
CJ
0)

c

0

0
0

CYBILIO

REFERENCE MANUAL

60460300 02

REV

1

2

DATE

12/13/83

06/22/84

REVISION DEFINITION SHEET

DESCRIPTION

Pr el im inar y m ai ua l rel ea~ed.

Updated preliminary maiual.

Address comments concerning this manual to:

Control Data Corporation

So ft ware Engineering Services

4201 North Lexington Avenue

St. Paul, Minnesota 55112

60460300 02

c 1983

by Control Data Corporation

All rights reserved

Printed in the Lhited States of America

0

c ..

()

0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

Table of Contents

1.0 INTRODUCTION • • • • • •• . .
1.1 APPLICABLE DOCUMENTS •••••
1.2 FILE TYPES ••••••

1.2.1 BINARY FILES • • • • • • • • • • ••
1.2.2 DIRECT FILES • • • • • • • • • • ••
1.2.3 LEGIBLE FILES • • • • • • • • •••
1.2.4 PRINT FILES • • • • • • • • • • • •••••

1. 3 CYB !LIO DATA TYPES • • • • • • • • • • • • • • • •
1.4 USING CYBILIO • • • • • • • • • • • • • • •••

1.4.1 SOURCE CODE INTERFACE TO CYBILIO ON NOS ••••••
1.4.2 SOURCE CODE INTERFACE TO CYBILIO ON NOS/BE •
1.4.3 OBJECT CODE INTERFACE TO CYBILIO • . .
1 • 4. 4 NAMING CONVENTIONS • • • • • • • • •
1.4.5 FILE VARIABLE USAGE ••••••••••••••••
1.4.6 FILE NAMES ••••••••••••••••••
1.4.7 FILE STRUCTURE CREATION / DETECTION . . .
1.4.8 CIO BUFFER SIZE CONTROL ••••
1.4.9 LONG STRING OF BLANK (SPACE) CHARACTERS ••••••

2.0 I/O PROCEDURES •••••••••••
2 .1 BINARY FILES • • • • • • • • • •

2.1.1 OPENING AND CLOSING BINARY FILES • . . .
2.1.1.1 BI#OPEN - Open Binary File • • •••••
2.1.1.2 BI#CLOSE - Close Binary File ••••••

2.1.2 POSITIONING BINARY FILES ••••••••••••
2.1.2.1 BI#FIRST - Position Binary File at BO! •
2.1.2.2 BI#LAST - Position Binary File at EOI

2.1.3 BINARY FILE STRUCTURE CREATION / DETECTION •••

. .

. .

1

06/22/84
REV: 2

.

. . .

. . .

. . .

. . .

.

1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-4
1-6
1-6
1-6
1-6
1-6
1-7
1-7
1-8
1-8
1-8

2.1.3.1 BI#WEOR - Write End Of Record on Binary File •••••
2.1.3.2 BI#WEOF - Write End Of File on Binary File •

2-1
2-1
2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-6
2-6
2-6
2-7

2.1.3.3 F#MARK - Check Structure Mark on File
2.1.3.4 F#WORDS - Last Transfer Length on File •

2.1.4 READING AND WRITING BINARY FILES ••••••
2.1.4.1 BI#PUT - Write to Binary File ••••••
2.1.4.2 BI#GET - Read from Binary File •••••••••

2.1.5 EXAMPLE - COPY BINARY FILE ••••••••
2. 2 DIRECT FILES • • • • • • • • • • • • • •

2.2.1 OPENING AND CLOSING DIRECT FILES ••••••••••
2.2.1.1 DI#OPEN - Open Direct File •••••••••
2.2.1.2 DI#CLOSE - Close Direct File ••••••••

2.2.2 POSITIONING DIRECT FILES ••••••••••
2.2.2.1 DI#FIRST - Position Direct File at BOI •
2.2.2.2 DI#LAST - Position Direct File at EOI •
2.2.2.3 DI#LOCATE - Position Direct File via Key ••

.
2.2.3 DIRECT FILE STRUCTURE CREATION / DETECTION •••••

2.2.3.1 DI#WEOR - Write End Of Record on Direct File ••
2.2.3.2 DI#WEOF - Write End Of File on Direct File
2.2.3.3 F#MARK - Check Structure Mark on File

. . .

.

. . .

2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-12

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.2.3.4 F#WORDS - Last Transfer Length on File •
2.2.4 READING AND WRITING DIRECT FILES ••••••••

2.2.4.1 DI#PUT - Sequential Write to Direct File ••
2.2.4.2 DI#PUTDIR - Random Write to Direct File
2.2.4.3 DI#GET - Sequential Read from Direct File ••••
2.2.4.4 DI#GETDIR - Random Read from Direct File •••••

2.2.5 DIRECT FILE STATUS INTERROGATION ••••••
2.2.5.1 DI#LENGTH - Direct File Length? ••••••
2.2.5.2 DI#KEY - Direct File Uirrent Position?

2.2.6 EXAMPLES OF DIRECT FILE USAGE
2.2.6.1 Create Text Library ••••

. . .

2.2.6.2 Extract from Text Library •••••
2. 3 LEGIBLE FILES • • • • • • • • • • • • • •

2.3.1 OPENING AND CLOSING LEGIBLE FILES •••••••
2.3.1.1 LG#OPEN - Open Legible File •••••••••••
2.3.1.2 F#SABF - Setup File for Automatic Buffer Flushing

2

06/22/84
REV: 2

. .

. . . 2.3.1.3 LG#CODESET - Set Legible File Character Set
2.3.1.4 LG#CLOSE - Close Legible File ••••••••••

2-13
2-14
2-14
2-14
2-15
2-15
2-16
2-16
2-16
2-17
2-17
2-21
2-25
2-25
2-25
2-25
2-26
2-26
2-27
2-27
2-27
2-27
2-28
2-28
2-28
2-28
2-29
2-30
2-30
2-30
2-31
2-31
2-32
2-33
2-33
2-33
2-33
2-34
2-37
2-37
2-37
2-37
2-38
2-38
2-38
2-39
2-40
2-40
2-40
2-40
2-41

2.3.2 POSITIONING LEGIBLE FILES ••••••••••••••
2.3.2.1 LG#FIRST - Position Legible File at BO! ••
2.3.2.2 LG#LAST - Position Legible File at EOI ••••••
2.3.2.3 LG#TAB - Position Legible File at Column •••••

2.3.3 LEGIBLE FILE STRUCTURE CREATION / DETECTION •••••
2.3.3.1 LG#WEOR - Write End Of Record on Legible File
2. 3. 3. 2 LG#WEOF - Write End Of File on Legible File •••
2.3.3.3 F#MARK - Check Structure Mark on File ••••••
2.3.3.4 F#WORDS - Last Transfer Length on File •••

2.3.4 READING AND WRITING LEGIBLE FILES •••••••
2.3.4.1 LG#PUT - Write Line to Legible File ••••••.
2.3.4.2 LG#PUTPART - Write Partial Line to Legible File
2.3.4.3 LG#WEOL - Write End Of Line on Legible File •••
2.3.4.4 LG#GET - Read Line from Legible File •••••••
2.3.4.5 LG#GETPART - Read Partial Line from Legible File •

2.3.5 LEGIBLE FILE STATUS INTERROGATION •••••••
2.3.5.1 F#TERMINAL - File is a Terminal? ••••••
2.3.5.2 LGllOLDCODESET - Legible File Character Set?
2.3.5.3 LGllCOLNO - Legible File Column Number? •••••

2.3.6 EXAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE •••••
2. 4 PRINT FILES •

2.4.1 OPENING AND CLOSING PRINT FILES •••
2.4.1.1 PRllOPEN - Open Print File • • • • • ••••
2.4.1.2 PR#PGOV - Define Page Overflow Procedure •••••
2.4.1.3 PRllCODESET - Set Print File Character Set ••••
2.4.1.4 PRllLIMIT - Set Print File Page Size
2.4.1.5 PR#SETPGNO - Set Print File Page Number •••
2.4.1.6 PR/ICLOSE - Close Print File ••••••••••

2.4.2 POSITIONING PRINT FILES ••••••••••
2.4.2.1 PR#FIRST - Position Print File at BOI ••••••
2.4.2.2 PR#LAST - Position Print File at EOI • • •••
2.4.2.3 PR#TAB - Position Print File at Column •••
2.4.2.4 PR#LINE - Position Print File at Line •••

. .

. .

. .

. .

. .

. .
60460300 02 :f- ''-,

'-r\..__,/

0
0

0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3

06/22/84
REV: 2

2.4.2.5 PR#SKIP - Skip Lines on Print File •••
2.4.2.6 PR#EJEcr - Position Print File at Top of Page ••••
2.4.2.7 PR#PAGE - Start New Page on Print File •

2.4.3 PRINT FILE STRUCTURE CREATION •••••••
2.4.3.1 PR#WEOR - Write End Of Record on Print File
2.4.3.2 PR#WEOF - Write End Of File on Print File ••••••

2.4.4 WRITING PRINT FILES • • • • • • • • • • • • • ••••
2.4.4.1 PR#PUT - Write Line to Print File • • • • • • •
2.4.4.2 PR#PUTPART - Write Partial Line to Print File ••••
2.4.4.3 PR#WEOL - Write End Of Line on Print File •••

2.4.5 PRINT FILE STATUS INTERROGATION •••••••••••••
2.4.5.1 PR#OLDCODESET - Print File Oiaracter Set? ••••
2.4.5.2 PR#COLNO - Print File Column Number? •••
2.4.5.3 PR#LINO - Print File Line Number? •••••••
2.4.5.4 PR#PGNO - Print File Page Number? •••
2.4.5.5 PR#OLDLIMIT - Print File Page Size? ••••

2.4.6 EXAMPLE - LIST LEGIBLE FILE ••

3.0 CYBILIO ERROR MESSAGES ••••• . .
. .

2-41
2-41
2-42
2-43
2-43
2-43
2-44
2-44
2-44
2-45
2-46
2-46
2-46
2-46
2-47
2-47
2-48

3-1

60460300 02

r~
I ·'1

~j

c
5
~~

0
(

~ ;

C',

0
0:

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION

1.0 INTRODUCTION

1-1

06/22/84
REV: 2

The CYBILIO package (CYBILIO) is a collection of procedures and data
types which provide an Input/Output system that interfaces a CYBIL program
to the NOS & NOS/BE I/O system.

