B1

FORTRAN V5

PROPRIETARY INFORMATION

This document is part of a software product which is the
property of Control Data Corporation and is proprietary to
it. Distribution is restricted to customers having a valid
license for the use of the software product; use and

disclosure of information in this document are governed by
the terms of the license.

77987506A
0148P-0030A/0103P

B2

« A-1-1
. A-2-1
« A-3-1

CONTENTS

Decik and Routine Descriptions

Global Data Structures

Compiler Structure .
Comdecks

Gverview

ection A

=~
Section B

-
-~

~“m< i~ il AL R
pUne pawerr s RlARNRRRTYR3Y
TTTT Yhdeemsdapdndnidaadaamnd
amaoonm ooooooodooodOoomOoNOomm
LI B B e s § ® & % @ ® ® # 9 w 9 6 ° ¥ ® ¥ ¥ & 8 e 2 @
2 8 " @ s ¢ = L . L | |] L] LB . e s =& 9 = ® s 92 s = @
s s s = T & o & & ¥ % & *2 g ® 3 T 2 W 2 S G 08"
s o % @ ® & & & 2 % 3 % w @ B 6 ® 2 ¥ 3 ¥ B W W ® ® e 2
s 2 =z & ¢ @ ¢ ® e % 8§ & ¥ € B G B 8 B @ 8 8 ¥ s S = @
" s e @ " ® & ® e ® ® ¥ ® W e & B A ® 3 # W ¥ B B " ® @
. s e ® v ® £ s ®» 9 %8 8 € 8 8 & ® W w @ 8 @& W 2 P 6
s e s @ ® & & 8 3 ® s 8 § B ® 8 e W ¥ 3 4 8 BB 2 S €
s 8 ® 0 P & ¥ & ® ¥ ® ¥ ¥ & ®B & B 8 8 2 4 € s B @& 8 w @
s o e @ f e 9 & ® % 8 8 3 B B 8 ®B 3 6 % » ¥ 8 * = & w @
s s 8 ® & # W 2 % ® ¥ ¥ & ° & & ¥ & ® 9 8 ® @ @ w @
s 5 0 s ¢ ® 2 2 ® 9 ¥ ¥ € 6 9 4 & 6 ® &4 w € 2 € @ 8 e @
« s 8 @ 9 ¢ @& # = a2 ¢ 9 ® B ® € 8 a ® 8 € ¥ ¥ ¥ S B »
o e e @ ® ® = s % 8 & 9 9 8 0 " s 0 @ « = ¥ e s 9

] wn
[2N R B s ® s« ¢ s ® w »x v s e s @ e 2 ¢ s B o2 e ® 0 » 9
=4 =
. s s ¢ & 8 ® ® 8 8 ® 8 ® €4 8 #8894 ¢ 8 € @ s »
+ +
. * n * e 8 e ¥ ¥ s o ® 5 s P 83 e s 8 9y v 8 s e w &
O =]
e & » 9 » s o s s s 8 9 2 ¢ oY s 8 s Y 9 v = 8 & @
w
LI T B D = s @« « s o s s 8o oG s s s s [¢ s 2 s o
[~ 0n U [}
LI I B] wt s 2 s X s s » v s 0 2 () = s ¢ @4 ¥ 8 ¥ ¥ s @
+ u 4 +
L B B] F s s} v+ s e % v 2 v s e ¢ o ff ¥ v v 8 ¢ 3
Q (@] v ~
o—auTT [+] -e . -.m -,--n- s 8 8 ¢ @
SEEE &R §EER T ota., tE82REAR
fugh $.d 2ddn2F B33 fhErEEr
EWUmuC ..m,lmwi.mﬂummL.;mwM c EEZEZZEZ
FhoOOoO ouwlda .l ONE IO MW OEA H - HH -

1
2
3
4
5

1.:.:

O
2
3
18]
-1
.2
3
4
4.
4.
4.
4.
4,
)
&
o7
7
7.
7.
.8
-
«2.1
S.2
9.3
9.4
9.8
3.6

1] .
et et EEEEEEEEEEEEEEEEEEEEEEEE

1
2
°
i2
Be
85
91
3-93

e UL L
mmmuammmmmMmmMmmmMmMmmammmm
U
0omoaoomm oo o omon
® o » e 4 ¢ @ e ® @ # ® w ® 8= » @8
® ¢ = 3 w0 3 2w w a4 e o® oW R Os .
L O I T T R R S R R

2 2 8 82 4 8 * 2 e s & 8B 8 8 W @
W 2 s = 5 o & @0 » 5 w0 & & ®© 9 8 @
L]

L » # s o ¢ ¢ & ¢ ¢ 8w ¢ @ & 8 8 @

o
4+ » 4 e ® 2 ¥ =2 w & & @ @2 e 0w w 0@
3
0O s o s 8 » ¢« » ¢ o o 8 3 o 0 @ @
R.--u--.---o
]

. ¢ » o 8 o ¢ % 8 85 & 8 2 & @0 8 »

E- » . .--im
2.8 Bedp 5 SEHS

4

_HEM& KCMEﬁmm?c WF

0.1:1_4
0123456‘78911..“113

. . 3 s = L] L I] L [I] L

mmmMmmMmMmMnmmMmmmmmammm

)
-t
m

QCG

4.0

Rear End Routines

BRIDGE

CSKEL

CCG Routines

CCG
CCGC

ii

QVERVIEW

This section is provided to give general
FINE. It is organized as follows:

1. Compiler Structure.

2. Global Data Structures.

S _awm, o 2 5

A-1-4

information about

M

1.0

COMPILER STRUCTURE B5

The FORTRAN S (FTNS) compiler consists of four
optimization levels (OPT=0,1,2,3) divided into gquick mode
(GCG)> (OPT=0) and optimized mode (CCG) (OPT>0). QCG and
CCG utilize a common front end (lexical, syntactic and
semantic analysis), but have distinct code generation
mechanisms. A common rear end (assembler, binary output,
object listing, map and cross reference listing) is used
by all levels of optimization.

The common front/rear end processing with distinct code

- Fia
‘5-.-.‘-"-:-"%"';3?“5 is aulpa.clllen ted as an G’v‘ci‘.l.ay structure. tne

FTNS overlays and their principal contents are shown in
Figure 1.

Note that the entire QCG mode compiler is included in the
(0+0) overlay. The (1,0) overlay (also containing the
entire GCG compiler) is loaded when OPT=0 is requested but
qbject listing and/or map listing function are required or
when intermixed COMPASS assembly is required. If OPT>0O is
requested, the (2,0) overlay is loaded, followed by
successive loads of the (2,1), (2,2) and {(2,3) overlays
for each program unit encountered. Intermixed COMPASS
when OPT>»0O requires a reload of the (2,0) overlay.

The compiler can be split into logical functions,
reflected in the overlay structure. The functions are
cradle, front end, GCG, CCGy rear end and Frame. These
are described below. R -

FTNS source code resides on an UPDATE PL.

A-1-5

A-1-6

o e e e e e e e e e e e +
! ! System Communication Area !
¥ +-..- ——— +
i i COMPASS Communication Area cofffa ™ i
! Fom e s e ———— +
oo FTN 5 Resident Section %7~J !
! B e ittt ittt T +
! ! Source Input and Output Buffers !
! !) reb {not in SCOPE 2) !
I e i e B e e e toto—mmmm- +
! 1 e (1,00 LI (2,0) vt !
! ! Cradle ! ' Cradle ' ! Cradle LI !
{(G;0)d=mmmm==== $ P ———— + brmmm—m———— e e S h tat e DL B D Es T S H
! ' Front ! ' Front P (2y1) VY (242 V1 (2,3 1 ' !
! t End P "End ' ' Front ! ! Buffers! ! End ! ! !
! Pommmm——— t pmmm—————— + ! End L ! 'Processor! ! !
! § QCe ! ! QcCG HEE ittt DBt + t-mm———— t t=---zproot ! !
! t-—m—————— + - + ! 'Buffs! ! CCG VOIMAP/LLIST ! ! !
! ! End 1 End ! 1'Init! and ! ! Code ! $=——meee—- + ! !
! 'Processor! !'Processor ! ! 'Tbls ! 'Xformers! !'Assembler! COMPASS!
! ! and (R and L Y et STt + $-mmm————— + fpemmm————— + ! !
A iAssembler! 'Assembler ! ! Bridge ! ! Buffers ! i i
A e e t e m———— + e t tmmmpm——— + '
! ! cC !V MAP/LIST ! ! Tables ! 4 ! !
! ! CKR I e + temm————- + } '
¢ ! and 't Re-!Buffs! ! !
! ! Init ! !Init! and ! ! !
tommtmm— e + +----+Tbhls !] ! H
L to-=-at ad> tmm————— +
:.-s oy s {,M“Ai” ‘
el f bhe \"*:‘w’ “u A
(YL %2
R VYT
ASM Lo ST

1.1 Cradle:

LINKI

PEM:

ALLOC:

ENAP :

IDP:

Init:

‘The cradle consists of support routines which are

B7

used by all overlays. Included here are
routines/functions which are present in some form

for all or most overlays. The following decks are
included:

Tables and cells which survive overlay loads.f’ va‘ =

Overlay processing routines. /ofAsp (i i N C
ComPcem AL C’?/ CJ/M« L}mmﬂ

)

General utiliity routines {mostly comdecks) far,
conversion, 1/0, etc. otPle coalambe) 137
ey a s -« - - N - . /‘k‘_//ﬁ"%l:n’
Program unit controllier. Table control vectors, (777 RS
global cells, control routiness file closing, =< fbﬁBvﬁﬁ;fw{ »

i i - _— D Lo
statistics. L’)PC@N{/‘ VS Bum LAY ,x!/p r(“ =y S opoE .. s L ‘}

Routines to support common front/rear ends.
Provides stub routines for functions not required by
one of the code generation modes.

QCGLINK

H {0,0) and (1,Q) overlays
CCGLLINK : (2,0) overlay
ZEROLINK: (0,0) overlay
RILINK : (2+3) overlay
FLLINK : (2y1) overlay

Print error messages.
texts (not the texts).
aoverlay.

Routines to output diagnostic
Not present in the (2,2}

Table management and allocation. Not present in the

{(2,2) overlay.
Test mode only. The snap formatting and I1DP
interfaces.

FSNaP : (Q,0), (1,0) and (2,1) overlay
CSNAP : (2,2) overlay
RSNAP : (2,3) overlay

Test mode only. Interactive debug package.

Each overlay (primary and secondary) contains an
overlay initialization routine which performs the
initializations required by that overlay.

INITOO = (0,0 overlay
INIT1O = (1,0) overlay
INIT20 : (2,00 overlay
INIT21 (2,1) overlay
INIT22 : (242) overlay
INITE3 @ (2,3) overlay

All initialization routines are used once per
overlay load and the space they occupy is $ree for
table usage (or whatever).

A-1-7

1.2 Front End: The front end routines provide lexical, syntactic
and semantic analysis for the FTNS compiler. The
following decks are included:

FEC: Front end controller. Main control routines for the
front end, front end global cells and tables, table
search and entry routines. /O1¢A - ST/ FTACZRT .)

L300 X CErmgicp p

FERRS: Front end diagnostic texts. Lﬁaﬂgamwabng,@ﬁpaﬂft g
LEX: Lexical analysis (scanner). »S£C ((5{imG

HEADER: rieader statement processing.

KEY: ~ Keyword statement processing.

CDDIR: CE directive processing.

DATA: DATA statement processing.

DECL: Declarative statement processing.

TYPE: Explicit and implicit type declaration processing.
FMT: Format statement processing.

I0: I/0 statement processing.
" PAR: Syntax and semantic processing of expressions

{(parser).

CGNRED:” Constant reduction. Compile time arithmetic.
STMTF: Statement function processing.

LABEL : Statement label and DO statement processing.
FSKEL: Front end code skeletonilinkage to CSKEL.

(2,1) overlay only.

A-1-8

B9

1.3 GCG: The GCG (Quick Code Generatdr) routines provide the
OPT=0 code generation functions. Decks are:

GCGL: GCG controller. Control routinesy cells and tables.
QSKEL : QCG instruction skeletons.

FUN: External procedure call and argument processing.
REG: Register selection.

GEN: Main GCG code generation processing.

A-1-9

1.4 CCG:
CCGC:
BRIDGE:

CSKEL.:

CCG:

Bio

" The CCG (common code generator) routines provide the

DPT>O_§ode generation function. Decks are?

CCG controller. Control routines, cells and tables.

Transforms front end Il output to a form understood

by the common code geneg;tnr.
INMMHW#FLA;u.‘”QLZ——;=>Fﬁh(b/

Bridge instruction skeletons.

The actual common code generator. Decks making up
this portion are:

CGTM: Code generation table manager.

MIO: Mass storage I/0 routines.

FBV: Form bit vectors.

GPO: Global program optimization.
GRA: (Global register assignment.

SQzZ: Redundant operation elimination.
MCG: Machine code generation.

BOT: ~ Form dependency tree {(graph).

CFA: Control flow analysis.

upT: Usage/definition table processing.

PROSEGQ: Process accumulated sequences.
Output: CCG output routines.

A-1-10

1.5 Rear End:

LIST:

B11

The rear end routines provide assembly, binary
output and end time listing functions. The decks

ares;

Rear end controller. Control routines, tables and
cells for the rear end processor.

Rear end diagnostic texts.

Object listing production.

A-1-11

_ 2

production.

cross reference listing

B12

1.6 Frame: " A loader interface module. Consists of deck stubs
which are place holders for the various decks making
up each overlay. The mechanism by which the front
and rear ends can be truly common.

A-1-12

2.0 GLOBal. DATA STRUCTURES 813
. This section describes the data structures used by FTNG.
Reference to tables will be by the FWA cell (T.xxx). The
structures described are classified as follows:

2.1 Global (all overlays and compilation modes)

2.2 Front end

2.3 Special structures

A-2-1

> L e (B L)

Wt Lok AN £
b

The FTNS symbol table contains source symbols and labels and
compiler generated symbols. Thers are two basic formats,
symbols and labels and many subformats, depending on the
nature of the symbol/label. The symbol table is dense and
entries occur in the order they are encountered/generated
during compilation. Access is via hashing and associated
with the symbol table is table of hash buckets. A symbol
“““ designated Wa., WB., WC.

Standard Symbol Format {nonlabsl}

et ittt D e ket i Lk D e +

H INt/ H

! SYM gy /0t HASH !

! L B !

e it b et et L LT t—t—m—pm e +

4z 1 5 iz

SYM: DPC (left justified, zero filled)

NF Cannot be formal parameter

HASH: Hash chain pointer (zero if end of chain)

e ————————— ttrmmm— e ————— trm e, —— ——— +=t=d===¢

! e ! ICILY M 3

! PNT E! BASE ! CLAS 1G'aY O !

! LAVE] ! 'g1gr D !

e ———— -t ——— o ——— +-+~+~-~~4
13 =] iz 28 11 3

PNT: Pointer field (tg T.DIM if array; T.MLET if namelist:!

LEV: Level number

BASE : Symbol table ordinal of equivalence class base
members

CLAS: Attribute bits (see below)

CGS: Compiler generated symbol

LAB: Statement label

MODE : Mode (type) of symbol

A-2-2

B4

WB.CLAS Bits

wc.

SFA:
1REF:
MAT:
SAVE:
NLST:
LEVE
VDS:
TYP:

A Mt

AGNZ
INTF:
DEXT:

Fond soul - menl'Y
EEY i) i
- &

LDO:

BMEM:
LOCF:
LCM:
FP:
COm:
EXT:
ENT?
FUN2Z
sug:
ARY:
EQVI
PARM;
DEF:

NVAR:
VAR:

pommpmmmm e

Yoo
IRLI /!
L

po—pmtmmmmmm-

21

RL:
RB:
CLEN:
CTYP:
BCP:
RA:

Statement function dummy argument

Onie reference (stray name)
Materialized {(storage required)

Declared
Namelist
Declared
Appeared
Appeared
Variable
Declared
Declared

o S,
LRI L

l.oad only variable.

in SAVE statement (implicit or explicit)
group name
LEVEL statement (implicit or explicit)
variable dimension description

an explicit type declaration

in
in
in
in
in
in

ALV T
[fom o B

INTRINSIC statement

Ml -

GN stat

LA]

£
L

EXTERNAL statement

£oion ook D mam wm v
TUNRCTIan Tiame

Also defined as:

SFX: used when parsing statement function

AGO2:

object of assigned goto

Base member at an equivalence class
LOCF function (irreducible)
Resides in large core
Formal parameter (dummy argument)
In & common block
External name

Entry point name
Functlion name

Subroutine name
Array name
In an equivalence class
Parameter (symbolic constant)
Defined (VAR-stored into; SUB/FUN-arg count
determined)
Not a variable

Varizble
+
!
RB '
!
+
S

CLE

i8

Relocation type
Relpcation block number ’
Character length (per element)
Character type (constant or assumed length)
Beginning character position
Block relative address

Vi e 7o
! i I

4
(AT A IR

/

---------------- t-t-t-mmpr e -
ct/st B! !
N Tt/ C ! RA !
'ytst P! !
———————————————— e e e el bl
114 24
n e L S, o e

S

Special Symbol Formats: (WA.

Formal Parameter

B16

is standard}

(Dummy Argument)

trem———————— e DL D St e e ettt D T it T t-t=pe——q
! ! ! IcLY Mo
! PNT E! FPNO ! CLAS 1Gtat D!
! HAYE ! gigt D ¢
Prmm———————— e R et L e P, - t~t=-t---%
i3 = iz 28 11 2

PNTI Standard
LEV? Stahdaﬁdm'v o
FPNO: Farmal Parameter Number
CLAS: Standard (FP bit on}

- CGB: Standard
LAB: " Standard
MODE : Standard
is standard
Function/Subroutine (except statement functions)
trm——————— et e L e e et ke Lt L
! ! ! IcHLY M
! JPF Y1 77077777777 7777) CLAS IGIA!Y 0O !
! ! ! 'sig!y p
o ———— e e L L L TP e et t-4-4---%

= i8 R 11 3

JPF: Index into intrinsic function table (if intrinsic)
CLAS: "Standard {(with proper bits set)
CGS: Standard
LaB: Standard
MODE : Standard {(only on functions)
L T fomm e L e e L EEE LR TP PR +
IF! ! 1C! !
e ARGC ! CLEN YTV /777777777777 777277727777 772777
IN! ! 1yt !
T 1 P B !
S et DL T B e et Lt Rl e et b D L R +
3 =) 18 1 29
FUNT: Function type
ARGC: Argument count
CLEN: Standard (function only)
CTYP: Standard (function only}

A-2-4

C1

Statement Function

e ————— e —————— e ————— +-4-4-=-+
! o ! ICILE M i
! STFP V177777777777 CLAS IGrtat O
oY ! ! ‘gig! D!
o ————— e ———— e —————— +=t=t===%
i5 i2 28 11 3
STFP: Pointer to statement function definition (on T.STF)
. CLAS: Standard
gG58: @ Standard
LAB: = Standard

MODE : Standard
is in function/subroutine format

Statement Label Format

STL: DPC label (right justified, zero filled)
HASH: Standard

TR — T T S —— o $-4-4--—#
! ! ! : ey /0t
! FR ! FMTL ¥ CLAS iay 7t
r ! ! tstg! /!
P —— e —————— et el ettty +-+-+--=-+
i5 i2 28 11 3
: Label first reference line number

FMTL.: Format length (FDEF), in characters
CLAS: Attribute bits (see below?

CGS: Standard

LAB: Standard {(on)

G2

WB.CLAS bits
1REF: Stray label
INDQO: Label in do lpop, loop has exit

NIN: Do loop has (possible) negative increment
DLPE: Label is possible do loop entry

DLC: Do loop has been closed

LC: CCG internal label

NDEF 2 Label defined on non-executable statement
UDEF 2 Label undefined

FREF: Label referenced as format

FDEF: Label defined on format statement

PRD: Do parameter redefined in this loop

oiea: Locp contains backward branch

DLEN: lLoop contains an entry

DLEX: Loop contains an exit

DLNI: Loop not innermost (of a nesting)

DLER: Loop contains external references

DOGL.: Generated label for do top

DMAT : Loop index to materialize

ACT: Label is active

INA: Label is inactive (cannot be referenced)
SLEN: Entry to a do loop '
SLEX: Exit from a do loop

SDEF : Label defined on executable statement
SREF 2 Label referenced as executable statement

DOT: Label is a do loop terminal

-t ——— Dt il e L T P P ———— - - +

! 1/ ! ! ! !
WC. ! RL 1t/ RB ! LINE V17770 RA !

! /! ! ! ! !

S e fat ST T e —————— Fo————— P +

2 1 9 i8 e 24

RL: Sténdard

RB: Standard

LINE: Line number of definition

RA: Standard

A-2-&

2.1.2

Variable dimension Information Table (T.VDI) 03

One word table entry for each variable (adjustable)
dimension caiculation required.

R e et R e T R e it +
IME /770 CA/IND ! PNT ! LEN !
LAl ! ! ! !
St DD il bt b LD L P, ———— P ————— +
2 4 i8 18\\\ i8

MA: Materialize/Allow flags

CA:

IND:
PNT:
LEN:

Bias for cells (CCG) ;
Index of VD. store operand (FE) /
Ordinal to vardim turple tablﬁX(First turple)

Number of turples

G

2.1.3

FP.

C4

Formal Parameter Information Table (T.FPI)

One word table for sach unique formal parameter (dummy
argument} in the program unit (the master copy for entry
point parameter lists).

+-+-+-t-t-pmmmmr e o e e +
AVESNRAVE I IR IS ! ! i
iIDICIDIEI/} LEN/SUB/CA i SiBO i PNT !
21 IR R AVENS ! ! !
Ly 1t ! ! !

R Bt ek e it e et e ettt 1
11112 18 i8 ig8

vDs: Formal parameter used in variable dimension descr.

LC: CCG made local copy

VD: Used in issued variable dimension

LEVO: If LEVEL O

LLEN: Number of subreferences (FE?

SuB: Index into subtable (end of program unit)

CA:L Bias of local copy (CCG)

SuUBO: Number of LEVEL O references
PNT: Symbol table ordinal

A-2-8

2.1.4 Constant Table (T.CONM): c5

The constant table is unformatted. It contains the binary

values of converted {or manutactured) constants encountered
during front end processing.

C6

2.1.5 Common Block Name Table (T.BLKS)

The commaon block name table consists of one (two word) entry
for each named common block (or blank common) encountered
during declarative processing.

=

D LT
e e e e popmgoodi LT
‘!} 1ciLt commdn) IS ;'}
CA. ! BNAM T LMI !
! ot !
o e e e e e e Lt Y e L e L e T +
4 c 4 ic
BNAM: Block name (DPC,y left justified, zero filled)
CH: Character information
CHAR: Block has character entries
NAC : Block has character conflict
Lvi: Level information
CNFL: Level conflict
BFLT: Level default
BLFL: Level number
LMI: Index of last member of block in T.COMM
b el Bk Lol ol bl Dl e R Bttt ettt bl ot +
CB. ILI!S!R! ! y ! !
ICIAIN! FMI ! TAR ! BLEN !
IMiIVICH ! } !
e e Bt e e et hatad e ————— o e e e e e e +
114 ig i8 iB

LCM: Block is in ECS/LCM

SAV: Bilock appeared in SAVE statement

RNC: Remaining character count before block round
FMI: Index of first member of block in T.COMM
TAG: ECS/LCM pointer tag

BLEN: Block length {(words, rounded)

A-2-10

2.1.6

Di.

C7

Dimension Table (T.DIM)

The dimension table consists of a header word, and pairs of
dimension information, one for esach dimension. Only unigque
dimension information is kept, so if two arrays arse

dimensioned the same (number and form of each dimension the

same’} on

ly one entry in T.DIM will be made.

SIS gLy

ATTR: Attributes (see below) TOTAC B
PS: Product of spans (partial product for VD) ®OR AplTAY 1 (mC
RA: Relative address of runtime dimension table
DIM: Number of dimensions éégg; TABLE
DH.ATTR bits

VD: Variable dimension present

AS: Assumed size array

VP2 Variable product of spans ATV

MAT? Runtime dimension table materislize ,nix CUFh+t::”)

VRO N TAS i ORONA
APYTD 1o D; 5 <2~
et +-+-—-+-——------—-=A--l ------- LY
Y/I77 777707777277 77777777777\TY 777! SPAN !
! D! L !
R e ittt bt LT e it St el o ittt +
30 i &5 24

-t e -t e +
TY//77 iB iTi//7¢ B i
D! ! Dt ! !
-t e R i Sl e e +
1 5 24 1 5 24
TD: Type dimension (on-variable, off-constant)
SPAN: uB-LB+1

Upper bound
Lower bound

A-2-11

2.1.7

TH.

TH.

C8

Witirye3 opS o Té7
The Intermediate Language (IL) is the internal parsed
representation of a FINS source program. The IL consists of
triples (historically misspelled turples), sach turple
consisting of a header and two operand words. Descriptions
of the header and operand words follow:

Intermediate Language (T.PAR)

TH. - Turple header. This general faormat goes through
several transformations, depending upon where the
operator is in the parse process:

E et T T Sl et +-tr—m——— e ———— t-m—————— +
1 dwa ‘”“L%j§%¢ “d:r 19! /77 ! '
A p_,\z 1ATR ‘Al /// ' STPR ! TBPR !
! qupiE 1T /77 ¢ ! '
i @g{)LU ! IRY /77 Y ! i
o ———— R il t e +-tm———— $mrmm———— o m——— +
ig 14 4 & S S
Operator Selected During Parser Synthesis
trm e —————————— e ——— +-t-t-——tmm———— o ——— +
! ! IQi/t M ! ! !
! SKEL ! 1ATR At/ QY MODC Y TBPR !
! ! TV /Y DY ' 4
! ! IRY/V E ! ! 1
o e D D e Rt Bk L e it e ——— +
18 14 4 2 4 3 =]
Turple output to T.PAR (IL}
bt D L) e ————— S dab it AL T L R +
! 1gICt M ! ! !
! SKEL ! LINE YAtaY Q Y2727/ 7/7Y TBPR O
i ! TYTY D Y ! !
! ! ‘R!IR! E ! ! !
o e i et L et D By e e —— +
i8 14 4 2 4 9 S

SKEL : Code skeleton index or relative address
1ATR: Parse attributes (see below)
LINE: Source line number {(if first turple of line)
GATR: QCG attributes (see below)
CATR: CCG attributes (see below)
: Type of result (dominant mode)
MODC : Mode coersion (_gf«:>ut.f'"m>'f).‘i"/‘f*"[WS
STPR: Stack priority
TBPR: Token buffer priority index

A-2-12

TH.1ATR attribute bits: cg
NSGZ: Turple is not squeezable
UNAR Unary operator
MDLS: No associated type
DIS: Operator is algebraically distributive
COM: Operator is algebraically commutative
: Operator is algebraically associative
MASK : Masking/logical operator
CHAR: Character operands allowed

SMD: Specific mode determined

BND: Operator OK for dimension bound expression
TH.GATE attribute bits:

NSTD: SKEL.L field contains routine address

PLC: Operand is // of passed length item
: First operand is register allocated
2DUC: Second operand is register allocated

TH.CATR attribute bits:
PAP: First turple of an argument
PFP: First PAP of an argument list

Operand Format (TP.)

M S T

e S el D e L L P ———— Form - +
! ORD ! BIAS ! ATTR ' 1ATR !
e ——— nr-~j;+ ---------------------- o — - +
1& \50,\\&” ¢ 24 13 7
LS ‘%gﬁ;"w\
\)N'u’;_mx“
ORD: Symbol table ordinal of operand (usually)

BIaS: Constant addend
ATTR: Attributes (see below)
1ATR: Parser attributes {(see below!}

TP.ATTR attribute bits: These bits determine how the ORD and
BIAS fields are to be interpreted.

LCM: Operand is ECS/LCM resident

FP: Operand is a formal parameter

EQV: Operand is equivalenced

GL.: Generated label (ORD is GL number?
ARR: Operand is an array

SHRT: Short constant (ORD is null, BIAS=constant)

ADDR : Address reference operand R
INTR: Intermediate operand (ORD is IL pointer) 54S aiamiAél#3S
CAT: Concatenation operand

I10D: I1/0 definition

I0P: Potential I/0 definition

A-2-13

C10

TP.1ATR attribute bits: These bits are used during parse
only and are discarded when IL is

output.
ARS: Array subscript operand
ARE: Entire array reference
LCF: Referance for LOCF intrinsic
EXPR: Operand was an expression

MODE : Type of operand (3 bits)

Jurple Formais

Assién.turple

ASBIGN 10 to I will produce

tommmmm e e D L LT e +
o ! ASSIGN ! line no. ! !
tommmmmm e tmmm e e e +
e et D e ininbaty - L e R Etninabteb bbbt b +
! ! ! tat ! !
1 ! ord(10) ! o ! o ! !
! ! ! o ! !
! ! ! 'R! ! !
L S i - Pttt +
tommm - it tommmm - P e +
e ! ord(I) ! bias(I) ! ! !
P tommm e P A +

A-2-14

C11

- DO-Besain Turple
The DO statement has the form
DO s i = mi, m2, m3

This statement generates a turple of three triples which contain
the required parameters for code generation of a DO-BEGIN.

There are two sets of DO-Begin turples: DOBEGAO, DOBEGRO,
DOBEGCO +or zero trip DO loops; and DOBEGAL, DOBEGR1. DOBEGCH
for one trip DO loops.

e e e S T ———— +
0O H DO-BEGA ! Line No. ! Mode of ! !
! OPCODE ! ! i ! !
o ——————— P ———— e ———————— trm——————————— +
1 ! Operand i !
e ettt e e e +
2 ! Dperand ml !
e ———————— E Rt i Dt it P —— o —— +
3 ! DO-BEGB ! Line No. ! 0 ! !
i OPCODE ! ! ! l
e ———— o e ———— et Rt T +
4 ! Operand me !
tom e e - +
5 ! Operand m3 !
et et D D TP e e e ———— +
) ! DO-BEGC [Line No. ! 0 ! !
! OPCODE ! ! ! !
o o Frm————————— o ——— +
7 ! DO-START ! !
! label ! !
e et it e ettt ettt +
8 ! DO-~-END i t
! label ' !
e —— R +

Each operand mi, m2, m3, and i appears in the standard
Ordinal-Bias format.

