CORPORATION

CONTROL DATA
| corporaTIoN]

CONTROL DATA®
CYBER 70/MODEL 76 COMPUTER SYSTEM
7600 COMPUTER SYSTEM

FORTRAN RUN, VERSION 2
REFERENCE MANUAL

REVISION RECORD
REVISION DESCRIPTION

A Manual released.
(11-15-71)

B’XND Manual revised to reflect current software. The following pages have been revised: v, vi, vii,
(2-15-73) 2-1, 2-2, 2-3, 2-4, 2-5, 2-7, 2-8, 2-9, 2-11, 3-1, 3-5, 3-6, 3-7, 3-9, 5-1, 5-7, 5-9, 5-15,
5-16, 6-1, 6-3, 6-4, 6-6, 6-9, 6-14, 7-12, 7-13, 7-14, 7-15, 7-16, 7-18, 8-2, 9-5, 9-6, 9-9,
9-19, 9-21, 9-22, 10-1, 10-2, 10-3, 10-6, 10-7, 10-8, 10-9, 10-10, 10-11, 10-12, A-1, A-2,
A-3, A-4, A-5, A-6, A-7, A-8, B-2, B-3, C-2, C-3, E-1, E-2, E-3, E-9, E-10, F-1, G-1,
G-2, G-5, 1-2, K-1, L.-2, 1.-3, 1.-4, 1.-6, 1,-9, 1.-10, 1.-11, 1.,-15, 1.-16, Index 1, 2, 3, and 4. ‘

Delete pages G-6 and G-7; add pages M-1 and M-2.
C Manual revised to reflect current software. The following pages have been revised: v, vi, 5-15,

(5-1-74) 9-4 through 9-7, 9-9, 9-11 through 9-18, 9-21, 9-22, 9-23, 9-25, 10-3, 10-7 through 10-10, 10-12
E-1 through E-4, L-1, L-3 through L-7, L-9 through L.-12, L-14, L-15, L.-16, M-1, M-2,
Index-3, and Index-4.

Publication No.
60360700

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
© 1971, 1973, 1974 4201 North Lexington Ave.

b Arden Hills, Minnesota 55112
Control Data C ti

o ata Lorporation or use Comment Sheet in the back of
Printed in the United States of America this manual,

CONTENTS

CHAPTER 1 CODING PROCEDURES
1.1 Coding Line
1,1.1 Statement
1.1.2 Continuation
1.1.3 Statement Label
1.1.4 Identification Field
1.1.5 Comments
1.2 Punched Cards
1.3 Order of Statements
CHAPTER 2 ELEMENTS OF FORTRAN
2.1 FORTRAN Character Set
2.2 Symbolic Names
2.3 Data Types
2.4 Constants
2.4.1 Integer Constants
2.4.2 Real Constants
2.4.3 Double Precision Constants
2.4.4 Complex Constants
2.4.5 Logical Constants
2.4.6 Hollerith Constants
2.4.7 Octal (Masking) Constants
2.5 Variables
2.5.1 Integer Variables
2.5.2 Real Variables
2.5.3 Double Precision Variables
2.5.4 Complex Variables
2.5.5 Logical Variables
2.6 Subscripted Variable
2.7 Arrays
CHAPTER 3 EXPRESSIONS’

3.1 Arithmetic Expressions

3.1.1 Forming Arithmetic Expressions
3.1.2 Arithmetic Evaluation

3.1.3 Mixed-Mode Arithmetic Expressions
Relational Expressions

Logical Expressions

Masking Expressions

w W w
« v .
> W N

60360700A

O e e e e
NN DN DN DN DN b= s

{ N TR (N Y N TS SO (N NN N S N NN N B B |

WO W-I=-JDN U WWNDNDNDN ==

NNMNMNNMNMNNMNDNNDNDNDNDDNDNDNDDN NN

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

iv

A
4.1
4.2
4.3
4.4
4.5

TYPE DECLARATIONS AND STORAGE ALLOCATION

5.1
5.2

o1 o1 Ot
* o e
(37 IV VL

SSIGNMENT STATEMENTS

Arithmetic Assignment
Mixed-Mode Assignment
Logical Assignment
Masking Assignment
Multiple Assignment

Type Declaration

Dimension Declaration

5.2.1 Constant Dimensions
5.2.2 Variable Dimensions
COMMON Declaration
EQUIVALENCE Declaration
DATA Declaration

5.5.1 Block Data Subprogram
LEVEL Declaration

CONTROL STATEMENTS

6.1

(o) o> NerlNerNe))
e o o o o
0 ~3J O O

P
7.1
7.2
7.3
7.4
7.5

GO TO Statement

.1 Unconditional GO TO
.2 Assigned GO TO

.3 ASSIGN Statement

A

~Nmm it ad IO MO
\/\jl-l--\-r)uh\zu N L

Statement
.1 Three-Branch Arithmetic IF
.2 Two-Branch Arithmetic IF
.3 One-Branch Logical IF
.4 Two-Branch Logical IF
Statement
.1 DO Loop Execution
6 3.2 DO Loop Transfer
CONTINUE Statement
PAUSE Statement
STOP Statement
RETURN Statement
END Statement

R e R e

: o .

[\D[\D[\D I~dl—-lb—ll—‘
:

Sgo
OOON

ROGRAM, PROCEDURES AND SUBPROGRAMS

Source Program

Main Program

Program Communication
Subprogram Communication
Procedures and Subprograms
7.5.1 Procedure Identifiers
7.5.2 Formal Arguments
7.5.3 Actual Arguments

[$2011 I N2 G NG I NS I)
1
=t = O =T WN =

(S

[S R B R |

DDA AN DDDDHDOD
1
=t QO OYUT OV GO L

[S |

-3 ~3 ~3 =3 ~3 -3 -7 -7
1
D10 WD DN

60360700A

CHAPTER 8

CHAPTER 9

~3 -3
2

LN e}

Statement Function

Supplied Function

7.7.1 Intrinsic Functions

7.7.2 Basic External Functions
Subprograms

7.8.1 Function Subprogram
7.8.2 Subroutine Subprogram
7.8.3 Library Subroutines
CALL Statement

EXTERNAL Statement

ENTRY Statement

Variable Dimensions in Subprograms
Program Arrangement

OVERLAYS

IN

9
9
9
9

9.

P
1

.2
3
4

5

IO U WN =

Levels

Identification
Composition

Call

Loader Cards
Overlay Cards
Return From Overlay

UT/OUTPUT FORMATS

INPUT/OUTPUT List

Array Transmission and Implied DO Loops

Format Declaration

Conversion Specification

9.4.1 Ew.d, Ew.dEe, and Ew.dDe Output
2 Ew.d, Ew.dEe, and Ew. dDe Input
3 Fw.d Output
4 Fw.d Input
5 Gw.d Output
6
7
8
9

Gw.d Input

Dw. d Output

Dw.d Input

Iw and Iw.z Output
.10 Iw and Iw.z Input
Ow or Ow.d Output
.12 Ow or Ow.d Input
.13 Aw Output

.14 Aw Input

Rw Output

.16 Rw Input

17 Lw Output

18 Lw Input

19 Zw Input and Output
cale Factor

1 Fw. d Scaling

.2 Ew.d or Dw.d Scaling
3 Gw. d Scaling

.
—
(S}

%%A»&p&%r&p&rﬁlb:&)&r&#%%:&:&
[
-

O OWD OW W WWWWWWWOWWWO©WWOOO
PRI « o o e & s 8 4 s s e s s s e o

oy Oor O
. .

|
DN beb pt e e = (D 0O 0O OO 00 OO

= O oo ~JuId N

1

3 =1 3 ~1 =3 ~F ~J ~J ~J ~7 ~3 ~3 =3
1

!
o e OO OGO DN

O O WO W W WWWWWWWO OO
Vo [
[REY
N o)

1
—
N

9-13
9-13
9-14
9-14
9-15
9-15
9-15
9-16
9-16
9-16
9-17
9-17
9-17

CHAPTER 10

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX 1

APPENDIX J

APPENDIX K
APPENDIX L
APPENDIX M

~3 -
1
DN =

vi

© © © ©
- O 00 ~J

0

Editing Specifications

9.6.1 wX

wH Output

wH Input

New Record

=...= Specification

* .. %* Specification
. Tn

Repeated Format Specifications

Unlimited Groups

Variable Format

Variable Specifications

DO D
" e e e
O Ul WN

© O wWwWwWwOw©
e e e e

INPUT/OUTPUT STATEMENTS

10.
10.
10.
10.
10.
10.

QO W DN =

Output Statements

READ Statements

NAMELIST Statements

FILE HANDLING Statements
BUFFER Statements
ENCODE/DECODE Statements

APPENDIXES

STANDARD SCOPE CHARACTER SETS

FORTRAN STATEMENT LIST

TIBRARY SUBPROGRANMS

COMPUTER WORD STRUCTURE OF CONSTANTS

COMPILATION AND EXECUTION

PROGRAM-SUBPROGRAM FORMAT

SYSTEM ROUTINE

FORTRAN CROSS REFERENCE MAP

FORTRAN II FEATURES

FORTRAN LIBRARY ROUTINE ENTRY POINTS

LARGE CORE MEMORY INPUT/OQUTPUT

OBJECT-TIME INPUT/OUTPUT

FILE NAME HANDLING

TABLES

Subdivision of Procedures and Subprograms
Differences Between a Function and Subroutine Program

9-18
9-19
9-19
9-20
9-21
9-21
9-22
9-23
9-24
9-24
9-25

10-1
10-3
10-4
10-7
10-8
10-10

60360700C

INTRODUCTION

FORTRAN for the CONTROL DATA® CYBER 70/Mode1 76 Computer System is a procedural

anoiacs Aagionad anivoa nrnahiama Af 2 matheamatinal ar ariantifie Mnatiirna T+ Tmammr~iad oo
Lallsuasc ucolslicu 1o solve oL obiems oI a mathematical or scientiiic nature. it incor pot ates

a majority of the features of standardized FORTRAN as specified by the X3.9-1966
American National Standards Institute (ANSI). The variations, as well as the extensions,
are flagged throughout this manual,
Design extensions include selected FORTRAN 2.3 features as implemented on the CONTROL
DATA® 6000 Series Computers, new source statements relating to the dual memory of the
CONTROL DATA® 7600 ComputerTand features.
LANGUAGE FEATURES

° Constants and variables of the following types:

Integer

Single precision floating point (real)
Double precision floating point
Complex

Logical

Octal (constant only)

Hollerith (constant only)
P Mixed mode arithmetic expressions
e Masking (Boolean), logical, and relational operators
e Shorthand notation for logical operators and constants
° Library functions (intrinsic functions and external functions)
e Independently compilable subprograms
° Multiple entry points to subroutines and functions
e Expressions as subscripts
° Formatted/unformatted input/output
° Variable dimensions

e Variable format capability

TIn this publication, any references to the CONTROL DATA CYBER 70/Model 76 Computer
System applies also to the 7600 Computer System.

60360700A vii

PS Intermixed COMPASS subprograms

e DBlock transfers between large core and small core memory
e Direct reference of lower core memory data

° Allocation of large core memory

PY Conversion formats for all data forms

e Array reference with fewer subscripts than dimensioned
° Hollerith cbnstants in expressions and DATA statements
'Y More than one statement per line

° Left-or right-justified Hollerith constants

° Two-branch logical IF statements

° Two-branch arithmetic IF statements

e NAMELIST capability

° Buffer in/buffer out and encode/decode statements

e Overlay capability

e Multiple assignment statement form

e DATA statement usable in main program

e Abbreviated forms of DATA statement

e DO loop indexing parameters changeable within loop

COMPILER FEATURES

CONTROL DATA 70/Model 76 FORTRAN is a one-pass compiler. It uses both large core
memory and small core memory and takes advantage of the 48-parcel instruction stack and
segmented functional units. Optimization of DO loops is accomplished by:

. Performing multiple-dimension index calculation before entering the loop
e Evaluating common subexpressions only once

e Evaluating invariant subexpressions before entering the loop

viii 60360700A

Compiler options available are:

e Compile and execute (no listing)

e Compile with source listing (no execute)

e Compile with source listing and object code output (no execute)

S Compile with source and object listing (no execute)

e Compile with source and object listing and object code output (no execute)

° Compile, produce binary, source, and execute

° File name for compiler input source

° File name for compiler output listing

e File name for compiler object code output

° Line limit on compiler output listing

e Cross-reference listing

° 17/21 bit address mode for LCM data

° Error traceback
The compiler and execution time routines execute under CONTROL DATA CYBER 70/Model 76
SCOPE 2. Subprograms are compiled independently, and a file consisting of relocatable
binary subprograms is produced. Upon option, the compiler also produces a source listing,
an object code listing, a cross-reference listing, and a relocatable binary deck,
The compiler can execute as a load-and-go program and can produce CONTROL DATA CYBER
70/Model 76 machine language output. It executes as an independent program under control of
the operating system and uses only the storage required for compilation of a particular
program. Overlays can be loaded at execution time without relocation.
FORTRAN accepts main programs and subprograms written in either FORTRAN source

language or COMPASS assembly language. This feature permits a flexible program
arrangement for each particular job.

60360700A ix

CODING PROCEDURES 1

1.1 CODING LINE

A FORTRAN coding line contains 80 columns in which FORTRAN characters are written one
per column. The four types of coding lines are as follows:

Statement 1-5 statement label
6 blank or zero
7-72 FORTRAN statement
73-80 identification field
Continuation 1-5 blank
6 FORTRAN character other than blank or zero
7-72 continued FORTRAN statement
73-80 identification field
Comment 1 Cor $ or *
2-80 comments
Data 1-80 data

ANSI FORTRAN, X3.9-1966, does not specify the identification field or the use of $ and * in
comment lines.

1.1.1 STATEMENT

Statement information is written in columns 7 through 72. Statements longer than 66
columns may be continued on the next line. Blanks are ignored by the FORTRAN compiler
except in Hollerith fields. The character $ may be used to separate statements when more
than one is written on a coding line. However, it cannot be used with a program name, a
subroutine name, a function statement, or any statement which requires a statement number.
A blank card may be used to separate statements.

Example:

1=10$ JL1M=18 K=K+1$ GO TO 10 is equivalent to:

I1=10
JL1M=1
K=K+1
GO TO 10

ANSI FORTRAN, X3.9-1966, does not specify $.

60360700A 1-1

1.1.2 CONTINUATION

The first line of every statement must have a blank or zero in column 6, except statements
preceded by $. If statements occupy more than one line, all subsequent lines must have

a FORTRAN character other than blank or zero in column 6. Continuation cards may be
separated by cards whose first 72 columns are blank. A statement may have up to 19 con-
tinuation lines.

1.1.3 STATEMENT LABEL

A statement label is a string of 1 to 5 digits occupying any column position 1 through 5.

It serves as a reference to that particular statement. Only statements referred to elsewhere
in the program require statement labels. These references can only be executable state-
ments and format statements. The same statement label cannot be given to more than one
statement in a program unit. Blanks and leading zeros are ignored. End statements and
statements preceding $ cannot have statement labels.

1.1.4 IDENTIFICATION FIELD

Columns 73 through 80 are always ignored in the compilation process. They may be used for
identification when the program is punched on cards. Usually, these columns contain
sequencing information provided by the programmer.

NSI FORTRAN, X3.9-1966, does not specify the identification field.

1.1.5 COMMENTS

Each line of comment information is designated by a C, *, or $ in column 1. Comment
information appears in the source program and the source program listing, but it is not
translated into object code. The continuation character in column 6 is not applicable to

comment cards.

ANSI FORTRAN, X3.9-1966, does not specify * or $ or allow comments to appear between
continuation lines of a FORTRAN statement.

1.2 PUNCHED CARDS

Each line of the coding form corresponds to one 80-column card; the terms "'line'" and "card"
are often used interchangeably. Source programs and data can be read into the computer
from cards; a relocatable binary deck or data can be punched onto cards.

1.3 ORDER OF STATEMENTS

Appendix B, FORTRAN STATEMENT LIST, summarizes the set of skeleton statement
forms used in FORTRAN and states whether each individual statement type is executable or
not. The entire set of nonexecutable statements {(excluding FORMAT statements) present in
a program must precede the entire set of executable statements. Comments are not state-
ments and may appear anywhere in the program.

9 60360700A

frry

ELEMENTS OF FORTRAN 2

2.1 FORTRAN CHARACTER SET

Forty-seven characters are used in forming the elements of a FORTRAN program. These
are divided into alphanumeric characters and special characters. The alphanumeric
characters are the alphabetic capital letters from A to Z and the decimal numerics from 0
to 9. The special characters are the following:

blank (left parenthesis
= equal) right parenthesis
+ plus , comma
- minus . decimal point
asterisk ¢ dollar sign
/ slash

Appendix A includes a list of additional characters which may appear in Hollerith literals
and with the exception of the semicolon, in DATA statements.

All characters appear internally in display code (Appendix A). A blank is ignored by the
compiler except in Hollerith fields. It may be used freely to improve program readability.

2.2 SYMBOLIC NAMES

Symbolic names are used to identify data, programs, subprograms, I/O units, and labeled
common blocks. With one exception, a symbolic name can be any combination of one to
seven alphanumeric characters beginning with a letter,

ANSI FORTRAN, X3.9-1966, limits all symbolic names to six characters.

The exception is a form of the octal constant which is the letter O followed by six octal
digits. Embedded blanks in a symbolic name are ignored.

ANSI FORTRAN, X3.9-1966, allows symbolic names to consist of the letter O followed by
a string of digits.

Example:

Illegal Symbolic Names Legal Symbolic Names
3BETA Begins with numeric character I0TA
REMAINDER More than seven characters A123456
+ 234 Begins with special character 012345
0123456 Illegal as a symbolic name but

legal as an octal constant 012K345
C3114 Contains a special character

60360700A 2-1

2.3 DATA TYPES

The seven different data types specified for CONTROL DATA CYBER 70/Model 76 FORTRAN
are integer, real, double precision, complex, logical, Hollerith, and octal. Implicit
declaration of type is applicable to integer and real only. In the case of a constant, the
absence of a decimal point indicates type integer, and the presence of a decimal point
indicates type real. In the case of a variable, anl, J, K, L, M, or N as an initial letter
indicates type integer. Any other alphabetic character used as an initial letter indicates
type real. Double precision, complex, and logical data must be declared in a type state-
ment. Hollerith and octal constants are treated as type integer when they appear in
arithmetic expressions or assignment statements.

2.4 CONSTANTS

A constant can be any of the seven data types listed above. Complex and double precision
constants are formed from real constants. The type of constant is determined by its form.
The computer word structure for each type is given in Appendix D.

2.4.1 INTEGER CONSTANTS

An integer constant is a string of up to 18 decimal digits in the range —(259—1) < N« (259—1).
The maximum value of the result of integer addition or subtraction must not exceed 299-1.

Subscripts and DO indexes are limited to 217-2, The constant must not contain embedded
commas.

Examples:
63 3647631 -314159265 574396517802457165
2417 464646464

During execution, the maximum allowable value ig 248—1 when an integer constant is

converted to real. If the result is greater than 248_1, bits 48-58 will be ignored and errors
may result. The maximum value of the operands and the result of integer multiplication

or division must be less than 248-1, High order bits will be lost if the value is larger, but
no diagnostic is provided for values greater than 248-1. The high order bits are lost.

2.4.2 REAL CONSTANTS

A real constant is a signed or unsigned string of up to 14 decimal digits that includes a
decimal point and/or an exponent. All real numbers are carried in normalized form.

A real constant has one of the following forms:

n.m n.mE+s nE+s nEs
n.E+s n.Es n. mEs
.m .mE+s .mEs

2-2 60360700A

Where n and m are decimal, s is the exponent to the base 10, and E is the symbol used to
indicate exponentiation. The plus sign may be omitted for positive s. The range of a non-
zero constant is approximately 107294 to 107322, If the range is exceeded, a compiler
diagnostic is provided. If the magnitude is Iess than 10~ 294 the value will be zero.

Examples:
’%?"-—~—~qny1nl-;p 30.)
3.1415768 31 41592E-01
314.0749162 .31415E01
-3.141592E+279 .31415E+01

2.4.3 DOUBLE PRECISION CONSTANTS

A double precision constant is a signed or unsigned string of up to 29 decimal digits that
includes a decimal point. It is optionally followed by an exponent. It is represented in-
ternally by two words. The forms are similar to real constants:

.mD=%xs n. mD=+s n.D+s nD+s

. mDs n. mDs n.Ds nDs . mD n. mD n.D nD

Where n and m are decimal, s is the exponent to the base 10, and D is the symbol indicatin
double precision. D must always appear. The plus sign may be omitted for positive s.

The range of non- zero constan&,%s approximately, from 10-294 to 107322 (double precision
values between 10294 and 10 have only single precision with the least significant

word set to zero). If the range is exceeded, a compiler diagnostic is provided. If s is
omitted, is is assumed to be zero.

Examples:
3.1415927D 3141,593D3
3.1416D0 31416.D-04

3141.593D-03

2.4.4 COMPLEX CONSTANTS

A complex constant appears as an ordered pair of optionally signed real constants,

The form is:
(rl, r2)

where the real part of the complex number is represented by ry and the imaginary part by r

g

9°

ANSI FORTRAN, X3.9-1966, does not allow the omission of s.

60360700A 2-3

If the range of the real numbers comprising the constant is exceeded, a compiler diagnostic
is provided. Diagnostics also occur when the pair contains integer constants, including (0, 0).

Examples:
FORTRAN Representation Complex Number
(1., 6.55) 1. +6.551
(15., 16.7) 15, + 16. 71
(-14.09, 1.654E-04) -14,09 + ,00016541
(0., -1.) 0-1.0i

2.4.5 LOGICAL CONSTANTS
A logical constant is a truth value. It may assume only the value of true or the value of

false. A true constant is stored internally as the one's complement of binary zero. A false
constant is stored internally as binary zero.

The two permissible forms of a logical constant are:

. TRUE.
.FALSE.

or the briefer alternate forms

.T.
B

The latter forms are not specified in ANSI X3.9 FORTRAN.

Examples:

LOGICAL X1, X2
X1 = .TRUE.
X2 = .FALSE.

n

2.4.6 HOLLERITH CONSTANTS

A Hollerith constant is a string of FORTRAN characters which is represented in memory
by an internal display code and is treated as an integer.

The general form is:

th1h2’ .o hn

where n is an unsigned decimal integer indicating the number of characters following H which
are part of the constant. H is the symbol indicating Hollerith type. The hi are the FORTRAN
characters that make up the constant., h. may be any of the characters listed in Appendix A,
with the exception of the semicolon. t

Blanks are significant.

2-4 60360700A

The maximum number of characters allowed in a Hollerith constant of H form depends on its
usage. When used in an expression, it is limited to 10 characters. In a DATA statement,
or when passed as an actual argument to a subprogram, it is limited only by the necessity
that the statement containing it be limited to 19 continuation lines. The long Hollerith
constant must be dimensioned in a subprogram when used as an argument.

ANSI FORTRAN, X3.9-1966, allows Hollerith constants only in the argument list of a
CALL statement and in the DATA statement.

Alternate forms of the Hollerith constant are:
nLhy, h2. .. hn (left justified)
nRhl’ hy...h (right justified)

Both left and right justification are with binary zero fill. If more than 10 characters are used
in a DATA statement involving such a constant, only the last word has the zero fill. These
forms may be used in an arithmetic statement such as in the statement I =(+5HABCDE).

ANSI FORTRAN, X3.9-1966, does not specify the alternate forms nLh and nRh,
nLh1h2. .. hn and nRh_h h

8o b .
Examples:
6HCOGITO 12HCONTROL DATA
4HERGO 5LSUMbb=SUMbb00000
3HSUM 1H)
SRSUMbb=00000SUMbb 3LbTT=bTTO0000000

A semicolon (display code 77) cannot appear in Hollerith constants since this bit configuration

is recognized as a Hollerith field terminator. When a Hollerith constant is stored, neither the
nH, nl., nor nR character is shared with it,

1= sSal el

2.4.7 OCTAL (MASKING) CONSTANTS

An octal constant is an optionally signed string of octal digits. It may have a minus sign
prefix. It is considered type integer.

The two forms of the octal constant are:

The first form consists of 6 to 20 octal digits preceded by the letter O. The second form
consists of 1to 20 octal digits followed by the letter B.

60360700A 2-5

Octal constants are right justified with zero fill. If the constant exceeds 20 digits, or if
a non-octal digit appears, a compiler diagnostic is provided.

IANSI FORTRAN, X3.9-1966, does not specify octal constants.

Examples:
Q77777770007777 2374216B
oT77777700077777 7777768
02323232323232323 777000777000777B

2.5 VARIABLES

FORTRAN recognizes simple and subscripted variables. A simple variable represents a
single quantity and references a storage location. The value specified by the name is
always the current value stored in the location. Variables are identified by a symbolic
name as defined in paragraph 2. 2.

The compiler does not check to see whether a variable has been assigned a value. The user
must make certain that all variables are defined. Otherwise, unexpected values may result.

- R U
i

T s s ~f o e esiatTls (o AaPiad Im S 5 ~TET ORI s
ine type€ OI a variaoi€ is uciiiied ifi onke & WO Ways:

Explicit Variables may be declared a particular type with the FORTRAN type
declarations (paragraph 5. 1).
Implicit A variable not defined in a FORTRAN type declaration is assumed
to be integer if the first character of the symbolic name is I, J, K,
L., M, or N.
Example:

115, JK26, KKK, NP362L, M
All other variables not declared in a FORTRAN type declaration are assumed to be real.
Example:

TEMP, ROBIN, A55, R3P281

2-6 60360700A

2.5.1 INTEGER VARIABLES

Integer variables are defined explicitly or implicitly, They may assume values in the range

9 1e1<(2°9-1).

-(2
The maximum absolute value a particular integer variable may assume depends on usage.
The result of conversion from integer to real, of the integer multiplication, integer division,
or input/output under the I- format specification is limited to 248_1, The result of integer

duuliJ'?Oﬁ or subtraction can be as great as 299-1, Subscripts and DO indexes are limited
to 2 2. The range of values and number of significant digits are the same as for integer
constants described in paragraph 2.4.1, Each integer variable occupies one word of storage.
Examples:

IOTA LLLLLL

J M58A

K2504 NEGATE

2.5.2 REAL VARIABLES

Real variables are defined explicitly or implicitly. They may assume values in the range

107294, IX! < 107322

with approximately 14 significant digits.

More specifically, X may assume the following values:

_10+322 <« X< _10-294
X=0
10-294 < X < 10+322

The range of values and number of significant digits are the same as for real constants de-
scribed in paragraph 2.4.2. Each real variable is stored in floating-point format and
occupies one word.

Examples:
ALPHA XXXX
BETA 762597
GAMMA REAL?22

60360700A 2-17

2.5.3 DOUBLE PRECISION VARIABLES

Double precision variables must be defined explicitly by a type declaration. The range of
values and number of significant digits are the same as for double precision constants de-
scribed in paragraph 2.4.3. Each double pre(:181on variable occupies two words of storage
and can assume values in the range 10~ 294 ,dl < 101322 with approximately 29 significant
digits. Essentially, the double precision Varlable is a real variable with storage extended
in order to achieve greater precision.

Example:
DOUBLE PRECISION OMEGA, X, IOTA

A double precision real variable is generated for each of the three symbolic names,
OMEGA, X, and IOTA.

2.5.4 COMPLEX VARIABLES

Complex variables must be explicitly defined by a type declaration. A complex variable
occupies two words in storage. Each word contains a number in real varlable for’rnat This
ordered pair of real variables (C1 C,) represents the complex number(C +C Note that
a complex variable in FORTRAN ‘cannot actually be written as (C 4, Cy) Slnce?C and C2
must be constants when this form is used. The correct form is CMPLX (C) when
either C. or C, is a variable. (See Appendix C for information about CMP iX and paragraph

] A A £ hY
2.4.4 for inforimation about k,(J.LL.lp.LeA L,\)ubn.o.u\,::)

Example:

COMPLEX ZETA, MU, LAMBDA

A pair of real variables comprising a complex variable is generated for each of the three
symbolic names, ZETA, MU, and LAMBDA.

2.5.5 LOGICAL VARIABLES

Logical variables must be defined explicitly by a type declaration. Each logical variable
occupies one word of storage. It can assume the value of true or false. A logical
variable with a positive zero value is false. Any other value is true. When a logical
variable appears in an expression whose dominant mode is real, double, or complex, it is
not packed and normalized prior to its use in the evaluation of an expression (as is the
case with an integer variable).

Example:
LOGICAL VALUE, L33, PRAVDA

A logical variable is generated for each of the three symbolic names, VALUE, 1.33, and
PRAVDA.

[\
1
[es]

60360700A

2.6 SUBSCRIPTED VARIABLE

A subscripted variable may have one, two, or three subscripts enclosed in parentheses. More
than three produce a compiler diagnostic, Subscripts can be expressions in which the operands
are simple integer variables and integer constants. The operators are addition, subtraction,
multiplication, and division only. Such expressions must result in positive integers. TUse

of other values such as zero, real negative integer, complex, or 10g1ca1 may invalidate
results.

When a subscripted variable represents the entire array, ihe subscripts are the dimensions
of the array. When a subs rlpte d variable references a single element in an array, the

subscripts describe the relative location of the element in the array.

ANSI FORTRAN, X3.9-1966, allows only the forms c*v £ k, c*v, v = k, v, k for
subscript expressions, where ¢ and k are unsigned integer constants and v is an
integer variable,

Valid Invalid

Subscripted Variables Subscripted Variables
AL, J) FRAN (0)
B(I+2, J+3, 2*K+L) P(3.5)
Q(14) Z14(-4)
STRING (3*K*ILIM+3) EVAL(2+(3.1,2.5)
Q(1’4’2) 1(2:-5)3)

2.7 ARRAYS

An entire array, a block of successive storage locations, may be referenced by the array
name without subscripts (in I/O list, data statements, call statements, and function
references). Arrays may have one, two, or three dimensions. The array name and
dimensions must be declared in a DIMENSION, COMMON, or TYPE declaration prior to
the first program reference to that array.

Each element in an array may be referenced by the array name plus a subscript notation.
Program execution errors may result if subscripts are larger than the dimensions initially
declared for the array. The maximum number of elements in an array is the product of
the dimension.

Array elements are stored by columns in ascending locations.

60360700A 2-9

In the array declared as A(3, 3, 3):

A A A

111 A121 A3
Agy1 Bagr Aosy
Az Bga1 A33y A A A
112 #1122 Ai32
Ag1a Bgga Agsg
g1 Agzgg Az A A A
113 £123 B33
Ag13 Aggz Agss
Az1s Agaz Agss
The planes are stored in order, starting with the first, as follows:
A~ L A ~L43 . e (A gy~ L424
A211 - L+i A221 e e o A233 - L.+25
Agy = LH2 Agy ~L¥5........ e Aggq ~ L426

Array allocation is discussed under DIMENSION declaration. The location of an array
element with respect to the first element is a function of the maximum array dimensions
and the type of the array.

Given DIMENSION A(L, M, N), the location of A(i, j, k), with respect to the first element A
of the array, is given by A+(i-1+L*(j-1+M*(k-1)))*E.

The quantity enclosed by the outer parenthesis is the subscript expression. E is the element
length, the number of storage words required for each element of the array. For real,
logical, and integer arrays, E=1. For complex and double precision arrays, E=2.

Example:

In an array defined by DIMENSION A(3, 3, 3) the location of A(2, 2, 3) with respect to A(1, 1, 1) is:

Locn A(2,2,3) = (Locn A(1,1,1) + (2-1+3(2-1+3(3-1)))*1
= (L +22)%1 =L + 22

An array reference is not checked by the compiler to see whether it is within the limits of
the array as defined.

2-10 60360700A

CONTROL DATA CYBER 70/Model 76 FORTRAN permits the following relaxation of the
representation of subscripted variables:

Given A(Dl’ D2,D3), where the Di are integer constants,
then A(l,J,K) implies A(I, J,1)

A(1,J) implies A(1,J,1)

A(I) implies A(I, 1, 1)

A implies A(1,1,1) |

similarly, for A(Dl’ D2)

A(1,J) implies A(,J)
A(T) implies A(I, 1)

A implies A(1, l)T
and for A(Dl)
A() implies A(I)
+
A implies A(1)'

The elements of a single-dimension array A(D,) may not be referred to as A(l, J,K) or
A(I,J). Similarly, the elements of the double-dimension array A(Dl’ D2) may not be referred
to as A(I,J,K). Diagnostics occur if this is attempted.

ANSI FORTRAN, X3,9-1966, does not specify the above relaxations.

t :
' InI/O lists or in DATA statements, A by itself implies the whole array.

60360700A 9-11

EXPRESSIONS 3

An expression is a set of operands combined by operators and parentheses to produce, at

time of execution, a single-value result, The set may be a single character or it can be a
complex string of operands and operators nested within parentheses. There are four kinds
of expressions in FORTRAN: arithmetic, masking (Boolean), logical, and relational.
Arithmetic and masking expressions produce numerical results. Logical and relational
expressions produce truth values. Each type of expression is associated with particular
sets of operators and operands.

3.1 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of arithmetic operators and operands which, when
evaluated, produces a single numerical value,

The arithmetic operators are:

+ addition

- subtraction
multiplication

/ division

*% exponentiation

The arithmetic operands are:

Constants
Variables (simple or subscripted)

Function References
Examples:

A

3.14159

3 + 16.427

(XBAR + (B(I, J+1,K)/3))

-(C + DELTA * AERO)

(B - SQRT (B**2 - (4%AC)))/(2.0%A)

60360700A 3-1

3.1.1 FORMING ARITHMETIC EXPRESSIONS

Two arithmetic operators cannot be adjacent in an arithmetic expression. If minus is used
to indicate a negative operand, the sign and the element must be enclosed in parentheses
if preceded by an operator.

Parentheses may be used to indicate grouping as in ordinary mathematical notation. They
may not be used to indicate multiplication. Parentheses must always be used in pairs.

Illegal Legal
B*-A A*B-C
X/-Y*Z B*A/(-C)
R(-S) AX*(-C)

Any arithmetic operand or expression may be raised to a power that is a positive or
negative integer operand or expression.

Examples:

M#N
(X+Y)#+1
(A+B)**(-J)

Only a positive real operand or expression can be raised to a real power.

ALPHA**3, 2
(X+Y) %A
(A+B)*k(+3.)

When writing an integer expression, it is important to remember that to divide an integer
quantity by an integer quantity will always yield a truncated result.

Example:

3/2 % 4 - 4 rather than 6

3.1.2 ARITHMETIC EVALUATION

Parenthetical and functional expressions are evaluated first in a right-to-left scan. In
parenthetical expressions within parenthetical expressions, evaluation begins with the
innermost expression and proceeds outward. Separate parenthetical expressions are
evaluated as they are encountered in the right-to-left scan.

