@ CONTROL DATA
CORPORATION

60496400

SYMPL VERSION 1
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1

NOS/BE 1
SCOPE 2

REVISION RECORD

REVISION DESCRIPTION

A Original printing.
(11-1-75)

B This revision documents SYMPL 1.2, PSR level 439, New features include CONTROL statement
(12-06-76) additions for trace and optimization. See list of effective pages.

C This revision documents SYMPL 1.2, PSR level 446. It reflects SYMPL support of the CYBER 170
(03-01-77) Model 176. See list of effective pages.

D This revision documents SYMPL 1.3. New features include CONTROL statement addition for weak
(03-31-78) externals; and points not tested SYMPL control statement option. Appendix F contains a glossary.
E This revision documents SYMPL 1.4. New features include SYMPL text, CID interface, a new
(07-20-79) diagnostic system, and a description. of system-independent arrays. Appendix G contains coding

conventions. The manual has been partially reorganized.
F This revision documents SYMPL 1.4, 1t incorporates various technical corrections and
(01-31-80) editorial improvements. This revision supersedes all previous revisions.

Publication No.

60496400

Address comments concerning

REVISION LETTERS I, O, Q@ AND X ARE NOT USED this manual to:

- ©

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

COPYRIGHT CONTROL DATA CORPORATION 1975, 1976, 1977, 1978, 1979, 1980
All Rights Reserved
Printed in the United States of America

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-

tion rather than content has changed.

Page

Revision

Page

Revision

Page

Revision

Cover

Title Page

ii

iii/iv

v/vi

vii

viii

1-1 thru 1-5
1-6

1-7

1-8

2-1 thru 2-6
2-7

2-8

2-9

2-10 thru 2-12
3-1 thru 3-6
4-1

4-2

4-3

4-4 thru 4-8
5-1

5-2

5-3

5-4

5-5

5-6 thru 5-9
6-1 thru 6-3
6-4 thru 6-6
A-1

A-2

B-1 thru B-17
C-1

C-2

D-1 thru D-25
E-1

E-2

mmmommTmmEmTmToDTm I mTmo Mo mTmmmm T M T |

F-1

F-2

G-1 thru G4
H-1

H-2

Index-1
Index-2
index-3
Comment Sheet
Mailer

Back Cover

‘MmomMmmmmm o

60496400 F

iii/iv @

PREFACE

S

SYMPL Version 1.4, which is a systems programming This reference manual presents the semantics and rules
language, operates under control of the following for writing programs in the SYMPL language. It includes
operating systems: sufficient information to prepare, compile, and execute
such programs. An appendix presents the syntax of the

NOS 1 for the CONTROL DATA CYBER 170 Series, language in metalinguistic form.

CYBER 70 Models 71, 72, 73, 74, and 6000 Series
Computer Systems

NOS/BE 1 - for the CDC® CYBER 170 Series, The reader of this manual is assumed to have knowledge
CYBER 70 Models 71, 72, 73, 74 and 6000 Series of the operating system and computer system under which
Computer Systems SYMPL will be used.

SCOPE 2 for the CONTROL DATA® CYBER 170
Model 176, CYBER 70 Model 76, and 7600 Computer

Systems Other publications of interest are listed below.
Publication Publication Number

CYBER Interactive Debug Version 1 Reference Manual 60481400

NOS Version 1 Operating System Reference Manual, Volume 1 of 2 60435400

NOS Version 1 Operating System Reference Manual, Volume 2 of 2 60445300

NOS/BE Version 1 Operating System Reference Manual 60493800

SCOPE Version 2 Reference Manual - 60342600

CDC manuals can be ordered from Control Data Carporation, Literature and Distribution Services,
308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this

document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

60496400 F v/vi

CONTENTS

O

1. LANGUAGE ELEMENTS

SYMPL Character Set
Comments
Identifiers
Constants
Boolean Constants
Character Constants
Integer Constants
Decimal Integer Constant
Hexadecimal Constant
Octal Constant
Real Constants
Status Functions and Constants
Operators
Expressions
Arithmetic Expressions
Numeric Arithmetic Expressions
Masking Expressions
Boolean Expressions
Relational Expressions
Logical Expressions

2. DATA DECLARATIONS

ITEM Declaration
STATUS Declaration
SWITCH Declaration
Ordinary Switch
Status Switch
ARRAY Declaration
System-Independent Arrays
Array Declaration Header
Array Item Declarations
System-Dependent Arrays
Array Declaration Header
Serial and Parallel Arrays
Array References
Presetting Arrays
Array Storage and Addressing
Based Array Declaration

3. EXECUTABLE STATEMENTS

Labels
Replacement Statement
Exchange Statement
FOR Statement
TEST Statement Within a FOR Statement
GOTO Statement
IF Statement
RETURN Statement
STOP Statement

4. PROGRAM STRUCTURE

Scope of Variables
Main Program
Procedures
Formal Parameters
Actual Parameters

60496400 F

T
p—

Functions
Programmer-Supplied Functions
Intrinsic Functions

ABS Function
B Function
C Function
LLOC Function
P Function

Alternate Entry Points

Interprogram Communication
COMMON Declaration
XDEF Declaration
XREF Declaration

5. COMPILER DIRECTIVES

$BEGIN/$END Debugging Facility
DEF Facility
Basic DEF Usage
DEF Name Declarations
DEF Name References
Advanced DEF Usage

P bt b et ot ot b bt bt bt bt e e bt b b b
NN UVMEESELENNNNNNNNN R

Parameters
2-1- : DEF Expansion
Comments
2-1 CONTROL Statement
2-2 Listing Control
2-2 Conditional Compilation
2-2 Compilation Option Selection
2-2 FOR Loop Control
2-3 Memory Residence Selection
2-3 Attributes of Variables Specification
2-3 Overlapping
2-4 Reactive Arrays
2-5 Weak Externals
2-6 Traceback Facility
2-7 SYMPL Texts
2-8 Text Creation
2-8 Text Usage
2-10 TERM Statement
2-11
6. COMPILER CALL AND QUTPUT
3-1 LISTINGS

Compiler Call
B Binary Code File
C Check Switch Range
D Pack Switches
DB CYBER Interactive Debug
E Compile $BEGIN/$END Statements
EL Error Level
ET Error Termination
F FORTRAN Calling Sequence
H List All Source Statements
I Source Input File

UWWW}N\A\JJWW
ANV VTWNN -

4-1 K Points-Not-Tested
L Listing File
4-1 N Cross-Reference Unreferenced Items
4-1 O List Object Code
4-1 P Preset Common
4-2 R List Cross-Reference Map
4-3 S Execution Library

1

J-\-P-l-\-l-\-l-\b-f-\l-\-l-‘l-\l-\-l-\‘-\
NN~V S

\n
1
—

URURE L P T e e e e |

\n\n\n\n\n\num\n\n\n\n\'ﬂ\nmm\n\n\n\n\nm\n\n
NV VDODOXDONONON N UNELELSELFEWWUNNE

o
e

11 ¢t &t 1 101

e = N N e e e R
WHWUWRNRNRNNNN -

vii

T Syntax Check 6-3 Z SYMPL Text Input Library 6-4
W Single Statement Code Generation 6-3 Output Listings 6-4
X List Storage Map 6-3 Storage Map 6-5
Y SYMPL Text Input File 6-3 Cross-Reference Map . 6-5
APPENDIXES
A Standard Character Sets A-1 E Execution-Time Output E-1
B Diagnostics) B-1 F CYBER Interactive Debug Interface F-1
C Glossary Cc-1 G Coding Conventions G-1
D Metalanguage D-1 H Programming Suggestions H-1
INDEX
FIGURES
1-1 Examples of Arithmetic Expression 2-6 Structure of Array RHO 2-11
Evaluation 1-7 3-1 Generalized Fastloop and Slowloop
2-1 System-Independent Array Examples 2-5 Flowcharts 3-3
2-2 Differences in Serial and Parallel 4-1 Scope of Declarations 4-1
Allocation 2-6 6-1 Sample Source Program 6-4
2-3 Serial Array Allocation 2-7 6-2 Storage Map 6-5
2-4 Parallel Array Allocation 2-8 6-3 Cross-Reference Map 6-6
2-5 Serial and Parallel Arrays with
Multiword Items 2-9
TABLES

SYMPL Marks

SYMPL Reserved Words and Descriptors
SYMPL Operators

Truth Table for Logical Operators
Truth Table for Masking Operators

BN
=N O\

Operand Conversion During Exponentiation
Array Item Descriptor Limits

Replacement Statement Conversions
Slowloop and Fastloop Expansion Compared
Actual/Formal Parameter Correspondence

60496400 F

LANGUAGE ELEMENTS ' 1

The SYMPL compiler is designed for use by system
programmers writing compilers and system software.
Consequently, SYMPL omits many facilities typically
found in high-level languages, particularly features
intended for scientific and commercial applications
programming. At the same time, SYMPL places minimal
restrictions on allowable optimizations.

SYMPL is a procedure-oriented language similar to
JOVIAL, which was derived from ALGOL-58 (the 1958
version of the International Algorithmic Language, as
described in the December 1958 issue of the
Communications of the ACM).

SYMPL is a readable and concise programming language
l that uses self-explanatory English words and the familiar
notations of algebra and logic. In addition, SYMPL has no
format restrictions: comments can be intermixed among
the symbols of a program to document it.

Coding conventions for SYMPL are less restrictive than
for most languages. The source program is considered to
be a stream of characters; card or line boundaries are
ignored. Significant columns of a card image are 1
through 72; columns beyond 72 are not interpreted. For
purposes of source information, the compiler assumes
column 72 of one card image is adjacent to column 1 of
the next card. All SYMPL names, constants, operators, or
symbols can be broken across card images without any
special continuation marks.

SYMPL CHARACTER SET

The SYMPL character set has 55 characters:
A through Z and $
0 through 9
*[4-=<>O[]"#.,:;blank

Some of the characters are not represented on the keys of

. all keypunches or terminals and they might not appear on
all line printers. The characters shown above are from
the American Standard Character Set for Information
Interchange (ASCII) and are used throughout the body of
this manual. For instance, the characters " and # appear
in the ASCII character set, but appendix A shows that #
and = might appear with another character set. A
programmer should use whatever is appropriate to achieve
a display code value of 64 to represent the constant
delimiter " and a display code value of 60 to represent the
comment delimiter #.

Characters that are not part of the SYMPL character set
can be used in a program only within a character constant
or a comment.

SYMPL characters classified as marks serve as delimiting
characters. In the correct circumstances, any of the
marks can delimit an identifier. The character blank (also
known as a space) is an element within the set of marks.
Consequently, its use is significant.

60496400 F

Whenever one blank is required as a delimiter, any number
of blanks is allowed. Whenever a nonblank delimiter is
required, any number of surroqnding blanks is allowed.

Table 1-1 shows the SYMPL marks and their uses.

TABLE 1-1. SYMPL MARKS

Mark Use

+ Arithmetic operator for addition.

- Arithmetic operator for subtraction.

* Arithmetic operator for multiplica-
tion.

-/ Arithmetic operator for division.

*k Arithmetic operator for exponenti-
ation.

= Assignment operator for replacing
value of left side with value of
right side.

Assignment operator for exchange of
values on right and Teft sides.

s Separator, for expressions, list
elements, etc.

. Decimal point in real constant.
Delimit labels; separate bounds

of array dimension; separate status
indicator from value.

; Terminate statements and declara-
tions.
blank Delimit identifiers; introduce
readability.
(and) Delimit argument lists; group

expression elements; denote call-
by-value argument; etc.

[and] Delimit subscripts and array bounds.

<and > Delimit arguments for intrinsic
functions B, C, and P, and system-
independent array specifications.

" Delimit character constants, status
constant values, octal constant
values, and hexadecimal constant
values. '

Delimit both limits of comment and
DEF body.

1-1

COMMENTS

A comment is an arbitrary string of characters enclosed
within pound signs; as in:

kstring#

The only characters that cannot appear within a comment
are the semicolon and the pound sign. A semicolon
terminates the comment and causes a diagnostic.

Comments can - appear between or within SYMPL
statements. Anyplace a blank can appear, a comment can
appear, with the following exceptions. A comment cannot
appear:

e Within a comment

e After the name in a DEF declaration since the body
of DEF is also delimited by #.

IDENTIFIERS

An identifier is a string of 1 through 12 letters, digits, or
$ beginning with a letter ($ is considered to be a letter).
The two types of identifiers are reserved words and
programmer-defined words.

Reserved words have predefined meanings to the SYMPL
compiler. They can be used only in the contexts described
in this manual. Table 1-2 lists all of the reserved words
and the roles they play in SYMPL programs;
context-defined descriptors also appear in this table
although they are not reserved words.

Programmer-defined identifiers name entities, such as

constants or variables, within the program. They cannot
be the same as a reserved word.

The remainder of this manual uses the term identifier to
indicate a programmer-defined entity. Reserved words
are indicated in text in capital letters.

CONSTANTS

SYMPL has five types of constants. Each is a sequence of

characters which defines its own value. The constant

types are: Boolean, character, integer, real, and status.

BOOLEAN CONSTANTS

Boolean constants represent the two elements of Boolean
algebra. They are specified by the reserved words TRUE
and FALSE. Numerically, FALSE is zero and TRUE is
nonzero.

CHARACTER CONSTANTS

Character constants represent alphanumeric data. A
character constant has the format:

"string"

string String of 1 through 240 characters of the
computer character set shown in
appendix A. If the character " is to appear
in the string, it must be specified by two
consecutive " marks.

1-2

For example:

"TAPEO1" "*ERROR*"

"QUOTES" "All "

INTEGER CONSTANTS

Integer constants represent numeric values. The three
types of integer constants are: decimal, octal, and
hexadecimal. -

During execution, the maximum allowable value for an
integer constant depends on the use of the constant. The
value of an integer to be converted to a real value, and
the value of an integer operand and result of integer
multiplication and division, must be expressed in 47 bits.
High-order bits are lost when a larger value exists, but no
diagnostic informs the programmer of such a condition.

Each type of integer constant is specified in a different
way. Also, each appears in storage in a format
appropriate to its type, as described with ITEM
declarations for data types.

Decimal Integer Constant

A decimal constant is a string of decimal digits 0 through
9 with an optional preceding plus or minus sign. The
string can contain 1 through 18 digits; it cannot contain
blanks. The absolute value for a decimal integer must be
expressed in 59 bits.

For example:

+15 -1) 4096

Hexadecimal Constant

A hexadecimal constant represents 4 bits in storage for
each hexadecimal digit in the constant. The absolute
value for a hexadecimal constant must be expressed in 59
bits. If 60 significant bits are written, the leftmost bit is
used as a sign in one's complement; and if the constant is
stored in a signed integer format of n bits, the nth bit

- from the right is used as the sign bit.

A hexadecimal constant has the format:
X"string"
string String of 1 through 15 hexadecimal digits O
through 9 and A through F. Embedded
blanks are ignored.

For example:

X"7FFF" xll9"

Octal Constant

An octal constant represents 3 bits in storage for each
octal digit in the constant. If 60 significant bits are
written, the ‘leftmost bit is used as a sign in one's
complement; and if the constant is stored in a signed
integer format of n bits, the nth bit from the right is
used as the sign bit.

60496400 F

TABLE 1-2. SYMPL RESERVED WORDS AND DESCRIPTORS

60496400 F

Word or Word or
Descriptor Used To Descriptor Used To
AT Denote aligned allocation for 1t Declare signed integer data type.
[system-independent array.
IF Introduce conditional IF statement.
ABS Intrinsic function that returns
an absolute value. ITEM Declare variable data item.
AND Boolean operator. LABEL Declare label.
ARRAY Declare dimensioned entity. LAN Arithmetic operator.
t Denote Boolean data type. Also, LIM Arithmetic operator.
intrinsic function that accesses
bits of a data item. LNO Unary arithmetic operator.
BASED Declare an array that has a LOC Intrinsic function that returns
structure but no storage. address.
BEGIN With END, delimit a compound LOR Arithmetic operator.
statement.
LQ Relational operator.
ct Denote character data type. Also,
intrinsic function that accesses LQv Arithmetic operator.
characters of a data item. :
LS Relational operator.
COMMON Declare data to reside in loader
common blocks. LXR Arithmetic operator.
CONTROL Introduce a compiler directive NOT Boolean operator.
DEF Declare a macro. NQ Relational operator.
DO Introduce clause of FOR statement. ot Prefix octal constant.
ELSE Mark statement to be executed on OR Boolean operator.
the FALSE evaluation of the "
Boolean expression in an IF P Denote parallel array storage.
statement. Also, intrinsic function that
allows reference to based array
-END With BEGIN, delimit a compound pointer.
statement.
PRGM Introduce program, rather than a
ENTRY Declare alternate entry point for subprogram, module.
procedure or function.
PROC Introduce a procedure subprogram.
EQ Relational operator. +
R Denote real data type.
FALSE Boolean constant having the integer
value 0. RETURN Exit from subprogram or program.
FOR - Introduce FOR statement. st Denote status data type. Also,
denote serial array storage.
FPRC Declare formal procedure name
used as a parameter or declare a STATUS Introduce status declaration.
formal function name that is used
as a parameter. STEP Introduce clause of FOR statement.
FUNC Introduce ‘a function subprogram or STOP Return control to operating system.
declare a formal function name
that is used as a parameter. SWITCH Declare a vector of labels.
GOTO Introduce unconditional branch in TERM Terminate module compilation.
program flow.
TEST Change flow of FOR statement
GQ Relational operator. execution.
GR Relational operator. THEN Introduce clause of IF siatement.

1-3

TABLE 1-2. SYMPL RESERVED WORDS AND DESCRIPTORS (Contd)

Word or Word or
Descriptor Used To Descriptor Used To
TRUE Boolean constant having the XDEF Generate loader entry point.
value 1.
XREF Generate loader external reference.
ut Denote unsigned integer data type
or unaligned allocation for system- $BEGIN With $END, delimit statements to
independent array. be compiled at compiler call
parameter option.
UNTIL Introduce clause of FOR statement.
$END With $BEGIN, delimit statements to
WHILE Introduce clause of FOR statement. be compiled at compiler call
" parameter option.
X Prefix hexadecimal constant.
TContext descriptor that is not a reserved word.

An octal constant has the format:
O"string"

string String of 1 through 20 octal digits 0
through 7. Embedded blanks are ignored.

For example:

O'I777ll Oll}}"

REAL CONSTANTS

Real constants represent numeric values in standard
single-precision normalized floating-point format. A real

constant is a string of decimal digits that includes a.

decimal point and can include a leading sign. Optionally,
it can include an exponent representing multiplication by
a power of 10. The exponent is specified as either of the
semantically equivalent letters D or E followed by an
optional plus or minus sign and a decimal integer. A real
constant cannot be represented by a string containing an
embedded blank.

For example:
3.14E2 -24. 37.E-3

The magnitude limits of a real constant are approximately
10-293 ‘to 10+322 with up to 15 digits of precision. A
diagnostic message is given when a number falls outside of
the hardware limits.

STATUS FUNCTIONS AND CONSTANTS

Status functions and status constants represent small
integer values the compiler has associated with the
identifiers in a status list. They can be used anywhere
integer constants can be used.

Both status constants and status functions require a
preceding STATUS declaration to define a status list and
identifiers associated with the status list, as described in
section 2.

1-4

A status function has the format:
stlist"stvalue"

Use of a status function accesses the integer associated
with stvalue in status list stlist.

A status constant is a shorthand method of writing a
status function. The format of a status constant is:

S"stvalue"

Since a status constant does not indicate which status list
it belongs to, it must be used only in a context where the
status constant is directly attributable to a particular
status list. Such contexts are:

e Presetting a scalar or array item of type S.
e Joining a status variable by an operator such as:

IF OPCODE NE S"NOP"...OPCODE=5"NOP"
Use of single-character status list names that are the
same as the context descriptors O, S, and X can cause
conflicts. For example:

STATUS X A,B,C;

The use of X"A" in the program is interpreted as the

hexadecimal representation of the decimal value 10, and
not the status item.

OPERATORS

Operators are used in arithmetic expressions and Boolean
expressions. The operators are of type arithmetic,
relational, and logical.

Arithmetic operators are of two types:

e Numeric operators perform arithmetic operations to
yield a numeric result. :

e Masking operators perform bit-by-bit operations to

yield a numeric result.

60496400 F

Relational operators work with arithmetic operands to
produce a Boolean result.

Logical operators work with Boolean values and yield a
Boolean result.

Table 1-3 shows the SYMPL symbols (reserved words) and
their meanings for the different types of operators.
Tables 1-4 and 1-5 show truth tables for the logical and
masking operators.

TABLE 1-3. SYMPL OPERATORS

TABLE 1-4. TRUTH TABLE FOR
-LOGICAL OPERATORS

Symbo1 Meaning

Numeric Operators

+ Addition; unary plus.

- Subtraction; unary minus.

* Multiplication.
/ Division.
*% Exponentiation.

Masking Operators

LN Logical NOT (bit-by-bit NOT).
LAN Logical AND (bit-by-bit AND).
LOR Logical OR (bit-by-bit OR).
LXR Logical exclusive OR.

LIM Logical imply.

Lqv - Logical equivalent.

Relational Operators

EQ Is equal to.

GR Is greater than.

GQ Is greater than or equal to.
LQ Is less than or equal to.

LS Is less than.

_NQ Is not equal to.

Logical Operators

NOT Negation.

AND Conjunction.

O0R Union.
EXPRESSIONS

An expression is a rule for computing a value. During
evaluation of an expression the values of the operands in
the expression are combined according to the language
- rules to form a single value.

60496400 F

bl F F T T
b2 F T F T

= |
NOT bl T T F F
bl AND b2 F F F T
bl OR b2 F T T T

TABLE 1-5. TRUTH TABLE FOR
MASKING OPERATORS

a 0 0 1 1
b 0 1 0 1
LNO a 1 1 0 0
a LAN b 0 0 0 1
a LOR b 0 1 1 1
a LXR b 0 1 1 0
a LIM b 1 1 0 1
a Qv b 1 0 0 1

Each of the following is an expression:
e Constant

® Scalar

® Subscripted array item

® Function reference, except the P function

Part-word array items appearing in an expression are
lengthened to 60 bits. They are right-justified and
zero-filled, except for character items, which are
left-justified and blank-filled, and signed integer items,
which are right-justified and sign-extended.

Furthermore, any of the above entities combined with a
unary operator or binary operator also produces an
expression.

The two types of expressions are:
e Arithmetic expressions that yield numeric values.

e Boolean expressions that yield Boolean values of
TRUE or FALSE.

Boolean operands and Boolean expressions differ in nature
from arithmetic operands and expressions; they cannot be
involved with numeric = arithmetic expressions. No
numeric arithmetic operator applies to any Boolean
operand and vice versa.

Evaluation of ‘an expression begins with evaluation of
operators with higher precedence and continues with
evaluation of operators with lower precedence; otherwise,
evaluation proceeds from left to right. A different order
of evaluation can be specified by the programmer through
the use of parentheses: expressions within parentheses
are evaluated before the result is combined with other
operands.

1-5 |

ARITHMETIC EXPRESSIONS

Arithmetic expressions yield a numeric value. The two
types of arithmetic expressions are:

e Numeric arithmetic expressions that involve operands
of any type except Boolean. Operands are treated as
a single value in these expressions.

e |logical masking arithmetic expressions that involve
operands of any type except Boolean. Operands are
treated on a bit-by-bit level in these expressions.

For both types of expressions operators have implicit
ranking, with evaluation of the expression preceeding
from operators with higher precedence to operators with
lower precedence.

Arithmetic operators are listed in order of highest to
lowest precedence:

0 Parentheses, beginning with
innermost pair

*% Exponentiation

*/ Multiplication and division,
from left to right

+ - Unary plus and minus

+ - Addition and subtraction, from
left to right

LNO Logical NOT (complement)
LAN Logical AND

LOR Logical inclusive OR

LXR Logical exclusive OR

LIM - Logical imply

LQv ‘Logical equivalence

SYMPL has no implicit multiplication in which algebraic
multiplication can be indicdted by X(Y) or (X)(Y).

Numeric Arithmetic Expressions

A numeric arithmetic expression contains only numeric
operands and numeric arithmetic operators. The numeric
operators are: *¥, ¥ [/, 4+ and -. The numeric operands
include constants, scalars, subscripted array items, and
function references; the type of any numeric operand
must not be Boolean.

When operands of different types are used in a single

expression, the compiler converts the type of one operand

such that the common type of both operands is the higher

type. An exception is exponentiation, in which neither

operand is converted. The three operand types that exist

for conversion purposes are as follows, listed in order
from highest to lowest:

Real
Integer

Character

1-6

For example, given integer item I and real item R, the
expression (I + R) is evaluated in floating point arithmetic
after the value of I is converted to type real. Similarly,
the expression ((I + 2) * R) is computed by:

e Adding I and 2 in integer mode
e Converting the result to floating-point format
e Multiplying the result by R in floating-point format.

Character operands are lowest in the conversion
hierarchy. Conversion of character to integer is affected
by the number of characters declared in the character
operand. (The length of a scalar or array item is specified
in its declaration; the length of a character constant is
the number of characters in the string; the length of a C
function is the number of characters indicated in the
function.) If bit 59 of a 10 or more character operand is
set, the converted integer is a negative value, and anly
the first 10 characters are used in an expression
evaluation. For operands less than 10 characters, the

.characters are shifted right to normal integer position and

zero-filled.

Character-to-real conversion occurs by conversion to
integer followed by conversion of the integer to a
floating-point format.

Conversion from integer to real occurs by floating the
integer, as provided by hardware instructions. The
resulting real value is expressed in single precision format.

Additional rules for specific operators are:
e Division by zero is undefined.

e Division of an integer by an integer results in
truncation of any remainder: 11/3=3, for example.

Rules for conversion of operands are shown in table 1-6.

Figuré 1-1 presents additional examples of the evaluation
of expressions.

Masking Expressions

A masking expression contains operands of any type and
the logical masking operators LNO, LAN, LOR, LXR, LIM,
and LQV.,

The logical operators perform bit manipulations. As with
numeric arithmetic operators, a hierarchy of operators
exists, as shown in the list above.

No conversion of operand types occurs with masking
operators. Character data is restricted to one word,
however. Any character operand less than 10 characters
is left-justified and blank-filled before being used in a
masking expression. Any character operand greater than
10 characters is truncated to 10.

BOOLEAN EXPRESSIONS
A Boolean expression yields a Boolean value TRUE or
FALSE. The two types of expressions that yield Boolean

results are:

® Relational expressions that compaie values of
arithmetic expressions.

60496400 E

A. LNO(A+B*{C-D*E-(-F+G)/3)) is functionally equiva-

lent to:

D*E - 1IN
C-11 - 12

-F - 13
I3+G —~ 14
14/3 - 15
12-15 -~ 16
B*I16 - 17
A+17 - I8
LNO 18 - Result

B. A**B/C+D*E*F-G is functionally equivalent to:

A ** B

- 11
mM/c - 12
D*E - 13
1I3*F - 14
12+14 - 15
I5-G ~ Result

C. A**B/(C+D)*(E*F-G) is functionally equivalent to:

A*™B - I1
C+D - 12
/12 -
E*F - 14
14-G -~
1I3*15 -~

D. A*(B+((C/D)-E})} is functionally equivalent to:

c/D =11
M-E - 12
B+12 - 13
A * 13 - Result

E. (A*(SIN(X)+1.)-Z)/(C*(D-(E+F))) is equivalent to:

SIN(X) - I1
M+1 - 12
A*l2 - 13
13-2 - 14
E+F -~ 15
D-I15 - 16
cC*le -~ 17
14/17 -

Result

Figure 1-1. Examples of Arithmetic
Expression Evaluation

e Logical expressions that involve only Boolean
operands and operators.

Relational Expressions

A relational expression compares the value of two
arithmetic expressions or character operands. A relation
is TRUE if the operands satisfy the relation specified by
the operator; otherwise, the relation is FALSE.

The operands for a relational expression must be
arithmetic expressions or character operands. Any
arithmetic expression is evaluated before the relational

60496400 F

expression is evaluated, with the arithmetic evaluation
following the hierarchy of operators and order of operands
described above. Character operands are left-justified
and blank-filled before being evaluated. Two character
operands are compared algebraically by their display code
values, and trailing blanks are not significant.

The relational operators are:

EQ Equal to

GR Greater than

LS Less than

GQ Greater than or equal to
LQ Less than or equal to
NQ Not equal to

Evaluation is as follows: If bits are all zero, the result is
FALSE; otherwise the result is TRUE. The exception is
that -0 and +0 in a full word are considered equal and
FALSE. (SYMPL does not follow the conventions of
FORTRAN which uses the sign bit for testing TRUE and
FALSE).

There is no precedence for relational operators.
Evaluation is left to right.

Logical Expressions

A logical expression contains only Boolean operators and
Boolean operands. The result of expression evaluation is
TRUE or FALSE.

The Boolean operands include scalars of type B, functions
of type B, and relational expressions.

The Boolean operators are listed in order of highest to
lowest precedence in evaluation:

NOT Logical negation
AND Logical conjunction
OR Logical disjunction

Assuming L1 and L2 are logical expressions, the logical
operators are defined as:

NOT L1 FALSE only if L1 is TRUE

L1 AND L2 TRUE only if L1 and L2 both are
TRUE

L1OR L2 FALSE only if L1 and L2 both are

FALSE.

1-7

TABLE 1-6. OPERAND CONVERSION DURING EXPONENTIATION

Base/Exponent

Integer

Real

Character

Integer

No conversion

Result: integer.

Base converted to real,
exponent converted to
integer. Result: real.

Exponent not converted but
interpreted as integer.
Result: integer.

Real

No conversion.
Result: real

Exponent converted to
integer. Result: real

Exponent converted to integer.
Result: real.

Character

Base not con-
verted, but
interpreted as

Base converted to real.
Exponent converted to
integer. Result: real.

Both operands converted to
integer. Result: integer.

integer.
Result: integer.

The result of a Boolean expression is always 0 or 1, even if
an operand is a Boolean array item which includes several
smaller items. Such array items are tested for zero
versus nonzero, for example:

ARRAY;
ITEM B1 B(0,0,2),
B2 B(0,0,1);
Setting B1=TRUE does not set B2 to TRUE.

Evaluation of a Boolean expression terminates as soon as
evaluation of any part of the expression determines the
result. For example, in the logical expression L1 AND L2
AND L3 evaluation stops as soon as L1 is found to be
FALSE, since the expression is FALSE once any FALSE
value is discovered.

The expression A OR B AND NOT C is evaluated as if it
were written:

(A OR (B AND (NOT C)))

60496400 E

DATA DECLARATIONS , 2

%

Data in a SYMPL program is either a scalar or an array
item.

Scalars are declared with ITEM declarations. Scalars
occupy at least one full word of storage.

Arrays are declared with ARRAY or BASED ARRAY
declarations followed by simple or compound ITEM
declarations describing items in the array. An item in an
array need not occupy a full word of storage.

Both scalar and array items are named entities that
represent values that are preset when a program is loaded
or gain values by arithmetic replacement. An exception is
a filler item in a system-independent array, which has no
name and whose value is therefore unavailable to the user.

Fach data item must be declared before it is referenced.

ITEM DECLARATION

An ITEM declaration defines a scalar that occupies a full
word in storage or, in the case of character data, that
occupies as many words as necessary to hold the number
of characters specified. Six types of data can be defined,
each having a particular storage format associated with it:

Type Format

Boolean Boolean data has the value
TRUE or FALSE.

Character Character data is represented
in display code, with 6 bits for
each character and 10 char-
acters per word. Characters
are left-justified with blank
fill.

Integer Integer data is represented in

binary integer format in which
the leftmost bit represents the
sign bit and the remaining bits
represent the value.

Unsigned integer data is
represented in binary integer
format with all 60 bits being
used for the value.

Unsigned integer

Real Real data is represented in
single-precision floating-point
format. Restrictions on the
maximum values of operands
in expressions and results of
expression evaluation are
those common to the hardware.
Status Status data is represented by
unsigned integer format. It
differs from unsigned integer
format only in its use in a
program and the way ‘it can
assume values. See STATUS
declaration below.

