION is TRUE when
the IF statement at {2} is executeds DO_IT is called again. In
this case execution resumes with whatever follows the IF
statement {that iss whatever follows IFEND).

Procedures also provide the ability of shielding and sharing
variables. Variables can be declared inside a procedure and are
thus focal variables, Their scope is the procedure {(block) in
which they are defined. This concept is lllustrated in figure
9"4.

60456320-01 (preliminary) COMPANY PRIVATE 9-2



PROCEDURE outers
VAR
i»
out_var 3 integer;

PROCEDURE inner;
VAR
is
in_var : integer;

. { inner statement iist 2}

PROCEND inner;

*

. { outer statement tlist 3}
PROCEND outers;

Figure 9-4, Shielding and Sharing Variables

In figure 9-4 variable BUT_VAR is local to procedure OUTER.
Since procedure INNER is contained In procedure QUTERy variable
DUT_VAR can aiso be referenced in procedure INNER. Variable
DUT_VAR is global to procedure INNER. Similariys variabie
IN_VAR declared in procedure INNER is tocal to procedure INNER
and cannot be referenced in procedure QOUTER.,

Two distinct variables are denoted by the identifier I. One
variables 1 declared in procedure OUTERy is ftocal to procedure
DUTER and global to procedure INNER. The other variable I is
declared in procedure INNER and denotes a i1ocal variable that
can be referenced only in procedure INNER., This second {(inner)
declaration of I supersedes the declaration of I in procedure
OUTER. Thus the variable I declared in procedure DUTER cannot
be referenced within procedure INNER., Table 9-1 summarizes
these pointse.

TABLE 9-1. SCOPE OF IDENTIFIERS EXAMPLE

iCan variable iCan variable }

]
E ]
tDectlared tbe referencedibe referencediScope of
Variabte {in iin procedure {in procedure {the variabtle
Identifieriprocedure’OUTER? ${ INNER? tidentifier
+ + + o - -—
I s DBUTER H Yes : No {Procedure OUTER
H H H H
OQUT_VAR | DUTER H Yes : Yes tProcedures QUTER
H : : tand INNER
: : H :
I t INNER H No : Yes {Procedure INNMER -
] 3 [ ]
] L ] 1] ]
IN_VAR ¢ INNER : No : Yes iProcedure INNER

60456320-01 {preliminary) COMPANY PRIVATE 9-3



9.2 NESIED.BROCEDURES

When a procedure declaration is nested {that iss a procedure is
declared swithin another procedure declaration}s the nested
procedure is shielded just as any other declaration within the
outer procedure. The inner procedure cannot be calied from
outside the outer procedure. For examples consider the progranm
structure in figure 9-5,

MODULE nested_procs;

!
|
+

PROCEDURE computes
VAR

i
t
*

-

PROCEDURE test;

TV I OO

VAR

Ve e

{ Executable statements 3}
PROCEND tests;

W e B ek Se B8 s S e

{ Executable statements }
PROCEND compute;

*O...h“.‘..‘* W BN SD SR SR BE e R S S e G S B Y e

PROCEDURE main;

L d

.
compute 3

D =-w [

PROCEND mains

MODEND nested_procs;

Figure 9-5, Nested Procedures

In figure 9-5 procedures MAIN and COMPUTE are at the outermost
fevel (that is» their declaration is not contained within
another procedure declfaration). Procedure TEST Is nested inside
COMPUTE. This structure provides shielding {(protection) for
procedure TEST. With this structures procedure MAIN can call
procedure COMPUTE, but procedure MAIN cannot call procedure
TEST. Only COMPUTE can call TEST. So TEST can rely on COMPUTE
to validate variablies and perform other computations which might
be necessary for the correct execution of TEST.

9.3 PARAMEIERS

A procedure?s effectiveness depends on its ability to affecty, or
be affected by, varliables that are not iocal to it. 0One method
by nhich a procedure can do this was described eartier: a

60456320-01 {(preliminary) COMPANY PRIVATE 9-4



procedure can reference variables global to its as procedure
INNER could with variable QUT_VAR in figure 9«4, A procedure
can also interact with Its environment via parameters.

