©0

CYBILIO
REFERENCE MANUAL

60460300 02

REVISION DEFINITION SHEET

REV DATE DESCRIPT ION
1 12/13/83 Prel iminary manual released.
2 06/22/84 Updated preliminary manual.

Address comments concerning this manual to:

Control Data Corporation
Software Engineering Services
4201 North Lex ington Avenue

St. Paul, Minnesota 55112
60460300 02

c 1983
by Control Data Corporation
ALl rights reserved

Printed in the United States of America

©0O

CYBER IMPLEMENTATION LANGUAGE
CYBIL I/O Reference Manual

Table of Contents

INTRODUCTION ¢ « o o o o o o o o o o o o s o s o o »
APPLICABLE DOCUMENTS &« ¢ & o o o o o o o o o o o o &
ILE TYPES « o ¢ o o o o o o o o o o o o o o o o o »
1 BINARY FILES ¢ ¢ ¢ o o o o o o o o o o s o o o o
2 DIRECT FILES ¢ ¢ & o « ¢ o o o s ¢ o s o o o o o
¢3 LEGIBLE FILES + 4o & o « o o o ¢ o o o o o o o o
4 PRINT FILES . & ¢ o « o o o o o o o o o s o o o
ILTIO DATA TYPES ¢ o o o o o o o o o o o o o o o &«
SING CYBILIO . . . e o o o o s o o o o »
SOURCE CODE INTERFACE TO CYBILIO ON NOS .
SOURCE CODE INTERFACE TO CYBILIO ON NOS/BE
OBJECT CODE INTERFACE TO CYBILIO . « o « o«
NAMING CONVENTIONS o ¢ ¢ ¢ o o o o o o o &
FILE VARIABLE USAGE .« ¢ o o ¢ o ¢ o o »
FILE NAMES . & « o ¢ o « &

FILE STRUCTURE CREATION / DETECTION . . .
CIO BUFFER SIZE CONTROL « ¢ ¢ o ¢ ¢ o o o o o @
LONG STRING OF BLANK (SPACE) CHARACTERS

i

L]
e o o o o o o o

W OoONONUL S WN -~

O / 0 PRO CEDURE S L] L . L] L] . . L d . . L L] L . L] L] . ® L]
L] 1 INARY FI LE S L] L] * L d L] L] L] L] L L] L] L] L] L] L] . . . L] .
2. OPENING AND CLOSING BINARY FILES ¢« o ¢ & ¢ o o &

.1.1 BI#OPEN - Open Binary File o« « « o & o o o o
«1.2 BI#CLOSE - Close Binary File « o« ¢ o « o o »
POSITIONING BINARY FILES « ¢ ¢ ¢ « o ¢ o o o
«2.1 BI#FIRST ~ Position Binary File at BOI .« o e
2.2 BI#LAST -~ Position Binary File at EOI . . .
BINARY FILE STRUCTURE CREATION / DETECTION .,
.3.1 BI#WEOR - Write End Of Record on Binary F11e
«1.3.2 BI#WEOF - Write End Of File on Binary File .
«3.3 FIMARK - Check Structure Mark on File . . .
.3.4 F#WORDS - Last Transfer Length on File . . .
READING AND WRITING BINARY FILES &« ¢« o o« o ¢ o &
.4.1 BI#PUT - Write to Binary File . . . ¢ « « &
+4.2 BI#GET - Read from Binary File . « + o « « &
EXAMPLE - COPY BINARY FILE . & ¢ o« o o o o o o o
JRECT FILES & ¢ ¢ o o o o s o o o o o o o s o o o o
OPENING AND CLOSING DIRECT FILES . & ¢ ¢ o o o
.1.1 DI#OPEN - Open Direct File « ¢« o o« s o o & &
.1.2 DI#CLOSE ~ Close Direct File o ¢ « o s o o &
POSITIONING DIRECT FILES ¢ o« o » o o ¢ o o o
+2.1 DI#FIRST ~ Position Direct File at BOI .« o o
.2.2 DI#LAST - Position Direct FIle at EOI . . .
«2.3 DI#LOCATE - Position Direct File via Key . .
DIRECT FILE STRUCTURE CREATION / DETECTION . .
.3.1 DI#WEOR - Write End Of Record on Direct File
3.2 DI#WEOF - Write End Of File on Direct File .
3.3 F#MARK ~ Check Structure Mark on File . . .

1

06/22/84
REV: 2
o e 1-1
o 1-1
o o 1-2
. o 1-2
. 1-2
. e 1-2
- 1-3
. . 1-4
o o 1‘6
. . 1-6
. o 1-6
o o 1-6
o . 1-6
. . 1-7
o o 1-7
o o 1-8
- 1-8
o . 1-8
o« e 2-1
. . 2-1
o« 2-1
o . 2-1
o o 2-2
. o 2-3
e o ' 2"3
. e 2-3
. . 2-4
o o 2_4
o o 2-4
. . 2-4
o o 2"'5
e o 2"'6
. . 2-6
o . 2-6
. o 2-7
o o 2-10
. 2-10
o o 2"10
o 2-10
o e 2-11
- 2-11
. 2-11
* o 2-11
« o 2-12
- 2-12
o 2-12
- 2-12

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

N
.

N
.

N
L]
CRONNNNNMNNNNNNN NN

N
*
N W
i o o o

L]

[*)
L]
NNNNJ.\NNNNNN-I-\FUwNNNwNNNNNwNNNNwNNNuNNNNw

N
.

[\
.

N
.

N
.
NN
.

L]

[\
3

.4 F#WORDS - Last Transfer Length on File . .
ADING AND WRITING DIRECT FILES ¢ « o « o o &
1 DI#PUT - Sequential Write to Direct File .
2 DI#PUTDIR -~ Random Write to Direct Flle .
3
4

DI#GET - Sequential Read from Direct File

4,4 DI#GETDIR - Random Read from Direct File .

IRECT FILE STATUS INTERROGATION « ¢ « ¢ o o

.1 DI#LENGTH - Direct File Length? . . .« « o« &

.2 DI#KEY - Direct File Current Position? « o o e
EXAMPLES OF DIRECT FILE USAGE

6.1 Create Text Library . « o o o o o o « « o o o o
6 .

B

0)

® e o o o o o

.2 Extract from Text Library . . .
LE FILES &« & ¢« ¢ ¢ ¢ ¢ ¢ o o o e o o o s s o o
PENING AND CLOSING LEGIBLE FILES e o o o o o o s e
.1 LG#OPEN - Open Legible File . . . o o
+2 F#SABF - Setup File for Automatic Buffer Flushing
.3 LG#CODESET - Set Legible File Character Set . .
4 LG#CLOSE - Close Legible File .« ¢ « o o o o &
SITIONING LEGIBLE FILES . ¢ ¢ o o ¢ o o o o &
1 LGH#FIRST - Position Legible File at BOI ., .
2 LGH#LAST - Position Legible File at EOI . . .
«3 LG#TAB - Position Legible File at Column . .
GIBLE FILE STRUCTURE CREATION / DETECTION . .
LGH#WEOR - Write End Of Record on Legible File

® L] °

1

2 LG#WEOF - Write End Of File on Legible File
3 F#MARK - Check Structure Mark on File . . .
.4 F#WORDS - Last Transfer Length on File . . .
ADING AND WRITING LEGIBLE FILES .+ ¢ o o o o &

L]
.
.
.
L]
[
L]
L]
.
L
.
[

1 LG#PUT - Write Line to Legible File . « « .+ &

2 LGH#PUTPART - Write Partial Line to Legible File
3 LG#WEOL - Write End Of Line on Legible File . .
4 LG#GET - Read Line from Legible File « « ¢ o« + &
5 LG#GETPART - Read Partial Line from Legible File
G
1
.2
.3

IBLE FILE STATUS INTERROGATION . . ¢ ¢ o o o &
F#TERMINAL - File is a Terminal? e o o s s
LG#OLDCODESET - Legible File Character Set?

LG#COLNO - Legible File Column Number? .
XAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE .
FILES L] ® L] L] L] L] * L] . L] [] . . L] . L] L] L] .

e o o ¢ o o o o

PENING AND CLOSING PRINT FILES .+ o ¢ o o o
1 PR#OPEN - Open Print File .+ ¢ o« o o o «

2 PR#PGOV - Define Page Overflow Procedure

3 PR#CODESET -~ Set Print File Character Set
4 PR#LIMIT - Set Print File Page Size . . .
5 PR#SETPGNO - Set Print File Page Number .
6 PR#CLOSE - Close Print File .+ « ¢ o &
S
1
2
3
4

e e o ° & o o o
L] L] L] L] L] . . L] .
® ® e e e o o © o o o

ITIONING PRINT FILES . ¢ ¢ o o o o o o
PR#FIRST -~ Position Print File at BOI
PR#LAST - Position Print File at EOI .
PR#TAB - Position Print File at Column
PR#LINE - Position Print File at Line

L] . . L] . L]
L] L] L] * . .
*® e o o o o o
L] L] L) [] [. L]

L] L] L] L] L] L] L] L] L

2

06/22/84

REV: 2

. . 2-13
2-14
. 2-14
2~-14
. 2-15
. 2-15
2-16
. . 2-16
. . 2-16
. . 2-17
. . 2-17
. . 2-21
. . 2-25
o . 2-25
. . 2-25
e o 2"‘25
. . 2-26
. 2-26
. 2=27
. 2-27
2=-27
. 2-27
. 2-28
2-28
2-28
2-28
2-29
2-30
2-30
2-30
2-31
2-31
2-32
2-33
2-33
2-33
2-33
2-34
2-37
2-37
2-37
2-37
2-38
2-38
2-38
2-39
2-40
2~-40
2-40
2~40
2-41

* e e o o
L] L

® e o e o & o e e o o o
¢ ® o 6 e ¢ o o e o o o

. . L[] L] * L] . * L)
L] . L] L] L]

