CONTROL DATA CORPCRATICN ° DEVELOPRMENT DIV) SOFTWARE DOCUMENT

DOCUMENT CLASS___ ERS ' PAGE NO
PRODUCT NAME FORTRAN Extended "2, ¢ _
PRODUCT NO. ___ 0012, VERSION__-_To0 MACHINE SERIES 6446660~ bip [l
b2y PRCOT
DEFT NO 7% PROJECT NO 4P6X1 CHANGE NO DATE
SUBMITTED o g{fjc APPROVED
Lol Tin' jofids S 250 B P, Wi /Z/Z(’/éé
PROJ MGR = i (- DATE DEPT MGR DATE DIR DATE 7 MAB DATE
(\\%,A /ZW/Q% /c/
DRB unafrfnaz{ Date
RECEIVED

a7 ‘,1,9!7 jffﬁ /Z/é/@o _

QA Manager Date CES 12 7966

,/‘ / (- - // ///{ INTERNAL CocUMENT

BISTRIBUTION
DOC Manager

/&% \1/@/@@

Date

. R
IMER: THIS DOCUMENT IS A WORKING PAPE

g;isl?‘}.AANB DOES NOT NECESSARILY REPRESENT ANY,

OFFICIAL INTENT ON THE PART OF CONTROL DATA.

CA 138 REV 3—66

'~ CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO__ii
PRODUCT NAME FORTRAN Extended ’
PRODUCT NO. G012 VERsiON___1.0 __ MACHINE SERIES __04/6600

TABLE OF CONTENTS

1. © INTRODUCTION === ======= - oo e oo mmcmmcmmcmmmcm e mam 1
2. BASIC TERMINOLOGY ===-=====c=eeommommmmcomcmmsocmmmeoomoee 1
3. PROGRAM FORM ====c === === s oo ommm oo oo e meo e e ccee o e 4
3.1 THE FORTRAN CHARACTER SET------nnn=nmmmmmmmmmmmmmmmmmmmmmn 4
3.1.1 Diglls ==-==mm o mm oo e 4
3.1.2 Letters =--=-=--c-cmmmecoono- e c—m———mm e 5
3.1.3 Alphanumeric Characters ==-----mccemccmenau. ———————- [P - 5
3.1.4 Special Characters =e=-=-sc-mrcccmmc e cccccccccceaa 5
3.1.4.1 Blank Character =----=--c-cocmcmmc e -=-5
3.2 LINES =e = mm o m o o e e e e e e e e 5
3.2.1 Comment Line ===-=--mccmcmm e 5
3.2,2 End Line =-=smmosmm e e o e m e e oo oo 6
3.2.3 Initial Line ====--eccccem e e 6
3.2.4 Continuation Line -=---=-----ccmmmmme e cdccceccccaaaas 6
3.2.5 Blank Lines ======mer-cecmmcmcoccc oo m s n e e e ——————— 6
3.3 STATEMENTS =m=====mmmmmemmm—mmm e m ;e e me —mmme o mmc oo e 2o e 6
3.4 STATEMENT LABEL =====mmm=mm=mmm e oo o oo e mmm e e e mem e o 7
3.5 SYMBOLIC NAMES ===n===nmmmmmmmmmommmm e oo oo
3.6 ORDERING OF CHARACTERS ========m=m-=mo—mmocoooomacocacaee 7
3.7 STATEMENT SEPARATOR =======m=m=mmm=ce—meemeecmocmocmmmmoae 7
4, DATA TYBES =====me=smescmemmo oo e oo e cec o cmccmmom e 7
4,1 DATA TYPE ASSOCIATION =======-mcmmmoemccomomcommccocmonooe 8
4.2 DATA TYPE PROPERTIES =-===m=mmmmmmmm oo mm ;e e 9
4,2,1 Integer TYype =====m-ocemmmc e e 9
4,2,2 Real Type ===-memcrccc e mm et c e 9
4.2,.3 Double Precision Type =-=--===e—ememccmm e cmm oo 9
4.2.4 Complex Type ==--=---c-mcmmmm e e e 10
4,2.5 Logical Type ===cmm oo m oo e e 10
4.2.6 Hollerith Type =m=-=-==-mmremoe e a e c e e e - 10
4.2,7 Octal Type ==--=-==--mm e mmmmmmmce e 10
442,8 ECS TYPe ===m==mmm-mmmme e o eme e meae e eme o mee oo 10
5. DATA AND PROCEDURE IDENTIFICATION =====m-=-==-==nemeccen- 10
5.1 DATA AND PROCEDURE NAMES =======n=m-meccomoomcmmomceooaee 11
5.1.1 Constants =--=-====smcc e e 11
5.1.1.1 1Integer Constant ==-=-==-=emmmeeemee e 11
5.1.1.2 Real Constant =------=c-eceem e oo 12

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

PRODU

PRODUCT NO.

: .

u

DOCUMENT CLASS ERS PAGE NO_L1ii _
CT NAME FORTRAN Extended :
COl2 VERSION____ 1.0 _ MACHINE SERIES 64/6600
5.1.1.3 Double Precision Constant ===-========-------ce--ece-ecco—co-o- 12
5.1.1.4 Complex Constant =------ L b Ll bl 12
5.1.1.5 Logical Constant ====-====m=mcme--c---—e-eocsesmsomsoooomoooooo 13-
5.1.1.6 Hollerith Constant ==============cm-ece---c---ceomomonmoomononn 13
5.1.1.7 Octal Constant =---=---===-=-emeemeemmccmcc——o--——seesse-s—moo—o- 13
5.1.2 Variable ====c-r----e-cememmcccmeccm oo e e e emeememe————————o— 13
5.1.3 Array ==--==-----smm-ommmeeee e emeeeo—eoooooosos-ooooo--o-ss 14
5.1.3.1 Array Element----=-=--c=--memememeem e memmom—oo—eosmooooeo- 14
5.1.3.2 SubSCTipt ===--=---=---=emmme e ceecmee——emecem—oo—oooooo- 14
5.1.3.3 Subscript Expression T DT T 14
5.1.4 Procedures =-====-eemc-cac—co-mcmcccm————— e —————— 15
5.2 FUNCTION REFERENCES -n--nnnnmmmmmmmmmmmmmmmmmmn e n o mmmmmmcm 15
5.3 TYPE RULES FOR DATA AND PROCEDURE IDENTIFIERS ------=--=---==- 16
5.4 DUMMY ARGUMENTS ===--========-=-mcmme-m—emme———————————————— 16
EXPRESSIONS ===-==mmm==m- PR 17
6.1 ARITHMETIC EXPRESSIONS =-=---=--=cccmmmmmmcmcsmeemecee—e—————— 17
6.2 RELATIONAL EXPRESSIONS ===-=mm=--=--emeeemmeee—ceceeeeememm 19
6.3 LOGICAL EXPRESSIONS ========c-m==mmemmmemcccome——eemmm——————— 20
6.4 MASKING EXPRESSIONS==-====-=-mm-===cc=mmemcmmcccao—emme——an- 21
6.5 EVALUATION OF EXPRESSIONS =========----=coccmccmmmcmmcccc—nn- 22
7. STATEMENTS ====m====m=m==mmmmmm—mmmmmm oo oo meemmmm e c—mmmem——e- 23
7.1 EXECUTABLE STATEMENTS ~-----=-cc--eeeemercc e e eaenm——— —————— 23
7.1.1 Assignment Statements =---=----=--=-----coee——cmemmeme———a 23
7.1.1.1 Arithmetic Assignment Statement--=-=---------c-m-cmeocomonmaaax 23
7.1.1.2 Logical Assignment Statement =---=--=--=-=--=---comm——mm————— o 24
7.1.1.3 - GO TO Assignment Statement ----====-===---ecmcececeeocca-ooao- 24
7.1.1.4 Masking Assignment Statement =--===-==s-----m-mcceccococonnon- 24
7.1.2 Control Statements ==-===mm=eemmmeecc e mmemmmm e e e 27
7.1.2.1 GO TO Statements =—==---=-==c——-=cm--ececmermsemeeme—ceca——a— 27
7.1.2.1.1 Uniconditional GO TO Statement ==-====----emem-rcceome e - 27
7.1.2.1.2 Assigned GO TO Statement =-===-==--===--=-----------o--ooooo-- 27
7.1.,2.1.3 Computed GO TO Statement ===-=-===----=--=-----=----ec-co-o---- 28
7.1.2.2 Arithmetic ITF Statement ====-=====--=-ecrereccamceeec—ace————- 28
7.1.2.3 Logical IF Statement =—====-===--==-r=---=-—=c-o-———ee-oooo-oo-- 29
7.1.2.4 CALL Statement ===--==-=-=-------s--me--accsoc--c--o---o---- --29

CA138-)

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO_1v

PRODUCT NAME FORTRAN FExtended -

PRODUCT NO. CO1Z VERSION___ 1.0 MACHINE SERIES 04/6600
7.1.2.5 RETURN Statement =======ms-e-eceme oo e e mc e e e mmco oo 30
7.1.2.6 CONTINUE Statement ===-===-==-m-ee- e e e cemcmmec oo oo 31
7.1.2.7 Program Control Statements ===-=s--=-smececemcrcmemrr e 31
7.1.2,7.1 STOP Statement =-=-===- s m e mmmm e 31
7.1.2.7.2 PAUSE Statement =--=—-- == - e e ee o 31
7.1.2.8 DO Statement -====== == - o e e e 32
7.1.2.9 ENCODE /DECODE Statements =-=-=m---=-=meommomomommmmmccmcommmm oo 35
7.1.3 Input/Output Statements ==-=-====--mo e m e 36
7.1.3.1 READ and WRITE Statements ========mm oo mm oo e o e e 38
7.1.3.1.1 Input/Output LiStS =====c=c-m oo 38
7.1.3.1.2 Tormatted READ m-mcocmmomm oo e e 39
7.1.3.1.3 Formatted WRITE ==s-cme o mmm e e e e me e 40
7.1.3.1.4° Unformatted READ --mrer-meececcrrcc e rccm e cc——— e ————— 40
7.1.3.1.5 Unformatted WRITE =-=---===mc—mmm e e e 40
7.1.3.1.6 BUFFER IN and BUFFER QUT Statements ===e=-c-m-mmecmmmm e ccccceem 41
7.1.3.1.7 NAMELIST Statement ==ms=---oo o e oo e e e 42
7.1.3.2 Auxiliary Input/Output Statements =-=-===-==---mceemeeecaooas 45
7.1.3.2.1; REWIND Statement ===wem-ecmccmm e e e e e e e e -45
7.1.3.2.2 BACKSPACE Statement =-—-=-=-ermemcom o e e m 45
7.1.3.2.3 ENDFILE Statement =-===== === o e 45
7.1.3.3 Input/Output with Extended Core Storage (ECS) ======cmoceccommnonn 45
7.1.3.3.1 Input/Output with Mass Storage (MS) =====-==ccmcommmccmccmccccaoo- 46
7.1.3.4 Printing of Formatted RECOTd =====mmmmmmmmmom ;e cem e e em e — e 46
7.2 NONEXECUTABLE STATEMENTS =====c === s mm o oo oo e e 47
7.2.1 Specification Statements =--=-=-=--cmcmmamm e 47
7.2.1.1 Array-Declarator ==-===cc-cc-c e o 47
7.2.1.1.1 Arréy Element Successor Function and Value of a Subscript -------- 48
7.2.1.1.2 Adjustable DimensSion ====me=memec o oo e 49
7.2.1.2 DIMENSION Statement --------ocemcmme e e e e ecmmcc e 49
7.2.1.3 COMMON Statement ==-==-=e=m e oo oo e e e e 50
7.2.1,3.1 Correspondence of Common BlockSs ====meeeomm oo mm o 51
7.2.1.4 EQUIVALENCE Statement ===== == == oo eememmcemccce oo 51
7.2,1.5 EXTERNAL Statement ====-==-c - e r oo e e e e mcae e 53
7.2.1.6 Type-Statements ===-== === oo e e e e e e 53
7.2.2 Data Initialization Statement =====wmcoccmo o ccaeeea 54
7.2.2.1 Alternate Form of Data Statement ====meeemeco oo o 55

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS v PAGE NO__V
PRODUCT NAME FORTRAN Extende R

PRODUCT NO. €012z VERSION_1.0 __ MACHINE SERIES 64/6600

7.2.3 FORMAT Statement =-=-====mm - oo e e e e eememmmccmcocmmmmm oo 55
7.2.3.1 Field Descriptors =====-mem--cmocemcmc e mec e 55
7.2.3.2 Field Separators =======-cmcmommccom o m e —eem——a- -57
7.2.3.3 Repeat Specifications --=-=-=-=c-emmmmcmcom e ~57
762.3.4 Format Control Interaction with an Input/Output List ==~~=---=w--- 58
7.2.3.5 Scale Factor ===--memmemmmeec e ceemdcmeeeceecmc e —————— ---59
7.2.3.5.1 Scale Factor Effects =----cecmccccccumcmiccccmme e mcmcceamae e 60
7.2.3.6 Numeric CONVerSions -—-—--=--ccmmmcrmmccm e cmccmcsmccc e ————n 60
7.2.3.6.1 Integer CONVELS1iOn —-==--cmmmemcmeccmemccosmccccemmcenacm————— ~613
7.2.3.6.2 Real CONVErSiOnS =m=-mecemeecccccmaninmmncnceonaemmnsmnanem——e——— 61
7.2.3.6.3 Double Precision COnversion ===-====memmeeemeemoccccccccceeae———— 64
7.2.3.6.4 Complex CONVersSion ===========meemmcmace o mmc e cece e emcm e -64
7.2.3.7 Logical Conversion ---=-=====-==mm - e e 64
7.2.3.8 Hollerith Field DescriptOr ====-m=m=mee-eccmcccacmeaaa- [64
7.2.3.9 Blank Field DeSCriptOr =-=--==-==m=-cmecm e e cceccemeeaaoo 65
7.2.3.10 Column Selection Control =-==mmm=m-meeem e e cmeemeeas 65
7.2.3.11 Format Specification in Arrays -----=-m=-memecccmccmocccccccoaan- 66
8. PROCEDURES AND SUBPROGRAMS ==========mmmcmmmemccccmccmemcce o -67
8.1 STATEMENT FUNCTIONS === =mmmmmmmmmmmm - e m e mm e mmm e e e e e 67
8.1.1 Defining Statement Functions =-===-==mmcmccccmcmccmccccccameeee 67
8.1.2 Referencing External FunCtions =-=======m=mm-oomeeecmmococeacoon 68
8.2 INTRINSIC FUNCTIONS AND THEIR REFERENCE =--==-=-m-e-;eocmceeaanax 68
8.3 EXTERNAL FUNCTIONS =--==-cscemrmcmcccnc e mcc e c e rm e e e - 69
8.3.1 Defining Function Subprograms =------=-=-====meecceacmaocoooaaaan. 69
8.3.2 Referencing External Functions =-=-====mme-emmmcocmccceceecceees 70
8.3.3 Basic External FUNCLLONS ~=mmm=mmmmmememme - meecmeccme e e 74
8.4 SUBROUTINE === = === m = e mm s o e o m oo oo e e e mee s 76
8.4.1 Defining Subroutine SuUbPTOgTrams ====-=====cmc e 76
8.4.2 Referencing Subroutines ==----=--ccommmcm e 77
8.4.2.1 ENTRY Statement -=-------c-memcmocmcccaaaaa- e 77
8.5 BLOCK DATA SUBPROGRAM == ======== = cm e oo oo --78
8.6 PROGRAM LINE =-========-m-mmemommcmmmomcmacmns S 79
9. PROGRAMS = === = = == = = = = o = £ o e o o o o o o o o oo e ~798
9.1 PROGRAM COMPONENTS ========== == o m oo e e e e e 798
9.1.1 Program PATt ==---====m-cmc e emeem s emm— e e 798
9.1.2 Program Body =========mmm e 798
9.1.3 SUDPrOGLamM === === === oo mae ~79B8

CA138-1

CONTROL DATA CORPORATION e DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS ~ PAGE NO__ V1
PRODUCT NAME FORTRAN Extended
PRODUCT NO. C0lZz VERSION____ 1.0 MACHINE SERIES 64/6600
9.1.4 Block Data Subprogram =-=e-=es-eweccmceceooococcecacaoomaoaas 793
9.1.5 Main Program =—=--===-m=mmcmem o meceeceeas 7?3
9.1.6 Executable Program =e=m=memmecmm oo eecemeemecmeeoeas 80
9.1.7 Program Unit weeeeeeoo oo 80
9.2 NORMAL EXECUTION SEQUENCE == emmm oo mmcmemm o smmmmmm e 80
10. INTRA - AND INTERPROGRAM RELATIONSHIPS = -=-oco-eoceemn- eeeen8l
10.1 SYMBOLIC NAMES ccceccmmcmcccmccccomccmcmmccmcmemccmemmeeiee=81
10.1.1 Restrictions on $lasSs =eecccmmcmmmcmerccccrcrrecmc—— e 81
10,1.2 Implications of Mentions in Specification and Data -------w- 82
Statements
10.1.3 Array and Array Element =weececmmooccco i cmeeecceaa-.83
10.1.4 External Procedures e-eecocmecmmommmmommo_- e cmmmmmmmmmm 83
10.1.5 SUbroUting =-emecmme e e 84
10.1.6 Statement FUNCEIiOn ==-eemcemcmccmc e mcccmcccmcc e 84
10.1.7 Intrinsic Function =--e-mmemcecaaa- 5--------------------;_-_84
10.1.8 External Function —-eececmcc oo cacmccecmemcmceeeee e 84
10.1.9 Variable eeememcce oo ddcmccmccc e ae 85
10.1.10 lock Name e mccmcmm e e mecmecmme e 85
10.1.,11 Namelist Name —eweeccmcemcc i eciccccccccccemccceea—=2-85
10.1.12 ECS Element -=-=--mmmemcm e e e 85
10.2 DEFINITION oo cmm s mom e e e s e e oo e e e e m e e e e m e e 85
10.2.1 Definition of ProcedureS =-cececccmccemccccmccccccccccacccana 86
15.2.2 Association that Effect Definition e-eeceeeocmccmcmacacaocan 86
10.2.3 - Events that Effect Definition —--eecemmmcmmccocmmmaccacoeeaa 87
10.2.4 Entities in Blank COmMMON ==-mm-c;ceocecmccocccccccccmcca——— 88
10.2.5 Entities in Labeled Common ---ce-cmmmmmccmecmeccecicmccmaee 88
10.2.6 Entities Not in COMMON c-cemcmmomm e eeccemcc o ccccmee e 89
10.2.7 Basic BloCk =reemccmccc e cmmm e m e ——m— e 89

CA138-1

CONTROL DATA CORPORATION o DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS | PAGE NO__Vil
PRODUCT NAME FORTRAN Extended
PRODUCT NO. C012 versiON____ 1.0 MACHINE SERIES 6476600
10.2.8 Second Level Definition =s=-==s-=-we-m-e-ceacormcocomconmmnnn— 90
10.2.9 Certain Entities in Function Subprograms --------=---==---- 91
10.3 DEFINITION REQUIREMENTS FOR USE OF ENTITIES =-===--====--== 91
J PARTIAL LIST OF ERROR MESSAGES ===mm==mmemewemmaa-a- APPENDIX A
CONTROL CARD ==rmw==emmmecececcm e e cm e m e m e m = APPENDIX B
LIBRARY FUNCTIONS =~-===-se-cececccecccenccecaee-=~=-APPENDIX C
Intermixed COMPASS Subprograms =-==--==c--m-ecc-c---- APPENDIX D
OPTIMIZATIONS =====-w-memormmccmccmccmce e mo e m e APPENDIX E\
STATEMENT FORMS =-=-==-=-cr--eoccecmmmmmcem e on e APPENDIX F
SYSTEM ROUTINE SPECIFICATIONS =====-==-----c--emcos APPENDIX G
SUBPROGRAM STRUCTURE =--===-====-e--memocccmcccncecmce APPENDIX H
I

OVERLAYS AND SEGMENTS ==-======-=m====m==mcoaoaoaan APPENDIX

CA138-1

CONTROL DATA CCRPORATION e DEVELOPMENT DIV e SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO__L
PRODUCT. NAME FORTRAN Extended
PRODUCT NO. COlZ __VERSION 1.0 MACHINE SERIES 64/6600

1. INTRODUCTICN _
FORTRAN Extended Version 1.0 is a superset of ASA FORTRAN, This docu-
ment establishes:

(1) The form of a program written in FORTRAN Extended Version 1.0.

(2) Rules for the interpretation of the program.
(3) . The form of the input and output data,

Throughout this document all ASA extensions are made conspicuous by

placing a dot in the margin where the extension is referenced or its

‘definition begins.

2. BASIC TERMINOLOGY
This section introduces some basic terminology and some concepts. A
rigorous treatment of these is given in later sections, Certain assump-
tions concerning the meaning of grammatical forms and particular words

are presented.

A program that can be used as a self-contained computing procedure is

called an executable program (9.1.6).

A main program is a set of statements and comments not containing a

FUNCTION, SUBROUTINE, or BLOCK DATA statement (9.1.5).

A subprogram is similar to a main program but is headed by a BLOCK
DATA, FUNCTION or SUBROUTINE statement. A subprogram headed by a
BLOCK DATA statement is called a specification subprogram. A sub-
program headed by a FUNCTION or SUBROUTINE statement is called a
procedure subprogram (9.1.3, 9.1.4).

The term program unit will refer to either a main program or sub-

program (9.1.7).

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS , PAGE NOZ_____
PRODUCT NAME FORTRAN Extended ,
PRODUCT NO. CO012 vegrsion___L.0 MACHINE SERIES 64/6600

Any program unit except a specification subprogram may reference an

external procedure (Section 9).

An external procedure that is defined by FORTRAN statements is called
a procedure subprogram. External procedures also may be defined by
other means. An external procedure may be an external function or an
external subroutine. An external function defined by FORTRAN state-
ments headed by a FUNCTION statement is called a function subprogram.
An e#ternal subroutine deéfined by FORTRAN statements headed by a
SU3ROUTINE statement is called a subroutine subprogram. (Section 8

and 9).

Any program unit consists of statements and comments. A statement is
divided into physical sections called lines, the first of which is
called an initial line and the rest of which are called continuation

lines (3.2).

There is a type of line called a comment that is not a statement and

- merely provides information for documentary purposes (6.2),

The statements in FORTRAN fall into two broad classes - executable
and nonexecutable. The executable statements specify the action of
the program while the nonexecutable statements describe the use of
the program, the characteristics of the operands, editing information,

statement functions, or data arrangement (7.1, 7.2).
The syntactic elements of a statement are names and operators. Names

are used to reference objects such as data or procedures. Operators,

including the imperative verbs, specify action upon named objects.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DiV ® SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__3
PRODUCT NAME - FORTRAN Fxtended

~NT - ~ 21 ez An
PRODUCT NO. Lyts VERSION_____L.U MACHINE SERIES 64/6600

One class of name, the array name, deserves special mention. An
array name must have the size of the identified array defined in an
array declarator (7.2.1.1). An array name qualified only by a sub-

script is used to identify a particular element of the array (5.1.3).

Data names and the arithmetic (or logical) operations may be connected
into expressions. Evaluation of such an expression develops a value.
This value is derived by performing the specified operations on the

‘named data.

The identifiers used in FORTRAN are names and numbers. Data are named.
Procedures are named. Statements are labeled with numbers. Input/output

units are numbered (Sections 3, 6, 7).

At various places in this document there are statements with associated
lists of entries. 1In all such cases the list is assumed to contain at
least one entry unless an explicit exception is stated. As an example,
in thé statement

SUBROUTINE S (aj; &j,+--5a)

itis assumed that at least one symbolic name is included in the list
within parentheses. A list is a set of identifiable elements each

of which is separated from its successor by a comma. Further, in a
sentence a plural form of a noun will be assumed to also specify the
singular form of that noun as a special case when the context of the

sentence does not prohibit this interpretation.

