
CYBER IMPLEMENTATION LANGUAGE .

CYBIL LANGUAGE SPECIFICATION

LANGUAGE SPECIFICATION

for the

CYBER IMPLEMENTATION LANGUAGE

(CYBIL)

Written By:
H.A.Wohlwend

Approved By:

DISCLAIMER:

This document is an internal working
paper only. It is subject to change and
does not necessarily represent any
official intent on the part of CDC.

Copyright Control Data Corporation 1981

1

86/03/06
REV: 8

CDC Private

2
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/.06

REV: 8

REVISION DEFINITION SHEET

-------+----------+----------~----------------------------------
REV j DATE DESCRIPTION

----~--+----------+---

1

2

3

4

10/07/77

12/19/77

06/27/78

10/16/78

Original.

Updated to reflect comments received through
the DCS review.

Updated to reflect V2.0 of the language
definition.

Updated to reflect comments received thr~ugh

the DCS review.

5 12/07/79 Updated to reflect approved DAP's and
miscellaneous clarifications$

6 06/01/81 Updated to reflect approved DAP's and

7 12/11/.81

8 03/06/86

miscellaneous clarifications.

Updated to reflect !LDT approved language
changes and miscellaneous clarifications.

Updated to reflect !LDT approved language
changes and miscellaneous clarifications.

CDC Private

/I'

I

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

Table of Contents

1.0 INTRODUCTION

2.0 LANGUAGE OVERVIEW

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.1 METALANGUAGE •.•
3.2 LEXICAL CONSTRUCTS

3.2.l ALPHABET •..
3.2.2 IDENTIFIERS
3.2.3 BASIC SYMBOLS
3.2.4 CONSTANTS ••••
3.2.5 CONVENTIONS FOR BLANKS •
3.2.6 COMMENTS

4.0 CYBIL TYPES ••••
4.1 TYPE DECLARATIONS ••••
4.2 TYPE MATCHING

1

86/03/06
REV: 8.

. . . . • .. '

1-1

2-1

3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-4
3-5

4.2.1 TYPE EQUIVALENCE •
4.2.2 POTENTIAL EQUIVALENCE,

4.3 FIXED TYPES •••••
INSTANTANEOUS TYPES

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4-6
4-7
4-7
4-7
4-7
4-8
4-9
4-9

4.3.1 BASIC TYPES
4.3.1.1 Scalar Types •
4.3.1.1.1 INTEGER TYPE
·4.3.1.1.2 CHARACTER TYPE •
4.3.1.1.3 ORDINAL TYPE ••
4.3.1.1.4 BOOLEAN TYPE ••
4.3.1.1.5 SUBRANGE TYPE
4.3.1.2 Floating Point Type
4.3.1.2.1 REAL TYPE
4.3.1.2.2 LONGREAL TYPE
4.3.1.3 Cell Type ••••
4.3.1.4 Pointer Type ••••••
4.3.1.4.1 POINTER TO CELL
4.3.1.5 Relative Pointer Types •

4.3.2 STRUCTURED TYPES •
4.3.2.1 Set Type •••••
4.3.2.2 String Type
4.3.2.3 Array Type ••••
4.3.2.3.1 PACKED ARRAYS ••••
4.3.2.3.2 EXAMPLES OF ARRAY TYPE •
4. 3. 2. 4 ·Record Type · • • • • • •
4.~.2.4.1 INVARIANT RECORDS

• it

4.3.2.4.2 VARIANT RECORDS AND CASE PARTS
4.3.2.4.3 RECORD TYPE EQUIVALENCE
4.3.2.4.4 PACKED RECORDS .••..
4.3.2.4.5 EXAMPLES OF RECORD TYPE

4.3.3 STORAGE TYPES
4.3.3.1 Sequence Type •••••
4.3.3.2 Heap Type •••••
4.3.3.3 Sequence and Heap Space

4-10
4-11
4-12
4-12
4-13
4-14
4-14
4-14
4-15
4-16
4-16
4-16
4-17
4-17
4-18
4-18

CDC Private

· CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.4 ADAPTABLE TYPES
4.4.1 ADAPTABLE STRING .••.•
4.4.2 ADAPTABLE ARRAY
4.4.3 ADAPTABLE RECORD •
4.4.4 ADAPTABLE SEQUENCE •
4.4.5 ADAPTABLE HEAP ••••

4.5.PROCEDURE TYPE ••.••
4.6 FUNCTION TYPE •..••
4.7 BOUND VARIANT RECORD TYP~
4. 8 PACK ING • • • • • . . • • •
4.9 ALIGNMENT ••••••
4.10 OTHER ASPECTS OF TYPES

4.10.1 VALUE AND NON-VALUE TYPES ••
4.10.2 COMPARABLE AND NON-COMPARABLE
4.10.3 FUNCTION-RETURN TYPES
4.10.4 TYPE CONVERSION ..••.
4.10.5 TYPE MIXING ••••.

5.0 VALUES AND VALUE CONSTRUCTORS
5.1 CONSTANTS AND CONSTANT DECLARATIONS

5.1.1 CONSTANTS •••.••
5.1.2 CONSTANT EXPRESSIONS ••.
5.1.3 CONSTANT DECLARATIONS

5.2 SET VALUE CONSTRUCTORS ••
5.3 INDEFINITE VALUE CONSTRUCTORS

6·.0 VARIABLES •••..•••••
6.1 VARIABLES AND VARIABLE DECLARATIONS

.6. 1.1 ESTABLISHING VARIABLES . •

TYPES •

6.1.2 TYPING OF VARIABLES •.•••.
6.1.2.1 Instantaneous Types

6.1.3 EXPLICIT VARIABLE DECLARATIONS .
6.2 ATTRIBUTES ••.••••••.••.

6.2.1 ACCESS ATTRIBUTE •••.•••.
6.2.2 STORAGE ATTRIBUTES AND LIFETIMES

6.2.2.1 Automatic Variables
6.2.2.2 Static Variables ••••..
6.2.2.3 Lifetime Conventions ••.•
6.2.2.4 Lifetime of Formal Parameters .•••
6.2.2.5 Lifetime of Allocated Variables
6.2.2.6 Pointer Lifetimes

6.2.3 SCOPE ATTRIBUTES •••••
6~3 INITIALIZATION ••••••••

6.3.1 INITIALIZATION CONSTRAINTS

;,·

6.4 SECTIONS AND SECTION DECLARATIONS ••••
6.5 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS

2

86/03/06
REV: 8

4-J9
4-20
4-20
4-21
4-21
4-22
4-22
4-22
4-23
4-24
4-24
4-25
4-25
4-25
4-25
4-25
4-26

5-1
5-1
5-1
5-3
5-3
5-3
5-4

6-1
6-1
6-1
6-1
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-6
6-6
6-7
6-7

6.6 VARIABLE REFERENCES • • • • • • • . • . • ••••• 6-8
6.6.1 POINTER REFERENCES ••.•...•.

6.6.1.1 Examples of Pointer References . •
6.6.2 SUBSTRING REFERENCES .•..•.•.

6.6.2.1 Substring References as Character References •
6.6.3 SUBSCRIPTED REFERENCE .•••
6.6.4 FIELD REFERENCES • • • • • • • • • . • • • • • • •

6-9
6-9

6-10
6-12
6-13
6-15

CDC Private

~

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

7.0 PROGRAM STRUCTURE
7.1 COMPILATION UNITS
7. 2 MODULES • • • • •
7.3 DECLARATIONS AND SCOPE OF IDENTIFIERS
7.4 MODULE - STRUCTURED SCOPE RULES
7.5 PROCEDURES AND FUNCTIONS
.7.6 STRUCTURED SCOPE RULES ••••
7.7 SCOPE ATTRIBUTES •••••••

7.7.1 ALIAS NAMES ••••
7.8 DECLARATION PROCESSING •

7.8.1 BLOCK-EMBEDDED DECLARATIONS
7.8.2 MODULE-LEVEL DECLARATIONS

8.0 PROCEDURES AND FUNCTIONS •
8.1 PROCEDURE DECLARATIONS •
8.2 FUNCTION DECLARATIONS

8.2.1 SIDE EFFECTS •••.
8.3 XDCL PROCEDURES AND FUNCTIONS
8.4 INLINE PROCEDURES AND FUNCTIONS
8.5 PARAMETER LIST ••••••••••
8.6 EXAMPLES OF PROCEDURES AND FUNCTIONS

9.0 EXPRESSIONS ••••••
9.1 EVALUATION OF FACTORS ••••
9.2 OPERATORS ••••••••••

9.2.l NOT OPERATOR •••••••
9e2.2 MULTIPLYING OPERATORS
9. 2. 3 SI.GN OPERATORS • • •
9.2.4 ADDING OPERATORS •••
9.2.5 RELATIONAL OPERATORS •

9.2.5.1 Comparison of Scalars
9.2.5.2 Comparison of Pointers •••

9.3

9.2.5.3 Comparison of Relative Pointers ••••
9.2.5.4 Comparison of Floating Point Types.
9.2.5.5 Comparison of St~ings •••••
9.2.5.6 Relations Involving ·sets ••••••
9.2.5.7 Relations Involving Arrays and Records •
9.2.5.8 Non-Comparable Types ••••••••••
9.2.5.9 Table of Comparable Types and Result Types •
ORDER OF EVALUATION • • • .

10. 0 STATEMENTS • • • • • • • • •
10.1 SEMICOLONS AS STATEMENT LIST DELIMITERS •
10.2 ASSIGNMENT STATEMENTS .••••••••

10.2.1 ASSIGNMENT COMPATIBILITY OF TYPES •
10.3 STATEMENT LABELS - ••••••••

10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS •
10.4 STRUCTURED STATEMENTS •

10.4.1 BEGIN STATEMENTS
10.4.2 WHILE-STATEMENTS .•••
10.4.3 REPEAT STATEMENTS ••••
10.4.4 FOR STATEMENTS ••••••••

3

86/03/06
REV: 8 . -

1-1
7-1
7-1
7-1
7-2
7-2
7-2
7-3
7-3
7-5
7-5
7-5

8-1
8-1
8-2
8-3
8-4
8-4
8-4
8-5

9-1
9-3
9-4
9-4
9-5
9-6.
9-6
9-8
9-8
9-8
9-9
9-9
9-9

9-10
9-10
9-10
9-10
9-13

.10-1
10-1
10-2
10-2
10-3 -
10-4
10-4
10-4
10-5
10-5
10-6

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYB.IL LANGUAGE SPECIFICATION

10.5 CONTROL STATEMENTS
10.5.1 PROCEDURE CALL STATEMENT

10.5.1.1 Value Parameters
10.5.lo2 Reference Parameters

10.5.2 IF STATEMENTS • . .•.
10.5.3 CASE STATEMENTS ••
10.5.4 CYCLE STATEMENT ••
10.5.5 EXIT STATEMENT
10.5.6 RETURN STATE~ENT
10.5.7 EMPTY STATEMENT •

10.6 STORAGE MANAGEMENT STATEMENTS .
10.6ol ALLOCATION DESIGNATOR
10.6.2 PUSH STATEMENT

10.6.2.1 The Stack •••••••••
10.6.3 NEXT STATEMENT •••
10.6.4 RESET STATEMENT ••

10.6.4.1 Reset Sequence
10.6.4.2 Reset User Heap •.•

10.6.5 ALLOCATE STATEMENT
10.6.6 FREE STATEMENT •••

11.0 STANDARD PROCEDURES AND FUNCTIONS •
11.1 BUILT-IN PROCEDURE ••••••••

11.1.1 STRINGREP (S, L, P {,P})
11.1.1.1 Concatenation Elements.
11.1.1.1.1 INTEGER ELEMENT .•
11.1.1.1.2 ORDINAL ELEMENT ...••
11.1.1.1.3 SUBRANGE ELEMENT
11.1.1.1.4 CHARACTER ELEMENT ••••.•••
11.1.1.1.5 BOOLEAN ELEMENT .••••
11.1.1.1.6 STRING ELEMENT
11.1.1.1.7 POINTER ELEMENT ••
11.1.1.1.8 FLOATING POINT ELEMENT ••••
11.1.1.1.8.1 Floating Point Format •
11.1.1.1.8.2 Fixed Point Format

11.2 BUILT-IN FUNCTIONS
11 • 2 • 1 SUCC (X) • • •. •
11.2.2 PRED(X) ••
11.2.3 $CHAR(X) •
11.2.4 $INTEGER(X)
11.2.5 $REAL(X) •
11.2.6 $LONGREAL(X)
11.2.7 STRLENGTH(X) •••
11.2.8 LOWERBOUND(ARRAY) •••••
11.2.9 UPPERBOUND(ARRAY) •
ll.2ol0 UPPERVALUE (X) •••

•' .
11.2.11 LOWERVALUE (X) • • • . • . •••
11.2.12 #REL (POINTER[,PARENTAL]) ••.••
11.2.13 #PTR (RELATIVE POINTER(,PARENTAL]) .•..
11.2~14 #SEQ (VARIABLE) •......

11.3-REPRESENTATION DEPENDENT FUNCTIONS ••...••••
11.3.1 #LOC(<VARIABLE>) •••••••
11. 3. 2 #SIZE (ARGUMENT) • ,. • . • . • •

4

86/03/06
REV: 8

10-7
10-7
10-8
10-8
10-9
10-9

10-12
10-13
10-14
10-14
10-15
10-15
10-18
10-18
10-18
10-19
10-19
10-20
10-20
10-20

11-1
11-1
11-1
11-1
11-3
11-3
11-3
11-3
11-3
11-4
11-4
11-4
11-4
11-5
11-6
11-6
11-6
11-6
11-6
11-7
11-7
11-7
11-7
11-8
11-8
11-8
11-8
11-8
11-8
11-9
11-9
11-9

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12.0 COMPILE-TIME FACILITIES ..•.....•
12. 1 CYBIL SOURCE TEXT • . • . . • • • • • • · •
12.2 COMPILE TIME STATEMENTS AND DECLARATIONS

12.2.1 COMPILE-TIME VARIABLES •..•••
12.2.2 COMPILE TIME EXPRESSIONS .•.•••
12.2.3 COMPILE-TIME ASSIGNMENT STATE~ENT .•
12. 2. 4 COMPILE-TIME IF STATEMENT . . • •.

12.3 PRAGMATS •••••••.
12.3.l TOGGLE CONTROL ••.
12.3.2 TOGGLES ••••.•.

12.3.2.1 Listing Toggles •
12.3.2.2 Run-Time Checking Toggles

12.3.3 LAYOUT CONTROL ••.
12.3~3.l Source Layout •.
12.3.3.2 Listing Layout
12.3.3.2.1 PAGINATION ••.••
12.3.3.2.2 LINEATION •••
12.3.3.2.3 TITLING ••••

12.3.4 MAiNTENANCE CONTROL .
12.3.5 COMMENT CONTROL ••..••
12.3.6 OBJECT LIBRARY CONTROL

13.0 IMPLEMENTATION-DEPENDENT FEATURES
13. 1 DATA MAPPINGS • • • • • . • • • .

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

APPENDIX B - CYBIL RESERVED WORD LIST

APPENDIX C - CYBIL INTRINSICS • • • • • . • . • . • •
GENERAL INTRINSICS . . • • • . • • • . •

#CONVERT POINTER TO PROCEDURE (P,Q) •.•.
#KEYPOINT (Pl,P2~P3) ••••.•..
#SCAN (SELECT, STRING, INDEX, FOUND)
#SPOIL (,VARIABLE>{,<VARIABLE>}) ••••.•..•
#TRANSLATE (TABLE, SOURCE, DESTINATION)
#UNCHECKED_CONVERSION (SOURCE, TARGET) .

MACHINE SPECIFIC INTRINSICS • . • • .
Cl80 INTRINSICS . . • • .

#COMPARE SWAP (LOCK, INITIAL, NEW, ACTUAL, RESULT)
//CALLER ID (ID) • • • • • • • • . • .
#HASH SVA (SVA, INDEX, COUNT, FOUND) ••••.••
#RING-(POINTER): INTEGER •••••••••
#SEGMENT (POINTER): INTEGER ••.•.••
#OFFSET (POINTER): INTEGER .••.•.••
#ADDRESS (RING, SEGMENT, OFFSET): tCELL
#CURRENT STACK FRAME: tCELL . .
#PREVIOUS SAVE-AREA: tCELL •...
#PURGE BUFFER (OPTION, ADDRESS)
#TEST_SET (VARIABLE, RESULT) • . .

C180 AND C200 INTRINSICS . • • • •
#FREE_RUNNING_CLOCK (CLOCK_ID): INTEGER

5

86/03/06
REV: 8

·12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-3
12-3
12-4
12-S
12-S
12-6
12-6
12-6
12-6
12-7
12-7
12'.'""8
12-8
12-8

13-1
13-1

Al

Bl

Cl
Cl
Cl
Cl
Cl
C2
C2
C3
C3
C3
C3
C4

· C4
cs
cs
cs
cs
cs
cs
C6
C6
C6
C6

CDC Private

CYBER IMPLEMENTATION LANGUAGE.

CYBIL LANGUAGE SPECIFICATION

#READ REGISTER (REGID): INTEGER
#WRITE_REGISTER (REGID, VALUE)

C200 INTRINSICS . . • • • . • •. • • . . • • •
#GET JOB TIMER : INTEGER . • • • • • •
#LOAD AR - • 0 • • • • • • • • •

#SET JOB TIMER (TIME) . • . •
//STORE AR • • • • • • • • • • • • • • • • •
#SWAP_DFBR (CURRENT_REGiSTE~, NEW_REGISTER)

6

86/03/06
REV: 8

C6
C7
C7
C7
C7
C7
C7
cs

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

1.0 INTRODUCTION

1.0 INTRODUCTION

86/03/06
REV: 8

The CYBER Implementation Language (CYBIL) language is the
implementation language for Control Data Corporation. This document
provides the definition for the CYBIL language.

This specification was devel~ped from Rev. 7 of this
specification and from DAP's 54304, 54478, 54497, 54505, 54545, 54547
54552, 54691, 54765, 54802, 54874, 54925, 54953, ARH5266, ARH5267 and
ARH5268. These updates have Implementation Language Design Team
approval and DCS review cycle approval.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

2.0 LANGUAGE OVERVIEW

2.0 LANGUAGE OVERVIEW

2-1.

86/03/06
REV: 8

A CYBIL program consists of statements, which define actions
involving programmatic elements, and declarations, which define such
elements.

The definable elements include variables and procedures, all
having the characteristics that are conventionally associated with
their names. Declarations of instances of variables are spelled out
in terms of an identifier for the element and a ~ description,
which defines the operational aspects of the element and, in many
cases, indicates a notation for referencing. In the case of a
variable declaration, the type defines the set of values that may be
assumed by the variable. Types may be directly described in such
declarations, or they may be referenced by a type identifier, which
in turn must be defined by an explicit type declaration. A small set
of pre-defined · types are provided, together with notations for
defining new types in terms of existing ones.

In general, an element may not enter into operations outside the
domain indicated by its type, and most dyadic operations are
restricted to elements of equivalent types (e.g., a character may not
be added to an integer). Since the requirements for type equivalence
are severe, these operational constraints are strict. Departures
from them must be explicitly spelled-out in terms of conversion
functions.

The basic ~ include the pre-defined integer, ~' and boolean
types, all having their.conventional connotations, value sets, -and
operational domains. These are scalar ~' which define
well-ordered sets of values. A scalar type may also be defined as an

ordinal ~ by enumerating the identifiers which stand for its
ordinal values, or· as a subrange of another scalar type by specifying
the smallest and largest values of the subrange. Also included in
the basic types are the floating point types: real and longreal
types. Pointer ~ are included in the basic types. They
represent location values, and other qescriptive .information, that
can be used to reference instances of variables and other CYBIL
elements. Pointers are bound . to specific types,_ and pointer
variables may assume, as v·alues, only pointers to elements of those
types. Cell ~ are also included in the basic types. Cells
represent the smallest addressable memory unit supported by an
implementation.

Structured~ represent collections of components, -and are
defined by describing their component types and indicating a
so-called structuring method. These differ in the accessing

CDC Private

2-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

2.0 LANGUAGE OVERVIEW

86/03/06
REV: 8

discipline and notation used to select individual components. Four
structuring methods are available: set structure, string structure,
array structure, and record structure.

A set typ~ represents all subsets of values of some scalar type.

A string !YE.! of length
values of character type.
~ ~) is called a substring.
provided.

~ represents all ordered n-tuples of
An ordered !-tuple of these values (1 < k
Notation for accessing substrings is

An array !YE.! represents a structure consisting_of components of
the same type. Each component is selected by an array selector
consisting of an ordered set of n index values ~hose types are
indicated in the array definition.

A record !YE.! represents a structure consisting of a fixed number
of components called fields, which may be of different types and
which must be identified by field selectors. In order that the type
of a selected field be evident from the program text {without
executing the program) a field selector is not a computable value,
but instead is an identifier uniquely denoting the component to be
selected. These component identifiers are declared in the record
type definition.

A variant record !YE.! may be specified as consisting of several
variants. This implies that different variables, although said to be
of the same type, may assume structures which differ in a certain
manner. The difference may consist of a different number and
different types of components. The variant which is assumed by the
current value of a record variable is indicated by a component field
which is common to all variants and is called the tag field.

Array and record types may have associated packing attributes
which can be used to specify component space-time trade-offs. Access
time for specific components of packed (space-compressed) structures
can be shortened by declaring th~m to be aligned. Aligned also
provides a method of specifying specific hardware boundaries.

Storage ~ represent structures to which other variables may be
added, referenced, and deleted under explicit program control. There
are two storage types, each with its own management and access
characteristics. Seguence ~ and heap ~ represent storage
structures whose components may be of diverse type. Components of
seguences are managed through the operations of resetting to the
first component ·and moving to the next component and are accessed
through pointers constructed as by-products of the next operator.
Space for components· of heap storages must be explicitly managed by
the operation of allocate and free; the components are accessed

CDC Private

CYBER IMPLEMENTATION LANGUAGE

. CYBIL LANGUAGE SPECIFICATION

2.0 LANGUAGE OVERVIEW

through pointers constructed as by-products
ope~ation.

of the

2-3

86/03/06
REV: 8

allocate

Adaptab~e ~ are array, record, string, sequence and heap types
defined in terms of Qne indeffnite bound. They may be used as formal
parameters of procedures -- in which case the bounds of the actual
parameters are assumed; or they may be used to define pointers to
structures which are meant to be explicitly fixed during execution of
the program.

Denotations for explicit values of the basic and structured types
consist of constants and constant expressions, which denote constant
values of the basic and string types; and value constructors which
are used to denote instances of values~et, array, and record
types. The boolean constants (false,true) are pre-defined. New
constants can be introduced by co~t~larations, which associate
an identifier with a constant expression.

Set value constructors, which include set type information, may be
used freely in set expressions. Indefinite set·value constructors
can be used only in initialization" of variables where their .type is
explicitly indicated by the context in which they occur.

Variables can be declared with initialization specifications and
with certain attributes. Initialization expressions ar~ evalµated
when storage for the static variable is allocated, and the resultant
values are then assigned to the variable. The attributes include
access attributes - which specify the purposes for which the variable
may be accessed; storage attributes - which specify when stor~ge for
the variable is to be allocated and when it is to be freed; and scope
attributes -which specify the program span over which the

declaration is to hold (the scope of the declaration). Unless
otherwise specified, the scope of a declaration is the block
containing the deciaration, including all contained sub-blocks except
for those which contain a re-declaration of the identifier.

·Blocks are portions ·of programs which are grouped together as
procedures or functions, and used to define scope and to provide
shielding of identifiers. Procedures or functions have identifiers
associated with them, so that the identified portions of the program
can be activated on demand by statements of the language.

A procedure is declared in terms of its identifier, the associated
program, a set of attributes, and a list of formal parameters.
Formal parameters provide a mechanism for the binding of references
to the procedure with a set of values and variables - the actual
parameters - at the point of activation.

A function returns a value of a specified type. These

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIF:ICATION

2.0 LANGUAGE OVERVIEW

2-4

86/03/06,
REV: 8

return-types are restricted to the basic types, and are specified ·in
the function declaration.

In addition to their other programmatic aspects, blocks provide
partial mechanisms for the shielding and sharing of variables and
portions of programs. Modules (together with scope attributes)
provide a mechanism for the shielding and sharing of declarations.
Modules are primarily designed to permit program packaging at the
"source" language level.

Statements define actions to be performed.

Structured statements are constructs composed of statement lists:
begin statements provide for execution of a list of statements; while
, for and repeat statements control repetitive execution of a single
statement list.

Control statements cause the creation or destruction of execution
environments. They provide for the activation of procedures, and for
general changes in the flow df control. If statements provide for
the conditional execution of one of a set of--;tatement lists.

Storage management statements provide mechanisms for allocating new
local variables, moving forward and backward over components of
sequences, and allocating and freeing variables in heaps.

A set of pre-defined P.roce·dures and functions exists which can be
used for storage management, scalar conversions, etc.

Finally, assignment statements cause variables to assume new
values.

Compile-time facilities, that are essentially extra-linguistic in
nature, are used to control the compilation process and construct the
program to be compiled; these include compile-time variable
declarations, and compile-time statements.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

3-1

86/03/06
REV: 8

---~-------------------------
3.0 MErALANGUAGE AND BASIC CONSTRUCTS

3.0 METALANGUAGE AND BASIC CONSTRUCTS

3. 1 METALANGUAGE

In this specification, syntactic constructs are denoted by English
words enclosed between angle brackets < and >. These words also
describe the nature or meaning of the construct, and are used in the
accompanying description of semantics.

Constructs not en~losed in angle brackets stand for themselves.

The symbol ::= is used to mean "is defined as", and the vertical
bar I is used to signal an alternative definition.

An optional syntactic unit (zero or one occurrences) is designated
by square brackets [and] •

Indefinite repetition (zero or more occurrences) is designated by
braces {and}.

Examples:

The definition:

<field> ::= <fixed field>
<variant field>

is read: " a field is either a fixed field or a variant field."

The definition:

<fixed field> ::=
<field selectors> : <type>

is read: "a fixed field consists of field selectors, followed by a
colon, followed by a type."

The definition:

<field selectors> ::=
<field selector>{,<field selector>}

is read: "field selectors consist of a field selector, followed by
zero or more comma separated· field selectors."

The angle brackets, square brackets, and braces are also elements
of the language, and therefore are used in syntactic constructs.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.1 METALANGUAGE

3-2

86/03/06
REV: 8

Such syntactic occurrences of these symbols will be underscored when
necessary.

Example:

The definition:

<attributes> ::=!<attribute >{,<attribute>} !

is read as, "attributes consist of an attribute followed by zero or
more comma-separated attributes, the entire set of attributes being
enclosed in square brackets."

Words reserved for specific purposes in the language will always
be. underscored.

Example:

The definition:

<array spec-> : :=
array !<index>! of <component type>

is read as, "an array spec is composed of the word 'array' followed
by an index enclosed in square brackets, followed by the word 'of'
followed by a component type."

Appendix A of this specification contains a sorted alphabetic list
of all constructs in the syntax with their definitions.

3.2 LEXICAL CONSTRUCTS

The lexical units of the language - identifiers, basic symbols,
and constants are constructed from one or more (juxtapo'sed)
elements of the alphabet.