The RO-START _label is a generated label ordinal for the zero
trip loop or zero if the loop will go at least one trip.

The compiler provides both a control card option and a‘
compile-time directive to compile DO loops as one trip loops,
the status of which determines DOBEG op-codes.

When the label associated with the end of the DO loop is

encountered the following turple of two triples will be
generated.

A-2-15

DO-END-Turple CIZ

There are two sets of DO-END turples, DOENDAO, DOENDBO for zerao
trip Do loaops and DOENDAL, DOENDBL for one trip Do loops. The
trip count is established at DO-BEGIN time.

e ——— o ——— e ——— e ——— +
O ! DO-ENDA ! Line No. ! Mode of ! !
! OPCODE ! ! i ! !
P ——————— e e —— o +
1 t Operand i !
i i ettt L et e +
2 ! Operand mi {
! {(if m3 is constant or simple variable, else zero) !
L bl Dbt L atatad L el L L L e - e bl L +
3 ! DO-ENDB ! Line No. ! ! !
! OrPCODE ! ! ! !
o —— i Dl e bt bt b Dt L +
4 ! DO-START ! !
! label ! !
e, —— o e +
5 ! DO-END | !
! label ! !
- o ——_——— +
The presence of Operand m3 is not necessary but may make it more
convenient for an optimizer to eliminate the copy code generated
in the prologue (Temp=m3).
Acithmetic-IF Turple
The arithmetic-IF statement has the form
IF{(e) niyne,n3
A& turple of two triples is required to represent it because
there are four input parameters.
tom e e Sl b b Ll b b e e +
! ARITH-IF1 ! LLine No. ! Mode of ! !
! OPCODE ! ! e ! !
e — temm e ———— o - - ———— +
! Operand e !
o o e e e ———— +
! Label ni ! !
bt et D el Db Ll L bl b Dl o ————— +
! ARITH-IFZ2 ! Line No. ! 0 ! !
! OPCODE ! ! ! !
e ——— trmm - ————— Dl it e tmm——— e ————— +
! Label n2 ! !
e D atalal Ll e ————— +
H Label n3 ! !
o e e e tmm e +

A-2-16

Logical IF Turples c ‘ 3

These turples represent
IF(gls

where € is a logical expression and
8 is an executable statement.

P [FRC R

A turple of two triples is used to express this construct, with
operand-1 of the first turple pointing to the expression and
operand-w of the second turple containing the generated label of

L O - am ome e 2 - .] - __k"
the branch-around-g target. The op-code is IF.NOTL, since the

turple denotes IF (.NOT.g) GO TO gl
The special case
If{g) GO TO lab

will be recognized and produce an L.IF turple with operand-2 of
the second triple containing lab.

The special case
IF(g) RETURN
is similar, with the label being at the exit line.
Special turples are used for logical IF statements of one
relational operation. The m.IFgp turples are & words, with the

operands of the relational as operands-1 and -2 (words 2
and 3). Word €& contains the branch target.

A-2-17

IF(A.EQ.B) C=D will produce:

tmm e ————— o e e e e, — - ————————— +
! R.IFNE H standard operator word !
e ————— o e ———_—— +
! operand (A) !
e e e e e e e e e e e e e e e e e +
i operand (B} !
el i Ll D tommr e e - +
! R.IFNE (B} H standard operator word H
o —————— e et ettt e +
! not used !
! n : T Y '
! H ! Lt !
e, ————— o - e e B Dl +
- to et ——— +
! R.ST ! standard operator word !
R Ll DL Bt o e e e e e e e m e s e s - - - +
! operand (C) !
o e e e e e e e e e e +
! operand (D) !
o e e e e e e e e o e e e e e e e e e e +
e ———— tr e ————— +
! LABEL ! standard operator word !
ety o ———— t bl Skttt bt L Bt B +
! n ! ! 1G! !
! H ! ! !
b il L bl o T e ———— t-——t-tmmmmr - +
o e e e e e e e e e e e e +
IF(A.EQ.BY GO TO 10 will produce:

S ettt Ll el et ettt et et ittt b Db Db D D D +
! R.IFEG ! standard operator word !
e ——— o e e e e e e e o e e +
! operand (A) !
o e e e e e e e e +
4 operand (B) !
tmm e ettt e e et e L —————————— +
t R.IFEQ (B) ! standard operator word !
e —— D il T i D D aant Tt Tt +
! not used !
s e Dt L DL L Lt Rt i et DL Bt Tl b DL L b +
! SYMORD(10) ! !
e kb e Dl Dt e e r e — e ——————————— +

A-2-18

Start Execution (SEX) Turplse

This is issued only for a main program.

$ommmm - e ettt t-—————- Bttt e +

! SEX ! Line No. ! 0 ! !

i e frmmm—— et ittt +

1 1

e itttk ettt +

o e e e +
Eile Turple

These are issued due to files on a3 PRDGRAM statement and always
precede the SEX turple.

frmmmm e L TR L —— +
! FILE ! Line No. ! 0 ! !
P A pommmnnn T S ——— +

Fi BUFL ! 5
prmmmmmmmae Fommmm e mm e S —— +
! Fa ! MRL ! !
L - +

Where: F1 = ordinal into file name table

F2 = ordinal into file name table of equivalenced file
(F1 = F2)

BUFL

buffer length value

MRL = maximum record length value

Loader Conirgl Carcd (LCC) Turple

o ——— o e - P, - +
! L.CC ! LLine No. H 0 ! 1
o ——— e, —————— o —— term b e ———— +
! O H Index into LCC table ! !
o ——— e — - e - +
! 0 ! NC ! !
trmm—————— e e L L e L L L et R b L L b D il +

The LCC table contains the loader directive image to be issued
by the assembly phase. NC = number of characters in the
directive image. This turple always precedes the SEX turple.

A-2-19

Header (HDR) Turple

This_is _the first turple _in the TL.

pommmmmm e tommm e et BT R +
! HDR ! Line No. ! 0 ! !
Fommmmm e pommmmm e pommmmmm e +
! SYMTAB ! !
! Ordinal ! !
e ————————— Fom e e +
! Program Class !
o e e el +

Where: GQYMTAB ordinal is the symbol table entry for the routine
name. Prggaram_class specifies the kind of routine.

NOOP_Turple
e oo e e e +
! NOOP ! Line No. ! 0 ! !
T R e e L T S e +
' !
o e e e +
' !
o e e e e e +

This turple signifies no actions. It may be a convenient place
to put a line number.

QObiect lisiing Control Turele

pommm e pommmmmm e pommm e o +
! OLIST ! LineNo. ! 0O ! !
pommmm e R et LTS ST — +
! ! Sw ! ;
e R e L e +
! !
o e e +

Wherel GSW=1 if object listing is to be turned on and SW=0 if
object listing is to be turned off. It is issued only
in response to a C® directive.

A-2-20

Get Passed Lepath (GPL) Turple

This turple has the passed length of a type character dummy
argument or character function as a result.

L it prmm e ————————— P e +
! GPL ! Line No. ! 0 ! !
R trmm e tomm———— L S it b +
! C 1 O t !
e P e P +
! 0 !
e it I D DD DL C e L +

Where: C is the symbol table ordinal of the dummy argument or
of CVAL.. for a character function.

STOP _or PAUSE Turpele

R et et e +
! standard operator word !
B e b D e e Ty +
e ——————— R et e ittt +
! base(rout) ! !
e et D L T e Bkl et T e bt T T L TP +
e ———— P ———— Rl il it +
4 base(st) ! bias(st) ! !
e P ————— e —————— +

Where: base(st) is CCDON. if a string was specified on the STOP
statement, or zero.

bias(st) is the offset in the character constant table
of the string.

base(rout) is the symbol table ordinal of the entry for
the STOP routine name.

A-2-21

Computed Go To Turple
e ————— e —— e ———— o +
! CGOTO H iiine No. ; Mode O+ i i
! ! t INT(e) ! |
o ——————— - e Pm———————————— Rt et e +
4 Expression e !
trmmm—————— D et e et kel L L Lt P +
1 ! # of labels ! !
P ——————— e ettt ittt T P —————— +
This turple is produced for GO TO (P1, P2y P3,...+sPn) 2. The
next n turples following this furple are special unconditional
Jump turples (JGOTD), one per label in the computed GO TO list.
BEND _Turele
This turple is output only when control flows into the END line
of a main program.
o ——— R et ettt T et et P +
! PEND i standard operator word !
o ——— R it D D bt e +
e T el ettt D D L L T L P e +
! base (ex) H !
tmmmmr e ————— tom e - +
E e it D T ekt +
1 0 3
tomr e +

Where: base(ex) is the ordinal of the symbol table entry for
the external to be transferred to at program
termination. The code from this turple will transfer
control to a termination external identified by symbol
table entry ex.

Eniry Turple
P ———— P e e e e e e +
! ENTR® ! Standard Operator Word i
P o e e e e e +
! ordinal ! !
P ————— P e e e +
i t
P e e e e e e e e +

grdinal is the symbol table ordinal of the entry name on the
ENTRY statement. A link to he formal parameter table which
contains the formal parameter or list for this entry is in the
PTRF field of the symbol table entry for the entry name.

SEG Turple

This turple indicates the beginning of a new IL sequence, i.e.,
the turple numbering is reset to zero, with the turple following
the SEG turple being turple number zero.

Pommmm e L i e et +
! SEG ! Standard Operator Word !
R e ittt e ittt L L L +
! !
bbbt +
! 1
e D e L DL +

A-2-23

140 _Tucples
Conirol Turele
e R it et T T +
! IOCTL H Standard Operator Word !
B St et e —— o +
! ! Code ! !
' ! ! !
E Bt et e ——————————— e ettt et +
E B et et R et L R i L R et LT P R +
! deerand H Operand ! . i
! Base ! Bias H o !
H ' ! ' D! !
o, ——— D - ————— et D e +

1/0 routine ordinal is the symbol table ordinal of the I/0
routine to be called. The symbol table ordinal is present in
the first turple received to communicate the symbol table
grdinal and allow usage/definition information collection in
OPT=2.

A-2-24

05

Code is an integer specifying the numeric control code of this
turple.

UNIT= i
END= 2
ERR= 3
FMT= 4
108= 5
REC= 6
SKIP 7
NML 8
ACCESS= 12
BLANK= i3
BUFL= 14
DIRECT= 15
EXIST= 16
FILE= 17
FORM= 18
FORMATTED | 19
NAME = 20
NAMED= 21
NEXTREC= 22
NUMBER = 23
OPENED= 24
RECL= 25
SEQUENTIAL= 26
STATUS= 27
UNFORMATTED= 28
BUR 29
CNT 30
MOD 31
STR 32
FMTA 33

BUFFER 1I/0 fwa/lwa, parity and ENCODE/DECODE string, length are
alcso implemented as control turples.

Qperand Base/Operand Bias designate the operand of the control
turple (i.e., REC=X specifies X, ERR=10 specifies label 10y etec.)

Ocdercing_gf Conitrol Turples

The turples will appear inthe order in which their corresponding
specifiers are encountered in the source.

A-2-25

Rata Turele

All IODTA turples for a segment of an I/0 list will immediately
precede the I0OF call that processes that segment.

06

E B it Dt D D T tomm e ———— +
! I0DTA ! Standard Operator Word !
e ——— trm - ——— e ——— -t e +
! Data ! Data ! HE O !
! Operand ! Operand } gl !
! Base ! Bias ! Ipt !
tommem e ———— R il S L s et L B +
i Length : Length : i
! Operand ! Operand H !
! Base ! Bias ! !
P e e m—————— +

Data operand Basse/Bias specifies the data item to be read into
ar written from.

Lenath _operand Base/Bias specifies the length of the data item.
A constant length is contained in the bias field and the base
field is zero. Constant lengths may exceed the length of a
short constant bu are still indicated by the short constant bit
being on. In all cases, lengths are in terms of number of

items. A double precision, complex, or character variable is of

length one. (Character slement length is available in the
Symbal Tablse.)

Nen=-gollapsible 1/0 DO Logps

Non-collapsible I/0 DO's will result in a normal DO control
structure surrounding one or more restart calls to perform the
data transfer.

10F _Turpls

Operand 1 specifies the symbol table ordinal of the routine to
be called.

Operand 2 specifies the restart routine symbol table ordinal or

zero if this is the last call of the 1/0 statement. Restart
calls are required for situations such as READ (i) I, A(I).

A-2-26

140 _Turple Exameles 07
In the following example, I is an integer variable, D is a

double precision variable, and A and B are real arrays with a
lower bound aof one.

READ (5,20,REC=N,END=10) I,D,A(I1),(B(J),J=1,10)

would be represented as

L L L et et e ——— B et D e e +
! IOCTL ! Line No. ' 0 ! !
e i et TL L e Ll il L T +
! IRI ! UNIT Code ! '
e b T it et e it b +
! ord{(5) ! ¢ i
P ——— e ittt Rt L T i e T +

IRI = symbol table ordinal of input routine for formatted direct
access input initial call.

UNIT code = numeric code for UNIT= specifier.

o ——— e el D T t-—————- e et e L +
! IOCTL ' Line No. ! 0 ! !
e ————— o ———— e —— S R e L D e +
! IRI ! FMT Code ! !
Formm e ————— e it e T o e e +
! .20 ! 0 ! !
e ——— tom e - e +

FMT code = numeric code for FMT= specifier.

20 = symbol table ordinal of entry for label 20.

e o ———— t-————— S e et +
¢ IOCTL v Line No. ! 0 ! !
e ——— o t-m———— e b +
! IRI ! REC Code ! 1
e —————— Frm e - i e L e T +
! Base of N ! 0 : !
e ————— e it e e o e +

REC code = numeric code for REC= specifier.

A-2-27

pommmm e Lttt bt e e R e ittt b bl +
I1I0CTL ! Line No. ! 0 ! !
tommm e tomm e o e L P +
IRI ! END Code ! i
----------- e e e e e
.10 ! o ! 1
----------- Fo e e e}

----------- +
----------- +
Base of I !
----------- +
i

o !

' !
----------- +

-------------- e e
iine No. i Mode !
-------------- e et bl L e et 3
o ! !
--------------------------- LSS et e EELE ST
! s LD S !

1 ! Ict (s I !

! ro t Dot !
--------------------------- bl DL B s Sl T

Mode is integer for I, the length is one.

+
;
----------- +
'
§
!
+

Mode of D is double precision.

e ——————— o ——— et ke bl Db L TP +
l.ine No. ! Mode ! !
-------------- trmmm e e}
O ! !
--------------------------- bt B L L et T)
! gt LI !

1 ! 1cl L o !

' 1 L !
--------------------------- DL St bt ELEE T
—————————————— e i e it S P S
Line No. H (o) ! !
-------------- e it b D R et it £
0 ! !
——————————————————————————— et D e
o ; !
--------------------------- P}

Call the input routine to issue part of the I/0 list. Restart
call generated due to interaction of I and A(I).

symbol table ordinal of routine to call.
symbol table ordinal of ineput restart routine.

IRI
IRR

Pommm—— L e bt Pomm———— o M s e 1
! ! ! ! 'PIP! !
! suBsC ! Line No. ! Mode ! tAlF! !
! ! _ ! Pip! !
P ————— itk ittt bttt bt P ———— L B B Bt B +
! Base of A ! -1 ! !
prmmmm L et it D o +
! Base of 1 ! C ! !
P i bl b it +
SUBSC = subscript turple
Mode is real for A
L T oo Prmm——— i bbb Dl +
! I0DTA ! Line No. ! Mode ! !
P ———— P tom————— -ttt t-te—m———- +
: ! RS & 'A! !
! PTR ! 0 ooIN 'R! !
! ! LA 'y! !
P L e t-—t-t--t-t-t-tt-—-+--+
: ! ! '8! oyt
! o ! 1 ! 'C! ot
! ! ! LI ‘Do
trmm e ———— P e P ——— t-t--=—toemt--4

PTR points to the previous turple in the IL.
INT designates an intermediate, i.e. ordinal field is a pointer
to a2 previous turple.

e ——— o ——— t-—————- Rt it D L L L +
! IODTA ! l.ine No. ! Mode ! !
P ——— frrm e e trm————— S e b ke +
! Base of B ! -1 ! !
e ————— e et it bl DRt e TL R L Rttt TP 3
! i ! gt LI !
! 0 t 10 ! Ict [= !
! ! ! to vt D! !
tommmm e e e e e

I/0 List DO collapse transforms (B(J),J=1,10) into a transfer
starting with B(1) and transferring 10 items.

o ————— R ARl it LDt - ——— et etk bt +
! ICF ! Line No. ! (o] ! !
- ———— L e DD o ——————— +
! IRR ! 0 ! !
- —— Frmr e e et +
! O ! o] ! !
fomm e R it L LT e +

Issue last restart call

A-2-29

Exiennal;ééuiina_aaignanag_lunale

The general form of an external function reference (CALL or
function) turple is:

e o ——————— Prmmrm————— o e +
! EXTF ! Line No. ! Mode ! !
tommm e tommmmmm e o s T e +
! Base of Func. ! 0 ! !
Fom e e e e e e e e e - ——————— e e +
! O ! Nargs ! !
e e —————— - —— e ———— +

Mode is the mode of the function result.

Base of Func. is the symbol table ordinal of the function or
subroutine name to be called.

Narags is the number of arguments it was referenced with.

agciual Parameiter (AP) Turele

This turple specifies an actual argument of a subsequent
subroutine or function call. All AP turples will immediately
precede the associated EXTF turple. The form is:

Pommmm————— L e it e et L ittt +
! AP ! Line No. ! Mode ! !
Pommmmm e B i tommmm - B B e by +
! BASE ! BIAS ! !
P ——— R e e kel +
! ! !
tommm—————— o e e e e e e — e — - +

Where: BASE is the symbol table ordinal of the actual parameter
and BIAS is the offset.

A-2-30

ARG _Tursele

This turple is identical to the AP turple except that it denotes
actual arguments to intrinsic functions.

Example

In the following example; F is a function, A, Y, Z, R and I are
variablesy, and B is an array with lower bound of one.

CALL X(A, Y+Z, F(R), B(I))

b ———— e —————— trm——— tmr e ————— St Bt D L L +
! ! ! ! Ipipt !
! R.ADD ! Line No. ! Mode ! AR §
! ! ! ! ipipt !
P ——————— e —————— trm———— Rt S e el Dl L e T +
! Base of Y ! Bias of Y ! !
e ———— e el D ettt Fom +
! Base of Z ! Bias of 2 H !
R o ————————————— e bl e b e L LT +
Compute Y+Z
tmmm e ——— e ———— b ———— e e +
! AP ! Line No. ! Mode ! !
P ————— tm————————— e Rt B et ettt DT TP P +
! Base of R ! o) ! !
o ————— e ————— tom e e +
! ! 0 ! !
o ————— e ——————— D Bt it +
Aplist turple for argument R to function F.
S e ettt S et e —————— ot ———————— +
! ! ! ! Pt !
! EXTF ' Line No. ! Mode ! Al !
! ! ! ! pt !
P o ——————— Fmm———— trr e t=trr e +
! Base of F ! o] ! !
e el ettt DR L L R e et i L P +
s o] ! i ! !
e ———— R el e D D it et +

Call to function F with one argument.

A-2-31

P ————— +
! !
! SUBSC I
fommmm e +
! Base of B !
o ——— +
! Base of I !
e +
Compute subscript
L AP i
tomm - ——— +
! Base of A !
e ——— +
! 8] '
- ——— +
First argument of
o ——— +
! AP !
frrrmrr e ——— +
! !
! PTR !
! '
o ————— +
! 9] !
- ————— +

PTR points to the
turple.

e e +
! AP !
e +
! !
! PTR e
! !
e +
! 0 !
pommmmm e +

PTR points to the
third argument.

---------- e e e it lt .
o ! ! P! !
Line No. ! Mode ! Al !

! ! Pl i
---------- i B it e e Al 2
-1 ! !
--------------------- L e 1
o ! !

--------------------- R e e 4
for B(I).

---------- L e ittt
Line No. ! Mode ! !

---------- e e e et D £

0 ! !

--------------------- L e i L2

0 ! !

--------------------- L e e
Call..

——————————— B e s
Line No. ! Mode ! !

—————————— Lintaiiiaind Sateiet Seduind Sl A bttt bt bbb

! 'T! !

0 ! IN! !

J 'T! !
--------------------- e e e s
L

___ +
Y+Z turple. This is the second argument

---------- e e R &
Line No. ! Mode ! !

---------- e it A e bl D DL 2

! 'T! !

o ! 'N! !

! 'T! !
————————————————————— Lkl dak et bl &
I

——— +

EXTF turple of the call to F. This is the

A-2-32

pommm e it $mmmmm- et +
! AP ! Line Na. ! Mode ! !
pommmmmmmemm pommmmmmmem pomm——- tom—tmmmm—— potommmm- et +
a ; ; B 1A '
z PTR ! 0 ! N IR! !
! ! : 1T Lyt !
pommmmmm e e $--——-- e R tot-m—m-- +
!) ! s
pommmm e o +

PTR points to the B(I) turp

e tPrmm———————
! SUBR ! Line No.
e S
! Base of X !
drmm e e e
! 0 !
- ——— S Dl

Call to subroutine X with f

Intrinsic Funciion Tureles

le. This is the fourth argument.

e e — +
! Mode ! s
pomm——— s S e +
o ! z
----------- e et LT R
4 ' !
----------- e e

our arguments.

Inline intrinsic functions will be generated by the -front end as
explicit turples to perform the required operations.

Out-of-line intrinsic functions will generate ARG turples
followed by an INTF, intrinsic function call turple.

e —— tmm—r e —————— o ————— e i L D L L T +
! INTF ! Line No. ! Mode ! H
P e, ————— o ———— R Bttt +
! Base af func ! O ! !
R el e e ek e T e +
H o ! Nargs ! !
o ——— e il ettt L P e ———— +

Mode is the mode of the function result.
Base of fupng is the symbol table ardinal of the internal

function name (SIN., SGRT#H,

etc.) to be called.

NMaras is the number of arguments.

A-2-33

2.1.8

D14

Namelist Group Table (T.NLST)

A variable length table (depending on the number of members
in the group).

NMEM: Number of members in the namelist group
GROP: Symbol table ordinal of group name
: Sh 1 table ordinal of nti

R Y W
Saly Tt I e

Subsequent entries are as MEM1, MEM2, 4 per word.

A-2-34

2.1.2 Actual Parameter List Table (T.APLY(T.I0A)

Each AP list consists of one entry per item.

pomm e e tmmmm—- et s
Ia. ! TAG ! BIAS ' MODE ' ATTR ' ///7/7!
e Fom e e pommmm- pommmme L
18 24 & T S
TAG: T.PB form of ¥#IH¥ = gymbol table ordinal

BIAS: Constant offset

MODE: Mode (type)
itg: Lontrol item
ST: FWA stored to this item
CHAR: Get (BCP, CLEN, BIAS) from T.CAC
CRH: Character relational header
ASG: Assigned format specifier
FP: Formal parameter
VAR : Variable do trip indicator

The T.I0A entries are reformatted as follows:

Nencharacter /FP
trm—————— o ———— S b L il e ettt D et +
OA. ' ATTR ' TYP ! LEN ! ADDR K
e —— e ——— ittt Rt e et L R +
& () i8 30
Character
E St b tm—————— Rl b b D e L T t-t—tmm e +
: 17181 i
Ca. ! ATTR ! TYP ! LEN VAT ol ADR !
! VP !
tremee——= === Bt it B B et +
& 13 18 2 4 24
FP
tomm——— s e bt D et L L trm——————— +
DAa. ! ATTR ! TYP ! LEN ! SLBS ! ARG !
tommm—— trmm—— o e e t-mm e ——— +
& & i8 21 9
ATTR: LCM: In ECS/LCM
FP: Formal parameter
IND: Indirect
LST: Control information specifier
VAR 2 Variable do trip indicator
TYP: Mode or unit control code
LEN: Number of elements
ADDR: Fla
BLP: Beginning character position
ADR: FWa
SuUBSs: Offset to formal parameters
ARG Formal parameter index

A-2-35

2.1.10

Cross Reference Table (T.REF)

One entry per symbol reference.

D16

Gathered (as requested)

during front end processing and processing during rear end
listing production.

e ————————— Pt ————— - e
! M! 1
! ORD VEY SL7FANIP777 LINE
i ipi i
! IF! !
e ——— R e et P — e
ig i i=s - =2
ORD: Symbol table ordinal
MEDF : Map antry point definition
LINE: Line number of reference
UsE: Usage symbol

A-2-36

2.1.11

Entry Point Table (T.ENT)

One entry

far each entry paint in a program unit.

e itk et ettt o ————— +
! NAME ! ORD !
S A ittt D ittt Frm e ———————— +
42 18
NAME ; Entry point name (DPC, left justified; zero

filled)
Symbol table ordinal

A-2-37

2.1.12 Entry Point Parameter List Table (T.ENTP) E2

Each unique parameter list in a program unit has a T.ENTP
entry. An entry consists of a header (EHM.) and as many EP.
words as necessary. A list is terminated by one (or morse)
zero bytes.

e it R e el P s R ettt bl +
EH. ! FPC ! sSuUBI ! SBOI ! BIAS !
to—m——— - Tomsee—e e L A mttalal e i LD L +
12 15 15 18
FPC: Formal parameter count
SuUBI: Subindex table bias

SBOI: Level O subindex table bias
BIAS: CPL. bias of this list

ORDn: Symbol table ordinal of the nth FP

A-2~38

2.1.13 Sub Block Table (T.SUB)

POS: Instruction parcel shift count
FPNO: Formal parameter number
BIAS:

G:

1 Bias added
OR Address of

g oim e e

- . - - —— - - w w——

o e s s em e S e ke

instruction to a

A-2-39

ddress

N S,

suns

titute

2.1.14 Sub0 Block Table (T.SUBO)

e ——— e ————— Dl ettt T o ———— +
sZ. ! 08 Fr7t 8Ll YV AAISFA AT ORG !
e —————— tmmm e e ———————— o ——————— +
i2 3 i5
POS: 203€B + instruction parcel shift count
StIz SCM/LCM store instruction
ORD; Address of instruction to address substitute

A-2-40

2.1.15 Sub Block Index Table (T.SBI)

o ————— e e it bttt +
Is. ¢ FPN i AaD
o P e +
i2 48
FPN: Formal parameter number
aD: Address of Sub, this FP

A-2-41

2.1.16 Local Block Table (fixed table)

PARC: Parcel count
BLEN: Length of block
ORrRG: Program relative address/org counter

E7

The entries consist of a one- or two-word header and as many
constant entries as necessarvy.

2.1.17 Data Statement Table (T.DATS)

tot-trmmm————— e o ——————— - R e +
'CIR! ! ! !
DA. 'H!pP! ORD ! BIAS ! WC !
1 1 1] 13] 1
Sk Rt Dl R et T e +
11 16 24 i3
Chiz Charscter format
- RP: Replication needed (DB. word present)
CRD: Symbol table format of FWA
BIAS: Bias off FWA
WC: Count (words or characters) not including DB.
trm——— e et T trm———— Fom e +
DB. Y7777/ INC Y17 7777! CNT !
tmm———— tom e t-————— e et e T +
& 24 & 24
INC: Increment
CNT: Number of copies

A-2-43

E8

The token buffer is the output of LEX (lexical analysis).
LEX entokens an entire statement (or C3$ directive) into
T.TB. T.TB is always at a fixed location and its FWA
doesn't move as long as the token buffer is active. Token
formats are as follows:

Token Buffer (TB.)

Narmal Tokens

e it D D e ettt L L LR P e b +
) TOC ! TOT
e i e antatat L P ———— +
42 i8
TOC: Token character string (variable and constant?

TOT: Token type (value)

LEX Formed Constant Tokens (Hollerith, Character, Dctal)

trmmm e — trm e ———— o ——— P +
! SHC ! CLCN ' LCON ! TOT
e e it L temm————— tomrm e +
i8 15 S i8
SHC: Pointer to constant in constant table

CLCN: Length of constant (Hollerith and character)

LLCON: Number of words in constant (Hollerith and
character)

TOT: Token type (value)

Statement Function Dummy Argument (made by STMTF)

P P —— Frmm o e +
! CRD ! DAC ! ACTE ! TOT !
R e e it e et P P, ——————— +
i2 i2 18 i8
ORD: symbol table ordinal of dummy argument
DAC: Dummy argument reference chain pointer

ACTE: Actual parameter address (reference time)
TQT: Token type = 0.STFA

Parentheses Tokens: These tokens originally are output by
LEX and may be modified by the implied
do list processing.

Left Parenthesis (LEX)

e et et ettt e ——— $m———— —————————— +
i LA ! ! !
L = A I10CP ! ‘ LLB ! TOT i
! [VAR ! ! !
tommtmr e ———— e —— R Satnt e el +
3 3 18 i8 i8
S: Switches COoL: Paren level contains a colon
EQL.: Paren level contains an
equal sign
58512 Array substring
I10CP: Pointer to matching right paren
LiLB: Pointer to next outer left paren (or null)
TOT: Token type (value = 0.LP)
Right Parentheses (LEX): Normal token format
Left Parenthesis (DO beqgin) (I0)
tm———— o -, ——— e e +
vV /s 700 ! ! !
VAV I10CP ! I0IX ! TOT !
vl ! ' H
e B e L bl e L et e T T +
€ ig8 1B i8
IOCP: Pointer to matching right paren
I0IX: Pointer to implied loop index
TOT: Token type (value=0.DOBI)
Right Parenthesis (Do conclusion) (ID)
e it et Sttt e e ————— +
SISV 105F ! 707 ¢
o, ————— e ittt b b L LT Rt s +
24 i8 i8
I0sP: Implied loop and marker (for parser)
TOT: Token type (value=0.DOCI)
Left Parenthesis (Do collapse begin)(I0)
o ——— e R ettt P ———— +
Vo770 IBCP ! IBCC ! T0T !
tomm——— Frm e e o ———— e, ———— +
& i8 18 ig

IBCP: Pointer to closing right paren
IBCC: Pointer to collapse conclusion token
TOT: Token type (value=0.DCBI)

A-2-45

Do Collapse Conclusion (IO) . E]O

ICIX: Symbol table ordinal of Do index
ICCP: Pointer to closing right paren
TOT: Token type (value=0.DCCI)

A-2-4¢6

Ell

The common item table contains one (one word) entry for each
variable that appears in a common declaration.

