B1

INTERNAL MAINTENANCE SPECIFICATION

FORTRAN V5

PROPRIETARY INFORMATION

This document is part of a software product which is the
property of Control Data Corporation and is proprietary to
it. Distribution is restricted to customers having a valid
license for the use of the software product; use and

disclosure of information in this document are governed by
the terms of the license.

77987506A
0148P-0030A/0103P

These registers are more appropriately discussed
within the in-code comments for COMCBUB, COMCBLN, and
COMCTOK. See the preambles to these COMDECK's for
details. The most important thing to know at this
point is that TOK is extremely register driven.

TOK=MN_-_MAIN DRIVER

As was previously stated, TOK=MN is responsible for
reading the next binary TOGEL instruction to
execute/interpret. It knows which TOFU is to process
a particular instruction because the gpgode in bits O
thru 17 of each instruction is actually the address of
the appropriate TOFU.

42 i8
pom e pmmm e +
to 'TOFU addr !
e pommmm e +
59 i8 18]

{compare with figures 3.19 and 3.20)
Bits 59 thru 18 contain information that the

appropriate TOFU needs in order to do its job, and
varies with each instruction.

TOK=GS = GROUP ...2.5Q2

TOK=GS is the TOFU that is invoked when the following
binary TOGEL instruction occurs.

1) i8 i8 ig
e LT tomm——mmm e pommmmmm e +
! ! O.xxx 'mask addr ! TOK=GS !
pom—dmmmmmm e tmm———————— e +
59 54 3& i8 8]

Fig. 3.23. GROUP,...y5QZ TOGEL instruction format

This "instruction” performs a TOGEL GROUP with blank
squeeze, TOK=GS calls BUB (Burst/Build with Blank
Squeeze) to perform the actual GROUP. The "mask addr®
in bits 18 thru 35, defined by symbols TG.MXAP and
TG.MXAL, is the address of a shift mask that definss
the characters that BUB is to GROUP together.

B3

An understanding of how BUB and BLIN work is assential
to an understanding of how bits 18 thru 35 are used.
Briefly stated, this shift mask contains a bit
position for every character in the character set.

BUB will GROUP all the characters that have their
respective bit in the shift mask ON. In this way, the
programmer is able to selectively specify to BUBR which
characters are to be GROUPed. See 3.3.3
Design/Supporting Details/BUB-BUN Character Access
Method.

"O.xxx" in bits 36 thru 53, defined by TG.TOTP and
TG.TOTLy is the token type (i.e. U. symbol value) that
BUB is to associate with this GROUP.
For example, the TOGEL macro:

GROUP (0..9),CONS,S5G7

would assemble as:

& 18 i8 i8
tr—mtr e —————— e ———— e ——— +
! ! g.CONs ! Ralaid U TOK=GS !
e ——— e ——— P ———— +
]
- e +
!
L bttt el ettt +
+->2!1shi+tt mask with bits for O thru 9 ON!
et ikl D et +
Fig. 3.24

IQKEQN-:—GBQ%LLLLLNSQZ

TOK=GN is invoked for the following binary TOGEL
instruction.

1) i8 18 18
i P ——— Frm——————— +
! ' O.xxx 'mask addr ! TOK=GN !
el o e ————— P ——— +
59 54 3& i8 o]

Fig. 3.268. GROUP,...;NSQZ TOGEL instruction format

This instruction performs a TOGEL GROUP with no blank
squeeze, and is very much the same as TOK=GS except
that it calls BUN (Burst/Build with No Blank Squeeze)
to do the actual GROUPing.

B-3-74

B4
IOK=GO_=_GOTO

TOK=GO is invoked when TOK=MN encounters the following
binary TOGEL instruction.

24 18 18
e pommmmmm o pommmmmm o +
: ' addr ! TOK=GD !
pommm o tom——mm o pommmmmmm +
53 36 18 o)

Fig. 3.26. GOTO binary TOGEL instruction format
TOK=GO merely transfers control of the interpreter to
the binary TOGEL instruction at "addr® by setting
TOK's pseudo P register (register AO) to “addr".

For example, given:

Fr e — e tom e ———— +
word O ! ! ogpcode ' <-4
o ———— e ——— + !
1! ! opcode ! !
e ittt L) - ————— e ————— + !
2! '0 ' TOK=GOD ' --~-+
e e ——— Prm———————— +
3! ! oaopcode !
e, ————— +

and assuming that P = word 3, meaning that TOK is
executing/interpreting the instruction at word 2%,
then TOK=GO will set P = word Q0. This will force
TOK=MN to "read" the instruction at word O as the next
instruction to execute/interpret.

* Remember that TOK's pseudo P register points to the
next instruction to execute. Therefore, while within
a TOFUY, the instruction being executed is at P-1.

BS

IQKEQQE_:_Q&SEQE_L;J.;.E

TOK=COF is invoked to process a CASEQOF-TOKEN-ENDC
structure when the following TOGEL instruction occurs:

COA = 1st character in CASEDF range (represented in
host character set, i.e. display code for
FTN). E.g. for CASEDOF (A..Z}y COA would be
- S

C0Z = 1last character in CASECF range in a "rotated
character set" representation. E.g. for
CASEOF (A..Z)y CDZ would be "Z" (but npot a
host character set "Z"; see below).

TAD = address of TOKEN character map for this CASEQF.

Fig. 3.28. CASEDOF binary TOGEL instruction format

Because CASEDF processing is so detailed, this
discussion is approached at two levels. The first is
an overview that introduces the internal structures
involved in CASECF-TOKEN-ENDC processing. It is
assumed that the reader understands the TOGEL for this
{i.e. that the reader understand what we are frying to
do). The second level is considerably more detailed
and discusses how these internal structures are used
by TOK=COF.

Overview

TOK=COF uses the CASEQF-TOKEN-ENDC structure +to
generate a single token for the character that the
token generator is pointing to when TOK=COF is called.

For a CASEOF-TOKEN-ENDC, the TOGEL macros (in COMATOK)
generate a binary TOGEL instruction as in figure 3.2B
to the TOM, and also generate 2 auxiliary "tables"
that are used to determine what token to generate for
a character within the CASEDOF range.

B-3-7¢&

---------- ; B6

L St e Attt +
oot ! opcode !
L e e R +
- ! opcode !
. Sntuiatate tommm——— tom——— e tommm—————— +
v oAt Ccoz el ! TOK=COF !
TOM-+ +=-=---- tomm———— e P +
} i
! . Fom e e +
! - 1
L e tommm—————— + !
L ! opcode ! !
L e P m———— + !
1
1
et e ittt + !
+--! St +
Pt TOKEN table !
==t !
Pl e e +
Pt
e +
R e !
! ! TLINK table !
=== !
L e i e e +

*

Fig. 3.29. TOM-TOKEN-TLINK structural relationship

The first table, the TOKEN table, is merely a
character map that contains a token situation for each
character in the CASEDOF range. In the simplest case,
the character to generate a token for is used as an
ordinal into the TOKEN table to pick up a token
skeleton that is copied to the token bufferi,

The second table, the TLINK table, is used to
determine whether or not the character to entoken is
involved in a multiple token sequence. The TLINK
table provides the information necessary to Kknow
whether a multiple token sequence has occurred and
what to do if one does occur.

It should be noted that the TLINK table is only
generated by COMATOK for TOKEN entries that are
describing multiple token syntaxes.

See figure 3.17a and related text.

For example, for the TOGEL:

CASEDF (+../)

TOKEN PLUS + ==t
TOKEN MINUS - Al Sttty TOKEN
TOKEN STAR * Sl |
TOKEN EXP, (STAR,STAR) i N
TOKEN SLASH / L==4 +-TLINK
TOKEN CAT, (SL.ASH,SLASH) /7 ==+
ENDC

COMATOK will generate a TOKEN table consisting of

- PLUS, MINUS, STAR, and SLASH; and a TLIMK table

" consisting of EXP and CAT. 1If the EXP and CAT entries
in the above TOGEL had been left out, then ng TLINK
would be generated.

It can also be seen that TOKEN and TLIMK are
conceptually different structures: TOKEN is a
character mapy i.e. it is used to map a single
ctharacter into a token. TLINK is a fgken maps i.e. it
is used to map a sequence of tokens in the token
buffer into a new token.

TOKEN and TLINK are related as follows. After TOK=COF
has used the character to entoken as an ordinal into
the TOKEN table and picked up an aspropriate token
skeleton, it checks the LNK field in this skeleton® to
see if this token is involved in a multiple token
sequence. If so, the LNK field points to the
beginning of a linked_list in TLINK that describes all
the multiple token syntaxes/sequences that this token
is involved in.

TOK=COF will move through this linked list checking to
see whether the token buffer contains any o+ the
syntaxes/sequences that are described here. If it
finds a match, then a replacement token is extracted
from TLINK and copied to the token buffer. GSee

figure 3.29.

The previous paragraphs have (it is hoped) given the
reader a cursory overview understanding of the
structures involved in processing the)
CASEOF-TOKEN-ENDC structure. The primary intent of
these paragraphs is to clearly distinguish in the
reader's mind the nature of the difference between the
TOM, the TOKEN character map, and the TLINK syntax
table; and to briefly describe how these structures
relate to the TOGEL that generated them.

¥ Defined by symbols TK.LNKP and TK.LNKL.

B-3-78

3‘3.2.5

3.3.3.1

CST and Statement Classification

CST determines the nature of the current statement and
sets flags for the +front 2nd main loop. CST must handls
two classes of statement, semantically defined (IF.DO,
assignment, etc’ and keyword statement. During the
entokening process, several cells are maintained which
keep the status of nesting level of parenthesis, sxistence
and location of ‘=' and ‘;'. These cells are used to
determine the nature of the semantically defined
statements.

BUB/BUN Character Access Method

The BUB/BUN character access method consists of 2
subroutines, each of which exists as a common comdeck:
COMCBUB - Burst/Build Characters with Blank Squeeze, and
COMCBUN - Burst/Build Characters with No Blank Squeeze.
Together,y, they constitute a general purpose discipline for
efficiently accessing display code (& bit) characters.

a. GROUPS QF CHARACTERS

As I saw it, one of the fundamental problems
encountered during the manipulation of characters was
the need to be able to transform characters from their
“operating system”" format of 10 characters per word
into groups that are meaningful to any particular host
program. For example, in the following:

HELP IS ON THE WAY

the “"groups” are the individual English words . . .
the blanks are only meaningful as word-separators.

Whereas,; in the FORTRAN:
NO HELP = FROM 4+ HERFE

the “groups" are the individual variable names and
operators . « « the blanks are meaningless to a
FORTRAN compiler.

This “grouping” of characters is the process of
bursting characters from their raw 10 character per
word format and building them into meaningful, or
perhaps said more appropriately: useful, groups of
characters. .

B-3-79

3.3.3.2

B9

LEEI_TQ _RIGHT

Given an input source line in packed

(1C character/word) format and a starting character
position in that line, a3 call +to BUB or BUM will form
a single group of characters. BB will burst/build
characters, ignoring blanks; and BUN will burst/build
characters, ignoring nothing.

This introduces a heretofore unmentioned, implicit
assumption in most lexical scanning: left to right.
BUB and BUN burst and build characters from left 4o
right.

For example, given:

THE MANAGERS ARE COMING, THE MANAGERS ARE COMING . . .
]

a call to BUN specifying the alphabetic group., would
produce:

THE MANAGERS ARE COMING, THE MANAGERS ARE COMING . . .

t
and return to its caller, the group:
MANAGERS

Those of you who have already been there will notice a
startling similarity between a BUB/BUN group and a
TOGEL GROUP. See 3.2.4 Design/Executives/TOK and
Token Generation/Learning TOGEL.

C3 Statement Processing

This section discusses CP (compiler directive) statement
processing, as it relates to LEX. The actual "parsing”" or
statement processing for C% statements occurs in the deck
CDDIR, and is not discussed here.

e

THE_ERQEBLEM

The first compiler directives came along relatively
late in the evolution of baoth FTN (TS and OPT)
compilers. They could be used for dynamically turning
on and off the compiler-generated source listing.

B-3-8B0

I+ the compiler detected: B'U
C/ LIST(NONE)

on a source line., source listing was suppressed
{unlessy of course, a statement was found to be in
eprrory etc, 2tc). And if:

c/ LIST(ALL)

occurread on a source line, source listing would be
turned back on.

One of the major challenges of this scanner design was
to lick the "C/ LIST"ing logic problem.

THE_SOLUTION

The solution to the compiler directive problem in
lexical scanning involves the following: firsts the
exiernal specification of compiler directives was
chosen yepy carefully, and second, LEX was structured
in such a fashion so as to easily accommodate listing
logic pathologies.

Compiler directive lines were made to "look® like
comment lines for ANSI portability, but they very
purposely do not ggt like comment lines. Compiler
directives may pngt occur within a continuation
sequence. That is, the following is illegal:

CALL ING SOAT1S LIST (NONE?
+ (ALL, CARS)

B-3-81

3.4 HEADER: Process Program Unit Header Statements

Abstract: HEADER contains statement processors for the
PROGRAM, FUNCTION, SUBROUTINE and BLOCK DATA
statements; for LOADER directives and code to
manufacture a header for program units that don’t
begin with a header statement.

Interfaces: HEADER routines are called by the front end main
logop and indirectly interface the system with

console and dayfile messages. HEADER resides on the
(0,0), (1,0) and (2,1) overlays.

Data Structures Header defines no data structures, but
utilizes several of the managed tables.

Routine Descriptions

a. BKD: BLOCK DATA statement processing. Entered from FEC
main loop. BKD provides a default name if the BLOCK
DATA block is unmamed. A call is made to DCM for
processing and exit is to the front end controller.

k. FCT: FUNCTION statement processing. Entered from FEC
main loop. If the function statement is not of the
form ‘type FUNCTION name ()‘, FCT calls STY to set
the implicit type. Then DCM and TSB are called to
process the statement. Exit is to the front end
controller.

c. PPG: PROGRAM statement processing. Entered from FEC main
loop. PPG calls DCM and PPA to process the program
statement.

d. LCC: Embedded loader directive processing. Handles

embedded OVCAP and OVERLAY directives. The
entokened directives are recombined in Hollerith
form and saved on a managed table. A turple is
output to the parse file indicating the existence of
the directive. (The directive will later be ocutput
as part of the loader input file.) Any errors found
will be output. Exit is to the front end controller.

e. PGSF: Process special first statement. Called by FEC main
loop when the first statement of a program unit is
not a header statement. The program unit will be
treated as a program with name ‘START.‘. A warning
diagnostic to this effect is published. A pseudo
token buffer is dummied to allow the default files
“INPUTY and ‘OUTPUT’. PSF calls DCM and PPA to
process the ‘statement’ and exit is to the front end
controller.

B-3-82

EPA:

SUBROUTINE statement processing. Entered from FEC
main loop. BSUB calls DCM and TSB 1o process the
statement. Exit is to the front end controller.

Display Compiling Message (and a lot mored). DCM
enters the program unit name in the symbol table,
including the sttributes known at header processing
time. Errors and inconsistencies are diagnosed. An
entry in the managed entry point table is made and a
header turple dis putput. Finally, the
conscle/dayfile ‘COMPILING type name’ message is
output. (NOTE: This routine probably ought to be
renamed. J

Process buffer length or maximum record length.
Called by PPA 1o process the various constant forms
which can represent the above lengths. Provides a
binary value of the translated constant and an error
indication as required.

Process Program Arguments. Called from PPG and
PSF. PPA provides a syntactic processing of the
program statement file list, diagnoses errors,
enters the named files inte the symbol table
(including translated buffer and record length
information, as applicable) and outputs a file
turple for each file. The number of files are
tounted and, if the system limit is exceeded, a
diagnostic is output. At completion of file
processing, entry code turples are output and some
compiler generated symbols are defined foar system
externals.

Process Subprogram Arguments. PS5A is a general
argument processor used to process subroutine,
function and entry statement argument lists. PSA
handles the building and resolution of the various
parameter lists allowed by ANSI77. First it calls
SAL 1o scan the current argument list. This will
result in the arguments being placed in the managed
argument table. The argument table is then scanned,
building a local argument list table. NCM is called
to scan the local argument list into the entry point
table {(managed). If the entry is unique, the eniry
point table is updated and, in any case, the symbol
table entry for the function, subroutine or entry
name is updated with a pointer to the associated
parameter list.

B-3-83

k.

SAL:

WSAL

Scan Argument List. SAL is called by P5A to provide
syntactic processing of the argument list and to
provide a list of names of the arguments. GAL
processes each argument in turn, adding symbols to
the symbol table where necessary and diagnosing
syntactic and semantic errors which occur. The name
is added tp a local parameter list and duplicates
are diagnosed. If the argument didn’t appear in a
previous formal parameter list, a formal parameter
information table (managed) entry is made. A cross
reference table entry is made. Alternate return
parameters are noted.

Translate Subprogram Begin. Called from FCT and
SUB. Calls PSA to process the argument list.
Outputs start of executables turple and makes a
symbol table entry for the system exit.

Wrapup Subroutine Arguments. WSA makes symbol table

entries as needed for system externals pertaining to
faormal parameters used as actual parameters.

B-3-84

Bl4

3.5 KEY: HKeyword Statement Processing

Abstract: KEY contains statement translating routines and
subroutines for the ASS5IGN, CALL, CONTINUE, END,
ENTRY NAMELIST, PALISE, RETURN, STOP, GOTO, IF,
ELSEIF, ELSE and ENDIF statements.

Interfages: KEY is a front end'deck and resides on overlays
(O’O)y (1;0) and (211);

Rata Siruciures

KEY detfines noc data structuress but has communication celis and
t z

ilizes several of the managed tables.

Rouiine Descriptions

a. AGN: ASSIGN statement translation. Since the ASSIGN
statement is syntactically awkward, ASL is called *o
extract the expected label, which is processed by
ISL for semantic correctness. The imbedded keyword
TO is tested and stripped by ASK and the assign
variable is semantically tested by TRV. Any
syntactic or semantic errors result in diagnostics.
An ASSIGN turple is output and an entry is made into
the ASSIGN managed table, combining the assign label
and assign variable. Exit to front end controller
via PSL.

b. ¢CLL: CALL statement translation. The subroutine name is
checked for semantic validity, and a symbol table
entry is created (or modified as necessarvy). The
presence of an argument list is determined, and if
present, a call to PAR is made to process the list.
Upon return from PAR, the turple for the subroutine
is outputy and if alternate return labesls cccurred,
a GOTO turple for the returns is output. Exit is to
the front end controller via PSL.

c. CRL: Call statement return label processina. CRL is a
subroutine used by the parser when an altsrnate
return label is encountered in a parameter list.
The alternate return label(s) had been kept on the
statement label argument table, pending completion
of the translation of the call parameter list. CRL
makes a gensrated label for the returns and adds it
and all the alternate return labels to the managed
argument table.

CONTINUE statement translation. COM diagnoses
trivial uses of the CONTINUE statement (e.g., as
object of a logical if) and exits to the front end
controller via PSL.

END is entered from the FEC main loop and provides
some end of program unit functions. I+ the listing
(control statement?) options were modified by a
universal C% listing directive (LIST,.NONE},
attributes and references are turned off. If flow
was into the END statement, a return or end turple
is output, as applicable. If formal parameters were
presenty 8 call to WSA completes their processing.
MND is called to materialize namelist dimensions and
exit is to the front end controller.

ENTRY statement translation. ENT checks the entry
name for semantic correctness and the statement for
legal position within the program unit (e.g., not in
a program, not in a do loop). The entry name is
added to the entry managed table and an entry point
turple is output. The argument list is processed by
PSA and exit is to the front end controller, via PSL.

NAMEL IST statement translation. NAM translates a
NAMEL IST statement into an entry in the namelist
managed table. The group name is syntactically
checked and entered in the symbol table. The group
header is put on the namelist table. Each variable
on the namelist list is tested for validity and
entries are made on the namelist table (including
dimension information for arrays). Exit is to the
front end controller.

PAUSE statement translation. FPAU merely calls SPR

proper turple. Exit is to the front end controller,
via PSL.

RETURN statement translation. RTN is a sementic
testing routine. It checks the type of program unit
being compiled to determine if an alternate retiurn
form is legal, and if not (and an alternate return
as specified) corrective action is taken. - I+ an

B-3-8€

B15

grdinary return, a return turple is output. If the
return was the appended statement of a logical i+,
RIT is called to restructure the if (front end
optimization). 1If a legal aliternate return (in a
subroutine) is present, PJX is called to parse the
return clause and output the turple. Exit is 1o the
front end controller, via PSL.

STOP statement translation. STP calls SPR to
transiate any appended message and output the proper
turple. Exit is to the fraont end controller, via
PSL.

GOTO statement translation. GOT (with GDA and GOC)
translates syntax and semantics of the three types
of GOTO statement. Upon entry from the FEC main
loopy, the nature of the GOTO is determined. GOT
processes unconditional GOTOs. ISL is called to
semantically test the label and if the GOTD is
appended to a logical ify RIT is called to reset the
target. Processing of the goto turple is deferred,
via the HANGER mechanism. Upon return from the
hanger processor, the goto turple is output or a
diagnostic reflecting the lack of need for the
turple is issued. GOA processes assigned GOTOs.

The goto variable is semantically tested and if a
label list is present, a loop is used to test
syntactic and semantic (via ISL) legality. An
assigned goto turple is output and exit is to thea
front end controller via PSL. GOC processes
computed GOTOs. The label list is scanned (but not
translated) counting the number of labels. The goto
expression is then parsed (via PJX) and the computed
goto turple cutput. Then the label list is
translated, using ISL for semantic testing and for
each label, & goto label turple is output. Exit is
to the front end controller, via PSL.

ELSE/ELSEIF statement translation. Entered from FEC
main loop on either ELSE or ELSEIF. Coalls FIB to
finish off the previous block if 'arm’'. I+ the
statement was ELSEIF, exit to ELF. Otherwise, mark
the current block structure entry that ELSE occurred
and exit to the front end controller, via PSL.

B16

Ne

0.

P-

9.

EIE:

IES:

iEL:

IET:

Finish processing ELSEIF statement. ELF calls PAR
to translate the logical clause and checks the
presence ot the keyword THEN. The relational
gxpression returned by PAR is semantirally tested
and CIM is called to produce an IF megaturple. Exit
is to0 the front end controller via PSi..

ENDIF statement translation. EIF pravides semantic
processing for the close of a block IF. An illegal
nesting of block IF/DO loop is detected, and the
offending structure(s) removed (in this case, any
unterminated DO loops) by RBE. FBS is called +o
finish off the block structure and the required
generated label turples are output. The block if
entry is removed from the block structure table.
Exit is to the front end controller via PSIi..

IF statement translation. IFS calls PAR to
translate the if clause. Upon return from PAR, the
nature of the if is determined. Arithmetic ifs are
processed by IFL and block ifs by IFT. If the if
clause is logical (and the if is not a block if) the
appended statement is classified by CST and tested
for legality as an if appendage. If legal, CIM is
called to output the if megaturple and exit is to
the front end controller.

Label (arithmetic) if. IFL checks the label list
for correct syntax and semantic (ISI.). TP. format
operands for the labels are saved and processing is
deferred via the hanger. Upon return from hanger
processingy the label list is analyzed and the
proper (optimal) if turple is selected. Seleciion
is based upon repetition/uniqueness of labels and
the fall through possibility provided by the hanger
label check. Exit is to front end controliler via
CUS.RET (hanger processor).

IF () THEN (blaock IF) processing. IFT calls CIM to
output an if megaturple and adds an entry to the
block structure table {(managed) for the block. Exi+t
is to the front end controller, via PSI..

C1

G2

r. CIM: Construct if megaturple. The subroutine CIM
determines if the expression returned by PAR was a
simple relational (e.g., IF(A.EQ.B)). If so, that
relational expression is used as the first turple of -
the if megaturple (modified in place on the parse
file). I¥ noty the first turple is made and
output. In either case, the second turple is made
and output, completing the megaturple.

Sa B: Finish i+ block. FIB is called by ELSE/ELSEIF
statement processor to provide some semantic tests
and to update the block structure table entry for
the current block. ELSEFELSEIF statements not in s
block IF structure are diagnosed. Illegal nesting
of block IF/DD loops are diagnosed and any
unterminated DO loops are removed from the block
structure table. FBS is called to process the block
structure table entry. Generated label and branch
turples are output as required.

t. (CEM: Check entry point mode. CEM is a routine called by
ENT to determine the semantic correctness of an
entry point name. A function subprogram type may
not differ from its entry type if either are type
character. Further, if both are type character, the
character length must agree. CEM diagnoses
deviations from these rules.

u. MNR: Materialize namelist dimensions. MND is called from
the END processor. A scan of the namelist table is
made. Each namelist group name which appeared in an
1/0 statement has its list scanned. For each array
in the corresponding namelist list, the dimension
table is marked to be materialized. This will cause
run time dimension table information to be output
with the binary.

ve. PJX: Parse jump expression. PJX calls PAR to process an
expression used to compute an index into a list of
labels.

a8.

C=pJX:

o
4
-4

SRJ:

C3

Parser interface routine for PIJX. Tests the parsed
expressign for integer, and if not, calls CMR +o
coerce the mode to integer. The indexed jump
operator and the operands are set up for standard
turple output and return to PAR is at POP.STD.

Reset if target. RIT is called when a RETURN ar
unconditional GOTO is appended to & logical IF
statement. The branch condition is reversed and a
branch is thereby eliminated. Conversion is in
place on the parse file. This is a front end
optimization.

Compile end instructions. SER is called by END (and
RTN when in a program). Sets up for end routine
processing and calls SRS for compilation of
instructions and AP list.

STORP/PAUSE compilation. SPR is called by PAll and
STP to translate the message argument, if present.
The constant argument is tested for legality and a

TP. format operand is set up for SRJ which is called
to output the RJ and AP list turples.

Select RJ. SRJ is called by SER and SPR to output
turples for the stop/pause/end functions. EAL is

called to output required AP list turples and the

proper system routine name is selected for the RJ

turple which is output.

G4

Abstrackt: CDDIR translates the C¥% COlLLATE, DO, IF, ELSE, ENDIF
and LIST directives.

3.6 CDDIR: C3 Directive Processing

Interfaces: CDDIR, based upon the status of control statement
options and translated C% directivesy modifies
working copies of the option control cells. This
can affect source listings, compilation of portions
of a program unit, code generation and character
collating weights. A front end routine, CDDIR
resides on overlays (Q,0}), (1,0) and (2,1).

Rata Siructures

CDDIR defined data structures consist of tables used to
translate the directive parameters and are described by the
relevant routines.

Routine Descriptions

a. CQL: Translate COLLATE directive. COL verifies the
syntax of the COLLATE directive and outputs a
collate directive turple and updates the working
copy of the collate control cells. Exit is to the
front end controller.

b. DQ: Translate DO directive. Calls TCP to translate the
directive parameters. Upon return, the status of
the parameters is tested, and the relevant working
status cells are updated. A do directive turple is
output. Exit is to the front end controller. The
table FW.DO contains the directive parameter texts
and return status cells.

Translate IF directive. IFD defines the format of
the CHIF table. 1IFD processes the FTNS conditional
compilation directive IF. The FEC bypass stage is
tested to determine the status of conditional
compilation. (If in bypass mode, the directive
still must be stacked, but marked inactive so that
else and end if directives assaciated with it will
not improperly start or stop compilation.) If the
directive is active, PKX is called to parse the if
tlause. The expression must be reduced to a logical
constant. If the expression is .true. (or in bypass
mode already) exit is to the front end controller.
If the expression is .false., compile mode is set to
bypass and exit is to the front end controller.

f
L]

B-3-91

F.

h-

LIST:

ICE:

Translate ELSE directive. ELSE checks the syntax
and semantics of the ELSE directive. If the CSIF
table entry is marked inactive, nothing is done. If
the group is active, the opposite active taken by
the corresponding IF directive is performed. If
currently in bypass mode; the previous stage is
restored and compilation resumes. If currently
compiling, bypass is evoked. Exit is to the front
end controller.

Translate ENDIF directive. ENDIF checks the syntax
and semantics of the ENDIF directive. The CSIF
tabie entry for the group is removed. I+ the
current group is inactive, exit is to the fraont end
controller. If the compiler is in bypass mode, the
previous stage is restored and compilation
continues. Exit is to the front end controller.

Translate LIST directive. LIST calls TCP +to
translate the LIST directive parameters. A table,
FW.LIST, containing directive parameter texts and
return status cells is used by TCP. Upon return
from TCP, the list parameter status cells are tested
and the corresponding working copies of the control
statement cells are updated. For any LIST directive
to be honored, the corresponding control statement
must have been selected. Some of the options
require action beyond updating the working cells.
LIST(O) requires an object list directive turple.
LIST(R) requires reset of the ERT switch. LIST(S)
may require listing the deferred buffer.

Get directive label. GDL is called by the
conditional compilation directives to obtain the
label, if present. The label is made available for
the C3PIF table entry.

Translate CP parameters. Using the parameter table
provided, TCP translates the parameter list for a C$
directive. The parameters requested are tested for
legality, and if of the P=C forms, PKX is called to
translate the parameter constant. Irregularities
result in diagnostics. Processing continues until
the parameter list is exhausted.

B-3-92

€5

3.7 DATA: DATA Statement Processing

Abstrackt:

Interfaces:

DATA provides routines for the translation of the
DATA statement.

DATA uses the I0 list processing routines to
translate the data variable list. DATA is a front
end routine and resides on overlays (0,0), (1,0}
and (2,1).

Rata Struciures

a. HMACRUS/ DATA defines local macros and micros to aid the

MICROS:

b. Cells:

c. Dla:

d. DQR¥I:

word 1

word ¢

word 3

translation of the data statements. The macros
and micros relate to token interpretation.

The DATA cells contain information flags and values
pertaining to the DATA processing status.

Describe/define for the data initialization list
pointer table. Contains the pointers to the start
of a data variable list and its associated data
constant list.

Data variable information. As each data variable
item is processedy, a three word entry in DVI cells
is made with the following format:

- S w E—an . - - ——— e W W W W -~ - -

m

“~
o

m

8
o e

~

~

~

~

~

~

~.

~

~

~

~

~

~

~

™~
RT3

D

WB. symbol table word (see global data structures)

- . - —— ——

S - single/double precision flag
BASE - ordinal of base member

ORD N ordinal of symbol table entry
ELS - element size

Ssu substring size

ABU - additional bias

Construction of output block control words.

B-3-93

C6

Routine Descripiions [:7

Se

Ca

RATALE:

BlL.:

DATA processor error exit. DATA.E provides
generalized error recovery from diagnostics
noted during processing a DATA statement. The
relevant data information tables are trashed and
any constants generated for the data statement
in error are removed from the constant table.

I+ any implied do's were generated, their block
structure table entries are removed. Exit is to
the front end controller.

DATA statement translation. DATA is the main
loop for translating a data statement. First, a
call to BDL groups the statement into pairs of
data variable list - data constant list. Then
DATA loops to process each pair of lists, first
translating the constant list (BIT), then
translating the variable list (PV.), then
publishing the information to the intermediate
language file via PDI. Exit is to the front end
controller (via the cleanup function of DATA.E).

Build data list pointers. BDL scans the DATA
statement, via STD, using the constant list
slashes as delimiters. The slashes are replaced
by end of statement tokens (in the token buffer)
to aid list processing routines. A data
initialization list pointer table entry is made
for each variable-list constant list pair.

Gross syntax errors are detected (mismatch of
variable and constant listy null lists, etc.).
BDL is called once per data statement by DATA.

Scan to delimiter. STD is called from BDL to
provide the actual scan of the lists. STD
examines each token in the token buffer, until
the desired delimiter is found (or end of
statement, an error). The address af the
delimiting token is returned to the caller. If
a left parenthesis token is encountersed, STD
skips to the matching right parenthesis tokens,
speeding the scan.

€.

¥.

9.

h.

BII:

BvL:

C=DVL:

ERI:

c8

Build data item table. BIT builds a constant
pointer list (on the data item table) for a
single data constant list. Each item in the
constant list is translated into the proper
binary form. (Hollerith and character constants
are already in binary form, so the pointer is
merely extracted from the token.} The constants
are scanned into the constant table, and the
pointer to the binary is used to form the data
constant table entry (mode and length are the
other fields). The constant delimiter is tested
and processing continues or terminates (comma or
end of statement marker). Unsigned integer
constants receive special processing. When
found, the delimiter is tested for a replication
factor token. I+ such a token is present, the
constant is used to form a replication entry in
the data constant list. BIT calls several
subroutines to process the variety of constants
which may appear in the constant list.

Process data variable list. PVL is a subroutine
that controls translation of the data variable
lists. Called from DATA once for each data
variable list present. PVL calls CVL (IO, 3.11)
to process the variable list. The resultant
list turples are then interpreted by SED
(CONRED, 3.13) to simulate exscution. This
latter step is required by the general form of
implied loops allowed in data variable lists.

Parser interface for data variable list items.
C=DVL. determines the variable legality (must be
scalar, array or array element; cannot be blank
common, etc.). If the list item is within an
implied do, collapse information is merged in,
as applicable. A data variable turple is output
to the parse file.

Emit data initializations. EDI is called by the
CONRED simulation routines. Calls SDV to set up
the data variable item and NIC to organize
linear progressions.

i'

Je

NIC:

QRH:

=0Y:

WBH:

c9

Output linear index pattern. NIC is called by
EDI to provide the actual simulation of data
variable list implied do's. NIC is entered with
the implied loop's trip count determined. This
will be the number of data items consumed by the
loop. NIC analyzes the implied loop, trying for
contiguous blocks of storage, and in
conjunction, tries for replicated data items.

If such conditions exist, NIC will reform the
replications to fit the contiguous storage. The
end result will be data table entries +to
correspond to the loop and its associated data.
The output (to the data table) formatting is
performed by subroutines described below.

Output scalar header. 0OSH updates the S. cells
for data header initialization. If a previous
data header is present, it is finished by a call
to UPH. The length value asscciated with the
data variable item is converted from elements to
storage units (words for all but type character,
which is character count). The header
information known is output to the data
information table (DA. format).

Output replication header. ORH calls 0OSH to
provide the DA. header word and then creates the
DB. header for replication information. The S.
cells are updated to indicate the status of the
block in progress.

Output value of item. OV1 enters the binary of
a data item list constant into the data
information table. If mode coersion is
required, CMV performs this service.

Set up data variable. SDV analyzes the symbol
table entry for a data variable list item and
sets up the DVI cells accordingly.

Update previous header. UPH tests the S. cells
to determine if the previous data block was
complete. If so, no action is taken.
Otherwise, the information in the S. cells is
used to update the header word{(s) on he data
information table. The S. entry is marked as
complete.

—is o

Chv:

Add constant to data item table. ADC is called
by BIT to process constants encountered in &
data constant list. ADC process already
converted constants (Hollerith and character) by
extracting the constant table pointer from the
token. Arithmetic constants are converted by a
call to TNK and scanned into the constant table
by ASI.

Add symbolic constant 1o data table. ASC is
called when a symbolic constant (parameter) is
encountered in a data constant list. The symbol
table entiry for the constant is anlyzed and &
DI. format data item table entry is produced.

Add scalar item. ASI takes the binary of a
converted constant and scans the entry into the
constant table. ASBI returns a DI. format data
item table entry.

Check for complex constant. CFC is called when
a left parenthesis is followed by a token which
tan be part of a constant. CHC is called to
convert the first half, comma delimiter is
tested and CHC is called to convert the second
half of the constant. The resultant binary of
the real and imaginary parts is returned (or a
failure indicatiomn).

Convert half of complex constant. CHC is a
coroutine of CFC. CFC guides the constant
conversion process, kKeeping track of sign,
decimal points, etc. DEC is called to convert a
constant, CSC 1o fetch the value of a symbolic
constant and KCV to convert an integer to real.
If nonconstant elements are found, exit is to
the CFC failure processor.

Coerce mode of value. CMV is called by data
variable list processing and PARAMETER statement
processing to convert the constant mode to the
mode of the associated variable. Inconsistent
conversions are daignosed (e.g., logical -
nonlogical). The new constant is entered in the
constant table and a DI. format entry is
returned.

Complex parameter reference output. Called by
CFC to output cross reference information when a
PARAMETER is used as half of a complex

constant. Needed for timing of the reference
output.

B-3-97

CRL:

Iy
10
Iy

I

I
1

Close out replication list. CRL is called when
BIT notes the end of & list of replicated data

items. The data item table replication header

is updated to reflect the length of the list of
data constants.

Check repeat constant. CRC is called by the

data constant list processor when a replication
constant is noted. The constant is semantically
tested for type and value and irregularities are

diagnosed.

Check for symbolic constant. CSC is called by
BIT when a variable token is encountered in a
data constant list. A symbol table scan is
made, and if the name is not that of a symbolic
constant, failure is flagged. If the name was
that of a symbolic constant (parameter), CSC
returns information pertaining to the constant
value.