1.1 APPLICABLE DOCUMENTS

60455280 CYBIL Reference Manual

60457280 Language Specification for CDC CYBER IMPLEMENTATION LANGUAGE

60457250 SES User's Handbook

60459660 NOS Version 2 Reference Manual (Volume 1)

60459670 NOS Version 2 Reference Manual (Volume 2)

60459680 NOS Version 2 Reference Manual (Volume 3)

60459690 NOS Version 2 Reference Manual (Volume 4)

60450100 NOS Version 1 Modify Reference Manual

60493800 NOS/BE Version 1 Reference Manual

60494100 NOS/BE Version 1 System Programmer's Reference Manual

60499900 Update Version 1 Reference Manual

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION
1.2 FILE TYPES

1.2 FILE TYPES

1-2

06/22/84
REV: 2

CYBILIO deals with a (small) number of distinct types of files. The
properties of the various file types are described in the subsections
which follow.

1.2.1 BINARY FILES

Binary files have only sequential access. Data appears on such files
in the order in which it was written, and can only be read in that same
order. These files may be positioned at the beginning or end of
information. Note that positioning at the beginning and then writing a
binary file implies that all data which was previously on the file is
lost.

Binary files may be structured using record/file marks, and detection
of the structure is possible.

1.2.2 DIRECT FILES

Direct files are like binary files except that data may be transferred
to/from them at "random addresses" known as keys. Note that writing (from
the beginning of) a direct file does not necessarily imply that existing
data (which follows the data being written) will be lost (c.f., binary
files).

In addition to the positioning facilities provided for binary files,
direct files may be positioned via a key to any location.

1.2.3 LEGIBLE FILES

Legible files are sequentially accessed and are assumed to contain
character data in NOS 6/12 or in NOS/BE 8/12 representation. Legible I/O
procedures provide for the conversion between the external (on the file)
data format and the internal format (CYBIL strings). The basic entity on
a legible file is a line which can be transferred to/from the file in
whole or in part. In addition, there is a facility to tab to a specified

60460300 02

('\ .• , •. I\

)~'

C\
j.

C.~

(-,,~.

,v

C·

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION
1.2.3 LEGIBLE FILES

column in an output line.

1-3

06/22/84
REV: 2

The same structuring and positioning facilities provided for binary
files are also available for legible files.

1.2.4 PRINT FILES

Print files are legible files which have additional facilities for
(vertical) format control. It is possible to limit the number of lines on
a page, insert a given number of empty lines, overprint lines, position
the next line at a specified line number or at the top of the next page.
Several procedures are provided to change and interrogate certain items of
control information for print files.

The user may associate with each print file, a procedure to be called
when a "page overflow condition" occurs for that file. Such a procedure
can perform page heading (titling) and footing operations.

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION
1.3 CYBILIO DATA TYPES

1.3 CYBILIO DATA TYPES

1-4

06/22/84
REV: 2

This section defines the CYBIL "types" required to interface to
CYBILIO.

TYPE file = ACELL;

This t'ype is used when calling any of the CYBILIO procedures. A
variable of this type is defined when passed to one of the file open
procedures, and remains defined until the corresponding close procedure is
called.

TYPE file_status = (new#, old#);

This type is used when opening a file to designate whether the file
already exists or needs to be "created".

TYPE file_mode = (input#, output#, concurrent#);

This type is used when opening a file to designate the "direction" of
data transfers.

TYPE file_position = (firstll, asis#, last/I, null/I);

This type is used when opening a file to designate where the file
should be initially positioned (at its beginning, where ever it happens to
be, at its end, or where ever it happens to be). Please note that usage
of asis# or null# will yield the same result.

CONST return# = last#;
TYPE file disposition= first# •• return#;

{i.e., (first#, asis#, return#) }

This type is used when closing a file to designate at what "position"
(or with which "disposition") the file should be left (at . its beginning,
where ever it happens to be, or "return" it to the operating system).

60460300 02

0

.,:1 C'
i

l--"' \, ' J

0
0

0

0'~,

o}

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION
1.3 CYBILIO DATA TYPES

1-5

06/22/84
REV: 2

TYPE file_encoding = (asci164#, ascii612#, ascii#);

This type is used to define the· (external)
or print file. The default on NOS, when the
which designates the NOS 6/12 character set.
ascii#. The user can select the 6-bit
designated by ascii64/I, or the "8 out of 12
designated by ascii#.

character set for a legible
file is opened, is ascii612#
The default on NOS/BE is
display code character set
bit" ASCII character set

TYPE file_mark = (data#, eor#, eof#, eoi#);

This type is used to designate the file structure marks. A value of
this type can be obtained for a file subsequent to a performing an input
(read, get) request on the file. Thus, datall means "no mark encountered";
eor# means "a (logical) End Of Record was encountered"; eofll means "a
(logical) End Of File was encountered"; and eoi/I means "the End of
Information was encountered".

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION
1.4 USING CYBILIO

1.4 USING CYBILIO

1.4.1 SOURCE CODE INTERFACE TO CYBILIO ON NOS

1-6

06/22/84
REV: 2

To interface to CYBILIO a CYBIL program module must include the
relevant type and procedure declarations. These can be *CALLed from a
MODIFY program library (PL). The name of this program library is CYBCCMN,
which is accessible by including the CYBCCMN parameter in the SES.GENCOMP
call or can be made local by SES.GETCCMN. The CYBILIO type declarations
are on common deck PXIOTYP and each procedure declaration is on its own
common deck (see the section on naming conventions and the individual
procedure descriptions to determine the common deck names).

1.4.2 SOURCE CODE INTERFACE TO CYBILIO ON NOS/BE

To interface to CYBILIO a CYBIL program module must include the
relevant type and procedure declarations. These can be *CALLed from an
UPDATE program library (PL). The name of this program library is CYBCCMN.
The CYBILIO type declarations are on common deck PXIOTYP and each
procedure declaration is on its own common deck (see the section on naming
conventions and the individual procedure descriptions to determine the
common deck names).

1.4.3 OBJECT CODE INTERFACE TO CYBILIO

Before a program (which uses CYBILIO) can be executed, it must be
linked with the CYBILIO object modules which are located on The CYBIL-CC
run-time library, which is accessible by including the CYBCLIB parameter
on the loader directives. On NOS this could be via the SES.LINK170 or on
NOS & NOS/BE by having CYBCLIB as a local file at program load time.

1.4.4 NAMING CONVENTIONS

The identifiers for all CYBILIO procedures adhere to the following
naming convention:

60460300 02

(~)

()

0 ,
/

c·

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION
1.4.4 NAMING CONVENTIONS

1-7

06/22/84
REV: 2

all BINARY file procedure identifiers begin with bi#
all DIRECT file procedure identifiers begin with di#
all LEGIBLE file procedures identifiers begin with lg#
all PRINT file procedure identifiers begin with pr#
identifiers for procedures which are applicable ~ all file types
begin with f#

The names of the common decks which contain the CYBILIO procedure
declarations are derived by taking (up to) the first seven characters of
the procedure name and changing the # character in the procedure name to a
Z for the common deck name.

Note: that all common decks required for a particular file type can be
included with MODIFY's *CALLALL directive. For example, a program that
uses legible and print files could bring in all the relevant declarations
as follows:

*CALL pxiotyp
* CALLALL lgz
* CALLALL pr z
*CALLALL fz

1.4.5 FILE VARIABLE USAGE

CYBILIO considers a variable of type file to be undefined until one of
the open procedures has been called; and to become undefined once one of
the close procedures has been called. The consequences of using an
undefined file variable to call any CYBILIO procedure (except one of the
open procedures) is unpredictable.

1.4.6 FILE NAMES

File names (which are passed as adaptable CYBIL strings to the open
procedures) must be from one to seven alphanumeric characters (i.e.,
letters or digits). The open procedures will convert any lower case
letters in a file name to the corresponding upper case letters.

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION
1.4.7 FILE STRUCTURE CREATION / DETECTION

1.4.7 FILE STRUCTURE CREATION/ DETECTION

1-8

06/22/84
REV: 2

CYBILIO supports both the creation and detection of file structuring
"marks". There are two such marks : End Of (logical) Record; and End Of
(logical) File. The End Of Information can only be implicitly created
(i.e., the End Of Information follows the physically last item written on
a file); but it can be explicitly detected.

Note that detection of a file structure mark can only be meaningfully
attempted after an input request on the file.