The term'referencd' is used as a verb with special meaning as defined

in Section 5.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS ; _ | PAGE NO__4
PRODUCT NAME FORTRAN Extended ——
PRODUCT NO. CO0lZ2 _ vERrsiON 1.0 MACHINE SERIES ___64/6600

3. PROGRAM FORM

Every program unit is constructed of . characters grouped into lines

‘and statements.

3.1 THE FORTRAN CHARACTER SET
A program unit is written using the following characters: A, B, C,
D, E, F, G, H, I; J, XK, L, M, N, 0O, P, Q, R, S, T, U, V, W, X, Y, Z,
0,1, 2, 3, 4, 5, 6, 7, 8, 9, and:

Character Name of Character
Blank
= Equals
+ Plus
- Minus
* Asterisk
/ Slash
(Left Parenthesis
) Right Parenthesis
> Comma
. Decimal Point
$ Currency Symbol

The order in which the characters are listed does not imply a collating

sequence,

3.1.1 Digits _

' A digit is one of the ten characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Unless specified otherwise, a string of digits will be interpreted
in the decimal base number system when a number system base inter-

pretation is appropriate.
An octal digit is one of the eight characters: 0, 1, 2, 3, 4, 5, 6,

7, These are only used in octal constants (4.2.7) and in the STOP
(7.1.2.7.1) and PAUSE (7.1.2.7.2) statements.

CA138-1

CONTROL DATA CORPCRATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__5
PRODUCT NAME FORTRAN Extended _ ‘
PRODUCT NO. CO12 VERSION____ 1.0 MACHINE SERIES __64/6600

3.1.2 Letters
A letter is one of the twenty-six characters: A, B, C, D, E, F, G, H,
I,J, K, L, M, N, 0, P, Q, R, 8§, T, U, V, W, X, ¥, Z.

3.1.3 Alphanumeric Characters

An alphanumeric character is a letter or a digit.

3.1.4 Special Characters
A special character is one of the eleven characters blank, equals,
plus, minus, asterisk, slash, left parenthesis, right parenthesis,

comma, decimal point, and currency symbol.

3.1.4.1 Blank Character
With the exception of the uses specified (3.2.2, 3.2.3, 3.2.4, 4.2.6,
5.1,1.6, 7.2.3.6, and 7.2.3.8), a blank character has no meaning and
may be used freely to improve the appearance of the program subject

to the restriction on continuation lines in 3.3.

3.2 LINES
A line is a string of 72 characters. All characters must be from the

FORTRAN character set except as described in 5.1.1.6 and 7,2,3.8.

The character positions in a line are called columns and are consecutively
numbered 1,2,3,...72. The number indicates the sequential position of

a character in the line starting at the left and proceeding to the right.
3.2,1 Comment Line
© The letter C or an asterisk or the currency symbol in column 1 of a

line designates that line as a comment line.

A comment line does not affect the program in any way and is available

as a convenience for the programmer.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO_6___
PRODUCT NAME FORTRAN Extended

PRODUCT NO. C012 VERSION____ 1.0 MACHINE SERIES 64/6600

3.2,2 End Line

3.2.3

3.2.4-

3.2.5

3.3

CA138-1

An end line is a line with the character blank in columns 1 through 6,

the characters E, N, and D, once each and in that order, in coiumns 7
through 72, preceded by, interspersed with, or followed by the character
blank. The end line indicates to the processor, the end of the written
description of a program unit (9.1.7). Every program unit must physically

terminate with an end line.

Initial Line

An initial line is a line that is neither a comment line nor an end
line and that contains the digit O or the character blank in column 6.
Columns 1 through 5 contain the statement label or each contains the

character blank,

Continuation Line
A continuation line is a line that contains any character other than

the digit 0 or the character blank in column 6, and is not a comment

line.

A continuation line may only follow an initial or another continuation

line or either of these followed by any number of comment lines.

Blank Lines

A line with blanks in columns 1 through 80 does not affect the program

in any way, unless the succeeding line has a continuation punch in column
6 in which case it is treated as an initial line. The blank line will

appear in the source program listing.

STATEMENTS

A statement consists of an initial line optionally followed by up to
nineteen ordered continuation lines. The statement is written in
columns 7 through 72 of the lines. The order of the characters in the
statement is columns 7 through 72 of the initial line followed, as
applicable, by columns 7 through 72 of the first continuation line,

columns 7 through 72 of the next continuation line, etc.

CONTROL DATA CORPORATION . DEVELOPMENT DIV © SOFTWARE DOCUMENT

DOCUMENT CLASS___ ERS PAGE NO_7____
PRODUCT NAME FORTRAN Extended
PRODUCT NO. €012 VERSION______1.0 MACHINE SERIES 64/6600

3.4 STATEMENT LABEL

3.6

£~
.

CA138-1

Optionally, a statement may be labeled so that it may be referenced

in other statements. A statement label consists of from one to five
digits. The value of the integer represented is not significant Eut
must be greater than zero. The statement label may be placed anywhere
in columns 1 through 5 of the initial line of the statement. The same
statement label may not be given to more than one statement in a
program unit. Leading zeros are not significant in differentiating

statement labels.

SYMBOLIC NAMES

A symbolic name consists of from one to seven alphanumeric characters,
the first of which must be alphabetic, See-10.1 through 10.1.,10 for
a discussion of classification of symbolic names and restrictions on

their use,

ORDERING OF CHARACTERS

An ordering of characters is assumed within a program unit, Thus, any
meaningful collection of characters that constitutes names, lines, and
statement exists as a totally ordered set. This ordering is imposed
by the character position rule of 3.2 (which orders characters within’

lines) and the order in which lines are presented for processing.

STATEMENT SEPARATOR
The currency symbol may be used to separate statements. The appear-~
ance of the currency symbol not in a Hollerith string serves to

terminate the statement. The statement following the currency symbol

may not be labeled nor may the preceding statement be a FORMAT statement,

DATA TYPES

Seven different types of data are defined. These are integer, real,
double precision, complex, logical, octal and Hollerith. Each type
has a different mathematical significance and may have different
internal representation. Thus the data type has a significance in

the interpretation of the associated operations with which a datum

CONTROL DATA CORPGORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_8
PRODUCT NAME FORTRAN Extended
PRODUCT NO. cQ12 VERSION_____ 1.0 MACHINE SERIES 64 /6600

4.1

CA138-1

is involved. The data type of a function defines the type the datum

it supplies to the expression in which it appears.

DATA TYPE ASSOCIATION
The name employed to identify a datum or function carries the data
type association. The form of the string representing a constant

defines both the value and the data type.

A symbolic name representing a function, variable, or array has only

a single data type association for each program unit. Once associated
with a particular data type, a specific name implies that type for

any differing usage of that symbolic name that requires a data associa-

tion throughout the program unit in which it is defined.

Data type may be established for a symbolic name by declaration in
a type-statement (7.2.1.6) for the integer, real, double precision,
complex, and logical types. This specific declaration overrides the

implied association available for integer and real (5.3).

1f a symbolic name appears in more than one type statement in the
same program unit the data type association for that name will be

that given by the last-occuring such type statement.

There exists no mechanism to associate a symbolic name with the
Hollerith or octal data types. Thus data of these types are identified
under the guise of a name of one of the other types. If an octal

or Hollerith constant is not combined with a constant of some

.other type or a variable by an arithmetic (+,-,/,%,%*%). or any relational

operator . it is treated as type integer, the result assuming the
P > yp g g

type of the replacement variable. If it is combined with an operand

of another type, it is treated as the same type.

ECS variables may only appear in the source program in the following

circumstances:

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ® SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS ' PAGE NO__9
PRODUCT NAME FORTRAN Extended __ =
PRODUCT NO. C012 VERSION__1.0 MACHINE SERIES 64/6600

(1) In a COMMON statement as an element of an ECS common block.

(2) In a CALL statement or function reference as an actual parameter.
(3) In a SUBROUTINE or FUNCTION statement as a dummy argument.

(4) 1In a TYPE ECS statement.

(5) 1In a DIMENSION statement.

4.2 DATA TYPE PROPERTIES _
The mathematical and the representation properties for each of the data
types are defined in the following sections. For real, double precision,

and integer data, the value zero is considered neigher positive or negative.

e The value zero is represented by a processor word with all bit positions
equal to zero. If an all blank field is read using numeric conversion

a -0 is produced.

4.2,1 1Integer Type
An integer datum is always an exact representation of an integer value.
It may assume positive, negative, and zero values. It may only assume

integral values.

The value of an integer datum may be in the range -(2%%48-1) through

+(2%%48-1). However, integer addition and subtraction take operands

and give results in the range -(2%%59-1) through +(2%%59-1). When

integers are used as DO parameters, they must be in the range 0<I$217-l.
4,2,2 Real Type

A real datum is a processor approximation to the value of a real number.

It may assume positive, negative and zero values. The nagnitude of non-

zero real values may be in the range (10%%322) to (10%%(-293)) and will

have a precision of fifteen (15) decimal digits.

4,2.3 Double Precision Type
A double precision datum is a processor approximation to the value of

a real number. It may assume positive, negative, and zero values.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS ~__PAGE NO__10
PRODUCT NAME FORTRAN Extended
PRODUCT NO. Cc012 VERSION____ 1.0 . MACHINE SERIES 64/6600

These data have the same magnitude range as real datum but have a

precision of twenty-nine (29) decimal digits.

4.2.4 ° Complex Type
A complex datum is a processor approximation to the value of a coﬁplex
number. The representation of the approximation is in the form of an
ordergd pair of real data. The first of the pair represents the real
part and the second, the imaginary part. Each part has, accordingly,

the same degree of approximation as for a real datum.

4.2.,5 Logical Type

A logical datum may assume only the truth values of true or false. True

}.-I
w
[
(]
o
n
[}
6]
[0
1
t
(]
[N
o'
]
5
L]
=]

egative value; false is any positive value.

4.2,6 Hollerith Type
A Hollerith datum is a string of characters. This string may consist
of any characters capable of representation in the processor. The

blank character is a valid and significant character in a Hollerith datum.

4,2.7 Octal Type
An octal datum is a bit pattern (60 bit word). It may consist of any

pattern capable of representation in the processor.

4.2,8 ECS Type

° An ECS datum occupies a sixty bit word and resides in Extended Core
Storage.
5. DATA AND PROCEDURE IDENTIFICATION

Names are employed to reference or otherwise identify data and procedures.

The term "reference" is used to indicate an identification of a datum
implying that the current value of that datum will be made available
during the execution of the statement containing the reference. If the
datum is identified but not necessarily made available, the datum is

said to be named. One case of special interest in which the datum is

CA138-1}

CONTROL DATA CORPORATION) BEVILOPMENRT BV ° SCFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO__11
PRODUCT NAME ____ _FORTRAN Extended
PRODUCT NO. CO12 . wversiON____ 1.0 _ MACHINE SERIES 64/6600

named is that of assigning a value to a datum, thus defining or

4redefining the datum.

The term, reference, is used to indicate an identification of a
procedure implying that the actions specified by the procedure will

be made available,

" A complete and rigorous discussion of reference and definitionm,

including redefinition, is contained in Section 10.

5.1 DATA AND PROCEDURE NAMES
A data name identifies a comstant, a variable, an array or array
element, or a block (7.2.1.3). A procedure name identifies a function

or a subroutine.

5.1.1 Constants
A constant is a datum that is always defined during execution and
may not be redefined. Rules for writing constants are given for

each data type.

An integer, real, or couble precision constant is said to be signed
when it is written immediately following a plus or minus. Also, for
these types, an optionally signed constant is either a constant or

a signed constant.

o This also applies to Hollerith and octal constants. A signed

Hollerith constant will cause an information diagnostic.
5.1.1.1 Integer Constant
An integer constant is written as a nonempty string of digits. The

constant 1s the digit string interpreted as a decimal numeral.

The string may be up to 18 digits long.

CA138-1

CONTROL DATA CORFPORATION o DEVELOPMENT DIV © SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_L2
PRODUCT NAME FORTRAN Extended
PRODUCT NO.___'— €012 wversioNn___1:0 MACHINE SERIES ___64/6A00

5.,1.1.2 Real Constant
A basic real constant is written as an integer part, a decimal point,
and a decimal fraction part in that order., Both the integer part and
.the decimal part are strings of digits; either one of these strings
may be empty but not both. The constant is an approximation to the

digit string interpreted as a decimal numeral,

; A decimal exponent is written as the letter, E, followed by an
-3){> optionally signed integer constant. A decimal exponent is a multi-
/ \}fﬁ 'plier (applied to the constant written immediately preceding it)
that is an approximation to the exponential form ten raised to the

power indicated by the integer written following the E.
The integer may be in the range -308 through -+337.

A real constant is indicated by writing a basic real constant.,,
basic real constant followed by a decimal exponent, or an integer

constant followed by a decimal exponent.

5.1.1.3 Double Precision Constant
A double precision exponent is written and interpreted identically
to a decimal exponent except that the letter, D, is used instead

of the letter, E.

A double precision constant is indicated by writing a basic real
constant followed by a double precision exponent or an integer con-

stant followed by a double precision exponent.

5.1.1.4 Complex Constant
A complex constant is written as an ordered pair of optionally
signed real constants, separated by a comma, and enclosed within
parentheses, The datum is an approximation to the complex number

represented by the pair.

CA138-1

CONTRCL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO__13_ _
PRODUCT NAME FORTRAN Extended ,
PRODUCT NO. COI2 VERSION___ 1.0 MACHINE SERIES __64/6600

5.1.1.5 Logical Constant
The logical constants, true and false, are written .TRUE. and ,FALSE.

respectively.
o ' True and false constants may also be written ,T, and ,F,

5.1.1.6 Holierith Constant _
A Hollerith constant is written as an integer constant (whose value n is
greater than zero) followed by the letter H, followed by exactly n
characters which comprise the Hollerith datum proper. Any n characters
capable of representation by the processor may follow the H. The
character blank is significant in the Hollerith datum string. This type
of constant may be written in the argument list of a CALL statement

and in the data initialization statement.

o When n is not a multiple of 10, the last computer word is left
justified with blank fill, Hollerith constants may also be used in
function argument lists and arithmetic expressions. When used in
arithmetic expressions, n should not be greater than 10. If the
constant is used as an operand of an arithmetic operation, an infor-

mation diagnostic will be given.

A Hollerith constant can also be written as an integer constant (whose
value n is greater than zero) followed by either of the letters L or R

followed by exactly n characters.

When n is not a multiple of 10 the last computer word is left justified
with zero fill in the case of L, and right justified zero fill in the

case of R,

5.1.1.7 Octal Constant

o An octal constant is written as a non-empty string of up to 20 octal
digits followed by the letter B. An octal constant may be used in the
same contexts as an integer constant, and is always operated on without

conversion to another data type.

5.1.2 Variable

CA138-1 A variable is a datum that is identified by a symbolic name (3.5). Such

- 1. cel . . ./, __._ - _3 _ .21 1.~ 1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLass___ERS PAGE NO___L&
PRODUCT NAME FORTRAN Extended
PRODUCT NO. €012 vERSION 1.0 MACHINE SERIES 64/6600

5.1.3 Array
“An array is an ordered set of data of one, two or three dimensions.
An array is identified by a symbolic name. Identification of the

entire ordered set is achieved via use of the array name.

5.1.3.1 Array Element
‘ An array element is one of the members of the set of data of an
array. An array element is identified by immediately following
the array with a qualifier, called a subscript, which points to the

" particular element of the array.
An array element may be referenced and defined.

5.1.3.2 Subscript
A subscript is written as a parenthesized list of subscript expressions.
Each subscript expression is separated by a comma from its successor,
if there is a successor, The number of subscript expressions must
correspond to the declared dimensionality (7.2.1.1), except in an
EQUIVALENCE statement (7.2.1.4), Following evaluation of all of the
. subscript expressions, the array element successor function (7.2.1.1)

determines the identified array element,

° The number of subscript expressions may be less than the declared
dimensionality. For each missing expression the compiler will assume
an expression value of one (1), thus if no subscript appears a sub-

script whose expressions are all equal to one (1) is implied.

5.1.3.3 Subscript Expression

A subscript expression is written as one of the following constructs:

c*vtk

ckv-k
. cry

vtk

v-k

v

k

CA138-1

CONTRCL DATA CORPORATION o DEVELOPMENT DIV o SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO__15
PRODUCT NAME ____ FORTRAN Extended S
PRODUCT NO. COLe VERSION____ L.Y _ MACHINE SERIES b4/060V

S5%1l.4

5.2

CA138-1

where ¢ and k are integer constants and v is an integer variable
reference, See Section 6 for a discussion of evaluation of expressions

and 10.2.8 and 10.3 for requirements that apply to the use of a variable

in a subscript.

Further, a subscript expression may be any arithmetic expression.

Subscripts of this more general class which do not conform to those
described above are referred to as nonstandard subscripts. If the
type of the expression is not integer, its value will be converted

to integer before evaluating the array element successor function,

Procedures

A procedure (Section 8) is identified by a symbolic name. A pro-
cedure is a statement function, an intrinsic function, a basic ex-
ternal function, an external function, or an external subroutine.
Statement functions, intrinsic functions, basic external functions, and
external functions are referred to as functions or function procedures;

external subroutines as subroutines or subroutine procedures.

A function supplies a result to be used at the point of reference;
a subroutine does not. Functions are referenced in a manner different

from subroutines.

FUNCTION REFERENCES

A function reference consists of the function name followed by an
actual argument list enclosed in parentheses. If the list contains
more than one argument, the arguments are separated by commas. The

allowable forms of function arguments are given in Section 8.

See Section 10.2.1 for a discussion of requirements that apply to

function references,

CONTROL DATA CORPCRATICN ° DEVELOAMERT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ ERS PAGE NO_L6
PRODUCT NAME . FORTRAN Extended
PRODUCT NO. c012 VERSION__—_ 1.0 MACHINE SERiES___ 0%/6600

5.3 TYPE RULES FOR DATA AND PROCEDURE IDENTIFIERS

€] The type of a constant is implicit in its name.

There is no type associated with a symbolic name that identifies

a subroutine or a block, or a namelist name.

A symbolic name that identifies a variable, an array, or a statement
function may have its type specified in a type-statement. In the

" absence of an explicit declaration, the type is implied by the
first character of the name: I, J, K, L, M, and N imply type

integer; any other letter implies type real.

A symbolic name that identifies an intrinsic function or a basic
external function when it is used to identify this designated pro-
cedure, has a type associated with it as specified in Tables 3 and

4.

In the program unit in which an external function is referenced, its
type definition is defined in the same manner as for a variable
and an array. For a function subprogram, type is specified either

implicitly by its name or explicitly in the FUNCTION statement,

The same type is associated with an array element as is associated

with the array name.

5.4 DUMMY ARGUMENTS
A dummy argument of an external procedure identifies a wvariable, array,

subroutine, or external function.
When the use of an external function name is specified, the use of

a dummy argument is permissible if an external function name will be

associated with that dummy argument, (Section 8)

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO____ L7
PRODUCT NAME - FORTRAN Extended —
PRODUCT NO. C01Z _ vERSION 1.0 MACHINE SERIES . 64/6600

When the use of an external subroutine name is specified, the use of
a dummy argument is permissible if an external subroutine name will

be associated with that dummy argument.

When the use of a variable or array element reference is specified,
the use of a dummy argument is permissible if a value of the same

type will be made available through argument association.

Unless specified otherwise, when the use of a variable, array or
" array element name is specified, the use of a dummy argument is
permissible provided that a proper association with an actual

argument is made,

The process of argument association is discussed in Section 8 and

10.
6. EXPRESSIONS

This section gives the formation and evaluation rules for arithmetic,
relationai, and logical expressions. A relational expression appears
only within the context of logical expressions. An expression is
formed from elements and operators. See 10.3 for a discussion of

requirements that apply to the use of certain entities in expressions.

-] This section also includes formation and evaluation rules for masking

expressions.

6.1 ARTTHMETIC EXPRESSIONS
An arithmetic expression is formed with arithmetic operators and
arithmetic elements. Both the expression and its constituent ele-
ments identify values of one of the types integer, real, double

precision, or complex. The arithmetic operators are:

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV] SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_—_18 _
PRODUCT NAME FORTRAN Extended
PRODUCT NO. COIZ _ VERSION_ L1:0 MACHINE SERIES 04/6600
Operator Representing
+ Addition, positive value (zero + element)
- Subtraction, negative value (zero - element)
* ' Multiplication
/ Division
% Exponentiation
® The constituent elements of the expression may also include values

of types octal and Hollerith.

The arithmetic elements are primary, factor, term, signed term,

simple arithmetic expression, and arithmetic expression,

A primary is an arithmetic expression enclosed in parentheses,
a constant, a variable reference, an array element reference, or

a function reference.

A factor is a primary or a construct of the form

primary**primary

A term is a factor or a construct of one of the forms
term/factor
or

term*term
A signed term is a term immediately preceded by + or -,

A simple arithmetic expression is a term or two simple arithmetic

expressions separated by a + or -.
An arithmetic expression is a simple arithmetic expression or a

signed term or either of the preceding forms immediately followed

by a + or - immediately followed by a simple arithmetic expression,

CA138-1

CONTROL DATYA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS ‘ PAGE NO__19
PRODUCT NAME FORTRAN Extended _
PRODUCT NO. €012 VERSION____ 1.0 MACHINE SERIES —_64/6600

6.2

CA138-1

A primary of any type may be exponentiated by an integer primary, and
the resultant factor is of the same type as that of the lement being
exponentiated. A real or double precision primary ﬁay be exponentiated
by a real or double precision primary, and the resultant factor is

of type real if both primaries are of type real and otherwise of type

double precision.

An integer primary may also be exponentiated by a real or double
'precision primary, and the resultant factor is of type real or

double precision, respectively. An integer, real, or double primary may
be exponentiated by a complex primary and the resultant factor is of

type complex.

By use of the arithmetic operators other than exponentiation, ény
admissible element may be combined with another admissible element

of the same type, and the resultant element is of the same type. Further,
an admissible real element may be combined with an admissible double
precision or complex element; the resultant element is of type double

precision or complex respectively.

Further an admissible integer element may be combined with an admissible
real, double precision, or complex element; the resultant element is of
type real, double precision, or complex, respectively. An admissible
double precision element may be combined with an admissible complex

element; the resultant element is of type complex.

RELATIONAL EXPRESSIONS

A relational expression consists of two arithmetic expressioné separated
by a relational operator and will have the wvalue true or false as

the relation is true or false, respectively. One arithmetic expression
may be of type real or double precision and the other type real or
double precision or both arithmetic expressions may be of type integer.
If a real expression and a double precision expression appear in a
relational expression, the effect is the same as a similar relational
expression. This similar expression contains a double precision zero

as the right hand arithmetic expression and the difference of the two
original expressions (in their original order) as the left, The relational

operator is unchanged., The relational operators are:

CONTROL DATA CORPORATION

° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NO 20
PRODUCT NAME FORTRAN Extended
PRODUCT NO. c012 VERSION___L.0 MACHINE SERIES 64/6600
Operator Representing
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
NE. Not equal to
.GT. Greater than
.GE, Greather than or equal to
P The operands of a relational operator may take the same combinations

of types as are defined for the arithmetic opefators. Only the real

part of complex elements are used by relational operators, except

for ,EQ. and .NE.

6.3 LOGICAL EXPRESSIONS

A logical expression is formed with logical operators and logical

elements and has the

value true or false. The logical operators

are:
Operator Representing
.OR. Logical disjunction
JAND, Logical conjunction
.NOT. Logical negation
° .OR., .AND., and .NOT. may be written .0., .A., and .N., respectively.

The logical elements

are logical primary, logical factor, logical

term, and logical expression.