Get next item. GNI is called by NIC when
processing the data variable list match up with
the data item list. GNI tests the current
replication state, and returns the proper
constant pointer (from the data item table) and
decrements the replication count, as necessary.
If the next item is not in a replication group,
the item is returned and the table count is
adjusted accordingly. If replication was in
effect, and the current GNI call exhausts the
list, that is noted.

C12

Abstiract: DECL. contains statement translating routines for the
COMMON, DIMENSION, EQUIVALENCE, EXTERNAL, INTRINSIC,
LEVEL, PARAMETER and SAVE statements. DECL also
contains subroutines used for end of declarative
phase processing.

3.8 DECLL: Declarative Statement Processing.

Interfaces: DECL is a front end deck and resides on overlays
(CyO}y (1,0) and (241). The front end controller
interfaces with DECL to provide
declarative/executable phase transition.

Data Struciures:

DECL uses many of the global data structures. The usage is
described in the relevant routine descriptions. Data structures
defined by DECL are:

a. DRIMI: A storage area containing enough space for a
dimension header and dimension descriptors up to
the maximum dimensionality allowed. This area
is used as scratch storage by rcoutines not
involved in dimension processing.

b. G/E_Table: Galler/Fisher equivalence table. Used at end of
declarative time equivalence processing.

bt R il L LT t-t-temm—pmmm——— - +

! 1cigst/ ! 1 !

! Hta! /8 ! !
Gl. ! SYM1 Aty s ' RB 1 RA !

! IRIE! /! ' !

e —————————— il Db DAL LS B T P —————— +

i8 11 7 Q 24

SYMI: Index of symbol tahle WRB. entry

CHAR : Character entity

SAVE: Saved variable

RB = Relocation block

RA & Relative address

- —— - te—— e ———— E ettt it +

! ! ! . !
G2. ! LINK ! HI ! L0 !

1] 1 1

e e L D P ——————— e +

i2 24 24

LINK: Index in equivalence table

HI = Space needed above root

Lo = Space needed below root

€13

b ——————— tm———————— e ———— P ——— +

! i i i i
Fe2. ! LINK ! EDI ! BSYM l FlWa !

] H 1]]

o ———— o ——— o ———— o ——— +

iz iz iz 24

LINK: Index in equivalence table

EOL : Index in equivalence overlap table

BSYM: Index of base member ST WR.

FWAa : FWA of equivalence class

€. Gauivalence Qverlaps Table:

Used in end of declarative equivalence processing.
-+t e o e e e +
t7! : t71 ! !

OAa. /' RB '/} FWa ! LA !
e /! ! !
-t o e e e e Frm e ————————————— +

1 3 c o4 24
RB : Relocation base of equivalence class
Fla: FWaA of class
LAz LWA of class
- —————— e ——— +

OB. Y////7/777 7877777772777 77777277727777) GF1 !

- e et et +
4 ! ig
GFI1: Index of class root in equivalence table

Routine Descriptions:

a. CMN: Common statement translation. Entered from FEC main
loopsy CMN processes the common statement.: checking
for correct syntax and some semantics (doubly
declared in COMMON, dummy argument). As necessary,
entries are made in the common block name table
(T.BLK}). The common wvariables are entered in the
common item table (T.COMM). Arrays declared in a
common statement are processed via a call to DIR.
Exit is to the front end controller.

b. DRIM: Dimension statement translation. DIM is entered

from the FEC main loop when a dimension statement is
encountered. DIM merely loops on the array names
encountered, calling DIR to process the dimensions.
Exit is to the front end controller.

B-3-100

8.

f.

= 3

[w]
[]
m

cog:

c=0DB:

Q¥Be:

C14

Process dimensioned variable. DIR is called by the
common, dimension and type declaration statements to
process the dimensionality of a variable. The
variable name is tested for semantic legality. The
DIMI {(dimension holding area) is initialized and DIS
is called to process the dimensions. Upon return
from DIS8, the dimension entry is finished and the
dimension table entry is scanned into T.DIM.

Assemble dimension subscripts. DIS is called by DIR
to control processing of dimension subscripts. DIS
logops through the dimension listy, calling CDB to
process individual dimension bounds. Each loop will
produce a D1. and D2. entry for the relevant
dimension. If an explicit lower bound is present,
two CDB calls are necessary. If the bounds are
constant, the span is calculated and the product o#f
spans field is updated. If either (or both) bounds
are variable, the necessary turples for span
ctalculation are output to T.VDIM and a T.VDI entry
is made. The header is marked accordingly.

Compile dimension bound. Called by DIS, CDB
processes dimension bounds by calling PAR to parse
the expression. Upon return from PAR, the TP. form
of the expression is converted to D2. dimension
bound format.

The parser interface routine for dimension bound
expression processing. Called when a comme or right
parenthesis is encountered during bounds sxpression
parse (the ARGMODE function, see PAR, 3.12). If the
bounds expression was constant, exit is to PAR with
no processing. If an error was noted, a dimension
bound constant one is made (so that processing can
centinue?. If the dimension bound was & variasble
only, a VD. store turple is made (on T.VDIM) and
that TP. form is returned. If the bound was an
expressiony, the turples are moved from T.PAR to
T.VDIM and a VD. store turple is added to T.VDIM.
Exit is to PAR.

Dutput vardim product of spans. DOWP is called by
DIR when adjustable dimension bounds occurred in a
dimension declaration. OVP makes multisly turples,
as neededy, to provide the size of the array (in
elements). The turples are added to T.VDIM and a
VD. store turple ends the sequence. The partial
product of spans is replaced by the T.VDIM pointer.
A T.VDI entry is made, as necessary.

B-3-101

n.

OvT:

EXT:

INT:

Y

ERM:

Output vardim store turple. OVS constructs the [:]5
store turple into the VD. cell. All the turples

making up the vardim entry are analyzed to eliminate
duplicates. I+ the current entry is unigue, the

store turple is output and a T.VDI entry is made.

Output vardim turple. OVT outputs an add or
subtract turple required in calculating the variable
span. The result of the turple is returned in TP.
format.

EGUIVALENCE statement translation. EGS is called
+rom the FEC main loop to provide syntactic and some
semantic translation of equivalence statements. EGBS
enters equivalenced items on T.EQUS for further
processing at end of declaratives. The classes are
as detined by the user. Merging of classes and
common interface is deferred until end of
declaratives.

EXTERNAL statement translation. EXT is entered from
the FEC main loop to provide syntactic and semantic
analysis of the EXTERNAL statement. Symbol table
entries are made/updated as required. Exit is to
the front end controller.

INTRINSIC statement translation. INT is entered
from the FEC main loop to provide syntactic and
semantic analysis of the INTRINSIC statement.
Functions named in an INTRINSIC statement must be
defined by FTNS to be intrinsic and i+ previously
explicitly typed, the type must be confirming.
Symbol table entries are made/updated as necessary.
Exit is to the front end controller.

LEVEL ststement translation. LVL is entered from
the FEC main loop to provide syntactic and some
semantic analysis of the LEVEL statement. The level
number is tested for legality and the assnciated
list is analyzed. Common block names are marked
with level information (and T.BLK entries are made
as necessaryl). Variable names cause the relevant
symbol table entry to be made/updated. Exit is to
the front end controller.

PARAMETER statement translation. PRM is entered
from the FEC main loop to provide syntactic and
semantic analysis of the PARAMETER statement. The
parameter name is semantically tested and the
constant expression is translated via PKX. I+
necessaryy, the resultant constant is converted to
the mode of the parameter. The constant is entered
in T.CON and the symbol table entry for the
parameter is updated to reflect the location of the
constant. Processing continues for the entire
list. Exit is to the front end controller.

B-3-102

C16

o. SAaY: SAVE statement translation. S&Y is entered from the
FEC main loop to provide syntactic and some semantic
analysis of the SAVE statement. Common block name
table entries are updated with save information.
Symbol table entries for dummy arguments and local
variables are updated. Exit is to the front end
controller.

p. BCD: Process close of declaratives. PCD is called from
the FEC main loop when the current statement
entokened by LEX is the first non-declarative
statement of the program unit. PCD consists of
subroutine calls to end of decliarative semsntic
routines and trashes some tables which are no longer
needed.

9. APT: Assign pointer tags. APT is called from PCD +to
process comman block table (T.BLK) entries. When
APT is called,y, the sizes of the various common
blocks is known (equivalence information has hbheen
processed) and level information at the block level
is known. APT assigns blocks of levels 2 and 3 to
LCM/ECS depending on the machine configuration. The
length of the blocks is semantically tested. All
blocks except the program block are processed.

r. ASl: Assign level usages. ASL is called from PCD to
praocess symbol table variables as to level and
whether ECS5/LCM is to be assigned. If so. the
corresponding attribute bit is set.

s. CCCs Check character common block. CCC is called from
PCD. I+ character variables were declared, the
common block table (T.BLK) is scanned to determine
if any common blocks consist of character
variables. If so, the CB. word of the T.BLK entry
is finished and if mixed character and non-character
variables were present, a diagnostic is output.

t. CCL.: Coordinate common/level information. CCL is called
from PCD to propagate the T.BLK level information +o
the members of each common block. The level
information for each block is determined and then
the T.COMM chain is scanned, and the symbel table
entry for each member is updated.

ue. CCS: Convert character symbol. CCS is called by PCD to
convert the character offset to a word offset and
beginning character position (WC.).

v.e DRCS: Diagnose common/save variables. DCS is called by

PCD to diagnose redundant specific SAVE declarations
when universal save was declared.

B-3-103

w. QRERI:
x. EQU:
Y. ACY:
z. MCA:
aa. MER:

Sort double entry table. A shell sort (JACM 1960}
algorithm. Called by EQU to sort the squivalence
overlap table (T.EDT). Provided by comdeck COMFDST.

End of declarative equivalence processinag. EGOU is
called from PCD to provide final equivalence
processing. The T.EQUS entries, formed during
translation of the EQUIVALENCE statement(s) arse
reformatted for processing. Substring references
and subscript references are resoclved and converted
to offsets. The equivalence classes are formed into
a tree structure (via the Galler-Fisher algorithm

{CACM T7:5; 301i-3031) with the final root being the
base member, and other members being represented as
offsets from the base. The classes are then checked
for common block membership (and for semantic errors
in that relation) and, where applicable, the
individual equivalence classes are merged to form
larger classes. This will result in modification af
the base member and offset for one of the classes.
Upon completion of the merge, address (relative) are
assigned and the relevant symbol table entries are

updated.

Assumed length character vardim processina. ACV is
called by PCF to output T.VDIM and T.VDI entries for
formal parameters of type CHARACTER and assumed
{passed) length. ACY tests the formal parameter for
assumed length character and if soy ocutputs a GPL
turple and a store turple, via OVT and QVS.

Make relative common assignments. MCA is called
from PCD to provide initial end of declarative
common block processing. The common items on T.COMM
are scanned, based on the starting chain in T.BLK.
Relative addresses are assigned to sach member,; and
the size of sach common block is determined.
Semantic tests are made for CHARACTER/non-CHARACTER
variables assigned the same block, and a null common
block declared in SAVE/LEVEL is diagnosed. The
relevant symbol table entries are updated with the
block relative addresses.

Mark function as referenced. MFR is called from PCD

to set the reslevant VALUE. symbol table entry as
must be defined. For function subprograms aonly.

B-3-104

D1

bbk. PCE:

cc. BSC:

dd. BKG:

ee. SA8:

£+. VDP:

Praocess CHARACTER/formal parameter interaction. PCF
is called by PCD to provide special processing of
type CHARACTER formal parameters. A function
subprogram of type character has its associated
VALUE. treated as a formal parameter. In fact as
formal parameter number 1. The remaining formal
parameter numbers are adjiusted {(the ordinals) and
then tested (via ACV) for assumed length. As
necessaryy new 1.VDIM and T.FPI entries ars made.

Propagate save bit through common. PSC is called
from PCD after completion of equivalence processing
{31l common block mewmbers are Known’. 19C scans the
symbol table, and all members of a common block
which appeared in a SAVE statement have their symbol
table entry updated with the save indication.

Parse constant substring. PKS is called by EQS when
a substringed variable occurs in an equivalence
statement. The constant substring expression is
parsed (via PIX) and the results are returned as
t+irst slement, last element. Syntax errors are
diagnosed.

Scan array sizes. SAS is called from PCD upon
completion of all other declarative processing. The
symbol table is scanned and all arrays are tested
for legal size,y in context of the arravy assignment
in storage (LCM/ECS arrays can be larger than SCM
arrays). Errors are diagnosed.

Variable dimension processing. WVDP scans the symbol
tablea, looking for variables which appeared in
dimension bound expressions. If such a variable is
in common or a formal parameter, the VDS bit is
unset. The variable is tested for type integer, and
if not, a diagnostic is issued. The T.VDI table is
processed to eliminate front end information.

B-3-10%

02

D3

3.9 TYPE: Explicit and Implicit Type Declarations

absiract: TYPE contains statement translators for the explicit
type statements BOOLEAN, LOGICAL, INTEGER., REAL,
DOUBLE PRECISION, COMPLEX and CHARACTER, and for the
IMPLICIT statement.

Interfages: TYPE is a front end deck and resides on overlavs
(0;0)y (140) and (2,1). The header statement
processor interfaces with TYPE to process statements
of the form: type FUNCTION name().

Raia_Sircuciures:

TYPE utilizes the symbol table structures but defines only one
small structure:

TASK: TASK is the subkeyword table for the implicit type
declaration processing?

MODE : Value of mode (M.type)
LEN : Keyword length (bits}
KEY : Pointer to literal representing keyword

a. IYyp: Process explicit type. The individual kevword
processors are entered from the front end controller
main loop. The M.type value associated with the
relevant type is set (and the length for type
CHARACTER) and all types are processed by TYP. 1f
the explicit type statement is the first statement
of the program unit, a test is made to determine if
the statement is a function header. I+ soy, exit is
to KW=FUNC (with the type information) and TYP is
done. Otherwise, PSF is called to 'make' a hesader
and control returns to TYP. Each item in the tvype
list is processed as follows: If the symbol isn'+t
in the symbol table, it is entered, with the
relevant type information. If the item is
dimensioned in the type declaration, DIR is called
for that processing. If the item is already in the
symbol table, semantic checking is performed to
insure that a symbol is not doubly typed, that the
type of an intrinsic function isn't altered and that
a symbol which can't be typed (e.g. program name) is
trying. If the symbol being typed is the function
subprogram name, the main entry symbol table
information is modified. Type CHARACTER lists
require special processingy because the length can

B-3-106

Ce.

CeL:

D4

be overridden for individual symbols. After each
CHARACTER symbol is translated, its associated
length is translated, its associated length is
transiated via CCiL. Syntax errors are diagnosed, as
well as the semantic checks above.

Translate the IMPLICIT statement. IMP is called
from the FEC main loop to provide syntactic and
semantic checking of the IMPLICIT statement.
Implicit processing consists of converting the
letters and ranges of letters in the implicit
declaration into a bit mask and then merging that
information intsc the NAT.TYP table (in FEC, ses
STY[3.11). Duplicated implicit declarations are
diagnosed, as are invalid range declarations. For
type CHARACTER, the associated length is stored in

NAT .LEN.

Check character length. CCC is called when
processing CHARACTER symbols to translate the
constant length expression (or assumed length
indication). 1Illegal lengths are diagnosed as well
as syntax errors.

Crack subkeyword. CSK is an interface routine for
the implicit processor. It is called to determine
that the implicit type defined is in fact, a legal
type. CSK returns the type value (M.type) and
character length when relevant.

B-3-107

05

3.10 FMT: Format Statement Processor

aAbstract: FMT contains routines to translate the FORMAT
statement.

Inierfaces: FMT is a front end deck and resides on overlavs
(QsC)y (1,0) and (2,1).

Rata Siructures:

FMT uses T.FMT as its output and defines the following data
structures:

a. EMI=TOK: The token/character mapping and branch table.

e R s kST T +

! 1/ F! !

! DPC VAN & ADDR !

! BEVANY !

o e e at LT R +
36 1 18

DPC : Display code for the token
FIX = Indicates fixed character string
ADDR : Address of token processor

b. EMIJT: Jump table for alphabetic characters (gleaned
from an 0.VAR token). A packed table of
offsets, four per word.

c. ES.: Edit status word. The edit status word (EDSTA)
is used to guide semantic processing of a FORMAT
statement. Tests of EDSTA can determine what
portions of an edit descriptor have already beon
processed and thus, what is legal or required

subsequently.
P ————— e e +
! T 1 !
ES. ! ™ G ATTR v gCc ¢
! ipt ! !
- Rl it t-————— +
18 3 33 &

Token buffer pointer to initial token
Tab group (see below)

Attributes (see below)

Status codes (see below)

834
N

TGP (Tab group bits). On indicates current
descriptor is:

T @ T
TL @ TL
TR @ TR

B-3-108

ATTR bits. On indicates current descriptor: 06

HOL.: is a Hollerith/character descriptor

SF @ contained 2 scale factor

Sk allows a scale +factor

SGN: contained a sign (+ or =)

RPT: was preceded by a repeat count

WF @ had a width field

WR : requires a width field

DES: has been fixed (the descriptor
letter occurred)

EXP: has an exponent

EF = has an exponent field

EP allows an exponent

PER: contained a period

PP 2 allows a period

PR @ requires a period

ERR: contained an error

FIN: can have no further fields

SC (state code) bits. Semantic bits which are
set to inform the processors what portion of the
edit descriptor has been processed.

Is @ initial token state
ss @ scale factor state
RS : repeat count state
DS : edit descriptor state
WS : width field state
MS @ Mor D field state
d. TI.EMTI: Entries on T.FMT consist of the blank padded

format statement number (DPC) followed by the
blank squeszed format descriptor (as many words
as necessary’). The last word is blank filled.
All Hollerith and character descriptors are
converted to nH format.

Routine Descriptians

a. EMT: FMT is entered from the front end controller main
loop to process FORMAT statements. FMT processes
the statement label (or diagnoses its absence),
initializes T.FMT and the format build area and
initializes the FMT master loop for processing the
FORMAT descriptors. Exit is fall through to FMT=NX.

b. EMI=: FMT= is a group of small routines used to process
T.TB token which make up the FORMAT cstatement
descriptors. A brief description of the routines
follows:

B-3-109

EMT=5L:

EMT=PER:

e gmven aaven aass eason svosn

EMT=RP:

EMT=GHO:

FMT=RLC:

N 2

The controller for the FMT master loop.
Fetches the next token, determines the

nature of the token and evokes the proper
processing routine(s), using FMT=TOK.

Process a comma. Diagnoses extraneous
commas and finishes processing of any
pending edit descriptor via AED.

.

Process & colon. Finish processing of any
pending edit descriptor via AED. Exit to
FMT=8L to attempt removal of legal, but

unnecessary cComns.

Process slash. (Also the concatenation
symbol, which is treated in FORMAT as two
slashes). Finish any pending edit
descriptor via AED and restart the record
length count. Attempt removal of leyal,
but unnecessary comma.

Process a period. A semantic check of the
legality of a period in the current edit
descriptor (existence and placement) and
detects the multiple use of a period in a
single edit descriptor.

Process & plus or minus., Test the legality
of a sign in the current edit descriptor.

Process a left parenthesis. Finishes
pending edit descriptor via AED. Updates
parenthesis level {(and tests limit) and
establishes a repeat count for the level
just started.

Process a right parenthesis. Finishes the
pending edit descriptor via AED. The just
completed group has its length mulitiplied
by the group repeat count. Length is
tested via CRL. Parenthesis level is
decremented and the total length of the
just completed inner level is merged into
the next outer level.

Process quoted Hollerith string token.
Diagnoses as non-ANSI, then treats as
character/Hollerith.

Process R"* ar L"" token. Formats a
diagnostic string and takes error exit.

B-3-110

cl

EMI.:

AL e

EMT=EDS:

Process character or Hollerith token. The
lexical scanner has already merged the
value of these constants into T.CON.
FMT=CHA/HOL. determines the number of
relevant characters and builds an nH
prefix (all such constants in a FORMAT
statement are treated as Hollerith) and
then copies the content to the format

build area.

End of statement processing. Diagnoses
badly ending statements. Blank pads the
last word of the FORMAT descriptor, as
necessary. The completed FORMAT
descriptor is copied to T.FMT and T.CON is
reset to its initial state at the start of
FORMAT processing (to eliminate constants
which occur only within the FORMAT
descriptor). Exit is to the front end
controller.

Output a diagnostic for a token which is
not legal in a FORMAT descriptor.

Process a constant or variable token. This
is an interface to FMT’s inner loop, which
bursts the constant/variable information
carried in the tokens. The string is

added to the FORMAT build area via PFC and
the edit descriptor status is updated as
necessary. Exit is fall through to FMT.NX.

FMT. is a group of routines which process the edit
descriptors contained in a variable/constant token.
A brief description of these routines follows:

The inner loop controller. FMT.NX
extracts the current character to be
processed (or exits to FMT=NX when no
characters remain) and determines the
proper routine using FMTJT.

General processing of edit descriptors.

Updates the edit descriptor status words
and diagnoses irregularities. Exits to

the relevant processor.

These routines merely set the proper edit
descriptor status bits for updating the
status word. All of these descriptors
allow repeat counts (but do not require)
and thus require no special processing.

B-3-111

AED:

120
£

FMT.B: Process the BN or BZ descriptor, when
encountering @ B as edit descriptor.
Diagnose irregularities or accept and mark
as finished.

FMT.P: Scale factor processing. Determine
legality of the scale factor syntax and

mark the existence in the status word.

FMT.G: Process the S, SP or 85S edit descriptors.
Determine the edit descriptor involved and
diagnose illegal conditions.

FMT.T: Process the T, TL or TR edit descriptors.
Determine legality and set status word
accaordingly.

FMT.X: Process the X edit descriptor.

FMT.INV: Any alpha character which is not a legal
pdit descriptor evokes this routine to
issue a diagnostic.

EMT.DI

'3
an

This routine processes numeric portions of
the FORMAT descriptor. The DPC form of
the constant is converted to binary. The
edit descriptor status word is inquired as
to the nature of the current constant, and
when determined, the status word is
updated, diagnostics are issued as
required, and the value of the constant is
saved, &8s necessary.

Analyze edit descriptor. AED is celled when an edit
descriptor is completed. Based upon status bits set
by the various processors of FMT= and FMT., the edit
descriptor is tested for completeness and lack of
extraneous components. The record length is updated
by CRL, as reguired.

Check record length. Determines if described record
exceeds device capabilities. Issues diagnoestic as
required.

Process format character(s). The characters
represented by (or contained in) & token are merged
into the current build word. When a build word
fills, it is added to the build area and a new word
is started.

Restart edit descriptor status. Called when a lack

of punctuation occurs. Resets the edit descriptor
status to the initial state.

B-3-112

3.11 I0: Input/Output Statement Processing. D]O

aAbstract: I0 contains routines for translation of the
input/output keyword statements, and parser
interface routines to process 1/0 lists.

Intesrtaces: 10 is a front end deck and resides on overlays
(0;0)y (140) and (2s1). The routines in DATA (3.7
use the I0 list processing routines to process DATA
statement variable lists. '

Rata Siructures:

I0 uses the following managed tables heavily: T.PAR, T.I0ARG.
For list collapsey special T.TB token formats are used (sse
A.2.17. Additionally, IO defines the following data structures:

a. Cells: Various status cells are kept by I0,s relating to
the type if I1/0 statement involved.

b. S.]10CaALL: A table of names of FCL routines which will
provide the required run time I/0 functions.
The table is ordered, and is accessed based upon
combinations of the cell values set during the
course of I/0 statement translation.

c. EW.CTL: Table of I/0 control codes. FW.CTL is created
by rewriting the ICDEF macro and using comdeck
COMSIOC. Format is:

ADDR 3 Address of control code processor -

LEN : Length of control code (name)

KEY : Pointer to literal representing control
code.

Routine Descriptions:

The routines in 10 are organized as follows: 1I/0 statement
translators, translation support routines, parser interface
routines (for translation), I/0 list processing routines,
implied do routines.

a. BACKSPACE: Entered from the front end main loop when a
BACKSPACE statement is encountered. Sets the
S.I0CALL indicator to ‘backspace'’ and exits to
FPS.

B-3-113

b. CLOSE:

c. ENDEILE:

d. INGUIRE:

f. BEWIND:

9. EMS:
he EES:
i. PRINI:

D11

Entered from the front end main loop when a
CLOSE statement is encountered. Sets the
S.I10CALL indicator and the control code legality
mask to ‘close’ and exits to FMS.

Entered from the front end main loop when an
ENDFILE statement is encountered. Sets the
S5.10CALL indicator to 'backspace' and exits to
FPS.

Entered from the front end main loop when an
INGUIRE statement is encountered. Sets the
5.I0CALL indicator and the control code legaliity
mask to 'inquire' and exits to FMS.

Entered from the front end main loop when an
OPEN statement is encountered. Sets the
S.I10CALL indicator and the control code legality
mask to 'open’' and exits to FMS.

Entered from the front end main loop when a
REWIND statement is encountered. Sets the
S.I0CALL indicator to 'rewind’' and exits to FPS.

Translate file manipulation statements (OFEN,
CLOSE, INGUIRE). FMS provides common processing
of the control lists for the file manipulation
statements. PKC is called to translate the
control item list (using the provided legality
maskl. O0OST is called to output a default skip
turple, as necessary. SFP is called to set the
file property bits. A call to TSX enters the
relevant 1/0 routine name into the symbol
table. The 1/0 routine call is output by I0J.
I+ necessaryy, a skip label turple is output and
exit is to the +ront end controller, via PSi..

Translate file positioning statements
(BACKSPACE, REWIND, ENDFILE}). FPS translales
the various forms of the file positioning
statements, calling CUD and PKS as required to
translate the control list items. OST is called
to output a default skip turple, as necessary.
TSX enters the relevant I/0 routine name in the
symbol table. I0J is called to output the I/0
rodtine call turple. A default skip label is
output,y, as required, and exit is to the front
end controller, via PSL.

Entered from the front end controller main loop
when a PRINT statement is encountered. BSets the
S.I0CALL indicator, the direction indicator and
the default file name to 'output'. Exits to PIC.

B-3-114

REAR:

BEC:

Entered from the front end controller main loop
when a PUNCH statement is encountered. Sets the
S.I0CALL indicator and the I/0 direction
indicator to 'output'. Sets the default file
name to 'punch'. Exits to PIC.

Entered from the front end controller main loop

when a READ statement is encountered. Sets the

S.I0CALL indicator, the I/0 direction indicator

and the default file name to ‘input’. Depending
on the form, exits to PIC or PEC.

Entered from the front end controller main loop
when a WRITE statement is encountered. Sets the
S.I0CALL indicator and the 1/0 direction

indicator to 'output'. Exits to PEC.

Process implied control list. PIC processes
formatted (including free format) I/0 statements
which use a default file. The supplied default
file name is placed to T.CON via NCS. The first
item in the I/0 list is assumed to be the formet
designator and is processed by PFN. The
remaining list items are processed by LST, the
exit.

Process explicit control list. PEC processes
the control list for READ and WRITE statements.
Since the unit and format specifiers may be
keyword or positional format within the control
list, the nature of the control list is
determined. The possibility of character
expressions {(for internal files or format
designator) must also be tested. This is
accomplished by parser interface routines. When
the control list has passed to keyword format,
PKC is called to translate the remainder of the
control list. Upon completion of control list
processing, the control items specified are
analyzed and the I/0 routine to be used is
determined. Semantic analysis of the control
list determines if irregularities occurred, and
diagnostics are issued as necessary. Exit is to
LST to process the I1/0 list. .

B-3-115

D12

Ca

BUEFER:

DECODE:

ENCQDE:

nRC:

cup:

013

Entered from the front end controller main loop
when a BUFFER IN or BUFFER OUT statement is
encountered. The nature of the statement (IN or
OUT) is determined and TSX is called to enter
the proper I/0 routine name into the symbol
table. CUD is called to process the unit
designator and SFP sets the relevant file
property bits. Successive calls to PAR
translate the mode designator, the FWA and the
LiA. A call to I0J issues the call turple. Anvy
error results in termination of processing.

Exit is to the front end controller via PSL.

Entered from the front end controller main loop
when a DECODE statement is encountered. Sets
the I/0 direction indicator to 'output' and
exits to NDC.

Entered from the front end controller main loop
when an ENCODE statement is encountered. Sets
the 1/0 direction indicator to 'input' and falls
through to NDC.

Process ENCODE/DECODE arguments. The record
length argument is translated by a call to PAR.
PFN is called to process the format designator.
PAR is called again to process the string
address. LUpon return from translating the
string address, the I/0 direction indicator is
reversed and exit is to LST to process the 1/0
list.

Compile unit designator. CUD is a source
statement subroutine and is called by various
translators to process the unit designator. If
the unit designator is implied (UNIT=%), the
proper unit (INPUT or QUTPUT) is selected.
Otherwise, the unit designator is compiled by
PAR. 1If the unit designator (TP. formet)
returned by PAR is type character, the legality
of the value and the legality of an internal
file is tested. A constant unit designator is
processed by UDP. OUT is called to output the
control turple for the unit designator. Fatal
errors result in an error entry return.

I1/0 control keyword check. ICK is called hy PKC
to scan a supposed control item keyword against
the table of legal kevwords. I+ a match is
found, the kevyword table entry is returned,
otherwise, a failure indication.

B-3-116&

Y

1IC:

1QJ:

|
|

BEN:

BKGC:

Initialize I/0 control. IIC performs some 014
general initialization of cells, flags and

pointers required by various I/0 statement
translators.

Compile I/0 jump. 1I0J is called whenever an I/0
routine call turple is needed. I0J outputs the
proper 1/0 call turple (determining if the
current call is initial or restart). The
control and list item turples are flushed to
T.PAR prior to issuing the call turpls.

Cutput unit turple. OUY is required because the
FCL. requires the unit designator to be the first
I0APL item. Thus, for all 1/0 statements which
use a unit designator, space was reserved on
T.IOARG. The unit designator turple is output
to T.SCR and then copied into the proper
position on T.I0ARG.

Process format or namelist designator. PFN is
called to process the format/namelist designator
from the positional or keyword control list
processors. The S.I0OCALL indicator is updated
to reflect the various possible values. If free
format (FMT=%) is specified, only the S.IOCALL
indicator is updated. If a statement label is
specified,y ISL is called to process it. A call
to S8Y determines if the specifier is a namelist
name. Otherwise, PAR is called to translate the
designator. Upon return from PAR, the
designator (TP. format) is analyzed
semantically. Irregularities are diagnosed and
the proper control list turple is output, via
OCT.

Process keyword control items. PKC is called by
the 1/0 statement translators when the control
list is in keyword mode. IDK is called to
determine the existence of a supposed keyword
verb. If the verb is invalid, a diagnostic is
issued and processing halts. A legal verb is
tested against a mask of context legal verbs and
again, if invalid processing halts on a
diagnostic. Multiple occurrences of an
individual verb is diagnosed at this time. I+
the verb is legal, the address of the relevant
processing routine is extracted from KW.CTL and
processing continues with the individual
routines. PKC= routines are grouped by the
legal values of the arguments. Processing of
the individual arguments converges back in PKC
and the proper control line turple is output.

B~-3-117

ad.

bb.

CCa

dd.

ee.

£F.

99.

YUR:

4=BMQ0:

A=BLuKA:

C=BEWA:

C=CNT:

C=EMI:

D15

The occurrence mask is updated to prevent
multiple specification and keyword processing
continues until a closing right parenthesis is
noied.

Set file property bits. SFP is a routine called
by various 1/0 statement translators to set file
property bits for the map, attribute and cross
reference listings. I+ the listings are
suppressed, no action takes place. Otherwise,
the 1/0 statement is analyzed and the proper
symbol table entry for the relevant file is
updated with the proper attribute bits.

Unit designator processing. UDP is called when
& constant unit designator is specified. WVUD is
called to validate the constant (if not
arithmetic). Arithmetic constants are validated
and a file name is added to the symbol table, as
necessary.

Validate unit designator. WVUD is called by UDP
to semantically test a Boolean constant as a
unit designator. WVUD returns an error esxit or
valid indication, as applicable.

Parser interface for BUFFER IN/OUT mode
designator. Provides semantic check of the mode
designator. Invalid operands are diagnosed.
Exits to BUFFER via PAREXIT.

Parser interface for BUFFER IN/DUT LWaA.
Provides semantic tests for the BUFFER LWA.
Determines, when possible, the relationship of
the FWA to LWA and diagnoses invalid
conditions. Exits to BUFFER via PAREXIT.

Parser interface for BUFFER IN/0OUT FWA.
provides semantic tests for the BUFFER FWA.
Diagnoses invalid conditions. Exits to BUFFER
via PAREXIT.

Parser interface for ENCODE/DECODE string
count. Diagnoses invalid operands. Exits to
NDC via PAREXIT.

Parser interface for format designator. When a
format designator is translated by PAR (not
statement label, namelist name or free format),
C=FMT provides semantic tests for the validity
of the format. I+ no errors are noted, the
format control turple is output. Exit is to the
original PAR caller, via PAREXIT.

B-3-118

hh.

ii.

Ji.

kk.

11.

mMMa

M.

ODI

PP

a=EQU:

C=ICL:

C=1CCX

e=ICI:

C=ICIX

C=lCL:

C=10L:

a=3IR:

C=LNT:

Parser interface for unit/format designator. In
some cases, it is impossible to tell by
examining aone or two tokens whether the first
element in a control list is representing the
unit designator ar the format designator.
{Parenthesized sxpression). A=FDOU allows PAR to
parse the expression, then determine the nature
of the operand. Exit is to A=FMT or A=UNT.

Parser interface for 1/0 control items which
must be character variables. Provides semantic
tests of the parsed operand. Exits to PKC, via
PAREXIT.

Parser interface for 1/0 control items which
must be character expressions. Provides
semantic tests of the parsed operand. Exits to
PKC, via PAREXIT.

Parser interface for I/0 control items which
must be integer variables. Provides semantic
tests of the parsed operand. Exits to PKC, via
PAREXIT.

Parser interface for I/0 control items which
must be positive integer expressions. Provides
semantic tests of the parsed operand. Exits to
PKC, via PAREXIT.

Parser interface +or I/0 control items which
must be logical variables. Provides semantic
tests of the parsed operand. Exits to PKC, via
PAREXIT.

Parser interface for I1/0 list items. C=I0L
determines the I/0 direction {in, out) and if
input, calls VAI to determine the legality nf
the item. If the I/0 list item is an array item
reference, C=I0L determines if it is the target
of a partial implied do collapses and modifies
the item as necessary. If the item is an entire
arrays the size of the array is determined and
the length operand is set. Assumed size arrays
are flagged as errors. Finally, an I0APL turple
is output to T.IODARG. Exit is to IOL..RTN.

Parser interface for ENCODE/DECODE string
address operand. Provides semantic tests of the
parsed operand. Exits to NDC, via PAREXIT.

Parser interface for unit designatar. This
routine is a stub, used for conformity with the
parser's ARGMODE schema. Semantic tests are
pertormed by CLD.

B-3-113

D16

99.

'ra

S5 .

tt.

Uu «

YV

XXa

QCT:

QeT:

Yal:

all:

EIL:

LSI:

El

Check for match in T.ILI. CML is called when
processing an input list when a subscript
variable is encountered. During processing of
the listy all variables and array elements are
added (bases/bias form) to T.ILI. Whenever a
variable occurs in a subscript expression (or as
an implied do induction variable) it is test by
CML to determine if it is on T.ILI. If so, a
restart call must be issued in order that the
variable will be properly defined.

Keyword parameter error setup. HKWE is called by
the I/0 control item parser interface routines
to set up the FILL. calls properly for
diagnostic output.

Output control turple. OCT is called from the
various I1/0 control item translators to format
and output an I/0 control turple to T.IDARG.

Output skip turple. OST is called by the I1/0
statement processors to determine the necessity
of a default skip turple. If necessary, a
generated label is made, the skip turple is
output, via OCT, and a flag is set to alert the
necessity of outputting the generated label
turple.

Validate addressable item. VAI is called when
an operand must be addressable (can be stored
into} (e.g. variable, array element). & call to
DOA determines the addressability. I+ a valid
store item and the current reference defines the
item, the proper symbol table bits are set, and
DDR is called to determine if the definition

redefinsecs an active do control index.

Add input item to T.ILI. AII is called to add
an input list item to T.ILI for future test by
CML.. AII converts the item to base/bias form
and adds it to the table.

Format input item. FII is called by AII +to
properly format the item for inclusion on T.ILI.

Process I/0 list. List is entered from the 1/0
statement translataors which can have I/0 lists.
It also processes DATA statement variable

lists. The transition from control list to I/0
list is performed (syntax checks) and DOST is
called to output a default skip turple, as
necessary. The control items are finished and
initialization is performed prior to calling CVL

B~-3-120

yy. QWS

zz. RCB:

aaa. DCC:

bbb. 2OB:

to actually process the list. Upon return from EZ
CVvL, the 1/0 statement compilation is

completed. A call to I0J flushes T.IODARG to

T.PAR, the terminal I/0 call .turple is issuead

and the generated label for the default skip is
issued, if needed. A call to DIL provides the
necessary sequence break and exit is to the

front end controller, via PSL.