60496400 F

The format of an ITEM declaration is:

ITEM name type=preset, name type=preset,...;

name Identifier of 1 through 12 letters, digits,
or $ that does not begin with a digit and
does not duplicate the name of a
reserved word. Must be unique within a
procedure.
type Type of item:
B Boolean
C(igth) . Character, with Igth
specifying number of
characters. Length
cannot exceed 240.
I Signed integer; default
U Unsigned integer
R Real
S:stlist Status, with stlist
specifying the name
of the status list
from which the item
is to assume values.
When an item is assigned a value, the
value is converted to the type specified
by the ITEM declaration.
preset Optional; value to which item is to be

initialized at load time, expressed as a
constant. Any specified constant is set
in the item without regard for whether

the constant matches the item type.’

When preset is omitted, the equal sign
is also omitted.

The characters B, C, I, U, R, and S are not reserved
words; they can be used elsewhere in a program as
variable names.

Examples of ITEM declarations are:

e Define item X as type real:

ITEM X R;

e Define item Y as integer, and define Z as a character
item having 10 characters:

ITEM Y,Z C(10);
o Define NBIT as integer with a value of 6:

ITEM NBIT=6; or ITEM NBIT I=6;

2-1

o Define ERR as characters ERROR NUMB in one word
and ER left-justified in next word:

ITEM ERR C(12) = "ERROR NUMBER?";
o Define OFF as Boolean value FALSE:
ITEM OFF B = FALSE;

e Define status item BIRD with the same value as
CANARY has in status list ORDER:

ITEM BIRD S:ORDER=S"CANARY";

STATUS DECLARATION

A STATUS declaration defines a list of items that the
-compiler is to associate with small unsigned integer
values. The purpose of the declaration is to allow
mnemonic references to certain variables of small integer
value. The compiler assigns the value 0 to the first
identifier of the list, the value 1 to the second identifier
of the list, and so forth.

The format of a STATUS declaration is:
STATUS stlist identifier, identifier,...;

stlist Name by which list is to be known.
Identifier of 1 through 12 letters,
digits, or $ that does not begin with
a digit and does not duplicate the
name of a reserved word. Status
list names S, X, and O cause
ambiguities.

Identifier to be associated with
status list stlist. Need not be
unique with a program since the
status list with which it s
associated can always be
determined from the context. Can
duplicate reserved word. An
identifier cannot be duplicated in
the list.

identifier

Identifiers in the status list are called status values. They
are used in the form of a status function, a status
constant, or a status switch, as described elsewhere.

Examples of STATUS declarations and references to items
so declared are:

® Preset VAL to the status list value of TERM:

STATUS WORDS BEGIN, END, TERM;
ITEM VAL S:WORDS = S"TERM";

This causes VAL to be set to the unsigned integer 2.
e Set X to the status list value of BLUE:

STATUS COLOR RED, ORG, YEL, BLUE;
X = COLOR"BLUE"

This causes X to be set to 3.

® Test LETTER for the display code value equivalent
to Q:

STATUS ALPHA A,B,...X,Y,Z;
IF LETTER EQ S"Q" THEN...

2-2

SWITCH DECLARATION

A SWITCH declaration defines a list of label names that
the compiler is to associate with small unsigned integer
values. The purpose of the declaration is to allow a
multiple branch statement.

Two types of SWITCH declaration formats exist. The first
is a straightforward list of label names; the second
combines STATUS capabilities into the SWITCH
declaration.

When a switch is referenced in a GOTO statement, the
value of the switch subscript expression must be within
the range of defined switches. If the program is compiled
with the C parameter (range checking) on the compiler
call, an execution-time check is made to determine
whether the value is within the range of valid values.
When range checking is selected, any reference to an out
of range switch value produces a run-time diagnostic.

~ ORDINARY SWITCH

In the simpler form of a switch, the compiler assigns a
value to each label named. The first label in the list is
assigned a value 0, the second label is assigned the value
1, and so forth.

The format of a SWITCH declaration specifying only label
names is:

SWITCH swname label, label,...;

swname Name by which switch is known.
Identifier of 1 through 12 letters,
digits, or $§ that does not begin with

a digit and does not duplicate a
reserved word.

label Label name to be associated with
swname. If the switch is never
accessed by a particular value a
label name can be omitted for that
value. A comma is still required to
mark the position of the label,
unless it is the last label in the
list. A label name in a switch list
cannot duplicate a switch name.

An example of the declaration and use of an ordinary
switch AAA that transfers control to label LLAB3 when the
value of I is 2 is:

SWITCH AAA LABL, LAB2, LAB3;
GOTO AAA[L];

The D option on the SYMPL control statement or the
CONTROL PACK statement can be used to pack switches
two to a word, thus saving space at the expense of
execution time.

STATUS SWITCH

A status switch references a previously declared STATUS
declaration. The SWITCH declaration associates the
switch name with a status list; each label name in the
switch list is then paired with one of the identifiers from
the status list as specified by the SWITCH declaration
parameters.

60496400 F

The format of a SWITCH declaration specifying a status
list is:

SWITCH swnamesstlist label:stvalue,
label:stvalue, ...

Name by which switch is known.
Identifier of 1 through 12 letters,
digits, or $ that does not begin with
a digit and does not duplicate a
reserved word.

swhame

stlist Name by which status list is known
as declared by a previous STATUS
declaration.

label Label name to receive the same
value as the status value following
the colon.

stvalue Status value from list stlist to be
associated with the preceding label
name.

The status values can appear in a switch list in an order
other than that of their status list. All of the status
values need not be associated with a label, and the same
label can be associated with more than one status value.
A status value, however, can only appear once in a switch
list.

An example of a declaration of a status switch
WHICHONE and its use to transfer control to LABZ when
the value of the GOTO statement argument is 3 is:

STATUS COLOR RED, ORG, YEL, GRN;
SWITCH WHICHONE:COLOR LABX:YEL,
LABZ:GRN;

GOTO WHICHONE [COLOR"GRN"];

ARRAY DECLARATION

An ARRAY declaration defines a rectangular arrangement
of elements. The elements are called entries; each entry
is composed of a number of items. The items in an entry
have the same format for each entry in an array. The
number of words in the array must be less than 65535.

In storage an array entry occupies an integral number of
whole words. Items within the entry can be as small as
one bit or as large as 24 words of character data; only
type character items can cross the boundary of a word in
the array. :

An array is declared by an array declaration header
followed by an ITEM declaration. If no items exist in the
entry, a null declaration (blank followed by a semicolon)
should follow the ARRAY declaration. If more than one
item exists in the entry, the ITEM declaration should be a
compound statement.

An array is either system-dependent or system-
independent. A system-dependent array is one in which
the exact location (word number and bit number) is
specified by the user. A system-independent array is one
in which the user specifies only the length of each item,
and whether or not it overlaps other items.
System-independent arrays are recommended for all new
applications.

60496400 F

SYSTEM-INDEPENDENT ARRAYS

A system-independent array is one in which the exact
location of array items and the entry (position) of the
array are not specified by the user, but are calculated by
SYMPL. Use of system-independent arrays is
recommended for new applications because such programs
are more easily transportable between systems with
different characteristics.

A system-independent array is a serial array with the
attribute INERT (section 5). It differs from a
system-dependent array in that the location of array
items relative to each other is undefined unless the user
explicitly specifies that they are to overlap or be
cantiguous.

Like system-dependent arrays, system-independent arrays
must be declared in a declaration containing two parts:
an array declaration header, followed by item declarations.

Array Declaration Header

The format of an array declaration header for a
system-independent array is:

ARRAY name [low:up,low:up, . ..] algnt;

name Identifier specifying the name of the
array. It can be omitted unless the
array appears in a BASED ARRAY,
XDEF, or XREF declaration, or is used
as an actual or formal parameter.

low Lower bound of a dimension of the
array. Maximum absolute value is
217.1. Can be positive, negative, or
zero. If low and the following colon are
omitted, zero is assumed.

up Upper bound of a dimension of the
array. Can be positive, negative, or
zero. Must be greater than or equal
to low.

algnt Arrangement of items in memary:

A Aligned. Each item begins at the
left side of a new word. Character
items can occupy more than one
word. This arrangement promotes
speed of access at the expense of
memory space.

U Unaligned. Each item begins at the
next bit position that enables the
item to be contained within one
word. An exception is character
items, which begin at the next
character position, and can be split
across word - boundaries. This
arrangement promotes saving
memory at the expense of
execution speed.

An array can have up to seven dimensions. Each pair of
bounds in the declaration defines one dimension. If the
bounds list is omitted, [0:0] is assumed.

2-3

Array Item Declarations

The system-independent array declaration header is
followed by the declarations for the items contained in
the array. If more than one item declaration is used, they

should be grouped as a compound bracketed by BEGIN and
END. The format of the ITEM declaration for
system-independent arrays is:

ITEM name type <size,pos>=[preset],
name type <size,pos>=[preset]...;

name Identifier specifying the name of
the entry item. Must be unique
within the procedure. If the pos
parameter is present, the name can
be omitted, defining a filler item.

type Type of array item:

Boolean

C Character

I Signed integer;
default

U Unsigned integer

R Real

S:stlist Status item

associated with
list stlist

size Item length, expressed as an
unsigned integer constant. Length
is in characters for character data,
and in bits for all other data. R
type items must be 60 bits long.
Only C type items can cross word
boundaries; 60 bits is the maximum
length for all other items. Size
defaults as shown in table 2-1.

pos Indicates the position of the item
relative to other items in the same
array. If pos (and the preceding
comma) are omitted, the position
of the item relative to other items
is undefined, except that they will
not overlap. If pos is an item
name, the first bit position of the
current item is the same as the
first bit position of the named
item. If pos is a +, the current
item begins at the next available
bit position after the last defined
item.

preset Value or set of values to initialize
, the item (or multiple occurrences
of the same item). See Presetting

Arrays.

The pos parameter allows subfields of an item to be
defined, each with its own name. All the subfield item
declarations that overlap a given item must be grouped
together, but they need not occur immediately after the
declaration for the overlapped item. The first declaration
in the group names the item being overlapped in the pos

2-4

Type Alignment Length Length ﬁ;ﬁg:
1 bit | 60 bits 60 bits no
u bit 60 bits 60 bits no
R |bito 60 bits 60 bits no
B bit 60 bits 1 bit no
c charactér 240 characters }.1 character| yes
S bit 60 bits 60 bits no

parameter, and the remaining items use the plus sign to
indicate the sybsequent subfields. Any item with a plus
sign as the pos parameter must be preceded by an item
with a non-null pos parameter. Dummy items can be used
to space over unused subfields. For example, to declare
an array with one-word entries, each containing two
20-bit subfields at each end of the word and a dummy
subfield in the middle:

ARRAY TABLE [1:100]A;
BEGIN

ITEM ALLOFIT U<60>;

ITEM FIELD1 U<20,ALLOFIT>;
ITEM DUMMY U<20,+> 3
ITEM FIELD2 U<20,+> 3

END

TABLE 2-1. ARRAY ITEM DESCRIPTOR LIMITS

fbit Max imum Default May

A subfield must not be defined to exceed the boundaries
of the more inclusive field.

Sub-subfields can be defined, and are subject to the same
options and restrictions as subfields. The name can be
omitted from a subfield (an item with a non-null pos
parameter); such items are called filler items. In the
‘preceding example, the item declaration for item DUMMY
could be replaced by: :

ITEM <20,+>;

provided that the item is not referenced in the program.
The type is the same as that of the field being overlapped.

All items in a group of subfield items must be of
compatible types. They must all fall within the same
class; the item of which the subfields form a part must
also be in the same class. The classes are as follows:

Class 1 Character
Class 2 Real
Class 3 Signed integer, unsigned integer, status,

" and Boolean
Real items are always 60 bits long. If any other length is
specified, 60 is substituted and a trivial diagnostic is
issued.

Some examples of system-independent array declarations
are shown in figure 2-1.

60496400 F

Array declaration

Array whose entries each occupy one
60-bit word: 0

Arrangement of items in storage

18 - 59

ARRAY B U; word 0

B1 B2

BEGIN

ITEM B1 IK18>;
ITEM B2 C<7>;
END

Array whose entries each occupy
two 60-bit words: 0

18 42 59

ARRAY B A; word 0

B1

BEGIN
word 1

B2

ITEM B1 I<K18>;
ITEM B2 C<7>;
END

Array using a filler item and
sub-subfields (Y and 2Z): -0

- ARRAY ABC [1:144] A;

BEGIN

word 0 filler

ITEM W<18>;

ITEM <6W>;

filler

ITEM X<12,+>;
ITEM Y<5,X>;

ITEM Z<7,+>;

END

(=]
-

Figure 2-1. System-Independent Array Examples

The following are examples of invalid declarations:

e Subfield XC is larger than XA; declaration could be
rewritten to make XA a subfield of XC:

ARRAY X [1:1001] U;
BEGIN
ITEM XA K7>;
ITEM XB B<1>;
ITEM XC U<8,XA>;
END

e Field with plus sign as pos parameter follows field
with null pos parameter; could be made legal by
reversing W2 and W3, or making W2 a subfield of W:

ARRAY XX[1:667,23:29]U;

BEGIN
ITEM W 1<18>;
ITEMWL K&,W>;

60496400 F

ITEM w2 <4>;
ITEM W3 K7,+>;
END

Incompatible type of field and subfield:

ARRAY Q [1:2] u;
BEGIN
ITEM QA U<18>;
ITEM QB U<6,QA>;
ITEM QC C<2,+>;
END

SYSTEM-DEPENDENT ARRAYS

A system-dependent array is one in which the user
specifies the location of each item in the array entry.
Both the word and bit positions in which the item begins
are specified. System-dependent arrays are not
recommended for new applications.

Array Declaration Header

The format of a system-dependent array declaration
header is:

ARRAY name [low:up, low:up, . . .] alloc (esize);

name Identifier specifying the name of the
) array. It can be omitted unless the
ARRAY declaration appears in a
BASED ARRAY, XDEF, or XREF
declaration, or is used as an actual or

formal parameter.

low Integer constant indicating lower bound
of a dimension of the array. Maximum
absolute value is 217-1, Can be signed
positive or negative. If low and its
following colon are omitted, 0 is
assumed.

up Integer constant indicating upper bound
of a dimension of the array. Maximum
absolute value is 2171, Can be signed
- positive or negative. Must be equal to
or greater than the preceding low with
which it is paired.

alloc Allocation of the entries in the array in
storage.
P Parallel allocation in which

the first words of each entry
are allocated contiguously,
followed by the second words
of each entry, and so forth.

S Serial allocation in which all
the words of one entry are
allocated contiguously.

If alloc is omitted, P is assumed.

esize Entry size. Number of words in an
array entry, expressed as an unsigned
integer. Esize must be less than 2048
words. If esize and its enclosing
parentheses are omitted, 1 is assumed.

An array can have up to seven dimensions. Each low:up
pair in the ARRAY declaration defines a dimension of the
array. (Dimensions specify the coordinates that identify
an element of the array.) If the bounds list is omitted,
0:0 is assumed. The declaration ARRAY S(n) declares a
parallel array named S, not an unnamed serial array.

Differences between serial and parallel allocation are
shown in figure 2-2. In this figure, array A has one
dimension, a three-word entry that occurs five times.
CHAR[l] is the reference that accesses the second
occurrence of item CHAR defined to occupy word 1 of the
entry. A full declaration for this array might be:

ARRAY A{0:4] s(3);
BEGIN
ITEM HDR 1(0,0,60);
ITEM CHAR C(1,0,10);
ITEM TRFR C(2,0,10);
END

The format of the ITEM declaration of an array is as
follows. If more than one array item is being declared, all
declarations should appear between BEGIN and END. The
declaration is similar, but not identical, to the ITEM
declaration of scalars.

ITEM name type (ep,fbit,size)=[preset],
name type (ep,fbit,size)=[presetT...;

name Identifier specifying the name of
the entry item, expressed as 1
through 12 letters, digits, or $ that
does not begin with a digit and does
not duplicate the name of a
reserved word. Must be unique
within procedure.

type Type of array item:

B Boolean

C Character

1 Signed integer;
default

U Unsigned integer

R Real

S

stlist Status associated
: with list stlist

ARRAY A[0:4] S(3);

ITEM CHAR C(1,0,10)
RO [U oy ¢
word 2 word 0 of entry 2
entry 1 { xg:: 2 CHAR[1] CHARI[0] ::::; 2
CHARI[1]

CHAR[4] o
: entry>0
entry 4 { xg:g (1) CHAR[4] word 2 of 1 ::::z ;
| wor 2 oty 4

Occurrences of ~

ARRAY A[0:4] P(3);

Figure 2-2. Differences in Serial and Parallel Allocation

2-6

60496400 F

ep Entry position. Word number in
which the integer or character
item starts, starting from 0;
expressed as an unsigned integer
constant. ep can be less than
esize; the user is responsible for
the validity of any results that
ensue.

fbit Bit position at which item begins,
starting on the left and counting
from O through 59; expressed as an
unsigned integer constant.

For a character item, fbit is a bit
number and must be divisible by six.

size Item length, expressed as an
unsigned integer constant
appropriate to the type, as shown
in table 2-1. Only C type data can
cross word boundaries.

R type data must have a size of 60.

preset For a single occurrence array entry
item, value to which item is to be
initialized at load time, expressed
as a constant.

For a multiple occurrence array
entry item, a set of -values
arranged in a list in the same order
as the allocation order of different
instances of the items in storage.

Any constant specified is set in the
item, aligned appropriately in the
field, without regard to other fields
in the word.

All items are right-justified and
zero-filled, except character
items, which are left-justified and
blank-filled. The constant is not
converted. No conversion of the
preset is performed regardless of
the type of item being preset.

If the entire field descriptor (ep,fbit,size) is omitted, ep
and fbit default to 0 and size defaults as shown in
table 2-1. One parameter within the parentheses is
assumed to be ep, with fbit=0 and size as in the table; two
parameters are assumed to be ep and fbit.

Items can overlap; the user is responsible for the
consequences if the same field is declared with two
different types.

Serial and Parallel Arrays

When a system-dependent array has only one entry, or its
entries occupy no more than one word, the distinction
between serial and parallel arrays is meaningless. For an
array with more than one entry, or for an array with one
entry having more than one word, the time required to
access any given item is affected. The distinction
becomes critical when array items are declared with word
positions beyond the entry size.

60496400 E

Figure 2-3 shows an example of serial array storage based
on a declaration of:

ARRAY SAR[0:10]5(2);
BEGIN
ITEM AA(0,0,60);
ITEM AB(1,0,60);
END

AA[0]
entry 0 { AB[0]

entry 1 { AB[1]

+ 12
+ 13
+ 14
+ 15
+ 16
+ 17
+ 18
+ 19
+20
+ 21

AA[10]
entry 10 {AB[10]

RRLRRRRRNRRLRRLRRRRRRRRR R
+
-
-

Figure 2-3. Serial Array Allocation

Each entry in the array is two words long. The first item
of the entry is AA; the second item is AB. All array items
with a O value for ep are stored at location SAR+x where
x is even, while all array items with a 1 value for ep are
stored at location SAR+x where x is odd. (Shaded areas
indicate entries with ep=0.)

If, in figure 2-3, a third item AC (2,0,60) is added, the
entry is said to be over-addressed, since AC[O] is the
same location as AA [1]. Such a practice should be used
cautiously because of optimization considerations
discussed in appendix C.

Figure 2-4 shows the same array as figure 2-3 with
parallel, rather than serial, storage allocation, based on a
declaration of:

ARRAY PAR[0:10]P(2);
BEGIN
ITEM AA(0,0,60);
ITEM AB(1,0,60);
END

Each entry in the array is two words in length, és it is
with serial allocation. The first item in the entry is AA;
the second is AB.

Oceurrences of ‘word 0 of the array (item AA) are stored
contiguously, and occurrences of word 1 (item AB) are
stored contiguously after those with ep=0.

If item AA is over-addressed, AA[ll] is the same as
AB[O]. Such a practice should be avoided because of
optimization considerations discussed in appendix C.

AA[0] @
AA[1] a+
. a+2
word 0 of - ar3
each of . «+5
entries
at6
0 thru 10 at+7
at8
a+9
_-AAL10] et 10
AB[0} a+ 1
AB[1] a+ 12
. at 13
word 1 of . ! z : }g
each of . o+ 16
entries o+ 17
0 thru 10 i o+ 18
i at+ 19
\ at+ 20
AB[10]' at+2

Figure 2-4. Parallel Array Allocation

Figure 2-5 shows the implications of serial and paraliel
allocation for arrays in which array items occupy more or
less than a full word in the entry.

The ari‘ay illustrated in figure 2-5A is declared by:

ARRAY NENT[0:3] s(4);

ITEMAL 10,0,15);
ITEMB1L U(0,15,15)
ITEMCl U(0,30,30);
ITEMD1l C(1,0,20%
ITEM E1 R(3,0,60);
END

Notice that in serial allocation all four words of each
entry are contiguous, but that the occurrence of one item
is not contiguous with other occurrences of the same item.

In contrast with figure 2-5A, figure 2-5B shows the same
four-word entry in parallel allocation. The array entry
description is the same, but the array header is:

ARRAY NENT[0:3] P(4);

Notice that in paralle! allocation all four words of each
entry are not contiguous, but that the occurrence of one
item is contiguous with other occurrences of that same
item. That is, all occurrences of array item Al[n] are
contiguous.

For an item that crosses word boundaries in a parallel
array, the same parallel structure is maintained, as shown
by array item D1 in figure 2-5B. The first word of array
item D1l|n) is stored together with all other occurrences
of the first word of D1 n], and the second word of array
item Dl[n] is stored together with all other occurrences
of the second word of array item D1{n].

The physical split of a multiword item does not affect the
logical operation - of a bead function that specifies
characters to be extracted from an item split between
words: C<5,%F, for example, accesses correctly the 9
characters beginning with character 5 of item F even
though the words are not contiguous in memory.

2-8

Parallel and serial arrays offer contrasting advantages.
Parallel arrays are more efficient when items do not
exceed one word and the sum of the lengths of the items
does not exceed the entry size. Serial arrays are more
efficient for multiword items and for references to items
that exceed the bounds of the entry. Serial arrays are
also more efficient if the size of the array is to be
increased at execution time (which cannot be done
directly through SYMPL).

ARRAY REFERENCES

A particular instance of an array item is known as an item
reference, which has the form of a subscript enclosed in
brackets appended to the array item name. For instance:

ARRAY REF[0:99];
ITEM REFITEM;

To reference the 40th occurrence of REFITEM, which
in this example is the 40th word of the array, the
reference is:

REFITEM[39]

The subsecript for the item reference must be an
arithmetic expression. If the type of the arithmetic
expression is other than integer, the result of the
expression is converted to integer. Only the lower 18 bits
of the value are used.

If the array being referenced has more than one
dimension, the subscript must have as many arithmetic
expressions as there aré array dimensions. For instance:

ARRAY/[0:1,0:2,0:3];
ITEMB I

All of the following are possible references:

B[1,1,1]

B[X+Y,1,Z]

8[8[1,8[0,0,0],x1,8[1,8[x,1,Y],Y],]
If an array entry occurs only once (that is, dimensions are
specified as [0:0],[10:10], and so forth), it can be
referenced without a subscript.
PRESETTING ARRAYS
Elements of an array are initialized by an ITEM
declaration that has a list of values associated with the
array item name. For instance, an array with one
dimension is initialized:

ARRAY SIGMA [2:6];
ITEM CHI C(0,54,1)=["A","D","G","K","N"];

The resulting structure and values are:

A CHI[2]
D cHI[3]
G CHI [4]
K CHI [5]
N CHi[e]

The first word of this parallel array is CHI[2].

60496400 F

A. Serial Array Structure

NENT —

A1{o0]

| 10

| c1[0]

D1[0]

(1st half)

D1[0]

(2nd half)

E1[0]

A1[1]

| B1m

| cii1]

D1[1]

(1st half)

D1[1]

(2nd half)

E1[1]

A1[2]

| B2

| c1i2]

D1[2]

{1st half)

D1[2]

(2nd half)

E1[2]

A1[3]

| B3]

| C1[3]

D1[3]

(st half)

D1(3]

(2nd half)

E1[3]

B. Parallel Array Structure

NENT —

A1[0]

B1[0]

Array Element 1

A1[1]

B1[1]

A1[2]

B1[2]

A1[3]

B1[3]

D1[0]

D1[1]

D1[2]

D1[3]

D1[0]

D1[1]

D1[2]

D1[3]

E1[0]

E1[1]

Array Element 0

Array Element 1

‘Array Element 2

Array Element 3

c1]o} Array Element 0

c1[1]

C1{2]

C1[3]
(1st half)
(1st halif)
(1st half)
(1st half)
(2nd half) \
(2nd half) \:\
(2nd half) = |[f—————— p 3 Array Element 2
(2nd half) d

e
//
e

E1[2]

E1[3]

Figure 2-5. Serial and Parallel Arrays with Multiword Items

The list of constant values for array item elements need

e To initialize the second and fourth element of array

not specify an initial value for every element. The values
given are used to set elements starting with the first
element. - Any element that is not to be set is indicated by
a null value:

o Null values are indicated by adjacent commas.

e Trailing null values can be omitted.

60496400 F

SIGMA above, for instance: B
ITEM CHI C(0,54,1)=[,"D",,"K"];

For entries with more than one item, the preset values are
specified by the item with which they are associated, not
the word in memory in which they might appear. The
programmer specifies the value for each occurrence of an
item; the compiler constructs words as necessary to
produce an array with the given specifications.

2-9

Any item not preset is set to zero if any other item in the
same word is preset. Otherwise, unpreset items are
initialized to the current loader default.

Example:

ARRAY TENWORD [0~4] 5(2);
BEGIN
ITEM A 10,0,30)= a, ,3)5
ITEM B K0,0,45)=[, 10, , 15);
ITEM C C(1,0,5)= "YYYYY","XXXXX",
"VVVVVL'QERREREN ;
END

Resulting structure and values are:

4 0 l
- Tenword O
YYYVYY o |
0 10 I
Tenword 1
X X X X X 0 ‘
3 0
Tenword 2
vV VVVY 0
0 15)
Tenword 3
P |
P_{]
Tenword 4
Q Q@ QQQ 0 ‘

P indicates a loader preset.

Multidimensional - arrays are preset using nested brackets.
Brackets should be nested to the level of the number of
subscripts. The leftmost subscript varies most rapidly, as
it does in FORTRAN.

Basically, the preset list for a declaration is a set of
constant values, with the same order as the allocation
order of the elements. This list is presented in sections
enclosed in square brackets, and nested to a depth of the
number of dimensions in the array. An N dimensional
array at the first level of nesting has as many sections as
the Nth dimension of the array. Each of these sections
has as many sections as the N-1st dimension, and so forth.

At the deepest level, each section has as many values as
the first dimension of the array. Each section at the first
level contains values for the instances of the array item
with the same rightmost subscript; the subscript
associated with each section varying from the lower bound
at the left to the upper bound at the right. Each section
of the second level contains values for those instances
with the same rightmost two subscripts, and so forth. The
outermost section is appended to the array item
declaration with an equals sign.

Repetition of values can be indicated by bracketing a list
of values with a parentheses and a count. For example:

3(2,1)is equivalent to 2,1,2,1,2,1

and
2(2(0,2))is equivalent to 0,2,0,2,0,2,0,2

2-10

A two-dimensional parallel array, for example, is
initialized by: :

A N S H105.0105613

This presetting is equivalent to:

'ARRAY OMEGA [0:1,0:2];
ITEM MU 1(0,0);
MU [0,0]=1;
MU [1,0]=2;
MU [0,1]=3;
MU [1,1]=4;
MU [0,2]=5;
MU [1,2]=6;

As with single-dimension arrays, not all elements of a
multidimensional array need to be finitialized. Elements
that are not to be initialized can be represented by null
brackets as well as by brackets containing null values.
For instance:

[t 216 1300 15,450, 1 1)
is equivalent to
(L A1)

Repetition of bracketed sections is indicated by placing a
count outside the bracket. For instance:

2[[1,31[2(2)]]
is equivalent to
[[1,31[2,2]]([1,3][2,21]

Only the first 6000 words of an array can have preset
values.

If overlapping fields are preset, the last specified preset
applies to the bits shared by the items.

ARRAY STORAGE AND ADDRESSING

Given the array header:

ARRAY [bj:u,b2:ug, . ..]
alloc(esize);

the number of entries in the array is:
(U3-b1+1Xu2-b2+1) . . « (Up-bp+1)

At compilation time, an array is allocated the following
amount of storage: :

(number of entries)(esize)
The allocation of an element with respect to the location
of its array name is affected by whether storage
allocation is serial or parallel.
For serial allocation, the location of element sj3
[51+525 - - - 8] is computed from:
j=sj-bj

size=u;j-bj-1

60496400 E

address+ep+e1(esize)+ez(sizel+esize)
Ftees -i.-en(snzel"‘:
e *mzen_l*eslze)

where esize is entry size.

For parallel allocation, the location of an element is
computed from:

address+(ep*sizey *
. *size_1)+e)+{eg*size))+
.o« (ep*size1*. . .*sizep.1)
where address is the address of element
[bl’ e 7bn]'
For a three-dimensional array, the relative location of
Ali,j,k] with respect to A[bj by,b3] is given by:
location (A[i,j,k])=

location (A[by,bg,b3])+{x+L(y+M(2)))

(esize)
where x=i-by
y=k-bp
Z=k-b3
L=uj-by+1
M=ug-b+1

Array items are allocated in column order: that is, the
leftmost subscript varies most rapidly.

In a two-dimensional array, memory locations are:

ARRAY PSI[1:3,0:3] alloc(2);
BEGIN
ITEM X(0,0,60)
ITEM Y(1,0,60)

END

Parallel Serial
x[1,0 x[1,0
x12,0 v[1,0
x[3,0 x[2,0
x[1,1 Y [2,0]
x[2,1 x[3,0
x[3,1 v [3,0]
x[1,2 x[1,1
x[2,2 v I1,1]
x[3,2 x [2,1]
X[1,3 v [2,1]
x[2,3 xB,1
x[3,3 v,
v 1,0 x[1,2
vlz,0 v1,2]
v[3,0 x[2,2]
vii,1 vi2,2
Y (2,1] x[3,2
v 3,11 vi3,3
v,z x[1,3
vi2,2 v[1,3]
v[3,2 x[2,3
v[1,3 vi2,3
Yi2,3 X13,3
v[3,3 v[3,3]

60496400 E

For a three-dimensional array, an array declaration
might be: .

ARRAY RHO[0:1,2:4,-5:-4] P(1);

The resulting structure of array RHO is shown in
figure 2-6.

1 RHO[0,2,-5]
2 RHO[1,2,-5}
3 RHO[0,3,-5]
4 RHO[1,3,-5]
5 RHO[04,-5]
6
7
8
9

RHO[1,4,-5]
RHO[0,2,-4]
RHO[1,2,-4]
RHOI[0,3,4]
10 RHO[1,3,-4]
11 RHO[0,4,-4]
12 RHO[1,4,4]

Figure 2-6. Structure of Array RHO

BASED ARRAY DECLARATION

A based array is an array for which the compiler does not
allocate storage; rather the compiler creates a specific
pointer variable compiled with an undefined value. All
references to a based array are compiled in relation to the
pointer variable. From a logical standpoint, a based array
provides a template that can be superimposed over any
area of memory during execution.

Based arrays can be used when the size or location of an
array is not known at compile time, if the array might be
moved during execution, or if the same array definition is
needed in several locations.

A program using the based array has the responsibility to
set the pointer variable through the intrinsic function P.
The P function and its use with based arrays is described
in section 4.

The based array name is declared in a BASED ARRAY
declaration. The array items are declared as they are for
normal arrays for which storage is allocated.

