CONTROL DATA®
6400/6500/6600 COMPUTER SYSTEMS

JOVIAL General Information Manual

REVISION RECORD

REVISION DESCRIPTION
A This is the first edition of this publication.
3-28-69

Publication No.

60252100
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.

©1969

CONTROL DATA CORPORATION
Documentation Department

3145 PORTER DRIVE
PALO ALTO, CALIFORNIA 94304

Control Data Corporation or use Comment Sheet in the
Printed in the United States of America back of this manual

CONTENTS

SECTION 1 INTRODUCTION
Configuration

SECTION 2 FEATURES

SECTION 3 CODE OPTIMIZATION
Global
Local

SECTION 4 NOTATION

SECTION 5 LANGUAGE ELEMENTS
Signs

Basic Symbols

User Defined Symbols
Names
Constants
Variables

Formulas

Comments

SECTION 6 DATA DECLARATIONS

Directives
MODE
DEFINE
Declarations
ITEM
OVERLAY
ARRAY
Tables
Ordinary Table
Defined Table
Like Table
Files
FILE Declaration

SECTION 7 PROCESSING DECLARATIONS

CLOSE
Procedure
Function
SWITCH

60252100 Rev. A

O W W ©

10
10
11
12
12

13

13
13
13
13
13
14
14
14
15
15
16
17
17

19

19
19
19
20

SECTION 8 STATEMENTS

Statement names
Compound Statements
Assignment Statements
Exchange Statements
Control Statements

GOTO

1F

IFEITH ORIF

FOR

TEST
1/0 Statements

Input

Output

File Position
Program Control

Call Statements

RETURN

STOP

DIRECT/JOVIAL
'MONITOR

SECTION 9 PROGRAM STRUCTURE
Main Program
Subprogram

Compool

SECTION 10 SAMPLE PROGRAM

iv

21

21
21
21
21
22
22
22
22
22
23
23
23
24
24
24
24
25
25
25
26

27
27
27
27

29

60252100 Rev. A

INTRODUCTION 1

JOVIAL (J3) for the CONTROL DATA® 6400/6500/6600 computer systems is a general purpose,
procedure oriented programming language. It is particularly appropriate for command and control
applications, aswell as scientific and business applications. JOVIAL uses conventional English
and familiar algebraic and logic notation, has no source code formatting restrictions, and permits
comments to be interspersed freely among the language symbols. It provides for the definition and
manipulation of a wide range of data values and for control over their structure and storage
allocation.

The compiler is designed to produce highly efficient object code and to process source cards rapidly
in order to satisfy real time environment requirements and to take advantage of the high speed exe-
cution characteristics of the 6000 series computer systems.

CONFIGURATION

The JOVIAL compiler requires the presence of SCOPE 3, the loader, and system routines. Minimum
hardware is that required for the SCOPE 3 operating system, which includes:

6400, 6500, or 6600 Computer with 32K Central Memory

405 Card Reader with Controller

501 Line Printer with Controller

415 Card Punch with Controller

I e e N

607 Magnetic Tapes

24 million characters of mass storage on any combination of the following:
854 Disk Pack

865 Drum

6603 Disk File

6638 Disk File

60252100 Rev. A 1

FEATURES

e Independently compilable subprograms
® Subprograms in languages other than JOVIAL
® Compool of data and subprogram declarations
® Library of procedures and functions
e No formatting restrictions on source language
® Capability to intersperse comments with source code
® Capability to embed machine code in JOVIAL program
® Constants and variables of several types:
integer literal
floating point Boolean
fixed point status
octal entry
® Boolean, arithmetic, and relational operators
® Mixed mode arithmetic
® Partial word (bit and byte) manipulation
® Multi-dimensional arrays
® Variety of file and table structures, including variable size capability
® Automatic or described data packing
® Storage allocation capability
® TFormulas and functions as subscripts
@ Multiple subroutine exits
® Definition facility

® MONITOR language extension for run-time debugging

60252100 Rev. A

CODE OPTIMIZATION

A major objective of the 6000 series JOVIAL compiler is the production of efficient object code.
Both machine independent (global) and machine dependent (local) optimization is performed. If
desired, global optimization can be suppressed. Some of the techniques used are:

GLOBAL
® Redundant computation elimination
® Code redistribution
® Value substitution
® Operator strength reductions
® Dead quantity analysis
LOCAL

® Multiplication and division by shifting

e Arithmetic and type conversions at compile time
® Deletion of extraneous operations

® Special handling of partial word manipulations

® Instruction scheduling

® Expression computation rearrangements

® Register assignment and utilization efficiency operations

60252100 Rev. A

NOTATION

In the discussion that follows, a standard notation is used to describe the JOVIAL language forms.
This notation is not part of the language; it indicates the order in which the elements appear and
the options permitted the user.

