
CJ I:\ CONT"OL DATA
\!:I r::I CO~O~TION

NOS VERSION 1
MODIFY
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170

MODELS 171, 172, 173, 174, 175
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

60450100

Name

*BKSP
*BKSP
*CALL
*CAL LALL
>!<COMMENT
*COPY
*COPYPL
*CREATE
*CWEOR
*DECK
*DEFINE
*DELETE
*D
*DELETE
>:<D
>!<EDIT
*ELSE
*ENDIF
*ID ENT
*IF
*IF CALL
*IGNORE
*INSERT
*I
*INWIDTH
>!<MODNAME
*MOVE
..,a..l\TTT.",...... AT T
-··.L'l.Lr '-'.t'l.Li.LJ

*NOSEQ
*OPLFILE
*PREFIX
*PREFIXC
*PURDECK
*PURDECK
>:<READ
*READ
*READ
*READ PL
*READ PL
*RESTORE
*RESTORE
*RETURN
*REWIND
>:<SBQ
*SKIP
*SKIP
*SKIPR
*UNYANK
*UNYANK
*UPDATE
*WEOF
*WEOR
*WIDTH
*YANK
>:<YANK
,:, I

ALPHABETIZED DIRECTIVES INDEX

file
file, n
deckname
string
comment
file, deckname
file, deckname
file

deckname
name
c
c
cl,c2
cl,c2
pl, P2' ... ' pn

mod name
atr, name, value
name, deckname
dname
c
c
n
modname

Parameters

r1~~m-J----J----J-.-..-- ...l----
~~ ... ~~J.- c;~~ ':':~~~.!~-~!, UJ.J.a.J.UC21 UUCl..LJ.J.C3 , •••I UUd...llltn

Ili:UUt::, Ut::l.:KIJ.a!Ilt::

file 1,file2, ••• ,filen
x
x
dname 1,dname

2
, ••• ,dnamen

dname • dnameb
file a
file, deckname
file,>:'
dname
dname, c 1, c 2
c
c1,c2
file 1• file

2
, ••• , file

file 1• file2 •••• , file~

file
file, name
file, rname
mod name
modname, *

n
modname
modname, >:<
comment

Page Number

5-2
5-2
6-1
6-2
6-2
3-3
3-2
3-2
6-3
4-2
7-1
4-2
4-2
4-2
4-2
4-4
6-2
6-2
4-1
6-2
6-1
4-3
4-3
4-3
7-1
4-2
7-2
6-i
3-3,6-3
3-2
7-1
7-1
4-3
4-3
5-1
5-1
5-1
5-1
5-1
4-2
4-2
5-2
5-2
6-3
5-2
5-2
5-2
4-3
4-3
7-2
6-3
6-3
3-3, 6-2
4-3
4-3
7-1

REVISION RECORD
REVISION DESCRIPTION

A Manual released.

(3-8-76)

B Revised to update the manual to NOS 1. 2 at PSR level 439, and to make typographical and

(12-3-76) technical corrections. New directives IF• ELSE, ENDIF • and NIFCALL are added. The

previous DEFINE directive has a new parameter added that allows a value to be associated

with a defined name. This edition obsoletes the previous edition.

c Revised to update the manual to NOS 1. 2 at PSR level 452, to reformat error messages, and to

(7-15-77) make typographical and technical corrections. Support of CDC CYBER 170 Series, Model 171 is

also included.

!Publication No.
60450100

REVISION LETTERS I, 0, Q AND X ARE NOT USED

c 1976, 1977
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - B-2 c
Inside Front B-3 c

Cover - B-4 c
Title Page - B-5 c
ii c C-1 A
; ; ; I; 'f.T c
;1~· c

C-2 c
C-3 A

vii B C-4 A
viii c Index-1 B
1-1 B Index-2 c
1-2 B Index-3 B
1-3 c Comment
1-4 B Sheet c
2-1 c Inside Back
3-1 B Cover -
3-2 c Back Cover -
3-3 B
3-4 c
3-5 c
3-6 c
4-1 A
4-2 B
4-3 A

I I
4-4 B
4-5 A
4-6 A
5-1 B
5-2 B
5-3 A
5-4 A
6-1 c
6-2 B
6-3 B I
6-4 B
6-5 B
6-6 B
7-1 B
7-2 B
7-3 A
8-1 c
8-2 B
8-3 A
9-1 B
9-2 A
9-3 B
9-4 B
10-1 A
10-2 A
10-3 B
10-4 A
10-5 A
10-6 A
10-7 A
10-8 B
10-9 A
10-10 A
10-11 A
A-1 A
B-1 c

60450100 c iii /iv

PREFACE

INTRODUCTION

This manual describes the program library mainte­
nance utility Modify. Modify is part of the Network
Operating System (NOS) for CONTROL DATA®
CYBER 170 Series. Models 171, 172. 173, 17 4,
and 175 Computer Systems; CDC®CYBER 70 Series,
Models 71, 72, 73, and 74 Computer Systems; and
CDC®CYBER 6000 Series Computer Systems.
Modify is used to maintain and update source files
that are on libraries in a compressed and symbolic
format.

The introduction describes features of l'vfodify and
presents an overview of its operation. The remain­
ing sections describe the directives that the user
supplies to control library creation and editing.
Because the advantages of Modify are best utilized
by a programmer with a large volume of source
program text or· symbolic data, the manual is writ -
ten for the experienced NOS applications or systems
programmer. Wherever possible, Modify usage is
illustrated through examples.

Appendix C describes the NOS utility OPLEDIT.
which provides the capability to delete and recon­
struct previous modification sets.

60450100 c

RELATED PUBLICATIONS

For further information concerning Modify and NOS.
consult the following manuals.

Control Data Publication

NOS Modify Instant

NOS Reference Manual,
Volume 1

NOS Applications
Prograrnmer 's Instant

NOS Time-Sharing User's
Reference Manual

NOS Terminal User's
Instant

DISCLAIMER

Publication Number

60450200

60435400

60436000

60435500

60435800

This product is intended for use only as described
in this document. Control Data cannot be respon­
sible for the proper functioning·of undescribed
features or parameters.

v/vi •

CONTENTS

1. INTRODUCTION 1-1 6. COMPILE FILE DIRECTIVES 6-1

Modify Organization 1-1 CALL - Call Common Deck 6-1
Files Used to Initialize Program IFCALL - Conditionally Call Common

Library 1-1 Decks 6-1
Directives 1-1 NIFCALL - Conditionally Call Common
Output Files 1-2 Decks 6-1

Modify Execution 1-3 CALLALL - Call Related Common Decks 6-2
Initialize Program Library 1-3 IF - Test for Conditional Range 6-2
Read Modification Directives 1-3 ELSE - Reverse Effect of IF 6-2
Incorporate Changes/Write Output ENDIF - Terminate Conditional Range 6-2

Files 1-3 COMMENT - Create COMMENT Line 6-2
Features 1-3 WIDTH - Set Line Width on Compile File 6-2
Modify Examples 1-3 NOSEQ - No Sequence Information 6-3
ASCII Mode Considerations 1-4 SEQ - Include Sequence Information 6-3

WEOR -Write End of Record 6-3

DfuECTIVE FORMAT
CWEOR - Conditionally Write End of

2. 2-1 Record 6-3
WEOF -Write End of File 6-3

Line Identification 2-1 Compile File Directive Examples 6-3

3. INITIALIZATION DIRECTIVES 3-1 7. SPECIAL DIRECTIVES 7-1

Preparing the Source File 3-1 I - List Comment 7-1
CREATE - Create Program Library 3-2 PREFIX - Change Modify Directives

,OPLFILE - Declare Additional OPL Files 3-2 Prefix 7-1
COPYPL -Copy Program Library to PREFIXC - Change Compile File

Scratch 3-2 Directives Prefix 7-1
COPY -Copy Program Library to OPL 3-3 !NWIDTH - Set Width of Input Text 7-1
WIDTH - Set Line Width on Compile File 3-3 DEFINE - Define Name for Use by IFCALL.
NOSEQ - No Sequence Information 3-3 NIFCALL. IF 7-1
Initialization Directive Examples 3-3 MOVE - Move Decks 7-2

UPDATE - Update Library 7-2
Special Directive Examples 7-2

4. MODIFICATION DIRECTIVES 4-1

ID ENT - Identify New Modification Set 4-1 8. MODIFY CONTROL STATEMENT 8-1
DECK - Identify Deck to be Modified 4-2
MODNAME - Identify Modification Set to

be Modified 4-2 9. MODIFY FILE FORMATS 9-1
DELETE - Delete Lines 4-2
RES TORE - Reactivate Lines 4-2 Source Decks and Files 9-1
INSERT - Insert Lines 4-2 Source Decks Prepared by User as
YANK - Remove Effects of Modification Set 4-3 Input to Modify 9-1
UNY ANK - Rescind One or More YANK Source Files Generated by Modify 9-1

Directives 4-3 Program Library Files 9-1
PURDECK- Purge Deck 4-3 Deck Records 9-1
IGNORE - Ignore Deck Modifications 4-3 Directory Record 9-3
EDIT - Edit Decks 4-3 Directives File 9-4

Selective Edit Mode 4-4 Compile File 9-4
Full Edit Mode 4-4 Scratch Files 9-4
Update Edit Mode 4-4

Modification Directive Examples 4-4
10. BATCH JOB EXAMPLES 10-1

5. FILE MANIPULATION DIRECTIVES 5-1 Create Program Library 10-1
Modify Program Library 10-2

READ - Read Alternate Directives File 5-1 Move Text 10-3
READPL - Read Program Library 5-1 Read Directives from an Alternate File 10-4
BKSP - Backspace File 5-2 YANK and UNYANK Modification Sets 10-4
SKIP - Skip Forward on File 5-2 Purge Decks 10-5
SKIPR - Skip Forward Past Record 5-2 Change the Directives Prefix Character 10-5
REWIND - Rewind Files 5-2 Use of the Z Parameter 10-7
RETURN - Return Files to System 5-2 Sample FORTRAN Program 10-8
File Manipulation Directive Examples 5-2

60450100 B vii

APPENDIXES

A STANDARD CHARACTER SET A-1 c 0 PL EDIT UTILITY C-1

I B OUTPUT LISTING AND MESSAGES B-1

INDEX

FIGURES

1-1 Simplified Modify Organization 1-2 3-4 Batch Job Creating Program Libraries 3-6
1-2 Modify Execution from Batch 1-4 4-1 Modification Directive Examples 4-4
1-3 Modify Execution from Time-Sharing 5-1 File Manipulation Directive Examples 5-3

Terminal 1-4 6-1 Compile File Directive Examples 6-4
3-1 Modify Source Deck 3-1 7-1 Special Directive Examples 7-2
3-2 Deck with Several Programs 3-2 9-1 Library File Format 9-1
3-3 Initialization Directive Examples 3-4

viii 60450100 c

INTRODUCTION '

Modify is used by the programmer to maintain text
(large programs or data files) in a compressed form
allowing him to easily change individual lines within
the text. Modify transforms text into a specially
formatted file whose structure enables Modify to
m~ke requested changes (or rescind previously
made c~anges) efficiently. Such a file, a program
library file, is in program library or Modify for­
mat. Once this file has been established, the user
need only specify to Modify the changes he is making
to the text. Modify then performs the requested
changes and produces several files of different types
which reflect the changes. One of these files is the
compile file, a text file acceptable to language
processors (for example, FORTRAN, BASIC, or
COMPASS). This file can also be directed to an
output device for listing or punching.