9.3.1 EORMAL_AND_ACTUAL_PARAMEIERS

Parameters are an optional part of 2 procedure declaration.,
They are specified after the procedure identifiers enclosed in
parentheses {see figure 9-1), Parameters in the procedure
declaration (called formal parameters) correspond to actual
parameter values specified on the procedure caill statement.
This correspondence is Illustrated in figure 9-6.

TYPE
days = 0 <« 6>
total_array = arrayldays] of integer;

VAR
first_day 3 days,
date : integer,
tot0l : total_arrays

PROCEDURE count_days ( first 3 dayss
2 integer);
VAR
day ¢ dayss

day 3= {(first + day_#) MOD 7;
tot0lldayl) 2= totOl{dayl + 1;

PROCEND count_dayss

date 2= 193;
first_day 3= 03

count_days (2» date);
count_days {first_days date + 3);
count_days {first_day, 13);

Figure 9-6, Elementary Parameter Passing

The parameter 1ist for procedure COUNT_DAYS provides several
pieces of information.

0 It speciflies the Identifiers that denote the
procedure's formal parameters. These identifiers are
like read-only variable identifiers whose scope is the
procedure itself (COUNT_DAYS in figure 9-6).

0o It specifies the type of each parameter. FIRST denotes
a variable of type DAYS (subrange of integer, 0O to 6);
DAY_# denotes a variable of type integer. Actual
parameter values specified on a statement that catls
COUNT_DAYS must conform to these types.,

60456320-01 {preliminary) COMPANY PRIVATE 9-5



0 It establishes the number and order of parameters for
the procedure., Thusy a statement calling COUNT_DAYS (as
shown in figure 9-6) specifies two values as actual
arguments: the first value is assigned to FIRST», the
sacond is assigned to DAY_# when COUNT_DAYS is calied.

The formal: parameters in figure 9-6 have the same scope as local
variablesy but cannot recelve assignments; they can appear only
where expressions are permitted {to the right of an assignment
operators as an array subscripts In a substring references and
s0 on)es Each actual parameter specified in the procedure call
statements in figure 9-6 can be any expression as long as its
value is of the same type as the corresponding formal parameter,
Thus DATEs DATE 4 3» and 13 are all suitable as actual
parameters for DAY_#, because DAY_# is a formal parameter of
type integer.,

9¢3.2 IWO=WAY (VAR) PARAMEIERS

The method of passing parameters itlustrated in figure 9-6
allovws only one-way passing of parameters; any results computed
by the procedure must be assigned to global variables if they
are to be referenced outside the procedures A second type of
formal parameter can be specified that allows two-way parameter
passing., With this type of parameters assignments to the formal
parameter are assignments to the actual parameter; that Iss the
procedure returns results by assigning values to a formal
parameter., The procedure from figure 9-6 is modified in figure
9=7 to itlustrate two—-way parameters,

TYPE
days 2 0 0o H»
total_array = arrayfidays] of integer;

VAR
first_day : days»
date 3 integery
tot0l : total_array;

PROCEDURE count_days first : daysos
day_# ¢ integer;
VAR totatl t total_array);
VAR

day : days;

day 3= {first + day_#) MQOD 73
totai{day)] 2= totalidayl + 1;

PROCEND count_dayss;

date := 1933
first_day := Q3

count_days (2s dates totOl1);
count_days (first_days, date # 3, totOl);
count_days {(first_day» 13, totCl);

Figure 9-7., Two-Way Parameter Passing

ANILETLAMIN_N1 LN R T 3 AMMD ANMY ANTIZAT Nz



The third parameter in procedure COUNTY_DAYS {(figure 9-7) is a
tvwo-way parameters as indicated by the reserved word VAR
preceding the parameter identifier (TOTAL): A semicoion
separates its declaration from the one-way parameters that
precede jt. If additional one-way parameters were added after
the dectaration of TOTAL» a semicolon would precede their
declarations, and VAR would be omitted.