CA138-)

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT
DOCUMENT CLASS___ERS PAGE NO_2L
PRODUCT NAME FORTRAN FExtended
PRODUCT NO. C012 vERSION____ 1.0 MACHINE SERIES 64 /6600
A logical primary is a logical expression enclosed in parentheses,
a relational expression, a logical constant, a logical wvariable
' reference, a logical array element reference, or a logical function
reference.
A logical factor is a logical primary or .NOT. followea by a logical
primary.
" A logical term is a logical factor or a construct of the form:
logical term .AND., logical term
A logical expression is a logical term or a construct of the form:
logical expression .OR, logical expression
6.4 MASKING EXPRESSIONS
©

CA138-1

A masking expression is formed with masking operators and masking
elements. The masking operators are:

Operator ‘ Representing

JAND, or .A., Bit-by-bit logical multiplication

.OR, or .O. Bit-by-bit logical addition

.NOT., or N, Bit-by-bit logical negation

The operators operate only on the most significant word of double precision
elements and the real part of complex elements; no type conversion of

elements is performed in the evaluation of the expression.

The masking elements are masking primary, masking factor, masking

term, and masking expression.

A masking primary is a masking expression enclosed in parentheses,

or an arithmetic expression.

A masking factor is a masking primary or .NOT. followed by a masking

primary.

A masking expression is always of type octal.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS VLT PAGE NO___22
PRODUCT NAME Extended
PRODUCT NO. COI2_VERSION—_ 120 MACHINE SERiES 04706600

A masking term is a masking factor or a construct of the form:

masking term LAND, masking term

A masking expression is a masking term or a construct of the form:

masking expression ,0R, masking expression

6.5 EVALUATION OF EXPRESSIONS
A part of an expression need be evaluated only if such action is
necessary to establish the value of the expression. The rules for
formation of expression imply the binding strength of operators. It
should be noted that the range of the subtraction operator is the
term that immediately succeeds it. The evaluation may proceed
according to any valid formation sequence (except as modified in the
following paragraph).

(

When two elements are combined by an operator, the order of evaluation
of the elements is optional, If mathematical use of operators is
associative, commutative, or both, full use of these facts may be

made to revise orders of combination, provided only that integrity

of parenthesized expressions is not violated. The value of an integer
factor or term is the nearest integer whose magnitude does not exceed
the magnitude of the mathematical value represented by that ractor

or term, The associative and commutative laws do not apply in the
evaluation of integer terms containing division, hence the evaluation

of such terms must effectively proceed from left to right.

Any use of an array element name requires the evaluation of its
subscript., The evaluation of functions appearing in an expression

may not validly alter the value of any other element within the ex-
pressions, assignment statement, or CALL statement in which the function
reference appears, the type of the expression in which a function
reference or subscript appears does not affect, nor is it affected by,

the evaluation of the actual arguments or subscript.
No factor may be evaluated that requires a negative valued primary
to be raised to a real, double precision, or complex exponent, No factor ‘

CA138~1 . . s .
may be evaluated that requires raising a zero valued primary to a zero

CONTRCOL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS ‘ PAGE NO_23
PRODUCT NAME FORTRAN Extended .

PRODUCT NO. C012 vERSION___1:0 MACHINE SERIES 64/6600

valued exponent.
No element may be evaluated whose value is not mathematically defined.

e Expressions are evaluated generally from left to right with the binding
strength of the operators and parentheses controlling the order of
operations. All function references and exponentials which are not

evaluated in-line are evaluated first. The heirarchy of operators from

highest binding strength to lowest is: T %k, [, %, 4 and -,
relationals, ,NOT,, .AND,, and .OR.. However, if a divide operator has an

integer operand, the operator will assume the same binding strength as the
multiply operator. If an expression is mixed mode, conversion from one
type to another occurs when the operands of an arithmetic or relational
operator are of different types. The types of the operands of an operator
depend‘on the type of elements and the order of evaluation up to the point

of issuing the operator.

7. STATEMENTS
A statement may be classified as executable or nonexecutable. Executable
statements specify actions; nonexecutable statements describe the
characteristics and arrangement of data, editing information, statement

- functions, and classification of program units.

7.1 EXECUTABLE STATEMENTS
There are three types of executable statements:
(1) Assignment statements.
(2) Control statements.
(3) Input/Output statements.

7.1.1 Assignment Statements
There are four types of assignment.statements:
(1) Arithmetic assignment statement,
(2) Llogical assignmemt statement,
(3) GO TO assignment statement,

(4) Masking assignment statement,

7.1.1.1 Arithmetic Assignment Statement

An arithmetic assignment statement is of the form:

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERo oacE o 24
PRODUCT NAME FORTRAN Extended —_—
PRODUCT NO. C012 versioN____ 1.0 MACHINE SERIES 64/6600

v=e

where v is a variable name or array element name of type other than logicall
and e is an arithmetic expression. Execution of this statement causes

the evaluation of the expression e and the altering of v according to

Table 1.

@ Several variables may be set to the value of the same expression by

using the following form of the arithmetic assignment statement:

V1=V2=...Vm=e

Here the value of the expression e is converted to the type of v, and

stored there. Vm is then converted to the type V-1 and stored there.

This process is repeated until a value is stored in MK

7.1.1.2 Logical Assignment Statement
A logical assignment statement is of the form:
v = e

where v is a logical variable name or a logical array element name

and e is a logical expression, Execution of this statement causes

the logical expression to be evaluated and its value to be assigned
@ to the logical entry. Multiple replacement is also available for

logical assignment statements.

7.1.1.3 GO TO Assignment Statement
A GO TO assignment statement is of the form:
ASSIGN k TO i
@ where k is a statement label and i is an variable name, After
execution of such a statement, subsequent execution of any assighed
GO TO statement (Section 7.1.2.1.2) using that integer variable will
cause the statement identified by the assigned statement label to be
executed next, provided there has beén no intervening redefinition
(10.2) of the variable. The statement label must refer to an executable

statement in the same program unit in which the ASSIGN statement appears.

Once having been mentioned in an ASSIGN statement, an integer variable

may not be referenced in any statement other than an assigned GO TO

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS ‘ PAGE NO__25
PRODUCT NAME FORTRAN Extended -
PRODUCT NO. G012 VERSION____1.0 MACHINE SERIES 6476600

statement until it has been redefined (Section 10.2.3).

7.1l.1.4 Masking Assignment Statement
A masking assignment statement is of the form:
v =e
& where v is a variable name or array element name and e is a masking
expression as defined in Section 6.4, The replacement variable v
may bé of any type, but if of type complex or double precision,
the imaginary or least significant word will be replaced with a zero.

Multiple replacement is available for masking assignment statements.

CA138-1

CONTROL DATA CORPORATION °

DEVELOPMENT DIV °

SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO.26____
PRODUCT NAME FORTRAN Extended
PRODUCT NO. C012 VERSION 1.0 MACHINE SERIES . 64/6600
° TABLE 1. RULES FOR ASSIGNMENT OF e to Vv
1f v Type is And e Type is TheAAssignment Rule Is*
Integer Integer Assign
Integer Real Fix and Assign
Integer Double Precision Fix and Assign
Integer Complex P Fix and Assign Real Part
Real Integer Float and Assign
Real i Real Assign
Real Double Precision ! DP Evaluate and Real Assign
Real Complex 1 P Assign Real Part
Double Precision , Integer | DP Float and Assign
Double Precision Real DP Evaluate, Assign

Double Precision

Double Precision

Assign

i
Double Precision ; Complex P DP Float Real Part and Assign
Complex | Integer P Float and Assign to Real Part,I
!)
Complex i Real . P Assign Real Pargl
Complex Double Precision | P DP Evaluate and Real Assign to

Complex Complex - Assign Real Part, I

* NOTES

(1) P means prohibited combination under ASA,

(2) Assign means transmit the resulting value, without change, to the entity.

(3) Real Assign means transmit to the entity as much precision of the most
significant part of the resulting value as a real datum can contain,

(4) DP Evaluate means evaluate the expression according to the rules of 6.1
(or any more precise rules) then DP Float.

(5) Fix means truncate any fractional part of the result and transform that
value to the form of an integer datum.

(6) Float means transform the value to the form of a real datum,

(7) DP Float means transform the value to the form of a double precision datum,
retaining in the process as much of the precision of the value as a double
datum can contain.

(8) Real Part refers to the real portion of the complex datum.

(9) I means imaginary part of the complex datum is set to zero.

CA138-1

CONTROL DATA CORPOLATION ¢ DEVELOBMENT DIV o SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS ' PAGE NO___ 27
PRODUCT NAME FORTRAN Extended
P B ,
PRODUCT NO. €012 VERSION_____1:0 MACHINE SERIES 64/6600
7.1.2 Control Statemants

There are eight types of control statements:
(1) GO TO statements.
"(2) Arithmetic IF statement.

(3) Logical IF statement.

(&), CALL statement.

(5) RETURN statement.

(6) CONTINUE statement.

(7) Program control statements.

©(8) DO statement.

The statement labels used in a control statement must be associated
with executable statements within the same program unit in which the

control statement appears.

7.1.2.1 GO TO statements
There are three types of GO TO statements:
(1) Unconditional GO TO statement.
(2) Assigned GO TO statement.

(3) Computed GO TO statement.,

7.1.2,1.1 Unconditional GO TO statement
An unconditional GO TO statement is of the form:
GO TO k
where k is a statement label.
Execution of this statement causes the statement identified by the

statement lsbel to be executed next.

7.1.2.1.2 Assigned GO TO statement

An assigned GO TO statement is of the form:

~

Go 70 i, (k5 Kgseeerk)

o s g PR P - P LA o A T B o i 4e
where 1 is an integer variable reference, and the k's are statement

CA138-1

CONTROL DATA CORPORATION ° DEVELOPRMENT DIV ® SOFTWARE DOCUMENT

‘ 28
DOCUMENT CLASS ERS PAGE NO_25___
PRODUCT NAME FORTRAN Extended
PRODUCT NO. G012 versiON_____ 1.0 MACHINE SERIES 64/6600

At the time of execution of an assigned GO TO statement,. the current
value of i must have been assigned by the previous execution of an
ASSIGN statement to be one of the statement iabels in the parenthesized
list, and such an execution causes the statement identified by that

statement label to be executed next.

7.1.2.1.3 Computed GO TO statement
A computed GO TO statement is of the form:

GO TO (ky, kyyan
or

© GO T0 (k;, ky,..uk), @

k), i

where the k's are statement labels and i is an integer variable reference.
See 10.2.8 and 10.3 for a discussion of requirements that apply to the

use of a variable in a computed GO TO statement.

© As an extension to ASA i may be replaced by e, any arithmetic
expression as described in Section 6.1. The value of e will be converted

to integer and used in place of 1i.

Execution of this statement causes the statement identified by the
statement label kj to be executed next, where j is the integer value of
i or e at the time of the execution. Frf ‘the. Val&é;%&:imﬁi e is less
th{gwone 1t will be treated as equaI‘to ome 1ffth§:YETn?‘?E:§ff§?§¥
tgéﬁ’n bt w;li be traated aﬁ“equal toﬂh. The comma 'fbiiowing the
9 rlght parenthesis is optlonal b :
7.1.2.2 Arithmetic IF Statement
An arithmetic’IF statement is of the form:
IF (e) kl, k2’ k3
or

o
| IF (e) kl’ kz
Where e is any arithmetic expression of type integer, real, or double

precision, and the k's are statement labels,

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO—____29
PRODUCT NAME__ FORTRAN Extended

PRODUCT NO. C012 VERSION___ 1,0 MACHINE SERIES 64/6600

e As an extension to ASA e may be of type complex, in this event

only the real part is used in selecting the branch.

The arithmetic IF is a three-way branch. Execution of this statement
causes evaluation of the expression e following which the statement
is
1° k2, qr k3 is executed next as
the value of e is less than zero, zero, or greater than zero, respectively.

identified by the statement label k

© The second form is an extension to ASA, e may be a masking or arithmetic
expression. Execution of this statement causes evaluation of the
'expression following which the statement identified by the statement
label k1 or k2 is executed next as the value of e is nonzero or zero,

respectively.
7.1.2,3 Logical IF Statement

A logical IF statement is of the form:

IF (e) s
or
o IF (e) kl’ k2

where e is a logical expression and s is any executable statement
except a DO statement or another logical IF statement. Upon execution
of this statement, the logical expression e is evaluated. If the value
of e is false, statement s is executed as though it were a CONTINUE

statement, If the value of e is true, s is executed,

° The second form is provided as an extension to ASA., If the logical ex-
pression 1is true the statement identified by statement label k1 is

executed next, if false the statement labeled k2 is executed next.

7.1.2.,4 CALL Statement
(<] A CALL statement is of one of the forms:
CALL.s(al, az,...an)

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO__30
PRODUCT NAME FORTRAN Extended
PRODUCT NO. €012 VERSION__ 1.0 MACHINE SERIES 64 /6600
oY
CALL s
or

CALL s (al, az,...an), RETURNS (bl, b2""bm)
or

CALL s, RETURNS (bl’ b2""bm)

where s is the name of a subroutine and the a's and b's are actual arguments
(8.4.2)., The b's are statement labels of statements in the current

calling subprogram and indicate alternate return points (8.4.1)..

The inception of execution of a CALL statement references the designated
subroutine. Return of control from the designated subroutine completes

execution of the CALL statement.

7.1.2.,5 RETURN Statement

© A RETURN statement if of one of the forms:
RETURN
or
.7 RETURN a
® ;“ where a is a dummy argument which appears in the associated RETURNS
: \ v . :
list . ‘

CA138-1

CONTROL DATA CORPORATION e DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS___ ERS - PAGE NO__31
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO12 wversioN___ 1.0 MACHINE SERIES 64/6600

A RETURN statement marks the logical end of a procedure subprogram

and, thus, may only appear in a procedure subprogram.,

Execution of this statement when it appears in a subroutine subprogram

causes return of control to the current calling program unit.

The statement RETURN a can only appear in a subroutine subprogram.
Execution of this statement causes control to be returned at the

statement number corresponding to a in the returns list.

Execution of this statement when it appears in a function subprogram
causes return of control to the current calling program unit. At

this time the value of the function (8.3.1) is made available.

7.1.2.6 CONTINUE Statement
A CONTINUE statement is of the form:
 CONTINUE
Execution of this statement causes‘continuation of normal execution

sequence.

7.1.2.7 Program Control Statements
There are two types of program control statements:
¢y STOP statement.
2) . PAUSE statement.

7.1.2.7.1 STOP Statement
A STOP statement is of one of the forms:
STOP n
or
STOP

where n is an octal digit string of length from one to five.

Execution of this statement causes termination of execution of the

executable program. n is displayed in the dayfile.

7.1.2.7.2 PAUSE Statement

A PAUSE statement is of one of the forms:

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DPOCUMENT
DOCUMENT cLAss___ERS PAGE NO_>2
PRODUCT NAME FORTRANEXtended
PRODUCT NO. _C012 _ versiON—L1-0 MACHINE SERIES 6476600
"PAUSE n
or
PAUSE
where n is an octal digit string of length from one to five.
n is displayed in the dayfile.
The inception of execution of this statement causes a cessation of
execution of this executable program., Execution must be resumable.
At the time of cessation of execution the octal digit string is
accessible. The decision to resume execution is not under control
of the program, but if execution is resumed without otherwise éhanging
the state of the processor, the completion of the PAUSE statement
causes continuation of normal execution sequence.
7.1.2.8 DO Statement

CA138-1

A DO statement is one of the forms:
DO ni= My, My, Mg

or

where

(1) n is the statment label of an executable statement. This state-
ment, called the terminal statement of the associated DO must
physically follow and be in the same program unit as that DO
statement. The terminal statement may not be a GO TO of any
form, arithmetic IF, RETURN, STOP, PAUSE, or DO statement, nor a
logical IF containing any of these forms.

(2) i is an integer variable name; this variable is called the
control variable.

(3) my called the initial parameter; s called the terminal parameter;
and Mg, called the incrementation parameter are each either an
integer coms tant or integer variable reference. If the second
form of the DO statement is used so thatm3 is not explicitly
stated, a value of one is implied for the incrementation para-
meter, At time of execution of the DO statement, ml, m, and

mg must be greater than zero.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS , PAGE NO__33
PRODUCT NAME FORTRAN Extended
PRODUCT NO. €012 version__1.0 MACHINE SERIES 64/6600

Associated with each DO statement is a range that is defined to be
those executable statements from and including the first exe%utable
statement following the DO, to and including the terminal statement
associated with the DO, A special situation occurs when the range '
of a DO contains another DO statement., In this case, the range of

the contained DO must be a subset of the range of the containing DO.

A completely nested nest is a set of DO statements and their ranges,
and any DO statements contained with their ranges, such that the
first occurring terminal statement of any of those DO statements
physically follows the last occurring DO statement and the first
occurring DO statement of the set is not in the range of any DO

statement,

© A DO statement is used to define a loop. The action succeeding execution

of a DO statement is described by the following six steps:

1. The control variable is assigned the value represented by the
initial parameter. This value should be less than or equal to
the value represented by the terminal parameter; if this condi-
tion is not true, the DO loop will be executed once.

2. The range of the DO is executed.

3. If control reached the terminal statement, and after execution
of the terminal statement, the control variable of the most
recently executed DO statement associated with the terminal

statement is incremented by the value represented by the
associated incrementation parameter.

4., T1f the value of the control variable after incrementation is
less than or equal to the value represented by the associated
terminal parameter, the action as described starting at step 2
is repeated with the understanding that the range in question
is that of the DO, the control variable of which was most recently
incremented. If the value of the control variable is greater
than the value represented by its associated terminal parameter,
the DO is said to have been satisfied and the control variable

becomes undefined.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_34
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO012 _ VERSION__1.0 MACHINE SERIES 64/6600

5. At this point, if there were one or more other DO statements

CA138-1

referring to the terminal statement in question, the control
variable of the next most recently executed DO statement is

" incremented by the value represented by its associated incre-
mentation parameter and the action as described in step 4 is
repeated until all DO statements referring to the particular
termination statement are satisfied, at which time the first

executable statement following the terminal statement is executed.

6. If any of the control parameters exceed 217-1 or if integer con-
stants used as control parameters exceed ten digits with or without

leading zeroes, the performance of the loop is unspecified.

In the remainder of this section (7.1.2.8) a logical IF statement
containing a GOTO or arithmetic IF statement form is regarded as

a GOTO or arithmetic IF statement respectively.

Upon exiting from the range of a DO by execution of a GOTO statement
or an arithmetic IF statement, that is, other than by satisfying the
Do, the control variable of the DO is defined and is equal to the most

recent value attained as defined in the foregoing.

A DO is said to have an extended range if both of the following

conditions apply:

(1) There exists a GOTO statement or arithmetic; IF statement
within the range of a DO nest that can cause control to pass
out of that nest.

(2) There exists a GOTO statement or arithmetic IF statement not
within the nest that, in the collection of all possible sequences
of execution in the particular program unit could be executed
after a statement of the type described in (1), and the execution
of which could cause control to return to a statement in the nest
such that the innermost DO which contains this statement also

contains the statement described in (1).

CONTROL DATA CORPORATION ° DEVELOBMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS ‘ PAGE NO__35
PRODUCT NAME FORTRAN Extended _ —
PRODUCT NO. C012 VERS!ION___1.0 MACHINE SERIES 64 /6600

If both of these conditions apply, the extended range is defined to

be the set of all executable statements that may be executed between

all pairs of control statements, the first of which satisfies the
condition cf (1) and the second of (2). The first of the pair is not
included in the extended range; the second is. A GO TO statement or.an
arithmetic IF statement may not cause control to pass into the range of
a DO unless it is being executed as part of the extended range of that
particular DO. Further, the extendedbrange of a DO may not contain a

DO of the same program unit that has an extended range. When a procedure
reference occurs in the range of a DO the actions of that procedure are
considered to be temporarily within that range, i.e., during the execution

of that reference.

The control variable, initial parameter, terminal parameter, and in-
crementation parameter of a DO may not be redefined during the execution

of the range or extended range of that DO,

If a statement is the terminal statement of more than one DO statement,
the statement label of that terminal statement may not be used in any
GO TO or arithmetic IF statement that occurs anywhere but in the range

of the most deeply contained DO with that terminal statement.

7.1.2.9 ENCODE/DECODE Statements

O Core to core statements. These statements are comparable to the formatted

o write and formatted read statements, respectiﬁely with the difference that
" no peripheral equipment is involved. Information is transferred under

format specifications from one area of internal storage to another.

DECODE Statement, A DECODE statement is of the form:

@,
-

DECODE (n,£,A) k WoorLt e

3
P

k is a list, A i1s a variable or array element reference, n is an

v, -
waLelre

integer constant or variable, and f is a format specification.

CA138-1

CORTROL CATA CORPORATION © DEVELOPMENT DIV e SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO._36
PRODUCT NAME FORTRAN Extended —_—
PRODUCT NO. C012 wversion____ 1.0 MACHINE SERIES 64 /6600

Execution of this statement causes the transfer and editing of n
characters starting at A. The information is scanned and converted

as specified by the format specification identified by f£. The resulting
values are assigned to the elements specified by the list% If the number
of characters specified by the list is greater than n , conversion will

continue at the first full word following the nth character.

ENCODE Statement
An ENCODE statement is of the form:
ENCODE (n,£,A) k

where k, A, n and f are as above.

Fh

G Execution of this statement causes the transfer of information in the list,
converted according to the format specification £, to locations starting
at A, for n characters. If the number of characters converted is less

than n, the remaining characters are made blanks. If the number of
characters specified by the list is more than n characters, conversion
will continue at the first full word following the nth character, If n

is not a multiple of 10, the remaining characters in the last word are

converted to blanks.

7.1.3 Input/Output Statements
There are two types of input/output statements:
(1) READ and WRITE statements.
(2) Auxiliary input/output statements.

The first type consists of the statements that causes transfer of records
of sequential files to and from the internal storage, respectively. The
second type consists of the BACKSPACE and REWIND statements that provide
for positioning of such an external file, and ENDFILE, which‘provides“for

demarcation of such an external file.

In the following descriptions, u and f identify input/output units and
format specifications, respectively. An input/output unit is identified
by an integer value and u may be either an integer constant or an integer
variable reference whose value then identifies the unit. The formatr
specification is described in Section 7.2.3. u may take on values

CA138-1
from 1 to 99.

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO_37.
PRODUCT NAME - FORTRAN Extended
PRODUCT NO. CO0lZ VERSION 1.0 MACHINE SERIES 6476600

Either the statement label of a FORMAT statement or an array name
may be represented by £. If a statement label, the identified
statement must appear in the same program unit as the input/output

statement. If an array name, it must conform to the specifications
o~

in 7.2.,3.10. ;
L) ‘\)\/

A particular unit has a single sequential file associated with it.

The most general case of such a unit has the following properties:

(1) If the unit contains one or more records, those records exist
as a totally ordered set. |

(2) There exists a unique position of the unit called its initial
point. If a unit contains no records, that unit is positiomed
at its initial point. If the unit is at its initial point
and contains records, the first record of the unit is defined
as the next record.

(3) If a unit is not positioned at its initial point, there exists
a unique preceding record associated with that position. The
least of any records in the ordering described by (1) following
this preceding record is defined as the next record of that

position.

(4) Upon completion of execution of a WRITE or ENDFILE statement,
there exist no records following the records created by that
statement,

(5) When the next record is transmitted, the position of the unit

is changed so that this next record becomes the preceding record.
If a unit does not provide for some of the properties given in the

foregoing, certain statements that will be defined may not refer to

that unit, The use of such a statement is not defined for that unit.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO12 VERSION_____ 1.0 MACHINE SERIES 64 /6600

7.1.3.1 READ and WRITE Statements
The READ and WRITE statements specify transfer of informationm.
Each such statement may include a list of the names of variables,
arrays, and array elements. The named elements are assigned values

on input and have their values transferred on output.

Records may be formatted or unformatted. A formatted reeord
consists of a string of the characters that are permissible in
Hollerith constants (5.1.1.6). The transfer of such a record
requires that a format specification be referenced to supply the
necessary positioning and conversion specifications (7.2.3). The
number of records transferred by the execution of a formatted READ
or WRITE is dependent upon the list and referenced format specifi-
cation (7.2.3.4). An unformatted record consists of a string of
values. When an unformatted or formatted READ statement is executed,
the required records on the identified unit must be, respectively,

unformatted or formatted records.

7.1.3.1.1 Input/Output Lists
The input list specifies the names of the variables and array
elements to which values are assigned on input. The output list
specifies the references to variables and array elements whose
values are transmitted. The input and output lists are of the same

form.