Uppercase words

Lowercase words

Brackets []

Braces { }

Punctuation

Space

60252100 Rev. A

JOVIAL words with a predefined meaning for the compiler are written
in uppercase letters. These words must be included in the form in
which they appear and must be spelled correctly.

Generic terms for classes of language elements are written with lower-
case letters. The user supplies the specific elements according to the
description of the generic term supplied in the accompanying text.

Any word or phrase that can be included in or omitted from a JOVIAL
form at the user's option is enclosed in brackets.

Optional words or phrases are stacked one above the other and enclosed
in braces when only one of the stacked items can be chosen.

Any punctuation included in the forms is part of the structure of the form
and must be included unless specifically noted otherwise.

Wherever one space is shown, the user can supply more than one space.
Generally, spaces separate symbols but are not included in symbols;
exceptions are noted.

LANGUAGE ELEMENTS

A JOVIAL program consists of statements and declarations composed from the elements of the
language. The elements are symbols and formulas formed from the set of JOVIAL signs.

SIGNS

The signs, or JOVIAL character set, are:

Letters of the alphabet from A-Z

Digits from 0-9

Marks +-* /., ,=()"'$

BASIC SYMBOLS

Basic symbols have a predefined function and meaning in the language. They are either words
formed from two or more letters of the alphabet, or ideograms formed from the set of marks.
The words are called primitives and cannot be duplicated.

The basic symbols fall into the following categories:

Operators
Separators
Brackets

Functional
modifiers

Declarators
Descriptors

Directives

control the operations to be performed
serve as punctuation
enclose groups of symbols

describe particular characteristics of program elements

introduce declarations
single letter codes describe characteristics of declarations

instruct the compiler to perform certain functions

USER DEFINED SYMBOLS

Symbols, constructed by the user according to specific rules, fall into three categories:

constants, and variables.

60252100 Rev. A

names,

NAMES

Names must conform to the following rules:

Contain two or more letters, numerals, or primes

Begin with a letter

Not end with a prime

Not contain two consecutive primes

Not duplicate a primitive

In general, no two names in a program can be identical; however, JOVIAL allows some duplication
of names. For instance, names used in status constants may be used elsewhere in the same pro-
gram; a device name can be duplicated by a statement name, program name, or switch name, and
any of these names can duplicate an item name, table name, file name, procedure name or function

name,

CONSTANTS

Constants are specific values that never change during program execution The following kinds of
constants are allowed:

Integer
Octal
Floating

Fixed
Literal

Boolean

Status

10

Number followed optionally by the letter E followed by a scale
Letter O followed by an octal number in parentheses

Decimal number, including a decimal point, followed optionally by the letter E
and a scale

Floating constant followed by the letter A and a scale

Number followed by the letter H or T followed by a string of signs in parentheses.
The number specifies the number of signs in the string; H specifies display code,
T specifies transmission code

Numeral 0 for false or 1 for true

Letter V followed by a letter or name in parentheses. Status constants are de-
fined in sets and associated with a status item; their value depends on context.

60252100 Rev. A

VARIABLES

Variables are named variables, loop variables, or functional modifier variables.

Named Variables These variables are given a simple or subscripted name:

name or ($ name $)

A named variable can be an integer, an octal, floating, or fixed point number; or it can be a
Boolean, literal, or status variable.

Loop Variables These are always a single letter used within the context of a FOR loop as an
iteration counter. A loop variable can be an integer only.