During a procedure’?s execution» an assignment to a two-way
parameter is an assignment to the wvariable specified as the
actual parameter in the procedure call statement. Thus» the
assignment to TOTALILDAY)Y in procedure COUNT_DAYS is actuatiy an
assignment to TOTOIIDAY)s because TOTO1l is specified in the
procedure call statements in figure 9-7.

The actual parameter specified for a two-way parameter in a
procedure cali statement must be a variable whose type matches
the formal parameter?s, It cannot be a constant or an
expression. Thuss TOT01 is an acceptable actual parameter for
TOTAL since it is a variable of type TOTAL_ARRAYs the type
required for TOTAL by its parameter declarations CYBIL places
an additional requirement on an actual parameter {f it is an
element of a packed record: such an element must be aligned if
it is to be used as an actual parameter,

9.3.3 KEYWORD _SPECIEICATION QFE_ACTUAL PARAMEIERS

Correspondence between the actual parameters specified when a
procedure is called and the procedure’s formal parameters can be
achieved in two ways. The first (as described above) is by
specifying the actual parameters in the same order as the formal
parameters. The second is by assigning the actual parameter to
the formal parameter in the procedure call statement as
itlustrated in figure 9-8,

TYPE
days = 0 «o 6
total_array = arrayldays] of integer;

VAR
first_day * days»
date 3 integers
totOl : total_array;

PROCEDURE count_days { first * daysy
day_# : integers
VAR total : total_arrayl;
VAR

day ? dayss

day 3= {first + day_#) MOD 7;
totall{day) 3= totalidayl) + 1;

60456320-01 ibreiiminary) COMPANY PRIVATE 9-7



PROCEND count_dayss

date 2= 1933
first_day 3= 03

count_days (2s dates totlOl);
count_days {(first 2= first_days day_# := date + 35 totail := tot0l);
count_days {total 3= totOls, first := first_days day_# 2= 13);

Figure 9-8, Keyword Parameter Specification

The three procedure call statements in figure 9-8 perform
identicalty to those in figure 9-7. The first call is
unchanged, The actual parameters in the second and third call
statements are specified by keywords that is» the formal
parameter identiflier and an assignment operator precede each
actual parameter. When specified by keywords the order of the
parameters in a call statement is immaterial. Thuss DAY_# := 13
{in the third call statement of figure 9-8) effectively
associates 13 with the second formal parameter declared for
procedure CDUNT_DAYS» even though it appears as the third actual
parameter in the catil statement.

If any actual parameters are specified by keywordy then no
parameter can be speclfied positionalliy., For examples

COUNT_DAYS (FIRST := 25 DATE» TOTOl)

is not a tegal CYBIL statement.

9.3.4 QDEEAULY PARAMEIER_YALUES

CYBIL provides an alternate mechanism for assigning a value to

a formal one-way (nonVAR) parameter when the procedure is called
whereby no actual parameter value need be specified, Rathers a
default value is specified with the parameter?s declaration in
the procedure header; if no corresponding actual parameter is
specified when the procedure is calieds the formal parameter
takes on the default value.

A deftault value can be specified for only a one-way {nonVAR)
parameters and must be a constant {(not a constant expression).
It is placed after the formal parameter's type identifier in the
procedure headers separated by := , as shown in figure 9-9,

60456320-01 (preliminary) COMPANY PRIVATE 9-8



TYPE
days = 0 4 by
total_array = arrayldays]l of integer;

VAR :
first_day : days»
date t integery
totdl ¢ total_arrays;

PROCEDURE count_days { first 3 days 3= 0y
day_# : integer;
VAR total : total_array);
VAR

day ¢ dayss

day 3= {(first + day_#) MOD 73
totatidayl) 2= totallidayl + 1;

PROCEND count_days;
date 2= 193;

count_days (2, date, totOl);
count_days { » date + 3, totOl});
-count_days {total := totOl, day_# 3= 13);

