o i 5 1
| ‘ |

Control Data®
7600 Computer System

FORTRAN
Reference Manual

Control Data®
7600 Computer System

FORTRAN
Reference Manual

REVISION RECORD

REVISION NOTES
6-70 Original Printing (Prelimincry)
A
12-70 This printing obsoletes the Preliminary edition.

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Pub. No. 60280400

© 1970 Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Software Documentation
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

CONTENTS

#

INTRODUCTION vii
CHAPTER 1 CODING PROCEDURES 1-1
1.1 Coding Line 1-1
1.1.1 Statement 1-1
1.1.2 Continuation 1-2
1.1.3 Statement Label 1-2
1.1.4 Identification Field 1-2
1.1.5 Comments 1-2
1.2 Punched Cards 1-2
CHAPTER 2 ELEMENTS OF FORTRAN 2-1
2.1 FORTRAN Character Set 2-1
2.2 Symbolic Names 2-1
2.3 Data Types 2-2
2.4 Constants 2-2
2.4.1 Integer Constants 2-2
2.4.2 Real Constants 2-2
2.4.3 Double-Precision Constants 2-3
2.4.4 Complex Constants 2-3
2.4.5 Logical Constants 2-4
2.4.6 Hollerith Constants 2-5
2.4.7 Octal (Masking) Constants 2-6
2.5 Variables 2-6
2.5.1 Integer Variables 2-7
2,5.2 Real Variables 2-7
2.5.3 Double-Precision Variables 2-8
2.5, Complex Variables 2-8
2.5.5 Logical Variables 2-8
2.6 Subscripted Variable 2-8
2,7 Arrays 2-9
CHAPTER 3 EXPRESSIONS 3-1
3.1 Arithmetic Expressions 3-1
3.1.1 Forming Arithmetic Expressions 3-2
3.1.2 Arithmetic Evaluation 3-2
3.1.3 Mixed-Mode Arithmetic Expressions 3-4
3.2 Relational Expressions 3-7
3.3 Logical Expressions 3-8
3.4 Masking Expressions 3-10

60280400 A iii

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

ASSIGNMENT STATEMENTS

Arithmetic Assignment
Mixed- Mode Assignment
Logical Assignment
Masking Assignment
Multiple Assignment

N N
Ol o W Do =

TYPE DECLARATIONS AND STORAGE ALLOCATION

Type Declaration

Dimension Declaration

5.2,1 Variable Dimensions
Common Declaration
Equivalence Declaration

Data Declaration

5,5.1 Block Data Subprogram

5.
5

N =

o o o
(V2 BTSNV

CONTROIL STATEMENTS

6.1 GO TO Statement
6.1.1 Unconditional GO TO
6.1.2 Assigned GO TO
6.1.3 ASSIGN Statement
6.1.4 Computed GO TO

6.2 I tatements
2.1 Three-Branch Arithmetic IF
2,2 One-Branch Logical IF
2.3 Two-Branch Logical IF
6.3 DO Statement

3.1 DO Loop Execution
.3.2 DO Nests
.3.3 DO Loop Transfer
CONTINUE Statement
PAUSE Statement
STOP Statement
RETURN Statement
END Statement

¢

DO D

D

O)G?Gb@?ﬁ
00 1 O U

PROGRAM, PROCEDURES AND SUBPROGRAMS

Source Program

Main Program

Program Communication
Subprogram Communication
Procedures and Subprograms
7.5.1 Procedure Identifiers
7.5.2 Formal Arguments
7.5.3 Actual Arguments

.6 Statement Function

PSP P IS
: N
U W

=1

1

@mammmmmm?mmmmmmam
== O O 000U R R W WN N

1

3
1
[

9 -3~ -1 -3~ ~1-]
i
S OUT W W NN N

-~
[}

60280400A

CHAPTER 8

CHAPTER 9

60280400A

7.7 Supplied Function
7.7.1 Intrinsic Functions
7.7.2 Basic External Functions
7.8 Subprograms
7.8.1 Function Subprogram
7.8.2 Subroutine Subprogram
7.8.3 Library Subroutines
7.9 CALL Statement
7.10 EXTERNAL Statement
7.11 ENTRY Statement
7.12 Variable Dimensions in Subprograms
7.13 Program Arrangement
OVERLAYS
8.1 Levels
8.2 Identification
8.3 Composition
8.4 Call
8.5 Overlay Format
8.6 Loader Cards
8.7 Overlay Cards

INPUT/OUTPUT FORMATS

© oo
W N -

9.5

Input/Output List
Array Transmission
Format Declaration
Conversion Specifications
9.4.1 Ew.d Output
Ew.d Input
Fw.d Output
Fw.d Input
Gw.d Output
Gw.d Input
Dw.d Output
Dw.d Input
Iw Output

Iw Input

Ow Output
Ow Input

Aw Output
Aw Input

Rw Output
Rw Input

Lw Output

. Lw Input

nP Scale Factor
9.5.1 Fw.d Scaling
9.5.2 Ew.d or Dw.d Scaling
9.5.3 Gw.d Scaling

.
.

.« o . o e
e e & © o e

o

= o

i e e a o il i

.
b b e e b R O 00 =1 Y U1 O DO

W=\

B
.

_@wwwwwwmwwwwwwwww

oL
== 0o N1 -3 -1 o
[

N N3 =3 3 N3 =3 -1 -1 93~ =3 -3
P)
=
0 ~3 Ul o

I
3]
(=]

11 [T 1 |

| I 1] 1]

1
e T e S B o S TS oY= Rie' Wi~ N < B T R

mwwwwwwuﬁ@wwwwwww

CHAPTER 10

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I
APPENDIX J
APPENDIX K

vi

9.6 Editing Specifications

9.6.1 wX

9.6.2 wH Output
9.6.3 wH Input
9.6.4 New Record
9.6.5 Yooo*

9.7 Repeated Format Specifications

9.8 Unlimited Groups

9.9 Variable Format

9.10 USASI Compatibility
9.10.1 Unlimited Groups for USASI
9.10.2 Scale Factor for USASI

INPUT/OUTPUT STATEMENTS

10.1 Output Statements

10.2 READ Statements

10.3 NAMELIST Statement

10.4 File Handling Statements

10.5 Buffer Statements

10.6 ENCODE/DECODE Statements

7000 SERIES FORTRAN CHARACTER CODES
FORTRAN STATEMENT LIST

FORTRAN FUNCTIONS

COMPUTER WORD STRUCTURE OF CONSTANTS-7600
COMPILATION AND EXECUTION
DIAGNOSTICS

PROGRAM-SUBPROGRAM FORMAT
SYSTEM ROUTINE

EXECUTION DIAGNOSTICS

FORTRAN CROSS-REFERENCE MAP
ADDITIONALI STATEMENTS

9-17
9-17
9-18
9-19
9-19
9-20
9-22
9-22
9-23
9-24
9-24
9-24

10-1

10-1
10-4
10-5
10-8
10-9
10-11

A-1

C-1
D-1
E-1
F-1
G-1
H-1
I-1

J-1

60280400A

INTRODUCTION

%

FORTRAN for the CONTROL DATA® 7600 Computer System is a procedural language designed for
solving problems of a mathematical or scientific nature. It incorporates a majority of the features

of standardized FORTRAN as specified by the X3.9-1966 committee of the United States of America
Standards Institute. The few variations are a matter of 7600 hardware requirements, These variations,
as well as the extensions, are flagged throughout this manual.

Selected design extensions include FORTRAN IV features, FORTRAN 2.3 features as implemented on
the CONTROL DATA® 6000 Series Computers, and new source statements relating to the dual memory
of the 7600 Computer. 7600 FORTRAN is also compatible with FORTRAN II. (Since new programs
should be written in the later versions of the language as specified above, FORTRAN II formats are not
described.)

LANGUAGE FEATURES
e Constants and variables of the following types:

Integer

Single~precision floating point (real)
Double-precision floating point
Complex

Logical

Octal (constant only)

Hollerith (constant only)

o Mixed mode arithmetic expressions

Masking (Boolean), logical, and relational operators

e Shorthand notation for logical operators and constants
e Library functions (intrinsic functions and external functions)

Independently compilable subprograms

Multiple entry points to subroutines and functions

Multiple subroutine exits

Expressions as subscripts

60280400A vii

Variable dimensions

Variable FORMAT capability

Intermixed COMPASS subprograms

Block transfers between large core and small core memory
Allocation of large core memory

Conversion formats for all data forms

Array reference with fewer subscripts than dimensioned
Large array size - approximately one-half million words
Hollerith constants in expressions and DATA statements
More than one statement per line

Left- or right-justified Hollerith constants

Two-branch logical IF statements

NAMELIST capability

BUFFER IN/BUFFER OUT and ENCODE/DECODE statements
Overlay capability

Multiple assignment statement form

DATA statement usable in main program

Abbreviated forms of DATA statement

DO loop indexing parameters changeable within loop

COMPILER FEATURES

7600 FORTRAN is a one-pass compiler. It uses both Large Core Memory and Small Core Memory
and takes advantage of the 48-parcel instruction stack and segmented functional units. Optimization
of DO loops is accomplished by:

viii

Performing multiple-dimension index calculation before entering the loop
Evaluating common subexpressions only once

Evaluating invariant subexpressions before entering the loop

60280400A

60280400A

The compiler and execution time routines execute under 7000 SCOPE., Subprograms are compiled
independently, and a file consisting of relocatable binary subprograms is produced. Upon option,

the compiler also produces a source listing, an object code listing, a cross reference listing, and a
relocatable binary deck.

The compiler can execute as a load-and-go program and can produce 7600 machine language output.

It executes as an independent program under control of the operating system and uses only the storage
required for compilation of a particular program. Two compilations may proceed simultaneously
using the upper and lower job features of SCOPE. Overlays can be loaded at execution time without
relocation.

FORTRAN accepts main programs and subprograms written in either FORTRAN source language or
7600 COMPASS assembly language. This feature permits a flexible program arrangement for each
particular job.

ix

CODING PROCEDURES 1

1.1 CODING LINE

A FORTRAN coding line contains 80 columns in which FORTRAN characters are written one per column.
The four types of coding lines are listed below:

Statement 1-5 statement label
6 blank or zero
7-72 FORTRAN statement
73-80 identification field
Continuation 1-5 blank
6 FORTRAN character other than blank or zero
72 continued FORTRAN statement
73-80 identification field
Comment 1 Cor $ or *
2-80 comments
Data 1-80 data

USASI FORTRAN, X3.9-1966, does not specify the identification field or the use of $ and * in comment
lines.

1.1.1 STATEMENT

Statement information is written in column 7 through 72. Statements longer than 66 columns may be
continued on the next line. Blanks are ignored by the FORTRAN compiler except in H fields. The
character $ may be used to separate statements when more than one is written on a coding line. How-
ever, it cannot be used with a program name, a subroutine name, a function statement, or any
statement which requires a statement number. A blank card may be used to separate statements.

USASI FORTRAN, X3. 9-1966, does not specify $.

60280400A

1.1.2 CONTINUATION

The first line of every statement must have a blank or zero in column 6. If statements occupy more
than one line, all subsequent lines must have a FORTRAN character other than blank or zero in
column 6.

Continuation cards may be separated by cards whose first 72 columns are blank. A state-
ment may have up to 19 continuation lines.

1.1.3 STATEMENT LABEL

A statement label is a string of 1 to 5 digits occupying any column position 1 through 5. It serves as a
reference to that particular statement. Only statements referred to elsewhere in the program require
statement labels.

These references can only be executable statements and FORMAT statements. The

same statement label cannot be given to more than one statement in a program unit.
ignored.

1.1.4 IDENTIFICATION FIELD

Columns 73 through 80 are always ignored in the compilation process. They may be used for iden-
tification when the program is punched on cards. Usually, these columns contain sequencing infor-
mation provided by the programmer.

USASI FORTRAN, X3,9-1966, does not specify the identification field.

1.1.5 COMMENTS

Each line of comment information is designated by a C,

*, or $ in column 1. Comment information
appears in the source program and the source program listing, but it is not translated into object
code.

The continuation character in column 6 is not applicable to comment cards.

USASI FORTRAN, X3.0-1966, does not specify * or $.

1.2 PUNCHED CARDS

Each line of the coding form corresponds to one 80-column card; the term "line' and ''card" are often

used interchangeably. Source programs and data can be read into the computer from cards; a reloca-
table binary deck or data can be punched onto cards.

1-2

60280400A

A zero number is

ELEMENTS OF FORTRAN 2

2.1 FORTRAN CHARACTER SET

Forty-seven characters are used in forming the elements of a FORTRAN program. These are divided
into alphanumeric characters and special characters. The alphanumeric characters are the alphabetic
capital letters from A to Z and the decimal numerics from 0 to 9. The special characters are the
following:

blank (left parenthesis
= equals) right parenthesis
+ plus ’ comma
- minus . decimal point
* asterisk $ dollar sign
/ slash

Appendix A includes a list of additional characters which may appear in Hollerith literals and, with the
exception of the semi-colon, in DATA statements.,

All characters appear internally in display code (Appendix A). A blank is ignored by the compiler
except in Hollerith fields. Otherwise, it may be used freely to improve program readability.

2.2 SYMBOLIC NAMES

Symbolic names are used to identify data, programs, subprograms, input/output units, and labeled
common blocks. With one exception, a symbolic name can be any combination of one to seven alpha-
numeric characters beginning with a letter.t The exception is a form of the octal constant which is the
letter O followed by six octal digits. Embedded blanks in a symbolic name are ignored,

Examples:
Legal Illegal
Symbolic Symbolic
Names Names
I0TA 3BETA begins with numeric character

A123456 REMAINDER more than seven characters

012345 + 234 begins with special character
0O12K345 0123456 illegal as a symbolic name but legal as an octal constant

t USASI FORTRAN, X3.9-1966, limits all symbolic names to six characters.

60280400A 2-1

2.3 DATA TYPES

Seven different data types are specified for 7600 FORTRAN: integer, real, double-precision, complex,
logical, Hollerith, and octal. Implicit declaration of type is applicable to integer and real only. In the
case of a constant, the absence of a decimal point indicates type integer, and the presence of a decimal
point indicates type real. In the case of a variable, an I, J, K, L, M, or N as an initial letter indicates
type integer. Any other alphabetic character used as an initial letter indicates type real. Double-
precision, complex, and logical data must be declared in a type statement. Hollerith and octal con-
stants are treated as type integer when they appear in arithmetic expressions or assignment statements.

2.4 CONSTANTS

A constant can be any of the seven data types listed above. Complex and double-precision constants are
formed from real constants. The type of a constant is determined by its form. The computer word
structure for each type is given in appendix D.

2.4.1 INTEGER CONSTANTS

An integer constant, N, is a string of up to 18 decimal digits in the range -(259-1)_< N £ (259—1), The
maximum value of the result of integer addition or subtraction must not exceed 2991, Subscripts and
DO-indexes are limited to 27" -2,

Examples:
63 3647631 314159265 574396517802457165
247 464646464

During execution, the maximum allowable value is 248_1 when an integer constant is converted to real.
If the result is greater than 248—1, bits 48-58 will be ignored and errors may result, The maximum
value of the operands and the result of integer multiplication or division must be less than 2481,

High order bits will be lost if the value is larger, but no diagnostic is provided. Values greater

than 2%8-1 are not printed and the field contains the character "R'" right justified.

2.4.2 REAL CONSTANTS

A real constant is a signed or unsigned string of up to 14 decimal digits that includes a decimal point
and/or an exponent. A real constant has one of the following forms:

n.n n.nE+s nE#+s
n. n. E+s
.n .nE+s

Where n is the decimal base, s is the exponent to this base 10, and E is the optional symbol used to
indicate exponentiation. The plus sign may be omitted for positive s. The range of a non-zero
constant is approximately 10-294 to 101322, If the range is exceeded, a compiler diagnostic is
provided. If the magnitude is less than 10-294, the value will be zero,

N
1
[\

60280400A

All real numbers are carried in normalized form.

Examples:
3.E1 means 3.0 x 101; i.e., 30.)
3.1415768 31.41592E-01
314, 0749162 .31415E03
-3.141592E+279 .31415E+01

2.4.3 DOUBLE- PRECISION CONSTANTS

A double-precision constant is a signed or unsigned string of up to 29 decimal digits that includes a
decimal point. It is optionally followed by an exponent. It is represented internally by two words.
The forms are similar to real constants:

.nDxs n.nDxs n.Dzx+s nDx+s

Where n is the decimal base, s is the exponent to the base 10, and D is the symbol indicating double
precision. D must always appear. The plus sign may be omitted for positive s. The range of non-zero
constant is, approximately, from 1072%4 o 10+322; if the range is exceeded, a compiler diagnostic

is provided. If s is omitted, it is assumed to be zero.

Examples:
3.1415927D 3141.593D3
3.1416D0 31416.D-04

3141.593D-03

2.4.4 COMPLEX CONSTANTS
A complex constant appears as an ordered pair of optionally signed real constants., Its form is
(r]_’ 1'2)

Where the real part of the complex number is represented by ry and the imaginary part by r,.

60280400A 2-3

If the range of the real numbers comprising the constant is exceeded, a compiler diagnostic is provided.
Diagnostics also occur when the pair contains integer constants, including (0, 0).

Examples:
FORTRAN Representation Complex Number
1., 6.55) 1. + 6.551
15., 16.7) 15, + 16.7i
(-14.09, 1.654E-04) -14.09 + ,0001654i
©., -1.) 0~-1.0i

2.4.5 LOGICAL CONSTANTS

A logical constant is a truth value. It may assume only the value of true or the value of false. A true
constant is stored internally as the one's complement of binary zero. A false constant is stored
internally as binary zero. The two permissible forms of a logical constant are:

. TRUE,

.FALSE,
or the briefer alternate forms

« T,

.F.

The latter forms are not specified in USASI X3,9 FORTRAN.

Example:
LOGICAL X1, X2
X1 = .TRUE.

X2 = .FALSE.

9-d 60280400A

2.4.6 HOLLERITH CONSTANTS

A Hollerith constant is a string of FORTRAN characters which is represented in memory by display
code and is treated as an integer. The general form is:

nHh hy. e by

where n is an unsigned decimal integer indicating the number of characters following H which are part
of the constant. H is the symbol indicating Hollerith type. The h; are the FORTRAN characters that-
make up the constant. Blanks are significant.

The maximum number of characters allowed in a Hollerith constant of H form depends on its usage.
When used in an expression, it is limited to 10 characters. In a DATA statement, or when passed as

an actual argument to a subprogram, it is limited only by the necessity that the statement containing

it be limited to 19 continuation lines. The long Hollerith constant must be dimensioned in a subprogram
when used as an argument,

Alternate forms of the Hollerith constant are:
nLh (left justified)
nRh (right justified)
Both left and right justification are with binary zero fill. If more than ten characters are used in a

DATA statement involving such a constant, only the last word has the zero fill. These forms may be
used in an arithmetic statement.

USASI FORTRAN, X3,9-1966, does not specify the alternate forms nLh and nRh.

Examples:
6HCOGITO 12HCONTROL DATA
4HERGO 5 LSUMbb=SUMbb00000
SHSUM 1H)

5RSUMbb=00000SUMbb 3LbTT=bTT0000000

A semicolon (display code 77) cannot appear in Hollerith constants since this bit configuration is
recognized as a Hollerith field terminator.

60280400A 2-5

2.47 OCTAL [MASKING) CONSTANTS

An octal constant is an optionally signed string of octal digits. It may have a minus sign prefix. It
is considered type integer. The two forms of the octal constant are:

Onj...n 6 <i<20
nj...nB 11520

The first form consists of 6 to 20 octal digits preceded by the letter O, The second form consists of
1 to 20 octal digits followed by the letter B.

Octal constants are right justified with zero fill, If the constant exceeds 20 digits, or if a non-octal
digit appears, a compiler diagnostic is provided.

USASI FORTRAN, X3.9-1966, does not specify octal constants.

Examples:
oT77777700077777 777776B
02323232323232323 777000777000777B

2.5 VARIABLES

FORTRAN recognizes simple and subscripted variables. A simple variable represents a single
quantity and references a storage location. The value specified by the name is always the current
value stored in the location. Variables are identified by a symbolic name of 1-7 alphanumeric char-
acters, the first of which must be alphabetic.

The compiler does not check to see if a variable has been assigned a value. The user must make
certain that all variables are defined. Otherwise, unexpected values may result.

The type of variable is defined in one of two ways:
Explicit Variables may be declared a particular type with the FORTRAN type declarations.

Implicit A variable not defined in a FORTRAN type declaration is assumed to be integer if
the first character of the symbolic name is 1, J, K, L, M, or N,

Examples:

115, JK26, KKK, NP362L, M
All other variables not declared in a FORTRAN type declaration are assumed to be real.
Examples:

TEMP, ROBIN, A55, R3P281

9-6 60280400A

2.5.1 INTEGER VARIABLES
Integer variables are defined explicitly or implicitly. They may assume values in the range
-(299-1) <15 (299-1).

The maximum absolute value a particular integer variable may assume depends on usage. The result
of conversion from integer to real, of the integer multiplication, integer division, or input/output
under the I-format specification is limited to 248-1. The result of integer addition or subtraction can
be as great as 299.1, Subscripts and DO indexes are limited to 217-2, Each integer variable occupies
one word of storage.

Examples:
IOTA LLLLLL
J M58A
K2S04 NEGATE

2.5.2 REAL VARIABLES

Real variables are defined explicitly or implicitly, They may assume values in the range
10729 < x < 107322

with approximately 14 significant digits. More specifically, X may assume the following values:
_10+322< X <_10—294
X=0
107294 ¢ X < 107322

Each real variable is stored in 'ﬂoating—point format and occupies one word.

Examples:
ALPHA XXXX
BETA 762597
GAMMA REAL22

60280400A 2-7

2.5.3 DOUBLE - PRECISION VARIABLES

Double-precision variables must be defined explicitly by a type declaration. Each double precision
variable occupies two words of storage and can assume values in the range 10729 < d <10t with
approximately 29 significant digits. Essentially, the double-precision variable is a real variable with
storage extended in order to achieve greater precision.

Examples:

DOUBLE PRECISION OMEGA, X, IOTA

2.5.4 COMPLEX VARIABLES

Complex variables must be explicitly defined by a type declaration. A complex variable occupies two
words in storage. Each word contains a number in real variable format. This ordered pair of real
variables (C1,C2g) represents the complex number Cq+iCg)

Example:

COMPLEX ZETA, MU, LAMDA

2.5.5 LOGICAL VARIABLES

Logical variables must be defined explicitly by a type declaration. Each logical variable occupies one
word of storage. It can assume the value of true or false. A logical variable with a positive zero value
is false. Any other value is true. When a logical variable appears in an expression whose dominant
mode is real, double, or complex, it is not packed and normalized prior to its use in the evaluation of
an expression (as is the case with an integer variable).

Example:

LOGICAL VALUE, L33, PRAVDA

2.6 SUBSCRIPTED VARIABLE

A subscripted variable may have one, two, or three subseripts enclosed in parentheses. More than
three produce a compiler diagnostic. Subscripts can be expressions in which the operands are simple
integer variables and integer constants, and the operators are addition, subtraction, multiplication,
and division only. Such expressions must result in positive integers. Use of other values such as
zero, real, negative integer, complex, or logical may invalidate results.

When a subscripted variable represents the entire array, the subscripts are the dimensions of the array.
When a subscripted variable references a single element in an array, the subscripts describe the rel-
ative location of the element in the array.

2-8 60280400A

2.7 ARRAYS

An array is a block of successive storage locations.

The entire array may be referenced by the array

name without subscripts (I/O lists and Implied DO-loop notation). Arrays may have one, two, or three
The array name and dimensions must be declared in a DIMENSION, COMMON, or TYPE
declaration prior to the first program reference to that array.

dimensions.

Each element in an array may be referenced by the array name plus a subscript notation.

Program

execution errors may result if subscripts are larger than the dimensions initially declared for the array.
The maximum number of elements in an array is the product of the dimensions.

Array elements are stored by columns in ascending locations.

Anir A A

Agyr Aga1 A

Ag;r Aze1 As3n A R R
112 A2z Aise
Agra Agzp Ao3s
Agla f3az Aszp

In the array declared as A(3,3,3):

The planes are stored in order, starting with the first, as follows:

Alll'—’L A121—’L+3.o..c‘o-.-
A211»L+1 A221—’L+4 . .

A311‘_’L+2 A321»L+5 [N

Array allocation is discussed under DIMENSION declaration. The location of an array element with
respect to the first element is a function of the maximum array dimensions and the type of the array.

Given DIMENSION A(L,M,N), the location of A(i, j, k), with respect to the first element A of the array,
is given by A+(i-1+L*(j-1+M*(k-1)))*E.

60280400A 2-9

The quantity enclosed by the outer parentheses is the subscript expression. E is the element length--
the number of storage words required for each element of the array. For real, logical, and integer
arrays, E = 1. For complex and double precision arrays, E = 2.

Example:

In an array defined by DIMENSION A(3, 3, 3), the location of A(2, 2, 3) with respect to A(1,1,1)
is:

Locn A(2,2,3) = (Loen A(1,1,1) + (2-1+3(1+3(2))))*1
= (L +22)%1 =L+ 22

An array reference is never checked to see if it is within the limits of the array as defined.
7600 FORTRAN permits the following relaxation of the representation of subscripted variables:
Given A(Dl,Dz,D?’), where the Di are integer constants,
then A(1,J,K) implies A, J,K)
Ad,d) implies A(1,J,1)
A() implies (A{I,1,1)
A implies A(1,1,1)
similarly, for A(Dl,Dz)
A(l,d) implies A(1,Jd)
A(D) implies A(I,1)
A implies A(1,1)
and for A(Dl)
A®@) implies A(I)
A implies A(1)

The elements of a single~-dimension array A(Dq) may not be referred to as A(I,J,K) or A(I,J). Diag-
nostics occur if this is attempted.

USASI FORTRAN, X3.9-1966, does not specify the above relaxations.

2-10 60280400A

EXPRESSIONS 3

An expression is a set of operands combined by operators and parentheses to produce, at time of exe-~
cution, a single-valued result. The set may be a single character or it can be a complex string of
operands and operators nested within parentheses. There are four kinds of expressions in 7600
FORTRAN: arithmetic, masking (Boolean), logical, and relational. Arithmetic and masking expres-
sions produce numerical results. Logical and relational expressions produce truth values. Each type
of expression is associated with particular sets of operators and operands.

3.1 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of arithmetic operators and operands which, when evaluated,
produces a single numerical value.

The arithmetic operators are:

+ addition

- subtraction

* multiplication
/ division

** exponentiation

The arithmetic operands are:

Constants
Variables (simple or subscripted)
Functions
Examples:
A
3.14159
3 + 16,427
(XBAR + (B(1, J+1,K)/3))
- (C + DELTA * AERO)

fan) QOYNM /Ty sk
(B - OLRT (B*¥2 - 4

60280400A 3-1

3.1.1 FORMING ARITHMETIC EXPRESSIONS

Two arithmetic operators may not appear next to one another in an arithmetic expression. If minus is
used to indicate a negative operand, the sign and the element must be enclosed in parentheses if preceeded
by an operator.

B*A/(-C)
but -A*B-C
A*(-C)

Parentheses may be used to indicate grouping as in ordinary mathemetical notation but they may not be
used to indicate multiplication.

When writing an integer expression, it is important to remember that dividing an integer quantity by
an integer quantity always yields a truncated result. The expression I*J/K may not yield the same
result as J/K*I as the following numerical examples show:

4*3/2 =6 but 3/2%4 = 4

3.1.2 ARITHMETIC EVALUATION

Parenthetical and function expressions are evaluated first in a right-to-left scan. In parenthetical
expressions within parenthetical expressions, evaluation begins with the innermost expression and

proceeds outward. Separate parenthetical expressions are evaluated as they are encountered in the
right-to-left scan.

In an expression with no parentheses or within a pair of parentheses in which unlike operators appear,
evaluation proceeds according to the following hierarchy of operators:

*x exponentiation performed first
/ division

d next
* multiplication E performed ne
+ addition i
- subtraction E performed last

In an expression with like operators, evaluation proceeds from left to right.

