PAXLIST

R PLYO10 A. AfdjeieNassrabadi
R SVL165 J. L. Apperson ‘) '
R ADLOPS A. D. Barbouche ’
R SVL156 J. R. Barney : 3%
R ARH263 G. S. Barrett /Qé/%/"?‘g‘?u
R ARH263 I, L. Bellinger
R SVL173 E. B. Buckley
R SVL144 L. L. Bumgarner
R HQM934 B. M. Chambers
R PLYOl4 R. L. Clark
R ARH219 J. L. Comstock
R° ARH244 R. E. Creps
R SVL143 R. S. Cummer
R ETC03J L. H. Daasch
R ARH280 R. L. Dakin
R SVL164 1J. Dirnberger R ARH207 A. C. Rupert
R ° ARH254 J. B. Farr R ADLQO7 J. L. RUPPI‘ECht
R ARH263 S. W. Fewer R LREARB J. R. Schramm
R CANCDD D. W. Fosbury *E* SVL107 P. A. Shireman
R SVL163 L. W. Green *E* CANCDD I. Smith
R SVL102 L. D. Hare R ARH280 T. J. Sparrow
R SVL163 W. L. Harrell *E* ARH254 J. F. Steiner
R ARH280 G. K. Hart : R ARH28% R. D. Swan
R ARH280 P. W. Haynes *E* ETCO03J K. A. Tate
R SVL107 W. J. Hubrick R ARH280 J. M. Wachutka
R BLGCDB T. Jelbert R ARH213 L. A. Walters
E ARH230 C. Joersz i R MNAQ2B J. H. Wick
R ARH280 L. R. Johnson R ARH243 J. A. Wilson
R ARH280 L. Kampa *E* ARH280 H. A. Wohlwend
R ARH280 J. L. Kappler R SVL107 R. A. Zemlin
I ARH257 W. F. Keatts
R SVL164 H. R. Kenner
R SVL107 P. L. Kenny
E SVL155 P. H. Kohlmiller
R ARH280 1J. E. Krocak
R MEVO3M B. Kvam
I HQWIOR E. LaRowe
R SVL153 J. R. Lasserre
R ARH280 T. W. Lawhorn
R ARH263 A. J. Lawson
R ARH263 L. E. Leskinen
R SVL164 P. M. Levins
R ARH207 L. L. Lucas
R ARH280 A. S. McDonald
R SVL107 P. L. McNair
R ARH254 N. E. Meyer
R SVL107 K. M. Miyahara
R ARH263 J. L. Nading
R CANCDD W. J. Nelson
R ARH207 E. E. Nelson
R SVL143 J. 0. Neuhaus
R RVLO15 W. A. Opland
R SVL107 B. J. Pommers
R ARH245 N. D. Pyle
R SVL102 R. R. Ragan
R ADLO0O7 P. J. Radzak
R ARH280 J. F. Rian
I ARH253 1J. R. Ruble
_*E* ARH207 R. R. Rundquist

- ————— e

'
— - — - -

s B A ALY S e 4 -

TRt e ramm e cr ey come e e— . r— e

. e

—— e o ——

e et e e ————— @ - o —— ..

TS e ccmmcices f s e ememew - - .. e

T T e e et e vt @ — ...

L

S enm. e - .

——— e . M > e gere s . L

@ CONTPOL DATA DOCUMENT
ORPORATION CONTROL FORM
DUCUM, R —9!
Rt Language Spec LG 10 ARH229%

e TITLE

Language Specification for CYBIL

7/

QABSTRACT‘

o PRODUCT AFFECTZD

H. A. Wohlwend

» Unit Monager J.,J .Krautbauer

e AUTHOR

* MAIL STATION ARH254 * EXTENSION 676

* MOJECT CYBIL Compilers

® SECTION 4y anced § stems Development

o por s o SIP Nuzber(s)

e P2 ¢

o PRM # ® Redesignt o Reimplementation?
NCI'M ;;:E::;; Date

o Internal Reviewer?l

¢ Project Leader H A. WOhlwend)/1 g/.?p .

Y% o

Section
Managger P .-W. Haynes (

1/15/5c

Design Team -
Referce R.R .Ragaq T =

DESIGN ILDT
TFAY

124/ o

Soec inl
Diur ibution:

Refercc's
Distribution Codes:

S EAARHI GO A HoMiwen : \

R—S VL0 Rv—Ar—Zembin d DEFAULT SURRENT STiTu:
NRBER DATE TYPE SUBMITIED BY APPROVAL DATE] REVIEW | HOLD |APPROVED DRARS
19 e 2Rl 19590 5 tonhs o] 2-29-90 | X '
40 _kommeit|3-3-92] L. ¢ Lesbmsn 2-29-Y6 [e)

L ua\d Dc s 2-29.%0
28 [Ci s/ 8] H (Dah[yend [E/4-3/ | R
__2_3___7;4‘&.&_&%&_ —_Dcs 7-/4.%1 A
& =74 H. Wohlwend - 1/20/82 R

—] 1713789 Non/Cor] D.F. Nelson /20782 H

],/],3/94 Con H. Wohlwend 1/20/82 H

Plesse submit your cowments to oeS

addrcess BV

or ARU201 (as aporobriate’ bhafarae thae 2afole ammcanal dusa

PAGE 2

n e Chommnze @ bt

T0 BE FILLED OUT 8Y D(CS- - CURR:ENT STATUS
2928 overancri 12131881
- bcs Log kA= APPROVAL S |2 | 2|2 2
NumgeR DAre TyYPE . Suemsrreo EY Tpng [~ oz
’ 27 |1/21/83 HOLD DCS i 1/20/82 - |
¢ Complete i . -
i 28 |3/11/8§4 Chg Res | #. A. Wohlwend | 4/04/86 | R
)]
Z :
- 1
l
5 I
i :
: |
|
i
|
] T
5

DCS-CR (CHANGE/ RESOLU'fION) CPD DOCUMENT CONTROL FORM

TO BE FILLED OUT BY SUBMITTER ‘ ’ €

CHANGE /RESOLUTION FOR THE DOCUMENT WITH DCS LOG ID No. ,43

CHANGE/RESOLUTION SUBMIITED B

Y S ohbluse D.
SECTION SVSTEMS TECEHoé oéz EXTENSION MAIL STATION

CHANGE THE DOCUMENT IS | | WITHDRAWN
] | UNCHANGED
IF CHANGED, APPROVALS AS ON THE | | CHANGED (NO. PAGES }

ORIGINAL DOCUMENT ARE REQUIRED
|Z| COMPLETE REPLACEMENT

PRE-DISTRIBUTION APPROVALS

INTERNAL REVIEWER
PROJECT MANAGER
UNIT MANAGER
SECTION MANAGER

RESOLUTION _ THE FOLLOWING COMMENTS ARE RESOLVED:

e 80 o0 S0 o>

COMMENTS L
DISTRIBUTION CONCURRENCE BY THE SUEMITTER OF COMMENTS (IF POSSIBLE) €
NUMBER DATE :

26 08 oo ee o8 o
o6 88 _es o0 o oo

TO BE FILLED OUT BY DESIGN TEAM DESIGN/TEAM RE : £ /5./
APPROVED FOR DISTRIBUTION B /N Lo N DATE__ 3/ /0 /5

NEW DEFAULT APPROVAL CYCLE Z7 /5 WORKING DAYS -

REMARKS:

2761H - 0145H/0146H

1
CYBER IMPLEMENTATION LANGUAGE '
. 86/03/06
CYBIL LANGUAGE SPECIFICATION " REV: 8

LANGUAGE SPECIFICATION
for the

CYBER IMPLEMENTATION LANGUAGE

(CYBIL)

Written By:

H.A.Wohlwend

vApproved By:

DISCLAIMER:

This document is an internal working
paper only. It is subject to change and
does not necessarily represent any
official intent on the part of CDC.

Copyright Control Data Corporation 1981

CDC Private

CYBER IMPLEMENTATION LANGUAGE

2

86/03/06

CYBIL LANGUAGE SPECIFICATION = REV: 8

REVISION DEFINITION SHEET

+— +

REV DATE | DESCRIPTION

1 10/07/77 | Original.

2 12/19/77 | Updated to reflect comments received through
the DCS review.

3 06/27/78 | Updated to reflect V2.0 of the language
definition.,

4 10/16/78° | Updated to reflect comments received through
the DCS review. :

5 12/07/79 | Updated to reflect approved DAP's and
miscellaneous clarifications.

6 06/01/81 | Updated to reflect approved DAP's and
miscellaneous clarifications.

7 12/11/81 | Updated to reflect ILDT approved language
changes and miscellaneous clarifications.

8 03/06/86 | Updated to reflect ILDT approved language

changes and miscellaneous clarifications.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYRI

L LANGUAGE SPECIFICATION

Table of Contents

1.0 INTRODUCTION

2.0 LANGUAGE OVERVIEW

C
T
T
2.
.2
F
3.
4
4.
4,

f

-bb-bw.l-\bbbbbbbbbbwbbbbbbbbblﬁ

o

METALANGUAGE AND BASIC CONSTRUCTS
METALANGUAGE « « ¢ « &

EXICAL CONSTRUCTS

1 ALPHABET

2 IDENTIFIERS
.3 BASIC SYMBOLS
4 CONSTANTS o« e e e
5 CONVENTIONS FOR BLANKS o« e e
.6 COMMENTS+ « « + .+ .

YBIL TYPES
YPE DECLARATIONS
YPE MATCHING

1 TYPE I‘QUTUAI' :‘NI‘I‘ .

[P 8o

[

wwwwwwuwwwwuwwumwwwwwwwwwwwww:—->cNp

ED TYPES
IC TYPES

Scalar Types .

1 INTEGER TYPE .

2 CHARACTER TYPE .

3 ORDINAL TYPE

4 BOOLEAN TYPE .

5 SUBRANGE TYPE
Floating Point Type
1
2
c
P

.
.

REAL TYPE
LONGREAL TYPE .
ell Type . . ¢« « « ¢« o &
ointer Type
1 POINTER TO CELL
Relative Pointer Types .
TRUCTURED TYPES
.1 Set Type
2 String Type . e
3 Array Type « « + « o « o .
3.1 PACKED ARRAYS . .
3.2 EXAMPLES OF ARRAY TYPE .
4 Record Type« . e
4.1 INVARIANT RECORDS
.4.2 VARIANT RECORDS AND CASE
4,
4,
4,
0
.1
.2
.3

.
.

wwwmNNNNNNNNNNNU)Ho—db—ﬁn—-l—lo—‘u—-l-s)-o—-‘p—‘n—-t—-w

.

ASI
1
.1.
.1.
.1,
.1.
.1.
2
.2.
2.
3
4
4.
.5
R

3 RECORD TYPE EQUIVALENCE
4 PACKED RECORDS . .
5 EXAMPLES OF RECORD TYPE
TORAGE TYPES

Sequence Type . .

Heap Type
Sequence and Heap Space

.

POTENTIAL EQUIVALENCE INSTANTANEOUS

e .o

PARTS .

1

86/03/06
REV: 8

[~ —
! I

L]
WWWwWwwWwwwww

[I O L I L I s I I I |
N BB WRNNE

#bbkbbbbbﬁrbbb-&f‘bblbbbb
WO SISO I W WWNMNN -

TEY
bt
N -=O

.. 4-12
. . 4-13
4-14

4-14

4-14

4-15

4-16

4-16

4-16

4-17

4-17

4-18

- 4-18

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.4 ADAPTABLE TYPES " & . & ¢ ¢ v ¢ ¢ ¢ o o o o o o o o &
4.4.1 ADAPTABLE STRING . & & &« 4 ¢ ¢ ¢ o o o o o o o
4.4,2 ADAPTABLE ARRAY . . & v ¢ ¢ ¢ ¢ ¢ o« o o o o o
4.4.3 ADAPTABLE RECORD . . ¢ &+ ¢ ¢ & ¢ ¢ o s o o o o o
4.4,4 ADAPTABLE SEQUENCE . & ¢ ¢ ¢ ¢ ¢ o o o o o« o o &
4.4,5 ADAPTABLE HEAP . . & & ¢ 4 ¢ ¢« ¢ o o o o o o o

4.5 PROCEDURE TYPE . &+ v ¢ ¢ ¢ ¢ ¢ o« o o o o o o o o s

4.6 FUNCTION TYPE e o s s e s e e e v s o o

4.7 BOUND VARIANT RECORD TYPE e e e e e e e e s e e e e

4.8 PACKING ' . ¢ v ¢ ¢ o ¢ o o o o o o« o o o o o o« o @

4,9 ALIGNMENT s e s e s e s s e o s s s

4,10 OTHER ASPECTS OF TYPES e et e e e e e e e e e e
4.10.1 VALUE AND NON-VALUE TYPES . . . ¢« ¢ « ¢ « « &
4.10.2 COMPARABLE AND NON-COMPARABLE TYPES
4.10.3 FUNCTION-RETURN TYPES v « ¢ &+ & & & «
4.10.4 TYPE CONVERSION . . & ¢ 4 ¢ ¢ o o o o o o o @
4,105 TYPE MIXING . &+ ¢ ¢ v ¢ « o o o o s o o o =

5.0 VALUES AND VALUE CONSTRUCTORS . . . ¢ « « o « &

5.1 CONSTANTS AND CONSTANT DECLARATIONS
5.1.1 CONSTANTS e e s e s s e e e s
5.1.2 CONSTANT EXPRESSIONS e s e e e e e e e
5.1.3 CONSTANT DECLARATIONS - s e s e e e e e e s

5.2 SET VALUE CONSTRUCTORS . . +. ¢ ¢« «v ¢ & o s o o o =

5.3 INDEFINITE VALUE CONSTRUCTORS . ¢ v ¢ ¢ o o « « &

6.0 VARIABLES e e s e e s

6.1 VARIABLES AND VARIABLE DECLARATIONS e e s e e s
6.1.1 ESTABLISHING VARIABLES « . .

6.1.2 TYPING OF VARIABLES . . . ¢« « « ¢« « .« .
6.1.2.1 Instantaneous Types « . . .
6.1.3 EAPLICIT VARIABLE DECLARATIONS

6.2 ATTRIBUTES e e o s s e s e s e o s
6.2.1 ACCESS ATTRIBUTE e s s e a e s e e
6.2.2 STORAGE ATTRIBUTES AND LIFETIMES « e e e

6.2.2.1 Automatic Variables

6.2.2.2 Static Variables

6.2.2.3 Lifetime Conventions . . e e e e e e e

6.2.2.4 Lifetime of Formal Parameters e e e e e e

6.2.2.5 Lifetime of Allocated Variables

6.2.2.6 Pointer Lifetimes ¢« +« « « « + .
6.2.3 SCOPE ATTRIBUTES . . v + «¢ ¢ o « o o o o « o o

6.3 INITIALIZATION e e s s e e s e e e s
6.3.1 INITIALIZATION CONSTRAINTS s e o s e e s e s e s

6.4 SECTIONS AND SECTION DECLARATIONS .

6.5 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS .

6.6 VARIABLE REFERENCES . .

6.6.1 POINTER REFERENCES . . .
6.6.1.1 Examples of Pointer References .
6.6.2 SUBSTRING REFERENCES . . .
6.6.2.1 Substring References as Character References .
6.6.3 SUBSCRIPTED REFERENCE
6.6.4 FIELD REFERENCES .

2

86/03/06
REV: 8

. 4-19

. 4-20
4-20

4-21

4-21

4-22

. 4-22

. 422

. 4-23

. . 4-24
. . 424
. . 425
.« 4-25
. . 4-25
. . 4-25
4-25

4-26

(.nl.nu:t.inmmm
S WWW =

[L L L
NMWNOOUYWRIdARN DMUMD WWWLWN - -

.
IO\O\O\O\O\O\O\O\O\O\O\O'\O\O\O\O\O\O\O\O\O\O\O\

—

CDC Private

A,

-

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

PROGRAM STRUCTURE « . . .
COMPILATION UNITS . . « « « « ¢ & « o .
MODULES . ¢« + + ¢ &+ ¢ ¢« ¢ ¢ 4 s o o o o
DECLARATIONS AND SCOPE OF IDENTIFIERS
ODULE - STRUCTURED SCOPE RULES . .
OCEDURES AND FUNCTIONS

7.
7
7
7
7
7

JLT‘ KR“ D SLUPL A LHH
PE ATTRIBUTES ¢ < v « o o « &
ALTAS NAMES . . . ¢ ¢ ¢ ¢ ¢ o« ¢ o &

IR
0
.1
ECLARATION PROCESSING
1
2

0
1
2
.3
4
5
&
7
7
7.8
7 BLOCK—-EMBEDDED DECLARATIONS
7 MODULE-LEVEL DECLARATIONS
PROCEDURES AND FUNCTIONS . . . « « « « &
PROCEDURE DECLARATIONS . . ¢« « « ¢ ¢« + &
FUNCTION DECLARATIONS . . + . +. « .« . .
2.1 SIDE EFFECTS . ¢« ¢ ¢« ¢ ¢ o« o o o « &
XDCL PROCEDURES AND FUNCTIONS
INLINE PROCEDURES AND FUNCTIONS
PARAMETER LIST . . . + ¢« « e
6 EXAMPLES OF PROCEDURES AND FUNCTIONS .o .

.

0
.1
.2
8.
8.3
8.4
8.5
8.
XPRESSIONS . . . « & ¢ ¢« ¢ v ¢ o o« « &

E
EVALUATION OF FACTORS
OPERATORS . ¢ & ¢ ¢ ¢ ¢ ¢« o & o o o 0 &

9.
9.
9.
.1 NOT OPERATOR + ¢ « & « « « &
MULTIPLYING OPERATORS
SIGN OPERATORS « ¢« « « & « &
ADDING OPERATORS
ELATIONAL OPERATORS
Comparison of Scalars
Comparison of Pointers
Comparison of Relative Pointers

0
1
2
9.
9.2.
9.
9.2.
9.2.

2
2.2
2.3
2.4
2.5
9.2
9.2.5.
9.2.5.
9.2.5.
9.2
9.2.
9.2
9.2
9.2

0

.2.5.8 Non-Comparable Types

R

5.1

5.2

5.3

5.4

.5.5 Comparison of Strings
5.6 Relations Involving Sets
5.7

5.8

5.9

R O

9.3 ORD

F EVALUATION
10.0 STATEMENTS e e e e
10.1 SEMICOLONS AS STATEMENT LIST DELIMITERS
10.2 ASSIGNMENT STATEMENTS
10.2.1 ASSIGNMENT COMPATIBILITY OF TYPES .
10.3 STATEMENT LABELS« « « « « .

10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS .

10.4 STRUCTURED STATEMENTS
10.4.1 BEGIN STATEMENTS
10.4.2 WHILE STATEMENTS
10.4.3 REPEAT STATEMENTS
10.4.4 FOR STATEMENTS -

Comparison of Floating Point Types.

.

.

Relations Involving Arrays and Records

Tabie of Comparablie Types and Resuit Types

.3

86/03/06
REV: 8 :

.
»
; ‘.J\IJT‘\IL\l\l\‘

\‘\JT‘\‘\‘H
MWW~

PYYYY PYYTIPYTT
' MBS DR WN

[

\O\O\OmcomO\O\UI-b-bwr—*

. . 9-10
.. 9-10

. 9-10
.. 910
.. 9-13

.. 10-1
.. 10-1
. e 10-2
. . 10-2
.. 10-3~
. . 10-4
.. 10-4
. . 10-4
.. 10-5
. . 10-5
- 10-6

CDC Private

4
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION ~REV: 8

10.5 CONTROL STATEMENTS . . . e
10 5.1 PROCEDURE CALL STATEMENT s e s s s e e s e e e s e s 10-7
©10.5.1.1 Value Parameters . . . « . ¢« v & ¢« o o o o s o & 10-8
10.5.1.2 Reference Parameters ¢« « + ¢« o ¢ . . 10-8
10.5.2 IF STATEMENTS . & & & ¢ o o o o o o o o o s o « s o = 10-9
10.5.3 CASE STATEMENTS . . ¢ « ¢ ¢ o« « o o s o & e e v e e s 10-9
10.5.4 CYCLE STATEMENT . . . + + « ¢ « « o « o« o « o o o« 7% . 10-12
10.5.5 EXIT STATEMENT . ¢ ¢ + &+ ¢ o « o o o o o« » « o« « » » 10-13
10.5.6 RETURN STATEMENT . . . « &+ « ¢« « o« o o o s o o « » «» 10-14
10.5.7 EMPTY STATEMENT e s s s s s s s s s e s s . 10-1&
10.6 STORAGE MANAGEMENT STATEMENTS e e e e e e e e e e e e e . l0-15
10.6.1 ALLOCATION DESIGNATOR . .+ « « ¢« &« ¢« o« & « o o o« « « o 10-15
10.6.2 PUSH STATEMENT . . . « « « « o« o« o o o« o o« o« « +» « « 10-18
10.6.2.1 The Stack . « ¢ « &+ ¢ + « o o s o o o« o s« o« o » « 10-18
10.6.3 NEXT STATEMENT . . . ¢ &+ « o o« = o « o« o o « » +» « » 10-18
10.6.4 RESET STATEMENT . . . « &+ « « « + & e e e e e e & o . 10-19
10.6.4.1 Reset Sequence . . « « &« « o o o« o o« « o« s« +» « » 10-19
10.6.4.2 Reset User Heap . . « « « &+ ¢ ¢« « ¢« o« » &« « &« » o 10-20
10.6.5 ALLOCATE STATEMENT . . . ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o 10-20
10.6.6 FREE STATEMENT . & & « ¢ o « o « o o s o o« o « « « « 10-20

11.0 STANDARD PROCEDURES AND FUNCTIONS . . . « « « « & o & « & 11-1
11.1 BUILT-IN PROCEDURE . . B T T B £ |
11.1.1 STRINGREP (S, L, P f{, P}) e § £S5 |
11.1.1.1 Concatenation Elements « « « ¢« &+ &« « o & 11-1

11.1.1.1.1 INTEGER ELEMENT . . . & ¢ « v ¢ o o o o o o o &« 11-3
11.1.1.1.2 ORDINAL ELEMENT . . &+ ¢ ¢ v ¢« o & o o o o o o = 11-3
11.1.1.1.3 SUBRANGE ELEMENT . . ¢ & & o ¢ ¢ s s & o o o« & 11-3
11.1.1.1.4 CHARACTER ELEMENT . « ¢ v ¢ ¢ ¢ ¢ o o« o o o o & 11-3
11.1.1.1.5 BOOLEAN ELEMENT . . . + ¢ ¢ ¢ ¢ o o o o o o o« & 11-3
11.1.1.1.6 STRING ELEMENT . ¢ &+ ¢ ¢ & ¢ o o o o o s o o & 11-4
11.1.1.1.7 POINTER ELEHENT . ¢ + & ¢ o o ¢ o o o o o o « ii-4
11.1.1.1.8 FLOATING POINT ELEMENT . . « « ¢ ¢ &« ¢ o« « « & 11-4
11.1.1.1.8.1 Floating Point Format 11-4

11.1.1.1.8.2 Fixed Point Format . . « ¢« & ¢ ¢ ¢ o o o « & 11-5
11.2 BUILT-IN FUNCTIONS . . « + ¢ « o « o e o & & o e o e 11-6
11.2.1 SUCCCE) v v v v v v v v e e o o o o v o o s e e e 11-6

11.2.2 PRED(X) &+ v v v v v e v o v o o o o o o o e e v e e 11-6
11.2.3 SCHAR(X) '+ ¢ v v v ¢ v o v o e e e e e e e e e 11-6
11.2.4 SINTEGER(X) . v & v ¢ v v v v o v o« o o & e e e e e . 11-6
11.2.5 SREAL(X) & v v v v v v v v e v v e e e e v e e e . 11-7
11.2.6 SLONGREAL(X) '« ¢ ¢ ¢ ¢ ¢« e ¢« o o o o o e e e e . 11-7
11.2.7 STRLENGTH(X) . . v v v v ¢ ¢ ¢ o« o o o e e e e . 11-7
11.2.8 LOWERBOUND(ARRAY) + « « « v %« ¢ o o o o o o o o o« o« o« 11-7

11.2.9 UPPERBOUND(ARRAY) . v v v « & & o o o o o o o o o o & 11-8
11.2.10 UPPERVALUE (X) & &« v v v o« o o o o o o o o o o o o & 11-8

11.2.11 LOWERVALUE (X) e e e e e e e e e e e . 11-8
11.2.12 #REL (POINTER[, PARENTAL]) . e e e e e e e 11-8
11.2.13 #PTR (RELATIVE POINTERI, PARENTAL]) B § £
11.2.14 #SEQ (VARIABLE) e e e e e e e e e e . 11-8

11.3 REPRESENTATION DEPENDENT FUNCTIONS e e e e e e e e e . 1179
11.3.1 #LOC(<VARIABLE>) . . . ¢ ¢ ¢ v « v ¢ s o ¢« o« o« o« « « 11-9
11.3.2 #SIZE(ARGUMENT) & & v &« v o o o o o o o o o o o o o & 11-9

CDC Private

e,

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE 'SPECIFICATION

12,0 COMPILE-TIME FACILITIES
12.1 CYBIL SOURCE TEXT

12,2 COMPILE TIME STATEMENTS AND DECLARATIONS

12.2.1 COMPILE-TIME VARIABLES

12.2.2 COMPILE TIME EXPRESSIONS .

12.2.3 COMPILE-TIME ASSIGNMENT STATEMENT .

12.2.4 COMPILE-TIME IF STATEMENT . .

12.3 PRAGMATS « s e s 4 s e e o s

12.3.1 TOGGLE CONTROL . e .

12.3.2 TOGGLES e e e e e e e
12.3.2.1 Listing Toggles . e e e . e .
12.3.2.2 Run-Time Checking Toggles . . e

12.3.3 LAYOUT CONTROL
12.3.3.1 Source Layout
12,3,3.2 Listing Layout
12.3.3.2.1 PAGINATION . . . « ¢« « « + &
12.3.3.2,2 LINEATION v ¢ &« o + &
12.3.3.2.3 TITLING . . + v & & « « « & &

12.3.4 MAINTENANCE CONTROL

12.3.5 COMMENT CONTROL &

12,3 6 OBJECT LIBRARY CONTROL

13.0 TMPLEMENTATION-DEPENDENT FEATURES . . .
13.1 DATA MAPPINGS « & ¢ ¢« & & o & &

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE - .

APPENDIX B - CYBIL RESERVED WORD LIST . . .

APPENDIX C - CYBIL INTRINSICS

GENERAL INTRINSICS
#CONVERT_POINTER_TO_ PROCEDURE (P Q)
#KEYPOINT (P1,P2,P3) .
#SCAN (SELECT, STRING, INDEX, " FOUND)
#SPOIL (, VARIABLE>{ <VARIABLE>}) ...
#TRANSLATE (TABLE, SOURCE, DESTINATION) .
#UNCHECKED_CONVERSION (SOURCE, TARGET)

MACHINE SPECIFIC INTRINSICS ..
C180 INTRINSICS . .

##COMPARE_SWAP (LOCK, INITIAL, NEW, ACTUAL,

#CALLER_ID (ID)
ffHASH_SVA (SVA, INDEX, COUNT FOUND)
#RING (POINTER): INTEGER-

##SEGMENT (POINTER) : INTEGER
JOFFSET (POINTER): INTEGER . .
#ADDRESS (RING, SEGMENT, OFFSET): *CELL
#CURRENT_STACK_FRAME: #CELL
#PREVIOUS_SAVE AREA: *CELL . . .
#PURGE_BUFFER (OPTION, ADDRESS)
#TEST_SET (VARIABLE, RESULT)

C180 AND C200 INTRINSICS . .
#fFREE_RUNNING_CLOCK (CLOCK_ ID)' INTEGER

5

86/03/06

REV:

8

12-1

12-1

—
N
I
[

12-1

[UL

[Rrr
NNNNNNNN(}JD}DNNNMINNN
WO I AARARNAN NN B WWNNN

Pk b b b b ek b b frd ek ek’ ped pad fueh feed

[y

—
W W
[
— =

Al
Bl

Cl1
Cl
Cl
Cl
c1
c2
c2
c3
c3
c3
c3
C4
C4
C5
c5
c5
c5
c5
c5
cé
cé6
Cé6
cé

CDC Private

6
CYBER IMPLEMENTATION LANGUAGE

‘) 86/03/06
CYBIL LANGUAGE SPECIFICATION "REV: 8
#READ_REGISTER (REGID): INTEGER". . Cé
#WRITE REGISTER (REGID, VALUE) . . . « « « « « ¢ « « o o c7
C200 INTRINSICS & v v v v o o o o o o o ot o o o o o o o o c7
#GET_JOB_TIMER : INTEGER e e e e e e e e e e e e e e e c7
#LOAD AR . . . e e e e e e e e e e e e e e e e c7
#SET_JOB_TIMER (TIME) e e e e e e e e e e e e e e e e c7
#STORE_AR e e e e e c7
#SWAP_DFBR (CURRENT REGISTER NEW REGISTER) e e e e e c8

CDC Private

' 1-1
CYBER IMPLEMENTATION LANGUAGE ‘
' 86/03/06

CYBIL LANGUAGE SPECIFICATICN REV: 8

1.0 INTRODUCTION

1.0 INTRODUCTION

The CYBER Implementation Language (CYBIL) language is the
implementation language for Control Data Corporation. This document
provides the definition for the CYBIL language.