Figure 9-9, Default Parameter Value

The program segment in figure 9-9 performs identicaily to the
one shown in figure 9-8. {(Note that the assignment statement
FIRST 3= 0 is deleteds) Since a value {2) is explicitly
specified for FIRST in the first procedure calls, the default
value is ignored. The parameter is omitted from the second
procedure calls as Indicated by the absence of a value preceding
the first comma; FIRST takes on 3 value of 0 by default. Since
the parameters in the third procedure call are specified by
keywords the lack of any value equated to FIRST results in the
default vatue being useds Had no default value been specified
for FIRST in the procedure headers the second and third
procedure calls in figure 9-9 would be in error. An actual
parameter must always be specified for a two-way (VAR)
parameter,

9.4 XDCL_AND_XREE_AIIRIBUIES

XDCL and XREF attributes were discussed with respect to
variables in section 3., These attributes have equivalent
functions for procedures. They are needed only when declaring a
procedure in one module that is to be called from another
moduie,

Figure 9-10 itlustrates this kind of referencing mechanism,

60456320-01 (preliminary) COMPANY PRIVATE 9-9



MODULE first; MODULE second;

PROCEDURE (XREF] compute; PROCEDURE I[XDCL]) compute;
PROCEDURE [XDOCL] mains .

. PROCEND compute;
computes

. MODEND second;

PROCEND main;

MODEND first;
Figure 9-10., XDCL and XREF Procedures

In figure 9-10» modules FIRST and SECOND would be complied
separately and then loaded, Procedure COMPUTE is declared in
module SECOND and (in module SECOND) is given the attribute
XDClL. This means that the procedure is declared in this module
and can be referenced from another module.

In module FIRSY onily the Jline "PROCEDURE (XREF] compute;"®
appears to identify COMPUTE. This indicates that COMPUTE
identifies a procedure, The XREF attribute indicates that the
procedure is declared in a different module.

If procedure COMPUTE had parametersy the parameter Jist would be
specified in each procedure declaration in each modute. The
parameter specifications must agree in number» orders and type;
the identifiers of corresponding parameters cans howevery be
different,

Procedures with the XDCL attribute cannot be nested. That is»
they must be declared at the outermost level,

9.5 INITIAIING_PROGRAM_EXECUTION

As described so far» a procedure is executed onty when it is
called by a CYBIL procedure call statement. If this were

always trues no procedure would ever be executeds since no
mechanism has been discussed that causes the first procedure to
be calied by the operating system. While operating system
commands {(control statements and so forth}) for 1oading and
executing a compiled CYBIL program are not presented herey the
mechanism Is described whereby the first procedure to be
executed is identified within a group of modules that are loaded
and executed as a single program.

An alternate form of the procedure header identifles a procedure
as the first one to be executed. It begins with the reserved
word PROGRAM in place of PROCEDURE and cannot include attributes
{XREF or XDCL)e Furthermores its parameter ftist (if present) is
subject to restraints imposed by the operating system command
fanguage {(not described herel)ls. Figure 9-1C contains an example
of this type of procedure dectaration.

60456320-01 (preliminary) COMPANY PRIVATE 9-10



PROGRAM main {optional parameter list)s

L 2
{ Procedure body }

L 4

PROCEND main

Figure 9-10. PROGRAM Procedure Declaration

A PROGRAM procedure can still be called via a procedure call
statement 1tike any other procedure. The reserved word PROGRANM
serves only to identify the procedure as the first to be
executed, As suchs oniy one PROGRAM procedure can exist among
any group of compilation units 1oaded and executed together.,

9.6 RETURN_STATEMENI

When a procedure completes executions the execution of the
procedure from which it was called resumess This can happen in
two wayst. by the execution of the 1ast statement in the
procedure?s statement 1ist, or by execution of a RETURN
statement. A RETURN statement, when executeds, causes contro!l to
return immediately to the calling precedure. The statement
consists simply of the reserved word RETURN,

60456320-01 (preliminary) COMPANY PRIVATE 9-11



10.0 ADARIABLE_IYPES

The types discussd in the preceding sections {(scalar types,
arrays string» recordy, and set) share a characteristic that,
until nows need not be mentioned: they are fixed types. That
iss the space required to store a variable of any of these types
is constant and can be determined before program execution
begins. For examples a character variable requires an amount of
space that Is fixed by the implementation; an array whose index
is [1 ¢ 5] requires space for five variables of its component
types and so on For other fixed types.