When performing input operations on binary and direct files, it is
possible to have an incomplete transfer. This can result from reading a
file not created by CYBILIO, or not reading a file in a manner-which
mimics the way in which the file was written. In order to handle these
incomplete transfers, a procedure is provided to return the last transfer
length for a file. The value returned by this procedure is only
meaningful! if the immediately preceding operation on the file was one of

bi#get, bi#put, di#get, di#getdir, lg#get, lg#getpart, lg#put,
lg#putpart, lg#tab, or lg#weol.

1.4.8 CIO BUFFER SIZE CONTROL

The size of the CIO circular buffer can be selected for files used with
CYBILIO by setting the INTEGER variable px#iobs to the desired size. The
value of this variable is used by the file open procedures in order to
create a CIO circular buffer with the designated size. The declaration
for this variable is contained on common deck PXZIOBS.

1.4.9 LONG STRING OF BLANK (SPACE) CHARACTERS

CYBILIO needs a long (256) string of blank characters in order to
efficiently perform the lg// tab and prl/tab operations. This string ls made
available to the user in the variable px#blnk. The declaration for this
variable is located on common deck PXZBLNK.

60460300 02

{)

Cr
.

'" (,·, ..

()

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2-1

06/22/84
REV: 2

2.0 I/O PROCEDURES

2.0 I/O PROCEDURES

2.1 BINARY FILES

2.1.1 OPENING AND CLOSING BINARY FILES

2.1.1.1 Bii/OPEN - Open Binary File

Opens binary_file as local file name.

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = "cell,
file status = (new#, old#),
file-mode = (input#, output#, concurrent#),
file-encoding= (ascii64#, ascii612#, ascii#),
file-mark= (data#, eor#, eof#, eoi#),
file position= (first#, asis#, last#, null#);

CONST
return# = last/I;

TYPE
file_disposition =first# •• return#;

{ i.e. (first#, asis#, return#) }

{ BIZOPEN Opens binary file as local file. }

PROCEDURE [XREF] bi#open (VAR binary file:
file_name: string (*); -

file;

status: file status;
mode: file mode;
position: file_position);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 1/0 PROCEDURES
2.1.1.2 BI#CLOSE - Close Binary File

2 .1.1. 2 B.I#CLOSE - Close Binary File

Closes binary_f ile.

{ BIZCLOS Closes binary file. }

PROCEDURE [XREF] bi#close (binary file: file;
disposition: file_disposition);-

2-2

06/22/84
REV: 2

60460300 02

0:
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.1.2 POSITIONING BINARY FILES

2.1.2 POSITIONING BINARY FILES

2.1.2.1 BI#FIRST - Position Binary File at BOI

Positions binary_file at its beginning of information.

2-3

06/22/84
REV: 2

{ BIZFIRS Positions binary file at its beginning of information. }

PROCEDURE [XREF] bi#first (binary_file: file);

2.1.2.2 BI#LAST - Position Binary File at EOI

Positions binary_file at its end of information.

{ BIZLAST Positions binary file at its end of information. }

PROCEDURE [XREF] bi#last (binary_file: file);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.1.3 BINARY FILE STRUCTURE CREATION / DETECTION

2.1.3 BINARY FILE STRUCTURE CREATION / DETECTION

2.1.3.1 BI#WEOR - Write End Of Record on Binary File

Writes an End Of Record mark on binary_file.

{ BIZWEOR Writes and End of Record mark on binary file. }

PROCEDURE [XREF] bi#weor (binary_file: file);

2.1.3.2 BI#WEOF - Write End Of File on Binary File

Writes an End Of File mark on binary_file.

{ BIZWEOF Writes an End of File mark on binary file. }

PROCEDURE [XREF] bi#weof (binary_file: file);

2.1.3.3 F#MARK - Check Structure Mark on File

2-4

06/22/84
REV: 2

Returns the "file structure mark" last encountered. on any_ file.

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any_file: file;
VAR mark: file_mark);

60460300 02

0

()
(J\

(~:
JV

0 ,
'

0

CYBER IMPLEMENTATION LANGUAGE

CYBIL 1/0 Reference Manual

2.0 1/0 PROCEDURES
2.1.3.4 F#WORDS - Last Transfer Length on File

2.1.3.4 F#WORDS - Last Transfer Length on File

Returns the length of the last transfer to/from any_file.

{ FZWORDS Returns length of last transfer to/from file. }

PROCEDURE [XREF] £#words (any file: file;
VAR last_transfer_length: integer);

2-5

06/22/84
REV: 2

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.1.4 READING AND WRITING BINARY FILES

2.1.4 READING AND WRITING BINARY FILES

2-6

06/22/84
REV: 2

Transfer of data to and from binary files is performed in groups of
words (cells). Since the data transfer procedures for binary files (like
all other programmer defined procedures in CYBIL) must have parameters of
a specific type, and since we want to be able to transfer items of any
data type to/from a binary file, the objects of transfer are passed to the
procedures in two parts: address (usually via the #loc function); and
length (usually via the #size function). CYBILIO has ~way to insure
that the address and length parameters refer to the same object, therefore
be warned: "you're on your own" as far as checking parameter correctness
is concerned.

2.1.4.1 BI#PUT - Write to Binary File

Writes length of source words (cells) beginning at the address
specified by pointer_to_source to binary_file.

{ BIZPUT Writes specified information to. binary file. }

PROCEDURE [XREF] bi#put (binary file: file;
pointer to source: Acell; -
length_of_source: integer);

2.1.4.2 BI#GET - Read from Binary File

Reads up to length of target words (cells) from binary_file to the
address specified -by- pointer to target. Note that an "incomplete
transfer" can result from this request (see the section on "File Structure
Creation I Detection" for more information on this subject).

{ BIZGET Reads info from binary file to address specified. }

PROCEDURE [XREF] bi#get (binary file: file;
pointer to target: Acell; -
length_of_target: integer);

60460300 02

I U
.·~

le······\ \,1)
-- , ;I

0
0

0

(J

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.1.5 EXAMPLE - COPY BINARY FILE

2.1.5 EXAMPLE - COPY BINARY FILE

2-7

06/22/84
REV: 2

The following example illustrates the use of the binary file procedures
to make a copy of a file (without knowing beforehand the structure or
length of the file).

MODULE copy ALIAS 'zpxmcop';

{ PXIOTYP C.Ontains CYBIL type declarations. }

TYPE
file = "'cell,
file status = (new#, old#),
file-ntode = (input#, output#, concurrent#),
file-encoding = (ascii64#, ascii612#, ascii#),
file-mark= (data#, eor#, eof#, eoi#),
file position = (first#, asis#, last#, null#);

CONST
return/I = las tll;

TYPE
file_disposition =first# •• return#;

{ i.e. (first/I, asis#, return#) }

{ BIZOPEN Opens binary file as local file. }

PROCEDURE [XREF] bi#open (VAR binary file: file;
file name: string (*); -
status: file status;
mode: file mode;
position: file_position);

{ BIZCLOS Closes binary file. }

PROCEDURE [XREF] bi#close (binary file: file;
disposition: file_disposition);-

{ BIZGET Reads info from binary file to address specified. }

PROCEDURE [XREF] bi#get (binary_file: file;

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.1.5 EXAMPLE - COPY BINARY FILE

pointer to target: Acell;
length_of_target: integer);

{ BIZPUT Writes specified information to binary file. }

PROCEDURE [XREF] bi#put (binary file: file;
pointer to source: Acell; -
length_of_source: integer);

{ BIZWEOR Writes and End of Record mark on binary file. }

PROCEDURE [XREF] bi#weor (binary_file: file);

{ BIZWEOF Writes an End of File mark on binary file. }

PROCEDURE [XREF] bi#weof (binary_file: file);

2-8

06/22/84
REV: 2

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any_file: file;
VAR mark: file_mark);

{ FZWORDS Returns length of last transfer to/from file. }

PROCEDURE [XREF] f#words (any file: file;
VAR last_transfer_length: integer);

PROGRAM copy ALIAS 'zpxpcop';

CONST
in name = 'OLD',
out name = 'NEW' ,
buffer_length = 64;

VAR
in file : file,
out file : file,
buffer : ARRAY [1 •• buffer_length] of CELL,
transfer_length : INTEGER,
mark : f ile_mark;

bi#open (in file, in name, old#, input#, first#);
bi#open (out file, out name, new#, output#, first#);

/main loop/ - -
WHILE TRUE DO

bi#get (in_file, #LOC(buffer), #SIZE(buffer));

60460300 02

0

('
\)

-o
0

0)
,'

c

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.1.5 EXAMPLE - COPY BINARY FILE

f#mark (in_file, mark);
CASE mark OF
=eoi#=

EXIT /main loop/;
=eoffl= -

bi#weof (out_file);
=eorfl=

f#words (in file, transfer length);
IF transfer-length > 0 THEN

bi#put (out_file, #LOC(buffer), transfer_length);
!FEND;
bi#weor (out file);

=data/I= -
bi#put (out_file, #LOC(buffer), llSIZE(buffer));

CASEND;
WHILEND /main loop/;
billclose (in file, first#);
billclose (out_file, first/I);

PROCEND copy;

MODEND copy;

2-9

06/22/84
REV: 2

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.2 DIRECT FILES

2.2 DIRECT FILES

2.2.1 OPENING AND CLOSING DIRECT FILES

2.2.1.1 DI#OPEN - Open Direct File

2-10

06/22/84
REV: 2

Opens direct file as local file name. Note: that a direct file cannot
be opened at position asis#.

