CONTROL DATA CORPORATION e DEVELOPA’,\‘ENT‘DIV » SOFTWARE DOCUMENT,,

DOCUMENT CLASS PAGE NO
PRODUCT NAME FORTRAN Study Project N :
~PRODUCT NO._X010_ VERSION______ MACHINE SERIES 64/6600
DEPT NO__254  pROJECT NO___ 4P631 CHANGE NO DATE_18 April 1966
SUBMITTED REVlEj APPROVED
R A Y e .
frod 7o Ay oo ~A0S 1//‘4(
PRO) MGR DATE DEPT MGR DATE DiR DATE MAB DATE
< bl PR O B
s U n R

F

[

OUTLINE OF REPORTS ON

"FEASIBILITY STUDY OF 64/6600 FORTRAN VERSION 3.0 AND CONVERSATIONAL FORTRAN"



CONTROL DATA CORPSRATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT
i

DOCUMENT CLAss__E | PAGE NO__ L
PRODUCT NAME__FORTRAN Study Project _ .
PRODUCT NO. X010 VERSION MACHINE SeERiES ___64/6600

FORTRAN Version 3,0 Study_Report Outline

" I..-. Current Competitive Position
A, Sales Problems and Current Customer Attitudes

1. Analysis of lost sales (Sandia, Péris, etc.) where
execution of FORTRAN generated code has been deter-
mined by Marketing to be of major importance.

2. Current customer attitudes obtained from sources such
as Communications in the VIM Newsletter, e. g. J.A.
Archibald's letter in the February, 1965 issue.

B. Benchmark Comparisions - comparative execution times on
various FORTRAN benchmark problems on a variety of exist-
ing computers. Some current candidates are the Weather
Bureau OCEAN program, the French TRIDIA program, KAPL WATS
66 and MIRAGE, and four University of Utah mathematical
programs. Times will be given for machines such as CDC
3600, UNIVAC 1108, IBM 7094-II, IBM STRETCH, and CDC 6600
(under Chippewa FORTRAN)

II. FORTRAN Version 3.0 Performance Potential

A. Anticipated Generated Code and Timing Comparisior- illu-
strations of code to be generated by the new compiler for
various sequences of FORTRAN statements compared with code
given by Chippewa FORTRAN., The results will be run on the
6600 timing program and comparative times given. Examples
will include moSt executed parts of some of the benchmark
programs given above and estimates will be made of execution
improvement.

B. Description of Optimization Techniques - exposition of
the conversion of source statement sequences to unlimited
register notation and of analysis of labels and control
statements during the first pass of the compiler; description
of methods used to obtain highly efficient code with special
emphasis on array subscript computation, parameter association,

and DO loop analysis. —~——

III. Implementation Features

A. Language and Options - description of source language giving
extensions proposed to the ASA FORTRAN standard base and user
selectable compilation options.

B. Operating System Exploitation - compiler use and FORTRAN
programmer access to operating system facilities including

OO



CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS , ‘ PAGE NO__%
PRODUCT NAME FORTRAN Study Project
PRODUCT NO.___ X010 VERSION _____ MACHINE SER'ES 64 /6600

I11. B. Continued

program overlay and segmentation, disk random access, and
mass core usage.

C. Tnstallation Tailoring of System - statement of features
to be included which will simplify installation modification
of the system to satisfy its particular needs, e.g. expan-
sion of the in-line function table.

D. New Product Potential - features of the design which allow
the system to form the base for future developments of
such products as a conversational compiler or optimizing
assembler.

Iv. Summary
A. Effectiveness as a Marketing Tool

B. Effect on Other Software - expected enhancement of Control
Data software products (PERT,LP, KWIC, SORT) which are
‘written all or in part in FORTRAN.

V. Cost and Schedule - current budget and schedule plans

Conversational FORTRAN Study Report Outline

1. Competitive Systems - external and internal characteristics of
“competitor's conversational compiling systems, e.g. IBM QWIKTRAN,
using information obtained from trade journals, manufacturers
literature, and CDC Marketing sources.

II. Marketing Requirements - analysis by Marketing of the character-
istics of a conversational FORTRAN which would help prolong the
life of the 64/6600 product line.

I1I. 64/6600 Conversational FORTRAN - external and internal character-
istics of the proposed system including diagnostic and debugging
facilities, interpretive code execution, and source language
compatibility with the batch compiler for FORTRAN on the 64/6600.

Iv. Relation to Other 64/6600 Software = effect on and interfaces
with proposed or existing software products including the MATS
system and other FORTRAN compilers; use in debugging of other
CDC software products written in FORTRAN.

V. Implementation Base - analysis of feasibility of using Chippewa
FORTRAN or FORTRAN Version 3.0 as a basis for implementation of



CONTROL DATA CORPORATION . DEVELOPMENT DV . SOFTWARE DOCUMENT

DOCUMENT CLASS PAGE NO
PRODUCT NAME _____FORTBAN Study Project
PRODUCT NO, X010 vresioN___  MACH!INE SERIES_ 64/6600

V. Continued

Conversational FORTRAN contrasted with complete new design and
implementation.

Vi. Cost and Schedule Objectives



CONTROL DATA CORPORATION . DEVELOPMENT DIV e SOFTWARE DOCUMENT

DOCUMENT CLASS PAGE NO___+
PRODUCT NAME FORTRAN Study Project
PRODUCT NO. X010 VERSION ______ MACHINE SERIES ___64/6600
DEPT NO__22% _PROJECT NO 4P631 CHANGE NO t parg 0 June 1966
SUBMITTED ) REVIEWED ~ APPROVED

— '.'\: v /- s ” & R

a2 ?u¢u£ & L Fer /3 gt ot
PROJ MGR 7 DAXTE DEPT MGR DATE DIR DATE MAS DATE

64/6600 FORTRAN Study Project

Final Report on 64/6600 FORTRAN Version 3.0

CA 138 REV 3 - 0606



CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ' PAGE NO__1f
PRODUCT NAME
PRODUCT NO. VERSION_______ MACHINE SERIES

TABLE OF CONTENTS

INtrodUCEION 4eveevosocoossasvnososasansassoecans e eerecsenanneonns Liii
I. Current Competive Position .......c..vheveineeanen. f e 1
A, Sales Problems and Current Customer Attitudes ............... P §

B. Benchmark Comparisons ....ceceececececacsans et cacscsaannaeanas R

1I. FORTRAN Version 3.0 Performance Potential .......cc0vvvierersnnasaasb
A. Anticipated Generated Code and Timing Comparison ............... 6

B. Description of Optimization Techniques ......ceceoeecacoscesssssd

I1I. Implementation Features ......... PP 1 4
A. Language and Options .........;.....;.....;:...;;;.;.;...;.;..14
B. Operating System Features .............. csnsereseneans P
C. TFeatures for use by the Installation .........ccccv0n enean .17
D. New Product Potential ..ocicensscoccoscesceascanas P

TV, Cost and SChedUle ...veeeeecessceccoccocssscescceosasosssoassosesssld
A. Cost and SChedule ......eceveeeoeoceeocoacssosaascnnnasoonsonneld

B. Schedule DependencCiesS ...ceeeessvecossnccocnnoaaassssoocssassesld

V. SUMMATY +veeveencannooecesasssssnssssssssasssssosssansacassssoscssssel2l
A. Effectiveness as a Current Marketing Tool .......cecevevernens..20

B. Effect on Other Control Data ProduCtS ...eceeeecescesessssecssssll

Appendices
Appendix "A" - Producing Version 3.0 Using Chippewa as a Base........ ..22

Appendix "B" - 64/6600 FORTRAN Version 3.0 Standard Generated Code ....23

CA138-1!



CONTROL DATA CORPORATION . DEVELOPMENT DIV e SOFTWARE DOCUMENT

DOCUMENT CLASS PAGE NO iii
PRODUCT NAME
PRODUCT NCOC. VERSION MACHINE SERIES

INTRODUCTION

The attached report is the final output of the study authorized by the 6000
Series Product Line Plan. The section on Conversational FORTRAN has been
omitted due to lack of information and no further report is planned. The
benchmark examples were provided by the Marketing origanizations of the

Homé Office, France and Western Region whose assistance in these areas

is appreciated. All code comparisons are relative to the Chippewa Operating

System using the January 1966 compiler unless otherwise noted.

CA138-1



A. Sales problems and current customer attitudes

The 6600 is not doing as well in the market place as could be hoped
for. On running benchmark problems, it is embarassingly poor on
compute speeds as well as on thruput. The most embarassing aspect
is that the 6600 is only producing marginally better compute time
than a machine costing one half as much and having less than one-
third the compute capability, the UNIVAC 1108. The 6600 is not
even greatly outstanding relative to the IBM 7094-X series and
these machines have less than ten percent of a 6600's compute
power. It is these two comparisons that are hurting us most

in the market place, notably in the following instances:

1) The Air Force represents a‘market potential of from five to
twenty-five 6000 series machines. They require essentially
three times the power of a 7094-IT. The 6600 is falling
down in both compute speeds on FORTRAN jobs and thruput of

the system.

2) AVCO requires a machine four times the power of a 7094-1 and

we fail there.

3) The Weather Bureau has an office which essentially wants to run
one large compute bound FORTRAN program and on a price-performance

basis we lose again, here to an 1108.

Certainly a more comprehensive survey of Marketing would produce more
examples of a similar nature. The part that seems most awkward is

that the 6600 is a machine with a huge computing capaeity; the oper-
ating system and peripherals are structured for this environment, but
the FORTRAN compiler is only designed for efficient handling of small,

short-run-time jobs.



