CONTROL DATA’ 6000 SERIES COMPUTER SYSTEMS
FORTRAN Extended General Information Manual

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales
office listed on the back cover.

CONTROL DATA CORPORATION

Documentation Department

October, 1966 3145 PORTER DRIVE ©1966, Control Data Corporation
Pub. No. 60175400 PALO ALTO, CALIFORNIA Printed in the United States of America

INTRODUCTION

FORTRAN for the CONTROL DATA ©® 6400,/6600 comput-
er system is a procedural language designed for solv-
ing problems of a mathematical or scientific nature.

The source language is fully compatible with ASA FOR-
TRAN. Several additional features are included in the
language. These serve fo increase the power of FOR-
TRAN as a solution tool and broaden the scope of the
language so that many existing FORTRAN systems be-
come acceptable subsets of 6400/6600 FORTRAN.

The compiler is designed to produce object code which
takes full advantage of the high speed execution charac-
teristics of the 6400/6600 computer systems.

[y

LANGUAGE FEATURES

Constants and variables of several types:
integer
single precision floating point (real)
double precision floating point
complex
octal
hollerith

logical
Mixed mode arithmetic
Masking (Boolean), logical and relational operators
Shorthand notation for logical operators and constants
Library functions
Independently compilable subprograms
Multiple entry points to subroutines and functions
Multiple subroutine exits
Expressions as subscripts
Variable dimensions
Variable FORMAT capability
Conversion formats for all data forms
Specification and 1/0 statements to allow use of ECS
Array reference with fewer subscripts than dimensioned
Hollerith constants in expressions and Data statements

More than one statement per line

(Vo]

[Left or right-justified hollerith constants
® Two-branch IF statements

e NAMELIST capability

CODE OPTIMIZATION

Efficient code is the primary design objective of the 6400/
6600 FORTRAN compiler. Extensions to the optimization
capability of previous compilers include:

e Elimination of redundant operations where possible.

e Evaluation of array element address by the index
function method.

® Critical path analysis of instruction sequences to
maximize parallel operation.

e Reformation of subexpressions to permit extended
parallelism.

o Evaluation of constant subexpressions at compile
time.

® Determination at compile time for each reference
to a formal parameter to determine whether it
should be referred to by address substitution or in-
direct addressing.

e Elimination of common remote parameter lists.

e Formation of simple constants by sets rather than
loads.

e Elimination of branches to the next instruction.
® DPresetting of arrays with a constant pattern is
specially handled at load time to avoid the gener-

ation of a large binary deck.

o Inline evaluation of some functions.

(%

The FORTRAN compiler processes each subprogram
independently using a two-pass technique. The source
language is read once from the input device. The out-
put consists of object code, COMPASS listings and a
source listing with diagnostic messages.

FORTRAN operates under the SCOPE operating system.
The objects code produced by the compiler is designed
to operate under SCOPE.

LANGUAGE ELEMENTS

CONSTANTS

VARIABLES

The following kinds of constants are allowed:

INTEGER
18 decimal digits or less with a range in magnitude of 0 through _59-¢
FLOATING POINT
- . -294
real constants: 14 decimal digits or less; magnitude range of 10
through 10322 and 0
294

double constants: 28 decimal digits or less; magnitude range of 10
through 10322 and 0

complex constants: two real constants.
Two machine words are used to store double and complex constants.

OCTAL

Octal constants of up to 20 digits may be defined directly in the FORTRAN
program as well as entered by input or data statements.

HOLLERITH

1 to 136 alphanumeric or special characters may be given as a constant
left justified, blank filled.

1 to 10 characters may be right justified with zero fill. Hollerith con-
stants, also, may be defined directly in the program.

LOGICAL

The symbolic constants that represent the logical values true and false are:

. TRUE.
.FALSE. F.

Variables may be simple or subscripted, and a subscript may contain up to
three subscripts.