3-9 602804004

Examples:
In the following examples, R indicates an intermediate result in evaluation:

A**B/C+D*E*F-G is evaluated:
A**B — Rl
Rl/C - R2
D*E — R3
RS*F — R4
R4+R2 - R5
R5-G - R6

A*¥B/(C+D)*(E*F-G) is evaluated:
E*F-G — Ry
C+D — R,y
A**B — R3
R?’/R2 i R4
R,*R; — Rg

HI3)+C(l, J+2)*(COS(Z))**2 is evaluated:
COS(Z) —~ R,
Ry **2 — R,
Ry*C(I,J+2) — Ry
R3+H(I3) —~ Ry
The following is an example of an expression with embedded parentheses.
A*(B+((C/D)-E)) is evaluated:
C/D — Ry
Rl-E - R2
R2+B - R3
Rg*A — Ry

60280400A

(A*SINX)+1.)-Z)/(C*[D- (E+F))) is evaluated:

E+F — Ry

C*RZ — R3
SIN®) — R,
R4+1. - R5
A*Rg — Rg
Rg-Z — Ry

3.1.3 MIXED-MODE ARITHMETIC EXPRESSIONS

Mixed-mode arithmetic is permissible for all combinations of types (integer, real, double-precision,
complex, and logical operands)using any of the mathematical operations except exponentiatiorn. The
type of an evaluated mixed-mode arithmetic expression is the mode of the dominant operand type. The

order of dominance of operand types within an expression is given by the following list which proceeds
from highest to lowest:

Complex
Double-precision
Real

Integer

Logical

In expressions of the form A**B, the following rules apply:
If B is preceded by a minus operator, the form is A**(-B).
A and B are treated as integers if type logical.

For the various operand types, the type relationships of A“*B are:

Type B
I R D c L
I I no no no I
R R R D no R
T, D D D D no D
E; C C no no no C
L I no no no I

no indicates an invalid operation

3-4 60280400A

Examples:

1. Given real A, B; integer I, J. The type of expression A*B-I+J is real because the
dominant operand type is real.

The expression is evaluated:

Convert I to real
Convert J to real
A*B — R; real
Ri-I =R, real
R2+J — R3 real
2. The use of parentheses can change the evaluation. A, B,I,dJ are defined as above,
A*B-(I-J) is evaluated:
I-J —»R1 integer
A*B — R2 real
Convert Ry to real
RZ—R1 —Rg real
3. Given complex C,D,real A, B. The type of the expression A* (C/D)+B is complex
because the dominant operand type is complex. The expression is evaluated:
C/D — R, complex
Convert A to complex
A*R1 - R2 complex
Convert B to complex
R2+B — R3 complex
4. Consider the expression C/D+(A-B) where the operands are defined in 3 above. The
expression is evaluated:
A-B — R1 real
C/D — R2 complex
Convert R, to complex

1

R1+R2 - R3 complex

60280400A 3-5

3-6

5. Mixed-mode arithmetic with all types is illustrated by this example:

Given: the expression C*D+R/I-L

C Complex
D Double
R Real

1 Integer
L Logical

The dominant operand type in this expression is complex; therefore, the evaluated expression

is complex.
Evaluation:
Round D to real and affix zero imaginary part.

Convert D to complex
C*D — Ry complex
Convert R to complex
Convert I to complex
R/1 — R, complex
RotRy — Rg complex
R3-L - R4 complex

If the same expression is rewritten with parentheses as C*D+(R/I-L) the evaluation proceeds:

Convert I to real

R/I — Ry real
Ri-L — Ry real
Convert D to complex
C*D — Ry complex
Convert Ry to complex

RytRg— Ry complex

60280400A

3.2 RELATIONAL EXPRESSIONS

A relational expression is a combination of two arithmetic expressions with a relational operator. The
relational expression will have the value true or false depending on whether the stated relation is valid
or not. A true relational expression is assigned the value minus zero (all one bits). A false relational
expression is assigned the value plus zero (all zero bits). The general form of a relational expression

is:
aj op ag
where the a's are arithmetic expressions and op is one of the relational operators.
NOTE
A relational expression can have only two operands

combined by one operator. The form aj Op ag Op ag
is not valid.

The relational operators are

Symbol Meaning
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to
.LT. Less than
.LE. Less than or equal to

Relational expressions of the following forms where I is integer, R is real, D is double precision and C
is complex, are allowed:

I.LT.R
I.LT.D (D converted to real)
I.LT.C (Real part of C is used)

A relation of the form ay Op ay is evaluated from left to right.

The relations a) op ag,a; op (a2), (al) op ag, (al) op (az) are equivalent.

Examples:
A.GT.16. R{I).GE.R(I-1)
R-Q(I)*Z.LE.3.141592 K.LT.16
B-C.NE.D+E 0. EQ. (J(K))

60280400A 3-7

Mixed-mode is permissible in relational expressions for all combinations of types integer, real, double-
precision, and complex. The order of dominance of the operand types is the same as that stated for
mixed-mode arithmetic expressions (section 3.1.3). When complex expressions are tested for zero

or minus zero, only the real part is used in the comparison. For double precision numbers, the value
is converted to real.

USASI FORTRAN, X3.9-1966, specifies that the length of the real shall be converted to double
precision length for use in evaluating the relational expression.

Relational expressions are converted to equivalent arithmetical expressions at compile time, At
execution time, these equivalent arithmetic expressions are evaluated with program~supplied values
and compared with zero to determine the truth value of the corresponding relational expression. For
example, the relation p. EQ. q is equivalent to p-g=0. At time of execution, the difference is computed
and tested for zero. If the difference is zero (or minus zero), the relation is true; otherwise, it is
false. Likewise, the relation p. GE.q is equivalent to p-q > 0. At time of execution, the difference p-q
is computed and compared with zero. If the difference is greater than or equal to zero, the relation

is true. If the relation is less than zero, then it is false.

The relation I.GE.O is treated as true if I assumes the value minus zero or plus zero.

3.3 LOGICAL EXPRESSIONS

A logical expression is a combination of logical operands and/or relational expressions with logical
operators which, when evaluated, will have a value of true or false. The general form of a logical
expression is

Liop Lgop Lg. . .
where the L's are logical operands or relational expressions and the op's are logical operators.
The logical operands are

Logical constant Either the value . TRUE. or the value . FALSE.

Logical variable A variable that has been declared in a LOGICAL
type statement. It can only assume the values
. TRUE. or .FALSE.

The logical operators are

.NOT. Logical Reverses the truth value of the logical expression that
negation follows it
.AND. Logical Combines two logical expressions to produce a value of
conjuntion . TRUE. whenever both expressions are true; otherwise,
it gives a value of . FALSE,
.OR. Logical Combines two logical expressions to produce a value of
disjunction . TRUE. whenever either or both expressions are true:

otherwise, it gives a value of . FALSE,

3-8 60280400A

Alternate forms of the logical operators are

USASI FORTRAN, X3.9-1966, does not specify the alternate forms of the logical operators.

The logical operator .NOT, indicating negation appears in the form:

.NOT., L1

The value of the expression is examined. If the value is equal to plus zero, the logical expression has
the value false. All other values are considered true.

The hierarchy of logical operations is:

First .NOT. or .N.
then .AND. or .A.
then .OR. or .0O.

A logical variable, logical constant, or a relational expression is, in itself, a logical expression. If
L;, Ly are logical expressions, then the following are logical expressions:

.NOT. Ly

L;.AND. L,

Ll' OR. L2

If L is a logical expression, then (L) is a logical expression.
If Ll’ L2 are logical expressions and op is .AND. or .OR. then L1 op op L2 is never legitimate.
-NOT. may appear in combination with . AND, or . OR. only as follows:

L;.AND. .NOT. L,
L;.OR. .NOT. L,
L;.AND. (.NOT.+++)
L;.OR. (.NOT.**)

tself only in the form .NOT. (.NOT. (.NOT. L))

s
1
se c()rnpilaﬁnn diaonocetics

ApfeiaciQil GQLagiiOsuils,.

.NOT. may appear wit]
Other combinations

a ca

60280400A 3-9

If Ly, Lyare logical expressions, the logical operators are defined as follows:

.NOT. 14 is false only if L is true

L,.AND. L, is true only if L;, L, are both true

L,.OR. Ly is false only if Ly, Ly are both false
Examples:

B -C SA < B+ C is written
B-C.LE.A.AND.A. LE,B+C

FICA greater than 176.0 and PAYNMB equal to 5889.0 is written
FICA.GT.176.0. AND, PAYNMB. EQ.5889.0

3.4 MASKING EXPRESSIONS

The masking expression is a generalized form of the logical expression in which the variables may be
types other than logical.

In 2 FORTRAN masking expression, 60-bit logical arithmetic is performed bit-by-bit on the operands
within the expression. The operands may be any type variable, constant, or expression. No mode
conversion is performed during evaluation. If the operand is complex, operations are performed on
the real part. Although the masking operators are identical in appearance to the logical operators,
their meanings are different. They are listed according to hierarchy. The following definitions apply:

.NOT. or .N. complement the operand
.AND, or .A. form the bit-by-bit logical product of two operands
.OR. or .0, form the bit-by-bit logical sum of two operands

3-10 60280400A

The operations are described below:

P Vv p .AND., v p.OR. v .NOT. p
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

Let B; be masking expressions, variables or constants of any type except logical. The following are
masking expressions:

-NOT.B; B;.AND. By B;.OR.B,
If B is a masking expression, then (B) is a masking expression.
.NOT. may appear with + AND, or .OR. only as follows:

.AND. . NOT.
.OR. .NOT.
.AND. (.NOT.««-
.OR. (.NOT. ...

Masking expressions of the following forms are evaluated from left to right.

A .AND. B .AND. C...
A .OR. B .OR. Ceae

Arithmetic expressions appearing in masking statements must be enclosed in parentheses, e.g.,
E=(E*100B).OR.F.

Examples:
A 77770000000000000000 octal constant
D 00000000777777777777 octal constant
B 00000000000000001763 octal form of integer constant
C 20045000000000000000 octal form of real constant
.NOT.A is 00007777T7TTTTTTTTT7
A .AND. C is 20040000000000000000
A .AND..NOT.C is 57730000000000000000
B .OR..NOT.D is 77777777000000001763

The last expression could also be written as B .O. .N. D

60280400A 3-11

ASSIGNMENT STATEMENTS 4

4.1 ARITHMETIC ASSIGNMENT

The general form of the arithmetic assignment statement is A = E, where E is an arithmetic expression
and A is any variable name, simple or subscripted. The operator = means that A is replaced by the
value of the evaluated expression, E, with conversion for mode if necessary.

Examples:

A=-A

B(J,4) = CALC(I+1)*BETA+2. 3478
XTHETA=7,4*DELTA+ A(l,J, K**BETA)
RESPSNE=SIN(ABAR (INV+2, JBAR)/ALPHA (J,KAPL(I)))
JMAX=19

AREA = SIDE1 *SIDE2

PERIM = 2. *(SIDE1 + SIDE2)

4.2 MIXED-MODE ASSIGNMENT

The type of an evaluated expression is determined by the type of the dominant operand. This, however,
does not restrict the types that identifier A may assume. A complex expression may replace A, even
if A is real. The following chart shows the A = E relationship for all the standard modes. The mode of
A determines the mode of the statement.

When all the operands in the expression E are logical, the expression is evaluated as if all the logical
operands were integers.

For example, if L, Ly, Lg, L, are logical variables, R is a real variable, and I is an integer variable,
then I = L; *L, + Lg - L, is evaluated as if the Li were all integers and the resulting value is stored

as an integer in I.

R= L1 *L2+ LS' L4 is evaluated as stated above, but the result is converted to a real (a floating point
quantity) before it is stored in R.

60280400A 4-1

Type of Expression E

Type of Double
A Complex Precision Real Integer
Complex [|A=E Set A = most Convert E
significant half to real
of E
Areal = E Areal " E | Apea1 = F
Ajmag =0 Ajmag =0 Ajmag =0
Double A=E 1 A=E A=E Convert E
Precision|| jegs gfga_ less signi~ | to Real
nificant ficant is A=E
is set set tozero | less signi-
to zero ficant is
set to zero
Real A= Ereal Set A = most A=E Convert E
significant half to Real
of E
A=E A=E
Integer Truncate | Truncate E Truncate E{| A=E
Ereal to Fo 48 bit to Integer
Integer integer
A=E A=E A=E
Logical HErealsé I E#0, If E #0, If E#0,
0. A= A=most signi- A=E A=E
»A=Epeal| ficant half of E
E 1= HE=0, IfE=0, IfE=0,
0,A=0 A=0 A=0 A=0

60280400A

Examples:

Given CipAq Complex
Di s A2 Double
Ri,Ag Real
Ii JA 4 Integer
L;, Ag Logical

A1=Cq*Cp-C3/Cqy (6.905, 15.393) = (4.4, 2.1)% (3,0, 2.0) - (3.3, 6.8) / (1.1, 3.4)

The expression is complex; the result of the expression is a two-word, floating point quantity.,
A1 is complex, and the result replaces Al‘

Ag =Cy 4.4000+000 = (4.4,2.1)

The expression is complex. A3 is real; therefore, the real part of C1 replaces A3.

Ag = Cy*(0.,-1.) 2.1000+000 = (4.4,2.1)* (0,,-1,)

The expression is complex. A3 is real; the real part of the result of the complex multiplication
replaces A3.

Ay = Ry/Ry*(Rg-Ry+I;-(Ig*Rg) 13=8.4/4.2%(3.1-2.1)+14-(1*2.3)

The expression is real. Ay is integer; the result of the expression evaluation, a real, is con-
verted to an integer replacing Ay.

Ag = Dy ¥*2%(Dy+Dg*Dy)) 4, 96806000000000+001= 2. 0D**2*(3, 2D+(4. 1D*1. 0D))
+(Dg*D; *D,) +(3. 2D*2, 0D*3. 2D)
The expression is double precision. A2 is double precision; the result of the expression evaluation,
a double precision floating quantity, replaces A2.
Ay = C{*R{-Rytly 1=(4.4,2.1)*8.4-4,2+14

The expression is complex. Since Agis logical, the real part of the evaluated expression replaces
A5. If the real part is zero, zero replaces A5.

60280400A 4-3

4.3 LOGICAL ASSIGNMENT

The general form of the logical assignment statement is L = E, where L is a logical variable and E may
be a logical, relational, or arithmetic expression.

Examples:

LOGICAL A, B, C, D, E, LGA, LGB, LGC

REALF, G, H

A =B .AND. C .AND. D

A=F .GT. G.OR. F .GT. H

A= .N. (A.A. .N. B) .AND. (C.0.D)

LGA = .NOT. LGB

LGC=E ,OR. LGC .OR. LGB .OR. LGA .OR. (A .AND. B)

4.4 MASKING ASSIGNMENT

The general form of the masking assignment statement is M = E. E is a masking expression, and M
is a variable of any type except logical. No mode conversion is made during the replacement.

Examples:

INTEGER I,J,K, L,M, N(16)
REAL B,C,D,E,F(15)

N@)=1.AND. J

B =C .AND. L

F(J)=1.0R. .NOT. L .AND. F(J)

N(1) = 1.0.J.0.K. 0. L.0.M

I=.N.I

D= (B.LE.C) .AND. (C.LE. E) .AND. .NOT.I

4.5 MULTIPLE ASSIGNMENT

Expressions of the form
A=B=C=D=3. 0*X

are permissible and are executed right to left. The above expression would result in code which is
equivalent to the expressions:

D=3.0*X
C=D
B=C
A=B

4-4 60280400A

TYPE DECLARATIONS AND STORAGE ALLOCATION 5

e ..

5.1 TYPE DECLARATION

The type declaration statement provides the compiler with information on the structure of variable and
function identifiers.

Statement Characteristics

COMPLEX list 2 words/element Floating Point
DOUBLE PRECISION list 2 words/element Floating Point
or DOUBLE list

REAL list 1 word/element Floating Point
INTEGER list 1 word/element Integer
LOGICAL list 1 word/element Logical

TYPE may precede any of the above statements.

DOUBLE may replace DOUBLE PRECISION in any FORTRAN statement in which the latter is
allowed.

USASI FORTRAN, X3,9-1966, does not specify DOUBLE as a replacement for DOUBLE PRECISION.

List is a string of identifiers separated by commas; integer constant subscripts are permitted.
For example:

A, B1, CAT, D36F, GAR (1,2,3)

The type declaration is non-executable and must precede the first reference to the variable or function
in a given program. If an identifier is declared in two or more type declarations, the first declaration
holds until the second is read, the second holds until the third, etc. However, the second and ensuing
declarations will result in informative diagnostics.

An identifier not declared in a type declaration is type integer if the first letter of the name is I, J, K,
L, M, N; for any other letter, it is type real.

When subscripts appear in the list, the associated identifier is the name of an array, and the product of
the subscripts determines the amount of storage to be reserved for that array. By this means, dimen-
sion and type information are given in the same statement. In this case no DIMENSION statement is
needed. If a second declaration of storage appears, an informative diagnostic is issued and the original
declaration is used.

60280400A 5-1

Examples:

COMPLEX A412,DATA,DRIVE,IMPORT

DOUBLE PRECISION PLATE,ALPHA (20, 20), B2MAX, F60, JUNE
REAL I, J(20, 50, 2), LOGIC, MPH

INTEGER GAR(60), BETA, ZTANK,AGE, YEAR, DATE

LOGICAL DISJ,IMPL,STROKE, EQUIV, MODAL

DOUBLE RL, MASS(10,10)

5.2 DIMENSION DECLARATION

A subscripted variable represents an element of an array of variables. Storage is reserved for arrays
by the non-executable statements DIMENSION, COMMON, or a type statement.

The standard form of the DIMENSION declaration is:

DIMENSION VisVgse o o5V

The variable names v; may have 1, 2, or 3 integer constant subscripts separated by commas, as in
SPACE (5, 5, 5)s Under certain conditions within subprograms only, the subscripts may be constants
or variables.

Example:
DIMENSION A(10), B(20, 3)
The DIMENSION declaration is non-executable and it must precede the first reference to the array in

a given program. The DIMENSION statement should precede the first executable statement and will
result in an informative diagnostic otherwise.

g

h,\ numbe of com

€ nul uter w

wl

ords reserved for an array is determm d by the product of the subscripts

n the s bscrlpt string and th
in any one array. [f the maximum is exceeded, a diagnostic is prov1ded.

COMPLEX ATOM

DIMENSION ATOM (10, 20)
In the above declarations, the number of elements in the array ATOM is 200. Two words are used to
contain a complex element; thercfore, the number of computer words reserved is 400. This is also

true for double precision arrays. For real, logical, and integer arrays, the number of words in an
array equals the number of elements in the array.

If an array is dimensioned in more than one delcaration statement, the first declaration holds and an
informative diagnostic is provided.

Examples:
DIMENSION A (20, 2, 5)
DIMENSION MATRIX(10,10,10), VECTOR(100), ARRAY (16, 27)

5=-2 60280400A

5.2.1 VARIABLE DIMENSIONS

It is possible to vary the dimension of an array associated with a subprogram each time that subprogram
is called. This is done by specifying the array identifier and its dimensions as dummy arguments in

the subprogram statement or by referencing them as variables in a COMMON declaration in the sub-
program. The corresponding actual arguments or common values in the calling program are used by
the called subprogram. The maximum dimension that any array may assume is determined by the
dimensioning statement in the original calling program, i.e., the subsequent declarations shall not
exceed the declaration that originally defined the array.

Example:

SUBROUTINE X(A, L, M)
DIMENSION A(L,10, M)

5.3 COMMON DECLARATION

The COMMON declaration provides up to 61 blocks of storage that can be referenced by more than one
subprogram. The declaration reserves blank, numbered, and labeled blocks. Starting addresses for
these blocks are indicated on the core map.

Areas of common information may be specified by the declaration:

COMMON/1, /list; /iy/listye o .«
The common block identifier, i, may be 1-7 characters. If the first character is alphabetic, the
identifier denotes a labeled common block; remaining characters may be alphabetic or numeric. If
the first character is numeric, remaining characters must be numeric and the identifier denotes a
numbered common block. Leading zeros in numeric identifiers are ignored. Zero by itself is an

acceptable numbered common identifier. Labeled and numbered COMMON are treated identically by
the compiler.

Example:
COMMON/200/A,B,C

The following are common identifiers:

Labeled Numbered
AZ13 1
MAXIM 146
Z 6600
XRAY 0

60280400A 5-3

A common statement without a label, or with blanks between the separating slashes is treated as
a blank common block, for example:
COMMON // A,B,C or COMMON X,Y,Z(5)

List; is a string of identifiers representing simple and subscripted variables; formal parameters are

not allowed. If a non-subscripted array name appears in the list, the dimensions must be defined by

a type or DIMENSION declaration in that program. If an array is dimensioned in more than one declar-
ation, a compiler diagnostic is issued. The order of simple variables or array storage within a common
block is determined by the sequence in which the variables appear in the COMMON statements.

The total of labeled and numbered common blocks is limited to 61, Labeled and numbered common
blocks may be preset; data stored in them by DATA declarations is made available to any subprogram
using the appropriate block. Data may not be entered into blank common blocks by the DATA declara-
tion.

Examples:

1. COMMON/BLK/A(3)
DATA A/1.,2.,3./
2. COMMON/100/1(4)
DATA 1/4,5,6,7/
COMMON is non-executable and can appear anywhere in the program. Any number of blank COMMON

declarations may appear in a program. If DIMENSION, COMMON or type declarations appear together,
the order is immaterial.

Since labeled and numbered common block Identifiers are used only within the compiler, they may be
used elsewhere in the program as other kinds of identifiers. A list identifier in one common block
may not appear in another common block. (If it does, the name is doubly defined.)

At the beginning of program execution, the contents of all common areas are unpredictable except
labeled common areas specified in a DATA declaration.

Examples:
COMMON A, B, C
COMMON/ /E, F,G,II}
COMMON/BLOCKA/A1(15), B1, C1/BLOCKD/DEL(5, 2), ECHO

Blank Common

COMMON/VECTOR/VECTOR(5), HECTOR,NECTOR
COMMON/9999/AX, BX, CX

5-4 602804004

The length of a common block in computer words is determined from the number and type of the list
variables. In the following statements, the length of common block A is 12 computer words. The origin
of the common block is Q (1).

COMMON/A/Q(4), R(4), 5(2)
REAL Q, R
COMPLEX S
. Block A

origin Q(1)
Q(2)
QM)
Q)
R(1)
R(2)
R(3)
R4)
S1) real part
S(1) imaginary part
S(2) real part
S(2) imaginary part

If a subprogram does not use all of the locations reserved in a common block, unused variables may
be necessary in the COMMON declaration to insure proper correspondence of common areas.
COMMON/SUM/A, B, C,D (main program)
COMMON/SUM/E(3), D (subprogram)
In the above example, only the variable D is used in the subprogram. The unused variable E is neces-
sary to space over the area reserved by A,B, and C,

Each subprogram using a common block assigns the allocation of words in the block. The identifiers
used within the block may differ as to name, type and number of elements; but the block identifier must
remain the same.

60280400A 5-5

Example:

PROGRAM MAIN
COMPLEX C
COMMON/TEST/C(20)/36/A, B, Z

:I*he length of the block named TEST is 40 computer words, The length of the block numbered
36 is 3 computer words.

The subprogram may rearrange the allocation of words as in:

SUBROUTINE ONE

COMMON/TEST/A(10), G(10), K(10)

COMPLEX A

.

The length of TEST is 40 words. The first 10 elements (20 words) of the block represented by A
are complex elements. Array G is the next 10 words, and array K is the last 10 words. Within
the subprogram, elements of G are treated as floating point quantities; elements of K are treated
as integer quantities.

The length of a common block other than blank common must not be increased by subprograms using the

block unless that subprogram is loaded first by the SCOPE loader. The symbolic names used within the
block may differ, however, as shown above.

5.4 EQUIVALENCE DECLARATION
The EQUIVALENCE declaration permits variables to share locations in storage. The general form is:
EQUIVALENCE (A,B,...),(A1,Bl,cve)y000

(A, B,...) is an equivalence group of two or more simple or subscripted variable names; formal

arguments are not allowed. Subscripts may only be integer constants, A multiple subscripted variable
can be represented by a singly subscripted variable. The correspondence is:

A(i,j,k) is the same as A ((the value of (i+(j-1)*I+(k-1)*I*J))*E)
where E is 1 or 2 depending on A's word length, 1, j, k are integer constants; I and J are the integer

constants appearing in DIMENSION A, J,K). For example, in DIMENSION A(2,3,4), the element
A(1,1,2) can be represented by A(7).

5-6 602804004

EQUIVALENCE is most commonly used when two or more arrays can share the same storage locations.
The lengths need not be equal.

Example:

DIMENSION A (10, 10), I(100)
EQUIVALENCE (A,)
5 READ 10, A

6 READ 20, I

The EQUIVALENCE declaration assigns the first element of array A and array I to the same storage
location, The READ statement 5 stores the A array in consecutive locations. Before statement 6

is executed, all operations using A should be completed since the values of array I are read into the
storage locations previously occupied by A,

Variables requiring two memory positions which appear in EQUIVALENCE statements must be declared
to be COMPLEX or DOUBLE prior to their appearance in such statements.

USASI FORTRAN, X3.9-1966, does not require type declaration prior to equivalence.

Example:

COMPLEX DAT, BAT

DIMENSION DAT(10, 10), BAT (10, 10), CAT (10, 10)
DOUBLE PRECISION CAT
COMMON/IFAT/FAT (2, 2)

EQUIVALENCE (DAT(6, 3), FAT(2,2)), (CAT, BAT)

EQUIVALENCE is non-executable and can appear anywhere in the program or subprogram. However,
if it appears after the first executable statement, an informative diagnostic is provided.

Any variable may be made equivalent to any other variable, provided that no two variables in any one
group are in COMMON. The variables may be with or without subscript.

60280400A 5-7

5.5 DATA DECLARATION
Values may be assigned to program variables or labeled common variables with the DATA declaration:
DATA dj,.ee,d /) k¥, 0008 /sdyseeesd /ag,eeesa /s,
d; identifiers representing simple variables, array names, or

variables with integer constant subscripts or integer variable
subscripts (implied DO-loop notation).

a. literals and signed or unsigned constants.
k integer constant repetition factor that causes the literal following the

asterisk to be repeated k times. If k is non-integer, a compiler diagnostic
occurs,

USASI FORTRAN, X3.9-1966, specifies the form
DATA ky/dy/,ke/dg/y ...k, /d, /

A semicolon cannot be used in the character string of data entered under L, R or H control.

DATA is non-executable and can appear anywhere in the program or subprogram. When DATA appears
with DIMENSION, COMMON, EQUIVALENCE, or a type declaration, the statement that dimensions
any arrays used in the DATA statement must appear prior to the DATA statement. Variables in

blank common or formal arguments may not be preset by a DATA declaration.

Only single-subscript, DO-loop-implying notation is permissible. This notation may be used for
storing constant values in arrays.

USASI FORTRAN, X3.9-1966, does not specify the use of DO-loop-implying notation for storing
constants in arrays.

Examples:

1. DIMENSION GIB(10)
DATA (GIB(}), I=1, 10)/1.,2.,3.,7%4,32/
Array GIB: 1,
2,
3.
4,32
4,32
4,32
4,32
4,32
4,32
4,32

5-8 60280400A

2. DIMENSION TWO(2, 2)

DATA TWO(1,1), TWO(1, 2), TWO(2, 2), TWO(2,1)/1.,2.,3.,4./
Array TWO: TWO(1,1) 1.
TWO@2,1) 4.
TWO(1,2) 2.
TWO@Z,2) 3.

3. DIMENSION SINGLE(3, 2)
DATA (SINGLE(),I1=1,6)/1.,2.,3.,1.,2.,3./
Array SINGLE: SINGLE(,1) 1.
SINGLE (2, 1) 2.
SINGLE(3,1) 3.
SINGLE(, 2) 1.
SINGLE (2, 2) 2.
SINGLE 3, 2) 3.
In the DATA declaration, the type of the constant stored is determined by the structure of the constant
rather than by the variable type in the statement. in DATA A/2/, an integer 2 replaces A, not a real 2

as might be expected from the form of the symbolic name A. Data types requiring two words per
element must be properly specified to maintain correct correspondence in memory.