Compile input/output/data variable list. CVL
sets status calls pertaining to I/0 list
processing and calls I0OD to mark any implied
dos. After the preliminaries, CViL loops on the
list items, calling PAR to process simple items.,
and transferring to special 1/0 routines +*a
process do begin, conclusion and collapse

items. Upon completion of 1/0 list processing,
CVL tests for unterminated implied dos and
cleans up any loose ends.

Do collapse begin. DCB is entered from the CVL
loop when a do caollapse begin token (O.DCBI) is
encountered. If the final collapse level was
variable, a multiply turple is issued for the
block move size operand. All collapse affected
subscript variables are set to the initial value
by issuing store turplss. All turples issued
are to T.PAR. Return is to the CVL loop, with
the token cursor pointing at the object array
token.

Do collapse conclusion. DCC is entered from the
CVL loop when a do collapse conclusion token
(0.DCCI) is encountered. DCC merely resets the
token buffer pointer past the final 0.DCCI token
and returns to the CVL loop.

Do begin. DOB is entered from the CVL loor when
an implied do token (O.DORI) is encountered.

DOB first calls IDC to perform collapse
analysis. I+ complete collapse was performed,
exit to the CVL loop is immediate. Otherwise.
the token buffer pointer is set to the implied
do control variable and CDI is called %o
translate and compile the implied do. Upon
return from CDI, the do conclusion token is made
and pointers are adjusted to provide later
conclusion processing. Return is to the CVL
loop.

BE-3-121

CCC.

ddd.

Do conclusion. DOC is entered from the CVL loop
when an implied do conclusion (0.DOCI) token is
encountered. I0OJ is called to provide the
necessary restart call. PDT is called to
compile the necessary do conclusion turples.
Return is to the CVL loop.

x) lapaz. IDC is called from DO to
apse of some or all levels of nested
dos. I+ array bounds checking ie in

no collapse is performed. If the

do structure has already been checked,
immediate, with no processing. The
token buffer is then scanned, counting 0.DOBI
tokens, until a non do begin token is
encountered. This establishes the nesting level
for the current implied do structure. If the
maximum allowable dimensionality is exceeded,
collapse is abandoned. The next tokens must be
0.VAR and it must represent an array or collapse
is abandoned. Information about the array
(dimension pointer, number of dimensions, eic)
is saved and PCI is called to translate the
subscripts of the array. Upon return from PCI,
the subscripts have been parsed and are saved in
an index table (base/bias form or an indicator
that the substript was not a simple variable.
The implied do induction and control variables
must follow immediately after the subscripted
array, or collapse must be abandoned. Next
comes a loop in which the contreol and induction
variables are examined, testing for collapse
possibility. If the control variable matches
the corresponding subscript (index table)
collapse is possible. The induction variables
are tested via a call to PCI. Nonunity
increment disqualifies the current level for
collapse. If the initial and limit variables
(constants) match the lower and upper bound for
the corresponding dimension, the current level
collapees. The tokens representing the control
and induction variables for a collapsed level
are rewritten to provide collapse information.
Thies information inctludes the O.DCCI token, the
initial value of the subscript, the collapse
size (which is accumulated from level to level),
variable size multiplier (or null) and a
starting bias (when the last collapse level
initial value is greater than the lower bound
for that dimension, or is variable). Processing
of the control and induction variables continues
until the entire structure is collapse or until
an index marked ‘not collapsible’ is met. If
collapse

B Mo e
m e M
e T3 e T M
N+ QO
2N L

T 00

-y

ot

)
® B+
2 "3 T T

L]
1
1
[

B-3-1a¢

eee.

£FF.

9499-

hhh.

iii-

10D:

A=DOCI:

A=DOCS:

was incomplete, the 0.DCBI (and preobably 0.DOBI)
tokens must be processed. Exit is to DOB, with
the token buffer positioned properly and the do
collapse information set up. If collapse wacs

complete, the size of the I/0 move is calculated
(issuing arithmetic turple if necessary) and an
I0APL turple is issued. If the last collapse

level initial value is variable, an array load
turple is generated which is then referred {o in
the I0DAPL turple. The token buffer pointer is
reset past the entire implied do structure and

exit is to the CVL loop, via DOB.

Y. r]

1/0 do. IOD is called from CVL to mark
occurrences of implied dos. The token buffer is
scanned, Keying on parentheses and equal signs.
The relevant tokens are modified from O.LP to
0.DORI and the pointer fields are modified to
point to the induction/control variables. 10D
is called once per I/0 list.

Parser interface for implied do collapse
induction variables. Counts the induction
variables as they are translated by PAR. When
the list of induction variables is complete,
exit is to IDC via PAREXIT and PCI. If too many
induction variables are present, collapse is
terminated and the do processor will handle the
diagnostic.

Parser interface for implied do subscript
processing. The parsed subscripts are analyzed
and if a simple variable, its base/biacs form ic
stored as the index for collapse processing.
Otherwise, a ctollapse invalid mark is stored.
If the array dimensionality is exceeded,
collapse is abandoned. Upon completion of
subscript translation, exit is to IDC via
PAREXIT and PCI.

Prepare array cross section. PAX issues {turples
to define do induction variables for implied
NOS. Alsc determines necessity of restart calls
due to data interference. This information is
gleaned from T.ILI. Adde the information
currently processing to T.ILI for future PAX
calls.

Parse collapse items. An interface to the front
of PAR. Sets up special processing tokens to
allow PAR to special process the items in
question. Upon return from PAR, the modified
tokens are restored. Called from IDC.

B-3-123

ES

3.12 PAR: Expression Translation

aAbstrackt: PAR is a general purpose expression translator. It
is used to parse virtually all expressions which can
oceur in the FTNS language. PAR consists of
analysis and synthesis routines for the various
possible operators and many subroutines necessary
for production of the IL.

inierfaces: PAR is a front end deck and resides on overlays
(0,0)y (1,0) and (2,1). PAR interfaces with every
front end deck. The major communication is provided
by the PARMODE cell and the ARGMDDE, ARGMIS and
ARGCOMA cells, which control the parser bshavior in
many situations.

Rata Siructures:

The major concern of PAR is the output of IL turples and thus,
T.PAR is the major data structure. In addition. PAR defines the
following structures:

3. Cells: PAR defines several cells for use as flags,
pointers and scratch storage.

b. CONQ The operator/operand connotation table. Used *to
determine the legality of the current token in
combination with the next upcoming token.

Format is:

tomm e e +
! COND ! ADDR !
e it D et D b et L T +
42 i8
COND: Legality bits, corresponding to O.
values on = legal successor.

ADDR : Address of PAR. analysis routine

The CONO table is ordered as the 0. token
values. Successor element is tested by a shift
of the token value.

Ce POPNX: A vector of synthesis (pop) addresses +or
operators which are popped from 0OSTACK.

d. PR.SET: A set of stack priority values far operators

which occur in normal expressions. Lllsed by the
PRIOR table.

B-3-124

e.

f.

9.

h.

i‘

BRIOR:

SETOP:

SETARM:

Macros:

Qther:

Operator priority table. Ordered by 0. token Eﬁ
values, PRIDOR has entries for all token
generated operators. Format is:

pommmmm e tommmmmmmem tommm e et S +

! SKEL. ' ATTR '//////7/' STP ! TBP !

pommmmmm e fommmmmm e pommmm - e pommm- +
18 13 11 9 9

SKEL.: Sikeleton index (or special proc. routine)

ATTR: Front end attributes
STP & Stack priority
T8P : Token buffer priority

Note that this structure is a special case of
the TH. structurs (described in A-2-2).

An unordered table of operators which are not
strictly token driven. These are accessed by
name as required for turple output. The format
is as the PRIOR table above.

An unordered table of ARGMODE values. used by
PAR to process lists of items separated by
commas and terminated by right parenthesis or
end of statement. Format is:

Cross reference character for list items
Item attributes (conditions)

Address of comma interface routine
Address of parenthesis interface routine

CoM

AP
s

38

All of the above tabular structures are defined
using appropriate macros.

Small tables and vectors are defined for the
processing of specific operators. These
structures will be described with the pertinent
routines. :

B-3-125

Routine Descriptions: E 7

PAR is an operator precedence parser, with built in deviations.,
mainly the ARGMODE structure. The deck structure is: parser
front end interface routines (to set up various flavars of
parse), the analysis routines (operator precedence parse), the
synthesis routines (including parser post analysis interface and
special purpose subroutines, driven by the ARGMODE values) and
general subroutines concerned with IL output. Routine
descriptions +follow.

a. CNE: Compile normal formula. CNF is entered from the front
end main loop when an assignment statement is
encountered. Translation and compilation is performed
via a call to PAR. Exit is to the front end
controller via PSL.

b. PIX: Parse integer constant expression. PIX is a PAR front
end interface routine called when an integer constant
gxpression is required. The ARGMODE and PARMODE
values are set to filter non integer, non constant
values as error conditions. The supposed integer
constant expression is translated by a call to PAR and
tested by LCT. Any expression which did not reduce to
an integer constant is diagnosed, and a 'made’
constant 'l' is returned. C=PIX provides the post
analysis parser interface.

c. PBKX: Parse constant expression. Operates like PIX except
any constant value is an acceptable result (LCH is the
constant test routine) and the PARMODE value is
supplied by the calling routine.

d. PBAR: Parser. PAR is the subroutine name of the parser.
Exit can be effected from many points within the
parser, sven from low level subroutines and interface
routines. In general, exit is normal. The parser
operates with two stacks OSTACK (for operators,
including nested argmode information} and ESTACK (for
operands). Two lock registers are of note: BS points
to OS5TACK, BE to ESTACK. These locks must be
preserved from the initialization in PAR to the final
exit. (B4 is still locked to the token buffar., but
that is standard in front end routines). PAR performs
the aforementioned initializations and tests for
legality of the initial token of the expression. That
done, fall through is to the PAR. loop and analysis
routines.

2. PAR.: The PAR.xxx routines make up the analvysis phase of the
parser. Descriptions of these routines follow:

B-3-12€

BAR.NX:

BAR.TRU:
BaR.EAL:

BAR.QCT:

BaR.DEC:

INK.DBL:

INK.PARM:

EaR.HQL:

E8

The analysis loop. The currsnt token is
fetched from the token buffer. Its values is
used as an index to CONO. The PAR. jump
address is extracted and the next token in
the token buffer is fetched. Its value (the
second token) is used as a shift count for
the COND legality bit pattern. If legal,
branch to the relevant routine, if not, exit
to PAREX for diagnostic and recovervy.

Entered from PAR.NX when D.TRUE or D.FALSE
is encountered. Determines if logical
constant is legal in current context. IfF
so, a TP. form logical constant is added +to
ESTACK and exit is to PAR.NX. Otherwise, a
diagnostic is output, via DBE, and an
integer 1 is stacked.

Entered from PAR.NX when D.0OCT or D.HEY is
encountered. The relevant token is
converted to binary by OCT and the result is
processed at TNK.DBL.

Entered from PAR.NX when O.CONS or O.PERIOD
is encountered. The constant represented by
the token is converted to binary by DEC and
the result is processed at TNK.DBL.

TNK.DBL. is the processing routine for
translated constants. Upon return from OCT
or DEC, the tokens representing a constant
have been translated to binary. and the mode
has been determined. The binary is entered
into T.CON (as necessary) via NBC and a
'follow function' test is made to determine
the legality of the token following the last
token of the constant and a constant. I+
legals return to PAR.NX. Otherwise, exit *o
PAREX for diagnastic and recovery.

Entered from PAR.VAR when a symbolic
constant is encountered. The syntax and
semantics of the PARAMETER usage is tested,
and irregularities are diagnosed. . If all is
in order, the TP. format of the constant
represented by the PARAMETER is added to
ESTACK.

Entered from PAR.NX when D.HOL is
encountered. The D.HOL. token is converted
to TP. format. Diagnostics (Hollerith is
non-ANSI) are issued as required. The
constant is added to ESTACK.

B-3-127

EAR.CHR:

EAR.VAR:

E9

Entered from PAR.NX when D.CHAR is
encountered. The context legality of the
character constant is tested, and i+ leaal,
the character constant is processed by ECC.
Otherwise, a diagnastic is issued and an
integer 1 is added to ESTACK.

Entered from PAR.NX when 0O.VAR is
encountered. This is the semantic analvsis
routine for 31l symbelic names explicitly
referenced in expressions by the user.
First, S8Y is called to determine if the
symbol is in T.5YM. IFf the symbol is in the
table, the properties assigned are tested.
I+ PARAMETER, exit to TNK.PARM for
processing. The remaining possibilities are
arrayy variable (scalar) or some kind of
function. For each possibility, indicators
will be set/extracted and the proress will
converge at TREX. If the symbol is an
array, semantic tests are made (is the array
followed by subscripts?, is the array
leveled?, etc) and diagnostics are issued as
necessary. Exit to TREX. If the symbol is
a8 variable, semantic tests (fewer) are again
made, and exit is to TREX. Now the symboel
must be some kind of function or there is an
error. The various function possibilities
are tried (intrinsic, statement, external,
etc) and when a 'hit' is found, the relevant
properties are extracted for TREX (and
beyond} and any semantic checks regquired are
made. If nothing good has happened, the
nature of the symbol is determined and the
relevant diagnostic is output. In some
cases, a symbol will be unclassified
(appears only in a type declaration). When
these symbols are encountered in an
expressions followed by an argument list,
the usage defines a function. The type o#f
function (intrinsic or user external) is
determined, and the symbol table entry is
updated to reflect the classifying usage.
When the symbol is not in T.SYM, it may be
only a variable or a function, and if a
function, it may only be intrinsic or
external user. The determination is made by
the presence or absence of an argument

list. Exit to TREX.

B-3-128

IREX:

EAR.STIEDR:

BAR.SUB:

EAR.SBS:

EoAR.EUNT

TREX is entered from various parts of E‘u
PAR.VAR whan the nature of a symbol is
determined. Further semantic tests are made
hare, pertaining to existence of the symbol
usage in an input list or in a dimension
bounds expression. If all is well, a TP.
form operand is made and added to ESTaCK.
Exit is to the processor designated by the
PAR.VAR process (PAR.NX for variables,
unsubscripted arrays and functions without
argument lists).

Entered from PAR.NX when 0.5TFA is
encountered. An 0.5TFA token is
manufactured when a statement function
definition is translated (see STMTF, 3.14).
The token is modified by the statement
function reference processor. When
encountered by the parser, CLM is called to
provide the necessary mode coercion and to
diagnose errors.

Entered from PAR.VAR (TREX) when the symbol
is determined to be a subscripted arravy.

880 is called to set up the subscript
operator. ARGMODE indication is set for
subscript processing and exit is to PAR.SPS.

Entered from PAR.VAR (TREX) when the symbol
is a substringed variable. Semantic tests
are made (the variable must be type
character) and exit is to PAR.SPS with
ARGMODE indicator set for substring
processing. ‘

Entered from FAR.VAR (TREX) when the symbol
is a function reference. The type of
function involved has besn determined.
Based on this type, a second branch is made
to correctly set the ARGMODE indicator,
ARGMIS and ARGCOMA. Based upon individual
function type, further semantic tests are
performed, and exit is to PAR.SPS.

B-3-129

BAR.SES:

BAR.CM?

BAR.COL:

PaR.LE:

EAR.DLE:

BaR.RE:

El

Set parenthesis stack. Entered whenever a
left parenthesis is encountered. The
routine is supplied new values for ARGMDODE,
ARGMIS and ARGCOMA. The current value of
those cells is saved on OSTACK as well as
the left parenthesis operator. The suppliad
values ares then stored in the proper cells,
thus altering the processing for comma and
right parenthesis separation. Special
syntax checking is done for null parameter
lists and substring default. Exit is to
PAR .NX.

Entered from PAR.NX when O.COMMA is
encountered. Also entered from PAR.COL. when
a legal colon token is determined. A comma
(or colan) must pop all operators back to
the parenthesis operator. This is done in a
loopy calling PDP. When the expression has
been reduced, a call to POP, to pop the
comma is made and processing will be as
determined by ARGMODE.

Entered from PAR.NX when O.COLON is
encountered. I+ the colon token is legal,
exit is to PAR.CM (colon parses as a
commal). Otherwise, an error exit is taken
to provide diagnostic and recovervy.

Entered from PAR.NX when 0.LP is
encountered. CFC is called to determine i+
a complex constant is present. If so, exit
to TNK.DBL for processing. ODOtherwise, sat
up ARGMODE cells for parenthesized
expression processing and exit to PAR.SPS.

Entered from PAR.NX when 0.SLP is
encountered. This dummy O.LP token is
manufactured by the routine which called Pa&R
and indicates that the ARGMODE cells contain
valid information and should be retained.
Exit is to PAR.SPS with the ARGMODE
indicators set to those current values.

Entered from PAR.NX when O.RP is
encountered. 0Odd syntax constructs are
tested (e.g. substringed array reference,
logical if). If no irregular syntax is
present, or if the syntax is legal, exit is
to PAR.STD. Else, a diagnostic exit is
taken.

B-3-130

BAR.EGL:

BAR.RIV:

BARLPL:

EAR.MIN:

BAR.MULT:

m
i
W)

EORa

BaR.AROP:

E12

Entered from PAR.NX when DO.= is

encountered. The legality of the assignment
operator is tested, and if invalid, a
diagnostic is issued. If the operator is
assignment (not a do '='), processing is
defarred pending the parse of the left

side. Otherwise, exit to PAR.STD.

Entered from PAR.NX when 0.DIV is
encountered. This routine tests for
possible integer divide, and if that is the
case, sets a flag to force multiply
operations first. Exits to FAR.STD.

Entered from PAR.NX when 0.PL is
encountered. Determines if the operator is
unary, and if so, adds a constant zero to
ESTACK. Exit to PAR.STD.

Entered from PAR.NX when O.MIN is
encountered. Determines i+ the operator is

unarys, and if so, converts the token to
O.UMIN. Exit to PAR.STD.

Entered from PAR.NX when O.MULT is
encountered. The syntax for passing
alternate return labels as parameters is a
statement label preceded by ¥. This unary %
must be allowed and semantically tested
here. If the # is not unary, exit to
PAR.STD. Otherwise, make semantic tests and
if an alternate return, translate the
statement label via ISL.. Else issue a
diagnostic. '

Entered from FAR.NX or from special
processing routines to process all
operators. The operator just translated is
compared with the operator on top of OSTACK
(the priority of the operators are what is
compared). The operator is either stacked
(by PAR.ADOP) or will pop the top of DOSTACK
(via a call to POP). 1If the current
operator caused a pop, upon return from POP,
the operator is again tested against the new
OSTACK top (a loop back to PAR.STD) unless
the last pop was an O.RP popping an D.LP.
Exit then is to PAR.NX.

Entered when an operator is to be entered on
OSTACK. The token buffer SETOP form
(special case TP.) is modified to the 0OSTACK
form (see section A-2-2) and the operator is
added to OSTACK. Exit to PAR.NX.

B-3-131

BAR.ERR:
BAREX

EARLEQS:

BAR.STIQE:

Entered from various PAR. processars when
apparent error conditions (of a CONO nature)
occur. Tests are made to determine if
special syntax is allowed in the current
context. I+ sos exit to the relevant
processor is made. If noty the diagnostic
is set up and issued, the invalid token is
skipped {(perhaps more than one token’) an
error turple is issued and exit is to PAR.NX
to continue processing.

Entered from PAR.NX when O.EDS is
encountered. There are two possibilities
when this routine is entered, the
end-of-statement is real (at least as far as
PAR is concerned) or the E0OS is the
assignment statement mechanism for
processing replacement. For replacement
statements, since multiple replacement is
allowed, the '=' tokens are replaced with
chain pointers, linking all the replacements
together. A cell pointing to the innermost
'=' is kept, and that token is replaced by
0.E0S. When processing each level, the
pointer is fetched into the cell and the
0.E05 token is substituted. When the cell
is null, all replacement has been processed
(or no replacement was present’. I+ the
replacement case is being processed, the
operands will be on ESTACK, so OSTACK is set
for popping the replacement apsrator, and
POP is called. This will continue until all
replacement operations have been processed
{interfacing with PAR.EQL). When the cell
(ZLE) is null, a true end-of-statement
pccurred. If necessaryy, the final operator
is popped and exit is made, via PAREXIT.
Note that PAREXIT is a general exit point
from most parser intertace routines (for
comma and right parenthesis delimited lists)
and will often cause an exit from POP
directly through PAR.

Entered when errors are of a magnitude that
preclude recovery. An error turple is
issued and exit is to the front end
controller, via PSL (by passing the P4&R
exit).

B-3-132

9-

BQB.:

£lq

Popping (synthesis). POP is called from several of
the PAR. routines to emit turples (operator, operand,
operand). The POPNX vector entry corresponding to the
gperator being popped is fetched as are the two top
ESTACK entries. I+ the operator is commutative, the
operands may be reordered (for code optimization).

The POP. routine defined in the POPNX entry is brached
to for semantic analysis, front end optimization and
turple emission. In many cases,y exit will not be
through the POP subroutine return,; but through PAREXIT
or some other PAR. routine. Exits are described with
the relevant POP. routines.

The popper processing routines. Some of these
routines are not at all straightforward. The parser
interface routines for comma and right parenthesis
popping call subroutines, are located in decks other
than PAR (where they are described) and take
non-standard exits. The relevant subroutines and
intertace routines which do reside in PAR will be
described here.

PQP.EBR: Entered when an error was detected in the
POP phase of parsing. Sets up an error
turple and processes via POP.STD.

BQE.STD: Entered when no special semantic tests are
required (from POP) and from the aother POP.
processors after their transformations are
complete. Calls SDM to perform mode
coercion (not all operators?). Calls OMC +to
output the mode coercion and ADT to issue
the turple.

BQE..CM: Entered when popping a comma (or colon)

EUP.COL: operator. The current ARGMODE value is used
t0 extract the address of the processing
routina. The C=xxx address is branched to.
Note that many of the routines are not in
PAR. In general, the interface routines
reside on the decks which contain the
relevant translators.

C=ERR: Entered when a comma isn't allowed in the
current parenthesis structure. Exit to
POP .ERR.

POP.RE: Entered either on a special syntax or when
an unbalanced parenthesis condition
agccurred. {The unbalanced parenthesis is of
the compiler generated ilk.) Exit to
PAR.EDS if special syntax, issus a
diagnostic and exit to PAR.STOP otherwise.

B-3-133

POP .PN: Entered from POP when a right parenthesis is E]5
popping a left parenthesis. The OSTACK
antries for the old ARGMODE cells are
unstacked. The A=xxx address of the
processing routine is extracted for the
branch. The current ARGMODE values are
saved in scratch storage for reference and
the former ARGMODE values (from OSTACK) are
restored. Exit is to the relevant A=xxx
routine. The notes of POP.CM also apply
here. OFf interest is the fact that many of
the interface routines (but not all}) are
common code for CsSxxx and A=xxx processing,
differing only in the advance of the token
buffer pointer.

a=lE: Interface routine for IF statement.
Determines if the if expression is a
reducible relational operand, via COR. Sets
result cells for the if processor and exits
via PAREXIT.

a=LIsT: Interface routine for 1/0 and DATA statement

a=DviL: variable lists. Support for special syntax
which has an 0.SLP unstacked by D.ENS.
Merely exits through normal POP exit.

BOP=COM: This is a front optimization which delays
output of a commutative and associative
operator containing a constant. The idea is
to keep pushing these down so that all
constants in a string of such operators may
be combined into a single constant at
compile time. When the conditions are met,
the operands are adjusted so that the
constant is second, the operator is modified
to indicate the deferred status and is
replaced on the OSTACK and the operands are
replaced on ESTACK. When both orerands are
constant, normal popping is performed {(and
the operation will be reduced). Otherwise,
exit to PAR.ADCOP to perform the mechanics of
the deferral.

EQR.RIV: Entered from POP when a divide operator is
to be popped. Test is made for constant
divide by zero. If so, a diagnostic is
issued. Attempt is made to convert the
divide operation to a multiply (or a series
of multiplies, as oaperators are popped),
when a divide pops a divide. The aperator
is changed to a special divide and replaced
on OSTACK (via PAR.ADOP). This process
interfaces with POP=COM. As a last resort,
a divide turple is output.

B-3-134

BOR.PL:

BOB..MUL:

BQE.UM:

EQR.NQT:

BOR.LOG:

BOP.LE:
BQP.GI:

BOP.REL:

E16

Entered from POP when a plus operator is
being popped. The following transforms are
performed. I+ the first operand is the
result of a unary minus operation, the
operands are reversed and a subtract turple
is output. Otherwise, exit to POP=COM +to
delay for possible constant reduction.

Just a pseudo for POP=COM. Always delay on
multiply.

Entered from POP when a unary minus is being
popped. The last operator output is tested
was minusy COR is called to determine if
that operation is input to the currant unary
minus. If so, the order of the subtract is
reversed and axit is immediate through POP.
If a unary minus is input to a unary minus,
the negation of operators is performed, the
turple for the input unary minus is
discarded and the operand is restored io
ESTACK. Otherwise, the unary minus turple
is output.

Entered from POP when a NOT operator is
being popped. Uses the code of POP.UM,
except set up to check NOT as input to NOT
{(for possible cancellation).

Entered from POP when popping a logical
operator. I+ the operator is commutative,
exit to POP=COM, else to POP.STD.

Entered from POP when the operators LE and GT
are being popped. Reverse the operands and
convert the operator to GE and LT. Falls
through to POP.REL.

Entered from POP when popping relational
operators. Semantic test are performed on
the operands. I+ parsing in constant
expression mode, character relationals are
processed via PCR. The relational turple is
issued via ADT. If the relational is the
only operator in the expression, an inverted
skeleton is savedy, to be used when a single
relational occurs. (If ADT is called again
before exit, the hold cell will be cleared.
Exit is to POP.

B-3-135

POP.CAT:

C=585:

cem:

Entered from POP when a concatenation
operator is being popped. Both operands
must be mode character or a diagnostic ie
issued. If both operande are constant (test
by LCH), compile time concatenation is
performed by PCC and the new character
constant is emitted by ECC. Otherwise, the
operands are tested for fixed length via GOL
and TH. bits are set, marking the turple as
concatenation and fixed/variable length.
Exit is to PAR.STD.

Entered from POP when an sssignment operator
is to be popped. The mode of the right hand
side is coerced to that of the left side via
CMR. The legality of the left side is
tested, and diagnostic is issued as
necessary. If the left side is of type
character, test is made to determine if any
portion of the left side occurs on the right
side. If so, & diagnostic is issued. DDR
is called to diagnose do contrel index
redefinition. If the LHS and RHS are the
game, the turple is not issued and exit is
to POP. Otherwise, exit to POP.STD.

Interface routine for substring procecsing,
the first operand. If the colon is not
immediately followed by O.RP, exit to POP.
Otherwise, the variable to be substringed isg
tested for legality and the character length
is determined. If length is variable, a VD.
operand is formed. Exit is to POP.

Interface routine for substring second
operand. Both operands have been
translated. They are tested for constant,
via LCH. If the substring bounds are
constant, they are tested for valid range.
In any event, a colon operator is output,
calling SDM and ADT and then the substring
operator turple is output, again using SDM
and ADT. Exit is to POP.

Check substring mode. CSM is called by
C=5BS and A=SBS to determine that the mode
of a substring expression is integer {(or
Boolean). If not, a diagnostic is issued.

Interface routine called when EOS or O.RP is
found after the list of induction

variables. Determines that sufficient
values have been translated. If so, exit to
PAREXIT. Else, issue a diagnostic, scratch
the T.BLST entry and exit to the front end
controller via PSL.

B-3-136

ROS:

RQL:

ROIL:

RUC:

CRE:

RIC:

F2

Interface routine called to process the
various do control and induction variables.
Based upon the ARGCDMA count, the proper
processing routine is selected. If too many
variables appear in the list, a diagnostic
is output and PAR is exited.

Process do start (initial value). The do
'=' token is replaced by a comma token, to
properly process the list of induction
variables. The start value is converted,

via CDP and stored on T.BLS8T. Exit to POP.

Process do limit. The limit value is
converted via CDP and added to T.BLST. A
default '1' is set for the do increment and
+all through to DOI.

Process do increment. The increment valuse
is converted via CDP and added to T.BLST.
Exit is to POP. Since the increment is
optionaly the value is initially set to
constant 'l' and reset as required.

Process the control variable. Semantic
tests of the legality of the control index
are made and diagnostics are output as
required. The T.SYM entry is marked as
defined and DDR is called to diagnose active
do redetinition. The control index mode is
determined (and the legality of the mode
tested) and the skeleton type (long or
short) is selected. The control index is
added to T.BLST and the symbol table entry
of the do top label is modified with the
symbol table index of the control variable.
Exit is to C=DO0.

Convert do parameter. The mode of the
relevant induction value is tested for
legality and diagnostic is issued as
necessary. 1he mode of the induction value
is coerced to that of the do control index,
via CMR.

Determine trip count. Called from CDI (see
LABEL, 3.15) when all induction values have
been translated. Turples to provide the
calculation TC=(M2-M1+M3) /M2 are output,; via
ACT. Semantic tests on the resultant value
are made if processing a DATA statement
implied do. The resultant value is coerced
to mode integer via CMR and the rasultant
value is returned.

B-3-137

POP.EXP: Entered from POP when an exponentiation
operator is being popped. This routine
attempts to apply compile time
transformation aimed at eliminating run time
subroutine calls. The mode of the power and
the base are determined. The table OM=EXP
is used to determine the legality of the
combination. Illegal combinations are
diagnosed and exit is to POP. LCT is called
to determine if the power is constant. If
not, reduction is impossible. Semantic
tests are made on the power and if possible,
inline code is generated (via turple
output). Real powers which are exact
integers {(e.g. 2.0) are treated as integer.
The result will be a turple output, either a
inline series of multiplies (or divides for
negative powers) or an external library call.

TO.x1: Routines to select skeletons for inline
multiplies (base mode x, power mode
Integer). These small routines all exit to
EXM.

EXD: Evaluate integer exponential. Called from
EXP.I (see CONRED, 3.13) to subsume constant
integer exponentiation. The actual
reduction is performed by EXV.

EXM: Expand exponentiation into multiplies. EXM
receives the base mode, the expansion limit
and value of the power and actually selects
the skeleton for turple output. The turple
is output via ADT and exit is to POP.

EXV: Evaluate constant exponential. Called by
EXD and EXM to reduce constant exponential
expressions. If the expression can be
reduced at compile time (implies integer
power, but some bases will reduce) the
constant is returned, otherwise, turples
must be issued.

Cc=CaLL: Interface routine for subroutine argument
lists. Calls TPC to test for passed length
concatenation and S88A to stack the
argument. Exits to POP.

B-3-138

a=CALL: Interface routine for final subroutine F4
argument. As in C=CALL, TPC and SSA are
called. IAC is called to increment the
argument list and VEL is called to validate
the list. If necessary, CRL is called to
process alternate return labels. EAL is
called to emit the AP list turples and exit
is to POP.

C=FUN: Intert+ace routine for user +function argument
lists. Calls TPC and if alternate return
labels were presenty a diagnostic is
issyed. Call 58A to stack the argument and

exits to POP.

A=EUN: Interface routine for user function final
argument. Calls TCP, IAC and SSA to provide
functions listed above. Calls VEL to
validate the argument list and exits to GFR.

C=INE: Interface routine for intrinsic function
argument lists. Calls TPC. Calls vaM +to
validate the argument mode and exits to POP.

A=INE: Interface routine for intrinsic function
final argument. Calls in succession TPC,
IAC and VAaM. VIL is called to validate the
argument list count. Falls through to ABEF
If intrinsic is external, else exit to ABIF.

ABEE: Process external intrinsic function. ABEF
determines if traceback is required and
selects the proper call skeleton. TXI is
called to process the function operand. The
arguments are moved from ESTACK to T.ARG and

avidt S= dm PFR-

AL - 2 S &l ¥

aglE: Process incline intrinsic function. Calls
ESF to evaluate the function. If the
function has only one argument, exit is to
POP.STD. Otherwise, the arguments are
processed as a loopy with ADT called o
output the inline turples. When the
arguments are processed, if conversion is
necessary, that turple is ocutput by ADT.
Exit is to POP.

C=CTFEA: Interface for statement function argument

list. Merely a compatibility device. Exit
to POP.

B-3-133

a=gIEA:

6=8IFE:

GER:

Eal:

ESE:

ES.CMPL:

ES.LEN:

F5

Interface routine for statement function
final argument. The statement function
argument list has been translated and any
relevant turples have been issued. The
arguments must now be processed using the
statement function skeleton. The token
buffer pointer is locked on the proper T.STF
offset and exit is to PAR.SPS to begin
processing of the statement function proper.

Interface routine for completion o#f
statement function expansion. The token
buffer pointer is resety either to a new
T.STF location {(for nested statement
functions) or to the actual token buffer, in
which case the ALC lock is removed.

Pointers and flags are reset to denote the
current state of translation and CLM is
called to provide mode (and character
length) coercion. Exit is to PAR.NYX.

Generate function reference. Entered from
interface routine for argument list which
requires an external call. EAL is called to
emit the APlist turples. The proper call
turple is provided by the relevant interface
routine and processing is at POP.STD.

Emit actual parameter list {(APlist). The
arguments are located on T.ARG. Thse
operator and count are supplied. EaAL loops
through the list, inserting mode information
into the operator and issues the APlist
turples, via EMT. The processed arguments
are removed from T.ARG.

Evaluate special function. ESF is called by
ABIF to process inline intrinsic functions.
ESF consists of a series of routines tg
praocess theose functions which require parser
action. Those functions which completely
reduce have their values on ESTACK. Others
require ABIF to issue turples.

Process CMPL. Both arguments are coerced to
real, via CMR. Exit to ABIF.

Process LEM (character length). Calls GO
to get the length. If the length is
constant, exit to ES.MASK to enter the
constant. Otherwise, an external call must
be issued. Exit to ABEF.

B-3-140

Fo

ES.LGE: Process the character relational functions.

ES.LGT The intrinsic function reference is converted
ES.LLE to0 the form 'OP1.0PR.DP2' and the relevant
ES.LLT turple is issued by ADT. Exit is to ABIF.

ES. MASK: Process MASK. If the operand is a short
integer constant, the mask is created and
processed by NCS. (This is where the ES.LEN
processor enters.) If noty a turple must be
issued by ABIF. Either case exits to ABIF.

ES.SHIFT: Process SHIFT. This routine attempots

. . . - - Lo om - . PR
rgguoTion T niddl SNiITIS. i+ reguciocie

{(i.e. O mod&0Q) ABIF is so informed, else a3
turple must be issued.

ES.LOCE:T Process LOCF. The addressability of the
operand is determined via DOA. If not
addressable, a diagnostic is issued. If the
argument is mode character, an external call
must be issued and exit is to ABEF.
Otherwise, the LOCF is reduced to an ADDR
operator and exit is to ABIF.

ES.BANE: Process RANF. The random kernel is added +to
the symbal table, as necessary and a random
number turple is issued via ADT. Exit to
ABIF.

l1ac: Increment argument count. Called when
processing the final argument of an APlist.
The argument count is always one behind the
number of arguments (to allow zero
arguments). The ARGCOMA cell is updated
with the true count.

Mab: Mark argument defined. Called by SSA when
an actual argument is added to T.ARG. If
the argument is addressable (determined by
DOAY, its T.SYM entry is marked as defined.

S8A: Stack subprogram argument. Called by the
interface routines for subprograms which
require an external call. The nature of the
argument is determined. If not a label, the
argument is added to T.ARG and MAD is called
to mark it as defined. If the argument is a
label, it is added to T.SLARG.

B-3-141

IXI:

YEL:

Yil:

C=ARRAY:

F1

Tag external intrinsic. Called from PAR.VAR
and ABEF when an external intrinsic must be
called (the ABEF call is for intrinsics
which may be either inline or external and
are after analysis determined to be
externall). The information in the intrinsic
function table and control card options are
used to determine the external name the
function is to take. A symbol table entry
is made, via TS8X; and the WB. and WC.
information is filled in by TXI.

Validate argument mode. Called by A=INF and
C=INF to determine the legality of an
intrinsic function argument. I+ the
function is generic, the first argument
tixes the actual function and the mede of
the other arguments. ODtherwise, if the
argument is not of the proper type, a
diagnostic is issued.

Validate argument list for extsrnal. VEL is
called by A=CALL and A=FIUN to validate the
argument count. If greater than the maximum
allowable, a diagnostic is issued. If this
is the first reference to the subprogram, it
is marked defined and the argument count is
entered in T.8YM. I+ previously referenced
{(not as an actual parameter) the current
count is compared with the previous count
and if the counts don't match, an
informative diagnostic is issued.