MODIFY ORGANIZATION

Modify can be organized into three main functional
elements:

• Files used to initialize the program .library -
these contain the program text from which
Modify establishes the program library, the
body of text upon which modification direc -
tives act to effect user-requested changes
to the text.

• Directives - these are user-specified in­
-structions to Modify which establish the
program library, produce changes in the
text, perform various utility functions upon
files used by Modify, and/or alter certain
operational characteristics of Modify.

• Output files - these are produced by Modify
after it performs the instructions specified
by directives. Three of these files are up­
dated versions (in different formats) of the
original text; the fourth is a report of
actions taken during Modify' s execution.

Refer to figure 1-1 during the following discussion
of the elements of Modify organization.

FILES USED TO INITIALIZE
PROGRAM LIBRARY

These files contain program text in one of two forms:
source format or program library format. Files
used to initialize the program library may contain
several program and/or subroutine decks, kept as
separate logical records on the file. The user can
designate a deck containing frequently used lines
(such as a group of FORTRAN COMMON statements)
as a common deck. The user can then direct Modify

60450100 B

to insert the text of a common deck within the pro­
gram text wherever a CALL directive appears with­
in the program text (refer to section 6 for furtl;ler
information on the CALL directive).

Source-format files are coded text files, typically
prepared either as a card deck or through the text­
file creation facilities of the NOS time-sharing
subsystem (refer to the NOS Time-Sharing User's
Reference Manual). All pre>gram library files begin
as source-format files, which Modify processes to
create program library files.

A file in program librarv format is defined as fol-
lows. - - -

• It is compressed (Modify has replaced
three or more consecutive blanks within a
line with special codes).

•

•

Each line of text has been assigned, by
Modify, a sequence number and name,
thereby allowing the user to refer to individ­
ual lines when he wishes to change the
text on subsequent Modify runs.

It contains a directory, built by Modify,
which serves as an index of the decks on
the program library file.

DIRECTIVES

The user can control Modify execution by specifying
directives to Modify. These directives (compile
file directives excepted) form a logical record on a
file which the user specifies on the Modify control
statement. If Modify is being executed from a time -
sharing terminal, Modify prompts the user for di­
rectives, unless he has specified otherwise on the
Modify control statement.-

The user may direct Modify to begin reading direc­
tives from an alternate file and position this file
(or other files local to his job) with file manipulation
directives. Certain files (refer to section 5) cannot
be operated on by these directives.

Initialization directives declare which files Modify
is to use to initialize the program library. They
indicate whether the file is in source format (thereby
causing Modify to make a copy of it in program li­
brary format) or is in program library format.

Directives which cause text to be changed fall into
two groups: modification directives and compile
file directives.

Modification directives specify line-by-line altera­
tions (insertion; deletion or deactivation; and reacti­
vation) for Modify to make. They also specify
which decks Modify should copy to its output files
with the specified modifications included.

1-1

Files used to
initialize
program iibrary

C Source text

file 1

How established
as part of
program I l brarj

I
Previously
generated
program
library file

P parameter on Modify control statement

file 2

Previously • OPLFILE
generated
program
II brary file

file 3 •

• other

... deck 1 directory
deck 2

file 1

deck 3
deck 4
deck 5

directory
file 2

deck 6

deck 7
directory
file 3

directories

Modify control
statement
apticn used

c

N

s

..... -

....

~

.....

~

Modify
output
files

Compile
file

~

-'

~

New program
library file

........ -'

c "')

Source -text ___,
format file

..... -'

files appropriate initialization directives

{ other decks for other

• files

Modification

{
deck m-1

L statistics
~

listing COPYPL or COPY
deck m directory

file n ~
I
L
------~ ---- :....Ji

~

r::: :::i
Directives
and Insertion Directives file
text (I parameter on

...... .-J Modify control
statement)

Figure 1-1. Simplified Modify Organization

Compile file directives are part of the text on the
program library; thus, compile file directives were
either on a file used to initialize the program library,
or were inserted by modification directives. An
example of a compile file directive is the CALL·
directive.

Modify includes many other directives providing
extended features. These primarily affect the op­
erating characteristics of Modify which are described
in section 7.

OUTPUT FILES

Modify produces several files as output, all of which
are optional. The user specifies these files through
options on the Modify control statement.

1-2

The compile file is a text file with user-specified
modifications incorporated into it. It may be used as
input to a language processor, directed to an output
device such as a printer or card punch, or used as
data for an applications program.

The new program library file contains the same up­
dated text as the compile file, only in program li­
urar-y format. Thus, M:odify can process this file
directly on subsequent Modify runs.

Modify produces a list of text incorporated into the
program library, details the status of the program
library and the other files output by Modify, and
notes errors and other significant events occurring
during Modify execution.

The source-text output file contains updated text
similar to that of the compile file. Hm,vever,

60450100 B

compile file directives on the program library have
not been removed or acted upon by Modify.

MODIFY EXECUTION

Modify begins execution as a result of the operating
system interpreting a Modify control statement.
Modify execution then progresses in three phases:

• Initialize program library

• Read modification directives

• Incorporate changes/write output files

INITIALIZE PROGRAM LIBRARY

Durlng this phase, Modify reads initialization di­
rectives (which must precede modification direc-
tives) from the directives file to prepare the program
library. The first file to be included in the program li­
brary is the file declared on the Modify control
statement (P parameter); refer to section 8. Other
files declared by initialization directives are logi-
cally merged with this file to form the program
library. If the initialization directive specifies
that a file is in source-text format, Modify converts
it to a file in program library format before merging
it with the program library.

The initialization phase ends when Modify encounters
the first modification directive. File manipulation
directives do not terminate the initiaiization phase.

READ MODIFICATION DIRECTIVES

During the second phase, Modify reads the remaining
direct.ives on the directives file and stores any new
text for insertion during the final phase. The time­
sharing user is prompted for directives by Modify
at his terminal. In batch usage. the file containing
the directives is specified on the Modify control
statement. This defaults to the job input file. An
alternate directives file may be specified by the ap­
propriate file manipulation directive (refer to
section 5).

INCORPORATE CHANGES/WRITE
OUTPUT FILES

During the final phase, Modify performs the re­
quested changes on a deck-by-deck basis, incorpor­
ating them into the output files requested by the
Modify control statement. Each inserted line is
assigned a modification name, specified by a modi­
fication directive (refer to section 4), and a se­
quence number generated by Modify. These are
used in later Modify runs to make further changes
to the text. All lines having the same modification
name comprise a modification set.

60450100 c

This phase can be initiated either by Modify inter­
preting an EDIT directive (refer to section 4) on
the directive file, or by the presence of a Modify
control statement option specifying that this phase
should be initiated by Modify after it exhausts the
directive file (refer to section 8).

FEATURES
Features of Modify include:

• Formatting of text files to facilitate line­
by-line modification.

• Insertion, deletion, and restoration of
previously deleted lines according to line
sequence numbers.

•

•

•

•

•

Facilities for rescinding one or more
groups of changes (modification sets) pre­
viously applied to text, thereby preserving
original appearance of text.

Replacement of often -used groups of lines
by one-line calls for their insertion.

Facilities for limiting range of modifications
to specified decks.

Generation of a file in text format suitable
for input to processors such as compilers
and assemblers.

Execution from either batch-origin or time­
sharing jobs.

• Processing of directives from an alternate
file.

• Comprehensive statistical output noting any
changes effected during the run and pre -
senting the status of the program library.

• Support of both 63- and 64-character sets.

MODIFY EXAMPLES

Examples in this manual are for illustrative purposes
only. These examples are neither the most efficient
nor necessarily recommended methods of using the
Modify directives.

Figure 1-2 details a job submitted to local or remote
batch and figure 1-3 illustrates the same job entered
from a time-sharing terminal. The user need not
be concerned with the meaning of directives or of
parameters on the Modify control statement at this
point. Instead, he should compare the structure of
the two jobs.

Subsequent examples in this manual (with the excep­
tion of section 3 and section 10, Batch Job Examples)
depict only jobs entered from a time-sharing
terminal.

The examples pertaining to a group of directives I
immediately follow the discussion of those direc­
tives. Some of the files created and modified in
an example have been retained and used in the
succeeding example.

1-3

JOBMOD.
USER{USERNUM,PASSWRD,F?w~!LY)
CHARGE(CHARNUM,PROJNUM)
GET(MAINP.)
COPYSBF(MAINP)
MODIFY(P=O,F,N)
SAVE (NPL=MAINPL)
--EOR-- ~----------------_Input directives for Modify statement.
*REWIND MAINP} ~
*CREATE MAINP
--EOI-- ------------------{~nd-of-information is 6/7/8/9 multiple punch

m column 1.