Common Item Table (T.COMM)

e e e R tommmmm e R e e D P e +
! QOrRD Vsl 7 00 LNK : RA !
e ———— tem———— e ———— trr e —————— +
18 & i2 24
ORD: Symbol table ordinal of variable
LNK: Link to next member in same block
RA:Z Relative address within the block

A-2-47

Block Structure Table (T.BLST) E'Z

The block structure table contains a variable length entry
for each active program structure (Do loap or block IF)
while the structure is still active. The block structure
table entry format is as below:

For DO loop For block IF
Fommme e — e + R B il +
! DOSI.W ! ! BLIB.W !
P ——— e + o +
' DOLI LW § i BLIA.W !
e + P ————— +
! DOII.W ! 1 i
P e + $!
! DOCI.W ! ! !
P + ! !
! DORT.W ot ! !
L e et + ! unused !
! DO.W ! ! !
Pt ——— + ! !
! DOTC.W ! ! !
Fommm— e ———— + ! !
! DP.W ! ! !
trm— e —— e ————— + e - +
' LA. (label) ! ' LA. (label) !
! entries ! ! entries !
‘{variable no.) ! '(variable no.)
e ————— + e ——— +
! LC.W ! ! LC.W !
e il + P +

For individual cells, the following formats apply:

DOSI JWe Do loop initial values (TP. format)
DOLI.W: Do loop limit value (TP. format)
DOII.W: Do loop increment value (TP. format)
DOCI.W: Do loop control index (TP. format)
DORT.W: Inverted label of loop top (TP. formst)
DO.W: Do loop terminating label
trm tm————— e e o e +
! FLG Vgl ORD ! 10D
P tomm——— L b B L R LDl +
i8 (=3 i8 i8
FLG: Do begin turple ordinal (T.PAR)
ORD: Symbol table ordinal of terminal label
I0D: Nonzero if implied do

A-2-48

DP.

LA.

DOTC. W3 Compiler generated trip count variable
(TP. format)
DP.W: Do loop information
Fom e ————————— e tmm——— R ittt fom e ——————— +
! DOXL. V5 DOTI ! TURC !
o —————— e f——— o —————————— e e ——————— +
i8 & ig ig
DOXL: Generated ordinal of do exit (if zero trip)
DOTI: Symbol table ordinal of trip count variable
TURC: Do conclusion skeleton ordinal
BLIB.W: Invented label of block bottom (TP. format)
BLIA.W: Invented label of next false branch (TP. format)
Lé. Wi Structure label encountered
t-——— o o e o e e e e $-—————————— +
VATT V F7777 7717007777787 77777777777 7777777777 ¢ OrRD !
S Ratadlely g s i o trmm———————— +
4 38 18

ATT: Attributes

DEF: Label defined in structure

REF: Label referenced in structure

EXT: Label is exit from a do loop

ENT: Label is entry in do loop
ORD: Symbol table ordinal of label

LC.W: Structure count word

B
1Gt /!
iy /o
Mt /!
e
1 5
GLM:
LINE:
CNT:

e s e

Generated bottom label must materialize
Symbol table index of header label (Do loop)
Block origin source line

Number of words in this block structure entry

A-2-43

[/
-t

Data Constant Table (T.DATI} E]4

Built when process DATA constant list. There are two forms
of entry:

Data Constant

il Bl Dt D ettt o o ——— +
IRt/ M ! ! ! !
SEYSY O Y FRFIIIIPP i ISP PNT i DLEN i
'pi/t DOt ! ! !
iy E o ! ! !
e A e et et P ———————————— P =
12 3 iB i8 iB

REP: Replication (=0)

MODE : Constant mode

PNT: Pointer to constant

DLEN: Length (words or characters)
Replication Header
Sl R b L R e o —————— e - +
IR! i ! !
VEBY /777777727747 77277) RL ! RC '
1P ! ! !
Vot ! 1 !
R R e et e, o e +
1 17 18 24

REP: Replication (=1)

RL.: ' Repstition list length

RC: Replication count

A-2-50

Input List Item Table (T.ILI)

The information in this table is gathered to decide upon

issuing restart 1/0 calls on subscripted variables.

ORD:
BIAS:
CHAR:
ARY:

Symbol table ordinal

Bias (constant offset)
Operand is type character
Operand is indexed array or

A-2-51

" - —— - . o — -

+
'
I IIIIIIIITY,
]
]
+

i8

substring

E15

—————————————— +-+-1

1ClA!
IHIR!
'AlY!
IRt !

-------------- +=+-4

11

2.2.6 Equivalence Class Table (T.ECT)

Class Member

+ _________
EC. ! SYM
+ _________
ic
SyMs:
BIAS:
SIZE:
Header
+ _________
EC. ! 8]
+ _________
ie
FIRST
SPAN:
Nz

e e e e e - +
i BIAS i SIZE
e Fm +
24 24
Symbol table eordin
Offset of member from class base
L.ength of member
e Frmm o e +
! SPAN ! NM
o e e o e e e e e Fom e ———— e +
24 24
12 bits zero
Length of class

Number of members in class

A-a2-52

2.2.7 Equivalence Name Table (T.EQUS)

Noncharacter

NK:2 Index of member
SUBs: Subscript of this item

Character
o —————— o ——————————— Fo e e e e e +
EQ. ! LINK ! STF gt SYMI i
! ! e !
! ! gt !
o ————— fomm——————————— todrm e e +
i i8 1 29

LINKS As above

STF: Substring first

suB: Item subscripted
Symi: WB.W index of member

A-2-53

2.2.8

Keyword Table (fixed table)

Used by front end processor FEC/LEX.

+ ___________

JMP 2
ATTR:
FEC:
LEN:
KEY:

KW.ATTR
DONZ
NIF:
LBL:
GEN:
BKD:
PWS.
IL:
NBS:

T St t———-- pmmmmmem fmm o +

! ATTR

' FEC ! LEN ! KEY i

e e tommmm tmmmmmme fommm e oo +

5 7 ig

Asddress of the relevant statement processor

Attributes (see below)

Context legality of statement (position)
Lenath of keyword

Addrese of keyword literal string

May not be Do terminal statement
May not be object of logical if

Statement
Statement
Statement
Statement
Statement
Generates

may have referencable label
generates turples

is legal in Block Data

is to be processed in skip mode
has implied label

turples but no BOS is output

A-2-54

2.2.9 Statement Function Header (T.STF) F3

Y R
8F. t //7 !
e t---=
€
PEAR :
DACP:
TOK :

Previous ESTACK base for actual arguments
Dummy argument reference chain head

P

Dummy token {(for PAR}

A-2-55

2.2.10 Intrinsic Function Table (fixed table) FA

One entry per intrinsic function (both inline and external)

Fr e — e ——— tm———— S et DL LT T Rl e
: ! 1Al tA M
IT. ! DPC P ATTR 'IRY JPAD ' R ' O
! ! G PG YD
L ! 1ct M E
P ————————————— frm———— =t ————— e Bttt &
36 7 3 8 3 3

oFPC: Intrinsic name (OPFC, lsft justified, zerc fillied)

ATTR: Attributes (see below)

ARGC: Required number of arguments

JPAD: Location of function description

ARGM: Mode of arguments

MCDE : Mode of result
IT.ATTR

CHAR: Character function

BYN: Always call by name

GENF: Generic name

XTER: External intrinsic

ANSI: Defined by ANSI

PAR: Parser has special processing

A-2-56&

2.3.1

Program Unit Made (MOD)

Fa

The cell MOD is used by the front end processor to determine

iegality of syntax and semantics.
+
! !

YV S2IISIN S CLIF VIS
1]
+

12 ” 19 17

CLIF: Same as WC.CLIF character information
PTYP: Program unit type

FUN: Function
SUB: Subroutine
PRO: Program
BLK: Block Data
TYP: Explicitly typed function

MODE: Mode {(function only)

A-2-57

————————————————— t-t-t-t-4-1+

IPIBITI/IM!
TILYI/1O
'YIKIPI/ID!
A

----------------- tot=t=t=t-t

31143

Parse Controvl Cells (ARGMODE, ARGCOMA, ARGMISC) FB

‘These cells control end of expression transition in the

parser.
ARGMODE
Fommm e ———— e el B e Rkl et T +
! REF ! ATR ! COM ! PAD !
L i D B Fomm e ———————— +
i2 i2 i8 i8
REF: Cross reference symbol at current time
ATR: Attributes o
ARE Allow unsubscripted array name
LEV3: Allow level 2 name
coL: Allow colon
EQG: Allow =
RP: Special right parenthesis processing
EOS: Allow end of statement to unstack LP
FUN: Allow function reference without list
COmM: Address of routine to process comma delimited
end of expression
PAD: Address of routine to process right parenthesis
delimited end of expression
ARGCOMA

Array Subscript Processing

-+--==- e Rl bt e etk tm——— e ——————— +
AV A i ! !
gy /o SYM ! DIMI ' CNT !
gyr 7 ' ! !
gy 7/ ! ! !
et e —————— S et ket e e —————————— +
i 5 i8 iR ig8
VSUB: Subscript constant flag
SYM: Symbol table ordinal of array
DIMI: Dimension table index
CNT: Subscript expression count
Call or Function Argument List
e e L TP P ————— to e ————————— +
SNV VAR MODE ! CNT !
e e Ll Ll L e L P o ———— +
24 i8 i8

MODE @ Mode (function only)
CNT: Arguments processed (-1

A-2-58

Intrinsic Function Argument List

t-t-————— o —— B ettt Frm +
ig: i ! ! !
AC. QY /1777777777 MAXM ! MODE ' CNT !
10! ! ! ! !
L N ! ! ! !
totmm to—m e ———— Bt $mmm e e +
i 5 ig i8 18
BOOL : Indicates Boolean argument occurred
MAXM: Maximum argument mode
MODE S Intrinsic mode
CNT: Arguments processed (-1)
Statement Function Arguments
o e e e e e Frmm e e ittt +
AC. VSIS EARG ! CNT !
G e e e e e o Fomm e e - e +
24 i8 i8
EARG: Address of actual argument (on ESTACK)
CNT: Count of arguments processed
Statement Function Body
o e e e e e e e bt +
AC. YV SLLLLIEIIII I 7P IIIA7 P 07777777707 7777777 ! TBR !
o o e e e e e e e o Frmm +
42 18
TBR: B4 restore address
Do Loop Indices
o e i et o e o +
AC. V SLIIIIIIII1 170107727777 07 00787 07777777777 ! CNT !
e e e e e e e - e +
42 i8
CNT: Do parameter count
Character Substring
e e b e ity +
AC. Y ST MODE VLSS
et b e Frmm e e e e e +
24 i8 iB

MODE; Mode of variable

A-2-59

ARGMISC

Basic Intrinsic Function

o e e e to—— +---
AS. ! sSYM V77
o e e e e t--—--- +-=-
36 &
SyMa Intrinsic function name (DPC, lef
zero filled)
ORD: Symbol table ordinal

Array Subscripts

o
AS. ! NAME
o e o e
42

NAME ; Array name (DPC, left justified,

_______________ +
ORD !

——————————————— +

ig8

t justified,

e il bt +

VSIS

T +

i8

zero filled)

pommmmm e T EEEE SRR R P +
! COMCDXB ! UTILITY, IDP z
i i 1
e fmmm el +
{ COMCIDP ! IDP !
pommmmmmmm R e EEEE SRR P R +
! COMCLFM ! IDP '
et e +
! COMCMCS ! IDP s
tommmm - ol +
! COMCMNS ! UTILITY !
] i]
s T +
! COMCMVE ! UTILITY '
pommmmm - po-m——- e +
! COMCPAC ! INITOO s
pommmmmme +
! COMCRDC ! UTILITY, IDP !
+ + -------------------------
! COMCRDW ' UTILITY, IDP
pommmm - e
! COMCRSR ! IDP
pommmmm e +
! COMCSBM ! UTILITY, IDP
¥]
e e
! COMCSFN ! UTILITY, IDP !
pommmm e Fomm e +
COMCSST ! UTILITY !
T e +
! COMCSTF ! INITOO !
pommm e e +
{ COMCSVR ! IDP !
pommmm e o e +
! COMCSYS ! IDP o
e +
! COMCTOK ! IDP, LEX !
pommmmmm e et LS LR +
! COMCWOD ! UTILITY, IDP !
fommmm e et EE LR E P +
! COMCWTC ! IDP !
D e LR TSR +
! COMCWTH ! UTILITY !
i]]
tommmmmm e e +
! COMCWTOD ! UTILITY !
pommm e e +
! COMCWTW ! UTILITY, IDP !
]] 1
pommmm e T +

A-3-2

DPC to binary conversion
routine DXB

. - - - A e s WS Ume D ap et = ———

- . - W T - - W W ————— ——— . W o - ——

gstring - MNS

W B B > @ > G5 W S Wb > aD s W= W W s e we W e mes wen e

Set block of memory to
supplied value

- BT > A G - A G G — — " ————— - W= ww -

> G G . . D D D G G = . W - = W W e A G W W W = =

- s e e D M B S G WS NS D S b WD W AP WS e WS D W W wm wme e =

. I > I S D W - - - W - W - w - =

CID Hollerith output
routine

CI0O buffered output
routines

. . T e WY W G G T GER W Web Wl . . . S W S w— W e ——

e Ui

-+

I IR (TR IR T I TS ST Sy IRy USRS S U S

B R R

S U S

External

External
External
Internal

External

External
Internal
External
External
External

Internal

External
External
External
External
External
External
External
External

External

External

External

---------- +

---------- +

---------- +

t

---------- +

——-——pm-—_--+

.......... 4

H

---------- +

i

---------- +

—————————— +

---------- +

!

---------- +

---------- +

i
|
i
i
1
{
[
|
!
|
-+

|
'
1
i
!
§
t
|
!
i
-+

.-

---------- +

---------- +

---------- +

---------- +

---------- +

---------- +

---------- +

—————————— +

]

---------- +

P =LA

FTNS uses several comdecks.

The purpose of comdecks is:

Standardize functions across the common product line and

within a product {(FTNS).

. Reduce maintenance fix one place).

FTNG uses two classes of comdecks:

. Internali On FTNSPL, maintained by the project

- External: On a secondary PL, maintained by owner of

secaondary PL.

tm———————- o ————————— e o e e e e e e
! COMDECK ! CALLING DECK(S) ! CONTENTS
o o o o e e o e e e e
! CCOMRPY ! UTILITY ! Reprieve routines RPV, FRA
fm—mmm———— fo e ————— e Fomm e e e
I COMACPU ! FTNSTXT ! General CPU macros
tm——————— frmm e ———— Fo e ———— e e
! COMADEF ! FTNSTXT ! Structured field definition
! ! ! macros
fomm—————— fom e e e e e e
! COMAERR ! FERRS, RERRS ! ERROR macro
fom e o o e e e e e e
I COMAIDP ! FTNSTXT ! Debug package macros
- e badaniy Fom e ——————— e
! COMAMGM | FTNSTXT ! General macros
Fom——————— Fr e e e e o e e e e e
I COMAQCG ! QCGC, FUN, REG, ' QCG macros
fomm—————— o e Fom e —————— e e
P COMATOK ! IDP, LEX ! Token generation macros
fo———————- o o e e
1 comceuB ¢ IDP, LEX ! Burst routine BUB
fomm—————— o e Fom e ———————— e e
! COMCRUN ! IDP, LEX ! Burst routine BUN
fom——————— e ————— o e e e
P CoMCCDD ! UTILITY. IDP ' DPL conversion routine CDD
tomm o e e e o i e
! COMCCFD ! PUC ! Floating DPC conversion
! ! ! routine CFD
$r———————— o e o e e o
I COMCCIO ! UTILITY, IDP ! CIO I/0 routines
t-——————— B e e o e
! COMCCOD ' FTN, IDP ! Dctal to DPC conversion
! ! ! routine COD
to——————— e o e e e

e i o o s e e o

T T . T, ST IR S

Internal

—————————— +

Internal

—————————— +

Internal

—————————— +

Internal

—————————— +

External

—————————— +

Internal

—————————— +

Internal

—————————— +

External

—————————— +

External

i

—————————— +

External

___________ +

External

—————————— ¥

External

—————————— +

External

—————————— +

External

—————————— +

1

P e e e e e ittt b D e L e +
COMCXJR ! IDP ! XJR restore code !
trmm—————— e —— D ettt R e e +
' COMCZTB ! UTILITY, IDP ! Zero to blank conversion !
et bt et et P et D ettt bt BT R P +
COMDDMT ! CSNaP, FSNAP, BSNAP ! Table dump routines H
e ——— S e daind e et e it D et e +
COMDTOK ! FSNAP ! Token buffer dump +aormat !

o —————— o ———————— e e e e +
COMFCIP ! FTN, INITOO; INIT20, ! Compiler installation !

! oVvL10, OVL20 ! parameters !
trm——————— S D el ettt T e ettt et D e TP +
COMFDST ¢ DECL ! Double word table sort i
trmm————— S R e et L L T D it ittt +
COMFECB ! PUC ! Evaluate constant bias and !

! ' substring !

e ————— S R e Lt T ————————— Rt et L e e +
COMFFEI ! INITOO, INIT10, INIT21 ! Front end initialization !
o ——— S R el it e P il ettt e +
COMFERR ! FERRS. RERRS ' Common error texts !
o ——— o ———— e ittt e +
COMFGFD ! GEN, GRIDGE ! Generate file definitions !
tm———————— e — - Rt il D D L e e T P +
COMFGOI * INITOO, INITI1O ' Global overlay !

! ! initialization !

e ——— E Bt it D i T et e e e e +
COMFICP ! GEN, BRIDGE ! Issue CP and GPL tables !
e —— S e el it e bttt ettt e P +
COMFISA ! GEN, CCGC ! Issue save A0 on RJ !
- P - e ikl Lt e T e +
COMFITS ! QCGC, CCGC ' Issue temporary storage I
tmm———— R Sl ndtade et b e ket Dl D e e T +
COMFMAY ' GEN, CCGC ! Mark vardim appropriate }
- —— o e ————— ekl et +
COMFOSC ! GEN, CCGC ! Qutput addsub code i
tr———————- B et e ittt Del +
COMFPLI ! GEN, BRIDGE ! Print limit generator !

E et et e ———— e e e e o ——— e +
COMFROR ! INITOO, INIT1O. ! Reset rounded operations !

! INIT21, INITZ2 i !

o —————— trm e - Frm e ————— +
COMFSCB ! FUN, BRIDGE ! Subsume constant char bias !
- ————— e bt e ittt et +
COMFSCS ! FEC, RLINK ! Scan table with supplied !

! ! mask !
t-mm—————— R et b D ittt D D L it R P +
COMFSID ! BRIDGE ! Select integer divide !

! ! skeleton !

- ——— o e e it et e P +

External
External
Internal
External

Internal

Internal

Internal

Internal
Internal
Internal

Internal

Internal
Internal
Internal
Internal
Internal
Internal

Internal

Internal

Internal

Internal

I ! |
1 1 !
i 1]
i 1 |
1 } '
1) t
I I |
| i |
| i 1
|] |
PO T

|
|
1
!
!
I
|
I
|
|
-+

1
]
!
1
!
1
|
1
|
1
-+~

- v -
¥

---------- +

---------- +

—————————— +

---------- +

---------- +

---------- +

---------- +

]

---------- +

---------- +

---------- +

---------- +

---------- +

—————————— +

---------- +

—————————— 4

R R I L SRR

- e T e G W I S . . M A W W Gl -

QSKEL., FSKEL

O . . e wa - W " NS U W —- —— —— - e >

GCGC, FAS, CCGC

o o e o e e e e o DGR D ORGSR

INITOO,

QSKEL , FSKEL ,
INIT10, INITZ21,
CONRED, GEN and
imbedded in COMFSKL
RERRS

PEM, FERRS,

IDP, FGNAP, CSNAP,
RSNAP

FTNSTXT, 10, FAS

PUC,; REC, LIST

v A e G — G G S = Wi wm mee e W S e e s

QCGC, CCGC, FAS,
FTNETXT and imbedded
in COMFWIN

GCGC,
FSNAP

FUN, REC, GEN,

GSKEL , FSKEL, GCGC,
FUN, REG, GEN and
imbedded in COMFSKL

e . D . S NS R G G S S ED S D RS G S ES G G T W - . WS = - —

Select integer multiply
skeleton

= Gt = e S W . G M G W Gms W AN W WD 4 W WP wu e e W ..

- S - - - — ————— —— _ W W WD W N W > W = . ——

Werite instructions to

prebinary

D W G S S D U s s G s W e W e W W W e S e M e .

Save and restore registers

Skeleton description
definitions

D s WS Y W G G n S W G . W . W W . —— - W

Pseudo instruction
definitions

L R e e e R pi——

B T O R

Internal

Internal
Internal
Internal

Internal

Internal

Internal

External
External

Internal

Internal

External

Internal
Internal
Internal

Internal

---------- +

---------- +

---------- +

!

---------- +

---------- +

---------- +

4

---------- +

---------- +

_______________________________________ +

1
H
]
.
]
!

---------- +

---------- +

---------- +

---------- +

!

---------- +

---------- +

COMSTAS

-+
I
!
1
i
i
!
|
!
i

! COMSTOK

I 1

e

FTNSTXT, SYMDEFS

e o e G S S O NS e e G i D G W e ey S

INIT22

PUC, CCGLINK, CCGC,
INITE22 and imbedded
in CGHCDTD and
COMSTABR

PUC, CCGLINK, CCGC,
INIT22 and imbedded
in CGHCSTD and
COMSTAB

- S e TS . e S WD WIS e WD Mt Cam GOS st et e e cas o

IDP, FSNAP,

QSKEL., FSKEL, FUN,
REG, GEN and im-
bedded in COMFSKL

" - - - NS s W S D W W e wm =

——— > o - — ——— i > - > - -

e D . . VS T S Y W - —— - - -~

L Y i T R

A-3-5

P D B O D D D S T O D W N D . N e S S D D S S .

Symbol table detfinitions
also definitions for vari-
able dimension information,
formal parameter, common
block tables.

Symbolic representations of
symbol table class bits

W S — . — —— — — i — W > W SO W W Wer W, > w— —

- it i - .) o e wa - ey . - e —- L WD G - WD o D = = ww W

Constant conversion
routines

- A G - A D D - - ——— = - W WS G mm Sms Wes W W e W wm

RM I1/0 macros and
definitions

- — - G - ——s W - ——— - w G W G — - - —————

e e e i i e et et tee o i e et e o sen e b

B i ST S T e Y S,

~N

Internal

Internal

Internal

Internal

Internal

External

Internal

Internal

External

External

External
External
External
External
External
External

External

]
|
|
|
!
!
!
|
1
|
E

Vem tem e bem s

I
I
|
!
1
i
!
!
|
i
+

)
)
'
1
1
|
L}
!
[}
'
o4

|
|
|
|
!
!
!
!
|
i
e

S swm s swe

|
1
1
|
|
i
i
|
|
|
4

|
i
!
|
|
t
|
|
1
|
-+

---------- +

—————————— +

---------- +

1

---------- +

---------- +

---------- +

—————————— +

---------- +

---------- +

i
1
]
|
|
|
!
i
|
|
o+

|
I
|
|
|
|
I
|
|
|
-+

..|_._..........+.............+............+....-+...._..|..._+...._.+....+.-+......+

UTILITY

UTILITY

UTILITY

RLINK, CSKEL

FTNSTXT

Imbedded in COMFSKL,
thus in QSKEL, FSKEL
QSKEL, FSKEL, CSKEL,
imbedded in COMFSKL
QSKEL, FSKEL, CONRED,
GEN, BRIDGE, CSKEL
imbedded in COMFSKL
QSKEL, FSKEL, CONRED,
QCGC, imbedded in
COMFSKL

QSKEL , FSKEL, CONRED,
QCGC, imbedded in
COMFSKL

S i &

T AU S S S

o o G oo S " St S s Thes VMR Wi Bied GG S G G G G ey S e b

RM file initialization
routines

e o Sam Gmm om0 S e G W oSt GO TS fate Mo B e St G e e Gas Bt Seet GO P S v

v ————". Sate 4u S S S G4t Goms fmw NG GA S s S W et e W Save S (0o 3453 Ooas 3 seas

CCG intermediate language
definitions

o - v S e " S M G S e Gu CwP M Gem S A Sem e Gee S G e mee Gt Soee

o~ o oo e o Y S s G GmL S S S S See G Gree GRS SN et Gut Seas SV Gbe Ges Sear am See

Instruction skeleton
expansions

o mm 5 e o e Al S S e fet Gme ean St G s Ge Sew S Gme T Gaes Seue S mme Sese Fee dewe

e dosa Soan Gese s o s G e Ges sess e Ghn et Sem Seis s Soet e G Ge Seme Sow Gase Seve eem Gees Sase