Validate argument list for intrinsic.
Called by A=INF +to validate the argument
count for an intrinsic function. If an
argument count is specified and the current
argument count doesn't match, a diagnostic
is issued. If the intrinsic function is
generic, the proper function is selectad,
based upon the mode of the argumentis). The
argument list is scanned tog determine that
an invalid mixing of arguments didn't occur
(if it did, a diagnostic is issued).

Intertace routine for processing array
subscripts. Calls are set up for possible
diagnostics. BS5R is called to standardize
the subscript value. Exit is to PAR.NX,

B-3~-142

A=ARRAY:

abuU:

ASE:

Interface routine for processing the final
array subscript. 8S8R is called to
standardize the final subscript. GDI is
called to get the dimension information
relevant to the array. Determination is
made (based upon dimension bounds check
requests) whether to evaluste the subscripts
inline or by external call. If the
subscripts are to be evaluated inline, a
loop on the subscripts is made, calling MSP,
ASE and SLB to provide the necessary
subscript calculations. The subscript value
will be kept as constant ss possible, with
turples issued only as required. I+ the
subscript is to be evaluated out-of-line,
the relevant T.DIM entry is marked to
materialize. Subscript APlist turples are
output for each subscript expression. An
APlist turple is output for the array name
and ADU is called to emit the call turple
for the bounds check routine {(which will
also evaluate the subscripts). If the
subscript value was constant, the result
will appear in the bias field of the array
operand and exit is to POP. If the
subscript was variable (or the array had
adjustable dimension(s)}) an array load
turple is issued, via the exit to POP.STD.
If the subscript contained a subscripted
array in its calculations, an xmit operator
is issued, to force an intermediate. This
prevents a register deadlock condition in
OPT=0 (and the operator will bes squeezed out
by OPT21). 1If the number of subscripts is
not the same as the array dimensionality, a
diagnostic is issued and exit is to PAREXIT.

ADT linkage subroutine. Called from the
subscript processing routines to set up
conditions for successful turele emission
via ADT.

Add subscript expression. ASE is called by
A=ARRAY to add the value of the current
subscript expression to the cumulative
offset being calculated by the subscript
processor. If the expression is constant,
it is merely added to accumulating bias and
exit is made. If the value of the
expression is a variable, the variable is
added via a turple to the non-constant
accumulation, represented as a variable or
an intermediate. If no such accumulation

B-3-143

F8

GRI:

MSe:

sLB:

2302

S0R:

exists,y the variable becomes the saved
representation. I+ the subscript 2xpression
is an intermediate, analysis is made,
attempting to reform the expression to
remove constant portions (and move them into
the constant bias). When those
optimizations which can be performed are
done, the resultant intermediate is treated
as the variable case. If necessary, a
turple for the add is issued, via ADU.

Get dimension information. GDI is called by
the subscript processors to extract
information about a given dimension bound
for an array. GD! returns dimension count,
the upper and lower bounds for the dimension

and flags concerning these bounds.

Multiply by dimension span. MSP is called
by A=ARRAY to multiply the accumulated
offset by the span of thes current

dimension. I+ the span is constant, the
accumulated bias is inquired. I+ constant,
& compile time multiply can be performed.

If the bias is not constant, then a multiply
turple must be issued. Analysis is
performed to optimize the turples making up
the offset calculations and constants are
reduced as applicable. If the span was
variable, the multiply turple must be issued.

Subtract lower bound. SLB is called by
A=ARRAY to subtract the lower bound value
from the subscript expression. GDI is
called to get the dimension information. I+
the lower bound is constanty, it is merely
subtracted from the accumulated constant
bias. If variable, a subtract turple is
issued, via ADU.

Set up subscript operations. S80 is called
by PAR.SUB to set up the ARGMODE cells #ar
subscript processing.

Standardize subscript result. S8R is called
by C=ARRAY and A=ARRAY to0 standardize the
subscript result. The mode is tested. I¥f
illegal, a diagnostic is issued. If not
integer, the mode is coerced to integer. If
the subscript is constant, semantic *tests
are made regarding magnitude and relation to
upper and lower dimension bounds.
Irregularities are diagnosed.

B-3-144

cBB:

CLM.

:

Add converted turple. ACT is called to output a
turple which requires no mode field. The proper
header is fetched from the PRIOR table and the
priority fields are cleared. Calls to DM, OMC and
ADT result in the turple output.

Add turple to T.PAR. If the current skeleton is
reducible, CCR is called to attempi constant
reduction. If the turple was reduced, the constant
value (TP. format) is placed on ESTACK and exit. SGZ
is called to determine if an exact turple exists in
the current sequence. If so, the intermediate for
that turple is placed on ESTACK and exit. If the
turple is to be issued, an intermediate is formed for
it and the turple is emitted, via EMT.

Convert to base/bias. A filter routine for ADT to
convert operands to base/bias (via BBC).

Check data interference. CDI performs the mechanics
pf the test for character replacement left side also
being on the right. Called from POP.EGL.

Check illegal level 3 usage. Called by PAR.VAR when a
variable name is encountered. If the variable is
LEVEL 3, the current ARGMODE must permit its usage or
a diagnostic is issued.

Coerce length of character result. CLC is called by
CLM to coerce the length of a character expression.
GOL is called to determine the expression length. If
the length of the expression equals the desired
length, exit. Otherwise, a character substring is
issued, via ECS and a string operator turple is issued
via ADT.

Coerce mode and character length. CLM is called from
the statement function interface routines. The mode
of the result is coerced to the desired result by
CMR. If the mode is character, the length is coerced
by CLC.

Coerce mode of result. CMR is called to coerce the
mode of a result to a desired mode by such operations
as replacement. The result mode and desired mode are
tested via the MODC table. Illegal coercions are
diagnosed. If no conversion is necessary, just exit.
I1f the result is constant (determined by LCT), KCV is
called to perform the conversion. NBC is called to
register the new constant. If the result is not
constant, a conversion operator turple is issued via
ADT.

Check if operand reducible. COR is called to
determine if the input operand is the result
intermediate of the last turple emitted. If so, the
pperand may be reducible.

B-3-145

DBE:

ECC:

Dimeneion bound error. When PARMODE is PM=DIM,
certain parse conditions become illegal. DBE issues
the diagnostic required, first setting up variable
diagnostic FILL, cells.

Diagnose double and complex operands in an

expression. JIssues an ANSI diagnostic for mixed
double and complex values in an expression.

ility. DOA ies called to
of an operand (not a
constant or expression). LCH is called to determine
i¥ the operand is a constant. If so., exit not
addressable. If the EXPR bit is set, also exit not
addressable. If the operand is INTR, determination is
made if it is an array load or substring reference.

If so, process the array or variable name. Otherwise,
mark not addressable and exit. The variable or array
name (supposed) symbol table entry is fetched and if
not a label, the WB. is shifted to the VAR position

and exit is made.

Emit character constant. An operand doesn’t have
enough fields to represent a character constant so it
must be treated as a special case substring. ECC
calls ECS to process the constant as a substring.

Emit character substring. ECS is called to output a
character substring operator. Two turples are issued,
a colon operator and & substring operator.

Emit turple to table., EMT (called using the EMIT
macro) is called to output a turple to T.PAR or
register some other table. The operator is in coded
form in register B3 and the operands and output table
(as necessary) are passed in registers. The coded
operator can take two forms:

it e e b +

BRRN ADDR !
o e +

11 1
T : Output table (Xi,Al) indicator
ADDR: SETOP word address
t=t~t-t-F—-——————————q

I0ITIOND! SKEL !
+-t-t-t-t-—m—————————t

1122 12
T : As above
D : Buc. indication (for OPT=0)

SKEL.: Skeleton ordinal

B-3-146

ad.

bb.

EAT:

ESA:

o]
&

SDM:

SPE.

EMT decodes the operand information, and based upon
that, forms the TH. operator. T.PAR or the supplied
table is allocated space for the turple and the
pperator and operands are moved to the table.

Fiush argument turples. FAT is called by I0OJ (see
10, 3.11) to move the IO APlist turples from T. I0ARG

A T AR a4 L
to T.PAR at the end of an ID statement, or on =

restart call.

Find symbol attributes. FSA is called by VEL to
extract symbol attributes for argument expressions
which are symbols only. The T.SYM WB. word is
returned if the expression is a symbol, elze an
indication that it was not.

Get character operand length. If the operand is a
character variable, the length, or indication that it
is variable is returned. If the operand is a
substring expression, and the subsitring operands are
constant, the length is determined. If the operand is
concatenation, only the fixed length or passed length
attribute is known.

Output mode conversion. Called as a preliminary to
outputting a turple where mode is a factor. The oMC
call is preceded by a SDM call, which determines if
conversion is necessary. If no conversion is needed,
exit. Otherwise, determine the operand to be coerced
and perform the coercion via CMR. Upon exit, the
original operator is preserved and the operand not
coerced is preserved. The coerced operand is replaced
with the intermediate of the coercion turple.

Set dominate mode. SDM determines if mode conversion
may be necessary. Some turples have a required mode
and some inhibit conversion. Many operators don’t
need conversion. The operands are tested and if the
same mode, no conversion is necessary. If the modes
are incompatible, a diagnostic is issued. Otherwice,
the greater mode is selected dominate, and the operand
of that mode is marked as the dominant operator.

Skip parenthesized expression. Called when a symbol
is invalidly followed by O.LP. The tokens in the
token buffer up to and including the matching O.RP are
skipped.

B-3-147

[«
(49
10
I
™

3
2

Squeeze operation if possible. SGZ scans T.PAR
backwards to the CURST limit (last sequence break)
trying to match the current turple to be output with
an existing turple. Match must be 60 bit on the
operator and the two operands. If a match is found,
the turple will not be issued and an intermediate
pointing to the duplicate turple is formed and added
to ESTACK.

Set target characteristics . STC analyrzes the left
side of a character replacement statement, saving
information to test (by CDI) for character data
interference. Called by POP.EGL.

Test for passed length character concatenation. TFC
is called when such a construct is illegal. The
TP.CAT and TP.LCF bits of the operand are tested, and
if both on, a diagnostic is issued.

B-3-148

Fd

Abstract: CONRED consists of routines to convert DPC to binary
constants, perform compile time constant arithmetic
(including coercion and reduction) and routines +o
simulate implied do's in DATA statement variable
lists.

3.13 CONRED: Compile Time Arithmetic

Interfaces: CONRED is a front end deck and resides on overlavs
(0;0); (1,0) and (2,1). The routines of CONRED are
called by many of the front end translators, most
notably PAR. The DATA statement processor depends

2as 3

heavily on the simulation routines.
Rata Siruciures:
CONRED defines the following structures:

a. 8gkeletons: The code skeleton macros and definitions are
provided by comdecks SKPSET, SKPCONQ and COMSEIS
{described in FSKEL, 3.15). The definitions are
used in compile time arithmetic routines.

b. Cells: Flagss scratch storage and templates for use
during compile time arithmetic.

c. HKMOD: A matrix of constant conversion routines, giving
routine offset, no conversion indicator or
illegal conversion indicator. Used by KCV.

Routine Descriptions:

a. DREC: Convert decimal (DPC) constant to internal binarvy.
DEC translates the tokens which can make up an
arithmetic constant (not octal or hexadecimal) and
converts them to binary. The integer and
fractional parts are converted to binary
(conversion depends on existence) and the exponent
is translated, as applicable. The floating point
conversion is performed by FSCALE., which is common
to the CDC product set (thus all converted
constants are binary compatible). DEC returns the
constant mode and the upper and lower (for doublse
precision and complex) halves of the binary
constant. Any conversion irregularities are
diagnosed.

b. DIA: DPC to ASCII conversion. DTA accepts a single DPC
character and converts the binary value to the
corresponding ASCII binary value. DTA uses the
table DTACT, which is a D->A conversion matrix.

B-3-149

INK:

FSCALE:

CCR:

CTA:

Convert octal/hex constant (DPC) to binary. OCT is
called to convert 0.0CT and O.HEX tokens to

internal binary. OCT takes the input tokens and
converts to binary and accumulates by shift and add
operations. If any non-octal or hex digits are
encountered, a diagnostic is issued. Octal
constants are limited to 20 digits, hexadecimal

to 15. Excess digits are truncated, with
diagnostic. The binary of the constant is returned.

Translate numeric constant. TNK is called to

convert any numeric constant. If the initial token
is O.CONS or D.PERIDD, DEC ies called I+ the token
L x4 e e |t L 3 -—r s 8 B o W s ol — - - - - . - ™E s me W e ows s

is 0.0CT or O.HEX, OCT is called. Otherwise, a
diagnostic is issued.

Floating DP conversion. FSCALE is the CDC standard
floating point conversion routine. It accepts

i14 bits of significance, an exponent and sign and
returns a double precision floating point (rounded)
value. Provided by comdeck FSCALE.

Compute constant reduction. CCR is called to
attempt reduction of two constant operands (or of a
unary constant operand). LCT is called to test the
operands. If either is not constant, exit with no
reduction. Otherwise, call PCA to perform the
compile time reduction.

Perform compile time arithmetic. CTA fetches the
current operation skeleton and analyzes it via
repeated calls to ISI (until the skeleton has been
completely scanned). If reduction is performed,
the new constant is registered via NBC. If any
error or dirregularity which would preclude
reduction is noted, an exception exit (CTA.ER) is
provided and is used by subordinate routines.

Perform character concatenation. Called by POP.CAT
to concatenate two character constants. The
combined length of the existing constants is
determined and the required space is allocated on
T.CON. The first operand is moved into place,
using MVE=, The second constant is moved in behind
the first, using MNS=. The result is blank padded,
as required. NCM is called to determine if the new
constant already exists on T.CON. If so, the
constant just formed is scratched. The T.CON index
and the constant length are returned.

B-3-150

,j-

K.

l.

Ma

Ne

181:

LQe:

COL.:

CEQ:

ciQ:

F16

Process character relationals. The T.CON indexes
and lengths of the two character constants are
provided to PCR, as well as the relational
operator. CCS is called to compare the strings and
a relational value is returned. That is compared
with the relational operator for the expression and
a logical constant (true or false) is determined.
NBC is called to process this constant and the
result is put on ESTACK.

Interpret skeleton instruction. ISI is called by
PCA to interpret a skeleton instruction, performing
at compile time the operations which would be done

- at run time (for results compatability). The

current instruction in the skeleton being processed
is burst into components (using PIK; see PUC, 2.3}
and the instruction reconstructed in a3 form usable
by this routine. LOP is called to load the operand
and that information is factored in. CDL is called
to test the operand legality. The aperation is
then performed. (Intermediate results are saved.)
I+ the operation was floating, range and indefinite
conditions are tested and if true, exit to PCA.ER.
Otherwise, normal exit is made.

Load operand. LOP is called by ISI to fetch the
proper operand. Based upon the skeleton form, a
branch table is entered and thence to an entry
which provides the correct aoperand (or intermediate
result) address. The branch table is produced by
comdeck SKOP.

Check operand legality. COL is called by ISI +to
test the validity of intermediate values produced
by the ISI interpretation. If the instruction is
UXis CFO is called to test legality. I+ the
instruction is PXi, CIO is called to test
legality. I+ the instruction is not floating
point, exit. Otherwise, call CFD to test both
operands. If the instruction is DXi, if divide by
zeroy exit to PCA.ER. Else exit OK.

Check floating operand. Called by COL to determine
if operand is out of range or indefinite. I¥f so,
exit to PCA.ER.

Check integer gperand. Called by COl. to determine

if an operand is too large (>48 bits). I+ 50, axit
to PCA.ER.

B-3-151

Gl

Convert constant value. Called to convert a
constant from one mode to another. The canstant
binary, old mode and desired mode are supplied.
Table KMOD is used to sxtract the proper conversion
processor and the conversion (if legal) is
performed. The binary of the new constant and an
indication of the conversion performed is returned.

Compare character strings. CCS is passed the
address of two strings and their lengths. The
strings are compared, one character at a time
(via GNC) until the strings fail to match, or
both strings are sxhausted. &n indication of

relative values of the strings is returned.

ot B
o b |
mn ~+
[
[

Get next characters. GNC is called by CCS to fetch
one character from each of the strings being
compared. When either string is exhausted, the
count is kept at zeros, and blanks are supplied.

The characters are to be compared by ASCII value
(provided by DTA) and that value for each character
is returned.

Load value of constant. LCH tests an operand to be
a constant and returns values and indicators
depending on whether the aperand was a constant or
not. If the mode is not character, the operand is
tested to be TP.SHRT or to have ordinal S=CON.

If so, a constant indicator and the binary of the
constant are returned. Otherwise, nonconstant
indicator is returned. I+ the operand is
character, a constant is represented by a substring
turple. If the operand is not intermediate or the
intermediate is not to a substring turple, return
with nonconstant indicator. The substring operand
ig then tesgt for grdinal S=CON. I+ not, exit
nonconstant. The second substring operand will now
point to a colon turple. This will provide the
length information, which is extracted via LCT
calls. The return value will be a pointer to the
constant in T.CON and the binary of the length.

Load binary of constant. LCT is called to provide
the binary value of arithmetic and logical
constants. If the operand is type character,
intermediate or not TP.SHRT or S=CONM, a non
constant indicator is returned. Otherwise, the
binary and nature of the constant is returned.

Load integer of real. LIR is passed a floating
point value. Determination is made if the value is
an exact integer (no fractional part). If so, the
integer value is registered via NCS5 and the binary
and TP. operand format are returned. Else, a
failure indication. '

B-3-152

Vo

X

¥ -

NCS:

CDR:

LCR:

62

Enter binary constant. NBC is passed the binary
and mode of a constant. If single word, NCS is
called to register the constant. Otherwise, the
constant is entered into T.CON via NCM. The TP.
operand of the constant and the mode are returned.

Enter single word constant. NCS is passed the
binary and mode of a constant to be entered

(into T.CON). The binary is tested, and if
possible a short constant is formed (TP.SHRT;
TP.BIAS contains binary). Otherwise, the constant
is scanned into T.CON. If in table, the index is
used for the operand bias. If not in tablie, ADW is
called to add to T.CON and that index is used.
Using S=CON as the ordinal, a TP. format operand is
formed. Either form, short or long, will be
returned as thes operand.

Simulate execution of DATA statement turples. SED
is called by PVL (see DATA, 3.7) to process the
turples generated for a data variable list. SED
operates as a loop, processing each turple produced
by CVL. The F.SCT table (ses FSKEL, 3.16) is used
to interpret the skeletons, using VS. format (ses
section A-2). Each turple is analyzed in turn, and
it reducible, CDR is called to provide constant
reduction. If not reducible, the data reduction
option is taken and routines are branched to.

NOTE: D=NOOP, D=ARY, D=S5YBST, D=COLON, D=BSS and
D=DOBDZ2 are merely returns to the loop top
(SELC.RTNY to fetch another turple. Error
conditions result in an exit to SED.ABT where a
diagnostic is issued and the process is endesd.
Normal completion of processing exits to SED.END to
tie up loose ends before return to PVL.

Compute constant reduction. Called from SED on a
reducible skeleton. Calls LCD to load the operands
and PCA to perform the compile time arithmetic (if
all was well with LCD).

Load constant (for SEDj). Called by CDR to load a
data interpretation of a constant values, which may
be a constant, the current value of an interpreted
turple or a loop index variable. I+ the mode of
the operand is net integer (or Boolean) exit to
SED.ABT. LCT is called to determine if the operand
is constant. If soy return the constant value. If
the operand is variable, determine if it is a loop
index which is stored into. If not, exit to
SED.ABTy else return the value. If the operand is
intermediate, return the value of the intermediate
(in the turple header).

B-3-153

z. D=DV1: Entered from SED to process a data variable item. 63
The item may be a scalar, an array, an array
element or 3 substring reference. If a substring
referencey EDS is called to evaluate the data
scalar, LCD is called to evaluate the substring
start and EDI files the address and count. For the
other cases, EDS evaluates the scalar and EDI files
the address and count. Exit is to SED.RFT.

aa. EDG: Evaluate data scalar. Called by D=DVI to evaluate
a data variable item. LCD is called to determine
the number of elements represented. If the item is
an arrayy LCD is calied to get the index. ECB is
called to evaluate the constant bias. GPS produces
the product of spans and character length. {(Note
that non arrays have a T.DIM pointer of O, which
points to a dummy dimension information entrys
describing an array with one dimension, one
element, so counts will be okay for scalar
variables.? I+ a dimension bound error occurred,
exit to SED.ABT.

bb. GPG: Get product of spans (and character length). GPS
extracts dimension bound information from T.SYM and
T.DIM and character length information if the
variable is type character. Returns product of
spans in words and elements, character length and
double/complex indicator.

cc. R=EXP.I1: Entered from SED to process an integer
egxponentiation turple. LCD is called to get the
exponent and again to get the base value. EXD is
called to produce the value of the exponentiation
and LCT tests the constant. Exit to SED.STO.

dd. R=51R.1: Entered from SED to simulate a store turple. LCD
is called to get the right side and the store is
simulated by SDV. Exit to SED.RTN.

ee. SDY: Store data value. 8DV is called when a simulated
store is to occur in a data list control variable
of some sort. The variable and its store value
(coded) are added to T.DVWV, unless the variable is
already present, in which case, the value field is
updated.

+f. D=p0OBS: Entered from SED when any do begin turple is
R=00BL encountered. The simulated do top address is
R=p0BZS stored in the branch field for DO.n. The numbher of
R=PORZL. trips is extracted by LCD and if negative, exit to
SED.ABT. Otherwise, SDV is called to 'store' the
trip count in DC.n. and exit is to SED.RTN.

B-3~154

G4

gg. R=DOC.S: Entered from SED when a do conclusion turple is

R=00C.L

encountered. LCD is called to obtain the control
index and again to get the increment. The values
are added and 8DV is called to update the index.
LCD is called to get the trip count value and that
value is decremented by one. If the trip count
value is zero, loop simulation is over, exit to
SED.RTM. Otherwise, call SDV to update the trip
count. The turple pointer is reset to the branch
+ield of DO.n. and exit is to SED.RTN.

B-3-1585

3.14 STMTF: Statement Function Processor

Absiract: STMTF consists of a routine to process statement

function definitions.

Intertacges: STMTF is a front end routine and resides on overlavs

(0y0)y (1,0) and (2,1).

Data Siruciures:

a. Cells: STMIF uses several scratch calls (in FEC) during
processing of statement function definitions.
b. SP.: Dummy argument format for statement functions.
- ————— et +
! IM! !
! 1ot !
srP. ! SYM pt CNT !
! B! !
Fo e ————— — e — - ————————— Ak el et T +
42 3 15
SYM Symbolic name
MODE: Argument type
CNT = Argument usage count
Routing Description:
SED: Statement function definition processing. Enter from LEX

when the statement type is determined to be 'statement
function'. 88Y is called to determine if the function
name is in T.SYM. If in the table, semantic tests are
made for conflicting declarations and any nated resylt in
exit to a diagnostic processor. The argument list is
scanned (in the token buffer) and the arguments produce
two word entries on T.SCRy a starting SP. format entry and
the symbol table entry. Invalid usage as dummy arguments
is flagged as is duplication of any argument. Upon
completion of the argument list scan, assuming no syntax
errors were diagnosed, the function text is scanmned. Each
variable token encountered is tested against the list

{on T.SCR) of dummy arguments. I+ a match is found. the
argument usage count (SP.CNT) is incremented and the 0O.VAR
token is replaced by an 0.5TFA token. Processing
continues until the text has all been processed (O.EOS).
The dummy arguments are tested and any which were not
referenced in the text of the function are the subject of
a2 warning diagnostic. The symbol table entry for the
statement function is made (or updated) to include mode of
result, number of arguments and the skeleton pointer. The
text has been converted to the skeleton by replacement of
the 0.VAR tokens with the Q.8TFA tokens. The skeleton is
copied from the token buffer to T.STF. T.SCR is cleared
and exit is to the front end controller.

B-3-15¢

G5

G6

3.15 LABEL: Statement Label and Do Statement Processing

disirackt:

Inierfaces:

LABEL contains routines to process definition and
reference of statement labels and routines to
translate and compile DO statements and to compile
end code when a DO loop is terminated.

LABEL is a front end deck and resides on overlays
{(QO,0)y (1,0) and (2,1). LABEL interfaces hsavily
with control statements and the IO list processor,

Rata Structyres:

LABEL defines no data structures, but uses T.BLST heavily.

Routine Descriptions:

a. QUL
b. Gol. -
C. LISk:

Check upcoming label. Called from the lexical
scanner and ISL to translate the label field of the
statement which is to be processed. The label field
is examined and if nonblank characters are present,
the label is normalized (leading zeros suppressed)
and the label is packed in a format for processing
by G8L. DNon-numeric characters in the label field
result in a diagnostic and a special flag set in the
token buffer (in lieu of the normalized label).

Called from the front end main loop when a label is
present. The symbol table is checked, via S8Y, for
the label being present. I+ soy and the label was
previously defined, an error is flagged. If the
label was just referenced, the usage is determined,
and invalid definition is flagged (e.g.s referenced
as a format, defined on a non-format statement).

The defined indicator is set in the symbol table
entry. If the label is not in T.SYM, an entry is
made, via ESY and the proper defined bit is set. 1If
any errors were noted, 3 diagnostic is issued. If
active structures (on T.BLST) are present, the label
is analyzed by ALlJ.

Identify statement label. ISL is called whenever a
statement label is referenced, by the pertinent
translation routines. ISL is provided the statement
label and the context in which it was referenced.
88Y is called to determine if the label is in

T.5YM. 1If the label is in the table, semantic tests
are performed to determine if current usage is
consistent with previous reference/definition. 0O+F
interest is whether the label is already defined and
whether the reference/definition was as a format,
executable, non-executable or do terminal label.

B-3-157

d-

e.

S00Q:

The tests cover the possible combination of usage

and previous reference/definition 'fixing'. Invalid
combinations are diagnosed. I+ a label is
referenced as a do terminal (in the DO statement)
special analysis is required to determine if the DO
loop being defined is properly nested within anvy
existing block structure (do or block if}. If the
label is not in T.SYM, it is added via ESY. Any new
reference bits required are added to the symbol
table entry. If the label may be relevant to a
block structure, and a block structure is active,
the label is analyzed via ALU. If cross reference
is requiredy a T.REF entry is made and exit is to
the caller.

Process statement label. PSL is the general exit
entry for executable statements. Some of the
managed tables are recovered when errors occurred.

& call to CSB checks for sequence breaks. If the
statement is a do terminal, PDT is called to provide
that compilation. Exit is to the front end
controller.

Setup do. SDO translates the DO statement. Entered
from the front end main loop when a DO statement is
encountered. Calls ASK to extract the kevword (DO
has a slightly ambiguous syntax). The label is
extracted by ASL.. The control index is tested (for
its presence only} and CDI is called to translate
the DO statement. Upon return from CDI, the nopath
condition is tested and if the loop is unreachable,
a diagnostic is issued stating this and nopath is
cleared (to avoid redundant diagnostics). Exit is
to the front end controller, via PSL.

Compile do initial turplies. CDI is called from SN0
and from DOB (see IO, 3.11) to translate the do
statement, provide semantic testing and to issue the
do begin megaturple. The fatal error count at the
beginning of COI is kept so that if errors occur.,
the do structure can be marked as null. ISt is
called to translate the do label. If errors
accurred, exit is immediate. A new do begin label
(D0.x) is created, via INN. Space is allocated on
T.BLST for the current do loop. Information known
at this time is added to T.BLST. PAR is called to
translate the control index and the induction
values. Upon return from PAR, these values are on
T.BLST. DTC is called (see PAR, 3.12) to determine
the trip count, which is saved on T.BLST upon
return. ACT is called to issue a store turple of
the initial value into the control index. If errors

B-3~158

9.

BRI:

G8

were noted during translation of the DO statsment
(or implied do) T.BLST is marked as null for a DO
statement and the T.BLST entry is removed for an
implied do (RBE). Exit is to caller in the error
case. I+ the increment value is constant, it is
merely kept on T.BLST. If variables, a variable
(DI.x} is invented via INN and that replaces the
variable on T.BLST. A store turple is issued, via
ACTy, of the variable into the '‘made' variable. The
limit value and control index are converted to
base/bias format (via BBC and MDD respectively).
The trip count is tested for constant, via LCT. 1If
constant and GT7 zeroy the one trip skeletons will be
selected regardless. I+ the trip count is zera and
one trip loops were specified, a diagnostic is
issued. If zero minimum trip loops are selected, a
generated label is created (and stored in T.BLST)
and a goto turple is issued to skip the loop code
(when the trip count is constant zero). I+ the trip
count is constant, its length is determined, and if
too long for short loop (and short loops requested)
a diagnostic is issued. Based on the trip count
information, the proper do begin turple is

selected. A new name (DC.x) is invented, via INMN,
for the trip count variable and its ordinal is saved
in T.BLST. Finally, the 3 turple do megaturple is
issued and exit is to caller.

Process do termination. PDT is called from PSL and
DOC (see IDy 3.11) to provide end of loop processing
for DO terminals and implied dos. I+ the do loop
terminates with unterminated if blocks on T.BLST,
the if block entries are removed by RBE and a
diagnostic is issued. If the current T.BLST do
entry doesn't match the terminating conditions, the
error is diagnosed and all do's ending on the badly
nested label are scratched from T.BLST. I+ the do
definitions contained errors a diagnostic note is
issued. FBS is called to finish the structure.

{(for DO statements). The do conclusion megaturple
is gutput. The T.BLST entry for the do is removed
and the loop attributes are propagated outward., i¥
necessary. I+ more entries are present on T.BLST,
test is made to determine if the next outer
structure is a do loop which terminates on the same
label as the just processed do. If so, loop back
and continue processing. Otherwise, exit to caller.

B-3-159

h.

Ja

all

EBS

G9

Analyze label usage. An entry on T.BLST consists of
fixed information (format) and variable

information. The number of LA. words is variable.
ALY analyzes the labels which are referenced or
defined within a block structure and either adds LA.
entries or modifies existing entries as required.

I+ a label is being defined and the structure is
block ifs if the label was previously referenced, it
must have been within the current arm or an error is
output. A reference within a block if arm is merely
marked as such. If the label is being defined and
is within a do-loop, if it was referenced outside
the loop it is marked as a loop entry. I+ the label
is referenced within a DO loop, if it has been
definedy its location is determined. I+ defined
within the loop, no action. I+ outside the loop,
mark as loop exit. If the label has not been
deftinedy merely enter or update the LA. word.

Adding a word (LA.) involves inserting in T.BLST and
then incrementing the LC. word (LC.CNT) and
replacing that entry.

Diagnose do index redefinition. Called when a do
control index might be redefined (e.g. assignment
left side, input list item, etc). First it is
determined if the redefinition can be determined.
If not exit. Also exit on any character operand.
The operand is converted to base/bias format (as are
all do control indices). I¥ T.BLST is empty, exit.
Otherwise, scan the table, checking the control
index word of all do loops for a match with the
current operand. A match means redefinition and a
diagnostic is output.

Finish block structure. FBS is called when a do
loop terminal is encountered {(from PDT) and when a
segment of an if block structure is complete
(ELSEIF, ELSE, ENDIF, see KEY, 3.5). The nature of
the block structure finished is determined. The
current segment is copied to T.SCR and removed from
T.BLST. I+ the current structure is a block if
segment, the LA. words (if any} are scanned, and any
labels defined within this if segment are marked
unreachable (WB.INA). If there is an outer block
structure, the LA. words are merged into the ocuter
block segment one at a time, using ALM. Finallvy,
the segment on T.SCR, less all the LA. words is
copied back to T.BLST (for use by the calling
processor?). Exit to cleanup. I+ the current
structure was a DO loop, the LA. words are again
scanned, merging proaoperties of the loop labels
(entry, exit). When complete, the DO.n label is
updated with information gleaned. I+ the loop has

B-3-160

an exity, it is marked. Entries are marked. G'U
Potential entries are noted. I+ the loop has an
entry and no exit, a fatal diagnostic is issued. An
entry with an exit is flagged nonANSI. IFf the loop
has no exits and no legal entries, mark its DO.n as
closed and mark all defined labels as unreachable.
If potentially legal entries are possible, link them
via LPE. If an enter block ssgment existss merge in
the current blocks LA. words, using AlLll. Finally.
restore the current block; less the LA. words +to
T.BLST. The cleanup exit clears T.SCR.

Propagate do loop attributes. PDA is called when
some condition (e.g. subroutine call) need to be
noted in the do loop header. PDT scans T.BLST in
reverse, updating the DO.n symbol table entry with
the required attributes.

r
ro
[o]
(172

1. RBE: Remove block entry. Called when something dire has
happened to structured control statements. Normally
an invalid nesting of do loops or an invalid nesting
of do loop and if blocks. &n indicator of the
structure involved is passed to RBE. If an invalid
i+ block, FBS is called to finish off the block and
then the structure segment is scratched. If the
structure is a do loop (DO statement), all loops
terminating on the same label are discarded. Each
segment is copied to T.SCR, unless it matches the
terminal label of the discard do. When the entire
T.BLST has been processed. the segments are copied
back to T.BLST. If the structure was an implied do,
T.BLST is shrunk back to its original size at the
start of the statement containing the implied do
(the entire implied do nest is discarded).

B-3-161

3.16 FSKEL:

adbstract:
Interfaces:

Rata Siructures:

Front End Turple and Opcode Values Gll

FSKEL contain code skeletons and turple definitions

used by the front end translators when OPT:D.

FSKEL 1is a special front end deck and resides on

gverlay (2,1).

FSKEL consists of two basic parts, macros to define skeletons
and the skeletons.

a.

b.

Macros:

Skeletons:

Provided by comdeck COMFSKL.. The following
macros are defined:

DEFINS : Define instruction
FORM : Form instruction skeleton element
SETCON = Set number/address fisld in

skeleton {(con)
SETOTH = Set number/address fisld in
skeleton (non-con?

DEFPC : Define pseudn opcode

ENDS : End macro skeleton

ENDF H Flush last skeleton word

SETSPC : Set special skeleton

RESET : Reset current skeleton

BRANCH : Continue skeleton elsewhere

MICNAM 2 Generate micro of skeleton name

SKEL : Declare beginning of skeleton
expansion

SUBSKEL.: Declare beginning of sub expansion

SKEQU @ Equate skeletons

SYBEGU @ Declare equivalent pass 2 skeleton

CAaLL : Call external processor to process
or partially process current turele

MICMIC : Get micro of a micro

The skeletons are provided also by comdeck
COMFSKL, with help from imbedded comdecks
COMSEIS, SKPSET, SKPCONQ, SKOP, DEFINS, SKFL and
PARSKEL.. The skeleton format is:

B-3-1€2

TYP orPC

+ () + S +

+-+-t---—t=————- +-—-—t-————- fm————— dm———— +
'E'R! ! } ! ! ! !
TNINY b GH ! VOIF Y JF Y KFE
pip! ! ! ! ! ! !

et e tmmmtm e R - +
11 4 4 = i1 11 i1

END: End of skeleton (last word) marker

RND: Rounded operation

TYP: Type of operator

GH = gh field

oPC: apcode

IF : i field

JF & j field

KF =@ k field

QF q field

B-3-1€3

QUICK MODRE CODE GENERATION ROUTINES (QCG) G] 3

Because this section was produced independently of the
bulk of the FTNS IMS, the format differs from the other
deck and routine descriptions. The decks included in the

QCG group are:

QCGC
QSKEL.
FUN
REG
GEN

B-4-1

Bceface: 614

Since the particulars of the GQuick Caode Generator (GCG) are
complicated while the general design is relatively simple, this
jiscussion will start with an overview of the main algorithms and
structures. It will attempt to explain first how GCG does what it
does in a main case situation. Later on the discussion will turn to
the obscure but necessary mechanisms of code generation. These will
be discussed in a case by case, deck by deck, fashion. Hopefully,
this will provide the new reader with the overall understanding
needed to appreciate the causes of the algorithmic complexity which
occurs at the code level.

What QCG Daes:

The job of GCG is to turn incoming segments of intermediate
language (I.L.) into FORTRAN'S own assembler language called
prebinary and aplist. To do this QCG chooses minimal code sequences
for incoming operator-operand triples in the intermediate language.
It then fills out these minimal sequences with any necessary loads
of the aoperands into registers. The necessity to load an operand is
determined from the object program environment information which GCG
continually updaties and interogates. Thus on a triple by triple
basisy, QCG generates esquivalent sequences of object code.

Elementary Definitions. Noitation. and Example Tucele (QPR. 10P. 20P):

A turple is an ordered operator-operand triple, (OPR,10P,20P).
1t is the basic unit of input to GCG. OPR is some arithmetic,
.haracter, logical or Boolean operation or some assembler directive
to be applied to 10P, the first operand, and 20P, the second operand.

Example 1l: The source expression I + J results in the turple
{integer +,1I,J).

Ngoiel Each turple determines a3 unique minimal or “"skeletal® code

' sequence. This is the main function of OPR. In special
cases the determination requires information from the
operands.