2-11

The format of the BASED ARRAY header is:

2-12

BASED array-dec;

or

BASED BEGIN array-dec, array-dec...END

array-dec

Full array declaration including the
ARRAY declaration for a header and a
simple or compound ITEM declaration
for the entry in the array. Array name
is required; dimensions are optional.

With two exceptions, references to based arrays.are the
same as references to any other array, with the same
result. The exceptions are:

1. The P function, which requires a based array as its
argument. :

2, Actual parameters; if a based array is an actual
parameter to a procedure, the pointer variable, not
the array name, must be passed as the actual
parameter.

Based arrays cannot be preset.

60496400 E

EXECUTABLE STATEMENTS 3

Statements, as opposed to declarations, are executable.
They can be grouped into two types depending on their
function:

° Value assignment statements cause a value to be
assigned to a scalar or an array item element. These
statements are:

Exchange statement
Replacement statement

PY Flow-of-control statements control the order of

statement execution. These statements are:
GOTO statement

IF statement

FOR statement and its associated TEST
statement :

STOP statement
RETURN statement
Procedure call statement

All executable statements can be labeled.

LABELS

A label is an identifier used to locate a statement.
The format of a statement label is:
name:

name Identifier of 1 through 12 letters, digits, or §
that does not begin with a digit and does not
duplicate another identifier in the
subprogram or a reserved word.

No blanks or comments are permitted
between the last character of the name and
the terminating colon.

Since a labeled statement is itself a statement, two labels
in sequence are synonymous.

A label can appear at any point in the program where it is
legal for a statement to appear. If a declaration or
subprogram is. labeled, the label locates the next
executable statement.

The scope of a label is the procedure in which it appears,
plus any procedures nested within that procedure.
Grouping of statements into compound statements by
means of BEGIN and END does not affect the scope of
a label.

60496400 F

A given label name can only appear once in a procedure.
However, the name can be duplicated in a nested
procedure. If a branch to the name is encountered, the
choice of which label to branch to is governed by the
following rules:

e If a statement labeled with the name has already
been encountered in the same procedure or an outer
procedure, the branch is to that statement.

e If no statement yet encountered has been labeled
with the name, the branch is to the next statement
labeled with that name at the same level or an outer
level.

e If the name appears in a LLABEL declaration in a '
procedure, then the branch is to the next statement
labeled with that name at the same level or an outer
level, regardless whether that label has been
encountered yet or not.

A LABEL declaration has the format:
LABEL name, name,. . .}
name Label that is to be subsequently declared.

For example:

e Procedure NAME1 is nested within procedure NAME.
The compiler links a label L1. reference within
NAME1l to the label #PREV# L1l previously
encountered during compilation.

PROC NAME;
BEGIN
#PREV# Ll:...
/ PROC NAME]1;
BECIN
GOTO L1;

#INNR# Ll:...
END #NAME1#
END #NAME#

e The same procedures with a LABEL declaration
within the nested NAME1 transfers control to L1
#INNR# when GOTO L1 executes:

PROC NAME;
BEGIN
#PREV# Ll:...
PROC NAMEL;
BEGIN
LABEL L1;
GOTO L1;

#INNR# Ll:...
END
END

3-1

'REPLACEMENT STATEMENT

The replacement statement assigns a value to a scalar or
subscripted array item. When the statement executes, the
value of the expression on the right side replaces the
current value of the entity on the left side of the
statement.

The format of the replacement statement is:
vV = exp;

v One of the following entities whose value is
to be replaced:

Scalar

Subscripted array item
P function

Bead function

Function name, if statement is within a
function of the same name

exp Arithmetic or relational expression.

The value of the right side is adjusted to the size of the
left side operand. If necessary, integers are truncated on
the left; character data is truncated on the right.
Expansion occurs - with leading zeros for integers;
characters are left-justified and blank-filled.

If one side of the statement is Boolean, the other must
also be Boolean. No conversions occur to or from Boolean.

If the left side of a replacement statement is a bead
function (C or B described in section 4), only the specified
bits are replaced. The remainder of the referenced item
is not affected.

The expression on the right side of the statement is
converted to the type of the left side, if necessary, before
the value is assigned to the left side. Conversions occur
as follows:)

Integers are converted to character operands by the
left-justification of the rightmost 6 bits of the
integer. Remaining positions in the character field
are blank-filled.

e Integers are converted to real operands by floating
them, ‘as provided by hardware instructions. The
resulting real values are expressed in single-precision
format.

e Real values are converted to integers by truncating
any fractions in the real values. Significance is
preserved if the integer can be expressed in 48 bits.

e Real values are converted to character operands by
first converting to integer, then converting the
integers to characters.

Character operands are ‘converted to integer by
right-justifying and zero-filling them in a single word. If

- the operand is more than ten characters long, only the

first ten characters are used.

Character operands are converted to real by converting
them to integer and then floating the result.

Conversion does not occur between integer and unsigned
integer; they are treated identically. If a 60-bit unsigned
integer has a 1 in the sign bit, it is treated as a negative
number; all other unsigned integers are treated as positive
numbers.

Table 3-1 summarizes conversions performed by the
replacment statement.

Examples of replacement statements: e

® Assign the value of TEMP to ITEMA:
ITEMA = TEMP;

® Assign B the value TRUE or FALSE as a result of the
logical conjunction of the value of E and the
relational value TRUE or FALSE obtained from the
evaluation of CNQ D:

B = C NQ D AND E;

EXCHANGE STATEMENT

The exchange statement causes the exchange of values of
the left and right sides of the exchange operator ==.
Appropriate type conversion occurs during the exchange if
necessary: in A==B, B is converted as if A=B appeared,

with A converted as if B=A appeared.

TABLE 3-1. REPLACEMENT STATEMENT CONVERSIONS

Expression_Type/
. Vgriab1e Ty%g Real

Integer Character

— -
Real ---

Integer Float number.

Character Convert to integer,

then float.

Truncate fractional
part of number.

Right-justify and
zero~fill all or first
ten characters of
value; discard the
remainder.

First convert to integer;
then convert that integer
to character.

Left-justify lower 6 bits
of number with blanks.

3-2

60496400 F

The format of the exchange statement is:
vl == v2

vi Entities whose values are to be exchanged.
Any of the following can appear:

Scalar
Subscripted array item
P function
Bead function
SYMPL guarantees that subscript or bead function
components of expressions which must be evaluated to
compute the address of vl or v2 are computed once,
before either replacement. The order of expansion as to
which variable is stored first is not guaranteed, however.
The exchange process refers to the expression values by
referring to temporary variables. For example, the
exchange statement A==B occurs as if it were written:
temp=A;
A=B;
B=temp;
Temporary variables are used for storage of component
and subscript expressions, so that the old values are
always used. The expansion of I==J[1] is:
templ=[;
temp2=I;
I=J I];
J[templ]=temp2;

The subscript expression J[I] is the old value until the
statement is complete. :

FOR STATEMENT

The FOR statement is a generalized looping control
statement. A simple or compound statement following
the DO clause of FOR executes repetitively as long as the
condition established by the FOR statement is TRUE.

The format of the FOR statement has several forms:

FOR i=aexpl DO statement

FOR i=aexpl STEP aexp2 DO statement

FOR i=aexpl STEP aexp2 UNTIL aexp3 DO statement

FOR i=aexpl WHILE bexp DO statement

FOR i=aexpl STEP aexp2 WHILE bexp DO statement

i Counter. for the loop called the
induction variable. Must be a scalar of

any type except B or C.

aexpl Arithmetic expression indicating the
initial value of the induction variable.

aexp2 Arithmetic expression indicating a

value to be added to the induction
variable for each execution of the loop.

60496400 F

aexp3 Arithmetic expression indicating the
last value for the induction variable for
which loop repetition is to occur.

statement Simple or compound statement to be
executed repetitively. This statement
is called the controlled statement.

bexp Boolean expression that must be TRUE

for repetitive loop execution.
In the form:

FOR i = aexpl STEP aexp2 UNTIL aexp3 DO
statement

if the first character of aexp2 is a minus sign, then the
loop is executed until i is not greater than aexp3. For
example, in the following statement the loop is executed
three times, with I equal to 1, -6, and -13 (assuming that
it is a slowloop):

FOR I =1 STEP -7 UNTIL. -17 DO...

However, the following loop is never executed if it is a
slowloop, and executed once if it is a fastloop:

FOR I =1 STEP (-7) UNTIL -17 DO...

Since the form FOR i=aexp DO statement produces an
infinite loop, the programmer-supplied statement must
provide for an exit jump.

The expressions used in the STEP and UNTIL clauses can
use data of any type except Boolean. The results of the
expressions are converted to the mode of the induction
variable. The Boolean expression in the WHILE clause can
be arbitrarily complex.

Two types of loops, known as fastloops and slowloops, can
be generated by the compiler, depending on the
appearance of the compiler-directing CONTROL
statement. Figure 3-1 compares the two types of loops.

Fastloop - Slowloop
Initialize Initialize
Execute Test
Controlled and
Statement Branch
Execute
Modify Controlled
Statement
Test
and Modify.
Branch
| .
1

Figure 3-1. Generalized Fastloop and Slowloop Flowcharts

3-3

Fastloops always execute at least once since the test for
the condition is at the end of the loop. To produce
predictable results, the elements of the FOR statement
are restricted as follows:

e The induction variable must be integer type. It can
be signed. The absolute value of the induction
variable must be able to be contained within 17 bits.

® Neither the induction variable, the STEP nor the
UNTIL expression can be modified within the loop
since SYMPL might evaluate these expressions before
the start of the loop. The WHILE clause can be
changed within the loop.

Slowloops need not execute at least once since the test
for the condition is at the beginning of the loop. The
restrictions of fastloops do not hold for slowloops.

The default is slowloop, but it can be overridden for
following FOR statements: a CONTROL FASTLOOP

statement affects all FOR statements begun before a
later CONTROL SLOWLOOP statement. A loop control
statement within a FOR statement can affect a nested
loop, but not the loop in process. See section 5 for an
example of loop control.

For both types of loops, the value of the induction
variable is undefined after the loop is complete. For
slowloops, however, the current value of the induction’
variable is preserved if the controlled statement causes a
jump out of the loop. The induction variable of a fastloop
is not preserved when control is transferred outside the
loop. If the controlled statement is entered by a GOTO
statement from outside the FOR statement, the value of
the induction variable is undefined.

Table 3-2 shows the different types of FOR statements
and the logic of their generated code.

The step value and final value shown in table 3-2 in
temporary locations are not guaranteed: if variables
involved in these expressions are modified within the lgop,
results are not defined.

TABLE 3-2. SLOWLOOP AND FASTLOOP EXPANSION COMPARED

Statement Slowloop Fastloop
= — - — —— =
FOR I=X1 DO A=0; I=X1; 1=X1;
L: A=0; L: A=0;
GOTO L; GOTO L;
FOR I=X1 STEP X2+2 DO A=0; . I=X1; templ=X2+2;
L: A=0; - I=X1;
1= I+X2+2 GOTO L; L: A=0;
I=I+templ; GOTO L;
FOR I=X1 STEP X2+2 UNTIL X3+3 1=X1; templ=X2+2;
DO A=0; L: IF I LQ X3+3 THEN temp2=X3+3;
BEGIN 1=X1;
A=0; L: A=0;
I=1+X2+2; GOTO L; I=I+templ;
END IF I LQ temp2 THEN GOTO L;
FOR I=X1 STEP -X2+2 : I1=X1; templ X2+42;
UNTIL X3+3 DO A=0; L: IF I GQ X3+3 THEN temp2=X3+3;
. BEGIN 1=X1;
A=0; L: A=0;
I1=1-X2+42; GOTO .L; I=I+templ; .
END IF I GQ temp2 THEN GOTO L;
FOR I=X1 WHILE BX DO A=0; 1=X1; 1=X1;
L: IF BX THEN L: A=0;
BEGIN : IF BX THEN
A=0; GOTO L; GOTO L;
END
FOR I=X1 STEP X2+2 WHILE BX I=X1; templ=X2+2;
DO A=0; L: IF BX THEN I=X1;
BEGIN L: A=0;
~ A=0; I=I+templ;
I1=1+X242; GOTO L; IF BX THEN GOTO L;
END
FOR I=X1 STEP 27 WHILE A LQ B 1=X1; I=X1
AND C GR D DO A=0; L: IFALQBANDCGRD L: A=0;
THEN I=1+27;
BEGIN IFALQBANDCGR D
A=0; THEN GOTO L;
1=1427;
GOTO L;
END

3-4

60496400 F

TEST STATEMENT WITHIN A
FOR STATEMENT

In a FOR statement, the compiler automatically supplies
the modification, test, and branching steps of a loop. The
TEST statement provides a structured method of
branching to the modify-test-branch step; it is meaningful
only within the controlled statement of a FOR statement.

The format of the TEST statement is:
TEST name;

name Name of the item used as induction variable
in a loop containing the TEST statement. If
omitted, control transfers to the
modify-test-branch sequence of the
innermost loop.

When TEST is executed, control transfers to the
modify-test-branch for the specified induction variable.
Consequently, the other inner index modify-test-branch
steps could be skipped and those induction variables would
not be incremented for the next iterations. If TEST
transfers control outside the innermost level, the inner
levels are terminated and can be reentered only through
their FOR statement beginning. Meanwhile, the induction
variables have the values they had when the jump outside
the loop occurred, except for fastloops.

Examples of TEST use within FOR:

® Bypass all source statements between the TEST
statement and END if the Boolean expression of an IF
statement is TRUE.

FOR A=0 STEP 1 UNTIL 52
DO
BEGIN
IF DEMAND [TODY]GR
DEMAND [TOMRW]
THEN TEST;

END

e Bypass innermost nested statements within a FOR

laop.

FOR A=0STEP 1
UNTIL 100

DO

BEGIN #A#

.

FOR B=99 STEP -1
UNTIL 0
DO
BEGIN #Bi#
IF INCOME [B] GR 1000
OR CREDIT[B]EQ S"GOOD"
THEN
BEGIN
TEST A;
END

60496400 F

IF END INCOME [B] LS 5000
AND AGE [B] LS 18
THEN
BEGIN
TEST B;
END

END #B4#
END #A#

If the conditions in the first IF statement are satisfied,
control passes to the modify-test-branch for the outer
loop, index A. If the first TEST statement had not
specified A, control would have passed to the innermost
test for B. If both conditions in the first IF statement are
FALSE, execution bypasses the first TEST statement; and
if the conditions of the second statement are satisfied,
TEST B is executed, which passes control to the test for
index B. Only when the above conditions are FALSE are
the source statements following TEST B executed.

GOTO STATEMENT

The GOTO statement unconditionally transfers control to
a statement designated by a label name or a subscripted
switch list name.

The format of a GOTO statement specifying a label name
iss ‘

GOTO label;
label Name of a label within the program, a
formal label, or an XREF label.
The format of a GOTO statement specifying a subscripted
switch list name is:
GOTO swname[exp];

swname Name of a switch list previously
declared in a SWITCH declaration.

exp Arithmetic expression whose value is
one of the small integers the compiler
assigns to switch list entities.

The following are examples of GOTO statements:

e Unconditionally transfer control to label JAIL:

GOTO JAILL;

o Unconditionally transfer control to the label whose
value corresponds to the value of the
expression A+B-C:

SWITCH ASW ZERO, ONE, TWO, THR, FOUR;

GOTO ASW[A+BC];

3-5

IF STATEMENT

The IF statement causes a conditional transfer of control
depending on the value of a Boolean expression within the
statement. The format of the IF statement is:

IF bexp THEN statementl
or
IF bexp THEN statementl ELSE statement2

bexp Boolean expression; can be
arbitrarily complex.

statementl "~ Statement to be executed when the
value of the Boolean expression is
TRUE.

statement2 Statement to be executed when the

value of the Boolean expression is
. FALSE.

If ELSE statement2 is omitted, and the value of the
Boolean expression is FALSE, the next statement after
the IF statement is executed.

Each statement within the IF statement follows the
syntax rules for statements; each can be a simple or
compound statement; each statement must be terminated
with a semicolon.

When an IF statement is nested within another IF
statement, ELSE clauses are always associated with the
inner nested incomplete IF statements, as shown in the
examples below.

The following are examples of IF statements.

® Set PSI to 6 when RHO is less than or equal to 1 or XI
is 1; otherwise set PSI to 9:

IFRHOLQ1

OR XIEQ 1
THEN

PSI = 63
ELSE

PSI = 9;

e Execute procedure VOTER when AGE is at least 18;
otherwise execute procedure MINOR:

IF AGE GQ 18

THEN
VOTER;

ELSE

" MINOR;

e Change a TRUE value of BOOL to FALSE:

IF BOOL

“THEN
BEGIN
BOOL = BOOL AND BOOL.2;
END

e Set NUMOPDS to the number of operands in the

binary expression indicated by LOPD and ROPD:

IF LOPD EQ S "NULL"

THEN ‘
NUMOPDS = 03
ELSE
BEGIN
IF ROPD EQ S "NULL"
THEN ‘
NUMOPDS = 13
ELSE
NUMOPDS = 2;
END

RETURN STATEMENT

The RETURN statement returns control to the calling
routine.

The format of the RETURN statement is:

RETURN;
The compiler generates a RETURN statement after the
last statement in the body of a procedure or function.

A RETURN statement in a main program is equivalent to
a STOP statement.

STOP STATEMENT

The STOP statement halts program execution and returns
control to the operating system. A STOP statement is
generated automatically by the compiler after the last
statement of the main program.

The format of the STOP statement is:

STOP;

60496400 F

PROGRAM STRUCTURE

N

A SYMPL program can be a main program, a procedure
subprogram, or a function subprogram. Function and
procedure subprograms can be nested within a main
program or another subprogram.

SCOPE OF VARIABLES

Names declared within a subprogram body are recognized
only within that subprogram. And, since subprograms can
be nested, any name declared within a subprogram body is
therefore recognized within any subprogram nested
within it.

The scope of a declaration is the subprogram within which
it occurs. When nested subprograms contain declarations
for the same name, the innermost declaration bhas
precedence.

In figure 4-1, item AA can be referenced from any of
procedures A, B, C, or D. Item CC, however, can be
referenced from within C, but not from within procedure
D. Within procedure D, a reference to item DD uses the
value indicated by #LOCAL#; in any other procedure, a
reference to DD uses the value indicated by #GLOBAL#.

PROC A;

BEGIN #A#

ITEM AA;

ITEM DD; #GLOBAL#

PROC B;
BEGIN #B#
ITEM BB:

PROC C;
BEGIN #C#
ITEM CC;

END #C#

PROC D;
BEGIN #D#
ITEM DD; #LOCAL#

END #D#
END #B#
END #A#

Figure 4-1. Scope of Declarations

60496400 E

When a name is used, the last declaration encountered is
the declaration in effect, even if it occurs at an outer
level. For labels and procedures only, a name can be used
before it is declared. In this case, if the same name has
already been declared at an outer level, the definition at
the outer level is in effect. Under these circumstances,
the only way the definition in the inner level can be used
is to provide an FPRC declaration for the procedure or a
LLABEL. declaration for the label. The FPRC and LABEL
declaration occurs before the use of the procedure or
label, and signals the compiler that the actual procedure
or label occurs later.

An example of a LABEL declaration and use is shown in
section 3. An FPRC declaration is required under similar
circumstances. The FPRC declaration is: ‘

FPRC name;

name Procedure name to be declared subsequently.

The outermost subprogram name of a compilation unit is
used by the loader as the name of the unit. Such a unit
can be referenced as an external subprogram. External
subprograms, and programs that reference external
subprograms, are subject to the XDEF and XREF rules
noted below. Communication between separately
compiled programs and subprograms can be performed by
COMMON declarations, by passing parameters to the
subprograms, or by the XDEF/XREF mechanism.

MAIN PROGRAM

A main program consists of a program header followed by
a series of declarations and statements and ended by a
TERM statement. The TERM statement is explained in
section 5.

. The format of a main program header is:

PRGM name;

name Name by which program is known. Identifier
of 1 through 12 letters, digits, or $ that does
not begin with a digit or $ and does not
duplicate a reserved word. For loader
purposes, the name is truncated to seven
characters.

PROCEDURES

A procedure is subprogram that executes when its name,
or one of its alternative entry points, is called.
Parameters can be passed to the procedure as part of its
call. :

4-1

When a procedure is called, execution begins at the first
executable statement following the procedure name or
entry point, depending how the procedure was referenced.

Execution continues until a RETURN statement is
encountered, a GOTO statement in the procedure

transfers control outside the procedure, or the procedure
ends. Termination of the procedure through its last
statement or a RETURN statement returns control to the
statement following the one that called the procedure. A
procedure cannot call itself.

A procedure must be defined by a procedure declaration.
The declaration can appear anywhere in a program that
any other declaration can appear. The flow of control
during execution of a main program or subprogram is not
affected by the nesting of any subprogram.

A procedure declaration consists of the
elements in this order:

following

e Procedure header

e Optional series of declarations

o Procedure body consisting of a single elementary or
compound statement. The compound statement can
include declarations, alternative entry points, or
other elementary or compound statements.

The format of a procedure header is:

PROC name (param, param, . . .);

name Identifier of 1 through 12 letters, digits, or $

' that does not begin with a digit and does not
duplicate a reserved word.

param Optional formal parameter used within the

procedure for which an actual parameter is
to be substituted at the time the procedure
executes. A null parameter is invalid.

Any of the following can be specified by

names:
Scalar Array
Label Based array
Procedure Function

A scalar name can be enclosed in

parentheses to indicate to the compiler that
the actual parameter is to be passed by
value rather than by address.

A call-by-value parameter should be used whenever
possible because it produces more efficient object code.
Such a parameter cannot be used, however, if its value
must be returned to the calling program. Calls-by-value
reference a copy of an actual parameter, not the
parameter itself. Therefore, changes made to the
parameter within the subprogram are not reflected in the
calling program. :

An example of a procedure declaration that sets a 100
word array to real values 0.0 is:

PROC CLEAR(X,(N));

BEGIN

ARRAY X[99];
ITEM XX R(0,0,60);

ITEM N;

ITEMIL

FOR I=0 STEP 1 UNTIL N DO
xX[1]= 0.0

END

4-2

Procedure CLEAR contains a single compound
statement. Declarations for parameters X and N
appear within the compound statement, as does the

declaration for the induction variable of the FOR
loop. I could also be a global declaration, rather than

a local declaration within CLEAR.

FORMAL PARAMETERS

The procedure body must contain a declaration for each of
its formal parameters, except for a label name used as a
parameter. (Any formal parameter that does not have an
associated declaration is assumed to be a label.) Formal
parameters, and other entities used within the procedure, -
must be declared before they are referenced.

The declarations for scalars, arrays, based arrays, and
subscripted array items are the same within a procedure
body as they would be elsewhere.

The declarations for procedures and functions that are
formal parameters require a declaration in the following
formats:

e For each procedure name used as a formal parameter:
FPRC name;

name Formal name of procedure.

e For each function name used as a formal parameter:
FUNC name type;

name Formal name of function.

type Type of function: B, C(igth), U, I, R, S.

A LABEL declaration for a formal parameter labe! is
permitted but not required. If it is present, it declares
the formal label, rather than indicating that a label with
the same name appears later in the procedure. If a label
with the same name appears in the procedure, the label
can only be branched to backwards; a branch appearing
before the label references the parameter label.

A declaration for a formal parameter is not recognized if
it occurs in a nested inner procedure. For example, in the
following, the declaration ITEM A produces a scalar local
to procedure Y, not an association with parameter A of
procedure X.

PROC X(A);
BEGIN
PROC Y(B);
BEGIN
ITEM A;

END

END

60496400 F

ACTUAL PARAMETERS

Actual parameters are those arguments passed to the
procedure when the procedure is called during execution.
Any of the following can be used as an actual parameter:

Arithmetic expression Scalar name

Boolean expression Label name

Array name Procedure name

Subscripted array name Function name

P function Subscripted array

item name

Actual parameters should correspond to formal
parameters as follows:

Actual Parameter Formal Parameter

Subscripted array Scalar

item name

Scalar

Expression Scalar

P function Based array

Subscripted array name Array
(not based array)

Other Same as actual

Expressions are evaluated before subprogram execution
and the addresses of temporary locations containing the
resulting values are passed to the procedure. Other
parameters are passed to the procedure as addresses.
When a function name without a parameter list is an
actual parameter, the formal parameter is assumed to be
a function name. A parameter list is required if the
function value is to be passed to the called procedure.
When a based array is a formal parameter, only the
address is passed as an actual parameter.

A single array item reference is considered an expression
and evaluated accordingly. The resulting value of the
array item is passed. Subscripted array names are passed
as the address of the first word with that subscript, thus
permitting the formal array to be offset from the actual
array. For example, B[D] overlays A[5] with these
declarations and references:

ARRAY A[1:10];;
P(A[5);
PROC P(B); ARRAY B [0:5];

When a subprogram name or scalar name is enclosed in
parentheses in an actual parameter list, the name is
evaluated before the call and passed to the procedure as a

60496400 E

temporary variable. For example, calling FUNNY with
parameter J results in procedure execution and return to
the calling program.

ITEM J;
PROC FUNNY(FACE);
BEGIN
ITEM FACE;
ITEM A, B;
A=FACE;
J=3;
B=FACE;
EAR: IF A EQ B THEN
GOTO EAR;
END

J=4;
FUNNY/(J);

If FUNNY had been called with FUNNY((J)); however, an
endless loop would exist.

Enclosing an actual scalar name in parentheses results in a
protection of the value with which the procedure was
called.

Actual arguments to subprograms are either
call-by-reference or call-by-value. Call-by-reference
means that the address of the argument is passed to the
subprogram. The value of the argument can be changed
by the called subprogram, unless the argument is a
procedure, function, or label; the changed value is
effective in both the called subprogram and the calling
subprogram. Call-by-value means that the value of the
argqument is computed and stored in a temporary variable;
then the address of the temporary variable is passed.
Therefore, any change in value of the argument is only
effective in the called subprogram.

The following types of arguments are passed by

call-by-reference:

° Scalar itemé
e Arrays
e Labels

e Procedure names and function names with no
argument list.

The following types of arguments are passed by
call-by-value:

e Subscripted array items

® Constants

Expressions other than item names
e LOC function references
e The form:
(item name)
If a P function reference is passed as an actual argument,

what is passed is the address of a temporary variable
containing the pointer to the based array.

4-3

SYMPL does not check to see that corresponding formal
and actual parameters are compatible in kind. However,
the results can be invalid if they are not. The types of
cog;‘esgoi'ldence that produce valid results are shown in
table 4-1.

‘TABLE 4-1. ACTUAL/FORMAL PARAMETER

CORRESPONDENCE
Kinds of Valid Kinds of
Formal Actual Parameters
Parameters
" Scalar Item name or call-by-value scalar
(call-by-~
reference)
Scalar Expression item, or subscripted
(call-by- array item
value)
Array Array name (based or non-based)'

Based array P function or address expression
Label Label name
Procedure Procedure name

Function Function name

A based array name used as an actual parameter
requires an array as a formal parameter. The
formal parameter must be a based array only if
the called program must reposition the array for
the calling program.

FUNCTIONS

A function is a subprogram whose name is associated with
a specific value. It executes, and thereby determines the
value of the name, when the function name appears in an
expression. The function name value then is used in
evaluation of the expression.

Two types of functions exist:

e Intrinsic functions that can be referenced without a
corresponding declaration within the program.

o Programmer-supplied functions that must be declared
before they can be referenced.

PROGRAMMER-SUPPLIED FUNCTIONS

A function must be declared by a function declaration.
The declaration can appear anywhere in a program that
any other declaration can appear. The flow of control
during execution of a main program or subprogram is not
affected by the nesting of any subprogram.

Unlike a procedure declaration, a function declaration or
an XDEF declaration of the function name must appear
before the function is referenced in an expression.

A function declaration consists of the following €lements
in this order:

e - Function header

e Optional series of declarations

e Function body consisting of a single elementary or
compound statement. The compound statement can

include declarations, alternate entry points, or other
elementary or compound statements.

The format of a function header is:

FUNC name (param, param, . . .) type;

name Identifier of 1 through 12 letters, digits, or §
that does not begin with a digit and does not
duplicate a reserved word.

param Optional formal parameter used within the
function for which an actual parameter is to
be substituted at the time the function is
referenced in an expression.

Any of the following can be specified by

name: .
Scalar Array
Label Based array
Procedure Function

If a scalar name is specified, it can be
enclosed in parentheses to indicate to the
compiler that the actual parameter is to be
passed to the function by value rather than
by reference, as discussed for procedure
parameters.

type Type of the function's result:

B Boolean

I Integer; default

U Unsigned integer

R Real

C(igth) Characfer of length lgth
Szstlist Status

The function body must set the function name to a value
before the end of the body statement or before any
RETURN within the function. Otherwise, the value
returned by the function is undefined. The function name
must not appear on the right side of an assignment
statement or as an actual argument within the function
body, however, since functions cannot be recursive.

The function body must contain a declaration for each of
its formal parameters except a label. Information
pertinent to parameter declarations of procedures is also
pertinent to functions.

60496400 F

INTRINSIC FUNCTIONS

Five intrinsic functions exist:

Function Purpose
ABS Obtain absolute value
B Reference bit string from a field
C Reference character string from a
field
LOC Reference address of data
P Set pointer to based array

The B function and the C function are called bead
functions since their purpose is to access consecutive bits
or characters of a string.

ABS Function

The ABS function returns the ' absolute value of the
function argument. Its format is:

ABS(exp)
exp Expression whose absolute value is to be

returned.

The type of the argument determines the type returned:

Argument Type Type Returned

Real ‘ Real

Integer or

unsigned integer Unsigned integer .

Other Same argument specified
in call

B Function

The B function accesses one or more bits from a specified
item, thereby creating an unsigned integer value. The
format of the B function is:

B first,lgth iname

first Arithmetic expression specifying the

first bit of iname to be accessed,
numbering from 0 on the left of iname.
(Numbering is not from the left of the
word in which iname appears.)

igth Arithmetic expression specifying the
number of consecutive bits to be
accessed. If omitted, 1 is assumed. A
constant length of zero is not allowed.
If an expression is used whose value at
execution time is zero, the results are
undefined.

60496400 F

The maximum value for lgth is affected
by both the type of iname and its
position in a memory word: :

For type I, U, or R, Igth is limited
to 60 and word boundaries cannot
be crossed‘.

For type C, lgth is also limited to
60, but word boundaries can be
crossed.

No check is made to verify that the
bead size is less than or equal to the
item size.

iname Name of a scalar or subscripted array
item from which bits are to be accessed.

When a B function is the object of a replacement
statement, only the bits specified are affected by
execution of the statement. The bead function is of the
type unsigned integer; therefore, the right side of the
replacement statement is converted to unsigned integer
before the assignment takes place. The conversion rules
are given in the description of the replacement statement
in section 3.

When a B function is used other than as the object of a
replacement statement, the specified bits are extracted
and are right-justified and zero-filled to convert them to
unsigned integer. The type of the item from which the
bits were extracted does not affect the conversion process.

The number of bits that can be accessed is limited by the
length of the item being referenced. The bead size is not
checked to insure that it is less than or equal to the size
of the item being accessed. The results of averaddressing
may not be what the user intended.

An example of the B function use is the following, which
counts the number of 0 bits in FLAGS:

ITEM COUNT;

ITEM FLAGS;

COUNT=0;

FOR I=0 STEP 1 UNTIL 59 DO
IF BIL,1>FLAGS EQ 0
THEN
COUNT=COUNT + 1;

C Function .

The C function accesses one or more 6-bit characters
from a specified item, thereby creating character value.
The format of the C function is:

C<first,Igth> iname

first Arithmetic expression specifying the
first character of iname to be accessed,
numbering from O on the left of iname.
(Numbering is not from the word in
which iname appears.)

Igth Arithmetic expression specifying the
number of consecutive characters to be
accessed. If omitted, 1 is assumed. A
constant length of zero is not allowed.
If an expression is used whose value at
execution time is zero, the results are
undefined.

4-5

The maximum value for Igth is affected

by both the type of iname and its

position within a memory word:

For type, I, U, or R, Igth is limited
to 10 and word boundaries cannot
be crossed.

