1

06718/81
Table of Contents

1’0 INTRBDGCTIBN » L] - L »] » 2 * L] * E E J » » L] * *] » * » » 1-1
2.0 LANGUAGE OVERVIEW 2 % 8 8 8 8 % s 3 B 9 B B A B e A2 = 3 » 2-1
3.0 METALANGUAGE AND BASIC CONSTRUCTS o o 5 o s o o » 3 s 2 » 3-1
3.1 METALANGUAGE o o o o s 2 5 2 2 » 5 3 » 5 » & 2 o 2 » o » = 3-1
3&2 LEXICAL CUNSTRUCTS 2 e & 2 5 3 & 3 2 5 B 3 5 B S WM 8 B 3 B 3-2
3e2el ALPHABET o 4 ¢ 2 5 o o * o 5 % 3 2 3 2 » 5 2 s o s » » 3-2
3.2+2 IDENTIFIERS A 2 8 3 3 % B e 8 a2 B % S 2 8 a2 o® B e 0w 3-3
3.2.3 BASIC SYHBBLS * % & 8 S B 2 S B 8 3 B 2 S & B B » 2 P 3~4
Be2+4 CONSTANTS 5 8 # 8 ® % 3 & 8 8 % & 2 8 8 B 9 8 s 2 ° » 3~4
32245 CBNVENYIGNS FOR BLANKS o 2 s 2 » o o s 2 2 2 2 2 2 » » 3=-4
36245 COMMENTS o o o % o # 5 » 2 % s 5 2 % 5 s % 2 3 » s » » 3-5
4.0 CYBIL TYPES 2 ® 2 2 5 3 B S 2 B " 2 B 3 2 B B B B s 0 e 4‘1
4.1 TYPE DECLARATIONS ® 5 2 % 3 8 8 8 8 B 8 A B 8+ 3 8 B3 B 0w ® 4-1
402 TYPE NATCHING 2 B &4 ® S 2 3 B B2 B 3 B 5 B2 5 2 S 3 3 B 3 = 4-2
40201 TYPE EQUIVALENCE 2 8 8 3 8 8 8 3 2 S B 8 B B 9 2 B B » 4=-2
.22 POTENTIAL EQUIVALENCE, INSTANTANEOUS TYPES o« s o ¢ » o 4-2
4.3 FIXED TYPES 2 8 B 8 3 8 ® B 8 3 % 2 3 8 5 B T B 8 B 8 e » 4-3
493.1 BASIC TYPES 2 % 8 & 8 % 2 8 B 8 S 8 B B B S S 2 8 4-3
4e3+41s1 Scalar ?ypes ® & 8 ® 3 2 & 3 ® B B2 2 8 B e B 9 o » 4-3
4e¢3elelel INTEGER TYPE » # o o 5 » s 2 » 2 » % 5 » » » & o 4-3
4:3010152 CﬂARACTER TYPE s ® & S S 5 B 8 8 5 » B & 3 2 3 4—-4
4034101¢3 ORDINAL TYPE o o o o o o 5 o o 2 2 3 3 o » 2 » » b—4
4'3'1.1.4 BBGLEAN TYPE L] » 2 » * » » * * * L] - » - * * £] » §-5
4+43.1.1.5 SUBRANGE TYPE 2 5 8 ® ® 8 8 ® 8 5 4 9 B B 8 ° » 4-6
4e3:1.2 Floating Point Type s ® ® * 8 8 8 & % 8 3 ® 5 8 4=-6
4’3.1’2'1 REAL TYPE * - » £] L] » * 2 * L d * L » » » k J - » 4-7
42341242 LONGREAL TYPE ® 8 8 8 8 8 8 8 5 ® 2 6 B B 3 % » 4-7
4e3:1a3 Pointer TYPE o o o 2 2 2 5 s » s 5 » s s @ o s » » 4~7
4.3.1.3.1 POINTER TO CELL 2 8 ® 8 ® e 8 ®» 8 B 8 B B 2 8 4-8
403144 Cetl Type ® ® @ % ® 8 ® ® 8 8 e 8 B 95 B e B B B 4-9
4.3-2 STRUCTURED YYPES 2 ® ® » e & # & B S 6 S B S & * 3 2 4‘9
443.2.1 Set Type ® ® 8 8 4 % 8 ® ®» s 83 % B 3 B B 3 & 8 o 9 4=9
4¢302s2 String Type a % % 5 & * 8 8 ®» 8 3 8 ® 8 ® 8 % 4-10
423¢2+3 Array Type » 8 8 2 ® 2 & 8 3 8 5 2 B WM 2 e S e 8 = 4-11
443.2+341 PACKED ARRAYS 2 & ® 8 2 8 e ® 5 & 8 ® & % e ® 3 4-11
403024342 EXAMPLES OF ARRAY TYPE o o o s o » ¢ s o 2 » » 4-12
4434244 Record Type e 8 ® ® 3 ® 2 3 % % 3 8 B 8 B B a2 2 ® 4-12
fe3+24%+1 INVARIANT RECORDS *® 8 & 5 & 8 8 ° 8 ° 8 5 3 3 4=-12
4.302a6:2 VARIANT RECBRDS AND CASE PARTS 2 # 5 B 8 8 2 8 4'13
423024443 RECORD TYPE EQUIVALENCE & o o s o o o o o s » o 4-14
4!3'2.40" PACKED RECORDS L] . * - L L L] * » - * » - - E] L J . 4-14
4‘312.4:5 EXAMPLES UF RECGRD TYPE $ # ¢ » ® 8 B & B s ° 4‘14
4.3.3 STORAGE TYPES S 8 8 3 8 8 ° 3 8 8 % B 8 B ® 8 " 8 e » 4-15
4434301 Sequence Type 2 " ® A& ® % 8 B ® @ & ® % " " s & 4-15
4e30302 Hﬁap Type 2 8 9 e B 8 5 B ® B B 8 8 8 & 5 8 e @ » 4-15
4,3.343 Sequence and Heap Space 2 # 9 % 8 ® 3 B 8 8 8 ° 3 4~16

#.‘ ADAPTABLE TYPES L 2 *® » 2 » - E] t] L E] L] * L d L J * : J » - L - L] 4-17
42401 ADAPTABLE STRING » o 2 2 o o » 2 + 2 5 2 o o 2 » 2 o » 4-17

4o%.2 ADAPTABLE ARRAY .
4.%4,3 ADAPTABLE RECORD o
4.4.4 ADAPTABLE SEQUENCE
4.4.5 ADAPTABLE HEAP . .
4+5 PROCEDURE TYPE o o o o
4.5 BOUND VARIANT RECORD TYPE
Be7 PACKING o 2 o 2 o o s 3 »
4.8 ALIGNMENT a o & & 8 » ® ®
4.9 OTHER ASPECTS OF TYPES « o &
4.9.1 VALUE AND NON-VALUE TYPES
4+9.2 COMPARABLE AND NON-COMPARAB
42943 FUNCTION-RETURN TYPES .+ »
4e9+.4% TYPE CONVERSION o 2 2 o

& & & @

& b 8

$ & o @ & b 8 @
S & & ¢ & ¢ & » &

@ & & & & s b ¢ b

E TYP

® & "6 & & & » & & & » &
o & LB 6 F 8 6 s 0 s b

. o

5.0 VALUES AND VALUE CONSTRUCTORS .+ + »
5.1 CONSTANTS AND CONSTANTY DECLARATIONS
5.1‘1 CGNS}-AN?S - E » - » » t] L] » »
5142 CONSTANT EXPRESSIONS o o o
54143 CONSTANT DECLARATIONS o o »
542 SET VALUE CONSTRUCTORS o » s o
543 INDEFINITE VALUE CONSTRUCTORS .
6'0 VAR{ABLES » E] L J [] L] E » » " . E » »
6e1 VARIABLES AND VARIABLE DECLARATIONS
621lel ESTABLISHING VARIABLES o« o » o o
6ele2 TYPING DOF VARIABLES o s s o » »

621241 Instantaneous Types o« o » »
64143 EXPLICIT VARIABLE DECLARATIONS .
62 ATTRIBUTES o o o o o 2 o 2 v 2 o » »

5

L

602¢1 ACCESS ATTRIBUTE 2 o o o o »

6e2«2 STORAGE ATTRIBUTES AND LIFETIME
6e2¢2+1 Automatic Variables + o » »
6e2e2s2 Static Variabtes o« « s o s »
6022243 Lifetime Conventions « +« » »
ba242+4 Lifatime of Formal Parameters

6e2e2s5 Lifetime of Atlocated Variables

6020246 Pointer Lifetimes o+ o o o o
60243 SCOPE ATTRIBUTES o o o o o o o »
6‘3 INI‘IALIZATIDN L d ® » L] L J L] k] L] t] » *
- 64341 INITIALIZATION CONSTRAINTS & « &
644 SECTIONS AND SECTION DECLARATIONS .
6.5 VALID COMBINATIONS OF ATTRIBUTES AND
65 VARIABLE REFERENCES o« o o o o o » o
H6eHe1 POINTER REFERENCES o o o o o »
6+6.1s1 Examples of Pointer Reference
64602 SUBSTRING REFERENCES o o ¢ o o »

65262241 Substring References as Charact

64643 SUBSCRIPTED REFERENCE o o s o »
Gebe4 FIELD REFERENCES o o o o o o o o

PRDGRA" STRUCTURE » » * L ® ® L L] L]
COMPILATIDN UNITS - . . L] L L] L L] ®
HDDULES - L » - - L] * * » L * » * *
DECLARATIONS AND SCOPE OF IDENTIFIERS
MODULE -~ STRUCTURED SCOPE RULES .« o
PROCEDURES AND FUNCTIONS 4+ o o o o &

NN NN
e & & & ¢ »
VLS WN MO

» & & & & 8 @ ® & e & & » o & 6 s ¢ &

& & & & 5 & & 5 & & B

®

»
»
»
»
IN
.
]
S

.« & @ & 6 o @ ¢ * & & & & & ¥ s @

$ & 6 & % & & 4 & & & e @

& & D e & & O p4 B & 0 9 @

® & & & & @

5 5 & & 6 5 5 5 > b ¥ &

« & & & v 8 @

-

9 & O S S O & S & & S e 5 B S e s

r

o o & & o

@ & 5 5 & ¥ & & & b v s

>

& (D e o &8 & ™6 & 5 6 5 6 4 & 4 B S B s b e s o

*® & & & 5 9 0

®» & & & & »

® & & & 8 & 4 v 0 ¢ s O b

o & ¢ & 9 s

¢ & (D e 3 & & NG B B 6 8 4 6 b " S e 8 b o

¢ o & & b &

& » & & & 8 @

>

-y

e & D o & ® & w6 & & 5 & 6 & & 6 & » & b & & b B s b

¢ & & & & @

¢ & & & o & 8 & 6 8 4 o

¢ & ¥ ¥ B b 9 "B 4 s e

& ® & ¥ s

-

D

® 6 () 8 o o 06 (IO & ¢ & 6 % 0 8 8 & & B 8 6 b v 6 &

¢ 5 & & & &

» & & 5 ¥ & 9 0 8 & ¥ b

¢ & & & » ¥ @

& & e 8 & &6 I 8 8 6 8 & 8 & O 8 b v B b B v o

@ & 5 & & o

¢ ® & & & b ¥ & & B s b

® 8 & & 8 & & 6 0 5 5 & b e s B 8 v B s e & ¢ & & & 0

& & & o @ o

o« & & & & ¢ b 5 & ¥ &

® & & & ¢ 6 & 6 B 6 6 5 5 6 8 S 9 b 4 " 0¥ e * & & o & & @

¢ & & & & ¥

2

06718781

® & & & § & 6 ¢ o & & ® "B S B B s 6" 9 s e b s ® & & o ¢ & 9

.« & & o ¢ »

¢ ® & * 8 ¢ b e s b e s

4-18
4-18
4-19
4=-20
4=20
4=-20
4=-21
4=21
4-22
4-22
4=22
4-23
4=-23

5-1
5-1
5-1
5-3
5-3
5-4
5-4

6-1
6-1
6-1
6-2
6=-2
6-3
6-3
6-3
6~-4
6-4
b4
b=~4
6-4
6~5
6-5
6-5
6-6
6-6
6-7
6-7
6-8
6-9
6-9
6-10
6-12
6-13
6-15

7-1
7-1
7-1
7=2
7-2
7-2

7.6 STRUCTURED SCOPE RULES
7«7 SCOPE ATTRIBUTES + »
Te7+1 ALIAS NAMES + « »
7.8 DECLARATION PROCESSING . .
7+8.1 BLOCK-EMBEDDED DECLARATIGNS
7+8+.2 MODULE~LEVEL DECLARATIONS .

»
[]

* @& @
[]

-
»
£l

[]
e o
® & & @

¢« & & ¥ & @
& o & o b
o & 8 & & @
¢ . @& s ¥ &
@ b 5 5 b

8.0 PROCEDURES AND FUNCTIONS
8.1 PROCEDURE DECLARATIONS .
842 FUNCTION DECLARATIONS .
8o2+1 SIDE EFFECTS + o o o
843 XDCL PROCEDURES AND FUNCT
Bed PARAMETER LIST o o o o »

¢« & & @

ONS

s & & & & @
¢« & & & ¢
.« & & s
o & » & 5 »
& & ¢ & @
o & 6

® i O 6 & @
* Ze & ¢ &

EXPRESSIONS o o o o o
EVALUATION OF FACTORS
DPERATORS o o o o o @
«2e1 NOT OPERATOR o o o »

9.0
9.1
9.2
9
9.2+2 MULTIPLYING OPERATORS
9
9
9

o ¢ 8
o s 8

2
e2+3 SIGN OPERATORS o o ¢
o2e%4 ADDING DPERATORS » « »
25 RELATIONAL OPERATORS +
9+2+5+1 Comparison of Scalars
942+5+2 Comparison of Pointers
942+5.3 Comparison of Floating
9e2e5e4 Comparison of Strings
9+245+5 Relations Invalving Sets
922+5¢6 Relations Involving Array
9¢2e5¢7 Non-Comparable Types « »

® & & & & & @

o & & & & s s @

oin

®

® N1 e b 6 5 » s 0 s s

y

»

»
»
-
L4
»
»
-
*
»
Ed
P
»

»
.
»
»
.
»
L]
»
-
.
[+]
.
* o
R

n

® DS s e s b B 8 & v s 8
* L e & -~ & & B ¢ & 8 6 8 e

.
.
.
»
»
L)
-
.
»
.
i
»
»
S
.

- »

922+548 Table of Comparable Types and Result

9.3 ORDER OF EVALUATION &« o o o o s o o s o »

10.0 STATEHEQTS * L J L J L J L J] : » * E] £] ® 2 t]
101 SEMICOLONS AS STATEMENT LIST DELIMITERS
1002 ASSIGNMENT STATEMENTS o o o ¢ o o o s »
100241 ASSIGNMENT COMPATIBILITY OF TYPES .
103 STATEMENT LABELS 4 o o o ¢ o o o o » »
10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTI
104 STRUCTURED STATEMENTS o o » o »
10.4+1 BEGIN STATEMENTS .
10,442 WHILE STATEMENTS
10.%3 REPEAT STATEMENTS
10,4449 FOR STATEMENTS .
10.5 CONTROL STATEMENTS .+ » N
10.5.1 PROCEDURE CALL STATEMSNT
10.51.1 Value Parameters . »
10.5+1.2 Reference Parameters
104542 IF STATEMENTS o o s o o
1045+3 CASE STATEMENTS .
100544 CYCLE STATEMENT .
10.5.5 EXIT STATEMENT .
10.5.6 RETURN STATEMENT
104547 EMPTY STATEMENT . .
10.6 STORAGE MANAGEMENT STATEMENT
10.,6.1 ALLOCATION DESIGNATOR &
10,642 PUSH STATEMENT o o o »

* ® @

& & o &

&« & » @
® & & 9 0

o o o @
$ & & 0 6 6 0 b & 5 9 b B & ¥V s Ne b s e

® & 6 b 4 8 & 9 S8 ssEe
® & o & & 8 & & 8 & B b e O P
® » 8 & o 5 6 5 & o & 6 4 8 B ¥

$ & & & & & b & o ¥ o " & b &

e 8 NS & » » & @

& & & o s ¥ ®» # & ¢ @

® & & & & ¢ » & 5 »

ecords

& & 5 8 ¢ ¢ B & 6 B ® & B & 6 b Ms & s &

o & s & & 0
® b b v &

* & & o & @

& & & & & »
e & & & O »

» & & & & 9

e & & & & 5 &6 & s s S 4

® & & 5 b &5 4 & s s s s

- 2
Type

L d *

¢ A 6 & B b 8 & 8 s s s s s 8o

® & ¢ & 9 & & & © 5 8 B & 6 b s ¥ ¥ e & b s b
® 6 8 6 B B ¢ 0 & 6 B B B B G 6 L B O s s YV e

® 6 & & & & 8 9 B 4 & & & 6 B 8 B B b & &

e ® 5 & & @

» & & & &

® & & & 6 5 5 5 8 4 B 4 e s " ¥ b

& 8 & & & % 8 6 5 b & 6 6 B S " P> v s Yo

® & & » o

¢ 4 5 & v

® & # & & & &6 & » 6 B b > s s ¥

e & & & & 6 & & 5 & 5 B & ¥ & 8 & B O bbb s

. & & 5 o @

® » © & & »

& & & & & 6 & 4 & b & b s e s

® & 5 & & & 5 5 B 8 6 S & v B & S 4 & e 5 b s

3

06718781

* & & ¢ @ @

® & & ¥ »

@ & & 8 & 5 4 ¢ & & ¢ b "B e

® & & & o & 2 0 4 & 6 b ¢ & & " s b s 0 b0

7-3
7-3
7-4
7-5
=5
7-5

8-1
8-1
8-2
8-3
8-4
8-t

9-1
9-3
94
9-4
9-5
9-6
9-6
9-9
9-9
9-9
9-10
9-10
9-10
9-11
9-11
9~-12
9-13

10+6+241 System-Managed Stack
10e6¢3 NEXT STATEMENT 4 o o »
10.6e% RESET STATEMENT . .

106241 Reset Sequence

1060442 Reset Heap s @
10.6+5 ALLOCATE STATEMENT
10.6.6 FREE STATEMENT . »

» & © o @

¢ o & &

¢« & & & &

@ 8 5 & 5 » ¥
[N N N I B T
® & & & » s 9
* & @ * & & @
*« & ®» & & & @
® & b & & o

11.0 STANDARD PROCEDURES AND
11.1 BUILT-IN PROCEDURE .
11.1.1 STRINGREP (S» L» P)
11.2 BUILT-IN FUNCTIONS
11241 SUCCIX) 2 » &
11.2.2 PREDI(X) . &
11.2+3 ORDIX) o »
11.2.4 CHR{X) o o
11.2.5 $INTEGER(X)
11.2.6 SREAL(X) .
11.2.7 SLONGREAL(X)
11428 STRLENGTHIX) .+ &
11.2.9 LOWERBOUND{ARRAY)
11.2.10 UPPERBOUNDIARRAY)
11.2.11 UPPERVALUE (X) .+
11.2.12 LOWERVALUE (X) « &
11.3 REPRESENTATION DEPENDENT FUNCT
11.341 #LOC(KVARIABLE>) .+ + &
11342 #SIZECARGUMENT) « o » .
11.4 SYSTEM DEPENDENT PRGCEDURES) .
11.4.1 #INLINE ('KEYPOINT?', Pl, P2y, P3)

-
o
-

CTIDNS

L

. & & o 2
s & & & O ¥
o 8 & 6 & 5 b e
® & & & & & b > -
¢ & 8 & & 8 & 5 & & b 6 s
& & & & & & & 8 s b
¢« % ¢ % 9 5 6 ¥ B e b8 4 e

ONS

T
L J
»
*
*
-
L]
>
-
.
-
»
L 4
»
L]
>
C
- »

8]
»
-
»
-
L4
£ d
*
L
£
-
»
»
*
*
L
1
*
t

L R TN Y Y R NN NN 2N RN RN Y IR I IR NN TN I RN BN)

L]
.
>
»
»
L 4
L]
»
»
*
-
»
2
*
»
N
*
L
*

& ¢ 6 & & » B & 5 B 4 B 5 6 8 " e b "
& & & &+ 9 & & ¥ & & & & ¥ 0" "0

12.0 COMPILE~TIME FACILITIES o « o o 2 2 2 »
12.1 CYBIL SOURCE TEXT o o % 2 s o 2 » 2 = »
12.2 COMPILE TIME STATEMENTS AND DECLARATIONS
12¢2+1 COMPILE=TIME VARIABLES % o o o » o
12.2.2 COMPILE TIME EXPRESSIONS 4 o o »
12.2+3 COMPILE~TIME ASSIGNMENT STATEMENT
120204 CB“PILE‘TI”E IF SYATE”ENT s ® ® @
12'3 PRAGMATS] - » * » » » £] L] -* »
12.3¢1 TOGGLE CONTROL 4+ o o » » »
1223¢2 TOGGLES o o o 2 5 o ¢ » o »
12321 Listing Toggles « o s« «
12+43.2.2 Run=Time Checking Toggle
12343 LAYDUT CONTROL o ¢ » o o o
12.3+3.1 Source Layout .
12434342 Listing Layout
1223434241 PAGINATION .
1203430242 LINEATION « &
12¢3¢3¢243 TITLING o o
12.3.4 MAINTENANCE CONTROL
12.3.5 COMMENT CONTROL . .

L]

& & & & & 3 B N e b s e

¢ & & & & 6 ¥ v & 8 " s @

¢ &6 & &6 & ¥ & & ¢ & O & I

® & & & & & & B & 6 8 ¥ B b+ b 0
® 5 & ¥ € 5 6 5 & & & 4 5 s

¢ & & ¢ s &
& & & & ¢ s
*® &6 & & & &
*® ® & & & 9

13.0 IMPLEMENTATION-DEPENDENT FEATURES
13.1 DATA HAPPINGS - L L] - L] L L] L * * * » *

[
[]
*

. & & @ & ¢

$ & & 5 5 4 5 B & & 4 4 B b " s b W s 0

® 5 6 ¢ ® & 6 & & 5 0 & ¥V L B % s b s

® ¢ 8 & ¢ o

B 6 5 & @6 & 5 & ¥ & S 8 s e s s

® & & & O 5 b & & & & b 8 6 ¢ o s 6

® & = & & &

& ® 3 b 8 & B & B B & & b5 6 4 5 b 8 b b

® & & & S ¢ 4 8 46 & 8 8 8 s b e

L 2)

.« & o » ® & »

® & ® & 5 6 B B B S B B 8 b & @« B s & 8

® 6 & 5 B » 0 B ¢ & & & & B b S & s

o & 8 6 &

8 & 5 5 9 S & & & b B 5 0 ¢ B 6 & 2 400

8 ® & 4 % 6 & 8 0 6 v & 5 B s b B 4 s

@ & e b 5 b

® & & & ¥ 6 * 8 B & 6 2 B S 9 s sy

® ® & & 8 6 o ¢ & b ¥ & & b & & 0 b ¢

& & & & & 8 &

® & ¥ 0 & ¢ 5 4 » $ S & 6 4 & B B s

@ & 8 & ¥ 5 & b & & 8 & 4 B 6 b & b e

®

&

06718781

® 6 6 &6 &6 ¥ 5 6 B & 5 b b b » & s ¥ ¥ e

® & & 6 & & 6 B 6 O & b o & & 8 & ¢ v b

o 9 o 4 & &

10-18
10-18
10-19
10-19
10-19
10-20
10-20

11-1
i1-1
11-1
11-2
11-2
11-2
11-2
11-2
11-3
11-3
11-3
11-3
11-4
11-4
11-4
11-4
11-4
11-4
11-4
11-5
11-5

12-1
12-1
12-1
12-1
12-2
12-2
12-3
12-3
12-4
12-5
12-5
12-6
12-6
12-6
12-7
12-7
12-7
12-8
12-8
12-9

13-1
13-1

5
06718781

APPENDIX A - CYBIL METALANGUAGE CROSS—=REFERENCE « 2 o o » » Al

AP?EN{)IX B - CYBIL RESERVED HBRD ’.IST s o 3 3 e 2 9 3 5 2 s o Bl

CYBIL LANGUAGE SPECIFICATION

1
06718781

REV: 6

LANGUAGE SPECIFICATION
for the
CYBER IMPLEMENTATION LANGUAGE

(CYBIL)

Written By:

E.A.Hohlaend—

Approved Bys

- AT G T S W WS - -

EeH.Michehls ADEC

DISCLAIMER:

This document is an internatl working
paper only. It is subject to change and
does not necessarily represent any
official intent on the part of CDC.