Figure 1-2. Modify Execution from Batch

batch ----------------------After logging in,, user requests batch subsystem.
$RFL,B.
/old,mainp
/lnh,r
DECK!
*** MAIN PROGRAM

PROGRAM MAIN(OUTPUT)
PRINT*,"BEGIN MAIN PROGRAM.•
CALL SUBl
PRINT*,.END MAIN PROGRAM."
STOP
END

--EOR-­
DECK 3
*** EMPTY DECK

{
User specifies (l=O) indicating that be does not wish

_______,.._ to receive Modify output.

--EOR--
/mod ify, p=0, f, n, 1=9 {Input directives are requested and entered
? *rewind mainp} .._ _____________ immediately following Modify statement. Null
? *create mainp input line (carriage return only) terminates
? input.

MODIFICATION COMPLETE.
/save,npl=mainpl

-----------{Program notifies user that it has completed
modification. -

Figure 1-3. Modify Execution from Time -Sharing Terminal

ASCII MODE CONSIDERATIONS
Several problems may arise when using Modify from
a time -sharing job while the terminal is in full ASCII
cha:racter set mode. Refer to appendix A of the NOS
Reference Manuai, voiume i, ior a description of
ASCII character sets.

Directives entered interactively from the terminal,
or those in an alternate directive input file, must
not contain ASCII characters with escape codes;
that is, directives must be entered in all uppercase
characters. Modify does not recognize lowercase
directives that contain escape codes.

1-4

When creating a program library, several precau­
tions should be taken. While a source file can con -
tain full ASCII characters, all deck names and
compile file directives must be in full uppercase (no
escape codes). Care should also be taken when
entering source lines in full ASCII mode. Since each
character may actually occupy 12 bits (escape code
and character), what appears to be a line width of
75 characters, for example, may actually be 150
characters. Modify does not allow line widths
greater than 100 6-bit characters.

60450100 B

DIRECTIVE FORMAT 2

Directives allow the user to create libraries and
extensively control and direct the correction and
modification process. File initialization directives
identify old program libraries and source decks to
be placed on the new program library. Modification
directives identify the text to be inserted. set pa­
rameters of the modification process. and inform
Modify of insertions. deletions. and other correc­
tions. File manipulation directives allow user
control of the input files. Compile file directives
can be in source decks originally or can be inserted
during a Modify run. These directives are manipu­
lated much like source lines during the creation.
updating. and correction phases but are recognized
when the compile file is written.

A directive has the following format.

dirname

The prefix character is in
column 1. It is initially de­
fined by Modify as an asterisk.
but may be changed with
PREFIX and PREFIXC direc­
tives. In this manual. the
asterisk is used as the prefix
character.

The directive name starts in
column 2. It is terminated by
one or more blanks or a sepa­
rator (for example. a comma).

Optional directive parameters.
Numeric parameters are deci­
mal.

The directive name and parameters are separated
by any character that has a display code value of
55a or greater; that is (assuming 64-character set).
a character other than:

I :A-Z0-9+->:'/()$=

60450100 c

Some directives require specific separators. No
embedded blanks are permitted within a parameter.
However. any number of blanks can be between the
directive name and the first parameter or between
two parameters. provided the entire directive does
not exceed 72 columns.

LINE IDENTIFICATION

The modification directives DELETE. INSERT. and
RESTORE. and the file manipulation READPL direc­
tive require line identifiers. These identifiers can
be in either the complete or abbreviated form.

The complete format of a line identifier is:

niodname.number

modname.

number

1- to 7 -character name of a
modification set or deck. A
period terminates the modifi­
cation name.

Decimal ordinal (1 to 262143)
of the line within the correc­
tion set or deck. Any char­
acter other than 0 through 9
terminates the sequence
number.

The abbreviated form of a line identifier is:

number

When only the number is used for line identification
(modification name is omitted). Modify uses the name
from the MODNAME directive or the most recent
DECK directive.

2-1

INITIALIZATION DIRECTIVES 3

Modify initialization directives are placed on the
directive file and precede all directives other than
file manipulation directives. They are:

CREATE

OPLFILE

COPY

COPY PL

WIDTH

NOSEQ

Converts source decks to
program library format for
modification.

Declares additional program
library files as input.

Copies one or more records
from named file to old program
library.

Copies one or more records
from named file to an internal
scratch file which is logically
merged with program library.

Defines the number of columns
preceding the sequencing in­
formation on the compile and
source files; can occur any­
where in directives file.

Specifies no sequence infor­
mation on compile file.

CREA TE, OPLFILE, COPY, and COPY PL are il:­
legal after the first use of modification directives.
WIDTH and NOSEQ can be processed as compile
file directives.

When a second deck of the same name is introduced
during initialization .. the second deck takes prece­
dence. In directory list output, the name of a re-
placed deck is enclosed in parentheses. ·

~
PREPARING THE SOURCE FILE

Before Modify can create a program library, the
user must prepare the source file by assigning a
deck name to each record of the source file and by
identifying those decks that are to be common decks.
The deck name must be the first line of the source
deck. A 1- to 7-character deck name begins in
coiumn 1. Legal characters are:

A through Z 0 through 9 + - >:' I () $ =

The second line of the source deck can identify the
deck as common. To do so .. it must contain the
word COMMON in columns 1 through 6. An end-of­
record terminates the deck. A set of decks is ter­
minated by an end-of-file (6 / 7 / 9 multiple punch in
column 1 for batch origin jobs) or end-of-information.

Figure 3-1 illustrates a typical Modify source deck.

Usually a deckname (optionally followed by a
COMMON) precedes each program or subprogram.
However. more than one subprogram may be in­
cluded in a deck as is indicated in figure 3-2. A
user might group two programs if modification of
one requires reassembly or recompilation of both
programs.

DECKl ~----------- Name of deck

*CALL ~~~~AM x I
END

-EOR- -------------End-of-record terminates deck

Source deck

DECK2 Name of deck

COMMON Declares deck as common

COM:MON/A/AI

COMMON/Z/Z

Source deck

-EOI- ~------------- End-of-information terminates final deck

Figure 3-1. Modify Source Deck

60450100 B 3-1

F1RST l) ID ENT FIRST

~ Program one I
END J
ID ENT SECOND I ~rogram two

First deck

END
-EOR-

FDATA
COMMON

I DATA 0
DATA 0 Second deck
DATA 0

·EOI-

Figure 3-2. Deck with Several Programs

CREATE - CREATE PROGRAM LIBRARY

When Modify encounters this directive, it writes
the contents of the named file from its current
position until it encounters an end-of-file onto a
scratch file in program library format with a di­
rectory. CREATE provides a means of initially
creating a pro_gram library for subsequent modifi­
cation, -for adding decks to the program library. or
for replacing decks on the program library. t

Format:

file Name of file containing one or more
source decks. A format error oc -
curs if the name of the file is
omitted from the directive. This
file must be local to the user's job.

OPLFILE - DECLARE ADDITIONAL
OPL FILES

I The OPLFILE directive specifies additional files,
already in program library format, that Modify log -
ically merges with any existing program library.
The existing library is made up of the old program
library declared on the l\1odify control statement
(P parameter) and/or other program library files
established internally by CREA TE or COPY PL. t

The total number of files declared by OPLFILE
directives cannot exceed 20 files. Additional files
are ignored with the message:

TOO MA NY OPL FILES.

Format:

*OPLFILE filep file 2, ••• , filen

file. Names of one or more files in pro-
1 gram library format to be merged

logically with the existing program
library.

COPYPL - COPY PROGRAM
LIBRARY TO SCRATCH

The COPYPL directive copies records (decks) al­
ready in program library format to an internal
scratch file which Modify logically merges with any
existing program library. t Modify builds a di­
rectory for this file as it is copied, ignoring any
existing directory on the file from which the copy is
made. All or part of the file can be copied. The
file may reside on either mass storage or magnetic
tape. Modify ignores all records on the file which
are not in program library format.

Format:

':'COPYPL file, deckname

file Name of file containing decks
in program library format,
~Nith or without directory, and
with or without other records in
nonprogram library format.

deckname Optional; name of last deck
(record) to be copied. If deck­
name is omitted from directive,
or is not found on file, Modify
copies all decks from the file
starting at the current file
position.

t If the resulting program library contains two or more decks having the same name, the last one introduced
to Modify takes precedence; that is, the previous deck is logically replaced.

3-2 60450100 c

COPY - COPY PROGRAM
LIBRARY TO OPL

The COPY directive performs the same functions
as the COPYPL directive, with the following differ­
ences:

• The records (decks) are copied to the old
program library file declared on Modify
control statement (P parameter). If P=O
is specified on the Modify control state­
ment, the use of the COPY directive is
not allowed.

• Modify performs an EVICT on the old pro -
gram library file before the copy takes
place. Hence., this file (if it already exists)
should not contain any useful information.
See the NOS Reference Manual, volume 1,
for a description of EVICT.

• COPY can be preceded only by file manip­
ulation directives.

• Only one COPY directive is allowed for
each Modify execution.

COPY is useful when copying all or part of a pro­
gram library residing on magnetic tape to a mass
storage device, since the resulting program library
file may be saved as a permanent file without having
Modify create a new program library. See the NOS
Reference Manual, volume 1, for a description of
permanent file control statements.

Format:

*COPY file, deckname

file Name of file containing decks in
program library format, with
or without directory, and with
or without other records in
nonprogram library format.

deckname Optional; name of last deck
(record) to be copied. If deck­
name is omitted from directive,
or is not found on file, Modify
copies all decks from the file,
starting at the current file
position.

60450100 B

WIDTH - SET LINE WIDTH ON
COMPILE FILE

The WIDTH directive allows the user to set the
width of lines prior to the modify program library
and write compile phase. The last (or only) WIDTH
directive encountered on the directives file is used
during the compile phase until a compile file WIDTH
is encountered. If text is being inserted, the WIDTH
directive is left in the text stream and is later proc -
essed as a compile file directive. WIDTH can occur
anywhere in the directive file.

Format:

*WIDTH n

n Number of columns preceding se­
quence information on compile file
and source file. Modify allows a
maximum of 100 columns. During
initialization of Modify., width is
preset to 72.