-2

Another important area of concern is the attitude of our current
customers. They have reason to be irritated when tlLey pay super

computer prices for a machine which isn't effectively faster than

the old one they already had. The following excerpts from a letter
appearing in a VIM Newsletter (March '66, P18-23) typify customer attidues:

""Je are very greatly disappointed by the inability of the CDC 6600
to produce a significant improvement in computer throughput over

our present system, a Philco 2000 Model 212...

"The potential of the hardware was very vividly demonstrated to us
two years ago when the most crucial part of one of our most heavily
used programs was hand-coded in machine language by a CDC expert

and run in one seventh of the time required on our present system."

This letter goes on to describe what the user feels is needed with

some remarks about what is wrong:

""Je have left the most crucial item, software, until the last. This
is the area of greatest need--an area where a complete redesign from
the ground up is in order...The overall system should be at least
807 effective...The overall system is more like 10 or 15% effective,
if that much. Our position is that this is too great a gap to close
by simply modifying the present software. It needs to be redone
from the design stage forward. It is unconscionable that the same
software concepts should be adequate for the 6600 as were adequate

for older machines...Yet this is what is being provided .

"The FORTRAN compiler produces object code in much the same way that
earlier compilers did, with the same or lower degree of object code

efficiency."

Then a very remarkable coincidence occurs, with no knowledge of the
proposed Version 3.0, he proceeds to give a fairly accurate descrip-

tion of it, when he says what is needed:
"The one area in which this machine should be like its predecessors, is

in the area of source language. This means, by implication, ASA Standard

FORTRAN IV...The compiler should be a single compiler with two options...



one for "quick and dirty" compilations where little attention is paid

to the quality of the generated object code, and one for optimum object
code, which makes effective use of all the hardware advances embodied

in the 6600...This may very well require the performance of an operations
research problem for each DO loop..." (The above remarks appear to be

based on the SIPROS system but are also applicable to the current system).

In another note appearing in a VIM Newsletter, (April '66, P5) more char-
acteristics are coincidentally described:

"VIM members,...feel CDC should consider (1) language extension, such as
random access to the disk, recognition of ECS, (2) additional built-in
functions, (3) more efficient object code whether by an optimizing pass

or by a new compiler,..."

B. Benchmark Comparisons

Several comparisons have been made by our customers and prospects
using benchmark programs. These programs are run to determine the
relative performance of the machine on the selected programs. The
following is an outline of the benchmark information relative to the

6600 that has been acquired during this study:

1. The most extensive benchmark comparison encountered on the
basis of most machines used to run a single code, is the
TRIDIA program. This program is a small matrix tridiagonal-
ization (100 X 100) run by the French AEC in conjunction with
our office there. The test results are summarized in the following

table:



-
MACHINE LANGUAGE R
IBM 7040 FORTRAN 1V 148,

IBM 7044 FORTRAN IV 74.

CDC 3200 FORTRAN 72,41
IBM 7090 FORTRAN IT 66.
CDC 3400 FORTRAN 63,
UNIVAC 1107 FORTRAN 41.21
IBM 7094-1 FORTRAN 1V 31.35
GE-625 FORTRAN (7?7) 24,60
CDC 6600 FORTRAN/SIPROS 22.
CDC 3600 FORTRAN 63 21.41
IBM 7094-11 - -~ FORTRAN 1V T - 16.50 -
IBM STRETCH FORTRAN IV (last version) 15.58
CBC 6600 FORTRAN/CHIPPEWA 9.
UNIVAC 1108 FORTRAN (?) 7.78
IBM 360/40 Single Precision Machine Language 171.
IBM 360/65 Single Precision Machine Language 12.05
IBM STRETCH Machine Language 9.00
IBM 360/75 Single Precision Machine Language 6.90
CDC 6600 ASCENT 1.25

2. An office within the Weather Bureau is primarily concerned with
running one large code called OCEAN. On the basis of the perfor-

mance of this code on the 6600 they are buying a UNIVAC 1108.

CDC 6600 - 372 seconds
UNIVAC 1108 - 420 seconds
3. The following group of codes are all of the standard scientific

calculation variety as might occur frequently in an aerospace job

“shop operation. These tests were run by thé University of Utah.



1108 6600
Fourier Inverse and Transform 21 sec. 16.8 sec.
Matrix Inversion ( 50 X 50) 6 sec. 3.74 sec.
Boundary Value - Finite Difference 5 sec, 1.29 sec.
Boundary Value - Monte Carlo 36 sec. 29. 5 sec.

These comparisons are indicative of what is happening in every benchmark
situation we encounter. The comparisons are not complimentary, especially
with the fact that the 1108 costs only half as much as a 6600. Other
comparisons run by Western Region marketing indicate that the increased
speed, parallel instruction execution capability and instruction stack

are not being utilized effectively; FORTRAN programs are running only

2.7 times as fast on the 6600 as on the 6400. An indication of the
quality of the generated code can be obtained by comparing the FORTRAN
speed of the 6600 with the 3600, whose compiler produces quite good code.
In the comparison the 6600 is only 3.8 times as fast as the 3600.



FORTRAN Version 3.0 Performance Potential

=i
]
.

This section of the report will give examples of code, which Version 3.0

is expected to generate, and how it goes about generating code in general.
All comparisons made with Chippewa are relative to FORTRAN Version 1.0 of the
compiler. The Version 3.0 code was generated by simulating the operations

the compiler would go through.
A. Anticipated Cenerated Code and Timing Comparisons
Following are examples of code to be generated by the Version 3.0
FORTRAN compiler. The FORTRAN statements were taken from current

benchmarks in most instances.

1. Perhaps the shortest common benchmark is the inner DO loop

of a matrix multiply -

DO 1 K=1,M
1€ (1,J) =C (I,J) + A (I,K) * B ( K,J)

The following times are for each iteration through this DO loop

for the relevant compilers:

UNIVAC 1108 FORTRAN IV 7.375 sec.

Chippewa FORTRAN 6.7 sec.

Version 3.0 (Standard) 3.7 sec.

Version 3.0 (Flash) 1.6 sec.

Standard Code - .DOl SAl Bl Bl - address of A(I,K)

SA2 B2 B2 - address of B(X,J)
SA3 B3 B3 - address of C(I,J)
FX0 X1 * X2 .
SB1 Bl + B4 B4 - first dimension of A
SB2 B2 + B5 B5 - one
SB6 B6 + B5 B6 - loop count, negative
FX5 X0 + X3
NX6 B7 X5
SA6 B3

NE B6 BO .DOl1



Flash Code - .DOl  FXO0 ’ X1 * X2 Bl - first dimension of A

SB3 B3 + B2 B2 - one
SAl Al + Bl B3 - loop count
SA2 A2 + B2 Al - A(I,K)
FX3 X6 + X0 A2 - B(K,J)
NX6 B5 X3 X6 - C(1,J)
NE B3 BO .DOl
2, The following DO loop is from the Weather Bureau's program

OCEAN. This particular DO loop represents 43% of the Chippewa

execute time:

DO 517 1=3,IPA
R = GG (I) * PA(I+1,J) - HH(I) * PA(I,J)
4+ 00 (I) * PA(I-1,J) + (PA (I,J+1)
+ PA(I,J-1)-2, * PA(I,J))/DSSQ - ZETA (I,J)
PA (I,J) = PA(I,J)+R¥HHP (I)
IF (ABS(R).GT.ABS(CRIT3)) NN=NN+1
517 CONTINUE

Chippewa FORTRAN - 400 Minor cycles
Version 3.0 Standard - 162 Minor cycles

The Version 3.0 (Standard) code generated for this and following examplés is

contained in an appendix.

3. This is another DO loop taken from the most critical area of
OCEAN; it is nested.three DO loops deep and is more typical
of the bulk of the DO's encountered.

DO 526 K=1,KM
UA (I,K,J) = UA (I,K,J) + SFU
526 VA (I,K,J) = VA (I,K,J) + SFV

n

fl

Chippewa FORTRAN - 163 Minor cycles
Version 3.0 FORTRAN (Standard) - 34 Minor cycles
4. This DO loop is from another Weather Bureau code, MARK: it is

from subroutine INNER where most c¢f the time is spent:



DC 200

K=1,KMAX
VRDFR (I,K) = VRDFR (I,K) + (RM(I,X,JP)

200 VRDFT (I,K)

+

Chippewa FORTRAN

Version 3.0 FORTRAN (Standard)-

- 335 Minor cycles

(RM(I,K,JM) + (RMCNGS (K)))
(T(I:K,JP) - (T(I:K,JM)
TCNGSV (K))) * PSIJMC

82 Minor cycles

5. This DO loop is from the same area as the previous example:

DO 14 K=1,KMAX
RADCNG = RAD

TCNGSV (K)
14 T (I1,K,JP)

(1,K,J) * FPSIJ
TCNGSV (K) + RADCNG
T (I,K,JP) + RADCNG

Chippewa FORTRAN

Version 3.0 FORTRAN (Standard)-

- 185 Minor cycles

46 Minor cycles

Example Chippewa_

, Speed Size
2 i’ 400 33.5
3 163 14.5
4 335 29.5
5 185 16.5

Version 3.0

Speed Size
162 18.0
34 4.0
82 9.75
46 6. 0

Ratio

Speed Size
2.47 1.92
4, 8 3.61
4. 1 3.25
4. 0y 2.75

B. Description of Optimizing Techniques
The objective of the optimizing techniques incorporated in the FORTRAN
Version 3.0 design is to take advantage of the following features avail-

able in the 6000 series central processors:

1. Multiple registers (6600 and 6400)

Speed in minor cycles

Size in words

2, Parallel instruction execution (6600)

3. The instruction stack (6600)




-9-

Roughly, the approach used is to (1) produce code for a machine wi
limited registers, (2) do a PERT analysis of this code assuming parallel
instruction issue as well as execution and then (3) generate code accord-
ingly while simulating its execution. To do exactly this would be an
enormous task but with some slight simplifications (e.g., ignoring second
and third order register conflicts) the procedure can be made fairly
straight forward. The techniques have been developed to take advantage

of the unique opportunities presented by the 6600.

