CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP
DIVISION

1N - DA A
|" | =PRE— o \N-] =g | LU N

W)
J>

DOCUME. TCLASS __ TMS CHANGE NC.
te

PRODUCT NAME FORTRAN Extended Version 2.

PRODUCT MODEL NoO._ €012 MACHINE SERIES __ b4/b5/bL00
DEPT.NO.__k23L PROJECT No._3PCOS

& 3&/

SUBMITTED-

E DEPT. i ’6AT DIRECTOR DATE

FINAL APPROVAL

DRB CHAIRMAN DATE] PPB - DATE
] GEN MGR
] OTHER

INTERNAL NAINTENANCE SPECIFICATIONS
b4/b5/6600 FORTRAN EXTENDED

VERSION 2

CA 138 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS ___ IMS PAGE NO.__1
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No. 3PC08 MACHINE SERIES __b4/b5/Eb00

TABLE OF CONTENTS

Section

1 Introduction
P FTNSIO
3 PSLCTL
4 SCANNER
5 LSTPROC
b CONVERT
7 ERPRO and FORMAT
) DATA

9 DOPROC
10 STOP

11 PAUSE
12 ARITH
13 CALL

14 IF

15 ENDPROC
1b RTNPROC
17 NAMELST
18 PRINT
19 ASSIGN
20 ENTRY
2l GOTOPRC
2 ASFPRO
23 PH2CTL

24 DECPRO

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION

e N —FORTRAN Exbendad Version 2.0 PAGE No—1i
PRODUCT MODEL No. _3PC08 MACHINE SERIES __b4/b5/b600

Section

25 PHLCTL

2b CODE GENERATION TECHNIQUE

27 PRE

28 APLISTE

29 DOPRE

30 SQUEEZE

31 OPTB

32 POST

33 MACROE

3y BUILDDT

35 PS2CTL

3k FORTRAN EXTENDED ASSEMBLER

37 ORGTAB

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
'DOCUMENT CLASS —INS _ PAGE NO. L 11
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No. 3P €08 MACHINE SERIES__24/b5/bb00

CA 138-1 REVY 10-867

APPENDIX

RLIST DESCRIPTION
I/0 CALLING SEQUENCES
SUBROUTINE LINKAGE
COMPILER I/0 {SIO}
FLOW CHARTS {in following ordert

E2 FTNSIO |

£3 PSLCTL

£y SCANNER

ES LSTPROC

Eb CONVERT

E? ERPRO

Ed DATA

E9 DOPROC

E10 STOP
E1L PAUSE
Ele ARITH
EL3 CALL
E14 IF

EL5 ENDPROC
Elb RTNPROC
E1? NAMELST
ELS PRINT
19 ASSIGN

CONTROL DATA CORPORATION

DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.

CA 138-1 REV 10-67

DIVISION
NS PAGE NO.__ 1111
FORTRAN Extended Version 2.0
JPCO8 MACHINE SERIES _RBU/ES/LEO0

APPENDIX {Continued?}

E2O0 ENTRY
E21 GOTOPRC
E22 ASFPRO
E23 PH2CTL
E2Y DECPRO
EcS PHLCTL
£z27? PRE

E28 APLISTE
£29 DOPRE
E30 SQUEEZE
E31 OPTB
E32 POST
E33 MACROE
E34 BUILDDT
E35 PS2CTL
E3b FORTRAN EXTENDED ASSEMBLER

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS InS PAGE NO.__di-1
PRODUCT NAME FORTRAN Fxtended
PRODUCT MODEL NO. 3PCOs MACHINE SERIES __b4/b5/b600

IMS Introduction

FORTRAN Extended is a two pass compiler: the input is FORTRAN
source card images and the output as assembly language program.
Version 1 assembly is by COMPASS, Version 2 assembly by FTNXAS:, a

one pass assembler which recognizes a subset of the COMPASS language-

PASS 1 is divided into two phases: the FTN control cards the
header cards and declarative statements are processed in Phase 1

[m}) o |

executabie statements in Phase 2.

During Phase 1 the header card is processed: the COMMON- DIMENSION
and EQUIVALENCE information is held in linked lists in working
storage. These lists are processed at the end of Phase 1 and

COMPASS instructions are issued for storage allocation.

Phase 2 converts the executable statements to an intermediate
languager R-lists and when the END card is seen storage is issued
for usage defined variables and program constants. The symbol
table which contains the attributes of the symbolic names and

labels in the program is condensed.

Thus Pass 1L:
1} Converts all source statements to an intermediate language
E-list.
2} Forms the symbol table.
3} TIssues COMPASS instructions for program identification,

variable initialization and storage allocations program

CA 1381 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS InS PAGE NO.__L-C
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 3PCO0a MACHINE SERIES kU4 /L5 /LE0ON

constantss traceback and formal parameter initialization.

4} Produce the R-list intermediate file for executable
statements.

Pass 1 Task Summaries

EIN is the main controlling routine. It loads the overlays, cracks’
the FTN control cardr contains the 1/0 buffer area and the general
purpose 1I/0 routines-

SCANNER transforms all source statements into the intermediate
languager E-list:s and determines statement type. Basic syntax
errors are diagnosed.

LSTPROC locates in or enters into the symbol table a given symbolic
name or label!l.

CONVERT converts the display code representation of a constant to
its internal binary form. Illegal constants such as those contain-
ing tco many digitsr non-octal! digits in an octal constant or con-
stants out of range are diagnosed here.

ERPRO saves diagnostic information accumulated during Pass 1 for
processing in Pass 2.

DATA processes DATA statements and produces appropriate COMPASS
code for data initialization.

DOPROC examines DO statements, DO-implied listss statement numbers,
statement number references and integer variable definitions and
references. Determines the characteristics of DO¢s and index
functions: diagnoses nesting and the use of statement numbers and
generates R-list defining the beginning and end of each D¢ loop
and DO-implied list.

STOP processes the STOP statement.
PAUSE processes the PAUSE statement.

IF processes all IF statements, the IF expression is translated
via ARITH.

ARITH processes replacement statements and translates the arithmetic:
logicals relational, or masking expressions that legally appear in
any statement.

CA i38-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS Ins PAGE NO. -3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES___b4/b5/b600

ENDPROC generates R-list for exit coder issues storage for usage
defined variables:, processes EXTERNAL names, condenses the symbol
table and sends C(ONLIST, the program constants, to the assembly
code file.

RTNPROC processes RETURN statements.

NAMELIST processes NAMELIST statements into COMPASS instructions.
PRINT processes all I/0 statements.

ASSIGN processes the ASSIGN statement.

ENTRY processes the ENTRY statement.

GOTOPRC processes all GOTO type statements.

ASFPRO processes all statement function definitions by saving the
textr and processes all statement function references by expanding
the E-list and inserting the text.

DECPHI processes declarative and header statements. Declarative
information is held in linked lists until Phase 2, at which time
COMPASS instructions are issued for storage allocation. Header
statements cause COMPASS instructions for program initialization
to be issued.

Initially Pass 2 issues the diagnostics to the QUTPUT file. Pass 2
may be divided by function into two principal areass namely, the
pre-processing of R-list and the actual code generation. The
former phase basically entails accumulating R-list for optimization:
usually one sequence: and provides for the expansion of all R-list
macros. The various optimizing routines are then called for code
generation. Controls in turn: reverts back to the first area and
continues to fluctuate between the two functions until all R-list -
on the file has been decoded. The variable dimension and formal
parameter code is sent to the COMPASS file. If the R option was
selected, Pass 1 is loaded and receives control if more FORTRAN
programs are present: otherwise COMPASS is loaded to assemble the
contents of the assembly code {COMPS} file. If the R option was
not selecteds the generated code is assembled by FTNXAS and the
binary sent to the binary file.

PRE is the main controlling routine. It calls other Pass 2 routines
and also defines a sequence. It puts out inactive label names to
COMPASS, passes control to PROSER for optimization, and detects

the end of R-list.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS s PAGE NO.__ Tl
PRODUCT NAME FORTRAN Fxtended
PRODUCT MODEL NO. 3PCOA MACHINE SERIES___b4/b5/b600

READRL obtains R-list file input for Pass 2. It also receives as
input macro expansions from MACROE. When calleds it returns
either a single entry plus descriptor or an entire macro reference.
ADDTOSA accumulates the sequence in working storage.

ADDTOAP accumulates actual parameter list entries in working
storage.

DOPRE examines DO begin and D¢ end macro references, standard

index function macro references and all R-list instructions genera-
ted within the innermost loop of a D0 nest provided the loop is
well behaved. R-list instructions are generated to count DO-

loopss reference standard index functions and to materialize the
control variable when necessary.

MACROE expands macro references into normal R-list form.

The following routines combine to perform the code optimization
functions:

PROSER calls the optimizing routines and alsc handles the cuttrng
down of a sequence should tree complexity or working storage
limitations become a problem.

COPY recopies the sequencer generating three separate lists and
removing statement markers. SQUEFZF marks redundant instructions
for elimination. PURGE physically eliminates the instructions
marked by SQUEEZE.

BUILDDT forms a dependency tree from the squeezed sequence. The
tree reflects precedence relationships within the sequence.

OPT is the code selector. Having considered timing aspects and
register usages: it calls POST with the particular instruction to
be issued.

POST transforms the R-list instruction into a COMPASS card imager
and eventually issues the code for the sequence to the COMPASS
file.

FTNXAS is the Version 2 specialized one pass assembler.

The following routines are involved in closing Pass 2.

VARCLOS transforms the VARDIM sequencer, if any existss to ordinary
sequence format and calls PROSER.

€A 138-1 REV 10-87

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS PAGE NO.__ 1«5
PRODUCT NAME FORTRAN Extended
MACHINE SERIES___b4/b5/bb00

PRODUCT MODEL NO. JPCOA

S@ZVARD eliminates redundant store operations from the VARDIM
initialization sequence and transforms corresponding storage

allocation to the COMPASS file.

APLISTE converts APLIST entries to COMPASS card image then puts
them in the COMPASS file. A SUB macro reference is generated for

any formal parameter not referenced in the program.

CA 138-1 REV 10-67

DIVISION

PAGE NO.

MACHINE SERIES

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS
PRODUCT NAME
PRODUCT MODEL NO.

/v__....,.... JUR—— w.,,\‘\ U .‘_‘
SRR s i s st e e [P “;.‘ V‘., PR, - v_{ FTN . S COMP ASS /

e /““m“\ N \ N .
,,,,,, S— PH 2CTL /—7(PSICTL /»—a<p‘g BCTL — o
o S 7 e

— 7 . PRE <

\ .\ PN
- \§CANNERf<mm~ ﬁ// ARITH ,%wil A AN 1m~—«a CLosea
' it .

{ PHICTL

/ DECPHI 4 ; ”M“M//’ - \ /ADDTOSGJ < : $ '
< ASFPRO - =

1 R oy e e

; AN / "N “ | /XPLISTE”>
= b -—mﬂ(FORMAT e e% CALL : ", ;
| DPCLOSE \ / \ s

| S — N

. \\ v
‘opcom ! </READRL Ao

EQUIV ST . o AN Lo TN
X DATA e D°PR°C o " 5/ proseq

| DPDIM
N ; . Nee !

S '

|
|
‘DPEQU |
.DPEXT - S /f;DTOAP <u*“m
i ; -
!
|
|

‘DPTYP
iDPBDA
‘DPFUN
1 DPROG
"DPSUB

— i o ——ced

N |

P IR . MACROE <«—0)
—~-/LSTF’ROC ——d 5 pausE L , —“)(TBUILDDT\.‘L‘

i—> ENDPROC <— ¢~7/ STOP ; 5 squeeze

Y B
b /;ACROX : Yoo

T A N e TN

K % R C’ 7 Yo 3/, .‘0p TB |

1
¥

K s
B

L'AKCONVERT*“j *‘*ﬁNAMELST}~ B * /QQST
’ ST

/VARCLOS e—

ey, ST ‘"\\
/rhTRYPR %r-~-ﬁ¥ PRINT > e - b—>sazvARD ¥

\, e et s S,

//héTOPRC‘x%—m*_quyf ASSIGN ; ;ﬁ;/NFPUNT

CA 138-1 REV 10-67

CONTROL DATA CORPORATION
DIVISION

DOCUMENT CLASS IMS PAGE NO. L-b

PRODUCT NAME FORTRAN Extended

PRODUCT MODEL NO. 3pc0a MACHINE SERIES __b4/E5/ELKL0ON
Overlay 0.0
FTN
Overlay 1,0 ORGTAB LSTPROC
A T A
Overlay 1,1 Overlay 1.2
PS1CTL PH2CTL ERPRO PS2CTL
SCANNER ARITH CONVERT PRE
FORMAT ASFPRO CLOSER
DATA CALL APLISTE
ENDPROC DOPROC PROSEQ
STOP SQUEEZE
PAUSE BUILDDT
RTNPROC u OPTB
NAMELIST w 1o post
i PRINT 2 SQZYARD
) ASSIGN I v NFPUNT
2 GOTOPRC = 2 ADDTOSQ
o ENTRYPR & READRL
ADDTOAP
MACROE
PH1LCTL DPEXT MACROX
DECPHL DPTYP - DOPRE
DPCLOSE DPBDA . VARCLOS
DPCOM DPFUN 7 FTNXAS
DAUIV DPROG il
DPEQU DPSUB o |
- :
WORKTINSG STORAGE

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION

MC

L7

PAGE NO.

DOCUMENT CLASS

PRODUCT NAME

FORTRAN Fxtended
3IpCcoa

PRODUCT MODEL NO.

MACHINE SERIES _B4/B5/6600

CODE AND I/0 BUFFER

E-LIST

SYMTAB

ISR IO IR

PHASE 1 PHASE 2 PASS 2
R-LIST BUFFER R-LIST BUFFER
AUXTAB
—— e —— — — o AUXTAB
T
SEQUENCES

ASFTAB ---—1—-—-——--—
CONLIST
DOLIST 1:- -

it AT
IR

E-LIST

SYMTAB

VARDIM

N

APLIST
i

SYMTAB
11l word copyl

—GL definition

SYMTAB
12 word copyl

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS PAGENO._ 1.8
PRODUCT NAME
PRODUCT MODEL NO. MACHINE SERIES
PASS | MEMORY
PHASE | PHASE E
COMPILER CONPILER
%
DIMENSION LIST § R-LIST BUFFER
COMMON LIST DIMENSION LIST
e
‘ EQUIVALENCE LIST CONLIST
L e e
l WV e e ﬁli — -
i GFTABLE DO LIST ‘
' EQUIVALENCE PROCESSING g
ﬁ‘“‘—"‘”“”‘ T T T T T T ;
!
{
A z
e)
E-LIST E-LIST
t A
SYMBOL TABLE SYMBOL TABLFE

CA 138-1 REVY 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS PAGE NO.___1-9
PRODUCT NAME FORTRAN Fxtended
PRODUCT MODEL NO. 3PCOs8 MACHINE SERIES k4 /b5/0LL0O0
PASS 2 MEMORY
PRE-PROCESSING OPTIMIZATION
COMPILER COMPILER
RLIST SEQUENCE RLIST SEQUENCE

SQUEEZED SEQUENCE

DEPENDENCY TREE

COMPASS IMAGES

T

VARDIM VARDIM
T T
APLIST APLIST
SYMBOL TABLE SYMBOL TABLE
{1 word copyl 11 word copylt
=GL Definition =GL Definition
SYMBOL TABLE SYMBOL TABLE
{2 word copyl {2 word copyl

‘CA 138-1 REV 10-687

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS Ins PAGE NO.— 2.1
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.___3P €08 MACHINE SERIES —b4/E5/LEL00
FTNSIO

1.0 General

1.1 FTNSIC is the 0,0 or primary overlay. It contains: general
purpose I/0 routiness I/0 buffers and FETs, and the code to
load the overlays. Assembled into the I/0 buffer areas is the
code to crack the FTN control card and to initialize necessary
files.

The I/0 buffers are for the INPUT and QUTPUT files. The FETs
are for the INPUT, OUTPUT, LGO or binaryr and the COMPS {gene=
rated assembly languagel file. The COMPS buffer is in the

L, 0 overlay and the LGO buffer is assigned a location by the
assembler.

2.0 Entry point names

= CI01l. This entry point is used to facilitate the issuing of
system I/0 calls.

£2.1.1.Calling sequence.

SX2. I/0 parameter {see SCOPE 3.0 reference manual
Chapter 3%

SB? return address

SX1 FET address

EQ CI0L
if x2 €0, the requested function is issued with auto-recall
{see page 3-19 of SCOPE 3.0 reference manual for definition of

auto-recalll

2.2 RCLL. This entry point is used to facilitate issuing the
- Yprecal |’ request to the operating system.

2.2.1 Calling sequence SX1 FET address
SB? Return address

SXe P

EQ RCLY
If P=0 control will not be returned to the program until bit O
of word 1 of the FET becomes a 1.)
If P=0 the central processor will be relinquished only until the

next time around the monitor lopp.

See Chapter 3 of the SCOPE 3.0 reference manual for definition
of the two types of RECALL.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLAsS__LMS _ PAGE NO.___E-C
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.__3P_€08 MACHINE SERIES._ B4/b5/5500
2.3 REWIND This entry point is used to rewind output files used

by the compiler. An end-of-file write is requested
fol lowed by a rewind request.

2.31 Calling sequence
SBb file number w
RJ REWIND

xSee paragraph 5.0

2.4 TITLEL. This entry point is the first word of a 13 word title
which is listed at the beginning of each page-

2.5 LCNT. This one word entry point holds the number of lines
left to be printed on a page. If a page eject is
desireds LCNT is set to zero.

2.b LIST. This entry point is used to output compiler information
to the output file specified on the control card.

2.7 PAGE. This one word entry point contains the current page
number in display code. Setting PAGE to zero will
initialize the page number to one.

2.8 LWAERTL. Address of the last word in the error tabler used by
ERPRO to detect table overflow.

2.9 LDCOM Entry point which is used to generate a call to the
LOADER to load the COMPASS overlay. COMPASS is loaded
at 30008B.

2.10 ERACCUM. A one word flag which indicates if any fatal errors
have occurred during a run. Zero indicates no errorss
non-zero indicates errors.

2-11 LOVER. Routine which calls the LOADER to load overlays- See
SCOPE 3.0 reference manual Chapter 4 calling sequence
to LOADER.

2.12 PLUG 1, PLUG 2. An entry point {s} in which an RJ WRWDS for
WRWDS2Y} is stored to an output routine in each pass of
the compiler. Since it is not possible to link from
the 0.0 overlay to the 1,0 or 1,2 overlays: each pass
of the compiler stores a RJ instruction in these
locations.

2.13 Processing Flow Description

Control is obtained through the entry point FTN and

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION

~ DOCUMENT CLASS Ins PAGE NO.__ S+ 3
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3P _C08 MACHINE SERIES ___b4/b5/5500

then cracks the control card and opens the I/0 files.
{See SCOPE 3.0 reference manualrch.3, page 3.21}.
LOVER is then called to load the 1,0 overlay. The 1.0
overlay will allocate storage for the COMPS buffer
then return control to LDRPH1 in FTNSIO which then
loads the 1.1 overlay or Pass 1 of the compiler. The
1,0 overlay is loaded only once while the Pass 1 {1L,1}
and Pass 2 {1+2} overlays once for each sub-program
under the standard configuration.

3.0 Diagnostics. No diagnostics are produced by FTN.

4.0 Structure

4.1 Major Subroutine Names

4.1.1 INIT. ~ This routine cracks the FTN card and sets up the
appropriate options.

L option selecteds set NOLSTFL {loc 50B} to non-zero

X option selecteds, set NASAFLG {loc 42B} to non-zero

R option selecteds set bits 30-59 at loc 33B to non-zero
0 option selecteds set bit 0 of location 33B

B option: the file name specified is placed in loca-
tion 4B '

L foutput} file name is placed in location 3B
I {input} file name is placed in location 2B
T option selecteds location U5EB is set to non-zero

E option selecteds location 10B is set to non-zero.
file name or COMPS placed in location LB

4.1.2 DONE. This routine makes system calls to YOPENY the I/0
files and requests the time and date from the operating
system.

4.1.3 OTITLE. This routine is used to update the page count when it is
necessary to output a title line. The number of lines
per page may be changed by modifying an EQU call LMAX
in the common file call OPTIONS.

5.0 All filesy names {and FET addresses} used by the com-
piler are placed in RA+2 thru RA+k. All routines which

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.

CA 138-1 REV 10-67

DIVISION
NS : PAGE NO.___e-H
FORTRAN Extended Version 2.0

wish to reference a particular file do so by number.

File number designations.

1 INPUT
2 OUTPUT
3 LGO

y RLIST
5 COMPS

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS
PRODUCT NAME
PRODUCT MODEL NO.

1.0

2.0
2.1

2.1.1

2.1.2

2.2

2.2.1

7.0

CA 138-1 REV 1067

DIVISION
s PAGE NO.___ 3.1
FORTRAN Extended
4P616 MACHINE SERIES__64 /65 /6600
PS1CTL

General Information
PSICTL resides in the Pass 1 overlay. Its primary function is to
load in the second pass. It contains the compiler output buffer
filling routine WRWD1.
Usage
LDPS2
Entering at LDPS2 will result in the R-list intermediate file being
rewound and a call to LOVER being made to load the overlay READRL$
which is the name of Pass 2 of the compiler.
Calling sequence:
1LDPS2 is entered via a branch to the entry point of the same name.
WRWDS
This routine is used to output information. The calling sequence
is:

SB6 ‘"file number"

SB7 '"fwa' of central memory to transfer from

SB1 '"mumber of words to transfer"

RJ WRWD2
Modification Facilities

The OVERLAY parameter of OPTIONS is interrogated in this routine.

DOCUMENT CLASS ___ . IMS,
PRODUCT NAME FORTRAN Extended

PRODUCT MODEL NO.

CA 138-1

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP
DIVISION

1.0

1.1

2.0

2.1

2.1.1

2.1.2

PAGE NO. 4.1

4P616 MACHINE SERIES___ 64/65/6600

SCANKER
General information
SCANNER transforms all source statements into the intermediate language
E-list, then determines the statement type so the proper statement

processor can be called. SCANNER is called by PHICTL and PH2CTL and

Usage

SCANNER

Upon initial entry from PH1CTL;

1. TITLEl and TITLE 1+1 will be initialized to all blanks.

2. Any comment or blank cards are placed in the LIST file via FCRD.
If, before a PROGRAM, SUBROUTINE, FUNCTION, or BLOCK DATA statement

is seen the characters IDENT appear in columns 11-15, that card image
along with all subsequent cards up to and including the first card with
END characters in 11-13 and a blank in 14 are seat to the COMPASS file
via FCRD.
When a2 PROGRAM, SUBROUTINE, FUNCTION, or BLOCK DATA statement is seen
with a ‘name' on the first card the 'name" is placed in TITLEl+1l and
the statement identifier placed in TITLEl, TITLEl is an entry point
in the SIO program. Each source statement is scanned individually and
transformed into E-list bafore control is returned to the phase con-
troller.

Calling Sequence and Returns

The calling sequence is RJ SCANNER. Upon return register B7 and

TYPE (RA+24B) will hold the primary statement type. ATYPE (RA+51B)

will hold any constant type associated with the statement. If the

REY 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 4,2
PRODUCT NAME ~ FORTRAN Extended
PRODUGT MODEL NO.______ . 4P616 _ MACHINE SERIES 84/65/6600

2.3

statement is a logical IF, the type of the statement following the
logical expression is found in LTYPE (RA+21) and the starting address
in LELIST (RA+34B). The starting address of E-list for the primary
statement is found in SELIST. The last location used for E-list is
found in ELAST(RA+14B). CLABEL(RA+23B) holds in display code the
statement label, if any, left justified and blank filled. NLABEL
(RA+60B) holds the label, if any, in the same form for the next state-
ment. If no label is present NLABEL and CLABEL will be zero.
Processing Flow Description

SCANNER expects SYMEND(RA+13B) and CSTOR1 {RA+16B) to be initialized.
SI0 is called to transfer one card image from the input file to a
buffer local to SCANNER. The 80 display code characters are stored one
per word, right justified zero filled. The card image is checked for
1) all blanks, 2) a comment card, and 3) an IDENT card. If not one of
these a string is formed (left to right scan) containing all initial
alphanumeric characters and terminated by sensing the next statement
or an operator or delimiter in the statement. The string is checked
for PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA "name' and when found
the identifier and "nmame' is placed in the list file header line and
the entire statement is then processed. If not found either an error
has occurred or packing of the alphanumeric string will continue.

In general a left to right alphanumeric string is formed and
terminated by an operator or delimeter or sensing the next statement.
Depending upon the condition tuat terminated the string, control is
passed either to determine the statement type or transform the state-

ment to E-liet until the condition exists when the statement can be

CA 138-1 REVY 10-867

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS . PAGE NO.__4.3
PRODUCT NAME _FORTRAN Extended
PRODUCT MODEL NO. __4P616.. - MACHINE SERIES_ 64/65/6600

3.0

3.1.1

3.2

3.2.

1

3.2.2

3.2.3

3.2.4

3.3

3.3.

4.0

1

typed, After the statement has been typed the remainder of the
statement is simply transformed to E-list until the next statement is
sensed, It is sometimes necessary to separate the statement identifier
from a symbolic name or constant. This is done when the statementAis
typed and the SELIST pointer is set. When the next statement is seen

the ELAST pointer is set and control is returned to the caller.

Diagnostics

Fatal to Compilation

TABLES OVERLAP, MORE MEMORY REQUIRED,
Fatal to Execution

UNRECOGNIZED STATEMENT

ILLEGAL CHARACTER IN LABEL FIELD
STATEMENT TOO LONG

SYMBOLIC NAME TOO LONG, MAX IS 7
UNMATCHED PARENTHESIS

Non ASA Diagnostics

7 CHARACTER SYMBOLIC NAME IS NOT ASA

Environment

The address placed in SELIST is found by subtracting 15 from the address
found in SYMEND. The E-list is formed growing into smaller addressed
memory. Constants are placed in CONSTOR (initial address is found in
(STOR1) left adjusted blank filled and CONSTOR grows into higher
addressed memory. Also expected to be available via SIO are the input

file, the COMPASS file and the list file.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
™S
DOCUMENT CLASS D PAGE NO. 4.4
PRODUCT NAME FORTRAN Extended
“HP616 -

PRODUCT MODEL NO. . © MACHINE SERIES _64/65/6600

5.0 Structure

The subroutines are listed in the order of appearance in SCANNER.

wt
.
—

FRCRD

FRCRD fetches the next source card from the input file and places the
80 characters one to a word, right adjusted zero filled. The first
request will not result in a check to see if the card image should be
placed in the list file. All subsequent requests will check

NOLSTFL (RA+50B) (non-zero means yes) to see if a listing is desired

and furither check FSTSW

(a local flag and non-zero means ves, to list
the card image.FSTSW is turned toOFE when a COMPASS program is being
sent to the COMPASS file. The line count is updated and inserted in
the listing every five lines.

5.2 FCRD
Transfers the last read card image into the list file when FSTSW and
NOLSTFL are set non-zero.

5.3 PACK
When expecting a statement identifier PACK will pack alphanumeric
characters 10 per word and store in working storage (SELIST). When
expecting a symbolic name PACK will make the E-list entry for the
symbolic name.

5.4 SEARCH
Using the three tables described in Section 6, SEARCH trier to identify
the statement type. If successful the statement type code 1is placed

in TYPE, any arithmetic type in ATYPE, and the number of characters in

the statement identifier is in XO.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS . PAGE NO.__%.3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. . 4FP616. MACHINE SERIES _64/65/6600

5.5 ADJ
ADJ separates the statement identifier from any symbolic name or
constant that was packed with it at the start of statement processing.
Either a symbolic name or constant E-list entry is made and SELIST
adjusted as necessary.

5.6 GET
GET keeps track of the current column of the source card image being
interrogated and upon request returms to the caller the next non-blank
character in register B2, The blank squeeze takes place here. After
column 72 the routine NEXT is called to transfer the next card image
to the local buffer.

5.7 NEXT
NEXT calls FRCRD to transfer the next card image from the input file to
location SBUFF an 80 word buffer. When either an all blank card or a
comment card is seen, the next card image is requested. For a continua-
tion card return is made to the caller. When a new statement starts,
ceveral checks are made: 1) if an error occurred on the statement being
processed and the statement was typed return is made to SCANNER's callex
via the routine STATED, otherwise processing starts on the new statement,
2) any symbolic name E-list entry is completed, 3) any constant E-list
entry is completed. If the statement has been typed return is made to
the phase controller via SCANNER's entry point. Otherwise, the necessary
statement typing routine is called and an attempt is made to type the
statement.

5.8 STATEL

STATE]l makes sure an alphabetic character starts the statement and then

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 4.6
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES 64/65 /6600

calls PACK to pack a statement identifier. PACK returns control to
STATE 2.

5.9 STATE 2.

STATE2 is a jump vector which transfers control to the proper routine
depending on the céndition that terminated the statement identifier
packing.

5.9.1 The characters + ~ ¥) . cause an unrecognized statement diagnostic.

5.9.2 S. A slash terminates the string. SEARCH is called to check for DATA
N/, COMMON/, COMMON N/, or NAMFLICT/. Aftrer ecuccesefnl typing and
adjusting control is returned to TTAIEZ,

5.0.5 Ll. A left parenthesie terminates the string. If the string is
FORMAT and the statement was labeled, control is transferred to FORMAT
to process the statement. If not, a parenthesis count is started and
control is transferred to STATE3.

5.9.4 Dl. The typing routine for an all alphanumeric statement. SEARCH is
called to look for any form of: CONTINUE, STOP, ECS, GOTO, PAUSE,
CALL, READ, REAL, ENTRY, PRINT, PUNCH, RETURN, COMMON, DOUBLE, REWIND,
COMPLEX, ENDFILE, INTEGER, LOGICAL, PROGRAM. TYPEECS. EXTERNAL,
TYPEREAL, BLOCKDATA, BACKSPACE, SUBROUTINE, TYPEDOUBLE, TYPECOMPLEX,
TYPEINTEGER, TYPELOGICAL, ASSIGN, DOUBLE PRECISION, TYPEDQUBLEPRECISION.
After successful typing and adjusting control is transferred to STATEC.

5.9.5 El. An = sign terminates the string. If the string is from 8 to 14
characters long a check is made for a DO statement. If so control is
passed to ADJDO. If the string is less than 8, control is passed to
STATEG.

9.6 CCL, A comma terminates the string. SEARCH is called to look for the

wi

forms of: FCS, GOTO, CALL, REAL, DATA, READ, PRINT, PUNCH, COMMON,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
™S
DOCUMENT CLASS . PAGE NO.___4.7
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES 84/65/6600

DOUBLE, COMPLEX, INTEGER, LOGICAL, TYPEECS, EXTERNAL, TYPEREAL,
SUBROQUTINE, TYPEDOUBLE, TYPECOMPLEX. TYPEINTEGER, TYPELOGICAL,
DOUBLEPRECISION. TYPEDOUBLEPRECISION. After typing and adjusting
control is returned to STATES.

5.10 STATE 3
STATE 3 transforms symbolic names, constants, operators, and delimeters
into E-list until the parenthesis count is zero, then control is passed
to STATES.

5.11 STATE 5
STATES contains a jump vector to pass control to the processing routine
depending on the character that appears immediately after the parenthesis
count goes to zero.

5.11.1 The characters + - *) blank and . will cause an unrecognized statement
diagnostic,

5.11.2 P5. Is entered when an alphabetic follows when paren count goes to 0.
If the string length before the first left paren is 2 a check is made for
a logical IF. If so, control is passed to STATE8., If not SEARCH is
called to look for any of the forms of: GOTO, READ, WRITE, ENCODE, DECODE.
After successful typing and adjusting control is passed to STATES,

5.11.3 N3. 1Is entered when a digit follows as paren count goes to 0. Check
the string before the first left parenthesis for IF and if so, assume
an arithmetic IF then pass control to STATES3,

5.11.4 SD. A slash causes SEARCH to be called to look for any of the forms of
DATA and COMMON, After typing and adjusting control is passed to

STATES.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS _TMS. PAGE NO.__ 4.8
PRODUCT NAME _ FORTRAN Extended
PRODUCT MODEL NO.________ 4P616 __ MACHINE SERIES__64/65/6600

5.11.5 L3. A left parenthesis causes SEARCH to look for any proper form of
READ, WRITE, ENCODE, DECODE, BUFFERIN, BUFFEROUT and after typing and
adjusting pass control to STATES.

5.11.6 D3. The statement is terminated at parenthesis count=0. After
checking for WRITE and EQUIVALENCE, SEARCH is called to look for any
form of: READ, DATA, ECS, CALL, REAL, COMMON, DOUBLE, COMPLEX, INTEGER,
LOGICAL, PROGRAM, TYPEECS, TYPEREAL, FUNCTION, DIMENSION, SUBROUTINE,
TYPEDOUBLE, TYPECOMPLEX, TYPEINTEGER, TYPELOGICAL, REAL FUNCTION, DOUBLE
"""""""""""""""""""""" INTEGERFUNCTION, LOGICAL FUNCTION, DOUBLE-
PRECISION, TYPEDOUBLEPRECISION, DOUBLEPRECISIONFUNCTION and after typing
and adjusting pass control to STATEO, .

5.11.7 E3. The = sign here causes the type to be set replacement and control
is passed to STATES after making the string before the first left paren
into a symbolic name entry.

5.11.8 CC3. The comma causes a check made for EQUIVALENCE and then SEARCH is
called to look for the forms of: DATA, GOTO, ECS, CALL, REAL, DOUBLE,
COMMON, COMPLEX, INTEGER, LOGICAL, TYPEECS, TYPEREAL, DIMENSION, SUB-
RWHM,W%MWM,WH@WELTWHMMM,WRMM%LDWRL
PRECISION, TYPEDOUBLE?RECISION and after typing and adjusting pass control
to STATES.

5.12 STATE6
STATE6 determines if the statement is a replacement or a DO. A jump
vector passes control depending upon the first character after the =
sign.

5.12.1A/ *). = $, cause a unrecognized statement diagnostic to be issued.

5.12.2 P6. An alphabetic causes PACK to be called to pack a symbolic name then

CA 138-1 REY 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS . IMs. ___ PAGE NO. 4,9
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 . = MACHINE SERIES__64/65/6600

5.12.3

5.12.4

5.13

5.13.1

5.13.2

5.13.3

5.14

5.15

5.15.1

pass control to STATE 7.

N4. A digit causes DIGIT to be called to make the E-list entry for a
constant and then pass control to STATE1Q.

A+ - (or . cause the statement to be typed replacement and control
passed to STATES after making & symbolic name entry of the string before
the = sign.

STATE7

STATE 7 has a jump vector and passes control depending upon the
character that terminated the symbolic name after the = sign.

A+ - * (= or, cause the statement to be typed replacement and
control passed to STATES after making a symbolic name entry of the
string before the = sign.

A) will cause an unrecognized statement diagnostic to be issued.

CC4. A , will cause a check of the string before the = sign for a DO.
If the first two characters!are DO a jump is made to ADIDO to make a
constant and symbolic name entry and then pass control to STATES,
STATES

The remaining elements of the statement are transformed into E-list
and stored until the statement is terminated either by an error
occurring, or a new statement being sensed.

STATE10

STATE10 contains a jump vector and passes control depending upon the
character t:at tc¢rminated the constant that appeared after the first
= sign.

A+ - % [(or ,will cause the statement to be typed replacement

and control passed to STATES.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ... IMs. PAGE NO. 4,10
PRODUCT NAME . FORIRAN Extended
PRODUCT MODEL NO._____ - 4-P&k6 . = MACHINE SERIES 64 /65/6600

5.15.2.

5.15.3

5.16

n
.

Pt
~J

5.18

5.19

5.20

CA 1381 REV 10-67

A) will cause an unrecognized statement to be issued.

CC5. A , will cause the string on the left of the = sign to be
checked for a DO statement by calling ADJDO.

STATEQ

STATEO inserts the end-of-statement code into E-list. QLABEL is called
to scan the label field (columns 1-5) and make the proper entries in
CLABEL and NLABEL. Return is then made to the phase controller via
SCANNER's entry point.

QLABEL scans the label field (SBUFF through SBUFF+4) for a legitimate
label. If found, the label is placed in NLABEL left adjusted and blank
filled after first transferring the contents of NLABEL to CLABEL.
ADJDO

E-list and constor entries are made for the u i in the DO u i part of
the DO statement. DO u i is stored as a statement identifier at
SELIST. A symbolic name entry is made for i and an integer constant
entry made for u.

ASSIGN

The ASSIGN k TO i string is stored at SELIST. ASSIGN makes a symbolic
name E-list entry for i and an integer constant entry for k.

CFSNC

Checks all two character symbolic names for register names (a0-27,
BO-B7, X0-X7) and if so suffixes a currency symbol to the symbolic name
E-list entry.

POINT

Determines the element that starts with a decimal point (constant,

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO. 4,11
PRODUCT NAME EORTRAN. Extended
PRODUCT MODEL NO._ VeR6lfn 1.0 MACHINESERIES _ 64/65/6600

5.21.1

5.21.2

5.21.3

5.21.4

5.21.5

5.21.6

5.21.7

5.22.1

5.22.2

5.22.3

5.22.4

CA 138-1 REV 10-67

relational or logical operator) and makes appropriate E-list and CONSTOR
entries.

L0l. Checks one character alphabetic string bracketed by decimal
points for A, ¥, N, 0, T.

LO2. Checks two character alphabetic strings bracketed by decimal
points for EQ, GE, GT, LE, LT, NE, OR.

L03. Checks three character alphabetic strings bracketed by decimal
points for AND, NOT.

LO4. Checks four character alphabetic strings bracketed by decimal
points for TRUE.

185, Checks five character alphabetic strings bracketed by decimal
points for FALSE.

PACKC. Packs one character at a time into the CONSTOR entry for a
constant.

PACKT. Fills the last word of the CONSTOR entry with blanks and makes
the E-list entry for the constant.

DIGIT

Determines the constant type element that begins with a digit, and
calls PACKC and PACKT to make appropriate CONSTOR and E-list entries.
CFD. Checks the alphabetic character that terminates an all digit
string for E, D, B, H, L, R.

REXPPP, Inserts a decimal point in the constant string just before
the E.

DEXPPP, Inserts a decimal point in the constant string just before
the D,

REXP. Sets constant type to real, then expects an exponent.

CONTROL DATA CORPORATION + COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS
PRODUCT NAME
PRODUCTMODEL.NO. -

5.22.5

5.22.6

5.22.7

5.22.8

5.22.9

5.22,10

5.22.11

DIVISION
an- 4,1
RORTRAN Extended PAGE NO. 2
o ThReIs 8476576600

MACHINE SERIES

DEXP. Sets constant type to double, then expects an expcnent.

KD. When a decimal point follows a digit string the constant type

is set to real, then expect a fractional part or a D or E.

IIIC. When expecting either a fractional part of the constant or a

D or E.

IIIIC. Expecting an optionally signed exponent that must appear after
a D or E. |
VC. Packs digits in the exponent field until the constant is
terminated.

OEXP. Sets constant type to octal and terminates comnstant via PACKT.

HEXP. Converts the n in the nH, nR, or nL field to binary, then

packs the next n characters into a Hollerith constant.

5.23

‘CA 138-1 REV 10-67

FORMAT
Beginning with the first left parenthesis that follows the characters
FORMAT, the entire statement is packed ten characters per word and

stored beginning at SELIST. The last word is blank filled.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS MS. PAGE NO.___4.13
PRODUCT NAME __ FORTRAN Extended '
PRODUCT MODEL NO. 4P616 .. _ MACHINE SERIES 64/65/6600
6.0 FORMATS
6.1 E-list format
Element LE-list format
constant VFD 12/2000B8, 3/t, 6/s, 11/0, 10/n, 18/Pointer
symbolic name VFD 12/20013, 48/Name
b) VFD 12/20028, 43/0
R VFD 12/20023, 43/0
end-of ~statemernt VED 12/2004D, 43/0
= VFD 12/2005B, 43/0
(VED 12/20053, 48/0
.CR. VFD 12/2007B, 48/2
.AND, VFD 12/20108, 48/3
.NOT. VFD 12/2011B, 43/4
.LE, VFD 12/2012B, 48/5
.LT. VFD 12/2013B, 48/5
.GE, VFD 12/2014?, 48/5
.GT. VED 12/20158, 48/5
.NE. VFD 12/20163, 48/5
EQ. VFD 12/20}_2}3, 48/5 N
- VED 12/2030B, 48/6 |
-+ VFD 12/2021B, 48/6 a
* VFD 12/2022B, 48/7 |
P
/ VFD 12/2023B, 4&/8
*% VED 12/2024Z, 43/%0
fzz 2 conctant ertry t = § for lepgfeal, 1 fov integey, 2 for real,
3 for double precision, 5 for octal, and 6 for Hollerith. When T = 6,
s =0 for the H form, s = 1 for the L form and s = 2 for the R form.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS 1S, PAGE NO.__41%
PROLJEC T NAME .. PORTRAN Extended
PRODLCT MODEL NO. 4P616 - - MACHINE SERIES _64/65/6600

6.2

CA 1381 REV 10-67

n is the number of characters in the constant string and Pointer is
the starting address of the string in CONSTOR. For logical constants
the Pointer field will hold -1 for TRUE and 0 for FALSE and the n
ield is 0 and no CONSTOR entry is necessary.

Ctat.ment Type Codes

Each statement has an associated type code which has the following
signifizance; it is the ordinal in a jump vector of the statement

processiag program. The elements that actually appear in E-list are

=t
’.J
).l

. J
uliue

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

- DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.

Statement

Code Number

0

\D

10

11

12

13

14

CA 138-1 REV 10-67

DIVISION
s, PAGE NO.__4.15
5 FORTRAN Extended
4P616. __ MACHINE SERIES_ 64/65/6600

Statement and E-list entries

PROGRAM _s
PROGRAM s (...)
BLOCK DATA

BLOCK DATA s

SUBROUTINE _s

SUBROUTINE s (ay, ag,...,a,)
SUBROUTINE s, RETURNS (b, by, -..,b)

SUBROUTINE s, (al, 3y5-++5a), RETURNS (by, b,,.)

t FUNCTION s (a_, a_, +.., a_)
1 2 n

..b
~10

COMMON /xllal/.../xn/an

DIMENSION v_, v_, ..., v
1 2 n

EXTERNAL Vis Vgs eee, Y

EQUIVALENCE (k;), (kp), ..., (k)

INTEGER, TYPE INTEGER, REAL, TYPE REAL, COMPLEX, TYPE
COMPLEX, DOUBLE, TYPE DOUBLE, DOUBLE PRECISICH, TYPE

DOUBLE PRECIEION, LOGICAL, TYPE LOGICAL, FCS or TYPE ECS

Vo Vo, eees Y
FORAT (...)

; / - -
DATA kl;dl/, cees kn/dn/or (rl—dl),..., (rn—dn)

NAMELIST /y,/a;/.../y_/a,

f (a . = =
(1,a an) e or v=e

2,

CONTROL DATA CORPORATION

« COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO,

16

17

18

19

20

21

22

23

25

27

23

CA 138-1 REV 10-67

IMS.

EQR'"EEEG Extended

PAGE NO. 4,16

GO TO i K L, ...k
’ (cl, 2 n

IF (e) k], 5: k3

IF (e) S
not used at this time

CALL s

amc—

A e
CALL s (al, 2y, R an)

CALL s, RETURNS (b‘l, b,

RETURN
RETURN_i
CONTINUE
STOP

STOP n
PAUSE
PAUSE n__

DOni=m1,m2,n13

READ_f,k

READ (u) k
READ (u,f) k
READ (u, f)
WRITE (w) k

WRITE (u, f) k
BUFFER IN (u, k) (A, B)

BUFFER OUT (u, k) (A, B)

_arel __ MACHINE sERIES 64/65/6600

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS s, PAGE NO.___ 4,17
PRODUCT NAME _ FORTRAN Extended
PRODUCT MODEL NO. 4P616 - MACHINE SERIES__64/65/6600

29 ENCODE (n, £, A) k

30 DECODE (n, £, A) k

31 REWIND u_

32 | BACKSPACE u_

33 . ENDFILE u_

34 PRINT £, k

35 PUNCH £, k_

36 ENTRY s_

37 END card assumed for end-cf-record

Statement types 3 and 8 nced arithmetic typing information ATYPE

(RA+51B) holds 0 for logical, 1 for integer, 2 for zeal, 3 for
double precision & for complexz, 5 for ECS and -0 means a FUNCTION
not typed.
6.3 SEARCH Table Formats
The SEARCH program utilizes three tables. Each condition that requires
a search has two distinct tables plus a third table common to all
conditions. The conditions that use the search are:
(1) An all alphanumeric statement.
(2) A , after an all alphanumeric identifier.
(3) An identifier, then statement terminated a zero parenthesis count.
(4) Ar identifier, parenthesis count equal zero, then a slash.
(5) An identifier, parenthesis count equals zero, then a left
parenthesis,
(6) An identifier, then a slash.

(7) An identifier, parenthesis count equal zero, then an alphalrtic

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ™S PAGE NO.___4.18
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES_64/65/6600

character.
(8) An identifier, then parenthesis count equal zero, then a ,.
(9) The initial statement.
The search keys on the number of alphanumeric characters that appear
in the initial string. Table 1 thus has one word containing the number
of statement possibilities as determined by the length of the string.
In addition to this Table 1 has a pointer to the Table 2 location
that contains the following information: The location (in Table 3)
of the display code representation of the statement identifier ard the
location to jump to upon a successful match. The format of Table 1 is:
VFD 12/200nB, 48/Tahle 2 location
n = the number of identifier possibilities
The format of Table 2 is:
VFD 30/jump address, 30/Table 3 location
The format of Table 3 is:
VED 12/200mB, 48/statemsnt code
VFD 60/display code picture of identifier
m = the number of characters in picture
Thus for a given condition, the n Table 2 entries (in sequence) are used

to find the pictures to compare to the string.

7. Modificat on Facilities
Changes in the language are easily incorporated into the scanning techniques
by adding the pictures to Table 3 and making additions and/or modifications
to Tables 1 and 2,

8. Method

Not applicable.

CA 13B-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS , PAGE NO._ 21
PRODUCT NAME FORTRAN Extended Version 2 . 0
PRODUCT MODEL NoO.___3PC08 MACHINE SERIES _ 64/65/660

LSTPROC

1.0 General

1.1 LSTPROC contains the routines which fetch from or enter into the
symbol table a given symbol or label, LSTPROC is called by
CONVERT, DATA, DOPROC, STOPP, PAUSEP, ARITH, ENDPROC, RTNPROC,
NAMLIST, PRINT, ASSIGN, ENTRVPR, GOTOPRC, DPCOM, DPDIM, DPEQU,
DPEXT, DPTYP, DPBDA, DPFUN, DPROG, DPSUB, FORMAT, and FTNXAS.

LSTPROC calls one external routine, ERPRO,

As an instrument for storing data the symbol table is active
during Pass 1 only. The two word symbol table is saved for the
FTNX assembler during Pass 2, while the rest cof Pass 2 references
the one word copy of the symbol table directly. The assembler
uses only the finding feature of LSTPROC,

Throughout pass 1, symbol table entries are two words in length.
Any necessary information which does not fit in the two word
entry will be kept in an auxiliary list elsewhere in memory.

The symbol table will begin at FL-1 and expand (as new entries
are made) into lower addressed consecutive locations, while the
auxiliary table is built from the first available location in
low core and expanded into higher addressed locations. This
auxiliary table contains the dimension information as well as
the information required to process COMMON and EQUIVALENCE
statements.,

At the end of phase 2 (during END processing), the symbol table

will be condensed to one word per entry. The entry will consist
of the symbol (or label), and other information needed by DOPRE

or other processors during pass 2 (see page 8).

The two word copy of the symbol table is retained for use by the
FTNX assembler,

2.0 Usage

2.1 Entry Point Names: SYMBOL, LABEL

2.1.1 SYMBOL searches for a given 7-character symbol in the symbol
table, If the symbol is already in the table the entry is
loaded and SYMBOL returns to the caller. If the SYMBOL is not

presently in the table, it is entered in the table, loaded,
and SYMBOL returns to the caller.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS , PAGE NO.__ 2«2
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No. 3PC08 MACHINE SERIES__04/65/6600

2,1,2

LABEL searches for a given 6-character statement label in the
symbol table in exactly the same manner as SYMBOL searches for
symbols,

Calling Sequence and Returns

Entry is made to SYMBOL or LABEL via a direct jump (not a return
jump) with the following register requirements:

X1l: The symbol (or label) left justified in bits 0~47 with blank
fill. The contents of bits 48-59 is insignificant,

B7: The address to which control is to be returned if the symbol
was not already in the table,

B7+1: The address to which control is to be returned if the
Sy 0N "

3%, Al wraas alvran
Dxllwu«k WAoo [= 2 O S ~t ~)

Control is returned to the caller with:

Bl = ordinal of word 1 of the two word entry.

B2 = double the ordinal of word 1 of the entry (B1l+Bl).
BS5 =1

Xl = word 1 of the entry. ,

X2 = word 2 of the entry.

A0 = starting address of the symbol table.

Al = address of word 1 of the entry.

A2 = address of word 2 of the entry.

Diagnostics

One fatal to compilation condition may be detected: "SYMBOL™
TABLE OVERFLOW" (a maximum of 8192 words is used for the symbol
table),

No fatal to execution errors are detected.

No information diagnostics are issued.

No non-ASA errors are detected.

Environment

When LSTPROC is entered, it is expected to search for a given
symbol or label, enter the symbol or label if it is not presently
in the table, and return .the entry to the caller. Hence, no
conditions are expected to be set up by any other processors

(with the exception of the common cells noted in section 7.0
of this document).

CA 138-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS 1MS : PAGE NO. 2.3
PRODUCT NAME FORTRAN Extended Version 2 .0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES___64/65/6600

5.3.1

During Pass 2 the storing feature of LSTPROC is disabled. When
the assembler jumps to SYMBOL and the name is not found, the
last non-blank character of the name is checked for . or $, and
if so is replaced by a blank and another attempt is made to find
the name. If the name has seven non-blank characters and the last
character is not . or $, the last character is exclusive "or"ed
with an 06 and another attempt is made to find the name. This
procedure is necessary because special characters are suffixed
to intrinsic and basic external function names, and although
they appear that way in the one word symbol table, in the two
word symbol table only the name appears.

Structure

Note: In many of the subsections of section 5.0, the reader will
notice repeated use of the symbols P+, P-, C, C-1, and C-2.

Please refer to section 6.1 for definitions of P+ and P- (these
are the lower 12 bits of each word of the symbol table entry
during Pass 1). C denotes the last encountered symbol in the
search path before determining that this new symbol must be
entered. Then C-1 and C-2 refer to the next to the last symbol
and the 2nd from the last symbol, respectively, encountered in

the search path., For further clarification of these ciphers refer
to subsections 6.3 and 6.4.

SYMBOL

SYMBOL hashes the 7-character symbol (to be searched for) into a
7-bit pointer. This value is added to the base address of a table
(SLIST) to load a word which contains an ordinal of a symbol

table entry which is the head of this particular list. Routine
SLCOMM is then entered.

LABEL

LABEL hashes the 6-character statement label (to be searched for)
into a 5-bit pointer., This value is added to the base address
of a table (LLIST) to load a word which contains an ordinal of a
symbol table entry which is the head of this particular list.

A jump is then taken to SLCOMM,

SLCOMM

SLCOMM transfers the symbol (or label) to the specific register
(X0). Then if this particular list is empty the symbol is
entered in the symbol table, its ordinal is set as the head of
the list and the not-found exit is taken., If the list is not
empy, SLCOMM sets the head of the list ordinal in B4 and jumps
to TOP,.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
IMS
DOCUMENT CLASS : PAGE NO.__ 5.4
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3pCO8 MACHINE SERIES ___64/65/6600

1351 REV

TOP

TOP is the main search loop of LSTPROC., After loading the

symbol located at the head of the list, the loop is entered to
compare the symbol searched for with each symbol already in the
list., The comparison is an integer subtraction. If the result
is positive the P+ pointer of the current symbol is examined.

If P+ is zero, the list is exhausted with no compare, hence the
new symbol must be entered so control goes to routine ENTER, If
P+ is not zero, the next symbol is loaded and control loops to
TOP to compare the next entry of the list., If the result of the
subtraction is negative, P- of the current symbol is examined in
the same manner as P+, If the result of the subtraction is zero,
the symbol being searched for has been found, and control transfers
to FOUND, '

As the list is being searched, information is collected in the X2
register to be examined by routine FNTER to determine the course
of the search through the last few (maximum of 3) comparisons.
See section 6.3 for format of X2,

ENTER

Control transfers to ENTER when it is determined (at TOP) that the
current symbol is a new symbol and consequently must be entered

in the table. Through examination of the X2 register, FNTER makes
available in registers the last few symbols (or labels), their
ordinals in the symbol table, and the linking pointers (P+ and

P-) contained in these entries. The new symbol is then entered in
the next available position in the symbol table with its P+ and

P- both zero, and the length of the table is increased by two,
ENTER also forms a jump switch in X5, from the examination of X2,
which will effect transfer of control to the appropriate linkage
manipulating routine after all registers are set up.

SECOND

This point is entered when it is determined that the new symbol
is the second entry of this list. If the new symbol is greater
than the current symbol, control transfers to routine G2, If it
is less, control goes to routine L2,

L2

L2 sets P- of the current symbol (C) equal to the ordinal of the

new symhol, and transfers control to RFTRN,

1067

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS PAGE NO. S
PRODUCT NAME FORTRAN Extended Version 2,0
PRODUCT MODEL No. 3PCO8 MACHINE SERIES__ 64/65/6600
5.8 G2
5.8.1 G2 sets P+ of C = the ordinal of the new symbol, and transfers
control to RETRN,
5.9 NWENTL
5.9.1 This routine stores P+ of the new symbol, clears P+ of C-1, sets
and stores P- of the new symbol = the ordinal of C-1, stores P+
of C-~1, and jumps to RETRN,
5.10 CENTL
5.10.1 This routine stores P~ of C-1, sets and stores P- of C = the ordinal
of the new symbol, sets and stores P+ of C = the ordinal of C-1,
and jumps to RETRN,
5.11 NWENTG
5.11.1 This routine stores P+ of the new symbol, sets and stores P~ of
the new symbol = the ordinal of C, clears P- of C~-1, and jumps
to RETRN,
5.12 CNETG
5.12.1 This routine stores P+ of C-1, sets and stores '+ of C = the ordinal
of the new symbol, sets and stores P- of C = the ordinal of C-1,
and jumps to RETRN,
5.13 LNBASN
5.13.1 This routine sets P+ of the new symbol = the ordinal of C, If
rearrangement of the list is necessary, the ordinal of the new
symbol is stored as the head of the list and control goes to
NWENTL, If rearrangement is not necessary (P- of C-1 is not zero),
the list head stays the same and control transfers to L2.
5.14 LNBASC
5.14,1 If P+ of C-1 is not zero rearrangement is not necessary and
control goes to L2, If rearrangement is necessary the ordinal of
C is stored as the new head of the list, P- of C-1 is set to
zero, and control goes to CENTL.
5.15 GNBASN
5.15.,1 If P+ of C-1 is not zero rearrangement is not necessary and

control goes to G2, If rearrangement is necessary the ordinal
of new is stored as the new list head, P+ of new is set = the
ordinal of C-1, and control goes to NWENTG.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS o PAGE NO._ 5.6
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.__3PCO8 MACHINE SERIES64/65/6600
5,16 GNBASC
5.16.1 This routine sets P+ of C-1 to zero, and if rearrangement is

5.20

5.20.,1

necessary (P- of C-1 = zero) the ordinal of C is stored as the

new list head. Control then goes to CENTG, 1If rearrangement

is not necessary the list head is not changed and control transfers
to G2,

LLR, LRR

If P- of C-1 is not zero no rearrangement is necessary, and
control goes to L2, 1If rearrangement is necessary, P+ of new

is set to the ordinal of C and stored, P (P- for LLR, P+ for LRR)
of C-2 is set = the ordinal of new and control goes to NWENTL.,

LLL, LRL

If P+ of C-1 is not zero rearrangement is not necessary, control
goes to L2. If rearrangement is necessary P (r- for LLL, P+ for
LRL) of C-2 is set = the ordinal of C and stored, P- of C-1 is
set = zero, and control transfers to CENTL.

GLR, GRR

If P- of C-1 is not zero no rearrangement is necessary and control
goes to G2, If rearrangement is necessary p(p~ for GLR, P+

for GRR) of C-2 is set = the ordinal of C and stored, P+ of C-1

is set to zero, and control transfers to CFNTG,

GLL, GRL

If P+ of C-1 is not zero no rearrangement is necessary and control
goes to G2, If rearrangement is necessary P (p- for GLL, P+

for GRL) of C-2 is set = the ordinal of the new symbol and stored,
P+ of the new symbol is set = the ordinal of C-1, and control
transfers to NWENTG.

RETRHN

RETRN is the not-found exit. B5 is set to 1, B2 is set to twice
the ordinal of the current symbol (B1+Bl), the first word of the
entry is loaded into X2, and a jump is taken to the address
specified in the B7 register.

FOUND
FOUND is the found exit. 1Its function is exactly the same as

RETRN except that the jump is taken to the address specified in
B7+1.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS : PAGE NO.__ 5.7
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.___3PC08 ~ MACHINE SERIES _64/65/6600
6.0 Formats
6,1 PASS 1 SYMBOL TABLE FORMATS

During phase 1, symbol table entries will occupy two words, A and B:

59 17 16 15’14 13 12 11 0
F | . '
A NAME p U F.C D E P+ '

The first word of the entry (A) will have the above format, with
the following meanings:

NAME ; (bits 59-18) the name of the symbol or label, 7
(6 if a LABEL) or less display code characters left
justified, with blank fill.

FP: (bit 17) = 1 if the name is a formal parameter or
RETURNS, '

Us (bit 16) = set = 1 when symbol becomes defined.

F: (bit 15) = 1 if the symbol is the name of a function
(unless the subprogram being processed is this function).

C: (bit 14) = 1 if the name appears in a COMMON statement.

D: (bit 13) = 1 if the name has been dimensioned.

E: (bit 12) = 1 if the name has been changed due to
EQUIVALENCEing. A "base" and "bias" appear in the
first word of the DIMENSION LIST entry for the name.

P+ (bits 0=11) - the ordinal of the symbol table entry,
in this list, which is the next greater entry than this
entry, or if none exists, P+ = zero.

If NAME is the name of a symbol, word B will have the following
format:

59 56 55 54 53 52 41 40 39 34 19 18 13 12 11 0
' A E E \Y B
B T S X N DIMP N oP S RB € P-
F T T -

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS , PAGE NO.__ 5.8
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO, . 3PCO8 . MACHINE SERIES . 64/65/6600

where T (bits 59-56) is the type of the symbol:

0 = LOGICAL 6 = LABEL
1 = INTEGER 7 = RETURNS parameter
2 = REAL 10 = NAMELIST group variable
3 = DOUBLE (namelist name)
4 = COMPLEX 11 = PROCRAM, SUBROUTINE, BLOCKDATA
5 = ECS variable
IF PROGRAM: ASPF (BIT 55) =0
ENT (BIT 53) =1
IF SUBROUTINE: ASF (BIT 55) =1
ENT (BIT 53) =1
IF BLOCKDATA: ASF (BIT 55) = 0
ENT (BIT 53) =0

12 = ENTRY statement name
Note: (1) FUNCTION subprogram name will have type 0-4 and ENT = 1
in word B.

(2) Ordinal 1 of SYMTAB will always be the name of the
routine.

ASF (BIT 55) Statement Function

1]

EXT (BIT 54) = External symbol (variable in an external statement)
or implicit function reference, or object of a call.

ENT (BIT 53) Entry point.

DIMP (BITS 52-41) = INDEX (the ordinal times 2) of the dimension
and/or equivalence information if bit 13 and/or
bit 12 of word A = 1,

S (BIT 19) = 1 if BSS storage is to be assigned when DPCLOSE is
called, (This is for equivalence processing, If
this bit is set, DPCLOSE will assign storage for
the variable (or array) and then set the C bit in
word A so that duplicate storage is not issued when
the END statement is processed.)

VN {BIT 40) = 1 if the name has been used as a variable name.
RB (BITS 18-13) = relocation base indicator (see PASS 2 SYMBOL
)

TABLE FORMATS, section 6.2.

CA 138-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
IMS 5,9
DOCUMENT CLASS : PAGE NO.__ 2
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.__3- =09 . MACHINE SERIES_04/65/6660

BC (BIT 12) = 1 if BIT 14 of word A = 1 and the name is in blank
common, :

P - (BITS 11-00) = the ordinal of the symbol table entry, in this
list, which is the next lesser entry than this
entry, or if none exists, P- = zero.

OP (BITS 34-39) of word A = the order of appearance of the formal
parameters or the variables in a RETURNS list,

Note: (1) if bit 15 (FUNCTION) of A = 1, then bits 51-46 of
B = the number of arguments, (If NAME is a basic
external, then Bit 45 1; if NAME is an intrinsic
function, then Bit 44 1).

(2) if bit 17 (FORMAL PARAMETER, DUMMY argument) of
A =1, then bits 39-34 of B = the order of appear-
ance of the dummy argument name in the argument
list, such that, if the name is the first in the
list, bits 39-34 = 0; if the second, bits 39-34 = 1,
etcl

(3) if type = 7 (RETURNS parameter), then bits 39-34
of B = the ordinal of the parameter in APLIST. The
ordinal is numbered consecutively beginning with
zero (as in note #2 above).

If NAME is a statement label, then word B has the following format:

59 56 55754 53 x@ 38 24 23 12 11 0

i G Rl | R 'R =‘

T ‘" R SSF F A BLC L P- OR
_(=6) ‘0 Z NNMIM S

where T and P- are defined as above, and the other fields are
defined as follows:

1) If the T field is set to 6 (label indication) then a one bit
field called G is needed. A G field of 1 indicates that the
label has been generated by the DO processor. A G of 0
indicates a normal label.

a. If G = 0 then the following fields are needed:

1 bit field, set if label is referenced prior to

RZ =
current DO next,
RSN = 1 bit field, set if label is referenced as statement

number.
1 bit field, set if label has been defined as a
statement number.