Iniermediate Lanauage _(IL2:

An intermediate language segment is a sequence of turples which
is semantically equivalent to an integral number of FORTRAN source
statements. The IL is also called the parsed file. (T.PAR)

Brebinary: Machine instructions and psuedo ops are passed to the
FORTRAN assembler as prebinary. Prebinary contains all the opcodes,
register numbers; constants and variable designators needed for the
assembler to generate loadable binaries. Prebinary instructions
will always be designated by their COMPASS mnemonics, i.e., IX7
X3-X2 instead of 37732. Macros and Psuedo ops will appear as they
do in the object listing.

Aplist (Actual Parameier Lisis): G\ 5

Whenever there is a procedure call, actual parameter lists are
generated to designate the actual parameters that will be
substituted into the formal parameters of the procedure definition.
These lists contain all the designators of lengthy, relative offset,

storage in the current suitable form for procedure calls.
Examele_g: The turples generated by CALL P{a&)
will be: (APL,A,O) aplist turple (20P = ZERDO)

(SUBR,P, 12 subroutine turple
S0P = # aplist items

Resultant aplist is:

AP .n aPL A where this is the nth
aplist to occur in this
program unit

Examepls: A turple prescribes a skeletal code sequence which is
unique up to register number. But this in no way implies that the
same turple will always produce the same object code.

Let ALPHA be a source sequence containing the statement A = B.
Suppose the IL (ALPHA) = [..ay(=3AyB)ly...] where (=,A,B)
“orresponds to B = A. Possible aobject code follows.

Case i: (Minimal code case) assume that when QCG starts genserating
prebinary for (=,4,B) s the object time enviromment status
indicates (A3} points to B and the value of A is in X&. Then we
will get only a SA& A3.

Case ii: (Maximum Code). If the object program status indicates
that neither A nor B are in registers and furthermore X& and X7 are
Jjammed with "intermediate” results which must be saved for later use
then QCG will generate:

SAl & load A

SaE ST.n save contents of (X&) in the
nth temporary storage
location

B-4-3

G16

BX& X1 prepare for store to B

possible intervening
code from next turple

SAG B delayed store to B

Example 3 demonstrates that, while GCG may be quite dumb, it

does try to avoid pointless code bulk. This makes the map:
TURPLE Object Code Sequencs

a non-trivial matter to predict. The best one can do is identify
the minimal code sequence, locate the pertinent operand loads, and
thereby identity the code resulting from a given turple. This
process is very tedious, but it is the only method available for
deciding, "which turple caused the bad code," when bugs occur.

Example_4: Use the control card
FV,L0=0,SNAP=A
The program on file INPUT should be

PROGRAM TEST
I =J+K
END

FV should be the currenty, high cycle, FTNS, test mode cowmpiler.
(1) Try to find the turples in the SNAP=A listing and the object
code in the object listing, which pertain to I = J + K.

minimal-ﬁndg_Sasuanaes;.Skglginni;_and_ina_ﬁuudamgnial_elgnniihm_nt
GEN.

QCG is a table driven program. The driving tables are in the
code skeleton deck QSKEL which is generated by the Comdeck SKFL.
The preceding section made a point of emphasizing the minimal code
sequences associated with a given turple. It is in GSKELL: in the
code skeletons where these sequences are laid out. The main flow
that generates them is completely determined.

Lets define our terms.

Skeleton Word: A skeleton (or instruction) word is a word in GSKEL
which is generated by one of the instruction macros, a BRaANCH, or a
CALL macro. Skeleton words select the order of code generation
ctall. They cause branches to other skeleton words and calls to
special processors. Most of the time, they control the construction
of a target prebinary instruction which is one of the minimal code
sequence instructions for an associated turple. This construction
can often involve load code to guarantee the contents of the operand
registers of the target instruction.

Example 5:

This skeleton cause a branch to the skeleton word at DOC1 (do close
1). The temporary result in (Ti) will be preserved.

2. CalLl GaAP
This skeleton word calls the special (general aplist) processor GAP.
3. FMR Ri,Li,L2

This causes an FXi Xji¥Xk
RXi Xj¥Xk

to be generated depending on whether the round option is selected or
deselected. Preceding this target instruction will be a load of 10P
into Xj and a load of 20P into Xk if QCG deems it necessary.

Code Skeleton: A code skeleton is a table in QSKEL which begins
with a SKEL and ends with ENDS macro call. It's body is a sequence
of skeleton words. A code skeleton contains all the jump addresses,
jump table indexes, operand references, register constants and
miscellaneous constants needed to generate the code for an
associated turple. In maost cases, the minimal code sequence is
stated symbolically within the body of the skeleton. Whenever this
is true the minimal code sequence is expressed in the instruction
macro calls.

Code skeletons are the link between the Il and QCG's assembler
code. Each turple operator specifies a skeleton which in turn
drives the generation flow through GCG.

Sub-skeleion: Sub-skeletons are like skeletons in all respects but
twa: (1) the header is a SUBSKEL macroj (2) they are never
referenced directly by turple operators. Instead, sub-skeletons are
referenced by special processors which are called by skeletons or
another sub-skeleton. The way things usually work is:

1. A skeleton is called by the operator.

2. The skeleton calls a special processor.

3. The processor selects a sub-skeleton on the basis of operand
properties.

See integer multiply.

ELIS_(Expand Insiruction Skeleion):

Code generation begins in earnest in EIS, the main subroutine of
the deck GEM and the controller of GCG. EIS is a triply nested
loop. The outer level steps through the IL; turple by turple: and
uses the operators to select code skeletons. The second level steps
through skeletons, word by word, determining the processor type +or
each skeleton word. If a skeleton word is a normal instruction
type, EIS drops to its lowest level. The lowest level shif+s
through the skeleton word satisfying the opcode, constant, address
and i, J and k +ields needed for a prebinary instruction.

General Flow:

Upaon entry to EIS the current turple pointer is to the first
turple of the IL.

I. Get a code skeleton pointer from the OPR of the current turple.
I+ OPR = 0 then stop.

II. Select one of the paths Ay, B or C depending on the TYPE of the
current skeleton word:

A. BRANCH type: determine a new skeleton word pointer in a new
skeleton and go to II.

B. CAlLlL type: Call a special processor. A special processor
will:

1. Qutput aplist and/or prebinary.
2. Set up necessary generated pperands.
3. And do one of the following:

a. Bump the turple pointer and go to 1I.
b. GSelect a subskeleton pointer and go to II.
c. Go to III.

C. Instruction type (several): Save the skeleton word opcode
tields loop through the EIS register and constant processors
satisfying the k or q, j and i fields of the instruction in
that order.

III. If we are on last word of the skeleton, bump the turple
pointer and go to I. Otherwise, stop the skeleton word pointer and
go to II.

H2

Example €: Arriving at the turple (¥,A,B) EIS will choose the H3
following flow.

i. The ¥ operator will be interrogated and the type real multipily
skeleton will be read up. (Done at EIS.PNS)

MUL.R SKEL
FMR Ri,L1,L2
ENDS

II. The TYPE of the first and only skeleton word is a normal
instruction so we take path C. (Choice made in EIS.LNX)

PATH C: Before begining this discussion let's make some assumptions
about the object program status so that we can predict some likely
output code for this turple. Let's assume that rounding is turned
offy B is in X1, A is not in a register and A3, X3 and XD are free
registers. Begin processing:

1. Strip off the opcode (floating multiply) and save the result
in ORPCODE. Pasition the k portion skeleton register field.

pNote: Each instruction type skeleton word has skeleton
register fields for its i, j and k portions. These
fields contain an ordinal into an EIS processor jume
table (SKOP Table) and a micellaneous number of
fields which pertain to operand number, result
number, temporary result number, etc.

2. We are at the top of the (i, js k) field expansion loop
(EIS.NX in the code). This loop supplies register numbers
for the i, jJ and k fields of our floating multipy
instruction. As we proceed the register numbers are saved
in the i, jJ and k fields of the compiler cell INS.REG. We
are processing the k field. The k field of this instruction
waord {FMR Ris,Ll1l,L2) 15 given symbolically by LE. This
indicates that the EIS processor designated would be a
“check load" type (in fact EIS.L) and that the second
operand is being processed. (Latery a precise method will
bea given to know the EIS Processor indicated by an
instruction macro parameter). When control passes to EIS.L
it will be discovered that the second operand, B, is already
in X1. Soy no load is needed. The k field of INS.REG is
set to 1, the skeleton register field of the j part shifts
into place and we go to EIS.NX.

3. We are now processing the j field. The instruction word
parameter for this field is Ll1. This sends us back to EIS.L
to check the status of A&, the 10P of this turple. We soon
find that A is not in a register. So, A is loaded into the
available load register pair (A3, X3). We emit the
prebinary - 543 A. The value 3 is passed to the j field of
INS.REG,y the skeleton register field of the i part shifts
into place and we are headed back to EIS.NX.

4. The 1 field is represented by the parameter Ri. This sends
us to EIS.R to process the first and only result of this
turple. EIS.R will select a result register, say 0. It
then calls DIT (Define Intermediate Result) in REG. DIT
makes the updates to the object program environment
information which will indicate that: X0 has recieved the
result of a floating multiply of the contents of A and B.
The O from the X0 is passed to INS.REG's i fisld, and we
return to EIS.NX.

5. at EIS.NX it is discovered that all the fields are filled.
We jump to EIS.CMP for clean-up. Here the contents of
OPCODE are combined with those of INS.REG to make the
prebinary word: FX0O X3%X1. We output this instruction, see
that this is the last skeleton word, step the turple pointer
and start again.

Reading _the Skeletons:

Eigure 1i__Call Formais for the Key Macros

Skeleton Macros:

AD BRANCH TO,IJK

ab Call. TO,ARG

AD {inst) I,J,K

ap {inst) I,JK

AD {inst) I1,J,Q

AD (inst) I,J78=-.. or =X5=...

Ngtatign: {(inst) can be any skeleton instruction type macro. See
comdeck DEFINS in QSKEL for a list.

The SKOP macro:
I1JK SKOP NOTLAST ,LAST,parameters

How To Use ifhe Insiruction Magcro Calls and the SKOP Cowmdeck Listing
To_Predici the Proaram Flow Throuah EIS:

We are almost in a position to state a precise method of using
the code skeletons as a map through EIS. All that is lacking is a
description of the comdeck SKOP.

SKOP_(Skeleton Operand Link)

SKOP is a comdeck of SKOP macro calls. It is called in GSKEL
and GEM. This comdeck automatically maintains the linkage between
the two decks. In GSKEL, SKOP defines all the assembler constants
related to the instruction macro parameters. These constants
include the EIS processor jump table ordinals which appear in the
skeleton register fields of the iy jy and k parts of instruction
words. In GEN, SKOP sets up the EIS processor jump table.

H4

Hb

Thus we define the SKOP macro twice for two contexts. In the
t+irst, SKOP acts on the instruction macro parameter types and in the
second SKOP sets up processor references. This dual use results in
the following important fact: Every SKOP macro call includes both a
reference to a specific instruction macro parameter type and
designators of corresponding EIS processors. This makes the SKOP
comdeck automatically maintained documentation of the link betwesn
EIS and the code skelstons.

Example 7: A SKOP call
L SKOP LNU,L,0P

The important parameters are the L in the location field and the
LMNU and L in the variable field. The location field L indicates
an L. type instruction macro parameter as either L1 or L2 in an
(IS R1i,L1,L2) call. The other L is to designate EIS.L. LNU is
for EIS.LNU.

LAST_and NOTLAGI:

Just about now you are probably asking, "What EIS proressor do I
choose?" It is not exactly obvious in Example 7. The fact is that
the choice of an EIS processor for a given parameter in an
instruction macro call is a function of two variables. The choice
depends on the parameter type and the position within the invoking
code skeleton of the given parameter relative to other occurrences
of the same parameter. In many cases, the EIS processor for the
‘ast occurrence of an instruction parameter will differ from the one
«hosen +or all of the preceding occurrences.

NOTLAST and LAST are the SKOP macro parameters that designate
the EIS processor. They are the first and second variable field
parameters of SKOP resp. EIS.NOTLAST is the processor chosen for
all but the last occurrence of a given instruction macro parameter.
Obviously,y, as its name implies, the processor of the last occurrence
is EIS.LAST.

Examele 8 (Comelex add):
AaDh.C SKEL

FaR Ti.LuULt,Lue
NR RU1,0,T1
FAR T2,LL1,LL2
NR RL1,0,T2
ENDS

NOTE: Open your QSKEL to the SKOP listing.

a. LAST and NOTLAST: Looking at the SKDP entry for the Ti
parameter we have:

T SKOP AT,CT,TMP

NOTLAST=AT and LAST=CT. So, for the (FAR Ti,LU1,LU2) word,
control passes to EIS.AT during i field processing. For k
field processing of the (NR R1,0,Tl) word control goes to
EIS.CTs the EIS.LLAST processor.

Complete flow information for the word (FAR TZ2,LL1,LL2)
within the context of the ADD.C skesleton:

{k field) - the k field is represented by the LLZ2 parameter
and is the last occurrence of this parameter. SKOP entry
is:

LL SKOP LNy L, OF

We must use the LAST parameter, LL, to generate EIS.LL, the
processor of the k part.

(j field) The j parameter LL1 yields another pass to EIS.LL
+or the reasons just stated. EIS.LL, incidentally, is the
load checking processor for double precision lower parts and
complex imaginary parts.

(i field) T2 is in the i position. It is a not last
occurrence of a T type parameter. NOTLAST for T types is
AT. BSo we go to EIS.AT. (EIS.AT sets up register values
that are so temporary that they are discarded after their
last use within a skeleton. EIS.CT. the last use processor,
does the discarding.)

Constant parameters:
Up to now we have only considered parameters of the form:

<Parameter> 1i= <letter> <number)> ! ,
{Letter> <{Letter> <number>

These are normal parameters. The location field of their
SKOP entry is given by the alpha part of the parameter. The
following table gives the SKOP entry location field for all
parameters:

Eigucs Qi _SKOP locatiogn Table

Bacameier format location Field

Normal Alpha part of parameter
&e-Bit Constant K

18-Bit Constant Q

S=OII S

B-4-10

In the ADD.C skeleton in this example the (NR RU1,0,T1) word
is generated using the &€-Bit constant Q. The SKOP entry for
this constant is:

K SKOP Ky NONE , CON

This SKOP entry is typical for an abnormal parasmeter. The
LAST parameter is NOME which indicates there is only one
processor for this parameter. Whenever one of the SKOP
processor designator parameters assumes the value NONE, then
there is only one possible EIS processor and it is
determined from the other SKOP parameter. Thus +for

{NR RU140y71) the j tield processor is EIS.K.
Summary:

To determine the EIS processor for a given instruction macro
parameter, PARM:

I. Find the SKOP entry for PARM (Use SKOP Location Table)

II. IF (NOTLAST=NONME) then the processor is EIS.LAST. STOP.

II1. IF (LAST=NONE) then the processor is EIS.NOTLAST. STOP.

IV. Determine relative position of PARM within the invoking code
skeleton.

A. If last occurrence, processar is EIS.LAST
B. Else the processor is EIS.NOTLAST.

STOP
BRANCH and_Call: Flow for the Mon-instructions macros.

BRANCH and CALL macros also give useful information about
program ftlow. While CALL functions are somewhat disjoint from the
rest of the skeleton environment, BRANCH interacts directly with the
instruction macro parameters.

When EIS.LMNX encounters a CALL word, say (CALL TO,ARG), program
flow passes to 0=TO. Further program flow information must be
determined from the special processor 0=TO. The parameter ARG is
tformatted and passed to 0O=TO. If ARG is one of the normal
instruction macro parameters like L1 or P32 then this appearance
within a CALL call does not count as an occurrence in last
gccurrence computations.

B-4-11

H7

H8

BRANCH helps us cut and paste skeleton parts together. When a
skeleton word generated by a (BRAMCH TO,IJK) is encountered at
EIS.LNX time, the skeleton word pointer is reset to TO and the
EIS.LNX loop continues unmolested. The IJK parameter consists of
ne or more normal instruction macro parameters (for exameles, Tl or
({T1,T2)). Parameter occurrences in IJK count as occurrences within
the invoking skeleton and effect last occurrence computations. In
facty, the IJK field of a BRANCH call has only one function: to
insure last occurrence processing is de-selected for all of the IJK
parameters preceeding the BRANCH call. IJK is just the set of
instruction parameters that should be preserved across the change of
skeleton.

Example 9: DOC.R - Do loop close code skeleton for do lonps with a
real index.

DOC.R SKEL. :
CAaLL DOC,1
FMR T2,L1,L2
NR T1,0,T2
BRANCH DOCL1,(T1,L1)
ENDS

Skeleton processing begins with a trip to 0O=DOC. Next we process
the FMR and NR instructions as described in the preceding sections.
We note that last use processors are not selected for T1 or L1
because they occur in the IJK field of a BRANCH call. When the
BRANCH is encountered, control passes to the DOCL1 word in the
skeleton DOC.L. One must always take care that the parameters in the
.JK +ield actually do occur in the skeleton sequence referenced by
the BRAMNCH, otherwise, last use processing for the IJK parameters
will be missed. That always leads to bugs. ,

ghai-IQ_Dn_uiih_a_Bad:ﬂnd&-aus.ﬁngg_ihg-Eli;iiina-Iunale-ﬂas_aggn
oungd:

A& naive approach to fixing bad object code bugs is to find the
bad turple, set an IDP break at EIS.PNX which detects this turple,
and then step until something goes wrong. This approach starts off
well but it could take a long time indeed to step through all the
code for a turple. A floating divide, for example, causes 51 passes
through EIS.NX making a total of no less than €3 direct subroutine
calls.

A better approach:
I. Determine the turple and find its skeleton.
II. Compare the minimal precribed code sequence of the skeleton
with the actual code generated for this sequence. (It is

often useful to underline the minimal code sequence as it
appears in the object listing?.

B-4-12

I11. Now determine which skeleton word was active when the bad cods
gccured. This involves more comparison of the object code
with the skeleton and may be difficult. If the skeleton word
is a CALL then read the 0O=... processor and skip IV and V.

IV. Determine if the problem occured in i, j or k field
processing.

Ve Now use the corresponding instruction macro parameters and
SKOP to cut the field down to the exact EIS processor. Rsad
the EIS processor.

g~ go

\J :': ?i|
\'l - Jae o bt -

[

Ihe_Coder:

We know now how EIS obtains a skeletal approximation of the
object program. We know that turples give way to skeletons, a
meaningful reduction in the level of abstraction, and we know that
skeletons break the whole problem up into a sequence of well defined
processes. Somehow real object code results, but to this point in
our discussion we lack the link between abstract minimal code
sequences and real executable assembler code. That link is the deck
REG, the register manager.

REG controls the object program environment. It provides the
operand load for an L1 parameter and the X-register for a TS. REG
provides the numbers for and guarantess the contents of the
registers involved in i, j and k field processing aof skeleton
mords. REG knows who is where at all times, and, when the registers
become jammed with useful values, REG determines the value that is
most expendable. REG is the lowest level of code gensration. It is
QCG's coder.

The Qbiect Progaram Envirgnment:

Object program information resides in two tables: OUS (Operand
Use Table) and REGFILE. The function of these tables is to answer
two almost inverse gquestions. Given an operand, OUS knows whether
that orerand is in an object time register and if so which one.
Conversly, REGFILE answers the question: Given a registers, what
value resides there? Thess tables are the domain of RFEG. They
should never be manipulated outside of REG for the purpose of
register management.

B-4-13

HI

H10

Structure:

REG and structure are almost a contradiction in terms. This
deck is such a lgose conglomerate of subtly similar yet differsnt
subroutines that the only reasonable order for sorting the listing
is alphabetical. Some trends do emerge. There are status routines,
for example. These routines update and query 0OUS and REGFILE.

There are loaders and register allocatorss; and there are a few
subroutines in a class alone. The interdependencies in this deck
are fiercey and the algorithmic compiexity rivals anything in +the
compiler. Viewing QCG from REG up can be totally mind boggling.

Ther ne fact that saves everything. EIS calls the shots.
And this is the only perspective that works. Vieswed in the context
which the EIS processors suggest, groups of REG routines make
sense. When working in REG; the readsr should always keep +this in
mind. The structure of REG is really just the structure imposed by
EIS.

[T V]
(1]
i
W
o
i

Cautions:

1. Change as little as is necessary.

2. If vyou find an undocumented entry/exit condition that is hesdad
by at least one caller, don't change it; document it.

3. Small changes have big effects.

4. Document as vyou go. One comment per line is a nice start. (NOT
A JOKE)

5. Avoid changing entry/exit conditions.

m

. REG is the wrong place to start in GCG.

K0

asic Concepts:

Intermediate: Operands that are references to previous turple
results are called intermediates. The turple referenced is the
associate turple. The turple that contains the intermediate is the
cuccant furple.

B-4-14

H11

Example 10:

Assume that the statement A = B + C is the first statement used
to generate the IL segment IL. Then the first two turples of IL are
‘+y BsC)>» and (=4 AyI1l) respectively. The store turple, (=, A,I1},
causes a store of the intermediate result, Il, of the addition
turple, (+y ByC)y into the variable A.

QOperand lUse: An operand is used by a turple whenever the code
sequence for that turple requires the value of the operand at ieast
once. Operands are used only once per turple even though many
skeleton references may exist for the same operand.

Example 11:

{a) (direct use) The code resulting from (+, B;C) requires the
values of both B and C so both are used by this turple.

(b)) (Deferred turples and indirect use) The expression A + B(I)
results in the turples

Turple 1: {array load, B,sI1)
Turple 2: (+sA,I12.
The intermediate Il points back to turple 1, the array load for B(I).

When EIS hits turple 1 it calls the array load special processor
O0=8UBL which skips on to the next turple. The array load turple is
a deferred turple. However, when the k field processor of the

loating add of turple 2 discovers that it is processing Il. the
intermediate reference to the array load of B{(I), then it calls the
array load subroutine SLD in REG. B(I) is loaded during the
praocessing of turple 2. This load requires the value of the
subscript I. I is required by code for turple 2. Thereforey, 1 is
used by turple 2 even though I is not an operand of turple 2.

REGEILE: This is the ongoing record of the object time registers.
There are 24 words in REGFILE, one for each register. RFEGFILE
entries are operand words or skeleton temporary register
indicators. All used operands are recorded in REGILE when their
values are plarced in registers.

QuUg: 0OUs, the operand use table, provides a direct lookup method
for determining the register residency of a given used operand. It
has one entry for each distinct operand in the IL which is used by
some turple.

Siatus Word: A status word is an DUS entry. The most important
content of the status words are status bits and reg-numbers field.
Status bits indicate when an operand is in a register. Reg-numbers
tell which one. Each status word has two status bits and reg-number
fields. This is to accommodate the needs of two word data types.

B-4-15

QIR Eormat (Zsro - Type = Register): The OTR of an object time lilz
register refers to its ordinal in the REGFILE. Written as three

octal digits, the entries are: 0QQ00-007 for B-registers, 010-017 for
A~reaisters and 020-027 for X-registers. The first digit gives the
‘egister number; the second digit gives the register type. The

third digit is always zero and never used.

Use_ Count: Use count is the numeric field in REGFILE entries which
is the register selection key. Entries with low use counts are
selected first to be cleared. A REGFILE word with zero use count is
considered to be empty. Interpretation of use count varies with

entry type.

Eniry Type:

Initermediais: Use count is related to operand use. During
skeleton expansion, the use count of an intermediate is the
number of turple uses remaining to the intermediate within the
current IL. When the value of an intermediate is required for
the last time by a given turple, a use total in the associate
operator word is decremented by 1. This value is then placed in
the use count field of the REGFILE entry for the intermediatse.
This will remain as the use count until the next turple using
the intermediate is finished with it.

NMon-Intermediate-QOperands: Use counting for non-intermediates

is less accurate than for intermediates. Use count is the

number of times a non-intermediate occurs as an operand in the
remainder of the IL. This does equal number of uses if there is
no indirect use. Use count for non-intermediates is kept in the
operand word itself. When a turple is finished with a
non-intermediate it decrements the use count field in the

operand by one and enters it in the REGFILE. Otherwise,
non-intermediates are entered into REGFILE unchanged from the IL.

Temegrary Besuli Indicators: These entries have the highest
possible use counts, MAX.USEC and MAX.USEC-1. They never get
selected until QCG is through with them. Their use count then
changes to zero and they stop existing.

Locked Regjisters: A register is locked if the highest bit in the
use count field for that REGFILE entry is set. This makes the use
count so high that a locked register is never selected if QCG is
functioning correctly.

Ieme: (1) Temporary result registers that hold intra-skeleton
results are called temps. They result from T and X type skeleton
parameters. They have maximum use counts which means locked.

Teme: (2) When an intermediate looses its register residency
before its last use (i.e., use count non-zero’. it is stored to
temporary storage. The intermediate is then in temp. Allocators
try to avoid intermediates because storage to temp is expensive in
code bulk and program size.

B-4-1¢&

Begisier Convention: H] 3

REG respects and initiates many register conventions. Some can
never be violated. Others, though not mandatory, should be
respectad. Entry/Exit conditions should be standard. The same
quantities should always be passed in the same registers. To 3
areat extent REG does just that. 0OTR, for example, is alwavs
returned in the same register, B2, from register allocators.

The three quantities that REG respects absolutely sre: the
turple pointer, the skeleton pointer and the skeleton word.
Currently these values are kept in B4, A4 and X4 respectively. The
turpie pointer can only be changed legitimately for two reasons: <o
change the turple being referenced and to adjust for table crashes
(only done in the deck ALLOC). The skeleton pointer and word should
never change outside of EIS.

Though satter register conventions can not alwavs be observed,
some should always be observed. These are the register conventions
used by subroutines aof the same type. For example, register
allocators are all obsessed with passing back an OTR that can he
used by the caller. It makes sense that they all pass it back in
the same register. Status routines pass back status words in the
same registers. In general, soft conventions sre simply those
registers agreed upon by a specific type of subroutine to carry the
focal data structures for that routine type. A soft convention must
be an entry/exit condition.

- ucecent Reaister Soft Conventions

(X5) = IL Operand or REGFILE entry
(Al) = pointer to status word

(X1) = status word

(Ba) = OTR

(X&) = 0ORO (when (B2) = OQTR)
allocators:

When object time registers are needed for loads, stores or I-J-K
t+ield processing, one of the asllocators routines is called. The
task of an allocator is to find the most expendable object time
register possible to satisfy the requirements of the caller. Some
allocators actually clear the selected register before returning
while others leave that decision to the caller. The names of
allocators alwavys end in R. Thus, they are easy to spot in the REG
listing.

B-4-17

SFR is the heart of register allecation. It is a table driven '114
scan routine which searches classes of RECGFILE entries for the
operand with lowest use count. When the lowest use count detected
is non-zero, SFR also determines the non-intermediate entry with
lowest use count.

The RG=tables in REG drives SFR. Entries are referenced by tags
of the form RG=xxx where xxx is one of the following register
classes:

BADR or ADR - (B1 - BS)

Ter* or SET - {(XC - X5 non-store regs
LOAD or LDDX- (X1 - X5) load regs

INTR - (X0, X&, X7 non-load regs
STOR - (X&, X7} store regs

APL - (A3, A2, Al) not used

Each entry is 3 words: a control waord, a scan word, and a reset
word. The control word contains a mask length and element count for
the given register class. It is in RS format. The scan word
contains an even distribution of the OTR's of the registers in the
class for the given entry. Each OTR field has a width equal to the
mask length in the control word. This width is &0/n where n is the
alement count. During SFR execution, the OTR fields in the scan
vord determine the REGFILE entries to examine. OTR's are positioned
via left shifts. The scan stops when a zero use count is detected
or the class is exhausted. At this point the scan word is stored,
as isy, back into its position at RG=xxx+1. Thus registers in a
given class are assigned in left circular order. The reset word is
an unshifted scan word. It is used to initialize the scan word when
EIE gtarts processing a3 new IL segment.

In general the following algorithm is used by SFR callers to
select a register. If a zero use count entry is available, take
it. Else, take the non-intermediate of lowest use count. If no
non-intermediates are available, then take the entry with lowezt use
count.

B-4-18

Examele 12: (AIR) H] 5

AIR, assign intermediate register is called by EIS.IR when an
intermediate result register is needed. AIR does not ciear a
spgistery but instead passes baeck a recommended OTR. It first calls
SFR to search the intermediate registers, RG=INTR. If an
intermediate register is available with zero use count,; AIR exits.
Next, the special delayed store mechanism is checked and if a store
reagister is cleared by this method we exit. Finally, AIR checks the
1noad registers +or an entry with zero use count or a
non-intermediate. If this search is successful, AIR passes back the
OTR and exits. Otherwise, AIR flags failure and exits.

Example_13: (ASR)

ASR,; assign store register, is called whenever a store register
is wanted. ASR clears the register selected.

Selection begins with a call to SFR to scan the class of store
registers, RG=STOR. If an available non-intermediate is found or a
zero use count occurs, ASR is done. Otherwise, ASR must store the
intermediate found, to temp. This dones ASR zeros out the REGFILE
entry for the selected register and exits. .

The following code sequence occurs in EIS.IR:

RJ AIR
PL B2,EIS.IR20
RJ ASR

The initial AIR call tries to find a register that nesds no
store to temp (i.e., a non-intermediate or an entry with zero use
count). If no such register exists, indicated by (B2) less than
zero, then we call ASR to clear a store register. We clear a store
register because clearing a non-store register forces the clearing
of a store register so that the contents of the non-store register
can be stored to temp. Thus, we select a store register directly
and avoid one extra store to temp.

Hard Begisitears:

From time to time a specific register is required rather than
Just one out of a class. For example, the skeleton instruction
(LD L1,,R.X3) will force the L1 register to be X3 rather than just
any one of the load registers. Such register requirements are
called hard register requirements.

To set a hard register, place the desired OTR in the cell RREG.
The contents of RREG are negative otherwise. When SFR discovers
RREG contains a valid OTR, the normal scan is wired off and the OTR
in RREG is returned.

B-4-19

Hard register settings are in general dangerous because they "]6
will select the target register even if it is locked. Therefore.
the QCG programmer should never use the hard register mechanism
without totally understanding the context of the use. Hard
~egisters are mainly used when all but the register allocation
portion of a processor or subroutine is needed.

Example 14: (SL.D - Subscripted array load)

Si.D writes the cade for loads and stores for subscripted
arrays. SLD calls GNR (Get Next Register) to get an array
register. SLD directs GNR to get one from RG=L.0AD, the class of
ipad registers. But, when EIS.57T0 calls 5.0 to compile an array
stores RREG is first set to the OTR of a store register which
contains the array element to be stored. Now when GNR is called the
store register is returned because GNR calls SFR which wires off the
scan of the load registers. The rest of SLD functions normally only
now the final set A instruction results in a store rather than a
load.

Status Routines:

Correlating the information in OUS and REGFILE is the job of the
status routines. The main routines are GST, STSE and RUT.

GST, get status of tag, queries the register status of an IL
sperand or a REGFILE entry. GST gets the status word for a given
operand along with a pointer to that status word. These values are
~eturned to the caller. In addition, GST checks the appropriate
- status bit. If the bit is off, GST returns with OTR of zero to
indicate the operand is not in a register. Status bit on causes GST
to check the corresponding reg-number field in status word. If the
REGFILE entry corresponding to the reg-number is equal up to use
count of the input operand then GST returns the OTR in the
reg-number field to indicate the operand is in that register. If
the REGFILE entry and the operand input to GST do not match then the
OTR is set to zero indicating the operand is not in a register.

GST performs one task that could cause confusion outside of its
historical context. It sets up the cell GSTA in the following
format:

42/Table Vector Word, 18/ordinal

Table vector word is the T. entry in PUC for the table
containing the status word. Ordinal is the ordinal of the status
word in that table. This mechanism seems pretty useless in FTNS
where OUS is the only table containing status words. But in old
FTN4 status words could reside in any of 3 tables. Guarding against
this eventuality in FTNS, the mechanism remains.

I

When we want to place an operand in the REFGILE we call 75, set
tag status. STS is passed an OTR, an operand, an associated status
word and a pointer to that word, a type indicator {(upper or lower
half), and a flag, UIC, which is either 1 or 0. The operand is
A2laced in REGFILE+OTR using LIIC to decrement the use count. The
type field in the REGFILE entry is set to reflect the operand tvpe.
STS then updates the status bit and reg-number field and exits.

One of the most important tasks of STS and its slave, AUT,
adjust use total; is to compute a use count. AUT returns a value to
STS in the use count +ield of the operand. When STS subtracts the
contents of UUC from this value returned, the resulting number is
the operand use count. For intermediates AUT subtracts UUC from the
use total in the associate operator. Thus the use total in the
associate operator is always equal to the use count in the REGFILE

entry whensver we sxit STS.

RUT, reset use table, is used to clear register status. Use
table is another name for REGFILE. Given an OTR, RUT will zero out
REGFILE+OTR and clear the status bit of the associated status word.
Moveover, if RUT is asked to clear an intermediate with non-zero use
count, it sees to it that the intermediate is stored to temp. RUT
is the only status routine that outputs object code.

Storing to temp can be tricky. Suppose RUT is asked to clear an
intermediate in X3 and both X& and X7 contain intermediates. RUT
must first clear a store registery, storing its contents to teme.
Next the contents of X3 are transmitted to the store register just
~leared. RUT is now ready and stores the original intermediate to
. .emp. To accomplish this feat, RUT does the equivalent of calling
itself. It uses variable B-register jumps to avoid looping. The
algorithm is one of the most complicated. Read it carefully.

Other status routines are either simple slaves or extensions of
8STS or GST. DIT is an important STS extension. It is called when
an intermediate is first entered into REGFILE. This happens when
tha associate turple result is first defined. No intermediate
operand referencing this turple could have been sncountered up +o
this point in the processing. This is because intermediates
reference back to previously defined results. QCG must set register
status at the time the turple result is defined, but it has no
operand to place in REGFILE and no way of knowing where such an
operand might goccur. Sa, DIT exists to construct an intermediate
operand to use on the fly and then to set status throuah STS.

Pe. FEormat:

Unlike the rest of the compiler, QCG keeps its operands in P2.
rather than TP. format. Because QCG requires a 9-bit use count
field for sach operand, this difference will probably never be
resolved. Status words, which are derived from operands, are also
in P2. format. The significant P2. fields are TAG. BIAS, IL., RG and
ST. The latter three fields are just reformattings of the lower
o 18-bits. ST is for status words. RG and IL are for operands.

B-4-21

Though operands and status words share many field names. and
even though they are both representations of the same quantity. the
contents of these words differs radically. The TAG and BIAS +fislds
of status words are the TAG and BIAS fields used for prebinary lnads
and stores. For operands, these fields are 0OUS and IL ordinals
respectively. Uperands contain meaningful CLAS and attribute bits
which are wiped out by status fields in status words. In short, GCG
takes advantage of the extra space afforded by the status word. The
operand is really a two word quantity. There is an IL part, called
the operandy and a status word part. Keeping *track of which is
which is a major problem for the coder in REG.

Analysis of P2. fields:

Status Word: TAG is P2.'s form of TP.ORD. This is the
prebinary TAG field and the aplist TAG.

Operands: TAG is the OUS ordinal of the status word for the
operand.

BIAS:

Status Word: P2. form of TP.BIAS used for aplist and prebinary
bias.

Operand: BIAS is meaningless for non-intermediate operands.
For intermediates P2.BIAS is the IL ordinal of the associate
operator.

IL and RG (operands only):

These fields contain class and attribute bits, the use count
tieldy, and the upper/lower half type indicator.

ST (status ward oanly)
ST contains the status bits and the reg-number fields.

REGFILE entries are in operand format. Operands that are not
use counted are like combination operand/status words. The Ta&G and
BIAS are like status word fields. The rest of the word is like a
normal use counted operand except the use count field is zero. Use
counted operands never have a zeroc use count field.

The lLoad/Store Routines:

CLI (compile load instruction) and SLD (subscripted array load}
are the main load/store routines. Note, though their names only
indicate loading, both of these routines serve double duty as store
processors. Any routine or processor which claims to load or store
variables, will ultimately call SL.D or CLI.

B-4-22

12

CLI loads or stores simple variables or arrays with constant
indexes. CLI is passed an operand to load, its status word, an OTR
and an ORO in standard registers. It will output correct load/store
code for non-LCM formal parameters, LCM formal parameters, LCM
non-formal parameters and non-LCM non-formal parameters. The latter
case is the most common and uses the least code. This is the main
difficulty with CLI: 90X of the code is executed 10% of the time,.
Say it is easy to fix a minor end case and break the comeiler.

SLD is really 3 routines. Because array loads are deferred, the
first job is to save the current turple pointer and replace it with
the associate turple pointer for the array load intermediate being
processed. nMexty SLD is an alliocator. It obtains two registers:
one for the array load and one for the index. The index is usually
refarred to as the address function. The final phase is to compile
the load/store code. This does not differ grsatly from CLI.