S T B ek e R L R

o . T S R R L o

__________ +

External

—————————— +

External

—————————— +

External

External

—————————— +

Internal

—————————— +

Internal

__________ .{.

Internal

__________ 4

Internal

—————————— +

Internal

i

—————————— +

Internal

~~~~~~~~~~ +



F14

DECK_AND ROUTINE DESCRIPTIONG

This section describes the decks which comprise FTNS, the
rodutines which make up each deck, the interfaces and data
structures involved and any special algorithms or 'tricks’
employed. This document doesn't recite code, register usage.,
called routines, etc. For these implementation details, the
reader is referred to the relevant listings.

Organization of the section is:
1. Texts

2. Cradle routines

3. Front end routines

4., GQGCG routines
5. Rear end routines
&. CCG routines

ODutline for the individual decks is:

1. Abstract - the function of the deck.

2. Interfaces - what decks the deck interacts with.
3. Data structures defined/utilized.

4. Routine descriptions.



F15

FTNS uses system texts to provide macros, micros and assembly
constants to the decks comprising the compiler. To be included
in a system text, the macro, micro or constant should have
general applicability. If a constant is used in only one deck,
it should be included in that deck only. If a data structure is
used only by a small number of decks (e.g.s GCG only), use of a
common deck should be considered.

1.0 IEXIS

The system texts defined for FTNS are:

= IR T = T
L 1 - 11

£ general systems text. Used by front end,
rear end, QCG and CCG interface decks.

v
.

2. CMPLTXT: CCG interface text. Used by CCG interface
routines.

3. CCGTEXT: CCG text. Used by CCG decks.



1.1 FTNSTXT: FORTRAN 5 Assembly/Installation Text F‘ﬁ

Abkstract: FTNSTXT consists of macros and micros used by FTNS

to access data structures, construct data
structures, provide system interface and provide
product/routine interface: FTNSTXT also provides
assembly constants pertaining to data structure
definition, compile limits, etc.

inierface: FINSTXT is used to assemble front end, rear end, QCG

and CCG interface decks.

Qeiions

Provided by comdeck DOPTIONS. The installation parameters
which are user modifiable at installation time.

General Assembly Constanis

These constant values pertain to compiler limits (boundary
values). The assembly constants provide symbolic
representation of compiler and language constiraints and are
intended as a maintenance aid. If future requirements
changey changing the relevant symbolic constant and
reassembly of the relevant deck(s) should effect the change.

RM_1/0Q

Provided by comdeck FA=DEFS. The constants and macros used
for the CYBER Record Manager I/0 interface.

Rata Sitructure Definition Macros

Frovided by comdeck
provide symbolic rep
macros ares

COMADEF. The macros and micros used to
regsentation of data structures. The

DESCRIBE: Describes the beginning of the structure. Gives
the prefix name and the length of the
structure. MNames the structure {(optional’.

DEFINE: Field definition macro. Assigns a symbolic name
to the bit position (within the DESCRIBEd
structure), length (and a mask bit for some
values).

DEQU: Defines an equivalent structure to a previously
defined field.



Gl

REDEF : Resets the field paointer for redefinition of a
field.

BFLIT: Creates a bit field mask literal.

BFMIC: Creates a bit field micro.

BFMW: Creates a bit field mask woard.

Rebug _Magrcos

Test mode only. Macros to provide smap and dump output.

Interface to IDP.

CORE: Snapshot of core.

DUMPT: Table dump.

STRING: Token buffer dump.

PRINT: Print contents of core locations.
=3 Generate user flag parameter cell.

IDE _Macros

Test mode only. Provided by comdeck COMAIDP. Interactive
debug package interface macros.

BREAK: Place a breakpoint.

FRK=1: Generate frequency parameter list.
REG: Register snapshot.

RGR=1 Generate register parameter list.
SNAP : General snapshot interface.

SNG=1: Generate indirect address fields.

Gengral CPU Macras

Macros of a general nature,
+
“

Provided by comdeck COMACPU
suitable for use by any pro

duct.
BITMIC: Generate a micro of bit fields.
LETMIC: Generate a micro of bits, corresponding to an

alphanumeric string.

BX@Q: OPDEF to0 clear an X register.
IXI

XJ/XK: Integer divisiaon OPDEF.

IXI

XJ/ XK,

BN: Integer division OPDEF.

MOVE: Move data block.
SUBR: Subroutine entry/exit definition.

B-1-3



General Macros Comdeck COMAMGH.

BSSENT:
BSZENT:
CaLL:
BC:
CONENT:
Cws
EQUENT:

CRIITY T

P Lt LY A SN

HX@Q:

TG 10

P o= e - m

LDBIT:
LDX:
LX@:
MOVEB:
MXX+X3
MXX~-X:
RMT=2
RPVDEF:
RPVFWA:
RPVON:
RPVOFF:
SBIT:

SETMEM:
WC:
WXX:

Generate an entry point and BSS.

Generate an entry point and BSSZ.

Issue RJ to external subroutine.

OPOEF to convert character count to bit count.
Generate an entry point and CON.

OFPDEF to convert character count to word
Generate an entry point and EQU.

Generate an external and EGLL

OPDEF to shift a structure field 1o the high order
bit position.

ount.

A n et e B

Set one bit in a register.

Load register with a value.

Left shift redefine OPDEF. Eliminates zero shifts.
Move bit string.

OPDEF for maximum function.

OPDEF for minimum function.

Force micro evaluation for remotes.

Entry definition for REPRIEVE.

FWA definition for REPRIEVE.

Turn on REPRIEVE.

Turn off REPRIEVE.

Shift a specified bit into the high order (sign)
position.

Set memory black to given value.

OPDEF to convert word count to character count.
OPDEF to convert character count to word count and
remaining character count.

Compiler Specific Macros

Macros to provide function relevant only to FTNG.

ACTTAB:
ADDREF:
ADSYML
ADDWD 2
ALLDOCE
INATAB:
ANSI:

CLAB=

EMIT:

FATALZ
HEREIF:
LITKEY:
LOVER:

Activate a table (managed’.

Add a reference to the cross reference table.
Add an entry to the symbol table.

Add a word to a table.

Allocate managed table space for a table.
Inactivaete a table (managed).

Process ANSI diagnostic.

Load class bits into X register.

Emit a turple.

Process FATAL diagnostic.

Define statement processor.

Generate a keyword literal.

Load a FTNS overlay.

B-1-4



PIAS Convert instruction for listing.

PLINE: Coded output interface.

PLUG: Modify compiler code during execution (test mode
enlyl.

SCAN: Search routines interface.

SECT: Assembler group 1 instruction generation.

SHRINK: Collapse managed table to given length.

SUBKEY: Define subkeyword.

SYMASK: Generate symbolic mask.

o dod mpbmmoo
TAGEEX: Tag invented external.

TRIV: Process TRIVIAL diagnostic.
TRUBL: Abort compilation (test mode)

WARNS  Process WARNING diasgnostic.

WCODE: Write code to prebinary.
=XL.IB: Define external {(library) routine name.

Symbol DRefinitions
Tables of symbolic values pertinent to compilation.

PASS=: Table manager phase information
I0CAD: I/0 control code values

ODEF Token value definitions

CH.: Charmap define/describe.

Micros: DDEF related micros

DUC=1: QCG EMIT constants

PSUD: Pseudo instruction values

IPSUD: Pseudo label instruction values.

Iable Definitions
CESCRIBE/DEFINE for data structures of FTNS.

PB.: Prebinary table. Comdeck COMSPBD.

WA.,

WB..

WC.: Symbol table. Comdeck COMSSYM.

Ch.,y

CB.: Common block name table. Comdeck COMSSYM.
FP.: Formal parameter table. Comdeck COMSSYM.
TB.: Token buffer.

DH. &

Di.y

D2.: Dimension table.

DO.,

DP.,

LA.,

LC.: Block structure table.

EC: Equivalence class table.

EQ.: Equivalence item table.

B-1-5

63



TH. ,
SP. .
TP.:
AG.:
NG.:
IA. ,
0A. 3
DA. 5
DI.:

TT =

- hae

XR.:
CR.:
EH. ,
EF.:
s8. ,
SR. ,
1S.,
LB.:
F.PIK:
MO. 2
PM=2
AM.
AC. ,
AS.:

Kw. :
SF.:

INTF=:

Turple descriptions (IL).
Assign statement label table.
Namelist table.

Actual parameter list table.
Data statement table.

Data constant table.

Trmmuid ddtom licdk +ahlnm

CRRE A & W= o e W A =R N ]

Cross reference table.
Cross reference attribute letters.

Ermdtdnv noadintd $aklo
b:l“! ?Ué!lﬁ ot B e e T

Entry parameter list table.

Block tables.

Machine opcode description table.
MOD cell description.

Parser mode values.

Parser interface cells (ARGMODE, ARGCOMA,
definitions.

Keyword table.

Statement function table.

Intrinsic table.

Intrinsic table entry macro.

B-1-6

ARGMIGC)



65

1.2 CMPLTXT: Compiler Products Assembly Text

&hsi:a;iﬁ CMPLTXT consists of macros and micros used by the

CCG interface decks.

Interface: CMPLTXT is used to assemble the CCG interface decks.

Qata Siruciures

-
e

Qelions
See FTNSTXT (1.1). Comdeck OPTIONS.
Rata Structuce Definition Macros

See FTNSTXTY(l.l). Comdeck COMADEF.

General Compilec Macros Comdeck CCOMGCM.

LXQ: Left shift redefine OPDEF. Eliminates zero
shifts.

RPVDEF : Entry definition for REPRIEVE.

RPVFWA: FWA definition for REPRIEVE.

LISTL: List one line. RM interface.

NUPAGE : Page eject. RM interface.

Insicuction Descriptor Fields. Comdeck CCGILFD.
CCG describe/define for the IL. (At BRIDGE time)
QP _Code Descriptors (Comdeck OPRDEFS.
CCG describe/define for the IL. (Return from CCG)
SLIST Insiruciion Descripiors Comdeck PSODEFS.
Describe/define for CCG IL pseudo opcodes.
NOTE: OPRDEFS and PSODEFS calls are imbedded in CCGILFD.
CCG_Interface Macros
WRITEP: Write pseudo opcode to SLIST file.

ADDWRD: Add a word to a managed table.
ALLOC: Allocate managed table space.

B-1-7



1.3 CCGTEXT:

G6

Common Code Generator Assembly Text

- Absiragt: CCGTEXT consists of macros, micros and assembly
constants used by the CCGC decks.
Intecface: CCGTEXT is used to assemble the CCG decks.

Rata Structures

-

QOetions

See FTNSTXT (1.1).

Comdeck OPTIONS.

Qata Siruciure Definition Macros

See FTNSTXT (1.1).

BM_1/Q

See FTNSTXT (1.1).

Comdeck COMADEF.

Comdeck Fa=DEFS.

General Compiler Macras

See CMPLTXT (1.2).

Comdeck CCOMGCM.

Genaral Macros (Less so than CCOMGCM)

LEN: Count number of names in micro list.
MXX+X: OPDEF for maximum function.

MXX-X: OPDEF for minimum function.

BIT: Set symbol to power of 2.

CAL.: Issue RJ to external subroutine.
ENTRY.:  "Define entry point and contents.
EGENT: Generate an entry point and EGU.
MOVE: ‘Move a block of data.

PLLG: Modify compiler code during exscutian.
NAME 2 Define local subroutine entry point.
SETCORE: Set block of memory to a given value.
SETZERD: Set block of memory to zero.

CCG_Debug Magcrgs Comdeck CCGDBGM.

PRINT: Print the contents of a list of locations.
TRACER: Define routines/phases to trace.

TRACE: Conditionally snap table contents.

SNAPRL : Interpretive dump of IL.

DCALL.: Call debugging routine.

REGSNAP & Snap registers at entry points.

SNAPT: Snap table using pointers.

B-1-8B



Interaciive Debug Macros Comdeck DBG=MAC.

BREAK: Place a breakpoint.
FRK=: Generate frequency parameter list.
REG: Register snapshot.
RGR=: Generate register parameter list.

SNAP : General snapshot interface.
ENG=1 Generate indirect address fields.
USF=: Generate user flag parameter cell.

Insiruction Descriptor Fields

Iniermediaie Lanauage Descripiors

Bl.: BIT table

M_.:  MOD list

T.: Temporary equivalence table
LC.: lLabel change table.

Host Processor Interface

A series of EQU's defining external cells in the host

processor (FTNS).

Comdeck COMSSYM

G7

Symbol and other table descriptions. Described in FTNSTXT

(1.1).
CCG_Macros
CCG.58T: Generate SS8T call.
SETB1: Set Bi=1.

- ADDWRD 3 Add 2 word to 2 managed table.
ALLOC: Allocate managed table space.

" PROCESS:  Define processor addresses.
EXT=: Declare names of externals.
TABLES: Declare names of dynamic tables.

B-1-9



CRADLE RQUTINES

G8

The decks grouped here are those that are common +o the
front end and rear end. Some are used by the CCG overlay,
some not, but the multiple use in several overlays
determined the location within the routine descriptions.

Several decks perform similar functions, although utilized
by only one overlay. They can be thought of as cradle
functions and are grouped here for convenience. These
include initialization routines, snap routines (including
IDP, test mode only), and linkage routines.

Usage of the routines/decks in question is described in
the pertinent interface section.

B-2-1



2.1 FTN:

G9

Global Cells and System Interface

Abstrackt: FTN contains compiler installation parameters,

intermixed COMPASS communication cells, file
management tables, compiler global cells,
control statement option cells, system
interface subroutines, compiler overlay loader
and termination routines.

Intertaces: FIN consists of static and dynamic

information, some of which is bound at
installation time (system defaults,
instaliiagtion defasults), some at control
statement recognition time, and some by a
combination (defaults for missing control
statement parameters’i. Initialization is
performed on a one-time basis by INITOO and
the information survives all future overlay
loading (including COMPASS). The system
interface routines are environment dependent
and are bound at installation time. FTN is
presant in all overlays.

Rata _Siruciures

Most of FTN's data structures are simply cells, which
contain flags, file namess etc., which were directed by
the control statement (or defaulted). In sequential
order, these are:

.

COMECIP. The Comdeck which contains micros and equs
for installation defaults. Provides default settings
for control statement parameters and for CI0D interface
buffer lengths.

COMPASE Intarfacse. Provided by Comdeck COMPCOM plus
microsy, equs and entry declarations to provide other
decks an interface to COMPCOM's cells. This area
contains cells of information used by both FTNS and
COMPASS (when intermixed).

Eile Management Tables. FET/FIT macro expansions for
standard files utilized by FTNS. These include INPUT,

OUTPUT,s ERROR, LGO,s Prebinary, Intermediate File and
Cross Reference File.

Control Statement Flaas. Calls preset with

information from COMFCIP and, dependent upon the
control statement, reset and/or reformatted by INITOO.

Title Line Templates. Used for source listing.
Appears here because the title line information is
needed for error output regardless of the requirement

for source listing.



Routine Descriptions

al

b-

l-is

LDCOM. Forms loader request for loading COMPASS (1,0)
overlay.

LOVER. Forms loader requests for loading the compiler
overlays.

Determines which overlay is to be loaded, and from

what source (file or library). Sets up the request

registers and exits to LOV.

LY, Load overlay. Accepts information from LDCOM or
LDVER and sets appropriate comnunication area
cells/flags. Clears REPRIEVE and SPY requests as
necessary and performs the overlay load request.

After control is returned, SPY is cranked up as
necessary, and control is transferred to the requested

overlay. Loader failure results in an abort.

STOP. Return point from intermixed COMPASS. Performs
some restoration and falls through to ...

LDPRI. Load Primary overlay. This routine reloads
the FTNS overlay which COMPASS displaced. Also used
by INITOO to fetch the (1,0) overlay or (2,0) when

ORT>0.
MEMERR. Outputs insufficient FL message.

IDPCHK. Breakpmint check for each overlay loaded.

and, if sv, transfers to IDP for processing. Test
mode only.

ONSPY. Interface to PPU program 5PY. Turns SPY on,
as necessary.



OFFSPY. Ditto, turns SPY off. Both routines

e et tarne ceime saen ates

conditional upon .SPY,0ON.

COD. Convert octal to DPC. Comdeck COMCCOD.
Converts an octal constant of up to 10 digits into
display code. Leading zeros are suppressed and both
right- and left-justified results are available.
Space filled.



G12

UTILITY: Common Qtility Routines

Abstract: UTILITY contains routines of a general,
service nature.

Interfaces: All routines in UTILITY are provided via the
common comdecks and reside on a secondary PL.
The deck provides entry names for the
routines. Most entry names are 's=' suffixed.

Present in all aoverlays.

Rata Sirucitures

None of note.

Rouiine Descriptions

a. CDD Constant to decimal DPC conversion. Converts a
binary constant (up to 10 digits) to space filled
DPC. Left- and right-justified forms returned.
Comdeck COMCCDD.

b. DRXB. DPC to binary conversion. Converts DPC
representation of an octal or decimal constant to
binmary. Constant (DPC) may be 8 or 9 digits,
depending on whether it is suffixed with base
indication (B or D). Comdeck COMCDXRB.

c. FEA=SET. Set file environment table for CIOD directed
1/0y, or record manager I/0 (conditional assembly).
The CID flavor sets the buffer address in the FET.
The RM version initializes holding buffer addresses in
FIT and pseudo FET. Comdeck FA=SET.

d. MYE. Move block of data. Given a source address,
word count and destination, a block of data is
relocated. Move may be either direction, is performed
word at a time and requires two styles of move in
order to preserve the moved data. (Style dependent
upon upward or downward move.) Comdeck COMCMVE.

2. RBY. Reprieve Processor. When the program (FTNS) is
abnormally terminated, RPV takes control to issue
dayfile messages concerning nature of error, location
of error (and in test mode, the DECK (IDENT) in which
the error occurred). Dutput mode files are finished
and the error condition is reset to provide EXIT
condition processing. Comdeck CCOMRPY.

f. ERA. Find Relative Address. Used by RPV to compute
relative address within an IDENT (DECK, ROUTINE) when
a table of addresses is provided. Resides on comdeck
CCOMRPV.



G13

MNS. Move Nonoverlapping String. This routine will
move an arbitrary bit string from one location to
another in core. The source and destination locations
may start at any location within a word and may cross
word boundaries. Source area is unchanged, and the
destination area may not overlap the source in any
manner. Comdeck COMCMNS.

SBM. Set block of memory to a given value. The value
is set into the first word of the block and the set
continues word at time for the length of the block.
Comdeck COMCSBM.

SEN. Converts trailing '00' characters to '‘S5' blank
characters. Based on a Mansfield algorithm. Comdeck
COMCSFN.

SST7. Shell Sort Table. Sorts a table of one-word
entries into ascending order. Standard shell sort
algorithm. Comdeck COMCSST.

WOD. Convert binary word to DPC. This routine
converts binary (octal) data to DPC. Algorithm by
C.R. Willis. &4-character set. Comdeck COMCWOD.

ZI8. Converts all zeros (binary) to blanks.
Algorithm from Mansfield. Comdeck COMCZTB.

CI0. I/0 function processor. Provides the interface
to system PP I/0 processor routines. Comdeck COMCCIOD.

BRRC. Read coded line. Reads a zero byte terminated
coded line from a buffer. Comdeck COMCRDC.

BRDW. Read words to working area. Transfers a given

number of words from a CI0 buffer to a user—-defined
working area. Comdeck COMCRDW.

BDX. Read exit. Exit routine from RDW to user. On
comdeck COMCRDW.

LCB. Load circular buffer. For RDW. On comdeck
COMCRDW.

WIH. Write coded (Hollerith) line. TransFeEs toded
line from working storage to CIO buffer. Comdeck
COMCWTH.

WTQ. Write one word. Writes one word to a file

(actually to a buffer, which is output as necessary).
Comdeck COMCWTO.

B-2-&



ad.

bb.

CC.

dd.

ee.

£F.

WIW. Write from working buffer. Transfers data from
a warking buffer to a CIO buffer. Comdeck COMCWTW.

WIX. Write exit. Exit routine from WTW to user. On
comdeck COMCWTW.

DCB. Dump Circular Buffer. For WTW. On comdeck

Fa=CLO, Close a file, if open. RM interface.
Comdeck FA=CLO.

Fa=£0F Write end-of-file. RM interface. Comdeck
FA=EOF.

FA=EOR. Write end-of-record. RM interface. Comdeck

FA=FLSH. Flush file holding buffer. RM interface.

Comdeck FA=FLGH.

FA=0OPE. Open a file. Prevents (dishonors) redundant
open attempts. RM interface. Comdeck FA=0PE.

FA=RDC. Read coded line. Transfers coded line to
working buffer. RM interface. Comdeck FA=RDC.

FA=RDW. Read words to working buffer. RM interface.

Comdeck FA=RDW.

FA=RWX. Rewind file. Suppressed for scratch files.

RM interface. Comdeck FA=RWX.

FA=WTH. Write coded line. To a file. RM interface.
Comdeck FA=WTH.

FA=WTW. Write words. From working buffer to

sequential file. RM interface. Comdeck FA=WTW.

NOTE: Only the CIO or RM I/0 routines are assembled,
depending on the system.



G1o

PUC: Program Unit Controller and Support

abstract: PUC contains data and routines of a general
nature, which are required by all (or most)
overlays. Performs program unit
initializations.

Initerfages: Contained in all overlays.
Raia Siruciures

Data structures of PUC are mostly communication cell

used For information which has validity for the dur
of a program unit.

Sy
ation

a. Tables. A series of cells {(four tables), used by the
table manager (and any routine which accesses the
managed tables). Provides entries T.xxx (table FWaA),
T=xxx (table size) and associated tables regarding the
growth rate of individual tables and (test mode) table
names for the IDP interface. Comdeck COMSTAD is used
to provide table information for CCG shared tables.

b. Logal Block Table. Local block ordinal table. Used
by code generation, assembler, etc. Provided by
comdeck COMSLEBT.

c. Common Cells. These are flags and indicators which
reflect the current state of the compilation. The
cells here are typically things which must survive
secondary overlays (OPT»0) and that pertain to front
end/code generation/assembly. There are also working
copies of control statement optzon cells which may be
altered by C$ directives.

d. Short Constants. A table of commonly used short
constants (e.g.s, O, .true.) in TP. format. Used by
front end processors mostly, but some have CCG
interface application.

e. E. _SORD. A table of symbol table ordinals for symbol
table entries made by the compiler as part of the
initialization process.

+. EBRBRIYP. A table of diagnostic message labelé used by
front and rear end diagnostic production.

g. E. PIK. Instruction description vector. A table of
COMPASS CPU instruction templates, used in formatting
object listing and determining instruction form.



Routine Descriptions

-

 snne i e e e cvere

PUC. Program Unit Controller. PUC is entered after
poverlay dinitialization and provides some startup
processes and directs the flow aof compilation.
Functions include: setting up the listing pagination
for the current program unit, clearing the compiler
scratch files, determining if the program unit is a
FORTRAN or COMPASS coded routine (if COMPASS, transfer

to LDCOM for COMPASE gverlay load is made}) and

successive calls are made to the front end, code
generator and rear end loaders. (Whether actual
loading is perfarmed is 2 function of the OPT level.)
Upon completion of compilation, PUC computes some
program unit statistics and outputs such things as

memory used and error totals.

e Wi e ¥ o= ® T

ENDFTN. Terminate compilation. Performs final
housekeeping chores upon completion of compilation,
putputting dayfile messages, turning off 5SPY, etc.
Contains abnormal termination code and code to
initiate binary execution when the GO option is
present.

CPTIM. Computes elapsed CPU time (via call to TIMER)
and converts result to DPC.

TIMER. The routine which interfaces the system clock

and converts elapsed time into milliseconds.

WFA. Wait File Actions. The CIO interface wait
rautine.

CFD. Convert an integer (30 bit) to display
floating. Comdeck COMCCFD.

CAF. Close All Files. Called by PUC upon compilation
finished. Performs cleanup function of cleosing opened
files and eviction of compiler scratch file.

COF. Close output file. Called by CAF to reset print
density (if necessary) on sequential output files.

ECB. Evaluate constant character bias. Using symbol
table information, ECB calculcates the actusal bias for
constant character array subscription. Comdeck
COMFECR.

ECS. Evaluate constant substring. ECS calculates
bias and substring length for constant character
substring references. Comdeck COMFECH.

GCL. Get character length. GCL extracts the
associated length attribute for type charascter symbols
(or if assumed length, the VD. tag for the defining
length).



GMC. Get More Core. Provides system interface for
MEM requests when current FL is insufficient for
managed tables. If the maximum FL has not yet been
attained, a provided {(user) increment is requested
from the system.

LJS. Left-justify statement label. This routine is
used by diagnostic production and rear end listing
routines to adjust and space fill statement label DPC

ranracontation, LIS ie necreccsarv hecauss n+ the

TSRl Ronsl Wi Cawsss el e’ e W iV e ey et ime s F Lo L

symbol table format for label names (right justified).

of the managed table area into the low core portion of
the managed table area. Used by the FTN5 (not CCG)
table manager for reallocation and by CCG.

MTU. Move Tables Up. MTU compresses the contents of
the managed table area into the high core portion of
the managed table area. Used by CCG.

MTD Mave Tables Down. MTD compresses the contents

PIA. Process instruction address. PIA converts a
binary number to octal DPC, with leading zero
suppression and a ‘B’ suffix. Used for object listing
address fields and wherever this type of conversion is
needed.

PES. Print error summary. Loops through error
count information, producing listing of error
counts by error level. QOutput to console and
dayfile.

PCS. Print Core Statistics. Output the current FL
used by the compiler. Called when a MEM request is
made.

WHL. Write Header Lines. WHL is called by WOF when a
new page of listable output occurs. Performs some
conversion and template plugging prior to outputting
the header.

WOF. Write cutput file. The standard interface to
the coded output routines (UTILITY). WOF determines
the nature of the request, precedes the output with
blank lines as required, determines if page size is
exceeded (and incremente pagenation information and
calls WHL) and passes the output information to the
relevant system interface routine for output.

B-2-10



Linkage Decks | H2

FTNS utilizes common front and rear ends which send input
to and receive output from two dissimilar code
generations: QCG and CCG.

The differing overlay structures (Sect. A, 1.0} force
different control flow methods for the two code
generators. Typically GCG is loaded as one overlay and
remains in core for the duration of compilation while CCG
loads successive secondary overlays for phase transition.
The two code generators require some differing information
and processing. This can involve different processing
routines to perform the 'same’' function.

In QCG mode, the presence or absence of the map and object
listing routines change requirements for routine calls.

To keep the front and rear ends truly common, the system
of link decks was devised. Where functions are needed by
one but not both code generation modes, the function is
placed in both link decks. Where the function is
required, code to perform the function is provided. Where
the function is not required, a stub is placed, providing
a 'do nothing' subroutine. This allows the common
portions of the compiler to just request the function,
regardless of code generation mode, and also allows the
overlay which didn't require the function a core savings.

The linkage routines vary from overlay to overlay, and
technically are not really cradle routines. But since at
least one link routine is present in every gverlay
structure, the routines logically belong to the cradle set.

B-2-11



QCGLINK: GCG Mode Linkage

Abstract: QCGLINK provides stubs and routines for the

L]

n

GCG code generation mode.

lerfaces: QCGLINK is part of the (0,0) and (1,0) overlay.

ata Structures: None

ot e e s Sott e S St ast e St $Pon et

S

FEL: Front End Losder. No loading actually
performed. Transfer is made to FEC and an entry point
is provided for return. Provided for compatibility
with CCG which requires a load of front end routines.

CGE: Check code generator errors. Stub only.
DER: Detect extended range do loops. Stub only.
LPE: Link possible entry do loops. Stub only.
MDD: Mark do parameters defined. Stub only.
PDC: Process divide by constant. Stub only.
BCT: Blanch constant table. Stub only.

MAL: Mark loops entered. Stub only.

PCAL Process CAC table. Stub only.
PAT: Preprocess A-P list table. Stub only.

CGL: Code Generator Loader. Stub only. In QCG moade
generation, code generation is performed concurrently
with front end processing,; thus, no need for a
transfer here,.

REL: Rear End Loader. Again, no load, just
transfer. If the prebinary file is still in core, it
is flushed to disk for CCG compatibility. An entry
point is provided for return.

PDI: Publish data to IL file. The QCG version copies
DATA statement output from T.DATS to the prebinary
file (table or file).

PIS: Publish IL Segment. The QCG version calls CAI

to compile instructions to the prebinary file (table
or file).

B-2-12



CCGLINK: CCG Mode Linkage

adbstract: CCGLINK provides routines specific to the CCG
mode overlay structure.

Interfacge: CCGLINK resides on the (2,0) overlay.

Rata Siructures

able of CCG linkage values is provided.

a. EEL: Front End Loader. Calls the overlay loader
processor to load the (2,41} overlay. Provides an
entry point for return from front end processing.

b. CGL: Code Generataor Loader.
table area for use by CCG. If the cross reference
file is still in core, it is flushed to disk. The

overlay loader processor is called to load the (2,2}
Upan

overlay. An entry point is provided for return.
return, managed table pointers are updated for rear
end processing. If syntax errars occurred during

front end processing, loading of the (2,2) overlay is

suppressed.
t. REL: Rear End Loader.

load the (2,3) overlay.
for return.

An entry point is provided

d. MAT: Mave all tables.
managed table area for CCG.

which must survive front end to rear =nd.

MAT preserves tables
Common

tables front end - code generator are relocated. All

other tables are trashed.

e. WIP: Update Table Pointers. Reverses the
transformation of tables common to front end - code
generation performed by MAT. Tables are now in a
usable form for rear end processing.

B-2-13

Called by CGL to reformat the

H4

CGL prepares the managed

The prebinary table is flushed
to disk and the overlay loader processor is called to



HS

ZERDOLNK: 0,0 Overlay Linkage

Abstract: ZEROLNK provides stubs for routines pertaining
to map and object listings, which are not
present in the (0,0) overlay.

Interfaces: ZEROLNK resides on the (0,0) overlay. Its

purpose is to allow a common rear end
regardless of output listing parameters.

Rata Siructures: None

Boutine Descriptions

The following routines are all stubs.
a. PIK: Print instruction conversion.
b. MAP: Map listing.

c. LUS: List Unit Statistics.

d. EIN, EIN.MAP, EIN.QOL: Entry points to provide pseudos
for the LWA of the overlav.

B-2-14



RLINK: Rear End Linkage. “6

Abstract: RLINK provides routines, stubs and data

structures for the rear end processor in a GCG
context.

Interfaces: RLINK resides on the (2,3) overlay.

Rata Structures

The data structures described below are used to transform
CCG output into a format understood by the rear ond

ProCEesSsolr.

a‘

RITI: Register Translation Table. Conversion matrix
for CCG coded register designations to actual register
numbers. Used by CII.

HTT: H field translation table. Used by CII.
QPRDEES: CCG IL instruction definitions. A table

used for converting CCG IL into machine instruction
{prebinary) format by CII. Comdeck OPRDEFS.

Routine Descriptions

a.

LRB: List Deferred Buffer. A stub, which in test
mode provides a blowup if action was to have been