L L E 22 R RIS ELE RS A AL ELELEE £ L 4 KX

Copyright Contro) Data Corporation 1981

cocC

Private

CYBIL LANGUAGE SPECIFICATION

2

06718781
REV: 6

REVISION DEFINITION SHEET

e o s o o e - -~ - - -
REV DATE H DESCRIPTIDN
1 10787177 OQriginat,
o2 12719777 Updated to refject comments received through
the DCS review,
3 06712717178 Updated to reflect V2.0 of the {1anguage
definition.
4 10716778 Updated to reflect comments received through
the DCS review.
5 12707779 Updated to refiect approved DAP?s and
miscellaneous clarifications.,
6 067011781 Updated to reflect approved DAPYs and

W Bl WG GE SE L A S G S S B SE SD LS D e SE LR BE B S SN B Y G B GG BB BE SE LS e G B S GE L R G e SR B e e BE W e

- B WG G EE S GG GO NG BE G S BE Bl SR SN PG B BB EE N0 G GE WS S SR B BN SR B e S BS S NP NG BE G SD BE SR B e B B e +

miscelitaneous clarifications.

CDC Private

1-1
CYBIL LANGUAGE SPECIFICATION

04718781
REV: b

L X2 K. 2 X E R 2 L 2 2 2 2 2 & 222 2 2 2 2 2 2 22 R R 2 EFELEERZEELZEEEEFEFYEEEYEEEREELFELFY X 2 22)

1.0 INTRODUCTION

L 2 E 2 2 F 22 A2 2 A2 A X FEAELELLEZEELEEELEEEESESEE I ESZEEEEISE XSS Y S EEEEEEEESE XL]

1.0 INTRODUCTIION

The CYBIL 1language is intended to be used as the systenm
implementation language for Contro! Data Corporation, This document
provides the definition for the CYBIL tanguages This specification
was developed from Rev, 5 of this specification and from DAP?'s S3470»
S3471» S3484» 53485 S53527» S36545 $3691y $S3873 and S3899.

These DAP's have Implementaticn Language Design Team and DCS
reyiew cycle approval.

CDC Private

2-1
CYBIL LANGUAGE SPECIFICATION
06718781

2.0 LANGUAGE OVERVIEW

t 2. 4. 2 22 F 2 R 22 2 2 2 2 K2 EAYERSEEE AL EEEELSYEN RN EEXEEEIEEEYZEELEEYEELE YN E X]

2,0 LANGUAGE OVERVIEN

A CYBIL program consists of statements» which define actions
involving programmatic elementss and deciarationss which define such
elements.

The definable elements include ygriables and progcedyress aill
having the characteristics that are conventionally associated with
thelr names. Declarations of instances of variables are spelled out
in terms of an jdentifier for the element and a Ltype descrintions
which defines the operational aspects of the element and, in many
casesy lIndicates a notation for referencing. In the <c¢ase of a
variable deciarations the type defines the set of values that may be
assumed by the varliable, Types may be directly described 1in such
declarationss or they may be referenced by a type identifier, which
in turn must be defined by an explicit type declaration. A small set
of pre-defined types are provideds together uwith notations for
defining new types in terms of existing ones.

In generalsy an element may not enter into operations outside the
domain indicated by 1its typesy and most dyadic operations are
restricted to elements of equivatent types (e.ges» a character may not
be added to an integer), Since the requirements for type equivalence
are seyeres these operational constraints are strict., Departures
from them must be explicitly spelled-out in terms of cgnversion
functions.

The basic types include the pre-defined jnteger»s chacs and hoolean
typess all having their conventional connotationss value sets, and
operational domains. These are scalar typess which define
well-ordered sets of values. A scalar type may also be defined as an
ordinal type by enumerating the Jdentifiers which stand for its
ordinal valuess or as a sybrange of another scalar type by specifying
the smallest and largest values of the subrange. Aiso included in
the basic types are the floating point types: real and longreal
types, Poipnter types are included in the basic types., They
represent tlocation valuess and other descriptive informations that
can be used to reference instances of variables and other CYBIL
elements, Pointers are bound to specific typess and pointer
variables may assumes as valuesy only polinters to elements of those
types., (el]l types are also included in the basic types. Cells
represent the smallest addressable memory wunit supported by an
Implementation,

Structured types represent <collections of componentss and are

CDC Private

2-2
CYBIL LANGUAGE SPECIFICATION
06/718/81

2.0 LANGUAGE OVERVIEW

L7 i XXX F X 22 X2 2 s F X2l 2 X222 R R KX ELEREELEELEFEEEELLEEEEEEESESENESELESERSELR]

defined by describing their component types and indicating a
so-called structuring method. These differ in the accessing
discipline and notation used to select individual components. Four
structuring methods are available: set structurey string structures
array structures and pecord structure.

A set type represents all subsets of values of some scalar type.

A siring type of 1ength 1 represents all ordered p-tuples of
vajues of character type. An ordered k-tuple of these values {1 ¢ k
€ n) is called a suybhstring. Notation for accessing substrings is
provided.

An atray Lype represents a structure consisting of components of
the same type. Each component is selected by an garragy selector
consisting of an ordered set of pn index values whose types are
indicated in the array definition,

A record Lfype represents a structure consisting of a fixed number
of components called fields» which may be of different types and
which must be identified by fleld selegctorss In order that the type
of a selected field be evident from the program text {(without
executing the program) a field selector is not a computable values
but 1iInstead is an identifier uniquely denoting the component to be
selecteds These component identifiers are declared in the record
type definition,

A vyatiant record type may be specified as consisting of several
yarlants.e This implies that different variables» although said to be
of the same typey may assume structures which differ in a certain
manner. The difference may consist of a different number and
di fferent types of components. The variant which is assumed by the
current value of a record variable is indicated by a component field
which is common to atl variants and is called the tag field.

Array and record ¢types may have associated packing attributes
which can be used to specify component space-time trade-offs. Access
time for specific components of packed {space~compressed) structures
can be shortened by decfaring them ¢to be atigned. Aligned atso
provides a method of specifying specific hardware boundaries,

Siorage types represent structures to which other varjiables may be
addeds referenceds and deleted under explicit program control. There
are two storage typesy each with its own management and access
characteristics. 3Seguence types and heap Lypes represent storage
structures whose components may be of diverse type. Components of
sequenges are managed through the operations of resetting to the
first component and moving to the pext component and are accessed
through pointers constructed as by-products of the pgxt operator.
Space for <components of heap siorages must be explicitiy managed by

CDC Private

2-3
CYBIL LANGUAGE SPECIFICATION
06/18/81

2.0 LANGUAGE OVERVIEW

the operation of ajloggate and free; the components are accessed
through pointers constructed as by-products of the aflocate
operation.,

Adaptable types are arrays records strings seguence and heap types
defined in terms of one indefinite bounds They may be used as formal
parameters of procedures —- in which case the bounds of the actual
parameters are assumed3 or they may be used to define pointers to
structures which are meant to be explicitiy fixed during execution of
the program.

Denotations for explicit vatues of the basic and structured types
consist of gcopnstants and constant expressionsy which denote constant
vatues of the basic and string types; and yalue constructocrs which
are used to denote instances of values of sety array», and record
types. The boolean constants {(falsestrug) are pre-defined, New
constants can be introduced by gonstant declarationss which associate
an identifier with a constant expression.

Set yvatue constructorss which include set type informations may be

used freely in set expressions. JIpndefipite sef yalue construciors
can be wused only in initialization of variabies where their type is

explicitly indicated by the context in which they otccur.

Variables can be declared with jpitialization specifications and
with certain attribules. Ipitialization gxpressions are evaluated
when storage for the static variable is atlocateds and the resultant
values are then assigned to the variable., The attributes include
agccess atiributes — which specify the purposes for which the variable
may be accessed; storage atiributes — which specify when storage for
the variable is to be allocated and when it is to be freed; and sgcope
atiributes —-which specify the program span over which the declaration
is to holtd {the scope of the declaration). Unless otherwise
specified> the scope of a declaration is the plogck containing the
deciarations including all contained sub-blocks except Ffor those
which contain a re-~declaration of the identifier.

Blocks are portions of oprograms which are grouped together as
procedures or fupctions» and used to define scope and to provide
shielding of identifiers. Procedures or functions have identifiers
associated with thems so that the identified portions of the program
can be activated on demand by statements of the language.

A progedure Is declared in terms of Its identifiers the associated
programs a set of attributess and a 1lst of Fformal paramelierse.
Formal parameters provide a mechanism for the binding of references
to the procedure with a set of yalues and variables =~ the agtual
pacameters - at the point of activation.

A fynction returns a vatue of a specified type. These

CDC Private

2=4
CYBIL LANGUAGE SPECIFICATION
06718781
LA R Rl X R N PN N AP e e ~w o RSVS 6

2.0 LANGUAGE OVERVIEW

2 22 22 2 F 2 22 2 X2 a2 22y ry e 22 r sy 222222 L R XL LEEEZS]

ceturn-tyoes are restricted to the basic typess and are specified in
the function declaration.

In addition to their other programmatic aspectsy biocks provide
partial mechanisms for the shielding and sharing of variables and
portions of programs, Modules (together with scope attributes)
provide a mechanism for the shielding and sharing of dectarations.
Modules are primarily designed to permit program packaging at the
“source" ltanguage level,

Statements define actions to be performed.

Structured statements are constructs composed of statement lists:
begin siatemepnts provide for execution of a tist of statements; while
» for and repeat statements control repetitive execution of a2 single
statement list,

Control statemenis cause the creation or destruction of execution
environments. They provide for the activation of proceduress and for
general changes in the fliow of control. If sitatements provide for
the conditional execution of one of a set of statement lists.

Storage management statemenis provide mechanisms for allocating
new 1ocal varliabless moving forward and backward over components of
sequencessy and allocating and freeing variables in heaps.

A set of pre~defined procedures and functions exists which can be
used for storage managements scalar conversionss etc.

Finally, assignpment statemenis cause variables to assume new
values.

Comppile-~ftime _faciliticsy that are essentially extra~linguistic in
natures are used to control the compilation process and construct the
program to be compiled; these include gcompile-time yariable
declarations» and gompile-time statementis.

CDC Private

3-1
CYBIL LANGUAGE SPECIFICATION
06/718/81
REV: 6

3.0 METALANGUAGE AND BASIC CONSTRUCTS

X2 22 2 X2 X2 222 FyEESEEERNLENEEEESESEELSERELESIEEEEEESEESEYEEEELSESELSEFESZE LSS

3.0 METALANGUAGE _AND _BASIC CONJIRUCIS

3.1 MEIALANGUAGE

In this specifications syntactic constructs are denoted by English
words enciosed between angie brackets < and >. These words atso
describe the nature or meaning of the constructs and are used in the
accompanying description of semanticse.

Constructs not enclosed in angle brackets stand for themselves,

The symbol t13t= is used to mean "is defined as"™» and the vertical
bar §{ is used to signal) an alternative definitione.

An optional syntactic unit {(zero or one occurrences) is designated
by square brackets [and 3.

Indefinite repetition {(zero or more occurrences) is designated by
braces { and }.

Examples:
The definition:

field> t:= {fixed field>
3 <variant Field)

is read: " a field is either a fixed field or a variant field."
The definition:

{fixed fileld> 31:=
{field selectors)> : <typed>

is read: "a fixed field consists of field selectorss followed by 2
colons followed by a type."

The definition:

<field selectors> 3:=
{field selectord>{y<field selector>)}

is read: "field selectors consist of a field selectory followed by

CDC Private

3-2
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

2 2 2 2 2 XX X2 2 2 222 R ELEXLLEFEE IS XERSSELEESELERELESSEEEESEEFEYEEESEYEELEEELSENZX]

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.1 METALANGUAGE

L2 o 22 2 il 2 2222 a2 X F 2 X 22 2 X 2 2 2 Al 2 A XXX R EEEEEEESERSELSEEESELEELSEES Y)]

2erc or more comma separated field setectors.™

The angle bracketss square bracketsy and braces are also elements
of the tanguages and therefore are used in syntactic constructs.
Such syntactic occurrences of these symbols will be underscored when
necessary..

Example:
The definitions
<attributes> 13= [<attribute >{s<attributed}]
is read as» "attributes consist of an attribute followed by zero or
more comma-separated attributes, the entire set of attributes being

enclosed In square brackets."

Words reserved for specific purposes in the language will always
be underscored.

Example:
The definition:
{array spec> 1i1t=

accay [Kindex>)] gf <component typed

is read as» "an array spec is composed of the word ‘tarray! followed
by an index encliosed in square bracketss followed by the word 'of?
followed by a component type,™

Appendix A of this specification contains a sorted alphabetic list
of all constructs in the syntax with their definitions.,

3.2 LEXICAL_CONSIRUCIS

The 1lexical units of the language - identifierss basic symbolss
and constants - are constructed from one or more {(juxtaposed)
elements of the altphabet,

3.2¢1 ALPHABET

The alphabet consists of tokens from a subset of the 256-valued
ASCII character set: those for which graphic denotations are
defined.,

CDC Private

, 3-3
CYBIL LANGUAGE SPECIFICATION

06/18/81
3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2.1 ALPHABET

LA 2 22 2 2 AR X X2 X A 4k 2 2 2 i 2 R 2 22 2 Xt 2t R A a2 R Rl A R R X A2 222 2 F)

<ascii character> 3t= <ailphabetd
i<unprintabled>
i<string delimiter>

<alphabet> 33= <letter)>
1<digit>
1<special mark>
$<blanks>
{1 <unused mark>

<letter> 2= AJBICIDIEIFIGIHITIJIKILIN
INIDIPIQIRISITIUIVIWIXIY!Z
tatbicidielfiginlilitikilim
injolplalrisitiulviwixiylz

<digit> 32:= 0311328334351637:819
<string delimiter> 23= 1

{special mark> 33= +1-1%} ’
1#is3_) =1L}
<blanks> 3:=

<unused mark> 3= EIXILITIS NIt
34242 IDENTIFIERS

Identifiers serve to denote constantss variabless proceduress and
other programmatic elements of the language.

Cidentifier> 3:= (letter>{<{followerd>)}

{follower> 2:= <{letterd>ildigitd>
HIRE 25 31

Identifiers are restricted to a maximum of 31 characterss and
identifiers that differ only by case shifts of component letters are
considered to be identical. Identifiers must begin with a letter and
may not contain embedded blanks. An exception is made to this rule
for the system dependent functions and procedures which begin with
the # character.

CDC Private

3-4
CYBIL LANGUAGE SPECIFICATION

06718/81
3.0 METALANGUAGE AND BASIC CONSTRUCTS
3,2,2 IDENTIFIERS

LA B 2 A 2 X A 2 A X L i a2 X R Rl 2 s A XX il i X e X 2l 2 2 N2 L 2 282 XS ALEEEAEEFESEEEESL]

Examples of Valid Idenfifiers:

x2 Henry Job# A_wordy_Identifier

Examples.of Inyalid Idenfifiecrs:

lst_character_must_be_a_letter
number_of_characters_must_not_exceed_thirtyone

3.2.3 BASIC SYMBOLS

Setected identiflierss special marks and digraphs of special marks
are reserved for specific purposes in the 1J1anguage; 2S.Ge» asS
operatorsy separatorsy delimiters. These so-calied "basic symbols™
will be Introduced as they arise in the sequel.

Identifiers reserved for use as basic symbols will be shown as
underscoreds lower—-case words,

3.2+%4 CONSTANTS

Constants are lexical constructs used to denote values of some of
the elementary data types. Their speifingss and the data types for
which constant denotations c¢an be giveny are described in Section
5¢lel.

3.2.5 CONVENTIONS FOR BLANKS

~Identifiers, reserved wordss and constants must not abut each
others and must not contain embedded blankss except string
constantse. Identifierss reserved wordsy string terms and non-string
constants must be contained on one dinput line. Basic symbolis
constructed as digraphs may not contain embedded blanks. Dtherwises
blanks may be employed freelys, and have no effect outside of
character constants and string constants - where they represent
themselves,

CDC Private

3-5
CYBIL LANGUAGE SPECIFICATION
06718781
3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2.6 COMMENTS

3e2s6 COMMENTS
Commentary strings may be used anywhere that blanks may be used
except within character and string constants.

{commentary string> 3= {{<comment character>)}
{comment terminator)

<comment terminator)> 23= } { <end of lined

<comment character> 22= <{any ASCII character except
a closing brace or end of Jined>

CDC Private

4-1
CYBIL LANGUAGE SPECIFICATION
| 06/18/81

4.0 CYBIL TYPES

L2 2 4 ~~~~~~~~~~~~"..'””-”.."’"”‘.”"“"”ﬂ"ﬂ"~~~”~~~~~~~~~~~.”~~~~~~~”~~~~~~

4«0 CYBIL_IYPES

CYBIL types are used to define operational domains and
characteristics of variables {which take on values) and other
programmatic elements.s CYBIL elements fall into two broad classes of
typese.

{type> 23a {Fixed typed>
t<fixable type>
t<{procedure type>

<fixable typed :t= <adaptable typed
$<bound variant record typed

Fixed types are used to define sets of values that can be assumed
by CYBIL variabless their operational domain and, in many casesy 23
notation for referencing such values.

Fixable types are associated with data types whose precise
attributes are meant to be explicitty "fixed" during execution of the
programs Variables of a fixable type must be referenced in an
indirect manner; they may be referenced through the use of a pointer
or as a formal parameter of a procedure,

4«1 IYPE_DECLARAIIQNS

cYBIL provides a small set of pre-defined typesy reserved
fdentifiers for these, and notation for defining new types in terms
of existing ones.

Tyvpe declarations are used to introduce new typess 3nd identifiers
for the newly declared types.

CDC Private

4=2

CYBIL LANGUAGE SPECIFICATION
\ 06/18/81

4.0 CYBIL TYPES

4.1 TYPE DECLARATIONS

LA L 2 2 2 8 K2 2 2 2 2 2 KX K 2 X 222222 2 X2 AR 2 2 R X ESEENEEEFLEEEEEEEEEEEEESEELSEEEELELEEE R L]

{type declarationd> 3:=
type <type spec>{» <type spec>}

<type specd> 3= Cidentifier> = typed>

Type declarations <c©an be used for purposes of brevitys claritys
and accuracy. Once declareds a type may be referred to elsewhere by
its declared type identifiers The identifier can have mnemonic value
and errors associated Wwith repeated spelling-out of type
specifications are reduced,

4.2 _TYPE_MAICHING

In generals operations involving elements of non-equivalent types
are not alloweds and one type may not be used where snother type |Is
expected, Relaxations to these rules are sometimes permitteds and
will be stated as they arise.,

4.2.1 TYPE EQUIVALENCE

Two equivalent types can be expressed differentiy., For example: a
declared type identifier and the type it denotes have different
spellings; different expressions for slizes of arrays and other
collections of elements can yield the same value; formal parameter
identifiers are not part of procedure types.,

Rules for determining type equivatence are called-out In the
following sections on types,

4e2+.2 POTENTIAL EQUIVALENCEs INSTANTANEOUS TYPES

Adaptable types and bound variant record types actually define
classes of related types, References to variables of such type are
meant to be explicitiy fixed to a so-called jnstantapequs type during
the execution of the programs. Such types are said to
be potepntially—eauiyalent to any of the types to which they can be
fixeds Since the determination of that type can be made only during
program executions references to variables of such types are
permitted wherever a reference to one of the instantaneous types s
valid. No compile-time error messages will be Issued; however, each
implementation is required to carry out the required execution-time
checks for type-matching when selected by the programmers and to
report violations {see Compile~Time Facitititiess Run-Time Checking
Toggles).

CDC Private

4-3
CYBIL LANGUAGE SPECIFICATION
06/18/81
REV: 6

LA A X 2 2 K2 2 2 R 2 X2 2 Rt A i i 22 X R R ARSI EEYELEZEEREEEE L N EFRFYEE XS FEF FFFFEFYT]

4.0 CYBIL TYPES
%3 FIXED TYPES

4.3 EIXED_IYRES
Data types are used to define sets of values that may be assumed
by variables,
Fixed types consist of:
A) Basic types, which take on simple values.
B) Structured typess which define collections of components,

) Storage typess which are used as repositories for coliections of
components of various typese.

<fixed type> 2:= <pasic typedidstructured typedidstorage type>
4,3.1 BASIC TYPES
Basic types define components that take on simple values,

<basic type> 3= {scalar typed
1<floating point typed>
t<pointer type>
$<cell typed>

4+3.1.1 3galar_lypes
Scalar types define well-ordered sets of wvalues for which the
following functions are defineds

sugcg the succeeding value in the set;
pred the preceding value in the set.

<scalar typed> ::= <integer typed>
t<character type)>
i<ordinal typed>
i<boolean type>
t<{subrange typed

4s341e1.1 INTEGER TYPE

{integer type> 3= jplegeri<integer type identifier>
<integer type identifier> ::= (identifier>

CDC Private

. 4—4
CYBIL LANGUAGE SPECIFICATION

06/18/81
4.0 CYBIL TYPES
4e3.1.1.1 INTEGER TYPE

LA 2 Kk 2 2 2. X 2 2 R F RS2 X2 2. 2 22 F 22X EEELSSEASYAEESEREESEEELEEEEEEEELEEEELESEESESEELE L F

Integer type represents an implementation-dependent subset of the
integersy, and is equivalent to the subrange defined by

-0l .. D02

where gl and p2 denote impiementation-dependent integers., In
generaly, |if transportation of programs is planned across
inplementationssy the explicit use of integer types should be avoided
in favor of subrange types.

Permissible__operations: assignments set membership test, atl
relational operatorsy additions subtractions multiplications
quyotienty remainder and applicable standard procedures and
functions,

4e3+141.2 CHARACTER TYPE

<character typed> 3= ghari<character type identifierd>
<character type identifier> = (identifier>

Character type defines the set of 256 values of the ASCII
character sety and is equivalent to the subrange defined by

chr(0) +. chri{255)

where "chr® denotes the mapping function from integer types onto
character type. Characters may be assigned & compared to strings.

Permissible__operations: assignment, set membership test, all
relational operatorss standard procedures and functions,

4¢3e1e1.3 ORDINAL TYPE

<ordinal type> 3:=
{<ordinal constant identifier list)>)
i<ordinal type identifier>

<ordinal constant identifier list) 3:=
<ordinal constant identifier>
s€ordinal constant identifier>
{»<ordinal constant ldentifier>}

ordinal constant identifier> 3= <jdentifierd>
<ordinal type identifier> 13:a (identifier>

An ordinal type defines an ordered set of values by enumerations
in the ordinal tisty of the identifiers which denote the values.,

CDC Private

4=-5
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

e 2 8 2 2 2 L 2 A 2 s a2 it iRy X yE R XN R YERESEEEESZFEEIEEYE]

4.0 CYBIL TYPES
4e321.1.3 ORDINAL TYPE

s E X2 R S L XX L L ESE LSS SR ESEEEESEEESLEXEEYELESEEEELSEEEELLELEENEFFNEE L]

Each of the identifiers (at least two) in the ordinal ltist is thereby
decliared as a constant of the particular ordinal type.

Two ordinal types are equivalent If they are defined in terms of
the same ordinal type identifier.

Permissible__operations: assignment, set membership tests ailil
relational operatorss standard procedures and functions.

Example? The constants of the ordinal type "primary color"™ declared
by

ftype primary_color = {reds greens bilue)

are denoted by "red”, "green', and "blue®™y, and the following
relations hotd:

red < green
red < blue
green < blue

A mapping from ordinals onto non—-negative integers is provided by
the grd functions For the constants of the examples the following
retations hold:

ord (red) = O

grd {(green) = 1

ord (biue) = 2

The ordinal type declaration

type primary_color = {(reds greens blue),
hot_color = (red, orangey vellow)

would be in error because of the dual definition of the identifier
"red™ as a constant of two different ordinal types,

4e3s1le1le4 BOOLEAN TYPE

<boolean typed> 2:= hgolean
i<boolean type identifier>

<boolean type lIdentifier> t:= Cidentiflier)>

CDC Private

4=6
CYBIL LANGUAGE SPECIFICATION
06718781
4,0 CYBIL TYPES
4e3.1.1,4 BOOLEAN TYPE

L2 2 2 2 A X222 ERLERSEEEREEEEEYEESEESEESEESSESEESESEELSEESEEELERELEEEEEEZL]

Boolean type represents the ordered set of "truth values™s whose
constant denotations are false and trye» and is conceptually
equivatlent to the ordinal type specified by:

{falsestruel)s except that Boolean operations are permitted on
Boolean types.