Initially a statement is converted into a register free notation, R-1list.

Example: Source A=B/C
R-1list: Rf—-B fetch B
Rﬁ%‘C fetch C
'RB = Rl/R2 - form quotient
R§—>A store result

Source expressions are translated directly to R-list in a single scan of the
expression using a modified Polish translation technique. This translation
as developed, will also produce some transformations which will result in
considerable economies for the 6600. Following are some examples of

apparent transformations produced:

1. A%B /C*D > (A*D) *(B/C)
2. A* (expr) /D > (expr) * (A/D)
3. A¥B*C* > (A%B) * (C*D)
4, A/R/L S A/ (B*C)

5. A/5.0 > A% 0.2

6. A/(7.0%11.1) 3> A * 0,0129

The effect of these conversions can most clearly be seen in example four
above. Using contemporary compiling techniques it would take sixty-nine
minor cycles to evaluate this expression on the 6600, while it can be

accomplished in forty-nine minor cycles with the transformation.

Once the R-list for a subprogram has been produced, it is broken into

sequences. A sequence begins at the beginning of a subprogram or following



the end of the last sequence, it ends at the next encountered unconditional
jump or active statement label ( a label is active if it is referenced by
other than the preceding instruction). The R-list associated with the
sequence is then scanned for redundant loads, stores, and common sub-
expressions, which are eliminated. From the remaining R-list, a dependency
tree is formed noting which operation must precede which; this is effectively
a PERT network. Using this dependency tree and the known execution times
for each instruction, the latest time for beginning each operation and com-
pleting all of the operations in the minimum time can be calculated. Due
to the way these times are calculated, the earlier an operation must start
the higher its starting time value, so these are called priorities rather
than late start times. Using the priorities and keeping track of the
function units and registers, instructions are generated on the following
basis:
1. ZLogically issuable - All of the operations necessary for
generating the operands or operations which must precede
this instruction have been generated (issued).
2. Machine issuable - The destination register and function
unit required are available.
3. Machine executable - The required operands are available and
the instruction is machine issuable .

4, Priority - explained above.

Machine executable instructions will be given precedence over instructions
which are only machine issuable. The priority will be used to select from
within these groups. In addition to the above optimization scheme, the

following optimizations will be implemented:

Elimination of jumps to the next imnstruction.

Rearrangement of branch sequences to maximize the oceurrence of 1.

Elimination of duplicate parameter lists within a subprogram.

£

. Determination of whether it is more desirable to make each
reference to a formal parameter by indirect addressing or address
substitution.

5. Compile-time-~calculation of subscript expressions as far as

possible,

6. Generation of unnormalized floating point constants when they are

used for subscript evaluation.



In the optimization of innermost DO loops all of the above techniques are
applied and, depending upon the nature of the particular DO loop, others
may be applied. The only significantly different procedure used when
applying the above techniques to innermost DO loops, is that in-stack
timings are used until it is discovered that the loop will not fit into
the stack; in this event, the procedure of generating instructions is
restarted using out of the stack timings. The remaining techniques are
all pointed at reducing the size and number of instructions generated
within DO loops by placing terms in B-registewrs and operating on them
there. This is in order to improve their chances of fitting in the stack

as well as to speed up their execution. The following items are contained

or are performed in B-registers:

Index functions

Updating index functions

Loop controls
Loop testing

Base addresses plus constant addends

.

Index function increments

.

.

Testing increments

0 o~y P WD

Shift counts

Several of these items and their effects are explained below.

Throughout the generated code subscript expressions are evaluated by the
index function technique. The address of an element of an array is given by

the following expression:
The address of A(i,j,k) = A + (i-1)+(j-1)*I-( k-1)*I*J

The above expression may be separated into a constant part {basetconstant
addend) and a variable part (index function) as follows: (i,]j,and k ingeger

variables, I and J constant) :

Constant part - Base A
Constant addend -1-I-T*%J

Variable part - Index function I+ *FIHk*I*]



-12-

The base plus constant addend will appear in the generated code leaving

only the index function to be calculated at execute time. For referencing

an array named A (limensioned 10 by 10 by 10 ¥ith the term A(L,M,N), the
instruction A-lll#B.lmight be generated;, we assume that the index function
IAM*104+N*100 has been calculated and placed in Bl 1If the reference occurs
in a DO loop, such as follows, the compiler will precalculate the amount the
index function varies for each pass through the DO and place it in a B-register

before execution of the DO begins:

Example: Do 1 M=1,10
1A (L,MN) =5.1

In this case, the index function can be seen to increase by ten for each
iteration. Here the index function need be completely calculated only
once outside the DO and the updating done inside the loop by merely in-
crementing the index function by ten. The generated code could therefore

be as follows:

LOOP sal 5, 1n
BX6 X1
SA6 A-111+B1
SB1 : B1+ 10
SB2 B2 - 1
NE B2 BO LOOP

Another optimization used in the example above was that the number of
iterations through the loop was calculated before entering the loop

(during compilation in this case) and placed in B2.

The next optimization is to place as many constants and addresses as possible

into the remaining B registers resulting in the following code:

L.0OP SA1 B3
BX6 X1
SA6 B4+B1
SB1 B1+B5
SB2 B24B6

NE B2 BO LOOP



This code occupies one and three quarter words, a forty percent saving

in space.

1. If within an adequately well behaved DO an index function occurs which
is only a function of the DO variable, M in the above case, the index
function will also be used as the loop counter. This requires a different

definition of an index function than has been given above. This optimi-

zation will result in the freeing of another B register for other use.

2. Each sequence will be checked to see if it is only entered from
one point in the program. If this is the case, and the place it
is entered from physically preceeds it in the subprogram, the con-
tents of all registers at the time it is referenced will be pre-
served and used as the register initial conditions at code gener-

ation time for the sequence.

3. loads of variables which are independent of the DO's execution will

be loaded prior to executing the DO when judged desirable,

4. Stores of variables whose addresses are independent of the control
variable, will be stored only after the execution of the DO when

judged desirable.

5. Operands appearing early in the dependency tree will be loaded before

entering the loop and will also be loaded at the bottom of the loop.

Using these features the above example could result in the following code

being generated:

LOOP SB2 B2+B3
SA6 A6+B1
NE B2 BO LOOP

A one word loop.



~14-

I1I. Implementation Features
A. Language and Options
The language planned to be implemented in the 64/6600 FORTRAN Version 3.0
compiler is a superset of ASA FORTRAN. 'The following criteria were used in

selecting which extensions would be implemented.

1. Difficulty of implementation.

2. Effect on object code.
3. Utility to programmer.

In all cases if a user wants to use only ASA FORTRAN, a control card switch
is provided to cause the printing of information diagnostics pointing out

where such extensions were used.
The following extensions are planned for implementation:

1) Seven character symbols

2) DOUBLE for DOUBLE PRECISION

3) Octal constants

4) ENTRY statement

5) Less subscripts than dimensioned

6) $ statement separator

7)  ENCODE/DECODE

8) O conversion for octal

) R conversion for character information aand iﬂ
10) T control for column assignment

11) Two branch logical IF

12) Mixed mode arithmetic

13) Non-standard subscripts

14) Masking statements

15) Computed GO TO followed by an arithmetic expression
16) Short DO notation with single subscripts in DATA statements
17) 3600 form of the DATA statement



Others may be added when deemed desirable. In addition statements are
planned to permit the programmer to utilize other features of the operating

system as soon as they are firmed up, e.g., random access to the disk.
The following options will be permitted on control cards:

1) List source program

2) List object program

3) Produce COSY

4) Produce binary deck

5) Compilation space

6) Degree of optimization
7) ASA switch

8) Cross reference listing

The ability to intermix FORTRAN and COMPASS subprograms will always be

permitted.
B. Operating System Features

Overlay and Segment - Both of these features will be available to the
FORTRAN user. The overlay linkage that will be provided is planned to
be quite similar to that in 3600 FORTRAN. Nothing is required of the
FORTRAN language in order for the user to utilize the segment system as
currently planned. It is anticipated that the compiler will use the
overlay system itself in order to minimize compile time and central

memory requirements.

REP Control - Through the mutual efforts of the FORTRAN, COMPASS and SCOPE
projects a new pseudo-op has been developed which will generate cards for
the loader to use in filling up large areas preset by DATA statement s. This
was done to minimize the size of binary decks. Consider the case where a
large array is set to contain all zeros by a DATA statement. Previously
this would require a binary card for every ome to thirty locations so
filled., With the REP control the loader is told that a given number of

data words are to be repeated N times at increments of M words. In effect,

the DATA statement is executed at load time.



=16- ..

Mass Storage and Mass Core - As stated earlier, statements will be provided
to permit random access to fiies on the disk. The following statement is

now under consideration:

READ (FNME (K), N)

Where: FNME is the name of the file
K is the record within the file
N is an optional FORMAT statement number

Mass core is to be handled in a rather singular fashion. Files are to be
declared in a new declarative statement. The placement of variables within

the files will be similar to placing variables in COMMON blocks.
Example: ECS/Al4/SKSK (500), C,X (1000,1000)

No single dimension of an array held in mass core may exceed 212,1, however,
the total array size may be up to 22}1. An element in ECS may be referenced
via block transfers between ECS and central memory. These will be performed by
a new statement, READ/WRITE ECS. The only other way these elements may be used

is as parameters in calling sequences.