{ DIZOPEN Opens direct file as local file. }

PROCEDURE [XREF] di#open (VAR direct file: file;
file name: string (*); -
status: file status;
mode: file mode;
position: file_position);

2.2.1.2 DI#CLOSE - Close Direct File

Closes direct file.

' DIZCLOS Closes direct file. }

PROCEDURE [XREF] di#close (direct file: file;
disposition: file_disposition);-

60460300 02

0
0

0
0 '

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.2.2 POSITIONING DIRECT FILES

2.2.2 POSITIONING DIRECT FILES

2.2.2.1 DI#FIRST - Position Direct File at BO!

Positions direct file at its beginning of information.

2-11

06/22/84
REV: 2

{ DIZFIRS Positions direct file at its beginning of information. }

PROCEDURE [XREF] di#first (direct_file: file);

2.2.2.2 DI#LAST - Position Direct File at EOI

Positions direct file at its end of information.

{ DIZLAST Positions direct file at its End of Information. }

PROCEDURE [XREF] di#last (direct_file: file);

2.2.2.3 DI#LOCATE - Position Direct File via Key

Positions direct file at the location specified by key. If key
specifies a position outside the bounds of the file, then the program is
in error.

{ DIZLOCA Positions direct file at location specified. }

PROCEDURE [XREF] di#locate (direct_file: file;
key: integer);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 1/0 PROCEDURES
2.2.3 DIRECT FILE STRUCTURE CREATION / DETECTION

2.2.3 DIRECT FILE STRUCTURE CREATION / DETECTION

2.2.3.1 DI#WEOR - Write End Of Record on Direct File

Writes an End Of Record mark on direct file.

{ DIZWEOR Writes an End of Record mark on direct file. }

PROCEDURE [XREF] di#weor (direct_file: file);

2.2.3.2 DI#WEOF - Write End Of File on Direct File

Writes an End Of File mark on direct file.

{ DIZWEOF Writes an End of File mark on direct file. }

PROCEDURE [XREF] di#weof (direct_file: file);.

2.2.3.3 F#MARK - Check Structure Mark on File

2-12

06/22/84
REV: 2

Returns the "file structure mark" last encountered on any_file.

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any_file: file;
VAR mark: file_mark);

60460300 02

()

0
0 . '

0

c ·. i /

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.2.3.4 F#WORDS - Last Transfer Length on File

2.2.3.4 F#WORDS - Last Transfer Length on File

Returns the length of the last transfer from any_f ile.

{ FZWORDS Returns length of last transfer to/from file. }

PROCEDURE [XREF] f#words (any file: file;
VAR last_transfer_length: integer);

2-13

06/22/84
REV: 2

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES r

2.2.4 READING AND WRITING DIRECT FILES

2.2.4 READING AND WRITING DIRECT FILES

2-14

06/22/84
REV: 2

Transfer of data to and from direct files is performed in groups of
words (cells). Since the data transfer procedures for direct files (like
all other programmer defined procedures in CYBIL) must have parameters of
a specific type, and since we want to be able to transfer items of any
data type to/from a direct file, the objects of transfer are passed to the
procedures in two parts : address (usually via the #loc function); and
length (usually via the #size function). CYBILIO has ~way to insure
that the address and length parameters refer to the same object, therefore
be warned: "you're on your own" as far as checking parameter correctness
is concerned.

2.2.4.1 DI#PUT - Sequential Write to Direct File

Writes length_of_source words (cells) from the address specified by
pointer to source to direct file at its current position. The "random
file address" of the data written is returned in key.

{ DIZPUT Writes info from address spec. to direct file's current pos. }

PROCEDURE [XREF] di#put (direct_file: file;
VAR key: integer;
pointer to source: Acell;
length_of_source: integer);

2.2.4.2 DillPUTDIR - Random Write to Direct Flle

Writes length of source words (cells) from the address specified by
pointer_to_source-to-direct file at the "random file address" specified by
key.

{ DIZPUTD Writes info to direct file at random address specified. }

PROCEDURE [XREF] di#putdir (direct_file: file;
key: integer;

60460300 02

0
0

'o .. · __ .J :P

Ct

c .•

0

c

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.2.4.2 DI#PUTDIR - Random Write to Direct File

pointer to source: Acell;
length_of_source: integer);

2.2.4.3 DI#GET - Sequential Read from Direct File

2-15

06/22/84
REV: 2

Reads up to length_of_target words (cells) from direct file at its
current position to the address specified by pointer to target. The
"random file address" of the data read is returned in key.- Note that an
"incomplete transfer" can result from this request (see the section on
"File Structure Creation I Detection" for more information on this
subject).

{ DIZGET Reads info from direct file's current position to add. spec. }

PROCEDURE [XREF] di#get (direct file: file;
VAR key: integer; -
pointer to target: Acell;
length_of_target: integer);

2.2.4.4 DI#GETDIR - Random Read from Direct File

Reads up to length of target words (cells) from direct file at the
"random file address" specified by key to the address specified by
pointer to target. Note that an "incomplete transfer" can result from
this request (see the section on "File Structure Creation I Detection" for
more information on this subject).

{ DIZGETD Reads info from direct file's random file address. }

PROCEDURE [XREF] di#getdir (direct_file: file;
key: integer;
pointer to target: Acell;
length_of_target: integer);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2'.0 I/O PROCEDURES
2.2.5 DIRECT FILE STATUS INTERROGATION

2.2.5 DIRECT FILE STATUS INTERROGATION

2.2.5.1 DI#LENGTH - Direct File Length?

Returns the file_length_in_words of direct_file.

{ DIZLENG Returns length in words of direct file. }

PROCEDURE [XREF] di#length (direct file: file;
VAR file_length_in_words: integer);

2.2.5.2 DI#KEY - Direct File Current Position?

2-16

06/22/84
REV: 2

Returns the current_position_key designating the current position of
direct file.

{ DIZKEY Returns the KEY designating direct file's current position. }

PROCEDURE [XREF] di#key (direct file: file;
VAR current_position_key: integer);

60460300 02

(
\

'

0

O~.
/

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 I/O PROCEDURES
2.2.6 EXAMPLES OF DIRECT FILE USAGE

2.2.6 EXAMPLES OF DIRECT FILE USAGE

2-17

06/22/84
REV: 2

The examples which follow illustrate the use of direct file procedures.
The first example creates a "library" of "text modules" from a legible
file. The modules on the source (legible) file are represented as NOS
records whose first line contains the module name (and nothing else). The
second example extracts from the library one of the modules and copies it
to a file whose name is that of the module.

2.2.6.1 Create Text Library

MODULE create_text_library ALIAS 'zpxmcre';

{ PXIOTYP Olntains CYBIL type declarations. }

TYPE
file = "cell,
file status = (new#, old#),
file-mode = (input#, output#, concurrent#),
file-encoding = (ascii64#, ascii612#, ascii#),
file-mark= (data#, eor#, eof#, eoi#),
file position = (first#, asis#, last#, null#);

CONST
return/I = lasd; ,

TYPE
file_disposition = first# •• return#;

{ i.e. (first#, asis#, return#) }

{ LGZOPEN Opens legible file as local file. }

PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*);
status: file_status;
mode: file mode;
position: file_position);

{ LGZCLOS Closes legible file. }

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 I/O PROCEDURES
2.2.6.1 Create Text Library

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file_disposftion); -

{ LGZGET Reads next complete line from legible file. }

PROCEDURE [XREF] lg#get (legible file: file;
VAR number of characters read:-integer;
VAR line: string (*));-

2-18

06/22/84
REV: 2

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any_file: file;
VAR mark: f ile_mark);

{ DIZOPEN Opens direct file as local file. }

PROCEDURE [XREF] di#open (VAR direct file: file;
file name: string (*); -
status: file status;
mode: file mode;
position: file_position);

{ DIZCLOS Closes direct file. }

PROCEDURE [XREF] di#close (direct file: file;
disposition: file_disposition);-

{ DIZPUT Writes info from address spec. to direct file's current pos. }

PROCEDURE [XREF] di#put (direct_file: file;
VAR key: integer;
pointer to source: Acell;
length_of_source: integer);

{ DIZPUTD Writes info to direct file at random address specified. }

PROCEDURE [XREF] di#putdir (direct_file: file;
key: integer;
pointer to source: Acell;
length_of_source: integer);

{ BIZOPEN Opens binary file as local file. }

PROCEDURE [XREF] bi#open (VAR binary file: file;
file name: string (*); -
status: file_status;

60460300 02

()

0
0

0

O" i

0\
o~i

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 I/O PROCEDURES
2.2.6.1 Create Text Library

mode: file mode;
position: file_position);

{ BIZCLOS Closes binary file. }

PROCEDURE [XREF] bi#close (binary file: file;
disposition: file_disposition);-

{ BIZPUT Writes specified information to binary file. }

PROCEDURE [XREF] bi#put (binary file: file;
pointer to source: Acell; -
length_of_source: integer);

2-19

06/22/84
REV: 2

{ BIZGET Reads info from binary file to address specified. }

PROCEDURE [XREF] bi#get (binary_file: file;
pointer to target: Acell;
length_of_target: integer);

TYPE
directory_descriptor = RECORD

key : INTEGER,
length : INTEGER,

RECEND,
directory entry = RECORD

name : STRING (7) ,
length : INTEGER,
key : INTEGER,

RECEND;