-1

REPLACEMENT STATEMENTS AND EXPRESSIONS

ND

REPLACEMENT
STATEMENT

ARITHMETIC
EXPRESSIONS

The general form of the replacement statement is:
R=E

where R is a variable and E is an expression. Expressions may be arithmetic,
masking, relational or logical.

The replacement statement is the only FORTRAN statement that does not rely
on a verb or declarator to describe its action.

Here, the character " =" is defined to mean "is replaced by"'.
For example the replacement statement
A =B

can be read as: the value of variable A is replaced by the value of the variable
B.

The statement
I=J + (K*2)/5
instructs the processor to evaluate the expression on the right by squaring the

variable K, dividing the result by the constant 5, adding the quotient to the var-
iable J and assigning that sum to the variable I.

Arithmetic operators are:

*x exponentiation
/ division

* multiplication
+ addition

- subtraction

MASKING
EXPRESSIONS

RELATIONAL

EXPRESSIONS

10

Mixed mode expressions are allowed; any type (except logical) of variable or
constant may be combined with any other type of variable or constant.

Masking operators are:

.AND. logical product
.OR. logical sum
.NOT. complement

The statement:
PROD = ABLE .AND. BAKER
directs the processor to form the logical product of the variables ABLE and

BAKER and assign the result to the variable PROD. In the general form of
the masking expressions, p op v, the operations are as follows:

P v p.AND.v p-OR.v .NOT.p
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

Relational operators are:

.EQ. equal to

.NE. not equal to

.GT. greater than

.GE. greater than or equal to
.LT. less than

.LE. less than or equal to

The value of the expression, g, op Ay is true if 4, stands in the specified
relation to dy> otherwise it is false.

LOGICAL

EXPRESSIONS The logical operators are:
.AND. conjunction
.OR. disjunction

.NOT. negation

The value of the logical expression, o 1 0P Oy . - -0PO , is either true or
false. The o, are relational expressions or variables of type logical.

(NOTE: The logical and masking operators may be abbreviated with . A.
for .AND., .O. for .OR., and .N. for .NOT))

11

CONTROL STATEMENTS 3

STATEMENT
IDENTIFIERS

GO TO
STATEMENTS

IF STATEMENTS

Statement identifiers provide numbers for reference to statements. A state-
ment identifier may be 1 through 99999.

GO TO statements transfer control to a specified statement.
GO TOn
transfers control unconditionally to statement n.

GO TO i,(nl,n ..n_)

2°° " " "m

transfers control to the statement identified by i, an integer variable, which
has previously been assigned an integer value by the statement ASSIGN n, to i.
The parenthetical list of statement numbers is optional.

GO TO(nl,n .,n_),e

2’7 T m
transfers control to the statement identified by n, , where i is the integer value,
the arithmetic expression e.

IF statements transfer control conditionally, depending upon the value of an
expression.

IF (expressions) n1,112,n3
transfers control to statement n_ if the value of the arithmetic or masking ex-
pression is negative. If the value is zero, control is transferred to statement
n,. A positive value transfers control to n,.

IF (logical expression)s

If the logical expression is true the imperative statement(s) is executed.

Otherwise, control is transferred around it.

13

DO STATEMENTS

CONTINUE

PAUSE

STOP

14

IF (expression) n_,n
arithmetic expression: transfer to statement n, if non-zero, otherwise
to statement n2.

logical expression: transfer to statement n 1 if the expression is true,
transfer to statement n, if false.

DOni=m,,m_,m

1772’73

Repeats the execution of all succeeding statements up to and including state-
ment number n. The index, i, is an integer variable initially set to m_. The
DO loop is repeated the number of times necessary for i to attain the value of

m,, incremented each time through the loop by the value of m 3"

CONTINUE

Provides a no-operation instruction which transfers control to the next instruc-
tion in sequence. It may be used to terminate a DO loop when the last state-
ment in the loop would otherwise be a control transfer statement.