Functional Modifier Variables

Certain variables are introduced by functional modifiers. They

are described below according to type:

Integer:

BIT ($ index $)
(named-variable)
POS (file-name)
NENT (name)

CHAR (floating-variable)

LOC (name)

Fixed:

MANT (floating-variable)

Literal:

BYTE ($ index $)

(named-literal-variable)

Boolean:

(named-numeric-

(loop-variable)
opD {
variable)

Entry:

ENT (name
ENTRY((8 index $))

60252100 Rev. A

}

Specifies particular substring of bits in named variable

Designates position of named file
Number of entries in named variable length table
Designates exrad (characteristic) of named floating variable

Starting address in memory of named program, statement,
item, or table

Designates significand (mantissa) of named floating variable
as a signed fixed fractional value

Designates particular substring of bytes in named variable

Assumes value 1 (true) when variable is odd, the value 0
(false) when variable is even

Specifies contents of entire entry in named table

11

FORMULAS

Formulas express values in the JOVIAL language. Constants and variables are themselves
formulas; they can be combined with operators and brackets to form other formulas. A function,
which is a call to a procedure returning a single value, is a special class of formula.

Numeric

Numeric formulas combine numeric constants, functions, and variables with arithmetic operators
to produce a single value upon evaluation. Parentheses can be used for grouping symbols and con-
trolling the sequence of evaluation. The brackets (//) and the functional modifier ABS indicate
absolute value.

Literal

A literal formula is a literal or octal constant, a literal variable, or a literal function.

Boolean

A Boolean formula is either relational or logical. Relational formulas are constants, variables,
and formulas, separated by the relational operators:

EQ (equal to) GR (greaier than)
LQ (less than or equal to) GQ (greater than or equal to)
LS (less than) NQ (not equal to)

Logical formulas are Boolean variables, or relational formulas separated by the logical operators:
AND, OR, and NOT. Evaluation of a Boolean formula determines whether the formula is true or
false.

Sequential
The value of a sequential formula is a statement name or a close name, and it is designated directly

by a sequential operator or indirectly by a switch name. Sequential formulas specify decision points
which control the sequence of execution.

COMMENTS

Comments can be inserted anywhere within a JOVIAL program; a comment is a string of characters
enclosed in a pair of double primes. Comments are printed in the listing but are not compiled as
code.

12 60252100 Rev. A

DATA DECLARATIONS 6

Declarations may appear anywhere in the program, but they must precede any reference to the data
they define. Names of simple items need not be defined in declarations since they are assumed to
be signed whole-word integers.

DIRECTIVES

Two directives instruct the compiler how to treat data.

MODE

The default mode for simple items is redefined by mode:
MODE item-description [p constant] $

Any undefined simple item is defined by the mode directive according to the specified item descrip-
tion; optionally the item is preset to a constant value.

DEFINE

The user can assign a name to a lengthy expression, make simple additions to the language, or
create symbolic parameters:

DEFINE name "'character-string' $

DECLARATIONS

Data declarations arrange data internally as items, arrays, and tables; externally as files.

ITEM
Items can be integer, floating, fixed, literal, status, or Boolean.

ITEM name item-description $

60252100 Rev. A 13

The item description corresponds to the item type. The description can be omitted for integer,
floating, fixed, or literal items when a constant of the item type is included to serve as an implicit
declaration:

ITEM name constant $

OVERLAY

The order in which declared data is allocated storage space by the compiler is indeterminate. The
user can, however, control allocation of data with the overlay declaration:

OVERLAY name [3?$ name,] ... [i’_§ name | $

When the named items, arrays, or tables are separated by commas they are allocated sequential
storage; storage is allocated from the same origin when they are separated by equals signs. Com-
mas and equals signs can be intermixed in the same declaration.

ARRAY
An array is an arrangement of like items in one or more dimension.
ARRAY name dimension-list item-description [BEGIN constant-list END] $

The item description describes the entire array and each item in the array. The dimension iisi is
a series of one or more integers, each representing a dimension and its value, the number of
integers determines the size of the dimension. For instance, the dimension list for a one dimen-
sional array is one integer, for a two dimensional array two integers, and so forth. If a constant
list is included, it must correspond to the dimension list.