Permissible__operations: assignments set membership testy, all
relational operators {(false < true)s» the Boolean operations of sums
producty differences negation and standard procedures and functionse

4e3.121e5 SUBRANGE TYPE

<subrange type)> 3:%= <{subrange type identifier>
{<lower>..<upperd>

{lower> 3= {constant scalar expression>
<upper> 33= {constant scalar expression>

<subrange type identifier> 2:= <(identifier>

The lower bound must not be greater than the upper bound and both
must be of equivalent scalar types. Two subrange types are
equivalent iIf they have identical wupper and 1lower bounds. An
improper subrange type (i.e2.» one that completely spans its 'parent?
range) iIs equivalent to its parent type.

Values of a subrange and values of its parent range (or values of
other subranges of its parent type) may enter Jjointly into dyadic
operations defined for the parent types and into assignment
operations; execution time checks on the validity of such assignments
may be specified (see Run-Time Checking Toggles).

Bermissible_operations: same as for the parent type.
Example?
type non_negative integer = 0432767
letter = WAV, 71,
cotor = (reds oranges yellows greens blue)s

hotcolor = redesyetlowy
range = =104410 3

4.3.1.2 Elgating. Point_Iyvpe

<floating point type> 3:= {real typed> % <ilongreal typed>
The fioating point types define values that approximate the reat

CDC Private

4=~7
CYBIL LANGUAGE SPECIFICATION
06718781
REV: &

4.0 CYBIL TYPES
4+434,1.2 Floating Point Type

LA 2 2 2 2 2 2 2 2 2 2 R 22 AR A EYELTLEE AR ELEEEEEEELZELSESEEE YR ZEENYFEEE XL FESEZEE 2]

numbers and which are to be represented in a machine~dependent form
of scientific notation. The real and longreal types are intended to
have the same representation as FORTRAN REAL and DOUBLE PRECISION»
respectively.

4e3e1.2.1 REAL TYPE

<real typed> 33= peal i<real type identifier>

<real type identifier> 3= <lidentifier>

| The range and precision of the real type are
impiementation-dependent. Conversion functions between reals

fongreal and integer type are provided {(cf. Standard Functions»
11.2).

Permissible__operations: assignment, all retation operatorss
additions subtractiony multiplications divisions and aoplicabile
standard procedures and functions.
4.3.142+2 LONGREAL TYPE
<longresal typed> ::s jopgreal i<longreatl type identifierd>

{iongreal type jidentifier> ::= (identifier>

The range and precision of the iongreal type are
implementation-dependent, Conversion functions between reals
longreal and integer type are provided {cf. Standard Functionsy
11.2),

Perpissible___poperations: assignment, all refation operatorss
additions subtractions muiltiplications divisions and applicable
standard procedures and functionse.

4e3+1+3 Pointer_lxpe

Pointer types represent location values, and other descriptive
informations that can be used to reference instances of CYBIL objects
indirectiy.

Permissible_gperations: assignments comparison for equality and
inequal ity onlys and standard procedures and functions.

Pointer types are introduced by an up arrows foliowed by a CYBIL
type to which the pointers are bound; pointer variables may assumes
as vatuesy only pointers to that types, The only exception to this is
pointer to cell.

CDC Private

4-8
CYBIL LANGUAGE SPECIFICATION

06718781
4,0 CYBIL TYPES
443413 Pointer Type

e 2. X2 2 2 2 2 2 2 22 22 2 Ry 2 X2 it K22 2 X2 FALEERLIEEESEELELESELEESELEEES S 2 2 2 K 2. 1 4

{pointer typed> :1:= {(fixed pointer)>
i<fixable pointer>
i<pointer to procedured>
i<pointer type identifier>

<fixed pointer)> 3:= “<(fixed typed>

{fixable pointer> 2:= <adaptable pointer>
i<bound variant pointer>

<adaptable pointerd> ::z “Cadaptabie typed>

<bound variant pointer> 3:= “<Kbound variant record type>
<pointer to procedure> 33= “dprocedure typed>

<pointer type identifier> ::= Cidentifier>

Adaptable pointers provide the sole mechanism for accessing
objects of adaptable types other than through formal parameters of
procedures., In particulars, adaptablie pointers and bound variant
pointers are wused to access instances of adaptabie variables and
bound variant records whose type has been 'fixed' by an allgcate or a
pext statement,

Pointers are equivatent if they are defined in terms of equivalent
types. A pointer to a fixed type may be assigned and compared to an
adaptable pointer or bound variant record pointer if the adaptable
type is potentially equivatent to the fixed type.

See Section 10.2» Assignment Statementss for rules governing
pointer assignment, ’

4.3.1+.3.1 POINTER 7O CELL
{pointer to cell> 3= “gell

A pointer to cell is a pointer type.

anmlssihlg;ﬁagzazignss as for pointers; in additions pointers to
cell may be assigned to any pointer to fixed or bound variant type.

Such an assignment must not result in a pointer to fixed or bound
variant type having as its value a pointer to a variable that is not
of cell type and whose type is not equivalent to that to which the
target of the assignment is bound. Pointer to cell may be the target
of assignment of any pointer to fixed or bound variant type.

CDC Private

. 4=-9

CYBIL LANGUAGE SPECIFICATION
06718781

4.0 CYBIL TYPES

430104 Cell Type

4.3.144 Lell_Ixee

<cell typed> :3= gegl}l

A cell type is a hasic type that represents the smallest storage
site that is directly addressable by a pointer.

Permissible.Operations: assignments comparison for eguality and
inequality onlys and applicable standard functions,

4+3.2 STRUCTURED TYPES

Structured types represent collections of componentss and are
defined by describing their component types and indicating a
so-called structuring methad. These differ in the accessing
discipline and notation used to select individual components. Four
structuring methods are available: set structure, string structures
array structures and record structure, Each will be described in the
sequel,.

{structured type> 23:= {set typed>
t1<aggregate type)>

<aggregate typed> 3:= <string typed>

i€array typed
1<record type)>

4.3.2.1 J8t_lyxpe

<set type> 23z set gf <base typed
i1<set type identifierd>

<base typed> 2:= <scalar type>
{set type identifier> :3= {scalar identifier)>
<scalar identifierd> 33= (jdentifier>
A set type represents the set of atl] subsets of values of the base
type. The number of elements defined by the base type must be

constrained (considers e.ge» s5ef 0f ipteger)e The number of elements
wilt be implementation dependents but no Jess than 256 {to

accommodate get of char).

Set types are equivalent if they have equivalent base types.

Permissible. . __operations:? assignment, intersections unions
CDC Private

4-10
CYBIL LANGUAGE SPECIFICATION
06718781
4,0 CYBIL TYPES
4e3a42+1 Set Type

L 2 XXt s Ky 22X e X rEry s yryrys s yrrss i 22222 X2 2 XX rE2EEEELEREERSERXELSERELLEL L]

differences, symmetric differences negations inclusiony identity,
membership.

Exapple: The sets akcesss declared by

type akcess = s2f of (no_reads no_snrite, no_execute}

represents the set of the following subsets of values of its ordinal
base type:

$akcess [1 {the empty set}

$akcess [no_read]

$akcess [no_writel

$akcess [no_executel

$akcess L[no_ready no_writel

$akcess {no_reads no_executel

takcess [no_writey, no_executel

$akcess [(no_ready, no_writes no_execute) {the full set}

where the notation "$akcess [++.]1" denotes a yalue gonstructor for
the set type» akcesse Note that succ and pred are not defined for
set types, The values of a set variable are only partially ordered

by set inclusion. 3akcess [no_read] and $akcess [no_writel satisfy
no order relation except inequality.

4.3.2.2 String_Ixyee
A string type represents ordered n-tuples of values of character
type. .

{string type> :3= (fixed string>
1 <string type identifier>

<fixed string> 2:= strina (<tengthd>)
<lengthd> 3:= <(positive integer constant expression>
{string type identifier> 23= (identifier>
A fixed string of length p represents all ordered p-tuplies of
values of character type., The length must be a positive integer

constant expression in the range 1 to 65535,

An ordered k-tuple of the values of a string (1 <= kK <= p) is
called a substring. Notation for accessing substrings is provided,

Two string types are equivalent if they have the same length.

CDC Private

4-11
CYBIL LANGUAGE SPECIFICATION
06718781
4.0 CYBIL TYPES
4¢34242 String Type

Strings of different fength may be assigned and compared. The
shorter is blank-Ffilted on the right for comparisons and for
assignments to longer strings; truncation on the right is applied for
assignments to shorter strings. Characters may be compared and
assigned to strings of any lengths and are treated as strings of
iength one in- such cases, Substrings of length one are treated as
characters in several specific instances -- see Substring References
as Character References,

Permissible_operatligns® assignments comparison {(all six relational
operators)s and standard procedures and functions.

4430243 Array_Iype

An array type represents a structure consisting of components of
the same type, Each component is selected by an array selector
consisting of an ordered set of o index values whose scalar type is
indicated by the indices in the definition.

{array typed> 2:3= (pagkedl<array type identifier)>
ilpagkedli<array specd

array type ldentifier> 3= jdentifierd>

{array specd> $t=
arcay [<index>] gf <component typed

index> 233z {scalar typed
i<constant scalar expression>
+s{constant scalar expression>

<component typed 3= <(fixed typed

Tvwo array types are equivalent if they have the same packing» have
equivalent component typess and indexes are of equivalent type.

Permissible_ogperations: assignment and applicable standard
procedures and functions.

4e3e2e3.1 PACKED ARRAYS

Packing attributes are used to specify storage space versus access
time tradeoffs for array components. Components of a packed array
will be mapped onto storage so as to conserve storage space at the
possible expense of access time, The array itself {the collection of
components) is always mapped onto an addressable memory focation,

CDC Private

4-12
CYBIL LANGUAGE SPECIFICATION

06718781
4.0 CYBIL TYPES
4.3.243.2 EXAMPLES OF ARRAY TYPE

L A 2 2 2 2 F X222 XA R sl i i At i 2l i XX R 2 sl EX 2

4e3e42+3.2 EXAMPLES OF ARRAY TYPE

type hotness = grray [cofor] gf non_negative_integers
token_code = arcay {chatl gf token_class»
arrayl = array [100..2001 gf 10044300,

11 = 1..100,
i2 = 10042200»
s1 = 10044300,

array2 = array (113 gf arrayls
array2b = grray [#1] of array (i21 gf sl;

The array types tYarray2'! and ‘tarray2b? are alternate ways of
defining an array of arrays.

%e3.2.4 Regcord _Iype

A record type represents a structure consisting of a fixed number
of components called fields. Fields are defined in terms of their
types: and assocliated fjleld selectorsy which are identifiers uniquely
denoting that fietd among ali other fields of the record.

Permlissihle._gperatigns: assignments and comparison of invariant
records {(containing no arrays as fields) for equality and inequality
only.

<record typed> 33= (invariant record type>
{<variant record type>

44302e4e1 INVARIANT RECORDS

Cinvariant record typed> 3:=
[packed] <invariant record type identifier>
tlpacked) <Cinvariant record spec)

<invariant record type identifier> ::= <(identifier>

<invariant record spec> 23=
regord <fixed fietdsd> <recend>

{fixed fields> s3= (fixed field> {» <fixed fField>}
Fixed field> 33= (fleld selectors> 2 I[<alignmentd>] <fixed typed>

<field selectors)> 3= (fjeld selectord> {s<field selector>}
<field selector> 2:= Cidentifierd

<recend> 3= [s,Jrecend

CDC Private

4-13
CYBIL LANGUAGE SPECIFICATION
06/18/81
4.0 CYBIL TYPES
4.3.2.4.1 INVARIANT RECORDS

L x 2 2 72 X 2 22 2 X EREEZELEEENEAEEEEEESEEELZE Y SEELEZEEEESEEEELELEENENEXE RS EERX S 4

See section 4.8 for a discussion on ajlignment.
4.3.2e%62 VARIANT RECORDS AND CASE PARTS

A variant record consists of zero or more fixed fields followed by
one and only one gase partes A case part is a composite field that
may assume values of different types during execution of a programe
It is defined in terms of an optional tag fields and a tist of the
admissible types {(called yariants) together with associated selection
SRECS» During executions the value of the tag field may be used to
determine the variant currently in use by being matched against the
sefection specs associated with each variant, The variants
themselves may consist of zero or more fixed fieldss optionally
followed by one and only one case part.

Access to a variant other than the currently active variant
produces undefined results. The currently active variation of a
tagged variant record is the one associated with the current value of
the tag field selector, The currentily active variation of a tagless
variant record 1Is the one associated with the fleld that was the
target of the 1ast assignment to a field selector in the variationse.
Thuss the currently active variation changes when the tag field
changes if there is a tag field or when an assignment is made to a
field iIn a varilatlon other than the currently active variation for
tagless variant records. When this happens all fields in the newly
active variation become wundefined except for the target of the
assignment for tagless variant records.

The space allocated for a variant record 1{is the size of the
{argest variant regardiess of which variant is used.

{variant record type) 2:=
{<packed>] <variant record type identifier>
tl<packed>] <variant record specd>

{variant record type identifier> 3:= <identifier)

¢variant record spec)> ::=
record [Cfixed filelds>s]1 <case partd> <{recend>

<case partd> 233z gcase <Ctag fleld spec> of
{variations>{casend>

<tag fFlield spec> 3t= [{tag fFfield selector> ¢ 1 <tag field typed>
<tag field selectord> 33= Cidentifier>
Ctag fleld type> 3= {scalar typed

Kvariations> :3= <dvarjation> {» <varlation>}
<variation)> 33= ={selection specs>= <{yariant>

CDC Private

4=14
CYBIL LANGUAGE SPECIFICATION
06/18/781
4.0 CYBIL TYPES
443420442 VARIANT RECORDS AND CASE PARTS

{selection specs> 3:= {selection spec)
{» <selection spec >}
{selection spec> :3= {constant scalar expressiond>
f.e{constant scalar expression>]

<variantd> 3:= [<fixed fields>]
1f<fixed flields>»»]l <case part>

<casend)> 3:= [,] gasend
4.3.2.4.3 RECORD TYPE EQUIVALENCE

Ywo dinvariant record types are eguivalent if they have the same
packing, the same number of fields, and if corresponding fields have
identical field selectorss the same alignment and equivalent types.
Two variant record types are equivalent if they have identical tag
field selectors and equivalent tag field typess the same number of
variations and {§f variants having identical field setectors and
equivalent types are selected by the same selection values.

42302e%s% PACKED RECORDS

Packing attributes are used to specify storage space versus access
time tradeoffs for fields of records, Fields of packed records are
mapped onto storage so as to conserve space at the possible expense
of time, See section 4#.7 and 4.8 for more details.,

423.2¢4%+5 EXAMPLES OF RECORD TYPE

fype
date = gecord :
day ¢ 1,31
month 2 string (4)»
year : 1900..2100,

ceceond»

status = gegord
age 3 Deaesbby
marrieds
sex 3 bhooleans
cecends

red_book = pecord
name : string (3)»
rstatus ¢ status,
scores 3 arrayl0..61 gf date,

cecends

shape = {triangles rectangley circilie)s
angle = ‘18000180’

CDC Private

‘ 4-15
CYBIL LANGUAGE SPECIFICATION
06718781
4.0 CYBIL TYPES
4+3+2+4.5 EXAMPLES OF RECORD TYPE

figure = record x»
Y
area 3 pealr{figure is a variant}
{record type}
gase s & shape gf
= triangle =
size : real»
Inclinations
anglels
angle2 ¢ angles
= rectangles=
sidel,
side2 3 jnteagetr,
skews
angle3 : angles
= gircle =
diameter: integer»
casend»
regcends

4.,3.3 STORAGE TYPES
Storage types represent structures to which other variables may be
addeds deleted» and referenced under explicit program control.

(stofage typed> 33= {sequence typed
i<heap typed>

4.3.3.1 Seguepnce._lype

{sequence typed> $:= geg {(<{spaced)

A sequence type represents a storage structure whose components
are referenced (by a sequential accessing discipline) through
pointers constructed as by-products of the pext and reset
operations. In additions sequences may be assigned to sequences; no
other operations are allowed.

Two sequences are equivalent if they have equivalent spaces.

4+.3¢3.2 Heap. Iype

<heap type> 33= heap {(<{spaced)
A heap type represents a structure whose components can be

CDC Private

4=-16
CYBIL LANGUAGE SPECIFICATION
06718781
4,0 CYBIL TYPES
4.3+3.,2 Heap Type

A L 2 2 2 2 2 2 2 2 A XA s R i X2 2 2 2 2 2 2 X N it X i 2 2 A X R gl X il A Al 2 X2 2

explicitiy allocated {(by the gillocate statement) and freed (by the
free and regsel statements)s and which are referenced by pointers
constructed as by-products of the allogcate statement. No other
operations on: heaps are allowed.

Two heaps are equivalent If they have equivalent spaces.

A system-definad heaps that can be managed in the same manner as
user—defined heapss Is provided.

4.3.3.3 Segquence_and_Heap_Space

<{space)> 332 {fixed spand{»<{fixed spand>}

{Fixed span> 3=
{rep <positive integer constant expression> gf]
{fixed type identifier)>

<positive integer constant expression> 1:=
{constant scalar expression>

fixed type identifier> 1= <(identifierd>
: i<pre—~defined type identifier>

<pre~defined type identifier> ::= jpnieger | boglean ¢+ char : cell

A space attribute of the general form

gea nl of typel, rep n2 Qf type2s oo

specifies a reguirement that sufficient space be provided to
simultaneously hold nl instances of variables of typelsy n2 instances
of varlables of type2» and so one.

Tuo spaces are equivalent if they have the same number of spanss
and corresponding spans are equivalent. Two spans are equivaltent if
they have the same number of repetitions of equivalent types.,

The space attribute places no restriction on the types of the
variables that may be stored in a sequence or heaps other than that
the space available for storage (as defined by the space attribute)
be large enough to hold that many instances of the <(fixed type
identifier>. For examples the space attribute may be defined solely
in terms of integerss but the sequence or heap filled only with
strings of characters and boolean variables.

CDC Private

| 4-17
CYBIL LANGUAGE SPECIFICATION

06/18/81
4.0 CYBIL TYPES
444 ADAPTABLE TYPES

LA 2 X 2 2 2 252 2 22 2 2 E 2 2 X L2 XL ERE XA EEEEELEZEE LIRSS EXESELESEESEX]

4.4 ADARIABLE_IYPE]

Adaptable types are structural skeletons of structured and storage
types containing indefinite boundss indicated by an asterisk. They
may be wused soclely to define formal parameters of procedures and
adaptable pointerss the latter providing a mechanism for referencing
variables of such types.

Adaptable types represent ciasses of related types to which they
can adapt. Adaptation to such an jpstantanegus type <can occur in
three distinct ways:

Adaptable types can be explicitly fixed by the use of atliocation
designators associated with storage management statements,

Adaptable types used as formal parameters are fixed by the actual
parameters specified at procedure activation.

Adaptable pointer types used as teft parts of assignment
statements are fixed by the assignment operation.

<adaptabie typed> ::= <adaptable aggregate typed
i<adaptable storage typed

<adaptable aggregate typed 3z <{adaptable string>
1<adaptabte array>
i<adaptable record>
{adaptable storage type> 3:= {adaptable sequenced
{adaptable heap>
4.441 ADAPTABLE STRING

Adaptable strings can adapt to strings of length 0 to 65535,

{adaptable string> 2= <adantable fixed string>
i1 <adaptable string identifier)>

{adaptable fixed string> 3= stripg (<adaptable string lengthd>)
<adaptable string lengthd> 3= % | * (= <adaptabie string bound>
<adaptable string bound> 3:t= <jength>
{adaptable string identifier> 3= <{identifier>

If the adaptable string bound is not specified a string of maximum

CDC Private

4-18
CYBIL LANGUAGE SPECIFICATION

06/18/81
4.0 CYBIL TYPES
4.4.1 ADAPTABLE STRING

L i A A L 2 2 2 2 2 2 X A 2. X2 LA XL 2L LS X2 2 AN Y LELESSEEEEEEEXEEEEEELEELE S £Z]

allowabie {ength Is permitted.

In- addition any string operation which exceeds the iength
specified by the adaptable string bound shatl be an error and
appropriate compile and run time checks will be included.

Two adaptable string types are always equivalent.
4hebe2 ADAPTABLE ARRAY

Adaptable arrays adapt to a3 specific range of subscriptse.

Adaptable arrays can adapt to any array with the same packing and
identicat component type. If the 1ftower bound is provided by the
lower bound specs the adaptable array can adapt only to arrays with
an identical value for the lower bound.

<adaptabie array> 3:=
[pagkedi<adaptable array identifier>
Y Cpagkedl<adaptable array specd
<adaptable array identifier> :1:= d(identifier>

C{adaptable array spec> 13=
arcay [<adaptable array bound spec>] gf <component typed

<adaptable array bound spec)> ::= <{lower bound specd> .. *
L

<lower bound specd> 3=z dconstant integer expressiond>
{constant integer expression> 3= <{constant expression>
The asterisk (*) indicates an adaptable bound of integer type,
Adaptable array types are equivalent if they have the same
packings and equivalent component typess and iIf corresponding array
and component indices are equivalent. Two starred indices are always

equivalent, 7Two starred Indices with the lower bound spec selected
are equivatent if their lower valtues are the same,

4+4+.3 ADAPTABLE RECORD

Adaptable records consist of zZero or more fixed flelds followed by
one and only one adaptable fields which is a fleld of adaptable
type., .

CDBC Private

4-19
CYBIL LANGUAGE SPECIFICATION ’
06/718/81
REV: 6

LA A K 2 2 X 2 2 P 2 F P A2 2 2 2 2 2 2 2 22 22 A RS EIEEEYEYEEESESFEEIEEEREEEEESFENF

4.0 CYBIL TYPES
4e4e3 ADAPTABLE RECORD

Adaptablie records can adapt to any record whose type is the same
except For the type oF its last fieldy which must be one to which the
adaptabile field can adapt.
<adaptable record> 3=

[packedl<adaptabie record type identifier>
il{packedi<adaptable record specd
{adaptable record type identifier> 233= <{identifier>

<adaptable record specd> 33=
recordi<fixed fields>s1<adaptable fieldd<recend>

<adaptable field> 33=
{Ffield setectord>iialignment>l<adaptable typed>

Two adaptable record types are equivalent if they have the same
packings the same alignments the same number of fieldss and

corresponding fields have identical field selectors and equivalent
types. .

424.% ADAPTABLE SEQUENCE

Adaptable sequences can adapt to a sequence of any sizes

<adaptable sequenced> 3= gegl¥)
i<adaptable sequence identifier)

<adaptable sequence identifier> 2:= <(identifier>

The space for an adaptable sequence can he fixed by a .

Two adaptable sequence types are always equivalent.

CDC Private

4-20
CYBIL LANGUAGE SPECIFICATION
06/718/81
REV: 6

L x s 2 2 X R 222 22 XX EREELEESSEYESESEEEEERENENELIEEENSEELESESEEZEENEEESESEEEEFLZ S

4.0 CYBIL TYPES
4.4+5 ADAPTABLE HEAP

4e4.5 ADAPTABLE HEAP

Adaptable heaps can adapt to a heap of any size.

<adaptable heap> 3= heap{*)
{1 <adaptabte heap identifier>

{adaptable heap identifier> 232 (identifier>
The space For an adaptable heap can be fixed by a <span fixerd.

Two adaptablie heap types are always eguivalent,

4.5 BPROCEDURE_IYPE

Procedures are identified portions of programs that can be
activated on demand. Refer to chapters 8.0 and 10,0 for the
semantics of procedures.,

A procedure type defines an optional ordered {ist of formal
parameters.

<procedure typed> 33z Cprocedure type Identifier>
ierocedure <proc type spec>

{procedure type identifier> 3:= {identifier>

Procedure types are used for declaration of pointers to
proceduress there are no procedure variables.

Two procedure types are equivalent if corresponding param segments
have the same number of formal parameters, identical methods
{reference or value)y and equivalent types.