The compiler hopes to use ECS for storage of overlays and R-list between

phase of compilation and/or as a buffer for generated code if possible.



C. TFeatures for Use by the Installation

The compiler is designed to use macros for all in-line functions such
as type conversion. This mechanism is set up to be open ended to permit
each installation to add to the list of in-line functions in a very
straight forward fashion. An example of such use might be the incorpor-
ation of SQRT as an in-line function to produce faster, although bigger

SQRT calculations.

A feature currently under consideration is the incorporation of a standard.
FORMAT statement to be specified by each installation. This could be
referenced as FORMAT number zero. Using this might facilitate non-programmer

types in both writing their programs and preparing data cards.
D. New Product Potential
One of the major features of this design is its modularity in overall

design as well as internal structure. This is brought out by the following

list of overlay characteristics.

Pass 1
Phase 1 - a) Cenerates all code associated with declared variables
storage allocation.
b) Outputs COMPASS source lines
c) Handles an entire BLOCK DATA subprogram without
the need of other overlays.
Pass 1
Phase 2 - a) Allocates space for usage declared variables
b) Converts FORTRAN source lines to register free
notation, R-list.
c) Cenerates macros, in R-list notation, for ASF's.
Pass 2 - a) Expands macros
b) Eliminates redundant ccde

c) Performs PERT-like analysis of code
d) Outputs COMPASS lines



By using these large '"building blocks™ other new systems for the 6000
series become economically and technically more feasible; in particular

the following:

Optimizing Assembler - COMPASS source lines could be converted to the
register free notation, R-list, by a translator. Pass 2 could read in
the R-list and optimize it as it currently does the FORTRAN generated
R-1list. The shuffled code could then be passed on to COMPASS for normal
assembly.. Indications are that this type of optimization performed on
hand generated assembly code is capable of producing speed improvements
in excess of 50%. Further, this relieves the programmer from having to
learn the timing characterisitcs of the machine and still produce good

code.

Gonversational FORTRAN - Using phases one and two souce lines can be
cracked and converted to R-list. The R-list could be used as the
object language and executed interpretively. The COMPASS lines

produced would provide for the storage of constants and variables.



Iv.

. X

Cost and Schedule

Cost and Schedule
This project is expected to cost $315,000. The following dates are
based on a June 15, 1966 go-ahead on the project:

Current Objective Plan Objective
SIR approved 6/15/66
DO submitted - 6/15/66
GED submitted 7/5/66 5/66
ERS submitted 8/16/66 9/66
IRS completed 8/23/66
Demonstration Date 4/11/67 1Q/67
System Checkout completed 5/2/67
Release to field =~~~ = 6/15/67" Co2qfer

Schedule Dependencies

As mentioned above the schedule depends on a go ahead date of 6/15/66;
an earlier date would result in an equally earlier release. The major
problem anticipated in producing this system will be adequate manpower,
both in numbers and ability. The study project has been trying to get
one man for two months with no success to date. If similar lags are
encountered from the go-ahead date on it will have a commensurate effect
on the release date of the system (Perhaps this problem can be minimized

by the hiring of contract personnel).



=20=

Ve Summary
A, Effectiveness as a Current Marketing Tool

"If to-day Comntrol Data could offer an operational FORTRAN just twice
as fast as Chippewa FORTRAN, and nothing else but plans, we would have
what we really need to-day, and we would be trusted for the plans we
have. I know that there is no use to look backward; however, I think
that the same statement would be true a year or two from now. 1In other
words, I still believe that the problem No. 1 in the software situation
for 6000 series is FORTRAN". (Extracted from a letter to Home Office

‘Marketing from a sales manager).

The preceding sections of the report demonstrate a software system
capable of increasing the apparent compute power of the 6600 by better
than 250%. The desirability ofrhaving such arproduct is unqueétionable;
The only questions remaining are 1) when can we get it, and 2) how much

does it cost.

It is the judgment of the project that the system can be turned out in
twelve calendar months from the time that the final go-ahead is given.
This statement does not provide us with a means of running benchmarks
at reasonable speeds tomorrow. It does give us an out. A salesman
can say that a much better system than is currently available is on
the way. The techniques have already been worked out sufficiently to
convince a sophisticated customer that the mechanisms are workable and
the estimated performance improvements are realistic. A promotional

document can be provided for sales people to present to such eustomers.

With regard to the cost of the compiler, anything which would improve
the performance of a system to the extent indicated for less than a
million dollars would have to be considered a bargain. In this instance,

the compiler is estimated to cost $315,000.

B. Effect on Other Control Data Products
There is over $400,000 worth of software currently planned to be written by
Control Data or its subcontractors in FORTRAN for the 6000 series. There is

probably another investment in excess of a half million dollars in software



~21=

already written in FORTRAN which is intended to be transferred intact
for use on the 6000 series. By providing a significantly improved
FORTRAN system, the company would receive significantly superior products

at no direct change in their costs.



2Z
22

APPENDIX "A"

Producing Version 3.0 Using Chippewa as a Base

The most efficient means of incorporating the optimizations described in the body

of this report would require at least the two following operations:

1. Modify the translator to produce R-list rather than ob ject code.

2. Write the Pass 2 processors.

The statement processors represent between 60 and 80 percent of the existing

code. These would all have to be modified (rewritten is probably more accurate).
The statement scanner may be retained and the assembler facilities separated out.
The one pass characteristic would have to be eliminated in order to permit better

understanding of the DO structure and sequence length.
The second pass processor would be written regardless.

The resultant product would probably be slowed down in delivery time by requiring
the project to learn what already exists. Judging from the current status of
Chippewa FORTRAN, we would be hard pressed to bring it up to the maintenance and

documentation standards now prevalent in Applications products.

Summarily, Version 3.0 could be produced using Chippewa as a base. The savings
resulting from this approach would be marginal or negative. The question is the
same as can a Ferrari be made out of a Falcon, can a 1604 be modified to work

like a 66007 Yes, but the cost of doing it is uneconomically high, and the result

not as reliable as starting from the ground up.



APPENDIX "B"

64/6600 FORTRAN Version 3.0 Standard Generated Code

The following code was generated by hand by simulating the processes which

will be performed by Version 3.0. The examples are described in Section II

A of this report. The address term "+CA" should be read '"plus constant addend".



Y

Source Code

DO 517 1=3, IPA
R = GG (I) * PA(I+Ll,J) - HH(I) * PA (I,J) + 00 (I) * PA(I-1,J) + (PA(I,J+1)+
PA (I,J-1) -2. *PA(I,J))/D SSQ - ZETAA (I,T)
PA (I,J) = PA (I,J) + R * HHP (I)
IF (ABSCR . GT. ABS (CRIT 3)) NN=NN+1
517 CONTINUE

Register Assignments:

Bl (I,J) index function B4 shift count
B2 (I) index function B5 scratch
B3 loop limit B6 (I) increment

B7 (1,J) increment

Standard Code

Loop SA 1 GG-1+B2 SA 1 PA + (CA)+B1 AX2 B4 X6
SA 2 PA+(CA)+Bl SA 2 PA+(CA)+BL SX5 B6
SA 3 HH-1+B2 NX 3 B5 X5 SA6 R
SA 4 PA+(CA)+B1 SA5  ZETAA +(CA)+B1 FXO X0 + X4
SA 5 "2,0" FX 1 X3 + X1 AX4 B4 X1
FXO0 X1 * X2 NX 3 B5 X1 BX2 X6 + X2
FX1 X3 * X4 SA 1 CRIT 3 IX6 X5 + X3
SA2 00-1+B2 FX 2 X3 + X2 BX3 X4 + X1
SA3 PA +(CA)+B1 NX3 B5 X2 NX7 B5 X0
FX5 X5 * X4 SA2  HHP-1+B2 FXO0 X3 - X2
FX0 X0 - X1 FX0 X3 - X0 NOP
SA1 DSSQ NX3 B5 X0 SA7 PA+(CA)+B1
FX2 X2 * X3 SB4 59 PL X0 GL1.
NX3 B5 X0 FX0 X3 - X5 SA6 NN
FX0 X5/X1 NX6 B5 X0 NOP
FX5 X2 + X3 SA3 NN NOP
FX0 X6 * X2 SB2 B2 + B6
SB1l Bl + B7

GE B2 13 Loop



Source Code
DO 526 K=1,KM
UA (I,K,J) = UA (I,K,J) +SFU

526 VA (I,K,J) = VA (I,K,J) 4SFV

Register Assignments

Bl - (I,K,J) B4 - UA+HCA
B2 - Loop count B5 - VA+CA
B3 - one B6 - (I,K,J)Inc
B7 - Scratch
Standard Code
LOOP SAl B4+B1 FX1 X34X4
SA2 SFU NX7 B7 X1
SA3 B5+B1 SA6 B4+4B1
SA4 SFV SA7 B5+B1
FXO0 X14+X2 SB1 B1+B6
SB2 - B2+Bl NE BO B2 LOOP

NX6 B7 XO



~26-

Source Code

DO 200 K = 1, KMAX
VRDFR (I,K)=VRDFT (I,K) + (RM(I,K,JP) - (RM(I,K,JM) + RMCNGS (K)))
260 ' VRDFT (I,K)=(T(I,K,JP) - (T(I,K,JM) + TCNGSV (K)))*PSIIMC

Register Assignment:

Bl (I,K,JM) index function B4  (I,K,JP) index function
B2 K B5  scratch
B3 loop limit B6 (I,K) index function