CONST
source name = 'SOURCE',
lib name 'LIBRARY',
dir name = 'SCRATCH';

PROGRAM create ALIAS 'zpxpcre';

VAR
source : file,
library : file,
dir file : file,
directory : directory descriptor,
current module : directory entry,
line : STRING (256), -

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 I/O PROCEDURES
2.2.6.1 Create Text Library

line_length : INTEGER,
module_index : INTEGER,
first key : INTEGER,
dummy key : INTEGER,
mark : file_mark;

lg#open (source, source name, old#, input#, first#);
bi#open (dir file, dir name, new#, output#, first#);
di#open (library, lib name, new#, output#, first#);
directory.length := o;
di#put (library, first key,

#LOC(directory), #SIZE(directory));

/copy_ module_ loop/
WHILE TRUE DO

lg#get (source, line length, line);
f /lmark (source, mark);
CASE mark OF
=eoifl=

EXIT /copy module loop/;
=eof#, eor#=- -

CYCLE /copy module loop/;
=data#= - -

directory.length := directory.length+ l;
current module.name := line(l, line length);
current-module.length := l; -
di#put (library, current module.key,

#LOC(current module.name),
#SIZE(current module.name));

/copy text loop/ -
WHILE TRUE DO

lg/lget (source, line_length, line);
f/lmark (source, mark);
IF mark <> data# THEN

EXIT /copy text loop/;
!FEND; - -
current module.length := current module.length+ l;
di#put (library, dtnnmy key,

#LOC(line length), #SIZE(line length));
di#put (library, dtnnmy key, -

#LOC(line), #SIZE(line(l, line length)));
WHILEND /copy text loop/; -
bi/lput (dir file, 1LOC(current module),

- #SIZE(current_module));
CASEND;

WHILEND /copy module loop/;
lg#close (source, first#);

2-20

06/22/84
REV: 2

60460300 02

0
0 '

c

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 1/0 PROCEDURES
2.2.6.1 Create Text Library

IF directory.length > 0 THEN
bi#close (dir file, asis#);
bi#open (dir file, dir name, old#, input#, first#);
bi#get (dir file, #LOC(current module),

- #SIZE(current module));
di#put (library, directory.key,-

#LOC(current module), #SIZE(current module));
FOR module index := 2 TO directory.length DO

bi#get (dir file, #LOC(current module),
- #SIZE(current module));

di#put (library, dummy key, -
#LOC(current_module), #SIZE(current_module));

FOREND;
di#putdir (library, first key,

#LOC(directory), #SIZE(directory));
!FEND;

bi#close (dir file, return#);
di#close (library, first#);

PROCEND create;

MODEND create text library;
2.2.6.2 Extract from Text Library

MODULE extract_from_text_library ALIAS 'zpxmefl';

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = "'cell,
file status = (new#, old#),
file-mode = (input#, output#, concurrent#),
file-encoding = (ascii64#, ascii612#, ascii#),
file-mark= (data#, eor#, eof#, eoi#),
file position = (first#, asis#, last#, null#);

CONST
return/I = las tll;

TYPE
file_disposition =first# •• return#;

2-21

06/22/84
REV: 2

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 I/O PROCEDURES
2.2.6.2 Extract from Text Library

{ i.e. (first#, asis#, return#) }

{ DIZOPEN Opens direct file as local file. }

PROCEDURE [XREF] di#open (VAR direct file: file;
file_name: string (*); -
status: file_status;
mode: file mode;
position: file_position);

{ DIZCLOS Closes direct file. }

PROCEDURE [XREF] di#close (direct file: file;
disposition: file_disposition);-

{ DIZLOCA Positions direct file at location specified. }

PROCEDURE [XREF] di#locate (direct_file: file;
key: integer);

2-22

06/22/84
REV: 2

{ DIZGETD Reads info from direct file's random file address. }

PROCEDURE [XREF] di#getdir (direct_file: file;
key: integer;
pointer to target: Acell;
length_of_target: integer);

{ DIZGET Reads info from direct file's current position to add. spec. }

PROCEDURE [XREF] di#get (direct_file: file;
VAR key: integer;
pointer to target: Acell;
length_of_target: integer);

{ LGZOPEN Opens legible file as local file. }

PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*); -
status: file_status;
mode: file mode;
position: file_position);

{ LGZCLOS Closes legible file. }

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file_disposition);

60460300 02

0
0

0 i
0 -!

I

0

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 1/0 PROCEDURES
2.2.6.2 Extract from Text Library

2-23

06/22/84
REV: 2

{ LGZPUT Writes source string as complete line to legible file. }

PROCEDURE [XREF] lg#put (legible_file: file;
line: string (*));

TYPE
directory descriptor = RECORD

key : INTEGER,
length : INTEGER,

RECEND,
directory entry = RECORD

name : STRING (7) ,
length : INTEGER,
key : INTEGER,

RECEND;

CONST
lib name = 'LIBRARY';

CONST
name of module = 'TEXTMOD';

PROGRAM extract ALIAS 'zpxpefl';

VAR
library : file,
out file : file,
directory : directory_descriptor,
current module : directory entry,
line : STRING (256), -
line_length : INTEGER,
module_index : INTEGER,
dummy_key : INTEGER;

di#open (library, lib name, old#, input#, first#);
di#get (library, dummy key,

#LOC(directory), #SIZE(directory));
IF directory.length = 0 THEN

{ ERROR - module not found }
RETURN;

!FEND;
di#locate (library, directory.key);

/search_ directory/
BEGIN

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

I 2.0 I/O PROCEDURES .
2.2.6.2 Extract from Text Library

FOR module index := 1 TO directory.length DO
di#get (library, dummy key,

#LOC(current module), #SIZE(current module));
IF current module.name = name of module THEN

EXIT /search_directory/;
!FEND;

FOREND;
{ ERROR - module not found }
RETURN;

END /search directory/;
lg#open (out file, name of module, new#, output#, first#);
di#getdir (library, current module.key,

#LOC(current module.name),
#SIZE(current module.name));

lg#put (out file, current module.name);
WHILE current module.length > 1 DO

di#get (library, dummy key,
#LOC(line length), #SIZE(line length));

di/lget (library, dummy key, -
#LOC(line), #SIZE(line(l, line length)));

lg#put (out file, line(l, line length));
current_module.length := current_module.length - l;

WHILEND;
di#close (library, first#);
lg#close (out_file, first#);

PROCEND extract;

MODEND extract froID:_text_library;

2-24

06/22/84
REV: 2

60460300 02

\f)

0

. .r-·

le·~~
t .. j

·l··· ... ~. __ /

()
~

0

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

I 2.0 I/O PROCEDURES
2.3 LEGIBLE FILES

2.3 LEGIBLE FILES

2.3.1 OPENING AND CLOSING LEGIBLE FILES

2.3.1.1 LG#OPEN - Open Legible File

Opens legible_file as local file name.

{ LGZOPEN Opens legible file as local file. }

PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*); -
status: file status;
mode: file mode;
position: file_position);

2.3.1.2 F#SABF - Setup File for Automatic Buffer Flushing

2-25

06/22/84
REV: 2

Sets up any file so that its CIO buffer will automatically be flushed
(if necessary) whenever the program is rolled out. This facility is
useful when a program issues prompts to a terminal user and then requests
input, since normally to insure the prompt reaches the user before the
input request, the program would write an End Of Record (causing the
buffer to be flushed). On NOS this mechanism is described in the NOS
Reference Manual in the section on "Program Writing Techniques".

{ FZSABF Sets up file for automatic buffer flushing. }

PROCEDURE [XREF] f#sabf (any_file: file);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

I 2.0 I/O PROCEDURES
2.3.1.3 LG#CODESET - Set Legible File Cliaracter Set

2.3.1.3 LG#CODESET - Set Legible File Oiaracter Set

2-26

06/22/84
REV: 2

Sets the external character set for legible file to codeset (default,
on open, is ascii612# on NOS and is ascii# on NOS/BE).

{ LGZCODE Sets external character set for legible file. }

PROCEDURE [XREF] lg#codeset (legible_file: file;
codeset: file_encoding);

2.3.1.4 LG#CLOSE - Close Legible File

Closes legible_f ile.

{ LGZCLOS Closes legible file. }

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file_disposition); -

60460300 02

1()

c;

("_
}
-JV

O,_
I

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 I/O PROCEDURES
2.3.2 POSITIONING LEGIBLE FILES

2.3.2 POSITIONING LEGIBLE FILES

2.3.2.1 LG#FIRST - Position Legible File at BOI

Positions legible_file at its beginning of information.

2-27

06/22/84
REV: 2

{ LGZFIRS Positions legible file at its Beginning Of Information. }

PROCEDURE [XREF] lg#first (legible_file: file);

2.3.2.2 LG#LAST - Position Legible File at EOI

Positions legible_file at its end of information.

{ LGZLAST Positions legible file at its End Of Information. }

PROCEDURE [XREF] lg#last (legible_file: file);

2.3.2.3 LG#TAB - Position Legible File at Column

If column number is less than or equal to legible file's current column
or if it Ts greater than 256, this procedure does nothing. Otherwise,
sufficient space characters are written to legible file so that the next
(partial) write to legible_file will begin at the specified column number.