] . L] L] . L
e ® e e e o

60460300 02

£

fgéﬁ
S

3
CYBER IMPLEMENTATION LANGUAGE

06/22/84
CYBIL I/0 Reference Manual REV: 2
2.4.2.5 PR#SKIP -~ Skip Lines on Print File o v o « o ¢ o o & @ 2-41
2.4,2,6 PR#EJECT - Position Print File at Top of Page . « .« o« 2~-41
2.4,2,7 PR#PAGE -~ Start New Page on Print File « ¢ o « o & o & 2-42
2.4,3 PRINT FILE STRUCTURE CREATION & o o o o o o o o o o o o 2-43
2.4.3.1 PR#WEOR - Write End Of Record on Print File . « o o & 2-43
2.4,3.2 PR#WEOF - Write End Of File on Print File . ¢ &« o o & 2-43
2.4.4 WRITING PRINT FILES &+ ¢ e o o o o o o ¢ o o o o o o o s o 2-44
2.4.4.1 PR#PUT - Write Line to Print File .« ¢ o o o o ¢ o o & 2-44
2.4.4.2 PR#PUTPART ~ Write Partial Line to Print File 2-44
2.4.4.3 PRHWEOL - Write End Of Line on Print File . . . « « & 2-45
2.4.5 PRINT FILE STATUS INTERROGATION &« ¢ ¢ o o o o o o o' o o o 2~-46
2.4.5.1 PR#OLDCODESET - Print File Character Set? . . o o o+ & 2-46
2.4.5.2 PR#COLNO - Print File Column Number? e o s o o o o o 2~46
2.4.,5.3 PR#LINO - Print File Line Number? =« o o o o o o o o o 2-46
2.4.,5.4 PR#PGNO - Print File Page Number? e o o o o o o o a 2=47
‘zi> 2,4,5.5 PR#OLDLIMIT - Print File Page Size? & o o« « o ¢ o o & 2-47
2.4,6 EXAMPLE - LIST LEGIBLE FILE 4 &« ¢ o o o o o o o« o o o o o 2-48
3.0 CYBILIO ER.ROR MESSAGES e o. 06 & 0.0 6 06 & © o o o © ° o © o o o 3"‘1

60460300 02

o0

C

0

1-1

CYBER IMPLEMENTATION LANGUAGE

06/22/84

CYBIL I/O Reference Manual REV: 2

1.0 INTRODUCTION

1.0 INTRODUCTION

The CYBILIO package (CYBILIO) is a collection of procedures and data
types which provide an Input/Output system that interfaces a CYBIL program
to the NOS & NOS/BE I/0 system.

. 1.1 APPLICABLE DOCUMENTS

60455280
60457280
60457250
60459660
60459670
60459680
60459690
60450100
60493800
60494100

60499900

CYBIL Reference Manual

Language Specification for CDC CYBER IMPLEMENTATION LANGUAGE
SES User’s Handbook

NOS Version 2 Reference Manual (Volume 1)

NOS Version 2 Reference Manual (Volume 2)

NOS Version 2 Reference Manualr(Volume 3)

NOS Version 2 Reference Manual (Volume 4)

NOS Version 1 Modify Reference Manual

NOS/BE Version 1 Reference Manual

NOS/BE Version 1 System Programmer’s Reference Manual

Update Version 1 Reference Manual

60460300 02

1-2
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual ‘ REV: 2

1.0 INTRODUCTION
1.2 FILE TYPES

1.2 FILE TYPES

CYBILIO deals with a (small) number of distinct types of files. The
properties of the various file types are described in the subsections
which follow.

1.2,1 BINARY FILES

Binary files have only sequential access. Data appears on such files
in the order ' in which it was written, and can only be read in that same
order, These files may be positioned at the beginning or end of
information. Note that positioning at the beginning and then writing a
binary file implies that all data which was previously on the file 1is
lost. :

Binary files may be structured using record/file marks, and detection
of the structure is possible.

1.2.2 DIRECT FILES

Direct files are like binary files except that data may be transferred
to/from them at "random addresses” known as keys. Note that writing (from
the beginning of) a direct file does not necessarily imply that existing
data (which follows the data being written) will be lost (c.f., binary
files).

In addition to the positioning facilities provided for binary files,
direct files may be positioned via a key to any location.

1.2.3 LEGIBLE FILES

Legible files are sequentially accessed and are assumed to contain
character data in NOS 6/12 or in NOS/BE 8/12 representation. Legible 1I/0
procedures provide for the conversion between the external (on the file)
data format and the internal format (CYBIL strings). The basic entity on
a legible file 1is a line which can be transferred to/from the file in
whole or in part. In addition, there is a facility to tab to a specified

60460300 02

‘ ;#’»&\E féﬁt;

e

!

1-3

CYBER IMPLEMENTATION LANGUAGE
06/22/84

CYBIL I/0 Reference Manual REV: 2

1.0 INTRODUCTION
1.2.3 LEGIBLE FILES

column in an output line.

The same structuring and positioning facilities provided for binary
files are also available for legible files.

1.2.4 PRINT FILES

Print files are legible files which have additional facilities for
(vertical) format control. It is possible to limit the number of lines on
a page, insert a given number of empty lines, overprint lines, position
the next line at a specified line number or at the top of the next page.
Several procedures are provided to change and interrogate certain items of
control information for print files.

The user may associate with each print file, a procedure to be called

. when a '"page overflow condition" occurs for that file. Such a procedure

can perform page heading (titling) and footing operations.

60460300 02

1-4

CYBER IMPLEMENTATION LANGUAGE

- 06/22/84
CYBIL I/0 Reference Manual REV: 2

1.0 INTRODUCTION
1.3 CYBILIO DATA TYPES

1.3 CYBILIO DATA TYPES

This section defines the CYBIL '"types" required to interface to
CYBILIO.

TYPE file = “CELL;

This type is wused when calling any of the CYBILIO procedures. A
variable of this type is defined when passed to one of the file open
procedures, and remains defined until the corresponding close procedure is
called.

TYPE file status = (new#, old#);

This type is used when opening a file to designate whether the file
already exists or needs to be "created".

TYPE file mode = (input#, output#, concurrent#);

This type is used when opening a file to designate the "direction" of
data transfers. ‘

TYPE file position = (first#, asis#, last#, null#);

This type is used when opening a file to designate where the file
should be initially positioned (at its beginning, where ever it happens to
be, at its end, or where ever it happens to be). Please note that usage
of asis# or null# will yield the same result.

CONST return# = last#;
TYPE file disposition = first# .. return#;
. { i.e., (first#, asis#, return#) }
This type is used when closing a file to designate at what "position"
(or with which "disposition") the file should be left (at -its beginning,
where ever it happens to be, or "return" it to the operating system).

60460300 02

£
</

00

1-5
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

1.0 INTRODUCTION
1.3

CYBILIO DATA TYPES

TYPE file encoding = (ascii64#, ascii6l2#, ascii#);

This type is used to define the (external) character set for a legible
or print file., The default on NOS, when the file is opened, is ascii6l2#
which designates the NOS 6/12 character set. The default on NOS/BE is
ascii#. The wuser can select the 6-bit display code character set
designated by ascii64#, or the "8 out of 12 bit" ASCII character set
designated by asciif.

TYPE file mark = (data#, eor#, eof#, eoi#);

This type 1is wused to designate the file structure marks. A value of
this type can be obtained for a file subsequent to a performing an input
(read, get) request on the file. Thus, dataf# means '"no mark encountered";
eor# means "a (logical) End Of Record was encountered"; eofff means "a
(logical) End Of File was encountered"; and eoi# means '"the End of

. Information was encountered".

60460300 02

1-6
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

1.0 INTRODUCTION
1.4 USING CYBILIO

1.4 USING CYBILIO

1.4.1 SOURCE CODE INTERFACE TO CYBILIO ON NOS

To interface to CYBILIO a CYBIL program module must include the
relevant type and procedure declarations. These can be *CALLed from a
MODIFY program library (PL). The name of this program library is CYBCQMN,
which is accessible by including the CYBCOMN parameter in the SES.GENCOMP
call or can be made local by SES.GETCCMN. The CYBILIO type declarations
are on common deck PXIOTYP and each procedure declaration is on its own
common deck (see the section on naming conventions and the individual
procedure descriptions to determine the common deck names).

1.4.2 SOURCE CODE INTERFACE TO CYBILIO ON NOS/BE

To interface to CYBILIO a CYBIL program module must include the
relevant type and procedure declarations. These can be #%CALLed from an
UPDATE program library (PL). The name of this program library is CYBCCMN,
The CYBILIO type declarations are on common deck PXIOTYP and each
procedure declaration is on its own common deck (see the section on naming
conventions and the individual procedure descriptions to determine the
common deck names).

1.4.3 OBJECT CODE INTERFACE TO CYBILIO

Before a program (which uses CYBILIO) can be executed, it must be
linked with the CYBILIO object modules which are located on The CYBIL-CC
run—time library, which is accessible by including the CYBCLIB parameter
on the loader directives., On NOS this could be via the SES.LINK170 or on
NOS & NOS/BE by having CYBCLIB as a local file at program load time.

1.4.4 NAMING CONVENTIONS

The didentifiers for all CYBILIO procedures adhere to the following
naming convention:

60460300 02

N

/ A
N/

1-7

“} CYBER IMPLEMENTATION LANGUAGE
¥ 06/22/84
i CYBIL I/0 Reference Manual REV: 2
“n
(.)/ INTRODUCTION

1.0
1.4.4 NAMING CONVENTIONS

- all BINARY file procedure identifiers begin with bi#

- all DIRECT file procedure identifiers begin with di#

- all LEGIBLE file procedures identifiers begin with lg#

- all PRINT file procedure identifiers begin with pr#

— identifiers for procedures which are applicable to all file types
begin with f#

The mnames of the common decks which contain the CYBILIO procedure
declarations are derived by taking (up to) the first seven characters of
the procedure name and changing the # character in the procedure name to a
Z for the common deck name.