In an expression with no parentheses or an expression within a pair of parentheses in which
unlike operators appear, evaluation proceeds according to the following hierarchy of operators:

ol exponentiation first
/ division

multiplication next
+ addition

- subtraction ‘ last

3.9 603607004

In an expression with like operators, evaluation proceeds from left to right, that is,

A/B*C = (A/B)*C

Examples:

In the followin

A*x*B/C+D¥E*F-G is evaluated:
A*B » R,
RI/C - R2
D*E - RS
R3F - R4
R.4+R2 - R
RS-G - R

5
6 Evaluation completed

Ax:B/(C+D)*(E*F-G) is evaluated:
E+*F-G - R1
C+D - R2
A**B —» R3
Ra/Ry ~ Ry
R4*R1 - R5 Evaluation completed

H(13)+C(I, J+2)*COS(Z)**2 is evaluated:

R (-
R3+H(13) - R4 Evaluation completed

The following is an example of an expression with embedded parentheses.

A*(B+((C/D)-E)) is evaluated:
C/D - Ry
RI_E - Ry
Ry+B > Rq
Ro*A — R4 Evaluation completed

60360700A

g examnples, R indicates an intermediate regult in evaluation:

(A*(SIN(X)+1.)-Z)/ (C*(D-(E+F))) is evaluated:

E+F - Rl
D—R1 - R2
C*R, —~ R,
SIN(X) — R4
R4+1. - R5
AR > R

RG—Z - R7

R7/R3 ~ Rg Evaluation completed

3.1.3 MIXED-MODE ARITHMETIC EXPRESSIONS

Mixed-mode arithmetic is permissible for all combinations of types (integer, real, double-
precision, complex, and logical operands) using any of the mathematical operations except
exponentiation. The type of an evaluated mixed-mode arithmetic expression is the mode

of the dominant operand type. The order of dominance of operand types within an expression

is given by the following list which proceeds from highest to lowest:

Complex

Double precision
Real

Integer

Logical

be real and the other double precision or complex.

ANSI FORTRAN, X3,9-1966, does not specify logical operands in arithmetic expressions.
For operators other than exponentiation, the operands may be of the same type as one may

If B is preceded by a minus operator, the form is A**(-B).

A and B are treated as integers if type is logical,

For the various operand types, the type relationships of A**B are:

Type B
ok I R D C L
I I no T no no I
<! R R R D no R
:é D D D D no D
=1 C C no no no C
L I no no no I

T no indicates an invalid operation

For example, if A is real and B is integer, the mode of A**B is real.

illegal.

3-4

However, B**A is

60360700A

ANSI FORTRAN, X3.9-1966, does not specify exponentiation if either A or B is logical.

Examples:

1. Given real A, B; integer I, J.
dominant operand type is real.

The expression is evaluated:

A*B - R real
R,-I=-R real

R2+J - R3 real

The type of expression A*B- 1+J is real because the

The use of parentheses can change the evaluation. A,B,I,J are defined as above.

A¥B-(I-J) is evaluated:

I-J - R,
A*B » R,

integer

real

Convert R1 to real

Ry-R; =~ Ry

real

Given complex C,D, real A, B. Thetype of the expression A* (C/D)+B is complex
because the dominant operand type is complex,

The expression is evaluated:

C/D -~ R, complex
Convert A to complex
A*R, - R, complex
Convert B to complex
R2+B - R3 complex

Consider the expression C/D+(A-B) where the operands are defined in 3 above.

The expression is evaluated:

A-B - Rl real

C/D — R, complex
Convert R1 to complex
R1+R2 - R3 complex

Mixed-mode arithmetic with all types is illustrated by this example:

Given: the expression C*D+R/I-L

C Complex
D Double
R Real

I Integer
L Logical

60360700A

The dominant operand type in this expression is complex; therefore, the evaluated expression
is complex.

Evaluation:

Convert D to complex
(Truncate D to real and affix zero imaginary part.)
C*D —» R1

Convert R to complex

complex

Convert I to complex

R/I—+ R, complex
R2+R1 - R3 complex
R3—L - R4 complex

If the same expression is rewritten with parentheses as C*D+R/I-L) the evaluation proceeds:

Convert I to real
R/I~ R, real

Rl-L - R2 real
Convert D to complex
C*D - R3 real
Convert R2 to complex

R2+R3 - R4 complex
3.2 RELATIONAL EXPRESSIONS

A relational expression is a combination of two arithmetic expressions with a relational
operator. The relational expression will have the true or false value depending on
whether the stated relation is valid or not. A true relational expression is assigned the
value minus zero (all one bits). A false relational expression is assigned the value plus
zero (all zero bits).

The general form of a relational expression is:
a; op a,

where the a's are arithmetic expressions and op is one of the relational operators.

ANSI FORTRAN, X3.9-1966, specifies only relational expressions for which an arithmetic
expression is of type real or double precision and the other is of type real or double
precision or both arithmetic expressions are of type integer.

NOTE
A relational expression can have only two

operands combined by one operator. The
form a; Op a, Op ag is not valid.

5.6 60360700A

The relational operators are:

Symbol Meaning

.EQ. Equal to

.NE. Not equal to

.GE. Greater than or equal to
.LT. Less than

.LE. Less than or equal to

Relational expressions of the following forms where I is integer, R is real, D is double
precision and C is complex, are allowed:

I.LT.R (Mixed mode. Convert I to real)
I.LT.D (Mixed mode. Convert I to double precision)
I.LLT.C (Mixed mode. Real part of C is used)

A relation of the form a; op a, is evaluated from left to right.
The relations a; op 2,81 Op (az), (al) op a,, (al) op (az) are equivalent.

Usually programs will compute and execute faster if the minimum number of parentheses
is used.

Examples:
A.GT. 16. R(I).GE.R(I-1)
R-Q(D*Z.LE. 3. 141592 K.LT.16
I.EQ. J(K)
B-C.NE.D+E (I). EQ. (J(K))

Mixed mode is permissible in relational expressions for all combinations of types (integer,
real, double precision, and complex). The order of dominance of the operand types is

the same as that stated for mixed-mode arithmetic expressions (paragraph 3.1.3). When
complex expressions are tested for zero or minus zero, only the real part is used in the
comparison., For double precision numbers, the value is converted to real.

ANSI FORTRAN, X3.9-1966, specifies that the length of the real shall be converted to
double precision length for use in evaluating the relational expression.

Relational expressions are converted to equivalent arithmetic expressions at compile

time. t execution time, these equivalent arithmetic expressions are evaluated with program-
supplied values and compared with zero to determine the truth value of the corresponding
relational expression. For example, the relation p.EQ.q is equivalent to p-q=0. The

60360700A 3-7

difference is computed and tested for zero at the time of execution. If the difference is
zero (or minus zero), the relation is true; otherwise, it is false., Likewise, the relation
p.GE.q is equivalent to p-q> 0. At time of execution, the difference p-q is computed and
compared with zero. If the difference is greater than or equal to zero, the relation is true.
If the relation is less than zero, it is false.

The relational expression I. GE. 0 istreated astrueif I assumes the value minus zero or plus zero.

3.3 LOGICAL EXPRESSIONS

A logical expression is a combination of logical operands and/or relational expressions
with logical operators which, when evaluated, will have a value of true or false. The
general form of a logical expression is:
L1 op L2 op LS' ..
where the L's are logical operands or relational expressions and the op's are logical operators.
The logical operands are:
Logical constant Either the value .TRUE. or the value .FALSE.
Logical variabie A variable that has been declared in a LOGICAL
type statement. It can only assume the values

. TRUE, or .FALSE,

The logical operators are:

.NOT. Logical negation Reverses the truth value of the logical expression
that follows it

.AND. Logical conjunction Combines two logical expressions to produce a
value of ., TRUE. whenever both expressions are
true; otherwise, it gives a value of . FALSE.

.OR. Logical disjunction Combines two logical expressions to produce a
value of . TRUE. whenever either or both expressions
are true; otherwise, it gives a value of . FALSE,

Alternate forms of the logical operators are:

.N.
A,
.O.

ANSI FORTRAN, X3.9-1966, does not specify the alternate forms of the logical operators.

The logical operator .NOT. indicating negation appears in the form:
.NOT. L,

The value of the expression is examined. If the value is equal to plus zero, the logical
essgion has the value Talse. All other values are considered true.

then .AND. or .A.
then .OR. or .O.
A logical variable, logical constant, or a relational expression is, in itself, a logical
expression. If E,, L2 are logical expressions, then the following are logical expressions:
.NOT.L,
L,.AND.L
L;.OR.L

2
2

If L is a logical expression, then (L) is a logical expression.

If L., L, are logical expressions and op is . AND. or .OR. then L1 op op L2 is never
1egitlima?e.

.NOT. may appear in combination with .AND. or .OR. only as follows:
L..AND. .NOT.L
L,.OR. .NOT.L,

L,.AND. (.NOT.---)
L..OR. (.NOT.--+)

2

[

.NOT. may appear with itself only in the form .NOT.(.NOT.(.NOT. L))

Other combinations cause compilation diagnostics.

If Ll’ L2 are logical expressions, the logical operators are defined as follows:
.NOT.Ll is false only if L1 is true
Ll.AND.L2 is true only if Ll’ L2 are both true
LI.OR.L2 is false only if Ll’ L2 are both false

60360700A 3-9

Examples:
B-C< A< B + C is written
B-C.LE.A.AND.A.LE.B+C
FICA greater than 374.40 and PAYNMB equal to 5889.0 is written
FICA.GT.374.40, AND, PAYNMB. EQ. 5889. 0
An expression equivalent to the logical relationships (P - Q) may be written in two forms:
.NOT. (P.AND. (.NOT.Q))

N.(P.A.(.N.Q))

3.4 MASKING EXPRESSIONS

The masking expression is a generalized form of the logical expression in which the variables
may be types other than logical.

In a FORTRAN masking expression, 60-bit logical arithmetic is performed bit-by-bit on the
operands within the expression. The operands may be any type variable, constant, or
expression. No mode conversion is performed during evaluation. If the operand is complex,
operations arc periormed on the real part. Although the masking operaiors are identical
in appearance to the logical operators, their meanings are different. They are listed
according to hierarchy.
Examples:

.NOT. or .N. Complement the operand

.AND. or .A. Form the bit-by-bit logical product of two operands

.OR. or .O. Form the bit-by-bit logical sum of two operands

ANSI FORTRAN, X3.9-1966, does not specify masking expressions.

The operations are described as follows:

p \4 .NOT. p p .AND. v p .OR. v
1 1 0 1 1
1 0 0 0 1
0 1 1 0 1
0 0 1 0 0

3-10 60360700A

Let Bi be masking expressions, variables or constants of any type except logical. The
following are masking expressions:

.NOT.B Bl.AND.B B,.OR.B

1 2 1 2

If B is a masking expression, then (B) is a masking expression.
.NOT. may appear with . AND. or .OR. only as follows:

.AND. .NOT.
.OR..NOT.
LAND.(.NOT.--:)
.OR.(.NOT.:-")

Masking expressions of the following forms are evaluated from left to right: *

A (AND. B .AND. C...
A .OR. B .OR. C...

Arithmetic expressions appearing in masking statements must be enclosed in parentheses;
for example, E=(E*100B).OR.F.

Examples:
Given:
A 77770000000000000000 octal constant
D 000000007777 7T7TNTINT octal constant
B 00000000000000001763 octal form of integer constant
C 20045000000000000000 octal form of real constant
Then:
.NOT.A is 0000777T7TTTTTTITTIN
A AND. C is 20040000000000000000
A ,AND..NOT.C is 57730000000000000000
B .OR..NOT.D is 77TTTT77000000001763

The last expression could also be writtenas B .O. .N. D

60360700A 3-11

ASSIGNMENT STATEMENTS 4

4.1 ARITHMETIC ASSIGNMENTS

The general form of the arithmetic assignment statement is A = E, where E is an arithmetic
expression and A is any variable name, simple or subscripted. The operator = means that
A is replaced by the value of the evaluated expression, E, with conversion for mode if

necessary.

ANSI FORTRAN, X3.9-1966, specifies that if either A or E is complex logical, then both
A and E must be complex logical.

Examples:

A=-A
B{J,4) = CALC(I+1)*BETA+2,3478
39 XTHETA=7.4*DELTA+(A(I, J,K)**BETA)
RESPSNE=SIN(ABAR(INV+2,JBAR)/ALPHA(J, KAPL(I}))
4 JMAX=19
AREA = SIDE1*SIDE2
PERIM = 2. *(SIDE1 + SIDE2)

4.2 MIXED- MODE ASSIGNMENT

The type of an evaluated expression is determined by the type of the dominant operand.

This, however, does not restrict the types that identifier A may assume. A complex
expression may replace A, even if A is real. The following chart shows the A = E
relationship for all the standard modes. The mode of A determines the mode of the statement.

60360700A

Type of Expression E

Type of Double
A Complex Precision Real Integer
Complex A=E Set A = more Convert E
significant half to real
of E
real - E real real
imag) imag) imag)
Double A =E 1 A=E A =E Convert E
Precision real i onifi to real
r Less signifi- Lessg signifi-| to rea
cant is set cant is set A =E
to zero to zero Less significant
is set to zero
Real A=E___, Set A = more A=E Convert E
EEe significant half to real
of E
A=E A =E
Integer Truncate Truncate E Truncate E A=E
E cq1to to 48 bit integer |to integer
integer
A =E A=E A =E
Logical If Erea11 £ 0, IfE #0, IfE # 0, IfE #0,
A = Ereal A=moresig- A =E A=E
nificant half of E
If E = 0, IfE= O, If E =0, IfE =0,
real
A=0 A=0 A=0 A=0

When all the operands in the expression E are logical, the expression is evaluated as if all
the logical operands were integers.

p
11

Ll’ LZ’ L3 logical variables

R regl variabkle

I integer variable
then

I=L1%~L2+L3—L4

is evaluated as if the Li were all integers. The resulting value is stored as an integer in I,

R = L. *L_+L_.-L is evaluated as stated above, but the result is converted to a real (a
floating point quantity) before it is stored in R.

Because of computer hardware, when a mode conversion is made from real, double precision,
or complex to integer, and the real number (or real portion of complex number) is in the
range -1¢R< 0, this conversion is made.

Real Value Resulting Integer

~1<R<(-271T) -0

~2 ' <reo 0
Example:

Given:

Ci’Al Complex

D.,A Double

i’ 2

Ri;AB Real

Il,A4 Integer

Li’ A5 Logical
A1 = CI*CZ—CS/C4 (6.905, 15.393) = (4.4, 2.1)* (3.0, 2.0) - (3.3, 6.8) / (1.1, 3.4)

The expression is complex; the result of the expression is a two-word, floating point quantity.
Al is complex, and the result replaces Al'

A, = C1 4.4000+000 = (4.4,2.1)

3

The expression is complex. _A3 is real; therefore, the real part of C1 replaces A3.

60360700A 4-3

A3 = CI*(O., -1.) 2.1000+000 = (4.4,2,1)*%(0,,-1,)

The expression is complex, A3 is real; the real part of the result of the complex
multiplication replaces A3.

Ay = Rl/R2>=<(R3-R4)+11-(12>:<R5) 13=8.4/4.2%(3.1-2.1) + 14-(1%2.3)

The expression is real. A, is integer; the result of the expression evaluation, a real,
is converted to an integer replacing A4.
A2 = D1**2=1<(D2+(D3*D) 4.96800000000000+001 = 2, 0D**2%(3, 2D+(4. 1D*1. 0D))

+(D2 *D

4

1>:<D2) +(3.2D*2, 0D*3. 2D)

The expression is double precision. A, is double precision; the result of the expression
evaluation, a double precision floating Quantity, replaces A2.

A5 =C *Rl—R2+Il 1=(4.4,2.1)*8.4-4.2+14

1

The expression is complex. Since A5 is logical, the real part of the evaluated expression
replaces A5. If the real part is zero, zero replaces AS'

4.3 LOGICAL ASSIGNMENT

The general form of the logical assignment statement is 1. = E, where L is a logical
variable and E may be a logical, relational, or arithmetic expression.

Examples:

LOGICAL A, B, C, D, E, LGA, LGB, LGC

REAL F, G, H

A =B .AND. C .AND. D

A=F .GT. G.OR. F.GT. H

A = .N. (A.A. .N. B) ,AND. (C.0.D)

LGA = ,NOT. LL.GB

LGC = E .OR. LGC .OR. LGB .OR. LGA .OR. (A .AND, B)

n

H

4.4 MASKING ASSIGNMENT

The general form of the masking assignment statement is M = E. E is a masking expression,
and M is a variable of any type except logical. No mode conversion is made during the
replacement.

Examples:

INTEGER 1,J,K,L, M, N(16)

B=C.AND. L

F(J)=1.0OR. .NOT. L. .AND. F(J)

N(1) = 1.0.J.0.K.0.L.O.M

I=.N.I

D = (B.LE.C) .AND. (C.LE.E) .AND. .NOT.I

ANSI FORTRAN, X3.9-1966, does not specify masking assignment.

4.5 MULTIPLE ASSIGNMENT

Expressions of the form:
A=B=C=D=3.0%X

arepermissible and are executed right to left. The above expression would result in a code
which is equivalent to the expressions:

D=3.0*X

C=D

B=C

A=B

ANSI FORTRAN, X3.98-1966, does not specify multiple assignment.

60360700A 4-5

TYPE DECLARATIONS AND STORAGE ALLOCATION 5

Declarative statements are nonexecutable statements Whlch define th ar 1thmet1c and

11 3 T a
ailocation attributes and initial values of data. The

but they must precede any executable statement.

The six types of declarative statements are:

Type
DIMENSION
COMMON
EQUIVALENCE
DATA

LEVEL

5.1 TYPE DECLARATION

The type declaration statement provides the compiler with information on the structure of
variable and function identifiers,

Statement Characteristics
COMPLEX list 2 words/element Floating point
DOUBLE PRECISION list 2 words/element Floating point
or DOUBLE list

REAL list 1 word/element Floating point
INTEGER list 1 word/element Integer
LOGICAL list 1 word/element Logical

Type may precede any of the above statements,

ANSI FORTRAN, X3.9-1966, does not specify TYPE as prefix totype declaration
statements.

60360700A 5-1

DOUBLE may replace DOUBLE PRECISION in any FORTRAN statement in which the latter is
allowed.

ANSI FORTRAN, X3.9-1966, does not specify DOUBLE as a replacement for DOUBLE
PRECISION.

List is a string of identifiers separated by commas: integer constant subscripts are
permitted.

Example:

A, B1, CAT, D36F, GAR (1,2,3)
The type declaration is nonexecutable and must precede the first executable statement.
If an identifier is declared in two or more type declarations, the last declaration holds.

Any declaration following the first results in an informative diagnostic if the previously
declared type was not the implicit type of identifier.

ANSI FORTRAN, X3.9-1966, does not specify redeclaration of type.

An identifier not declared in a type declaration is type integer if the first letter of the
name is I, J,K.L.M, N; for any other letter it is type real. When subscripts appear

idi

the list, the associated identifier is the name of an array. The product of the subscripts
determines the amount of storage to be reserved for that array. Thus, dimension and type
information are given in the same statement. In this case, no DIMENSION statement is
needed. If a second declaration of storage appears, an informative diagnostic is issued
and the original declaration is used.

Standard library functions whose type is not integer or real are known to that compiler
and thus they need not appear in a type declaration in the user's program (see Appendix C).

Examples:

COMPLEX A412,DATA,DRIVE,IMPORT

DOUBLE PRECISION PLATE, ALPHA(20, 20), B2MAX, F60, JUNE
REAL I, J(20, 50, 2), LOGIC, MPH

INTEGER GAR(60), BETA, ZTANK, AGE, YEAR, DATE

LOGICAL DISJ,IMPL, STROKE, EQUIV, MODAL

DOUBLE RL, MASS(10, 10)

(92}
I
nNo

60360700A

5.2 DIMENSION DECLARATION

A subscripted variable represents an element of an array of variables. Storage is reserved

5.2.1 CONSTANT DIMENSIONS
The standard form of the DIMENSION declaration is:

DIMENSION v ,V

1,V2,... n

The variable names v, may have 1, 2, or 3 integer constant subscripts separated by commas,
as in SPACE (5, 5, 5). Under certain conditions within subprograms only, the subscripts
may be constants or variables (see paragraph 5.2.2).

Example:
DIMENSION A(10), B(20, 3)

The values given by the subscript in the DIMENSION define the maximum value which a
subscript may assume in a subsequent array reference.

The number of computer words reserved for an array is determined by the product of the
subscripts in the subscript string and the type of the variable, A maximum of 2171
elements may be reserved in any one array. If the maximum is exceeded, a diagnostic is
provided at compile time if constant subscripts are used.

Format:

COMPLEX ATOM
DIMENSION ATOM (10, 20)

In the above declarations, the number of elements in the array ATOM is 200. Two words
are used to contain a complex element; therefore, the number of computer words reserved
is 400. This is also true for double precision arrays. For real, logical, and integer
arrays, the number of words in an array equals the number of elements in the array.

If an array is dimensioned in more than one declaration statement, the first declaration
holds and an informative diagnostic is provided.

Examples:

DIMENSION A(20, 2, 5)
DIMENSION MATRIX(10,10,10), VECTOR(100), ARRAY(16,27)

60360700A 5-3

The maximum value a subscript may attain is as follows:

Subscript Subscript Maximum Subscript
Dimension Dimension Subscript Value Value
1 (IDA) () (1) IDA
2 (IDA, JDA) I, J) (I+IDA*(J-1)) IDA*JDA
3 (IDA,JDA,KDA) (1,J,K) (I+IDA*(J-1) IDA*JDA*KDA
+IDA*JDA
*(K-1))

I, J, and K are subscript expressions. IDA, JDA, and KDA are dimensions, for example,
A(IDA,JDA,KDA).

5.2.2 VARIABLE DIMENSIONS

When an array identifier and some or all dimensions appear as formal parameters in a
function or subroutine, the dimensions may be assigned through the actual parameter list
accompanying the function reference or subroutine call. Dimensions must not exceed the
maximum array size specified by the DIMENSION declaration in the calling program.

Example:

SUBROUTINE X(A,L,M)
DIMENSION A(L, 10, M)

5.3 COMMON DECLARATION

The COMMON declaration provides blocks of storage that can be referenced by more than
one subprogram. The declaration reserves blank, numbered, and labeled blocks. Starting
addresses for these blocks are indicated on the core map.

Areas of common information may be specified by the declaration:
COMMON/il/1ist1/i2/1ist2. ..

The common block identifier, i, may be 1-7 characters. If the first character is alphabetic,
the identifier denotes a labeled common block; remaining characters may be alphabetic

or numeric, If the first character is numeric, remaining characters must be numeric and
the identifier denotes a numbered common block. Leading zeros in numeric identifiers

are ignored. Zero by itself is an acceptable numbered common identifier. Labeled and
numbered COMMON are treated identically by the compiler.

NSI FORTRAN, X3.9-1966, specifies common block identifiers as consisting of up to six
characters, of which the first is alphabetic.

5-4 60360700A

Example:
COMMON/200/A, B, C

The following are common identifiers:

Labeled Numbered
AZ13 1
MAXIM 146
Z 6600
XRAY 0

A common statement without a label or with blanks between the separating slashes is
treated as a blank common block.

Example:
COMMON / / A,B,C or COMMON X, Y,Z(5)

List. is a string of identifiers representing simple and subscripted variables; formal
parameters are not allowed. If a non-subscripted array name appears in the list, the
dimensions must be defined by a type or DIMENSION declaration in that program. If an
array is dimensioned in more than one declaration, a compiler diagnostic is issued. The
order of simple variables or array storage within a common block is determined by the
sequence in which the variables appear in the COMMON statements.

Labeled and numbered common blocks may be preset; data stored in them by DATA
declarations is made available to any subprogram using the appropriate block. Data
may not be entered into blank common blocks by the DATA declaration.

Examples:

COMMON/BLK/A(3)
DATA A/1.,2.,3./
COMMON/100/1(4)
DATA 1/4,5,6,7/
COMMON is nonexecutable. Any number of blank COMMON declarations may appear in

a program. If DIMENSION, COMMON, or type declarations appear together, the order is
immaterial.

Since labeled and numbered common block identifiers are used only within the compiler,
they may be used elsewhere in the program as other kinds of identifiers except subroutine
or function names in the same job. A list identifier in one common block may not appear
in another common block. (If it does, the name is doubly defined.)

60360700A 5-5

At the beginning of program execution, the contents of all common areas are unpredictable
except labeled common areas specified in a DATA declaration.

Examples:

COMMON A,B,C
COMMON/ /E,F,G, I
COMMON/BLOCKA/A1(15), B1, C1/BLOCKD/DEL(5, 2), ECHO
COMMON/VECTOR/VECTOR(5), HECTOR, NECTOR

COMMON /9999/AX, BX, CX

Blank Common

The length of a common block in computer words is determined from the number and type
of the list variables. In the following statements, the length of common block A is 12
computer words. The origin of the common block is Q (1).

Example:

COMMON/A/Q(4), R(4), S(2)
REAL Q,R
COMPLEX S Block A

origin Q(1)
Q(2)
Q(3)
Q(4)
R(1)
R(2)
R(3)

) real part

S(1) imaginary part
) real part
) imaginary part

If there is more than one COMMON statement in a program or subprogram with the same
block name, all the elements are linked and stored consecutively as a single block.

If a subprogram does not use all of the locations reserved in a common block, unused

variables may be necessary in the COMMON declaration to ensure proper correspondence
of common areas.

COMMON/SUM/A,B,C,D (main program)
COMMON/SUM/E(3),D (subprogram)

In the above example, only the variable D is used in the subprogram. The unused variable
E is necessary to space over the area reserved by A,B, and C.

5-6 60360700A

Each subprogram using a common block assigns the allocation of words in the block. The
identifiers used within the block may differ as to name, type, and number of elements; but
the block identifier must remain the same.

Example:

PROGRAM MAIN
COMPLEX C
COMMON/TEST/C(20)/36/A,B,Z

The length of the block named TEST is 40 computer words. The length of the block
numbered 36 is 3 computer words.

The subprogram may rearrange the allocation of words as in:

SUBROUTINE ONE
COMMON/TEST/A(10), G(10), K(10)
COMPLEX A

The length of TEST is 40 words. The first 10 elements (20 words) of the block
represented by A are complex elements. Array G is the next 10 words, and array K
is the last 10 words. Within the subprogram, elements of G are treated as floating
point quantities; elements of K are treated as integer quantities,

The length of a common block other than blank common must not be increased by subprograms
using the block unless that subprogram is loaded first by the SCOPE loader. The symbolic
names used within the block may differ, however, as shown above,

5.4 EQUIVALENCE DECLARATION

The EQUIVALENCE declaration permits variables to share locations in storage. The
general form is:

EQUIVALENCE (A, B,...),(Al,BL,...), ...

(A,B,...) is an equivalence group of two or more simple or subscripted variable names;
formal arguments are not allowed. Subscripts may only be integer constants. A multiply
subscripted variable can be represented by a singly subscripted variable. The correspondence
is:

A(i, j, k) is the same as A ((the value of (i+(G- 1)*IH(k- 1)*I*J))*E)

where E is 1 or 2 depending on A's word length, i, j, k are integer constants; I and J are the
integer constants appearing in DIMENSION A(1,J,K). For example, in DIMENSION A(2,3,4),
the element A(1,1,2) can be represented by A{(7).

60360700A 5-7

EQUIVALENCE is most commonly used when two or more arrays can share the same storage
locations. The lengths need not be equal.

Example:
DIMENSION A(10, 10),1(100)

EQUIVALENCE (A,I)
5 READ 10, A

6 READ 20,1

The EQUIVALENCE declaration assigns the first element of array A and array I to the
same storage location. The READ statement 5 stores the A array in consecutive locations.
Before statement 6 is executed, all operations using A should be completed since the values
of array I are read into the storage locations previously occupied by A.

Variables requiring two memory positions which appear in EQUIVALENCE statements
must be declared to be COMPLEX or DOUBLE prior to their appearance in such statements.

ANSI FORTRAN, X3.9-1966, does not require type declaration prior to equivalence.

Example:

COMPLEX DAT,BAT

DIMENSION DAT(10, 10), BAT(10, 10), CAT(10, 10)
DOUBLE PRECISION CAT
COMMON/IFAT/FAT(2, 2)

EQUIVALENCE (DAT(6,3), FAT(2,2)), (CAT, BAT)

EQUIVALENCE is nonexecutable and can appear anywhere in the program or subprogram.
However, if it appears after the first executable statement, an informative diagnostic is
provided.

Any variable may be made equivalent to any other variable, provided that no two variables
in any one group are in COMMON, The variables may be with or without subscripts.

ANSI FORTRAN, X3.9-1966, does not specify that variables may be without subscript.

5-8 60360700A

The following examples illustrate changes in block lengths caused by the EQUIVALENCE
declaration:

Given:
Arrays A and B
Sa subscript of A
Sb subscript of B

Examples:
A and C in common, B not in common

Sb < Sa is a permissible subscript arrangement
Sb > Sa is not

The design of this compiler prevents the following use of EQUIVALENCE.

Block 1
origin A(1) COMMON/1/A(4),C

A(2) B(1) DIMENSION B(5)
A(3) B(2) EQUIVALENCE (A(3),B(2))
A(4) B(3)
C B(4)

B(5)
DIMENSION FAT (6)
COMMON /COMA [SKINNY

EQUIVALENCE (SKINNY, FAT(n))

The last statement will be flagged fatally if n > 1.

5.5 DATA DECLARATION

Values may be assigned to program variables or labeled common variables with the
DATA declaration.

Format:

DATA kl’ .. .,kn/dl,j*dz,...,dn/,kl, .. "kn/dl’ ...,dn/,

k, Identifiers representing simple variables, array names, or variables

! with integer constant subscripts or integer variable subscripts (implied
DO loop notation)

di Literals and signed or unsigned constants

j Integer constant repetition factor that causes the literal following the
asterisk to be repeated k times. If k is non-integer, a compiler diagnostic
occurs

60360700A 5-9

A semicolon cannot be used in the character string of data entered under L, R, or H control.

DATA is nonexecutable and can appear anywhere in the program or subprogram. When
DATA appears with DIMENSION, COMMON, EQUIVALENCE, or a type declaration, the
statement that dimensions any arrays used inthe DATA statement must appear prior to the
DATA statement. Variables in blank common or formal arguments may not be preset

by a DATA declaration. The index variable in an implied DO loop in a DATA statement
must be an implicit integer.

ANSI FORTRAN, X3.9-1966, does not specify that presetting a labeled COMMON may be
done other than in a BLOCK DATA subprogram.

Only single-subscript, DO-loop-implying notation is permissible. This notation may be used
for storing constant values in arrays.

ANSI FORTRAN, X3.9-1966, does not specify the use of DO-loop-implying notation for
storing constants in arrays.

Examples:

1. DIMENSION GIB(10)
DATA (GIB(l), I=1, 10)/1.,2.,3., 7%4.32/
Array GIB: 1.

T s T > TR
w
\V]

2. DIMENSION TWO(2, 2)
DATA TWO(1, 1), TWO(1, 2), TWO(2, 2), TWO(2, 1)/1.,2.,8.,4./
Array TWO: TWO(1, 1) 1
TWO(2, 1) 4
TWO(1, 2) 2.
TWO(2, 2) 3

()]
1
[uvy
]

60360700A

3. DIMENSION SINGLE(3, 2)

nN

DATA (SIN

s s LN

LE(),1=1,6)/1.,

~

ez L

3./

Array SINGLE: SINGLE(1, 1)
SINGLE(2, 1)
SINGLE(3, 1)

w DN

——
[y

»2) 2
SINGLE(3, 2) 3.

In the DATA declaration, the type of the constant stored is determined by the structure of
the constant rather than by the variable type in the statement. In DATA A/2/, an integer
2 replaces A, not a real 2 as might be expected from the form of the symbolic name A.
Data types requiring two words per element must be properly specified to maintain correct
correspondence in memory.

There should be a one-to-one correspondence between the variable names and the list. This
is particularly important in arrays in labeled and numbered common.

COMMON/BLK/A(3),B

DATA A/1.,2.,3.,4./

The constants 1.,2.,3., are stored in array locations A, A+1, A+2; the constant 4.
is discarded; B is unmodified and an error is issued. If this occurs unintentionally,

errors may occur when B is referred to elsewhere in the program.

COMMON/TUP/C(3)
DATA C/1.,2./

The constants 1., 2. are stored in array locations C and C+1; the content of C(3), that is,
iocation C+2, is not defined.

When the number of list elements exceeds the range of the implied DO, the excess list
elements are not stored, and a diagnostic is issued.

DATA (A(D),1=1,5,1)/1.,2.,...,10./

The excess values 6. through 10. are discarded.

60360700A 5-11

Examples:

1. DATA LEDA, CASTOR, POLLUX/15,16.0,84.0/

LEDA 15
CASTOR 16.0
POLLUX 84.0

2. DATA A(1,3)/16.239/
ARRAY A
A(1,3) 16.239
3. DIMENSION B(10)

DATA B/0000077, 0000064, 3*0000005, 5*0000200/

ARRAY B o717
064
05
O5
05
0200
0200
0200
0200
0200

4. COMMON/HERA/C(4)
DATA C/3.6,3%10.5/

ARRAY C 3.6
10.5
10.5
10.5

(97

-12 60360700A

5. COMPLEX PROTER (4)

DATA PROTER/4%(1.0,2.0)/

[
.
o

ARRAY PROTER

N = DN = DN
e e s e s

.

O O O O O O QO

R
.

6. DIMENSION MESSAGE (3)
DATA MESSAGE/9HSTATEMENT, 2HIS, 10HINCOMPLETE /

ARRAY MESSAGE STATEMENT IS
INCOMPLETE

Data declaration statements of the following forms may also be used to assign constant
values to program or common variables at load time.

DATA(il=va1ue list), (12 =value list), ...
The variable identifier, i, may be:

non-subscripted variable
array variable with constant subscripts

array name (implying the whole array)

The value list is either a single constant or set of constants whose number is equal to the

number of elements in the named array.
List contains constants only and has the form:
ays89s .- ’k(bl’bZ’ cee)s CisCornee

k is an integer constant repetition factor that causes the parenthetical list following it to
be repeated k times. If k is non-integer, a compiler diagnostic is provided.

ANSI FORTRAN, X3.9-1966, does not specify the preceding form of the DATA statement.

60360700A 5-13

Examples:

COMMON/DATA /GIB(10)

DATA ((GIB(1),I1=1, 10)=1.,2.,3., 7(4.32))
COMMON/DATA /ROBIN(5, 5, 5)

DATA (ROBIN(4, 3,2)=18.)

5.5.1 BLOCK DATA SUBPROGRAM

A block data subprogram may be used to enter data into labeled or numbered common
prior to program execution in place of a DATA declaration and it may appear more than
once in a FORTRAN program. However, blank common variables cannot be preset.

The form of a BLOCK DATA subprogram is:

BLOCK DATA n

FORTI.{AN declaration statements only

TN
LN

Where n is blank or anyacceptable alphanumeric identification of seven characters or less,
all elements in the common blocks must appear in a COMMON declaration in the subprogram
even if they are not in the DATA declaration.

ANSI FORTRAN, X3.9-1966, does not specify a non-blank identifier for BLOCK DATA.