This specification was developed from Rev. 7 of this
specification and from DAP's S4304, S4478, S4497, S4505, S4545, S4547
S4552, S4691, S4765, S4802, S4874, S4925, S4953, ARH5266, ARH5267 and
ARH5268. These updates have Implementation Language Design Team
approval and DC3 review cycle approval.

CDC Private

2-1
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

2.0 LANGUAGE OVERVIEW

2.0 LANGUAGE OVERVIEW

A CYBIL program consists of statements, which define actions
involving programmatic elements, and declarations, which define such
elements.

The definable elements include variables and procedures, all
having the characteristics that are conventionally associated with
- their names. Declarations of instances of variables are spelled out
in terms of an identifier for the element and a type description,
which defines the operational aspects of the element and, in many
cases, indicates a notation for referencing. In the case of a
variable declaration, the type defines the set of values that may be
assumed by -the wvariable. Types may be directly described in such
declarations, or they may be referenced by a type identifier, which
in turn must be defined by an explicit type declaration. A small set
of pre—defined types are provided, together with notations for
defining new types in terms of existing ones.

In general, an element may not enter into operations outside the
domain indicated by its type, .and most dyadic operations are
restricted to elements of equivalent types (e.g., a character may not
be added to an integer). Since the requirements for type equivalence
are severe, these operational constraints are strict. Departures
from them must be explicitly spelled-out in terms of conversion
functions. '

The basic types include the pre-defined integer, char, and boolean
types, all having their conventional connotations, value sets, and
operational domains. These are scalar types, which define
well-ordered sets of values. A scalar type may also be defined as an

ordinal type by enumerating the identifiers which stand for its
ordinal values, or as a subrange of another scalar type by specifying
the smallest and largest values of the subrange. Also included in
the basic types are the floating point types: real and longreal
types. Pointer types are included in the basic types. They
represent location values, and other descriptive information, that
can be used to reference instances of variables and other CYBIL
elements. Pointers are bound to specific types, and pointer
variables may assume, as values, only pointers to elements of those
types. Cell types are also included in the basic types. Cells
represent the smallest addressable memory unit supported by an
implementation.

Structured types represent <collections of components, and are
defined by describing their component types and indicating a
so-called structuring method. These differ in the accessing

CDC Private

.\J’..

2-2
CYBER IMPLEMENTATION LANGUAGE
. 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

2.0 LANGUAGE OVERVIEW

discipline and notation used to select individual components. Four
structuring methods are available: sel structure, string structure,
array structure, and record structure. : :

A set type represents all subsets of vaiues of some scalar type.

A string type of length n represents all ordered n-tuples of
values of character type. An ordered k-tuple of these values (1 <k
< n) is called a substring. Notation for accessing substrings is
provided. '

An array type represents a structure consisting of components of
the same type. Each component is selected by an array selector
consisting of an ordered set of n index values whose types are
indicated in the array definition.

A record type represents a structure consisting of a fixed number
of components called fields, which may be of different types and
which must be identified by field selectors. In order that the type

of 2 selected £ield be evident £from the program text (without

executing the program) a field selector is not a computable value,
but instead is an identifier uniquely denoting the component to be
selected. These component identifiers are declared in the record
type definition.

A variant record type may be specified as consisting of several
variants. This implies that different variables, although said to be
of the same type, may assume structures which differ in a certain
manner. The difference may consist of a different number and
different types of components. The variant which is assumed by the
current value of a record variable is indicated by a component field
which is common to all variants and is called the tag field.

Array and record types may have associated packing attributes
which can be used to specify component space—time trade-offs. Access
time for specific components of packed (space-compressed) structures
can be shortened by declaring them to be aligned. Aligned also
provides a method of specifying specific hardware boundaries. ’

Storage types represent structures to which other variables may be
added, referenced, and deleted under explicit program control. There
are two storage types, each with its own management and access
characteristics. Sequence types and heap types represent storage
structures whose components may be of diverse type. Components of
sequences are managed through the operations of resetting to the
first component and moving to the next component and are accessed
through pointers constructed as by-products of the next operator.
Space for components of heap storages must be explicitly managed by
the operation of allocate and £free; the components are accessed

CDC Private

, 2-3
CYBER IMPLEMENTATION LANGUAGE)
. 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

2.0 LANGUAGE OVERVIEW

through pointers constructed as by-products of the allocate
operation.

Adaptable types are array, record, string, sequence and heap types
defined in terms of one indefinite bound. They may be used as formal
parameters of procedures -- in which case the bounds of the actual
parameters are assumed; or they may be used to define pointers to
structures which are meant to be explicitly fixed during execution of
the program. ’

Denotations for explicit values of the basic and structured types
consist of constants and constant expressions, which denote constant
values of the basic and string types; and value constructors which
are used to denote instances of values of set, array, and record
types. The boolean constants (false,true) are pre-defined. New
constants can be introduced by constant declarations, which associate
an identifier with a constant expression.

Set value constructors, which include set type information, may be
used freely in set expressions. Indefinite set value constructors
can be used only in initialization of variables where their type is
explicitly indicated by the context in which they occur.

Variables can be declared with initialization specifications and
with certain attributes. Initialization expressions are evaluated
when storage for the static variable is allocated, and the resultant
values are then assigned to the variable. The attributes include
access attributes - which specify the purposes for which the variable
may be accessed; storage attributes — which specify when storage for
the variable is to be allocated and when it is to be freed; and scope

attributes -which specify the program span over which the

Aanalawardan ia Fa hald (+ina annma AF Flha dAasnlamatbian) TMTnlaes
HUEWLGLGL AV - - - AV A LN~ ﬂvvyc LS Sy UCWwALAGL G LeWVii/ e -

otherwise specified, the scope of a declaration is the block
containing the declaration, including all contained sub-blocks except
for those which contain a re-declaration of the identifier.

Blocks are portions of programs which are grouped .together as
procedures or functions, and used to define scope and to provide
shielding of identifiers. Procedures or functions have identifiers
associated with them, so that the identified portions of the program
can be activated on demand by statements of the language.

A procedure is declared in terms of its identifier, the associated
program, a set of attributes, and a 1list of formal parameters.
Formal parameters provide a mechanism for the binding of references
to the procedure with a set of values and variables - the actual
parameters - at the point of activation.

A function returns a value of a specified type. These

CDC Private

2-4
CYBER IMPLEMENTATION LANGUAGE

| 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

2.0 LANGUAGE OVERVIEW

return-types are restricted to the basic types, and are specified in
the function declaration.

In -addition to their other programmatic aspects, blocks provide
partial mechanisms for the shieiding and sharing of variables and
portions of programs. Modules (together with scope attributes)
provide a mechanism for the shielding and sharing of declarations.
ucduTes are primarily designed {to permit program packaging at the

"source'" language level.

Statements define actions to be performed.

Structured statements are constructs composed of statement 1lists:
begin statements provide for execution of a list of statements; while
, for and repeat statements control repetitive execution of a single
statement list.

Control statements cause the creation or destruction of execution
environments. They provide for the activation of procedures, and for

g%ﬁ%ral vhanges in 0-1\% £law of cantral, TIf statemente ?""-‘!lde for

the conditional execution of one of a set of “statement lists.

Storage management statements provide mechanisms for allocating new
local wvariables, moving forward and backward over components of
sequences, and allocating and freeing variables in heaps.

A set of pre—defined procedures and functions exists which can be
used for storage management, scalar conversions, etc.

Finally, assignment statements cause variables to assume new
values.

Compile-time facilities, that are essentially extra-linguistic in
nature, are used to control the compilation process and construct the
program to be <compiled; these include compilie-time variable
declarations, and compile—time statements.

CDC Private

3-1
CYBER IMPLEMENTATION LANGUAGE

: u 86/03/06

CYBIL LANGUAGE SPECIFICATION - REV: 8

3.0 METALANGUAGE AND BASIC CONSTRUCTS

3.0 METALANGUAGE AND BASIC CONSTRUCTS

3.1 METALANGUAGE

In this specification, syntactic constructs are denoted by English
words enclosed between angle brackets < and >. These words also
describe the nature or meaning of the construct, and are used in the
accompanying description of semantics.

Constructs not enclosed in angle brackets stand for themselves.

The symbol ::= is used to mean "is defined as", and the vertical

bar | is used to signal an alternative definition.

An optional syntactic unit (zero or one oécurrences) is designated
by square brackets [and].

Indefinite repetition (zero or more occurrences) is designated by
braces { and }.

Examples:

The definition:

<field> ::= <fixed field>
| <variant field>
is read: " a field is either a fixed field or a variant field."

Lo 23 W _1.'"..'&’__,
1N0€e gerl1niiLione.

<fixed field> ::=
<field selectors> : <type>

is read: "a fixed field consists of field selectors, followed by a
colon, followed by a type."

The definition:

<field selectors> ::=
<field selector>{,<field selector>}

is read: '"field selectors consist of a field selector, followed by
zero or more comma separated field selectors."”

The angle brackets, square brackets, and braces are also elements
of the language, and therefore are used in syntactic constructs.

CDC Private

Ay,

A

3-2

CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.1 METALANGUAGE

Such syntactic occurrences of these symbels will be underscored when
necessary. y

Exampie:
The definition:
<attributes> ::= [<attribute >{,<attribute>}]
is read as, "attributes consist of an attribute followed by zero or
more comma-separated attributes, the entire set of attributes being

enclosed in square brackets."

Words reserved for specific purposes in the language will always
be underscored.

Example:

<array spec> ::
array [<index>] of <component type>

is read as, "an array spec is composed of the word ‘'array' followed
by an index enclosed in square brackets, followed by the word 'of'
followed by a component type."

Appendix A of this specification contains a sorted alphabetic list
of all constructs in the syntax with their definitions.

3.2 LEXICAL CONSTRUCTS

The 1lexical units of the language - identifiers, basic symbols,
and constants - are constructed from one or more (juxtaposed)
elements of the alphabet.

3.2.1 ALPHABET

The alphabet consists of tokens from a subset of the 256-valued
ASCIT character set: those for which graphic denotations are defined.

CDE Private

3-3
CYBER IMPLEMENTATION LANGUAGE
. 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2.1 ALPHABET

<ascii character> ::= <alphabet>
' <unprintable>
<string delimiter>

<alphabet> ::= <letter>
<digit>
<special mark>
<blanks>
<unused mark>

<letter> ::= A|{B|C|D|E{F|G|H|I|J[{K|L{M
N|O[P|Q[R{S|T|{U|VIW|X]|Y|Z
albfcld|e|f|g|h|i|jjk|l]|m
njo|pjq|r|s|t|u|v|w|x|y|z

<digit> ::= 0|1|2|3|4|5|6|7|8]|9

<string delimiter> ::= '

<special mark> ::= +|-|*|/|.|;|:|, °

[#1si_1el2] (D [=]<[>[[]T[*]{]}
<blanks> ::=
. <unused mark> ::= &|%|[|=]¢|\|!]"

3.2.2 IDENTIFIERS

ifiers serve to denote constants, variables, procedures, and

<follower> ::= <letter>|<digit>

_l#ls|e

Identifiers are restricted to a maximum of 31 characters, and
identifiers that differ only by case shifts cf component letters are
considered to be identical. Identifiers must begin with a letter and
may not contain embedded blanks. An exception is made to this rule
for the system dependent functions and procedures which begin with
the # character.

CDC Private

: 3-4

CYBER IMPLEMENTATION LANGUAGE
A 86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2.2 IDENTIFIERS

Examples of Valid Identifiers:
x2 Henry Job# A _wordy_Identifier

Examples of Invalid Identifiers:

1st_character_must_be_a_letter
number_of characters_must_not_exceed_thirtyone

3.2.3 BASIC SYMBOLS

Selected identifiers, special marks and digraphs of special marks
are reserved for specific purposes in the language; e.g., as
operators, separators, delimiters. These so-called 'basic symbols"
will be introduced as they arise in the sequel.

Identifiers reserved for use as basic symbols will be shown as
underscored, lower—-case words.

3.2.4 CONSTANTS ' -

Constants are lexical constructs used to denote values of some of
the elementary data types. Their spellings, and the data types for
which constant denotations can be given, are described in Section
5.1.1.

3.2.5 CONVENTIONS FOR BLANKS

Identifiers, reserved words, and constants must not abut each
other, and must not contain embedded blanks, except string constants.
Identifiers, reserved words, string terms and non-string constants
must be contained on one input line. Basic symbols constructed as
digraphs may not contain embedded blanks. Otherwise, blanks may be
employed freely, and have no effect outside of character constants
and string constants - where they represent themselves.

CDC Private

. 3-5

CYBER IMPLEMENTATION LANGUAGE
: 86/03/06

CYBIL LANGUAGE SPECIFICATION _ REV: 8

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2.6 COMMENTS

3.2.6 COMMENTS
Commentary strings may be used anywhere that blanks may be used
except within character and string constants.

<commentary string> ::= {{<comment character>}
<comment terminator>

<commenf terminator> ::= l | <end of line>

<comment character> ::= <any ASCII character except
a closing brace or end of line>

CDC Private

4-1
CYBER IMPLEMENTATION LANGUAGE
: 86/03/06
CYBIL LANGUAGE SPECIFICATION . REV: 8

4.0 CYBIL TYPES

4.0 CYBIL TYPES

CYBIL types are used to define operational domains and
characteristics of variables (which take on wvalues) and other
programmatic elements. CYBIL elements fall intoc two broad classes of
types.

‘ <type> ::= <fixed type>
<fixable type>
<procedure type>

<fixable type> ::= <adaptable type>
| <bound variant record type>

Fixed types are used to define sets of values that can be assumed
by CYBIL variables, their operational domain and, in many cases, a
notation for referencing such values.

Fixable types are associated with data types whose precise
attributes are meant to be explicitly "fixed" during execution of the
program. Variables of a fixable type must be referenced in an
indirect manner; they may be referenced through the use of a pointer
or as a formal parameter of a procedure.

4.1 TYPE DECLARATIONS

CYBIL provides a small set of pre-defined types, reserved
identifiers for these, and notation for defining new types in terms
of existing ones.

Type declarations are used to introduce new types, and identifiers
for the newly declared types.

CDC Private

4-2
CYBER IMPLEMENTATION LANGUAGE '
. 86/03/06
CYBIL LANGUAGE SPECIFICATION) - REV: 8

4.0 CYBIL TYPES
4,1 TYPE DECLARATIONS

<type declaration> ::=
type <type spec>{, <type spec>}

<type spec> ::= <identifier> = <type>

Type declarations can be used for purposes of brevity, clarity,
and accuracy. Once declared, a type may be referred to elsewhere by
its declared type identifier. The identifier can have mnemonic value,
and errors associated with repeated spelling-out of type
specifications, are reduced. ’

4.2 TYPE MATCHING

In general, operations involving elements of non—equivalent types
are not allowed, and one type may not be used where another type is

expected. Relaxations to these rules are sometimes permitted, and-

will be stated as they arise.

4.2.1 TYPE EQUIVALENCE

Two equivalent types can be expressed differently. For example: a
declared type identifier and the type it denotes have different
spellings; different expressions for sizes of arrays and other
collections of elements can yield the same value; formal parameter
identifiers are not part of procedure types.

Rules for determining type equivalence are called-out in the
following sections on types.

4.2.2 POTENTIAL EQUIVALENCE, INSTANTANEOUS TYPES

Adaptable types and bound variant record types actually define
classes of related types. References to variables of such type are
meant to be explicitly fixed to a so—called instantaneous type during
the execution of the . program. Such types are said to
be potentialiiy—equivalient to any of the types to which they .can be
fixed. Since the determination of that type can be made only during
program execution, references to variables of such types are
permitted wherever a reference to one of the instantaneous types is
valid, No compile-time error messages will be issued; however, each
implementation is required to carry out the required execution-time
checks for type-matching when selected by. the programmer, and to
report violations (see Compile-Time Facilities, Run-Time Checking
Toggles) . :

CDC Private

CYBER IMPLEMENTATION LANGUAGE

4.0 CYBIL TYPES
4.3 FIXED TYPES

4-3

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

4.3 FIXED TYPES

by variab

A) Basic types, which take on simple values.

B) Structured types, which define collections of components.

es are used to define sets of values that may be assumed

C) Storage types, which are used as repositories for collections of

components of various types.
<fixed type> ::= <basic type>i<struétured type>|<storage type>

4.3.1 BASIC TYPES
Basic types define components that take on simple values.

<basic type> ::= <scalar type>
<floating point type>
<cell type>
<pointer type>
<relative pointer type>

4.3.1.1 Scalar Types

Scalar types define well-ordered sets of values for which
following functions are defined:

suce the succeeding value in the set;
pred the preceding value in the set.

<scalar type> ::= <integer type>
<character type>
<ordinal type>
<boolean type>
.<subrange type>

4.3.1.1.1 INTEGER TYPE

<integer type> ::= integer|<integer type identifier>

the

CDC Private

4-4

CYBER IMPLEMENTATION LANGUAGE
86/03/06 -
CYBIL LANGUAGE SPECIFICATION ' REV: 8 (

4.0 CYB IL TYPES ,
4,3.1.1.1 INTEGER TYPE

<integer type identifier> ::= <identifier>

Integer type répreseﬁts an implementation—-dependent subset of the
integers, and is equivalent to the subrange defined by

where nl and n2 denote 1mplementat10n-dependent integers. In
general, if transportation of programs is planned across
implementations, the explicit use of integer types should be avoided
in favor of subrange types.

Permissible operations: assignment, set membership test, all
relational operators, addition, subtraction, multiplication,
quotient, remainder and applicable standard procedures and functions.

4.3.1.1.2 CHARACTER TYPE

<character type> ::= char|<character type identifier>
<character type identifier> ::= <identifier>

Character type defines the set of 256 values of the ASCIT
character set, and is equivalent to the subrange defined by

Schar(0) .. Schar(255)

where "Schar" denotes the mapping function from integer type, onto |
character type. Characters may be assigned & compared to strings.

Permissible operatioms: assignment, set membership test, il
relational operators, standard procedures and functions.
4.3.1.1.3 ORDINAL TYPE
<ordinal type> :=
(<ordinal constant identifier list>)
| <ordinal type identifier> |
<ordinal constant identifier list> ::=
<ordinal constant identifier>
,<ordinal constant identifier>
{,<ordinal constant identifier>}

<ordinél constant identifier> ::= <identifier> €

<ordinal type identifier> ::= <identifier>

CDC Private

: 4-5
CYBER IMPLEMENTATION LANGUAGE

. 1 86/03/06
CYBIL LANGUAGE SPECIFICATION . REV: 8

4.0 CYBIL TYPES
4.3.1.1.3 ORDINAL TYPE

An ordinal type defines an ordered set of values by enumeration,
in the ordinal 1list, of the identifiers which denote the values.
Each of the identifiers (at least two) in the ordinal list is thereby
deciared as a constant of the particular ordinal type.

Two ordinal types are equivalent if they are defined in terms of
the same ordinal type identifier.

Permissible operations: assignment, set membership test, all
relational operators, standard procedures and functions.

Example: The constants of the ordinal type "primary color" declared
by ' :
*

type primary_color = (red, green, blue)

are denoted by '"red", ''green", and '"blue", and the. following
relations hold:

red < green
red < blue
green < blue

A mapping from ordinals onto non-negative integers is provided by
the S$integer function. For the <constants of the example, the
following relations hold:

$integer (red) =
Sinteger (green)
Sinteger (blue) = 2

0
=1

The ordinal type declaration

type primary_color = (red, green, blue),
hot_color = (red, orange, yellow)

would be in error because of the dual definition of the identifier
"red" as a constant of two different ordinal types.

4.3.1.1.4 BOOLEAN TYPE
<boolean type> ::= boolean
]<boolean type identifier>

<boolean type identifier> ::= <identifier>

CDC Private

: | 4-6
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION . REV: 8
4,0 CYBIL TYPES
4,3.1.1.4 BOOLEAN TYPE

Boolean type represents the ordered set of "truth values", whose
constant denotations are false and true, and is conceptually
equivalent to the ordinal type specified by:

(false,true), except that Boolean operations are permitted on
Boolean types.

Permissible operations: assignment, set membership test, all
relational operators (false < true), the Boolean operations of sum,
product, difference, exclusive or, negation and standard procedures
and functions.

4,3.1.1.5 SUBRANGE TYPE

<subrange type> ::= <subrange type identifier>
‘<lower>..<upper>

<lower> ::= <constant scalar expression>
<upper> ::= <constant scalar expression>

<subrange type identifier> ::= <identifier>

The lower bound must not be greater than the upper bound and both
must be of equivalent scalar types. Two subrange types are
equivalent if they have identical upper and lower bounds. An
improper subrange type (i.e., one that completely spans its parent
range) is equivalent to its parent type. The parent type of the
subrange is the type of the lower and upper constant expression.

Values of 'a subrafige and values of-its parent range (or values of
athar cithrancaese af jte narmant Puna) many ocntas iaimbler lmta dAeadla
L = euv&aaae\—a N de - FBL —is s’yc/ WBJ LT — JV&AA‘.&J hidV Uj“u&b

operations defined for the parent type, and into assignment
operations; execution time checks on the validity of such assignments
may be specified (see Run-Time Checking Toggles).

Permissible operations: same as for the parent type.

Example:

type non_negative integer = 0..32767,
letter = 'A'..'2"',
color = (red, orange, yellow, green, blue),
hot color = red..yellow,
range = -10..10 ;

CDC Private

-

L

CYBER IMPLEMENTATION LANGUAGE
, 86/03/06
CYBIL LANGUAGE SPECIFICATION) REV: 8

4.0 CYBIL TYPES '
4.3.1.2 Floating Point Type

4.3.1.2 Floating Point Type

The floating point types define values that approximate the real
numbers and which are to be represented in a machine—dependent form
of scientific notation. The real and longreal types are intended to
have the same representation as FORTRAN REAL and DOUBLE PRECISION,
respectively.

4.3.1.2.1 REAL TYPE
<real type> ::= real |<real type identifier>
<real type identifier> ::= <identifier>
The range and precision of " the real type are

implementation—dependent. Conversion functions between real,

longreal and integer type are provided (cf. Standard Functions,
11.2).)

Permissible operations: assignmenf, all relation operators,
addition, subtraction, multiplication, division, and applicable
standard procedures and functions.)

4.3.1.2.2 LONGREAL TYPE

_ <longreal type> ::= longreal |<longreal type identifier>

<longreal type identifier> ::= <identifier>

The range and precision of the longreal type are
implementation—dependent. Conversion functions between real,
longreal and integer type are provided (cf. Standard Functions,
11.2).

Permissible operations: assignment, all relation operators,
addition, subtraction, multiplication, division, and applicable
standard procedures and functions.

4.3.1.3 Cell Type

<cell type> ::= cell
| <cell type identifier>

<cell type identifier> ::= <identifier>

CDC Private

4-8
CYBER IMPLEMENTATION LANGUAGE
. 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
4.0 CYBIL TYPES
4.3.1.3 Cell Type

A cell type is a basic type that represents the smallest storage
site that is directly addressable by a pointer. It is not equivalent
with any other type.

Permissible Operations: assignment, comparison for equality and
inequality only, and applicable standard functions.

4.3.1.4 Pointer Type

Pointer types represent location values, and other descriptive
information, that can be useéd to reference instances of CYBIL objects
indirectly.

Permissible operations: assignment, comparison for equality and
inequality only, and standard procedures and functions.

Pointer types are introduced‘by an up arrow, followed by a CYBIL -

type to which the pointers are bound; any CYBIL type is legal.
Pointer variables may assume, as values, only pointers to that type.
The only exception to this is pointer to cell..

<pointer type> ::= <fixed pointer>
<fixable pointer>
<pointer to procedure>
<pointer to function>
<pointer type identifier>
<fixed pointer> ::= t<fixed type>

<fixable pointer> ::= <adaptable pointer>
| <bound variant pointer>

<adaptable pointer> ::= #<adaptable type>
<bound variant pointer> ::= *<bound variant record type>
<pointer to procedure> ::= %*<procedure type>
<pointer to function> ::= *<function type>
<pointer type identifier> ::= <identifier>

Adaptable pointers provide the sole mechanism for accessing
objects of adaptable type, other than through formal parameters of
procedures. In particular, adaptable pointers and bound variant
pointers are used to access instances of adaptable variables and
bound variant records whose type has been 'fixed' by an allocate, a

push or a next statement.

CDC Private

4-9
CYBER IMPLEMENTATION LANGUAGE

~ , 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

4.0 CYBIL TYPES
4.3.1.4 Pointer Type

Pointers are equivalent if they are defined in terms of equivalent
types. A pointer to a fixed type may be assigned and compared to an
adaptable pointer or bound variant record pointer if the adaptable
type is potentially equivalent to the fixed type.

See Section 10.2, Assignment Statements, for rules governing
pointer assignment.

4.3.1.4.1 POINTER TO CELL

<pointer to cell> ::= %cell

A pointer to cell is a pointer type.

Permissible Operations: as for pointers; in addition, pointers to
cell may be assigned to any pointer to fixed or bound variant type.
Such an assignment must not result in a pointer to fixed or bound
variant type having as its value a pointer to a variable that is not
of cell type and whose type is not equivalent to that to which the
target of the assignment is bound. Pointer to cell may be the target
of assignment of any pointer to fixed, adaptable or bound variant
type. . :

4.3.1.5 Relative Pointer Types

Relative pointer types represent relative locations (with respect
to the beginning of some composite object) of components of such
objects.

<relative pointer type> ::=
rel (<parental type>) % <object type>

<parental type> ::= <storage type>
| <adaptable storage type>
<aggregate type>
<adaptable aggregate type>
<object type> ::= <type>

Relative pointers provide three facilities not given by pointer
types:

1. A relative pointer variable may require less space than a pointer
variable.

2. A linked list or array of relative pointers (or a similar pointer
network) within a parental variable 1is still correct if that

CDC Private

: 4-10
CYBER IMPLEMENTATION LANGUAGE

. 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
4.0 CYBIL TYPES .
4.3.1.5 Relative Pointer Types

entire variable is assigned to another variable of the same
parental type.

3. Relative pointers are independent of the base address of the
parental variable.

Relative pointer values can be generated solely through the
built-in function f#rel whose arguments are a pointer variable and an
optional parental variable.

Relative pointers cannot be used to access data directly. Such

data must be accessed through a pointer generated by the built-in

function #fptr whose arguments are a relative pointer variable and an
optional parental variable.

Relative pointer types are equivalent if they are defined in terms
of equivalent parental types and equivalent object types.

Permissible Operations: assignment, #PTR function, and comparison
for equality and inequality only. Relative pointers are assignable
and comparable if they are of equivalent relative pointer types.

4.3,2 STRUCTURED TYPES

Structured types represent collections of components, and are
defined by describing their component types and indicating a
so-called structuring method. These differ in the accessing
discipline and notation used to select individual components. Four
structuring methods are available: set structure, string structure,
array structure, and record structure. Each will be described in the
sequel.

<structured type> ::= <set type>
|<aggregate_type>

<aggregate type> ::= <string type>

<array type>
I<record type>

CDC Private

4-11
CYBER IMPLEMENTATION LANGUAGE

: 86/03/06
. CYBIL LANGUAGE SPECIFICATION ' : REV: 8
4,0 CYBIL TYPES
4.3.2.1 Set Type
4.3.2.1 Set Type
<set type> ::= set of <base type>
|<set type identifier>
<base type> ::= <scalar type>
<set type identifier> ::= <scalar identifier>
<scalar identifier> ::= <identifier>
A set type represents the set of all subsets of values of the base
type. The number of elements defined by the base type must be
constrained (consider, e.g., set of integer). The number of elements
will be implementation dependent, but no less than 256 (to
accommodate set of char).
Set types are equivalent if they have equivalent base types.
- Permissible operations: assignment, intersection, union,
N difference, symmetric difference, negation, inclusion, identity,
t membership.
Example: The set, akcess, declared by
*
type akcess = set of (no_read, no_write, no_execute)
represents the set of the following subsets of values of its ordinal
base type:
Sakcess [] {the empty set} - -
Sakcess [no_read]
Sakcess [no_write]
Sakcess [no_execute]
Sakcess [no_read, no_write]
Sakcess [no_read, no_execute]
Sakcess [no_write, no_execute]
- Sakcess [no_read, no_write, no_execute] {the full set}
where the notation "Sakcess [...]" denotes a value constructor for
the set type, akcess. Note that succ and pred are not defined for
set types. The values of a set variable are only partially ordered
by set inclusion. $akcess [no_read] and Sakcess [no_write] satisfy
no order relation except inequality.
(

CDC Private

4-12
CYBER IMPLEMENTATION LANGUAGE

| 86/03/06
CYBIL LANGUAGE SPECIFICATION ' REV: 8

4.0 CYBIL TYPES

4.3.2.2 String Type

4.3.2.2 String Type

A string type represents ordered n—tuples of values of character
type.