(:w: Note: that all common decks required for a particular file type can be
included with MODIFY’s *CALLALL directive. For example, a program that
uses legible and print files could bring in all the relevant declarations
as follows:

*CALL pxiotyp
* CALLALL 1lgz
*CALLALL prz

(:-J‘ *#CALLALL fz

1.4.5 FILE VARIABLE USAGE

CYBILIO considers a variable of type file to be undefined until one of

the open procedures has been called; and to become undefined once one of

' the close procedures has been called. The consequences of using an
‘:ﬁ‘ undefined file variable to call any CYBILIO procedure (except one of the

open procedures) is unpredictable.

1.4.6 FILE NAMES

File names (which are passed as adaptable CYBIL strings to the open
procedures) must be from one to seven alphanumeric characters (i.e.,
letters or digits). The open procedures will convert any lower case
letters in a file name to the corresponding upper case letters.

60460300 02

00

1-8
CYBER IMPLEMENTATION LANGUAGE
‘ 06/22/84
CYBIL I/O Reference Manual REV: 2

1.0 INTRODUCTION
1.4.7 FILE STRUCTURE CREATION / DETECTION

1.4.7 FILE STRUCTURE CREATION / DETECTION

CYBILIO supports both the creation and detection of file structuring
"marks". There are two such marks : End Of (logical) Record; and End Of
(logical) File. The End Of Information can only be implicitly created
(i.e., the End Of Information follows the physically last item written on
a file); but it can be explicitly detected.

Note that detection of a file structure mark can only be meaningfully
attempted after an input request on the file.

When performing input operations on binary and direct files, it is
possible to have an incomplete transfer. This can result from reading a
file not created by CYBILIO, or not reading a file in a manner which
mimics the way in which the file was written. In order to handle these
incomplete transfers, a procedure is provided to return the last transfer
length for a file. The value returned by this procedure 1is only
meaningfull if the immediately preceding operation on the file was ome of
: bii#get, bi#put, di#get, di#getdir, 1g#get, 1lgigetpart, 1lgiput,
lgi#putpart, lg#tab, or lg#weol. '

1.4.8 CIO BUFFER SIZE CONTROL

The size of the CIO circular buffer can be selected for files used with
CYBILIO by setting the INTEGER variable px#iobs to the desired size. The
value of this variable is used by the file open procedures in order to
create a CIO circular buffer with the designated size. The declaration
for this variable is contained on common deck PXZIOBS.

1.4.9 LONG STRING OF BLANK (SPACE) CHARACTERS

CYBILIO needs a 1long (256) string of blank characters in order to
efficiently perform the lg#tab and pr#tab operations. This string is made
available to the user in the variable px#blnk. The declaration for this
variable is located on common deck PXZBLNK.

60460300 02

U

00

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

2-1

06/22/84
REV: 2

2.0 I/0 PROCEDURES

2.0 I/0 PROCEDURES

2.1 BINARY FILES

2.1.1 OPENING AND CLOSING BINARY FILES

2,1.1.1 BI#OPEN - Open Binary File

Opens binary file as local file name.

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = “cell,
file status = (new#, old#),
file mode = (input#, output#, concurrent#),
file encoding = (ascii64#, ascii6l2#, ascii#),
file mark = (dataf#, eor#, eof#, eoi#),
file position = (first#, asis#, last#, null#);

CONST
returni# = last#;

TYPE
file disposition = first# .. return#;

{ i.e. (first#, asis#, return#) }
{ BIZOPEN Opens binary file as local file. }

PROCEDURE [XREF] bi#open (VAR binary file: file;
file name: string (*);
status: file status;
mode: file mode;
position: file position);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

2-2

06/22/84
REV: 2

2.0 I/0 PROCEDURES
2.1.1.2 BI#CLOSE - Close Binary File

2.1.1.2 BI#CLOSE - Close Binary File

Closes binary file.

{ BIZCLOS Closes binary file. }

PROCEDURE [XREF] bifclose (binary file: file;
disposition: file disposition);

60460300 02

o0

2-3
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

/0 PROCEDURES

2.0 I
2.1.2 POSITIONING BINARY FILES

2.1.2 POSITIONING BINARY FILES

2.1.2.1 BI#FIRST - Position Binary File at BOL

Positions binary file at its beginning of information.

{ BIZFIRS Positions binary file at its beginning of information. }

PROCEDURE [XREF] bi#first (binary file: file);

2.1.2,2 BI#LAST - Position Binary File at EOI

Positions binary file at its end of information.

{ BIZLAST Positions binary file at its end of information. }

PROCEDURE [XREF] bi#last (binary file: file);

60460300 02

2-4
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

2.0 1/0 PROCEDURES
2.1.3 BINARY FILE STRUCTURE CREATION / DETECTION

2.1.3 BINARY FILE STRUCTURE CREATION / DETECTION

2.1.3.1 BI#WEOR - Write End Of Record on Binary File

Writes an End Of Record mark on binary file.

{ BIZWEOR Writes and End of Record mark on binary file. }

~ PROCEDURE [XREF] bi#weor (binary file: file);

2.1.3.2 BI#WEOF - Write End Of File on Binary File

Writes an End Of File mark on binary file.

{ BIZWEOF Writes an End of File mark on binary file. }

PROCEDURE [XREF] bi#weof (binary file: file);

2.1.3.3 F#MARK - Check Structure Mark on File

Returns the "file structure mark" last encountered on any file.
{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] fi#mark (any file: file;
VAR mark: file mark);

60460300 02

CcO

2=5
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.1.3.4 F#WORDS - Last Transfer Length on File

2.1.3.4 F#WORDS - Last Transfer Length on File

Returns the length of the last transfer to/from any file.
{ FZWORDS Returns length of last transfer to/from file, }

PROCEDURE [XREF] f#words (any file: file;
VAR last_transfer length: integer);

60460300 02

2-6

CYBER IMPLEMENTATION LANGUAGE

: 06/22/84
CYBIL I/0 Reference Manual REV: 2

2,0 I/0 PROCEDURES
2.1.4 READING AND WRITING BINARY FILES

2.1.4 READING AND WRITING BINARY FILES

Transfer of data to and from binary files is performed in groups of
words (cells). Since the data transfer procedures for binary files (like
all other programmer defined procedures in CYBIL) must have parameters of
a specific type, and since we want to be able to transfer items of any
data type to/from a binary file, the objects of transfer are passed to the
procedures in two parts: address (usually via the #loc function); and
length (usually via the #size function). CYBILIO has no way to insure
that the address and length parameters refer to the same object, therefore
be warned: "you’'re on your own" as far as checking parameter correctness
is concerned.

“2.1.4.1 BI#PUT - Write to Binary File

Writes length of source words (cells) beginning at the address

specified by poinfzi_po_pource to binary file.

{ BIZPUT Writes specified information to binary file. }
PROCEDURE [XREF] bi#put (binary file: file;

pointer_to_source: “cell;
length of source: integer);

2.1.4.2 BI#GET - Read from Binary File

Reads up to length of target words (cells) from binary file to the
address specified by pointer_to target. Note that an "incomplete
transfer" can result from this request (see the section on "File Structure
Creation / Detection" for more information on this subject).

{ BIZGET Reads info from binary file to address specified. }

PROCEDURE [XREF] bi#get (binary file: file;
pointer_to_target: “cell;
length of target: integer);

60460300 02

2-7

CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/O Reference Manual REV: 2 :

2.0 I/0 PROCEDURES
2.,1,5 EXAMPLE - COPY BINARY FILE

2.1.5 EXAMPLE - COPY BINARY FILE

The following example illustrates the use of the binary file procedures
to make a copy of a file (without knowing beforehand the structure or
length of the file).

MODULE copy ALIAS ‘zpxmcop”;

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = “cell,
file status = (new#, old#),
file mode = (input#, output#, concurrent#),
file encoding = (ascii6b4#, ascii6l2#, ascii#),
: file mark = (data#, eor#, eof#, eoi#),
‘:;W file position = (first#, asis#, last#, null#);

CONST
return# = last#;

TYPE
file disposition = first# .. return#;

‘::m { i.e. (first#, asis#, return#) }
g { BIZOPEN Opens binary file as local file. }
PROCEDURE [XREF] bi#open (VAR binary file: file;
file name: string (*);
status: file status;
mode: file mode;
position: file position);
{ BIZCLOS Closes binary file. }

PROCEDURE [XREF] bi#close (binary file: file;
disposition: file disposition);

{ BIZGET Reads info from binary file to address specified. }

PROCEDURE [XREF] bifiget (binary file: file;
60460300 02

©o

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

2-8

06/22/84
REV: 2

2.0
2.1,

I/0 PROCEDURES
5 EXAMPLE - COPY BINARY FILE

pointer_ to target: “cell;
length of target: integer);

{ BIZPUT Writes specified information to binary file. }
PROCEDURE [XREF] bi#put (binary file: file;
pointer_to source: “cell;
length of source: integer);
{ BIZWEOR Writes and End of Record mark on binary file. }
PROCEDURE [XREF] bi#weor (binary file: file);
{ BIZWEOF Writes an End of File mark on binary file. }

PROCEDURE [XREF] bi#weof (binary file: file);

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] fi#mark (any file: file;
VAR mark: file mark);

{ FZWORDS Returns length of last transfer to/from file. }

PROCEDURE [XREF] f#words (any file: file;
VAR last_transfer_length: integer);

PROGRAM copy ALIAS ‘zpxpcop’;

CONST
in name = ‘OLD’,
out name = NEW’,
buffer length = 64;

VAR
in file : file,
out _file : file,
buffer : ARRAY [1 .. buffer_ length] of CELL,
transfer_length : INTEGER,
mark : file mark;

bi#open (in_file, in name, old#, input#, first#);
bi#open (out file, out name, new#, output#, first#);
/main_loop/
WHILE TRUE DO
bif#fget (in file, #LOC(buffer), #SIZE(buffer));

60460300 02

O

00

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

2-9

06/22/84
REV: 2

/0 PROCEDURES

2.01I
2.1.5 EXAMPLE - COPY BINARY FILE

f#mark (in_file, mark);
CASE mark OF
=eolif=
EXIT /main loop/;
=eofi=
bif#weof (out file);
=eor#= -
f#words (in_file, transfer_ length);
IF transfer length > O THEN
bi#put (out file, #LOC(buffer), transfer_length);
LFEND;
bi#weor (out_file);
=dataf#=
bi#put (out file, #LOC(buffer), #SIZE(buffer));
CASEND;
WHILEND /main loop/;
bif#close (in_file, first#);
bi#close (out file, first#);

PROCEND copy;

MODEND copy;

60460300 02

2-10

CYBER IMPLEMENTATION LANGUAGE
: 06/22/84
CYBIL I/0 Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.2 DIRECT FILES

2.2 DIRECT FILES

2,2,1 OPENING AND CLOSING DIRECT FILES

2.2.1.1 DI#OPEN - Open Direct File

Opens direct file as local file name. Note: that a direct file cannot
be opened at position asis#.