Lists are formed in the following manner. A simple list is a
variable name, an array element name, or an array name, or two simple

lists separated by a comma.

A list is a simple list, a simple list enclosed in parentheses,

a pO-implied list, or two lists separated by a comma.

A DO-implied list is a list followed by a comma and a DO-implied

specification, all enclosed in parentheses.

CA138-1

CONTROL DATA CORPORATION o DEVELOPRIGENT DIV © SOFTWARE DOCUMENT

DOCUMENT CLASS ERS ‘ PAGE NO 39
PRODUCT NAME TORTRAN Extended ;
PRODUCT NO. CO012 VERSION 1.0 MACHINE SERIES 64/6600

A DO-implied specification is of one of the forms:

i=m m,, m
1, 2° 73
or
)

The elements i, m , and m3 are as defined for the DO statement

m,
1’ 72
(7.1.2.8). The range of DO-implied specification is the list of the
DO-implied 1ist and, for input lists, i, my, m,, and m, may appear,
within that range, only in subscripts.

A variable name or array element name specifies itself. An array
name specifies all of the array element names defined by the array
declarator, and they are specified in the order given by the array

element successor function (7.2.1.1.1).

The elements of a list are specified -in the order of their occurrence
from left to right. The elements of a list in a DO-implied list

are specified for each cycle of the implied DO,

7.1.3.1.2.Formatted READ
A formatted READ statement is of one of the forms:
READ (u,f) k
or
READ (u,f)

where k is a list,

Execution of this statement causes the input of the records from

the unit identified by u., u may be an integer constant or simple
integer variable. The information is scanned and converted as speci-
fied by the format specification identified by f. The resulting
values are assigned to the elements specified by the list. See
however 7.2.3.4,

c READ £,k
L

ig%ﬁk +

Execution of this statement causes the input of records from the

CA138-1 INPUT file.

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

40

CA138-1

DOCUMENT CLASS___ERS ‘ PAGE NO______
PRODUCT NAME FORTRAN Extended
PRODUCT NO. C012 VERSION.__L:0 MACHINE SERIES 64/6600
~7.1.3.1.3 Formatted WRITE
A formatted WRITE statement is of one of the Ifomms:
WRITE (u,f)k
or
WRITE (u,f)
where k is a list,
Execution of this statement creates the next records on the unit
identified by u. u may be an integer constant or simple integer
variable, the k list specifies a sequence of values. These are
converted and positioned as specified by the format specification
identified by £. See however, 7.2.3.4.
o ¢ PRINT £,k o DRLTT O
f PUNCH £,k e PO ”ff
Lo
Execution of these statements creates the next record on the
OUTPUT and PUNCH file respectively.
7.1.3.1.4 Unformatted READ
An unformatted READ statement is of one of the forms:
READ (u) k
or
READ (u)
where k is a list.
Execution of this statement causes the input of the next record
from the unit identified by u, and, if there is a list, these values
are assigned to the sequence of elements specified by the list. The
sequence of values required by the list may not exceed the sequence
of values from the unformatted record. '
The effect of a READ statement without a list is to skip the next
logical record on the I/0 device.
7.1.3.1.5 Unformatted WRITE

An unformatted WRITE statement is of the form:
WRITE (u) k

where k is a list.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS _ PAGE NO 41
PRODUCT NAME FORTRAN Extended —
PRODUCT NO. CO01Z _ VERSION_1.0 MACHINE SERIES 64 /6600

Execution of this statement creates the next record on the unit

identified by u of the sequence of values specified by the list.

The format of the record on the external device is described in
Chapter 3 of the 6400/6600 SCOPE reference manual (Pub. No. 60173800).

7.1.3.1.6 BUFFER IN and BUFFER OUT statements.

L}
Recording Mode »
The recording mode k in the following statements designate equipment
pecularities, it is inoperative for many peripheral devices. For

magnetic tapes, k=0 designates even parity, k=1 designates odd parity.

BUFFER IN statement
A BUFFER IN statement is of the form:
BUFFER IN (u,k) {A,B)

where k is the recording mode (integer constant or simple integer
variable), A is the first word of the block to be transmitted, and

B is the last word of the block to be transmitted.

Execution of this statement causes the input of the next record from
unit u to be initiated. Only one physical record is read for each

BUFFER IN statement.

BUFFER OUT statement
A BUFFER OUT statement is of the form:
BUFFER OUT (u,k) (A,B)

A is the first word of the data block to be output, and B is the last
word of the block to be output.

Execution of this statement causes the output of words A through B,
inclusive, on unit u to be initiated, and control returned to the
program, permitting the performance of the other tasks while transmission
is in progress. One physical record is written for each BUFFER OUT

statement.
CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° 'SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO élA
PRODUCT NAME FORTRAN Extended

PRODUCT NO. €012 VERSION___1.0 MACHINE SERIES 64/6600

All buffer statements should be followed by an I/O status function.
See Appendix C.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DiV . SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO 42
PRODUCT NAME FORTRAN Extended '
PRODUCT NO. C012 vEgRrsiON 1.0 MACHINE SERIES 64 /6600

7.1.3.1.7 NAMELIST Statement

o

CA138-1

A NAMELIST statement is of the form:

NAMELIST /yl._/al/yz/azl. /yn/an ,
where each y is a symbolic name and each a is a list of the form
hl’b2°"'?b1f Each b is a variable or array name.
Each y is a NAMELIST name , a name which must differ from all
other names in the program unit. The name after being defined
may appear only in READ or WRITE statements as described later in
this section. A NAMELIST name may be defined only once in its

program unit, and must precede any reference to it.

In any given NAMELIST statement, the list a of variable names or
array names occurring between the NAMELIST name y and the next
LIST name (or the end of the statement if no NAMELIST name
follows) is associated with the NAMELIST name y. A variable name
or array name may be an element of more than one such list, In a
subprogram, b may be a dummy argument identifying a variable or an
array with the exception that the array may not have adjustable

dimensions.

The NAMELIST statement permits the input and output of character
strings consisting of names and values without a format specification.
The statements:

READ (u,x)

WRITE (u,x)
where u is an integer variable or integer constant and x is a
NAMELIST name, cause BCD input or output, on the device specified
as a logical unit u, of the variables and arrays associated with

the name x.

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT
' 43

DOCUMENT CLASS ERS PAGE NO
PRODUCT NAME . FORTRAN Extended —
PRODUCT NO. CO1Z version__1:0 MACHINE SERIES 64 /6600

READ (u,x) causes unit u to scan the current file until it locates
either an end of file or a record with a $ in column 2 followed
immediately by the name x with no embedded blanks. On location of

the name x the unit reads the following data items £from the current

file until it encounters a $.

Data items are separated by commas. They may take any of three forms:

(1) wv=c

(2) ady,. -4

(3) a(n) ==d1,,..qn where v is a variable name. ¢ is a constant,
a is an array name and n is a subscript consisting wholly of
integer constants. The number of constants must equal the number
of dimensions of the array a. The dm are simple constants or
repeated constants of the form k¥*c, whem k¥*c indicates that the

constant ¢ is to be repeated k times.

The number of constants, including repetitions, given for an (un-
subscripted) array name must equal the number of elements in that
array. For a subscripted array name, the number of constants need

not equal but may not exceed the number of array elements which follow

the specified element, plus one.

v=c causes the variable v to be set to ¢,

a=-d1,,..djcauses the values dl,...,dj to be stored in consecutive
elements of array a, in the order in which the array is stored in-

ternally,

a(n) = dlr"=’i5fi113 elements consecutively starting at a(n).

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

: an
DOCUMENT CLASS_ RS PAGE NO
PRODUCT NAME FORTRAN Extended »
PRODUCT NO.. €012 VERSION___1.0 MACHINE SERIES 64 /6600

The specified constants may be integers, real numbers, double precision
numbers, complex numbers of the form (cl,cz) or logical constants of the
forms, T, ,TRUE.,, F, .FALSE. A logical or complex variable may be set
only to a logical and comﬁlex constant , respectively. Any other variable
may be set to an integer, real or double-precision constant. Such a con-

stant will be converted to the type of its associated variable.

Constants and repeated constant fields may not include embedded blanks,

blanks may appear elsewhere in data records.

Input records may not include more than 120 characters. More than one
record may be used for input data. Each but the last record must end
with a constant followed by a comma, and no serialization numbers may

appear; the first column of each record will be ignored.

The set of data items may consist of any subset of the variable names
associated with x. These names need not appear in the same order in

which they appear in the defining NAMELIST statement.
WRITE (u,x) causes output on unit u of BCD information as follows:

(1) One record consisting of a $ in column 2 immediately followed by

the name x.

(2) As many records as are needed to output the current values of all
variables in the list associated with x. Simple variables are
output as v=c. Elements of dimensioned variables are output in the
linear order in which they are stored internally. The fields for the
data are made large enough to include all significant digits. Logical
constants appear as T and F. No data appears in column 1 of any
record.

(3) One record consisting of a $ in column 2 immediately followed bj

the letters END.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO__%>
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO1Z vERSION 1.0 MACHINE SERIES 64/6600

The records output by such a WRITE statement may be read by a READ

(u,x) statement where x is the same NAMELIST name.

7.1.3.2 Auxiliary Input/Output Statements
There are three types of auxiliary inpﬁt/output statements:
(1) REWIND statement,
(2) ' BACKSPACE statement.
(3) ENDFILE statement.

7.1.3.2.1 REWIND statement.
A REWIND statement is of the form:
REWIND u
Execution of this statement causes the unit identified by u to be

positioned at its initial point.

7.1.3.2.2 BACKSPACE Statement
A BACKSPACE statement is of the form:
BACKSPACE u
If the unit identified by u is positioned at its initial point,
execution of this statement has no effect. Otherwise, the execution
of this statement results in the positioning of the unit identified
by u so that what had been the preceding : record prior to that

execution becomes the next record,

7.1.3.2,3 ENDFILE Statement
An ENDFILE statement is of the form:
ENDFILE u |
Execution of this statement causes the recording of an endfile
record on the unit identified by u. The endfile record is an

unique record signifying a demarcation of a sequential file, .

7.1.3.3 ' Input/Output with Extended Core Storage (ECS) 4
e The two following subroutines are provided to permit the transfer of
data between ECS and central memory. The form of the calls is:
CALL READEC (A,B,N) '
and

CA138-1 CALL WRITEC (A,B,N)

CONTROL DATA CORPORATION ® DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__%46
PRODUCT NAME FORTRAN Extended 7
PRODUCT NO. c012 VERSION___ 1.0 MACHINE SERIES 64/6600}

Subroutines READEC and WRITEC effect the transfer of data from ECS

to central memory, or from central memory to ECS respectively.

A is a simple or subscripted variable located in central memory, B is a
simple or subscripted variable located in an ECS common block (see Section
7.2.1.3) and N is an integer constant or intggé}"éxﬁresgéon. When the
subroutine is called, N consecutive words of data will be transferred
between central memory and ECS beginning with locati on Avin central

memory and B in ECS.

7.1.3.3.1 Input/Output with Mass Storage (MS)

o Four object time I/0 subroutines are provided to control the transfer of
records between central memory and a mass storage de#ice. The forms
of the calls are:

CALL OPEMMS (u,ix,L,p)
CALL READMS (u,fwa,n,i)
CALL WRITMS (u,fwa,n,i)
CALL STINDX (u,ix,L)
u is the unit number
ix is the first word address of the index (in central memory)
L is the length of the index (for a name index,
L £2(number of index entries) +1; for a number index,
L <number of index entries +1)

indicates that the file is referenced through a name index

L]

(p=1), or through a number index (p=0).
fwa is the central memory address of the first word of the record,
n is the number of central memory words transferred. '
i is the record name or number.
OPENMS is called to open the mass storage file. OPENMS informs
SCOPE that this file is a "random access" file and if the file
exists, the master index is read into the area specified by the

program.,

READMS and WRITMS perform the actual transfer of data to or from

central memory.

STINDX is called to change the file index to the base specified in the

CA138-1 call (see Appendix J).

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__46A
PRODUCT NAME FORTRAN Extended
PRODUCT NO. €012 VERSION___1.0 MACHINE SERIES 64/6600

7.1.3.4 Printing of Formatted Record

When formatted records are prepared for printing, the first character

of the record is not printed.

The first character of such a record determines vertical spacing

as follows:

Character Vertical Spacing Before Printing One Line
Blank One line
0 Two lines
1 To first line of next page
+ No advance

Other One line

CA138-)

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO_47
PRODUCT NAME FORTRAN Extended
PRODUCT NO. 012 verstON___1.0 MACHINE SERIES 64/6600

7.2 NONEXECUTABLE STATEMENTS

There are six types of nonexecutable statements:
(1) Specification statements.
(2) Data initialization statement.
(3) FORMAT statement.
(4) TFunction defining statements,
(5) Subprogram statements.

© (6) NAMELIST statements.

See 10.1.2 for a discussion of restrictions on appearances of

symbolic names in such statements.,

The function defining statements and subprogram statements are
discussed in Section 8. NAMELIST statements are defined in

Section 7.1.3.1.7.

7.2.1 Specification Statements
There are five types of specification statements:
(1) DIMENSION statement.
(2) COMMON statement.
(3) EQUIVALENCE statement,
(4) EXTERNAL statement.
(5) Type-statements.

'7.2.1.1 Array-Declarator

An array declarator specifies an array used in a program unit.

The array declarator indicates the symbolic name , the number of
dimensions (one, two, or three), and the size of each of the dimen-

. S b g , A
sions. The array declarator form may be”a type-statement,

DIMENSION .oxr COMMON statement.

/

An array declarator has the form:

v (i)

CA138-1

CONTROL DATA CORPORATION) DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ERS 7 PAGE NO____%48
PRODUCT NAME FORTRAN Extended '
PRODUCT NO. C012 VERSION____1.0 MACHINE SERIES 64/6600

where:

(1) v, called the declarator name, is a symbolic name,

(2) (i), called the declarator subscript, is composed of 1, 2,
or 3 expressions, each of which may be an integer constant or . '
an integer variable name. Each expression is separated by a
comma from its successor if there are move than one of them.
In the case where i contains no integer variable, i is called

the constant declarator subscript.

The appearance of a declarator subscript in a declarator statement
serves to inform the processor that the declarator name is an array
name. The number of subscript expressions specified for the array
indicates its dimensionality. The magnitude of the values given for
the subscript expressions indicates the maximum value that the

subscript may attain in any array element name,

No array element name may contain a subscript that, during execution
of the executable program, assumes a value less than one or larger
than the maximum length specified in the array declarator. Doing

so may result in referencing an element outside of the array.

7.2.1.1.1 Array Element Successor Function and Value of a Subscript.
For a given dimensionaljity, subscript declarator, and subscript,
the value of a subscript pointing to an array element and the
maximum value a subscript may attain is indicated in Table 2, A
subscript expression must be greater than zero or the result will

be undefined,

The value of the array element successor function is obtained by
adding one to the entry in the subscript value column., Any array
element whose subscript has this value is the successor to the

original element. The last element of the array is the one whose

subscript value is the maximum subscript value and has no successor

element,

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO___ 42
PRODUCT NAME FORTRAN Extended

PRODUCT NO. COlZ VERSION____ 1.0 MACHINE SERIES 6476600

TABLE 2. VALUE OF A SUBSCRIPT

- Maximum
Subscript Subscript ‘Subscript
Dimensionality Declarator Subscript Value Value
(a) @) a A
2 (4, B) . (a,b) a + A (b-1) A“B
(4, B, C) (a,byc) |a + Ae(b-1) A*B-C
+ A+B+{(c-1)

NOTES (1) a, b andc are subscript expressions.

(2)> A, B, and C are dimensions.

7.2.1.1.2 Adjustable Dimension
If any of the entries in a declarator subscript is an integer variable
name, the array is called an adjustable array, and the variable names
are called adjustable dimensions. Such an array may only appear in
a procedure subprogram. The dummy argument list of the subprograms
must contain the array name and the integer variable names that
represent the adjustable dimensions. The values of the actual
arguments that represent array dimensions in the argument list of
 the reference must be defined (10.2) prior to calling the sub-
program and may not be redefined or undefined during execution of
the subprogram. The maximum size of the actual array may not be ex-
ceeded, For every array appearing in an executable program (9.1.6),
there must be at least one constant array declaration associated

throuph subprogram references.,

In a subprogram, a symbolic name that appears in a COMMON statement

may not identify an adjustable array.

7.2.1.2 DIMENSION Statement
A DIMENSION statement is of the form:
DIMENSION — y(1;)s vy (1))50005v (1)

where each v(i) is an array declarator.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_320
PRODUCT NAME FORTRAN Extended _
PRODUCT NO. c012 VERSION____ 1.0 MACHINE SERIES._64/6600

7.2.1.3 COMMON Statement
. A COMMON statement is of the form:
COMMON /Xllal/.../xn/an

where each a is a nonempty list of variable names, array names, or
array declarators (no dummy arguments are permitted) and each x is a
symbolic name, a number up to seven digits long, or it is empty. If Xy |
is empty, the first two slashes are optional. Each x is a block name,

a name that bears no relationship to any variable or array having the
same name. This holds true for any such variable or array in the same

or any other program unit. See 10.1.1 for a discussion of restrictions

on uses of block names.

In any given COMMON statement, the entities occuring between block

name X and the next block name (or the end of the statement if no

block name follows) are declared to be in common block x. All

entities from the beginning of the statement until the appearance of

a block name, or all entities in the statement if no block name

appears, are declared to be in blank or unlabeled common. Alternatively,
the appearance of two slashes with no block name between them declares

the entities that follow to be in blank common.

A given common block name may occur more than once in a COMMON state-
ment or in a program unit. The processor will string together in a
given common block all entities so assigned in the order of their
appearance (10.1.2). The first element of an array will follow the
immediately preceding entity, if one exists, and the last element of an

array will immediately precede the next entity, if one exists.

The size of a common block in a program unit is the sum of the storage
required for the elements introduced through COMMON and EQUIVALENCE
statements, The length of a common block other than BLANK COMMON must not
be increased by any program unit that comprises an executable program after
that length is initially established at load time. Any declaration of the

same common block name in subsequently loaded program units must have a {

length less than or equal to the original declaraction., The sizes of
blank common in the various program units that are to be executed together

need not be the same., Size is measured in terms of storage units (7.2.1.3.1).
CA138-1

CONTROL DATA CORPORATION] DEVELOPMENT DiV ° SOFTWARE DOCUMENT

DOCUMENT CLASS
PRODUCT NAME

PRODUCT NO.

ERS PAGE NO_91
FORTRAN Extended
€012 VERSION__£:0 MACHINE SERIES__ 0476600

7.2.1.3.1 Correspondence of Common Blocks

7.2.1.4

CA138-1

If all of the program units of an executable program that contain any

definition of a common block of a particular name define that block

sdch that:

L

(2)

There is identity in type for all entities defined in the corres-
ponding position from the beginning of that block.

If the block is labeled and the same number of entities is defined
for the block, then the values in the corresponding positions

(counted by the number of preceding storage units) are the same

quantity in the executable program.

A double precision or a complex entity is counted as two logically

consecutive storage units; a logical, real, or integer entity, as one

storage unit.

Then for common blocks with the same number of storage units or blank

common :

(1)

(2)

in all program units which have defined the identical type to a

given position (counted by the number of preceding storage units)

- references to that position refer to the same quantity.

A correct reference is made to a particular position assuming a
given type if the most recent value assignment to that position

was of the same type.

If any of the elements of a COMMON block are of type ECS then all of

the elements of that block must be of type ECS. No elements of type
ECS may appear in the blank COMMON block.

EQUIVALENCE Statement
An EQUIVALENCE statement is of the form:

EQUIVALENCE (k;), (ky), «u-y (k)

in which each k is a list of the form:

a a LN] a
1> =2 > "m

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASs___ERS PAGE NO_52
PRODUCT NAME FORTRAN Extended ~ /
PRODUCT NO. c012 VERSION__ 120 MACHINE SERIES ‘ ZETEE00

Each a is either a variable name or an array element name (not a

4 - dummy argument or an ECS variable or array element), the subscript
of which contains only constants, and m is greater than or equal to two.
The number of subscript expressions of an array element name must
correspond in number to the dimensionality of the array declarator or
must be one (the array element successor function defines a relation
by which an array can be made equivalent to a one dimensional array of

the same length).

The EQUIVALENCE statement is used to permit the sharing of storage
by two or more entities. Each element in a given list is assigned
the same storage (or part of the same storage) by the processor. The
EQUIVALENCE statement should not be used to equate mathematically two
or more entities. If a two storage unit entity is equivalenced to a
one storage unit entity, the latter will share space with the first

storage unit of the former.

The assignment of storage to variables and array declared directly
in a COMMON statement is determined solely by consideration of their
type and the COMMON and array declaration statements. Entities so
declared are always assigned unique storage, contiguous in the order

declared in the COMMON statement.

The effect of an EQUIVALENCE statement upon common assignment may be
the lengthening of a common block; the only such lengthening permitted
is that which extends a common block beyond the last assignment for

that block made directly by a COMMON statement.

When two variables or array elements share storage because of the
effects of EQUIVALENCE statements, the symbolic names of the variables
or arrays in question may not both appear in COMMON statements in the

same program unit,

CA138-1

CONTROL DATA CORPORATICON ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO.53
PRODUCT NAME FORTRAN Extended —_—
PRODUCT NO. CO1Z versiON___ 1.0 MACHINE SERIES 64 /6600

Information contained in 7.2.1.1.1, 7.2.1.3.1, and the present
section suffices to describe the possibilities of additional cases
of sharing of storage between array elements and entities of common
blocks. It is incorrect to cause either directly or indirectly a
single storage unit to contain more than one element of the same

array.

7.2.1.5 EXTERNAL Statement
An EXTERNAL statement is of the form:

EXTERNAL Vi VoseeesV

where each v is an external procedure name.

Appearance of a name in an EXTERNAL statement declares that name to
be an external procedure name. If an external procedure name is used
as an argument to another external procedure, it must appear in an

EXTERNAL statement in the program unit in which it is so used.

7.2.1.6 Type-statements
A type-statement is of the form:

e,V
2? >'n

® where t is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or ECS

£V, ,V

optionally preceded by the characters TYPE and each v is a variable

name, an array name, a function name, or an array declarator.
DOUBLE may be used in place of DOUBLE PRECISION.

A type-statement is used to override or confirm the implicit
typing, to declare entities to be of the type double precision,

complex, or logical, and may supply dimension information.

The appearance of a symbolic name in a type-statement serves to
inform the processor that it is of the specified data type for all
appearances in the program unit. See, however, the restriction in

8.3.1 second paragraph.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO__2% _
PRODUCT NAME FORTRAN Extended
PRODUCT NO. COl2versioN___ 1.0 MACHINE SERIES 64/6600

7.2.2 Data Initialization Statement

A data initialization statement is of the form:
DATA k. /d; [,ky [dy [5 weey Kk /A]
where:
(1) Each k is a list containing names of variables and array elements.
o Each k can also be an array name that can have from one to three
control subscripts (each of which may be variable) and from one
to three integer constant control parameters, These control sub-
scripts have no meaning except in the range of the array name
within the DATA statement. .
2) . Each'd is a list of constants and optionally signed constants,
any of which may be preceded by j*.

(3) j is an integer constant.

If a list contains more than one entry, the entries are separated by

commas ,

Dummy arguments may not appear in the list k.

When the form j* appears before a constant it indicates that the
constant is to be specified j times. A Hollerith constant may

appear in the list d.

The constants may be grouped by parentheses and optionally preceded

by j'a'c.

A data initialization statement is used to define ‘initial values
of variables or array elements. There must be a one-to-one corres-
pondenge between the list-specified items and the constants. By

this correspondence the initial value is established.

© : If a list-specified item is an array name with no control sub-
script or parameters, the constant list will define values in the
array to the maximum dimensional length or until the constant list

is exhausted,

CA138-1

CONTROL DATA CORPORATVBON ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_-335

PRODUCT NAME FORTRAN Extended A
PRODUCT NO._—o €012 versION__1.0 MACHINE SERIES 64 /6600

An initially defined variable or array element may not be in blank common.