NOSEQ - NO SEQUENCE INFORMATION

The NOSEQ directive allows the user to set the no
sequence flag prior to the write compile phase.
When no sequencing is requested, Modify does not
include sequence information on the compile file.
A SEQ directive encountered during the write com­
pile phase clears the no sequence flag. If text is
being inserted, the NOSEQ directive is inserted into
the text stream and processed as a compile file
directive.

FORMAT:

*NOSEQ

INITIALIZATION DIRECTIVES EXAMPLES

Figures 3-3 and 3-4 illustrate the creation of pro­
gram libraries and the use of several ig.itialization
directives. Figure 3-3 is a detailed terminal ses­
sion; figure 3-4 represents the same job formatted
for batch input. The user can submit the batch or­
igin job to obtain and examine output produced by
Modify and FORTRAN

3-3

batch,4 000 ~---------------{User selects batch subsystem, requesting
$RFL, 45 00. 45000 words of CM.
/old,ma np
/lnh,r
DEC Kl
*** MAIN PROGRAM

PROGRAM MAIN (OUTPUT) { Listing of source file, showing end-of-record
PRINT*, "BEGIN MAIN PROGRAM."~---- marks, to be used to create program library.
CALL SUBl Notice required deck names.
PRINT*,"END MAIN PROGRAM.•
STOP
END

--EOR--
DECK3
*** EMPTY DECK
--EOR--

1
/modify ,p=0, 1=0, f ,n=mainpl ,c=0 ~{· M.odify statement to create pro~ram library
? •create mainp ------- with name MAINPL. MAINPL LS the result
? of converting the source text file MA INP to

MODIFICATION COMPLETE. program library format.
/catalog,mainpl,r

CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM OATE

1

1 DECKl
2 DECK3
3 OPL

4 * EOF *
CATALOG COMPLETE.

/save,mainpl
/get,subl
/COfJYCf ,subl
DECK2

OPL (64) 30 4476 76/01/22.
OPL (64) 4 1725 76/01/22.
OPLD ~1310 76/01/22.

SUM • 41 I The catalog utility is a convenient means of
determining the decks and their types that
were written on the program library. Refer

- to the NOS Reference Manual. volume 1. for
information on the CATALOG control state­
ment.

*** SUBROUTINE 1
SUBROUTINE SUBl
PRINT*,"ENTER SUBROUTINE l.".---------­
CALL SUB2

Another source deck that the user wishes to
maintain on a separate program library.

PRINT*,"EXIT SUBROUTINE l."
RETURN
END

END OF INFORMATION ENCOUNTERED.
/rewind,subl
$REWIND,SUB1.
/modify,p•8,!•H,f,n•altpl1,c=~ --------------------------­
"/ •create subl
?

MODIFICATION COMPLETE.
/catalog,altpll,r

CATALOG OF ALTPLl FILE
REC NAME TYPE LENGTH

1 DECK2
2 OPL

3 * EOP *
1

CATALOG COMPLETE.
/9et,altpl2
/cataloq,altpl2,r

CATALOG
REC NAME

1 OECK3
2 OPL

3 * EOF *

OPL (64)
OPLD

SUM •

OF ALTPL2
TYPE

OPL (64)
OPLD

SUM •

30
3

33

FILE
LENGTH

25
3

30

1
CKSUM

5013
2117

1
CKSUM

0100
2517

Modify statement to create program library
ALTPLl.

DATE

76/01/22.
76/81/22.

User obtains alternate program library that
he had created at an earlier session.

DATE

76/Bl/21.
76/01/21.

Figure 3-3. Initialization Directive Examples (Sheet 1 of 2)

3-4
60450100 c

1
CATALOG COMPLETE. {
/rename,opl=mainpl~--------------~
$RENAME,OPL=MAINPL.
/modify,f ,1=0,n=mainpl

Program library MAINPL is renamed OPL.
In this manner, the P parameter is not needed
on the Modify statement.

? *oplfile altpll { Modtfy run to merge OPL with program library
? *copypl altp12,deck3 ALTPLl and then use ALTPL2 to replace deck
? DECK3 on OPL. The compile output of MAINPLI

MODIFICATION COMPLETE· is written on the default file COMPILE.
/catalog,mainpl,r

CATALOG OF MAINPL
REC NAME TYPE

FILE
LENGTH

1

1
2
3
4

5

DEC Kl
DECK3
DECK2
OPL

* EOF *

OPL
OPL
OPL
OPLD

(64)
(64)
(64)

SUM =
CATALOG COMPLETE.

/replace,mainpl
/copvcf ,comoile
***. MAIN PROGRAM

PROGRAM MAIN(OUTPUT)
PRINT*,"BEGIN MAIN PROGRAM."
CALL SUBl
PRINT*,"END MAIN PROGRAM."
STOP
END

*** SUBROUTINE 2
SUBROUTINE SUB2
PRINT*,"ENTER SUBROUTINE 2."
PRINT*,"EXIT SUBROUTINE 2."
RETURN
END

*** SUBROUTINE 1
SUBROUTINE SUBl
PRINT*,"ENTER SUBROUTINE 1."
CALL SUB2
PRINT*,.EXIT SUBROUTINE 1."
RETURN
END

END OF INFORMATION ENCOUNTERED.
/rewind, compile

30
25
30

7

114

1
CKSUM

4476
0100
5013
5011

DATE

76/01/22.
76/01/21.
76/01/22.
76/01/22.

Listing of compile file
created by Modify.
Notice sequencing
information.

DEC Kl
DEC Kl
DEC Kl
DEC Kl
DEC Kl
DEC Kl
DECK!
DECK3
OECK3
DECK3
DECK3
DE!=K3
DECK3
DECK2
DECK2
DECK2
OECK2
DECK2
DECC<2
DECT<2

1
2
3
4
5
6
7
1
2
3
4
5
6
1
2
3
4
5
6
7

$REWIND,COMPILE. {Compile file is used as input to FORTRAN
/ftn, i=compile, 1=0 ~--------------- Extended compiler •

. 145 CP SECONDS COMPILATION TIME ,, --1.a.yv
BEGIN MAIN PROGRAM.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
EXIT SUBROUTINE 2.4-----------------Execution of FORTRAN program.
EXIT SUBROUTINE 1.
END MAIN PROGRAM •

• 006 CP SECONDS EXECUTION TIME

Figure 3-3. Initialization Directive Examples (Sheet 2 of 2)

60450100 c
3-5

I 3-6

JOBl.
USER(USERNUM. PASSWRD:FAMlLY)
CHARGE(CHARNUM1 PROJNUM)
r'!.T T"\/llW I\ '"'T~\
"-'.LJ._, \J.Y.t.= l.J.,. ~ I

COPYSBF(MAINP)
MODIFY(P=O. F. N=MAINPL. C=O)
CATALOG(MAINPL.R)
SA VE(MAINPL)
GET(SUBl)
COPYSBF(SUB 1)
REWIND(SUBl)
MODIFY(P=O. F. N=ALTPLl. C=O)
CATALOG(ALTPLl. R)
GET(ALTPL2)
CATALOG(ALTPL211 R)
RENAME(OPL=MAINPL)
MODIFY(F • N=MAINPL)
CATALOG(MAINPL. R)
REPLACE(MAINPL)
COPYSBF(COMPILE)
REWIND(COMPILE)
FTN(I=COMPILE)
LGO.
-EOR-
*CREATE MAINP
-EOR-
*CREATE SUBl
-EOR-
*OPLFILE ALTPL 1
*COPYPL ALTPL2. DECK3
-EOI-

Fi~ure 3-4. Batch Job Creating Program Libraries

60450100 c

MODIFICATION DIRECTIVES 4

Modification directives and their accompanying
insertion lines are placed on the directives file
after the last initialization directive. The first
occurrence of a modification directive terminates
the initialization phase.

The following modification directives assign a
n;i.odification name to the corrections being made.
identify the deck being modified. and give the
modification set name to be used when the short
form of the line identifiers is used.

ID ENT

DECK

MODNAME

Specifies modification name
to be assigned to new modifi­
cation set.

Identifies deck to be altered.

Identifies modification set
within deck to be modified
when short form of line iden -
tifier is used and the modifi­
cation name is different from
that used in the last IDENT or
MODNAME directive.

The following modification directives are used for
inserting and deleting lines.

DELETE or D

RESTORE

INSERT or I

I?eactivates lines and optionally
inserts lines in their place.

Reactivates lines and optionally
inserts text after them.

Inserts lines after specified
line.

These directives indicate to Modify that:

• New lines are to be inserted into the deck
and sequenced according to the correct
modification set identifier.

• Old lines are to be deleted.

While inserting. Modify interprets file manipulation
directives (for example. READPL changes the
source of insertion lines but does not terminate in­
sertion). Insertion terminates when Modify next
encounters another modification directive or end­
of-record.

Insertion lines can include compile file directives.
These directives are not interpreted but are in­
serted as if they were text; the prefix character
written on the program library is that specified on
the directive.

Other directives described in this section include:

YANK

UNYANK

PURDECK

60450100 A

Deactivate modification set.

Reactivate modification set.

Remove all lines in a deck.

IGNORE

EDIT

Ignore subsequent modifica­
tions to a named deck.

Modify and write named deck
to files specified on Modify
control statement.

IDENT - IDENTIFY NEW
MODIFICATION SET

The !DENT directive assigns a name to a modifica­
tion set. Modify does not require any IDENT direc­
tive; however, this practice is discouraged. If the
directives file does not contain an !DENT directive.
the system uses >:":'>:'>:":'>:":< as the modname. This
default name should not be used when a new program
library is made. The user can use one !DENT for
several decks or can use several !DENT directives
for one deck. There is no restriction on the place­
ment of lDENT within the modification directives
input file.

Format:

*IDENT modname

mod name 1- to 7-character modification
name to be assigned to this
modification set. This name
causes a new entry in the
modification table for each deck
for which the modification set
contains a DECK directive until
the next ID ENT. Each line
inserted by this set. and each
line for which the status is
changed. receive a modification
history byte that indexes this
modname.