{ DIZOPEN Opens direct file as local file. }

PROCEDURE [XREF] di#open (VAR direct file: file;
file name: string (*);
status: file status;
mode: file mode;
position: file position);

2.2.1.2 DI#CLOSE - Close Direct File

Closes direct file.
‘ DIZCLOS Closes direct file. }

PROCEDURE [XREF] di#close (direct file: file;
disposition: file disposition);

60460300 02

o QO

ole

2=-11
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/O Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.2.2 POSITIONING DIRECT FILES

2.2.2 POSITIONING DIRECT FILES

2.2.2.1 DI#FIRST - Position Direct File at BOI

Positions direct file at its beginning of information.

{ DIZFIRS Positions direct file at its beginning of information. }

PROCEDURE [XREF] di#first (direct file: file);

2.2.2.2 DI#LAST - Position Direct FIle at EOI

Positions direcq_file at its end of information.

{ DIZLAST Positions direct file at its End of Information. }

PROCEDURE [XREF] di#last (direct_file: file);

2.2.2.3 DI#LOCATE -~ Position Direct File via Key

Positions direct file at the 1location specified by key. If key
specifies a position outside the bounds of the file, then the program is
in error.

{ DIZLOCA Positions direct file at location specified. }

PROCEDURE [XREF] di#locate (direct file: file;
key: integer);

60460300 02

2-12

CYBER IMPLEMENTATION LANGUAGE Qf‘w
| 06/22/84 S

CYBIL I/0 Reference Manual REV: 2 ﬁ:;b

2.0 I/0 PROCEDURES

2.2.3 DIRECT FILE STRUCTURE CREATION / DETECTION

2.2.3 DIRECT FILE STRUCTURE CREATION / DETECTION

2.2.3.1 DI#WEOR - Write End Of Record on Direct File

Writes an End Of Record mark on direct file.
{ DIZWEOR Writes an End of Record mark on direct file. } N
o

PROCEDURE [XREF] di#weor (direct file: file);

2.2.3.2 DI#WEOF - Write End Of File on Direct File

Writes an End Of File mark on direct_ file.

{ DIZWEOF Writes an End of File mark on direct file. }

PROCEDURE [XREF] di#weof (direct file: file);.

2.2.3.3 F#MARK - Check Structure Mark on File : e

Returns the "file structure mark" last encountered on any file.
{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any file: file;
VAR mark: file mark);

60460300 02

‘::%
(:i@

o0

2-13

CYBER IMPLEMENTATION LANGUAGE
06/22/84

CYBIL I/0 Reference Manual REV: 2

0 I/0 PROCEDURES
2

2.
2.2.3.4 FIWORDS -~ Last Transfer Length on File

2.2.3.4 F#WORDS - Last Transfer Length on File

Returns the length of the last transfer from any file.
{ FZWORDS Returns length of last transfer to/from file. }

PROCEDURE [XREF] f#words (any_file: file;
VAR last_transfer length: integer);

60460300 02

2-14
CYBER IMPLEMENTATION LANGUAGE

06/22/84
CYBIL I/0 Reference Manual REV: 2
2,0 1/0 PROCEDURES
2.2.4 READING AND WRITING DIRECT FILES

2.2.4 READING AND WRITING DIRECT FILES

Transfer of data to and from direct files is performed in groups of
words (cells). Since the data transfer procedures for direct files (like
all other programmer defined procedures in CYBIL) must have parameters of
a specific type, and since we want to be able to transfer items of any
‘data type to/from a direct file, the objects of transfer are passed to the
procedures in two parts : address (usually via the #loc function); and
length (usually via the #size function). CYBILIO has no way to insure
that the address and length parameters refer to the same object, therefore
be warned: "you’re on your own" as far as checking parameter correctness
is concerned.

2.2.4,1 DI#PUT - Sequential Write to Direct File

Writes 1length of source words (cells) from the address specified by
pointer_to source to direct file at its current position. The "random
file address" of the data written is returned in key.

{ DI1ZPUT Writes info from address spec. to direct file’s current pos. }

PROCEDURE [XREF] di#fput (direct file: file;
VAR key: integer;
pointer_ to source: “cell;
length of source: integer);

2.2.4,2 DI#PUTDIR - Random Write to Direct FIle

Writes length of source words (cells) from the address specified by
pointer_to_source to ditect file at the "random file address" specified by
key.

{ DIZPUTD Writes info to direct file at random address specified. }

PROCEDURE [XREF] di#putdir (direct file: file;
key: integer;

60460300 02

U

a
S

0

g

2-15
CYBER IMPLEMENTATION LANGUAGE
06/22/84

CYBIL I/O Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.2.4,2 DI#PUTDIR - Random Write to Direct FIle

pointer_to source: “cell;
length of source: integer);

2.2.4,3 DI#GET - Sequential Read from Direct File

Reads up to length of target words (cells) from direct file at its
current position to the address specified by pointer_to target. The
"random file address'" of the data read is returned in key. Note that an
"incomplete transfer" can result from this request (see the section on
"File Structure Creation / Detection" for more information on this

subject).
{ DIZGET Reads info from direct file’s current position to add. spec. }
PROCEDURE [XREF] di#get (direct file: file;
VAR key: integer;

pointer to target: “cell;
length of target: integer);

2.2.4.4 DI#GETDIR - Random Read from Direct File

Reads up to 1length of target words (cells) from direct file at the
"random file address" specified by key to the address specified by
pointer to target. Note that an '"incomplete transfer" can result from
this request (see the section on "File Structure Creation / Detection" for

more information on this subject).
{ DIZGETD Reads info from direct file’s random file address. }
PROCEDURE [XREF] di#getdir (direct file: file;
key: integer;

pointer to_target: “cell;
length of target: integer);

60460300 02

2-16
CYBER IMPLEMENTATION LANGUAGE

06/22/84

CYBIL I/O Reference Manual REV: 2

2,0 I/0 PROCEDURES
2.2,5 DIRECT FILE STATUS INTERROGATION

2.2.5 DIRECT FILE STATUS INTERROGATION

2.2.5.1 DI#LENGTH - Direct File Length?

Returns the file length in words of direct file.
{ DIZLENG Returns length in words of direct file. }

PROCEDURE [XREF] di#length (direct file: file;
VAR file length in words: integer);

2.2.5.2 DI#KEY - Direct File Current Position?

Returns the current position key designating the current position of
direct file. :

{ DIZKEY Returns the KEY designating direct file’s current position. }

PROCEDURE [XREF] di#key (direcg_file: file;
VAR current_position key: integer);

60460300 02

c

_/

:;k,)

C

0

2-17
CYBER IMPLEMENTATION LANGUAGE

06/22/84
CYBIL I/0 Reference Manual REV: 2
2.0 I/0 PROCEDURES
2.2.6 EXAMPLES OF DIRECT FILE USAGE

2.2.,6 EXAMPLES OF DIRECT FILE USAGE

The examples which follow illustrate the use of direct file procedures.
The first example creates a "library" of "text modules" from a legible
file. The modules on the source (legible) file are represented as NOS
records whose first line contains the module name (and nothing else). The
second example extracts from the library one of the modules and copies it
to a file whose name is that of the module.

2,2.6.1 Create Text Library

MODULE create text library ALIAS ‘zpxmcre’;

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = “cell,
file status = (new#, old#),
file mode = (input#, output#, concurrent#),
file encoding = (ascii64#, ascii6l2#, ascii#),
file:mark = (data#, eor#, eof#, eoi#),
file position = (first#, asis#, last#, null#);

CONST
returnf = last#;

TYPE
file disposition = first# .. return#;

{ i.e. (first#, asis#, return#) }
{ LGZOPEN Opens legible file as local file. }

PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*);
status: file status;
mode: file mode;
position: file position);

{ LGZCLOS Closes legible file, }

60460300 02

2-18

CYBER IMPLEMENTATION LANGUAGE

06/22/84

CYBIL I/0 Reference Manual REV: 2

2,
2,

0 I/0 PROCEDURES
2.6.1 Create Text Library

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file dlspositlon),

LGZGET Reads next complete line from legible file. }

PROCEDURE [XREF] lg#get (legible file: file;
VAR number_of characters read: integer;
VAR line: string (*)),

FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any file: file;
VAR mark: file mark);

DIZOPEN Opens direct file as local file. }

PROCEDURE [XREF] di#open (VAR direct file: file;
file name: string (*);
status: file : status;
mode: file_pode,
position: file position);

DIZCLOS Closes direct file. }

PROCEDURE [XREF] di#close (direct file: file;
disposition: file disposition);

DIZPUT Writes info from address spec. to direct file’s current pos. }

PROCEDURE [XREF] di#put (direct file: file;
VAR key: integer;
pointer_to source: “cell;
length of source: integer);

DIZPUTD Writes info to direct file at random address specified. }

PROCEDURE [XREF] di#putdir (direct file: file;
key: integer;
pointer_to_source: “cell;
length of source: integer);

BIZOPEN Opens binary file as local file, }
PROCEDURE [XREF] bifopen (VAR binary file: file;
file name: string (*);

status: file status;

60460300 02

P

ﬁx i i
o ‘o

=

..
o

o0

CYBER IMPLEMENTATION LANGUAGE

2-19

06/22/84
CYBIL I/0 Reference Manual REV: 2
2.0 I/0 PROCEDURES
2,2.6.1 Create Text Library

mode: file mode;
position: file position);

{ BIZCLOS Closes binary file. }

PROCEDURE [XREF] bi#close (binary file: file;
disposition: file disposition);

{ BIZPUT Writes specified information to binary file. }

PROCEDURE [XREF] bi#put (binary file: file;
pointer_to_source: “cell;
length of source: integer);

{ BIZGET Reads info from binary file to address specified. }

PROCEDURE [XREF] bi#get (binary file: file;
pointer_ to_target: “cell;
length of target: integer);

TYPE

directory_descriptor = RECORD
key : INTEGER,
length : INTEGER,

RECEND,

directory entry = RECORD
name : STRING (7),
length : INTEGER,
key : INTEGER,

RECEND;

CONST
source name = ‘SOURCE’,
1ib name = ‘LIBRARY’,
dir_name = ‘SCRATCH’;

PROGRAM create ALIAS ‘zpxpcre’;

VAR
source : file,
library : file,
dir_file : file,
directory : directory descriptor,
current_module : directory_entry,
line : STRING (256),

60460300 02

2-20
.