The entire array is referenced by the array name; individual items are referenced by the array
name with a subscript. The subscript is one or more integers corresponding to the number of
dimensions; integers are separated by commas and the whole subscript is enclosed in subscript
brackets:

array-name ($ n,0,.. .0, $)

TABLES

A table is a one dimensional arrangement of one or more entries, each entry having an identical
substructure of one or more items. Entries are referenced by subscripting the table name with
an entry index; items by subscripting the entry name with an item index.

14 60252100 Rev. A

Tables are declared in two parts: table header and table entry declarations. The table header
declaration describes the table as a whole; it specifies the table name, size, structure and
packing. The header is followed by a table entry declaration composed of a set of item declara-
tions enclosed in BEGIN END brackets.

Table Size is either variable (V), with the number after V specifying the maximum number of
entries, or rigid (R), with the number after R specifying the exact number of entries.

Table Structure is either serial (S) or parallel (P). In a serial table, each item in an entry is
stored consecutively. In a parallel table, the first word of each entry is placed in the first block
of storage, the second word of each entry in the second block and so forth. A number following
P or S indicates the number of computer words needed for each entry.

Table Packing is N for no packing, M for medium packing, or D for dense packing. When N is
specified, each item occupies its own word or words in storage and no space is shared. Medium

and dense packing allow data to share words.

Table type may be declared as ordinary, defined, or like.

ORDINARY TABLE

\% P N
TABLE [name] size [JIKMy] 8
R S
D
BEGIN
ordinary-entry-declaration
END

An ordinary entry declaration contains one or more item declarations of the form:
ITEM name item-description $
optionally followed by:

[one-dimensional -constant-list]

[OVERLAY declarations]

DEFINED TABLE

The defined table declaration allows the user to allocate the number of words per entry. Packing
is assumed to be dense for the table, but it may be specified for individual items or strings in the
defined entry declaration. With this declaration, the exact structure of a table can be defined by
the user.

60252100 Rev. A 15

TABLE [name] ggs table-size [3 gf] entry-size $
BEGIN
defined-entry-declaration
END

Defined entry declarations may be item declarations or string declarations.

Item Declaration consists of one or more item declarations:

N
ITEM name item-description starting-word starting-bit [<M:] $
D
optionally followed by:

[one-dimensional -constant-list]

String Declaration is used to specity more than one occurrence of an item per entry. Each such
occurrence is called a bead. The declaration is one or more string declarations of the form:

STRING name item-description starting-word starting-bit

N
[{ M/] bead-frequency bead-number $
D

optionally tollowed by:

[two-dimensional -constant-list]

LIKE TABLE

The table named in this declaration has a structure patterned on a previously named and declared
table.

\% P N
TABLE name [;Rs] [table-size] [%S;] [<M,] LS
D

The name of the like table is specified by suffixing a letter or numeral to the name of the pattern
table. This suffix is then appended to the names of any items in the pattern table to form item
names for the like table. No entry description is included.

16 60252100 Rev. A

FILES

A file is a sequential string of bits, residing on an external storage device, divided into one or
more logical records. A file declaration describes the structure of data in a file.

FILE DECLARATION

FILE name 255 record-count 3;% record-size status-list device-name $

A file is binary (B) or display code (H), and records are variable (V) or rigid (R) in length. The
status list is a string of status constants identifying the possible status of the file, such as busy,

ready, or error. The device name identifies the particular external device on which the file
resides.

60252100 Rev. A

17

PROCESSING DECLARATIONS 7

Processing declarations describe those parts of a program that are executed only when specifically
called: close routines, procedures, and functions. The switch declaration specifies decision points
for transfer of control.

CLOSE
A close declaration describes a closed subroutine without parameters.

CLOSE name $

BEGIN
declarations and statements
END

This routine is called by the close name, either directly following a GOTO statement or indirectly
in a switch call. The compiler provides a transfer around a close routine if it occurs in a block
of code. Exit from the routine is normally to the statement that follows the statement calling

the close.

PROCEDURE

A procedure is a closed subroutine that may have input and/or output parameters. A procedure
declaration has the form:

PROC name

[([formal-input-parameters] [= formal-output-parameters])] $

BEGIN
declarations and statements
END

A procedure may not contain procedure declarations or function declarations, but it may contain
calls to other procedures or functions.