Examples:

BLOCK DATA

COMMON/ABC/A(5),B,C/DEF/D,E,F

COMPLEX D, E

DOUBLE PRECISION F

DATA (A(L),L=1,5)/2.3,3.4,3%7.1/,B/2034.756/,D,E, F/2%(1.0,2.5), 17. 86972415872D30/
END

6036070CA

w
pt
Hx

5.6 LEVEL DECLARATION

The LEVEL declaration provides a means of allocating and referencing data within a
generalized storage hierarchy.

The form of the LEVEL declaration is:

LEVEL n, list

e level to which the variables and array
sible level numbers and the areas to which they

n

n is an unsigne
given in list ar
refer are:

di
[S]

o'

1 small core memory
2 large core memory, direct access

3 large core memory, block transfer

list consists of one or more variables and/or array names, separated by commas.
Dimensioning and type information is not given in a LVEL statement. Data assigned to
levels 2 and 3 must also appear in COMMON statements or as dummy arguments in
SUBROUTINE statements. When a large core memory variable does not appear in a
COMMON statement, but instead, is equivalent to a large core memory variable which
is in COMMON, then the message LEVEL 2 OR 3 VARIABLE NOT IN COMMON is
printed. This message is a warning only and production of a relocatable program is not
inhibited.

A LEVEL statement, when present, must precede the first executable statement of a
program or subprogram.

Variables and arrays appearing in LEVEL statements can also appear in DATA, DI-
MENSION, EQUIVALENCE, COMMON, type, SUBROUTINE, and FUNCTION statements.

No restrictions are placed in the manner in which variables or arrays allocated to
levels 1 and 2 may be referenced with the exceptions of the statement FUNCTION, its
references, and variable FORMAT specifications. Data assigned to level 3 can be
referenced only in-COMMON, CALL SUBROUTINE, FUNCTION, TYPE, and DIMENSION
statements. To store or retrieve LEVEL 3 variables, use the WRITECor READEC
system subroutines, respectively. Refer to Appendix K for detail or CALL WRITEC
and CALL READEC. The CALL READEC or CALL WRITEC data transfer operations
are the only operations that can be performed on level 3 data. Data allocated to levels
2 and 3 cannot be utilized as actual or formal parameters of statement functions.

If a large core variable appears as an actual argument in a reference to a FUNCTION
subprogram or to a library function subroutine, instructions are compiled for transferring
the large core variable to a small core memory location; the small core memory address
is transmitted as the argument to the FUNCTION subprogram or library function sub-
routine. This implies that the actual large core argument may not specify a result
location or an array name to the FUNCTION subprogram or library function subroutine.
Variable FORMAT specifications must not reside in large core memory.

An informative diagnostic will be issued if the level of any variable is multiply defined and
the level first declared will be assumed.

All members of a common block must be allocated to the same level of storage. A fatal
diagnostic will be issued if conflicting levels are declared for different members of a
common block. An informative diagnostic will be issued if some but not all members of
a common block are declared in LEVEL statement(s) and all members will be assigned
to the declared level.

60360700 C 5-15

If a variable or array name appears as an actual parameter in a CALIL statement the
corresponding formal parameter in the called subprogram must appear in a LEVEL
statement in the called subprogram and must be allocated to the same level as the actual
parameter.

If a variable or array name appears in a LEVEL statement and in an EQUIVALENCE
statement, the equivalenced variables must all be allocated to the same level.

Names of variables and arrays not included in a LEVEL statement will be allocated to
level 1 (SCM) by default.

ANSI FORTRAN, X3.9-1966, does not specify a LEVEL statement.

The following example illustrates the use of levels 2 and 3 and demonstrates their differences:

PROGRAM LTEST (OUTPUT)
LEVEL 2, B

LEVEL 3, C

DIMENSION A(10), B(10), C(10), D(10)
COMMON /BB/B

COMMON /cc/c

DO 11=1,10
10 A(D) =1.0
11 1 D(I) =2.0
12 DO 21=1,10
16 2 B(I) = A(T)
C LEVEL 2 IS USED FOR DIRECT ACCESS OF LARGE CORE MEMORY
20 PRINT 5, (A(D,B(I),D(I), I=1,10)
5 FORMAT (1H,2HA ,F10.1,5X,2HB ,F10.1,5X,2HD ,F10.1/)
42 CALL WRITEC (A, C, 10)
C LEVEL 3 IS USED FOR BLOCK TRANSFERS, TO AND FROM LARGE
CORE MEMORY
46 CALL READEC (D, C, 10)
52 PRINT 6, (D(I), 1=1,10)
6 FORMAT (1H,2X,2HD ,F10.1,5X,2HD ,F10.1/)
60 END
A 1.0 B 1. D 2.0
A 1.0 B 1, D .0
A 1.0 B 1. D
A 1.0 B 1 D
A 1.0 B D Level 2
A 1.0 B D > statement output
A 1.0 B 1. D .0
A 1.0 B 1, D 2.0
A 1.0 B 1. D 2. .
A 1.0 B 1. D 2.
D 1.0 D 1.07
D 1.0 D 1.0
D 1.0 D 1.0 Level 3 statement output
n 1.0 D 1.0
D 1.0 D 1.0 J

5-18 603607008

CONTROL STATEMENTS 6

Program execution normally proceeds from statement to statement as they appear in a
nrogram,. Control statements can he used to alter this sequence or cause a number of
iterations of a program section. Control may be transferred to an executable statement.
A transfer to a nonexecutable statement will result in a program error, which is always
recognized during compilation. With the DO statement, a predetermined sequence of
instructions can be repeated any number of times by incrementing a simple integer
variable after each iteration.

6.1 GO TO STATEMENT

GO TO statements transfer control to a labeled statement whose reference is fixed or
which is selected during execution of the program. The statement labels used in the GO TO
statements must be associated with executable statements in the same program unit as the
GO TO statement.

6.1.1 UNCONDITIONAL GO TO
Format:
GO TO k
k is a statement label and remains constant.

Execution of this statement discontinues the current sequence of execution and resumes
execution at the statement labeled k.

Example:
GO TO 10

5 DIF = DIF - SUM
10 SUM = SUM + 1

Statement 5 is skipped during execution of this sequence.

6.1.2 ASSIGNED GO TO
Format:
GO TO m, (ny,Ng,...,n)
GO TO m

ANSI FORTRAN, X3.9-1966, does not specify GO TO n.

60360700A 6-1

This statement acts in association with an ASSIGN statement as a variable-branched
GO TO. m is a simple integer variable assigned an integer value n in a preceding
ASSIGN statement (paragraph 6.1.3). The n, are statement labels. As shown, the
parenthetical statement label list need not be present,

Once having been defined by an ASSIGN statement, the variable m may not be referenced
by any statement other than GO TO m until it is redefined.

The comma after m is optional. However, when the list is omitted, the comma must be
omitted. m cannot be defined as the result of a computation. No compiler diagnostic is
given if m is computed, but the object code is incorrect. If an assignment has not been

made for an assigned GO TO statement and m is equal to zero, a diagnostic is provided at
object time. If m is non-zero, a valid assignment is assumed. FORTRAN does not preset
all locations to zero, nor does it check all the possible statement labels that may be assigned.

ANSI FORTRAN, X3.9-1966, requires the comma.

Example:

ASSIGN 15 to K

GO TO 60
id J =85
L = (I**2) +J
100 ASSIGN 20 to K
GO TO 60

60 CONTINUE

GO TO K
20 CONTINUE

When the program executes the ASSIGN statement, K has the value 15.

Control moves to the next statement which causes a jump to statement 60, CONTINUE.

The program executes the statements following 60 ii. sequence until it reaches GO TO K.
Since K previously has been assigned the value 15, control jumps to statement 15. Statement
15 equates J to the value 9. The following statement uses this value of J in an arithmetic

expression.

In the next statement, the program assigns 20 to K. The next step causes a jump to 60, a
CONTINUE. The program goes through the steps following 60 until it reaches GO TO K.

As K has been assigned the valuce 20, control jumps to statement 20, CONTINUE, and proceeds
in sequence.

6-2 60360700A

6.1.3 ASSIGN STATEMENT
Format:
ASSIGN k TO m
k is one of the statement labels appearing in the GO TO list; m is the simple integer variable
in the assigned GO TO statement. At the time of execution of an assigned GO TO statement,

the current value of m must have been assigned by an ASSIGN statement.

Example:

ASSIGN 10 TO NN

GO TO NN, (5, 10, 15,20)

Statement number 10 will be executed next.

6.1.4 COMPUTED GO TO

Format:

GO TO (nl,nz,...,nm),i

This statement acts as a many-branch GO TO; i is present or computed prior to its use
in the GO TO.

The nj are statement labels and i is a simple integer variable, Ifi< 1 or if i > m, the
transfer is undefined and an object time diagnostic will be issued indicating the point at
which the error was detected. If 1 < ig m, the transfer is to n..

The comma separating the statement number list and the index is optional.

ANSI FORTRAN, X3,9-1966, requires the comma.

Example:

N=3

GO TO (100, 101,102, 103) N

Statement number 102 will be the selected control transfer.

60360700A 6-3

For proper operations, i must not be specified by an ASSIGN statement. No compilation
diagnostic is provided for this error, but the object code is incorrect. ‘

Example:

ISWICH = 1
GO TO (10,20, 30),ISWICH

10 JSWICH = ISWICH + 1
GO TO (11,21, 31), JSWICH

Control transfers to statement 21.

6.2 IF STATEMENT
The IF statement is used to transfer control conditionally, in accordance with a logical

determination. At time of execution, an expression in the IF statement is evaluated and
the result determines the statement to which the jump will be made.

6.2.1 THREE.BRANCH ARITHMETIC IF
The form of the three-branch arithmetic IF is:
IF (c)nl, Ny, Tg
¢ is an arithmetic expression, and the n. are statement labels. This statement tests the
evaluated expression ¢ and jumps. accoréingly as follows:
c < 0 jump to statement n,
c =0 jump to statement n,

c> 0 jump to statement ng

In the test for zero, +0=-0. When the type of the evaluated expression is complex, only
the real part is tested.

ANSI FORTRAN, X3.9-1966, does not specify an IF statement with complex c.

Example:
IF (IOTA-6)3, 6, 9

If the evaluation of the expression IOTA-6 produces a negative result, control transfers to
the statement labeled 3; if zero, to 6; if positive, to 9,

wm
!
N
o
o
%)
»
I
3
=
<
b

6.2.2 TWO-BRANCH ARITHMETIC IF

The second form of the arithmetic IF statement, the two-branch IF, is allowed.
Format:
IF (e)nl, n,

e is either a masking or an arithmetic expression; e is evaluated and control is transferred
as follows:

et 0 jump to statement n,;
e =0 jump to statement n,
Example:

IF (I*J*DATA(K))100, 101
100 IF (I*¥Y*K)105, 106

ANSI FORTRAN, X3.9-1966, does not specify the two-branch arithmetic IF.

6.2.3 ONE-BRANCH LOGICAL IF
The form of the one-branch logical IF is:
IF (0)s
¢ is a logical or relational expression and s is any executable statement except another logical
IF, a DO statement,or an END. If ¢ is true (not plus zero), the statement s is executed. If
¢ is false (plus zero),the statement immediately following the IF statement is executed.
Example:
IF (A.LE.2.5) A = 2.0
When this statement is executed, the value of A will be compared with 2.5. If it is less than

or equal to 2.5, A will be set to the value 2, 0. If the comparison shows A to be greater than
2.5, control will proceed to the statement following.

6.2.4 TWO-BRANCH LOGICAL IF

The form of the two-branch logical IF is:

IF (g)nl, n,

¢ is a logical or relational expression and the n, are statement labels.

The evaluated expression is tested for true (not plus zero) or false (plus zero) condition. If
¢ is true, the jump is to statement n,. If ¢ is false, the jump is to statement n,.

ANSI FORTRAN, X3.9-1966, does not specify the two-branch logical IF,

Example:

IF () 5,6

60360700A 6-5

At the time of execution, { is tested for true or false condition. If true, control transfers
to statement 5. If false, control transfers to statement 6.

6.3 DO STATEMENT

A DO statement makes it possible to repeat a group of statements a designated number of
times using an integer variable whose value is progressively altered with each repetition.
The initial value, final value, and rate of increase of this integer variable is defined by a
set of indexing parameters included in the DO statement. The range of the repetitions
extends from the DO statement to the terminal statement and is called the DO loop.

The form of a DO statement is:

DOni-= m,,m

Doni= m,,my, Mg

n Label of the terminal statement of the loop.

i Simple integer variable called the index variable. With each repetition,

its value is altered progressively by the increment parameter m,.

Upon exiting from the range of a DO, the control variable remains defined
as the last value acquired in execution of the DO if the exit results from
execution of a GO TO or IF only. If the exit results from the DO loop

being gotigfied, the index variahle is no loncer well defined.
- == SRIET

OCLLE Sauioiitil; i LCa Va ki LI

my Initial parameter, the value of i at the beginning of the first loop.

m, Terminal parameter. When the value of i surpasses the value of my,
DO execution is terminated and control goes to the statement immediately
following the terminal statement.

m, Increment parameter, the amount i is increased with each repetition.

If it has the value 1, it may be omitted (first form above).

The DO statement, the statement labeled n, and any intermediate statements constitute
a DO loop. The first statement in the range of the DO must be an executable statement.
The terminal statement can not be a terminal, GO TO of any form, arithmetic IF, two-
branch logical IF, RETURN, STOP, PAUSE, another DO statement, a nonexecutable
statement, or a logical IF containing any of these forms.

The indexing parameters m,, My, M, are either unsigned integer constants or simple
integer variables. Subscrlpted var1%bles and negative or zero integer constants cause
a diagnostic. None of the indexing parameters may exceed 217.2,

The values of m,, Moy, and mg, may be changed during the execution of the DO loop.
The initial and terminal parameters (m 1 m2), if variable, may assume positive or negative
values,or zero. The increment parameter (m) must be greater than zero.

ANSI FORTRAN, X3.9-1966, states that at time of execution of the DO, m;, m
must be greater than zero.

, and m

2 3

6-86 60360700A

Example:

DO 25 1=1,100
25 A(D)=AM+B(I)

The index variable I is incremented by one for each cycle until the DO loop is executed 100
times. The control is then transferred to the statement immediately following statement
25.

X(I)=Y(J)
12 CONTINUE

1 is set to the initial value of one and incremented by two on each of the following cycles.
When the execution of the fifth cycle (I=9) is completed, control passes out of the DO loop.

The following program calculates the sum of all odd numbers and the sum of all even
numbers in the range of 1 to 100.

Format:

10DD=0
IEVEN=0
DO 25 1=1,99,2
I0DD=IODD + I
J=1+1

25 IEVEN=IEVEN+J

The first two steps zero out the counters for the odd and the even numbers. The DO
statement initiates a loop that begins at the index value of 1 and increments in steps of 2.
This series provides the odd numbers. The J = 1 + 1 statement provides the series of
even numbers by adding a 1 to each of these values. The operation of this DO loop is
tabulated in Table 6-1.

TABLE 6-1. DO LOOP OPERATION CHART

Loop | I 10DD=I0ODD+I | (store) J=1+1 (store) IEVEN=IEVEN~+J (store)
1 1 1=0+1 (1) 2=1+1 (2) 2=0+2 (2)
2 3 4=1+3 (4) 4=3+1 (4) 6=2+4 (6)
3 5 9=4+5 (9) 6=5+1 (6) 12=6+6 (12)
4 7 16=9+7 (16) 8=T+1 (8) 20=12+8 (20)
/ A \ ! A \
Successive values Progressive Sequence Progressive
of control variable addition of of even addition of
I which is the se- odd numbers numbers/ even numbers
quence of odd
numbers

60360700A 6-17

6.3.1 DO LOOP EXECUTION

The initial value of i, m., is increased by m, and compared with m, after executing the
DO loop once. If i does hot exceed m,, the 1o0p is executed a secord time. Then, i is
again increased by m, and again compared with m,. This process continues until i exceeds
m,. Control passes fq)o the statement immediately following n and the DO loop is satisfied.

Should m., exceed m, on the initial entry to the loop, the loop is executed once and control
is passedto the statément following n. When the DO loop is satisfied, the index variable i
is no longer well defined. If a transfer out of the DO loop occurs before the DO is satisfied,
the value of i is preserved and may be used in subsequent statements.

Examples:

DO loops may be nested in common with other DO loops:

—D ~D ~D
1 T 1
D D
s D, 2 L D,
Ln D
[? [’
n n,=n.=n
3 170903
~ 'n3
Py
[1y —1
| n,
DO 11=1, 10, 2 DO 100 L=2, LIMIT DO 51=1, 5
. . DO 5 J=I, 10
)) DO 5 K=J, 15

DO 2 J=1,5 DO 10 I=1, 10 i
DO 3 K=2, 8 10 CONTINUE 5 A=B*C
3 CONTINUE DO 20 K=K1, K2
2 CONTINUE 20 CONTINUE
DO 4 L=1,3 100 CONTINUE
4 CONTINUE

1 CONTINUE

Example:
To test Fermat's Last Theorem with combinations of integer values up to 1000, the theorem
states that the equation

XLyt ozt

l

is not valid for positive integer values of X, Y, and Z when n is an integer greater than 2.

Letting 1, J, K equal X, Y, Z to imply integer values, the test may be programmed as foll
PROGRAM FERMAT
DO 13 N = 3, 1000
DO 131 =1, 1000
DO 13 J =1, 1000
DO 13 K =1, 1000
IF (Ix*N+J*N-K**N)13,7, 13
7 WRITE (3,100),J,K,N
100 FORMAT(6HEUREKA /4I5)
13 CONTINUE
STOP
END
Example:

A loan is repaid in N monthly payments with each payment equal to P and with an interest
rate of R. The total repaid, S, is given by:

_P I
S g - mFEmyN)

The following program calculates the sums repaid for monthly payments of 24, 30, and 36
months in amounts of 20, 30, 40 and 50 dollars at interest rates of .06, .07, .08, .09, and

. 10.

DIMENSION SUM (5)
DO 30 N = 24, 36, 6
DO 20 J = 20, 50, 10
DO 101 =86, 10
R = I*0, 01
10 SUM (I) = J/R*(1.-1. /((1. +R)**N))
20 WRITE (3,40) (SUM(K),K=1,5)
40 FORMAT (5F10.2)
30 CONTINUE

60360700A

This would print out the sums, 5 to a line, according to the five interest rates.
tabulation of the printed output shows how the cycling proceeds through the DO loops with
the innermost loop varying the most rapidly and the outermost loop varying the least

rapidly.

Months

Amount

Rate Months

24

-

20

.06 30

6.3.2 DO LOOP TRANSFER

In a DO nest, a transfer may be made from one DO loop into a DO loop that contains it.
The transfer should not be made from the outer DO loop to the inner DO loop without first

executing the DO statement of the inner DO loop.

=

Not Allowed

-

Amount

40

)

P——

~)

))

Allowed

Rate

.06
.07
.08
.09
.10

The following

60360700A

A DO is said to have an extended range if, once the DO statement has been executed and
before the loop is satisfied, control is transferred out of the DO range to perform some
calculation and then transferred into the range of the DO. The return must not be made to
the terminal statement.

When a statement is the terminal statement of more than one DO loop, the label of that
terminal statement may not be used in any GO TO or arithmetic IF statement in the nest,
except in the range of the innermost DO.

Test 100 values for sign and accumulate three sums: one for negative values, one for
zero, and one for positive.

Format:

PROGRAM TEST
DIMENSION IOTA (100)
READ (1, 10) (IOTA(),I=1,100)
10 FORMAT(10I5)
INEG =0
IZERO = 0
IPOS = 0
DO 50 I=1, 100 DO
IF(IOTA(I)20, 30, 40) IF
20 INEG = INEG+IOTA(I) -]
GO TO 50 GO TO —
30 IZERO=IZERO+IOTA(I) D —
GO TO 50 GO TO —
40 IPOS=IPOS+IOTA(I) L -

50 CONTINUE =

ov N TS -

60360700A 6-11

Compare two arrays of numbers and print out all sets of equivalent values.

Format:

25

30

40

50

10

DO 401 =1,20 outer DO
DO 30J =1,20 inner DO
K=1

L=J

IF(AD.EQ.B(J)) GO TO 50 = = = = = = = - == = = = == m e — e — ===
L=J+I
CONTINUE
CONTINUE transfer
STOP !
WRITE(3,10) A(K),B(L) ~ =~ =~ = - ——— = m = ——— — = = — —— ——— -

GO TO 25

FORMAT(F8.5,3H=,F8.5)

SR ——

Control can be transferred out of a DO loop or nest of DO loops and returned, provided the
indexing parameters are not altered and control is transferred back to the range of the same
DO loop from which the exit was made.

Examples:

1.

This example is acceptable since the statement GO TO 2 occurs from the inner-
most DO loop.
1 GO TO 3
2 A(D=AD+BAI,)
GO TO 1
3 DO 11=1,M
A(1)=0
DO 1J=1,N
GO TO 2
1 CONTINUE
This example is not acceptable since the statement:

IF(A(I).NE. 0.0) GO TO 100

does not occur from the innermost DO loop.

DO 100 I=1,N
IF(A(I).NE.0.0) GO TO 100
DO 100 J=1,J
B(I, J)=B(I, J)/A(D)

100 CONTINUE

Statement number 100 causes index to increment for the inner DO loop first then
for the outer DO loop.

60360700A

3. This example is acceptable since statement number 3 is in the range of the DO
for I index and not in the range of the DO for J index.

N
-t
ny
Py
1=
o~
-
~
(V)
-

n
by

w

5 DO
1
2 CONTINUE
3 CONTINUE

For the preceding examples, the terminal statement number of the DO loop must be

referenced prior to the DO statement as a later reference to such a statement number
produces a message indicating a missing statement number.

6.4 CONTINUE STATEMENT

CONTINUE

The CONTINUE statement is most frequently used as the last statement of a DO loop to
provide a loop termination. If CONTINUE is used elsewhere in the source program it acts
as a do-nothing instruction and control passes to the next sequential program statement.

An example where a CONTINUE statement is needed is:

DO 101=1,N
IF (A(I1).EQ.B) GO TO 20
10 CONTINUE

6.5 PAUSE STATEMENT

PAUSE

PAUSE n

n <5 octal digits without an O prefix or B suffix. PAUSE n rolls out the program and
requests operator action at the station submitting the job. The words PAUSE n are displayed
as a dayfile message. An operator entry from the console can continue or terminate

the program. Program continuation proceeds with the statement immediately following

PAUSE. If nis omitted, it is understood to be blank.

In general, the PAUSE statement is no longer used because the FORTRAN programmer
does not directly oversee the running of this program.

60360700A 6-13

6.6 STOP STATEMENT

STOP

STOP n

n ¢ 5 octal digits without an O prefix or B suffix. STOP or STOP n terminates the program
execution and returns control to the operating system. If nis omitted, it is understood to be
blank. Common usage of STOP n has been to alert the program that his program has
abnormally or specifically ended.

6.7 RETURN STATEMENT

RETURN

A procedure subprogram must contain one or more RETURN statements to indicate the end
of logic flow within the subprogram and return control to the calling program. It omitted,
the successful execution of that subprogram will terminate the entire program.

In function subprograms, control returns to the statement containing the function reference
and impliesthat the value represented is the name of the functional availability. In a

subroutine subprogram, control returns to the next executable statement following the
CALL. A RETURN statement in the main program causes an exit to the operating system.

6.8 END STATEMENT
END

END must be the final statement in a program or subprogram. It is executable in the sense
that it effects termination of the program. The END statement may not be labeled.

The END statement may include the name of the program or subprogram which it terminates;
however, any information appended to the END statement is ignored by the compiler.

ANSI FORTRAN, X3.9-1966, does not allow END as the last executable statement. Also,
it must contain the character END only and must not be continued on another line.

6-14 60360700A

PROGRAM, PROCEDURES AND SUBPROGRAMS 7

7.1 SOURCE PROGRAM

A source program consists of a main program and optionally one or more auxiliary pro-
cedures and subprograms. The subprograms can be compiled separately and combined
with the main program for execution.

7.2 MAIN PROGRAM

The first statement of a main program should contain the name as an alphanumeric identifier
of 1-7 characters. The parameter list is optional on all forms. If the first card of a pro-
gram is not one of the following forms, a PROGRAM with a blank name and I/O files are
assumed. If more files than I/O are necessary, a PROGRAM card is required.

Format:

e eafy)

FORTRAN II PROGRAM name(f,,...,f)

PROGRAM name(f

!
i ANSI FORTRAN, X3.9-1966, does not specify the PROGRAM statement.

The fi represent the names of all I1/O files required by the main program and its subprograms.
n must not exceed 30. These parameters may be changed at execution time. At compile
time, they must satisfy the following conditions.

1. The file name INPUT (references standard input unit) must appear if any READ
statement is included in the program or its subprograms.

2. The file name OUTPUT (references standard output unit) must appear if any PRINT
statement is included in the program or its subprograms. OUTPUT is required
for obtaining a listing of execution diagnostics.

3. The file name PUNCH must appear if any PUNCH statementis included in the program
or its subprograms.

4. The file name TAPE i, must appear if a READ (i,n), WRITE (i,n), READ (i), or
WRITE (i) statement is included in the program or its subprogram (i is defined
in Chapter 10).

5. If I is an integer variable name for a READ (I,n) WRITE (I,n), READ (I), or WRITE (I)
statement which appears in the program or its subprogram, the file names
TAPEi,,...,TAPE i, must appear. The integersi.,... must include all values
which are assumed by the variable I. The file name]TAP i(may not appear in the
list of arguments to the main program,

60360700A 7-1

File names may be made equivalent at compile time. A PROGRAM statement having specified
buffer lengths will be accepted, but the compiler will ignore them., (See Appendix E

for details on file name handling at execution time.) In the list of parameters, equivalenced
file names must follow those to which they are made equivalent. The equivalenced name
appears on the left hand side of m= and the name to which it is made equivalent appears on

the righthand side. Their corresponding parameter positions may not be changed at execution
even though the names of the files to which they are made equivalent may be changed at that
time.

Example:
PROGRAM ORB (INPUT,OUTPUT,TAPE 1 = INPUT, TAPE 2 = OUTPUT)

A1l input normally provided by TAPE 1 would be extracted from INPUT and all listable output
normally recorded on TAPE 2 would be transmitted to the OUTPUT file.

7.3 PROGRAM COMMUNICATION

The main program and subprograms communicate with each other via arguments and COMMON
variables. Subprograms may call or be called by any other subprogram as long as the calls
are nonrecursive, That is, if program C calls D, D may not call C. A calling program

is a main program or subprogram that refers to another subprogram. A subroutine re-
ferenced by a program may not have the same name as the program.

7.4 SUBPROGRAM COMMUNICATION

Subprograms, functions, and subroutines use arguments as one means of communication. The
arguments appearing in a subroutine call or a function reference are actual arguments, The
corresponding arguments appearing with the program, subprogram, statement function, or
library function name in the definition are formal arguments. One or more of the formal
arguments or common variables can be used to return output to the calling program.

7.5 PROCEDURES AND SUBPROGRAMS

A FORTRAN program consists of a main program with or without auxiliary procedures and
subprograms. Auxiliary sets of statements are used to evaluate frequently used mathematical
functions, to perform repetitious calculations, and to supply data specifications and initial
values to the main program. FORTRAN provides six such procedures and subprograms:

Statement function

Intrinsic function

Basic external function

External function

External subroutine

Block data subprogram

7-9 80360700A

The intrinsic function and the basic external function are furnished with the system. They

are used to evaluate standard mathematical functions. The others are user-defined. The
statement function and intrinsic function are compiled within the main program or subprogram,
the basic external function is furnished with the system, and the others are compiled separately.
The first five are referred to as procedures since each is an executable unit that performs

ite get of caleculations when referenced The firgt four are called functions Thev return

25 STOL O Carluliauvillils WG il CliCell. a0 21050 10ULD Qi C CaliCl ILLCLiQils,. ~2:T5 LTvaeiil

a single result to the point of reference. The last three subprograms are user-defined
and are compiled independently. The block data subprogram supplies specifications and
initial values to the main program. Table 7-1 outlines these categorical divisions.

The use of procedures and subprograms is determined by their particular capabilities and the
needs of the program being written. If the program requires the evaluation of a standard
mathematical function, an intrinsic function or a basic external function is used (Appendix C).
If a single non-standard computation is needed repeatedly, a statement function may be
inserted in the program. If a number of calculations are required to obtain a single result,

a function subprogram may be written. If a number of calculations are required to obtain

an array of values, a subroutine can be written. When the program requires initial values, a
BLOCK DATA subprogram should be used.

7.5.1 PROCEDURE IDENTIFIERS

A procedure identifier is a symbolic name of up to seven alphanumeric characters, the first
of which must be alphabetic.

FORTRAN, X3.9-1966, limits all symbolic names to six characters.

There is no type associated with a symbolic name that identifies a SUBROUTINE. For a
function subprogram, type is specified either implicitly by its name, explicitly in the
FUNCTION statement, or in a type statement. For a statement function, type is specified
either implicitly by its name or explicitly in a type statement.

7.5.2 FORMAL ARGUMENTS

Formal arguments appear within the FUNCTION or SUBROUTINE statement or in the state-
ment function definition and serve only to allocate data values in these auxiliary routines.
For this reason, they are often referred to as dummy arguments,

Formal arguments may be the names of arrays, simple variables, library functions (basic
external functions), and subprograms (FUNCTION and SUBROUTINE). Since formal
arguments are local to the subprogram containing them,they may be the same as names
appearing outside the procedure.

No element of a formal argument list may appear in an EQUIVALENCE, COMMON, or
DATA statement within a subprogram. If it does, a compiler diagnostic results.

When a formal argument represents an array, it must be dimensioned within the subprogram.

If it is not declared, the array name must appear without subscripts and only the first
element of the array is available to the subprogram.

60360700A 7-3

V-4

Y00.09¢€09

TABLE 7-1. SUBDIVISION OF PROCEDURES AND SUBPROGRAMS
Statement Intrinsic Basic External External Block Data
Function Function External Function Subroutine Subprogram
Function

User-Defined

Compiler-Defined

User-Defined

Compiled within the
referencing program

Not

Compiled
~-LIBRARY -

Compiled externally to the referencing program

PROCEDURE: Any defined calculation that can be referenced and which
will exchange values between reference and definition through a list of

arguments,

EXTERNAL PROCEDURE: A procedure that is
defined externally to the program unit that
references it.

FUNCTION: A procedure that supplies a single result to be used at
It can also modify the arguments.

the »noint of reference.

EXTERNAL FUNCTION: A function
defined externally to the program
unit that references it.

SUBPROGRAM: A user-defined set of statements
compiled independently from the program unit which
references it or to which it supplies specifications and

initial values.

PROCEDURE SUBPROGRAM: An
external procedure that is defined
by FORTRAN statements.

SPECIFICATION
SUBPROGRAM: A
subprogram with-
out reference that
supplies specifi-
cations and initial
values to a main
program.

7.5.3 ACTUAL ARGUMENTS

Actual arguments appear within a CALL statement referencing a SUBROUTINE or in any
of the function references. They are associated with the corresponding formal arguments
in the auxiliary procedure being referenced and serve to transmit values on a one-to-one

basis. Accordingly, formal and actual arguments must agree in order, number, and type,

otherwise results are undefined. The permissible forms of actual arguments are the
following:

Logical expression

Relational expression

Constant

Simple or subscripted variable
Array name

FUNCTION subprogram name
SUBROUTINE subprogram name
Basic external function name
Intrinsic function name

A calling program statement label is identified by suffixing the label with the characterS.
This form should be used only when calling DUMP or PDUMP,

ANSI FORTRAN, X3.9-1966, does not allow a statement label followed by the letter S as a
possible actual argument.

Input/output file names may not be used as actual parameters.

The following is allowed:

END
SUBROUTINE SUB(I, B)

WRITE (I,n), B

END

60360700A 7-5

7.6 STATEMENT FUNCTION

A statement function is defined by a single expression and applies only to the program or
subprogram containing the definition. The name of the statement function is an alphanumeric
identifier. A single value is always associated with the name,

A statement function has the form:

name (pl,...,pn) =E

ANSI FORTRAN, X3.9-1966, does not allow E to contain array references or Hollerith
constants.

The p, are formal arguments and must be simple variables. The b; canhot be allocated
to LEVEL 2 or LEVEL 3. The maximum value of n is 60. E can be any arithmetic or
logical expression. It may contain a reference to a library function, statemeht function,
or function subprogram.

During the compilation, the statement function definition is compiled once at the beginning
of the program and a transfer is made to this portion of the program whenever a reference
is made to the statement function.

A statement function reference has the form:
name (pl, cees pn)

name is the alphanumeric identifier of the statement function. The actual arguments p;
may be any arithmetic expressions.,

The statement function name must not appear in a DIMENSION, EQUIVALENCE, COMMON,
or EXTERNAL statement. The name can appear in a type declaration but cannot be
dimensioned., Statement function names must not appear as actual or formal arguments

or use the same name as the program or subprogram they are in.

Actual and formal arguments must agree in number, order, and mode. The mode of the
evaluated statement function is determined by the name of the arithmetic statement function,

A statement function must precede the first statement in which it is used, but it must follow
all declarative statements (DIMENSION, type, etc.) which contain symbolic names referenced
in the statement function. All statement functions should precede the first executable
statement. Otherwise, an informative diagnostic is provided.

A statement function may not reference itself and if such an attempt is made, a fatal
diagnostic is provided.

7_8 60360700A

Example:

The following program calculates various parameters of a set of circles (one to ten). Input
is an array of diameters (DIAM). The calculations include the determination of area, arc
length, and circumference. These are given by statement functions at the beginning of

the program which are referenced as needed.
PROGRAM CIRCLE
DIMENSION DIAM (10

AREA (RADIUS) = 3. 14159*RADIUS**3 <
ARC (D, THETA) = 0.5 * D * THETA +————
CIRCUM (D) = 3. 14159 * D

— X-CIRCUM (DIAM(I)

— Y=ARC(DIAM(I), ANGLE)

——— Z=AREA(A+I)

END
Explanation: The first reference is contained in the statement
X=CIRCUM(DIAM(I)

in which the subscript I has been determined by calculations in the program. This reference
places the actual argument DIAM(I) in the statement function:

CIRCUM(D)=3. 14159*D

via the dummy argument D. The calculation is made and a single value for CIRCUM returned
to the referencing statement. The next reference supplies two actual arguments, DIAM (I)
and ANGLE, to the statement function for ARC through the dummy arguments D and THETA.
A single value for ARC is returned to the referencing statement.

The third reference uses an arithmetic expression, A+I, for an actual argument. This

enters the statement function calculation for AREA through the dummy argument RADIUS.
A single value for AREA is returned to the referencing statement.

60360700A 7-7

7.7 SUPPLIED FUNCTION

To evaluate frequently used mathematical functions, FORTRAN supplies predefined calculations
as well as references to library routines contained in the system. The predefined calculations
are called intrinsic or in-line functions and the references to the library routines are called
basic external functions.