7.2.2,1 Alternate Form of Data Statement

e The alternate form of the data initialization statement has the form:

DATA (r1=d1),(r2=d2),...(rn=dn)

where:

(1) Each r is a list containing names of variables and arrays or array
~element names that can have from one to three control subscripts
(each of which may be variable) and from one to three integer constant
control parameters. These control subscripts have no meaning except
in the range of the array name within the DATA statement,

(2) Each d is a list of constants and optionally signed constants; any
of which may be preceded by j*. The constants may be grouped by
parenthesis and optionally preceded by j*.

(3) j is an integer constant.

7.2.3 FORMAT Statement
FORMAT statements are used in conjunction with the input/output of

formatted records to provide conversion and editing information be-

tween the internal representation and the external character strings.

A FORMAT statement is of the form:
FORMAT (qltlzltzza...tnznqz)

where

¢D) (qltlzltZZZ"'tnzan) is the format specification.

(2) Each q is a series of slashes or is empty.

(3) Each t is a field descriptor or group of field descriptors.
(4) Each z is a field separator.

(5) n may be zero.
A FORMAT statement must be labeled.

7.2.3.1 Field Descriptors
The format field descriptors are of the form:

CA138-1

CONTROL DATA CORFORATION .

DEVELOPMENT DIV °

SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO___ 20
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO1Z yersioN 1.0 MACHINE SERIES 64/6600
srEw.d
srFw.d
srGw.d
srDw.d
rIw
rLw
TAW
n Hhi, hz...hn
nX
rRw
0w
Fooo¥
) Tn
where:

(1) The letters F,E,G,D,I,L,A,H,R,T,0, and X indicate the manner
of conversion and editing between the internal and external
representations and are called the conversion codes,

(2) w and n are nonzero integer constants representing the width
of the field in the external character string. n used in
conjunction with T indicates a beginning column position for
subsequent information,

(3) d is an integer constant representing the number of digits in
the fractional part of the external character string (except
for G conversion code).

(4) r, the repeat count, is an optional nonzero integer constant
indicating the number of times to repeat the succeeding basic
field descriptor.

(5) s i1s optional and represents a scale factor designator,

(6) Each h is one of the characters capable of representation by
the processor,

(7) Asterisks are used to delimit Hollerith strings.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO__ 57
PRODUCT NAME FORTRAN - Extended .
PRODUCT NO. C012 VERSION 1.0 MACHINE SERIES 64/6600

) For all descriptors, the field width must be specified. For

descriptors of the form w.d, if the d is not specified, it is assumed

zero, Further, w must be greater than or equal to d.

' The phrase basic field descriptor will be used to signify the field

descriptor unmodified by s or r.

The internal representation of external fields will correspond to
the internal representation of the corresponding type constants
(4.2 and 5.1.1).

7.2.3.2 TField Separators
The format field separators are the slash and the comma., A series
of slashes is also a field separator. The field descriptors or

groups of field descriptors are separated by a field separator.

The slash is used not only to separate field descriptors, but to
specify demarcation of formatted records. A formatted record is
a string of characters., The lengths of the strings for a given

external medium are dependent upon both the processor and the

external medium,

The processing of the number of characters that can be contained
in a record by an internal medium does not of itself cause the

introduction or inception of processing of the next record.

7.2.3.3 Repeat Specifications
Repetition of the field descriptors (except n H and n X) is accom-
plished by using the repeat count. If the input/output list
warrants, the specified conversion will be interpreted repetitively

up to the specified number of times,

Repetition of a group of field descriptors or field separators
is accomplished by enclosing them within parentheses and optionally

preceding the left parenthesis with an integer constant called the

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO_38
PRODUCT NAME FORTRAN Extended ’
PRODUCT NO. €012 VERSION__1.0 MACHINE SERIES 64/6600

group repeat count indicating the number of times to interpret the
enclosed grouping. If no group repeat count is specified, a group
repeat count of one is assumed. This form of grouping is called a

basic group.

A further grouping may be formed by enclosing field descriptors,
field separators, or basic groups within parentheses, Again, a
group repeat count may be specified. The parentheses énclosing
the format speciﬁicgtion‘are not q9nsid§red as group dg}ineating

parentheses.

7.2.3.4 Format Control Interaction with an Input/Output Qutput List
Theiinception of execution of a formatted READ or formatted WRITE
statement initiates format control. Each action of format control
depends on information jointly provided respectively by the next
element of the input/output list, if one exists, and the next
field descriptor obtained from the format specification. If there
is an input/output list, at least one field descriptor other than

nH, nX, nT, or Asterisks must exist.

When a READ statement is executed under format control, one record
is read when the format control is initiated, and thereafter addi-
tional records are read only as the format specification demands.
Such action may not require more characters of a record than it

contains.

When a WRITE statement is executed under format control, writing of
a record occurs each time the format specification demands that a
new record be started, Termination of format control causes writing

of the current record.

Except for the effects of repeat counts, the format specification

is interpreted from left to right.
CA138-1

CONTROL DATA CORPORATION e DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO___ 59
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO012 versioN__1:0 MACHINE series__04/0600

To each I, F, E, G, D, A, R, O, or L basic descriptor interpreted
in a format specification, there corresponds one element specified
by the input/putput list, except that a complex element requifes
the interpretation of two F, E, or G basic descriptors. To each H,
Asterisks, T, or X basic descriptor there is no corresponding element
specified by the input/output list, and the format control communi-
cates information directly with the record. Whenever a slash is
encountered, the format specification demands that a new record
start or the preceding record terminate. During a READ operation,
any unprocessed characters of the current record will be skipped

at the time of termination of format control or when a slash is

encountered.

Whenever the format control encounters an I, F, E, 0, R, G, D,

A, or L basic descriptor in a format specification, it determines

if there is a corresponding element specified by the input/output
list. 1If there is such an element, it transmits appropriately
converted information between the element and the record and proceeds.

If there is no corresponding element, the format control terminates,

If, however, the format control proceeds to the last outer right
parenthesis of the format specification, a test is made to determine
if another list element is specified. If not, control terminates,
However, if another list element is specified, the format control
demands a new record start and control reverts to that group repeat
specification terminated by the last preceding right parenthesis,

or if none exists, then to the first left parenthesis of the format
specification, Note, this action of itself has no effect on the

scale factor,

7.2.3.5 Scale Factor
A Scale factor designator is defined for use with the F, E, G, and D
conversions and is of the form:

n P

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS _ PaGE NO_80
PRODUCT NAME FORTRAN Extended ' ' .~‘ -
PRODUCT NO. Cc012 vERSlON—__—l'_O__—_‘MACHINE SERIES 64./6600

when n, the scale factor, is an integer constant or minus followed

by an dinteger constant.

When the format control is initiated, a scale factor of zero is
established., Once a scale factor has been established, it applies to
all subsequently interpreted F, E, G, and D field descriptors, until
another scale factor is encountered, and then that scale factor is

estalished.

7.2.3.5.1 Scale Factor Effects
The scale factor n affects the appropriate conversions in the following
manner.
(1) For F, E, G, and D input conversions (provided no exponent exists
in the external field) and F output conversions, the scale factor
effect is as follows:

externally represented number equals internally represented
number times the quantity ten raised to the nth power.

(2) For F, E, G, and D input, the scale factor has no effect if there
is an exponent in the external field.

(3) For E and D output, the basic real constant part (see Section 5.1.1.2)
of the output quantity is multiplied by 10" and the exponent is re=-
duced by n.

(4) For G output, the effect of the scale factor is suspended unless
the magnitude of the datum to be converted is outside the range that
permits the effective use of F conversion. If the effective Jsé“5f
E conversion is required, the scale factor has the same effect as with

E output.

7.2,3.6 '~ Numeric Conversion
The numeric field descriptors, I, F, E, G, and D are used to specify
input/output of integer, real, double precision, and complex data.
(1) With all numeric input conversions, leading blanks are not
significant and other blanks are zero. Plus signs may be omitted,

A field of all blanks is considered to be zero.

CA138-1

CONTROL DATA CORPORATION) DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT cLASS____ERS PAGE NO

PRODUCT NAME
PRODUCT NO.

61

FORTRAN Extended
€012 version__ 1.0 MACHINE SERIES

(

(

”~N

(

2) With the F, E, G, and D input conversions, a decimal point
appearing in the input £ield overrides the decimal point
specification supplied by the field descriptor.

3) With all output conversions, the output field is right justified.
If the number of characters produced by the conversion is
smaller than the field width, leading blanks will be inserted
in the output field.

With all output conversions, the external representation of a

/l\ -~ o~
v

negative value must be signed; a positive value may be signed.
5) The number of characters produced by an output conversion must

not exceed the field width.

If the field width is exceeded a leading asterisk will be inserted.

7.2.3.6.1

7.2,3.6.2

CA138-1

Ihteger Conversion
The numeric field descriptor Iw indicates that the external field
occupies w positions as an integer. The value of the list item

appears, or is to appear, internally as an integer datum,

In the external input field, the character string must be in the
form of an integer constant or signed integer comstant (5.1.1.1),

except for the interpretation of blanks (7.2.3.6).

The external output field consists of blanks, if necessary, followed

by a minus if the value of the internal datum is negative, followed

by the magnitude of the internal value converted to an integer

constant,. - -

Real Conversions
There are three conversions available for use with real data;

F, E, and G.

The numeric field descriptor Fw.d indicates that the external field
occﬁpies w positions, the fractional part of which consists of d
digits. The value of the list item appears, or is to appear,

internally as a real datum,

CONTROL DATA CORPORATION . DEVELOPMENT DIV [SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO_62
PRODUCT NAME FORTRAN Extended —_—
PRODUCT NO. COLZ version__L1:0 MACHINE SERIES 6476600

The basic form of the external input field consists of an optional
sign, followed by a string of digits optionally containing a
decimal point. The basic form may be followed by an exponent of
one of the following forms:

(1) Signed integer constant.,

(2) E followed by an integer constant.

(3) E followed by a signed integer constant.

(4) D followed by an integer constant,

(5) D followed by a signed integer constant.

An exponent containing D is equivalent to an exponent containing

E.

The external output field consists of blanks, if necessary, followed
by a minus if the internal value is negative, or an optional plus
otherwise, followed by string of digits containing a decimal point
representing the magnitude of the internal value, as modified by the

established scale factor, rounded to d fractional digits.

The numeric field descriptor Ew.d indicates that the external
field occupies w positions , the fractional part of which consists
of d digits. The value of the list item appears, or is to appear,

internally as a real datum,

The form of the external input field is the same as for the F

conversion,

The standard form of the external output field for a scale factor
of zero is:
,F‘x‘l"’xd Y .
where:
(L Xj «.0 %y are the d most significant rounded digits of the value
of the data to be .output.
(2) Y is of one of the forms:
E *yi¥,
or

+ Y¥yYg

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV o SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_ 63

PRODUCT NAME
PRODUCT NO.

CA138-1

FORTRAN Extended
COL2 VERSION—__L1:0 MACHINE SERIES 64/6600

and has the significance of a decimal exponent,

3) Each y is a digit.

@) g signifies no character position or minus in that position.

The scale factor n controls the decimal normalization between the
number part and the exponent part such that:
(1) If n<0, there will be exactly -n leading zeros and d+n signifi-
cant digits after the decimal point,
2)If n»0, there will be exactly n significant digits to the left
of the decimal point and d-n+l to the right of the decimal point.

The numeric field descriptor Gw.d indicates that the external field
occupies w positions with d significant digits. The value of the

list item appears, or is to appear, internally as a real datum.
Input processing is the same as for the F conversion.

The method of representation in the external output string is a
function of the magnitude of the real datum being converted., Let
N be the magnitude of the internal datum, The following tabulation
exhibits a correspondence between N and the‘equivalent method of

conversion that will be effected:

Magnitude of Datum Equivalent Conversion Effected
0.1£ N <1 F (w-4) .d, 4 X

1= N <10 F (w-4) .(d-1), 4X

10822y 21097 F (w-4) .1, & X

10922y £10¢ F (w-4) .0, & X

Otherwise sEw.d

Note that the effect of the scale factor is suspended unless the
magnitude of the datum to be converted is outside of the range that

permits effective use of F conversion.

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS______ ERS PAGE NO__6%4
PRODUCT NAME FORTRAN Extended

PRODUCT NO. ~__CO12VERSION__1.0 MACHINE SERIES 64/6600

7.2,3.6.3 Double Precision Conversion

A The numeric field descriptor Dw.d indicates that the external field
occupies w positions, the fractional part of which consists of d
digits. The value of the list item appears,.or is to appear, intermally

as a double precision datum,

The basic form of the external input field is the same as for real

conversions,

The external output field is the same as for the E conversion, except

that the character D may replace the character E in the exponent.

7.2.3.6.4 Complex Conversion
Since a complex datum consists of a pair of separate real data, the
conversion is specified by two successfully interpreted real field
descriptors., The first of these supplies the real part. The second

supplies the imaginary part.

7.2.3,7 Logical Conversion
The logical field descriptor ILw indicates that the external field
occupies w positions as a string of information as defined below. The

list item appears, or is to appear, internally as a logical datum,

The external input field must consist of optional blanks followed by a

T or F followed by optional characters, for true and false, respectively.

The external output filed consists of w-1 blanks followed by a T or F as

the value of the internal datum is true or false, respectively.

7.2.3.8 Hollerith Field Descfiptor
° Hollerith information may be transmitted by means of four field des=-
criptors, nH, Aw, Rw, and Asterisks, '
(1) The nH descriptor causes Hollerith information to be read into,
or written from, the n characters (including blanks) following the
nH descriptor in the format specification itself,
(2) The Aw descriptor causes w Hollerith characters to be read into,

CA1381 or written from, a specified list element.

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO._65
PRODUCT NAME__FORTRAN Extended —_—
PRODUCT NO. col2 VERSION___ 1.0 MACHINE SERIES 64/6600

(3) The asterisks descriptor causes Hollerith information to be
read into, or written from, the n characters (including blanks)
between two successive asterisks appearing in the format state-
ment.

(4) The Rw descriptor causes w Hollerith characters to be read

into or written from, a specified list element.

Let g be the number of characters representable in a single storage

unit (7.2.1.3.1). If the field width specified for A or R input

is greater than or equal to g, the rightmost g characters will be

taken from the external input field. TIf the field width is less.

than g, the w characters will appear left justified Qith blank f£ill for .

A fields and right justified with zero £fill for R fields.

If the field width specified for A output is greater than g, the
external output field will consist of w-g blanks, followed by the
g characters from the internal representation. If the field width
is less than or equal to g the external output field will consist

of the leftmost w characters from the internal representation.

If the field width specified for R output is greater than g, the
external output field will consist of w-g blanks, followed by the
g characters from the internal representation. If the field width
is less than or equal to g the external output field will consist

of the rightmost w characters from the internal representation.

7.3.9 Blank Field Descriptor
The field descriptor for blanks is nX. On input, n characters of
the external input record are skipped. On output, n blanks are

inserted in the external output record.

7.2.3.10 Column Selection Control
o The descriptor Tn is used to skip to a specific column. The column pointer

is skipped to column n, and the next format descriptor is then processed.

n may be any unsigned integer, maximum of 137, If n=zero, column 1 is

assigned.,
CA138-)

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASSERS PAGE NP6
PRODUCT NAME__FORTRAN Extended
PRODUCT NO. coi12 VERSION____ 1.0 MACHINE SERIES 64 /6600

The output line image is blanked prior to actual formulation of a line.
The T does no blanking, so that with its use, theorder of a list need not
be the same as the printed page or card ihput. Using card input, if
n> 80, the column pointer will be moved to column n but a succeeding

, o specification will read only blanks.

7.2.3.11 fFormat Specification in Arrays

' ‘Any of the formatted input/output statements may contain an array
name in place of the reference to a FORMAT statement label, At the
time an array is referenced in such a manner, the first part of the
information contained in the array, taken in the natural order,
must constitute a valid format specification., There is no require-
ment on the information contained in the array following the right

parenthesis that ends the format specification.

The format specification which is to be inserted in the array has
the same form as that defined for a FORMAT statement; that is,
begins with a left parenthesis and ends with a right parenthesis.,
) As an extension to ASA H field descriptors may be included in
formats so defined. An nH field descriptor may be part of a

format specification within an array.
The format specification may be inserted in the array by use of

a data initialization statement, or by use of a READ statement

together with an A format,

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV U SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS ' v PAGE NO._67
PRODUCT NAME : FORIRAN Extended
PRODUCT NO. COL2 VERSION___ 1.0 MACHINE SERIES 64/6600

8. PROCEDURES AND SUBPROGRAMS

° There are four categories of procedures: statement function, intrinsic
functions, external functions, and external subroutines. The first
three categories are referred to collectively as functions or function
procedures; the last as subroutines or subroutine procedures. There are
two categories of subprograms: procedure subprograms and specification
subprograms. Function subprograms and subroutine subprograms are classi-
fied as procedure subprograms. Bilock data subprograms are classified as .
specification subprograms. Type rules for function procedures are given
in 5.3. All functions and subroutines are required to have less than

64 parameters.

8.1 STATEMENT FUNCTIONS
A statement function is defined internally to the program unit in which
it is referenced. It is defined by a single statement similar in form

to an arithmetic, masking, or logical assignment statement.

In a given program unit, all statement function definitions must precede
the first executable statement of the program unit and must follow the

specification statements, if any. The name of a statement function must
not appear in an EXTERNAL statement, nor as a variable name or an array

name in the same program unit.

8.1.1 Defining Statement Functions
A statement function is defined by a statement of the form:
£ (al, Qns eeey an) = e

where f is the function name, e is an expression, and the relationship
between f and e must conform to the assignment rules in 7.1.1.1. The
a's are distinct variable names, called the dummy arguments of the function.
Since these are dummy arguments, their names, which serve only to indicate
type, number, and order of arguments, may be the same as variable names

of the same type appearing elsewhere in the program unit.
Aside from the dummy arguments, the expression e may only contain:

(1) Non-Hollerith constants.

® (2) Variable or array element references.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO__08
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO12 _VERSION. 1.0 MACHINE SERIES 6476600

8.1.2

8.2

CA138-1

(3) Intrinsic function references.

(4) References to previously defined statement functions,

(5) External function references.

Referencing Statement Functions
A statement function is referenced by using its reference (5.2) as
a primary in an arithmetic or logical expression. The actual

arguments, which constitute the argument list, must agree in order,

- number, and type with the corresponding dummy arguments. An actual

argument in a statement function reference may be any expression

of the same type as the corresponding dummy argument.

Execution of a statement function reference results in an association
(10.2.2) of actual argument values with the corresponding dummy
arguments in the expression of the function definition, and an
evaluation of the expression. Following this, the resultant

value is made available to the expression that contained the

function reference.,

INTRINSIC FUNCTIONS AND THEIR REFERENCE
The symbolic names of the intrinsic functions (see Table 3) are
predefined to the processor and have a special meaning and type if

the name satisfies the conditions of 10.1.7.

An intrinsic function is referenced by using its reference as a
primary in an arithmetic or logical expression. The actual arguments,
which constitute the argument list, must agree in type, number,

and order with the specification in Table 3 and may be any expression
of the specified type. The intrinsic functions AMOD and MOD are

not defined when the value of the second argument is zero.

Execution of an intrinsic function reference results in the actions
specified in table 3 based on the values of the actual arguments.
Following this, the resultant value is made available to the

expression that contained the function reference.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO_69
PRODUCT NAME FORTRAN Extended
1 T N A

8.3 EXTERNAL FUNCTIONS
An external function is defined externally to the program unit that

references it. An external function defined by FORTRAN statements
headed by a FUNCTION statement is called a function subprogfam.
8.3.1 Defining Function Subprograms
A FUNCTION statement is of the form:
t FUNCTION £ (al, . wens 3D ‘
where:
(1) t is either INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL, or is empty. The word 'PRECISION'" is optional.
(2) £ is the symbolic name of the function to be defined,
(3) The a's, called the dummy arguments, are each either
a variable name, an array name, or an external procedure

name .,

Function subprograms are constructed as specified in 9.1.3 with

" the following restrictions:

(1) The symbolic name of the function must also appear as a
variable name in the defining subprogram., During every
execution of the subprogram, this variable must be defined
and, once defined, may be referenced or redefined. The value
of the variable at the time of execution of any RETURN statement
in the subprogram is called the value of the function.

(2) The symbolic name of the function must not appear in any
non-executable statement in this program unit, except as the
symbolic name of the function in the FUNCTION statement.

(3) The symbolic names of the dummy arguments may not appear in
an EQUIVALENCE, COMMON or DATA statement in the function
subprogram,

(4) The function subprogram may define or redefine one or more of
its arguments so as to effectively return results in addition

to the value of the function.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NO 70
PRODUCT NAME FORTRAN Extended
PRODUCT NO. €012 VERSION_ 1.0 MACHINE SERIES 64/6600

(5) The function subprogram may contain any statement except

BLOCK DATA, SUBROUTINE, another FUNCTION statement, or any
statement that directly or indirectly references the function
being defined.

@ (6) If flow reaches the END line a RETURN will be implied.

8.3.2 Referencing External Functions

An external function is referenced by using its reference (5.2)

as a primary in an arithmetic or logical expression. The actual
arguments, which constitute the argument list, must agree in order,
number, and type with the corresponding dummy arguments in the
defining program unit. An actual argument in an external function

reference may be one of the following:

L A variable name.
(2) An array element name.
(3) An array name.
4) Any other expression.
(5) The name of an external procedure.
o (6) A Hollerith constant.
e (7) An ECS variable name.
@ (8) An ECS array name.
® (9) An ECS array element name,
If an actual argument is an external function name or a subroutine
name, then the corresponding dummy argument must be used as an

external function name or a subroutine name, respectively.

CA138-1

CONTROL DATA CORPORATION o DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE No___ 71
PRODUCT NAME FORTRAN Extended —

PRODUCT NO. €012 wvERSION____1.0 MACHINE SERIES ___64/6600

TABLE 3. INTRINSIC FUNCTIONS

-

Number of Symbolic Type of
Intrinsic Function Definition Arguments Name Arcument = Function
Absolute Value tal 1 ABS Real Real
IABS Integer Integer
DABS Double Double
Truncation Sign of a times !, 1 AINT Real Real
largest integer INT Real Integer
é;la! IDINT Double Integer
Remaindering¥#* a; (mod a2) 2 AMOD Real Real
(see note below) » MOD Integer Integer
Choosing largest Max (al,az,...) =2 AMAXO Integer Real
value AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
DMAX1 Double Double
Choosing smallest |Min (al,az,...) =2 AMINO Integer Real
Value AMIN1 Real - |Real
MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Double
Float tonversion from 1 FLOAT Integer Real
integer to real
Fix . Conversion from 1 IFIX Real Integer
real to integer
Transfer of Sign Sign of a, times| 2 SIGN Real Real
lall ISIGN Integer Integer
DSIGN Double Double
Positive Difference a; - Min (al,az) 2 DIM Real Real
IDIM Integer Integer
Obtain Most signifi- 1 SNGL Double Real
cant Part of Double
Precision Argument
Obtain Real Part 1 REAL Complex Real
of Complex Argument
Obtain Imaginary 1 AIMAG Complex Real
Part of Complex
Argument

CA138-1

CONTROL DATA CORPORATION .

DEVELOPMENT DIV .

SOFTWARE DOCUMERMT

DOCUMENT CLASS ERS PAGE NO—72
PRODUCT NAME » FORTRAN Extended '
PRODUCT NO. €012 versioN__1.0 MACHINE SERIES 64/6600
Number of Symbolic Type of
Intrinsic Function Definition Arguments: Name Argument Function
Express Single 1 DBLE Real Double
Precision Argument
in Double Precision
Form
Express Two Real a; +a, ﬁf:i— 2 CMPLX Real Complex
Arguments in Com-
plex Form
Obtain Conjugate 1 CONJG Complex Complex
of a Complex
Argument
‘Logical product a1 A% * 2 AND any type | Octal
*Logical sum ajva, % 2 OR any type Octal
‘Complement -ay * 1 COMPL any type Octal
‘Shift shift algazﬁ 2 SHIFT a,: mnon- Octal
bit positions: | %°$l‘;a2‘,
left circular if 8yt integer
a, is positive;
rIight with sign
extension and end
off if a, is neg-
ative. f a, is
not constant, and
a,< 0, and‘a [>63,
thén the result is
+0.
*Random Number 1 RANF (dummy) Real

generation

e . . . _ =
%% The function MOD or AMOD (al,az) is defined as a; l?l/aé]az, where [x] is the

largest integer whose magnitude does not exceed the magnitude of x and whose

sign is the same as x.