SN

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS : PAGE NO._2.10
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No. __ 3PCO8 MACHINE SERIES 0 4/€5/6600
FM = 1 bit field, set if label is defined as a format,
RFM = 1 bit field, set if label is referenced as a format.
L = a 12 bit field containing the ordinal in SYMTAB of
the loop in which the label is defined or referenced.
RAS = 1 bit field, set if label referenced in ASSIGHN

statement,

b, If G = 1 then the following fields are necessary:

R =1 bit field, set if all integer variables are
considered to be re-defined within the loop.
E = 1 bit field, set if loop may be entered at a point

other than the top.

X - 1 bit field, set if loop may be exited at a point
other than the terminating statement of the DO,

=
1

1l bit field, set if loop control variable must be
materialized (placed in memory).

<
I

1 bit field, set if control variable is equal to
incremental limit, Example: DO 10 K =1, N, K

J - 1 bit field, set if loop contains an external
reference.
I - 1 bit field, set if loop contains another loop.
BLC - 15 bit field, binary line count.

The seven flags for G = 1 must be ordered as F, X, I, 4, V, J, R
from left to right in adjacent bits.

2) If T is something other than six then standard fields of the
symbol table will be observed.

6.2 PASS 2 SYMBOL TABLE FORMATS

During Pass 2 there is only one word per symbol table entry. The
original bits 59-12 of word A (from Pass 1) occupy bits 59-12 in

the Pass 2 entry. For symbols, the original bits 24-13 of word B
(from Pass 1) occupy bits 11-00 in the Pass 2 entry. For labels,
the original bits 59-48 of word B (from Pass 1) occupy bits 11-00
in the Pass 2 entry.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
MNAC IMENT ~1 Ace M8 oA e a 5.11
VUL UICIN | UL ADD - PAGE NO. - e LA
PRODUCT NAME FORTRAN Extended Version 2,0
PRODUCT MODEL NO.___3PC08 MACHINE SERIES_64/65/6600
SYMBOLS
59 , 18 17 16 17 14 13 12 11 6 5 0
' ‘ ' S !
NAME (symbol) F :
’P U F C D E RB

where: RB relocation base indicator (0 = program relocatable,
or a formal parameter if the FP bit is set; 1-76
COMMON relocatable, such that if RB of cne symbo§
RB of another symbol, then those two symbols are

relocatable to the same COMMON block; 77, = toc man

COMMON blocks. 8
LABELS :
59 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 10
| ' ' G i 1
; NAME (label) F U F C D E T "EXIMVJR
P (=6) 1 :
OR
(same as above) 76 543210
G R R R
"2 S SFF
0 NNMM,

See write up under PASS 1 SYMBOL TABLE FORMATS (section 6.1) for
explanatiaon of codes used in the above diagrams,

During the compile phase of Pass 2, word B of the two word symbol
table holds various quantities.

1) For formal parameters, bits 19-36 hold the total length of
the relocation base associated with each formal parameter,
and bits 41~52 hold the increment due to any one sequence of
code.

2) During NAMELIST processing the length of the relocation base
for formal parameters is held in bits 20-33 and is moved to
19-36 when executable code appears.

3) When a symbol or label is defined by the compiler (not the
FTNX assembler), the address definition relative to zero of
the proper relocation base is held in bits 19-36 of word B
and the relocation base ordinal is held in bits 12-18.

4) When a symbol is to be defined by the assembler, bit 36
of word B is set to 1.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DiVISION

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

IMS

PAGE NO._2.12

FORTRAN Extended Version 2.0

3pCO8

MACHINE SERIES__ 64/65/6600

During the assembly phase of Pass 2, word B of the symbol table
is reformatted to hold:

RL

RB

CA 138-1 REV 10-67

ST 39 4136 W 18 11
T RL RA RB
= relocation code:
LYy
0 = absolute /faﬁ
1l = program fﬂ
2 = common
3 = external

relocation address relative

relocation base

When RL

When RL

l, RB
local
2, RB

ordinal:

ranges from
blocks.
ranges from

common blocks.

to relocation base RL,

e

0=

73

for the maximum number of

for the maximum number of

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._ 312
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES —_64/65/6600
6.4 Entry Routines
6.4.1 Entry routines for the possible cases where the new symbol is greater
than the symbol at c.
IDENTIFIER PICTURE ROUTINE
xab CURRENT REARRANGEMENT (if any)
000 NONE G2
\ New
\
‘v/
New
000 C-1 , New GNBASC
\ C
\
\
Cc-1
001 GNBASN
New
000 GRR
c c-1
C ’
’
010 & New GRL
c-2
C-1 New
001 GLR
c-2
c C-1
011 GLL

New
\42

CA 138-1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__5.13
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES__64/65/6600
6.4.2 Entry routines for the possible cases where the new symbol is less
than the symbol at c.
IDENTIF IER PICTURE ROUTINE NAME
xab CURRENT REARRANGEMENT (if any)
100 New 7 NONE L2
/
C
New
010 C C-1 ,C LNBASN
4
N/C-l VNew
New :
011 c - {e:’/ C-1 LNBASC
c-1 v
c-1 C
100 ew LRR
-2
C ’
[.‘
110 -1 LRL
c-2
New
\\ C
101 N LLR
Cc-1
New »C-1
111 C LLL

c-2

CA 1381 REV 10-67

CONTROL DATA CORPORATION ¢« COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS R';‘ZN T PAGE NO.— 5.14
PRODUCT NAME FORT Xtende
'PRODUCT MODEL NO. LP616 MACHINE SERIES _ 614/65/6600
7.0 When LSTPROC is entered it is assumed that SYM1 (RA+12B) has been
set to Field Length - 1, SYMEND (RA+13B) must be initially set to
Field Length -1, thereafter LSTPROC updates SYMEND each time a new
symbol or label is entered in the symbol table.
8.0 In order to find a given symbol in the symbol table (or to determine

CA 1381 REV 10-67

that the symbol is not yet in the table) with the least number of
comparisons, the symbol table is actually broken down into a number
of short lists. Each symbol in a list is linked by ordinals to the
other symbols in the list, and each time a symbol is added to a
list the links are changed such that any symbol within the list

can be found with the least number of comparisons. Each symbol
contains a pointer (P+) to the next greater symbol in this list and
a pointer (P-) to the next lesser symbol in this list, and each
list is kept as symmetric from a given starting point as possibie.
For example, a list reflecting the best possible symmetry could look
as follows:

A C ¢ alW@
k2 .~ N

where the symbol H is the start, or head of the list. In this case,
where the number of symbols is 15, the maximum number of comparisons
to find a given symbol would be four. In this example, symbol H
would have a P+ pointer to symbol L and a P-pointer to D. L has

a P+ pointer to N and a P- pointer to J, etc., Each of the symbols A,
C, E, G, I, K, M, and 0 would have P+ and P- equal to zero indicating
that the particular symbol is the end of this path in this particular
list and if a comparison has not been reached by now the symbol being
searched for must be entered in the table and linked to the last com-
pared symbol.

Although each list is linked only within itself, this does not mean
that the elements of one particular list must be stored consecutively
in memory. As each new symbol is encountered it is simply stored

in the next available location, and pointers are set up to reflect
its location in the table,

Each one of the short lists must have a starting point, or head of
the list. Further, we must have a way of determining what list a
particular symbol belongs to. This is done by commutatively forming
(by the use of shifts and the exclusive OR (logical difference
operation) a 7-bit value or a 5-bit value for symbols or labels
respectively. This value is an index into one of two local tables
(SLIST for symbols, LLIST for labels) which contain symbol table
ordinals which point to the head of that list. Initially the SLIST
and LLIST tables of list heads are set to zero. |If a given cell is
loaded that is zero, then we know this is the first symbol in this
list and therefore no searching must be done. The symbol is merely

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.___5.15
PRODUCT NAME FORTRAN Extended
; LP616 61:/65/6600
PRODUCT MODEL NO. MACHINE SERIES 04/65/6600

CA 1381 REV 10-67

entered, set as the head of this list, and a return is made to
the caller.

When a list has grown to 3 symbols the head of the 1ist may be
changed to point to another symbol of that list in order to maintain
symmetry. However, after the list has 3 symbols in it the list head
will never again change. Although this method does not guarantee
maximum symmetry for a list there is a point where the time required
to rearrange the list head throughout the life of the list is
greater than the speed gained in subsequent searches.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS IMS

PRODUCT NAME

PACENO. 6.1

FORTRAN Extended

PRODUCT MODEL NO. Lp616

1.0

1.

1

MACHINE SERIES _64/65/6600

General Information

CONVERT converts the d
internal binary form,

user now refers to the
of the location of the

Usage

wthrr

~n n
LCUNVER

-
i

CONVERT

isplay code representation of a constant to its
The binary form is placed in a table and the
constant by the |, H of the table name and the CA
constant in the table CON..

Determines which of the three options is desired,

2.1.1.1 The constant is converted to binary form, placed in CONLIST, if not
already there and the caller informed of |, H and CA to be used to

reference the constant

~Conversion and add to CONLIST.

2.1.1.2 The constant is converted to binary form and returned to the caller,

Conversion only,

2.1.1.3 The constant in the form suppliied by the caller is placed in CONLIST
if not already there and the caller informed of |, H and CA. Add to

2.1.2

2.1.3

CONLIST only.

Calling Sequence and Returns.

The calling sequence i
to be +0 and the E~lis
Upon successful return
18-29 and CA in bits 3

s RJ CONVERT. Case 2.1.1.1 expects register Bl
t entry for the constant to be in register Xi.
register X1 holds H in bits 0=17, | in bits

0-47 all other bits being 0.

Case 2,1.1.2 expects register Bl to be negative and the E-list for

the constant to be in

register X1. Upon return, the converted form

of the constant is held in Xl, and X2 if the constant is a two word

element,

Case 2.1.1.2 expects register Bl to hold 1 or 2 the number of words

in the caller supplied

constant and X1 and X2 to hold the one or

two word element, X1 the first part of the constant and X2 the second

part.

Processing Flow Descri

ption

CONVERT quickly determines the option desired. The first call for either

case 2.1.1.1 or 2.1.1.
in the symbol table,

is formed for DEC, DEC
is searched for the co
already appears the |,
the constant is placed
convert the constant.

CA 138-1 REV 1C-67

3 will cause the symbolic name CON. to be placed
For Case 2.1.1.1, the display code of the constant
is called to convert the constant, then CONLIST
nverted form of the constant. If the constant

H and CA is returned to the caller, Otherwise,

in CONLIST. For Case 2,1.1.2, DEC is called to
DISPLAY is the routine called to process all forms

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 6.2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lp616 MACHINE SERIES 64/65/6600

of Hollerith constants. Case 2.1.1.2 the first word of the constant

is returned in Xl. For cases 2.1.1.1 and 2.1.1.3, the constant is put in
the COMPASS file following a USE HOL.. The constant instruction is a
DIS1, except for the last word which occupies a VFD 60/nH or nL or nR
depending upon the form of the Hollerith constant. The first call to
DISPLAY will cause the symbolic name HOL. to be placed in the symbol

table.
3.0 Diagnostics Produced
3.1 Fatal to Compilation

3.1.1 CONLIST TOO BIG. TOO MANY CONSTANTS. MORE MEMORY REQUIRED.
3.2 Fatal to Execution

3.2.1 CONSTANT CONVERSION ERROR,

k.o Environment

CONVERT expect CON1 (RA+26B), DO1 (RA+30B), DOLAST (RA+31B) and

ELAST (RA+14B) to be set prior to being called. CONVERT maintains

CONT and CONLAST the first and last locations used by CONLIST. 100
locations are initially reserved for CONLIST. If more room is required
the DO tables are moved 100 locations, if possible, and the pointers
maintained. When 100 more locations are not available ((ELAST) being the
highest+] address that can be used) a fatal to compilation diagnostic

is issued via FATALER.

5.0 Structure

5.1 CONVERT determines if the option is ''store only'" and if so, jumps to
PACK. If not, a check is made for the constant being any form of
Hollerith and if so, a jump is made to DISPLAY. For the ''convert only"
option, a jump is made to PRECON to arrange the input to DEC. For the
""convert and store'' option, a jump is made to PRECON, then PUT.

5.2 PACK determines the first call for a store and calls SYMBOL to put the
name CON. in the symbol table and retain its ordinal for use as the
H field in the 1, H and CA iqformation.

5.3 PRECON arranges the display code of the constant as follows: digits
are packed a maximum of seven per word left adjusted to bit 59 and
zero filled, +-. or B are stared in bits 0-5 with zero fill, and E or
D are stored in bits 54-59 with zero fill.

5.4 PUT places the one or two word converted constant (or caller supplied
constant) into CONLIST if the constant is not already in CONLIST.
Initially 100 locations are reserved for CONLIST and will be expanded
100 locations at a time moving the DO tables if necessary until the

CA 1381 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS (M5 PAGE NO.___ 6.3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lro16 MACHINE SERIES _6%/65/6600

time when 100 locations are not available (CONLIST) or the DO tables
running over ELAST when a fatal to compilation diagnostic is issued.

5.5 DEC does the actual conversion.

5.6 DISPLAY determines the first call for a storing option and calls SYMBOL
to place the name HOL. in the symbol table and retain the ordinal to
use as H in the 1, H and CA information. For the convert only option,
the first word of the Hollerith constant is returned to the caller in
register Xl. For any storing option, the constant is placed in the
COMPASS file and the user returned the I, H and CA information. Any ten
character part of the constant is packed following a DIS 1, and any part
of the constant is packed following a VFD 60/n H or L or R with n being the
number of characters. The first Hollerith constant put in the COMPASS
file will have HOL. in the label field, A DATA instruction is put in the
COMPASS file to terminate each constant with a word of zeros. Finally
a USE DATA.is put in the COMPASS file.

6.0 Formats
6.1 1, H and CA word returned to the caller is VFD 12/0, 18/CA, 12/1, 18/H.
6.2 CONLIST is the name of the table of converted or user supplied constants.

.TRUE. is converted to -1 and .FALSE. is converted as +0.

7.0 Modification facilities.
The coding is straight forward

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins : PAGE NO. 7.1
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.__ 3P CO8 MACHINE SERiEs __B4/b5/bb00

c-1

CA 128-1 REV

10-67

ERPRO and FORMAT

General Information
Task Description - Error Processing

The error processing during compilation is divided into
two routines: ERPRO in PASS 1. and PS2CTL in PASS 2.

The final output resulting from detecting an error will

be the card sequence number {compiler generated} on which
the error occurred:, the severity {ifatal to executionrs etcl,
an optional symbol, a name or word to further clarify the
messager and the actual diagnostic {up to 10t charactersk}.
ERPRO is located in the 1.0 overlay.

Task Description - FORMAT Scanner

The FORMAT scanner processes FORMAT statements and checks
for errors at compilation time. The scanner squeezes out
blanks and redundant commas. Before scanning the FORMAT

for validitys the statement label is checked for validity:
recorded in the symbol table, and sent to the COMPS file.

Usage
Entry Point Names - Error Processing
In general the calling sequence is:

SBE error number
Sb? return
EQ entry point

Using the above calling sequencer ERPRO would expect an
E-LIST entry in X4y or if X4 is zero a display code mes-
sage in X3 ibits 48-59 zero, bits O0-47 display codel.

Using the following calling sequencer no message is
expected in X3 or XY.

SBk -error number
Sb? return
EQ entry point

The parameter in Bk is a symbol or number which is equated
to the ordinal of the error in the error directory table
in PASS 2.

CONTROL DATA CORPORATION COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS iNS - PAGE NO.___ -2
PRODUCT NAME FORTRAN Extended VYersion 2.0
PRODUCT MODEL NO. 3PC0s MACHINE SERIES__ b4/b65/6600
2.1.2 ERPRO This enthy is used for all messages which

resulted from errors which are fatal to
execution.

2-1.3 ASAER This entry is used for all messages which denote
non-USASI usage.

2.1.3.1 A reference to this entry point will check a flag
called NASAFL and if the flag is non-zero: the
message will be entered into the error table,
otherwiser an immediate exit is taken.

2.1.Y4 FATALER This entry is used for all messages which resulted

from errors which are fatal compilation.

2.d.b4.L A reference to this entry will result in making
an entry in the error table and setting the fatal
to compilation flag {FX}. Control does not
return to the caller. d(alls to SCANNER are then
made unti! an END card is encountereds then a
request to joad PASS 2 is made.

2.1.5 ERPRO I This entry point is used for all diagnostics
which are informative in nature.

2.1.5.1 Informative diagnostics up until {10 minus the
maximum} are placed in the table and at that time
an informative diagnostic is issued stating that
no more informative diagnostics will be put in
the table-

c.c FORMAT has one entry point.

2.2-1 Upon entry with a legal statement label, FORMAT scanning
takes place. FORMAT is entered by both PHLCTL and PHLCTL.,
since formats may be among both executable and non-
executable statements.

2.2.2 Calling Sequence

FORMAT is entered via a return jump and upon completion
of its taskss exits through its entry point.

2.2.3 Flow of Processing
The characters which comprise a FORMAT, beginning with the
left parenthesis:s are scanned sequentially until the match-

ing right parenthesis or an irrecoverable error condition
1S encountered.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.____?-3
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES___b4/b5/bL00
3.0 Diagnostics
3.1 Error Processing

Number 20b Informative

DUE TO THE NUMEROUS ERRORS NOTED-. ONLY THOSE WHICH ARE
FATAL TO EXECUTION WILL BE LISTED BEYOND THIS POINT
Number 110 Fatal to Compilation

ERROR TABLE OVERFLOW

3.2 FORMAT
3.2.1 Fatal to Execution

PRECEDING CHARACTER ILLEGAL AT THIS POINT IN CHARACTER
PMAT

STRING. FERROR SCAN FOR THIS FOf STOPS HERE

- P IV LAY = 1A 1 Vi LI S) 1 = I VE LN W W)

TILLEGAL CHARACTER FOLLOWS PRECEDING FLOATING POINT
DESCRIPTOR. ERROR SCAN FOR THIS FORMAT STOPS HERE.

TLLEGAL CHARACTER FOLLOWS PRECEDING A,I,L,0, OR R
DESCRIPTOR. ERROR SCAN FOR THIS FORMAT STOPS HERE-.

ILLEGAL CHARACTER FOLLOWS TAB SETTING DESIGNATOR- ERROR
SCAN FOR THIS FORMAT STOPS HERE-.

ILLEGAL CHARACTER FOLLOWS PRECEDING SIGN CHARACTER-
ERROR SCANNING FOR THIS FORMAT STOPS HERE.

PRECEDING CHARACTER ILLEGAL- SCALE FACTOR EXPECTED-.
ERROR SCANNING FOR THIS FORMAT STOPS HERE-.

PRECEDING HOLLERITH COUNT IS EQUAL TO ZERO. ERROR
SCANNING FOR THIS FORMAT STOPS HERE.

FORMAT STATEMENT ENDS BEFORE LAST HOLLERITH COUNT IS
COMPLETE. ERROR SCAN FOR THIS FORMAT STOPS AT H.

FORMAT STATEMENT ENDS BEFORE END OF HOLLERITH STRING.
ERROR SCANNING STOPS HERE-

PRECEDING HOLLERITH INDICATOR IS NOT PRECEDED BY A COUNT-
ERROR SCANNING STOPS HERE WITH FORMAT INCOMPLETE.

ZERO LEVEL RIGHT PARENTHESIS MISSING. SCANNING CONTINUES.

PRECEDING FIELD WIDTH OUTSIDE OUTER LIMITS FOR RECORD
SIZE. SCANNING CONTINUES.

CA 1381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS _ PAGE NO.___*=H
"~ PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3rPC0a MACHINE SERIES b4/b5/6L00

PRECEDING RECORD OQUTSIDE OUTER LIMITS FOR RECORD SIZE.
SCANNING CONTINUES.

TAB SETTING IS OUTSIDE OQUTER LIMITS FOR RECORD LENGTH.
SCANNING CONTINUES.

PLUS SIGN IS AN TLLEGAL CHARACTER.
PRECEDING FIELD DESCRIPTOR IS NON-USASI.

FLOATING POINT DESCRIPTOR EXPECTED FOLLOWING SCALE FACTOR
DESIGNATOR. ’ :

TAB SETTING DESIGNATOR IS NON-USASI.

HOLLERITH STRING DELINEATED BY SYMBOLS IS NON-USASI.
3.2.3 Informative

SEPARATOR MISSING-~ SEPARATOR ASSUMED HERE.

X-FIELD PRECEDED BY A BLANK-. 1LX ASSUMED.

X-FIELD PRECEDED BY A ZERO. NO SPACING OCCURS.

PRECEDING FIELD WIDTH IS ZERO.

PRECEDING FIELD WIDTH SHOULD BE 7 OR MORE.

FLOATING POINT DESCRIPTOR EXPECTS DECIMAL POINT SPECIFIED-
OUTPUT WILL INCLUDE NO FRACTIONAL PARTS.

FLOATING POINT SPECIFICATION EXPECTS DECIMAL DIGITS TO BE
SPECIFIED. ZERO DECIMAL DIGITS ASSUMED.

REPEAT COUNT FOR PRECEDING FIELD DESCRIPTOR IS ZERO.

FIELD WIDTH IS OUTSIDE INNER LIMITS. CHECK USE OF THIS
FORMAT TO ASSURE DEVICE CAN HANDLE THIS RECORD SIZE.

PRECEDING SCALE FACTOR IS OUTSIDE LIMITS OF REPRESENTATION
WITHIN THE MACHINE.

SUPERFLUOUS SCALE FACTOR ENCOUNTERED PRECEDING CURRENT
SCALE FACTOR.

RECORD SIZE OUTSIDE INNER LIMITS. CHECK USE OF THIS FORMAT
TO ASSURE DEVICE CAN HANDLE THIS RECORD SIZE.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INS : PAGE NO.__0=3
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.___3PC06 MACHINE SERIES __b4/b5/6600

FIELD WIDTH OF PRECEDING FLOATING POINT DESCRIPTOR SHOULD
BE ? OR MORE THAN DECIMAL DIGITS SPECIFIED.

NUMERIC FIELD FOLLOWING TAB SETTING DESIGNATOR IS EQUAL
TO ZERO-. COLUMN ONE IS ASSUMED.

NUMERIC FIELD OMITTED IN PRECEDING SCALE FACTOR. ZERO
SCALE ASSUMED.

NON-BLANK CHARACTERS FOLLOW ZERO-LEVEL RIGHT PARENTHESIS.
THESE CHARACTERS WILL BE IGNORED.

TAB SETTING MAY EXCEED RECORD SIZE DEPENDING ON USE.
3.2.4 Each error message will be preceded by a 48 bit message

stating the card and column number of the error encountered.
Computation and the form of this message is described in

Section 8.
4.0 Environment
4.1 Error Processing
4.1.1 Information provided by other processors.

4.1.1.1 In location 4LB and 47B, SCANNER places information regard-
ing the current card number. Location U4LB contains in dis-
play code the line number as printed on the listings loca-

tion 47B contains in binary an offset count which ranges
from 1 to 10.

4.L.l.2 The location of the error table is an entry point name in
FTN called ERTABL-

4.L.l.3 NASAFL is contained in location 42B and is set by the
control card cracker.

4.1.2 Information generated by ERPRO.

4.1.2.1 Location 4OB contains the number of errors in binary
encountered during a single compilation.

4.2 FORMAT

FORMAT scanner expects character to be packed ten charac-
ters per word in display codes where the first character
is a left parenthesis. FORMAT expects the first word of
information at the location specified by SELIST, and the
last word of information at the location specified by

Ca 1281 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins , PAGE NO.__**b
PRODUCT NAME FORTRAN Extend=d Version 2.0
PRODUCT MODEL No. 3P C08 MACHINE SERIES_B4/b5/E600

ELAST- FORMAT allows a maximum of three levels of paren-
thesess an input record length of 150 characters: and an
output record length of 13t characters. In general:,
formats must be in accordance with USASI FORTRAN standards,
with the addition of the tab setting and Hollerith string
capabilities. Legitimate format field descriptors are

of the following form:

- £-1-1-1-\ '
rr (DIE|F|Gp w-d
trr (alziL]or) w

nHhyha- - -h

i
[}

- 1 - L i
‘L"'I—J’ ing Pr

in} X
#...H
Tm

where:

1. In the above description a vertical bar separates
alternativess angle brackets denote that one and
only one of the enclosed alternatives must be
choseni square brackets denote that none or one
of the enclosed alternatives may be chosen.

ce The letter‘s Dv Er Fo Gr A Ir L, Ov Re He and X
indicate the manner of conversion or editing
between the internal and external representations
and are called the conversion codes-

3. w and n are integer constants representing the width
of the field in the external character string.

4. d is an integer constant representing the number of
digits in the' fractional part of the external char-
acter string. If d is omitted it is assumed to be
zero.

8. m is an integer constant representing the tab
setting for the external character string.

- r is the repeat count {an optional, non-zero integer

constant} indicating the number of times to repeat
the succeeding basic field descriptor.

CA voo.1 BDEV dAc=

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ImMsS | . PAGE NO.__ 2.7
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No. 3P €08 MACHINE SERIES__ BH/B57EEUT

5.1
5.1.1

5.1.¢2

CA 138-1 REV 10-67

?. {+|—} int P is optional and represents a scale
factor to be applied to the processing of the
succeeding conversion code if a DlEIF G.

8. Each h; is one of the characters capable of
representation by the processor.

9. #...% encloses hollerith information fexcluding an
asterisk}, up to one record in length.

10. For all descriptors other than %...#, field width
must be specified: for descriptors of the form
(DIElFlG) w+dr w must be greater than or equal

to d+7.

= F£ialA
t field separators are the slash and the comma-
rl

a Y
d separators are used to delimit field descriptors.
d separators are optional in the following cases:

L. after #w...w

2. after nHhiha...h,

3. after nX

4. after {+|-} {n} P

5. after another field separator

L. before or after a right parenthesis

In all other cases a fieid separator is expecteds and a
diagnostic is issued if the separator is missing. Scan-
ning of the format will continue in such a case. Blanks
and commass where unnecessary: are squeezed out of the
format specification.

Structure

Major subroutine names in ERPRO.

ERPRO. This subroytine checks if room exists in the
table and determines type of parameter that
accompanies the message-

OPER. This subroutine decodes the E-list element.

TABOFLO. This subroutine issues diagnostic 110 and makes
the calls to SCANNER-.

PK. This subroutine sets up the entries in the error
table and updates the cell {ERLOC} which contains
the address of the next available cell in the

error table.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.___ 128
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.__3PCO08 MACHINE SERIES__ ©4/65/6600

5.2 FORMAT
5.2.,1 Transition Diagram

Format scanner has been implemented utilizing transition
diagram oriented processing. A transition diagram
describes action to be taken for each syntactic type
encountered in a string. The transition diagram consists
of circles, boxes, unbroken, and broken line segments

ralh s o
WIIT LT o

a NODE, or state in the flow which has
been reached at some point in the string.

O

.
.
]

a set of intermediate processing on the
string between nodes, or states, which can
be made analogous to a FORTRAN subroutine.

:= action in processing the string, Over a
--------- solid line segment, character advancement
takes place; over a broken line segment,
character advancement does not take place.
The character(s), or group of characters
(i,e, digit ::= (0,1,2,3,4,5,6,7,8,9))
which direct the processing to a particular
state are inscribed on the line segment.

Character advancement can also occur in intermediate
processing, :

The transition diagram which traces the flow of processing
for the format scanner follows.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.___7.9
PRODUCT NAME_____ FORTRAN Extended Version 2.0
PRODUCT MODEL NO.__3PCO08 MACHINE SERIES___ 64/65/6600

5.2.2 Micro Definitions for Transition Diagram

Micro definitions for the format transition diagram are
formed in the following manner:

‘node micro::= branch{branch} [otherb] | otherb

branch::= {char testl|mask tesﬁ)'[ignore] : transfer designation
otherb::= /{charj}:transfer designation

transfer designation::= node name [,routine name [(param) 11

char test::= (=12]¢) (char,lexpr;)

chary::= <h|B|C|...|8|9|+|—l*|/|$|,I L ITITI<ISIZI> I =1AlVILIT] 1™
exprj)::= compass expression designated by more than one character,
mask test::= [m][[1] {char,}l{char,};}]

char,::= <alslcl...I8l9l+|-1*I/Isl,| Lo IL1<igi2ldi=1AlviLiti: =)
ignore::= ,{chars}

charj::= (alBlcl...l8l9l+I-1*]/1s],] LD ITITIgIgI2I>I=1AIvILITI=)
node name::= name

routine name::= name

name::= letter {letterlnumber|$|.}g

letter::= <A|B|C|...|Z>

number::= €0l112131415l6l71819)

param: := compass expression

For example, at node 7:

= ,NOPACK:NODE7 - a blank is not packed, the flow is advanced
one character and sent back to node 7,

[0123456789] :NODE1,DECIM - a digit is packed, the flow is
advanced one character, and sent to NODEl,
via a set of intermediate processing, DECIM,

/ELSE:NODE1,IERROR(7) - any other character at this node
inhibits character advancement, and flow is
sent to NODEl, via IERROR, the informative
error processor, with a parameter of 7,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INMS _ PAGE NO.__'* 10
PRODUCT NAME FORTRAN Extended Version 2.0
'PRODUCT MODEL No.__3PC08 MACHINE SERIES__B4/B5/6600
5.2.3 Table Formed from Definitions and Table Processor

The micro definitions generate one word table entries: which
are acted upon by the transition diagram table processor:
TRANSIT, all of which is located in FLY. TRANSIT processes
the character string along the path defined by the micro
definitions of the transition diagram. fetching and storing
characters where required-

5.2.4 Intermediate Processings i.e Subroutines Used
5.2.4.1 NUMBER

Converts a string of display code numerical digits into a
binary number which is stored relative to location NUMN.
with a displacement of the input parameter {-1,0,1}: the
input parameter specifies the number to be decimal digits:
a repeat count or skip spanr or a field width. Control is
returned to the address specified.

S5.2.4.2 RANGE

Checks for valid result of NUMBER routine: range to be
checked is specified via the calling parameter. If num-
ber is out of ranger the error processor is called. Control
is returned to the address specified.

5.2.4.3 FLDCHEK

Checks range of field elements: computes total field length
and checks the range: record length is increased by the
length of the total field. Record count is saved in a
pushdown table which saves information for the 3 levels

of parentheses. If the record count is longer than one
record, an informative error is produced. Control is
returned to the address specified.

S.2.4.4 WIDTH

Field descriptor width handler: calls NUMBER{OY}, RANGE{l},
and FLDCHEK{l}. Parameter {0} implies a floating point
descriptor, and if the field width is not ? or greater:

an informative error is produced. Parameter {1} for other
descriptorss and no test is made. Control is returned to
the address specified.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS i PAGE NO.__ 2«11
"PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCO0a MACHINE SERIES ___ b4/b5/b600

5-2-"*-5

5.2.4.b

5.2.4.7

5.2.4.8

5.2.4.9

5.2.4.10

S.E.H.Ll

CA 138-1 REV 10-8§7

DECIM

Handles decimal digits portion of floating point descrip-
torsi calls NUMBER{-1}, and if descriptor is D, E, or G,
a check is made for field width greater than or equal to
? + decimal digits specified. If the descriptor fails
this testrs an informative error is produced. Control is
returned to the address specified.

FLAGW?D

Called to turn on a flag indicating a Dy E+ or G type field
descriptor. The flag is utilized by DECIM to determine
whether or not to perform a test comparing field width with
decimal digits specified. <{ontrol is returned to the

address specified

e e LI g
ONECNT

Initializes temporary count storage for repeat count, field
widths and decimal digits:s and turns off flag indicating a
Dy E+ or G specification encountered. Control is returned
to the address specified.

DELCOM

The last character stored in the string is fetched. If the
character was a comma, it is squeezed out of the output
string. Control is returned to the address specified.

XBLANK

An X descriptor was preceded by a blanks and an informa-
tive error is issued to that effect. FLDCHEK is then
called to update the record length count. Control is
returned to the address specified.

XZERO

The skip count is tested for zero: if so, an informative
error is issued. If the count is non-zero, FLDCHEK is
called to update the record length count. Control is
returned to the address specified.

TSASI

DELCOM is called to squeeze out redundant commas. A non-
ASA error is produced, and control is returned to the
address specified.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ins _ PAGE NO.__ =12
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCOA8 MACHINE SERIES b4 /65/6600

5.2.4.12 TCODE

NUMBER{D?} is called to convert the tab setting pointer
to binary. If the result is zeror an informative error
is produced. Otherwise RECCHEKL1} is calleds where the
record count is accordingly checked and modified. Control
is returned to the address specified.

5.2.4.13 SCAL '
NUMBERLD} is callied to convert scale factor to binarys
then RANGEL-1} is called to check for validity of scale
factor. Control is returned to the address specified.

S.2.4.14 NULLP

An informative error is initiated and zero scaling is
assumed. The scale flag is turned ony if previously ony
and unusedr another informative error is produced. Con-
troi is returned to the address specified.

5.2.4.15 HCOUNTR

The Hollerith count is fetchedrs each character is checked
against an end-of-statement: if an end of statement is
encountereds an error exit is taken. Otherwise the
character is storeds the count decremented, and the loop
continued until the count is depleted to zero. FLDCHEK
is then called to add to the record count. Control is
returned to the address specified.

5.2.4.15 HSTRNGR

Fach character is compared with the end of statement and
the Hollerith string indicator. UWhile no match is mader
character advancement continues. If an end of statement
is encountered, an error exit is taken. When a matching
Hollerith indicator is encountered the character count is
sent to FLDCHEK where it is added to the record count.
Control is returned to the address specified.

5.2.4.17 SLASH

DELCOM is called when the input parameter indicates: and
RECCHEK{O0} is called to check for legal record size-
Values are checked and modified in a pushdown table which
saves record size information for each parenthesis level -
Current record count is reinitialized. Control is
returned to the address specified.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 2-13
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES _b4/b5/6L00

S.2.4.18 RECCHEK

Current record count is checked for legal record size.
If entry was from SLASH: control is then returned to the
address specified. If entry was from RITEPAR because of
a first level right parenthesiss control is sent to
FINISH where the format is sent to the C(OMPS file.
Otherwiser entry was from TCODE, and the current record
count is set to the tab setting. The record saving
pushdown table is modifiedr and control is returned

to the address specified.

5.2.4.19 LEFTPAR

The parenthesis level is incremented and checked for
validity. An invalid parenthesis level causes an error
exit to be taken. If the parenthesis level is valid,
the level repeat count is preserved in the pushdown
table. Control is returned to the address specified.

5.2.4.20 RITEPAR

DELCOM is called to delete redundant commas where appro-
priate. Parenthesis level is checked for zero level.

If sos RECCHEKL-1} is calleds and control is sent to
close out procedures. Otherwise, appropriate record
size updating is performed on the pushdown table. The
parenthesis level is decremented by oner and control is
returned to the address specified.

5.2.4%.21L FINISH

Control is received by scan when a zero-level right
parenthesis is encountered. A check is made for
extraneous characters. The last word of the format

is packed. If no fatal errors were encountered in the
process of scannings the E-LIST string is inverted and
b word blocks of COMPASS images are sent to the COMPS
file. Entry conditions are restoredr and control is
returned via a jump to FORMAT.

5.2.4.22 IERROR, UERROR, FERROR

All are entries to the error processing routine, depending
upon the type of error incurred. The type is preserved:
along with the error number. All critical registers are
saved: then the card number and column number in which the

CA 1381 REV 10-67

DOCUMENT CLASS
PRODUCT NAME
PRODUCT MODEL NO.

k.1

b.2

E.E.l

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION

InMs

PAGE NO.__f= M

FORTRAN Extended Version 2.0

3PC08 M ACHNE SERIES _ BU/65/6600

error occurred are computed and merged into the 48 bit
message word. Control is then released to the appro-
priate error processor. On returns the critical registers.
are restoreds and control is returned to the address
specified by the caller.

Table Formats

Error Tablie Format

Uord 1

Word 2

FORMAT

59 b 47 0
c ERROR MESSAGE
NUMBER
59 30 0
LINE COUNT OFFSET

Memory Pointers and Flags

DEGFLAG

COLCNT

FLAGPON

FE

LEVEL

NUMD

NUMN

NUMW

1

i

flag turned on when D¢ E: or G descriptor is
encountered: is used to determine when field
width adequacy tests should be made-

contains count for current record length?
is checked in RECCHEK.

flag turned on when scale factor is encountered:
turned off when utilized. Checked each time
scale factor encountered-

flag turned on when a fatal error COnditiOn‘
has been encountered in a format. This flag
inhibits packing the format for the COMPS file-

a counter which keeps track of the parenthesis
level s, where the first level is level zero.

location which saves the decimal field of
floating point descriptors-

location which saves tab settings: and repeat
counters.

location which saves the width field of format
descriptors.

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

7.2
?.2.1

'CA 138-t REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

IMS 7.15
PAGE NO.

FORTRAN Extended Version 2.0

3IPC0a L4 /0576600

MACHINE SERIES

PUSHDOWUN - a table which contains four fields of informa-

tion per words one word per parenthesis level.
The information is used to calculate accumulated
record length when an end of record is encount-
ered. For each parenthesis level, the following
information is saved:

SL indication of presence or absence of
slash in level

GR the group repeat count

NL column count following last slash in

level

N1 column count preceding first slash in

The table will be structured as follows:

59 53 35 17 0

SLg 6Py NL N1g

SLy, GP4, NLl Nll

Modification Facilities

Error Processing

ERRMAX is an EQU in FTN, controls the size of the error
table.
FORMAT
EQU*s
MAXMAX EQU 150 maximum read record length
MINMAX EQU 13b maximum written record length
PMAX EQU L5 maximum size scale factor
LEVMAX EQU 2 maximum parenthesis level
HOLLER EQU 1R# hollerith string indicator

These limits may all be changed by simply modifying the

EdU’s.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS NS __ PAGE NO.__f+1b
PRODUCT NAME FORTRAN Extended VEI“SIOH E-D
PRODUCT MODEL NO. 3PCOa MACHINE SERIES ___ b4/b5/b500

?.2-2 Allowable Formats

Additions and/or changes to the forms allowable for format
descriptors may be made by adding to and/or changing the
micro definitions in FLY, and/or adding to and/or modifying
the specific subroutine handlerisl involved.

?7.2.3 C(haracter Manipulation

Characters are fetched and stored using two macros: GETCH
and PUTCH, from words packed ten characters per word to words
packed ten characters per words, with a one character delay.
SAVECHAR: on storage. These macros may be modified without
disturbing the rest of the logic of the scanner.

g.0 Method Used

Format scanner is a left-to-right, character by character:

one pass scans implemented through TRANSIT, the main routine
in FLY, which sends the format to the part of code indicated
appropriate by the transition diagram. The approved format

is packedr ten characters per wordr and sent six words per
liner to the COMPS file. The scan operates on a character
recognition basis. Recognition causes control to be sent to
an appropriate set of intermediate processing: which expects

a particular combination of characters, previously referred

to as field descriptors. Permissible descriptors are itemized
in Section 4. At the end of a set of intermediate processing,
control is returned to the appropriate state in the flow of
the scanner. Scanning terminates when an end of statement is
encountered, or an illegal character or character sequence is
encountered. A running count is kept of the length, in char-
acters, of the current record described by the format. C(alcu-
lation of total record length involves utilization of the
information stored in the PUSHDOWN table described in Section
b. Calculation and checking is done whenever a slash or a
zero-level right parenthesis is encountered. When an error

is encountered in the scanning process: the error processor

is called: where the card and column number in which the error
occurred is calculated. They are computed using the following
formul ae:

CD = 21 - CONTSI

COL = COLS - & ¥ where CONTS and COLS are computed in scanner

N

|fwa format - current address| ® 10 + {b0 - {L # char-
acter pointer}tl/kt

]

CURRENT COLUMN POINTER

CA 138-1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS) PAGE NO.__ 0+ 17
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3pC0a MACHINE SERIES. b4/b5/bb00

WD = {COL+N-1} = RELATIVE WORD POINTER
CDNO = CD+WD = CURRENT CARD POINTER

COLNO = COL+N+5-{bb#WD} = CURRENT COLUMN OF CURRENT CARD
POINTER

This information is packed in the lower 48 bits of the error
word in one of the following forms:

NNCDNNNN

NNCDbNNN

NNbCDbNN

NNbbCDbN
where the first field is the column number and the second
field is the card number. This information is then sent to

the standard error processing routine.
3.0 Restrictions and Other Remarks
9.1 ERPRO |
None
9.2 FORMAT
9.2.1 Register Usage
Caution must be taken by the modifier of FORMAT scanner with

respect to register usage. The following registers are used
by TRANSIT., and must be preserved in FORMAT scanner:

AO0=mask base X0=77 77008
BL=1 Al=input address Xl=input word
Be=shift input X2=input character
B3=node address X3=subroutine parameter
BY4=return address
B?=shift output A?=output address X?=output word

Caution must also be taken with respect to TRANSIT utilization
of scratch registers. The following registers are used as
scratch registers by TRANSIT:

A3

Al X4
BS X5

Ab Xb

CA 38-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS NS . __ PAGENO.__?-18
PRODUCT NAME FORTRAN Extended Version 2.0 ,
_ PRODUCT MODEL NO. 3pPCOos : MACHINE SERIES__ b4/b5/bb00

The return mechanism in all cases is via register BlY. All
intermediate processors save and restore BY when it is
utilized before a return.

DOCUMENT CLASS
PRODUCT NAME

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

PRODUCT MODEL NO.

CA 1381 REV

10-

67

DIVISION
IMS PAGE NO.___8.1
FORTRAN Extended Version 2.0
3pCO08 MACHINE SERIES__64/65/6600
DATA
General

DATA is called by PH2CTL whenever SCANNER encounters a DATA
statement, DATA send COMPASS pseudo=ops directly to the
COMPS file to preset data into variables or arrays.
Referenced by DATA are SYMBOL, CONVERT, WRWDS, ERPRO and
ASAER,

Usages

Entry point name: DATA

DATA processes DATA statements.

DITDIN

™R A
PH2CTL enters DATA

returns contro

eturn jump and upon compl
by exiting through its en

on

e o

leti
ntry

point.

DATA translates the FORTRAN statement into COMPASS pseudo-

ops.

Diagnostics

Fatal to Compilation - none.

Fatal to Execution

1)

2)

3)

4)

5)

6)

7)

TLLEGAL IDENTIFIER IN VARIABLE LIST OF DATA STATEMENT.
(#112),

VARIABLE APPEARING IN DATA STATEMENT MAY NOT BE IN
BLANK COMMON. (#113).

VARIABLE APPEARING IN DATA STATEMENT MAY NOT BE A
FORMAL PARAMETER. (#114),

VARIABLE APPEARING IN DATA STATEMENT MAY NOT BE A
FUNCTION NAME, (#115).

ILLEGALLY TYPED VARIABLE IN DATA STATEMENT, MUST BE
ONLY INTEGER, REAL, DOUBLE, COMPLEX, OR LOGICAL. (#116).

ILLEGAL FORMAT OF DATA STATEMENT. (#117).

ALL ITEMS IN DATA T.IST OF DATA STATEMENT MUST BF
CONSTANT. (#118).

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS __IMS PAGE NO.___8.2
PRODUCT NAME FORTRAN Extended Version 2,0
PRODUCT MODEL NO. 3pPCO8 MACHINE SERIES__64/65/6600

8) REPEAT FACTOR OF DATA ITEMS AND DO LIMITS MUST BE
INTEGER., (#119).

9) CONSTANT SUBSCRIPT OF VARIABLE MUST BE INTEGER., (#120).

10) NO TERMINATING RIGHT PARENTHESIS AFTER SUBSCRIPT OR DO
VARIABLES., (#121).

1) DO CONTROL VARIABLES NOT USED AS SUBSCRIPT IN DATA
STATEMENT, (#122).

[

12) NO EQUALS SIGN AFTER DO VARIABLE IN DATA STATEMENT.
(#123) .

13) IMPLIED DO LOOP MAY HAVE ONLY 3 LIMITS. (#124).

14) VARIABLE APPEARING AS SUBSCRIPT BUT ITS DO LIMITS WERE
NEVER DEFINED. (#125).

15) NON DIMENSIONED IDENTIFIER APPEARS IN DATA STATEMEN
WITH SUBSCRIPTS. (#127). :

16) UNMATCHED PARENTHESIS IN DATA STATEMENT. (#128).

17) ILLEGAL CHARACTER AFTER DATA ITEM. MUST BE COMMA,
SLASH, OR RIGHT PAREN. (#129).

18) ONLY COMMA OR END OF STATEMENT MAY FOLLOW TERMINATING
SLASH OR)., (#132).

19) SLASH, EQUAL SIGN, OR LEFT PAREN MUST FOLLOW VARIABLE
LIST. (#133).

3.3 Information Diagnostic

1) MORE DATA ITEMS APPEAR IN DATA LIST THAN ARRAY CAN
CONTAIN. EXCESS ITEMS ARE DISCARDED. (#126) .

3.4 Non-USASI Diagnostic
1) NON-USASI FORM OF DATA STATEMENT, (#129).

4,0 Environment
DATA expects that SCANNER has cracked the statement into
E-list format and has set the address of the first element
after the word DATA into SELIST (RA+32B), The last element
of the statement must be followed by an end of statement.

The DIMENSION statement processor must have set the address
of the dimension table in DIM1 (RA+17B).

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS . PAGE NO.____ 8.3
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.__3PCO08 ; MACHINE SERIES 64/65/6600
5,0 Structure
5,1 CONVERG
5.1.1 Sends the COMPASS images "ORG name" to COMPS file. The

5.3
5.3.1

CA '38-1 REV 10-67

variable name is in VARBL, If the data is to be stored at
a point different from zero of the array, then this index
is computed. ORGPNT contains a binary number if prior data
has been stored in this array using the "REPI" pseudo-op.

If the variable has been equivalenced and a bias introduced,
this bias is contained in EQUBIAS., N1, N2, and N3 contain
the subscript -1 for the first, second and third subscripts,
respectively. If the data is to be stored at a point dif-
ferent from the beginning of the array, the index is con-
verted to display code and suffixed to the array name, the
COMPASS line image being "ORG name + index".

STARRED

Checks the data for a repeated list. The list enclosed in
parenthesis or an item alone must be preceded by an asterisk.
The repeat count in display code is saved in the upper 30
bits of REPEAT and the binary count is saved in the lower

18 bits of REPFAT., The E-list address of the first data
item to be repeated is saved in AGAIN,

LEAD

Checks the data for logical, Hollerith, complex, double and
other,

a) Logical is represented by false as DATA 0B and true as
-1B.

b) Hollerith constants have all but the last word sent to
the COMPS file with the DIS 1, pseudo-op. The last
word is sent as VFD 60/nl where n is the number of
characters remaining and 1 is L, R, or H.

c) Real, integer, complex and double precision data are
converted to internal binary via CONVERT, then to
display code and suffixed with a B; thus being issued
as octal constants.

STRING

Alters the repeat count of a data list if the data list
exceeds the array length.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.—_ 8.4
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.___ 3PC08 MACHINE SERIES_ 64/65/6600
5.5 FLOW
5.5.1 Checks for data exceeding array length and whether or not
there is more data in the list.
5.6 EXIT
5.6.1 Sends COMPASS buffer to COMPS file.
5.7 CLEAR
5.7.1 Clears all temporary flags after a variable and its data list
is completely processed.
5.8 LAST
5.8.1 Processes the subscripts of the array name.

a) Constant subscripts in binary are saved in N1, N2, N3 in
their respective order, i.e., an array A(2, J,3) would .
have 2, the first subscript, saved in NI, and 3, the
third subscript, saved in N3,

b) The variable subscript in left-adjusted display code is
saved in the same manner as the constant subscript except
in cells L1, L2, and L3.

5.9 REFORM

5.9.1 Reformats the DO control limits for the variable subscripts
and saves the information in L1, L2, L3, The initial value,
the terminal value, and increment are saved in the 1lst, 2nd
and 3rd 18 bit bytes of the word respectively. The order in
which the subscripts are to be incremented is saved in the

upper 6 bits. Therefore, A(I, J, K), I=1, 10), k=2, 10, 2)

J=4,5) would be saved as:

Ll 1 1 10 1 for I
L2 3 1 5 4 for J
L3 2 2 10 2 for K
/A 13 13 12
5.10 PAT
5.10.1 Sets the initial value from the DO control limits from L1,

L2, and L3 into their corresponding N1, N2 and N3 cells.

If the DO control increment is greater than 1, then SWITCH

is set to indicate each piece of data must be sent individually
rather than possibly with a "REPI" pseudo-op.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS , PAGE NO.___8+5
PRODUCT NAME FORTRAN Extended Version 2 .0
PRODUCT MODEL NO.____3PCO8 MACHINE SERIES__64/65/6600

5.11 KEEP

5.11.1 Adds the running total of the implied DO loop for the array.

5.12 HELLO

5.12.1 Sets SWITCH to indicate each piece of data must be sent
individually if the subscripts are not to be incremented
in consecutive order,

5.13 RUNOVER

5.13,1 Computes the difference between the array total and the

starting point of the array which has only constant sub-
scripts and uses this difference as the new array total.

W
*

-
[N
-

mw
&

5.14.1 Matches a variable in a list to its corresponding data.
5.15 BRUTE

5.15.1 Increments the subscript pointers for an array with DO loop
control. The data items must be sent individually because
the position within the array must be recalculated each time.
Either an increment of a loop control was not 1 or the
variable subscripts are not to be incremented in the same
order as they appeared after the array name.

5.16 NEWSYM

5.16.1 Entered when a new variable is mentioned in a DATA statement.
Calculates the arithmetic type and saves this type along
with setting the variable bit, defined bit and common bit
in the symbol table., The variable name is stored in the

buffer so that its associated data will follow the name in
the buffer., The DATA. block is increased by 1.

6,0 Formats
6.1 PAREN

Parenthesis count: incremented for left parenthesis
decremented for right parenthesis

6.2 TEMP1

a) Used in LAST (see s=ction 5,.,8) contains the order number
of the subscript in the lowest 18 bits,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS : PAGE NO._. 8.6
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3pCos8 MACHINE SERIES__64/65/6600

b) Used in REFORM (see section 5.9).

C B A
4 36 18 D

where:
A = order of variable in implied DO loop.

shift count for DO limits.

[ve]
i

0 for initial value.
18 for terminal value.
36 for increment.

C = order of variable in the subscript.
6.3 EQUIBIAS - equivalence bias if applicable.
6.4 TOTAL
Maximum number of words which can be stored in the array.

Altered by DO loop control and subscripted reference other
than the first element of the array.

6.5 VARBL

Name of the variable currently being processed in left
adjusted display code. Lowest 18 bits are zero.

4

6.6 SWITCH

a) 1 for non-contiguous storage of data as with DO loop
control.

b) For non-subscripted variables in a list, the lowest 18
bits contain the E-list address of the next element in
the variable list.

c) When a subscripted variable is mentioned in a variable
list, the lowest 18 bits contain the current E-list
address in the data, After the subscript is processed
the lowest 18 bits contain the E-list address of the next
element in the variable list.

6.7 ORGPNT

Contains the last binary index into the array. If a "REPI"
pseudo-op is used to preset data, then in order to have the
location counter be positioned at the proper place within the
array for the next piece of data this index is used to space
over the repeated data.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__ 8.7
PRODUCT NAME FORTRAN Extended Version 2,0
PRODUCT MODEL NO. 3pPCO8 MACHINE SERIES __ ©4/65/6600
6.8 D1
a) simple variable = 0
b) one dimensioned = 0

c) two dimensioned = first dimension in lowest 18 bits

d) three dimensioned = first dimension in lowest 18 bits and
1st * 2nd dimensions in bits 30-48,

6.9 N1l - 1lst subscript -1
N2 - 2nd subscript -1

N3 - 3rd subscript =1

Set only once for a variable with constan

L UAL-A-J N a i e S - - N - t -
a

s ri
Incremented after each data item for variable with
variable subscripts.

6,10 L1 - a) in LAST (see section 5.8)
L2 contains the variablé subscript
L3 name in left adjusted display code.

b) in REFORM (see section 5.9)

0 increment terminal initial
or 1 value value
57 54 *36 18 0

where:
0 is the order in which the subscripted are to be incremented.
6,11 AGAIN

E-list address of the first data item of a repeated data
list.

6.12 REPEAT

display code binary

59 30 18 0

repeat count

CA 1381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__ 8.8
PRODUCT NAME FORTRAN Extended Version 2,0
PRODUCT MODEL NO. 3pC08 MACHINE SERIES__64/65/6600

6.13 DBLCMPX

0 for single variable; non-zero for double or complex
variable.

UNIQUE

Unique name which is incremented after every use. Specifies
a beginning address for data to be repeated via "REPI"
pseudo=-op.

The low core cells, SYMl, DIMl, etc., are set via an EQU. all
of the special characters, =,), (, *, etc., are referenced
symbolically and set via an EQU.

Not applicable,

Throughout the processor A4 contains the current E-list address
and A0 contains the address of the next available location in
DATA's COMPASS buffer. Whenever an external routine is refer-
enced, these two addresses are saved in bits 0-18 and bits
30-48 respectively in a cell called ELIST.

The beginning address of DATA's COMPASS buffer is obtained
from DOLAST (RA+31B).

Examples of generated COMPASS images:

1. DATA A/1, 2, 3, 4, 5/ or DATA (A =1, 2, 3, 4, 5)
where A has been dimensioned 5

ORG A
DATA 1B
DATA 2B
DATA 3B
DATA 4B
DATA 5B

2. DATA B/27*0/ or DATA (B=27%0)
where B has been dimensioned (3,3,3)

ORG B
S SET *
DATA 0B

REPI S/S ,B/1B,C/32B

DOCUMENT CLASS
PRODUCT NAME

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

IMS PAGE NO.___ 8.2

FORTRAN Extended Version 2.0

PRODUCT MODEL NO. 3pCO8 MACHINE SERIES_64/65/6600

CA 138-1 REV

10

3.

67

DATA A,B,C/4.D0,5.D0,2%3,D0/
where A,B,C are double and C dimensioned 2

ORG A
DATA 172240000000000000008
DATA 16420000000000000000B
ORG B
DATA 17225000000000000000B
DATA 16420000000000000000B
ORG CC

S SET *
DATA 17216000000000000000B
DATA 16410000000000000000B
REPI S/S ,B/2B,C/1B

DATA (NEW=4LNEW=

where NEW has not been mentioned b

LR A asle Al 4

-
-
-

USE DATA,
NEW VFD 60/4LNEW=

DATA (((a(1,J,K),I=1,2),J=3,4),K=5,6)/8*0/
where A is dimensioned (2,4,6)

ORG A+44B
DATA 0B
ORG A+45B
DATA OB
ORG A+46B
DATA OB
ORG A+47B
DATA 0B
ORG A+54B
DATA 0B
ORG A+55B
DATA OB
ORG A+56B
DATA OB
ORG A+57B
'DATA 0B

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
S, PA a.i0
DOCUMENT CLASS ; GE NO._ B.
PRODUCT NAME FORIRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES___64/65/6600

3. DATA A, B,C/4.DO, 5.D0,6*3D0/

where A,B,C are double and C has been dimensioned 6

VARS SET A
ORG VARS$
DATA 4 .EEOQ
VARS SET B
ORG VARS
DATA 5.EEQ
VARS SET C
ORG VARS
.AC DATA 3.EEQ
XS SET .AC
XB SET 2
XC SET 6

DATMAC XS , XB , XC
4. DATA (NEW=4LNEW=)
where NEW has never been mentioned before

USE DATA
NEW VFD 60/4LNEW=

5. DATA (((A(1,J,K), I=1,2), J=3,4),K=5,6)/8%0/

where A is dimensioned (2,4,6)

VARS SET A
ORG VAR$+0042B
DATA O
ORG VAR$+0043B
DATA Q
ORG VAR$+00443B
DATA O
ORG VAR$+H0045B
DATA O
ORG VARS$S+0054B
DATA O
ORG VAR$+H)055B
DATA O
ORG VAR$+0056B
DATA O
ORG VARS$S+0057B
DATA O

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._9.1
PRODUCT NAME ______ Fortran Extended
PRODUCT MODEL NO, . _4P616_ MACHINE SERIES __ 64/65/6600

2.2

2.2.1

2.2.2

2.3

CA 138-1 REV 10-67

DOPROC Description

General Information

The DO processor (DOPROC) examines DO statements, DO-implied lists,
statement numbers, statement number references, and integer variable
definitions. It determines the characteristics of DO's and index
functions, diagnoses nesting, syntax, and the use of statement numbers,
and generates R-list macro words defining the beginning and end of each
DO loop and DO-implied list. The DO statement is the only statement
fully processed by DOPROC.

Entry Points

DOPROC

DOPROC is referenced by PH2CTL when a DO statement is encountered.
DOPROC examines the E-list items of the DO for syntax. If the DO

is found to be legal, it generates a label for referencing from the
bottom of the DO, sets up the DO table (DOT) with flag and address
information concerning the control variable, limits, etc, and gener-
ates an R-list macro for processing by the second pass DO processor
(DOPRE) .

The calling sequence for DOPROC is:
RJ DOPROC

Upon entry to DOPROC, it is expected that low core location SELIST
will hold the address of the E-LIST for the DO. Upon a successful
exit from DOPROC, the R-list file will contain seven words relating
to the DO and if necessary, label information will be filed in
SYMTAB. Low core location DOLAST will hold the address of the list
entry in the DOLIST (DOL table).

DODEF
DODEF is referenced by ARITH, ASSIGN and LISTEDIO (on input) when-
ever an integer variable appears as the object of a replacement
statement, ASSIGN statement, or input statement. DODEF sets up an
integer variable definition item in the DOLIST (DOL table) and diagnoses
illegal redefinition of loop limits.
The Calling 3equence for DODEF is:

RJ DODEF

where Bl has been preset to the ordinal of the integer variable in
the symbol table.

DOSYM

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 9,2
PRODUCT NAME Fortran Extended]
PRODUCT MODEL NO. LP6l16 MACHINE SERIES___ 64/65/6600
2.3.1 DOSYM is referenced by ARITH and LISTEDIO (output only) when an in-

2.3.2

2.4

2.4,

CA 138-1 REV 10-67

teger variable appears as an operand. DOSYM causes a search of the
DOT table to see if the integer variable is the control variable for
any loop and if so marks the control variable for materialization.
The calling sequence for DOSYM is as follows:

RJ DOSYM

where Bl has been preset to the ordinal of the integer variable in
the symbol table.

DOCALL
DOCALL is referenced by ARITH, CALL AND LISTEDIO when a2 subroutine
or function reference, explicit or implicit, is encountered. DOCALL
will set a flag indicating a transfer out of the loop.
The calling sequence for DOCALL is:

RJ DOCALL
poIT

DOIT is referenced by LISTELIO when it encounters a DO-implied list.
DOIT initializes the loop as described under DOPROC.

The calling sequence to DOIT is:
EQ DOIT
where Bl points to the E-list entry for the = sign.
Return is to DOITX.
DONE

DONE is referenced by LISTEDIO after processing the list of a DO-
implied loop. DONE closes the loop as described under DOLAB.

The calling sequence for DONE is:
EQ DONE
Return is to DONEX.
DOGOOF
DOGOOF is referenced by LISTEDIO after encountering a fatal error

while processing the list of a DO-implied loop. This allows DOGOOF
to remove the current nest of DO-implied loops.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 9.3
PRODUCT NAME Fortrand Extended
PRODUCT MODEL NO. 14P616 MACHINE SERIES___64/65/6600
2.7.2 The calling sequence for DOGOOF is:

2.8

2.10.1

2.10.2

CA 1381 REV 10-67

EQ DOGOOF
Return is to DOGOOFX
DOENT

DOENT is referenced by ENTRY. DOENT files an error message indicating
that external entry to a loop is being attempted. ‘

The calling sequence to DOENT is:

RJ DOENT
DOEND
DOEND is referenced by END to see if all loops have been terminated,
all referenced statement numbers and format numbers have been defined
as such, and all loops with entries also have exits.
The calling sequence to DOEND is:

RJ DOEND
DOLABCN
DOLABCN is referenced by PH2CTL before each labeled statement is
processed. The label is checked for prior definition and, if not
found, is entered into the symbol table (SYMTAB). The loop in which
the label is defined is entered in the symbol table, and whether or
not the label is an entry point to a loop.
The calling sequence for DOLABCN is:

RJ DOLABCN

CLABEL of the common block PSICOM contains the current statement label
left justified with blank fill.

DOLAB

DOLAB is referenced by PH2CTL after each labeled statement is proces-
sed. If the label terminates one or more loops, DOLAB closes each
loop; i.e. it notes exits from the loop, generates an R-1ist macro,

and compresses the DOT and DOL tables,
The calling sequence to DOLAB is:

RJ DOLAB

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS____IMS PAGE NO._ 9.4 -
PRODUCT NAME Fortran Extended
PRODUCT MODEL NO. __H4P616 MACHINE SERIES 64/65/6600

2.12

2.12.1

2.12.2

3.0

CLABEL of the COMMON block PSICOM contains the current statement
label left justified with blank fill.

DOLABR
DOLABR is referenced by IF, CALL, and GO TO processors when refer-
ence to a statement label is encountered. |If the label is not yet
defined it is entered in the DOL table, otherwise entries and exits
are noted.
The calling sequence to DOLABR is:

RJ DOLABR

SELIST points to the E-~list item for the label, and upon return Bl
contains ordinal of SYMTAB entry for that label.

DOPROC will produce the following diagnostic messages:
(1) Loops are nested more than 50 deep.

{2) The terminal label of a DO must be an integer constant between
0 and 100,000,

(3) The terminal statement of this DO precedes it.

(4) The control variable of a DO or DO-implied loop must be a simple
integer variable. .

(5) The syntax of DO parameters must be I=M],M2,M3, or 1=M;,M,.
(6) A constant DO parameter must be between 0 and 131K.
(7) A DO parameter must be an integer constant or variable.

(8) This statement number has been used before.

(9) A previous statement in this nest references this statement
number illegally.

(10) This statement references a previous statement number in this
nest illegally.

(11} A DO loop may not terminate on this type of statement.

(12) A DO loop which terminates here includes this unterminated DO loop.