There should be a one-to-one correspondence between the variable names and the list. This is
particularly important in arrays in labeled common. For instance:

COMMON/BLK/A(3), B

DATA A/1.,2.,3.,4./

The constants 1.,2.,3., are stored in array locations A, A+1, A+2; the constant 4. is discarded;
B is unmodified and an error is issued. If this occurs unintentionally, errors may occur when B
is referred to elsewhere in the program.

COMMON/TUP/C (3)
DATA C/1.,2./

The constants 1.,2. are stored in array locations C and C+1; the content of C(3), that is, location
C+2, is not defined.

When the number of list elements exceeds the range of the implied DO, the excess list elements
are not stored; and a diagnostic is issued.

DATA (A(I),I1=1,5,1)/10 , 2040 0e, 104/

The excess values 6. through 10. are discarded.

60280400A 5-9

Examples:

1. DATA LEDA, CASTOR,POLLUX/15,16.0, 84.0/

LEDA 15
CASTOR 16.0
POLLUX 84.0

2. DATA A(1,3)/16.239/
ARRAY A
AQ,3) 16.239

3. DIMENSION B(10)
DATA B/0000077, 0000064, 3*0000005, 50000200/

ARRAY B o717
064

05

05

05

0200

0200

0200

0200

0200

4, COMMON/HERA/C(4)
DATA C/3.6,3%10.5/
ARRAY C 3.6
10.5
10.5
10.5

5-10

5, COMPLEX PROTER (4)
DATA PROTER/4%*(1.0,2.0)/

ARRAY PROTER 1.0

2.0

1.0

2.0

1.0

2.0

1.0

2.0

6. DIMENSION MESSAGE (3)

DATA MESSAGE/9HSTATEMENT, 2HIS, 1I0HINCOMPLETE/

ARRAY MESSAGE STATEMENT
IS
INCOMPLETE

Data declaration statements of the following forms may also be used to assign constant values to program
or common variables at load time.

DATA (i;=value list), (i2=va1ue list)yees

The variable identifier, i, may be:
non-subscripted variable
array variable with constant subscripts
array name

The value list is either a single constant or set of constants whose number is equal to the number of
elements in the named array.

List contains constants only and has the form:

al,az,...,k(bl,bz,...),cl,cz,...

k is an integer constant repetition factor that causes the parenthetical list following it to be repeated
k times. If k is non-integer,a compiler diagnostic is provided.

Examples:
COMMON/DATA/GIB
DATA ((GIB(l),I=1,10)=1.,2.,3.,7(4.32))
COMMON/DATA/ROBIN(5, 5, 5)
DATA (ROBIN(4, 3, 2)=16.)

60280400A 5-11

5.5.1 BLOCK DATA SUBPROGRAM

A block data subprogram may be used to enter data into labeled or numbered common prior to program
execution in place of a DATA declaration and it may appear more than once in a FORTRAN program.

The form of a BLOCK DATA subprogram is:

BLOCK DATA

.

FORTRAN declaration statements only

END
Examples:

BLOCK DATA

COMMON/ABC/A(5),B,C/DEF/D, E, F

COMPLEX D, E

DOUBLE PRECISION F

DATA (A(L),1=1,5)/2.3,3.4,3*7.1/,B/2034.756/,D,E,F/2*(1.0,2.5),17.86972415872D30/

END

BLOCK DATA

COMMON/DEF/G,H,I

END

5-12 60280400A

CONTROL STATEMENTS 6

Program execution normally proceeds from statement to statement as they appear in a program. Con-
trol statements can be used to alter this sequence or cause a number of iterations of a program section.
Control may be transferred to an executable statement. A transfer to a nonexecutable statement will
result in a program error, which is always recognized during compilation.

6.1 GO TO STATEMENT
GO TO statements transfer control to a labeled statement whose reference.is fixed or which is selected

during execution of the program. The statement labels used in the GO TO statements must be associated
with executable statements in the same program unit as the GO TO statement.

6.1.1 UNCONDITIONAL GO TO

The form of the unconditional GO TO statement is:

GO TO k

k is a statement label.

Execution of this statement discontinues the current sequence of execution and resumes execution at the
statement labeled k.

Example:

GO TO 10
5 DIF = DIF - SUM
10 SUM = SUM +1

Statement 5 is skipped during execution of this sequence.

6.1.2 ASSIGNED GO TO
The form of the assigned GO TO statement is:

GO TO m, (nl,n2,...,nm)
GO TO m

60280400A 6-1

This statement acts as a many-branched GO TO. m is a simple integer variable assigned an integer
value n in a preceding ASSIGN statement (section 6.1.3). The n; are statement labels. As shown, the
parenthetical statement label list need not be present.

Once having been defined by an ASSIGN statement, the variable m may not be referenced by any state-
ment other than GO TO m until it is redefined.

The comma after m is optional. However, when the list is omitted, the comma must be omitted.

m cannot be defined as the result of a computation. No compiler diagnostic is given if m is computed,
but the object code is incorrect. If an assignment has not been made for an assigned GO TO statement
and m is equal to zero, a diagnostic is provided at object time. If m is non-zero and within the range,
a valid assignment is assumed. FORTRAN does not preset all locations to zero.

6.1.3 ASSIGN STATEMENT

The form of the GO TO assignment statement is:

ASSIGN k TO m
k is one of the statement labels appearing in the GO TO list; m is the simple integer variable in the
assigned GO TO statement. At the time of execution of an assigned GO TO statement, the current value
of m must have been assigned by an ASSIGN statement.

Example:

ASSIGN 10 TO NN

.

GO TO NN, (5, 10, 15, 20)

Statement number 10 will be executed next.

6.1.4 COMPUTED GO TO
The form of the computed GO TO statement is:
GO TO (nl,nz, oo ,nm),i
This statement acts as a many-branch GO TO; i is present or computed prior to its use in the GO TO,

The n, are statement labels and i is a simple integer variable. K i <1 or if i >m, the transfer is

undefined and an object time diagnostic will be issued indicating the point at which the error was detected
If 1<i<m, the transfer is to n;.

The comma separating the statement number list and the index is optional,

60280400A

Example:

N=3

GO TO (100,101,102, 103) N

Statement number 102 will be the selected control transfer,

For proper operations, i must not be specified by an ASSIGN statement.
provided for this error, but the object code is incorrect.

Example:

ISWICH = 1

GO TO (10,20, 30), ISWICH

10 JSWICH = ISWICH +1
GO TO (11,21,31), JSWICH

Control transfers to statement 21.

6.2 IF STATEMENTS

No compilation diagnostic is

The IF statement is used to transfer control conditionally. At time of execution, an expression in the
IF statement is evaluated and the result determines the statement to which the jump will be made.

6.2.1 THREE-BRANCH ARITHMETIC IF
The form of the three-branch arithmetic IF is:

IF (c)nl,nz, ng

¢ is any expression, and the nj are statement labels. This statement tests the evaluated expression c

and jumps accordingly as follows:

c< 0 jump to statement ny
c=0 jump to statement ny

c>0 jump to statement ng

60280400A

In the test for zero, +0=-0. When the mode of the evaluated expression is complex, only the real part
is tested.

Example:
IF (I0OTA-6)3, 6, 9
If the evaluation of the expression IOTA~6 produces a negative result, control transfers to the statement
labeled 3; if zero, to 6; if positive, to 9.
6.2.2 ONE-BRANCH LOGICAL IF
The form of the one-branch logical IF is:
IF (0)s
¢ is a logical or relational expression and s is any executable statement except another logical IF, a
DO statement or an END. If ¢ is true (not plus zero), the statement s is executed. If ¢ is false (plus
zero) the statement immediately following the IF statement is executed.
Examples:
IF (A.LE.2.5) A=2.0
When this statement is executed, the value of A will be compared with 2.5, If it is less than or equal

to 2.5, A will be set to the value 2,0, If the comparison shows A to be greater than 2.5, control will
proceed to the statement following.

6.2.3 TWO-BRANCH LOGICAL IF
The form of the two-branch logical IF is:
IF (1) ny,n,
{ is a logical or relational expression and the n, are statement labels,

The evaluated expression is tested for true (not plus zero) or false (plus zero) condition. If ¢ is true,
the jump is to statement ny. If ¢ is false, the jump is to statement n,.

USASI FORTRAN, X3.9-1966, does not specify the two-branch logical IF.

Example:

IF (¢) 5,6

6-4 60280400A

At time of execution, § is tested for true or false condition. If true, control transfers to statement 5.
If false, control transfers to statement 6.

6.3 DO STATEMENT

A DO statement makes it possible to repeat a group of statements a designated number of times using
an integer variable whose value is progressively altered with each repetition. The initial value, final
value, and rate of increase of this integer variable is defined by a set of indexing parameters included
in the DO statement. The range of the repetitions extends from the DO statement to the terminal state-
ment and is called the DO loop. The form of a DO statement is:

DOni=mq,m,
DOni= my,my, Mg
n Label of the terminal statement of the loop.
i Simple integer variable called the index variable. With each repetition, its value is altered
progressively by the increment parameter mg. Upon exiting from the range of a DO, the control
variable remains defined as the last value acquired in execution of the DO if the exit results from

execution of a GO TO or IF only. If the exit results from the DO loop being satisfied, the index
variable is no longer well defined.

™y Initial parameter, the value of i at the beginning of the first loop.

my Terminal parameter. When the value of i surpasses the value of mg, DO execution is terminated
and control goes to the statement immediately following the terminal statement.

mgq Increment parameter, the amount i is increased with each repetition. If it has the value 1, it
may be omitted (first form above).

The DO statement, the statement labeled n, and any intermediate statements constitute a DO loop; n
may not be an arithmetic IF or GO TO statement, a two branch logical IF, a RETURN, another DO
statement or a nonexecutable statement.

The indexing parameters mj,mg,mg are either unsigned integer constants or simple integer variables.
Subscripted variables and negative or zero integer constants cause a diagnostic.

The indexing parameters m,, m,, and mg, if variable, may assume positive or negative values or zero.t

The values of mj,mgy, and mg may be changed during the execution of the DO loop.

t USASI FORTRAN, X3.9-1966, states that at time of execution of the DO, my,m, and mg must
be greater than zero.

60280400A 6-5

Examples:

1. DO 25 I=1, 100
25 A(I)=A(I)+B(])

The index variable I is incremented by one for each cyle until the DO loop is executed 100 times.
The control is then transferred to the statement immediately following statement 25.

2. DO 12 I=1,10, 2
J=1+K
X(J)=Y(J)

12 CONTINUE

Iis set to the initial value of one and incremented by two on each of the following cycles. When
the execution of the fifth cycle (I=9) is completed, control passes out of the DO loop.

6.3.1 DO LOOP EXECUTION

The initial value of i, m,, is increased by mg and compared with m, after executing the DO loop once,
and if i does not exceed my, the loop is executed a second time, Then, i is again increased by mg and
again compared with my; this process continues until i exceeds mg. Control then passes to the state-
ment immediately following n, and the DO loop is satisfied.

Should m; exceed m, on the initial entry to the loop, the loop is executed once and control is passed to
the statement following n. When the DO loop is satisfied, the index variable i is no longer well defined.
If a transfer out of the DO loop occurs before the DO is satisfied, the value of i is preserved and may

be used in subsequent statements.

6.3.2 DO NESTS

When a DO loop contains another DO loop, the grouping is called a DO nest. Nesting may be to any level.
The last statement of a nested DO loop must either be the same as the last statement of the outer DO
loop or occur before it. If Dy, Dg,...,D,, represent DO statements where the subscripts indicate that

D, appears before Dy, D2 appears before D3 and NysN9seee,n represent the corresponding limits of

the Di’ then n, , must appear at or before nooqe

Examples:

DO loops may be nested in common with other DO loops:

Ly

3 CONTINUE

2 CONTINUE

4 CONTINUE

1 CONTINUE

60280400A

_D2

Lng

Dy

Lng
L ny

DO 100 1=2, LIMIT

DO 10 I=1,10

10 CONTINUE

DO 20 K=K1, K2

20 CONTINUE

100 CONTINUE

Dy
Dy
L_n1=n2=n3
DO 5 I=1,5
DO 5 J=1, 10
DO 5 K=J,15
5 A=B*C

6-7

6.3.3 DO LOOP TRANSFER

In a DO nest, a transfer may be made from one DO loop into a DO loop that contains it, but should not

be made from the outer DO loop to the inner DO loop without first executing the DO statement of the
inner DO loop.

)
—)
.)

Not Allowed Allowed

One exception is allowed: once the DO statement has been executed and before the loop is satisfied,

control may be transferred out of the DO range to perform some calculation and then transferred into
the range of the DO. The return must not be made to the terminal statement.

When a statement is the terminal statement of more than one DO loop, the label of that terminal

statement may not be used in any GO TO or arithmetic IF statement in the nest, except in the range
of the innermost DO.

60280400A

The following example is not acceptable since the statement GO TO 3 does not occur from the inner-
most DO loop.

3 IF(A(D)2,5,5 (statement number 2 causes index to increment
DO 21=1,M for inner DO loop, but not for the outer DO)
GO TO 3

5 DO 2 J=1,N

1 AD=A@D)+B(, J)

2 CONTINUE

6.4 CONTINUE STATEMENT

CONTINUE

The CONTINUE statement is most frequently used as the last statement of a DO loop to provide a loop
termination when a GO TO or IF would normally be the last statement of the loop. If CONTINUE is used
elsewhere in the source program it acts as a do-nothing instruction and control passes to the next se-
quential program statement.

6.5 PAUSE STATEMENT

PAUSE
PAUSE n

n=5 octal digits without an O prefix or B suffix., PAUSE n rolls out the program and requests operator
action at the station submitting the job. The words PAUSE n are displayed as a dayfile message. An
operator entry from the console can continue or terminate the program. Program continuation proceeds
with the statement immediately following PAUSE. If n is omitted, it is understood to be blank,

60280400A 6-9

6.6 STOP STATEMENT

STOP
STOP n

n <5 octal digits without an O prefix or B suffix. STOP terminates the program execution and returns
control to the monitor. If n is omitted, it is understood to be blank,

6.7 RETURN STATEMENT

A procedure subprogram must contain one or more RETURN statements to indicate the end of logic flow
within the subprogram and return control to the calling program. If omitted, the successful execution
of that subprogram will terminate the entire program.

In function subprograms, control returns to the statement containing the function reference. In a sub-
routine subprogram, control returns to the next executable statement following the CALL., A RETURN
statement in the mainprogram causes an exit to the monitor.

6.8 END STATEMENT
END must be the final statement in a program or subprogram. It is executable in the sense that it
effects termination of the program. The END statement may not be labeled,

The END statement may include the name of the program or subprogram which it terminates; however,
any information appended to the END statement is ignored by the compiler.

USASI FORTRAN, X3, 9-1966, does not allow END as the last executable statement.

6-10 60280400A

PROGRAM, PROCEDURES AND SUBPROGRAMS 7

7.1 SOURCE PROGRAM

A source program consists of a main program and optionally one or more auxiliary procedures and
subprograms. The subprograms can be compiled separately and combined with the main program
for execution.

7.2 MAIN PROGRAM

The first statement of a main program should be one of the following forms where name is an alphanu-

meric identifier of 1-7 characters. The parameter list is optional on all forms, If the first card of a
program is not one of the following forms, a PROGRAM with a blank name and files of INPUT and

OUTPUT are assumed. If more files than INPUT and OUTPUT are necessary, a PROGRAM card is required.

The form of the PROGRAM statement is:
PROGRAM name (fj5+0.,1,)

The fi represent the names of all input/output files required by the main program and its subprograms.
n must not exceed 24. These parameters may be changed at execution time. At compile time, they
must satisfy the following conditions:

1. The file name INPUT (references standard input unit) must appear if any READ statement is
included in the program or its subprograms.

2. The file name OUTPUT (references standard output unit) must appear if any PRINT statement
is included in the program or its subprograms. OUTPUT is required for obtaining a listing
of execution diagnositcs.

3. The file name PUNCH must appear if any PUNCH statement is included in the program or its
subprograms.

4, The file name TAPE i, must appear if a READ (i,n), WRITE (i,n), READ (i), or WRITE (i)
statement is included in the program or its subprogram. (i is defined in section 10).

5. If I is an integer variable name for a READ (I,n) WRITE (I,n), READ (I), or WRITE (I) state-
ment which appears in the program or its subprograms, the file names TAPE ij,..., TAPE
ik must appear. The integers iy,...,ix must include all values which are assumed by the
variable I. The file name TAPE I may not appear in the list of arguments to the main program.

60280400A 7-1

File names may be made equivalent at compile time. A PROGRAM statement having specified buffer
lengths will be accepted, but the 7600 compiler will ignore them. In the list of parameters, equiva-
lenced file names must follow those to which they are made equivalent. Their corresponding param-
eter positions may not be changed at execution even though the names of the files to which they are
made equivalent may be changed at that time.

Examples:
PROGRAM ORB (INPUT, OUTPUT, TAPE 1 = INPUT, TAPE 2 = OUTPUT)

All input normally provided by TAPE 1 would be extracted from INPUT and all listable output normally
recorded on TAPE 2 would be transmitted to the OUTPUT file.

7.3 PROGRAM COMMUNICATION

The main program and subprograms communicate with each other via arguments and COMMON
variables. Subprograms may call or be called by any other subprogram as long as the calls are non-
recursive. That is, if program A calls B, B may not call A, A calling program is a main program
or subprogram that refers to another subprogram. A subroutine referenced by a program may not
have the same name as the program.

7.4 SUBPROGRAM COMMUNICATICN

Subprograms, functions, and subroutines use arguments as one means of communications The arguments
appearing in a subroutine call or a function reference are actual arguments. The corresponding
arguments appearing with the program, subprogram, statement function, or library function name in

the definition are formal arguments. One or more of the formal arguments or common variables can
be used to return output to the calling program.

7.5 PROCEDURES AND SUBPROGRAMS

A FORTRAN program consists of a main program with or without auxiliary procedures and subprograms.
Auxiliary sets of statements are used to evaluate frequently-used mathematical functions, to perform
repetitious calculations, and to supply data specifications and initial values to the main program. 7600
FORTRAN provides six such procedures and subprograms:

Statement function

Intrinsic function

Basic external function

External function

External subroutine

Block data subprogram

-3
Do

60280400A

The intrinsic function and the basic external function are furnished with the system. They are used to
evaluate standard mathematical functions. The others are user-defined. The statement function and
intrinsic function are compiled within the main program, the basic external function is furnished with
the system, and the others are compiled separately. The first five are referred to as procedures,
since each is an executable unit that performs its set of calculations when referenced. The first four
are called functions. They return a single result to the point of reference. The last three, subpro-
grams, are user-defined and are compiled independently. The block data subprogram supplies specifi-
cations and initial values to the main program. Table 7-1 outlines these categorical divisions.

The use of procedures and subprograms is determined by their particular capabilities and the needs of
the program being written. If the program requires the evaluation of a standard mathematical function,
an intrinsic function or a basic external function is used (Appendix C). If a single non-standard
computation is needed repeatedly, a statement function is inserted in the program. If a number of
calculations are required to obtain a single result, a function subprogram is written. If a number of
calculations are required to obtain an array of values, a subroutine is written, When the program
requires initial values, a BLOCK DATA subprogram is used.

7.5.1 PROCEDURE IDENTIFIERS

A procedure identifier is a symbolic name of up to seven alphanumeric characters, the first of which
must be alphabetic.

USASI FORTRAN, X3,9-1966, limits all symbolic names to six characters.

There is no type associated with a symbolic name that identifies a SUBROUTINE. For a function subpro-
gram, type is specified either implicitly by its name, explicitly in the FUNCTION statement or in a

type statement. For a statement function, type is specified either implicitly by its name or explicitly

in a type statement,

7.5.2 FORMAL ARGUMENTS

Formal arguments appear within the FUNCTION or SUBROUTINE statement or in the statement function
definition and serve only to allocate data values in these auxiliary routines. For this reason, they are
often referred to as dummy arguments.

Formal arguments may be the names of arrays, simple variables, library functions (basic external
functions), and subprograms (FUNCTION and SUBROUTINE), Since formal arguments are local to
the subprogram containing them, they may be the same as names appearing outside the procedure.

No element of a formal argument list may appear in an EQUIVALENCE, COMMON, or DATA statement
within a subprogram. If it does, a compiler diagnostic results.

When a formal argument represents an array, it must be dimensioned within the subprogram. I« itis

not declared, the array name must appear without subscripts and only the first element of the array is

available to the subprogram.

60280400A 7-3

-1

TABLE 7-1. SUBDIVISION OF PROCEDURES AND SUBPROGRAMS
A Basic
Statement Intrinsic External External External Block Data
Function Function o Function Subroutine Subprogram
Function
User-defined Compiler-defined User-defined
Compiled within the Coic;tile d Compiled externally to the referencing program
referencing program - LIBRARY -

PROCEDURE: Any defined calculation that can be referenced and which
will exchange values between reference and definition through a list of

arguments,

EXTERNAL PROCEDURE: a procedure that is defined
externally to the program unit that references it.

FUNCTION: a procedure that supplies a single result to be used at
the point of reference. It can also modify the arguments.

EXTERNAL FUNCTION: a function
defined externally to the program
unit that references it.

SUBPROGRAM: a user-defined set of statements compiled
independently from the program unit which references it or
to which it supplies specifications and initial values.

PROCEDURE SUBPROGRAM: an
external procedure that is defined
by FORTRAN statements.

SPECIFICATION
SUBPROGRAM: a
subprogram without
reference that
supplies specifi-
cations and initial
values to a main
program,

7.5.3 ACTUAL ARGUMENTS

Actual arguments appear within a CALL statement referencing a SUBROUTINE or in any of the function
references. They are associated with the corresponding formal arguments in the auxiliary procedure
being referenced and serve to transmit values on a one-to-one basis. Accordingly, formal and actual

arguments must agree in order and type. The compiler does not check for matching of type. The
permissible forms of actual arguments are the following:

Arithmetic expression

Logical expression

Relational expression

Constant

Simple or subscripted variable

Array name

FUNCTION subprogram name

SUBROUTINE subprogram name

Basic external function name

Intrinsic function name

A calling program statement label identified by suffixing the label with the character S. This

form should be used only when calling DUMP or PDUMP.
NOTE

The value of a constant used as an actual argument may
be changed by the called routine.

Input/output buffer names may not be used as actual parameters but the following is allowed:

PROGRAM X(OUTPUT, TAPE 6 = OUTPUT)
CALL SUB (6, X)

END
SUBROUTINE SUB(I, B)

WRITE (I,n), B

END

60280400A 7-5

7.6 STATEMENT FUNCTION

A statement function is defined by a single expression and applies only to the program or subprogram
containing the definition. The name of the statement function is an alphanumeric identifier. A single
value is always associated with the name. A statement function has the form:

name (pl,...,pn)=E

The p; are formal arguments and must be simple variables. The maximum value of n is 60.
E can be any arithmetic or logical expression. It may contain a reference to a library function, state-
ment function, or function subprogram.

During the compilation, the statement function definition is compiled once at the beginning of the program
and a transfer is made to this portion of the program whenever a reference is made to the statement
function. A statement function reference has the form:

name (pl,. .o ,pn)

name is the alphanumeric identifier of the statement function. The actual arguments p; may be any
arithmetic expressions.

The statement function name must not appear in a DIMENSION, EQUIVALENCE, COMMON, or
EXTERNAL statement. The name can appear in a type declaration but cannot be dimensioned. State-
ment function names must not appear as actual or formal arguments.

Actual and formal arguments must agree in number, order and mode. The mode of the evaluated
statement function is determined by the name of the arithmetic statement function.

A statement function must precede the first statement in which it is used, but it must follow all declara-
tive statements (DIMENSION, type, etc.) which contain symbolic names referenced in the statement
function. All statement functions should precede the first executable statement. Otherwise, an inform-
ative diagnostic is provided.

A statement function may not reference itself and if such an attempt is made, a fatal diagnostic is pro-
vided.

7.7 SUPPLIED FUNCTION

To evaluate frequently-used mathematical functions, 7600 FORTRAN supplies predefined calculations
as well as references to library routines contained in the system. The predefined calculations are
called intrinsic or in-line functions and the references to the library routines are called basic external
functions.

-3
1

6 60280400A

The intrinsic or in-line function inserts a simple set of calculations into the object program at compile
time. The basic external function deals with more complex evaluations by inserting a reference to a
library routine in the object program. The names of the supplied functions, their data types, and
permissible arguments are predefined (Appendix C). References using these functions must

adhere to the format defined in the tables. The type of a supplied function cannot be changed by a type
statement.

7.7.1 INTRINSIC FUNCTIONS

An intrinsic function is a compiler-defined set of calculations that is inserted in the referencing program
at compile time. The form of the intrinsic function and its reference are identical to the statement
function outlined above. The table in Appendix C lists the intrinsic functions available. The name of an
intrinsic function listed in this table must satisfy all of the following requirements:

The name must not appear in an EXTERNAL statement or be the name of a statement function

The name must not appear in a type statement declaring it to be other than the type specified in
the table

Every appearance of the name must be followed by a list of parameters enclosed in parentheses,
unless the name is in a type statement.

7.7.2 BASIC EXTERNAL FUNCTIONS

A basic external function is a call on one of the predefined library routines included with the system.
These library routines are used to evaluate standard mathematical functions such as sine, cosine,
square root, etc. A basic external function is referenced by the appearance of the function name with
appropriate arguments in an arithmetic or logical statement. A list of basic external functions is
given in Appendix C.

7.8 SUBPROGRAMS

Subprograms are used to implement programming capability beyond the limitations of supplied functions
and the statement function. Although written as a subset of another program, the subprogram is com-
piled separately. It has its own independent variables, and its use is not limited to communication with
the program for which it was written. Procedure subprograms handle routine calculations unique to

the user. Specification subprograms are used to enter values into COMMON and supply program specifi-
cations,

60280400A -1

Procedure subprograms are of two kinds: FUNCTION and SUBROUTINE., The FUNCTION subprogram
is referenced by the appearance of its name in the calling program. The SUBROUTINE subprogram is
referenced by a CALL statement in the calling program. A procedure subprogram returns control to

a calling program through one or more RETURN statements. Because they are independent programs,
procedure subprograms must terminate with an END statement to signal to the compiler that the physical
end of the source program has been reached. An END statement is generated as a STOP, If a procedure
subprogram does not contain at least one RETURN statement, the successful execution of that subprogram
will terminate the entire program.

The fundamental difference between FUNCTION and SUBROUTINE subprograms is given in table 7-2.

There is one type of specification subprogram, the BLOCK DATA subprogram.

7.8.1 FUNCTION SUBPROGRAM

A FUNCTION subprogram is a collection of FORTRAN statements headed by a FUNCTION statement
and written as a separate program to perform a set of calculations when its name appears in the
referencing program. The mode of the function is determined by a type indicator or the name of the
function. The first statement of a FUNCTION subprogram must be one of the following forms where
name is an alphanumeric identifier and the p;s are formal arguments with n assuming any integer value
up to 60. A FUNCTION statement must have at least one argument.

FUNCTION name Pys+--sPy)

type FUNCTION name (Py,...,Py)

Type is REAL, INTEGER, DOUBLE PRECISION, DOUBLE, COMPLEX, or LOGICAL. When the type
indicator is omitted, the mode is determined by the first character of the function name.

The FUNCTION name must be assigned a value by appearing at least once in the subprogram as any one
of the following:

The left-hand identifier of a replacement statement
An element of an input list
An actual argument of a subroutine reference

If not, the value returned is undefined, The name of a FUNCTION must not appear in an array
declaration.

The FUNCTION subprogram accepts arguments from the referencing program through the argument

list and returns a value through the FUNCTION name. The FUNCTION subprogram may define and
redefine one or more arguments and return these values as is done in a SUBROUTINE (section 7. 8. 2).

7-8 60280400A

When a function reference is encountered in an expression, control transfers to the FUNCTION sub-
program indicated. When RETURN or END is encountered in the FUNCTION subprogram, control
returns to the statement containing the function reference. An assigned GO TO statement transfers

control to the statement indicated.