Allocation in SLD is tricky. The problem is that SLD wants two
distinct registers and sometimes it fouls up and selects the same
one for both uses. At present there is a loop that deals with this
eventuality. An address function register is selected and locked.
Next an array register is selected. If the address function has not
been cleared from its register by the process of getting an array
register, then we're home free. However, if a conflict occurs, we
loop back and reload the address function. We're still not free of
trouble, because the address function might have besn loaded into
the array register. If that happenedy, we clear an intermediate or
store register and transmit the address function to that regizter.

This code usually works but it is very pathological. In FTN4
about one out of ten code generator PSR's are flushed out by this
very leoop in SLD. The most disturbing aspect of this loop is that
it admits that a locked register has been clobbered and still
continues processing. Now, register locking exists to protect a
quantity that often cannot be recovered. For example, once the
k-register number for a skeiston instruction has been placed in
INS.REG, EIS never checks to see if the value in that register
remains valid. It locks that register during j-field processing so
that the k-register will not be disturbed. But, if SI.D is capable
of clobbering a locked address function registers it is eaually
capable of clobbering a locked k-register. If this occurred, it
would only be detected by bad code.

B-4-23

13

Aplistis and Procedures

The main growth area in the FTN4 to FTNS transition was the ares
of aplist-procedure processing. Here we use procedures for any
subprograms, i.e., user functions, subroutines and any FORTRAN
Common Library subprograms. FUN is the deck associated with the
output of aplists and the related object code.

Character substring and array loads involve library calls.

Character expressions require library calls. The fact that

character substrings, arrays or expressinns could legally appear in
any apl:st meant that FUN had to acquire an aplist stacking

&;:53‘51.‘.*}’= Tf‘.ii adde s o~ I.l£.171_ ac brl'lb

l"!
'i."
/]
Ll
4
fl
;.
b
i
b
b
!
o

It would be untrue to say that the more complicated aplisti cases
were just extensions of the simpler ones. The methods of building
aplists differ greatly. Setting all of the fields for a given
aplist entry involves a complicated sequence of decisions for almost
every aplist and operand type. I0 aplist entries require two words
per entry while user aplists only require one. Character aplist
entries require a support table to carry byte address information
not required by other data types. But, despite varied requirements,
all aplist processors can be fitted into one of three categories:
Builders, Entry Generators and Outputters. Builders control the
gross structure. They make header words, find and route aplist
operands. Entry generators receive aplist operands from builders.
They analyze the operand, set flags and fields and finally use all
this to output an aplist entry. One operand may be passed to many
entry processors before an entry results. Outputtere process
completely built aplists. They add the new aplists to the
appropriate tables, add terminator words and output call object code.

Great effort was expended to maintain structural similarities in
the aplist algorithm for the two code generators. Common
subroutines were used whenever possible. In general these efforts
were successful. Most of the major processors and subroutines in
FUN have direct counterparts in BRIDGE.

Tables:

The main job of the aplist process is to build tables. One
table is for scratch. The rest contain the address references,
pffsets and ordinals the FORTRAN assembler uses to build object time
aplist tables.

T.APL is the table of completed aplists for user procedures and
character library routines. APL drives the building of the object
time table of user/character aplists at assembly time. Entries are
one word. They result in one object time entry.

B-4-24

15

T.API is the aplist index table for user/character aplists.
There is one entry for each user or character aplist created by
FUN. The zero-th entry is zero. After that, the nth entry in T.API
corresponds to the nth user/character aplist built by FUN. Entries
zontain the index of the first word of the corresponding aplist
within the resulting object time table of aplists.

T.I04A is the table of completed I0 aplists. It drives the
building of object time ID aplists. Entries are two words. They
contain a length or control code word and an item word. The order of
the words depends on the entry type.

is the I0 aplist index table. It is exactly analogous to

il
1]

G

)

-

TIW -

T.CAC is the character address constant table. This table
contains the character length and the beginning character position
for character aplist items. Each character entry contains an
ordinal to a T.CAC word in its bias field.

T.CLWs the character length word table, exists to support
character array 10 length words. I0O length words specify a number
of array elements to process. Buts character array elements are not
a +fixed length in terms of storage units. So, character length per
array element must also be passed to the IO processor. All this
would overload one character length word and so the support table
T.CLW was created. T.CLW entries are two words. The first contains
character length information. The second is a standard IO length
word. Back in the I0D aplist, the length word for a character array
. sust contains the T.CLW ordinal in its bias field.

T.SAP, the scratch aplist table, is the place where user and
character aplists are built. T.5AP exists because of the problem of
having to nest aplists. When an aplist on T.SAP is completed it is
copied to the end of T.APL.

Ihe Aplist Environment_and Sitackinsg

FUN maintains several cells to drive the construction of
aplists. Together these cells are called the aplist environment.
They include:

APLEN - The number of words in the current aplist at any given time
in the construction process. .

AP IND

The index of the index table entry for the current aplist.

APTAB - The address of the PUC table address ward for and the index
within the table on which the current aplist is being built.

ATF - The IO indicator and other fields and bits used in entry
generation.

B-4-25

16

There are three words reserved for each of the above mentioned
structures. This is to accommodate the maximum aplist stacking
depth of 3. .

EVEL - This cell keeps track of stack depth.

Whenever it becomes necessary to interrupt the building of one
aplist so that a nested aplist can be built, we stack the current
aplist enviranment, reinitialize it for the new aplist, and start
building. To stack we merely move the contents of APLEN, APIND,
APTAB and ATF to the locations APLEN+n, APIND4n, aAPTAB+n and ATF+n.
n is just 1+C(LEVEL). We then increment the contents of LEVEL by
one. When the nested 1list is built and outputted we pop back to the
original aplist and start building again. To pop we just decrement
LEVEL. and restore the environment.

Buildina Aplists

There are six aplist types: User, I0, Character Mave, Character
Relational, Character Array and Character Substring. They have
different formats and different builders.

User Aelisis Buildina

For any user procedure call in the source, QCG is passed a burst
of aplist turples followed by a procedure turple. For function
calls only, this sequence is preceded by a FAP, first aplist,
turple. This marks the beginning of a function aplist turple
sequence and gives FUNM a chance to create an entry for character
cunction results. There is aone aplist turple for esach parameter
listed in the source call. Aplist turples have the format:

OPR: GAP General aplist operator
i0P: ITEM Operand for listed item
20F 3 6] Always zero

Procedure turples have the format:

OFR: FUN or SURR Function or subroutine
10P: Routine Name Sym. Tab. ordianal of routine
c0P Count Number of aplist turples

QCG builds a user aplist with this turple sequence. Fach aplist
turple causes a trip to 0=GAP via the skeleton CALL mechanism. At
0=GAP we initialize the aplist environment if needed. Next we call
IAW to issue aplist word, route to the various entry generators and
to build nested aplists. 1AW is passed an operand and returns with
one entry added to the current aplist. But, between entry and exit,
many intervening aplists could have been built and output. Upon
return from IAW, O=CAP bumps the turple and returns to EIS.PNX.

This process continues until the procedure turple is detected.
At this time the building phase is done and control passes to the
autputting processor indicated by the procedure turple.

Building IO Aplists:

Like user aplists, I0 aplist building is driven off a sequence
of conmsecutive I0 aplist turples terminated by an IDF. (IO function)
turple. I0 aplist turples generate two word aplist entries - one
for each operand. Aplist building commences when the first IO
aplist turple is encountered and stops with the I0F turple. Output

M T e

processing is controlied by O=I0r.

There are several I0 turplee. Their formats are:
aOPR: 10D 10 data operator

iopk: ITEM operand for item

20P; LENGTH number of elements

OFR: I0C I0 control operator

10P: CODE code for control turple type
20P: ITEM format number etc.

OPR: 10U I0 unit operator

10P: UNIT ITEM unit specifier operand

20P: LENGTH non-trivial length

The I0D aplist skeleton CALL processors are O=I0D, O0=I0C and
O=I0U. The first one encountered initializes the aplist
environment. It is safest to make no assumptions concerning the
order of the turple types within the aplist turple sequence. The
processors work as follows:

0=10C outputs its first entry for the control item via IAW. It
then places a control code from 10P in the mode field of the control
item entry. Then 0=I0C outputs a zero second entry.

0=I0U enters the item first and like O=I10D sets the unit control
code in the item entry mode field. But, then O0=I0U outputs a length
word through IAW.

0=10D outputs the data item first through IAW and then outputs
the length entry. The length can require CLW support.

Example 15:
WRITE (5, 100) A

Resulting turples are:

i. OPR: I0U IO unit turple
i0P: 5 Constant for unit number
20P: 1 Short constant 1.
2. 0OPR: 1I0C Control turple
10P: IC.FMT Short constant for format
S0P 100 Sym. tab ordinal for statement label for the

format statement

B-4-27

3. OPR: IOD Data turple
ioP:z A Sym. tab ordinal for the variable A
20P: 1 Length = short constant 1 for simple variable A

lesultant aplist is: (I0C flags 10 control)
Entry 1
[TAG=Symtab OrdinalofCON.,BIAS=0+fsetofSinCON. MODE=IC . . UNT,IDC=11

[TAG=0,BIAG=1,10C=11

m

[TAG=8ymtab Ordinalof.100,BIAS=0,MODE=IC.FMT,I0C=11

(01
Entry 3

[TAG=Symtab OrdinalofA,BIAS=0,I10C=01

[TAG=0,BIAS=1,1I0C=01
In this example it was assumed A was not character. Note that the IOC
bit is set for ID unit entries as well as IO control entries. This is

bPecause I0 unit turples are just special control turples. Thus IOC, the
10 control bity is set.

wilding Characier Aplists:

There are basically two structures for character aplists. There
are special variable aplists and concatenation aplists.

Variable aplists for substrings and arrays are built by FVS,
format variable substring, and FIA, format intermediate array,
respectively. These routines are probably not trivial to read but
they are pretty self explanatory. Since substring and array turples
are both deferred, some subleties arise in the process of resetting
the turple pointer. This is especially true for substrings of
arrays which require two turple pointer resets.

The aplists that result have the structure:

For Arrays:

B-4-28

19

For Substrings of Variables

e b it b L D e +

Variable designator i
tomr e ———————— +
! Address Function (if exists) !
- +
! ist substring index !
tom e +
I 2nd substring index i
e ———— +

Concatenation Aplisis

Character relationals, character moves and character expressions
in the midst of I0 or user aplists result in concatenation tvype
aplists. The basic structure is

o —————— +
! Header !
o +
! List of !
! concatenated !
! items !
tom e ——————— +

The Header word varies for each use. For relationals the header
. -arries the number of items on the left and right of the relational
operator. For moves, also called stores, the header is just the
target of the store. The only character expressions in aplists are
concatenations. They are treated just like moves. The header word,
the target of the move, is then a compiler generated temp. The rest
of the list is just the concatenated variables in the order they
gccurred in the source.

Examele 16€:

a) relational: (A.EQ.B//C! results in the following aplist:

R o — +

1 | ! e ! left count and right count
t-em—— temm————— +

! A ! entry for A
P +

! B ! entry for B

o —— e ——— +

! c ! entry for C

o ————— +

B~4~-29

by move: A B//C gets the aplist |]ﬂ

e ——————— +
! A !
o +
! B !
e ———— +
! C !
e ————— +
£) nested concatenation: CALL & (B//C) has aplist form:
et adnt et b +
! ST.n ' nth temp storage loc
e bttt o
! B !
e e +
H C H
tommm - +

Concatenation turples are deferred. They are processed when one of
the following turples is detected:

1} User or I0 aplist turple for a concatenation
2) HSTOy character move, turple
3) HLEX and HREL, character compare, turples
These turples result in one of the following builders being visited:
1) DAC, determine aplist complexity, for nested aplists,
2) 0O=HS8TO for character moves,
3) O=HLEX or O=HREL for character relationals.

Building concatenation aplists is non-trivial. This is because
concatenation expressions define trees in the IL. To build, BGA,
build generated aplist, must be called to drive the tree walk. The
actual tree spanning is done by GNO, get next operand. One GNO call
returns one concatenation tree leaf. The leaves are the actual
aplist variable operands. The search is in end order. BGA calls
GNO repeatedly for aplist operands. It passes these leaves on *o
entry processors or special variables aplist processors. When the
leaves are exhausted, BGA returns. When BGA has been called the
appropriate number of times, the caller formats a header word and
outputs the concatenation aplist.

B-4-30

Example 17: (relational)
(A.EQ.B//C//D) results in the turples
1. //,B,0)

2. (//7,11,D)

3. (HREL,A,I2)

I1 points to turple 1. I2 points to 2. O=HREL will have to walk
two trees:

A is the first

and
tm————— [[e e e +
i Ia t
to——— [/ e e e + D
! I1 !
! C is the second
B

O=HREL first reserves space for the header. Next it calls BGA for
A, the trivial tree. BGA is called again for the I2 tree. Finally
the header word is formatted from word count information returned by
BGA and the aplist is outputed. The result is:

to—————- pomm——— +

Pl ! 3! e » header word
o ———— to———— +

! A !

B ittty +

! B ! ommmm e > concatenation
tomm +

! c !

frmm e —————— +

! D !

pomm e +

Entry Generation:

The process of setting up the ordinals, offsets, modes, bits,
support tables and support object code for aplist entry words is
called entry generation. This is done by SAP, standard aplist
processor, for non-characters. PCA, pass character aplist, and ECA,
enter character aplist, are the main character entry generators.

All entry types are ultimately formetted and added to the current
list through AAP, add word to aplist.

B-4-31

While most non-character entry processing is contained right in
SAP, character processing is more dispersed. PCA and ECA are
central but they call several support routines. Morecver, some
character builder routines also engage in entry generation in simple
cases. These include FVS and DAC.

Address computation for certain types of variables is impossible
at compile time. An array with a variable indey is an example. To
remedy this problem, FUN outputis address computation object code
called plug code. The idea is to compute the address at object time
and plug it in the aplist entry just before the procedure is
called. Entry generators output plug code. Character array and
substring object time library routines are really just plug code.

To add a character array or substring to an aplist FUN proceeds as

follows:
1. Stack the current aplist environment.
2. Build and output an array/substring aplist.
3. Output library routine call.
4. Pop the environment.

5. Add a dummy entry for the array or substring to the original
aplist.
At object time, the library routine will plug the dummy entry
with & meaningful entry that has correct address, character length
and begining character position.

Status and CAC:

Most character entries require a CAC word to carry character
length and beginning character position. Since it is not unlikely
that two variables might have identical CAC words, CAC is squeezed
for duplicates. This means every time a CAC entry is made, the
table must be searched, slot by slot, for a duplicate. To avoid
unnecessary searches, CAC status is set on a character variable once
it has a CAC entry.

To do this FUN takes advantage of the fact that every character
aplist variable has a register status word in ous, but character
variables never reside in registers. Setting status on a character
means change the status word as follows:

1. Set the charsacter status bit.

2. Move the old tag to & new field.

3. Replace the tag by the equivalance class base symbol table
ordinal for the variable.

B~4-32

13

When future references occur,y CAC processing is skipped and the
relevant information about the variable and its CAC entry is taken
srom the status word.

4. Place the ordinal of CAC word in the bias field.

The status words for intermediates that are the roots of
concatenation trees are set when a temp for the concatenation is
defined. I+ future references to this concatenation occurs the tree
walk is supepressed and the temp entry is outputted rather than an
entire concatenation aplist.

]
)

GAB; get aplist status; checks operand CAC status. B5S58C, set
status of character, sets it.

General Asproach:

Almost every variable type requires some entry special
processing. NMNon-character intermediates are stored to temp and the
temp is passed as the aplist entry. Character formal parsmeters do
nat have CAC entries. Non-I0-lenath short constants must be
expanded to CON. type constants before they can be entered in an
aplist. ID-length short constants are not expanded. The only way
to learn all the cases is to just sit down and read the code. But,
just remember while you read, most of entry processing involves
setting up an ATF, a status word and a store flag to pass to AAP.
Read AAP first. That helps you know where the other entry
Processors are g4oing.

AAP just copies fields and bits from the status word and ATF
into the new aplist entry word. It also sets & plug bit from the
store flag. Then it adds the new entry to the list and bumps APLEN.

Quiputiinag Aplisis

When FUN ig finished building; the new list exists on either
T.SAP or T.I0A. T.SAFP aplists are copied T.APL. T.IDA lis r
on T.I0A. ‘

o+ e
1]

The new aplist is then compared to all preceding aplists in the
same table. If the new aplist is not a duplicate of a preceding
list, its ordinal in the resulting object time aplist table is
computed and placed in the appropriate index table entry. If the
new list is a duplicate, it is squeezed off the table of completed
aplists. Next, the ordinal in the object time table of aplists for
the matching aplist is computed and stored into the index word for
the squeezed aplist. Thus many index words can reference the same
aplist.

Finally, call object code is outputted. This has the form:

Sal AP .n
RJ ROUTINE

B-4-33

o 114

Sal I0.n
RJ I0 ROUTINE

n is just the index table ordinal of the associated aplist. AP
refers to the non-10 object time aplist table. IO refers to the ID
table. AP.n is the label for the nth non-I0 aplist that was
encountered in the program.

B-4-34

5.0 REAR END PROCESSOR l]5

The FTNS rear end processor consists of decks and routines +o

provide loader input {(object code and loader directives) tables,
map and cross reference listings and object listings. The rear
end processor is common to both the QCG and CCG code generators.

B-5-1

S.1 REC: Rear End Controller Illﬁ

Abstrackt: REC provides routines to control flow of the resar
and processory, and to provide functions required by
that processor.

Interfaces: REC is a rear end routine, but resides on overlays
(O0,0)y (1,0 and (2,3).

Rata Siruciures

REC detines no structures.

Routine Descriptions:

a. BREC: Rear end controller. REC controls flow through the
rear end processor. CGE is called to provide a
diagnostic function for CCG. REP is called to
initialize the rear end and END performs storage
allocation for variables not vet assigned storage.
I+ necessary, MAP is called to produce allocation
map, attribute and cross reference listings. BCT
and PCA are called to convert constant tables (from
CCG to rear end format. Based upon control options,
the assembler is plugged to allow/disallow output aof
the binary and object listing and the loader 57
table. T.PB is properly initialized and if the
binary tables are to be prepared, FAS is called to
assemble the prebinary. Managed tables are cleaned
up and exit is to the rear end loader.

b. REP: Rear end presets. REP presets working rear end
cells, mostly upon basis of control card options.

c. EnD: Finish storage allocation. END assigns storage to
quantities which have not been assigned storage by
some previous process (e.g. common). All addresses
assigned are relative. First, for functions. the
VALUE. symbols are linked and given the value of the
base member (the defined value). The amount of
storage required for formats, constants, and APlist
(both normal and I0) are determined and the block
sizes are set by GBS. The size of the namelist
block is determined next. The symbol table entries
for format labels are updated to indicate the format
block will be the relocation block. Local symbols
are assigned block relative addresses via SMB and
SSA. The length of the SUB and SUBO blocks are
determined by processing T.FPI and copvying FP.LEN
and FP.SUBC entries to T.FPO. Storage is allocated
on T.SUB and 7.SUBO for the entries, T.SUR is,
initialized by SBM=, T.SUBO by I1SZ. The size of the

.
L]

GBS:

GCL.:

184:

MER:

RaI:

S8a:

local block is calculated and the symbol table
entries of local symbols are marked to be relocated
relative to the local block. The tables T.GL, T.API
and T.I0I are relocatedy as are local eguivalenced
variables. The length of common and local storage
required is calculated, and if too long for any SCM
configuration, a8 diagnostic is output. Exit is to
caller.

Assign dimension addresses. Called when a routine's
dimension table entries are to be materialized.
T.DIM is scanned and if DH.MAT is set an, the DH.RA
is set 1o reflect the proper reslative sddress {(toc a
supplied block). The RA counter is updated by the
size of the dimension information being processed,
and processing continues until T.DIM is exhausted.

Generate block of storage. GBS is called by END +to
update the various local blocks on the local block
table. The table entry is modified to reflsct the
amount of storage the particular block requires.

Get common lengths. GCL is called by END to
determine the total size of all common blocks in a
given class (LCM or SCM). The total size is
returned.

Initialize T.SUBO. ISZ is called by END to setup
T.SUBO. The header and terminator words for each
entry are initializedy the space for information
being determined by T.FPOD.

Mark external relocation. MER is called by REC to
mark the symbol table entry of any external symbols
to be relocated external. T.SYM is searched, and
all WB.EXT symbols are updated (WC.RLRB [M_.EXT1) +o
reflect this.

Relocate auxilliary tables. Called by END +to
perform the actual relocation of T.GL, T.API and
T.I0OI. Those tables in the WC. format.

Set symbol address. SSA is called from END to
assign relative addresses to local symbols. The
symbol table (T.SYM) is scanned, and if the symbol
is a unique local symbol (e.g. not label, formal
parameter, equivalence class member, etc), the
current program relative address is assigned {(in WC.
RA). The size of the symbol is determined (in
words, M.DBL and M.CPLX are doubled) and the program
relative pointer is updated by this size.

Processing continues unti T.SYM is exhausted.

J2

5.2 RERRS: Rear End Diagnostic Texts

Abstract: RERRS contains the texts of all diagnostics output
by the rear end processor.

Interfagces: The interfaces for RERRS are the same as for FERRS,
except that the calling routines are located in the
rear end processor. RERRS is a rear end deck and
resides on overlay {(2,3).

Rata Siruciures:

- B
i

The data structures defined by RERRS are the same as those
described by FERRS (see 3.2) except:

Iexis: The RERRS diagnostic texts consist entirely of those
defined by comdeck COMFERR.

J3

5.3 FAS: Fortran Internal Assembler

abstract: FAS contains routines to process the prebinary file
input (from either code generator’) and other
relevant table information into binary tables of
loader information.

Intepfages: When object listing is required, FAS interfaces
closely with LIST. FAS is a rear end deck, but
resides on overlays (G,0) and (1,0} as well as (2,3).

Rata Siructures

FAS defines several data structures for use in building the
binary (loader tables) output:

a. BI=: EQL} symbols representing loader table codes.

b. BI.: Binary table formats. The format used depends on
the type of table.

Normal Loader Table

e ———— e ————— t-te——— frm———— e R it +

! ! tp! ! T !
BT. ! CN ! WC WMis/7777Y RL WA/ //77777777771

! ! D! ! pt !

- tomm————— tmtm———— tem———— e e et +

iz2 i2 i 8 S i 17

CN: Code

WC: Word count

PMD: PMD flag

RL: Relocation indication (block)?

TYP: Block type

XTEXT Table

- ——— e ——— t-t—te————— R D it R b P +

! ! pr /i ! !
BT. ! CN ! WC MU/Y RLX YW/ 7072777772777 72777)

! ! D/ ! !

o —————— o ————— +-+-¢-m——— o - +

i2 iz2 12] 24

CN: Code

WC: Word count

PMD: PMD flag

RLX: Relocation index

Partial Word Text Table

e e temm——tmtmpm————— P —————— +

! ! IRY/! ! !
BT. ! LEN 'BCP P/t RB I Flua !

! ! o ! !

tormm— $m———t-t—fm———— o ————— +

iB 1) 12 S 24

LEN: Length

BCP: Beginning character position

RP: Replication indicator

RB: Relocation base

FlAz First word address

Replication Table

ter e ————— e ———— frm———— tommm e ——— +

! ! ! ! !
BT. ! C ! B ! Rg ! AS !

1 ! ! ! !

P ——— P ——— tmm———— o —————— +

15 i2 S 24
: Number of times block is copied

B: Block size

RS: Relocation base

AS: Relative address

Symbol Table Header

tomm e —— tmm——————— +-t-————— +-t=-t-t-F-rmm +

! 1 1/ nwipiTi !
BT. ! CN ! WC v/ LD 1Tigiyi /! sal !

! ! v/ giTt 171 !

o ——————— tomm—————— Prfm————— t=t-F-—tmpmm e ——— +

iz ie c 10 1122 i8

CN: Code

WC: Word count

LQO: Language ordinal

LTB: l,ast symbol table flag

DST: Dimension descriptor flag

TY: Proaram type

Sal: RA to store register Al.

c. Iemplates: Area for templates and build area for the
various loader tables FAS must construct.
Templates include: Prefix (77) table: loadset
preset, lpadset map, loadset library. error
table. Build areas include replication tables,
partial word text table, text table.

MODEVY S A small table used to convert the mode values
(M.xxx) used by FTNS to0 the forms used by
CID/PMD, COBOL and FCL..

10cab: A branch table used by KIO to select the proper
processing routine for I/0 control items.
Provided by comdeck COMSIOC and a rewrite of the
ICDEF macro.

QePSUD: A branch table used by fAS and RAD *o select the

IPSUD: proper processing routine for pseudo

FAPSUD: instructions. Provided by comdeck COMSPSL. and a
rewrite of the PSUD and IPSUD macros.

FAPSUD is the entry used by LIST (B-S5.8) to process nobject
listing of the pseudo instructions. Format is:

o ————— ———————— e ettt e e L +
1 i l 1
! JMP V22727 LI=ADDR !
t t H 1
o e frmmmmm e et e +
30 iz 18
JHP 2 Jump instruction to FO= aor FI= routine
LI=ADDR: Address of LI= routine in LIST (this field
is a 'soft' external)
Cells: FAS defines various cells to be used as flag.,
scratch storage and counters.
Ce.s83.: The reformat of the symbol table for use by
CID/PMD.

First Word Normal WA. format.

Second Word

e ————— o m—————— et ——— e Rk dalts o
! ! ¥F-% ! ! g
Sc. VI 707! PNT \RI//IZ27777! ATTR 'TYP 1T !
! ! byt ! ! 1z !
o ———— e e e ettt o —— fmm——t——t
i2 i2 1 11 15 = 3
PNT: Dimension offset (or null)

ARY: Array +lag

ATTR: Attributes (see below)

TYP: Mode

S1z: Length of symbol table entry

B-5-7

Jo

s2.ATTR J6
suB: Subroutine

NLST: Namelist group name

ENT: Entry point

PARM: Symbolic constant

1REF: Stray name

MAT: Materialized

LaB: Statement label

DEF: Defined

EQV: Member o+ equivalence class

FUN: Function
EXT: External

CGs: Compiler generated symbol
FP: Formal parameter
LEV: Level 0 and LCM
LCM: IL.CM/ECS variable
Ihicd Word
ot ———— tetmm e ——— LRl Sl Sttt Lt D Rl bt +
vy o e ! !
s3. ' /' RBILE CLEN t/1BCP RA 1
v/ b A ! !
et ——— o ———— el L Sl Dt DD bl itk +
3 3 i 17 1 4 =4
RB: Loader block number
CL.: Implied character length flag
CLEN: Character length
BCP: Beginning character position
RA: Relative address
NAL: Namelist definition beinary output formats. KNG
NB. transforms T.NLST into the following format:
NC.
e o +
! ! !
Na. ! GNAM ! NMEM !
3 1 i
o ———_——— o +
42 i8

GNAM: Namelist group name
NMEM: Number of members

a-

o o o e e e e e e e dommm +
! ! !
NB. ! MNAM ! DADR !
]]]
Frmr e e e e e e R e ittt bl +
42 i8
MNAM: Membér name
DADR: Run time dimension address (array)
oo e e e e e +
: !
NG, ¢ APL :
! [
et +
APLS Member aplist
LA.: Character length array binary format. OCL
transforms T.CLW entries into the following format:
+-t-t-t-———————- o +-+-+-t---—— +
et Itz /7 7! AR SVE i
LO. C'FIN'/ /7! LEN L/INV /! CNT !
tMIpIDY 4 /! t/pis! !
vyt s s 7Y b !
+-t-4-t-——-—-- B L B e et e +
111 =) iR elez 24

LCN: Count is LCM
FP: Count is formal parameter

INDC: Count is address

INDL: Length is address

CNT: Number of elements
LEN: Length of each element

FAB: Fortran internal assembler. Called from REC to
assemble the prebinary file/table from either code
generator. FAS performs some initializations on
tables and files and determines if source errors
were detected. If so, exit to END.ERR. Otherwise,
the control cells and some templates are initialized
and FAS gpes into its control loop at FASRTN. RNI
is called to fetch the next pseudo instruction. The
value is used as an index into OCPSUD, and the
proper FO= routine will be evoked. Sequences of
machine instructions are begun by a pseudo
instruction. A pseudo end instruction will stop the
loop.

b

EQ=:

J8

Processing routines for the FAS control loop. All
routines (except FO=END) return to FASRTM upon
completion of processing. The FO= routines are
really an integral part of FAS.

EQ=ARDR:

El=APL:

EQ=BMI:

EQ=R8G:

EQ=CON:

EQ=EGQUN:

EQ=EMT

EQ=EVEC:

Entered when the pseudo for FCL
initialization routine is sncountersd.
REL is called to relocate the aAPlist
word. 8TX stores the relocated word in
the text table build area and FBP
provides the object listing interface.

Entered when an APLIST pseudo is
encountered. PAT is called to
preprocess the 4Plist table. I+ LCM
painters were present, T.LCA is appended
to T.APL, reformatted for APlist. KaP
is called to compile the APlist and POL
to print object lists.

Entered when the BMI pseudn is
encountered. This pseudo indicates that
a sequence of instructions {(pssudo
and/or maching) is to follow. RAD is
called to process.

Entered when a BSS pseudo is
encountered. Calls RRBRS to relocate the
BSS pseudo instruction.

Entered when the CON pseudo is
encountered. Calls POL to provide
object listing. Calls SMW to process
the contents of T.CON.

Entered when an EQUN pseudo is
encountered. Calls POL for object
listing of the negative relocation macro.

Entered when the FMT pseudo is
encountered. Calls POL to provids
object listing. Calls SMW to process
the contents of T.FMT. If in QCG mode.
and format labels were assigned, FLA is
talled to process.

Entered when a FVEC pseudo is
encountered. Processes the associated
file name. Creates a file pointer,
outputs it via 8TX and calls FBP *to
provide object listing interface.

B-5-10

EQ=PLIM:

EQ=1DNT:

EQ=10mM:

EQ=LCC:

EQ=L00:

EQ=NLST:

EQ=USE:

EQ=TRAC:

Entered when the PLIM psaudo is Jg
encountered. Fetches the run time print
limit and treats as a file pointer.

Exit to FASRTN through FO=FVEC.

Entered when the IDNT pseudo is
encountered. DIT is called to output
the identification tables and POL +o
provide object listing.

Entered when the IOM pseudo is
encountered. Processes the I/0 APlist
tabley when present. PAT is called *o
preprocess T.IDARG. KIO compiles the
I/0 APlist and OCL outputs charactsr
length arrays. POL. is called to provide
object listing support.

Entered when a LCC pseudn is
encountered. The relevant loader
directive is output and POL is called
for aobject listing.

Entered when a LOO pseudo is
encountered. The object list switch is
reset as directed.

Entered when a NLST pseudo is
encountered. KNG is called to compile
the namelist garoup definitions. POL
provides object listing support.

Entered when a USE pseudo is
encountered. PUSE is called to modify
origin and parcel counts. DTX dumps the
building text table. POL provides
ocbject listing.

Entered when the TRAC pseudo is
encountered. The progaram unit name is
fetched (DPC). The TRACE macro is
issued via STX and FBP provides obiect
listing supprpaort. STX is called to
output the TEMPAQ word.

B-5-11

Ce

d.

RAD:

0

EQ=END: Entered when the END pseudo signals the
end of assembly. POL is called to list
the object end card. 0SB outputs the
SUB and SUBO blocks. DTX dumps the
final text table and DL.F finishes the
link and £ill1 tables. DFD onutputs thse
5600 and 5700 tables. Exit is to REC
through FAS.

ENDLERR: A FAS routine which is entered when
fatal errors were diagnaosed. PIT is
called to output the identification
table and an error binary is output.
Exit is to REC, via FAS.

Relocate and dump prebinary instructions. RaD is
called by FO=BMI to process a sequence of
instructions (pseudos machine or CCG format). Upon
entry, RAD performs some initialization and then
enters its control logp at RADRTN. RNI is called +o
read the next instruction. Determination is made if
the instruction type is QCG or CCG. I+ CCG,y the
instruction format is converted to QCG form, via
CII. The instruction (in QCG format now) is decoded
(partially}). If a packed instruction, the current
parcel is removed and decoding continues. The
instruction now can be determined to be machine or
pseudo. If pseudos processing is at RAD=PSI. 1If
the machine instruction is 15-bit, it is properly
positioned in the current build word. If obiject
listing is required, VWD is called to format the
instruction, and RADS0 is the finisher. For 30-bit
instructions, address decrement necessity is
determined and calculated if necessary. RFEL is
called to relocate the instruction and the build
word and header word {(relocation bits) are updated.
VFD is called to format the instruction (if object
listing is required) and the 15-bit/30-bit
processing merges at RADS0, where POl is called to
provide listing interface. Return is to the control
loop at RADRTN.

The entry here is RAD=PSI and comes from RAD whan
the current instruction is pseudo. The instruction
provides an index into IPSUD,s which in turn provides
the address of the proper routine. All FI= routines
{except FI=EMI) return to RADRET.

B-5-12

J1

FI=BCI: Entered when a BCI pseudo is
encountered. Sets the switch which
indicates CCC format instructions follow.

El=DATA: Entered when a DATA pseudo is
encountered. BNW is called to begin a
new word. T.DATS is allocated enough
room to process the data entries. RMI
reads multiple prebinary words. POL is
the object listing interface. DDS dumes
the data table to binary. DTX finishes
the text table.

EI=ECI: Entered when an ECI pseudo is
encountered. Resets the switch which
indicates CCG format instructions. Note
that the BCI/ECI pairs must be bracketed
by BMI/EMI pseudos.

Fl=888: Entered to process a BSS which occurs in
an instruction sequence. Calls RBE +o
relocate the label and ESI. to enter in
the S700 table.

El=B0g: Entered on encountering a BOS pseudn.
In test mode, this provides an IDP
interface. Calls CLE to construct a
line number table entry. POl is the
object listing interfsace.

El=CPL: Entered when a CPL pseudo is
encountered. BNW is called to force
upper. The associated character length
information is extracted from the T.SYM
entry and the control word is output via
S7TX. FBF provides the object listing
intertace.

FIl=gMI: Entered when the EMI pseudn signals the
end of the current seauence of
instructions. Exits to FASRTM. via RAD
and FO=BMI.

El=JPI: Entered when a JPI pseudo is
encountered. Reformats the pseudo into
more machine-like formet and finishes
processing in FI=UJP.

B-5-13

El=L0Q:

EI=QIR:

EI=R.J3:

El=LDO:

EI=0TQ:
EI=8B01
EI=CUBI

El=UJP:

El=RJG:

EL

lél:
f

J12

Entered to process an obiect listing
directive which is embedded in an
instruction sequence. Properly updates
the listing control cell.

Entered to process the obiect time
reprieve directive. Reformats the OTR
psaudo to SBO BO+L.INEND and goes *o RaD
to process as a normal 30-bit
instruction.

an RJ3 pseudo is
encountered. Reformats the pseudo into
machine-like form and finishes
processing in FI=UJP.

Entered when

Entered when a LOC pseudn is
encountered. Processes a level O LCM
load. Only on machine configurations
where possible.

As above, except STC pseudo.

As above,y, except SBOI pseudo.

Entered when a SURI pseudo is
encountered. Formats the substituftion
word and outputs via STX. FBP is the
object listing interface.

Entered when a UJP speudo is
encountered. Reformats as at FI=JPI
FI=RJ3. Those routines then merge.
forces upper and REL provides
relocation. The binary is stored in the
text table by 87X and RAD is entered to
process object listing.

and
BNW

Entered when an RJE pseudo is
encountered. The return jume with
back is formatted and BNW and REL
process. STX stores in the text table
and FBS provide object listing.

trace

Entered to process a USE directive
imbedded in an instruction sequence.
BNW forces upper and DTX restart the
text table. PUSE is called to ernocess
the USE, DTX again clears the text and
POL. provides object listing support.

B-5-14

4

B

3]
n
4

BaZ:

cag:

CLE:

EI=ZERQ: Entered when a ZERD psaudo is '113
encountered. Puts a word of zero in the
text table via STX. FBP is the object
listing interface.

Begin new word. BMNW is called when it is necessary
to force upper during the building of text words.
The current build word is padded with NOOP
instructions, as ncecessary and the word is added +to
the text table via S5TX. ROL is called to set the
object listing origin.

Build substitution teble. BET is callsd from REL
when it is necessary for address substitution of an
instruction (or APlist item). The relative address
and parcel position within that word is determined
and that information, together with the formal
parameter number is combined to make an entry which
is added to T.SUB.

[ad
’Jll

Build level zero substitution table. On systems
where level zero parameters are permitted, BSZ will
be called to make a T.SUBD entry. Analogous to BST.

Copy adjusted bits. CAB is called by FST to copy
and transform selected WB. bits into S2. bit
positions.