{ LGZTAB Positions column of next partial write to legible file. }

PROCEDURE [XREF] lg#tab (legible file: file;
column number: integer); -

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

I 2.0 I/O PROCEDURES
2.3.3 LEGIBLE FILE STRUCTURE CREATION / DETECTION

2.3.3 LEGIBLE FILE STRUCTURE CREATION / DETECTION

2.3.3.1 LG#WEOR - Write End Of Record on Legible File

Writes an End Of Record mark on legible_file.

{ LGZWEOR Writes an End Of Record mark on legible file. }

PROCEDURE [XREF] lg#weor (legible_file: file);

2.3.3.2 LG#WEOF - Write End Of File on Legible File

Writes an End Of File mark on legible_file.

{ LGZWEOF Writes an End Of File mark on legible file. }

PROCEDURE [XREF] lg#weof (legible_file: file);

2.3.3.3 F#MARK - Check Structure Mark on File

2-28

06/22/84
REV: 2

Returns the "file structure mark" last encountered on any_file.

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any_file: file;
VAR mark: file_mark);

60460300 02

()
0

0
0

0

CYBER IMPLEMENTATION LANGUAGE

CYBIL 1/0 Reference Manual

' 2.0 1/0 PROCEDURES
2.3.3.4 F#WORDS - Last Transfer Length on File

2.3.3.4 F#WORDS - Last Transfer Length on File

2-29

06/22/84
REV: 2

Returns the last transfer_length of the last transfer to/from any_file.

{ FZWORDS Returns length of last transfer to/from file. }

PROCEDURE [XREF] £#words (any file: file;
VAR last_transfer_length: integer);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

I 2.0 I/O PROCEDURES
2.3.4 READING AND WRITING LEGIBLE FILES

2.3.4 READING AND WRITING LEGIBLE FILES·

2-30

06/22/84
REV: 2

Data is transferred to and from legible files in terms of lines or
partial lines. Internally these (partial) lines are represented by CYBIL
strings of characters. Externally (on the file) lines are represented in
6-bit display code, NOS 6/12-bit ASCII, or "8 out of 12 bit" ASCII. Thus,
data transfers involving legible files imply a translation between these
character sets (unlike binary and direct file transfers in which the data
are not modified).

Note: that when reading from a legible file assigned to an interactive.
terminal, the only file mark possible is data#. Any eor# or eof# marks
returned to CYBILIO by the operating system after a read from a "terminal
file" are discarded by CYBILIO (eoill is never possible from a terminal).
A line (entered at a terminal) containing zero characters (i.e., the
carriage return key was "hit" in the first position of the line) is
returned to the CYBILIO user as an empty line.

2.3.4.1 LG#PUT - Write Line to Legible File

Writes the line string as a complete line to legible file. If the last
write to legible file was a partial line, that line is first completed,
and then the line is written.

{ LGZPUT Writes source string as complete line to legible file. }

PROCEDURE [XREF] lglfput (legible_file: file;
line: string (*));

2.3.4.2 LG#PUTPART - Write Partial Line to Legible File

Writes the partial line string to legible file. If last part of line
is TRUE, then the -line is completed after partial_line is written by
writing an End Of Line to legible_file.

{ LGZPUTP Writes source string as partial line to legible file. }

60460300 02

0 '

0

0
0

0

Ci,.\

I

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 I/O PROCEDURES
2.3.4.2 LG#PUTPART - Write Partial Line to Legible File

PROCEDURE [XREF] lg#putpart (legible file: file;
last part of line: boolean; · -
partial_line7 string (*));

2.3.4.3 LG#WEOL - Write End Of Line on Legible File

2-31

06/22/84
REV: 2

Writes an End Of Line to legible file. If the last write to
legible file was partial, that line is c0mpleted; otherwise an empty line
results:-

{ LGZWEOL Writes an End Of Line to legible file. }

PROCEDURE [XREF] lg#weol (legible_file: file);

2.3.4.4 LG#GET - Read Line from Legible File

Reads the next complete line from legible file into line. The actual
number of characters transferred to line is returned in
number of characters read. If the previous transfer was partial, a skip
to the end of that-line is performed prior to the transfer to line being
done. If the line from legible file is too long to fit into line, the
line is truncated by skipping to the end of the line after the transfer is
complete.

{ LGZGET Reads next complete line from legible file. }

PROCEDURE [XREF] lg#get (legible file: file;
VAR number of characters read:-integer;
VAR line: string (*)) ;-

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

' 2.0 I/O PROCEDURES
2.3.4.5 LG#GETPART - Read Partial Line from Legible File

2.3.4.5 LG#GETPART - Read Partial Line from Legible File

2-32

06/22/84
REV: 2

Reads the next partial line from legible file into partial_line.
last part of line will be set to TRUE if the end of the line was
encountered,-and set to FALSE otherwise. The actual number of characters
transferred will be returned in number of characters read. - - -

{ LGZGETP Reads next partial line from legible file. }

PROCEDURE [XREF] lg#getpart (legible file: file;
VAR last part of line: boolean; -
VAR number of-characters read: integer;
VAR partial_line: string-(*));

60460300 02

()
0

(~-.. ~ .. '· .. " I

_f

C
\
JJ

0

0

c

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.3.5 LEGIBLE FILE STATUS INTERROGATION

2.3.5 LEGIBLE FILE STATUS INTERROGATION

2.3.5.1 F#TERMINAL - File is a Terminal?

2-33

06/22/84
REV: 2

Returns in file is a terminal TRUE if any_f ile is connected to a - --terminal, and FALSE otherwise.

{ FZTERMI Returns boolean if file is connected to a terminal. }

PROCEDURE [XREF] f#terminal (any file: file;
VAR f He_ is_ a_ terminal: boolean);

2.3.5.2 LG#OLDCODESET - Legible File Character Set?

Returns the designator for the external character set associated with
legible_ file.

{ LGZOLDC Returns designator for ext. char. set of legible file. }

PROCEDURE [XREF] lg#oldcodeset (legible_file: file;
VAR codeset: file_encoding);

2.3.5.3 LG#COLNO - Legible File Column Number?

Returns the number of the column within the current
legible file that was last transferred to/from legible file.
way, column number is set to the number of characters so far
to/from the-current line of legible_file.

line of
Put another
transferred

{ LGZCOLN Returns col. no. in line of legible file last transferred. }

PROCEDURE [XREF] lg#colno (legible file: file;
VAR column number: integer); -

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.3.6 EXAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE

2.3.6 EXAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE

2-34

06/22/84
REV: 2

The following example illustrates the use of legible file procedures to
copy one legible file to another. Only data between selected colwnns on
the old file is written to the new file, and within those columns,

,trailing space characters are deleted.

MODULE truncate ALIAS 'zpxmtru';

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = ""cell,
file status = (new#, old#),
file-mode= (input#, output#, concurrent#),
file-encoding= (ascii64#, ascii612#, ascii#),
file-mark= (data#, eor#, eof#, eoi#),
file position= (first#, asis#, last#, null#);

CONST
return/I

TYPE

last/I;

file_disposition =first# •• return#;

{ i.e. (first#, asisll, return/I) }

{ LGZOPEN Opens legible file as local file. }

PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*); -
status: file status;
mode: file mode;
position: file_position);

{ LGZCLOS Closes legible file. }

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file_disposition);

{ LGZGET Reads next complete line from legible file. }

60460300 02

0

0
0

0

0:

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.3.6 EXAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE

PROCEDURE [XREF] lg#get (legible file: file;
VAR ntunber of characters read:-integer;
VAR line: string (*)) ;-

2-35

06/22/84
REV: 2

{ LGZPUT Writes source string as complete line to legible file. }

PROCEDURE [XREF] lgllput (legible_file: file;
line: string (*));

{ LGZWEOL Writes an End Of Line to legible file. }

PROCEDURE [XREF] lgllweol (legible_file: file);

{ LGZWEOR Writes an End Of Reco~d mark on legible file. }

PROCEDURE [XREF] lgllweor (legible_file: file);

{ LGZWEOF Writes an End Of File mark on legible file. }

PROCEDURE [XREF] lgllweof (legible_file: file);

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any_file: file;
VAR mark: file_mark);

PROGRAM truncate ALIAS 'zpxptru';

CONST
in name = 'OLD' - ,
out name = 'NEW' ,
leftmost column # = 11,
rightmost_column_# = 72;

VAR
in file : file,
out file : file,
line ptr : ASTRING (*),
line-length : INTEGER,
mark-: file_mark;

ALLOCATE line ptr : [rightmost column#];
lg#open (in file, in name, old#, input#, first#);
lg#open (out file, out name, new#, output#, first#);

/main loop/ - -
WHILE TRUE DO

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL 1/0 Reference Manual

2.0 I/O PROCEDURES
2.3.6 EXAMPLE - COPY COLUMN RANGE OF LEGIBLE FILE

lg#get (in file, line length, line_ptrA);
f#mark (in-file, mark);
CASE mark OF
=eoill=

EXIT /main loop/;
=eofll= -

lg/lweof (out_ file);
=eorll=

lg#weor (out_file);
=data#=

WHILE (line length > leftmost column #) AND
(line-ptrA(line length)-= ' ')-DO

line_length := line length - 1;
WHILEND;
line length := line length - leftmost column # + 1;
IF line length) 0 THEN - -

lg#put (out file, line ptrA(leftmost column #,
- - line_ length)); -

ELSE
lg#weol (out_file);

!FEND;
CASEND;

WHILEND /main loop/;
lg#close (in file, first#);
lg#close (out_file, first#);
FREE line_ptr;

PROCEND truncate;

MODEND truncate;

2-36

06/22/84
REVi 2

60460300 02

0
0

(~l·r. \.
,I'''

-;JI""'"

0
0

0

0

(~.