B7 415

Standard Code

SA1 T-4566 + Bl FXO0 X5 - X3

SA2 TCNGSV -1 + B2 SA3 VRDFT - 82 +B6
SA3 RM-4566 + Bl NX5 35 X0

SA4 RMCNGS - 1 + B2 FX6 X2 * X1

FX0 X1 + X2 FX1 X5 + X3

SA5 RM - 4566 SB1 BL + B7

NX1 B5 XO SB4 B4 + B7

FXO X3 + X4 NX7 B5 X1

SA2 T-4566 + B4 SA6 VRDFT - 82 +B6
N3 B5 X0 NOP ‘

FX7 X2 - X1 SA7 VRDFR - 82 +B6
SAl PSIIMC SB2 B2 + 1

NX2 B5 X 4 SB6 B6 + 81

GE B3 B2 Loop



Source Code

po 14 K =1, KMAX

RADCNG = RAD (I,K,J) * RPSPLJ

TCNGSV (K) = TCNGSV (K) + RADCNG
14 T (I,K,JP) = T(I,K,JP) + RADCNG

Register Assignments:

Bl (1,K,J) index function
B2 KMAX
B3 K

Standard Code

LOQOP SA1 RAD + Bl
SA2 FPSPLJ
SA3 TCNGSV + B3
SA4 B7 + B4
FX6 X1 * X2
SBl Bl + B6
FX0 X6 + X3
NX7 B4 X0
NOP

SA6
FX5
NX6
SA7
SB3
SA6
SB4
GE

B4
B5

B7

(1,K,JP)
Scratch
415

T - 456

RADCNG

- X6 + X4

B5 X5
TCNGSV + B4
B3 + 1
B7 + B4
B4 + B6
B2 B3 LOOP



CONTROL DATA CORPORATION « DEVELOPMENT DIV - o — SOFTWARE DOCUMENT
DOCUMENT CLASS SIR PAGE NO___ L
PRODUCT NAME 64 /6600 FORTRAN
PRODUCT NO. c010 VERSION____ 3,0  MACHINE SERIES _ 64/6600
DEPT NO23%4  pROJECT NoO_ 4P6X1 CHANGE NO DATE
SUBMITTED REVIE\;VjD APPROVED
s ; / ) i ,
JF7 bl =0, &1l ‘{& ﬂ,() %714 wMA/
PROJ MGR 'DATE i DEPT MGR DATE DIR DATE MAB AT
E-id-bb
Q ( ; ﬂ,gﬂ&ﬁ 6/4/64
SPM DATE

COMPANY PRIVATE

CA 138 REV 3—66



CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS SIR PAGE NO L
PRODUCT NAME 64/6600 FORTRAN ~
PRODUCT NO.___C010 VERSION___ 3.0 MACHINE SERIES 64/6600

IT.

III.

CA138-1

Product Identification

Product Name: 64/6600 FORTRAN Version 3.0
Project Number: (' Cc010
FFe X1

Product Number:

COMPANY PRIVATE

Software: A FORTRAN compiler and necessary object time routines which

Products to be Developed

will operate under 64/6600 SCOPE Version 3.0. The language will contain
ASA FORTRAN as a subset and will include most of the features of 64/6600
FORTRAN Version 2.0.

Customer Documentation and Promotional Material: GIM, Instant, Reference

Manual, series of STM's, and other documents as determined by Dept. 241.

Design Documents: Design Objectives; General External Design, External

Reference Specifications, Internal Reference Specifications.

Design Requirements

Justification

A need exists for a compiler which processes all ASA FORTRAN programs,
compiles in 32K of central memory, exploits the characteristics of a
6400 or 6600 during compilation and program execution, and is easily
modifiable to accomodate various installation and programmer require-
ments. This product should extend the life of the 64/6600 hardware

by providing all customers with improved performance (see III-B).

External Design Objectives

The language will be ASA FORTRAN with certain extensions so that nearly
all programs written in 64/6600 FORTRAN Version 2.0 or FORTRAN IV will

be processed correctly without modification. Random access to records

on MASS STORAGE will be provided with minor extensions to the FORTRAN
language. The programmer will be allowed, in FORTRAN, to obtain full use

of the program segmentation capabilities of the operating system.



CONTROL DATA CORPORATION . DEVELOPMENT DIV ) SOFTWARE DOCUMENT

DOCUMENT CLASS SIR PAGE NO_2____
PRODUCT NAME 64/6600 FORTRAN
PRODUCT NO. c010 VERSION______ 3.0  MACHINE SERIES 64/6600

B. (continued)
An optional ASA mode of compilation will cause non-ASA usages to
be flagged with informative diagnostics. Two degrees of optimization
of object code will be available in the initial release and facilities
for incorporating a third will be provided for in the design; the first
will give faster compilation but slowest execution; the second will have
a high degree of analysis of DO-loops and array references, reordering
of instruction sequences based on functional unit and register availabil-
ity and will produce the most compact code of the three; the third would
provide even more extended analysis and instruction reordering and would
produce the fastest executions, but would take longer for compilation and
produce slightly larger object code than the second. The object code
produced for the 6600 by the second degree of optimization for compute
bound problems will run at least two and a half times as fast as that
generated by 64/6600 FORTRAN Version 2.0. The speed increase will be
demonstrated using the crucial benchmarks provided by Marketing for
the study report. The compiler will produce three classes of diagnostics:
fatal (no object code produced), fatal to immediate execution (object
code produced), or informative (allowing immediate execution). Object

time routines will be revised to produce more diagnostics.

C. Internal Design Objectives: The compiler will be structured to operate
on a 6400 or 6600 computer with 32K of central core memory. It will be
designed to be loaded in overlays to allow maximum space for tables. New
algorithms for table management will give very fast table search and
entry. If it is allowed by the operating system, ECS, when present, will
be used for segment loading and for scratch areas. The assembly phase
of compilation will be done by the new assembler. Compilation speeds
are expected to be fast, especially if the minimal degree of optimization
is selected. Primary emphasis, however, will be placed on the generation

of highly efficient object code. The system will be implemented to provide

COMPANY PRIVATE

The minimum configuration allowable is a 32K 64/6600 machine with the

easy modification by users,

Iv. Hardware Configuration

minimum peripheral configuration required by 64/6600 SCOPE Version 3.0.

CA138-1



" CONTROL DATA CORPORATION v DEVELOPMENT BIV ™~ v $OFIWARE DOCUMENT

DOCUMENT CLASS SIR PAGE NO___3
PRODUCT NAME 64 /6600 FORTRAN
PRODUCT NO.__C010 VERSION__3.0 MACHINE SERIES 64 /6600

Iv. Continued

r:zZUASﬂéxfy
As much central memory as is . will be used for compiler tables;

ECS, if available, will be used for segment loading and scratch areas.

V. Software Relationships and Interdependencies

2 ‘,‘,7/'4 j} N U
cenmrtl i . 3
The compiler will be developed using 64/6600 ASCENT Version t.O, goms
-64/6600- FORTRAN-Versior1+i; and 64/6600 SCOPE Version 2.(, but will
be released under 64/6600 COMPASS Version 1.0 and 64/6600 SCOPE Version

3.0.
VI. Standards
The compiler will process all properly formed ASA standard FORTRAN programs,

VIiI. Other Actions Required

None

VIII. Recommended Responsibilities

A, Design and Implementation - Department 254
B. Recommended Design Review Board

P.P. Chavy, Chairman

S. Elkin

J.P. Kintz

J.R. Hanson

R.G, Harteker

RS Ritz

COMPANY PRIVATE

CA138-1



CONTROL DATA fﬁﬁ?ﬁ'ﬁﬁ{;’{""ﬁﬁ“ g -DEVELOPMENT DIV gw SOFTWARE DOCUMENT
SR

DOCUMENT CLASS SIR PAGE NO
PRODUCT NAME 64 /6600 FORTRAN .

PRODUCT NO. c010 VERSION 3.0 MACHINE SERIES 64/6600

- IX. Cost Objectives

‘A. Development, Documentation, and QA Costs.

vFiscal Year

‘by Quarters Development Documentation QA ggggl
1 Q 67 $41,000 $3,600 $ $44, 600
2 Q 67 62,000 6,000 68,000
3.Q 67 67,000 9,100 76,100
4 Q 67 68,000 9,300 8,000 85,300
'1Q 68 37,000 -- 9,000 46,000
TOTALS $275,000 $28,000 $17,000 $320, 000
‘ Present 6000L Product
X. Schedule Objectives S0/cD Estimate plan Date *
SIR approved 6/14/66
DO submitted CDh 6/20/66
GED submitted SO 7/05/66
ERS submitted SO 9/05/66
IRS completed 0] 11/01/66
Product Demonstration SO 4f11/67
QA Test Cases to Project SO 4/10/67
Product submitted to QA SO 6/02/67
Product Released to field SO 8/11/67
GIM published SO 10/16/67

Reference Manual published o) ' 4/17/67

% The March Plan proposed a. SCHEDULE OBJECTIVE for Product Release in 2nd. Q/67.
However, in the March Plan this product was relegated to further study with

attendant potential extension of release date.