taken.

CGE: Check code generation errors. The code
generators have no diagnostic capability in FTNS.

CCGy however, does diagnose some error conditions.
This interface uses the rear end diagnostic capability
to ocutput messages reguired by CCG.

CII: Convert Issued Instructions. This routine
transforms the CCG intermediate file code into
prebinary format required by the rear end processor.
Processing is performed for one instruction/code at a
time.

BCI: Convert constant table. The CCG constant table
is converted from bias arrangement into the actusal
constants (T.CUT to T.CON transformation). Unused
constants are eliminated.

CFP: Check Formal Parameters. Used by CII to process

formal parameters in the CCG IL - prebinary
transformation.

B-2-15



SMB: Set materialize bit. Stub only. \{7

BAI: Process AP-list tables. A transformation of
CCG. AP-list constants inteo prebinary form required
by the rear end processor.

PCA: Process character address reference coanstants.
Transforms T.CAC from the CCGC constant stvle to the
prebinary form.

SCS: Scan table with supplied mask. This routine is
used by front and rear ends; not by code generator.

Description in deck FEC. On comdeck COMFSCS.

B-2-1¢&



LISTLNK: Listing Linkage H8

Abstract: LISTINK provides the program unit statistic
output routine. Exists to save space in the
(0,0} aoverlay.

Interfaces: LISTLNK appears where program listings are
required and resides on ths (1,0) and (2,0)
overlays.

Rata Structure: Program Unit Statistic template.

Bouiine Descrietign:

LUS. List Unit Statistics. LUS is the subroutine called
by PUC to provide the calculation and formatting of final
program unit statistics. Functions include converting

binary values to listable DPC, formatting variable data
into the statistic template and calculation of some values.

B-2-17



PEM: Print Error Messages

Abstract: PEM accepts a2 diagnostic request, and if
output is required, formats the text and
outputs the diagnostic.

Interfaces: Diagnostic processing is provided only for
front end and rear end. Thus PEM is conts
in the (0,0), (1,0}, (2,1) and (2,3)
overlavs. Although not a ‘pure’ cradle

routine, PEM is considered universal enough
be included with those routines.

Data Structures

The following data structures are used by PEM. All are
described elsewhere.

a. Assembly Constant Tablel! Described in FERRS.

b. ERRSKEL: Diagnostic skeleton definition, described

r. ERRTYP: Described in PUC.
d. The actual error texts are described in FERRS.

e. CHARMAP: Described in FEC.

Routine Descriptions

a. ANSI: ANSI diagnostic blockage. This routine ic a
filter used to stop processing of ANSI diagnostics
when they are not required. Switch is set based on
control statement parameters.

it

he
e |
=4l

to

in

b. MDERR: Machine dependent diagnostic blockage. Works

exactly like ANGI.

c. PEM: This routine has three flavors, depending on

whether variable text information is to be processed.
PEMS is an entry used to process cells FILL., FILL.Z2,

FILL.3. All three cells are assumed to be preset in

L format. PEMS determines the length of the
infarmation string in each cell, and appends the
applicable length character. PEMV assumes FILL. is

to

be set with the current contents of the token buffer,
up to 10 characters. A transformation of tokens into
characters is made, using CHARMAP, until 10 characters

are obtained, or the end of the token buffer is
encountered.

B-2-1R



When PEM proper is entered, all variable information
has been formatted. The error level of the current
diagnostic is determined, and & count of diagnostics
at that level is incremented. The control parameter
error level cell is checked to see if this diagnostic
need be printed. If so, the proper prefix label is
selected and moved to the buffer area. Each
diagnostic word is fetched in turn, its length
determined, and the proper number of characters are
merged into the buffer. In some cases; page width

will require splitting the diagnostic into two lines.
PEM handles this. Upon completion of the buffered
build, the diagnostic is output to OUTPUT/ERRS file(s).

PDM: Print diagnostic messages. FTNS has two types
of diagnostic return. One method is a provided return
address. The second is an implied return. PDM
provides the mechanism for the implied return. PDM
fetches the PEM entry relevant for the diagnostic and
jumps to that return. The diagnostic return is set
for PDM, which in turn returns to the caller.

UEC: Update error count. Used by PEM to calculate
and update error counts. Alsc processes poscible
error termination cases.

SVYR/RSR: The decision was made to save all registers
when processing diagnostics. The overhead was felt
justified by the freedown allowed the routines using
the diagnostic processor. 8SVYR= and RBR= save and

restore all registers. Comdeck COMGSVR.

B-2-19



(1,0},

H11

(2,1)

cradle routine,

table pointers and

The

2.5 AlLlLDC: Table Allocation (Managed Tables)

Abstract: ALLOC is the managed table manager for the

frant end and rear end.

Interfaces: ALLOC appears in overlays (0,0},

and (2,3). It is not a 'pure’
but is fairly universal.

Data Siruciures

ALLOC operates on two data structures:

tables.

a. Iable Pointers: The table pointers consist of two
tables of cells, T.xxx which gives the FWA of the
table xxxy, and T=xxx which contains the length of
XXX« A pair of these cells exists for sach managed
table.

b. JIables: The managed tables are in high core.
starting location varies with various overlay
structures. In general, the core used for the
initialization decks (INITyy) is available for managed
tables. The end of FL delimits the table area,
although this limit may be extended by MEM requests.
The managed table area and relationship to the
pointers is depicted below (Fig. 2.1).

tommmm———— t —-——- T.xxx Table
FA ! Table 1 ! len.l = f-=--ememee-
(determined by te———————— + = ptr T.1
initialization Y1/ /0 7Y e
routine) e t - Yoptr T.2

! Table 2 ! len.2 e

tmm——————— + —-———- .

Y1277 7777) .

Y177 77777) .

e ——— + e

! . ! ptr T.n

! . L ettt e

! . ! named cells

tomm—————— + - contain

! Table 2 ! len.n pointer

e ——— + -

/// =--» available space.

B-2-20

Must always

Figure 2.1

-,

be 2



énuiing_uexniaiinns ‘N\\f\ M , H] 2
& T g

2.

AQW:  Add word. Calls ALC to obtain a word for the
required table. Stores the datum into the space made
available. l T

al,C: Table manager and allocator. This routine
should always be called to add any data to any managed
table. Disasters can occur if this rule is not
observed.

ALC is passed the table to allocate and the number of
words to extend the table. If there is sufficient
available space following the table being allocated,
the length of the table is updated and ALC is
through. {(Check listings for return conventions.)

When space is not available, a table crash has
occurred. The managed tables are compressed and then
regxpanded, reallocating the available space. The
amount of free space laeft between tables during the
reallocation is dependent upon the table in question
and the current processing state of the compiler. At
various points in front end and rear end processing,
registers are used as table pointers. ALC supports
this madness by allowing up to one lock register. I¥f
a lock register is used, the register contents is
converted to an offset into the associated table.
Upon completion of allocation, the offset is converted
back to an address.

I+ sufficient room in the managed table is not
available, GMR is called to try to obtain the room.

It will do so, or abort the compilation. Concurrent
with moving the tables around, the T.xxx table is
updated to reflect the current state of the individual
table FWAs. Upon completion of the reallocation, the
T.xxx reflects the state of the managed table area,
and the specific T=xxx has been updated with the
additional allocated space.

GMR: Get More Room. GMR is called by ALC when there
isn't sufficient managed table space to satisfy the
current request and to allow space for expected
allocations in the near future. GMR first tries to
obtain the necessary space by flushing some tables to
disk files. If that is not sufficient {(or has already
been done), a call is made to GMC to make a MEM
request. If the MEM request is disallowed, but the
current allocation was satisfied, GMR will return and
attempt to continue compilation. I+ the specific
request is not satisfied, compilation is aborted.

B-2-21



H13

BPIA: Print Threshold Alarm. Called by GMR when a
specific allocation was barely able to be satisfied,
no more MEM are allowed. Test mode only.

PIS: Print table statistics. Test mode debug device
to track table crashes. When table crash occurs: the
table being allocated and status of the managed table
area are output. Selected by the SNAP=T control
statement option.

B-2-22



Snap Interface Routines

The snap routines provide interface to IDP (interactive
debug processor? and format table dumps and snap output.
There is a separate routine for the front end, CCG and
rear end processors to provide the formatting needs of
these processors. The snap routines are test mode only.
These decks/routines are not true cradle, but one of the
routines appears in every test mode ogverlavy.

na



H15

FSENAP - Front End Snap Package

agbstiract: FSNAP provides IDP interface and dump

formatting for the front snd processor and for
single overlay processars.

Initerfaces: FSNAP interfaces heavily with IDP, and the

break mechanism therein. It appears as part
of the (0,0)y (1,0) and (2+1) overlays, test
mode onlivy.

Rata Siructures

a-

b-

COMSIDE: IDP interface macross micros and
detinitions. Described in the IDP deck (2.7).

COMSGCE: QGuick code mode structure definitions. Used
for formatting dump information. Described in QCGC
deck (4.1). :

COMSTOK: Data structures and routines pertaining to
token generation. Used in formatting snaps of the
token buffer. Described in LEX deck (3.3).

Qther: Other data structures are described with the
routines that utilize them.

Routine Descriptigns

8.

CID=: Convert token type to DPC. This routine takes
the token type passed ity and returns the
corresponding DPC of the token. Performed via table
lookup in CHARCMAP (described in deck FEC (3.1)).

EJH: Format table heading. Performs table lookup for
table names, origins and sizes. (NAMES, BASES, SIZES
in PUC (2.3)). The binary numeric data is converted
to octal DPC. Used when dumping a table.

lIB: List token buffer. An interface routine for LTK
{list tokens). Saves and restores registers and
informs LTK of the nature of the request.

SNL.EMI: Snap emitted turples. Formats output for a
single output turple (front end format). Call the
formatters for the turple header and turple operand
(twice).

SN.PAR: Snap parse file. Similar to SN.EMT, except

that the entire contents aof table T.PAR are
tformatted. Action provided by SN.EMT is performed in
a loop.

B-2-24



S HiG

SNL.PEYM: Snap parse file symbol. This is the
formatter for the operand fields of a turple. Breaks
the TP. format into component parts and formats for
output the DPC (if symbol table entry’) or octail DPC
(intermediate or short constant) as well as mode and
other information.

SNLPDP: Snap parse file operator: The formatter for
the turple header {(operator) word. Breaks the TH.
format into component parts and formats DPC of the
operator, turple mode and the status of the operands.
Both SN.POP and SN.PSYM utilize output templates into
which the ODPC format information is piugged. There
are also small tables of DPC values for mode and
operand information.

DAI: Dump a table. Interface to IDP core dump
routine (DCM=). Formats table length, name and origin
for header. Determines if symbol table is to be
dumped and selects either DCM= or DSY for the table
dump. Comdeck COMDDMT.

DMI=: DOump tables. The driver for DAT. Determines
how many tables are to be dumped, and successively
calls DAT for each table. Comdeck COMDDMT.

DSY: Dump symbol table. Formatter for dump of symbol
table. Breaks up the symbol table WA., WB. and WC.
words into segments as defined by those formats.
Provides a DPC and octal DPC mixture of formatted
information. Comdeck COMDDMT.

COMDTIOK: This comdeck contains routines and
structures used in producing tokens from source.
FSNAP uses the routine to disassemble tokens to
provide snap of token buffer. The description for

COMDTOK routines and data structures is in LEX (3.3).

B-2-a5



2.7.2

I

CSNAP: CCG Bridge Snap Package

absticact: CSNAP provide IDP interfaces and dump
formatting for the CCG/Bridge environment.

Interfaces: CSNAP interfaces IDP and the break mechanism.
Resides on the (2,2) overlay, test mode only.

Rata Siructures
CSNAP utilizes COMSIDP, described in IDP (2.7).

Routine Descriptions

CESNAP utilizes the following COMDDMT routines, described
in FSNAP (2.6.1).

a. DAT
b. DMT=
c. DSsY

B-2-26&



RSNAP: Rear End Snap Package |2

Absirackt: RSNAP provides IDP interface and dump
formatting for the rear end processor in the
CCG enviromment.

Interfaces: RSNAP interfaces IDP and the break mechanism.
Resides on the (2,3) overlay, test mode anly.

Rata Siruciures

RSNAP utilizes COMSIDP, described in IDP (2.7).

Boutine Descriptions

RENAP utilizes the following COMDDMT routines, described
in FSNAP (2.&.1).

a. DaAT
b. DMT=
c. D8Y

B-2-27



IDP:

Interactive Debug Package |3

Abstract: IDP consists of common routines/structures

used by all products/programs which utilize
IDP and FTNS specific code for compiler
interface to IDP. 1IDP users are referrsed to
the IDP reference manual.

Interface: IDP (the deck) interfaces IDP (the program).

IDP usage is bevond the scope of this
document. IDP resides in the (0,0}, (1,0) and
{(2,0) overlays, test mode only.

Rata Siructures

a.

b.

COMATQOK: Token generation language macros. Described
in LEX (3.3).

COMSIDP: This IDP provided comdeck contains macros,
micros and structure definitions used by IDP and
interfacing routines. It serves the function of a
text, but is assembled as part of routines which
require it. Macros include those for generating
keyword (IDP) tables, entry tables, formatting routine
parameter set up. IDP symbols are defined here.

COMESTOK: Data structures and routines pertaining to
token generation. Described in LEX (3.3).

Qither: Other structures will be described with their
pertinent routines.

Rouiine Descriptions

ST=4RT: Abort IDP. Restore registers and evoke
system abort.

RXB: Dump exchange package. Compiler specific.
Provides a NOS/BE like dump for SCOPE 2. Needed
because SCOPE 2 has no reset, and the register dump is
the status of the register after reprieve.

BIQ: Print table origins. Compiler specific.

Formats managed table information for output. Outputs
the information, including a list of pseudos applying
to each table.

IEX: Transfer exchange package registers. The
contents of the saved exchange package (registers) are
moved to the COMCSVR save area. Restore of registers
is then from the saved exchange package. Compiler
specific.



14

UIQ: User IDP owncode. Compiler specific.
Interfaces IDP break request. If a new overlay has
been loaded since the last IDP call, the break point
table is cleared. (An IDF call is executed at each
overlay load [when in BREAK model for this purpose.)}

URO: User IDP register owncode. Compiler specific.
URD selects or deselects register snaps. based on
requested snap option information.

Ue: User IDP snap owncode. Compiler specific. USD
selects or deselects core snaps, based on requested
snaf option information.

USY: User IDP symbol search. Compiler specific. USY
provides access to an IDP symbol search routine. An
RJ is constructed to the search routine, which is
overlay dependent.

l.LEM: Local file manager. Provides system interface
to PPU program for file management. Comdeck COMCLFM.

COMCIDP: This comdeck is the interactive debug

package proper. Routines and structures described
here are not under project control

1) Sfrcuciures
ADB=RJ: Return address of calling routine.
ABL: IDP parameter list, from the IDP call.
_agzagan: Previous contents of break address.
EL.BRQ: FET and buffer for batch debug output.
ELIDI: Line image FET for interactive debug input.
E.IDQ: FET for interactive debug output.
EW.GUR: Register save area.

IDELAG: Coded flag giving information about
current break/snap request.

EW.PQI: Parsing operator/operand table. Used by
IDP to parse expressions in IDP requests.

EW.PAST: Parsing stack. Used for the shift
reduction of operators during parsing of
expressions in IDP requests.



2)

15

EW.RPN: Reverse Polish stack. Used for operands
and reduced operators to form reverse Polish
notation used during parse of expressions in IDP
requests.

SHNAPLNE: Output line imags buffer.

Cells: IDP provides a large group of internally
used storage cells to provide flags, status
information and values used by IDP in processing
requests.

IC=: User/token generation communications area.

EW.SCT: Statement control token table.

EW.KEY: IDP keyword table. Used to drive
processing of request parse. Broken into IDP
commands, break commands, step commands, and has
associated subkeyword table for step and output
options.

EWL.ERR: Diagnostic texts for IDP messages and
FW.SER system errors.

IDPBA: IDP break address and break contents
1DeBC tables. Parallel.

IDETMP: User temporary table.
IDPSET: IDP set value table.
IDPXETI: 1IDP most recent transfer address table.

Boutines

IER: IDP freeze recovery/restart. This really
isn't a routine. It is copied to the file F.FRZ
as the first record when restart is required from
a freeze requested by the host program. The
routine is executed by transferring control to the
F.FRZ file.

SYS: System request interface routine. . Processes
system calls.

BHNM: Read host into hole. Reads a frozen host

from F.FRZ into the hole created by IFR. IDP
processing continues.,

B-2-30



IDP: The interactive debug routine. This routine
controls the processing of IDP requests. When IDP
is entered for the first time, initialization is
performed. Afterwards, this initialization is
bypassed. The IDP user requests are then
processed as they are encountered and the proper
processing routines are called. After completion
of the request, control is returned to the user.

BREG: Register snapshot. REG provides an octal
DPC dump of all, or selected, register contents.
ShNE: Core and register snapshot. SNF provid
octal DPC dump of selected core locations and
requested registers.

es an

8C=: Selection control routines. Provides small
utility routines which process brief mode toggle
switch, output diagnostics, process ABS
directives, process break dirsctives, process code
directives, connect files,y process DPC directives,
disconnect files, and processing of requests,
freeze processing, jump address processing, option
processing, output processingy register dump
processing, REL directive processing, SET
directive processing, SNAP directive processing,
status processing, STD directive processing, step
mode processing, unbreak processing, unset
processing, WHERE directive processing, XFER
directive processing and STRN directive
processing. All these routines are called by IDP
when the directive indicated is encountered.

aDZ: Add word to IDP table. ADZ searches the
indicated table for the required entry. If not
founds the new entry is made and the end of table
indicator is reset.

BRK: Break processor. The routine is called when
a break point is encountered during execution.
Interfaces to IDP for directive request processing.

CalR: Convert address from binary to octal DPC.
Used by several IDP routines.

CBC: Check Break Condition. When BRK is entered,
CBC is called to check if the break condition was
met. If so, break processing commencesj;
otherwise, BRK will revert to caller.

CHK: Check memory address. Determines if the
indicated address is accessible by the user.

B-2-31

16



gIB: Convert integer to binary. Converts a
string of DPC digits (decimal or octal) to binary
representation.

ClLZ: Clear IDP table. The indicated IDP table is
cleared to all space available indication.

CON: Connect/disconnect file. System dependent
interface to connect or disconnect IDP files. A
flavor is provided for SCOPE 2, NOS and NOS/BE.

CST: Classify statement. Used by IDP to match
user directives with the keyword table. This, in
turn, determines which SC= routines are invoked.

CXR: Check executive RJ. CXR determines it the
IDP executive request had a parameter list, and
returns its address if one is present.

DAB: Dump A or B register. Service routine to
format contents of A/B register and the contents
of the address pointed to by that A or B
register. Called by DAR and DSR.

RAR: Dump All Registers. Produces the formatted
register dump for all registers.

DAZ: Disassembler. For CODE directive requests.
Treats binary as if it were code, and produces a
mnemonic assembly listing for the area requested.
Uses the table DAZ=PS for formatting the output.

DCM: Dump Central Memery. Converts binary to
cctal DPC for the ares of memory requested. Used
for most table dumps and snapshots.

DAD: Dump central memory, octal and DPC. DOD
provides two output representations at central
memory: octal DPC and alpha DPC.

DER: Dump Selected Registers. DSR provides
register snapshot, as per DAT, but only for
registers requestad.

DUX: Dump X Register. DUX dumps the oc{al DFC
contents of a specified X register. Called by DAR
and DSR.

EAA: Find Absolute Address. Conver+ts address
requests of the form 'deck' + offset into an
absolute core location. A user provided deck
name/address table entry is used.

B-2-32

17



EAB: Faﬁmat A or B register. Used to format the
contents of an A or B register. Called by DAB.

ELL: Check FWA, LWA and length parameters. FLL
tests the legality of the named parameters on any
IDP request where they are present.

EQE: Flush Output File. FOF conditionally
flushes an output file, depending on the contents
{or lack of contents) of the buffer.

ERA: Find Relative Address. Opposite routine to
FAA., Takes an absoclute address and converts it to
the form ‘deck’ + offset.

ERK: Check freguency parameters. FRK keeps track
of the number of times a particular request is
honored and compares with the increment value. I+
at an increment, the snap is honored, else control
is returned to caller.

ERZ: Freeze interactive session. Initiates the
freeze which IFR eventually restores.

GIl.: Generate Indirect Load. Processes indirect
loading to the desired level of indirection.

HDR: Print snap header. Outputs the formatted
header line indicated.

JEX: Initialize executive. Called when
processing an IDP request. Provides
initialization required for all requests.

IIE: Initialize Interactive Files.
Connects/opens IDF files.

IST: Initialize Set Table. Initializes IDPSET at
start of overlay session.

LBI: List Break Table. Provides a DPC octal
listing of current break points set. Form is
'deck' + offset, orPt, oPts «..

LST: List set name table. QOutputs set names and
values currently active.

LXTI: List transfer table. List contents of
IDPXFT. Octal DPC.

MUL: Integer multiply. Provides a €0-bit result.

B-2-33



PAS: Parse subexpression. The parse routine for
expressions in IDP directives. The expression is
parsed (shift reduce) into a polish string, which
is then esvaluated, returning an absolute value.

BAI: Parse FWA, LWA, LEW triple. PAT makes
successive calls to PAS to evaluate the indicated
parameters.

BEM: Print Error Message. PEM converts the
diagnostic pointers into dictionary words and

formats the diagnostic line for output.

POL.: Process options list item. POl is called by
IDP SC= routine to process a list item. Uses the
required subkeyword table for the request.

PIR: Pointer manager. PTR manages the access and
updating of user interface pointers.

RIL: Read IDP input line. Under control of
status flags,y reads IDP directive lines into a
buffer for translation.

RBOL: Write output line. Utility to provide IDP
an output mechanism.

SKT: Search keyword table. SKT is a routine
called by CST to actually search the table for a
command verb.

gLE: 8Search for logical file name. Searches for
a user supplied LFN through the FET/FIT table and
FA.S5W. Returns FWA of FET, if found.

S0R: Set output flag bits, Qutput bits far batch
listing control are set to differentiate betwesn
batch and interactive modes.

S8Y: Search Symbol Tables. Searches IDP's
various symbol tables to associate a binary value
with a DPC name. If found, a code is returned
denoting type of symbol (deckname, set symbol,
user symbol, etc.).

STP: Step an instruction. STP steps a single CPU
instruction and lists result register as
necessary. Called when step mode is invoked, for
each instruction of the step range.

TOGEL/TOK: Token generator for IDP request

processing. Contains token skeleton macro calls
and tokesn generation routines.

B-2-34

19



LBK: Unbreak. Removes indicated break and |]0
restores user code at that point.

JFQ: User Freeze Owncode. Interface to user
provided freeze processing.

WER: User freeze restart owncode. Interface to
user provided freeze restart/restore code.

Wigd: User IDP owncode. Interface to user
supplied IDP executive.

URQO: User REG owncode. Interface to user
supplied register dump routines.

Us: User SNP owncode. Interface to user
supplied snapshot routines. The five user
interface routines utilize 'soft' externals and
are satisfied either by the user, or by canned IDP
routines.

VAR: Process variable token: used by TOGEL/TOK
to special process entokening of variable names.

BUB: Burst/build characters with blank squeeze.
Burst an input line into individual characters,
trashing blanks. Used in entokening IDP requests.
Comdeck COMCBUB.

BUN: Burst characters, no blank squeeze. As BUR,
with no characters eliminated. Comdeck COMCBUN.

CDR: Constant to decimal conversion. Comdeck
COMCCDD. Desceribed in UTILITY (2.2).

glg: 1I/0 function processor. Comdeck COMCCIO.
Described in UTILITY (2.2).

CO0D: Convert constant to octal DPC. Comdeck
COMCCOD. Described in UTILITY (2.2).

RXB: Convert DPC 1o binary. Comdeck COMCDXB.
described in UTILITY (2.2).

MCS: Merge Coded Strings. Concatenates zero filled
strings into a new string of up to 2 words.

Trailing 1 (€4 character set) are lost. Comdeck
COMCMCS.

RDC: Read Coded line. Comdeck COMCRDC. Described in
UTILITY (2.2).

B-2-35



aa.

bb.

CCa.

dd.

ee-

£F.

99,

hh.

I

RDW: Read words to working buffer. Comdeck COMCRDW.
Described in UTILITY (2.2).

RDX: Read exit. Comdeck COMCRDW. Described in
UTILITY (2.2).

LCB: Load Circular Buffer. Comdack COMCRDW.
Described in UTILITY (2.2).

ESR: Restore all registers from a specified save
area. Comdeck COMCRSR.

SBH: Set block of memory. Comdeck COMCSEM.
Described in UTILITY (2.2).

SFM: Sepace fill name. Comdeck COMCSFN. Described in
UTILITY (2.2).

SVYR: Save registers in a specifier register save
area. Comdeck COMCSVR.

SYS: Process system request. Comdeck COMCSYS.
Described in UTILITY (2.2).

COMCTOK: Routines and structure used in entoken IDP
requests. Described in LEX (3.3).

WOD: Convert word to octal DPC. Comdeck COMCWOD.
Described in UTILITY (2.23}.

WIC: Write coded line. Comdeck COMCWTC. Described
in UTILITY (2.2).

WIW: Write words to working buffer. Comdeck
COMCWTW. Described in UTILITY (2.2)

WIX: Write exit. Comdeck COMCWTW. Described in
UTILITY (2.2)

RDCB: Dump circular buffer. Comdeck COMCWTW.
Described in UTILITY (2.2).

XJR: Restore all registers with a system XJR call.
Restore based on a full word save area (for each
register). Comdeck COMCXJR.

2IB: Zeros to blanks. Comdeck COMCZTB. Described in
UTILITY (2.2}

NOTE: Where the comdecks/routines were marked as
described elsewherey, IDP required the indicated function.
But at any given time a break may occur in those same
routines; thus, IDP keeps local copies of the necessary
routines.

B-2-3¢&



112

For esach overlay loaded (primary or secondary), there is a
corresponding initialization routine. These routines vary
in size and function, but in sach case the initialization
is performed once, when the overlay is loaded, and then
the space becomes available for managed table, scratch
storage, etc. These routines ars not true cradle

(a separate routine exists for each overlay), but, since
every overiay has one, they appear in the cradle grouping.

Initialization Routines

B-2-37



113

INITOO: Primary Initialization

Abstract: INITOC provides primary, first time only,

initiaiization for FTNS. The initializations
provided mostly pertain to options present (ar
absent) from the control statement.

Interfaces: INITOO inter+aces the cells and data

structures of FTN. It is contained in overlay
(0;0) and contains the compiler main enitry
point. As such, INITQOC is always invoked
once. After performing the required
initislizations, the space cccupied by INITOO
becomes free space.

Rata Siructures

a.

b.

COMECIP: Installation parameter. Described in
FTN (2.1).

COMCPAC: Several structures are defined for use by
PaC during control statement parameter processing.

Characier Mapping: An entokening of the control
statement parameters.

Kas KBs KC: Parameter table definitions.

KR: KE: Multiple binary parameter table
definitions.

KEYS: Control statement parameter keyword table.
Expansions of PARAM macro (COMCPAC) in format
determined by KA.; KB.y KC. definitions.

MEY: Actuslly a series of multiple binary value
tables. Expansions of MBVOP macro (COMCPAC) in format
determined by KD. and KE. definitions.

CS cells: Local cells used in processing control
statement parameters. These provide temps for options
which require 3-way action.

Riggnaostic Texts: Both PAC and INITOO provide tables
of diagnostics text and exit addresses.

SK.: Code skeleton data definition. Used by ROR.
Described in FSKEL (3.16). Comdeck COMSEIS.

B-2-38



Routine DRescriptions ‘ ] 4

-

EINM: The system loader entry point. Calls the
initialization routines and, after determining the
control statement parameters, either transfers control
to PUC or calls the overlay loader to load (1,0}
[OPT=0, MAP or LIST neededl, (2,0} [OPT>0] or COMPASS
[IDENT first cardl.

BACT Process arguments from control statement. PAC
is the control statement cracker. It processes each
control statement argument in turn, scanning against
KEYS for legality of the argument. The corresponding
KEYS entry is used to test the argument value and
errors are noted, or the proper cells are set,
corresponding to the value supplisd. In the case of
multiple binary, the proper MVD table is scanned for
syntax legality. Any errors noted by PAC result in
termination of compilation. Comdeck COMCPAC. One
option of PAC processing is the provision for user
routines. INITOC provides routines to process the S
and G options, and in test maode, the IDP and SNAP
options.

CEL: Check Field Length. CFL determines the current
field length and, if above the minimum, exits. If
not, the nominal field length (for the OPT level in
force) is substituted and a MEM request is made. If
the MEM cannot be honored, compilation is terminated.

CEN: Change file name. CFN changes the default file
vector name to that name requested by the control
statement, or clears the vector if 'file'=0 was
specified.

MIa: Miscellaneocus initializations - A. MIA provides
initializations which are performed for all
compilations, regardless of control statement
parameters. Start time is saved, compiler status