4.6 BOUND YARIANI RECORD_IYRE

A bound variant record 1{is a variant record whose case part is
meant to be fixed to one of its constituent variants by the use of s
tag field fixer. For bound variant records the <{tag fleld selector>
is required. These are space saving constructss since onily the space
required for the selected variant is allocated,

Access to a variant other than the currently active variant
produces undefined resutts. The currently active variation of a
bound variant record is the one associated with the current value of

CDC Private

4-21
CYBIL LANGUAGE SPECIFICATION
06718781
4.0 CYBIL TYPES
4.6 BOUND VARIANT RECORD TYPE

rr 2 2 222 EX XXX X X2 ESYE RS FEREELEREEEREERESEEELEEESEY R LS E L LA E S R 2 2 R K L 2 K 2 2 2 X 2 J

the tag field selector. Thuss the currently active variation changes
when the tag field changes.

<bound variant record type)> 33=
‘Ipagkedl <bound variant record type identifierd>
ilpacked] bhound <variant record specd
1fpacked] bound <variant record type identifier>

<bound variant record type identifier> 1=
<yariant record type identifier)>

A bound variant record type may only be used to define pointers
for bound variant record types {is.ee» bound variant pointers). Thus
a variable of this type is always allocated in a sequence or a heaps
or in the system—managed stack.

An allocation statement for a3 bound wvariant record type requires
the specification of the tag field valuesy which sefect the variation
of the record aliocated. 1In this case» only the specified space |Is
gilocated., A bound variant pointer is returned by such an aliocate
statement,

If a formal parameter of a procedure is of variant record types
then the actual parameter may not be of bound variant record type.

Record assignment {5 not allowed to a variable of bound variant
record type.

Two bound variant record types are equivalent if they are defined

in terms of equlivalents unbound records. A bound variant record type
is never equivalent to a variant record type.

e 7 BACKING

A packed structure witll generally require 1{ess space at the
possible cost of greater overhead associated with access to its
components.s If the opacking attribute is unspecifieds then the
structure is assumed to be unpacked. An inner structure does not
inherit the packing of any containing structure. Elements of packed
structures are not guaranteed to lie on addressable memory units.

4«8 ALIGNMENI

<atignment)> 3= aligped [([<offset> mopd <base)>]]
offsetd> 33> {integer constant>

CDC Private

4=22
CYBIL LANGUAGE SPECIFICATION

06/18/81
4.0 CYBIL TYPES
4.8 ALIGNMENT

L A 2 22 X X 22 X2 2 2 FE X EZEEESELESELEEEEELLLESEEERELEEESLELEESELEELEELESEELSEEEE S L XS

<¢base)> ::= {integer constant)>

The aligned attribute must be used to ensure addressability of
fields within packed records. Addressability is achieved at the
possibie expense of storage space, 50 that the effect of packing may
be dituted.

Unpacked structures and their components are always addressable,
Packed structures are also addressable wunless they are wunaligned
components of a packed structures, but their components are not unless
they are explicitly given the 3ligpned attribute. Aligning the first
fleld of a3 record aligns the record.

A second wusage of the alignment feature §s to cause variables to
be mapped onto a specified hardware address relative to a specified
base and gffsete The gffset value must be less than the hase and the
base must be divisible by eight. The result is that an anonymous
fitler is created if necessary to ensure that the field begins on the
specified addressable unit. For automatic variables» the base may
only be eights The <offset> and <based elements are cell counts.,

4«9 QIHER_ASBECTIS_OE_TYPES

4.9.1 VALUE AND NON-VALUE TYPES

Value assignments are permitted only to variables of the so-calljed
yalue types. The non-value types are:d

A) Heaps.
B) Arrays of non—-value component types.
C) Records containing a fietd of non-value type.

49,2 COMPARABLE AND NON-CDMPARABLE TYPES

Vatlue comparisons are permitted only between variables of the
so—-called gomparable types. The non-comparable types are:

A) Heaps,.

B) Sequences.

C) Arrayse.

D) Variant recordse.

E) Records containing a fieid of non-comparable type.

CDC Private

4-23
CYBYL LANGUAGE SPECIFICATION
06718781
4.0 CYBIL TYPES
4¢9+3 FUNCTION-RETURN TYPES

2 2 2 2 2 X K F 2 2 A 2 2 2 X ELEFLESIEAYEESEESE Y ESEREZIEE YN EEYELEEEREELEEEREERENEEENE F]

449+3 FUNCTION-RETURN TYPES

The only types that can be associated with returned values of
functions are the basic typest

AY Iptegers char» hoaleans ordinal typess subrange typess
B) pointer typess

C) floating point types,
D} ceil types.,

4e9.4 TYPE CONVERSIODN
Mechanisms for converting values of some scalar types to values of

others are provided.

A) Ordinals character and boolean values are convertible to integer
values through the grd function.

B)Y Integer values between 0 and 255 are convertible to characters by
the gchr function.

CDC Private

51
CYBIL LANGUAGE SPECIFICATION
06718781
REVS &

5.0 VALUES AND VALUE CONSTRUCTORS

5.0 VALUES_AND_VALUE_CONSIRUCIQRS

Two mechanisms are provided for explicitly denoting values:
gonstants and yalue constructorss Constants are used to denote
constant wvalues of the basic types and strings. Value constructors
are used to denote instances of values of sety, array and record
types. There are two kinds of value constructors: set yalye
constructorss which include specific type identification; and

indefipite yalue gonstrcuctorss whose type must be determined
contextuaily.

5.1 CONSIANIS_AND _CONSTIANT _DECLARAILQNS

5e1ls1 CONSTANTS
Constants are used to denote instances of vatues of the basic
types and of string types.,
<constant) :1:= <basic constant>i<string constant>
<basic constant> 2:= <{scalar constantd
i1<floating point constant>
i<pointer constant)>
<scatar constant> 223 <Cordinal constant)
1<boolean constant>
i<integer constant)>
i<{character constant)>
ordinal constant)> ::= <ordinatl constant identifier>

<boolean constant> ::= false ! Ltrue
i1 <boolean constant identifier>

<bootean constant identifier> :3= Jidentifier>

integer constant> 3t= (integer> | <integer constant identifier>

CDC Private

5-2
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

LA A X L2 2 R 2 X222 EEELEFEZEZLERSEEEEEEEEESESZEEERLIEESEEEEEESEEESSEESELNE 2R F X £)

50 VALUES AND VALUE CONSTRUCTORS
5e¢l+41 CONSTANTS

LA A2 L & 2 2 2 X 2 X 2 X2 RS ELEEEELIEAEEEFEEEEFEEELESEEE LS EEEY S L EENZEZ]

{character constant) 3= '{gchar token>?
ichr {(Kinteger constant)>)
i<character constant identifier>

{char token> 3:= <alphabet)
P "% {two single quotes)}

<character constant identifier> 3= Cidentifier>

<floating point constant> ::= {real constant>
1 <longreal constant)

<real constant)> 3= {rea} number>]} <real constant identifier>
<real constant identifier> 2= <Lidentifier>

<real number ::= <dunscaled number>
i <scaled number>

<unscaled number> 3= <digitd> {<Kdigitd}. <digit>{<Kdigitd>}
<scaled number)> 2:= <{mantissad> E<exponentd

<mantissad 3= digit>{<digitd>I[.I{<digit>}

<exponent> 23:= {<sign>I<digit>{<digit>}

<iongreal constantd> = <{longreal number)>
$ <longreal constant identifier>

<itongreal constant identifier)> t3= d{identifier>
<longreal number> ::= <mantissad> D<exponent>

<string constant> ::= {string termd>
{ gat <string termd>}

<string term> 3:= <{character constant)
1t{lchar tokend> <char token> {<char token>}1?

<pointer constantd> ::= pnjl
<integer constant identifier)> :1:= <identifier>

<integer> 3:= Ldigit>{<digit>}
} <digit>{<hex digit>}<base designator>

<hex digit> 33= AIBICIDIE!F
taibicidielf
i<digit>

CDC Private

5-3
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

LA L 2 X2 2 X N2 2 2 2 2 X K XL ERLEEEEEEESLESZEEE SR EREERLELEESERSEESEEEEEEELESEESEEEEEE XL

5.0 VALUES AND VALUE CONSTRUCTORS
5#1.1 CONSTANTS

LA A X 2 X XX XL ES S EEFLESZIZELEESEEYES LIS EXEZSESEEEE SIS YRS E R F L]

<hase designator> 3:= {({radix>)
<radix> 3= 2§ 10 } 16

If the base designator is omitted from an integers then a radix of
10 is assumed. In al) cases» the digits {or hex digits) are
constrained to be less than the specified radix.

Note that string constants can be emptys that Is» of zero length.
H5e1le2 CONSTANT EXPRESSIONS

<constant scalar expressiond> 2:= <{constant expression>
{constant expression)> 3:= <{simple expression)

Constant expressions are constructs denoting rules of computation
for obtaining scatar or string type values {at compile time) by the
application of operators to operands. The rules of application are
those for expressions (see section 9) with the following constraints:

A} Factors of such expressions must be either constants or
parenthesized constant expressions.

B) The axpressions must be simple expressions {relational operators
are not allowed).,

C) The only functions allowed as Ffactors in such expressions are the
ords chrs succ and pred.

D) Substring references are not aliowed.
52123 CONSTANT DECLARATIONS

Constant dectarations are used to introduce identifiers for
constant wvalues. Once decliaredy such a gonstant identifier can be
used elsewhere to stand for the identified value,

{constant decliaration> 2i=
¢const <constant spec> {» <constant specd>}
<constant spec> 3:= (identifier> = <{constant expression>

A constant spec assocliates an identifier with the value and the
type of the constant expression,

CDC Private

5-4
CYBIL LANGUAGE SPECIFICATION
06718781
50 VALUES AND VALUE CONSTRUCTORS
5.2 SET VALUE CONSTRUCTORS

LA 2 X ;2 X2 2 2 2 22 2 2 R A2 22 XA ERZEERELEELEZESELEEELELIE AL EYAEEEYSEEEEYEEEESEEERZ]

5.2 SEI_VALUE CONSIRUCIORS

Set value constructors are used to denote instances of values of a
specified set types and to denote instances of typed empty sets.

<set value constructor> 3:=
$<{set type identifier> [1] {the empty set}
i $<set type identifier> [<set vatue elementsd>}]

<set value efementsd> 232 <{set value element>
{s<set value elementd}

{set value element)> 2= {expressiond

Identifiers for set value constructors are obtained by prefixing
the %target set type?! jdentifier with a dollar signs» '$', The types
of the elements of the value constructor must match the ordered set
of components of the specified target type. Set value constructors
can be used wherever an expression can be used,

A set value element is an expression whose value is of the base
type of the set. The elements of a set are unordered. Note that a
set value may be defined to be 'empty! by not placing any elements
between the brackets: { and J.

5.3 INRDEEINITE_YALUE CONJIRUCIQRS

Indefinite value constructors are used to denote instances of sets
arrayy or record type.

<indefinite value constructor)> 3:=
{<value elements>]
HEE S | {the empty set)}

<vatue elements)> 3::=
<value element>{s<value elementd}
<value element> 2t= [{rep specd>iI<initialization expression)>
1f<rep specd>llset value constructor
$1i<rep specd>lKindefinite value constructor>
il{rep specd>] ¥

<rep spec) 3= rep <positive integer expression> gf

The meaning of a value constructor is that the 1ist of values are
assigned to the fields of a record or to the components of an array
in their natural order.. The types of the elements of the vatlue
constructor must match those of the components of the aggregate type

CDC Private

5~-5
CYBIL LANGUAGE SPECIFICATION
06/18/81
5.0 VALUES AND VALUE CONSTRUCTORS
53 INDEFINITE VALUE CONSTRUCTORS

for which they provide the vatues,

Rep specs may be used solely for array constructions and indicate
that the next n values are the same, as given by the value following
the "0OfF™,

Indefinite value constructors can be used only where their type is
explicitly indicated by the context in which they occur: as elements
of indefinite value constructorsy and €for the jpitializatign of
variables (see the discussion on Initialization in Section 6).

The asterisk form for a value element indicates that an undefined
value pay be assigned to the Ffield or component at this position in
the vatue tlists wunless it is a pointer in which case it is
initialized to pnil.

CDC Private

6-1
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

L x 2 X X 2 2 22 2 22 2 KL EZLEFEELALEEESEEEEESESZEEEELIEEESEREEEESEELAEEESENELEEEEF X]
6.0 VARTIABLES

LA L E 2L 222 2 2 2 XL ELELESLELESEEEEEESEEEELS S ELLEEEEESESEEEREEESSEEESS LSS Y S X2 2]

6.0 YARIABLES

6.1 VYARIABLES_AND_VARIABLE_DECLARATIIONS

Variables take on values of a specific type {or range of types),

Variables of fixed type can be declared by an explicit variable
declaration {see below) or can be declared as formal parameters of
procedures.

Variables of adaptable type <can only be decliared as formal

parameters of proceduress or must otherwise be explicitiy established
by storage management operations.

6+1s1 ESTABLISHING VARIABLES

This process involves:
A) The determination of the type of the variables;

B The atllocation of storage for values to be taken on by the
variable;

€C) The possible assignment of initial values to the variables

D) The possiblie binding of references {see below) to that variable,
Localiy declared variables are automatically established on each

entry to the procedure block in which they were declared. Howevers

so-called *"static?! variables are established once and only once.

Formal parameters of procedures are automatically established on
each call of that procedure.

So-called tallocated? variables are establiished by storage

management operations (for type determination and storage allocation)
and by assignment operations {(for initiallzation).

CDOC Private

6-2
CYBIL LANGUAGE SPECIFICATION

06/18/81
6.0 VARIABLES . |
6.1.2 TYPING OF VARIABLES

e L x 2 2 2 A 22 2 2 R 2 2 R 2L 2 22 22 2R 22 EEEXETERNEEELENFZESEEESEEEEFFEEIYEYEELSERNEF S F 2 KR FI

6.1.2 TYPING OF VARIABLES

Adaptable types and bound variant record types actually define
classes of related types. Variables of such types (and pointers to
such variables) are explicitly meant to be *'fixed?! to any or ail
types of their type-class at different times during the execution of
a program.

6.1.2.1 Ipstantaneous _lypes

The type to mhich a variable is fixed at a specific time during
execution of a program Is called its instaptanegus type {at that
time)s It is a variable's instantaneous type that Is actually used
to determine the operations it may enter into at any point in time.

Variables of adaptable and bound variant record type are fixed in
three distinct ways:?

A) Formal parameters of adaptable types are fixed by the
instantaneous types of their corresponding actual parameters on
each procedure cali or function reference of which they are a
parts {See Section 10.5.1 for the rules for fixing parameters.,)

B) Explicitly allocated variables of such types are fixed by the
alitocation operation.

C) A pointer whose instantaneous type is any of the types to which
an adaptabile pointer can adapts can be assigned to that adaptable
pointer, In such casesy both the value and the type are
assigneds thus fixing the Instantaneous type of the adaptable
pointer,

CDC Private

6-3
CYBIL LANGUAGE SPECIFICATION
06718/81
6.0 VARIABLES
6213 EXPLICIT VARIABLE DECLARATIONS

6+.1+3 EXPLICIT VARIABLE DECLARATIONS

Variables are explicitliy declared In terms of an identifier for
denoting thems, a types an optional set of atiributes and an optional
initiaiization for static variables,

<yariable declarationd> 3=
yar <variable specd
{s<variable specd}

{variable spec> 3=
<variable identifiers> 3 {<attributes>]
<fixed typed>iinitiatizationd>]

<variable identiflers> 3:=
<varjiable identiflier> [<atias>]
{s&variable identifier>{<atias>]}

<yvariable jdentifier> 323z {identifier>

6.2 AITRIBUIES
<attributesd> 2= [Cattridbutedis<attributed}]

Cattribute)> 3= <access attribute>
i<storage attributed>
i1<{scope attributed>

621 ACCESS ATTRIBUTE
<access attribute> 3:= read

Variables deciared with the ggad attribute are called 'read-oniy?
variables, Such variables inherit the static attributes must be
initialized» may not be used as objects of assignments and may be
used as actual parameters only If the corresponding formal parameter
is not a yat parameter. The read attribute is used for compiler
checking on access to variables and does not imply the variables
residence in read-only storage on computer systems where that
faclliity is provideds If the access attribute is not specified read
and write access is implied.

Exampples:

yar vl 3 [gead) ipteger 2= 10; {vl is read only, but
{inltiatization is valid}

Yar v2 ¢ jpteger 3 {v2 may be read and written}

CDC Private

6=4
CYBIL LANGUAGE SPECIFICATION
06718781
6.0 VARIABLES
6e2+2 STORAGE ATTRIBUTES AND LIFETIMES

60242 STORAGE ATTRIBUTES AND LIFETIMES

<{storage attribute> 213= static ! <section named>

Storage attribute specifies when storage for an explicitily
declared wvariable §s to be atlocated {and initial values assigned if
necessary) and when It is to be freed {at which time values of the
variable become undefined). The programmatic domain in effect
between the time such storage Is allocated and the time it is freed
is callied the *lifetime? of the variable.

6+.2.2.1 Autcomatic_Yariables

The tifetime of an automatic variable is the block in which it was
declared: aftocation occurs on each entry to that biock and freeing
occurs on each exit from that blocke. Variables not explicitiy or
implicitly declared static have the automatic attribute.

6.2.2.2 3tatic _Variables

The fifetime of a static variable 1is the entire programs:
altlocation and initiatization occur once and only once {at a time not
tater than initial entry to the block in which the varlable was
declared)s and storage is not freed on exits from that blocka,

6+2+2+3 Lifetine_Conyentions

If neither storage attributes nor scope attributes are specifieds
then the variable is treated as an automatic variable.

If the static attribute is specified then the variable is treated
as a static variable,

If any of the scope attributes are specifieds then the variable is
treated as a static varfiable,

Variables dectiared at the outermost level of 2 module body are
treated as static variables.

6024244 Lifetine of Formal Parameters

The Jlifetime of a formal parameter is the 1ifetime of the
procedure of which it iIs a part: the formal parameter Is established
on each entry to the procedures and becomes undefined on exits from

CDC Private

6=-5
CYBIL LANGUAGE SPECIFICATION
06718781
6.0 VARIABLES
602424 Lifetime of Formail Parameters

e A 2 2 X 2 N 2 & 2 2 F RS EEESEELESELEESELESEES LI EELIELESESZLEELELZZEEEEEEEEENE ESEE Y]

the procedure.

62245 Lifetime of Allogcated Variables

Allocated variables are established (but not initializeds except
in the case of tag fields of bound variant records) by an explicit
allocation operations and become undefined when they are explicitiy
freede

6.2.2.6 Pointec _Lifetimes

Harning: Note that generally a pointer value has a finite tifetinme
different from that of the pointer variable. Automatic variables
cease to exist on exit from the block in which they were declared.
Allocated varliables cease to exist when they are freed or when their
containing variable ceases to exist. Attempts to reference
non-existent variables by a designator beyond their 1lifetime is a
programming error and could lead to disastrous resultses Faflure to
free a variable allocated via an automatic pointer before the
containing procedure returns will prevent space for that variable
from ever being released by the program.

623 SCOPE ATTRIBUTES

<scope attribute> :3= xdgl { xref | #gate

Variabtle identifiers are used in variable denotations., Scope
attributes specify the regimen to be used to associate instances of
variable ldentifiers with instances of variabile Specsa. The
programmatic domain over which a variable spec is associated with
instances of its associated variable jdentifiers that are used in
varfable denotationss is called the sgope of that specs If no scope
attribute is specifieds the spec Is said to be jpntercpnal to the
procedure or function block in which it occurss and a so-called hblogk
-strugturing regimen is used.,

Internal variables are always automatic variables {(see above)
unless given a storage attributes while scope~attributed variables
are always static. Each of the scope attributes specifies certain
deviations from the block=structuring regimen. B8roadly speaking, 2
variable identifier associated with an xref variable can be used to
denote a similarly identified variable having the xdgl attributes
subject only to reasonable rules of specificational conformity.

Xref variables can not be initializeds and each carries the
de—~facto static storage attribute.

CDC Private

6=6
CYBIL LANGUAGE SPECIFICATION

06/18/81
6.0 VARIABLES
642.3 SCOPE ATTRIBUTES

A 2 KL 2 X RS EEE SRS SRS XLl A2 2 R R R 2RSS ELEYTERE LS AR L LA L A L 2.2 2 2 2 X2

For more details on scope attributesy see section 7.

There should exist only one declaration of a given variable or
procedure with the xdgl attribute within a compilation unit or within
a group of compiltation units to be combined for execution.

The #gate attribute is an extension of the xdgcl attribute to
extend the protection provided for in the environment provided by the
operating system., It may not be relevant on atl computer systems.
Specifying the #gate attribute without also specifying xdgl Is 2
compitation error.

6.3 INLIIIALIZALION

Initiatizations are used to specify values +to be assigned to
static variables.

<initialization> 3:= 3= (initialization expression>

<initiatization expressiond> :3= {constant expression>
;! <indefinite value constructor>
! "<global proc named>

<giobal proc named 3= <{procedure identifier>

When the variabie is establisheds» the type of the variable is
determineds storage for a variable of that type 1is allocated as a
static variable, the initiatization expression is evaluated, and the
resultant vatue is assigned to the variable according to the normal
ruies for assignment,

6e3.1 INITIALIZATION CONSTRAINTS

1) 1f no initiatization is specifieds the initiat value s
undefineds except that all pointer components of static variables
are initliatized to pil.

2) 1If the initiatization expression 1is an indefinite value
constructors the variable must be either a sety arrays or
record. The type of the indefinite value constructor s
determined as the type of the variable,

3) An asterisks *'*', can he used in indefinite value constructors to
indicate uninitiatized etements of arrays and records. The
initial vatues of such uninitialized elements are undefineds
except in the case of a pointer which is set to pil.

CDC Private

6-7
CYBIL LANGUAGE SPECIFICATION

06/18/81
6.0 VARIABLES
6e3.1 INITIALIZATION CONSTRAINTS

4) If the string elements are not of equal length and the variabie
part is the 1Jongers the initialization operator will append
blanks at the right end of the variable, If the initiatization
expression is longersy the value of the initialization expression
will be truncated to fit the variable part,

5) Within varjant record initiatizationsy the <case selector is

initialized in turn and is then used to determine the variant for
the ensuing fietds of the record,

6.4 SECTIIONS _AND_SECTION_DECLARATIONS

A section is 2a working storage area for specified variables
sharing common access attributes.
<section declarationd> 33= sectiop <sections> {s<sectionsd}

{sections> 3:=
<section named> {y<section named} : <section attribute>

<sectlion name> t:= <ldentifier>
<section attribute> 2:= read ! urite
Variables declared within a section having the read section

attribute will reside in read-only storage {(on computer systems
providing that facility) and must have the read variable attribute.

6.5 YALID COMBINATIONS QFE AITRIBUIES _AND_INIIIALIZAILQONS

Only certain combinations of attributes are valid, These combine
with certain initiatization assignments, some of which are optional,
some requireds and some prohibited.

The table betow further clarifies the 1legal combination of
attributes and specifies the rutes for initialization,

CDC Private

CYBIL LANGUAGE SPECIFICATION

6-8

6.0 VARIABLES
65 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS

LA A K2 2 2 2 R 2 222X 2 X2 2 XXX EEREEEIEEEEEEEEYERLEEESELELELELEEL LSS LN]

{1)

{2}
3)
(4)
(5)
{6)
7
(8)
{(9)
{10}
{11)
12y
(13)
{(14)
{15)
(16)

AIIRIBUIE

none

tead

ks&atin

staticrread

xdcl

xdeclrcead
xdelrstatic
xdclsstaficrcead
xref

xrefrread
xrefrstatic

xeefsstaticrread

<{section name>
<{section namedsread

{section named>,xdcl

<section named>sxdclsread

06718781

REVS 6
INITIALIZATION SAME_AS
optional if static
otherwise prohibited
required (4)
optional
required {2)
optional {(7)
required (8)
optional {5)
required (6)
prohibited (11)
prohibited {12)
prohibited {9
prohibited {10)
optionatl ¥
required *
optional *
required ¥

* Static attribute is Iimpiied for sections.