0
O·

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4 PRINT FILES

2.4 PRINT FILES

2.4.1 OPENING AND CLOSING PRINT FILES

2.4.1.1 PR#OPEN - Open Print File

2-37

06/22/84
REV: 2

Opens print file as local file name (note the lack of a file mode
parameter for this procedure, since print files can only be written).-

{ PRZOPEN Opens print file as local file. }

PROCEDURE [XREF] pr#open (VAR print file: file;
file name: string (*); -
status: file status;
position: file_position);

2.4.1.2 PR#PGOV - Define Page Overflow Procedure

Associates with print file, the procedure designated by
page_overflow_proc which will be called whenever the page size of
print file is exceeded. Page size is set by PR#LIMIT, default is 60
lines:- The procedure designated by page overflow proc should not be
called directly by the user. If the user Wishes to-explicitly advance to
the next page, a call to the pr#page procedure should be used.

If there is no user supplied page overflow procedure for a print file,
then CYBILIO simply performs a page eject for the file when the page
overflow condition occurs. If NIL is specified for page overflow proc,
any user supplied page overflow procedure currently associated with the
file is disassociated from the file.

{ PRZPGOV Calls procedure needed to advance file to next page. }

PROCEDURE [XREF] pr#pgov (print file: file;
page overflow proc: Aprocedure (print file: file;
next page_#: integer)); -

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.1.3 PR#CODESET - Set Print File Character Set

2.4.1.3 PR#CODESET - Set Print File Character Set

2-38

06/22/84
REV: 2

Sets the external character set for print file to codeset (default, on
open, is ascii612# on NOS and is ascii# on NOS/BE).

{ i>RZCODE Sets ext. char. set for print file. }

PROCEDURE [XREF] prl/codeset (print_file: file;
codeset: file_encoding);

2.4.1.4 PR#LIMIT - Set Print File Page Size

Sets the page size (line limit) for print_file to lines_per_page
(default, on open, is 60).

{ PRZLIMI Sets page size (line limit) for print file. }

PROCEDURE [XREF] pr#limit (print file: file;
lines_per_page: integer);

2.4.1.5 PR#SETPGNO - Set Print File Page Number

Sets the current page number for print_file to current_page_number
(default, on open, is O).

{ PRZSETP Sets current page number for print file. }

PROCEDURE [XREF] pr#setpgno (print file: file;
current_page_number: integer); -

60460300 02

0
0

0
()

C:

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.1.6 PR#CLOSE - Close Print File

2.4.1.6 PR#CLOSE - Close Print File

Closes print_file.

{ PRZCLOS Closes print file. }

PROCEDURE [XREF] pr#close (print file: file;
disposition: f ile_disposition)T

2-39

06/22/84
REV: 2

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.2 POSITIONING PRINT FILES

2.4.2 POSITIONING PRINT FILES

2.4.2.1 PR#FIRST - Position Print File at BO!

Positions print_file at its beginning of information.

2-40

06/22/84
REV: 2

{ PRZFIRS Positions print file at its Beginning Of Information. }

PROCEDURE [XREF] pr#first (print_file: file);

2.4.2.2 PR#LAST - Position Print File at EOI

Positions print_file at its end of information.

{ PRZLAST Positions print file at its End Of Information. }

PROCEDURE [XREF] pr#last (print_file: file);

2.4.2.3 PR#TAB - Position Print File at Column

If column number is less than or equal to print file's current column
or if it Ts greater than 136, this procedure does nothing. Otherwise,
sufficient space characters are written to print file so that the next
{partial) write to print_file will begin at the specified column number.

{ PRZTAB Positions print file at col\lllln for next partial write. }

PROCEDURE [XREF] pr#tab (print file: file;
column number: integer); -

60460300 02

()
()

()

()

O·
0

·1111. C·.
I

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.2.4 PR#LINE - Position Print File at Line

2.4.2.4 PR#LINE - Position Print File at Line

2-41

06/22/84
REV: 2

Positions print file at the specified line nlDUber. This will be on the
current page if -line nlDnber is greater than the current line number and
less than or equal to page size; or on the next page (after invoking the
page overflow mechanism) if line_nlDUber is less than or equal to the
current line number. If line nlDUber is greater than the page size, the
file will be positioned at the top of the next page.

{ PRZLINE Positions print file at specified line. }

PROCEDURE [XREF] pr#line (print_file: file;
line number: integer);

2.4.2.5 PR#SKIP - Skip Lines on Print File

If number of lines = -1, the next line written to print file will
overprint the-current line. If number of lines + print file's current
line number is greater than the page size-;- the page overflow mechanism is
invoked. Otherwise, nwnber of lines empty lines will be written to
print_ file.

{ PRZSKIP Skips lines on print file from current position. }

PROCEDURE [XREF] pr#skip (print file: file;
number of lines: integer); -

2.4.2.6 PR#EJECT - Position Print File at Top of Page

Positions print_file at the first line (top) of the next page. This
procedure should only be called by the routine that processes page
overflow conditions: prllpgov (see the section on "Pr int Files" under "File
Types").

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL 1/0 Reference Manual

2.0 I/O PROCEDURES
2.4.2.6 PR#EJECT - Position Print File at Top of Page

2-42

06/22/84
REV: 2

{ PRZEJEC Positions print file to first line (top) of next page. }

PROCEDURE [XREF] pr#eject (print_file: file);

2.4.2.7 PR#PAGE - Start New Page on Print File

Increments print file's page number and calls the routine that
processes page overflow conditions: prflpgov (see the section on "Print
Files" under "File Types") •

{ PRZPAGE Increments print file's page number. }

PROCEDURE [XREF] pr#page (print_file: file);

60460300 02

0
0

0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.3 PRINT FILE STRUCTURE CREATION

2.4.3 PRINT FILE STRUCTURE CREATION

2.4.3.1 PR#WEOR - Write End Of Record on Print File

Writes an End Of Record mark on print_file.

{ PRZWEOR Writes an End Of Record mark on print file. }

PROCEDURE [XREF] pr#weor (print_file: file);

2.4.3.2 PR#WEOF - Write End Of File on Print File

Writes an End Of File mark on print_file.

{ PRZWEOF Writes an End Of File mark on print file. }

PROCEDURE [XREF] pr#weof (print_file: file);

2-43

06/22/84
REV: 2

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.4 WRITING PRINT FILES

2.4.4 WRITING PRINT FILES

2-44

06/22/84
REV: 2

Print files are a special form of legible files used only for output.
In addition to the (partial) line writes similar to those for legible
files, print files also have "format" control procedures to handle page
overflow processing and vertical spacing and tabbing (see the section on
"Positioning Print Files" for more information).

2.4.4.1 PR#PUT - Write Line to Print File

Writes the line string as a complete line .to print file. If the last
write to print file was a partial line, that line is-first completed, and
then the line for line is written.

{ PRZPUT Writes source string as a complete line to print file. }

PROCEDURE [XREF] pr#put (print_file: file;
line: string (*));

2.4.4.2 PR#PUTPART - Write Partial Line to Print File

Writes the partial line string to print file. If last part of line is
TRUE, then the line Ts completed after partial_line is written by writing
an End Of Line to print_file.

{ PRZPUTP Writes source string as a partial line to print file. }

PROCEDURE '[XREF] pr/lputpart (print file: file;
last part of line: boolean; -
partial_line: string (*));

60460300 02

\ 0
0

0 '

0

c

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.4.3 PRllWEOL - Write End Of Line on Print File

2.4.4.3 PRllWEOL - Write End Of Line on Print File

2-45

06/22/84
REV: 2

Writes an End Of Line to print file. If the last write to print_file
was partial, that line is completed; otherwise an empty line results.

{ PRZWEOL Writes an End Of Line to print file. }

PROCEDURE [XREF] pr#weol (print_file: file);

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.5 PRINT FILE STATUS INTERROGATION

2.4.5 PRINT FILE STATUS INTERROGATION

2.4.5.l PR#OLDCODESET - Print File Oiaracter Set?

2-46

06/22/84
REV: 2

Returns the designator for the external character set associated with
print_ file.

{ PRZOLDC Returns designator for ext. char. set of print file. }

PROCEDURE [XREF] pr#oldcodeset {print_file: file;
VAR codeset: file_encoding);

2.4.5.2 PR#COLNO - Print File Column Number?

Returns the number of the column within the current line of print file
that was last transferred to/from print file. Put another -way,
column number is set to the number of -characters so far transferred
to/from the cur·rent line of print_file.

{ PRZCOLN Returns current line col. no. of print file last transferred. }

PROCEDURE [XREF] pr#colno (print file: file;
VAR column number: integer); -

2.4.5.3 PR#LINO - Print File Line Number?

Returns the number of the current line within the current page of
print file. After any repositioning command (skip, eject,
set line number) the line number returned is the next line to be printed.
After a- print command Tput, putpart, weol), the line number is the line
just printed.

Before doing any I/O, the line number is 500.

60460300 02

0
0

0
O'.·. '

0

0
0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.5.3 PR#LINO - Print File Line Number?

2-47

06/22/84
REV: 2

{ PRZLINO Returns no. of lines within current page of print file. }

PROCEDURE [XREF] pr#lino (print file: file;
VAR line number: integer); -

2.4 .• 5.4 PR#PGNO - Print File Page Number?