CYBER IMPLEMENTATION LANGUAGE 'y
06/22/84 *

CYBIL I/0 Reference Manual REV: 2 @;;b

' 2.0 I/0 PROCEDURES
2,2,6.1 Create Text Library

line_ length : INTEGER,
module _index : INTEGER,
first key : INTEGER,

dummy key : INTEGER,

mark : file mark; .

lgiopen (source, source name, old#, input#, first#);
bi#open (dir_file, dir name, new#, output#, first#);
diffopen (library, 1ib name, new#, output#, first#);
directory.length := 0;
di#put (library, first key, . ~
#L0C(directory), #SIZE(directory)); _ .)
/copy_module loop/
WHILE TRUE DO
lg#get (source, line length, line);
f#mark (source, mark);
CASE mark OF
=eoift= ,
EXIT /copy module loop/;)
=eof#, eori= ‘ 7
CYCLE /copy_module loop/; s
=dataf=
directory.length := directory.length + 1;
current_module.name := line(l, line length);
current_module.length := 13
di#put (library, current module.key,
#LOC(current_module.name),
#SIZE(current_module.name));
/copy_text loop/
WHILE TRUE DO
lg#get (source, line length, line);
f#mark (source, mark);
IF mark <> data# THEN
EXIT /copy text loop/;
IFEND; - -
current _module.length := current_module.length + 1;
di#put (library, dummy key,
#L.0C(1line length) #SIZE(line_length));
di#put (library, dummy key,
#1.0C(1ine), #SIZE(line(l, line length)));
WHILEND /copy_text 1oop/,
bi#put (dir_: file, WLOC(current module),
#SIZE(current module));
CASEND;
WHILEND /copy module loop/; :
lghclose (source, first#); ﬁ;\%

60460300 02 o

C

o lo

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

2-21

06/22/84
REV: 2

'

2.0 I/0 PROCEDURES
2.2.6.1 Create Text Library

IF directory.length > O THEN
bif#close (dir_file, asis#);

bifopen (dir flle, dir name, old#, input#, first#);

bi#get (dir file, #L0C(current module),
#SIZE(curren;_podule)),
di#put (library, directory.key,

#LOC(current_module), #SIZE(current_module));

FOR module index := 2 TO directory.length DO
bif#get (dir _file, #LOC(current_module),
#SIZE(current . module));
di#put (library, dummy key,

#LOC(current_module), #SIZE(current_module));

FOREND;
di#putdir (library, first key,
#L0C(directory), #SIZE(directory));
IFEND;

bi#close (dir_file, return#);
di#close (library, first#);

PROCEND create;

MODEND create text library;
2,2.6.2 Extract from Text Library

MODULE extract from text library ALIAS ‘zpxmefl’;

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = “cell,
file status = (new#, old#),
file mode = (input#, output#, concurrent#),
file encoding = (ascii64#, ascii6l2#, ascii#),
file mark = (data#, eor#, eof#, eoi#),
file position = (first#, asis#, last#, null#);

CONST
returnf = lasti#;

TYPE
file disposition = first# .. return#;

60460300 02

2-22
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

/0 PROCEDURES

2,01
2.2.6.2 Extract from Text Library

{ i.e. (first#, asis#, return#) }
{ DIZOPEN Opens direct file as local file. }

PROCEDURE [XREF] dif#fopen (VAR direct file: file;
file name: string (*); -
status: file status;
mode: file mode;
position: file position);

{ DIzZCLOS Closes direct file. }

PROCEDURE [XREF] di#close (direct file: file;
disposition: file disposition);

{ DIZLOCA Positions direct file at location specified. }

PROCEDURE [XREF] di#locate (direct file: file;
key: integer);

{ DIZGETD Reads info from direct file’s random file address, }

PROCEDURE [XREF] dif#fgetdir (direct file: file;
key: integer;
pointer_to target: “cell;
length of target: integer);

{ DIZGET Reads info from direct file’s current position to add. spec. }

PROCEDURE [XREF] di#get (direct file: file;
VAR key: integer;
pointer to target: “cell;
length of target: integer);

{ LGZOPEN Opens legible file as local file. }

PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*); -
status: file status;
mode: file mode;
position: file position);

{ LGZCLOS Closes legible file. }

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file disposition);

60460300 02

CC

2-23
CYBER IMPLEMENTATION LANGUAGE

06/22/84
CYBIL I/O Reference Manual REV: 2

kY
(zw” ' 2.0 I/0 PROCEDURES
2.2.6,2 Extract from Text Library

{ LGzrPUT Writes source string as complete line to legible file. }

PROCEDURE [XREF] lg#put (legible file: file;
line: string (*));

TYPE
directory_descriptor = RECORD
key : INTEGER,
length : INTEGER,

(z’” RECEND,

- directory entry = RECORD
name : STRING (7),
length : INTEGER,
key : INTEGER,

RECEND;

CONST
1ib name = ‘LIBRARY’;

(:}L CONST

name of module = ‘TEXTMOD’;

PROGRAM extract ALIAS ‘zpxpefl’;

VAR
library : file,
\ out_file : file,

‘::F directory : directory_descriptor,
current_module : directory entry,
line : STRING (256),
line length : INTEGER,
module index : INTEGER,
dummy key : INTEGER;

diffopen (library, 1lib_name, old#, input#, first#);
di#get (library, dummy key,
#L0C(directory), #SIZE(directory));

IF directory.length = 0 THEN

{ ERROR - module not found }

RETURN;
1FEND;
di#locate (library, directory.key);

/search_directory/

BEGIN

60460300 02

O
O

A - 2-24
CYBER IMPLEMENTATION LANGUAGE ‘ {{Mﬁ
06/22/84 w
CYBIL I/0 Reference Manual REV: 2

' 2.0 I/0 PROCEDURES Q;:b
2,2.6.2 Extract from Text Library

FOR module _index := 1 TO directory.length DO
di#get (library, dummy key,
#LOC(current module), #SIZE(current_module));
IF current module.name = name of module THEN
EXIT /search _directory/;
IFEND;
FOREND;
{ ERROR = module not found }
RETURN;
END /search _directory/;
1g#open (out - file, name of module, new#, output#, first#);
diffgetdir (library, current ._module.key, . ‘ ‘
#LOC(current module.name), S
#SIZE(current_module.name)),
lg#put (out file, current module.name);
WHILE current module length > 1 DO
dif#fget (library, dummy_key,
#L0C(1line length) #S1ZE(line length));
dittget (library, dummy key,
#L0C(1line), #SIZE(line(l, line length)));

lg#put (out_file, line(l, line_}ength)); -
current_module.length := current module.length - 1; W/
WHILEND;

di#close (library, first#);
lg#close (out_file, first#);

PROCEND extract;

MODEND extract from text library;

60460300 02 —

ole

2-25
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/O Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.3 LEGIBLE FILES

2.3 LEGIBLE FILES

2,3.1 OPENING AND CLOSING LEGIBLE FILES

2.3.1.1 LG#OPEN - Open Legible File

Opens legible file as local file name.

{ LGZOPEN Opens legible file as local file. }

PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*);
status: file status;
mode: file mode;
position: file position);

2.3.1.2 F#SABF - Setup File for Automatic Buffer Flushing

Sets up any file so that its CIO buffer will automatically be flushed
(if necessary) whenever the program 1is rolled out. This facility is
useful when a program issues prompts to a terminal user and then requests
input, since normally to insure the prompt reaches the user before the
input request, the program would write an End Of Record (causing the
buffer to be flushed). On NOS this mechanism is described in the NOS
Reference Manual in the section on "Program Writing Techniques".

{ FZSABF Sets up file for automatic buffer flushing. }

PROCEDURE [XREF] f#sabf (any file: file);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

2-26

' 06/22/84
CYBIL I/0 Reference Manual : REV: 2
2.0 1I/0 PROCEDURES
2.3.1.3 LGH#CODESET = Set Legible File Character Set
2.3.1.3 LGICODESET - Set Legible File Character Set
Sets the external character set for legible file to codeset (default,

on open, is ascii612# on NOS and is asciif on NOS/BE).
{ LGZCODE Sets external character set for legible file. }

PROCEDURE [XREF] lg#codeset (legible file: file;
codeset: file encoding);

2.3.1.4 LG#CLOSE - Close Legible File

Closes legible file.

{ LGZCLOS Closes legible file. }

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file disposition);

60460300 02

0
0

2-27

CYBER IMPLEMENTATION LANGUAGE
06/22/84

CYBIL I/0 Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.3.2 POSITIONING LEGIBLE FILES

2.3.2 POSITIONING LEGIBLE FILES

2.3.2,1 LGH#FIRST - Position Legible File at BOIL

Positions legible file at its beginning of information.