(13) This statement redefines a current loop control variable or para-
meter.

(14) ENTRY statements may not occur within the range of a DO state-
ment.

CA 138-1 REV 1067

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._9.5
PRODUCT NAME Fortran Extended
PRODUCT MODEL NO. Lpr616 MACHINE SERIES__ 64/65/6600

CA

13g-1 REV

10-

(15) This DO loop is unterminated at program end.
(16) This loop is entered from outside its range but has no exit.

(17) This referenced statement number does not appear on an execu-
table statement.

(18) This referenced format number does not appear on a format state-
ment .

(19) More storage required by DO statement processor for

(20) The variable upper limit and the control variable of this DO are
the same producing a non-terminating loop.

(21) Compiler error.

(22) The constant lower limit is greater than the constant upper
limit of a DO,

(23) The referenced label is greater than five characters.
(24) Zero statement labels are illegal.

Errors 8,11,13,19,20 and 22 are informative.

Error 21 is fatal to compilation.

The remainder are fatal to execution.

ENV IRONMENT

DOPROC depends on information from the other processors in varying
forms and degrees. It must have the E-list pointer for each DO

statement and DO-implied logp. It files entries in the symbol table
(SYMTAB) and stores both temporary and permanent information regard-
ing them., It outputs macros and generates label items into the
R-1ist.

The communications region of COMMON block PSICOM will contain several
variables of interest to DOPROC. These are:

(1) SELIST - contains the address of the current entry in the E-list.
(2) ELAST - contains the address of the last entry in the E-list.

(3) DOl - contains the address of the first entry in the DOLIST

0oL table).

(4) DOLAST - contains the address of the last entry in the DOLIST
(DOL table).

87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ;“St e PAGE NO.____ 9.6
ortran X n
PRODUCT NAME NI4T B4 /6576600

PRODUCT MODEL NO. MACHINE SERIES .

(5) SYMEND - contains the address of the last entry in the symbol
table (SYMTAB).

(6) SYMI - contains the address of the unused entry for ordinal zero
in the symbol table (SYMTAB).

(7) CLABEL - contains the current statement label, left justified
with blank fill.

(8) TYPE - contains the current statement type in binary right justi-

fied in the word.

.
1
-

STRUCTURE
DOTGP

DOTOP processes each DO statement and DO~implied list and generates
the R-list macro words for the top of the loop.

SYNCHEK

SYNCHEK performs a syntax check on each DC statement and DO-implied
list.

INTVAR

INTVAR makes an integer variable assurance check and returns a verdict
of integer variable or not.

IDEF

IDEF checks for illegal definition of loop variables and makes entries
in DOLIST (DOL table).

LIMIT

LIMIT converts loop limits and determines if constant, variable, or
illegal.

IREF

IREF searches the DOT table to determine if the integer variable refer-
enced in this statement is a control variable. |If so it sets flag M.
GENMAC

GENMAC generates the R-list macro words.

CHECK

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._ 9.7
PRODUCT NAME Fortran Extended
PRODUCT MODEL NO. LpP616 MACHINE SERIES__64/65/6600

5.8.1 CHECK checks the form of the limits and constructs symbolic-constant
representation for each.

5.9 LABEL and SYMBOL

5.9.1 LABEL and SYMBOL search SYMTAB for the given display code entry and
return | and H (R-list description) of entry and address.

5.10 ERPRO

5.10.1 ERPRO is used to produce a variety of error messages.
5.11 S10

5.11.1 SI10 is called to file R-list items.

5.12 ETB

5.12.1 ETB converts E-list integer constant items into the corresponding
binary constant.

5.13 NAME

5.13.1 Given the ordinal of a SYMTAB entry, NAME checks the E-field of the
BYMTAB entry and if zero puts the ordinal into Bl for use by IREF.
If E=1, it puts the base and bias from DIMLIST into Bl and B2 respecti-
vely.

6.0 FORMATS
The DO processor receives information from SCANNER in E-LIST format

and using SYMTAB data generates R-LIST macros for processing by pass
two of the compiler. Interim data is stored into two tables:

(1) DOTABLE (DOT) - information on current loops

(2) DOLIST (DOL) - references to undefined labels and integer variable
definitions.

Each table will be discussed in turn as to content, format, etc.

DOT Table - The DOT table is a rigid table of up to 51 entries consisting
of one entry per DO statement. However, each entry requires 3 memory
words so that 153 60-bit memory words are consumed. The first entry

in the table is not used. Flag and address quantities are defined as
follows: ‘

P - an 18-bit index relating the DO statement to the machine address
in the DOL table where information about the loop is stored.

CA 138-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQU!PMENT GROUP

DIVISION
A1 T e 1MC o
,[DOCUMENT CLASS L | PAGE NO.___9.8
PRODUCT NAME Fortran Extended —
PRODUCT MODEL NO. 4P616 MACHINE SERIES___ 2+/62760600

CV - A three bit field containing flags b, ¢, and d where B, C, and D
are lower limit, upper limit and increment of the DO respectively. |If
b, ¢, or d is set to | then the corresponding limit is variable. Other-
wise the limit is constant.

Example:

po 10 | =1, N, 2

B= 1 b = constant or O
= N ¢ = variable or |
D= 2 d = constant or O

and CV - 010 in binary
Flags - seven bits of loop description broken into seven one-bit fields.
(1) E - set to 1 if loop may be entered at a point other than the top..

(2) X - set to 1 if loop may be exited at a point other than the ter-
minating statement.

(3) | - set to !l if loop contains another loop.

(4) M - set to 1 if loop control variable must be materialized (placed
in memory)

(5) V - set to 1 if control variable same as incremental limit.
Example: DO 10 D =1, N, K

(6) J - set to 1 if loop contains an implicit or explicit subroutine
call.

(7) R -set tol if all integer variables are assumed to be redefined
within a loop.

N - @ 12-bit field containing the number of integer variable definitions,
S - A 12-bit field holding the symbol table (SYMTAB) ordinal of the state-
ment number referred to in the DO statement.
IX - A 12-bit field holding the symbol table ordinal for the control vari-
able entry.
L - A 12-bit field holding the symbol table ordinal of the generated label
at the top of the loop.
B - An 18-bit field that is either a binary constant for the lower limit

of the DO or the symbol table ordinal of a variable lower limit.

€A 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._9.9
PRODUCT NAME Fortran Extended -
PRODUCT MODEL NO. Lpe16 MACHINE SERIES__ 04/65/6600

C - An 18-bit field that is either a binary constant for the upper
limit of the DO or the symbol table ordinal of a variable upper
limit.

D - An 18-bit field that is either a binary constant for the incremen-
tal parameter of the DO or the symbol table ordinal of a variable
incremental parameter.

Information is aligned within the three words as follows:

59 4y - _29 17 0
: DN :
29 ' %l 35 17
IX] P ¢
59 47 ~ 27 24 17 0
A T \f\?\ CV FLAGS
SN] 0

DOL list - The DOL list is a variable length list residing in working
storage and limited by the growth of SYMTAB and/or E-list entries.
The list has two forms of entries:

(1) References to undefined labels.

(2) Integer variable definitions,

All DOL list entries are one word (60 bits) in length and the fields
are these:

(1) T - aone bit flag indicating a reference to an undefined label

(0) or an integer variable definition (1)

(2) NAME - a 30 bit field with contents in one of three forms:

a) T =0, NAME is the ordinal of the symbol table entry for
the undefined label, right justified in the 30 bit field.

b) T =1, E of SYMTAB = 0, then NAME is the ordinal of the
symbol table entry for the integer variable definition
right adjusted in the upper 12 bits of the 30 bit field
(to align with the base of an equivalenced set of variables)

¢) T=1,E =1, then name contains the base and bias of the

CA 138-1 REV 10-87

equivalenced variable as 12 bit and 18 bit fields respectively.

CONTROL DATA CORPORATION - COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLAsS___ M3 ' PAGE NO._ 9.10
PRODUCT NAME Fortran Extended
PRODUCT MODEL NO. hpPo16 MACHINE SERIES __ 64/65/6600

The DOL list format is:

59\T < % 29 17 0
T N NAME
T \\\\ A\ \\\\\\ \ °\ BASE BIAS

R-LIST Macros - DOPROC will generage R-LIST macros at the top and bottom
of each loop, for processing by DOPRE in pass two of the compilation.
Each macro will consist of 6 words (60 bits each). The first word is

a standard macro reference with fields for OC, IN, etc. (See R-LIST
language description). The second word has the ordinal of SYMTAB where
the DO label definition is filed. This field is the rightmost 30 bits
and the ordinal is right justified. Beginning with the left half of
word two and continuing through word 6 is information relating to the
three limiting parameters of the DO (B,C,D where the general form is

DO SN I=B,C,D) and the induction variable |.

The parameters for words 2-6 are as follows:

(1) L - a 30-bit label reference of the | and H variety described
in R-LIST description. L is the label attached tc the DO.

(2) SB - 30 bits of symbolic (| and H) information related to a
variable B or base if variable is equivalenced to another.

(3) SC - 30 bits of symbolic (I and H) information related to a
variable C or base address if variable is equivalenced to
another variable. Bias appears in CC.

(4) SD - 30 bits of symbolic (1 and H) information related to
another variable. Bias appears in CD.

(5) S| - 30 bits of symbolic (I and H) information related to a
control variable (induction variable) or base address if vari-
able is equivalenced to another variable. Bias would appear in
Cl.

(6) CB - 18 bits of binary constant representing the constant B or
the bias if B is an equivalenced variable.

(7) CC - 18 bits of binary constant representing the constant C or
the bias if C is an equivalenced variable.

(8) ¢D - 18 bits of binaryvconstant represent ing the constant D or
the bias if D is an equivalenced variable,

(8) CI - 18 bits of bias if the induction variable is equivalenced to

another variable. |If variable does not appear in an equivalence
statement then Cl| is zero.

CA 138-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS IMS

PAGE NO._9.11

PRODUCT NAME

Fortran Extended

PRODUCT MODEL NO. 4P616 MACHINE SERIES __64/65/6600
9 57 L7 46 2 16 15
~ 2 oc IN) RI
59 2
+ s L
59 29
SD sC
e e B
i\\\\ NV \\ - \\ 5 j Sl
: e
3 36 35 18 17
AU ch ceC [CB
59\‘\\\\‘\‘\ - 17
,\ \ \\ -..}‘.‘ ‘ \ \‘i\ N, ’\4» \ "‘\\ \\ CI

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS : PAGE NO. —10.1
PRODUCT NAME Fortran Extended
PRODUCT MODEL NO. L4pP616 MACHINE SERIES _ 64/65/6600
STOP
1.0 General Information
1.1 STOP is called by PH2CTL when SCANNER encounters a STOP statement.
, STOP then sets up the proper R-list entries to cause a 60 bit jump
b to STOP. at execution time. When the system routine STOP. is
entered X7 will contain up to 5 octal digits that follow the word
STOP on the FORTRAN statement. This processor is used only in phase
2 of pass 1.
2.0 Usage
2.1 STOP
2.1.1 R-list is generated to:

1. Load an X register with the octaldigits (up to'five) given after
the word STOP on the FORTRAN statement. The register is loaded
from the Hollerith constant region HOL.

2. Transmit the characters from the input register to the output
register X7. Characters are left justified, blank fill,

3. Jump to a point in the system to display the message andvterminate
the job.

2.1.2 The calling sequence is:
RS STOPP
SELIST must contain the address of the E-list items related to the
STOPP,
2.1.3 Flow of the processing goes as follows:

CAa 138-1

REV

l. The symbol STOPP. is entered into the symbol table, if not there.
2. The external bit is set for STOPP in SYMTAB.
3. The E-list is checked for End of Statement.

L. If first word of E-list is not an end of statement, it is typed
as Holterith and tabled through CONVERT.

5. R-list macro references are formed from the IH of STOP. and the
IH, CA of the Hollerith constant.

6. The R-list macro references are filed in SI0 by WRWDS.

10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS IMS PAGE NO._10.2
PRODUCT NAME Fortran Extended .
PRODUCT MODEL NO. L4p616 MACHINE SERIES__64/65/6600

3.0 PAUSEP STOPP produces the following FE diagnostic:

The field following STOP and PAUSE must be 5 or less octal digits

4.0 Not applicable

5.0 Not applicable

8.0 A macro was written for inclusion in pass 2 processing which is

exercised by the referencing R-list filed in S10. This macro uses
the IH of STOP. and the IH, CA fields for the Hollerith constant
stored in HOL. to generate the following execution time code.

SAi HOL.+CA
BX7 Xi
RJ STOP.

STOPPcalls on WENDS, CONVERT, and SYMBOL.

CA 1381 REV 1C-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__11.1
PRODUCT NAME Fortran Extended
PRODUCT MODEL NO. LP616 ‘ MACHINE SERIES. 64/65/6600
PAUSE
1.0 General Information
1.1 PAUSE is called by PH2CTL when SCANNER encounters a PAUSE statement.

PAUSE then sets up the proper R-list entries to cause a 60 bit jump

to PAUSE. at execution time. When the system routine PAUSE. is entered
X7 will contain up to 5 octal digits that follow the word PAUSE on

the FORTRAN statement. This processor is used only in phase 2 of

pass 1I.
2.0 - Usage
2.1 PAUSE
2.1.1 R-list is generated to:

1. Load an X register with the characters (up tofive) given after
the word PAUSE on the FORTRAN statement. The register is loaded
from the Hollerith constant region HOL.

2. Transmit the characters from the input register to the output
register X7. characters are left justified, blank fill.

3. Jump to a point in the system to display the message and suspend

the job.
2.1.2 The calling sequence is:
RS PAUSE P
SELIST must contain the address of the E-list items related to the
PAUSE.
2.1.3 Flow of the processing goes as follows:

. The symbol PAUSE. is entered into the symbol table, if not there.
2. The external bit is set for PAUSE. in SYMTASB.
3. The E-list is checked for End of Statement.

L. If first word of E-list is not an end of statement it is typed
as Hollerith and tabled through CONVERT.

5. R-list macro references are formed from the IH of PAUSE. and the
IH, CA of the Hollerith constant.

6. The R-list macro references are filed in SI0 by WRWDS.

3.0 PAUSEP produces the following FE diagnostic:
The field following STOP and PAUSE must be 5 or less octal digits.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS IMS PAGE NO.___11.2
PRODUCT NAME Fortran Extended)
PRODUCT MODEL NO. 4P616 MACHINE SERIES _ 64/65/6600

4.0 Not applicable

5.0 Not applicable

6.0 Not applicable

7.0 Not applicable

8.0 A macro was written for iﬁclusion in pass 2 processing which is

TA 1381 REV 132-67

exercised by the referencing R-list filed in S10. This macro uses the
IH of PAUSEE and the IH, CA fileds for the hollerith constant stored
in HOL. to generate the following execution time code,

SAi HOL .+CA
BX7 Xi
RJ PAUSE .

PAUSEPcalls on WRWDS, CONVERT, and SYMBOL.

CONTROL DATA CORPORATION & COMPUfEREQUWMENTGROUP

DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.

I.1

2.1

2.1.1

2,2
2.2.1

2,2.2

2.2.3

2.3
2.3.1

CA 138-1 REV 10-67

DIVISION
IMS. PAGE NO._12.1
FORTRAN Extended :
hP616 MACHINE SERIES _ 64/65/6600
ARI

——————

General information

ARITH processes replacement statements. It calls ASFDEF to process
statement function definitions. ARITH traﬁs]ates any arithmetic,
logical, relational, or masking expressions which may legally
appear in any type of statement. It is found in phase-two of the

first pass of the compiler.

Entry points:

BEFTB

Function: to allow ENDPROC to refer to ARITH's basic-external
function name table (BEFTB). This is not an entry into a coding

area.

GTARTH

Function: To translate the expression in a computed GOTO statement.
Calling sequence and returns: GTARTH is entered by an RJ instruction.
It returns control to GOTOPRC thru its entry point.

Processing description: ARITH will translate the expression
{addressed by SELIST) until an end-of-statement element is encountered
or a syntax error occurs, After translating the expression, if it

is other than type integer an RLIST macro is output to convert it to
integer,

IXFN

Function: To output a macro to RLIST to set an X register to the

address of an 1/0 list item, preceded by an evaluation of the address

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.______ L4P616

2.3.2

2.3.3

2.4

2.4.1
2.4.2

2.4.3

CA 138-1 REVY '10-67

IMS. 12.9

_ - PAGE NO.
FORTRAN Extended

MACHINE SERIES 64 /6600 FORTRAN Extended

if it is an array reference with a non-standard subscript.

Calling sequence and returns: IXFN is entered by an RJ instruction
and exits through its entry point.

Processing description: IXFN enters a special operator (XFLP) into
the OPSTAK with zero precedence and enters the beginning of ARITH's
main translation loop at NEXTE., SELIST initially addresses the name
of the 1/0 item. The first ELIST element following the complete

I1/0 item should have a precedence of zero (a comma or end of state-
ment, e.g.)‘and will cause XFLP to be popped from the OPSTAK which
results in a jump to IXFN2. IXFN2 checks to make sure that the last
entry made to ARLIST is a fetch macro. It changes the fetch macro
code to a set-X macro code, sets SELIST to addreés the comma or end-
of -statement in ELIST following the I/0 item and sets X2 to the
symbol table ordinal of the name of the I/0 item.

ACALL

Function: To process the SUbroutiﬁe name and argument list of a CALL
statement.

Calling sequence and returns: ACALL is entered by an RJ instructton
and exits through its entry point. |
Processing description: ACALL calls the SYMTAB entry routine
(SYMBOL) for the suﬁroutine name, and turns on the external bit in
the symbol table. If there are no arguments, it exits through its
entry point. Otherwise, it sets up ARITH to process the argument list
as it would a general external function's argument list. It enters

a special operator (SUBRLP) into the OPSTAK rather than the operator

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS L Ms. T PAGE NO.__12.3
PRODUCT NAME — __FORTRAN-Extended
PRODUCT MODEL NO. Lp616 i MACHINE SERIES __64/65/6600
137, ERMSG3 : NC MATCHING RIGHMT PARENTHESIS.
138, ERMSG4 NO MATCHING LEFT PARENTHESIS.
139, ERMSGS: ~ THE OPERATOR INDICATED (-, +, %, /, or *%) MUST BE
FOLLOWED BY A CONSTANT, NAME, OR LEFT PARENTHESIS.
140, ERMSG6 A NAME MAY WOT BY FOLLOWED BY A CONSTANT.
141, ERMSG7 MORE THAN 63 ARGUMENTS IN ARGUMENT LIST.
142, ERMSGS: A CONSTANT MAY NOT BE FOLLOWED BY AN EQUAL SIGN,
NAME, OR ANOTHER CONSTANT.
143, ERMSGY : EXPRESSION TRANSLATOR TABLE (OPSTAK) OVERFLOWED.
SIMPLIFY THE EXPRESSION.
144, ERMSG10: LOGICAL OPERAND USED WITH NON-LOGICAL OPERATORS.
145, ERISG1L: NO MATCHING RIGHT PARENTHESIS IN SUBSCRIET.
146, ERMSG12 : LOCAL FNTRY POINT REFERRED TO AS EXTERNAL FUNCTION.
148, ERMSG14 : INTRINSIC FUNCTION REFERENCE MAY NOT USE A FUNCTION
NAME AS AN ARGUMENT.
149, ERMSG15.: ARGUMENT NOT FOLLOWED BY COMMA OR RIGHT PARENTHESIS.
150, ERMSG16: A FUNCTION REFERENCE REQUIRES AN ARGUMENT LIST.
151, ERMSG17: TLLEGAL CALL FORMAT.
152, ERMSG18: EXPRESSION TRANSLATOR TABLE (FRSTB) OVERFLOWED,
SIMPLIFY THE EXPRESSION.
153, FERMSG19: THE OPERATOR INDICATED (.NOT. OR A RELATIONAL) MUST
BE FOLLOWED BY A CONSTANT, NAME, LEFT PAREN, -, or +.
155, ERMSG21: BASIC INTRINSIC FUNCTION WITH AN INCORRECT ARGUMENT
COUNT.
156, ERMSG22: EXPRESSICN TRANSLATOR TABLE (ARLIST) OVERFLOWED.
SIMPLIFY THE EXPRESSION.
158, ERMSG24 TILLEGAL INPUT/CUTPUT ADDRESS,
159, ERMSG25: ~ RIGHT PARENTHESIS FOLLOWED BY A NAME, CONSTANT, OR LEFT
PARENTHESIS.
160, ERMSG26 : MORE THAN ONE RELATIONAL OPERATOR IN A RELATIONAL

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

: DIVISION
DOCUMENT CLASS IMS. , PAGE NO.___12.4
PRODUCT NAME FORTRAN Extended ‘
PRODUCT MODEL NO, __ 4P616 MACHINE SERIES 64/65/6600

2.5

2.5.1

2.5.2

entered for the beginning of a function argument list (ARGLP). It
then enters the beginning o% ARITH's main translation loop at NEXIE.
When SUBRLP is popped from the OPSTAK, ACAL7 is entered. ACAL7 tﬁen
calls ARGPBCR to output loads of any save& function results to RLIST.
Then the ARLIST block is output to RLIST and ACALL exits through its
entry point.

ARITH

Function: To translate the expression addressed by SELIST, unless
the expression is found to be a Statement Function definition, in
which case ASFDEF is entered to process the definition.

Calling sequence and returns: ARITH is entered by an RJ instruction
and exits through its entry point, or to ASFDEF in the case of a
Statement Function definition. t

Diagnostics produced:

Fatal to compilation: mnone

Fatal to execution:

Message Ordinal
& Symbolic Name

70,

71,

75,
76,
135,

136,

CA 5381 REV 10-67

ERMSG51: A CONSTANT ARITHMETIC OPERATION WILL GIVE AN
INDEFINITE OR OUT-OF -RANGE RESULT.

JAMERG ¢ EXPRESSION TRANSLATOR TABLE (JAMTB1) CVERFLOWED.
SIMPLIFY THE EXPRESSION,

JAMERS : 75 = SIGNS PER REPLACEMENT STATEMENT IS THE MAXIMUM,

ERMSG52: TYPE FCS NOT AVAILABLE IN THIS VERSION OF FTNX.

ERMSGL: ILLEGAL USE OF THE EQUAL SIGN.

TRMSG2: VARIABLE FOLLOWED BY LEFT PARENTHESIS.

CONTROL DATA CORPORATION + COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS

PRODUCT NAME
PRODUCT MODEL NO.

DIVISION
__ImS, PAGE NO.__12.5
_FORTRAN -Extended
_hpble .. MACHINE SERIES . H64/65/6600
EXPRESSION.
161, ERMSG27: A COMMA, LEFT PAREN, =, ,O0R., OR .AND. MUST BE FOLLOWED uY A

162, ERMSGZ5:
163, ERMSG29:
164, ERMSG30:
165, ERMSG31:
166, ERMSG32:
167, ERMSG33:
180, ERMSG34:

169, ERMSG35:

195, ERMSG4S:
198, ERMSG37:
203, ERMSGA9:

204, ERMSG50:

207, JAMERL:

211, JAMER2:

212, JAMER3:

219, ERMSGS53:

RAME, CONSTANT, LEFT PAREN, -, .MNOT., OR

A ARRAY REFFRENCE HAS TGO MANY SUBSCRIPTS.

NO MATCHING RIGHT PARENTHESIS IN ARGUMENT LIST.
ILLEGAL FORM INVOLVING THE USE OF A COMMA.

LOGICAL AND NON-LOGICAL OPERANDS MAY NOT BE MIXED.
DIVISION- BY CONSTANT ZERO.

A COMPLEX BASE MAY ONLY BE RAISED.TC AN INTEGER PQUWER
USE 6F THIS SUBROUTINE NAME IN AN EXPRESSION.

SUBROUTINE NAME REFERRED TO BY CALL IS USED ELSEWHERE AS A NON-
SUBROUTINE NAME,

TOO MANY SUBSCRIPTS IN ARRAY REFERENCE.
LEFT SIDE OF REPLACFMENT STATEMENT IS ILLEGAL.
THE TYPE OF THIS IDENTIFIER IS NOT LEGAL FOR ANY EXPRESSION.

A CONSTANT OPERAND OF A REAL QPERATICN IS OUT OF RANGE OR
INDEFINITE,

THIS COMBINATION OF OPERAND TYPES IS NOT ALLOWED IN THIS
VERSION.

DOUBLE OR COMPLEX OPERAND IN SUBSCRIPT EXPRESSION NOT ALLOWED.'
DOUBLE OR COMPLEX ARGUMENT NOT LEGAL FOR THIS INTRINSIC FUNCTION.

.NOT. MAY NOT BE PRECEDED BY NAME, CONSTANT, OR RIGHT PARENS.

3.3 INFORMATIVE

147, ERMSG13:

154, ERMSG20:

170, ERMSG36:

ARRAY WAME OPERAND NOT SUBSCRIPTED, FIRST ELEMENT WILL BE USED.

THE NUMBER OF ARGUMENTS IN.THE ARGUMENT LIST OF A NON-BASIC
EXTERNAL FUNCTICON IS INCONSISTENT.

THE NUMBER OF ARGUMENTS IN A SUBROUTINE ARGUMENT LIST IS
INCONSISTENT.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS : IMS. PAGE NO.___12.6
PRODUCT NAME ~ _FORTRAN Extended
PRODUCT MODEL NO. hp616 MACHINE SERIES 64/65/6600

154, ERMSG39: A HOLLERITH CONSTANT IS AN OPERAND OF AN ARTTHMETIC OPERATOR.
3.4 NON-USASI
134, ERMSGC: MORE THAN ONE EQUAL SIGN.

157, FRMSG23: ARRAY NAME REFERENCED WITH FEWER SUBSCRIPTS THAN THE DIMEN-
SIOKALITY OF THE MRRAY,

52, TRMSG33: HOLLERITH CONSTANT APPEARS OTHER TIAN IiT /N ARGUMENT LIST CF
A CALL STATEMENT CR IN A DATA STATEMENT.

185, ERMSG40: NON-USASI SUBSCRIPT.
186, ERMSG41: MASKING EXPRESSIONS ARE NON-USASI.

187, ERMSG42: THE TYPE COMBINATION OF THE OPERANDS OF AN EXPONENTIAL OPERATOR
IS NOT USASI.

183, ERMSG43: A RELATIONAL HAS A COMPLEX OPERAND,

182, TRICGAL: THE TLEV

-
o
S 2ITHIETIC

CI3INATION OF THE CPERANDS CF 0 RELLTIONUAL UR AL

[y

OPERATCI {CTHFL THAM *#%) 1€ NCT USASI.
4, Common data:

4.1 Absolute locations in lower core:

The first-word address of the symbol table. This ié used to

12B, SYM1 =
set the defined bit in SYMTAB via a SYMTAB ordinal.
17B, DIM1 = The first-word address of the DIMENSION information table. This

is used to get information for subscripted array references.

22B, EXFLG = 0 until the first executable statement occurs. (Statement
functions may not be defined after the first executable occurs).
i

24B, TYPE = Type code of the current statement. (Different statement type$
have different legal syntax at the end of expressions).
26B, CON1 = First-word address of CONLIST. ARITH uses this to fetch the values

of constants which are involved in compile-time constant sub-
expression evaluation.

32B, SELIST= The address of the next ELIST element to be processed.

37B, CDCNT=The card (line) number of the first card of the current statement.
Inserted in RJ6 RLIST instructions for trace-back information.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION & COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS _ . iMs, PAGE NO.__12.7
PRODUCTNAME ____ FORTRAN Extended :
PRODUCT MODEL NO. kpele MACHINE SERIES 64/65/6600

44B, DOFLAG=0 if the current statement is not in the range of a DO statement.
(Dummy variables not in the range of DOs are loaded indirectly
rather than using address substitution).

45B, CBNFLG=0 if the call-by-name option (T) has not been selected on the
FIN control card. This determines whether Basic External
Functions and externally evaluated exponential operation
functions are called by value or by name.

64B, NRLN= The number to assign to the next RLIST result, e.g., Ri=R10+R15
where i is determined by (NRLN), SELIST and NRLN are also re-
ferred to as EPOINT and NARN.

4.2 COMMON Blocks:
NAALN: next available APLIST number. Also used by CALL,

STSORD: next available statement~temporary-store number. Reset
to 1 by PH2CTL at the start of each statement.

CLNFO: A block of information used by both CALL and ARITH:

SUBF WA= the symbol table address of the name of the
subroutine being called.

SUBH= the SYMTAB ordinal of the subroutine name.

ARGCNT= the number of arguments in the arg list. (These

last three cells are set by ARITH for CALL's use).
NARGSF= 0 if there is an argument list.

SUBNAME= holds the name of the subroutine in E-list form.
(These two cells are set by CALL for ARITH's use).

5. Subroutines used by ARITH:

External Routines:

5.1 WRWDS: ﬁsed to make entries to the RLIST file.

5.2 SYMBOL: SYMTAB search and entry routine.

5.3 CONVERT: | Constant conversion and CONLIST entry routine.

5.4 ASFREF: Called as each statement function reference is encountered
to insert the statement function with actual arguments

replacing dummy arguments into the ELIST block.

5.5 DODEF : Called to inform DOPROC of the definition of a variable or

CA {381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

DIVISION
ms PAGE NO.___12.8
____FORPRARExtended
hP616 1.0 MACHINE SERIES 64/65/6600

5.6 DOCALL:

5.7 DOSYM:

Local Routines:

5.8 FUNC5RT:

5.9 CARGPORT

5.10 ARGPIRT:

CA 138-1 REV 10-67

Called to inform DOPROC of an external function reference.

Called to inform DOPROC of a reference to a variable.

This routine is called when a function reference (other than
a statement function) is encountered. The reference might
occur in an argument list, so a block of cells (FRLW) used
to hold information about argument lists is entered into the
OPSTAK followed by the ARGLP operator (which will be popped
by the right parens which teiminates the list) and an

ARGCMA operator (which will be popped by the comma after the
first argument or the right parens if only one argument).
The FRLW block is initialized. DOCALL is called if it is

an external function. If the result of a previously re-
ferenced external function has not been saved, an instruction
is output to RLIST to save the result.

The routine is called by the main line processor and by the
exponential operator processor.

This routine is called by the main line processor and the ex-
ponential operator processor. It is called after each
argument of a non Statement Function argument list has been
scanned (it may be an expression). Intrinsic, basic external,
and general external arguments are each processed differently.
Intrinsic arguments cause the R name of the argument to be
added to the R name table (RNTB), basic external arguments
cause register-store instructions to be output to ARLIST
(which cause particular X-registers to be associated with

the arguments), and general external arguments cause a store
to APLIST or assemble to APLIST instruction to be sent to
ARLIST.

This routine is called by the main line processor and the ex-
ponential operator processor after the argument list has

been processed. If the function is general extermal, it
outputs a call by name macro to ARLIST. It then enters
ARGP8CR to output loads of functions saved during the pro-
cessing of the list, if any, to RLIST. Then, register define
instructions are output to ARLIST, giving R-names to the
result register(s), X6 (and X7). Then all of the ARLIST

for this function reference is output to RLIST. The next
available location in the ARLIST buffer is adjusted. A
psuedo-op giving the name of the function result is then
output to ARLIST, Finally, the FRLW block is restored to

the values it contained before this function reference.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

"DOCUMENT CLASS

PRODUCT NAME

~PRODUCT MODEL NO.

5.11

5.12

5.13

5.14

CA 138-1 REV 10-67

INGEN:

UINGEN:

MACOUT:

MODCH :

JAML:

JAM3 ¢

JAMB :

DIVISION
mso “an N
PAGE NO._12.5
FORTRAN Extended
hpei6 _ MACHINE SERIES_6L4/65/6600

If the function was intrinsic, the contents of RNTB would be
used to set up the parameters of the corresponding macro and
the macro would be sent to ARLIST. Finally, the FRLW block
would be restored.

If the function was basic external a call by value macro
would be sent to ARLIST and ARGP3CR would be entered, as
for general externals. :

Processes binary operations. The input is the address of
the operands, and the macro code of the operator. If both
operands are real or integer constants and the operator is
+, =, *, or / then the operation is made on the constants,
the instructions which loaded the constants are no-oped
and a macro to load the new constant is output; otherwise
a macro is formed and output to ARLIST to operate on the
operands and the operand entries in ARLIST are marked as
having been used. Finally, the cells holding the addresses
of the last two available operands (RL1 & RL2) are reset.

Processes binary operations, similar to INGEN.

Routine to make: entriecs to ARLIST. The input is: type of
result (e.g., Double Precision), the macro descriptor (macro
number , number of Rs, THs, CAs), NARN (next available R
name), and the macro parameters in a block called PARAMS.
MACOUT forme the ARLIST information word and the macro iam
the next available locations in ARLIST.

Used to generate a macro to convert from one data mode to
another. The input is the address of the operand in ARLIST
which is to be conmverted, and the data type to which it is
to be converted. The type code of the operand and the new
type code are combined to form a vector. The vector table
is entered: the correct convert-macro code is selected
and one of two possible branches are jumped to. A macro

is then output to ARLIST.

(See seventh section in 8.) This is an extension of INGEN
to process DOUBLE and COMPLEX operations. It outputs macros
addressing variables rather than R names as results, follow-
ed by a macro to store the results of the operation in
statement temporary storage.

Is an extension to UINGEN, similar to JAMI.

This is called by MACOUT just before it exits. If the pre-
ceding operand is double length and the entry just made

Ly MACOUT is single length, it outputs a macro to convert

the single length operand to DOUBLE. If the preceding
operand is single r~ugth and the entry just made is double
lengih, it outputs couverisions of all preceding unused single
length operands.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS LTS PAGE NO._12.10
PRODUCT NAME - FORTRAN Extended .
PRODUCT MODEL NO. P16 MACHINE SERIES _64/65/6600
6. Formats:
6.1 ARLIST entries: (ARLIST is the block that ARITH forms RLIST subexpres-
sions in).
Word 1:
NOP Type of GP # of wds. in # of wds. in
result C TU U ZXMT wunused J this entry preceding entry
59 58 48 47 46 45 44 36 35 18 17 0
B55 = 1 if this cutyy ic rot to o eent to ALIET. IS 059-1, the entire
cortente of woud L have Lecn complemented,

CA 138-1 REV 10-67

:53-43 indicate the type of operand as follows:

-

2000B Logical
20018 Integer
20028 Real
2003B Double
200438 Complex
2005B Octal
20068 Hollerith
B47 = 1 if the operand is a constant.
B46 = 1 if this entry is temporarily unavailable as an operand.
B&5 = 1 if this entry has been used as an operand to a subsequent
operation.
B44 = 1 if a transmit instruction should follow this entry if it is the

second operand of an equal-sign operator. (e.g., see the RLIST
macro definition of the intrinsic function REAL).

B36 = 1 if this entry is a.replaccment "fetch"”. (Used by JAMS only).

Word 2: Word 2 is unused at this time. It was initially planned to
use this word to further optimize ¢valuation of logical
expressions but it was found that the optimizations could
not be made because of a basic design peculiarity.

Word 3: The first word of the RLIST macro (or instruction). If the
entry may be used as an operand, B15-0 of this word holds
the R-name of the operand. (If a double length operand,
R+1 ies the name of the second word of the operand).

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS____ IMS.. PAGE NO._12.11
PRODUCT NAME______ FORTRAN_Extended
PRODUCT MODEL NO.___ 4P616 MACHINE SERIES_64/65/6600
6.2 OPSTAK: This is the operator stack block. Generally, there is one

word per operator. The format of that word is given below:

S.F. operator

operator code| type unused CGP] S|A| E | GP| precedence
59 48 47 44 43 23 22 2120 19 18 17 0

B59-48 = the operator code. The lowest operator code is 2003B. The
codes used to repiesent source cperators are also used by
ARITH although ARITH generates some of its cwn operators.

B47-44 are used with code 20363 to indicate the type of statement
function referred to (0 = logical, 1 = integer, etc.).

B22 =1 if B13 = 1 and this operator has been compared with one in the
stack with equal precedence.

B21-19 are used with codes 2006B, 2026B, and 2036B. (These are
opezatore which represent different types of left parens).
B21-19 are used to remember whether a subscript, argument, or
normal expression was being translated before the left paren
occurred; this is indicated by B21-19=4, 2, or 1 respectively.
The information is needed to know whether a comma is a
subscript, argumeni, or comple: constant comma.

313 = 1 if the operator has been compared with one of higher precedence.

B17 - 0 = the precedence of the operator.

Opezatozrs Code in Octal Precedence
) 2002 0
: 2003 0 |
E.0.S. 2004 0 {(end-of-statement)
= 2005 0
(2006 0
.OR, 2007 2
LAND., 2010 3
LNOT. 2011 4
LE. 2012 5
LT, 2013 5
.GE, 2014 5
.GT. 2015 5
NE. 2016 5
.EQ. 2017 5
- 2020 6
+ 2021 6
w 2022 7
/ 2023 3
*k 2024 10
A 2025 0 (left parens preceding

function argument list (see 2036)

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS 1S, PAGE NO._12.12
PRODUCT NAME____ FORTRAN Extended
PRODUCT MODEL NO._____ 4P616 ____ MACHINE SERIES 614/65/6600
Operatozxs Code in Octal Precedence
(s 2026 9 (left parens preceding
nonstandard subscript).
,S1 2027 1 (comma following first
subscript expression in
non-standard subscript).
,S52 2030 1 (comma following second
subscript expression in
non-standard subscript).
W 2031 1 (comma separating
arguments),
U- 2032 6 (unary minus).
R- 2033 6 (reverse-operand minus).
R/ 2034 ' 8 (reverse-operand divide).
* 2035 2 (special multiply, r.g.,
‘ A/B/C/T A/ (BHCED)
C.T. 2036 Y (left parens preceding
Statement-Functiou
argument list.
(6:4 2027 ' 0 (generated left parens
entered at start of
IXFN).
(SUBR 2040 0 (left parens preceding
CALL argument list).
6.3 FRSTB: Function results saved table. Information about functions

which have been saved. One word per entry.
B58 =1 if the function was Double or Complex.

B33-16 = the number of the statement-trupovary-ciovag.
thr Zuuction reenli was savad,

£15-C = the R nam- of the function result
6.4 XPNMT: Exponent function name table. This table gives the name of
each library function corresponding to the various combina-
tions of operands possible for the *¥ operator. Each entry

is one word. The format is:

B50-56 = type of result of the operation (1 = integer, 2 = real, etc.)

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. : FAGE NO. 12,13
PRODUCT NAME _FORTRAN Extended
PRODUCT MODEL NO._____ 4P616 MACHINE SERIES __64/65/6600

B-55-49 (unused).

R-43 = 1 if the combination if non-USASI.

B47-0 = the namr of the function.

There are 16 entries for the 15 possible combinations. Entries for
illegal combinations are all zero. To make an illegal combination

legal, replace the entry with the necessar; information as described
o
above,

6.5 TWIFTB: Intrinsic function table. Three words per cntry, one entry

[#2)
.

(=)
s}

ner intrinsic function. The format of the first and second
words is the same as the pass-1 format of SYMTAB entries
with the exception that BC of the second word = 1 if the
function contains an RENM RLIST instruction and therefore
may need a transmit before a store. The thixd word holds
the macro descriptor word (see MACCUT), or, if MAX or MIN
type functions, special information about the type of MAX
or MIN function.

EFTS: Basic externmal function table. Two words per entry, one
entry per function. The format is the same asg the first
pass format of SYMTAB entries.

7. Modification facilities: EQUs are used for diagnostic ordinals,
MACROX ordinals, lower memory cell locations, block sizes, codes,

n

te, Diagnostic macros are used. All explicit operatione and in-

feard e L o | ~ R ~ - T e WILT P - -1 == 1 “
“vineic rfunction roreioncas iASULT LN RLIST macros ratacy than

e
v

eparate RLIST instructiomns.

3. Method:

3.1 There are four kinds of expressions in FORTRAN Extended:

CA 138-1 REV 10-67

. Arithmetic
. Relational
. Logical
. Masking

ERVV S

The same translator is used to translate all kinds of expressions.
Translation takes plece in a single left to right scan of the expression.
Tranclation ic Ivom £he the fource statement to RLIST
iavguage. Thae CLIST languege cprolile tho machine instructions and
registers to evaluate the expression, but the registers are assigned
as if there were an infinite number available. The second pass
assigns actual registers to the instructions.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO. 12,14
PRODUCTNAME _____________ _FORTRAN Extended
PRODUCT MODEL NO. L4p616 MACHINE SERIES_64/65/6600

Arith is called by

1. Phase-2 control for processing of replacement statements.
2. Computed GO TO processor

3. TF

4, CALL

These are the only kinds of statements which may contain expressions.
If the replacement statement is actually a statement function
definition, ARTTH will call ASFDEF to save the statement function for
later reference as a macro. Statement functions are expanded in-line
at each point of reference.

8.2.1 Computed GO TO: ARITH translates the expression, converts to type
integer if necessary, outputs the RLIST block, and returns to the GOTO
processor with the number + 1 of the result-R in a common location.

8.2.2 IF: ARITH translates the expression, outputs the RLIST to the RLIST
blok, and returns to the caller with the name and type of the result
in a common location.

8.2.3 CALL: CALL calls ACALL which is local to arith. ACALL sets up ARITH
to process the CALL statement with argument list in much the same
way as an external function reference is processed. ARITH outputs
all the RLIST needed for the arguments and returns to CALL.

8.3 Generalized flow of the tramslation process.

8.3.1 The basic translation algoritm used is similar to that used to produce
reverse Polish notation.

For example:
A% (B+C) -D

is translated to reverse Polish as follows:

E-list
Step Item Operator Stack Contents Reverse Polish String
L A . (F0S) A
2 * K A
3 (Jx(A
4 B cx(AB ¢
5 + R+ ABC
6 C S ABCH
7) . ABC+
3 - .- ABC+*
9 D .- ABC--%D
10 E.O0.S. ABCH+*D-,
(E.0.S. = end-of-statement operator)

CA 138-1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO.____12.13
SRODUCT NAME ___ FORTRAN Extended
PRODUCT MODEL NO.______ LP6l6. MACHINE SERIES _64/65/6600

This algorithm has been modified so that RLIST, rather than Polish notdtion,
is produced. The difference is that instead of outputting the name of a
variable to a string, an instruction to load the variable is oufput, and
instead of outputting an operator, an operation with operands namea is
output. For example taking the expression used in the last example, the
results are:

RLIST Corresponding Polish

Ri=A
R2=B
R3=C
R4=R24R3
R5=R1*R4
R6=D
R7+R5-R6

1O ¥ 4O

Almost all of the RLIST generated by ARITH is in the form of RLIST macro ref-
erences. RLIST macros are described in detail.

8.4.1,5 Since no provision is made for saving intermediate result registers,all
external function calls must be made before the remainder of the expression
is evaluated. ARITH does this by forming the RLIST for the expression in
a block local to ARITH called ARLIST and outputting each function reference
including argument expression evaluation to the RLIST file as each argument
list becomes completed.

In general, function results, except for the last function call, are saved
in a block called ST for statement temporary. After the entire expression
has been scanned, ARITH outputs loads of the saved function results to the
RLIST file and then the ramainder of the contents of ARLIST are output to
RLIST. :

8.4.1.6 The exponential operator, *%:

For exponential operations which are not done in-line, the *¥* operator

is really an external function reference. Since it has only two arguments,
it can be called by value. So, the exponential operator is made to look
like a basic external function call and some of the function processing
routines are used. A problem arises in an expression like

A+(B* (CH+D)**E/F

because the call to the exponential function must be output first pre-
ceded by all of the argument evaluating RLIST to the RLIST file.

The solution for this caseiis to save a marker with every left parens

entered in the OPSTAK to point to the start of the ARLIST for what might
be the first operand of an exponential operator.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO.__12.16
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lp616 MACHINE SERIES _64/65/6600

CA

8.4.2

8.4.2.1

8.4.2.2

1381 REV 10-67

For exponentials with integer or real base expressions, and
an integer constant power which is greater than one and less
than 7, ARITH selects an RLIST macro code and outputs a macro
to do the exponentiation in-line.

Subscripts

Standard: ARITH's subscript processor produces two kinds of

array references for standard subscripts: a subscript psuedo-macro
which is processed by DOPRE in the second pass, and a simple variable
load macro with a constant addend.

Non-Standard: If the subscript processor finds that thc subscript
is not in standard form, it resets the ELIST pointer to address
the start of the subscript. It then adds a non-standard-subscript
operator to the operator stack, and returns control to the general
xpression scanner (at NEXTE).

There are three kinds of commas that ARITH must deal with:

an argument comma, a subscript comma, and a complex-constant
comma. To do this, ARITH keeps a cell called EMODE which
indicates whether it is in argument mode, normal expression mode
or subscript mode. Initially, EMODE is set to normal expression
mode. As each left parens is met, the current mode is saved in
the left parens entry in the OPSTAK and EMODE is set to normal,
or argument, or subscript if the left parens is normal, or follows
a function name, or follows a subscript name, respectively. As
each left paren is popped from the stack, EMODE is reset to what
it was before that left paren was encountered in ELIST.

Argument and subscript commas are psuedo operators and when

popped from the OPSTAK they initiate the action necessary to complete

the processing of the argument or subscript. As each subscript comma

is popped, it causes some of the index fumction RLIST to be generated.
When the subscript operator itself is popped from the stack, the final
index function RLIST is produced followed by a macro to load the array
element name.

Since a non-standard subscript expression can be any arithmetic
expression, it's possible to have subscripted subscripts to any
depth. This means that the non-standard subscript processing must
be able to operate recursively.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS PAGE NO. .
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lp616 MACHINE SERIES —64/65/6600

So, when the subscript operator is added to the OPSTAK, it is preceded
by information about the subscript currently being processed. This is
the same way that the function processor worked.

8.4,3 Relational, Logical, and Masking expressions

Processing the four kinds of expressions with the same translator
presents no serious problems to the basic algorithm. The relative
hierarchy of the explicit operators are:

%k

/ %

/3%

-+
relationals
.NOT.

LAND,

.OR.

No distinction is made between the arithmetic operators (/,%,-, and +)
and the relationals. The logical operators become masking operators

if their operands are non-logical. Since logical operands are only
legal for the logical operators, and since .AND. and .OR. must have
both operands logical or both non-logical, it is impossible to have an
expression that contains both masking and logical subexpressions.

Otherwise, expression types are mixed in any way. For example,
A+B.LE.C.AND,L1 (L1 is logical)

is a logical expression with relational and arithmetic subexpressions.
It is translated as follows:

RLIST OPSTAK
R1=A +

R2=B .LE.
R3=R1+R2 LAND.
Rh=C .
R5=R3.LE.R4

R6=L1

R7=R5. AND .R6

8.4.4 Distinctions made between operand types in arithmetic and relational
expressions. .

Wwhen an operator is popped out of the OPSTAK, it enters a jump or vector
table where an RLIST macro code is assigned to it and it is sent to

the appropriate processor. For the relational and arithmetic operators
other than #*¥*, if the operands of the operator are type integer, the
macro code is increased by one; if they are double precision, the code
is increased by two; if complex, by three; and if real the code is used
as is.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO._12.18
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lpé16 MACHINE SERIES __64/65/6600

8.5

8.5.1

8.5.2

8.5.3

8.5.4

8.5.4.1

CA 138-1 REV 10-67

Before the macro codc incrementation ir made, the operand types are
compared. If they are not the same, an RLIST macro is output to convert
the lower type operand to the same type as the higher operand.

Optimizations

Compile-time data-type change:

When an operator is popped from the stack, if its operands are of

different types, and if the operand of lower type is constant, it will
be converted to the higher type and the RLIST instruction which loaded
it or set it will be replaced by one that loads the converted constant.

Compile-time constant subexpression evaluation:

Before a macro is formed for an operator, if it is an arithmetic operator
and if its operands are integer or real comstants, the RLIST for the
operands are no-oped, the operation is performed on the operands, and

a load or set of the computed value is output to ARLIST. If this load

is subsequently used as an operand with another constant operand it

will be no-oped just as the loads it replaced were no-oped.

Division by real or complex constants:
If a real or complex constant is preceded by a divide operator, RLIST
is output to load its inverted value and the divide is changed to a
multiply operator.
Expression transformations:
Some expressions or subexpressions can be transformed to other mathemati-
cally equivalent forms whichevaluate faster on the 6600 than they would
if translated by the basic algorithm.
The RLIST produced for

A%*B*C*D
would compute the product as if it had bcen written

((A*B)*C) *D

and thus not take advantage of the 6600's two multiply units. If it
had been written as

(A*B)* (C*D)

the two products in parentheses would be computed simultaneously. 1In
order to achieve this effect, Arith keeps a flip-flop for popping

multiply operators by operators of equal hierarchy. The flip-flop is
flipped for every multiply operator encountered in ELIST, so that for

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS . PAGE NO.__12.19
PRODUCT NAME __ FORTRAN Extended
PRODUCT MODEL NO. Lp616 MACHINE SERIES 64/65/6600
A%B¥C*D+E,

the first mulitiply is popped oy the second, as usual, but the second
is not popped by the third. The last two will be popped by the plus
thus resulting in

(A*B)* (C*D)+E
8.5.4.2 Normally:

A*B*C/D

((A*B)*C) /D

which gives no parallel execution. But if divide is given a highex
priority or hierarchy than multiply, then

A*B*C/D
is evaluated as
(A*B)*(C/D)
and the divide and multiply units are working simultaneously,

Note: It might be well to note at this time that the rules for
carrying out these transformations are general rules and are always
in effect in the translation algorithm. The translator never looks
at a source item in E-list more than once, except for non-standard
subscripts. (see 8.4.2.2)

8.5.4.3 =-A+B or, to illustrate the preceding note,
- (A-B)+C*D
becomes
' C*D-(A-B)

which reduces the number of operations from four to three, by the
following rule: i

If a unary minus is about to be popped from the stack by a plus,
remove the unary minus from the stack and replace the plus with

a reverse-operand minus operator. The macros associated with the
reverse-operand minus operator are the same as those for a normal
minus operator except that the first parameter is subtracted from
the second instead of the second from the first.

8.5.4.4 A/B/C becomes A/B*C, replacing a 29 cycle divide with a 10 cycle
multiply (6600), by the following rule:

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO.___12.20
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lpé16 MACHINE SERIES 64/65/6600

If the current ELIST item is a divide and the last operand in
ARLIST is not type integer and the last operator in the stack
is a divide or a multiply-D operator, then change the current
divide to a multiply-D operator which has higher priority than
the divide and specifys a multiplication. Introducing the mul-
tiply-D operatorallows more than one sequential divide to be-
come a multiply:

A/B/C/D/E becomes

A/ (B*C*D*E) , which happens
to become A/((B*C)*(D*E)) because
the flip-flop also applys to multiply-D
operators.

8.5.4.5 The following rules allow a great variety of transformations which allow
for more parallel evaluation of expressions. Some examples of the trare

P ey

formations made are:

A%B/C*D (B/C)* (A*D)
A+B/CHD (B/C)+(A+D)
A+B*C-D’ (B*C)+(A-D)

A*(B+C)/D (A/D)*(B+C)
A-(B*C+D)-E (A-E) - (B*C+D)

The rules are as follows:

When a right paren is encountered in E-list, set the GP (greater
priority) flag bit in the operator following the right parem. Or, if
the current operator pops an operator with a higher priority out of
the stack set the GP bit in the current operator word.

If the GP bit of the current operator is set and it is about to pop an
operator (other than unary minus) of equal priority, or it is a divide
and the last operator in the stack is a multiply, then don't pop the
operator from the stack, cet the CGP (confirmed GP) bit in the current
operator and the GPIU bit in the information word of the last ARLIST
entry. If the operator left in the OPSTAK is a minus, change it to a
reverse minus. Add the current operator to the stack.

The GPTU bit makes an ARLIST entry temporarily unavailable for use
as an operand. After an operator with its CGP bit set is popped, the
last ARLIST entry with ite GPTU bit set has the bit turned off.

The following example will illustrate the use of these rules.

A*B/C*D (B/C)* (A*D)

ARLIST OPSTAK
R1=A *

R2=B /

R3=C CGP, GP,*

CA 138-) REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS
PRODUCT NAME

IMS . 19 91
Al @ S e

PAGE NO.

FORTRAN Extended

PRODUCT MODEL NO. Lp616 MACHINE SERIE$4/65/6600

8.6.1.1

8.6.1.2

8.6.1.3

CA 138-1 REV 10-67

GPTU R4=R2/R3
R5=D

RG=R1*R5
R7=R4*R6

Arith table overflow diagnostics

There is a fatal-to-execution diagnostic which says:

"EXPRESSION TRANSLATOR TABLF (table-name) OVERFLOWED. SIMPLIFY THE
EXPRESSION, "

There are three different tables which may become overflowed.
OPSTAK table:

The size of the stack fluctuates as the expression is scanmned,
For example, it increascs as left parentheses and operators of higher
priority occur, and decrcascs as opeiators of lower priority occur.

Each operator entered in the stack requires one word of space, except
for left parens which require two: one to mark the start of a possible
xponential base and the other the operator itself.

The start of each function reference requires nine words which includes
he recursive funciforn procrssor Information., I the reference cccurs
2y an intrineic functicn argument list, then the opstak is also used
to save the R-names of the arguments which have been processed so far,
which could be up to 62 words if the function is a MAX or MIN type
function.

The start of non-standard subscripts requires four words.

The OPSTAK block size may be modified by changing the EQU named
MXOSE in the common file called OPTIONS, and reassembling ARITH,

FRSTB:

This is the function result-saved table. A one word entry is made for
each function that has its results saved. For example, in

A=F1(B)+F2 (C)+F3 (F4 (D)+F5 (E))+F6 (F)
F1l and F2 are saved, and then F4 is saved but is reloaded to add to F5
so the size of the table goes down by one, and finally F3 is saved

before calling F6.

The FRSTB block size can be modified by changing the EQU named
MXFRSTB in the Option file and reassembling Arith.

ARLIST:

This is ARITR's RLIST block. The size increases as the expression is

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO. 12,22
PRODUCT NAME FORTRAN Extended .

PRODUCT MODEL NO. Lp616 MACHINE SERIES _b64/65/6600

8.7

8.7.1

CA 138+

REV 10-687

scanned, but it decreases after each external function reference is
output to the common RLIST file. A variable load entry takes 6 words;
an operation takes four words if single length operands, and 8§ if
double length; a standard subscript psuedo-macro takes fourteen words.

The size of ARLIST is controlled by the EQU named ARLSZ in the Options
file.

The Register Jam Problem

The second pass was designed under the assumption that there would always
be a sufficient number of X-registers to be used in the evaluation of
expressions, with the following type of exception:

A very long expression can be constructed in such a way that
the result registers of enough subexpressions must be saved
so that a point is reached where enough registers to continue
do not exist. ’

The assumption was correct for integer and real expressionms, but it
was found that it was quite easy to run out of registers when evaluating
Double or Complex type expressioms.

The problem has been partially solved by modifying the expression trans-
lator to produce a different kind of output for Double and Complex
expressions; partially solved because it is still possible to run out

of registers for Real or Integer expressions.

These modifications to ARITH make up over 20% of the total numbexr of
source lines in ARITH, so it's important that they be described.

The solution in general:

When the second pass finds that it does not have enough registers to
complete a sequence of statements, it reduces the number of statements
in the sequence and begins again.

The solution is to break up @ double or complex expression into many
statements, one statement per operation. For example,

D1=D2*D3-+D4
is made to look to the second pass like

D2+*D3
ST1-+D4

ST1
D1

where STl is statement-temporary -one and is treated as a double variable.

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
"DOCUMENT CLASS IMS, PAGE NO._ 12,23
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lp616 MACHINE SERIES__64/65/6600
8.7.2 The solution in particular:
8.7.2.1 Double length operatiomns:
When ARITH is ready to output a macro for an operation, if the operands
are double-word-length loads, it no-ops the load instructions and
outputs a macro which will load the operand and do the operation.
It then outputs a macro to store the results of the operation in
Statement-Temporary storage followed by an end-of-statement psuedo-op.
This macro is called a DSTR macrc. The DOTIR macro is in thr saune
format as a double load macro and will be used as an operand to sub-
sequent operators.
8.7.2.2 Mixed single and double:

. CA 138-1 REV 10-67

An expression with mixed single length and double length operands, for
example real and complex, presents a new problem. The expression

A+B*(C1+C2) , (Cl and C2 complex)
would now result in

RE=A

R2=B

R3, 4=C1 (no-oped)

R5, 6=C2 (no-oped)

R7, 10=C14+C2

ST1=R7, 10

EOS (end-of-statement op)
R11l, 12=CMPX(R2)

Etc.

but at the point of the last line, a reference to R2 is made which is
defined in the previous statement which may end up in another sequence
and therefore be undefined in this sequence. Rl won't be referred to
until after the multiply operation which will occur two statements
away, and so the chances that it will be undefined are even greater.

This problem has been solved by converting all unused single length
operands to type Double Precision in an expression that contains a
double or complex operand. The method of doing this is as follows:

As each load or operation is output to ARLIST, the type is compared
with the type of the last operand in ARLIST. If one is type integer or
real and the other is double or complex, then a flag is set to indicate
that mixed single and double has occurred, and the contemts of the
ARLIST blok are scanned, ingerting macros to convert operands which have
not already been used in operations to double precision. Thereafter,
the type of each entry to ARLIST is checked, and if not double or
complex, a macro is output to convert it.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.

8.7.2.2.1

8.7.2.3

8.7.3

CA 138-1 REV 10-67

DIVISION
IMS. PAGE NO.__12.24
FORTRAN Extended

Mixed super-and sub-expressions

A modification to this method of dealing with the mixed single and
double problem is necessary because of real or integer argument
expressions occurring in a Double or Complex super-expression.
Also, index functions in a double expression should not be

forced to be computed in double precision. This makes it
necessary to treat argument and subscript sub-expression as an
autonomous expression with regard to whether mixed single and
double has occurred, and with regard to how far back in the ARLIST
to go when the first double operand occurs in a mixed single and
double expression. And since subscripted subscripts and function
references in argument expressions, etc. éxist, it is necessary

to keep track of where in ARLIST each subexpression starts,

and for each subexpression whether mixed single and double has
occurred. This introduces another table which can overflow.

The name of the table is JAMTBl1. The size is controlled by the
EQU named JAMIBIMX in the options file. An entry of two words _
is made at the start of each argument and non-standard subscript.
The table is reduced by two at the end of each argument and non-
standard subscript.

Consider the statement
A(I*3)=D1+D2%D1 (D1 and D2 double)

The subscript I*J is non-standard. The RLIST produced for the
statement would normally consist of the calculation of the index
function followed by the evaluation of the expression followed

by a store of the rcsult into A(I®J). DBut since ends-of-statement
operators now follow the double plus and double multiply operatioms,
the subscript calculation may end up in another sequence.

So, ARITH now moves the RLIST to compute a non-standard index
function from the front of the ARLIST blok to the end before out-
putting the store macro.

Because of this and multiple replacement statements, it is necessary
to remember the starting point in ARLIST of each replacement
variable. The limit on the number of replacements per statement

is 75,

Subscripts and double length operands:

To make the implementation of this solution to the register de-
pletion problem more feasible, Double or Complex operands in
subscripts has been made illegal, and all Double or Complex array

subscripts are considered non-standard.

Restrictions and other remarks:

CONTROL DATA CORPORATION . COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS iMS, : PAGE NO. 12,25

PRODUCT NAME
PRODUCT MODEL NO. Lp616 "~ MACHINE SERIES 64/65/6600

9.1

9.2

9.4

CA 138-1 REV 10-87

FORTRAN Extended

Basic syntax checking is done by looking at the ELIST element following
the current E-list element. The following table indicates the syntax
rules:

E-list element ‘may be followed by

CON (constant) Y,,, E.0.S., 0PS (2.) '
ID (name) Y,,» E.0.S., 0PS, =, (

) (1'))3)9 E‘O‘S" OPS’ =

9

. = (, .OR., .AND. CON, ID, (, -,%, .NOT.
.NOT., relational ops CON, ID, (, -, ¥

.k, %, kR con, ID, (
(i) If) is the closing parcms of an IF eoxpression it may be followed
by an ID (if Légical IF) or constant (label). If) is in I/0O

list (IXFN call) it may be followed by (or ID.

(2) oPS = .0OR., .AND., relationals, -, +, *, /, **
The format of ARITH in COMPASS:

Label field starts in column 2, operator in column 11, and symbols or
intcger constants in column 21. Instructions (other than 50-57) which
have morc than one result rogister (e.g., Unpack) are written so that
the B register name starts one character after the end of the operation
field. Operand registers start in column 18. This format results in
all result registers, operand registers, and symbolic references to be
found in column 12-16, 13-20, and 21-72 respectively. Comments start
in column 31.

Every conditional branch instruction has a comment stating what
condition must be met in order to bramch.

At NEXTE, Bl is set to the address of the next Elist item to process.
A large part of ARITH arsumes that Bl holds thie address. Therefore,
B1 shouid be used very carsfully.

Except for Bl, in general it may be assumed that any register may be
destroyed when calling a subroutine (including Bl for external routines).
Any exceptions to this are roted in the introductory comments of the ex-
ceptional routines.

Caution to modifier. ARITH is not laid with booby traps but may appear
to be so because of the complexity of the task. Transiormations, etc.,
cause uneupected results. Beware of functions, non-standard subscripts,
and exponential operators.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS . IMS, PAGE NO.__13.1
PRODUCT NAME _ ___. FORTRAN Extended B
PRODUCT MODEL NO.___ 7 4P61b." MACHHVESERJEsﬁjﬁJ§576600“ o

CALL: IMS Documentation for the CALL Statement Processor

1. General Information:

1.1

2.1
2.1.1

2.1.2

3.1

3.2

CALL has one function: to tramslate CALL statements to RLIST. CALL
is part of PHASE -2 of the compiler.

Entry Point:

CALL

Function: Translate the E-list form of a CALL statement to RLIST.
Calling sequence and returns: CALL is entered by an RJ instruction.
If the statement does not contain a fatal error, CALL exits through
its entry point. Otherwise, it returns control to PH2CTL at P2ER.
(See Section 4)

Diagnostics Produced:

F;tal to compile diagnostics: none

Fatal to execution:

" Ordinal

3.3

3.4

in
Octal

253: '"Illegal CALL statement format''.

254: '"Illegal RETURNS parameter'.