% If an argument is double precision or complex, only the high order or real

part will be used,

CA138-]

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NO__73
PRODUCT NAME FORTRAN Extended
PRODUCT NO. cal2 VERSION___ 1.0 MACHINE SERIES 64 /6600

If an actual argument corresponds to a dummy argument that is

defined or redefined in the referenced subprogram, the actual

argument must be a variable name, an array element name, or an

array name, Execution of an external function reference as des-
cribed in the foregoing, results in an association (10.2,2) of

actual arguments with all appearances of dummy arguments in exe-
cutable statements, function definition statements, and as adjust-
able dimensions in the defining subprogram. If the actual argument

is as specified in item (4) in the foregoing, this association is

by value rather than by name. Following these associations, execution
of the first executable statement of the defining subprogram is under~-
taken. An actual argument which is an array element name containing
variables in the subscript could in every case be replaced by the

same argument with a constant subscript containing the same values

as would be derived by computing the variable subscript just before

the association of arguments takes place.

If a dummy argument of an external function is an array name, the
corresponding actual argument must be an array name or array element
name (10,1.3).

If a function reference causes a dummy argument in the referenced
function to become associated with another dummy argument in the same
function or with an entity in common, a definition of either within

the function is prohibited.
Unless it is a dummy argument, an external function is also referenced

(in that it must be defined) by the appearance of its symbolic name
in an EXTERNAL statement,

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NO 74
PRODUCT NAME TORTRAN _Extended
PRODUCT NO. C012 _ veRSION__1:0 MACHINE SERIES 64/6600

8.3.3 Basic External Functioms

The external functions listed in Table &4 are supplied. Referencing
of these functions is accomplished as described in (8.3.2). Arguments
for which the result of these functions is not mathematically defined

or is of type other than that specified are improper.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__73
PRODUCT NAME_ FORTRAN FExtended :
PRODUCT NO. GOLZ VERSION___1.0 MACHINE SERIES 6476600
TABLE 4. BASIC EXTERNAL FUNCTIONS
Basic External Number of Symbolic Type of
Function Definition Arguments Name Argument Function
Exponential e 1 EXP Real Real
1 DEXP Double Double
1 CEXP - Complex Complex
Natural Logarithm 1ogé (a) 1 ALOG Real Real
1 DLOG Double Double
1 CLOG Complex - | Complex
Common Logarithm loglo(a) 1 ALOG1l0 | Real Real
DLOGLO | Double Double
Trigonomeétrio sin (a) 1 SIN Real Real
Sine 1 DSIN Double Double
1 CSIN Complex Complex
Trigonometric cos (a) 1 Cos Real Real
Cosine 1 DCOS Double Douwble
1 CCOos Complex Complex
Hyperbolic tanh (a) 1 TANH Real Real
Tangent
1/2
Square Root (a) 1 SQRT Real Real
: 1 DSQRT Double Double
1 CSQRT Comples Complex
Arctangent arctan (a) 1 ATAN Real Real
_ 1 DATAN Double Double
arctan (al/az) 2 ATAN2 Real Real
2 DATAN2| Double Double
Remaindering#* a; (mod az) 2 DMOD Double Double
Modulus 1 CABS Complex Real
Arccosine arccos (a) 1 ACOS Real I Real
Arcsine arcsin (a) - 1 ASIN Real - Real
Trigonometric tan (a) 1 TAN Real Real

*The function DMOD (al,az) is defined as a;

integer whose magnitude does not exceed the magnitude of x and whose sign is

the same as the sign of x,

- (al/az)az, where (x) is the largest

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV] SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__’6
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO12 VERSION 1.0 MACHINE SERIES __64/6600

8.4 SUBROUTINE

An external subroutine is defined externally to the program unit
that references it. An external subroutine defined by FORTRAN
statements headed by a SUBROUTINE statement is called a subroutine

subprogram.
8.4.1 Defining Subroutine Subprograms
© A SUBROUTINE statement is of one of the forms:
SUBROUTINE s (al,az,...an)
or
SUBROUTINE s
or

SUBROUTINE s (a;,a,,...a,), RETURNS (by»b,,...b)

or
SUBROUTINE s, RETURNS (bl’bz’ .o .bm)
where: .
(1) s is the symbolic name of the subroutine to be defined.
(2) The a's, called the dummy arguments, are each either a variable
name, an array name, or an external procedure name,

(3) The b'!s are variable names.

Subroutine subprograms are constructed as specified in 9.1.3 with

the following restrictions: -

(1) The symbolic name of the subroutine must not appear in any
statement in this subprogram except as the symbolic name of the
subroutine in the SUBROUTINE statement itself.

) The symbolic names of the dummy arguments may not’appear in an
EQUIVALENCE, COMMON, or DATA statement in the subprogram.

@) The subroutine subprogram may define or redéfine one or more
of its arguments so as to effectively return results.

&) The subroutine subprogram may contain any statements except
BLOCK DATA, FUNCTION, another SUBROUTINE statement, or any
statement that directly or indirectly references the subroutine
being defined.

©) The subroutine subprogram need not contain at least one RETURN
statement if the procedure is completed upon executing the END

CA138-1 statement,

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__17___
PRODUCT NAME TORTRAN Extended .
PRODUCT NO. co12 VERSION___ 1.0 _ MACHINE SERIES 64 /6600

(6) The variable names bl’bZ""bm may not be defined in a subroutine,

8.4.2.1 ENTRY Statement
© An ENTRY statement is of the form:
ENTIRY s
where s is an alternate entry point to a FUNCTION;or SUBROUTINE,
s may appear within the subprogram only in the ENTRY statement.
Reference to the entry point is the same as described in Sections

8.3.2 and 8.4,2,

8.4.2 Referencing Subroutines
© A subroutine is referenced by a CALL statement (7.1.2.4). The actual
| arguments, which constitute the argument list, must agree in ofder,

number, and type with the corresponding dummy arguments in the defin-
ing program. The use of a Hollerith constant as an actual argument
is an exception to the rule requiring agreement of type. An actual
argument in a subroutine reference may be one of the following:
(1) A Hollerith constant.
(2) A variable name.
(3) An array element name,
(4) An array name.
(5) Any other expression.
(6) The name of an external procedure,
(7) An ECS variable name.
(8) An ECS array element name,

(9) An ECS array name.

If an actual argument is an external function name or a subroutine
name, the corresponding dummy argument must be used as an external

function name or a subroutine name, respectively,
If an actual argument corresponds to a dummy argument that is defined

or redefined in the referenced subprogram, the actual argument must

be a variable name, an array element name, or an array name.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV] SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO /8
PRODUCT NAME ‘ FORTRAN Extended
PRODUCT NO. CQ12 VERSION 1.0 MACHINE SERIES. 64/6600

Execution of a subroutine reference as described in the foregoing
results in an association of actual arguments with all appearances
of dummy arguments in executable statements, function definition
statements, and as adjustable dimensions in the defining subprogram.
If the actual argument is as specified in item (5) in the foregoing,
this association is by value rather than by name. Following these
associations, execution of the first executable statement of the

defining subprogram is undertaken.

An actual argument which is an array element name contaiﬁing variables
in the subscript could in every case be replacéd by the same argument
with a constant subscript containing the same values as would be
derived by computing the variable subscript just before the association

of arguments takes place.

If a dummy argument of an external function is an array name, the
corresponding actual argument must be an array name or array element

name (10.1.3).

If a subroutine reference causes a dummy argument in the referenced
subroutine to become associated with another dummy argument in the same
subroutine or with an entity in common, a definition of either entity

within the subroutine is prohibited,

Unless it is a dummy argument, a subroutine is also referenced (in
that it must be defined) by the appearance of its symbolic name
in an EXTERNAL statement.

8.5 BLOCK DATA SUBPROGRAM
° A BLOCK DATA statement is of the form:
BLOCK DATA
or

BLOCK DATA d
where d is the symbolic name of the BLOCK DATA subprogram to be

defined.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

79
DOCUMENT CLASS___ DRS PAGE NGO
PRODUCT NAME FORTRAN Extended
PRODUCT NO. €012 _ versiOoN___1-0 MACHINE SERIES 6476600

The d is necessary if the BLOCK DATA subprogram is to be included
in a SEGMENT as defined for SCOPE 3.0.

This statement may only appear as the first statement of specification
subprograms that are called block data subprograms, and that are used
to enter initial values into elements of labeled common blocks. This
special subprogram contains only type-statements, EQUIVALENCE, DATA,
DIMENSION, and COMMON statements.

If an entry of a given common block is being given an initial value
in such a subprogram, a complete set of specification statements for
the entire block must be included, even though some of the elements
of the block do not appear in DATA statements. Initial values may

be entered into more than one block in a single subprogram,

8.6 PROGRAM LINE

A prograﬁ line has the form:
PROGRAM s (£, £,5...£))

s is the symbolic name of the main program.

The parameters fi are the names of all input/output files required
by the main program and its subprograms..Although these arguments may
be changed at execution time, they must, at compile time, satisfy

the following conditioms:

1. The file name INPUT must appear if any READ statements of the

form READ f,k is included in the program or its subprograms.

2. The file name OUTPUT must appear if any PRINT statement is in-

cluded in the program or its subprograms.

3. The file name PUNCH must appear if any PUNCH statement is in-

cluded in the program or its subprograms.

CA138-1

CONTROL DATA CORPORATION e DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_794
PRODUCT NAME "~ RORTRAN Extended
PRODUCT NO. c012 VERSION_____ 1,0 MACHINE SERIES 64/6600

4. The file name TAPE i, with i an integer constant in the range
141499, must appear if a READ (i,n), WRITE (i,n), READ (i), or
WRITE (i), statement is included in the program or subprograms.
Further, if i is a variable, there must be a file name TAPE i for

each value i may assume.

5. Parameters for fiies which are used for Mass Storage, must, in
addition to complying with the above conditions, specify the maximum
number of records to be read or written on the file. The form of
the entry is TAPE i (n), where n is the maximum number of records on

file i in decimal.

Files may be equivalenced at compile time. For example,

(INPUT, OUTPUT, TAPEl = INPUT, TAPE2 = OUTPUT)

would cause all input normally provided by TAPE 1 to be extracted
from INPUT and all listable output normally recorded on TAPE 2 to
be transmistted to the OUTFUT file. Equivalenced file names must
follow, in the list of parameters, those to which they are made
equivalent, Their corresponding parameter positions may not be
changed at the time the program is executed, although the names
of the files to which they are made equivalent may be changed at

this time.

File buffers may be assigned a non-standard size at compile time.

If no parameter is given in the Program Line, a buffer size of

2012B is assumed. An example of the form of the Program Line to
change the buffer size is (OUTPUT=4000,TAPE4=0UTPUT). If the buffer
is explicitly assigned a length the assignment must appear with the
first reference to the file on the program card, The length will

be interpreted as an octal number.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

9B
DOCUMENT CLASS___ERS PAGE NO_.
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO12 VERSION 1.0 MACHINE SERIES 64/6600

9, PROGRAMS

An executable program is a collection of statements, comment lines,
a program line and end lines that completely (except for input data

values and their effects) describe a computing procedure.

9.1 PROGRAM COMPONENTS
Programs consist of program parts, program bodies,. and subprogram

statements,

9.1,1 Program Part

Qe A program part must contain at least one executable statement and
may contain FORMAT statements, NAMELIST statements, and data initial-
ization statements. It need not contain any statements from the
latter three classes of statement. This collection of statements
may optionally be preceded by statement function definitions, data
initialization statements, and FORMAT statementgﬂ As before only some

or none of these need be present.

9.1.2 Program Body
A program body is a collection of specification statements, FORMAT
statements or both, or neither, followed by a program part, followed

by an end line.

9.1.3 Subprogram
A subprogram'consists of a SUBROUTINE or FUNCTION statement followed

by a program body, or is a block data subprogram.

9.1.4 Block Data Subprogram
A block data subprogram consists of a BLOCK DATA statement, followed
by the appropriate (8.5) specification statements, followed by data

initialization statements, followed by an end line.

9.1.5 Main Program
©

A main program consists of a program body optionally preceded by a
CA138-1
program line,

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ® SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO 80
PRODUCT NAME FORTRAN Extended
PRODUCT NO. €012 VERSION____1.0 MACHINE SERIES 64/6600

9.1.6 Executable Program
An executable program consists of a main program plus any number of

subprograms, external procedures, or both.

9.1.7 Program Unit

A program unit is a main program or a subprogram.
9.2 NORMAL EXECUTION SEQUENCE

When an executable program begins operation, execution commences

with the execution of the first executable statement of the main program.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO__81
PRODUCT NAME FORTRAN Extended :
PRODUCT NO. €012 VERSION____1.0 MACHINE SERIES 64/6600

10.
10.1

10.1.1

CA138-1

A subprogram, when referenced, starts execution with execution of the
first executable statement of that subprogram. Unless a statement is

a GO TO, arithmetic IF, RETURN, or STOP statement or the terminal state-
ment of a DO completion of execution of that statement causes execution
following execution of any of these statements is described in Section 7.
A program part may not (in the sense of 9.1.1) contain an executable

statement that can never be executed.
A program part must contain a first executable statement.

INTRA - AND INTERPROGRAM RELATIONSHIPS

SYMBOLIC NAMES I

A symbolic name has been defined to consist of from one to“éeven alpha-
numeric characters, the first of which must be alphabetic. Sequences of
characters that are format field descriptors or unique%y identify certain
statement types, e.g., GO TO, READ, FORMAT, etc. are not symbolic names

in such occurrences nor do they form the first characters of symbolic names
in these cases. 1In a program uhit; a symbolic name (perhaps qualified

by a subscript) must identify an element of one (and usually only one) of

the following classes:

Class 1 An array and the elemeﬁts of that array.

Class II A variable,

Class III A statement function.

Class IV An intrinsic function.

Class V An external function.

Class VI A subroutine. _

Class VII An external procedure which cannot be classified as

either a subroutine or an external function in the
program unit in question.

Class VIII A block name.

© (Class IX A NAMELIST name.
© (Class X An ECS variable, array or elements of the array.
O Class XI A RETURNS name. '

Restrictions on Class

A symbolic name in Class VIII in a program unit may also be in any

one of the Classes I, II, or III in that program unit.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO__82
PRODUCT NAME FORTRAN Excended
PRODUCT NO. COl2 _VERSION__1.0 MACHINE SERIES 6476600

In the program unit in which a symbolic name in Class V appears
immediately following the word FUNCTION in a FUNCTION Statemeng

that name must also be in Class II,

Once a symbolic name is used in Class V, VI, VII, VIII, in

any unit of an executable program, no other program unit of that
executable program may use that name to identify an entity of these
classes other than the one originally identified. 1In the totality
of the program units that make up an executable program, a Class VII
name must be associated with a Class V or VI name. Class VII can

only exist locally in program units.

In a program unit, no symbolic name can be in more than one class
except as noted in the foregoing. There are no restrictions on uses
of symbolic names in different program units of an executable

program other than those noted in the foregoing. A symbolic name,
once defined to be in Class XI may only be subsequently referred to

°

in a RETURN statement.
10.1.2 Implications of Mentions in Specification and Data Statements

A symbolic name is in Class I if and only if it appears as a
declarator name. Only one such appearance for a symbolic name in
a program unit is permitted.

® A symbolic name that appears in a COMMON statement (other than as
a block name) is either in Class I, ﬁlass X, or in Class II but not
Class V. (8.3.1) Only one such appearance for a symbolic name in a
e - ~ —_
program unit is permitted.
A symbolic name that appears in an EQUIVALENCE statement is either in
Class I, or in Class II but not in Class V. (8.3.1).
A symbolic name that appears in a type-statement cannot be in Class
VI, VII or IX. Only one such appearance for a symbolic name in a
program unit is permitted.
A Symbolic name that appears in an EXTERNAL statement is in either
Class V, Class VI, or Class VII, Only one such appearance for a

CA138-1

symbolic name in a program unit is permitted,

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLass__ ERS PAGE NO_83
PRODUCT NAME FORTRAN Extended —_—
PRODUCT NO. C012 VERSION___ 1.0 MACHINE SERIES 64/6600

A symbolic name that appears in a DATA statement is in either Class I
or in Class II but not Class V. (8.3.1) In an executable progranm,
a storage unit (7.2.1.3.1) may have its value initialized one time

at the most.

10.1.3 Array and Array Element
In a program unit, any appearance of a symbolic name that identifies an
array must be immediately followed by a subscript, except for the
following cases:
(1) In the list of an input/output statement,
(2) 1In a list of dummy arguments.

= (3) In the list of actual arguments in a reference to an external

- procedure.

(4) In a COMMON statemeént.
(5) In a type-statement.

(4] (6) In the extended form of the DATA statement.

2 (7) Where subscripts are impliéd. (cf Sec. 5.1.3.2)
Only when an actual argument of an external procedure reference is
an array name or an array element name may the corresponding dummy
argument be an array name. If the actual argument is an array name, -
the length of the dummy argument array must be no greater than the
length of the actual argument array. If the actual argument is an
array element name, the length of the dummy argument array must be
less than or equal to the length of the actual argument array plus
one minus the value of the subscript of the array element.

10.1.4 External Procedures

The only case when a symbolic name is in Class VII occurs when the
name appears in an EXTERNAL statement and as an actual argument to
an external procedure in a program unit.
Only when an actual argument of an external procedure reference is
an external procedure name may the corresponding dummy argument be
an external procedure name, .

o In the execution of an executable program, a procedure subprogram may

not be referenced twice without the execution of a RETURN or END

CA138-) statement in that procedure having intervened.

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS ; PAGE NO_84

PRODUCT NAME FORTRAN Extended .

.PRODUCT NO. CO012 VERSION___ 1.0 MACHINE SERIES , 64/6600
10.1.5 Subroutine

A symbolic name is in Class VI if it appears:
(1) Immediately following the word SUBROUTINE in a SUBROUTINE state-

ment.,
2) Immediately following the word CALL in a CALL statement.
© (3) Immediately following the word ENTRY in an ENTRY statement when

' the ENTRY statement appears in a subroutine subprogram.

10.1.6 Statement Function
A symbolic name is in Class III in a program unit if and only if it
meets all three of the following conditions:
(1) It does not appear in an EXTERNAL statement nor is it in Class I..
(2) Every appearance of the name, except in a type-statement, is
immediately followed by a left parenthesis,
(3) A function defining statement (8.l.l) is present for that

symbolic name.,

10.1.7 Intrinsic Function

A symbolic name is Class IV in a program unit if and only if it meets

all four of the following conditions:

(1) It does not appear in an EXTERNAL statement nor is it in Class
I or Class III.

(2) The symbolic name appears in the name column of the table in
Section 8.2,

(3) The symbolic name does not appear in a type-statement of type
different from the intrinsic type specified in the table.

(4) Every appearance of the symbolic name (except in a type-statement
as described in the foregoing) is immediately followed by an

actual argument list enclosed in parenthesis,

The use of an intrinsic function in a program unit of an executable
program does not preclude the use of the same symbolic name to identify

some other entity in a different program unit of that executable program.

10.1.8 External Function
A symbolic name is in Class V if it:
(1) Appears immediately following the word FUNCTION in a FUNCTION
statement,

(2) 1Is not in Class I, Class III, Class IV or Class VI and appeérs

CA138-1

CONTROL DATA CORPORATION ® DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS__ L85 PAGE NO__ 85
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CO012 VERSION___1.0 MACHINE SERIES 64 /6600

immediately followed by a left parenthesis on every occurrence
except in a type-statement, in an EXTERNAL statement, or an actual
argument., There must be at least one such appearance in the program
unit in which it is so used.

° (3) Appears immediately following the word ENTRY in an ENTRY statement .

when the ENTRY statement appears in a function subprogram.

10.1.9 Variable
In a program unit, a symbolic name is in Class II if it meets all three
of the following conditions:
(1) It is not in Class VI or Class VII.

(2) It is never immediately followed by a left parenthesis unless it is
immediately preceded by the word FUNCTION in a FUNCTION statement.

(3) It occurs other than in a Class VIII appearance.

10.1.10 Block Name

A symbolic name is in Class VIII if and.only if it is used as a block name

in a COMMON statement,

10,1,11 Namelist Name

o A symbolic name is in Class IX if and only if it is used as a namelist

name in a NAMELIST statement.

10.1.12 ECS Element
-] A symbolic name is in Class X if and only if it appears in a TYPE ECS

statement.

10.1.13 RETURNS Name
© A symbol is a RETURNS name if and only if it appears in a RETURNS list.

10.2 DEFINITION

There are two levels of definition of numeric values, first level defini-
tion and second level definition. The concept of definition on the first
level applies to array elements and variables; that of second level defini-
tion to integer variable only. These concepts are defined in terms of
progression of execution; and thus, an executable program, complete and

in execution, is assumed in what follows.

There are two other variables of definition that should be noted. The
first, effected by GO TO assignment and referring to an integer variable
being defined with other than integer value, is discussed in 7.1.1.3

and 7.1.2,1.2; the second, which refers to when an external procedure

CA138-1 _ .)
maxr ha rafaroencnd will he discnssed in tha next section.

CONTROL DATA CORPORATION © DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO_86

PRODUCT NAME
PRODUCT NO.

10.2.1

10,2.2

CA138-1

FORTRAN Extended
C012 VERSION___ 1.0 MACHINE SERIES 64/6600

In what follows, otherwise unqualified use of the terms definition
and undefinition (or their alternate forms) as applied to variables
and array elements will imply modification by the phrase on the first

level.

Definition of Procedures

"If an executable program contains information describing an external
procedure, such an external procedure with the applicable symbolic
name is defined for use in that executable program. An external
function reference or subroutine reference (as the case may be) to
that symbolic name may then appear in the executable program, provided
that number of arguments agrees between definition and reference. In
addition, for an external function, the type of function must agree
between definition and reference., Other restrictions on agreements

are contained in 8.3.1, 8.3.2, 8.4.1, 8.4.2, 10.1.3, and 10.1.4.

The basic external functions listed in (8.3.3) are always defined and
may be referenced subject to the restrictions alluded to in the fore-

going,

A symbolic name in Class III or Class IV is defined for such use.

Associations that Effect Definition
Entities may become-associated by:
(1) COMMON association.

(2) EQUIVALENCE association.

(3) Argument substitution.

Multiple association to one or more entities can be the result of
combinations of the foregoing. Any definition or undefinition of
one of a set of associated entities effects the definition or un-

definition of each entity of the entire set.

For purposes of definition, in a program unit there is no association
between any two entities both of which appear in COMMON statements.
Further, there is no other association for common and equivalenced

entities other than those stated in 7.2,1.3.1 and 7.2.1.4.

If an actual argument of an external procedure reference is an array
name, an array element name, or a variable name, then the discussions

in 10.1.3 and 10.2.1 allow an association of dummy arguments with

CONTROL DATA CORPORATION ° DEVELOPMENT DIV . SOFTWARE DOCUMENT

87

DOCUMENT CLASS___ERS PAGE NO

PRODUCT NAME FORTRAN Extended —_—
012 1 s r 1o

PRODUCT NO. CO01Z veRsiON_____1.0 MACHINE SERiEs___64/6600

10.2.3

CA138-1

the actual arguments only between the time of execution of the first

executable statement of the procedure and the inception of execution

of the next encountered RETURN statement of that procedure., Note
specifically that this association can be carried- through more than

one level of external procedure reference.

In what follows, variables or array elements association by the
information in 7.2.1.3.1 and 7.2.1.4 will be equivalent if and only

if they are of the same type.