Create line table entry. CLE is called from FI=B0DS
to output a line number (source) table (E700) entry
to T.LNT. The line number to be output is passed
with the BUOS psuedo.

Dump data statements. DDS is called from FI=DATA to
process the entries on T.DATS. Each data group on
T.DATE ic procesged; in a laop. The DA, format
header is processed and the informeation is

digested. If the object of data initialization is
character, the information will be output to T.PTXT
and T.PTXTR for later output as a partial word +text
table. Non character data is output to a standard
text table, via STX. Replication (DA.RP on) is
handled for both by setting up lpader replication
operators. Upon completion (T.DATS is fully
processed), DTX is called to flush any remaining
entries in the text table and T.PTXT and T.PTXTR are
flushed by 0O7TB.

B-5~15

k.

1-

m.

n.

O

RIT:

LLC:

RLE:

DIX:

Dump 5700/5600 tables. DFD is called by FO=END +o
output the line number (5700} table and the run time
dimension and symbol tables (5€00), as required. If
needed, T.LNT is dumped to binary via OTB. The
dimension information (T.DIM) is collected on T.SCR
and output via OTB. FST is called to format and
output the run time symbol table.

Dump identification tables. DIT is called from
FO=IDNT to output the loader '+first group' tables.
PIT is called to output the IDNT (7700) table. 1If
the program unit is not 'block data'; DLC is called
to output the loadset directive. The entries on
T.BLKS are formatted and output as the PIDL (3400
table. I+ the program is not 'block data', the
entries on T.ENT are formatted and output as the
ENTR (3600) table.

Dump loadset control. DLC is called by DIT to
output loader loadset directives. LDSET directives
for LIB=, COMMON= (when common blocks wers saved)
and PRESET and MAP (when PMD is to be called). The
directives are formatted and built on T.SCR and then
written directly to the binary file via WLF.

Dump link, fill and xfill tables. ODOLF is called by
FO=END to output the LINK (4400), FILL (4200) and
XFILL (4100) tables. First the link table (T.LINK)
is processed, if present. The table is sorted and
entries are formatted in place. The 1lpader table
header is made, and the link table is directly
output to binary, via WF. Processing is the same
for the fill table,s, if present. The xfill table
isn't sorted, but its processing is similar. DLF
may be called from ALC if severe memory shortage
occurs {(and FAS processing is going on). The
building of T.LINK, T.FILL and T.XFIL is mastly done
by REL.

Dump text table. DTX is called whensver it is
necessary to restart a text table. The usual case
is when the table is full {(each text table can
contain up to 15 words). Other cases would be
change of USE block, data initialization, etc. I¥f
the text table build area is empty, no action takes
place. Otherwise the text table header is finished
by merging in count and relocation information and
is written to the binary by WLF. The text table
build area is reinitialized to continue building the
next text table.

B-5~1¢&

t.

ESL:

i
ve]
i

ELa:

ESI:

Kae:

J15

Enter statement label (in S700 table). ESL is

called by FI=BSS when a 5700 table is to be

produced. The current table (if user defined) is
converted from DPC to binary and that value is put
into the current T.LNT entry. Note: This code is
wired off by REC if a S700 table is not to be output.

Format binary and print. FBP is an object listing
interface routine. It is passed a binary value,
whiich it converts to OFCy via WOD. This is in turn
passed to POL to provide the object listing. Note:
This caode is wired off if object lists are not to be

P I W
QUTPUT.

Format labels assigned. FLA is called by FDO=FMT +o
process T.LA (format labels appearing in an ASSIGN
statement). Each label that appears in an ASSIGN
statement will have a word (with the table address)
output via STX. POL provides object listing
interface.

Format symbol table. FST is called by DFD to format
and output the run time symbol table. +the entire
symbol table is scanned, with transformed entries
being output to T.S5CR. ADA is called to assign run
time dimension table addresses. Statement labels
are not output. CAB is called to transform the
symbol table attribute bits from WB. to S2. format.
The FTNS internal mode is transformed to CID mode.
The WC. format is converted to S3. format and the
entry is added to T.SCR. Upon completion. the 5700
table is output to binary.

Compile APlists. KAP is called by FO=APL to
reformat T.APL and to output the transformetion to
binary. Thea current build word is padded with NOOP,
as necessary, and DTX is called to finish the text
table. T.APL is processed in a loop, one iteration
per entry. The nature of the APlist item is
determined. If a symbol, the relevant symbol table
entry is fetched, and analyvzed. Character items
result in T.CAC entries being formed. Labels are
processed specially. The address field is ralocated
by REL and a text word is added via STX.

B-5-17

KIg: Compile I/D APlists. KID is called by FO=IOM +to
reformat T.I0APL and to ocutput the transformation to
binary. The current build word is padded with NOOP
if required and the text table is flushed by DTX.
Each T.IDAPL item is analvzed in a loop. If the
item is a control variable, the proper processing is
determined by the I0CAD table. The transformation
includes converting FTNS internal mode into FCL mode
and setting the code and indicator bits for FCL.

The AF 1ist entry is relocated by REL and the
resultant text word is staored by STX. ’

EhG 3 Compile namelist group. KNG is calied by FO=NLST to
process namelist group definitions. DTX is called
to finish the text table. ORD outputs the run time
dimension table. The loop is initialized for
processing. SNR is called to set the namelist
registers (actually, delimit the group on T.NLST).
The group header is fetched and the number n¥f
members determined. An inner loop processes group
members. The member name is fetched from T.5SYM
(DPC) and together with the run time dimension
table, make an entry which is output by STX. aAn I/D
APlist entry is formed by PAW and it is put in the
text by STX.

Qcl.: Dutput character length arrays. OCL is called by
FO=10M to transform T.CLW entries into binary output
(LD. format). The CLW macro word is generatesd
(relocated by REL) and output to the text table by
STX. The LO. format is saved on T.CLWB for later
output. Processing continues until all T.CLW
entries are processed.

QRD: OQutput run time dimension table. ORD is called by
DLF and KNG to produce the run time dimension
table. ORD can either output all T.DIM entries or
only those which were materialized (DLF the former.,
KNG the later). I+ the dimension information entrvy
is to be processed, the header is output, via WWR.
The Dl1. and D2. words for each dimension are
analyzed, and relocation bits set as required. The
run time dimension table contains only span and
lower bound, so one word suffices, and it is output
via WWB.

B-5-18

aa‘

bb.

CC-

dd.

ee.

QIB:

Eal:

BLII:

POl :

PUSE:

RBS:

Cutput sub blocks (for SUB, SUBO). Called by FO=END
to produce the address substitution blocks

required. PUSE is called to switch USE BLOCKS. DTX
finishes the text table. The entries of the table
(T.SUR or T.SUBQ) are output to the text table via
STX and PUSE is called to switch the USE block back
to its ariginal state.

Output table to binary. OTB is called to write the
contents o+ a managed table to the binary $ile. OTB
is passed the loader table header and the managed

table to output. The header word is appended to the

—e N e

table, the table length is calculated, and the table
is written to the binary file via W.F.

Prepare &Plist word {(for namelist group member).

PAW is called by KNG to manufacture an 1/0 APlist
entry for a namelist member name. Its functions are
similar to KID, except only variables, arrays or
array elements are allowed and only one APlist entry
is produced per call. REL is called to provide the
relocation. The entry is left in the build word.

Product identification table. PIT is called by
END.ERR and DIT to provide the 7700 table. The
date, time, program unit name, etc are stored into
the BT.IDNT template and is written directly *to the
binary file via WLF.

Print object listing. POL. is the main object
listing interface. I+ the current instruction to be
printed (instruction includes both pseudo and
machine) begins & word, PIA is called to convert the
origin to DPC. PIK is called to produce the listing
(see LLIST, 5.5). Note: This code is wired off if
object listing is not to bes produced.

Process USE Pseudo. PLISE is called when USE blocks
need to be switched. The origin and parcel counters
of the previous block is saved and the current
values of the new block are substituted. Comdeck
COMFLISE.

Relocate BESS pseudo. RBS is called by FO=BSE and
FI=B8S to relocate a label. BNW is called to force
a new word. I+ the label caused storage to be
reserved, DTX is called to output the text table.
POL pravides the object listing interface.

B-5-13

K1

++. REL: Relocate 30~-bit instruction. REL is called to ‘QZ
relocate all 30-bit instructions (and some &€0-bit
fields [e.g APlist entryl). REL receives the
instruction to relocate (PB. format), the parcel and
origin counters and tests various flags and switches
in relocating the address fisld. RFL tests the
symbol table entry of the variable {(or other name’
to determine the relocation necessary. The block
(if¥ the relocation is not dummy argument or
external) and bias +ield plus the WB.RA field
provide the relocation in most cases. As necessary,
T.FILL, T.LINK and/or T.XFIL entries are made. Upon
exit, the relocated instruction is in the building
word and the proper relocation bits have been set.

3g. BRNI: Read next instruction. RNI is called by FASRTN and
RADRTN as the first step of the prebinary processing
logp. An instruction word is read from the
prebinary file and saved for analysis by the two
loops.

hh. BML: Read multiple instructions. RMI is called by
FI=DATA to fetch the data initialization words which
follow the DATA pseudo. A count of words to read
and FWA of storage area is passed to RMI.

ii. ROL.: Store arigin counter in line buffer. ROL is an
object listing interface {(at the binary level). 1I¥f
the current instruction (pseudo or machine) begins a
parcel, the origin (binary) is stored for conversion.

JJ. ShuW: Store multiple words. BSMW is called by FDO=CON and
FO=FMT to dump the contents of T.CON and T.FMT to
the binary file (with no relocation necessary}. STX
is called for sach word on the relevant table to

cutput toc & text tabls.

kk. SNR: Set namelist registers. SNR is called by KNG 1o
partion T.MNLST into groups. SNR returns a pointer
to the header of the current group and an indication
of the number of members.

11. STX: Store text table entry. STX is called to enter a
word in the text table build area. The ward and the
associated relocation byte is passed. The word is
added to the text table and the relocation bits are
merged in. If the entry fills the text table, DTYX
is called to flush it to the binary +file.

B-5-20

mm. WLE:

nn. WWE:

Write LGO file. WLF is the interface routine which K3
is called (using WLGDO macro) to write informsation to

the binary file. FWA and length of output are

supplied. Note: This code is wired off if binary is
suppressed.

Write word to text or scratch table. WWB is called
by ORD to output a word to either T.8SCR or the text
table build area. The word, relocation information
and type of output are supplied.

B-5-21

5.4 MAP: Storage Map, Attributes and Cross Reference K4

Abstract: MAP produces a variety of listings, depending upon
the selection of control statement LDO= options. The
LD= options relevant are:

A: Attributes
M: Storage map
R: Cross reference

Any combination of these attributes mey be requested
(or none) and the resulting listing will vary

Inierface: MAP is a rear end deck and resides on overlays (1,0)
and (2,3). Note: If object listing and some form of
MAP listings are not required, the space occupied by
MAP becomes available for managed tables.

Rata Siructures

a. gSegment Tabkle:

The Map Segment Table (MST) has one entry for esach unique
reference map or "segment" to be output. Each entry is one
word in length, and contains the fellowing information:

1. Bits 53-30 contain the FWA of the formatter table
corresponding to this segment.

2. Bits 29-0 contain the FWA of an initializing routine
which will set up all conditions necessary for the
controller (MOC) to output this segment.

A macro (DMSTE) was created to define map segment table
entries. It creates a symbaol which specifies the position
of an entry within the table, and uses the VFD instruction
to set up the entry itself.

b. Eormaitigr table:

There is one formatter table for each segment, and it
consists of one entry for each combination of the LO ortions
(excluding LO=0). Each entry is one word long and contains
the following:

1. Bits 59-30 are zero.

2. Bits 29-0 contains the FWA of the formatter
corresponding to one combination of the LD options.

B-5-22

c. Egrmatters K 5

Each map segment could have any one of seven different

formats, but as it is now implemented, a maximum of thres

formats are available; thus each segment has at most three

different formatters. These formatters completely specify

the information that will appear, and the number of columns

that information will occupy. Each formatter con;ists of a

variable number of one word entries terminated by a zero

words that specity a datum, and the number of columns that

datum may occupy:

i. Bits 53-30 contain the number of columns.

2. Bits 29-0 contain the FWA of a routine which will output
a datum.

A macro (DTE) was created to define a table entry, and by
arranging the macro calls, virtually any segment format can
be defined. For sxample, a format for the variable map
corresponding to LO=R is currently defined as:

VARA DTE 3, XB
DTE 7 s NAM
DTE 3, XA
DTE 11,REF
DTE 0,0

Which specifies that the first 3 columns are to be occupied
by a datum output by routine XB, the next 7 columns by a
datum output by routine NAM, etc.

Bouiine Descriptigns

a. Mog: MAP output controller
Ipnitialization:

This task consists of indexing into MST to get the address
of the initializing routine for the next map seament to be
output and transtering coentrol to it. This routine will set
up all conditions necessary for MOC to continue, including
the extraction of the formatter address, which is returned
in register BS.

B-5-23

The key to understanding this task is the fact that the
routine FWA‘s in each formatter entry actually point to
display code data that is to become the heading for the
corresponding datum. Thus the controller need only loop
through the formatter, extract an address, and a length, and
then do an A register set to point the buffer #illing
routine (PCB) to the right place. When a zero word is
discovered in the formatter, one replication of the entire
heading for the current segment has been packed into the
outpui buffer. When the proper number of replications

2 [H
igelff !HTIIE(I i)l' =‘| llll ;lgllélllu i Qu“l‘.;llﬂ'} an% S.Y‘I 4‘.!]% L"I‘i‘%s‘

OTH (output title and heading) is called to print the title,
and the newly pieced together heading.

“w

Map Dutput:

The logic for this task is very similar to that of header
output. MOC loops through the formatter, once for each
symbol returned by RNI, extracting a routine address, and
transfering control to that address plus the length of the
heading (in words). The routine (field processor) gathers
its data, formats it and sends it off to PCB along with the
number of colums it is to occupy. Again, actual output of
the line image is delayed until the proper number of iripe
through the formatter have been completed.

When RNI discovers that there are no more symbols to
process, the buffer is flushed, and control returns to the
top of MDC’s loop to process the next map.

The Initializers

IRA: This routine has three tasks to perform for MOCI
1. Select the appropriate formatter.

2. Gather all symbols of the proper kind into a
table, and sort them.

3. Determine the format of the map segment.

One of the eniry conditions is that the proper MGT
entry be in a X register, so completing task one
requires extracting the formatter table address, and
indexing into that table to retrieve the address of
the proper formatter.

B-5-24

K7

Task two is accomplished by selecting a pair of bit
masks corresponding to the map segment to be output,
and calling a routine (STS) to filter the desired
kind of symbols from the symbol table. The table is
then sorted by calling SST.

The third task is handled by calling DMF (determine
map format) with the formatter address, the number
of symbols to be output, and the MST offset
available in registers.

IRB: Although this routine is called as an initializing
routine by MOC, it actually controls the output of
the entire common + equivalence map. This was
necessary because of the fact that this map can't be
output in the column oriented fashion of the aother
map segments.

Reterminina_a Map Faormat:

This is probably the most important and the most complicated
aspect of MAP. The routines discussed in this sub-section are
responsible for selecting page layouts that are attractive, sasy
to read, and paper conserving.

DMF 2 Determine map faormat. The parameters that determine
a page layout are:

1. The number of symbols to be output in the
current segment.

2. The number of columns one replication of the map
segment will occupy (MOCTC).

3. The width of the page (in columns).
4. The number of lines remaining on the page.

DMF needs to calculate parameter 2 only, as the
others are available on entry. & loop similar +o
MOC's heading output loop accomplishes this.

The basic strategy is to layout a map segment as far
across the page (as opposed to down) as is. possible,
given the page width. For instance, if one copy of
a map segment needs only 36& columns, and the page
width is 72 columns, the symbols are divided in
half, and two "separate” maps will be output, i.e.
instead of outputting:

B-5-25

=]
--Symbolic Constants-- KB
-=- NAME -- TYPE -- VALIE --

A real 3.14
B integer 10
Cc real 5.1
D real 7.0

The following might be the output:

--Symbolic Caonstants--
-= NAME -- TYPE -- VALIUE --NAME -- TYPE -- VALLFE
A reail 3.1i4% C real 5.1

B integer i0 D real 7.0

There are three situations in which this division
would be suppressed:

1. LO=R selected. Since a large number o#f
references to a given symbel is not an uncommon
occurrence, it was decided to dedicate any extra
page width to the otuput of these references.
Thusy; anytime LO=R is selected, there will be
only one section of a map segment printed across
the page.

2. There are too few symbols to make it
worthwhile. Aan arbitrary minimum was set on the
number of rows that can appear in 3 map segment
{MAPMRL.) for a given number of sections, N. The
idea is to find the largest N such that:

#_symbols 2> MAPMRL..
N

Thus for the symbolic constant map example.

Y

4 =& MAPMRL.,
2

and since MAPMRL, is currently set equal +o 3,
the division shown would not occur.

B-5-2¢

3. The page width is too small. Obviously, if the Kg
page width and the segment width were 72 and 40
respectively, then only one section will fit.
But what if the segment width in this case was
807 The only solution is to chop off at least 2
columns; but lopping off columns in an arbitrary
mannar would not be acceptable. Thus, if DMF
detects this situation, it calls a routine named
DELF to delete fields from the segment in an
inteliligent manner. This routine is explained
in detail in section d.

Once N has been determined, and stored into MOCTC a
routine named SRNI is called to set up pointers that
define exactly which symbols are to appear in each
division, and control is returned to the DMF's
caller, IRA.

SRNI: Set RNI parameters. This routine is designed +to be
called once at initialization time, and then once
more each time a page is filled during the output
phase.

The primary tasks of this routine are to calculate
the exact number of symbols that can fit on the
page, given N as calculated by DMF, and to determine
which symbols are to appear on the page. The number
of symbols that fit on the page is determined by the
following formula:

NS = (NL-HL)¥*N

Where NL is the total number of lines remaining on
the page, and HL is the number of lines needed to
print a heading. This information is used to set
pointers delimiting the symbols {(in T.SCR) to be
output on the current page in the following manner:

1. The index aof the first to be output on this page
(SRMI.FED) is set equal to the index of the last
element output on the previous page (SRNI.LED)
plus one.

i.e. SRNI.FED = SRNI.LED+1
2. The index of the last element to appear on this
page (SRNI.LED) is set equal to SRNI.FED
calculated above, plus (NS-1).

i.e. SRNI.LED = SRNI.FED+NS-1

B-5-27

K10

The symbols thus delimited ars then divided into N
sections, and the indexes defining esach section arse
stored in cells accessed by the routine RNI to
determine the next symbol to process.

RNI: Return next index. This routine has the
responsibility of selecting the next symbol to be
processed by MOC. The basic idea is perhaps best
illustrated by an example. Suppose that s total of
14 symbols are to be output for the current map
segment, and further suppose that DMF had determined
that 8 should go on the current page, and & on the
next. The following diagram shows how the initial
call to SRMI would have partitioned T.SCR:

SRNI .FED fommmm e +
s A '
pommmmm e +
! B !
R +
! c !
pommmm e +
! D '
T +
! E !
fommmmm e +
! F !
pommmmm e +
! G '
pommmm e +

SRNI.LED ! H !
pommmmm e +
; I *
pommmm e +
! J '
fmmmmmmmmm e +
! K !
pommmmm oo +
! L !
pommm e +
! M !
e +
] N ¥
fommmmm e eeem +

B-5-28

Also, suppase that the mar was to appear in two K]]
sections across the page. The group of symbnls
delimited above would have besen further partitioned

a5.

o +
! A '
ettt +
! B !
Section 1 P +
! c !
R B bl +
! D d
B et Dl +
! E !
L B b +
! F !
Section 2 e b D +
! G !
e bbb +
1 |]
R e bt +

In order to have section 2 appear to the right of
section 1 on the output, it is necessary to bounce
back and forth between the two sections of the
table, selecting symbols in the following order: A,
Es, By Fy Cy G, D, H.

To accomelish this, the following algorithm is used:®

1. Add to the previous index returned (RMI.PI), the
length of the corresponding section to get NI.

2. If NI is greater than the index of the last
element in the division (SRNI.LED)., subtract the
difference of SRNI.LED and SRNI.FED from that
number; otherwise NI is correct.

i.e.

RNI.PT = NI for NILZSRNILLED
RNI.PI=NI-(SRMI.LED-SRNI.FED) for NI:»SRNI.LED

I+ all the symbols for the current page have been
outputy SRNI is called to determine the symbnls to
appear on the next page (if there are any left), and
to divide them into the proper number of sections.
The above algorithm is then repeated if there are
more symbols, or the routine is sxited i+ there
aren't.

DELF: Delete fields. This routine is called when one K‘z
replication of a map segment will not fit on a
page. Fields are deleted on a priority basis until
the length of the segment becomes less than or egual
to the page width.

One table for each map segment that could excesd the
minimum page width in length was created. These
tables specity fields to be deleted, and the order
in which deletion is to occcur. Deletion is
accomplished by replacing addresses of field
processars in a formatter with the address of a
processor which does nothing. For examples, i+ the
page width is set too small for one of the variable
map formats to be ocutput, the following table is
accessed:

DELFPT1 VFD £0/XC
VFD €0/ADR
VFD €0/BLK
VFD €0/ XA
VFD &0/8ZE
VFD &0/ XA
VFD &0/0

This table specifies that an XC processor should be
the first one deleted, an ADR processor second, etc.

Eigld Processors

Routines that do the retrisval, formatting and output of the
data items are called field processors. Each one consists of a
4 word display code heading, followed by code to carry out its
function.

Data Retrieval

Each processor is passed an entry from T.S5CR (specifvying a2
symbol to process)s, and the number of columns it is allowed
to use to output it's data. In general, data retrieval
consists of a symbol table access, but some data require
access to other tables, and/or special processing.

B-5-30

Rata Formaiting K] 3

Each processor is coded to format it's data in a specifir
way. The only formatting common to every processor is the
justification of it's output within the columns allotted to
it. This function is performed sither by explicit hard
coded logicys or by calling a routine (JIF) which does it for
them. In general, an output that comes in several pieces is
done with hard logics, while one piece items are handled

by VIF.

e. Common_ it Eauivalence Map

Querview

This sub-chapter describes the output and some of the reasons
for choosing the output format, along with a brief discussion of
the main loop controlling the output.

The Quiput

The output of this map describes, in an almost pictorial
ways how the programmer made use of common blocks, how he
assigned storage within the blocks, and how he defined
gquivalence relations among variables. For each common
blocky, a line describing the blocks attributes is followed
by a pictorial description of the memory lavyout within it.
After all conmon blocks have been so described, a pictorial
description of all local equivalence relations is output.

For example, a program might contain the fo0llowing:

COMMON A X,Y,Z2(5)
EQUIVALENCE (W,Z(3))

The common + equivalence map would then contain:

A LEVEL=1, SIZE=7 words SCM
X<1» Y42» (Z<3-75W<53)

In general, the line describing block attributes containe:
1. The block name, bounded by slashes (// for blank common}.

2. The block's level, as defined by a LEVEL statement.

B-5-31

K14

3. The block's length and type of storage units (CHAR or
WORDs) .

4. The memory type (SCM, CM, ECS, LCM, etc.).

5. The word SAVE if the block name appeared in a SAVE
statement.

The description of the lavout of memory consists, in
general, of a list of the variables contained in the blork.,
with equivalence classes bounded by parens. Each variabls
name is accompanied by indices of the first and last storage
units it occupies within the block, separated by a dash and
bounded by brackets.

A program containing local equivalence classes, such as:?

DIMENSION X(10), Y(5), Z(5)
EQUIVALENCE (X(1), Y(1)), (X(&), Z(1))

would have the following common + esquivalence map:

--L0OCAL EQUIVALENCE--
(X<1-10> Y<1-5> Z<6~-10»)

The indices in this case are relative to the beginning of
the class.

The _Main Loop (IRB)

This routine is called by ¥MOC¥ as an "initializing"
routine, but it will actually control the output of the
entire common equivalence map, and then force ¥MOCH +o
bypass it's own output cantrol logic by telling it “nothing
to output".

IRB is a straight-forward implementation of the
highest-level of logic for this mep.

Initialization_and Prepacaiion
This sub-chapter will describe the routines that initialize and

massage the input to the routines that do the actual output of
the various parts of the common + egquivalence marp.

B-5-32

GhE =

Get next block. This routine has three functions: K]5

1.

Determine the next block *to process.

A1l that needs to be done here is to increment
by one an index (0OBI.BT) into the block table
(T.BIAS): and determine when the last block has
been processed by comparing the index to the
length of the table.

Detect and skip the STASVEE block.

When a SAVE statement is encountered in a source
program, the compiler generates this
user~transparent block. When this block is
encountered by GNB, in order to preserve it's
transparencyy it must not appear in the output,
and therefore must be ignored.

Get block members.

As in other map segments, block members are
tiltered out of the symbol table via ¥8TS¥, and
then sorted. +the main difference is that ¥*gTS¥*
is made aware that GNB is calling via the flag
STS.BI (containing the block index) and the
#MSTH offset. Instead of putting the name of a
block member in each table entry, it's relative
address is calculated and entered. Thus after
calling the sort routine, the table is ordered
by increasing relative address. rather than
increasing alphabetic order.

Another difference is that each equivalencs
class must somehow be delimited within the
table. Taking advantage of the fact that after
sorting, members of a given squivalence class
must be in consecutive table entry's., ¥MECH isg
called to mark equivalence classes by placing a
count of the number of class members in the
table entry of the first member of a class
encountered.

B-5-33

MEC:

GLE:

Mark equivalence classes. As mentioned in the K'ﬁ
previous paragraph, this routine places a count of

the number of members in an equivalence class into a
field in the table entry of the first class memhber
encountered. As an optimization, groups of

consecutive non-equivalenced variables are also

markedy placing the complement of the count into the
table entry of the first member of such a group.

The a2lgorithm that implements this is the following:

1. 1I+f the next table element is equivalenced, go

L S, |
LW Te

2. Count the number of consecutive non-equivalencead
table members.

3. Put the count into the table entry fetched in
1.y go to 1.

4. Locate this element in T.ECT (which contains all
equivalence classes).

5. Count the number of variables in this class.

€. Put the count into the table entry fetched in
1. go to 1. :

This algorithm is halted when the last element in
T.8CR has been accounted for.

In addition, as a class is located in T.ECT, the
base member of that class is marked "processed" by
setting bit 59 of it's T.ECT table entry. This is
to enable ¥GLE¥® to easily find each local
equivalence class {(bit 5% of the base member will
not be set).

Get local equivalence. This routine scans T.ECT for
a base member that doesn't have bit 53 set. Such a
base member marks the start of a local equivalenrce
class. The next step if to create a T.SCR entry for
each member by transfering the TE.SYMI field to the
MT.WAI field, and the TE.BJAS field to the MT.RA
+ield. Bit 52 of the base member is set to prevent
duplicate output, and after each member of a class
has been processed, the member count is eplaced inta
the T.SCR entry of the first member of that class
encountered.

B-5-34

f. Quiput and Control

L1

This sub-chapter will discuss the routines that output a memory

layout.

oM. -

QCEL:

Qutput memory lavyout. The main responsibility nf
this routine is to detect the start of an
equivalence classy and to delimit it by outputting
surrounding parens. The algorithm involved is as
follows:

1. Extract the MT.NMEC field of the next T.SCR

SR g
ETITT ¥

2. I+ the guantity is negative; go to 4.

3. An equivalence class has been encountersd.
Output a left paren, call ¥OCEI¥ +g output the
class,y, then output a right paren. Go to 1.

4. A& group of non-equivalenced variables has heen
encountered. Call #*OCET¥ to output them. ao
to 1.

The algorithm is halted when the last entry aof T.SCR
has been processed.

Output common + equivalence items. This routine is
passed the address of the first item to process, and
the number of items to process. For each item, the
routines *NAME®, ¥FIRSTH#, and *LAST¥ are called to
determine {(and save) the display code and length in
characters of the name of the item. the index of the
first storage unit it occupies, and the index of the
last storage unti it occupies, respectively. This
information is then output one piece at a time by
successive calls to the buffer packing routine HPCB#,

B-5-35

5.5 LIST: Object Code Listing Routines \JZ

Abstract: LIST provides a listing of the object program in the
form of a pseudo COMPASS assembly listing.

Intertaces: LIST is a rear end routine and resides on noverlavs
(1;0) and (2,3). LIST interfaces with and is driven
by routines of FAS (Fortran Assembler, 5.3). Note:
I+ object listing is not required the space occupied
by LIST becomes available for manager *ables.

Rata Siructures:

List defines the following data structures:

a. PBS.: Shifted program tag. Used by WAP for APlist listing.
e ——————— o R i b +
PB. ! RA ! ORrRD VI/Z7 2777272727770
o ————— Frmm e o ———— +
ig8 ig8 24
RA: Relative address
ORD: Ordinal (symbol table)

b. Cells: LIST defines scratch storage and templates for
production of object listing of machine
instructions. Individual routines describe
templates for production of the various tvypes of
object listing required for the pseudo instruciions.

c. LBTI: Local block table. Defines the ordinals of the
program unit's local blocks. Provided by comdeck
COMSLBT.

d. ELPIK: Machine instruction formats. This table is in PUC
{section B-2.3) but is used by LIST to format the
machine instructions for object listing.

Boutine Descriertigns:

a. PBIK: Print instruction conversion. PIK is the LLIST
controller. It is called from POl (FAS, B-5.3) to
process the instruction just assembled. Inputs sre
the instruction (PB. format) and an indication if
the instruction is machine 30-bit, machine 15-bit or
pseudo. PIK determines the nature of the
instruction, and if pseudo, uses FAPSIID (FAS, B-5.3)
to determine the address of the proper LlI=zprocessar
and jumps to that processor. For machine

B-5-3€

instructions the i,j and k fields are extracted,
preftixed with the proper register prefix and saved.
Short instructions are basically done, except for
formatting. Long instructions must have KTX called
to convert the k field to readable form and KTY +g
convert the offset. The processes merge to fetch
the instruction feormat (from F.PIK) and format +he
register fields properly. The address field. when
present, is moved into position and LINEBUF {(the
object line building area) is filled with the
formatted instruction. WOF performs the actual
output. If necessary, WSM is called to ocutput an
address substitution macro.

Print pseudo instructions. The LI= group is really
a part of PIK. The individual routines perform
their function and exit to POL. through PIK. A brief
description of the routines follows:

li=BMI: These entries do nothing. Thev are
LI=BCl present so that FAS/POL can mechanically
LI=QTR call PIK without testing the pseudo for
LI=EMIL listing necessity. They merely return
LI=ECI to POL immediately.

LI=L00

L1=ADDR: Entered from PIK to list the ADDR
pseudo. KTX and KTY are called +o
convert the tag and bias fields and PUF
prints the line.

Ll=AaPL: Entered from PIK to list the APlisis n#
the program unit (not I/0 APlists).
Sets a switch to process standard
APlists. Calls WAP to list the APlists
and WLFP to list LCM pointer cells.

Li=B0S: Entered from PIK to list the source line
number. The line number is converted *n
DPC via CDD and the line numher ig
output in the form of a comment:

'¥ LINE xxx"

LI=BS8S: Entered from PIK to list a labeled BSS.
Calls PBS to perform this function.

LI=CON: Entered from PIK to list all constants
of the program unit {(on T.CON}. Fntries
are set up for WCC to oraoduce T.CON
listing and WCC doss the work.

B-5-37

LI=DATA:

Entered from PIK to provide object
listing of the CPL pseudo. The
character variable tag is converted via
KTX and the length is converted via

KTY. The object listing line will have
the form of & macro and is output by PVF,

Entered from PIK to process the DATA

pseudo. Normally, this results in no
action (as LI=BMI) but in text mode,

T.DATS is dumped by DMT=.

Entered from PIK

pseudo. A sing
produced, and 1

. - 2 T [ot
o4 ISST Thie hEs
W o W BT Red

e COMPASS END line dis
isted by PVF.

oo -t X

Entered from PIK to list the negative
relocation macro. SFN is called to
blank pad the LENP. name and WOF
produces the object listing line.

Entered from PIK to list all formats of
the program unit (T.FMT). WCF is called
to perform the object listing of the
formats. For OPT=0, if format labels
were assigned, PBS is called to provide
that listing.

Entered from PIK to prucess ‘the actual

labels of assigned formats. The header
had been prepared by LI=FMT. The labels
on T.LA are converted by KTX and output

by PLL.

Entered from PIK to print a file vector
macro. The macro field is formatted and
the symbol table WA. field is modified
to allow printing of the file name. KTY
converts the buffer length and SFN blank
pads the file name. PW outputs the
line.

Entered from PIK to output the print
limit pseudo. The line is formatted and
then LI=FVEC logic completes the object
line output.

Entered from PIK to produce object lines
corresponding to the IDNT pseudo. WCS
lists the block statistics. An IDENT
line is then output, via PVF.

B-5-38

LI=I0M:

Li=LCC:

LI=NLST:

LI=R.J3:

Li=RJEG:

Li=UJR:

LI=USE:

Entered from PIK to produce object L5
listing for the I/0 APlists.
Initialization and switches are set for
WAFP to produce I/0 AFPlist (as opposed to
normal APlist) and WAP is called to
produce the lines. WCL is callsd to
provide listing of character length
arrays.

Entered from PIK to produce obiect
listing of a JP instruction. Since the
JP instructions in general are treated
by the code generators ss pseudos and
are reformatted into instructions hy FAS
(B~5.3), LI= entries are provided. The
instructions is formatted partially and
final processing is at LI=RJE.

Loader directive production. The
decision was made not to attemst abject
listing of loader directives. This
routine merely exits to PDL, via PIK.

Entered from PIK on the MNLST psesudo.
DOperates like LI=DATA, calling DMT= +o
dump T.NLST (in test mode only).

Another jump formatters this for RJ
without traceback. Exit to LI=RJ&.

Ancgther jump formatter, this for RJ with
traceback. Contains the formatting for

the jump instructions. Exits to PIK to

treat as a 30-bit instruction.

1]

m g

d from P

IK rocess the SURCI
+s the

o p
macro name and exits

&
L

-y

te
seu
o L

d s
I=8lBI.

HWon

+ o [

Entered from PIK to process the SURI
pseudo. Bets the macro name. 5BOI
merges here. KTX is called to convert
the tag and the macro line is output via
PVF.

Another jump formatter, this for EQ.
exit to LI=RJE.

Entered from PIK +to list the USE

pseudo. The pseudo is formatted and
output by PVF.

B-5-3°

Ca

KIX:

KIY:

Kug:

=11

BVE:

BVYS:

LI1I=TRAC: Entered from PIK to list the TRAC
pseudo. The TRACE. macro is formatted
and the object line is output by PLL,

LI=ZERQ: Entered from PIK to process the ZERD
pseudo. ZWI is called to output a zero
line.

Convert tag to external format. KTX is called to
convert a PB. format tag into external (i.e..
readable) format. The nature of the tag is
determined and if not a symbol table entry, a prefix
{based on the tag pointer) is fetched and the number
is converted to DPC (octal). The conversion
returned will be of the form PP.xxx, where pp is the
prefix and xxx is the converted number. If the tag
is 3 symbol table tag, the proper T.SYM entry is
fetched. If not label or external, the WA. field is
returned. Labels are preceded by perind and
externals by '=X'.

Convert constant field. KTY is called to convert a
numeric field into octal DPC.

Convert upper bits. KUB is called by WCA and WIO to
convert the high order 12 bits of a (APlist) word to
DPC.

Print BS5. Called when a BSS instruction is to be
output. The amount of storage is converted by KTY.
KTX is called to get the label fisld converted. The
name is blank padded by SFN and PLL outputs the line.

Pack variable field (for listing). PV is called to
output an object line which requires formatting of
the variable field. The variable Field position is
tested and as required, blanks are added. The line
is printed via WOF.

Publish listing line. PLL is called to output an
object line which may need formatting. The original
t+ields are converted to octal DPC, if necessarvy, via
WOD. If the code field required relocation, a '+'
is inserted. PVS is called to pack the location,
instruction and operand fields. The origin is
converted to DPC as necessary. The object line is
output, via WOF.

Pack variable strings. PVS nperates like PVF,

except that a range of words to be blank filled is
passed. They are blank padded, as required.

B-5-40

m-

WCC:

L7

Variable field definition. WVFD is called to format
and position the instruction field of an object
listing code line. The binary of the instruction is
converted to octal DPC and stored in the proper
parcel of the instruction field.

Write APlists compiled. WAP is called by LI=APL and
LI=I0OM to output object listing for APlists. The
APlist to list is on T.PTXTR. If no entries are
present, exit is immediate. Otherwise, the address
of the actual listing routine (WCA or WID) is
plugged to the RJ code to provide common interface,
with two formatters. The APlists are copied to
T.SCR and sorted in ascending order by SST. Each
APlist is considered a group. The header BSS is
formed and output via PBS. Then each individual AP
entry is processed by the proper listing routine, as
plugged by the entry conditions. Processing
continues for all APlists.