FUNCTION

A function is similar to a procedure except that execution of a function must result in a single value.
The function name acts as the only output parameter in the function declaration:

60252100 Rev. A 19

PROC name [(formal-input-parameters)] $
ITEM name item-description $
[declaration-list]

BEGIN
declarations and statements
END

The item declaration describes an item with the same name as the function. A function is called
by the function name followed by a pair of parentheses enclosing any actual input parameters or
enclosing a space if there are no parameters. The function call is effectively the value resulting
from execution of the function.

SWITCH

A switch defines a series of decision points to control the sequence of execution. The switch
declaration lists statement, close, or switch names to which control is transferred depending
on the value of an item or index. A switch declaration may describe an index switch or an item
switch.

Index Switch
SWITCH name = (index-switch-list) $

The index switch list is a series of statement, close, or switch names separated by commas. The
numerical position of each name in the list, starting with zero, provides the index value that
determines the name to which control transfers. For instance, a reference to switch-name ($ 1 §)
is a reference to the second name in the list.

Item Switch

item-name

file-name éz (item-switch-list) $

SWITCH name;

The item switch list consists of constants paired with names of statements, close routines, or
switches in the form:
(constant

=name_ [,constant_ = name_}]...[,constant =name })
1 2 n n

1 2

The current value of item name or file name is compared with constantl, constantz, etc. When a

match is found, control passes to the corresponding statement, close, or switch name, otherwise
control passes to the statement following the switch call.

20 60252100 Rev. A

STATEMENTS

Statements are the operational units ot the JOVIAL language. They describe self-contained rules
of computation, specify the manipulation of data, and specify the sequence of program execution
conditionally, unconditionally, or both.

STATEMENT NAMES

A statement can have one or more names, or no name; however, any statement that is referenced
in another statement or declaration must have a name. A statement name is followed by a period
and a space which is usually followed by the statement but may be followed by another name:

namel. [name .. .namen.]] statement $

2'[

COMPOUND STATEMENTS
A list of statements enclosed by BEGIN END brackets is a compound statement. Declarations,

directives and other compound statements can be included in the statement list. A compound
statement is always treated as a single independent statement.

ASSIGNMENT STATEMENTS

An assignment statement assigns the value of a formula to a variable. An equals sigh separates
the variable on the left from the formula on the right. The general form is:

[name.] variable = formula $
The variable and formula must agree in type; type may be arithmetic, literal, Boolean, status,

or entry. When the statement is executed, the formula is evaluated and its value is assigned to
the variable.

EXCHANGE STATEMENTS
An exchange statement exchanges the values of two variables separated by a double equals sign.
No space is permitted between the equals signs. Both variables must be of the same type:

arithmetic, literal, Boolean, status, or entry. The general form is:

[name.] variable = = variable $

60252100 Rev. A 21

CONTROL STATEMENTS

Control statements are used to alter the normal, serial sequence of execution.

GOTO

The GOTO statement transfers control to a statement designated in a sequential formula. The
sequential formula is a statement, close, or switch name.

[name.] GOTO sequential-formula $

IF

An IF clause is evaluated, and the associated statement is executed only if the Boolean formula in
the IF clause is true.

[name.] IF Boolean-formula $ [name.] statement $

IFEITH ORIF

This variant of the normal IF statement provides a selection of possible statements to be executed
depending on the evaluation of Boolean formulas.

[name.] IFEITH Boolean-formula, $ [name.] statement, $

[name.] ORIF Boolea.n—formula2 $ [name.] s’catement2 $

[name.] ORIF Booleam—formulan $ [name.] s‘catementn 3

END

The Boolean formulas are evaluated in order until one is found to be true, and its associated
statement is executed. If the latter statement does not contain a GOTO statement, control then
transfers to the statement following END. If no Boolean formula is true, control passes immediately
to the statement following END.

FOR

With the FOR statement, the user can set up an automatic program loop. It sets a counter to an
initial value which is automatically incremented or decremented following execution of one or more
associated statements until a terminal value is reached. A FOR statement is a complex statement
defined as a FOR clause followed by a simple or compound statement:

22 60252100 Rev. A

[name.] FOR letter = initial-value [,increment] [,terminal-value] $

[name.] statement $
The letter is the loop variable or index whose value determines whether the statement following
the FOR clause will be executed. Initial value, increment, and terminal value are positive or
negative numeric formulas. If only the initial value is specified, the FOR clause is a simple
assignment of that value to the loop variable. If the terminal value is omitted, an explicit GOTO

must be included in the statement following the FOR clause. The functional modifier NENT
(number of entries) can be used as the initial or terminal value when looping through a table.