6.6 YARIABLE_REEERENCES

<variabied> 2t= {variable reference)

i1<substring reference>

{varjable referenced> 33:= {variable identifier>
i<pointer reference>”
1<subscripted referenced>
{1<field reference>

CDC Private

6-9
CYBIL LANGUAGE SPECIFICATION

06718781
REV: b

L L 2 2 L K 22 X2 AR KX I EELZELELEELLEEELLEELE S AR EELELEXEELEEXELEEELEE S EXF 2 2

6.0 VARIABLES
6+601 POINTER REFERENCES

L2 2 X 2 2 2 R X2 E X2 ERERLEEEEEEEEEERF 2SS EXE RS S EEENFZELEREELEEESFEEEEEESES S LSS5 K2]

6e6.1 POINTER REFERENCES

<pointer reference> 2:= {pointer variabled
1<function reference)

<pointer variabled> 23:= {variabled

Whenever a variable reference denotes a variable of pointer types
it is referred to as a polinter refarenge and the notation

<pointer reference>”®
may be used to denote a variable whose type Is determined by the type
associated with the pointer vartable. If another variable of pointer
type Is denoted by this referencey then

<pointer reference>™”
may be used as a variable reference. Note that variables of pointer
type can be components of structured variables as well as valid
return types for functions.

Given 2 variable identifiers the notation to obtain a pointer
value to the variable which has a scope equat to or greater than the
pointer is:

“¢variable identifier)

Pointers aré always bound to a specific type and pointer variabtles
may assumes as valuess only pointers to objects of equivalent types.
The only exception to this is that pointer to cell can take on values
of any type and any fixed or bound variant pointer variable can
assume a value of pointer ¢to cell., See Chapter 4 for further
explanation,

The special value pll is used to denote that a pointer variable
has no current assignment to a location,.

6.601.1 Examples_of Pointec References
yar §I» J» k * iptegers {integer variables}
pl ¢ “jntegers {pointer variable of type:s pointer to integer)

ppi 3 ““jntegers {pointer variable of types}
{pointer to pointer to integer}

bls b2 : hoglean 3 {boolean variablies-—end of declarations}

CDC Private

6-10
CYBIL LANGUAGE SPECIFICATION
06718/81
REV: 6

6.0 VARIABLES
6ebelel Examples of Pointer References

2 2 2 L2 2 2 2SR EESAS ALY N L EYEESESEEIEEYIEERENELEE S 2 2 2 8 K & 2 4

allocate pij3 {atlocates space for an integer value and sets}
{pi to point to it}

allgocate ppi; {atlocates space for a pointer to integer and}
{sets ppi to point to it}

pi® = 103

ppi”® 2= pis

J 2= p1”® ; {the Integer variable J takes on the value 10}

k = ppi™" ;3 {the integer variable k takes on the vatue 10
b1 2= j = k ;3 {the boolean variable takes on the value truel}

AA

b2 2= pi™ = ppi 3 {the bootean variable b2 takes on the
{vatue trysl

{the pointer variable pl Is set to denote
{lack of indicating any variable}

pi 3= pjl

-

k 3= pi® 3 {statement is in error when pi has the
{vatue pil—--result of this statement
{will be implementation dependent}

if ppi = pil thep k 2= k + 1 ifend 5
{valid test of ppi and valid statement}

pi 3= i + J + 2 * k)3 {improper use of up arrow to request)
{location of an expression - an undefined concept}
6GeHe2 SUBSTRING REFERENCES
{substring reference) 3:=
{string variabled>{<{substring spec))

<string variable> :t= {variable referenced

<{substring spec> 3=
Cfirst char>ls<{substring length>]

<first char> t1:= <{positive integer expression)>
<substring length> 2:=2 <{non-negative integer expression>
-
{non—-negative integer expression> :3: = {scalar expression>

Values of string variables are ordered n-tuples of character
values. Substring references yield fixed or nutll strings defined sas

CDC Private

6-11
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

LA A R 22 E XSS SEESLELLEEE S EERERSEREERELELEESEEEE IR ELSSEYERELEEREEESS]

6.0 VARIABLES
Hbebe2 SUBSTRING REFERENCES

L2 2 2 2 X 2 2 2 22 22 2 LELSINESZZZELEEEEEEELEEEESEEELELESESEELEEYFIERESEEES YL EFELE LSS

followse
Let ¥s?' denote a string whose current ltength is n.
If 1 <= § <= n thent

A} 's{i)? yields a fixed string of length onesy consisting of the
i-th character of s;

If 1 <= i €= n +# 1 and O <= k <= n +# 1 - i» then:

BY 's{i»k)?' vyieltds a fixed string of length ks consisting of the
j=th through the {i+k=1)~th character of s» or a null substring;

C) '"s{ir*)? is equivalent to ¥si{isn—-i+l)? and yields the rest of the
string starting with the i=-th characters or a nuti stringe.

Otherwises an error results,

CDC Private

6=-12
CYBIL LANGUAGE SPECIFICATION

06/18/81
REV: 6

2 2 X2 2 K 2 R F A ERELEEREZEEEE SNSRI EELERELESESERZESERESEIEESESELEEEELEESEENZ]

6.0 VARIABLES
6+6+2 SUBSTRING REFERENCES

L2 2 X 2 2 2. 2 R 2 XA XA AR SRS LSS LELLEEYERELES S SLERSSERNESEES LSS AR 2 R L 2 K 2 2 2 K X 2.4

Exagple:

If a string variable s is declared and initialized by
var s * stripgi(s) 3= TARCDEF?Y;

then the following relations hotld

s{1l) = vAY s{255) = ¥BCDEF?
s{6) = 1F? s{2s%) = 5{2,5)
s{l56) = s s{ls*) = s
s{250) = t2? s{7s%}) = 19

and s{(8) and s{B8s0) are illegal,
If a pointer variable is declared and initialized by:?

yar ps * “string (6) := “s;
then ps®™{i) and ps®(i»j) become valid references to substrings of s.

Note that 2 string constant, even if decliared with an identifier

for denoting ity is not a variabley so that a substring of such a
string constant is not a defined entity of CYBILy, 24Qe»

const str24 = thelper?;

289

string2 := str24{(3s%) ;3 {invalid substring reference--str24}
{is a string constant}

be6s2.1 Jubskiring References_as_Chatacter References

Substring references of the form 's{k)*, and only suchs may be
used wherever a character expression is alloweds, and are treated as
characters in such cases, Specificallys substrings of the form
s{k)?':

A} May be compared with characters;
B) May be tested for membership {(jn) in sets of characters;

C) May be used as initial and final values of for statements
controlled by a character variabftes;

D) May be used as selectors in gase statements;
E) May be used as arguments of the standard procedures and functions

CDC Private

6-13
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

LA 2 X 4 & KR AL EEEEREESERELESEE SIS EESEEESESEEE YRS SRS FEENELEEEZEF

6.0 VARIABLES
Habe?2+s1 Substring References as Character References

sugc» preds and otrds

F) May be assigned to character varijabless and may be actual
parameters to formal parameters of character type.

6) May be used as index values corresponding to charécter-type
indices.

6.6+3 SUBSCRIPTED REFERENCE

<subscrinpted reference> 3t= <array variable> [<{subscript>]
<array varlabled> 33= <varjabled>
{subscript> 1:= {scalar expression>

A subscripted reference denotes a component of an array variables
whose value type Is the component type of the array variable. A
subscript may be of any type that can be assigned to a variable of
the corresponding index type. Note thats to this ends any subrange

is considered to be of equivalent type as its parent range {or any
subrange thereof).

Exapele:
If an array variable Is declared and initialized by:
yar A 3 array [1..5] of integer 2= [1» 2» 3, 4y 5]
and an integer variable is declared and initialized by
yar i : lpnteger 3= 5 |
then the following relations hoid
al i1l =5
ali-1l] = 4

:
ali-4] = 1
Howevers the reference ali+1] would be in error.
If an array variable is declared by:
¥ar b: arcay f0..51 of array {0..9] of chat
CDC Private

6=14%
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

LA L E L2 A 2 2 2 22 B A L XL L EEEEEEELE SIS ELER IS EEEEREESEEELEEESLEXS

6.0 VARIABLES
6.6.3 SUBSCRIPTED REFERENCE

then b{13[2) becomes 23 valid reference to the array b.
If a pointer variable is declared and initialized by:

yac pa ® “array [1..51 of ipteger := "a;

then pa™(il]l becomes a valid reference to components of a.

CDC Private

6-15
CYBIL LANGUAGE SPECIFICATION
06718781
REV?: 6

6.0 VARIABLES
Hebo&s FIELD REFERENCES

6.6e4 FIELD REFERENCES

<fileld refefence> 33
<variable referenced{.{record subreferenced}

{record subreference) i:=
<field setector>id{subscripted referenced>

A field reference denotes a field of a record variable. Since
field selector names c¢an be wused In other recordss the record
variable must be specified,

Examples

For the record variable declared and initialized by

fype tr = record age 3 6..66»
married,

sex ! bogolean»

date 3 regord day 3 lee3l»
month 3 l..12»
year ¢ 70.+80»

cecend»
cecends

Yar r 2 tr = [23,falsestruer»i3,5,7313;
the fotlowing retations hoild
r.age = 23

r.married = false
re.sex = true

redate,day = 3
redatesmonth = 5
re.date.year = 73
If a pointer variable is declared and initiatized by:
yar pr ¢ “tr 3= ¢
then
pr™.ages pr.marrieds oo»

become valid references to fields of tr.,

CDC Private

7-1
CYBIL LANGUAGE SPECIFICATIDN
06718781

7.0 PRDGRAM STRUCTURE

X B X 2 2 2 2 R RS AR LSRN YR ELEELIEEEEEEEEEE YRS ELEEENEESZZL]

7.0 RROGRAM_SIRUCTURE

7.1 COMPILATIDN_UNIIS

A CY3IL program is a collection of declacratigns which is meant to
be translateds via a gompilation processs into a CYBIL ghiect module
. Object modules resulting from separate compilations can be
combined» via a 1ipkipg processs into a single object module, and may
undergo further transformations into a form capable of direct
execution,

{compilation unitd> :3= {module deciarationd
{3<module declarationd>} [;1

Since statements are constrained to appear solely within the body

of a progedure or functiopn declaratiogpn» compitation units consist
solely of a {ist of decliarationses All such declarations must be
capable of being evaluated at the time of compiftations All variables
declared in a compitation unit?s declaration tlist will automatically

be given the static storage aticributle.
7.2 MDDULES

A module is a collection of declarations.
<{module declarationd t:=
module <module identifier> (<Kalias>]l;
<module body>
padend [<module Jjdentifier)>]

<module |dentifier> st= Cidentifier>
<module body> ::= <{declaration list>

<declaration list> 1:= {<declarationd;}

The madule idepntifier can be used to provide clarity and to assist
in post-compilation activitiess such as tinking and debugging.

CDC Private

7-2
CYBIL LANGUAGE SPECIFICATION
06718781
7.0 PROGRAM STRUCTURE
73 DECLARATIONS AND SCOPE OF IDENTIFIERS

7.3 DECLARATIONS AND_SCOPE_QE_IDENIIEIERS

Dectarations introduce objects together with identifiers which may
be used to denote these objects elsewhere.in a program.

{decltaration> 23= {type declaration>
{constant declaration>
{vyariable dectarationd>
<procedure declarationd>
<function declarationd>
<section declaration>
<empty>

- B BE L8 G e

The programmatic domain over which all uses of an identifier agare
associated Mith the same object is called the 3sgope of the
identifier. Within a compifation units such a programmatic domain is
either a3 module bodys, a procediure body or a functigpn body. The scope
of an identifier is determined by the context in which it was
declared ‘and by optional sgcope attributes which may be associated
with declarations of variables and procedurese.

7.4 MODULE_ -_SIRUCTURED_SCORE_RULES

The scope of an identifier declared in one of the constlituent
decliarations of the body of a moduley is the body of that module.

7.5 BPROCEDURES _AND_EUNCIIONS

A procedure or a function consists of a statement list preceded by
an optional declaration list. Procedures and functions have three
purposes?

1) Procedures and functions control the scope of identifiers.

2) Untike moduless oprocedures and functions control the processing
of decltarations and determine when declarations take effect,

3) Untike modulessy procedures and functions include statementss

which translate into algorithmic actions in the resulting
programe

CDL Private

7-3
CYBIL LANGUAGE SPECIFICATION
06718781
7.0 PROGRAM STRUCTURE:
7+6 STRUCTURED SCOPE RULES

7.6 SIRUCIUREQ_SCOBE_RULES

1) Except for field selectors {(see below)» the scope of an
fidentifier declared in the constituent declaration 1list of a
procedure or function is the body of that procedure or function.

2) If an identifier labels a structured statement then its scope is
that statement.

3) 1If the scope of an ldentifier includes a non~-xrefed procedure or
function declarations then its scope is extended Tdownward® to
inctude the body of that procedure or functions uniess the body
includes a re—declaration of the identifier.

4) The scope of an identifier which is declared as a formal
parameter of a procedure or function is the body of the procedure
or function.

5) Fietd selectors are identifiers introduced as part of the
declaration of a record type for purposes of selecting fields of
records. Except for the restriction that field selectors
associated mith the sasme record type must be uniques identifiers
used as flield selectors may be re-decliared with impunity.

6) Except for field selectorss no more than one declaration of an
identifier can be included in the constituent declarations and
statements of the body of a3 procedure or function,

7.7 SCORPE_AIIRIBUIES

The scope attributes xdcl and xref cause the scope of jdentifiers
to be extendeds» in a discontinous mannery to include other
compilation unitssy but do not otherwise contravene either
module~structured or block-structured scope rules,

Variabless procedures and functions that are part of one modules
but are meant to be referenced from other modulesy must have the xdgl
attribute associated with them by explicit declaration. Other
modules which are meant to reference such objects must declare them
Wwith the xgref attribute,

XREE variabies can not be initialized, and ait xdgi and xref
variabtes are automatically given the static storage attcibute

The declarations for objects shared among modules must match; for
examples an identifier with the xdgl attribute in one module and the
xref attribute in other modules must denote the same object in all

CDC Private

7-4
CYBIL LANGUAGE SPECIFICATION

06718781
7.0 PROGRAM STRUCTURE
7.7 SCOPE ATTRIBUTES

such modules, Violations of such matching rules are detected during
the tinking processing on some computer systems.

7«71 ALIAS NAMES

An. ?alias' is an alternate spelling which may be specified for an
identifier, Its reasons for existence are varied: to meet
system~-requirements of spelling which are invalid in CYBILy to equate
two differing spellings for an entity between two different
compilation unitss to avoid identifier spelling conflicts among
different compilation units or with system standard namesy etc. As
suchs this Feature will only be supported on host systems where this
requirement exists.,

An alias Is to be used outside of a compitation wunit only, and
will not function as an alternative spelling for an identifier within
the compilation unit in which it is defined as an alias.

Aliases may be furnished for identifiers of modulessy proceduress
and variables by following the identifier - associated with a
declaration of such an object by an alias specification.

<afias> 2:= glias ' <ailphabetd> { <alphabet)> } ?

In order for an afias to ‘reach' the host systems it must be
associated with an object that is externalized in some way: by virtue
of being xref'd» or xdci?de A1l other aliases will be inoperative
except for taking up room during the compilation process.

If an identifier which is externalized has an alias specifieds
then only the alias will be made known outside of the compilation

unit (J.ee» the identifier itself will pgt be made known outside of
the complitation unit).

Also refer to 6.1 for variable declarations» and ¢to 8.1 for
procedure declarations,

Examples:?
module outer alias *CYMSOUT!' 5 +..
procedure Uxdcll searcher gljas "CYPSSEARCH' (yar Ist2s...

yar V2 aljas 'CYVS2FLAGYs V3 alias *CYVS3FLAGTY : {xdc! 1 jnteger;

CDC Private

7-5
CYBIL LANGUAGE SPECIFICATION
06718781
7.0 PROGRAM STRUCTURE
7«8 DECLARATION PROCESSING

L X A X 2 2 2 X R 2 X2 XL LYE XS EE LR EXEEEELFEELELLELEEFZEEFEYEREYEFSFEREEFY S ¥ F]

7.8 DECLARALIOUN_BROCESIING

7-8.1 BLOCK-EMBEDDED DECLARATIONS

Except for the constituent declarations of a compilation unit (see
below), declaration processing is governed solely by
btock-structure. During compilations all constituent Jists of a
block are gathered together and are processed en-masses all such
declarations coming into effect simuitanecusiy.

Block-structure also governs declaration oprocessing during
execution of the resulting programs. On entry to a biocks all
declarations Included iIn the block?s constituent Jist are again
coliected togethers storage for automatic variabtes is allocateds and
all identifiers declared by such declarations become accessible. On
exit from a blocks altl identifiers declared within that block become
inaccessibies the values of automatic variables become undefinedy and
the wvariables allocated on the system-managed stack become
undefined.

7.8.2 MODULE-LEVEL DECLARATIONS

Objects declared at the outermost level of a module are associated
With no block at atli. Such declarations must be evaluateds, and
required storage aliocateds prior to program executions. Accordinglys
all variables so declared are automatically given the static storage
attributes as are all scope—-attributed variables.

CDC Private

8-1
CYBIL LANGUAGE SPECIFICATION
06/718/81

8.0 PROCEDURES AND FUNCTIONS

Ll s 2 E 2 X2 XX s R 22 EEEEL S S Y EREYELSEEEEZEEEEESELSLESEEERLEESET]

8.0 RROCEDURES _AND_EUNCTIIONS

A procedure or function declaration defines a portion of a program
and associates an identifier with it so that it can be activated
{ieres» executed) on demand by other statements in the fanguage. A
procedure or function Is invoked by a procedure call statement or
function reference.,

A procedure call statement or function reference causes the
execution of the constituent declarations and statement lists of the
procedure or function after substituting the actual parameters of the
call for the formal parameters of the declaration.

8.1 PROCEDURE_DECLARATIONS

There are the following forms of procedure declarationt

<procedure declaration> 3:=

progceduce [xref 1 <proc specd>

progedurel[<proc attribute>]l<proc specd>;
<{proc body><proc end>

program <proc specd>3;<proc body><proc end>

-

The first form is used to refer to a procedure which has been
compiled as part of a different module. The procedure must have been
declared with the xdg]l attributes and with an equivalent parameter
list in that module,

The second and third forms declare the procedure identiflier to be
a procedure of the kind specified by its parameter 1fist and
associates the identifier with the constituent declaration {ist and
statement list of the dectaration.

The program dectaration is used to identify the first procedure of
a program to be executeds when reguired by the system, It may only
be present on a single outermost block 11evel procedure of the
compitation unit.

If more than one compilation unit is to be linked together ¥for
executions then only one procedure with a program declaration may be
present among aitl those compilation units being linked,

The procedure type is elaborated on entry to the block in wmhich it

CDC Private

8-2
CYBIL LANGUAGE SPECIFICATION

06718781
8.0 PROCEDURES AND FUNCTIONS
8.1 PROCEDURE DECLARATIONS

X X2 2 R N X2 2y r s 2 Fea Xyl X2 RS R YL LELEELEEE S L AL E AL L L 0 4 4

is dectared, and remains fixed throughout the execution of that
blockas

<proc attribute> 3:= xdgi | #gate» xdcl ¢ xdcl» #gate
{proc spec> t:= <{procedure identifier> [<alias>) <proc type specd>

<proc type spec> ::= [{parameter list>]
<parameter 1ist> 2:= {<param segmentd> {j;<{param segmentd>})
<param segmentd> 3= {reference params>
y <vatlue params>
<reference params> 33= yar <paramd> { s<paramd> }
<param> 3:= {formal param tist> 3 <{parameter type>
{value params> 33= <{value paramd{s<value paramd}
<yalue param> 23:= <{formal param flistd> 3
<parameter type)> [3= <default>]
<{defauit> 3t= {constant)>

<formal param list)> 3:= {formal parameter identifier)>
{s<Fformal parameter identifier>}

{formal parameter identifier)> ::= (identifier>

<parameter type> 13= (fixed typed
i<adaptable typed>

<proc body> 2:= <Cdeclaration listd> <{statement listd>
{proc end> 3:= procend [<procedure identifier>]
<procedure identifier> 33= d{identifier>

The default value provides an optional parameter capability for
the value parameters on xrefted procedures. Reference parameters may
not be optional. See section 10.5 for a discussion on procedure
calls involving optional parameterse.

The #gate attribute 1iIs an extension of the xdgl attribute to
extend the protection provided for in the environment provided by the
operating system. It may not be relevant on all computer systemse.
Specifying the #gate attribute without also specifying xdgl és a
compiflation error.

8.2 EUNCIION_DECLARAIIONS

<function declaration> 3= fynction { xref 1 <func specd>
t fupction [L func attributel]l <func specd> ;
{func body> <func end>

CDC Private

8-3
CYBIL LANGUAGE SPECIFICATION
06718781
8.0 PROCEDURES AND FUNCTIONS
8.2 FUNCTION DECLARATIONS

<func spec> 3= <{function identifier> [<alias>]I<func type specd
<function identifier> 2:= <identifier>

<func type spec> 3= [Kparameter listd] 2 <resuit typed>

{result typed> 3:= <basic typed

<func attributed> ::= <proc attributed

<func body> 3= {proc body>

{func end> 23= fyngend [<function identifier)>]

function declarations serve to define parts of the program which
compute a value of the basic type. Functions are activated by the
evaluation of a function reference which {is a constituent of an
expressions.

The value of a Ffunction is the vatue 1ast assigned to its function
jidentifier before returning (elther by falling through the funcend»
by a8 return statements or by an exit statement). The resufts of
returning by any means from a function prior to assignment of a value
to the function identifier (for the current execution) are
undefined,

Be.2.1 SIDE EFFECTS

A function returns a value through the Iidentifier of the
function. When a function changes the value of a variable other than
the local variables of the function that change is a side effect.
CYBIL prevents side effects by restricting assignmentss procedure and
function calis» and the use of non-local variables in wuser defined
functionse

The left-hand side of an assignment statement within a function
may not be any of the following:

o A non-{ocal variables
o A reference parameter of the functions
o0 A pointer variable followed by a dereference (*),

User defined functions may not contain:
0 Procedure cail statements that catl user~defined proceduress
0 Parameters of type pointer to procedures
o ALLOCATE» FREEs PUSH or NEXT statements that have parameters

CDC Private

84
CYBIL LANGUAGE SPECIFICATION

06718781
8.0 PROCEDURES AND FUNCTIONS
8+2.1 SIDE EFFECTS

e 2 R . 2 X B X 2 A 2 e X XIS EERXEEEEESEXELEEEESEFYEYENSES LR S EF

that are not local variables.

These restrictions may make it necessary to use a procedure for
some purposes for which a function might otherwise be used, However
this inconvenience may provide more reliabitity by oreventing side
effects. :

8.3 XDCL_PROCEQURES_AND_FUNCIIONS

The attribute xdgl may only be used on a procedure or function
declared at the outermost {evel; is.es.s not contained in another
procedure or Ffunctions It specifies that the procedure or function
should be made referenceable from other modules which have a
declaration for the same procedure or function identifier with the
xgef attributes The parameters must also be the same.

8.4 PARAMEIER.LISI

A parameter list is a set of variable declarations iIn the <proc
type spec> or <func type specd> {(not in the <proc body>) which
provides a mechanism for the binding of references to the procedure
or function call environment in a manner which permits selection of
entities to be bound at each invocation of the procedure or
function. This is accomplished by providing the procedure or

- function with a set of vatues and variablesy so-called actual
parameterss at the point of call.

A value parameter results in the value of the actual parameters at
the point of cally being associated with the formal parameter, See
section 10 for precise rules governing parameter passings The cafled
procedure or function may not assign a value to one of its value
parameterss nor use it as an actual reference parameter to any
procedure or function it may call.

The type of a formal value parameter may be any fixed or adaptable
type except the so-called non~-value types: heapss records and arrays
of non=-value types (i.2.» any type which cannot enter 1into an
assignment statement may be neither a formal nor an actual value
parameter).