<string type> ::= <fixed string>
<string type identifier>

<fixed string> ::= string (<length>)
<length> ::= <positive integer constant expression>
<string type identifier> ::= <identifier>

A fixed string of length n represents all ordered n-tuples of
values of character type. The length must be a positive integer
constant expression in the range 1 to 65535.

An ordered k-tuple of the values of a string (1 <= k <= n) is
called a substring. Notation for accessing substrings is provided.

Two string types are equivalent if they have the same length.

Strings of different length may be assigned and compared. The
shorter is blank-filled on the right £for comparisons and for
assignments to longer strings; truncation on the right is applied for
assignments to shorter strings. Characters may be compared and
assigned to strings of any length, and are treated as strings of
length one in such cases. Substrings of length one are treated as

oo characters in . several specific instances —— see Substring References

m L o e ke M2
dd LiidldliLel nererences.

Permissible operations: assignment, comparison (all six relational
operators), and standard procedures and functions.

4.3.2.3 Array Type

An array type represents a structure consisting of components of
the same type. Each component is selected by an array selector
consisting of an ordered set of n index values whose scalar type is
indicated by the indices in the definition.

CDC Private

-

4.3.2.3.1 PACKED ARRAYS

: : 4-13
CYBER IMPLEMENTATION LANGUAGE

| 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
4.0 CYBIL TYPES
4.3.2.3 Array Type

<array type> ::= [packed]<array type identifier>
| [packed] <array spec>

<array spec>
' index>] of <component type>

<index> ::= <scalar type>
| <constant scalar expression>
..<constant scalar expression>

<component type> ::= <fixed type>

Two array types are equivalent if they have the same packing, have
equivalent component types, and indexes are of équivalent type.

Permissible operations: assignment and applicable standard

procedures and functions.

Packing attributes are used to specify storage space versus access
time tradeoffs for array components. Components of a packed array
will be mapped onto storage so as to conserve storage space at the
possible expense of access time. The array itself (the collection of
components) is always mapped onto an addressable memory location.

CDC Private

4-14
CYBER IMPLEMENTATION LANGUAGE :
86/03/06

CYBIL LANGUAGE SPECIFICATION ' REV: 8
" 4,0 CYBIL TYPES
4,3.2.3.2 EXAMPLES OF ARRAY TYPE

4.3.2.3.2 EXAMPLES OF ARRAY TYPE

type hotness = array [color] of non_negative_integer,
token_code = array [char] of token_class,
arrayl = array [100..200] of 100..300,

il = 1..100,
i2 = 100..200,
sl = 100..300,

array2 = array [il] of arrayl,
array2b = array [il] of array [i2] of sl;

The array types 'array2' and ‘'array2b' are alternate ways of
defining an array of arrays.

4.3.2.4 Record Type

A record type represents a structure consisting of a fixed number
of components called fields. Fields are defined in terms of their
types and associated field selectors, which are identifiers uniquely
denoting that field among all other fields of the record.

Permissible operations: assignment, and comparison of invariant
records (containing no arrays, heaps, or sequences as fields) for
equality and inequality only.

<record type> ::= <invariant record type>
|<variant record type>

L 2 9 5 1 T
MeJdedeTe d JiVVANLAN

<invariant record type> ::=
[packed] <invariant record type identifier>
| [packed] <invariant record spec>

<invariant record type identifier> ::= <identifier>

<invariant record spec> ::=
record <fixed fields> <recend>

<fixed fields> ::= <fixed field> {, <fixed field>}
<fixed field> ::= <field selectors> : [<alignment>] <fixed type>

<field selectors> ::= <field selector> {,<field selector>}
<field selector> ::= <identifier> .

<recend> ::= [,]recend

CDC Private

P

P

4-15
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYRIL LANGUAGE SPECIFICATION REV: 8
4.0 CYBIL TYPES
4,3.2.4.,1 INVARIANT RECORDS

See section 4.8 for a discussion on alignment.
4,3.2.4.2 VARIANT RECORDS AND CASE PARTS

A variant record consists of zero or more fixed fields followed by
one and only one case part. A case part is a composite field that
may assume values of different types during execution of a program.
It is defined in terms of an optional tag field, and a list of the
admissible types (called variants) together with associated selection

specs. During execution, the value of the tag field may be used to
determine the variant currently in use by being matched against the
selection specs associated with each variant. The variants
themselves may consist of 2zero or more fixed fields, optionally
followed by one and only one case part.

Access to a variant other than the currently active variant

Aafimad ra +

neanditras undaf o as
proguces ungeiine es

1ts

tagged variant record is the one associated with the current value of
the tag field selector. The currently active variation of a tagless
variant record 1is {the one associated with the fieid that was the
target of the last assignment to a field selector in the variations.
Thus, the currently active variation changes when the tag field
changes if there is a tag field or when an assignment is made to a
field in a variation other than the currently active variation for
tagless variant records. When this happens all fields in the newly
active variation become undefined except for the target of the
assignment for tagless variant records.

o Tha rurrant o ast e variabkian of a

P L= UL L CaLay aviave Vel iSL iUl <

The space allocated for a variant record 1is the size of the
largest variant regardless of which variant is used.

<variant record type> ::=
[<packed>] <variant record type identifier>
| [<packed>] <variant record spec>

<variant record type identifier> ::= <identifier>

<variant record spec> ::=
record [<fixed fields>,] <case part> <recend>

<case part> ::= case <tag field spec> of
<variations><casend>

<tag field spec> ::= [<tag field selector> :] <tag

<tag field selector>
<tag field type> ::=

::= <identifier>
<scalar type>

field type>

<variations> ::= <variation> {, <variation>}
<variation> ::= =<gelection specs>= <variant>

CDC Private

4-16
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
4.0 CYBIL TYPES
4.3.2.4.2 VARIANT RECORDS AND CASE PARTS

<selection specs> ::= <selection spec>
{, <selection spec>}
<selection spec> ::= <constant scalar expression>
[..<constant scalar expression>]

<variant> ::= [<fixed fields>]
| [<fixed fields>,] <case part>

<casend> ::= [,] casend

With a <selection spec> of the form constant scalar expressionl ..
constant scalar expression2 the following rule applies:
lowervalue (<tag field type>) <= <constant scalar expressionl> <=
<constant scalar expression2> <= uppervalue (<tag field type>). The
subrange selection specification signifies all of the constants in
the inclusive range from constant scalar expressionl up through and
including constant scalar expression2. It is semantically equivalent
to having all the constants in the range, constant scalar expressionl
through constant scalar expression2, listed separately in selection
specs.

4.,3.2.4.3 RECORD TYPE EQUIVALENCE

Two invariant record types are equivalent if they have the same
packing, the same number of fields, and if corresponding fields have
identical field selectors, the same alignment and equivalent types.
Two variant record types are equivalent if they have the same
packing, their fixed parts, considered as invariant record types, are
equivalent, their tag field selectors are identical, their tag field
types are equivalent, their selection specs are the same, and their
corresponding variants, considered as record types (either variant or
invariant) are equivalent. Note that.this definition is recursive.

4,3.2.4.4 PACKED RECORDS

Packing attributes are used to specify storage space versus access
time tradeoffs for fields of records. Fields of packed records are
mapped onto storage so as to conserve space at the possible expense
of time. See section 4.7 and 4.8 for more details.

4.3.2.4.5 EXAMPLES OF RECORD TYPE

Ltype

date = record
day : 1..31,
month : string (4),
year : 1900..2100,
recend,

CDC Private

o -

4-17
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
4.0 CYBIL TYPES
4.3.2.4.5 EXAMPLES OF RECORD TYPE

status = record
age : 6..66,
married,

red book = record
name : string (3),
rstatus : status,
scores : array[0..6] of date,

recend,
shape = (triangle, rectangle, circle),
angle = -180..180,
figure = record
X,
Y,

area : real, {figure is a variant record type}
case s : shape of

= triangle =
size : real,
inclination,
anglel,
angieZ : angle,
= rectangle=
sidel,
side2 : integer,
skew,
angle3 : angle,
= circle =
diameter: integer,
casend,
recend;

4.3.3 STORAGE TYPES
Storage types represent structures to which other variables may be
added, deleted, and referenced under explicit program control.

<storage type> ::= <sequence type>
I<heap type>

4.3.3.1 Sequence Type

<sequence type> ::= seq (<space>)
l <sequence type identifier>

CDC Private

4-18
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

4.0 CYBIL TYPES
4.3.3.1 Sequence Type

<sequence type identifier> ::= <identifier>

A sequence type represents a storage structure whose components
are referenced (by a sequential accessing discipline) through
pointers constructed as by-products of the next and reset operations.
In addition, sequences may be assigned to seguences; no other
operations are allowed.

Two sequences are equivalent if they have equivalent spaces.

4.3.3.2 Heap Type

<heap type> ::= heap (<space>)
| <heap type identifier>

<heap type identifier> ::= <identifier>

A heap type represents a structure whose components can be
explicitly allocated (by the allocate statement) and freed (by the
free and reset statements), and which are referenced by pointers
constructed as by-products of the allocate statement. No other
operations on heaps are allowed.

Two heaps are equivalent if they have equivalent spaces.

A default heap, that can be managed in the same manner as
user—defined heaps, is provided.

4.3.3.3 Sequence and Heap Space

<space> ::= <fixed span>{,<fixed span>}

<fixed span> ::=
[rep <positive integer constant expression> of]
<fixed type identifier>

<positive integer constant expression> ::=
<constant scalar expression>

<fixed type identifier> ::= <identifier>
|<pre-defined type identifier>

<pre-defined type identifier> ::= integer | boolean | char
l real ‘ longreal cell

A space attribute of the general form

CDC Private

-

4-19
CYBER IMPLEMENTATION LANGUAGE

. 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
4.0 CYBIL TYPES
4.3.3.3 Sequence and Heap Space

rep nl of typel, rep n2 of type2, ...

specifies a requirement that sufficient space be provided to
simultaneously hold nl instances of variables of typel, n2 instances
of variables of type2, and so on.

Two spaces are equivalent if they have the same number of spans,
and corresponding spans are equivalent. Two spans are equivalent if
they have the same number of repetitions of equivalent types.

The space attribute places no restriction on the types of the
variables that may be stored in a sequence or heap, other than that
the space available for storage (as defined by the space attribute)
be large enough to hold that many instances of the <fixed type
identifier>. For example, the space attribute may be defined solely
in terms of integers, but the sequence or heap fi

strings of characters and boolean variables.

s
Yy wiiu

4.4 ADAPTABLE TYPES

Adaptable types are structural skeletons of aggregate and storage
types containing indefinite bounds, indicated by an asterisk. They
may be used solely to define formal parameters of procedures and
adaptable pointers, the latter providing a mechanism for referencing
variables of such types.

Adaptable types represent classes of related types to which they
can adapt. Adaptation to such an instantaneous type can occur in
three distinct ways:

Adaptable types can be explicitly fixed by the use of allocation
designators associated with storage management statements.

Adaptable types used as formal parameters are fixed by the actual
parameters specified at procedure activation.

Adaptable pointer types wused as left parts of assignment
statements are fixed by the assignment operation.

<adaptable type> ::= <adaptable aggregate type>
|<adaptab1e storage type>

<adaptable aggregate type> ::= <adaptable string>
<adaptable array>

<adaptable record>

<adaptable storage type> ::= <adaptable sequence>
<adaptable heap>

CDC Private

4-20
CYBER IMPLEMENTATION LANGUAGE
) 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

4.0 CYBIL TYPES
4,4.1 ADAPTABLE STRING

4.4.1 ADAPTABLE STRING

Adaptable strings can adapt to strings of length 0 to 65535.

<adaptable string> ::= <adaptable fixed string>
| <adaptable string identifier>

<adaptable fixed string> ::= string (<adaptable string length>)
<adaptable string length> ::= * | * <= <adaptable string bound>
<adaptable string bound> ::= <length>

<adaptable string identifier> ::= <identifier>

If the adaptable string bound is not specified a string of maximum
allowable length is permitted.

In addition any string operation which exceeds the length
specified by the adaptable string bound shall be an error and
appropriate compile and run time checks will be included.

Two adaptable string types are always equivalent.

4.4,.2 ADAPTABLE ARRAY

Adaptable arrays adapt to a specific range of subscripts.

Adaptable arrays can adapt to any array with the same packing,
equivalent component types and indexes of integer type. If the lower
bound 1is provided by the lower bound spec, the adaptable array can
adapt only to arrays with an identical value for the lower bound.
<adaptable array> ::=

[packed] <adaptable array identifier>
| [packed]<adaptable array spec>

<adaptable array identifier> ::= <identifier>

<adaptable array spec> ::=
array L<adaptab1e array bound spec>l of <component type>

<adaptable array bound spec> ::= <lower bound spec> .. *
*

<lower bound spec> ::= <constant integer expression>

CDC Private

4-21
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION , REV: 8

4.0 CYBIL TYPES
4,.4,2

.4.2 ADAPTABLE ARRAY

<constant integer expression> ::= <constant expression>
The asterisk (*) indicates an adaptable bound of integer type.

Adaptable array (iypes are equivalent if they have the same
packing, and equivalent component types, and if corresponding array
and component indices are equivalent. Two starred indices are always
equivalent. Two starred indices with the lower bound spec selected
are equivalent if their lower values are the same.

4.4,3 ADAPTABLE RECORD

Adaptable records consist of zero or more fixed fields followed by
one and only one adaptable field, which is a field of adaptable type.

Adaptable records can adapt to any record whose type is the same
except for the type of its last field, which must be one to which the
adaptable field can adapt.
<adaptable record> ::=

[packed] <adaptable record type identifier>
| [packed] <adaptable record spec>
<adaptable record type identifier> ::= <identifier>

<adaptable record spec> ::= .
record[<fixed fields>,]<adaptable field><recend>

<adaptable field> ::=
<field selector>:[<alignment>]<adaptable type>

Two adaptable record types are equivalent if they have the same
packing, the same alignment, the same number of fields, and
corresponding fields have identical field selectors and equivalent
types.

4.4,4 ADAPTABLE SEQUENCE

Adaptable sequences can adapt to a sequence of any size.

<adaptable sequence> ::= seq (*)
|<adaptab1e sequence identifier>

<adaptable sequence identifier> ::= <identifier>

The space for an adaptable sequence can be fixed by a ,

CDC Private

4-22
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

4.0 CYBIL TYPES
4.4.4 ADAPTABLE SEQUENCE

Two adaptable sequence types are always equivalent.

4.4.5 ADAPTABLE HEAP

Adaptable heaps can adapt to a heap of any size.

<adaptable heap> ::= heap(*) .
|<adaptab1e heap identifier>

<adaptable heap identifier> ::= <identifier>
The space for an adaptable heap can be fixed by a .
Two adaptable heap types are always equivalent.

4.5 PROCEDURE TYPE

Procedures are identified portions of programs that can be
activated on demand. Refer to chapters 8.0 and 10.0 for the
semantics of procedures.

A procedure type defines an optional ordered list of formal
parameters.

<procedure type> ::= <procedure type identifier>
Igrocedure <proc type spec>

<procedure type identifier> ::= <identifier>

Procedure types are used for declaration of pointers to
procedures, there are no procedure variables.

Two procedure types are equivalent if corresponding param segments
have the same number of formal parameters, identical methods
(reference or value), and equivalent.types.

4.6 FUNCTION TYPE

Functions are identified portions of programs that can be
activated on demand. Refer to chapters 8.0 and 10.0 for the
semantics of functions.

A function type defines an optional ordered 1list of formal
parameters together with a return type.

<function type> ::= <function type identifier>

CDC Private

4-23
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

4,0 CYBIL TYPES
4.6 FUNCTION TYPE

Ifunction <func type spec>
<function type identifier> ::= <identifier>

Function types are used for declaration of pointers to functions,
there are no function variables. A "pointer to function' by default
will be unsafe.

Two function types are equivalent if corresponding param segments
have the same number of formal parameters, identical methods
(reference or value), equivalent types and if their return types are
equivalent.

4,7 BOUND VARIANT RECORD TYPE

A bound variant record is a variant record whose case pari is
meant to be fixed to one of its constituent variants by the use of a
tag field fixer. For bound variant records the <tag field selector>
is required. These are space savxng constructs, since only the space
required for the selected variant is allocated.

Access to a variant other than the currently active variant
produces undefined results. The currently active variation of a
bound variant record is the one associated with the current value of
the tag field selector. Thus, the currently active variation changes
when the tag field changes.

<bound variant record type> ::=
[packed] <bound variant record type identifier>
[packed] bound <variant record spec>
[packed] bound <variant record type identifier>

<bound variant record type identifier> ::=
<variant record type identifier>

A bound variant record type may only be used to define pointers
for bound variant record types (i.e., bound variant pointers). Thus
a variable of this type is always allocated in a sequence or a heap,
or in the system—managed stack.

An allocation statement for a bound variant record type requires
the specification of the tag field values, which select the variation
of the record allocated. In this case, only the specified space 1is
allocated. A bound variant pointer is returned by such an allocate
statement. It is not legal to assign directly into the tag field
selector for a bound variant record.

If a formal parameter of a procedure is of variant record type,

CDC Private

4-24
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

4,0 CYBIL TYPES
4.7 BOUND VARIANT RECORD TYPE

then the actual parameter may not be of bound variant record type.

_Record assignment is not allowed to a variable of bound variant
record type.

Two bound variant record types are equivalent if they are defined
in terms of equivalent, unbound records. A bound variant record type
is never equivalent to a variant record type.

4.8 PACKING

A packed structure will generally require 1less space at the
possible cost of greater overhead associated with access to its
components. If the packing attribute is unspecified, then the
structure is assumed to be unpacked. An inner structure does not
inherit the packing of any containing structure. Elements of packed
structures are not guaranteed to.lie on addressable memory units.

4.9 ALIGNMENT

<alignment> ::= aligned [[<offset> mod <base>]]
<offset> ::= <integer constant>

<base> ::= <integer constant>

The aligned attribute must be used to emsure addresssbility of
fields within packed records. Addressability is achieved at the
possible expense of storage space, so that the effect of packing may
be diluted.

Unpacked structures and their components are always addressable.
Packed structures are also addressable unless they are unaligned
components of a packed structure, but their components are not unless
they are explicitly given the aligned attribute. For a field of a
packed record to be passed as a reference parameter the field must be
aligned. Aligning the first field of a record aligns the record.

A second usage of the alignment feature is to cause variables of
type record, to be mapped onto a specified hardware address relative
to a specified base and offset. The offset value must be less than
the base and the base must be divisible by a machine dependent value,
reflecting the characteristics of the machine addressing mechanisms.
The result 1is that an anonymous filler is created if necessary to
ensure that the field begins on the specified addressable unit. For
automatic variables, the base may only be a machine dependent value,
reflecting the characteristics of the machine addressing mechanisms.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

)

4-25

86/03/06

YBIL LANGUAGE SPECIFICATION REV: 8

4.0 CYBIL TYPES
4.9 ALIGNMENT

The <offset> and <base> elements are cell counts.

4.10 OTHER ASPECTS OF TYPES

4,10.1 VALUE AND NON-VALUE TYPES

Value assignments are permitted only to variables of the so—called

value types. The non-value types are:

A)
B)
c)

Heaps.
Arrays of non-value component types.
Records containing a field of non—-value type.

4.10.2 COMPARABLE AND NON-COMPARABLE TYPES

Value comparisons are permitted only between variables of the

so-called comparable types. The non-comparable types are:

A)
B)
(0]
D)
E)

Heaps.

Sequences.

Arrays.

Variant records.

Records containing a field of non—comparable type.

4,10.3 FUNCTION-RETURN TYPES

The only types that can be associated with returned values of

functions are the basic types:

A)
B)
(0]

D)

Integer, char, boolean, ordinal types, subrange types,

pointer types,
floating point types,
cell types.

4.10.4 TYPE CONVERSION

Mechanisms for converting values of some scalar types to values of

others are provided.

A)

B)

Ordinal, character and boolean values are convertible to integer
values through the $integer function.

Integer values between 0 and 255 are convertible to characters by
the Schar function.

CDC Private

4-26
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

4.0 CYBIL TYPES
4.10.5 TYPE MIXING

4.10.5 TYPE MIXING

Any variant record whose purpose is to allow type casting
(conversion) of one given data structure onto another must only
modify the variants directly; the use of pointer indirection to
change such a record variant may cause undefined results. The CYBIL
language and supporting compilers guarantee support only for this
immediate type casting; indirect type casting violates language rules
and is not supported.

CDC Private

5-1
CYBER IMPLEMENTATION LANGUAGE ’
86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

5.0 VALUES AND VALUE CONSTRUCTORS

5.0 VALUES AND VALUE CONSTRUCTORS

Two mechanisms are provided for explicitly denoting values:
constants and value constructors. Constants are used to denote
constant values of the basic types and strings. Value constructors
are used to denote instances of values of set, array and record
types. There are two kinds of value constructors: set value
constructors, which include specific type identification; and
indefinite value constructors, whose type must be determined

contextually.

5.1 CONSTANTS AND CONSTANT DECLARATIONS

5.1.1 CONSTANTS

Constants are used to denote instances of values of the basic
types and of string types.

<constant> ::= <basic constant>|<string constant>

<basic constant> ::= <scalar constant>
<floating point constant>
<pointer constant>

<scalar constant> ::= <ordinal constant>
<boolean constant>
<integer constant>
<character constant>

<ordinal constant> ::= <ordinal constant identifier>

<boolean constant> ::= false | true
<boolean constant identifier>

<boolean constant identifier> ::= <identifier>
<integer constant> ::= <integer> | <integer constant identifier>
<character constant> ::= '<char token>'

Schar (<integer constant>)

<character constant identifier>

<char token> ::= <alphabet>
"' {two apostrophes}

<character constant identifier> ::= <identifier>

CDC Private

5-2
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

5.0 VALUES AND VALUE CONSTRUCTORS
5.1.1 CONSTANTS

<floating point constant> ::= <real constant>
<longreal constant>

<real constant> ::= <real number> | <real constant identifier>
<real constant identifier> ::= <identifier>

<real number ::= <unscaled number>
| <scaled number>

<unscaled number> ::= <digit> {<digit>}. <digit>{<digit>}
<scaled number> ;:= <mantissa> E<exponent>

<mantissa> ::= <digit>{<digit>}[.]{<digit>}

<exponent> ::= [<sign>]<digit>{<digit>}

<longreal constant> ::= <longreal number>
| <longreal constant identifier>

<longreal constant identifier> ::= <identifier>
<longreal number> ::= <mantissa> D<exponent>

<string constant> ::= <string term>
{ cat <string term>}

<string term> ::= <character constant>
| ' [<char token> <char token> {<char token>}]’

<pointer constant> ::= ni
<integer constant identifier> ::= <identifier>

‘<integer> ::= <digit>{<digit>}
| <digit>{<hex digit>}<base designator>

<hex digit> ::= A[(B|C|D|E|F
|a bjc|d|e|f
|<digit>

<base designator> ::= (<radix>)

<radix> ::= 2 | 8 | 10 | 16
If the base designator is omitted from an integer, then a radix of
10 is- assumed. In all cases, the digits (or hex digits) are

constrained to be less than the specified radix.

CDC Private

L -

5-3
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

5.0 VALUES AND VALUE CONSTRUCTORS
5.1.1 CONSTANTS

Note that string constants can be empty, that is, of zero iength.

- 5.1.,2 CONSTANT EXPRESSIONS

<constant scalar expression> ::= <constant expression>
<constant expression> ::= <simple expression>

Constant expressions are constructs denoting rules of computation
for obtaining scalar or string type values (at compile time) by the
application of operators to operands. The rules of application are
those for expressions (see section 9) with the following constraints:
ither constants, constant
essions.

A) Fact

-+ o
o
» o
-
Lo B

expressions (terms involving

-1 L= Lo Lol

B) The expressions must be simpl
relationals must be parenthesize

C) The only functions allowed as factors in such expressions are the
$integer, Schar, succ and pred functions with constant
expressions as arguments.

D) Substring references are not allowed.
5.1.3 CONSTANT DECLARATIONS
Constant declarations are wused to introduce identifiers for

constant values. Once declared, such a constant identifier can be
used elsewhere to stand for the identified value.

<constant declaration> ::=
const <constant spec> {, <constant spec>}

<constant spec> ::= <identifier> = <constant expression>

A constant spec associates an identifier with the value and the
type of the constant expression.

5.2 SET VALUE CONSTRUCTORS

Set value constructors are used to denote instances of values of a
specified set type, and to denote instances of typed empty sets.

CDC Private

5-4
CYBER IMPLEMENTATION LANGUAGE
4 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
5.0 VALUES AND VALUE CONSTRUCTORS
5.2 SET VALUE CONSTRUCTORS

<set value constructor> ::=
S<set type identifier>

1 {the empty set}
| S<set type identifier> l

]
<set value elements>]
<set value elements> ::= <set value element>

{,<set value element>}

<set value element> ::= <expression>

Identifiers for set value constructors are obtained by prefixing
the 'target set type' identifier with a dollar sign, 'S$'. The types
of the elements of the value constructor must match the ordered set
of components of the specified target type. Set value constructors
can be used wherever an expression can be used.

A set value element is an expression whose value is of the base
type of the set. The elements of a set are unordered. Note that a
set value may be defined to be 'empty' by not placing any elements
between the brackets: [and].

5.3 INDEFINITE VALUE CONSTRUCTORS

Indefinite value constructors are used to denote instances of set,
array, or record type.

<value elements> ::=
<value element>{,<value element>}

<value element> ::=
[<rep spec>]<initialization expression>
[<rep spec>]<set value constructor>
[<rep spec>]<indefinite value constructor>
[<rep spec>] *

<rep spec> ::= rep <positive integer constant expression> of
g or

The meaning of a value constructor is that the list of values are
assigned to the fields of a record or to the components of an array
in their natural order. The types of the elements of the value
constructor must match those of the components of the aggregate type
for which they provide the values.

Rep specs may be used solely for array construction, and indicate
that the next n values are the same, as given by the value following

CDC Private

;’”‘t

5-5
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

5.0 VALUES AND VALUE CONSTRUCTORS
5.3 INDEFINITE VALUE CONSTRUCTORS

the "OF".

Indefinite value constructors can be used only where their type is
explicitly indicated by the context in which they occur: as elements
of indefinite value constructors, and for the initialization of
variables (see the discussion on Initialization in Section 6).

The asterisk form for a value element indicates that an undefined
value may be assigned to the field or component at this position in
the value list, wunless it is a pointer in which case it is
initialized to nil.

CDC Private

6-1
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

6.0 VARIABLES

6.0 VARIABLES

6.1 VARIABLES AND VARIABLE DECLARATIONS

Variables take on values of a specific type (or range of types).

Variables of fixed type can be declared by an explicit variable
declaration (see below) or can be declared as formal parameters of
procedures.

Variables of adaptable type can only be declared as formal
parameters of procedures, or must otherwise be explicitly established
by storage management operations.

6.1.1 ESTABLISHING VARIABLES

This process involves:
A) The determination of the type of the variable;

B) The allocation of storage for values to be taken on by the
variable;

C) The possible assignment of initial values to the variable;
D) The possible binding of references (see below) to that variable.

Locally declared variables are automatically established on each

arnbemer Fa Flha meanad. Lromat o hlanl wahinh Fthatr rzeara dasnlarad
Slivey LU 198+ 1] ytvucuu&c O Tundiilnl C.0CK ind Whila gy WwWere geciarec.

However, so-called 'static' variables are established once and only
once.

Formal parameters of procedures are automatically established on
each call of that procedure.

So-called ‘'allocated' wvariables are established by storage
management operations (for type determination and storage allocation)
and by assignment operations (for initialization).

6.1.2 TYPING OF VARIABLES

Adaptable types and bound variant record types actually define
classes of related types. Variables of such types (and pointers to
such variables) are explicitly meant to be 'fixed' to any or all
types of their type-class at different times during the execution of

CDC Private

6-2
CYBER IMPLEMENTATION LANGUAGE

] 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
6.0 VARIABLES
6.1.2 TYPING OF VARIABLES

a program.

6.1.2.1 Instantaneous Types

The type to which a variable is fixed at a specific time during
execution of a program is called its instantaneous type (at that
time). It is a variable's instantaneous type that is actually used
to determine the operations it may enter into at any point in time.