Normally, sequencing of new
lines begins with one for each
deck using the modification
name. However. when the
UPDATE directive is used,
sequence numbers continue
from deck to deck.

Omitting modname causes a
format error. If mod.name
duplicates a name previously
used for modifying a deck,
Modify generates the message

DUPLICATE MODIFIER NAME.

A duplicate modname or en­
countering modifications that
refer to this modification name
prior to this >:<IDENT modname
cause a fatal error accompanied
by the message MOD(S) TO MOD
BEFORE THIS !DENT CARD.

4-1

DECK - IDENTIFY DECK TO BE MODIFIED

The DECK directive identifies the name of the deck
to which subsequent modifications apply.

Format:

*DECK deckname

deckname Name of deck for which
modifications following this
line apply. The modifications
for this deck terminate with
the next DECK directive. A
DECK directive is required
for each deck being modified.

If the deckname is not found.
Modify flags the error with
the message

UNKNOWN DECK.

Omitting the deckname causes
a format error.

MODNAME - IDENTIFY MODIFICATION
SET TO BE MODIFIED
By using the MODNAME directive. the user indicates
that subsequent line identifiers for which a modifica­
tion name is omitted apply to modification set
modname previously applied to the deck. Subsequent
directives need onlv the sequence number for the
modification set. The system assumes that the line
is in set modname of the deck being modified.

A MODNAME directive is effective only to the next
deck or MODNAME directive. The hierarchy for
line identifiers is such that if the MODNAME direc­
tive is used and the user wishes to return to use of
the deckname as the assumed line identifier. he
must restore the deckname by use of another
MODNAME directive or use the long form of the
line identifier. specifying the deck name. A
MODNAME directive does not terminate an inser­
tion if it is encountered in text being inserted.

Format:

*MODNAME modname

mod name Name of modification set pre­
viously applied to the deck.
A line identifier that does not
specify a modname is assumed
to apply to this modification
set. The modname remains
in effect until another
MODNAME or DECK direc­
tive is encountered.

DELETE - DELETE LINES
With the DELETE or D directive. the user deacti­
vates a line or block of lines and optionally replaces
it with insertion lines following the DELETE direc­
tive.

4-2

The next modification directive (or EOR) terminates
insertion. File manipulation directives are inter­
preted and may change the source of insertion lines
but do not terminate insertion and are not inserted
into the deck. Insertion lines can include compile
file directives.

A deactivated line remains on the library and retains
its sequencing. but is not included fn compile decks
or source decks.

Formats:

*DELETE c
*DELETE c 1• c 2

c

or *D c
or ·*D Cp c 2

Line identifier for single line
to be deleted.

Line identifiers of first and last
lines in sequence of lines to be
deleted. c 1 must occur before
c2 on the library. Any lines in
the sequence that are already in·
active are not affected by the
DELETE.

RESTORE - REACTIVATE LINES

With the RESTORE directive. a user reactivates a
line or block of lines previously deactivated through
a delete or yank and optionally inserts additional
lines after the restored line or block of lines. The
lines to be inserted immediatelv follow the RESTORE
directive. The next modification directive (or EOR)
terminates insertion. File manipulation directives
are interpreted (and may change the source of in­
sertion lines) but do not terminate insertion. They
are not inserted into the deck. Insertion lines can
include compile file directives.

Formats:

':'RESTORE c

':'RESTORE ci- c 2

c Line identifier of single line to
be restored.

Line identifiers of first and last
lines in sequence of lines to be
restored. Any lines in the se­
quence that are already active
are not affected by the RESTORE.
c1 must occur before c2 on the
library.

INSERT - INSERT LINES
To insert new lines in the program library. use the
INSERT directive. The line to be inserted immedi­
ately follows the INSERT or I directive on the direc­
tives file. The next modification directive (or EOR)
terminates insertion. File manipulation directives
are interpreted (and may change the source for in­
sertion lines) but do not terminate insertion. They
are not inserted into the deck. Insertion lines can
include compile file directives.

60450100 B

Formats:

*INSERT c

c

or *I c

Identifies line after which
new lines will be inserted.

YANK - REMOVE EFFECTS OF
MODIFICATION SET
The YANK directive is used to deactivate a modifi­
cation set. Modify searches the edited decks for
all lines affected by the named modification set.
If a line was activated by the modification set.
Modify deactivates it. If a line was deactivated by
the modification set. Modify reactivates it. Thus.
Modify generates a new modification history byte
for every line that changed status as a result of the
YANK and effectively restores the edited decks to
the status they had prior to modification modname
or all modifications subsequent to modname.

For the first format, only the one modification set
is yanked. For the second format. Modify yanks all
modification sets applied after modname. provided
mod.name appears on the edited decks. YANK or
UNYANK directives contained in the yanked modifi­
cation set are not rescinded.

YANK affects only those decks that are edited
through the EDIT directive or the F or U options
on the Modify control statement. In this way. the
YANK directive can be selective.

Formats:

':'YANK modname

':'YANK modname, >:'

mod name Name of modification set pre­
viously applied to decks in the
library. Omitting modname
produces a format error.
If Modify fails to find the
modname in the modification
table for the library. it issues
an error.

UNYANK - RESCIND ONE OR MORE
YANK DIRECTIVES

With the UNYANK directive, the user can rescind
previous YANK directives. For the first format,
only the one modification set is rescinded. For the
second format, Modify rescinds all of the yanked
modification sets, starting with modname, provided
modname appears on the edited decks.

Formats:

':'UNY ANK modname

':'UNYANK modname, ':'

mod name

60450100 A

Name of only modification set
to be rescinded or name of

first of two or more modifi­
cation sets to be rescinded
for the library. Omitting
modname results in a format
error.

PURDECK - PURGE DECK

A PURDECK directive causes the permanent removal
of a deck or group of decks from the program li­
brary. Every line in a deck is purged, regardless
of the modification set it belongs to. A deck name
purged as a result of PURDECK can be reused as
either a deck name or a modification name.

A PURDECK directive can be any place in the direc­
tives input. It terminates any previous correction
set. Therefore, INSERT, DELETE. and RESTORE
cannot follow a PURDECK directive but must come
after an !DENT directive. Purging cannot be re­
scinded.

Format one:

dname.
l

Format two:

Deck names for decks to be
purged.

>:<PURDECK dnamea. dnameb

The deck named dnamea and all decks up to and in­
cluding dnameb listed in the deck list are purged.

IGNORE - IGNORE DECK MODIFICATIONS

An IGNORE directive causes any further modification
directives for the designated deck to be ignored.
Modify skips modification directives other than
IDENT, EDIT, and DECK. When one of these direc­
tives is encountered, Modify processes it and re­
sumes processing the input stream. Any modification
directives for the decks that precede the IGNORE
directive are processed normally. The EDIT deck
name(s) encountered after an IGNORE directive are
checked against the current ignore list.· Any EDIT
deck names are deleted. If an ignored deck is en­
countered in the EDIT directive form decknamea• deck­
nameb, the directive is flagged and is considered as
having a modification error. The following message
is issued.

FORMAT ERROR IN DIRECTIVE

Format:

':'IGNORE dname

EDIT - EDIT DECKS

Editing is a process of modifying a deck. if modifi­
cations are encountered during the modification phase.
and writing the deck on the compile file. new program
library, and source file.

The three possible modes of editing are selective,
full, and update. The modes are selected through
Modify control statement options.

4-3

Format:

A deckname or range of decknames
in one of the following forms:

deckname

decknamea.decknameb

The first form requests that Modify
edit a deck on the program library;
the second form requests a range of
decks starting with decknarp.ea and
ending with decknameb. If deck­
names are in the wrong sequence.
Modify issues the error message:

NAMES SEPARATED BY'~."-' IN
WRONG ORDER.

If Modify fails to find one of the
decks. it issues the message:

UNKNOWN DECK - deckname.

SELECTIVE EDIT MODE

When selective editing is desired (neither F nor U
selected on the Modify control statement). Modify
edits only the decks specified on EDIT directives.
EDIT directives cause a deck to be written regard­
less of whether it was corrected or not. Decks are
edited in the sequence encounterPd on EDTT direc­
tives unless an UPDATE directive specifies other­
wise. Modifications encountered during the modifi­
cation phase are not incorporated in a deck if the
deck is not specified on an EDIT directive. In
particular, calling a common deck from within a
deck being edited does not automatically result in
the common deck being edited.

batch,45000
$RFL,45000.
/get,opl=mainpl
/modify,f ,1=0,n=mainpl

If decks are beintt reolaced or new decks are added.
the new decks are placed at the end of the library.
Thus,, a deck formerly included in an EDIT sequence
will no longer lie within the sequence.

FU LL EDIT MODE

When a full edit is ·requested (F selected on Modify
control statement). Modify ignores EDIT directives.
It writes all decks in the sequence encountered· on the
program library. This option provides for creating
a complete new progra~ library. Becau-se the same
decks that are written on the new program library
are also written on the compile file. a user wishing
to obtain only a partial set of decks on the compile
file must request separate runs of Modify - one run
for creating the new program library and one run
for creating the compile file.

UPDATE EDIT MODE

If the U option is selected on the Modify control
statement. Modify edits only those decks mentioned
on DECK directives and ignores the EDIT directives.
Thus. only decks being updated by the Modify run
are written on the compile file. This mode is not
normally requested when a new program library or
source file is desired.

MODIFICATION DIRECTIVE EXAMPLES

Figure 4-1 is a detailed example of some of the
modification directives presented in this section.

? *ident modl+--------------This modification set is given name MODl.
? *deck deck3
? *delete deck3.l
? *** subroutine 2, deck deck3.
? *deck deck2
? *d }...--~~~~~~~~~~~~~~~
? *** subroutine i, deck deck2.
? *insert 3
? * call subroutine sub2
? * in deck deck2.
? *delete 7
? *** end deck2.
? *deck deck!
? *d l
? *** main oroqram, deck deck!.
?

MODIFICATION COMPLETE.

Refer to listing of compile file in figure 3-3
to ref ere nee line sequence numbers.

Figure 4-1. Modification Directive Examples (Sheet 1 of 3)

4-4 60450100 B

/copycf ,compile
*** MAIN PROGRAM, DECK DECK!.