The intrinsic or in-line function inserts a simple set of calculations into the object program
at compile time. The basic external function deals with more complex evaluations by
inserting a reference to a library routine in the object program. The names of the supplied
functions, their data types, and permissible arguments are predefined (Appendix C).
References using these functions must adhere to the format defined in the tables. The type
of a supplied function cannot be changed by a type statement.

7.7.1 INTRINSIC FUNCTIONS

An intrinsic function is a compiler-defined set of calculations that is inserted in the
referencing program at compile time. The form of the intrinsic function and its reference
are identical to the statement function outlined above. The table in Appendix C lists the
intrinsic functions available.

The name of an intrinsic function listed in this table must satisfy all of the following
requirements:

The name must not appear in an EXTERNAL statement or be the name oi a siatemert
function

The name must not appear in a type statement declaring it to be other than the type
specified in the table

Every appearance of the name must be followed by a list of parameters of correct type
enclosed in parentheses, unless the name is in a type statement

7.7.2 BASIC EXTERNAL FUNCTIONS

A basic external function is a call on one of the predefined library routines included with
the system. These library routines are used to evaluate standard mathematical functions
such as sine, cosine, square root, etc. A basic external function is referenced by the
appearance of the function name with appropriate arguments of correct type in an arithmetic
or logical statement. A list of basic external functions is given in Appendix C.

7.8 SUBPROGRAMS

Subprograms are used to implement programming capability beyond the limitations of
supplied functions and the statement function. Although written as a subset of another
program, the subprogram is compiled separately. It has its own independent variables, and
its use is not limited to communication with the program for which it was written. Procedure
subprograms handle routine calculations unique to the user. Specification subprograms are
used to enter values into COMMON and supply program specifications.

7-8 80360700A

Procedure subprograms are of two kinds: FUNCTION and SUBROUTINE. The FUNCTION
subprogram is referenced by the appearance of its name in the calling program. The
SUBROUTINE subprogram is referenced by a CALL statement in the calling program. A
procedure subprogram returns control to a calling program through one or more RETURN
statements. Because they are independent programs, procedure subprograms must

termingte with an END statement to signal to the compiler that the physical end of the

source program has been reached. An END statement is generated as a STOP. If a procedure
subprogram does not contain at least one RETURN statement, the successful execution of

that subprogram will terminate the entire program.

The fundamental difference between FUNCTION and SUBROUTINE subprograms is given
in Table 7-2.

There is one type of specification subprogram, the BLOCK DATA subprogram.

TABLE 7-2. DIFFERENCES BETWEEN A FUNCTION
AND SUBROUTINE SUBPROGRAM

Function Subroutine

Referenced by the name Referenced by a CALL statement
appearing in an arithmetic or
logical statement and returns a
value to be used as an operand
at the point of reference

Must have one or more arguments Need not have any arguments

Name is typed by first letter No type associated with name
or by the type designation
appearing before the word
FUNCTION

7.8.1 FUNCTION SUBPROGRAM

A FUNCTION subprogram is a collection of FORTRAN statements headed by a FUNCTION
statement and written as a separate program to perform a set of calculations when its name
appears in the referencing program. The mode of the function is determined by a type
indicator or the name of the function. The first statement of a FUNCTION subprogram must
be one of the following forms where name is an alphanumeric identifier and the p, are formal
arguments with n assuming any integer value up to 60. A FUNCTION statement fhust have

at least one argument.

Example:
FUNCTION name (py, ... »p,)
type FUNCTION name (py,...,p,)
FORTRAN II FUNCTION name (pl, oo pn)

FORTRAN II type FUNCTION name (pgs«««» pn)

ANSI FORTRAN, X3.9-1966, does not specify FORTRAN II.

60360700A 7-9

Type is REAL, INTEGER, DOUBLE PRECISION, DOUBLE, COMPLEX, or LOGICAL.
When the type indicator is omitted, the type is determined by the first character of the
function name.

ANSI FORTRAN, X3.9-1966, does not specify DOUBLE as a replacement for DOUBLE
PRECISION.

The FUNCTION name must not appear in a DIMENSION statement or an array declaration.
FUNCTION must be assigned a value by appearing at least once in the subprogram as one of
the following:

Left-hand identifier of a replacement statement
A DO index variable

An element of an input list

An actual argument of a subroutine reference

If not, the value returned is undefined. The name of a FUNCTION must not appear in an
array declaration,

The FUNCTION subprogram accepts arguments from the referencing program through the
argument list and returns a value through the FUNCTION name. The FUNCTION subprogram
may define and redefine one or more arguments and return these values as is done in a
SUBROUTINE (paragraph 7.8.2).

ANSI FORTRAN, X3.9-1966, does not allow an assign variable to be an actual argument
or to be in COMMON.

When a FUNCTION reference is encountered in an expression, control transfers to the
FUNCTION subprogram indicated. When RETURN is encountered in the FUNCTION sub-
program, control returns to the statement containing the FUNCTION reference. The value
of the FUNCTION is the value of function name.

Example:
Referencing Program FUNCTION Subprogram
PROGRAM IMPED > FUNCTION VECTOR (X, Y)
‘ Z=SQRT (X*X+Y*Y)
. IF (Z)2,2,3
RESULT=VECTOR (A, B) «—— 2 VECTOR=0.
GO TO 5
VECTOR=Z
— 5 RETURN
END
END

-1

10 60360700A

The FUNCTION subprogram is referenced by the appearance of the name and list in the
statement

RESULT=VECTOR (A, B)

The values represented by the actual arguments A and B are communicated to the subprogram
through the dummy arguments X and Y.

The first calculation in the & invol
SQRT. This reference passes the calculated value in the parentheses to the basic external
function for obtaining a square root. The result is returned to the subprogram and placed
in storage location Z. Z is then tested to see if it is positive. If not, the function name
VECTOR is equated to zero and that value is returned to the reference; if it is positive,
the function name VECTOR is equated to that positive value and returned to the reference.

ihprogram involves the anpearance of a secondary reference:
= b

Mpecal dllcT O cicille

The following example shows how a FUNCTION subprogram can establish a value for the
FUNCTION name by using an input statement rather than an arithmetic statement.

Referencing Program FUNCTION Subprogram
PROGRAM INPUT (TAPE 3) [INTEGER FUNCTION FUNCT (I)
INTEGER FUNCT READ (1, 1) FUNCT
J = FUNCT (1) l 1 FORMAT (12)
WRITE (3,1)J RETURN
1 FORMAT (I5) END
STOP
END

Since the subprogram is intended to deal with integer values and its name is implicitly real,
the name is typed integer in the referencing program and in the FUNCTION statement of
the subprogram. The subprogram is referenced by the statement:

J = FUNCT (1)

which arbitrarily passes the constant 1 as an actual argument. It enters the subprogram
through the dummy argument I in the FUNCTION statement but is never used. This step

is performed solely to satisfy the requirements of a FUNCTION subprogram, The sub-
program reads in the value from a card and stores it in the location designated by the name
of the FUNCTION subprogram. There it is available to the referencing program which
stores it in J and then prints it out.

60360700A 7-11

7.8.2 SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram is a collection of FORTRAN statements headed by a SUBROUTINE
statement and written as a separate program to perform a set of calculations when called

by a referencing program. It may return none, one, or more values. A value or type is

not associated with the subroutine name itself.

The first statement of a subroutine subprogram must have one of the following forms:
FORTRAN II SUBROUTINE name(pl, e pn)

SUBROUTINE name(p;, . ..,p,)

name alphanumeric identifier and p; are formal arguments; n may be 1 to 60

p; parameter list, optional

The SUBROUTINE subprogram may accept arguments from the calling program and can
return results through its arguments or in COMMON.

Example:
Referencing Program Subprogram
PROGRAM TENSOR s SURRQUTINE MATRIY
COMMON/BLK1/X(20, 20), COMMON/BLK1/A(20, 20),
Y (20, 20), Z(20, 20) B(20, 20), C(20, 20)

CALL MATRIX DO 101 =1,20
Next statement DO 10J = 1,20

C(1,J)=0.0

DO 10K = 1,20

10 C(1,J) = C(IQ,J) + A1, K) *B(K, J)

END RETURN

END

7-19 603607004

The referencing program reserves storage for three successive arrays in the labeled
COMMON block. It is assumed that two of these arrays, X and Y, have values stored

in them before the CALL statement is reached. The CALL statement transfers control to
the subroutine without passing any arguments. The subroutine performs the matrix
multiplication of the first two arrays and stores the results in the third. Control is returned

to the next statcment after the CALL in the referencing program. The subroutine obtains

the values for its calculations from the labeled common block and returns the results it
derives to the same labeled common block.,

~

CALL SSWTCH (i, j)

\

If sense switch i is down, set j = 1. If sense switchiis up, set j =2, iis 1to 6. Ifiis out
of the range, the results are undefined.

CALL OVERFL (j)T

If a floating point overflow condition exists, set j = 1. If no overflow exists, set j = 2;
set the machine to a no overflow condition.

CALL DVCHK (j)T

If division by zero occurred, set j = 1 and clear the indicator; if division by zero did not
occur, set j = 2.

CALIL SECOND (t)

Returns CP time from start of job in seconds in floating point format to three decimal
places. tis a real variable,

CALL EXIT
Terminate program execution and return contrcl to the monitor.
Format:

CALL DUMP (a 1,b f ceesdy ,b ,f)
(n < 20)
CALL PDUMP (al’bl’fl’ ceesa_,b ,f)
n’ n’'n
Dump storage on OUTPUT file in indicated format. For PDUMP, control returns to the
calling program; for DUMP, execution terminates and control returns to the operating
system. If no arguments are provided, an octal dump of all storage occurs.

The a; and bi are SCM core addresses, variables, or statement numbers. They indicate
the first word and the last word of the storage area to be dumped.

The statement numbers must be 1 to 5 digits trailed by an S; CALL DUMP (108, 20S, 0). If
b. is the last statement of a DO loop, then b S is not allowed to be used as the last word of
tﬁe storage area to be dumped.

ANSI FORTRAN, X3.9-1966, does not allow a statement label followedby the letter S as a
possible argument.

T Currently J is always set to 2 (see LEGVAR in Appendix C).

60360700A 7-13

The dump format indicators are as follows:

f = 0 or 3 octal dump
f
f

il

1 real dump

2 integer dump; if bit 48 is set (normalize bit)

CALL READEC (cm,lcm,n)

Transfers words from LCM into SCM.

cm SCM address; array or variable name
lem LCM relative address; array or variable name
n Count of the number of words to be transferred; must be an integer variable

or integer constant
CALL WRITEC (cm,lcm,n)

Transfers word from SCM to LCM as for READEC.

cm SCM address; array or variable name
lem LCM relative address; array or variable name
n Count of the number of words to be iransferred; must he an integer variable

or integer constant
Example:

PROGRAM ECS (INPUT,OUTPUT)
DIMENSION A (1000)

DIMENSION B (1000)

LEVEL 3, B

COMMON/LCM/B

CALL WRITEC(A, B, 1000)

C TRANSFER 1000 CM WORDS BEGINNING AT SCM LOCATION
C A INTO LCM BEGINNING AT LOCATION B OF THE USERS

C LCM AREA,

END

CALL OPENMS (u,ix, £, p)
CALL READMS (u,fwa,n,1i)
CALL WRITMS (u,fwa,n,i) &
CALL STINDX (u,ix,)
CALL CLOSMS (u)

Control transmission between SCM and
a mass storage device

7-14 60360700A

u Logical unit number
ix First word address of the index (in SCM)
[Length of index

¢ > 2 (number of index entries)+1 for name index, { > number of index
entries + 1 for number index

p=1 Indicates file is referenced through a name index, p=0 indicates a number
index

fwa SCM address of the first word of the record

n Number of SCM words to be transferred

i Record number or address. When address, it is the address of record

number or record name. Record number is right justified and record
name is left justified display code 1-7 characters.

OPENMS is used to open the mass storage file. This routine informs SCOPE that this file
is a random access file; and, if the file exists, the master index is read into the area
specified by the program.

READMS and WRITMS perform the data transfers to and from SCM.
STINDX is called to change the file index to the base specified in the CALL.

CLOSMS is used to close the mass storage file and write out the index and the control word
to the file. The control word is the first word of the file, It points to the index which is
the last record. The operations performed by CLOSMS will be automatically performed by
STOP or END.

7.9 CALL STATEMENT

The executable statement in the calling program for referring to a subroutine is:

CALL name
or
CALL name (pl, ces ,pn)

name is the name of the subroutine being called, and p is an actual argument; n is 1 to 60.
The name should not appear in any declarative statement in the calling program except
the EXTERNAL statement when name is also an actual argument,

The CALL statement transfers control to the subroutine. When a RETURN statement is
encountered in the subroutine, control is returned to the next executable statement following
the CALL statement in the calling program. If the CALL statement is the last statement

in a DO loop, looping continues until the DO loop is satisfied. The CALL statement is
executed each time the terminal statement is reached.

60360700A 7-15

Examples:
1. SUBROUTINE BLDX(A, B, W)
W=2.*B/A
RETURN
END

Calls

CALL BLDX(X(1),Y({I,W)
CALL BLDX(X(I)+H/2.,Y(I) + C(J), PROX)
CALL BLDX(SIN(Q5, EVEC(I+J), OVEC(L)

2. SUBROUTINE MATMULT
COMMON/ITRARE/X(20, 20),Y(20, 20), Z(20, 20)
DO 10 1=1,20
DO 10 J=1,20
Z(1, J)=0.
DO 10 K=1,20
10 Z(1, J)=Z(1,J) + X(I. K)*Y (K, J)
RETURN
END
Operations in MATMULT are performed on variables contained in the common block
ITRARE. This block must be defined in all calling programs.
COMMON/ITRARE/AB(20, 20), CD(20, 20), EF(20, 20)
CALL MATMULT

3. SUBROUTINE AGMT (SUB, ARG)

COMMON/ABL /XP(100)
ARG=0
DO 5 1=1, 100

5 ARG=ARG +XP(I)
CALL SUB
RETURN
END

Here the dummy argument SUB is used to transmit another subprogram name. The

call to SUBROUTINE AGMT might be CALL AGMT (MULT, FACTOR), where
MULT is specified in an EXTERNAL statement (paragraph 7.10).

-J

-16 60360700A

7.10 EXTERNAL STATEMENT

When the actual argument list which calls a function or subroutine program contains a function
or subroutine name, that name must be declared in an EXTERNAL statement.

The EXTERNAL statement must precede the first statement of any program which calls a
function or subroutine subprogram using the EXTERNAL name. When it is used,

TR YT TINT A Ao v T3 ™ ™ T o
EXTERNAL alw d.yo appears in the calling program; it may not be used with statement

functions. If it is, a compiler diagnostic is provided.

Examples:

1. A function name used as an actual argument requires an EXTERNAL statement.

Calling Program Reference

EXTERNAL SIN
CALL PULL(SIN,R,Q)

Called Subpr:ogram

SUBROUTINE PULL(X,Y,Z)

Z=X(Y)

But a function reference used as an actual argument does not need an EXTERNAL
statement.

Calling Program Reference

CALL PULL(SIN(R), Q)

Called Subprogram

SUBROUTINE PULL(X, Z)

END

60360700A 7-17

2. A subroutine used as an actual argument must have its name declared in an
EXTERNAL statement in the calling program.

COMMON/ABL/ALST(100)
EXTERNAL RTENTA, RTENTB
CALL AGMT(RTENTA, V1)
CALL AGMT(RTENTB, V1)

When a subprogram name appears as an actual argument, any arguments to be associated with
a call of this subprogram can be passed via actual arguments.

Examples:

Calling Program

EXTERNAL ADDER

CALL SUB(ADDER, A, B)

Called Subprogram

SUBROUTINE SUB(X, Y, Z)
CALL X(Y, Z)

END

CALL SUB(ADDER(A, B)) would imply that ADDER is a function reference, not a subroutine
name.

7.11 ENTRY STATEMENT
The statement provides alternate entry points to a FUNCTION or SUBROUTINE subprogram.

ENTRY name

name is an alphanumeric identifier, and may appear within the subprogram only in the
ENTRY statement. Each entry identifier must appear in a separate ENTRY statement. The
dummy arguments, if any, appearing with the FUNCTION or SUBROUTINE statement do

not appear with the ENTRY statement. ENTRY may appear anywhere within the subprogram
except it should not appear within a DO or as the dependent statement of a logical IF; the
ENTRY statement cannot be labeled. The first executable statement follow ing ENTRY
becomes an alternate entry point to the subprogram.

60360700A

In the calling program, the reference to the entry name is made just as though reference
were being made to the FUNCTION or SUBROUTINE in which the ENTRY is embedded. The
name may appear in an EXTERNAL statement, and ifit is a function entry name, in a type
statement.

The ENTRY name may not be given type explicitly in the defining program; it assumes
the same type as the name in the FUNCTION statement.

Examples:

FUNCTION JOE(X,Y)
10 JOE=X+Y

RETURN

ENTRY SAM

IF (X.GT.Y) 10,20

20 JOE=X-Y
RETURN
END

This could be called from the main program as follows:
INTEGER SAM

.

Z=A+B-JOE(3. *P,Q-1)

R=S+SAM(Q, 2. *P)

ANSI FORTRAN, X3.9-1966, does not specify the ENTRY statement.

7.12 VARIABLE DIMENSIONS IN SUBPROGRAMS

In many subprograms, especially those performing matrix manipulation, the programmer
may wish to vary array dimensions each time the subprogram is called.

This is accomplished by specifying the array name and its dimensions as dummy arguments
in the FUNCTION or SUBROUTINE statement. The corresponding actual arguments specified
in the calling program are used by the called subprogram. The maximum dimensions that
any given array may assume are determined by dimensions in a DIMENSION, COMMON,

or type statement in the program.

60360700A 7-19

The dummy arguments representing the array dimensions must be simple integer variables.
The array name must also be a dummy argument. The actual argument representing the
array dimensions must have integer values.

ANSI FORTRAN, X3.9-1966, does not allow the array dimension to be changed during
execution of the subprogram.

The total number of elements of the corresponding array in the subprogram may not exceed
the total number of elements of a given array in the calling program.

Example:
Consider a simple matrix add routine written as a subroutine:

SUBROUTINE MATADD (X,Y,Z,M,N)
DIMENSION X (M, N), Y(M, N), Z(M, N)
DO10I=1,M
DO10J=1,N
10 Z(I, J)=X(I, J)+Y(1, J)
END
The arrays X, Y, Z and the variable dimensions M, N all appear as dummy arguments

in the SUBROUTINE statement and also in the DIMENSION statement as shown. If the
original calling program contains the array allocation declaration

DIMENSION A(10, 10), B(10, 10), C(10, 10), E(5, 5), F(5, 5), G(5, 5), H(10, 10)

the program may call the subroutine MATADD from several places within the main program
as follows:

CALL MATADD(A, B, C, 10, 10)

CALL MATADD(E, F,G, 5, 5)

CALL MATADD(B, C, A, 10, 10)

CALL MATADD(B, C, H, 10, 10)

The compiler does not check to see whether the limits of the array established by the
DIMENSION statement in the main program are exceeded.

7-20 60360700A

7.13 PROGRAM ARRANGEMENT

FORTRAN assumes that all statements and comments appearing between a PROGRAM,

TTAT AMT AT YT

SUBROUTINE, or FUNCTION statement and an END statement belong to one program (see

Appendix E).
Format:

PROGRAM WHAT

END

SUBROUTINE S1(A, B)

END

SUBROUTINE S2

END

REAL FUNCTION F1(P1)

END

60360700A 7-21

OVERLAYS 8

An overlay is a portion of a program written on a file in absolute form and loaded at

<ecution time without delay for relgoeation The nger dafinegs an noverlsy with the
TATUULLIULL LL11IiT W ALALIivUL uuTiay 4iwvai L TAve LaAJile A LIT T ML L LITT Qika WY DAL Lk YT &vid i =

OVERLAY card. He calls it with the CALL OVERLAY statement.

[4¢]

8.1 LEVELS

Levels are used to describe the sequence of loading overlays and to specify which sections
of code are to overlay others. In SCOPE 2, there are three levels of overla{fing, main,
primary, and secondary. Up to three overlays may be in core simultaneously. They are
usually loaded contiguously. The primary or secondary levels may be replaced by other
overlays. The following diagram demonstrates the relationship of the levels when they are
loaded into core. This example shows a number of different core loads which might exist
for a single job.

H

I

MAIN | ___ _ _ MAINOVERIAY 0,0 - —da

H

PRIMARY 1,0 2,0 4,0 6,0 7,0 E

R

— —_— — 2’1 -] L

1,2 U N E

SECONDARY d 4,1 4,2 4,3 v
1,1 E v

L

60360700A 8-1

8.2 IDENTIFICATION

Overlays may be loaded from specified files. A single overlay may be loaded only from a
single file, although many files may be used for loading by a single job. An overlay is
identified by its level number. The level number is a pair of two-digit octal numbers (0-77).
The first number is the primary level, the second is the secondary level. An overlay

with a non-zero primary level and a zero secondary level (1, 0) is a primary overlay. Any
overlay with the same primary level and a non-zero secondary level (1, 1) is associated with
and subordinate to the corresponding primary and is called a secondary overlay. This
difference is significant when overlays are loaded. Level (0, 0) is reserved for the initial
or main overlay which is neither primary nor secondary; it is a special case which remains
in memory during overlay execution. Overlay numbers (0, 1) to (0, 77) are illegal, that is,
the main overlay cannot have any secondaries.

The main overlay (0, 0) is loaded first. All primary overlays, when called, are loaded at
the same point immediately following the main overlay. Secondary overlays are loaded
immediately following their associated primary overlays. Loading the next primary overlay
destroys the first loaded primary overlay and any associated secondary overlays. Likewise,
the loading of a secondary overlay destroys a previously loaded secondary overlay.

8.3 COMPOSITION

Each overlay must have at least one program having the characteristics of a FORTRAN
main program.

An overlay may consist of one or more FORTRAN or COMPASS programs. The program
name becomes the primary entry point for the overlay through which control passes when
the overlay is called. An overlay cannot reference entry points in higher level overlays;
for example, (1, 0) the correct reference entry points are (1,5). The only method of
reference for a main overlay to primary and secondary overlays is through the CALL
OVERLAY statement. However, the primary overlay may reference any entry point in

the main overlay, while the secondary overlay may reference any entry point in the primary
or main overlay.

Blank common and labeled common may be defined in any level overlay and referenced by
that overlay and higher level overlays. (The same rules apply as for entry points.)

Blank common is allocated at the top (highest address) of the first overlay in a lineartree
in which blank common is declared. That is, if blank common is declared in the (0, 0)
overlay, it will be allocated at the top of the (0, 0) overlay and will be accessible to all
overlays in that overlay structure. If blank common is not declared in the (0, 0) overlay
and is declared in the (1, 0) overlay, it will be allocated at the top of the (1, 0) overlay
and will be accessible only to the associated (1,X) overlays.

Labeled common blocks are generated in the overlay in which they are first encountered.
They may be referenced by all overlays which are higher in the same linear structure. They
may only be preset in the overlay in which they are generated.

LCM common blocks must be defined and preset in the main overlay. The entire overlay
structure may reference LCM COMMON block.

8-2 80360700A

An overlay is established by an OVERLAY card which precedes the program cards. The
overlay consists of all programs appearing between the OVERLAY card and the next
OVERLAY card or an end of file or an end of record.

8.4 CALL
Overlays are called by the following statement.

CAILL OVERLAY (fn, ¢ ..0.,D)
OVERLAY is a FORTRAN subroutine which translates the FORTRAN call into a call to
the loader

fn Variable name of the location containing the name of the file (left
justified display code) which includes the overlay

£y Primary level of the overlay

2, Secondary level of the overlay
P Recall parameter. If p equals BHRECALL, the overlay is not reloaded
when it is in memory

The first three parameters must be specified; the absence of any one could result in a mode
error at execution time. The levels appearing on the OVERLAY loader card are always
octal., The normal mode for parameters in FORTRAN calls is decimal. This fact should
be considered when coding the ¢ ,,{, parameters. The programmer czmr keep his level
numbers straight by using octal notation on both control and call cards.

Ifuniqueness is ensured at execution time, more than one overlay may be created with the
same level numbers. Uniqueness is determined by the level numbers, the file name from
which the overlay is to be loaded, and the position of the overlay on the file. Since the
loader selects the first overlay encountered on the specified file with level numbers which
match those in the call, it is possible to position a number of overlays on a file with the
same identifier and by properly sequencing the calls thereto, have available a number of
different overlays.

Loading from a file may require and end-around search of the file for the specified overlay;
this can be time consuming in large files. When speed is essential, each overlay should
be written to a separate file.

8.5 LOADER CARDS

Loader cards are processed directly by the loader. They provide the loader with information
necessary for generating overlays. All loader cards must precede the subprogram text to

be loaded. Formats are the same as for SCOPE control cards. However, if they are in the
FORTRAN decks, the loader cards must be punched in columns 7 through 72.

+

Level numbers given in the CALL OVERLAY, however, are decimal; for example, the
overlay card for overlay 1,9 would be OVERLAY(fn, 1, 11) and its call would be CALL
OVERLAY(fn, 1, 9).

60360700A 8-3

8.6 OVERLAY CARDS

(OVERLAY (fn, ¢ 12l Cnnnnnn)

fn File name onto which the generated overlay is to be written
£y Primary level number must be (0, 0) for first overlay card
2, Secondary level number and must be in octal

Cnnnnnn optional; nnnnnn can be up to 6 octal digits. If absent, overlay is
loaded normally. If present, overlay is loaded nnnnnn words from the
start of blank common. This provides a method for changing the size
of blank common at execution time. Cnnnnnn cannot be an OVERLAY
0,0 card on a primary directive if the main overlay has no blank
common, and on a secondary directive if the associated primary has
no blank common.

The first overlay card must have an fn, Subsequent cards may omit fn, and the overlay is
written on the same fn.

Each overlay card must be followed by a program card. The program card for the main
overlay must specify all needed file names, such as INPUT, OUTPUT, and TAPE 1, for
all overlay levels. File names should not appear in program cards for other than the (0, 0)
OVERLAY.

The groups of relocatable decks processed by the loader in forming overlays must be
presented to the loader in proper order. This requires that the 0, 0 overlay group be first.
The next order may be any primary group followed by all of its associated secondary

groups, then any other primary group followed by its associated secondary groups, et cetera.

8.7 RETURN FROM OVERLAY

Control is returned from a primary overlay to the main overlay or from a secondary
overlay to primary overlay by using a RETURN statement in the main program of the over-
lay. Control is returned to the statement which follows CALL OVERLAY.

t Level numbers given in the CALL OVERLAY, however, are decimal; for example, the
overlay card for overlay i, 9 would be OVERLAY(fn, i, il) and its cail would be CALL
OVERLAY(fn, 1, 9).

8-4 80360700A

7/8/9
OVERLAY (XFILE, 0, 0)
PROGRAM ONE(INPUT,OUTPUT, PUNCH)

CALL OVERLAY(5HXFILE, 1, 0)

STOP

END

OVERLAY(XFILE, 1, 0)
PROGRAM ONE ZERO

CALL OVERLAY (5HXFILE, 1, 1)

RETURN

END
OVERLAY(XFILE, 1, 1)
PROGRAM ONE ONE

RETURN
END
6/7/8/9

60360700A

8-5

INPUT/OUTPUT FORMATS 9

Data is transferred between storage and the files for external units in one of two modes,
formatted and unformatted. Formatied transmissions are dependent on the structure of
the data they contain and as such must have their format specified. This is accomplished
by means of a FORMAT statement. Unformatted data is transferred as a single string
and does not require a format specification. Both forms require an I/O statement that
identifies the unit involved and specifies the list of data to be moved.

9.1 INPUT/OUTPUT LIST

The list portion of an I1/O statement indicates the data items and the order, from left to
right, of transmission. The I/O list can contain any number of elements. List items
may be array names, simple or subscripted variables, or an implied DO loop. Items are
separated by commas, and their order must correspond to any FORMAT specification
associated with the list. External records are always read or written until the list is
satisfied,

Subscripts in an I/O list may be any of the following forms in which ¢ and k are unsigned
integer constants and v is a simple integer variable:

Form Example

(c) (4)

(v) (1)

(vtk) (J+3)

(c*v) (5%K)

(c*v+k) (2%1.-8)
Examples:

READ 100,A,B,C,D

READ 200,A,B,C(I),D(3,4),E(1,J,7),H

READ 101,J,A(J),1,B(,J)

READ 102, DELTA(5%J+2, 5*[-3, 5*K), C, D(I+7)

60360700A 9-1

The integer variable in a list must be previously defined, or it must be defined within an
implied DO loop in the list.

Examples:

READ 300,A,B,C,(DD),I=1,10), E(5, F(J), (G(1), H(I),1=2, 6, 2)
READ 400,11, J, K({((A(1L, JJ,KK), 1I=1,1),JJ=1,J),KK=1,K)
READ 500, ((A(1, J),I=1,10,2),B(J, 1),J=1,5),E, F,G(L+5, M-"7)

9.2 ARRAY TRANSMISSION AND IMPLIED DO LOOPS

An entire array or any part of an array can be transferred as a single specification in an I/O
list by using an implied DO loop. In general, an implied DO loop is a list followed hy a
comma.

Format:

(((A(I,J,K),L1=m » M, Mg), L,=n,,n,,n,)s Lg= pl,pz,pS)

m.,n., p; Unsigned integer constants or simple integer variables. If
t mg, Ng, O Py is omitted, it is assumed equal to 1.

I,J,K Subscripts of A

Ll’ L L3 Index variables I, J, K in same order

A DO implied specification is of one of the forms:

my, My, Mg

1= ml,mz

where i, m 12 Mg, Mg, are defined as for a DO statement. The range of the DO implied
spec1f1cat10n is t %e hst of the implied DO loops. The elements of a list are specified in
the order of their occurrence from left to right. The elements of a list in an implied
DO loop are specified for each cycle of the implied DO.

An array name which appears without subscripts in an I/O list causes transmission of the
entire array by columns.

Example:

DIMENSION B(10, 15)
the statement
READ 13, B
is equivalent to
READ 13, ((B(1,J),1=1,10),J=1, 15)

g-9 60360700A

An implied DO loop can be used to transmit a simple variable more than one time. For
example, the list item (A(K),B,K=1,5) causes the transmission of the variable B five times.
A list of the form K, (A(I),I=1,K) is permitted and the input value of K is used in the implied
DO loop. The index variable in an implied DO list in an I/O DATA statement should be an
implicit integer.

Examples:
1. Simple implied DO loop list items.

READ 400, (A(I),I=1, 10)

AN A 1
U

n in'ate] A
FUU LOUnvivia 1

{E20.10)
This statement is equivalent to the following DO loop.
DO 51=1,10
5 READ 400, A(I)
READ 100, ((A(JV,JX),JV=2,20,2),JX=1, 30)
READ 200, (BETA(3*JON+T7), JON=JONA, JONB, JONC)
READ 300, (ITMSLST(I, J+1,K-2),1=1,25),J=2,N), K=IVAR,IVMAX, 4)
) READ 600, (A(I), B(I),I=1, 10)
600 FORMAT(F10.2,E6.1)

The previous statement is equivalent to the DO loop:

DO 171=1,10
17 READ 600, A(I), B(I)

2. Nested implied DO list items.

READ 100, (((((A(1, J,K), B(I, L), C(J, N),I=1, 10),J=1,5),K=1, 8), L.=1, 15), N=2, 7)
Data is transmitted in the following sequence:

A(i, 1, 1),B(1,1),C{1,2),A(2,1, 1), B(2, 1), C(1, 2)...
...A(10,1,1),B(10,1),C(1, 2), A(1,2, 1), B(1, 1), C(2, 2)...
...A(10,2,1),B(10,1),C(2,2)...A(10, 5, 1), B(10, 1), C(5, 2). ..
...A(10,5, 8),B(10,1), C(5, 2)...A(10, 5, 8), B(10, 15), C(5, 2)...
...A(10,5,8),B(10, 15), C(5, 7)

The following list item will transmit the array E(3,3) by columns:
READ 100, ((E(1, J),1=1,3),J=1,3)
The following list itemwill transmit the array E(3, 3) by rows:

READ 100, ((E(L, J),J=1, 3),1=1, 3)

60360700A 9-3

3. DIMENSION MATRIX (3,4, 7)
READ 100, MATRIX
100 FORMAT (I8)

The above items are equivalent to the following statements:

DIMENSION MATRIX(3, 4, 7)
READ 100, (MATRIX(I, J,K),I=1, 3), J=1,4),K=1, 7)

The list is equivalent to the nest of DO loops:

DO5K-=1,7
DO 5 J=1,4
DO5 I =1,3

5 READ 100, MATRIX(I, J, K)

9.3 FORMAT DECLARATION
Formatted I/O statements required a FORMAT declaration which contains conversion and
editing information relating to internal/external structure of the corresponding I/0 list
items. A FORMAT declaration has the following form:
FORMAT (specy,...,k(spec_,...), spec ...)
spec; Format specification

k Optional repetition factor; must be unsigned integer constant

The FORMAT declaration is nonexecutable and may appear anywhere in the program.
FORMAT declarations must have a statement label in columns 1-5.

The data items in an I/O list are converted from one representation to another (external/
internal) according to FORMAT conversion specifications. FORMAT specifications may
also contain editing codes.

Conversion specifications:

srEw.d Single precision floating point with exponent
srEw,.dEe With explicitly specified exponent length
srEw. dDe With explicitly specified exponent length
srFw.d Single precision floating point without exponent
srGw.d Single precision floating point with or without exponent
srDw.d Double precision floating point with exponent
rlw Decimal integer conversion

rlw,z With minimum number of digits specified

rLw Logical conversion

rAw Character conversion

rRw Character conversion

rOow Octal integer conversion

rOw.d With minimum number of digits specified

rZw Hexadecimal conversion

srVw.d Variable type conversion

9-4 60360700 C

E, F, G, D, I, L, A, R, O, and Z are the codes which indicate the type of conversion.

w Non-zero, unsigned, integer constant which specifies the field width in number
of character positions in the external record. This width includes any leading
blanks, +, or - signs, decimal point, and exponent.

ta ch represents the number of digits to the right of the deci-
point within the field. On output all numbers are rounded.
o
t=}

[eN

k3

Unsigned integer constant which indicates the conversion code is to be repeated.
Optional; it represents a scale factor.

S
z Minimum number of digits to output.

The field width w must be specified for all conversion codes. If d is not specified for
w.d, it is assumed to be zero. w must be > d.

Complex data items are converted on I/0O according to a pair of consecutive Ew.d or
Fw.d specifications.

Editing specification

wXt Intraline spacing / Begin new record
(refer to 9.6.1) (refer to 9.6.4)

Wth, h2, vees hn Heading and labeling By, X Heading and labeling
(refer to 9.6.2and9.6.3) (refer to 9.6.6)

Tn Column selections et Heading and labeling
(refer to 9.6.7) (refer to 9.6.5)

The variable n is an unsigned integer ranging from 0 to 1386.