Variables of adaptable and bound variant record type are fixed in
three distinct ways:

A) TFormal parameters of adaptable types are fixed by the
instantaneous types of their corresponding actual parameters on
£1

aarh nracadure ~all on
gacn precgeqgure call ¢

part. (See Section 10.5.1 for the rules for fixing parameters.)

netion reference of which they are 2

- Uil SLLILLe VL wiiledl Ty

B) Expiicitly aliocated variabies of such types are fixed by the
allocation operation.

C) A pointer whose instantaneous type is any of the types to which
an adaptable pointer can adapt, can be assigned to that adaptable
pointer. In such cases, both the value and the type are
assigned, thus fixing the instantaneous type of the adaptable
pointer.

CDC Private

6-3
CYBER IMPLEMENTATION LANGUAGE

- 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
6.0 VARIABLES
6.1.3 EXPLICIT VARIABLE DECLARATIONS

6.1.3 EXPLICIT VARIABLE DECLARATIONS

Variables are explicitly declared in terms of an identifier for
denoting them, a type, an optional set of attributes and an optional
initialization for static variables.

<variable declaration> ::=
var <variable spec>
,<variable spec>}

<variable spec> ::=
<variable identifiers> : [<attributes>]
<fixed type>[<initialization>]

<variable identifiers> ::=
<variable identifier> [<alias>]
{,<variable identifier>[<alias>]}

<variable identifier> ::= <identifier>
6.2 ATTRIBUTES
<attributes> ::= [<attribute>{,<attribute>}]

<attribute> ::= <access attribute>
<storage attribute>
|<scope attribute>

6.2.1 ACCESS ATTRIBUTE
<access atiribute> ::= read

Variables declared with the read attribute are called 'read-only'
variables. Such variables inherit the static attribute, must be
initialized, may not be used as objects of assignment, and may be
used as actual parameters only if the corresponding formal parameter
is not a var parameter. The read attribute is wused for compiler
checking on access to variables and does not imply the variables
residence in read-only storage on computer systems where that
facility is provided. If the access attribute is not specified read
and write access is implied.

Examples:
var vl : [read] integer := 10; fvl is read only, but

{initialization is valid}
var v2 : integer ; {v2 may be read and written}

CDC Private

6-4
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

6.0 VARIABLES
6.2.2 STORAGE ATTRIBUTES AND LIFETIMES

6.2.2 STORAGE ATTRIBUTES AND LIFETIMES

<storage attribute> ::= static | <section name>

Storage attribute specifies when storage for an explicitly
declared variable is to be allocated (and initial values assigned if
necessary) and when it is to be freed (at which time values of the
variable become undefined). The programmatic domain in effect
between the time such storage is allocated and the time it is freed
is called the 'lifetime' of the variable.

6.2.2.1 Automatic Variables

The lifetime of an automatic variable is the block in which it was
declared: allocation occurs on each entry to that block and freeing
occurs on each exit from that block. Variables not explicitly or
implicitly declared static have the automatic attribute.

6.2.2.2 Static Variables

The lifetime of a static variable is the entire program:
allocation and initialization occur once and only once (at a time not
later than initial entry to the block in which the variable was
declared), and storage is not freed on exits from that block.

6.2.2.3 Lifetime Conventions

If neither storage attributes nor scope attributes are specified,
then the variable is treated as an automatic variable, unless the
variable is at the outermost level of a module body.

If the static attribute is specified then the variable is treated
as a static variable.

If any of the scope attributes are specified, then the variable is
treated as a static variable.

Variables declared at the outermost level of a module body are
treated as static variables.

6.2.2.4 Lifetime of Formal Parameters

The lifetime of a formal parameter is the lifetime of the

CDC Private

~ 6-5
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

ARIABLES

6.0V
6.2.2.4 Lifetime of Formal Parameters

procedure of which it is a part: the formal parameter is established
on each entry to the procedure, and becomes undefined on exits from
the procedure.

6.2.2.5 Lifetime of Allocated Variables

Allocated variables are established (but not initialized, except
in the case of tag fields of bound variant records) by an explicit
allocation operation, and become undefined when they are explicitly
freed.

6.2.2.6 Pointer Lifetimes

Warning: Note that generally a pointer value has a finite lifetime
different from that of the pointer variable. Automatic variables
cease to exist on exit from the block in which they were declared.
Allocated variables cease to exist when they are freed or when their
containing variable ceases to exist. Attempts to reference
non—-existent variables by a designator beyond their lifetime is a
programming error and could lead to disastrous results. Failure to
free a variable allocated via an automatic pointer before the
containing procedure returns will prevent space for that variable
from ever being released by the program.

6.2.3 SCOPE ATTRIBUTES

<scope attribute> ::= xdcl | xref | ate

Variable identifiers are used in variable denotations. Scope
attributes specify the regimen to be used to associate instances of
variable identifiers with instances of wvariable specs. The

programmatic domain over which a variable spec is associated with
instances of its associated variable identifiers that are used in
variable denotations, is called the scope of that spec. If no scope
attribute is specified, the spec is said to be internal to the
procedure or function block in which it occurs, and a so—called block
-structuring regimen is used.

Internal variables are always automatic variables (see above)
unless given a storage attribute, while scope-attributed variables
are always static. Each of the scope attributes specifies certain
deviations from the block-structuring regimen. Broadly speaking; a
variable identifier associated with an xref variable can be used to
denote a similarly identified variable having the xdcl attribute,
subject only to reasonable rules of specificational conformity.

CDC Private

A,

7 -
e 1

6-6
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION » REV: 8
6.0 VARIABLES
6.2.3 SCOPE ATTRIBUTES

Xref variables can not be initialized, and each carries the
de—facto static storage attribute.

For more details on scope attributes, see section 7.
There should exist only one declaration of a given variable or

. . s . . . c o s
procedure with the xdcl attribute within s compilation unit or withi

a group of compilation units to be combined for execution.

j+]

The ate attribute is an extension of the xdcl attribute to
extend the protection provided for in the environment provided by the
operating system. It may not be relevant on all computer systems.
Specifying the ffgate attribute without also specifying xdcl is a
compilation error.

6.3 INITIALIZATION

| U R N R N A o=
diiiligiilairivils alL

static variables.

w
[=
w
o
[+
cr
<
v

T
qQ
[¢
3
-

«
b
€

I
"

<initialization> ::= := <initialization expression>

<initialization expression> ::= <constant expression>
<indefinite value constructor>
t*<global proc name>

<global proc name> ::= <procedure identifier>

When the variable is established, the type of the variable is
determined, storage for a variable of that type is allocated as a
static variable, the initialization expression is evaluated, and the
resultant wvalue 1is assigned to the variable according to the normal
rules for assignment.

6.3.1 INITIALIZATION CONSTRAINTS

1) If no initialization 1is specified, the initial wvalue is
undefined, except that all pointer components of static variables
are initialized to nil.

2) If the initialization expression is an indefinite wvalue
constructor, the variable must be either a set, array, or record.
The type of the indefinite value constructor is determined as the
type of the variable.

3) An asterisk, '*', can be used in indefinite value constructors to
indicate uninitialized elements of arrays and records. The

CDC Private

6-7
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

6.0 VARIABLES
6.3.1 INITIALIZATION CONSTRAINTS

initial values of such uninitialized elements are undefined,
except in the case of a pointer which is set to nil.

4) If the string elements are not of equal length and the variable
part is the longer, the initialization operator will append
blanks at the right end of the variable. If the initialization
expression is longer, the value of the initialization expression
will be truncated to fit the variable part.

5) Within wvariant record initialization, the case selector is
initialized in turn and is then used to determine the variant for

the ensuing fields of the record.

6.4 SECTIONS AND SECTION DECLARATIONS

A section 1is a working storage area for specified variables
sharing common access attributes.

<section declaration> ::= section <sections> {,<sections>}

<sections> ::=
<section name> {,<section name>} : <section attribute>

<section name> ::= <identifier>
<section attribute> ::= read | write

Variables declared within a section having the read section
attribute will reside in read-only storage (on computer systems

providing that facility) and must have the read variable attribute.

6.5 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS

Only certain combinations of attributes are valid. These combine
with certain initialization assignments, some of which are optional,
some required, and some prohibited.

The table below further clarifies the legal combination of
attributes and specifies the rules for initialization.

CDC Private

—

CYBER IMPLEMENTATION LANGUAGE

6-8

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
6.0 VARIABLES : -)
6.5 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS
ATTRIBUTE INITIALIZATION SAME AS
(1) none optional if statie
ctherwise prohibited
(2) read required (4)
(3) static optional
(4) static,read required (2)
(5) xdel optional @)
(6) xdcl,read required (8)
(7) xdecl,static optional (5)
(8) xdcl,static,read required (6)
(9) xref prohibited 11
(10) xref,read prohibited (12)
(11) =xref,static prohibited N
(12) =xref,static,read prohibited (10)
(13) <section name> optional *
(14) <section name>,read required *
(15). <section name>,xdcl optional *
(16) <section name>,xdcl,read required *
*

Static attribute is implied for sections.

6.6 VARIABLE REFERENCES

<variable> ::= <variable reference>
|<substring reference>

<variable reference> ::= <variable identifier>
<pointer reference>?
<subscripted reference>
<field reference>

CDC Private

6-9

CYBER IMPLEMENTATION LANGUAGE
: 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

6.0 VARIABLES .
6.6.1 POINTER REFERENCES

6.6.1 POINTER REFERENCES

<pointer reference> ::= <pointer variable>
| <function reference>

<pointer variable> ::= <variable>

Whenever a variable reference denotes a variable of pointer type,
it is referred to as a pointer reference and the notation

<pointer reference>?

may be used to denote a variable whose type is determined by the type
associated with the pointer variable. If another variable of pointer
type is denoted by this reference, then

<pointer reference>**

may be used as a variable reference. Note that variables of pointer
type can be components of structured variables as well as valid
return types for functions.

Given a variable identifier, the notation to obtain a pointer
value to the variable which has a scope equal to or greater than the
pointer is:

*<variable identifier>

Pointers are always bound to a specific type and pointer variables
may assume, as values, only pointers to objects of equivalent type.
The only excention to this is that pointer to cell can take an values
of any type and any fixed or bound variant pointer variable can
assume a value of pointer to cell. See Chapter 4 for further
explanation.

If the variable is a formal parameter, then the pointer cannot be
used to modify the parameter.

The special value ni

1 ed to dencte that 2 pointer variable
has no current assignment to

s us
a location.

6.6.1.1 Examples of Pointer References

CDC Private

W

6-10
CYBER IMPLEMENTATION LANGUAGE
86/03/06
YBIL LANGUAGE SPECIFICATICN REV: 8

(@)

6.0 IABLES
6.6.1.1 Examples of Pointer References

var i, j, k : integer, {integer variables}
pi : tinteger, {pointer variable of type: pointer to integer}

ppi ¢ *tinteger, {pointer variable of type: :}
{pointer to pointer to integer}

bl, bZ : boolean ; i{boolean variables——end of decliarations}

allocate pi; {allocates space for an integer value and sets}
fpi to point to it}

allocate ppi; {allocates space for a pointer to integer and}
{sets ppi to point to it}

pit := 10;

ppit := pi;
j := pit ; {the integer variabie j takes on the value 10}
k := ppit* ; {the integer variable k takes on the value 10}

-

. . <. R . 5 - + . s . '
bl := j = k ; {the boolean variable takes on the value true}

ppitt ; {the boolean variable b2 takes on the}
{value true}

b2 :

]

e
e
>

[}

pi := nil ; {the pointer variable pi is set to denote}
{lack of indicating any variable}

k := pi?* ; {statement is in error when pi has the}
{value nil--result of this statement}
fwill be i implementation dependent}

if pp1 = nil then k := k + 1 ifend ;
" {valid test of . ppi and valid d statement}

pi :=4(i + j + 2 *k); {improper use of up arrow to request}
{location of an expression - an undefined concept}

6.6.2 SUBSTRING REFERENCES
<substring reference> ::=
<string variable>(<substring spec>)

<string variable> ::= <variable reference>

<substring spec> ::=
<first char>[,<substring length>]

CDC Private

6-11
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
6.0 VARIABLES
6.6.2 SUBSTRING REFERENCES

<first char> ::= <positive integer expression>
<substring length> ::= <non-negative integer expression>
%

<non-negative integer expression> ::= <scalar expression>

Values of string wvariables are ordered n-tuples of character
values. Substring references yield fixed or null strings defined as
follows.

Let 's' denote a string whose current length is n.

If 1 <= i <= n then:

A) 's(i)' yields a fixed string of length one, consisting of the
i~th character of s;

IfF 1 <=1i<=n+1 and 0 <=k <=n+ 1 - 1i, then:

B) 's(i,k)' yields a fixed string of length k, consisting of the
" i—th through the (i+k-1)-th character of s, or a null substring;

C) 's(i,*)' is equivalent to 's(i,n-i+1)' and yields the rest of the
string starting with the i-th character, or a null string.

Otherwise, an error results.

CDC Private

6-12
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
6.0 VARIABLES
6.6.2 SUBSTRING REFERENCES

Example:

If a string variable s is declared and initialized by
var s : string(6) := 'ABCDEF';

then the foliowing relations hold

s(1) = 'a 5(2,5) = 'BCDEF’
s(6) = 'F' s(2,%) = s(2,5)
s(1,6) = s s(1,*) = s
s(2,0) = "' s(7,%) = "

and s(8) and s(8,0) are illegal.
If a pointer variable is declared and initialized by:

var ps : tstring (6) := *s;
then ps*(i) and ps*(i,j) become valid references to substrings of s.

Note that a string constant, even if declared with an identifier

for denoting it, is not a variable, so that a substring of such a
string constant is not a defined entity of CYBIL, e.g.,

const str24 = 'helper';

string2 := str24(3,*%) ; {invalid substring reference--str24}
{is a string constant}

6.6.2.1 Substring References as Character References

Substring references of the form 's{k})', and only such, may be
used wherever a character expression is allowed, and are treated as

characters in such cases. Specifically, substrings of the form
's(k)':

A) May be compared with characters;
B) May be tested for membership (ig) in sets of characters;

C) May be used as initial and final values of for statements
controlled by a character variable;

D) May be used as selectors in case statements;

CDC Private

6-13
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

6.0 VARIABLES
6.6.2.1 Substring References as Character References

E) May be used as arguments of the standard procedures and functions
succ, pred, and $integer;

F) May be assigned to character variables, and may be actual
parameters to formal parameters of character type.

G) May be used as index values corresponding to character-type
indices.

6.6.3 SUBSCRIPTED REFERENCE

<subscripted reference> ::= <array variable> [<subscript>]
<array variable> ::= <variable>
<subseript> ::= <scalar expression>

A subscripted reference denotes a component of an array variable,
whose value type 1is the component type of the array variable. A
subscript may be of any type that can be assigned to a variable of
the corresponding index type. Note that, to this end, any subrange

is considered to be of equivalent type as its parent range (or any
subrange thereof).

Example:
If
var A : array [1..5] of integer := [1, 2, 3, 4, 5]
and an integer variable is declared and initialized by

var i : integer := 5

then the following relations hold

alil =5
ali-1] = &4
a[i-4j =1

However, the reference al[i+1] would be in error.

If an array variable is declared by:

CDC Private

6-14
CYBER IMPLEMENTATION LANGUAGE
: 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

6.0 VARIABLES
6.6.3 SUBSCRIPTED REFERENCE

var b: array [0..5] of array [0..9] of char
then b[1] [2] becomes a valid reference to the array b.
If a pointer variable is declared and initialized by:
var pa : tarray [1..5] of integer := %*a;

then pat[i] becomes a valid reference to components of a.

CDC Private

6-15

CYBER IMPLEMENTATION LANGUAGE
: 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

6.0 VARIABLES
6.6.4 FIELD REFERENCES

6.6.4 FIELD REFERENCES

<field reference> ::= :
<variable reference>.<record subreference>{.<record subreference>}

<record subreference> ::=
<field selector>|<subscripted reference>

A field reference denotes a field of a record variable. Since
field selector names can be used in other records, the record
variable must be specified.

Example:

For the record variable declared and initialized by:

type
tr = record
age : 6..66,
married,
sex : boolean,
date : record
day : 1..31,
month : 1..12,
year : 70..80,
recend,
recend;

var r : tr := [23,false,true,[3,5,73]];
the following relations hold
r.age = 23
r.married = false
r.sex = true
r.date.day = 3
r.date.month = 5
r.date.year = 73
If a pointer variable is declared and initialized by:
var pr : *tr := tr
then
prt.age, prt.married, ...

become valid references to fields of tr.

CDC Private

7-1
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATICN REV: 8

7.0 PROGRAM STRUCTURE

7.0 PROGRAM STRUCTURE

A CYBIL program is 2 collection of declarations which is meant to
be translated, via a compilation process, into a CYBIL object module.
Object modules resulting from separate compilations can be combined,
via a linking process, into a single object module, and may undergo

.further transformations into a form capable of direct execution.

<compilation unit> ::= <module declaration>
{;<module declaration>} [;]

Since statements are constrained to appear solely within the body
of a procedure or function declaration, compilation units consist
-solely of a list of declarations. All such declarations must be
capable of being evaluated at the time of compilation. All variables
declared in a compilation unit's declaration list will automatically

be given the static storage attribute.

7.2 MODULES

A module is a collection of declarations.

<module declaration> ::=
module <module identifier> [<alias>];
<module body>
modend [<module identifier>]

<module identifier> ::= <identifier>
<module body> ::= <declaration list>

<declaration list> ::= {<declaration>;}

The module identifier can be used to provide clarity and to assist
in post—compilation activities, such as linking and debugging.

7.3 DECLARATIONS AND SCOPE OF IDENTIFIERS

Declarations introduce objects together with identifiers which may
be used to denote these objects elsewhere in a program.

CDC Private

7-2
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

7.0 PROGRAM STRUCTURE
7.3 DECLARATIONS AND SCOPE OF IDENTIFIERS

<declaration> ::= <type declaration>
<constant declaration>
<variable declaration>
<procedure declaration>
<function declaration>
<section declaration>
| <emply>

The programmatic domain over which all uses of an identifier are
associated with the same object is called the scope of the
identifier. The scope of an identifier is determined by the context
in which it was declared and by optional scope attributes which may
be associated with declarations of variables and procedures.

7.4 MODULE - STRUCTURED SCOPE RULES

The scope of an identifier declared in one of the constituent
declarations of the body of a module, is the body of that module.

7.5 PROCEDURES AND FUNCTIONS

A procedure or a function consists of a statement list preceded by
an optional declaration list. Procedures and functions have three
purposes:

1) Procedures and functions control the scope of identifiers.

2) Unlike modules, procedures and functions control the processing
of declarations and determine when declarations take effect.

3) Unlike modules, procedures and functions include statements,
which translate into algorithmic actions in the resulting
program.

7.6 STRUCTURED SCOPE RULES

1) Except for field selectors (see below), the scope of an
identifier declared in the constituent declaration list of a
procedure or function is the body of that procedure or function.

2) If an identifier labels a structured statement, then its scope is
that immediately containing block.

3) If the scope of an identifier includes a non-xrefed procedure or
function declaration, then its scope is extended 'downward' to

include the body of that procedure or function, unless the body

CDC Private

7-3
CYBER IMPLEMENTATION LANGUAGE
86/03/06
YBIL LANGUAGE SPECIFICATION REV: 8

(@]

PROGRAM STRUCTURE

7.0
7.6 STRUCTURED SCOPE RULES

includes a re-declaration of the identifier.

4) The scope of an identif

parameter of a2 procedur

or function.

Ln
Nt

Field selectors are identifiers introduced as part of the
declaration of a record type for purposes of selecting fields of
records. Except for the restriction that field selectors
associated with the same record type must be unique, identifiers
used as field selectors may be re-declared with impunity.

6) Except for field selectors, no more than one declaration of an
identifier can be included in the constituent declarations and
statements of the body of a procedure or function.

The scope attributes xdcl and xref cause the scope of identifiers
to be extended, in a discontinuous manner, to include other
compilation units, but do not otherwise contravene either
module-structured or block-structured scope rules.

Variables, procedures and functions that are part of one module,
but are meant to be referenced from other modules, must have the xdcl
attribute associated with them by explicit declaration. Other
modules which are meant to reference such objects must declare them
with the xref attribute.

XREF variables c¢an not be initialized, and all xdcl and xref
variables are automatically given the static storage attribute

The declarations for objects shared among modules must match; for
example, an identifier with the xdcl attribute in one module and the
xref attribute in other modules must denote the same object in all
such modules. Violations of such matching rules are detected during
the linking processing on some computer systems.

7.7.1 ALIAS NAMES

An 'alias' is an alternate spelling which may be specified for an
identifier. Its reasons for existence are varied: to meet
system—requirements of spelling which are invalid in CYBIL, to equate
two differing spellings for an entity between two different
compilation units, to avoid identifier spelling conflicts among
different compilation wunits or with system standard names, etc. As
such, this feature will only be supported on host systems where this

CDC Private

7-4

CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

7.0 PROGRAM STRUCTURE
7.7.1 ALIAS NAMES

requirement exists.

An alias is to be used outside of a compilation unit only, and
will not function as an alternative spelling for an identifier within
the compilation unit in which it is defined as an alias. :

Aliases may be furnished for identifiers of modules, procedures,
and variables by following the identifier associated with a
declaration of such an object by an alias specification.

<alias> ::= alias ' <alphabet> { <alphabet> } '

In order for an alias to 'reach' the host system, it must be
associated with an object that is externalized in some way: by virtue
of being xref'd, or xdcl'd. All other aliases will be inoperative
except for taking up room during the compilation process.

If an identifier which is externalized has an alias specified,
then only the alias will be made known outside of the compilation
unit (i.e., the identifier itself will not be made known outside of
the compilation unit).

Also refer to 6.1 for wvariable declarations, and to 8.1 for
procedure declarations.

Examples:
module outer alias 'CYMSOUT' ; ...

procedure ([xdcl] searcher alias 'CYPSSEARCH' (var lst2,...

var V2 alias 'CYVS2FLAG', V3 alias 'CYVS3FLAG' : [xdcl] integer;

CDC Private

-

7-5
CYBER IMPLEMENTATION LANGUAGE
: 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

7.0 PROGRAM STRUCTURE
7.8 DECLARATION PROCESSING

7.8 DECLARATION PROCESSING

7.8.1 BLOCK-EMBEDDED DECLARATIONS

Except for the constituent declarations of a compilation unit (see
below), declaration processing is governed solely by block-structure.
During compilation, all constituent lists of a block are gathered
together and are processed en-masse, all such declarations coming
into effect simultaneously.

Block-structure also governs declaration processing during
execution of the resulting programs. On entry to a block, all
declarations included in the block's constituent 1list are again
collected together, storage for automatic variables is allocated, and
all identifiers declared by such declarations become accessible. On
exit from a block,; all identifiers declared within that block become

inaccessible, the values of automatic variables become undefined, and
the variables allocated on the stack become undefined.

7.8.2 MODULE-LEVEL DECLARATIONS

Objects declared at the cutermost level of a module are asscciated
with no block at all. Such declarations must be evaluated, and
required storage allocated, prior to program execution. Accordingly,
all variables so declared are automatically given the static storage
attribute, as are all scope—attributed variables.

CDC Private

8-1
CYBER IMPLEMENTATION LANGUAGE
_ 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

8.0 PROCEDURES AND FUNCTIONS

8.0 PROCEDURES AND FUNCTIONS

A procedure or function declaration defines a portion of a program
and associates an identifier with it so that it can be activated
(i.e., executed) on demand by other statements in the language. A
procedure or function 1is invoked by a procedure call statement or
function reference.

A procedure call statement or function reference causes the
execution of the constituent declarations and statement lists of the
procedure or function after substituting the actual parameters of the
call for the formal parameters of the declaration.

8.1 PROCEDURE DECLARATIONS

There are the following forms of procedure declaration:

<procedure declaration> ::=
procedure [xref] <proc spec>
| procedure[[<proc attributes>]]<proc spec>;
<proc body><proc end>
| program <proc spec>;<proc body><proc end>

The first form is wused to refer to a procedure which has been
compiled as part of a different module. The procedure must have been
.declared with the xdcl attribute, and with an equivalent parameter
list in that module.

The second and third forms declare the procedure identifier to be
a procedure of the kind specified by its parameter 1list and
associates the identifier with the constituent declaration 1list and
statement list of the declaration.

The program declaration is used to identify the first procedure of
a program to be executed, when required by the system. It may only
be present on a single outermost block level procedure of the
compilation unit.

If more than one compilation unit is to be linked together for
execution, then only one procedure with a program declaration may be
present among all those compilation units being linked.

The procedure type is elaborated on entry to the block in which it

is declared, and remains fixed throughout the execution of that
block.

CDC Private

8-2
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

.0 PROCEDURES AND FUNCTIONS
.1 PROCEDURE DECLARATIONS

<proc attributes> ::= <proc attribute> , {<proc attribute>}

<proc attribute> ::= xdcl | inline | f#gate

<proc spec> ::= <procedure identifier> [<alias>] <proc type spec>

<proc type spec> ::= [<parameter list>]

<parameter list> ::= {(<param segment> {;<param segment>})
<param segment> ::= <reference params>

<value params>

<reference params> ::= var <param> { ,<param> }

<param> ::= <formal param list> : <parameter type>
<value params> ::= <value param>{,<value param>}

<value param> ::= <formal param list> : <parameter type>

<formal param list> ::= <formal parameter identifie
‘f ,<formal parameter identifier>

<formal parameter identifier> ::= <identifier>

<parameter type> ::= <fixed type>
| <adaptable type>

= <declaration list> <statement list>

<proc body> :
<proc end> ::= procend [<procedure identifier>]
<procedure identifier> ::= <identifier>

The ffgate attribute is an extension of the xdcl attribute to
extend the protection provided for in the environment provided by the
operating system. It may not be relevant on all computer systems.
Specifying the #gate attribute without also specifying xdcl is a
compilation error.

The inline attribute directs the compiler to substitute the
procedure statement body at the point of call to the procedure rather
than actually calling the procedure. Certain restrictions may exist
for the inline procedure candidates.

8.2 FUNCTION DECLARATIONS

<function declaration> ::= function [xref] <func spec>
| function [[func attribute]] <func spec> ;
<func body> <func end>

<func spec> ::= <function identifier> [<alias>] <func type spec>

CDC Private

8-3
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

8.0 PROCEDURES AND FUNCTIONS
8.2 FUNCTION DECLARATIONS

<function identifier> ::= <identifier>

<func type spec> ::= [<p§rameter list>] ; <result type>
<result type> ::= <basic type>

<func attribute> ::= <proc attribute> | unsafe

<func body> ::= <proc body>

<func end> ::= funcend [<function identifier>]

Function declarations serve to define parts of the program which
compute a value of the basic type. Functions are activated by the
evaluation of a function reference which is a constituent of an
expression.

There are two kinds of function declarations provided for in the
CYBIL language. One provides for functional notation where there can
be no undesirable side effects and the other provides for functional
notation in a form where side effects are possible.

The value of a function is the value last assigned to its function
identifier before returning (either by falling through the funcend,
by a return statement, or by an exit statement). The results of
returning by any means from a function prior to assignment of a value
to the function identifier (for the current execution) are undefined.

8.2.1 SIDE EFFECTS

A function returns a value through the iden ier £ ti
When a function changes the value of a variabl other than the loca

variables of the function, that change 1is a side effect. CYBIL
prevents side effects by restricting assignments, procedure and
function calls, and the use of non-local variables in user defined

"safe" functions.

of the func

on.

The left-hand side ¢f an assignment statement within a function
may not be any of the following:

o A non-local variable,

o A reference parameter of the function,

o A pointer variable followed by a dereference (%).
User defined "safe'" functions may not contain:

o Procedure call statements that call user-defined procedures,

CDC Private

8-4
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

8.0 PROCEDURES AND FUNCTIONS
8.2.1 SIDE EFFECTS

o References to unsafe functions,
Parameters of type pointer to procedure or pointer to function,
o ALLOCATE, FREE, PUSH, RESET or NEXT statements that have

naramatare that ara nat 1haanl vars
SarameLers gl 2rd oL 208as T2

o

These restrictions may make it necessary to use an unsafe function
or & procedure for some purposes for which a "safe' function might
otherwise be used. However this inconvenience may provide more
reliability by preventing side effects.

8.3 XDCL PROCEDURES AND FUNCTIONS

The attribute xdcl may only be used on a procedure or function
declared at the outermost level; i.e., not contained in another
procedure or function. It specifies that the procedure or function
should be made referenceable from other modules which have a
declaration for the same procedure or function identifier with the
xref attribute. The parameters must also be the same.