3. 2. 1 ALPHABET

The alphabet consists of tokens from a subset of the 256-valued
ASCII character set: those for which graphic denotations are defined.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3. 2. 1 ALPHABET

<ascii character> ::=<alphabet>

!
<unprintable>
<string delimiter>

<alphabet> ::=<letter>
<digit>
<special mark>
<blanks>
<unused mark>

<letter> ::=ABC DEF G HI J KL M
N 0 P Q R S T U V W X Y Z
a b c d. e f g h i j k 1 m
n o p q r s t u v w x y z

<digit>-::= ol1l21jl4ISl6l7IBl9

<string delimiter> ::= '

<special mark>

<blanks> ::=

3.2.2 IDENTIFIERS

3-3

86/03/06
REV: 8

Identifiers serve to denote constants, variables, procedures, and
other programmatic elements of the language.

<identifier> ::= <letter>{<follower>}

<follower> ::= <letter>j<digit>
l_llllSI@

Identifiers are restricted to a maximum of 31 characters, and
identifiers that differ only by case shifts of component letters are
considered to be identical. Identifiers must begin with a letter and
may not contain embedded blanks. An exception is made to this rule
for the system dependent functions and procedures which begin with
the II character.

CDC Private

(

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

3.0 METALANGUAGE AND BASIC CONSTRUCTS
1.2.2 IDENTIFIERS

Examples of Valid Identifiers:

x2 Henry Job/I A_wordy_Identif ier

Examples of Invalid Identifiers:

lst_character_must_be_a_letter
number_of_characters_must_not_exceed_thirtyone

3.2.3 BASIC SYMBOLS

3-4

86/03/06
REV: 8

Selected identifiers, special marks and digraphs of special marks
are reserved for specific purposes in the language; e.g., as
operators, separators, delimiters. These so-called "basic symbols"
will be introduced as they arise in the sequel.

Identifiers reserved for use as basic symbols will be shown as
underscored, lower-case words.

3.2.4 CONSTANTS

Constants are lexical constructs used to denote values of some of
the elementary data types. Their spellings, and the data types for
which constant denotations can be given, are described in Section
5.1.1.

3.2.5 CONVENTIONS FOR BLANKS

Identifiers, reserved words, and constants· must not abut each
other, and must not contain embedded blanks, except string constants.
Identifiers, reserved words, string terms and non-string constants·
must be contained on one input line. Basic symbols constructed as
digraphs may not contain embedded blanks. Otherwise, blanks may be
employed freely, ·and have no effect outside of character constants
and string constants - where they represent themselves.

CDC Private

CY~ER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2.6 COMMENTS

3.2.6 COMMENTS

3-5

86/03/06
REV: 8

Commentary strings may be used anywhere that blanks may be used
except within character and.string constants.

<commentary string> ::= {{<comment character>}
<comment terminator>

<comment terminator> ::= L I <end of line>

<comment character> ::= <any ASCII character except
a closing brace or end of line>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECirICATION

4.0 CYBIL TYPES

4.0 CYBIL TYPES

4-1

86/03/06
REV: 8

CYBIL types are used to define operational domains and
characteristics of variables (which take on values) and other
programmatic elements. CYBIL elements fall into two broad classes of
types.

<type> ::= <fixed type>

!
<fixable type>
<procedure type>

<fixable type> ::= <adaptable type>
l<bound variant record type>

Fixed types are used to define sets of values that can be assumed
by CYBIL variables, th~ir operational domain and, in many cases, a
notation for referencing such values.

Fixable types are associated with data types whose precise
attributes are meant to be explicitly "fixed" during executi.on of the
program. Variables of a- fixable type must be referenced in an
indirect manner; they may be referenced through the use of a pointer
or as a formal parameter of a procedure.

4.1 TYPE DECLARATIONS

CYBIL provides a small set of pre-defined types, reserved
identifiers for these, and notation for defining new types in terms
of existing-ones.

Type declarations are used to introduce new types, and identifiers
for the newly declared types.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.1 TYPE DECLARATIONS

4-2

86/03/06
REV: 8

--~----------------

<type declaration> ::=
~ <type spec>{, <type spec>}

<type spec> ::= <identifier> = <type>

Type declarations can be used for purposes of brevity, clarity,
and accuracy. Once declared, a type may be referred to ~lsewhere by
its declared type identifier .. The identifier can have mnemonic value,
and errors associated with repeated spelling-out of type
specifications, are reduced.

4.2 TYPE MATCHING

In general, operations involving elements of non-equivalent types
are not allowed, and one type may not. be used where another type is
expected. Relaxations to these rules are sometimes permitted, and
will be stated as they arise.

4.2.1 TYPE EQUIVALENCE

Two equivalent types can be expressed differently. For example: a
declared type identifier and the type it denotes have different
spellings; different expressions for sizes of arrays and other
collections of elements can yield the same value; formal parameter
identifiers are not part of procedure types.

Rules for determining type equivalence are called-out in the
following sections on types.

4.2.2 POTENTIAL EQUIVALENCE, INSTANTANEOUS TYPES

Adaptable types and bound variant record types actually define ·
classes of related types. References to variables of such type are
meant to be explicitly fixed to ·a so-called instantaneous type during
the execution of the program. Such types are said to
be potentially-equivalent to any of the types to which they can be
fixed. Since the determination of that type can be made only during
program execution, references to variables of such types are
permitted wherever a reference to one of the instantaneous types is
valid. No compile-time error messages will be issued; however, each
implementation is required to carry out the required execution-time
checks for type-matching when selected by the programmer, and to
report violations (see Compile-Time Facilities, Run-Time Checking
Toggles).

CDC Private

4-3
CYBER IMPLEM~NTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8-
---. .
4.0 CYBIL TYPES
4.3 FIXED TYPES

4.3 FIXED TYPES

Data types are used to define sets of values that may be assumed
by variables.

Fixed types consist of:

A) Basic types, which take on simple values.

B) Structured types, which define collections. of components.

C) Storage types, which are used as repositories for collections of
components of various types.

<fixed type> ::=<basic type>j<structured type>l<storage type>

4.3.1 BASIC TYPES

Basic types define components that take on simple values.

<basic type> • ·= .. <scalar type>
<floating point type>
<cell type>
<pointer type>
<relative pointer type>

4.3.1.1 Scalar Types

Scalar types define well-ordered sets of values for which the
following functions are defined:

succ the succeeding value in the set;
pred the preceding value in the set.

<scalar type> ::=<integer type>
<character type>
<ordinal type>
<boolean type>
<subrange type>

4.3.1.1.1 INTEGER TYPE

<integer type> ::= integerl<integer type identifier>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
. ,

4-4

86/03/06
REV: 8

4.0 CYBIL TYPES
4.3.1.1.l INTEGER TYPE

<integer type identifier> ::=<identifier>

Integer type represents an implementation-dependent subset of the
integers, and is equivalent to th~ subrange defined by

-nl •. n2

where nl and n2 denote implementation-dependent integers. In
general, if transportation of programs is planned across
implementations, the explicit use of integer types should be avoided
in favor of subrange types.

Permissible operations: assignment, set membership test, all
relational operators, addition, subtraction, multiplication,
quotient, remainder and applicable standard procedures and functionso

4.3.1.1.2 CHARACTER TYPE

<character type> ::= charl<character type identifier>

<character type identifier> ::=<identifier>

Charac~er type defines the set of 256 values of the ASCII
character set, and is equivalent to the sub~ange defined by

$char(O) •• $char(255)

where "$char~' denotes the mapping function from integer type, onto
character type. Characters may be assigned & compared to strings.

Permissible operations: assignment, set membership test, . all
relational operators, standard procedures and functions.

4.3.1.1.3 ORDINAL TYPE

<ordinal type> ::=
"(<ordinal constant identif1er list>)
I <ordinal type identifier>

<ordinal constant identifier list> ::=
<ordinal constant identifier>

,<ordinal constant identifier>
{,<ordinal constant identifier>}

<ordinal constant identifier> ::= <identifier>
<ordinal type identifier> ::=<identifier>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBii:. LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.1.1.3 ORDINAL TYPE

4-5

86/03/06
REV: 8

An ordinal type defines an ordered set of values by enumeration,
in .the ordinal list, of the identifiers which denote the values.
Each of the identifiers (at least two) in the ordinal list is thereby
declared as a constant of-the. particular ordinal type.

Two or~inal types are equivalent if they are defined in terms of
the same ordinal type identifier. -

Permissible operations: pSsignment, set membership test, all
relational operators, standard procedures and functions.

Example: The constants of the ordinal type "primary color" declared
by

*
!xP.! primary_color = (red, green, blue)

are denoted by "red", "green", and "blue", and the. following
relations hold:"

<·_·._red·< green
red < blue

· ·• green < blue

A mapping from ordinals onto non-negative integers is provided by
the $integer function. · For the constants of the example, the
following relations hold:

$integer (red) = 0
$integer (green) = 1
$integer (blue) : 2

·The ordinal type declaration

!xP.! primary_color
hot color

(red, green, blue),
(red, orange, yellow)

would be in error because of the dual definition of the identifier
"red" as a constant of two different ordinal types.

4.3.1.1.4 BOOLEAN TYPE

<boolean type> ::=boolean
!<boolean type identifier>

<boolean typ-e identifier> : := <identifier>

CDC Private

. '

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.1.1.4 BOOLEAN TYPE

Boolean type represents the ordered set of
constant denotations are false and true,
equivalent to the ordinal type ~pecif ied by:

"truth
and

4-6'

86/03/06
REV: 8

values", whose
is conceptually

(false,true), except that Boolean operations are permitted on
Boolean types.

Permissible operations: assignment, set membership test, all
relational operators (false< true), the Boolean operations of sum,
product, difference, exclusi~r, negation and standard procedures
and functions.

4.3.1.1.5 SUBRANGE TYPE

<subrange type> ::=<subrange type identifie~>
l<lower> •• <upper>

<lower> ::= <constant scalar expression>
<upper> ::= <constant scalar expression>

<subrange type identifier> ::=<identifier>

The lower bound must not be greater than the upper bound and both
must be of. equivalent· scalar types. Two subrange types are
equivalent if they have identical upper and lower bounds. An
improper subrange type (i.e., one that completely spans its parent
range) is equivalent to its parent type. The parent type of the
subrange is the type of the lower and upper constant expression.

Values of i subrange and values of its parent range (or values of
other subranges of its.parent type) may enter jointly into dyadic
operations defined for the parent type, and into assignment
operations; execution time checks on the validity of such assignments
may be specified (see Run-Time Checking Toggles).

Permissible operations: same as for the parent type.

Example:

non negative integer= o .. 32767,
letter= 'A' •• 'Z',
color= (red, orange, yellow, green, blue),
hot color= red •• yellow,
range = -10 •• 10 ;

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.1.2 Floating Point Type

4.3.1.2 Floating Point Type

<floating point type> ::= <real type> I <longreal type>

4-7

86/0.3/06
REV: 8

The floating point types define values that approximate the real
numbers and which are to be represented in a machine-dependent form
of scientific notation. The real and longreal types are intended to
have the same representation as FORTRAN REAL and DOUBLE PRECISION,
respectively.

4.3.1.2.1 REAL TYPE

<real type> ::= real l<real type identifier>

<real type identifier> ::=<identifier>

The range and precision of the real type are
implementation-dependent. Conversion
longreal and integer type are provided
11. 2) •

functions between real,
(cf. Standard Functions,

Permissible operations: assignment,
addition, subtraction, multiplication,
standard procedures and functions.

4.3.1.2.2 LONGREAL TYPE

all relation
division, and

<longreal type> ::= longreal l<longreal type identifier>

<longreal type identifier> ::= ~identifier>

operators,
applicable

The range and precision of the longreal type are
implementation-dependent. Conversion functions between real,
longreal and integer type are provided (cf. Standard Functions,
11. 2) •

Permissible operations: assignment, all relation
addition, subtraction, multiplication, division, and
standard procedures and functions.

4.3.1.3 Cell Type

<cell type> ::=cell
<cell type identifier>

<cell type identifier> ::=<identifier>

operators,
applicable

·CDC Private

4-8
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

4.0 CYBIL TYPES
4.3.1.3 Cell Type

A cell type is a basic type that represents the smallest storage
site that is directly addressable by a pointer. It is not equiv~lent
with any other type.

Permissible Operations: assignment, comparison for equality and
inequality only, and applicable standard functions.

4.3.1.4 Pointer Type

Pointer types represent location values, and other descriptive
information, that can be used to reference instances of CYBIL objects
indirectly.

Permissible operations:· assignment, comparison for equality and
inequality only, and standard procedures and functions.

Pointer types are
type to which · the
Pointer variables may
The only exception to

introduced by an up arrow, followed by a
pointers are bound; any CYBIL type i&
assume, as values, only pointers to that
this is pointer to cell.

<pointer type> ::=<fixed pointer>
<fixable pointer>
<pointer to procedure>
<pointer to function>
<pointer type identifier>

<fixed pointer> ::= t<fixed type>

<fixable pointer> ::=.<adaptable pointer>
!<bound variant pointer>

<adaptable pointer> ::= t<adaptable type>

<bound variant pointer> ::= t<bound var.iant record type>

<pointer to procedure> ::= t<procedure type>

<pointer to function> ::= t<function type>

<pointer type identifier> ::=<identifier>

CYBIL
legal.
type.

Adaptable pointers provide the so-le mechanism for accessing
objects of adaptable type, other than through formal. parameters of
procedures. In particular, adaptable pointers and bound variant
pointers are used to access instances of adaptable variables and
bound variant records whose type has been 'fixed' by an allocate, a
push or a next statement.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.1.4 Pointer Type

4~9

86/03/06
REV: 8

Pointers are equivalent if they are defined in terms of equivalent
types. A pointer to a fixed type may be assigned and compared to an
adaptable pointer or bound variant record pointer if the adaptable
type is potentially equivalent to the fixed type.

See Section 10.2, Assignment Statements, for rules governing
pointer assignment.

4.3.1.4.1 POINTER TO CELL

<pointer to cell> ::= tcell

A pointer to cell is a pointer type.

Permissible Operations: as for pointers; in addition, pointers to
cell may be assigned to any pointer to fixed or bound variant type.
Such an assignment must not result in a pointer to fixed or bound
variant type having as its value a pointer to a variable that is not
of cell type and whose type is not equivalent to that to which the
target of the assignment is bound. Pointer to cell may be the target
of assignment of any pointer to fixed, adaptable or bound variant
type.

4.3.1.5 Relative Pointer Types

Relative pointer types represent relative locations (with respect
to the beginning of some composite object) of components of such
objects.

<relative pointer type> ::=
rel (<parental type>) t <object type>

<parental type> ::=<storage type>
<adaptable storage type>
<aggregate type>
<adaptable aggregate type>

<object type> ::= <type>

Relative pointers provide three facilities not given by pointer
types:

1. A relative pointer variable may require less space than a pointer
variable.

2. A linked list or array of relative pointers (or a similar pointer
network) within a parental variable is still correct if that

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4-10

86/03/06
REV: 8

---------------------------~---
4.0 CYBIL TYPES
4.3.1.5 Relative Pointer Types

entire variable is assigned to another variable of the same
parental type.

3. Relative pointers are independent of the base address of the
parental variable.

Relative pointer values can be generated solely through the
built-in function #rel whose arguments are a pointer variable and an
optional parental variable.

Relative pointers cannot be used to access data directly. Such
data must be accessed through a pointer generated by the built-in
function il.R.!.!. whose arguments are a relative pointer variable and an
optional parental variable.

Relative pointer types are equivalent if they are defined in terms
of equivalent parental types and equivalent object types.

Permissible Operations: assignment, #PTR function, and comparison
for equality and inequality only. Relative pointers are assignable
and comparable if they are of equivalent relative pointer types.

4.3.2 STRUCTURED TYPES

Structured types ~epresent collection~ of components, and are
defined by describing their component types and indicating a
so-called structuring method. These differ in the accessing
discipline and notation used to select individual ~omponents. Four
structuring methods are available: set structure, string structure,
array structure, and record structure. Each_ will be described in the
sequel.

<structured type> ::=<set type>
l<aggregate_type>

<aggregate type> ::=<string type>

!
<array type>
<record type>

CDC Private

CYBER· IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.2.1 Set Type

4.3.2.1 Set Type

<set type> ::= set of <base type>
l<set~ype identifier>

<base type> ::=<scalar type>

<set type identifier> ::=<scalar identifier>

<scalar identifier> ::=<identifier>

4-11

86/03/06
REV: 8

A set type represents the set of all subsets of values of the base
type. The number of elements defined by the base type must be
constrained (consider, e.g., set of integer). The number of elements
will be implementation dependent, but no less than 256 (to
accommodate set of char).

Set types are equivalent if they have equivalent base types.

Permissible operations: assignment, intersection,
difference,· symmetric difference, ·negation, inclusion,
membership."

Example: The set, akcess, declared by

*
~ akcess set of (no_read, no write, no_execute)

union,
identity,

represents the set of the following subsets of values of its ordinal
base type:

$akcess [] {the empty set}
$akcess [no read]
$akcess [no-write]
$akcess [no-execute]
$akcess [no-read, no write]
$akcess [no-read, no-execute]
$akcess [no-write, no execute]
$akcess [no=read, no_;rite, no_execute] {the full set}

where the notation . "$akcess [•••]"denotes a value constructor for
the set type, akcess. Note that ~ and pred a~ot defined for
set types. The values of a set variable are only partially ordered
by set inclusion. $akcess [no_read] and $akcess [no_write] satisfy
no order relation except inequality.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.2.2 String Type

4.3.2.2 String Type

4-12

86/03/06
REV: 8

A string type represents ordered n-tuples of values of character
type.

<string ~ype> ::= <fixed string>
I <string type identifier>

<fixed string> ::= string (<length>)

<length> ::= <positive integer constant expression>

<string type identifier> ::=<identifier>

A fixed string of tength ~ represents all ordered ~-tuples of
values of character type. The length must be a positive integer
constant expression·in the range 1 to 65535.

An ordered k-tuple of the values of a string (1 <= ! <= ~) is
called a substring. Notat1on for accessing substrings is provided.

Two string types are equivalent if they have the same lengtho

Strings of different length may be assigned and compared. The
shorter is blank-filled on the right for comparisons and for
assignments to longer strings; truncation on the right is applied for
assignments to shorter strings. Characters may be compared and
assigned to strings of any length, and are treated as strings of
length one in such cases. Substrings of length one are treated as
characters in several specific instances -- see Substring References
as Character References.

Permissible operations: assignment, comparison (all six relational
operators), and standard procedures and functions.

4.3.2.3 Array Type

An array type represents a structure consisting of components of
the same .type. Each component is selected by an array selector
consisting of an ordered set of n index values whose scalar type is
indicated by the indices in the definition.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

-CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.2.3 Array Type

<array type> ::= [packed]<array type identifier>
I [packed]<array spec>

<array type identifier> ::=·<identifier>

<array spec> ::=
array !<index>l of <component type>

<index> ::=<scalar type>
!<constant scalar expression>

•• <constant scalar expression>

<component type> ::= <fixed type>

4-13

86/03/06
REV: 8

Two array types are equivalent if they have the same pack~ng, have
equivalent component types, and indexes are of equivalent type.

Permissible operations: assignment and applicable standard
procedures anQ functions.

4.3.2.3.1 PACKED ARRAYS

Packing attributes are used to specify storage space versus access
time tradeoffs for array components. Components of a packed array
will be mapped. onto storage so as to conserve storage space at the
possible expense of access time. The array itself (the collection of
components) is always mapped onto an addressable memory location.

CDC Private

CYBER IMPLEMENTATION LANGUAGE.

CYBIL LANGUAGE SPECIF~CATION

4.0 CYBIL TYPES
4.3.2.3.2 EXAMPLES OF ARRAY TYPE

4-14

86/03/06
REV: 8

--------------~---------------~--------------------------------------

4.3.2.3.2 EXAMPLES OF ARRAY TYPE

!l:2! hotness = array [color] of non_negative_integer,
token_code = array [char] of token class,
array!= array_[l00 •• 200] of 100 •• JOO,

il = 1 •• 100,
i2 = 100 •• 200,
sl 100 •• 300,

array2 = array [il] of array!,
array2b = array [il] .2£ array [i2] of sl;

The array types 'array2' and 'array2b' are alternate ways of
defining an array of arrays.

4.3.2.4 Record Type

A record type represents a structure consisting of a fixed number
of components called fields. Fields are defined in terms of their
types and associated field selectors, which are identifiers uniquely
denoting that field among all other fields of the record.

Permissible operations: assignment, and comparison of invariant
rec~rds (containing no arrays, heaps, or sequences as fields) for
equality and inequality only.

<record type> ::=<invariant record type>
!<variant record type>

4.3.2.4.1 INVARIANT RECORDS

<invariant record type> ::=
[packed] <invariant record type identifier>

I [packed] ·<invariant record spec>

<invariant record type identifier> ::= <identifier>

<invariant record spec> ::=
record <fixed fields> <recend>

<fixed fields> ::= <fixed field> {~ <fixed field>}
<fixed field> ::= <field selectors> : [<alignment>] <fixed type>

<field.selectors> ::=<field selector> {,<field selector>}
<field selector> ::=<identifier>

<recend> ::= [,]recend

CDC Private

7
\

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.2.4.1 INVARIANT RECORDS

See section 4.8 for a discussion on alignment.

4.3.2.4.2 VARIANT RECORDS AND CASE PARTS

4-15

86/03/06
REV: 8

A variant record consists of zero or more fixed fields followed by
one and only one .£!!! part. A case part is a composite field that
may assume values of different types during execution of a program.
It is defined in terms of an optional tag field, and a list of the
admissible types (called variants) together with associated selection
specs. During execution, the value of the tag field may be used to

determine the variant currently in use by being matched against the
selection specs associated with each variant. The variants
themselves may consist of zero or more fixed fields,. optionally
followed by one and only one case part.

Ac~ess to a variant other than the currently active variant
produces undefined results. The currently active variation of a
tagged variant record_ is the one associated with the current value of
the tag field selector. The currently active variation of a tagless
variant record is the one associated with the field that was the
target of the last assignment to a field selector in th~ variations.
Thus, the currently active variation changes when the tag field
changes if there is a tag field or when an assignment is made to a
field in a variation other than the. currently active variation for
tagless variant records. When this happens all fields in the newly
active variation become undefined except for the target of the
assignment for tagless variant records.

The space allocated for a variant record is the size of the
largest variant regardless of which variant is used.

<variant record type> ::=
[<packed>] <variant record type identifier>

I [<packed>] <variant record spec>

<variant record type identifier> ::=<identifier>

<variant record spec> ::=
record [<fixed fields>,] <case part> <recend>

<case part> ::= case <tag field spec> of
<variations><casend>

<tag field spec> ::= [<tag field selector> :] <tag field type>
<tag field selector> ::= <identifier>
<tag field type> ::= <scalar type>

<variations>~:= <variation> {, <variation>}
<variation> ::==<selection specs>= <variant>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4-16

86/03/06
REV: 8

---------------------------------~-----------------------------------
4.0- CYBIL TYPES
4.3.2.4.2 VARIANT RECORDS AND CASE PARTS

<selection specs> ::=<selection spec>
{, <selection spec>}

<selection spec> ::=<constant scalar expression>
[•• <constant scalar exp·ress ion>]

<variant> ::= [<fixed fields>]
I [<fixed fields>,] <case part>

<casend> ::= [,] casend

With a <selection spec> of the form constant scalar expression!
constant scalar expression2 the following rule applies:
lowervalue (<tag field type>) <= <constant .scalar expression!> <=
<constant scalar expression2> <= uppervalue (<tag field type>). The
subrange selection. specification signifies all of the constants in
the inclusive range from constant scalar expressioni up through and
including constant scalar expression2. It is semantically equivalent
to having a.11 the constants in the range, constant scalar expression!
through constant scalar expression2, listed separately in selection
specs.

4.3.2.4.3 RECORD TYPE EQUIVALENCE

Two invariant record types are equivalent if they have the· same
packing, the same number of fields, and if corresponding fields have
identical field selectors, the same alignment and equivalent types.
Two variant record types are equivalent if they have the same
packing, their fixed parts, considered as invariant record types, are
equivalent, their tag field selectors are identical, their tag field
types are equivalent, their selection specs are the ·same, and their
corresponding variants, considered as record types (either variant or
invariant) are equivalent. Note that.this definition is recursive.

4.3.2.4.4 PACKED RECORDS

Packing attributes are used to specify storage space versus access
time tradeoffs for fields of records. Fields of packed records are
mapped onto storage so as to conserve space at the possible expense
of time. See section 4.7 and 4.8 for more details.

4.3.2.4.5 EXAMPLES OF RECORD TYPE

~
date = record

day : 1.. 31,
month : string (4),
year : 1900 •• 2100,

·recend,

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL T\'PES
4.3.2.4.5 EXAMPLES OF RECORD TYPE

4-17

86/03/06
REV: 8

---. .

status = record
age : 6 •• 66,
married,
sex : boolean,

rec end,

red book = record
name: string (3),
rstatus : status,
scores : array[0 •• 6] of date,

rec end,

shape= (triangle, rectangle, circle),
angle= -180 •• 180,
figure = record

x,
y,
area : real, {figure is a variant record type}
.£!!!_ s : shape of
= triangle =

size : real,
inclination,
anglel,
angle2 : angle,
rectangle=
sidel,
side2 : integer,
skew,
angle3 : angle,
circle =
diameter: integer,

casend,
rec end;

4.3.3 STORAGE TYPES

Storage types represent structures to which other variables may be
added, deleted, and referenced under explicit program control.

<storage type> ::=<sequence type>
l<h~ap type>

4.l.3.1 Sequence Type

<sequence type> • ·= .. !.!.!! (<space>)
<sequence type identifier>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL ·TYPES
4.3.3.1 Sequence Type

4-18

86/03/06
REV: 8

----~--

<sequence type identifier> ::= <identifier>

A sequence type represents a storage structure whose components
are referenced (by a sequential accessing discipline) through
pointers constructed as by-products of the next and reset operations.
In addition, sequences may be assigned~ sequences; no other
operations are allowed.

Two sequences are equivalent if they_have equivalent spaces.

4.3.3.2 Heap Type

<heap type> : : = heap. (<space>)
<heap ty~e identifier>

<heap type identifier> ::= <identifier>

A heap type repre~ents a structure· whose components can be
explicitly allocated (by the allocate statement) and freed (by the
free and reset statements), and which are referenced by po_inters
constructed .as by-products of the allocate statement. No other
operations on heaps are allowed.

Two heaps are equivalent if they have equivalent spaces.

A default heap, that can be managed in the same manner as
user-defined heaps, is provided.

4.3.3.3 Seguence and Heap Space

<space> ::=<fixed span>{,<fixed span~

<fixed span> ::=
[rep <positive integer constant expression> of]

<fixed type identifier>

<positive integer constant expression> ::=
<constant scalar expression>

<fixed type identifier> ::= <identifier>
!<pre-defined type identifier>

<pre-defined type identifier> : := inte er_ I boolean I char
real I longreal cell

A space attribute of the general form

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.3.3 Sequence and Heap Space

rep nl of typel, ~ n2 of type2,

4-19

86/03/06
REV: 8

specifies a requirement that sufficient space be provided to
simultaneously hold nl instances of variables of type!, n2 instances
of variables of type2, and so on.