ANSI FORTRAN, X3.9-1966, requires that the field width w must always be specified. In
the w.d form, d must be specified also. Further w must be greater than or equal to d.

The editing specifications wX and wHh must be separated by a slash or comma. The 3 I
parameter and the formats Ew.dEe, Ew,dDe, Vw.d, and Zw are not recognized by ANSI.

Examples:
COMPLEX A,B
PRINT 10,A
10 FORMAT(F7.2,F9.2)
READ 11,B
11 FORMAT(E10.3,E10.3)

9.4 CONVERSION SPECIFICATION

9.4.1 Ew.d, Ew.dEe, AND Ew.dDe OUTPUT I
Real numbers in storage are converted to the character form for output with the E con-
version. The field occupies w positions in the output record with the real number right
justified in the form:

s.a...ateee |eeel > 100 I
or
s.a...aE+ee 0 <ee< 99

s indicates no character position or minus. a's are the most significant digits of the
value of the data output and eee are the digits in the exponent. 1If d is zero or blank,
the decimal point and digits to the right of the decimal do not appear as shown above.

tOnly w may be negative for the X specification. I
60360700C 9-5

Field w must be wide enough to contain the significant digits, sign, decimal point, E,
and the exponent. Positive numbers need not reserve a space for the sign of the num-
ber. Generally, w>d+6 or w>d+e+4 for negative numbers and w>d+5 or w>d+e+3 for

I positive numbers., ~

If the field is not wide enough to contain the output value, asterisks are inserted in
the whole field. If the field is longer than the output value, the quantity is right justi-
fied with blank fill to the left. Double precision numbers cannot be output using Ew.d.

I ANSI FORTRAN, X3. 9-1966, does not enter asterisks if the field is too narrow.

Examples:
PRINT 10,A A contains -67.32
10 FORMAT(1X, EQ. 3) or +67.32
Result: -.673E+02 or b.673E+02
PRINT 10, A "
10 FORMAT (1X,E11.4)
Result: b-.6732E+02 or bb.6732E+02
PRINT 10, A A contains -67.32
10 FORMAT (1X,ES8.3) Provision not made for sign
' Result: skslkioiko
PRINT 10, A A contains -67, 32
10 FORMAT (1X,E9.4)
Result: DRkt Increasing significance requires more
total width
PRINT 10,A A contains -67.32
10 FORMAT (1X,E10.4)

Result: -.6732E+02

l 9.4.2 Ew.d, Ew.dEe, AND Ew.dDe INPUT

The E specification converts the number in the input field to a real number and stores it in
the proper location.

Subfield structure of the input field:

input field
M

+ +
digit . E
integer l fraction exponent

decimal point

The total number of characters in the input field is specified by w; this field is scanned from
left to right; blanks are interpreted as zeros. An all blank field is interpreted as minus
zero. The range of permissible values is |3.13152 |E-294 to |1.26501 | E322
approximately. Smaller numbers will be treated as zero; larger numbers will cause a
fatal error message.

9-6 60360700 C

The integer subfield begins with a sign (+ or -) or a digit and may contain a string of digits.
The integer field is terminated by a decimal point, D, E, +, -, or the end of the input field.

The fraction subfield which beging with a decimal point may contain a string of digits. The
field is terminated by D, E, +, -, or the end of the input field.

The exponent subfield may begin with D, E, + or -. When it begins with D or E, the + is
optional between D or E and the string of digits of the subfield. The value of the string of
digits in the exponent subfield must be less than 323.

Format:
+1.6327E-04 Integer fraction exponent
-32.7216 ' Integer fraction

+328+5 Integer exponent
.629E-1 Fraction éxponent

+136 Integer only

136 Integer only
. 07628431 Fraction only

E-06 (interpreted as zero) Exponent only

In the Ew. d specification, d acts as a negative power-of-ten scaling factor when an external
decimal point is not present. The internal representation of the input quantity is:

(integer subfield)x10~ dy1 o{exponent subfield)

For example, if the specification is E7.8, the input quantity 3267+05 is converted and stored
as 3267x10-8x105 = 3,267.

A decimal point in the input field overrides d. The input quantity 3.67294+5 read by an E9.d
specification is always stored as 3. 6729x105. When d does not appear, it is assumed to
be zero. If e is specified, it is ignored.

The field length specified by w in Ew.d should always be the same as the length of the field
containing the input number. When it is not, incorrect numbers may be read, converted,
and stored as shown below without any indication of error given to the user. The field w
includes the significant digits, signs, decimal point, E or D, and exponent.

Example:

READ 20,A,B,C
20 FORMAT (E9.3,E7.2,E10.3)

Input quantities on the card are in three contiguous fields golumns 1 through 24:

9 5 10
—~—"

gl oy v
+6.47E-01-2.36+5.321 E+02bb
The second specification (E7.2) exceeds the width of the second field by two characters.

60360700 C 9-17

Reading proceeds as follows:

9
7
10 ‘
T — N | —
+6. 47E—0E—2. 36+5 . 321 E+02bb

+6.47E-01}-2. 36+5|. 321E+02bb
+6. 47E~01-2, 36+5 |. 321 E+02bb

First, +6.47E-01is read, converted, and placed in location A. Next, -2.36+5 is read,
converted, and placed in location B. The number actually desired was -2. 36, but the
specification error (E7.2 instead of E5.2) caused the two extra characters to be read. The

number read (-2.36+5) is a legitimate input representation under the definitions and
restrictions.

Finally, .321E+0200 is read, converted, and placed in location C. Here again, the input
number is legitimate and is converted and stored, even though it is not the number desired.

The preceding illustrates a situation where numbers are incorrectly read, converted,
and stored, but there is no immediate indication that an error has occurred.

Examples:
Specifi- Converted

Input Field cation Value Remarks

+143.26E-03 El11.2 . 14326 All subfields present

-12.437629E+1 E13.6 -124,37629 All subfields present

8936E+004 E9.10 . 008936 No fraction subfield; input number
‘converted as 8936.x10-10+4

327.625 E7.3 327.625 No exponent subfield

4,376 E5 4,376 No d in specification

-.0003627+5 E11,7 -36.27 Integer subfield contains - only

-.0003627E5 E11.7 -36.27 Integer subfield contains - only

blanks Ew.d -0 All subfields empty

1E1 E3.0 10. No fraction subfield; input number
converted as 1.x101 |

E+06 E10.6 0. No integer or fraction subfield; zero
stored regardless of exponent field
contents

1.bEDb1 E6. 3 10. Blanks are interpreted as zeros

9-8 60360700A

9.4.3 Fw.d OUTPUT

The field occupies w positions in the output record; the corresponding list item must be
a floating point quantity that appears as a decimal number, right justified:

ba...a.a...a
The b indicates a blank. The a's represent the most significant digits of the
The d specifies the number of decimal places to the right of the decimal. If d is
zero or omitted, digits to' the right of the decimal point are not printed. If the num-
ber is positive, the + sign is suppressed. If the field is too short to accommodate the
number, asterisks appear in the whole output field. If the field is longer than required i
to accommodate the number, the number is right justified with blank fill to the left.
If the number is out of range, an R is provided. If the number is indefinite, I is printed.

ANSI FORTRAN, X3.9-1966, does not output any asterisks if field is too narrow
or the letters I or R if value is indefinite/out of range.

Contents of A Format Statement Print Statement Printed Result
+32.694 i0 FORMAT (F17.3) PRINT 10,A b32.694

+32.694 11 FORMAT (F10.3) PRINT 11, A bbbb32. 694

-32. 694 12 FORMAT (F6.3) PRINT 12, A SR |

(no provision for
- sign and most
significant digit)

.32694 13 FORMAT (F4.3, F6.3) PRINT 12,A,A .32700,327

9.4.4 Fw.d INPUT

On input, the F specification is treated identically to the E specification.

Examples:
Specifi- Converted

Input Field cation Value Remarks

367.2593 F8.4 367.2593 Integer and fraction field

37925 F5.7 . 0037925 No fraction subfield; input number con-
verted as 37925x10°7

-4,7366 F7 -4,7366 No d in specification

. 62543 F6.5 . 62543 No integer subfield

. 62543 F6.2 . 62543 Decimal point overrides d of specification

+144.15E-03 F11.2 . 14415 Exponents are legitimate in F input
and may have P-scaling

5bbbb F5.2 500. 00 No fraction subfield; input number

converted as 50000x10-2

60360700C 9-9

9.4.5 Gw.d OUTPUT

The field occupies w positions of the output record, with d significant digits. The real data
will be represented by F conversion unless the magnitude of the data exceeds the range

that permits effective use of F conversion. In this case, the E conversion will represent the
external output. Therefore, the effect of the scale factor is not implemented unless the
magnitude of the data requires E conversion.

When F conversion is used under Gw.d output specification, four blanks are inserted within
the field, right justified. Therefore, for effective use of F conversion, d must be< w-6.

The method of representation in the output record is a function of the magnitude N of the
real data being converted. The following table gives a correspondence between N and the
method of conversion.

Format:

0.1<N<1 F (w-4).d, 4X

1 <N<10 F (w-4).(d-1),4X

10d-2gN< 10971 F (w-4).1,4X

109" 1e Ne 109 F (w-4).0, 4X

otherwige Ew.d or nPEw.d
Examples:

PRINT 101, XYZ XYZ contains 77,132

101 FORMAT(G10. 3)
Result: bb77. 1bbbb
PRINT 101, XYZ XYZ contains 1214635. 1
101 FORMAT(G10. 3)
Result: b.121E+07

9.4.6 Gw.d INPUT

Gw.d specification is the same as the Fw. d input specification.

9-10 60360700A

9.4.7 Dw.d OUTPUT

The field occupies w positions of the output record; the list item is a double precision
quantity which appears as a decimal number, right justified:

s.a...ateee 100< eee< 512
or
s.a...aDtee O< ee< 99
s indicates no character position or minus. D conversion corresponds toc Ew d output

Single precision numbers cannot be output under Dw.d. If the field specified is too short
to accommodate the number, asterisks appear in the whole output field.

ANSI FTNX3.9-1966, does not enter asterisks if the field is too narrow.

9.4.8 Dw.d INPUT

D conversion corresponds to E conversion except that the list variables must be double
precision names. D is acceptable in place of E as the beginning of an exponent subfield.

Example:

DOUBLE Z,Y,X
READ1,Z,Y,X
1 FORMAT (D18.11,D15,D17.4)

Input Card:

(—6.31675298443E-03 +2.718926453147 6293477528869D-09
™ ™ ™ ™ R e

18 15 17
In storage:
7 = -6.31675298443D-03
Y = 2.718926453147D+00
X = 6.293477528869D-01

9.4.9 |w AND Iw.z OUTPUT

The I specification is used to output decimal integer values.
Iw Iw.z

w is a decimal integer constant designating the total number of characters in the field in-
cluding signs and blanks. If the integer is positive, the plus sign is suppressed. Numbers
in the range of -259 + 1 to 259 -1 (259-1=576 460 752 303 423 487) are output correctly.

z is a decimal integer constant designating the minimum number of digits output. Leading
zeros are generated when the output value requires less than z digits. If 2=0, a zero value
will produce all blanks. If z=w, no blanks will occur in the field when the value is positive,
and the field will be too short for any negative value. Not specifying z produces the same
results as z=1,

60360700C 9-11

If the specified field is too short to accommodate the number, asterisks appear in the whole
output field.

ANSI FTN, X3.9-1966, does not output asterisks if the field is too narrow.

Example:
PRINT 10,1,J,K I contains -3762
10 FORMAT (18,110, I5) J contains +4762937

K contains +13

Result: bbb-3762bbb4762937bbb13l
\ML'\/~

8 10 5

9.4.10 Iw AND Iw.z INPUT

The field is w characters in length, and the list item is a decimal integer constant; z is
ignored on input. The input field w consists of an integer subfield, containg +, -, 0 through
9, or blank. When a sign appears, it must precede the first digit in the field, Blanks are
interpreted as zeros. An all blank field is interpreted as minus zero. The value is stored
right justified in the specified variable.

Example:

TTVAT r v o o=

READ 10,1,4,K,L, M, N
10 FORMAT (13, 1I7,12,13,12, 14)
Input Card:

r/i39bb-15bb18bb7b3b1b4

Y~ N ~——— N

3 7 2 3 2 4

In storage:

I contains 139

J -1500
K 18

L 7

M 3

N 104

6036070CC

9.4.11 Ow OR Ow.d OUTPUT

O specification is used to output octal integer values. The output quantity occupies w output

record positions right justified:

ad...a

The a's are octal digits. If w is 20 or less, the rightmost w digits appear. If w is greater

than 20, the number is right justified in the field with blanks to the left of the output quantity.

A negative number is output in its one's complement internal form.

If d is specified, the number is printed with leading zero suppression and with a minus sign
for negative numbers. At least d digits will be printed. If the number cannot be output in

w octal digits, all asterisks will fill the field.

Octal output is not specified in ANSI FORTRAN, X3.9-1966.

9.4.12 Ow OR Ow.d INPUT

Octal integer values are converted under O specification. The field is w characters in
length, and the list item must be an integer variable.

The input field w consists of an integer subfield only (maximum of 20 octal digits) containing

+, -, 0 through 7, or blank.

Only one sign may precede the first digit in the field. Blanks are interpreted as zeros. An

a1l blank field is interpreted as minus zero.

Octal input is not specified in ANSI FORTRAN, X3.9-1966.

Example:

TYPE INTEGER P,Q,R
READ 10,P,Q,R

10 FORMAT (010,012,02)
Input Card:

3737373737666b6644b444-0

T — el -

10 12 2

In storage:

P 00000000003737373737
Q 00000000666066440444
R 7717TTTTNITTNUNTN0NT

A negative number is represented in one's complement form.

A negative octal number is represented internally in seven's complement form (20 digits)
obtgined by su_btracting each digit of the octal number from seven. For example, if -703 is
an input quantity, its internal representation is TTTTTTTNTTITITII7074.,

That is, 77777777T777717777717
-00000000000000000703
TTTTTTTTTTTTTTTTT074

9.4.13 Aw OUTPUT

The Aw conversion is used to output alphanumeric characters. If w is 10 or more, the quantit

appears right justified in the output field, blank fill to left. If w is less than 10 t,he output 7
guar}tlty 1s presented by leftmost w characters. If a zero character (6 bits set ‘;0 Zero) oceurs
it will be treated as a colon under the 64-character set or as a blank under the 63-character ’

set.

9.4.14 Aw INPUT

This specification accepts FORTRAN characters including blanks.
tation is in display code; the field width is w characters.

The internal represen-

If w exceeds 10, the input quantity is the rightmost 10 characters in the field. If w is 10 or
less, the input quantity is stored as a left justified word; the remaining spaces are blank

B rilled. 1If a zero character (6 bits set to zero) occurs, it will be treated as a colon under
the 64-character set or as a blank under the 63-character set.

Example:

READ 10,Q,P,0
10 FORMAT (A8, A8, A4)
Input Card:

R e e Ve e Ve
8 8 4

(LUX MENTIS LUX ORBIS
In storage:

Q LUXbMENTbb
P ISbLUXbObb
O RBISbbbbbb

60360700C

$.4.15 Rw OUTPUT

This specification is similar to the Aw output with the following exception: if w is less
than 10, the output quantity represents the rightmost characters. If a zero character
(6 bits set to zero) occurs. it will be treated as a colon under the 64-character set or
as a blank under the 63-character set.

Rw output is not specified in ANSI FORTRAN, X3.9-1966.

9.4.16 Rw INPUT

This specification is the same as the Aw input with the following exception; if w is less
than 10, the input quantity is stored as a right justified binary zero filled word. 1If a
zero character (6 bit set to zero) occurs, it will be treated as a colon under the 64-
character set or as a blank under the 63-character set.

Rw input is not specified in ANSI FORTRAN, X3.9-1966.

Example:
READ 10,Q,P,0

10 FORMAT .(R8, R8, R4)
Input Card:

LUX MENTIS LUX ORBIS

8 8 4

Q OOLUXbMENT
P 00ISbLUXDbO
O 000000RBIS

9.4.17 Lw OUTPUT

L specification is used to output logical values. The output field is w characters long, and
the list item must be a logical element.

A value of TRUE or FALSE in storage causes w-1 blanks followed by a T or F to be output.

Example:
LOGICAL I, J,K,L 1 contains -0 J contains 0
PRINT 5,1,J,K, L K contains -0 1. contains -0

5 FORMAT (4L3)

Result: bbTbbFbbTbbT

60360700C 9-15

9.4.18 Lw INPUT

This specification accepts logical quantities as list items. The field is considered true if
the first non-blank character in the field is T or false if it is F. An all-blank field is
considered false,

9.4.19 Zw INPUT AND OUTPUT
Hexadecimal values are converted under the Z specification.

w is an unsigned integer designating the total number of characters in the field. The
input field may contain digits and the letters A through F. A maximum of 15 hexadeci-
mal digits is allowed, blanks and a plus or minus sign may precede the first hexadeci-
mal digit. On output, if w is greater than 15, leading blanks will occur.

The Zw format is not allowed in ANSI FORTRAN, X3.9-1968.

9.5 nP SCALE FACTOR

The D, E, F, and G conversion may be preceded by a scale factor which is:

External number = Internal number x loscale factor‘

A scaled specification is written as shown; n is a signed (positive or negative) integer constant.
nPDw.d nPEw.d nPFw.d nPGw.d nP nPEw. dEe nPEw. dDe

The scale factor is assumed to be zero if no other value has been given; however, once a
value has been given, it holds for all D, E, F, and G specifications. To nullify this effect
in subsequent D, E, F, and G specifications, a zero scale factor, 0P, must precede a

D, B, F, or G specification. Scale factors for D, E, F, and G output specifications must
be in the range -8< n< 8.

On input, the scale factor has no effect if there is an exponent in the external field. G
output makes use of the scale factor only if E conversion is necessary to convert the data.
For E and D output, the basic real constant part of the output quantity is multiplied by 10"
and the exponent is reduced by n.
The scaling specification nP may appear independently of a D, E, F, or G specification; it
holds for all subsequent D, E, F, and G specifications within the same FORMAT statement
unless changed by another nP.
Example:

FORMAT(3PE12.6,F10.3,0PD18.7, -1P, 5. 2)

The E12.6 and F10. 3 specifications are scaled by 103, the D18. 7 specification is not
scaled, and the F5.2 specification is scaled by 1071,

The specification (3P, 319, F10. 2) is the same as the specification (319, 3PF10. 2).

9-16 60360700C

9.5.1 Fw.d SCALING
Input

The number in the input field is divided by, 10" and stored. For example, if the input %uantity

314,1592 ig read under the specification 2PF8,4, the internal number is 314, 1592x10

3.141592, However, if an exponent field is read, the scale factor is ignored.) |
Output

The number in the output field is the internal number multiplied by 10", Inthe output
representation, the decimal point is fixed; the number moves to the left or right. depending
on whether the scale factor is plus or minus. For example, the internal number
3.1415926538 may be represented on output under scaled F specifications as follows:

Specification Output Representation
F13.6 3.141593
1PF13.6 31.415927
3PF13.6 3141,592654
-1PF13.6 .314159

9.5.2 Ew.d OR Dw.d SCALING
Qutput
The scale factor has the effect of shifting the output number left n places while reducing

the exponent by n. Using 3, 1415926538, some output representations corresponding to
scaled E specifications are:

Specification Output Representation
E20.2 .31E+01
1PE20.2 3. 14E+00
2PE20. 2 31.42E-01
3PE20.2 314, 16E-02
4PE20.2 3141.59E-03
5PE20. 2 31415,93E-04
-1PE20,2 . 03E+02

9.5.3 Gw.d SCALING

Input

Gw.d scaling on input is the same as Fw.d scaling on input.
Output

The effect of the scale factor is suspended unless the magnitude of the data to be converted
is outside the range that permits the effective use of F conversion.

60360700C 9-17

9.6 EDITING SPECIFICATIONS

9.6.1 wX

This specification may be used to include w blanks in an output record or to skip w
characters on an input record to permit spacing of input/output quantities. O0X is ignored
and X is interpreted as 1X. In the specification list, the comma following X is optional.

If w is negative, then the input/output list is backed up w spaces, but not beyond the first
column. On output, any character positions not previously filled during this record
generation will be set to blank.

ANSI FORTRAN, X3.9-1966, does not allow 0X or -w. 1
-‘Examples:
INTEGER A A contains 7
PRINT 10,A,B,C B contains 13. 6
10 FORMAT(12, 6X,F6.2,6X,E12,5) C contains 1482, 37

Result: b7bbbbbbb13. 60bbbbbbb. 14624E+04
READ 1i,R,S,T

11 FORMAT(F5. 2,3X, F5.2, 6X, F5,2)
or
11 FORMAT(F5. 2, 3XF5, 2, 6XF5.2)
Input Card:

Klél. 62bb$13. 78bCOSTb15. 97

In storage:
R 14.62
S 13.78
T 15,97
9-18

60360700C

9.6.2 wH OUTPUT
With this specification, 6-bit characters (including blanks) may be output in the form of

comments, titles, and headings. w, an unsigned integer, specifies the number of characters

to the right of H that are transmitted to the output record; w may specify a maximum of 136
characters. H denotes a Hollerith field, The comma f'n'l'lnwing the H field is ontional.

ial aCiel cellOole nollel’l iilel COININa 10120w1lll Qp

Examples:

AT AN TS T e T

PRINT 20
20 FORMAT (28HbBLANKSbCOUNTDbLINbANbHLFIELD.)

produces output record:
bBLANKSbCOUNTbINbANbHbLFIELD.
Source program:

PRINT 30, A A contains 1.5
30 FORMAT (6HbLMAX=,F5.2) Comma optional

produces output record:

bLMAX = bl, 50

9.6.3 wH INPUT

The H specification may be used to read Hollerith characters into an existing H field within
the FORMAT specification.

Example:

Source program:

READ 10
10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb)

Input Card:

bTHIS IS A VARIABLE HEADING
N T ——

27 cols

After READ, the FORMAT statement labeled 10 contains the alphanumeric information
read from the input card; a subsequent reference to statement 10 in an output statement
acts as follows:

PRINT 10

produces the print line:
bTHIS IS A VARIABLE HEADING

60360700A 9-19

9.6.4 NEW RECORD

The slash(/) signals the end of a record anywhere in the specifications list. Consecutive
slashes may appear in a list and they need not be separated from the other list elements

by commas. During output, the slash is used to skip lines, cards, or tape records.

During input, it specifies that control passes to the next record or card. K(/) or K/ results

in K-1 lines being skipped.

Examples:
1. PRINT 10
10 FORMAT (6X, THHEADING///3X, SHINPUT, 2X, HOUTPUT)
Printout:

HEADING line 1
(blank) line 2
(blank) line 3

INPUTbbOUTPUT line 4

Each line correspondstoa BCD record. The second and third records are null and

produce the line spacing illustrated.

2. PRINT 11,A,B,C,D
11 FORMAT (2E10.2/2F7.3)

In storage:
A -11.6
B .325
C 46.327
D -14.261
Printout:

-. 12E+02bbb. 32E+00
46.327-14. 261

©
1

8o

[en)

60360700A

3. PRINT 11,A,B,C,D
11 FORMAT (2E10.2/ /2F7.3)

Printout:
bb-. 12E+02bbb. 32E+00 line 1
blank line 2
b46.327-14.261 line 3
4, PRINT 15, (A(I),I=1,9)

15 FORMAT (8HbRESULTS2(/) (3F8. 2))

Printout:
RESULTS : line 1
__ (blank) line 2
3.62 -4,03 -9.78 line 3
-6.33 7.12 3.49 line 4
6.21 -6.74 -1.18 line 5

9.6.5 #£...# SPECIFICATION

The specification #...# can be used as an alternate form of wH to output headings,
titles, and comments. Capabilities are the same as the *,..* feature except that #
can be enclosed (that is #ABC##B# is legal and will appear as ABC#B). The symbol
is the CDC representation of quote marks (). Refer to appendix A for CDC and
ASCII codes and representations.

9.6.6 *...* SPECIFICATION

The specification *...* can be used as an alternate form of wH to output headings, titles,
and comments. Any 6-bit character (except asterisk) between the asterisks will be output.
The asterisks delineate the Hollerith field. This specification need not be separated from
other specifications by commas.

ANSI FORTRAN, X3.9-1966, does not allow either the *...* or the #...f specifications.

Output Examples:

1. Source program:

PRINT 10
10 FORMAT (*bSUBTOTALS*)

produces the output record:
bSUBTOTALS

2. Improper source program to output ABC*BE:

PRINT 1
1 FORMAT(*ABC*BE¥)

The * in the output causes the specification to be interpreted as *ABC* and BE*. BE*
is an improper specification; therefore, the wH specification must be used to output

ABC*BE.

60360700C 9-21

The *...* or #...# specification can be used to skip alphanumeric data. When a
READ occurs, characters in the input stream are skipped and no change is made
in the *,..% or #...# specification.

‘Input Examples:
1. Source program:

READ 10
10 FORMAT (*bbbbbbbbbbbbbbbbbbbbb*)

Input Card:

ﬁ‘ORTRAN FOR THE 7600
A subsequent reference to statement 10 in an output control statement:
PRINT 10
produces:
FORTRAN FOR THE 7600
2. Source program:

READ 10
10 FORMAT (*bbbbbbb*)

Input Card:

[HEAD*LINE

A subsequent reference to statement 10 in an output statement:
PRINT 10
Produces:

HEADbbb

9.6.7 Tn

This specification is a column selection control.

Tn
n Unsigned integer. If n = zero, column 1 is assumed.

ANSI FORTRAN X3.9-1966 does not specify Tn.

9-22 60360700C

When Tn is used, control skips columns right or left until column n is reached; then the
next format specification is processed. Using card input, if n > 80, the column pointer is
moved to column n but a succeeding specification would read only blanks.

READ 40, A,B,C
40 FORMAT (T1,F¥5.2, T11,¥6.1, T21,F5.2)

84, 73bbbbb2436. 2bbbb89, 14

set to 84,73, B +5 2438.2
Te U OTe iUse 10 o LTOUe &

0

(o}
(@]
ot
o]

(@0
w
[
H>

WRITE (31, 10)
10 FORMAT (T20, *LABELS%*)

The first 19 characters of the output record are skipped and the next six characters
(LABELS) are written on output unit number 31, beginning in character position 20,

With T specification, the order of a list need not be the same as the printed page or
card input. The same information can be read more than once.

When a T specification causes control to pass over character positions on output, those

positions not previously filled during this record generation are set to blanks; while
those already filled are left unchanged.

9.7 REPEATED FORMAT SPECIFICATION

Format specifications may be repeated by using an unsigned integer constant repetition
factor, k, as follows: k(spec), spec is any conversion specification.

For example, to print two quantities K, L:

PRINT 10, K, L
10 FORMAT (12,12)
Specifications for K, L are identical; the FORMAT statement may also be:

10 FORMAT (212)

When a group of FORMAT specifications repeats itself as in: FORMAT (E15. 3, F6.1,14.14,
E15.3,F6.1,14,14), the use of k produces: FORMAT (2(E15.3,F6. 1, 2I4))

Nesting of parenthetical groups preceded by repeat constants beyond two levels is not
permitted in FORMAT specifications.

60360700C 9-23

9.8 UNLIMITED GROUPS

Unlimited group repeat is implemented according to the ANSI X3. 9 specification. An
innermost parenthetical group that has no repeat count specified in a FORMAT statement
assumes a group repeat count of one. If the last outer right parenthesis for the FORMAT
specification is encountered and the I/O list is not exhausted, control reverts to that group
repeat specification terminated by the last preceding right parenthesis, or, if none exists,
then to the first left parenthesis of the FORMAT statement.

9.9 VARIABLE FORMAT

FORMAT specifications may be specified at the time of program execution. The specification,
including left and right parentheses but not the statement label or the word FORMAT, is read
under A conversion or in a DATA statement and stored in an array or a simple variable.

The name of the array containing the specifications may be used in place of the FORMAT
statement labels in the associated I/O operation. The array name that appears with or without
subscripts specifies the location of the first word of the FORMAT information.

ANSIFORTRANX3.9-1966, specifies that only an array name without subscripts may be
used in the place of the FORMAT statement label. An nH field description may not be
part of a format specification within an array.

Examples:
i. Assume the {ollowing FORMAT specifications:

(E12.2, F8.2,17,2E20.3,F9.3,14)

This information can be punched in an input card and read by the statements of
the program.

DIMENSION IVAR(3)
READ 1 (IVAR(D),1=1,3)
1 FORMAT (3A10)

The elements of the input card are placed in storage as follows:

IVAR(1): (E12.2, F8.
IVAR(2): 2,17,2E20.
IVAR(3): 3,F9.3,14)

A subsequent output statement in the same program can refer to these FORMAT
specifications as:

PRINT IVAR, A, B, I, C, D, E, J
This produces exactly the same result as the program:

PRINT 10, A, B, 1, C, D, E, J
10 FORMAT (E12.2,F8.2,17,2E20,3,F9.3,14)

9-24 60360700A

2. DIMENSION LAIS1(3), LAIS2(2), A(6),1.SN(3), TEMP(3)
DATA L.AIS1/21H(2F86. 3,17, 2E12. 2, 311)/, LAIS2/20H
(16, 6X, 3F4.1,2E12.2)/

Outiput statement:
PRINT L.AISI1, (A(1),I=1,2),K, B,C, (LSN(J),J=1,3

is the same as:
PRINT 1, (A(I),I=1,2),D,B,C, (LSN(J),J=1,3)

-— =

s
212, 2, 311)

1 FORMAT (2F6. 3,17,

N

Output statement:

PRINT LAIS2, LA, (A(M), M=3, 4), A(6), (TEMP(I), 1=2, 3)
is the same as:

PRINT 2, LA, (A{M), M=3, 4), A(6), (TEMP(L), L=2, 3)
2 FORMAT (16, 6X, 3F4.1,2E12.2)

3. DIMENSION LAIS (3), VALUE(8)
DATA LAIS/26H(I3, 13HMEANbVALUEDIS, F6. 3)/
Output statement:
WRITE (10, LAIS)NUM, VALUE(6)
is the same as:
WRITE (10, 10)NUM, VALUE(6)
10 FORMAT (I3, 13HMEANbVALUEDIS, F6. 3)

9.10 VARIABLE SPECIFICATIONS
V and = variables can be used in a FORMAT statement.

The V specification can be used instead of the standard specifications A, D
L, O, P, R, T, X, or Z. When V is encountered, the right-most character
5) from the next variable in the I/O list are substituted for V. The character mus
of the specifications listed above. However, V cannot be used in Ew. dVe for the D
specification.

o+
D

The = character may be used in a FORMAT specification whenever a number could be used.
The next list item is used as a signed integer value for the number designated by =.

ANSI FORTRAN, X3.9-1986, does not allow the V or = variables.

60360700C 9-25

INPUT/OUTPUT STATEMENTS 10

The following defintions apply to all I/O statements.
i logical I/O unit number:

an integer constant of one or two digits (the first must not be zero)
integer variable name of no more than 6 characters, with a value of 1
to 99

n FORTRAN declaration identifier:
statement number
variable identifier which references the starting storage location of
FORMAT information

L I/0 list

10.1 OUTPUT STATEMENTS

PRINT n,L. or
PRINT n
Information in the list (L) is transferred from the storage locations to the standard output

unit as line printer images, 136 characters or less per line in accordance with the FORMAT
declaration, n.

ANSI FORTRAN, X3.9-1966, does not specify the PRINT statement.

The maximum record length is 136 characters, but the first character of every record is
not printed as it is used for carriage control when printing on-line. Characters in excess
of the print line are truncated. Each new record starts a new print line.

Character Action

Blank Single-space before printing

0 Double-space before printing

1 Eject page before printing

+ Suppress spacing before printing; print two successive records

on the same line

Consult the operating system manual for additional characters.

60360700A 10-1

PUNCH n, L. or
PUNCH n

Information is transferred from the storage locations given by the list (1) identifiers to the
standard punch unit, Information is transferred as Hollerith images, 80 characters or
less per card in accordance with the FORMAT declaration, n. Records greater than 80
characters will be truncated.

ANSI FORTRAN, X3.9-1966, does not specify PUNCH statement,

WRITE (i, n)L

This statement transfers information from storage locations given by the list (L) to a
specified output unit (i) according to the FORMAT declaration (n).

WRITE (i)L
This statement transfers information from storage locations given by the list (L) to a

specified output unit (i). If L is omitted, the WRITE (i) statement acts as a do-nothing
statement. The list written by this statement constitutes one binary record. See READ (i)L.

ANSI FORTRAN, X3.9-1966, does not provide a WRITE(i) without list.

Examples:
1. DIMENSION A(260), B(4000)
WRITE(10)A, B
2. DO 5 I=1, 10

5 WRITE 6, AMAX (1), (M(1, J),J=1,5)

3. PRINT 50, A, B, C,(I,J)
50 FORMAT (X8HMINIMUM=F17.7, 2X8HMAXIMUM=F17, 7, 2X10HVALUE IS $F8.2)

4, PRINT 51,(A(I),I=1,20)
51 FORMAT(X23HTRUTH MATRIX VALUES ARE/(3X4L3))

5. DIMENSION LISTNME(2), FSTNME(2)
PUNCH 52, ACCT,LSTNME, FSTNME, TELNO, SHPDTE,ITMNO
52 FORMAT (F8.2,3X4A10, XI5)

6. WRITE (2,52)A,B,C,D
53 FORMAT (4E21.9)

7. WRITE (2,53)A, B, C, D
8. WRITE (2, 54)
54 FORMAT (32HTHIS STATEMENT HAS ¥O DATA LIST,)

10-2 60360700A

10.2 READ STATEMENTS

Check for the end of the file either by counting records, checking for a predefined ter-
mination record, or by checking for an IF EOF statement after each read (paragraph
10.4), If an EQF is read on a formatted read {(READ n,list, or READ{, n)list) the data
used for processing will be a blank. If an EOF is read on a binary read (READ(i)list)
the data named in the list will not be changed by the read.. If a read is issued after
the EOF is read, the job will be terminated unless the EOF flag has been cleared by
an IF EOF statement. An EOS encountered when reading a BCD file is ignored ex-

cept for file INPUT where it is treated as an EOP.
Format:
READ n,list
One or more card images are read from the standard input unit. Information is con-

verted from left to right in accordance with FORMAT specification (n), and it is stored
in the locations named by the list.

ANSI FORTRAN, X3.9—1966; does not specify the READ n,list statement.

Example:

READ 10,A,B,C
10 FORMAT (3F10.4)

READ(i, n)list

This statement transfers one logical record of information from logical unit (i) to
storage locations named by the list, according to FORMAT specification (n). The num-
ber of words in the list and the FORMAT specifications must conform with the record
structure on the logical unit.

READ(i)list

This statement transfers one logical binary record of information from a specified unit
(i) to storage locations named by the list.

Records to be read by READ (i) should be written in binary mode. The number of

words in the list of READ (i) list must not exceed the number of words in the corres-
ponding WRITE statement.

80360700C i0-3

If list is omitted, READ (i) spaces over one logical record. See WRITE (i)list.