8.4 INLINE PROCEDURES AND FUNCTIONS

The following considerations apply for inline procedures and
functions:

o Type, constant and variable declarations local to an inline
procedure or function are appended to the declarations for the
calling procedure or function. These types, etc. may be
referenced only in the inline procedure or function body as all
the normal naming and scoping rules for identifier definition
and referencing still apply.

o Local (non—XREF) static variable definitions are not permitted.

o An inline procedure or function may not contain nested
procedure or declarations, except for XREF'ed procedures.

© An inline procedure or function may reference any other
procedure or function, including other inline procedures or
functions. Recursive calls to an inline procedure or function,
either directly or indirectly, are not allowed.

o Space allocated by a PUSH statement in an inline procedure or
function is not de-allocated until the calling (non-inline)
procedure or function exits.

o The identifier for an inline procedure or function may not be
used in a pointer reference.

8.5 PARAMETER LIST

A parameter list is a set of variable declarations in the <proc

CDC Private

8-5
CYBER IMPLEMENTATION LANGUAGE
: ' 86/03/06
CYBIL LANGUAGE SPECIFICATION ' REV: 8

8.0 PROCEDURES AND FUNCTIONS
8.5 PARAMETER LIST

type spec> or <func type spec> (not in the <proc body>) which
provides a mechanism for the binding of references to the procedure
or function call environment in a manner which permits selection of
entities to be bound at each invocation of the procedure or function.
This is accomplished by providing the procedure or function with a
set of wvalues and variables, so-called actual parameters, at the
point of call.

A value parameter results in the value of the actual parameter, at
the point of call, being associated with the formal parameter. See
section 10 for precise rules governing parameter passing. The called
procedure or function may not assign a value to one of its value
parameters, nor use it as an actual reference parameter to any
procedure or function it may call.

The type of a formal value parameter may be any fixed or adaptable
type except the so-called non-value types: heaps, records and arrays
of non-value types (i.e., any type which cannot enter into an
assignment statement may be neither a formal nor an actual value
parameter) .

A reference parameter results in the formal parameter designating
the corresponding actual parameter throughout execution of the
procedure, Assignments to the formal parameter thus cause changes to
the variable that was passed as the corresponding actual parameter.

of a formal reference parameter may be any fixed or

8.6 EXAMPLES OF PROCEDURES AND FUNCTIONS

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

8-6

86/03/06

REV: 8

8.0
8.6

PROCEDURES AND FUNCTIONS
.6 EXAMPLES OF PROCEDURES AND FUNCTIONS

procedure gcd (m, n :

Yo

integer; var %, ¥, Z : 1nteger

var al, a2, bl, b2, ¢, d, q, r : 1nteger, {m > 0,n > 0}
{Greatest Common Divisor x of m and n,
{Extended Euclid's Algorithm.}

ooe P
(SR S e

Ao
]
28

il
ws we we we

(]
e O = O

while d <> 0 do
al *m+ bl *n=d, a2 *m+ b2 *n-=c¢

wh

{ged(c

]
(2 I ¢]

i3

nig

NN
U es oo
on

M A0 o e 1.0
" oo

]
[}

[\
[

[
[
.
I oo oo
]

o

N
1]

oo

ilend;

X

y
z

{x
procend

(1} [T Y)
b
RPN
- e we

o'® 0

ged
ged;

, d)

2;_

~n
b4

bt ve weo O M
NNl
I

- Iy - Ny o R

s

-e

Lo B - i |
we Nrwes we NI ve

(m,

n),y*m+z *n-=

= ged(m, n)}

e

ws

* al

¥
o
’-‘

ged(m, n)}

CDC Private

8-7
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

8.0 PROCEDURES AND FUNCTIONS
8.6 EXAMPLES OF PROCEDURES AND FUNCTIONS

function min (a: integer; b: integer): integer;

if a > b then
min := b;
else
min := a;
ifend;

funcend min;

CDC Private

-

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9-1

86/03/06

REV: 8

9.0 EXPRESSIONS

9.0 EXPRESSIONS

Expressions are constructs denoting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operands {(i.e.,

variables and constants), operators, and functions.

Constant expressions are expressions involving constants and a

subset of the operators and functions (cf., Section 5).

<expression> ::= <simple expression>
]<simp1e expression><relational operator>
<simple expression>

<simple expression> ::= <term> | <sign operator><term>
|<simple expression>
<adding operator><term>

<term> ::= <factor>
<term><multiplying operator><factor>

<factor> ::= <variable>|<constant>|<constant identifier>
<set value constructor>|<function reference>
t<procedure identifier>|t<variable>
(<expression>) |not<factor>

<multiplying operator> ::= * | div | / | mod | and
<sign operator> ::= <sign>

<sign> ::= + | -
<adding operator> ::= +
<relational operator> :

Xor

STom | =] < | in

<constant identifier> ::= <identifier>

<function reference> ::= <built-in function reference>
|<user defined function reference>

<user defined function reference> ::=
<function identifier>(<actual parameter>
{, <actual parameter>})
| <function identifier>()

CDC

Private

9-2
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION » REV: 8

9.0 EXPRESSIONS

<puilt-in function reference> ::= succ (<scalar expression>)
pred (<scalar expression>)
Schar (<expression>)
Sinteger (<expression>)
Sreal (<expression>)
Slongreal (<expression>)
strlength (<fixed string type identifier>
<string variable>)
<string constant>)
<string constant identifier>)
| lLowerbound (<fixed array type identifier>
| <array variable>)
|upperbound (<fixed array type identifier>
| <array variable>)
|uppervalue (<scalar type identifier>
|<scalar variable>)
| lowervalue (<scalar type identifier>
|<scalar variable>)
(<pointer>[,<parental>])
(<relative pointer>[,<parental>])
(<variable reference>)
(<variable>)
(<variable>
<fixed type identifier>
<adaptable type> : [<adaptable field fixer>])

N
la]
o
e

|
cr
"

A
—
o]
0

-

Riad
n
[
N
o

et i Rela Rt e,
s
n
o

<fixed string type identifier> ::= <string type identifier>
<string constant identifier> ::= <identifier>

<fixed array type identifier> ::= <array type identifier>
<scalar type identifier> ::= <scalar identifier>

<scalar variable> ::= <variable>

<parental> ::= <parental type variable>

<parental type variable> ::= <variable>

See Section 11 for the details of these built—-in functions.

CDC Private

E—

9-3
CYBER IMPLEMENTATION LANGUAGE
_ 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

9.0 EXPRESSIONS

Examples:

Factors:
X
15
(x +y+ 2)
Scolorset [red, c, green]
not p

Terms:
x*y
idiv 3
P and q
(x <= y) and (y < 2)

Simple expressions:
X +y

- x

booll or bool2

i*j+1

hue - Scolorset [red, green]

Expressions:
= 1

X = 1

p <=2

(i<j) = (j<x)
¢ in huel

9.1 EVALUATION OF FACTORS

The value of a variable, as a factor, is the value last assigned
to it as possibly modified by subsequent assignments to its
components.

The value of an unsigned number is the value of type integer
denoted by it in the specified radix system.

The value of a real or longreal constant is the number denoted by
it.

String constants consisting of a single character denote the value
of type char of the character between the apostrophe marks.

String constants of n (n > 1) characters denote the fixed string
(n) value consisting of the characters between the apostrophe marks.

The constant nil denotes a null pointer value of any pointer or
relative pointer type.

CDC Private

9-4
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
9.0 EXPRESSIONS
9.1 EVALUATION OF FACTORS

A constant identifier is replaced by the constant it denotes. If
this in turn is a constant identifier, the process is repeated until
a constant of one of the above forms results. The value 1is then
obtained as above.

The value of a set value constructor is the value obtained from
the values of its constituent expressions of type specified by its
set type identifier.

The value of an up—arrow followed by a variable of type T is the
pointer value that designates that variable.

The value of an up—arrow followed by a procedure identifier of
procedure type P 1is the pointer to procedure value that designates
the current instance of declaration of that procedure.

A function reference specifies the execution of a function. The
actual parameters are substituted for 'the corresponding formal
parameters in the declaration of the function. The body 1is then
executed. The value of the function reference is the value last
assigned to the function identifier. The meaning of, and
restrictions on, the actual parameters is the same as for the
procedure call statement (see 10.5.1).

The value of a parenthesized expression 1is the value of the
expression which is enclosed by the parentheses.

The type of the value of a factor obtained from a variable or
function reference whose type is a subrange of some scalar type is
that scalar type.

9.2 OPERATORS .

Operators perform operations on a value or a pair of values to
produce a new value. Most of the operators are defined only on basic
types, though some are defined on most types. The following sections
define the range of applicability, as well as result, of the defined
operators. An operation on a variable or component which has an
undefined value will be undefined in result.

9.2.1 NOT OPERATOR

The not operator, not, applies to factors of type boolean. When
applied the meaning is negation; i.e., not true = false and not false

= true.

CDC Private

o~

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9-5

86/03/06

REV: 8

XPRESSIONS
MULTIPLYING OPERATORS

o m

9.2.2 MULTIPLYING OPERATORS

The following table shows the multiplving operators, the types of
their permissible operands, and the type of the result.
|Operator| Operation |Operands | Result i
* multiplication integer or| integer
integer
subrange
real real
longreal longreal
set intersection set of type|set of type
- the set consisting of T T
elements common to the
two sets
div integer quotient integer or| integer
for a, b, n positive integer
integers subrange
a div b = n where n is the
largest integer such
that b*n < = a
for one or two negative
integers
(-a) div b = (a) div (-b) =
- (a div b),a div b =
(-a) div (-b)
+ + +- -——+ -———+
/ real and longreal quotient real real
longreal longreal
mod remainder function integer or! integer
amod b =a- (adiv b)*b integer :
subrange
and logical 'and' boolean boolean
true and false = false
true and frue = true
false and false = false
false and true = false
*When the first operand is
false, the second is never
evaluated.
+ + + + +

CDC Private

9-6
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

9.0 EXPRESSIONS
9.2.3 SIGN OPERATORS

9.2.3 SIGN OPERATORS

The + operator can be applied to integer, real and longreal types
only. For types integer, real and longreal it denotes the identity

operation and results in integer, real or longreal type (i.e., a = +
a).

The - operator can be applied to integer, real, longreal and set
types only. It denotes sign inversion—i.e., -a = 0 - a for

integers, reals or longreals. It denotes complemenfation for sets
with respect to the base type - i.e., the set of all elements of the
base type not contained in the specified set.

9.2.4 ADDING OPERATORS

The following table shows the adding operators, the types of their
permissible operands, and the type of the result.

CDC Private

L A—-y

CYBER IMPLEMENTATION LANGUAGE

9-7

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
9.0 EXPRESSIONS
9.2.4 ADDING OPERATORS
|Operator Operations Operands | Result |
+ additieon integer or integer
integer subrange
real real
longreal longreal
set union set of type set of type
- the set consisting of all T T
elements of both sets.
- subtraction integer or integer
integer subrange
real real
longreal longreal
boolean difference boolean boolean
true - true = false,
true - false = true
false - true = false,
false - false = false
+ + + +
set difference set of type set of type
- the set consisting of T T
elements of the left operand
that are not also elements
of the right operand.
or logical 'or' boolean boolean
true or true =-true,
true or false = true
false or true = true,
false or false = false
* When the first operand
is true, the second is
never evaluated.
xor exclusive 'or' boolean boolean
true xor true = false
true xor false = true
false xor true = true
false xor false = false
symmetric difference set of type set of type
- the set of elements T T
contained in either
set but not both sets.

+

+

+

+

CDC Private

9-8
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

9.0 EXPRESSIONS
9.2.5 RELATIONAL OPERATORS

9.2.5 RELATIONAL OPERATORS

Relatienal operators are the primary means of testing values in
CYBIL. They vyield the boolean value true if the specified relation
holds between the operands, and the value false, otherwise.

9.2.5.1 Comparison of Scalars

All six comparison operations < (less than), <= (less than or
equal to), > (greater than), >= (greater than or equal to), = (equal
to), and <> (not equal to) are defined between operands of the same
scalar type, or substrings of length one and char.

For operands of type integer they have their usual meaning.

For operands of type boolean the relation false < true defines the
ordering.

For operands, a and b, of type char, the relation a op b holds if
and only if the relation $integer(a) op Sinteger(b) holds, where op
denotes any of the six comparison operators and Sinteger is the
mapping function from character type to integer type defined by the
ASCII collating sequence.

For operands of any ordinal type T, a = b if, and only if, a and b
are the same value; a < b if, and only if; a precedes b in the
ordered list of values defining T.

Operands of type subrange of some parent scalar type may be
compared with operands whose <type 1is the parent type or another
subrange of that parent type.

9.2.5.2 Comparison of Pointers

Two pointers can be compared if they are pointers to either
equivalent or potentially equivalent types. In the latter case, one
or both of the pointers may be pointers to adaptable or bound variant
types. The instantaneous type of such pointers must be equivalent to
the type of the pointer they are being compared with; if it 1is not,
the operation is undefined.

Pointers may be compared for equality and inequality only.
A pointer of any type may be compared for equality or inequality

with the value nil.

CDC Private

, 9-9
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

9.0 EXPRESSIONS
9.2.5.2 Comparison of Pointers

A pointer comparison results in equality if both pointers
designate the same variable, or if they both have the value nili.

Two pointers to procedure are equal if they designate the same
instance of declaration of a procedure.

9.2.5.3 Comparison of Relative Pointers

Relative pointer comparison is allowed only for relative pointers
of equivalent type. Two relative pointers are equal if the
relationship #fptr (p,P) = #ptr (q,P) holds, where p and q denote
relative pointers of equivalent type, and P denotes a variable whose
type is equivalent to the parental types of these relative pointers.

A relative pointer of any type may be compared for equality or
inequality with the value nil. A relative pointer comparison results
in equality if both relative pointers have the value nil.

-

$5.2.5.4 Comparison of Floating Point Types.

uw

All six relations are defined between operands of real and

longreal types, respectively. Comparison for equality and inequality
is done within the precision limits of the host machine.

9.2.5.5 Comparison of Strings

All six relational operators may be applied to operands whose
values are strings. If the actual 1lengths of the two strings
entering into the operation are unequal, blanks are conceptually
appended to the string having the shorter length.

Strings are compared to each other character by character from
left to right until total equality or inequality is determined, as
follows. Let n be the length of the strings a and b (n > 1), and op
be any of the six comparison operators, then:

o a=>b iff a(i) = b(i) for all 1<izn
o For op one of <>, <, >
a op b iff for some k, 1<k<n
a(k) op b(k) AND
a(i) = b(i) for 1<i<k

o a>=bi1ff a=bORa>b

CDC Private

, 9-10
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
9.0 EXPRESSIONS
9.2.5.5 Comparison of Strings

o a<=bp iff a=bORac<bhb
Comparing two null strings results in equality.

9.2.5.6 Relations Involving Sets

The relation a in s is true if the scalar value a is a member of
the set value s. The base type of the set must be the same as, or a
subrange of, the type of the scalar, or the scalar type may be a
subrange of the base type of the set.

The set operations = (identical to), <> (different from) <= (is
included in), and >= (includes) are defined between two set values of

the same base type.

sl = s2 is true if all members of sl are contained
in s2, and all members of sZ are contained in si.

sl <> 2 is true when sl = s2 is false.

sl <= s2 is true if all members of sl are also
members of s2.

sl >= g2 is true if all members of s2 are also
members of sl.

9.2.5.7 Relations Involving Arrays and Records

1) Arrays may never be compared. Structures which contain an array
as component or field may never be compared.

2) Variant records can not be compared. Other record types may be
compared for equality or inequality only. Two equivalent records
are equal if and only if corresponding fields are equal.

9.2.5.8 Non-Comparable Types

Certain types in the language cannot be compared. These are
heaps, sequences, arrays, variant records, and records containing a
field of a non—comparable type. However, pointers to non—comparable
types can be compared.

9.2.5.9 Table of Comparable Types and Result Types

The following table shows the relational operators, the types of

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9-11

86/03/06

o

REV: 8

9.0 EXPRESSIONS
9.2.5.9 Table of Comparable Types and Result Types

their permissible operands, and the type of the result.

CDC Private

+

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9-12

86/03/06
REV: 8

9.0 EXPRESSIONS)
9.2.5.9 Table of Comparable Types and Result Types

-+

+

+

+

+

-+
+

Left Right
Operator Operation Operand Operand Result
< - less than any scalar| T' where boolean
type T T and T'
<= - less than or are comp-—
equal to arable
> - greater than | string(n) string (n) boolean
>= - greater than | S(k) * char boolean
or equal to | char S(k) * boolean
= - equal to
<> - not equal to
in set membership | any scalar| set of T'| boolean
test type T where T'
and T
are
comp-—
arable
S(k) * set of boolean
char type
= - identity set of T set of T | boolean
<> - different where T is
<= - is contained any sca-
in lar type
>= - contains
= - equal to any non-— T (the boolean
<> - not equal variant same type)
to record
type T
contain-
ing no
arrays
any T or nil boolean
pointer
type T
or nil

+

'
-+

-
+

+
hy

+

(*) Substring of form S(k) with a length of one implied.
The form S(k,1) is not legal in these contexts.

CDC Private

—_—
i

9-13
CYBER IMPLEMENTATION LANGUAGE

, 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

9.0 EXPRESSIONS

"9.3 ORDER OF EVALUATION

9.3 ORDER OF EVALUATION

The rules of ¢ » specif r T cco g °
five classes of perators. The not operator has the highest
precedence, followed by the multiplying operators, followed by
sign operators, then the adding operators, and finally, with

‘lowest precedence, the relational operators.

The precise order in which the operands entering into an
expression are evaluated is only partially defined. The order of

- application of operators is defined by the composition rules (and

their implied hierarchy of operator precedence) with the exception
that the order of application is wundefined for any sequence of
commutative operators of the same precedence class. For example:

1) The expression a * b * ¢ div d is evaluated as (a * b * ¢) div d,
and the internal order of evaluation of the £first term is
undefined.

2) The expression a + b + ¢ - d is evaluated as (a + b + ¢) -d, with
the internal order of evaluation of (a + b *+ ¢c) undefined.

3) In the evaluation of boolean expressions, terms and factors are

evaluated from left to right, and evaluation terminates as soon
as the value of the term or expression is determined.

CDC Private

10-1
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS

10.0 STATEMENTS

Statements denote algorithmic actions, and are said to be
executable. A statement 1list denotes an ordered sequence of such
actions. A statement is separated from its successor statement by a
semicolon. The successor to the last statement of a statement list
is determined by the structured statement or procedure of which it
forms a part.

<statement list> ::= <statement>{;<statement>}
<statement> ::= <assignment statement>
<structured statement>

<control statement>
<storage management statement>

10.1 SEMICOLONS AS STATEMENT LIST DELIMITERS

Since the successor of the last statement of a statement list is
uniquely determined by the structured statement or procedure of which
it is a part, semicolons are not required as statement 1list
delimiters. However, since the empty statement is allowed,
semicolons may be so used for consistency of presentation.

CDC Private

10-2
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION : REV: 8

10.0 STATEMENTS
10.2 ASSIGNMENT STATEMENTS

10.2 ASSIGNMENT STATEMENTS

The assignment statement is used to replace the current value of a
variable by a new value derived from an expression.

<assignment statement> ::= <variable> := <expression>

10.2.1 ASSIGNMENT COMPATIBILITY OF TYPES

The part to the left of the assignment operator (:=) is evaluated
to obtain a reference to some variable. The expression on the right
is evaluated to obtain a value. The value of the referenced variable
is replaced by the value of the expression.

The variable on the left may be of any data type except for:
4 PR =

0 Any variable specified as read-only, or a formal value parameter

of any coniaining procedure.

o Any bound variant record.

(<]

The tag field of any bound variant record.
o Heaps, and arrays and records containing heaps.

The variable or function identifier on the left and the expression
on the right must be of equivalent instantaneous type, except as
noted below:

o The types of the variable and the expression may be subranges of
equivalent parent types. If the value of the expression is not a
value of the type of the variable, the program is in error.

o If the 1left part is a character variable, a string variable or a
substring, the expression may be a character expression, a string
or a substring.

o If the strings, substrings or character elements are not of equal
length and the destination part (left part) is the longer, the
assignment operator will append blanks at the right end of the
destination variable. If the source part (right part) is longer,
the assignment will truncate the value of the source part on the
right to fit the destination part.

o Assignment of two substrings which overlap one another 1is not
allowed and the results are unpredictable.

CDC Private

10-3
CYBER IMPLEMENTATION LANGUAGE
; . 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS |
10.2.1 ASSIGNMENT COMPATIBILITY OF TYPES

o If the left part is a variant record, the right part may be a
bound variant record of otherwise equivalent types. ’

o If the 1left part is a pointer, its lifetime must not survive the
lifetime of the data to which it is pointing. For example, a
static pointer variable cannot point to a local variable. This
rule also applies to a pointer assigned by an allocation
statement. '

o If the 1left part is a pointer to a bound variant record, the
expression may be a pointer to an otherwise equivalent 'unbound'
variant record. ‘

o If the left part is an adaptable pointer or a pointer to sequence,
the right part must be either a pointer to any of the
instantaneous types to which the left part pointer can adapt, or
an adaptable pointer which has been adapted to one of those types.
Both the type of the expression and its value are assigned, thus
setting the current type of the assignee.

o If the left part is a fixed pointer type other than pointer to
sequence, the right part may be a pointer to cell. The only
effect of the assignment is as follows: after the assignment, the
value returned by an application of the #loc function on the
de—referenced value of the lefthand side as argument will be equal
to the right-hand side value.

o If the 1left part is a pointer to cell, the right part may be a
pointer type. The value assigned is a pointer to the first cell
allocated for the variable pointed-to by the right side.

o Warning: Note that generallv a nointer value has a finite lifetim
e 1 e - v £ . .
(see Section 6.2.2) different from that of the pointer variable.
Automatic variables cease to exist on exit from the block in which
they were declared. Allocated variables cease to exist when they
are freed. Attempts to reference non-existent variables by a
designator beyond their lifetime is a programming error and could .
lead to disastrous results.

D

10.3 STATEMENT LABELS

A structured statement may be 1labeled by preceding it with a
structured statement identifier. This allows the statement to be
explicitly referred to by other constituent statements (e.g., exit,
cycle). Such a labeling of a statement constitutes the declaration
of the structured statement identifier and hence the identifier must
differ from all other identifiers declared in the same block.

CDC Private

N

10-4
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
10.0 STATEMENTS
10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS
10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS
If 2 structured statemeni identifier 1labels a constituent

structured statement of a procedure or function declaration, then its
scope is that procedure or function declaration. It is impossible to
refer to a structured statement designaior on a structured statement
from outside that statement. A structured statement designator may
optionally follow a structured statement (except repeat.. until), in
which case it must be identical to the structured statement
designator labeling that statement. This is for checking purposes
only, and does not affect the meaning of the program. The scope of a
structured statement identifier does not include procedures called
from within its scope.

<structured statement designator> ;::=
/ <structured statement identifier> /
<structured statement identifier> ::= <identifier>

Example:

/check_range/
while val < 0 do

whilend /check_range/;

10.4 STRUCTURED STATEMENTS

Structured statements are constructs composed of statement lists.
They provide scope control, selective execution, or repetitive
execution of their constituent statement lists.

<structured statement> ::= {[<structured statement designator>]
<repeat statement>
| [<structured statement designator>] <delimited statement>
[<structured statement designator>]

<delimited statement> ::= <begin statement>
<while statement>

<for statement>

10.4.1 BEGIN STATEMENTS

Begin statements permit the execution of a single statement list.
Exit is either through completing execution of the last statement of

CDC Private

10-5
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.4.1 BEGIN STATEMENTS

the statement list or through an explicit transfer of control.

The successor of the last statement of the statement 1list of a
begin statement is the successor of the begin statement.

<begin statement> ti=
begin <statement list> end

10.4.2 WHILE STATEMENTS

A while statement controls repetitive execution of its constituent
statement list.

<while statement> ::=
while <expression> do <statement list> whilend

The expression controlling repetition must be of type boolean.
The statement 1list is repeatedly executed until the expression
becomes false. If its value is false at the beginning, the statement
list is not executed at all.

The successor of thé last statement of the constituent statement
list of a while statement is the while statement itself.

Examples:

while a[i] <> x do

i e= 1 4+ 1°
il | 13

whilend;

if i = z then
z 1=z * x;
ifend;
i = 1 div 2;
X := x * x;
whilend;

10.4.3 REPEAT STATEMENTS

A repeat statement controls repetitive execution of its
constituent statement list.

<repeat statement> ::=
repeat <statement list> until <expression>

CDC Private

: 10-6

CYBER IMPLEMENTATION LANGUAGE
86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.4.3 REPEAT STATEMENTS

The expression controlling repetition must be of type boolean.
The statement list between the symbols repeat and until is repeatedly
(and at least once) executed until the expression becomes true.

Example:

repeat
k := i mod jj;
1= 3
ji=k;
until j = 03

10.4.4 FOR STATEMENTS

The for statement indicates that its constituent statement list is
to be repeatedly execuied while a progression of values .is assigned
to a variable, which is called the control variable of the for
statement.

<for statement> ::=
for <control variable> := <for list> do
<statement list> forend
<for list> ::=
<initial value> to <final value>
|<initial value> downto <final value>

<control variable> ::= <variable identifier>
<initial value> ::= <scalar expression>
<final value> ::= <scalar expression>
<scalar expression> ::= <expression>

The control variable, initial value and final value must all be of
equivalent scalar type or subranges of equivalent types.

The control variable may not be an unaligned component of 2 packed
structure.

Assignment to the control variable, either explicit or by passing
as a var parameter, within the statement list is a fatal compilation
error.

The 1initial value and final value are evaluated once on entry to
the for statement, as is the name of the control wvariable. Thus,
subsequent assignments to components of these expressions have no
effect on the sequencing of the statement.

CDC Private

10-7
CYBER IMPLEMENTATION LANGUAGE)
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
10.0 STATEMENTS
10.4.4 FOR STATEMENTS

If the initial value is greater than the final value in the to form,
or if the 1initial value is less than the final value in the downto
form, then no assignment is made to the control variable and the
statement list is not executed.

If the exit from the statement is a normal one, then the value of
the control variable is the final value. If the exit is caused by
the exit statement, the value of the control variable is that which
was in effect when the exit statement was executed.

10.5 CONTROL STATEMENTS

Control statements cause the transfer of control to a different
execution environment or to a statement other than the successor
statement in the same environment, or both.

<control statement> ::= <procedure call statement>
<if statement> | <case statement>
<cycle statement>
<exit statement> | <return statement>
<empty statement>

10.5.1 PROCEDURE CALL STATEMENT

A procedure call statement causes the creation of an environment
for the execution of the specified procedure and transfers control to
Flamd maemama P .2 APl O N | > PO B A A PR P _——11
LilalL pPiLULTUULT,. \bdloey Lil@apiel OV LLULTUULETD ./ o piuvLtuulr © Call

statement may never be used to activate a function.

<procedure call statement> ::=
<procedure reference> <actual parameter list>

<procedure reference> ::= <procedure identifier>

| <pointer to procedure reference> *
<pointer to procedure reference> ::= <pointer reference>
<actual parameter list> ::=

(<actual parameter>{,<actual parameter>})

<empty>
<empty> ::=
<actual parameter> ::= <expression>

I

<variable>
<empty>

CDC Private

10-8
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
10.0 STATEMENTS
10.5.1 PROCEDURE CALL STATEMENT

The actual parameter list must be compatible with the formal
parameter 1list of the procedure. An actual parameter corresponds to
the formal parameter which occupies the same relative position in the
formal parameter list.

10.5.1.1 Value Parameters

A value parameter causes the association within the called
procedure of the value of the actual parameter at the point of call
with the name of the formal parameter. The type of the parameter is
fixed as follows:

1) If the formal parameter is of fixed type, then the actual

parameter may be any expression which could be assigned to a
vamialhla af Fhat Foaa avanamt Jem tha sncea AF sabmieames which must
Vai iawic Vi Liaia L’Pc, ch\.cyt. PRy LIlT wEaO T Vi SLi diigo Wiid Wil Ua L

be of equal length.

N
—r

if the formai parameter is of adaptabie type, the instantaneous
type of the actual parameter must be one of those to which the
adaptable type can adapt.

If the formal parameter is an adaptable pointer, then the actual
parameter may be any pointer expression which could be assigned
to that adaptable pointer. Both the value and the instantaneous
type of the actual parameter are assigned, thus fixing the type
of the formal parameter.

W
~

10.5.1.2 Reference Parameters

A var parameter causes the formal parameter to designate the
actual parameter throughout execution of the procedure. Assignments
to the formal parameter thus cause changes to the corresponding
actual parameter. An actual parameter corresponding to a var formal
parameter must be addressable.

The type designated by the formal parameter is fixed as follows:

1) 1f the formal parameter is of fixed type, the actual parameter
must be a variable or substring reference of equivalent type.

2) If the formal parameter is of adaptable type, the actual

parameter must be a variable or substring reference whose type is
potentially equivalent.