Two spaces are equivalent if they have the same number of spans,
and corresponding spans are equivalent. Two spans are equivalent if
they have the same number of repetitions of equivalent types.

The spac·e attribute places no restriction on the types of the
variables that may be stored in a sequence or heap, other than that
the space available for storage (as defined by the space attribute)
be large · enough to hold that many instances of the <fixed type
identifier>. For example, the space attribute may be defined solely
in ·terms of integers, but the sequence or heap filled only with
strings of characters and boolean variables.

4.4 ADAPTABLE TYPES

Adaptable types are structural skeletons ~f aggregate and storage
types containing indefinite bounds, indicated by an asterisk. They
may be used solely to define formal parameters of procedures and
adapta~le pointers, the latter providing a mechanism for referencing
variables of such types.

Adaptable types represent classes of related types to which they
can adapt. Adaptation to such an instantaneous type can occur in
three distinct ways:

Adaptable types can be explicitly fixed by the use of allocation
designators associated with storage management statements.

Adaptable types used as formal parameters· are fixed by the actual
parameters specified at procedure activation.

Adaptable pointer types used as left parts
statements are fixed by the assignment operati"on.

<adaptable type> ::= <adaptable aggregate type>
!<adaptable storage type>

<adaptable aggregate type> ::=<adaptable string>

<adaptable storage type> ··= ..
l <adapta~le array>
<adaptable record>

<adaptable sequence>
<adaptable heap>

of assignment

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4o4.1 ADAPTABLE STRING

4.4.1 ADAPTABLE STRING

4-20

86/03/06
REV: 8

Adaptable strings can adapt to strings of length 0 to 65535.

<adaptable string> ::=<adaptable fixed string>
I <adaptable string identifier>

<adaptable fixed string> ::= string (<adaptable string length>)

<adaptable string length> ::= * I *<=<adaptable string bound>

<adaptable string bound> ::=<length>

<adaptable string identifier> ::= <identifier>

If the adaptable string bound is not specified a string of maximum
allowable length is permitted.

In addition any string operation which exceeds
specified by the adaptable string bound shall be an
appropriate compile and run time checks will be included.

Two adaptable ~tring types are always equivalent.

4.4.2 ADAPTABLE ARRAY

the length
error and

Adaptable arrays adapt to a spe_cific range of subscripts o

Adaptable arrays can adapt to any array with the same packing,
equivalent component types and indexes of integer type. If the lower
bound is provided by the lower bound spec,-the adaptable array can
adapt only to arrays with an identical value for the lower bound.

<adaptable array> ::=
[packed] <adaptable array identifier>

I [packed]<adaptable array spec>

<adaptable array identifier> ::= <identifier>

<adaptable array spec> ::=
array J<adaptable array bound spec>l of <component type>

<adaptable array bound spec> ::=<lower bound spec> •• *
I *

<lower bound spec>·::= <constant integer expression>

CDC Private

4-21
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

4.0 CYBIL TYPES
4.4.2.ADAPtABLE ARRAY

<constant integer expression> ::=<constant expression>

The asterisk (*) indicates an adaptable bound of integer type.

Adaptable array types are equivalent if they have the same
packing, and equivalent component types, and if corresponding array
and component indices are equivalent. Two starred indices are always
equivalent. Two starred indices with the lower bound spec selected
are equivalent if their lower values are the same.

4.4.3 ADAPTABLE RECORD

Adaptable records consist of zero or more fixed fields followed by
one and only one adaptable field, which is a field of adaptable type.

Adaptable records can adapt to any record whose type is the same
except for the type of it~ last field, which must be one to which the
adaptable field can adapt.

<adaptable record> ::=
· · [packed]<adaptable record type identifier>

I [packed]<adaptable record spec>

<adaptable record type identifier> ::= <identifier>

<adaptable record spec> ::=
record[<fixed fields>,]<adaptable field><recend>

<adaptable field> ::=
<field selector>: [<alignment>]<adaptable type>

Two adaptable record types are equivalent if they have the same
packing, the same alignment, the same number of fields, and
corresponding fields have identical field selectors and equivalent
types.

4.4.4 ADAPTABLE SEQUENCE

Adaptable sequences can adapt to a sequence of any size.

<adaptable sequence> ::= ~ (*)
!<adaptable sequence identifier>

<adaptable sequence identifier> ::=<identifier>

The space for an adaptable sequence can be fixed by a <span
fixer>~

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATiON

4.0 CYBIL TYPES
·4.4.4 ADAPTABLE SEQUENCE

Two adaptable sequence types are always equivalent.

4.4.5 ADAPTABLE HEAP

Adaptable heaps can adapt to a heap of any size.

<adaptable heap> ::=heap(*)
!<adaptable heap identifier>

<adaptable heap identifier> ::= <identifier>

4-22

86/03/06
REV: 8

The space for an adaptable heap can be fixed by a .

Two adaptable heap types are always equivalent.

4.5 PROCEDURE TYPE

Procedures are identified
activated on demand. Refer
semantics of procedures.

port i·ons of
to chapters

programs
8.0 and

that
10.0

can be
for the

A procedure type defines an optional ordered list of formal
parameters.

<procedure type> ::=<procedure type identifier>
!procedure <proc type spec>

<procedure .type identifier> ::=<identifier>

Procedure types are used for declaration of pointers to
procedures, there are no procedure variables.

Two procedure types are equivalent if corresponding param segments
have the same number of formal parameters, identical methods
(reference or value), and equivalent types.

4.6 FUNCTION TYPE

Functions are identified
activated on demand. Refer
semantics of functions.

portions of
to chapters

programs that
8.0 and 10.0

can be
for the

A function type defines an optional ordered list of formal
parameters together with a- return type.

<function type> ::=<function type identifier>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.6 FUNCTION TYPE

!function <func type spec~

<function type identifier> ::=<identifier>

4-23

86/03/06
REV: 8

Function types are used for declaration of pointers to functions,·
there are ·no function variables. A "pointer to function" by default
will be unsafe.

Two function types are equivalent if corresponding param segments
have the same number of formal parameters, identical methods
(reference or value), equivalent types and if their return types are
equivalent.

4.7 BOUND VARIANT RECORD TYPE

A bound variant record is a variant record whose case part is
meant to be fixed to one of its constituent variants by the use of a
tag field fixer. For bound variant records the <tag field. selector>
is required. These are space saving constructs; since.only the space
required for the selected variant is allocate&~.

Access to a variant other than the .. currently active variant
produces undefined results. The currently active variation of a
bound variant record is the one associated with the current value of
the tag field selector. Thus, the currently active variation changes
when the tag field changes.

<bound variant record type> ::=
[packed] <bound variant record

I
[packed] bound <variant record
[packed] bound <_variant record

type identifier>
spec>
type identifier>

<bound variant record type identifier> ::=
<variant record type identifier>

A bound variant record type may only be used to define pointers
for bound variant record types (i.e., bound variant pointers). Thus
a variable of this type is always allocated in a sequence or a heap,
or in the system-managed stack.

An allocation statement for a bound variant record type requires
the specification of the tag field values, which select the variation
of the record allocated. In this case, only the specified space is
allocated. A bound variant pointer is returned by such an allocate
statement. It is not legal to assign directly into the tag field
selector for a bound variant record.

If a formal parameter of a procedure is of variant record type,

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.7 BOUND VARIANT RECORD TYPE

4-24

86/03/06
REV: 8

then the actual parameter may not b.e of bound variant reco.rd type.

Record assignment is not allowed to a variable· of bound variant
record type.

Two bound variant record types are equivalent if they are defined
in terms of equivalent, unbound records. A b.ound variant record type.
is never equivalent to a variant record type.

4.8 PACKING

A packed structure will generally require less space at the
possible cost of greater overhead associated with access to its
components. If the packing attribute is unspecified, then the
structure is assumed to be unpacked. An inner structure does not
inherit the packing of any containing structure. Elements of packed
structures are not guaranteed to ·lie on addressable memory units.

4.9 ALIGNMENT

<alignment> ::= aligned [j<offset~ mod <base>ll

<offset> ::= <integer constant>

<base> ::=<integer constant>

The aligned attribute must be used to ensure addressability of
fields within packed records. Addressability is achieved at the
possible expense of storage space, so that the effect of packing may
be diluted.

Unpacked structures and their components are always addressable.
Packed structures are also addressable unless they are unaligned
components of a packed structure, but their components are not unless
they are explicitly given the aligned attribute. For a field of a
packed record to be passed as a reference parameter the field must be
aligned. Aligning the first field of a record aligns the record~

A second usage of the alignment feature is to cause variables of
type record, to be mapped onto a specified hardware address relative
to a specified base and offset. The offset value must be less than
the base and the base must be divisible by a machine dependent value,
reflecting the ch~teristics of the machine addressing mechanisms.
The result is that an anonymous filler is created if necessary to
ensure that the field begins on the specified addressable· unit. For
automatic variables, the base may only be a machine dependent value,
reflecting the characteristics of the machine addressing mechanisms.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.9 ALIGNMENT

The <offset> and <base> elements are cell counts.

4.10 OTHER ASPECTS OF TYPES

4.10.1 VALUE AND NON-VALUE TYPES

4-25

86/03/06
REV: 8

Value assignments are permitted only to variables of the so-called
value types. The non-value types are:

A) Heaps.
B) Arrays of non-value component types.
C) Records containing a field of non-value type.

4.10.2 COMPARABLE AND NON-COMPAR;ABLE TYPES

Value comparisons are
so-called comparable types.

permitted only between variables of the
The non-comparable types are:

A) Heaps.
B) Sequences.
C) Arrays.
D) Variant records.
E) Records containing a field of non-comparable type.

4.10.3 FUNCTION-RETURN TYPES

The only types that can be associated with returned values of
functions ~re the basic types:

A) Integer, char, boolean, ordinal types, subrange types,
B) pointer types,
C) floating point types,
D) cell types.

4.10.4 TYPE CONVERSION

Mechanisms for converting values of some scalar types to values of
others are provided.

A) Ordinal, character and boolean values are convertible to integer
values through the $integer function.

B) Integer values between 0 and 255 are convertible to characters by
the $char function.

CDC Private

CYBER IMPLEMENTATION L~GUAGE

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.10.5 TYPE MIXING

4.10.5 TYPE MIXING

4-26

86/03/06
REV: 8

Any variant record whose purpose is to allow type casting
(conversion) of one given data structure onto.another must only
modify the variants directly; the use of pointer indirection to
change such a record variant may cause undefined results. The CYBIL
language and supporting compilers guarantee support only for this
immediate type casting; indirect type casting violates language rules
and is not supported.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

5.0 VALUES AND VALUE CONSTRUCTORS

5.0 VALUES AND VALUE CONSTRUCTORS

5-1

86/03/06
REV: 8

Two mechanisms are provided for explicitly denoting values:
constants and value constructors. Constants are used to denote
constant values of the basic types and strings. Value constructors
are used to denote instances of values of set, array and record
types. There are two kinds· of value constructors: set value
constructors, which include specific type identification; and
indefinite value constructors, whose type must be determined
contextually. ·

5.1 CONSTANTS AND CONSTANT DECLARATIONS

5.1.1 CONSTANTS

Constants. are used to denote instances of values of the basic
types and of string types.

<c~nstant> ::=<basic constant>l<string constant>

<basic constant> ::=<scalar constant>

!
_<floating point constant>
<pointer constant>

<scalar constant>.::= <ordinal constant>
<boolean constant>
<integer constant>
<character constant>

<ordinal constant> ::=<ordinal constant identifier>

<boolean constant> ::= false I true
I <boolean constant identifier>

<boolean constant identifier> ::= <identifier>

<integer constant> ::= <integer> I <integer constant identifier>

<character constant> ::= '<char token>'

1

$char (<integer constant>)
<character constant identifier>

<char token> ::=<alphabet>
I '' {two apostrophes}

<character constant identifier> ::=·<identifier>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

5.0 VALUES AND VALUE CONSTRUCTORS
5.1.1 CONSTANTS

<floating point constant> ::= <real constant>
I <longreal constant>

5-2

86/03/06
REV: 8

<rea1 constant> ::= <rea1 number> I <rea1 constant identifier>

<real constant identifier> ::= <identifier>

<real number ::=<unscaled number>
I <scaled number>

<unscaled number>::= <digit> {<digit>}. <digit>{<digit>}

<scaled number> ::= <mantissa> E<exponent>

<mantissa> : := <digit> {<digit>} [.] {<digit>}

<exponent> ::= [<sign>]<digit>{<digit>}

<~ongreal constant>.::= <longreal number>
I <longreal constant identifier>

<longreal constant identifier> ::=<identifier>

<longreal number> ::= <mantissa> D<exponent>

<string constant> ::=<string term>
{ cat <string term>}

<string term> ::=<character constant>
I' [<char token> <char token> {<char token>}] 1

<pointer constant> ::=nil

<integer constant identifier> ::=<identifier>

<int~ger> ::= <digit>{<digit>}
<digit>{<hex digit>}<base designator>

<hex digit> ::= AIBICIDIEIF

l
a b c d e f
<digit>

<base designator> ::= (<radix>)

<radix> ::= 2 I 8 I 10 I 16

If the base designator is omitted from an integer, then a radix of
10 is assumed. In all cases, the digits (or hex digits) are
constrained to be less than the specified radix.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

5.0 VALUES AND VALUE CONSrRUCTORS
5.1.1 CONSTANTS

5-3

86/03/06
REV: 8

Note that string constants can be empty, that is, of zero length.

5.1.2 CONSTANT EXPRESSIONS

<constant scalar expression> ::= <constant expression>

<constant expression> ::=<simple expression>

Constant expressions are constructs denoting rules of computation
for obtaining scalar or string type values (at compile time) by the
application of operators to operands. The rules of application are
those for expressions (see section 9) with the following constraints:

A) Factors of such expressions must be either constants, constant
identifiers·or parenthesized constant expressions.

B) The expressions must be simple expressions (terms involving
relationals must be parenthesized).

C) The only functions allowed as factors in such expressions are the
$integer, $char, .!.!!££ and pred functions with c·onstant

expressions as arguments.

D) Substring references are not allowed.

5.1.3 CONSTANT DECLARATIONS

Constant declarations are used to introduce identifiers for
constant values. Once declared, such a constant identifier can be
used elsewhere to stand for the identified value.

<constant declaration> ::=
const <constant spec> {, <constant spec>}

<constant spec> ::=~identifier>= <constant expression>

A constant spec associates an identifier with the value and the
type of the constant expression.

5.2 SET VALUE CONSTRUCTORS

Set value constructors are used to denote instances of values of a
specified set type, and to denote instances of typed empty sets.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFlCATION

5.0 VALUES AND VALUE CONSTRUCTORS
5.2 SET VALUE CONSTRUCTORS

<set value constructor> ::=
$<set type identifier> [] {the empty set}
$<set type identifier> I ~set value elements>!

<set value elements> ::=.<set value element>
{,<set value eleme~t>~

<set value element> ::= <expression>

5-4

86/03/06
REV: 8

Identifiers for set value constructors are obtained by prefixing
the 'target set type' identifier with a dollar sign, '$'. The types
of the elements of the value constructor must match the ordered · set
of components of the specified target typeo Set value constructors
can be used wherever an expression can be used.

A·set value element is an expression whose value is of the base
type of the set. The elements of a set are unordered. Note that a
set value may be defined to be 'empty' by not placing any elements
between the brackets: ! and!·

5.3 INDEFINITE VALUE CONSTRUCTORS

Indefinite value constructors are used to denote instances of set,
array, or record type.

<indefinite value constructor> ::=
[<value elements>]

I I ! {the empty iet}

<value elements> ::=
<value element>{,<value element>}

<value element> ::=
[<rep spec>]<initialization expression>
[<rep spec>]<set value constructor>
[<rep spec>]<indefinite value constructor>
{<rep spec>] *

<rep spec> ::= rep <positive integer constant expression> of

The meaning of a value constructor is that the list of values are
assigned to the fields of a record or to the components of an array
in their -natural order. The types of the elements of the value
constructor must match those of the components of the aggregate type
for which they provide the values.

Rep specs may be used solely for array construction, and indicate
that the next n values are the same, as given by the value following

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

5.0 VALUES AND VALUE CONSTRUCTORS
5.3 INDEFINITE VALUE CONSTRUCTORS

the "OF".

5..:.5

86/03/06
REV: 8

Indefinite value constructors can be used only where their type is
explicitly indicated by the context in which they occur: as elements
of indefinite value constructors, and for the initialization of
variables (see the discussion on Initialization in Section 6).

The asterisk form for a value element indicates that an undefined
value may be assigned to the field or component at 'this position in
the value list, unless it is a pointer in which case it is
initialized to nil.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6-1

86/03/06
REV: 8 ·

---------~--~
6.0 VARIABLES

----------------~--

6.0 VARIABLES

6.1 VARIABLES AND VARIABLE DECLARATIONS

Variables take on values of a specific type (or range of types).

Variables of fix~d type can be declared by an explicit variable
declaration (see below) or can be declared as formal parameters of
procedures.

Variables of adaptable type can only be declar~d as formal
parameters of procedures, or must otherwise be explicitly established
by storage management op~rations.

6.1.1 ESTABLISHING VARIABLES

This process involves:

A) The determination of the type of the variable;

B) The allocation of storage for values to be taken on by the
variable;

C) The possible assignment of initial values to the variable;

D) The possible binding of references (s~e below) to that variable.

Locally declared variables are automatically established on each
entry to the procedure or function block in which they were declared.
However, so-called 'static' variables are established once and only
once.

Formal parameters of procedures are automatically established on
each call of that procedure.

So~called 'allocated' variables are established by storage
management operations (for type determination and storage allocation)
and by assignment operations (for initialization).

6.1.2 TYPING OF VARIABLES

Adaptable types and bound variant record types actually define
classes of related types. Variables of such types (and pointers to
such variables) are explicitly meant to be 'fixed' to any or all
types of their type-class at different times during the execution of

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.1.2 TYPING OF VARIABLES

a program.

6.1.2.1 Instantaneous Types

6-2

86/03/06
REV: 8

The type to which a variable is fixed at a specific time during
execution of a program is called its instantaneous type (at that
time). It is a variable's instantaneous type that is actually used
to determine the operations it may enter into at any point in time.

Variables of adaptable and bound variant record type are fixed in
three distinct ways:

A) Formal parameters of adaptable types are fixed by the
instantaneous types of their corresponding actual parameters on
each procedure call or function refer·ence of which they . are a
part. (See Section 10.5.1 for the rules for fixing parameters.)

B) Explicitly allocated va~iables of such types are fixed by the
allocation operation •.

C) A pointer whose instantaneous type is any of the
an adaptable pointer can adapt, can be assigned tp
pointer. In such cases, both the value and
assigned, thus fixing the instantaneous type of
pointer.

types to which
that. adaptable
the type are

the adaptable

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.1.3 EXPLICIT VARIABLE DECLARATIONS

6.1.3 EXPLICIT VARIABLE DECLARATIONS

6-3

86/03/06
REV: 8

Variables are explicitly declared in terms of an identifier for
denoting them, a type, an optional set of attributes and an optional
initialization for static variables.

<variable declaration> ::=
var <variable spec>
----r,<variable spec>}

<variable spec> ::=
<variable identifiers> : [<attributes>]
<fixed tfpe>[<initialization>]

<variable identifiers> ::=
<variable identifier> [<alias>]
{,<variable identifier>[<alias>]}

<variable identifier> :;= <identifier>

6.2 ATTRIBUTES

<attributes> ::= J<attribute>{,<attribute>}!

<attribute> ::= <access attribute>

!
<storage attribute>
<scope attribute>

6.2.1 ACCESS ATTRIBUTE

<access attribute> ::=read

Variables declared with the read attribute are called 'read-only'
variables. Such variables inherit the static attribute, must be
initialized, may not be used as objects of assignment, and may b~
used as actual parameters-only if the corresponding formal parameter
is not a var parameter. The ·read attribute is used for compiler
checking ~ access- to variables and does not imply the variables
residence in read-only storage on computer systems where that
facility is provided. If the access attribute is not specified read
and write access is implied.

Examples:

var vl

var v2

[read] integer := 10; {vl is read only, but
{initialization is valid}

integer ; {v2 may be read and written}

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.2.2 STORAGE ATTRIBUTES AND LIFETIMES

6.2.2 STORAGE ATTRIBUTES AND LIFETIMES

<storage attribute> ::= static I <section name>

6-4

86/03/06
REV: 8

Storage attribute specifies when storage for an explicitly
declared variable is to be allocated (and initial values assigned if
nec~ssary) and when it is to be freed (at which time values of the
variable become undefined). The programmatic domain in effect
between the time such storage is allocated and the time it is freed
is called the 'lifetime' of the variable.

6.2.2.1 Automatic Variables

The lifetime of an automatic variable is the block in which it was
declared: allocation occurs on each entry to that block and freeing
occurs on each exit from that block. Variables not explicitly or
implicitly declared static have the automatic attribute.

6.2.2.2 Static Variables

The lifetime of a static variable is . the entire program:
allocation and initialization occur once and only once (at a time not
later than initial entry to the block in which the variable was
declared), and storage is not freed on exits from that block. r----t

-~ ..-..c. r- Ct U· '..J ,ov•·",i..,_o. "-. 6'L~··(!'Dl'YVL~
6.2.2.3 Lifetime Conventions

};, I .-Of'\,, l;lp.~.(J'\J·-' '" ~ t.....,....,j ____..,-..--

~\._ t:'--\··~ I Jt... ~,..,,..,.., (,)A -tr-~ •

If neither storage attributes nor(scope attributes are specified,
then the variable is treated as an automatic variable, unless the
variable is at the outermost level of a module body.

If the static attribute is specified then the variable is treated
as a static variable.

If ·any of the scope attributes are specified, then the variable is
treated as a static variable.

Variables declared at the outermost level of a module body ·are
treated as static variables.

6.2.2.4 Lifetime of Formal Parameters

The lifetime of a formal parameter is the lifetime of the

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.2.2.4 Lifetime of Formal Parameters

6-5

86/03/06
REV: 8

--~--------------------

procedure of which it is a part: the formal parameter is established
on each entry to the.procedure, and becomes undefined on exits from
the procedure.

6.2.2.5 Lifetime of Allocated Variables

Allocated variables are established (but not initializedr except
in the case of tag fields of bound variant records) by an explicit
allocation operation, and become undefined when they are explicitly
freed.

6.2o2.6 Pointer Lifetimes

Warning: Note that generally a pointer-value has a finite lifetim~
different from that of the pointer variable. Automatic variables
cease to exist on exit from the block in which they were declared.
Allocated variables cease to exist when they are freed or when their
containing variable ceases to exist. Attempts to refere~ce
non-existent variables by a designator beyond· their lifetime is a
programming error and could lead to disastrous results. Failure to
free a variable allocated via an automatic pointer. before the
containing procedure returns will prevent space for that variable
from ever being released by the. program.

6.2.3 SCOPE ATTRIBUTES

<scope attribute> ::= xdcl I xref I ~

Variable identifiers are used in variable denotations. Scope
attributes specify the regimen to be used to associate instances of
variable identifiers with instances of variable specs. The
programmatic domain over which a variable spec is associated with

.instances of its associated variable identifiers that are used in
vari·able denotations, is called the scope of that spec. If no scope
attribute is specified, the spec is said to be internal to the
procedure or function block in which it occurs, and a so-called block
-structuring regimen is used.

Internal variables are always automatic variables. (see above)
unless given a storage attribute, while scope-attributed variables
are always static. Each of the scope attributes specifies certain

I deviations from the block-structuring regimen. Broadly speaking, a
~ variable identifier associated with an xref variable can be used . to

denote a similarly identified variable having the xdcl attribute,
subj·ect only to reasonable rules of specificational conformity.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.2.3 SCOPE ATTRIBUTES

6-6

86/03/06
REV: 8

Xref variables can not be initialized, and each carries the
de-facto static storage attribute.

For more details on scope attributes, see section 7.

There should exist only one declaration of a given variable or
procedure with the xdcl attribute within a compilation unit or within
a group of compilation units to be combined for execution.

The ~ attribute is an extension of the xdcl attribute to
extend the protection provided for in the environment provided by the
operating system;· It may not be relevant on all ·computer systems.
Specifying the ~ attribute without also specifying xdcl is a
compilation error.

6.3 INITIALIZATION

Initializations are used to specify values to ·be assigned to
static variables.

<initialization> ::= :=·<initialization expression>

<initialization expression> ::=<constant expression>

I
<indefinite value constructor>
t<global proc name>

<global proc name> ::= <procedure identifier>

When the variable is established, the type of the variable is
determined, ·storage for a variable of-that type is allocated as a
static variable, the initialization expression is evaluated, and the
resultant value is assigned to the variable according to the normal
rules for assignment.

6.3.1 INITIALIZATION CONSTRAINTS

1) If no initialization is specified, the initial value is
undefined, except that all pointer components of static variables
are initialized to nil.

2) If the initialization expression is an indefinite value
constructor, the variable must be either a set, array, or record.
The type of the indefinite value constructor is determined as the
type of the variable.

3) An asterisk, '*', can be used in indefinite value constructors to
indicate uninitialized elements of arrays and records. The

CDC Private

CYBER I.MPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.3.1 INITIALIZATION CONSTRAINTS

6-7

86/03/06
REV: 8

initial values of such uninitialized elements are undefined,
except in the case of a pointer which is set to nil.

4) If the string elements are not of equal length and the variable
part is the longer, the initialization operator will append
blanks at the right end of the variable. If the initialization
expression is longer, the value of the initialization expression
will be truncated to fit the variable part.

5) Within variant record initialization, the case selector is
initialized in turn and is then used to determine the variant for
the ensuing fields of the record.

604 SECTIONS AND SECTION DECLARATIONS

A section is a working storage area for specified variables
sharing common access attributes.

<section declaration> ::=section <sections> {,<sections>}

<sections> ::=
<section name> {,<section name>} <section attribute>

<section name> ::=<identifier>

<section attribute> ::= read I write

Variables declared within a section having the read section
attribute will reside in read-only storage (on ~omputer systems
pr.oviding that facility) and must have the read variable attribute.

6.5 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS

Only certain combinations of attributes are valid. These combine
with certain initialization assignments, some of which. are optional,
some required,·and some prohibited.

The table below further clarifies the legal combination of
attributes and specifies the rules for initializationo

CDC Private

CYBER IMPLEMENTATION LANGUAGE ·

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.S VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATION.S

ATTRIBUTE INITIALIZATION

(1) none optional if static
otherwise prohibited

(2) read required

(3) static optional

(4) static,read required

(5) xdcl optional

(6) xdcl,read required

(7) xdcl,static optional

(8) xdcl,static,read required

(9) xref ·prohibited

(10) xref ,read prohibited

(11) xref ,static prohibited

(12) xref ,static,read prohibited

(13) <section name> optional

(14) <section name>,read required

(15). <section name>,xdcl optional

(16) <section name>,xdcl,read required

* Static attribute is implied for sections.