Certain programming situationss howevers prevent the use of
fixed types or make their use asmkward and Iinefficients {(These
situations include procedures that process paramaters of
indeterminate size and procedures that involve dynamic storage
atlocation techniques.) Such situations call Ffor a flexible
type definition that can be fixed during program executions
adaptable types.

The adaptable types described In this section iInclude adaptable
arrayss adaptable stringss and adaptable records. These
adaptabte types may be used in oniy two ways: as formal
parameters in a procedures and as components alliocated by
storage management statements. 1In each of these usess the size
of the adaptable type must be fixed during program executione.
In the case of formal parameters of proceduresy the actual
parameter fixes the size of the adaptable type. The use of
adaptable types in storage management statements requires an
understanding of pointers {(covered in section 11) and other
storage management featuress and is covered in section 12»
Storage Management.

10.1 ARARTABLE_IYPE_DECLARAIION

Adaptable types are deciared by specifying an asterisk in place
of the the typels size., The asterisk replaces the array bounds
or string length in an array or string declaration. Examples
of adaptable arrays and strings are given in figure 10-1.

TYPE
adaptarray = arrayl*] OF integer,
adaptstring = string {(¥),
fixedarray = arrayl7) OF integery
adapt2d = arrayli*] OF fixedarray;

Figure 10-1, Adaptable Arrays and Strings

The type ADAPTARRAY in figure 10-1 is an adaptable array of
integerss. The asterisk indicates that the index is type
integer (by convention)s but the array's size {(dimension) is
unspecified, The type ADAPTYSTRING is an adaptable string of
characterse. The length of the string is adaptable and must be
fixed during program executions 3s indicated by the asterisk.,

60456320-01 {(preliminary) COMPANY PRIVATE 10-1



The last two lines of figure 10-1 illustrate a two~dimensional
adaptable array. The outermost array dimension of ADAPT2D is
adaptable; the inner dimension is fixed. This construction
obeys the CYBIL rute that permits only a single adaptable
dimension for an arrays and requires that dimension to be the
first {outermost), Several! invalid type definitions that
violate this rule are illustrated in figure 10-2 (assuming the
types defined in figure 10~1 remain in effect).

TYPE
nwrong_2d_array = arrayl7] OF adaptarrays
wrong_string_array = array[7) OF adaptstrings
uwrong_again = array{*] OF adaptarrayy
stili_swrong = arrayl(*] OF adaptstring;

Figure 10~2, 1Invalid Adaptable Arrays

An adaptabla record is a record containing zero or more fixed
fields followed by one and oniy one sdaptable fieid. The
example in figure 10-3 iliustrates the declaration of adaptable
recordse.

TYPE
model_descriptor = record
number ¢ string (8)»s
name : string (*)»
recends
porigin_codes = {dos mes coO» 3cC)s
assembiy = record
origin ? origin_codes,
date : string (8)»
model : model_descriptor,
recend;

VAR
part t model _descriptors
product * assembilys

Figure 10-3, Adaptable Records

10.2 ADARIABLE_EQRMAL_PARAMEIERS

Adaptable formal parameters of a procedure aflow the procedure
to adapt to the size of the actual parameter at execution time.

Considery for examples a procedure that sums the squares of all
the elements of an array (which Is passed as an actual
parameter) and returns the sum via a VAR parameter. If this
procedure is to be a general one that operates on an array of
any lengths the array must be adaptable and the procedure must

60456320-01 (pretiminary) COMPANY PRIVATE 10-2



have available the number of elements in the array., During
execution the formal array parameter adapts to the size of the
actual parameter passed; size determining functions {described
shortly) provide the values of the array's bounds.