Example:
Referencing program

PROGRAM IMPED

RESULT=VECTOR (A, B)

END

Function subprogram

FUNCTION VECTOR (X,Y)
Z=SQRT (X*X+Y*Y)
IF (Z)2,2,3
2 VECTOR=0.
GOTO5
3 VECTOR=Z
5 RETURN
END

TABLE 7-2. DIFFERENCES BETWEEN A FUNCTION
AND SUBROUTINE SUBPROGRAM

Function

Subroutine

Referenced by the name
appearing in an arithmetic
or logical statement

Must have one or more
arguments

Name is typed by first
letter or by the type
designation appearing
before the word FUNCTION

Referenced by a CALL statement

Need not have any arguments

No type associated with name

60280400A

7-9

The function subprogram is referenced by the appearance of the name and list in the statement
RESULT=VECTOR (A, B)

The values represented by the actual arguments A and B are communicated to the subprogram through
the dummy arguments X and Y.

The first calculation in the subprogram involves the appearance of a secondary reference: SQRT. This
reference passes the calculated value in the parentheses to the basic external function for obtaining a
square root. The result is returned to the subprogram and placed in storage location Z, Z is then
tested to see if it is positive., If not, the function name VECTOR is equated to zero and that value is
returned to the reference; if it is positive, the function name VECTOR is equated to that positive value
and returned to the reference.

The following example shows how a FUNCTION subprogram can establish a value for the FUNCTION
name by using an input statement rather than an arithmetic statement.

Referencing program FUNCTION subprogram
PROGRAM INPUT INTEGER FUNCTION FUNCT (I)
INTEGER FUNCT READ (1,1) FUNCT
J = FUNCT (1) 1 FORMAT (I2)
WRITE (3,1) J RETURN
1 FORMAT (I5) END
STOP
END

7-10 60280400A

Since the subprogram is intended to deal with integer values and its name is implicitely real, the name
is typed integer in the referencing program and in the FUNCTION statement of the subprogram. The
subprogram is referenced by the statement

J = FUNCT (1)

which arbitrarily passes the constant 1 as an actual argument. It enters the subprogram through the
dummy argument I in the FUNCTION statement but is never used. This step is performed solely to
satisfy the requirements of a FUNCTION subprogram. The subprogram reads in the value from a card
and stores it in the location designated by the name of the FUNCTION subprogram, where it is available
to the referencing program which stores it in J and then prints it out.

7.8.2 SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram is a collection of FORTRAN statements headed by a SUBROUTINE state-
ment and written as a separate program to perform a set of calculations when called by a referencing
program. It may return none, one, or more values. A value or type is not associated with the sub-
routine name itself,

The first statement of a subroutine subprogram must have one of the following forms:

SUBROUTINE name
or

SUBROUTINE name (pl, oo ,pn)

name is an alphanumeric identifier and p; are formal arguments; n may be 1 to 60.
A CALL statement (section 7.9) transfers control from the calling program to the subroutine. A
RETURN or END statement (section 6.7 and 6. 8) returns control to the next executable statement

following the CALL statement in the referencing program.

The SUBROUTINE subprogram may accept arguments from the calling program and can either return
none, one, or more results through its arguments or in COMMON.

60280400A 7-11

Example:

Referencing program Subprogram
PROGRAM TENSOR 3 SUBROUTINE MATRIX
COMMON/BLK1/X(20, 20), COMMON/BLK1/A (20, 20),
Y (20, 20), Z(20, 20) B(20, 20), C(20, 20)
CALL MATRIX DO101=1,20
Next statement < DO 10 J=1,20
. cadIN=0
* DO 10K =1,20
c{,J) = C(L,J) + A1,K) *B(K, J)
END 10 CONTINUE
L__RETURN
END

The referencing program reserves storage for three successive arrays in labeled COMMON. It is
assumed that two of these arrays, X and Y, have values stored in them before the CALL statement is
reached. The CALL statement transfers control to the subroutine without passing any arguments. The
subroutine performs the matrix multiplication of the first two arrays and stores the results in the third.
Control is returned to the next statement after the CALL in the referencing program. The subroutine
obtains the values for its calculations from the labeled common block and returns the results it derives
to the same labeled common block.

7.8.3 LIBRARY SUBROUTINES

FORT RAN contains several built-in subroutine subprograms which may be referenced by a program
with a CALL statement. i must be an integer variable or constant; j is an integer variable.

CALL SLITE (i)

Turn on sense light i, If i = 0, turn all sense lights off. 1i1is 0 to 6; if i > 6, the results are undefined
and no diagnostic is provided.

CALL SLITET (i, j)

If sense light i is on, set j = 1, if sense light i is off, set j = 2; then turn sense light i off. iis 1 to 6.
If i is out of range, the results are undefined.

7-12 60280400A

CALL SSWTCH (, j)

If sense switch i is down, set j = 1. If sense switch i is up, set j = 2. iis 1 to 6. Ifiis out of the
range, the results are undefined. The switches are set by SCOPE control cards.

CALL OVERFL (j)t

If a floating point overflow condition exists, set j = 1. If no overflow exists, set j = 2; and set the
machine to a no overflow condition.

CALL DVCHK ()t

If division by zero occurred, set j =1 and clear the indicator; if division by zero did not occur, set
j=2.

CALL SECOND (t)

Returns CP time from start of job in seconds in floating point format to three decimal places. tisa
real variable,

CALL EXIT
Terminate program execution and return control to the monitor.

CALL DUMP (a;,by,f1,00.,a,,b,,)

(n<20)
CALL PDUMP (al,bl, fl, caesy an, bn’ fn)

Dump storage on OUTPUT file in indicated format., For PDUME, control returns to the calling program;
for DUMP, execution terminates and control returns to the operating system. If no arguments are
provided, an octal dump of all storage occurs.

The a; and b; are SCM core addresses, variables, or statement numbers. They indicate the first word
and the last word of the storage area to be dumped.

The statement numbers must be 1 to 5 digits trailed by an S; CALL DUMP (108, 20S, 0). If b; is the
last statement of a DO loop, then b;S is not allowed to be used as the last word of the storage area to be
dumped. ‘

The dump format indicators are as follows:

f =0 or 3 octal dump
f =1 real dump

f = 2 integer dump; if bit 48 is set (normalize bit)

T Currently J is always set to 2 (see LEGVAR in Appendix C).

60280400A 7-13

7.9 CALL STATEMENT

The executable statement in the calling program for referring to a subroutine is:

CALL name
or
CALL name (pl, cee ,pn)

name is the name of the subroutine being called, and p is an actual argument; n is 1 to 60. The name
should not appear in any declarative statement in the calling program, with the exception of the
EXTERNAL statement when name is also an actual argument.

The CALL statement transfers control to the subroutine. When a RETURN statement is encountered in
the subroutine, control is returned to the next executable statement following the CALL statement in the
calling program. If the CALL statement is the last statement in a DO loop, looping continues until the
DO loop is satisfiede. The CALL statement is executed each time the terminal statement is reached.

Examples:
1. SUBROUTINE BLDX(A, B, W)
W=2, *B/A
RETURN
END

Calls

CALL BLDX(X(D), Y(I), W)
CALL BLDX(X()+H/2.,Y(I) + C(J), PROX)
CALL BLDX(SIN(Q5), EVEC(I+J), OVEC(L))

2. SUBROUTINE MATMULT
COMMON/ITRARE/X(20, 20), Y(20, 20), Z (20, 20)
DO101=1,20
DO 10 J =1,20
Z(1,J)=0.

DO 10 K=1,20

10 Z(1,J) = Z(I, J) + X(I, K)*Y(K, J)
RETURN
END

7-14 60280400A

Operations in MATMULT are performed on variables contained in the common block
ITRARE. This block must be defined in all calling programs.

COMMON/ITRARE/AB(20, 20), CD(20, 20), EF(20, 20)
CALL MATMULT
3. SUBROUTINE AGMT (SUB, ARG)

COMMON/ABL/XP(100)

ARG = 0.

DO51=1,100

5 ARG = ARG + XP(I)

CALL SUB

RETURN

END
Here the dummy argument SUB is used to transmit another subprogram name., The call to

SUBROUTINE AGMT might be CALL AGMT (MULT, FACTOR), where MULT is specified in an
EXTERNAL statement. (section 7,10)

7.10 EXTERNAL STATEMENT

When the actual argument list which calls a function or subroutine program contains a function or sub-
routine name, that name must be declared in an EXTE RNAL statement,

EXTERNAL name;, Namey, ..
The EXTERNAL statement must precede the first statement of any program which calls a function or
subroutine subprogram using the EXTERNAL name. When it is used, EXTERNAL always appears in
the calling program; it may not be used with statement functions. If it is, a compiler diagnostic is
provided.
Examples:

1. A function name used as an actual argument requires an EXTERNAL statement.

Calling Program Reference

EXTERNAL SIN
CALL PULL(SIN, R,Q)

.
.

60280400A 7-15

Called Subprogram

SUBROUTINE PULLZX,Y, Z)

Z=X(Y)

But a function reference used as an actual argument does not need an EXTERNAL statement,

Calling Program Reference

CALL PIELL(SIN(R),Q)

Called Subprogram

SUBROUTINE PULL(X, Z)

END

2. A subroutine used as an actual argument must have its name declared in an EXTERNAL
statement in the calling program.

COMMON/ABL/ALS(100)
EXTERNAL RTENTA, RTENTB
CALL AGMT (RTENTA, V1)
CALL AGMT(RTENTB, V1)

When a subprogram name appears as an actual argument, any arguments to be associated
with a call of this subprogram can be passed via actual arguments or COMMON,

7-16 60280400A

Example:

Calling Program

EXTERNAL ADDER

CALL SUB(ADDER, A, B)

Called Subprogram

SUBROUTINE SUB(X,Y, Z)

CALL X(Y, Z)

END

CALL SUB(ADDER(A, B)) would imply that ADDER is a function reference, not a subroutine
name,

7.1 ENTRY STATEMENT

The statement provides alternate entry points to a FUNCTION or SUBROUTINE subprogram.
ENTRY name

Name is an alphanumeric identifier, and may appear within the subprogram only in the ENTRY statement.
Each entry identifier must appear in a separate ENTRY statement. The dummy arguments, if any,
appearing with the FUNCTION or SUBROUTINE statement do not appear with the ENTRY statement.
ENTRY may appear anywhere within the subprogram except it should not appear within a DO; ENTRY
statement cannot be labeled. The first executable statement following ENTRY becomes an alternate
entry point to the subprogram.

In the calling program, the reference to the entry name is made just as if reference were being made

to the FUNCTION or SUBROUTINE in which the ENTRY is imbedded. The name may appear in an
EXTERNAL statement, and if a function entry name, in a type statement.

60280400A 7-17

The ENTRY name may not be given type explicitly in the defining program; it assumes the same type
as the name in the FUNCTION statement,

Examples:

FUNCTION JOE(X,Y)
10 JOE=X+Y

RETURN

ENTRY JAM

IF (X.GT.Y) 10,20

20 JOE=X-Y
RETURN
END

This could be called from the main program as follows:
Z=A+B-JOE(3. *P,Q-1)

;l=S+JAM(Q,2. *P)

USASI FORTRAN, X3.9-1966, does not specify the ENTRY statement.

7.12 VARIABLE DIMENSIONS IN SUBPROGRAMS

In many subprograms, especially those performing matrix manipulation, the programmer may wish
to vary array dimensions each time the subprogram is called.

This is accomplished by specifying the array name and its dimensions as dummy arguments in the
FUNCTION or SUBROUTINE statement. The corresponding actual arguments specified in the calling
program are used by the called subprogram. The maximum dimensions that any given array may
assume are determined by dimensions in a DIMENSION, COMMON or type statement in the program
that initially declared the array.

The dummy arguments representing the array dimensions must be simple integer variables. The array

name must also be a dummy argument. The actual argument representing the array dimensions must
have integer values.

7-18 60280400A

The total number of elements of the corresponding array in the subprogram may not exceed the total
number of elements of a given array in the program that initially declared the array.

Example:
Consider a simple matrix add routine written as a subroutine:

SUBROUTINE MATADD (X,Y,Z,M,N)
DIMENSION X (M, N),Y (M, N), Z(M,N)
DO10I=1,M
DO10J=1,N
10 Z({, J)=X{1, H)+Y(, J)
END
The arrays X, Y, Z and the variable dimensions M, N all appear as dummy arguments in the SUB-

ROUTINE statement and also in the DIMENSION statement as shown. If the original calling program
contains the array allocation declaration

DIMENSION A (10, 10), B(10,10), C(10,10), E(5,5), G(5, 5), H(10,10)
The program may call the subroutine MATADD from several places within the main program as follows:

CALL MATADD(A, B, C,10,10)
CALL MATADD(E, F,G,5,5)
CALL MATADD(B, C,A,10,10)
CALL MATADD(B, C,H,10,10)
The compiler does not check to see if the limits of the array established by the DIMENSION statement

in the main program are exceeded.

The variable dimensions need not be passed as arguments; they can be in COMMON or computed intern-
ally.

60280400A 7-19

7.13 PROGRAM ARRANGEMENT

FORTRAN assumes that all statements and comments appearing between a PROGRAM, SUBROUTINE,
or FUNCTION statement and an END statement belong to one program. A typical arrangement of a
set of main program and subprograms follows (Also see appendix E.)

PROGRAM WHAT

°

END

SUBROUTINE S1(A, B)

END

SUBROUTINE 82

.
.

END

REAL FUNCTION F1(P1)

°

END

7-20 60280400A

OVERLAYS 8

#

An overlay is a portion of a program written on a file in absolute form and loaded at execution time
without delay for relocation. The user defines an overlay with the OVERLAY card. He calls it with
the CALL OVERLAY statement.

8.1 LEVELS

Levels are used to describe the sequence of loading overlays and to specify which sections of code are
to overlay others. In 7000 SCOPE V1.0, there are three levels of overlaying, MAIN, PRIMARY, and
SECONDARY. Up to three overlays may be in core simultaneously. They are usually loaded contigu-
ously. The primary or secondary levels may be replaced by other overlays. The following diagram
demonstrates the relationship of the levels when they are loaded into core. This example shows a
number of different core loads which might exist for a single job:

1,1

H
1

MAIN | MAIN OVERILAY 0,0 L e
] H

PRIMARY 1,0 2,0 4,0 | 6,0 7,0 E
R

| 21 — — L

L2 T T E

SECONDARY ’ 4,1 | 4,0 | 4,3 v
E

L

8.2 IDENTIFICATION

Overlays may be loaded from specified files. A single overlay may be loaded only from a single file,
although many files may be used for loading by a single job. An overlay is identified by its level number.
The level number is a pair of two-digit octal numbers (0-77). The first number is the primary level,

the second is the secondary level. An overlay with a non-zero primary level and a zero secondary level
(1,0) is a primary overlay. Any overlay with the same primary level and a non-zero secondary level
(1,1) is associated with and subordinate to the corresponding primary and is called a secondary overlay.
This difference is significant when overlays are loaded. Level 0, 0 is reserved for the initial, or main
overlay which is neither primary nor secondary; it is a special case which remains in memory during
overlay execution. Overlay numbers (0, 1) to (0, 77) are illegal.

60280400A 8-1

The main overlay (0,0) is loaded first. All primary overlays are loaded at the same point immediately
following the main overlay. Secondary overlays are loaded immediately following their associated pri-
mary overlays. Loading the next primary overlay destroys the first loaded primary overlay and any
associated secondary overlays. Likewise, the loading of a secondary overlay destroys a previously
loaded secondary overlay.

8.3 COMPOSITION
Each overlay must have at least one program having the characteristics of a FORTRAN main program.

An overlay may consist of one or more FORTRAN or COMPASS programs. The program name becomes
the primary entry point for the overlay through which control passes when the overlay is called. An
overlay cannot reference entry points in higher level overlays. The only method of reference for a
MAIN overlay to primary and secondary overlays is through the CALL OVERLAY statement. However,
the primary overlay may reference any entry point in the MAIN overlay, while the secondary overlay
may reference any entry point in the primary or MAIN overlay.

Blank common and labeled common may be defined in any level overlay and referenced by that overlay
and higher level overlays. (The same rules apply as for entry points).

An OVERLAY is established by an OVERLAY card which precedes the program cards. The overlay

consists of all programs appearing between the OVERLAY card and the next OVERLAY card or an end-
of-file or an end-of-record.

8.4 CALL
Overlays are called by the following statement:
CALL OVERLAY (fn, {;,0,,p)

OVERLAY FORTRAN subroutine which translates the FORTRAN call into a call to the loader

in variable name of the location containing the name of the file (lefi justified dispiay
code) which includes the overlay

4 primary level of the overlay
Lo secondary level of the overlay
P recall parameter. If p equals 6HRECALL, the overlay is not reloaded if it is in

memory

The first three parameters must be specified; the absence of any one could result in a MODE error at
execution time. The levels appearing on the OVERLAY loader card are always octal. The normal mode
for parameters in FORTRAN calls is decimal. This fact should be considered when coding the L1549
parameters. The programmer can keep his level numbers straight by using octal notation on both
control and call cards.

8-2 60280400A

If uniqueness is ensured at execution time, more than one overlay may be created with the same level
numbers. Uniqueness is determined by the level numbers, the file name from which the OVERLAY is
to be loaded, and the position of the overlay on the file., Since the loader selects the first overlay en-
countered on the specified file with level numbers which match those in the call, it is possible to
position a number of overlays on a file with the same identifier and by properly sequencing the calls
thereto, have available a number of different overlays.

Loading from a file requires an end-around search of the file for the specified overlay; this can be time
consuming in large files. When speed is essential, each overlay should be written to a separate file.

8.5 OVERLAY FORMAT

Each overlay consists of a logical record in the following format:

Word 1
* ’ [} I f I fwa ea J
59 47 41 35 17 0
* 508 (specified on overlay header)
[Primary overlay level
Ly Secondary overlay level
ea Entry point to the overlay
fwa First word address of overlay (overlay is loaded at fwa)

Word 2 through end of record: 60-bit data words.

8.6 LOADER CARDS

Loader cards are processed directly by the loader. They provide the loader with information necessary
for generating overlays. All loader cards must precede the subprogram text to be loaded. Formats
are the same as for SCOPE control cards. However, if they are in the FORTRAN decks, the loader
cards must be punched in columns 7 through 72,

60280400A 8-3

8.7 OVERLAY CARDS

(OVERLAY (fn, £1, £, Cnnnnnn)

fn File name onto which the generated overlay is to be written

must be (0, 0) for first overlay card
and must be in octal ¥

4

Primary level number
Secondary level number

Ly

Cnnnnnn optional; nnnnnn can be up to 6 octal digits., If absent, overlay is loaded normally. If
present, overlay is loaded nnnnnn words from the start of blank common, This provides

a method for changing the size of blank common at execution time.

The first overlay card must have an fn, Subsequent cards may omit fn, and the overlay is written on
the same fn.

Each OVERLAY card must be followed by a program card. The program card for the main overlay must
specify all needed file names, such as INPUT, OUTPUT, TAPE 1, etc, for all overlay levels. File
names should not appear in program cards for other than the (0,0) OVERLAY.

The groups of relocatable decks processed by the loader in forming overlays must be presented to the
loader in proper order. This requires that the 0,0 overlay group be first. After this may be any
primary group followed by all of its associated secondary groups, then any other primary group followed
by its associated secondary groups, etc.

¥ Level numbers given in the CALL OVERLAY, however, are decimal; e. g., the overlay card for
overlay 1,9 would be OVERLAY (fn, 1, 11) and its call would be CALL OVERLAY (fn, 1, 9)

8-4 60280400A

Example:

EXAM, S70.

RUN (S)

LGO.

7/8/9

OVERLAY (XFILE, 0, 0)

PROGRAM ONE (INPUT,OUTPUT, PUNCH)

L]

CALL OVERLAY (5HXFILE, 1, 0)

STOP

END

OVERLAY (XFILE, 1, 0)
PROGRAM ONE ZERO

CALL OVERLAY (SHXFILE, 1, 1)

RETURN

END
OVERLAY(XFILE,1,1)
PROGRAM ONE ONE

RETURN
END
6/7/8/9

60280400A

INPUT/OUTPUT FORMATS 9

Data is transferred between storage and the files for external units in one of two modes: binary coded
decimal (BCD) and binary. BCD transmissions are dependent on the structure of the data they contain
and as such must have their format specified. This is accomplished by means of a FORMAT statement.
Binary data is transferred as a single string and does not require a format specification. Both forms
require an input/output statement that identifies the unit involved and specifies the list of data to be

moved.

9.1 INPUT/OUTPUT LIST

The list portion of an input/output statement indicates the data items and the order, from left to right,
of transmission. The input/output list can contain any number of elements. List items may be array
names, simple or subscripted variables, or an implied DO loop. Items are separated by commas, and
their order must correspond to any FORMAT specification associated with the list. A double precision
or complex element assumes a word-pair to be transmitted. There is no check whether the type of the
list element matches the type of the conversion specified. External records are always read or written

until the list is satisfied.

Subscripts in an input/output list may be any of the following forms in which ¢ and k are unsigned integer
constants and v is a simple integer variable:

Form Example

(c) 4

v) {1y

(v£k) (J+3)

(c*v) (5*K)

(c*vik) (2*L-8)
Examples:

READ 100,A, B, C,D
READ 200, A, B, C(I), D(3,4), E(1,J,7), H

READ 101, J, A(J), I, B(1, J)

READ 102, DELTA(5*J+2, 5*1-3, 5*K), C, D(I+7)

The integer variable in a list must be previously defined, or it must be defined within an implied DO

loop in the list.

Examples:
READ 300, A, B, C, (D(),1=1,10), E(5,7), F(J), (G(I), H(), 2,6, 2)

READ 400,1, J,K, (((A{l, JJ,KK), II=1, 1), JJ=1, J), KK=1, K)
READ 500, ((A(1,J), I=1,10, 2), B(J, 1), J=1,5), E, F, G(L+5, M-T7)

60280400A 9-1

9.2 ARRAY TRANSMISSION

An entire array or any part of an array can be transferred as a single specification in an input/output
list by using an implied DO loop. An implied DO loop is of the form:

(((A(Is Ja K)9 L]_:ml ’ mz: m3)9 L2:n1 s n2$ n3)9 L3:p1 sp2’ p3)

m,, 0, P, Unsigned integer constants or simple integer variables. If mg,ng, or pj3 is
omitted, it is assumed equal to 1.

1,J,K Subscripts of A

Ll’ L2’ L3 Index variables I, J, K in same order

This is equivalent to the nest of DO loops:

DO N L3=P1, P2, P3

DO N L2=N1, N2, N3

DO N L1=M1, M2, M3
N READ 100, A (I, J, K)

where N is the statement number of the terminal statement and 100 is the statement number of the
relative FORMAT statement.

An array name which appears without subscripts in an I/0 list causes transmission of the entire array
by columns.

Example:
DIMENSION B(10,15)
the statement
READ 13, B
is equivalent to
READ 13, ((B({, J),[1,10),J=1,15)
An implied DO loop can be used to transmit a simple variable more than one time. For example, the
list item (A(K), B, K=1,5) causes the transmission of the variable B five times, A list of the form
K, (A(I), I=1, K) is permitted and the input value of K is used in the implied DO loop. The index variable
in an implied DO list in a DATA statement should be an implicit integer.
Examples:
1. Simple implied DO loop list items.

READ 400, (A(D), =1, 10)
400 FORMAT (E20.10)

9-9 602804004

This statement is equivalent to the following DO loop.

DO 5 11,10
5 READ 400, A(l)

READ 100, ((A(JV,JdX),JV=2,20,2),JX=1,30)
READ 200, (BETA(3*JON+7),JON = JONA, JONB, JONC)
READ 300, ((ITMSLST(I, J+1, K-2), -1, 25), J=2, N), K=IVAR, IVMAX, 4)

READ 600, (A(T), B(1),=1,10)
600 FORMAT (F10.2,E6.1)

The previous statement is equivalent to the DO loop:

DO171=1,10
17 READ 600, A(T),B(l)

2. Nested implied DO list items.
READ 100, (((((A(L,J, K), B, L), C{J, N),I=1,10), J-1,5), K~1, 8),1L~1,15), N=2,7)
Data is transmitted in the following sequence:

A@,1,1),B(1,1),C@1,2), A2,1,1), B(2,1), C1,2)...

...A(10,1,1),B(0,1),C(,2),A(,2,1),B(1,1),C(2,2)...

...AQ0,2,1),B(10,1),C(2,2)...A(10,5,1),B10,1), C(5,2). ..

...A(10,5,8),B(10,1),C(,2). .. A(10,5,8), B(10,15), C(5,2). ..
.. A(10,5,8),B(10,15), C(5,7)

The following list item will transmit the array E(3, 3) by columns:
READ 100, ((E(1, J), =1, 3), J=1, 3)
The following list item will transmit the array E(3, 3) by rows:
READ 100, ((E(f,J),J=1,3),1=1,3)
3. DIMENSION MATRIX (3,4,7)

READ 100, MATRIX
100 FORMAT (I6)

The above items are equivalent to the following statements:
DIMENSION MATRIX (3,4,7)
READ 100, ((MATRIX(, J,K), -1, 3), J=1,4),K=1,7

‘The list is equivalent to the nest of DO ioops:

DO 5 K=1,7
DO 5 J=1,4
DO 5 I-1,3
5 READ 100, MATRIX(I,J,K)

60280400A

9-3

9.3 FORMAT DECLARATION

BCD input/output statements require a FORMAT declaration which contains conversion and editing
information relating to internal/external structure of the corresponding I/0 list items. A FORMAT
declaration has the following form:

FORMAT (specl, cee ,k(specm, cee)s spec , ...)

Spec; format specification
i

k optional repetition factor, must be unsigned integer constant.

The FORMAT declaration is non-executable and may appear anywhere in the program. FORMAT
declarations must have a statement label in columns 1-5, The compiler does not check the syntax of
FORMAT statements at compile time.

The data items in an I/O list are converted from one representation to another (external/internal)
according to FORMAT conversion specifications. FORMAT specifications may also contain editing
codes.

Conversion specifications:

Ew.d Single precision floating Iw Decimal integer conversion
point with exponent Ow Octal integer conversiont
Fw.d Sn.lgle precision floating Aw Alphanumeric conversion
point without exponent
1 . . -‘-
Dw.d Double precision floating Rw Alphanumeric conversion
point with exponent Lw Logical conversion
Gw.d Single precision floating nP Scaling factor
with or without
exponent

Complex data items are converted on input/output according to a pair of consecutive Ew. d or Fw.d
specifications.

Example:
COMPLEX A, B
PRINT 10, A
10 FORMAT(F7. 2, F9.2)
READ 11,B

11 FORMAT (E10.3,E10. 3)
Editing specifications:

wX Intraline spacing / Begin new record

wH Heading and labeling *...* Heading and labeling

Both w and d are unsigned integer constants; w specifies the field width in number of character positions
in the external record, and d specifies the number of digits to the right of the decimal within the field.

* Not specified in USASI FORTRAN, X3.9-1966. 1

9-4 60280400A

9.4 CONVERSION SPECIFICATIONS

9.4.1 Ew.d OUTPUT

Real numbers in storage are converted to the BCD character form for output with the E conversion,
The field occupies w positions in the output record with the real number right justified in the form:

ba.a...ateee 100 <eee <322
or

ba.a...aEz+ee 0<ee<99

b indicates blank character. a's are the most significant digits of the integer and fractional part and
eee are the digits in the exponent. If d is zero or blank, the decimal point and digits to the right of the
decimal do not appear as shown above. Tield w must be wide enough to contain the significant digits,
signs, decimal point, E, and the exponent. Generally, w> d+7. Positive numbers need not reserve a
space for the sign of the number.

If the field is not wide enough to contain the output value, an asterisk is inserted in the high order
position of the field. If the field is longer than the output value, the quantity is right justified with
blank fill to the left. Double precision numbers cannot be output under Ew. d.

Examples:
PRINT 10, A A contains -67.32
10 FORMAT(E10. 3) or + 67.32
Result: -6.732E+01 or b6.732E+01
PRINT 10, A

10 FORMAT (E12.4)
Result: b-6. 7320E+01 bb6. 7320E+01

PRINT 10, A A contains -67. 32
10 FORMAT(EY. 3) provision not made
for sign

Result: *,732E+01
PRINT 10, A
10 FORMAT(E10.4)
Result *. 7320E+01

60280400A 9-5

9.4.2 Ew.d INPUT

The E specification converts the number in the input field to a real number and stores it in the proper
location.