noted (system vs. library or file), field length is
saved, etc.

MIB: Miscellaneous initializations - B. MIA does the
bulk of INITOO initialization. It is called after the
control statement has been successfully cracked, and
resolves irregularities in the control statement
requests. For some options, the control cell contents
are converted to compiler usable form. (Some options
have assembled values in a form which is different
from the PAC converted form. This is to differentiate
between a selection of the default value and not
selecting the value but assuming the default.) All
dependencies between control statement parameters are
resolved. Any diagnostics noted by MIA results in
termination of compilation.

B-2-39



PPW: Process page width option. The output files’
(OUTPUT and ERROR) page width is set depending upon
the PW option status and the output media (printer,
TTY, terminal, etc.?.

CPV: Current parameter values. Converts values of
selected control statement parameters into display
information for the header information of listings.

FCA: Find character-address. Utility used 4
processing control statement line for listing header.

JCC: Transter continuation control ; u
used in producing control statement line for
header.

STF: Set Terminal File. STF determines if a file is
assigned to an interactive device. Comdeck COMCSTF.

GOI: Global Overlay Initialization. GOI performs
initialization required by the QCG mode code
generator. If necessary, the code for map/list is
trashed. Routines are called to perform front end
initializations. Comdeck COMFGOI.

FEI: Front End Initialization. FEI initializes flags
and switches in front end routines (e.g., ANST
diagnostic switch). In (0,0 overlay, a QCG

function. Comdeck COMFFEI.

ROR: Reset opcodes of roundables. Depending on the
status of the ROUND option from the control statement,
ROR resets the affected code skeletons to
rounded/unrounded arithmetic. Comdeck COMFROR .

B-2-40



INIT10: Reinitialization (QCG) : "6

adbstract: INIT1O performs initializations required when
FTN5S is reloaded after an intermixed COMPASS
assembly, or when MAP or LIST was required,
from the initial load.

Inierfaces: INITIO contains the loader entry point for the
(1,0} overlay. Resides on the (1,0) overlay.

Rata Siruciures

-—
win

SK.: Code skeleton data definition. Comdeck COMBSEI
Described in FSKEL (3.1€).

Routine Descriptions

a. FEINIQ: The overlay entry point. Calls initialization
routines and exits to PUC.

b. GQlI: Global Overlay Initialization. Comdeck
COMFGOI. Described in INITOO (2.9.1).

c. EEI: Front End Initialization. Comdeck COMFFEI.
Described in INITOO (2.9.1).

d. ROR: Reset opcodes of roundables. Comdeck COMFROR.
Described in INITOO (2.5.1).

B-2-41



2.9.3

INITS0: Initialize Primary

aAksiract: INIT20 performs
the CCG primary

Interfaces: INIT20 contains
{2,0) overlay.

Rata Siructiures

J1

initializations required when
gverlay is loaded.

Overlay (CCG)»

the loader entry point for the
Resides on the (2,0) overlay.

COMECIP. Comdeck, described in FTN (2.1).

Boutine Descriptions
EINGQ: Entry point for the

(2,0) overlay. Entersd when

OPT>0 after INITOO initialization, or upon return from

intermixed COMPASS ASSEMBLY.
and exits to PUC.

B-2-42

Saves initial field length



J2

INIT21: Front End Initialization (CCG)

Abstract: INIT21 performs initializations required by
the (2,1) overlay, the CCG front end processor.

Inteprfaces: INITZ21 contains the loader entry point for the
{(251) gverlay.

Rata Siructurses

SK.: Code skeleton data definition. Comdeck COMSEIS.
Described in FSKEL (3.16).

Boutine Descriptions
a. EINZl: The overlay entry point. Calls the

initialization routines to perform front end
initializations. Exits to the front end controller.

b. DLE: Dump link and +ill tables. A front end stub for
read end function.

€. EEIL: Front end initialization. Comdeck COMFFEI.
Described in INITOO (2.9.1).

d. ROR: Reset opcodes of roundables. Comdeck COMFROR.
Described in INITOO (2.9.1).

B-2-43



IMITE22: CCG Initialization J3

Absiract: INITZ22 performs initializations required by

the comman code generator.

Interfaces: INIT22 contains the loader entry point for the

{(2s2) overlay.

Rata Siructures

3.

" b.

SK: Code skeleton data definition. A CCG version of
the SK. defined for OPT=0. Used by ROR.

Iable Definitions: Comdecks COMSTAB, COMSTAD and
COMSTAS. Shared table definitions for CCG used.
Described in PUC (2.3).

Routine DRescriptions

al

EING2: The overlay entry point. FTN22 performs some
file management functions and initializes CCG cells.
The managed table area is restructured for CCG use.
Exit is to the CCG controller.

ROR: Reset opcodes of roundables. Comdeck COMFRDOR.
Described in INITOO (2.S.1)

B-2-44



J4

Abstract: INITES23 performs initiaiizations required by
the (243) overlays, the CCG rear end processor.

INIT23: Rear End Initialization (CCG)

Interfages: INITE3 contains the loader entry point for the
(2,3} overlay.

Rata Siruciures: None

Routine Description
ETNS3: The overlay entry point. Performs some file

management functions for the map and listing functions as
required. Exits to the rear end controller.

B-2-45



3.0 ERONT_END PROCESSOR
The FTNS front end processor consists of decks and routines to
provide lexical analysis, parsing and intermediate language
production. A symbol table and other auxiliary tables are
built. The intermediate language drives both the QCS and CCG
code generators.



3.1 FEC:

Front

Aksirack:

Interfaces:

End Controller Jﬁ

FEC controls processing flow for the front end
routines. Functions include calling the lexical
analyzer, transferring to the statement processor
and inter-statement initialization. FEC alsao
contains a number of routines used by the front end
for various functions.

FEC is the traffic director and controller for the
front end. Contains program unit and individual
statement flags and cells. FEC resides on the
{0y0Jy (1,0} and {241} overlays.

Rata Siructures

S

Cells:

E.SYMIL:

HaSHIBL:

CHARMAR :

EEC=:

FEC cells are entries which are used by the
front end processor. They contain information
needed by the front end for bookkeeping
functions. The cells area, in conjunction with
the managed table area and the program unit cell
areay define the status of compilation at any
given point.

Symbol table initialization table. F.SYMIL
contains the symbol table preset values for the
compiler generated, fixed ordinal symbol table
entries.

A set of hash buckets, used by the symbol table
accessing routines. Contained in common block
/HASH/ .

CHARMAP is a table used for various purposes.
It is ordered as the 0. table (described in
FTNETXT {(1.15%. The table consists of DOFC
representation of tokens/operators and a DUC.
address, where applicable, for use by GCG.
CHARMAP is used for diagnostic production, QCG
transposition and some output functions.

FEC= is the stage vector for the transition
between the lexical analyzer and the various
statement processors. The table consists of a
matrix of current (just entokened) statement
type by current program unit stage. The entries
are offsets into the FEC main loop.



Routine Descriptions

a.

bl

FEC:

ASK:

ASL:

CAC:

Front End Controller. FEC is the front end main
loop. Upon first entry for the program unit,
initialization routines are called to set up
compilation. Thereafter, FEC provides entry points
for return from the various statement processors and
stage processars for lexical to syntatic
transistion. First the statement specific cells are

FY-v-y-v 3 +har | OV 4
reset, then LEX is called +to entolen the current

statement. Based upon values returned by LEX,
pertaining to the type of statement just entokened,
a stage vector branch is taken to procese the
statement context. The stage transform routines
call routines to perform the necessary processing
where required. If statements appear out of context
(e.g., type declaration after first declarative), a
diagnostic is produced. After the stage
transformation processing is completed, transfer idie
to the relevant statement processor. A special
return is provided for the END statement. Front end
processing is completed by a series of subroutines.
Transfer is to the front end loader to fetch in the
code generation overlay (CCG) or to transfer to rear
end processing (QCG).

Adjust statement keyword. Some of the syntax of
FORTRAN is ‘funny’ (i.e., doesn’t lend itself to
lexical analysis nicely). Situations where
consecutive keywords (implicit type declarations) or
imbedded keywords (ASSIGN) are present require this
routine. ASK strips out the 0.VAR token containing
the relevant kevword of the keyword characters. The
relevant token is discarded or adjusted (if
information remains). This adjustment may involve
retyping a token.

Adjust Statement Label. Similar to ASBK, except that
a statement label is extracted from the token. Used
by statements where a label is feollowed by
undelimited information (ASSIGN and DO).

Check assumed character declarations. A front end
cleanup routine. When character type variables have
been declared, CAC scans the symbol table to
determine if any variables have been invalidly
declared to be of assumed length.

Check common block names. Searches symbol table for
non-ANSI usage of common block names. Confliclts are
diagnosed. Called only when ANSI is specified on
the control statement.



cLu:

Iy

cus:

Iy

Check Level Usage. A front end cleanup routine. If
LEVEL was declared, CLU scans the symbol table,
testing for leveled items being in common or formal
parameters. Local variables leveled are diagnoesed
and LEVEL O formal parameters are markKed in the
symbol table.

Seqguence Break. (BB is callied when a p
uence break can occur. IF a sequence b
parse File)_ the IL is Flushed. Action is dependent
upon the code generation mode.

Check Undefined Function. A front end cleanup
routine. CUF determines if a function subprogram
has been defined. If entry points of more than one
type were present, CUF determines that the entries
were defined. If not, a diagnostic is issued.

Check Undefined Labels. A front end cleanup
routine. ClUL scans the symbol table for undefined
(but referenced) statement labels. A diagnostic for
each missing label is output. If the block
structure table is not empty, its contents are
analyzed and diagnostics for unclosed do loops
and/or unterminated IF blockes are output.

Check Upcoming Statement. For control flow
statements (e.g., GOTO, IF), some front end
optimizations can be performed if the next statement
is known. Thus, the concept of the “hanger’
processing. When a control transfer statement is
appended to a logical IF {(or an arithmetic IF is
found), generation of the branch turples is deferred
until the next statement is entokened. If the next
statement is labeled, and the label is significant
(is part of the branch statement), more efficient
code can be generated. CUS determines if ‘hanger’
processing is required and, if so, trensfers to the
proper routine for processing. CUS calls CSB for
sequence break check and determinee if a no path
situation exists, is continued or was terminated.

Check VYariable Dimension irregularities., A front
end cleanup routine. If variable dimensions were
declared, CVD scans the symbol table toc determine
that variables used as the adjustable dimensions
were declared to be common or were formal parameters
and that arrays with adjustable or assumed
dimensionality were formal parameters.



Frant End Presets. FEP is called for each program
unit to provide initialization of FEC cells and
tables.

Flush Variable Dimension code. A front end cleanup
routine. FVD will take turples, if present, from
the variable dimension table and move them to the
parse file. Thus, any code generated for varisble
dimension code will follow the body of code for the
program unit.

Output intermediate language. OIL is used to flush

the parse file. Unless code generalion has been
supressed, the parse file is flushed, via a cal
PIS. Manner of flushing is code generation

dependent.

to

bt

Program Unit Presets. PUP is called for each
program unit to initialize PUC cells and tables.
This initiaslization could have been placed in PUC,
but inclusion in FEC allows it to ‘go away’ when the
CCG and rear end overlays are fetched during CCG
compilation.

Relocate local save variables. A front end cleanup
routine. If variables were declared in a SAVE
statement, RLS will create a special local block
‘SHABVBE’ in which local save variables will be
located. This will allow special rear end
processing of saved variables. The block table is
updated to include SSABVEE.

Reset intrastatement cells. RSC is called once for
each FORTRAN statement encountered. It resets
values of FEC flags and cells which pertain to the
status of an individual statement.

Sel Save Universal. When an unqualified SAVE was
declared, SSU will scan the symbol table, inserting
the save bit in all octal and common variables. A
front end cleanup routine.

Base bias conversion. A front end support routine.
BEBC determines the need for the conversion
(equivalenced variable) and if necessary, replaces
the operand with one consisting of the base member
symbol as the ordinal, the offset from the base
member as the bias and the mode of the original
operand.

Check conflicting types. A front end support
routine. CCT tests a proposed symbol table class
bit against a list of forbidden classes. If the
proposed class is forbidden, the DPC for that class
is determined and used as fill for a diagnostic
which is output.



sTY:

LV

TRV:

Tsx:

IsY:

Construct pass one tag (archaic terminology). A
front end support routine. CT1 takes a symbol table
ordinal as input, fetches the corresponding symbol
table entry and forms a TF. format operand,
utilizing and transforming the WB. symbol table
information into TP. information.

Set natural type. STY is called to provide the
implicit type of defined by usage variables. &STY
has 1wo associated tables NAT.LEN and NAT.TYP.
First, the initial character of the variable (or
subprogram name) is used as a shift count for a bit
theck of NAT.TYP; an arrsy of bit vectors. This
determines the implicit type. If the implicit type
is character, the initial character is used ac an
index into NAT.LEN, a table of implicit character

lengths. A front end support routine.

Truncate long variable. A front end support
routine. TLV is called by various statement
processors when consecutive variable tokens (0.VAR)
are encountered. The first token is shifted over
the last variable token of the string and the token
buffer pointer is reset. A diagnostic is output.

Translate variable. A front end support routine.
TRV is called when a variable symbol is expected.
The variable token currently in the token buffer is
searched for in the symbol table. If not present,
an entry is made, with the proper variable
attributes. If a symbol table entry exists, the
attributes are checked and if an irregularity
occurred, a Jdiagnostic is output. TRV returns the
symbol table WB. entry, & TP. operand and the symbol
table ordinal of the variable.

Tag system external. A front end support routine.
TSX is called to enter the name of & compiler
generated subprogram (library routines) into the
symbol table. Returns the WB. entry, & TP. operand
and the symbol table ordinal.

Tag compiler symbol. TS8Y is a specialized routine
which ie called to generate symbol table entries for
certain unique compiler generated symbols. An error
results if attempt is made to enter & symbol more
than once.



aa. ERT: Enter Reference Table. A front end support

routine. ERT is called to format symbol references
for the cross reference map. If LO=R is not
specified, the initiaslization routine for the
current overlay will wire off ERT. Once the switch
is set on, a subsequent C8 LIST R= directive can set
or unset the wire off code. Once entered, ERT will
combine symbol table ordinal, line number and
current usage into an entry for the cross reference

doab T o osmwa ‘
table and will add the entry to the table (or file

if references have been dumped to disk).

bb. ESY: Enter symbol table. A front end support routine,
ESY enters a symbol and its attributes into the

symbol table. The hash link chain is updated to
include the new symbol. EBY requires a previous
call to S8Y for linkage (symbol table hash chain)
resasons.

cc. INN: Invent New Name. A front end support routine. FTNS
has several requirements for compiler generated
names. Some of these are compilation dependent and
can occur many times during a program unit (e.g., DO
loop variables and labels). For this class of
symbol, INN will take a count of the number of
gccurrences of the symbol class, add a prefix and
make a unique symbol table entry for the compiler
generated symbol.

dd. NCM: Enter multiword element into designated table. A
front end support routine. NCM scans a table
searching for a match with an arbitrary number of
words (to be entered in the table). If a match is
found, the table index of the first word of the
matching block is returned. If the block is not in
the table, the necessary space is allocated and the
block entered. This last is at he caller’s
discretion. (Some applications allocate space,
build a block and call NCM. If the block was
redundant, the table is shrunk; otherwise, the data
is already in place.)

ee. SC5: Scan table with supplied mask. SCE searches a given
table for an entry which matches at only those bits
denoted by the supplied mask. (As opposed to a
€0 bit match). Comdeck COMFSCE.

££.

:

Scan table comparing all bits. A front end support
routine. OSCT scans a designated tabkle, looking for
a provided entry. If a match is found, the index of
the matching entry is returned; otherwise, a miss
indication is returned.



99.

hh.

SLT:

S8Y:

Scan Library Table. SLT scans the intrinsic
function table (F.INTF) for a function name

supplied. If the desired function is in F.INTF,
symbol table attributes are extracted from that
table and put in WB. and WC. formats. Otherwise,

the attributes returned are those of a user function.

Scan symbol table. A front end supporti routine.

SSY accepts the DPC for a symbol and applies the
FTNS hash function to yield the symbol hash value.
Thie value is used to scan the relevant hash chain
to determine if the symbol is present. If present,
88Y returns the symbol table ordinal and index and
the WB. entry for the symbol. If the symbol is not
in the table, a pointer to the last link pointer
(end of chain) is set and an indicator of not in
table is returned. SSY must be called prior to
entering any symbol in the symbol table. (Note:

The hash function used by FTNS was lifted from FTN4
which, in turn, used the COMPASS hash function.
Since COMPASS uses a different alignment for symbols
[OR vs. OL), it is not clear that the current
algorithm is best for FINS. If some testing is done
someday, this could be determined. For now,
collisions don’t seem super rampant, so nothing is
pressing about this.)



J13

aAbsiract: FERRS contains the texts aof all diagnostics output
by the FTNS compiler. A few disgnostice which may
occur during rear end processing are included for
{(Gs0)y (1,0) compatibility.

2.2 FERRS: Front End Diagnostic Texts

Iniscfaces: FERRS interfaces all decks/routines in the #ront end
which issue diagnostics. A diagnostic output
conegigts of a2 branch to the diggnostic entry in
FERRS followed by a branch to the proper formatting

"routine in PEM (2.5). FERRS resides on the (0,0),
(1;0) and (2;1) overlays.

Rata Siructures

FERRS consists of two main data structures, diagnostic texts and
dictionary, with associated macros for their generation.

a. COMSSYC: This comdeck provides macros and micros to
generate literal DPC values associated with
symbol class attribute bits. The generation of
the literals is remote.

b. COMAERR: This comdeck provides the ERROR macro, used to
format the diagnostic texts. Format for the
macro is:

LOC ERROR TYPE, EXIT, (TEXT)

where
LOC -~ diagnostic name and entry point
TYPE - severity and what type formatting PEM is to
perform
EXIT - return address or default return

TEXT - the actual diagnostic text.
The error macro will generate the following code:

LOC SB7 return address
EG PEM S
Vv
¥ depending on the PEM action required
(the second character in the type
field, if present).

B-3-9



J14

Foliowing the entry code are the words making up the diagnostic
gkeleton. The format is as follows:

15T WORD
trm————— fm—————— R et fomm———— o ———— $mm—————— to———— +
1 i i ! § ! L A
fOLIT Y LIT Y LIT Y LIT 'Y O TYRPE ! EXIT O s
! ! ! ! ! ! A
atutate $omm———— e Sttt e R oo S +
3 S S S s ig 2
2hND_AND_SUBSEGUENT WORDS
Pomm————— tmm————— e i o ——— fm——————— e ———— - tem——— +
! ! t ! ! ! ' VAR
vOLIT ' wIT oYy LIT o' LT oo o o+ oLIT O+ C¢c ' /0
! ! ! ! ! ! ! v
temm——— dmmm——— fom————— tmm————— e rmm———— e tom——— +
2 9 9 S -] =] i 4
where?l
LIT - Offset into literal table (dictionary). Note that

the size of the LIT field limits the dictionary to
512 entries. Some care in wording new diagnostics
will keep the dictionary within this range.

TYPE - The diagnostic severity level. (EL=level)
EXIT - Diagnostic return address.

C - Set if further skeleton word(s) exist.

Dictionary Format_and Productign: Dictionary entries are
produced by the ERRLIT macro, which counts the number of

characters in the proposed entry and then blank pads
(left-justified) and if <10 characters, appends a special
count character as the 10th character. If the dictionary
word is exactly 10 characters, nothing is done and if >10
characters, the 10th character is replaced by blank (55R) to
indicate continuation and a second dictionary word is formed
with the remaining characters. h

COMAERR defines the entry points for and ERRLITs of the
first elements of the dictionary. These include a blank
word and the FILL. cells. The FILL. cells are preset with
the literal 'FILL.' so that the LIT pointers in the
diagnostic skeletons will be set up properly, but the cells
are then used for variable information, set by the caller,
interpreted by PEM.

B~-3-10



K1

4. Generate a string of tokens for each source statement.

5. Determine which statement processor is to process each
statement (i.e. type esach statement).

Figure 3.1 shows the relationship of the scanner to the
whole. .

¥ Source lines that are found to be in error in NO LIST mods
{(L=0,y SL=0, or C% LIST NONE) active) are listed by the
compiler's error processor, PEM (Print Error Message) in
deck PEM.

#% Alternately, this can be seen as collecting lines into
groups called statements.

B~-3-13



K2

+=¢s~-----_--——...._.._..-——.-.-_..'_}

i

!

v
pmmmmmmmm i

1

1

!
el U

|T
1
1
|
i
“ m - -
| 3
i
| 1]
i L
f [ 8]
1 W]
T B eI = | r +- -
1 | 1 ' a. t
f 1 1 I |
i i | | 1
& ] t b4 [ | i
L [T I T 3 | w I I i o
. 1 ! ! I |
1 | ! | 1
I 1 1 | 1
I | | ' i
l.l...!+ +I..l.|..!_l “ o o -
¢
-
|
{ (i1]
|
— P
t
|
i
i
=

i

1

!
pommmtommmt

SONTA SR mme m i mee N EEG mme N WEe WY HDY Gw e BB MY LR we wme et M W mme e

e D e

e

!

! FEC.RXX
pommmmmmemd
I
i

]
e e
]

]

v
fommmmm

i
§
1
t
]
i
t
1
H
t
I
1

o ey

Simplified front-end master loop with LLEX

3.1.

Fig.

B-3-14



3.3.1.2

K3

Upon entry, LEX will read, list, and entoken source lines
until it detects a line that is the beginning of the next
statement (remember that in FORTRAN, the only way to
detect end of current statement is to detect beginning of
next statement). Control then returns to the compiler
master loop, where the appropriate statement processor is
invoked to compile the statement.

This process repeats itself for each source statement
until the end o+ the program unit is detected.

Interfaces

LEX primarily "talks® to the rest of the compiler via its
data structures. These interfaces are, for the most part,
predetermined by the FTN 5§ overall design, and are
inviolate as far as the scanner is concerned. It is hoped
that by stating these things first, the hows and whys and
wheres will be easier to understand and criticize.

This section is divided into 2 sub-sections: INPUTS and
OUTPUTS.

a. INPUIS

Because the scanner is so close to the beginning of
the compilation process for a source statement, its
inputs are relatively simple and straightforward. It
expects some data cells to be initialized (usually
just cleared}, and for the 1st time it is called, it
expects the INPUT and OUTPUT files to be

initialized¥®. 1In addition, it references a number of
global flags, most of which contain control card
information (for example, does the programmer desire a
source listing, etc.). The INPUT file itself is an
input; but hecause the scanner manages it for the most
part without interference from the rest of the
compiler, it is in a slightly differsnt class. See
figure 3.2.

MIB (Miscellaneous Initialization,; Part B) in deck INITOQ

sets up the +ile FETs (or pseudo FETs in a RECORD MANAGER

world), OPENs the INPUT and OQUTPUT +files, and performs the
initial READ to fill the INPUT buffer.

B-3-15



K4

pommmmmmmmt

to———-t

TB=KEY |

pommmmmm e}

pommmmmm g

'flags

R it

TB=NUM

pommmmmmmmy

1

pommmm ey

TB=LAB !

tommm et

o ————t
‘initialized!

tdata

!

e !
! T.TB !
i !
i ]

-,
e"!

)
1
i
1
]

C
A

———e— e —————

icells i
t--m————————t

bomommemns

e

'files

1t

pmmmmmmmmm g

'time only

tinitialized!- - - = - =3
pommmmmmmemmg

§
1
i

1]
1]

T.CHAR
frmmmmemmnd
$ommmmmmm—t

*,
!_ - - - - =

t
§
t
]
]
1

E
R

!
!
]
]
]
!
]

1
1
}
.

pommmmmmem g

R e L

T.STMT

pommmmmm—-t

pmmmm—————t

!
!
!

oUTPUT

INPUT

file

et I EEPERR Y

1

file

o mm———}

fommmmmmmmd

Scanner inputs and outputs

3.2.

Fig.

B-3-1¢€



Ko

QUTPUTS

The scanner's outputs are confined to the listable
output fiie, a number of miscellaneous data cells and
flagsy and to three managed tables. Each of these
managed tables is described below in a somewhat
general fashion. More detailed information can be
found in subsequent areas that deal with them.

I.IB

This table is the token buffer and is generated for
each and every source statement. At any one time,
T.TB only contains the tokened representation of a
single source statement. This "entokened statement®
is always preceded by a BOS (beginning of statement)
token, and is always terminated by an EDS (end of
statement) token.

Associated with T.TB are a number of data cells which
are all related via the common prefix "TB=". These
“TB=" cells contain information about the current
statement in T.TB.

For example, LEX stores information about which
statement processor is to compile this statement in
the cell TB=TYPE.

The cells TB=NUML and TB=NUMR are set to contain the
line number of the 1ist line of the statement in T.TB
(in left and right justified form, respectively).

This source line number is passed to FTN object
library subroutines so that if an error is detectied.,
the programmer can be informed as to which source line
is at fault. For SEQ mode input programs. the SEG
line number is used.

The cells TB=LABL and TB=LABR (left and right
Justified, again) are set to the statement label (if
there is one) for the statement in T.TB.

See the actual definitions in the deck LEX for a more
thorough description of all the "TB=" cells.

I.C0N

This table is an auxiliary to T.TB and contains any
character constant strings that occur in a statement.
If a character constant does occcur; a single character
constant token will be generated to T.TB, and this
will point to the actual character string in T.CON.

B-3-17



Keeping the actual character strings out of the token
buffer tends to simplify the parsing and code
generation of character constants, but is not a
particularly pnecessacy complication of the token
structure. Its main advantage is that T.CON
represents a near exact image of what will eventually
30 into the object code for these character
constants. This means that this data does not need to
go through any more transformations during the
compilations and can be basically copied to the LGD
binary output file.

Iin addition, a simple optimization can ba performed
during generation of T.CON. Redundant character
constants are ignored via standard table manager
protocal (i.e. they just aren’'t put into T.CON if they
are already there).

T.CON T.7TB Source Input

+-->» ABCD STRING = 'ABCD'
1 ! i 1 ! !
' BOS —t ! ! !
! ! ! ! !
! variable name = = -------- + ! ! !
! ! ! !
! equal operator = ---------oe-- + ! !
1 ] 1
trm——————— character constant ----------ewe—ea—- + !
i
EDE 0000 mmeemeeee—eeeeee oo +

Fig. 3.3. Relationship of T.CON to T.TB

B-3-18

K6



K7

L.8IMT

This table is unconditionally generated for esach
source statement and contains the statement in its
original packed (i.e. 10 character per word} form.

Its most obvious use is that of deferred listing
buffer. I+ a statement is found to be in error by the
compilar in ND LIST mode (L=0, SL=0, or C3% LIST NONE
active), then the statement is unconditionally listed
from T.STMT by the compiler's error processor, PEM
(Print Error Message) in deck PEM.

T.S5TMT is also used to accumulate source lines at the
beginning of a program unit that are to be listed, but
which need to be held until the header statement
processor has esxtracted the program unit name from
T.TB and stuffed it into the source listing title line.

The two aforementioned uses of T.STMT are not new,
being performed by the deferred listing buffer in both
FTN 4 compilers. The third use of T.STMT is new,
however, and involves the proposed solution to the
FORMAT problem. It is best shown with an example:

100 FORMAT
+ (1) =2

The scanner will generate FORMAT tokens for this
statement, and upon finishing, will gquery its
heuristic flags. This will lead to the discovery that
this is indeed ngt a FORMAT statement. The scanner
now needs to generate normal tokens for this
replacement statement. Enter T.STMT. The entokener
has to use T.STMT as its source input because it is
not practical to try and "back up® the INPUT file to
the beginning of the statement®.

¥See Design/Executives/TOK and Token Generation.

B-3-19



3.3.1.3

LEX Main Loop Concepts Ka

This section is divided into 2 sub-sections. The +first
describes the major functional components of LEX, and the
second is an introduction to the timing of LEX's main loop
« « « a sort of "what happens when" discussion.

a. MAIN LQOP COMPONENTS

The scanner’s main functional components and the name
of the sub-executive that oversees sach componenti is
represented in Figure 3.4.

B +
! !
! LEX !
! !
e bt +
!
!
pommmm e Pommmmmm e tommmm pommmm e +
! ! ! ! !
! ! ! ! !
e e T ettt el R e it JHE Sl Dbt S e R it ¢
! RNC vt CLN I PLR . TOK ot CsT !
! L tot 't ot !
! read ! !tclassify ! ! list ! ! entoken ! !type stmt!
pomm—————— + - I + te-m———- L +

Fig. 3.4. LEX's main functional components

The first 4 components (RNC, CLN, PLR, and TOK) are each
called once per cycle through the scanner's main loop.
C8T only has to be called once per LEX call.

B8-3-20



b. MAIN LDOP TIMING K9

LEX is driven strictly on a line by line basis. One
cycle is made through its main loop for each line
read,y, listed, classified¥, and entaokened.

P —————— +
! !
IN !olist !
___________ + ' 1
L Sttt +
!
ouT’ -=>
{momm—m—e— +
L Sttt > mmm———- +
tomm—mem—— + ! ! ! P +
! ! ! ! ! !
! ! ! ! ! !
‘classify ! ! ! ! entoken !
i i ! i i t
i + ! ! P m———— +
! !
P (= +
P +
i 1
! read !
i 1
P +

Fig. 3.5. Main loop timing - normal

Figure 3.5 represents the scanner's main loop cycle. 1IN