Informative: none
Non~USAST:

Ordinal

in

Octal
266: "“RETURNS parameters in a CALL statement' .
Common data:

The-following are single cell locations in a common block called CLNFO:

SUBFWA: Holds the address of the first word of ﬁhe symbol table
entry for the name of the subroutine being called.

CA 1381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS, PAGE NO.__13.2
PRODUCT NAME_____ FORTRAN Extended] —
PRODUCT MODEL NO. _____4P616 o MACHINE SERIES____ 64 /636600
SUBH: Holds the SYMTAB ordinal of the subroutine name.

5.2

5.3

5.4

ARGCNT: Holds the number of arguments in the argument.list,
: (These last three cells are set by ARITH for CALL's use).

NARGSF : Is set to zero if there is an argument list.
SUBNAME: Holds the nmame of the subroutine in E-list form.

The latter two cells are set by CALL for ARITH's use.

The common block NAALN holds a single cell variable called NAAIN which

holds the next available APLIST (actual parameter list) ordimal. Tt is
updated by Arith.

On entry to CALL, location 32B (SELIST) holds the address of the ELIST

block for the CALL statement. The first word in the block is the name

of the subroutine being called. Location 37B (CDCNT) holds the number

of the first source card in the CALL statement being processed.

Location 64B (NRLN) holds the next available RLIST result number.

Subroutines used by CALL:

External routines:

DOCALL: Called to inform DOPROC that a CALL statement has appeared.
ACALL: Subroutine local to ARITH called to set up ARITH to process the
argument list,

WRWDS: Called to output RETURNS parameter-information and the return-
jump instruction to RLIST.

DOLABR: Called to inform DOPROC of a reference to a statement label the

-(RETURNS actual arguments).

Formats: There are no tables.in CALL. The format of the RLIST produced

by CALL is given in the RLIST document. Data cells set by CALL are

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS, | PAGE NO.13.3
PRODUCT NAME FORTRAN Extended ‘ _
PRODUCT MODEL. NO. 4P616- . MACHINE SERIES 64/65/6600 ..

quantities which are right adjusted. The RLIST formed by CALL

consists of a 56 (APL) operation (if there is CALL argument list and

a RETURNS argument list) with I =7, H= 0, and RI = the APLIST ordinal
for the subroutine, followed by type 56 (APL) operation (s) giving

the returns parameters (if there are any), followed by a 50 (LD)
operation with CA= 0, SO = 15B fo specify a 1o§d into X1, RI = the
contents of NRLN, I =5, H = the ordinal of the APLIST, followed by

a 101 (RJ6) operation with CA = contents of CDCNT ard Hl = the

ordinal of the subroutine name.

Modification facilities:

EQUs and diagnostic macros are used which would facilitatc some
modifications.

Method: CALL calls ARITH through ACALL to process the subroutine name .
and the argument list, if any. After return from ACALL it processes the
RETURNS 1list, if any, and outputs the final RLIST instructions to call

the subroutine.

CA 138-1 REV 10-67

DOCUMENT CLASS
PRODUCT NAME
PRODUCT MODEL NO.

1.1

2.1
2.1.1

2.1.2

2.1.3

2.2

2.2.1

%]

2‘2'“

2.2.3

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
™S .
gy PAGE NO. 14.1
FORTRAN Extended -
AP6l6 MACHINE SERIES64/63/6600. %t oS
Ir T

General Information:
IF processes all IF statements.

of the compiler.

Entry Points:
IFE
This entry is taken to process

Calling sequence and returns:

IF is local to ARITH which is in PHASE-2

two and three branch IF statements.

IFE ic entered by an RJ instruction and

returns through the entry point, unless a fatal diagnotic is encountered

in which case it returns to PH2CTL at P2ER,

General Flow: ARITH is called
Instruction(s) are then output
labels.

IFL

to translate the IF expression.

to RLIST to branch to the appropriate

This entry is taken to process Logical IF statements.

(Same as 2.1.2)

General Flow: ARITH is calléd

to translate the IF expression. If the

statement following the expression is GOTO k where k is a statement

label, IFL outputs a branch-if-

it outputs a branch-if-.FALSE.

.TRUE, instruction to RLIST: otherwise,

to a generated label, calls the

appropriate statement processor to process the statement, and then

outputs the gencrated label.
Diagnostics Produced

Fatal-to-compile diagnostics:

none

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS ' IMS PAGE NO. 14,2
PRODUCT NAME FORTRAN Extended

PRODUCT MODEL NO. 4P616 MACHINE SERIES 64/65/6600

3.2 Fatal-to-execution:
Ordinal
in
Octal

255 '"Illegal labels in IF statement"
. 256: ‘'Logical expression in 3 branch IF"

¢

257: "The statement in a Logical IF may be any executable
statement other than a DO or another Logical IF"

260: ‘'The expression in a Logical IF statement is not type
logical”

3.3 Informative:

301: "This statement branches to itself”

302: “"The statement following an IF is not labeled"
3.4 Non-USASI:

277: “Two branch IF ststements are non-USASI"

300: '"The expression in an IF statement is type Complex"
4, Common data:

Location 21B (LTYPE) gives the type of statement following the
Logical IF expression.

Location 23B (CLABEL) holds the label (if any) of the IF statement.

Location 343 (LFLIST) holds the address of the start of the statement
following the Logical IF expression.

Location 60B (NLABEL) holds the label (if any) of the next statement.

Location 32B (SELIST) holds the address of the start of the IF
expression in the ELIST block.

IFRPF is a flag irnitialized by IF but used by ARITH to differentiate
between the legal and illegal occurrence of a right paren followed by
a constant (e.g., IF (A+B) 1, 2, 3 and IF (A+B) 1, 2, 3).

5. Subroutines used by IF:

External routines:

CA 138-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS__ s | PAGE NO.__14.3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL No.___4P616 MACHINE SERIES .64/65/6600

5.1 DOLABR: Called to inform DOPROC of a reference to a statement label.

5.2 All executable statement processbrs other than DO and LOGICAL IF to
process the statement following a Logical IF expression.

Local routines used by both ARITH and IF (see ARITH documentation
for descriptions):

5.3 MACOUT: (to make entry to ARLIST).
S.4 DARLIST: (to send ARLIST entries to RLIST).
Local routines:

5.5 ARITH: Called to tramslate the IF expression to RLIST. (Only local
so far as being found in the same subprogram).

5.6 IFBRT: Syntax checks the E-element addressed by SELIST which should
be a statement label, and returns with the label in BCD form in X6 and

IFTS2.

5.7 OUTBR: Calls DOILABR, then MACOUT to output a branch imstruction to
ARLIST.

6. Formats: There are no tables in IF. IF outputs RLIST macros 321B

through 330B. Sece MACRCX for descriptions.

7. Modification facilities: EQUs are used for diagnostic ordinals,
MACROX ordinals, and lower memory cell locations. Diagnostic macros
are used. Only RLIST macros are output to RLIST,.

8. Method:

IFE (two and three branch IFs): ARITH is called to translate the IF
expression to RLIST, 1If it is a three branch IF, the expression type
is checked to see that it is not type Logical. A macro to branch-on-
Zero to the 2nd label is output to ARLIST, If the first label is not
the same as the label on the next statement, a macro to branch-on-
negative to the first label is output to ARLIST. If the third label
is not the same as the label on the next statement, a macro to branch
unconditionally to the third label is output to ARLIST, Then, IFOUT
is entered: An end-of-sequence instruction is ocutput to ARLIST to
insure that none of the following statement is evaluated before all
tests for the IF have been completed, i.e., consider

IF(A) 1, 2, 1
1 B =C/A

Fipally, ARLIST is output to RLIST.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.___l4.4
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 ' MACHINE SERIES ___64/65/6600

CA

If it is a two branch IF, the first label is compared to the label on
the next statement. If it is not the same a macro to branch on negative
(.TRUE,) or non-zero to the first label is output to ARLIST depending on
whether the expression is logical or non-logical respectively. If the
second label is not the same as the label on the next statement, an un-
conditional branch is output to ARLIST. Then IFOUT is entered.

IFL(Logical IFs):

ARITH is called to translate the IF expression. If the statement following
the IF expression is

GO TO k where k is a statement label,

then a branch on negative (.TRUE.) to k is output to RLIST and IFL exits
through its entry poiut. If the statement is not GO TO k, a branch-on-

plus (.FALSE,) to a generated label is output to RLIST followed by an end-
of -sequence macro. Then a vector table is entered (biased hy the statement
type code found in LTYPE) which results in calling the statement processor
if it is an executable statement other than a DO or Logical IF. (Otherwise,
ERPRO is called). On return from the called statement processor IFL out-
puts an RLIST psuedo-op defining the gencrated label. IFL then exits

through its entry point.

The only time a three branch IF will jump to the following statement It
when the second label is the same as the label on the next statement.

138-1 REV 10-57

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS MS PAGE NO.__ 15-1
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.___ 3FC08 MACHINE SERIES __64/65/6600
ENDPROC
1.0 General
1.1 ENDPROC is called by PH2CTL when SCANNER detects the END card of a

subprogram. ENDPROC performs the following functions:
a. Call DOEND to close out DO lists.
' b. Generates the proper exit code placing it into R-list, ﬁhen

issuing an end-of-R-list' operation code.

c. TIssue BSS storage for all usage defined variables.

d. 1Issue EXT pseudo ops for all external symbols.-

e. Issue informative diagnostics for undefined variables.

f. Condense symbol table from two words/emtry to one word/entry.

g. Move CONLIST, terminated by a "USE CODE.", to the COMPS buffer.

h. Append special character to external library names for co-
eiistenbe problems with previous versions.

ENDPROC calls DOEND, SYMBOL, WRWDS, STR, and ERPRO.

2.0 Usages

2.1 Entry Point Name: END

2.1.1 ENDPROC processes the END card of a subprogram.

2.1.2 ENDPROC is entered via a return jump and upon completion of its tasks,

exits through its entry point.

2,1.3 ENDPROC processes the first entfy in the symbol table (Pfogram/
Subprogram Name) separately from the rest of the symbél table. After
determining the type of program being processed, the proper exit code
is issuéd to R-list; the routine then enters the main loop to process
the rest of the tasks listed in Section 1.1. A buffer is built in

working storage of the EXT's and the BSS's for usage defined variables,

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
IMS 15.2
DOCUMENT CLASS PAGE NO.
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES___ 64/65/6600

2.1.3 (continued)
When the end of the symbol table is reached, CONLIST is converted
to display code and also written into the working storage buffer in
the form of DATA pseudo ops,.along with a "USE CODE." to terminate
the list., The buffer is then moved to the COMPS file and the routine
exits tﬂrough its entry poinf.

2.2 Entry Point Name: SCHBET

2.2.1 SCHBET appends a special character to the FORTRAN Extended external

| library functions. ’

2.2.2 SCHBET is entered via a direct jump and expects X6 to contain the name
to be searched for left justified in the upper 42 bits, with the lower
18 bits all zero. SCHBET expects the return address in B7.

2.2.3 The routine compares the name in X6 with the names in a table of
externals. If the name is found, a special character . or § is appended
to the name in X6. If the name is not found, X6 is unaltered. 1In

either case the routine exits by jumping to the address specified in B7.

3.0 Diagnostics

3.1 No fatal to compilation errors are detected.
3.2 No fatal to execution errors are detected.
3.3 One informative diagnostic may be issued:

"-name- UNDEFINED VARIABLE, I.E. THIS VARIABLE IS NEVER

INITIALIZED.,
3.4 No non-ASA errors are detected.
4.0 Environment

When ENDPROC is called, it is expected that symbols necessary to the

sub-program have been entered in the symbol table and all fields in

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS S PAGE NO. 1.3
PRODUCT NAME FORTRAN Extended Version 2.0 :
PRODUCT MODEL NO. 3PC08 MACHINE SERIES _ 64/65/6600
4.0 (continued)

the entry have been set accordingly.

Of particular interest are tﬁe entries made by DECPRO when processing

a subroutine or function subprogram name.

a. TFor a subroutine with parameters, the name is entered and typed
as a subroutine; ENTRY. is entered and defined as the entry point;
and TEMPAO. is entered and defined in the symbol table.

b. For a subroutine withoﬁt parameters, the name, and ENTRY. are
entered, but TEMPAC. unless there is a RETURNS list is not entered
in the symbol table.

¢c. For a function subprogram, the name is entered with the proper
type, and the ENT bit is set; ENTRY. is entered and defined as
the entry point; TEMPAO. is entered and defined; VALUE. is entered,
defined, and typed the same as the funcfion subprogram name.

d. For main program END. is entered in the symbol table and marked
as external.

d. For all programs ST., QT, and DO. are entered in the symbol table
with the U bit set and RB=3.

5.0 Structure
5.1 Major Subroutine Name: END
5.1.1 Upon entry to END a return jumé is immediately made to DOEND to close

out all DO lists. Then the first entry of the symbol table (Program/

subprogram name) is loaded into X1 and X2 and the program type is

determined. If a function subprogram is being processed and the last

statement was not a transfer or a RETURN, X1 and X2 are saved and a

O

all is made to SYMBOL to obiain the symbol table ordinal for VALUE.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS MS PAGE NO.__ 15.4
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES_ 04/65/6600

5.1.1

5.2

5.2.1

CA 138-1 REV

1067

(continued)

Then a reference is placed into R-list to expand the RMACRO LDVAL.

for a single precision function, or LDVALL. for a double precision
function. X1 and X2 are restored, and the necessary registers are

set to go to the main loop to process the rest of the symbol table.

If a BLOCKDATA subprogram is being processed, the END line is written
to the COMPS file and ENDPROC exits through its entry point.

If a subroutine is being processed and the last statement was not a
transfer or a RETURN, X1 and X2 are saved and a jump is made to SYMBOL
to find TEMPAO. If TEMPAO was not previously in the symbol table,

a reference is set into R-list to expand the RMACRO SUBRWO which sets
up a jump to ENTRY, in R-list. If TEMPAO, was in the symbol table, a
reference is set into R-list to expand the RMACRO SUBRW which generates
code to restore A0 and then a jump to ENTRY. After either case Xl and
X2 are restored, registers are set, and the main loop is entered.

For a subroutine or function, if the last statement in the subprogram
was a transfer or a RETURN, it is not necessary to generate any of the
RMACROS but merely to issue the end-of-R-list operation code, set

necessary registers, and go to the main loop.

If a main program is being processed, a return jump to END. is placed
into R-list, the R-list is ended, registers initiated, and entry is
made to the main loop.

Major subroutine Name: PROSYM

This is the start of the main loop for processing and squeezing the

symbol table.

Each symbol table entry is examined separately.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ___ IMS ' PAGE NO. 15.5
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NoO.__3PC08 MACHINE SERIES _ 04/65/6600
5.2.1 (continued)

Examination of the symbolrtable entries proceeds as follows: First,
if the type field of the entry is greater than 5 flow falls directly
through to the squeeze loop, SQUEEZE. If the entry is a label
SQUEEZE places bits 59-48 of word B into bit positions 11-00 of

word A. If the entry is a symbol bits 24-13 of word B are placed
into bit positions 11-00 of word A. This combined word is then
stored into the next location of the one word symbol téble, the next

entry is loaded.

if the type is O through 5 other conditions mustbbe checked. If the
symbol is external, not a fofmalvpérameter, and is a basic external
function a decimal point (.) is appended to the name in the symbol
table, an EXT pseudq op is pﬁt into the COMPS buffer and SQUEEZE is
entered. If the symbol is external, not a formal parameter, and is
not a function or not a basic external function then SCHBET is entered

to determine if a special character ($) need be appended.

Whether the character is appended or not, the EXT pseudo is put into

the COMPS buffer and SQUEEZE is entered.

1f a symbol has not been defined in the symbol table, the symbol is
placed into X4 in E-list form, necessary registers are saved, and a
jump is made to ERPRO to enter the variable and diagnostic im the error
table. Upon return, registers are restored and the loop is re-entered,
As the diagnostic is only informative, a BSS 1 (or 2) is sent to the

buffer for the undefined variable.

CA 13R-1 RFV 1N=-A7

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS MS PAGE NO,___ 13.6
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES_ 04/65/6600
5.2.1 (continued)

If a variable has been defined by usage only, a BSS 1 (or 2 for two
word variables) is stored into the buffer for that variable to be
output to COMPS later.

5.3 Subroutine NAME: CONS

5.3.1 The one word symbol table is saved in lower addressed memory with
enough room between it and the two word symbol table to hold the
generated label definition (one word for each gemerated label).
The head and end addresses of the one word symbol table are held in
SYM1 and SYMEND respectively while the head and end of the two word

symbol table are held in SYM]A and SYMENDA.

CONLIST is then converted to display code octal constants and put into

the buffer area.

A "USE CODE." is placed in the buffer and the entire buffer moved to

COMPS via WRWDS.

If at any time the COMPS buffer being formed will exceed the available
working storage (at this time the area from CONLAST to SYMEND), a
return jump is made to RITCO&P to save registers, dump the buffer to
the COMPS file, and restore or reinitialize the registers.

6.0 Not applicable.

7.0 ENDPROC expects the proper addresses in SYM1 (RA+12B). SYMENT (RA+13B),

| CON1, (RA+26B), and CONLAST (RA+27B). PH2CTL must set LSFLG (RA+44B)

to zero if the last statement in the subprogram was not an unconditional
transfer or a RETURN, or to non-zero if the above condition does exist.
DECPRO must set PROGRAM (RA+56B) equal to the program name packed into

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS MS] PAGE NO.__13-7
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PC08 MACHINE SERIES _64/65/6600
7.0 (continued)

the cell with a bias of 2000B if a main program. A subprogram will

have the number of arguments in the lower 48 bits and a bias of 2001B

for a subroutine, or a bias of 2002B for a function.

MO1, M02, MO3, and MO4 are set equal to the number of the RMACRO for
a single precision function subprogram, a double precision function
subprogram, a sub-routine with parameters, or a subroutine without

parameters respectively.

8.0 The method used in the task is discussed at length in Section 5.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 16.1
FORTRAN Extended
[PRODUCT NAME AT 76576600
PRODUCT MODEL NO. MACHINE SERIES
RTNPROC

1.0

1.1

3.0

3.2

CA 138-1 REV 10-67

General Information
RTNPROC is called by PH2CTL when SCANNER encounters a RETURN

statement. RTNPROC performs the following functions:

a) Checks for illegal use of the RETURN (or RETURN a) statement.
b) Determines type of return (standard or non-standard), and

c) Generates proper RETURN coding to R-list.

RTNPROC calls ERPRO, SYMBOL, STR, WRWDS, and ASAER.

Usage

Entry Point Name: RETURN

RTNPROC processes all RETURN statements.

RTNPROC is entered via a return jump and upon completion of its
task (or upon detecting an error), exits through its entry point.
RTNPROC checké first to see if the RETURN statement has been used
legitimately. Then the type of subprogram is determined, and a
reference to an RMACRO is placed into R-list to generate the

necessary R-list code. See Section 5.0 for detailed flow.

Diagnostics

Fatal to compilation: mnone.

RTNPROC may issue one of three fatal to execution diagnostics:

a) RETURN STATEMENT APPEARS IN A MAIN PROGRAM., (#67)

L) NON-STANDARD RETURN STATEMENT MAY NOT APPEAR IN A FUNCTION SUB

PROGRAM (#63).

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__16.2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES 64 /65 /6600

3.3

3.4

4.0

5.0
5.1

5.1.1

CA 138-1 RFV 10-R7

c) PARAMETER ON NON-STANDARD RETURN STATEMENT IS NOT A RETURNS FORMAL
PARAMETER. (#69)

None

Non-ASA Diagnostic

a) THE MON-STANDARD RETURK STATEMENT IS NOT AMERICAN STANDARD FORTRAN,
GF72)

Enviromment

When RTNPROC is entered the foliowing entries are expected to have

been made in the symbol table by DECPRO:

a) For a subroutine with paramefers - the name is entered and typed
as a subroutine; ENTRY.-is entered and defined as the entry point;
and TEMPAO. is entered and defined,

b) For a subroutine without parameters - the name, and ENTRY. are
»entered, but TEMPAO, is not entered in the symbol table.

¢) For a function subprogram - the name ié entered with the proper

- type, and the ENT bit is set; ENTRY. is entered and defined as the
entry point; TEMPAO. is entered and defined; VALUE. is entered,
defined, and typed the same as the function subprogram name.

See Section 7.0 for the list of common cells and the information

expected in each.

Structure

Major Subroutine Name: RETURN

Upon entry a check is immediately made to see if g main program is

being compiled.If it is a main program, ERPRO is called to issue

diagnostic #67, then the routine exits. 1If we are processing a

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP
DIVISION

IMS

DOCUMENT CLASS
e
PRODUCT NAME ORTRAN Extended

PRODUCT MODEL NO. 4P616 ___ MACHINE SERIES __64/65/6600

PAGE NO._16.3

a standard return in a subroutine which has formal parameters, R-list
code is issued to reference the RMACRO SUBRW to restore AQ and jump to
the entry point. If the subroutine has no parameters, RMACRO SUBRWO is

referenced to set up just a jump to the entry point.

For a standard return in a function subprogram entries are placed in
R-list to reference RMACRO LDVAL. to load a single precision function
value to X6, or to reference RMACRO LDVAL]l. to load a double function
value to X6 & X7. Both of these RMACRO's then generate code to restore

AQ, and jump to the entry point.

If we are processing a non-standard return statement in a subroutine, and
the RETURNS parameter is in the symbol table with type équal to 7, the
entries are placed in R-list to reference RMACRO NSRTIRN to load the
RETURNS entry in APLIST into Bl, restore AO, and then jump to contents

of Bl. If the RETURNS parameter is not in thé symbol table or if the
type is not equal to 7, ERPRO is called to issue diagnostic #69, then

the routine exits.

If the non-standard return statement occurred in a function subprogram,

ERPRO is called to issue diagnostic #68, then RINPROC exits.

6.0 Not applicable.

v

7.0 RINPROC expects the proper addresses in DOLAST (RA+31B), and SELIST
('323). DECPRO must pack the program name with a bias of 2000B into
PROGRAM (RA+56B) if processing a main program. If processing a sub-

program DECPRO places the number of arguments in bits 0-47 of PROGRAM

CA 1381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 16.4
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES___ 64/65/6600

with a bias of2000B for a subroutine, or a bias of 2002Bfor a function.

MORD1, MORDZ2, MORD3, MORD4, and MORD5 are set equal to the oxdinal of
the RMACRO for a single precision function subprogram, a double pre-
.cision function subprogram, a subroutine with parameters, a subroutine

without parameters or a non-standard return statement respectively.

3.0 Method

The method used for the non-standard RETURN is as follows:

Processing of the subroutine header card will cause the RETURNS formal
parameter to be placed in the symbol table with type = 7, and numbered

consecutively (in bits 39-34 of word 2 of the entry) beginning with zero,

For the nominal case where no formal parameters are declared with the
subroutine name, an APLIST of just the RETURNS formal parameters is
formed, terminated by a zero entry. If there are formal parameters
they are entered in the APLIST followed by a zero entry; then the
RETURNS formal parameters are entered (one word per entry) and

followed by a zero word.

The number of formal parameters (n) declared in the SUBROUTINE
hezder card is added to the ordinal obtained from word 2 of the
symbol table entry for the RETURNS parameter. If n = 0, then
‘this sum is the ordinal (i) passcd to the NSRTRN RMACRC. If n=0,

then 1i=i+l must be passed to the RMACRO to compensate for the extra

zero word in APLIST.

CA 12081 POV an_e=

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._16.5
_ PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES _64/65/6600

The RMACRO NSRTRN generates:

2
H
:

SAO

]
o]

JP Bl

CA 1381 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ins _ PAGE NO.__17-1
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No. 3P €08 MACHINE SERIES__ BU/65/6600
NAMELIST
1.0 General

L.l NAMELIST processes the NAMELIST statements and is part of
Phase 2, Pass 1.

2.0 NAMELST has one entry point.
2.0.1 NAMELST processes the NAMELIST statement.

2.0.2 NAMELST is entered from PH2(TL via a return jump and exits
through its entry point or to FATALER if there is insuf-
ficient memory to process the statement. A flags MACROIN,
is checked to determine whether the NAME macro definition
has been written onto the COMPS file. If not, it is
written before any NAMELIST processing. The macro is as
folliows:

NAME MACRO N,T,BASE,BIAS,FP+D1,D2,D3
LOCAL Z1,Z2,23,Z
VFD 18/0,42/0LN
VFD 5/1,k/0
IFC NE,SBASESs,1
VFD 14/BASE+BIAS
IFC EQ,5$BASESS, 1

VFD L8/N

IFC NE,sFP=s,1
SuB N

VFD 30/T

IFC EQ,sDls5%,1
Z SET o -

IFC NE,sD1ls%,1
z SET 1

IFC NE,sD355,4
71 SET D1
Ze SET De
Z3 SET D3

IFER 0,1

IFC NE,sD2ss .4
21 SET o
z2 SET DL
Z3 SET De

IFEQR 0.1

IFC NE,sDlss .4

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ins PAGE NO.__L7-2
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3pcO8 MACHINE SERIES___B4/b5/bB00
Z1 SET 0
Ze SET 0
Z3 SET D1
IFE@ O,1
21 SET g
2 SET g
Z3 SET 1
ENDIF
VFD b/Z+048/2%L,18/7Z2,18/23
ENDM

2.0.3 The NAMELIST statement is syntax checked and processed at
the same time from the E-list form. This process causes
BSS storage to be defined for previously undefined vari-
ables: and macro calls to be formedr which will reference
the NAME macro. The BSS storage code is preserved in
NAMELST, and is written to (OMPS when the reserved area
in NAMELST is full, and when a NAMELIST group has been
completely processed. The macro reference code is pre-
served in temporary storager beginning at DOLAST+L. This
information is written onto the COMPS file after a NAMELIST
group has been completely processed: and any BSS storage
code has been written onto the COMPS file. A NAMELIST
group set of information ends with a zero word.

When NAMELST exitss the following will have been
accompl ished:

L. Each NAMELIST group name will have been entered into
the symbol table with mode set to NAMELIST.

2. Each group variable that was not in the symbol table
will have been entered and will have its mode set
according to natural typing. '

3. Each group variable that was not dimensioneds, equiva-
lencedr or in COMMON, will cause BSS storage to be
issuedr the number of words of storage allocated is
added to DATAA: and the common and defined bits are
set in the symbol table.

4. For each NAMELISngroup the following information will
have been generated by the NAME macro for the COMPS
file. ,

Word 0: The NAMELIST name in display code: zero-filled:
left-justified in the lower 42 bits.

CA 138-1' REV 1%-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS . PAGE NO.__27-3
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PC08 MACHINE SERIES _BH/b5/bb00

Word 3K-2: the name of the kth associated variabler
in display code: zero-filled:s left-justified
in the lower 42 bits.

Word 3K-1: 1 in bits 59-54 {indicates FUWAL is the
address of a variablers first memory
locationlt.

Zero {n bits 53-4é&
FUAL in bits 4?-30

Ty in bits 29-0 {all right-justified within
the allocated bits?}

FuA, is the address of the variable’s first
memory location.

Ti< is the type of the variable: l=logical
2=integer
Y=preal
S=double
b=complex

Word 3K: Zero in 59-54 if variable not dimensioneds
1 if dimensioned.

M2, in 53-3b
Ml in 35-18

LNG in 1L7-0

M2, is: the first dimension of a three-
dimensional array. 0 otherwise.

MLy is: the product of the first two
dimensions of a three-dimensional
array: the first dimension of a
two-dimensional array: 0 otherwise-

LNG is: the number of elements inot neces-
sarily the number of computer
words} of an array. 1 for a
variable.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS NS : PAGE NO.___L7+H
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCOs8 MACHINE SERIES bY4/L5/6L0O0

Word 3N+L: O {where N is the number of variables
associated with the NAMELIST namel.
Formatting NAMELIST information in this
manner is to facilitate the implementation
of the RUN 2.0 and 2.3 NAMELIST I/0
routines.

3.0 Diagnostics

3.1 Fatal to Compilation
None

3.2 Fatal to Execution

3.2.1 THERE IS INSUFFICIENT ROOM TO PROCESS THIS STATEMENT.
Issued if there does not appear to be enough room to
process the statement and convert it to COMPASS line
images.

3.2.2 THERE IS AN ENTRY IN THIS NAMELIST STATEMENT OTHER THAN A
SLASH, A COMMA, OR A VARIABLE.

3.2.3 ENTRY FOLLOWING A SLASH IS EITHER NOT A VARIABLE OR A
VARIABLE THAT HAS BEEN PREVIOUSLY USED.

3.2-4 NAMELIST GROUP NAME IS NOT SURROUNDED BY SLASHES.

3.2.5 1IN ONE OF THE NAMELIST GROUPS IN THIS STATEMENT, THERE IS
AN IMPROPER ENTRY IN PLACE OF A VARIABLE.

3.2.6 9Variable name® - NAME OF A VARIABLE THAT HAS A MODE OTHER
THAN LOGICAL, INTEGER, REAL, DOUBLE, OR COMPLEX.

3.2-7 9YVariable name® - THIS VARIABLE HAS VARIABLE DIMENSIONS.
THIS IS NOT ALLOWED IN CONJUNCTION WITH NAMELIST.

3.3 Informative
None
3.4 Non-USASI

All NAMELIST statements receive the NON-USASI diagnhostic.
YTHIS STATEMENT IS NON-USASI.®

CA 1381 REV 10-g7

CONTROL DATA CORPORATION ¢« COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS s PAGE NO.___17?.5
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.___3PCO8 MACHINE SERIES __ b4/b65/5L00

Environment

The following cells are referenced and expected to be set
accordingly:*

SELIST - address of the next entry in E-LIST.

ELAST - address of the end of E-LIST.

[

0

DOLAST - address of the end of the D0 tables.
DIM1l - address of the start of the dimension list.
SYM1 - start of the symbol table.

The cell SUBREF {RA+1LB} is set non-zero if NAMELIST
issued a SUB macro reference.

Structure. The processing of NAMELIST statements is
accomplished in one pass for each NAMELIST group. A
NAMELIST group must begin with a series of three entries:
a slashs followed by a variable, followed by a slash.

A NAMELIST variable list must then follow: where the
variables are separated by commas.

The variables associated with the NAMELIST name are
entered into the symbol table if not already there. If
previously defined the variable is checked for acceptable
mode. If not: the variable is typed:s using natural typingr
BSS storage is issued: and the common and defined bits are
set for the symbol table entry. The common bit is set to
inform ENDPROC not to issue storager since the NAMELIST
processor has already issued storage.

If the variable is equivalenced, the base and bias are
formed for use in the macro reference. If the variable
is a formal parameter, this information is saved for the
macro reference.

The macro reference is formed in the following manner:

NAME N,T.BASE,BIAS,FP,D1,D2,D3

1]

where N variable name

T typer i.e. l=logicals 2=integer, Y=real, 5=

double, b=complex

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INS . PAGE NO.__17-b
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PC0a MACHINE SERIES _b4/b5/6b00
BASE = base name of equivalence class
BIAS = pointers relative to base, for this
equivalence class element
FP = 1 implies this variable is a formal parameter
D1 = dimension 1 of an array
D2 = dimension 1 times dimension 2 of an array
D3 = the number of elements of a 3 dimension array

Only the necessary parameters are passeds i.e. for a
simple variable the macro reference would be:

NAME N.,T
For a one dimension array the macro reference would be:
NAME N¢TrreeDd

The structure of the NAMELIST group information passed to
the COMPS file would be as follows:

Any BSS storage allocation for this group

NAMELIST group name BSS O

A

B

¢ VFD 14/0.,42/0L °NAMELIST group name®
D All macro references for the group

E

DATA OB

L.O FORMATS

b1l The Followlng :nternal cells are used during NAMELIST
processing:
b«.l.1 PNEXT - next position available in working storage.
b-.l.2 DNEXT - next position available in NAMELIST for BSS
storage-.
E.L.3 VARNAME - contains variable name - eight characters.,

right adjustedr with blank fill.

CA 138-1 REV 120-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.

b.L.4

E-1.5

(I
»
=
»
o

ba1.7
bal.8

DIVISION
s PAGE NO.____17.7
FORTRAN Extended Version 2.0 '
3PCOsa MACHINE SERIES_ b4/E65/6L00

MACROIN

DATASKEL

DATABSS

MACSKEL

AUXSTORE

flag used to determine whether the NAME macro
definition has been written onto the COMPS
file.

two word skeleton in which each BSS storage
issue is formed.

forty word area in which BSS storage issued is
temporarily accumulated for the COMPS file.

seven word area in which macro calls are built.

first available position in temporary storage -
this is where the macro calls begin.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMsS PAGE NO. 18.l
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4YPL1L MACHINE SERIES___b400/6500/6600

1.0

2.0

2.1

CA 1381 REV 10-67

GENERAL

PRINT process the I/0 type statements READ- WRITE. PRINTA
PUNCH- ENCODE- DECODE- BUFFER IN- BUFFER OUT- END FILE
BACKSPACE and REWIND. It calls the D0 processor to process

all implied DO loopsr and call ARITH to generate the addresses
for all variables in I/0 lists. The processor is located in
Phase 2 of the compiler.

Entry point names.

PRINT

This entry point is entered when a statement of the form
PRINT f or PRINT f, k is encountered.

READ

This entry point is entered when a statement of the form READ
fu} k or READ {u, f} k or READ {ur, f} is encountered.

PUNCH

This entry point is entered when a statement of the form
PUNCH f or PUNCH fy k is encountered

WRITE

This entry point is entered when a statement of the form
WRITE {u} or WRITE {us f} or WRITE {fu, f} k is encountered.

BUFIN

This entry point is entered when a statement of the form
BUFFER IN {u. p} {A. Bl is encountered.

BUFOUT

This enth& point is entered when a statement of the form
BUFFER out {ur p} {A. B} is encountered.

ENDFILE

This entry point is entered when an statement of the form
ENDFILE u is encountered.

REW

This entry point is entered when a statement of the form
REWIND u is encountered.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASs ___IMS , PAGENO.__ 18.2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO.___4Pb1b MACHINE SErIes_b400/6500/6600

2.9

2. 10

214

2.15
2-15-1

2.15.2

DEC

This entry point is entered when a statement of the form
DECODE {csy ns v} k is encountered.

ENC

This entry point is entered when a statement of the form
ENCODE {fcv ne v} k is'encountered.

BKSP ;

This entry point is entered when a statement of the form
Backspace u is encountered.

DOITX

This entry point is used by the D0 processor when returning
to the PRINT processor after being called to set up on
inplied DO loop. *

DOGOOFX

This entry point is used by the D0 processor when returning
to the PRINT processor after being called when an error
has occurred.

DONEX

This entry point is used by the D0 processor when returning
to the PRINT processor after being called to generate the
final coding for an implied DO loop.

EXTERNAL SYMBOLS

IXFN

This routine is called to generate the address for all
variables in I/0 lists. SELIST contains the variable that
the address is to be generated for. Upon return X2 contains
the ordinal of the indentifier in the SYMBOL table.

LABEL

This routine is called to enter labels into the SYMBOL
table.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins PAGE NO. 18.3
PRODUCT NAME FORTRAN Extended

2.15.3 WRWDS

This routine is called to transfer R-List into the
R-List buffer.

2.15.4 ERPRO

This routine is called to enter diagnostics into the error
table. ‘

2.15.5 DOCALL

This routine is called to inform the D0 processor that a
jump to an external procedure will be made.

2.15.6 DOIT
This routine is called when it is necessary to set up an
implied DO loop. The address of the equal sign for the
implied D4 being processed is contained in Bl.

2.15.7 DOGOOF
This routine is called when an error situation occurs.
The DO processor will close out any DO loops which may
be in effect.

2.15.18 DONE
This routine is called to generate the terminal code for
the implied DO loop. SELIST points to the DO control
variable.

c.15.9 STR
This routine is used send one word to the R-List buffer.

2.15.10 ASAER

This entry point is called whenever a non-USASI I/0
statement appears.

2.15.11 PHERETN

This entry point is called after a fatal error is diagnosed.
2.15.12 SYMBOL

This entry point is used to enter and find symbols in the

symbol table-.

CA 138! REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
PRODUCT NAME FORTRAM Extended
PRODUCT MODEL NO.___4Pblb MACHINE SERIES____bUN0/6500/pL00

2.15.13 DODEF
This routine is called whenever an integer variable
definition occurs.

3.0 Diagnostics produced

3.1 Fatal to compulation.’ None.

3.2 Fatal to execution

3e2.1 ILLEGAL SEQUENCE IN I/O0 LIST. The parameter associated
with this diagnostic indicates the element which caused
the processor to stop:processing the statement.

J.2.C UNIT NUMBER OR PARITY INDICATOR MUST BE AN INTEGER CONSTANT
OF VARIABLE.

J:-2:3 NUMBER OF CHARACTERS IN AN ENCODE/DECODE STATEMENT MUST
BE AN INTEGER CONSTANT OR VARIABLE.

J.2.4 FORMAT REFERENCE NUSTQBE AN INTEGER CONSTANT OR AN ARRAY
REFERENCE.

J.2.5 THE VALUE OF THE PARITY INDICATOR IN A BUFFER I/0 STATEMENT
MUST BE O OR 1.

3.3 INFORMATIVE. None.

3.4 Non-USAST
THIS FORM OF AN I/0 STATEMENT DOES NOT CONFORM TO USASI
SPECIFICATIONS

4.0 STRUCTURE

Y.l PROCOM
This routine is used to control the processing of both the
PRINT and PUNCH 'statement sincer except for the object
time routine being called, the processing required is
identical.

.2 FINIS

This routine is entered to set up the terminating call to
execution 1/0 routines for all I/0 lists.

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins PAGE NO.__18. 5
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPL1b MACHINE SERIES _b4/b5/bE00

4.3 GETORD

Enter with name in Xl. This routine calls SYMBOL to enter
the two entry points used for each I/0 routine, and sets
the EXT bit. It then generates a RJ {with error tracel to
the appropriate entry point.

4.y IOLIST

Performs a partial syntax check on all I/0 lists. UWhen a
left parenthesis is encountered {not including subscripted
references} a syntax check is made until the corresponding
right parenthesis is encountered. If no errors are found
when the zero level right parenthesis is encountered: a
call to DOIT is made to set up an implied DO loop.

4.5 IDENT

This routine is called by IOLIST when it {IOLIST} has deter-
mined there is a variable to process. In the case of

{ {A{K}l B{J}, K=1, lD}r J=1, 10}

five calls would be made to IDENT from IOLIST the E-list
pointer the five cases are pointing a Ay Br K¢ J. In the
case of K and Jsy IDENT will look ahead and determine the
next operator is an equal sign and call DONE to generate
the terminal DO loop code. IDENT determines whether the
identifier is a variables array element:, array name, and
the type- The address of the identifier is obtained by
making a call to IXFN. IDENT then denerates the appropri-
ate R list.

4.k PROUF
This routine determines the mode of the I/0 statement and
calls a routine {FMTNO} to process the format number if it
1S necessary.

4.7 PROU
Process unit. This routine is used for two functions.
{1} process unit number for all statements and {2} process-
ing the parity indicator for BUFFER IN/OUT statements.

4.8 TAPEN

If the unit number is constant: TAPEN is entered to gener-
ated R list code for SBZ TAPEN.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins PAGE NO._18.&
PRODUCT NAME _FORTRAN FExtended
PRODUCT MODEL NO. 4Pb1b MACHINE SERIESE4 /b5 /bR0D
4.9 TESETI
This routine is called when the macro TESET is referenced.
Its purpose is to generate a type III R-list entry followed
by a register stace. The parameter in the macro reference
is the SO field of the R-list entry.
4.0 REGCOMP

This routine is called when the macro REGCOM is referenced.
Its purpose is to generate R-list instructions to comple-
ment a specific {SB2-B2}. The parameter in the macro refer-
ence is the S field of the R-list entry.

DOCUMENT CLASS

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

PRODUCT NAME

. PRODUCT MODEL NO.

1.0

1.1

2.0
2.0.1

2‘0.2

2.0.3

3.0
3.1
3.2

3.2.1

3.3
3.4
3.4.1

4.0

4,0.1
4.0.2
4.0.3
4.0.4

4.1

DIVISION
IMS
P o 19.1
FORTRAN Extended AGE NO
4P616 MACHINE SERIES 64/65/6600
ASSIGN

General

Assign processes the ASSIGN statement, and is a part of
PHASE 2 of Pass 2.

ASSIGN

Processes the "ASSIGN label TO variable' statement.

ASSIGN is entered via a return jump, and exits through its
entry point.

The statement is Syntax checked. If correct, R-LIST entries
are made to accomplish the following:

SXi statement label's address
SAi variable - store the address

Diagnostics
No fatal to compilation diagnostics.
Fatal to Execution

THIS ASSIGN STATEMENT HAS IMPROPER FORMAT (ONLY ALLOWABLE
FORM IS ASSIGN LABEL TO VARIABLE).

No informative diagnostics
ASA
THE VARIABLE IN THIS AS$IGN STATEMENT IS NOT OF TYPE INTEGER.

The following cells are referenced and expected to be set
accordingly.

SELIST address of the §irst entry in ELIST,

NRLN value to use fo; the next Register number.

DIML contains first word address of the dimension table.
CLABEL contains the current statement label

The following routines are called:

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._19.2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES__64/65/6600

4,1.1 WRWDS used to transfer words to the R-LIST file.

4.1.2 SYMBOL wused to find/or enter entries into the symbol table.

4,1.3 DOLABA used to enter the label into the symbol table and get its
ordinal,

4.1.4 ERPRO : used to issue fatal to execution diagnostics.

4.1,5 ASAER used to issue non-USASI diagnostics.

5.0 STRUCTURE The processing is straight forward.

5.1.1 The current label is saved and DOLABA is called, if the E-LIST
entry is a constant, to enter the label in the symbol table and
get its ordinal.

5.1.2 The statement is then checked for syntatical errors.

5.1.3 The instructions for setting a register to the address of the
label are formed and saved.

5.1.4 The portion of the variable is then checked to see that a variable
is there and SYMBOL is cailed to enter it in the symbol table.

5.1.5 If it is equivalenced, that is handled at this time, by referencing
the base plus a bias (if any). »

5.1.6 The store instruction is then formed and WRWDS is called to place
these entries in RLIST,

5.1.7 The non-USASI diagnostic is issued if the variable is not of type

integer.
6.0 Formats - no flags are used.
6.1 FIRST and SECOND contain the packed op code for the set and store

instructions.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS, PAGE NO. 19.3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINF SERIES__ 64/65/6600

7.0 Modification

7.1 All cells referenced are set by EQU's.
8.0 Method - straight forward.

9.0 No cautions to modifier.

CA 1381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS NS PAGE NO.__20-1
PRODUCT NAME FORTRAN Fxtended Version 2.0
PRODUCT MODEL NO. 3PC08 ___ MACHINE SERIES b4/b5/bk00

2.1.1

2.1.2

£.1.3

3.2.c

3.2.3

General

ENTRY is in Phase 2 of Pass 1 and performs the following
operations.

Processes the ENTRY statement.

Places the entry macro ENTR. in the COMPASS file if it
is not already there.

Places the reference to the entry macrc in the R-list
file.

ENTRY has one entry point

ENTRY

ENTRY processes the ENTRY statement.

ENTRY is entered with a return jump and exits through
its entry point. It processes one entry statement.

An Yentry® entry {0(=55} is placed in the R-list by
calling STR. If the entry macro has not yet been
placed in the COMPASS file, it is via WRWDS.
Diagnostics Produced

No fatal to compilation diagnostics are produced.

Fatal to Execution

ENTRY STATEMENT IS NOT ALLOWED TO APPEAR IN A PROGRAM,
ONLY IN A SUBROUTINE OR FUNCTION.

IMPROPER FORM OF ENTRY STATEMENT. ONLY ALLOWABLE FORM
IS {ENTRY NAMEZX.

ENTRY POINT NAMES MUST BE UNI@UEF— THIS ONE HAS BEEN
PREVIOUSLY USED IN THIS SUBPROGRAM-.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ins _ PAGE NO. e0.c
PRODUCT NAME FORTRAN Extended Version 2.0

J-2.4 STATEMENT NUMBER IS NOT ALLOWED ON AN ENTRY STATEMENT.

3.4 No informative diagnostics.

3.5 USASI diagnostics

3.5.1 The following diagnostic is always given: THE ENTRY
STATEMENT IS A NON-USASI STATEMENT.

4.0 The following cells are used and expected to be set
accordingly.

4.1.1 SELIST Address of next entry in ELIST

Y.1L.2 ELAST Address of last entry in ELIST

4.1.3 CLABEL Label of the current statement

4.1.4 PGM Program/subprogram flag word

4.2 The following routines are called.

4.2.1 WRWDS To transfer words to the compass file

4.2.2 STR To transfer one word to the R-list file

4.2.3 DOENT To inform DO of an entry statement

4.2.4 SYMBOL To handle the symbol table

4.2.5 ERPRO To handle any fatal to execution errors detected
in the statement

Y.2.b ASAER To give the non-USASI diagnostic

4.2.7 SCHBET To determine if the ENTRY is the same as any
intrinsic or basic external name, and make
unique by suffixing a % if so.

5.0 The CLABEL and PGM words are checked to make sure the
ENTRY statement does not have a label and that it is not
appearing in a program.

5.1 If this is the first ENTRY statements, one of the following
ENTRY macros will be transferred via WRWDS to the COMPASS
file.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Inms PAGE NO. 20.3
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PC08 v MACHINE SERIES_ b4/b65/6600

5.1.1 Macro for a subprogram with no arguments

ENTR. MACRO NAME
LOCAL T
EQR T

NAME BSS 1
ENTRY NAME
SAL NAME
BXb XL
SAEL ENTRY

T BSS O

ENDM

5.1.2 Macro for a subprogram with arguments {includes more
than a macrol

USE ENTRY.
FTNNOP. DATA 4L0004:50004600045000B
USE DATA.
NOPS. DATA 4t0004L000450004L000B
ENTR. MACRO NAME
LOCAL Xy Z+ T
EQR T
NAME BSS 1
ENTRY NAME
SA2 X
BXk X2
SAE FTNNOP.
EQR ENTRY.+1
X EQR Z
z SAL NOPS.
SA2 NAME
BXE X1
LX? X2
SAE FTNNOP.
. SA? ENTRY.
T BSS O
ENDM

5.2 The statement is then checked further for proper format.

5.3 The entry name is entered into the symbol table by calling
SYMBOL: if it was there already: a diagnostic is given.

5.4 The mode of the name is set to ENTRY statement {12B} and
the ENT bit {53} is set. '

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins - PAGE NO._20-4
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. ___3PCO8 MACHINE SERIES __b4/b5/bb00

CA t38-1 REV

10

c-67

An entry reference {0(=55B} is placed in the R-list file
by calling STR.

The non-ASA diagnostic is given.

For Version 2, if the larger macro is to be referenced:

one word each is added to the DATAA count and the ENTRYA

count to account for the no-ops created.

FORMATS:

ENTRYF - initially zeror set non-zero when the entry
macro is transferred to the (OMPASS file.

Modification:

All diagnostic numbers are set by EQUfs, as are all low
core cells referenced.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 21.1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES__64/65/6600
60 To
1.0 General
1.1 The GO TO processor processes all GO TO-type transfer statements

2,2

2.2.1

2,2,2

2,2,3

CA 138-1 REV

10-

except unconditional GO TO's following logical IF'S and generates
appropriate R-list code, It is called by PH2CTL and it will call
GTARTH, DOLABR, WRWDS and STR for R-list output.

Usages

Entry Point Name: GOTC

GOTO processes the GO TO statements.

GOTO is entered via a return jump, If the statement is in correct
form, the processor exits through its entry point after the state-
ment has been processed,

GOTO is to produce the following code:

Unconditional GO TO

EQ "LABEL"

Assigned GO TO

R, <—Variable

1
B, = R
JP B, (81)

Two branch transfer

a) If neither branches are the same as next statement
R <— Variable
Ry =Ry -2
NG Ry, 1st branch
PL Rys 2nd branch

b) If 1st branch is same as next statement
R.l <—Yariable

R2 = R1 -2

67

CONTROL DATA CORPORATION

o COMPUTER EQUIPMENT GROUP
DIVISION

DOCUMENT CLASS IMS

PAGE NO. 2.2

PRODUCT NAME FORTRAN Extended

PRODUCT MODEL NO._4P616

MACHINE SERIES__64/65/6600

2,24 Three branch transfer

a) No branches same as next branch
R1 < --Variable
Ry R
NG R2, 1st branch
ZR Rys 2nd branch
LT BO, Ry, 3rd branch

b) If either the second or third branches are the same as
the next statement, the appropriate test jump will be
deleted.

c) If the lst branch is the same, it will be deleted on 6400's
but not on 6600's,

2.,2.5 More than 3 branches

R1 ¢~-- Variable
R, = R, - CONSTANT,
PL RZ’ LAST BRANCH
Bl = R1 - CONSTANTZ
LT Bl, BO, FIRST BRANCH
JP GLn., Bl

GLn. BSS. 0
EQ 2nd BRANCH
EQ 3rd BRANCH
EQ NEXT TO LAST BRANCH

CONSTANT (1) is equal to the number of branches minus the number
of times the last branch appeared before a different branch was

encountered plus 1,

CONSTANT (2) the number of times the first branch appeared before
a different branch was encountered plus 1.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS S , ’ PAGE NO. Zh.3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES —64/65/6600

EXAMPLE: ‘
coTo (1, 1, 1, 1;' 2, 3, &y 5, 5, 5, 5) I
would compile into
Ry <1
R, = R; - 108
PL Ry, &5
By = Ry -4
GE BO, BL .1
JP GLA4., Bl
GLA4.BSS O
EQ .2
- EQ o3
EQ ok
3.0 Diagnostics
3.1 No fatal to compilation diégnostics are produced.
3.2 Fatal to Execution
3.2.1 EITHER THE EXPECTED LIST OF TRANSFER LABELS IS NON-EXISTENT, EMPTY,
OR NOT ENCLOSED IN PARENTHESES.
3.2,2 THIS IS NOT A RECOGNIZABLE FORM OF THE GO TO STATEMENT.
3.2.3 THERE IS A NON-NUMERIC ENTRY IN THIS LIST OF TRANSFER LABELS WHEN

ONE IS REQUIRED,

3.2.4 IN THIS GO TO WHICH WAS ASSUMED TO BE AN UNCONDITIONAL GO, THERE
IS AN ENTRY FOLLOWING THE STATEMENT LABEL.

3.3 Informative Diagnostics

3.3.1 THERE IS AN ENTRY FOLLOWING THE RIGHT PARENTHESIS OF THIS ASSIGNED
GO TO LIST. '

3.4 Non-USASI

3.4.1 THIS GO TO STATEMENT CONTAINS NON USASI USAGES

CONTROL DATA CORPORATION & COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 21.Yy
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES__64/65/6600
4.0 Environment:

4.0.1
4,0.2
4.0.3
4.0.4
4,0,5

4.0.6

4.0.8
4.1

4.1.1

4,1.2
4,1.3
4.1.4
4.1.5
4.1.6

4.1.7

5.0

Sll

The following cells are expected to be properly set.
SELIST Address of next entry in E-List.

NLABEL Label, if any, on the next statement to be processed,

NGLN Number to use for ;he next generated label,

ELAST Address of the end of statement.

NRLN Next R number available to use.

DOLAST Contains first word address of working storage during
PASS 1,

LELIST Non-zero of GOTO is object of logical IF,

GOTOCEL Set non-zero if GO TO is not object of a logical 1IF,
The following routines are called.

DOLABR Informs DO of a transfer label. The symbol table ordinal
for the label is returned in B..

1
SYMBOL Symbol table entry and search.
STR Enter one word in R List.
WRWDS Enter many words t6 a specified file,
ASAER Called to issue non USASI diagnostics.
ERPRO Called to issue fatal to execution diagnostics.

GTARTH Is called to handle the i field of the assigned or
computed TO TO. It handles expressions, mode changes
and equivalence chgnges. UPON return NRLN contains the
R plus 1 that contains the value of the index. (1f the
i field was not a simple integer variable an USASI diag-
nostic is issued).

STRUCTURE: The statement is examined to determine which type of
GO TO it is,

UNCONDITIONAL GO TO: The entry after the statement label is checked
and a diagnostic flag is set if it is not end of statement, An EQ
LABEL R-list entry is formed in X6 and STR is called to transfer it
to the RLIST file. GOTO then exits, giving a fatal error diagnostic,
if necessary.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIIPMENT GROUP

DIVISION

DOCUMENT CLASS _ S PAGE NO. - 1.5
PRODUCT NAME . FORTRAN Extended
PRODUCT MODEL NO.__4P616 MACHINE SERIES _ 64/65/6600

5.2 ASSIGNED GO TO i

5.2.1 The statement is checked for proper format and at the same time

DOLABR is informed of the transfer labels,
5.2.2 The variable is placed in a cell within GOTO that is preceeded by

an end of statement. SELIST is set to this cell and GTARTH is
called to compile instructions for the reading of the variable.
ThlS was done o the GO TO processor would not have to worry about

5.2.3 A reference is placed in the RLIST file, using STR, to the following
mACTYO.
GO MACRO1 RMACRO 0,1 | ASSIGNEDbGO TO
SA Il;o,Pl ‘ | ONE PARAMETRIC R
RS 11,0,B1. ' SET Il TO PARAMETRIC R
JIN 0,11,0,0,0 i1 IS TO BE Bi
ENDR INDEXED JUMP
GO TO then exits via its entry.
5.3 Computed GO TO
5.3.1 The list is scanned for correct syntax and to determine the

following:
5.3.1.1 The number of branches

5.3.1.2 The number of times the first branch was repeated before another branch
intervened,

5.3.1.3 The number of times the last branch was repeated before another branch
intervened. The computed GO TO is then broken down into two cases.

5.3.2 TWO or THREE branch GO TO's are special cased in that each branch is
compared to the label of the next statement and if they are the same
the test instruction is not compiled.

The only special case is under 2.2.4
5.3.3 GTARTH is called to compile instructions to bring the value of the

index to a register. The R+l that contains the value will be in
NRLN upon return,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.—
PRODUCT NAME FORTRAN Extended beb—
PRODUCT MODEL NO. 4p6l6 MACHINE SERIES . 64/65/6600
5.3.4 A macro reference to the following macro is placed in a temporary

RLIST buffer.
GOMACRO2 RMACRO 3,1,2 COMPUTED GO TO
THREE IH FIELDS ARE:
1. FIRST BRANCH
2. TLAST BRANCH
3. VALUE FOR GENERATED LABEL
. PARAMETRIC R IS R THAT HAS INDEX VALUE IN IT. (COMPUTED BY GTARTH)
TWO CONSTANTS ARE:

1. REPEAT COUNT FOR LAST BRANCH
2, REPEAT COUNT FOR FIRST BRANCH

STT I1,P1,K1 Ri = R(Pl)-Kl
JPOS 11,0,0,2 PL Ri, LAST BRANCH
STT 12,P1,K2,0 SBl=R<P1)-K2
RS - 12,0,B1.
JLT 12,0,0,1 GE BO,Bl, FIRST BRANCH
JIN 0,12,0,3 JP Bl4GLn.
IAB 0,3 GLn. BSS O
ENDR
5.3.5 Unconditional jumps are then placed in a temporary RLIST buffer

for all inside transfer labels.

If the next to the last non-repeated label is the same as the next
statement, no jump is compiled.

6.0 Formats of internal cells:
6.1 ASA - Set non-zero when non ASA usage detected.
6.2 VARIABLE -Contain first entry in expression of computed GO TO.
6.3 ANLBRNCH - Contain address of next to last brénch in computed GO TO.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. el.7
PRODUCT NAME FORTRAN Extended -
PRODUCT MODEL NO. 4P616 MACHINE SERIES __64/65/6600
64 INDEX Used to save 3 index registers.,
6.5 FBRANCH . . .
LERANCH First and last branch of computed GO TO list.
6.6 EOBL End and start of branch list after it is moved.
SOBL
6.7 SAVEA7 Used to save A7.
6.8 NLBRANCH Next to last branch in computed GO TO.
7.0 Modification All cells referenced as well as diagnostic

numbers are set with EQU's.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO.___ 22,1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES___64/65/6000
. ASFPRO !
1.0 General Information
1.1 ASFPRO consists of two independent subroutines ASFDEF and ASFREF.

ASFDEF processes all ASF definitions by saving the text in a table;
ASFREF processes all references to ASF's by expanding the ELIST by

inserting the ASF definition.

2.0 Usages

2,1 ASFDEF

2.1.1 Function of ASFDEF. Calllng ASFDEF will process the entire E-list.The

,}<45F‘5 /lff)
modified E-LIST is moved to ASFTAB and the CONLIST and DOL pointers
are incremented to compensate for the growth in ASFTAB.

2.1.2 ASFDEF is called with a return jump. It is only necessary that
SELIST (RA + 32B) point to the E-LIST entry containing the ASF
name. Return is to PH2RETN either directly or through ERPRO.

2.1.3 Processing flow description.

1. The parameter list is checked for proper format.

2. All references on tﬁe right of the equal sign to parameters are
replaced with parameter ordinal indicators. Any entires in
CONSTOR are moved to the ACF TAB area.

3. The ELIST after the equal sign is moved to the ASF [AB area.

4. The ASF text is linked to any previous ASF texts.

2.2 ASF REF

2.2.1 TFunction of ASFREF, ASF ref is called whenever a reference to an
ASF is encountered by ARITH. ASFRFTF replaces the reference to the

ASF with the ACT text vesulting in zn oxpanded T -LIST statement.

CA 128-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DOCUMENT CL ASS

PRODUCT NAME

DIVISION
IMS __ PAGE NO.__22.2
FORTRAN Extended

PRODUCT MODEL NO.

4P616 ‘ MACHINE SERIES ___64/65/6600

2.2.2 ASFREF is called by a return jump with SELIST pointing to the ASF

2.2.3

3.0

CA 138-1 REV 10-67

name within E~LIST.

Processing flow description.

The ASF name is checked to see if it has been properly defined.
The remainder of ELIST is moved next to DOL.

The parameters to the ASF are bracketed and checked for
correépondence in number with the definition.

The texnt is expanded and appended to ELIST.

The part of the statement following the ASF parameter list is

ELIST.

Diagnostics produced.

1.

7.

Dummy parameter is an arithmetic statement fundtion definition
occurred twice. k

Arithmetic statementtfunction has caused a table overflow while
being processed.

Arithmetic statement function has more dummy parameters than
allowed.

Arithmetic statement function has an improperly formed parameter
list of no = followipg the list.

A reference to this arithmetic statement function was not
followed by an open paranthesis.

Insufficient memory was available for the evaluation of this
arithmetic statement function reference, possibly a recursively
defined ASF.

A reference to an improperly specified arithmetic function has

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
™S
DOCUMENT CLASS PAGE NO.___ 22.3
PRODUCT MODEL NO. 4P616 ' MACHINE SERIES_64/65/6600

3

been encountered.

A reference to this arithmetic statement function has unbalanced
parenthesis within the parameter list.

The number of parameters used in referencing this arithmetic function

does not correspond to the number in its definition.

3.1 Fatal to compilation diagnostics.

3.2 Fatal to execution diagnostics.

3.3 Information diagnostics.

3.4 Non-ASA diagnostics.

4.0 Environment. The following is a list of the required characteristics of

variables external to ASFPRO.

1.

CA 138-1 REV 10-67

RA is zero.,
ASF1 = RA + 25B is the first available cell for ASFPRO tables.
DOL = RA + 30B is ASFLAST -+ 100.

DOLAST

= RA + 31B is ASFLAST -+ 100.
SELIST = RA + 32B contains machine address of ASF name.
ASFLAST = RA -~ 263 is next available cell for ASF tables,

initially equal to ASF1. CQﬁW_’,{._.)g beo ot ipr iy

SYMEND = RA -+ 13B is end of symbol table.

CONTROL DATA CORPORATION » COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS iMs. . PAGE NO.___ 23,1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lpe616 MACHINE SERIES _64/65/6600
PH2CTL
1.0 General Information

t.1

2.0

2.1

2.1.1

2.1.2

2.1.3

2,2

3.0

PH2CTL Phase 2 control serves as the interface routine between SCANNER
and the appropriate processors for all non-specification type statements.

Usages
Entry point names

PH2CTL This is the initial entry point to Phase 2. All Phase 2 core
initialization is done at this time (see paragraph 4.0).

PH2RETN. This is the entry point which can be used by any processor
when an error situation arises and it is desired to resume normal pro-
cessing. This routine checks to see if a statement label exists and if
so, jumps to DOLAB to do the post-processing label handling. An End-of-
Statement is written to the R-list file and processing then resumes for
the next statement.

STR (Store R-list) is a routine which can be used to store one word of
R-list in the R-1ist buffer. The R-list entry shouid be in X6. The
routine saves all B registers and X0 through X3.

Processing flow description

A return jump to SCANNER is made for each statement (one exception:

logical IFs). A check is made to determine if the statement is executable,
if not, a diagnostic is issued. |If the statement is labeled a call to
DOLABCN is made, unless the statement is NAMELIST, DATA or FORMAT. |If

the statement is unlabeled, it is determined if a path to the statement
exists, if not an informative diagnostic is issued. A cell in common called
STSORD (statement temporaries) is compared against STMAX (maximum number of
cells needed for statement temporaries) and STMAX is updated if STSORD
STMAX. NRLN (next R-list name, location 64) is compared to a maximum value
if NRLN exceeds the maximum value, NRLN is reset to two. A jump indexed by
the statement type is made to VTABL (statement vector table) and control is
given to the appropriate processor.

Upon return from the processor, DOLAB is called if a label exists. An
end-of-statement code is written to the R-list file and process begins
again with a return jump to SCANNER.

Diagnostic produced.

Number 109, Fatal to execution

DECLARATIVE STATEMENT OUT OF SEQUENCE

Number 178, Informative

CA 1381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
" DOCUMENT CLASS IMS. PAGE NO.__23.2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lpr616 MACHINE SERIES 64/65/6600

THERE IS NO PATH TO THIS STATEMENT
L.,0 Formats
L,1 Memory pointers and flags
L,1.1 DIMI is set up by DPCLOSE, fwa and length of auxiliary table.
ASF1 last word address +1 of the auxiliary table.
ASFLAST last word address of the ASF table, initially set to ASFI.
DOl first word address of DO table, initially ASFLAST+100,
DOLAST last word address of DO table, initially set to DOI.