No check is made to verify that the
bead size is less than or equal to the
item size.

For type C, lgth is limited to 240
and word boundaries can be crossed.

iname Name of a scalar or subscripted array
item from which characters are to be
accessed.

When a C function is the object of a replacement
statement, only the characters specified are affected by
execution of the statement. The bead function is of the
type character; therefore, the right side of the
replacement statement is converted to character before
the assignment takes place. The conversion rules are
given in the description of the replacement statement in
section 3.

When a C function is used other than as the object of a
replacement statement, the specified characters are
extracted and converted to character. They are
left-justified and blank-filled. The type of the item from
which the characters were extracted does not affect the
conversion process.

The number of characters that can be accessed is limited
by the length of the item being referenced. The bead size
is not checked to insure that it is less than or equal to the
size of the item being accessed. The results of
overaddressing may not be what the user intended.

An example of the use of the C function is:

ITEM BOAT C(10)="SERIALOABC";
C<7,3>BOAT="XYZ";

Results in BOAT having a value SERIALOXYZ.

Type conversion occurs as necessary when a C function is
used in a replacement statement. A reference to an item
containing an address cannot, for example, extract that
address with a reference C<7,3>FIRST, since such a
reference converts the integer address to type character.

LOC Function

The LOC function returns an address of a data structure
during program execution. The format of the LOC
function is:

LOC(argument)

argument Name of any of the following:
Scalar
Subscripted array item
Procedure name
Function name
Label name
Switch name
Array name with optional

subscript

P function

4-6

In this context an array name with subscripts results in

the address of the array entry with that subscript. For

example: .
P<BASE> = LOC(ARRAY1[1]);

An array item name returns the ~address of the word in
which the item begins. '

When a P function is used as an argument for LOC, the
address of the pointer word to the based array is obtained.

The first word address of an array or based array is
available via the LOC function.

P Function

The P function references the pointer variable for a based
array. The format of the P function is:

P<barray>

' barray Name of a based array.
By setting the P function to an integer value, the contents
of memory at that location can be referenced. For
example, the contents of RA+1 within a program field
length can be accessed as RA 1 by:

BASED ARRAY MEM[99]; ITEM RA;
P<MEM>=0;

Other examples of the P function and based arrays are:

e Chain down a list structure and pass back the address
of the desired list element in MATCH:

BASED ARRAY LIST [0:0] S(1);

BEGIN

ITEM THING K0, 0,42);
ITEM NEXTLIST K0, 42,18);
END

ITEM LISTHEAD I;
ITEM TARGET [;
ITEM MATCH I;

P<LIST> = LISTHEAD;
FOR MATCH=0
WHILE MATCHEQ 0

DO
BEGIN
TF THING EQ TARGET
THEN
MATCH = P<LIST>;
ELSE ’
P<LIST> = NEXTLIST;
END

e Preset a based array BLOCK to 0. In such an
instance LOC(A) might have been passed to the
procedure containing the following:

BASED ARRAY BLOCK [99];
ITEM WORD I(0,0,60);

P<BLOCK> = LOC(A);
FOR 1=0 STEP 1 UNTIL 99 DO
WORD I =0;

60496400 F

ALTERNATE ENTRY POINTS

Alternate entry points can be declared for both
procedures and functions with the ENTRY declaration.

The format of the ENTRY declaration for a procedure and
a function, respectively, are:

ENTRY PROC name (param, param, .. .);
ENTRY FUNC name (param, param, . . .) type;

parameters and type are optional, depending on the
needs of the subprogram. The default type is integer.

The ENTRY declaration need not duplicate parameters
associated with the subprogram name if such parameters
are not used when the subprogram is called by the
alternate entry point. Values for parameters not
associated with the particular entry are undefined.

The type of an alternate entry point need not be the same
type as the name of the principal entry point. At
execution time, the value returned is of the same type as
the entry point through which the function is entered.

A character item longer than ten characters cannot be
returned by any function with alternate entry points. If
the function has no alternate entry points, arbitrarily long
character items can be returned. Only one entry point to
a procedure can be active at one time.

An example of a procedure with an alternate entry point
follows. The procedure searches an array until an element
matching the actual parameter TARGET is found. If the
procedure is entered through the principal entry point
RESEARCH, the parameter START specifies where in the
array to begin searching. If the procedure is entered
through the alternate entry point SEARCH, searching
starts from the beginning of the array.

PROC RESEARCH ((START), MATCH, LIST,

(TARGET));

BEGIN

ARRAY LIST [0:100] S(1);
BEGIN
ITEM THING X0, 0,42);
END

ITEM MATCH I

ITEM TARGET I

ITEM START I

ITEMI I

GOTO SRCH;

ENTRY PROC SEARCH (MATCH, LIST, (TARGET));

START = 0;
SRCH:
MATCH = 0;

FOR I=START STEP 1
WHILE MATCH EQ 0
AND I LQ 100

DO
BEGIN
IF THING EQ TARGET
THEN

MATCH = ;
END

END
TERM

60496400 F

INTERPROGRAM COMMUNICATION

Three SYMPL declarations allow communication between
subprograms that are compiled separately: COMMON,
XREF, and XDEF. SYMPL truncates all names to be
passed to the loader to the first seven characters,
although all the characters retain significance internally.
Such names must not begin with §.

COMMON DECLARATION

The COMMON declaration provides up to 509 blocks of
storage that can be referenced by more than one
subprogram. Variables in these blocks are assigned
storage when the program is loaded.

The COMMON declaration must appear in the outermost
level of a compilation.

The format of the COMMON declaration is:
COMMON name; datadec
or
COMMON name; BEGIN datadec datadec . . .END

name Name of common block. If omitted,
blank common is used.

Declaration for a scalar, array, or based
array as described in section 2.

datadec

Preset values can be included in the
data declaration if the common block is
named. (Blank common cannot be
initialized at load time.) The
subprogram containing this declaration
must be compiled with the P parameter
of the compiler call in order for preset
values to be compiled; alternatively,
the CONTROL PRESET compiler-
directing statement can be included in
the subprogram when preset values are
to be initialized in named common.

When a based array is declared to be in common, only the
pointer to the array is passed in common.
Variables are stored in a common block in the order they

are declared. Relative locations for all items should be
the same in all subprograms referencing a particular block.

XDEF DECLARATION

The XDEF declaration generates an entry point such that
the loader can link the specified names to those declared
by XREF in separately compiled modules. It also
allocates storage for any variables.
The format of the XDEF declaration is:

XDEF xdec

or

XDEF BEGIN xdec xdec . . . END

4-7

xdec Name of any procedure, function or
label that is to be referenced in an
externally compiled program; or a full
data declaration for a scalar, array,
switch, or based array. XDEF data can

be preset.

The xdec for a procedure, function or
label is:

PROC name;
FUNC name type;
LABEL name, name, . . .

XDEF . declarations for procedure and function names
enable nested procedures and functions to be referenced
from separately compiled modules. The XDEF declaration
must appear in a containing block before or after the
procedure or function being specified in the XDEF
declaration. The XDEF declaration cannot appear in the
procedure or function that is being declared with the
XDEF.

The name of the outermost procedure or function in a
compilation unit cannot be declared with the ‘XDEF
statement. An entry point is automatically generated for
the outermost procedure or function.

An example of the use of XDEF declarations is:

PROC A;

BEGIN #A#
XDEF PROC B;
PROC B;
BEGIN #B#

END #B4#

END #A#

TERM

PROC C;

BEGIN #C#
XREF PROC B;
XREF PROC A;

A;

B;
END #Ci##
TERM

This example shows two separate compilation units. The
first compilation unit contains two procedures, A and B.
Procedure A is the outermost block and procedure B is
nested in procedure A. The second compilation unit
contains one procedure, C, which references both
procedures in the first compilation unit.

Since procedure A is the outermost block of a compilation
unit, an entry point is automatically generated for it.
Therefore, it can be called from other compilation units,
but it cannot be declared in an XDEF declaration.

The XDEF declaration that appears before procedure B
causes an entry point to be generated for procedure B so
that it can be called from other compilation units. The
XDEF declaration can appear before or after procedure B,
but not in procedure B.

4-8

Procedure C is in a separate compilation. unit. It
references both procedure A and procedure B. Procedures
A and B must be declared in an XREF declaration.

An example of use of the XDEF and XREF declarations
for data items is:
e Procedure A is compiled with:

XREF ITEM COUNT I;
e Procedure B is compiled with:

XDEF ITEM COUNT I;
Any reference to COUNT from within procedure A
accesses the storage reserved for the item within

procedure B, assuming both A and B are available at load
time.

XREF DECLARATION

The XREF declaration generates external references to
the specified names. It is assumed that storage for
variables is allocated and appropriately declared external
in a separately compiled program which could be written
in another language.

The format of the XREF declaration is:
XREF xdec
or
XREF BEGIN xdec xdec . . . END

xdec Any of the following whose Storage is
declared with XDEF:

Data declaration for a scalar without
preset.

Data declaration for an array without
presets. -

Data declaration for a based array.
PROC name;
FUNC name type;
LABEL name, name, . ..;
SWITCH name, name, . . .
XREF itself is not terminated by a semicolon, but each
declaration within the XREF statement requires a
terminating semicolon.
Examples of XREF statements are:
XREF BASED ARRAY AA; ITEM XX;
XREF SWITCH JUMVEC;
XREF FUNC LINEUP R;
XREF ARRAY[0:9,0:9]5(5);
BEGIN
ITEM ZZ C(0,0,40);

ITEM YY R(4,0,60);
END

60496400 F

COMPILER DIRECTIVES 5

S —

Four types of SYMPL statements are compiler-directing DEF adds to the maintainability of a program by allowing
statements rather than executable statements. These are: constants or part of a statement to be referenced
mnemonically. It also allows generation of in-line code
i for short functions. For example:

e $BEGIN and $END statements which allow enclosed

source statements to be compiled only in the e Specify upper array bound for a table:
presence of the E parameter of the SYMPL control
statement. They specify SYMPL debugging features. DEF TABSIZE #32#
ARRAY [TABSIZE J;
e DEF statement which allows a mnemonic reference e Define T and F corresponding to TRUE and FAL.SE
to a string of up to 240 characters. This is similar to
a macro facility. DEF T #TRUE#;
DEF F #FALSE#;
e CONTROL statement which affects the compilation, e Define a Boolean expression for use in IF or FOR
depending on words used in the statement. statements:

DEF BOOL2 #A GR B AND B NQ 0#;

e TERM statement which terminates compilation units. IF BOOL2 THEN...

The DEF identifier name can be defined to cause one of
$BEG|N/ $END DEBUGGING FACILITY two types of character string substitutions:
Source language statements that are being compiled only " e When the DEF statement does not include
for debugging purposes should be preceded by a $BEGIN parameters, the DEF body is substituted in exactly
statement and followed by an $END statement. This the form in which it is declared.
causes those statements to be compiled only when the E
parameter appears on the SYMPL control statement. If e When the DEF statement includes parameters, the
the E parameter is not specified, statements between the DEF body is modified according to parameters
$BEGIN and $END statements are not compiled. See accompanying the DEF identifier name reference.

section 6 for a description of the E parameter.

A DEF statement with parameters provides a simple
$BEGIN and $END are syntactically equivalent to BEGIN macro capablhty for the SYMPL language. .
and END and can be used to delimit compound

statements. However, such use can lead to unanticipated

problems when the program is compiled without the E The DEF statement can appear anywhere in a program
parameter: specifically, use of $BEGIN/$END to delimit that a declaration or executable statement can appear,
the compound controlled statement of IF, FOR, ELSE, or except within a common block or a XDEF or XREF
PROC statement induces the compiler to use the declaration. The. declaration is subject to normal rules for
succeeding statement as the controlled statement during a declarations:

compilation without the E parameter, which probably is a

logic error. Correct syntax should be maintained for a e The DEF statement must appear before the defined
program whether or not it is compiled in debugging mode: . name is referenced.

- BEGIN followed by $BEGIN is valid and useful.

e The DEF statement has no effect outside the

. subprogram in which it occurs.

A TERM statement must not appear between $BEGIN and

$END. Furthermore, $END must not be produced by a A name defined by a DEF statement is defined from that

DEF expansion. point through the end of the subprogram. The name can
be redefined through another DEF statement, which will
generate a trivial diagnosticc. = A DEF cannot be

. undefined. No language facility exists for returning an
DEF FACILITY) identifier to the gusaqge it hayd before its first DEF
) declaration.

DEF is a compiler-directing statement that associates a

character string with an identifier pame. During

compilation, each reference to the DEF identifier name is

replaced by the character string of the DEF body; the BASIC DEF USAGE

resulting statement is then compiled in the normal :
manner. No calculation or evaluation occurs during In order to use the DEF facility, a DEF must be declared.
replacement: only character string substitution occurs. The DEF can then be referenced, or called, in a SYMPL
The compiler does not print the expanded DEF. program.

60496400 F 5-1

DEF Name Declarations
The format of the DEF statement is:
DEF name (param,param, . . .) #character string#;
or
DEF name
name Name by which the character string is
" subsequently to be referenced. Must be

identifier of 1 through 12 letters, digits,
or $ beginning with a letter.

Formal parameter which is to be
replaced by an actual parameter when
the DEF is expanded. Must be
identifier of 1 through 12 letters, digits,
or $ that does not begin with a digit.
Parameters are optional.

param

The formal parameter names need only
be unique within each parameter list.
They can duplicate names defined
elsewhere in the program.

character
string DEF body that is to replace references
to the DEF name. Any character string
can appear, including a null string. The
character # in the string must be
represented by ##. As many as 240
characters can appear in the string.

The body of a DEF is a character string. It has no
meaning until it is expanded by a DEF reference. The
DEF body can reference another DEF or data which is
undefined at DEF declaration time. However, everything
referenced in the DEF body must be defined when the
DEF is referenced.

Although DEF declarations can be nested, they cannot be
circular.

A legal nesting is:

DEF BOOL. #A AND B#;
DEF A #C EQ 3#;

A reference to IF BOOL THEN X=1;
expands as IF C EQ 3 AND B THEN X=1;

An illegal circular definition is:

DEF TWO # BEGIN ONE END #;
DEF ONE # TWO #;

The formal parameters in a DEF declaration are
recognized within the DEF body except that if the
parameters appear within a comment or within a string
delimited by quote marks, they are not modified during
expansion. Otherwise, each occurrence of the parameter
within the DEF body is replaced by an actual parameter
accompanying the DEF name reference. The characters
B,C, E 1O P,R, S, U, and X are not replaced by an
actual parameter when they appear as a syntax-defining
descriptor.

5-2

The programmer is responsible for the syntactic
correctness of the statements that result from DEF
substitution. For instance, this example is incorrect:

e DEF SIZE #1000#; DEF HALF #SIZE/2#; with
reference ITEM A = HALF; produces a syntax error
because substitution results in ITEM A = 1000/2; and
items must be preset by constant, not expression,
values. .

DEF Name References

Once a DEF name has been defined, subsequent references

to that name are replaced by the characters in the DEF

body. No substitution occurs in the following

circumstances, however:

e The DEF name appears within a comment.

e The DEF name appears within a constant or string.

e The DEF name or the DEF parameter name appears
as the identifier being defined by an ITEM, ARRAY
or COMMON declaration.

e The DEF name is one of the following and is used in
the applicable syntax-defining context:

Type descriptor abbreviations B, C, I, R, S, U.
Array layout specifiers, P, S, A, U.
Constaht prefixes O, S, X.
Intrinsic function B, C, P.
Real number specifier E.
When the DEF declaration does not include parameters,

compilation simply replaces the DEF name with the DEF
body.

When the DEF declaration includes parameters, each
reference to the DEF name must be followed by an actual
parameter list. The format of the DEF name reference
with parameters is:

name(param,param, . . .)

name Name defined in a prior DEF
declaration within this subprogram.
- param String of characters to replace a formal

parameter. A null parameter s
specified by consecutive commas.

No comment can appear between the DEF name and the
left parenthesis of the actual parameter list.

A one-to-one correspondence exists between the positions
of parameters in each list. The first actual parameter
replaces all occurrences of the first formal parameter
within the DEF body; the second actual parameter
replaces all occurrences of the second parameter; and so
forth. The number of actual parameters must not exceed
the number of formal parameters: such a -condition is
detected as a fatal error and DEF name substitution is
suppressed.

60496400 F

The number of actual parameters can be fewer than the
number of formal parameters, however. Any formal
parameter without a corresponding actual parameter is
replaced by a null character string. This allows the
expansion of a DEF name with a variable number of actual

parameters.

Each parameter in the actual parameter list is delimited
by the final parenthesis or a comma. A parameter
consists of all the characters between successive
‘parameter delimiters.

ADVANCED DEF USAGE

The following paragraphs discuss three advanced topics
that involve use of the DEF facility. These are:

e Parameters
e DEF expansion

™ Comments

Parameters

Any character can appear as part of the actual parameter
string, but characters with syntax-defining meaning might
require special coding:

e Any parameter string that contains a semicolon must
be bounded by #. The bounding # are removed prior
to substitution.

® Any parameter string that contains # must specify ##
to produce a single # substitution.

e Any comma within' a parameter string is not
recognized as a parameter delimiter when that
comma is contained within a balanced set of (), < > ,
orf[]. '

Any parameter string that .contains unbalanced or
incorrectly nested (), <>, or[] must be bounded by #.
The bounding # are removed prior to substitution.

All DEF and parameter substitution is strictly character
string substitution.
For example:
e Define BYTE and reference it by BYTE(C,5,2**J):
DEF BYTE(B,J,K) # B<I>A[K] #,
Expansion produces:
C<5>A[2%*]]

e Define CHECK with two parameters and a body
that uses the BYTE specified above:

DEF CHECK(X,ERROR) #

IF BYTE(B,1,X)
£Q 1 THEN GOTO OK;ERROR##;

60496400 E

Reference:

CHECK(CALL(3,B),#ERROR=37;
GOTO FAIL#);

Expansion:

IF B<1>A[CALL(3,B)] EQ 1 THEN
GOTO OK;ERROR=37;GOTO FAIL;

e Another definition of CHECK with the same
parameters produces the following expansion,
given the same reference:

DEF CHECK(X,ERROR)IF BYTE
(B,1,##X#HEQ 1 THEN GOTO OK;
ERRORG##;

Expansion:
IF B<1I>A[X]1EQ 1 THEN GOTO OK;
ERROR=37;GOTO FAIL;
DEF Expansion
When a DEF reference is encountered by the SYMPL

compiler, the DEF expansion is performed. In order to
expand the DEF, the compiler repeats the following steps:

1. The actual parameters of the DEF reference are
internally defined as DEFs and are substituted for the
formal parameters.

For example, the sequence:

DEF A (B) #B + C#;
Y = AQ2);

generates the equivalent of the declaration:
DEF B #2#;
2. The DEF body is scanned from the left and all DEF
names encountered are expanded.

These two steps are repeated until no DEF names remain
in the sequence.

Because actual parameters are converted into DEFs, this
procedure can produce results other than those the user
intends. For example:)

DEF TWO (X,Y) #X=1;Y =2;i
DEF ONE (2) #TWO(Z)i#s

The DEF name reference ONE(#A,B#) is expanded in the
following steps:

1. The actual parameter #A,B# is declared as a DEF(Z)
(the # characters bracketing A, B are discarded):

DEF Z #A,B#;
2. The text for ONE replaces the call to ONE:
ONE(A#,B#) becomes TWO(Z)

3. The string is searched again from the left. This time,
the first DEF name encountered is TWO.

5-3

4, The actual parameters for the reference to TWO are
declared as DEF bodies equivalent to the formal
parameter. Since Z has not been expanded yet, there
is only one actual parameter. It replaces X and a null
string replaces Y:

DEF X#Zit;
DEF Y {i#;

5. The text for TWO replaces the call to TWO:

TWO(Z) becomes X = 1; Y =2;

6. The string is searched again from the left; this time,
the first DEF name encountered is X. The DEF name
is replaced by the DEF body. This process is
repeated; the remaining DEF names encountered are
X, Z, and Y, in that order. ‘The successive stages of
the expansion are as follows:

X=1Y =2
Z=1Y=2
AB=1;Y =2;
AB=1;=2;

The final result is not what the user intended since it is
not valid syntax.

The body of a DEF with parameters and its actual
parameters cannot contain the character}. This
character is allowed in DEF's which have no parameters.

Comments

Comments are allowed within the parentheses delimiting
any parameters. Comments also are allowed within the
DEF body as long as they are delimited by ##, since the
DEF body itself is delimited by #. Comments are not
allowed between the DEF name and the left parenthesis
and they are not allowed between the right parenthesis
and the # which delimits the character string. Since the
DEF body is retained in memory during compilation,
excessive use of unneeded comments within the body
causes larger compilation field length.

CONTROL STATEMENT

The CONTROL statement directs the compiler to take
immediate action. Several different types of control
words in the statement cause different types of actions:

e Output listing control specifications are EJECT,
LIST, NOLIST, OBJLIST.

e Conditional compilation control words are IFxx, FI,
ENDIF.

e Compilation option selections are PACK, PRESET,
FTNCALL.

o FOR statement loop specifications are FASTLOOP,
SLLOWLOOP.

e Memory residence selections are LEVEL1l, LEVEL2,
LEVELS3.

e Variable attribute specifications are DISJOINT,
OVERLAP, REACTIVE, INERT.

° Wéak external specification is WEAK.
o Traceback selection is TRACEBACK.

Each of the different functions is described separately
below.

A CONTROL statement can appear anywhere in a
program that a statement can appear. It can also appear
within BEGIN and END .enclosing a list of array items,
based arrays, external declarations, or common
declarations. .

The effect of a CONTROL statement can be reflected in
an entire compilation unit. The end of a procedure or
function does not cancel the statement; only TERM
cancels a CONTROL statement.

LISTING CONTROL

Four forms of the CONTROL statement affect output
listings. The general format is:

CONTROL control-word;

Control-word One of the following:
EJECT Skip to new page of listing
LIST Resume normal listing of
source statements
NOLIST Suspend normal listing of
source statements
OBJLIST List object code

EJECT, LIST, and NOLIST cause the compiler to take
action at the time the statement is encountered among
the source statements.

OBJLIST .applies to the entire module. Its appearance
anywhere within the module affects the entire module.

The H parameter of the SYMPL compiler call overrides
CONTROL NOLIST.

CONDITIONAL COMPILATION

The CONTROL IFxx statement can be used to determine
whether source statements following the CONTROL IFxx
statement are to be compiled:

e When the relationship defined in the CONTROL IFxx
statement tests TRUE, the following source
statements are compiled. -

e When the relationship defined in the CONTROL IFxx
statement ~ tests FALSE, the following source
statements are skipped through. a matching
CONTROL FT or CONTROL ENDIF statement.

The CONTROL IFxx statement is particularly useful

because the constants to be tested by the relationship can
be DEF names or parameters.

60496400 F

The form of the CONTROL IFxx statement for conditional
compilation is:

CONTROL IFxx constl, const2;

IF xx Relationship of constl and const2 that
is to be tested:

IFEQ Constl equal to const2

IFLS Constl less than const2

IFLQ Constl less than or equal
to const2

IFGR Constl greater than const2

IFGQR Constl greater than or
equal to const2

IFNQ - Constl not equal const2

constl, Constants to be tested by the

const2 condition-word relationship. If
const2 and its preceding comma is
omitted, 0 is assumed.

Both constants must be the same
type; they can be type integer,
real, Boolean, or character.

Character constants can be compared
only by IFEQ and IFNQ. Leading and
trailing blanks are significant for

the comparison such that A is not
equal to A followed by a blank.
Character strings may be compared
only for equality and inequality.

Conditional source statements must be bracketed between
the CONTROL IFxx statement defining the relationship to
be tested and either one of the following CONTROL
statements:

CONTROL F;
CONTROL ENDIF;

Conditional statements can be nested.

If conditiona! statements are suppressed, syntax and
semantic checks are not performed; DEF names are not
expanded; and comment strings are not examined for
CONTROL. FI or ENDIF. In this situation, a semicolon
does not terminate a comment string.

Since DEF is not expanded when conditional statements
are suppressed, DEF cannot be used to generate the
CONTROL ENDIF for an outer CONTROL IF xx statement.

60496400 E

COMPILATION OPTION SELECTION

These forms of the CONTROL statement can affect the
options under which a module is compiled. The format is:

CONTROL control-word;

control-
word

One of the following:

PACK Select D option such
that switches are
packed two entries to
a 60-bit word. This
option requires less
memory but more
execution time.

PRESET Select P option such
that items declared
in _ named common
blocks are -
initialized. If the P
option is not selected
by the compiler call
or the CONTROL
statement, presets
for common block
items are ignored.

FTNCALL Select F option such

that procedure

calling sequences are
compatible with

FORTRAN; that s,

they have a word of

all zeros terminating
the parameter list.

The appearance of a CONTROL PACK or CONTROL
FTNCALL statement anywhere within .a module affects
the entire module.

- CONTROL PRESET must appear before the common block

declarations.

FOR LOOP CONTROL

The code generated by FOR loops can be controlled by a
CONTROL statement in the format:

CONTROL looptype;

looptype Type of loop to be generated:

FASTLOOP Test and branch
within loop, so loop
must execute at least
once. The FOR
statement containing
such a loop is
restricted in several
ways, as discussed in
section 3.

SLOWLOOP Test and branch
occurs at beginning
of loop, so loop need
not execute at all.

SLOWLOOP is
assumed in the
absence of
FASTLOOP.

5-5

CONTROL FASTLOOP and CONTROL SLOWLOOP can
appear anywhere a statement can appear. The statement
remains in effect until another CONTROL statement for
loop control is encountered, whether that other statement
is in the same subprogram or not.

Loop control statements can be nested. A FOR statement
generates a fastloop or slowloop depending on where it
appears: a nested statement affects the inner loop, but
not the loop in which it appears. For example, loop I is a
fastloop and loop L is a slowloop when the following
appears:

CONTROL FASTLOOP;
FOR I=1 STEP J UNTIL K DO
BEGIN
CONTROL SLOWLOOP;
FOR L=M STEP 1 UNTIL END DO
X=X+L3
END #1 LOOP#

MEMORY RESIDENCE SELECTION

Common blocks and based arrays can be allocated in
either of the two types of memory. The format of the
CONTROL statement to select residence is:

CONTROL LEVELnN name, name, . . .;

n Memory in which specified common blocks
or based arrays are to reside. The meaning
of the level indicated is affected by the
hardware available.

For CYBER 70 Model 76 and 7600 and
CYBER 170 Model 176 computers:

1 Small central memory (SCM)
residence.
2 Large central memory (LCM)

residence accessed directly.

3 Large central memory (LCM)
residence accessed by block
transfer to SCM. Items at this
level can only be passed as
parameters. .

For CYBER 70 Models 71, 72, 73, and 74,
CYBER 170, Models 171, 172, 173, 174, 175,
720, 730, 750, 760, and 6000 series systems:

1,2 Central memory residence

3 Extended core storage
residence accessed by block
transfer to central memory.
Items at this level can only be
passed as parameters.

name Name of a common block or based array. If
name is the name of a level 3 scalar or
non-based array, then name or LOC(name)
can appear as an actual parameter, if name
is the name of a level 3 based array, then
P<name> or LOC(P<name>) can appear as
an actual parameter. Level 3 names cannot
be used in any other context.

5-6

If the name of a common block is declared in a CONTROL
LEVEL statement, all items in the block are at the
specified level. If a based array is declared within a
common block, its pointer is at the specified level of the
common block; the array itself can be at a different level.

If the name of a based array is declared in a CONTROL
LEVEL statement, the array is assumed by the compiler to
be at the specified level. It is the user's responsibility to
ensure that the array is in fact at the specified level;
otherwise, the results are undefined. The pointer to the
array need not be at the same level.

ATTRIBUTES OF VARIABLES SPECIFICATION

The SYMPL compiler attempts to produce efficient
executable code. Because the compiler cannot always
determine the precise use of a variable throughout a
program, it must forego many efficiencies that might
result in incorrect code in unusual circumstances. The
programmer, however, can be aware of data use and,
through the CONTROL statement, can inform the
compiler of usage characteristicss. By classifying
variables and array items as separate or potentially
conflicting, the programmer provides the information that
the compiler needs to decide optimizations.

The format of the CONTROL statement for specifying
attributes of variables is:

CONTROL attribute var,var, . .. 3

or
CONTROL attribute;

Attribute of variables in the statement
list:

attribute

OVERLAP Variables might be
referenced by more than
one name, as shown in

explanation below.
OVERLAP is the opposite
of DISJOINT.

DISJOINT . Variables are referenced
by a single name only.
DISJOINT is the opposite

of OVERLAP.

REACTIVE A given entry word in a
single array is accessed by
more than one entry in
the same array using
different entry positions.
See explanation below.
REACTIVE is the opposite
of INERT.

Items with declarations
that show one field
overlaying another field
are detected by the

compiler so that
REACTIVE need not be
declared.

60496400 F

INERT A given entry word in a
single array is not
accessed by more than

one entry in the same
array using different

entry positions. INERT is
the opposite of
REACTIVE.

var Variable with the attribute specified. It
can be an array name, but not an array
item.

If the list of variables is omitted, the
CONTROL. statement becomes a global
switch that affects all subsequently
declared variables in the same module
not otherwise referenced by a contrary
individual specification.

If no CONTROL statements specifying variable attributes
appear in a module, the compiler assumes that variables
are used in a non-optimal way in the module. The
treatment of variable references in this case is not
precisely the same as when any of the variable attributes
are specified. Specifically, the compiler assumes that any
of the following can occur:

e Formal parameters can destroy each other.

e Formal parameters can destroy global variables and
vice versa. A based array can destroy any other
based or fixed array, but a fixed array does not
destroy any other array.

e All arrays are considered reactive.

e A procedure call can destroy all common, XDEF and
XREF variables.)

e Variables do not interfere with each other in any
other way.

If any CONTROL statement specifying a variable
attribute appears in a module, then compilation of the
module proceeds as though the module were preceded by a
CONTROL REACTIVE statement and a CONTROL
DISJOINT statement. The specified statements take
effect when they are encountered in the source program.
Use of the CONTROL statement to classify variables is
recommended because future versions of the compiler
might require it. ’

Overlapping

Overlapping takes place when a singlé word in memory is
referenced as more than one entity in a conflicting way.
Overlapping takes place when all of the following are true:

e A single word in memory is referenced by more than
one name. The two names could be two scalars, an
array and a scalar, or two arrays.

e All the references occur in the same procedure;

e At least one of the references is a store.

60496400 F

If the compiler knows that two variables are disjoint, it
can perform optimizations such as elimination of
redundant code. For example, in the following sequence:

PROC P (A,B);

A=1Z;
B=ll-;
Y = A;

1f A and B are both declared to be disjoint, the same value
can be assigned to both A and Y, thus eliminating the need
to fetch the value of A before assigning it to Y. On the
other hand, if procedure P is called by the following call:

then A and B are different names for the same memory
location. In this case, the value of A must be fetched
before the store to Y, since the value is changed by the
statement B = 4. If either A or B were declared disjoint,
incorrect code would result; both must be declared
OVERLAP.

There are three cases in which overlapping references can
occur. These are:

e When a procedure with two or more formal
parameters is called with the same variable appearing
twice as an actual parameter. The example above
shows this case.

e When a based array points to a fixed array that is
used in a conflicting way in the same code. Example:

ARRAY A;

ITEM AJ;

BASED ARRAY B; -
ITEM BJ;

P = LOC(A);

X = AI[2];

BI[Z] = 3

Y = AL[Z;

Since A is based on B, the value of Al 2 must be
fetched twice, since it is changed by the statement
Bl 2 = 3.

° Whenvé procedure uses a global variable, and the

procedure is called with that variable as an actual
parameter. Example:

ITEMA...