Examples:
1. DIMENSION C(264)
DIMENSION BMAX (10), M2(10, 5)
READ (10)C
DO 7 1I=1,10

7 READ(0)BMAX(I), (M2(1, J), J=1, 5)
READ (5) (skip one logical record on unit 5)
READ (6) ((A(1, J),I=1,100),J=1,50)
READ (0) ((A(1,J),1=1,100),J=1,50)
DIMENSION Z(8)

2. DOUBLE PRECISION DB(4)
READ (10,51)DB
51 FORMAT (4D20. 12)
READ 51,DB
READ (2,52) (A(J),J=1,8)
52 FORMAT (F10.4)

10.3 NAMELIST STATEMENTS

The NAMELIST statement permits the input and output of character strings consisting of
names and values without a format specification.

Format:

NAMELIST /yllal/yzlaz/. .. /yn/an

Each y is a NAMELIST name consisting of 1-7 characters which must be unique within the
program unit in which it is used. Each a is a list of the form bl’bz’ o .bn; each being a
variable or array name.

In any given NAMELIST statement, the list a of variable names or array names between the
NAMELIST identifier y and the next NAMELIST identifier (or the end of the statement if no
NAMELIST identifier follows) is associated with the identifier y; that is, the list a; is
associated with NAMELIST identifier Vi

Examples:

PROGRAM MAIN
NAMELIST/NAME1/N1,N2,R1,R2/NAME2/N3,R3, N4, N1
SUBROUTINE XTRACT (A, B, C)
NAMELIST/CALL1/L.1,12,L.3/CALL2/1.3,P4,1L5,B

10-4 603607008

A variable name or array name may be an element of more than one such list. In a sub-
program, b may be a dummy parameter identifying a variable or an array, but the array
may not have variable dimensions.

A NAMELIST name may be defined only once in a program unit preceding any reference to
it. Once defined, any reference to a NAMELIST name may be made only in a READ or
WRITE statement. The form of the 1/O statements used with NAMELIST is as follows:

READ (u,x)

WRITE (u, x)

u is an integer variable or integer constant denoting a logical unit, and x is a NAMELIST
name.

ANSI FORTRAN, X3.9-1966, does not specify the NAMELIST statement nor the READ (u, x)
WRITE (u, x) statement,

Example:

Assume A, I, and LL are array names
NAMELIST /NAM1/A,B,I,J/NAM2/C,K,L
READ (5, NAM1)

WRITE (8, NAM2)
These statements result in BCD I/O on the device specified as the logical unit of the variables

and arrays associated with the identifiers, NAMI1 and NAM?2.

Input Data

The curr-nt file on unit u is scanned up to an end of file or a record with a § in column 2
followed immediately by the name (NAM1) with no embedded blanks. Succeeding data items
are read until a $ is encountered.

The data item, separated by commas, may be in any of three forms:

v=c
a=d1, e dj
a(n)=d.,...,d

1 m

60360700A 10-5

v is a variable name, c a constant, aan array name, and n is an integer constant subscript.
di are simple constants or repeated constants of the form k*c, where k is the repetition factor.

Example:

DIMENSION Y(3.5)

LOGICAL L

COMPLEX Z

NAMELIST /HURRY/I1,12,13,K,M,Y,Z,L
READ (5, HURRY)

and the input record:

$HURRYbI1=+1,L=, TRUE.,12=2,13=3,5,Y(3.5)=26,Y(1, 1)=11, 12, 0E1, 13, 4% 14,
Z=(1.,2.),K=16,M=117$

produces the following values:

I1=1 Y(1,2)=14.0
12=2 Y(2,2)=14.0
13=3 Y(3.2)=14.0
Y(3,5)=26.0 Y(1,3)=14.0
Y(1,1)=11.0 K=16
Y(2,1)=120.0 M=17
Y(3,1)=13.0 Z=(1.,2.)
L = .TRUE

The number of constants, including repetitions, given for an unsubscripted array name must
equal the number of elements in that array. For a subscripted array name, the number of
constants need not equal, but may not exceed, the number of array elements needed to fill
the array.

It

variable v is set to ¢

a=d1, ceosd. the values d .»d. are stored in consecutive elements of
array a in the or‘derJ in which the array is stored internally.

a(n)=d1, cees dm elements are filled consecutively starting at a (n)

The specified constant of the NAMELIST statement may be integer, real, double precision,
complex of the form (c 15 C or logical of the form .T., or .TRUE., .F,, or .FALSE.

A logical or complex varla le may be set only to a logical and complex constant, respectlvely
Any other variable may be set to an integer, real or double precision constant. Such a
constant is converted to the type of its associated variable,

Constants and repeated constant fields may not include embedded blanks. Blanks, however,
may appear elsewhere in data records.

10-6 603607

A maximum of 150 characters per input record is permitted. More than one record may be
used for input data. All except the last record must end with a constant followed by a comma,
and no serial numbers may appear; the first column of each record is ignored.

The set of data items may consist of any subset of the variable names asscciated with x,

the NAMELIST name. These names need not be in the order in which they appear in th
defining NAMELIST statement.

Output Data

The NAMEILIST statement nproduces BCD output to unit u ag follows !

One record consisting of a $§ in column 2 immediately followed by the identifier x.
As many records as are needed to output the current values of all variables in the list
associated with x. Simple variables are output as v=c.

Elements of dimensioned variables are output in the order in which they are stored
internally (by columns).

The data fields are made large enough to include all significant digits. Logical constants
appear as T and F, No data appears in column 1 of any record.

One record consisting of a $§ in column 2 is immediately followed by the letters END.

The records output by such a WRITE statement may be read by a READ (u, x) statement
where x is the same NAMELIST identifier,

If unit v is the standard punch unit and a record is longer than 80 characters, the
remaining characters are punched on the next card.

The maximum length of a record written by a WRITE (u, x) statement is 130 characters.

10.4 FiLE HANDLING STATEMENTS
REWIND i

File unit i is repositioned to the beginning of information. If the file is already re-

wound, the statement acts as a do-nothing statement. The REWIND statement cannot
reference the system 1/0 files.

BACKSPACE i

File unit i is backspaced one record in an unformatted file or a BUFFER IN/BUFFER OUT l
file or one unit record in a formatted BCD file, If unit i is at the beginning of information,
this statement acts as a do-nothing statement. The BACKSPACE statement must not
reference the system I/0 files,

60360700C 10-7

END FILE i

An end-of-partition is written on file unit i. The ENDFILE statement may not refer-
ence the system I/O files.

IF (ENDFILE i)nl,nz

IF (EOF, i)nl, n,

These statements check the previous read operation to determine whether an end-of-
partition has been encountered on file tape i. If so, control is transferred to statement
nys if not, control is transferred to statement Ny.

IF(UNIT, i)nl, Ny, Ng, N,

ng Not ready

n, Ready and no previous error

ng End of partition sensed on last operation
n, Parity error sensed on last operation

This statement must be used following a BUFFER IN/BUFFER OUT operation.

ANSI FORTRAN, X3.9-1966, does not specify the IF (ENDFILE i)nl,n2 IF(EOF,i}nl,n

. 2
IF(UNIT, 1)n1, Ny, Mg, T, statements.

10.5 BUFFER STATEMENTS
The primary differences between BUFFER I/O and READ/WRITE I/O statements are:

1. The mode of transmission (BCD or binary) is tacitly implied by the form of
the read/write control statement. In a buffer control statement, parity must
be specified by a parity indicator. The parity mode must remein constant
for a particular file. -

2. The read/write control statements are associated with a list and in BCD trans-
mission with a FORMAT statement. The buffer control statements are not
associated with a list; data transmission is to or from one area in storage.

3. A buffer control statement initiates data transmission and then returns control
to the program to perform other tasks while data transmission is in progress.
Before buffered data is used, the status of the buffer operation should be
checked. A read/write control statement completes the operation before re-
turning control to the program.

The IF (UNIT,i)n,,n sNg, Ty statement must be used to check the status of a BUFFER IN/
BUFFER OUT operation.

In the descriptions that follow, these definitions apply.

Logical unit number

Parity key. May be specified by a constant or simple variable (not

subscripted). O for even parity (coded characters); non-zero for odd
parity.

a Variable identifier: First word of data block to be transmitted.

b Variables identifier: Last word of data block to be transmitted.

10-8 60360700C

BUFFER IN (i,p) (a,b)

Information is transmitted from unit i to storage locations a through b. The transmis-
sion will be terminated when either: .

1. All the data from a to b has been read in, the file will be left positioned at
the end of the record.

2. The end of the current record is encountered.
In either case, the number of words actually transmitted can be obtained with:
L=LENGTH(i)

The use of this statement is described in the BUFFEI description in Appendix J.

BUFFER OUT (i,p) (a,b)

Information is transmitted from storage locations a through b as one logical record.
It is written on unit i containing all the words from a to b inclusive. The use of this
statement is shown under BUFFEO in Appendix J.

ANSI FORTRAN, X3.9-1966, does not specify the BUFFER statement.

Examples:

1. COMMON /BUFF /DATA(10), CAL(50)
PAR=0
BUFFER IN(9, PAR) (DATA(1), CAL(50))
5 IF(UNIT,9)5,6,7,8

Information is input from unit 9 to the labeled common area BUFF beginning
at DATA(1), the first word of the buffer and extending through CAL(50), the
last word of the buffer,

2. DIMENSION A(100)
N=6
BUFFER OUT(n, 1){(A(I), A(100))
4 IF(UNIT,n)4,6,7,8

Information is transmitted to unit n from the buffer area defined by A(1) and
A(100); that is, all of array A is transmitted. If unit n refers to magnetic
tape, data will be written in odd parity.

60360700C 10-9

10.6 ENCODE/DECODE STATEMENTS

The ENCODE/DECODE statements are comparable to the formatted WRITE /READ
statements; however, no peripheral equipment is involved. Information is transferred
under FORMAT specifications from one area of storage to another. The parameters
in these statements are defined as follows:

ENCODE (c,n,v)list

c Unsigned integer constant or a simple integer variable (not subscripted)
specifying the number of characters in the record. c may be an arbitrary
number of BCD characters

n Statement number, variable identifier, or formal parameter representing
the FORMAT statement '

v Variable identifier or an array identifier which supplies the starting
location of the BCD record

1list 1/0 list

When encoding or decoding is performed, the first record begins with the leftmost character
position specified by v and continues ¢ BCD characters (10 BCD characters per computer
word). For ENCODE, if c is not a multiple of 10, the record ends in the middle of a word
and the remainder of the word is blank filled. For DECODE, if the record ends with a
partial word the balance of the word is ignored.

Since each succeeding record begins with a new computer word, an integral number of
computer words is allocated for each record with (c+9)/10 words. There is no intrinsic
limit on C unless V is a level 2 variable, then ¢ must be 150 or less.

ANSI FORTRAN, X3.9-1966, does not specify the ENCODE/DECODE statements.

Examples:

A(1) = ABCDEFGHIJ

A(2) = KLMNObbbbb

B(1) = PQRSTUVWXY
B(2) = Z12345bbbb

1. ¢ = multiple of 10

DIMENSION A(2), B(2)
ENCODE (20,1,ALLPHA)A, B
1 FORMAT (A10,A5/A10, A6)

record a record b
A A

\Y I \
ALPHA ’IABCDEFGHIJI KLMNOb | bbbb [PQRSTUVWXY | Z12345 [bbbb |

word 1 word 2 word 3 word 4

10-10 60360700C

DIMENSION A(2), B(2)
ENCODE (16,1, ALPHA)A, B
1 FORMAT (A10, A6)

record a record b
A A

I \ ! \
ALPHA |ABCDEFGHILJ| KLMNOb | bbbb | PQRSTUVWXY | Z 12345 | bbbb |

3

word 1 word 2 N

word 3 word 4
beginning of new record
3. c # multiple of 10
DIMENSION A6(2), B6(2)
DECODE (18, 1, GAMMA)AG, B6
1 FORMAT (A10,A8)

record a record b
A A

I \ 4 \
GAMMA [HEADERb121[HEADbbO1]31 [HEADERb122 [HEADbBbO2] 31

word 1 word 2 word 3 word 4
beginning of new record

A6(1) = HEADERb121

AB(2) = HEADbbO1bb
B6(1) = HEADERb122
B6(2) = HEADbb02bb

ENCODE (c,n,v)list

(n) and stored in locations starting at v, c characters per record. If the I/O list
(list) and specification list (n) translate more than c characters per record, an execu-
tion diagnostic occurs. If the number of characters converted is less than c, the
remainder of the record is filled with blanks.

The information of the list variables, list, is transmitted according to the FORMAT I

603607008 10-11

DECODE (c, n, v)list

The information in ¢ consecutive characters (starting at address v) is transmitted according
to the FORMAT n and stored in the list variables. If the number of characters specified

by the I/O list and the specification list (n) is greater than c (record length) per record,

an execution diagnostic occurs. If DECODE atte€mpts to process an illegal code or a
character illegal under a given conversion specification, an execution diagnostic occurs.

If a DECODE statement encounters a zero character (6 bits all clear) while processing
an A or R format, that character will be treated as a colon under a 64-character set
or as a blank under a 63-character set.

Examples:

1. The following illustrates one method of packing the partial contents of two words
into one word. Information is stored in core as:

LOC(1) SSSSSxxxxx

LOC(6) xxxxxddddd
10 ch/wd

2]

ormi

h

To 5555ddddd in storage location NAME:
DECODE (10, 1, LOC(6))TEMP

1 FORMAT (5X, A5)
ENCODE (10, 2, NAME)LOC(1), TEMP

2 FORMAT(2A5)

The DECODE statement places the last 5 characters of LOC(6) into the first
5 characters of TEMP. The ENCODE statement packs the first 5 characters of
LOC(1) and TEMP into NAME,

With the R specification; the program may be shortened to:

ENCODE (10, 1, NAME)LOC(1), LOC(8)
1 FORMAT (A5,R5)
2. ENCODE may be used to calculate a field definition in a FORMAT specification
at object time. Assume that in the statement FORMAT (2A8, Im) the programmer
wishes to specify m at some point in the program, subject to the restriction
2<m< 9. The following program permits m to vary.
Format:

IF(M.LT. 10, AND,.M.GT. 1)1, 2

1 ENCODE (8,100, SPECMAT) M
100 FORMAT (6H(2A8,1,11,1H))

.

PRINT SPECMAT, A, B, J

10-12 60360700C

M is tested to ensure that it is within limits. If not, control goes to statement
2 which could be an error routine., If M is within limits, ENCODE packs the
integer value of M with the characters: (A8,Im). This packed FORMAT is stored

. QDT ANTA M QDTN AT ot TOAD T)
N OFLULWVLA L, DLOLCUIVIA L COLlLallls \4AO0, 1111 /.

A and B will be printed under specification A8, and the quantity J under specification
12, or I3, or ... or I9 according to the value of m.

3. ENCODE can be used to rearrange and change the information in a record. The

following examnle also ilhigtrateas that it ie naccihle tn enrnde an aresa into iteelf
ICLIoWIng exXampligc aise 11iUsirales tnal 11T 18 PesSslilie 10 eneele an area 1nig itsell

and thatuencoding will destroy information pi‘eviously contained in an area.

I =10HV = bbFT/SEC

1A =16

ENCODE (10,1,D)I,IA,I
1 FORMAT (A2,I2,R6)

Before executing the above code:
I = 26545555062450230503

After execution:

I =26543441062450230503

60360700A 10-13

STANDARD SCOPE CHARACTER SETS A

The character set selected when the system is installed should be compatible with the
nrintorag

With an installation parameter, the installation keypunch format standard can be selected
as 026 or 029; the installation parameter can also allow a user to override the standard; a
user may select a keypunch mode for his input deck by punching 26 or 29 in columns 79

and 80 of his JOB card or any 7/8/9 end-of-record card. The mode remains set for the
remainder of the job or until it is reset by a different mode selection on another 7/8/9 card.

60360700A A-1

¢~V

V00L09¢E0S

TABLE A-1. CDC 64-CHARACTER SET
Display Hollerith Hollerith External Display Hollerith Hollerith External
Code Character (026) (029) BCD Code Character (026) (029) BCD
00 it 8-2 8-2 00t t 40 5 5 5 05
01 A 12-1 12-1 61 41 6 6 6 06
02 B 12-2 12-2 62 42 7 7 7 07
03 C 12-3 12-3 63 43 8 8 8 10
04 D 12-4 12-4 64 44 9 9 9 11
05 E 12-5 12-5 65 45 + 12 12-8-6 60
06 1 12-6 12-6 66 46 - 11 11 40
07 G 12-7 12-7 67 47 * 11-8-4 11-8-4 54
10 H 12-8 12-8 70 50 / -1 -1 21
11 1 12-9 12-9 71 51 (0-8-4 12-8-5 34
12 J 11-1 11-1 41 52) 12-8-4 11-8-5 74
13 K 11-2 11-2 42 53 $ 11-8-3 11-8-3 53
14 L 11-3 11-3 43 54 = 8- 8-6 13
15 M 11-4 11-4 44 55 blank no punch no punch 20
16 N 11-5 11-5 45 56 , (comma) 0-8-3 0-8-3 33
17 (o] 11-6 11-6 46 57 . (period) 12-8-3 12-8-3 73
20 P 11-7 11-7 47 60 = 0-8-6 8-3 36
21 Q 11-8 11-8 50 61 [8-7 -5 17
22 R 11-9 11-9 51 62] 0-8-2 12-8-7 32
23 S 0-2 0-2 22 63 % 8-6 0-8-4 16
24 T 0-3 0-3 23 64 # 8-4 8-7 14
25 19 0-4 0-4 24 65 - 0-8-5 0-8-5 35
26 \% 0-5 0-5 25 66 v 11-0 or 11-0 or 52
27 w 0-6 0-6 26 11-8-2 11-8-2
30 X 0-7 0-7 27 67 N 0-8-7 1 37
31 Y 0-8 0-8 30 70 t 11-8-5 8-4 55
32 Z 0-9 0-9 31 71) 11-8-6 0-8-7 56
33 0 0 0 12 72 < 12-0 or 12-0 or 72
34 1 1 1 01 12-8-2 12-8-2
35 2 2 2 02 73 > 11-8-7 0-8-6 57
36 3 3 3 03 74 < 8-5 12-8-4 15
37 4 4 4 04 75 > 12-8-5 0-8-2 75
76 - 12-8-6 11-8-7 76
77 ; (semicolon) 12-8-7 11-8-6 77

V00L09€E0S

-V

TABLE A-2. ASCII 64-CHARACTER SUBSET |

Display Hollerith Hollerith ASCII Display Hollerith Hollerith ASCII
Code Character (026) (029) Code Code Character (026) (029) Code
00 Tt 8-2 8-2 072 40 5 5 5 065
01 A 12-1 12-1 101 41 6 6 6 066
02 B 12-2 12-2 102 42 7 7 7 067
03 C 12-3 12-3 103 43 8 8 8 070
04 D 12-4 12-4 104 44 9 9 9 071
05 ¥ 12-5 12-5 105 45 4 12 12-8-6 053
06 F 12-6 12-6 106 46 - 11 1 055
07 G 12-7 12-7 107 47 # 11-8-4 11-8-4 052
10 H 12-8 12-8 110 50 / 0-1 -1 057
11 I 12-9 12-9 111 51 (0-8-4 12-8-5 050
12 J 11-1 11-1 112 52) 12-8-4 11-8-5 051
13 K 11-2 11-2 113 53 $ 11-8-3 11-8-3 044
14 L 11-3 11-3 114 54 =, 8-3 8-6 075
15 M 11-4 11-4 115 55 blank no punch no punch 040
16 N 11-5 11-5 116 56 , (comma) 0-8-3 0-8-3 054
17 O 11-6 11-6 117 57 . (period) 12-8-3 12-8-3 056
20 P 11-7 11-7 120 60 # 0-8-6 8-3 043
21 Q 11-8 11-8 121 61 ' (apostrophe) 8-7 8-5 047
22 R 11-9 11-9 122 62 ! 0-8-2 12-8-7 041
23 S 0- 0-2 123 63 % 8-6 0-8-4 045
24 T 0-3 0-3 124 64 " (quote) 8-4 8-17 042
25 U 0-4 0-4 125 65 _(underline) 0-8-5 0-8-5 137
26 v 0-5 0-5 126 66 1 11-0 or 11-0 or 175

27 w 0-6 0-6 127 11-8-2 11-8-2
30 X 0-7 0-7 130 67 & 0-8-7 12 046
31 Y 0-8 0-8 131 70 @ 11-8-5 8-4 100
32 Z 0-9 0-9 132 71 ? 11-8-6 0-8-7 077
33 0 0 0 060 72 [12-0 or 12-0 or 173
34 1 1 1 061 12-8-2 12-8-2
35 2 2 2 062 73 > 11-8-7 0-8-6 076
36 3 3 3 063 74 < 8-5 12-8-4 074
37 4 4 4 064 75 \ 12-8-5 0-8-2 134
76 (circum- 12-8-6 11-8-7 136
flex)
77 ; (semicolon) 12-8-7 11-8-6 073

t BCD representation is used when data is recorded on even parity magnetic tape.
octal BCD/display code correspondence is the same as for the CDC 64-character set.
t 1 This character is lost on even parity magnetic tape.

In this case, the

¥-v

V00409£09

TABLE A-3. CDC 63-CHARACTER SET |
Disolay Hollerith Hollerith External Display Hollerith Hollerith External
Code Character (026) (029) BCD Code Character (026) (029) BCD
00 (none)t 16 40 5 5 5 05
01 A 12-1 12-1 61 41 6 6 6 06
02 B 12-2 12-2 62 42 7 7 7 07
03 C 12-3 12-3 63 43 8 8 8 10
04 D 12-4 12-4 64 44 9 9 9 11
05 E 12-5 12-5 65 45 + 12 12-8-6 80
06 F 12-6 12-6 66 46 - 11 1 40
a7 G 12-7 12-7 67 47 * 11-8-4 11-8-4 54
:0 H 12-8 12-8 70 50 / 0-1 -1 21
i1 I 12-9 12-9 71 51 (0-8-4 12-8-5 34
i2 J 11-1 11-1 41 52) 12-8-4 11-8-5 74
13 K 11-2 11-2 42 53 $ 11-8-3 11-8-3 53
i4 L 11-3 11-3 43 54 = 8-3 8-6 13
i M 11-4 11-4 44 55 blank no punch no punch 20
18 N 11-5 11-5 45 56 , (comma) 0-8-3 -8-3 33
3 O 11-6 11-6 46 57 . (period) 12-8-3 12-8-3 73
20 P 11-7 11-7 47 60 = 0-8-6 8-3 36
2 Q 11-8 11-8 50 61 [8-17 8-5 17
Z R 11-9 11-9 51 62] t 0-8-2 12-8-7 32
2 S 0-2 0-2 22 63 : (colon) 8-2 8-2 oott
2 T 0-3 0-3 23 64 # 8-4 8-7 14
2 U 0-4 0-4 24 65 - 0-8-5 0-8-5 35
26 A% 0-5 0-5 25 66 A 11-0 or 11-0 or 52
2 w 0-6 0-6 26 11-8-2 11-8-2
20 X 0-7 0-7 27 67 0-8-7 12 37
31 Y 0-8 0-8 30 70 t 11-8-5 8-4 55
3 Z 0-9 0-9 31 71 + 11-8-6 0-8-7 56
a3 (1} 0 0 12 T2 < 12-0 or 12-0 or 72
34 1 1 1 01 12-8-2 12-8-2
35 2 2 2 02 73 > 11-8-7 0-8-6 57
36 3 3 3 03 74 < 8-5 12-8-4 15
37 4 4 4 04 75 > 12-8-5 0-8-2 75
76 12-8-6 11-8-7 76
ki ; (semicolon) 12-8-7 11-8-6 7

T When the 63-character set is used, the punch code 8-2 is associated with display code 63, the colon.

Display code 00
8-6 card punch ?0
treated as blank on input.

t T Since 00 cannot be represented on magnetic tape, it is converted to BCD 12. On input, it will be
translated to display code 33 (number zero).

is not included in the 83-character set and is not associated with any card punch, The

26 keypunch) and the 0-8-4 card punch (029 keypunch) in the 63-character set are

FORTRAN STATEMENT LIST B
SUBPROGRAM STATEMENTS
Entry Points PROGRAM name (f;,..., fn)T N
FORTRAN II PROGRAM name (f , .. i) T N
SUBROUTINE name (py,..., p,) A N
FORTRAN II SUBROUTINE name (pj,...,p)] N
FUNCTION name (pl, cees pn) N
type FUNCTION name (pl, cees pn) N
FORTRAN 11 FUNCTION (py.....p)" N
FORTRAN II type FUNCTION (p,... ,pn)T N
ENTRY name T N
Intersubroutine EXTERNAL name , name,. . . T N
Transfer FT T name,,nameg, ... N
Stat t
atements CALL name E
CALL name (py,..., pn) E
RETURN E
DATA DECLARATION AND STORAGE ALLOCATION
Type Declaration COMPLEX list N
DOUBLE PRECISION list ! N
DOUBLE list| N
REAL list N
INTEGER list N
LOGICAL list N
TYPE DOUBLE list N
TYPE COMPLEX list! N
TYPE REAL list!| N
TYPE INTEGER list| N
TYPE LOGICAL list! N
N = Nonexecutable E = Executable
T Non ANSI
t1 Column 1 indicates F is used in FORTRAN II mode, non ANSI.
60360700A B-1

Storage Allocations DIMENSION VisVgseresVp
COMMON/1, /list, /1, /list,. .. [I_/list
EQUIVALENCE (A, B,...),(A1,B1,...)...
DATA I, /list/, I, /list/, ...
DATA (I,=list), (I,=list), ...
BLOCK DATA n
LEVEL n,1istT

z2 222 22 2

ARITHMETIC STATEMENT FUNCTION

name (pl, Pgseees pn) = Expression E

SYMBOL MANIPULATION, CONTROL AND I/O

Replacement A=E Arithmetic E
L=E Logical /Relational E

M=E Masking E

Intraprogram Transfers GO TO k E
GO TO m E

GO TO m, (nl,nz,...,nm) E

GO TO (n n2,...,nm)i E

IF (c)n ,n2, 3 E

IF (e)n 120y T E

IF (Q)nl, n, E

IF (&)s E

IF (SENSE LIGHT i)nl,n2 E

IF (SENSE SWITCH i)n n E

IF DIVIDE CHECK nl, n2 E

IF (ENDFILE 1)n])(n2 E

F (EOF,i)n E

IF (UNIT,l) ny, 2,n3,n4 E

IF ACCUMULATOR OVERFLOW n,, n, l E

IF QUOTIENT OVERFLOW ng,n, E

LLOOP CONTROL DOni-= my, My, Mg E
DOni-= my, m, E

t Non-ANSI

B-2 60360700A

MISCELLANEOUS PROGRAM CONTROLS

I/O FORMAT

ASSIGN kTO m
SENSE LIGHT i
CONTINUE
PAUSE

PAUSE n

STOP

STOP n

FORMAT (specy,..., k(specml, cee)s spec ,...

NAMELIST [y, /a /y,lag/. .. [y la

I/O CONTROL STATEMENTS

I/0O File Handling

READ n, LL

READ TAPE i,L |

READ INPUT TAPE i,n,L |
PRINT n, L

PUNCH n, L

READ (i,n)L

WRITE (i, n)L,

WRITE TAPE i,L T

WRITE OUTPUT TAPE i,n, L T
READ (i)L
WRITE (i)L

ENCODE (¢, n, v)L
DECODE (c,n, v)L
BUFFER IN (u,p)(A, B) f
BUFFER OUT (u, p)A, B)T

END FILE i
REWIND i
BACKSPACE i

PROGRAM AND SUBPROGRAM TERMINATION

t Non ANSI

60360700A

END

END name T

HEH 8683 9

2

H 8008388 8 8H A

H 806 HEHEHEHH

LIBRARY SUBPROGRAMS C

Intrinsic Function Symbolic Type of
and No, of Arguments Definition Example Name Argument Function
Absolute value [a] Y=ABS(X) ABS Real Real
(1) J=IABS(D) IABS Integer Integer
Truncation Trunc Y=AINT(X) AINT Real Real
(a) =[a] ifa>0 -
(a) = -[a] if 4 <0 I=INT(X) INT Real Integer
where the function
[a] is defined to be
the integer i that
satisfies i< a <itl
Modulo MOD or AMOD (al, az) B=AMCD{A1, A2) AMOD Real Real
is defined to be _
a -trunc(al, a,)*az J=MOD(11,12) MOD Integer Integer
Choosing largest Max (al. Bgsees) X=AMAXO(I,J,K) AMAXO Integer Real
value (> 2) A=AMAXI(X,Y,Z) AMAXI Real Real
L.=MAXO0(, J,K,N) MAXO0 Integer Integer
I=-MAXI1(A, B) MAX1 Real Integer
DOUBLE W,X,Y,Z DMAX1 Double Double
W=DMAX1(X,Y,Z)
Choosing smallest Min (al, CYPR) Y=AMINO(I, J) AMINO Integer Real
value (> 2) Z=AMIN1(X,Y) AMIN1 Real Real
L=MINO(I, J,K) MINO Integer Integer
J=MIN1(X,Y) MIN1 Real Integer
DOUBLE A,B, C DMIN1 Double Double
C=DMIN1(A, B)
Float (1) Conversion from XI=FLOAT(I) FLOAT Integer Real
integer to real
Fix (1) Conversion from IY=IFIX(Y) IFIX Real Integer
real to integer
Transfer of sign (2) Sign of ay times ay Z=SIGN(X, Y) SIGN Real Real
J=ISIGN(11,12) ISIGN Integer Integer
Pogitive difference (2) ay - Min(al, az) Z=DIM(X,Y) DIM Real Real
J=IDIM(I1,12) IDIM Integer Integer
Obtain real part of COMPLEX A REAL Complex Real
complex argument (1) B=REAL(A)
Obtain imaginary part of D=AIMAG(A) AIMAG Complex Real
complex argument (1)
Express two real a; +a, -1 COMPLEX C CMPLX Real Complex
arguments in complex C=CMPLX(A1, A2)
form (2)
Obtain conjugate of a COMPLEX X,Y CONJG Complex Complex

Complex argument (1)

60360700A

Y =CONJG(X)

Intrinsic Function
and No. of Arguments

Logical product (2)

Logical sum (2)

Complement (1)

External Function
and No. or Arguments

Exponential (1)

Natural logarithm (1)

Common logarithm (1)

Trigonometric sine (1)

Trigonometric cosine (1)

Hyperbolic tangent (1)

Square root (1)

Arctangent (1)

(2)

Modulus (1)

Arccosine (1)

Arcsine (1)

Trigonometric
tangent (1)

LIBRARY SUBPROGRAMS (Cont'd)

Symbolic Type of
Definition Example Name Argument Function
a, Aay C=AND(A1,A2) AND Single word Octal
ayva, D=OR(A1,A2) OR Single word Octal
a B=COMPL(A) COMPL Single word Octal
Symbolic Type of
Defintion Example Name Argument Function
e Z=EXP(Y) EXP Real Real
DOUBLE X, Y DEXP Double Double
Y =DEXP(X)
COMPLEX A,B CEXP Complex Complex
B=CEXP(A)
]oge(a) Z=ALOG(Y) ALOG Real Real
Y =DLOG(X) DLOG Double Double
B=CLOG(A) CLOG Complex Complex
log, 4(a) B=ALOG10(A) ALOG10 Real Real
DD=DLOG10(D) DLOG10 Double Double
sin (a) Y =SIN(X) SIN Real Real
DS=DSIN(D) DSIN Double Double
CS=CSIN(C) CSIN Complex Complex
cos(a) X=COS(Y) COs Real Real
DC=DCOS(D) DCOS Double Double
CC=CCOSs(C) CCOS Complex Complex
tanh (a) B=TANH(A) TANH Real Real
(a)l /2 Y=SQRT(X) SQRT Real Real
DY =DSQRT(DX) DSQRT Double Double
CY=CSQRT(CX) CSQRT Complex Complex
arctan (a) Y=ATAN(X) ATAN Real Real
DY=DATAN(DX) DATAN Double Double
arctan (a1/a2) B=ATAN2(A1,A2) ATAN2 Real Real
D=DATANZ2(D1,D2) DATAN2 Double Double
AIMAG%(2)+REAL%(a) CM=CABS(CX) CABS Complex Real
arccos (a) X=ACOS(Y) ACOS Real Real
arcsin (a) X=ASIN(Y) ASIN Real Real
tan (a) Y=TAN(X) TAN Real Real
60360700A

External Functions
and No. of Arguments

Address of argumeni {1}

Length (1)

LIBRARY SUBPROGRAMS (Cont'd)

Defintion

N FIRY
loc ra/

Number of central

memory words read
on the previous I/O

request for a
particular file

Variable characteristic (1)-1 = indefinite

Parity status on
non-buffer unit (1)

Date as returned by
SCOPE (1)

Current reading of
system clock as
returned by SCOPE (1)

Time in seconds (1)

Absolute value (1)

Truncation (1)

Modulo (2)

Transfer of sign(2)

Truncate to obtain
most significant part
of double precision
argument (1)

Express single
precision argument
in double precision
form (1)

Random number
generator

Each call returns

a random number in
the interval (0, 1).

T These routines may be used as functions or subroutines.

+1 = out of range
0 = Normal

0 = no parity error
on previous read

date(a)

time(a)

second (a)
(accumulated CP
time)

a
Trunc

(a) = [a] if a >0
(a) = -[a] ifa <0

where the function
fa] is defined to be
the integer i that
satisfies i<a <i+l

- *
3y trunc(al, az) a,

Sign of ay
times ay

and via the normal function return.

Symbolic Type of
Example Name Argument Function
P=LOCF{X) LOCF Symbolic Integer
L=LENGTH(J) LENGTH Integer Integer
LEN=LEGVAR(V) LEGVAR Real Integer
IP=IOCHEC(5) IOCHEC Integer Integer
WHEN=DATE(D) DATE T Value Hollerith
Returned
CLTIM=TIME(A) TIME ¥ Variable Hollerith
CLTM=SECOND(A) SECOND Real Real
DOUBLE A,B DARBS T T Double Double
B=DABS(A)
DOUBLE Z IDINT T T Double Integer
J=IDINT(Z)
DM=DMOD(D1,D2) DMOD Double Double
Tt
D3=DSIGN(D1,D2) DSIGN ' ! Double Double
DOUBLE Y SNGL Double Real
X=SNGL(Y)
DOUBLE Y DBLE". ¥ Real Double
Y=DBLE(X)
Y=RANF(X) RANF Dummy Real

ANSI FORTRAN, X3.9-1966, specifies these functions as intrinsic.