A reference parameter results in the formal parameter designating
the corresponding actuat parameter throughout execution of the
procedure. Assignments to the formal parameter thus cause changes to
the variabte that was passed as the corresponding actual parameter,

The type of a formal reference parameter may be any fixed or

CDC Private

CYBIL LANGU

AGE SPECIFICATIDN

8-5

06/718/81
REV: 6

8.0 PROCEDU
Be4 PARAMET

RES AND FUNCTYIONS
ER LIST

adaptable

Examples:

type.

progedure gcd (my n

vyar als a2s bls b2y

t joteger 5 xyar x» ys z ¢ ipteger) ;

cs ds» a» r 3 jptegec 5 {m > Osn > 03

{Greatest Common Divisor x of m and n,
{Extended Euclid?s Algorithm.}

al 3= 0
a2 1=]

it W We e

ghile d <> 0 do

{al * m + bl
{gcd{cy d) =

q 3= ¢ djy d

r 3= ¢ pod d

a2 = a2 - q

b2 = b2 - g

¢ 3= d 3

i= 1

r 3= al 3

al 3=z a2 3

a2 = r 3

r s= bl ;

bl = b2 ;

b2 = r 3
whilend ;3

X 3= ¢3
y 8= a2j;
z 3= b2;

* n = dy a2 ¥* m + b2 * n = ¢
gcd{ims n)}

al
bl

I e w

s ‘od

{x = gcdime n)s v ¥ m ¢ 2z ¥ n = gecdi{ms n)}

eroceand 9cd;

CDC Private

8-6
CYBIL LANGUAGE SPECIFICATION
06718781
REV: &

L2 2 22 L 22X i 2t £ X R 2l 22ttt R X R A 2 AR ettt X2 XL EESELES LRSS 22 F2 2]

8.0 PROCEDURES AND FUNCTIONS
8.4 PARAMETER LIST

2 2 22 22 R 2 22 2 k2 2 L 22 2 2 AR XX i XX R R 2 RLEELEEEZYLELELSE LS L EEESE LS AL 0 2 2.4 0

function min {as ipteggrs b3 integer): integer;

if a > b then
min $= b;
else
min 3= aj;
ifends

funcend min;

CDC Private

9-1
CYBIL LANGUAGE SPECIFICATIDN
06718/81
REV: 6

LA A B 2 A F 2 2 2 2 2 A2 X 2 A L 2 R A KA AL EEEAELEEREELEEEESLEEEESE LA EEEEEESEEELSEEELEREEEELE X

9.0 EXPRESSIONS

LA L E XL N L A X 22 2 R FEESEEESATLEEERELESELEESEEEEREEEYEYESSEREESEEESEYEEREEELYREF ¥

9.0 EXBRESSIONS

Expressions are constructs denotinag rutes of computation for
obtaining values of variables and generating new vatues by the
application of operators. Expressions consist of operands {(isea»
variables and constants)» operatorss and functions,

Constiant expressions are expressions iInvolving constants and a
subset of the operators and functions {(cf.» Section 5).

<expression> t3= <{simpie expression>
1<simple expressiond{refational operator)
{simple expression>

{simple expression> 33= term> § <sign operatord<ternd>
i{simple expression>
{adding operator><term>

<term> 2:= {Ffactor>
! <termd><multiplying operatord><factor

<factor> 33= Cyvariabledi<constantd>}<{constant identifier>
i<set value constructor>i{function referenced
$*<¢procedure identifier>i™<variabted
s{<expression>)ipgt<{factor>

<multiplying operator> 33= % | djy 1 7 { pod | and
<sign operator> 3= <{signd>
<sign> 23= + | =-

<adding operator)> tt= + § - | ar xor
<relational operator> s2=2 < | <=} > §} >= § = § <> ! in

CDC Private

9-2
CYBIL LANGUAGE SPECIFICATION
06/18/81

9.0 EXPRESSIONS

L2 2 2 2 2 2 2 2 A R RN KA LELSEELESELSEELELEEENFRELLLELELEEELLELEEELEESEEELE S FAL 2 2.2 5 X 2 4

{function reference) 12= <built=-in function reference>
i<user defined function referenced>

Cuser defined function reference) 3=
{function identifier>{<actual parameter)>
{» <actual parameter>})
} Cfunction identifier>()

<built=-in function referenced> 3:= syge {(<scalar expressiond)
iered (<scalar expressiond)
tord {<expressiond).
tght {<expressiond)
1$ipteger {(<expression>)
13ceal {<expression>)
13lopngreal (<expressiond>)
istrlength (<fixed string type identifier>
$1<string variabted)
1lowerbound {(<fixed array type identifier>
i€array variabled)
tuppecbound {(<fixed array type identifier>
i<array variabte))
suppervalue (<scalar type identifier>
i<scalar variabied)
tloweryvalue (<scalar type identifier)
$<scalar variable))
t#log (<variabled>)
t#sizel{<variable>
i<fixed type identifier)>
1<adaptable typed> : [Kadaptable field fixer>}])

<fixed string type identifier)> 22= (string type identifier>
<fixed array type identifier> ::= <array type identifier>
fixed type identifier> 3:= <Kidentifier>

<{scalar type identifier> :t= {scalar identifier>

{scalar variable> 2:= <variable>

See Section 11 for the details of these built-in functions.

CDC Private

9-3
CYBIL LANGUAGE SPECIFICATION
06/18/81

9.0 EXPRESSIONS

L 2 2 2 2 2 XA XA 22 R A XY 2 X A L2 K22 2L P X AR X2 2 2 X 2 2 2 R A8 X KL EE XA XA E L X LR K K2

Examples:

Factors:s
X
15
{x +y + 2)
$colorset (reds cs greenl
ngt p

Terms:
x ¥ y
i diy 3
p apd a
{x <= y) and (y < 2)

Simpte expressions:
x + y
- X
booill gr booil2
i * j+1
hue - $colorset [reds greenl

Expressions:
x = 1
p <= 2
{(i<]) = (Jj<k)
¢ in huel

9.1 EYALUATION_QE_EACIORS

The vatue of a variables as a factors is the value Jlast assigned
to it as possibly modified by subsequent assignments to its
components,

The vatue of an unsigned number is the value of ¢type jpteger
denoted by it in the specified radix system.

The value of a real or longreal constant is the number denoted by
it.

String constants consisting of a single character denote the value
of type ghat of the character between the quote marks.

String constants of n {n > 1) characters denote the Fixed string
{n) vatue consisting of the characters between the guote marks,

The constant pjl denotes a null pointer value of any pointer
type.

CDC Private

: 94
CYBIL LANGUAGE SPECIFICATION

06/18/81
9.0 EXPRESSIONS
9.1 EVALUATION OF FACTORS

A constant identifier Is replaced by the constant it denotes., if
this in turn is a constant identifiers the process is repeated until
a constant of one of the above forms resuilts., The wvatue is then
obtained as above.

The value of a set value constructor is the value obtained from
the values of its constituent expressions of type specified by its
set type identifier,

The value of an up~arrow followed by a variable of type T is the
pointer value that designates that variable,

The yalue of an up—arrow folliowed by a procedure identifier of
procedure type P js the pointer to procedure value that designates
the current instance of declaration of that procedure.

A function reference specifies the execution of a function., The
actual parameters are substituted for the corresponding formal
parameters in the declaration of the function. The body is then
executed, The wvalue of the function reference is the value ftast
assigned to the function identifier. The meaning of» and
restrictions ons the actual parameters is the same as for the
procedure call statement (see 10.5.1).

The value of a parenthesized expression is the value of the
expression which is enclosed by the parentheses.

The type of the vatue of a factor obtained from a variabtle or
function reference whose type is a subrange of some scalar type is
that scatar type.

9.2 QPERAIORS

Operators perform operations on a value or a pair of values to
produce a new value, Most of the operators are defined only on basic
typess though some are defined on most types. The following sections
define the range of applicability, as well as result, of the defined
operators. An operation on a variable or component which has an
undefined value will be undefined in result.

9.2.1 NOT OPERATOR

The not operators ngl» applies to factors of type boolean. When

applied the meaning is negation; i.e.» nof true = false and pot false
= true,

CDC Private

9-5
CYBIL LANGUAGE SPECIFICATION

06/18/81
9.0 EXPRESSIONS
9,2.2 MULTIPLYING OPERATORS

9.2.2 MULTIPLYING OPERATORS

The following table shows the muitiplying operatorss the types of
their permissible operandsy and the type of the result,

itrue and false = false
ifcue apd frue = frue
i1false and false = false

ifalse and true = false
t*When the first operand is

1falses the second is never
ievaluated.,

- - - - o

o + - - - +
t0perator! Operation t0perands t Result H
H o e e b e et et e e e jrm————————— —————— ———=1
¥ imultiptication iinteger or ijipteger !
H H finteger : :
H H isubrange : H
H : ireal iteal H
H H ‘lopngreal ilongreal H
H o e 2 e o e e e o e e e e s s v
: tset intersection 152t of typeisel gf typel
H {- the set consisting of : T H T H
: { elements common to the H : :
: i two sets H H :
b + - —— - +
idiy iinteger quotient 1ipnteger or iinteger :
: tfor a» by n positive tinteger H :
: i \lintegers isubrange : :
H i a diy b = n where n is the H H H
: i 1largest integer such H H H
H ! that b¥*n < = 13 H H :
H ifor one or two negative H H :
: $ Integers : : :
: ! (-23) djy b = {a) djy (-b) = } H :
H i = (a3 diy b)sa dix b = H H H
: i f{-a) diy (-b) : : H
+ - ' - o o e e e e e +
HY ireal and tongreal quotient iceal iceal H
: H ilongreal flongreal H
o —p———— -+ S +
smod { remainder function tipteger or !ipteger :
H ta 30d b = a - {a div b)*b tinteger :
: H tsubrange :
fomm oo o e e e e - + - s et s s o
tand tlogical 'and! tboolean boolean :
*)
: :
H H
H :
H :
: :
H H
+ +

P Gs G 4B 28 SN 4N S8 S8 § Be ue

Y me e S b ey e G

CDC Private

9-6
CYBIL LANGUAGE SPECIFICATION

06/18/81
9.0 EXPRESSIONS
9.2.3 SIGN OPERATORS

2 R 2 2 2 X B2 & E 22 5 B EZSFE2EELESLENRSLELEREREESEESEELSEESESESERESEESEYELSLESEELEE S S XL X]

9+2.3 SIGN OPERATORS

The & operator can be applied to integers real and longreal types
onlty. For types integers real and longreal it denotes the identity
operation and results in integery real or longreal type {(l.es» a = +
al)e

The - operator can be applied to integers reals longreal and set
types only. It denotes sign inversion-—ie.ee» =—-a = 0 - a Ffor
integerss reals or longreals. It denotes complementation for sets
with respect to the base type = i.e.» the set of all elements of the

base type not contained in the specified sets
Ge2+%4 ADDING OPERATORS

The following table shows the adding operatorss the types of their
permissible operandsy and the type of the result.

CDC Private

9-7
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

9.0 EXPRESSIONS
9+2+4 ADDING OPERATORS

isymmetric difference

+ + * - +
i0perator’ Operations H Operands $ Result :
F o o s i i + - + - +
HR $addition : integer or i1integsar H
: : H integer : :
H H H subrange : H
: : : £eal icesal H
f H H lapnacreal ‘iongreal H
: + - —-—— - + +
H iset union : set of typeiset of typei
H i- the set consisting of H T H T H
: 1 all elements of both : H H
: ! sets., H H H
et R T - - + +
- isubtraction H integer or jinteger :
: : H integer H H
H H H subrange : H
! : : teal iceal H
: H : longreal tiopngreal i
H t L - - 4 +
H iboolean difference H boolean t boglean :
: itrue - true = false» : : :
: i frue - false = Ltrue : : :
: i1false - frue = false» H : H
: i false - false = talse : : :
: + + A e e - . - +
H iset difference H set of typeisel of type!l
H t- the set consisting of H T H T :
: f! etements of the left : H :
- 1 operand that are not H : :
H i also elements of the H H :
: : right operand. H H :
+ - - + - trem e ——— +
io¢ ilogical tor! : baolean ! boolean H
H sfrue or true = trues H : H
: ! true or false = true : H :
: ifalse or true = trues H : H
H ! false or false = false H : i
H {* When the first operand H H H
: iis trues» the second is : : H
H tnever evaluated. H : H
+ -4 - - -t - +
ixar iexclusive 'or? H boglean iboalean H
i ifcue xor true = false H H H
: itrue xor false = Lruye ' : :
: ifalse xor true = true : : H
' tfalse xor false = false H H H
H * - b pr———— - +
H :

H :

1= the set of elements

set n% type

i58f of type?
H T

1]

CDC Private

9-8
CYBIL LANGUAGE SPECIFICATION

06/18/81
9.0 EXPRESSIONS
9.2.4 ADDING OPERATORS

A L E 2 2 X 2 XA XA A a2 XA 2 X A R st At A s Ry Ry ESESYEREELEEELESELEELELEELEESRS]

{ contained in either :
i set but not both sets. :

G e 200 o T S o 40 0 1 2 2> 2 0 e <20 o v b -

- s
LT 24

“h we

CDC Private

9-9
CYBIL LANGUAGE SPECIFICATION

06/18/81
9.0 EXPRESSIONS
9.2.5 RELATIONAL OPERATORS

PR L F PV PRI Ny Y YRRy E YRy LYYy e Yy ryy e Yy sy s ryrs s ¥

9.2.5 RELATIONAL OPERATORS

Retationat operators are the primary means of testing values in
CYRILs, They yield the booltean value Ltruye if the specified refation
holds between the operandss and the value falses» otherwise.

9.2.5.1 Compactison.of _Scalats

All six comparison operations < {less than)s <= {less than or
equal to)» > (greater than), >= {(greater than or equal tod)s = {(equal
to)s and <> {not egqual to) are defined between operands of the same
scalar types or substrings of fength one and chacs

For operands of type ipieger they have their usual meaning.

For operands of type boolean the retation false < ftrue defines the
ordering.

For operandss a and by of type ghars the relation a gp b holds {1Ff
and only If the relation grd{a) gp aordib) holds, where gp denotes any
of the six comparison operators and grd iIs the mapping function from
character type to integer type defined by the ASCII collating
sequence,

For operands of any ordinal type Ty a = b ify and onty ify a and b
are the same value; a < b {fs and only ify a precedes b In the
ordered list of vatues defining T.

Operands of type subrange of some parent scalar type may be
compared with operands whose type s the parent type or another
subrange of that parent type,

9.2.5.2 Compatison._of _Pointers

Two pointers c¢an be compared if they are pointers to either
equivalent or potentially equivalent types. In the latter cases oOne
or both of the pointers may be pointers to adaptable or bound variant
typeses The instantaneous type of such pointers must be equivalent to
the type of the pointer they are being compared with; if it Is not»
the operation is undefined.

Pointers may be compared for equality and inequality only.

A pointer of any type may be compared For equality or inequality
with the value pjl.

A pointer comparison results in equality iif both pointers

CDC Private

9~-10
CYBIL LANGUAGE SPECIFICATION
06718781
9.0 EXPRESSIONS
F34245+2 Comparison of Pointers

designate the same yariabley or if they both have the value pil.

Two pointers to procedure are equal if they designate the same
instance of declaration of a procedure.

9.2+5+3 (ompacison _of Elgating Poini Typesa

Al) six relations are defined between operands of real and’
fongreal typess respectively. Comparison for equality and inequality
is done within the precision limits of the host machine.

9+2.5.4 Comparison_of Strings

Alt six relational operators may be applied to operands whose
values are strings. If the actual lengths of the two strings
entering into the operation are unequals blanks are conceptually
appended to the string having the shorter 1ength.

Strings are compared to each other character by character from
left to right until total equality or inequality is determinedy as
follows. Let n be the fength of the strings a and b (n 2 1)» and gp
be any of the six comparison operatorss then:

o a8 = b iff ali) = bli) for atl 1Kign
o For op one of <>y & >
aop b iff for some ky 1<k¢n
alk) op bi{k) AND
ali) = bﬁi) for 1<i<k
o a > =0>biff a=bb0R a>0b

o a << =b §iff a = b OR a < b

9.2.5.5 Relatlons_Inyolying _Seis

The refation a jn s is true if the scalar value a is a wmember of
the set value s. The base type of the set must be the same as» or a
subrange of» the type of the scalars or the scalar type may be a
subrange of the base type of the set.

The set operations = {identical to)ly <> (different from) <= (is
included in)» and >= {includes) are defined between two set values of
the same base type.
sl = s2 is true If all members of sl are contained

CDC Private

9~-11
CYBIL LANGUAGE SPECIFICATION
06/18/7/81
9.0 EXPRESSIONS
Ge2+5+5 Relations Involving Sets

in s2» and all members of s2 are contained in si.
sl <> s2 is true when sl = s2 is false,

s1 <= 52 is true if ali members of sl are also
members of s2.

sl >= s2 is true if all members of s2 are also
members of sl1.

9.2.5.6 Relations_Inyolyving Accays_and Records

1) Arrays may never be compared. Structures which contain an array
as component or field may never be compared.

2} Variant records can not be compared, Other record types may be
compared for equality or inequality only. Twe equivalent records
are equal if and only if corresponding fields are equal.

9.2.5.7 Nop=Camparable lypes

Certain types in the {anguage <c¢annot be compareds These are

heapss sequencess arrayss varjant recordss and records containing a

fietd of a non—comparable type. Howevers pointers to npn-comparabie
types can be compared.

CDC Private

9-12
CYBIL LANGUAGE SPECIFICATION
06718781
9.0 EXPRESSIONS
FG+2+5+8 Table of Comparable Types and Result Types

9.2.5.8 Iable._of Comparable Iypes.and Resull_lyses

The following tabie shows the relational operatorss the types of
their permissible operandss and the type of the result.,

+ o + e o e £ o o +
H : H Left : Right : H
{1 Operator ¢ Dperation i Operand t Operand 1§ Result :
o e o e F o o e e e o o e e o e - +
1 < 1 =~ less than { any scalari T!' where 1 bogolean :
: H : type T § 7T and Tt H
1 <= i - less than or |} i are comp-— | H
: H equal to H { arable H :
H H + : L B o e +
HE i — greater than | stcipgi{n) % stringin) | hoglean :
HE 3 i — greater than 3 S{k) * i ghatr i boolean :
H H or equal to | ghar P Sik) * ! hoolean H
1= ! - equal to H : : :
1 O i - not equal to } : : H
rom— + - o e e e e . - — +
i in i set membership?! any scalari set of T? | bhoolean :
: H test H type T 1§ where Tt} H
H H H H and T : :
H H : H are H :
H H H H comp~ H :
H H : : arable :
H H o e e o o e e o bm—— -
: : T Stk) * i set of ' hoolean :
H H : H ghat : H
: H H H type H :
+ + 4+ L e T e |
! = ! - identity i set of T { set 9f T ! haglesan :
HER @~ ! = different { vwhere T is? H H
' <= i - is contained } any sca-} : H
H : in : far types H :
i >= i - contains H H H H
- - - e i i s s S 9 i e e o v 2
i = ! - equatl to ! any non= ! T {(the { bhoglean :
1 O i - not equal H variant § same type)! H
: H to H record 3} : H
H : : type T 3 : :
: : : contain-} H :
: H H ing no ¢ : :
H i H arrays H H
: i i any ¢t Tor pll ¢ boolean H
H H H pointer 3§ H H
H : H type T 1} H :
: : H or piyi ¢ : H
+ + + +

CDC Private

9~-13
CYBIL LANGUAGE SPECIFICATIDN
06718781
9.0 EXPRESSIDNS
F+2925+8 Table of Comparable Types and Result Types

{%) Substring of form S{k) with a length of one implied.,
The form S{ks1l) is not legal in these contextse.

9.3 ORDER_OQE_EVALUATION

The rules of composition specify operator precedence according to
five classes of operators. The not operator has the highest
precedencey followed by the multiplying operatorss followed by the
sign operatorsy then the adding operators» and finalfys with the
jowest precedences the relational operators,

The precise order in which the operands entering into an
expression are evatuated is only partiatly defined. The order of
application of operators is defined by the composition rules {and
their implied hierarchy of operator precedence) uxnith the exception
that the order of application is wundefined for any sequence of
commutative operators of the same precedence class. For example?

1) The expression a * b ¥ ¢ djy d is evaluated as (a * b * ¢c) diy d»
and the internal order of evaltuation of the First term is
undefined.

2) The expression a #+ b + ¢ - d is evaluated as (a + b ¢+ ¢) -ds with
the internal order of evaluation of (a #+ b + ¢) undefined.

3) In the eyaluation of boolean expressionss terms and factors are

evaluated from left to rights and evaluation terminates as soon
as the value of the term or expression is determined,

CDC Private

10-1
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

LA L A 4 L A R A2 L A X 2 X 2 2 A2 2 2 X 2L 2 2 A 2 2 i X2t 22 2l i L X 22 i 2 2 a2 2 sl i X2 X4
10.0 STATEMENTS

10.0 STIAIEMENIS

Statements denote algorithmic actionssy and are said to be
executable, A statement tist denotes an ordered sequence of such
actions., A statement is separated from its successor statement by a
semicolone. The successor to the tast statement of a statement tist
is determined by the structured statement or procedure of which it
forms a parts:

<statement list> 3:= (statement>{j;<{statementd>}

{statement> 33= <assignment statement>
i<structured statement)
1<control! statement>
i<storage management statement>

10.1 SEMICOLONS AS_STAIEMENT LISI _DELIMIIERS

Since the successor of the last statement of a statement list is
uniquely determined by the structured statement or procedure of which
it is a part, semicolons are not required as statement 1ist
defimiters, Howevers since the eppty statement is alloweds
semicolons may be so0 used for consistency of presentation.

CDC Private

10-2

CYBIL LANGUAGE SPECIFICATION

06718781
REV: 6

L2 2 X 2 2 2 X 2 X R R X r Er i R R K2 YRR ELSESEELEEEISEESEREEEEEEIEESEESEEESEEESE L X]

10,0 STATEMENTS
10.2 ASSIGNMENT STATEMENTS

s X2 s 2 22222 2 2 X2 X XSS EEEEES S EERLEENLELESEELELRELELEL S KL L LR L S 2 £ A B A 2 J

10.

2 ASSIGNMENI_STAIEMENIS

The assignment statement is used to replace the current value of 2

variable by a new value derived from an expressions

Cassignment statement>

10.

to
is
is

3=
{variabled> = <{expressiond>

2+1 ASSIGNMENT COMPATIBILITY OF TYPES

The part to the 1eft of the assignment operator {(3:=) jis evaluated
obtain a reference to some variables The expression on the right
evaluated to obtain a vatue. The vatue of the referenced variabile
replaced by the value of the expression.

The varliable on the 1eft may be of any data type except for:

Any variable specified as read-onlys or a formal value parameter
of any containing procedure.

Any bound variant record.
The tag field of any bound variant record.
Heapss and arrays and records containing heaps.

The variable or function identifier on the left and the expression

on the right must be of equivalent instantaneous types» except as
noted below?

]

The types of the variable and the expression may be subranges of
an equivalent parent types or one may be a subrange of the other.
If the value of the expression is not a value of the type of the
variables the program is in error.

If the teft part is a character variabley a string variable or 2a
substrings the expression may be a character expressions a string
or a substringe.

If the stringss substrings or character elements are not of equal
fength and the destination opart {1left part) is the longers, the
assignment operator will append blanks at the right end of the
destination variable, If the source part (right part) is longers
the assignment wiil! truncate the vatue of the source part on the
right to fit the destination parte. ‘

Assignment of two substrings which overlap one another is not

CDBC Private

10-3
CYBIL LANGUAGE SPECIFICATION

06/18/81
10.0 STATEMENTS
10.2.1 ASSIGNMENT COMPATEIBILITY OF TYPES

LA L A2 22 X i 2 2 X i R A R A R Al st R R 2 2 a Rl 8 2 R R K2R 2 A2 LA AR B2 2 A R 2 2 2 2 A K 22 J

aliowed and the results are unpredictable.

0 If the teft part is a variant records the right part may be a
bound variant record of otherwise equivalent types.

o If the teft part is a pointers its scope must be less than or
equal to the scope of the data to which (It is pointing. For
exsmples a static pointer variable cannot point to a local
variable. '

0 If the jeft part is a3 pointer ¢to a bound variant record, the
expression may be a pointer to an otherwise equivalent 'unbound?
variant record.

0o If the {eft part is an adaptable pointers the right part must be
either a pointer to any of the instantaneous types to which the
left part pointer can adapts or an adaptable pointer which has
been adapted to one of those types. Both the type of the
expression and its value are assigneds, thus setting the current
type of the assignee.

o If the fleft part is a fixed or bound variant pointer typey the
right part may be a pointer to cell. The only effect of the
assignment is as foltows: after the assignments the value returned
by an application of the #1gg function on the de-referenced value
of the tefthand side as argument will be equal to the right-hand
side value,

0 If the left part Is a pointer to celly the right part may be a
pointer type, The value assigned is a pointer to the first cell
atiocated for the variable pointed—to by the right side.

o Warning: Note that generally a pointer value has a finite jifetime
(see Section 6.2.2) different from that of the pointer variabile.
Automatic variables cease to exist on exit from the block in which
they were declareds Allocated variabies cease to exist when they
are freed. Attempts to reference non-existent variables by a
designator beyond their {ifetime is a programming error and could
fead to disastrous results.