B (A);

PROC B(C);
ITEMC,D [
BEGIN #Bi#
C=2

A =4
D=C;

END #B#

5-7

In this example, the procedure B is called with A as an
actual parameter. Since A is assigned a value in the
statement A = 4, the value of C is also changed.
Therefore, when the statement D = C is executed, the
value of C must be fetched; D cannot be simply set to 2.
When overlapping is used, all affected variables must be
declared OVERLAP. In the last example, both A and C
must be declared OVERLAPR,

Reactive Arrays

An array is reactive if the same word in the array is
referred to by more than one item name in a conflicting
way. For an array to be reactive, all of the following
must be true: -

® A single word in the array must be referenced by
more than one item declared in the same array.

e The items referencing the word must have different
entry positions.

e All the references must be in one procedure.

® At least one of the references must be a store.

WEAK EXTERNALS

When a compiled program is loaded before execution, the
loader searches for a matching entry point for - all
externals and loads the subprogram in which they occur.
Under some circumstances this can result in the loading of
subprograms not required for current execution. Through
using a CONTROL statement to declare an external weak,
the programmer can specify that the external is not
necessarily to be satisfied. This is useful when generating
capsules for use by the Fast Dynamic loader. See the
L_oader Reference Manual for more information.

A weak external does not cause a search for the matching
entry point. If the program that contains the entry point
is loaded for some other reason, however, that weak
external is linked. There is no way for an executing
program to tell if the external has actually been loaded.
If it has not been loaded an arithmetic mode error results.

When a weak external is satisfied, it is linked as if it were
a normal external. If it is not satisfied, no error message
is produced.

The format of the CONTROL statement specifying a weak
external is:

CONTROL WEAK name, name, . . . ;

name Name of array, based array, function, item,
label, procedure, or switch.

Name must have been previously declared as
external by using XREF.

TRACEBACK FACILITY

SYMPL uses standard calling sequences for transferring
control to a procedure or subroutine of another language.
In this sequence, register Al contains the address of a
parameter list and each parameter to be passed occupies
one word of the list. Execution of an RJ instruction to
the entry point links the programs. For debugging
purposes, SYMPL provides an option for traceback.

5-8

The format of the CONTROL statement for tracing
purposes is:

CONTROL TRACEBACK;

The appearance of this statement anywhere within.the
module selects the option for the entire module.
Traceback code is generated automatically when the K
parameter (points-not-tested) of the SYMPL compiler call
is used.

The traceback code generated for procedures and
functions is compatible with traceback of FORTRAN. To
complete FORTRAN compatibility, the F parameter of
the SYMPL compiler call must also be specified. Code
generated by a SYMPL calling program is not compatible
with FORTRAN traceback, however.

Traceback code generated is as follows:

o If the procedure of function has a single entry, the
generated constant word is:

VFD 42/0Hname,18/ept

name Subprogram name left-justified and
blank-filled or truncated to seven
characters.

ept Address of subprogram entry point.

e If the procedure or function has multiple entries, the
generated constant word is:

VFD 42/0Hname,18/temp
name Subprogram primary entry point.

temp Address of a copy of the return
information taken from the most recent
entry point.

e The return jump instruction for the subprogram call is
forced upper. The lower 30 bits of the. instruction
contain: ‘

VFD 12/line,18/trace

line Approximate source line number of call,
modulo 4096.

trace Address of the constant word described
above for the innermost subprogram
containing the call statement.

SYMPL TEXTS

If the same declarations apply to data in more than one
SYMPL compilation unit, the declarations can be compiled
once as a text and referenced from each of the units.
Thus, instead of compiling the declarations once for each
compilation unit using them, the user can compile them
one time only. ‘Another advantage of this feature is that
it ensures that data that is identical in different modules
is declared in exactly the same way in each module. If
there are many such declarations, placing them in texts
saves compilation time.

SYMPL texts are created by the CONTROL STEXT
statement and used by the USETEXT statement.

60496400 F

Text Creation

The format of the CONTROL statement specifying text
creation is:

CONTROL STEXT;

The statement can only appear in a program or a
procedure with no formal parameters. It cannot appear in
a function. Its appearance within a compilation unit
results in creation of a text including declarations
occurring anywhere within the unit. The name of the text
is the program or procedure name, truncated to seven
characters if necessary.

The compiled text is written as an overlay to the file
specified by the B option of the SYMPL control
statement. Any executable statements occurring in the
compilation unit are not compiled. The presence of
executable code suppresses text generation.
Nevertheless, the program or procedure must be
syntactically complete; that is, it must include a null
executable statement.

Embedded procedures and functions are not allowed in a
text-generating compilation - unit, nor are XDEF
declarations. LABEL and SWITCH declarations are
diagnosed but are not included in the text record. Presets
included in declarations have no effect.

The CONTROL statement options FASTLOOP,
SL.OWLOOP, PRESET, PACK, FTNCALL, and
TRACEBACK have no effect on a text module. Variable
attribute specifications (CONTROL REACTIVE, INERT,
OVERLAP, DISJOINT) apply only to the text module, and
not to other modules in the compilation. Entities that can
be validly declared in a text module include scalars,
arrays, based arrays, array items, status lists, and
common blocks. XREF declarations are valid, but XDEF
declarations are not allowed. For a status item, the
associated status declaration must occur before the item
declaration or else in a SYMPL text used in compilation of
the current text. All references to DEF names in a text
module result in DEF body replacement at text generation
time. Redefinition in a module using the text module has
no effect. For example:

DEF UP #12#;
ARRAY A[1:UP];

- Array A is always length 12 even if UP is redefined in
a module that uses the text module being defined.

Presets are ignored in a text unit. Previously compiled
texts can be used to generate new text overlays. See the
discussion of USETEXT.

Text Usage

To specify SYMPL texts to be used in compiling a module,
the following statement is used:

USETEXT texty, .. ., text,
text Name of a SYMPL text on a file specified by
the Y control statement option or a library

specified by the Z control statement option
(section 6).

60496400 F

The USETEXT statement must begin in column 1 and
cannot be continued onto another source line. Multiple
USETEXT . statements are allowed. One or more blanks’
are required between USETEXT and the first text name,
and commands are required between text names. The
USETEXT statement must appear before the first
statement of the compilation unit (PRGM, PROC, or
FUNC statement) but after any OVERLAY statement. A
module can contain more than one USETEXT statement; a
maximum of 64 texts can be specified for any module. If
no USETEXT directive appears, no SYMPL text is
available during compilation.

When the module containing the USETEXT statement is
compiled, the declarations in the text module behave as
though they were physically present immediately after the
PRGM, PROC, or FUNC statement.

A text module can be compiled using a previously
compiled text module (that is, both the USETEXT
statement and the CONTROL STEXT statement can
appear in the same module). In this case, however, only
the declarations from the source input module, not those
from the previously compiled text module, appear in the
new SYMPL text.

When a text contains a status item associated with a
status list in another text, the name of the text containing
the status list must precede the name of the text
containing the status item in the USETEXT statements.

If the compiler encounters portions of the same common
block in more than one SYMPL text, a fatal diagnostic is
issued.

For a SYMPL text on a library (specified by the Z control
statement option), the compiler obtains 20000g words of
central memory before calling the loader to load the
overlay. After the load, any unused field length is
relinquished. = If 20000g words is not sufficient, the user
must increase the field length through an RFL control
statement. SYMPL does not reduce field length below the
amount specified by the RFL control statement.

TERM STATEMENT

The TERM statement signals the end. of a compilation
unit. It must be the last statement of a program (or
subprogram being compiled separately).

The format of the TERM statement is:

TERM
Neo semicolon follows TERM.

Once the compiler encounters TERM, all further
statements on the card are skipped.

5-9

COMPILER CALL AND OUTPUT LISTINGS

#

COMPILER CALL

The SYMPL compiler is called with a control statement
that conforms to operating system syntax. The control
statement cannot be continued.

More than one program or subprogram can be compiled by
a single call to the compiler as long as they follow each
other on the source file without any file boundaries
between them. The compiler recognizes a TERM
statement as the end of a module and ignores any further
statements on the same card or card image. Compilation
resumes with the next card, which is assumed to be the
start of another program or subprogram. A comment can
precede a program or subprogram header.

If the first card image encountered at the beginning of a
compilation unit contains the characters OVERLAY in
columns 1 through 7, followed by (l,l, origin), the module
is treated as if an LCC OVERLAY statement appeared in
a COMPASS program.

The name of the compiler call statement is SYMPL. If all
default parameters are selected, the compiler call appears
as:

SYMPL.

A variety of compilation options can be specified in a
parameter list following the compiler call name. If the
name of the source input file is NEWONE, for example,
the compiler call appears as:

SYMPL,I=NEWONE.
All compilation parameters are optional and can appear in

any order. Parameters are listed below in alphabetical
order.

B BINARY CODE FILE

omitted Write binary output from compilation to file
LGO.

B Write binary output from compilation to file
LGO.

B=0 - Suppress generation of binary code.

B=lfn Write binary output from compilation to file

Ifn, where 1fn is one through seven letters or
digits beginning with a letter.

c CHECK SWITCH RANGE

omitted Do not generate code -to check range of
switch references. Any reference to an
undefined switch value produces either an

endless loop, a mode error, or a wild jump.

C Generate code to check range of switch
references. During execution any reference
to an out-of-range switch or an unspecified
switch value produces a diagnostic and a
program abort.

60496400 E

D PACK SWITCHES

omitted Generate one word for each switch.

D Generate one word with two switch points,
reducing the size of generated code but
increasing execution time. Produces the
same result as CONTROL PACK within a
program.

DB CYBER INTERACTIVE DEBUG

Do not generate code to allow CYBER
Interactive Debug interface, unless job is in
debug mode (DEBUG, ON control statement
has been executed).

omitted

DB Generate code to allow CYBER Interactive
Debug interface.

DB=0 Do not generate code to allow CYBER
Interactive Debug interface, even if job is in
debug mode.

Selection of this option automatically selects the W

control statement option and sets CONTROL

TRACEBACK for the entire program.

E COMPILE $BEGIN/$END STATEMENTS

omitted Do not compile source statements bracketed
between $BEGIN and $END.

E Compile source statements bracketed

between $BEGIN and $END.

EL ERROR LEVEL

All errors of the specified level, and errors of higher

levels, are listed on the output listing. The levels are
listed here in ascending order.

omitted If ET is omitted or ET=W, F, or C, list
diagnostics of level W and higher. If ET=D,
list diagnostics of level D and higher. IF
ET=T, list diagnostics of level T and higher.

EL Same as EL=F

EL=D List system-dependent diagnostics and T, W,
F, and C diagnostics. System-dependent
diagnostics are produced for usages that,
while syntactically correct, might not
produce correct results on all machines, or
might not be supported by future versions of
the compiler. :

EL=T List trivial diagnostics and W, F, and C
diagnostics. Trivial diagnostics result from
usages that are syntactically correct but
questionable.

6-1

ElL=W List warning - diagnostics and F and C
diagnostics. Warning diagnostics result from
usages that are syntactically incorrect, but
from which the compiler has been able to
recover by making an assumption about what
was intended.

EL=F List all fatal diagnostics and C diagnostics.
Fatal diagnostics result when the compiler
cannot resolve a syntactic or semantic
error. No code is generated for the
statement causing the error; compilation
resumes with the next statement.

EL=C List only catastrophic errors. Catastrophic
errors are those which cause immediate
termination of compilation, and an abort of
the job step.

ET ERROR TERMINATION

If the ET option indicates error termination for a certain
level of error, and an error of that level or higher level
occurs, the job step aborts to an EXIT(S) control
statement (under NOS/BE) or an EXIT control statement
(under NOS) when compilation finishes. For an
explanation of the error levels, see the EL parameter.
The ET=T option replaces the A option.

omitted Same as ET=C.

ET Same as ET=F.

ET=D Abort job step if errors of level D or higher
occur. :

ET=T Abort job step if errors of level T or higher
occur. .

ET=W Abort job step if errors of level W or higher
occur.

ET=F Abort job step if errors of level F or higher"
occur.

EF=C Abort job step if errors of level C occur.

F FORTRAN CALLING SEQUENCE

omitted Do not compile a word of all zeros at the

i end of a parameter list.

F Compile a word of all zeros at the end of
each parameter list as required by the
FORTRAN calling sequence. Produces the

"same result as a CONTROL FTNCALL

statement within a program.

H LIST ALL SOURCE STATEMENTS

omitted List source statements according to
CONTROL NOLIST and CONTROL LIST
statements within the program.

6-2

H List all source statements, regardless of
CONTROL NOLIST statements within the

program.

1 SOURCE INPUT FILE

omitted Compile card images from file INPUT.

1 Compile card images from file COMPILE

I=1fn Compile card images from file Ifn.

K POINTS-NOT-TESTED

omitted Do not generate points-not-tested code.

K Generate an RJ to the points-not-tested
interface routine SYMCK$ after every label
and conditional jump. This will enable the
user to find all paths in the executable code
and determine which of the paths are
exercised. Also, generate traceback code.
The user must supply the routine SYMCKS$.

L LISTING FILE

Any O, R, or X parameter must be concatenated with any
L parameter, as in: LXOR=PRINTIT,

If O, R, or X are not specified, write source

omitted
statement listing and diagnostics to file
OUTPUT. If O, R, or X are specified,
suppress source listing.

L Write source statement listing and
diagnostics to file OUTPUT.

L=1 Write summary of resources used to file
OUTPUT.

L=0 Suppress all listing output, including that
selected by O, R, and X; list only diagnostics.

L=Ifn Write source statement listing and

diagnostics to file 1fn, with Ifn being one
through seven letters or digits beginning
with a letter.

N CROSS-REFERENCE UNREFERENCED ITEMS

omitted List only referenced items on the cross-
reference map selected by the R parameter.
N List referenced and unreferenced data items

on the cross-reference map selected by the
R parameter.

For SYMPL text generation, N is selected by default.

When a SYMPL text is used, unreferenced variables

declared in the text are not listed, regardless of the N
option.

60496400 E

o LIST OBJECT CODE

Any L, R, or X parameter must be concatenated with any
O parameter, as in: OL=LIST/35/45.

omitted Do not list binary object code.

O=st/end List binary object code generated by range

of source statements indicated:

st Number of first source statement
whose object code is to be listed.
Default is 0.

end Number of last source statement
whose object code is to be listed.
Default is last statement in
program.

If only one number appears after =, it is
presumed to be end. The line numbers
appear to the left of the source images on
the listing. :

O=Ifn/st/end
List binary object code from specified
source statements on file 1fn, where Ifn is
one through seven letters or digits beginning
with a letter. st and end are as above.
Because the compiler might reorder code for
optimization, the user should specify a range
of lines slightly larger than that actually

desired.

P PRESET COMMON

omitted Data items in common blocks are not to be
initialized.

P Initialize data items in common blocks
according to the preset values in the data
declarations. Produces the same result as a
CONTROL PRESET statement within a
program. '

R LIST CROSS-REFERENCE MAP

Any L, O, or X parameter must be concatenated with any
R parameter, as in: RX=SHOW.

omitted Do not list cross-reference table and
common blocks.

R List cross-reference table and common
blocks on file OUTPUT.

R=lfn List cross-reference table and common
blocks on file Ifn, where Ifn is one through
seven letters or digits beginning with a
letter.

60496400 E

S EXECUTION LIBRARY

omitted Compile LDSET tables with references to
these libraries:

SYMLIB/FORTRAN for NOS and
NOS/BE operating systems
SYMIO/FORTRAN for SCOPE 2
operating system

S=0 Suppress LDSET table generation.

S=lib Generate LDSET tables with references to
library lib. Multiple libraries can be
specified with slashes between library
names, as in: S=AAA/MMM/TTT. A
maximum of seven libraries can be specified.

T SYNTAX CHECK

omitted Check syntax and generate binary code.

T Check syntax, but do not generate binary .
code. Nullifies any B, O, R, or X
parameters.

w SINGLE STATEMENT CODE GENERATION

omitted Generate object code with multiple source
statement intermixed.
w Generate object code that maintains a close

correspondence with its source statement.
While the resulting object code might be less
efficient, it is useful for debugging.

X LIST STORAGE MAP

Any L, R, or O parameter must be concatenated with any
X parameter, as in: RX=0OUTPUT.

omitted Do not list storage map or common blocks. -

X List storage map and common: blocks on file
OUTPUT.

X=Ifn List storage map and common blocks on file
Ifn, where 1fn is one through seven letters or
digits beginning with a letter.

Y SYMPL TEXT INPUT FILE

omitted Do not read any SYMPL. text from a file.

Y=0 Do not read any SYMPL text from a file.

Y Read SYMPL texts named in the USETEXT
statement from the file SYMTEXT.

Y=Ifn Read SYMPL texts named in the USETEXT -

statement from the file 1fn.

The Y parameter can be. specified up to seven times.
While processing the Y parameter, the compiler reads the
specified file and makes a table of all texts encountered
and their position on the file. While processing the
USETEXT statement, texts are accessed randomly.

6-3

Files specified by the USETEXT statement are searched
for first among the files specified by Y parameters, from
left to right, and then in the library specified by the Z
parameter. The files specified by the Y parameter must
be sequential files residing on random access devices. A
maximum of 64 texts can reside on all the files specified
by Y parameters. i

z SYMPL TEXT INPUT LIBRARY

omitted Do not read any SYMPL text from a library.
Z=0 Do not read any SYMPL text from a library.
z Read SYMPL texts named in the USETEXT

statement - from the job's
library set.

current global

Read SYMPL texts named in the USETEXT
statement from the library named lib. The
library can be either a user library or a
system library in the job's current global
library set.

Z=lib

The Z parameter cannot be specified more than once. The
search order for SYMPL texts is explained under the Y
parameter. The Z parameter is not valid under NOS 1.

OUTPUT LISTINGS

Figure 6-1 shows a SYMPL procedure that adds a new
entry to a linked list. It is a separate compilation and is
linked into the proper context by the loader.

FUNC ‘ADDITEM (INVLIST, (LISTPTR), (PARTNUM), DESCR);
BEGIN #ADDITEM¥#
gy #
¥ #
FUNGE ADDITEHM
:
PURPOSE -- ADD A NEW PART TO THE INVENTORY LIST. THE PART IS
ADDED IN PART-NUMBER ORDER, AND THE BASIC
INFORMATION FOR THE PART IS FILLED IN THE NEW ENTRY.
INPUT -~ THE PARAMETERS GIVE THE ADDRESS OF THE INVENTORY LIST,#
THE START OF THE NUMERIC LIST, AND A DESCRIPTION OF
THE NEW ENTRY.
OUTPUT =-- THE INVENTORY LIST 1S UPDATED WITH A NEW ENTRY.
FUNCTION RESULT IS A POINTER TO THE NEW ENTRY.
#
oo e e e e e e e e e e e e e e s e #
ITEM DESCR €(20); # DESCRIPTION OF THE NEW PART #
ITEM INDX 1; # ARRAY POINTER, USED FOR SEARCH #
ITEM LISTPTR 1; # POINTER TO START OF INVENTORY LIST#
ITEM NEWENTRY: 1; # POINTER TO NEW LIST ENTRY #
ITEM PARTNUM 1; # PART-NUMBER OF NEW PART #
ARRAY INVLIST [0:4001 S(3); # INVENTORY LIST ARRAY #
BEGIN
ITEM INVSPARTNUM IC 0, 0,24); # INVENTORY PART-NUMBER #
ITEM INVSLINK 1¢ 0,42,18); # PTR TO NEXT SEQUENTIAL ENTRY #
ITEM INVSDESCR €cC 1, 0,20); # DESCRIPTION OF THE PART #
END
XREF FUNC GETSPACE; # RETURNS WORDS IN LISTSPACE #
FOR INDX = LISTPTR # START SEARCHING THE LIST #
WHILE INVSLINKLCINDX] LS PARTNUM # FIND NUMERIC POSITION #
AND INVSLINKLCINDX1 NG 0 # ...0R END OF LIST #
DO
BEGIN
INDX = INVSLINKLCINDXI; # GET NEXT SEQUENTIAL ENTRY #
END
NEWENTRY = GETSPACE(4); # GET 4 WORDS FOR NEW LIST ENTRY #
INVSLINKCNEWENTRY) = INVSLINKCINDX]; # LINK NEW ENTRY IN LIST #
INVSLINKECINDX1 = NEWENTRY; # LINK OLD ENTRY TO NEW ONE #
INVSPARTNUMICNEWENTRY] = PARTNUM; # NOW FILL IN NEW INFORMATION #
INVSDESCRLCNEWENTRY] = DESCR; :
ADDITEM = NEWENTRY; # RETURN ADDR OF THE NEW ENTRY #
END ~ #ADDITEM#
TERM

Figure 6-1. Sample Source Program

60496400 F

A job deck for syntax analysis for the function would
appear as:

Mode of data representation

™

jobcard. B Boolean
any accounting statement. C Character
SYMPL,T. I Integer
7/8/9 . P Parallel (arrays only)
all SYMPL. source statements R Real
6/7/8/9 S Status (Serial if type is array
or based array)
Output from a compilation normally includes the source U Unsigned integer
statement listing and a diagnostic summary. Only the X External (if type is PROC)
diagnostics specified with the EL parameter on the Y Weak external
SYMPL control statement are printed. The compiler also
issues a list of page numbers that contain diagnostic
messages. Only diagnostics that are actually printed are @LOC Octal address relative to start of
included in this list. : routine; if followed by C, LOC is

Any storage map, cross-reference map, or object listing
follows on a separate page of the listing. The last
information shown summarizes the number of words of
memory and the time required for compilation. The
parameters of the compiler call used for compilation,
whether selected explicitly or implicitly, are also shown.

A large map might appear on the output listing of two or
more parts. Both must be examined since references to
items can appear in both parts.

STORAGE MAP

The storage map is a dictionary of all programmer-
created declarations in the source program. It is selected
by the X parameter of the compiler call. Figure 6-2
shows the storage map from the subprogram ADDITEM.
Information appearing on the map includes:

relative to start of common block. If
type is ARYITM, LOC refers to first
occurrence of item. If followed by an
X, the name is an external. If followed
by a 'Y, the name is a weak external.

First bit, numbered from 0 to 59, left to
right.

® FBIT

® NuM

Number of bits; if MODE is C, number
of bytes.

CROSS-REFERENCE MAP

The cross-reference map lists the properties of each
declaration and shows the source line number at which the

@ NAME First ten characters only of entity was declared or referenced. It is selected by the R
: declarations are printed. parameter of the compiler call.
@ TYPE Defines the name as one of the
following types: Figure 6-3 shows the cross-reference map from
subprogram - ADDITEM. Since the subprogram was
ARYITM Array item compiled with the N parameter of the SYMPL compiler
COMMON Common block call, items that were declared, but not referenced, also
ITEM Item appear on the map. Information appearing on the map
FUNC Function includes: :
PROC Procedure
LABEL Label
B.ARRAY Based array (D NAME First ten characters only of
ARRAY Array declarations are printed.
PROGRM Program
ADDITEM FUNCTION * STORAGE MAP * SYMPL 1.4 (79267) 79/10/24. 09.41.14. PAGE 2
® @ 06 ® ®
NAME:-C(10) TYPE M LOC FBIT NUM NAME: C(10) TYPE M LOC FBIT NUM NAME: C(10) TYPE M LOC FBIT NUM
ADDITEM FUNC I 1" 0 60 DESCR ITEM ¢ 0 0 20 GETSPACE FUNC I 0x 0 60
INDX ITEM I 1 0 60 INVLIST ARRAY S 5 INVSDESCR ARYITM C 1 0 20
INVSLINK ARYITM I 0 42 18 INVSPARTNU ARYITM I 0 0 24 LISTPTR ITEM I 2 0 60
NEWENTRY ITEM I 3 0 60 PARTNUM ITEM I 4 0 60
Figure 6-2. Storage Map
60496400 F 6-5

ADDITEM FUNCTION - % CROSS REFERENCE = SYMPL 1.4 (79267) 79/10/24. 09.41.14. PAGE 3

®@ © 0 6 ® ®

NAME: € (10) TYPE M DEFINED SCOPE SET/USED/ATTRIBUTE - *=USED,A=ATTRIBUTE
ADDITEM FUNC 1 1 (GLOBAL) 48

DESCR 1TEM [19 ADDITEM 46

GETSPACE FUNC 1 31 X ADDITEM 42

INDX ITEM I 20 ADDITEM 35+ 36% 39 43% bLbn 34 39
INVSDESCR ARYITM C 29 ADDITEM 46

INVSLINK ARYITM I 28 ADDITEM 35% 36% 39% 43 43 L4
INVSPARTNU ARYITM I 27 ADDITEM .45 .

LISTPTR ITEN 1 21 ADDITEM 34%

NEWENTRY ITEM 1 22 ADDITEM 43% bix 45 46> 48% 42
PARTNUM ITEM 1 23 ADDITEM 35 45%

Figure 6-3. Cross-Reference Map

@ TYPE Defines the name as one of the U Unsigned integer
following types: X External (if type is PROC)
Y Weak external
ARYITM Array item

COMMON Common block @DEF INED Line number in source listing or I

ITEM Item name of SYMPL text where

FUNC Function declaration is defined; if followed

PROC Procedure by C, declaration is in common

LABEL Label block. If followed by X, the name

B.ARRAY Based array is an external. If followed by Y, it l

STSCON Status constant is a weak external.

DEFINE DEF

STSLST Status list @ SCOPE Name of outermost procedure

PROGRM Program within which declaration occurs; if

ARRAY Array type is STSCON, SCOPE is the

name of the status list of which the

@ M Mode of data representation item is a member.

B Boolean (6 SET/USED/ Source listing line numbers of

C Character : ATTRIBUTE references to NAME, * indicates

I Integer use as other than left side of the

P Parallel (arrays only) replacement statement. An A

R Real indicates appearance in attribute

S Status (serial if type is array) specification, such as XDEF.

6-6 60496400 F

STANDARD CHARACTER SETS

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set
CDC 63-character set
- ASCH 64-character set
ASCII 63-character set

The set in use at a particular installation is specified when
the operating system is installed. The standard character
sets are shown in table A-l.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or
029 mode, reqgardless of the character set in use. Under
NOS, the alternate mode can be specified by a 26 or 29

60496400 E

punched in columns 79 and 80 of any 6/7/9 card. In
addition, 026 mode can be specified by a card with 5/7/9
multipunched in column 1, and 029 mode can be specified
by a card with 5/7/9 multipunched in column 1 and a 9
punched in column 2.

Under NOS/BE, the alternate mode can be specified by a
26 or 29 punched in columns 79 and 80 of the job
statement or any 7/8/9 card. The specified alternate
mode remains in effect throughout the job unless reset by
another alternate mode specification.

Graphic character representation on a terminal or printer
depends on the installation character set and the device
type. CDC graphic characters in table A-1 are applicable
to BCD terminals. ASCII subset graphic characters are
applicable to ASCII-CRT and ASCII-TTY terminals.

A-1 *

TABLE A-1. STANDARD CHARACTER SETS
cbec ASCH
Display Hollerith External .
SYMPL Code Graphic Punch BCD Craphic ':g;;')‘ (“c;‘:)
(octal) (026) Code o

+ (colon) oot : (colon) 1T 82 00 : (colon) 11 82 072
A 01 A 12-1 61 A 121 101
B .02 B 12-2 62 8 122 102
c 03 c 12-3 63 c 12-3 103
D 04 D 12-4 64 D 124 104
E 05 E 125 65 E 125 106
F 06 F 12-6 66 F 126 106
G 07 G 12.7 67 G 127 107
H 10 H 12-8 70 H 128 110
1 1 | 12.9 7] 129 1M
J 12 J 11 41 J 1141 112
K 13 K 112 42 K 112 113
L 14 L 11-3 43 L 113 114
M 15 M 14 44 M 114 115
N 16 N 115 45 N 115 116
o 17 o] 11-6 46 o 116 117
P 20 P 117 47 P 117 120
Q 21 Q 118 50 Q 118 121
R 22 R 19 51 R 119 122
s 23 s 0-2 22 s 0-2 123
T 24 T 03 23 T 03 124
u 25 u 0-4 24 u 04 125
v 26 v 05 25 Y 05 126
w 27 w 06 26 w 06 127
X 30 X 07 27 X 0-7 130
Y 31 Y 08 30 Y 08 131
z 32 z 09 31 z 09 132
0 33 0 0 12 0 0 060
1 34 1 1 o1 1 1 061
2 35 2 2 02 2 2 062
3 36 3 3 03 3 3 063
4 37 4 4 04 4 4 064
5 40 5 5 05 5 5 065
6 a1 6 6 06 6 6 066
7 42 7 7 07 7 7 067
8 43 8 8 10 8 8 070
9 44 9 9 11 9 9 071
+ 45 + 12 60 + 1286 053
- 46 ; 1 40 : 1 055
» 47 11-84 54 1184 052
/ 50 / 0-1 21 / 01 057
(51 (084 34 (1285 050
) 52) 1284 74) 1185 . 051
$ 53 $ 11-83 53 $ 1183 044
= 54 = 83 13 = 8.6 075
blank 55 blank no punch 20 blank no punch 040
, {(comma) 56 , (comma) 083 33 , (comma) 083 054
. (period) ‘57 . (period) 12-8-3 73 . (period) 12-8-3 056
60 = 0-86 36 # 83 043
[61 [87 17 C 12-8-2 133
] 62] 08-2 32 3 118-2 135
63 %1t 86 16 9% 11 084 o5
" (quote) 64 = 8-4 14 " {quote) 87 042
65 ~ 085 35 _ {underline) 085 137
66 v 110 or 1182111 52 ‘ ! 1287 or 11011 041
67 A 0-8-7 37 & 12 046
70 t 1185 55 ! (apostrophe) 85 047
7 } 11-86 56 ? 087 077
< 72 < 12.0 or 1282111 72 < 1284 or 120111 074
> 73 > 11-8-7 57 > 0-8-6 076
74 < 85 15 @ 84 100
75 > 1285 75 \ 0-8-2 134
76 - 12-8-6 76 —~ (circumflex) 11-8-7 136
s {semicolon) 77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

TTwelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than two colons.
ttin installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon {8-2 punch),

The % graphic and related card codes do not exist and translations yield a blank (65g).
T The alternate Hollerith (026) and ASCII (029) punches are accepted for input only by some driver software.

60496400 £

DIAGNOSTICS

(e

The SYMPL compiler recognizes errors in SYMPL syntax.
An applicable diagnostic message is printed on OUTPUT
immediately preceding the line on which the error was
detected. In addition, the total number of diagnostic
messages is printed along with a detailed listing of each
message number and the condition that caused the error.
A list of page numbers that contain diagnostic messages is
printed at the end of the error summary.

be

The compiler aborts when compilation cannot

continued for one of the following reasons:

e Error in the SYMPL control statement. The following

dayfile message is issued:
PARAMETER n IN ERROR

e A large number of syntax errors has been detected.

® A user syntax error occurs that is discovered too late
for the compiler to recover, for example, a zero
value length for a B function.

e Internal compiler error.

When the compiler aborts, a C level error message in the
following form is issued to the file specified by the L
control statement parameter:

SYMPL COMPLLER ERROR nnnn -- error text

where nnnn is the error number. Compiler abort messages

start at 800.

Other dayfile messages that might be produced include:

-SYMPL- INSUFFICIENT FL

-SYMPL- INSUFFICIENT SCM FL
-SYMPL.- INSUFFICIENT LCM FL
-SYMPL- EMPTY INPUT FILE

-SYMPL- COMPILER ABORT

-SYMPL- BAD EXP CALL TOFTN
-SYMPL- BAD LOADER CALL

-SYMPL- ccceccecece COMPILED cp secs
-SYMPL- ERRORS IN TEXT GENERATION
-SYMPL- SYMPL TEXT NOT WRITTEN
-SYMPL- SYMPL TEXT NOT FOUND
-SYMPL- MORE THAN 7 Y PARAMETERS
-SYMPL- MORE THAN 1 Z PARAMETER

-SYMPL- MORE THAN 64 SYMPL TEXTS ON Y FILES

-SYMPL- MORE THAN 64 TEXTS ON USE TEXT
-SYMPL- Y FILE NOT ON RANDOM DEVICE

-SYMPL- SOURCE ERRORS--ABORT REQUESTED

Table B-1 lists the message number and text of
compilation diagnostics.

the

The error levels listed with the

diagnostics are explained under the EL parameter in

section 6.