is when FEC calls the scanner. OUT is when the scanner
classifies a line as being an initial (i.e. end of current
statement). The OUT path leads to the statement typing
mechanisms and then back to FEC to invoke the appropriate
statement processor.

Each source line is classified as being one of 5§ types:
initial, continuation, blank, comment, or CS.

B-3-21



K10

Figure 3.5 also illustrates a very important scanner
concept: upon entry at IN, it is assumed that the next
line to process/entoken has already been read and
classitied.

This is true in the general case because this line
terminated the last statement, but is not true for a few
important exceptions. The most obvious exception is that
of the first line of a program unit. This line hgs to be
read before anything else can happen. Figure 3.6
represents an appropriately altered figure 3.5.

- +
i 1
' list !
i i
tommm e +
ouT*
{= = = = ¢
L Sttt b +
P ————— + ! ! ! tommm————— +
! I 1 i ! i
! 1 1 1 1 1
'classify ! ! ! ! entoken !
! ! ! ! ! !
e + ! ! tommm e —— +
f 1 )
t————- {mmme- +
IN
N S +
t
P + !
1 ! l
! read ! !
tommm————— +

Fig. 3.6. Main loop timing - need to read

This is referred to as the “need to read" case, where the
scanner has to read before it can do anything. Currently,
the only two conditions where this is necessary are:?
initializing for the first line aof a program unit, and
atter a C$ directive has been processed.

The OUT path has to be skipped for the 1st cycle through
the loop.

B-3-22



K\l

Read-ahead is inhibited when a C% line is encountered to
assure maximum flexibility, because C® lines can affect
line handling logic. See 3.3.3.2 C% Statement Processing.

*3H

The Executives

This sub-section has a separate section for each of the
executives called by the top-dogy LEX. They are:

3.3.2.1 RNC and Reading

Describes the processes associated with
reading source lines. This includes a
discussion of general line format, compressed
input, etc.

3.3.2.2 CLN and Line Classification

Describes the processes associated with
determining what kind of line was just read
(i.e. is the line an initial, continuation,
comment, null, or C8). This includes a
discussion of how SEQ mode input is handled.

3.3.2.3 PLR and Listing
Describes the listing logic and its
relationship to the deferred listing buffer,
T.STMT.

TOK and Token Generation

u
L ]
13
.
]
L]
F e

Describes the token generator as an
interpreter of a TOGEL program.

3.3.2.5 C8T and Statement Classification

Describes the statement typing mechanisms.

B-3-23



3.3.2.1

RNC and Reading K]Z

On operating systems that support CIO, all compiler I/0 is
done via the MACE I/0 comdecks. When CIO is not
availabley, RECDORD MANAGER is used via the FA= comdecks’®,
In either case, RNC (Read Next Card( is the tope

executive. It calls the apepropriate low level executive
(via the READC macro} which will read a single source line
to the source line image area, CP.CARD¥¥*,

# The FA= comdecks simulate CIQ in a RECORD MANAGER

environment.

## CP.CARD resides in COMPCOM in the (0,0) overlay (in

deck FTN). GSee DATA STRUCTURES/CP.CARD.

B-3-24



! ! ! CP.CARD !
! RNC ! 'l source line!
! ! 'standardized !
L e P +
! A
! !
e R a2 to—m——— P +
! ! ! CP.CARD !
! COMCROC ! '1 source line!
! ! ! C format !
t-=-—tom——t Ltk e +

: A

R e it tommm————— + !

! !

! !
Lkt St 1 L to————— to————- +
! ! ! ! !
comcLCB ! ! COMCROX ! ! !
1 t ] 1 1
to———te---% tommmpo-——¢ ! INPUT !
I 1 1 I
! ! ! !
--------- Sttt bt g ! !

! ! BUFFER !

i t 1
to-—=tom--t ! !
! ! ! !
' COMCCIO ! ! !
! ! ! !
tommm oo + R e P +

! A

! !

! Rinbainded dubeleded |
P + ! !
‘operating! ! :

! system ! 'O INPUT !

! ! ! file !

to———————— + ! !
i t-=-

Fig. 3.7. Read routines hierarchy (CIO)



K14

Upon returning from the low level read subroutines, RNC
assures that each source line is in a standard format.
Standardizing each source line early in the game
significantly simplifies line handling logics, for then the
scanner does not have to have special case code all over
the place to handle the “non-standard" circumstances.

A standardized source line has three primary qualities.
First, it is in its packed (i.e. 10 character per word)
torm. The source line is therefore in a listable forms so
that the listing subroutines can list directly from
CP.CARD. 1If we are supporting gcomeressed input for FTN 5,
RNC will expand the compressed source line back to its i0
character per word form. Expanding compressed input might
seem to be defeating its purpose, but the advantages of
standardization far outweigh the de-optimization of
expansion. Compressed input will still be a viable
optimization for a user because it cuts down the I/0 time
used by reducing operating system requests. Ancther
advantage to expanding here is that if thes common
compilers eaver get a common (0,0) overlay, RNC could
reside there, thus doing the job for evervone in exactly
the same way.

The second attribute of a standardized line is that it has
a full zero word EOL¥ mark. COMCROC returns a source line
in C format¥®¥*, Token generation and line handling in
general can be considerably simplified if they don't have
to deal with partial words. RNC will space (blank) fill
the final word of a source line if the EOL. merk is not on
a word boundary. See figure 3.8. There are no kKpnown
adverse side effects resulting from altering the actual
source input by blank filling.

¥ End of Line.

#* {.e. a source line can have>a 12 thru €& bit EOL. mark.

B-3-2¢&



word --> 1 2 3 K]5

12- 5S4 bit +t----memww- tmm——————— +
i PROG!RAM MOM:Izs:s!
EQL mark P ———— P ————— +
! becomes
v
et il e e il Rl Bt LR T +
i PROG 'RAM MOM -5 S B8
e el e el et T +
&€ bit P ——— to—mmm—— ——f e ——————— +
! PROG!'RAM MOMMA: 'zazzz2zz222!
ECL mark o —————— - P ————— +
! becomes
v
tmmm - tmmm—————— e it D +
! PROG'RAM MOMMA fszzzzszzes!
e tmmm———————— t-mmmmm +
€0 bit tomm—————— t-—mmrm———— e +
! PROG !RAM MOMMAS ! 22222222t
EQL mark toemm e o o +

{no change)

Where a ":" represents & EDL bits.

Fig. 3.8. RNC end-of-~line formats

Finally, every full zero word blank line¥ will be
converted to a full word of blanks followed by a full zero
word EOL mark. Performing this simple task takes all the
grief out of handling these strange blank lines.

* Now a CDC standard. See DAP S1040.

B-3-27



3.3.2.2

K16

CLLN and Line Classification

All pre-entokening line processing is performed under the
control of a single executive. CLN (Classifty Line) is the
executive and coordinates the following functions:

1. Statement line number extraction¥®.

2. Statement label sxtraction.

3. Line classification.

iassification involves determining that a source
s one of & types:

1. an initial line of a statement.

2. a continuation line.

3. a comment line.

4. a blank (null) line®#,

5. a C% line.

Normal FORTRAN source lines (i.e. not SEQ) were originally

designed so that line type could be determined by looking
at columns 1 and €.

# SEG mode input only.

¥% ANSI states that blank or null lines are to be treated as

comment lines for '76.



- +
! tol 1 is ! L]

' C !
D e LT +
Y ! ' N
o ——————— + e —————— +
! ]
tem———— Fm———— + - $o———— +
! line is ! ' ¢col €& is !
! comment ! ! blank or 0!
P ———— + +-—t———— +~--t
Y ! ' N
b ———— + o ———————— +
! !
t———— Form——— + e ——— drm——— +
!' line is ! ! line is !
! initial ! ' continuatn!
e ——— + - +

Fig. 3.9. Line typing hierarchy -original FORTRAN

Time has complicated this simple structure, as is shown in
figure 3.10.



Vel 11s L2

!' Cor * 1
P +
Y ! !N
Prme e + P +
1 i
to——— P + po———- P +
' col 1-2 ! ! col & is !
! is C% ! ! blank or O!
te—tm———— t--+ t-—t-——-- +-=4+
Y ! 'N Y ! ' N

==t Lt 2 Fo---=t Fo===%

! ' ! ! !
to———- t-——-- + to——-- P t te———- P + $o-——- P +
! 1line is ! ! line is ' ! col t-72 ! ! line is !
! Cs ! ! comment ! ! are blank ! ! continuatn!
P I LA e bt +-=-+ Pommmm e +

Yy ! ' N
t---=t t-=-=t
! !
t=———- to——-- + tom———- to———- +
' line is ! ! line is !
‘blank(null)! ! initial !
P ——— + P +

Fig. 3.10. Line typing hierarchy - FTN & (non-SEQ)

The most important difference between figures 3.9 and 3.10
is that one can noc longer merely look at columns 1 and €.
EVERY column has to be scanned in aorder to type a line as
blank. Consider also that, initially, a blank line
"looks" like the initial line of a statement®. Now
remember that line classification occurs at the tail end
of LEX's main loop¥¥, at a time when the statement in T.TB
has not yet been compiled. This poses a problem in that
we have to scan an entire line in order to type 3 blank
line, but we don't want to do too much processing because
looking at individual columns is in the realm of token
generation. And in the case of an initial line, we don't
want to generate tokens until the next cycle through the
compiler master loop, after the current statement at T.TB
has bean compiled.

¥ i.e. column & is blank. Or in SEQ mode, both have a blank
tollowing the statement line number.

##* Sep figures 3.5 and 3.6.

B-3-30



*H

CLN solves this problem by using the BUBR/BUN character L3
access method¥® to strip the blanks that precede the
statement keyword.

For example
100 FORMAT (' HELP')
col 1 1) is

The blanks in columns 7 thru 14 will be stripped, so that
the token generator will bhegin at column 15. This means
that; for 2 blank line; BUB will strip blanks until end of
line. CLNMN can then sense this and properly type the line
as blank.

SEQ mode “free form” input is a little different. Line
number extraction, statement label extraction. line
typing, and preceding blank strip must be performed
left-to-right in the correct order.

Consider the line:
100 200 FORMAT(' YOU ARE GETTING SLEEPY...')
col 1 4 10

The line number "100" is extracted first, then the
statement label “200", and finally the blanks in columns B
and 9 are stripped. The line is typed as an initial, and
when FEC reenters LEX to entoken this line, the entokener
begins at column 10. In this sense, normal FORTRAN lines
and SEQ mode lines are indistinguishabls to the token
generator®¥,

It was stated in the OVERVIEW cection that the line number
and statement label are stored in the locations

TB=NUML /TB=NLMR and TB=LABL/TB=LABR. This is not done by
CLN, however, because it is a low level executive which
knows nothing about inter-line conditions. CLN stores
this information into the cells:

LN=TYPE line type
LN=NLM line number
LN=LAB statement label

See section (3.3.3.1), Bub/Bun Character Access Method.

This is not entirely true because normal FORTRAN lines are
72 columns widey, while SEQ mode lines are BO columns wide.

B-3-31



3.&-2-3

L4

ILN=TYPE) are defined by symbols that have the prefix "LT.":

~The § possible line types (i.e. possibléﬂvalues of

value symbol meaning
1 LT.INIT initial line
2 LT.CONT continuation line

Py

LT.CHMNT comment line

Ty

4 LT.NULL blank or null line
5 LT.CS C3 line

The scanner's main executive; LEX, transfers LN=NUM to
TB=NUM and LN=LAB to TB=LAB when and if appropriate, and
acts on LN=TYPE, thus maintaining a clean division of
labor between detection (CLN) and control (LEX).

PLR and Listing

Very little has so far been said about listing. This is
not to say that it is trivial, for many assume that
listing is one of the scanner's simplest tasks. It is
not. Few other places in the compiler can match its +flag
chasing abilities or pathologies. Beware . . .

This section is divided into 7 sub-sections:
Global Compiler Listing Logic
Begin at the top. This sub-section describes listing
at the compiler level, primarily in terms of the
listing flags. Understanding the listing flags and
how they interrelate i hal$+ the battle.
PLINE and WOF
From the top to the bottom. This sub-section
describes the only common ground in listing besides
the listing +lags: i.e. the low level routines that
actually write a line.
Source Listing - Introduction
The deceptive middle ground. This sub-section
describes some of the problems and structures involved
in generating a source listing.

PLR - Process Listing Request

Describes LEX's executive for source listing.

B-3-32



¥*

NO LIST Mode L5

Describes one of the pathologies associated with
listing . . « what to list when we're not supposed to
be listing.

Before Header Mode

Another listing pathology . . . how to get the program
unit name into the titlie line.

Deferred Listing File - An Opinion

Why not clean up this mess once and for all?

GlLOBal. COMPILER LISTING LOGIC

Listing logic falls into 2 broad categories: what
to do when a list option is selected, and what to
do when a list option is deselected. The various
list options are selected/deselected via the FTN
control card and/or the C% LIST directives. These
options “translate” into a number of global
compiler flags. At least this way, when
confronted with the intricacies of listing, one
can say, "Well that's because such and such flag
is set to so and so." Onward . . .

There are 2 copies of the listing flags: a master
and a working. The master copy represents the

list options as selected on the FTN control card,
and is set up by the control card cracker¥®. The
working copy represents the current dynamic list
options, as possibly altered by C® LIST directives.

See COMCPAC (Process Arguments from Control Statement)
in deck INITOO (2.9.1).

B-3-33



The working copy is necessary because CE& LIST
directives are only supposed to affect the program
unit in which they occur. The master, which reflects
the FTN control card, is copied to the working at the
begirming of each program unit, thus destroying the
effect of any C$ LIST directives that might have
oreurred in the preceding program unit. The master
copy resides in deck FTN in the (0,0) overlay®¥, and
the working copy resides in the deck PLUCH¥®¥%,

Following is a brief discussion of the global list
flags and how they determine/describe the type of

listing to generate. With the exception of CF.LS
pach flag is a master/working pair.

T
1T »

CP.LSTF

This is the master list flag (set via L contral card
option). CP.LSTF has to be ON for most of the list
options to be able to take effect. The exceptions are
the error list options. If an error of the requested
level is detected in a source statement, the statement
in error is listed along with its appropriate error
message, regardless of the value of CP.LSTF. If L=0
is selected, the control card cracker will set CP.LSTF
to OFF. Then when it has finished cracking the
control card, it will set all the other list option
flags (with the exception of the error list flags)

to OFF.

Wo. LOS

This is the source list flag. CO.LOS represents the
LO=S control card option. The working WO.LOS is
dynamic and can be affected by CE LIST directives. If
WO.LOS is OFF, then the compiler is gaid to be in

NO LIST modell.

## FWA is CO.CS.
#EH FWA is WO.CH.

E See 3.3.2.3 PLR and Listing/NO LIST Mode.

B-3-34



#*3#

#E npote W L7

If CD.LOS is OFF (i.e. L=0 or LO=-S selected on the
control card), then C% LIST directives will be
prevented from affecting WO.LOS. This is because

C® LIST directives are never allowed to override
options specifically deselected via the control card.
See 3.3.2 Supporting details/C3 Statement
Processing/LIST directives.

3w

WO.LOS is used primarily to structure the “logical
relationship between the lexical scanner (which lists
source lines in LIST mode) and the compiler's error
processor (which possibly lists source lines in

NO LIST mode). The coordination between LIST and

NO LIST modes is of major concern in listing logic,
and is discussed further throughout the remainder of
3.2.3 PLR and Listing.

ElLINE_AND_WOE

PLINE (Print Line) is the macro® that is used to write
a line to the ODUTPUT file. This includes lines
written for the source listing, error messages,
reference map, object listing, and TEST mode compiler
debugging output. Each PLINE reference expands into a
call to WOF (Write Output File). WOF is the only real
"top-down" executive associated with listing . . . a
call to it will write a single "interesting” line to
the DUTPUT file with an optional number of preceding
blank lines.

Its main functions are to keep track of pages by
outputting the source listing title lines at the
appropriate times, to output preceding blank lines,
and to invoke the I/0 routines.

WOF actually writes a source line via the WRITEH
macro®*¥, WRITEH calls the MACE I/0 comdecks on
operating systems that support CI0, and calls the FA=
comdecks on operating systems that do not support
CID. The FA= comdecks simulate CIO in a RECORD
MAMNAGER environment. In a CIO environment, WRITEH
calls COMCWTH which automatically strips trailing
blanks from each line hefgre writing it to the OUTPUT

Defined in FTNSTXT.

Defined in CPUTEXT for CIO (non-RECDORD MANGLER), and
in FTNSTXT for RECORD MANAGER.

B-3-35



L8

file. This can considerably speed up output at a slow
speed interactive terminal because then it does not
have to print any trailing blanks that occur in a
line. Interactive users rejoice . . .

Pom—m————— +
' WOF 1
PO(PLINE) !
i i
Lttt Seteddnd 4
|
s de e il
! ! !
$--——t———t L it St £ Linbainid Sedet b §
! ! ! WTH ! ! !
! WHL ! PWRITEH) ! ! cop !
1 1 i 1 i 1
Pom——————— + kbt bbb i P m———— +
i
!
frmmm————— pommm————— +
1 !
L ininiuiek Sebubutnd § t--mmt-—-—-—t
1 ! ! [
! DCB ! ! WTX !
1 i 1 1
Liniaiatd Sebeid 4 t--——t----t
i ]
t-—mm—————- P ———— +
I
t=m——t--—-=t
! !
! cIio !
! !
Fe==—t---=1
!
!
t=———t-———t
'operating!
! system !
} i
tomm—————— +

Fig. 3.11. Write routines hierarchy - (CTO

The reader might find it interesting to compare
figure 3.11 with figure 3.7.

B-3-3&



PLINE and WOF, the lowest level executive in listing,
are placed here early in the discussion of listing
because they are really the only gommon element in
listing . . . everyone calls WOF to write a line to
the DUTPUT file. It is hoped that PLINE and WOF will
therefore provide some "home ground” from which to
embark on the following journeys.

SQURCE_LISTING - INTRODUCTION.

Generating a source listing would seem to be one of
FTN's simplest tasks. In fact, it is one of the most
complex. The primary reason for this is that so many
different conditions affect the way a source listing
will look in its final form.

For example, did the programmer deselect a source
listing (L=0, LO=-5S, or C% LIST NOME active)? What
this really means is that a source listing is ngt
generated gnly if there are no errors in the FORTRAN
program, and this, in turn, depends upon the error
detection level selected on the FTM control card
{EL= option).

C8 LIST directives complicate the issue further. If a
source listing was selected via a control card option,
C% LIST lines are always listed so that the programmer
can know where and when her source listing was turned
on and off¥, EXCEPT when a C® LIST NONE line is the
1st line of a program unit. In this case, nothing is
listed (unless, of course, there's an error).

And there there's "before header® mode. Programmers
like to have the name of the program unit in the title
line of the listing for each program unit. This means
that, in LIST mode, the compiler has to delay listing
gverything until the header statement processor
(PROGRAM, SUBRDUTINE, FUNCTION, or BLOCKDATA) has
processed the header statement and extracted the
program unit name from the token string (T.TBY and
placed it into the title line.

Unfortunately, there is no one "master" control center
in the compiler that can coordinate/structure all
these tasks. Individual executives each control their
own separate (or sometimes not so separate) part of
the source listing logic. It might be useful to refer
to figure 3.12 while reading the following sections.

¥ See 3.3.3.2, C® Statement Processing/LIST directives.

B-3-37

L9



L10

prmmm— e}

1]
]

FEC

et TR

!

e I et ST

e ST

et SR

1
et i

i

e S

'
!
!

! header

!
!

Cs

stmt

‘processor!

PEM

stmt

‘processor!

LEX

fom—mpmmmmt
I

11
TT==T

[3
1

PLR

$o=t-t-t--+

e S

A
!
ROUTINES

LS
and

WOF

s
1

pommm et

' LpB !

PO
H

1
et e

~,
g

+
i

Frmmmm ooy

DATA
STRUCTURES

>
+l.|..
t

|
2
Vo
f 9
| 3
+.l.|.
-+ - -
1

i

| [t
| -
1 e
;O
“ |
o e =

fommm e}

pmmmmm——-—t

Source listing routines structure

3.12‘

Fig.

B-3-38



L1i

BLR_-_PROCESS LISTING REQUEST

PLR is the executive that is called whenever LEX is
ready to "list" a source line. The word "list" is
emphasized because the name PLR is somewhat of a
misnomer. PLR is really not so much concerned with
listing as it is with freeing up the space pccupied by
a source line at CP.CARD.

CP.CARD is a dual purpose data structure: source
lines are read into it one-at-a-time and listed from
it one~at-a-time. The problem is that this simple
READ-LIST procsss is not always possible. For the
"average" case, PLR does control listing, but in

NO LIST and "before header® modes, PLR doesn't do any
listing . . . it merely saves/accumulates source lines
in T.STMT. Someone else makes the decision whether or

not to list the lines at T.STMT.

RNC PLR
territory ! territory
____________ $ = - e e e e e e - - - -
!

P +
i ! i
! T.STMT !
! ! !
P —————— +

! A

!

pommm————— + !

one source ! ! one source !

Pommmm e ! CP.CARD !---mem—emomo +

! line ! ! line !

1 o ————— + ]

1 ! t

! !

} 1 LV
o + Pommmm e +
!OINPUT ! ! PoUTPUT !
[} i i |
! file ! ! ' file !
P + tomm—————— +

Fig. 3.13. CP.CARD and source line flow

B-3-39



Before PLR moves a source line from CP.CARD, it le
performs some line formatting. The two words

preceding CP.CARD, beginning with CP.FLIN, are used

for carriage control, compiler generated line number,
and spacing.

CP.FLIN CP.CARD
Fm————————— o ——— trrr——————— e e Tt e
! i ! PROG'RAM ZIP 1 etc
- e - ——— - ———— -
carriage line col 1 of source input

control number

A line number is generated only in non-SFEQ mode (SEQR
lines already have line numbers), and only in the
following cases:

in LIST or "before_header” modes

1. if the line number is a multiple of 5 (1,5,10,
- » -EtC); ar - - -

2. if the line is a C® LIST lines or . . .

3. 1if the contents of CO.SNAP are non-zero in
TEST mode (for compiler debugging).

in NQ _LIST mode

1. if the line is an jipitial line of a statement,
Of o o =

2. 1if the line number of a continuation line is a
multiple of 5.

CE LIST lines are unconditionally given line numbers
in non-SEGQG mode so that the FTN programmer can see
which lines are missing between a C$ LIST NONE line
and a subsequent C% LIST ALL line.

NOLIST

In NO LIST mode, FTN always lists source statements
that are found to be in error along with their
appropriate error messages, regardless of the source
list options selected by the programmer. When a
source statement is found to be in error, PEM (Print
Error Message) in deck PEM is invoked to issus the
appropriate error message.



L13

In NO LIST mode, PEM is also responsible for listing
the source line in error (which PLR saved in T.STMT).
PEM does this by unconditionally calling LDB (List
Deferred Buffer). In addition to listing the contents
of T.STMT, LDB also takes care of some of the
bookkeeping associated with T.STMT. For example, it
prevents the possibility of T.STMT inadvertently
getting listed twice by guerying a status bit in the
header word of the 1lst line in T.STMT. This bit
{defined by symbols SB.LLISP and SB.LISL) is set by PLR
when it puts lines into T.STMT only if they are also
listed.

BEEQRE HEARER_MODE

In "before header” mode, PLR tries to save all source
lines (including comment lines) in T.STMT, in an
attempt to allow the header statement processor
{PROGRAM, SUBROUTINE, FUNCTION, or BLOCKDATA) to place
the program unit name into the title line of the
source listing.

PLR will not save lines forever, though, because for
programs that have large numbers of comment lines
immediately preceding or following the header
statement, T.STMT would soon usurp all of the managed
table space. In the extreme case, the compiler would
start “"MEMing"¥* for more managed table space and soon
usurp the entire machine. PLR will, therefore, only
save lines while the number of lines in T.STMT is less
than an arbitrary amount {(defined by symbol MAX.LINC).

#H nate *#*

Using a "line" thresh-hold for T.STMT is different
than the implementation in either FTN 4 compiler.

They both use a word thresh-hold in determining when
to terminate “before header" mode. A number of PSR's
have been submitted against FTN 4 by users who did not
understand why some of their programs got the program
unit name into the title line and some did not. This
is largely due to the fact that the number of ljines
that can occur within a given number of words in
T.STMT is incredibly variable. It is hoped that by
using a line thresh-hold in FTN 5, it will be easier
for a user to understand the conditions under which a
program unit absolutely will get the program unit name
into the title line of the source listing.

63630

FTN "lingo" for making an operating system request for
more central memory (via MEM RA+1l regquest).

B-3-41



"Before header" mode is automatically terminated
whenever LDB is called. One of LDB's main functions
is to keep NO LIST and "before header"” modes from
stepping on each other’s toes. LDB is called when one
of § things happens:

1. T.STMT becomes longer than MAX.LINC, or . . .

2. The header statement processor finds the program
unit name in T.TB and places it into the source
ligsting title line, or . . .

Front-end Controller) senses that this

am unit doesn't have a header statement,

== [ oy and' & rFs
3. rel
progr
or .

4. A CE LIST(NONE? line is sensed (i.e. when entering
NO LIST mode)¥®, or . . .

5. An error is detected and control ends up at PEM in
deck PEM.

It is perhaps useful to note that “"before header" and
NO LIST modes are mutually exclusive. That is, you
can be in one or the other, but not both.

REEERRER_LISTING FILE - AN OPINION

A deferred listing file is a data structure that
basically has the format of a T.STMT for an entire
program unit (or perhaps compilation). FEach line in
it would have a header word that contained information
about the line. For example, the line type (initial.,
continuation, etc), whether the line was to be listed,
etc. If a source listing of any kind was selected via
the FTN control card, a deferred listing +ile would be
generated. Then at the end of a compilation, it would
be read back in, interpreted, and a source listing (to
the QUTPUT file) generated from it.

# This is necessary to prevent overall confusion in

patholeogical listing circumstances. See 3.3.3.2,
C% Statement Processing, CODDIR, (3.6).

B-3-42



3.3.2.4

L15

Use of a deferred listing file would give the compiler
total control over the bells and whistles that FTN
programmers like to have in their source listing. 1Its
primary disadvantage is that it slows down a
compilation due to the added operating system (I/0)
requests. For this reasony the powers that be opted
ngt to use a deferred listing file in FTN S5, even
though it would considerably simplify listing logic.
Thisy, I feel, in the long run will prove to be a
mistake. I do not believe that speed of compilation
(especially in LIST mode) is as important as the
simplification of a major internal and external

siructure.

TOK and Token Generation

This section is divided into 4 sub-sections:

Dverview

Provides a brief overview of token generation.

FTN Tokens

Describes the tokens that can be generated for a FTN
pragram. It is hoped that by describing what TOK is
trying to do (i.e. its output), that the rest of this
section will come much esasier.

l.earning TOGEL

This sub-section is basically a tutorial in the
language of token generation, TOGEL. What it does and
how to use it.

Describing FORTRAN with TOGEL

Describes/explains the TOGEL program that describes
FORTRAN.

TOK - Token Generator

Describes the inner workings of TOK, and how it
actually generates tokens.

B-3-43



a. OVERVIEW L16

TOK is the executive that performs token generation.
It is called once per cycle through LEX's main loop,
and entokens a single source line. This scurce line
resides in T.STMT,; and is therefore in a packed

{10 character per word) format with a full zero word
EOL mark¥. TOK generates tokens, one per central
memory waordy to the token buffer, T.TB.

pommm————— +
t--=-+ t---+ ! !
5 3 H | R T-T- H
temm—————- + ' P temmm————— + YT ! !
! ! ! ! ! ! ! ! P ——— +
! CP.CARD !===>! L l===>! T.GTMT !--->! 0 !
! ! ! ! ! ! ! ! P ——— +
o ————— + 'R ! P ————— + 'K ! !
! ! ! t===>! T.CHAR !
+---+ ===+ ! !
tommm————— + A P +
' TOGEL ! !
! program !------ +
1 1
o +

Fig. 3.14. Relationship of PLR to TOK

#* The LEX executive, PLR, will have previously
transferred the source line from CP.CARD to T.STMT.
See 3.3.2.3 Design/Executives/PLR and Listing/PLR -
Process Listing Request.

B-3-44



It is important to remember while looking at “ﬂ]
Figure 3.14 that T.STMT is not a complete, static data
structure between PLR and TOK. For each cycle through
LEX's main loop, PLR adds a new line to T.STMT. TOK

is therefore always entokening the last lins put into
T.STMT.

TOK is designed to be a general purpose token
generator. That isy it could just as easily be used
to generate tokens for PL/I or COBDOL as for FTN (this
assumes, of course, that these compilers want to
generate tokens for their source input). This is
possible because TOK is table driven. Along with the
actual source line to be entokened, it accepts as its
input a table that describes how it is to generate
tokens. This logic table is generated via a set of
COMPASS macros that "look” like a simple “"top-~down"
programming language. Therefore, these macros are
called a "language", TOGEL (Token Generation
Language), and when these macros are applied to a
particular token generation problem, the result is
called a "TOGEL program”.

EIN_TOKENS

This sub-section is concerned with the general "form®
which tokens can take, and how they structurally
interrelate.

FTNS tokens are a way of representing, or notating,
FORTRAN source statements. A way that is easier for
the statement processors to manipulate, and too
tedious for a human to use. The middle ground.

The tokens for FTN 5 have been contrived so that they
describe FORTRAN source statements in the most
fundamental, statement-independent way possible. That
is to say, so that tokens can be generated with ng
knowledge of what type of statement (PRINT., GOTO,
replacementy etc) is being entokened.

This "mindless entokening” principle means that
entokening is the process of grouping characters (into
tokens) that have some simple structural, or.
syntactic, relationship to one another. For example,
grouping alphanumeric characters into variable names,
grouping numeric characters into numeric constants,
grouping character datay and grouping the remaining

B-3-45



éharacters into operators. The structure of FTN's
individual tokens is very simple. Fach token oaccupies
a single CM word and has the following general format:

42 i8
bt it o —t +
H other stuff {token type!
e R e B +
59 i8 O
Fig. 3.i5. FTN token format

Where "token type" is an 18 bit binary value used to
distinguish one token from another. This number is
defined via a symbol that has the prefix "0.", which
stands for "operator/operand” (for years, I wondered
what "0." stood for . . .). For example, the BOS
(Beginning of Statement) token is defined by the
symbol 0.BOS (value = 0O)¥,

The lexical scanner can only generate 42 different
tokens. This is ngt a scanner restriction, but a
restriction imposed by the CONO table which is used by