Several FOR clauses can activate separate loop variables for the same statement. Also FOR
clauses can be nested; that is, a compound statement following one FOR clause can include another
FOR clause, and so forth.

The FOR ALL clause may be used to loop through a table:

[name.] FOR letter = ALL (;table-name g) s

entry-name

This clause assumes the initial value is NENT for the particular table or entry, the increment is -1,
and the terminal value is 0.

TEST

This statement is used to test explicitly a loop variable from within the compound statement follow-
ing the FOR clause. If the statement contains only one active loop variable. the letter can be

omitted.

[name.] TEST [letter] $

1/O STATEMENTS

Data in the form of logical records can be transmitted between main storage and external storage,
and files can be positioned with the input/output statements. One input/output statement is required
for the transmission of each logical record.
INPUT
Three statements govern input:

OPEN INPUT file-name [input-operand] $
OPEN INPUT activates the file named for input, and if there is no operand, it rewinds the file to

logical record zero. If an operand is used, the file is opened, a record is read in, and the file is
positioned to logical record one (the second record in the file).

60252100 Rev. A 23

INPUT file-name input-operand $
This statement transfers a record of data from an open input file to main storage.

SHUT INPUT file-name [input-operand] $
This statement closes the named file. If an operand is included, data is transferred to storage
before the file is closed. An input operand can be a variable, array name, table name, or entry
name.

OUTPUT

Output files are opened and closed, and data is written on the files by commands analagous to the
input statements. An output operand can be any of the input operands plus a constant.

OPEN OUTPUT file-name [output-operand] $
OUTPUT file-name output-operand $
SHUT OUTPUT file-name [output-operand] $

FILE POSITION
The POS statement positions a file to the start of record 0, record 1, up to record n-1, where n
ig the number of records in the file. The numeric formula is any positive integer which is less

than the number of records in the file.

POS (file-name) = numeric-formula $

numeric-formula = POS (file-name) $

PROGRAM CONTROL

Statements that control the structure of the program include procedure and function calls, RETURN
and STOP statements.

CALL STATEMENTS
A procedure is called by:

name [([actual-input-parameters]) [= actual-output-parameters])] 3
A function is called by:

name ([actual-input-parameters]) $

24 60252100 Rev. A

In both cases, the name must be identical to the name specified in the PROC declaration describing
the procedure or function, and the actual parameters must agree with the formal parameters in
number, type, and order.

A close routine is called simply by its name. When a close name is included in a parameter list,
is must be followed by a period.

RETURN
A close routine, function, or procedure contains an automatic exit to the next statement following
the call statement. The RETURN statement allows the user to transfer to that automatic exit from

an earlier point in the routine.

RETURN $

STOP

The STOP statement halts the sequence of execution; it usually indicates the end of the program.
If the program is restarted and statement name is included, control transfers to the named statement.

STOP [statement-name] $

DIRECT/JOVIAL

The DIRECT JOVIAL brackets permit the user to include assembly language code in the midst of
a JOVIAL program.

DIRECT
assembly code

JOVIAL

An ASSIGN statement provides access to variables in the JOVIAL program from within the assembly
code. To move the contents of the named variable to the accumulator:

ASSIGN A (constant) = named-variable $
To move the contents of the accumulator to the named variable:
ASSIGN named-variable = A (constant) $

The constant is a code defining the particular register and the numeric form of the value in the
register.

60252100 Rev. A 25

MONITOR

This statement traces the flow of execution through designated names and prints the current value
of designated variables

[name.] MONITOR [(Boolean-formula)] name-list $

The name list contains item, function, statement, switch, close or procedure names. The value
of an item or function is printed whenever it appears in an exchange statement or to the left of an
assign statement during execution. A statement, switch, close, or procedure name is printed
whenever it is passed or called during execution. If the Boolean formula is present, it is evaluated
each time a monitored name is encountered, and only if the formula is true, is the name or value
printed.