If an entity of a given type becomes defined, then all associated
entities of a different type become undefined at the same time, while
all associated entities of the same type become defined unless other-

wise noted.

Association by argument substitution is only valid in the case of
identity of type, so the rule in this case is that an entity created
by argument substitution becomes defined or undefined (while the
association exists) during execution of a subprogram, then the
corresponding actual entities in all calling program units becomes

defined or undefined accordingly.

Events That Effect Definition

Variables and array elements become initially defined if and only

if their names are associated in a data initialization statement with
a constant of the same type as the variable or array in question,

Any entity not initially defined is undefined at the time of the first
execution of the first executable statement of the main program,
Redefinition of a defined entity is always permissible except for
certain integer variables (7.1.2.8, 7.1.3.1.1, and 7.2,1.,1.2) or

certain entities in subprograms (6.5, 8.3.2, and 8.4.2),

Variables and array elements become defined or redefined as follows:

(1) Completion of execution of an arithmetic, masking, or logical

statement causes definition of the entity that precedes the

equals,

CONTROL DATA CORPORATION . DEVELOPMENT DiVv s = SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO___ 88
PRODUCT NAME FORTRAN Extended '
PRODUCT NO. CO12 VERSION____1.0 _ MACHINE SERIES__64/6600

(2) As execution of an input statement proceeds - each entity
which is assigned a value of its corresponding type from the
input medium is defined at the time of such association. Only
at the completion of execution of the statement do associated
entities of the same type become defined.

(3) Completion of execution of a DO statement causes definition of
the control variable.

(4) Inception of execution of action specified by a DO-implied

1list causes definition of the control variable,

Variables and array elements become undefined as follows:

(1) At the time a DO is satisfied, the control variable becomes
undefined.

(2) Completion of execution of an ASSIGN statement causes undefinition
of the integer variable in the statement.

(3) Certain entities in function subprograms (10.2.9) become un-
defined.

(4) Completion of execution of action specified by a DO-implied
list causes undefinition of the control variable.

(5) When an associated entity of different types becomes defined.

(6) When an associated entity of the same type becames undefined.

10.2.4 Entities in Blank Common.
Entities in blank common and those entities associated with them

may not be initially defined.

Such entities, once defined by any of the rules previously mentioned,

remain defined until they become undefined.

10.2.5 Entities in Labeled Common.
Entities in labeled common or any associates of those entities may

be initially defined.

A program unit contains a labeled common block name if the name
appears as a block name in the program unit. If a main program or
referenced subprogram contains a labeled common block name, any

entity in the block (and its associates) once defined remain defined
CA138-1

CONTROL DATA CORPORATION @ DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO__89

PRODUCT NAME
PRODUCT NO.

10.2.6

10.2.7

CA138-1

FORTRAN Extended

C012 VERSION____1,0 MACHINE SERIES___ 64/6600

until they become undefined.

It should be noted that redefinition of an initially defined
entity will allow later undefinition of that entity. Specifically,

if a subprogram contains a labeled common block mname that is not

«contained in any program unit currently referencing the subprogram

directly or indirectly, the execution of a RETURN statement in the
subprogram causes undefinition of all entities in the block(and
their associates) except for initially defined entities that have

maintained their initial definitions.
Entities Not in COMMON,

An entity not in common except for a dummy argument or the value of

a function may be initially defined.

Such entities once defined by any of the rules previously mentioned,

remain defined until they become undefined.

If such an entity is in a subprogram, the completion of execution

of a RETURN statement in that subprogram causes all such entities
énd their associates at that time (except for initially defined
entities that have not been redefined or become undefined) to become .
undefined. In this respect, it should be noted that the association
between dummy arguments and actual arguments is terminated at the

inception of execution of the RETURN statement.

Again, it should be emphasized, the redefinition of an initially
defined entity can result in a subsequent undefinition of that

entity.

Basic Block.
In a program unit, a basic block is a group of one or more executable

statements detined as follows:

(1) DO statement,
(2) CALL statement.
(3) GO TO statement of all types.

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE No_90__ -
PRODUCT NAME FTORTRAN Extended ’
PRODUCT NO. G012 VERSION——— 1.0 __MACHINE SERIES 64 /G600

10.2.8

CA138-1

(4) Arithmetic IF statement.
(5) STQOP statement.
(6) RETURN statement,
(7) The first executable statement, if it exists, preceding a
statement whose label is mentioned in a GO TO or arithmetic
. IF statement.
(8) An arithmetic statement in which an integer variable precedes
the equals,
(9) A READ statement with an integer variable in the list.
(10) A logical IF containing any of the admissible forms given in

the foregoing.

The folloWing statements are block initial statements:
(1) The first executable statement of a program unit,
(2) The first executable statement, if it exists, following a

block terminal statement.

Every block initial statement defines a basic block. If that initial
statement is also a block terminal statement, the basic block consists
of that one statement. Otherwise, the basic block consists of the
initial statement and all executable statements that follow until a
block terminal statement is encountered. The terminal statement is

included in the basic block.

Second Level Definition
Integer variables must be defined on the second level when used in

subscripts and computed GO TO statements.

Redefinition of an integer entity causes all associated variables
to be undefined for use on the second level during this execution
of this program unit until the associated integer variable is

explicitly redefined.

Except as just noted, an integer variable is defined on the second
level upon execution of the initial statement of a basic block only
if both of the following conditions apply:

(1) The variable is used in a subscript or in a computed GO TO in

the basic block in question.

CONTROL DATA CORPORATION o DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO

PRODUCT NAME
PRODUCT NO.

91

FORTRAN Extended

10.2.9

10.3

CA138-1

C0i2 VERSION___ 1.0 MACHINE SERIES 64/6600

(2) The variable is defined on the first level at the time of
execution of the initial statement in question.

This definition persists until one of the following happens:

(1) Completion of execution of the terminal statement of the basic
block in question.

‘(2) The variable in question becomes undefined or receives a new

definition on the first level.

At this time, the variable becomes undefined on the second level.

In addition, the occurrence of an integer variable in the list
of an input statement in which that integer variable appears follow-
ing in a .subscript causes that variable to be defined on the second
level. This definition persists until one of the following happens:
(1) Completion of execution of the terminal statement of the

basic block containing the input statement.
(2) The variable becomes undefined or receives a new definition

on the first level.

An integer variable defined as the control variable of a DO-implied
list is defined on the second level over the range of that DO-implied

list and only over the range.

Certain Entities in Function Subprograms

If a function subprogram is referenced more than once with an
identical argument list in a single statement, the execution of that
subprogram must yield identical results for those cases mentioned,

no matter what the order of evaluation of the statement.

If a statement contains a factor that may not be evaluated (6.5),
and if this factor contains a function reference, then all entities
that might be defined in that reference become undefined at the

completion of evaluation of the expression containing the factor.

DEFINITION REQUIREMENTS FOR USE OF ENTITIES

Any variable referenced in a subscript or a computed GO TO must be

defined on the second level at the time of this use.

CONTROL DATA CORPORATION o DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO__22
PRODUCT NAME FORTRAN FExtended
PRODUCT NO. C012 VERSION___ 1.0 MACHINE SERIES 64/6600

Any variable, array element, or function referenced as a primary

in an expression and any subroutine referenced by a CALL statement
must be defined at the time of this use. in the case where an actual
argument in the argument list of an external procedure reference is
‘a variable name or an array element name, this in itself is not a
requirement that the entity be defined at the time of the procedure
reference; however, when such an argument is an external procedure

name, it must be defined.

Any variable used as an initial value, terminal value, or incremen-
tation value of a DO statement or a DO -implied list must be defined

at the time of this use.

Any variable used to identify an input/output unit must be defined

at the time of this use.

e At the time of execution of an output statement, every entity whose
value is to be transferred to the output medium must be defined
unless the output is under control of a format specification and
the corresponding conversion code is A or R or O. If the output
isiunder control of a format specification, a correct association
of conversion code with type of entity is required unless the con-
version code is A or R or 0. The following are the correct associa-
tions: I with integer; D with double precision; E, F, and G with

real and complex and L with logical.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT Div ® SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO__A-1

PRODUCT NAME TFORTRAN Extended .

PRODUCT NO. COL2 VERSION__1.0 MACHINE SERIES 64 /6600
APPENDIX A

PARTIAL LIST OF ERROR MESSAGES

D) A previous DO terminates on this DO statement.
- (2) More storage required by DO statement processor.
(3) A constant parameter of a DO exceeds 131K,
4) Parameter of a DO or DO implying loop must be unsigned integer.
(5) The initial value of a DO or DO implying loop must not exceed
\ upper bound if both are constant.
(6) The control variable of a DO or DO implying loop must be a
simple integer variable.
(7) ENTRY statement occuring in DO nest.
(8) A DO loop may not terminate on this type of a statement.
9) A DO loop which terminates at this statement includes an

unterminated DO.

(10) The terminal statement of this DO precedes it.

(1) The terminal label of a DO must be an integer constant.
(12) The increment of a DO or DO implying loop is zero.

(13) Attempt to redefine a DO parameter or -a control variable of

a DO within its range.

(14) Too many subscript indices.

(15) Adjacent commas in parameter string.

(16) No left parens after array name.

(17) No right parens in subscript.

(18) Left/right parens not matching.

(19) Subscripted variable not previously dimensioned.

(20) Illegal sequence or use of operators.

(21) Illegal or missing operator.

(22) Illegal replacement in arithmetic statement.

(23) Operator missing before or after parens.

(24) Equal-sign appears in expression.

(25) Two or more relational operators in the same relational sub-
expression,

(26) Logical expression incorrectly formed.

(27) Relational subexpression incorrectly formed.

CA138-1

CONTROL DATA CORPORATION © DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS

PRODUCT NAME

PRODUCT NO.

CA138-1

(28)
(29)
(30)
(31)
(32)
(33)
(34)

(35)

(36)
(37)

(38

(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
GL
(52)
(53)
(54)
(55)
(56)
(57
(58)
{59)

(60)

ERS PAGE NO_A-2
FTORTRAN Extended
€012 VERSION___L1.0 MACHINE SERIES 64/6600

The .NOT. operator must be followed either by an operand or (.
Logical connections must be followed by (or an operand.
Logical subexpression begins with ah*operator.

Excess left parenthesis in logical expression.

Function called incorrectly.

Masking expression incorrectly formed.

The first element of logical expression not an operand, (, or
.NOT. |
Operators .AND,, .OR., not followed by either .NOT,, or an
operand.

Replacement variable for a logical expression not type logical.
Illegal use of logical or relational operator,

Right paren preceded by comma.

Left paren followed by a comma.

Empty parenthetical expression.

ASF parameters do not agree in number.

‘Arithmetic expression too 1ong for compiler tables.

'Unreferenced parameter (s) in ASF.

No right paren following parameter list.

No = after parameter list in ASF.

Parameter (s) missing or too many commas.

ASF name multiply defined.

Empty parameter list.

Multiply defined dummy parameter,

Illegal statement label.

Logical IF is formed incorrectly.

Adjacent commas.

Right paren preceded by comma.

Left paren followed by comma.

Left/right parens not matching.

An entry in a RETURNS list is not a statement label,
I is not an integer variable.

k is not a statement label.

Variable or arithmetic expression of type other than integer
in computed or assigned GO TO statements.

Other than statement label is contained in assigned GOTO list.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

ERS
DOCUMENT CLASS PAGE NO_B-1
PRODUCT NAME FORTRAN EXTENDED A £
PRODUCT NO. €012 wversioN___ 10 MACHINE SERIES 0476600

APPENDIX "B"
CONTROL CARD

CONTROL CARD FORMAT

The control .card which calls for the compilation of a FORTRAN source program
consists of the characters FTN optionally followed by a parameter list enclosed

in parentheses. If no parameter list is given, a period must follow the characters
FIN., The card columns following the right parenthesis may be used for comments

and are transcribed to the DAYFILE. If no parameter list is given, a period must

be used to separate the characters FIN from any comments which appear on the card.
Blank columns may be used anywhere for readability and will be squeezed out and

ignored by the system, The formats for the control card are given below,
FIN (Pl, PZ’ P3, P4, PS) comments
FIN. comments

CONTROL CARD PARAMETERS

SOURCE INPUT PARAMETER
If no source input parameter is present the FORTRAN source input will be assumed
on INPUT. If the source input is on some file other than INPUT, a source input
parameter of the following form must be provided:

I=fn

where fn is the file name where the source input appears.

Source input parameters of the forms I=INPUT, and I, are equivalent to not

providing a source input parameter.

BINARY OUTPUT PARAMETER

If no binary output parameter is present a relocatable binary file will be

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NOB=2Z
PRODUCT NAME EFORTRAN EXTENDED)
PRODUCT NO. £012 VERSION__ 1.0 MACHINE SERIES

written on a file named LGO. If binary output is instead desired on some
other file, a binary output parameter of the following form must be
provided.

B=fn
where fn ié the file name on which the.binary output is to be written. An
fn of 0 will cause the suppression of binary output. Binary output
parameters of the form B=LGO, or B, are equivalent to not providing a

binary output parameter.,

LIST PARAMETER
If no parameter is provided a listing hereinafter referred to as '"normal
listing" including source language and major diagnostics will be provided
on QusPUT. Other list options may be selected by use of oﬁe of the
following parameters.

{=fn

where;{;may be one of the following:

L normal listing.
X listing of diagnostics which indicate non-ASA usage.
R Assembler cross reference table

0 listing of generated object code

fn % file name on which list output is to be written. An fn of 0 will
cause suppression of all list output. = fn if not present will cause the

list option to be on OUTPUT.

Any combination of the above parameters provides the features indicated.

OPTIMIZATION PARAMETER

If no parameter is present the second level of optimization will be assumed.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__B-3
PRODUCT NAME FORTRAN Extrended §
PRODUCT NO. €012 versioN__ 1.0 MACHINE SERIES 64/6600

An F on the control card indicates the first or lower level of optimi-

zation is requested.

ERROR TRACEBACK AND CALLING SEQUENCE PARAMETER

ST
If. a parametér is present, calls to library functions will be made by
the call by name sequence and maximum error checking will be done, Full

error traceback will be done if an error is detected,

The omission of the T parameter on the control card, will cause the
compiler to generate calls to library functions using the call by

value sequence (SAl parameter, RJ function). Minimum error checking
will be done and no traceback will be provided in the case of error
detection. A significant saving in memory space and execution time will
be realized. This mode of compilation is not intended for use when

programs are in the debug stages.

EXAMPLES
FIN (LR)

This control card calls for compilation with normal listing plus the
assembler cross reference table on OUTPUT, relocatable binary on LGO,

source input from INPUT.
FIN (I=MYTAPE, B=0, LO)
This control card calls for compilation with no binary output, normal

listing plus object code listing on OUTPUT and source input from the
file named MYTAPE.

CA138-1

CONTROL DATA CORPORATICN) DEVELOPMENT DIV ° SOFTWARE DOCUMENT
DOCUMENT CLASS ERS PAGE NO_" 1
PRODUCT NAME__FORTRAN Extended
PRODUCT NO. C012 VERSION 1.0 MACHINE SERIES 64/6600
APPENDIX "C"
LIBRARY SUBPROGRAMS
‘Number of Symbolic Type of
“Function Definition Arguments Name Argument Function
Absolute Value Ia{ 1 ABS Real Real
IABS Integer Integer
DABS Double - Double
Truncation Sign of a times | 1 AINT Real Real
largest integer INT Real Integer
2 |a] IDINT Double Integer
Remaindering#* a; (mod az) 2 AMOD Real Real
(see note below) MOD Integer Integer
Choosing largest Max (al, az,...) 22 AMAXO Integer Real
value AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
DMAX1 Double Double
Choosing smallest Min (al,az,...) 22 AMINO Integer Real
value AMIN1 Real Real
MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Double
Float | Conversion from 1 FLOAT Integer Real
integer to real
Fix Conversion from 1 IFIX Real Integer
real to integer
Transfer of Sign ‘Sign of a, times| 2 SIGN Real Real
,all ISIGN Integer Integer
DSIGN Double Double
Positive Difference a; - Min (al,az) 2 DIM Real Real
IDIM Integer Integer
Obtain Most signifi- 1 SNGL Double Real
cant Part of Double
Precision Argument
Obtain Real Part 1 } REAL Complex | Real
of Complex Argument | f
%*The function MOD or AMOD (al,a)} is defined as 3 (? /a5) &,, wheref: is the

cAngeger whose magnltude does not exceed the magni
same as X.

%ude of X and whose sign is the

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS ERS PAGE NO__C=2_
PRODUCT NAME__FORTRAN Extended
PRODUCT NO. €012 VERSION 1.0 __MACHINE SERIES _64/6600
Number of Symbolic Type of
Function Definition Arguments Name = Argument TFunction
Obtain Imaginary 1 AIMAG Complex Real
Part of Complex .
Argument
Express Single 1 DBLE Real Double
Precision Argument
in Double Precision
Form
Express Two Real a; + a, V-1 2 CMBLX Real Complex
Arguments in Com-
plex Form
Obtain Conjugate 1 CONJG Complex Complex
of a Complex
Argument
Shift Shift a_ (only 2 SHIFT aj: Non~- | Octal
the first word if logical
a double word ele-
ment) a, bit posi- a,:
tions: Ieft circu- Integer
lar if a, is posi- ntege
tive; right with
sign extension if f
a, is negative |
! Logical Product al,N a, 2 AND Single word! Octal
/-~ Logical-Sum~ -~ a; \/52 S 12 OR Single word!| Octal = -
Complement a 1 COMPL Single Word|Octal

CA138-1

CONTROL DATA CORPORATION o

DOCUMENT CLASS__ERS
FORTRAN Extended

PRODUCT NAME

DEVELOPMENT DIV °

SOFTWARE DOCUMENT
PAGE NO_C=3

6476600

PRODUCT NO. VERSION__ 1.0 _ MACHINE SERIES
Number of Symbolic Type of
Function Definition Arguments Name Argument Function
Exponential e® 1 EXP Real Real
‘ 1 DEXP Double Double
1 CEXP Complex Complex -
Natural Logarithm log (a) 1 ALOG Real Real
¢ 1 DLOG Double Double
1 CLOG Complex Complex
Common Logarithm log10 (a) 1 ATLOG10 Real Real
- DLOGLO Double - | Double
Trigonometric sin (a) 1 SIN Real Real
Sine 1 DSIN Double Double
1 CSIN Complex Complex
Trigonometric cos (a) 1 Cos Real Real
Cosine 1 DCOS Double Double
1 CCOoS Complex Complex
Hyperbolic tanh (a) 1 TANH Real Real
Tangent
1/2
Square Root (a) 1 SQRT Real Real
1 DSQRT Double Double
1 CSQRT Complex Complex
Arctangent arctan (a) 1 ATAN Real Real
1 DATAN Double Double
arctan (al/az) 2 ATAN2 | Real Real
2 -DATAN2 Double Double
Remaindering¥ a; (mod az) 2 DMOD Double Double
Modulus jVaimagz(a)+REAL2(a)1 CABS Complex Real
Arccosine Arccos (a) 1 AGOS Real Real
Arcsine arcsin (a) 1 ASIN Real Real
Trigonometric tan (a) 1 TAN Real Real
Tangent
Random Number ranf (a) 1 RANF Dummy Real
Generator

*The function DMOD (a,,a,) is defined as a -fa./a, ja,, where x| is the integer
whose magnitude does not exceed the magnitiide 6f X and whose sign is the same as

“4Hé'sign of x.

CONTROL DATA CORPORATION ® DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO_C=4
PRODUCT NAME___ FORTRAN Extended :

PRODUCT NO. coiz VERSION_1.0 MACHINE SERIES 64/6600

Number of Symbolic Type of

Function Definition Arguments Name Argument Function
Address of argument a | loc (a) -1 LOCF Symbolic Integer
1/0 status on buffer |-1, unit ready no 1 UNIT Integer Real

unit ,

error

+0, unit ready, EOF
encountered
+1. unit ready,

parity error

A encountered
1/0 status on non- =0 no end of file 1 EQF Integer Integer
buffer unit encountered in

previous read

LENGTH Number of central 1 LENGTH Integer Integer
memory words read
on the previous
I1/0 request for a
particular file

Variable Character- |[-1 = indefinite 1 LEGVAR Real Integer
istic +1 = out of range

0 = Normal
Parity status on 0 = no parity errog :
non-buffer unit on previous read 1 TOCHEC Integer Integer

CA138~1

CONTROL DATA CORPORATION °

DEVELOPMENT DIV °

SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO__C=5 _
PRODUCT NAME FORTRAN Extended
PRODUCT NO.. C012 version__ 1.0 MACHINE SERIES 64/6600
Number of Symbolic Type -of
Subroutine Definition Arguments Name Argument
Set Sense Light 1£iz6 ' 1 SLITE Integer
turn sense light i on
i=20
turn off all sense lights
; SLITET (i,])
Test Sense Light If sense light i is on 2 SLITET | Integer
i=1
I1f sense light i is off
j=2]
Always turn sense light
i off
Test Sense Switch SSWICH (i,])
;If sense switch i is 2 SSWICH | Integer
down j =1
If sense switch i is
up § =2
Terminate - Terminate program execu- 0 EXIT
tion and return control
to the monitor
Console Comment Place a message of up-to | REMARK Hollerith
40 characters on the daypr
file
Console Value Display the value of an 2 DISPLA a1=Hollerith
argument in the dayfile _
al—real or
integer
Random Access Position disc heads to 2 LOCATE Integer

Positioning

CAl38-:

reference the next re-~
cord in a random access
file

a; - unit number

a2 - record number

CONTROL DATA CORPORATION ® DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NO___C6
PRODUCT NAME FORTRAN Extended —
PRODUCT NO. €012 vERSION__1.0 MACHINE SERIES 64/6600

Number of Symbolic Type of
Subroutine Definition Arguments Name Argument

O Ranget (a) | obtain current gen- 1 RANGET" Symbolic
' erative value of RANF
between 0 and 1

® Ranset (a) | Initialize generative 1 RANSET Real
value of RANF

Time Used obtain CPU time used 1 SECOND Real
in seconds to the nearest ’
milli-second

CA138-1

CONTROL DATA CORPORATION o DEVELCPMENT DIV s SCFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO D-1

PRODUCT NAME FORTRAN Extended

PRODUCT NO. C012 _ VERSION__1.0 _ MACHINE SERIES 64 /6600
APPENDIX "DV

CA138-1

Intermixed COMPASS Subprograms

Subprograms written in COMPASS may be intermixed with FORTRAN coded sub-
programs in the source deck. COMPASS subprograms must begin with an IDENT
card with the word IDENT punched in columns 11-15, and terminate with an

END card with the word END punched in columns 11-13, Columns L'lemuSt e

blank. and 144

Calling Sequence

When the FORTRAN compiler encounters a reference to an external subprogram,

subroutine or function the following calling sequence is generated:

SAL Argument List (if there is a parameter list)

RT Subprogram Name
where the argument list consists of consecutive words of the form:

VED 6O/Argumenti

followed by a zero word.
Returning

The COMPASS subprogram is responsible for preserving the contents of AOvin
AOQ upon returning control to the subprogram which called it. If the COMPASS
subprogram was entered via a function reference the result of that function
must be inX6 orX6 andX7 with the least significant or imaginary part of

the double precision or .complex result appearing in X7.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS____ERS PAGE NOE-1____
PRODUCT NAME FORTRAN Extended
PRODUCT NO. C012 VERSION____1.0 MACHINE SERIES 64 /6600
APPENDIX "E"
OPTIMIZATIONS

¢y
(2)
3

(4)
(5)
(6)

7)
(8

€
(10)
(11)

(12)

(13)
(14)

CA138-1

The following is a list of optimizations which will be carried out
if the user selects the second level of optimization, although those
followed by an asterisk will be performed if the first level of opti-

mization is selected.

Elimination of redundant operations where possible.
Evaluation of array element address by the index function method.*
Critical path analysis of instruction sequences to maximize paraliel

operation.

‘Reformation of subexpressions to permit extended parallelism,*

Evaluation of constant subexpressions at compile time.*
Determination for each reference to a formal parameter at compile
time as to whether it should be referenced by address substitution
indirect addressing.* '
Elimination of common remote parameter lists.