10.3 STAIEMENI_LABELS

A structured statement may be tabeled by preceding it with a
structured statement identifier. This allows the statement to be
explicitiy referred to by other constituent statements (e.ges exits
cycle), Such a labeling of a statement constitutes the declaration
of the structured statement identifier and hence the identifier must
differ from al) other identifiers declared in the same block.

CDC Private

10-4
CYBIL LANGUAGE SPECIFICATION

‘ 06/18/81
10.0 STATEMENTS '
10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS

E AL .2 2 2 E XL 2 2 2 A 2 A a2 2 A i R A X s i X 22 2 L X 2R 2 i 22 2 2 2 R 222 R 222 2FEXE 4

10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS

If a structured statement Jdentifier labels a constituent
structured statement of a procedure declaration or a begin statement,
then 1{its scope iIs that procedure declaration or begin statement. It
is impossible to refer to a structured statement identifier on a
structured statement from outside that statement, A structured
statement identifier may optionally follow a structured statement
{except repeate.s until)s in which case It must be identical to the
structured statement identifer labeling that statement. This is for
checking purposes onlys and does not affect the meaning of the
program. The scope of a structured statement ididentifier does not
inctude procedures called from within its scope.

<structured statement identifier> 33= [identifier>{

Example:

/check_range/
ghile val < 0 dg

whilend /check_range/;

10.4 SIRUCIURED_SIAIEMENIS

Structured statements are constructs composed of statement {ists.
They provide scope controls selective executions or repetitive
execution of their constituent statement lists.

{structured statement> 3= [{structured statement identifierd>]
<repeat statement)>
1l<{structured statement identifier>] <{delimited statement>
{{structured statement lidentifler>)

<delimited statement> ::= <begin statement)>

! <{while statement>
1 <for statement>

10.4.1 BEGIN STATEMENTS

Begin statements permit the execution of a single statement tist.
Exit is either through compteting execution of the 1ast statement of
the statement 1ist or through an explicit transfer of control.

CDC Private

10-5
CYBIL LANGUAGE SPECIFICATION
06718781
10.0 STATEMENTS
10.4.1 BEGIN STATEMENTS

LA L E 2 2 X 2 8 2 2 2 A 2 A X2 2 X 2 f R 2 22 X 2 R i s R gy 222 F 22 2 2 R 2EFEELEESSESESDEZE]

The successor of the jast statement of the statement 1list of a
begin statement is the successor of the begin statement.

<begin statement> ::=
hegin <statement 1istd> end

10.4.2 WHILE STATEMENTS

A while statement controls repetitive execution of its constituent
statement list,

<while statementd ::=
uhile <expressiond> dg <statement 1ist> whjlend

The expression controtling repetition must be of type boolean.
The statement 1ist is repeatedly executed wuntit the expression
becomes false. If its value is false at the beginnings the statement
list is not executed at all,

The successor of the last statement of the constituent statement
list of a while statement is the white statement itself,

Examples:

ghile afil <> x dpo
2= 1 + 13

whileond;

while i > 0 do
if + = z then
zZ 3= 2z ¥ x3
ifend;

i 3= § diy 23
X 3= x ¥ x3

ghilend;
10+4%4¢3 REPEAT STATEMENTS

A repeat statement controls repetitive execution of its
constituent statement list.

<repeat statement> 1=
repeat {statement list> yptil <expression>

CDC Private

10-6

CYBIL LANGUAGE SPECIFICATION
: 06718781

10.0 STATEMENTS

10+4+3 REPEAT STATEMENTS

The expression controlling repetition must be of type boolean.
The statement tist between the symboils repeal and ypniil is repeatediy
{and at least once) executed unti! the expression becomes true.

Example:

repeat
k 3= i mod Js
i 2= J;
Jj = k3
uptil J = 03

10.4.4 FOR STATEMENTS

The for statement indicates that its constituent statement list is
to be repeatedly executed while a progression of values is assigned
to a variables which is called the control variable of the for
statement.,

<for statement> ::=
for <control variabled> = <for list> do
{statement list> forend
<for listd 3:=
<initial value> tg <final valued>
1<initiat value)> gJowntg <final value>

<control variabled> 23= <Cvariable identifier>
Cinitial value)> 32:= <{scalar expression)
<final value> t:= <{scalar expression>
<scalar expression)> 2::= <{expression>

The control variabiey, initial vatue and final value must all be of
equivalent scalar type or subranges of equivalent types.

The control variable may not be an unaligned component of a packed
structure.

Assignment to the control variables either explicit or by passing
as a yar parameters within the statement list Is a fatal compilation
erfrtor.

The initial value and final value are evaluated once on entry to
the for statementy as is the name of the control variabtle. Thusy
subsequent assignments to components of these expressions have no
effect on the sequencing of the statement.

CDC Private

10-7
CYBIL LANGUAGE SPECIFICATION

06/18/81
10,0 STATEMENTS
10, 4.4 FOR STATEMENTS

2 2 2 i 2 X 2 X2 X2 XX XS E XS YRR s 2 Y EREESEELZEEENESEEEAREEESELELSELEES S LS R X 2]

If the initialt value is greater than the final value in the {o forms
or If the Initialt valuye is less than the final value in the gdounto
forms then no assignment is made to the <control variable and the
statement list is not executed,

IFf the exit from the statement is a normal ones then the value of
the control) variable is the final vatue. If the exit is caused by
the gexjt statement, the value of the control variable is that which
was in effect when the gxii statement was executed.

10.5 CONIROL_SIAIEMENIS

Control statements cause the transfer of control to a different
execution environment or to a statement other than the successor
statement in the same environments or both.

<control statementd> 3:= <{procedure call statement>
if statementd> | <case statement)>
{cycle statement)>

<exit statement> | <return statement>>
<empty statement>

B SE e Be

10.5.1 PROCEDURE CALL STATEMENT

A procedure call statement causes the creation of an environment
for the execution of the specified procedure and transfers control to
that procedure. {cfe» Chapter B.0 Procedures.) A procedure call
statement may never be used to activate a function.

<procedure call statement> ::=
{procedure reference> <{actual parameter list>

<procedure reference> 3= {procedure identifier>
! <pointer to procedure referenced> "
<pointer to procedure referenced> ::= <pointer reference>
<actual parameter Jlist> 2:=
- {€actuat parameter>{s<actual parameter>})
! (Kkeyword parameterd> {s<{keyword parameter>})
1 <empty>

{keyword parameter)> 3:=
{formal parameter name> 3= <{actual parameter>

<empty> 1:=

CDC Private

10-8
CYBIL LANGUAGE SPECIFICATION
06718781
10.0 STATEMENTS
10.5.1 PROCEDURE CALL STATEMENT

LA 2 2 2 N B2 X 222 EELSESE XIS ERSEEEERNIEEEENELEELESESESEZEERLXESESSEESLE XS]

<actual parameter)> 31:= <{expression>
<

empty>

=
Bl
3

An actual parameter corresponds to the formal parameter which
occupies the same relative position in the formal parameter list.
When using the keyword forms actual parameters may be specified in
any order. Howevery no procedure call can use part keyword and part
positional forms. In elither forms vparamefters which are optional
{formal read parameters with a default) may be omitted by using an
empty positional parameter or by not being specified in the keyword
forme In either cases the value given the omitted parameter is that
deciared as the default valye, With these default parameterss, commas
used to mark out to the end of the parameter 1list are unnecessary.

10.5.1.1 Yalue_ Paramelers

A value parameter causes the association within the called
procedure of the value of the actual parameter at the point of call
with the name of the formal parameter, The type of the parameter s
fixed as follows?

1) If the formal parameter is of fixed types, then the actual
parameter may be any expression which could be assigned ¢to a
variable of that types except in the case of strings which must
be of equal length, '

2Y 1f the formal parameter is of adaptable types, the Instantaneous
type of the actual parameter must be one of those to wmhich the
adaptable type can adapt.

3) 1If the formal parameter is an adaptable pointers then the actual
parameter may be any pointer expression which could be assigned
to that adaptable pointer. Both the value and the instantaneous
type of the actual parameter are assigneds thus fixing the type
of the formal parameter.,

10.5.1.2 Referenca Parameters

A yacr parameter causes the formal parameter to designate the
actual parameter throughout execution of the procedure. Assignments
to the formal parameter thus <cause changes to the corresponding
actual parameter. An actual parameter corresponding to a yar formal
parameter must be addressable.

The type designated by the formal parameter is fixed as follows:
1) If the formal parameter is of fixed types the actual parameter

CDC Private

10-9
CYBIL LANGUAGE SPECIFICATION
06718781
. . REV: 6
10.0 STATEMENTS
10+45+1.2 Reference Parameters

t 2 2 2 2 2 K222 YRR R EXE Y2 EREEESEELEEZZEEEEEEEEEYESESELELEEESELEESLERZE]

must be a variable or substring reference of equivalent type.

2) If the formal parameter is of adaptable types the actual
parameter must be a variable or substring reference whose type is
potentially eguivalent,

10542 IF STATEMENTS

The if statement provides for the execution of one {and only one)
of a set of statement lists depending on the value of boolean
expressionis). The boolean expressioni{s) following the if or elseif
symboils are evaluated In order until one is found whose value is frye
o« The subsequent statement ltist is then executed.

If the vajtue of all Boolean expressioni{s) are falsg» then eilther
no statements are executeds or the statement list following the glse
symbol is executed {(if present).

The successor to the 1ast statement of a constituent statement
{ist of an if statement is the successor of the if statement,

<if statement> :1:=
Lf<if body> 1 ifend

<if body> t:= {expressiond> thep <{statement list>
[else <statement list> ¢ glseif <if body>]

Exampless
1f x < y then

x 3= yj

ifend;

if x <= 5 Lthen
z2 := 13

elself ; > 30 then
z 1= 23

eglseif x = 15 fthen
2 3= 33

glse
Z 1= 43

ifend;

In the first examplesr X takes on the value of ¥y If and only If the
relation x < y holds>s In the second exampies, Z will take on one of
the values (1925354) depending on the value of x.

CDC Private

10-10
CYBIL LANGUAGE SPECIFICATION
06/718/81
10.0 STATEMENTS
10.5+3 CASE STATEMENTS

L2 2 2 22X 2 2 X2 2 X2 X R FERLELELEEEIESEEEEEESELEELIEEEYEEEEELESESEESEEEFEEEEEERE Z ¥

10.5+3 CASE STATEMENTS

A case statement selects one of its component statement {ists for
execution depending on the value of the selector expression.

<case statement)> 3:3= ggse <selector> gf <cases>
[else <statement 1ist>] gasend

<{selector> 31t= <{scalar expression>

<cases)> 3:= {a cased{3;<a cased}
a case> 3= ={selecgction specd{s<setection specd}=
{statement list>

<selection spec> 3:=
{constant scalar expression>
[eeconstant scalar expressiond>]

The <case statement selects for execution that statement list (ifFf
any) which has a selection specification which includes the value of
the selector. If no selection specification includes the value of
the selectors the statement 1list following else is selected when the
else option ds employed, If the value of the sefector is not
included in any selection spec and the glse Is omitteds the program
is in error.

The selector and all selection specifications must be of the same
scalar type or subranges of the same type. No two selection
specifications may idnclude the same values (i.es» selection must be
unique).,

Selection specs are restricted to simple constant scalar
expressions,

The successor of the last statement of a selected statement list
is the successor of the case statement.,

CDC Private

10-11
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

LA L A2 2 2 2 X2 X X 2 A R 22 XL XL AR EEEEESEEEERLESEEEEELEENESLEEEEZESEESEEEEES S]

10.0 STATEMENTS
104543 CASE STATEMENTS

Examples:?

case operator of
=plus= X 3= X 4+ y
=minuss X = X =y
=times=z x 3= x * y
casend;

e i e

case i of
=1=
=2=

3= x+1
3z x+2
sz x+3
iz x+4

z=3=

X X X
we e ws e

==
glse

X 3z =X
gcasends

“e

type lextype = {(basics inconst, realconsts stringconst,
identifier),
symbol = grecord
case lex ¢ lextype gof
=hasic=
name 3 symbolid»
class 3 operations
zjnconst=
value : jntegsc»
optimiz : bgolean»
=zrealconst=
value 3 real»
=stringconst=
length 3 1..255
stringbuf : “stringi(*)»
z=jdentifliers=s
identno : jntegers
decl 3 “symbolentry,s
casend:
cecendi
var
cursym 3 symbol,
sign 3 hboolean 3= falses
insymboi;
£ase cursym.lex of
=basics=
if cursym.name= minus fthen
sign 3= pot signs3
eise
error {'missing operand?);
ifend;
=jinconst=
cursymsoptimiz 3= (cursym.value<halfword);

CDC Private

10-12
CYBIL LANGUAGE SPECIFICATION
06718781
10.0 STATEMENTS
104543 CASE STATEMENTS

L 2 2 2 2 1 2 2l 2 2 X2 2 X 2 Y i 2 R X A2 X A 2 F e R 2 2 AR 2 A X EEEEZEEYEEEYELEESYES]

if sign then
sign 3= false;
cursym.value = —cursyme.value;
ifend;
zrealconst=
if sign thep
sign 3= false;
cursym.value 3=z -gcursymevalue;
ifend;
=stringconst=
error {'string constant where arithmetic type expected?);
z=jidentifier=
cursymsdect = symbolsearch;
1f cursym.dect®.typ <> constdec! then
variable {cursym.dect);
glse
cursym 3= cursyme.deci®.value”;
ifeand;
casend;s

10.5+4 CYCLE STATEMENT

The cycle statement allows the conditional by-passing of the
remainder of the statements of the constituent statement tist of the
designated repetitive statements causing reevaluation of the
expression controliiing the structured statement, thus cycling it teo
fts next lteration (if any}.

{cycle statement)> :31= gygle <structured statement identifier>

The structured statement ldentifier must identify a repetitive
statement {for> wuhile» or repeat statement), which statically
encompasses the cycle statements i.2492 the cycle statement must be
within the scope of the structured statement.

Thus» the cycle statement has the effect of (potentially)
re~executing the statement list of a repetitive statement such as
fors repeaty or while,

Exampless

x 3= alll;
/find_smallest/
for k = 2 to n dg
if x < alk]1 then
gycle /find_smallest/;

ifend;
x 3= alkl; {this assignment skipped when x < aflk1}

CDC Private

10-13
CYBIL LANGUAGE SPECIFICATION
06/18/81
10.0 STATEMENTS
10.5.4 CYCLE STATEMENT

LA A B 2 4. 2 & R 2 A A2 2 2 A X 2 R4 2 2 A L2 X2 2 X2 i X A 22 2 a2 2 222X R 2 i i R Xy ol Xy REX.]

{this finds the smallest value in 2a{l11 thru ainl}
forepnd /find_smallest/s

104545 EXIT STATEMENT

The exit statement causes execution to continue at the successor
of a designated structured statements procedure or functiona..

<exit statementd> 3:= exit <{structured statement identifier>
t <procedure identifier>
i <function identifier)>

If a procedure or function identifier is designated as the object
of the exits then that procedure or function must statically
encompass the exit statement within the same module, If a structured
statement Identifier 1is designated as the object of the exity then
that identifier must be for a structured statement which statically
encompasses the exit statement within the same module.

Note that the exit statement with either a structured statement
identifiers procedure ldentifier or function identifier designated
permits multiple levels of exit with a single statements Thuss exit
can permit recursive nests to be terminated with a single statement
by selection of +the aopropriate structured statements procedure or
function identifier,

CDC Private

10-14
CYBIL LANGUAGE SPECIFICATION
06718781
10.0 STATEMENTS
10545 EXIT STATEMENT

Examples:
Imeaninaoful_Jlabel/

begin x = y + 27 ;3 {example of exlt <labeld>}
found 2= £3158; ee>»
/for_white_loop/
for k 3= 1 to 10000 do
J 3= k 3;
if (i maod 2) = 0 Lthen
bik] 3= false;
else
prime(i, answer) ; {test if prime}
while frue do
if answer = 5 then
exilt /for_while_loop/3 {goes to 'bound = j3;' statement)
ifend 5
answer 3= answer - 5 ;
1f answer <= 0 then
exit /meaningful_1label/; {exit: whiles for
{and beglin stmt and goes to ' Lif found theD ees*}
ifend;
ghileod;
ifend;
forend /for _while_1loop/;
{exit /for_white_loop/ causes control to transfer here}
bound 3= j3
found = fryue;
end /meaningful_1label/;
{exit /meaningful_tabel/; causes control to transfer here}

if found thep e+ 3
10.5.6 RETURN STATEMENT

The refurn statement causes the current procedure or function to
return je.e. comptetes the current activation of the procedure or
function.

<return statement> 3= return
10547 EMPTY STATEMENT

An empty statement denotes no action and consists of no symbols,

{empty statement)> 23:=

CDC Private

10-15
CYBIL LANGUAGE SPECIFICATION
06/18/81
10.0 STATEMENTS
10,6 STORAGE MANAGEMENT STATEMENTS

LA 2 2 X 2 2 R 2 XS EEEREESEEEELSZEEE LY ESEFEEERESZEEEREEEEEESELEES L LA ELLLE L LR L 4

10.6 SIORAGE_MANAGEMENI_STAIEMENIS

There are two storage typess sequences and heapss defined in the
fanguages each with its own unique management and access
characteristics. Variables of such types define structures into
which other variables may be placedy referenced» and deleted under
program control according to the discipline implied by the type of
the storage variable, Storage management statements are the means
for effecting this controls and Ffor managing the placement of
variables into the so-calied system-stacke.

{storage management statementd> 31:= {push statementd>
1<next statement>
i<reset statement>
1<allocate statement>
1{free statement>

10.6+1 ALLOCATION DESIGNATOR

An atlocation designator specifies the type of the variablie to be
mansaged by the storage management statements. An allocation
designator is elther:

A) A pointer to a fixed types in which case a variable of the type
designated by the pointer variable is specified;

or

BY An adaptable pointer {or bound variant record pointer) followed
by a type fixer {(see below) which specifies the adaptable boundss
lengthsy slzes» or tag fieldss in which case a variable of the
resultant fixed type is designated and the adaptable or bound
variant record pointer is set to designate a variable of that
types

<atlocation designator> 3:=
{fixed pointer varlable)
1<adaptable array pointer variabte> : [<{star fixer)>]
{<adaptabile string pointer variable> 3 [<length fixer>]
t<adaptable storage pointer variable> : [<{span fixer>]
{<adaptable record pointer variabted> : [<adaptable field fixer>]
$<bound variant record pointer variabled> 3

[<tag field fixers>]

{fixed pointer variabled ::= <pointer variabled>
{adaptable array pointer variabled> ::= <pointer variable>

CDC Private

10-16
CYBIL LANGUAGE SPECIFICATION
06718/81
10.0 STATEMENTS
10.6.1 ALLOCATION DESIGNATOR

L s X222 X 2 X222 8 X 2 2 2 R 22 XA XX R X2 2 R P FESENESEEEYNEEEESEERNESEREEYDE SR XY ZE

{adaptable string pointer variable> :3= (pointer variabled
{adaptable storage pointer variabled> 32= <(pointer variabled
<adaptable record pointer variable> ::= {pointer variabled>
<bound variant record pointer variable> 23= <pointer variable)>

Ctag field fixers> 333 {scalar expressiond
{ <constant fixers>ls<scalar expressiond>]

{constant fixers> 13= <{constant scalar expression>
{s<constant scalar expressiond}

<adaptable field fixer> 313= star fixer>
i<iength Ffixer>
i

{star fixer> 33= {scalar expression> .» <scalar expression>
<{tength fixer> 3:= {positive integer expressiond
 $:t= [<{spand> {» <spand> }]
{span> t:= [rep <positive integer expression> gfl
{fixed type identifier>

1) Star Ffixers are used in the fixing of adaptable baounds of
arrayse Values for both the lower and upper bound must be
specified in the star fixer, If the lower bound was provided by
a louwer bound specs the corresponding value specified in the star
fixer must be identical to the value specified by the lower bound
spec.

2) Length fixers are used in the Ffixing of adaptable bounds of
strings.

3) Span fixers are used in the fixing of adaptable bounds of heaps
or sequences.,

4) The type and value of an adaptable field fixer must setect one of
the types to which the associated adaptable pointer can adapt.,

5) The orders typessy and values of tag field fixers must select
those varlants to which the associated bound wvariant record
pointer can be bound. All] but the last of these tag field fixers
must be constant expressions.

CDC Private

10-17
CYBIL LANGUAGE SPECIFICATION
06/18/81
10,0 STATEMENTS
10.6.1 ALLOCATION DESIGNATOR

L2 2 E 2 2 2 2 2 22 2 2 2 A X2 ESXERYESEEESEEYE S E S 22X LELEEERESESYEREEYEELIENE Y]

6) For the bounds list used in an allocation designator, entries are
required only for the dimenion which is adaptable.

7) Polnters associated with type fixers are set to designate a
variable of the type fixed by the type fixer {(whenever the
statement iIn which they occur is executed)., They will then
designate a variable of that fixed type until they are eijther
reset by a subsequent assignment operation or re-fixed by a type
fixer in a subsequent storage management operation,

Example:

tyoe

tire = arrayll..*) of accay [1..53 of array [10..201

; of acray (21..24) of integer ;
yag

point 3 “tipe »

bunch * heap (rgp 25000 of integer)

{point Is an adaptable pointer variabie}

resel bunchj;

LR I

allogcate point ¢ {1l..151 ip bunch ;

This allocate statement would cause the allocation of an array of
four dimensions with components of type jpiegers with dimensionss

1 to 155 1 to 5s 10 to 20» and 21 to 24.

and would set the pointer varlables points to designate that arraye.

CDC Private

10-18
CYBIL LANGUAGE SPECIFICATION
06/718/81
10.0 STATEMENTS
10,602 PUSH STATEMENT

L2 X2 2 2 2 2 22 X sl R ELELELEEE AN ELZESEELEEIYEEESEEFSEYESEEES LS L]

10.6+2 PUSH STATEMENT

The push statement causes the allocation of space for a variable
on the system—-managed stack {system stack)» and sets an atliocation
designator to designate that variabte {or to the pointer value pj}l if
there is insufficient space for the altlocation)s The value of the
newly allocated variable {or of any component thereof, in the case of
structured variables) remains undefined untit the subseqguent
assignment of a value to the variabie or to its components.,

<{push statement)> 3:3= pysh <allocation designator>

10.6.2.1 System=Managed _Stack

A variable aliocated on the system-~stack c¢can not be explicitily
de—-allocated by the user. Instead, de—-allocation occurs
automaticaliy on exit from the procedure containing the allocating
push statements at which time space Ffor the variable iIs released and
its value becomes undefined.,

Example:

¥ar localarray 2 “arcay{l..¥1 of ipteger ;
push localarray :{1..201;

fallocate space for array [1l.+20] of integer on
{system stacky i-th element can be referenced
{as localarray®{il}

104643 NEXT STATEMENT

The next statement sets the aliocation designator to designate the
current element of the seguences and causes the next element to
"become the current element, This resuits in the positioning
information in the variable of type pointer to sequence to be
ypdated. After a reset or an altlocation of a sequences the current
element is the first element of the sequence. Note that the ordered
set of variables comprising a sequence is determined algorithmically
by the sequence of execution of next statements.

The type of the pointer variable must be the same when the data is
retrieved from a sequence as when that same data was stored Into the
sequence; otherwises the program is in error.,

If the execution of a next statement would cause the new current
element to Jie outside the bounds of the sequences then the

CDC Private

10-19
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

2 2 2 2 2 2 2 R X2 X2 R REREELESEEEEN LSS NS EE S EESSEEFESEEEELEESEEEESESES]

10.0 STATEMENTS
1063 NEXT STATEMENTY

L2 2 2 2 2 XX 2L B2 FEEELESIELZIENEEE L EZZESEEL SR EFXELSEEELERFEES S EES S S EEL NS]

alliocation designator is set to the value nil.

<next statement)> :3=
next <allocation designator> ip <pointer to sequence variabled>

<pointer to sequence variable> 3:= <(pointer variabled
Example:

pext length_ptr ip buf_ptr 3
pext stgptr @ [l..length_ptr™) jn buf_ptr ;

104604 RESET STATEMENT

The reset statement causes ejther positioning in a sequences or
en-masse freeing of all variables of a heaps Space for freed
variables is released and their vatues become undefined.