Subfield structure of the input field:

input field

B ——
+ +
digit . E
integer l fraction exponent

L decimal point

The total number of characters in the input field is specified by w; this field is scanned from left to
right; blanks are interpreted as zeros.

The integer subfield begins with a sign (+ or -) or a digit and may contain a string of digits. The
integer field is terminated by a decimal point, D, E,+, -, or the end of the input field.

The fraction subfield which begins with a decimal point may contain a string of digits. The field is
terminated by D, E, +, -, or the end of the input field.

The exponent subfield may begin with D, E, + or -. When it begins with D or E, the + is optional
between D or E and the string of digits of the subfield. The value of the string of digits in the
exponent subfield must be less than 323.

Permissible subfield combinations:

+1,.6327E-04 integer fraction exponent
-32.7216 ~ integer fraction

+328+5 integer exponent

. 629E-1 fraction exponent

+136 integer only

136 integer only

. 07628431 fraction only

E-06 (interpreted as zero) exponent only

In the Ew. d specification, d acts as a negative power-of-ten scaling factor when an external decimal
point is not present. The internal representation of the input quantity is:

(integer subfield)x10 9y o(€xponent subfield)

9-6 60280400A

For examaple, if the specification is E7. 8, the input quantity 3267+05 is converted and stored as
3267x10 °x10° = 3,267,

A decimal point in the input field overrides d. The input quantity 3, 67294+5 read by an E9.d
specification is always stored as 3. 6729x105. When d does not appear, it is assumed to be zero.

The field length specified by w in Ew. d should always be the same as the length of the field containing
the input number. When it is not, incorrect numbers may be read, converted, and stored as shown
below. The field w includes the significant digits, signs, decimal point, E or D, and exponent.

Example:

READ 20,A,B,C
20 FORMAT (E9. 3, E7. 2, E10. 3)

Input quantities on the card are in three contiguous fields columns 1 through 24:

9 5 10

—~——

+6.47E-01-2.36+5.321 E+02bb

The second specification (E7. 2) exceeds the width of the second field by two characters.

Reading proceeds as follows:

]

[

7
10
T ————

N
+6. 47E—01l—2. 36+5 . 321 E+02bb

+6.47E-01{-2, 36+5 |. 321E+02bb
+6.47E-01-2. 36+5 |. 321 E+02bb

First, +6.47.01 is read, converted, and placed in location A. Next, -2.36+5 is read, converted, and
placed in location B. The number actually desired was -2.36, but the specification error (E7.2 instead
of E5.2) caused the two extra characters to be read. The number read (-2.36+5) is a legitimate input
representation under the definitions and restrictions.

Finally, .321E+0200 is read, converted, and placed in location C. Here again, the input number is
legitimate and is converted and stored, even though it is not the number desired.

60280400A 9-7

The above example illustrates a situation where numbers are incorrectly read, converted, and stored,
and yet there is no immediate indication that an error has occurred.

Examples:

9.4.3 Fw.d OUTPUT

Input Field

+143. 26 E-03
-12.437629E+1
8936E+004

327.625
4.376
-.0003627+5
-.0003627E5
blanks

1E1

E+06

1.bEbl

Specifi-

cation

E11.2
E13.6
E9.10

E7.3
E5
FE11.7
E11.7
Ew.d
E3.0

E10.6

E6.3

Converted

Value
.14326
-124. 37629
. 008936

327.625
4.376
-36. 27
-36. 27
-0

10.

10.

Remarks

All subfields present
All subfields present

No fraction subfield; input number converted
as 8936,x10710+4

No exponent subfield

No d in specification

Integer subfield contains - only
Integer subfield contains - only
All subfields empty

No fraction subfield; input number converted
as 1.x10!

No integer or fraction subfield; zero stored
regardless of exponent field contents

Blanks are interpreted as zeros

The field occupies w positions in the output record; the corresponding list item must be a floating point
quantity, which appears as a decimal number, right justified:

ba...a.a...a

b indicates a blank. The a's represent the most significant digits of the number. The number of
decimal places to the right of the decimal is specified by d. If d is zero or omitted, the decimal point

and digits to the right do not appear.

If the number is positive, the + sign is suppressed. If the field

is too short to accommodate the number, one asterisk appears in the high-order position of the
output field. If the field is longer than required to accommodate the number, the number is right

justified with blank fill to the left.

9-8

60280400A

Contents of A Format Statement Print Statement Printed Result

+32. 694 10 FORMAT (F7.3) PRINT 10, A b32. 694
+32. 694 11 FORMAT (F10. 3) PRINT 11, A bbbb32. 694
-32. 694 12 FORMAT (F6.3) PRINT 12, A *2. 694

(no provision for - sign and
most significant digit)

. 32694 13 FORMAT (F4.3, F6.3) PRINT 12,A,A «327b0. 327

9.4.4 Fw.d INPUT

This specification is a modification of Ew.d. The input field consits of an integer and a fraction
subfield. An omitted subfield is assumed to be zero. The restrictions described under Ew. d input
apply.

Examples:
Specifi- Converted

Input Field cation Value Remarks

367.2593 F8.4 367.2593 Integer and fraction field

37925 F5.7 . 0037925 No fraction subfield; input number
converted as 37925 x 1077

~-4,.7366 F7 ~-4.7366 No d in specification

. 62543 F6.5 . 62543 No integer subfield

. 62543 F6. 2 . 62543 Decimal point overrides d of
specification

+144.15E-03 F11.2 .14415 Exponents are legitimate in F input and may
have P-scaling

5bbbb F5.2 500, 00 No fraction subfield; input number converted

as 50000x102

9.4.5 Gw.d OUTPUT

The field occupies w positions of the output record, with d significant digits. The real data will be
represented by F conversion unless the magnitude of the data exceeds the range that permits effective
use of F conversion. In this case, the E conversion will represent the external output. Therefore,

the effect of the scale factor is not implemented unless the magnitude of the data requires E conversion.

When F conversion is used under Gw. d output specification, 4 blanks are inserted within the field,
right justified. Therefore, for effective use of F conversion, d must be < w-6.

60280400A 9-9

The method of representation in the output record is a function of the magnitude N of the real data
being converted. The following table gives a correspondence between N and the method of conversion:

0.1< N<1 F w-4).d,4X
1 <N<10 F (w-4). (d-1),4X
109-2 <N <10d-1 F (w-4),1,4X
104-1 <N <10d F (w-4).0,4X
Examples:
PRINT 101, XYZ XYZ contains 77.132

101 FORMAT (G10. 3)

Result: bb77.1bbbb

PRINT 101,XYZ XYZ contains 1214635.1
101 FORMAT (G10. 3)

Result: bl. 215E+06

9.4.6 Gw.d INPUT

Gw. d specification is similar to the Fw.d input specification.

9.4.7 Dw.d OUTPUT

The field occupies w positions of the output record, the list item is a double precision quantity which
appears as a decimal number, right justified:

ba.a...ateee 100< eee< 512
or
ba. a...aD+ee 0O<ee< 99

b indicates blank. D conversion corresponds to Ew.d Output.

Single precision numbers cannot be output under Dw.d.

9-10 60280400A

9.4.8 Dw.d INPUT

D conversion corresponds to E conversion except that the list variables must be double precision

names. D is acceptable in place of E as the beginning of an exponent subfield.

Example:

DOUBLE Z,Y,X
READ1, Z,Y,X
1 FORMAT (D18.11, D15, D17.4)

Input Card:

(—6.3167529844312—03 +2.718926453147 6293477528869D-09

e ™ e e e et e "
18 15 17

9.4.9 Iw OUTPUT

I specification is used to output decimal integer values. The output quantity occupies w output record

positions, right justified:

ba...a

b is a blank. The a's are the most significant decimal digits (maximum 15) of the integer.
integer is positive, the + sign is suppressed. The range of numbers permitted is roughly

-248 11< n< 2481,

If the field w is larger than required, the output quantity is right justified with blank fill to the left.
If the field is too short, characters arestored from the right, an asterisk occupies the leftmost

position.
Example:
PRINT 10,1,J,K I contains -3762
10 FORMAT (I8,110,15) J contains +4762937

K contains +13

Result: bbb-3762bbb4762937bbb13
e —
8 10 5

60280400A

9-11

9.4.10 Iw INPUT

The field is w characters in length, and the list item is a decimal integer constant.

The input field w

consists of an integer subfield, containing +, -, 0 through 9, or blank. When a sign appears, it must
precede the first digit in the field. Blanks are interpreted as zeros. The value is stored right

justified in the specified variable.
Example:

READ 10,1,J,K,L,M,N
10 FORMAT (13,17,12,13, 12, I4)

Input Card:

139bb-15bb18bb7b3blb4

——— ——— S

3 7 2 3 2 4
In storage:

I contains 139
-1500
18

7

3
104

Zz B R o

9.4.11 Ow OUTPUT

O specification is used to output octal integer values. The output quantity occupies w output record

positions right justified:

aa...a

The a's are octal digits. If w is 20 or less, the rightmost w digits appear. If w is greater than 20,

the number is right justified in the field with blanks to the left of the output quantity.

number is output in its one's complement internal form.

A negative

Octal output is not specified in USASI FORTRAN, X3.9-1966.

9-12

60280400A

9.4.12 Ow INPUT

Octal integer values are converted under O specification. The field is w characters in length, and the
list item must be an integer variable.

The input field w consists of an integer subfield only (maximum of 20 octal digits) containing +, -, 0
through 7, or blank.

Only one sign may precede the first digit in the field. Blanks are interpreted as zeros.

] Octal input is not specified in USASI FORTRAN, X3.9-1966.

Example:

TYPE INTEGER P,Q,R
READ 10,P,Q,R
10 FORMAT (010,012,02)

Input Card:

[3737373737666b6644b444-0

I et

10 12 2

In storage:

P 00000000003737373737
Q 00000000666066440444
R 7777777070TNCNNITTNT
A negative number is represented in one's complement form.

A negative octal number is represented internally in seven's complement form (20 digits) obtained
by subtracting each digit of the octal number from seven. For example, if -703 is an input quantity,
its internal representation is 77777777777777777074.

That is, 77777777T7T777TTTT777
-00000000000000000703
TTTTTTITTTTITIT77074

9.4.13 Aw OUTPUT

A conversion is used to output alphanumeric characters. If w is 10 or more, the quantity appears
right justified in the output field, blank fill to left. If w is less than 10, the output quantity is
represented by leftmost w characters.

60280400A 9-13

9.414 Aw INPUT

This specification accepts FORTRAN characters including blanks. The internal representation is

7000 Series display code; the field width is w characters.

If w exceeds 10, the input quantity is the rightmost 10 characters in the field. If w is 10 or less, the

input quantity is stored as a left justified BCD word; the remaining spaces are blank filled.

Example:
READ 10,Q, P, 0
10 FORMAT (A8, A8, A4)
Input Card:

(LUX MENTIS LUX ORBIS

8 8 4

In storage:

Q LUXbMENTbb
P ISbLUXbObb
O RBISbbbbbb

9.4.15 Rw OUTPUT

This specification is similar to the Aw Output with the following exception: if w is less than 10, the

output quantity represents the rightmost characters.

[Rw output is not specified in USASI FORTRAN, X3, 9-1966,

9.4.16 Rw INPUT

This specification is the same as the Aw Input with the following exception: if w is less than 10, the

input quantity is stored as a right justified binary zero filled word.

Rw input is not specified in USASI FORTRAN, X3.9-1966.

Example:

READ 10,Q, P, O
10 FORMAT (RS, RS, R4)

Input Card:
LUX MENTIS LUX ORBIS

8 8 4

60280400A

In storage:

Q OOLUXbMENT
P 00ISbLUXDbO
O 000000RBIS

9.4.17 Lw OUTPUT

L specification is used to output logical values. The output field is w characters long, and the list
item must be a logical element.

A value of TRUE or FALSE in storage causes w-1 blanks followed by a T or F to be output.

Example:

LOGICAL L, J,K,L I contains -0 J contains 0
PRINT 5,1,J,K,L K contains -0 L contains -0
5 FORMAT (4L3)
Result: bbTbbFbbTbbT

9.4.18 Lw INPUT

This specification accepts logical quantities as list items. The field is considered true if the first
non-blank character in the field is T or false if it is F. An all-blank field is considered false.

9.5 nP SCALE FACTOR

The D, E, F, and G conversion may be preceded by a scale factor which is:

External number = Internal number x 105cale factor, The scale factor applies to Fw.d and Gw.d on
both input and output and to Ew.d and Dw.d on output only. A scaled specification is written as shown
below; n is a signed integer constant.

nPDw.d nPEw. d nPFw.d nPGw. d nP
The scale factor is assumed to be zero if no other value has been given; however, once a value has been
given, it holds for all D, E, F, and G specifications. To nullify this effect in subsequent D, E, F, and
G specifications, a zero scale factor, 0P, must precede a D, E, F, or G specification. Scale factors

for D, E, F, and G output specifications must be in the range -8< n< 8.

Scale factors on D or E input specifications are ignored. For USASI compatible scale factor see
section 9. 10. 2,

60280400A 9-15

The scaling specification nP may appear independently of a D, E, F, or G specification; it holds for all
subsequent D, E, F, and G specifications within the same FORMAT statement unless changed by another
nP.

Example:

FORMAT (3PE12. 6, F10.3,0PD18.7,-1P, F5. 2)

The E12. 6 and F10. 3 specifications are scaled by 103, the D18. 7 specification is not scaled,
and the F5. 2 specification is scaled by 1071,

The specification (3P, 319, F10. 2) is the same as the specification (319,3PF10, 2).

9.5.1 Fw.d SCALING

Input

The number in the input field is divided by 10" and stored. For example, if the input %uantity
314.1592 is read under the specification 2PF8. 4, the internal number is 314.1592x10™% = 3, 141592,

Output

The number in the output field is the internal number multiplied by 10™, In the output representation,
the decimal point is fixed; the number moves to the left or right, depending on whether the scale
factor is plus or minus. For example, the internal number 3, 145926538 may be represented on
output under scaled F specifications as follows:

Specification Output Representation
F13.6 3.141593
1PF13.6 31.415927
3PF13.6 3141.592654
-1PF13.6 . 314159

60280400A

9.5.2 Ew.d OR Dw.d SCALING

QOutput

The scale factor has the effect of shifting the output number left n places while reducing the exponent by n.
Using 3.1415926538, some output representations corresponding to scaled E specifications are:

Specification Output Representation
E20. 2 3.14 E+00
1PE20. 2 31.42 E-01
2PE20. 2 314.16 E-02
3PE20.2 3141.59 E-03
4PE20. 2 31415.93 E-04
5PE20. 2 314159.27 E-05
-1PE20. 2 0.31 E+01

9.5.3 Gw.d SCALING

Input

Gw. d scaling on input is the same as Fw. d scaling on input.

Output

The effect of the scale factor is suspended unless the magnitude of the data to be converted is outside
the range that permits the effective use of F conversion.

9.6 EDITING SPECIFICATIONS

9.6.1 wX

This specification may be used to include w blanks in an output record or to skip w characters on an
input record to permit spacing of input/output quantities. 0X is not permitted; bX is interpreted as
1X. In the specification list, the comma following X is optional.

60280400A 9-17

Examples:

INTEGER A A contains 7
PRINT 10, A,B, C B contains 13.6

C contains 1462, 37
10 FORMAT (12, 6X, F6. 2, 6X, E12. 5)

Result: b7bbbbbbb13. 60bbbbbbbl. 46237 E+03
READ 11,R,S,T
11 FORMAT (F5.2,3X, F5. 2, 6X, F5. 2)

or
11 FORMAT (F5. 2,3XF5.2,6XF5. 2)

Input Card:

(14.62bb$13.78bCOSTb15.97

In storage:
R 14.62
S 13.78
T 15.97

9.6.2 wH OUTPUT

With this specification, 6-bit characters (including blanks) may be output in the form of comments,
titles, and headings. w, an unsigned integer, specifies the number of characters to the right of H
that are transmitted to the output record; w may specify a maximum of 136 characters. H denotes a
Hollerith field. The comma following the H field is optional.

Examples:
Source program:

PRINT 20
20 FORMAT (28HbBLANKSbCOUNTbINbANbHb FIELD.)
produces output record:
bBLANKShCOUNTbINbANbHbFIELD.
Source program:

PRINT 30, A A contains 1.5
30 FORMAT (6HbLMAX=, F5. 2)
produces output record:

bLMAX = bl.50

9-18 602804004

9.6.3 wH INPUT

The H specification may be used to read Hollerith characters into an existing H field within the
FORMAT specification.

Example:
Source program:

READ 10
10 FORMAT (27 Hbbbbbbbbbbbbbbbbbbbbbbbbbbb)

Input Card:

bTHIS IS A VARIABLE HEADING
N T —

27 cols

After READ, the FORMAT statement labeled 10 contains the alphanumeric information read from the
input card; a subsequent reference to statement 10 in an output statement acts as follows:

PRINT 10
produces the print line:

bTHIS IS A VARIABLE HEADING

9.6.4 NEW RECORD

The slash(/) signals the end of a record anywhere in the specifications list. Consecutive slashes may
appear in a list and they need not be separated from the other list elements by commas. During
output, the slash is used to skip lines, cards, or tape records. During input, it specifies that control
passes to the next record or card. K(/) or K/ results in K-1 lines being skipped.

Examples:

1. PRINT 10
10 FORMAT (6X,7HHEADING///3X,5HINPUT, 2X, 6HOUTPUT)

Printout:

HEADING line 1
(blank)_____ line 2
(blank)————line 3

INPUTbbOUTPUT line 4

Each line corresponds to a BCD record. The second and third records are null and produce the
line spacing illustrated.

60280400A 9-19

9.6

The specification *...* can be used as an alternate form of wH to output headings, titles, and

2. PRINT 11,A,B,C,D
11 FORMAT (2E10.2/2F17.3)

In storage:
A -11.6
B .325
C 46.327
D -14.261
Printout:

b-1.16E+01bb3. 25E-01
b46.327-14. 261

3. PRINT 11,A,B,C,D
11 FORMAT (2E10, 2/ /2F17.3)

Printout:
b-1.16E+01bb3.25E-01_____ _ 1line 1

__ blank line 2
b46. 327-14. 261 line 3

4, PRINT 15, (A(),I=1,9)
15 FORMAT (8HbRESULTS2(/) (3F8. 2))

Printout:
RESULTS
— (blank)
3.62 -4.03 -9.78
-6, 33 7.12 3.49
6.21 -6.74 -1.18
S5ox L L*

line 1
line 2
line 3
line 4
line 5

comments. Any 6-bit character (except asterisk) between the asterisks will be output. The asterisks
delineate the Hollerith field. This specification need not be separated from other specifications by
commas.

9-20

60280400A

Output Examples:

PRINT 10
10 FORMAT (*bSUBTOTALS*)

1. Source program:

produces the output record: bSUBTOTALS
2. Improper source program to output ABC*BE:

PRINT 1

1 FORMAT(*ABC*BE*)
The * in the output causes the specification to be interpreted as *ABC* and BE*., BE* is an
improper specification; therefore, the wH specification must be used to output ABC*BE.

For input, this specification may be used in place of wH to read a new heading into an existing
Hollerith field. Characters are stored in the heading until an asterisk is encountered in the input
field or until all the spaces in the format specification are filled. If the format specification contains
n spaces and the mth character (m < n) in the input field is an asterisk, all characters to the left of
the asterisk will be stored in the heading and the remaining character positions in the heading will be

filled with blanks.

Input Examples:
READ 10

1. Source program:
10 FORMAT (*bbbbbbbbbbbbbbbbbbbb *)

Input card: (FORTRAN FOR THE 7600

A subsequent reference to statement 10 in an output control statement:

PRINT 10 produces: FORTRAN FOR THE 7600

2. Source program:
READ 10
10 FORMAT (*bbbbbbb*)

(HEAD*LINE
PRINT 10 produces: HEAD bbb
NOTE

Column 1 is printed and not used for carriage control.

60280400A 9-21

9.7 REPEATED FORMAT SPECIFICATIONS

Format specifications may be repeated by using an unsigned integer constant repetition factor, k, as
follows: k(spec), spec is any conversion specification except nP.t For example, to print two
quantities K, L:

PRINT 10,K, L

10 FORMAT (12,12)
Specifications for K, L are identical; the FORMAT statement may also be:
10 FORMAT (212)

When a group of FORMAT specifications repeats itself as in: FORMAT (E15.3,F6.1,14,14, E15. 3, F6.1,
14, 14), the use of k produces: FORMAT (2(E15. 3, F6.1, 214))

Nesting of parenthetical groups preceded by repeat constants beyond two levels is not permitted in
FORMAT specifications.,

9.8 UNLIMITED GROUPS

FORMAT specifications may be repeated without using a repetition factor. The innermost parenthetical
group that has no repetition factor is unlimited and will be used repeatedly until the I/0 list is
exhausted. Parentheses are the controlling factors in repetition. The right parenthesis of an unlimited
group is equivalent to a slash. Specifications to the right of an unlimited group can never be reached,
as in the following example:

Format specifications for output data:

(E16. 3, ¥20, 7, 2(14), (I3, F7.1), F8. 2)
The first two fields are printed according to E16.3 and F20.7. Since 2(I4) is a repeated parenthetical
group, the next two fields are printed according to 4 format. The remaining print fields follow

(13, F7.1), which does not have a repetition factor, until the list elements are exhausted. F8.2 is
never reached.

USASI compatibility for unlimited groups is achieved by enabling a compile-time switch. (Refer to
sections 9.10 and 9.10.1.

T USASI FORTRAN X3. 9-1966 does not exclude nP from repeated format specifications.

9-22 60280400A

9.9 VARIABLE FORMAT

FORMAT specifications may be specified at the time of program execution. The specification,
including left and right parentheses but not the statement label or the word FORMAT, is read under
A conversion or in a DATA statement and stored in an array or a simple variable. The name of the
array containing the specifications may be used in place of the FORMAT statement labels in the
associated input/output operation. The array name that appears with or without subscript specifies
the location of the first word of the FORMAT information.

Examples:
1. Assume the following FORMAT specifications:
(E12. 2, F8. 2,17, 2E20. 3, F9. 3, 14)

This information can be punched in an input card and read by the statements of the program
such as:

DIMENSION IVAR(3)
READ 1 (IVAR(D), I=1, 3)
1 FORMAT (3A10)

The elements of the input card are placed in storage as follows:

IVAR(1): (E12. 2, F8.
IVAR(2): 2,17, 2E20.
IVAR(3): 3, F9.3,14)

A subsequent output statement in the same program can refer to these FORMAT specifications
as:

PRINT IVAR, A, B, I, C, D, E, J
This produces exactly the same result as the program:

PRINT 10, A, B, I, C, D, E, J
10 FORMAT (E12.2, F8. 2,17, 2E20. 3, F9. 3, I4)

2. DIMENSION LAISI (3), LAIS2(2),A(6), LSN(3);TEMP(3)
DATA LAIS1/21H@2F6. 3,17, 2E12. 2, 311)/, LAIS2/20H
(16, 6X, 3F4.1,2E12. 2)/

Output statement:

PRINT LAISi, (A(D), I=1, 2), K, B, C, (LSN(J), J=1, 3)
which is the same as:

PRINT 1, (A(D), 1, 2), D, B, C, (LSN(J), J=1, 3)
1 FORMAT (2F6.3,17,2E12, 2, 311)

60280400A 9-23

Output statement:
PRINT LAIS2, LA, (A(M), M=3,4), A(6), (TEMP(I), I=2, 3)
which is the same as:

PRINT 2, LA, (A(M), M=3, 4), A(6), (TEMP(L), L=2, 3)
2 FORMAT (I6, 6X,3F4.1,2E12.2)

3. DIMENSION LAIS (3), VALUE(6)
DATA LAIS/26H(I3,13HMEANbVALUEbIS, F6. 3)/

Output statement:
WRITE (10, LAIS)NUM, VALUE (6)
which is the same as:

WRITE (10,10)NUM, VALUE (6)
10 FORMAT (I3, 13HMEANbVALUEDIS, F6. 3)

9.10 USASI COMPATIBILITY

During compilation, a compiler parameter is available to select either the USASI FORTRAN X3.9-1966
compatibility features of the execution time routines or retain the 6000 compatible method of
FORMAT/list interaction and output format. The switch is enabled by a parameter on the RUN
control card and has effect only when a program is being compiled.

9.10.1 UNLIMITED GROUPS FOR USASI

Unlimited group repeat is implemented according to the USASI X3. 9 specification. An innermost
parenthetical group that has no repeat count specified in a FORMAT statement assumes a group
repeat count of one. If the last outer right parenthesis of the format specification is encountered and
the I/0 list is not exhausted, control reverts to that group repeat specification terminated by the
last preceding right parenthesis, or if none exists, then to the first left parenthesis of the format
statement.

9.10.2 SCALE FACTOR FOR USASI

A scale factor is allowed for ¥, E, D, and G on input. On input, the scale factor has no effect if
there is an exponent in the external field. G output makes use of the scale factor only if E conversion
is necessary to convert the data. For E and D output, the basic real constant part of the output
quantity is multiplied by 10" and the exponent is reduced by n.

9-24 60280400A

INPUT/OUTPUT STATEMENTS 10

The following definitions apply to all I/O statements:
i logical 1/0O unit number:

an integer constant of one or two digits (the first must not be zero)

integer variable name of no more than 6 characters, with a value of 1 to 99
n FORTRAN declaration identifier:

statement number

variable identifier which references the starting storage location of FORMAT
information

L input/output list

The BCD record and the binary records for each I/0 device as used with the 7000 SCOPE V 1.1
operating system are defined as follows:

Printer A BCD record is a one-card image (80 characters)for the card I/O
Card Reader devices and 136 characters (1 print line) for the printer.
Card Punch

A binary record, for the card I/0 devices, is the number of cards
between the EOR cards (7, 8,9 punch in column 1); for the printer,
it is the number of print-lines between the EOR marks.

Disk and Tape A BCD record is a character string terminated by a 12-bit zero byte.
A record will always begin at a word boundary, left justified. BCD
records may be separated in groups terminated by an EOR control
word.

A binary record is a word string terminated by an EOR control word.

All data, BCD or binary, is written in 5612 word blocks consisting of
one boundary word and 511 data and control words. A record may
cross a block boundary.

10.1 OUTPUT STATEMENTS

PRINT n, L

Information in the list (L) is transferred from the storage locations to the standard output unit as
line printer images, 136 characters or less per line in accordance with the FORMAT declaration, n.

60280400A 10-1

The maximum record length is 136 characters, but the first character of every record is not printed
as it is used for carriage control when printing on-line. Characters in excess of the print line
appear on the succeeding line. Each new record starts a new print line.

Character Action

Blank Single-space before printing

0 Double-space before printing

1 Eject page before printing

+ Suppress spacing before printing; print

two successive records on the same line

Consult the operating system manual for additional characters.
For off-line printing, the printer control is determined by the installation's printer routine.
PUNCHn, L

Information is transferred from the storage locations given by the list (L) identifiers to the standard
punch unit. Information is transferred as Hollerith images, 80 characters or less per card in
accordance with the FORMAT declaration, n. Records greater than 80 characters will be truncated.

WRITE (i,n)L

This statement transfers information from storage locations given by the list (L) to a specified output
unit (i) according to the FORMAT declaration (n).

With a half inch tape unit, a record containing up to 136 characters is recorded in even parity (BCD
mode). The number of words in the list and the FORMAT declaration determine the number of records
that are written on a unit. If the record is less than 136 characters, the remainder of the record is
filled with blanks.

The information is recorded in 7000 series display code with no special control characters added, and
it represents a continuous stream of output records. Trailing blanks on each record are removed and
two consecutive characters with a value of zero separate records on the tape.

If the file is to be printed, the first character of a record is not printed as it is a printer carriage

control. If the programmer fails to allow for a printer control character, the first character of the
output data is lost on the printed listing.

10-2 60280400A

WRITE (i)L

This statement transfers information from storage locations given by the list (L) to a specified
output unit (i). I L is omitted, the WRITE (i) statement acts as a do-nothing statement. The list
written by this statement constitutes one binary record. See READ (i)L.