It will be noted whether or not an innermost DO loop-fits in the
stack and the resultant code will reflect this change in timing.
Simple constants will be formed by sets rather than loads.*
Branches to the next instruction will be eliminated.*
Presetting of arrays with a constant pattern will be specially
handled at load time to avoid thé generation of a large binary deck.*
Inline evaluation of some functions.*

Branch evaluation of relationals.*

Temporary evaluation of subscripts within DO loops.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ® SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NO.F-1
PRODUCT NAME FORTRAN Extended —
PRODUCT NO. co12 VERSION___ 1.0 MACHINE SERIES 6476600

APPENDIX "F"

STATEMENT FORMS

Subprogram Statements

Entry Points,

PROGRAM s

PROGRAM § (£, £55ee05E))
SUBROUTINE s

SUBROUTINE s (a;,855+++5a,)

SUBROUTINE s, RETURNS (by,by-.,b)

SUBROUTINE s (al,az,...,an), RETURNS (bl,bz,...,bm)_
FUNCTION £ (al,az,...,an)

REAL FUNCTION £ (al,az,...,an)

DOUBLE FUNCTION £ (a.,a,,.++53)

COMPLEX FUNCTION £ (aj,2,,.++53)

INTEGER FUNCTION £ (aj,8y5+++53)

LOGICAL FUNCTION £ (aj,ays-++5a,)

DOUBLE PRECISION FUNCTION £ (a;,a,,+-58.)

ENTRY s

Specification Program Declaration

BLOCK DATA
BLOCK DATA d
Inter-subroutine

EXTERNAL v,, Vv sV
L

22" n
Inter-subroutine Transfer Statements
CALL s
CALL s (al,az,...,an)
CALL s, RETURNS (bl,bz,...,bm)
CALL s (al,az,...,an), RETURNS (bl,bz,...,bm)
RETURN
RETURN a

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

F-2
DOCUMENT CLASS_ERS PAGE NOZ_—___
PRODUCT NAME__FORTRAN Extended TR0
PRODUCT NO. col12 VERSION__ 1.0 MACHINE SERIES

Data Declaration and Storage Allocation

‘Type Declaration

REAL vl’VZ""’Vn

DOUBLE vl,vz,...,vn
COMPLEX vl,vz,...,vn
INTEGER VisVoseeesVy

LOGICAL VisVgseessVy

DOUBLE PRECISION V. ,Vaseese,V

ECS Vi, Vop eeav 1’2 n
12 "2° n

. TYPE REAL Vl’VZ""’Vn

TYPE DOUBLE VisVoseeesVy

TYPE COMPLEX VisVoseeesVy

TYPE INTEGER VisVoseeesVy

TYPE LOGICAL VisVoseeesV

TYPE DOUBLE PRECISION VisVyseeesVy
TYPE ECS Vs Voo eV
Storage Allocation

DIMENSION Vl(il), v2 (12), cees Vn (in)
COMMON /Xllal/"'/xn/an

EQUIVALENCE (k;), (ky)seew, (k)

DATA kl/dl/, k2/d2/,..., kn/dn/

DATA (r1=d1), (r2=d2),..., (rn=dn)

Statement Function

£ (al,az,...,an) =e

Symbol Manipulation and Control

Replacement Statements
(Arithmetic
v=e { Logical
iMﬁsking
Intra-program Transfers

GO TO k
CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV °

DOCUMENT CLASS__ERS
PRODUCT NAME FORTRAN Extended

PRODUCT NO. €012 vErsION__1.0 MACHINE SERIES

SOFTWARE DOCUMENT
PAGE NO_E-3

GO TO 1, (kj,kpseeesk)
GO TO (ky,kyseeesk), 4
IF (e) kl’kZ’ 3

(e) kl,kz

IF (e) s

H
(.

Loop Control

DOn 1= m; 5, ;Mg

Miscellaneous Program Controls

ASSIGN k TO i
CONTINUE
PAUSE

PAUSE n

STOP

STOP n

Input/Output

I1/0 Format

FORMAT (qltlzltzzz...tnznqz)

I1/0 Control Statements

CA13f

READ £,k

READ (u) k
READ (u)

READ (u,f) k
READ (u,f)
WRITE (u) k
WRITE (u,f)
WRITE (u,f) k
PRINT £,k
PUNCH £,k
BUFFER IN (u,k) (A,B)

BUFFER OUT (u,k) (A,B)

64 /6600

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ LRS PAGEFKLE?A._
PRODUCT NAME FORTRAN Extended . ,
PRODUCT NO. €012 VERSION_____ 1.0 MACHINE SERIES 64/6600

Internal Manipulation

ENCODE (n,£,A) k
DECODE (n,f,A) k

Tape Handling
ENDFILE u
REWIND u
BACKSPACE u

Miscellaneous

NAMELIST /yl/allyzlazl.../yn/an

Program Termination

END

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV e SOFTWARE DOCUMENT

G-1
DOCUMENT CLASS__ LR ‘ PAGE NO
PRODUCT NAME FORTRAN Extended e
PRODUCT NO. €012 VERSION__1:0 MACHINE SERIES 64/6600

APPENDIX "G"

CA138-1

SYSTEM ROUTINE SPECIFICATIONS

The SYSTEM routine has the capability of handling error tracing,

diagnostic printing, termination of output buffers, and transfer to

specified non-standard error procedures. All the FORTRAN mathematical
routines rely on SYSTEM to complete the above mentioned tasks. A
FORTRAN coded routine also has the capability of calling SYSTEM. Any
of the parameters used by SYSTEM relating to a specific error may be
changed by a user routine during execution. The END processor also
makes use of SYSTEM to dump the output buffers and print an error
summary. Since the initialization routine (Q8NTRY), the end processors
(END, STOP, and EXIT), and SYSTEM must always be available, these

routines are combined into one with multiple entry points.

The calling sequence to SYSTEM passes the error number as the first

parameter and an error message as the SO card parameter. Therefore,
one error number may have several different messages associated with
it. The error summary given at the termination of the program lists

the total number of times each error number was encountered.

If the error number is zero, this is accepted as a special call only
to end the output buffers and return. If no OUTPUTEile was defined
before SYSTEM was called, then there will be no error printing and
an<‘appropriate message will appear in the dayfile. Each line printed
is subjected to the line limit of the OUTPUT buffer, so when that

limit is exceeded, the job is aborted.

The error table is ordered serially, i.e., the first error corres-
ponds to the error number 1, and is expandable at}assembly time,
The last entry in the table is a catch-all for any error number which -

exceeds the table length. An entry in the error table is:

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS ' PAGE NOG=2____
PRODUCT NAME FORTRAN Extended : '
PRODUCT NO. c012 VERSION__1.0 MACHINE SERIES 64/6600
| PRINT ERROR ; ;
PRINT FREQUENCY PRINT DETECTION |F/ A/ NON~-STANDARD
FREQUENCY INCREMENT LIMIT TOTAL | NF | NA RECOVERY ADDRESS
8 8 12 12 1 1 18

.Use of PRINT FREQUENCY:

PRINT FREQUENCY = PF
PRINT FREQUENCY INCREMENT = PFI

1. 1If PF = 0 and PFI = 0, the diagnostic and trace back information
are never listed.

2. If PF = 0 and PFI = 1, the diagnostic and trace back information
are always listed until the priﬁt limit is reached.

3. If PF = 0 and PFI = n, the diagnostic and trace back information
are listed only the first n times unless the print limit is
reached first.

4. If PF = n, the diagnostic and trace back information are listed

every nEh time until the print limit is reached.
Use of FATAL (F) / non-FATAL (NF):

1. If the error is non-fatal and no non-standard recovery address
is specified, then the error messages are printed according to
PRINT FREQUENCY and control is returned to the calling routine.

2. If the error is fatal and no non-standard recovery address is
specified, then the error messages are printed according to
PRINT FREQUENCY, an error summary is listed, all the output
buffers are terminated, and the job is aborted.

3. If a non-standard recovery address is specified, see NON~STANDARD
RECOVERY.

Use of NON~-STANDARD RECOVERY:
SYSTEM will supply the non-standard recovery routine with the follow-
ing information:

Al address of parameter list passed to the routine which detected the

error,
CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ¢ SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NOG=3
PRODUCT NAME___FORTRAN Extended __
PRODUCT NO. co12 VERSION__1.0 MACHINE SERIES 64/6600

X1 first element of above parameter list e.g., the address of the

first parameter,
AQD address of parameter list of the routine which called the routine
which detected the error.
Bl ~address of a secondary parameter list. This list contains, in
sSuccessive words:
1. The error number passed in SYSTEM .
2, address of the diagnostic word available to SYSTEM.
3. address within an auxiliary table if A/NA bit is set, otherwise
Zero.
4. instruction consisting of the RJ to SYSTEM in the upper 30 bits
and trace back information in the lower 30 bits for the routine

which called SYSTEM.

FORIRAN-goded routines will be unable to make usé of the information in the

secondary parameter list.

1. Non-fatal error: el
The routine which detected the error and SYSTEM are- delinked from
the calling chain and the non-standard recovery rbutineAis énfered.
When this routine exits in the normal fashioﬁ, control will return

to the routine which called the routine which detected the error.

Thus, any faulty arguments may be corrected, and the recovery routine
is allowed to call the routine which detected the error, providing
corrected arguments. By not correcting the faulty arguments in the
recovery routine, a three routine loop could develop between the
routine which detects the error, SYSTEM, and the recovery routine.

No checking is donme for this case.

2, Fatal Error:
SYSTEM calls the non-standard recovery routine in the normal fashion,
with the registers set as above. If the non-standard recovery routine
exits in the normal fashion, thus returning control to SYSTEM the
non-standard recovery routine is free, of course, to transfer to some

other point and continue computation.

CA138-1

CONTROL DATA CORPORATICN ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NOG=4
PRODUCT NAME FORTRAN Extended : .
PRODUCT NO. colz VERSION___L<0 MACHINE SERIES 6476600

Use of the A/NA bit:
The A/NA bit is for use only when a non-standard recovery address is

specified.

If this bit is set, then the address within an auxiliary table is passed
in the third word of the secondary parameter list to the recovery routine,
This bit allows more information than is normally supplied by SYSTEM to
be passed to the recovery routine. Only during assembly of SYSTEM may
this bit be set, because an entry must also be made into the auxiliary
table. Each word in the auxiliary table must have the error number in
its upper 10 bits so that the address of the first error number match is
passed to the recovery routine. An entry in the auxiliary table for an

error is not limited to any specific number of words.

The traceback information is terminated as soon as one of the following

three variables is detected:

1) the calling routine is a program.
2) the maximum trace back limit is reached.

3) no trace back information is supplied.

In order to change an error table during execution a FORTRAN type call

is made to SYSTEMC with the following parameters:

1) error number
2) list containing the consecutive locations:
Word 1 - fatal/non-fatal (fatél - 1, non-fatal = 0)
Word 2 - print frequenéy
Word 3 - print frequency increment (only significant if word 2 =0)
special values:
word 2 = 0, word 3
word 2 = 0, word 3

0 never list error

1 always list error

I
o
v

word 2 = word 3 = X list exror only the first X times
Word 4 =- print limit »
Word 5 - non-standard recovery address

Word 6 - maximum trace back limit

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS_ERS PAGE NO.G=5
PRODUCT NAME.._ FORTRAN Fxtended
PRODUCT NO. €012 VERSION___ 1.0 MACHINE SERIES 64/6600

If any word within the parameter list is negative, then the value already

in table entry will not be altered.

(The auxiliary table bit may only be set during assembly of SYSTEM so

~only.then can an auxiliary table entry be made).
ERROR LISTING:

I. 'message supplied by calling routine"
ERROR NUMBER XXXX DETECTED BY ZZZZZZZ at YYYYYY where ZZZZZZZ and
CCCCCCC are routine
CALLED FROM CCCCCC at WWWWWW names, YYYYYY and
R : WWWWWIW are absoclute
. addresses

where the addresses are absolute and error number is decimal
1I. ERROR SUMMARY

XXXXX ERROR YYYY TIMES

®

where all numbers are decimal
III. NO OUTPUT FILE FOUND
IV. OUTPUT FILE LINE LIMIT EXCEEDED
Functions of entry points:

1) Q8NTRY - initialize I/0 buffer parameters

2) STOP - enter "STOP" in the dayfile and begin END processing

3) EXIT - enter "EXIT" in the dayfile and begin END processing

&) END - terminate all output buffers, print an error summary, transfer
control to the main overlay if within an overlay or in any other case

exit to monitor.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASSERS PAGE NOG=6 __
PRODUCT NAME___TFORTRAN Extended
PRODUCT NO. c012 VERSION___1.0 MACHINE SERIES 64 /6600

5) SYSTEM - handles error tracing, diangostic printing, termination
of output buffers, and either transfers or specified non-standard
error recovery address, aborts the job, or returns to calling

routine depending on type of error.

6) SYSTEMC - changes entry to SYSTEM's error table according to

arguments passed.

CA138-1

CONTROL DATA CORPORATION ¢ DEVELOPMENT DIV ° SOFTWARE DOCUMENT

ERS -1
DOCUMENT CLASS PAGE NO
PRODUCT NAME FORTRAN Extended
PRODUCT NO. CULZ vVERSION__ 1.0 MACHINE SERIES 6476600

APPENDIX "H"
SUBPROGRAM STRUCTURE

The table below shows the general form of a FORTRAN subprogram. The
statements within a group may appear in any order; however, the order
of groups must be as shown. Comment lines may appear anywhere within

the body.

Subprogram Header (subroutine, etc.)
Specification Statements

FORMAT Statements
PROGRAM

BOD

Arithmetic Statement Functions

: DATA Statements
§ NAMELIST Statements
f : FORMAT Statements

Executable Statements
FORMAT Statements
NAMELIST Statements
DATA Statements

PROGRAM
"PART

END line

CA138~-)

CONTROLDATACORPORATMN K COMPUTEREQUWMENTGROUP

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO. _

DIVISION
ERS . H-2
FORTRAN Extendsd Version 20— ot NO-
Co%e . MACHINE sErIgs_ B4/6600

Arrangement of code and data thhxn PROGRAN, SUBROUTINE
and FUNCTION subprograms.

SUBROUTINE and FUNCTION Structure

The code within procedure subprograms is arranged in the
following blocks {Felocation bases} in the given'order.

START.
VARDIN.

ENTRY .
CODE.

DATA.

DATA..

HOL .

The code for the prtmary entry and the saving
of AD.

The address substitution code and the vartable
dimension initialization code.

Either a full word of NO¢s or nothing.

The code generated by compiling executable
statements followed by parameter lists for
external procedure references within the
current procedure and storage for statement,
DO and optimizing temporary use.

Storage for usage declared variables,; FORMAT
statements and program constants.

Storage for local dimensioned variables.

Storage for Hollerith constants.

Formal Parameters. One local block for each formal

parameter in the order in which they appear
in the subroutine headercardr to hold tables
used in address substitution for processing
references to dummy arguments.

Main subprograms consist of the following blocks.

START.
CODE-

DATA.
DATA..
HOL .

CA 138-1 REV 10-67

By
by
by

The I/0 file buffers and a table of file names
specified in the program header card.

The transfer address code plus the code
specified for the CODE. block above.

Same as above

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS___ERS PAGE NO. H~3
PRODUCT NAME FORTRAN Fxtended Version 2.0
PRODUCT MODEL NO. 012 MACHINE SERIES ___b4/bb00

Memory Structure

Subprograms are loadad as encountered in the input file
from RA+100B toward FL. Labeled common blocks are loaded
prior to the subprogram in which they first occur. Library
routines are loaded immediately after the last encountered
subprogram and these are followed by blank common.

The following is a typical memory layout.

RA Communication Region

RA+100B Common block ABLE

PROGRAM TEST
includes I/0 buffer area

SUBROUTINE SUB

SYSTEMs
QUTPTCs
SIOs
GETBA%
KODER=
SIN.

Blank Common
FL :

CA 138-1 REV 10-67

CONTRCL DATA CORPORATION © DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ERS PAGE NO_I-1

PRODUCT NAME FORTRAN Extended :

PRODUCT NO. C012 VERSION___ 1.0 MACHINE SERIES 6476600
APPENDIX "I

I.1

I.2

CA138-1

OVERLAYS AND SEGMENTS

INTRODUCTION
Overlay and segment processing is provided in order to allow the pro-
grammer some execution time control over the programs in memory. He

may desire this control for any of several reasons, such as:

1. his total program may be too large to fit in memory all at once.
2. he may desire to load, as execution proceeds, new versions of some
subprograms and have them serviced by the same statements used to

call the old versions.

. 3. he may wish to save time by only loading certain rarely used

sections of program in case they are actually needed. etc.

Segments are groups of subprograms that are loaded from relocatable

form when desired, giving the programmer explicit control over inter-
program links established. An overlay is a program together with a
cluster of subprograms which is converted to absolute form and written on
mass storage prior to execution. During execution overlays are called

into memory and executed as desired.

OVERLAYS
Overlay processing allows programs to be divided into independent parts
which may be called and executed as needed. Each part (an overlay) must

consist of a single PROGRAM together with any necessary subprograms.

Each overlay is numbered with an ordered pair of numbers (I,J), each of

which is in the range 0-77 The first number, I, denotes the primary

level. The second number,SJ, denotes the secondary level. An overlay
with a non-zero secondary level is called a secondary overlay and is
associated with and subordinate to the overlay which has the same primary
level and a zero secondary level, called the primary overlay. The initial
or main overlay which always remains in memory has levels (0,0). The
significance of this distinction appears in the order in which overlays

are loaded. A secondary overlay may be loaded only from the main overlay

or from its associated primary overlay. See exampile.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS , PAGE NO.Lz2___
PRODUCT NAME FORTRAN Extended _
PRODUCT NO. c012 VERSION_____ 1.0 MACHINE SERIES 64/6600_

183

Overlay level numbers, (0,1), (0,2), (0,3)... are illegal. Primary
overlays are all origined at the same point immediately following the
main overlay (0,0). Secondary overlays are origined immediately follow-
ing the primary overlay. For any given program execution all overlay
identifiers must be unique. The loading of any primary overlay will
destroy any other primary overlay. For this reason, no primary overlay
may load other primary overlays. Secondary overlays may only be loaded
by the associated primary overlay or main overlay. There are thus only

two levels of overlay available to the programmer.

EXAMPLE: MAIN OVERLAY (0,0)
1,00 2,0 |
6,0)(7,0)! «.d
(4’()) (oau)i\/a)
E
2,1

—
(L, 1)1, 2) .
A m— @, 142 a3y

Ooverlays (1,1) and (1,2) are secondary to overlay (1,0)

Overlay (2,1) is secondary to overlay (2,0)

Overlay (2,1) may not be called from (1,0) or (1,1) or (1,2) but only ‘
from (2,0), or (0,0)

Overlays (1,0), (2,0), (4,0) ... may be called only from the main overlay
(0,0)

Overlays are called by
CALL OVERLAY (fn, I,J, p)

OVERLAY is a FORTRAN execution time subroutine which translates the
FORTRAN call into a call to the loader.

fn - variable name of a location which contains the name of the file

(left justified display code) the overlay is on

CA138-1

CONTROL DATA CORPORATION) DEVELOPMENT DIV ° SOFTWARE DOCUMENT
DOCUMENT CLASS ERS PAGE NOI=3
PRODUCT NAME___FORTRAN Extended
PRODUCT NO. €012 VERSION__ 1.0 MACHINE SERIES 64/6600
I - is the primary level of the overlay
J - is the secondary level of the overlay
p - is the recall parameter. 1if p exists and equals 6HRECALL, the overlay
is not reloaded if it is already in memory.
This call will cause the loading and execution of the referenced overlay
(which has previously been absolutized and written on file fn with control
cards)., When an END statement in main program is encountered, control
returns to the statement following the CALL OVERLAY.
1.3 SEGMENTS

CA138-1

Four definitions are needed :

1, Entry point - a named location within a subprogram that can be
referenced by another program - created by the SUBROUTINE, FUNCTION
and ENTRY statements.

2. External reference - a reference within a program or subprogram
to the entry point of some other subprogram - created by explicit
CALL statements, function references, I/0 statements, implicit
functions, etc.

3. Link - the connection established between an external reference and
an'entry point when the programs are loaded into memory.

4. Unsatisfied external - an external reference for which no matching

entry point can be found, and therefore no link established.

A segment is a group of subprograms (possiblé 1 subprogram) which are
loaded together when specified by the programmer. Segments are loaded
at "levels"; these levels range from 0-778. Level zero is reserved for
the initial or main segment., Level zero, which must contain a PROGRAM,
remains in memory during execution. Segments may be loaded at any level

(0-77,).

When the segment is loaded, external references will be linked to entry

points in previously loaded segments (those at a lower level).

CONTROL DATA CCRPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS__ERS PAGE NO_L=4
PRODUCT NAME FORTRAN Extended
PRODUCT NO. COIZ __ VERSION___ 1.0 MACHINE SERIES_______ 64/6600

Similarly, entry points in the segment will be linked to unsatisfied
external references in previously loaded segments. Unsatisfied external
references in the segment will remain unsatisfied; subsequent segment
loading may include entry points to satisfy the external references.
Unsatisfied external references may be satisfied, if possible, from the
system library. If a segment is to be loaded at a requested level which
is less than or equal to the level of the last loaded segment, all
segments will be removed/delinked which are at levels down to and in-
cluding the requested level. Delinking a segment at a given level
requires that the linkage of external references in lower levels to
entry points in the delinked segment be destroyed so that the external
references are unsatisfied once again. References to labeled COMMON
blocks follow the same‘rules. Maximum blank COMMON length is established
in the first segment which declares blank COMMON.

Once the delinking is complete, the segment will be .loaded. Only one
occurrence of a given subprogram or entry point is necessary since all
levels may eventually link to the subprogram. However, a user may

force loading of a subprogram by explicitly naming it in another segment
at a higher level. Thereafter, all external references in higher levels
would be linked to the new version. In this manner, a subprogram and/or
entry point can effectively replace an identical one which was already
loaded at a lower level. Note, however, once a linkage is established,
it is not destroyed unless the segment containing the entry point is '

removed.

EXAMPLE: The SINE routine is loaded in a segment at level 1. The user
wished to try an experimental version of SINE. He loads a segment con-
taining the new SINE at level 2. Segments loaded at level 3 or higher

will now be linked to SINE at level 2 until a new level 2 or a new SINE

is loaded.

COMMON blocks may be loaded with any segment, however, the maximum area
for a given labeled COMMON block must be declared in the first segment
which references that COMMON., Labeled COMMON blocks cannot be referenced

acorss segments.

CA138-1

CONTROL DATA CORPORATION e« DEVELOPMENT DIV o SOFTWARE DOCUMENT
DOCUMENT CLASS___ERS ‘ PAGE NO__I=5_
PRODUCT NAME FORTRAN Extended

PRODUCT NO. €012 VERSION____1.0 MACHINE SERIES 64/6600

CA138~1

Segments may be loaded by
CALL SEGMENT (fn, e, a, lib, m)

where:
fn - variable name of the location which contains the file name (left

justified display code) from which the segment load should take place.
& - is the level of the segment load { 14e<63).

a - variable name of array containing a list of SEGMENTS, SECTIONS

and/or SUBPROGRAMS that are to be loaded with this call. This list

must have the name in left justified display code and the list must be
terminated by a zero entry. If the first entry in the list is zero, this
signals a segment load of all subprograms remaining on the file fn. |
1ib - if zero, or blank, unsatisfied externals will be satisfied, if

possible, from the system library.
m - if m is zero or blank, a map of the segment load will not be produced.
1ib and m need not be specified.

Once the named subprograms are loaded control returns to the statement

following the CALL SEGMENT. The programmer is free to call on the loaded

subprograms as he chooses.

	001
	002
	003
	004
	005
	006
	007
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	41A
	42
	43
	44
	45
	46
	46A
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	79A
	79B
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	A-01
	A-02
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	E-01
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	I-01
	I-02
	I-03
	I-04
	I-05