TABLE B-1. COMPILER ERROR MESSAGES

60496400 F

ﬁ:;ggr _ Egcgq Message Significance Action
1 W LONG IDENTIFIER - FIRST 12 Identifier was truncated Verify that the identifier
CHARACTERS USED to 12 characters. It may is unique within the first
duplicate -another 12 characters.
identifier.
2 F SYMPL TEXT CONTAINS EMBEDDED Self-explanatory. Correct error and’
-PROC- OR -FUNC- recompile.
3 F UNDECLARED IDENTIFIER USE An identifier was refer- Check for misspelled iden-
DELETED : enced but not declared. tifier or supply declara-
tion for the diagnosed
identifier. Check for
errors in declaration if
error 21 was issued.
4 F TILLEGAL OCTAL OR HEX CONSTANT Octal constants can Correct constant and
contain digits 0-7; hexa- recompile.
decimal constants can.con-
tain digits 0-9, A-F.
5 F -TERM- MISSING A TERM statement is Supply TERM statement and
required to terminate recompile.
compilation. It must
appear after the final
END statement.

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

ﬁ:;ggr Eggg? Message Significance Action
6 F BAD STATUS CONSTANT USE - Self-explanatory. Correct error and
0 USED recompile.
7 F BAD NESTING OF PARENTHESES OR Self-explanatory. Correct error and
BRACKETS recompile.
8 W ILLEGAL CHARACTER IN INPUT - A character was used that Replace illegal character
IGNORED is not part of the SYMPL and recompile.
character set.
9 W CHARACTER STRING LONGER THAN Character string was trun- Verify that the truncation
240 BYTES - 240 USED cated to 240 characters. does not affect the logic
of the program.
10 F ~-PROC- OR -FUNC- NAME CANNOT A reserved word was used Change the procedure or
BE A RESERVED WORD as a procedure or function function name and
name. recompile.
11 F SYMPL TEXT CONTAINS XDEF Self-explanatory. Correct error and
recompile.
12 F ILLEGAL ARRAY IDENTIFIER USE Self-explanatory. Change array identifier
DELETED and recompile.
13 F ILLEGAL STATUS LIST Self-explanatory. Change status list
IDENTIFIER USE DELETED identifier and recompile.
14 F ILLEGAL COMMON IDENTIFIER USE Seif-explanatory. Change common identifier
DELETED and recompile.
15 F SEMICOLON MISSING AFTER ARRAY Self-explanatory. Supply semicolon and
DECLARATION recompile.
16 F CRUD AT START OF STATEMENT The extraneous characters Check the previous state-
DELETED that preceded the state- ment for syntax errors.
ment were removed. Correct errors and
recompile.
17 F ILLEGAL KEYWORD USE DELETED A reserved word was used Check for programmer-
' improperly. defined name that dupli-
cates a reserved word.
Correct error and
recompile.
18 F ARRAY ITEM DECLARATION LIST An array item Tist must Supply the missing END
LACKS -END- start with a BEGIN state- statement and recompile.
i ment and terminate with an
END statement.’
19 W DUPLICATE DECLARATION Two or more declarations Verify that the last
OVERRIDES for the same name were declaration encountered
found. The last declara- is the one that was
tion encountered was used. intended.
20 F ITEM DECLARATION IDENTIFIER The identifier in an ITEM Correct the identifier
ERROR : declaration was invalid or or supply the missing
missing. identifier. Recompile.
21 F DECLARATION DISCARDED - SCAN Syntax errors were Correct declaration and
RESUMES AT SEMICOLON detected in a declaration. recompile.
Uses of the declared name
were also diagnosed.
22 W ITEM DECLARATION TYPE ERROR - An invalid data type was Verify that the item was
I ASSUMED specified. The item was intended to be an integer.
assumed to be an integer.
® B-2 60496400 F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

60496400 F

ﬁ:;ggr E2g Message Significance Action
23 F SYMPL' TEXT CONTAINS Self-explanatory. Correct error and
EXECUTABLE STATEMENTS recompile.
24 W SIGNED PRESET ILLEGAL FOR This data type cannot have Verify that the proper
THIS TYPE - IGNORED a sign. The sign in the data type and preset were
preset specification was specified.
ignored,

25 F SCAN RESUMES AT -BEGIN- Previous syntax errors Correct previous errors
were detected causing the and recompile. Some
diagnostic scan to be errors may not have been
temporarily terminated. diagnosed.

Scan was resumed at the
BEGIN statement.
26 F BAD STATEMENT OR SEMICOLON Self-explanatory. Correct error and
MISSING - SEMICOLON ASSUMED recompile.

27 F ITEM PRESET ERROR Self-explanatory. Correct error and

recompile.

28 F SYMPL TEXT CONTAINS LABEL Self-explanatory. Correct error and

recompile.

29 F BASED, XDEF OR XREF ARRAYS An identifier is not Supply identifier and

NEED IDENTIFIER optional in this type of recompile.
declaration.

30 F ARRAY ITEM DECLARATION SYNTAX Self-explanatory. Correct error and

ERROR recompile.
3 F ARRAY ITEM DECLARATION TYPE Self-explanatory. Correct error and
ERROR recompile.
32 W BAD ARRAY BOUND VALUES - Invalid array bounds Verify that a one-entry
ASSUMED [0:0] were specified. The lower array was intended.
bound must be less than or :
equal to the upper bound.
A one-entry array was
assumed.

33 F ARRAY BOUND SYNTAX ERROR Self-explanatory. Correct error and

recompile.

34 W PARTWORD SPECIFICATION ERROR Self-explanatory. Verify that the default

IN ARRAY ITEM DECLARATION - does not affect the logic
DEFAULT TAKEN of the program.
35- W FIRST BIT ALIGNMENT WRONG IN Self-explanatory. Verify that the default
ARRAY ITEM DECLARATION - does not affect the logic
0 USED of the program.
36" W ILLEGAL ARRAY ITEM BOUNDARY - Self-explanatory. Verify that the default
DEFAULT TAKEN . does not affect the logic
of the program.

37 F MAXIMUM ARRAY SIZE EXCEEDED Self-explanatory. Correct error and

recompile.

38 F TOO MANY PRESET GROUPS Self-explanatory. Correct error and

recompile.

B-> @

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

ﬁ:;gzr Egcg: Message Significance Action
39 F ARRAY PRESET SYNTAX ERROR Self-explanatory. Correct error and
, recompile.
40 F . -COMMON- MUST BE AT OUTER Self-explanatory. Correct error and
SCOPE ONLY recompile.
41 F BAD COMMON DECLARATION Self-explanatory. Correct common declaration
IGNORED and recompile.
42 F BAD XREF OR XDEF IGNORED A syntax error was Correct declaration and
detected in an XDEF or recompile.
XREF declaration. Refer-
ences to the declared
identifier were also
diagnosed.
43 F BAD BASED DECLARATION IGNORED An error was detected in a Correct error and
based array declaration. recompile.
References to the declared
name were also diagnosed.
44 F XDEF OR XREF LIST CRUD The extraneous characters Correct error and
DELETED that appeared in an XDEF recompile.
or XREF 1ist were removed.
45 F SYMPL TEXT CONTAINS SWITCH Selif-explanatory. Correct error and
DECLARATION recompile.
46 F COMMON LIST SCAN RESUMES AT Previous syntax errors in Correct previous syntax
NEXT -ARRAY- OR -ITEM- the common list caused the errors and recompile.
diagnostic scan to be Some errors may not have
temporarily terminated. been diagnosed.
Scan was resumed at an
ARRAY or ITEM declaration.
47 F SYMPL TEXT CONTAINS INNER Self-explanatory. Correct error and
SCOPE VARIABLE recompile.
48 F -END- ENDS BAD COMMON LIST The diagnosed END state- Correct syntax errors in
ment was used to terminate common list and check for
a common list that con- possible BEGIN - END mis~
tains syntax errors. matches. Recompile.
49 'F ~DEF- DECLARATION SYNTAX Seif-explanatory. Correct error and
ERROR : , recompile.
50 F BAD FORMAL PARAMETER Self-explanatory. Correct error and
DECLARATION : recompile.
51 F PROGRAM BEGINS BADLY A program must begin with Correct error and
a PRGM, PROC, or FUNC : recompile.
; statement.
52 F -PRGM- DECLARATION LACKS An identifier is required Supply program name
IDENTIFIER as a program name. and recompile.
53 F -PRGM- DECLARATION ERROR - Self-explanatory. Correct error and
CRUD PRECEDES SEMICOLON recompile.
54 F XDEF OR XREF LIST SCAN Previous syntax errors Correct previous syntax
RESUMES AT LEGAL ENTRY caused the diagnostic scan errors and recompile.
to be temporarily termi- Some errors may not have
nated. Scan resumed at a been diagnosed.
legal entry in the
declaration.
®B-4 60496400 F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

60496400 F

ﬁﬁﬁgzr Egzgq Message Significance Action
55 F DUPLICATE COMMON BLOCK Self-explanatory. Correct error and
DECLARATION IN SYMPL TEXT recompile. :
56 F -END- ENDS BAD XDEF OR XREF The diagnosed END state- Correct syntax errors in
LIST ment was used to terminate declaration and check for
an XDEF or XREF declara- .~ possible BEGIN -~ END
tion that contains syntax mismatches. Recompile.
errors. ,
57 W SYMPL TEXT DUPLICATE Two or more declarations Verify that the proper
DECLARATION OVERRIDES were found for the same declaration was used.
name. The declaration
appearing in the SYMPL
text was used.
58 F- SYMPL TEXT CONTAINS FORMAL Self-explanatory. Correct error and
PARAMETER recompile.
59 W -FUNC- DECLARATION TYPE An illegal type was Verify that the function
ERROR - I ASSUMED specified for a function. was intended to be an
The function was assumed integer function.
to return an integer value.
60 W CONSTANT TOO LARGE, The high-orderbbits were -Verify that the truncation
SIGNIFICANCE LOST truncated. does not affect the logic
of the program.

61 F SCAN RESUMES AT SEMICOLON Previous syntax errors Correct the previous
caused the diagnostic scan syntax errors and recom-
to be temporarily termi- pile. Some errors may not
nated. Scan was resumed have been diagnosed.
at a semicolon.

62 F DUPLICATE FORMAL PARAMETER IN An identifier cannot Change the duplicate

LIST appear more than once in identifiers and recompile.
a formal parameter 1list.
63 F DUPLICATE PARAMETER - PRIOR Self-explanatory. Correct error and
DECLARATION THIS SCOPE recompile.

64 F PARAMETER LIST SYNTAX ERROR - Self-explanatory. Correct error and

recompile.

65 F -PROC- DECLARATION LACKS An identifier must be Supply procedure name and

IDENTIFIER supplied as a procedure recompile.
name.
66 F -PROC- DECLARATION SYNTAX Self-explanatory. Correct error and
. ERROR recompile.
67 F UNDECLARED LABEL OR PROCEDURE A label or procedure name Check for misspelled label
IDENTIFIER - was referenced but not "~ or procedure reference, or
declared. supply declaration for
label or procedure name.
Recompile.
68 F FORMAL IDENTIFIER LACKS An identifier was refer- Check for misspelled
DECLARATION enced but not declared. identifier reference,

\ supply declaration for
identifier, or correct
error in declaration.
Recompile.

B-5e

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

ﬁ:;ggr Ezcgq Message Significance Action
69 W PARAMETER NOT DEFINED IN THIS A formal parameter was not If the diagnosed parameter
SCOPE, AND NOT USED declared. Undeclared is not intended to be a
parameters are assumed to label, declare it to be a
be Tabels. formal parameter and
recompile. Otherwise,
verify that the label is
used in the scope.
70 F ILLEGAL -DEF- IDENTIFIER - The syntax error sup- Correct the error in the
NO EXPANSION pressed expansion of the DEF identifier and
DEF. recompile.
71 F ENTRY -PROC- MAY NOT CALL Recursive routines are not Remove recursive calls and
ITSELF allowed in SYMPL. recompile.
72 F END OF RECORD SEEN BEFORE A compilation unit must be Supply TERM statement and
-TERM- FOUND contained on one record recompile.
and must end with a TERM
statement.
73 F TOO MANY SUBSCRIPTS FOR ARRAY Arrays and array refer- Restructure array and
OR ARRAY ITEM REFERENCE ences can have up to 7 recompile.
dimensions.
74 F TOO MANY SUBSCRIPTS FOR Self-explanatory. Correct error and
SWITCH REFERENCE recompile.
75 F NOT ENOUGH SUBSCRIPTS FOR An array was declared Supply missing subscripts
ARRAY OR ARRAY ITEM REFERENCE without subscripts or an and recompile.
array reference contains
fewer subscripts than
specified in the array
deciaration.
76 F BAD SUBSCRIPT LIST Self-explanatory. Correct error and
: recompile. .
77 F ILLEGAL LABEL OR PROCEDURE Self-explanatory. Correct error and
IDENTIFIER USE DELETED recompile.
78 F STATUS SWITCH DECLARATION Self-explanatory. Supply status tist
LACKS STATUS LIST IDENTIFIER identifier and recompile.
79 F BAD LABEL USE IN STATUS Self-explanatory. Correct error and
SWITCH recompile.
80 F STATUS SWITCH ERROR - Self-explanatory. Correct error and‘
VALUE TOO LARGE recompile.
81 F STATUS SWITCH ERROR - Self-explanatory. Correct error and
DUPLICATE STATUS CONSTANT recompile.
VALUES
82 . F STATUS SWITCH ERROR - MISSING Self-explanatory. SUpp]y status constant and
STATUS CONSTANT recompile.
83 F BEGIN/END MISMATCH, PROBABLE The number of BEGIN and Check all BEGIN - END
DISASTER END statements differ. pairs for mismatches.
' Correct errors and
recompile.
84 F -IF- EXPRESSION NOT BOOLEAN Se]f-exp]anatbry. Correct error and
recompile.
85 F ~-WHILE- EXPRESSION NOT Self-explanatory. Correct error and
BOOLEAN recompile.
® B 60496400 F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

60496400 F

ﬁE;gzr Egcgq Message Significance Action
86 F CRUD AFTER FINAL END IGNORED More characters were found Check for possible
after the final END BEGIN - END mismatches.
statement. Correct error and
recompile.
87 F -DEF- IDENTIFIER EXPANSION Self-explanatory. Correct error and
NEST TOO DEEP - IDENTIFIER recompile.
DELETED
88 F MISSING -DO- HAS BEEN FOUND Self-explanatory. Correct error and
recompile.
89 F MISSING -THEN- HAS BEEN FOUND Self-explanatory. Correct error and
recompile.
90 F MISSING -DO- A DO statement was Check program logic.
expected.
91 F MISSING -THEN- A THEN clause was Check program logic.
: expected.
92 F ERROR IN INITIAL VALUE Self-explanatory. Correct error and
EXPRESSION OF INDUCTION recompile.
VARIABLE
93 F -STEP- EXPRESSION ERROR Self-explanatory. Correct error and
recompile.
94 F -UNTIL- EXPRESSION ERROR Self-explanatory. Correct error and
recompile.
95 F -WHILE- EXPRESSION ERROR Self-explanatory. Correct error and
recompile.
96 F BAD -GOTO- DELETED Self-explanatory. Correct error and
. recompile.
97 F BAD REPLACEMENT STATEMENT Self-explanatory. Correct error and
DELETED recompile.
98 W PARTWORD SPECIFICATIONS AFTER Self-explanatory. Verify that the error does
FIRST 3 IGNORED) not affect the logic of
the program.
99 F ITEM DISCARDED - SCAN RESUMES Excessive errors were Correctksyntax errors in
AT COMMA detected in the ITEM the declaration and
declaration. The recompile.
declaration was ignored.
100 F HANGING -IF- CLAUSE Self-explanatory. Correct error and
recompile.
101 F HANGING -FOR- CLAUSE Self-explanatory. Correct error and-
recompile.
102 F HANGING -ELSE- Self-explanatory. Correct error and
recompile.
103 F EXTRA -END- FOUND, -BEGIN- ‘A BEGIN statement wasv Check all BEGIN - END
FOR SUBPROGRAM ASSUMED assumed at the beginning pairs to insure proper
of the subprogram, and was structure. Correct all
associated with the extra errors and recompile.
END statement. This may
have caused other diagnos-
tics to be generated.

B-7e

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

e B-8

5:;32r E;C:q Message Significance Action
104 F ILLEGAL UNDECLARED PARAMETER Self-explanatory. Correct error and
USE DELETED : recompile.
105 F -FOR- STATEMENT INDUCTION Self-explanatory. Correct error and
VARIABLE ERROR recompile.
106 F -IF- EXPRESSION ERROR Self-explanatory. Correct error and
recompile.
107 F DUPLICATE XDEF OR XREF Self-explanatory. Remove duplicate decla-
DECLARATIONS FOR IDENTIFIER rations and recompile.
108 F XDEF -PROC- OR -FUNC- Se]f-exp]anatory. Correct error and
NOT FULLY DECLARED recompile.
109 F BAD FORMAL PARAMETER Self-explanatory. Correct error and
DECLARATION recompile.
110 F REDUNDANT FORMAL PARAMETER Self-explanatory. Correct error and
DECLARATION recompile.
111 F BAD PARAMETER LIST Self-explanatory. Correct error and
recompile.
112 F BOOLEAN ILLEGAL IN ARITHMETIC Self-explanatory. Correct error and
CONTEXT - recompile.
113 F COMMON LIST LACKS -END- Common lists must be Supply missing END
surrounded by BEGIN and statement and recompile.
END statements.
114 F BASED LIST LACKS -END- Based array lists must be Supply missing END
surrounded by BEGIN and statement and recompile.
END statements.
115 F XDEF OR XREF LIST LACKS -END- XDEF and XREF Tists must Supply missing END
be surrounded by BEGIN and statement and recompile.
END statements.
116 F BAD COMMON LIST DECLARATION Self-explanatory. Correct error and
DELETED recompile.
117 F BAD BASED ARRAY DECLARATION Self-explanatory. Correct error and
DELETED : recompile.
118 F BASED LIST SCAN RESUMES WITH Previous syntax errors Correct previous érrors
~-ARRAY - caused the diagnostic scan and recompile. Some
to be temporarily termi- errors may not have been
nated. Scan was resumed diagnosed.
at the ARRAY declaration.
119 F -END- ENDS BAD BASED ARRAY The diagnosed END state- Correct syntax errors and
LIST ment was used to terminate check for possible
a based array list that BEGIN - END mismatches.
contains syntax errors. Recompile.
120 T ZERO LENGTH -DEF- STRING Self-explanatory. Check program logic.
. IGNORED
121 W CHARACTER ITEM LENGTH Self-explanatory. Verify that a character
OMITTED - 1 ASSUMED ' Tlength of 1 was intended.
122 F BAD ARRAY ENTRY SIZE Self-explanatory. Correct error and
recompile.

60496400 F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

60496400 F

ﬁﬁ;ﬁzr Egcgq Message Significance Action

123 F BRACKET NEST TOO DEEP Self-explanatory. Correct error and

recompile.

124 F ILLEGAL EXPRESSION TYPE ON Self-explanatory. Correct error and

LEFT SIDE recompile.

125 F BAD BEAD FUNCTION Self-explanatory. Correct error and

recompile.

126 F OPERATOR OR OPERAND MISSING Self-explanatory. Correct error and

IN EXPRESSION recompile.
127 W LONG CHARACTER STRING - The first 240 characters Verify that the error does
240 BYTES USED were used. not affect the logic of
the program.

128 F BAD -LOC- FUNCTION The LOC function was used Correct error and
incorrectly. i recompile.

129 F BAD -ABS- FUNCTION The ABS function was used Correct error and
incorrectly. recompile.

130 F BAD INDUCTION VARIABLE TYPE Self-explanatory. Correct error and

oo recompiie.
131 F VARIABLE - IN -TEST- IS NOT AN The variable specified in Check for misspelled
INDUCTION VARIABLE the TEST statement must be variable name. Correct
the induction variable of error and recompile.
the Toop being tested.

132 F -TEST- ILLEGAL OUTSIDE LOOP The TEST statement must Move TEST statement inside
appear inside the loop for the appropriate loop and
which the induction recompile.
variable is being tested.

133 F SCAN RESUMES AT -BEGIN-, Previous syntax errors Correct previous syntax

-ITEM- OR SEMICOLON caused the diagnostic scan errors and recompile.
to be temporarily termi- Some errors may not have
nated.” Scan resumed at been diagnosed.
the next BEGIN, ITEM, or
semicolon.
134 F BEAD FUNCTION NEEDS Self-explanatory. Supply identifier and
IDENTIFIER recompile.
135 F DUPLICATE STATUS IDENTIFIER Self-explanatory. Correct error and-
. recompile.

136 W SEMICOLON ENDS COMMENT A comment cannot contain a Check for a missing

semicolon or a pound sign. comment delimiter, or
remove invalid character
from the comment string.

137 F -CONTROL- STATEMENT SYNTAX Self-explanatory. Correct error and

ERROR recompile.
138 F CHARACTER IN REAL CONSTANT Self-explanatory. Change character in real
ISNOTDOR E constant to a D or E and

recompile.

139 W FORMAL PARAMETER PRESET IS A formal parameter cannot Check program logic.

IGNORED be preset.

140 F -XREF- PRESET IS ILLEGAL A name that is defined in Remove preset spcification
an externally-compiled and recompile.
procedure cannot be preset
in this compilation unit.

B-9e@

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

ﬁ:;g;r Egcgq Message Significance Action
141 F BLANK COMMON PRESET IS Blank common cannot be Remove preset specifica-
: ILLEGAL preset. tion and recompile.
142 F BASED ARRAY ITEM PRESET IS Based arrays cannot be Remove preset specifica-
ILLEGAL preset. tion and recompile.
143 F BAD P FUNCTION The P function was used Correct error and
incorrectly. recompile.
144 W LENGTH OF CHARACTER ITEM IS The first 240 characters Verify that the truncation
GREATER THAN 240 BYTES - were used. does not affect the logic
240 USED of the program.
145 W NO SUBSCRIPT FOR ARRAY ITEM - The subscript was missing Verify that the first’
LOWER ARRAY BOUND USED from the array reference. element is intended.
' The compiler assumed the
first element of the array
was intended.
146 F CIRCULAR DEF NAME EXPANSION - A DEF cannot directly or Rewrite the DEFs to remove
EXPANSION IGNORED indirectly reference the recursive references.
itself. Recompile.
147 F ENTRY -PROC- OR -FUNC- NOT Self-explanatory. Remove ENTRY and recompile.
ALLOWED IN A -PRGM-
148 F ILLEGAL CHARACTER IN Self-explanatory. Correct error and
PARAMETERIZED ~DEF- TEXT recompile.
149 F ILLEGAL COMPARISON IN Self-explanatory. Correct error and
-CONTROL IF- : recompile.
150 F TOO MANY DEF PARAMETERS Self-explanatory. Correct error and
) recompile.
151 W ILLEGAL CONDITIONAL DIRECTIVE Self-explanatory. Verify that the error does
IGNORED not affect the logic of
the program,
152 F LABEL IS ILLEGAL AS A VALUE Self-explanatory. Correct error and
PARAMETER recompile.
153 F ARRAY IS ILLEGAL AS A VALUE Self-explanatory. Correct error and
PARAMETER recompile.
154 F - -PROC- OR -FUNC- IS ILLEGAL Self-explanatory. Correct error and-
AS A VALUE PARAMETER recompile.
155. F COMMON BASED ARRAY Se]f—exp]anatoﬁy. Correct error and
" DECLARATION ERROR recompile,
156 F SYMPL TEXT IS ‘NOT A -PRGM- OR Self-explanatory. Correct error and
-PROC- : recompile.
157 F XREF SWITCH ERROR Self-explanatory. Correct error and
: recompile.
158 F UNMATCHED ~CONTROL IF- A CONTROL IF statement Supply a CONTROL FI or
must have a corresponding CONTROL ENDIF statement
CONTROL FI or CONTROL to delimit conditional
ENDIF statement. block.
159 F -DEF-.'PARAMETER ERROR Self-explanatory. Correct error and
recompile,
®B-10 60496400 F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

60496400 F

Eﬂggzr Egcgg Message Significance Action

160 F ([OR < NESTING TOO DEEP) Self-explanatory. Correct error and

. recompile.
161 F ([OR < NEST MISMATCH) Self-explanatory. Correct error and
) recompile.

162 F -DEF- PARAMETER TOO LONG Self-explanatory. Correct error and

recompile.

163 F -DEF- PARAMETER COUNT ERROR Self-explanatory. Correct error and

: recompile.

164 F RECOVERY AT SEMICOLON Previous syntax errors Correct previous syntax
caused the diagnostic scan errors and recompile,
to be temporarily termi- Some errors may not have
nated. Scan was resumed been diagnosed.
at the semicolon.

165 F BAD -DEF- ACTUAL PARAMETER Self-explanatory. Correct error and

recompile.

166 F BAD UNDECLARED PROC OR LABEL Self-explanatory. Correct error and

LIST recompile.
167 F SYMPL TEXT CONTAINS -LABEL- Self-explanatory. Correct error and
OR INNER -PROC- recompile.
168 F ~TERM- ENCOUNTERED Compilation was terminated Check for a misplaced TERM
PREMATURELY - NEXT LINE by a TERM statement before statement. Check BEGIN -
BEGINS A NEW SUBPROGRAM the end of the program was END matching in first
reached. This may have compilation unit. Correct
caused errors in the next errors and recompile.
compilation unit.
169 F ATTRIBUTE SPECIFIED TO Self-explanatory. Correct error and
: UNKNOWN VARIABLE recompile.
170 F SCALAR ITEMS MAY NOT BE INERT Self-explanatory. Correct error and
OR REACTIVE recompile.
171 F ONLY ITEMS AND ARRAYS HAVE Self-explanatory. Correct error and
ATTRIBUTES recompile.
172 F BAD ATTRIBUTE OR LEVEL Self-explanatory. Correct error and
SPECIFICATION LIST recompile.
173 F FAST FOR LOOP INDUCTION Seif-explanatory. Correct error and
VARIABLE ERROR recompile.
174 F BAD GLOBAL ATTRIBUTE Self-explanatory. Correct error and
SPECIFICATION . recompile.
175 F LEVEL ONLY APPLIES TO COMMON Self-explanatory. Correct error and
AND BASED ARRAYS recompile.
176 F BAD USE OF LEVEL 3 VARIABLE The level 3 data appeared Correct error and
: in one of the prohibited recompile.
forms.
177 F INDUCTION VARIABLE MUST BE The induction variable Correct error and
SCM RESIDENT must be located in small recompile.
central memory.
178 F -CONTROL WEAK- ONLY APPLIES Self-explanatory. Correct error and
TO EXTERNAL SYMBOLS recompile.

B-il e

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

A Error Error s e .
Number Level Message Significance Action
179 F ARRAY ENTRY-SIZE TOO LARGE Self-explanatory. Correct error and
recompile.
180 F TOO MANY ARRAY DIMENSIONS Only 7 dimensions are Reduce number of array
allowed for an array. dimensions and recompile.
181 F RECURSIVE -PROC- OR -FUNC- A procedure or function Restructure subprogram
CALL NOT ALLOWED cannot call itself, and calls to avoid recursion.
cannot call other sub- Recompile.
programs that result in a
recursive call.
182 F ERROR IN REAL CONSTANT Self-explanatory. Correct érror and
recompile.
183 D XREF OR XDEF LABELS WILL NOT Self-explanatory. None.
BE SUPPORTED IN FUTURE
VERS IONS
184 D XREF OR XDEF SWITCH WILL NOT Self-explanatory. None.
BE SUPPORTED IN FUTURE
VERSIONS
185 D XDEF -PROC- WILL NOT BE Self-explanatory. None.
SUPPORTED IN FUTURE VERSIONS
186 D XDEF -FUNC- WILL NOT BE Self-explanatory. None.
SUPPORTED IN FUTURE VERSIONS
187 D -CONTROL FASTLOOP- WILL NOT Self-explanatory. None.
BE SUPPORTED IN FUTURE
VERSIONS
188 D ~CONTROL SLOWLOOP- WILL NOT Self-explanatory. None.
BE SUPPORTED IN FUTURE
VERSIONS
189 D LOC OF -LABEL- IS MACHINE Self-explanatory. None.
DEPENDENT '
190 D LOC OF -SWITCH- IS MACHINE Self-explanatory. None.
DEPENDENT
191 D LOC OF -PROC- IS MACHINE Self-explanatory. None.
DEPENDENT
192 D LOC OF -FUNC- ‘IS MACHINE Self-explanatory. None.
DEPENDENT
193 D ~-BIT- BEAD FUNCTION ON A Self-explanatory. None.
CHARACTER ITEM IS MACHINE
DEPENDENT
194 D -BYTE- BEAD FUNCTION ON A Self-explanatory. None.
NON-CHARACTER ITEM IS MACHINE
DEPENDENT
195 D PRESET TYPE DIFFERENT FROM Self-explanatory. None.
ITEM TYPE IS MACHINE
DEPENDENT
196 D P FUNCTION SET TO A CONSTANT Self-explanatory. None.
IS MACHINE DEPENDENT
197 D OUT OF SCOPE GOTO IS MACHINE Self-explanatory. None.
DEPENDENT
® B-12 60496400 F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

EE;SZr Ezcgq Message Significance Action
198 D EXPLICIT CONSTANTS 6, 10, 18, Self-explanatory. None.
42, 60 IN EXECUTABLE CODE MAY
BE MACHINE DEPENDENT
199 D EXCEEDING ARRAY ENTRY SIZE IS Self-explanatory. None.
MACHINE DEPENDENT
200 D -MODULE- AND -FASTFOR- WILL Self-explanatory. None.
BE RESERVED IN FUTURE VERSIONS
201 F ARRAY ITEM OVERLAY CANNOT BE Self-explanatory. Correct error and
A CONSTANT recompile.
202 F TOO MANY SPECIFICATIONS IN Self-explanatory. Correct error and
ITEM DECLARATION recompile.
203 F ARRAY ITEM LENGTH MUST BE AN Self-explanatory. Correct error and
UNSIGNED CONSTANT recompile.
204 F ERROR IN ARRAY ITEM An error was found in the Correct error and
SPECIFICATION, SECOND PART overlay part of the recompile.
declaration.
205 F CLOSING ANGLE BRACKET Self-explanatory. Correct error and
EXPECTED IN ARRAY ITEM recompile.
DECLARATION
206 F FILLER ITEM VALID ONLY IN Self-explanatory. Correct ‘error and
OVERLAY-TYPE ARRAY ITEM recompile.
DECLARATIONS
207 W SPECIFICATION OF ARRAY ENTRY Self-explanatory. " Check program logic.
» SIZE ILLEGAL FOR A OR U
ARRAYS - IGNORED
208 F ITEM SPECIFIED AS OVERLAY IS Self-explanatory. Correct error and
NOT DEFINED IN THIS ARRAY recompile.
DECLARATION
209 F ARRAY ITEM OVERLAY CLASSES Self-explanatory. Correct error and
ARE INCOMPATIBLE recompile.
210 W LENGTH OF REAL ITEM FORCED TO A real item must occupy a Verify that the item
A FULL WORD full word. length used does not
affect the logic of the
program. :
211 F LENGTH OF SUBFIELD EXCEEDS Self-explanatory. Correct error and -
: LENGTH OF ORIGINAL FIELD - recompile.
DECLARATION DISCARDED
212 F PREVIOUS ARRAY ITEM Self-explanatory. Correct error and
DECLARATION DID NOT SPECIFY recompile.
PLUS OR OVERLAY
213 W SPECIFIED ITEM LENGTH EXCEEDS The item was truncated to Verify that the -item
MAXIMUM ALLOWABLE - the default length. length used does not
DEFAULT TAKEN affect the logic of the
program.
214 F LEFT ANGLE BRACKET EXPECTED Self-explanatory. ‘Correct error and
FOR ARRAY ITEM - DECLARATION recompile.
DISCARDED
215 F FILLER ITEMS CANNOT BE PRESET Self-explanatory. Remove preset specifica-
tion and recompile.
60496400 F B-13 @

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

55;§2r Egcgs Message Significance Action

216 F LEFT PARENTHESIS EXPECTED IN Self-explanatory. Correct error and
ARRAY ITEM DECLARATION - recompile.
DECLARATION DISCARDED

217 F STATUS LIST NOT DEFINED IN Self-explanatory. Correct error and
CURRENT OR PREVIOUS TEXTS recompile.

218 D DEFAULT VARIABLE BEHAVIOR Self-explanatory. None.
WILL CHANGE IN FUTURE ’
VERSIONS

224 W FUNCTION NAME THE SAME AS Self-explanatory. Change function name or
FORMAL PARAMETER NAME formal parameter name.

1]
225 F CODE GEN SUPPRESSED The compiler stopped Correct all syntax errors
generating object code and recompile.
because of previous syntax
errors. The compiler con-
tinued to scan the source
code for errors.
800 c INSUFFICIENT FIELD LENGTH Compilation aborted.
(MORESPC IN CONTROL) '

801 C SCM FREE SPACE BLOCK Compilation aborted.
INSUFFICIENT SIZE
(TSPACE IN SRCH)

802 C FIND LOOP (FIND IN SRCH) Compilation aborted.

803 c ARRAY PRESET EXCEEDS MAXIMUM Compilation aborted.
SIZE (PSET IN ALOCTR)

804 C ARRAY ITEM PRESET LARGER THAN Compilation aborted.
BUFFER (GETSP IN ALOCTR)

805 C COND REPL OUTSIDE OF RULE Compilation aborted.
BODY, BAD GENESIS TABLES
(ANZS)

806 c SAVE CONTROL TABLE OVERFLOW Compilation aborted.
(CSAVE IN CODE)

807 c WHATS DOING TABLE OVERFLOW Compilation aborted.
(CSAVE IN CODE)

808 (o BAD ENDSAVE REQ. NO SAVE REQ Compilation aborted.
EXTANT (ENDSAVE IN CODE)

809 c RESTR/FORGET ON NON-EXTANT Compilation aborted.
SAVE BUFFER (ZAP IN CODE)

810 c RESTR/FORGET ON CURRENT SAVE Compilation aborted.
BUFFER (ZAP IN CODE)

811 c OSAVE ON CURRENT SAVE BUFFER Compilation aborted.
(OSAVE IN CODE)

812 C OSAVE ON NON-EXTANT SAVE Compilation aborted.
BUFFER (OSAVE IN CODE)

813 C WHATS DOING TABLE OVERFLOW Compilation aborted.
(OSAVE IN CODE)

@ B-14 60496400 F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

ﬁzggzr Eg:g? Message Significance Action

814 C IL FAT OVERFLOW (HATCHK) Compilation aborted.

815 c > 100 PROGRAM SCOPES Compilation aborted.
(SCPIN IN PF1SUB)

816 c NO PRAGMATIC FUNC (PF11) Compilation aborted.