the parser, PAR in deck PAR. The COND table is used
to check the legality of a particular token following
another. For example, to detect that in FORTRAN, an

= token cannot follow a / token. The COND table has
only 42 bit positions for token types, ergo only

O thru 41 token types are possible.

This does not imply, however, that FIN has only 42
different tokens. The parser, itself, can generate
special tokens when it encounters certain syntax. For
example, PAR will replace the 0O.LP token that precedes
a FUNCTION argument list with a 0.SLFP token. This is
done to simplify the parsing stack logic. See COND
table in deck PAR (B-3.12).

FHH

* "D." symbols are defined in FTNSTXT.

B-3-46



The primary virtue of this token structure is its
simplicity, which happens to make TOK's job relatively
straightforward. FTNS tokens take on 3 generally
different forms. These 3 forms differ both in
physical layout and in the method in which they ars
generated.

EORM_1 _TOKENS (VAR. CONG)

L 1
o e o +
! characters in OL format ! token type !
e D it T it &
59 ig8 O

Currently, the only 2 tokens that are of FORM 1 are
the variable name token (D.VAR) and the numeric
constant token (D.CONS). In this form, the token type
in bits O thru 17 is really only an attribute of the
characters in bits 59 thru 18. To better understand
thisy, first consider which characters can become each
of these tokens. An O.CONS token can consist of any
of the characters O thru 9. An 0.VAR can consist of
any ot the characters A thru Z and/or O thru 9, but
the 1st character must be in the range A thru Z.

In the world of left-to-right scanning then, the
primary difference between these two token types is
whether the first character is numeric or alphabetic.
This is an attribute of the characters that constitute
the token, which in FDRTRAN, happens to distinguish a
variable name from a numeric constant.

FORM 1 Examples:

BILBC = 100
_-+—- -+-.
! t
pommmm e + !
R TR +
to
R T pmmm——— +
! 4-=>!'B I L B O : : 'O.VAR !
' e e +
1
' Fommm e tomm——— +
t---=- > 1 0 0 : : : : !0.CONS!
e L L ST pommmm- +
59 18 0

where : is zero fill (QOR).

B-3-47



M4

EQRM 2 TOKENS (DPERATORS)

42 18
et ettt D ot it LT
! ! token type !
$rm e ———— tmmr e ——— +
59 i8 8]
FORM 2 tokens are the FORTRAN operators (= - ¥ aic).

While in FORM 1 tokens, the original source characters
still have "value", in FORM 2 tokens, they do not.
The token type itself represents the sum total of the

- em e e o mem e e gy At JEVENS U T —

dvm Ll mmemonded men blam - mem——— = . " . L
2IIT D WML LY LilE SLSnisi 43 PFamwning Il LU Lie =lagismeEnt

processors. Stated more directly, sach FORTRAN
operator has its own token type (0. symbol).

It is perhaps interesting to note that this need not
have been so. FORTRAN operators could have been
represented as FORM 1 tokens, where the token type was
"operator”, and the actual characters that constitute
the operator occur in bits 89 thru 18. This would,
however, significantly complicate the work of the
statement processors, and is not practical in light of
FTN's overall design.

LEX does not pass anything of value to the statement
processors in bits 59 thru 1B of FORM 2 tokens. These
bits are used, however, by the token generator during
generation of these tokens. Because the token
generator is extremely table driven, these bits
contain information set up at assembly—-time by the
TOGEL macros that describe "how® to generate these
tokens.

If the reader is making a "first pass” across this
document.; the details of how these bits are usged is
not important at this point in time. For more
information, see the following subsections entitled,
Learning TOGEL, and TOK - Token Generator.

B-~-3-48



FORM 2 examples: hns

L Sttt bt bl bt b +

Lot

P S P +

LR St 4 '0.= !

! P P +

!

! e il pom———- +

fo———- g 0.PLUSH
R e o +
59 18 0

EQORM_23_TOKENS (CHAR. HOLL. OCT. HEX)

42 i
Lttt bty P +
! information ! token type !
L e bttty pomm e ———— +
59 18 o

FORM 3 tokens are the character data tokens, 0.CHAR
and O.HOLL.. Bits 59 thru 18 contain information about
the character datay, i.e. the T.CHAR ordinal of the
actual character strings the number of words and
characters in the character string, etc¥®,

FORM 3 examples:

LOWKEY = 'MISTER' // 'GREENJEANS'

—mmpmw—— ee——— drm————
! !
o + !
B i e +
P
b pom e to-———- +
L S information '0.CHAR!
! L il bbbt tom-—- +
t
! S e bbbl bl fom———- +
i ! ! 1
------ > information '0.CHAR!
L e et bt tem———- +
59 18 0o

# See DESCRIBE/DEFINE definitions of “TB." symbols in
FTINTEXT for more information about character token
formats.

B-3-49



M6

TOKEN VS TOKEN

l.et us now consider a few 0f the more fundamental
relationshiFs that tokens have between sach other in
the token butfer (T.TB). Consider the statement:

WAYTODLONG = ((A+1y¥#F2)
The variable name WAYTOOLONG is way too long for a

single 0.VAR token, which can only contain up to 7
characters.

Consequently; WAYTOOLONG bscomes 2 toksnss
e it Frme——— +
WA Y T O O L !'D.VAR !
At ettt L o —— +
e ———— tem————— +
'g N G 3 oz & & lQuvAR !
o ——— e +

This means that the statement processors have to be
smart enough to know that multiple 0O.VAR tokens
represent a single variable name. This “overflowing”
is only possible in FORM 1 tokens, i.e. with variable
name (0.VAR) and numeric constant (0.CONS) tokens.

Figure 3.16€ shows the entire statement entokened.

B-3-50



WAYTOOLONG = ((A+1)¥#20) M?

tom e e +
o ! '0.80S !
pom e e +
1 'W A Y T O O L !'D.VAR !
et e +
2 'O N G : : : i !0.VAR !
e et +
3 ' 10.=
e tmm—m=- +
4 : 10.LP !
5 * 10.LP !
e pommmm- +
& A I r r T :r 1 I0.VAR !
fom e pomm—-- +
7 : '0.PLUS!
e TR et +
8 ''1 1 i : : : : '0.CONS!
e pommmm- +
) : I0.RP !
e e +
10 ' '0.STAR !
e tomm-- +
11 '2 0 : : : : : !'D.CONS!
Fomm e $omm—m- +
12 a '0.RP !
fomm e e +
13 ! '0.E0S !
e e +

Fig. 3.16€. Example of an entokened statement

Note via figure 3.1€ that, in contrast to the double
D.VAR tokens which represent one variable name, the
double O.LP tokens (ordinals 4 and 5) will be
interpreted by the statement processors as being 2
left parentheses.

KEYWORDS

No distinction is made between FTN keywords and
variable names during token generation. Kevywords are
variable names as far as TOK is concerned.

B-3-51



Consider:
PRINT 100

which becomes

e —————————— tmm———— +
! 'g.BOS !
R ettt ettt bt o ——— +
i P R I N T 1 0O 10.VAR 1
Lt B L L S LT L pom———— +
L & I . 4 . . : 'g.VAR
Lintnintedetaiededndeiniaiabnlebuiedf Fo————— +
! '0.E0S !
et tm————— +

The distinction between keyword/variable name and
between PRINT/100 is made later when the statement
typing mechanisms are invoked®. This is done to free
TOK from having to concern itself with FORTRAN's
down-right weird keyword syntax.

Consider the confusion that could arise during token
generation if all keywords were to be special cased:

PRINT 1,AHHH keyword
vs
PRINT1 = AHHH replacement

IF(YECH) GOTOD100 2 keywords
ve
IF(YECH)=GUTO100 replacement

and on,y, and ony « .« . .
LEARNING TOCEL

TOGGEL (Token Gensaration Language) is the set of
COMPASS macros, or language, if you prefer, for
describing token generation. Visually, it looks
somewhat like any one of the glut of popular
"top-down” programming languages on the market today.

# See 3.3.2.5 Design/Executives/CST and Statement Typing.

B-3-52



M9

This sub-section is very tutorial in nature. It does
not discuss how TOGEL works internally (i.e. how TOCEL
is implemented). If looking for the “"hows" of
implementation, see 3.2.4 Design/Executives/TOK snd
Token Generation/TOK - Token Generator, and see 3.3.3
Design/Supporting Details/Using COMPASS to Compile
TOGEL..

GROUP (0..2)
IFT (HLR?
CALT XXX
GROUP (-..)
ELST

etc
Fig. 3.17. Sample TOGEL program

The main difference between TOGEL and all those other

languages is that you can't do anything with TOGFL but
generate tokens. It is very specifically oriented +to

the generation of FTN tokens {(handy, huh . . .).

Before diving into the mechanics of hgw to use TOGEL,
one might be interested in the why to use TOGEL. Why
complicate token generation by requiring the lsarning
of one more eminently forgettable language? There are
2 reasons: flexibility {(i.e. fixability), and
conciseness. Token gensration is difficult to read
and understand in COMPASS because it is, by its very
nature, yery tight code. Consequently, the
reader-of-code becomes inundated with the details of
registers and low level logic. TOGEL allows one o
take a small step (but a step nonetheless) back so
that one can see all the logic of token generation in
a single eyeful. In this way, it is easier for a
human to critically analyze the praoblems of token
generation, and to soglve them at a sufficiently high
enough level that they will remain solved {(i.e. not
Just buried}.

TOGEL does not pretend to be complex or espteric. It
is yvery simple. TOGEL "instructions" are "executed"
sequentially in the fashion that all programnmers are
familiar with. In fact, each TOGEL instruction/macro
¢ould be replaced with actual COMPASS instructions
(although they're not, primarily for space-efficiency
reasons’.

B-3-53



TOGEL. has one verb: GROUP; a number of +low control M‘“
mechanisms: IFT, ELST, ENDT, CALT, and GOTO; and the
special entokening mechanism: CASEQOF, TOKEN, and

ENDC. The remainder of this sub-section discusses

each of these "instructions" in detail.

GROUP

The GROUP verb can be thought of as a character
function. The basic 1dea behind it i1is the ability to
"group” consecutive characters in a left-to-right

scan. The characters, or range of characters, that
gan cccur within a particular “group® are specified

an argument in the GROUP verb.

as

Consider a line consisting of the characters
AABAAACBD

First, an invisible, internal pointer is set to the

beginning-of-line (i.e. to the 1st character in the

line).

AABAAACBD
i

The command
GROUP (A
which reads, "group all the A characters”, produces:
group # contents source line

1 AA AABAACED
i

Now the command
GROUFP (AB)

which reads; "group all the A and B characters”,
produces:

group # contents source‘iine
1 Al AABAAACBD
i
2 BAAA AABAAACBD
]

B-3-54



Alternately, given: \h\\

AABAAACBD

the command:
GROUP (A..C)
which reads, "group the characters A thru C*, produces:
group # contents source line

1 ' AABAAACE AABAAACED
i

The 2 characters .. are interpreted as indicating a
range of characters.

For example
GROUP (A..CK..N?

is read, "group the characters A thru C, and K thru N
(i.e. ABCKLMN)". Character ranges are circular, that
is

GROUP ( j3;:A)
is equal to
GROUP ( ..A)

In addition, the .. operator has a default range. If
the "from" operand is missing, its default is the 1st
character in the character sets "%, and if the "to"

operand is missing, its default is the last character

"oH

in the character set, HN

Therefore:

GROUP (..2Z) equals GROUP (:..2}
GROUP (A..) equals GROUP (A..3)
GRDUP‘(..) equals GROUP (:..3)

Besides the .. operator, TOGEL has another special
operator. If a - character occurs as the first
tharacter in a GROUP specification, then the entire
specification is logically negated.

B-3-55



For example M’Z

GROUP (-AB)

reads, "group everything byt A and B", which is
equivalent to

GROUP (C..2)
The GRUUF command can also be invoked with or without
blank squeeze. I+ the NSQZ option/parameter is
specified, then blanks (SSB) will not be ignored
{detaulit is 5@Zy i.e. blanks ignored’.
For example, given:

ABCD
the statement

GROUFP {(A..C),,8Q7
would produce:

group # contents source line

1 ABC ABCD
1

While the statement
GROUP (A..C),:NSQZ
would produce:

group # contents source line

1 A ABCD

1
Now consider the statement:
THE=COW=JUMPED=0VER =THE =MOON
Keeping the structure and format of FTN tokens in

mindy, it can be seen that it is desirable to "group
these characters in the following manner:

B-3-56



chara

cters/groups

THE

Cow

JUMPED

OVER

THE

= i Vh‘iﬁﬁ

tokens

0.VAR
O.EQUAL
O.vaRr
0.eGQUAL
0.VAR
0.EGQUAL
0.VAR
DO.EQUAL
0.VAR
0.EQUAL

O.VAR

Mi3

variable name
equal operator
variable name
equal operator
variable name
equal cperator
variable name
equal operator
variable name
equal operator

variable name

This can be performed with the following TOGEL program:

GROUP
GROUP
GROUP
GROUP
GROUP

GROUP

GROUP
GROUP
GROUP
GROUP
GROUP

which can

LooP

(A..2)Y
(=)
(A..2)
(=)
(A..2)
(=)
(A..2Z)
(=)
(A..Z)
(=)
(A..2)

be cptimized as follows:

GROUP (A..2)

GROUP (=)
GOTO LOOP

group #

SOV ~NOU W

Lol e

It is pretty easy to see that,

group is destined to become a token.
line is scanned from left-to-right,
built into aroups that become tokens. So.

in FTNG,

contents

THE

COW

JUMPED

OVER

THE

MOON

each GROUP

As each source
characters are
in general,

a single type of token is generated for each
n' of the verb GRDUP.

"executio

B-3-57



A distinction is made here between "a single type of
token® and "a single token®. A single type of token
may consist of more than one consecutive token (i.e.
consist of more than one CM word), all of which will
have the same token type (i.e. "0." value in bits O
thru 17).

Also, the words "in general® are used because there
are exceptions to the rule in FORTRAN, particularly
when dealing with tricky syntactic tokens such as the
Hy Ly or R character data representations.

W4

The token type (0. symbol) that a GROUP group is to
have can be specified as the 2nd parameter on the
GROUP command/macro:

I+ a token type is specified, the bits O thru 17 of
the token to generate will contain the token type
(0.CONS in the above example). Bits 53 thru 18 will
contain the “grouped" characters®,.

ELOW _CONTROL =-_I1FT, ELST. AND ENQT

TOGEL. is intended to be used as & block structured
language, where the IFT, ELST, and ENDT mechanisms
work in the usual manner (the suffix T is used to
avoid conflicts with the COMPASS pseudo-ops).

IFT is used to test the character that terminated the
most recent GROUF group.

¥ See previous sub-section entitled FTN Tokens for a
description of FTN's tokens.

B-3-58

Mi4



For example, givens

BYE = YalLL

then the command:
GROUP (A..2)
produces:
group # contents sogurce line

1 BYE BYE = YALL

The "=" character terminated the GROUP (A..Z). This
character can now be tested for via the IFT command:

IFT (=)
or perhaps via the more general:

IFT (+..2)
where the character or range of characters to test ¥f
is specified. IFT character ranges have the same
syntax as GRDUP character ranges, and the following
THEN-ELST-ENDT block ranges are conditionally
“executed" in the appropriate manner.
Consider the 2 different source lines:

BYE = YALL BYE123

] ]

The following TOGEL program allows the programmer to
do one of two things:

line 1 GROUP (A..2Z)
2 IFT (=)
3 GROUP (-..)
4 GROUP (A..Z)
5 ELST
& GROUP (0..9)
7 ENDT

B-3-59

Mi15

or



Mi6

group # contents source line
1 BYE BYE = YALL
2 = BYE = YALL
3 YALL BYE = YaLL

Or for BYE123:

group # contents source line
i BYE BYEL1Z3
=4 123 BYE1Z3

Concerning the character range in GROUP (-..}); line 3
of the preceding TOGEL program: Because of the
internal timing involved with “grouping" characters,
the GROUP command glways forms a group of at least one
character. Therefore GROUP (-..), which reads, "group
not everything (i.e. nothing)", forms a group that
ctontains only one character. Another way to look at
this is to consider that a character that terminates a
GROWUP group (testable via IFT) glways becomes the 1st
character of the next GROUP group.

This inconsistency exists for efficiency (i.e. speed)
reasons. The GROUP processor does not want to have to
test for the null group before "grouping”. This can
be considered similar to the zero trip DO loop problem
in FORTRAN. See Design/Executives/TOK and Token
Generation/TOK - Token Generator.

#3434t

GUTQ_AND_CalT

The first of these two instructions is pretty
self-explanatory. GOTO will transfer control to the
specified label within a TOGEL program.

For example:

LABEL GROUP (A..C)

GOTO LABEL

B-3-&0



N1

The CALT instruction is used to invoke special user
code when situations arise where the programmer wants
or has to use COMPASS 4o get the job done.

For example:
CALT PUPPIES

will force the token generator to suspend “reading®
TOGEL instructions and transfer control of the CPU +to
the address PUPPIES. When the programmer's own code
is finished doing whatever, it should transfer control
to TOK=MN. This will return control back to the token
generator and the TOGEL program in progress.

For example:

GROUP (0..3)
IFT (HLR)
CALT TOK=HLR
GROUP (..),,NSQZ
ELST

etc

This TOGEL could be used to process the Hy, L, or R
data representations which use an sxplicit character
counts as in: 13HHELLO...HELL{. The code at TOK=HLR
will convert the previously entokened character count
(13 in our example) to binary, and then "dink" up
TOK's pointers so that the GROUP (..),,NSQ7 will group
the appropriate characters (HELLDO...HELLD in our
example).

Registers are yepy tight in TOK and it is the CALT
user's responsibility to make sure critical registers
don't unwittingly get clobbered. Be careful.

COMCTOK contains 2 utility subroutines that can help
alleviate some of the "tight register" problem. They
are: SER (Save Entokening Registers) and RER (Restore
Entokening Registers). It is probably a good practice
to use SER and RER for all CALT user owncodes. It is
IMPORTANT to note, however, that SER and RER. do NOT
save and restore register A& (next address to store a
token). This is due to the fact that it is not alwavs
possible to tell whether the "next token to store® is
at (A€) or (AG+1l). See SER and RER in COMCTOK.

B-3-61



CASEDF. TOKEN. AND_ENDC N2

These instructions are used together and essentially
define a character map technique for generating
certain tokens (usually simple operators) as quickly
as possible.

Their structure is as follows:

CASEDOF (Cl..Cn}
TOKEN token type 1
TOKEN token type 2

TOKEN token f&pe n-1
TOKEN token type n
ENDC

where CASEOF and ENDC define the boundaries of the
character map, and each TOKEN reference defines »
token which can be potentially copied to the token
buffer.

It works like this. . . First, the CASFOF statement
contains a range of characters (Cl1..Cn) that specifies
the first and last characters in the character map to
follow. When the CASEQOF statement is encountered in a
TOGEL program, the binary value of the character that
TOK is pointing to is biased by C1 and then used as an
ordinal into the character map. That character map
(TOKEN) entry contains a skeleton token which is
picked up and copied to the token buffer. Voila . . .
a token is born. The token type (0. symbol) that
defines each token in the character map is specified
as a parameter on each TOKEN instruction/macro.

Consider the following pictorial representation of how
CASEQOF-TOKEN-ENDC works for a particular example:

B-3-&2



CHARACTER %4 HELLS, BELLS

A N3

+ ......
!
! Fommm e +
: ' e
Vv v !
# + e
47B - 45B = 2 CASEOF (+...)
! 45B+0 TOKEN PLUS
! +1 TOKEN MINUS
$-->  +2 TOKEN STAR ------ +
+3 TOKEN SLASH !
+a TOKEN LP !
5 TOKEN RP ;
+€ TOKEN DOLLR !
+7 TOKEN EGUIAL !
+10B TOKEN BLANK !
$11B TOKEN COMMA !
+128  TOKEN PERIOD !
ENDC !
1
;
et EEE R RSP +
!
Vv
pommmm e +

' 0.8TAR token !
' copied to !
! token buftfer !
! (T.TB)Y '

Fig. 3.17a. Example of CASEOF-TOKEMN~ENDC char map

B-3-€3



Now consider:

N4

LOOP GROUP (A..Z),VAR
CASEQF (+...)

45 TOKEN PLLUS +
4€ TOKEN MINUS -
47 TOKEN STAR #*
50 TOKEN SLASH /
51 TOKEN LP (
52 TOKEN RP }
53 TOKEN DOLLR 3
54 TOKEN EGUAL =
1N TOKEN BLANK
5& TOKEN COMMA y
57 TOKEN PERIDD .

ENDC

GOTO LOOP

Fig. 3.18. TOGEL example

which could be used to entoken a hypothetical language
that consisted of alternating variable names and
simpley single character operators.

Consider a statement in such a language:
ALEPH = BETH + GIMEL

The TOGEL in figure 3.18 would produce the following
tokens:

ALEPH = BETH + GIMEL
L s S

1
0.B0S --=¢ ! !

]

]

i

The 0.B0OS and 0.E0S tokens are always invisibly
generated and act as delimiters for the sntokened

statement.



NS

The CASEDF, TOKEN, ENDC mechanism always advances
TOK's internal pointer that points to the next
character in the source line.

For example, given:

ALEPH = BETH + GIMEL

1
then the statements:

CASEQF (+...)
TOKEN PLUS

TOKEN POINT
ENDC

generate an O0.EQUAL token,; and result in:

ALEPH = BETH + GIMEL

Our simple language of variable names and single
character operators can now be expanded to:

LooP IFT (+...)
THEN
CASEOF (+...)
TOKEN PLUS
TOKEN MINUS
TOKEN STAR
TOKEN SLASH
TOKEN LP
TOKEN RP
TOKEN DOLL
TOKEN EQUAL
TOKEN BLANK
TOKEN COMMA y
TOKEN PERIOD .
ENDC
ELST
GROUP (A..Z),VAR
ENDT
GOTO LOOP

HEd~ ~ KL+

which entokens syntaxes involving consecutive single
character operators, such as in:

B-3-€5



NG

Cam s skm e s M T s eE sem P RE ST e SR I Em e sem b s s

D.EDS =mmmmmmmmm e e e +

Now suppose our hypothetical language is to have
multiple character operators, such as ¥¥
exponentiation. This can be encoded in TOGEL via a
end parameter on the TOKEN instruction/macro. This
end parameter is used to describe multiple character
operators in terms of other fpkens. Emphasize igkens.

For example, to describe ¥#¥ sxponentiation, use:

CASEDF (+...)

TOKEN PLU +
TOKEN MINUS -
TOKEN STAR #
TOKEN EXP,(STAR,STAR)  *#*
TOKEN SLASH /

ENDC

This TOGEL states that the D.EXP token is defined to
be 2 consecutive 0.8TAR tokens.

B-3-66



Understanding why multiple character operators are
described in terms of fgkens and not gharacters
requires some knowledge of the internal
workings/philosophy of TOK. For more information, ses
Background/Problems and Solutions/Multiple Charactser
Operators, and see Design/Executives/TOK and Token
Generation/TOK - Token Generator.

In any case, 1 do not believe that this is the
appropriate place to delve into this subject. Pleass
merely accept for the time being that describing
multiple character operators in terms of other tokens
is the most desirable (i.e. optimal) approach to this
problem.

W33

Some multiple character aperators cannot be fully
described in terms of other tokens. For example,
consider the boolean operators .AND. and .DR., which
both consist of the tokens O.PERIOD, 0.VAR, O.PERIOD.
The critical difference is the characters that
constitute the 0.VAR tokens. The TOKEN macro has a
special syntax for these fellows:

CASEQF (+...)
TOKEN PLUS

TOKEN PERIOD
TOKEN AND, (PERIOD,VAR'AND',PERIOD)
TOKEN OR, (PERIOD,VAR'OR',PERIODN)
ENDC

where the actual characters to check for are enclosed
in ('').

Specifying the actual character string check via the
(") syntax is only meaningful when used with FORM 1
tokens¥®., If used with FORM 2 or FORM 3 tokens,
unpredictable, or rather, unusual results can be
expected. Don't do it.

See the previous sub-section entitled FTN Tokens for a
description of FORM 1, 2 and 3 tokens.

B-3-&7



d. TOK_ - TOKEN GENERATOR NB

TOK is the executive for token generation, and exists
as a common comdeck, COMCTOK. It accepts as its input
a source line to entoken, and a tahle generated at
assembly time by the TOGEL macros¥® that describes how
to entoken. If one thinks of TOGEL as a pseudo
compiler (written in COMPASS's macro language), ithen
this table can be thought of as TOGEL's "object
module®, called TOM for short,

Each TOM consists of a sequence of binary TOGEL
instructions that can be “executed® by TOK. Each
binary TOGEL instruction occupies a single CM word and
has the following general format:

42 ig8
e ettt et T P —— +
! other stuff ! opcode !
R ettt o ————— +
59 i8 O

Fig. 3.19. TOGEL binary instruction format

A typical TOM, therefore, would take the form:

42 i8

e, - ——— +

word O ! ! opcode !
R el e D ettt L o ——— +

1 ! ! opcode !
D it D e e o ——— +

=4 ! ! opcode !
o ————— e ———— +

S A el DL b D S R bl Ll T +

n-1 ! ! opcode !
e ittt - +

n ! ! opcode !
Fomm e e e ——— +

5e i8 (8]

Fig. 3.20. TOGEL object module (TOM) format

* TOGEL macros exist in comdeck COMATOK. See previous
sub-sections in this section, 3.2.3
Design/Executives/TOK and TOKEN Generation, for more
information about TOGEL.

B-3-€8



TOK will step through the TOM it was giveny S
"executing® each binary TOGEL instruction as it is

encountered.

TOK can therefore be thought of as a machines that
executes binary TOGEL instructions from a TOM
conceptually much in the same fashion that 3 hardware
CPU executes a program object module. In "da bizniz",
a software program that performs in this way is
generaliy called an jinterpreter.

TOK is structured with a main driver, TOK=MN,
surrounded by functional units (TDOFUs} which do most
of the work. TOK=MN acts as a focal point during
token generation, and is responsible for reading
instructions from TOM and farming each one out to its
appropriate TOFU. TOFUs are totally independent of
one another: there is one TOFU for each binary TOGEL
instruction that the TOGEL macros can generate.

pomm—————— + pommemm + tommm - +
! ! ! ! ! !
! GROUP ! ! IFT ! ! GROUP !
Po(sezZy ! ! ! '(NSQZ) !
pommm—m——— + o + po——————— +
A A A
! ! !
P L T +
L
Pom——————— +
TOM ! !
-------- > ! TOK=MN !
'{driver) !
pommmm— +
L
Pom——==- —======% ! feeeeeeeeeoo——o T
! ! !
v v v
e + Pomm—————— + Fommmm - +
| L i ! t ¥
! GOTO ! ! CASEOF ! tCALT !
i i 1 1 ' 1
tommmm———— + pom——————— + P +

Fig. 3.21. TOK's structure, showing TOFUs

After a TOFU has performed its specific task, it will
return control back to TOK=MN so that the next
"instruction” can be "read® from TOM. This process of
“reading” and "interpreting” continues until the
entire source line has been entokened, at which time
TOK returns control back to the caller.

B-3-€°9



## npte *H N]D

Only € binary TOGEL instructions . . . what happened
to ELST-ENDT, and TOKEM and ENDC? The ELST-ENDT
structure gets converted by the TOGEL macros into
GOTOs in the normal way (i.e. via the standard
compiler cop out).

For example:

IFT (A..2)
GROUP (A..2Z)
GROUP (0..9D)
ENDT
becomes:
T F
IFT (A..2) -—4 =%
1 1
GROUP (A..Z2) <-+ i
GOTO .2 1
i
-1 GRDLJP (O- -9) < ------ +
.2 etc

The ENDC macro is merely used to force assembly of its
preceding TOKEN macros (i.e. it is required because of
the way the macros work). It generates no code. See
3.3.3 Design/Supporting Details/Using COMPASS to
Compile TOGEL.

The TOKEN macro does generate "code" to the TOM, that
is processed/used by the CASEDGF TOFU. In fact, TOKEN
can be thought of as a sub-structure of the CASEDF
instruction. BSee the sub-sub-section in this
sub-section entitled, TOK=COF - CASEOF Instruction.

3%

In the interest of clarity, and at the risk of being
redundant, I would like to emphasize that binary TOGEL
instructions specify operations that are to be
performed hy TOK ypon the input source line. In a
crude sort of way, they represent the pyles that are
to be used to translate/convert any input source line
from its packed (10 character per word) form to its
entokened form.

B-3-70



N1l

TOK works very closely with the BUB/BUN character
access method which is used to make the actual
character accesses upon the input source line. In the
*lingo”® of TOGEL, these routines are capable of
GROUPing characters in an entokenable form. TOK's
various TOFUs will call BUB and/or BUNM when they need
characters from the input source line. BLB and BUN,
therefore, are slaves to TOK's various TOFUs, which
are in turny, slaves to the TOM driving them.

Fommmmmme +
CoTom
! !
pomm—tmm——t

!

!
pomm—pmmmmt
1 !
' TOK=MN !
§ i
pommmpmmmt

!

!

pommm e pommmm e +

] !

' TOFUs !
et SRR e
1 1 l ]
l ! - - - ! '
] ! 1 1
et S et S

] ]

e pommmm e +

%
pommmpom——t
1 3
! BUB/BUN !
1 i
e +

Fig. 3.22. Entokening routines hierarchy

B-3-71



N12

INTERNAL _POINTERS/REGISTERS

TOK has a set of global internal pointers that
describe where it is entokening (i.e. where we are in
the input source linel), wheprg it is entokening to
{i.2e. somewhere in T.TB), and where it is in the TOM
that is running the show.

These pointers are kept in registers whenever
possible, and are saved in memory when necessary.
These pointers are the rsason that TOK is so tight on
registers. Registers are used as much and as long as
possible so that TOK will run as fast as possible.

A& COMCTOK caller provides a parameter list, called
TOKCOM (TOK communications area), that contains the
initial values of these internal pointers/registers.
One of the first things TOK does is to transfer
appropriate TOKCOM entries into TOK's global
registers. During the entokening of a source line,
TOKCOM is used as a place to dynamically
materialize/save these global registers when
necessary. Registers are materialized/saved in TOKCOM
when either registers get too tight to get the job
done, or if COMCTOK is running in TEST (i.e. debug)
mode. In TEST modes, TOKCOM is updated in TOK's main
loopy, TOK=MN, before gyepry TOGEL "instruction® is
executed. This feature can provide an “"audit trail®
that can be useful in debugging.

Because TOK has a dissociated internal structure (i.e.
TOFU's are invoked independently of one another, based
entirely on what is in the TOM being
executed/interpreted), these internal pointers
constitute a common bond between all the parts.

Most of TOK's global pointers/registers are also
BUB/BUN global registers (i.e. COMCTOK and
COMCBUB/COMCBUN work hand-in-hand very closelys and
share common registers).

The only register that is unique to TOK (i.e. BUB/BUN
don't know anything about it, except that they must
leave it alone) is AO. Register AQ is TOK's pseudo P
register. It points to the next binary TOGEL
instruction to execute in TOM. Therefore, when within
a particular TOFL, the instruction Reing
executed/interpreted is at AQ-1.

B-3-72



INDEX

SECTION A: OVERVIEW N1 6
MF
1.0 COMPILER STRUCTURE B5
2.0 GLOBAL DATA STRUCTURES B13
3.0 COMDECKS F8

73]
=
«Q
3
b=t
(=]
2
[v-]

1.0 TEXTS F15
1.1 FTN5TXT F16
1.2 COMPLTXT G5
1.3 CCGTEXT G6
2.0 CRADLE ROUTINES G8
2.1 FTN G9
2.2 UTILITY : Gl12
2.3 PUC G15
2.4 LINKAGE DECKS H2
2.5 PEM H9
2.6 ALLOC H71
2.7 SNAP INTERFACE ROUTINES H14
2.8 IDP Il
2.9 INITIALIZATION ROUTINES I12
3.0 FRONT END ROUTINES J5
3.1 FEC Jé
3.2 FERRS J13
3.3 LEX J16
3.4 HEADER Bll
3.5 KEY Bl4
3.6 CDDIR C
3.7 DATA Cé6
3.8 DECL Cl2
3.9 TYPE D3
3.10 FMT D5
3.11 10 D10
3.12 PAR ES
3.13 CONRED Fl4
3.14 STMTF G5
3.15 LABEL G6
3.16 FSKEL Gil
4.0 QCG G13
5.0 REAR END ROUTINES I15
5.1 REC 116
5.2 RERRS J2
5.3 FAS J3
5.4 MAP K4
5.5 LIST L2
6.0 CCG L9
6.1 CCGC L10
6.2 GSKEL L16
6.3 CCG ROUTINES M1
6.4 BRIDGE M8

4237P - 0193P/0196P



	B01
	B02_001
	B03
	B04_A-1-4
	B05
	B06
	B07
	B08
	B09
	B10
	B11
	B12
	B13_A-2-1
	B14
	B15
	B16
	C01
	C02
	C03
	C04
	C05
	C06
	C07
	C08
	C09
	C10
	C11
	C12
	C13
	C14
	C15
	C16
	D01
	D02
	D03
	D04
	D05
	D06
	D07
	D08
	D09
	D10
	D11
	D12
	D13
	D14
	D15
	D16
	E01
	E02
	E03
	E04
	E05
	E06
	E07
	E08
	E09
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	F01
	F02
	F03
	F04
	F05
	F06
	F07
	F08
	F09
	F09_A-3-1
	F10
	F11
	F12
	F13
	F14_B-0
	F15_B-1-1
	F16
	G01
	G02
	G03
	G04
	G05
	G06
	G07
	G08_B-2-1
	G09
	G10
	G11
	G12
	G13
	G14
	G15
	G16
	H01
	H02
	H03
	H04
	H05
	H06
	H07
	H08
	H09
	H10
	H11
	H12
	H13
	H14
	H15
	H16
	I01
	I02
	I03
	I04
	I05
	I06
	I07
	I08
	I09
	I10
	I11
	I12
	I13
	I14
	I15
	I16
	J01
	J02
	J03
	J04
	J05_B-3-1
	J06
	J07
	J08
	J09
	J10
	J11
	J12
	J13
	J14
	K01
	K02
	K03
	K04
	K05
	K06
	K07
	K08
	K09
	K10
	K11
	K12
	K13
	K14
	K15
	K16
	L01
	L02
	L03
	L04
	L05
	L06
	L07
	L08
	L09
	L10
	L11
	L12
	L13
	L14
	L15
	L16
	M01
	M02
	M03
	M04
	M05
	M06
	M07
	M08
	M09
	M10
	M11
	M12
	M13
	M14
	M15
	M16
	N01
	N02
	N03
	N04
	N05
	N06
	N07
	N08
	N09
	N10
	N11
	N12
	N16