‘CDC Private

10-9
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION : REV: 8

10.0 STATEMENTS
10.5.2 IF STATEMENTS

10.5.2 IF STATEMENTS

The if statement provides for the execution of one (and only one)
of a set of statement 1lists depending on the wvalue of boolean
expression(s). The boolean expression(s) following the if or elseif
symbols are evaluated in order until one is found whose value is true
. The subsequent statement list is then executed.

If the value of all Boolean expression(s) are false, then either
no statements are executed, or the statement list following the else
symbol is executed (if present).

The successor to the last statement of a constituent statement
list of an if statement is the successor of the if statement.

<if statement> ::=
if <if body> ifend

<if body> ::= <expression> then <statement list>
[else <statement list> | elseif <if body>]

Examples:

z :=1

elseif x > 30 then
z = 23

elseif x = 15 then
z := 3;

else
z := &4

ifend;

In the first example, x takes on the value of y if and only if the
relation x < y holds>. In the second example, z will take on one of
the values {1,2,3,4) depending on the vaiue of X.

10.5.3 CASE STATEMENTS

A case statement selects one of its component statement lists for

execution depending on the value of the selector expression.

<case statement> ::= case <selector> of <cases>

CDC Private

10-10
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.5.3 CASE STA

[else <statement list>] casend
<selector> ::= <scalar expression>

<cases> ::= <a case>{;<a case>}
<a case> ::= =<selection spec>{,<selection spec>}=
<statement list>

<selection spec> ::=
<constant scalar expression>
[..<constant scalar expression>]

The case statement selects for execution that statement 1list (if
any) which has a selection specification which includes the value of
the selector. If no selection specification includes the value of

. . .
the selector, the statement list following else is selected when the

else option is employed. If the value of the selector 1is not
included in any selection spec and the else is omitted, the program
1s in error.

The selector and all selection specifications must be of the same
scalar type or subranges of the same type. No two selection
specifications may include the same values (i.e., selection must be
unique) .

Selection specs are restricted to simple constant scalar
expressions. In the form constant scalar expressionl .. constant
scalar expression2 the value of constant scalar expressionl must be
less than or equal to the value of constant scalar expression2. It
signifies all of the constants in the inclusive range from constant
scalar expressionl up through and including constant scalar
expression2. It is semantically equivalent to having all the
constants in the range constant scalar expressionl through constant
scalar expression2 listed separately in selection specs.

The successor of the last statement of a selected statement 1list
is the successor of the case statement.

CDC Private

: 10-11
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.5.3 CASE STATEMENTS

Examples:

=plus= X 3

=minus= X

=times= x :
casend;

case i of

=1=

=2=

=3=

=4=
else

X :=.7X;
casend;

x+1;
x+2;
x+3;
x+4;

L I]
e ee oo oo

[}

type
lextype = (basic, inconst, realconst, stringconst,
identifier),
symbol = record
case lex : lextype of
=basic=
name : symbolid,
class : operation,

=inconst=
value : integer,
optimiz : boolean,

.
.
=ranlannatr= |
ISa.TONLS

rvalue : real, |
=stringconst=

length : 1..255,

stringbuf : *string(* <= 255), |
=identifier=

identno : integer,

decl : tsymbolentry,
casend,

recend;

var
cursym : symbol,
sign : [static] boolean := false;

insymbol;
case cursym.lex of
=basic=
if cursym.name= minus then
sign := not sign;
else : I

CDC Private

10-12
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
10.0 STATEMENTS
10.5.3 CASE STATEMENTS

error (‘missing operand');
ifend;
=inconst=
cursym.optimiz := (cursym.value<halfword);
if sign then
sign := false;
cursym.value := —cursym.value;
ifend;
=realconst=
if sign then
sign := false;
cursym.rvalue := —cursym.rvalue;
ifend;
=stringconst=
error ('string constant where arithmetic type expected');
=idantifier= -
cursym.decl := symbolsearch;
if cursym.declt.typ <> constdecl then
variable {cursym.decl);
else
cursym := cursym.declt.valuet;
ifend;
casend;

10.5.4 CYCLE STATEMENT

The cycle statement allows the conditional by-passing of the
remainder of the statements of the constituent statement list of the
designated repetitive statement, causing reevaluation of the
expression controlling the structured statement, thus cycling it to
its next iteration (if any).

<cycle statement> ::= cycle <structured statement identifier>

The structured statement identifier must identify a. repetitive
statement (ggg, while, or repeat statement), which statically
encompasses the cycle statement, i.e., the cycle statement must be
within the scope of the structured statement.

Thus, the cycle statement has the effect of (potentially)

re-executing the statement list of a repetitive statement such as
for, repeat, or while.

CDC Private

10-13
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.5.4 CYCLE STATEMENT

Examples:

x := table[l];
/find smallest/
for k := 2 to n do
if x < table(k] then
cycle /find_smallest/;
ifend;
x := table[k]; {this assignment skipped when x < table[k]}
{this finds the smallest value in table[1] thru table[n]}
forend /find_smallest/;

10.5.5 EXIT STATEMENT

The exit statement causes execution to continue at the successor
of a designated structured statement, procedure or function.

<exit statement> ::= exit <exit designator>

<exit designator> ::= <structured statement designator>
<procedure identifier>
<function identifier>

If a procedure or function identifier is designated as the object
of the exit, then that procedure or function must statically
encompass the exit statement within the same module. If a structured
statement designator is the object of the exit, then that identifier
must be for a structured statement which statically encompasses the
exit statement within the same module.

Note that the exit statement permits multiple levels of exit with
a single statement. Thue, exit can permit recursive nests to be
terminated with a single statement by selection of the appropriate
procedure or function identifier. In the case of recursive nests,
the result is exiting the most recent invocation of the procedure or
function specified, and any intervening procedures of functions which
have been activated.

CDC Private

N 10-14
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
10.0 STATEMENTS
10,5.5 EXIT STATEMENT
Examples:
/meaningful_label/
begin {example of exit <label>}
x 1=y + 27;
found := false; ...
/for_while_loop/
for k := 1 to 10000 do
i = k3
if (i mod 2) = O then
b[k] := false;
else
prime(i, answer); {test if prime}
while true do
if answer = 5 then
exit /for while_loop/; {goes to 'bound := j;' statement}

answer := answer - 5;
if answer <= 0 then

1_L ~

exit /meaningful label/; f{exit: while, for
{and begin stmt and goes to ' if found then ...'}
ifend;
whilend;
ifend;

forend /for_while_loop/;
{exit /for_while loop/ causes control to transfer here}
bound := j;
found := true;
end /meaningful_label/;
Texit /meaningful label/; causes control to transfer here}
if found then ... ;

10.5.6 RETURN STATEMENT

The return statement causes the current procedure or function to
return 1i.e. completes the current activation of the procedure or
function.

<return statement> ::= return

10.5.7 EMPTY STATEMENT

An empty statement denotes no action and consists of no symbols.

<empty statement> ::=

CDC Private

10-15
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
10.0 STATEMENTS
10.6 STORAGE MANAGEMENT STATEMENTS

10.6 STORAGE MANAGEMENT STATEMENTS

There are two storage types, sequences and heaps, defined in the
language, each with its own unique management and access
characteristics. Variables of such types define structures into
which other variables may be placed, referenced, and deleted under
program control according to the discipline implied by the type of
the storage variable. Storage management statements are the means
for effecting this control, and for managing the placement of
variables into the stack.

<storage management statement> ::= <push statement>
<next statement>
<reset statement>
<allocate statement>
<free statement>

' 10.6.1 ALLOCATION DESIGNATOR

An allocation designator specifies the type of the variable to be
managed by the storage management statements. An allocation
designator is either:

A) A pointer to a fixed type, in which case a variable of the type
designated by the pointer variable is specified;

or

B) An adaptable pointer (or bound variant record pointer) followed
by a type fixer (see below) wh1ch specifies the adaptable bounds,
1ensuua, a;aca, or 545 f;c;ua, in which case a variable of the
resultant fixed type 1is designated and the adaptable or bound
variant record pointer is set to designate a variable of that

type.

<allocation designator> ::=
<fixed ‘pointer variable>
|<adaptab1e array pointer variable> : [<star fixer>]
<adaptable string pointer variabie> : [<length fixer>]
<adaptable storage pointer variable> : []
<adaptable record pointer variable> : [<adaptable field fixer>]
<bound variant record pointer variable> :

[<tag field fixers>]

<fixed pointer variable> ::= <pointer variable>
<adaptable array pointer variable> ::= <pointer variable>

CDC Private

10-16
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.6.1 ALLOCATION DESIGNATOR

<adaptab1e-string pointer variable> ::= <pointer variable>
<adaptable storage pointer variable> ::= <pointer variable>
<adaptable record pointer variable> ::= <poin§er»variab1e>
<bound variant record pointer variable> ::= <pointer variable>

<tag field fixers> ::= <scalar expression>
| <constant fixers>[,<scalar expression>]

<constant fixers> ::= <constant scalar expression>
{,<constant scalar expression>}.

<adaptable field fixer> ::= <star fixer>
: |<length fixer>

star figer> : cscalar expression> .. <scalar expression>
<length fixer> ::= <non-negative integer expression>
 ::= [{, }]
 ::= [rep <non—negative integer expression> of]

<fixed type identifier>

1) Star fixers are used in the fixing of adaptable bounds of arrays.
Values for both the lower and upper bound must be specified in
the star fixer. If the lower bound was provided by a lower bound
spec, the corresponding value specified in the star fixer must be
identical to the value specified by the lower bound spec.

The lower bound is permitted to exceed the upper bound by one.
In this case a valid address is assigned to the adaptable array
pointer variable, but no storage is allocated. The adaptable
array pointer variable is set to designate an array with the
specified upper and lower bounds.

2) Length fixers are used in the fixing of adaptable bounds of
strings.

3) Span fixers are used in the fixing of adaptable bounds of heaps
or sequences.

4) The type and value of an adaptable field fixer must select one of
the types to which the associated adaptable pointer can adapt.

5) The order, types, and values of tag field fixers must select
those variants to which the associated bound variant record
pointer can be bound. All but the last of these tag field fixers
must be constant expressions.

CDC Private

10-17
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.6.1 ALLOCATION DESIGNATOR

'6) For allocation designators for adaptables, entries are required
only for the dimension which is adaptable.

7) Pointers associated with type fixers are set to designate a
variable of the type fixed by the type fixer (whenever the
statement in which they occur is executed). They will then
designate a variable of that fixed type until they are either
reset by a subsequent assignment operation or re-fixed by a type
fixer in a subsequent storage management operation.

Example:

type :
tipe = array [1..*] of array [1..5] of array [10..20]

of array [21..24] of integer ;

yar
point : *tipe ,
bunch : heap (rep 25000 of integer) ;
{point is an adaptable pointer variable}
reset bunch;

allocate point : [1..15] in bunch ;

This allocate statement would cause the allocation of an array of
four dimensions with components of type integer, with dimensions:

1 to 15, 1 to 5. 10 to 20. and 21 to 24.

and would set the pointer variable,.point, to designate that array.

CDC Private

»

10-18
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.6.2 PUSH STATEHEN

PUSH STATEMENT

10.6.2 PUSH STATEMENT

The push statement causes the allocation of space for a variable
on the stack and sets an allocation designator to designate that
variable (or to the pointer value nil if there is insufficient space
for the allocation). The value of the newly allocated variable (or
of any component thereof, in the case of structured wvariables)
remains undefined until the subsequent assignment of a value to the
variable or to its components.

<push statement> ::= push <allocation designator>

10.6.2.1 The Stack

A variable allocated on the stack can not be explicitly
de-allocated by the user. Instead, de-allocation occurs
automatically on exit from the procedure. containing the alliocating
push statement, at which time space for the variable is released and
its value becomes undefined.

Example:

var localarray : tarray [1..%*] of integer ;
push localarray :[1..20];

fallocate space for array [1..20] of integer on
{the stack, i-th element can be referenced
{as localarray?[i]}

10.6.3 NEXT STATEMENT

The next statement sets the allocation designator to designate the
current element of the sequence, and causes the next element to
become the current element. This results in the positioning
information in the variable of type pointer to sequence to be
updated. After a reset or an allocation of a sequence, the current
element is the first element of the sequence. Note that the ordered
set of variables comprising a sequence is determined algorithmically
by the sequence of execution of next statements.

The type of the pointer variable when the data is retrieved from a
sequence must be equivalent to the pointer variable as when that same
data was stored into the sequence; otherwise, the program is in
error.

CDC Private

10-19
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.6.3 NEXT STATEMENT

<next statement> ::=

next <allocation designator> in <pointer to sequence reference>
<pointer to sequence reference> ::= <pointer to sequence variable>
| <function reference>

<pointer to sequence variable> ::= <pointer variable>

The operation of the next statement is defined in terms of two
cursors: the present_cursor and the next_cursor. For the next
operation, the present_cursor is set to the next_cursor, the
next_cursor is incremented by the size of the type of the allocation
designator, and the variable is set to the location value of the
present_cursor.

If the execution of a next statement would cause the new
next_cursor to lie outside the bounds of the sequence, then the
allocation designator is set to the value nil and the cursor
positions remain unchanged.

Example:

next length ptr in buf_ ptr ;
next stgptr : [l..length_ptr*] in buf ptr ;

10.6.4 RESET STATEMENT

The reset statement causes either positioning in a éequence, or
en-masse freeing of all variables of a heap. Space for freed
variables is released and their values become undefined.

<reset statement> ::=
reset <pointer to sequence variable> [to <pointer reference>]
reset <heap variable>

Narﬁing: a reset statement is required prior to the first allocate
statement for any user-defined sequence or heap to reset the sequence
or heap to an 'empty' status; otherwise, the program is in error.

10.6.4.1 Reset Seguence

The reset sequence statement causes the positioning information
contained in a variable of type pointer to sequence to be reset. If
the optional to clause is not specified, the first element of the
sequence becomes the current element of the sequence. If the to is
specified, the element in the sequence pointed to by the <pointer
variable> becomes the current element of the sequence. The use of a

CDC Private

-

10-20
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.6.4.1 Reset Sequence

pointer variable whose value had not been set by a next statement for
the same sequence, or whose value is nil, is an error.

10.6.4.2 Reset User Heap

The reset heap statement causes all elements currently allocated
in the specified heap to be freed en—masse.

10.6.5 ALLOCATE STATEMENT

The allocate statement causes the allocation of a variable of the
specified type in the specified heap and sets the allocation
designator to designate that variable or to the value nil if there is
insufficient space for the allocation. If a heap variable is not
specified, the allocation takes place out of the default heap.

Note that the first allocate statement for any heap (other than
the default heap) must be preceded by the execution of a reset
statement for that heap, or the program will be in error.

<allocate statement> ::= allocate <allocation designator>
[in <heap variable>]

<heap variable> ::= <variable reference>

Examples:
var my array : tarray [0 .. *] of integer;

allocate my array : [0..49]; {allocate space.in default heap}
allocate sym ptr in symbol_table;

10.6.6 FREE STATEMENT

The free statement causes the deletion of a specified variable
from the specified heap or from the default heap if the in clause is
omitted: space for the variable is released, and its value becomes
undefined.

A pointer variable specifies the variable to be freed. If the
variable specified is not currently allocated in the heap, the effect
is undefined. Execution of the free statement sets the pointer
variable to the value nil. Use of a pointer variable with a value of

nil to attempt data access is an error. Freeing a nil pointer is an
error.

CDC Private

10-21
CYBER IMPLEMENTATION LANGUAGE
86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

10.0 STATEMENTS
10.6.6 FREE STATEMENT

<free statement> ::=
free <pointer variable>[in <heap variable>]

Examples:

free sym_ptr in symbol_table;
free my_array;

CDC Private

11-1
'CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS

11.0 STANDARD PROCEDURES AND FUNCTIONS

Certain standard procedures and functions have been defined for
CYBIL which have been included because of the assumed frequency of
their use or because they would be difficult or impossible to define
in the language in a machine-independent way.

11.1 BUILT-IN PROCEDURE

11.1.1 STRINGREP (S, L, P {,P})

In this procedure, S is a <string variable>, L is a <result
length>, and P is a <concatenation element>.

The string representation procedure facilitates the conversion of
<concatenation element>: to their renresentation as a string of
characters.

One or more <concatenation element>s are converted into output
fields consisting of strings of characters. The resulting output
fields are concatenated and returned, left—justified, in the <string
variable> S. The <result length> L returned is an integer variable
whose value is the length (in characters) of the result string. If
the string representation of the resulting string exceeds the length
of the <string variable> S, then right truncation occurs and the
<result length> L becomes the length of the <string variable> S.

11.1.1.1 Concatenation Elements

CDC Private

11-2
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1.1 Concatenation Elements

<concatenation element> ::= <scalar element>
<string element>
<pointer element>
<floating point element>

<scalar element> ::=
<scalar expression>[<scalar field specifier>]

<scalar field specifier> ::=
[:<field length>] [:<radix spec>]

<field length> ::= <positive integer expression>
<radix spec> ::= #{(<radix>)

<string element> ::=
. <string expression> [<string field specifier>]

<string expression> ::= <string variable>
<string constant>
<substring reference>

<string field specifier> ::= :<field length>

<pointer element> ::=
<pointer reference>[<pointer field specifier>]

<pointer field specifier> ::= [:<field length>] [:<radix spec>]

<floating point element> ::=
<floating point expression> [<floating point field specifier>]

<real expression> ::= <expression>
<longreal expression> ::= <expression>

<floating point field specifier> ::
: <field length> [:<fract

.
-

ional digits>]
<fractional digits> ::= <positive integer expression>

In general, numeric values are written right justified into the
specified field, with blank 1left fill or filled with asterisk (¥*)
characters if truncation would have occurred. Values specified to be
in string or character (alphabetic) form are written left justified
into the specified field, with blank right fill or £filled with

CDC Private

11-3
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1.1 Concatenation Elements

asterisk (*) characters if truncation would have occurred. In all
cases, the value of the field length, when speC1f1ed, must be greater
than or equal to zero or an error will occur.

11.1.1.1.1 INTEGER ELEMENT

The value of the integer expression is converted into a string
representation in the desired radix. The default radix value is 10.
The resulting string representation is placed right justified into
the output field with leading blanks if a field length greater than
required was specified. If the field length given is not long enough
to contain all the digits and the sign character of the value of the
integer expression, then the output field is filled with a string of
asterisk characters. If the integer expression is negative in value,
then a minus sign precedes the leftmost significant digit within the
field. If positive, then a blank character precedes the integer
value. If the field length is omitted, then the output field is the
minimum size required to contain the integer value plus the necessary
leading character. If the field length specified is 1less than or
equal to zero an error will occur.

11.1.1.1.2 ORDINAL ELEMENT

The integer value of the ordinal expression is handled in exactly
the same manner as an integer element.

11.1.1.1.3 SUBRANGE ELEMENT

A concatenation element which is a subrange type 1is handled
exactly as the type of which it is a subrange.

11.1.1.1.4 CHARACTER ELEMENT

The single string character is placed left justified into the
output field with trailing blanks if a field length greater than
required was specified. The default field length is 1. Quoting the
radix spec for character elements is a compilation error.

11.1.1.1.5 BOOLEAN ELEMENT

The five character string ' TRUE' or 'FALSE' 1is placed left
justified into the output field with trailing blanks if a field
length greater than required was specified. If the field length
given is not long enough to contain all five characters, then the
output field is filled with a string of asterisk characters. The
default field length 1is 5. Quoting the radix spec for boolean
elements is a compilation error.

CDC Private

11-4
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1.1.6 STRING ELEMENT

11.1.1.1.6 STRING ELEMENT

The string expression is placed left justified into the output
field with trailing blanks if a field length greater than required
was specified. If the field length given is shorter than the length
of the string, then the output field is filled with a string of
asterisk characters. If the field length is omitted, then the output
field is the minimum size required to contain the string expression.

11.1.1.1.7 POINTER ELEMENT

The value of the pointer expression is converted into a string
representation in the desired radix. The default radix value is
implementation dependent and will depend on the characteristics of
the native machine. The resulting string representation depends on
the type of pointer involved, and is system and machine dependent.

The resulting string representation is placed right justified into
the output field with leading blanks if a field length greater than
required was specified. If the field length given is not long enough
to contain' all the digits, then the output field is filled with a
string of asterisk characters. If the field length is omitted, then
the output field is the minimum size required to contain the pointer
value.

11.1.1.1.8 FLOATING POINT ELEMENT

A floating point expression can be converted into either a fixed
point format or a floating point format depending on the <floating
point field specifier>. If there 1is no <floating point field
specifier> then the conversion is done as if <field length> had been
specified with an implementation defined value.

11.1.1.1.8.1 Floating Point Format

E:field length will cause conversion into an output string of
‘length field length. It will contain a mantissa/exponent
representation of E with at most max_real digits or
max_longreal_digits, which are implementation defined, in the
mantissa. The exponent will contain num_exp_digits which is
implementation defined. Let Exponent be the integer such that

10**Exponent <= ABS (E) < 10**(Exponent+1)

If E is real then '

num_digits := MIN(field_length—4-num_exp digits, max_real_digits)
If E is longreal then

num_digits := MIN (field length - 4 - num_exp_digits,
max_longreal digits)

CDC Private

11-5
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1.1.8.1 Floating Point Format

If num_digits is less than 1 then the output field will be filled
with asterisks. Otherwise, the output field will consist of:

1) if field lemgth > num digits +4 +num exp_digits then
(field_length —num digits -4 —num_exp_ d1g1ts) spaces
2) if E < 0§ then '-' else one space

3) the leading digit of the decimal representation of E
after rounding to num_digits places

4) the character '.'

5) the next (num_digits-1) digits of the decimal
representation of E after rounding to num_digits places

6) the character 'E' for real expressions or 'D' for double
precision expressions

7) '+' or '-' depending on the sign of Exponent

8) num_exp_digits representing Exponent with 'O' fill on the
left if needed.

Examples: format E output string
E:10 123.456 ' 1.23E+002'
E:11 -123.456 '-1.235E+002'

11.1.1.1.8.2 Fixed Point Format

E:field_length:fractional_digits will cause the expression E to be
converted to an output string of length field length with
fractional_digits to the right of the decimal place. If
fractional digits is less than zero or greater than (field length-2)
then the program is in error. A size error will be generated if
checking is enabled. Let E_out be the decimal representation of E
rounded to have fractional digits to the right of the decimal point
and one zero to the left of the point if TRUNC(E_ out)=0. Let
num_left digits be the number of digits to the left of the decimal
point in E_out.

required_length : = num_left_digits +1 +fractional_digits;
if E_out < 0 then
required_length := required_length + 1; {'-' required}

If field length < required length then the output string will
consist of all asterisks. Otherwise, it will consist of:

1) if field_length > required_length then

CDC Private

11-6
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1,1.1.8.2 Fixed Point Format :

(field_length-required_length) spaces
2) if E_out < 0 then '-' else one space
3) the first num left_digits of E_out
4) the character '.'

5) the fractional_digits of E_out to the right of the decimal

point.
Example: format E output string
E:6:2 1.23456 ' 1.23'
E:6:3 -1.23456 '-1.235"'
E:5:2 0 ' 0.00'

11.2 BUILT-IN FUNCTIONS

The following standard functions return values of the specified
type.

11.2.1 succ(x)

The type of the expression, x, must be scalar, and the result is
the successor value of x 1if it exists; if not, the program is in
error.

ii.Z.Z PRED{X)

The type of the expression. x. must be scalar, and the result is
the predecessor value of x if it exists; if not, the program is in
error.

11.2.3 SCHAR(X)

Returns the character value whose ordinal number, in the ASCII
collating sequence, 1is given by the integer expression, X. If the
value of X lies outside that range (0 <= X <= 255), an out-of-range
error occurs. '

11.2.4 SINTEGER (X)

Returns the ‘integer value corresponding to the value of x. The
type of the expression, x, must be ordinal, char, boolean, integer or

CDC Private

Ay,

) i1f X is

11-7
CYBER IMPLEMENTATION LANGUAGE ’
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS -
11.2.4 SINTEGER (X)

subrange of integer, real or longreal. The conversions are done as
follows: '

Ay if X 1is ordinal, the value returned is the ordinal number of the

ordinal constant identifier associated with the ordinal value;

B) if X is character, the value returned is the ordinal number, in the
ASCII collating sequence, of the value of X;

C) if X is boolean, zero (0) is returned for false and one (1) for true

.
’

alue that value is returned;

[}
=}
=
=}
cr
(14
(1]
(L]
la}
<

E) if X is a real or longreal value, that value is first truncated to a
whole number. If the resultant value is within the range of type
integer, then that value is returned, otherwise, an out-of-range
error occurs.

11.2.5 SREAL(X)

Returns the real number which is the implementation dependent
approximation of the integer or longreal expression. In the case of a
longreal, the most significant part is returned. Longreals are
truncated as part of the conversion.

11.2.6 SLONGREAL (X)

Returns a longreal result which is the implementation dependent
approximation of the integer or real expression.

11.2.7 STRLENGTH(X)

Returns the length of the string x. For a fixed string this is the
allocated length, and x may be either a string variable, a string type
identifier, a string constant or a string constant identifier. For an
adaptable string this is the current length and x must be an adaptable
string reference.

11.2.8 LOWERBOUND (ARRAY)

Returns the value of the low bound of the array index. The type of
the result is the index type of the array. The argument (array) may
be either an array variable or a fixed array type identifier.

CDC P;ivate

A 11-8
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION ' : REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.2.9 UPPERBOUND (ARRAY)

11.2.9 UPPERBOUND (ARRAY)

Returns the value of the upper bound of the array index. The type
of ‘the result is the index type of the array. The argument (array)
may be either an array variable or a fixed array type identifier.

11.2.10 UPPERVALUE (X)

Accepts as argument either a scalar type identifier or a variable
of scalar type. It returns the largest possible value which an
argument of that type can take on. The type of the result is the type
of x.

11.2.11 LOWERVALUE (X)

Accepts as argument either a scalar type identifier or a variable
of scalar type. It returns the smallest possible value which an
argument of that type can take on. The type of the result is the type
of x.

11.2.12 #REL (POINTER[,PARENTAL])

This function produces a relative pointer value from a pointer
variable and parental variable. If the parental variable is not
asimnmt s ad e Aafanildy haan 16 11end Tha malakiua maintar!le anhiant
auyy&avu, -l b B d - l-l‘v'r - o VoW e X T -k V¥ w rvn&-b\-& - UUJ\'\-!—
type is the object type of the pointer variable, and its parental type
is that of the parental variable. The result 1is undefined if the

pointer does not designate an element of the parental variable.

11.2.13 #PTR (RELATIVE POINTER[,PARENTAL])

This function 1is used to convert a relative pointer to a pointer,
and is required when using a relative pointer to access the object
pointed to by the relative pointer. It returns a pointer to the same
type as the object type of the relative pointer. If the parental
variable is not specified then the default heap is used. If the
parental type associated with the relative pointer is not equivalent
to the type of the parental variable, an error results.

11.2.14 #SEQ (VARIABLE)
Returns a pointer to sequence that designates the argument
variable. The argument variable may be of any type. The following

CDC Private

11-9
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.2.14 #SEQ (VARIABLE)

relations hold:

#L0C(#SEQ(x)N = #L0C(x)
X

#51zE(#8EQ{ x)%= #81ZE(

3

7

11.3 REPRESENTATION DEPENDENT FUNCTIONS

11.3.1 #LOC (<VARIABLE>)

Returns a pointer to the first cell allocated for the specified
variable. If the wvariable is a formal parameter, then the pointer
cannot be used to modify the parameter.

11.3.2 #SIZE (ARGUMENT)

Returns the number of cells required to contain the variable, or a
variahle of the argument tvpe. The argument may be either a variable
or a fixed, adaptable or bound variant type identifier. In the case
of adaptable type identifier the adaptable field fixer must also be
specified. In the case of the bound variant type identifier, the
variant requiring the largest size is the value returned.

CDC Private

12-1
CYBER IMPLEMENTATION LANGUAGE
' 86/03/06
CYBIL LANGUAGE SPECIFICATION ‘ REV: 8

12,0 COMPILE-TIME FACILITIES

12.0 COMPILE-TIME FACILITIES

Compile-time facilities are essentially extra-linguistic in nature
in that they are used to construct the program to be compiled and to
control the compilation process, rather than having a meaning in the
program itself. These, together with commentary and programmatic
elements of the language, are the elements of a CYBIL source text.

12.1 CYBIL SOURCE TEXT

<text> ::= <text item> {<text item>}

<text item> ::= <pragmat statement>
| <compile-time statement>
<identifier>
<constant>
<basic symbol other than 77>
<comment>

<compile-time statement> ::= <compile-time declaration>
<compile~time assignment>

<compile~time if>

12.2 COMPILE TIME STATEMENTS AND DECLARATIONS

12.2.1 COMPTILE-TIME VARTARLES

Compile—time variables of type boolean may be declared by means of
the compile-time declaration statement.