6.6 VARIABLE REFERENCES

<variable> ::= <variable reference>
!<substring reference>

<variable reference> ::=<variable identifier>
<pointer ref erence>t
<subscripted reference>
<field reference>

6-8

86/03/06
REV: 8

SAME AS

(4)

(2)

(7)

(8)

(5)

(6)

(11)

(12)

(9)

. (10)

)°c

)°c

)°c

*

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6-9

86/03/06
REV: 8

--~------------------------.
6.0 VARIABLES
6.6.1 POINTER REFERENCES

6.6.1 POINTER REFERENCES

<pointer reference> ::= <pointer variable>
l<funct~on reference>

<pointer variable> ::=<variable>

Whenever a variable reference denotes a variable of pointer type,
it is referred to as a pointer reference and the notation

<pointer ref e~ence>t

may be used to denote a variable whose type is determined by the type
associated with the pointer variable. If another variable of pointer
type is denoted by this reference, then

<pointer reference>tt

may be used as a variable referenc·e. ·Note that variables of poin~er
type can be components of structured variables as well as valid
return types for functions.

Given a variable identifier, the n_otatio.n to obtain a pointer
value to the variable which has a scope equal to or greater than the
pointer is:

t<variable identifier>

Pointers are always bound to a specific type and pointer variables
may assume, as values, only pointers to objects of equivalent type.
The only exception to this is that pointer to cell can take on values
of any type and any fixed or bound variant pointer variable can
assume a value of pointer to cell. See Chapter 4 for further
explanation.

If the variable is a formal parameter, then the pointer cannot be
used to modify the parameter.

The special value nil is used to denote that a pointer variable
has no current assignment to a location.

6.6.1.1 Examples of Pointer References

CDC Private

6-10
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

6.0 VARIABLES
6.6.1.1 Examples ~f Point~r References

var i, j, k : integer, {integer variables}

pi : Hnteger, {pointe~ variable of type: pointer to integer}

ppi : Hinteger, {pointer variable ·of type:} -
{pointer to pointer to integer}

bl, b2 : boolean ; {boolean variables--end of declarations}

allocate pi; {allocates space for an integer value and sets}
{pi to point to it}

allocate ppi; {allocates space for a pointer to integer and}
{sets ppi to point to it}

pit:= 10;

ppi t := pi;

j ·= pit . {the integer variable j takes on the value 10} . ' .. ~ ·.' .

k := ppitt . {the integer variable k takes on the value 10} '

bl := j = k . {the boolean variable takes on the value true} '

b2 := pit ppitt ; {the boolean variable b2 takes on the}
{value true}

pi := nil {the pointer variable p1 is set to denote}
{lack of indicating any variable}

k := pit {statement is in error when pi has the}
{value nil--result of this statement}
{will be implementation dependent}

if ppi nil then k := k + 1 ifend ;
{valid test~ppi and valid statement}

pi := t(i + j + 2 * k); {improper use of up arrow to request}
{location of an expression - an undefined concept}

6.6.2 SUBSTRING REFERENCES

<substring reference> ::=
<string variable>(<substring spec>)

<string variable> ::=<variable reference>

<substring spec> ::=
<first char>[,<substring length>]

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6-11

86/03/06
REV: 8

6.0 VARIABLES
6.6.2 SUBSTRING REFERENCES

<first char> i:= <positive integer expression>
<substring length> ::= <non-negative integer expression> ,, I ,'(.

<non-negative integer expression> ::=<scalar expression>

Values of string va~iables are ordered n~tuples of character
values. Substring references yield fixed or null strings defined as
follows.

Let 's' denote a string whose current length is n.

If 1 <= i <= n then:

A) 's(i)' yields a fixed string of length one, consisting of the
i-th character of s;

If 1 <= i <= n + 1 and 0 <= k <= n + 1 - i, then:

B) 's (i ,k)' yi~lds a fixed string of length k, consisting of the
i-th throug]j 'the (i +k-1)-th character of s, or a null substring; ~

C) 's (i, *) '· is 'equivalent to 's (i ,iri+l)' and yields the rest of the
string staiting with the i-th character, or a null string.

Otherwise, an error results.

CDC Private

6-12
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFI~ATION
86/03/06

REV: 8

6.0 VARIABLES
6.6.2 SUBSTRING REFERENCES

Example:

If a string variable s is declared and initialized by

vars : string(6) := 'ABCDEF';

then the following relations hold

s (1) =
s (6) =
s (1, 6)
s (~' 0)

'A'
'F'

s
= I I

s (2' 5)
s (2' ,'c)
s (1, ,'c)
s (7' *)

'BCDEF'
s (2' 5)
s
I I

and s(8) and s(8,0) are illegal.

If a pointer variable is declared and initialized by:

~ ps : tstring (6) := ts;

then pst(i) and pst(i,j) become valid references to substrings of s.

Note that a string constant, even if declared with ·an identifier
for denot~ng it, is not a variable, so that a substring of such a
string constant i~ not a defined entity of CYBIL, e.g.,

const str24 = 'helper';

string2 := str24(3,*) {invalid substring reference--str24}
{is a string constant}

6.6.2.1 Substring References as Character References

Substring references of the form 's(k)', and only such, may be
used wherever a character expression is allowed, and are treated as
characters in such cases. Specifically, substrings of the form
IS (k) I :

A) May be compared with characters;

B) May be tested for membership (in) in sets of characters;

C) May be used as initial and final values of for statements
controlled by a character variable;

D) May be used as selectors in case statements;

CDC Private

6-13
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUA~E SPECIFICATION
86/03/06

REV: 8

6.0 VARIABLES
6.6.2.1 Substring References as Character References

E) May be used as arguments of the standard procedures and functions
.!!!££, pred, and $integer;

F) May be assigned to character variables, and may be actual
parameters to formal parameters of character type.

G) May be used as index values corresponding to character-type
indices.

6.6.3 SUBSCRIPTED REFERENCE

<subscripted reference> ::=<array variable> !<subscript>l

<array variable> ::=<variable>

<subscript> ::=<scalar expression>

A subscripted ref_erence denotes a component of an array variable,
whose value type is the component type of the array variable. A
subscript may be of any type that can be assigned to a variable of
the corresponding index type. Note that, to this end, any subrange
is considered to be of equivalent type as its parent range (or any
subrange thereof).

Example:

If an array variable is declared and initialized. by:

var A~ array (1 •• 5] of integer := (1, 2, _3, 4, 5]

and an integer variable is declared and initialized by

var i : integer := 5

then the following relations hold

a [i] 5
a[i-1] 4

a [i-4] 1

However, the reference a[i+l] would be in error.

If an array variable is declared by:

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.6.3 SUBSCRIPTED REFERENCE

Y!!. b: array (0 •• 5] of array (0 •• 9] of char

then b [1] [2] becomes a valid reference to the array b.

If a pointer variable is declared and initialized by:

var pa . tarray (1.. 5] of integer ·= ta; . .
then pat [i] becomes a valid reference to components of a.

6-14

86/03/06
REV: 8

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SP~CIFICATION

6.0 VARIABLES
6.6.4 FIELD REFERENCES

6.6.4 FIELD REFERENCES

<field reference> ::=

6-15

86/03/06
REV: 8

<variable reference>.<record subreference>{.<record subreference>}

<record subreference> ::=
<field selector>l<subscripted reference>

A field reference denotes · a field of a record variable. Since
field selector names can be used in other records, the record
variable must be s~ecified.

Example:

For the record variable'declared and initialized by:

~
tr = record

age : 6 •• 66,
married,
sex : boolean,
date : record

day : 1.. 31,
month : 1. .12,
year : 70 •• 80,

recend,
rec end;

Y!.!. r : tr := [23,false,true, [3,5, 73]];

the following relations hold

r.age = 23
r.married = false
r.sex = true
r.date.day = 3
r.date.month = 5
r.date.year = 73

If a pointer variable is declared and initialized by:

var pr : ttr := tr

then

prt.age, prt.married,

become valid references to fields of tr.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

7.0 PROGRAM STRUCTURE

7.0 PROGRAM STRUCTURE

7.1 COMPILATION UNITS

7-1

86/03/06
REV: 8

A CYBIL program is a collection of declarations which is meant to
be translated, via a compilation process, .into a CYBIL object module.
Object modules resulting from separate compilations can be combined,
via a linking process, into a single object module, and may undergo
further transformations into a form capable of direct execution.

<compilation unit> ::=<module declaration>
{;<module declaration>} [;]

Since statements are constrained to appear solely within.the body
of a procedure or function declaration, compilation units consist
-solely of a list of declarations. All such declarations must be
capabl~ of being evaluated at the time of compilation~ All variables
declared in a compilation unit's declaration list will automatically
be given the static storage attribute.

7.2 MODULES

A module is a collection of.declarations.

<module declaration> ::=
module <module identifier> [<alias>];

<module body>
modend [<module identifier>]

<module identifier> ::=<identifier>
<module body> ::= <declaration list>

<declaration list> ::= {<declaration>;}

The module identifier can be used to provide clarity and to assist
in post-compilation activities, such as linking and debugging.

7.3 DECLARATIONS AND SCOPE OF IDENTIFIERS

Declarations introduce objects together with identifiers which may
be used to denote these objects elsewhere in a program.

CDC Private

CYBER IMPLEMENTATIPN LANGUAGE

CYBIL LANGUAGE SPECIFICATION

7.0 PROGRAM STRUCTURE
7.3 DECLARATIONS AND SCOPE OF IDENTIFIERS

<declaration> ::= <type declaration>
<constant declaration>
<variable declaration>
<procedure declaration>
<function declaration>
<section declaration>
<empty>

7-2

86/03/06
REV: 8

The programmatic domain over which all uses of an identifier are
associated with the same object is called the scope of the
identifier. The scope of an identifier is determined by the context
in which it was declared and by optional scope attributes which may
be associated with declarations of variables and procedures.

7.4 MODULE - STRUCTURED SCOPE RULES

The scope of an identifier declared in one of the constituent
declarations of the body of a module, is th.e body of that module.

7.5 PROCEDURES AND FUNCTIONS

A procedure or a function consists of a statement list preceded by
an optional declaration list. Procedures and functions have three
purposes:

1) Procedures and functions control the scope of identifiers.

2) Unlike modules, procedures and functions control the processing
ef declarations and determine when declarations take effect.

3) Unlik~ modules, procedures and functions include statements,
which translate into algorithmic actions in the resulting
program.

7.6 ST~UCTURED SCOPE RULES

1) Except for field selectors (see below), the scope of an
identifier declared in the constituent declaration list of a
procedure or function is the body of that procedure or function.

2) If an identifier labels a structured statement, then its scope is
that immediately containing block.

3) If the scope of an identifier includes a non-xrefed procedure or
function declaration, then its scope is extended 'downward' to
include the body of that procedure or function, unless the body

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

7.0 PROGRAM STRUCTURE
7.6 STRUCTURED SCOPE RULES

includes a re-declaration of the identifier.

7-3

86/03/06
REV: 8

4) The scope of an identifier which is declared as a formal
parameter of a procedure or function is the body of the proc~dure
or function.

5) Field selectors are identifiers introduced as part of the
declaration of a record type for purposes of selecting fields of
records. Except for the restriction that field selectors
associated with the same.record type must be unique, identifiers
used as field selectors may be re-declared with impunity.

6) Except for field selectors, no more than one declaration of an
identifier can be included in the constituent declarations and
statements of the body of a procedure or function.

7.7 SCOPE ATTRIBUTES

The scope attributes xdcl and xref cause the scope of identifiers
to be extended, in a---discontinuous manner, to include other
compilation units~ but do not otherwise contravene either
module-structured or block-structured scope rules.

Variables, procedures and functions that are part of one module,
but are meant to be referenced from other modules, must have the xdcl
attribute associated with them by. explicit declaration. Other
modules which are meant to reference such objects must declare them
with the xref attribute.

XREF variables can not be initialized, and all xdcl and xref
variables are automatically given the static storage att~te

The declarations for objects shared among modules must match; for
example, an identifier with the xdcl attribute in one module and the
xref attribute in other modules must denote the same object in all
such modules. Violations of such matching rules are detected during
the linking processing on some computer systems.

7.7.1 ALIAS NAMES

An 'alias' is an alternate spelling which may be specified for an
identifier. Its reasons for existence are varied: to me~t
system-requirements of spelling which are invalid in CYBIL, to equate
two differing spellings for an entity between two different
compilation units, to avoid identifier spelling conflicts among
different compilation units or with system standard names, etc. As
such, this feature will only be supported on host systems where this

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

7.0 PROGRAM STRUCTURE
7.7.1 ALIAS NAMES

requirement exists.

7-4

,86/03/06
REV: 8

An alias is to be used outside of a compilation unit only, and
will not function as an alternative spelling for an identifier within
_the compilation unit in which it is defined as an alias.

Aliases may be furnished for identifiers of modules, procedures,
and variables by following the identifier associated with a
declaration of such. an object by an alias specification.

<alias> : := alias ' <alphabet> { <alphabet> } ·'

In order for an alias' to 'reach' the host system, it must be
associated with an object that is externalized in some way: by virtue
of being xref'd, or xdcl'd. All other aliases will be inoperative
except for taking up room during the compilation process.

If an identifier which is externalized has an alias specified,
then only the alias will be made known outside of the compilation
unit (i.e., the identifier itself will not be made known outside of
the compilati_on unit).

Also refer to 6.1 for variable declarations, and to 8.1 for
procedure declarations.

Examples:

module outer alias 'CYM$0UT'

procedure [xdcl] searcher alias 'CYP$SEARCH' (var lst2, ••.

~ V2 alias 'CYV$2FLAG', V3 alias 'CYV$3FLAG' : [xdcl] integer;

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

7.0 PROGRAM STRUCTURE
7.8 DECLARATION PROCESSING

7.8 DECLARATION PROCESSING

7.8.1 BLOCK-EMBEDDED DECLARATIONS

7-5

86/03/06
REV: 8

Except for the constituent declarations of a compilation unit (see
below), declaration processing is governed solely by block-structure.
During compilation, all constituent lists of a block are gathered
toge~her. and are processed en-masse, all such declarations coming
into effect simultaneously.

Block-structure also governs declaration processing during
execution of the resulting programs. On entry to a block, all
declarations included in the block's constituent list are again
collected together, storage for automatic variables is allocated, and .
all identifiers declared by s~ch de~larations become accessible. On
exit from a block, all identifiers declared within that block become
inaccessible, the values of automatic variables become undefined, and
the variables allocated on the stack become undefined.

7.8.2 MODULE-LEVEL DECLARATIONS

Objects ~ec~ared ~t the outermost level of a module are associated
- with no block at all. Such declarations must be evaluated, and

required storage allocated, prior to program execution. Accordingly,
all variables so declared are automatically given the static storage
attribute, as are all scope-attributed variables.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

8.0 PROCEDURES AND FUNCTIONS

8.0 PROCEDURES AND FUNCTIONS

8-1

86/03/06
REV: 8

A procedure or function declaration defines a portion of a program
.and associates an identifier with it so that it can be activated
(i.e., executed) on demand by other statements in the language. A
procedure or function is invoked by a procedure call statement or
function reference.

A procedure call statement or function reference causes the
execution of the constituent declarations and statement lists of the
procedure or function after substituting the actual parameters of the
call for the formal parameters of the declaration.

8.1 PROCEDURE DECLARATIONS

There are the fol!owing forms of procedure declaration:

<procedure declaration> ::=
procedure l xref l <proc spec>
procedure[l<proc attributes>l]<proc spec>;

<proc body><proc end>
program <proc spec>;<proc body><proc end>

The first form
compiled as part of

.declared with the
list in that module.

is used to refer to a procedure which has been
a different module. The procedure must have been
xdcl attribute, and with an equivalent parameter

The second and third forms declare the procedure identifier to be
a procedure of the kind specified by its parameter list and
associates the identifier with the constituent declaration list and
statement list of the declaration.

The program declaration is used to identify the first procedure of
a program to be executed, when required by the system. It may only
be present on a single outermost block level procedure of the
compilation unit.

If more than one compilation unit is to be linked together for
execution, then only one procedure with a program declaration may be
present among all those compilation units being linked.

The procedure type is elaborated on entry to the block in which it
is declared, and remains fixed throughout the execution of that
block.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

8.0 PROCEDURES AND FUNCTIONS
8.1 PROCEDURE DECLARATIONS

<proc attributes> ::= <proc attribute> , {<proc attribute>}

~proc attribute> ::= xdcl I inline I ~

8-2

86/03/06
REV: 8

<proc spec~ ::= <procedure identifier> [<alias>] <proc type spec>

<proc type spec> : := [<parameter 1 is t>]
<parameter list> ::~ (<param segment> {;<param segment>})
<param segment> ::=<reference params>

I <value params>
<reference params> ::= ~ <param> { ,<param> }
<param> ::=<formal param list> : <parameter type>
<value params> ::= <value param>{,<value param>}
<value param> ::=<formal param list> : <parameter type>

<formal param list> ::= <formal parameter identifier>.
{,<formal parameter identifier>}

<formal parameter identifier> ::=<identifier>

<parameter type> ::= <f~xed type>
!<adaptable type>

<proc body> ::= <declaration list> <statement list>

<proc end> ::= procend [<~rocedure identifier>]

<procedure identifier> ::=<identifier>

The ~ attribute is an extension of the xdcl attribute to
extend the protection provided for in the environment provided by the
operating system. It may not be relevant on all computer systems.
Specifying the ~ attribute without also specifying xdcl is a
compilation error.

The inline attribute directs the compiler to substitute the
procedure statement body at the point of call to the procedure rather
than actually calling the procedure. Certain restrictions may exist
for the inline procedure candidates.

8.2 FUNCTION DECLARATIONS

<function declaration> ::=function [xref] <func spec>
I function [J func attributell <f~nc spec> ;

<func body> <func end>

<func spec> ::= <function identifier> [<alias>] <func type spec>

CDC Private

CYBER IMPLEMENTATION .LANGUAGE

CYBIL LANGUAGE SPECIFICATION

8.0 PROCEDURES AND FUNCTIONS
8.2 FUNCTION DECLARATIONS

<function identifier> ::=<identifier>

8-3

86/03/06
REV: 8

<func type spec> : := [<parameter 1 is t>] :· <result type>

<result type> ::=<basic type>

<func ·attribute> ::= <proc attribute> I unsafe

<func body> ::= <proc body>

<func end> ::= funcend [<function identifier>] ·

Function declarations serve to define parts of the program which
compute a value of the basic type. Functions are activated by the
evaluation of a function reference which is a constituent of an
expression.

There are two kinds of function declarations provided for in the
CYBIL language. One provides for functional notation where there can
be no undesirable side effects and the other provides for functional
notation in a form where side effects are possible.

The value of a function is the value last assigned to its function
identifier bef.ore returning (either by falling through the funcend,
by a return statement, or by an exit statement). The results of
returning by any means from a function prior to assignment of a value
to the function identifier (for the current execution) are undefined.

8.2.1.SIDE EFFECTS

A function returns a value through the identifier of the function.
When a function changes the value of a variable, other than the local
variables of the function, that change is a side·effect. CYBIL
prevents side effec~s by restricting assignments, procedure and
function calls, and the use of non-local variables in user defined
"safe" functions.

The left-hand side of an assignment statement within a function
may not be any of the following:

t~"'
J. ~i . ff \

0 A non-local variable, ¢t """·V'·-0\ ""' d I

0 A reference parameter of the function,
0 A pointer.variable followed by a dereference (t) •

User defined "safe" functions may not contain:

o Procedure call statements that call user-defined procedures,

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

8.0 PROCEDURES AND FUNCTIONS
8.2.1 SIDE EFFECTS

o References to unsafe functions~

8-4

86/03/06
REV: 8

o Parameters of type pointer to procedure or pointer to function,
o ALLOCATE, FRE~, PUSH, RESET or NEXT statements that have

parameters that are not local variables.

These restrictions may make it necessary to use an unsafe function
or a procedure for some purposes for which a "safe" function might
otherwise be used. However this inconvenience may provide more
reliability by preventing side effects.

8.3 XDCL PROCEDURES AND FUNCTIONS

The attribute xdcl may only be used on a procedure or function
declared at the outermost level; i.e., not contained in another
procedure or function. It specifies that the procedure or function
should be made ref erenceable from other modules which have a
declaration for the same procedure or function identifier with the
xref attribute. The parameters must also be the same.

8.4 INLINE PROCEDURES AND FUNCTIONS

The following considerations apply for inline procedures and
functions:

o Type, constant and variable declarations local to an inline
procedure or function are appended to the declarations for the
call.ing procedure or function. These types, etc. may be
referenced only in the inline procedure or function body as all
the normal naming and· scoping rules for identifie·r definition
and referencing still apply.

o Local (non-XREF) static variable definitions are not permitted.
o An inline procedure or function may not contain neste9

procedure or declarations, except for XREF'ed procedures.
o An inline procedure or function may reference any other

procedure or function, including other inline procedures or
functions. Recursive calls to an inline procedure or function,.
either directly or indirectly, are not allowed.

o Space allocated by a PUSH statement in an inline procedure or
function is not de-allocated until the calling (non-inline)
procedure or function exits.

o The identifier for an inline procedure or function may not be
used in a pointer reference.

8.5 PARAMETER LIST

A parameter list is a set of variable declarations in the <proc

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFfCATION

8-5

86/03/06
REV: 8

--~
8.0 PROCEDURES AND FUNCTIONS
8.5 PARAMETER LIST

type spec> or <func type spec> (not in the <proc body>) which
provides a mechanism for the binding of references to the procedure
or function call environment in a manner which permits selection of
entities to be bound at each invocation of the procedure or function •

. This is accomplished by provid~ng the procedure or function wit~ a
set of values and variables, so-called actual parameters, at the
point of call.

A value parameter results in the value of the actual parameter, at
the point of call, being associated with the formal parameter. See
section 10 for precise rules governing parameter pas~inge The called
procedure or function may not assign a value to one of its value
parameters, !!.2.f use it ·as an actual reference parameter to any
procedure or function it may call.

The type of a formal value parameter may be any fixed or adaptable
type except the so-called non-value types: heaps, records and arrays
of non-value types (i.e., any type which cannot enter into an
assignment statement may be neither a formal nor an actual value
parameter).

A reference parameter results in the formal parameter designating
the corresponding actual parameter th~oughout execution of the
procedure. Assignments to the formal parameter thus cause changes to
the variable that was passed as the corresponding actual parameter.

The type of a formal reference parameter may be any fixed or
adaptable type.

8.6 EXAMPLES OF PROCEDURES AND FUNCTIONS

CDC Private

CYBER IMP~EMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

8.0 PROCEDURES AND FUNCTIONS
8.6 EXAMPLES OF PROCEDURES AND FUNCTIONS

procedure gcd (m, n: integer; Y.!E. x, y, z: integer);

var al, a2, bl, b2, c, d, q, r : integer; {m > O,n > O}
{Greatest Common Divisor x of m and n,
{Extended Euclid's Algorithm .• }

al ·= O; .
a2 := l;
bl := 1;
b2 := O;
c ·= m; .
d := n•

'

while d <> 0 do
·--w * m + bl* n = d, a2 * m + b2 * n c

{gcd(c, d) = gcd(m, n)}

'Q := c div d;
r := c mod d;
a2 := a2 - q * al;
b2 := b2 - q * bl;
c := d;
d := r;
r := al;
al := a2;
a2 := r;
r := bl;
bl := b2;
b2 := r;

whilend;

x := c;
y := a2;
z := b2;
{x gcd(m, n)' y * m

procend gcd;
+ z * n gcd(m, n)}

8-6

86/03/06
REV: 8

CDC Private

· CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

8-7

86/03/06
REV: 8

---. ,

8.0 PROCEDURES AND FUNCTIONS
8.6 EXAMPLES OF PROCEDURES AND FUNCTIONS

function min (a: integer; b: integer): integer;

if a > b ~
min := b;

else
min := a;

if end;

funcend min;

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9-1

86/03/06
REV: 8

-------~---

9.0 EXPRESSIONS

9.0 EXPRESSIONS

·Expressions are constructs denoting rules of computation for
obtaining values of variables . and generating new values by the
application of operators. Expressions consist of operands (i.e.,
variables and constants), operators, and functions.

Constant expressions are expressions involving constants and a
subset of the operators and functions (cf., Section 5).

<expression> ::= <simple expression>
!<simple expression><relational operator>

<simple expression>

<simple expression> ::= <term> I <sign operator><term>
!<simple expression>

<adding operator><term>

<term> ::=<factor>
I <term><multiplying operator><factor>

<factor> ::= <variable>l<constant>l<constant identifier>
<set value constructor>l<function reference>
t<procedure identifier> t<variable> · .
(<expression>) lnot<factor>

<multiplying operator> ::= * I div I I I mod
<sign operator> ::=<sign>
<sign> ::= + I -
<adding operator> ::= + I - I or I xor
<relational operator> -: := < <== >f >= · 1

<constant identifier>.::= <identifier>

and

I <> I in

<function reference> ::= <built-in function reference>
l<user defined function reference>

<user defined function reference> ::=
<function identifier>(<actual parameter>
{, <actual parameter>})
I <function identifier>()

CDC Private

9-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8
---·--------
9.0 EXPRESSIONS

<built-in· function reference> : := succ (<scalar expression>)
pred (<scalar expression>)
$char (<expression>)
~ger (<expression>)
$real (<expre~sian>)
~real (<expression>)
strlength (<fixed string type identifier>

<string variable>)
<string constant>)
<string constant identifier>)

llowerbound (<fixed array type identifier>
!<array variable>)

lupperbound (<fixed array type identifier>
!<array variable>)

juppervalue (<scalar type identifier>
!<scalar variable>)

llowervalue (<scalar type identifier>
!<scalar variable>)

#rel (<pointer>[,<parental>])
lllli£. (<relative pointer>[,<parental>])
~ (<variable reference>)
#loc (<variable>)
#size(<variable>

l
<fixed type identifier>
<adaptable type> : l<adaptable field fixer>l)

<fixed string type identifier> ::=<string type identifier>

<string constant identifier> ::=<identifier>

<fixed array type identifier> ::= <array type identifier>

<scalar type identifier> ::=<scalar identifier>

<scalar variable> ::= <variable>

· <parental> : := <parental type variable>

<parental type variable> ::=<variable>

See Section 11 for the details of these built-in functions.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBtL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS

Examples:

Factors:
x
15
(x + y + z)
$colorset [red, c, green]
not p

Terms:
x * y
i div 3
p and q
(x <"'= y) and (y < z)

Simple expressions:
x + y
- x
booll or bool2
i * j + 1
hue - $colorset [red, green]

Expressions:
x = 1
p <= 2
(i<j) = (j<k)
c in huel

9.1 EVALUATION OF FACTORS

9-3

86/03/.06
REV: 8

The value of a variable, as a tactor, is the value last
to it as possibly modified by subsequent assignments
components.

assigned
to its

The value of an· unsigned number is the value of type integer
denoted by it in the specified radix system.

The value of a real or longreal constant is the number denoted by
it.

String constants consisting of a single character denote the value
of type char of the character between the apostrophe marks.

String constants of n (n > 1) characters denote the fixed string
(n) value consisting of the characters between the apostrophe marks.

The constant nil denotes a null pointer value of any pointer or
relative pointer type.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.1 EVALUATION OF FACTORS

9-4

86/03/06
REV: 8

A constant identifier is replaced by the constant it denotes. If
this in turn is a constant identi~ier, the process is repeated until
a constant of one of the above forms results. The value is then
obtained as above.

The value of a set value constructor is the value obtained from
the values of its constituent expressions of type specified by its
set type identifier.

The value of an up-arrow followed by a variable of type T is the
pointer value that designates that variable.