COMPANY PRIVATE

CA138-1



2

£ s0e ~ s . PENIGRR R AET iyl R TRRR BT TR PN R 17 RE a0 me
CONTROL DATA CORPORATION ] DEVELOFNENT LIV ° SOFTWARE SOTUNENT

DOCUMENT CLASS ’ By PAGE NO—__L _
PRODUCT NAME 64/6600 FORTRAN
PRODUCT NO..COL0 - VERSION— 3.0  MACHINE SERizs__64/6600
DEPT NO_2% _ pROJECT NO_4P6X1 CHANGE NO DATE 20 June 1966
SUBMITTED REVIEWED , \ APPROVED
Y PR (| ' Sy ¢/ / 'y /. Y
BTN Giospy NSHSHF E-ze-gg B Py sl LIISHE
: ‘ N J DATE EPT | DAT T ) /
{_P?OJ MGR L\»’:}/u-an_ 4 %i«_{{é DEPT MGR ATE DIR  DATE MAS ATE
- ’ e //Z‘Lj//(, 4 :
Y A : '
QA Manager Date .
f/ﬁ%’i‘v RECE; D
0”/‘?@/) = %/@Z/é ‘ JUN 20 1565
DOC, Manager Date :
~ o~ D c;\:&: ;g NOCUMENT CONTROL
f {
R C M JIS 6f20/06
SPM , Date

%

U KING PAPER
IMER: THIS DOCUMENT IS A WOR
glNSEYL.AP:ND DOES NOT NECESSARILY REPRESENT ANY

OFFICIAL INTENT ON THE PART OF CONTROL DATA.

CA 138 REV 3— &6



CONTROL zATA CCRPORATION o  DEVELOPMENT DIV e SCFTWARE DOCUMENT

DOCUMENT CLASS ‘ DO PAGE NO__L____
PRODUCT NAME 64 /6600 FORTRAN _
PRODUCT NO.__CO010 VERSION___ 3.0 MACHINE SERIES 0476600

1.0 General Objectives-

1.1 General:
64/6600 FORTRAN Version 3.0 is a compiler designed to process an
extension of ASA FORTRAN generating highly efficient object code

exploiting the characteristics of the machine and accomodating a
variety of users with different requirements of compile time, code
size, and execute time. The system operates in a 32K 64/6600 but
will take advantage of any central memory or ECS space it is allo-
cated. The compiler structure and implementation will allow easy

modification by users.

1.2 Marketing Requirements:
Marketing requires a compiler which processes ASA FORTRAN, shows
the hardware superiority of the 64/6600 machines, and which is
easily modifiable or has selectable features to satisfy differing

user requirements.

1.3 Competition:
The major competition at this time is the UNIVAC 1108; the top of
the IBM 360 line will also be competitors., The UNIVAC 1108 is in
a strong position as was shown in the "'64/6600 FORTRAN Study Report;
Final Report on 64/6600 FORTRAN Version 3.0".

1.4 Prime Objectives:
The primary objectives of this product in order of importance are
the following:

1. Improvement in the execution speed of generated code by
a factor of 2.5 over FORTRAN Version 2.0

2. Compatibility with 64/6600 FORTRAN Version 2.0
3. Modularity and maintainability

4.  TFast compilation

2,0 Exterpal Objectives

2,1 PFunction Cbjectives:
2.1.1 General

CA138-1 This compiler will process correctly all properly formed



CONTRCL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS DO PAGE NO__2
PRODUCT NAME 64/6600 FORTRAN
PRODUCT NO. €010 VERSION__ 3.0  MACHINE SERIES 64 /6600

2.1.1 General (Continued)
ASA FORTRAN programs. Extensions will be implemented to
increase the power of the language and to simplify the
transfer of 64/6600 programs to the new system. The
compiler will be capable of producing very efficient
object code.

2.1.2 Advantages:
Access to;néss s torage will be provided by extensions to
the FORTRAN language. The programmer may  elect which of
various features of the system he desires to usg.including
either of two degrees of object code optimization. He
will have full access to the program segmentation and over-
lay features contained in the operating system. The system

will be easily tailored to an installation's requirements,

2.1.3 Function Description:
Extensions to ASA of ENCODE/DECODE, PRINT, PUNCH and other
features will minimize compatibility problems in trans-
fering programs written in 64/6600 FORTRAN Version 2.0 to
64/6600 FORTRAN Version 3.0. Multiple entry points to
subroutines will be implemented. Common blocks will be
assignable to ECS if this capability is provided by the
operating system. Routines will be provided to form the
interface between the FORTRAN program and the operating
system to allow full use of the segmentation features of
the loader. An optional ASA compilation mode will cause
the generation of an informative diagnostic whenever a
non-ASA usage is recognized., The programmer may select
several alternatives in the code to be generated. Two
degrees of code optimization are allowed to enable him to
balance execution space, execution speed, and compilation
speed. A third and higher degree of optimization is feas-
ible within this design and facilities for its incorporation
at a later time will be provided in the design and implem-
tation. A design note giving the optimization alternatives

is given in Appendix A, along with some samples of the code

CA138-1



CUMNTIRTL waTA CORPORATION U DIVELOPMENT DIV ° SOFTWARE COCUMNMINT

PO N S ekl

DCCUMENT CLASS Do ' PAGE NO__3
PRODUCT NAME 64/6600 FORTRAN A
PRODUCT NO. CClo VERSION____ 3.0  MACHINE SERIES 64 /6600

2.1.3 (Continued )
to be generated by the various degrees of optimization.
Extensive DO-loop analysis, efficient arithmetic and
logical expression handling, restriction of the domain
of applicability of index functions, and delineation of
flow blocks are the basis for formation of the input to
the optimizer. The programmer may select a traceback

feature for error tracing.

2.1.4 Language:
The compiler will initially be written using 64/6600
FORTRAN 2.0 and 64/6600 ASCENT Version 2.0 but will be

distributed in 64/6600 COMPASS Version 1.0 form.

2,1.5 Distribution:
The system will be distributed in the standard form fox

system updating.

Hardware Interface:

2.2.1 Minimum machine configuration s
The minimum configuration allowable is a 32K 6400 or 6600
with the minimum peripheral configuration required by

64/6600 SCOPE Version 3.0.

2,2.2 Optimum Machine Configuration :
The minimum required by SCOPE Version 3.0 will be suffi-
cient for object code (production). The addition of ECS

will result in faster compilation,:

2.2,3 Usage of Special or Alternative Devices ¢
If the operating system allows it, the compiler will use
ECS for scratch and for segment loading. The compiled
program will be able to randomly access records in files
on disk if the operating system allows. Program accessible

COMMON areas in ECS will be provided in FORTRAN.

CA138-1



coNTROL

L i
i A

CCRPCRATION & DEVELCPMENT DIV O SOFTWARE DOCUMENT

DOCUMENT CLASS ’ Do PAGE NO___ 4

PRCDUCT NAME

64 /6600 FORTRAN

PRODUCT NO._£010 VERSION 3,0 MACHINE SERIES 64/6600

CA138-~1

2.3

2.2.4 Special Hardware Modification Requests:
We are investigating 1) the addition of normalization to
the floating point add and subtract instructions producing a
significant effect on speed and/or compactness of the object
code and 2) the elimination of reservation on BO would free

another B register if 1) is not implemented.

Software Interface:

- 2,3.1 Operating System:

2.4

The compiler will operate under 64/6600 SCOPE Version 3.0.

2.3.2 Necessary Systems:

64/6600 ASCENT Version 2.0 and 64/6600 SCOPE Version 2.0 will
be required by September, 1966 for compiler development.
SCOPE Version 3.0 with File Manager and 64/6600 COMPASS will
be required by December of 1966.

2.3.3 Additional Systems:

None

2.,3.4 Additional Requirements:
Any program written in mixed FORTRAN and ASCENT which

requires different calling sequences may require modification.

Installation Objectives:

2.4.,1 Operator Communication:
In addition to the normal diagnostic messages provided by
SCOPE and File Manager, some diagnostic and information

messages may be displayed on the comsole.

2.4.2 Configuration Variance:
The compiler will be written with the possible introduction
of ECS in mind., Other variances are handled by the operating

system,



CONTROL DATA CORPORATION e

DOCUMENT CLASS

DEVELOPMENT DIV ° SOFTWARE DOCUMENT

PRODUCT NAME

PRODUCT NO. Cc0i0

DO PAGE NO__2
64 /6600 FORTRAN
VERSION 3.0 MACHINE SERIES 64/6600

2.4.3

Installation Variance:

The compiler will be structured for ease of installation
tailoring of the compiling system. A straight forward
means of declaring and causing a function to be compiled
in-line will be included. The compiler will be highly
modular and the interfaces will be completely specified

to aid in field modification.

2.5 Performance Objectives:

2.5.1

2.5.2

2.5.3

2.6
2.6.1

2.6.2

2.6.3

CA138-1

General:

The compiler is expected to be able to process about
10,000 cards per minute, Some'examples of object code
execution times are given in Appendix A, The overall speed
improvement in object code should be about 2.5 times as fast

as 64/6600 FORTRAN Version 2.0,

Dependency:
The compilation speeds are dependent on the speed of COMPASS
Version 1.0 and on which mode of code optimization is selected.

The presence of ECS will increase compilation speed.

Example:

See Appendix A for object code examples.

Limitations:

Hardware:

No known hardware limitations

Software:

No known limitations imposed by other systems.

Conversions:

The user currently writing in ASA FORTRAN will only be required
to precede his deck with the appropriate control cards.

Nearly all programs written in 64/6600 FORTRAN Version 2.0

and most written in IBM FORTRAN IV will be processed correctly



CONTROL DATA CORPORATION ° DEVELOPMENT DIV ] SOFTWARE DOCUMENT

DOCUMENT CLASS DO PAGE NO__b
PRODUCT NAME 64/6600 FORTRAN
PRODUCT NO. coiao VERSION___3,0 MACHINE SERIES 64 /6600

2.6.3 (Continued)

without modification. In ény event, the conversion problems

should be simple.

340 Internal Objectives

3.1 Structure:
The compiler will be constructed to operate in two passes, the
first being divided into two phases. Phase 1 processes declaratives
and generates assembly code. Phase 2 processes all other FORTRAN
statements. Output from phase 2 consists of register free execution
strings (R-list) which point to various table entries. Pass 2 per-
forms register assignment, in line expansion of functions, code
optimization and instruction sequencing and generates assembly
code in the form required by 64/6600 COMPASS. Phase 2 of Pass 1 will

overlay Phase 1 of Pass 1; Pass 2 will overlay Pass 1.