Returns the number of the current page for print_file.

{ PRZPGNO Returns number of current page for print file. }

PROCEDURE [XREF] pr#pgno (print file: file;
VAR page_number: integer); -

2.4.5.5 PR#OLDLIMIT - Print File Page Size?

Returns print_file's page size (line limit).

{ PRZOLDL Returns print file's page size (line limit). }

PROCEDURE [XREF] pr#oldlimit (print file: file;
VAR lines_per_page: integer); -

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.6 EXAMPLE - LIST LEGIBLE FILE

2.4.6 EXAMPLE - LIST LEGIBLE FILE

2-48

06/22/84
REV: 2

The following example illustrates the use of print file procedures (and
legible file procedures). Note particularly the page overflow processing
procedure.

MODULE list ALIAS 'zpxmlis';

{ PXIOTYP Contains CYBIL type declarations. }

TYPE
file = "'cell,
file status = (new#, old#),
file-mode= (input#, output#, concurrent#),
file-encoding= (ascii64#, ascii612#, ascii#),
file-mark= (data#, eor#, eof#, eoi#),
file position= (first#, asis#, last#, null#);

CONST
return# = last/I;

TYPE
file_disposition =first# •• return#;

{ i.e. (first#, asis#, return#) }

{ LGZOPEN Opens legible file as local file. }

PROCEDURE [XREF] lg#open (VAR legible file: file;
file name: string (*); -
status: file status;
mode: file mode;
position: file_position);

{ LGZCLOS Closes legible file. }

PROCEDURE [XREF] lg#close (legible file: file;
disposition: file_disposition); -

{ LGZGETP Reads next partial line from legible file. }

PROCEDURE [XREF] lg#getpart (legible_file: file;

60460300 02

()
0

0 1

'

0

2-49
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
06/22/84

REV: 2

2.0 I/O PROCEDURES
2.4.6 EXAMPLE - LIST LEGIBLE FILE

VAR last part of line: boolean;
VAR ntllllber of-characters read: integer;
VAR partial_lTne: string-(*));

{ FZMARK Returns the file structure mark last encountered on file. }

PROCEDURE [XREF] f#mark (any_file: file;
VAR mark: file_mark);

{ PRZOPEN Opens print file as local file. }

PROCEDURE [XREF] pr#open, (VAR print file: file;
file name: string (*); -
status: file status;
position: file_position);

{ PRZPGOV Calls procedure needed to advance file to next page. }

PROCEDURE [XREF] pr#pgov (print file: file;
page overflow proc: Aprocedure (print file: file;
next page_#: integer)); -

{ PRZCLOS Closes print file. }

PROCEDURE [XREF] pr#close (print file: file;
disposition: file_disposition);

{ PRZEJEC Positions print file to first line (top) of next page. }

PROCEDURE [XREF] pr#eject (print_file: file);

{ PRZSKIP Skips lines on print file from current position. }

PROCEDURE [XREF] pr#skip (print file: file;
number_of_lines: integer); -

{ PRZLINE Positions print file at specified line. }

PROCEDURE [XREF] pr#line (print_file: file;
line_number: integer);

{ PRZLIMI Sets page size (line limit) for print file. }

PROCEDURE [XREF] pr#limit (print file: file;
lines_per_page: integer);

{ PRZOLDL Returns print file's page size (line limit). }

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.6 EXAMPLE - LIST LEGIBLE FILE

PROCEDURE [XREF] pr#oldlimit (print file: file;
VAR lines_per_page: integer); -

{ PRZPGNO Returns number of current page for print file. }

PROCEDURE [XREF] pr#pgno (print file: file;
VAR page_number: integer); -

2-50

06/22/84
REV: 2

{ PRZTAB Positions print file at column for next partial write. }

PROCEDURE [XREF] pr#tab (print file: file;
column number: integer); -

{ PRZPUTP Writes source string as a partial line to print file. }

PROCEDURE [XREF] pr#putpart (print_file: file;
last part of line: boolean;
partial_line7 string (*)) ;

{ PRZWEOL Writes an End Of Line to print file. }

PROCEDURE [XREF] pr#weol (print_file: file);

CONST
in name = 'LEGFILE';

VAR
file # : INTEGER := 1,
record # : INTEGER := 1;

PROCEDURE page overflow handler
(f : file; -

next_page_# : INTEGER);

VAR
conv holder : STRING (10),
conv_length : INTEGER,
old_page_size : INTEGER;

IF next page #) 1 THEN
pr#oldlimit (f, old page size);
pr#limit (f, old page size+ 2);
pr#line (f, old page size+ 2);
pr#tab (f, 70);- -

60460300 02

()

0

0 -
0

0

0

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.6 EXAMPLE - LIST LEGIBLE FILE

pr#putpart (f, FALSE, 'PAGE ');
STRINGREP (conv holder, conv length, next page # - 1);
pr#putpart (f, TRUE, conv ·holder(!, conv length));
pr#limit (f, old page size); -

!FEND; - -
prlleject (f);
pr#putpart (f, FALSE, 'LISTING OF ');
pr#putpart (f, FALSE, in_nam.e);
pr#tab (f, 50);
pr#putpart (f, FALSE, 'FILE ');
STRINGREP (conv holder, conv length, file #);
pr#putpart (f, FALSE, conv holder(!, conv length));
pr#putpart (f, FALSE, ', RECORD ');
STRINGREP (conv holder, conv length, record #);
pr#putpart (f, TRUE, conv holder(!, conv length));
pr#skip (f, 2); - -

PROCEND page_overflow_handler;

PROGRAM list ALIAS 'zpxplis';

CONST
out name = 'OUTPUT';

VAR
in file : file,
out file : file,
original page size INTEGER,
page # :-INTEGER,
line-: STRING (80),
line_length : INTEGER,
eol : BOOLEAN,
mark : file_mark;

lg#open (in file, in name, old#, input#, first#);
pr#open (out file, out name, new#, asis#);
pr#pgov (out-file, Apage overflow handler);
pr#oldlimit (out file, original page size);
pr#limit (out file, original page size - 2);

/main_ loop/ - - -
WHILE TRUE DO

lg#getpart (in file, eol, line_length, line);
f#mark (in file, mark);
CASE mark OF
=eoi11=

pr#limit (out_file, original_page_size);

2-51

06/22/84
REV: 2

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 I/O PROCEDURES
2.4.6 EXAMPLE - LIST LEGIBLE FILE

pr#line (out file, original page size);
pr#tab (out file, 70); - -
pr#putpart (out file, FALSE, 'PAGE ');
pr#pgno (out file, page #);
STRINGREP (line, line length, page #);
pr#putpart (out file,-TRUE, line(l~ line_length));
EXIT /main loop7;

=eof 11= -
file II := file # + I;
record II : = 1 ;-
pr#line (out file, original page size - 2);
pr#weol (out-file); - -

=eor/I= -
record # := record # + I;
prllline (out file,-original page size - 2);
pr#weol (out-file); - -

=data/I= -
IF line length) 0 THEN

prllputpart (out_file, eol, line(l, line_length));
ELSE

pr#weol (out_file);
!FEND;

CASEND;
WHILEND /main loop/;
lg#close (in file, first#);
pr#close (out_file, asis#);

PROCEND list;

MODEND list;

2-52

06/22/84
REV: 2

60460300 02

()
0

0

0
0

0

C:

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 CYBILIO ERROR MESSAGES

3.0 CYBILIO ERROR MESSAGES

3-1

06/22/84
REV: 2

This section describes the error messages that may be received as a
result of improper use of CYBILIO. If a condition described by one of
these messages arises:

the I/O error message will be sent to the dayfile
the message - INTERNAL ERROR IN prognam will be sent to the dayf ile
(where prognam is the name of the program as extracted from the job·
communication area)
the program is aborted.

In the message prototypes that follow filenam will be replaced by the
name of the file in question when the message appears in the dayf ile. The
reason that some of the messages do not have the file name in them is
that, in those conditions, the file name is not known.

-IO ERR- NO MEM TO OPEN FILE f ilenam

This message means that there was insufficient space to allocate the
descriptor and/or cio buffer for the file.

-IO ERR- ILLEGAL FILE NAME

This message means that an attempt was made to open a file with a name
that did not consist of from 1 to 7 letters and/or digits.

-IO ERR- ILLEGAL OPEN REQ f ilenam

This message means that an invalid combination of parameters was given
to an open procedure (e.g., "new/I, input/I" is illegal).

-IO ERR- FILE NOT OPEN

This message indicates that an undefined variable of type file was

60460300 02

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 CYBILIO ERROR MESSAGES,

3-2

06/22/84
REV: 2

passed to a CYBILIO procedure other than one of the open procedures.

-IO ERR- ILLEGAL INPUT REQ filenam

This message means that an attempt was made to read from a file that
was opened only for output.

-IO ERR- ILLEGAL OUTPUT REQ f ilenam

This message means that an attempt was made to write to a file that was
opened only for input.

-IO ERR- KEY BEYOND E-0-I f ilenam

This message indicates that an attempt was made to perform a direct
file operation with a key that was outside the bounds of the file (i.e.,
the key did not specify a "random address" that is in the file).

-IO ERR- ILLEGAL LINE NUM f ilenam

This message means that the pr#line procedure was passed a line number
less than 1.

-IO ERR- ILLEGAL SKIP COUNT f ilenam

This message indicates that the prllskip procedure was passed a skip
count less than -1.

60460300 02

()
0