(:j' { LGZFIRS Positions legible file at its Beginning Of Information. }

PROCEDURE [XREF] 1lg#first (legible file: file);

2.3.2.2 LG#LAST - Position Legible File at EOIL

Positions legible file at its end of information.

o

{ LGZLAST Positions legible file at its End Of Information. }

PROCEDURE [XREF] lg#last (legible file: file);

C 2.3.2.3 LG#TAB — Position Legible File at Column

If column number is less than or equal to legible file’s current column
or if it 1is greater than 256, this procedure does nothing. Otherwise,
sufficient space characters are written to legible file so that the next
(partial) write to legible file will begin at the ‘specified column_number.

{ LGZTAB Positions column of next partial write to legible file. }

PROCEDURE [XREF] lg#tab (legible file: file;
column number: integer);

60460300 02

ole

. 2-28 £
CYBER IMPLEMENTATION LANGUAGE ‘ @

06/22/84 o
CYBIL I/0 Reference Manual : REV: 2 q;;»
)
2.0 I/0 PROCEDURES
2.3.3 LEGIBLE FILE STRUCTURE CREATION / DETECTION

2.3.3 LEGIBLE FILE STRUCTURE CREATION / DETECTION

2.3.3.1 LGIWEOR - Write End Of Record on Legible File

Writes an End Of Record mark on legible file.

{ LGZWEOR Writes an End Of Record mark on legible file. } SN

PROCEDURE [XREF] lghweor (legible file: file); L

2.3.3.2 LGIWEOF - Write End Of File on Legible File

Writes an End Of File mark on legible file. O

N/
{ LGZWEOF Writes an End Of File mark on legible file. }
PROCEDURE [XREF] lg#weof (legible file: file);
2.3.3.3 F#MARK - Check Structure Mark on File TN
R

Returns the "file structure mark" last encountered on any file.
{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any file: file;
VAR mark: file mark);

60460300 02

‘ !
Y

2-29
CYBER IMPLEMENTATION LANGUAGE
06/22/84

CYBIL I/0 Reference Manual REV: 2

0 I/0 PROCEDURES
3

2,
2.3.3.4 F#WORDS - Last Transfer Length on File

CO0O

2.3.3.4 F#WORDS ~ Last Transfer Length on File

Returns the last transfer length of the last transfer to/from any_ file.
{ FZWORDS Returns length of last transfer to/from file., }

PROCEDURE [XREF] f#words (any file: file;
VAR last_transfer_length: integer);

60460300 02

2-30
CYBER IMPLEMENTATION LANGUAGE
! 06/22/84

CYBIL I/0 Reference Manual REV: 2

/0 PROCEDURES

2,01
2.3.4 READING AND WRITING LEGIBLE FILES

2.3.4 READING AND WRITING LEGIBLE FILES

Data is transferred to and from legible files in terms of 1lines or
partial lines. Internally these (partial) lines are represented by CYBIL
strings of characters. Externally (on the file) lines are represented in
6-bit display code, NOS 6/12-bit ASCII, or "8 out of 12 bit" ASCII. Thus,
data transfers involving legible files imply a translation between these
character sets (unlike binary and direct file transfers in which the data
are not modified).

Note: that when reading from a legible file assigned to an interactive
terminal, the only file mark possible is data#. Any eor# or eof# marks
returned to CYBILIO by the operating system after a read from a ''terminal
file" are discarded by CYBILIO (eoi# is never possible from a terminal).
A line (entered at a terminal) containing zero characters (i.e., the
carriage return key was "hit" in the first position of the line) is
returned to the CYBILIO user as an empty line.

2.3.4.1 LGH#PUT - Write Line to Legible File

Writes the line string as a complete line to legible file. If the last
write to legible file was a partial line, that line is first completed,
and then the line is written.

{ LGZPUT Writes source string as complete line to legible file. }

PROCEDURE [XREF] 1g#put (legible file: file;
line: string (*));

2.3.4.2 LG#PUTPART - Write Partial Line to Legible File

Writes the partial line string to legible file. If last _part of line
is TRUE, then the 1line is completed after partial line is written by
writing an End Of Line to legible file.

{ LGZPUTP Writes source string as partial line to legible file. }

60460300 02

S

oo

OO0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Re

ference Manual

2-31

06/22/84
REV: 2

2.0 I/0 PROCEDURES

2.3.4.2 LG#P

UTPART - Write Partial Line to Legible File

PROCEDURE
last par
partial

2.3.4.3 LGiW

[XREF] lg#putpart (legible file: file;
t of line: boolean; -
line: string (*));

EOL - Write End Of Line on Legible File

Writes an End Of Line to legible file. If the
legible file was partial, that line is completed; otherwise an empty line

results,

{ LGZWEOL

PROCEDURE

Writes an End Of Line to legible file. }

[XREF] lgi#weol (legible file: file);

2.3.4.4 LG#GET - Read Line from Legible File

las

Reads the next complete line from legible file into line.

number of

number_of characters_read.

characters transferred to line is

r

t write to.

The actual
eturned in

If the previous transfer was partial, a skip

to the end of that line is performed prior to the transfer to line being
done. If the line from legible file is too long to fit
line is truncated by skipping to the end of the line after the transfer is

complete.

{ LGZGET

PROCEDURE
VAR numb

VAR line:

Reads next complete line from legible file. }

[XREF] lgf#get (legible file: file;
er_of characters read: integer;
string (*));

into

line, the

60460300 02

2-32
CYBER IMPLEMENTATION LANGUAGE

06/22/84
CYBIL I/0 Reference Manual REV: 2

2.0 1/0 PROCEDURES
2.3.4.5 LG#GETPART -~ Read Partial Line from Legible File

2.3.4.5 LG#GETPART - Read Partial Line from Legible File

Reads the next partial 1line from legible file into partial_line.
last part of line will be set to TRUE if the end of

-] . the line was
encountered, and set to FALSE otherwise. The actual number of characters
transferred will be returned in number of characters read.

{ LGZGETP Reads next partial line from legible file. }

PROCEDURE [XREF] lg#getpart (legible file: file;
VAR last part of line: boolean;

VAR numBEi_pf:bﬁziacterq_read: integer;
VAR partial line: string (*));

60460300 02

OO

N

-
C“ ‘

0

2-33

CYBER IMPLEMENTATION LANGUAGE
. 06/22/84
CYBIL I/0 Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.3.5 LEGIBLE FILE STATUS INTERROGATION

2.3.5 LEGIBLE FILE STATUS INTERROGATION

2.3.5.1 F#TERMINAL - File is a Terminal?

Returns in file is a terminal TRUE if any file is connected to a
terminal, and FALSE otherwise.

{ FZTERMI Returns boolean if file is connected to a terminal. }

PROCEDURE [XREF] f#terminal (any file: file;
VAR file is a terminal: boolean);

2.3.5.2 LG#OLDCODESET -~ Legible File Character Set?

Returns the designator for the external character set associated with
legible file.

{ LGZOLDC Returns designator for ext. char. set of legible file, }

PROCEDURE [XREF] lg#oldcodeset (legible file: file;
VAR codeset: file encoding);

2.3.5.3 LG#COLNO - Legible File Column Number?

Returns the number of the column within the current line of
legible file that was last transferred to/from legible file. Put another
way, column number is set to the number of characters so far transferred
to/from the current line of legible file.

{ LGZCOLN Returns col. no. in line of legible file last transferred. }

PROCEDURE [XREF] lg#colno (legible file: file;
VAR column number: integer);

60460300 02

2-34

CYBER IMPLEMENTATION LANGUAGE
06/22/84

CYBIL I/0 Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.3.6 EXAMPLE -~ COPY COLUMN RANGE OF LEGIBLE FILE

2.3.6 EXAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE

The following example illustrates the use of legible file procedures to
copy one legible file to another. Only data between selected columns on
the old file is written to the new file, and within those columns,
‘trailing space characters are deleted.

MODULE truncate ALIAS ‘zpxmtru’;

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = “cell,
file status = (new#, old#),
file mode = (input#, output#, concurrent#),
file encoding = (ascii64#, ascii6l2#, ascii#),
file mark = (data#, eor#, eof#, eoi#),
file position = (first#, asis#, last#, null#);

CONST
return# = last#;

TYPE
file disposition = first# .. return#;

{ i.e. (first#, asis#, return#) }
{ LGZOPEN Opens legible file as local file, }
PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*);
status: file status;
mode: file mode;
position: file position);
{ LGZCLOS Closes legible file. }

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file disposition);

{ LGZGET Reads next complete line from legible file. }

60460300 02

o~ \ ’ »7;%\)
C‘ ! “

ole

O
O

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2-35

06/22/84
REV: 2

2,0 I/0 PROCEDURES
2.3

I
.6 EXAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE

PROCEDURE [XREF] lg#get (legible file: file;
VAR number_of characters read: integer,
VAR line: string (*));

{ LGzPUT Writes source string as complete line to legible file. }

PROCEDURE [XREF] lg#put (legible file: file;
line: string (*));

{ LGZWEOL Writes an End Of Line to legible file. }

PROCEDURE [XREF] lg#weol (legible file: file);

{ LGZWEOR Writes an End Of Record mark on legible file. }

PROCEDURE [XREF] lg#weor (legible file: file);

{ LGZWEOF Writes an End Of File mark on legible file., }

PROCEDURE [XREF] lg#weof (legible file: file);

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any file: file;
VAR mark: file mark);

PROGRAM truncate ALIAS “zpxptru’;

CONST
in name = ‘OLD’,
out_name = ‘NEW’,
leftmost column # 11,

rightmost column # =723

VAR
in file : file,
out_file : file,
line ptr : “STRING (*),
liné:length ¢ INTEGER,
mark : file mark;

ALLOCATE line ptr : [rightmost column #];

lg#open (in file, in name, old#, input#, first#);

lg#open (ouq_flle, out_name, new# output#,
/main_loop/
WHILE TRUE DO

first#);

60460300 02

2-36

CYBER IMPLEMENTATION LANGUAGE
06/22/84

CYBIL I/0 Reference Manual ‘ REV: 2

2.0 1/0 PROCEDURES
2.3.6 EXAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE

lgi#get (in_file, line length, line ptr”),
f#mark (in - file, mark);
CASE mark OF
=eoif=
EXIT /main loop/;
=eofil=
lgitweof (out _file);
=eori=
lgitweor (out_file);
=datai=
WHILE (line length > leftmost _column #) AND
(line ptr”(line 1ength) ‘) DO
line length := line . length - 13
WHILEND;
line length := line length - leftmost column # + 1;
IF line length > 0 THEN
1g#put (out _file, line ptr~(leftmost column #,
line length)),
ELSE
1g#weol (out_file);
IFEND;
CASEND;
WHILEND /main loop/;
lg#close (in_: file, first#);
lg#close (out flle, firsti#);
FREE line ptr;

PROCEND truncate;

MODEND truncate;

60460300 02

o0

ole

o
O

2-37
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.4 PRINT FILES

2.4 PRINT FILES

2.4,1 OPENING AND CLOSING PRINT FILES

2.4.1.,1 PR#OPEN - Open Print File

Opens print_file as local file name (note the lack of a file mode
parameter for this procedure, since print files can only be written).