The value of an up-arrow followed by a procedure identifier of
procedure type P is the pointer to procedure value that designates
the current instance of declaration of that p~ocedure.

A function reference specifies the execution of a function. The
actual parameters are substituted for the corresponding formal
parameters in the declaration of the function. The body is .then

. executed. The value of the function reference is the value last
assigned to the function identifier. The meaning of, and
restrictions on, the · actual parameters is the same as for the
procedure call statement (see 10.5.1).

The value of a parenthesized expression. is the value of the
expression which is enclosed by the parentheses.

The type of the value of a factor obtained from a variable or
function reference whose type is a subrange of some scalar type is
that scalar type.

9.2 OPERATORS

Operators perform operations on a value or a pair of values to
produce ~ new value. Most .of the operato~s are defined only on basic
types, though some are defined on most types. The following sections
define the range of applicability, as well as result, of the defined
operators. An operation on a variable or component which has an
undefined value will be undefined in result.

9.2.1 NOT OPERATOR

The not operator, not, applies to factors of type bQolean. When
applied the meaning is negation; i.e., not true~ false and not false

true.

CDC Private

9-5
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

9.0 EXPRESSIONS .
9.2.2 MULTIPLYING OPERATORS

9.2.2 MULTIPLYING·OPERATORS

The. following table shows the multiplying operators, the types of
their permissible operands, and the· type of the result.

+--------+-------------------------------+-----------+-----------+
!Operator! Operation !Operands Result
+--------+-------------------------------+-----------+--~--------+
* multiplication integer or integer

integer
subrange
real
longreal

real
longreal

+-------------------------------+-----------+-----------+
set intersection . set of type set of type
-. the set consisting of T T

elements common to the
two sets

+--------+-------------------------------+-----------+-----------+
div integer quotient

for a, b, n positive
integers
a div b = n where n is the
largest integer such
that b,.cn < = a

for one or two negative
integers
(-a) div b : (a) div (-b)
- (a div b),a div b =
(-a) div (-b) - -

integer or integer
integer
subrange

+--------+-------------------------------+-----------+-----------+
I
/ lreal and longreal quotient lreal lreal

. longreal longreal
+--------+-------------------------------+-----------+-----------+

mod remainder function integer or integer
--- a mod b : a - (a div b)*? integer

subrange
+--------+-------------------------------+-----------+-----------+

and logical 'and' boolean boolean
true and false : fal$e
true and true = true
false and fals; = false ----- --- ----- - -----false and true = false

*When the first ~perand is
false, the second is never
evaluated.

+--------+-------------------------------+-----------+-----------+

CDC Pri_vate

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.2.3 SIGN OPERATORS

9.2.3 SIGN OPERATORS

9-6

86/03/06
REV: 8

The + operator can be applied to integer, real and longreal types
only. For types integer, real and longreal it denotes the identity
operation and results in integer, real or longreal type (i.e., a= +
a). -

The operator can be applied to integer, real, longreal and set
types only. It denotes sign inv.ersion--i.e., -a 0 a for
integers, rea.ls or longreals. It denotes complementation for sets
with respect to the base type - i.e., the set of all elements of the
base type not contained in the specified set.

9.2.4 ADDING OPERATORS

The following table shows the adding operators, the types of their
permissible operands, and the type of the r~sult.

CDC Private

9-7
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8
----.---~-------------
9.0 EXPRESSIONS
9.2.4 ADDING OPERATORS

+--------+------------------------------+----------------+-----------+
I Operator I Operations I Operands Result
+--------+------------------------------+----------------+-----------+

+ addition integer or integer
integer subrange
real real
longreal longreal

+------------~-----------------+----------------+-----------+
set union set of type set of type
- the set consisting of all T T

elements of both sets.
+--------+------------------------------+----------------+-----------+

subtraction integer or integer
integer subrange
real real
longreal longreal

+------------------------------+-------------~--+-----------+
boolean difference boolean boolean

true - true .:. false,
true - false .:. true
false - true .:. false,
false - false .:. false

+------------------------------+----------------+-----------+
·set difference set of type set of type
- the set consisting of --- -r --- -r

elements of the left operand
that are not also elements
of the right operand.

+--------+------------------------------+----------------+-----------+
or logical 'or' boolean boolean

true or true .:_.true,
true or false = ~rue ---- -- ----- - ----false £!:_ true .:. true,
false or false = false

* When the first-operand .
is true, the second is
never evaluated.

+--------+------------------------------+----------------+--~--------+
xor exclusive 'or' boolean boolean

·true .!£!:. true .:. false
true xor false = true ---- --- ----- - ----
false .!£!:. true ·.:. true
false xor false = false ----- --- ----- - -----+------------------------------+----------------+-----------+
symmetric difference
- the set of elements

contained in either
set but not both set~.

set' of type
T

set of type
T

+--------+------------------------------+----------------+-----------+
CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.2.5 RELATIONAL OPERATORS

9.2.5 RELATIONAL OPERATORS

9-8

86/03/06
REV: 8

Relational operators are the primary means of testing values in
CYBIL. They yield the boolean value true if the specified relation
holds between the operands, and the value false, otherwise.

9.2.5.1 Comparison of Scalars

All six comparison operations< (less than), <= (less than or
equal to), > (greater than), >= (greater than or equal to),= (equal
to), and<> (not equal to) are defined between operands of the same
scalar type, or substrings of length one and char.

For operands of type integer they have their usual meaning.

For operands of type boolean the relation false < true defines the
ordering.

For operands, a and b, of ·type char, the relation a £E. b holds if
and only if the relation $integer(a) _2£ $integer(b) holds, where £E.
denotes any of the six comparison operators and $integer is the
mapping function from character type to integer type defined by the
ASCII collating sequence.

For operands of any ordinal type T, a b if, and only if, a and b
are the same value; a < b · if, and only if, a precedes b in the
ordered list of values defining T.

Operands of type subrange of
compared with operands whose
subrange of that parent type.

9.2.5.2 Comparison of Pointers

some
type

parent scalar type may be
is the parent type or another

Two pointers can be compared_ if they are pointers to either
equivalent. or potentially equivalent types. In the latter case, one
or both of the pointers may be pointers to adaptable or bound variant
types. The instantaneous type of such pointers must be equivalent to
the type of the pointer they are being compared with; if it is not,
the operation is undefined.

·Pointers may be compared for equality and inequality only.

A pointer of any type may be compared for equality or inequality
with the value nil.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.2.5.2 Comparison of Pointers

9-9

86/03/06
REV: B

A pointer comparison results in equality if both pointers
designate the same variable, or if they both have the value nil.

Two pointers to procedure are equal if they designate the same
instance of declaration of a procedure.

9.2.5.3 Comparison of Relative Pointers

Relative pointer comparison is allowed only for relative pointers
of equivalent type. Two relative pointers are equal if the
relationship #P.!!_ (p,P) = #P.!!_ (q,P) holds, where p and q denote
relative pointers of equivalent type, and P denotes a variable whose
type is equivalent to the parental types of these relative pointers.

A relative pointer of any type may be compared for ~quality or
inequality with the value nil. A relative pointer comparison results

·in. equality if both relati;;-pointers have the value nil.

9.2.5.4 Comparison of Floating Point Types.

All six relations are defined between operands of real and
longreal types, respectively. Comparison for equality and inequal~ty
is done· within the precision limits of the host machine.

9.2.5.5 Comparison of Strings

All six relational operators may be applied to operands whose
values are strings. If .the actual lengths of the two strings
entering into the operation are unequal, blanks are conceptually
appended to the string having the shorter length.

Strings are compared to each other character by character from
left to right until total equality or inequality is determined, as
follows. Let n be the length of the strings a and b (n > 1), and .2.P.
be any of the six comparison operators, then:

0 a = b iff a(i) = b (i) for all l<i<n

0 For op one of <>, <, >

a op b iff for some k, l<k<n
a(k) op b (k) AND
a(i) b (i) for l<i<k

0 a > b iff a b OR a > b

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.2.5.5 Comparison of Strings

o a < = b iff a = b OR a < b

Comparing two null strings results in equality.

9.2.5.6 Relations Involving Sets

9-10

86/03/06
REV: 8

The relation a in s is true if the scalar value a is a member of
the set value s. The base type of the set must be the same as; or a
subrange of, the type of the scalar, or the scalar type may be a
subrange of the base type of the set.

The set operations = (identical to), <> (different from) <= (is
included in), and>= (includes) are defined between two set values of
the same base type.

sl = s2 is true if all members of sl are contained
in s2, and all members of s2 are contained in sl.

sl <> s2 is true when sl = s2 is false.

sl <= s2 is trae if all members o.f sl are also
members of s2.

sl >= s2 is true if all members of s2 are also
members of sl.

9.2.5.7 Relations Involving Arrays and Records

1) Arrays may never be compared. Structures which contain an array
as component o~ field may never be compared.

2) Variant records can not be compared. Other record types may be
compared for equality or inequality only. Two equivalent records
are equal if and only if corresponding fields are equal.

9.2.5.8 Non-Comparable Types

Certain types in the language cannot be compared. These are
heaps, sequ~nces, arrays, variant records, and records containing a
field of a non-comparable type. However, pointers to non-comparable
types can be compared.

9.2.5.9 Table of Comparable Types and Result Types

The following table shows the relational operators, the types of

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9. 0 EXPRESS IONS ·
9.2.5.9 Table of Comparable Types and Result Types

their permissible operands, and the type of the result.

9-11

86/03/06
REV: 8

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9e2.5.9 Table of Comparable Types and. Result Types

9-12

86/03/06
REV: 8

+----------+----------------+-----------+-----------+------------+
I Operator I Operation . I Op~:=~d I o:!~::!d I Result I
+----------+----------------+-----------+---~-------+------------+

< - less than any scalar T' where boolean

<=

>
>=

- less than or
equal to

- greater than
- greater than

or equal to
- equal to

type T T and T'
are comp­
arable

+-----------+-----------+------------+
string(n) string(n) boolean
S(k) * char boolean
char S(k) * boolean

<> - not equal to
+----------+----------------+-----------+-----------+------------+

in set membership any scalar set of T' boolean
test type T where T'

and T
are
comp­
arable

+-----------+-----------+------------+
I s (k) ,"c I set of I boo 1 e an I I ·

· char type
+----------+----------------+-----------+-----------+------------+

- identity set of T set of T boolean
<> - different where T is
<= is contained any sca-

in lar type
>= - contains

+----------+----------------+-----------+-----------+------------+
equal to any non- T (the boolean

<> - not equal variant same type)
to record

type T
contain­
ing no
arrays

any
pointer
type T
or nil

T or nil ·boolean

+----------+----------------+-----------+-----------+------------+
(*) Substring of form S(k) with a length of one implied.
The form S(k,l) is not legal in these contexts.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
·9.3 ORDER OF EVALUATION

9.3 ORDER OF EVALUATION

9-13·

86/03/06
REV: 8

The rules of composition specify operator precedence according to
five classes of operators. The ·not operator has the highest
precedence, followed by the multiplying operators, followed by the
sign operators, then the adding operators, and finally, with the
lowest precedence, the relational operators.

The precise order in which the operands entering into an
expression are evaluated is only partially defined. The order of
application of operators is defined by the composition rules (and
their implied hierarchy of operator precedence) with the exception
that the order of application is undefined for any sequence of
commut~tive operators of the same precedence class. For example:

1) The expression a * b * c div d is evaluated as (a * b * c) div d,
and the internal order of evaluation of the first term is
undefined.

2) The expression a + b + c - d is evaluated as (a + b + c) -d, with
the 1nternal order of evaluation of (a + b + c) undefined.

3) In the evaluation of boolean expressions, terms and factors are
evaluated from left to right, and evaluation terminates as soon
a~ the value of the term or expression is determined.

CDC Private

crBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10-1

86/03/06
REV: 8

----------------~----------------------------------~-----------------

10.0 STATEMENTS

10.0 STATEMENTS

Statements denote algorithmic actions, and are said to be
executable. A statement list denotes an ordered sequence of such
actions. A statement is separated from its successor.statement by a
semicolon. The successor to the last statement of a statement list
is determined by.the structured statement or procedure of which it
forms a part.

<statement list> ::= <statement>{;<statement>}

<statement> ::= <assignment statement>
<structured statement>
<control statement>
<storage management statement>

10.1 SEMICOLONS-AS STATEMENT LIST DELIMITERS

Since the successor of the last statement of a statement list is
uniquely determined by the structured statement or procedure of which
it is a part, semicolons are not required as statement list
delimiters. However, since the ~ statement is allowed,
semicolons may be so used for consistency of presentationo

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.2 ASSIGNMENT STATEMENTS

10.2 ASSIGNMENT STATEMENTS

10-2

86/03/06
REV: 8

The assignment statement is used to replace the current value of a
variable by a new value derived from an expression.

<assignment statement> ::=<variable> :=<expression>

10.2.1 ASSIGNMENT COMPATIBILITY OF TYPES

The part to the left of the assignment ·operator (:=) is evaluated
to obtain a reference to some variable. The expression on the right
is evaluated :to obtain a value. The value of the referenced variable
is replaced by the value of the expression.

The variable on the left may be of any data type except for:

o Any variable specified as read-only, or a formal value parameter
of any containing procedure.

o Any bound variant record.

o The tag field of any bound variant record.

o Heaps, and arrays and records containing heaps.

The variable or function identifier on the left and the expression
on the right must be of equivalent instantaneous type, except ·as
noted below:

o The types of the variable and the expression may be subranges of
equivalent parent types. If the value of the expression is not a
value of the type of the variable, the progr~m is in error.

o If the left part is a character variable, a string variable or a
substring, the expression may be a character expression, a string
or a substring.

o If the strings, substrings or character elements are not of equal
length and the destination part (left part) is the longer, the
assignment operator will append blanks at the right end of the
destination variable. If the source part (right part) is longer,
the assignment will truncate the value of the source part on the
right to fit the destination part.

o Assignment of two substrings which overlap one another is not
allowed and the results are unpredictable.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

GYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.2.1 ASSIGNMENT COMPATIBILITY OF TYPES

10-3

86/03/06
. REV: 8

o If the left part is a variant record, the right part may be a
bound variant record of otherwise equivalent types.

o If the left part is a pointer, its lifetime must not survive the
lifetime of the data to which it is pointing. For example, a
static pointer variable cannot point to a local variable. This
rule also applies to a poin~er assigned by an allocation
statement.

o lf the left part is a pointer to a bound variant record, the
expression may be a pointer to an otherwise equivalent 'unbound'
variant record.

o If the left part is an adaptable pointer or a pointer to sequence,
the right part must be either a pointer to any of the
instantaneous types to which the left part pointer can adapt, or
an adaptable pointer which has been adapted to one of those types.
Both the type of the expression and its value are assigned, thu.s
setting the current type of the assignee.

o If the left part is a fixed pointe.r type other than pointer to
sequence, the right part may be a pointer to cell. The only
effect of the assignment is as follows: after the assignment, the
value returned by an application of the #loc function on the
de-referenced value of the lefthand side as arg;;;;nt will be equal
to the right-hand side value.

o If the left part is a pointer to cell, the right .part may be a
pointer type. The value assigned is a pointer to the first cell
allocated for the vari~ble pointed-to by the right side.

o Warning: Note that generally a pointer value ·has a finite lifetime
(see Section 6.2.2) different from that of the pointer variable.
Automatic variables cease to exist· on exit from the block in which
they were declared. Allocated variables cease to exist when they
are freed. Attempts to reference non-existent variables by a
designator beyond their lifetime is a programming error and could
lead to disastrous results.

10.3 STATEMENT LABELS

A structured statement may be labeled by preceding it with a
structured statement identifier. This allows the statement to be
explicitly referred to by other constituent statements (e.g., exit,
cycle). Such a labeling of a statement constitutes the declaration
of the structured statement identifier and hence the identifier must
differ from all other identifiers declared in the same block.

CDC Private

CYBER IMPLEMeNTATION LANGUAGE

CYBIL LANGUAGE 'SPECIFICATION

10.0 STATEMENTS
10.3.1 SCOPE OF STRUCTURED' STATEMENT IDENTIFIERS

10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS

10-4

86/03/06
REV: 8

If a structured statement identifier labels a constituent
structure~.statement of a procedure or. function declaration, then its
scope is that procedure or function declaration. It is impossible to
refer to a structured statement designator on a structured statement
from outside that statement. A structured statement designator may
optionally follow a structured statement (except repeat •• until), in
which case it must be identical to the structured statement
designator labeling that statement. This is for checking purposes
only, and does not affect the meaning of the progr~m. The scope of a
structured statement identifier does not include procedures called
from within its scope.

<structured statement designator> ::=
L <structured statement identifier> L

<structured statement identifier> ::=<identifier>

Example:

/check_range/
while val < 0 do

whilend /check_range/;

10.4 STRUCTURED STATEMENTS

Structured statements are constructs composed of statement lists.
They provide scope control, selective execution, or repetitive
execution of their constituent statement lists.

<structured statement> ::= [<structured statement designator>]
<repeat statement>

I [<structured statement designator>] <delimited statement>
[<structured statement designator>]

<delimited statement> ::= <begin statement>

I

<while statement>
<for statement>

10. 4 .. 1 BEGIN STATEMENTS

Begin statements permit the execution of a single statement list.
Exit is either through completing execution of the last statement of

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.4.1 BEGIN STATEMENTS

10-5

86/03/06
REV: 8

the statement list or through an explicit transfer of control.

The successor of the last statement of the statement list of a
begin statement is the successor of the begin statement.

~begin statement> !:=
begin <statement· list> end

10.4.2 WHILE STATEMENTS

A while statement controls repetitive_ execution of its constituent
statement list.

<while statement> ::=
while <expression> do <statement list> whilend

The expression controlling repetition must be of type boolean.
The statement list is repeatedly executed until the expression
becomes false. If its value is false at the beginning, the statement
list is not executed at all.

The successor of the last statement of the constituent statement
list of a while statement is the.while statement itself.

Examples:

while a[i] <> x do
i := i + 1;

whilend;

while i > 0 do
if i = z then

z := z ,'t x;
ifend;
i := i div 2;
x := x ,'t x;

whilend;

10.4.3 REPEAT STATEMENTS

A repeat statement controls
constituent statement list.

<repeat statement> ::=

repetitive

repeat <statement list> until <expression>

execution of its

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 S':l'ATEMENTS
10.4.3 REPEAT STATEMENTS

10-6

86/03/06
REV: 8

The expression controlling repetition must be of type boolean.
The statement list between the symbols repeat and until is repeatedly
(and at· least once) executed until the expression becomes true.

Example:

repeat
k ·= i mod j; .
i := j;
J ·= k; .

until J = O;

10.4.4 FOR STATEMENTS

The for statement indicates that its constituent statement list is
to be repeatedly executed while a progression of values .is assigned
to a variable, which is called the control variable of the for
statement.

<for statement> • ·=": . ~ . .

for <control variable> := <for list> do .
<statement list> forend

<for list> ::=
<initial value> to <final value>

!<initial value> downto ·<final value>

<control variable> ::=<variable identifier>
<initial value> ::= <scalar expression>
<final value> ::= <scalar expression>
<scalar expression> ::=<expression>

The control variable, initial value and final value must all be of
equivalent scalar type or subranges of equivalent types.

The control variable may not be an unaligned component of a packed
structure.

Assignment to the control variable, either explicit or by passing
as a var _parameter, within tbe statement list is a fatal compilation
error.

The initial value and final value are evaluated once on entry to
the for statement, as is the name of the control variable. Thus,
subsequent assignments to components of these expressions have no
effect on the sequencing of the statement.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.4.4 FOR STATEMENTS

10-7

86/03/06
REV: 8

If the initial value is greater than the final value in the to form,
or if the initial value is less than the final value in the downto
form, then no assignment is mad_e to the control varia,ble and the
statement list is not executed.

If the exit from the statement is a normal one, then the value of
the control variable is the final value. If the exit is caused by
the exit statement, the value of the control variable is that which
was in effect when the exit statement was executedo

10.5 CONTROL-STATEMENTS

Control statements cause the transfer of control to a different
execution environment or to a statement other than the successor
statement in the same environment, or both.

<control statement> ::= <procedure call statement>
<if statement> I <case stat~men~>
<cycle statement> . , ..
<exit statement> I <returh~~tatement>
<empty statement>

10.5.1 PROCEDURE CALL STATEMENT

A procedure call statement causes the creation of an environment
for the execution of the specified procedure and transfers control to
that procedure. (cf •. , Chapter 8. 0 Procedures.) A procedure cal 1
statement may never be used to activate a function.

·<procedure call statement> ::=
<procedure reference> <actual parameter list>

<procedure reference> ::=<procedure identifier>
<pointer to procedure reference> t

<pointer to procedure reference> ::=<pointer reference>

<actual parameter list> ::=
(<actual parameter>{,<actual parameter>})

I <empty>

<empty> ··= ..
<actual parameter> • ·= .. <expression>

<variable>
<empty>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.5.1 PROCEDURE CALL STATEMENT

10-8

86/03/06
REV: 8

The actual parameter list must be compatible with the formal
parameter list ·of the procedure. An actual parameter corresponds to
the formal parameter which occupies the same relative position in the
formai parameter list.

10.5.1.1 Value Parameters

A value parameter causes the association within the called
procedure of the value of the actual parameter at the point of call
with the name of the formal parameter. The type of the parameter is
fixed as follows:

1). If the formal parameter is of fixed type, then the actual
parameter may be any expression which could be assigned to a
variable of .that type, except in the case of strings which must
be of equal length.

2) If the formal parameter is of adaptable type, the instantaneous
type of the actual paramet~r must be one of those to which the
adaptable type can adapt.

3) If the formal parameter is an adaptable pointer, then the actual
parameter may be any pointer expression which could be assigned
to that adaptable pointer. Both the· value and the instantaneous
type of the actual parameter are assigned, thus fixing the type
of the formal parameter.

10.5.1.2 Reference Parameters

A !,!.!: parameter causes the formal parameter to
actual parameter throughout execution of the procedure.
to the formal parameter thus cause changes to the
actual parameter. An actual parameter corresponding to
parameter must be addressable.

designate the
Assignments

corresponding
a var formal

The type designated by the formal parameter is fixed as follows:

1) If the formal parameter is of fixed type, the actual parameter
must be a variable or substring reference of equivalent type.

2) If the formal parameter is of adaptable type, the actual
parameter must be a variable or substring reference whose type is
potentially eq~ivalent.

·CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.5.2 IF STATEMENTS

10.5.2 IF STATEMENTS

10-9

86/03/06
REV: 8

The if statement provides for the execution of· one (and only one)
of a set of statement lists depending on the value of boolean
expression(s). The boolean expression(s) following the if or elseif
symbols are evaluated in order until one is found whose value is true

The subsequent statement list is then executed.

If the value of all Boolean expression(s) are false, then either
no statements are executed, or the statement list following the else
symbol is executed (if present). ~~

The successor to the last statement of a constituent statement
list of an if statement is the successor of the if statemento

<if statement> ::=
if <if body> ifend

<if body> : := <expre.ssion> then <statement list>
[else <statement list>--r-:ilseif <if body>]

Examples:

if x < y then
x := y;

if end;

if ~ <= 5 then
z := l;

elseif x > 30 then
z := 2;

elseif x = 15 then
z ·= 3; .

else
z ·= 4; .

if end;

In the first example, ! takes on the value of ~ if and only if the
relation x < y holds>. In the second example, z will take on one of
the values (1,2,3,4) depending on the value of i'.

10.5.3 CASE STATEMENTS

A case statement selects one of its component statement lists for
ex~cution dependi~g on the value of the selector expression.

<case statement> ::=case <selector> of <cases>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10-10

86/03/06
REV: 8

~--
10.0 'STATEMENTS
10.5.3 CASE STATEMENTS

[else <statement list>] casend

<selector> ::= <scalar expression>

<cases> ::= <a case;{;<a case>}
<a case> ::==<selection spec>{,<selection spec>}=

<statement list>

<selection spec> ::=
<constant scalar expression>

[•• <constant scalar expression>]

The case statement selects for execution that statement list (if
any) which has a selection specification which includes the value of
the selector. If no selection specification includes the value of
the selector, the statement list following else is selected when the
else option is employed. If the value o~he selector is not
included in any selection spec and the else is omitted, the program
is in error.

The selector and all selection specifications must be of the same
s·calar type or subranges of the same type. No two selection
specifications may include the same values (i.e., selection must be
unique).

Selection specs are restricted to simple constant scalar
expressions. In the. form constant scalar expression! constant
scalar expression2 the value of constant scaiar expression! must be
less than or equal to the value.of constant scalar expression2. It
signifies all of the constants in the inclusive range from constant
scalar expression! up through and including constant scalar
expression2. It is semantically equivalent to having all the
constants in the range constant scalar expression! through constant
scalar expression2 listed separately in selection spe.cs.

The successor of the last statement of a selected statement list
is the succe·ssor of the case statement.

CDC Private

CYBER_IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.5.3 CASE STATEMENTS

Examples:

case operator of
=plus= x := x + y;
=minus= x := x - y;
=times= x := x * y;

casend;

case i of
=1= x := x+l;
=2= x := x+2;
=3= x := x+3;
=4= x := x+4;

else
x := -x;

casend;

~
· lextype (basic, inconst, realconst, stringconst,

identifier),
symbol = record

.£!.!.! lex :. lextype of
=basic=

name : symbolid,
class : operation,

=inconst=
value : integer,
optimiz : boolean,

=realconst=
rvalue : real,

=stringconst=
length : 1.. 255,
stringbuf : tstring(* <= 255),

=identifier=
identno : integer,
decl : tsymbolentry,

casend,
rec end;

var
cursym : symbol,
sign : [static] boolean := false;

insymbol;
case cursym.lex of

=basic=
if cursym.name= minus then

sign := not sign; .
else

10-11

86/03/06
REV: 8

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE ~PECfFICATION

10.0 STATEMENTS
i0.5.3 CASE STATEMENTS

error ('missing operand');
ifend;

=inconst=
cursym.optimiz := (cursym.value<halfword);
if sign then

sign := false;
cursym.value := -cursym.value;

ifend;
=realconst=

if sign then
sign := false;
cursym.rvalue := -cursym.rvalue;

if end;
=stringconst=

10-12

. 86/03/06
REV: 8

error ('string constant where arithmetic type expected');
=identifier=

cursym.decl := symbolsearch;
if cursym.declt.typ <> constdecl then
-variable (cursym.decl);
else

cursym := cursym.declt.valuet;
ifend;

casend;

10.5.4 CYCLE STATEMENT

The cycle statement allows the conditional by-passing of the
remainder of the .statements of the constituent statement list of the
designated repetitive statement, causing reevaluation of the
expression controlling the structured statement, thus cycling it to
its next ~teration (if any).

<cycle statement> ::= cycle <structured statement identifier>

The structured statement identifier must identify a. repetitive
statement (for, while, or repeat statement), which statically
encompasses the cycle statement, i.e., the cycle statement must be
within the scope of the structured statement.