{reset statement)> 3=

reset <pointer to sequence variable> [fp <pointer variabled]
! reset <heap variabled>

Wacrning: 2 cesel statement is required prior to the first allocate
statement for any user—-defined sequence or heap to reset the sequence
or heap to an 'empty' status; otherwisey the program is in error.,

10.6+4.1 Reset_Seguence

The reset seguence statement causes the positioning iInformation
contained in a variable of type pointer to sequence to be reset. If
the optional Lo <clause i{is not specifieds the first element of the
sequence becomes the current element of the sequence. If the tg Iis
specifieds the element in the sequence pointed to by the <pointer
variable> becomes the current element of the sequence. The use of a
pointer variable whose value had not been set by a2 next statement for
the same sequences or whose value is pnil» is an error.

10.6.4.2 Reset_Heap

The reset heap statement causes all elements currentily allocated
in the specified heap to be freed en—masse.

CDC Private

10-20
CYBIL LANGUAGE SPECIFICATION
06/18/81
10.0 STATEMENTS
10.6.5 ALLOCATE STATEMENT

10.6.5 ALLOCATE STATEMENT

The allocate statement causes the aliocation of a variable of the
specified type in the specified heap and sets the aftlocation
designator to designate that variable or to the value pjijl if there is
insufficient space for the allocation. If a heap variable 1is not
specifieds the aillocation takes place out of the universal {system
defined) heap.

Note that the first 3llogcate statement for any heap {other than
the system heap) must be preceded by the execution of a peset
statement for that heaps or the program wilt be in error.

Callocate statement)> 3:= 3]1iocate <allocation designator>
t in <heap variabted]

<heap variabled :1:= Cvariabled

Examples:
¥ar my_array : “arcay [*1 of jptegers

allocate my_array 3 [0..49); {allocate space Iin system heap)
allgcate sym_ptr fn symbol_table;

10.6.6 FREE STATEMENT

The free statement causes the deletion of a specified variabile
from the specified heap or from the system heap if the jp clause is
omitted: space for the variable is releasedy and its value ©becomes
undefined.

A pointer wvariable specifies the variable to be freeds If the
variable specified is not currentiy allocated in the heap» the effect
is wundefined. Execution of the free statement sets the pointer
varjiable to the value pil. Use of a pointer variabie with a value of
nil to attempt data access is an error., Freeing a pjl pointer is an
errore

CDC Private

10-21
CYBIL LANGUAGE SPECIFICATION
06/718/81
10.0 STATEMENTS
10.646 FREE STATEMENT

2 2 X E X X XX XS 2 A A A X R X X R EREEEEFEZEEEEY I EYE SR FZ]

{free statement> 3=
free <pointer yariabled{jn <heap variabled]

Examples:

free sym_ptr ip symbol_table;
freg my_array;

CDC Private

11-1
CYBIL LANGUAGE SPECIFICATION
06/718/81

11.0 STANDARD PROCEDURES AND FUNCTIONS

L2 A K 2 2 K 2 2 2 K2 XL 22 2L EFLI LAY EEZLEEE R X ELEEEEE XY EEEYEESEEIERES IS ER N FJ

11.0 STANDARD_EROCEDURES _AND_EUNCIIONS

Certain standard procedures and functions have been defined for
CYBIL which have been included because of the assumed frequency of
their wuse or because they would be difficult or impossible to define
in the tanguage in a machine-independent wavy.

11.1 BUILI=IN_PROCEDURE

11.1.1 STRINGREP (S» L» P)

In this procedurey S is a <string variabled>s, L is a <result
fength>y, and P is 3 scalar expression.

The string representation procedure facilitates the conversion of
P to its representation as a string of characters.

The value of P is converted into a string of characters. The
resulting string iIs returnedy left-justified, in the <string
variable> S. The <resuit length> L returned is an integer variable
whose yalue is the length {in characters) of the result string.,

If the expression to be converted is an integer expressions the
resultant string shalil be in the base 10. If the integer expression
is negative in values then a minus sign precedes the leftmost
significant digit within the Ffield. If positives then a blank
character precedes the integer values. If the field given is not long
enough to contain alil the digits of the value of the integer
expressions then the output field is fitled with a string of asterisk
characterse.

If the expression to be converted is an ordinal expressions then
the integer value of the ordinal is handled in exactly the same
manner as an integer element.

It the expression to be converted is a boolean expressions then
the flive character string ' TRUE' or 'FALSE! is placed left justified
into the output fleid with a length of 5. IFf the Ffleld length gliven
is not 1tong enough to contain all five characters, then the output
field is filled with a string of asterisk characters.

CDC Private

11-2
CYBIL LANGUAGE SPECIFICATION
06718/81
11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1 STRINGREP {Ss Ly P)

LAt 2 A 2 X X2 22 AR RN ELETLEESEENEY Y EEEELZEEESESEEEEELLESEEEEESEEERSL X224

The conversion rules for floating point are to be defined,

11.2 BUILI=IN_EUNCIIONS

The foliowing standard functions return vatues of the specified
types

11.2.1 SUCCIX)

The type of the expressions x» must be scalars and the result is
the successor value of x iIf jt exists; if noty, the program is in
error.

11.2.2 PRED{X)

The type of the expression» xs» must be scalars and the resutlt is
the predecessor value of x If it exists; if nots the program 1is in
errore.

11.2.3 ORD{X)

Returns the integer representation of the value x. The type of
the expressions xs must be ordinals chacr» or bhoolean.

If x is boglean then 2zero (0) is returned for false and one (1)
for trues If x is gchart» the value returned is the ordinal numbersy in
the ASCII collating sequences of xe« If x §is an ordinal constants the
value returned is the ordinal number of that constant.

11.2.4 CHRI{X)

X must be an integer expression yiefding a value 0 £ x £ 255, The
value returned is the character whose ordinal number in the ASCII
colliating sequence is x.

CDC Private

11-3
CYBIL LANGUAGE SPECIFICATION
06718781
11.0 STANDARD PROCEDURES AND FUNCTIONS
11,245 SINTEGER(X)

LA L EZ L EREE A SR RS LEELELSESESESEEEEELIESELELSEE LSS S EL LR L2 XL 2 2 & X 7

11.2+5 SINTEGER{X)

Returns the integer wvalue corresponding to the value of x., The

type of the expressions x» must be grdinals chars boclean» integer or
subrange of integer, real or iongreals The conversions are done as
followss

a) iIfF X is ordinals the value returned is the ordinal number of
the ordinal. constant identifier associated with the
ordinal value;

by if X is character, the value returnad is the ordinal number,
in the ASCII coltating sequences of the value of X3

c) If X is booleans, zero {(0) is returned for false and one {1}
for trues

d) if X is an integer yalue that vatue is returneds;

e) it X is a real or longreal valuesy that value is Ffirst
truncated to a whole number. If the resulftant value
is within the range of type integers, then that value
is returneds otherwises an osut—-of-range error ocCcurse

11.2.6 $REAL(X)

Returns the real number which |{is the implementation dependent
approximation of the integer or lopgreal expressione. In the case of
a longreals the most significant part is returned. Longreals are
truncated as part of the conversion.

11.2.7 SLONGREAL(X)

Returns a longreal result which is the Iimplementation dependent
approximation of the jnteger or rgal expression.

11.2.8 STRLENGTHIX)

Returns the length of the string x. For a fixed string this is
the allocated lengthsy and x may be either a string variable or a
string type identifier. For an adaptable string this is the current
fength and x must be an adaptable string reference.

CDC Private

11-4
CYBIL LANGUAGE SPECIFICATION
06/18/81
11.0 STANDARD PROCEDURES AND FUNCTIONS
11.2.9 LOWERBOUND{ARRAY)

L 2 X 4 2. 2 X K222 22 2 X 22 2 2 N 2222222 2 X XA 22 2 XN ELESZEELLEAEERESELEESFELEEEREESESEZXS]

11.2.9 LOWERBOUND(ARRAY) "

Returns the value of the 1ow bound of the array index. The type
of the result is the index type of the array. The argument {array)
may be either an array variable or a fixed array type lidentifier.

11.2.10 UPPERBOUND{ARRAY)

Returns the value of the upper bound of the array index, The type
of the result is the index type of the array. The argument {array)
may be either an array variable or a fixed array type identifier.

11.2.11 UPPERVALUE (X)

Accepts as argument either a scalar type identifier or a variable
of scalar type. It returns the largest possible valtue which an
argument of that type can take on. The type of the result is the
type of x.

11.2.12 LOWERVALUE (X)

Accepts as argument either a scalar type identifier or a variable
of scalar type. It returns the smallest possible value which an
argument of that type can take on. The type of the result 1Jis the
type of x.

11.3 REPRESENIAIION DERPENDENI_EUNCIIONS

11.3.1 #LOC(KVARIABLE>)

Returns a pointer to the first cell allocated for the specified
variabtle.

11.3.2 #SIZE{ARGUMENT)
Returns the number of cells required to contain the variabler or a

variable of the argument type., The argument may be either a variabtle

CDC Private

11-5
CYBIL LANGUAGE SPECIFICATION
06718781
11,0 STANDARD PROCEDURES AND FUNCTIONS
11.3.2 #SIZE{ARGUMENT)

L2 2 X 2 2 X2 F LA X222 X2 K222 ELEXEEEEFESZAEEENEFELIESESEEIEEEEEEESEFERE 2R EL F N FF']

or a fixeds adaptable or bound variant type identifier., In the case
of adaptable type identifier the adaptable field fixer must also be
specifieds In the case of the bound variant type identifiers the
variant requiring the fargest size is the value returned.

11.4 SYSIEM_DERENDENT_PROCEQURES

The capability to generate certain C180 instructions inline is
provided by the following general forms

#INLINE {"name's pls +e.sbPn)

where name is the identifier for the set of instructions to be
generated.

11.4.1 #INLINE {('KEYPOINT's Pl, P2, P3)

Causes the keypoint instruction to be generated inltine based on

the following parameters:

pl - is a constant expression in the range 0..15 and becomes the
instructions J fields

p2 - is a constant or variable expressiony if it is the constant zero
then the K field of the instruction iIs zeroy, if not zero or a
variable then that value 1is placed in an X register and that
register becomes the instruction®s K fields

p3 - is a constant expression in the range Q.+.0FFFF{16) and becomes
the instructiont's Q field.

CDC Private

12-1
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

L £ 2 2 X2 2 X N F 222 ESLERNZEEEEEERE SRS EELSEELELEEEEEEELELEESEELELSESESELSEES X] 4

12.0 COMPILE-TIME FACILITIES

L 2 R X2 X2 22222 AR LR EEZI SRS EELIEEERLE YL ELEERELEELSEESELELESERE S

12.0 COMRILE-TIME EACILIYIIES

Complile~time facilities are essentially extra~linguistic in nature
in that they are used to construct the program to be compiled and to
control the compilation processs rather than having a meaning in the
program itselif. Theses together wWwith commentary and programmatic
elements of the 1anguages are the elements of a CYBIL source text.

12.1 CYBIL _SQURCE_JEXT

<textd> 33= (text itemd> {<text itemd}

{text item> :3= <pragmat statement)
<compile—-time statement>)>
{identifier>

{constant>

<basic symbol other than 77>
<comment>

e B e B e

<compile~time statementd> 3:t= {compile~time declarationd
1 <compile~time assignment)>
{ <compile-time ifd>

12.2 COMRPILE TIME _STIATEMENIS AND_DECLARATIQNS

12.2.1 COMPILE-TIME VARIABLES

Compile~time variables of type boolean may be declared by means of
the compile~time declaration statement.

<compile-time dectltarationd 2:=
? yar <compile~time var specd
{s<compile~time~vyar specd>} ?;
{compile-time var spec> 33=
<identifier Jist> : {compile~time type> 3=
<compile~time expression>
<compile-time type> 3¢= hpglean

The following rules apply:?

CDC Private

12-2
CYBIL LANGUAGE SPECIFICATION
06/718/81
12.0 COMPILE-TIME FACILITIES
12.2.1 COMPILE-TIME VARIABLES

LA 2 2 2 2 2 2 2 2 L2 2 2 X i i XA X e a2 2Rl A ELSEELEZEEEELELSEEELEEEEEELESEE T]

1« The compite~time declaration statement must appear before the use
of any of the compile~time wvariables, The scope of the
compile~time variable is from the point of declaration to the end
of the module.

2« Compite-time variables may be used only within compile~-tinme
expressions and compile~time assignment statements.

3. Identifiers of compile~-time variables may not be the same as any
other program identifiers.

12.2.2 COMPILE TIME EXPRESSIONS

Compile—-time expressions must be composed only of constants and
compile~time variabless but excluding identifiers for user-defined
constants.

The operators defined on compile~time variables are:
and ar xar not for type hoglean
<compile~time expressiond $3:= {compile-time termd
i<compile-time expressiond>{disjunctive operator>
<compile—-time term>

{compile-time term> 3:= {compile-time factor>
i<compile~time term> and <compitle~time factor>

{compile~time factord> 3= tryeifalseid<compile~time variabled
i{{compite~-time expression>)! pnot <compile-time factor>

<disjunctive operator> 3:3= Qgr | xor
1242+3 COMPILE-TIME ASSIGNMENT STATEMENT
The value of a compile~time variable may be altered by a

complie—time assignment statement.

<complile~time assignment> :3= ? <variable> 3=
{compile~time expressiond> ?;

CDC Private

12-3
CYBIL LANGUAGE SPECIFICATIOCN
06718781
12.0 COMPILE~-TIME FACILITIES
12<2+4 COMPILE-TIME IF STATEMENT

L2 T 2 £ 2 X LR N RN EAY N LRSS A AR EENYESSEEYEEEEEEEEEEXE LR]

12.2.4 COMPILE-TIME IF STATEMENT

The compile~time If statement is used to make the compilation of a
piece of source code conditional wupon: the vyalue of some boolean
expression.

{compile~time if> 23=
? if <compite-~time expressiond> then <text>

{7 else <textd>]
? ifeond

The following rules apply:
1) The expression must be a compile~time boolean expression.

2) Compilation ofF the <text)> occurs only 1If the value is trye.

Example:

? yar small_size 3 bhoolgap = truye?s
gat Table : array [1..501 gof ipteger

? 1f smat)_size = frue then
{might include this procedure call into program,}

Bubbliesort (Tabte)s;

? else
{or call on oprocedure Quicksort in program.}

Quicksort (Table);
? 1fend

12.3 RRAGMAIS

Pragmats are used to specify and control

A) Source and obJject text 1listings produced as by=-products of
compilations and their layoutss;

B) Layout aspects of the source text;
€} Kinds of run—time error checking;

D) Dther aspects of the compilation process,

CDC Private

12-4
CYBIL LANGUAGE SPECIFICATION
06718/81
12,0 COMPILE-TIME FACILITIES
12.3 PRAGMATS

rr 2 2 22 2 2 2 2 s 2l sl Xyt EEAEEEELE AN EESIELETEELEEEESSELELEEL LS L EE LSS

{pragmat statement) 2:1:=
2?2 <pragmatd> { s»<pragmat> } 27

<pragmat> 23= {toggle control)>
{layout controld>
{maintenance controild>
. {comment control>

- e S

12.3.1 TOGGLE - CONTROL

Unigquely ldentified control elementss called foggless are used to
control aspects of compiiation. Each toggle is associated with a
specific type of 1istingsy run-time <checkings or other activity.
Toggles take on the vatue gp or gff. If gpns the activity associated
with the toggle is carried outs» otherwisey it is not.

Toggle controls are used to:
A) Set the values of individual toggtles;
B) Save and restore all toggle values in a LIFO manner;
C) Reset all toggles to their initial values,

{The initial settings of togglies are specified below.)

sef {<{toggle setting tistd)
push (<toggle setting listd>)
20p

cesst

<toggle control> =

- on Wik

<toggle setting 1ist> 3= <toggle setting> {s<toggle settingd}
<toggle setting)> t:= {toggle identifiers> := <{condition>
1 <empty>

<condition> 3= gpn ! off
The operations are as follows,

Sets Atl settings specified in the list are carried out en-masse,
If a toggle is affected by more than one toggle settings the
rightmost setting for that toggle is carried out.’

Pushs A record of the current state of al) toggles is saved for
future restoration in a LIFO manner; the current state remains
intacts A set operation is then carried out.

Pop: The 1last state record saved becomes the current state. IFf
none have been saveds» the initial state becomes current,

CDC Private

12-5
CYBIL LANGUAGE SPECIFICATION
06/18/81
12.0 COMPILE-TIME FACILITIES
12.3.1 TOGGLE CONTROL

LA X r 2 2 XX X2 22 2 R AN ALY N R E RIS LY 2L LA NS L A A2 8 2 F X B 2.4

Reset: The initial state becomes currents and any saved state records
are wiped out.,

The maximum allowable number of saved state records will be
implementation dependents but should not be Jess than one.

12.3.2 TOGGLES

<toggle identifiers> 23= (listing toggles)>
3 <checking toggles>

Toggle identifiers may be used freely for other purposes outside
of pragmatse.

12.3.2.1 Listina_Joggales

<iisting toggles> 3= Jist ! listobd
! listcots ¢ listext ' listall

List (initially is gp): Controls all other Jlisting toggles. When agn
» a source listing 1is produceds and other 1Qlisting aspects are
controlled by the other listing toggles. When Qff no 1istings can be
produced,

Listobd ({initially is off): Controils the listing of generated object
codey» which is interspersed with source codey following the
corresponding source line,

Listets finitiatly is goff): Controts the 1listing of the format
control pragmats. The format control pragmats are the tisting
toggles and the layout controls.

Listext (initially is ogff): When set to gp the Listing of source
statements is externally controlled via a compiler caltl list option.

Listall: The union of aill listing toggles. When set to gp or off
then atl other listing tgggles are set to gp or gff respectively.

CDC Private

12~-6
CYBIL LANGUAGE SPECIFICATION
06718781
12.0 COMPILE-TIME FACILITIES
1243.2.2 Run~-Time Checking Toggles

12.3.2.2 Ryn=Time _Checking Toggles

{checking toggles> 32= ghkfng
chksub
- ¢hknil
chktag
chkali

- wme ee S8

Chkrng {default is gpn): controls the generation of object code that
performs the range checking of scalar subrange assignments and that
performs the range checking of case variables,

Chksub (default is gp): controls the generation of object <code that
checks array subscripts {indices) and substring selectors to verify
that they are valid.

Chknll tdefault is gff): controls the generation of object code that
checks for a nil value when a pointer dereference is made.

Chktag (default 1is gp): controls the generation of object code that
verifies that references to a field of a variant record are
consistent with the value of its tag field {if a tag field is
presentl}.

Chkall: The union of all checking toggles; sets all four of ghkrngs
chksub» chkpil» and ghktag as a group.

The effects on the object code that is generated by these toggles
being turned gpn or gff is implementation and system dependent,

12.3.3 LAYOUT CONTROL

Layout controls are used to specify source text margins and to
specify and control tisting fayout.

<layout controld> 3:= <source layout)
t Clisting tayout>

12.3.3.1 3gurce_Layout

<{source layout> ::= <{source margin controld

<source margin control> 3= feft = (leftd>
$ tiaght = <right>

CDC Private

12-7
CYBIL LANGUAGE SPECIFICATION
06718781
12.0 COMPILE-TIME FACILITIES
1243431 Source Layout

{left> t2= Lintegerd>
<rightd> 2:= <integer)>

{where 0 €< tefty and {l1eft +10) <= right <= 110}

All source text to the f1eft of the jgfi~th and the right of the
tigbt~th position are ignored. Default values for Jefit and Ljight are
1l and 79 respectively.,

12.3+3.2 Listing.Layoutl

<tisting layout)> 23= <pagination>
$ <lineation>
i <titting>

1243+3.2.1 PAGINATION

<pagination> 3:= pagesize := <pagesized>
:+ elect

<{pagesized> 3:= <integer>
{20<= pagesizey default=58}

The pagesize vatue specified gives the maximum number of 1ine
positions that constitute a page.s The first line position is catied
the top of pages and the fast line positions the botiom.

The gject pragmat causes the paper to be advanced to the top of
the next page,

12+3+3+42.2 LINEATION

<lineation> 3= gpacing = <spacing>
i skip 3= <number of lines>

<{spacing> 23= 1 { 2 ¢ 3

<number of lines> 3= <integer>
{where 1 <= number of lines}

The spaging control may have the value 1y 2» or 3» for singler
doubles or triple spacing respectively. The defauit value is 1. A
value of zero may not be wused to indicate overprinting. Use of
ittegal values witl result in no change in spacing» and an error
message uwill be given,

The skip value causes a skip of the number of line positions
specifieds if the integer gliven is Jlarger than pagesize or would
cause a skip past the bottom of the current pages then the skip is to

CDC Private

12-8
CYBIL LANGUAGE SPECIFICATION
06/718/81
12.0 COMPILE-TIME FACILITIES
120343422 LINEATION

L2 4. K2 2 2 2 X EEEEEFLESLEZEELE A ELSLESEE A EEEREZELEEYSFEESEEEELESEEESELSLEES SR L J

the top of the next page.
122363.2.3 TITLING

A standard title line is printed atop each pages and then one line
position is skippeds Any additional tities defined by the user are
then printed one-per—-liney single-spaceds A skip of <{spacing> number
of lines then occurs.

<titting> 33=
neutitle := ?<char tokend> {<{char tokend>}!?
! title := 'Lchar token> {<char tokend>)}?
¢ oldtitie

A single quote mark within a char string is indicated by wusing a
palr of adjacent singte gquote markse Thusy if the char string were
to consist of only a single quote marks It would be indicated by four
(4) immediately adjacent singlie quotess e«.ge.» 11912,

Newtitles The current titie is saved and the character string
given as a new title becomes the current ¢titfle. A standard opage
header is the first titie oprinted on a pagey, followed by
user—-specified titles in the order in which they were saved; i.24»
tities are saved in a LIFD manner» but are printed in a FIFD manner.
There will always be a singfie empty line between the standard page
header and the titles defined by the user. There will always be at
ieast one bltank {ine between the titles and the text or the standard
header and the text,

The maximum number of titiles allowed will be 10, An attempt to
add more than the maximum will be ignoreds without comment.

Iitle: The character string replaces the current wuser~defined
title. If there 1is nonesy then the character string becomes the
current title,

- Dldtitle: The last user—defined titte saved becomes the current
title; is there is noney, then no action is taken.

The titling does not take effect until the top of the next printed
page.,

12.3.4 MAINTENANCE CONTROL

<maintenance control> 2:= compile ! nocompile

In the absence of a maintenance control, gompile 1Is the default
option. The nogcompile option continues with listing the Ffollowing

CDC Private

12-9
CYBIL LANGUAGE SPECIFICATION
06718781
12.0 COMPILE-TIME FACILITIES
12.3.4 MAINTENANCE CONTROL

text according to the 1listing toggles and layout controlsy
interpreting and obeying pragmat directives in the texts but
compilation of the source Is omitted until a gcompile directive |lis
encountered or untit a modend statement Is encountered.

12.3.5 COMMENT CONTROL

<comment controild> :3= gommenl := *<char token>{<char token>]}?

Including the comment control pragmat signals the compiler to
include the character string in the binary output generated by the
compilation process. This allows for COPYRIGHTiIing products and for
commenting object code facilities like foad maps.

CDC Private

13-1
CYBIL LANGUAGE SPECIFICATION
06/18/81

13,0 IMPLEMENTATION-DEPENDENT FEATURES

13.0 IMPLEMENIATION-DERENDENI_EEATIURES

In contrast to the previously discussed aspects of the language»
the language features discussed in this section may be dependent upon
the compiter's alfocation algorithms or the hardware design. These
features may be used anywhere, but shouid be used with caution.

13.1 DATA_MARRINES

The mapping of data storage will depend on 3 compiler®s target
machine and data mapping algorithmse. All effects of data mapping
Witly therefore be impiementation dependent: bit-sizings positionings
relative positioning effects of packing attributes. Data mapping
algorithms for specific implementations may be published; these can
be used to achieve specific sizinas and positionings for that
implementation,

CDC Private

Al
CYBIL LANGUAGE SPECIFICATION
06/718/81
REV: 6

ARPENDIX A - CYBIL_METALANGUAGE CROSS-REFERENCE

CDC Private

A2
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

CDC Private

B1
CYBIL LANGUAGE SPECIFICATION
06718781
REV: 6

APPENDIX B = CYBIL_RESERYED WORD_LIST

CDC Private