PAUSE
or

PAUSE n

Causes a cessation of program operation. Execution may be resumed via
SCOPE.

STOP
or

STOP n

Causes program termination.

DATA SPECIFICATION STATEMENTS 4

DIMENSION

TYPE

COMMON

EQUIVALENCE

DIMENSION vl(sl,sz,s3) ,V2(s1,sz,s3), -

Reserves memory locations for the arrays v_,v_,...

1" 2

INTEGER list

REAL list

DOUBLE PRECISION list or DOUBLE list

COMPLEX list

LOGICAL list

Each of the above forms defines a type of FORTRAN variable. The listis a

string of variable names. The names may be followed by dimension informa-
tion to provide a further means of defining arrays.

COMMON/namel/list l/name 2/lis1:2. ..

Reserves memory locations in a named common block. All variables (or
arrays) in the list are contained in the block designated by the corresponding
name. One common block may be unnamed (blank). Common blocks may be
assigned to Extended Core Storage (ECS) by prefixing the block name with an
asterisk.

EQUIVALENCE (Vl,vz,vs, ..l) ,(v5,v6,v7, S T
Assigns variables (simple or subscripted) enclosed within each set of paren-

theses to the same memory locations. Thus, EQUIVALENCE allows renam-
ing of FORTRAN variables to suit the programmers convenience.

15

EXTERNAL

DATA

16

EXTERNALn_,n

1 n_,...

2’73

Defines the names (ni) as external procedures.

DATA (i1 = value list), (12 = value list),...
or

DATA i .. /value list/i ../value list

e 37l
Enables initialization of variables at load time. Each i is a variable name or
an array element name. The constants in the value lists correspond to the
identifiers and are stored into locations assigned to the indicated variables

3 7 OoNDT
when the FORTRAN subprogram is locaded by SCOPE.

SUBPROGRAM STATEMENTS 5

PROGRAM

END

FUNCTION

PROGRAM (f,f,,...f)

Defines the files (fi) to be used by the subprogram.

END

Is the last statement of a subprogram.

A function in FORTRAN terms is an arithmetic procedure which yields a
single-value result. Functions may be declared in two ways:

The arithmetic statement function is a macro facility offered by the com-
piler. The programmer may, for example, write at the beginning of a sub-
program:
FUN(X,A,B,C)=AXX* 2+B¥X+C
Then in the body of the subprogram he may write:
Z=(FUN(Y,5.,2.,4.))/2.0
and expect the function FUN to be performed at the appropriate time in the
expression evaluation. An arithmetic statement function is valid only with-
in the subprogram in which it is defined.

An independent function is a subprogram bounded by the statements:

FUNCTION f(pl’pZ’ e -Pn)

END

=t
~1

SUBROUTINE

CALL

ENTRY

18

f is the function name and p, the formal parameters. An independent function
is called in the same manner as an arithmetic statement function.

SUBROUTINE $(p,,P,, -~ -P JRETURNS(v ,V,,...V)

END

The above two statements are the delimiters for a subroutine subprogram.
s is the subroutine name, and pi the formal parameters.

A subprogram may include, as formal parameters, an array identifier and
its dimensions in simple integer variable form. The actual dimensions are
specified by the calling subprogram. The RETURNS phrase is optional. Each
variable, v, is associated with a statement label specified in the CALL state-

ment.

CALL s(pl,pz, .. .pn)RETURNS(nl,n - .nn)

2
Transfers control to a subroutine subprogram; s is the program name, and
p; the actual parameters.

RETURNS is optional here, also. If omitted, control returns from the sub-
routine to the statement following the call. Otherwise each n is a statement
label to which the called subroutine may return.

ENTRY name

Identifies alternate entry points to a function or subroutine. When a sub-
program is called by one of these alternate names, execution begins with
the indicated statement.