Thus, the cycle statement has
re-executing the statement list of a
for, repeat, or while.

the effect
repetitive

of (potentially)
statement such as

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10~0 STATEMENTS
10.5.4 CYCLE STATEMENT

Examples:

x := table[l];
/find smallest/

for-k := 2 to n do
---rf x < table[k--] then

--cycle /find_smallest/;
ifend;

10-13

86/03/06
REV: 8

;-:=-table[k]; {this assignment skipped when x < table[k]}
{this finds the smallest value in table[l] thru table[n]}

forend /find_smallest/;

10.5.5 EXIT STATEMENT

The exit statement causes execution to continue at the successor
of a designated structured statement,'procedure or function.

<exit statement> ::=exit <exit designator>

<exit designator> ::=<structured statement designator>
<procedure identifier>
<function identifier>

If a procedure or function identifier is designated as the object
of the exit, then that procedure or function must statically
encompass the exit statement within the same module. If a structured
statement designator is the object of the exit, then that identifier
must be for a structured statement which statically encompasses the
exit statement within the same module.

Note that the exit statement permits multiple levels of exit with
a single statement. Thus, exit can permit recursive nests to be
terminated with a single statement by selection of the appropriate
procedure or function identifier. In the case of recursive nests,
the result is exiting the most recent invocation of the procedure or
function specified, and any intervening procedures of functions which
have been activated.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.5.5 EXIT STATEMENT

Examples:
/meaningful label/
.begin - {example of exit <label>}

x := y + 27;
found := false;

/for while loop/
fo; k :=-1 to 10000 do

j := k;
if (i mod 2) = 0 then
b[k] := false;
else
prime(i, answer); {test if prime}
while true do
if a~r--; 5 then

10-14

86/03/06
REV: 8

--exit /for_while_loop/; {goes to 'bound:= j;' statement}
ifend ;

a;:;;;;; := answer - 5;
if answer <= 0 then
--exit /meaningful label/; {exit: while, for

{and begin stmt a~d goes to ' if found then ••• '}
if end; ·

whilend;
ifend;

forend /for while loop/;
{exit /for=while=loop/ causes control to transfer here}
bound := j;
found := true;

end /meaningful label/;
{exit /meaningf~l label/; causes control to transfer here}
if found then ••• -

10.5 .. 6 RETURN STATEMENT

The return statement causes the current .procedure or function to
return i.e. completes the current activation of the procedure or
function.

<return statement> ::=return

10.5.7 EMPTY STATEMENT

An empty statement denotes no action and cons_ists of no symbols.

<empty statement> ::=

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10-15

86/03/06
REV: 8

---~------------------~
10.0 STATEMENTS
10.6 STORAGE MANAGEMENT STATEMENTS

10.6 STORAGE MANAGEMENT STATEMENTS

There are two storage types, sequences and heaps, defined in the
language, each with its own unique ·management and access
characteristics. Variables of such types define structures into
which other variables may be placed, referenced, and deleted under
program control according to the discipline implied by the type of
the storage variable. Storage management statements are the means
for effecting this control, and for managing the placement of
variables into the stack.

<storage management statement> ::= <push statement>
<next statement>
<reset statement>
<allocate statement>
<free statement>

10.6.1 ALLOCATION DESIGNATOR

An allocation designator specifies the type of the variable to be
managed by'· the storage management statements. An allocation
designator is either:

A) A pointer to a fixed type, in which case a variable of the type
designated by the pointer variable is specified;

or

B) An adaptable pointer (or bound variant record pointer) followed
by a~ fixer (see below) which specifies the adaptable bounds,
lengths, sizes, or tag fields, in which case a variable of the
resultant fixed type is ·designated and the adaptable or bound
variant record pointer i$ set to designate a variable of that
type.

<allocation designator> ::=
<fixed pointer variable>
<adaptable array pointer variable>. : [<star fixer>]
<adaptable string pointer variable> :-[<length fixer>]
<adaptable storage pointer variable> :-[]­
<adaptable record pointer variable> : [<adaptable fi;ld fixer>l
<bound variant record pointer variable>

J<tag field fixers>l

<fixed pointer variable> ::=<pointer variable>

<adaptable array pointer variable> ::= <pointer variable>

CDC Private

10-16
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

10.0 STATEMENTS.
10.6.1 'ALLOCATION DESIGNATOR

<adaptable string pointer variable> ::=<pointer variable>

<adaptable storage pointer variable> ::=<pointer variable>

<adaptable recbrd pointe~ variable> ::= <pointer variable>

<bound vaEiant record pointer variable> ::=<pointer variable>

<tag field fixers> ::= <scalar expression>
I <constant fixers->[,<scalar expression>]

<constant fixers> ::=<constant scalar expression>
{,<constant scalar expression>}

<adaptable field fixer> ::=<star fixer>

!
<length fixer>

<star fixer> ::=<scalar expression> •• <scalar expression>
<length f.ixer> : :·= <non-negative integer expression>
<$~an fixer> ::= [{, }]
 ::= [.!:.!£<~on-negative intege; expression> of]
· · <fixed type identifier>

1) Star fixers are used in the fixing of adaptable bounds of arrays.
Values for both ·the lower and upper bound must be specified in
the star fixer. If the lower bound was provided by a lower bound
spec, the corresponding value specified in the star fixer must be
identical to the value specified by the lower bound spec.

The lower bound is permitted to exceed .the upper bound by one.
In this case a valid address is assig~ed. to the adaptable array
pointer variable, but no storage is allocated. The adaptable
array pointer variable is set to designate an array with the
specified upper and lower bounds.

2) Length fixers are used in the fixing o·f adaptable bounds of
strings.

3) Span fixers are used in the fixing of adaptable bounds of heaps
or sequences.

4) The type and value of an adaptable ;ield fixer must select one of
the types to which the associated adaptable pointer can adapt.

5) The order, types, and values of tag field fixers must select
those variants to which the associated bo~nd variant record
pointer can be bound. All but the last of these fag fi'eld fixers
must be constant expressions.

CDC Private

.d

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 ·sTATEMENTS
10.6.1 ALLOCATION DESIGNATOR

10-17

86/03/06
REV: 8

6) For allocation designators for adaptables, entries are required
only for the dimension which is adaptable.

7) Pointers associated with type fixers are set to designate a
·variable of the type fixed by the type fixer (whenever the
statement in which they occur is executed). They will then
designate a variable of that fixed tY,pe until they are either
reset by a subsequent assignment operation or re-fixed by a type
fixer in a subsequent storage management operation.

Example:

~
tipe array [1.. *] of array [1.. 5] of array [10 •• 20]

of array [21 •• 24] of integer
var
point ttipe ,
bunch : heap (rep 25000 of integer) ;

{point is an adaptable pointer variable}

reset bunch;

allocate point [1 .. 15] in bunch

This allocate statement would cause the allocation of an array of
four dimensions with components of type integer, with dimensions:

1 to 15, 1 to 5, 10 to 20, and 21 to 24.

and would set-the pointer variable,~point, to de•ignate that array.

CDC- Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.6.2 PUSH STATEMENT

10.6.2 PUSH STATEMENT

. 10-18

86/03/06
REV: 8

The push statement causes the allocation of space for a variable
on the stack and sets an allocation designator to designate that
variable (or to the pointer value nil if there is insufficient .space
for the allocation). The value of the newly allocated variable (or
of any component thereof, in the case of structured variables)
remains undefined until the subsequent assignment ·of a value to the
variable or to its components.

<push statement> ::= push <allocation designator>

10.6.2.1 The Stack

A variable allocated on the stack can not be explicitly
de-allocated by the user. Instead, de-allocation occurs
automatically on exit from the procedure containing the allocating
push ·statement, at which time space for the variable is released and
its value becomes undefined.

Example:·

~ localarray : tarray [i .. *] of integer
push localarray : [1 •• 20];

{allocate space for array [1 •• 20] of integer on
{the stack, i-th element can be referenced
{as localarrayt[i]}

10.6.3 NEXT STATEMENT

The next statement sets the allocation designator to designate the
current element of the sequence, and causes the next element to
become the current element. This results in the positioning
information in the variable of type pointer to sequence to be
updated. After a reset or an allocation of a sequence, the current
element . is the first element of the sequence. Note that the ordered
set of variables comprising a sequence is determined algorithmically
by the sequence of execution of next statements.

The type of the pointer variable when the data is retrieved from a
sequence must be equivalent to the pointer variable as when that same
data was stored into the sequence; otherwise, the program is in
error.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.6.3 NEXT STATEMENT

<next statement> ::=

10-19

86/03/06
REV: 8

next <allocation designator> in <pointer to sequence reference>

<pointer to sequence reference> ::= <pointer to sequence variable>
<function reference>

<pointer to sequence variable> ::=<pointer variable>

The operation of the next statement is· defined in terms of two
cursors: the present_cursor and the next cursor. For the next
operation, the 2resent_cursor is set to the next cursor, the
next_cursor is incremented by the size of the type of the allocation
designator, and the variable is set to the location value of the
present_cursor.

If the execution of
next cursor to lie outside
allocation designator is
positions remain unchanged.

Example:

a next statement would cause
the bounds of the sequence,
set to the value nil and

next length ptr in buf ptr ;
next stgptr-: [1::1ength_ptrt] in buf_ptr

10.6.4 RESET STATEMENT

the n~w

then the
the cursor

The reset statement cau~es either positioning in a sequence, or
en-masse freeing of all variables of a heap. Space for freed
variables is released and their values become undefined.

<reset statement> ::=
reset <pointer to sequence variable> [to <pointer reference>]
I reset <heap variable>

. Warning: a res
statement for any
or heap to an 'en

10.6.4.1 Reset Se

The reset seqt
contained in a ~

the optional to c

sequence become:
specified, the e
variable> becom1

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.6.4.1 Reset Sequence

10-20

86/03/06
REV: 8

pointer variable whose value had not been set by a next statement for
the same sequence, or whose value is nil, is an error.

10.6.4.2 Reset User Heap

The reset heap statement causes all elements currently allocated
in the specified heap to be freed en-masse.

10.6.5 ALLOCATE STATEMENT

The allocate statement causes the allocation of a variable of the
specified type in the specified heap and sets the allocation
designatoT to designate that variable or to the valµe nil if there is
insufficient space for the allocation. If a heap variable is not
specified, the allocation takes place out of the default heap.

Note that the first allocate statement for any heap (other than
the default heap) must be preceded by the execution of a reset
statement for that heap, or the program will be in error.

<allocate statement> ::= allocate <allocation designator>
[in <heap variable>]

<heap variable> ::=<variable reference>

Examples:

Y.!! my_array: tarray [O •• *] of integer;

allocate my array: [0 •• 49]; {allocate space.in default heap}
allocate sy;_ptr in symbol_table;

10.6.6 FREE STATEMENT

The free statement causes the deletion of a specified variable I
from the specified heap or from the default heap if the in clause is .
omitted: space for the variable is released, and its value becomes
undefined.

A pointer variable specifies the variable to be freed. If the
variable specified is not currently allocated in the heap, the effect
is undefined. Execution of the free statement sets the pointer
variable to the value nil. Use of a pointer variab~e with a value of
nil to attempt data access is an error. Freeing a nil pointer is an

error.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.6.6 FREE STATEMENT

<free statement> ::=
free <pointer variable>[in <heap variable>]

Examples:

free sym_ptr in symbol_table;
free my_array;

10-21

86/03/06
REV: 8

CDC Private

·cYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

11. 0 STAN.OARD PROCEDURES ANQ FUNCTIONS

11.0 STANDARD PROCEDURES AND FUNCTIONS

11-1

86/03/06
REV: 8

Certain standafd procedures and functions have been defined for·
CYBIL which have been included because of the assumed frequency of
their use or because they would be difficult or i~possible to define
in the language in a machine-independent way.

11.1 BUILT-IN PROCEDURE

11.1.1 STRINGREP (S, L, P {,P})

In this procedure, S is a <string variable>, L is a <result
length>, and P is a <concatenation element>.

The string representation procedure facilitates the conversion of
<concatenation element>s to their representation as a str~ng of
characters.

One or more <concatenation element>s are c~nverted into output
fields consisting of strings of characters. The resulting output
fields are concatenated and returned, left-justified, in the <string
variable> S. The <result length> L returned is an integer variable
whose value is the length (in characters) of the result string. If
the string representation of the resulting s~ring exceeds the length
of the <string variable> S, then right truncation occurs and the
<result length> L becomes the length .of the <string variable> S.

11.1.1.1 Concatenation Elements

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

11.0 STANDARD PRO~EDURES AND FUNCTIONS
11.1.1.1 Concatenation Elements

<concatenation element> ::=<scalar element>
<string element>
<pointer element>
<floating point. element>

<scalar element> ::=
<scalar expression>[<scalar field specifier>]

<scalar field specifier> ::=
[:<field length>] [:<radix spec>]

<field length> ::=~positive integer expression>

<radix spec> ::= #(<~adix>)

<string element> ::=
. <string expression> [<string field specifier>]

<string expression> ::=<string variable>

I
<string constant>
<substring reference>

<string field specifier> ::= :<field length>

<pointer element> ::=
<pointer reference>[<poi~ter field specifier>]

11-2

86/03/06
REV: 8

<pointer field specifier> ::= [:<field length>] [:<radix spec>]

<floating point element> ::=
<floating point expression> [<floating point field specifier>]

<floating point expression> ::=<real expression>
I <longreal expression>

<real expression> ::=<expression>

<longreal expression> ::=<expression>

<floating point field specifier> ::=
<field length> [:<fractional digits>]

<fractional digits> ::=<positive integer expression>

In general, numeric values are written right justified into the
specified fielq, with blank left fill or filled with asterisk (*)
characters if truncation would have occurred. Values specified to be
in string or character (alphabetic) form are written left justified
into the specified field, with blank right fill or filled with

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1.1 Concatenation Elements

11-3

86/03/06
REV: 8

---------------------------------------~-----------------------------

asterisk (*) characters if truncation would have occurred. In all
cases, the value of the field length, when specified, must be greater
than or equal to zero or an error will occur.

11.1.1.1.l INTEGER ELEMENT

The value of the integer expression is converted into a string
representation in the desired radix. The default radix value is 10.
The resulting string representation is placed right justified into
the output field with leading .blanks if a field length greater than
required was specified. If the field length given is not long enough
to contain all the digits and the sign character of the value of the
integer expression, then the output field is filled with a string of
asterisk characters. If the integer expression is negative in value,
then a minus sign precedes the leftmost significant digit within the
field. If positive, then a blank character precedes the integer
value. If the field length. is omitted, then the output field is the
minimum size required to contain the intege·r value plus the necessary
leading character. If the field length specified is less than or
equal to zer~ an error will occur.

11.1.1.1.2 ORDINAL ELEMENT

The integer value of the ordinal expression is handled in exactly
the same manner as an integer element.

11.1.1.1.3 SUBRANGE ELEMENT

A concatenation element which is a subrange type is handled
exactly as the type of which it is a subrange.

11.1.1.1.4 CHARACTER ELEMENT

The single string character is placed left justified into the
output field with trailing blanks if a field length greater than
required was specified. The default field length is 1. Quoting the
radix spec for character elements· is a compilation error.

11.1.1.1.5 BOOLEAN ELEMENT

The five character string TRUE' or 'FALSE' is placed left
justified into the output field with trailing blanks if a field
length greater than required was specified·. If the field length

. given is not long enough to contain all five characters, then the
output field is filled with a string of asterisk characters. The
default field ·1ength is 5. Quoting the radix spec for boolean
elements is a compilation error.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECifICATION

11.0 STANDARD PROCEDURES AND.FUNCTIONS
11.1.1.1.6 STRING ELEMENT

11.1.1.1.6 STRING ELEMENT

11-4

86/03/06
REV: 8

The string expression is placed left justified into the output
field with trailing blanks if a field length greater than required
was specified. If the field length given is shorter than the length
of the string, then the output field is filled with a string of
asterisk characters. If the field length is omitted, then the output
field is the minimum size required to contain the string expression.

11.1.1.1.7 POINTER ELEMENT

The value of the pointer expression is converted into a string
representation in the desired radix. The default radix value is
implementation dependent and will depend on the characteristics of
the native machine. The resulting string representation depends on
the type of pointer involved, and is system and machine dependent.

The resulting string representation is placed right justified into
the output field with leading blanks if a field length greater than
required was specified. If the field length given is not long enough
to contain all the digits, then the output field is filled with a
string of asterisk characters. If the field length is omitted, then
the output field is the minimum size required to contain the pointer
value.

11_.l.1.l.8 FLOATING POINT ELEMENT

A floating point expression can be converted into either a fixed
point format or a floating point format depending on the <floating
point field specifier>. If there is no <floating point field
specifier> then the conversion is _done as if <field length> had been
specified with an implementation defined value.

11.1.1.1.8.1 Floating Point Format

E:field_length will _cause conversion into an output string of
length field_length. It will contain a mantissa/exponent
representation of E with at most max real digits or
max_longreal_digits, which are implementation -defi~ed, in the
mantissa. The exponent will contain num_exp_digits which is
implementation defined. Let Exponent be the integer such that

lO**Exponent <= ABS (E) < lO**(Exponent+l)
If E is real then
nµm_digits := MIN(field_length-4-num_exp_digits, max_real_digits)

If E is longreal then
num digits := MIN (field_length 4 num_exp_digits,
max:longreal_digits)

CDC Private

. 11-5
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1.1.8.1 Floating Point Format

If num_digits is less than 1 then the output field will be filled
with asterisks. Otherwise, the output field will consist of:-

1) if field length > num digits +4 +num exp digits then
(field_l;ngth -num_digits -4 -num_exp_digits) spaces

2) if E < 0 then '-' else one space

3) the leading digit of the decimal representation of E
after rounding to num_digits places .

. 4) the character '.'

5) the next (num_digits-1) digits of the decimal
representation of E after rounding to num_digits places

6) the character 'E' for real expressions or· 'D' for double
precision expressions

7). '+' or '-' depending on the sign of Exponent

8) num_exp_digits representing Exponent with 1 0 1
· fill on the

left if needed.

Examples: format
E:lO
E:ll

E
123.456

-123.456

output string
I 1.23E+002'
'-1.235E+002'

11.1.1.1.8.2 Fixed Point Format

E:field_length:fract~onal_digits will cause the expression E to be
converted to an output string of length field_length with
fractional_digits to the right of the decimal place. If
fractional_digits is less than zero or greater than (field_length-2)
then the program is in error. A size. error will be generated if
checking is enabled. Let E_out be the decimal representation of E
rounded to have fractional_digits to the right of ·the decimal point
and one zero to the left of the point if TRUNC(E_out)=O. Let
num_left_digits be the number of digits to the left of the decimal
point in E_out.

required_length : = num_left_digits +1 +fractional_digits;
if E out < 0 then
requTred_length := required_length + 1; {'-' required}

If f ield_length < required_length then the output string will
consist of all asterisks. Otherwise, it will consist of:

1) if · f ield_length > required_length then

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE 'SPECIFICATION

11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1.1.8.2 Fixed Point Format

(f ield_length-required_length) spaces

2) if E_out < 0 then '-' else one space

3) the first num_left_digits of E out

4) the character '.'

11-6

86/03/06
REV: .8

5) the fractional_digits of E out to the right of the decimal
point.

Example:

11.2 BUILT-IN FUNCTIONS

format
E:6:2
E:6:3
E:5:2

E
1.23456

-1.23456
0

output string
lo23'

'-1.235'
' 0.00'

The following standard functions return values of the specified
type.

11. 2. 1 SUCC (X)

The type of the expression, x, must be scalar, and the result is
the· successor value of x if it exists; if not, the program is in
error.

11. 2. 2 PRED(X)

The type of the expression, x, must be scalar, and the result is
the predecessor value of x if it exists; if not, the program is in
error.

11. 2 • 3 $CHAR (X)

Returns the character value whose ordinal number, in the ASCII
collating sequence, is given by the integer expression, X. If the
value of X lies outside that range (0 <= X <= 255), an out-of-range
error occurs.

11.2.4 $INTEGER(X)

Returns . the integer value corresponding to the value of x. The.
type of the expression, x, must be ordinal, char, boolean, integer or

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

11.0 STANDARD. PROCEDURES AND FUNCTIONS -
11. 2. 4 $INTEGER (X)

11-7

86/03/06
REV: 8

subrange of integer, real or· longreal. Th_e conversions are done as
follows:

A) if X is ordinal, the value returned is the ordinal number of the
ordinal constant identifier associated with the ordinal value;

B) if X is character, the value returned is the ordinal number, in the
ASCII collating sequence, of the value of x;

C) if X is boolean, zero (0) is returned for false and one (1) for true

D) if X is an integer value that value is returned;

E) if X is a real or longreal value, that value is first truncated to a
whole number. If the resultant value is within the range of type
integer, then that value is ·returned, otherwise, an out-of-range
error occurs.

11. 2 • 5 $REAL (X)

Returns the real number which is the implementation dependent
approximation of the integer or longreal expression. In the case of a
longreal, the most significant part is returned. Longreals are
truncated as part of the conversion.

11.2.6 $LONGREAL(X)

Returns a longreal result which is the implementation dependent
approximation of the integer or real expression.

11.2.7 STRLENGTH(X)

Returns the length of the string x. For a fixed string this is the
allocated length, and x may be either a string variable, a string type
identifier, a string constant or a string constant identifier. For an
adaptable string this is the current length and x must be an adaptable
string reference.

11.2.8 LOWERBOUND(ARRAY)

Returns the value of the low bound of the array index. The type of
the result is the index type of the array. The argument (array) may
be either an array variable or a fixed array type identifier.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

11.0 STANDARD PROCEDURES AND FUNCTlONS
- 11.2.9 UPPERBOUND(ARRAY)

11.2.9 UPPERBOUND{ARRAY)

11-8

86/03/06
REV: 8

Ret~rns the value· of the upper bound of the array index. The type
of .the result is the index type of the array. The a~gument (array)
may be. either an array variable or a fixed array type identifier.

11.2.10 UPPERVALUE (X)

Accepts as argument eit~er a scalar type identifier or a variable
of scalar type. It returns the largest possible value which an
argument of that type can take on. The type of the result is the type
of x.

11.2.11 LOWERVALUE (X)

Accepts as argument either a scalar type identifier or a variable
of scalar type. It returns the smallest possible value which an
argument of that type can take on. The type of the result is the type
of x.

11 • 2. 12 If REL_ (PO INTER [,PARENTAL])

This function produces a relative pointer value from a pointer
variable and parental variable. If the parental variable is not
supplied, the default heap is used. The relative pointer's object
type is the object type of the pointer variable, and its parental type
is that of the parental variable. The result is undefined if the
pointer does not designate an element of the parental variable.

11.2.13 lfPTR (RELATIVE POINTER[,PARENTAL])

This function is used to convert a relative pointer to a pointer,
and is required when using a relative pointer to access the object
pointed to by the relative pointer. It returns a pointer to the same
type as the object type of the relative pointer. If the parental
variable is not specified then the default heap is used. If the
parental type associated ·with the relative pointer is not equivalent
to the type of the parental variable, an error results.

11.2.14 lfSEQ (VARIABLE)

Returns
variable.

a pointer to sequence that designates
The argument variable may be of any type.

the
The

argument
following

CDC Private

CYBER IMPLEMENTATION LANGUAGE

. CYBIL LANGUAGE SPECIFICATION .

11.0 STANDARD PROCEDURES AND FUNCTIONS
11. 2 .14 I/SEQ (VARIABLE)

relations hold:

#LOC(#SEQ(x)t = #LOC(x)
#SIZE(#SEQ(x)t = #SIZE(x)

11.3 REPRESENTATION DEPENDENT FUNCTIONS

11.3.1 #LOC(<VARIABLE>)

11-9

86/03/06
REV: 8

Returns a pointer to the first cell allocated for the specified
variable. If the variable is a formal parameter, then the pointer
c~nnot be used to modify the parameter.

11.3.2 #SIZE(ARGUMENT)

Returns the number of cells required to contain the Vafiable,- or a
variable ·of the argument type. The argument may be either a variable
or a fixed, adaptable or bound variant type identifier. In the case
of adaptable type identifier the adaptable field fixer must also be
specified. In the case of the bound ·variant type identifier, the
variant requiring the largest size is the value returned.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12.0 COMPILE-TIME FACILITIES

12.0 COMPILE-TIME FACILITIES

12-1

86/03/06
REV: 8

Compile-time facilities are essentially ~xtra-linguistic in nature
in that they are used to construct the program to be compiled and to
control the compilation process, rather than having a meaning in the
program itself. These, together· with commentary and programmatic
elements of the language, are the elements of a CYBIL source text.

12.1 CYBIL SOURCE TEXT

<text> ::= <text item> {<text item>}

<text item> ::= <pragmat statement>
<compile7time statement>
<identifier>
<constant>
<basic symbol other than ??>
<comment>

<compile-time statement~ ::= <compile-time declaration>

I
<compile-time assignment>
<compile-time if>

12.2 COMPILE TIME STATEMENTS AND DECLARATIONS

12.2.1 COMPILE-TIME VARIABLES

Compile-time variables of type boolean may be declared by means of
the compile-time declaration statement.

<compile-time declaration> ::=
? !!.!:. <compile-time var spec>

{,<compile-time var spec>} ?;
<compile-time var spec> ::=

<identifier list> : <compile-time type> :=
<compile-time expression>

<compile-tim~ typ~> ::= boolean

The following rules apply:

1. The compile-time declaration statement must appear before the µse
of any of the compile-time variables. The scope of the
compile-time variable is from the point of declaration to the end
of the module.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12.0 COMPILE-TIME FACILITIES
12.2.1 COMPILE-TIME VARIABLES

12-2

86/03/06
REV: 8

2. Compile-time variables may be used only within compile-time
expressions and compile-time·assignment statements.

3. Identifiers of compile-time variables may not be the same as any
other prog~am identifiers.

12.2.2 COMPILE TIME EXPRESSIONS

Compile-time expressions must be composed only of constants and
compile-time variables, but excluding identifiers for user-defined
constants.

The operators defined on compile-time variables are:

and or xor not -- -- -- -- for type boolean

<compile-time expression::" :·:= <compile-time term>
l<compile-time·expression><disjunctive operator>

<compile-time term> ·

<compile-time term> ::= <compile-time factor> .
!<compile-time term> and <compile-time factor>

<compile-time factor> ::= truelfalsel<compile-time variable>
I (<compile-time expression>) I not <compile-time factor>

<disjunctive operator> ::= ,2!: I ~
12.2.3 COMPILE-TIME ASSIGNMENT STATEMENT

The value of a compile-time variable may be· altered by a
compile-time assignment statement.

<compile-time assignment> ::= ? <variable> :=
<compile-time expression> ?;

12 •. 2.4 COMPILE-TIME IF STATEMt;:NT

The compile-time if statement is used to make the compilation of a
piece of source code conditional upon the value of some boolean
expression.

<compile-time if> ::=
? if <compile-time expression>_ then <text>

[? else <text>]
? ifend

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12.0 COMPILE-TIME FACILITIES
12.2.4 COMPILE-TIME IF STATEMENT

The following rules apply:

12-3

86/03/06
REV: 8

1) The expression must be a compile-time boolean exp~ession.

2) Compilation of the <text> occurs only if the value is true.

Example:

? var small size : boolean := true?;
~Table :-array [1 •• 50] of integer
? if small size = true then

--rmight Include this procedure call into program.}
Bubblesort (Table);

? else
--ro;- call on procedure Quicksort in program.}

Quicksort (Table);
? ifend

12.3 ·PRAGMATS

Pragmats are used .to specify and control:

A) Source and object text listings produced as by-products of
compilation, and their layouts;

B) Layout aspects of the source text;

C) Kinds of run-time error checking;

D) Object. libraries associated with this compilation unit;

E) Other aspects of the compilation proceu.