817 c BAD UNDEF ID (PF11) Compilation aborted.

818 c BRACKET/PAREN NEST T0O DEEP Compilation aborted.
(PF11)

819 C NO PRAGMATIC FUNC (PF12) Compilation aborted.

820 c C-TYPE ITM ERR (PF12) Compilation aborted.

821 C COMPOUND STATEMENT COLLECTION Compilation aborted.
ERR (PF12) .

822 C NO PRAGMATIC FUNC (PF13) Compilation aborted.

823 (PARAM LIST TABLE OVERFLOW Compilation aborted.
(PF13)
824 c SYNTAX ERROR (PF13) Compilation aborted.
825 c LOOP CONTROL TABLE OVERFLOW Compilation aborted.
(PF14 IN PF13) v
826 C FALL THROUGH (FILTRO) Compilation aborted.
LINE nnnn

827 C STACK UNDERFLOW (PHASBS) Compilation aborted.
LINE nnnn i

828 C UNEXPECTED END-OF-FILE Compilation aborted.
(PHASBS) LINE nnnn

829 C ILLEGAL IL SEEN (PHASBS) Compilation aborted.
LINE nnnn

830 C STACK OVERFLOW (PHASBS) Compilation aborted.
LINE nnnn

831 c TRIAD TABLE OVERFLOW (GETRD) Compilation aborted.
LINE nnnn

832 c STACK NON-EMPTY AT BREAKPOINT Compilation aborted.
(PHASBS) LINE nnnn

833 C BAD SWITCH STATE INDEX Compilation aborted.
(BRKPT) LINE nnnn

834 C ZERO-DIVIDE ATTEMPT (EXPGEN) Compilation aborted.
LINE nnnn

835 C NON-EXISTENT VALU DELETION Compilation aborted.
ATTEMPT (DHASH) LINE nnnn

836 c NON-EXISTENT VALU RETRIEVAL ‘Compilation aborted.
ATTEMPT (EXPGEN) LINE nnnn

837 C LOOP STACK OVERFLOW (BRKPT) Compilation aborted.
LINE nnnn

60496400 F B-15 @

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

ﬁ:;gzr EZC:; Message Significance Action

838 c LOOP STACK UNDERFLOW (BRKPT) Compilation aborted.
LINE nnnn

839 c ILLEGAL LEFT SIDE (REPRC) Compilation aborted.
LINE nnnn

840 C VALB OF LOCALLY SAVD VALUE Compilation aborted.
(BRKPT) LINE nnnn

841 C STACK HISTORY OVERFLOW Compilation aborted.
(PHASBS) LINE nnnn

842 C INFINITE OPERAND (CXIOP IN Compilation aborted.
CONSAM) LINE nnnn

843 C INDEFINITE OPERAND (CXIOP IN Compilation aborted.
CONSAM) LINE nnnn

844 C PARM STACK NON-EMPTY (IADCON Compilation aborted.
IN ADCON) LINE nnnn

845 C PARM STACK OVERFLOW (SADCON Compilation aborted.
IN ADCON) LINE nnnn

846 C PARM STACK UNDERFLOW (FADCON Compilation aborted.
IN ADCON) LINE nnnn

847 C PARM LIST OVERFLOW (ADCON) Compilation aborted.
LINE nnnn

848 C ILLEGAL FUNI BYTE (PHASBS) Compilation aborted.
LINE nnnn

849 C UNEXPECTED END-OF-FILE, Compilation aborted.
NO PTPM (GICFB IN CODGJ1)
LINE nnnn

850 C CANT FIND TEMP (PTEMP IN Compilation aborted.
CODGJ1) LINE nnnn :

851 C ICFT OVERFLOW (ICOVRFL IN Compilation aborted.
CODGJ1) LINE nnnn

852 C UNEXPECTED TYPE (PSTOU IN Compilation éborted.
CODGJ2) LINE nnnn

853 C BADLY FORMED ICF (POS IN Compilation aborted.
CODGJ2) LINE nnnn

854 C UNEXPECTED OPERAND FOR STORE . Compilation aborted.
(PSTOS IN CODGJ2) LINE nnnn

855 c ILLEGAL OP CODE (CODGJ3) Compilation aborted.
LINE nnnn

856 C ILLEGAL SEQ. TERMINATING OP Compilation aborted.
CODE (CODGJ3) LINE nnnn

857 C BADLY FORMED ICF (CODGJ3) Compilation aborted.
LINE nnnn

858 C BAD BPSB OPERATOR OPERAND
(CODGK1) LINE nnnn

® B-16 60496400 F

TABLE B-1. COMPL.ER ERROR MESSAGES (Contd)

ﬁ:;ggr Egcgq Message Significance Action
859 c ILLEGAL BPSB OPERATOR OPERAND Compilation aborted.
(CODGK1) LINE nnnn
860 c CANT INSERT LOAD (ISLOO IN Compilation aborted.
‘ CODGK1S) LINE nnnn
861 C CIRCULAR ENTRY IN READY SET Compilation aborted.
(RPC40 IN CODGK3S) LINE nnnn
862 c INVALID ICFT INDEX (RPCOO IN Compilation aborted.
CODGK3S) LINE nnnn
863 C TOO MANY COMMON BLOCKS Compilation aborted.
(EDITOR)
864 C VALB OF LOCALLY SAVED VALU Compilation aborted.
(EXPGEN) LINE nnnn
865 C UNINTERPRETABLE SOURCE, Compilation aborted.
EXPRESSION TOO LONG (SPRECG)
866 C MODULE MUST BEGIN WITH Compi]afion aborted.
PROC/FUNC/PRGM (ANZS)
867 C BEADFUNC WITH LENGTH = O ILL Compilation aborted.
(PHASBS)
868 C BAD CLASS IN TEXT (USETEXT) Compilation aborted.
869 C MORE THAN 64 TEXTS ON USETEXT Compilation aborted.
(INIT15)
870 c Y FILE NOT ON RANDOM DEVICE Compilation aborted.
(INIT15)
871 o MORE THAN'64 SYMPL TEXTS ON Compilation aborted.
Y FILES (INIT15)
872 C SYMPL TEXT NOT FOUND (INIT15) Compilation aborted.
873 C INSUFFICIENT SCM FL (INIT15) Compilation aborted.
874 C INSUFFICIENT LCM FL (INIT15) Compilation aborted.

60496400 F

B-17 @

GLOSSARY

Arithmetic Expression -
An expression that yields a numeric value.

Based Array -
A structure that can be superimposed over any area
of memory during program execution. No storage is
aliocated for a based array during compilation; rather
the compiler creates a specific pointer variable
compiled with an undefined value. Based arrays are
used when the position of an array is not known at
load time.

Bead Function -
A function that accesses consecutive bits or
characters of an item.

Boolean Expression -~
An expression that yields a Boolean value of TRUE or
FALSE.

Compilation Unit - .
A separately compiled main program or subprogram
terminated by a TERM statement or end-of-section.

Delimiter -
A character that is used to separate and organize
data items or statements. SYMPL characters
classified as marks serve as delimiting characters.

Entry Point -
A location within a procedure or function that can be
referenced from a calling program. Each point has a
name with which it is associated.

Exchange Statement -
A statement that causes the exchange of values of
the left and right sides of the statement.

Expression -
A sequence of identifiers, constants, or function calls
separated by operators and parentheses. The
evaluation of an expression yields a value.

External Reference -
A reference in one module to an entry point in
another module. Throughout the loading process, the
loader matches externals to the correct entry points.
External references are specified by the XREF
statement.

External Subprogram - ,
A subprogram that is compiled as a separate module.

Fastloop -
A type of FOR statement where the test and branch
is at the end of the loop. Fastloops always execute at
least once. Contrast with Slowloop.

Function -
A subprogram used within an expression. It returns a
value through its name. The text of a function must
contain an assignment statement that assigns a value
to the function name. A function can also return
values through its parameters. Contrast with
Procedure and Main Program.

60496400 E

Identifier -
A string of 1 through 12 letters, digits, or $ beginning
with a letter ($ is considered to be a letter). This
manual wuses the term identifier to indicate a
programmer-defined entity. Contrast with Reserved
Words.

Induction Variable - :
A scalar that is used as the counter for the loop in a
FOR statement.

Logical Operator -
An operator that works with Boolean values and
yields a Boolean result. Contrast with Masking
Operator, Numeric Operator, and Relational Operator.

Main Program -
A module that consists' of a main program header
followed by a series of declarations and one
statement (usually compound) and ended by a TERM
statement. Contrast with Function, Procedure, and
Subprogram.

Masking Operator -
An operator that performs bit-by-bit operations that
yield numeric results. Contrast with Logical
Operator, Numeric Operatoar, and Relational Operator.

Numeric Operator -
An operator that performs arithmetic operations to
yield numeric results. Contrast with Logical
Operator, Masking Operator, and Relational Operator.

Parallel Allocation -
The first words of each array entry are allocated
contiguously, followed by the second words of each
entry, and so forth. Contrast with Serial Allocation.

P Function -
A function that references the pointer variable for a
based array.

Pointer Variable -
The variable created by the compiler for a based
array. The pointer variable is set by the P function.

Procedure -
A subprogram that can, but need not, return values
through any of its parameters. It is called when its
name or one of its alternative entry points is
referenced. Contrast with Function and Main
Program.

Relational Operator -
An operator that works with arithmetic or character
operands to produce a Boolean result. Contrast with
Logical Operator, Masking Operator, and Numeric
Operator.

Replacement Statement -
A statement that assigns ‘a value to a scalar,
subscripted array item, P function, bead function, or
function name.

C-1

Reserved Words -
Identifiers that have predefined meaning to the
SYMPL compiler. :

Scalar -
An item that is not in an array. An ITEM declaration
outside an array defines a scalar.

Scope of Variable -
The set of statements in which the declaration of the
variable is valid.

Serial Allocation -)
All the words of one array entry are allocated
contiguously. Contrast with Parallel Allocation.

Slowloop -
A type of statement where the test and branch is at
the beginning of the loop. Slowloops need not
execute at all. Contrast with Fastloop.

Subprogram -
A function or procedure. Subprograms can be
compiled as separate modules. Contrast with Main
Program. .

Type -
The representation of data. Data can be integer,
unsigned integer, real, character, Boolean, or status.

Weak External -
An external reference that is ignored by the loader
during library searching and cannot cause any other
program to be loaded. A weak external is linked,
however, if the corresponding entry point is loaded
for any other reason.)

XDEF Declaration -
A declaration that generates an entry point that can
be used by the loader. It is used in the declaring
program to define an identifier as external. Storage
is allocated for the identifier. Contrast with XREF
Declaration. ‘

XREF Declaration -
A declaration that generates an external reference to
the specified identifier. It is used in the referencing
program. Use of XREF implies that the identifier has
been declared to be external in another program. No
storage is allocated for the identifier. Contrast with
XDEF Declaration. .

60496400 E

METALANGUAGE D

The mechanics for defining the syntactic forms of SYMPL are accomplished through
an elementary descriptive language, capable of defining any phrase-structured
language.

SYMPL is described in a metalanguage by a set of statements called productions, each
of which describes one form belonging to SYMPL. The forms of a language are its syn-

tactic entities, such as the sentence or adverbial phrase (from English), or arithmetic
expressions (from FORTRAN, for example).

Every form of SYMPL is described by one metalinguistic production.

Format of a production is as follows:

form name := context] form definition L context
form name Underscored name of the form defined by this production.
In the metalanguage every underscored sequence is a form
name.

1= Production symbol, which may be read: has the form.

form definition Structure of the form defined by this production (whose name
is given as the form name of the production). The definition
of a form specifies the set of character sequences (utterances)
that it represents; form definitions specify a sequence of the
following entities:

Characters of the SYMPL character set, which repre- ’
sent themselves.

Names of SYMPL forms, which represent sequences of

.characters of the SYMPL character set, as specified by
the productions which describe the form names.

60496400 E | D-1

Sets of entities like the above, from which any one may
be chosen. Such a set is enclosed within braces to in-
dicate alternatives. The use of such alternative sets
may be recursively defined; thus the form definition

e {§)
Q

X

is equivalent to a choice of one of the following alterna-
tive sequences:

b

R
S

P b
o W W

The null form ¢ represents zero characters of SYMPL.
Typically, ¢ is used as one member of an alternative
set if no member of the set must be chosen.

context] and |context Optional constraints upon applicability of the production.
‘ If a production contains either or both context sequences,
the specified form name only represents the sequence of
SYMPL characters defined by form definition when it
occurs in the given context. A context sequence is
formed similarly to a form definition sequence.

Thus, the production pair

{XAA}

Y := BJ X LB

>4
i

describes sequences of the character A as the form name Y only when they are de-
limited by occurrences of the character B.
To summarize, seven symbols are peculiar to the metalanguage:

Underscore line

Production symbol 1=

Null symbol ®

D-2 60496400 E

Braces ; and %
Context delimiters 1l and L~

All other printed characters in metalinguistic productions are either form names
(underscored) or self-representative members of the SYMPL character set.

BASIC NOTATION AND ELEMENTS

CHARACTER SET
SYMPL programs are composed of 55 characters, as follows:

Letters . ()

letter := <

ANHNEACHLDOWOZEDN RU~ I QHMED QW >

60496400 E

Digits (0)
1
2
3
. 4
digit t= 4 5
| 6
7
8
[9
Marks
*
/
+
(
)
|
]
<
mark := >
#
"
?
b
® represents a blank space.
BLANK SPACES AND COMMENTS
space = J b
comment
A B space
A Space

}

60496400 E

A

v =

- ¢

comment := # comment string #
y

comment string = comment string ¥ -
?

Y represents any key punch character except semi-
colon (;) and pound sign (#), either of which will termi-
nate a comment. -

The forms A and v are used throughout the metalinguistic descr1pt10n to represent one
or more blanks and zero or more blanks, respectively.

IDENTIFIERS
ident := mark | identpart | mark
letter
ident part := letter
‘ ident part { E }
RESERVED SYMBOLS

The 52 SYMPL words are represented as follows:

abs ;= mark] ABS L mark
and r= mark | AND L mark
array ;= mark | ARRAY | mark
based ;= mark | BASED | mark
begin := mark | BEGIN | mark
common := mark |l COMMON | mark
control := mark | CONTROL | mark
def := mark | DEF L ‘mark
do ;= mark | DO L mark

60496400 E D-5

not

or

prgm
proc

return

status

mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark

mark

. mark

mark
mark

mark

mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark

mark

L S e S e Uy S

ELSE L
END L
ENTRY |
EQ L
FALSE |
FOR L
FPRC |
FUNC L
GOTO L
GQ L
GR L
IF L
ITEM L
LABEL |
LAN L
LIM L
LOC L
LOR L
LNO L
L
L
L
L
L
L
L
L
L
L
L

NOT
NQ

OR
PRGM
PROC
RETURN
STATUS

mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark

mark

mark
mark
mark
mark
mark

mark

60496400 E

step := mark | STEP L mark
stop := mark | STOP L mark
switch := mark | SWITCH | mark
term := mark] TERM mark
test ;= mark] TEST L mark
then ;= mark] THEN | = mark
tree := mark | TRUE | mark
until := mark | UNTIL | mark
while ;= mark | WHILE | mark
xdef := mark | XDEF L mark
xref ;= mark | XREF | mark
spbegin := mark] $BEGIN | mark
spend := mark] $END | mark

The action of $BEGIN and $END depends on the presence of option E on the SYMPL
control statement.

SPECIAL IDENTIFIERS

array item name := ident
array name := ident
based array name := ident
common name := ident
- def name := ident
formal array name := ident
formal based name := ident
formal func name := ident
formal item name := ident
formal proc name := ident
func name := ident
item name := ident
label name := ident

60496400 E

proc name := ident

program name := ident
status list name := ident
switch name = ident

DEF DECLARATIONS
DEF Specificaiioh

def head := defAident

defmac head : = def head opt space (V def params V)

def dec := def head opt space #DEF # Vs

defmac dec : = defmac head opt space #DEF #
, J9

opt space {opt space b }

DEF string =Y

—_— DEF string ¢

def params : = ident .
—_— def params V , V ident

¥ represents any keypunch character for DEF
declarations with no parameters.

DEF Expansion

‘defmac expansion := defmac name V (def parlist)
. . J def par
def par list : { def par list V , V def par}

def par discussed in section 4 regarding balanced brackets,

{Any character sequence that meets the limitations
or the characters ; # ?

D-8 60496400 E

EXPRESSIONS

Arithmetic Expressions

arith exp

infix stuff

arith thing

unary op

binary op

Boolean Expressions

Boolean exp

Boolean thing

60496400 E

|
|
%
|

%IE-I'L"BM} infix stuff

infix stuff v binary op v arith thing

arith thin }

item name
array reference
func call

const

(v arithexp v)

Boolean thing v
Boolean exp v Boolean op v Boolean thing

(array reference \
item name

relation

< Boolean const >
not v Boolean thing
func call

\ (v Boolean exp Vv) J

An item must be declared type B for use as a Boolean operand.

and
Boolean op 1= { or }
relation 1= arith exp v relational op v arith exp
€q
gr
relational op = Is
g9
Iq
nq
CONSTANTS
Boolean const
char const
const = integer const
real const

status const

integer Constants

dec integer
octal const

hex const
status func

integer const

The status func is a special form of integer constant defined under status declarations.

dec integer { dec integer } digit

9

octal const O " octal stuff "

(1) A

octal stuff 1= { octal stuff } { octal digit }

- D-10 60496400 E

(0
1
2
octal digit = ! 3
- 4
5
6
\ 7
Hexadecimal Constants
hex const = X " hex stuff "
hex stuff _ { hex stuff } { hex digit }
-] A
digit
A
B
hex digit = C
D
E
E
Boolean Constants
Boolean const := true
false

Character Constants

i

char const

" char string "

char string

{ char string ¥ }
®

Y represents any keypunch character.

Status Constants

status const := S8 " v status const string v "
status const string := ident
60496400 E

D-11

Real Constants

ITEMS

real const

integer part

fraction part

exponent part

ITEM Declarqiion

D-12

item dec

item descr list

item descr

I

15

Vv
item name 5 A lype }

{ integer part } . { fraction part } { exponent part }
¢ 4 ¢

dec integer

dec integer

!
s 1+
I I<

} dec integer

item A itemdescrlist v

{ item descr

item descr list v , item descr }

v item preset

length v)

status list name

I I
I« I<

= character type length is a size subfield in characters or bytes

U
1
type = R
B
C
S
U = unsigned integer type
I = integer type
R = realtype
B = Boolean type
S = status type
C
length

= integer const

60496400 E

item Presets

Optionally, the item may be assigned an initial value:

< IK

const

item preset =

STATUS DECLARATIONS

Specification

Il

status dec status A status list name A status name list v ;

status value

status name list 1 status name list v , v status value j

]

status value

{ status const string 1
¢ .

Status Function

status func := status list name ' v status const string v "

ARRAYS

Array Declarations

A array name(y array descr v ; v item part
array dec 1= array<{— - - =
L [v array bounds list v]{ v } layout(v \entry sizél
array descr t= % e > 2 s
array bounds list := 3w . . g
array bounds list v , v bound pair
v v
bound pair - géiw—bﬂn—‘i - - g high bound
+ —
low bound = { - v } integer const
%]

60496400 E D-13

high bound

P N
Q1+
K I

} integer const

layout = 3 § %
entry size := (v integer const v)

Array Item Declarations

item part 1=

array item dec list

array item dec 1=

array item descr list := {

array item descr

begin A array item dec list v end
array item dec

.
’

array item dec
array item dec list v array item dec

item A array item descr list v ;

array item descr '
array item descr list v , v array item descr

array item name v array item specs v array preset

g
Py
I<
e I<
2]
.
&
©
I<
N —
Sawr

(vepyv

. I

v : v status list name

U
I
. R
array item _ B
specs C
S
0
ep = integer const
fbit := integer const

size := integer const

‘Array Presets

array preset 1= {

D-14

¢
v value set

60496400 E

set sequence i=

value set T =

value llist t=

value s=

Array References: Subscripts

array reference :=

subscrigtor t=

subscript list

i

subscript

Based Arrays and the P-Function

based dec

il

array dec list

(]
set sequence value set ,
set sequence integer const value set

[value list v]
v o1

set sequence

f—

value
integer const v (v valuelist v)}
?

value list v v value

} const

PN
I+
I<I<

0 9

array item name v subscriptor

[v subscriptlist v]

subscript
subscript list v , v subscript

arith exp

begin A array dec list v end

based A {arraz dec }

{ array dec ‘ }

array dec list v array dec

pfunc := P < v based array name v >

60496400 E

D-15

FUNCTIONS

Function Calls

func name S arguments }

} ¢
bead func
loc func

p_func

abs func

func call

arguments = (v actualparlist v)

actual par list := 5 actual par . ’
1 actual par list v , v actual par

Bead Function

bead func = ; gl < 'V arithexp Vv j, v arithexp Vv } > Vv data
DR U=y
{ item name }
data t= —_—
array reference

Intrinsic LOC Function

item name
array reference
proc name
func name
loc func := loc v (Vv switch name
| label name

array name v subscriptor
array name 19

p func

I<
N

Intrinsic ABS Function

abs func := abs v (v arithexp v)

D-16 60496400 E

VALUE ASSIGNMENT

sink l
replacement statement 1= v = VvV source v ;
func name 5 - -
exchange statement := sink v = = v sink v ;

item name
array reference

N

sink =

p func

bead func
source . Joarthes |

1 Boolean exp S

FLOW OF CONTROL

Label Declaration

label dec label name:

labeled statement statement 1

label dec { %

SWITCH Declaration

switch dec := switch A switch name Vv switch specs V- ;-
; switch list 1
switch specs := '
1 v status list name v switch order 5
f switch point
switch list HE }
l switch list v , v switch point
label name
switch point 1= {) }
order pair 1
switch order 1= {
switch order v , v order pair 5

60496400 E D-17

order pair := label name v : v status const string

GOTO Statement

oto statement := goto A label name Vo
& = % A switch name v [v arithexp v |(=’

IF Statement

if statement := if clause v statement { % else part }
if clause := if v Boolean exp v then
else part := else Vv statement

FOR Statement

for statement := for clause Vv statement
for clause := for A itemname v = Vv loop control v do
5 v while part l
S v step part <V until part j
loop control := initial value , 1 s ‘
—_— —_— v while part
(]
initial value := arith exp
step part := step Vv arith exp
until part := until v arith exp
while part := while v DBoolean exp
TEST Statement
A v oo
test statement 1= test { 6 1_'“31“__@1112}—
PROCEDURES
Procedure Call Statement
5 Vv arguments l
proc call statement := proc name 15 — S Vo

D-18 60496400 E

RETURN Statement

return statement

STOP STATEMENT

stop statement

SUBPROGRAM DECLARATIONS

subprogram dec

proc dec

func dec

proc dec clause

formal par list

func dec clause

dec list

LABELS AND PARAMETERS
Formal Label Declarations

formal label dec

label name list

60496400 E

return v ;
StOQ X H

e { proc dec l

It

]

il

proc dec clause v dec list v statement

func dec 5

func dec clause v dec list v statement

SX (v formal par list v)

proc A proc name 1

|

©

formal par

1 formal par list v , v formal par

func A func name

|

.{

A 1_ type
¢ . ‘,
declaration
dec list v declaration
4

label A label name list v ;

label name
label name list v , v label name

}

f

V

—_

{X'(v formal par list x)}{%ﬂpﬁ}

D-19

Vv

b

Formal Parameters

formal based dec := Dbased dec

formal item dec := item dec

formal array dec = array dec

formal proc dec := fprc A formal proc name v ;

formal func dec := func A formal func name {% type I Vo
value par := (v formal item name v)

formal based name

formal item name

formal array name
formal par s =

formal proc name

formal func name

label name

value par

Actual Parameters

item name
array name 5

proc name
actual par :=
func name

label name

arith exp
Boolean exp
p_func

v subscriptor}

ENTRIES

entry dec := entry A proc dec clause .
o - func dec clause ’

D-20 60496400 E

COMMON STATEMENT

common dec _ common A common name v v data dec

—— S ® = ' =) begin v data dec list v end
\ data dec

data d ist = T/

data dec list { data dec list v data dec }

data dec 1= {M }

—_— array dec

EXTERNALS

XREF (External Reference) Declarations

xref dec = xref A xdec part
xdec part _ { begin A xdec list v end }
— xdec
. xdec '
xdec ligt - { xdec list v =xdec }
item dec
array dec
proc heading
func heading
xdec i=

formal label dec
switch dec
formal switch dec
based dec

il

formal label dec label A label name list Vv ;

label name list . Jlabel name
: =) label name list V, V label name

il

formal switch dec switch A switch name list Vi

60496400 E D-21

toh name list . _ J switch name
Switch name 1s ’ switch name list V, V switch name

Il

proc heading proc A proc name V ;

func heading = func A func name% % type s v oo
XDEF (External Definition) Declarations
xdef dec := xdef A xdec part
PROGRAMS
Program Structure
rogram 1= program head v term
RLogtaln T subprogram dec -
prgm dec
program head := program head v declaration
program head v statement
prgm dec i= prgm A program name -;
Compound Statements
compound head V end -
compound statement := —
compound head Vv spend
begin
L spbegin
compound head c compound head V statement
compound head V declaration

CONTROL Statement

control A control word V ;
control statement P = - control A conditional phrase V ;
control A attribute V.

conditional phrase := condition word A condition params
‘s constant
condition params HES —_—
constant V , VV constant

D-22 _ ;‘ 60496400 E

condition word .=

control word

traceback
ftncall

fastloop
slowloop

level A lev list
inert A var list
attribute s = reactive A var list

1l
W\ — i —
. p— o | pte | pde | joude § pute
l"-smg‘g'a‘;m
0|0 =40
A i
SR. o et o

disjoint A var list

overlap A var list

weak A weak list

lev list lev descr ' }

lev list vV, Vlev descr

lev descr : = based array name

{common name

var descr
var list s =
— var list list V, V var descr

60496400 E - D-23

D-24

var descr

weak list

weak descr

traceback

ftneall

fastloop
slowloop

level

inert

arraz name
based array name

item name

8

weak descr

array name
based array name

function name

= item name

label name
~ proc name
switech name

mark
mark
mark
mark
mark

mark

mark

mark

e T T T T T O O M

IFEQ
IFNE
IFLS
IFLQ
IFGQ
IFGR

EJECT
LIST
NOLIST
OBJLST
PACK
PRESET

FI
ENDIF

el el e el Y el et el

= { weak list v , v weak descr }

mark
mark
mark
mark
mark

mark

mark

mark

mark

- mark

mark
mark

mark
mark

TRACEBACK | mark

FTNCALL L

FASTLOOP |

SLOWLOOP |_

}L

L

1
LEVEL{2
3

INERT

mark
mark

mark
mark

mark

60496400 E

reactive
disjoint
overlap

weak

declaration

statement

60496400 E

: = | mark
: = | mark
: =) mark
: = _| mark

.
i

REACTIVE
DISJOINT
OVERLAP
WEAK

array dec
based dec

common dec
def dec
entry dec
func dec
item dec
label dec
proc dec
status dec
switch dec
xdef dec
xref dec
formal array dec

L mark
]__ mark
L mark

L mark

—

formal based dec
formal func dec
formal item dec
formal label dec
formal proc dec

compound statement -

exchange statement

for statement
goto statement

if statement
labeled statement

proc call statement-

- replacement statement

return statement
stop statement

test statement

D-25

EXECUTION-TIME OUTPUT | - E

—

SYMPL contains four procedures that are links to the
FORTRAN execution-time PRINT routines. Linkage is
the SYMPL library SYMIO.

To use these routines, a FORTRAN main program must
call the SYMPL program. The PROGRAM statement of
the main program must name the file used for output.

Within the SYMPL program, the procedures PRINT,
PRINTFL, LIST, and ENDL must be declared as external
references through the XREF statement. These
procedures can also be declared and referenced by the
names PRINT$, PRINTFL$, LIST$, and ENDL$ if
necessary to avoid conflicts with programmer supplied
procedures.

PRINT and PRINTFL are used to specify the format of
items to be printed, using the specification of the
FORMAT statement of FORTRAN. (PRINT differs from
PRINTFL only in that PRINT is used to write to the file
OUTPUT, while PRINTFL can be used to write to a file
with a different logical file name.) The variables or
arrays that would be presented in a WRITE or PRINT
statement in FORTRAN are specified individually in
SYMPL as LIST statement parameters. ENDL, which has
no analog in FORTRAN, must terminate each output
sequence begun by PRINT or PRINTFL.

Any errors in the format specification or output list are
detected during execution by the FORTRAN routines.
Any error messages generated are in the FORTRAN
reference manual.

PROCEDURE PRINT

PRINT is used to format information to be written to the
file OUTPUT. It initiates an output sequence. The call to
procedure PRINT is:

PRINT (format string);

format :

string Character string duplicating the
specifications of a FORTRAN format
specification, including the parentheses
of the FORTRAN specification.
Hollerith constants, variables, array,
carriage control, spacing, or any other
legal FORTRAN format specification
can be included in the literal string.