GOTOCEL flag which indicates the last statement processed was a GO TO,
initially zero.

CONLAST contains last word address used for CONLIST, the program constants,
initially set to CONI.

FSTEX first executable flag, initially zero, set to non zero when the
first executable statement is processed,

NRLN next R-list name, initial value is 2.

STMAX number of cells needed for statement temporaries at execution time,
initial value is 1.

STSORD number of statement temporaries needed during the processing of
any one statement,

NGLN contains the value of the next generated label.
DOFLG Set non-zero when a DO loop is in effect,

LSFLAG last statement flag, value is 1 if last statement was a RETURN, -
GO TO or arithmetic IF, and is used by the END processor.

5.0 Remarks

The vector table is built using a macro which sets several flags depending
on what type of statement is being processed, the name of the macro is JMP,

JMP MACRO PROG, LSFLAG, FSTX
IFEQ LSFLAG, O, 1
SA6 B6
IFEQ LSFLAG, 1, 1

CA 138-1 REV 10-67

CONTROL DATA CORPORATION + COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS IMS. : PAGE NO.___23.3
PRODUCT NAME FORTRAN Extended _
PRODUCT MODEL NO. Lpé16 MACHINE SERIES__64/65/6600

SA7 B6

IFC EQ, *%FSTX*%, |

SA7 AO

RJ ; PROG

EQ PH2RETN

ENDM

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS

PRODUCT NAME

DIVISION

PAGE NO.___c4-1

IMS
FORTRAN Extended Version 2.0

PRODUCT MODEL NO. 3PCO8 MACHINE SERIES__ b4/b5/6L00

e2.0
c.1
2-1.1

EIL.E

EILIB

c.cC
2.2.1

c.2.C

c.2.3

CA 138-1 REV 10-67

]
'

DECPRO

Declarative Stdtement Processors

General Information

The declarative processing program has entry points

entered to process: PROGRAM, SUBROUTINE, FUNCTION,

BLOCK DATA, COMMON, DIMENSION, EQUIVALENCE, EXTERNAL
and Type statements, and resides in Overlay 1.00.

Usages
Entry point: DPROG.

DPROG syntax checks PROGRAM statements and produces
COMPASS code to set up buffer areas for file names
mentioned in the statement.

DPROG is entered by an unconditional jump to DPROG and
control is returned to PROGRTN in PHLCTL.

The program name is saved in the RA area and entered into
the symbol table. The file names are entered in the sym-
bol table. IDENT and ENTRY line images are sent to the
COMPASS file followed by the code to set up the file name
buffer areas.

Entry point: DPSUB.

DPSUB syntax checks SUBROUTINE statements and produces
COMPASS code for formal parameter initialization and
address substitution code.

DPSUB is entered by an unconditional jump to DPPSUB and
returns control to PHLSCAN in PHLCTL.

The number of formal parameters is saved in the RA area.
The subroutine name and formal parameter names are entered
into the symbol table. IDENT and ENTRY line images are
sent to the COMPASS fijle followed by formal parameter
initialization code if necessary-.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION.
DOCUMENT CLASS IMs ' PAGE NO.___EH.+2
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCO8 . MACHINE SERIES b4/E5/LL00

2.3 Entry point: DPFUN.

2.3.1 DPFUN syntax checks FUNCTION statements and produces
COMPASS code for formal parameter initialization.

2.3.2 DPFUN is entered by an unconditional jump to DPFUN and
returns control to PHISCAN in PHLCTL.

2.3.3 The number of formal parameters is saved in the RA area.
The function name and parameter names are entered into
the symbol table. The (OMPASS code produced is the same
as for a subroutine statement, followed by storage allo-
cation to hold the function result.

2.4 Entry point: DPBDA.

2.4.1 DPBDA syntax checks BLOCK DATA statements and produces the
IDENT COMPASS line image.

2.4.2 DPBDA is entered by an unconditicnal jump to DPBDA and
returns control to PHLSCAN in PHLCTL.

2.4.3 The block data name or an assumed name is entered into
the symbol table. The IDENT YName® line image is sent to
the COMPASS file.

2.5 Entry point: DPEXT

2.5.1 DPEXT syhtax checks EXTERNAL statements and makes and/or
modifies symbol table entrtes for the names that appear
in the statement.

2.5.2 DPEXT is entered by an‘unconditional jump to DPEXT and
returns control to PHLSCAN in PS1LCTL.

2.5.3 Each name appearing in the statement is entered into the
symbol table if not already there.

c-b Entry point: DPDIM.

2.b.1 DPDIM syntax checks DIMENSION statements: makes symbol
entries for the names that appeared if necessary and makes
entries in the auxiliary table to hold the dimensional
information.

2.b.2 DPDIM is entered by an unconditional jump to DPDIM and
returns control to PHLSCAN in PS1CTL.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION .:COMPUTEREQUWMENTGROUP

DIVISION
DOCUMENT CLASS Ins i PAGE NO.___c4-3
PRODUCT NAME FORTRAN Extended Version 2.0

2-b.3

2.7

c.7-1

2.7.2

2.7.3

2.8
c-8.1

2.9
E-qlll

2.9.¢

138-' REV 1.

€7

The dimensional information is held in a two word entry
in the auxiliary table area. Each new entry is |inked
to its successor by table address. The index of the
dimension list entry is placed in the symbol table entry
for the name. The index is increased by two preparing
for the next entry.

Entry point: DP(COM.

DPCOM syntax checks COMMON statements: makes symbol table
entries for the names that appeared if necessary and makes
entries in the auxiliary table area to hold the common
block information. '

DPCOM is entered by an unconditional jump to DPCOM and
returns control to PHLSCAN in PSLCTL.

The first appearance of a block name generates a two word
entry in the common list>: one to hold the block name and
linkage to the table area for the next block name: and one
to hold equivalencing information if necessary and linkage
to the table area for the next appearance of the same block
name. Each block member name generates a one word entry

to hold linkage to the next block member and member name
identification.

Entry point: DPTYP.

DPTYP syntax checks Type-statements and makes and/or
modifies symbol table entries for the names that appear.

DPTYP is entered by an unconditional jump to DPTYP and
returns control to PH1SCAN in PS1CTL.

Symbol table entries are made for the names if not already
made with the explicit type set. If dimensional infor-
mation appears this will generate the auxiliary table
entries as described ip 2.b.

Entry point: DPEQU.
DPEQU syntax checks EQUIVALENCE statements and generates
equivalence list entries in the auxiliary table for each

name that appears-.

DPEQU is entered by an unconditional jump to DPERU and
returns control to PHLSCAN in PS1LCTL.

CONTROL DATA CORPORATI!ION - COMPUTER EQUIPMENT GROUP

DIVISION
'DOCUMENT CLASS ins _ PAGE No.__ BH«l
PRODUCT NAME FORTRAN Extended Version 2.0

£.9.3 A two word entry is made in the equivalence list for each
name in an equivalence group. The first word holds
linkage to the next equivalence group and name identifi-
cation. The second hélds the subscripts if any that
appeared with the name.

2.0 Entry point: DPCLOSE:

2.10.1 DPCLOSE is called when the first executable statement is
seen: to process the common: dimension and equivalence
information: if any: that is being held in the auxiliary
table area-

2.10.2 DPCLOSE is entered by an unconditional jump and returns
control to PHeCTL.

2.10.3 EQUIV is called to process any equivalence list infor-
mation. If COMMON statements appeared: COMPASS instruc-
tions are generated to produce appropriate storage allo-
cation. Further storage allocation instructions are
generated for local arrays if necessary and the dimension
list is delinked and moved to consecutive storage locations.

2«11 Entry point: EQUIV.

2.1k.1 EQRUIV forms equivalenze classes and makes necessary ad-
Jjustments to the symbol table and the common |ist when
necessary -

2.11.2 EQUIV is entered by an unconditional jump to EQUIV with
EQ1{RA+55B} in XLl. <Control is returned to COM in DPCLOSE
unless a fatal to compilation error occurs, in which case
control is passed to FATALER.

2.11.3 The equivalence classes are established using YAn Improved
Equivalence Algorithm¥, Communications of the ACM, Volume
?/Number 5/May, 19k4. The table required by the algorithm
is formed in the auxiliary table area and uses two words
per class name. Details in section 5.11. Each equiva-
lence class will have a base member chosen as the name
that will be assigned the lowest address in memory for
the class. In the case where more than one member is
assigned the lowest location, the name that was mentioned
first in an EQUIVALENCE statement will be the base. Once
a base is established: all other class members will be
referred to as the bdse name plus the number of memory
locations {bias} between the base origin and the member
origin.

CONTROL DATA CORPORATION + COMPUTER EQUIPMENT GROUP

DIVISION
ImMs 2i.5
DOCUMENT CLASS : PAGE NO.
PRODUCT NAME FORTRAN Extended Version 2.U
PRODUCT MODEL NO. 3PcOa MACHINE SERIES__ BU4/b5/EE00

One member in each class can be declared as befng in
common storage. In this case the origin of the common

block will be the base of the class and all members of
the block will be considered as class members.

3.0 Diagnostics Produced

3.1 Fatal to Compilation

3.1.-1 AUXILIARY TABLE OVERFLOW. MORE MEMORY REQUIRED.

3.1.2 TABLE OVERFLOW DURING EQUIVALENCE PROCESSING. MORE
MEMORY REQUIRED.

3.2 Fatal to Execution

3.2.1 PROGRAM CARD.DELINETER MISSING.-

3.2.2 FILE NAME GREATER THAN b CHARACTERS.
3.2.3 FILE NAME PREVIOUSLY DEFINED.

3.2.4 EQUATED FILENAME NOT PREVIOUSLY DEFINED.

3.2.5 MORE THAN 50 FILES ON PROGRAM CARD OR b3 PARAMETERS ON
SUBROUTINE/FUNCTION CARD.

&L RETURNS LIST ERROR.
3.2.7 DOUBLY DEFINED FORMAL PARAMETER-.
& NO LEGAL LIST TERMINATOR.

9 TILLEGAL SEPARATOR BETWEEN VARIABLES.
3.2.10 VARIABLE HAS MORE THAN 3 SUBSCRIPTS.
3.2.11 VARIABLE WITH ILLEGAL SUBSCRIPT.

3.2.12 VARIABLE DIMENSION NOT FORMAL PARAMETER-.

3.2.13 COMMON VARIABLE WITH ADJUSTABLE SUBSCRIPT OR VARIABLE
FORMAL PARAMETER.

3.2.14 COMMON BLOCK NAME NOT ENCLOSED IN SLASHES.

3.2.15 COMMON VARIABLE IS FORMAL PARAMETER OR PREVIQUSLY DECLARED
S IN COMMON. ‘

CA 138-! REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INS L PAGE NO.___ 2H-b
PRODUCT NAME FORTRAN Extended Version 2.0

PRODUCT MODEL NO. 3PCO08 MACHINE SERIES___b4/b5/b600

3.2.16 ILLEGAL BLOCK NAME.
3.2-17 ILLEGAL SEPARATOR IN EXTERNAL STATEMENT.
3.2.18 ALL ELEMENTS IN AN ECS COMMON BLOCK MUST BE OF TYPE ECS.

3.2.19 A PREVIOUSLY MENTIONED ADJUSTABLE SUBSCRIPT IS NOT TYPE
INTEGER.

3.2.20 ALL ECS VARIABLES MUST APPEAR IN A ECS COMMON BLOCK.

3.2.21 FORMAL PARAMETERS OR ECS VARIABLES CANNOT APPEAR IN
EQUIVALENCE STATEMENTS.

J.2.22 SUBSCRIPTS NOT INTEGER CONSTANTS IN EQUIVALENCE STATEMENT-
EQUIVALENCING ABANDONED.

3.2.23 ONLY ONE SYMBOLIC NAME IN EQUIVALENCE GROUP.

3.2.24 SYNTAX ERROR IN EQUIVALENCE STATEMENT. GROUP IGNORED-
3.2.25 VARIABLE SUBSCRIPTED BUT NO DIMENSIONS. GROUP IGNORED-
3.2.26 COMMON-EQUIVALENCE ERROR. EQUIVALENCING ABANDONED-
3.2.27 COMMON BLOCK ORIGIN EXTENDED. EXTENSION NOT ALLOWED-.

3.2.28 XXXXXXX SUBSCRIPT VALUE OUT OF RANGE AS DETERMINED BY
DIMENSIONS. EQUIVALENCING ABANDONED.

3.2.29 XXXXXXX SYMBOL WAS INVOLVED IN CONTRADICTORY EQUIVALENCING-
EQUIVALENCING ABANDONED.

3.3 Informative and Non-USASI.

3.3.1 DOUBLY DIMENSIONED VARIABLE.

3.3.¢2 PREVIOUSLY TYPED VARIABLE.

3.3.3 ARRAY NAME NOT SUBSCRIPTED. FIRST ELEMENT WILL BE USED-.

4.0 Environment

The RA area is used to hold the beginning and end of the
E-list: namely, SELIST at RA+32B and ELAST at RA+14B.
The explicit type of a FUNCTION or Type-statement is
expected at ATYPE or RA+51B. The beginning address of
storage for the auxiliary table is initialized and main-
tained at AUXEND or RA+15B.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS_____ IMS ' i PAGE NO.__c1+7
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No. 3P €08 MACHINE SERIES_ B4/B5/G600

5.0 Structure

5.1 DPROG

5.1.1 The program name is packed in location PROGRAM {RA+5LBl,
left-adjusted to bit 53 and with a bias of zeror i-e.r in
VFD 12/2000B,48/8H%name®. The name is entered into the
symbol table at ordinal one with the type set to 11lB and
the ENT bit set to 1. As the file names are encountered,
the special character: declared in MICRO form in the
options file and named 9C%, is suffixed to the file name
and entered into the symbol tabler the U bit set to 1,
and the following macro is sent to the COMPS file:

FILE MACRO LN,NAME
ENTRY NAME#C# BSSZ 1
INSs SET NAME#C#
LG$ SET LN+1
VFD 1b/1,2b/12,18/IN%+17
VFD bD/INs+17,60/IN$+17
VFD LO/IN%+17?+LGS
BSSZ 12 ‘
BSS LGS
ENDM

Then the following image is sent to the COMPS file:
IDENT °Program Name®

The, for each new equivalenced file encounteredrs the
following macro call is formed and saved in a temporary
list for the COMPS file:

FILE Length/Name
After all the macro referencess

FILES. BSS OB
is sent to the COMPS files, and for each file

VFD‘HE/DL vfile name?, 18/9file name#(#
is also sent to the COMPS file.

The FILES. information is terminated by a DATA OB.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INS . PAGE NO.__CH:+8
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PC0a MACHINE SERIES __B4/b5/b600

For eéch of the equivalenced files, for example,
TAPEL=INPUT
the following lines are sent to the COMPS file:

VFD 42/0L TAPEL,L&8/INPUT#(#
TAPEL¥C# EQU INPUT#C#
ENTRY TAPEL#C#

After all file code is issued:

TRACE. VFD bO/?LYProgram Name®

USE CODE-

ENTRY °Program Namev

SAL FILES.

RJ QBNTRY

USE DATA. ,
is issued. and @BNTRY is placed in the symbol table and
marked as an external. DPROG expects SELIST {RA+32B} and
ELAST {RA+14B}, the poxnters to the start and end of the
E-list to be set.

Each file name is also defined in the symbol table: i.e.
the relocation base {RB} and reference address {RAZ}
relative to zero of the relocation base. Bits 12-18 of
symbol table word 2 hold 0 the RB for START., and bits
19-3Lt hold the RA.

For Version 2 the START. and CODE. lengths allocated in
DPROG are added to the STARTA and CODEA totals.

5.2 DPSUB

5.2.1 The number of formal parameters is packed with a bias of
1 into RA+5EB, i.e., VFD 12/2001B,48/°n®. The subroutine-
name is entered in the symbol table at ordinal one with
the type set to 11B and the U, FP, ASF, and ENT bits set
to L. The formal parameter names are entered in the
symbol table, implicitly typed. The FP bit is set to one
and the order of appearance: starting at zero, placed in
the RB bits of the word B entry. When a RETURNS list
appears: the RETURNS parameter names are entered in the
symbol table with a type of 7, and the U, FP, ASF, and
ENT bits are set to 1. The order of appearance of RETURNS
parameters, starting at O, is placed in bits 34 to 39 of
the word B entry. ,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS LMS : PAGE NO._24-9
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.__ 3PCO& MACHINE SERIES___ b4/b5/6600

If no parameters appearedr the following line images are
sent to the COMPASS file:

IDENT ®subroutine name’

USE START.
TRACE. VFD LO/?L 9Ysubroutine name® «
ENTRY. BSS 0B

ENTRY ®subroutine name¥
Ysubroutine name¥ BSS 1B

USE CODE.

USE DATA.

Formal parameters require the FORPAR and SUB macros to be
issued as well as code to save A0, as follows:

IDENT “subroutine name®

USE START.
TRACE. VFD y2/7L °subrqutxne name®, 18/Ysubroutine name®
TEMPAO. BSS 1
FORPAR MACRO X

USE X
X BSS 0B
ENDM
SuB MACRO FP,CON

.POS SET 59-%
- ORG SET k-5/59

USE FP
VFD 3/2,9/.P0S,30/CON,18/-0RG
USE L

ENTRY. BSS 0B
ENTRY Ysubroutine name®

ngbroutine name¥ BSS 1B

CA 38~ REV 10-67

SXb AO
SAD Al
SAGb TEMPAO.
USE VARDIM.

USE ENTRY -
USE CODE.
USE DATA.
USE DATA- .
USE HOL .

FORPAR “formal parameter®

DPSUB expects SELIST {RA+32B} and ELAST {RA+1l4B} to be set
to the start and end of E-list respectively.

For Version 2 the START. and DATA. lengths allocated in
DPSUB are added to STARTA and DATAA.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
TS n
DOCUMENT CLASS 1S _ PAGE NO.__ 2410
PRODUCT NAME FORTRAN Extendéed Version 2.0
PRODUCT MODEL NO. 3PCOa MACHINE SERIES___bY /6576600

5.3 DPFUN

5.3.1 The number of formal parameters is packed with a bias of
2 in location RA+5tB, i.e- VFD 12/2002B,48/9n%. The
function name is entered in the symbol table at ordinal
one with type set to 11B and the F, U, FP, ASF and ENT
bits set to 1. The function is implicitly typed unless
the explicit type appears in ATYPE {RA+51B}. The order
of appearance of the parameters. starting at 0, is placed
in the RB bits. Identical code is generated as for a
subroutine with parameters {isee 5.27T.

In additions the line image:

USE DATA.
VALUE. BSS 1B

for single word functions or:
VALUE. BSS 2B

for two word functions is issued. DPFUN expects SELIST
{RA+32B} and ELAST {RA+14B} to point to the E-list for
the statement. For Version 2 the START. length allocated
in DPFUN is added to STARTA.

5.4 DPBDA.

5.4.1 UWhen a name appears on the block data card {otherwise
BLKDAT. is used} it is entered in the symbol table at
ordinal one with type set to 11B and the ASF and ENT
bits set to 0. The following line image is sent to the
COMPASS file: *

IDENT ®block data name¥

DPBDA expects SELIST {RA+32B} and ELAST {RA+14B} to hold
the beginning and ending addresses of the E-list for the
statement.

5.5 DPEXT.
5.5.1 DPEXT expects the E-list pointers SELIST {RA+32B} and
ELAST {RA+14B} to be set. Each name appearing is entered

into the symbol table if not already there with the EXT
bit set to 1.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION . COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins _ PAGE No.__C4-11
PRODUCT NAME FORTRAN Extended Versjon 2.0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES __bY4/b5/b600

5.k DPDIM

5.b«1 DIML {RA+17B} holds the auxiliary table address of the
first {bits 30-47} and last {bits 0-17} dimension list
entries or will be zero if none. The dimensional infor-
mation is held in two words:

word 1 BASE BIAS NEXT
18 18 18
word 2 NS P c | 8 | a
A,B,C
3 3 18 18 18
where:

NEXT = auxiliary table address of next dimension |ist
entryr or zero for the last one. BASE, BIAS are defined
in Section 2.11, the EQUIVALENCE processor.

A = the first constant dimension or the symbol table

ordinal of the formal parameter that is the adjustable
dimension.

B = same as A for the second dimension.

£ = the total number of memory locations needed to hold
the constant array or possibly a constant third dimen-
sion if either A or B were adjustable or the symbol
table ordinal of the third dimension if adjustable.
PA/B,C set to 0 or 1 corresponding to the A, B, C
fields are constant or adjustable respectively.

NS = the number of subscripts, 1, 2, or 3. A symboll
table entry is made for the name if not already there.

The index into the dimension |ist starting at zero is
entered into the DIMP bits of the symbol table for the
dimensioned name. The D bit is set. The index is increased
by 2 and placed in DIMNORD which is an entry point in DPDINM.
DPDIM expects SELIST {RA+32B} and ELAST {RA+1Y4B} to be set
upon entry. ;

CA 1381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins i PAGE NO.__ 24.1¢2
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCOs MACHINE SERIES —_b4/b5/6600

5.7
5.7.1

CA 138-1 REV 10-67

DPCOM.

COM1 {RA+32B} holds the auxiliary table address of the
first {bits 30-47} and last ibits 0-17} common list
entries or will be zero for no COMMON statements. The
first appearance of a block name requires two words in
the common list.

word 1 BLOCK NAME NEXT
42 18

word 2 0 EBL N NTB
b 18 18 18

where:

LOCK NAME = left adjusted blank filled display code
of the block name.

NEXT = auxiliary table address of next block name or
zero for last.

0 = block name common list ordinal, starting with 1
with a maximum of 77 octal-.

~EBL = class range when the block is involved in
equivalencing or zero if not.

N = the number of names that appeared with this mention
of the block.

NTB = auxiliary table address of the same type entry
for the next mention of the block. Each subsequent
mention of the block name will require only the word

2 entry. Each block member requires one word and they
follow the word 2 entry sequentially.

0 DTO | ORDINAL NEXT

b 18 ' 18 18

DTO = distance from block origin to origin of this
namer set only if equivalencing involved.

CONTROL DATA CORPORATION . COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins PAGE NO.___ 2%.13
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PC08 MACHINE SERIES ___b4/b5/L500

ORDINAL = symbol table ordinal of block name.

NEXT = auxiliary table address of next common |ist
entry.

A symbol table entry is made for the name if not already
there. The C bit is set. Fopr blank COMMON the BC bit is
set. The block ordinal number is placed in the RB bits.

5.8 DPTYP.

5.8.1 A symbol table entry is made for the names that appear
unless already made. The type is set to the explicit type
found in ATYPE{RA+51B}. If the statement contains dimen-
sional information, dimension list entries are made as
described in 5.b. If the explicit type changes an array
from one word to two word elements, the total size field
{ct is doubled. SELIST and ELAST, the E-list pointers,
are expected to be set upon entry.

5.9 DPEQU.

5.9.1 EQL {RA+55B} is maintained to hold two pointers,s one the
location of the first equivalence group information in
the auxiliary table and another the last group. The first
is held in bits 30-47, the last in bits 0-17. The next
available location in the auxiliary table is maintained
in AUXEND {RA+15B}. The first word of each group
information holds:

bits 48-49, 200m where m is the number of names in the
equivalence group. For all names but the first in the
groupr the first word for the name only holds the bits
0-17 information.

The second word for al] group names holds:

bits 0-17, the first subscript if any.

bits 18-35, the second subscript if any.

bits 3b-53, the third subscript if any.

bits 5?-59, 0, 1, 2, or 3 the number of subscripts
that appeared with the name.

The EQUIVALENCE statement E-list is expected to start at
ISELIST} with the first left parenthesis and continue to
TELAST} with the end-of-statement. The syntax erprors
looked for are:

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS NS . PAGE NO.__ 24-1Y4
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3pcas MACHINE SERIES_ bY/bS/bE00

L. group must be enclecsed in parenthesis.
2. any misplaced information.

3. more than three subscripts.

4. subscripts not integer constants.

When a syntax error occurs the group is ignored.

SYMBOL is called and the name placed in the symbol table
if not already there. The name is also implicitly typed
if not already in the symbol table.

CONVERT is called to transform the E-list form of the
constant subscripts to binary form.

5.10 DPCLOSE.

5.10.3 If EQRL {RA+55B} is non-zero, EQUIV is called for
equivalence list processing.

If COMYL {RA+20B} is non-zeros the following COMPASS line
images are sent to the COMPASS file:

USE/®block name®/
Ymember name¥ BSS “member length?

The “member name® line is repeated for each name in the
block unless equivalencing is involved: in which case
only the

‘origin member name® BSS Yextended block length®
line is sent to the COMPASS file.

For ECS common blocks a USE/block name®/ is sent to the
COMPASS filesr followed by the ECS declared variable and/or
array names prefixed by a decimal point and BSS storage

in octals i.e.y . Yname” BSS ®name length BY. After
storage is allocateds a USE DATA is issued: followed by:

Yname® VFD L0/. Yname®
for each ECS declared name.
The dimension list is now moved to consecutive locations

starting at PH2CTL+RBUFF. BSS storage is issued for
arrays if no COMMON or EQUIVALENCING has already forced

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS s PAGE NO.__CH-15
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCOs MACHINE SERIES_ B4/b5/E600

storage to be allocated for the array. DIM1 is changed to
hold in the length of the dimension list in bits 30-59 and
PHECTL+RBUFF in bits 0-17.

5.10.2 For Version 2 the name of and storage allocated for each
common block is saved in ORGTAB in the following form:

17 g
I N | L]
59 18
where:
N = common block name left justified with blank fill.
L = common biock length: In binary-

After the last common block entry in ORGTAB: a word of
zeros is stored. The total length of DATA.. created
through BSS is preserved in location DATAAA.

5.1 EQUIV.

5.11.1 The table required by the algorithm {called GFTABLE} is
formed in the auxiliary table starting at the current
location of AUXEND {RA+15B}. Two words are needed for
each distinct name in a class. Two passes are required.
One to define the classes and the second to determine
the base and calculate the bias values.

During pass one the two words hold:

word one, 0-17, the address of the GFTABLE of the next
class member or zero for last class member.

18-35, H:, the distance needed below the root.
3L-53, H’, the distance needed above the root.

word two, 0-17, word B address of the symbol table
entry for the class name.

18-35, Ry the signed distance to the connective mode
of the tree.

3k-47?r Sy the GFTABLE ordinal of the connective mode
entry.

CA 138-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins i PAGE NO.__ 24-1b
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NoO.____3PC08 MACHINE SERIES._ b4/b5/6600

After the classes are established a pass is made using
the GFTABLE to assign relative addresses to the class
members. After this pass the changes to the two words
are-

word two, 18-35, aiE}, the length from zero needed
to hold the name.

In addition, for all root entriess word one changes are:
word ones 18-35, the range of the class-

3L-53, the GFTABLE address of the next class root
entry or zero for the last class.

Each class is now searched for the class base which is the
member with the largest value of a{E} or for the same value
of aiE} the first mentioned member. The bias for all non-
base members is now calculated { a{E} member } and placed

in word 2, 18-35.

When no common is involved, all that remains is to make
the base and bias entries in the DIMLIST entries for all
non-base members: and also to set the U and E bits in the
symbol table for non-base members. The range is stored
in bits 3b-53 of word 2 of the base DIMLIST entry. If the
base is a variabler the S bit is set in the symbol table
base entry. When common is involveds the class members are
searched to make sure no more than one member has been
declared in common. The distance between the origin of
the common block and the block members is calculated and
stored in bits 3b-53 of the COMLIST entry for the block
member. A DIMLIST entry is made for the variables in the
block. The total range of the class: max f{block range:
distance {common origin} + local class range}: is stored
in bits 3b-53 of the first word 2 of the COMLIST block
entry. The base and bias entries are made for the block
members, and the local equivalence class members have an
additional bias due to common added to their bias and
stored in DIMLIST. The DIMLIST areas effected are word

1 bits 18-35, the biasr and bits 3b-53, the symbol table
ordinal of the class base.

When a common block has already been biased: it is only
necessary to calculate the class range and base and bias
for the local class members. The process is repeated for
all equivalence classas: then control is returned to oM
in DPCLOSE.

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMs , PAGE NO._CH-17
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO._3PC048 MACHINE SERIES ___b4/b5/b500

If any diagnostic situations occur the class is skipped and
the next class is processed.

Fields modified for class base:

When no common storage is involved: the class range is
placed in word 1 of the DIMNLIST entry for the base. If
the base is a simple variable, the S bit in word B of
the symbol table is turned on. When common is involved
the class range is held in word 2 of the block informa-
tion in COMLIST.

Fields modified for non-base class members:

The symbol table ordinal of the class base and the
member bias are held in word 1 of the DINMLIST entry
for the class member. The E and U bits in word A of
the symbol table are turned on.

5.0 Formats
DIMLIST. Used to hold dimensional information as well as

base and bias information when the name is a non-base
member of an equivalence class. A two word entry is used-.

35 14
Word 1 ORDINAL BIAS NEXT
53 3b 17 0
ORDINAL = ordinal of base symbol table entry
BIAS = equivalence class member.
NEXT = address of next DIMLIST entryr or zero
for last DIMLIST entry.
Sb-5Y4 35 1&
Word 2 ' ND P C B A
59-57¢ "53 £l °1? 0
ND = 0, Lr 2y or 3: the number of dimensions.
P = 0, Ly 2y 3¢ 4¢ 5r br or 7+ corresponding

to Cy Br A. The bits are set when (s By
A are adjustable dimensions.

CA "38-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS _ PAGE NO.__24.18
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCOa MACHINE SERIES _b4/b65/6500

CiBsA = the symbol table ordinal of the dummy
arguments that are the adjustable dimen-
sions or: the binary form of the con-
stant for constant dimensions for Br Ar
C the total number of storage units needed
for the array.

DINMY Is at RA+1X7?B: and is zero for no dimensions
or:
47 30
FIRST LAST
17 0
FIRST address of first DIMLIST entry.

LAST address of last DIMLIST entry.

At the completion of Phase 1 the DIMLIST entries
are moved to consecutive locations and DIM1 =

N FIRST
y7 30 17 g
§
FIRST = address of DIMLIST.
N =

length of DIMLIST.

COMLIST. Used to hold COMMON block information as well as
the equivalence class range when a block number is also an
equivalence class member. The first mention of the block
requires two words:

g9 18
Word 1 BLOCK NEXT
‘ 17 0
BLOCK = left adjusteds blank filled, display code
of the block name.
NEXT = COMLIST address of word 1 of the next block

name or zero for last block name.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS mns PAGE NO. c4.14
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3pcoa MACHINE SERIES b4/65/LL00
59 5y 35 18
Word 2 0 EBL N NTB
583 3b 17 0
0 = the block name COMLIST ordinal: must be in

the range 1 through 77.

EBL

The equivalence class range when one of the
block members is also an equivalence class
member.

N = the number of names that appeared in the
COMMON statement with this mention of the
block name.

=

—

o
]

address in COMLIST of the word 2 entry for the
next mention of the same block name, or zero for
last mention.

Each block member requires one word.

35 18
DTO ORDINAL NEXT

53 3b 17 0

DTO = the distance to block ordinal, only set
when one block member is also an equiva-
lence class member.

ORDINAL symbol table ordinal of the block member.

NEXT COMLIST address of next block member entry

or zero for last member entry.

COML is at RA+20B and is zero for no COMMON blocks or:

XS 30
FIRST LAST
17]
FIRST = address of first word 1 block entry-
LAST = address of last word 1 block entry-.

CA t28-' REY 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins i PAGE NO.__ 24.20
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3pC08 MACHINE SERIES __ b4/b5/6L00

EQLIST. Used to hold equivalence group information for
processing as part of the termination of Phase 1. Each
name of each group requires two words.

59 ua 35 18
Word 1 200m | NEXT WORDB

200m = with m the number names in the groups this
appears only with the first name of the
group -

NEXT = EQLIST address of word 1 for the next group
and will be zero for the last group-

WORDB = symbol table address of word B of the group
name .

Word 2 : 35 18
NS S5 SE Sl
59-57 53 3k 17 0

NS = O, 1, 2r or 3, the number of subscripts that
appeared with the group name.

S, = the first subscript if any-
S5 = the second subscript if any.

83 = the third subscript if any-

GFTABLE. During equivalence processing two words for each
distinct class name are used to hold information necessary
to the processing. During class information time the two
words hold: '

Word 1 H H A
53 3b 35 18 17 0

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins , PAGE NO.__cH-21
PRODUCT NAME FORTRAN Extended Version 2.U
PRODUCT MODEL No.___ 3PC08 MACHINE series Bt /ba/bbUU
H = the distance needed beIow the class root.
H = the distance needed above the class root.

A = the GFTABLE address of word 1 of the next class
member or zero for last class member.

Word 2 S R B
53 3b 35 e 17 0

S = the GFTABLE ordinal of the connective mode
entry.

R = the signed distance to the connective mode.

= 2 it =

B = the address of word B of the symbol table entry
for the class name.

After the classes are established: relative addresses are
assigned to class memberss at which time word 2 holds:

Word 2 S aiE? B
53 3L 35 18 17 0

ai{E} = the length from zero needed to hold the name.

At this time all root entries word 1 hold:

Word 1 NEXTR RANGE B
{root onlyl} .
53 3Lk 35 18 17 0
NEXTR = GFTABLE address of word 1 entry for next
class root or zero for last class.
RANGE = the class ranger the number of storage

units needed to hold the class.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS NS PAGE NO.__E4 22

PRODUCT NAME

PRODUCT MODEL NO._ 3PC08

FORTRAN Extended Version 2.0
‘ MACHINE SERIES _B4/b5/b600

The new information is used to find the class base and then
the class member bias values which is held in word 2.

Word 2 S BIAS B
53 36 35 18 17 0

BIAS = the number of storage units added to the
{1y 1, 1} element of the base to reference
the {1r 1, 1} element of the non-base member.

Method

General

Basic list processing techniques are used to link the
several lists. The head of each list {COM1l, DIML, EQLY

is held in the RA area of the compiler and holds pointers

to the first and last entry of the list. Each entry of

the list holds a pointer to the next member of the list

and a 0 pointer signifies the last entry of the list. This
process allows each list to grow subject only to the total
working area available and not be bounded by any preassigned
fixed size per table.

Equivalencing algorithm. The algorithm used is due to
Bernard A. Galler and Michael J. Fisher: YAn Improved
Equivalence Algorithm?, Communications of the ACM,
Volume 7/Number 5/May: 19k4, pages 301-303 and YIn
Defense of the Equivalence Algorithm?, Communications
of the ACM, Volume 7?/Number 8/August, 19k4, page 50b.

CONTROL DATA CORPORATION + COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS JIMs. PAGE NO.___24,23
PRODUCTNAME _______ FORTRAN Extended
PRODUCT MODEL NO.________ _ “4P616 MACHINE SERIES__ 64/65/6600
GFTADLE. During equivaleuce pioccssing two words for each distinct

clase name are used to nold inlformation necessary to the processing
During class formation time the two words hold:

dord 1 e l ,.,.,l,_______.
o H _ H [A

53 36 35 13 17 C

jun}
Il

the distance nceded below the class root.

o
i

the distance needed above the class root.

,
i

A the GFTABLE addiess of word 1 of the neit class
member or zoro for last clases membe:,

Word 2

5

53 356 35 18 17 90
S = the GFTABLY ordinal of the connective mode entry.
R = the signed distance to the connective woce.

B = the address of word B of the symbol table entry
for the clase nane.

Kogr S,) < - -t i el T . ERT Wby - B v T v N e
After the classee are cetablished teolative addiesses are aseigued te clars

wrnhoiue at which time word 2 holde:

Yord 22— e ,,.[,-.-«

a (@) B
13 17 0

(43
(9]

53 36
a(f) = the length from zero nceded to hold the name.
At tihis time all root entries word 1 hold:

Word 1
(root only)

NEXIR . RANGE B

53 36 35 13 17 0

NEXTR = GI'TADLE address of word 1 entry for next class
root or zcro for last class.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS

IMS

PAGE NO. 24,24

PRODUCT NAME
PRODUCT MODEL NO. .

4P616

RANGLE = the clasg
needed to

The new information is used
yias

Loy values which is

FORTRAN Extended

_____ MACHINE SERIES _64/65/6600

range, the number of storage units
hold the class.

1

to find the clase base and thon the class

held in word 2.

]

_DIAS B

36

(93]
(V3]

DIAS = the number
~element of

of the non-

METHOD

compiler and holde

Fach entry of the

ih

and a 0 pointer signi

allows each list to grow rul

available and not be hounded

o
.
[l

Galler and Michael J.

Communications of the

301-303 and "In Defense of the Equivalence

of the ACM, Volume 7/

i)
o]
()
jo
S
e
0]
0
=
lj

I
5]
~r
N
(@]
o]
hee]
-
}.—J
o
H

pointers

Equivalencing algorithm.
Fisher,

ACH,

Number 3/ August, 1964,

35 13

of gtorage units added to the (%, 1,
the base to reference the (1, 1, 1)
bacc member

1)
clem

ink the
, BEQL) ie held in the RA

to the first and last

pointer to the next member of the list

list. This process

‘ect only to the total working a:

3

(3

ea

11 2 1

by any preassigned fined sizc per table.
The algorithm used is due to Bernard A,

“An Improved Equivalence Algorithm',
Volume 7/Wumber 5/ May, 19064; pages
Algorithm', Communications

page 506.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS {MS. PAGE NO. 25.1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. LpP616 MACHINE SERIES 64/65/6600
PHICTL
1.0 General

1.1

2.0

2.1

2.1.1

2.1.2

2.1.3

2,2

2.3

PHICTL is the controlling routine for all non-executable statements.
A1l Phase | memory pointers are initialized in this routine.

Usages

Entry Point names

PHICTL. This is the initial entry point to Phase | from the 0.0 overlay.
The memory pointers (see paragraph 4.0) are initialized and a call is made

to SCANNER to obtain the first source statement,

PHISCAN. This entry point is used by all Phase | processors to return
controi.

PROGRTN, This entry point is referenced by DPPROG to return to PHICT2
after processing the PROGRAM card.

Calling sequences. All calls to the processors are made with an EQ Jump,
except FORMAT which is entered via a return jump.

Processing Flow Description.
Control is entered through PHICTL at which time the necessary points (see

paragraph 4.0) are initialized. A call to SCANNER is made to obtain the
first source card. |If this card is a legitimate header card processing

" continues normally. [f the first card is an end~of-record, a call is made

3.0

4.0
4

4,2

to load COMPASS, if neither a dummy header card is manufactured. The source
interpretation of this card is:

PROGRAM START. (INPUT, OUTPUT)
DPROG is then called to process the card and normal ﬁrocessing resumes,
Diagnostics Produced
Error number 10 which is fatal to execution.
HEADER CARD NOT FIRST CARD
Environment

SYMEND location 13B contains the field length -1 (first word address of
symbol table)

SYMI location 12B, initially set to field length =1 (last word address
of symbol table)

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
IMS. 05 o
DOCUMENT CLASS PAGE NO. .
'PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. Lpe16 MACHINE SERIES64/65/6600
4.3 AUXEND location 158, initially set to PHICTL, contains the first word
address (fwa) of the auxiliary table.
4.4 SUBREF location 16B, initially set to zero.
L,5 DIMI location 17B, initially set to zero (pointer to fwa of the dimension
table)
k,6 EQI location 55B, initially set to zero (pointer to the fwa of the
equivalence table)
L.7 COMI location 20B, initially set to zero (pointer to the fwa of the
common table).
L8 FX location 40B, initially set to zero (contains the number of errors
encountered during a compilation).
L9 FC location 41B, initially set to zero (set to non-zero if any fatal
to compilation errors are encountered).
L.10 PROGRAM location 56B, initially set to zero.
5.0 Remarks

Two routines exist for generating 1/0 files within the compiler; one in
PSICTL and the other in PS2CTL, Each routine is tailored to the specific
type of 1/0 in each pass of the compiler. In PHICTL, a return jump to the
Pass 1 1/0 routine is stored into the appropriate locations in FTN.

These locations are PLUG!, and PLUG2 (see paragraph 2.1.12 in FTNSI0 task

description).

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ImMs PAGE NO.—_2h«]l .
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PLIlGL MACHINE SERIES L4/bS5/ERLOD

PASS 2 - COMPILING TECHNIQUE

The method used for code selection in the FORTRAN Extended compi-
ler can best be explained with an example. <C(onsider the following
FORTRAN source statements:

IF {ATAG .LT- BxB} CALL COMET
PSI={B+ACT {N}} NNE+RH0NSiGNA INT
K=N+K
RTAB IN}=XTAB {I}/RHO+PSI
4 TAB2 {2,2xK}=PSI+ATAN {RHO}
Statements within the bracket constitute a flow block or sequence.

Initiallys these statements are analyzed and converted to a regis-
ter free notation called R-list which would appear as:

RB‘%'ACT—I'RE Rlé"ﬁ'PSI REl = RED+R?
Ry = Ry *Rg R|g&—N . Ro = NR5 2
Ry | Ryc—>K ‘

Rig™ Ra"Rg R | a¢— RHO

IN{R;} indicates the normalization of the result of a floating add
or subtracti left arrows are loads and right arrows are stores.}

CA 1381 REY 12-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

DIVISION
1Ms PAGE NO.___Eb+C
FORTRAN Extended

The generated R-list is then scanned and common suboperations

are eleminated resulting in the squeezed R-list.

Rlz-B R10 = R&=R9
R2< N R11 = Rk + RIO
R3 & ACT-1R2 Rig = N{RII?}
R4 = Ri + R3 Rig -=>PSI

R5 = N{Ru} Rl4e K

Rk = R5™RS R15 = R2 + RI4

R&<—SIGMA-1,R2 R15 =K

R9 & RHO RIb& 1

R17¢« XTAB-1+R1b

R19 = R1?/R9
R2l = Rl2 + R19
Rz22 = NI{RZIZ

R22 = ATAB-1,RE

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMsS PAGENO._2ba3 . _
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPL1lb . MACHINE SERIES__b4/RLG/ELQ0O0

From the squeezed list a PERT-]like network:s the following depend-
ency treer is formed showing the precedence of operations.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS, PAGENO.___Phed -
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 A MACHINE SERIES__64/65/6600

The numbers within the circles at the nodes are keyed to the R-list
on page 2. The time in machine cycles required for each operation

is known. From this information, the latest time at which each
operation must begin in order to finish executing the network in the
minimum amount of time is calculated. This is done assuming no con-
flicts of any kind and parallel instruction issue as well as ex-
eqution. These times called priorities, are the numberé shown next
to each\circle; in a PERT sense they correspond to negative late
start times with the network being completed at time zero. Code is
generated beginning with the highest priority entry in the squeezed
R-list noting which function unit is used and for how long. For all
later instructions it is required that the preceding operaﬁions have
been issued and there are no function unit or register conflicts; for
this purpose, a picture of the pstatus of all registers and function
unité must be maintained. Using this approach, the code shown on the

next page produced resulting in the indicated overlap of operations,.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGENO._____Zb«8
PRODUCT NAME FORTRAN Extended
Functxon Unlts Load/Store
{ ‘] &

| { Fls| m MDLIIXX xfx} X x|
R! Instruction L [R AtH L2V A 2 34i5'g ? t
b, SAl I |
2 SA2 N
8! SA3 RHO 8
1?7 SA4 XTAB=I1+XI 1o
l]{ SAS B
31 SAl ACT-l+X2
18! FXO Xu/x3
4 FXY X5+XI]
7?0 SAl SIGMA-l+Xg2
5| NX5 B7, XY
9. FX4 XIwX3
13+ SAI K
b. FX3 X5wmX5
10 FX5 X3+Xu
4 ¢ IXb X2+XI

l NX? B7,X5

|
15| SAb K
19 FX1 X?+X0
7 NOP !

i

12, SA? PSI
20 NXb B? X!

"' NOP
2l SAE dTAB-l+X2

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS PAGE NO._27.1
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. _3EC€08 MACHINE SERIES __ 64/65/6600

PRE

1.0 General Information

PRE is the main controlling routine for PASS 2,
1.1 PRE Functions.
a. Call the macro expanders (MACROE, PRODB, PRODE, PROIXFN) .
b. Expand all R-iist into three-word form and define the sequence.

c. Put out inactive labels, formal parameter names, variable
dimension storage and the END line to COMPASS.

d. Call the optimizers (COPY, SQUEEZE, PURGF, BUILDDT, OPTA),
e. Accumulate APLIST entries and call APLISTP.

£, Issue BSS storage for statement, DO, and optimizing temporary

storage.,
2,0 The only entry point for PRE is PRE,
2,1 A jump to PRE causes COMPASS code generation for all R-list on
the file.

2,1,1 Calling Sequence:

JP PRE

a. APl

APLAST address of end of symbol table (SYMEND)
b, VARI]

VARLAST SYMEND - 100B
c. MACORG EQU to lowest significant macro number

in MACROX

d. FFLAG =0 for standard mode
e, PROGRAM contains transfer address, if main program

2.1.2 Processing Flow
After reading in a fixed number of words at a time from the R-

list file, each positive entry with a positive opcode is expanded
into 3-word form. The descriptor ST field of each is examined

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS PAGE NO.__ 27,2
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.___3PCO08 MACHINE SERIES__64/65/6600

3.1

3.2

to detect one of the following cases:

a., If ST=7, a macro ordinal switch determines which of the
macro expanders to call, A PRCDE call terminates the
sequence after the 60 end jump.

b, If ST=0, the entry is considered "normal R-list" and is
added to the sequence at PS2CTL by a call to ADDTOSQ.

c. If ST=1-6, the entry is dlrected to a jump table, where the
following are detected:

l. Sequence terminators are: DO end jump, entry state-
ment, active label, and unconditional jumps.

They cause generation of an end of sequence entry (100).
Normally, PROSEQ is called for code generation. liowever,
in a well-behaved DO, sequences are allowed to accumulate
before this call,

2., APLIST entries are added to the list by ADDTOAP,

3. The end of R-list entry triggers PASS 2 closing (CLOSE2),
If VARDIM is present, it is coded at this time,

Diagnostics Produced
Fatal to compilation
INSUFFICIENT MEMORY,"
THE STATEMENT AT (or AROUND) TIIS LINF IS TOO COMPLEX FOR
THIS COMPILER, PLFASE SIMPLIFV IT.
Fatal to execution: none.
Informative
MORE MEMORY WOULD I[iAVE RESULTED IN BETTER OPTIMIZATION,

Environment

MACWRDS - local to READL, Set by macro expanders to the
number of words placed in MACBUT,

FWAWORK = local to PRE, Must contain current lowest unused
work storage address,

LWAWORK = EQU VARLAST, Must contain current highest unused
work storage address.

CA 1381 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS . PAGE NO.__ 2743
PRODUCT NAME FORTRAN Ixtended Version 2.0

PRODUCT MODEL NO. __ 3PCO08 ' MACHINE SERIES __ 64/65/6600

WELLBE - Set by DO processor to 1 if é well~-behaved DO loop
is in process; else zero.

5.0 Structure: PRE Subroutines.
5.1 READRL

5.1.1 READRL reads in one word at a time from MACBUF, or, if empty,
from NOR1.

a. A negative opcode indicates a macro reference. The entire
reference. is read in and placed at MACREF/RLIST,

b., A positive opcode indicates a single entry. A2An additional
read is made to pick up the second word of all type III
entries. The descriptor is obtained from the local descript-
or table. The entry is passed back to PRE in the following

cells:
TWAlL = R-list descriptor. (This cell is set to -0 when
a macro reference is sensed).
TWA2 = First word of the entry.
TWA3 = Second word if type III; else +0.

5.2 ADDTOSQ

5,2.1 ADDTOSQ adds one R-list entry at a time to the accumulated
sequence: first word, second word, descriptor. If PRE sets
the sequence-terminating flag, an end of seguence and an end
of statement are generated after the word which was added.

5.3 PROSEQ

5.3.1 PROSEQ sets up the calls to COPY, SQUEEZE, PURGE and OPTA,
indicating exactly which portion of R-list to code, Normally,
the entire sequence is taken as a unit. If a sequence consists
of only one entry, PROSEQ calls POST directly, bypassing the
optimizers, When coding the VARDIM sequence, a call to SQZVARD
is inserted after SQUEEZE., This allows elimination of redundant
stores. - :

COPY, BUILDDT or OPTA may return with X6 set negative, indicating
failure to perform the usual functions. PROSEQ then cuts the
sequence in half and calls all routines as usual. If failure
repeats, the cutting down continues down to failure on the
smallest divisible portion, one statement (if VARDIM, the code
between two stores). This portion is attempted once again,
skipping the squeezing process. If this proves unsuccessful,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS , PAGE NO.__27.4
PRODUCT NAME FORTRAN Extended Version 2,0
PRODUCT MODEL NO._3PCO8 MACHINE SERIES___ 04/65/6600

processing terminates with a fatal diagnostic indicating either
memory limitations or statement complexity as the cause.

5.4 ADDTOAP

ADDTOAP adds one entry at a time to the list at AP1, omitting the
descriptor and setting HIGHORD equal to the highest ordinal so
far encountered, If the 100B locations allocated this area are
insufficient, VARDIM is pushed back 100B locations.

5.5 VARCLOS

5.5.1 PRE calls VARCLOS if there is VARDIM code present when the end
of R-list entry is detected., VARCLOS flips the VARDIM R-list
and sets the NOR1 buffer pointers to this area, READRL and
ADDTOSQ are called alternately to get this R-list into the
usual 3-word format at the usual sequence area. PROSFQ is then
called for code generation,

5.6 SQZVARD
5.6.1 SQVARD scans the descriptor list at FWADNEW to locate "live"

stores (KILL bit = 0), and compares RI fields to find redundancies,
The special symbol]VD is appended to the H field of all stores.

']VD "ordinal" BSS 1B
is put out to COMPASS for one store of a particular RI field
value,

JVD "ordinal" BSS 0B

is put out for all other stroes of that RI value. Setting the
descriptor KILL bit for these stores assures that they will be
purged from the R-list.

Each JVD label is defined relative to the CODL. relocation.
base and this definition is maintained in working storage.

5.7 NFPUNT

5.7.1 NFPUNT sets PUNTFLG=1, which will cause CLOSF2 to put out the
non-fatal memory diagnostic. (3.1)

5.7.2 PUNT sends out the fatal memory diagnostic (3.1) and the END
line, and exits to LDCOM,

5.7.3 OPTPUNT send out the fatal diagnostic resulting from statement

complexity (3.2)., The R-list is scanned for the nearest end of
statement. Tf it contains no card number, the scan continues

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS : PAGE NO.__27.5
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.__SPC08 ’ MACHINE SERIES 64/65/6600

for a substitute, If no number is found, the cell CARDCT contains
the last one detected by PRE. The octal card number is converted
to display code and incorporated into the message.

5.8 CLOSE2

5.8.,1 CLOSE2 takes care of PASS 2 cleanup. It calls APLISTP to process
the accumulated APLIST and sends out the informative memory
diagnostic, if applicable. The substitution list for each formal
parameter name is terminated by a DATA 0B,

The [AP and]VD definition tables are moved to just below the
GL table. The S8T., DO,,' and OT., BSS storage is issued for
statement, DO, and optimizing temporary storage.

The program or subprogram terminating END line is issued and if
the "R" option is selected CLOSE2 exits to LDPIl. Otherwise
the FTNX assembler is called. Upon return from the assembler
CLOSE2 exits to LDPHI1,

6.0 Formats

6.1 The R-list Descriptor -

59 58 57 56-53 52-49 48-47 46-42 41 40 39-30
' . ' ! t / ! ;

!

LD SR JP Fl | F2 + TY-1 FT K IG | USES'

29 28 1 4 8 7 6 5-3 2 1 0
| l ' ‘ ' | % f
C—/e.:o:‘ ‘jg{‘ ; o . " w ; A
Jp | RS |%%| DO . FE sz | ST KL SQ CM
\ | .

LD -~ set on long and short loads.

SR - se£ on long and short stores, including register store,
JP - set on all jumps

Fl1 - function unit used.

F2 - second possible function unit, = F1 if only one possible.
TY-1- type (I-IV),

FT - 6600 function time, = 10B for loads, 12B for stores,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS _ PAGE NO.___27.0
PRODUCT NAME FORTRAN Extended Version 2,0
PRODUCT MODEL NO.___3FPC08 MACHINE SERIES __64/65/6600
Unit Indicator
Branch 1
Broolean 2
Shift 3
Add (Integer) 4
Add (Floating) 5
Multiply #1 6
Multiply #2 7
Divide 10
Increment #1 11
Increment #2 12
K set if hardward instruction includes no k field.
IG used by DOPRE,
USES set by BUILDDT, used by OPT,
JK set if hardware instruction includes jk field.
RS subsequent register store bit. Used in OPT,
DO this area is used by DOPRE.
FE set for jumps and stores
SZ set for 30 bit instruction.
ST DOST = 1, APLIST = 2, unconditional jump = 3, label = 4,
end of R-list = 5, entry = 6.
KL initially = 0, set by SQUEEZE and SQZVARD when instruce-
ion killed.
SQ set for squeezable instructions.
CcM set if operands commutative.
6.2 Flag words

6.2.1 In PRE (for PROSEQ)
VARFLAG = 0, set ot 1 at VARDIM time,
6.2.2 In READRL

MACWRDS = 0, set to number or words placed in “ACBUF,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS , _ PAGE NO. 27.7
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3pC08 MACHINE SERIES 64/65/6600

6.2.,3 In ADDTOSQ
MACREF (EQU RLIST) LWA+l of parameter words,
6,2.,4 In ADDTOAP (for APLISTP)
APLAST -~ LWA, APLIST+1.
5 In PROSEQ
NORLIST - number of entries to process,
FWASEQ - FWA of R-list to process external to PROSEQ,
LASTR - first word of last single entry sequence encountered.
LASIBL - if LASTR = label, LASLBL = LASTR,
6,2,6 In SOZVARD (for PROSEQ)

LENGTH - number of cells in redundant VARDIM store code list
for COMPASS.

STORBUF - FWA of redundant store list.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__ 28,1
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES __©4/65/6600 !

2,0.3

CA 138-1 REV 10-67

APLISTE

APLISTE - Aplist Expander is a part of Pass 2,

Converts the APLIST to card images and places them into
the COMPASS file,

Outputs a SUB macro reference for any formal parameters
that were not referenced in the subprogram and maintains

the length of the relocation base associated with each
formal parameter, : '

APLISTP

APLISTP processes the accumulated APLIST and outputs it to
the COMPASS file.

APLISTP is entered by a return jump from CLOSE2 and exits
through its entry point. If there is sufficient room to
process the APLIST, at least as much working storage as
there is APLIST, it exits to PUNT,

The specified APLIST is rebuilt and grouped so that each
list is contiguous in memory and in the proper order in
which they should appear. These grouped lists are then
examined and any that can be eliminated and combined into
another are. The list is then converted to COMPASS line
images and placed in the COMPASS file,

No diagnostics are produced.

The following cells are referenced and are expected to
contain the indicated values,

APl, The address of the first entry in the APLIST.
APLAST. The address pof the last entry in the APLIST,
HIGHORD, The APLIST ordinal of the largest APLIST.
FWAWORK, First word address of the working storage.
SYMl., Start of the symbol table,

PGM. The program/subprogram indicator.

SUBREF, Flag that is non-zero if the ADDSUB code has been
put out,

S.NEC. Flag set if it is necessary to issue at least one
word of ST, storage.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS IMS PAGE NO._ 2842
PRODUCT NAME

FORTRAN Extended Version 2.0

PRODUCT MODEL NO. 3pCO8 MACHINE SERIES. 04/65/6600

4.9

4,10

%,]
[}

5.1.3

5.1.4

5.1.5

CA 138-1 REV 10-67

AQOSUBO 2ll referenced for the ADDSUB coding.
CMPSPR

CMPSPS

ADDSUBN

CLSPOST

WRWDS2 is called to transfer the converted APLIST to the
compass file.

The APLIST processing. is divided into three phases. The
format of the table built in the processing is under 6.0,

First, the jumbled APLIST is grouped so members of each
group appear in contiguous memory cells in the proper
order. This is done in the following manner.

The present APLIST number that is being grouped is set to
one.

If the present APLIST number is greater than the highest
APLIST number (HIGHORD) the grouping of the APLIST is
complete.

Otherwise, the entire APLIST as it appears is searched and
each entry that has the same number as the present APLIST
number is combined into one word and placed in the grouped
APLIST. The grouped lists start at FWAWORK and grow toward
APLAST,

After all entries in a group have been extracted from the
jumbled APLIST, an entry is made in the GAPL giving the
FWA and LWA of this group. This table starts at APl and
grows toward APLAST.

The present APLIST number is bumped by one and processing
continues at 5.1.2.

The grouped APLISTs are then examined to see if it is
possible to eliminate any of them., This is done by com-
paring two lists (a primary and a secondary) at a time.

If it is found that we hit the end of either list before
finding a non-equal entry, the group that we hit the end
of can be eliminated, In this case the following is done:

The GAPL entry for the group which is to be eliminated is
set to minus 1l.

In the last examined entry of the non-eliminated group a
GN (Group Number) is placed in the upper 12 bits, If it
has a GN already, it is used rather than generating a
new one.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS IMS PAGE NO. 28.3

PRODUCT NAME

FORTRAN Extended Version 2.0

PRODUCT MODEL NO. 3PCO8 : MACHINE SERIES. ©04/65/6600

5.2.3

5.2.4

5.3.3

5.3.3.1

5.3.3.2

CA 1281 REV 10-87

The APLIST number of the eliminated group is coumbined with
this GN and added to the OUT table (starts at end of GAPL -
grows towards FWAWORK). This table is used when translating
the APLIST to COMPASS line images.

If the eliminated group was considered the first or prime
group, its grouped APLIST is searched for any non-zero GN
fields. If any are found, the OUT table is searched for
each such GN and this GN in the OUT table is then replaced
by the new GN, When translating to COMPASS, a non-zero
entry in the GN field of an APLIST entry says, "Before this
entry is translated to a COMPASS line image, the APLIST num-
bers that are linked to this GN in the OUT table must be
placed in the temporary COMPASS file first."

This is continued until all APLIST groups have been
compared.

The list is then translated into COMPASS line images.

An entry is picked from the GAPL to find parameters for a
list that is to be translated to compass line images. Nega-
tive entries are ignored and a zero entry indicates the end
of the GAPL.

When a usable GAPL entry is found, the number of this list
is placed in the temporary COMPASS file as [APn. BSS 0
where n is the APLIST number.

The actual list is then output to the temporary COMPASS
file., At selected times during this transfer, the available
core is checked. If it is running short, the temporary
COMPASS lines that have been formed this far are transferred
and the pointers are reset., Each member of an APLIST is
transformed in the following manner:

If there is a non-zero GN field, the OUT table is searched.
Each entry in the OUT table that has this GN also contains
an APLIST number of an eliminated that should be output to
the temporary COMPASS file before this APLIST entry is
processed. '

Then the I field is examined. It can indicate either a
statement temporary, a variable, or it can be an indication
of non-standard return. Default goes to b.

a) Statement temporary, (I=1) the Hl field is converted to
display code, suffixed with a period and prefixed with
the letters ST and added to the temporary COMPASS file.

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.

5.4

CA 138-1 REV 10-67

b)

c)

DIVISION

IMS PAGE NO._28.4
FORTRAN Extended Version 2,0 .]

3pC08 MACHINE SERIES _64/65/6600

Non-standard returns, (I=7) places a VFD 60/0 in the
temporary COMPASS file. This is done so that substi-
tution of actual parameter addresses at execution time
terminates before any non-standard return addresses
are substituted.

symbols, (I=0) the symbol is read from the symbol
table., If it is a formal parameter, a flag is set
saying it is necessary to output a substitution macro
reference. The symbol along with any constant add in
(CAfield) is placed in the temporary COMPASS file
followed by a SUB macro reference if necessary.

Example:

Consider a subprogram as follows:

SUBROUTINE X (A,B,C)
DIMENSION A (50)

CALL T (A(40), B, C+1, 24)
CALL S (X11, Y, &)

CALL G (Y, A)

END

APLIST would be placed in the COMPASS file in the following
format:

[(aAP1,BSS O
VFD 60/A+47B
SUB A,47B
VFD 60/B
SUB B
VFD 60/ST1. (Statement Temporary)
VFD 60/CON,+nB

VFD 60/0

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

CA "38-1 REYV 12-67

DIVISION
'DOCUMENT CLASS IMS PAGE NO._28+3
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.__ 3PCO8 MACHINE SERIES _64/65/6600
[AP2, BSS 0
VFD 60/X11
[AP3, BSS 0
VFD 60/Y
VFD 60/A
SUB A
VFD 60/0
6.0 TABLE FORMATS
6.1 APLIST INPUT
APLAST
2 18
0 0 I H1 word 2 of
APLIST entry
12 18 14 16
AP1, 2nnn CA 0 NO} word 1 of
APLIST entry
nnn is the number of cells back from the present
location in the jumbled APLIST that contains the
next member of this APLIST (nnn=0 indicates the end
of a particular APLIST),
NO, the APLIST group that this entry belongs to.
CA, I, Hl1l, have the usual meaning.
6,2 GROUPED APLIST

12 18 12 18
FWAWORK GN ca I H1l

(GN initially zero)

APLAST

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS . PAGE NO._28.6
PRODUCT NAME FORTRAN Extended Version 2,0
PRODUCT MODEL NO. 3pCO8 MACHINE SERIES__04/65/6600
6.3 GAPL, Grouped APLIST parameters list.
APLAST
24 18 18
AP1, 0 FWA LWA

FWA first word address of this group.
LWA last word address of this group.

6.4 ouT Out Table
24 18 18
0 "oN GN
GAPL
AP1l.

GN is a group number
ON is the number (output number) of an APLIST group
that has been eliminated.