<pragmat statement> ::=
?? <pragmat> { ,<pragmat> } ??

<pragmat> ::= <toggle control>
<layqut control>
<maintenance control>
<comment control>
<object library control>

12.3.1 TOGGLE CONTROL

Uniquely identified control elements, called toggles, are used to
control aspects of compilation. Each toggle is associated with a
specific type of listing, run-time checking, or other activity.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12-4

86/03/06
REV: 8

---.
12.0 COMPILE-TIME FACILITIES
12.3.1 TOGGLE CONTROL

Toggles take on the value on or off. If on, the activity associated
with the toggle is carried out, otherwise-,-it is not.

Toggle controls are used to:

A) Set the values of individual toggles;
B) Save and ~estore all toggle values in a last in-first out manner;
C) Reset all toggles to their initial values.

(The ·initial settings of toggles are specified below.)

<toggle control> ::= set (<toggle setting list>)
push (<toggle setting list>)
~
reset

<toggle setting list> ::=<toggle setting> {,<toggle setting>}
<toggle setting> ::= <toggle identifiers> :=<condition>

I <empty>

<condition> ::= on I off

The operations are as follows.

Se~:

Push:

All settings specified in the list are carried out en-masse.
If a toggle is affected by more than one toggle setting, the
rightmost setting for that toggle is carried out.

A record of the current state of all toggles is saved for
future restoration in a last in-first out manner; the current
state remains intact. A set operation is then carried out.

Pop: The last state record saved becomes the current state. If none
have been saved, the initial state becomes current.

Reset: The initial state becomes current, and any saved state records
are wiped out.

The maximum allowable number of saved state records will be
implementation dependent, but should not be less than one.

12.3.2 TOGGLES

<toggle identifiers> ::= <listing toggles>
I <checking toggles>

Toggl~ identifiers may be used freely for other purposes outside of

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12.0 COMPILE-TIME FACILITIES .
12.3.2 TOGGLES

pragmats.

12.3.2.1 Listing Toggles

<listing toggles> ::= list I listobj
I listcts listext I listall

12-5

86/03/06
REV: 8 .

List (initially is on): Controls all other listing toggles. When .2,!!,
~urce listing is-Produced, and other listing aspects are controlled
by the other listing toggles. When off no listings can be produced.

Listobj (initially is off): Controls the listing of generated object
code, which is interspersed with source code, following the
corresponding source line.

Listcts (initially is off): Controls the listing of the format control
pragmats. The format control pragmats are the listing toggles and the
layout controls.

Listext (initially is off): When set to on the listing of source lines
is externally controlled via a compiler ~11 list option.

Lista11: The union of all listing toggles. When set to .2.!! or off then
all other listing toggles are set to on or off respectivelye

12.3.2.2 Run-Time Checking Toggles

<checking toggles> ··= .. chkrng
chksub
chknil
chktag
chkall

Chkrng (default is~): controls the generation of object code that
performs the range checking of scalar subrange assignments and that
performs the range checking of case variables.

Chksub (default is on): controls the generation of object code that
checks array subscripts (indices) and substring selectors to verify
that they are valid.

Chknil (default is off): controls the generation of object code that
checks for a nil value when a· .pointer dereference is made.

Chktag (default is ~): controls the generation of object code that

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12-6

86/03/06
REV: 8

-------------------------~------------------------~------------------

12.0 COMPILE-TIME FACILITIES
12.3.2.2 Run-Time Checking Toggles

verifies that references to a field of a variant record are consistent
with the value of its tag field {if a tag field is present}.

Chkall: The union of all checking toggles; sets all four of chkrng,
chksub, chknil, and chktag as a group.

The effects on the object code that is generated by these toggles
being turned ,2!! or off is implementation and system dependent.

12.3.3 LAYOUT CONTROL

Layout controls are used to specify source text margins and to
specify and control listing layout.

<layout control> ::=<source layout>
<listing·layout>

12.3.3.1 Source Layout

<source layout> ::= <source margin control>

<source margin control>

<left> ::= <integer>
<right> ::= <integer>

::= left
right

:= <left>
:= <right>

{where 0 < left, and (left +10) <= right <= 110}

All source text to the left of the left-th and the right of the
right-th position are ignored. Default values for left and right are
1 and 79 respectively.

12.3.3.2 Listing Layout

<listing layout> ::=<pagination>
·1 <lineation>

<titling>

12.3.3.2.1 PAGINATION

<pagination> ::= eject

The eject pragmat causes the paper to be advanced to the top of the
next page.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12-7

86/03/06
REV: 8

--~--~-------------------------

12.0 COMPILE-TIME FACILITIES
12.3.3.2.2 LINEATION

12.3.3.2.2 LINEATION

<lineation> : := spacing
skip :=

<spacing> ::= 1 I 2 I 3

:== <spacing>
<number of lines>

<number of lines> ::=<integer>
{where 1 <= number of lines}

The spacing control may have the value 1, 2, or 3, for single,
double, or triple spacing respectively. The default value is 1. A
value of zero may not be used to indicate overprinting. Use of
illegal values will result in no change in spacing, and an error
messag~ will be given~

The skip value causes a skip of the number of line positions
specified; if the integer given is larger than pagesize or would cause
a skip past the bottom of the current page, then the skip is to the
top of the ~ext page.

12.3.3.2.3 TITLiNG

A standard title line is printed atop each page, and then one line
position is skipped •. Any additional titles defined by the user are
then printed one-per-line, single-spaced. A skip of <spacing> number
of lines then occurs.

< t it 1i ng > : : =
newtitle := '<char token> {<char token>}'

I
. title := '<char token> {<char token>}'
oldtitle

An apostrophe mark within a char string is indicated by using a
pair of adjacent apostrophe marks. Thus, if the char string were to
consist of only an apostrophe mark, it would be indicated by four (4)
immediately adjacent apostrophes, e.g., ''''

Newtitle: The cwrrent title is saved and the character string given
as a new title becomes the current title. A standard page header is
the first title printed on a page, followed by user-specified titles
·in the order in which they were saved; i.e., titles are saved in a
last in-first out manner, but are printed in a first in-first out
manner. There will always be a single empty line between the standard
page header and the titles defined by the user. There will always be
at least one blank line between the titles and the text or the
standard header and the text.

The maximum number ·of titles allowed will be 10. An attempt. to add

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

12.0 COMPILE-TIME FACILITIES
12.3.3.2.3 TITLING

more than the maximum will be ignored, without comment.

12-8

86/03/06
REV: 8

Title: The character string replaces the current user~defined title.
If there is none, then the character string becomes the current title.

Oldtitle: The last user-defined title saved becomes the current
title; is there is none, then no action is taken.

The titling does not take effect until the top of the next printed
page.

12.3.4 MAINTENANCE CONTROL

<maintenance control> ::= compile I nocompile

In the absence of a maintenance control, compile is the default
option. The nocompile option continues with listing the following
text according to the listing toggles and layout controls,
interpreting and obeying pragmat directives in the text, but
compilation of the source is omitted until a compile directive is
encountered or until a modend statement is encountered.

12.3.5 COMMENT CONTROL

<comment control> ::=comment := '<char token>[<char token>]'

Including the comment control pragmat signals the compiler to
include the character string in the binary output generated by the
compilation process. This allows for COPYRIGHTing products and for
commenting object code facilities like load maps.

12.3.6 OBJECT LIBRARY CONTROL

<object library control> ::= library := <library name>

<library name> ::= '<alphabet> {<alphabet>}'

Including the object library control pragmat signals the compiler
to include the library name in the library directive of the binary
output produced during the compilation process. This allows linking
the xref declarations with the appropriate object library.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

13.0 IMPLEMENTATION-DEPENDENT FEATURES

13.0 IMPLEMENTATION-DEPENDENT FEATURES

13-1

86/03/06
REV: 8

In contrast to the previously discussed aspects of the language,
the language features discussed in this section may be dependent upon
the compiler's allocation algorithms or the hardware design. These
features may be used anywhere, but should be used with caution.

13.1 DATA MAPPINGS

The mapping of data ~torage will depend on a compiler's target
machine and data mapping algorithms. All effects of data mapping
will, therefore be implementation dependent: bit-sizing, positioning,
relative positioning effects of ·packing attributes. Data mapping
algorithms for specific implementations may be published; these can be
used to achieve specific sizings and positionings for that
implementation.

CDC Private

Al
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

1 10-10 <a case> ::==<selection ~pec>{,<selection spec>}=

2 6-3

3 10-7

<statement list>

<access attribute>

<actual parameter>

: : =

•• = ..
read

<expression>
<variable>
<empty>

4 10-7 <actual parameter list> ::=
(<actual parameter>{,<actual parameter>})

I <empty>

5 4-19 <adaptable aggregate type> ::=<adaptable string>

!
<adaptable array>
<adaptable record>

6 4-20 <adaptable array> ::=

7

[packed]<adaptable array identifier>
I [packed]<adaptable array spec>

4-20 <adaptable array bound spec> ::=<lower bound spec> ••
I ,'(

8 4-20 <adaptable array identifier> ::=<identifier>

*

9 lU-15 <adaptable array pointer variable> ::=<pointer variable>

10 4-20 <adaptable array spec> ::=
array J<adaptable array bound spec>l of <component type>

11 4-21 <adaptable field> ::=
<field ~elector>: [<alignment>]<adaptable type>

12 10-16 <adaptable field fixer> ::= <star fixer>

I
<length fixer>

13 4-20 <adaptable fixed string> ::=string (<adaptable string length>)

14 4-22 <adaptable heap> ::=heap(*)
!<adaptable heap identifier>

15 4-22 <adaptable heap identifier> ::=<identifier> -

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECI~ICATION.

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

16 4-8 <adaptable pointer> ::= t<adaptable type>

17 4-21 <adaptable record> ::=
[packed] <adaptable record type' identifier>

I [packed]<adaptable record spec>

A2

86/03/06
REV: 8

18 10-16 <adaptable record pointer variable> ::=<pointer variable>

19 4-21 <adaptable record spec> ::=
record[<fixed fields>,]<adaptable field><recend>

20 4-21 <adaptable record type identifier> : := <identifier>

21 4-21 <adaptable sequence> ::= !!.S (*)
!<adaptable seque~ce identifier>

22 4-21 <adaptable sequence identifier> : := <identifier>

23 10-16 <adaptable storage pointer variable> : := <pointer

24 4-19 <adaptable storage type> : := <adaptable sequence>
<adaptable heap>

25 4-20 <adaptable string> ::=<adaptable fixed string>
<adaptable string identifier>

26 4-20 <adaptable string bound> • ·= <length> ..
27 4-20 <adaptable string identifier> ::= <identifier>

28 4-20 <adaptable string length> ::= * I ,'t <= <adaptable

29 10-16 <adaptable string pointer variable> ::=<pointer

30 4-19 _<adaptable type> ::=<adaptable aggregate type>
!<adaptable storage type>

31 9-1 <adding operator> ::= + I - I or I xor

32 4-10 <aggregate type> ::=<string type>

l
<array type>
<record type>

.33 7-4 <alias> : := alias ' <alphabet> { <alphabet> } '

variable>

string bound>

variable>

CDC Private

A3
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

APPENDIX A ~ CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

34 4-24 <alignment> ::= aligned [!<offset> mod <base>l]

35 10-20 <allocate statement> ::=allocate <allocation designator>
[in <heap variable>]

36 10-15 <allocation designator> ::=
·<fixed pointer variable>
<adaptable array pointer variable> : [<star fixer>]
<adaptable string pointer variable> :-!<length fixer>l
<adaptable storage pointer variable> : !<span· fixer>l
<adaptable record pointer variable> : !<adaptable field fixer>!
<bound variant record pointer variable> :

!<tag field fixers>l

37 3-3 <alphabet> ::= <letter>
<digit>
<special mark>
<blanks>
<unused mark>

38 4-13 <array spec> ::=
array !<index>l of <component type> .

39 4-13 <array type> ::= [packed]<array type identifier>
I [packed]<array spec>

40 4-13 <array type identifier> ::= <identifier>

41 6-13 <array variable> ::= <varlable>

42 3-3 <ascii character> ::=<alphabet>

!
<unprintable>
<string delimiter>

43 10-2 <assignment statement> ::=<variable> :=<expression>

44 6-3 <attribute> ::= <access·attribute>

!
<storage attribute>
<scope attribute>

45 6-3 <attributes> ::= !<attribute>{,<attribute>}l

46 4-24 <base> ::=<integer constant>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

47 5-2 <base designator> ::= (<radix>)

48 4-11 <base type> ::=<scalar type>

49 5-1 <basic constant> ::= <scalar constant>

50

51

4~3 <basic type> ··= ..
!
<floating point constant>
<pointer constant>

<scala~ type>
<floating point type>
<cell type>
<pointer type>
<relative pointer type>

10-5 <begin statement> ::=
begin <statement list> end

52 3-3 <blanks> ::=

A4

86/03/06
REV: ·8

.. -~ ·. ~ : :

53 5-1 <boolean constant> ::=false I true
I <boolean constant identifier>

54 5-1 <boolean constant identifier> ::=<identifier>

55 4-5 <boolean type> ::=boolean
!<boolean type identifier>

56 4-5 <boolean type identifier> ::= <identifier>

57 4-8 <bound variant pointer> ::= t<bound variant record type>

58 10-16 <bound variant record pointer variable> ::=<pointer variable>

59 4-23 <bound variant record type identifier> ::=
<variant record type identifier>

60 4-23 <bound variant ·record type> : :=
[packed] <bound variant record type identifier>

I

[packed] bound <variant record spec>
[packed] bound <variant record type identifier>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX A - CYBIL METALANGUAGE ·CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

AS

86/03/06
REV: 8

61 9-2 <built-in function reference> ::= succ (<scalar expression>)

62 4-15

pred (<scalar expression>)
$char (<expression>) -
~ger (<expression>)
$real (<expression>)
~real (<expression>)
strlength (<fixed string type identifier>

<string variable>)
<string constant>)
<string constant identifier>)

llowerbound (<fixed array type identifier>
l<array variable>)

lupperbound (<fixed array type identifier>
!<array variable>)

luppervalue (<scalar type identifier>
l<scalar variable>)

·llowervalue (~scalar type identifier>
!<scalar variable>)

#rel (<pointer>[,<parental>])

<case part>

~ (<relative pointer>[,<parental>]}
~ (<variable reference>)
#loc (<variable>)
#size(<variable>

··= ..

!<fixed type identifier>

case <tag field spec> of
<variations><casend>

63 10-9 <case statement> ::= case <selector> of <cases>

64 4-16 <casend> ::= [,] casend

CDC Priv~te

A6
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8
----------~--~---------
APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

65 10-10 <cases> ::=<a case>{;<a case>}

66 4-7 <cell type> ::= cell
<cell type identifier>

67 4-7 <cell type identifier> ::= <identifier>

68 5-1 <char token> ::~ <alphabet>
I '' {two apostrophes}

69 5-1 <character constant> ::= '<char token>'

1

$.char (<integer constant>)
<character constant identifier>

70 5-1 <character constant identifier> ::=<identifier>

71 4-4 <character type> : := char I <character type id.entif ier>

72 4~4 <character type identifier> ::=<identifier>

73 12-5 <checking toggles> ::= chkrng
chksub
chknil
chktag
chkall

74 3-5 <comment character> : := <any ASCII character exc·ept
a closing brace or end of line>

75 12-8 <comment control> ::= comment := '<char token>[<char token>]'

76 3-5 <comment terminator> ::= l I <end of line>

77 3-5 <commentary string>. ::= j{<comment character>}
<comment terminator>

78 7-1 <compilation unit> ::= <module declaration>
{;<module declaration>} [;]

CDC Private

A7
CYBER IMPLEMENTATION LANGUAGE

86/03/06.
CYBIL LANGUAGE SPECIFICATION

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METAL,ANGUAGE DEFINITION

79 12-2 ·<compile-time assignment> ::= ? <variable> :=
<compile-time expression> ?;

80 12-1 <compile-time declaration> ::=
? var <compile-time var spec>

{,<compile-time var spec>} ?;

81 12-2 <compile-time expression> ::= <compile-time term>

REV: 8

!<compile-time expression><disjunctive operator>
<compile-time term>

82 12-2 <compile-time factor> ::= truelfalsel<compile-time variable>
I (<compile-time. expression>) I not <compile-time factor>

83 12-2 <compile-time if> ::=
? if <compile-time expression> then <text>

[? else <text>]

84 12-1 <compile-time statement> ::=<compile-time declaration>

I
<compile-time assignment>
<compile-time if>

85 12-2 <compile-time term> ::=<compile-time factor>
!<compile-time term> and <compile-time factor>

86 12-1 <compile-time type> ::=boolean

87 12-1 <compile-time var spec> ::=
<identifier list> : <compile-time type> :=
<compile-time expression>

88 4-13 <component type> ::=<fixed type>

89 11-2 <concatenation element> ::=<scalar element>
<string element>
<pointer element>
<floating point element>

90 12-4 <condition> ::= .£!! I off.

91 5-1 <constant> ::= <basic constant>l<string constant>

92 5-3 <constant declaration> ::=
const <constant spec> {, <constant spec>}

CDC Private

A8
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICAlION
86/03/06

REV: 8

APPENDIX A - eYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE ~YBIL METALANGUAGE DEFINITION

93- 5-3 <constant expression> ::= <simple expression>

94 10-16 <constant fixers> : := <c.onstant scalar expression>
{,<constant scalar expression>}

95 9-1 <constant identifier> ::= <identifier>.

96 4-21 <constant integer expression> ::= <constant expression>

97 5-3 <constant scalar expression> ::=<constant expression>

98 5-3 <constant spec> ::=<identifier> <constant expression>

99 10-7 <control statement> ::=<procedure call statement>
<if statement> I <case statement>
<cycle statement>
<exit statement> I <return statement>
<empty statement>

100 10-6 <control variable> ::=<variable identifier>

101 10-12 <cycle statement> ::= cycle <structured statement identifier>

102 7-2 <declaration> ::= <type declaration>
<constant declaration>
<variable declaration>
<procedure declaration>
<function declaration>
<section declaration>
<empty>

103 7-1 <declaration list> ::= {<declaration>;}

104 10-4 <delimited statement> ::= <begin statement>

I
<whi-le statement>
<for statement>

105 3-3 <digit> ::= 0111213141516171819

106 12-2 <disjunctive operator> ::= or I xor

107 10-7 <empty> ::=

108 10-14 <empty statement> ··= ..

CDC Private

A9
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

109 10-13 <exit designator> ::= <structured statement designator>
<procedure identifier>
<function identifier>

110 10-13 <exit statement> ::= exit <exit designator>

111 5-2 <exponent> ::= [<sign>]<digit>{<digit>}

112 9-1 <expressi~n> ::=<simple expression>
!<simple expression><relational operator>

<simple expression>

113 9-1 <factor> ::= <variable>l<constant>l<constant identifier>
<set value constructor>l<functi~n reference>
t<procedure identifier> t<variable>
(<expression>) lnot<factor>

114 11-2 <field length> ::=<positive integer expression>

115 6-15 <field reference> ::=
<variable reference>.<record subreference>{.<record subrefere¢

116 4-14 <field selector> ::=<identifier>

117 4-14 <field selectors> ::=<field selector> {,<field selector>}

118 10-6 <final value> ::=<scalar expression>

119 6-11 <first char> ::= <positive integer expression>

120 4-8 <fixable pointer> ::= <adaptable pointer>
l<bound variant pointer>

121 4-1 <fixable type> ::=<adaptable type>
l<bound variant record type>

122 9-2 <fixed array type identifier> ::=<array type identifier>

123 4-14 <fixed field> ::= <field selectors> : [<alignment>] <fixed type>

124 4-14 <fixed fields> ::=<fixed field> {, <fixed field>}

125 4-8 <fixed pointer> ::= t<fixed type>

CDC Private

0

AlO
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: B

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER .PAGE CYBIL METALANGUAGE DEFINITION

126 10-15 <fixed pointer variable> ::=<pointer variable>

127 4-18 <fixed span> ::=
[rep <positive integer constant expression> of]

<fixed type fdentif ier>

128 4-12 <fixed string> : := string (<length>)

129 9-2 <fixed string type identifier> ::=<string type identifier>

130 4-3 <fixed type> ::= <basic type>l<structured type>l<storage type>

131 4-18 <fixed type identifier> ::=<identifier>

0 132

!<pre-defined type identifier>

5-2 <floating point constant> ::= <real constant>
I <longreal constant>

133 11-2 <floating point element> ::=
<floating point expression> [<floating point field specifier>]

134 11-2 <floating point expression> ::=<real expression>
I <longreal expression>

135 11-2 <floating point field specifier> ::=
: <field length> [:<fractional di~its>]

136 4-7 <floating point type> ::=<real type> I <longreal type>

137 3-3 <follower> ::= <letter>l<digit>
· 1_1111s1@

138 10-6 <for list» : : =
<initial value> to <final value>

. !<initial value> downto <final value>

139 10-6 <for statement> ::=

140

for <control variable> := <for list> do
<statement list> forend

8-2 <formal param list> ::= <formal parameter identifier>
{,<formal parameter identifier>}

141 8-2 <formal parameter identifier> ::=<identifier>

CDC Private

All
CYBER IMPLEMENTATION LANGUAGE

-
CYBIL LANGUAGE SPECIFICATION

86/03/06
REV: 8

---------~----------~-------------~----------------------------------
APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

142 11-2 <fractional digits> ::= <positive integer expression> ·

143 10-21 <free statement> ::=
free <pointer variable>[in <heap variable>]

144 8-3 <func attribute> ::= <proc attribute> I unsafe

145 8-3 <func body> ::= <proc body>

146 8-3 <func end> ::= funcend [<function identifier>]

147 8-2 <func spec> ::=<function identifier> [<alias>] <func type spec>

148 8-3 <func type spec> : := [<parameter list>] .: <result type>

149 8-2 <function declar~tion> ::= function [xref] <func spec>
I function [J func attribute!] <f~nc spec> ;

<func body> <func end>

150 8-3 <function identifier> ::= <identifier>

151 9-1 <function reference> ::=<built-in function reference>
!<user defined function reference>

152 4-22 <function type> ··= .. <function type identifier>

153 4-23 <function type identifier> ::=<identifier>

154 6-6 <global proc name> ::=.<procedure identifier>

155 4-18 <heap type> ::=heap (<space>)
I <heap type identifier>

156 4-18 <heap type identifier> ::=<identifier>

157 10-20 · <heap variable> : := <variable refe.rence>

158

159

160

5-2 <hex digit> ::= AIBICIDIEIF

l
a b c d e f
<digit>

3-3 <identifier> ::= <letter>{<follower>}

10-9 <if body> ::=<expression> then <statement list>
[else <statement list>~lseif <if body>]

CDC Private

·O·

f)

NUMBER

161

162

163

164

165

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE CYBIL METALANGUAGE DEFINITION

10-9 <if statement> ::=
if <if body> ifend

5-4 <indefinite value constructor> ::=
[<value elements>]

I I l {the empty ~et}

4-13 <index> ::=<scalar type>
!<constant scalar expression>

•• <constant scalar expression>

10-6 <initial value> ::=<scalar expression>

Al2

86/03/06
REV: 8

6-6 <initialization> ::= :=<initialization expression>

() 166 6-6 <init~alization expression> ::= <constant expression>

I
<indefinite value constructor>
t<global proc name>

1,.-,\l

'V

167 5-2 <integer> ::= <digit>{<digit>}
<digit>{<hex digit>}<base des~gnator?

168 5-1 <integer constant> ::=<integer> I <integer constant identifier>

169 5-2 <inieger constant identifier> ::=<identifier>

170 4-3 <integer type> ::= integerl<integer type identifier>

171 4-4 <integer typ~ identifier> ::=<identifier>

172 4-14 <invariant record spec> ::=
record <fixed fields> <recend>

173 4-14 <invariant record type> ::=
[packed] <invariant record type identifier>

I [packed] <invariant.record spec>

174 4-14 <invariant record type identifier> ::= <identifier>

175

176

177

12-6 <layout control> ::=<source layout>
<listing layout>

12-6 <left> ::= <integer>

4-12 <length> ::=<positive integer constant expression>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

A13

86/03/06
REV: 8

178 10-16 <length fixer> ::= <non-negative integer expression>

179 3-3 <letter> ::=ABC DEF G HI J KL M

180 12-7 <lineation>

N .0 P Q R S T U V W X Y Z
a b c d e f g h i j k l m
n o p q r s t u v w x y z

: := spacing
skip :=

:= <spacing>
<number of lines>

181 12-6 <listing layout> ::=<pagination>

182

183

12-5

<lineation>
<titling>

<listing toggles·>· ::=list I· listobj
. I listcts listext I listall

5-2 <longreal constant> ::= <longreal number>
I ·~longreal constant identifier>

184 5-2 <longreal constant identifier> ::=<identifier>

185 11-2 <longreal expression> ::= <expression>

186 5-2 <longreal number> ::= <mantissa> D<exponent>

187 4-7 <longreal type> ::= longreal l<longreal type identifier>

188 4-7 <longreal type identifier> ::=<identifier>

189 4-6 <lower> ::=<constant scalar expression>

190 4-20 <lower bound spec> ::= <constant integer expression>

191 12-8 <maintenance control> ::= compile I nocompile

192 5-2 <mantissa> ::= <digit>{<digit>} [.]{<digit>}

193 7-1 <module body> ::= <declaration list>

194 7-1 <module declaration> ::=
module <module identifier> [<alias>];

<module body>
modend [<module identifier>]

CDC Private

0

0

••

0

0

f)

Al4
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

APPENDIX A - C(BIL METALANGUAGE CROS-S-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITtON

195 7-1 <module identifier> ::= <identifier>

196 9-1 <multiplying operator> ::= * I div I I I mod and

197 10-19 <next statement> ::=
next <allocation designator> in <pointer to sequence referenc¢

198 6-11 <non-negative integer expression> ::= <scalar expression>

199 12-7 <number of lines> ::= <integer>
{where 1 <= number of lines}

200 12-8 <object library control> ::= library :=<library name>

201 4-9 <obje.ct ~~pe>. : := <type>

202 4-24 <offs~t> ::= <integer constant>

203 5-1 <ordinal constant> ::= <ordinal constan.t identifier>

204 4-4 <ordinal constant identifier list> ::=
<ordinal constant identifier>

,<ordinal constant identifier>
{,<ordinal constant identifier>}

205 4-4 <ordinat constant identifier> ::= <identifier>

206 4-4 <ordinal type> ::=

207

208

209

210

211

212

(<ordinal constant identifier list>)
I <ordinal type identifier>

4-4 <ordinal type identifier> ::= <identifier>

12-6 <pagination> ::= eject

8-2 <param> ::=<formal param list> : <parameter type>

8-2 <param segment> ::=<reference params>
I <value params>

8-2 <parameter list> ::= (<param segment> {;<param segment>})

8-2 <parameter type> ::=<fixed type>
!<adaptable type>

CDC Private

A15
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

NUMBER

213

214

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE CYBIL METALANGUAGE DEFINITION

9-2

4-9

<parental> ::= <parental type variable>

<parental type> ··= .. <storage type>
<adaptable storage type>
<aggregate type>
<adaptable aggregate type>

215 9-2 <parental type variable> ::=<variable>

.216 5-2 ~pointer constant> ::=nil

217 11-2 - <pointer element> ::=
<pointer reference>[<pointer field specifier>]

218 11-2 <pointer field specifier> : :=.[:<field length>] [:<radix spec>]

219 6-9 <poi~ter reference> ::=.<pointer variable>
!<function reference>

220 4-9 ~pointer to cell> ::= tcell

221 4-8 <pointer to function> ::= t<function type>

222 4-8 <pointer to procedure> ::= t<procedure type>

223 10-7 <pointer to procedure reference> ::= <pointer reference>

224 10-19 <pointer to sequence reference> ::= <pointer to sequence variabl
<function reference>

225 10-19 <pointer to sequence variable> ::=<pointer variable>

226 4-8 <pointer type> ::= <fix~d pointer>
<fixable pointer>
<pointer to procedure>
<pointer to function>
<pointer type identifier>

227 4-8 <pointer type identifier> ::= <identifier>

228 6-9 <pointer variable> ::=<variable>

CDC Private

0

0

0

0

0

()

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

A16

86/03/06
REV: 8

229 4-18 <poaitive integer ~onstant expression> ::=
<constant scalar expression>

230 12-3 <pragmat> ::=<toggle control>

231

232

233

234

235

236-

237

238

239

240

<layout control>
<maintenance control>
<comment control>
<object library control>

12-3 <pragmat statement> ::=
?? <pragmat> { ,<pragmat> } ??