26 60252100 Rev. A

PROGRAM STRUCTURE 9

A JOVIAL program is a set of statements and declarations to solve a user's particular processing
problem. It may be a main program or a subprogram; each can be compiled separately. A main

program is called by the operating system at the user's request. A subprogram can be called by

the main program or by another subprogram but it must be described in a compool compiled with

the calling program.

MAIN PROGRAM

A set of declarations and statements enclosed within START TERM brackets is a main program.
The form is:

START $
declarations and statements

TERM [statement-name] $ -

If statement name is included, program execution starts with the specified statement.

SUBPROGRAM

A subprogram is also contained within START TERM brackets, but it includes the subprogram
declaration.

START subprogram-declaration $
declarations and statements

TERM $
The subprogram declaration is a special case of the PROC declaration:

PROC name

[([formal-input-parameters] [= formal-output-parameters])] $

COMPOOL
A compool is a communications pool which contains data and subprogram definitions. Any valid

JOVIAL data declaration can be included in a compool and the data can be preset; processing declar-
ations may not be included in a compool. Independently compiled subprograms must be defined in a

60252100 Rev. A 27

compool before they can be referenced by another subprogram or a main program. Compool
defined subprograms may be written in languages other than JOVIAL. If a name is defined in
both a compool and a program which references that compool, the program definition takes
precedence.

The compool assembler is an optional part of the JOVIAL compiler called by a control card
parameter. The standard compool is automatically available; any other compool must be specifically
requested on the control card. Assembled compools are available at compile time only. The num-
ber of compools is unlimited, but only one may be referenced during compilation. Each compool

can contain any number of common data blocks.

A compool specification is similar to a JOVIAL program except that is contains no statements,
only declarations:

START $ compool-declarations TERM $

Compool declarations are either data or subprogram declarations. Compool defined data is arranged
in one or more common blocks:

COMMON ([block-name] $
BEGIN
data-declarations

END

28 60252100 Rev. A

SAMPLE PROGRAM 10

The following brief program finds the number of winning and losing rolls out of 5000 rolls of a pair
of dice. A table ALL'ROLLS is preset to a maximum of 5000 initial rolls. The program assumes
that a roll of 3, 5, 6, or 10 results in an automatic loss; a roll of 7 or 11 results in an automatic
win; any other results are not considered.

When processing is complete, the program exits to SYST. The number of Wms is contained in the
item WINS, the number of losses in the item LOSSES.
START $ "DICE GAME PLAYED FEB 14 1969"
TABLE ALL'ROLLS R 5000 P 1§

BEGIN
ITEM ROLL'ONEI160S PO $
END

ITEM WINSI60S PO $
ITEM LOSSESI60S P 0 $
SWITCH ROLL (ROLL'ONE) = (3 = LOSE, 5 = LOSE, 6 = LOSE, 7 = WIN,
10 = LOSE, 11 = WIN) $
PLAY. FORX =ALL (ALL'ROLLS) $
BEGIN "X"
GOTO ROLL(X) $
TEST X $§

WIN. WINS =WINS +1 $
TEST X $

LOSE. LOSSES = LOSSES + 1 $
END "XH
GOTO SYST $

TERM PLAY $

60252100 Rev. A 29

CUT ON THIS LINE

COMMENT SHEET

TITLE: 6400/6500/6600 JOVIAL General Information Manual

PUBLICATION NO. 60252100 REVISION A

CORPORATION

CONTROL DATA
| corroraTioN

Control Data Corporation solicits your comments about this manual with a view to improving its usefulness in later

editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

BUSINESS
ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

FOLD

STAPLE

STAPLE

FOLD

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA 94304

STAPLE

CUT ON THIS LINE

> » CUT OUT FOR USE AS LOOSE ~LEAF BINDER TITLE TAB

Pub. No. 60252100

CORPORATION

CONTROL DATA
[cocromnron]

CORPORATE HEADQUARTERS, 8100 34th AVE. SO.. MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

wnor IR

_‘W
*

IVANYIA NOILVW&IO:INI AVH3INEO

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	replyA
	replyB
	xBack