The procedure header for such a procedure might appear as
followsst

PROCEDURE sum_squares | data ¢ arrayl*) OF integers;
VAR sum 3 integer);

10.3 SIZE_DEIERMINING EUNCIIONS
The typical uses of adaptable arrays and strings require an
ability to determine the bounds of the adaptable array and the
length of the adaptable string during execution,
10341 LOWERBOUND and UPPERBOUND
The functions LOWERBOUND and UPPERBOUND determine the bounds of
an adaptable formal array parameter, The general form of these
functions is shoun in figure 10-4,
LOWERBOUND (array identifier)
UPPERBOUND ({array identifier)
Figure 10~4. LOWERBOUND and UPPERBOUND General Form
The array identifier (see figure 10-4) specifies the
formal adaptabie array parameter whose upper or jower bound is
desired. Since the bounds of an adaptable array are implicitly
type integers these functions return a value of type integer
when used upon an adaptable arraye.
104342 STRLENGTH
The effective use of an adaptable string within a procedure
requires a method of obtaining the actual string length,
The STRLENGTH standard function provides this capability {(see
figure 10-~5),
STRLENGTH (string variable identifier)

Figure 10-5. STRLENGTH Standard Function

The function parameter identifies the string variable (it may
aiso Identify a string type)., The function returns an integer
value indicating the length of the string.

60456320-01 {(preliminary) COMPANY PRIVATE 10-3



10.4 EXAMRLES

An implementation of the array squaring procedure is shown
in figure 10-b6.

TYPE
adaptarray = arrayl*] of integer;

PROCEDURE squarearray {VAR data : adaptarray);

VAR
index 3 integer;

FOR index 3= LOWERBOUND {data) TO
UPPERBOUND {(data) DO
datalindex] 2= datalindex] % datalindex];
FOREND;
PROCEND squarearray;

Figure 10-6. Adaptable Array Example

The procedure SQUAREARRAY (in figure 10-6) has an adaptable
array formal parameters DATA., The FOR statement uses the
functions LOWERBDUND and UPPERBDUND to determine the bounds of
DATA. The FOR statement then iterates the proper number of
times (with the proper values of INDEX) to compute the sauare of
each value in the array passed as an actual parameter.

SQUAREARRAY can be called with any array of integers indexed by
an integer subrange., Some examples of callis to the procedure
SQUAREARRAY are shown in figure 10-7.

VAR
x 3 array[-10 .. 101 of integery
y 3 arrayll <+ 100} of integer;
squarearray {(x);
squarearray {(y);

Figure 10-7. Actual Array Parameters

In figure 10-7» the procedure SQUAREARRAY from figure 10-6 is
callede The array X is passed in the first call; array Y is
passed in the second call. SQUAREARRAY adapts to the different
sizes of arrays because the formal parameter {declared in
procedure SQUAREARRAY) is an adaptable array.

The following example illustrates the use of adaptable strings
a8s formal parameters., The example depicts a procedure that
counts the number of blanks in the actual parameter {(a string
variabte)s The procedure returns the number of blanks found via
a two-way parametery NBLANKS,

60456320-01 (preliminary) COMPANY PRIVATE 10-4



TYPE
astring = string (¥);

PROCEDURE biank_count { in_str : astrings;
VAR nbianks : integer);

VAR
position ¢ integer;

nblanks = 03
FOR position 3= 1 TO STRLENGTH {in_str) DO
IF In_str {(position}) = * ¥ THEN
nbianks 2= nblanks + 13
IFEND;
FOREND;

PROCEND blank_count;

Figure 10~8, Adaptable String Example

In figure 10-8s the formal parameter IN_STR is an adaptable
strings. NBLANKS is a two-way formal parameter to enabte the
return of the number of blanks,

BLANK_COUNT begins by clearing the blanks counter {"NBLANKS :=
03")s The FOR statement checks each character in the strings
incrementing NBLANKS with each occurrence of a spaces STRLENGTH
determines during execution the length of the actual string and
controls the number of iterations performed by the FOR
statement.

NBLANKS is cleared uwhenever BLANK_COUNT executes. A static
variable initialized to zero would not be acceptable here
because it would be set to zero at the procedure’s first
execution and would thereafter serve as a running accumulators
returning the grand total of the number of blanks in all strings
processed by BLANK_COUNT.

60456320-01 (preliminary) COMPANY PRIVATE 10-5