3.2 Implementation:
Since the compiler must operate in 32K of central memory, it will
be loaded in overlays (from ECS if possible) to allow maximum space
for tables. The symbol table will be linked in a way analogous

to a tournament sort technique with very fast search and entry.

3.3 Size:

The objective is to compile a sizeable program on a 32K machine.
3.4 Maintenance:
The system will use any update or conditiomal assembly features

available as standard software.

4,0 Release Objectives

4,1 Initial Release:
All language features will be available. Only the first two degrees

of object code optimization are currently planned for this product.

CA138-1



CONTROL DATA CORPORATION o DEVELOPMENT Div ° SOFTWARE DOCUMENT

DOCUMENT CLASS . DO PAGE NO__’
PRODUCT NAME 64/6600 FORTRAN
PRODUCT NO. €009 VERSION.__3:0 MACHINE SERIES 6476600

4.2 Subsequent Release:

No subsequent release is currently planned, however, consider-
ation should be given to a later release which would include
the third degree of object code optimization and extensions
for ECS. ' |

5.0 Applicable Standards

5.1 National:
ASA Standard FORTRAN

5.2 Applications:

5.2.1 Approved:
None
5.2.2 Pending:

None known

5.3 Proposed:

None known

CA138-1



CONTROL DATA CORPORATION L DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ' Do PAGE NO__S
PRODUCT NAME 64 /6600 FORTRAN
PRODUCT NO.___€010 VERSION__3.0 _ MACHINE SERIES 64/6600

APPENDIX A

Most of the code optimization takes place in Pass 2. The exception of this is
that in Pass 1 some arithmetic expressioms are restructured to permit parallel
execution of two multiply instructions. Following are two design notes which
describe the characteristics of the optimization passes available. References
to APLIST, SUBLIST and unnormalized constants all pertain to subroutine linkage
and an understanding of them is not required to obtain a general understanding
of Pass 2,

CA138-)



- P -

DOCUMENT CLASS Do PAGE NO__9___
PRODUCT NAME__. 64 /6600 FORTRAN
PRODUCT NO. €010 VERSION___3.0  MACHINE SERIES 64/6600

PASS 2

Exclusive of reformation, all optimization is currently planned to take place

in pass 2. In order to satisfy the requirements of the largest possible number

of users, it is felt that three varieties of pass 2 will be necessary and sufficient.
The following list will summarize the characteristics of each of these.

1. Produce code as quickly as possible with no extra time being spent in an
attempt to generate either short or fast object code. This system is
referred to as FLUSH,

2. Produce reasonably efficient code via elimination of redundant code, pro-
vision of temporary indexing in innermost DO loops and timing analysis.
This system is referred to as STD.

3. Attempt to produce code which will execute as quickly as possible with
little regard for the amount of time required for the compilation process.

This system is referred to as FLASH,

In developing these systems, it is planned that a good deal of the code will be
common to more than one of them, as will be seen in later descriptions. Because of

this, some optimization may unavoidably appear in FLUSH.

CAa 138



CONTROL DATA CORPORATION o DEVELOPMENT DIV e . SOFTWARE DOCUMENT

DOCUMENT CLASS ‘ DO PAGE NO_10.
PRODUCT NAME__ 64 /6600 FORTRAN
ANT N - ~ - T -~
PRODUCT NO. CuLy VERSION_____ 3.0  MACHINE SERIES 64/6600
FLUSH

CA 138

Since FLUSH is intended to be quite fast, its organization will be very

straight forward. Figure 1 indicates a first cut at a general flow chart.

CONTROL reads in R-list in a continuous fashion. R list is broken into
sections and checked for containing either declarative code or an end of
subprogram flag. If neither of these occur, the R-list is expanded to two
words per entry and all macros are expanded. Any code for initialization of
unnormalized constants is retained and the remainder of R-list is passed onto
OPT. OPT forms a dependency tree from the R-list. It then assigns registers
and generates code through a simulation of the registers generating any tem-
poraries required by register overflow. The output of OPT is scanned by POST

noting where address substitution is to take place; this information is ac-

 cumulated in SUBLIST. Calling sequences are also accumulated. The generated

code is converted to an assembly line image and passed on to the assembler.
When the end statement is encountered, the unnormalized constant initialization
code, calling sequences (APLIST) and SUBLIST are issued in sequence for for-

matting and passed on to the assembler.



1]

o~
N

L
-

<

COCUMENT CLASS

TACL SATA CORPORATION o

DO

DEVELOPMENT

SOFTWARE DOCUMENT

PAGE NO__11

PRODUCT NAME

64/6600 FORTRAN

VERSION___3.0

e

<COA/TR 0L>

PRODUCT NO. €010
FLUSH
4
I$55¢
TERAIAAL )
cobE
CA 138

DECLARETIVE
v

‘.
fAccorlaTs
SvBLIST

64/6600

MACHINE SERIES

v
Fivadl
FORMAT

{As'w:m ¥ >

- PRE

L0PT

-POST




CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

. , )
DOCUMENT CLASS Do PAGE NO__T
PRODUCT NAME 64/6600 FORTRAN ‘
PRODUCT NO. €010 VERSION___ 3.0 MACHINE SERIES 64/6600
STD

CA 138

This version of PASS 2 is intended to be the one most frequently used. It will
attempt to produce object code substantially superior to any other currently
available FORTIRAN compiler on the 6000 series of machines while maintaining rea-
sonable compiling speeds and taking care to minimize the amount of core required.
Optimization techniques utilized will include register and function unit simulation,

temporary indexing of inner DO loops and elimination of redundant code.

Through the expansion of R-list, STD is identical to FLUSH., Then a check is made
to determine whether or not we have encountered an optimizable DO; if we have, all
of the associated R-lists are read in and redundant code squeezed out. The DO is
then analyzed and R-list modified accordingly. Remaining macros are then expanded
and the fesultant code squeezed. From here we proceed similarly to FLUSH with the

exception that the code for initialization of unnormalized constants is optimized.



CONTROL SATA CORPORATION o DEVELOPMENT DIV & SOFTWARE DOCUMENT
DO :

DOCUMENT CLASS : i PAGE NO__13
PRODUCT NAME _ 64/6600 FORTRAN ] —
PrODUCT NoO.__C010 VERSION__3:0  MACHINE sERizs__0%4/6600

SECTI0N B '
R-LIST

i

SGQUEEZE
f ASEocIQTED
NSEQu G~ EY

-FRE

AvRLY2E
Do

,f'oﬁ’/q - | T |
”?’52’?”"’> - lorPT

C ,

| ‘ - :
SAVE S
UNMORMALI26D, : L
T :

A2



CONTROL DATA CORPORATION s DEVELOPMENT DIV ° SOFTWARE DOCUMENT
DO ‘

DOCUMENT CLASS PAGE NO 14
PRODUCT NAME 64 /6600 FORTRAN , .
PRODUCT NO. €010 VERSION__3.0 MACHINE SERIES 64 /6600

STD

ST7P

50
(T ERFurR L
C@DE

4
<o4SSEM61.y>

CA 138



CONTROL DATA CORPCRATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

o

DOCUMENT CLASS DO ' PAGE NO_LS
PRCDUCT NAME 64/6600 FORTRAN
PRODUCT NO. coLo VERSION____3.,0 MACHINE SERIES 64/6600

FLASH

The objective of FLASH is to produce the fastest object code possible generally
ignoring such desirable characteristics of a compiler such as speed and space
requirements. The resultant code we hope to be competitive with that written by

hand, at least for innermost DO loops. Coding techniques used may include the

following:

1. Those used in STD

2. Performing loads at the bottom of the DO

3. Maintenance of global variables and constants in X registers for the
duration of a DO

4. Removal of code associated with expressions which are invariant with
regards to the DO variable from the loop

5. Evaluation of indexed variable addresses in A registers

6. Retention of register contents when performing a branch within the sub-
program. .

7. Preprocessing loads and post processing stores of variables independent

of the DO variable

No flow chart of FLASH follows as its g£ructure is not adequately defined.

Ca 138



CONTROL DATA CORPORATION ° DEVELOPMENT DiVv ® SOFTWARE DOCUMENT

DOCUMENT CLASS
PRODUCT NAME

PRODUCT NO._C010

CA 138

> PA 16
6%/6600 FORTRAN CENO—=2
VERSION___3.0 _ MACHINE SERIES 64/6600

PASS 2 PERFORMANCE OPTIONS

The table at the bottom shows the anticipated results of compiling, under the

various types of pass 2 optimizing approaches, the following FORTRAN statements;

1

The code is for the execution portion of the loop and does not include initialization.
There are two versions of SID; the entries associated with STD are for code which

does not permit storage of constants in B's, whereas STDA does.

D0 1 K = 1,N
c(1,3) = C(I,J) + A(I,K)*B(K,J)

that STDA will be the one adopted.