PROGRAM MAIN(OUTPUT)
PRINT*,.BEGIN MAIN PROGRAM.•
CALL SUB!
PRINT*,.END MAIN PROGRAM.•
STOP
ENO

*** SUBROUTINE 2, DECK DECK3.
SUBROUTINE SUB2
PRINT*,.ENTER SUBROUTINE 2.•
PRINT*,.EXIT SUBROUTINE 2.•
RETURN
END

*** SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUBl
PRINT*,.ENTER SUBROUTINE l."

* CALL SUBROUTINE SUB2
* IN DECK DECK2.

CALL SU82
PRINT*,"EXIT SUBROUTINE l."

Listing of compile
file created by
Modify.

RETURN ,. Note that user inadvertently deleted END *** END DECK2 • ._. ________ statement.
END OF INFORMATION ENCOUNTE·RED.

/modify,1=0,p-=mainpl,n=mpll,c=coml

? *deck deck2
? •ident mod2 ~

? •restore 7 {Modification run to restore deleted line.,
? "d modi. 3 delete line MODl. 3.
? *edit deck2
?

MODIFICATION COMPLETE.
/copycf ,coml
*** SUBROUTINE 1, DECK DECK2.

SUBROUTINE SUB!
PRINT*,.ENTER SUBROUTINE l.•
CALL SUBR~TINE SUB2
CALL SUB2 . *
PRINT*,.EXIT SUBROUTINE l.•

Note that compile
file contains only
edited deck(s).

·Note deieted line.

RETURN
END._-----------· END statement restored.

*** END DECK2.
END OF INFORMATION ENCOUNTERED.

/modify,1•0,p•mplI,n•mpl2,c•com2
? *ident mod3
? *deck deck2
? *modname modl

MODl
DECK!
DECK!
DEC Kl
DEC Kl
DECIO
DEC Kl
MODl
DECK3
DECK3
DECIO
DECK3
DECK3
MODl
DECK2
DECK2
MODl
MODl
DECK2
DECK2
DECK2
MODI

and

MODl
DECK2
DECK2
MODl
DECK2
DECK2
DECK2
DECK2
MODl

~ =~:~~o~=c~~2----------- Line deleted in previous Modify run is restored~
?

MODIFICATION COMPLETE.
/copycf ,com2
*** SUBROUTINE 1, DECK DECK2.

*
*

SUBROUTINE SUBl
PRINT*,.ENTER SUBROUTINE l.•
CALL SUBROUTINE SUB2
IN DECK DECK2 ------Restored line.
CALL SU82
PRINT*,.EXIT SUBROUTINE l."
RETURN
END

*** END DECK2.

MODl
DECK2
DECK2
MODI
MODl
DECK2
DECK2
DECK2
DECK2
MODI

END OF INFORMATION ENCOUNTERED.
/rewind mainpl mpl2 {The LIBEDIT utility provides a convenient
$REWIND:MAINPL:MPL2. means of replacing or adding records on a file.
/libedit i•tJ p-mainpl 1•8 b•mpl2 c/ Refer to the NOS Reference Manual. volume 1.

EDITING, COMPLETE. ' ' ' for a description of the LIBEDIT utility.

Figure 4-1. Modification Directive Examples (Sheet 2 of 3)

60450100 A

1
2
3
4
5
6
7
1
2
3
4
5
6
1
2
3
2
3
4
s
6
4

1
2
3
2
4
s
6
7
4

1
2
3
2
3
4
5
6
7
4

4-5

/catalo9,mainpl,r
CATALOG OF MAINPL

REC NAME TYPE

I

2

DECKl
MODl

DECK3
MODl

OPL (64)

OPL (64)

FILE 1
LENGTH CKSUM

37 7732

34 3117

j DECK2
MODl

OPL (64) 55 5026
MOD2 MOD3

OATE

76/81/22.

76/81/21.

76/81/22.

4 OPL OPLD 11

161

7477 76/01/22.

5 * EOF * SUM •
I

CATALOG COMPLETE.
/replace ,mainpl {Temporary modification run to deactivate
/modify,1•0,p=mainpl,c•com3,n=nplxE------ modification set MOD3 and selectively edit
? *ident modx deck DECK2.
? *deck deck2
? •yank mod3
? *edit deck2
?

MODIFICATION COMPLETE.
/catalog,ntlx,r

CATALOG OF NPLX FILE
REC NAME TYPE LENGTH

l

2

3
l

DECK2
MODI

OPL

OPL (64)
MOD2 (MOD3

OPLD

SUM •

CATALOG COMPLETE.
/copycf ,com3
*** SUBROUTINE 1, DECK DECK2.

SUBROUTINE SUBl
PRINT*,"ENTER SUBROUTINE l.H

* CALL SUBROUTINE SUB2
CALL SUB2
PRINT*,"EXIT SUBROUTINE l.•
RETURN
END

*** END DECK2.
END OF INFORMATION ENCOUNTERED.

55

1
CK SUM DATE

6626 76/01/22.

Compare with previous
compile file of DECK2.

MODI
DECK2
DECK2
MODI
DECK2
DECK2
DECK2
DECK2
MODl

Figure 4-1. Modification Directive Examples (Sheet 3 of 3)

1
2
3
2
4
5
6
7
4

4-6 60450100 A

FILE MANIPULATION DIRECTIVES 5

File manipulation directives allow user control over
files during the initialization and modification
phases. Two of these directives, READ and
READPL, may be used to change the source of di­
rectives and insertion text from the directives file
to an alternate file. While an insertion is in prog­
ress, a file change does not terminate insertion.
Insertion continues until Modify reads the next
modification directive. File manipulation directives
are illegal when Modify is reading from an alternate
file and result in the following message:

OPERATION ILLEGAL FROM ALTERNATE FILE
INPUT.

The file manipulation directives include:

READ Read record or group of records
from specified file.

READPL Read deck or portion of deck from
program library.

BKSP Backspace specified number of
records on file.

SKIP Skip forward specified number of
records on file.

SKIPR Skip forward past the specified
record on file.

REWIND Rewind named files.

RETURN Return named files to system.

These operations cannot be performed on the follow­
ing reserved files (or their equivalents).

INPUT Source of directives

OUTPUT Statistics output

COMPILE Compile

SOURCE Source output

OPL Old program library

NPL New program library

SCRl Scratch file 1

SCR2 Scratch file 2

SCR3 Scratch file 3

These file names are reserved only through their
respective Modify control statement options. For
example, if the S option is not specified, the file
SOURCE is not reserved and the user can use file
manipulation directives specifying a file of that
name. However, file names SCRl, SCR2, and
SCR3 should not be used.

60450100 B

READ - READ ALTERNATE
DIRECTIVES FILE
The READ directive causes Modify to temporarily
stop reading the directives file and begin reading
directives and insertion text from the specified
record on the named file or current position if
deckname is omitted (or >'~). Unless * is the
deckname field, Modify reads from the alternate
directives file until it encounters an end-of-record
and then resumes with the next directive on the
primary directives file.

If l'v1odify i.s unable to find the named record, it
issues the message

RECORD NOT FOUND.

Formats:

':'READ file

>:'READ file, dname

>:<READ file, *

file

dname

Name of file containing insertion
text and/ or directives.

Optional; if dname is specified,
text must be in source file
format; that is, the first word
of record is the name of the
record. Modify discards the
name before processing any
text.

Optional; if specified, Modify
processes all records on the
file up to an end-of-file or a
zero-length record. These
records must be in source file
format.

READPL - READ PROGRAM LIBRARY

The READPL directive causes Modify to temporarily
stop reading the directives file and begin reading
directives and insertion text from the specified
Modify deck. It allows a user to insert text from
one deck on the program library into another program,
or to move text within a program.

Formats:

>:'READPL dname

*READPL dname, c 1, c 2

dname Name of deck on old program
library.

Portion of deck to be read;
must be more than one line.

5-1

Modify inserts all the active lines in the deck or
portion of the deck soecified bv the REA OPT,_ Tf
q. c2 are omitted, it reads th~ entire deck b-ef~~e
-ro+ii-rn1ntT fl""ll f.'ho rl;"""-"'".; .. ,..,..... .f:l.­.- _.,._.,._.,,f,b "'-~ '-'.1..1.v Ul..L..!. '-'1....\.1.V~ J.1...Lc;•

I NOTE I
During processing of the READPL direc­
tive, Modify does not perform any modi­
fications to the text in the deck it is read­
ing. If the user wishes the new text to be
modified., he must make the corrections
to the deck into which the text is being
inserted; that is, the text is taken from
the deck exactly as it is on the program
library.

BKSP - BACKSPACE FILE
The BKSP directive repositions the named file one
or more logical records in the reverse direction.
It does not backspace beyond the beginning-of-infor­
mation.

Formats:

*BKSP file

*BKSP file, n

file

n

Name of file to be positioned.

Number of records to be
skipped in the reverse direc­
tion. If n is omitted., Modify
backspaces one record.

SKIP - SKIP FORWARD ON FILE
The SKIP directive repositions the named file for­
ward one or more logical records. If an end-of­
information is encountered before the requested
number of records has been skipped, the file is
positioned at the end -of-information.

Formats:

5-2

':'SKIP file

'~SKIP file, n

file

n

Name of file to be positioned.

Number of records to be
skipped in the forward direc -
tion. If n is omitted, Modify
skips one record.

SKIPIR - SKIP FORWARD PAST RECORD

r'T""l_ - l'"tT7"'T"1"""\~ ...l 111 ~ .L Ill •I• ,, , ,.. •

.Lue 0n.1r n uLrt:cLLV e repu::nuun::; i:ne nameu Ille
forward past the specified logical record. It does
not position the file past the end-of-information.
If Modify is unable to locate the record in the for­
ward search, it positions the file at the end-of-infor­
mation and issues the message

RECORD NOT FOUND.

Format:

':'SKIPR file, rname

file Name of file to be positioned.

rname Name of record on file that file
is positioned after.

REWIND - REWIND FILES·

The REWIND directive repositions one or more files
to their first records.

Format:

>:'REWIND file 1, file2, ••• , filen

filei Names of files to be rewound.