6.5 CMPSTR, contains the first word address of the temporary
COMPASS file,

6.6 APNAME, contains name of last symbol if it was a formal
parameter.

6.7 APCA, CA field of last symbol output if it was a formal

parameter,

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 29. L1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL No._4PElb MACHINE SERIES__b4/b5/bb00
1.0 General Information
1.1 Task Description

The second pass D0 processor examines D0 begin and D0 end
macro references: standard index function macro references
and all R-list instructions generated within the innermost
loop of a DO nest provided the loop is well behaved {see
section 8.2}. R-list instructions are generated to count
DO loops: reference standard index functions, and to mater-
ialize the control variable when necessary. The R-list is
generated by considering the optimum use of B registers and
all code in the D0 loop is altered to take advantage of B
register assignments where possible. ,

c.0 ENTRY POINTS
c.l PRODB

2.1.1 PRODB is referenced by PRE when a D0 begin R-list macro is
encountered in the R-list buffer. PRODB determines the mode
by examining FFLAG from the low memory communications region.
If the compiler is in the first level of optimization mode.
MACROE is called to generate loop counting R-list from the
DO begin pseudo R-list. If the compiler is in standard
mode, flags are set for,ensuing calls to PROIXFN and PRODE.

2.l.2 The calling sequence to PRODB is a return jump to PRODB.:
Flags and addresses needed are:

FFLAG - 0 if standard, non-zero if first level optim-
ization
MACREF {RLIST} - address of the D0 begin R-list macro
in memory
FUAWORK - address of the working buffer where R-list
items may be stored. Overflow is checked
against VARLAST.

2.2 PROIXFN

2.2.1 PROIXFN is referenced by PRE when pseudo R-list for a stan-
dard index function is encountered in the R-list buffer.
PROIXFN breaks the index function into a table of terms and
either preserves this table for PRODE by replacing part of
the pseudo R-list {standard} or generates the R-list to
compute and reference the standard index function {first
level optimizationkt.

CA 1381 REV 10-8&7

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins PAGE NO.__ 292 . _
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PL1b ; MACHINE SERIES b4 /b5 /LLO0

2.2.2 The-calling sequence to PROIXFN is a return jump to PROIXFN.
It is expected that the following variables in the commun-
ications region will be properly set: :

MACREF {RLIST} - address of the D0 begin pseudo R-list
macro memory

VARLAST - address of the next available call in the
VARDIN buffer
FUAWORK - address of the working buffer where R-list

items may be stored. Overflow is checked
against VARLAST.

2.3 PRODE

2.3.1 PRODE is referenced by PRE when a DO end R-list macro is

encountered in the R-list buffer. For an ili-behaved ioop
{no optimizing attempted} MACROE is called to generate the
instructions for the bottom of a DO loop given the DO end
R-list macro. If the compiler is in standard mode and the
well-behaved flag is sets then a series of ten scans or
phases of optimization is executed. These scans and their
functions are:

I. Scan all R-list between the D0 begin and the D0 end
R-1ist macros selecting candidates for available exe-
cution time B registers from among the load, store and
set R-list instructions and the pseudo R-list macros
for standard index functions. Scan I compiles candidate
information in two word entries and places them in the
A table {see section k.0 - FORMATS}. A table items are
l inked together on the basis of type: constant: address:
index function or variable increment {see section 8.0%F.

II.. Scan the A table computing the cost in instruction par-
cels if a B register is not assigned this candidate.
Assuming that the lowest number of parcels used genen-
ates the most efficient object coder B registers are
assigned to the candidates having the largest cost.
Scan II computes this cost for all constant, address and
increment entries in the A tabler marking each as to
type and as a candidate. In each index function chain
the member which appears in the largest number of
instruction sequences is given a cost and marked as a
candidates the differences between the candidate and
other group members are filed as candidates.

III. Scan the A table and assign the B registers by genera-
ting a B table of up to seven entries. Registers are

CA 138-1 REV 10-67

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

CA 138-1

REV

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

\

VI

10-67

IV'

VI.

IT.

II.

IX.

DIVISION
NS PAGE NO.__ C9+3 _
FORTRAN Extended
HPb1b MACHINE SERIES__ b4/b5/kL00

assigned by largest cost until the A table is exhausted
or the B table is full. If a B register is assigned

to a constant, the constant chain is searched and
wherever possible constants are marked to use the sum
or difference of presently assigned B registers. If

a B register is assigned to an address, the address
chain is scanned and the differences between the can-
didate and other addresses are filed as candidates.

Scan the B table and decide from register assignments
which one of |2 methods should be employed to count
the DO loop. The decision is based primarily upon the
contents of the B registers. {See section &.0 for
loop counting methods.}

Scan the B table and mark the cahdidates in A with the
register {or registers} that have been assigned to them.

Scan the B table for A assignments. If the A table
entry is a constant, address or difference type can-
didate set up the R-list instructions to load this
register at the top of the D0 loop.

Scan the A table for increments and index functions
generating the initializing R-]ist instructions to
pre-compute variable increments and to initialize and
increment index functions.

Generate the D0 loop counting code selected by Scan 1IV.
R-list instructions are generated to initialize and
increment the loop count and, if necessaryr the con-
trol variable. The |2 methods of counting are shown

in section 8.0.

Scan all R-list between the DO begin and D0 end R-list
macros creating R-list references to B registers when
applicable. The general R-list given by pass I will
be tailored to the B register assignments made by pre-

vious scans and will replace the general R-list passed
on by PRE. The pseudo R-list index function macros
will be expanded into the proper sequence of instrucg-

tions generated for double precision and complex arrays.

Separates top of the loop R-list from end of the loop
R-list and inserts the body of the loop. This is done
by moving the TOP-END buffer just below VARDIM, putting
the referencing R-list just below this. Top of the
loop instructions are then extracted and moved to the
beginning of the R-list buffer where the DO begin

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.29«H
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPL1E MACHINE SERIES _kU/b5/6600

macro wass The body of the loop follows:, then the end
of the loop instructions. YIgnore® op codes are
squeezed out and any remaining negative op codes cause
generation of normal R-list to replace them.

2.3.2 The calling sequence to PRODE is a return jump to PRODE.
Addresses needed are:

MACREF {R-list} - gddress of the D0 begin R-list macro

IS s T =12: V0 a1V]
LIy sy y

VARLAST - address of the next available cell in the
VARDIM buffer

FWAWORK - address of the working buffer where R-list
items may be stored. Overflow is checked

against VARLAST.

3.0 Diagnostics
3.1 None

4.0 Environment
4ol Not applicable
5.0 Structure

5.1 CANON

S5.1.1 CANON generates and orders the table of index function
terms LT} given the standard index function pseudo R-list
macro produced by ARITH in pass one of the compiler. Each
index function may have as many as five terms dependent
upon the combination of variables and constants used in the
subscript. CANON uses TERM and FILET.

5.2 TERM

5.2.1 TERM unpacks a single subscript. If the subscript contains
a variable, exit is made to the second word following the
return jump to TERM, otherwise the first.

5.3 FILET

5.3.1 FILET makes the actual entry of a term in T: combines terms
with like variables: orders the table in decreasing order
using all kO bits as key for the sort and leaves the address
of the next available location in the cell TN.

5-4 IXFN

CA 138-1 REV 10-867

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins PAGE NO._ 29«5
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PL1b MACHINE SERIES _k4/k5/LE00
S.4.] IXFN is called whenever a standard index function is

encountered in the R-list. IXFN then searches the integer
definitions following the D0 end macro to see if the sub-
script uses any of the variables that are redefined within
the loop. If so, and it includes the control variable,
the control variable is marked for materialization. If
notr and the index function has not appeared before, it

is filed as a candidate in the A table.

5.5 LINKA-NSRTA

5.5.1 LINKA files candidates for B registers in the A table, if
not already there and |inks them to other candidates of
the same type {address; constant, etc.}. If a candidate
has already been fileds then the sequence in which it
appears is noted for use in determining the value of hav-
ing a B register assigned.

5.5.2 NSRTA files a candidate in the A table without linking and
without checking for prior entry.

S.b REF

S5.b.1 Given the 0Cy CA, SO, RI, H2, RFs I, Hl fields, REF files
a three word type three R-list item in the R-list buffer

area of memory. This R-list item will generate a refer-
ence to an array element at object time. If the array is
double precision, a second type three R-list item will be

placed in the buffer.
5.7 MRKIXFN

5.7.1 MRKIXFN chains through all index function entries in the
A table by group: selecting the most popular member of
each group {appearance in most sequences} and marking that
member as a candidate for a B register and as a member of
a group. A MRKIXFN then calls FORMDIF.

5.8 FORMDIF

5.8.1 FORMDIF inspects address and index function groups and if
a difference is found between the inspected item and the
head of a group does the following:

1} If the difference is constant the difference is filed
in the constant chain.

2} If the difference is symbolic then an item is filed
containing both symbols and the constant difference
{if anylt.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS MS PAGE NO.—. P9.L.
PRODUCT NAME FORTRAN Fxtended
PRODUCT MODEL NO. UPLIE MACHINE SERIES LY/E5/ELOD
5.9 EVALCON
5.9.1 EVALCON evaluates a constant entry in the A table placing

the number of parcels saved by using a B register in the
value field of the A entry. It also marks the entry as a
candidate and as a constant.

5.10- MRKCON

5.10.1 MRKCON scans the linked constant candidates in the A table
marking each as a candidate and constant and computing the
cost in parcels if a B register is not assigned the can-
didate. »

5.11 MRKADR !

S.11.1 MRKADR searches the address chain of the A table for the
most popular candidate fused in most sequences} and then
marks that entry as a candidate having a group and con-
stant. The cost of not assigning a B register is stored
in the value field of the candidate.

5.12 MRKINC

S5.12.1 MRKINC scans the linked increment entries «in the A table
marking each as a candidate and computing the cost of not
having a B register.

5.13 SRCHC

5.13.1 SRCHC is called to determine if a constant entry in the A
table may be formed using constants already assigned to
B registers. Given a constant which is the sum or differ-
ence of assigned constantss SRCHC chains through the con-
stant chain for a candidate equal to it. If found:, the
two are related by setting the appropriate bits in the REG,
REGEZ and NEG fields in the A table entry found.

G.ly TOPB

S5.14.1 Given a one or two word R-list item, TOPB adds a descriptor
word and files a three word R-list item in the TOPEND buffer
after insuring that the buffer won’t overflow.

.15 ENDB

5.15.1 Given a one or two word R-list item, ENDB adds a descriptor

word and an end flag and files a three word R-list item in
the TOPEND buffer after insuring that overflow wonft occur.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins PAGE NO.__.2+7
PRODUCT NAME FORTRAN Extended
- PRODUCT MODEL NO. 4YPLlb MACHINE SERIES _b4/bL5/LL0O0O
5.1k VARBI
S.1b.1 Given a one word R-list itemsy VARB| stores it in the
VARDIM buffer.
Ba.17 VARBZ
5.17.1 Given a two word R-list item, VARBZ2 stores it in the
VARDIM buffer.
5.18 TDOWN
5.18.1 TDOWN displaces the T table lower by one storage address.
5.19 MOVETR
5.19.1 MOVETR moves the T table {through and including the first

entry of all zeroes} to the last six words of the |2-word
standard index function pseudo R-list, {see section k.2 -
the second table on the page.l}

5.20 MOVERT

g.20.1 MOVERT moves the last six words of a standard index func-
tion pseudo R-list item to the first six words of the T
table. {See section bL.21t

5.21 GENT

5.21.1 GENT generates the R-list to compute and reference a stan-
dard index function. This code replaces the standard
index function pseudo R-list produced by ARITH in pass one
of the compiler. GENT calls GENVAR.

5.22 GENVAR

5.22.1 GENVAR generates the R-list to compute the variable part
of an index function. This code appears at the loop top
or point of reference depending on the index function.
Non-variable computations appear at the program top.
GENVAR calls SUMC.

5.23 SuMC

5.23.1 SUMC generates the R-list to add up the coefficients of a
single written variable and places this code in the VARDIM
buffer. SUMC calls COEFF.

S5.24 COEFF

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS REVAY PAGE NO._._29.8 __
PRODUCT NAME EORTRAN Fxtended
PRODUCT MODEL NO._14Pblb MACHINE SERIES _b4/b5/LE0O0
C.24.1 COEFF generates the R-list to multip!y the factors of a
coefficient and stores the generated R-list in the VARDIM
buffer.
5.25 DOONE
5.25.1 DOONE generates a reference to a subscripted quantity
based on the contents of the B registers. The generated
R-list replaces the standard index function pseudo R-list.
5.2k GENALL
5.2b.1 GENALL moves R-list down in memory and generates the R-list
' to compute and reference redefined index functions.
GENALL calls GENT.
5.27 MATC
5.27.1 When the control variable must be materialized {fupdated in
memoryt during the course of a DO loop, MATC makes entries
in the A tabie to allow the loop parameters to compete for
B registers.
5.24 MCOST
5.28.1 MCOST determines the minimum cost for DO loop counting
considering all possible situations and available methods-
5.29 CCOST ‘
5.29.1 CCOST determines the cost of counting a DO loop by using
the upper limit. ‘
5.30 LOADX
5.30.1 Given an A table items LOADX generates R-list instructions
to load an X register with the item.
§5.31- LOADY
5.31.1 Given a loop parameter, LOADY generates R-list instruc-
tions to load a register R with it.
5.32 STOREX
5.32.1 When counting a DO loop in memory and the count has been

CA 138-f REV 10-67

updated in an X register, STOREX generates R-list instruc-
tions to store the X register in memory.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._27-9
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PLlb MACHINE SERIES __b4/b5/5L5L00
5.33 LOADBMC
5.33.1 Generates R-list to load the first limit and subtract the
second limit of the DO statement. LOADBMC calls LOADY.
g8.3Y4 COUNTR
5.34.1 Generates the R-list to compute {(-B}/D for counting the
DO loop. Calls CONCNT.
g8.35 COUNTNR
5.35.1 Generates the R-list to compute {B-(}/D for counting the
DO loop in the negatiye direction. Call CONCNT.
g£.3k CONTOP
S.3b.1 Generates R-list instructions to multiply R by an integer

constant in the most efficient manner using shift and add
conbinations. R-list is stored in the TOP-END buffer.

5.37 Generates R-list instructions to multiply R by an integer
constant in the most efficient manner using shift and add
combinations where R is a variable division or product
of variable dimensions. R-list is stored in the VARDIM

quFer-
5.38 CONCNT
5.36.1 Determines whether the D0 may be counted by a constant or

noty i.e.r, whether {B-C}/D is constant.

5.39 DIVCON

5.39.1 Generates R-list to compute {B-C}/D optimally by checking
constants {if any} and shifting or no division at all
where possible-.

5.40 LMCHK

S.ub. !l LNCHK checks DO loop limits to recognize one trip loops

' and sets flags for section VIII to bypass the generation

of loop counting code.

5.41 REDINC

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS ins PAGE NO._ . 29. 10
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PLI1b MACHINE SERIES__b4/b5/6600

5.41.1 REDINC checks for index functions with same increment hav-
ing these conditions:

Not involved in counting the loop.

Not requiring two B registers to form index function.
Both index functions in B registers.

One incrementing instruction has already been genera-
ted. -

Lwnye—

When conditions are met, REDING generates code to compute
difference of index functions which will replace index
function in higher numbered B register. All references to
index functions, other than the base: must then be genera-
ted as a sum of the base index function and the difference
register. At least one parcel per use is saved as the in-
crementing instruction is eliminated.

Example:
GIVEN CODE | ALTERED CODE
SBI A SBl A
SB2 B SB2 B
SB? A+5S sB2 B2-BI
TAA SAl BI SB7 A+5
BX? XI TAA SAL BI
SA? B2 BX? XI
SB1 Bl+l | SA? BIl+B2
SB2 B2+l SBI BIl+|

GE B7:BlrTAA GE B7,Bl,1AA
5.4¢2 INIDV
INIDV generates the R-list to set an X register to the ini-
tial value to be given the induction variable {lower limit
of the loop} and then generates the store instruction to
materialize the variable in memory.

t.0 FORMATS

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGENO._ 29l b— —
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PEIb MACHINE SERIES__B4/b5/bb00

CA 1381 REV

10-67

DOPRE is concerned with two levels of optimization:

1} First level optimization where PRODB calls upon the
MACRO expander {MACROE} to generate R-list for the
top of a DO loop. PROIXFN generates R-list to process
the standard index functions in a DO loop without bene-
fit of B register optimization. PRODE calls upon
TACROE to generate R-list for the bottom of the DO
oop .

2} Second level optimization results in PRODB and PROIXFN
setting flags and addresses for PRODE to generate can-
didates for B registers at execution time. In additiony
instructions generated within the loop during pass I
by other processors are changed to take advantage of
B register assignment at execution time.

In first level optimization only the table of index func-
tion terms 1T} is generated. In second level optimization
a table of candidates fA} and a table of B register assign-
ments 1B} is generated in addition to the table of index
function terms {T}. The A table is a variable length table
with two words used for each entry. Candidates may come
from constantsr increments, addresses: address differences:
or index functions. The T table is one word per entry and
a maximum of six entries in the table. The last entry

must always be zero. The B table is a fixed table of seven
entriess one word per entryr and each entry contains infor-
mation related to the assignment of the corresponding B
register. Thus: the third word of the B table designates
how B3 was assigned to be used at execution time. Certain
fields of both A and B have double usage and these fields
will be noted.

In addition to these tabless section k.0 will be concerned
with the standard index function pseudo macro before and
after the call to PROIXFN and the TOP-END buffer created
by PRODE in the second level of optimization.

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION

DOCUMENT CLASS NS | PAGE NO.__ 2112
PRODUCT NAME : FORTRAN Extended
PRODUCT MODEL NO. 4Phlh MACHINE SERIES _h4/k5/bEO0O

The tables and formats follow.

L.l T TABLE { INDEX FUNCTION TERMS } ‘
59 54T 2y 23 22 2l 18 17 0
C_ | VT VTV v C
2 = | y
L =-Set to | if VI is the loop control variable
V| - Base-bias of variable inveolved in the term

ve

Set to | if the first dimension of the array i is
adjustable

V3 - Set to | iFlthe second dimension of the array yﬁ/is
_adjustable

V4 - The I part {table number} where C{T} is variable and
the HIBIASY} is found in the C field '

C =~ Constant multiplier for the variable part of the term

B TABLE { B REGISTER ASSIGNMENTS 1}

59 29 0
VALUE/R . ALOC
VALUE - Savings in parcels made by the assignment of this B
register
R - After Scan V of PRODE, R is register number defined

as that B register

ALOC -~ Address of the A table entry for the candidate given
this register

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS NS PAGE NO._29. 13
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4YPL1b ’ MACHINE SERIES _b4/55/bb00

b.2 STANDARD INDEX FUNCT

ION PSEUDO R-LIST MACRO

BEFORE PROIXFN
59 47 30 18 1b 15 D
0C NUF NOT TYPE RI
USED
NOT USED CA IH OF THE ARRAY M
NS| P C B A
57 [ATB]C]s3 35 17 0
MC OF FIRST SUBSCRIPT
CA IH OF VARIABLE IN FIRST SUBSCRIPT
AC OF FIRST SUBSCRIPT
MC OF SECOND SUBSCRIPT
CA IH OF VARIABLE IN SECOND SUBSCRIPT
AC OF SECOND SUBSCRIPT
MC OF THIRD SUBSCRIPT
CA IH OF VARIABLE IN THIRD SUBSCRIPT

AC OF

THIRD SUBSCRIPT

CA 138" REV

DOCUMENT CLASS
PRODUCT NAME
PRODUCT MODEL NO.

A saa.1

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

IMS PAGE NO._. 29. I'Y
FORTRAN Extended
UPLI1bL MACHINE SERIES__BY/bS5/EEO0

AFTER PROIXFN

Y VN

59 T4? 30 - 17 15
? T TR
i
0C NWF NOth 4 I RI
USED | X
; F
,’; . N
| 41 bbb
CA NOT USED IH OF THE ARRAY
53 35 i 17 ,
NOT ADPSUB ACHAIN LSuB
USED
NOT ASUB AINC LINC
USED
FIRST DIMENSION OF THE ARRAY
SECOND DIMENSION OF THE ARRAY
T TABLE
ENTRIES To - Tc
{SEE T TABLE FORMATZ}
0Cr RI+ CAr IH are described in R-list literature.
TYPE - 3 bit type field as used in SYMTAB
NS - number of subscripts
PABC - indicates adjustable dimensions for subscript
le 2 or 3 respectively
Csy By A - constants or IH of variables for dimensions of
subscripts 3y 2:or | respectively
MC - multiplicative constant in subscript
AC - additive constant in subscript
ADPSUB - if array is double length points to second A

table item for this index function

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS iMs PAGENO.___29.15
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO.__ 4PLI1E MACHINE SERIES __b4/b5/bb00
ACHAIN - points to the A table item which heads the chain for
this unique index function
LSUB - pofhts to previous unique fhdég function in R-list
ASUB - points to A table item for this index function
AINC - points to A table item for this variéble increment
LINC - points to the previous index function with unique

local terms

NWF - number of words following as part of this macro

CA 138t REY 19787

CONTROL DATA CORPORATION o COMPUTER EQUH.’ME"NT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.____23:1b
PRODUCT NAME FORTRAN Extended v
PRODUCT MODEL NO. 4PL1b MACHINE SERIES _b4/b5/bE00
b.3 A TABLE { CANDIDATES FOR B REGISTERS 7
FOR INDEX FUNCTIONS | Co
59 5, 53 5] 47 29 i?
cleizl I TOoIN[D r
A{R|X NIE|T B :
word 1 |n|p|3| REG| REG2 | £|c|F| VALUE/ADIFF | SEQ | LINK
p| |D F
WORD 2 H CA . RLOC
L . i V
FOR INCREMENTS
CiGlI OINID
ﬁ g § REG| REG2 g E % VALUE /ADIFF SEQ | LINK
D D ' F .
NAME X&O(RLOC
FOR CONSTANTS
clelzl olnlo]
ARIXT NIE]T
nIpla|-REG| REG2 | plg|F| VALUE/ADIFF SEQ LINK
D| |D 4F - |
THE &0 BIT CONSTANT
FOR ADDRESSES
CIGII QIN|D
;ﬁ E i REG | REGR g E.é VALUE/ADIFF SE@ LINK
ol |p F
H CA
- ADDRESS DIFFERENCES
Jelsl 1l ofn|D
JKIRIY NlE|T
N el Al REG) REGR2 | £l ¢|F| VALUEZADIFF SEQ LINK
D| |D ‘ F
H CA HZ

CONTROL DATA CORPORATION . COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.___29.17
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO.___4Pbklb MACHINE SERIES _b4/b5/b500
H - the ordinal in the symbol table for the variable
CA - the constant addend or displacement of the variable
if any

SE® - a field of flags indicating which of |2 possible
- sequences the candidate is used in. Sequences are
indicated from right to left
LINK - address of next group member

RLOC -~ address in the R-list for the head of the |inked

entries
CAND - set to | if this entry is a candidate for a B regis-
ter
GRP - set to | if this candidate is a member of a gﬁoup
IXAD - set to | for address type candidates
REG - number of the B register assigned {if any}
REGE2 - number of the second B register assigned {if anyl}
ONE - set to | if increment of index function is constant
NEG - relates B registers used to form a sum {0} or differ-
ence {1}
DIFF - set to | if A item is difference of addresses and

cannot take advantage of SB B+B

NAME - I, H values of program temporary or loop temporary
VALUE - cost in parcels if this candidate is not given a B
register
ADIFF - the address of the A table entry created as a differ-
ence with this A table entry
7.0 MACROS

7.1 ADDRR - {BUF, XRJ} Generates R-list to do an integer add of
two X registers IR and XRJ} IX{R+1} = XI{IXRJ}+X{R}. R-list
‘FiEldS are 0Cy RJy RKy RI found in IADD, XRJs B?, B7+1
respectively. R-list is stored in an address determined from
the index given as BUF. The macro uses TYPEI, OUTBUF macros
and the subroutines TOPB, ENDB, VARBl, VARBZ2.

CA 1381 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. £9.18
.PRODUCT NAME FORTRAN Fxtended
"PRODUCT MODEL NO.__HPblb MACHINE SERIES b4 /b5/bE0O
7.2 DEFBR - {BUF, XREG} Defines the B register that will receive

7.4

7.7

the information in the register specified by RI SBI{XREG}=R.

R-list fields are 0Cs SO, RI found in DEFINE, LOCKB+XREG. B?
respectively. Type II R-list is stored in an address deter-
mined from the index given as BUF. This macro uses macro
OUTBUF and the subroutines TOPB, ENDB, VARBI. VARBZ.

DESBR - DEXBR {BRI1,XR2: XR3} Sets the NEG, REG and REGZ
Fields of the first word of an A table entry. Arguments are
BRls XR2s XR3 which represent a B register holding a2 one or
zero, and X registers holding the two B registers assigned
to be used as a sum or difference for generating a needed
constant. The A table entry is located at LIDESBRY or
X{DEXBRZ}. :

IMUL - Packs two integers given in Xl: X2 and does a double
muitiply with the result left in Xbe

INCRR - {BUF} sets up an 18 bit {short} add of two B regis-
Ters storing the result back into one of the registers
{SB{R-i¥ = Bi{R-i} + Bi{R}}. R-iist fieids used to generate
type I R-list are 0Cr RJe RKy RI which are given by SADD.,

B?, B?-1, B?-l. The R-list is stored in an address deter-
mined from BUF. Uses TYPEI, QUTBUF macros, TOPB: ENDB. VARBI
VARB2 subroutines.

LOADADR - £BUF, XIH, BCA} sets up the R-list for the load
address instruction SA{R} = {IH+CA} R-list fields are 0y
CA, RI, I-Hl found in LOAD, BCA, B?, XIH respectively. The
type III R-list is stored in an address determined from the
index given as buf. This macro uses the macro OUTBUF and
subroutines TOPB, ENDB, VARB!., VARBZ.

MULCON-- {BUF} sets up R-list to multiply a register speci-
fied by R by an integer constant. Instructions are stored

at an address determined from BUF. Uses macros SHIFT, PACK,
MULT, OUTBUF and subroutines TOPB, ENDB, VARBIl, VARB2: CONTOP,
CONVAR.

MULRR - {BUF} sets up the R-list to convert the integers in
registers R and R-1, place in registers R+l, R+2, and then
does a double floating point multiply with the result ending
in R+3. PX{R+I|1} R-1.B0

PX{R+2} R +BO

DX{R+3%} {R+|I={R+2}

R-list fields are RK, RI, 0Cy RK2, 0C2s, RJs RK3, RI3, 0C3
given by R-1, R+1, PACK, Ry R+2s PACK, RI,: RIEr'R+3: DMUL
respectively. The generated R-list is stéred in an address

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS s ' PAGE NO.___ 2319
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. UPL1E MACHINE SERIES B4 /bLS/BE0O0

CA 138-1 REV

determined from the index BUF. Calls macro OUTBUF and uses
subrountines TOPB, ENDB, VARBl, VARBZ.

SADRR - {BUF, XRJ} sets up Type I R-list to do a short add

of two registers with the result going to a third register-.
Fields needed are: RJ: RK, RI, 0C, given by R, XRJ, R+| and
SADD respectively. R-list storage address is determined from
BUF. Calls on macros TYPEI, OUTBUF and subroutines TOPB,
ENDB: VARBl, VARBZ.

SETRCON - {BUF, BRI, XCON} generates R-list to set a regis-
ter to a constant value. Fields needed are: IN, 0C, RI
given by XCON, SETII, BRI respectively. The type II R-list
is stored at an address determined from BUF. SETRCON uses
the macro OUTBUF and calls on subroutines TOPB, ENDB, VARBI!.,
VARBZ.

SETADR - {BUF, XIH, BCA+ XRI, XRF, XH2} generates R-list to
set a register to an address. Fields needed are: CA, RF,
IHy RI, H2s 0C given by BCAs XRF,y XIH, XRI, XH2, SETIII
respectively. The type III R-list is stored at an address
determined from BUF. Uses the macro OUTBUF which in turn
calls upon subroutines TOPB, ENDB, VARBI, VARBZ.

STORADR - {BUF, XIH, BCAl} generates type III R-list to set

AL or A7 to an address causing a corresponding store of Xb

or X? repsectively. Fields needed are IH, CA, 0C given by
XIH, BCA, STORE respectively. The generated R-list is stored
in a buffer determined from the index BUF. STORADR uses

the macro OUTBUF which uses subroutines TOPB, ENDB, VARBI,
VARBZ.

SRBMB - {BUF, XBl, XB2} sets up the R-list for the short sub-
tract and stores the result into the R register

{SB{R} = RBTAB+XBl - RBTAB+XB2}}. R-list fields used to gen-
erate this type one R-list item are 0Cy RJr RKs RI given by_
SSuB {b7?}, RBTAB+XBZ2« RBTAB+XB2, R respectively. XBl, XB2
are indices for the B table which contains the designated R
that is assigned the B rFegistér. The generated R-l1st is
stored in an area determined from the argument BUF. This
macro uses the OUTBUF macro and TOPB, ENDB, VARSI, VARBZ sub-
routines. _

SRBPB ~ 1{BUF, XBl, XB2} sets up the R-list for the short add
and stores the result into "the R:register =~~~ o
{SB{R}‘= RBTAB+XBl = RBTAB=XB2. R-list fields used to gener-_ .
“ate this type ohe R-list jtem are 0C, RJ, RK, RI given by
SADDI4LY, RBTAB+XBl, RBTAB+XB2, R respectively. XBl:; XBP are
“indices for the B table entry that contains the R assigned

10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__29.20
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PE1E MACHINE SERIES __b4/b5/b600

to B register XBl or XBZ2. The generated R-list is stored
in an area determined from the argument BUF. This macro
uses the OUTBUF macro and TOPB, ENDB, VARBIl, VARBZ subrou-

tines.

?.1b BPMB - {BUF, XRJ, XRK} sets up R-list for a short load:
store or difference with the result going into the RI
register. R-list fields used to generate this type I
R-list item are 0Cy RI, RJsy RK given by B4, OP, XRJ, XRK
respectively. The generated R-list is stored in an area
determined from BUF. This macro uses the OQUTBUF mazro and
and TOPB, ENDB, VARBIl. VARBZ2 subroutines.

?7.17 SUBRR - {BUF,s XRJ} integer subtract of two X registers .
{R and XRJ} IX {R+]} = X{XRJ} - X{R}. R-list fields are
0Cs RJ, RK; RI found in ISUB, XRJ, B?, B7+| r'espec*'ive!y.
R-list is stored in an address determined from the index
given as BUF. This macro uses TYPEI and OUTBUF macros and
the subroutines TOPB, ENDB+ VARBI, VARBZ. '

?.18 SUBXRR - {BUF} same SUBRR except IX{R+1} = X{R} - X{R-1%.

?.19 DIVRR - {BUF} integer division of two registers
XIR+T} = X{R-1}/X{R}. R-list fields are 0(y RJy RK, RI
given by IDIV, B?-1l, B?r B?+| respectively. R-list is
stored in an address determined from the index given as
BUF. This macro uses the macros TYPEI and CUTBUF which
uses subroutines TOPB, ENDB, VARBl, VARBZ.

7.20 JUMP - {BUF, B0C, BRI, BRF} generates the loop ending jump
as type III R-list given 0C, RI, RF as BO0C, BRI, BRF
respectively and the IH of the label for the top of the D0
is found in the DO-END pseudo R-list generated by pass I.
The jump instruction is stored at an address determined
from BUF. JUMP uses QUTBUF which uses TOPB, ENDB, VARBI,
VARBZ.

?.21 TYPEI - {BUF, XRJ} generates a type I R-list instruction
from the fields 0(, RJs RK, RI given by B4, XRJ, B? and X3
respectively. The generated R-list is stored at an address
determined from BUF and this macro uses the macro OUTBUF
which in turn uses subroutines TOPB, ENDB, VARBl, VARBZ.

7.23 SHIFT - {BUF, ¥COU} sets up R-list to do a shift transmit
of R to R+l and a constant shift left the number of places
indicated by register XCOU for R+l. The Pesultlng R-list
is stored in memory as determined from BUF using the macro
OUTBUF and subroutines TOPB, ENDB, VARBl, VARBZ2.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMs PAGE NO.__20.21
PRODUCT NAME FORTRAN Extended v
PRODUCT MODEL NO. 4YPLIE MACHINE SERIES _b4/b5/6600
7.24 PACK - {BUF} generates R-list to pack the exponent zero with

7.28

7.29

7.30

the fraction R into a register R+l. Uses OUTBUF, TOPB, ENDB.
VARBl, VARBZ to put the R-list at an address determined from
BUF.

MULT - {BUF} generates R-list to do a double precision float-
ing multiply of R and R-2 leaving results in the register
specified by R*l. Places instructions at address determined
from BUF by using macro OUTBUF which uses subroutines TOPB,
ENDB, VARBls VARBZ-

SADXRR - {BUF, XRJ} sets up type I R-list to do a short add
of two registers with the result going to one of the regis-
ters {SRi = Ri + XRJ}. Fields used are RJ:s RKy RI, 0C, given
by R+ XRJsy R and SADD respectively. R-list storage address
is determined from BUF. Calls on MACRO’s TYPEI, OUTBUF and
subroutines TOPB, ENDB, VARBI, VARBZ.

XMIT - {BUF} sets up typa2 I R-list to transmit from an input
register to an output register. Fields used are RJ and RI
given by R and R+| respectively. R-list storage address
determined from BUF. Calls on the macro OUTBUF and subrou=-’
tines TOPB, ENDB, VARBIl, VARBZ.

ADDXRR - {BUF,XRJ} Generates R-list to do an integer add of
two X registers {R and XRJ} and put the result back into R.
R-list fields are 0Cy RJsy RKy RI found in IADD, XRJ, B7?, B?
respectively. R-list is stored in an address determined from
BUF. The macro uses TYPEI, QUTBUF macros and subroutines
TOPB, ENDB, VARBIl:, and VARBZ2.

SADZRR - {BUF,XRJ} Generates R-list to set an X register to
the value in a B register. XRJ is the R number for the B
register and R is the X register number. Fields needed are
RJy, RI given by XRF and R. R-list storage determined from
BUF. Calls on Macro OUTBUF and subroutines TOPB, ENDB, VARBI
and VARB2.

CONLS - {BUF,XCOU, XREG}, Generated R-list to do a constant
left shift of XREG the number of places specified by register
XCOU. Operation code given by KLS and BUF determines R-list
storage. Uses the macro OQUTBUF and subroutines TOPB, ENDB.
VARB] and VARBZ2.

DOPRE

CA '28-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 29.22
- PRODUCT NAME FORTRAN Extended _
PRODUCT MODEL NO. YPblb MACHINE SERIES _b4/k5/6500
8.1 Principles

Sample test cases using stralghtforward compilation techniques
indicate that 50% or more of the running time of FORTRAN
benchmark programs is spent inside innermost DO loops, although
they occupy under 10%Z of program space. Thereforer reduction
of the time spent in loops: particularly inner loops: is of the
first importance.

However, since the time required for a short loop is greatly
Peduced by retaining it in the stacks it is important to reduce
the space required within loops as well. To avoid special

casesr DOPRE concerns itself with space reduction onlyr assum-
ing that time reduction is usually a by-product.

Definition of Well-behaved Loops

Loops containing extended ranges: input-output statements:
CALL*s, FUNCTION references: or calls or arithmetic statement
functions which contain CALL"s or FUNCTION reFerences' or
implicit subroutine calls, are not considered well-behaved and
are not optimized for the following reasons:

a. The existence of an exit and return to the loop makes
retaining results in registers throughout the loop imposs-
ibles

b. The existence of an unconditional jump in the loop makes
retaining the entire loop in the stack impossible.

c. The computation outside the loopr which may be a consider-
able proportion of the compute-time involvedr does not
benefit from the loop optimization.

d. The existence of most of the above situations creates
implicit definition points which complicates the analysis.

e. The existence of an extended range requires the use of
program-wide temporaries.

Currentlys a loop must meet three other requirements in order
to be optimizable:

f. It must fit in memory.

g. It must be an innermost loop. Outer loop optimization com-
pltcates the analysxs considerably:, but saves less execu-
tion time and is less likely to produce in-stack operation
than innermost optimization.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS : PAGE NO.___29.23
" PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4YPLIb MACHINE SERIES _b4/b5/bb00

h. The increment must not be the control variable. This sit-
uation is rare but when it exists it makes calculation of
the increments of local index functions outside the loop
impossible. '

Objectives of DOPRE

DOPRE generates code

a. to compute and reference all standard index functions
b. to count DO loops .

c. to materialize control variables where necessary

d. to provide optimization features if requested

PRE calls DOPRE when it encounters a D0 begin or DO end macror
or a standard index function pseudo-macro.

If no optimization is requested, DOPRE expands each macro and
returns to PRE. Standard index functions are reordered to
minimize the computations requireds and computations involving
adjustable dimensions are done at the program top.

PR - . - - S

The code generated for DQ I=B, C, D is:

B Constant - B Variable
Set R to B Load R with B
Store R in I Transmit R to R

Store R in I

The code generated for D0 end is:

D Constant D Variable

Load Rl from I Load R! from I
Rl + D to R3 or Load REI from D
Store R3 in I Rl + RE to R3

Store R3 in I

CA 138-1 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

_ DIVISION

DOCUMENT CLASS IMsS PAGE NO. c3.cH
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PLlb MACHINE SERIES_b4/b5/b6600

C Constant C Variable

R3 - {{+1} to RY Load R4 from C

. or
NG Ry L R4-~R3 to RS
PL RS L

If standard optimization is requested; DOPRE allows PRE to

WS N4T

-~ forman R-list buffer containing the above macros and pseudo-
macros and the expended R-iist items for an entire weli-
behaved loop "and the first sequence outside the toop. It
analyses this information in detailr modifies it, and returns
it in final -fermto PRE. e

The analysis-provides the following broad features:

. Standard index functions which do not change in the loop
{globall are computed once outside the loop.

2. Standard index functions which change in the loop only
when the control varjable changes {local} are initialized
outside the loop and incremented within the loop.

3. Variable increments of local index functions are computed
outside the loop. '

4. Standard index functions containing variables changed in
the loop {redefined} are computed at the point of referece.

5. The adjustable parts . of all standard index functions:
local, global or redefineds in a loop or out, are compu-
ted at subprogram top.

L. B registers are initialized at loop top with constantss
addresses: index functions, and variable increments
chosed to reduce space in the loop.

?. Instructions which reference the sums and differences of
B registers are used to reduce space further.

The quantities loaded in B registers are selected to minimize
the space required by the loop:, in accordance with Section |
above.

The following quantities are initially candidates for B regis-
ters:

l«. Index functions none of whose variables are redefined in

CA 1381 REV 10-67

CONTROL DATA CORPORATION +« COMPUTER EQUIPMENT GROUP

DIVISION
29.25
DOCUMENT CLASS ms PAGE NO.
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL No.___4Pblb MACHINE SERIES _b4/b5/bL00
the loop.

2. Variable increments required for modifying index functions
containing the current control variable.

3. Addresses of variables in load and store instructions.
4. C(Constants in Type II Set instructions.

5. Loop limits for use ip materializing the control variable
and/or counting the loop-.

How Index Functions Are Ceomputed
The general form of a standard index function is:

DIMENSION A{L ,M,N}
«..A 1al+ds bd+es cK=f7?

{L+Ms and N are each either constant or adjustable: ar bs and
c are positive integer constants: dr er and f are signed inte-
ger constants. I, Js and K are variables.}

The above reference necessitates computing the address

A+{al+d-1}+{bd+e-1} w L + {cK+f-1} w L = N

DOPRE reduces the subscript to a canonical form containing the
following items:

l. The array name, e.g. A

2. The constant addend CA, e-.g.y, d-| in the example {assuming
L & M are adjustablel.

3. From zero to 5 additive terms: each containing from | to 3
variables.

Assuming all dimensions are adjustable and I+ J: and K are
different, the terms in the example would be aI, bJdL, {e-I1}L,
cKLM, and {f-1} LM.

~ Terms are sorted so that

l. Index functions which look different, but require the same
computations, are recognized, e.g., A{2wI+|} and D{I+I|}
where D is double length.

2. Non-adjustable variables appearing twice require at most
one multiplications e.g., A{ExI, |} yields A+{L+2}xI+CA,
not A+2wI+LwI+CAL {CA=-L-]3}.

CA 1381 REV 10-67

CONTROL DATA CORPORATION o« COMPUTER EQUIPMENT GROUP

DIVISION
s 29.2b
DOCUMENT CLASS L1 PAGE NO.
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPLIL MACHINE SERIES_b4/L5/6L0M0

DOPRE computes the constant part of the index function. It
generates code at subprogram initialization to compute the
adjustable part of the index function

Multiplication by some integer constants is simulated using
shifts and adds. The special cases identified are:

. Negative constant. An instruction BO-R to R
is issued and positive multiplication proceeds.

2. constant = |l. No-'generation

3.

3. constant
RI1+Rl to R2. RI+R2 to R3
4. constant = b
R1+Rl to R2. Then use code for 3.
5. constant = 2n-
Shift transmit and left shift n
b. constant = 2™+2". {0...010...010...0%

Shift transmits left shift n-m: adds shift trans-
mitsy left shift m

2. constant =2"-2" {0...0l...10...0%
subtract instead of add
Program flow

When fast compilation is requested PRODB: PROIXFN, and
PRODE merely generate R-list in line. When standard com-
pilation is requested:s most of DOPRE’s work is done in 10
sections of code within PRODE. Section I scans the R-list
for the entire loop and forms a table of candidates. Sec-
tion II computes the value of each candidate - the number
of bits saved inside the loop by assigning it to a B regis-
ter. Section III assigns the most promising candidate to
the Ist B register, recomputes values if they are altered,
assigns the next B register, etc. until there are no more
candidates or no more B registers. Section IV determines
the most space-saving way of materializing the induction
variable {if necessary} and counting the loop, and may alter
B? accordingly. Section V records the final assignments-

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
' 29.27
DOCUMENT CLASS IMS PAGE NO.
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. WPelb MACHINE SERIES__b4/b5/bb00

Sections VI, VII, and VIII generate code in another table to:

load addresses and constants> compute index functions and
increments> and materialize and count, respectively. Sec-
tion IX re-scans the R-list for the loops changing refer-
ences to refer to B registers. Section X merges the gener-
ated code with the original R-list. Control returns to PRE.

Evaluating Candidates

As Section I forms the potential candidate list, it notes in
which sequences each candidate was referenceds notes uses of
B registers already present. in the R-list, and groups index
function and address candidates-. :

Where Z is a candidate
th

SEQ {Z} = a bit pattern contﬁinin a bit in the n" position
if Z is referenced in the n sequence.

L = the number of bits in SEQ {Z}

DOPRE cannot tell what the final code will be> it assumes

that quantities in X registers are loaded only once per
sequence in which used-’

Section II evaluates the candidates. The “value® of a can-

didate is the difference between the number of bits required
for instructions to load and/or reference it within the loop
if it is not assigned a B registers and the number required

if it is assigned a B reggister.

al Addresses in Load A and Store A Instructions

All addresses become candidates. After an address is
assigned a Bs the differences between it and each other
required address become candidates also. That iss if Y
and Y + | are referenceds the code will be one of the
following:

Number of Registers‘Assigned

0 l 1 c 2
setb Bt to . - N GUN 4..% W o Y+l
set BE to - - - 1 |
reference Y ref ¥ ref Bl ref Y ref Bl ref Bl—Ba

reference Y+ ref Y+1 ref Y+1 ref Bl ref B|+Bz ref B,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
‘ 29.
DOCUMENT CLASS NS PAGE NO. 28
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPLlb ‘ MACHINE SERIES h4/b5/LEOT

b}

cl

Differences are used because of the likelihood that constant
differences {and possibly symbolic differences}t may occur
several times. In the agbove example, the constant | may be
referenced directly and may occur also as the difference of
A and A+]ly B and B+l C+] and (+2, etc. ‘ '

As can be seen from the :above chart: the value of an address
is 15L, and the value of a difference is also I5L. {Symbolic
differences are not formed when either symbol is a formal
parameter.t

Constants in Set X Instructions, as increments, as differ-
encesy as loop limits. All constants are candidates {nega-
tive constants are filed in positive form}. UWhenever a con-
stant is assigned a B reagister: Section III scans the other
B registers assignments for other constants and determines
whichy if anys useful constants may be formed as the sum or
difference of assigned constants. Suppose the constants
lv2r3/4,5,6,10 and 50 are required. Suppose also that B
register assignments of constants are as follows:

Bl 4
B3 |
Bb 50

References to 5 are generated as Bl+B3. References to 3 are
generated as Bl1-B3. References to 2 are generated as B3+B3.
Although the assignment of, sayrs 3:2r and 50 would have been
preferable {because |+ 4, 5+ and b can be formed! no attempt
is made to assign the optimum constants.

The value of a constant is I5L, since 9SX| BlY is |15 bits
shorter than: e.g.r 9SXI| H.¥v

Variable Increments required for modifying local index func-
tions. With the index function in B2 the code required is:

No B B

Instruction: SA}.IN;_M,,A -
{SB2 X1+B2 or SXb X1+B2} {SBZ B2+Bl or SXb B2+BI}

Cost+ - 3[1 : o 0

Value: 30

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 29.29
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4Pb1b MACHINE SERIES _bH4/b5/6600
d} Index Function

CA 1381

All index functions with indentical variable parts comprise
a Ygroup®, e.g., X{I+5}, and Y{I}, are in the same group:
except that each array which is a formal parameter has its
own group-. ’

Index functions are grouped because costs may be reduced by
using the same memory cell or B register for more than one
of themi e.g., if X{I} is in Bl, Y{I} may be loaded as
follows:

SAl Y-X+BI

and this may minimize space when there arentt enough B regis-
ters to go around.

Formal parameter arrays have their own groups because refer-
ences like Y-X+Bl would otherwise have to be computed at run
time. '

The value {in bits, within the loop} of an index function
depends on how it is computed and referenced.

There are six ways to compute/reference X{I} where Y{I} is
also required:

Qutside Loop Reference
In Memory X+I to LTEMP SAl LTEMP
x ref Xl
In B X+I to Bl ref Bl
Share Memory Y+I to LTEMP SAl LTEMP
ref X-Y+XI
Share B Y+I to Bl ref X-Y+BI
Difference Memory Y+I to LTEMP
X-Y to B2 SAl to LTEMP
ref X|+Bg2
Difference B Y+I to Bl

X-Y to BZ ref Bl+Bg

REY 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS s ; PAGE NO.__29.30
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4YPb1b MACHINE SERIES_bY4/b5/bb00

The initial value of a group of index functions is the
cost of having no B register for the group minus the cost
of having one B register for the group. This is the

same as the cost of loading the index function in each
sequence in which any member of the group is referenced,
or 30w # of bits in {SER v...v SE@n}, plus incrementa-
tion cost {for local index functionsl of 45.

The differences between the candidate {the most-loaded
group member} and each other member of the group also

become candidates with values of |5L.

8.7 Assxgnment of B reg:sters

Sectlon II perForms the Inltlal evaluation of candidates.
Section IIT assigns the most valuable candidate to Bl, re-
evaluates as necessary and assigns the next highest candidate
to B2y etc.r until there are no more B registers or no more
candidates. The first time an address is assigned the dif-
ferences with other addresses are filed. Each time a constant
is assigneds combinations of it and previously assigned con-
stants are generated.

8.8 Loop Control Code and Materialization

Subroutine MATC following Section Iy and Sections IV and VIII
select and generate the code to test at the bottom of the
loop and to materialize the control variable if required.

MATC files the loop limits as candidates if materialization

is required. Section IV chooses the best code for material-
ization and testing based on the assignments to B registers
made in Section III. Section IV may alter assignments to pro-
duce better code. ‘

Section VIII generates the materialization and testing code.
The code produced is one oF the following:

SECOND LEVEL OF OPTIMIZATION NODr LOOP COUNTING

{where the general form of the D0 is DO SN I=B C,yD}

l. Count the loop in memory

TOP ~ END
<-b. SAl LTEMP
{=3PTALTENP SXE X1-1

SAL LTEMP
PL Xb, TOP

CA 138-1 REV 10-€7

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS Ins , PAGE NO._29.31
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPEIlb MACHINE SERIES kY /L5/LEA0
2. Count the index function to zero
TOP END
{-mc+mb} > Bi {increment Bil}

GE BO, Bir LABEL

3. Count the index function up to mc i{multiplier times upper
limit}

ToP END
{index function}=» Bi {increment Bi}
mc-r B GE Bor Bir LABEL

4. Count in B5 where D is a B register

TOP END

{8-C1-¥8, SB, By+BD
GE Bpr Bor LABEL

5. Count in memory where D is in a B register

TOP END
{B-C~1}—=r LTEMP SAl LTEMP
SXb XI+Bp
SAL LTEMP
NG Xbs LABEL
b. Count in B? where there is a | in a B register
TOP END
] B }-*B? SB? B?+Bone
GE Bpr By, LABEL
7. Count in memory wherg there is a | in a B register
TOP ' END
TB-C. SAl LTEMP
1 ZIALTEP s XieBgne—

SAb LTEMP
NG~ Xy LABEL ™~

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IS PAGE NO. 29.32
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPh1k MACHINE SERIES_b4/b5/bL00

8. Count the loop B?
TOP END
C-B SB B
%—3—} B? ? Ky
GE B?v BO, LABEL

9. Test the control variable I with C loaded

TOP END
{load C}
IX0 Xe-Xi -

PL X0, LABEL
10. Test the control variable I with C+] loaded
ToP END
f1load C+17}
IX0O Xi-Xc-l1
NG X0, LABEL

ll. Test the control variable I where count {C} is mater-
ial 1zed

TOP END

SX0 Xi-C-l1
B
X0, LABEL

2. Test the control variable I where the address of count
{C} is in a B register

TOP END
SAi Bc
IX0 Xc-Xi

PL X0, LABEL

CA 1381 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__29.33
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPEIE MACHINE SERIES _bY4 /LS /bbO0
8.9 Generation

A

“28.1 REV

TrE7

Section V marks the final B register assignments in the A
table. Section VI generates code at loop top to load
addresses: constants: and symbolic differences.

Section VII generates code at loop top to initialize index
function and variable increments of local index functions:
and code at loop end to increment local index functions.
Section IX re-scans the original R-lists, changing the refer-
ences to reflect the B register assignments and generating
adjustable computations in redefined index functions. Sec-
tion X merges the loop top and loop end code with the R-list
for the body of the loop: and generates code in-line to com-
pute and reference redefined index functions.

m then exits to PRE.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. , PAGE NO. 30.1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES _64/65/6600
SQUEEZE
1.0 General Information

2.1.2

2.2

2.2.1

2.2.2

SQUEEZE resides in PASS2 as part of PRE. The primary function of
SQUEEZE is to purge from a sequence superfluous loads and stores
and redundant computation.

Usage
SQUEEZE

Calling SQUEEZE will result in the indicated R-list being modified
to the extent of indicating operations which are to be eliminated
and modifying the remainder.to compensate for their removal.

Calling Sequence

SQUEFZE is called by placing the number of R-list entries in NORLIST
and the first word address of the sequence in FWARLIST and the first
word address of the descriptors in FWADESC, further the R-list sequence
must be arranged as is done by COPY. All of these cells are set up

N TRY

by calling CCFY.
Proceseging

The sequence is scanned for’ the definition of an RI. The subsequent
R-list entries are scanned for definitions of a different RI, R', by an
identical cperation. 1If such a case is encountered, the operation de-
fining RI1 is marked for elimination by setting the KILL bit in the
descriptor. The R-list following the definition of RI' is scanned

for references to RI' and these are replaced with references to RI.

CorY

COPY moves the specified sequence into the working storage area. In the
process of moving, end of statement and end of sequence markers are
eliminated and all of the remaining R-list entries are split apart so
that all of the first words of the sequence are followed by all of the
second words of sequence are followed by all of the descriptors. The
working storage markers are adjusted to protect the sequence.

Calling Sequence

COPY is entered by a return jump with NORLIST containing the number of
R-list entries in the scquence and FWARLIST containing the first word
address of the sequence. If the operation failed due to lack of working
storage X1 will be negative on return, otherwise not.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS. PAGE NO. 30,2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES__ 04/65/6600
2.2.2 Processing

The original sequence is scanned and the number of erecutabls R-LICT
entrice I calculated; from thie the beginning addricse for cach of the

three blocks I1f working storages is calculated. The move takes place
and the working storage limits modified.

2.3 PURGE

2.3.1 PURGE takes a sequence in COPYed format and squeezes it in place re-
moving all entries which have the KILL bit set in their desctiptor.

2.3.2 Calling Sequence

PURGE is called by a return jump with NORLIST conta ulrg Lhr awmt of
A-1list entries in the secquence aund FWARLIST containing the address of
the firet word ol the sequence. These will be set up by SQUEEZE,

2.3.3 Processing

The operation is performed in two passes. The first pass squeezes each
of the first, second and descriptor word groups in place. The second
pass moves the blocks next to one another.

2.4 REPLACE

2.4.1 Calling REPLACE will result in all R fields referring tc the RI field of
the just killed operation being wodified to refer to the master RI.

2.4.2 Calling Sequence

”

REPLACE is called by a return jump with the following register settings:

AQ - first word addicse of sequence-l

X3 - first word of the killed entry

X4 - second word of the killed entry

B4 - first word address of descriptor - 1
B5 - master RI

2.4.3 Processing
Each entry in the R-list following the killed entry is scanned to see
if it refers to the just killed RI. If such a R-field is encountered
it is replaced with the master RI.

3.0 Diagnostics Produced
The COPY routine will sct a flag before making a fail exit. On com-
pletion of the subprogram this {lag should he interrogated and the

information diagrostic 'MORE IFIIORY WOULD PRODUCE BETTER CODE' should

be issurd.

CA 1381 REV 10-87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS : IMS, PAGE NO. 30.3
PRODUCT NAME FORTRAN Extended’
PRODUCT MODEL NO. 4P616 MACHINE SERIES — 64/65/6600
4.0 Enviromment &
FWAWORK and LUAWORK must contain the limits of working storage.
FTTIAUIORK will be increased By COPY and decreased by PURGE. The cells
arc located in PRE.
6.0 FORMATE
Everything operated on is in standard R-list format except that it is
roshufflied as described in the CGPY description.
7.0 Modification Facilitics

CA 138-1 REV 10-67

In COPY the end of statement and end of sequence operation codes are
set-up with EQU's EOSTMT and EOSEQ respectively.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INS i PAGE NO._ 3}
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PElE - MACHINE SERIES __b4/b5/b600
Task Description: OPT
1.0 General Information
1.1 The function of OPT is to determine the order in which

instructions are to be issued and to fix register assign-
ments. The basic input to OPT is an R-list sequence and

its associated dependency tree: the output is a series of
calls to POST, each call giving the next R-list entry and
reglster assxgnments to be converted to COMPASS line images.
OPT is located in Pass 2.

2.0 Usages. OPT has one control entry pointy OPTA, and two
information entry points, LASLBL and LASTR.

2.1 Entry Point Name: OPTA

2-1.1 Entry Point Function: PROSER calls OPT at the entry point
OPTA to cause an R-list sequence and associated dependency
tree to be converted to COMPASS line images with fixed
register assignments and code ordering appropriate to the
target computer.

2.1.2 Calling Sequence and Returns: OPTA is entered by a return
jump from PROSERQ. On return, if Xb is positiver successful
processing of the entire sequence has taken place. If Xb
is negativer the attempt has been unsuccessful, no COMPASS
output has been produced, and remedial action {currently
sequence halving}l must be taken.

2.1.3 Processing Flow Description: UWhen OPTA is entered, all
working cells are initialized according to the flag word:
LASTR, which describes the terminal entry in the last pre-
vious sequencer and OPNPOST is called. <Control is then
transferred to the OPTB. section which determines the next
R-list entry to be processed and which, if any, registers
are to be used. This information is passed on to ISSUE
which updates all countss, tables:s and clocks as required
and calls POST to cause production of the desired COMPASS
line image. The cycle, OPTB to ISSUE to POST to OPTB.
continues until the last R-list entry in the sequence
has been processed or until it is determined that OPT can-
not produce code successfully for the complete sequence.
If production was successful, ISSUE will call CLSPOST to
transfer the genzrated line images to the COMPASS file
{COMPST and exit to PROSER with Xk positive. If the con-
versior attampt was unsuccessful, control is returned to
PROSEX with XE rzcative.

Cel Intry Soint YWemer LIRL3L

A 131 REY 1T.87

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS , PAGE NO. 31.2
PRODUCT NAME FORTRAN Extended

2.2.1 Entry Point Function: IASIBL is a flag word containing the R-list
word specifying the last label encountered. This is set ordinarily
by OPT at CLSPOST time but will also be set by PROSEQ for a sequence
consisting solely of a label. IASIBL is used by OPTA during the
initialization process.

2.3 Entry Point Name: LASTR

2.3.1 Entry Point Function: TLASTR is a flag word containing the first
word of the R-list entry terminating the last sequence if it was
successfully processed or a zero otherwise. This is set by OPT before
return to PROSEG and by PROSEQ for a single=-entry sequence. LASTR is
used by OPTA to determine which working cells must be initialized.

3.0 | Diagnostics: No diagnostics.are produced by OPT.

4.0 Environment: The following cells are required to be set up before
OPT is called:

Cell Name Contents " Producing Processor
FWARLIS first word address COPY

of R-list sequence
being processed.

NORLIST number of R-list entries PURGE
in current sequence,

FWATREE first word address of BUILDDT
the dependency tree,

TREELNG length of the dependency BUILDDT
tree.

In addition, OPT references all the 10 entry points in POST and the
entry point NFPUNT in PRE.

5.0 Structure: The three major areas of OPT are OPTA, OPTB, and ISSUE.
5.1 OPTA

OPTA performs two main functions which prepare the environment for
OPTB and ISSUE:

1) clearing out cells containing unwanted information left over
from the last sequence processed.

2) processing R-list defines and initializing flag words.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__31.3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES_ 64/65/6600

5.1.1 The contents of LASTR determine whether OPTA performs the clearing

5.1.2

CA 1381 REVY

10

function.
Clearing results when LASTR = zero, return jump, entry, label.
The following cells are cleared:

A-Register Contents

X-Register Contents

Register Availabilities (packed zeros)
Scratch Registers

Function Unit Availabilities

CLOCK, PARCEL

NXTSTOR, NXTLOAD

X6AVAIL, X7AVAIL

In addition the following cells are set:

FCHAR = 45B (this forces upper for the first generated COMPASS
instruction) :

ADR = 1 (this defines the contents of A0 to be R=1)

OPNPOST is called for every sequence. NORLISTR, FINALR, TREETOP,
TPRIME, IPOINT and SIZEFALT are initialized.

Defines are processed by storing the RI field in the corresponding
Register Contents Cell, packing the descriptor 'uses' field into the
Register Availability word, removing the defined register from the
scratch list, and calling PRUNE to remove the RI from the tree of un-
processed R-list entries.

The descriptors for the sequence are scanned to initialize CODSIZE
(total parcel count) and NOSTORE (number of store instructions), X6
and X7 are removed from the scratch register list if there are more
than two stores, and X7 is removed if there are exactly two.

The interword time, WRDTIME, is set to 1 if the target machine is the
6400 or if in-stack timing is to be used on the 6600. This latter
condition exists when CODSIZE 28 and the last entry in the sequence

is a conditional branch to the most recently encountered label, Other-
wise, WRDTIME=S.

Exit is to OPTB at OPT.1B.

57

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__ 1M
PRODUCT NAME TORTRAN Extended
PRODUCT MODEL NO. 4p616 MACHINE SERIES__064/65/6600

5.2 OPTB

OPTB selects the next R-list entry to be processed and determines
which registers are to be used. This information is transmitted
to NOCODE if no COMPASS code is to be produced or at one of the
ISSUE entries. If no issuable entry can be found for the current
time and parcel in the object machine, exit is made to ISSUEI with
the pointer, IPOINT, negative to request remedial action by ASYNCH.

OPTR starts by scanning the dependency tree, starting at TPRIME,
looking for the first entry which will fit at the current parcel
and all of whose predecessors have already been issued, i. e., an
R-1list entry all of whose predecessor fields in the tree have been
set to zero. Such an entry is said to be logically issuable (LI).

Each LI entry is then checked to see if it is machine issuable M1),
i.e., to see if there is a function unit and uncommitted destination
(result) register available at the current simulated clock time.

(For 6400 code selection, functional units and result-registers are
always available). The first check is for availability of the

function unit. If none is found, the dependency tree is further
scanned looking for LI entries, Most of the OPTB code is concerned
with location of a destination register., If one can be located, then
the entry is MI. If the instruction is a jump or a store, no des-
tination register is involved. If a specific destination can be
determined from the SO field in the R-list entry or if the instruction
precedes a register store specifying the destination, it is necessary
only to check whether the register is otherwise uncommitted and can

be used for a result at current clock time. If neither of the above
conditions exists, all feasible registers are checked for remaining uses
and for availability at current clock time. The uses check includes
the possibility of using a source (operand) register as the destination
register, If a destination register is located under the above con-
ditions, the instruction is MI.

Next the instruction is checked to see if it is machine executable (MX).
1f it is a register store or a dummy transmit, exit is made to NOCODE
with TPOINT designating the instruction. Otherwise, the entry is MX

if its operands are available at the current simulated CLOCK time. If
they are, IPOINT is set to indicate the instruction, the function unit
and registers are recorded in FUNPRIME, DESTPR, JPRIME, KPRIME, the
delay (DELTAT) is set to zero and control is transferred to ISSUEX.

1f they are not available and IPOINT is not already pointing to another
instruction, then IPOINT is set to point to this R-list entry, the
function unit and registers are recorded, DELTAT is set to the delay
before execution, and the scan of the tree is continued, looking for an
MX entry. If the end of the tree is encountered before an MX entry

is found, control is transferred to ISSUEI which will process an
issuable instruction if IPOINT designates an MI entry or attempt cor-
rective action (ASYNCH) if IPOINT= -1. :

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGENO.. 315
PRODUCT NAME FORTRAN Extended : —
'PRODUCT MODEL NO. 4P616 MACHINE SERIES__64/65/6600

5.3 TSSUE

The primary function of ISSUE is the maintenance of various clocks,
tables, and pointers involved in machine simulation and code selec-
tion. 1ISSUE also passes information to POST for the generation of
COMPASS line images. ISSUE receives control from OPTB and returns
to OPT.1B unless it determinés that code selection for the current
sequence has been completed or that no further progress can be made
in code selection. 1In either of the latter cases, exit is made
through OPTA to PROSEQ with X6 flagging success or failure.