FLUSH STD STDA FLASH
Instruction Words 1710 5 3 2
Minor Cycles per iteration 171 37 37 17

It is anticipated



CONTROL DATA CORPORATION ° DEVELOPMENT DiV ° SCFTWARE DOCUMEMT

DOCUMENT CLASS ‘ PAGE NO

DO 17

PRODUCT NAME 6476600 FORTRAN
PRODUCT NO.__C010 . VERSION__3:0  MACHINE SERIES 64 /6600

 FlysH S#| T 02 15 66 _ PAGE NUMBER 2

Saz2 K ‘ 2 I |
Px3.-Bno-Xx2 ~ : . BEGCINVN FLUSH zxwuﬁg_za

SA4 UN1O
e DRS KK B o S
Ur0 RO X5

NS 3'F- 35S 'S 7: RIS

SA3 A=11+X2

SAl-K
Sa2 J

RR—— - RN < Y, I x’a_-___#__-_' ________ e -

SAS UN1O

_________________ D K ) = X 88Kl e e

Uxz2 Bn x0
Ix4—X1+X2

SAS B=11+X4

e F RO X B X e

Sal1 1

SAZ J
Px3-Bn-X2

__________________ SAL UN Y0 oo e
DXS X3#X4

______________________ UX2_BRO_X5 s e e
IX3 X1+X2 »
SA4_C=11%X3
FX5 X0+X4

___________________ NX6--BO-XS —— — B O
SAl I
S5A2 J
PX3—-R0-X2

e S P LN D e e e e e e
DX5 X3#X4

et YR O RO - XD e e e

Ix2 Xo+Xl
SA6-Cwll-tXe

e e S A T R e e e e

SX6 X1+l
e S A B Ko e e e
SXx0 10 : ’

IX1—X0=XO

PL X1 FLUSH JEND OF FLUSH INNER DO



CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ' DO ' PAGE NO__18

PRODUCT NAME__ 64 /6600 FORTRAN
PRODUCT NO.

[

1t 7

VERSION_____3.0  MACHINE SERIES 64/6600

-

PS g
| CTIMEIN
| PL X1 STD
STD SA1_A~11%81 - . BEGIV STD ZawER Do
SA2 R=11+R2 ,
_________________ ST Crm LB oo
: SR1 R1+10 | ' T |
.................... OB 2 B2 e e
‘ FX0 X1#X2

02 15 66 , PAGF NUMBER 3

SB4 B4+l
FXS _Xn+X3
] NX6 RO X5

oo e S A O L LR R B e
! NE B0 B4 STO +END OF STD LOOP

o STOA - SALRL__ e - BEGCIN STDA ITMYER DO

SA? 82
SA3.R3
- FXo X1%#X2
e SR L B B
’ SH2 B2+B5 _ , ’ '
.. SB6._BA -kBSA________-_______5______~___.__.-______.m_,____________________-___,____m__,______,_;
Fx5 X0+X3 .
NX6-_Bp X5
SA6 B3 ‘ . é
................... NE-B6.BO.-STDA_________________________«END-QF_STDA LQOP_ _____
PS : ‘ :

""" FLASH  Fxo xi#x2 T UBEcIN FLASH T#MER DO

cee--SB3LB3BA L e e e e e e
Sal A)l+RB1
SA2_A2+RZ2
FXx3 x6+X0 :
S NX6-BO_X3.- e
NE B3 B0 FLASH «END OF FLASH LOGP :

T e N |




CONTROL DATA CORPORATION ° DEVELOPMENT Dlv ° SOFTWARE DOCUMENT

DOCUMENT CLASS ' Do PAGE NO_L9
PRODUCT NAME , 64/6600 FORTRAN
PRODUCT NO. CO10 VERSION____3.0 _ MACHINE SERIES 64/6600

APPENDIX '"B"

I. Cost Objectives

A. Development, Documentation, and QA costs,

Fiscal Year

by Quarters Development- Documentation QA Total

1q 67 $ 41,000 $ 3,600 $ $44, 600

2 Q 67 62,000 6,000 68,000

3Q 67 67,000 9,100 76,100

4 Q 67 68,000 9,300 8,000 85,300

1Q 68 37,000 - | 9,000 46,000
TOTALS $275,000 $28,000 $17,7000 $320,000

Present 6000L Product

II. Schedule Objectives S0/CD Estimate Plan Date¥

SIR approved 6/14/66

DO submitted CD 6/20/66

GED submitted ' CD 7/05/66

ERS submitted S0 9/05/66

IRS completed : SO 11/01/66

Product Demonstration S0 4/11/67

QA Test Cases to Project SO 4/10/67

Product Submitted to QA S0 6/02/67

Product Released to field SO 8/11/67

GIM published S0 10/16/66 ~

Reference Manual published SO 4/17/67

* The March Plan proposed a SCHEDULE OBJECTIVE for Product Release in 2nd. Q/67.
However, in the March Plan this product was relegated to further study with

attendant potential extension of release date.

CA138-1



) mmmpcks

CODING GUIDELINES

Critical loops which require different coding for the 6400 than
the 6600 should be coded both ways and preceded by IFF and IFT
pseudo ops. The assembly control parameter must appear prior to
any executable code in the subprogram and will have the name SIXTY

e.g. SIXTY EQU 4 indicates. assembly for the 6400.

There will be a cell named SIX000 in the main control program indi-

cating which machine code is being generated for named SIX000.

Blocks of remarks heading subroutines or other sections of code should
be used to specify such things as the function of the section of code

and calling sequence required.

Comments accompanying every few instructions should describe the oper-

ations being performed.

Remarks and comments must be updated as the coding is changed so

_ that it is possible at all times to read a listing mainly by commentary

~
rather than by instructioms.

To minimizé difficulties of debugging and future modifications of the
system, étraight forward coding is generally preferable to subtle or in-
volved coding. Whenever such coding is required justification must be
included in the task documentation along with adequate remarks to

warn and guide the unsuspecting reader through the proper analysis.

Symbols used in source code should be identical to thos4used in

flow descriptions and should have some mnenmonic content, if possible.

As much of the compiler as is reasonable should be written in FORTRAN.
This may require the writing of several machine language functions re-
sulting in a mixed approach. This is generally preferable tc an all
assembly language product. The common subset of FORTRAN Version 1.0 and

3.0 must be used.

All linkage comnecting an assembly subprogram to FORTRAN subprogram should

be done through macros so that the tramsition between compiling the



compiler under different compilers will be simplified.

10, Where a label is required and no meaningful label is used, use the
first and last characters of the subprogram name, two of your

initials and two digits.



TASK DOCUMENTATION

Task Description

fooy

The description consists of a list of the functions performed by the task,
the interaction of the task with any others, and any possible side effects.
As development progresses, description of tasks (and any subroutine within
the tasks) are expanded to include specification of calling sequences, changes
to the contents of core and registers, 1I/0 equipment usage, space requirements

for code and data, table formats, and possible diagnostics, and error actions.
Method

Methods used to accomplish the task are added to the documentation as soon as
they are known and are updated when any change is to be made. Any special
algorithms for such things as conversions or table manipulation should be

included,

Memory Layout

The memory layout for a task, or a subroutine within a task, consists of a
list of all symbols used for referencing data and a descirption of the sig-
nificance of each item in the coded program. Whenever possible, attempt
should be made to use symbols with some mnemonic value. These same data
referencing symbols must also be used in the flow description and coded

program,

Flow Description

Written descriptions of the overall flow of the task and of each subroutine

in the task must be approved by the project manager before coding begins and
must be updated as checkout proceeds. The flow description may have the form
either of a flow chart or a narrative flow description., In either case, the
symbols used should be identical to those appearing in the coded program. If
flow charts are used, flow charting standards given in the Programming Handbook
should be followed. If narrative flow descriptions are used, attempt should be
made to use standard printer characters and to relate the wording of the des-

cription to the wording of the remarks and comments in the program listing.



COMPILER
1. COMMON
RW  CONTROL
RW  ERRORS
JM  SCANNER
RW SIO
RW  FORMAT
CN  LISTPROC "y\ma s\
2. PASS 1, PHASE 1
M PHSICTL
JM  DECPRO
3. PASS 1, PHASE 2
RW  PHS2CTIL
™ = ASF
JM  DATA
Wi pf DOPROC
™ ARITH
™ IF
RWw LISTEDIO
CN  CALL
CN  ASSIGN
CN  GOTO
RW  TAPES
™  INDXEN
CN ENTRY
CN  RETURN
CN END

64/6600 FCRTRAN VERSION 3.0

1IST OF TASKS

Main controlling routine

Error diagnostics reorder

Reads and lists Source statements, and forms ELIST.
Qutput R-list to intermediate‘storage and handles all I/0
Processes FORMAT statements

Search-and-entry routine for SYMTAB and memory management

Controlling routine for phase 1

processor for declarative statements

Controlling routine for phase 2. It includes BCD to
binary conversion routines.

Arithmetic statement function processor

DATA statement processor

DO-loop processor for pass 1

Processor for arithmetic, logical and masking statements.
Processes all IF statements

Processes 1/0 statements

CALL statement processor

ASSIGN statement processor

Processes all GOTO statements

Processes tape handling statements: ENDFILE, BACKSPACE,
REWIND

Generates macro references for index functions

ENTRY statement processor

RETURN statement processor

END statement processor



4. PASS 2

RW ERROR 2 Issues error messages

BT = PRE Pre-optimizer, pre-processes R-list for OPT
BT OPT Code optimizer and generator

FT POST Post optimizer, generates assembly code

OBJECT TIME

CN 1. Mathematical Library Routines:
RW : 2. 1I/0 Routines

OTHER

FT 1. R-list - Definition of intermediate language



	1_001
	1_01
	1_02
	1_03
	2_001
	2_002
	2_003
	2_01
	2_02
	2_03
	2_04
	2_05
	2_06
	2_07
	2_08
	2_09
	2_10
	2_11
	2_12
	2_13
	2_14
	2_15
	2_16
	2_17
	2_18
	2_19
	2_20
	2_21
	2_22
	2_23
	2_24
	2_25
	2_26
	2_27
	3_001
	3_01
	3_02
	3_03
	3_04
	4_001
	4_01
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	4_17
	4_18
	4_19
	_1
	_2
	_3
	_4
	_5