{ PRZOPEN Opens print file as local file, }

PROCEDURE [XREF] pr#open (VAR print_file: file;
file name: string (*);
status: file status;
position: file position);

2.4,1.2 PR#PGOV - Define Page Overflow Procedure

Associates with print_file, the procedure designated Dby
page overflow proc which will be called whenever the page size of
print file 1is exceeded. Page size 1is set by PR#LIMIT, default is 60
lines. The procedure designated by page overflow proc should not be
called directly by the user. If the user wishes to explicitly advance to
the next page, a call to the pr#page procedure should be used.

If there is no user supplied page overflow procedure for a print file,
then CYBILIO simply performs a page eject for the file when the page
overflow condition occurs. If NIL is specified for page overflow_ proc,
any user supplied page overflow procedure currently associated with the
file is disassociated from the file.

{ PRZPGOV Calls procedure needed to advance file to next page. }
PROCEDURE [XREF] pri#pgov (print file: file;

page overflow proc: ~procedure (print_file: file;
next page #: integer));

60460300 02

2-38
CYBER IMPLEMENTATION LANGUAGE :
06/22/84
CYBIL I/0 Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.4.1.3 PR#CODESET - Set Print File Character Set

2.4,1.,3 PR#CODESET -~ Set Print File Character Set

Sets the external character set for print file to codeset (default, on
open, is ascii6l2# on NOS and is ascii# on NOS/BE).

{ PRZCODE Sets ext. char. set for print file., }

PROCEDURE [XREF] pr#codeset (print file: file;
codeset: file encoding);

2.4.1.4 PR{#LIMIT - Set Print File Page Size

Sets the page size (line 1limit) for print file to lines per_ page
(default, on open, is 60).

{ PRZLIMI Sets page size (line limit) for print file. }

PROCEDURE [XREF] pr#limit (print_file: file;
lines_per page: integer);

2.4,1,5 PR#SETPGNO - Set Print File Page Number

Sets the current page number for print file to current_ page number
(default, on open, is 0).

{ PRZSETP Sets current page number for print file., }

PROCEDURE [XREF] pr#setpgno (print file: file;
current_page number: integer);

60460300 02

O
U

)

oNeo/

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2-39

06/22/84
REV: 2

2,0 I/0 PROCEDURES
2.4,1,6 PRi#CLOSE -~ Close Print File

2.4,1.6 PR#CLOSE = Close Print File

Closes print file.

{ PRZCLOS Closes print file. }

PROCEDURE [XREF] pr#close (print file: file;
disposition: file disposition);

60460300 02

2-40
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I1I/0 Reference Manual REV: 2

2.0 I/0 PROCEDURES
2.4.2 POSITIONING PRINT FILES

2.4.2 POSITIONING PRINT FILES

2.4.2,1 PR#FIRST - Position Print File at BOI

Positions print file at its beginning of information.

{ PRZFIRS Positions print file at its Beginning Of Information. }

PROCEDURE [XREF] pr#first (print_file: file);

2,4,2,2 PR#LAST - Position Print File at EOI

Positions print file at its end of information.

{ PRZLAST Positions print file at its End Of Information. }

PROCEDURE [XREF] pr#last (print file: file);

2.4.2.3 PR#TAB -~ Position Print File at Column

If column number is less than or equal to print _file’s current column
or if it 1is greater than 136, this procedure does nothing. Otherwise,
sufficient space characters are written to print file so that the next
(partial) write to print_file will begin at the ‘specified column number.

{ PRZTAB Positions print file at column for next partial write. }

PROCEDURE [XREF] pr#tab (print file: file;
column number: integer);

60460300 02

O

0

: 2-41
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual , REV: 2

2.0 I/0 PROCEDURES
2.4.2.4 PR#LINE - Position Print File at Line

2.4.2.4 PR#LINE - Position Print File at Line

Positions print_file at the specified line number. This will be on the
current page if “1line number is greater than the current line number and
less than or equal to page size; or on the next page (after invoking the
page overflow mechanism) if line number is less than or equal to the
current line number. If line 1 number is greater than the page size, the
file will be positioned at the top of the next page.

{ PRZLINE Positions print file at specified line. }

PROCEDURE [XREF] pr#line (print_file: file;
line number: integer);

2.4.2.5 PR#SKIP - Skip Lines on Print File

If number of lines = =1, the next 1line written to print file will
overprint the current line. If number_of lines + prinq_file's current
line number is greater than the page size, the page overflow mechanism is
invoked. Otherwise, number_of lines empty lines will be written to
print_file.

{ PRZSKIP Skips lines on print file from current position. }

PROCEDURE [XREF] pr#skip (print file: file;
number_of lines: integer);

2.4.2.6 PR#EJECT ~ Position Print File at Top of Page

Positions print file at the first line (top) of the next page. This
procedure should only be called by the routine that processes page
overflow conditions: pri#pgov (see the section on "Print Files" under "File

Types").

60460300 02

2-42
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual v o REV: 2

2.0 I/0 PROCEDURES ,
2.4,2,6 PR#EJECT -~ Position Print File at Top of Page

{ PRZEJEC Positions print file to first line (top) of next page. }

PROCEDURE [XREF] pri#eject (print file: file);

2.4.,2.7 PR#PAGE - Start New Page on Print File

Increments print file’s page number and calls the routine that
processes page overflow conditions: pri#pgov (see the section on "Print
Files" under "File Types").

{ PRZPAGE Increments print file’s page number. }

PROCEDURE [XREF] pr#page (print_ file: file);

60460300 02

O

'
=

2=43
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

ele

2,0 I/0 PROCEDURES
2.4.3 PRINT FILE STRUCTURE CREATION

2.4.3 PRINT FILE STRUCTURE CREATION

2.4.3,1 PR#WEOR - Write End Of Record on Print File

Writes an End Of Record mark on print_ file,

(:i> { PRZWEOR Writes an End Of Record mark on print file. }

PROCEDURE [XREF] pr#weor (print file: file);

2.4.3.2 PRIWEOF — Write End Of File on Print File

0 Writes an End Of File mark on print_file.

{ PRZWEOF Writes an End Of File mark on print file, }

PROCEDURE [XREF] pri#weof (print file: file);

60460300 02

0

2-44
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

/0 PROCEDURES

2,01
2.4.4 WRITING PRINT FILES

2.4.4 WRITING PRINT FILES

Print files are a special form of legible files used only for output.
In addition to the (partial) line writes similar to those for legible
files, print files also have "format'" control procedures to handle page
overflow processing and vertical spacing and tabbing (see the section on
"Positioning Print Files" for more information).

2.4.4.1 PR#PUT -~ Write Line to Print File

Writes the line string as a complete line to print file. If the last
write to print file was a partial line, that line is first completed, and
then the line for line is written.

{ PRZPUT Writes source string as a complete line to print file. }

PROCEDURE [XREF] pr#put (print_file: file;
line: string (*));

2.4.4.2 PR#PUTPART - Write Partial Line to Print File

Writes the partial line string to print file. If last part of line is
TRUE, then the line is completed after partial line is written by writing
an End 0f Line to print file.

{ PRZPUTP Writes source string as a partial line to print file. }
PROCEDURE [XREF] pr#putpart (print file: filej

last_part of line: boolean; -
partial line: string (*));

60460300 02

-

N
N

ele

00

2-45
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual . REV: 2

2.0 I/0 PROCEDURES
2.4.4,3 PRIWEOL - Write End Of Line on Print File

2.4.4.3 PRIWEOL - Write End Of Line on Print File

Writes an End Of Line to print_file. If the last write to print file
was partial, that line is completed; otherwise an empty line results.

{ PRZWEOL Writes an End Of Line to print file. }

PROCEDURE [XREF] pr#weol (print_file: file);

60460300 02

2-46
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

/0 PROCEDURES

2.01I
2.4.5 PRINT FILE STATUS INTERROGATION

2.4.5 PRINT FILE STATUS INTERROGATION

2.4.5.1 PR#OLDCODESET - Print File Character Set?

Returns the designator for the external character set associated with
print_file.

{ PRZOLDC Returns designator for ext. char. set of print file. }

PROCEDURE [XREF] pr#oldcodeset (print file: file;
VAR codeset: file encoding);

2.4,5.2 PR#COLNO - Print File Column Number?

Returns the number of the column within the current line of print file
that was last transferred to/from print file. Put another way,

columq_pumber is set to the number of characters so far transferred
to/from the current line of print file.

{ PRZCOLN Returns current line col. no, of print file last transferred. }

PROCEDURE [XREF] pr#colno (print_file: file;
VAR column number: integer);

2.4.5.3 PR#LINO - Print File Line Number?

Returns the number of the current 1line within the current page of
print file. Af ter any repositioning command (skip, eject,
set line number) the line number returned is the next line to be printed.
After a print command (put, putpart, weol), the line number is the line
just printed.