RETURN

RETURN v

Used within a function or subroutine to return control to the calling sub-

program. An optional variable name (v) may be used to indicate a non-
standard return.

ek

«w

DATA TRANSMISSION STATEMEN

_|
w

DATA LIST

FORMAT
STATEMENT

The general form of a data transmission statement is:
operation n, data list

The operation specifies the transmission process and unit; n refers to a
FORMAT statement and the data list specifies the variables (storage loca-
tions) involved. In binary tape operations, no FORMAT statement is nec-
essary.

The data list consists of any number of simple or subscripted variables,
separated by commas. If an array name appears without subscripts, the
whole array is transmitted. Arrays may also be transmitted using nota-
tion similar to the DO loop notation:

(A(LIK)IFL 1y, 1, J=m ,my, m)K=n ;0

172 23)

FORMAT (s (s 800) 8)

17520 n

Defines the structure of BCD data. s, are the format specifications and
k is a repetition factor:

,k (s , b,...,k2(...,klO)SX,Sy,...)))))))...

Specifications are repeated from the last open parenthesis until the list is
exhausted. Format specifications may be any of the following:

Ew.d Single or double precision floating point conversion depending

upon variable type

Fw.d Single precision floating point conversion without explicit
exponent field

Gw.d Combination of E and F formats depending on variable
magnitude

PUNCHED CARD
RECORDS

PRINTER RECORDS

22

Iw

Aw

Lw
wHf
f
wX

/

Assigns beginning column for subsequent information
Decimal integer conversion
Octal integer conversion

Alphanumeric conversion left justified in storage with blank
fill

Alphanumeric conversion, right justified in storage with
zero fill

Logical conversion

Heading and labeling information
Heading and labeling information
Intra-record spacing

Inter-record spacing

Format control may be variable. An array element name is used in an
input/output statement in place of a FORMAT identifier.

READ n,list

PUNCH n,list

Punched card records may be transmitted to the punch output unit or from
the standard input unit.

PRINT n,list

Transmits records to the standard output unit.

BCD RECORDS

BINARY RECORDS

NON-STANDARD
STATEMENTS

READ (u,njlist
WRITE (u,n)list

Transmit records between memory and logical unit u.

READ (u)list

Transmit binary records to or from the logical unit specified.

BUFFER IN (u,p)(fi, i)
BUFFER OUT (u,p)(fi, i)
u is a logical unit number
p is a parity key
fi is the identifier of the first word of the block to be transmitted

1i is the identifier of the last word of the block to be transmitted

READ ECS (cmi,eci,n)
WRITE ECS (cmi,eci,n)
cmi is the identifier of a central memory address
eci is the identifier of an address in Extended Core Storage

n is the number of words to be transmitted

READ MS (fn(i), k)
WRITE MS (fn(i) , k)

fn is a file identifier in mass storage (disk, drum, etc. . .)

N)
[S%]

NAMELIST

MAGNETIC TAPE

24

i is a record ordinal within the file

k is a FORMAT statement number

The NAMELIST method of BCD I/0 offers a simple technique for processing
data in a free format.

NAMELIST /n/Vl,v2,V3, ...
Identifies the variables ViVgreo .etc. as belonging to the name list n.
READ (1,n)

Accepts input items which resemble replacement statements, 1 is a logical
unit and n is the namelist name.

For example:

A=14.0,B=17.9,XTRA=0,B(3, 1H)=1.,2.,7.5
represent samples of NAMELIST input.
WRITE (1,n)

Produces output in the same form.

REWIND u

BACKSPACE u

END FILE u

If a REWIND or BACKSPACE is the next I/O operation after WRITE (tape)

the FORTRAN I/0 routine will write an end-of-file, backspace over it, and
then execute the command. u is a logical unit number,

CORPORATION

CONTROL DATA
L corronirion

COMMENT AND EVALUATION SHEET
6000 Computer Systems
FORTRAN Extended General Information Manual

Pub. No. 60176400 October, 1966
THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM name:

BUSINESS

ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S.A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA

[
|
I
I
|
|
l

STAPLE

CONTROL DATA SALES OFFICES

ALAMOGORDO, NEW MEXICO
ALBUQUERQUE, NEW MEXICO
ATLANTA, GEORGIA

AUSTIN, TEXAS

BILLINGS, MONTANA
BIRMINGHAM, ALABAMA
BOSTON, MASSACHUSETTS
BOULDER, COLORADO

CAPE CANAVERAL, FLORIDA
CEDAR RAPIDS, IOWA
CHICAGO, ILLINOIS
CINCINNATI, OHIO
CLEVELAND, OH10

COLORADO SPRINGS, COLORADO
DALLAS, TEXAS

DAYTON, OHIO

DENVER, COLORADO
DETROIT, MICHIGAN
DOWNEY, CALIFORNIA
GREENSBORO, NORTH CAROLINA
HARTFORD, CONNECTICUT
HONOLULU, HAWAII
HOUSTON, TEXAS
HUNTSVILLE, ALABAMA
IDAHO FALLS, IDAHO
INDIANAPOLIS, INDIANA
KANSAS CITY, KANSAS

LAS VEGAS, NEVADA
LIVERMORE, CALIFORNIA

LOS ANGELES, CALIFORNIA
MADISON, WISCONSIN
MIAMI, FLORIDA

MILWAUKEE, WISCONSIN
MINNEAPOLIS, MINNESOTA
MONTEREY, CALIFORNIA
NEWARK, NEW JERSEY

NEW ORLEANS, LOUISIANA
NEW YORK, NEW YORK
OAKLAND, CALIFORNIA
OMAHA, NEBRASKA

PALO ALTO, CALIFORNIA
PHILADELPHIA, PENNSYLVANIA
PHOENIX, ARIZONA
PITTSBURGH, PENNSYLVANIA
PORTLAND, OREGON
ROCHESTER, NEW YORK
SACRAMENTO, CALIFORNIA
ST. LOUIS, MISSOURI

SALT LAKE CITY, UTAH

SAN BERNARDINO, CALIFORNIA
SAN DIEGO, CALIFORNIA

SAN FRANCISCO, CALIFORNIA
SAN JUAN, PUERTO RICO
SANTA BARBARA, CALIFORNIA
SEATTLE, WASHINGTON
TULSA, OKLAHOMA

VIRGINIA BEACH, VIRGINIA
WASHINGTON, D. C.

Pub. No. 60176400

ADELAIDE, AUSTRALIA
AMERSFOORT, THE NETHERLANDS
AMSTERDAM, THE NETHERLANDS
ATHENS, GREECE :
BOMBAY, INDIA

CALGARY, ALBERTA, CANADA
CANBERRA, AUSTRALIA
DUSSELDORF, GERMANY
FRANKFURT, GERMANY

GENEVA, SWITZERLAND
HAMBURG, GERMANY
JOHANNESBURG, SOUTH AFRICA
KASTRUP, DENMARK

LONDON, ENGLAND

LUCERNE, SWITZERLAND
MELBOURNE, AUSTRALIA
MEXICO CITY, MEXICO
MONTREAL, QUEBEC, CANADA
MUNICH, GERMANY

OSLO, NORWAY

OTTAWA, ONTARIO, CANADA
PARIS, FRANCE

ROME, ITALY

STOCKHOLM, SWEDEN
STUTTGART, GERMANY

SYDNEY, AUSTRALIA

TEHERAN, IRAN

TEL AVIV, ISRAEL

TOKYO, JAPAN (C. ITOH ELECTRONIC
COMPUTING SERVICE CO. LTD.)

TORONTO, ONTARIO, CANADA

VANCOUVER, BRITISH COLUMBIA, CANADA

ZURICH, SWITZERLAND

8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

CONTROL DATA
| comPoration]

CORPORATION

Litho in U.S.A.

-

lenuejp uoljewioju| [eddudg PpapualxXly NVH1LYO0d O009S

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	replyA
	replyB
	xBack