60496400 E

PROCEDURE PRINTFL

PRINTFL is used to format information to be written to a
file with a logical file name other than OUTPUT. It
initiates an output sequence that must be terminated by
ENDL. The call to procedure PRINTFL is:

PRINTFL. (format string, file);

format

string Literal duplicating the specifications of
a FORTRAN format specification,
including the parentheses of the
FORTRAN specification. Hollerith
constants, variables, array, carriage
control, spacing, or any other legal
FORTRAN format specification can be
included in the literal string.

file File on which the information is to be
written, expressed in terms of the file
information table (FIT) for the file as
shown in example 2 at the end of this
appendix.

PROCEDURE LIST

LIST is used to specify an item or array to be printed. It
must be preceded by a PRINT or PRINTFL procedure call
and must be followed by an ENDL call. Any number of
LIST calls can appear between PRINT and ENDL. Only
one item or array can be specified in a single LIST call. A
one-to-one correspondence should exist between the
format specification in the preceding PRINT or PRINTFL
call and the order in which items or arrays are named in
following LIST calls. The call to procedure LIST is:

LIST (argument);

argument Item expression subscripted array item

or similar entity to be output.

PROCEDURE ENDL

ENDL terminates an output sequence begun by PRINT or
PRINTFL. It must appear after the last LIST call for a
given sequence; or, if no LIST calls exist in the sequence,
ENDL must appear after the PRINT or PRINTFL call.

The call to procedure ENDL. is:

ENDL;

EXAMPLES

1.

Print VALUE OF I=nnn where nnn is the value of I in

integer - format. Information is to appear on a new
line on the. file OUTPUT, then the file is to be

positioned to the next line:

XREF PROC PRINT;

XREF PROC LIST;

XREF PROC ENDL;

PRINT ("(1X,*VALUE OF I=%,13,/)");
LIST (s

ENDL;

The SYMPL code is equivalent to the FOTRAN statements:

2.

PRINT 99,1

99 FORMAT(1X,*VALUE OF I=%,13,/)

Print THIS IS TAPE3 on file TAPE3. Assume that the
FORTRAN main program contains PROGRAM FT
(OUTPUT, TAPE3):

XREF PROC PRINTFL;
XREF PROC ENDL$;

BASED ARRAY B; ITEM BB(0,42,18);
XREF ITEM TAPE3$;
P=L.OC(TAPE3$);
PRINTFL("(*THIS IS TAPE3*)",B)
ENDL$;

Accompanied by the COMPASS statements:

TAPE3$ VFD 60/=XTAPE3=
ENTRY TAPE3$

Where TAPE3= is the FORTRAN convention for
the name of FIT for TAPE3.

3. Output an array.

XREF PROC PRINT;
XREF PROC LIST;
XREF PROC ENDL;

CNTR=LOC(ADDR);
PRINT("(1X,06/4030)");
ITEM [
FOR 1=0 STEP 4 UNTIL N DO
BEGIN
LIST(CNTR);
ITEM K;
FOR K=0 STEP 1 UNTIL 3 DO
LIST(DITM[K+1]);
CNTR=CNTR+4;
END
ENDL;

This is equivalent in FORTRAN to:

1

CNTR=LOCF(ADDR)

M=N-1

DO 1 I=1,M,4

PRINT 100,CNTR,(DITM(K+1-2),K=1,3)
CNTR=CNTR+4

100 FORMAT(1X,06/4030)

60496400 E

CYBER INTERACTIVE DEBUG INTERFACE F

When a SYMPL program is compiled in debug mode, the
compiler generates code in such a way that the program
can be executed through CYBER Interactive Debug (CID).
A program is compiled in debug mode when either of the
following is true:

The DB parameter is present on the SYMPL control
statement.

The control statement DEBUG, ON has been exe-

cuted, putting the job in debug mode, and the SYMPL

control statement does not include the option DB=0.

In order to make the CID interface possible, extra
information is added to the cbject code by the compiler.
This information includes:

Symbol tables, which include entries for all the
scalars, arrays, procedures, functions, labels, and
switches in the program. No entries are made for
array items.

Line number information, to enable CID to access
individual statements in the program. A line number
is inserted in the object code before the executable
code for each statement, and a line number loader
table is provided. If more than one statement
appears on a line, all the statements have the same
line number.

CID treats SYMPL object code like FORTRAN object
code. The features described in the CID reference manual
as FORTRAN features are therefore also available to the
SYMPL user. Use of SYMPL with CID is subject to the
following restrictions:

In an overlay structured program, the procedure
DBUG.OM must be called from a COMPASS routine
with the SYMPL calling sequence whenever a new
overlay is loaded.

A call to the procedure is also required if an already
loaded overlay is being reentered and an overlay trap
is to be in effect. The procedure is called with a
single parameter, which is zero if the overlay in
question has just been loaded, and one if an already
loaded overlay is being reentered.

CID truncates all identifiers to seven characters.

Identifiers are not qualified. Only the outermost
declaration of an identifier is recognized by CID;
redeclaration at an inner level is ignored.

All SYMPL entities referenced by CID have a type
assigned to them. This type is the default type for
the DISPLAY command and the PRINT command.
The correspondence established is that SYMPL
scalars of real type correspond to CID type F
(floating point) and all other entities correspond to
CID type O (octal).

60496400 E

Debug does not support part word or multiword
arrays. Therefore, only one identifier is used for
each SYMPL array. This identifier is the array name
if it has one, otherwise it is the name of the first
item declared in the array. The identifier used for
the array is defined to CID as a one word item
occupying the first word of the array, with an offset
of zero relative to the beginning of the array.

Array bounds and subscripts are changed to
FORTRAN format for referencing through the
FORTRAN-only CID commands. For other CID,
commands, no subscripts are used. Any. dimension for
which the lower bound equals the upper bound is
deleted. For example, an array declared in SYMPL
by the following declaration:

ARRAY A [1:7,0:0,5:8]
is referenced in CID as if the declaration were:
ARRAY A [1:7,5:8]

If the lower bound equals the upper bound for all the
dimensions of the array, it is treated by CID like a
scalar, since it only has one element.

For a serial array with an entry size greater than one
word, the bounds are rearranged so that the entry
size is the leftmost dimension and the declared
dimensions are moved one to the right. For example,
if the SYMPL declaration is:

ARRAY S [1:30] 5(2);
ITEM S0(0),
S1(1);

References to the array in CID are the same as if the
array declaration were:

ARRAY S [0:1,1:30];

That is, a reference to S0{17] becomes a reference to
$(0,17) (in CID, parentheses are used instead of
brackets).

For a parallel array with an entry size greater than
one word, the bounds are rearranged so that the entry
size is the rightmost dimension. For example, if the
SYMPL declaration is:

ARRAY P [1:100] P(3);
ITEM P2(0),
P1(1),
P2(2);

References to the array in CID are the same as if the
array declaration were:

ARRAY P[1:100,0:2];
In CID PO[1] is referenced as_P(0,1), P1[32] is

referenced as P(32,1), and P2[46] is referenced as
P(46,2).

F-1

F-2

Formal parameters and based arrays must be
accessed indirectly in CID. The indirect value
operator ! must be used to obtain the value of these
entities.
For example, if the procedure heading is:

PROC P(X);
then the CID command:

DISPLAY X

displays the address of X, rather than its value. To
display the value of X, the form:

DISPLAYX

must be used.

kSimilary, if a based array is declared by:

BASED ARRAY B 5(3);
ITEM BO(0),
B81(1),
B2(2);

then the CID command DISPLAY B displays the value
of the P function of B, DISPLAYIB displays the value
of BO, DISPLAYIB + 1 displays the value of Bl, and
DISPLAY!B + 2 displays the value of B2.

60496400 E

CODING CONVENTIONS

The advantage of using an implementation language for
system software is lost if the code is hard to read. The
coding standards listed in this section represent a set of
conventions that experience has shown results in readable
code. The standards are divided into the following groups:

o Rules for layout of individual statements.
) Rules for format declarations.

® Rules that pertain to the format and flow of control
within a whole procedure.

e Rules for efficient coding.
) Rules for comments in code.

® Rules designed to improve the transportability of
code to other systems.

The rules in this appendix are recommendations, not
requirements. .

RULES FOR STATEMENT LAYOUT

Labels should being in column 1. Labels should appear on
lines by themselves except for optional comments.

CONTROL statements which govern global conditions
should be at the beginning of a compilation unit.
CONTROL statements which govern local conditions
should be indented with the code. Blank lines should
surround all conditionally compiled code blocks.

Declarations and executable code should appear only in
columns 7 through 72.

The standard indentation level is 2 columns. Indentation
is recommended for IF and FOR sublevels, as well as
ARRAY and COMMON declarations.

No more than one statement should appear on one line.
Statements can be broken across lines to clarify the
meaning.

The words BEGIN, END, THEN, ELSE, and DO should all
appear on lines by themselves. They can have comments
on the same line.

An IF/THEN/ELSE sequence should be written: -
F
THEN
BEGIN

END

ELSE
BEGIN

s e

END

60496400 E

The Boolean operators of compound conditional
expressions in IF statements should be indented one level
more than the IF. Each condition should appear on a line
by itself. Explicit parentheses should be used when AND
and OR are used in the same expression. Do not assume
the precedence used by the SYMPL compiler. Nested
conditional expressions should be indented the standard
indentation level to reflect the logical levels. For
example:

IFRCEQ1
AND (READAREA GR 0
OR READAREA LS LASTAREA)
AND NOT RECORDING
THEN
BEGIN

END

A FOR statement should have the UNTIL or WHILE part
on a separate line, indented to the next indentation level,
and the DO on a line by itself aligned under the FOR.
Compound conditions in the WHILE part should be
indented according to the rules for compound conditions in
an IF statement. For example:

FOR I=1 STEP 1
WHILE NOT FINISHED
AND (LINK [I]NQ 0
OR MAMA [1] EQ BABY [1+1])
DO
BEGIN

END

A properly indented BEGIN/END pair should. surround the
body of the controlled statement of IF and FOR
statements even if there is only one controlled statement.

Second and subsequent lines of statements which overflow
one line should be indented at least one additional level
from the level of the original statement. Assignment
statements which overflow one line should be split into
two statements.

Operands and operators should be separated by spaces.
Left parentheses should be preceded by blanks except for
intrinsic functions.

A blank line or an END should follow each unconditional
transfer - GOTO, RETURN, or TEST.

The wuse of blank lines to improve readability is
encouraged, especially -surrounding block comments and
after an END.

DECLARATION CONVENTIONS

Each symbol being declared should be on a line by itself,
and should have a comment describing the declaration and
its use. This includes all items, array items, DEF, XREF,
and XDEF declarations, and status lists.

Array item declarations should be enclosed by a properly
indented BEGIN/END pair and each item definition should
be preceded by the keyword ITEM and end with a
semicolon. An attempt should be made to align all parts
of the declaration neatly. Thirteen spaces are
recommended for the item name field of declarations
which occur in common decks. Two digits should be used
for entry, fbit, and nbit. For example:

ITEM FIRST 1 (00,00,60)
ITEM SECOND B (01,00,01);
ITEM ASLONGSNAME$S U (01,01,29);

The declaration of all items should contain all
specifications needed in explicit form. Each item
declaration should begin with the keyword ITEM and end
with a semicolon. Defaults should be avoided. For
example:

ITEM NAME C(10);

ITEM I I

ARRAY ANY [BOUNDS] P(ENTSIZE);
BEGIN
ITEM FIRST 1(00,00,60);
END

All data structures and definitions, as well as procedure
and function names, should be as descriptive as possible of
their use. External names should. be seven or fewer
characters, including main program names. Item names
within structures may be formed by concatenating an
abbreviation of the array name and the field name; for
example, the items AT$FORWARD and AT$DBPROC in
the array AREA$TABLE.

All declarations should appear at the beginning of the
procedure. All similar items should be grouped together;
that is, all XREF declarations together, all DEF
declarations together, and so forth. The following order
of definitions is suggested: . common decks, parameters,
XDEF, XREF, DEF, status lists, COMMON, items, arrays,
switches. Alphabetic ordering of items within each group
is preferred. Array items should be ordered either

alphabetically or numerically by entry and position within
the word.

The keyword XREF and XDEF should be repeated for each
declaration. The form ‘

XREF BEGIN . . . (declarations) . . . END
should not be used.

Items whose use is strictly local to a procedure, such as
induction variables or values needed across procedure
calls, should be declared local to that procedure. All
variable names should be unique within a deck.

CONTROL LIST and CONTROL NOLIST declarations
should always be matched. A comment describing what is
not being listed should always appear on the same line as

the CONTROL NOLIST statement. One standard is to

place the CONTROL NOLIST as the first line of the
~ common deck and the CONTROL LIST as the last card of

the common deck. CONTROL NOLIST should. appear
after each *CALL statement occurring in the middle of an
unlisted common deck.

All declarations that are needed in more than one
compilation unit should be declared in an Update common
deck. All code that is needed in more than one place
should be made into a procedure.

Constants should never be hard coded. Except for the use
of -1, 0 or 1, where the meaning is intuitively obvious,
DEF names or status declarations should be used instead.
If an item can take on only a few definite values, these
values and the meaning of each value should be identified
in a comment. If the values are not externally defined, a
status list should be used. If a status list defines external
data it should be clearly documented. If a status list
cannot be used then the use of DEF names for the discrete
values should be considered. Special uses of status lists,
such as assuming contiguous subranges of values, should be
clearly documented.

Only symbolic and numeric constants should be used in
DEF declarations. The use of DEF declarations to
abbreviate keywords or code is discouraged.

All left-justified zero-filled strings should be declared in
DEF declarations, and the name should be enclosed in
dollar signs ($). The suggested format for full word octal
constants is in 5-digit parcels. For example:

DEF LGO # O"14071 70000 00000 00000" #;

GLOBAL CONVENTIONS

The executable code of a main program should be the last
code in that program. Nested procedures should be
ordered alphabetically. There should be no more than one
level of nesting for procedures or functions. All .
procedure and function definitions should begin in
column 7 and be preceded by a CONTROL EJECT. The
BEGIN should also be in column 7 and should appear on
the first line after the declaration. The Update deck
name should be the same as the main program.

Self-modifying code should never be used.
Label names should be unique within a deck.

A branch should not be made into the middle of a FOR
loop.

TEST should never be used without explicitly stating the
induction variable it is testing.

An attempt should be made to keep procedures less than
two pages long.

An attempt should be made to avoid splitting code blocks
across a page boundary.

Sophisticated use of FOR loops, such as modifying the
induction variable if it is used in a STEP clause, or
modifying the STEP or UNTIL clause variables, is
discouraged. For example:

FOR I=1 STEP J
UNTIL K
DO

BEGIN

DIRRY

END

60496400 E

In this example, I, 3, and K should not be changed within
the scope of the loop. If a FOR loop with an UNTIL part
can be terminated before the UNTIL condition is met, the
loop should be rewritten with a WHILE and the exit from
the loop should be caused by a condition in the WHILE
part. Exit from any FOR loop should be caused by the
UNTIL part or by a condition for the WHILE part.

A ‘switch should be used only to imitate a CASE
statement. - All code referenced by the switch should be
enclosed with a properly indented BEGIN/END pair, and
the GOTO should precede it. The last label in the block
should be an exit label. Exit from the switch should be
through the exit label. Each section of code in the switch
body should be self-contained; one section should not fall
through to another section. A jump to another label later
in the code is permitted.

GOTO should be used only when no other alternatives
exist. If GOTO is used, it should be a forward jump,
unless a backward jump is necessary. Jumps to the exit
label of a switch are allowed when imitating a computed
GOTO statement.

The use of ENTRY procedures is strongly discouraged.

EFFICIENT CODING

The use of a variable character bead function that might
cross word boundaries should be avaided. For example:

C<1,3>CHAR[K]

where CHAR is longer than 10 characters.

The use of an associative bit vector should be considered
in preference to a compound conditional wherever
feasible. For example, instead of writing:

IF CLAS [MAMA] EQ S"DATA"
OR CLAS [MAMA] EQ S"CONS"
OR CLAS [MAMA] EQ S"TEMP"
OR CLAS [MAMA] EQ S"LOOP"

THEN

A preferable form is:

IF CKLOAD [CLAS[MAMA]]
#DATA,CONS,TEMP OR LOOP#
THEN

¢ o

DOCUMENTATION

The closing comment delimiter should always appear in
column 72 of every line containing any comments.

Block comments should have the comment delimiters in
columns 1 and 72 for every line in the comment. Blank
lines should precede and follow the comment to separate
it from the surrounding code. The comment body should
be indented to the current indentation level.

60496400 E

Comments which are on the same line as code should start
in column 36 and end in column 72. If the code extends
past column 34, two blanks should separate the end of the
code and the beginning of the comment. If the comment
is continued to another line, the beginning of the
continuation comment should start in the same column as
the original comment and nothing else should appear on
that line. A space should separate the comment delimiter
from the body of the comment. A block comment is
preferred to in-line comments that take more than two
lines. :

All nested procedures should begin with a block comment
following the BEGIN. The block comment should contain
a line with the procedure name clearly visible, and should
be preceded and followed with a comment line of minus
signs, as shown in Figure G-1.

proc name

block comments

Figure G-1. Block Comment Format

The block comment should contain information describing
the parameters, input information, output information,
and a description of important details of the processing.

A CONTROL. EJECT and the block comment for the main
procedure should precede the first line of executable code
in the main procedure, which is the last code in the
compilation unit.

A block of code should be preceded by a block comment
that describes the overall action of that block. A block is
any group of code that performs an identifiable
macroscopic function.

At the programmer's discretion, a comment can appear on
the same line as any BEGIN or END. The comment can
begin two or more spaces after the keyword BEGIN or
END and should describe the action of that block in one or
two words. In this one case, the end-of-comment
delimiter # should directly follow the body of the
comment, and not appear in column 72. For example:

IF REGMEM[T] EQ REGI
THEN
BEGIN # MATCH #

END # MATCH #

A comment is recommended for the BEGIN and END of
any FOR or IF bedy that is over one page in length. A
comment with the name of the procedure is recommended
for the END of the procedure.

TRANSPORTABLE CODE

All system-dependent characteristics should be isolated
for easy identification and eventual change. The
following characteristics are system-dependent:

® word size

® address space size

o character size

e system functions

e input/output interfaces

All system-dependent DEF declarations should be grouped
in one Update common deck.

DEF declarations should be used for system-dependent
declarations and code.

Good comments should accompany all system-dependent
code. For example, the use of RAO to terminate
parameter lists is system-dependent.

External interfaces should be designed to be as general as
possible. Users of system functions and external
input/output routines should be isolated into separate
routines, logically separated from the main code.

Bit functions should be used for numeric items, character
functions for character strings. Type should not be mixed
in bit and byte functions. Implicit conversions should not
be depended on. '

Character strings should be wused for character
information, and octal type for octal information. For
example, do not use colons or semicolons for masks, and
do not use octal representation for character items.

System-independent arrays should be used whenever
possible. :

60496400 E

PROGRAMMING SUGGESTIONS

-

COMPILER

Space required for compilation is proportional to the
number of symbols in the source program. Approximately
five words of memory are dedicated to each name in the
program, in the form of a symbol table entry.

Time required for compilation is proportional to the size
of the object program, in terms of the amount of syntax
to be scanned. Although data declarations do not
generate code, they use significant amounts of compiler
time and field length, especially data presets.

Compilation time can be further reduced by judicious use
of the compiler options such as suppression of object code
and cross-reference listings.

DEF declarations can increase readability of SYMPL
source programs and facilitate changes to them.
However, DEF declarations increase compilation time and
DEF expansions increase field length.

'OBJECT CODE

Object code can be improved by attention to the following
areas:

e Subscripts

e Arrays

o Costs of accessing data types
e FOR loops

o Data conversions

e Subprograms

e FUNC subprograms

SUBSCRIPTS

Code produced by referencing subscripted variables can be
affected by the means of expressing the subscript. For
example, an integer constant can be partially evaluated at
compile time so that one instruction is required to access
an array item (given the item is a full word); but a scalar
integer variable requires four instructions to access the
item. Thus, a reference to A 3 requires one instruction;
but A I, where I=3, requires four instructions to retrieve
the same item.

60496400 E

ARRAYS

Parallel arrays are accessed more efficiently than serial
arrays when an array entry exceeds one word. For arrays
with one-word entries, no difference in object code speed
or space is apparent. Parallel arrays, rather than serial
arrays, should be used when possible. Fixed arrays are
accessed more efficiently than based arrays, which
require a level of indirectness to access an entry.
Whenever possible, fixed arrays should be used.

COST OF ACCESSING DATA TYPES

. If an array item is a full 60-bit word, access does not

depend upon its type. For items which are not 60-bit
words, however, type and bit position assignment affect
the code required to access them, as follows:

e Signed integers are accessed more efficiently than
unsigned integers. If the item is 18 bits long, the SXi
instruction is used to access signed integers. Signed
integer items are accessed more efficiently if they
are the leftmost bits of a word.

® Unsigned integer items are accessed more efficiently
if they occupy the rightmost bits of a word rather
than the middle or leftmost bits.

® Boolean items are most efficiently accessed by
allocating the whole word or the leftmost bit of a
word rather than one bit elsewhere. Otherwise, they
are accessed as unsigned integers are accessed.

FOR LOOPS

The break-even point in code generated for in-line and
FOR loop code is three or four iterations. Of the
following sequences, the second generates fewer
instructions and runs faster:

FOR 1=0 STEP_1 UNTIL 2 DO
PWORD(I] = 0;

pworD{0] = o;
PWORD(1] = 0;
PWORD(2] = 0;

If four or more items were being set by the above
sequence, the loop would have required less code but
required more time.

In general, the less source code in the FOR statement, the
faster it will run. Of the following code sequences, the
second is. faster because the loop limit is computed and
the value stored only once:

FOR 1 =0 STEP 1 UNTIL B/C DO
PWORD[I] = K**J;

A =B/C;

D = K**J;

FORI=0 STEP 1 UNTIL A DO
PWORDII] = D;

One exception is that FOR loop execution time can be
reduced with more source code as in the following
example, where the second sequence would be faster even
though more code would be generated:

FOR =0 STEP 1 UNTIL 89 DO
PWORD(I] = 0;

FOR I =0 STEP 3 UNTIL 89 DO
BEGIN
PwWORD(1] = o;
PWORD([I+1] =
PWORD([I+2] =
END

.
’
»
2

DATA CONVERSION

Integer-to-character conversion is byte-oriented; the.

character-to-integer conversion is word-oriented. When
an integer item is converted to character mode, the
rightmost 6-bit byte is left-justified and blank-filled in
the character field; yet, character-to-integer conversion
is performed by right-justifying the right end of the last
word of the character item and zero-filling it on the left.
Character field definitions can cross word boundaries.
Arithmetic operations with character data, including
masking, make the code system-dependent because it
reduces the string to one word.

The conversions can be circumvented by the use of bit
bead functions. For example,
B<0,60>FLTINGPT=INTEGER; would cause the integer to
be stored in the floating point item without conversion.
B<0,60>CHARACTER=INTEGER also would cause the full
word to be stored in CHARACTER, not just the low-order
six bits.

SUBPROGRAMS

Formal parameters should be called by value whenever
possible. If a procedure must reference its formal
reference parameter more than once, a local variable
should be declared, set to the value of the formal
parameter, and subsequently referenced instead of the
formal parameter. Reference parameters are addressed
indirectly in the generated code; this level of indirectness

- H-2

can be overcome by evaluating the parameter once and
making it local to the procedure by storing the
parameter's value in a local variable.

FUNC SUBPROGRAMS

When the subprogram must return a result, a function
should be used rather than a procedure that returns a
value. Use of the function saves two instructions.

For example, a routine is needed to convert from integer
to display code, with the result to be stored in one of
three arrays, depending upon the section of code where
the call originates. If a function is used (as in
ARRAYWORD(I] = FUNCTIONl%INT] rather _than a
procedure (as in PROCED (INT); ARRAYWORD(I] = INT),
two SAi k instructions are saved per call. The saving is
realized because functions return their result in register
X6 rather than in a memory location.

CODING HINTS

Based array references are candidates for scratch variable
storage if referenced more than once in a sequence of
source code, since based array references are indirect.

When storing into many items of the same data structure
(array) clustered together, those that refer to the same
word of storage should be described in the same order in
which they occur.

POSSIBLE OPTIMIZATION

The SYMPL language permits the compiler to move code
to achieve optimization. SYMPL 1.2 and later versions do
not perform global flow analysis.. They do, however,
perform many local optimizations including:
compile-time computation of constant expressions,
conversion of many - multiplication operations to
shift-and-add operations, and elimination of many
redundant loads and stores. Therefore, if the program has
any OVERLAP or REACTIVE variables, they should be
declared to assure correct compilation on SYMPL 1.2 and
later versions of the compiler. See section 5 for a more
complete discussion of variable attributes.

60496400 E

INDEX

ABS function 4-5, D-16
Actual parameters
Call-by-value 4-3
DEF 5-2, 5-3
Function 4-4
Procedure 4-1
Syntax D-20
Arithmetic
" Expressions 1-6, D-9
Operators 1-5
Array
ARRAY declaration 2-3, D-13

BASED ARRAY declaration 2-11

Bead function 2-8
Definition 2-1
ITEM in array 2-4
Preset 2-8
Reactive 5-8
References 2-8
Subscripts 2-8
Attributes

Data items 2-1
Optimization 5-6

B function 4-5

BASED ARRAY
BASED declaration 2-11, D-15
Level 5-6
P function 4-6

Bead function
Array item 2-8
Bit 4-5, D-16
Character 4-5, D-16
Exchange statement 3-2
Replacement statement 3-2

Blank or space 1-1

Boolean
Constant 1-2, D-11
Data type 2-1
Expressions 1-6, D-9
Expression use

FOR statement 3-3
IF statement 3-6

ITEM declaration 2-1
Operators 1-5

Brackets
Array dimension 2-3
DEF parameter 5-3
Presetting 2-8

C function 4-5

Call
By-value parameter 4-2
Compiler 6-1
Print routines E-1
Procedure 4-1

Character
Comparison IFxx 5-4
Constant 1-2, D-11
conversion 1-6
Data type 2-1
ITEM declaration 2-1

60496400 F

Character set

CDC A-1

SYMPL 1-1, D-3
Code

Efficient G-3

Transportable G-4
Coding Conventions G-1
Comment

Conditional compilation 5-4

Conventions G-3

DEF 5-4

Delimiter 1-1, 1-2, D-5
Common

COMMON declaration 4-7, D-21

Level 5-6
Preset 5-5
Compilation
Compiler call 6-1
Conditional 5-4
Debugging 5-1
SYMPL 6-1
Constant 1-2, D-10
CONTROL statement 5-4, D-22
Controlled statement 3-3
Conversion
Expressions 1-6
FOR statement expressions 3-3
ITEM declaration 2-1
Replacement statement 3-2

Debugging

$BEGIN/$END 5-1, 6-1

Conditional compile 5-4

TRACEBACK 5-8
Deck structure . 6-4
Declarations

Array 2-3

Conventions G-2

Label 3-1

Scalar 2-1

Scope of 4-1

STATUS 2-2

SWITCH 2-2
DEF

Comment 5-4

Conditional compilation 5-4

Declaration 5-2, D-8

References 5-2, D-9
Delimiters 1-1
Diagnostics B-1
Dimension

Array 2-3

Preset array 2-8
DISIOINT 5-6
Documentation G-3

ECS 5-6
Entry
Array 2-3
Multiword array 2-9
Entry point
Alternate 4-7
ENTRY declaration 4-7, D-20
XDEF declaration 4-7

/ Index-1

Error messages B-1
Exchange statement 3-2, D-17.
Expressions
Arithmetic 1-6
Boolean 1-6
External
References XREF 4-8
Subprograms 4-1

Fastloop

FASTLOOP 5-5

Flowchart 3-3
Floating-point (see Real)
FOR statement 3-3, 5-5, D-18
Formal parameter

DEF 5-2

Procedure 4-2

Syntax D-20
FORTRAN

Calling sequence 5-5, 6-2

FTNCALL 5-5

Print routines E-1

TRACEBACK 5-8
FPRC 4-1
Function

ABS 4-5

Bead 4-5

FUNC declaration 4-4

LOC 4-6

P 4-6

Status 1-4

GOTO statement 3-5, D-18

Identifier 1-2
IF statement 3-6, D-18
IFxx test 5-4
INERT 5-6
Input/output FORTRAN PRINT E-1
Integer
Constant 1-2, D-10
Data type 2-1
ITEM declaration 2-1
ITEM
Array declaration 2-4
ITEM declaration 2-1, D-12
Scalar declaration 2-1

Label
GOTO statement 3-5
LABEL declaration 3-1, D-19
Name 3-1, D-17
Switches 2-2
LCM 5-6
LEVEL 5-6
Listing
Control
Compiler call 6-2
CONTROL statement 5-4
Maps 6-5
LOC function 4-6, D-16
Logical expressions 1-7
Loop (see Fastloop, Slowloop)

Index-2

Macro (see DEF)

Main program 4-1
Maps 6-5

Marks 1-1

Masking 1-6
Memory residence 5-6
Metalanguage D-1
Module 6-1

Object code list
CONTROL statement 5-4
O parameter 6-3
Operators 1-4
Optimization 5-6
OVERLAP 5-6, 5-7
OVERLAY 6-1

P function 4-6, D-15
Pack switch 5-5, 6-1
Parallel array

Declaration 2-6, 2-7

Storage 2-6, 2-8
Pointer variable

BASED ARRAY 2-11

LEVEL 5-6

P function 4-6, D-15
Preset

Array 2-8

Common 4-7, 6-3

Scalar 2-1
PRINT/PRINTFL E-1
Procedures

Call D-18

Declaration 4-1

FPRC 4-1

PROC 4-2

REACTIVE 5-6
Real

Constant 1-4, D-12

Data type 2-1

ITEM declaration 2-1
Relational expression 1-7
Replacement statement 3-2, D-17
Reserved words 1-3
RETURN statement 3-6, D-19

Scalar 2-1

SCM 5-6

Scope of identifiers
Declarations 4-1
Label 3-1

Serial array
Declaration 2-6, 2-7
Storage 2-6, 2-7

Slowloop
Flowchart 3-3
SLOWLOGOP 5-5

Statement
Compiler-directing 5-1
Exchange executable 3-2
Replacement 3-2
Rules for layout G-1
WithinIF 3-6

60496400 F

Status
Constant 1-4, D-11
Data type 2-1
Function 1-4
ITEM declaration 2-1

STATUS declaration 2-2, D-13
STOP statement 3-6, D-19
Storage format .

Arrays 2-3

Calculation for arrays 2-10

Replacement statement 3-2

Scalars 2-1

Overlapped 5-7

Reactive 5-8

XDEF 4-7
Subprogram

Communication 4-7

Compilation 6-1

Declaration 4-1, D-19
Switch

GOTO statement 3-5

Packing 5-5, 6-1

60496400 E

Range check 6-1

Status switch 2-2

SWITCH declaration 2-2, D-17
SYMPL call 6-1
Syntax

Check 6-3
Metalanguage D-1
Used in text 1-1

TERM statement 4-1, 5-9, 6-1
TEST statement 3-5, D-18
TRACEBACK 5-8
Transportable code G-4

Truth tables 1-5

XDEF declaration 4-7, D-

22
XREF declaration 4-8, D-21

$BEGIN/$END 5-1

Index-3

CUT ALONG LINE

AA3419 REV. 4/79 PRINTED IN U.S.A.

G2

COMMENT SHEET

MANUAL TITLE: SYMPL Version 1 Reference Manual

PUBLICATION NO.: 60496400

NAME:

REVISION: F

CONTROL DATA
CORPORATION

COMPANY:

STREET ADDRESS:

CITY:

STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please

include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES

‘OLb

R

FOLD

TAPE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION

Puyblications and Graphics Division
215 Moffett Park Drive
Sunnyvale, California. 94086

-

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD

TAPE

CLIT AIONCC HINF