Before doing any I/0, the line number is 500.

60460300 02

CcC

N
N

ol=
Ui

ole

oo

2-47
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/O Reference Manual REV: 2

0 I/0 PROCEDURES
4

2.
2.4.5.3 PR#LINO - Print File Line Number?

{ PRZLINO Returns no. of lines within current page of print file. }

PROCEDURE [XREF] pr#lino (print file: file;
VAR line number: integer);

2.4.5.4 PR#PGNO — Print File Page Number?

Returns the number of the current page for print file.
{ PRZPGNO Returns number of current page for print file. }

PROCEDURE [XREF] pr#pgno (print_file: file;
VAR page number: integer);

2.4,5.5 PR#OLDLIMIT - Print File Page Size?

Returns print _file’s page size (line limit).
{ PRZOLDL Returns print file’s page size (line limit). }

PROCEDURE [XREF] pr#oldlimit (prinp_file: file;
VAR lines per_page: integer);

60460300 02

2-48
CYBER IMPLEMENTATION LANGUAGE :
06/22/84
CYBIL I/0 Reference Manual : REV: 2

2.0 I/0 PROCEDURES
2.4,6 EXAMPLE - LIST LEGIBLE FILE

2.4.6 EXAMPLE - LIST LEGIBLE FILE

The following example illustrates the use of print file procedures (and
legible file procedures). Note particularly the page overflow processing
procedure,

MODULE list ALIAS ‘zpxmlis’;

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = “cell,
file status = (new#, old#),
file mode = (input#, output#, concurrent#),
filé:ﬁncoding = (asciib4#, ascii6l2#, ascii#),
file mark = (data#, eor#, eofi#, eoi#),
file position = (first#, asis#, last#, null#);

CONST
return# = last#;

TYPE
file disposition = first# .. return#;

{ i.e. (first#, asis#, returni#) }
{ LGZOPEN Opens legible file as local file. }
PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*);
status: file status;
mode: file mode;
position: file position);
{ LGZCLOS Closes legible file. }

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file disposition);

{ LGZGETP Reads next partial line from legible file., }

PROCEDURE [XREF] lg#getpart (legible file: file;
60460300 02

U

-

C

©0

2~-49
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/O Reference Manual REV: 2

/0 PROCEDURES

2.01
2.4.6 EXAMPLE - LIST LEGIBLE FILE

VAR last _part of line: boolean;
VAR number_of characters read: integer;
VAR partial line: string (*));
{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any file: file;
VAR mark: file mark);

{ PRZOPEN Opens print file as local file. }
PROCEDURE [XREF] pr#open-(VAR print_file: file;
file name: string (*);
status: file status;
position: file position);
{'PRZPGOV Calls procedure needed to advance file to next page. }
PROCEDURE [XREF] pri#pgov (print file: file;
page overflow proc: “procedure (print file: file;
next_page #: integer));
{ PRZCLOS Closes print file. }

PROCEDURE [XREF] pr#close (print file: file;
disposition: file disposition);

{ PRZEJEC Positions print file to first line (top) of next page. }
PROCEDURE [XREF] pr#eject (print_file: file);
{ PRZSKIP Skips lines on print file from current position. }

PROCEDURE [XREF] pr#skip (print file: file;
number of lines: integer);

{ PRZLINE Positions print file at specified line. }

PROCEDURE [XREF] pr#line (print_file: file;
line number: integer);

{ PRZLIMI Sets page size (line limit) for print file. }

PROCEDURE [XREF] pr#limit (print_file: file;
lines per_ page: integer);

{ PRZOLDL Returns print file’s page size (line limit). }

60460300 02

2-50
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/O Reference Manual ' REV: 2

2.0 I/0 PROCEDURES
2,4,6 EXAMPLE - LIST LEGIBLE FILE

PROCEDURE [XREF] pr#oldlimit (print file: file;
VAR lines_per page: integer);

{ PRZPGNO Returns number of current page for print file, }

PROCEDURE [XREF] pr#pgno (print_file: file;
VAR page number: integer);

{ PRZTAB Positions print file at column for next partial write. }

PROCEDURE [XREF] pr#tab (prinq_file: file;
column number: integer);

{ PRZPUTP Writes source string as a partial line to print file. }

PROCEDURE [XREF] pr#putpart (print file: file;
last_part_of line: boolean;
partial line: string (*));

{ PRZWEOL Writes an End Of Line to print file. }

PROCEDURE [XREF] pr#weol (print_ file: file);

CONST
in name = ‘LEGFILE’;

VAR
file # : INTEGER

=1,
record # : INTEGER :=

1;

PROCEDURE page overflow handler
(f : file;
next page # : INTEGER);

VAR
conv_holder : STRING (10),
conv_length : INTEGER,
old page size : INTEGER;

IF next _page # > 1 THEN
pr#oldlimit (£, old page size);
pr#limit (£, old page size + 2);
pr#line (f, old page : size + 2);
pritab (£, 70);

60460300 02

O

2-51
CYBER IMPLEMENTATION LANGUAGE

06/22/84
CYBIL I/O Reference Manual REV: 2

@ 2.0 I/0 PROCEDURES
2.4,6 EXAMPLE - LIST LEGIBLE FILE

pr#putpart (f, FALSE, ‘PAGE “);
STRINGREP (conv holder, conv_length, next page # - 1);
pr#putpart (£, TRUE, conv holder(l, conv length)),
pri#limit (f, old page size);

IFEND;

priteject (£f);

pr#putpart (£, FALSE, ‘LISTING OF ’);

pr#putpart (f, FALSE, in name);

pr#tab (£, 50);

pri#putpart (f, FALSE, ‘FILE ’);

STRINGREP (conv_holder, conv_length, file #);

(ZZD pri#putpart (£, FALSE, conv holder(l, conv length)),
’ pri#putpart (f, FALSE, ‘, RECORD ’);

STRINGREP (conv _holder, conv_length, record #);

pri#putpart (£, TRUE, conv holder(l, conv length)),

priskip (£, 2),

PROCEND page overflow handler;

(} PROGRAM list ALIAS ’‘zpxplis’;

CONST
out_name = ‘QUTPUT’;

VAR

in file : file,

out_file : file,

original page size : INTEGER,
page ¥ : INTEGER,

C line : STRING (80),
- line length : INTEGER,
eol : BOOLEAN,
mark : file mark;

lg#open (in file, in name, old#, input#, first#);
priopen (out file, out name, new#, asist#);
pripgov (oup_file, “page _overflow_handler);
pr#oldlimit (out file, original pagg_size),
pr#limit (out file, original page size - 2);
/main loop/
WHILE TRUE DO
lgf#getpart (in_file, eol, line length, line);
fi#mark (in_ file, mark);
CASE mark OF
=eoi#=
pr#limit (out_file, original page size);

60460300 02

0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

2-52

06/22/84
REV: 2

2.0 I/0 PROCEDURES
2.4,6 EXAMPLE - LIST LEGIBLE FILE

pr#line (out_file, original page size);

pr#tab (out_file, 70);
pritputpart (out - file, FALSE,
pri#pgno (out file, page #);

‘PAGE ’);

STRINGREP (1line, line 1ength, page #);

pri#putpart (out file, TRUE, line(l,

EXIT /maiq_}ooﬁT,

=eof#=
file # := file;# +1;
record # : :

line length)),

pri#line (out file, original page size - 2);

pri#weol (out file),
=eori=
record # := record # + 1;

pri#line (out _file, original page size - 2);

priweol (out_file);
=datait=
IF line length > 0 THEN

priputpart (out_file, eol, line(l,

ELSE
pri#weol (out file);
IFEND; -
CASEND;
WHILEND /main_loop/;
lgi#tclose (in file, firsti);
priclose (out file, asis#);

PROCEND 1list;

MODEND list;

line length));

60460300 02

N

N

ele

®

ol

3-1
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

3.0 CYBILIO ERROR MESSAGES

3.0 CYBILIO ERROR MESSAGES

This section describes the error messages that may be received as a
result of improper wuse of CYBILIO. If a condition described by one of
these messages arises:

- the I/0 error message will be sent to the dayfile

= the message — INTERNAL ERROR IN prognam will be sent to the dayfile
(where prognam is the name of the program as extracted from the job
communication area)

- the program is aborted.

In the message prototypes that follow filenam will be replaced by the
name of the file in question when the message appears in the dayfile. The
reason that some of the messages do not have the file name in them is

that, in those conditions, the file name is not known.

-I0 ERR- NO MEM TO OPEN FILE filenam

This message means that there was insufficient space to allocate the
descriptor and/or cio buffer for the file,

~I0 ERR- ILLEGAL FILE NAME

This message means that an attempt was made to open a file with a name
that did not consist of from 1 to 7 letters and/or digits.

-I0 ERR- ILLEGAL OPEN REQ filenam

This message means that an invalid combination of parameters was given
to an open procedure (e.g., "new#, input#" is illegal).

=I0 ERR- FILE NOT OPEN

This message indicates that an undefined variable of type file was

60460300 02

3-2
CYBER IMPLEMENTATION LANGUAGE
06/22/84
CYBIL I/0 Reference Manual REV: 2

3.0 CYBILIO ERROR MESSAGES:

passed to a CYBILIO procedure other than one of the open procedures.

~I0 ERR- ILLEGAL INPUT REQ filenam

This message means that an attempt was made to read from a file that
was opened only for output.

=10 ERR~ ILLEGAL OUTPUT REQ filenam

This message means that an attempt was made to write to a file that was
opened only for input.

-I0 ERR- KEY BEYOND E-0-I filenam
This message indicates that an attempt was made to perform a direct

file operation with a key that was outside the bounds of the file (i.e.,
the key did not specify a '"random address" that is in the file).

-I0 ERR- ILLEGAL LINE NUM filenam

This message means that the pr#line procedure was passed a line number
less than 1.

~I0 ERR~- ILLEGAL SKIP COUNT filenam

This message indicates that the pri#skip procedure was passed a skip
count less than -1,

60460300 02

O