Examples:

PRINT 50,A,B,C
50 FORMAT(X8HMINIMUM=F17.7,2X8HMAXIMUM=F17.7,2X8HVALUEDbISbF8. 2)

PUNCH 52,ACCT,LSTNME, FSTNME
52 FORMAT (F8.2,3X2A10)

WRITE (2,53)A,B,C,D
53 FORMAT(4E21.9)

DIMENSION A(10), B(50, 5)

DO 5 I-1,10
5 WRITE(6)A(I), (B(I, J), J=1, 5)

60280400A 10-3

10.2 READ STATEMENTS

A check should be made for the end of the file either by counting records or by an IF EOF statement
after each read (section 10.4), When the EOF is read, the data used for processing will be a blank
record. If a read is issued after the EOF is read, the job will be terminated unless the EOF flag has
been cleared by an IF EOF statement. An EOR control word encountered when reading a BCD file is
ignored except for file INPUT where it is treated as an EOF.

READ n, L

One or more card images are read from the standard input unit. Information is converted from left
to right in accordance with FORMAT specification (n), and it is stored in the locations named by the
list (L). Input may be on 80-column Hollerith cards or magnetic tapes prepared off-line, containing
80-character records in BCD mode.

Example:

READ 10,A,B,C
10 FORMAT (3F10.4)

READ (i,n)L

This statement transfers one record of information from logical unit (i) to storage locations
named by the list (L), according to FORMAT specification (n). The number of words in the list and
the FORMAT specifications must conform to the record structure on the logical unit.

READ (i)L
This statement transfers one record of information from a specified unit (i) to storage
locations named by the list (L).

Records to be read by READ (i) should be written in binary mode. The number of words in the list
of READ()L must not exceed the number of words in the corresponding WRITE statement.

If L is omitted, READ (i) spaces over one record. See WRITE @i)L.
Examples:

1. DIMENSION C(264)
READ (10)C
DIMENSION BMAX (10), M2(10, 5)
DO 7 I-1,10
7 READ(6)BMAX(D), (M2(I, J), J=1, 5)
READ (5) (skip one logical record on unit 5)
READ (6) ((A({,J),I=1,100),J=1,50)
READ (6) ((A(,J),I=1,100), J=1,50)

10-4 60280400A

2. READ (10,50)X,Y, Z

50 FORMAT (3F10. 6)
DOUBLE PRECISION DB(4)
READ (10,51) DB

51 FORMAT (4D20.12)
READ 51,DB
READ (2,52) (Z(J),J=1, 8)

52 FORMAT (F10. 4)

10.3 NAMELIST STATEMENT

The NAMELIST statement permits the input and output of character strings consisting of names and
values without a format specification.

NAMELIST /yl/al/yz/a2/. .. /yn /an

Each y is a NAMELIST name consisting of 1-7 characters which must be unique within the program
unit in which it is used. Each a is a list of the form bq,bo,.. .bn;each being a variable or array name.

In any given NAMELIST statement, the list a of variable names or array names between the NAMELIST
identifier y and the next NAMELIST identifier (or the end of the statement if no NAMELIST identifier
follows) is associated with the identifiery; that is, the list a; is associated with NAMELIST

identifier y;j. :

Examples:

PROGRAM MAIN
NAMELIST/NAME1/N1, N2, Rl, R2/NAME2/N3, R3, N4, N1

SUBROUTINE XTRACT (A, B, C)
NAMELIST/CALL1/L1,L2,13/CALL2/13,P4,L5, B

A variable name or array name may be an element of more than one such list. In a subprogram,

b may be a dummy parameter identifying a variable or an array, but the array may not have variable
dimensions.

A NAMELIST name may be defined only once in a program unit preceding any reference to it. Once
defined, any reference to a NAMELIST name may be made only in a READ or WRITE statement. The
form of the input/output statements used with NAMELIST is as follows:

READ (u, x)
WRITE (u, x)

u is an integer variable or integer constant denoting a logical unit, and x is a NAMELIST name.

60280400A 10-5

Example:

Assume A, I, and L are array names

NAMELIST /NAM1/A,B,1,J/NAM2/C,K,L

READ (5, NAM1)

WRITE (8, NAM2)

These statements result in the BCD (coded) input/outputs on the device specified as the logical
unit of the variables and arrays associated with the identifiers, NAMI and NAM2.

INPUT DATA

The current file on unit u is scanned up to an end-of-file or a record with a $ in column 2 followed
immediately by the name (NAM1) with no embedded blanks. Succeeding data items are read until
a $ is encountered.

The data item, separated by commas, may be in any of three forms:

V=C

a=d1,...,d].

a)=dy,...,dy,

v is a variable name, c a constant, a an array name, and n is an integer constant subscript. d;
are simple constants or repeated constants of the form k*c, where k is the repetition factor.

Example:

DIMENSION Y (3, 5)
LOGICAL L

COMPLEX 7

NAMELIST /HURRY/I1,12,13,K, M, Y, Z,L
READ (5, HURRY)

and the input record:

$HURRYbI1+1, L=, TRUE. , 12=2,13=3.5, Y(3,5)=26,Y(1,1)=11,12. 0E1, 13, 4*14,
Z=(1.,2.),K=16, M=17%

10-6 60280400A

produce the following values:

=1 YQ,2)=14.0
12=2 Y(@2,2)=14.0
13=3 Y(3,2)=14.0
Y(3,5)=26.0 Y@, 3)=14.0
Y@,1)=11.0 K=16
Y(2,1)=120.0 M=17
Y(3,1)=13.0 Z=(1.,2.)
L=. TRUE.

The number of constants, including repetitions, given for an unsubscripted array name must equal the
number of elements in that array. For a subscripted array name, the number of constants need not
equal, but may not exceed, the number of array elements needed to fill the array.

v=C variable v is set to ¢

a=dy,... ,dj the values dy,..., gj are stored in consecutive elements of array a

in the order in which the array is stored internally.

a(n):dl, cee ,dm elements are filled consecutively starting at a (n)

The specified constant of the NAMELIST statement may be integer, real, double precision, complex
of the form (cl,cz), or logical of the form T, or ., TRUE., F, or . FALSE.. A logical or complex

variable may be set only to a logical and complex constant, respectively. Any other variable may be
set to an integer, real or double precision constant. Such a constant is converted to the type of its
associated variable.

Constants and repeated constant fields may not include embedded blanks. Blanks, however, may
appear elsewhere in data records.

A maximum of 150 characters per input record is permitted. More than one record may be used for
input data. All except the last record must end with a constant followed by a comma, and no serial

numbers may appear; the first column of each record is ignored.

The set of data items may consist of any subset of the variable names associated with x. These names
need not be in the order in which they appear in the defining NAMELIST statement.

OUTPUT DATA

Output to unit u of BCD information is as follows:

One record consisting of a $ in column 2 immediately followed by the identifier x. As many records
as are needed to output the current values of all variables in the list associated with x. Simple
variables are output as v=c.

Elements of dimensioned variables are output in the order in which they are stored internally.

The data fields are made large enough to include all significant digits. Logical constants appear as
T and F. No data appears in column 1 of any record.

60280400A 10-7

One record consisting of a § in column 2 immediately followed by the letters END.

The records output by such a WRITE statement may be read by a READ (u,x) statement where x
is the same NAMELIST identifier.

If unit u is the standard punch unit and a record is longer than 80 characters, the remaining characters
are punched on the next card.

The maximum length of a record written by a WRITE (u, x) statement is 130 characters.

10.4 FILE HANDLING STATEMENTS
REWIND i

File tape i is rewound to load point. If the file is already rewound, the statement acts as a do-nothing
statement. The REWIND statement may not reference the system INPUT and OUTPUT files.

BACKSPACE i

File tape i is backspaced one record in a binary file or a BUFFER IN/OUT file or one BCD record in a
normal BCD file. If tape i is at load point (rewound) this statement acts as a do-nothing statement.
The BACKSPACE statement may not reference the system INPUT and OUTPUT files.

END FILE i

An end-of-file is written on file tape i. The END FILE statement may not reference the system
INPUT and OUTPUT files.

IF (ENDFILE i)n 1o

IF (EOF,i)nl,n2
These statements check the previous read operation to determine if an end-of-file has been encountered
on file tape i. If so, control is transferred to statement ng; if not, control is transferred to state-
ment n,.,

IF(UNIT, i)n1 . n2,n3, n4

ny not ready

no ready and no previous error

ng EOFT sensed on last input operation
ng ineffective (parity error)

With the present system, for IF (UNIT,i)ny,ng, ng, nyg, the parity error checking on a unit being tested
is not accessible to the user. Therefore, ng may be omitted.

10-8 602804004

10.5 BUFFER STATEMENTS
The primary differences between buffer I/0 and read/write I/O statements are given below:
1. The mode of transmission is assumed to be binary in BUFFER statements.
2. The read/write control statements are associated with a list and, in BCD transmission, with
a FORMAT statement. The buffer control statements are not associated with a list; data
transmission is to or from one area in storage.
3. Before buffered data is used, the status of the buffer operation must be checked by IF(UNIT,i).
(see section 10. 4).

NOTE

The compiler does not check for subsequent inclusion
of [F (UNIT).

In the descriptions that follow, these definitions apply.
i logical unit number

p parity key. Ignored.

BUFFER
ouT
Length [A, B]
- K
Is K<1? Yes
E
RROR i logical unit number
p recording mode
WRITE K words 0 even-'BCD
[binary or BCD} 1 odd-binary
on unit i A variable identifier:
first word of data block

to be transmitted.
) B variable identifier:
last word of data block

to be transmitted.
EXIT

60280400A 10-9

In the BUFFER statements the address of B must be greater than that of A, A unit referenced in a
BUFFER statement may not be referenced in other I/O statements.

BUFFER IN (i,p) (A, B)

Information is transmitted from unit i to storage locations A through B. The transmission will
terminate when either:

1. All the data from A to B has been read--in which case, the file will be left positioned at the
end of the binary record
or

2. A binary EOR is encountered.

In either case, the number of words actually transmitted can be obtained with

L = LENGTH()
BUFFER OUT (i,p) (A, B)

Information is transmitted from storage locations A through B as one logical record. It is written on
unit i containing all the words from A to B inclusive.

Examples:

1. COMMON/BUFF/DATA(10), CAL(50)
PAR=0
BUFFER IN(9, PAR) (DATA(1), CAL(50))
5 IF(UNIT,9)5,6,7

Information is input from unit 9 to the labeled common area BUFF beginning at DATA(1),
the first word of the block, and extending through CAL(50), the last word of the block.

2. DIMENSION A (100)
N=6
BUFFER OUT(N, 1) (A(1), A(100))
4 IF(UNIT,N)4,6,7

Information is transmitted to unit N from the block area defined by A(1) and A(100), that
is, all of array A is transmitted.

10-10 60280400A

10.6 ENCODE/DECODE STATEMENTS

The ENCODE/DECODE statements are comparable to the BCD WRITE/READ statements; however, no
peripheral equipment is involved. Information is transferred under FORMAT specifications from one
area of storage to another. The parameters in these statements are defined as follows:

ENCODE (c,n,v)L where

¢ unsigned integer constant or a simple integer variable (not subscripted) specifying the
number of characters in the record. ¢ may be an arbitrary number of BCD characters.

n statement number or variable identifier representing the FORMAT statement

v variable identifier or an array identifier which supplies the starting location of the BCD
record
L input/output list

When encoding or decoding is performed, the first record begins with the leftmost character position
specified by v and continues ¢ BCD characters (10 BCD characters per computer word). For
ENCODE, if ¢ is not a multiple of 10, the record ends in the middle of a word and the remainder of
the word is blank filled. For DECODE, if the record ends with a partial word the balance of the word
is ignored.

Since each succeeding record begins with+a new computer word, an integral number of computer
words is allocated for each record with words. The number of characters allocated for any
single record in the encoded area must not exceed 150.

60280400A 10-i1

Example:

A(1) = ABCDEFGHIJ
A(2) = KLMNObbbbb
B(l) = PQRSTUVWXY
B(2) = Z12345bbbb

1. ¢ = multiple of 10

ENCODE (20,1, ALPHA)A, B
1 FORMAT (A10,A5/A10, A6)

record a record b
7\ 7\

ALPHA [ABCDEFGHIJ| KLMNO| bbbbb| PQRSTUVWXY | Z12345] bbbb |

word 1 word 2 word 3 word 4

2. ¢ # multiple of 10

ENCODE (16,1, ALPHA)A,B
1 FORMAT (A10, A6)

record a record b

N\
ALPHA [ABCDEFGHIJ | KLMNOb | bbbb | PQRSTUVWXY | Z12345 | bbbb|

word 1 word 2 word 3 word 4

beginning of new record

3. ¢ # multiple of 10

DECODE (18, 1, GAMMA)A6, B6
1 FORMAT (A10, A8)

record a record b
Ve

GAMMA [HEADERb121 [HEADbbO1] 31| HEADERb122 [HEADbb02 31]

word 1 word 2 word 3 word 4

beginning of new record

A6(1) = HEADERb121
A6(2) = HEADbb01bb
B6(1) = HEADERb122
B6(2) = HEADbb02bb

10-12 60280400A

ENCODE (c,n,v)L

The information of the list variables, L, is transmitted according to the FORMAT (n) and stored in
locations starting at v, ¢ BCD characters per record. If the I/O list (L) and specification list (n)
translate more than ¢ characters per record, an execution diagnostic occurs. If the number of
characters converted is less than ¢, the remainder of the record is filled with blanks.

DECODE (c,n,v)L

The information in ¢ consecutive BCD characters (starting at address v) is transmitted according to
the FORMAT n and stored in the list variables. If the number of characters specified by the I/O

list and the specification list (n) is greater than ¢ (record length) per record, an execution diagnostic
occurs. If DECODE attempts to process an illegal BCD code or a character illegal under a given
conversion specification, an execution diagnostic occurs.

Examples:

1. The following illustrates one method of packing the partial contents of two words into one
word. Information is stored in core as:

LOC(1) SSSSSxxxxx

LOC (6) xxxxxddddd
10 BCD ch/wd

To form SSSSSddddd in storage location NAME:

DECODE (10,1, LOC(6)) TEMP
1 FORMAT (5X, A5)
ENCODE (10,2, NAME)LOC(1), TEMP
2 FORMAT (2A5)
The DECODE statement places the last 5 BCD characters of LOC(6) into the first 5

characters of TEMP. The ENCODE statement packs the first 5 characters of LOC(1) and
TEMP into NAME.

With the R specification; the program may be shortened to:

ENCODE (10,1, NAME)LOC 1), LOC (6)
1 FORMAT (A5, R5)

time. Assume that in the statement FORMAT (2A8,Im) the programmer wishes to specify m
at some point in the program, subject to the restriction 2k m <9. The following program
permits m to vary.

60280400A 10-13

IF(M.LT.10. AND. M. GT.1)1,2
1 ENCODE (8,100, SPECMAT) M
100 FORMAT (6H(2A8,1,11,1H))

PRINT SPECMAT,A,B,J

M is tested to insure it is within limits. If not, control goes to statement 2 which could be an
error routine. If M is within limits, ENCODE packs the integer value of M with the characters:
(A8,Im). This packed FORMAT is stored in SPECMAT. SPECMAT contains (2A8, Im).

A and B will be printed under specification A8, and the quantity J under specification 12, or I3,
or ... or I9 according to the value of m.

3. ENCODE can be used to rearrange and change the information in a record. The following
example also illustrates that it is possible to encode an area into itself and that encoding will
destroy information previously contained in an area.

I1=10HV = bbFT/SEC
IA =16
ENCODE (10,1,DI,IA,I
1 FORMAT (A2,12, R6)
Before executing the above code
1= 26545555062450230503

After execution

1= 26543441062450230503

10-14 60280400A

7000 SERIES FORTRAN CHARACTER CODES A

“

Source Console External Punch Position

Language Display BCD in a Hollerith

Character Code Code Card Column
A 01 61 12-1
B 02 62 12-2
C 03 63 12-3
D 04 64 12-4
E 05 65 12-5
F 06 66 12-6
G 07 67 12-7
H 10 70 12-8
I 11 71 12-9
J 12 41 11-1
K 13 42 11-2
L 14 43 11-3
M 15 44 11-4
N 16 45 11-5
O 17 46 11-6
p 20 47 11-7
Q 21 50 11-8
R 22 51 11-9
S 23 22 0-2
T 24 23 0-3
U 25) 24 0-4
Vv 26 25 0-5
w 27 26 0-6
X 30 27 0-7
Y 31 30 0-8
Z 32 31 0-9
0 33 12 0
1 34 01 1
2 35 02 2
3 36 03 3
4 37 04 4
5 40 05 5
6 41 06 6
7 42 07 7
2] 43 1¢ 3
9 44 9
+ 45 60 12
- 46 40 11
* 47 54 11-8-4

60280400A A-1

Source Console External Punch Position

Language Display BCD in a Hollerith
Character Code Code Card Column
/ 50 21 0-1
(51 34 0-8-4
) 52 74 12-8-4
$ 53 53 11-8-3
= 54 13 8-3
blank (space) 55 20 space
’ 56 33 0-8-3
57 73 12-8-8

ADDITIONAL CHARACTERS

Console External Hollerith
Display BCD Card
Character Code Code Punch
= 60 36 0-8-6
[61 17 8-7
] 62 32 0-8-2
% 63 16 8-6
64 14 8-4
- 65 35 0-8-5
v 66 52 11-07
A 67 37 0-8-7
t 70 55 11-8-5
+ 71 56 11-8-6
< 72 72 12-0%F
> 73 57 11-8-7
< 74 15 8-5
> 75 75 12-8-5
- 76 76 12-8-6
H 77 77 12-8-7
end-of-line 0000 1632

* 11-0 and 11-8-2 are equivalent
i 12-0 and 12-8-2 are equivalent

A-2 60280400A

SUBPROGRAM STATEMENTS

Entry Points

Intersubroutine

Transfer Statements

FORTRAN STATEMENT LIST

PROGRAM name (fl, ooyt)
SUBROUTINE name (pl, ceey pn)
FUNCTION name (pl, ‘e ,pn)

type FUNCTION name (pl, e ,pn)

ENTRY name

EXTERNAL namey,nameg. ..

CALL name
CALL name (pq,+++,Pp)
RETURN

DATA DECLARATION AND STORAGE ALLOCATION

Type Declaration

60280400A

COMPLEX List
DOUBLE PRECISION List
DOUBLE List

REAL List

INTEGER List
LOGICAL List

TYPE DOUBLE List
TYPE COMPLEX List
TYPE REAL List
TYPE INTEGER List
TYPE LOGICAL List

N = Non-executable

E = Executable

H o=moE 22 2 Z 2 Z

Z 2z 2 =z =z 2z Z

A

Page

7-1

7-12
7-10
7-10
7-19
7-16
7-15
7-15
6-11

5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1

Storage Allocations

DIMENSION V_,V ,...,V
1" 2 n

COMMON/II/Llstl/IZ/Llst 9
DATA Il/List/, 12/List/, ves
DATA (I 1=List), (IzzList), cee
BLOCK DATA

ARITHMETIC STATEMENT FUNCTION

Name (pl,PZ, . ,pn) = Expressions

SYMBOL MANIPULATION, CONTROL AND I/0

Replacement

Intraprogram Transfers

LOOP CONTROL

A=E Arithmetic
L=E Logical/Relational
M=E Masking

GO TO n

GO TOm

GO TO m, (nl, o ,nm)
GO TO (nl, ‘oo ,nm),i
IF (c)nl,nz,n3

IF (,a)nl,n2
IF (0)s

IF (ENDFILE i)nl,n

2

IF {(EQOF, i)nl,n2

IF (UNIT,i)nl,nz,nB,n4
DOni= ml,mz,m3
DOni= ml,m2

MISCELLANEOUS PROGRAM CONTROLS

ASSIGN s tom
CONTINUE
PAUSE
PAUSE n
STOP

STOP n

.../1 /List
n n
EQUIVALENCE (A, B,...), (Al,Bl,...)...

2 2 =2 ZzZ =z =Z

HF 6 2 H B B O 0 53 85 H©

=1

oI o B © B B © I <}

Page

5-2
5-3
5-6
5-8

5-12

4-1

10-8
10-8
10-8

6-5
6-5

6-2

6-10
6-10
6-10
6-11
6-11

60280400A

I/0 FORMAT

I/0 CONTROL STATEMENTS

1/0 Tape Handling

FORMAT (specl, specz, ses)
NAMELIST/name/list. . .

READ n, L

PRINT n, L

PUNCH n, L

READ (i,n)L

WRITE (i,n)L

READ (i)L

WRITE (i)L

ENCODE (c,n,v)L
DECODE (c,n,v)L
BUFFER IN (u,p)(A, B)
BUFFER OUT (u,p)(A, B)
END FILE i

REWIND i
BACKSPACE i

PROGRAM AND SUBPROGRAM TERMINATION

ADDITIONAL STATEMENTS

60280400A

END
END name

LARGE t_. i . i Jesost o i
A 1:1 vl(ll),t2 v2(12) tn vn(ln)

SMALLIN (s, 1,w)

SMALLOUT (s,1,w)

Z

H B2 EEH 83 3 B 8 885 93 5 O

Page

9-4
10-5

10-4
10-1
10-2
10-4
10-2
10-4
10-3
10-11
10-12
10-11
10-11
10-8
10-8
10-8

6-11
6-11

L-1
L-2
L-2

FORTRAN FUNCTIONS C

—

INTRINSIC FUNCTIONS (IN-LINE)

Actual

Parameter Mode of
Form Definition Type ‘ Result
ABS(X) Absolute value Real Real
AIMAG(C) Obtain the imaginary part of a complex argument Complex Real
AINT (X) Truncation integer. Sign of X times largest Real Real

integer < |X|.
AMAXO(Il, 12, ees) Determine maximum argument Integer Real
AMAX1(Xq, X9,+++) Determine maximum argument Real Real
AMINO Iy 12, ees) Determine minimum argument Integer Real
AMIN1 (Xl, Xz, ces) Determine minimum argument Real Real
AMOD(X, X,)* Real Real
AND(Xl, eeer X)) Boolean AND of Kiseoes X, - Logical
CMPLX(XI,XZ) Convert real to complex (X1+-iX2) Real Complex
COMPLX) Complement of X - Logical
CONJG(C) Conjugate of C Complex Complex
DIM(Xy, X,) If X > X,:X; - X, Real Real
If le X2:0
DMAX1 Dy, Dy,...) Determine maximum argument Double Double
DMIN1 (D,, D2, Determine minimum argument Double Double
FLOAT(() Integer to real conversion Integer Real
IABS (D) Absolute value Integer Integer
IDIM(Il,Iz) If Il> 12:11 - I2 Integer Integer
If IS I,:0
IFIX(X) Real to integer conversion Real Integer
INT X) Truncation, integer. Sign of X times Real Integer
largest integer < |X]|

ISIGN(1 r Iz) Sign of I times absolute value of Il‘ Integer Integer
MAXO(II, 12, o) Determine maximum argument Integer Integer
MAX1 Xq» X2, ees) Determine maximum argument Real Integer
MINO (Il, 12, o) Determine minimum argument Integer Integer
MIN1(X,, Xoseee) Determine minimum argument Real Integer
MOD(1;,1,) ¥ Integer Integer
OR(Xy,... »Xp) Boolean OR of Xiseoos Xn - Logical
REAL(C) Obtain the real part of a complex argument Complex Real
SIGN(XI, X,) Sign of Xz times absolute value of Xy Real Real

+ AMOD(XI, X,) is defined as X1 [XI/X2]X2, where [x] is an integer with magnitude of not more than
X and sign the same as x.

60280400A c-1

ACOS(X)
ALOG(X)
ALOG10(X)
ASIN (X)

ATAN (X)
ATAN2(X;, Xy)
CABS(C)
CCOS(C)
CEXP(C)
CLOG(C)
COSX)

CSIN(C)

CSQRT (C)
DABS(D)**
DATAN (D)
DATAN2(Dy, Dy)
DBLE (X)
DCOS(D)
DEXP(D)

DLOG (D)
DLOG10(D)
DMOD(D;, Do) *
DSIGN(Dy , Dy) ¥
DSIN(D)

DSQRT (D)
EXP(X)

IDINT (D) ¥+

LEGVAR(A)

LENGTH(I)

RANF(X)

BASIC EXTERNAL FUNCTIONS (LIBRARY)

Arccosine in radians

Natural log of X

Log to the base 10 of X

Arcsine in radians

Arctangent in radians

Arctangent (X;/X,) in radians
Absolute value

Complex cosine, argument in radians
Complex exponent

Complex log

Cosine X radians

Complex sine, argument in radians
Complex square root

Absolute value

Double arctangent in radians
Double arctangent: D;/Dgy in radians
Real to double

Double cosine, argument in radians
Double exponent

Natural log of D

Log to the base 10 of D

Sign of: D, times absolute value of Dy

Sine of double precision argument in radians

Double square root
e to Xth power

Double to integer. Sign of D times largest

integer < |D|

Returns -1 if variable is indefinite, +1 if out

of range, and 0 if normal

For LEGVAR to be effective, the program
must be runin mode 0 to disable floating

peoint interrupts.

Returns number of words transferred to

CM from unit I after BUFFER IN
Random number generator; typical call

follows: Y=RANF (X) where X is type

real, Three conditions exist on X,

1. If X is zero, the next random number

is generated and returned.

2, If X is negative, a random number is
not generated but the last previously
generated random number (or the seed
if not random number has been generated)

is returned.

Real
Real
Real
Real
Real
Real
Complex
Complex
Complex
Complex
Real
Complex
Complex
Double
Double
Double
Real
Double
Double
Double
Double
Double
Double
Double
Double
Real
Double

Real

Integer

Real

Real
Real
Real
Real
Real
Real
Real
Complex
Complex
Complex
Real
Complex
Complex
Double
Double
Double
Double
Double
Double
Double
Double
Doubple
Double
Double
Double
Real
Integer

Integer

Integer

Real

¥ DMOD(Dy, D,) is defined as Dq- [Dy/DylDy, where [x] is an integer with magnitude of not more than
x and sign the same as x.

]’” USASI FORTRAN, X3,9-1966, specifies these functions as intrinsic

]

@
[\

60280400A

RANF(X) (contd) 3. If X is positive, the exponent part of X
is set to 1717g and the low order bit is
set to one. This result is returned as
the seed of a new sequence, and any
additional calls to RANTF will be based on
a sequence using this seed.

SNGL(D)** Double to real (unrounded)
SIN X) Sine X radians

SQRT (X) Square root of X

TAN (X) Tangent X radians

TANH (X) Hyperbolic tangent X radians

Following functions accept A as a variable address name for an actual parameter:

Form Definition

LOCF(A) Returns address of argument A

Double Real
Real Real
Real Real
Real Real
Real Real
Actual
Parameter Mode of
Type Result

- Integer

USASI FORTRAN, X3.9-1966, specifies these functions as intrinsic

60280400A

COMPUTER WORD STRUCTURE OF CONSTANTS — 7600 D

59 58 0
INTEGER % .
} 59
SIGN
59 58 4847 o)
REAL / BIASED FRACTION (m)
_f a8
SIGN
59 5453 4847 424i 3635 3029 2423 1817 12n 65 (0]
Al J
HOLLERITH BCD AND o | a5 | a3 | as | as | a6 | ar | ag | as | @i
DISPLAY CODE
6 6 6 6
59 58 48 47 o} 59 58 4847 o]
P o - \y BIASED BIASED
DOUBLE- PRECISION Z I m ’ 7= '
SIGNJ MOST SIGNIFICANT 5|GN—f LEAST SIGNIFICANT
59 58 4847’ o) 59 58 4847
COMPLEX . % siaseo I m e % siaseo [-
REAL IMAGINARY
SIGN—, SlGNT :
59 [e]
LO(}ICAL FALSE [0000 Q00
TRUE [t 111 K
57 54 51 48 45 42 339 36 12 9 6 3 (o}
OCTAL 220[215 [P18 (217 P16 @15 ¢|4I 23]ﬂs 2219,
| 1|
3 3 3 3 3 3 3 3 3 3 3

60280400A

COMPILATION AND EXECUTION E

FORTRAN Control Card

The 7600 FORTRAN compiler is called by the control card:

cm

if

of

bf

le

as

CcS

RUN(cm,,, if, of,bf, lc, as, cs, t)

Compiler mode option; (if omitted, assume G)

G compile and execute, no list unless explicit LIST cards appear in the deck

S compile with source list, no execute

Pt compile with source list and punch deck on file PUNCHB, no execute

L compile with source and object list which contains mnemonics, no execute

M?* compile with source and object list which contains mnemonics, produce a punch deck on
file PUNCHB, no execute

file name for compiler input; if omitted assumed to be INPUT

file name for compiler output; if omitted assumed to be OUTPUT

file name on which the binary information is always written; if omitted, assumed to be LGO.

line-limit (octal) on the OUTPUT file of an object program. If omitted, assumed to be 10000g.

if non-zero or non-blank, the USASI switch causes the USASI I/O list/FORMAT interaction at
execution time. This allows the unlimited group repeat and scale factor as defined in USASI.
It has no effect on the compilation method.

cross-reference switch. If non-zero a cross reference listing is produced.

error traceback. When this parameter is present, calls to library functions will be made with
maximum error checking. Full error traceback will be done if an error is detected. When't
is omitted, minimum error checking will be done and no traceback will be provided if errors
are encountered. Thus, a significant saving in memory space and execution time is realized.
This mode of compilation (t omitted) is not intended for use with programs in the debug stages.