RETURN - RETURN FILES TO SYSTEM

The RETURN directive immediately returns files to
the operating system.

Format:

'~RETURN file 1• file 2, ••• , filen

file. Names of file to be returned.
l

FILE MANIPULATION DIRECTIV! EX.AMPLES

Figure 5-1 illustrates several of the file manipulation
directives discussed in this section.

60450100 B

batch,45090
$RFL,45800.
/old,dirfil
/lnh,r

PRINT*,.LINE 1 ADDED BY MODIFICATION SET Moox.·
--EOR--

PRINT* ,"LINE 2 ADDED BY MODIFICATION SET MOOx.•
--EOR--
DECKX ------------------Alternate directives file.

PRINT*,.LINE 3 ADDED BY MODIFICATION SET MODX."
--EOR--
* ED IT DECK!
*EDIT DECK2
*EDIT OECKJ
--EOR--
/ old, opl sma inpl
/9et,dirf il
/modify,l=l,n•newpl,c=comx
? *skip dirfil,2
? *ident modx
? •deck deck2
? *i 2
? *read dirfil,deckx
? *bksp dirfil,2
? *deck deckl
? *i 3
? *read dirf il
? *rewind dirfil
? *deck deck!
? *i 4
? *read.dirfil
? *skipr dirfil,deckx
? *read dirfil
? *return dirf il
?

MODIFICATION COMPLETE.
/copycf ,comx
*** MAIN PROGRAM, DECK DECKl.

PROGRAM MAIN(OUTPUT)
PRINT*, .. BEGIN MAIN PROGRAM."
CALL SUB!

File manipulation directives.

PRINT*,"LINE l ADDED BY MODIFICATION SET MOOX."
PRINT*, .. ENO MAIN PROGRAM."

*
*

STOP
ENO
SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUB!
PRINT•,=LINE 3 ADDEO BY MODIFICATION SET MODX."
PRINT*,"ENTER SUBROUTINE l."
CALL SUBROUTINE SUB2
IN DECK OECK2.
CALL SUB2
PRINT*,"EXIT SUBROUTINE 1. 0

RETURN
ENO
END DECK2.
SUBROUTINE 2, DECK OECK3.
SUBROUTINE SUB2
PRINT*,"ENTER SUBROUTINE 2."

Compile file containing
modifications from
alternate directives
file.

PRINT*,•ttNE 2 ADDED BY MODIFICATION SET MOOX."
PRINT*,"EXIT SUBROUTINE 2."
RETURN
ENO

ENO OF INFORMATION ENCOUNTERED.

MODI
DECK!
DECKl
DECK!
MOOX
OECU
DECK!
DECK!
MODl
DECK2
MOOX
DECK2
MODI
MOD!
DECK2
OECK2
DECK2
DECK2
MOD!
MOO!
DECK3
DECK3
MODX
DEC(()
DECK3
DECK3

Figure 5-1. File Manipulation Directive Examples (Sheet 1 of 2)

60450100 A

l
2
3
4
1
s
6
7
1
2
1
3
2
3
4
s
6
7
4
1
2
3
1
4
s
6

5-3

/catalog,newpl,r
CATALOG OF NEwPL FILE

REC NAME TYPE LENGTH

1 DECKl OPL (64) 47
MODl MODX

2 DECK2 OPL (64) 65
MODl MOD2 MOD3

3 DECK3 OPL (64) 44
MODI MODX

4 OPL OPLD 7

5 * EOF * SUM = 207
1

CATALOG COMPLETE.
/rewind,comx
SREWIND,COMX.
/ftn,i=comx,1=0

.215 CP SECONDS COMPILATION TIME
/lgo

BEGIN MAIN PROGRAM.
LINE 3 ADDED BY MODIFICATION SET MODX.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
LINE 2 ADDED BY MODIFICATION SET MODX.
EXIT SUBROUTINE 2.
EXIT SUBROUTINE 1.
LINE 1 ADDED BY MODIFICATION SET MODX.
END MAIN PROGRAM •

• 009 CP SECONDS EXECUTION TIME

1
CK SUM DATE

7152 76/81/22.

6115 76/81/22.
MODX

7430 76/01/21.

7403 76/01/23.

Execution of modified program.

Figure 5-1. File Manipulation Directive Examples (Sheet 2 of 2)

5-4 60450100 A

COMPILE FILE DIRECTIVES 6

The directives described in this section provide
user control during the write compile file phase.
These directives are interpreted at the time the
program library decks are written onto the compile
file. A call for a common deck results in the deck
being written on the compile file. Other directives
allow control of file format.

The user can prepare his original source deck with
compile file directives embedded in it, or he can
insert compile file directives into program library
decks as a part of a modification set. Compile file
dir:ectives are not recognized when they are on the
directives file: thev do not terminate insertion,. but
are simply considevred as text lines to be inserted.

Compile file directives include:

CALL

\FcALL

NIFCALL

CALLALL

IF

ELSE

ENDIF

COMMENT

WIDTH

NOSEQ

SEQ

WEOR

CWEOR

60450100 c

Write called deck onto com­
pile file.

Write called deck onto com­
pile file if name is defined.

Write called deck onto com -
pile file if name is not de­
fined.

Write all decks onto compile
file that have deckname be­
ginning with specified char­
acter string.

Include lines in compile file
if specified attribute is true
and until a reversal directive
is encountered (ELSE or
ENDIF).

Reverse an IF directive con­
ditional range.

Terminate an IF directive
conditional range.

Generate COMMENT pseudo
instruction for COMPASS.

Define number of columns
preceding sequence informa­
tion on compile file.

Specify no sequence infor­
mation on compile file.

Specify sequence informa­
tion on compile file.

Write end-of-record on com·­
pile file.

Write end-of-record on com­
pile file if the buffer is not
empty.

WEOF Write end-of-file on compile
file.

I NOTE I

A common deck cannot call another
common deck. That is, if the directives
CALL, IFCALL, NIFCALL. or CALL­
A LL are in a common deck, they are
ignored.

CALL - CALL COMMON DECK

Modify places a copy of the requested deck on the
compile file. It does not copy the request to the
compile file. However. the new program library
and the source file contain the CALL directive.

Format:

*CALL deckname

deckname Name of common deck to be
written on compile file.

IFCALL - CONDITIONALLY CALL
COMMON DECKS

Modify places a copy of the requested deck on the
compile file if the conditional name has been defined
on a DEFINE directive during the modification
phase. If the name has not been defined, the com­
mon deck is not written on the compile file. Modify
does not copy the IFCALL directive to the compile
file.

Format:

*IFCALL name. deckname

name

deckname

l • to 7-character conditional
name.

Name of common deck to be
written on compile file if name
is defined.

NIFCALL - CONDITIONALLY CALL
COMMON DECKS

Modify places a copy of the requested deck on the
compile file if the conditional name has not been
defined (refer to DEFINE directive, section 7)
during the modification phase. If the name has
been defined, the common deck is not written on
the compile file.

6-1

Format:

>:<NIFCALL name, deckname

name

deckname

1- to 7-character conditional
name.

Name of common deck to be
written on compile file if
name is not defined.

CALLALL - CALL RELATED
COMMON DECKS

Modify places a copy on the compile file of every
deck name beginning with the specified character
string.

Format:

>:<CALLALL string

IF - TEST FOR CONDITIONAL RANGE

Modify tests the specified condition and, if true,
writes all following lines onto the compile file un­
til encountering a reversal (ELSE) or termination
(ENDIF) directive. If the condition is false, the
lines are skipped until a reversal or termination
directive is encountered. Lines skiooed 'in such
a range are treated as inactive. · ·

Format:

':'IF atr, name, value

atr Attribute; must be one of the
following:

DEF
UNDEF
EQ
NE

name defined
name undefined
name equal to value
name not equal to
value

ELSE - REVERSE- CONDITIONAL RANGE

ELSE is a conditional range reversal directive.
When encountered, the effects of a previous IF
directive are reversed. An ELSE directive en­
countered without an IF range in progress is
diagnosed as an error.

Format:

':'ELSE

6-2

ENDIF - TERMINATE CONDITIONAL RANGE

END!F is a condition<'ll range termination directive.
When encountered, the effects of a previous IF
directive are terminated. An ENDIF directive en­
countered without an IF range in progress is diag­
nosed as an error.

Format:

>:'ENDIF

COMMENT - CREATE COMMENT LINE
This directive causes Modify to create a COMPASS
language COMMENT pseudo instruction (beginning
in column 3) in the following format. Modify obtains
the dates from the operating system.

LOCATION OPERATION VARIABLE SUBFIELDS

COMMENT crdate mod.date comments

crdate

moddate

Format:

Creation date in the format
Ayy/mm/dd.

Modification date in the format
Ayy/mm/dd.

>:'COMMENT comments

comments Character string.

WIDTH - SET LINE WIDTH ON
COMPILE FILE

The WIDTH directive allows the user to change the
width of lines during the compile phase. Modify
uses the new width until it encounters another
WIDTH directive.

Format:

>:<WIDTH n

n Number of columns preceding
sequence information on com­
pile file and source file.
Modify allows a maximum of
100 columns.

I NOTE I
During initialization of Modify, width is
set to 72; additional columns of data are
truncated.

60450100 B

NOSEQ - NO SEQUENCE INFORMATION

The NOSEQ directive allows the user to set the no
sequence flag during the write compile file phase.
When no sequence information is requested, Modify
does not include sequence information on the com­
pil-e file.. A. SEQ directive encountered subsequent
to NOSEQ resumes sequencing.

Format:

*NOSEQ

SEQ - INCLUDE SEQUENCE INFORMATION

The SEQ directive allows the user to clear the no
sequence flag during the write compile file phase and
to begin placing sequence information on the compile
file. A NOSEQ directive encountered subsequent to
a SEQ sets the no sequence flag.

Format:

*SEQ

WEOR - WRITE END OF RECORD

Modify unconditionally writes an end-of-record on
the compile file when encountering the WEOR direc­
tive.

Format:

>!<WEOR

60450100 B

CWEOR - CONDITIONALLY WRITE END
OF RECORD
Modify writes an end-of-record on the compile file
if information has been placed in the buffer since the
last end-of-record was written.