Control is transferred to ISSUE at NOCODE, ISSUEI, and ISSUEX from
OPTB and to PRUNE from OPTA.

£

5.3.1 Tables maintained by ISSUE:
Register Contents (Sec. 6.1)
Register Availability (Sec. 6.2)
A-Register Contents (Sec. 6.3)
Scratch Register List (Sec. 6.4)
Function Unit Availability (Sec. 6.5)

Cells maintained by ISSUE:

CLOCK - current simulated object machine time for this sequence.

ISUCLOK - minimum simulated clock time for .next instruction issue.

PARCEL - currently available parcel in object machine word.

ISUPRCL - minimum parcel for next instruction.

NXTSTOR - minimum clock time for next store instruction.

NXTLOAD -~ minimum clock time for next load instruction.

X6AVAIL -~ clock time when X6 is available as a destination register.

X7AVAIL - clock time when X7 is available as a destination register.
' NORLISR - current number of R-list entries left to process.

THISR - R-list address of entry currently being processed.

NOSTOR - number of store instructions remaining in the sequence.

TPRIME - address of the first (highest priority) unissued tree

entry. ‘

5.3.2 PRUNE

PRUNE is a closed subroutine within ISSUE which removes all references
to a given R-list address from the dependency tree. It is used
primarily by ISSUE but also by OPTA during the processing of register
defines.

CA 1381 REV 10-87

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__31.b
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES__64/65/6600

'5.3.3 NOCODE

Entry is made at NOCODE for processing R-list entries which produce
no object code. Register stores and dummy register transmits are
handled by NOCODE. Appropriate register contents and availability
words are updated and the tree is pruned, but no COMPASS output is
generated.,

5.3.4 ISSUEI and ISSUEX

1f no issuable instruction can be found at the current clock time

and parcel number, entry is made to ISSUEI with IPOINT negative and
control is transferred immediately to ASYNCH. If a machine executable
instruction has been chosen by OPTB, entry is made to ISSUEX; if a
machine issuable instruction has been chosen, entry is made to ISSUEI
with X5 containing the number of minor cycles until the instruction
begins execution. In either case, TPOINT points to the tree entry
containing the address of the R-list entry to be processed.

After appropriate initialization, the two paths merge and the
following activities are performed:

1. The uses count for each operand entering into the instruction
is decremented and X-registers are added to the scratch list
when the uses count becomes zero.

2. TPARCEL count and CLOCK are updated, taking account of word
boundary crossing to reset PARCEL to zero and add WRDTIME into
CLOCK. ’

3., The various tables and cells described in 5.3.1 are made
current, f

L. TIf the result register is an X, it is removed from the scratch
list. !

5, PRUNE is called to remov: references to the current R-list
entry from the dependency tree.

6. POST is called to generate COMPASS output.

7. Exit is made to OPTB if more work is to be done for the. curreat
‘sequence or to PROSEQ (after calling CLSPOST) if the last
R-list entry has just been processed.

5.3.5 ASYNCH
ASYNCH attempts corrective action when OPTB cannot find an R-list
entry to issue. If code selection is for the 6400, this corrective

action consists of generation of a NO instruction if PARCEL = 3 or of
adding X6 or X7 to scratch if possible., If ASYNCH is successful, exit

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGENO._3l.2
PRODUCT NAME FORTRAN Extended i
PRODUCT MODEL NO. 4P616 MACHINE SERIES. 64/65/6600

is back to OPTB; if not, exit is through OPTA to PROSEQ with X6 marking
failure. If code selection is for the 6600, the processing in ASYNCH
is concerned primarily with advancing CLOCK to the next point in time
when a function unit or result register becomes available. At each
new future time, exit is made back to OPTB for another try at code
gselection. If PARCEL = 3 and out-of-stack timing is being used, the
effect of NO generation is investigated at the various future times.
When all else fails, attempt is made to add X6 or X7 to the scratch
list, If ASYNCH is unsuccessful, exit is made through OPTA to PROSEQ
with X6 marking failure, :

6.0 Formats
Five tables are used by OPT in connection with machine simulation.
6.1 Register Contents

Cells XOR through B7R contain, in the rightmost 18 bits, the number
of the R currently residing in that register in the simulated machine.
If the sign bit is set, the R has been locked into that register.

6.2 Register Availability

Cells X0S through B7S contain, in the rightmost 18 bits, the simulated
clock time when the contents of the associated register are available

as source input to a function unit. The upper 12 bits of each entry
contains (in packed format) the number of remaining unissued instructions
requiring the R found in the corresponding register contents cell.

6.3 A-Register Contents

Each pair of cells, AOCON through A7CON, contain the complete RLIST1
and RLIST2 entries used to set the correspanding A-register. These are
used in the current implementation to convert 30-bit store instructions
to 15-bit instructions when possible.

6.4 ~ Scratch Register List

Cells XOSCR through X7SCR are used to keep track of the availability

of the various X registers for use as destination registers. 1If the
sign bit of a cell is set, the corresponding X register is unavailable
as a destination. Otherwise the lower 18 bits give the simulated clock
time at which the register cap be used as a destination.

6.5 Function Unit Availability
The 12 cells starting with BRANCH and ending with INC2 contain, in the

rightmost 18 bits, the simulated clock time when the function unit
becomes available for issuing an instruction.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION » COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS MS ' PAGE No.__32:1
PRODUCT NAME FORTRAN EXTENDED VERSION 2.0
PRODUCT MODEL NO.__ 3PC08 ’ MACHINE SERIES 64/65/6600
POST
1.0 General
1.1 POST resides in PASS 2 and performs the following operations.
1.1.1 Converts R-list entries into COMPASS line images.
S 1.1.2 Inserts SUB and DELAY macro references into the COMPASS string when
a location field contains a formal parameter.
1.1.3 Forms traceback information for 60 bit return jumps.
1.1.4 Maintains the number of SUB and DELAY references issued for each
formal pérameter.
1.1.5 Maintains the length of generated code for both the CODE. and VARDIM.
relocation blocks.
1.1.6 Defines statement labels (prefixed with a decimal point) and generated
labels (prefixed with equivalence symbol E).
2.0 Entry points.
2.1 OPNPOST
2 2.1.1 Tnitializes the POST routine and is entered via a return jump each
time a new sequence is initiated. It sets the COMPASS string buffer,
limits and initializes to zero the number of SUB's and DELAY's issued
for each formal parameter.
2.2 POST
2.2.1 Entered via a return jump tq translate one R-list entry into a COMPASS
line image. Also uses the instruction size (15 or 30 bits) and the
label field to maintain the length of the sequence and total length
of code issued.
2.2.2 Prior to entering POST via g return jump the following cells within

POST must be set:

~a 120.1 REV 10N-R7

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS___ IMS ? PAGE NO.__32.2
PRODUCT NAME FORTRAN EXTENDED VERSION 2.0
PRODUCT MODEL NO.__3PC08 MACHINE SERIES___64/65/6600
2.2.2 (continued)
POSTIFO+0 Contains lst R-list entry., The R-list op code must

have been changed to the appropriate machine code if
the R-list code has a choice of machine codes (i.e.,

R-list code 10 can be machine code 10 or 22).

POSTIFO+1 Contains the second R-list word (in case of type III
R-1list).
POSTIFO+2 Contains the descriptor for the R-list entry.

These three words contain a code for the actual

o]
L]

POSTIFO+3 o
régister tpr

POSTIFO+: or J and number that is to be used., I is the destination
register,

POSTIFO+5 or K J, K are the two source registers (if there are two).

The following is a list of the register codes:

X0 =1 A0 =9 BO = 17
X1l =2 Al = 10 Bl = 18
X2 =3 A2 =11 B2 = 19
X3 =4 A3 = 12 B3 = 20
X4 =5 A4 = 13 B4 = 21
X5 =6 A5 = 14 B5 = 22
X6 =7 A6 = 15 B6 = 23
X7 =8 A7 =16 B7 = 24
2.2.3 Generally each instruction is placed in a string buffer, starting at

LWAWORK and working towards FWAWORK. Each word will contain a right
justified character, and the string is terminated by a zero word.
After each R-list entry is formed, the information is packed and added

CA 1381 REV 10-67

CONTROL DATA CORPORATION COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__32.3
PRODUCT NAME FORTRAN EXTENDED VERSION 2.0

PRODUCT MODEL NO. 3PCO8 MACHINE SERIES 64/65/6600

2.2.3

2.3

2.3.1

2.4

2.4.1

2.5

2.5.1

2.5.2

2.5.3

(continued)

to the list of line images to be transferred to the COMPASS file.
Any extra information that needs to be added, such as trace back
information or SUB macro references, is added at this time. If it
seems as though there is insufficient room (40 words) to POST the
next instruction, POST exits with X6 negative. This looking ahead
is done so that OPT does not release needed flags if POST happens

to fail on the last entry in a sequence.

CLSPOST

Fntered via a return jump to transfer the COMPASS line images for
a sequence to the COMPS file via WRWDS2. Also the number of SUB's
and DELAY's issued for each formal parameter this sequence is added
to the total for the parameter. This sum and subsum are maintained

in word 2 of the 2 word symbol table entry for the parameter.

POSTIFO.
POSTIFO is declared an entry point so that the routine calling POST

can preset the information POST needs and is not to be entered as

it is a data area.

FCHAR

FCHAR is declared an entry point in POST so that OPT can force instruc-
tions upper as it wishes.
FCHAR is set by OPT and is either a blank or a plus in display code,

POST always sets FCHAR blank before it exits.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 32.4
PRODUCT NAME FORTRAN EXTENDED VERSION 2.0
PRODUCT MODEL NO.__3PC08 MACHINE SERIES __64/65/6600
2.6 PARCEL
2.6.1 Contains an instruction parcel count 0, 1, 2, 3 or 4. It is an

entry point because POST will add or subtract 1 parcel when it adds

or deletes an NO instruction from the code.

2.7 OVERS
2.7.1 Contains a parcel count 0, 1, 2 or 3 of the instruction word from the
immediately prior sequence. This is necessary to maintain the correct

length of issued code.

2.8 COvVD
2.8.1 Contains the address of the location that holds the length of code
issued and is either the address of CODE for the CODE. block or

VARDIM for the VARDIM. block

3.0 POST produces no diagnostics.‘ It will translate the information it is
given. If the information is bad, it will go into the COMPASS file

improperly and will promptly be diagnosed by the assembler.

4.0 POST is called by QPT, It expects the infermation described under

2,2,2 to be preset.

5.0 Structure.
5.1 Initialization
5.1.1 POST starts by converting the contents of the I, J, K cells, which

OPTB has set to codes for specific registers, to display code. The
initial values of these ceils I, J, K are given on the preceding page.
After they are converted to display code, the register typé will be in
the lower 30 bits of the word, the register number in the upper 30 biis.

CA 1381 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS 0 PAGE NO. 32.5
PRODUCT NAME FORTRAN EXTENDED VERSION 2.0
PRODUCT MODEL No._3EC08 MACHINE SERIES__64/65/6600
5.1.2

5.1.3

5.2

5.3

5.4

5.5

5.6

FCHAR is transferred to LWAWORK using X7, as the store register. A7
i§ therefore initialized and it is used as the store register and
pointer for the strung out COMPASS line. A blank is added to the
string and this will eventually appear in column 2. Thus we start
with a '+b' or a "bb".

The R-list déscriptor is read up to determine the type of instruction

to be converted and each type is processed in the following several

manners:

TYPE1L only a maximum of three registers. The op code is
closely examined to find the proper instruction and the
letters for the instruction and the register assignments
are added to the string.

TYPE2 only a mask or set instruction needed. Which one is
determined and the letters, register and constant are/
added to the string.

TYPE3 the proper letters are added according to the op code.
The IH field is then processed which takes into account
the necessity for issuing a SUB macro reference.

TYPEL only jumpbcan be compiled in this case. The proper
letters are added and the symbol is processed.

PACK this is the routine that the above four routines go to

when they have finished placing a card image backwards
in the string. The string is packed to look like a
card that comes through the card reader and thus it is
terminated either be a zero word or by the last word

having 12 bits of zero in the lower 12 bits.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
™S 32.6
DOCUMENT CLASS PAGE NO. .
PRODUCT NAME FORTRAN EXTENDED VERSION 2.0
PRODUCT MODEL NO. 3PCO8 MACHINE SERIES __64/65/6600

6.0

6.1

CA 138-1 REV 10-67

After the instruction has been added to the temporary COMPASS file,

the substitution macro reference or delay substitution macro reference,
is placed in the COMPASS file if necessary. The substitution macro

is referenced any time a 30 bit instruction has a formal parameter as
part of its address field. The delay macro is referenced only when
the same formal parameter is used in both the upper and lower parts of
the same word. Traceback information is also output at this time if

a 60 bit return jump was just processed. POST then exits with X6
positive unless there are not 40 more words of working storage left
(the maximum amount of storage POST could need to process one R-list

entry.) If not enough room is left, X6 is negative.

FORMATS

The code at PACK8 may be changed during execution to facilitate the

necessity of putting out a delay substitution macro reference for the
following situation:
Code desired: SAl FP1
SA2 FP2
where FP1, FP2 are formal parameters.
Due to the way the address substitution takes place, the following

COMPASS output must be produced:

SA1 FP1
SUB FP1
SA2 FP1+1
DELAY FP1
SUB FP1,1

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS i ’ PAGE NO.___27
PRODUCT NAME FORTRAN EXTENDED VERSION 2.0
PRODUCT MODEL NO.__3PC08 MACHINE SERIES ___64/65/6600
6.2 APCA contains the CA field of the instruction presently
being sent tp COMPASS
6.3 APLST contains zerb or the name of the formal parameter just
formed in a K field.
6.4 APLAST contains the name of formal parameter last used in a
K field.
6.5 CALAST contains the last CA field put into a sub macro reference.
6.6 CMPSPR contains the starting address of the line images for the

COMPASS file (OPNPOST sets it to FWAWORK),
6.7 CMPSPS contains the address in which COMPASS line images stored.
6.8 TRACEP set non-zero on a 60 bit return jump. Indicates
traceback information should be added. This is done
after the RJ instruction has been converted to a COMPASS
line image.

6.9 COMPASS line string each line for COMPASS is strung out, one
character pe} central memory word, backwards starting
at LWAWORK, When the entire instruction has been
translated it is packed 10 characters per word and
added to the temporary COMPASS file.

6.10 Temporary COMPASS file starts at FWAWORK and grows forware toward
LWAWORK, Contains COMPASS card images for all instructions
translated between a call to OPNPOST and one to CLSPOST.

6.11 Sequence SUB and DELAY count is held in bits 41-52 of word 2 of the
2 word symbol table. The total SUB and DELAY count

is held in bits 19-36 of the word 2 symbol table entry

for the formal parameter.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS, PAGE NO. 33,1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES —_64/65/6600
MACROE
1.0 MACROE expands a macro reference into proper R=LIST information.

1.1

2.1.3

3.0
4.0
4.,0.1
4,0.2

4,04

MACROE is part of Pass 2. It processes one macro reference each time
it is called.
MACROE has only one entry point.
MACROE |
One macro reference will be expanded into R-LIST.
Calling sequence:

SAl “first word address of the macro reference'.
MACROE is called by PRE. 'Upoﬁ returning to the caller, the macro will
have been expanded starting at MACBUF the external location and the
number of R-list entries the macro expanded into will be found in MACWRDS.
Both MACBUF and MACWRDS are contained in READRL.
The macro parameters are strung out one per central memory word starting
at PARAN which is an entry point to MACROX. The macro descriptor is
picked up and the macro text is transferred to the macro expansion area.
All fields of the text that have to be modified are processed during this
transfer. When the complete text has been transferred, MACROE will exit.
No diagnostics are produced,
The following cells are referenced and expected to be set accordingly.
RNAME - (RA+64B) (same as NRLN) contains the next R register to use.
DESCR - external to MACROE start of the descriptors. This address is used
as the starting point to index into the descriptors.
PARAN - external to MACROE -’is the starting address of storage used for

expanding the calling parameters for each macro reference, Starting at

CA 138-1 REV 10-67

L.,0.5

4.0.6

'4.,0.7
4.1
L1}

L.1.2
4.1.3

Lo1.h
k1.5
.- 5.0
5.1
.
5.1.1

5.].2

5.1.3
5.1.4

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS, PAGE NO. 33.2
. PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES _64/65/6600

PARAN (in MACROX) there is sufficient room to expand the maximum
calling sequence.

MACORG - external to MACROE that is set by an EQU in MACROX. It is set
to the table bias for the macro numbers.

3

DOMACK - the bias added to the macro descriptor®to find the DO macros.

MACBUF - is the starting address for storing the expandéd macro.
MACROE will have set the following cells upon exit:
RNAME- will be updated to reflect any register numbers (R's) generated

in the macro expansion.
MACWRDS - will contain the number of words in the macro expansion.
MACBUF - external to MACROE. Firstvword address of the area in which

the macro is expanded.
MACWRDS -~ set to the number of words in the macro expansion.
MACNXT ~ set to MACBUF if there were no RLIST entries to expand.
Structure - The expansion can be broken into three distinct portions,
Pick up Macro‘descriptor
The macro number is ;djusted by the table bias (MACORG) and the descriptor
is picked by indexing into the macro descriptor table which starts at
MACDESC. This descriptor contains information to do the following:
The initial value of the register number (R's) to be used for this macro
expansion is saved and then updated to reflect the number of registers to
be generated in this expansion.
The macro length is’extracted.and placed in MACWRDS.
The descriptor for each macro contains the number of registers passed

as formal parameters. The number of symbolic fields (IH) and the number

CA 138-1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS, PAGE NO. 33.3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES _64/65/6600

5.1.5
5.2

5.2.1

5.2.2

5.3
5.3.1

5.3.2

5.3.3

5.3.4

of constant fields (CA) passed as formal parameters. These fields are
extracted from the descriptor and saved.

A read register is initialized to the first word of the actual macro text.
Expand the actual macro parameters.

The number of R's, IH's and CA's have been saved from the macro descriptor.
They are now extracted from the macro referenced area and expanded starting
at location PARAN. They are unpacked so that each parameter occupies one
word,

The addresses of the start of each field are kept in B registers. This
allows indexing into the list when an actual parameter substitution is
required,

EXPAND the macro text.

One word is read from the text. The OC is extracted and used to index
into the descriptors to determine the type of R-list desired.

TYPE1 - The three R fields are extracted, examined to determine what,

if anything, should be substituted for them. They are then reformed and
added to the expansion area. In all céses R fields may be replaced with

a parameter R, a generated R, or they may be left alone (in case of A0 of
BO).

TYPE2 - the RI field and CA field are examined to determine if any change
is necessary. The lower 13 bits of the 14 bit SO field are saved. (The
upper bit is an indication as to whether or not the CA field is an actual
parameter). The R-LIST entry is combined and added to the macro expansion
area.

TYPE3 -

CA 138=1 REV 10-67

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS, PAGE NO. 33.4
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES _64/65/6600
5.3.4.1 First word has a replaceable Rl and CA field. The lower 13 bits of the

5.3‘#02

5.4
6.0
6.1
6.2

7.0

8.0

9.0

S0 field are saved. The Rl and CA fields are replaced if necessary. The
entry is reformed and added to the macro expansion.

The second word is read up. It has a replaceable IH and R field. The H2
field, if any, is destroyed. The fields are processed, the entry recom-
bined, and added to the expangion.

This continues at 5.3 until all the text has been processed.

FORMATS - ’

No flags or tables are held or built by MACROE.

The expanded macro is in the form of regular R-LIST as described in the
R-LIST write-up. The formats of macro descriptor and macro text are given
there also.

No modification facilities.

Method:

The macro is expanded one word at a time, replacing actual fields as
necessary.

The coding in MACROE has been reordered several times to improve its

timing. Any modification should be done with care.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
'DOCUMENT CLASS IMS PAGE NO._34.1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES 64 /65 /6600

1.0

1.1

1.1.1

1.1.2

1.1.3

1.1.4

1.2

CA 138-1 REV 10-67

BUILDDT

General Information
BUILDDT builds a dependency tree from a specified sequence in
the R-list. One should be familiar with the information in
Chapter 26 before reading this document. The tree will reflect
the following: i
The requirements of an R-list entry for results produced by
another R-list entry.
The requirement that store operations take place within the most
immediate surrounding jumps, (stores must take place prior to the
following jump and after the preceeding jump).
The requirement that all references to identical IH fields are
in the same relative order as originally in the R-list. (This
is to make sure A (5) is stored into last in the following ex-
ample)
DO 10, I =1, 10
A (I) = expression

10 A (5) = expression
The requirement that the updating of DO loop index functions takes
place after all of their uses within the DO loop.
The following conditiohs will prevail when BUILDDT exits:
a) If there was insufficient working storage for the tree

to be built X6 will be negative.
b) Otherwise X6 willtbe positive and the entry point TREELNG

contains the length of the tree, the entry point FWATREE

CONTROL DATA CORPORATION o« COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 34.2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES___64/65/6600

2.0

2.1

2.

2.

2.

1.1

1.2

1.3

contains the start of the tree, FWAWORK has been updated te
save the tree, the descriptor for each R-list entry include
the number of times the entry is used as a predecessor. (See
section 27 for a more detailed explanation of an R-list
descriptor); Each entry in the tree occupies one computer
word in the following format.

59 36 35 @ 18 17 0

O-s--menonn- 0 | SUCCESSOR PREDECESSOR

The predecessor and successor fields are each 18 bits long and
contain the address of the operation within the R-list. The treé
is ordered such that the entry with the highest priority appears
first.

Usage

Entry Point Name: BUILDDT

BUILDDT is entered with a sequence in the R-list specified for
which a tree is to be built. The start of the R-list (FWARLIS),
the number of entries in the R-list seduence (NORLIST), and the
available core limits fWAWDRK, LWAWORK are all accessed.

BUILDDT is entered via.a return jump. It exits through its entry
point with X6 negative if there is insufficient room; otherwise,
X6 is positive and the conditions listed under 1.2 above prevail,
BUILDDT is divided into three parts; the builﬂing of the treé,
the calculation of priorities, and the sorting of the tree.
Initially, a temporary tree is built starting at LWAWORK and

extending toward FWAWORK. The tree is then sorted such that all

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO._34.3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES __64/65/6600

3.0

4.0

4.1.1
4.1.2
4.1.3

4.1.4

5.0
5.1

5.1.1

-CA 138-1 REV 10-67

equal predecessors are together and in ascending order. The
priorities are then calculated. A priority sort is then per-
formed and the tree isimoved to start at FWAWORK and grow toward
LWAWORK.

No diagnostics are produced.

Environment: The following information must be provided in the
following cells, all external to BUILDDT.

FWAWORK, LWAWORK must éontain the available working storage limits.
FWARLIS must contain the first work address of the sequence.
NORLIST must contain the number of R-list entries in the sequence.
It is expected that the sequence will have been transformed into
three sections that lie in series. The first section contains

the first word of each R-list entry, the second section contains
the second word of each R-list entry, (zero for R-list types of
one word length) and third section contain the descriptor for
each R-list entry. The routine COPY placed the tree in this
format.

Structure

First Section - Forming the Tree

After initialization, one pass is made through the R-list to link
any store instructions to surrounding jump.instructions. The
first store instructions are linked to the end of the sequence
with an instruction time of 10 (time for a store) and a total time
of minus one. (This total time and instruction time are used in

the priority calculation.) As each store instruction is linked,

CONTROL DATA CORPORATION o COMPUTER EQUIPMENT GROUP

DOCUMENT CLASS
PRODUCT NAME
PRODUCT MODEL NO.

5.1.2

CA 138-1 REV 10-67

DIVISION
IMS PAGE NO._ 34.4
FORTRAN Extended
4P616 MACHINE SERIES__64/65/6600

its address is kept in another list. When/if a jump instruction
is found, all of theselstore instructions are made successors of
the jump instruction. After this list of store instructions is
depleted in this mamer, this search is continued. Store instruc-
tions are now made predecessors to this new jump instruction and
will be made successors to a preceding jump instruction if there
is one. This search terminates upon detecting the start of the
sequence. During this pass through the R-list, the uses of Bl
are noted and made predecessors to the initialization of Bl for
DO loop usage (if there is such an initialization).
Now the tree entries for register dependency and for DO loop
functions are made. At the same time we do this, information
is saved to enable us to later accomplish the sequential linking
of TH fields. Since, in a well behaved DO loop, addresses can
be accessed through B registers, short loads and stores are also
entered into this list of IH fields. An R-list entry is read
and unpacked. If it has a negative exponent, this indicates a
DO loop function is being updated and linkage to this functions
use is required. The RI field is extracted and compared to all
piior RJ, RF, and RK fields in the sequence. Any that are equal
to this RI result in a tree entry. This is done in a routine

:
called SUBLINK. The instruction is repacked, with a positive
exponent, and stored back into the R-list 1 section. We then
determine the type of R-list entry, extract the appropriate regis-

ters and search the rest of the R-list for the definition of

these registers. If they are not defined in the sequence they

CONTROL DATA CORPORATION . COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. 34.5
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES __64/65/6600

are linked to the start of the sequence. If they are defined,

the instruction for the definition is extracted from the descrip-
tor and included in the temporary tree. The predecessor count

in the descriptor is updated by 1 only when its resultant register
is needed in another operation. This continues until the whole
R-list has been examined and proper tree entries made for it.

5.1.3 At this time the list containing the IH field information is
processed and tree entries made, if necessary. The list is
searched for a usable entry. When one is found, its IH field is
extracted and the rest of the list is searched to find if there
is an entry specifying that a store was made into this IH group.
If a store was made, tﬁe entries using this IH field are sequen-
tially linked so that these operations take place in the same
order in which they were specified in R-list.

5.2 Second Section -~ Priority Calculation-

5.2.1 The tree is sorted so ;11 entries with the same predecessor are
together and the list is in ascending order. This is domne to
reduce the number of memory accesses to accomplish the building
of priorities. |

5.2.2 The building of priorities starts with entries linked to the
end of the sequence. The priorities are built by working back-
wards in the tree and calculating the maximum amount of time it
will take to reach each point in the tree. When a node is found
in the tree for which the time to reach has not been determined

for all paths to the point, one of these paths is chosen and a

€A 138-1 REV 10-57

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS S PAGE NO. 3%-6€
PRODUCT NAME FORTRAN Extended

PRODUCT MODEL NO. 4P616 MACHINE SERIES___64/65/6600

5.3

5.3.1

5.3.2

5.3.3

CA 138-1 REV 10-67

forward search is made along this new path until a node in this
path is found for which the time has been determined. The prior-
ity building starts agdin, backwards from this point. The prior-
ity field, which is in the upper 13 bits of each tree entry is
set negative as each path to the point is analyzed and set positive
when all paths to that point have been analyzed. When there are
no entries other than those linked to the start of the sequence
with negative time, the priorities have been calculated.

Sorting of the tree - two parts.

A simple sort of the tree is performed by comparing two entries
and switching them if the second has a higher priority than the
first one. Each time a switch is performed, a flag is set and =
after each pass through the tree, if the flag is set, another
pass is made. This method was employed because the tree is fair-
1y well sorted from the start as a result of the order the tree
entries are initially mpade.

Any entries with a priority of zero (dangling code) are eliminated
from the tree at this time and the uses count (see description of
descriptor, sectiom 2?) of its predecessor is decreased by 1.
The tree is then transferred so it starts at FWAWORK and grows
toward LWAWORK. During this transfer, all information but the '
predecessor and successor is extracted from each entry. When
entries with equal priorities are encountered, the section of
equal priorities is further examined and reordered so that the

entries with the greatég number of predecessors appear first.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.___34.7
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES __64/65/6600
6.0 Formats
6.1 Tree
TT IT 0 SUCCESSOR | PREDECESSOR
13 5 6 18 18

TT ~ total time to get to this successor in tree

IT - time to get from this predecessor to this successor.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION + COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS _ PAGENO.__35.1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES _64/65/6600

1.0

2.0

2.1

2.2

2.2

CA 1381 REV 10-67

PS2CTL

General
PS2CTL ié the first routine entered in Pass 2. It places all
Pass 1 diagnostic messages into the output file before calling
PRE. The Pass 2 I/0 routines are entry points PS2CTL. The dis-
play code diagnostic messages are also contained in PS2CTL,

Entry Point Names

ERROR2. The first entered entry point of Pass 2. It checks for
errors and lists diagnéstic messages. If fatal t§ compilation ﬁr
execution errors occurred, Pass 2 is not executed but control is
returned to LDCOM1l in CLOSE2 to reload and execute Pass 1.

PS2CTL. PS2CTL is not<used as an entry point as such but simply
to denote the start (low memory address) of working storage for'
Pass 2.

RDWDS. The routine for reading R-list from the disk. The calling
sequence is: |

SB6 "file pumber“

SB7 "fwa' of central memory to read in to
SB1 "number of words to transfer'
RJ RDWDS

WRWDS2. The routine used for plaéing line images into the COMPASS
file. The calling sequence is:

SB6 ''file number”r

SB7 "fwa" of central memory to transfer from

SB1 '"number of words to transfer"

RJ WRWDS 2

DIVISION

DOCUMENT CLASS IMS PAGE NO.__33°2

PRODUCT NAME FORTRAN Extended

- PRODUCT MODEL NO. 4P616 MACHINE SERIES__64/65/6600 S—

3.0 PS2CTL detects no error conditions.
' 4.0 Environment

PS2CTL looks at or initializes the following named location of the
low core communications area: SYMEND, PTEMP, APLAST, VAR1, PROGRAM,
VARLAST and NRLN.
ERTAB contains the error code number and the line number of the
error as set by ERFPRO.

5.0 Structure

5.1 RDWDS first checks to see if the given buffer is empty and if so a
call is made to CIO to fill it. MVWRDS is called to actually trans-
fer the given number of words from the buffer to the CM locationm.
The IN and OUT locations and NUMBER of words out of the buffer are
maintained.

5.2 MVWRDS moves a given number of words from a buffer area to the re-
quested central memory;location.

5.3 WRWDS2 essentially performs the write fumction, maintaining buffer
pointers and calling MVWRDS to actually perform the move from a CM
location to an output buffer. |

5.4 ERRORZ is the primary entry point; issues diagnostic messages to the
list file, then either calls PRE to continue Pass 2 or LDCOM1 to
process the next program, if any.

6.0 Formats

CA

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

138*1 REV 10-67

The error table format is described in ERPRO, Section 7, as is the

format of diagnostic messages.

3.1

2.0
2.1
E.l-'.l

3.0
3.1
3.1.1

3.1.2

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS NS i pAGE NO.__3be1
PRODUCT NAME FORTRAN Extended Version 2.0
'PRODUCT MODEL NO.__3PC08 MACHINE SERIES __B4/b5/bb00

FORTRAN EXTENDED ASSEMBLER

GENERAL INFORMATION
Task Description

The FORTRAN Extended assembler FTNXAS replaces COMPASS as the
assembly pass of FORTRAN Extended Version 2.0. It is a one
pass assembler designed specifically to increase compilation
speed. It accepts a formatted subset of the COMPASS assembly
language and produces binary relocatable subprograms. All
information required to facilitate a one pass assembly is
gathered during the previous two passes of the compiler-

USAGE
Entry Points
FTNXAS

The assembler is entered either by a direct jump if the
assembler is a separate overlay or by a return jump from
CLOSER2.

DIAGNOSTICS
Fatal to Execution
TLL

The word ILL appearing to the left of the source line on the
assembly listing means the assembler could not recognize the
statement or encountered an ERR pseudo-op. When this occurs
assembly is abandoned,; the fatal to execution flag is sets

the source line is printed regardless of the 907 option, and
assembly proceeds with the next statement. The fatal to
execution flag causes the message “FTNX ERRORSY to be written on
LGO in place of the normal relocatable subprogram. Note that since
the code produced by the first two passes is assumed to be
correct, minimum error checking is designed into the assembler.
The usual response to an error in the source string will be
this diagnostic. Abnormal termination of the job may occur
during compilation because various unused jump vectors in the
assembler are used for storage or unrelated code.

SYMBOL ERR

This message appears to the left of the source line if the
assembler was unable to find a symbol in the two word symbol
table. This error causes the same action as described for
ILL.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS Ins ' PAGE NO._ 3be«2
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No._ 3P €08 MACHINE SERIES .. B4/b5/bb00
3.1.3 STORAGE OVERFLOUW

4.1

This message is printed on a separate line when the assembler
has expended all available working storage for chained common
and external reference information. Assembly will proceed to
count the increase in field length requireds but no relocatable
binary deck will be produced. The message YINCREASE FIELD
LENGTH BY XXXXXX® is printed after the END statement of the
subprogram.

Informative

None.

ENVIRONMENT

The assembler may reside after CLOSEZ2 in the {1l,2F overlay:
as a separate overlayr or with Pass 1 and 2 of the compiler
in a non-overlay configuration.

Input String

The input string consists of COMPASS language card images
constructed using the following rules.

Executable Instructions

1. The label field must be blank except the forcing charac-
ters + {upperlt and - {lowerl may be used in column 1.

2. The operation code must begin in column 3.

3. There must be only one space between the operation and
address fields.

4. Following is a list of executable instruction mnemonics
and address fields that FTNXAS can recognizer followed
by the binary produced.

Binary
Opcode Address in Octal Other Action

RJ Symbol 0100000000 External relocation
noted: force upper next
instruction.

JP Bl,Symbol 0210XXXXXX Program relocation
noteds force upper next
instruction.

JP Bl 0210000000

CA 1381 REV 10-67

CONTROL DATA CORPORATION

AT

MNA/LINATAT 7~ A
UL UrIicin g \..LI‘\SS

PRODUCT NAME

“PRODUCT MODEL NO.

CA 138-1 REV 10-67

PAGE NO.

DIVISION

3.3

ggéTRAN Extended Version 2.0
3PCOa
Binary
Opcode Address in Octal
ZR XJ,Symbol DBDJXXXXXX
NZ ijSymbol DBIJXXXXXX
PL XJ;Symbol DBEJXXXXXX
NG XJ.Symbol DBBJXXXXXX
E@ Symbol O400XXXXXX
EQ Bj«BjrSymbol Olj jXXXXXX
NE Bi'BJ.Symbol DEiJXXXXXX
GE BirBj;Symbol DEiJXXXXXX
LT BjrBjrSymbol 07; ;XXXXXX
BX; X W04 5
BX; X+ Xk 11j jk
BX; X Xk 125 jk
BX; XJNXk lBijk
BXi X 45 kK
BX; ~Xi*X; 15 5
BX; ~XkX; ki jk
BX; —XkNXJ l?ijk
LX; jkB 20i jk
LX; B 2030,
AXy jkB Elijk
AXi kB Elka
LXj BjrXgk 22; ik
AX; BjrXk 23i jk

MACHINE SERIES

E4/65/6600

Other Action

Program
Program
Program
Program

Program

force upper next

tion.

Program
Program
Program

Program

relocation
relocation
relocation
relocation

relocation

relocation
relocation
relocation

relocation

noted.
noted.
noted.
noted.

noted:

instruc-

noted.
noted.
noted.

noted-

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS Ins PAGE NO._3baY
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.___3PC04 MACHINE SERIES _E4/b5/bB00
Binary
Opcode Address in Octal Other Action

NX; BjrXk 24 jk

UX; BjrXk 2bj jk

PXi ijXk E7ijk

FX; Xj+Xg 3045k

FX; Xj-Xp 31 jk

DX; Xj*X; 325

DX; Xi=Xj 33; 5k

IX; Xj* Xk 3'=ijk

IX; XJ-Xk B?i,jk

FXi X ™ X Lmijk

DX; X j Xk 4§ jk

MX; jkB 43} jk

MX; kB 43; 0k

FX; Xj/ Xk H4§ jk

NO 45000

Sri AJ+A-E- ‘ gl jXXXXXX Relocation noted.

Spi Bj*A.E. gliJXXXXXX Relocation noted.

Spi A-E. g9l;0XXXXXX Relocation noted.

Spi Xj*A-E. g2 jXXXXXX Relocation noted.

Spi xj+Bk 93i jk

Sei X 93; ;0

Spi Aj*By gt jk

Sei A B A

Sri Aj7Bk 95i jk

CA 138-1 REY 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS Ins] PAGE NO.__3hks5
PRODUCT NAME - FORTRAN Extended Version 2.U
PRODUCT MODEL NO.___3PCO8 MACHINE SERIES . B4/b5/6600
Binary
Opcode Address in Octal 0t Action
Spi Bj+Bk gbj jk
Sri Bj ‘ | gbiJ'D
Spi BJ—Bk g?ijk
where:
1} If p=A then g=5; if r=B then g=k, if r=X then
g=7-

" CA 138-1 REY 10-67

2} A.E. is an address expression consisting of octal
constants and/or symbols in the same relocation
base separated by plus {+} or minus {-1 symbols.

Pseudo-0ps

1. Any pseudo-op may be labeled-

2. Pseudo-ops are free field except labels: if present:
must begin in column l.

3. Following is a list of permissible pseudo-opss their
forms, and the results.

Label Opcode Address Action
Required BSS Octal constant al} force upper-

b} define the label-
c} increment the
origin counter
by the value of
the octal constant.

Optional DATA Octal constant a} Convert the octal
constant to binary
and write it out.

b} Define the label:,
if present-.

Optional DIS nr character a} Define the label:,
string if present.
b} Urite n words with
blank fill.

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS Ins _ PAGE NO.___3b+b
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PC08 MACHINE SERIES B4/b5/bb00
Label Opcode Address ‘ Action
Optional E@U Anything al} Ignored.
None ORG Address expres- al The origin counter
sion is reset to the
value indicated
by the address
expression.
Required SET] a} The label is de-
fined to have the
current value of
the origin counter.
None REPTI S/Symbol, B/Octal a} A REPI table is
constant, (/octal produced.
constant
None USE name or /name/ al Change the origin
' counter to that of
the block indicated.
Optional VFD 1} n/octal al The specified data
constant. is converted to
2} n/address ex- binary and written.
pression, Relocation is noted.
lasnsk0.
3} {nwp}/IMI{C,H,
L or R}« Char-
acter string,
1<4n<10,0sM<10.
4} Any combination
of the above
separated by
commas.
5} The total bits
specified must
be 15, 30 or LO.
B} Any relocatable
quantity must be
in the lower 18
bits of the gen-
erated field.
Optional MACRO Anything al Causes the assem-

bler to ignore all
lines following

until the characters
YENDM® are encountered
beginning in column

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS ins _ PAGE NO.__3bs7
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No. 3P 08 MACHINE SERIES_BH/b5/6600

Label Opcode Address Action

NOTE - FTNXAS ignores macro descriptions: the macros
that it expands are treated as pseudo-ops.

None - ENDM {Cols. 3-b} a} Terminate skipping
of a macro prototype
and return to normal
assembly mode-.

END {must start in al Terminate assembly
Cols. 3-8% and return.
Symbol or blank

IDENT Anything al} Causes assembler
initialization to
take place and
assembly to begin.

LIST Anything a} Ignored.

Macro Calls

1. Macro calls for SUB, DELAY, FILE, and ENTR must
have exactly one space between the call and the
parameters. NAME and ADDSUB are free field.

2. Below is a list of macro names the assembler will
pecognize. See Section 5 of this document for the
macro prototype description and the generated code.

Label Macro Name Parameters Comments
None ADDSUB FP
None SUB FP¢ CON
None DELAY FP
None FILé LN,NAME
None FORPAR X FORPAR calls aﬁe
ignored by FTNXAS.
None NAME N,T,BASE,BIAS,
FP¢DL,D2,D3
None ENTR NAME

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS ins PAGE NO.___3b:8
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3PCOa MACHINE SERIES _ b4/b65/6L00

4.2 Two Word Symbol Table

Active statement labels: entry points: and the labels DO.,
ST.+ and 0T« are defined by a block relative address and a
relocation base indicator. The length of the relocation
base associated with each formal parameter is also held in
this table. Other entries are marked as undefined and their
addresses are determined during assembly.

4.3 Actual Parameters Variable Dimension and Generated Label Tables
Three tables contain respectively actual parameter, variable
dimension, and generated label definitions relative to the
CO0DE. relocation base-.

Yoy ORGTAB
A table of one word entries which is used to pass to the
assembler the names and lengths of the common relocation
bases and the lengths of the local relocation basess START..,
ENTRY., VARDIM., CODE., DATA., DATA.., and HOL..

4.5 APTAB, VDTAB, GLTAB

Set in ORGTAB to the first word address of the AP, VD, and
GL tables.

Y.b Object Listing Option

Bit zero of location RA+33B is set to 1 to indicate the v0°
option has been selected.

4.7? SYMLA, SYMENDA

RA+U4LB and RA+47B point to the first and last entries of
the two word symbol table respectively.

4.4 RA+Y
Contains in the upper 42 bits the name of the binary output
file and in the lower 18 bits a pointer to the FET for the
file.

4.9 ILLFLAG

Set to non-zero if a fatal to execution or compilation error
has occurred before entry to the assembler.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
ggggﬁi@&iﬁgg; gggTRAN Extended Version 2.0 PAGE NO. b
PRODUCT MODEL No._3P€08 MACHINE SErIES __BH/65/b600
5.0 MAJOR SUBROUTINES AND LOGICAL SECTIONS
5.0.1 Summary
1. PIDENT - initializes the assembler for each program.
2. BUILDOT - creates a 22 word ORGTAB entry.
3. MR.CLEAN - removes blank fill from a symbolic name.
4. INITLINOBINPO} - moves the next source image to ILINE
from the COMPS buffer. C(ontrols reading the COMPS file.
5. START - controls analysis of the label field of each
source statement.
L. COLIVEC - determines the contents of the label field.
7. BLANK - processes a blank label field.
8. PFC - processes forcing characters + and - in the label
field.
9. PLABEL - processes a symbolic name in the label field.
10. OCSCAN - controls opcode field analysis-
11. Opcode transfer vector - decodes the contents of the
opcode field.
12. L3.RJ - produces a binary instruction for RJ.
13. L3.JP - produces a binary instruction for JP.
4. kz.XJP - produces binary instructionsfor ZR, NZ: PL and
15. L3.EQ - produces a binary instruction for EQ.
1b. L3.BJP - produces binary instructionsfor NE, GE. and LT.
17. L3.BOOL - produces binary instructionsfor all BXj.
18. L3.MX, L3.SH - produces binary instructiors for shift
unit instructions MXjr LXjr and AXj-.
19. L3.PUN - produces binary instructionsfor NXjr UXj»s and

CA 138-1 REV 10-67

PXj-

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS i PAGE NO._3b-10
PRODUCT NAME FORTRAN Extended Version 2.0 ’
PRODUCT MODEL No.__3PC08 MACHINE SERIES __b4/b5/bb00

20.

cl.

cd.

£3.
ELI'.

cs.
chb.
27
2é.
29.
30.
31.
3c.
33.
34.
35.
3k.
37.
3a.
39.
yo.
4L.

4c.

CA 138-1 REV 10-67

L3.ARIT - produces binary instructionsfor FXjr DXjr IXj-:

L3.SET - produces binary instructionsfor the increment
unit instruction SAjr SBjs SXj-

L3.VFD - translates the address field of VFD pseudo-op
to binary. ;

PDIS - processes the DIS pseudo-op.

PDATA - converts the address field of the DATA pseudo-op
to binary. .

PBSS - processes the BSS pseudo-op.

PUSE - processes the USE instruction.

USENXT - changes relocation bases.

USESTAR - returns to the previous relocation base.
PSET - processes the SET pseudo-op.

L3.0RG - processes the ORG pseudo-op.

PMACRO - processes the MACRO pseudo-op.

PREPI - processes the REPI pseudo-op.

PADDSUB - phocesses and ADDSUB macro call.

PDELAY - processes é DELAY macro call.

PSUB - processes a $UB macro call.

PFILE - processes a FILE macro call.

PNAME - processes a NAME macro Call.

PENTR. - processes an ENTR macro call.

EVAL - evaluates an address expression.

REF - obtains the value of a symbolic name.
CONVERT - converts display coded octal constants to binary.

PACKID - separates a symbolic name from the input string.

SUBROUTINE INTERCONNECTION MATRIX Pg. 1 of 2

C: Subroutine Call
T: Transfer of Control

From:

22 34 5k 76 9101112 1311516171819 20 21 22 23 24 25 2b 27 2829 30 31 32 33 3 35 3537 38 39 4O 4L 4EH3 44 45 Yk 47 48 49 50

L S I = =
Crrh EFE L REDSe N n s W
-
=

-

-

-

-

U U e
- B Ff WU e OoJa

4 9 4 4 33 419 4931 44
[a]

c Cc¢ C
C C C

w n
o9 m
=

C: Subroutine Call
T: Transfer of Control

From:

SUBROUTINE INTERCONNECTION MATRIX

L 23 4 5b 748 910111213141516172819202L22232425 23 272629 3031 3233 34 35 363738 394041 4243 44 45 4k 47 43 4950

To: 31
3z
33
34
35
36
37
38
39
40
41
ye2
43
4y
4§
4k C
47
4a

49 T

50

EXTERNAL ROUTINES:

LSTPROC

LIST c c
WRWDS2

CI0L. C C

DPCLOSE

T

T T T B

C C CcC

m

T TTTTTTTTTTCTC

C C C

T
C c <
¢ ¢ ¢
ccC
C C
C c C C C
C
C C
T T
C
C C
¢ C C
C
T

Pg.

2 of 2

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLAss___ IMS N PAGE NO.__3b-11
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No._3PC08 MACHINE SERIES_ b4/b5/6500

43.

"“4.

45.

4b.

47.
4a.
49.
50.

WRSE®R - writes a sequence of words on the LGO file.

WRTEXT - maintains ORGC and POSC, creates and writes
TEXT tables for the loader-.

FOTEXT - forces out the current text table.

WRLIST - prints each source line, generated binary
instruction and the ORGC.

LY. CKL,DEF - defines statement l!abels.
LY4.CKRB - does address relocation bookkeeping.
ILL,SILL,STOVER - processes error conditions.

PEND - terminates the assembly process.

5.0.2 Subroutine Interconnection Matrix

See attached pages.

5.1 PIDENT

5.1.13 This routine initializes the assembler. It is entered from
the opcode vectors when the IDENT pseudo-op is encountered.
The following tasks are performed:

1.

3.

" CA 138-1 REV 10-67

The pointers to the first and last entries of the two
word symbol tabler. SYM1 {RA+12B} and SYMEND {RA+13Bl,
are reset from SYMLA {RA+4LB} and SYMENDA {RA+Y47}
respectively.

MEMENDs the upper limit of the assembler working storage,
is set to the contents of VDTAB-1.

Three switchess LSTSWL, LSTSW2 and LSTSW3, which are entry
points in LSTPROC, are reset to the values KLS1LA, KLS2A
and KLS3A, also entry points in LSTPROC. This change is
necessary because the names of basic external functions
{SIN, ALOG: etc.} are initially entered in the two word
symbol table without a trailing special character {. or
$}, but they appear in the COMPASS line image with this
character suffixed. Resetting the three switches causes
LSTPROC to delete the trailing non-blank character for
symbols of fewer than seven characters or to exclusive-or
the last character with Ob for seven character names and
search for the resulting name.

CONTROL DATA CORPORATION

DIVISION
DOCUMENT cLAsS____1MS _ PAGE NO.___3B+ 12
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.__3PC08 MACHINE SERIES __b4/b5/bb00

10.

1L.

12.

13.

1Y4.

CA 1381 REV 10-67

Allocate an LGO Buffer from MEMSTRT to MEMSTRT+LGOSIZE+1:
set FIRST, IN, OUT to MEMSTRT and LIMIT to MEMSTRT+LGOSIZE+1
in the LGO FET, and reset MEMSTRT to MEMSTRT+LGOSIZE+Z2.

Set LCNT, and entry point in LIST, to zero to cause a page
eject and set LINE to LINE+Y to blanks.

If LCC cards are present place each on the file LGO file
with an end of record write.

Print the IDENT and LIST cards and reset COMPS OUT to the
next card image.

If the object listing option °0Y has been specifieds set
the switches at NOBINPO and WRTSW with return jumps to

WRLIST.

Put a 15 word prefix table with the program name into the
LGO buffer.

Put the ID word and program name word for the PIDL table
in the LGO buffer.

Scan the COMMON portion of ORGTAB until a zero word is
encountered moving the COMMON block names and lengths to
the PIDL tabie and using the subroutine BUILDOT make a 22
word CORGTAB entry for each. The 22 word CORGTAB is built
upwards in memory from MEMSTRT and is terminated by a

zero word.

LORGTAB entries of 22 words each are built for the seven
local relocation bases that are always present using the
subroutine BUILDOT. The lengths of the bases are stored
in the locations STARTA, VARDIMA,«.«/HOLA which are entry
points in ORGTAB. The names of the relocation bases are
taken from the assembler table LOCNAM.

If the current subprogram is a subroutine or function and
there are formal parameters there must be a 22 word LORGTAB
entry setup and initialized for each. The names and lengths
come from the two word symbol table. The formal parameters
are contiguous from ondinal two each having the FP bit set
to one. The length of the relocation base is placed by

Pass 2 in the RA field and is changed to a program relative
address at this timz2 while the RB are set beginning at

seven in increments of one and RL is set to 1.

The LORGTAB is terminated with a zero word and the program
length which was accumulated during LORGTAB construction is
printed then stored in the PIDL table. MEMSTRT is adjusted
to the next location after the terminating zero word.

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS PAGE NO.__3b.13
PRODUCT NAME FORTRAN Extended Version 2.0

PRODUCT MODEL NoO.__ 3PC08 MACHINE SERIES ___ Lu/b5/zLLon

15.

17.

18.

19.

CA 138-1 REV 10-67

If the program name is an entry point determine its address
by the following rules:

Main Program: zero in CODE.

Subroutine: no formal parameters: one in START.
Subroutine: with formal parameters: two in START.
Function: two in START.

and start an ENTRY table after the PIDL in the LGO buffer
with the program name as the first item.

Scan the two word symbo! table beginning below the formai
parameters.

a. Symbols with bit 3t of word B equal to zero are
given a program relative address, i.e.r the first
- word address of the reloccation base indicated by
the RB field is added to the RA field and RL is
set to one.

b- Symbols with the ENT. bit equal to one are put
. into the ENTRY table along with their calculated
program relative addresses. :

c. External names are moved to the LINK foundation
table being built upwards from MEMSTRT. The
contents of bits 41~43 of word B are exclusive-
ored to the first trailing blank in the name before
it is stored in the LINK table. .

When the symbol table scan has been completed: the word
count for the ENTRY table is placed in word one, the LINK
foundation is terminated by a zero word and MEMSTRT is reset
to the next available location.

The next step is to print the ENTRY and LINK tables and to
remove the blank fill from the names. The tables appear
below the IDENT and LIST pseudo-ops regardless of the °0Y
option. Each table is prefaced by a label indicating its
type-

The actual parameter, variable diménsion and generated

label definition tables are scanned- The tables lie
immediately below the two word symbol table and are
terminated by a zero word. Each entry contains in the

lower 18 bits definitions of the [AP,1VD and ZGL labels
relative to the CODE. relocation base. Any or all of these
tables may be empty. The base address of CODE. is added

to make the definitions program relative. The entries refor-
matted to look |ike word B of the two word symbol table.

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS s PAGE NO.___3b- 14
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No._3PC08 MACHINE SERIES _ b4/b5/6600

20. TIOPARM, an entry point in WRWDSZ2, is set to 1bB to cause
assembly output to be in binary mode.

2l. FREEMEM, the pointer to the next free location of working
storager is set to the contents of MEMSTRT. RBTEMP, used
for relocation calculations, is initialized to zero.

8.2 BUILDOT

5.2.1 This subroutine is used during assembler initialization to
allocate and initialize a 22 word ORGTAB entry corresponding
to each relocation base in the program.

" The calling sequence is:

B2 = origin counter {base address} for this block.
This will be zero for common blocks and the sum
of the lengths of previous local blocks for
program relocation base.

B3 = Relocation base code. This is the LCT ordinal
passed out to LGO and used by the loader. It
starts at three for common blocks and for local
blocks is always one.

Bt First word address of the 22 word entry.

The relocation base name in bits 18-59 with
blank fill. Bits 0-17 must be zero.

X1

X2 = Block lengthy a running sum of block lengths
is maintained in B2 to provide the current
origin counter for local blocks and the program
length at the end of ORGTAB initialization.

5.3 INITL {NOBINPOI}

5.3.1 INITL with its alternate entry point NOBINPO is the first
routine in the main assembly loop. Its function is to read
the next source image into ILINE from the COMPS file. UWhile ,
doing this INITL also manages the (OMPS FET and issues read
requests whenever there is room for one PRU in the buffer. The
number of words moved to ILINE is stored in location SWC. The
alternate entry NOBINPO is used whenever the last line processed
did not produce any binary output. It is one word located at
INITL-Y and filled with NOPS unless the 90 option is specified.
In this case it is plugged with a call to WRLIST during initializg
tion. INITL exits to START to begin processing the line.

- 5eY START

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS InMs PAGE NO.___3b«15
PRODUCT NAME___ FORTRAN Fxtended Version 2,0
PRODUCT MODEL NO._3PCOA MACHINE SERIES __b4/b65/6E00
S.4.1 This routine sets the following registers for the character

pickup macros GCH and CWD:

Bt = b

B? = 54

A5 = ILINE

X5 = {ILINEZ} .

X0 = 54 bit masky left justified.

START exits by jumping into COLIWVEC using the first chéracger
of the line as an index.

5.5 BLANK. OCSCAN. PFCa PLABEL- PNL~ OPCODE VECTORS
5.5.1 COLILVEC: A jump vector used to determine the contents of the
label field. It partitions the first 50 display characters

into the following sets and branches to the indicated routines
for further processing.

£Ar By CreensZihy-s=1 [y1§branch to PLABEL

é+' -Ebranch to PFC

{blank{branch to BLANK
| éZerd Byte,D.lvE.B'HrS.b.?.6.ﬂ.+.l.{,$.=ycomma§branch to ILL
5.5.2 BLANK

FFLAG is set to NFLAG to cause a force upper if the last
instruction was an unconditional jump. BLANK exits to OCSCAN.

5.5.3 PFC

FFLAG is set to +| or =l for plus or minus in column one
respectively. This indicates force upper or force lower to
WRTEXT. PFC skips to the opcode field beginning in column
threer places the first 2 characters in B2 and B3 and transfers
to FLVEC-1+B2 to interpres the opcode.

"5.5.4 PLABEL
The label beginning in column | is separated from the line
using the subroutine PACKID and saved in the location ALABEL
for later definition. FFLAG is set to +| to indicate forcing
upper is required and PLABEL exits to OCSCAN.

8.5.5 OCSCAN

Blanks between the label field and the opcode are skipped

and the first two characters of the mnemocic are placed in

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS ns : PAGE NO._3be1b
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.__3PCO8 MACHINE SERIES LY4/L5/EE00

B2 and B3. OCSCAN exits by transferring to FLVEC-1+B2.

5.5.6 OPCODE RECOGNITION TRANSFER VECTORS

5.6
N

5.7
5.7.1

5.8
5.8.1

5.9

5.9.1

Opcode fields are decoded by indexed jumps using succeeding
characters of the mnemonic. Most instructions can be identified
by examining the first two characters of the opcode field but
for those that require further scannings a vector for each of
the third, fourth and fifth letters has been included along
with the routine PNL which picks the next character from the
input string and jumps back to the vectors. The vector exits
that result from an executable instruction mnemonic will set

X4 to an instruction prototype that is completed as the address
field is processed. Other jumps that result from pseudo-ops
and macro calls simply transfer to specific routiness although
in some cases the spare 30 bits in the last vector position is
used.

A=A

L3.RJ

This routine processes the RJ instruction. The address for the
symbol is fetched from the two word symbol table using the REF
subroutine and NFLAG is set to one indicating the next instructiof
is to be forced upper.

L3«JP

The JP may appear with or, without a symbo! in the address field
but is always indexed by Bl. If there is a symbol the subroutine
REF is used to obtain its address. NFLAG is set to one and the
routine exits to WRTEXT. .

L3.XJP

This routine grocesses the X register conditional jumps ZR, NZ,
PL, and NG. he register number is selected from the input string
and REF is called to obt&in the jump address before exiting to
WRTEXT. ‘

L3.EQ

The EQ jump may be either conditional or unconditional. If
unconditional no B register is specified or Bi will be the same
as Bj. In this case REF is called to obtain the jump address,
NFLAG is set to one and exit is made to WRTEXT. When the two

B registers present are different i and j are selected from the
input string, added to the prototype and REF is called for the
symbol definition before the exiting to WRTEXT.

L3.BOOL

CA 138-1 REV 10-67

CONTROL DATA CORPORATICN

DIVISION
DOCUMENT CLASS LiiS _ PAGE NO.__3be17
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.__3PC08 MACHINE SERIES__ b4/L5/bL00

S5.10.1 For boolean instructions the 15-bit opcode is determined by

: examination of the address field. This is done by observing
the first and second operators to determine the g and h fields
and setting ir jJ and k from the input string. The exit is made
to Lu.15.

5.11 L3.MX, L3.SH

S.11.1 This routine processes the mask instruction and the four shift
instructions. Here it is required to determine whether the
shifts are nominal or constant: reset the opcode in the former
case and set the ir j and k fields in both cases. The exit
is to LY4.15.

S.12 L3.PUN

5.12.1 The assembler must select and set the i+ j and k fields for
the pack: normalize and unpack instruction. The exit is to
LYy.]5.

5.13 L3.ARIT

5.13.1 The instruction for double and single precision floating point
operations and the kO bit integer operations require only the
selection of a mask from ARITAB using the operator character code
as an index and OR it with the prototype in X4. This routine
exits to L3.PUN to set the ir j and k fields-

5.14 L3.SET

S5.14.1 The increment unit instructions have the largest variety of
address fields of any class of statements that are encountered
by the assembler. This routine must determine the second digit
of the opcode and the remainder of the |5 or 30 bit instruction.
The analysis begins by transferring into L3.JdVEC using the first
character of the address field as an index. This will cause a
transfer to L3.S] if the first character is an Ay By or X to
L3.S1IM if the first character is a minus signe to L3.S?7 if the
first character indicates a symbol or constant follows and to
ILL otherwise. At L3.S| a character-by-character scan of the
input string is used to determine if the first item in the address
field is a register name or a variable. For variables a transfer
is made to L3.S7 to evaluate the address expression while for
registers the h field of the opcode is adjusteds j is selected
and included in the instruction and the scan continues after
setting X7 to remember the sign unless the next character is
a zero byte. If the next item in the string is a register name
the opcode is further adjusteds k is selected and set and control
is transferred to LY4.15. . Otherwiser a branch is made to L3.S7
to continue the address expression analysis. At L3.S!IM, X7

:

CA i38-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS NS i PAGE NO.___3b-18
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.__ 3P C048 MACHINE SERIES b4 /bL5/EEN0

5.15
5'15'1

S.1b.1

5.17
S5.17.1

5.18
S.l&.l

5.19
5.19.1

is set to indicate the preceeding minus sign and control goes
to L3.S?7 where the subroutine EVAL is called to evaluate the
symbolic address field. The routine exits to WRTEXT with a 30
bit instruction.

L3.VFD

The VFD pseudo-op routine translates data subfields one by one,
packing the information into the item being constructed. Numeric
and symbolic fields are converted using the subroutine EVAL

while character string data is packed and formatted by the VFD
routine itself. The data fields that can be successfully
assembled are limited as follows:

l. The total of the bits that are specified in any one appear-
ance of a VFD must be |5, 30 or b0,

2. Relocatable fields must appear as the lower 18 bits of the
specified field,

3. Character data must be Cy Hy L or R specification.
PDIS

The DIS routine moves the number of words specified from the
line buffer to the current text table by calling WRTEXT once
for each word.

PDATA

The only type of DATA figlds the assembler will encounter are
single octal constants. They are converted to binary by the
subroutine CONVERT and added to the current text table by WRTEXT.

PBSS

The BSS routine first forces upper by setting FFLAG to | and
calling URTEXT. The argument is converted to binary by the
subroutine CONVERT and added to the ORG counter, then FOTEXT
is called to write out the current text table and start a
new one with the updated origin counter. This routine exits
to NOBINPO to print the line.

PUSE-. USENXT. USESTAR

The USE processor separates the relocation base name from the
input string using PACKID and after determining whether it is
cemmon or local and selecting the correct portion of the 22

word ORGTAB it calls the subroutine USENXT to change TEXT.ADD
to this relocation base entry. USENXT makes a |inear search

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
0 ASS L PAGE NO.__3b- 17
gRggBEQLi;ES FORTRAN Extended Version c.U
PRODUCT MODEL No. 3P <08 MACHINE SERIES__B4/b5/bb00

5.20
5.20.1

- 5.21
5.21.1

S.2c
5.22.1

5.23
5.23.1

of either the CORGTAB or the LORGTAB until it finds the relocation
base name. It then saves TEXT.ADD in the location USEBB and
resets it to the address of the new ORGTAB entry and exchanges

the contents of NFLAG with the contents of the second word in

the table entry. USENXT is also called by some of the pseudo
macro routines. USESTAR is called to change back to the previous
block by resetting TEXT.ADD from USEBB and exchanging NFLAGS.

PSET

The SET pseudo-op is used by FORTRAN to establish an address
of the source data for a REPI pseudo-op to follow. Hence it
appears as YSa SET w¥ only. The subroutine DEF is called to
redefine Sa to the current origin counter after forcing upper-.

L3.0RG

The ORG instruction requires: after evaluation of the address
field by EVALy the relocation base to be changed and the origin
counter in the new base to be reset. The subroutine FOTEXT is
used to force out the old text table and start a new one with
the correct origin counter.

PMACRO

The assembler skips over macro prototypes by changing the word
at START to an YEQ PMAC2Y and returning to NOBINPO when a macro
pseudo-op is encountered. This causes all future statements

to transfer control to PMACE which checks for the ENDM command
and restores the contents of START for normal processing. PMACE
always exits to NOBINPO to print the line.