The second and third positions are allowed so that 6000 compatibility is maintained. If used they are

ignored by the 7600 compiler.

¥ Because COMPASS allows only one binary output file to be written, a RUN (P or M) and LGO will

result in only the FORTRAN code of a FORTRAN-COMPASS job being placed on LGO.

60280400A E-1

Compiler output, except in the G mode, includes a reproduction of the source program, a variable map
and indications of fatal and non-fatal errors detected during compilation. If the G mode is selected all’
output is suppressed unless fatal errors are detected in which case the output contains the statementc in

error and the error diagnostic messages. If the L or M mode is selected, the output includes an object
list which contains mnemonics.

On L or M mode listings, the following lines will appear:

PS (preamble start)

PT (preamble terminate)
CS (conclusion start)

CT (conclusion terminate)

These identify statement sequences where some common computation has been extracted and performed
before entering the sequence.

A copy of the compiled programs is always left in disk storage as a binary record on a file named either
LGO or the name specified as the bf parameter in the call to the compiler. The compiled program may

be called and executed repeatedly, until the end of job occurs, by using the name of the load-and-go
file. In the output file at the end of compilation of each subprogram, the compiler indicates the amount

of unused compilation space.

Two control cards LIST and NOLIST are available to allow the programmer more flexibility in requesting
a list of his programs. These cards are free field beyond column 6 and appear between subprograms,
When the LIST card is detected, the source cards of the following programs are listed. If the compiler
mode was L, the object code is also listed. When the NOLIST card is detected no more listing takes

place until a LIST card is detected.

To aid in the preparation of overlay files, the FORTRAN compiler, upon detecting an OV.ERI'JAY
card between subprograms, transfers them to the load-and-go file, and to the PUNCHB file if the
P or M option is selected. They also are transferred to the output file.

The following control card is transferred to the load-and-go and PUNCHB file if mode is P or M:

OVERLAY (...

This statement must begin after column 6.

E-2 60280400A

COMPILE AND EXECUTE

woN»

|

0o~

—
y/ 4
y =

y =

[74
(FORTRAN PROGRAM

Oo~

m (6) l

JO8 123,P1,T400,CM50000,L 20.

The above control card sequence will compile and run in a field of 500008 words.

DECK STRUCTURE FOR A NORMAL COMPILE AND EXECUTE

Job name JOB123

Priority 1

Time limit approx. 4 minutes
SCM Field Length 500008 words
L.CM Field Length 20000g words

Compile and execute with no list and no binary deck.

60280400A

Overlay Preparation of 0,0;1,0;1,1

OO~

SOURCE
DECK

SOURCE
DECK

SOURCE
DECK

data

END —|

PROGRAM MLY

OVERLAY (FRANKI, 1,1) I

END

s

(CALL OVERLAY (6L FRANKI1,1,1,0)

1"
PROGRAM RDY ”l

/ OVERLAY (FRANKI,1,0)

—1

1
ll
(i (SUBROUTINE GROUCH (X)

END

CALL OVERLAY (6 LFRANKI,1,0,0)

{CALL GROUCH (4.,0)

L

]
PROGRAM LED (INPUT, OUTPUT, TAPE1)

il

(ovenuv (FRANKI,0,0)

/7 1
b4 {/rsuxs‘
(uoso.
LOAD (LGO)
{auu(u)
/" Ly, $1,7500,CM50000.

60280400A

FORTRAN Compile and Execute with Mixed Deck

60280400A

OOND

L

.
(ENTRY Al

(IDENT {in cols. N—I5)

L

L

L

L
/IDENT { cois. 1M-15)

SOURCE

DECK

SUBROUTINE S1 (p1,p2)

1
1
r((/PROGRAM DONE (INPUT,OUTPUT)

4

V1. .IX]

RUN.

JOB 123, P1, T400, CM50000.

FORTRAN Compile and Produce Binary Card; no execution.

Three files of I/O - INPUT, OUTPUT AND TAPE1

Job name
Priority
Time limit

Field length

RA6600
1
approximately 1 minute

500008 words

X 2T}

(/
source statements
(PROGRAM BOB (INPUT, OUTPUT,TAPE 1)

¢

RUN (P)

RA6600, P{,T100,CM50000.

60280400A

FORTRAN Compile and Execute (plus a prepunched binary subroutine deck)

A binary deck to be loaded with a compiled routine must be preceded by 7, 8,9 card,

VO~

(data

(binary deck

source deck

(PROGRAM HOW (INPUT,OUTPUT)

oo~ N

COMPLETES LOADING
FROM FILE LGO

LOADS BINARY ROUTINES
/" LoAD, INPUT. La— FROM INPUT

'_l

RUN(S)

EEK15, P1,T200, CM50000.

60280400A

Load and Execute a Prepunched Binary Program

The binary cards in the input file following the record separator are loaded into central memory when
the program call card INPUT is encountered.

6
7
8
9
1
(1
1
1
1
data cords
7
8
(9
7
8
9
—
A=
Vi
A~
Vs

/ binary deck

/INPUT.

CDC 111, P1,T400,CM20000.

60280400A

Compile Once and Execute TwiceT with Different Data Decks

(OONG)

P i

Z

r DATA SET # 2

DATA SET#1

PROGRAM TWICE (INPUT,OUTPUT) I

rRUN.

REPTZ2, P1,T600, CM50000.

T Program TWICE must read the end of record card.

60280400A

DIAGNOSTICS F

R

During a FORTRAN compilation, 2- or 3-character error printouts follow statements which are
incorrect; other printouts may follow the end statement indicating types of errors in the program.
The short printouts produce a more descriptive full line diagnostic which is printed after the
subprogram has been compiled.

The full line diagnostic contains a number to identify the statement in which the error was detected.
In the short diagnostic an F as the third letter indicates a fatal error.

Fatal errors force diagnostic and statement in error to be listed and inhibit the production of a
relocatable record of the subprogram.

Non-fatal errors do not force a listing and will only appear if some type of listing has been specified
or if fatal errors have been detected.

The two-character error indicators are defined below:
Hokokok ok A CoAok INCORRECT ARGUMENT COUNT

Indicates that the number of arguments in this reference to a subroutine differs from
the number which occurred in a prior reference.

HAXAFAEHRH RECURSIVE CALL
The arithmetic statement function being compiled references itself.
LR Dt MISPLACED STATEMENT FUNCTION

The arithmetic statement function has a statement number or appears after the first
executable statement.

Fokokkok AT Kk SYNTAX ERROR IN ARGUMENT LIST
Indicates a format error in a list of arguments.
FAAAKA S K SYNTAX ERROR IN ASSIGNMENT STATEMENT
Indicates a format error in an ASSIGN statement.
KA AR CRF SYNTAX ERROR IN BOOLEAN CONSTANT

HrAAABDHH EXECUTABLE STATEMENTS IN A BLOCK DATA SUBPROGRAM

60280400A F-1

*ok kAP Kk

*okokok ok (YR Kk

Kook ok)k k

*okkokok (T K

* ook (O, ok

ok ok (V% ok

FoF ok ok QN * %

Hokkok ok OO * ¥

*okokok k) A ¥k

ok ok XTYR k ok

BOOLEAN EXPRESSION ERROR

Indicates a format error in the designation of a FORTRAN boolean statement in a
B-type expression

LABELED COMMON BLOCKS EXCEED MAX OF 61
Attempt made to use more than 61 labeled common blocks.
VARIABLE DUPLICATED IN A COMMON REGION

Indicates that a variable currently being assigned to the COMMON region has been
previously assigned to this region.

VARIABLES ASSIGNED TO COMMON ARE IMPROPERLY EQUIVALENCED
Indicates that two variables assigned to COMMON are improperly equivalenced.
SYNTAX ERROR IN CALL STATEMENT

Indicates a format error in a call statement.

SYNTAX ERROR IN COMMON STATEMENT

Indicates a format error in a COMMON statement.

CONTINUATION CARD SEQUENCE ERROR

Indicates that more than 19 continuation cards appear in succession or that one such
card appears in an illogical sequence.

COMMON STORAGE EXCEEDED

Indicates that the amount of COMMON storage required by the main program or
specified to the compiler is less than required by the current program or subroutine.

DUPLICATE ARGUMENTS IN A FUNCTION DEFINITION STATEMENT
ARRAY SIZE OUT OF RANGE

Indicates the requested array size exceeds 131K, A constant used as an array
subscript cannot be contained in 17 bits.

SYNTAX ERROR IN A DECIMATI CONSTANT

Indicates a format error in the exprescion of a FORTRAN decimal constant.

60280400A

Fdokk AP ¥k VARIABLE BEING DIMENSIONED HAS BEEN PREVIOUSLY DIMENSIONED
Indicates a variable has appeared in more than one DIMENSION statement.
lalalalal D) Dbl DUPLICATE FUNCTION NAME

Indicates that the function name in the current function-definition statement has
occurred as the name of a previously defined function.

Rlulalall V) Glo DO TERMINATOR PREVIOUSLY DEFINED
The terminator of this DO loop has already been defined.
lakaiull DN Rk INDEX OF OUTER DO REDEFINED BY INNER DO
Rkl 0] Pl DECLARATIVE APPEARS AFTER FIRST EXECUTABLE STATEMENT
The declarative statement appears after the first executable statement.
HAFRAKD IV ** SYNTAX ERROR IN ARRAY DIMENSION
Indicates an error in the format of a DIMENSION statement.
HHAFAFKDN K ILLEGAL DO TERMINATOR
This statement cannot be used as a DO terminator. Indicates the attempt to use a
FORMAT, GO TO, arithmetic IF, or another DO statement as the termination
statement of a DO.
HAFAKDON* SYNTAX ERROR IN A DO STATEMENT
Indicates an error in the format of a DO statement.
rokok AR PRk MULTIPLY DEFINED STATEMENT NUMBER
Indicates the current statement has previously appeared in the statement number field.
FAAFFDQNF UNDIMENSIONED ARRAY IN DATA STATEMENT
Syntax error or undimensioned variable in DATA statement
HAAAKDR K DATA RANGE ERROR
Attempt to store data out of range of array.

FAAFADSHF UNDEFINED STATEMENT NUMBER IN A DO 1L.OOP

Indicates that references have been made in DO statements to statement numbers which
did not appear anywhere in the statement number field.

602804004 F-3

Hok Kok kY[k

Kok ok R Ok ok

*ok kKR bk

ok K oRR T VR

ork KK Q%

Lk b N D

ook Kk o A ok

Kokokkk P kK

Hok ok k PV * K

Fkok kK PN R

SYNTAX ERROR IN DATA STATEMENT

Indicates an error in the format of a DATA statement.
ATTEMPT HAS BEEN MADE TO PRESTORE BLANK COMMON.
CONTRADICTION IN EQUIVALENCE STATEMENT

Indicates that a variable currently appearing in an EQUIVALENCE statement cannot be
equivalenced because of an inherent contradiction in the statement.

END OF FILE CARD ENCOUNTERED, END CARD ASSUMED
Indicates that an end of file card is detected before the last END card is encountered.
SYNTAX ERROR IN INDICATED EXPONENTIATION

Indicates the mode of the base or the exponent of an indicated exponentiation process
is improper.

SYNTAX ERROR IN EQUIVALENCE STATEMENT

Indicates an error in the format of an EQUIVALENCE statement.

SYNTAX ERROR IN EXPONENT

Indicates an error in the exponent portion of an indicated exponentitation process.
FUNCTION HAS NO ARGUMENT

The FUNCTION has void parameter list; at least one argument is required.
SYNTAX ERROR IN EXTERNAL OR F-TYPE STATEMENT

Indicates an error in an EXTERNAL statement of F-TYPE statement.
UNRECOGNIZABLE STATEMENT

Indicates a statement whose type cannot be determined.

NO STATEMENT NUMBER ON FORMAT STATEMENT

Indicates that a FORMAT statement is missing a statement number.

60280400A

Kook KK P Kk

ok kR ok Gk ok

dokok KOk T Kok

R R e nE)

K RKAKGO ¥ *

LR ok

*****IC**

kR kk

ok kO] Tk ok

Fkokok ok %k

* kKN *

* ¥ Aok K[* K

60280400A

ILLEGAL USE OF FORMAL PARAMETER
Formal parameter used in a COMMON statement.

ERROR INSPECIFICATION PORTION OF FORMAT STATEMENT

Indicates a format error in the specification portion of a FORMAT statement.

SYNTAX ERROR IN FUNCTION TYPE STATEMENT

CONFLICT IN USAGE OF FORMAT OR STATEMENT NUMBER

A FORMAT number is referenced in a control statement or an executable statement

number is referenced as a FORMAT number.

SYNTAX ERROR IN A GO TO STATEMENT

Indicates an error in the format of a GO TO statement.

HOLLERITH CONSTANT LONGER THAN ONE WORD

CHARACTER NOT IN FORTRAN CHARACTER SET

Attempt was made to use a character other than those listed in appendix A.
IMPROPERLY NESTED DO LOOPS

The sequence of DO loops is improper.

SYNTAX ERROR IN AN IF STATEMENT

Indicates an error in the format of an IF statement.

SYNTAX ERROR IN AN INDEXED LIST OF I/O STATEMENT

Indicates a format error in an indexed list of the current input/output statement.

ILLEGAL FUNCTION NAME
The name of a function reference starts with a number.

ILLEGAL 1/0 DESIGNATOR

I/O designator has a variable name of more than six characters or a numeric value of

more than two digits or is alphanumeric and begins with a number.

ok ok ok K]Sk

dok ok KT R0k

*RK] FREK

*ok kR N **

*AokT O ¥k

*kkok kY Gk

* kKRN A ¥ *

*okkok ok N[Ok

okok kRPN §

Fokkokok N[(k%

*****NL**

*****NM**

* ok Kk KN F*

ILLEGAL USE OF PROGRAM, SUBROUTINE, OR FUNCTION NAME
ILLEGAL TRANSFER TO DO TERMINATOR

A transfer to a DO terminator is not allowed if the terminator has already been
defined and no transfer to it appeared before it was defined.

SYNTAX ERROR IN LARGE STATEMENT

Format error in LARGE statement

NAMELIST ERROR

LCM OVERFLOW

SYNTAX ERROR INPUT/OUTPUT LIST

Indicates an error in the format of an input /output list.

MISUSED SUBROUTINE ARGUMENT IN EQUIVALENCE STATEMENT

Indicates that an argument of the subroutine or function being compiled has been
misused in an EQUIVALENCE statement.

MEMORY OVERFLOW, FIELD LENGTH TOO SHORT
Indicates that the compiler field length, as specified on the JOB card, is too short.
UNDEFINED STATEMENT NUMBER

Indicates that references have been made to statement labels which did not appear
somewhere in the statement-label field of a line.

SUBROUTINE OR FUNCTION NAME CONFLICTS WITH A PRIOR USAGE
NAMELIST NAME NOT UNIQUE

IMPROPER HEADER CARD

Indicates an error in the formatting of the name (header) card.

NO OBJECT CODE GENERATED

Source program has generated no object code. This error will oceur if a void file is

input to the compiler.

60280400A

*ok ok ok NP ¥k

*okokok RNV k%

*k Kok k() Kok

*ok ok kK PNV **

kKRR PN kK

ok Kok ok P Kok

Fokokok ok RN ¥k

kARG A KKk

oKk kkQP kK

Fk koG Kok

ko ok G ok ok

HoAok kRGN * *

ok Ak R QN Kk

60280400A

NO PATH TO THIS STATEMENT

The flagged statement cannot be executed at object time; program continues.

VARIABLE DIMENSIONED ARRAY IN NAMELIST
REFERENCE TO AN ARRAY BEFORE IT IS DIMENSIONED
FUNCTION PARAMETER MODE INCONSISTENCY

Indicates the parameters in a function reference do not agree in mode with the
formal parameters of the statement function.

UNBALANCED PARENTHESIS
Indicates an unequal number of open and closed parentheses in a statement.
SYNTAX ERROR IN AN ENTRY STATEMENT

The entry statement being processed is labeled or has more than one name or is in
a DO loop or name started with a number.

SYNTAX ERROR IN A RETURN STATEMENT

Indicates an error in the format of a RETURN statement.

SMALL IN/OUT ARGUMENT ERROR

Error in SMALL IN/OUT arguments.

ERROR IN AN ARRAY SUBSCRIPT

Indicates a format error in a subscript of an array reference currently being processed.
SYNTAX ERROR IN SENSE STATEMENT

Indicates an error in the format of a sense statement.

FIELD LENGTH OF ROUT INE BEING COMPILED EXCEEDS THE SPECIFIED FIELD
LENGTH

SYNTAX ERROR IN STATEMENT NUMBER
Indicates an error in the format of the statement label field,
ILLEGAL CHARACTER IN STATEMENT NUMBER USAGE

Indicates an error in the format of the position where the statement label should appear.

*kokk Kk QY Rk

*okkok kTN Kk

*k kKRN * K

* >k Aok kP koK

ok Kok Ty ¥k

kK AKJA **

SEEEED 83 Ohuk

*dokk k7 C**

ok koK k) k*

Hok kY Rk

kK koK Ky Rk

SYSTEM ERROR IN FORTRAN COMPILER
SUBROUTINE HAS MORE THAN 60 ARGUMENTS

Indicates that a subroutine reference has more than 60 arguments or that the routine
being compiled has more than 60 parameters.

PROGRAM HAS MORE THAN 24 ARGUMENTS

VARIABLE GIVEN CONFLICTING TYPES

A variable has appeared in more than one type statement.
SYNTAX ERROR IN A TYPE STATEMENT

Indicates an error in the format of a TYPE statement.
REFERENCE MADE TO AN AS YET UNDIMENSIONED ARRAY

Indicates reference was made to an array which has not previsouly appeared in a
DIMENSION statement.

LOGICAL UNIT NUMBER IS NOT AN INTEGER
VARIABLE NAME CONFLICTS WITH A PRIOR USAGE
Indicates that a variable name appears which conflicts with some prior use.

ARRAY WHOSE DIMENSIONS ARE ARGUMENTS TO THE SUBROUTINE OR FUNCTION
HAS BEEN MISUSED

Indicates improper use of an array with variable dimensions.
SYNTAX ERROR IN THE EXPRESSIONS BEING PROCESSED
Indicates an error in the format of the expression currently being processed.

SYSTEM ERROR-UNKNOWN TWO LETTER CODE

60280400A

PROGRAM-SUBPROGRAM FORMAT G

The starting address of all programs is RA+100g with the first 77g locations containing file and
loader information. Only 24 files may be declared for any one program and the file names along
with their associated buffer addresses begin at RA+2. An object time routine, Q8NTRY, transfers
the file information to RA+2+n, where n is the number of declared files, at execution time. The
I/0 buffers are reserved as a portion of the main program and Q8NTRY also initializes the buffer
parameters during execution,

The first word of a main program contains the name of the program in left justified display code
and a parameter count greater than 774 in the right most position. Since no more than 74
parameters may be passed to a subprogram, a count of greater than 77g terminates trace back
information. The second word of a main program is the entry point. It contains instructions to
preset the parameters for QSNTRY which performs initiation only once per execution. Therefore,
entry into an overlay is through this word destroying its contents. Since QS8NTRY does not perform
any function after the first entry, the destruction of the preset parameters for an overlay entry
does not matter.

The addresses of the first six parameters to a subprogram are passed by B registers 1-6. One

word is reserved for each parameter. The address of parameters after the 6th are actually passed
through this reserved word. Immediately following these reserved words is a location containing the
name of the subprogram in left justified display code and a parameter count in the lower six bits. Next
is the entry/exit line for the subprogram. Therefore, a subprogram will have as few as two reserved
words if the parameter count is zero. Otherwise, there will be a reserved word for each parameter
plus the name and the entry words.

Subroutines written in the COMPASS assembly language that will operat~ in conjunction with FORTRAN
coded routines should be formatted as in the following examples to take full advantage of the error

tracing facility of FORTRAN Version 2.0. The called subroutines do not have to be concerned with
register preservation.

Examples:

PROGRAM PETE (INPUT, OUTPUT, TAPE 1)

DATA 0 100002 Name and argument count plus 1008
SB1 L00002 L.00001 Entry/Exit line

SB2 C00001

RJ QB8NTRY 100003

60280400A G-1

SUBROUTIWNE PHD (A,B, C)

DATA 0 L00005

DATA 0 1.00004

DATA 0 100003

DATA 0 1.00002 Name & argument count
DATA © 1.00001 Entry/Exit line

SUBROUTINE PEN A,B,C,D,E,F,G,H,1,J)

DATA 0 L.00003 Reserved for A
DATA O L.00004 Reserved for B
DATA 0 1.00005 Reserved for C
DATA 0 1.00006 Reserved for D
DATA 0 1.00007 Reserved for E
DATA O 1.00010 Reserved for F
DATA O L00011 Reserved for G
DATA 0 1.00012 Reserved for H
DATA 0 L.00013 Reserved for I
DATA 0 1L.00014 Reserved for J
DATA 0 L.00002 Name & argument count
DATA O 1.00001 Entry/Exit line
Calling Sequence to PEN
CALLPEN (M,N,O0,P,Q,R,S,T,U,V)

SB1 M

SB2 N

SB3 (6]

SB4 P

SB5 Q

SB6 R

SX6 Entry line of PEN
SA1 X6-1 Name & argument count
SB7 X1-6 Number of arguments less 6

SX6 S

SA6 Al1-B7 Reserved word for S

SX7 T

SA7 A6+1 Reserved word for T

SX6 U

SA6 AT+1 Reserved word for U

SX7 A"

SA7 A6+1 Reserved word for V

RJ PEN

0712100002 Where 124 is argument count and 100002 is word containing the name of calling

routine.

G-2 60280400A

SYSTEM ROUTINE H

The SYSTEM routine handles the following extensions for the mathematical routines of FORTRAN
Version 2.1: error tracing, diagnostic printing, termination of output buffers and transfer to
specified non-standard error procedures. The END processor also uses SYSTEM to dump the
output buffers and print an error summary. Since SYSTEM, along with the initialization routine,
Q8NTRY, and the end processors, END, STOP, EXIT, must always be available, these routines
are combined into one with multiple entry points. Any of the parameters used by SYSTEM relating
to a specific error may be changed by a user routine during execution by calling SYSTEMC.

CALLING SYSTEM

The calling sequence to SYSTEM from an assembly language routine passes the error number X1 and
an error message address in X2. Therefore, one error number may have several different messages
associated with it. The error summary at the end of the program lists the total number of times
each error number was encountered.

FORTRAN routines call SYSTEM via a RJ to SYSTEMP, a special entry point. Because the
addresses of the subprogram arguments must be passed to a non-standard recovery routine if one
is specified, SYSTEMP must be called with eight parameters. The first six parameters are the
first six formal parameters of the subprogram. If the subprogram does not have six parameters,
dummy parameters must be supplied. The seventh parameter to SYSTEMP is the error number
specified as an integer constant or integer variable. The array or simple variable containing the
diagnostic message is the eighth parameter. After adjusting the parameters, SYSTEMP transfers
to SYSTEM for error processing.

ERROR PROCESSING

If an error number of zero is accepted, this is a special call to end the output buffers and return.

If no OUTPUT file is defined before SYSTEM is called, there is no error printing and an appropriate
message appears in the Dayfile. Each line printed is subjected to the line limit of the OUTPUT
buffer. When limit is exceeded, the job is terminated. The error table is ordered serially; the
first error corresponds to the error number 1, and is expandable at assembly time. The last

entry in the table is a catch-all for any error number that exceeds the table length, Following

is an entry in the error table.

Error Table

PRINT ERROR ‘ l
PRINT FREQUENCY| PRINT DETECTION |F/ |A/ | NON-STANDARD
FREQUENCY | INCREMENT | LIMIT TOTAL ! NF| NA| RECOVERY ADDRESS
8 8 12 12 1 1 18

60280400A Ho1

Use

The

of PRINT FREQUENCY

PRINT FREQUENCY = PF
PRINT FREQUENCY INCREMENT = PFI

If PF = 0 and PFI = 0, diagnostic and trace back information are never listed.

If PF = 0 and PFI = 1, diagnostic and trace back information are always listed until the print limit
is reached.

If PF = 0 and PFI = n, diagnostic and trace back information are listed only the first n times unless
the print limit is reached first.

If PF = n, diagnostic and trace back information are listed every nth time until the print limit
is reached.
of FATAL (F)/ non-FATAL (NF)

If the error is non-fatal and no non-standard recovery address is specified, the error messages
are printed according to PRINT FREQUENCY and control is returned to the calling routine.

If the error is fatal and no non-standard recovery address is specified, the error messages
are printed according to PRINT FREQUENCY, an error summary is listed, all the output
buffers are terminated, and the job is terminated,

Non-standard recovery address is explained below:

TRA CEBACK EXAMPLE

DATA 0 L00002 Name and number of parameters
DATA 0 100001 Entry/exit line
+ RJ SYSTEM
- 07 1.00002 07 is number of parameters passed to SYSTEM and L00002 is

address of word containing name of calling routine

name of the routine always precedes the entry/exit line.

60280400A

o

Use of NON-STANDARD RECOVERY

SYSTEM will supply the non-standard recovery routine with the following information:

B1-B6 address of the first six parameters passed to the routine that detected the error
X1 error number passed to SYSTEM

X2 address of the diagnostic message available to SYSTEM

X3 address within an auxiliary table if A/NA bit is set

X4 instruction word consisting of the return jump to SYSTEM in the upper 30 bits and

trace back information in the lower 30 bits for the routine which detected the error

A0 address of error number entry within SYSTEM's error table.

1. Non-fatal error

The entry/exit line of the routine which called SYSTEM is set into the entry/exit line of the
recovery routine. Control is then passed to the word immediately following the entry/exit
line of the recovery routine. The traceback information available to SYSTEM from the routine
which detected the error is passed to the recovery routine in X4,

Any faulty parameters may be corrected, and the recovery routine is allowed to call the
routine which detected the error with corrected parameters. Upon exit from the recovery
routine, control is turned not to SYSTEM nor to the routine which detected the error, but
rather back another level (see example). By not correcting the faulty parameters in the
recovery routine, a three routine loop could develop between the routine which detects the
error, SYSTEM, and the recovery routine. No checking is done for this case.

Example:

MAIN

E/E l

CALL MATH (A, B, C)

RTN1 . Point of return from MATH, if no errors detected,
. or from RECOVERY.
END

60280400A H-3

2. Fatal error:

E/E

RTN2

E/E

MATH

jump to RTN1

RJ SYSTEM

07TXXAAAAAA.........

END

SYSTEM

jump to RTN2

JUMP TO RECOVERY

.

END

RECOVERY

|jump to RTN1

a
.

RJ MATH

jump to E/E
END

May be reentered from RECOVERY with corrected
parameters

traceback information

transfers E/E line of MATH to E/E
line of RECOVERY and gives control
to RECOVERY

corrects faulty parameters and may
recall MATH

returns to MAIN following reference
to MATH

Into the entry/exit line of the recovery routine is set a return address back to SYSTEM. Control
is then passed to the word immediately following the entry/exit line of the recovery routine.
The traceback information available to SYSTEM from the routine which detects the error is set

in X4,

If control is returned to SYSTEM from the recovery routine, then an error summary is

listed, all output buffers are terminated and the job is aborted.