60360700A

The value is always returned via the argument

COMPUTER WORD STRUCTURE OF CONSTANTS D

f

59 S8 o

INTEGER Z ‘ J
SIGN-r i

59 58 4847 o
REAL BIASED (m)
é EXP FRACTION
48
SIGN
50 5453 48 47 42 41 3635 3029 2423 1817 2l 65 0
HOLLERITH BCD AND o | @ | @ | as | @s| a6 | a7 | a8 | @ | @0
DISPLAY CODE S ——
6 6 6 6
59 58 48 47 <] 59 58 48 47)
DOUBLE-PRECISION % e l m J " .@ siaseo | ol J
I MOST SIGNIFICANT j LEAST SIGNIFICANT
SIGN SIGN
59 58 48 47 o 59 58 48 47 o
- R/ I

—f REAL } IMAGINARY
SIGN SIGN

59 [+]

LOGICAL FALSE [0000 0ood
TRUE [i 111 |

57 54 51 48 45 42 39 36 i2 9 6 3 ©

OCTAL €500 19 ‘pal’|7'sr¢n|‘m |‘4 l‘al‘ﬂ
33 3 3

3 3 3 3 3 3 3

60360700A D-1

COMPILATION AND EXECUTION E

2

NATA AVDER 70/\Madal 78 FORTRAN RII

The CONTROL DATA CYBER 70/Model 78 FORTRAN RUN compiler may be called into
execution by using either of two control statement formats. The parameters on one format
are in fixed positions as used in previous RUN compilers. The second form is free form
and includes a rounded floating point option not availabie in the fixed format.

FIXED PARAMETER POSITION FORTRAN CONTROL STATEMENT |

i

(RUN(cm, , , if, of, bf, 1c, , cs, t, el, Im)
cm Compiler mode option (if omitted, assume G)
G Compile and execute, no list unless explicit LIST cards
appear in the deck
S Compile with source list, no execute

Pt Compile with source list and punch deck on file PUNCHB,
no execute

L Compile with source and object list which contains mnemonics,
no execute

M+ Compile with source and object list which contains mnemonics,
produce a punch deck on file PUNCHB, no execute

if File name for compiler input; if omitted, assumed to be INPUT

of File name for compiler output; if omitted, assumed to be OUTPUT

bf File name on which the binary information is always written; if omitted,
assumed to be LGO

lc Line-limit (octal) on the OUTPUT file of an object program; if omitted,

assumed to be 10000,. Line limit may be altered at execution time as a
parameter on EXECUTE or load-and-execute control card.

Example: LGO(L.C=2000). The LC parameter may appear anywhere in the
parameter list of the execution control card. It is not counted as a file
name for file equivalencing purposes. The value used is interpreted as

an octal number =
cs Cross-reference switch. If non-zero, a cross reference listing is produced
t Error traceback. When this parameter is present, calls to math library

functions will be made with maximum error checking. Full error traceback
will be done if an error is detected except for those functions whose names
are declared in an EXTERNAL statement. For these functions, no error

_ traceback is done. When t is omitted, no error checking will be done on
math library functions other than EXP, ALOG, ALOG10, SIN, COS, ATAN, and
ATAN2; no traceback will be provided if errors are encountered. Thus, a
significant saving in memory space and execution time is realized. This
mode of compilation (t omitted) is not intended for use with programs in
the debug stages

el Forced load switch., If other than zero or blank, generated code is forced-
loaded, despite any errors which may have been generated during compila-
tion

Im 1.CM address mode code. If present, 21-bit mode is used; otherwise, 17-bit

mode is used

Because COMPASS allows only one binary output file to be written, a RUN (P or M) and

LGO will result in only the FORTRAN code of a FORTRAN-COMPASS job being placed on
LGO.

60360700 C E-1

The second, third, and eighth positions are allowed so that 6000 compatibility is maintained.
If used, they are ignored by the 7600 Compiler.

LCM Address Mode

If 17-bit mode is selected, the LCM object time field length is restricted to a maximum of
131072 words. The 17-bit option allows generation of more efficient object code, using
18-bit address field instructions and index registers to hold addresses and perform index
arithmetic. If 21-bit address mode is selected, the LCM object time field length is limited
only by the amount of large core memory available or 2097152 words, whichever is smaller;
however, this will tend to produce a less efficient object code which utilizes indirect address
words in small core memory. In either mode the size of any one array or common block is
restricted to a maximum of 131072 words.

FREE FORM FORTRAN CONTROL CARD

ﬁRUN(plj p2’ p3: L] pn)
Where the parameter list may contain any of the following parameters.
1. Compile mode parameter

This parameter may consist of any combination of the characters C, R, X, and
T with one of the characters G, S, P, L, or M.

The latter are ag defined for the fixed format (if omitied, G is assumed) and

]

C selects the cross reference table option.

R selects the rounded floating point arithmetic option, otherwise unrounded
floating point instructions are used.

X selects the execute mode option. This mode will cause the compiler to
terminate normally even when fatal errors have occurred.

T selects traceback to check arguments for math functions.
2. Number of print lines parameter

NLx where x is an octal number (x=99999) that specifies the maximum number
of print lines. If omitted, NL10000 is assumed,

3. Source input file parameter

I=fn where fn is the file name for the compiler input. If omitted, I=INPUT is
assumed.

4. Listing output file parameter

O=fn where fn is the file name for compiler listing output. If omitted, O=OUTPUT
is assumed.

E-2 60360700 C

5. Binary output file parameter

B=fn where fn is the file name for compiler binary output. If omitted, B=LGO
is assumed.

n T AT ma AT amm - m e vmm amm ke
o i vl AUl edsd fipyuc pd.]. aliflgLelr
LLCM=D
or
L.CM=I
The D gpecification specifieg 17-bit LLCM address mode, The I gpecification
specifies 21-bit LCM address mode. If this parameter is omitted, 17-bit mode

Q.

is assume

As an example, the call card RUN (LRC,O=PRINTF) will cause the compiler tc generate a
full octal listing, generate rounded floating point operations, generate a cross reference
table, read its input from file INPUT, write its output on file PRINTF, and write its binary
output on file LGO. If fatal errors occur during compilation, the compiler will abort the
job.

COMPILATION FEATURES

Source and Object Code Output

Compiler output, except in the G mode, includes a reproduction of the source program, a
variable map, and indications of fatal and non-fatal errors detected during compilation. If

the G mode is selected, all output is suppressed unless the LIST control card is used. If I
the L. or M mode is selected, the output includes an object list which contains mnemonics.

On L or M mode listings, the following lines appear:

PS------ (preamble start)
PT------ (preamble terminate)
CS------ {conclusion sfart)
CT------ (conclusion terminate)

These identify statement sequences where some common computation has been extracted
and performed before entering the sequence.

A copy of the compiled programs is always left in disk storage as binary record on a file
named either LLGO or the name specified as the bf parameter in the call to the compiler.
The compiled program may be called and executed repeatedly, until the end of job occurs,
by using the name of the load-and-go file. In the output file at the end of compilation of
each subprogram, the compiler indicates the amount of unused compilation space.

Two control cards LIST and NOLIST are available to allow the programmer more flexibility
in requesting a list of his programs. These cards are free field beyond column 6 and appear
between subprograms. When the LIST card is detected, the source cards of the following
programs are listed. If the compiler mode was L, the object code is also listed. When

the NOLIST card is detected no more listing takes place until a LIST card is detected.

60360700 C E-3

Overlay Files

To aid in the preparation of overlay files, the FORTRAN compiler, upon detecting an
OVERLAY card between subprograms, transfers them to the load-and-go file, and to the
PUNCHB file if the P or M option is selected. They also are transferred to the output file,

The following control card is transferred to the load-and-go and PUNCHB file if mode is
P or M:

(OVERLAY (ifn,1,13)

This statement must begin after column 6.

SAMPLE JOB DECKS

Compile and Execute

LON»

iy —

7

8

9 (RUN (6)

JoBI23, P2,T400,CM60000,
EC20, CP70.

Job name JOB123
Priority 2
Time limit Approximately 4 minutes
SCM field length 600008 words
LCM field length 200004 words

Compile and execute with no list and no binary deck.

The above control card sequence will compile and run in a SCM field of 60000g words.

E-4 60360700 C

Overlay Preparation of 0,0;1,0;1,1

\\
H

data
/1
— 3
| 9
END l
SOURCE =
DECK PROGRAM MLT
/ovsm.u (FRANKI, 1,1) I
END]
(CALL OVERLAY (6L FRANKI,1,1,1,0)
SOURCE s Y
DECK = |
PROGRAM RDY l

OVERLAY (FRANKI,1,0)

1
Jl

1
r((SUBROUTINE GROUCH (X)
ENC
SOURCE / CALL OVERLAY (6 LFRANKI,1,0,0)
DECK (CALL GROUCH(4,0)
-
— 1 I
1)
i

/
/ PROGRAM LEO (INPUT, OUTPUT, TAPE
111l

l OVERLAY (FRANK!, 0,0}

7
4 /rnnm.

B
(NOGO,

LOAD (L6O) |

ﬁnuu(u)

LMY, P1,T500,CME0000 ,CP70.

60360700A

FORTRAN Compile and Execute with Mixed FORTRAN and COMPASS Subprograms

SOURCE
DECK

<

©ONO

L

Wa

L

(ENTRY Al

fDENT {in cols. N—I5)

L

L

va

Z
/IDENT (cols. 11-15)

//// 1%

SUBROUTINE S1 (p1,p2)

1

| |

(((/ PROGRAM DONE (INPUT,OUTPU

1
1
T)

4

W~y

RUN.

JOB 123, P1, T400, CM60000,CPT0.

60360700A

FORTRAN Compile and Produce Binary Card; no execution.

Three files of I/O - INPUT, OUTPUT AND TAPE1

Jobname RA6600
Priority 1
Time limit approximately 1 minute
Field length 50000, words

6

7

8

9

(, =)

} source statements

' PROGRAM BOB (INPUT, OUTPUT, TAPE 1)

¢

RUN (P)

RA6600, P1, T100, CM60000,CP70.

60360700A

FORTRAN Compile and Execute (plus a prepunched binary subroutine deck)

A binary deck to be loaded with a compiled routine must be preceded by 7/8/9 card.

WD~

data

TWO SEQUENTIAL END OF

SECTION CARDS DENOTE
THE END OF THE BINARY
LOAD TO THE LOADER

J
=

source deck

(PROGRAM HOW (INPUT,OUTPUT)

/ LOAD, INPUT.

fed

1

COMPLETES LOADING
FROM FILE LGO

LOADS BINARY ROUTINES
FROM INPUT

RUN(S)

EEK15, P1,T200,CM50000.

60360700A

Load and Execute a Prepunched Binary Program

The binary cards in the input file following the record separator are loaded into central
memory when the program call card INPUT is encountered,

%

18
9

data cards

/7
8
S
\ TWO SEQUENTIAL

/7 END OF SECTION
g CARDS DENOTE THE
END OF THE BINARY

L
Va
iy
W
AR

/ binary deck

[+ 1. J

/7
/INPUT.

CDC 111, P1,T400,CM20000,CP70.

60360700A

LOAD TO THE LOADER.

Compile Once and Execute Twicet with Different Data Decks

\ (Dm\ld)

e

L

Pa

e

I’ DATA SET # 2

P
Ve
——

[DATA SET#41

WO~

1

Wmosnm TWICE (INPUT ,OUTPUT)]

REPT2, P1, T600, CM0000,CP70.

t PROGRAM TWICE must read the end-of-record card.

60360700A

PROGRAM-SUBPROGRAM FORMAT F

The starting address of all programs is RA+100, with the first 77, locations containing file
and loader information. As many as 50 files may be declared for any one program. An
object time routine, Q8NTRY, stores the file names along with their FIT addresses in
locations RA+2 through RA+1+n, where n is the number of files declared on the PROGRAM

card. The I/O buffers are allocated and managed by 7000 DATA MANAGER in LCM.

The first word of a main program is a trace word containing the name of the program in

left justified complemented display code and the argument count +100, in the lower 18 bits.
The program name is complemented so that an object time traceback routine can distinguish
between RUN and FORTRAN Extended trace words. The second word of a main program is
the entry point. It contains instructions to preset the parameters for Q8NTRY which performs
initialization only once per execution. Therefore, entry into an overlay is through this

word destroying its contents. Since Q8NTRY does not perform any function after the first
entry, the destruction of the preset parameters for an overlay entry does not matter.

The first n words of a subroutine are reserved for argument addresses for the subroutines
where:

n max (0, argument count-6) in 17-bit LCM mode

or, the argument count in 21-bit L.CM mode

In 17-bit LCM mode, one word is reserved for each argument in excess of six. The
addresses of the first six arguments are passed through B registers 1 through 6. In 21-bit
LCM mode one word is reserved for each argument. In this mode the address of argument
i is passed through B register i and the reserved word is unused if the argument is in SCM
and i < 6. Otherwise, the argument address is passed through the ith reserved word.

Immediately following these reserved words is the subroutine trace word containing the
name of the subroutine in left justified complemented display code and the argument
count in the lower six bits. Next is the entry/exit line for the subroutine. Therefore,
a subroutine will have two reserved words if the argument count is zero.

Subroutines written in the COMPASS assembly language that will operate in conjunction with
FTORTRAN coded routines should be formatted as in the following examples to take full
advantage of the error tracing facility of FORTRAN Version 2. 0. The called subroutines
do not have to be concerned with register preservation.

Example:

PROGRAM PETE (INPUT, OUTPUT, TAPE1)

DATA O 100002 Complement of name; argument count plus
1008

SB1 L00002 1.00001 Entry/Exit line

SB2 C00001 Where C00001 is the address of an argument

list for Q8NTRY.
RJ Q8NTRY 1.00003

60360700A F-1

SUBROUTINE PHD

DATA
DATA
DATA
DATA
DATA

[=NeRe ool

(A) B, C)
1.00005 Reserved for At
1.00004 Reserved for BT
1.00003 Reserved for Ct
1.00002 Name and argument count (trace word)
1.00001 Entry/Exit line

SUBROUTINE PEN (A,B,C,D,E,F,G, H,1,J)

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

CO0OO0OO0OOO0OODOOOO

1.00003 Reserved for AT
1.00004 Reserved for BY
1.00005 Reserved for Ct
1.00008 Reserved for D
1.00007 Reserved for Ef
1.00010 Reserved for FT
L.00011 Reserved for G
L.00012 Reserved for H
1.00013 Reserved for I
1.00014 Reserved for J
1.00002 Name and argument count (trace word)
100001 Entry/Exit line

Calling Sequence to PEN (17-bit LCM mode)

CAT

SA

LLPEN (M,N,Q
SB1 M
SB2 N
SB3 0]
SB4 P
SB5 Q
SB6 R
SX6 Entry 1i
SA1 X6-1
SB7 X1-86
SX6 S
SAB A1-B7
SX7 T
SA7 AB+1
SX6 U
SA6 AT+1
SX7 \%
SAT AB+1
RJ PEN
07121.00002

PO R Q M 1T 37
3L Ny AV Dy Ly Uy VI

ne of PEN

Name and argument count
Number of arguments less 6
Reserved word for S
Reserved word for T
Reserved word for U

Reserved word for V

Where 12, is argument count and 100002 is the trace
the name of calling routine,

word containing

T These words do not appear if 17-bit L.CM mode is requested on the RUN control card.

o

60360700A

SYSTEM ROUTINE G

The SYSTEM routine handles error tracing, diagnostic printing, termination of output

S . o . cor o . B 1 T o AT 11 To T
buiters, and iransier 10 specililed nonstandard error procedures., All ine ruhinhalN

mathematical routines rely on SYSTEM to complete these tasks. Also, a FORTRAN coded
routine may call SYSTEM. Any of the parameters used by SYSTEM relating to a specific
error may be changed by a user routine during execution. The END processor also makes
use of SYSTEM to dump the output buffers and print an error summary. Since the
initialization routine (Q8NTRY.), the end processors (END., STOP., and EXIT.), and
SYSTEM, must always be available, these routines are combined into one subprogram with
multiple entry points.

The calling sequence to SYSTEM passes the error number as the first parameter and an
error message as the second parameter. Several different messages may be associated with
one error number. The error summary given at program termination lists the total number
of times each error number was encountered.

The error number of 0 is accepted as a special call to end the output buffers and return. If
no OUTPUT file is defined before SYSTEM is called, no errors are printed and a message to
this effect appears in the dayfile. Each printed line is subjected to the line limit of the
OUTPUT buffer; when the limit is exceeded, the job is terminated.

The error table is ordered serially (the first error corresponds to error number 1) and it is
expandable at assembly time., The last entry in the table is a catch-all for any error number
which exceeds the table length. An entry in the error table appears as follows:

Print Error .
Print Frequency Print Detection F/ A Non-Standard
Frequency Increment Limit Total NF NA Recovery Address
8 8 12 12 1 1 18

Print Frequency = PF

Print Frequency Increment = PFI
PF = 0 and PF1
PF = 0 and PFI

i

0 The diagnostic and traceback information are not listed

1

1 The diagnostic and traceback information are listed until the
print limit is reached

PF = 0and PFI = n The diagnostic and traceback information are listed only the
first n times unless the print limit is reached first
PF =n The diagnostic and traceback information are listed nth time

until the print limit is reached

60360700A G-1

Fatal (F)/Nonfatal (NF)

If the error is nonfatal and a nonstandard recovery address is not specified, error messages
are printed according to PRINT FREQUENCY and control is returned to the calling routine.

If the error is fatal and no nonstandard recovery address is specified, error messages are
printed according to PRINT FREQUENCY, an error summary is listed, all output buffers
are terminated, and the job is terminated.

If a nonstandard recovery address is specified, see Nonstandard Recovery.

Nonstandard Recovery

SYSTEM supplies the nonstandard recovery routine with the following information:

B1-B6 Address of the first six parameters passed to the routine that detected the
error

X1 Error number passed to SYSTEM

X2 Address of the diagnostic message available to SYSTEM

X3 Address within an auxiliary table if A/NA bit is set

X4 Instruction word consisting of the return jump to SYSTEM in the upper 30

bits and trace back information in the lower 30 bits for the routine which
detected the error

AO Address of error number entry within SYSTEM's error table
Nonfatal Error

The entry/exit line of the routine which called SYSTEM is set into the entry/exit line of the
recovery routine. Control is then passed to the word immediately following the entry/exit
line of the recovery routine. The traceback information available to SYSTEM from the
routine which detected the error is passed to the recovery routine in X4,

Any faulty parameters may be corrected, and the recovery routine is allowed to call the
routine which detected the error with corrected parameters. Upon exit from the recovery
routine, control is turned not to SYSTEM nor to the routine which detected the error, but
rather back anotherlevel (see example). By not correcting the faulty parameters in the
recovery routine, a three routine loop could develop between the routine which detects the
error, SYSTEM, and the recovery routine., No checking is done for this case.

Example:
MAIN
E/E

CALL MATH (A, B, C)
RTNI1 . Point of return from NMATH, if no errors are detected, or
from RECOVERY

END

=
=

3
~3
\l\.';

E/E

Fatal Error

MATH
jump to RTN1

RJ SYSTEM
OTXXAAAAAA. «.ov.....

END

SYS "EM

jump to RTN2

JUMP TO RECOVERY
END

RECOVERY
jump to RTN1

RJ MATH

jump to E/E
END

May be reentered from RECOVERY with
corrected parameters

Traceback information

Transfers E/E line of MATH to E/E line of
RECOVERY and gives control to RECOVERY

Corrects faulty parameters and may recall
MATH

Returns to MAIN following reference to
MATH

SYSTEM calls the nonstandard recovery routine in the normal fashion, with the registers
set as indicated in the preceding chart.
normal fashion returning control to SYSTEM, an error summary is listed, all output buffers

are terminated, and the job is terminated.

60360700A

If the nonstandard recovery routine exits in the

Use of the A/NA Bit
The A/NA bit is used only when a nonstandard recovery address is specified.

If this bit is set, the address within an auxiliary table is passed in the third word of the
secondary parameter list to the recovery routine. This bit allows more information than is
normally supplied by SYSTEM to be passed to the recovery routine. The bit may be set only
during assembly of SYSTEM, as an entry must also be made into the auxiliary table. Each
word in the auxiliary table must have the error number in its upper 10 bits so that the address
of the first error number match is passed to the recovery routine. An entry in the auxiliary
table for an error is not limited to any specific number of words.

The traceback information is terminated as soon as one of the following conditions is detected:

The calling routine is a program
The maximum traceback limit is reached

No traceback information is supplied

To change an error table during execution, a FORTRAN type call is made to SYSTEMC with
the following parameters:

Error Number
List containing the consecutive locations:

Word 1 Fatal /nonfatal (fatal = 1, nonfatal = 0)

Word 2 Print frequency

Word 3 Print frequency increment (only significant if word 2 - 0) special values:
word 2 =0, word 3 =0 Never list error
word 2 = 0, word 3 =1 Always list error
word 2 = 0, word 3 =X List error only the first X times

Word 4 Print limit

Word 5 Nonstandard recovery address

Word 6 Maximum traceback limit

If any word within the parameter list is negative, the value already in table entry is not
to be altered.

(Since auxiliary table bit may be set only during assembly of SYSTEM, only then can an
auxiliary table entry be made.)

G-4 60360700A

Error Listing

Message supplied by calling routine:

ERROR NUMBER xxxx DETECTED BY zzzzzzz AT yyyyyy zzzzzzZ and cccccee are

A1t inA ma e ac rTrTrYrTITr e e o]
- ; S L UuUuLiLiicT llalllcc, JJJJJJ allu
CALS;;ED FROM cccceec AT ADDRESS wWwwwww TWWWWwW are reloeatable
CALLED FROM ccccee AT LINE dddd addresses

ERROR SUMMARY

ERROR

XXXXX

(dddd is FORTRAN source

b I
i1r1e coulrii)

TIMES
yyyy

(all numbers are decimal)

NO OUTPUT FILE FOUND

Functions of Entry Points

Q8NTRY
STOP
EXIT
END

SYSTEM=

60360700A

Initialize I/O buffer parameters
Enter STOP in dayfile and begin END processing
Enter EXIT in dayfile and begin END processing

Terminate all output buffers, print an error summary, transfer control
to the main overlay if within an overlay; in any other case exit to
monitor

Handles error tracing, diagnostic printing, termination of output
buffers and either transfers to specified nonstandard error recovery
addresses, terminates the job or returns to calling routine depending
on type of error

passed

Changes entry to SYSTEM's error table according to arguments

Gains control from an execution routine when an error had been
assembled as fatal and during the processing of the job was changed
to nonfatal with no nonstandard error recovery. An abnormal
termination is given.

FILE NAME HANDLING BY SYSTEM

SYSTEM(Q8NTRY) places in RA+2 and the locations immediately following, the file names
from the FORTRAN PROGRAM card. The file name is left justified, and the file's FIT
address is right justified in the word. (Thus the declared names replace any actual file
names at execution time in the RA area.) The file name occupies 42 bits. The FIT address
occupies 18 bits.

The logical file name (LFN) which appears in the first word of the FIT is determined in one
of the three following ways:

CASE 1: If no actual parameters are specified, the LFN will be the file name from
the PROGRAM card.

Example:
RUN(S)
LGO.
’.PROGRAM TEST1(INPUT,OUTPUT, TAPE1, TAPE2)
Refore SYSTEM(Q8NTRY) is executed
RA+2 000 000
000 000
After SYSTEM (Q8NTRY) LFN in FIT
RA+2 INPUT FIT address INPUT
OUTPUT FIT address OuTPUT
TAPE1 FIT address TAPE1
TAPE2 FIT address TAPE2

CASE 2: If actual parameters are specified, the LFN will be that specified by the
corresponding actual parameter, or the file name from the PROGRAM card
if no actual parameter was specified. A one-to-one correspondence exists
between the actual parameters and the file names found on the PROGRAM
card.

Example:

RUN(S)
LGO(, , DATA, ANSW)

PROGRAM TEST2(INPUT,OUTPUT, TAPE1l, TAPE2, TAPE3=TAPE1)

G-6 60360700A

Before
RA+2

After
RA+2

CASE 3:

Example:

Before
RA+2

After

SYSTEM (Q8NTRY) is executed

000 000

000 000

DATA 000

ANSW 000

SYSTEM (Q8NTRY) LFN in FIT

INPUT FIT address INPUT

oUuTPUT FIT address oUTPUT

TAPE1 FIT address DATA

TAPEZ2 FIT address ANSW

TAPES3 FIT address Uses TAPE1 FIT
of TAPE1

An equivalenced file name from the PROGRAM card will ignore an actual
parameter. The LFN will be that of the file to the right of the equivalence
and no new FIT will be created.

RUN(S)
LGO(, ,DATA, ANSW)

PROGRAM TEST3{(INPUT,OUTPUT, TAPEI=OUTPUT, TAPE2, TAPES3)

SYSTEM (QSNTRY)

RA+2

60360700A

000 000

000 000

DATA 000

ANSW 000

SYSTEM (Q8NTRY) LFN in FIT

INPUT FIT address INPUT

OUTPUT FIT address OoOuUTPUT

TAPE1 FIT address of Uses OUTPUT FIT
OUTPUT

TAPE?2 FIT address ANSW

TAPES3 FIT address TAPES

FORTRAN CROSS REFERENCE MAP H

#‘

If the ninth field of the run control card is non-zero, FORTRAN supplies the programmer with

e nafaranfce AT —F 1 IO AN QTTIIDATTMTATTY ~em TOTTATAIMTANT wmirrmaler o
a cross-reference map alffer eacn PRUGLHRAN, SUDBDRUU LLINE, O ULV LI Pul &y as an

aid to program debugging. The following information is furnished:
Program length including I/O buffers

Statement function references with the relative core locations, general compiler tag
assigned, symbolic tag given in the program and the references to the statement function

Statement number references with the same information as above
Block names and lengths

Variable references - also with location; general tag, symbolic tag, and a list of
references

Start of constants (relative address)

Start of temporaries (relative address)

Start of indirects (relative address)

Unused compiler space
The programmer should bear in mind that because of the operation of the compiler not all
references will be listed. . An actual physical reference is necessary before the reference
is placed in the reference map. If the required variable address is already in a register,
the compiler will use the address in the register and not make an actual variable reference
by name. A reference to a statement number will not be listed if an actual jump is not

necessary, such as when the code simply falls through to the next statement and the
compilation of a jump instruction is therefore unnecessary.

80360700A H-1

FORTRAN Il FEATURES I

The following FORTRAN II statements are accepted by FORTRAN:

1.

N
°

In FORTRAN II arithmetic replacement statements, column 1 may contain either
of the following characters:

D Double Precision mode

I Complex mode

When these characters are encountered, all variables and constants in the statement
are assumed to be of the same type (double precision or complex).

FTORTRAN II statements which contain a B in column 1 (Boolean) are evaluated as
masking expressions. The operator equivalences are:

FORTRAN FORTRAN II
.AND. *

.NOT. -

.OR.

none /

Exclusive GR function is defined as:

p v plv
1 1 0
1 0 1
0 1 1
0 0 0

Mixed mode variables may appear in any FORTRAN II Boolean B-type statements.
Sense Light Statements

SENSE LIGHT i

The statement turns on SENSE LIGHT i; i must be an integer constant in the range
1to 6.

SENSE LIGHT 0 turns off all sense lights.
IF (SENSE LIGHT i)nl,n2
The statement tests SENSE LIGHT i. If it is on, it is turned off, and a jump occurs

to statement n,. If it is off, a jump occurs to statement n,. The n, are statement
labels; i must]be an integer constant in the range 1 to 6.

60360700A I-1

[
X&)

IF SENSE SWITCH Statement

IF (SENSE SWITCH i)nl,nz
If SENSE SWITCH i is set (on), a jump occurs to statement n,. If it is not set (off),
a jump occurs to statement 0, i may be a simple integer variable constant (1 to 6).

Fault Condition Statements

At execute time, the computer may be set to interrupt on divide overflow or exponent
fault. This is the default setting on SCOPE 2. The fault indicator may be checked
immediately after any statement that could possibly cause a fault condition if the
SCOPE 2 mode control card is used to inhibit the concerned interrupts.

IF DIVIDE CHECK ng,n,
A divide check occurs following division by zero. The statement checks for this
condition. If it hasoccurred, ajump to statement ng takes place. If no check
exists, a jump to statement n, takes place.

IF QUOTIENT OVERFLOW ny,n,

IF ACCUMULATOR OVERFLOW ng,n,
An overflow occurs when the result of a real, double precision, or complex
arithmetic operation exceeds the upper limits specified for these types. Resuits
that are less than the lower limits are get to zero without indication. This
statement is therefore a test for floating point overflow only. If the condition

has occurred, a jump to statement n, takes place. If the condition does not exist,
a jump to statement n, takes place.

FORTRAN accepts the FORTRAN II version of the EXTERNAL statement. This
form contains the same name list, but the word EXTERNAL has been replaced by the
character F in column 1 of the statement.

F namel,namez,....

The only inherently incompatible areas are the following:

COMMON-EQUIVALENCE Statement Relationships

In FORTRAN II, equivalence groups can reorder the common variables
and arrays, and more than one variable in an equivalence group can be in
common,

In FORTRAN, equivalence groups do not reorder common, but may only
extend the length of a common block.
Function-Naming Conventions

In FORTRAN II, the following rules apply for function subprograms,
library function and statement function names:

The name is 4-7 alphanumeric characters, ending with the character
F.

The first character must be X if, and onlv if, the value of the
function is integer; for any other first character, the value of the
function is real.

In FORTRAN, the number of characters in the function name is 1-7; the
first character must be alphabetic.

60360700A

Routine

ACGOER
ALNLOG
ASINCOS
ATAN
ATAN?2
BACKSP

BUFFEL
BUFFEO

CABS
CBAIEX
CCOS
CEXP
CLOG
CSIN
CSQRT
DABS
DATAN
DBADEX
DBAIEX
DBLE
DEXP
DISPLA
DLNLOG
DMOD
DSIGN
DSINCOS
DSQRT
DUMP

60360700A

FORTRAN LIBRARY ROUTINE ENTRY POINTS J

Entry Points
ACGOER
ALOG, ALOG10
ASIN, ACOS
ATAN
ATAN2
BACKSP

BUFFEI
BUFFEO

CABS

CBAIEX

CCOS

CEXP

CLOG

CSIN

CSQRT

DABS

DATAN, DATAN2
DBADEX, DBAREX, RBADEX
DBAIEX

DBLE

DEXP

DISPLA

DLOG, DLOGI10
DMOD

DSIGN

DSIN, DCOS
DSQRT

DUMP, PDUMP

Externals

SYSTEM
SYSTEM
SYSTEM
SYSTEM

SYSTEM, ABNORML,GETBA, CIO1,.
BKSPRU, FIZBAK

SYSTEM,ABNORML,GETBA, OPEN,,.
CIOl.

SYSTEM, ABNORML, GETBA,OPEN.,
CIO1.

SYSTEM

SYSTEM

COS, SIN, EXP, SYSTEM
COS, SIN, EXP,SYSTEM
ALOG,ATAN2,CABS,SYSTEM
COS, SIN, EXP,SYSTEM
CABS, SQRT,SYSTEM
SYSTEM

SYSTEM

DLOG, DEXP,SYSTEM
SYSTEM

SYSTEM

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
OUTPUTC,STOP

Routine

DVCHK
ENDFIL

EXP
GETBA
IBAIEX
IDINT
IFENDF
INPUTB

INPUTC

INPUTS
KODER
KRAKER
LEGVAR
LENGTH
LOCF
OUTPTB

OUTPTC

OUTPTS
OVERFL
OVERLAY
PAUSE
RANF
RBAIEX
RBAREX
REMARK
REWINM
SECOND

—
1
[N

Entry Points

DVCHK
ENDFIL

EXP
GETBA
IBAIEX
IDINT
IFENDF
INPUTB

INPUTC

INPUTS
KODER
KRAKER
LEGVAR
LENGTH

LOCF,XLOCF

OUTPTB

OUTPTC

OUTPTS
OVERFL
OVERLAY
PAUSE
RANF
RBAIEX
RBAREX
REMARK
REWINM
SECOND

FORTRAN LIBRARY ROUTINE ENTRY POINTS (Cont'd)

Externals

SYSTEM, ABNORML,GETBA,
FIZBAK.,OPEN., CIOM,

SYSTEM

SYSTEM, ABNORML
SYSTEM

SYSTEM

SYSTEM, ABNORML, GETBA

SYSTEM, ABNORML, GETBA
OPEN., CIOL.,RDWDS.

SYSTEM, ABNORML,GETBA,
KRAKER, OPEN.,RDCARD.,DAT.

SYSTEM, ABNORML, KRAKER
SYSTEM, ABNORML
SYSTEM, ABNORML

SYSTEM, ABNORML, GETBA

SYSTEM, ABNORML, GETBA
OPEN.,WRWDS., CIO1.

SYSTEM, ABNORML, GETBA,
KODER,OPEN.,WRWDS., DAT.,
FIZBAK.

SYSTEM, ABNORML, KODER
LOADER, SYSTEM, ABNORML
SYSTEM

ALOG, EXP,SYSTEM

SYSTEM, ABNORML, GETBA, CIO1.

SLITE
SLITET
SNGL
SQRT
SSWTCH
SYSTEM

TAN
TANH
TIME

60360700A

FORTRAN LIBRARY ROUTINE ENTRY POINTS (Cont'd)

Entry Points

SI10., CiOl1.,0OPEN., BKSPRU.,
FIZBAK

SIN, COS

SLITE

SLITET

SNGL

SQRT

SSWTCH

SYSTEM, SYSTEMC, SYSTEMP,
Q8NTRY,STOP, END, EXIT,
ABNORML

TAN
TANH
TIME

Externals

SYSTEM
SYSTEM
SYSTEM

SYSTEM
SYSTEM

SYSTEM
EXP.SYSTEM

LARGE CORE MEMORY INPUT/OUTPUT K

The following statements result in data transmission between LCM and SCM.

CALL READEC (a,b,n)
CALL WRITEC (a,b,n)

a Simple subscripted variable located in SCM
b Simple or subscripted variable located in LCM common block
n Integer constant or integer expression

When either statement is executed, n consecutive words of data are transmitted between
SCM and LCM beginning at location a in SCM and b in LCM. CALL READEC transfers
words from LCM to SCM and CALL WRITEC transfers words from SCM to LLCM.

60360700A K-1

OBJECT—TIME INPUT/OUTPUT L

STRUCTURE OF SEQUENTIAL I/O FILES

DEFINITIONS
Logical Record An amount of data created/processed by any of the following:
One unformatted WRITE/READ
One BUFFER OUT/BUFFER IN
One WRITMS/READMS
One unit record (print line/punched card) defined within a
formatted WRITE /READ
Physical Record The data recorded between two interrecord gaps on a magnetic tape.
(Block) Block structure may be simulated on mass storage files if specified

by the user.

Definitions of file, logical file, and further information on logical/physical records is
included in the CYBER 70/Model 76 SCOPE 2 Reference Manual.

Table L-1 provides brief descriptions of the block/record formats supported by CYBER 70/
Model 76 SCOPE 2.