PADDSUB

PADDSUB processes the address substitution macro, ADDSUB. This
macro will be called by the program being assembled only once:

in the event that it is a subprogram having parameters. After
calling USENXT to change to the VARDIM. relocation block, its
prototype at ADDS(C, except for the last words is written on the
LGO file by WRSER. The last word will be 30 bits 1f MACHINE #
LLOOB, and bD bits if MACHINE=LLOOB: it is written on the LGO

file by WRTEXT. The correct relocation byte is added: and
USESTAR is called to change back to the previous relocation blocke.
Exit is to INITL.

The prototype is set to execute at a location specified by the LOC
pseudo-op which just precedes it5 its address field should be set

to the address of the first word of the VARDIM. relocation block:s

which will be the same for all subprograms.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS : PAGE NO.__3k.20
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.__ 3PC08 MACHINE SERIES____bY/k5/bL0OO

S5.23.2 The macro prototype is:

ADDSUB MACRO FP
USE VARDIM,
SBY |
SA3 FP-]
MXO yg
SBE kO
NO

B} SA3 BYy+A3
SB7? XlI
SAl Al+BY
SA2 X3

A} UXY4 X3,B2
SB3 AP
LXy yg
SBS Bk-BZ2
SA3 A3+BYy
LX2 B2sX2
SX58 Xy+B?
BXY XOwX2
SA2 X3
BXb —-X0OmX5
IXY4 Xb+XYy
LXE B5, XYy
SAL B3
NZ X3:A}
NO
NZ X1,B}
JP wm+]

USE =
ENDM

S.24 PSUB

S5.24. | PSUB processes the SUB macro. This macro is called by the pro-
gram being assembled after it encounters a reference to a formal
parameter. The form of the call is

SUB FP.,K

where the comma and K may be missing and the form of the result-
ing entry is

59 57 56 48 47 1a 17 0

= POSC K ORGC

Entry is made into the‘EE relocation block.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS YIS : PAGE NO._3bksCl
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.___3PC0& MACHINE SERIES k4 /b5 /LENN
S5.24.2 PACKID is called to strip the block name EPy which is left in

5.24.3

5.25
5.25.1

5.25.¢2

position for the subsequent call to USENXT. The position counter
{POSC} and the origin counter {0RGC} are extracted from the
current block and saved in B registers. USENXT is called to
change to the FP block. Returning: FFLAG is set to | to force
upper and the position counter is converted from FTNXAS form

to COMPASS form. Now the sublist entry will be formed,

starting with the origin counter. Bl contains the delimiter
left by PACKID, and if non-zero, the constant is converted by
CONVERT, shiftedr and ORed into the entry. Lastly, the position
counter is packed into the entry and WRTEXT is called to write
the entry on the LGO file. The correct relocation byte is
addeds and USESTAR is called to change back to the previous
block. Exit is to INITL.

The macro prototype is:

SUB MACRO FP,CON
.POS SET 59-%
-ORG SET w-%/59
USE FP
VFD 3/2,9/.P0S,30/CON,18/.0RG
USE ™
ENDM

PDELAY
PDELAY processes the DELAY macro. This macro is called by the
program being assembled if it Is necessary to call SUB twice
in the same word for the same formal parameter. The form of
the call is

DELAY FP

and the form of the resulting entry is

2 30 ST«

where ST. is the address of the start of the sublist table.
Entry is made into the EP block.

PACKID is called to strip the block name EP, and USENXT is
called to change to the FP block. SYMBOL is then called to
obtain the address of ST.- which is shiftedr marked off, and
packed with the 30 field .into X4. WRTEXT is called to write
the entry on the LGO file. The correct relocation byte is
added, and USESTAR is called to change back to the previous
block. Exit is to INITL.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS ins . PAGE NO.__3b-228
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL No.___3PC08 MACHINE SERIES__bY4/bk5/bL0OO

5.25.3 The macro prototype is:

DELAY MACRO FP
USE FP
VFD 3/2,9/30,30/0,L8/ST.
USE =
ENDM

5.2b PFILE

S.2b.| PFILE processes the FILE macro. This macro is called when a

: main program being assembled wishes to set up a FET and buffer
for a file. It uses two prototypess which are formatted as
fol lows:

I} FET prototype:

E1 ' 18
1] 12 FIRST
FILEC = N
oUT
LIMIT
0
2} REPI prototype:
59 54 53 27 2k 0
43 2 ' 1|
FWA OF ZEROS
E]
59 42 Y41 : 18 17 D

5.2k.2 CONVERT is called to convert the buffer length to binary. The
origin counter is obtained: placed into the FIRST, IN, and OUT
fields of the FET prototype at FILEC, and the buffer length +
origin counter is placed into the LIMIT field. Since the zero
word which is the sixth word of the FET must be repeated 13B
timess its address is placed into the second word of the REPI
prototype. The new origin counter is saved in PFILEC, and WRSEQ
is called to'write the prototype on the LGO file. FOTEXT is
then called to force out the current text table so that the
REPI table can duplicate the zero word. Then the origin counter
is reset to the value saved in PFILEC, and WRWDSZ is called to
write the REPI table on the LGO file. Exit is to INITL.

CA 1381 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLAss____ LMS _ PAGE NO.____3b.23
PRODUCT NAME FORTRAN Extended Version 2.0
~ PRODUCT MODEL No._3P €08 MACHINE SERIES b4/55/6600

S5.2k.3 The macro prototype is:
FILE MACRO LN,NAME

ENTRY NAME - «

NAME— . BSSZ 1B

INs SET NAME— .

LGS SET LN+ :
VFD 1b/L,2b/12+LB/INS+17
VFD LO/INs+L7?/L0/INS+17
VFD LO/INS+ L,7+LGs
BSSZ 14B
BSS LGk
ENDM

5.27 PNAME

5.27.1 PNAME processes the NAME macro- This macro is called by the
program being assembled when a NAMELIST string is to be defined.
Processing takes place in.two phases: 1} strippingr partially
processing: and saving the actual parameters: and 2} forming the
required binary output and writing it onto the LGO file. The
format of the call is: -

NAME N.T,BASE,BIAS,FP,DL,D2,D3
§
where N and T are always presents and the rest of the string may
be entirely missing. In addition, BASE and BIAS may be con-
currently missing: and the following combinations of the D fields
may be missing: D.i, D2, D35 D2, D33 D3.

5.27.2 Phase 1 begins by setting the locations from NNAME to Z3N, which
will contain information derived from Phase 1 processing of the
actual parameters, to zero. REF is called to obtain the NAME—
LIST name iIN}, which is saved in NNAME, and its addresss which
is stored in VNAME. CONVERT is called: which converts the
NAMELIST type 1T}, and this is stored in TNAME. At this point
a test is made to see if the next character is a zero byte. If
it isr then there are no more parameters and transfer is made
to phase 2 at PNAME4. Otherwiser a check is made to see if the
BASE field is present: ands if it iss then the base is stripped
by REF and stored in BASN and the bias is stripped by CONVERT
and stored in BIASN. Then CONVERT strips the FP field, if
presentrs and it is stored in FPN. At this point CONVERT is
called to strip DLy, D2y and D3 until one is found missing or all -
three are strippedr and they are saved in Z1N, Z2N, and Z3N,
respectively. If all thrae fields are missings ZZN is left at
its initial value of zero, otherwise it is set to one. Phase 2
at PNAMEY begins by getting the NAMELIST name from NNAME,
changing the trailing blanks to zero characters, and calling
WRTEXT to write onto the LGO file a word in the following format:

CA 138-1 REV 10-67

i

CONTROL DATA CORPORATION

DIVISION

DOCUMENT CLASS
PRODUCT NAME

3k.2Yy

PAGE NO.

INS i
FORTRAN Extended Version 2.U

PRODUCT MODEL

NO.__ 3PCOB

59 42

MACHINE SERIES

NAME

bH/BES5/BE00

If the BASE and BIAS fields were present:s they are added together
to form the address for the next word: otherwise the NAMELIST

address from VNAME

is used.

This

address and the NAMELIST type

from TNAME are written on the LGO file in the following format:

Now

be made for the address just wri

59 54 53 30 29 0
1 ADDRESS TYPE
if FPN is not zero,

it indicates that a sublist entry must
tten:

~ e

USENXT is called to chang

to the formal parameter block specified by NNAME and a sublist
entry in the following format is written onto the LGO file by

WRTE

XT:
59 57 5k

4é

47

=

59

VNAME

Then USENXT is called to change back to the DATA. block.

The

last word is written onto the LGO file by WRTEXT in one of the
following four formats, depending on the presence of DL, D2, and

D3:
1} DL, D2s, and D3 present:
59 54 53 3k 35 18 17 n]

0 D1 D2 D3
2} D1 and D2 presents D3 missing:

0 0 WDL D2
3} D1 presents D2 and D3 missing:

0 0 o D1
4} D1, D2+, and D3 missing:

1 0 0 L
Exit is to INITL.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION
DIVISION

'DOCUMENT CLASS __LMS PAGE NO._3k.28
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO._3PCO08 MACHINE SERIES __ b4/b5/6600

5.27.3 The macro prototype is:

NAME MACRO N,T,BASE.BIAS,FP,DL,D2.D3
LOCAL Z,Z1,Z22.Z3
VFD .8/0.,42/0L-> N
VFD k/L1,L/0 :
IFC NE,=BASES%,1
VFD 18/BASE+BIAS
IFC ER+sBASESS, 1
VFD 1L8/N
IFC NE,sFPS%,1
SUB N
VFD 30/T
IFC EQr5D1%5,1

Z SET O
IFC NEr5D155+1

Z SET &

IFC NE,sD35s.4

ZL SET D1

Z2 SET D2

Z3 SET D3
IFEQR 0,1
IFC NE,sD2%5¢4

ZL SET O

Z2 SET Dl

Z3 SET D&

IFEQ O, 1L
IFC NE,%D1%%,4

ZL SET O

Zg2 SET O

Z3 SET Dl
IFEQ 0,1

Z1 SET O

ze SET O

Z3 SET 1
ENDIF
VFD b/Z,18/Z1,18/22.18/Z3
ENDM

5.28 PENTR

5.28.1 PENTR processes the ENTR. macro. This macro will be called

: by the subprogram being assembled when an entry point other
than the main entry point is to be provided. Although there
are two types of ENTR. macro expansions possibler depending
upon whether a subprogram has formal parameters or notr the
expansion throughout a particular subprogram will be consistent:
and a jump to the particular processor required will be stored
over a word of NOP’s located at the beginning of the initialization
phaser at PENTRL. Thus: the first call to PENTR. will fall
through PENTRL and execute the initialization phase> subsequent

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IS i PAGE NO._db-Ch
PRODUCT NAME _ FORTRAN Extended Version 2.0
PRODUCT MODEL No.__3P€08 MACHINE SERIES __b4/b5/6600

calls will be directed to the appropriate processor at PENTRL.
The format of the call is

ENTR. NAME

ENTR. macro prototype with arguments:

59 4y 29 17 0 Word:
0 | 1
_SAZ {w+p} BXe x2 | NO 2
SAL {FTNNOP.} ° EQ {ENTRY.+1} 3
EQ Lm+ 1} NO NO Y
SAL INOPS.} SA2 {NAMEZ 5
BXb X1 LX? X2 SAb {FTNNOP.1 L
| SA7 {ENTR.} NO NO ?

ENTR. macro prototype without arguments:

59 0 Word:
0 L
SAL INAMET} ' BXb X1 NO c
SAL {ENTR.ZT NO NO 3

Parentheses indicate values to be substituted-.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS Ins i PAGE NO.__3b-27
PRODUCT NAME FORTRAN ExtendEd Ver"SIOn E-D
PRODUCT MODEL NO._3PC08 MACHINE SERIES_bY4/bE5/6L00

5.28.2 REF is called to get the address of NAME and it is stored in

‘ ENAME. If this is not the first time throughs PENTR1 transfers
to PENTRE if the subprogram has arguments: or to PENTR& if it
does not. Otherwiser initialization begins by testing word A
of the second symbol table entry to see if the FP bit is set: if
it is nots then there are no formal parameters and after setting
a jump to PENTR& into PENTR1l, control is transferred to PENTRS
to complete the initialization for this case. Otherwise there
are parameters, and the jump at PENTR1l is set to a jump to PENTRG.
SYMBOL is called to get the address of NOPS., which is saved in
ANOPSS FTNNOP., which is saved in AFTNN: and ENTRY., which is
saved in AENTR. <Control is then transferred to PENTR1 to jump
to the proper processor. At PENTRS, initialization for the no
parameters case continues as above with the calling of SYMBOL
to save the address of ENTRY. in AENTR. PENTRL is the start
of the processing for a call to ENTR. in a subroutine with
arguments. The origin counter is obtained to form a base for
the self-relative substitutions in the macro prototypes and a
Jump around the entire macro expansion is formed and left in XY.
Then the following substitutions are made:

L. ORGC+Y =) upper address of word 2

2. ORGC+5—> upper address of word 4

3. FTNNOP.—> lower address of word b

4. FTNNOP.—)upper address of word 3

5. ENTR.+1 = lower address of word 3

b. NOPS. —pupper address of word §

7. NAME —) lower address of word &

8. ENTR. — upper address of word 7
Now the jump in X4 is sent to the LGO file by WRTEXT, and WRSER
is called to write out the entire prototype onto the LGO file.
Exit is to INITL. PENTR8 is the start of the processing for a
call to ENTR. in a subroutine with no arguments. The origin
counter is obtained and a jump around the entire macro expansion
is formed and left in X4. Then the following substitutions are
made:

1. NAME ——) upper address of word 2

2. ENTR. —» upper address of word 3

Now the jump in X4 is sent to the LGO file by WRTEXT, and WRSEQ

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

- DIVISION
BOCUMENT cLAss____IMS : PAGE NO.__3b-28
PRODUCT NAME FORTRAN Extended Version @.0
PRODUCT MODEL No.__3PC08 MACHINE SERIES_b4/b5/b600

is called to write out the entire macro expansion on the LGO
file. Exit is to INITL.

5.28.3 The macro prototypes are:

ENTR, MACRO NAME
LOCAL X.Z,T
EQR T
NAME BSS 1
ENTRY NAME
SAe X
BXb X2
SAE FTNNOP.
EQ ENTRY .+1
X EQ Z
Z SAL NOPS.
SA2 NAME
BXb XL
LX? BO,X2
SAbL FTNNOP,
SA? ENTRY.
T BSS O
ENDM

when formal parameters appear or:

ENTR, MACRO NAME
LOCAL T
EQR T
NAME BSS 1
ENTRY NAME
SAL NAME
BXb X1
SAE ENTRY.
T BSS O
ENDM

when formal parameters do notbappear-
5.29 EVAL -
5.29.1 This subroutine is used to evaluate address expressions con-

sisting of octal constants: symbols and the operators + and -.
It must be entered by a return jump to EVAL with:

B3 XL = the first character of the expressiony

Xb

plus or minus zero indicating a preceding minus
{or implied plust,

CA 138-1 REV 10-87

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS INS PAGE NO._3b.29
PRODUCT NAME FORTRAN Fxtended Version 2.0
PRODUCT MODEL No.___3PCO8 MACHINE SERIES _bY4/E5/LEDD
X? = any previous address sum:

B2 = bit count of the character in Xl.

EVAL returns with the expression value in X? and it has been
added to XY.

5.30 REF

30.1 REF is used to obtain the equivalent address of any symbol op
label encountered during the assembly process. This routine
is entered with a return jump to REF with the symbol name in
Xle the first character in B3 and the bit count 6f X1 in B2.
If the name begins with either of the special characters =,
{r0r} then its equivalent address is obtained from the gen-
erated label, actual parameter or variable dimension label
definition table respectively by converting the coded index
in the label to binary and indexing into the proper table with
it. Otherwises the subroutine PACKID is used to separate the
label from the input string and format it left justified with
blank fill in the lower 48 bits of XL in preparation for call-
ing SYMBOL or LABEL. If.the symbol is an external name, X3
is set to zero {relative address} and the exit is made. If
not external, word B of the symbol table entry is stored in
RBTEMP unless it is already non-zero, in which case it is
cleared to zero, the RA field is separated to X3 and the exit
is made.

5.3} CONVERT

5.3Lk.1 A display coded octal number which may be preceded by a
minus sign is converted to binary. The first character
of the constant must be placed in the lower b bits of X1
before the return jump entry. On return the converted value
is in Xl. .

5.32 PACKID

5.32.1 This subroutine is used to separate identifier names from the
input string. It will pack up to eight characters until a
zero byter *r -+ /+ blank or comma is encountered. The
character string is left justified and blank filled in the
lower 48 bits of XL. The character that served as the
delimiter is preserved in Bl upon exit-.

5.33 WRSEQ

5.33.1 UWRSER writes up to 15 words of data with relocation information
into the current text table. The calling sequence is:

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION

DOCUMENT CLASS IMS PAGE NO.__3k.30
PRODUCT NAME FORTRAN Extended Version 2.0 .
PRODUCT MODEL NO. 3P €08 MACHINE SERIES___b4/b5/bL00

A4 = first word address of text block,

X4 = first word of text blocky

X? = left JustIFled 4 bit relocation bytes:s

RJ WRSEQR.

S5.3Y4 L4.15, WRTEXT

- 8.34.]1 L3.15 is an alternate entry to WRTEXT used when a 15 bit
quantity is to be written. WRTEXT builds and writes text tables
for the loader from the instructions and data the assembler
produces. The calling sequence is:

X4 = data to be wﬁitten.
Bl = bit count of ‘datar
Bt = return address:

EQ WRTEXT .

WRTEXT forces upper when it is required by data size or

the FFLAG is greater than zero. It also maintains the
position counter and the origin counter for each relocation
base and adjusts the relocation byte word in the text table.
If the switch at WRTSW has been set WRLIST will be called
to print the line.

5.35 FOTEXT

5.35.]1 This subroutine is entered by a return jump. It terminates
the current text table by forcing upper, installing the word
count in word | & left justifying the data bytes in word 2.
The text table is then written on the binary output file.
Before returning a new text table is initialized with the
origin counter in word |.

5.3b WRLIST

§.3k.] This subroutine is responsible for producing the assembly
listing. It is given the binary to print, if anyr, and the
current source statement in ILINE. If the position counter is
LD the origin counter and the current relocation base name
are also printed. If RBTEMP is non-zero the relocation base
name of the address field will also be printed.

5.37 L4. CKL. DEF

£.371 After a statement has been decoded and the binary added to the
text table these two subrouteines are used to define the label
that appeared on the statement if any. The pseudo-ops DATA
and VFD result in transfer of control to L4.CKL but BSS calls DE
itself. At LUY4.CKL DEF is called if the contents of ALABEL are
non-zero and control is passed to L4.CKRB. DEF looks up the

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS . PAGE NO.__3k.31
- PRODUCT NAME FORTRAN Fxtended Version 2.0 »
PRODUCT MODEL NO.. 3P (048 MACHINE SERIES LY/L5/8L00

symbol whose name is in X1 on entry in the two word symbol
table using LSTPROC. For the label it then sets the RA field
to the origin counter: the RL field to 1 if the current block
is localy for common the RL field is set to 2 and the RB field
to the ORGTAB ordinal for the block the symbol is defined in.
Before the return location ALABEL is cleared to zero. DEF is
disabled by the USE processor which stores an YEQ DEFY in
DEF.1l after the second YUSE CODE.®

tn
"

L
>

Lu.CKRB

Any 30 or O bit quantity that has been generated may have a
relocatable address in the lower |8 bits. In this case

RBTEMP will reflect this by having been set to word B of the
two word symbol table entrys otherwiser it will be zero. If
RBTEMP is non-zero the RL field is examined to determine the
type of relocation necessary. Program relocation requires the
relocation byte word in the current text table have a 2 added
to it and RBTEMP be set to zero.

A common or external reference requires a data byte for the
loader be created and linked into the reference chain corres-
ponding to the variable. For common the starting address of
this chain is located in the lower 18 bits of the first CORGTAB
word for the entry that corresponds to the common block in
which the variable is defined. This word is located at
{CORGTAB} + RBm22. The external reference chain begins in the
lower 1& bits of the LINKTAB entry that contains the variable
name. The RA field of RBTEMP contains this address. The new
one word link is taken at the address contained in FREEMEM,
which is incremented by one and compared to the contents of
MEMEND and replaced. If FREEMEM is greater than MEMEND working
storage has been exhausted and the error routine STOVER is
called. Otherwise RBTEMP is cleared and L4.CKL exits to INITL
to prepare for the next line.

tn
.
wl
[n=}
»
[

5.39 TLL, SILL~ STOVER

5.39.1 ILL picks up the message YILLY transfers it to location ILL.]
which stores the message in LINE+3, sets ILLFLAG to non-zero,
calls WRLIST to print the message and the source image then
exits to INITL to prepare for the next statement.

5.39.2 SILL, where control is transferred in the event LSTPROC cannot
find a symbol name in the two word symbol tabler picks up the
message YSYMBOL ERRY and transfers to ILL.!.

5.39.3 STOVER 1is called when all available working storage has been
used. The first time this occurs the message YSTORAGE OVERFLOUWA
NO OBJECT PROGRAM WILL BE PRODUCED®Y is printed. The size of the
overflow is added to the contents of location STOVSIZE and

FREEMEM is reset to the contents of MEMSTART. The exit is to

CA 138-1 REV 10-67

CONTROL DATA CORPORATION
DIVISION

DOCUMENT CLASS Ins PAGE NO.__3b-3¢

PRODUCT NAME FORTRAN Extended Version 2.U
PRODUCT MODEL NO.

5.40

S.40.1

CA 1381 REV 10-67

3P €048 ER /6576600

MACHINE SERIES

INITL.
PEND

Control is transferred to PEND when the END pseudo-op is
encountered to clean up the assembly process and terminate.
The following tasks are performed to accomplish thiss

1. If the contents of STOVSIZE is not equal to zero the
size of the overflow is calculated and printed with the
message © INCREASE FIELD LENGTH BY XXXXXX¥ and exit is
made as if ILLFLAG was non-zero.

3. If the contents of ILLFLAG are non-zero the following
steps are taken before exiting:

a. An end-of-record is written on LGO.

b. LGO is backspaced one logical record:

c. A prefix table with the program name is written on LGO,

d. Control is transferred to EX.90 to do another end-of-
record write on LGO, print the END pseudo-op and return.

3. All partially filled text tables are forced out on LGO
from CORGTAB and LORGTAB by calling FOTEXT once for each
relocation base-

4. The accumulated common and external reference information
is formed into FILL and LINK tables respectively and
written on LGO. This is accomplished by following the
chain that begins at the CORGTAB and the LINKTAB entries
for common block and external symbols and packing the
data bytes which are the upper 30 bits in each link into
the correct table formats. The COMPS buffer is used as
scratch memory for this purpose.

5. An XFER table containing the date and the transfer symbol,
if present, is written on LGO.

L. The LGO buffer is cleared out and the relocatable deck
terminated by doing an end-of-record write on LGO.

7. The last statement of the program {the END Pseudo-opl is
printed by calling WRLIST.

8. TIOPARM is reset to 14B to cause output to be in BCD modey
ILLFLAG is cleared.

9. The assembler returns thru its entry point to DPCLOSE in
Pass 2 for the 4 overlay and the non-overlay systems or
to FAXRET in DPCLOSE in Pass 2 for the 5 overlay system.

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS INMS PAGE NO.___3hb.33
PRODUCT NAME FORTRAN Extended Version 2.1
PRODUCT MODEL NO. 3P €04 MACHINE SERIES N VANVAN N
L.O Data Formats

Working storage during the assembly process.

— At —— RA
1 COMPILER
LGO BUFFER
CORGTAB=~=S"Y CORGTAB
{PTR?}
ZFRO_WORD
LORGTAB—S" LORGTAB
{PTR?}
ZERO WORD
\ ,
LINKTAB;" v L INKTAB
IPTR
7ERO_WORD
NEMSTRT*js?H COMMON AND EXTERNAL
{PTR} REFERENCE CHAINS
|
FREEMEM—S” \4
IPTR?} e
MEMEND .
IPTRY — B ™
VDTAB=—=_ V| VARIABLL DIMENSION
IPTRZ L ABELS
APTAB =S ACTUAL PARAMETER
{PTR? 'LABELS
GLT?EF;js QF GENERATED LABEES
L ZERO WORD

SYML TWO WORD
{P;;;~21, SYMBCL TABLE
FL

CA 138-1 REV 10-67

CONTROL DATA CORPORATION
DIVISION

DOCUMENT CLASS IMS PAGE NO. db.3Y4

PRODUCT NAME

FORTRAN Fxtended Version 2.0

PRODUCT MODEL NO.___3P €08 MACHINE SERIES __BY/BE/LEOD

b.1
bel.1l

CA 138-1 REV 10-87

22 Word ORGTAB {LORGTAB and CORGTABI}

These two tables have the same format. They contain a 22 word
entry for each relocation base that will be encountered by

the assembler. COMMON relocation bases are entered in the
CORGTAB and local relocation bases are entered in LORGTAB.
Each 22 word entry is formatted as follows:

59 | 17 0
WORD l BLOCK NAME PTR
c NFLAG
3 et ORGC
L} POSC
5 TABC
b TEXT TABLE ID WORD
? TEXT TABLE RELOCATION
BYTE WORD
& FIRST TEXT WORD
9 TEXT
{UNINITIALIZEDZY
W, W W e W
ec

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS Ins PAGE NO.__3b.35
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO.__ 3P €08 ; MACHINE SERIES____b4/b5/b600

WORDL: Bits 18-59/Relocation base name: left adjusted with
blank fillys

Bits 0-17/Pointer to Fill chain for COMMON blocks:
unused for locals. Initialized to zero in
both cases.

WORD2: Bits O0-59/NFLAG {force upperrs next instructionl,

WORD3: Bits 24-59/Unuseds
Bits 18-23/Relocation base code. This is 1 for
all local blocks and may be 3 to ?7?B for
common blocks. It serves as the LCT
ordinal for the loader.

Bits 0-1?/0rigin counter, initialized to the first
word address of the block.

WORDY: Bits 18-59/Unused:
Bits 0-17?/Position counters initialized to bO.
WORD5: Bits 18-59/Unused:,

Bits 0-17/Test table ordinal indicates the current
word being filled:, initialized to 2.

WORDE: Bits 54-59/Text table code number, 40B,
Bits 3b-47/Word counts initialized to zero:
Bits 18-23/Relocation coder
Bits 0-17?/Load addresss initialized to ORGC,

WORD?: Bits 0-59/4 bit relocation fields, initialized
to zero.

WORDA: Bits 0-59/Initialized to zero.

WORD9-22: Bits 0-59/Uninitial ized.

b.2 LINKTAB

L.2.1 The LINKTAB consists of one one-word entry for each external
symbol used in the program being assembled. The last

entry is a zero word. Each word is formatted as below:

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS INS PAGE NO.___3hk.3h
PRODUCT NAME FORTRAN Extended Version 2.0
PRODUCT MODEL NO. 3P €08 MACHINE SERIES __b4/bE5/bELO0
",?ﬁ 17 0
. NAME |

baY.1l

be5

be5.1

CA 138-1 REV 10-67

where NAME is the external symbol name, left adjusted with
zero fill and PTR is the start of the reference chain that
describes the usage of the symbol.-PTR is initialized to
Zero.

LINK and FILL chains {external‘and common reference informa-
tionlt.

One chain exists for each common relocation base and external
symbol. They are linear linked lists of one word elements
containing in upper 38 bits a data byte for the loader and

in the lower 18 bits a pointer to the next link. Each list
is terminated by a zero pointer. The elements of these lists
are taken from working storage beginning above the LINKTAB.
FREEMEM always points to the next available word in this
area. Following is the format of each link.

59 58 5b 47 29 17 0

P
1 0 RL LOC UNUSED PTR
S

where LOC specified the relative address of the reference, RL
specifies the relocation of this address, POS the position
in the word and PTR points to the next link in the chain.

Actual Parameters Variable Dimension: and Generated Label
Definition Tables-

Upon entry these tables contain in the lower 18 bits the
address relative to the origin of the Code. relocation base
C AP, 3 VD or =GL labels. They are reformatted during
initialization and take the following form during assembly.

(géi 38 3b B ! 0
ZERO | 1 RA 3 ERn

where RA is the program relative address of the label.

TWO WORD SYMBOL TABLE

During initialization of the assembler and during assembly
before the second YUSE CODE.Y, word B of the two word symbol
table entry for each symbol is reformatted as follows:

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS NS PAGE NO.__3k.37
PRODUCT NAME FORTRAN Fxtended Vphsion,P.D
PRODUCT MODEL NO.__ 3P €08 MACHINE SERIES b4/E5/LL00
59 38 3b 18 11 0

7.0
7.1
?-li-l

7.1.2

. CA 138-1 REV 10-67

RL RA RB

where RA is a program relative or common block relative
address or a pointer to the LINKTAB entry that corresponds to
the external symbol, RL is the type of relocation {0l=program:
02=COMMON, O3=EXTERNAL} and RB is an ordinal to either the
CORGTAB or LORGTAB entry which corresponds to the relocation
base in which the symbol was defined.

Modification Facilitigs
Assembly Options
Options File

L. OVERLAY. When set to a non-zero value this option
causes a non—over!ay compiler to be generated. This has
two effects on the assembler:i{l} MEMORY, the first word
address of working storage must be set to the end of the
compiler rather than the end of the assembler, and {2}
several flags and switches in FTNXAS and in LSTPROC must
be reset to their .initial value upon exit since the same
copy of the assembler will possibly be used again.

2. MACHINE. This options which is set to either L40DB or
LLOOB, causes the ADDSUB Macro to be expanded with a
dP »+1 in the last two parcels if set to LLOOB.

3. LGOSIZE. The assembler will allocate LGOSIZE+1 words
for the binary output buffer.

4. ASSEMBLE. The assembler will produce a LCC overlay
{FTNX,s 1r 3} card and a transfer address of FTNXAS% and
will return to FAXRET in close 2 via a direct jump.

DEBUG ETC.

This opetion and several assembly flags which are normally
equated to itr control debugging aids that have been left

in the assembler. The normal value of DEBUG is zero, however
setting it to 1 and reassembling will cause {1} SNAP calls

to be inserted at strategic points: 12} ORG and MOVE macros
not to be expandeds and {3} the last few words of L3.JVEC

to be assembled in. The SNAP routines must be available

when DEBUG is non-zero.

Opcode Vectors

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASS IMS PAGE NO. iL. 348
PRODUCT NAME FORTRAN Fxtended Version 2.0 -
PRODUCT MODEL NO. 3P C08 MACHINE SERIES __b4/b5/6500

7.3

7.3.1

CA 138-1 REY 10-87

Opcode fields are decoded by the assembler by placing the
first two characters of the field in index registers B2 and
B3 and jumping to B2+FLVEC-L. If the opcode can be uniquely
recognized from the first two letters, an exit is made to
the correct routine for processing the address field.
Otherwiser the address of a further vector is placed in B¢
and the subroutine PNL is called to separate the next
character from the input string, add it to B2 and jump to the
contents of B2. New entries and new vectors can be placed
anywhere in the existing general scheme: but care must Be
taken to insure that a valid vector entry is not within the
range of an ORGSTART, ORGEND pair. Alsors each unused word
in new vectors should contain an YEQ ILLY and each block of
two or more unused words should be surrounded by ORGSTART,
ORGEND macro calls.

MIC~ ORG- MOVE Macros
MIC creates a micro with the name equal to the second para-
meter. It will be a character string representing the value
of the first parameter. Thus, after
N SET 423
MIC N,Z

the catenation A B C # Z # would equal ABCHZ23

The purpose of the move macros are to allow the definition

of unused areas in the assembler, of areas of code which

can be moved, and the moving of the code into the unused
areas at assembly time- :

The unused areas are bracketed by ORGSTART and ORGEND macro
callsy which build tables of lengths and first word addresses
of unused areas. After the last ORGEND macro call, the
areas of code which can be moved are bracketed by MOVSTART
and MOVEND macro calls. Each pair of calls result in the
relocation of the associated code into the smallest area

in which it will fit. The tables are adjusted to reflect
the usage. If all unused areas are too small: no action is
taken. Changes in the size of a code block bracketed by
MOVSTART, MOVEND must be reflected in the MOVSTART call
parameter or an ERR pseudo-op will be produced.

DOCUMENT CLASS
PRODUCT NAME
PRODUCT MODEL NO. 3P

c.k.2
2.1.3
2el.4
2el.5
cel.b
2«17
2«l.8
2.1.9
2.1.10
- 2.1.31
c.1.1e

¢.1.13

CONTROL DATA CORPORATION

DIVISION
1ns PAGE NO. 37-1
FORTRAN EFxtended Version 2.0
CO08 MACHINE SERIES E4/L5/6L00

ORGTAB

General Information

ORGTAB resides in the 1.0 overlay which also contains
LSTPROC the symbol table handler. ORGTAB contains entry
points to hold the local and common relocation block lengths.
It also contains a copy of WRWDS the output and circular

I/0 buffer control program.

Usage

The length of all common relocation bases and all local
relocation bases {except CODE. and VARDIM. which are de-
termined during Pass 2 by POST and CLOSE V2} is determined
during Pass 1 {the 1:1 overlay} and retained in ORGTAB for
use by the assembler at the end of Pass 2.

Entry Points.

ORGTAB + ?5B locations to hold lengths of all possible
common relocation blocks.
STARTA rholds length of START. relocation block.
VARDIMA rholds length of VARDIM. relocation block.
ENTRYA rholds length of ENTRY. relocation block.
CODEA rholds length of (ODE. relocation block.
DATA A rHolds length of DATA. relocation block.
DATA AA rholds length of DATA. relocation block
HOL A vrholds length of HOL. relocation block.
GLTAB +holds address of ZGL label definitions.
APTAB rholds address of [AP label definitions.
VDTAB rholds address of]VD label definitions.
0T.SIZE rholds the number of words needed for
optimizing temporary storage.
NDOTEMP rholds the number of words needed for

DO loop temporary storage.

In addition to facilitate the non-overlay configuration
the following entry points have been moved to the 1.0

CA 138-1 REV 10-67

CONTROL DATA CORPORATION

DIVISION
DOCUMENT CLASs____IMS PAGE NO.
PRODUCT NAME" FORTRAN Extended Version 2.0
PRODUCT MODEL NO._#P_C0& MACHINE SERIES ___b4/E5/bE00

CA

k.0

overlay. CARDCT, ENDLIST, ENDSER, FWAWORK, LWAWORK,
HIGHORD and FWASER.

Diagnostics
Not applicable.
Environment

ORGTAB resides in the 1,0 overlay. The only executable
code is the output and buffer control program WRWDS which
is self contined.

Structure

“e P LA LAAR =}

The tables are ordered consecutively Y
iti ling subprograms.

t
initialized easily between comp

v aon + ey may be
o]

Formats

The common block information is held starting at ORGTAB
in the following manner:

Common Block Name Word
Length
Lue 18

The last common block name is followed by a zero word.

The local block lengths are held in the lowest 18 bits.
All lengths are in binary.

1381 REV 10-67

"CONTROL DATA CORPORATION . DEVELOPMENT DIV) SOFTWARE DOCUMENT

DOCUMENT CLASS I1MS PAGE NO_A=1_
PRODUCT NAME FORTRAN Extended
PRODUCT NO. _HPETE VERSION______ MACHINE SERIES __bY4/L5/6L00

R-List Language Description

R-list is an intermediate language which is intended to be both
easy to generate and convenient to produce good assembly code from.
The language is register independent as much as possible; there
shall be a provision for specifying specific registers. A limited
macro facility shall be provided to facilitate the generation of
frequently occuring code and reduce the size of ihe intermediate
R-list. Generally the operation code in R-list will correspond

to the operation code of the associated machine instructionm.

1. General Description
There are four formats for R-list instructions to permit maximum
description of the operation requested in the minimum amount of
space. The formats are shown in figure onme. In all cases the

following definitions will hold.

First word will have the same format:

Bit 59 = 0
Bit 58 - 1
Bit 47-57 = Operation Code (0C)

It is formed by placing the operation code in a B register and
appending it to the rest of the information in the first word
of the R-list instruction by using a PACK instruction. Any

negative words encountered in the R-list will be ignored.

1.2 R Fields » \
All R fields will be sixteen bits long. All R fields generated
during pass one will have the high order bit equal to zero; in-

termediate R's resulting from macro processing will have that bit set.

1.2.1 RI Fields

RI indicates the result of the operation indicated by OC or an

rA1R-1

“¢ONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS INMS PAGE NO_A=2
PRODUCT NAME FORTRAN Fxtended v
PRODUCT NO. 4PEL1E VERSION MACHINE SERIES ____bY/L5/LL00

operand of a branch instruction. This field will always be rightmost

in the first word whenever it occurs.

1.2.2 RJ Fields

These fields indicate the first operand of a triple address instruction.

1.2.3 RK Fields

These fields indicate the second operand of a triple address instruction.

1.2.4 RF Fields
These indicate the index function to be added to a base address or may

be used to indicate an operand of a branch.

1.3 CA Fields
CA fields are eighteen bits long and usually contain the constant addend
to be added to the reference to an array element. They may also contain

some other constant.

1.4 I and H Fields
The I field is twelve bits long and identifies the table for which H
is an ordinal. The HL field is eighteen bits long. The defined values

for I are as follows:

APLIST ordinal
1 Branch if label

Symbol Table 5

Statement Temporary 6

DO Range temporary

Subprogram temporary 7 = ettt giiaaeemenitdnt -

Conlist ordinal

~ WD o H o
1l

If the HL field is negative or zero both I and H will be ignored. If the H2
field is non zero, it is interpreted as an ordinal in the symbol table
and the final symbol generated will be H1-H2, All Hl are interpreted as
ordinals in the list specified by I.

1.5 IN Field

IN fields are eighteen bits long and contain constants.

1.6 S0 Fields

SO fields are fourteen bits long and modify the operation code.
CA138-1

CONTROL DATA CORPORATION o

DEVELOPMENT DIV . SOFTWARE DOCUMENT

PAGE NO_A-3 __

DOCUMENT CLASS IMS
PRODUCT NAME FORTRAN Extended
PRODUCT NO._4Pblb VERSION MACHINE SERIES __bU4/b5/bE00 —

2,1

2,2

CA138-}

The high order bit of the SO Field is used only in macro descriptions. The

next two bits specify respectively, a sequence terminating and unlocking

instruction, a locking instruction.

A locking operating reserves a register

for the RI of the operation, this reservation holds until an instruction with

the next to high order bit in the SO field is encountered. The next bit is

set to indicate & register specification is not to be held until the end of

a sequence, The low order two gctal digits are used to specify a class of

registers or a particular register.

1-X
2 -B
3 -A

The right hand two bits specify a

If the next bit is set the other octal digit specifies the particular

register of the class, This specification stipulates which register the

RI of the instruction is to be placed in, i.e., the destination register

of the operation. Currently only X's and B's may be specified as des-

tination and the particular one must be stated.

Type I R-List

Type I Format

All type 1 instructions occupy one word and consist of operation code,

RJ, RK, and RI fields in that order.

Type I Operations

Description

Transmit

AND

OR

Exclusive or
Transmit complement
Stroke

Implication
Equivalence

Floating add

Short add {after all
other uses of RI?

Short difference load
Short difference store

R-List
Code

10
11
12
13
14
15
16
17
30

w

Machine
Code

10,22
11
12
13
14
15
16
17
30

53
57
57

CONTROL DATA CORPORATION ° DEVELOPMENT DIV

DOCUMENT CLASS IMS

PRODUCT NAME
PRODUCT NO.

.CA138-1

2,2

3.1

3.2

SOFTWARE DOCUMENT

FORTRAN Fxtended

PAGE NO_A-Y

YPEIE VERSION

Continued

Description
Floating subtract

Double Floating add
Double Floating subtract
Integer add

Integer subtract
Floating Multiply

Double tfloating multiply
Floating divide

Short add

Short subtract
Short Load

Short Store

Index right shift
Index left shift
Normalize

Round and normalize
Unpack

Pack

Shift transmit
Unpack into B¢

Type II R-list

Type II R-List Format

MACHINE SERIES __b4/ES5/6L00

R-List
Code

31
32
33
36
37
40

44
46

67
41
45
23
22
24
25
26
27
62

Machine
Code

31
32
33
36
37
40
42
L4

6N, 7N
n=3,4,6

67,77
57 .
56,57
23

22

24

25

26

27
10,22
2b

All Type II instructions occupy one word and consist of operation

code IN field, SO field, RI field, in that order.

Type II Operations

Description
Form Mask

Set

‘Define

Register store

R-List
Code

43
61
53
52

Machine

Code(s)
43

61,71
NA
NA

-'CONTROI. DATA CORPORATION) DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS ___InS _ PAGF NO_A=D
PRODUCT NAME FORTRAN Extended
PRODUCT NO.__H4PbIE VERSION MACHINE SERIES ___bY4/L5/6L00

The Type II set operation mdy only be used for placing an 18 bit

constant into a B or X register,

The Define operation is used to set an initial condition for the
sequence of which it is a member. A Define states that RI is in
the register sepcified by the SO field. The intended use of the
Define is to specify the whereabouts of results of function refer-

ences on returning,

The register store is used to stipulate the destination register of

the previous operation of which RI was the result, In effect this

is used to permit the appending of an SO field to a Type I instruction.
Once an R is placed in a register by an SO or register store speci-

fication the register is no longer available until the next sequence.

Neither Define nor Register Stores result in the production of any

executable code,

Define and Register Stores differ from locks in that locked defini-
tions hold until the end of DO loop jump is encountered which may
be several sequences. Define and register store specifications have

meaning only within their own sequences.

If an SO field specifies a reserved register the reservation will

be overridden. Moral: garbage in, garbage out.
4. Type III R-list

4.1 Type III R-List Format
All type III instructions occupy two words. The first word consists
of the operation code, CA field, SO field, and an RI field in that order.
The second word contains a RF field, I field, and an H field right justi-
fied.

[-

CATIR

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

"~ DOCUMENT CLASS IMS PAGE NO_A=}
PRODUCT NAME FORTRAN Fxtended :
PRODUCT NO._4PEIb VERSION______ MACHINE SERIES __bH4/b5/bb0D

4,2 Type III Operations R-List Machine
Description Code Code(s)
Load 50 50 - 57
Store 51 | 50 - 57
Jump if RI=RF 70 04
Jump if RI .NE. RF 71 05
Jump if RI .GE. RF 72 06
Jump if RI ,LT, RF " 73 07
Zero X Jump 74 030
Nonzero X Jump 75 031
Positive X Jump 76 032
Negative X Jump 77 033
Indexed Jump 102 02
Set 104 60 - 77
APLIST 56 NA
Left Shift (CA) 20 20
Right Shift (CA) 21 21

APLIST entries will specify the address of the actual parameter

in the I, Hl, and CA fields. The RI field will contain an ordinal
which will say which parameter list this entry is a member of,
Although entries for a given argument list (identical RI fields)

need not be consecutive APLIST entries then must be in order.

Any R which is operated gn by either a 20 or 21 operation must be

defined by shift transmit immediately prior to the shift operation.
5. Type IV R-List
5.1 Type IV R-List Format

All type IV instructions occupy one word, consisting of an oper-

ation code, CA, I and H fields,

R-List Machine
Description Code Code(s)
Unconditional Jump 54 0400
Return Jump (60 bit) 101 01
Entry 55 NA

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV] SOFTWARE DOCUMENT

DOCUMENT CLASS_ NS PAGE NO.A=2
PRODUCT NAME FORTRAN Extended -
PRODUCT NO..__4PhIk VERSION_ ____MACHINE SERIES __kY4/ES/LEDD —
5.1 Continued R-List Machine
Description Code Code(s)
End of Statement ’ 57 NA
End of Sequence 100 NA
Label 60 NA
End of RLIST » 103
Return Jump (30 bit) 105 01
6. MACROS
6,1 Macro References

Macros are referenced using a Type II format, The OC field
contains the macro ordinal and is formed by placing the com-~
plement of the macro ordinal (MO) in a B-register and concatenating
it to the rest of the information by use of a PACK instruction.

The IN field contains the number of words which follow which con-

tain parameters,

6.2 Actual Parameters
The actual parameters immediately follow the macro reference in

the following order:

1, symbols, if any
2. R's, if any
3. constants, if any

6.2.1 Actual symbolic parameters are specified two to a word, the first
in the lower half of the word, the second in the upper half and
so on. Each half word cqnsisting of a right justified I field
and H field,

6.2.2 Actual R parameters are three to a word, as is Type I format, with

the first being rightmost.

6.2,3 Actual constant parameters are specified three to a word in 18

bit fields right justified.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS IMS PAGF N A=8

PRODUCT NAME FORTRAN Extended L _

PRODUCT NO.___4PEI1E VERSION_____ MACHINE SERIES ___bY/B5/LE00 _—
6.3 Macro Descriptors

The descriptor locates the macro text and specifies its length
and the number of parameters of each type. It occupies one word

and has the following format:

Bits 0 - 17 MA beginning address of the macro
Bits 21 - 35 ML length of the macro in words
Bits 36 - 41 NI number of generated intermediates
Bits 42 - 47 NK number of integer constant parameters
Bits 48 - 53 NR number of R parameters -
Bits 54 - 59 NS number of symbolic parameters
6.4 Macro Text

The macro text is written in normal R notation with the following

modifications:

1. If the high order bit of an RI, RJ, or RK field is not set
and is greater than 1 it is interpreted as a formal reference
to an R; the remainder of the field specifies the ordinal of

the actual parametey list,

2, If the H field is zero the IH pair is interpreted as a formal
reference with the I field containing the ordinal of the actual
parameter in the pafameter list,

3., IN and CA fields ar; interpreted as containing ordinals of
actual parameters if the high order bit of the SO field is
set. The use of type IV format instruction requiring a CA

field as a formal parameter is not allowed.

CA138-1

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMs PAGE NO.__A-=1
‘PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPLI1E MACHINE smmsMﬁL&M
7.0 Four types of RLIST entries
TYPE I 0C RJ RK RI
c 10 16 16 S
TYPE II 0C IN SO RI
2 10 18 Iy It
‘ = 10)] b
TYPE ITT 0C CA SO RI
HZ RF I HI
Iy 16 12 18
TYPE IV 0C CA I H1
c 10 18 = 18
8.0 Defining R-List Macros

CA 138-1 REV 10-87

All macros are contained in the routine MACROX which is

part of Pass 2. A set of COMPASS macros-has been construct-
ed to facilitate the definition of R-list macros. The
following describes their use.

Structure: Each macro definition must begin with an
RMACRO macro reference followed by the text of the R-list
macro followed by an ENDR macro reference.

RMACRO. The RMACRO reference has the following form:
0C - RMACRO
Address field - NOSYa. NOR. NOK
where
NOR - the number of R¢s in the macro reference.
NOSY - the number of IH fields in the macro reference.
NOK - the number of constants in the macro reference.
ENDR. The ENDR reference has the following form:

0C - ENDR

Text. Text is written with R-list mnemonic operation
codes in the 0C field: a list of them is attached. The
variable field will contain the arguments to the operation
in the following orders:

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INMS PAGE NO.__A-10
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. YPEIE MACHINE SERIES __h4/k5/EL0O0
TYPE I RI-+ RJa RK

TYPE II RI- INa. SO
TYPE III RI- RFa CA- SY. SO
TYPE IV CA- SY

Omitted fields are interpreted as zero.

R-fields. All R-fields {RI. RJ. RK- and RF} must either
begin with an I or P or must consist of | or zero. If it
begins with an I or P, the rest of the field must be a
decimal quantity giving the ordinal of the R in the asso-
ciated list.

I - the list of R’s generated by the macro processor. These
must be numbered greater than O.

P - the list of R¥s in the parameter |ist referencing the
macro.

0 and | are the constant R’s located in B0 and A0 respec-
tively.

IN and CA fields. These fields must either be empty or
contain an X or a B followed by a digit in the range 0-7
followed by a period. If an X or B is specifieds that
specification may optionally be preceeded by a T to indicate
a temporary register assignment.

SY fields. These must be either empty or a constant in
which case it is interpreted as being an ordinal in the list
of IH parameters.

Example:

ABSF RMACRO 0,2,0
SXT , Il, PI
KRS I2, Il, 59
XOR Pe, I2, PI
ENDR

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS - ‘ PAGE NO.__B-1
PRODUCT NAME FORTRAN Fxtended
PRODUCT MODEL NO. __4PblE MACHINE SERIES __bY4/b5/bL00

FORTRAN Extended I/0 Calling Sequences

READ-WRITE-PRINT-PUNCH

First entry B2 = address of FET or complimented address §;,+Pa
of variable tape number.

B3 = address of format statement or comple-
mented address of variable format num- =~-7 '~
ber {for coded only, B3 is not set for
binaryt.

RdJ IPUTBI./IPUTCI./O0PUTBI./0PUTCI. St

Intermediate o

entries Bl = address of data item or beginning B
address of array-

QBE = array length {* of words} or I.,

RdJ INPUTB. /INPUTC. /OUTPTB. /QUTPTC.

Final entry BI = -1

RJ INPUTB./INPUTC./QUTPTB./0UTPTC.

ENCODE-DECODE
First entry Bl = address of packed data.

B3 = address of format statement or comple-
mented address of variable format.

BY = character length or complemented
address of variable character length.

RJ DECODI./ENCODT.
Intermediate
entries Bl = address of data item or beginning
address of array-

_ B2 = array length {* of words} or I.

RJ DECODE. /ENCODE.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INS PAGE NO.__B-2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4Pblb MACHINE SERIES___b4/b5/b500
Final entry Bl = -1
RJ DECODE. /ENCODE.

BUFFER IN- BUFFER OUT

{single entryl}

NAMELIST

{single entry?}

CA 138-1 REV 10-67

B2

B3
B4

Rd

Bl
Bc

RJ

mode, or complemented address if vari-
able mode.

address of FET or complemented address
of variable tape number. '

Fwa of data block.

lwa of data block:, or complemented lwa
of data block if type double or complex.

BUFFEI./BUFFEQ.

address of NAMELIST information.

address of FET or complemented address
of variable tape number.

INPUTN./OUTPTN.

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INS PAGE NO. C-1
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4PEIE MACHINE SERIES_bY4/B5/bEO0

SUBROUTINE LINKAGE AND FORMAL REFERENCING

All references to formal parameter in the following circumstances
will be direct: i.e. address substitution will be performed at
subroutine initialization time -

l. Array element reference
2. Entry in an actual parameter |ist
3. Reference within a DO

4. Reference to a formally defined subprogram

All remaining references will be via indirect references. The
address of the actual parameter list will be maintained in AO
throughout the execution of the text of the execution of the text
of the subprogram. The previous AD will be saved in local memory.

SUBROUTINE LINKAGE

Calling Sequence:

SAl APLIST
RJ SUBR

Where APLIST is the address of the first element of the actual
parameter list. The list has the addresses of the actual para-
meters stored in order one per word in the low order position with
zero fill. The list is terminated by a full word of zero. SUBR
is the subroutine name.

Substitution List Format:
Each non-zero entry has the following format:

EB S G CA G IA

89 57 486 37 20 r 0

Where

IA is the address of the instruction to be modified
CA is the constant addend

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS INS ‘ PAGE NO. C-¢2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL No.___4Pblb MACHINE SERIES__b4/b5/6500

S is the number of bit positions to be shifted over to place
the address field of interest in the low order 18 bits, i.e-r
D' 30 or 45

G is unused

The list is ordered in sequence of the associated formal para-

meters. Following all entries referencing a given formal

parameter is a zero word followed by the entries associated
with the next formal parameter.

Restriction:

Consecutive entries in the substitution list may not reference
the same instruction word.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP
DIVISION

DOCUMENT CLASS____IMS PAGE NO. D-1

PRODUCT NAME FORTRAN Extended

PRODUCT MODEL NO. 4P616 MACHINE SERIES 64/65/6600

SIO Description

1.0 The function of SIO is to perform all communication with the files
used during compilation, The files are assigned by logical unit
number and are referenced by this fixed unit number.

1.1 The logical unit assignment is as follows:
Number File
1 INPUT
2 OUTPUT
3 LGO
4 RLIST
5 COMPS

SI0 is located in the 0.0 overlay which is called FINSIO.
2,0 Entry Point Names
2,1 OPEN
2.1.1 This entry point sets up the FET.

2.1.2 Calling Sequences:

SB1 Buffer Size
SB6 Unit Number
SB7 fwa

RJ OPEN

The buffer size must be at least a PRU+10 in size (see ERS SCOPE
64/6600 Version 3.0 for definition of PRU). The FET is located at
fwa thru fwa+l0 in the buffer,

2,2 CLOSE

2.2,1 This entry is used to dump a write file, The specified buffer (file)
is emptied with an end-of-record write request.

2,2,2 Calling Sequence:

SB6 logical unit number
RJI CLOSE
2.3 REWIND
2.3.1 This entry is used to rewind a write file. The specified buffer (file)

is emptied with an end-of-file write and rewound.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS ' PAGE NO.__ D=2
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO.__4P616 MACHINE SERIES___ 64/65/6600
2.3.2 Calling Sequence:

2.4

2.4.1

2.4.2

2.5

2,5.1

. 2.5.2

2,6

2,6,.1

2.6.2

SB6 logical unit number
RJ REWIND

LIST
This entry point is used for writing on the OUTPUT file. Page
ejects and titles are inserted when necessary. If a page eject is

wanted, it is only necessary to set LCNT (line count) to zero.

Calling Sequence:

SB1 number of words

SB6 logical unit number
SB7 fwa of the array

RJ LIST

The words to be put out must be in display code and the last word
must contain at least 12 bits of zero in the low order position.

RDWDS

This entry is used to read a file which was created by the corresponding
write request.

Calling Sequence:

SB1 number of words

SB6 logical unit number
SB7 fwa of array

RJ RDWDS

Upon return the number of words read will be Bl. X4 will contain the
status. If X4 .GT. O this indicates the last read encountered on end-
of-file, 1If X4 ,LT. 0, this indicates the buffer is static and con-
tains useful information. If X4 .EQ. +0, this indicates an end-of-
record was encountered during the last read.

RDCARD

This routine is used to read card images from the disk. The char-
acters are separated into one per word right justified zero fill.

The requestors array must be €0 words in length. The remaining words
in the array are zero filled with a display code blank in the low order.
position,

Calling Sequence:

SB6 logical unit numbger
SB7 fwa of array
RJ RDCARD

The return parameters are defined in 2.5.2,

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. D-3
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES _ 64/65/6600
2.7 WRWDS
2,7.1 This entry point is used to write words in a continuous record on a
file. '
2.,7.2 Calling Sequence:
SB1 number of words
SB6 logical unit number
SB7 fwa of array
RT . WRWDS
A CLOSE or REWIND must be issued to insure that the file contains
all valid information.
2.8 STATUS
2,8.1 This entry is used to determine the STATUS of a file.
2.,8.2 Calling Sequence:
SB6 logical unit number.
RJ STATUS
The status parameters in X4 which are described in 2.5.2 are returned.
2.9 TITLEL
2.9.,1 This location is the fwa of a 100 character title. The title is
initially blank except for the page count,
2,10 LCNT
2,10.1 This is the location of the line count, it is initially zero which
will cause a page eject upon the first reference to LIST.
2,11 PAGE
2,11,1 This location contains the current page count in display code in the
low order 18 bits, The initial contents of this location are "GE,bNO.bbO",
To reset the page count, it is necessary to store a word of binary zeros
into PAGE.
3.0 No diagnostics are produced by SIO.
4,0 Structure

CTA 138-1"RFV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO.__ D=4
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL No.__ 4P616 MACHINE SERIES __64/65/6600
5.0 Major Subroutines
5.1 RDLIMIT
This routine returns the contiguous buffer space available for use
in B2, If X0 is #0, the total amount of unused buffer is returned.
The address of OUT is returned in X2, X1 contains the address of
the FET upon entry. If the buffer is empty and the last operation
did not return an end-of-record or end-of-file status, a read will
be initiated and a RECALL request will be made., If the buffer is
empty and the end-of-record status is on, the status is returned to
the user and cleared in the FET.
5.2 MVEXIT
This routine checks if the buffer is half empty and request another
read if it is. This routine is entered after each read request.
5.3 WRLIMIT
Similar to RDLIMIT except it is used for finding the buffer limits
for write requests. ;
5.4 MVWDS
This routine is used to move words to and from the I/0 buffer. The
destination address is in B7, the origin address is X2 and the number
of words in B2,
5.5 FRMCAL
This routine is used to format File Manager requests (CIO)., The FET
address is in X1, the parameter is X4 and the return address is in
B6,
5.6 RCL1
This routine makes all requests for RECALL. The return address is
in B6,
5.7 CKSTAT

This routine is called to determine the status of a buffer. The
reply is in X4.

X4 T -0 buffer busy

X4 K -0 buffer static
X4 GT +0 EOF encountered
X4 EQ +0 EOR encountered

CA 138-1 REV 10-67

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

6.0

6.1

6.2

6.3

6.4

6.5

7.0

7.1

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION

%ggIRAN Extended PAGE NO. D=2
4P616 MACHINE SERIES__64/65/6600
Formats
FET Table
Word 1 bits 0-6 buffer status
bits 18-60 file name, zero £fill
Word 2 .bits 0-18 address of FIRST
Word 3 bits 0-18 | address of IN
Word 4 bits 0-18 address of OUT
Word 5 bits 0-18 address of LIMIT
Word 6 bits 0-18 half buffer size
Word 7 bit 59 first reference flag
Word 8 not used
Word 9 not used
Word 10 not used
Word 11 not used
ODDFLG

Used by MVWWDS to

FWAl, IWAl
Location of

SVWDCNT

card

Saved word count

SVADDR

signify an odd number of words to be moved.

image -in INPUT buffer, needed by FRDCARD in SCANNER.

when requests are made via LIST,

Saved fwa when requests are made via LIST.

Modification Facilities

IMAX

May be changed by an EQU to modify the number of lines per page on

the listing.

CA 138-1 REV 10-67

CONTROL DATA CORPORATION « COMPUTER EQUIPMENT GROUP

DIVISION
DOCUMENT CLASS IMS PAGE NO. D-6
PRODUCT NAME FORTRAN Extended
PRODUCT MODEL NO. 4P616 MACHINE SERIES . 64/65/6600

7.2 1/0 Files

The name of the I/0 files (left justified zero filled) must be
placed in RA+2 thru RA+n before an OPEN request is made. The
logical unit numbers are related to the name in the RA area as

the name in RA+n is the file used for logical unit n~-1, If the
name OUTPUT appears in RA+3 any reference to file number 2 will re-
sult in a reference to the OUTPUT file.

CA 138-1 REV 10-67

	000
	001
	002
	003
	004
	01.01
	01.02
	01.03
	01.04
	01.05
	01.05a
	01.06
	01.07
	01.08
	01.09
	02.01
	02.02
	02.03
	02.04
	03.01
	04.01
	04.02
	04.03
	04.04
	04.05
	04.06
	04.07
	04.08
	04.09
	04.10
	04.11
	04.12
	04.13
	04.14
	04.15
	04.16
	04.17
	04.18
	05.01
	05.02
	05.03
	05.04
	05.05
	05.06
	05.07
	05.08
	05.09
	05.10
	05.11
	05.12
	05.12a
	05.13
	05.14
	05.15
	06.01
	06.02
	06.03
	07.01
	07.02
	07.03
	07.04
	07.05
	07.06
	07.07
	07.08
	07.09
	07.10
	07.11
	07.12
	07.13
	07.14
	07.15
	07.16
	07.17
	07.18
	08.01
	08.02
	08.03
	08.04
	08.05
	08.06
	08.07
	08.08
	08.09
	08.10
	09.01
	09.02
	09.03
	09.04
	09.05
	09.06
	09.07
	09.08
	09.09
	09.10
	09.11
	10.01
	10.02
	11.01
	11.02
	12.01
	12.02
	12.03
	12.04
	12.05
	12.06
	12.07
	12.08
	12.09
	12.10
	12.11
	12.12
	12.13
	12.14
	12.15
	12.16
	12.17
	12.18
	12.19
	12.20
	12.21
	12.22
	12.23
	12.24
	12.25
	13.01
	13.02
	13.03
	14.01
	14.02
	14.03
	14.04
	15.01
	15.02
	15.03
	15.04
	15.05
	15.06
	15.07
	16.01
	16.02
	16.03
	16.04
	16.05
	17.01
	17.02
	17.03
	17.04
	17.05
	17.06
	17.07
	18.01
	18.02
	18.03
	18.04
	18.05
	18.06
	19.01
	19.02
	19.03
	20.01
	20.02
	20.03
	20.04
	21.01
	21.02
	21.03
	21.04
	21.05
	21.06
	21.07
	22.01
	22.02
	22.03
	23.01
	23.02
	23.03
	24.01
	24.02
	24.03
	24.04
	24.05
	24.06
	24.07
	24.08
	24.09
	24.10
	24.11
	24.12
	24.13
	24.14
	24.15
	24.16
	24.17
	24.18
	24.19
	24.20
	24.21
	24.22
	24.23
	24.24
	25.01
	25.02
	26.01
	26.02
	26.03
	26.04
	26.05
	27.01
	27.02
	27.03
	27.04
	27.05
	27.06
	27.07
	28.01
	28.02
	28.03
	28.04
	28.05
	28.06
	29.01
	29.02
	29.03
	29.04
	29.05
	29.06
	29.07
	29.08
	29.09
	29.10
	29.11
	29.12
	29.13
	29.14
	29.15
	29.16
	29.17
	29.18
	29.19
	29.20
	29.21
	29.22
	29.23
	29.24
	29.25
	29.26
	29.27
	29.28
	29.29
	29.30
	29.31
	29.32
	29.33
	30.01
	30.02
	30.03
	31.01
	31.02
	31.03
	31.04
	31.05
	31.06
	31.07
	32.01
	32.02
	32.03
	32.04
	32.05
	32.06
	32.07
	33.01
	33.02
	33.03
	33.04
	34.01
	34.02
	34.03
	34.04
	34.05
	34.06
	34.07
	35.01
	35.02
	36.01
	36.02
	36.03
	36.04
	36.05
	36.06
	36.07
	36.08
	36.09
	36.10
	36.10a
	36.10b
	36.11
	36.12
	36.13
	36.14
	36.15
	36.16
	36.17
	36.18
	36.19
	36.20
	36.21
	36.22
	36.23
	36.24
	36.25
	36.26
	36.27
	36.28
	36.29
	36.30
	36.31
	36.32
	36.33
	36.34
	36.35
	36.36
	36.37
	36.38
	37.01
	37.02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06