4-18 <pre-defined type identifier> ::= inte er I boolean
real I longreal

8-2 <proc attribute> ::~ xdcl I inline I fl1e.!..!.

char
cell

8-2 <proc attributes> ::= <proc attribute> , 1<proc attribute>}

8-2 <proc body> ::=<declaration list> <statement list>

8-2 <proc end> ::= procend [<procedure identifier>]

8-2 <proc spec> ::= <procedure identifier> [<alias>] <proc type spec>

8-2 <proc type spec> ::= [<parameter list>]

10-7 <procedure call statement> ::=
<procedure reference> <actual parameter list>

8-1 <procedure declaration> ::=
procedure l xref ! <proc spec>
procedure Cl <proc attributes> !J <proc spec>;

<p.roc body><proc end>
program <proc spec>;<proc body><proc end>

241 8-2 <procedure identifier> ::= <identifier>

242 10-7 <procedure reference> ::=<procedure identifier>
<pointer to procedure reference> t

243 4-22 ~procedure type> ::=<procedure type identifier>
!procedure <proc type spec>

244 4-22 <procedure type identifier> ::= <identifier>

CDC Private

CYBER IMPLEMENTATION ·LANGUAGE

CYBIL LANGUAGE SPECIFICATION -

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

A17

86/03/06
REV: 8

245 10-18 <push statement> ::= push <allocation designator>

246 5-2 <radix> ::= 2 I 8 I 10 I 16

247 11-2 <radix spec> ::=#(<radix>)

248 5-2 <real constant> ::= <real number> I <real constant identifier>

249 5-2 <real constant identifier> ::=<identifier>

250 11-2 <real expression> ::=<expression>

251 4-7 <real type> ::= real !<real type identifier>

252 4-7 <real type identifier> ::=<identifier>

253 4-14 <recend> ::= [,]recend

254 6-15 <record subreference> ::=
<field selector>l<subscripted reference>

255 4-14 <record type> ::= <invariant record type>
!<variant record type>

256 8-2 <reference params> ::=var <param> { ,<param> }

257 9-1 <relational operator> ::= < I <= I > I >= I = I <> I in

258 4-9 <relative pointer type> ::=
rel (<parental. type>) t <object type>

259 5-4 <rep spec> ::=rep <positive integer constant expression> of

260 10-5 <repeat statement> ::=
repeat <statement list> until <expression>

261 10-19 <reset statement> ::=
reset <pointer to sequence variable> [to <pointer reference>]
I reset <heap variable>

262 8-3 <result type> ••=<basic type>

CDC Private

0

0

0

0
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

263 10-14 <return statement> ::= return

264 12-6 <right> ::=<integer>

265 5-1 <scalar constant> ::= <ordinal constant>

266 11-2 <scalar element> ::=

<boolean constant>
~integer constant>
<character constant>

<scalar expression>[<scalar field specifier>]

267 10-6 <scalar expression> ::=<expression>

268 11-2 <scalar field specifier> ::=
[:<field length>] [:<radix spec>]

Al8

86/03/06
REV: 8

0 269 4-11 <scalar identifier> ::=<identifier>

0

270 4-3 <scalar type> ::=<integer type>

271

272

273

274

275

276

277

278

279

<character type>
<ordinal type>
<boolean type>
<subrange type>

9-2 <sealar type identifi~r> ::= <scalar identifier>

9-2 <scalar variable> ::=<variable>

5-2 <scaled ~umber> ::=<mantissa> E<exponent>

6-5 <scope attribute> ::= xdcl I xref I ~

6-7 <section attribute> ::=read I write

6-7 <section declaratio~> ::= section <se~tions> {,<sections>}

6-7 <section name> ::=<identifier>

6-7 <sections> ::=
<section name> {,<section name>} : <section attribute>

4-16 <selection spec> ::=<constant scalar expression>
[•• <constant scalar expression>]

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

A19
il

86/03/06
REV: 8 ::.·.

--~···
APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

---~~ -·

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

280 10-10 <selection spec> ::=
<constant scalar expression>

[•. <constant scalar expression>]

281 · 4-16 <selection specs> ::=<selection spec>
{, <selection spec>}

282 10-10 <selector> ::=<scalar expression>

283 4-17 <sequence .type> : := ~ (<space>)
I <sequence type identifier>

284 4-18 <sequence type identifier> ::=<identifier>

285 4-11 <set type> ::= set of <base type>
l<set~ype identifier>

286 4-11 <set type identifier> ::=<scalar identifier>

287 5-4 <set value constructor> ::=
$<set type identifier> [] {th~ empty set}
$<set type identifier> I <set value elements>l

288 5-4 <set value element> ::=<expression>

289

290

5-4 <set value elements> ::= <set value element>
{,<set value element>}

9-1 <sign> . ·= + I -..
291 9-1 <sign operator> ::=<sign>

292 9-1 <simple expression> ::=<term> I <sign operator><term>
!<simple expression>

<adding operator><term>

12-6 <source layout> ::=<source margin control>

294 12-6 <source margin control> ::= left := <left>
right := <right>

295 4-18 <space> ::= <fixed sp~n>{,<fixed span>}

296 12-7 <spacing> ::= 1 I 2 I 3

-~ ..

.. _ ... ·

CDC Private

.;.

0

0

•

0

NUMBER

297

298

299

CYBER IMPLEMENTATION LANGUAGE.

CYBIL LANGUAGE SPJiCIFICATION

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

PAGE CYBIL METALANGUAGE DEFINITION

A20

86/03/06
REV: 8

10-16 ::= [~<non-negative integer expression> of]
.<fixed type identifier>

10-16 ::=·J {, ll

3-3

300 10~16 <star fixer> ::= <scalar expression> •• <scalar expression>

301 10-1 <statement> ::=<assignment statement>
<structured statement>
<control statement>
-~storage management statement>

302 10-1 <statement list> ::= <statement>{;<statement>l

~ 303 6-4 <storage attribute> ::= static I <section name>

304 10-15 <storage management statement> ::=<push statement>
<next statement>
<reset statement>
<allocate statement>
<free statement>

305 4-17 <storage type> ::= <sequence type>
l<heap type>

306 5-2 <string constant> ::=<string term>
{ cat <string term>}

307 9-2 <string constant identifier> ::= <identifier>

308 3-3 <string delimiter> ::=

309 11-2 <string element> ::= ·
<stri~g exp~ession> [<string field specifier>]

310 11-2 ·<string expression> ::= <string variable>

~-; 311

I
<string constant>
<substring reference>

11-2 <string field specifier> ::= :<field length>

CDC Private

A21
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION
86/03/06

REV: 8

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

312 5-2 <string term> ::= <character constant>-
I' [<char token> <char token> {<char token>}] '

313 4-12 <string type> ::= <fixed string>
I <string type identifier>

314 4-12 <string type identifier> ::=<identifier>

315 6-10 <string variable> ::=<variable reference>

316 10-4 <structured statement> ::= [<structured statement designator>]
<repeat statement>

I [<structured statement designator>] <delimited statement>
[<struc~ured statement designator>]

317 10-4 <structured statement designator> ··= ..
L <structured statement identifier> L

318 10-4 <structured statement identifier> ::= <identifier>

319 4-10 <structured type> ::= <set type>
!<aggregate type>

320 4-6 <subrange type> ::=<subrange type identifier>
j<lower> •• <upper>

321 4-6 <subrange type identifier> ::=<identifier>

322 6-13 <subscript> ::= <scalar expression>

323 6-13 <subscripted reference> ::=<array variable> 1<subscript>l

324 6-11 <substring length> ::=<non-negative integer expression>

I *

325 6-10 <substring reference> ::=
· · <string variable>(<substring spec>)

326 6-10 <substring spec> ::=
<first char>[,<substring length>]

327 10-16 <tag field fixers> ::=<scalar expression>
I <constant fixers>[,<scalar expression>]

CDC Private

0

o.

0

0

0

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

. ~PENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

328 4-15 <tag field selector> : := <id·entif ier>

A22

86/03/06
REV: 8

329 4-15 <tag field spec> ··= [<tag field selector> .. <tag field type>

330 4-15 <tag field type> ::= <scalar type>

331 9-1 <term> ::= <factor>
I <term><multiplying operator><factor>

332 12-1 <text> : := <text item> {<text item>}

333 12-1 <text item> ::= <pragmat statement>
<compile-time statement>
<identifier>
<constant>
<basic symbol other than ??>
<comment>

334 12-7 <titling> ::=

335 12-4

newtitle := '<char token> {<char token>}'

I
title := '<char token> {<char token>}'
oldtitle

<toggle control> ::= set (<toggle setting list>)
push (<toggle setting list>)
~
reset

336 12-4 <toggle identifiers> ::=<listing toggles>
I <checking toggles>

337 12-4 <toggle setting> ::=<toggle identifiers> :=<condition>

338

339

340

I <empty>

12-4 ~toggle sett~ng list> ::= <toggle s~tting> {,<toggle setting>}

4-1 <type> ::=<fixed type>

!
<fixable type>
<procedure type>

4-2 <type declaration> ::=
~ <type spec>{, <type spec>}

4-2 <type spec> ::= <identifier>= <type>

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATIO~

APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER PAGE CYBIL METALANGUAGE DEFINITION

A23

. 86/03/06
REV: 8

342 5-2 <unscaled number> ::=<digit> {<digit>}. <digit>{<digit>}

343 3-3 <unused mark>::= &11-111""1¢1\l!I"

344 4-6 <upper> ::=<constant scalar expression~

345 9-1 <user defined function reference> • ·= ..
<function identifier>(<actual parameter>
{, <actual parameter>})
I <function identifier>()

346 5-4 <value element> ::=
[<rep spec>]<initialization expression>
[<rep spec>]<set value constructor>
[<rep spec>]<indefinite value constructor>
[<rep spe~>] ,'t

347 5-4 <value elements> ::=
<value element>{,<value element>}

348 8-2 <value param> ::= <formal param list> : <parameter type>

349 8-2 <value params> ::= <value param>{,<value param>}

350 6-8 <variable> ::=<variable reference>
!<substring reference>

351 6-3 <variable declaration> ::=
var <variable spec>
----r,<variable spec>}

352 6-3 <variable identifier> ::=<identifier>

353 6-3 <variable identifiers> ::=
<variable identifier> [<alias>]
{~<variable identifier>[<alias>]}

354 6-8 <variable reference> ::= <variable identifier>

355 6-3 <variable spec> ::=

<pointer ref erence>t
<subscripted reference>
<field reference>

<variable identifiers> : [<attributes>]
<fixed type>[<initialization>]

CDC Private

0

0

•

0
CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

A24

86/03/06
REV: 8

. APPENDIX A - CYBIL METALANGUAGE CROSS-REFERENCE

NUMBER

356

357

358

359

. 360

361

~ 362

0

PAGE CYBIL METALANGUAGE DEFINITION

4-16 <variant> ::= [<fixed.fields>]
I [<fixed fields>,] <case part>

4-15 <variant record spec> ::=
record [<fixed fields>,] <case part> <recend>

4-15 <variant record type> ::=
[<packed>] <variant record type identifier>

' I [<packed>] <variant record spec>

4-15 <variant record type identifier> ::= <identifier>

4-15 <variation> ::==<selection specs>= <variant>

4-15 <variations> ::= <variation> {, <variation>}

10-5 <while statement> ::=
while <expression> do <statement list> whilend

CDC Private

B2
CYB ER IMPLEMENTATION LANGUAGE

0 86/03/06
CYBIL LANGUAGE SPECIFICATION REV: 8
-----------------~---
APPENDIX B - CYBIL RESERVED WORD LIST

Al RESERVED Al RESERVED·

LINE LINE X-REF WORD LINE LINE X-REF WORD

89 191 12-8 nocompile 133 276 6-7 section
90 113 9-1 not 134 283 4-17 seq
91 82 12-2 not 135 21 4-21 seq
92 285 4-11 of 136 285 4-11 set
93 62 4-15 of 137 335 12-4 set
94 127 4-18 of 138 180 12-7 skip
95 259 5-4 of 139 180 12-7 spacing
96 63 10-9 of 140 303 6-4 static
97 297 10-16 of 141 128 4-12 string
98 90 12-4 off 142 13 4--20 string
99 334 12-7 oldti tle 143 61 9-2 strlength

100 90 12""".4 on 144 61 9-2 succ
101 31 9-1 or 145 160 10-9 then
102 106 12-2 or 146 83 12-2 then
103 39 4-13 packed 147 334 12-7 title
104 173 4-14 packed 148 138 10-6 to

0 105 358 4-15 packed 149 261 10-19 to
106 6 4-20 packed 150 53 5-1 true
107 17 4-21 packed 151 82 12-2 true
108 60 4-23 packed 152 340 4-2 type
109 335 12-4 pop 153 144 8-3 unsafe
110 61 9-2 pred 154 260 10-5 until
111 243 4-22 procedure 155 61 9-2 upperbound
112 240 8-1 procedure 156 61 9-2 uppervalue
113 236 8-2 procend 157 351 6-3 var
114 240 8-1 program 158 256 8-2 var
115 245 10-18 push 159 80 12-1 var
116 335 12-4 push 160 362 10-5 while
117 275 6-7 read 161 362 10-5 whilend
118 251 4-7 real 162 275 6-7 write
119 232 4-18 real 163 274 6-5 xdcl
120 253 4-14 rec end 164 233 8-2 xdcl
1·21 172 4-14 record 165 31 9-1 xor
122 357 4-15 record 166 106 12-2 xor
123 19 4-21 record 167 274 6-5 xref
124 258 4-9 rel
125 127 4-18 rep
126 259 5-4 rep
127 297 10-16 rep
128 260 10-5 repeat
129 261 10-19 reset
130 335 12-4 reset

0 131 263 10-14 return
132 294. 12-6 right

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

Cl.

86/03/06
REV: 8

-- .
APPENDIX C - CYBIL INTRINSICS

APPENDIX C - CYBIL INTRINSICS

GENERAL INTRINSICS
~.Ez.LZ __ _

The following intrinsics are considered useful across a wide
variety of processors where CYBIL is provided.

#CONVERT_POINTER_TO_PROCEDURE (P,Q)

This procedure is used to convert a variable of type
pointer-to-procedure with no parameters to a variable of type
pointer-to-procedure with an arbitrary parameter list.

P - pointer-to-procedure with no parameters

Q - pointer-to-procedure with an arbitrary parameter list.

#KEYPOINT (Pl,P2,P3)

This procedure. causes a KEYPOINT instruction (Reference Number 136)
to be generated based on the following parameters:

Pl - This parameter specifies the keypoint class and is a constant
expression in the range 0 .. 15 ~nd becomes the instruction J
field.

P2 - This parameter specifies optional data to be collected with
the keypoint and is a constant or variable expression within
the range O •• Offffffff(16). If it is the constant zero then
the K field of the instruction is zero. If P2 is not a zero
then the value of the P2 is placed in an X register and that
register number becomes the instruction's K field.

P3 - This parameter specifies a- keypoint identifier and is a
constant expression in the range of O •• OFFFF(16) and becomes
the instructions Q field.

#SCAN (SELECT, STRING, INDEX, FOUND)

This procedure scans a string from left to right until either one
of a set of specified characters is found or until the string is
exhausted. The set of character values to scan for is specified with
a 256 bit variable, with each bit representing one of the possible
character values. If a bit is set in this variable, the scan will
stop when a character value corresponding to the bit position in the
variable is found. In either termination case, the starting character

CDC Private

0

0

•

0

0

0

CYBER IMPLEMENTATION LANGUAGE

CYB-IL LANGUAGE SPECIFICATION

C2

86/03/06
REV: 8

---~-------------------
APPENDIX C - CYBIL INTRINSICS

position of the character that caused termination is returned. The
procedure returns a boolean which indicates if a byte was "found".

select Variable designating the character values to be scanned
for. The size of this variable must be 256 bits.

string - String or- substring variable to be scanned
index - Integer variable (1 •• 65536) into which "the index of a

"found" character is returned. If no selected values were
found, it contains the string length plus one. (The index
value of the first character in the string is one.)

found Boolean variable which is· set to true if the scan
terminated as a result of finding one of the selected
characters.

#SPOIL (,VARIABLE>{,<VARIABLE>})

This procedure is used to announce to the compiler that certain
optimizations should be inhibited on the quoted (up to a limit of- 127)
variables. This inhibited optimization is necessary to control
asynchronous usage of CYBIL. The compiler will handle each actual
parameter to #SPOIL as if it was associated with a reference (VAR)
formal parameter.

If the parameter quoted is a direct reference to a variabl_e, it
will be assumed to interfere with that variable. If the parameter
quoted is an indirect reference (i.e. pointer dereference, records.
with pointer fields) to a variable, it will be assumed to interfere
with any variable of equivalent type.

#TRANSLATE (TABLE, SOURCE, DESTINATION)

This procedure translates each character contained in the source
field, according to the translation table, and transfers the results
to the destination field. The translation operation will occur from

·left to right with each source byte used as an index into the
translation table. Translated bytes obtained from the translation
table are stored into the destination field. If the length of the
source field is less than the length of the destination field,
translated blanks will be used to fill the destination field. If the
length of the source field is greater than the length of the
destination field, rightmost characters of the source field will be
truncated.

table string variable with length 256 that
translation table.

source - string expression to be translated

defines the

destination - string variable or substring reference into which the

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX C - CYBIL INTRINSICS

translated string is transferred.

/IUNCHECKED_CONVERSION (SOURCE, TARGET)

C3

86/03/06
REV: 8

This procedure copies SOURCE to TARGET. The following restrictions
must be satisfied:

1) SOURCE and TARGET must be <variable reference>s

2) SOURCE and TARGET must be of the same lengt_h. as measured in
bits

3) if SOURCE or TARGET is a <pointer reference>t then the <pointer
reference> must not be a <pointer to procedure>

4) TARGET must satisfy the restrictions on the target of an
assignment statement

5) neither SOURCE not TARGET can be a pointer or contain a
pointer.

MACHINE SPECIFIC INTRINSICS
f:.·:":·~-1!' ..

C180 INTRINSICS

The following intrinsics are provided for the CYBIL implementation
on the Advanced.System. These intrinsics allow system programmers
access, in CYBIL, to a small subset of the h~rdware instructions and
data Structures. . .···· .~J.'·r···'t t _.s:q'f~.-\..C.!--?t"'··""·: x.~· ,,. ir •• ·•" {~11,.. ~ '

\£))'',..... 4 }'\,e,.t.1- /} / / (!
.,; fi'~··' - . .f

#COMPARE SWAP (LOCK, INITIAL, NEW, ACTUAL, RESULT)

This procedure externalizes the compare swap (Reference Number 125)
instruction. The operation of this procedure can best be described
with the CYBIL statements giv-en below. Note that the hardware
executes the entire statement list as a rion-interruptable sequence and
that access to LOCK from other sources (other processor, PPU) is
prevented during the time it takes to execute the statement list.

If (left half of lock) = OFFFFFFFF(16) THEN
result ·= 2;

ELSE
actual := lock;
If lock = initial THEN

lock := new;
result := 0

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX C - CYBIL INTRINSICS

ELSE
result := 1;

!FEND
!FEND

lock - Variable on which the compare swap
performed. This variable must be on

initial - Expression that specifies what the
lock must be for the swap operation

new - Expression that specifies the value to
the swap is successful.

C4

86/03/06
REV: 8 .

operation is to be
a [O mod 8] boundary.
initial content of
to be successful.
be stored in lock if

actual - Variable into which the initial contents of lock is
returned. If lock is locked, then actual is not
modified.

result - Variable 0 •• 2 into which the result of the compare_swap
instruction is returned.

0 - swap was successful.
1 - swap failed because initial <> actual
2 - swap failed because variable was locked.

The TYPE of lock, initial, new, and actual must be equivalent and
have a size of 8 bytes.

I/CALLER ID (ID)

This procedure obtai~s the id of the caller of the function or
procedure. Caller ID is placed in XO left by the hardware as a result
of executing a CALLREL or CALLSEG instruction. The caller id is a
record that contains the global/local .key, ring, and segment number of
the caller of a procedure. The argument to this procedure can be any
record with a size of 4 bytes. See sections 2.1.1.1, 2~6.1.2 and
20601.3 of the CYBER 180 MIGDS for a complete description of the
caller id.

#HASH SVA (SVA, INDEX, COUNT, FOUND)

This procedure externalizes the LPAGE (Reference Number 127)
instruction. This instruction searches the System Page Table (SPT)
for a specified System Virtual Address (SVA) and returns an index to
the entry (if found) or an index to the last entry searched (if not
found). A count of the number of entries searched is also returned.
This procedure returns a boolean to indicate whether the SVA was
f'ound.

sva variable that contains the SVA to search for. The size of
this variable must be 6 bytes.

index - Integer variable to which a word index into the System Page

CDC Private

"CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

cs

86/03/06
- REV: 8

------------------------~---------------------7---------~------------

APPENDIX C - CYBIL INTRINSICS

Table is returned. This index points to the SPT entry for
the SVA if the SVA was found, or to the last entry searched
if the entry was not found.

count - integer variable (1 •• 32) to which a count is returned of
the number of SPT entries searched.

found - boole·an variable that specifies whether the SVA was found.

#RING (POINTER): INTEGER

This function takes a direct pointer expression and returns an
integer value which is the ring number contained in the pointer •

. #SEGMENT (POINTER): INTEGER

This function takes a direct pointer expression and returns an
integer value which is the segment number contained in the pointer.

#OFFSET (POINTER): INTEGER

This function takes a direct pointer expression and returns an
integer value which is the signed offset contained in the pointer.

#ADDRESS (RING, SEGMENT, OFFSET): tCELL

This functio~ takes a ring, segment and offset and returns a value
of type pointer to cell. The values.for the arguments must be in the
following ranges:

ring: 1 •. 15
segment: 0 .• 4095
offset: -80000000(16) •• 7fffffff(l6)

#CURRENT STACK FRAME: tCELL

This function returns a pointer to the first cell of the current
stack frame.

#PREVIOUS SAVE AREA: tCELL

This function returns a pointer to the first cell of the previous
save area.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

C6

86/03/06
REV: 8

-----------------------------------~---------~-------------~--------
APPENDIX C - CYBIL INTRINSICS

#PURGE BUFFER (OPTION, ADDRESS)

This procedure externalizes the PURGE (Reference Number 138)
instruction for purging the contents of the cache or map.

option constant integer expression in the range of 0 to 15 that
specifies the purge option. See the MIGDS for a
description of the values of the purge option.

address a 6 byte variable that specifies the PVA or SVA of the
data to be purged.

#TEST SET (VARIABLE, RESULT)

This procedure externalizes the LBSET (Reference Number 124)
instruction to return a single.bit from memory and to unconditionally
set that bit in memory without changing the value of any other memory.
This intrinsic works. on a boolean variable referen~e whether it be a
boolean variable, an array of booleans, a field of either a packed or
unpacked. record.

variable - This variable reference is for the boolean variable that
the LBSET instruction operates on.

·result - This variable reference is where the boolean result will
be returned from the LBSET operationo

Cl80 AND C200 INTRINSICS

#FREE RUNNING CLOCK (CLOCK ID): INTEGER

This unsafe function returns the value of the free running
microsecond elock.

clock id - Integer expression (0 •• 1) designating the clock. to be
read. . (For the C180, this is the memory port to be used.
For the C200, this value must be zero.)

#READ REGISTER (REGID): INTEGER

This unsafe function externalizes the reading of the specified
register. This allows a program to read the contents of a process
or processor register file. The result of the function is an integer.

regid - Integer expression (0 •• · 255Y that identifies the number
of the register to be read.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

·APPENDIX C - CYBIL INTRINSICS

/}WRITE REGISTER (REGID, VALUE)

C7

86/03/06
REV: 8

This procedure externalizes the changing of the content of the
specified process or processor register file.

regid Integer expression (0 •• 255) that identifies the number.
of the register to be written.

value - Integer expression that contains the data to be written to
the register.

C200 INTRINSICS

#GET JOB TIMER : INTEGER

This unsafe function externalizes the RJTIME instruction
(opcode=37} which retrieves the contents of the job interval timer.
This intrinsic produces undefined results when issued in monit.or mode.

#LOAD AR

This procedure externalizes the LODAR instruction (opcode=OD) which
loads the associative registers from absolute bit address 4000(16) in
conjunction with #SPOIL as appropriate.

#SET JOB TIMER (TIME)

This procedure externalizes the WJTIME instruction (opcode=3A)
which sets a value into the job interval timer. When executed in
Monitor Mode this intrinsic is a no-op.

time - Integer expression whose contents is set into the job
interval timer. If the value is greater that (2**32)-1,
the high order bits will be truncated. If time =O then the
job interval timer is de-activated.

#STORE AR

This procedure externalizes the STOAR instruction (opcode=OC) which
stores the associative registers into central processor memory at
absolute bit address 4000(16). The contents of the live associative
registers are undefined after completion of the store. Thi~ procedure
will be used in conjunction with #SPOIL as appropriate.

CDC Private

ClBE~ IMPLEMENTATION LANGUAGE

CYBIL LANGUAGE SPECIFICATION

APPENDIX C - CYBIL INTRINSICS

#SWAP DFBR (CURRENT REGISTER, NEW REGISTER)

cs

86/03/06
REV: 8

This procedure externalizes the LSDFR instruction (opcode=3B) which
loads a new value (new_register) into the 64-bit "data flag branch
register" while· storing the old contents of this register into the
variable (current register). Note: An immediate data flag branch will
occur at the completion of this intrinsic if the new contents of the
DFBR meet the appropriate branch conditions.

current register - 64-bit, word aligned variable which will receive
-the old contents of the "data flag branch register".

-new_register - 64-bit, word aligned integer expression or variable
which contains the new value to be loaded into the live
"data flag branch register".

CDC Private

I~

I