‘Write coded APlist. WCA is called by WAP to format

and list a single standard (non I/0) APlist entrvy.
The AP entry is analyzed. First, KTX is called to
convert the tag to output form. If the AP entry is
type character, the BCPFP and CLEN fields are
converted by KTY. The bias field is converted by
KTY. The results are stored in a template and KUR
is called to convert the upper bits. PVF finishes
tormatting and outputs the line. WSM writes the SUB
macro, as necessary.

Write constants. WCC is called from LI=CON +to
output the object listing for the constants on
T.CON. For each constant on T.CON, WCC formats and
converts the address field, converts the binary
constant to octal and alpha DPC and formats both
forms for output one line for each constant in
output, via WOF.

Write formats. WCF is called by LI=FMT to list the
formats on T.FMT. The binary on T.FMT is converted
to alpha DPC and that is formatted and then ocutput
by WOF.

Write character length array. WCL is called by
LI=I0OM to output any necessary character length
arrays. PBS is called to print a 'CL. BSS' line.

If character lengths are present, the CLW macros are
output using the binary on T.CLWB). The binary for
each is converted to octal DPC and WID is called to
output the item.

B-5~-41

Weg:

Wig:

WP :

W :

L8

Write block statistics. WCS is called by LI=IDNT o
list the block statistics for local blocks. The
listing subtitle is set to object listing and WOF isg
called to output a new title line. The block origin
table, F.LBT and TLEBN are used to form the output
lines; which are printed by WOF.

Write I/0 APlist. WIO is called by WAP to format
and output I/0 APlists. The results of all field
conversions are stored in a template for listing.
KTX is called to convert the tag. If the entry is a
control item, the control code is saved for format.
The various fields are formatted, using KTY and
comma separators. PVF provides the listing of the
object line.

Write LCM pointers. WLP is called by LI=&PL to
process any T.LA entries which were copied to

T.APL. The tags are converted, via KTX and the
offset by KTY. The line is output by PVF and WSM is
called to output 2 SUB macro.

Write SUB macro. If no address substitution is
present, exit is immediate. Otherwise, the proper
T.FPI entry is converted, via VFD and the resultant
line is output by PVF.

Zero word item. Called when necessary for an object
line which represents a binary zero. ZWI formats
1] i

the DPC of zero and prefixes with '~-' as necessarvy.
Output is by WOF.

B-5-42

€.0 CCG ROQUTINES l-g

The routines and decks described in this section comprise the
Common Code Generator and the FTNS interfaces to that product.

B-&-1

6.1 CCGC: CCG Controller and Support L]O

abstract: CCGC is the controller for the CCG process. It
consists of routines to format information from the
front end and to reformat for rear end processing.

Interfaces: CCGC is a CCG interface deck and resides on
overlay (2,2).

Data Siruciures:

a. Gells: CCGG provides interface cells with standard names
+or use by CCG. Flags and messages are passed to
and from CCG here.

b. Tables: Managed table cells (pointers and sizes) for tables
used by CCG and tables which must be preserved by
CCG. Provided by comdecks COMSTAB, COMSTAD and
COMSTAS.

c. QCPOUD: Tables of WO= and WI= pseudo instruction processing
IPSLD routines. Provided by comdeck COMSPSU and rewrite
of PSUD and IPSUD macros. Inbedded in comdeck
COMFWIN.

d. ALl APlist index table

et e ol e e P —— e R +
lgigt /i ! ! !
IGltat/l LINK . LEN ! INDX !
yigi /i ! ! 1

Rl Bt Ll e et e, ——————— e +
11 4 18 i8 ig

EGY Equivalenced APlist

BAS Base member of class of equiv APlists
LINK: Link pointer

LEN : Length

INDX: Index

Boutine Rescriptions:

a. LCGg: CCG controller. Entered from FTN22 (INIT22,
B-2.9.5), CCGC controls the flow of CCG
compilation. BRIDGE is called to transform the
front end information (IL, tables, etc) to CCG
compatible format and to interface CCG. If OPT:Z2,
CGEGPD is called to perform global optimization.
OTC is called to output terminal code. Exit is to
the code generator loader.

. DPT: Detine program tag. Called by DLT to define area
for generated labels.

c. Ea=L0L:

d. HEZART:
HESCTX
HESER X

e. HBRELRC:

. WIN:

a. BQlL:

List one line. FA=L0OL provides CCG an interfacs Ll]
for output of messages. Calls WOF to provide the
write function.

These are standard named error exit routines.

Since CCG [and overlay (2.,2)1 have no diagnostic
capability, a flag indicating 3 diagnostic is saved
and the actual message will be output by

REC (B-5.1).

List dead code. A standard named CCG interface
routine to list dead code line numbers and
routines. The line numbers are converted to DPC by
CDD and the messages output by WOF.

Write instruction (to prebinary file). Called
using the WCODE macro. WIN takes an instruction
and formats it in PB. format. If the instruction
is pseudo, PSI is transferred to for processing.
If the instruction is 15-bit, attempt is made to
add it to a packed prebinary word. Some short
instructions require transformation of the j or k
tields. As required, this is done. If the
instruction is 30-bit, the current format is PB.,
and the instruction is merely output to F.PB (first
outputting any partial 15-bit package which had
been collected. Exit is to caller by a B-reg
Jump. Comdeck COMFWIN.

Process pseudo instruction. The pseudo instruction
is used as an index into PSTABE and the proper WO=
or WIi= processor is called. Brief descriptions
follow:

WI=B08: Pseudo in proper foarm, output as
instruction.

WI=INDRT: Initialize origin, current block index and
parcel counter. DOutput pseudo as
instruction.

WIl=LDQ: Increments parcel count. Outputs as long
WI=8TO instruction, but counts as short.

WO=ADDR: Reserves space for the pseudo word and call
WI=CPL DLT to advance the origin counter. Outputs
WO=PLIM as long instruction.

WI=8URI

WI=SB0I

WI=ZERQD

WO=FVEL

h-

RLI:

WR=TRAC:

WO=CON:

WI=UgE:
WO=USE

Wi=QTR:

Wl=RJG:
WI=UJP
WI=JPI
WI=RJ3

Wl=BS5:
WO=BSS
WO=BSS5Z

WR=END 2

Wi=L0Q:
WO=L00
WI=EMI
WI=BCI
WI=ECI
WO=NLST
WO=APL
WO=10M
WO=FMT
WO=EGIN

WO=LCC

WIl=DATA:

Note:

final processing.

Define label tag.

L12

Fetches the T.SYM ordinal for TRACE. and
calls DLT to define a label tag. The same
for TEMPAQO. Treats as long instruction.

Outputs the pseudo as long instruction.
Outputs

Calls PUSE to process the pseudo.
as long instruction.

I+ necessary, a parcel is cleared. The
pseudo is output as long instruction, and
the origin and parcel counters are updated.

These machine instructions are treated as
pseudos. The origin counter is set +o
tforce upper after the instruction. Treated
as long instruction.

Calls BNN to begin new word. Formats the
tag and calls DLT to detine the label.
Treats as long instruction.

Calls PUSE to restore USF block. Treats

as long instruction.

These pseudos are merely output as long
instruction, with no special processing.

Calls BNN to force a new word and then
processes as long instruction.

All the routines of PSI return to WIN for

PSI is on comdeck COMFWIN.

Called to force upper {increment

the origin counter) and to make a PB. format tag

(if a tag is to be produced).
always done.
determined.

The force upper is
If a tag is necessary, its type is
I+ symbol table, the WC. field is

updated with current RA, RL. and RB informetion. A

generated label is processed by DPT.
types are invalid here.

All other tag
Comdeck COMFWIN.

i.

J'I

k-

118:

BUSE:

QIC:

QLC:

g]l:

A0

MYI:

Issue temporary storage. Called by OTC to output ‘-‘3
the TEM. USE block to prebinary. The counts of
various temporary storage classes have besn updated
and a USE pseudao is output, then BSS pseudos for

each class is output via WIN. A USE BUF. pseudo is
then output. Comdeck COMFITS.

Process USE pseudo. Comdeck COMFUSE. Described in
Fas (B-5.3).

Output terminal code. Called by CCGG upon return
from CCG to output hanging code. Code is output to
prebinary, via WIN, using the ISSUE macra, which
provides formatting and the WCODE macro. CGHSCUBR is
called to compile any variable dimension code. an
ECI pseudo is issued. If address substitution is
required, USF and BSS5 pseudos are issued and 0SI is
called to output the index table. A USE for the
START. is issued and 0SC is called to output SUR
code for the header. MZP is called to mark
paossible level O vardims. A USE pseudo for TEM is
issued as is the SUBO BSS pseudo. 057 is called to
issue the SUBO index table. A USE pseudo for
START. is issued and 0ZC is called to issue SUBO
code for the header. 0OVC output vardim code and
OLC outputs FP local copies. Alternate entry code
is issued as required (a mini version of what has
been done for the main entry). An EMI pseudo is
issued and CAW is called to convert first LBAPT and
then LBIOI to WC. format. ITS is called to issue
the temporary storage pseudos and MEP completes the
processing. an END pseudo is issued.

Output local copies of formal parameters. OLC is
called by OTC output any required local copies of
formal parameter for each entry of the program
unit. The entries are in FP. format. RLIST type
entries are formed by SRI and BCI and ECI pseudos
are issued as needed.

Store RLIST instruction. SRI is called by OIC +to
issue RL.IST instruction to LBTXT.

Output vardim code. OVC is called by DOTC to issue
any vardim code. If code is present, it is moved
to LBTXT via MVYT. MAV marks vardims which are
applicable to the current entry and MMV marks
materialized vardims. A BCI pseudo is issued.
CGECPC is called to compile the code and an ECI
pseudo is issued.

Move vardim to LBTXT. MVT is called by OWC. Srace
is allocated on LSTXT and the entries on LBVDT are
moved there for processing.

{4
i
3

Hay:

My

QsI:

QaC:

Qac:

Caw:

L14

Mark materialized vardims. MMV is called by OVC to
mark those necessary. The copy on LETXT is looped
through and stores are processed. Needed stores
are given the real CA from LSVDT, otherwise, the
store is NO OFed.

Issue save AQO. (or RJ CPL.Y). 184 is called to
issue the save AQ or RJ CPL. pseudos. I+
interactive debug was selected, code to save Al is
issued. I+ the program unit is type character
function, code to save A0 is issued. If unigue
entry parameter lists are present, code is issued
to save registers and a CPL. RJ is issued. Comdeck
COMF IGA.

Mark vardim appropriate (to this entry). The LEVOT
copy on LBTXT is scanned, using LBVDI. I+ no FP's
for the current entry, no action is taken.
Otherwise, the parameters are tested against VDI,
and if a match on upper, lower bound or span, the
VDI entry is marked by MVD. If the program unit is
passed length character, that VD] entry is marked
by MVD.

Mark vardim. MVD is called by MAV to seit the
proper bits in VDI.

Output sub index table. 0SI is called by OTC to
output address substitution index tables (SUB and
SUBO* as needed. The SUR index words are formatted
and output to TST.

Squeeze last entry. OSLE is called by 0SI after
issuing a sub index table entry to attempt
elimination of duplicate entries.

Output sub code. 0OSC is called by OTC to issue any
required address substitution code at entry

points., Code is formatted and issued to set up
entry condition for and a RJ to SP5. Comdeck
COMFDSC.

Output SUBO code. DZC acts as DSC, except level O
substitution code is issue,; as necessarvy. On
comdeck COMFOSC.

Convert APlist index table to WC. format. CAW is
called by OTC to convert APT or I0OI to WC.RA
format. The entries are scanned (on the pertinent
table’ and the AI. form entries are reformatted

to WA.

Y=

zl

MEE:

MRV :

L15

Miscellaneous end processing. Called by OTC to
finish up CCG interface processing. The length of
the run time constant table is determined. CGRIEP
is called and MDYV reformats DIM VD pointers.

Mark dimtab vardims as needed. The dimension
table, DIM is scanned and if variable dimensions
that materialize are present, CGCHAVO is called to
obtain a converted CA field.

L16

€&.2 CSKELL: Form Code Skeleton Tables.

abstract: CSKEL contains code skeletons and opdefs for use by
the CCG routines.

Interfaces: CSKEL is a CCG intertace deck and resides on

overlay (2.,2).

Rata Siructures:

CSKEL consists of macros to define the skeletons and opdefs and
the skeletons and opdefs.

Force micro evaluation for remotes

a. Macros: RMM=2
SKEGLU 2 Equate skeletons
SUBSKFEL: Declare beginning of sub expansion
SUBEGU: Declare equivalent pass 2 skeleton
ENDS: End macro skeleton
FORM: Form instruction skeleton element
SETCON: Set number/address field in
skeleton (con)
SETOTH: Set number/address field in
skeleton (non-con?’
BRANCH: Continue skeleton elsewhere
CALL: Call external processor to process ar
partially process current turples
SKOP @ Skeleton of operator
SKPSET: Set SKOP numeric selection parameters
M.I.: Macros to define machine instruction
skeletons.
b. Qepdefs: Provided by comdeck OPRDEFS. Described in

RLINK (B-2.4.4).

c. QSkeleions: The skeletons are provided by comdeck SKEL. The

format is:

i it Dl e Btk e e e ke +
SK. !'TYP!OPC!'IAD! INUM! JAD ' INUMIKAD ' KNLIM! GF !

e e e Bataiadat b e A e e btk +

& 2 5 & 5 € 5 € i2

TYP: Types of operation

OPC: Opcode

I14b: i address

INUM: i number

Jab: J address

JNUM 2 J number

KabD: k address

KNUM: kK number

QF: q4 {(constant} field

€.3 CCG Routines

The CCG-proper routines are maintained by the 170-CCG project ‘A‘
and are described in that IMS. For reference, the following
deck comprisas CCG.

CGTM: Code generation table manager.

MIQ: Mass storage 1/0 routines.

FBV: Form bit vectors.

GPO: Global program optimization.

GRA: Global register assignment.

SQZ: Redundant operation elimination.
MCG: Machine code generation.

BODT: Form dependency tree (graph).

CFéA: Control flow analysis.

UoT: Usage/definition table processing.

PROSEG: Process accumulated segquences.
Output: CCG (test mode) output routines.

B-&~-9

€.4 BRIDGE: Front End IL - CCG Interface hﬂz

Abstract: Bridge accepts IL from the front end processors and
converts it to a form understood by CCG (RLIST).
The converted turples are passed to CCG, which
generates code and returns to BRIDGE.

interfagces: BRIDGE is an interface deck for CCG and resides on
agverlay (2,2).

Rata Siructures:

tm—————— e ettt T P ———— tr—m e ——— +
T8. ! AT ! CLEN 1 RNLL i RNLJ !
Frm————— el it T o o +
& i8 i8 1B
AT & Attributes
FR : Function result
FRL.: Lower function result
DEF: Deferred processing
RTV: Right branch visited
SuUB: Substring
CLEN: Character length
RNL 3 R# - lower result
RNU R# - upper result

. AI.: APlist tvype information

e tm———— tmm——— o e o o +-+
! ! ! ! ! 111
AT. ' ATR ' MOD ' OPT Y/////77777777/777777) RES ot
e it fm———— - o e - E R et L +-+
5 5) o6 17 1

ATR : Attributes

LEN : Processing I1/0 length

I10C : Processing 1/0 control

CHAR: Character type

NUL. 2 Monunity array length

LEV : Level O
MoD Mode
oPT2: High €& bits of AP.
REE : Reserved
10 : I0 indicator

B-&-10

Ce

e.

8C.:

sC.

SE.

SYa:

M3

Skeleton descriptor word

Sk bl Sl Dbl Db bl R et L B e +
L/IPTYPIPNUMIMAXT i/ /777! PRO ! AD !

-t e ke it +
1 5 & & & i8 ig

PTYP: Call parameter type

PNUM: Call parameter number

MaXT: Maximum temporarys

PRO : Call processor address

AD Set address

Skeleton expansion word.

et e e il el ST
FFIR1/IT! s ! s ! ! ! ' !
PIING/Z1Y! OC '1TYP!INUM!2TYP !2NUM!STYP ! 3NUM! Q ;
t ID1/1P! ; ! ! ! ' ! ! !
e T e St S B B
1113 9 5 6 5 € 5 &

FI : First instruction in skeleton

RND : Roundable operation

TYP NZ if branch or call

oc Instruction opcode

nTYP: Register type

niNUM 2 Register number

a : Address field

b t-=-—t-—————————— S et o Sntntetateb DDt R +

' as above '////} PRO 'PTYP !PNUM! BR !

o -t Radaled Dl bl Dadntendb b b +
i5 4 i8) € i2

PRO : Call process address

PTYP: Call process type

PNLIM: Call process number

BR : Branch index.

Symbol information

e ——— - bl Ll L L e L +

! IH ! Ch A

el it D B L Tt P Fom e ————— +
i8 24

IH: Symbol ordinal

CA: Constant or offset

B-€-11

g0,: Sequence descriptor

tom e - e i L Dt T +
SO V///77777777777/7777771 RN !
Rt el L T L e e +
24 i8
RN Register number
CA: Constant or offset

Routine Descriptigns:

-~
i
LI *7

be

supp

184,

[}

BRIDGE:
ing:
B=0EG:
Ige:
BCS:
18T:
CIR:
GQy:
Lae:
aCA:
IRI:
LIR:
S0T:
SET:
SIR:
GAR:
RQT:

REB:
B=HDR:

Initialization and main loop.
Initialize new statement.

Reset turple counters.
Terminate statement processing.
Process current sequence.

Issue statement temporary stores
Convert instruction to RLIST.
Get operand value.

Load operand.

Adjust CA.

Issue RLIST instruction.

Load intermediate result.

Store double word temporary.
Scan for tewporary's processor.
Store temporary result.

Get array result.

Read one turple.

Read one word (from buffer),.
Refill buffer.

Header turple processor.

B-&-12

-T- 18
bb.
CC.
dd.
22.
£F.
gg9.
hh.
ii.
Jie«
kK.
11.
mm.
M.
Q0.
PP .

qq.

re.
sS.
tt.

uu.

B=GED:
B=pLliM:
B=CRLOA:
B=C0ORQT:
B=CRCS:

B=EAP:
B=100:
B=10C:
B=10U:
1aW:
BCL:
PAE:
Aall:
EMU:
BNa:
BaC:
BCO:
I1ag:
EIT:
BCI:
CEL:
ICE:
SaE:

Mo

Generate file declarations. Comdeck COMFGFD.
Process PLIM turple. Comdeck COMFPLI.
Specify object listing on/of+f.

Specify zero/one trip DO looes.

Specify user/fixed collation.

Process DATA turple.

o

rocess start of executables.

Issue CP. and GPL. tables. Comdeck COMFICP.
Process general APlist.

Process function APlist.

Process I/0 data aPlist.

Process I/0 control APlist.

Process I/0 unit APlist.

Issue APlist word.

Process character array item length.
Process APlist turple operand.

Add APlist to APL/IDA.

Mark multiple CON. entries.

Process namelist APlist.

Process character APlist.

Process character operand.

Issue APlist for concatenation.
Enter target temporary into APlist.
Process character item.

Check evaluated concatenation.

Isgsue character expression.

Stack APlist environment.

B-&-13

VVa.
Wi .
XX e
7YY -

zz-

aad.
bbb.
CCC .
ddd.
epa,
FFF.
agg.
hhh.
iii.
Jjde.
KKK .
111.
mh .
nnn.
Q00 .
FPP.
999.
rrf .
5SS
ttt.

[FERTE N

gca:
QQE:
B=H8TQ:
B=HRLE:
E=DQ0:
B=R0Z:
B=0D08:
B=00C:
E=PDE:
B=I0LC:

Pop APlist environment.
Form array reference.
Form variable subscript.
Get character length.

Subsume constant character bias.
COMFSCB.

Process character APlist.
Enter character APlist.

Enter FP character APlist.

Comdeck

Intrinsic function APlist processor.

User function/subroutine processor

I/0 function processor.
Process intrinsic turple.

Define function result.

Insert line number into RJE instruction.

Chain parameter list.

Process parameter list.

Store character APlist.

Issue compiler generated function.
Process character assignment.
Process character relationals.
Process one trip DO loop.
Process zero trip DO loop.
Process do begin.
Process do conclusion.
Process do end.

Process collapsed I0 implied do.

B-&-14

M6

YVVa.
Wi .

XXX

g94999.

hhhh.
iiii.
3jii.
khkhk.

1111.

nnnn.

0000.

PPPP.
qqq9q9.
rrrr.
5555,
tttt.

Uy «

B=PLA:
aLTI:
GLI:
8B
B=ENT:
B=PEX:
B=BASG:
B=RGT:
B=RaG:
B=PCG:
B=JGOC:
B=RGT:
B=lE:
ERI:
B=BaR:
P=HCAT:
B=HS8S:
B=HCOL:
E=IM:

B=IiR:

B=MaCK:
E=MOD:
B=8HIFT:
B=BVYD:
B=EVR:
B=EIN:

Process

label turple.

M7

Add label to text.

Get label tag.

L.abel definition.

Process

Process

Process
Process
Process
Process
Process

Collect

alternate entry point.
exit macro.

ASSIGN.

unconditional jume.
assigned goto.
computed goto.
computed goto turples.

alternate return.

IF flow.

Deferred turple processing.

Process
Process
Process

Process

Select integer multiply subskeleton.
COMFSIM.

Select integer divide subskeleton.
COMFSID.

Select mask subskeleton.
Select mod subskeleton.

Select shift subskeleton.

Praocess

Process

array turple.
concatenation turple.
substring turple.
colon turple.

Comderck
Comdeck

Comdeck COMFSMK.
Comdeck COM?QMD.

Comdeck COMFSSH.
start of vardim code.

end of vardim code.

Terminate IL processing.

B-&-15

YVVVa

WAWW .

MRy :
B=LCC:

Mark dimension vardims nesded.

Process loader directives.

B-&-1€&

M8

INDEX vll][i

SECTION A: OVERVIEW

g3
1.0 COMPILER STRUCTURE BS
2.0 GLOBAL DATA STRUCTURES B13
3.0 COMDECKS F8

SECTION B: DECK AND ROUTINE DESCRIPTIONS

1.0 TEXTS F15
1.1 FTNSTXT F16
1.2 COMPLTXT G5
i.3 CCGTEXT G6
2.0 CRADLE ROUTINES G8
2.1 FTN : G9
2.2 UTILITY G12
2.3 PUC G15
2.4 LINKAGE DECKS H2
2.5 PEM H9
2.6 ALLOC - H71
2.7 SNAP INTERFACE- ROUTINES H14
2.8 1DP I1
2.9 INITIALIZATION ROUTINES 112
3.0 FRONT END ROUTINES J5
3.1 FEC - J6
3.2 FERRS J13
3.3 LEX J16
3.4 HEADER Bl1l
3.5 KEY Bl4
3.6 CDDIR c4
3.7 DATA C6
3.8 DECL C12
3.9 TYPE D3
3.10 FMT D5
3.11 10 D10
3.12 PAR E5
3.13 CONRED Fl4
3.14 STMTF G5
3.15 LABEL G6
3.16 FSKEL Gll
4.0 QCG - G613
5.0 REAR END ROUTINES 115
5.1 REC - 116
5.2 RERRS : J2
5.3 FAS J3
5.4 MAP K4
5.5 LIST L2
6.0 ccG L9
6.1 CCGC L10
6.2 GSKEL L16
6.3 CCG ROUTINES M1
6.4 BRIDGE M8

4237P - 0193P/010AP

(

(A

L

1

INVERTED CRCSS-REFERENCE LISTING OF COMDECKS AND THEIR CALLERS.
=COMDECK=/====m=mm==m=——eceeee CALLING DECK/COMDECK ===memmmeesmetosioc/
CCOMRPY UTILITY &

COMACPU FTNSTXT

COMADEF FTNSTXT

COMAERR FERRS RERRS

COMAMGM FTNSTXT

COMAQCG QCGEC FUN REG GEN

COMCMCS IDP

COMCPAC INITOO

CCMCSBM UTILITY ID°P

 COMDOMY CSNAP FSNAP RSHNAP

COMFCIP FTN INITCO INIT20 ovL10 ovLz0

COMEDST DECL

COMFECB PUC

COMFFET INITOO INIT10 INIT21

COMFERR FERRS RERRS R ST

CCMFGFD GEN BRIDGE

COMFGODI INITOQO INIT10

COMFICP GEN BRIDGE

COMFISA GEN CCGC

COMFITS QCEC ccec

COMFMAV GEN ccec

COMFOSC GEN cC6C

COMFPLI GEN BRIDGE

COMFROR INITOC INIT10 INIT21 INIT22

COMFSCB FUN BRIDGE ‘

COMFSCS FEC RL INK e e

COMFSID RRIDGE T

COMFSIM BRIDEGE ,

COMFSKL OSKEL ESKEL -

COMFSMD BRIDGE =

CCMFSKK BRIDGE

COMFSSH BRIDGE

COMETTL FTN

COMFUSE QCGC FAS ccee , ‘

COMSPSU COMFWIN QCGC cCceGe FTNSTXT FAS

COMFWIN QCgC ccec .

CCFSEIS CCMFSKL QSKEL FSKEL INITOO INIT10 INIT21 CONRED
GEN

COMSERR PEM FERRS RERRS

COMSIOC FTNSTXT IO FAS

COMSLBET PUC REC LIST

COMSQCE FSNAP ec6C FUN REG GEN

COMSQRF COMFSKL QSKEL FSKEL QC6C FUN REG GEN

CONSPBD FTINSTXT

COMSSYM SYMDEFS FTNSTXT

COMSSYC FERPRS . P

COMSTAE PUC CCGLINK CCGC - . INIT22 .-

CCMSTACL CGHCDTD COMSTAB .PUC “CCGLINK CC6CT - “INIT22

COMSTAS CGHCSTC COMSTAB PUC ™ -CCGLINK CCGC CINIT22

DEFINS COMFSKL QSKEL FSKEL FUN PEG GEN

FSCALE CONRED

DPTIONS FTINSTXT

PARSKEL COMFSKL QSKEL FSKEL

SKEL COMFSKL QSKEL FSKEL CSKEL :

SKOP COMFSKL QSKEL FSKEL CONRED GEN BRIDGE CSKEL

SKPCONQ COMFSKL QSKEL FSKEL CONRED 0C6C

SKPSET COMFSKL QSKEL FSKEL CONRED 0CGC

-,

-y

COMAIDP
COMATOK
comcBus
COMCBUN
cCMCCDe
COMCCFC
corCcIC
camMccon
COMCDXB
COMCIDP
COMCLF¥

COMCHNS

COMCMVE
COMCRDC
comMceoy
COMCRSR
COMCSFN
COMCSST
COMCSTF
CONMCSVYR
COMCSYS
COMCTOK
COMCWOD
CONMCWTC
COMCWTH
COMCNTD
COMCWTW
COMCXJR
coMCczTR
COMDTOK
coMPCOM
COMQSVR
COMsIDP
COMSTOK
FA=CLO

FA=DEFS
FA=EQF

FA=EQR

FA=FLSH
FA=QPE

FA=RDC

FA=RDW

FA=PyX

FA=SET

FA=WTC

FA=WTW

OPRDEFS

KRRk
kR ok Kk

PSS L AT

FTINSTXT
1Dp
1DP
Ice
UTILITY
FTN
UTILITY
FTN
UTILITY
1oe
1DPp

[S U & AY)

UTILITY
CTILITY
UTILITY

HYTI TTW
[SRIF S I

10P
UTILITY
UTILITY
INITCC
ICP

0P

10P
UTILITY
IDP
UTILITY
UTILITY
UTILITY
IDP
UTILITY
FSNAP
FTN

PEN
CSNAP
10P
UTILITY
FINSTXT
UTILITY
UTILITY
UTTILITY
UTILITY
UTILITY
UTILITY
UTILITY
UTILITY
UTILITY
UTILITY
RLINK

LEX
LEX
LEX
IDP
PUC
Ipp
IDP
1DP

Lo

Pty
) 0
0 o

LEX
ipe

ipp

1CP

ICP
IDP
FSNap

CSKEL

MRRCO4H
MRRCC 44

Th LWNULDONS AiNu

FAZLIX LALLERD T

FSNAP

LEX

RSNAP

/711 END OF LIST /777
/771 END OF LISY 7717

TR R R A PR R B I P I BN I R AR A R IR LI S I N R R O E T T L T T L BT A Y e T e e VL Y N 8 T e)

; MMMAMMMMMMEM M EMMY MM MMM MMM MM MMM M MMM MMM MMM M MMM MM MMM MMM MM MMM M MMM MM MMM MM MMM

t MMMMMMBMMMMMMM MMM MMM MMM MMM MM MM MMM MM MM MM MMM M MM MMM MMM MM MMM MMM MMM MMM MM MMM MMM MM
A T

1 CROSS~REFERENCE LISTING OF DECKSICOMDECKS, AND COMDECKS THAT THEY CALL.

=CALLER~- / - CALLED COMDECKS - - /

(HISTORY

COMDKS

CCOMRPY

CGHCDTD COMSTAD
CGHESTD CNMSTAS

S TIRE 4 S R

(‘ } LUOMAL Iry
COMADEF
COMAERR
LT amyd
COMAQCG
COMCMCS
¢ COMCPAC
COMCSBM
COMDDMT
¢ Cowecre
COMEDST
COMFECSH
¢ COMFFEI
[COMFERR
COMEFFN
¢ COMFGFo
COMFGOI
CAMFICP
COMEISA
¢ comrrTs
{ comrmMav
) COMEMFP
 cOMFOSC
COMFPLI
COMERNC
¢ comrror
COMFSCB
 COMFSCS
¢ comrsto
COMESIM
COMESKL COMSETS SKPSET SKPCONO SKOP COMSORF DEFINS SKEL
e PARSKEL

EL L)

-~

COMFSMD
COMFS MK
€ Comrssw
COMETTL
COMFUSE
G comsesu
COMEWIN COMSPSU
¢ COMSEIS
COMSERR
COMSI0C
COMSLBT
¢ cowsoce
COMSQRF
(CorsPeD
. COMSSYM
COMSSYC
Q COMSTABR COMSTAD COMSTAS
L COMSTAD
COMSTAS
(DEFINS
ESCALFE

am

3N b b 1w

FWACDOM
OPTIONS
PARSKEL
SKEL
SKOP
SKPCONQ
SKPSET
SMACROS
SYMDEFS
1Z2C0M
TEXTS
FTINSTXT

CWELR1
¥FTN¥

LT
[L

UTILITY

LISTLNK
PUC
QCGLINK
CCGLINK
CSNaAP
PEM
ALLOC
iDpP

INITGO
INIT1G
INIT2O
INIT21
iNIT23
¥FRONT
FEC
FERRS
FLINK
FSNaAP
LEX
HEADER
KEY
CDDIR
DATA
DECL
TYPE
FMT

10

PAR
CONRED
STMTF
LABEL
QCG
QCGC

QSKEL
FUN
REG
GEN

CWENR?2
*REAR%

COMSSYM

[0 T o |
0O o
w

e S |

LY e

B o
wy 2z
<

"y
IJ

N¥ECT
>CQNCCDD
>COMCSEN
>COMCWTH
>FA=0PE

|-1
-}

COMSTAB

COMSTAB
>CONSTIDP
COMSERR

>COMATOK
>COMCCDD
>COMCRSR
>COMCWTC
COMFCIP
COMFGOI
CAMFCIP
COMFFEL

COMFSCS
COMSSYC

>COMSIDP
>COMATOK

COMFDST

COMSIODC

SKPSET

COMAQCG
CAMETTS
COMFSKL
SKEL

COMAQCG
COMAQCG
COMACCG
COMFOSC

>FA=DEFS

rOoMeDnn
LI AFOU

cgﬁcoxs
>COMCSST
>COMCWTO
>FA=RDC

COMSTAD

COMSTAD
COMDONT
>CO™QSVR

>COMSIDP
>COMCCID
COMCSaM
>COMCWT Y
COMCPAC
COMFFET

COMSEIS

COMAERR

COMSQCG
>COMSTOK

SKPCONQ

£OMSQCG
COMFUSE
COMSEIS
PARSKEL
£oMsace
COMSQC6
COMSEIS
COMFMAY

- M
E N

o
i

rnucvvn
13938 § 8 &,

*

>FA~SET
>COMCwWOD
>COMCUTY
>FA=RDW

CONMSTAS
COMSTAS

>COMSTOK
>COMCccan
>COMCSEN
>COMCXJR
>COMCSTF

COMSEIS

COMFROR

COMSERR

>CONMSTOK
>COMCTOK

COMSEIS

COMSQRF
SKPSET

COMSQRF
COMSOQRF
CAMsQCe
COMFIC?P

>COMAIDP

’CDHCZTB
>FA=CLO
>FA=RWX

COMSLEBT

>COMCLFM
>CONCDXB
>COMCSVR
>COMCZITS
COMFGCI
COMFROR

COMFERR

COMDDNMT
>COMCBUB

FSCALE

SKPSET
SKPCONQ

DEFINS
DEFINS
COMSQRF
COMFGFD

coMACPU

- TN
FLURT

oy
]
e]

cco ﬂRPV
>caMccIe
>FA=EQF
>FA=WTC

>COMCCFD

>COMCIOP
COMCMCS
>COMCSYS
>COMOSVR
COMFFEI

>COMDTOK
>COMCBUN

SKQaPpP

SKPCONC
SKQoP
COMFSCB

DEFINS
COMFPLI

COMAMGNM

>COMCMNS
>COMCRDC
>FA=EQR
>FA=WTHW

COMFECB

>CamMcaus
>COMCRDC
>COMCTOK

COMSEIS

COMEWIN
COMSQRF

SKaJp

COMSIO

COMCSB
>COMCRD
>FAs=FLS

>COMCBY
>CCMCRD
>COMCWO

COMFRO

COMSPS
DEFINS

COMFIS

-

LY

RERRS

e nd o e

COMAERR COMSERR COMFERR
RLINK >OPRDEFS COMFSCS
RSNAP >COMSIDP COMDDMT
FAS COMSIDC COMSPSU COMFUSE
ZEROLNK
MAP
LIST COMSLRT
CWEDR3-.
BRIDGE
ceee COMSTAB COMSTAD COMSTAS COMFWIN COMSPSU COMFITS COMFUS
COMFISA COMFMAV COMFOSC
BRIDGE skee COMFGFD COMFPLI ~ COMFICP COMFSCB COMFSIM COMFSI
COMFSMX COMFSMD COMFSSH
CSKEL SKgP >OPRDEFS SKEL
FSKEL COMFSKL COMSEIS SKPSET SKPCONQ SKOP COMSQRF DEFINS
Cwes DADCKWEC]
INIT22- COMSTAB COMSTAD COMSTAS COMFROR
CWEOR4 -
*FRAME®
ovLeo
ovL10 COMFCTP
ovL20 COMFCIP
ovi2l
gvL22
avi23
CWEORS
COPYMS
ITTTR e MRROO042 //// END OF LIST /7777
Rk kKRR MRRGG&2 ///7 END OF LIST 774/

	B01
	B02_B-3-73
	B03
	B04
	B05
	B06
	B07
	B08
	B09
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	C01
	C02
	C03
	C04
	C05
	C06
	C07
	C08
	C09
	C10
	C11
	C12
	C13
	C14
	C15
	C16
	D01
	D02
	D03
	D04
	D05
	D06
	D07
	D08
	D09
	D10
	D11
	D12
	D13
	D14
	D15
	D16
	E01
	E02
	E03
	E04
	E05
	E06
	E07
	E08
	E09
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	F01
	F02
	F03
	F04
	F05
	F06
	F07
	F08
	F09
	F10
	F11
	F12
	F13
	F14
	F15
	F16
	G01
	G02
	G03
	G04
	G05
	G06
	G07
	G08
	G09
	G10
	G11
	G12
	G13_B-4-1
	G14
	G15
	G16
	H01
	H02
	H03
	H04
	H05
	H06
	H07
	H08
	H09
	H10
	H11
	H12
	H13
	H14
	H15
	H16
	I01
	I02
	I03
	I04
	I05
	I06
	I07
	I08
	I09
	I10
	I11
	I12
	I13
	I14
	I15_B-5-1
	I16
	J01
	J02
	J03
	J04
	J05
	J06
	J07
	J08
	J09
	J10
	J11
	J12
	J13
	J14
	J15
	J16
	K01
	K02
	K03
	K04
	K05
	K06
	K07
	K08
	K09
	K10
	K11
	K12
	K13
	K14
	K15
	K16
	L01
	L02
	L03
	L04
	L05
	L06
	L07
	L08
	L09_B-6-1
	L10
	L11
	L12
	L13
	L14
	L15
	L16
	M01
	M02
	M03
	M04
	M05
	M06
	M07
	M08
	N16
	_01
	_02
	_03
	_04
	_05