<compile—time declaration> ::=
? var <compile-time var spec>
{,<compile-time var spec>} ?;
<compile-time var spec> ::=
<identifier list> : <compile-time type> :=
<compile-time expression>
<compile-time type> ::= boolean

The following rules apply:
1. The compile—time declaration statement must appear before the use
of any of the compile-time wvariables. The scope of the

compile-time variable is from the point of declaration to the end
of the module.

CDC Private

12-2
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION V ' REV: 8

12.0 COMPILE-TIME FACILITIES
12.2.1 COMPILE-TIME VARIABLES

2. Compile-time variables may be used only within compile-time
expressions and compile—time -assignment statements.

a T _ __Ltet - - o= maa -t -
3. Ident:ifiers of ¢ les may not be the same as any

!

Compile-time expressions must be composed only of constants and
compile~time variables, but excluding identifiers for user—defined
constants.

The operators defined on compile-time variables are:
and or xor not for type boolean
<compile-time expression> ::= <compile-time term>
|<compile-time expression><disjunctive operator>

<compile-time term>

<compile-time term> ::= <compile-time factor>
|<compile-time term> and <compile-time factor>

<compile-time factor> ::= true|false|<compile-time variable>
| (<compile-time expression>)| not <compile-time factor>

<disjunctive operator> ::= or | xor

12.2.3 COMPILE-TIME ASSIGNMENT STATEMENT

The value of a compile-time variable may be altered by a
compile-time assignment statement.

<compile—time assignment> ::= ? <variable> :=
<compile-time expression> 7;

12.2.4 COMPILE-TIME IF STATEMENT

The compile-time if statement is used to make the compilation of a
piece of source code conditional upon the value of some boolean
expression.

<compile-time if> ::=
? if <compile-time expression> then <text>
[? else <text>]
? ifend

CDC Private

12-3
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

12.0 COMPILE-TIME FACILITIES
12.2.4 COMPILE-TIME IF STATEMENT

The following rules apply:
1) The expression must be a compile-time boolean expression.

2) Compilation of the <text> occurs only if the value is true.

Example:

? var small_size : boolean := true?;

var Table : array [1..50] of integer ;

? if small_size = true then
might include this procedure call into program.}
Bubblesort (Table);

? else
for call on procedure Quicksort in program.}
Quicksort (Table);

? ifend

12.3 PRAGMATS

Pragmats are used to specify and control:

A) Source and object text listings produced as by-products of
compilation, and their layouts;

B) Layout aspects of the source text;
C) Kinds of run—time error checking:

D) Object libraries associated with this compilation unit;

E) Other aspecis of the compilation process.
<pragmat statement> ::=
?7? <pragmat> { ,<pragmat> } 77

<pragmat> ::= <toggle control>
<layout control>
<maintenance control>
<comment control>
| <object library control>

12.3.1 TOGGLE CONTROL
Uniquely identified control elements, called toggles, are used to
control aspects of compilation. Each toggle 1is associated with a

specific type of listing, run—time checking, or other activity.

CDC Private

12-4
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
12.0 COMPILE-TIME FACILITIES
12.3.1 TOGGLE CONTROL

Toggles take on the value on or off. If on, the activity associated
with the toggle is carried out, otherwise, it is not.

Toggle controis are used to:
A) Set the values of individual toggles;
B) Save and restore all toggle values in 2 last in—first oul manner;
C) Reset all toggles to their initial values.
(The initial settings of toggles are specified below.)
<toggle control> ::= set (<toggle setting list>)
1

ush (<toggle setting list>)
pop
reset

<toggle setting list> ::= <toggle setting> {,<toggle setting>}
<toggle setting> ::= <toggle identifiers> := <condition>
!

<empty>

i
<condition> ::= on | off
The operations are as follows.

Set: All settings specified in the list are carried out en—masse.
If a toggle is affected by more than one toggle setting, the
rightmost setting for that toggle is carried out.

Push: A record of the current state of all toggles is saved for

future restoration in a last in—-first out manner; the current
state remains intact. A set operation is then carried out.

Pop: The last state record saved becomes the current state. If none
have been saved, the initial state becomes current.

Reset: The initial state becomes current, and any saved state records
are wiped out.

The maximum allowable number of saved state records will be
implementation dependent, but should not be less than one.

12.3.2 TOGGLES

<toggle identifiers> ::= <listing toggles>
&g
<checking toggles>

Toggle identifiers may be used freely for other purposes outside of

CDC Private

12-5
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

12.0 COMPILE-TIME FACILITIES
12.3.2 TOGGLES

pragmats.

12.3.2.1 Listing Toggles

<listing toggles> ::= list listobj
listcts | listext | listall

List (initially is on): Controls all other listing toggles. When on,
a source listing is produced, and other listing aspects are controlled
by the other listing toggles. When off no listings can be produced.

Listobj (initially is off): Controls the listing of generated object
code, which is interspersed with source code, following the
corresponding source line.

Listcts (initially is off): Controls the listing of the format control
pragmats. The format control pragmats are the listing toggles and the
layout controls.

Listext (initially is off): When set to on the listing of source lines
is externally controlled via a compiler call list option.

Listall: The union of all listing toggles. When set to on or off then
all other listing toggles are set to on or off respectively.

12.3.2.2 Run-Time Checking Toggles

chkrng

<checking toggles> ::=
| chksub
' chknil

chktag
chkall

Chkrng (default is on): controls the generation of object code that
performs the range checking of scalar subrange assignments and that
performs the range checking of case variables.

Chksub (default is on): controls the generation of object code that
checks array subscripts (indices) and substring selectors to verify

that they are wvalid.

Chknil (default is off): controls the generation of object code that
checks for a nil value when a pointer dereference is made.

Chktag (default 1is on): controls the generation of object code that

CDC Private

12-6
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION ~ REV: 8

12.0 COMPILE-TIME FACILITIES
12.3.2.2 Run-Time Checking Toggles

verifies that references to a field of a variant record are consistent
with the value of its tag field {if a tag field is present}.
Chkail: The wunion of aiil

hecking ggiés; sets all four of cﬁkrng,
chksub, chknil, and chktag as a group

The effects on the object code that is generated by these toggles
being turned on or off is implementation and system dependent.

12.3.3 LAYOUT CONTROL

Layout controls are used to sp
specify and control listing layout.

o
0
-
Hh
«
1]
o
=
2]
0
o
rr
o
»
cr
=}
0
2]
ga
-
=}
[
[
e}
[+N
ct
o

<layout control> ::= <source layout>
| <listing layout>

<source layout> ::= <source margin control>

<source margin control> ::= left := <left>
| right := <right>

<left> ::= <integer>
<right> ::= <integer>

{where 0 < left, and (left +10) <= right <= 110}
All source text to the left of the left-th and the right of the

right-th position are ignored. Default values for left and right are
1 and 79 respectively.

12.3.3.2 Listing Layout

<listing layout> ::= <pagination>
<lineation>
<titling>
12.3.3.2.1 PAGINATION
<pagination> ::= eject
The eject pragmat causes the paper to be advanced to the top of the

next page.

CDC Private

: 12-7
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
12.0 COMPILE-TIME FACILITIES

12.3.3.2.2 LINEATION

12.3.3.2.2 LINEATION

<lineation> ::= spacing := <spacing>
| skip := <number of lines>

<spacing> ::=1 | 2 | 3

<number of lines> ::= <integer>
{where 1 <= number of lines}

The spacing control may have the value 1, 2, or 3, for single,
double, or triple spacing respectively. The default value is 1. A
value of zero may not be used to indicate overprinting. Use of
illegal values will result in no change in spacing, and an error
message will be given.

The skip value causes a skip of the number of line positions
specified; if the integer given is larger than pagesize or would cause
a skip past the bottom of the current page, then the skip is to the
top of the next page.

12.3.3.2.3 TITLING

A standard title line is printed atop each page, and then one line
position is skipped. Any additional titles defined by the user are
then printed one-per—line, single~spaced. A skip of <spacing> number
of lines then occurs.

<titling> ::=
newtitle := '<char token> {<char token>}'
title := '<char token> {<char token>}'
oldtitle

An apostrophe mark within a char string is indicated by using a
pair of adjacent apostrophe marks. Thus, if the char string were to
consist of only an apostrophe mark, it would be indicated by four (4)
immediately adjacent apostrophes, e.g., ''''.

Newtitle: The current title is saved and the character string given
as a new title becomes the current title. A standard page header is
the first title printed on a page, followed by user—specified titles
in the order in which they were saved; i.e., titles are saved in a
last in-first out manner, but are printed in a first in—first out
manner. There will always be a single empty line between the standard
page header and the titles defined by the user. There will always be
at least one blank line between the titles and the text or the
standard header and the text.

The maximum number of titles allowed will be 10. An attempt to add

CDC Private

A,

12-8
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION , REV: 8

12.0 COMPILE-TIME FACILITIES
12.3.3.2.3 TITLING

more than the maximum will be ignored, without comment.

- lcmes samlamas Pl —cconoe oo
LT i

laces the current user—defined title.
ter string becomes the current title.

4

mitlas T T S
iiLlie; i€ CnzZrz=cie

-
w
(:1‘

2 t s g £ep
If there is none, then the charac

Oldtitie: The last user—defined title saved becomes the current
title; is there is none, then no action is taken.

The titling does not take effect until the top of the next printed
page.

12.3.4 MAINTENANCE CONTROL

<maintenance control> ::= compile I nocompile

In the absence of a maintenance control, compile is the default
option. The nocompile option continues with listing the following
text according to the listing toggles and layout controls,
interpreting and obeying pragmat directives in the text, but
compilation of the source is omitted until a compile directive is
encountered or until a modend statement is encountered.

12,3.5 COMMENT CONTROL

<comment control> ::= comment := '<char token>[<char token>]'

Including the comment control pragmat signals the compiler to
include the character string in the binary output generated by the
compilation process. This allows for COPYRIGHTing products and for
commenting object code facilities like load maps.

12.3.6 OBJECT LIBRARY CONTROL

<object library control> ::= library := <library name>
<library name> ::= '<alphabet> {<alphabet>}"

Including the object library control pragmat signals the compiler
to include the 1library name in the library directive of the binary

output produced during the compilation process. This allows linking
the xref declarations with the appropriate object library.

CDC Private

13-1
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

13.0 IMPLEMENTATION-DEPENDENT FEATURES

13.0 IMPLEMENTATION-DEPENDENT FEATURES

In contrast to the previously discussed aspects of the language,
the language features discussed in this section may be dependent upon
the compiler's allocation algorithms or the hardware design. These
features may be used anywhere, but should be used with caution.

13.1 DATA MAPPINGS

The mapping of data storage will depend on a compiler's target
machine and data mapping algorithms. All effects of data mapping
will, therefore be implementation dependent: bit-sizing, positioning,
relative positioning effects of packing attributes. Data mapping
algorithms for specific implementations may be published; these can be
used to achieve specific sizings and positionings for that
implementation,

CDC Private

Pl

Al
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE
APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE
NUMBER PAGE ' CYBIL METALANGUAGE DEFINITION
1 10-10 <a case> ::= =<selection spec>{,<selection spec>}=
<statement list>
2 6-3 <access attribute> ::= read
3 10-7 <actual parameter> ::= <expression>
<variable>
| <empty>
4 10-7 <actual parameter list> ::=
(<actual parameter>{,<actual parameter>})
| <empty>
5 4-19 <adaptable aggregate type> ::= <adaptable string>
' <adaptable array>

<adaptable record>

6 4-20 <adaptable array> ::=
[packed] <adaptable array identifier>
| [packed]<adaptable array spec>
7 4-20 <adaptable array bound spec> ::= <lower bound spec> .. ¥
| %

8 4-20 <adaptable array identifier> ::= <identifier>
9 10-15 <adaptable array pointer variable> ::= <pointer variable>
10 4-20 <adaptable array spec> ::=

array [<adaptable array bound spec>] of <component type>

11 4-21 <adaptable field> :
<field selector>

[<alignment>] <adaptable type>

12 10-16 <adaptable field fixer> ::= <star fixer>
|<length fixer>
|

13 4-20 <adaptable fixed string> ::= string (<adaptable string length>)
14 4-22 <adaptable heap> ::= heap(*)

|<adaptab1e heap identifier>
15 4-22 <adaptable heap identifier> ::= <identifier>

CDC Private

NUMBER

16

17

18

19

20

21

22

23

24

25

26

27

28

29

33

A2

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

4-21

10-16

4-21

4-21

4-21

4-21

10-16

4-20

4-20

4-20

4-20

10-16

4-19

9-1

4-10

7-4

CYBIL METALANGUAGE DEFINITION

<adaptable

<adaptable

pointer> ::= *t<adaptable type>

record> ::=

[packed] <adaptable record type identifier>
| [packed] <adaptable record spec>

<adaptable

<adaptable

record pointer variable> ::= <pointer variable>

record spec> ::

record[<fixed fields>,]<adaptable field><recend>

<adaptable

<adaptable

<adaptable

<adaptable

<adaptable

<adaptable

<adaptable

<adaptable
<adaptable
<adaptable

<adaptable

record type identifier> ::¥ <identifier>

sequence> ::= seq (%)
|<adaptable sequence identifier>

sequence identifier> ::= <identifier>
storage pointer variable> ::= <pointer variable>

storage type> ::= <adaptable sequehce>
<adaptable heap>

string> ::= <adaptable fixed string>
| <adaptable string identifier>

string bound> ::= <length>

string identifier> ::= <identifier>

string length> ::= * | * <= <adaptable string bound>
string pointer variable> ::= <pointer variable>

type> ::= <adaptable aggregate type>
|<adaptab1e storage type>

<adding operator> ::= + | - | or | xor

<aggregate

type> ::= <string type>
<array type>
<record type>

<alias> ::= alias ' <alphabet> { <alphabet> } '

CDC Private

-

-

A3
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

w
i~

HLH=21L <
STas ~

35 10-20 <allocate statement> :

-
.
[in <heap variable>]

36 10-15 <allocation designator> ::=
<fixed pointer variable>
<adaptable array pointer variable> : [<star fixer>]
<adaptable string pointer variable> : [<length fixer>]
<adaptable storage pointer variable> : l]
<adaptable record pointer variable> : [<adaptable field fixer>]
<bound variant record pointer variable> :

[<tag fieid fixers>]

37 3-3 <alphabet> ::= <letter>
|<digit>
<special mark>
<blanks>
<unused mark>

38 4-13 <array spec> ::=
array [<index>] of <component type>
39 ' 4-13 <array type> ::= [packed]<array type identifier>
| [packed] <array spec>
40 4-13 <array type identifier> :;:= <identifier>
41 6-13 <array variable> ::= <variable>
42 3-3 <ascii character> ::= <alphabet>

| <unprintable>
|<string delimiter>

43 10-2 <assignment statement> ::= <variable> := <expression>
44 6-3 <attribute> ::= <access attribute>

<storage attribute>
<scope attribute>

45 6-3 <attributes> ::= [<attribute>{,<attribute>}]

46 4-24 <base> ::= <integer constant>

CDC Private

NUMBER

47

48

49

50

51

52

53

54

55

56
57
58

59

60

CYBER IMPLEMENTATION LANGUAGE

A4

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

5-2

4-11

5-1

4-3

10-5

5-1

5-1

4-5

4-5

10-16

4-23

CYBIL METALANGUAGE DEFINITION

<base designator> ::= (<radix>)

<base type> ::= <scalar type>

<basic constant> ::= <scalar constant>
<floating point constant>
<pointer constant>

<basic type> ::= <scalar type>
<floating point type>
<cell type>
<pointer type>
|<relative pointer type>

<begin statement> ::=
begin <statement list> end

<blanks>

<boolean constant> ::= false | true
<boolean constant identifier>

<boolean constant identifier> ::= <identifier>

<boolean type> ::= boolean
i<boolean type identifier>

<boolean type identifier> ::= <identifier>
<bound variant pointer> ::= *<bound variant record type>
<bound variant record pointer variable> ::= <pointer variable>

<bound variant record type identifier> ::=
<variant record type identifier>

<bound variant record type> ::=
[packed] <bound variant record type identifier>
[packed] bound <variant record spec>
[packed] bound <variant record type identifier>

CDC Private

A5
CYBER IMPLEMENTATION LANGUAGE

~ 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
APPENDIX A - CYBIL METALANGUAGE CROSS—REFERENCE
NUMBER PAGE CYBIL METALANGUAGE DEFINITION
61 9-2 <built-in function reference> ::= succ (<scalar expression>)

|pred (<scalar expression>)
Schar (<expressicn>)’
Sinteger (<expression>)
Sreal (<expression>)
Slongreal (<expression>)
strliength (<fixed string type identifier>
<string variable>)
|<string constant>)
|<string constant identifier>)
| lowerbound (<fixed array type identifier>
| <array variable>)
Iuggerbound (<fixed array type identifier>
|<array variable>)
(<scalar type identifier>
|<scalar variable>)
‘| lowervalue (<scalar type identifier>
| <scalar variable>)
|#rel (<pointer>[,<parental>])
{ptr (<relative pointer>[,<parental>])
{seq (<variable reference>)
f#loc (<variable>)
fsize(<variable>
|<fixed type identifier>

62 4-15 <case part> ::= case <tag field spec> of
<variations><casend>

63 10-9 <case statement> ::= case <selector> of <cases>

64 4-16 <casend> ::= [,] casend

CDC Private

NUMBER

65

66

67

68

69

70

71

72

73

74

75
76

77

78

A6

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

10-10

4-7

4-7

5-1

5-1

4-4

12-5

12-8

3-5

3-5

7-1

CYBIL METALANGUAGE DEFINITION

<cases> ::= <a case>{;<a case>}

cell

<cell type> ::=
| <cell type identifier>

<cell type identifier> ::= <identifier>

<char token> ::= <alphabet>
'* {two apostrophes}

<character constant> ::= '<char token>'
Schar (<integer constant>)
<character constant identifier>

<character constant identifier> ::= <identifier>
<character type> ::= g§§£|<character type identifier>
<character type identifier> ::= <identifier>
<checking tdggles> s:= chkrﬁg

chksub
chknil

chktag
chkall

<comment character> ::= <any ASCII character except
losing brace or end of line>

[
0

<comment control> ::= comment := '<char token>[<char token>]'
<comment terminator> ::=} | <end of line>

<commentary string> ::= {{<comment character>}
<comment terminator>

<module declaration>

<compilation unit> ::=
{;<module declaration>} [:]

CDC Private

\!'

NUMBER

~I
0

80

81

82

83

84

85

86

87

88

89

90
91

92

A7

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

12-2

12-2

12-2

12-1

12-2

12-1

12-1

12-4
5-1

5-3

CYBIL METALANGUAGE DEFINITION

<compile—-time assignmeni> ::= ? <variabie> :=
<compile-time expression> 7;
<compile—time declaration> ::=
? var <compile-time var spec>
{,<compile-time var spec>} ?;

<compile-time expression> ::= <compile-time term>
| <compile-time expression><disjunctive operator>
<compile-time term>

<compile-time factor> ::= true|false|<compile-time variable>
| (<compile-time expression>)] not <compile-time factor>

<compile-time if>
? if <compil

o e TwV

<compile-time statement> ::= <compile-time declaration>
| <compile-time assignment>
<compile-time if>

<compile-time term> ::= <compile-time factor>
| <compile~time term> and <compile-time factor>

<compile—time type> ::= boolean
<compile-time var spec> ::=
<identifier list> : <compile-time type> :=
<compile-time expression>
<component type> ::= <fixed type>
<concatenation element> ::= <scalar element>
<string element>
<pointer element>
<floating point element>
<condition> ::= on | off
<constant> ::= <basic constant>|<string constant>
<constant declaration> ::=

const <constant spec> {, <constant spec>}

CDC Private

NUMBER

93

94

95
96
97
98

99

100
101

102

103

104

105
106
107

108

A8

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

5-3

16-7

10-6

10-12

7-1

10-4

12-2
10-7

10-14

CYBIL METALANGUAGE DEFINITION

<constant

<constant

<constant

<constant

<constant

<constant

expression> ::= <simple expression>

fixers> ::= <constant scalar expression>
{,<constant scalar expression>}

identifier> ::= <identifier>
integer expression> ::= <constant expression>
scalar expression> ::= <constant expression>

spec> ::= <identifier> = <constant expression>

<control statement> ::= <procedure call statement>

<if statement> { <case statement>
<cycle statement>

<exit statement> | <return statement>
<empty statement>

<control variable> ::= <variable identifier>

<cycle statement> ::= cycle <structured statement identifier>

<declaration>

::= <type declaration>

| <constant declaration>
<variable declaration>
<procedure declaration>
<function declaration>

‘ <section declaration>

<empty>

<declaration list> ::= {<declaration>;}

<delimited statement> ::= <begin statement>

<while statement>
<for statement>

<digit> ::= 0|1]|2|3]4|5|6]7|8|9

<disjunctive operator> ::= or | xor

<empty> ::=

<empty statement> ::=

CDC Private

A9

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER

fos
<D
AVl

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

PAGE

9-1

11-2

6-15

4-14

4-14

10-6

6-11

4-8

4-14

4-14

4-8

CYBIL METALANGUAGE DEFINITION

<exit designator> ::= <siruciured staiement designalor>
<procedure identifier>
<function identifier>
<exit statement> ::= exit <exit designator>
<exponent> ::= [<sign>]<digit>{<digit>}
<expression> ::= <simple expression>
{<simple expression><relational operator>
<simple expression>
<factor> ::= <variable>|<constant>|<constant identifier>
<set value constructor>|<function reference>
t<procedure identifier>|%<variable>
| (<expression>) |not<factor>

<field length> ::= <positive integer expression>

<field reference> ::=
<variable reference>.<record subreference>{.<record subrefere¢

<field selector> ::= <identifier>

<field seiectors> 1:= <field selector> {,<field selector>}
<final value> ::= <scalar expression>

<first char> ::= <positive integer expression>

<fixable pointer> ::= <adaptable pointer>
|<bound variant pointer>

<fixable type> ::= <adaptable type>
'<bound variant record type>

<fixed array type identifier> ::= <array type identifier>

<fixed field> ::= <field selectors> : [<alignment>] <fixed type>
<fixed fields> ::= <fixed field> {, <fixed field>}

<fixed pointer> ::= *<fixed type>

CDC Private

NUMBER

126

127

128

129

130

131

132

133

134

135

—
»
=

137

138

139

140

141

AlO

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS—-REFERENCE

PAGE
10-15

4-18

4-12

4-18

5-2

11-2

11-2

11-2

4-7

3-3

10-6

10-6

8-2

CYBIL METALANGUAGE DEFINITION

<fixed pointer variable> ::= <pointer variable>

<fixed span> ::=
[rep <positive integer constant expression> of]
<fixed type identifier>

<fixed string> ::= string (<length>)

<fixed string type identifier> ::= <string type identifier>

<fixed type> ::= <basic type>|<structured type>|<storage type>

<fixed type identifier> ::= <identifier>
|<pre-defined type identifier>

<floating point constant> ::= <real constant>
<longreal constant>

<floating point element> ::=
<floating point expression> [<floating point field specifier>]

<floating point expression> ::= <real expression>
| <longreal expression>

<floating point field specifier> ::=
: <field length> [:<fractional digits>]

<follower> ::= <letter>|<digit>

|_l#]sle

<for list> ::=
<initial value> to <final value>
|<initial value> downto <final value>

<for statement> ::=
for <control variable> := <for list> do
<statement list> forend

<formal param list> ::= <formal parameter identifier>
{,<formal parameter identifier>}

<formal parameter identifier> ::= <identifier>

CDC Private

All
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE)
NUMBER PAGE CYBIL METALANGUAGE DEFINITION
i42 1i-2 <fractional digits> ::= <positive integer expression> -
143 10-21 <free statement> ::= i .
free <pointer variable>[in <heap variable>]
144 8-3 <func attribute> ::= <proc attribute> | unsafe
145 8-3 <func body> ::= <proc body>
146 8-3 <func end> ::= funcend [<function identifier>]
147 8-2 <func spec> ::= <function identifier> [<alias>] <func type spec>
148 8-3 <func type spec> ::= [<parameter list>] .: <result type>

149 8-2 <funetion declaration> ::= function l xref l <func spec>
| function [[func attribute]] <func spec> ;
<func body> <func end>

150 8-3 <function identifier> ::= <identifier>

151 9-1 <function reference> ::= <built-in function reference>
|<user defined function reference>

152 ' 4-22 <function type> ::= <function type identifier>
153 4-23 <function type identifier> ::= <identifier>
154 6-6 <global proc name> ::= <procedure identifier>
155 4-18 <heap type> ::= heap (<space>)
| <heap type identifier>

156 4-18 <heap type identifier> ::= <identifier>
157 10-20 <heap variable> ::= <variable reference>
158 5-2 <hex digit> ::= A|B|C|D|E|F

a|b|c|dje|f

<digit>
159 3-3 <identifier> ::= <letter>{<follower>}
160 10-9 <if body> ::= <expression> then <statement list>

[else <statement list> | elseif <if body>]

CDC Private

NUMBER

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

Al2

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS—-REFERENCE

PAGE
10-9

5-4

4-13

10-6

6—6

4-3
4-4

4-14

CYBIL METALANGUAGE DEFINITION
<if statement> ::=

if <if body> ifend
<indefinite value constructor> ::=

I<value elements>]
| I] {the empty set}

<index> ::= <scalar type>

| <constant scalar expression>

..<constant scalar expression>
<initial value> ::= <scalar expression>
<initialization> ::= := <initialization expression>
<initialization expression> ::= <constant expression>
<indefinite value constructor>

t<global proc name>

<integer> ::= <digit>{<digit>}
| <digit>{<hex digit>}<base designator>

<integer constant> ::= <integer> | <integer constant identifier>
<integer constant identifier> ::= <identifier>

<integer type> ::= integer|<integer type identifier>

<integer type identifier> ::= <identifier>

<invariant record spec> ::=
record <fixed fields> <recend>

<invariant record type> ::=
[packed] <invariant record type identifier>
| [packed] <invariant record spec>

<invariant record type identifier> ::= <identifier>

<layout control> ::= <source layout>
| <listing layout>

<left> ::= <integer>

<length> ::= <positive integer constant expression>

CDC Private

NUMBER

178

179

180

181

182
183

184
185
186
187
188
189

190

191

192

193

194

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

Al3

86/03/06
REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

10-16

3-3

12-7

12-6

12-5

5-2

4-20

12-8

5-2

7-1

CYBIL METALANGUAGE DEFINITION

<letter> ::= a|B|C|D|E|F|G|H|I|J|K|L|M
INnfo|PlQ|RIS|T|U|v|W|X|Y|Z
alblc|d|e|f|glhli|j|k|l|m
njojplg|r|s|t|ujv|w|x|y|z

<lineation> := <spacing>

<number of lines>

<listing layout> ::= <pagination®
<lineation>

raevaaal

<listing toggles> ::= list | listobj
| listcts | lListext | listall

w

<longreal constant> ::= <longreal number>

<longreal constant identifier>
<longreal
<longreal expression> ::= <expression>
<longreal number> ::= <mantissa> D<exponent>
<longreal
<longreal type identifier> ::= <identifier>
<lower> ::= <constant scalar expression>

<lower bound spec> ::=

<maintenance control> ::= compile | nocompile

<mantissa> ::= <digit>{<digit>}[.]{<digit>}
<module body> ::= <declaration list>

<module declaration> ::=
module <module identifier> [<alias>];
<module body>
modend [<module identifier>]

constant identifier> ::= <identifier>

type> ::= longreal |<longreal type identifier>

<constant integer expression>

CDC Private

NUMBER

195

196

197

198

199

200

201

202

203

204

207

208

209

210

211

212

Al4

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

7-1

10-19

6-11

12-7

12-6

8-2

8-2

8-2

CYBIL METALANGUAGE DEFINITION

<module identifier> ::= <identifier>
<multiplying operator> ::= * | div | / | mod | and
<next statement> ::=
next <allocation designator> in <pointer to sequence reference
<non-negative integer expression> ::= <scalar expression>

<number of lines> ::= <integer>
{where 1 <= number of lines}

<object library controi> ::= library := <library name>

<object type> ::= <type>

<offset> ::= <integer constant>

<ordinal constant> ::= <ordinal constant identifier>
<ordinal constant identifier list> ::=

<ordinal constant identifier>

,<ordinal constant identifier>
{,<ordinal constant identifier>}

<ordinal constant identifier> ::= <identifier>
<ordinal type> ::=
(<ordinal constant identifier list>)
| <ordinal type identifier>
<ordinal type identifier> ::= <identifier>
<pagination> ::= eject

<param> ::= <formal param list> : <parameter type>

<param segment> ::= <reference params>
<value params>

<parameter list> ::= (<param segment> {;<param segment>})

<parameter type> ::= <fixed type>
|<adaptable type>

CDC Private

NUMBER

213

214

215
216

217

218

219

220

221

222

223

224

225

226

227

228

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

Al5

86/03/06
REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

4-8

4-8

10-7

10-19

10-19

4-8

4-8

6-9

CYBIL METALANGUAGE DEFINITION

<parental> ::= <parental type variable>

<parental type> ::=

<storage type>

<adaptable storage type>
<aggregate type>
<adaptable aggregate type>

<parental type variable> ::= <variable>

<pointer

<pointer

<pointer

<pointer

<pointer

<pointer

<pointer

<pointer

<pointer

<pointer

<pointer

<pointer

<pointer

constant> ::= nil

element> ::=
<pointer reference>[<pointer field specifier>]

field specifier> ::= [:<field length>] [:<radix spec>]

reference> ::= <pointer variable>

|<function reference>

to cell> ::= tcell

to

to

to

to

function> ::= #<function type>

procedure> ::= f<procedure type>

procedure reference> ::= <pointer reference>

sequence reference> ::

= <pointer to sequence variabl
| <function reference>

to sequence variable> ::= <pointer variable>

type> ::= <fixed pointer>

<fixable
<pointer
<pointer
<pointer

pointer>

to procedure>

to function>
type identifier>

type identifier> ::= <identifier>

variable> ::= <variable>

CDC Private

NUMBER

229

230

231
232

233
234
235
236
237
238

239

240

241

242

243

244

Alé6

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

4-18

12-3

12-3

4-18

8-2

10-7

4-22

4-22

CYBIL METALANGUAGE DEFINITION

<positive integer constant expression> ::=
<constant scalar expression>

<pragmat> ::= <toggle control>
<layout control>
<maintenance control>
<comment control>
<object library control>

<pragmat statement> ::=
?? <pragmat> { ,<pragmat> } ??