60360700 C L-1

TABLE L-1. SCOPE 2 BLOCK/RECORD FORMATS

Record Type

Description

F

D

Record length is fixed

Record length given as character count in decimal by length field
contained within record

Record length given as character count in binary by length field
in first four characters of record

Record terminated by record mark specified by user

Record consists of a fixed length header followed by a variable
number of fixed length trailers. Header contains trailer count
field in decimal

Record length defined by user

Record length contained in a control word prefixed to record by
operating system

Record terminated by a 12-bit zero byte in the low order byte
position of a 60-bit word

.......

by a terminating block of less than the fixed size. An 8 character
level number is appended to the last block

Block Types

Description

K

C

All blocks except possibly the last contain a fixed number of records
All blocks contain less than or equal to a fixed number of characters

All blocks contain an integral number of records. The block sizes
may vary up to a fixed maximum number of characters

All blocks contain an internal control word prefixed to the block by
the operating control word system

603607008

Table L-2 specifies those combinations of block record formats which can be
processed by a FORTRAN program.

TABLE L-2. FORTRAN BLOCK/RECORD FORMATS

oy Record Type rlo|r|T|u|w|z|s|x |
Block Type
K x|x|x|x|x|x]|x |
c X{X|X|X XX |{X|X i
E x| x|x|x x | x
I X
Unblocked X1 X[XX X | X

= legal D= illegal +Read only

FORTRAN Default Conventions (Sequential Files)
The FORTRAN compiler will automatically provide the following file attributes:

File organization = Sequential
Block type = No blocking unless STAGE or REQUEST tape is encountered.

_ I for W; C for S,X; K for other I
Record type = W
External character code= Display code
Label type = Unlabeled
Maximum block length

Positioning before first access = No rewind

5120 characters

Positioning of current volume before switch = Unload

Positioning after last access = No rewind

Processing direction = I/O

Error options =T (terminate) for READ/WRITE; AD (accept and display) for BUFFER I/0
Suppress multiple buffer = NO (Record manager anticipates user requirements)

A unit record is one W-format record. One formatted WRITE can create several unit
records. One formatted READ can process as input several unit records.

A logical record is one W-format record. One unformatted WRITE or BUFFER OUT,

or call on WRITMS creates one logical record. One unformatted READ or BUFFER IN
or call on READMS processes as input one logical record.

60360700 C ' L-3

Access to Additional Block/Record Types

The Record Manager FILE statement can be used by the FORTRAN programmer to override
the default values supplied by the FORTRAN compiler in order to access record types other
than W. The FILE statement is described in detail in the CDC CYBER 70/Model 76 SCOPE
2 Reference Manual., Only those block/record combinations that are legal in CDC CYBER
70/Model 76 SCOPE 2 can be used. Blocking may also be specified via a FILE card.

The FORTRAN language does not contain any statements that specify or constrain the
block type. Therefore, the FILE card can specify any block type which is consistent
with the record type.)

Although the FORTRAN language does not contain statements that specify the record
type, constraints are imposed on the processing of certain types of records due to the
logical structure of the records themselves. The following table provides more detailed
information on these constraints.

TABLE 1.-3. FORTRAN CONSTRAINTS

Record Type User Action Required for Writing

D User must insert the record length appropriately before write.
The offset from the beginning of the record cannot be such that
the length field lies outside the buffer utilized in the FORTRAN
object time I/O routines

R User must insert the record mark appropriately before write

User must insert the trailer count appropriately on write. The
trailer count field must obey the same restrictions regarding the
length of the FORTRAN object time 1/O routine buffer as described
for the record length in D format records

F User must ensure that all records written are fixed length
User must ensure that recording mode is set to binary for tape.
System will not convert zero bytes to special codes but will pass

them through to the device driver

U User must ensure that only one record per block is written (that
is, only block type K, one record per block , is allowed)

S User must be aware that each unit record/logical record will be
an S record

1-4 60360700 C

m

Example of FILE Statement Usag

The job deck pictured causes the FORTRAN default file attributes to be overridden with l
the following:

Label type - unlabeled

Block type - character count (C) I
Maximum block length - 1000 characters
Record type - fixed length (F) I

Record length - 100 characters
Conversion mode - yes
External code - BCD

oR~NR

(Leo

FILE (MASTER,BT=C,MBL=1000, RTsF,
FL=100,CMzYES, EC=BCD)

REQUEST (MASTER,MT,HY,EVEN,
VSN = MYTAPE)

ﬂuu. I
Job statement I

r

Assuming the job is creating the file with formatted WRITE statements such that 100
character records are always written, the file will be written on magnetic tape in 1000
character blocks (except perhaps the last block) with even parity at 800 bpi. No labels will
be recorded. Records will be blocked 10 to a block. No information will be written other
than that supplied by the user.

60360700 C L-5

BUFFER IN/BUFFER OUT (Sequential Files)

BUFFER IN/BUFFER OUT can be used to achieve some degree of overlap between the user
program and the I/O transfer with an external device (mass storage or tape). However, the
memory area specified in the BUFFER I/O statement will not be utilized as the physical
record (block) buffer. These buffers are maintained within an operating system buffer area
in LCM. The execution of a BUFFER I/0, will therefore involve movement of a logical
record between system buffers in LCM and the memory area specified in the BUFFER I/0
statement. Correspondence between individual BUFFER I/O statements and physical
records (blocks) on a device depends upon the block specification. For example, K blocking
with a record count of 1 will ensure that each BUFFER I/0O corresponds to a block.

BUFFEI (BUFFER IN)

One, and only one,logical record is read each time BUFFEI is called. If the record length
specified by the call is longer than the record read, the excess locations in the user area
are not changed by the read. If the record read is longer than the length specified by
the call, the excess words in the record are passed over. The number of 60-bit words
transmitted to the user area may be obtained by referencing LENGTH.

After using a BUFFER I/O statement on unit i and prior to a subsequent reference to

unit i or to the information, the status of the BUFFER operation must be checked by a
reference to the UNIT function. This will ensure that the data requested has actually been
transferred and the buffer parameters for the file have been properly restored.

If an attempt is made to BUFFER IN past an end-of-partition without testing for the condition
by referencing the UNIT function, BUFFEI will abort the program with the diagnostic:

BUF IN¥*ENDFILE filename

If the last operation on the file is a write operation, no data is available to read. If a
read is attempted, BUFFEI aborts the program with the diagnostic:

*BUF IN**LAST OP WRITE, filename

If the starting address for the block is greater than the terminal address, BUFFEIL
aborts the program with the diagnostic:

*BUF IN**FWA.GT.LWA, filename

If an attempt is made to BUFFER IN from an undefined file (a file that has not been declared
on the PROGRAM card), BUFFEI aborts the job and issue the diagnostic:

*BUF IN**UNASSIGNED MEDIUM, filename

BUFFEO (BUFFER OUT)

One logical record is written each time the routine is called. The length of the record
equals terminal address minus address + 1.

As with BUFFER IN, a BUFFER OUT operation must be followed by a reference to the
UNIT function.

If the starting address for the block is greater than the terminal address, BUFFEO
aborts the program with the diagnostic:

*BUF OUT**FWA,GT.LWA, filename

1.-6 60360700 C

CONFLICT diagnostic is similar to that issued by BUFFEL

The UNASSIGNED MEDIUM diagnostic is similar to that issued by BUFFEIL

Random Access Files

Random access I/O operations are implemented by using the word addressable file capability |
in CYBER 70/Model 76 SCOPE 2.

Two degrees of sophistica 1‘101‘1 are available n

QpPiL=s allial T 144

p0551b1e to use the routines in a normal way having j just or;e masf _dex, or it is possible i
to have a master index and many subindexes, A f11e may have a name or a number index,

has stora tines. It is

s ng the ma
G

.ﬂ
-|..
o)
3
v}
o
.0
BE
3
2
’u

In all cases it is necessary to open (CALL OPENMS) the mass storage file before calling
READMS, WRITMS, or STINDX. If the file exists, OPENMS reads the master index into
the area specified in the call (the ix parameter).

The STINDX subroutine causes no transfer of data, it merely changes the file index to the
base specified in the call. A new subindex is created by a call on STINDX to change the
file index base followed by calls on WRITMS to create the new subindex and transfer the
records indexed by the new subindex., STINDX must then be called again to reset the file
index base to the previous level index followed by a call on WRITMS to transfer the new
subindex to mass storage.

A new subindex is read in by calling READMS to read in the subindex followed by a call
on STINDX to change the file index base to the new subindex.

After making a call to STINDX, if the next operation of file u is to be a random access write
(WRITMS) and if the file is being referenced through a name index, the programmer must
zero out the area reserved for the new index buffer (whose first addressis specified by the
ix parameter in the call to STINDX) prior to calling WRITMS. The master index must be
reset by a call on STINDX bhefore termination of the job so that the correct index will be
written on the file.

60360700 C L-7

Upon termination of the job the file is closed automatically by FORTRAN. At this time the

index is dumped to the file.
Example 1.

PROGRAM MS (TAPES5)
DIMENSION I (10), B(20), C(30)
CALL OPENMS(5, 1, 10, 0)

C READ MASTER INDEX INTO I

CALL READMS (5, B, 20, 4)
C READ RECORD 4 INTO B (ASSUME THIS RECORD IS A SUBINDEX)
CALL STINDX (5, B, 20)

C ALL SUBSEQUENT OPERATIONS ON UNIT 5 WILL USE
C B AS THE INDEX FOR THE FILE

CALL STINDX (5,1, 10)
C RESTORE MASTER INDEX
END

Example 2.

PROGRAM MS (TAPES5)

C PROGRAM FOR CREATING RANDOM FILE
DIMENSION J(10), B(5), XYZ(20),ZXY(10), YXA(50)
CALL OPENMS(5,J,10,1)
CALL STINDX(5, B, 5)

C USE INDEX B
CALL WRITMS(5,XYZ, 20, JOE)
CALL WRITMS(5,ZXY, 10,SAM)
CALL WRITMS(5, YXA, 50, PETE)
CALL STINDX(5,J, 10)
CALL WRITMS(5,B, 5,SUB1)

C WRITE OUT THE SUBINDEX
END

60360700A

Example 3.

PROGRAM MS (TAPES)

C THIS MS FILE HAS NO SUBINDEXES
DIMENSION I(10)
CALI OPENMS(5,T, 10,0)

C READ MASTER INDEX INTO I

C ANY RE:AD OR WRITE ON THIS FILE WILL USE THE INDEX IN C ARRAY 1

END

FORTRAN Default Conventions (Random Files)

The FORTRAN compiler will automatically provide the following file attributes when a file
is processed using the mass storage subroutines:
File organization = Word addressable (wa)
Block type = Not applicable
Record type = W
External character code = Not applicable
Label type = Unlabeled
Maximum block length = Not applicable
Positioning before first access = Rewind
Positioning of current volume before switch = Not applicable
Positioning after last access = Rewind
Processing direction = I/O
Error options = T (terminate)
Suppress multiple buffer = YES (Record manager does not anticipate file accesses)
Conversion mode = Not applicable
a5 input one W-format record. The master intes 18 the Hiret W-tommns vasondte
511:.1 Refer to 'R.andom Access Files descr'iption preceding for user responsibilities. If
ength specified by a call on READMS is longer than the record, the excess locations

in the user area are not changed by the read. If the record is lon
e . ger than the length
specified on a call on READMS, the excess words in the record are passed over. o

60360700 C L-9

Status Checking

UNIT (I) Function

The UNIT (I) function is used to check the status of the last previous buffered operation,
(BUFFER IN or BUFFER OUT only) on logical unit i. The function returns values as follows:
<0 - Unit busy
=0 - Unit ready

>0 - End-of-partition encountered on previous read
>1 - Parity error '

Example:
IF(UNIT,I) 12, 14, 16, 18

Upon return from the UNIT function, control is transferred to the statement labeled 12, 14,
or 16 if the value returned was<0, 0, or >0 respectively.

If the value returned is <0 or >0 the condition indicator is cleared before returning to
program control.

NOTE

If the UNIT function references a non-buffered unit

{a unit referenced by 1/0 staiemenis other than

BUFFER IN and BUFFER OUT), the status returned

will always indicate unit ready and no previous error (-1).

If any of the following conditions exist following the previous read, an end-of-file status
will be returned:

Deleted W-format flag record encountered (INPUT file only ignored on other files
This appears for a 7/8/9 end-of-section card).

End of information encountered

Non-deleted W-format flag record encountered

Embedded tape mark encountered (EQP)

Terminating double tape mark encountered

Terminating EOF label encountered

Embedded zero length level 17 block encountered

L-10 60360700 C

EOF Function

The EOF (i) function is used to test for end-of-partition (non buffered) on unit i. The
value zero ig returned if no end-of-partition was encountered on the previous read, or
non-zero if end-of-partition was encountered on- unit i.

Example:
IF(EOF,I) 10,20

Upon return, control is transferred to the statement labeled 10 if the previous read
encountered an end-of-partition, or to 20 if not. I

If an end-of-partition is encountered, EOF clears the indicator before returning control.

NOTE

The user should make the EOF check after each READ
operation to ensure against possible I/O errors. If a READ
on unit i is attempted and an EOP was encountered on the
previous READ operation, execution is terminated and a diag-
nostic message issued.

If the previous operation on unit i was a write, the test
always returns a zero value. Only when an end-of-partition
was read will the end-of-partition condition exist.

This function has no meaning when applied to a word addres-
sable file., If the EOF function is called in reference to a
word addressable file, a zero value is always returned.

If any of the following conditions exist following the previous read, an end-of-partition
is returned.

Deleted W-format flag record encountered (INPUT file only, ignored on other
files, This appears for a 7/8/9 end-of-section card).

End of information encountered

Non-deleted W-format flag record encountered (EOP for W records)
Embedded tape mark encountered (EOP)

Terminating double tape mark encountered (EQCI)

Terminating EOF label encountered (EOI)

Embedded zero length level 17 block encountered (EOP for S and Z records types
with C blocking, only)

680360700 C L-11

IOCHEC Function

The IOCHEC (i) function is used to test for parity errors on non-buffered reads on unit i.
The value zero is returned if no error occurred.

Example:

J IOCHEC (i)
IF (J) 15,25

A value of zero is returned to J if no parity error has occurred, Otherwise, non-zero is
returned. Control then transfers to the statement labeled 25 or 15, respectively.

If a parity error' has occurred, IOCHEC clears the parity indicator before returning.
Parity errors are handled in the above fashion regardless of the type of the external device.

Parity Error Detection

Parity errors are detected by the status checking functions on all read operations and on
write operations that access mass storage files for which the write check option has been
included on the REQUEST statement for the file. The REQUEST statement is described

in the CYBER 70/Model 76 SCOPE 2 Reference Manual.

Write parity errors for other types of devices (staged/on-line tape) are detected by the
operating system and a message written in the dayfile.

When a parity error status is returned, itdoes not necessarily refer to the immediately
preceding operation because of record blocking/deblocking performed by the data manager
I1/0 routine via buffers in LCM.

BACKSPACE/REWIND
A BACKSPACE operation will always cause the referenced file to be logically moved back
one record. A physical repositioning of the file on the external I/O device may be required.

As a result of a BACKSPACE the last record becomes the next record.

BACKSPACE is permitted only for files with F, S, or W record format or tape files with
one record per block.

The user should remember that formatted I/O operations can read/write more t han one
record whereas unformatted I/O and BUFFER IN/BUFFER OUT read/write only one record.

The REWIND operation positions a magnetic tape file such that the next FORTRAN I1/0

operation will reference the first record. A mass storage file will be positioned to the
beginning of information.

L-12 60360700. C

Table L-4 provides greater detail as to the actions performed prior to positioning

for various conditions.

TABLE L-4. BACKSPACE/REWIND OPERATION

BACKSPACE/REWIND

Condition

Last operation
was WRITE or
BUFFER OUT
ENDFILE

Last operation
was READ,
BUFFER IN or
BACKSPACE

No previous
operation

Previous operation
was REWIND

Mass Storage
(no blocking)

Unlabeled Magnetic
Tape or Blocked
Mass Storage

Labeled Magnetic
Tape or Labeled
Blocked Mass
Storage

Mass Storage

Unlabeled Magnetic
Tape

Labeled Magnetic
Tape

Magnetic Tape

Mass Storage

Any unwritten blocks for the file
are written

If record format is S a zero length
level 17 block is written

Any unwritten blocks for the file
are written

If record format is S a zero length
level 17 block is written

Two file marks are written
Any unwritten blocks for the file
are written

If record format is S a zero length
level 17 block is written

A file mark is written
A single EOF1 label is written

Two file marks are written

None

None

If the end of information has been reached
then labels are processed

If the file is assigned to on-line
magnetic tape a REWIND request
will be executed

If the file is staged the REWIND
request has no effect. The file
will be staged and rewound when
first referenced

The REWIND request will cause the
file to be rewound when first referenced

Current REWIND is ignored

60360700A

ENDFILE

The ENDFILE operation introduces a delimiter into an I/O file. The following table provides
detailed information as to the effect of ENDFILE for various record types.

TABLE L-5. ENDFILE OPERATIONAL EFFECTS

ENDFILE
Record Type Action
\ Write non-deleted W-flag record
Terminate current block if magnetic tape file
S Write level 17 zero length block
Z with C Write level 17 zero length block
blocking
D,B,R,T, Terminate current block if magnetic tape file and write tape
mask,
F,U,or Z No other data is written
NOTE

TTY oy rrTra ey e

operation, If the file has records of the format W, S,
or Z with C blocking or is a mass storage file with

any other block/record formats no special action is
performed. However, if the file is assigned to magnetic
tape and has a record format other than W, S, or Z

with C blocking, a tape mark will be written preceding
the next block record.

FORMAT /ENCODE /DECODE

FORMAT Field Separators

Field descriptors are normally delimited by field separators; however, some permissiveness
is allowed.

Example:
10 FORMAT (F25.22F10. 3)

would be interpreted as two descriptors, F25.22 and F10. 3, but perhaps the programmer
meant F25.2 and 2F10.3. If there could be any ambiguity, always use field separators.

L-14 60360700 C

ENCODE/DECODE

Under 64/6600 SCOPE a binary zero byte is used to terminate a unit record. Whenever the
DECODE processor encounters a zero character (6 bits of binary zeros), that character
will be interpreted as a blank. Conversion will continue through n characters per record.

Whenever a record terminator (a / or the final, if the list is not exhausted) is encountered

in a FORMAT statement, the rest of the record will be filied out with bianks (for ENCODE)
or ignored (for DECODE), and conversion will continue beginning with the next record.
[The length of record is specified by n in a DECODE (n,f, A) or ENCODE (n, f, A) k state-
ment,] The record is restricted to a maximum length of 150 characters.

Example:

10-FORMAT (16(F10. 4)) is illegal (the diagnostic EXCEEDED RECORD SIZE is
issued in this case)

10 FORMAT (10F10,4/6F10,4) is allowed

Formatted Output of Out of Range Data

A FORTRAN formatted WRITE will produce X's or I's in an output field under the following
conditions:

1. TFixed point format will produce X s in the output field if the internal data is out l
of range (greater than or equal to 2*%*48).

2. Floating point format will produce X's in the output field if the internal data is out
of range or I's if it is indefinite (as defined for CYBER 70/Model 76 Hardware.)

Restrictions
Meaningful results are not guaranteed in the following circumstances.

Mixing BUFFER I/O statements and standard READ/WRITE statements on the same
file (without a REWIND in between).

Requesting a LENGTH function on a BUFFER unit before requesting a UNIT function.

. Two consecutive BUFFER I/0O statements on the same file without the intervening
execution of a UNIT function call.

Standard Labeled Files

Only files recorded on magnetic tape can be labeled files. A LABEL statement (described
in CYBER 70/Model 76 SCOPE 2 Reference Manual) is required to process labeled files
through a FORTRAN program. The LABEL statement must at least specify values for

the following parameters:

W - Create labels (indicates no labels exist or create new ones)

R - Check labels (indicates labels exist on tape)

60360700 C L-15

This parameter is necessary because the processing direction for sequential files in
FORTRAN must be input/6utput in order to permit both READ and WRITE by the FORTRAN
program. Therefore it is necessary that the user specify whether a labeled magnetic tape
file is utilized for input (R-check labels) or output or input/output (W-create labels).

Label information used for checking/creating labels can be presented to the operating
system in either of the following two ways:

LABEL statement

LABEL subroutine - An object time subroutine is provided to allow the FORTRAN
programmer to generate the information necessary for label checking/creation during
execution. If the label information is properly set up and the subroutine LABEL is
referenced prior to any other reference to the file, then when the first reference
occurs the label and the information are compared for an input tape, or the information
is written on an output tape.

The form of the call is:
CALL LABEL (u,fwa)
u is the unit number
fwa is the first word address of the label information. The label information must be
formatted as described for the LABEL macro parameter list in the CYBER 70/Model
76 SCOPE 2 Reference Manual.

Automatic OPEN/CLOSE

The CYBER 70/Model 76 SCOPE 2 Reeord manager requires that an OPEN operation be
performed before a file is referenced and a CLOSE operation be performed %’efore job
step termination. Since the FORTRAN language does not explicitly contain these functions,
they must be performed implicitly by the FORTRAN object time I/0O routines.

OPEN

The first reference to a file, or any reference to a closed file by a READ, BUFFER
IN, WRITE, or BUFFER OUT statement, causes the FORTRAN object time I/O routines
to perform an OPEN function for the file. If the file is labeled, header label pro-
cessing occurs.

CLOSE

The FORTRAN object time I/p routines performs a CLOSE operation for a file which
is open when the job step terminates. With the exception of positioning, the effects of
a CLOSE operation are identical to those described for REWIND in the following cases:

Last operation was WRITE/BUFFER OUT

Last operation was READ/BUFFER IN/BACKSPACE
Last operation was ENDFILE

A CLOSE operation leaves a magnetic tape file posiﬁoned between the two terminating
tape marks. A mass storage file is not repositioned in any way.

A REWIND operation performed as a FORTRAN statement is effectively a CLOSE with
positioning,

L-16 60360700 C

FILE NAME HANDLING

FORSYS={Q8NTRY) places in RA+2 and the locations immediately foliowing, the file names
from the PORTRAN PROGRAMS card. The file name is left justified, and the file's FIT |
address is right justified in the word. (Thus the declared names replace any actual file
names at execution time in the RA area.) The file name occupies 42 bits. The FIT
address occupies 18 bits.

The logical file name (LFN) which appears in the first word of the FIT is determined
in one of the three following ways:

CASE 1:

Example:

Before

RA+2

After

RA+2

CASE 2:

Example:

60360700C

If no actual parameters are specified, the LFN will be the file name
from the PROGRAM card.

RUN(S)
LGO.

.PROGRAM TESTI(INPUT,OUTPUT, TAPE1, TAPE2)

FORSYS=(Q8NTRY) is executed

000 000

000 000

FORSYS=(Q8NTRY) LFN in FIT
INPUT FIT address INPUT
OUTPUT FIT address OUTPUT
TAPEL FIT address TAPE!1
TAPE2 FIT address TAPE2

If actual parameters are specified, the LFN will be that specified by the
corresponding actual parameter, or the file name from the PROGRAM
card if no actual parameter was specified. A one-to-one correspondence
exists between the actual parameters and the file names found on the
PROGRAM card. '

RUN(S)
LGO(,,DATA, ANSW)

i’ROGRAM TEST2(INPUT,OUTPUT, TAPE1, TAPE2, TAPE3=TAPE1)

Before
RA+2

After
RA+2

CASE 3:

Example:

Before
RA+2

After
RA+2

Case 4:

Example:

FORSYS=(Q8NTRY) is executed

000 000
000 000
DATA 000
ANSW 000

FORSYS=(Q8NTRY)

INPUT FIT address
ouTPUT FIT address
TAPE1 FIT address
TAPE2 FIT address
TAPE3 FIT address

of TAPE1

LFN in FIT

INPUT

OUTPUT

DATA

ANSW

Uses TAPE1L FIT

An equivalenced file name from the PROGRAM card will ignore an actual
parameter. The LFN will be that of the file to the right of the equivalence

and no new FIT will be created.

RUN(S)
LGO(, , DATA, ANSW)

i’ROGRAM TEST3(INPUT,OUTPUT, TAPE1=OUTPUT, TAPE2, TAPE3)

FORSYS=(Q8NTRY)

000 000
000 000
DATA 000
ANSW 000

FORSYS=(Q8NTRY)

INPUT FIT address
ouTPUT FIT address
TAPE1 FIT address of
OUTPUT
TAPE2 FIT address
TAPE3 FIT address

LFN in FIT

INPUT
OoUTPUT
Uses OUTPUT FIT

ANSW
TAPE3

Line limit may be altered at execution time as an added parameter on the
EXECUTE or load-and-execute control card.

LGO (LC=2000)

The LC parameter may appear anywhere in the parameter list of the
execution control card. It is not counted as a file name for file equivalencing
purposes. The numeric value is interpreted as an octal number.

60360700C

Actual arguments 7-5
Argument s, actual -5
Arguments, formal 7-3
Arithmetic assignment 4-1
Arithmetic evaluation 3-2
Arithmetic expressions 3-1
Arithmetic mixed-mode expressions 3-4
Arrays 2-9
Array transmission 9-2
ASSIGN statements 6-3
Assigned GO TO statement 6-1
Assignment statements 4-1

Arithmetic 4-1

Logical 4-4

Masking 4-5

Mixed-mode 4-1

Multiple 4-5
Asterisks 9-20
Aw input specification 9-14
Aw output specification 9-14

BACKSPACE i 10-7
Backspace/Rewind 1L-12
Basic External functions 7-8
BCD record 10-10,A-1
Binary output file E-1
BLOCK DATA subprogram 5-14
BUFFEI L-6

BUFFEO 1.-6

BUFFER IN 10-9

BUFFER OUT 10-9
BUFFER statements 10-8

CALL DUMP 7-13

CALL DVCHK 7-13
CALL EXIT 7-13

CALL OVERFL 7-13
CALL OVERLAY 8-3
CALL PDUMP 7-13
CALL READEC K-1,7-14
CAITL SECOND 7-13

60360700A

INDEX

CALL SSWTCH 7-13

CALL statement 7-15
CALL WRITEC K-1,7-14
Calling system I-1
Cards, loader 8-3
Character set A-1
CLOSMS 7-15
Coding 1-1

Character set, FORTRAN A-1

Comments 1-2

Continuation cards 1-2

Identification fields 1-2

Line 1-1

Statement label 1-2

Statements 1-1
Comments, coding 1-2
COMMON declaration 5-4
Compilation and execution E-1
Compiler mode options E-1
Complex constants 2-3
Complex variables 2-8
Composition, overlay 8-2
Computer GO TO statement 6-3
Computer word structure of constants D-1
Constants

Complex 2-3

Computer word structure D-1

Double precision 2-3

Hollerith 2-4

Integer 2-2

Logical 2-4

Octal 2-5

Real 2-2

Word structure D-1
Continuation cards, coding 1-2
CONTINUE statements 6-13
Control statements

ASSIGN 6-1

CONTINUE 6-13

DO 6-6

END 6-14

GO TO 6-1

IF 6-4

PAUSE 6-13

RETURN §-14

STOP 6-14

Index-1

Cross-reference map H-1 Eject, page 10-1

Conversion specification Elements of FORTRAN 2-1
Aw input 9-14 ENCODE statement 10-10
Aw output 9-14 END FILE 10-8
Dw.d input 9-11 END statements 6-14
Dw.d output 9-11 ENTRY statement 7-18
Ew.d input 9-6 Entry points, system G-5
Ew.d output 9-5 Q8NTRY G-5
Fw.d input 9-9 STOP G-5
Fw.d output 9-9 EXIT G-5
Gw.d input 9-10 SYSTEM G-5
Gw.d output 9-10 SYSTEMC G-5
Iw input 9-12 ABNORM G-5
Iw output 9-11 EQUIVALENCE declaration 5-17
Lw input 9-16 Evaluation, arithmetic 3-2
Lw output 9-15 Ew.d input specification 9-8
Ow input 9-13 Ew. d output specification 9-5
Ow output 9-13 Ew.d scaling 9-17
Rw input 9-15 Execution, compilation and E-1
Rw output 9-15 Expressions
Arithmetic 3-1
Logical 3-8
Masking 3-10
DATA declaration 5-9 Relational 3-6
Data declaration and storage allocation B-1 EXTERNAL 7-17
DATA MANAGER FILE statement L-4 EXTERNAL statement 7-17

Data types 2-2
DECK structures E-1,E-T7

Declarations
COMMON 5-4 File handling statements 10-7
DATA 5-9 Formal arguments 7-3
DIMENSION 5-3 FILE statement L-5
EQUIVALENCE 5-7 FORMAT declaration 9-4
Type 5-1 FORMAT field separators 1.-14
DECODE statement 10-12 Format, program - subprogram F-1
DIMENSION declaration 5-3 FORTRAN character set 2-1,A-1
Dimensions, variable 7-19 FORTRAN control card E-1
DO loop structure 6-6 FORTRAN cross-reference map H-1
DO loop transfer 6-10 FORTRAN functions C-1
DO nests 6-8 FORTRAN library routine entry points J-1
DO statements 6-6 Function, library- C-1
Double precision constants 2-3 Function, statement 7-6
Double precision variables 2-8 FORTRAN statement list B-1
DUMP 7-13 FUNCTION subprogram 7-9
Dw.d input specification 9-11 Functions, FORTRAN B-1
Dw. d output specification 9-11 Fw.d input specification 9-6
Dw.d scaling 9-17 Fw.d output specification 9-9

Fw.d scaling 9-17

Editing specifications

... 9-21 GO TO statements 6-1

* 9-21 Assigned 6-1

New record 9-20 Computed 6-3

wH input 9-19 Unconditional 6-1

wH output 9-19 Gw. d specification 9-10

wX 9-18 Gw. d output specification 2-10

Gw.d scaling 9-17

Index-2 60360700A

Hollerith constants 2-4 Main program 7-1
Masking assignment 4-5
Masking expressions 3-10
Mixed-mode arithmetic expressions 3-4
Identification field, coding 1-2 Mixed-mode assignment 4-1
Identification, overlays 8-2 Multiple assignment 4-5
IF(EOF) 10-8
IF(ENDFII.F) 10-8
IF(UNIT) 10-8
IF ACCUMULATOR OVERFLOW I-2 NOLIST E-3
IF DIVIDE CHECK I-2

IF QUOTIENT OVERTE
IF SENSE SWITCH 1I-2
IF statements

One branch logical 6-5

T TTY
R OAYY
VY

[8%]

T- New record s
i New recerd s

Three branch arithmetic 6-4 Octal constants 2-5
Two branch logical 6-5 One branch logical IF 6-5
Integer constants 2-2 OPENMS 7-15
Integer variables 2-7 Output statements 10-1
Intrinsic function 7-8 OVERFL T7-14
1/0 formats 9-1 Overlay files E-4
I/0O list 9-1 OVERLAY format 8-3
I/0 statements Overlays 8-1
BUFFER statement 10-8 CALL OVERLAY 8-3
NAMELIST statements 10-4 Cards 8-4
OUTPUT statements Composition 8-2
PRINT 10-1 Identification 8-2
PUNCH 10-2 Levels 8-1
WRITE 10-2 Loader cards 8-3
READ 10-3 Ow input specification 9-13
File handling statements 10-7 Ow output specification 9-13

Iw input specification 9-12
Iw output specification 9-11

Physical record L-1

LABEL statement 1.-16 Program communication 7-2
LLABEL subroutine L-16 Program, main 7-1

Label, statement 1-2 Program - subprogram format F-1
LEVEL declaration 5-15 PUNCH 10-2

Level, overlay 8-1 Punched cards 1-2

Levels, overlay 8-1
Library functions C-1

Line limit E-1, M-2 READ statements 10-3
Lines, coding 1-1 READEC K-1

Library routine entry points, FORTRAN J-1 Real constants 2-2

Library subprograms C-1 Real variables 2-7

Library subroutines 7-12 Relational expressions 3-6
LIST E-3 Repeated format specifications 9-23
Loader cards 8-3 RETURN statement 6-14
Logical assignment 4-4 REWIND 10-7

Logical constants 2-4 RUN E-2

Logical expressions 3-8 Rw input specification 9-15
Logical record L-1 ' Rw output specification 9-15

Logical variables 2-8
Lw input specification 9-16
Lw output specification 9-15

60360700 C Index-3

Scaling Tape handling statements 10-7

Dw.d 9-17 Three branch arithmetic IF 6-4
Ew.d 9-17 Two branch logical IF 6-5
Fw.d 9-16 Type declarations 5-1

Gw.d 9-17

nP scale factor 9-16
SECOND 7-13
SENSE LIGHT I-1
Sense light statements I-1
Source program 7-1 Unconditional GO TO statement 6-1
Specifications UNIT function L-10
Conversion 9-5
Editing 9-18
Repeated format 9-23
Variable format 9-24

SSWTCH statement 7-13 V variable specifications 9-25
Statement function 7-6 Variable dimensions 5-4

Statement label 1-2 Variable dimensions, subprogram 7-19
Statement, buffer 10-8 Variables

Statements, coding 1-1 Complex 2-8

Statements, control 6-1 Double precision 2-8

Statements, output 10-1 Integer 2-7

Statements, tape handling 10-7 Logical 2-8

STINDEX 7-15 Real 2-7

Structure, array 2-9 Subscripted 2-9

Subprogram, block data 5-14
Subprogram communication 7-2
Subnrogram format, nrogram F-1
Subprogram, function 7-9
Subprogram statements B-1

Subprogram subroutine 7-12 wH input specification 9-19
Subprograms 7-2 wH output specification 9-19
Subroutine 7-12 Word structure of constants D-1
Subroutine subprogram 7-12 WRITE statement 10-2
Subscripted variables 2-9 WRITEC K-1

Supplied function 7-8 wX specification 9-18

Symbolic names 2-1
SYSTEM G-1
System entry points G-5

Q8NTRY G-5 Z input and output specifications 9-16
STOP G-5

EXIT G-5 o0k 9-21

END G-5 Fo..F 9-21

SYSTEM G-5 Toono9-21

SYSTEMC G-5 = (variable specifications) 9-25

ABNORM G-5
System routine G-1

Index-4 60360700 C

CUT ALONG LINE

PRINTED IN USA

A3419 REV. 11/69

COMMENT SHEET

MANUAL TITLE CONTROL DATA® CYBER 70/MODEL 76 COMPUTER SYSTEM/

7600 COMPUTER SYSTEM FORTRAN RUN, Version 2 Reference

Tant
Lar

PUBLICATION No. 60360700 REVISION C

FROM: NAME:

BUSINESS
ADDRESS:!

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

ARH220

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Technical Publications Dept.
4201 North Lexington Avenue
St. Paul, Minnesota 55112

CUT ALONG LINE

CONTR

OL DATA

| CORPORATION

- CORRORATE HEADQUARTERS, $100 34th AVE. so;;,fptﬁuﬂmus. MINN. 55480
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WOF™

LITHO

	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	D-01
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	H-01
	I-01
	I-02
	J-01
	J-02
	J-03
	K-01
	L-01
	L-02
	L-03
	L-04
	L-05
	L-06
	L-07
	L-08
	L-09
	L-10
	L-11
	L-12
	L-13
	L-14
	L-15
	L-16
	M-01
	M-02
	index-01
	index-02
	index-03
	index-04
	replyA
	replyB
	xBack