E/E

TAG

RTN3

SYSTEM

]

jump to RECOVERY
07XXAAAAAA

END

traceback information

60280400A

RECOVERY

E/E jump to RTN3

jump to E/E

END

Use of the A/NA Bit

The A/NA bit is for use only when a non-standard recovery address is specified. If this bit is set,
the address within an auxiliary table is passed in X3 to the recovery routine. This bit allows more
information than is normally supplied by SYSTEM to be passed to the recovery routine. Only during
assembly of SYSTEM may this bit be set, because an entry must also be made into the auxiliary
table. Each word in the auxiliary table must have the error number in its upper 10 bits so that

the address of the first error number match is passed to the recovery routine. An entry in the
auxiliary table for an error is not limited to any specific number of words.

The traceback information is terminated as soon as one of the following variables is detected:

Calling routine is a program (the number of arguments 77B)

Maximum trace back limit is reached.

No trace back information is supplied; a 07 instruction does not follow the return jump as is the
case with I/0 operations.

To change an error table during execution, a FORTRAN type call is made to SYSTEMC with the
addresses of the following parameters in Bl and B2:

Bl error number
B2 parameter list in consecutive locations containing:
word 1 fatal/non-fatal (fatal = 1, non-fatal = 0)
word 2 print frequency
word 3 print frequency increment (only significant if word 2 = 0)
special values:
word 2 = 0, word 3 = 0 never list error
word 2 = 0, word 3 =1 always list error
word 2 = 0, word 3 = X list error only the first X times encountered
word 4 print limit
word 5 non-standard recovery address
word 6 maximum trace back limit

If any word within the parameter list is negative, the value already in the table entry will not be altered.

(Since the auxiliary table bit may be set only during assembly of SYSTEM, only then can an auxiliary

table entry be made.)

60280400A

ERROR LISTING

< message supplied by calling routine >

ERROR NUMBER xxxx DETECTED BY zzzzzzz at yyyyyy
CALLED FROM ccccce at wwwwww

zzzzzzz and ccccecce are routine
names, yyyyyy and wwwwww are
absolute addresses and error
number is decimal

ERROR SUMMARY

ERROR TIMES

XXXX yYyyy
. XXXX Yyyy
. XXXX yyyvy

all numbers are decimal
NO OUTPUT FILE FOUND
OUTPUT FILE LINE LIMIT EXCEEDED

Functions of entry points:

QSNTRY initialize 1/0 buffer parameters

STOP enter STOP in the Dayfile and begin END processing
EXIT enter EXIT in the Dayfile and begin END processing
END terminate all output buffers, print an error summary;

transfer control to main overlay if within an overlay or in
any other case exit to monitor

SYSTEM handles error tracing, diagnostic printing, termination of output buffers,
and either transfers to specified non-standard error recovery address,
aborts the job, or returns to calling routine depending on type of error

SYSTEMP adjusts arguments for use by SYSTEM and transfers control to SYSTEM
SYSTEMC changes entry in SYSTEM's error table according to arguments passed.
ABNORML gains control from an execution routine when an error had been assembled as

fatal and during the processing of the job was changed to non-fatal with no non-
standard error recovery. An abnormal termination is given.

H-6 60280400A

FILE NAME HANDLING BY SYSTEM

SYSTEM(Q8NTRY) places in RA+2 and the locations immediately following, the file names from the
FORTRAN PROGRAM card. The file name is left justified and the file's FET address is right justified
in the word. (Thus .ue declared names replace any actual file names at execution time in the RA area.)

The logical file name (LFN) which appears in the first word of the FET is determined in one of the three
following ways:

CASE 1: If no actual parameters are specified, the LFN will be the file name from the PRO-
GRAM card.

Example: .
RUN(S)
LGO.

PROGRAM TEST1(INPUT,OUTPUT,TAPE1, TAPE2)

Before SYSTEM(QS8NTRY)
RA+2 00— 000
00— 000
After LFN in FET
RA+2 INPUT ___ FET address INPUT
OUTPUT _____FET address OUTPUT
TAPEl1 _______ FET address TAPE1l
TAPE2 __ FET address TAPE2
CASE 2: If actual parameters are specified, the LFN will be that specified by the corresponding

actual parameter, or the file name from the PROGRAM card if no actual parameter
was specified. A one-to-one correspondence exists between the actual parameters
and the file names found on the PROGRAM card.

Example: .

RUN(S)
LGO(, ,DATA, ANSW)

PROGRAM TEST2(INPUT,OUTPUT,TAPE1, TAPE2, TAPE3=TAPE1)

Before

RA+2 000 000
000 0
DATA HY
ANSW 0

60280400A H-7

After
RA+2

CASE 3:

Example:

Before
RA+2

After
RA+2

INPUT
OouUTPUT
TAPE1
TAPE2
TAPE3

FET address
FET address
FET address
FET address
FET address
of TAPE1

LFN in FET
INPUT

ouTPUT

DATA

ANSW

Uses TAPE1 FET

An equivalenced file name from the PROGRAM card will ignore an actual parameter.
The LFN will be that of the file to the right of the equivalence and no new FET will be

created.

iiUN (S)

LGO(, ,DATA, ANSW)

PROGRAM TEST3(INPUT,OUTPUT, TAPE1=OUTPUT,TAPE2, TAPE3)

000
000
DATA
ANSW

INPUT
OUTPUT
TAPE1

TAPE2
TAPE3

000
000
000
000

FET address
FET address
FET address of
OUTPUT

FET address
FET address

LFN in FET
INPUT

ouTPUT

uses OUTPUT FET

ANSW
TAPE3

60280400A

EXECUTION DIAGNOSTICS

For the format of the error listing see page H-6.
The symbol INF denotes infinite and IND denotes indefinite internal words.
Some error conditions are preceded by "also". The routine in question calls on a subordinate library

routine, giving it the arguments indicated; therefore the subordinate routine may detect some errors
of its own and report them under its own error number.

Standard Error

Routine Condition Recovery Number

AGGOER Called only upon detection of a computed or Fatal 1
assigned GO TO error

ACOS(R) R=INFor R=INDor +IND 2
abs R) .GT. 1.0 +IND

ALOG(R) R=INFor R=INDor R.LT. 0 +IND 3
R=0 -INF

ALOG10(R) R=INFor R=INDor R.LT. 0 + IND 4
R=0 - INF

ASINR) R=INFor R=INDor abs (R) .GT. 1.0 +IND 5

ATAN(R) R=INFor R =IND +IND 6

ATAN2(R1, (R1 or R2) =(INF or IND) +IND 7

R2) R1=R2=0 +IND

CABS(Z) (real (Z) or imag (Z))= (INF or IND) +IND 8

CBAIEX:Z**1 (real (Z) or imag (Z)) = (INF or IND) (+IND, +IND) 9
Z =(0,0)and I.LE, 0 (+IND, +IND)

CCOS(Z) (real (Z) or imag (Z)) =(INF or IND) (+IND, +IND) 10
also: COS (real (Z)) and EXP (imag(Z))
and imag (Z) . LT. -675. 82

CEXP (Z) (real (Z) or imag (Z)) = (INF or IND) (+IND, +IND) 11
Abs(real (Z)). GT.741.67 abs(imag(Z)). GT.2.2E14

CLOG (2) (real (Z) or imag (Z)) = (INF or IND) (+IND, +IND) 12
7 = (0,0)

COS(R) R=INFor R=INDor abs (R) .GT. 2.2E14 +IND 13

60280400A

I-1

Routine

CSIN (Z)

CSQRT (Z)
DABS (D)

DATAN (D)

DATAN?2 (D1,
D2)

DBADEX:
D1**D2

DBAIEX:
D1**12
DBAREX:
D1**R2

DCOS (D)
DEXP (D)

DLOG (D)
DLOG10 (D)

DMOD (D1,D2)

DSIGN (D1, D2)

DSIN (D)
DSQRT (D
EXP (R)

IBAIEX:
I1**12

IDINT (D)

Condition

(real (Z) or imag (Z)) = (INF or IND)
also: SIN(real(Z)) and EXP (imag (Z))
and imag (Z) .LT.-675, 82

(real (Z) or imag(Z)) = (INF or IND)

D=INF
D = IND

D=INFor D =1IND

(D1 or D2) = (INF or IND)
Dl1=D2=0

(D1 or D2) = (INF or IND)
D1 =0 and D2 .LE. 0
D1 .LT. 0

D1 = INF or D1 = IND
Dl=0andI2.LE. 0

(D1 or R2) = (INF or IND)
D1 =0and R2.LE. 0
D1.LT. O

D =INF or D = IND or abs (D) . GT. 2.2E14

D =INF or D =IND
D .GT. 741.67

D=INForD=INDor D.LT. 0

D=0

D=INFor D=INDor D.LT. 0
D=0

(D1 or D2) = (INF or IND)
D2=0

D1 /D2 .GE, 2 ** 96

D1 = IND or D2 = (0 or INF or IND)
D1 = INF

D =INF or D =IND or abs (D) .GT. 2.2E14
D=INForD=INDor D.LT. 0

R =INF or R = IND
R .GT. 741.67
R.LT. -675. 82

Il=0and I2,LE, 0
I1 **I2 ,GE, 2** 48

D=+INFor D=INDor D.GE. 2** 59
=-INF or D.LE. -2**59

Standard
Recovery

(+IND, +IND)

(+IND, +IND)

+INF
+IND

+IND

+IND
+IND

+IND
+IND
+IND

+IND
+IND

+IND
+IND
+IND

+IND

+IND
+INF

+IND
-INF

+IND
-INF

+IND
+IND
+IND

+IND
INF with sign of D2

+IND
+IND

+IND
+INF

0
0
2**59-1
1-2**59

Error
Number

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28
29
30

31

32

60280400A

Standard Error

Routine Condition Recovery Number
RBADEX: (R1 or R2) = (INF or IND) +IND 33
R1**D2 R1=0and D2 .LE, 0 +IND

R1.LT. O +IND
RBAIEX: R1 = INF or R1 = IND +IND 34
R1**I2 Rl=0and 12 .LE. O +IND

R1**12 = INF +INF
RBAREX: (R1 or R2) = (INF or IND) +IND 35
R1**R2 Rl1=0and R2.LE. 0 +IND

R1.LT. 0 +IND
SIN (R) R = INF or R = IND or abs (R) .GT. 2.2E14 +IND 36
SLITE (I) I1.GT. 6orI .,LT. 0 Proceed 37
SLITET I1.GT. 6orI1 .LE. O Proceed 38
(11, 12)
SQRT (R) R=INFor R=INDor R.LT. 0 +IND 39
SSWTCH (11,12) I1 .GT. 6or Il .LE. 0 Proceed 40
TAN (R) R = INF or R = IND or abs (R) .GT. 8.4E14 +IND 41
TANH (R) R=INFor R=IND +IND 42
INPUTN Too few constants Fatal 49

Loss of precision
Attempt to read after write

BUFFEI Attempt to read past EOF on Buffer In, Fatal 55
Last operation was a write, no data Fatal 56
available to read
Starting address greater than terminal address Fatal 57

BUFFEO Starting address greater than terminal address Fatal 59

INPUTB Attempt to read past EOF - binary input Fatal 63

60280400A

Routine
INPUTC
INPUTS

INPUTN

KODER
(Coded output)

KRAKER
(Coded input)

ALL I/O
ROUTINES

OUTPTC
OUTPTN

OUTPTS

KODER
(Coded output)

Condition
Attempt to read past EOF - coded input

Attempt to transfer more than 150 characters/
record on DECODE processing

Namelist name not found
Wrong type or too many constants

Illegal letter as format specification
Format specification has more than 2
levels of parentheses (3 levels under USASI)
Exceeded record size (format specified
more than 136 characters per line).

Field width specified as zero.

Field width specified is less than or

equal to the specified decimal width.
Attempt to output data under Hollerith
format.

Tllegal letter used as format specification.
Format specification with more than 2
levels of parentheses.

Field width specified as zero.

Coded read past end of record.

Attempt to input data under Hollerith
format.

Nllegal data in the external field. ¥

Data converted is out of range. T

Unassigned medium ¥

Line limit as specified on RUN card
exceeded

Attempt to transfer more than 150 characters/
record on ENCODE processing.

Attempt to output a single array under
"D" format specification.

Standard
Recovery

Fatal
Fatal

Fatal

Fatal
Fatal

Fatal

Fatal
Fatal

Fatal

Fatal
Fatal

Fatal
Fatal

Fatal

Fatal
Fatal

Fatal

Fatal

Fatal

Fatal

Error
Number

65
66

67

68
69

70

71
72

73

74
75

76
77

78

79
80

82

84

86

87

* Execution time diagnostic occurs when a variable file name is undefined. It is printed as Unassigned
medium, file xxxxxxx (where xxxxxxx is the name of the undefined file).

¥ All input/output errors at execution time are fatal. Standard error recovery for all the above cases
is to terminate the job after standard error tracing.

¥+ Card image will be printed.

I-4

60280400A

Routines

INPUTC

INPUTB

INPUTB

60280400A

Condition
Last operation was a write, no data
available to read.

List exceeds data on file, attempt to read
more data than exists in the logical record.

Last operation was a write, no data
available to read

Standard

Recovery

Fatal

Fatal

Fatal

Error

Number

88

89

90

INDEX

Actual arguments 7-5 Comments, coding 1-2
Arguments, actual 7-5 COMMON declaration 5-3
Arguments, formal 7-3 Compilation and execution E-1
Arithmetic assignment 4-1 Compiler mode options E-1
Arithmetic evaluation 3-2 Complex constants 2-3
Arithmetic expressions 3-1 Complex variables 2-8
Arithmetic mixed-mode expressions 3-4 Composition, overlay 8-2
Arrays 2-9 Computed GO TO statement 6-2
Transmission of 9-2 Computer word structure of constants-7600 D-1
ASSIGN statement 6-2 Constants 2-1, D-1
Assigned GO TO statement 6-1 Complex 2-3
Assignment statements 4-1 Computer word structure D-1
Arithmetic 4-1 Double precision 2-3
Logical 4-4 Hollerith 2-5
Masking 4-4 Integer 2-2
Mixed-mode 4-1 Logical 2-4
Multiple 4-4 Octal 2-6
Asterisks 9-20 Real 2-2
Aw input specification 9-14 Word Structure D-1
Aw output specification 9-13 Continuation cards, coding 1-2
CONTINUE statement 6-9
BCD record 10-1 Control statements 6-1
BACKSPACE i 10-8 ASSIGN 6-2
Basic External functions 7-7 CONTINUE 6-10
Binary record 10-1 DO 6-5
BLOCK DATA subprogram 5-12 END 6-11
BUFFER IN (u,p) (A,B) 10-11 GO TO 6-1
BUFFER OUT (u,p) (A,B) 10-11 IF 6-3
BUFFER statements 10-9 PAUSE 6-10
RETURN 6-11
CALL OVERLAY 8-2 STOP 6-11
CALL statement 7-14 Conversion specifications 9-5
Calling system H-1 Aw input 9-14
Cards, loader 8-3 Aw output 9-13
Character codes A-1 Dw.d input 9-10
Coding 1-1 Dw.d output 9-10
Character code, FORTRAN A-1 Ew.d input 9-6
Comments 1-2 Ew.d output 9-5
Continuation cards 1-2 Fw.d input 9-9
Identification fields 1-2 Fw.d output 9-8
Line 1-1

Statement label 1-2
Statements 1-1

60280400A Index-1

Conversion specifications (cont'd)

Gw.d input 9-10
Gw. d output 9-9
Iw input 9-12
Iw output 9-11
Lw input 9-15
Lw output 9-15
Ow input 9-13
Ow output 9-12
Rw input 9-14
Rw output 9-14
Cross-reference map J-1

DATA declaration 5-8
Data types 2-2
DECK structures E-1
Declarations 5-1
COMMON 5-3
DATA 5-8
DIMENSION 5-2
EQUIVALENCE 5-6
Type 5-1
DECODE (cyn,v)L 10-11
Diagnostics F-1
Diagnostics, execution I-1
DIMENSION declaration 5-2
Dimensions, variable 5-3,7-18
DO loop execution 6-6
DO loop transfer 6-8
DO nests 6-6
DO statement 6-5
Double precision constants 2-3
Double precision variables 2-8
DUMP 7-14
DVCHK (j) 7-14
Dw. d input specification 9-10
Dw.d output specification 9-10
Dw. d scaling 9-17

Editing specifications 9-17
oo * 9-20
New record 9-19
wH input 9-19
wH output 9-18
wX 9-17
Eject, page 10-2

Index-2

Elements of FORTRAN 2-1
ENCODE (c,n,v)L 10-11

ENCODE/DECODE statement 10-11

END FILEi 10-8
END statement 6-10

ENTRY statement 7-17
EQUIVALENCE declaration 5-6
Error processing H-1
Evaluation, arithmetic 3-2
Ew.d input specification 9-6
Ew. d output specification 9-5
Ew.d scaling 9-17
Execution, compilation and E-1
Execution diagnostics I-1
EXIT 7-14
Expressions 3-1

Arithmetic 3-1

Logical 3-8

Masking 3-10

Relational 3-7
EXTERNAL statement 7-15

File handling statements 10-8
Formal arguments 7-3
FORMAT declaration 9-4
Format, overlay 8-3

Format, program-subprogram G-1
FORTRAN character set 2-1, A-1

FORTRAN control card E-1

FORTRAN cross-reference map J-1

FORTRAN functions C-1

FORTRAN library routine entry points J-1

FORTRAN statement list B-1
Function, library Appendix C
Function, statement 7-6
FUNCTION subprogram 7-8
Functions, FORTRAN C-1
Fw. d input specification 9-9
Fw.d output specification 9-8
Fw.d scaling 9-16

GO TO statements 6-1
Assigned 6-1
Computed 6-2
Unconditional 6-1

Gw.d input specification 9-10

60280400A

Gw. d output specification 9-9
Gw.d scaling 9-17

Hollerith constants 2-5

Identification field, coding 1-2
Identification, overlays 8-1
IF (ENDFILE, i) n,n, 10-8
IF (EOF,i) n,,n, 10-8
IF (UNIT,i) D sNgsNgyly 10-8
IF statements 6-3
One branch logical IF 6-4
Three branch arithmetic IF 6-3
Two branch logical IF 6-4
Integer constants 2-2
Integer variables 2-7
Intrinsic function 7-7
I/0 formats 9-1
1/0 list 9-1
I/0 statements 10-1
BUFFER statements 10-9
NAMELIST statements 10-5
Output statements 10-1
PRINT 10-1
PUNCH 10-2
WRITE 10-2
READ statements 10-5
File handling statements 10-8
Iw input specification 9-12
Iw output specification 9-11

Label, statement 1-2
LARGE statement K-1
Levels, overlay 8-1

Library functions Appendix C

Library routine entry points, FORTRAN J-1

Library subroutines 7-12
Lines, coding 1-1

LIST E-2

Loader cards 8-3

Logical assignment 4-4
Logical constants 2-4
Logical expressions 3-8
Logical variables 2-8

Lw input specification 9-15

T Cd i e g . 16
Lw ouipul speciiicaunivn g~-1i9

60280400A

Main program 7-1
Masking assignment 4-4
Masking expressions 3-10

Mixed-mode arithmetic expressions 3-4

Mixed-mode assignment 4-1
Multiple assignment 4-4

NAMELIST statement 10-5
New record specification 9-19
NOLIST E-2

Octal constants 2-6
One-branch logical IF 6-4
Output statements 10-1
OVERFL (i) 7-14
Overlays 8-1, E-2
CALL OVERLAY 8-2
Cards 8-4
Composition 8-2
Format 8-3
Identification 8-1
Levels 8-1
Loader cards 8-3
Ow input specification 9-13
Ow output specification 9-12

Page eject 10-2

PAUSE statement 6-9
PDUMP 7-14

PRINT n, L. 10-1

Procedure identifiers 7-3
Procedures 7-2

Program arrangement 7-20
PROGRAM card 7-1
Program communication 7-2
Program, main 7-1

Program-subprogram format G-1

PUNCHn,L 10-2
Punched cards 1-2

READ statements 10-4
READ (i) L 10-4
READ (i,n) L. 10-4
READn,L 10-4

Real constants 2-2

Real wnv-{ab'lna 917
alar varli WS &=

Relational expressions 3-7

Index-3

Repeated format specifications 9-22
Unlimited groups 9-22
Unlimited groups for USASI 9-24

RETURN statement 6-10

REWINDi 10-8

RUN E-1

Rw input specification 9-14

Rw output specification 9-14

Scaling

Dw.d scaling 9-17

Ew.d scaling 9-17

Fw.d scaling 9-16

Gw.d scaling 9-17

nP scale factor 9-15

Scale factor for USASI 9-24
SECOND (t) 7-14
SLITE(i) statement 7-13
SLITET (i,j) statement 7-13
Source program 7-1
SMALL statement K-2
Specifications 9-17

Conversion 9-5

Editing 9-17

Repeated format 9-22

Variable format 9-23
SSWTCH (i, j) statement 7-14
Statement, ASSIGN 6-2
Statement, CALL 7-14
Statement, DO 6-5
Statement, ENTRY 7-17
Statement, EXTERNAL 7-15
Statement function 7-6
Statement, GO TO 6-1
Statement label 1-2
Statement list, FORTRAN B-1
Statement, NAMELIST 10-5
Statement, READ 10-4
Statements, buffer 10-9
Statements, coding 1-1
Statements, control 6-1
Statements, ENCODE/DECODE 10-11
Statements, IF 6-3
Statements, 1/0 10-1
Statements, output 10-1
Statements, tape handling 10-8
STOP statement 6-10
Structure, array 2-v
Subprogram, block data 5-12

Index-4

Subprogram communication 7-2
Subprogram format, program
Subprogram, function 7-8
Subprogram, subroutine 7-11
Subprograms 7-2, 7-7

Subprograms, variable dimensions 7-18

Subroutine 7-12

Subroutine subprogram 7-11
Subroutines, library 7-12
Subscripted variables 2-8
Supplied function 7-6
Symbolic names 2-1
System routine H-1

Tape handling statements 10-8

Three-branch arithmetic IF statement 6-3

Two-branch logical IF statement 6-4
Type declarations 5-1

Unconditional GO TO statement 6-1
Unlimited groups specification 9-22
Unlimited groups for USASI 9-24
USASI compatibility 9-24

scale factor 9-24

unlimited groups 9-24

Variable dimensions 5-3

Variable dimensions in subprograms 7-18

Variable format 9-23
Variables 2-6
Complex 2-8
Double precision 2-8
Integer 2-7
Logical 2-8
Real 2-7
Subscripted 2-8

wH input specification 9-19

wH output specification 9-18
Word structure of constants D-1
WRITE i,L 10-3

WRITE (i) L 10-3

WRITE (i,n) L 10-2

wX specification 9-17

60280400A

FORTRAN CROSS -REFERENCE MAP J

“

If the ninth field of the run control card is non-zero, FORTRAN supplies the programmer with a
cross-reference map after each PROGRAM, SUBROUTINE, or FUNCTION, purely as an aid to program
debugging. The following information is furnished:

Program length including I/O Buffers

Statement function references with the relative core locations, general compiler tag assigned,
symbolic tag given in the program and the references to the statement function

Statement number references with the same information as above

Block names and lengths

Variable references - also with location, general tag, symbolic tag, and a list of references
Start of constants (relative address)

Start of temporaries (relative address)

Start of indirects (relative address)

Unused compiler space

The programmer should bear in mind that because of the operation of the compiler not all references
will be listed. An actual physical reference is necessary before the reference is placed in the ref-
erence map. If the required variable address is already in a register, the compiler will use the
address in the register and not make an actual variable reference by name. A reference to a state-
ment number will not be listed if an actual jump is not necessary, such as when the code simply

falls through to the next statement and the compilation of a jump instruction is therefore unnecessary.

60280400A

ADDITIONAL STATEMENTS K

The LARGE statement and the SMALL statement as described in this appendix will be implemented in
this version of 7600 FORTRAN. This implementation is subject to change in subsequent versions.

LARGE Statement

The LARGE statement allocates space in large core memory. The statement format is:

LARGE t;. v} (i), to. Vo (ig)s -+ st + v, ()

where t specifies the type of the following variable or array name. It may be any of the characters
C,D,Ior R specifying complex, double, integer, logical, or real respectively. If t is not present,
the type of the variable is determined by the first character of its name. v isan array

name. i is the dimension(s) of the array; it may be fixed or variable.

A LARGE statement may appear in a PROGRAM, or callable SUBROUTINE--but not in a FUNCTION
subprogram. Arrays named in LARGE statements are, unless they correspond to arguments of a
callable SUBROUTINE, assigned to large core memory starting at relative address 0000000. The
assignments of array locations are made in the order in which the array names appear in LARGE
statements. An array name appearing in a LARGE statement may not appear in any other nonexecutable
statement and must appear in the LARGE statement before any reference is made to the array. The
length of an array of names in a LARGE statement may be through 131071 (decimal) locations.

393215 (decimal) large core memory locations are available for an object program or subprogram.,

The LARGE statement provides blocks of storage in the same manner as the COMMON declaration
(section 5.3). The length of a LARGE block in computer words is determined by the number and type
of the list variables. If a subprogram does not use all the locations reserved, the LARGE statement
must contain dummy variables to insure proper correspondence.

If a large core variable appears as an argument in a reference to a FUNCTION subprogram or to a
library function subroutine, instructions are compiled for transferring the large core variable to a
small core memory location; the small core memory address is transmitted as the argument to the
FUNCTION subprogram or library function subroutine, which implies that the original large core
argument may not specify a result location to the FUNCTION subprogram or library function subroutine.

If a large core variable appears as an argument in a reference to a called SUBROUTINE, the
corresponding argument within the SUBROUTINE must appear in a LARGE statement, i.e., the argu-
ments must agree in memory type, and in this case, the corresponding array must reside in the large
core relative region 0000000—07777768 {(inclusive). If an array in large core memory is not hamed by

an argument in a callable SUBROUTINE, it may reside anywhere in the relative region 0000000-1377776
(inclusive) of that memory. When a large core variable appears as a formal argument in a SUBROUTINE,
a LARGE statement containing that argument does not cause storage to be allocated for that array.

Large core memory arrays cannot be used in an I/0 list,

60280400A K-1

SMALL Statement

The SMALL statement transfers a block of words between large core and small core memories.

A SMALL statement may appear in a PROGRAM, or callable SUBROUTINE--but not in a FUNCTION
subprogram. Such a statement has one of the forms

SMALLIN (s, £, W)
SMALLOUT (s,¢,w)

where s is a small-core memory simple variable name, array name, or array element; £ is a large-
core memory array name, or array element; w is a simple integer variable name or a constant, The
SMALLIN statement causes the number of words specified by w to be block-transferred from LCM
starting at location ¢ to small-core memory starting at location s. The SMALLOUT statement causes
the number of words specified by w to be block-transferred from small-core memory starting locations
s to large-core memory starting location ¢. The word count for double precision and complex arrays
must specify twice as many words as elements to be transferred.

Example:

Given the following statements:
LARGE R.IOTA(3, 3)
REAL BETA(3, 2)
SMALLIN(BETA(,1),I0TA(1,1), 6)

the elements will be stored and transferred according to the following illustration:
LCM relative

address
(octal) Large Core Memory
0000010 I0TA(3, 3)
0000006 I0TA(3,2)
. _______ . — -6 words — — 9
0000000 IOTA(1,1)

|

I

Small Core Memory :
|

BETA(3,2)
* 4.__..___.____.____l

BETA(1,1)

60280400A

CUT ALONG LINE

PRINTED IN USA

AA3419 REV, 11/69

COMMENT SHEET

MANUAL TITLE 7600 FORTRAN Reference Manual

60280400

PUBLICATION NO. REVISION A

FROM: NAME:

BUSINESS
ADDRESS.

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Technical Publications
ARH220 4201 No. Lexington Ave.
St. Paul, Minnesota 55112

S G M U

-
(o}
-
o
-
Q
-
O

CUT ALONG LINE

P

=

NvH1HOd 009/ BieQ |04juod

e

' |eNUBN 92UBl8laY

00¥r08¢09 'ON "qnd

-

CONTROL DATA

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINNESOTA 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORL'

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	A-01
	A-02
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	D-01
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	I-01
	I-02
	I-03
	I-04
	I-05
	index-01
	index-02
	index-03
	index-04
	J-01
	K-01
	K-02
	replyA
	replyB
	xBack