<pre—defined type identifier> ::= integer I boolean | char
| real | longreal cell

<proc attribute> ::= xdcl | inline | f#gate -

<proc attributes> ::= <proc attribute> , {<proc attribute>}

<proc body> ::= <declaration list> <statement list>

<proc end> ::= procend [<procedure identifier>]

<proc spec> ::= <procedure identifier> [<alias>] <proc type spec>
<proc type spec> ::= [<parameter list>]

<procedure call statement> ::=
<procedure reference> <actual parameter list>

<procedure declaration> ::=
procedure [xref] <proc spec>
| procedure[[<proc attributes>]]<proc spec>;
<proc body><proc end>
| program <proc spec>;<proc body><proc end>

<procedure identifier> ::= <identifier>

<procedure reference> ::= <procedure identifier>

l <pointer to procedure reference> *

<procedure type> ::= <procedure type identifier>
|procedure <proc type spec>

<procedure type identifier> ::= <identifier>

CDC Private

NUMBER

245

246

247

248

254

255

256

257

258

259

260

261

262

Al7

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

10-18
5-2
11-2

5-2

5-4

10-5

10-19

8-3

CYBIL METALANGUAGE DEFINITION

<push statement> ::= push <allocation designator>

<radix> ::= 2 | 8 | 10 | 16

<radix spec> ::= #(<radix>)

<real constant> ::= <real number> | <real constant identifier>
<real constant identifier> ::= <identifier>

<real expression> ::= <expression>

<real type> ::= real |<rea1 type identifier>

<real tvpe identifier> ::= <identifier>

=

<recend> ::= [,]recend

<record subreference> ::=
<field selector>|<subscripted reference>

<record type> ::= <invariant record type>
|<Variant record type>

<reference params> ::= var <param> { ,<param> }

érelational operator> : < | <= | > | >= | = | <> | in

<relative pointer type> ::=
rel (<parental type>) * <object type>
<rep spec> ::= rep <positive integer constant expression> of

<repeat statement> ::=
repeat <statement list> until <expression>

<reset statement> ::=
reset <pointer to sequence variable> [to <pointer reference>]

reset <heap variable>

<result type> ::= <basic type>

CDC Private

NUMBER

263
264

265

266

267

268

1269

270

271

272

273
274
275
276
277

278

279

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

Al8

86/03/06

REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

10-14

12-6

9-2

9-2

5-2

6-7

6-7

6-7

4-16

CYBIL METALANGUAGE DEFINITION

<return
<right>

<scalar

<scalar

<scalar expression>[<scalar field specifier>]

<scalar

<scalar

<gscalar

<scalar

<scalar

<scalar

<scaled

statement> ::= return

::= <integer>

constant> ::= <ordinal constant>
<boolean constant>
<integer constant>

<character constant>

element> ::=

expression> ::= <expression>

field specifier> ::= .
[:<field length>] [:<radix spec>]

identifier> ::= <identifier>

type> ::= <integer type>
<character type>
<ordinal type>
<boolean type>
<subrange type>

type identifier> ::= <scalar identifier>

variable> ::= <variable>

number> ::= <mantissa> E<exponent>

<Scope attribute> ::= xdcl | xref | fgate

<section attribute> ::= read | write

<section declaration> ::= section <sections> {,<sections>}

<section name> ::= <identifier>

<sections> ::=

<section name> {,<section name>} : <section attribute>

<selection spec> ::= <constant scalar expression>
[..<constant scalar expression>]

CDC Private

NUHBER

280

288

289

290
291

292

293

294

295

296

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

Al9

86/03/06
REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

10-10

9-1

12-6

12-6

4-18

12-7

CYBIL METALANGUAGE DEFINITION

<selection spec> ::=
<constant scalar expression>
[..<constant scalar expression>]

<selection specs> ::= <selection spec>

{, <selection spec>}
<selector> ::= <scalar expression>

<sequence type> ::= seq (<space>)

| <sequence type identifier>
<sequence type identifier> ::= <identifier>

<set type> ::= set of <base type>

+ bForma - damb L2 amn
5 \.jyﬁ AUWSiIIvaLdiTL "

[P
I‘S

o

<set type identifier> ::= <scalar identifier>
<set wvalue constructor> ::=

$<set type identifier> [

| S<set type identifier> [

<set value element> ::= <expression>

<set value elements> ::= <set value element>
{,<set value element>}

<sign> ::= + | -

<sign operator> ::= <sign>

l {the empty set}
<set value elements>]

<simple expression> ::= <term> i <sign operator><term>

|<simple expression>

<adding operator><term>

<source layout> ::= <source margin control>

left := <left>

<source margin control> ::=
l right := <right>

<space> ::= <fixed spén>{,<fixed span>}

<spacing> ::= 1| 2| 3

CDC Private

A20
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION - REV: 8
APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE
NUMBER PAGE CYBIL METALANGUAGE DEFINITION
297 10-16 ::= [rep <non-negative integer expression> of]
<fixed type identifier>
298 10-16 ::= [{, }]
299 3-3 <special mark> ::= +|[-|¥ I :],
[#isi_tel2] (D) |=|<|>|[]T|*]{]}
300 10-16 <star fixer> ::= <scalar expression> .. <scalar expression>
301 10-1 <statement> ::= <assignment statement>
<structured statement>
<control statement>
<storage managementi statement>
302 10-1 <statement list> ::= <statement>{;<statement>}
303 6-4 <storage attribute> ::= static | <section name>
304 10-15 <storage management statement> ::= <push statement>

<next statement>
<reset statement>
<allocate statement>
<free statement>

305 4-17 <storage type> ::= <sequence type>
|<heap type>
306 5-2 <string constant> ::= <string term>

i cat <string term>}

307 9-2 <string constant identifier> ::= <identifier>
308 3-3 <string delimiter> ::= '
309 11-2 <string element> ::=

<string expression> [<string field specifier>]
310 11-2 <string expression> ::= <string variable>
: <string constant>

<gsubstring reference>

311 11-2 <string field specifier> ::= :<field length>

CDC Private

[#%)
[y
w

314

315

316

(98]
—
~J

318

319

320

321

322

323

324

325

326

327

A21

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

4-12
6-10

10-4

10-4

4-10

4-6

6-10

10-16

CYBIL METALANGUAGE DEFINITION
<string term> ::= <character constant>
| ' [<char token> <char token> {<char token>}]'

<string type> ::= <fixed string>
| <string type identifier>

<string type identifier> ::= <identifier>
<string variable> ::= <variable reference>
<structured statement> ::= [<structured statement designator>]

<repeat statement>
| [<structured statement designator>] <delimited statement>

[<structured statement designator>]

<structured statement designator> :: .
/ <structured statement identifier> /

<structured statement identifier> ::= <identifier>

<structured type> ::= <set type>
|<aggregate type>

<subrange type> ::= <subrange type identifier>
|<lower>..<upper>

<subrange type identifier> ::= <identifier>
<subscript> ::= <scalar expression>
<subscripted reference> ::= <array variable> [<subscript>]
<substring iength> ::=|<:on—negative integer expression>
<substring reference> ::=

<string variable>(<substring spec>)

<substring spec> ::=
<first char>[,<substring length>]

<tag field fixers> ::= <scalar expression>
| <constant fixers>[,<scalar expression>]

CDC Private

NUMBER

328
329
330

331

332

333

334

335

336

337

338

339

340

341

A22

CYBER IMPLEMENTATION LANGUAGE

86/03/06

CYBIL LANGUAGE SPECIFICATION » REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE

12-1

12-1

12-7

12-4

12-4

12-4

12-4

CYBIL METALANGUAGE DEFINITION

<tag field selector> ::= <identifier>
<tag field spec> ::= [<tag field selector> :] <tag field type>
<tag field type> ::= <scalar type>

<term> ::= <factor>
<term><multiplying operator><factor>

<text> ::= <text item> {<text item>}
<text item> ::= <pragmat statement>
| <compile-time statement>
l <identifier>
<constant>
<basic symbol other than 77>
.<comment>

<titling> ::=
newtitle := '<char token> {<char token>}'
l title := '<char token> {<char token>}'
oldtitle
<toggle control> ::= set (<toggle setting list>)
| push (<toggle setting list>)
| bop

eset

3]
0

<toggle identifiers> ::= <listing toggles>

| <checking toggles>

<toggle setting> ::= <toggle identifiers> := <condition>
| <empty>

<toggle setting list> ::= <toggle setting> {,<toggle setting>}
<type> ::= <fixed type>
<fixable type>

<procedure type>

<type declaration> ::=
type <type spec>{, <type spec>}

<type spec> ::= <identifier> = <type>

CDC Private

A23
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

342 5-2 <unscaled number> ::= <digit> {<digit>}. <digit>{<digit>}
343 3-3 <unused mark> :z:= &|%|||=|¢|\|t|"

344 4-6 <upper> ::= <constant scalar expression>

345 9-1 <user defined function reference> ::=

<function identifier>(<actual parameter>
{, <actual parameter>})
| <function identifier>()

346 5-4 <value element> ::=
[<rep spec>]<initialization expression>
[<rep spec>]<set value constructor>
[<rep spec>]<indefinite value constructor>
[<rep spec>] *

347 5-4 <value elements> ::=
<value e1ement>{,<value element>}

348 8-2 <value param> ::= <formal param list> : <parameter type>
349 8-2 <value params> ::= <value param>{,<value param>}
350 6-8 <variable> ::= <variable reference>

| <substring reference>

351 6-3 <variable declaration> ::=
var <variable spec>
,<variable spec>}

352 -3 <variable identifier> ::= <identifier>

353 6-3 <variable identifiers> ::=
<variable identifier> [<alias>]
{,<variable identifier>[<alias>]}

354 6-8 <variable reference> ::= <variable identifier>
<pointer reference>?
<subscripted reference>
<field reference>

355 - 6-3 <variable spec> ::=

<variable identifiers> : [<attributes>]
<fixed type>[<initialization>]

CDC Private

A24
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

356 4-16 <variant> ::= [<fixed fields>]
| [<fixed fields>,] <case part>

357 4-15 <variant record spec> ::=
record [<fixed fields>,] <case part> <recend>

358 4-15 <variant record type> ::=
[<packed>] <variant record type 1dent1f1er>
| [<packed>] <variant record spec>

359 4-15 <variant record type identifier> ::= <identifier>
360 4-15 <variation> ::= =<gelection specs>= <variant>

361 4-15 <variations> ::= <variation> {, <variation>}

362 10-5 <while statement> ::=

while <expression> do <statement list> whilend

CDC Private

p—y

Bl
CYBER IMPLEMENTATION LANGUAGE

86/03/06
CYBIL LANGUAGE SPECIFICATION . “REV: 8
APPENDIX B - CYBIL RESERVED WORD LIST
APPENDIX B - CYBIL RESERVED WORD LIST
Al RESERVED Al RESERVED
LINE LINE X-REF WORD LINE LINE X-REF WORD
1 274 6-5 {gate 45 136 10-6 do
2 233 8-2 iigate 46 138 1i0-6 downto
3 61 9-2 #loc 47 208 12-6 eject
4 61 9-2 {ptr 48 160 10-9 else
5 61 9-2 #rel 49 83 12-2 else
6 61 9-2 jseq 50 160 10-9 elseif
7 61 9-2 {size 51 51 10-5 end
8 69 '5-1 S$char 52 110 10-13 exit
9 61 9-2 Schar 53 53 5-1 false
10 61 9-2 Sinteger 54 82 12-2 false
11 61 9-2 Slongreal 55 139 10-6 for
12 61 9-2 Sreal 56 139 10-6 forend
13 33 7-4 alias 57 143 10-21 free
i4 34 4-Z24 aligned 58 i46 3-3 funcend
15 35 10-20 allocate 59 149 8-2 function
16 196 9-1 and 60 155 4-18 heap
17 85 12-2 and 61 14 4-22 heap
18 38 4-13 array 62 i61 10-9 if
19 10 4-20 array 63 83 12-2 if
20 51 10-5 begin 64 161 10-9 ifend
21 55 4-5 boolean 65 257 9-1 in
22 232 4-18 boolean 66 197 10-19 in
23 86 12-1 boolean 67 35 10-20 in
24 60 4-23 bound 68 143 10-21 in
25 62 4-15 case 69 233 8-2 inline
26 63 10-9 case 70 170 4-3 integer
27 64 4-16 casend 71 232 4-18 integer
28 306 5-2 cat 72 294 12-6 left
29 66 4-7 cell 73 200 12-8 1library
30 220 4-9 cell 74 182 12-5 1ist
31 232 4-18 cell 75 182 12-5 1listall
32 71 4-4 char 76 182 12-5 1listcts
33 232 4-18 char 77 182 12-5 listext
34 73 12-5 chkall 78 182 12-5 1listobj
35 73 12-5 chknil 79 187 4-7 longreal
36 73 12-5 chkrng 80 232 4-18 longreal
37 73 12-5 chksub 81 61 9-2 lowerbound
38 73 12-5 chktag 82 61 9-2 1lowervalue
39 75 12-8 comment 83 196 9-1 mod
40 191 12-8 compile 84 194 7-1 modend
41 92 5-3 const 85 194 7-1 module
42 101 10-12 cycle 86 334 12-7 newtitle
43 196 9-1 div 87 197 10-19 next
44 362 10-5 do 88 216 5-2 nil

CDC Private

CYBER IMPLEMENTATION LANGUAGE

B2

86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
APPENDIX B - CYBIL RESERVED WORD LIST
Al RESERVED Al RESERVED

LINE LINE X-REF WORD LINE LINE X-REF WORD

89 191 12-8 nocompile 133 276 -6-7 section

90 113 9-1 not) 134 283 4-17 segq

91 82 12-2 not 135 21 4-21 seq

92 285 4-11 of 136 285 4-11 set

93 62 4-15 of 137 335 12-4 set

94 127 4-18 of 138 180 12-7 skip

95 259 5-4 of 139 180 12-7 spacing

96 63 10-9 of 140 303 6-4 static

97 297 10-16 of 141 128 4-12 string

98 90 12-4 off 142 13 4-20 string

99 334 12-7 oldtitle 143 61 9-2 strlength
100 90 12-4 on 144 61 9-2 succ

101 31 9-1 or 145 160 10-9 then

102 106 12-2 or 146 83 12-2 then

103 39 4-13 packed 147 334 12-7 title
104 173 4-14 opacked 148 138 10-6 to

105 358 4-15 packed 149 261 10-19 to

106 6 4-20 packed 150 53 5-1 true

107 17 4-21 packed 151 82 12-2 true

108 60 4-23 packed 152 340 4-2 type

109 335 12-4 pop 153 144 8-3 unsafe
110 61 9-2 pred 154 260 10-5 wuntil
111 243 4-22 procedure 155 61 9-2 upperbound
112 240 8-1 procedure 156 61 9-2 uppervalue
113 236 8-2 procend 157 351 6-3 wvar

114 240 8-1 oprogram 158 258 g-2 wvar

115 245 10-18 push 159 80 12-1 var

116 335 12-4 push 160 362 10-5 while
117 275 6-7 read 161 362 10-5 whilend
118 251 4~7 real 162 275 6-7 write
119 232 4-18 real 163 274 6-5 xdcl

120 253 4-14 recend 164 233 8-2 =xdecl

121 172 4-14 record 165 31 9-1 xor

122 357 4-15 record 166 106 12-2 xor

123 19 4-21 record 167 274 6-5 =xref

124 258 4-9 rel

125 127 4-18 rep

126 259 5-4 rep

127 297 10-16 rep

128 260 10-5 repeat

129 261 10-19 reset

130 335 12-4 reset

131 263 10-14 return

132 294 12-6 right

CDC Private

)]
CYBER IMPLEMENTATION LANGUAGE
A 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX C - CYBIL INTRINSICS

APPENDIX C - CYBIL INTRINSICS

GENERAL INTRINSICS

The following intrinsics are considered useful across a wide
variety of processors where CYBIL is provided.

#CONVERT_POINTER_TO PROCEDURE (P,Q)

This procedure is wused to ~convert a variable of type
pointer—to-procedure with no parameters to a variable of type
pointer—-to-procedure with an arbitrary parameter list.

P - pointer-to-procedure with no parameters
Q - pointer-to-procedure with an arbitrary parameter list.

#REYPOINT (P1,P2,P3)

This procedure causes a KEYPOINT instruction (Reference Number 136)
to be generated based on the following parameters:

Pl - This parameter specifies the keypoint class and is a constant
expression in the range 0..15 and becomes the instruction J
field.

P2 - This parameter specifies optional data to be collected with
the keypoint and is a constant or variable expression within
the range 0..0ffffff£f£(16). If it is the constant zero then
the K field of the instruction is zero. If P2 is not a zero
then the value of the P2 is placed in an X register and that
register number becomes the instruction's K field.

P3 - This parameter specifies a keypoint identifier and is a
constant expression in the range of 0..0FFFF(16) and becomes
the instructions Q field. ’

#SCAN (SELECT, STRING, INDEX, FOUND)

This procedure scans a string from left to right until either one
of a set of specified characters is found or until the string is

exhausted. The set of character values to scan for is specified with
a 256 bit variable, with each bit representing one of the possible
character values. If a bit is set in this variable, the scan will

stop when a character value corresponding to the bit position in the
variable is found. 1In either termination case, the starting character

CDC Private

c2
CYBER IMPLEMENTATION LANGUAGE
v 86/03/06

CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX C - CYBIL INTRINSICS

position of the character that caused termination is returned. The
procedure returns a boolean which indicates if a byte was "found".

select -~ Variable designating the character values to be scanned
for. The size of this variable must be 256 bits.

string - String or substring variable to be scanned

index - Integer variable (1..65536) into which the index of a
"found" character is returned. If no selected values were
found, it contains the string length plus one. (The index
value of the first character in the string is one.)

found - Boolean variable which 1is set to true if the scan
terminated as a result of finding one of the selected
characters. '

#SPOIL (,VARIABLE>{,<VARIABLE>})

This procedure is used to announce to the compiler that certain
optimizations should be inhibited on the quoted (up to a limit of 127)
variables. This inhibited optimization 1is necessary to control
asynchronous usage of CYBIL. The compiler will handle each actual
parameter to #SPOIL as if it was associated with a reference (VAR)
formal parameter.

If the parameter quoted is a direct reference to a variable, it
will be assumed to interfere with that variable. If the parameter
quoted is an indirect reference (i.e. pointer dereference, records
with pointer fields) to a variable, it will be assumed to interfere
with any variable of equivalent type.

#TRANSLATE (TABLE, SOURCE, DESTINATION)

This procedure translates each character contained in the source
field, according to the translation table, and transfers the results
to the destination field. The translation operation will occur from
left to right with each source byte used as an index into the
translation table. Translated bytes obtained from the translation
table are stored into the destination field. If the length of the
source field is less than the length of the destination field,
translated blanks will be used to fill the destination field. If the
length of the source field is greater than the length of the
destination field, rightmost characters of the source field will be
truncated.

table - string variable with length 256 that defines the
translation table.

source — string expression to be translated

destination - string variable or substring reference into which the

CDC Private

"

C3
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX C - CYBIL INTRINSICS

translated string is transferred.

#UNCHECKED_CONVERSION (SOURCE, TARGET)

This procedure copies SOURCE to TARGET. The following restrictions
must be satisfied:

1) SOURCE and TARGET must be <variable reference>s

2) SOURCE and TARGET must be of the same length as measured in
bits

3) if SOURCE or TARGET is a <pointer reference>? then the <pointer
reference> must not be a <pointer to procedure>

4) TARGET must satisfy the restrictions on the target of an
assignment statement

5) neither SOURCE not TARGET can be a pointer or contain a
pointer.

MACHINE SPECIFIC INTRINSICS

C180 INTRINSICS

The following intrinsics are provided for the CYBIL implementation
on the Advanced System. These intrinsics allow system programmers
access, in CYBIL, to a small subset of the hardware instructions and
data structures.

#COMPARE SWAP (LOCK, INITIAL, NEW, ACTUAL, RESULT)

This procedure externalizes the compare swap (Reference Number 125)
instruction. The operation of this procedure can best be described
with the CYBIL statements given below. Note that the hardware
executes the entire statement list as a non-interruptable sequence and
that access to LOCK from other sources (other processor, PPU) is
prevented during the time it takes to execute the statement list.

If (left half of lock) = OFFFFFFFF(16) THEN
result := 2;
ELSE
actual := lock;
If lock = initial THEN
lock := new;
result := 0

CDC Private

(o2}
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX C - CYBIL INTRINSICS

ELSE
result := 1;
IFEND
IFEND

lock - Variable on which the compare swap operation is to be
performed. This variable must be on a [0 mod 8] boundary.
initial - Expression that specifies what the initial content of
lock must be for the swap operation to be successful.
new — Expression that specifies the value to be stored in lock if
the swap is successful.
actual - Variable into which the initial contents of 1lock is
returned. If lock is locked, then actual 1is not
modified.
result - Variable 0..2 into which the result of the compare_swap
instruction is returned.
0 - swap was successful.
1 - swap failed because initial <> actual
2 - swap failed because variable was locked.

The TYPE of lock, initial, new, and actual must be equivalent and
have a size of 8 bytes.

#CALLER ID (ID)

This procedure obtains the id of the caller of the function or
procedure. Caller ID is placed in X0 left by the hardware as a result
of executing a CALLREL or CALLSEG inmstruction. The calier id is a
record that contains the global/local key, ring, and segment number of
the caller of a procedure. The argument to this procedure can be any
record with a size of 4 bytes. See sections 2.1.1.1, 2.6.1.2 and
2.6.1.3 of the CYBER 180 MIGDS for a complete description of the

caller id.

#HASH SVA (SVA, INDEX, COUNT, FOUND)

This procedure externalizes the LPAGE (Reference Number 127)
instruction. This instruction searches the System Page Table (SPT)
for a specified System Virtual Address (SVA) and returns an index to
the entry (if found) or an index to the last entry searched (if not
found) . A count of the number of entries searched is also returned.
This procedure returns a boolean to indicate whether the SVA was
found.

sva - variable that contains the SVA to search for. The size of
this variable must be 6 bytes.

index - Integer variable to which a word index into the System Page

CDC Private

c5
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION ' REV: 8

APPENDIX C - CYBIL INTRINSICS

Table is returned. This index points to the SPT entry for
the SVA if the SVA was found, or to the last entry searched
if the entry was not found,

count — integer variable (1..32) to which a count is returned of
the number of SPT entries searched.

found - boolean variable that specifies whether the SVA was found.

#RING (POINTER) : INTEGER

This function takes a direct pointer expression and returns an
integer value which is the ring number contained in the pointer.

#SEGMENT (POINTER) : INTEGER

This Ffunction takes a direct pointer expression and returns an
integer value which is the segment number contained in the pointer.

#OFFSET (POINTER) : INTEGER

This function takes a direct pointer expression and returns an
integer value which is the signed offset contained in the pointer.

#ADDRESS (RING, SEGMENT, OFFSET): *CELL

This function takes a ring, segment and offset and returns a value
of type pointer to cell. The values for the arguments must be in the
following ranges:

ring: 1..15
segment: 0..4095
offset: -80000000(16)..7££EE£££(16)

#iCURRENT STACK FRAME: *CELL

This function returns a pointer to the first cell of the current
stack frame.

#PREVIOUS SAVE AREA: *CELL

This function returns a pointer to the first cell of the previous
save area.

CDC Private

cé
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8

APPENDIX C - CYBIL INTRINSICS

{#PURGE BUFFER (OPTION, ADDRESS)

This procedure externalizes the PURGE (Reference Number 138)
instruction for purging the contents of the cache or map.

option -~ constant integer expression in the range of 0 to 15 that
specifies the purge option. See the MIGDS for a
description of the values of the purge option.
address - a 6 byte variable that specifies the PVA or SVA of the
. data to be purged.

#TEST SET (VARIABLE, RESULT)

This procedure externalizes the LBSET (Reference Number 124)
instruction to return a single bit from memory and to unconditionally
set that bit in memory without changing the value of any other memory.
This intrinsic works on a boolean variable reference whether it be a
boolean variable, an array of booleans, a field of either a packed or
unpacked record.

variable - This variable reference is for the boolean variable that
the LBSET instruction operates on.

result - This variable reference is where the boolean result will
be returned from the LBSET operation.

C180 AND C200 INTRINSICS

{#FREE RUNNING CLOCK (CLOCK ID): INTEGER

This unsafe function returns the value of the free running
microsecond clock.

clock_id - Integer expression (0 ..l) designating the clock to be
read. (For the C180, this is the memory port to be used.
For the C200, this value must be zero.)

#READ REGISTER (REGID): INTEGER

This unsafe function externalizes the reading of the specified
register. This allows a program to read the contents of a process
or processor register file. The result of the function is an integer.

regid - Integer expression (0 .. 255) that identifies the number
of the register to be read.

CDC Private

c7
CYBER IMPLEMENTATION LANGUAGE
86/03/06
CYBIL LANGUAGE SPECIFICATION _ REV: 8

APPENDIX C - CYBIL INTRINSICS

#WRITE REGISTER (REGID, VALUE)

This procedure externalizes the changing of the content ‘of the
specified process or processor register file.

regid - 1Integer expression (0 .. 255) that identifies the number
of the register to be written.

value - Integer expression that contains the data to be written to
the register.

C200 INTRINSICS

#GET JOB TIMER : INTEGER

This unsafe function externalizes the RJTIME instruction
(opcode=37) which retrieves the contents of the job interval timer.

-t

This intrinsic produces undefined resulis when issued in monitor mode.

LOAD AR

This procedure externalizes the LODAR instruction (opcode=0D) which
loads the associative registers from absolute bit address 4000(16) in
conjunction with #SPOIL as appropriate.

#SET JOB TIMER (TIME)

This procedure externalizes the WITIME instruction (opcode=3A)
which sets a value into the job interval timer. When executed in
Monitor Mode this intrinsic is a no-op.

time - Integer expression whose contents is set into the job

interval timer. If the value is greater that (2%*32)-1,
the high order bits will be truncated. If time =0 then the
job interval timer is de-activated.

#STORE AR

This procedure externalizes the STOAR instruction (opcode=0C) which
stores the associative registers into central processor memory at
absolute bit address 4000(16). The contents of the live associative
registers are undefined after completion of the store. This procedure
will be used in conjunction with #SPOIL as appropriate.

CDC Private

c8
CYBER IMPLEMENTATION LANGUAGE
. 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8 ‘”

APPENDIX C - CYBIL INTRINSICS

{SWAP DFBR (CURRENT REGISTER, NEW REGISTER)

This procedure externalizes the LSDFR instruction (opcode=3B) which
loads a new value (new register) into the 64-bit "data flag branch
register'" while storing the old contents of this register into the
variable (current_register). Note: An immediate data flag branch will
occur at the completion of this intrinsic if the new contents of the
DFBR meet the appropriate branch conditions.

current_register — 64-bit, word aligned variable which will receive

the old contents of the "data flag branch register".
new_register - 64-bit, word aligned integer expression or variable

which contains the new value to be loaded into the live

"data flag branch register". |

CDC Private l