Format:

*CWEOR

WEOF - WRITE END OF FILE

Modify writes an end-of-file on the compile file.

Format:

>:<WEOF

COMPILE FILE DIRECTIVE EXAMPLES

Figure 6-1 illustrates several of the compile file
directives presented in this section.

6-3

batch,45088
SRFL,45809.
/old,op15:mainpl
/get,csub
/copycr ,csub.....--------{ Copy of source file to be incorporated into
DECK4 program library. .

IDENT SUB3
ENTRY SUB3

*COMMENT CALL DECK DECKS
*** CALL COMMON DECK.
*CALL

SUB3
DECKS .-------Notice call to common deck DECK5.
DATA 0 ENTRY/EXIT
ORIGIN JOT
EO SUBJ RETURN
USE //

JOT BSS 1
END

COPY COMPLETE.
/copycr,csub
DECKS
COMMON

ORIGIN MACRO
SA!
MXI
BX6
AX6
SA6
ENDM

COPY COMPLETE.

A
668
24
-Xl*Xl
24
A

GET JOB ORIGIN

STORE JOB ORIGIN

/modify,f ,p•l,1•8,n•mainpl,c•coml,s•mainp

? *rewind csub
? *create csub

? *oplfile opl · ~

? *ident mod4 jModify run to create new program library
? *deck deck! t consisting of source file and OPL.
? *1 2
?
? *i 3
?
?

common jot

call sub3
if(jot.eq.J)print•,•time-sharing job."
if (JOt.ne.J)print*,"batch Job.• ?

1
?

*deck deck4
*i I

? *weor
? *deck deck3
? *i "

Addition of compile file directives.

? *weor
? *deck deck2
? *i e
? *weor
?

MODIFICATION COMPLETE.
/catalog,mainpl,r

CATALOG OF MAINPL
REC NAME TYPE

1 D!CKl OPL (64)
MODI MOD4

2 DECK3 OPL (64)
MODI M004

3 OECK2 OPL (64)
MODI MOD2

4 DECK4 OPL (64)
MOD4

5 DECKS OPLC (64)
6 OPL OPLD

7 * EOF * SUM =
1

CATALOG COMPLETE11

FILE 1
LENGTH CKSUfll DATE

61 3171 '76/81/22.

31 2333 76/61/21.

60 54SS 76/01/22.
MOD3 MOD4

47 5063 76/01/23.

27 6354 76/01/23.
13 3786 76/01/23.

311

Figure 6-1. Compile File Directive Examples (Sheet 1 of 3)

6-4 60450100 B

/copycr,com?
*** MAIN PROGRAM, DECK DECK!.

PROGRAM MAIN(OUTPUT)
COMMON JOT
PRINT*,"BEGIN MAIN PROGRAM."
CALL SUBJ
IF(JOT.EQ.J)PRINT*,"TIME-SHARING JOB."
IF(JOT.NE.J)PRINT*,"BATCH JOB. 11

CALL SUBl
PRINT*, "END MAIN PROGRAM. H

STOP
END

COPY COMPLETE.
/copycr,coml
*** SUBROUTINE 2, DECK DECKJ.

SUBROUTINE SUB2
PRINT*,"ENTER SUBROUTINE 2."
PRINT*,"EXIT SUBROUTINE 2.u
RETURN
END

COPY COMPLETE.
/copycr,coml
*** SUBROUTINE 1, DECK OECK2.

*
*

SUBROUTINE SUBl
PRINT*, "ENTER SUBROUTINE 1."
CALL SUBROUTINE SUB2
IN DECK DECK2.
CALL SUB2
PRINT*,"EXIT SUBROUTINE l."

Listing of compile file.
Notice separation into
records.

RETURN I Notice that Modify has
END replaced *COMMENT

*** END OECK2. directive with COMPASS
COPY COMPLETE. ~ COMMENT statement on

I copyc r , com 1 compile file
IDENT SUBJ •
ENTRY SUBJ

COMMENT 76/01/2J. 76/01/2J. CALL DECK DECKS
*** CALL COMMON DECK.

ORIGIN MACRO A

SUBJ

JOT

SAl 66R
MX0 24
BX6 -X0*Xl
AX6 24
SM A
ENDM
DATA 0
ORIGIN JOT
EQ SUBJ
USE //
BSS 1
END

COPY COMPLETE.
/copycr,coml

GET JOB ORIGIN

STORE JOB ORIGIN

ENTRY/EXIT

RETURN

END OF INFORMATION ENCOUNTERED.
/replace,mainpl
/pack,coml

PACK COMPLETE.
/ftn,i=coml,1•0

.50J CP SECONDS COMPILATION TIME
/lgo

BEGIN MAIN PROGRAM.
TIME-SHARING Joe.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
EXIT SUBROUTINE 2.
EXIT SUBROUTINE 1.
ENO MAIN PROGRAM •

• 009 CP SECONDS EXECUTION TIME
/primary,mainp
$PRIM.ARY,MAINP.

*CALL DECK5 is re­
placed by contents of
common deck.

MODI
DECKl
MOD4
DEC Kl
M004
MOD4
M004
OECKl
DEC Kl
DECK!
DECK!

MOOl
DECK3
OECKJ
DECKJ
DECK)
DECKJ

MOOl
DECK2
DECK2
MODl
MOOl
OECK2
DECt<2
DECK2
DECK2
MODI

DECK4
DECK4
DECK4
DECC<4
DECf<S
OECKS
DECKS
DECKS
DECKS
DECKS
DECKS
DECK4
DECK4
DECK4
DECK4
DECK4
DECIC4

Figure 6-1. Compile File Directive Examples (Sheet 2 of 3)

60450100 B

1
2
1
J
2
J
4
4
5
6
7

1
2
J
4
5
6

1
2
3
2
J
4
s
6
7
4

1
2
3
4
1
2
J
4
5
6
7
6
7
8
9

10
11

6-5

/lnh,r
DECT<l
*** MAIN PROGRA~, DECK DECKl.

COMMON JOT
PRINT*,"BEGIN MAIN PROGRAM."
CALL SUS3
IF(JOT.E0.3)PRINT*,"TIME-SHARING JOB."
IF(JOT.NE.3)PRINT*,"BATCH JOB."
CALL SUBl
PRINT*,"END MAIN PROGRAM."
STOP
END

--EOR-­
DECKJ
*\lVEOR
*** SUBROUTINE 2, DECK DEC~J.

SU0ROUTINE SUJ32
PRINT*,"ENTER SUBROUTINE 2."
PRIN'l'*, "F.'IClT SUBROUTINE 2."
RF.TURN
END

--EOR--
DECK 2
*ftF.OR
*** SUBROUTINE l, DEC~ O~C~2.

SUSPOUTINE SUf'l
PRl NT* , • f.NTER SU aROU'!'l NF. 1 • "

* CALL SUBPOUTINE SUB2
* IN DEC« OECK2.

CALL SUB2
PRI~T*,"E~IT SUBROUTINE l.•
RE'l'URN
END

•u END DECK2.
--EOR--
DECIC4
*WF.OR

IOENT SUB3
ENTRY SU83

*COMMENT CALL DECK DECKS
*** CALL COMMON OF.CK.
*CALL DECKS

SUB3 DATA 0 ENTRY/EXIT
ORIGIN JOT
EO SUB3 RF.TURN
USE //

JOT BSS 1

--EOR-­
OECKS
COMMON

ORIGIN

--EOR--

ENO

MACRO
SAl
MX9
BX6
AX6
SA6
"""'~"' ... c..1 .. ur1

A
668
24
-X0*Xl
24
A

GET JOB ORIGIN

STORE JOB ORIGIN

Contents of source file created by Modify.

Note that source file contains call to common
deck.

Figure 6-1. Compile File Directive Examples (Sheet 3 of 3)

6-6
60450100 B

SPECIAL DIRECTIVES 7

The directives described in this section provide
extended features. They can be any place in the
directive file for either creation or correction and
primarily affect the operating features of Modify.

I

PREFIX

PREFIXC

INWIDTH

DEFINE

MOVE

UPDATE

List comment.

Changes prefix character for
·directives other than compile
file directives.

Changes prefix character for
compile file directives.

Sets width of input line to be
compressed.

Defines name under which sub­
sequent IFCALL directive may
cause a common deck to be
written, or NIFCALL may
prevent a common deck from
being written.

Moves decks on new program
library.

Specifies editing sequence
and modification set number-

/ - LIST COMMENT

Other than being copied onto the Modify statistics
(list) output, a comment line is ignored. It can
occur any place in the directives file.

Format:

*/comment

Example:

*/ ******MODIFICATIONS**~'<***

PREFIX - CHANGE MODIFY
DIRECTIVES PREFIX-

The PREFIX directive resets the prefix character
for subsequent Modify directives. It does not affect
the prefix of compile file directives. When Modify
is initialized, the character is preset to >:•. Modify
uses * if a PREFIX directive is not used.

Forma~:

*PREFIX x

x

60450100 B

Character used in first column
of directive (except compile
file directive). A blank char­
acter is illegal.

PREFIXC - CHANGE COMPl"LE FILE
DIRECTIVES PREFIX

The PREFIXC directive resets the compile directive
character so that only compile file directives with
the x prefix are recognized. If a PREFIXc directive
is not encountered, the default(*) is used.

Format:

*PREFIXC x

x Character used in first column
of compile file directive. A
blank character is illegal.

INWIDTH - SET WIDTH OF INPUT TEXT

The INWIDTH directive allows the user to set the
width of input text from primary and alternate sources
before it is compressed and written in the Modify
library deck. An INWIDTH directive takes prece­
dence over any previously defined width. INWIDTH
can be placed anywhere in the· directives file.

Format:

*INWIDTH n

n Number of columns on input
line to be compressed. Modify
allows a maximum of 100
columns. During initialization
of Modify, width is preset to
72.

DEFINE - DEFINE NAME FOR USE BY
IFCALL, NIFCALL, IF

By defining a name and its associated value, a user
establishes the conditions that must be met for a
conditional call of a common deck. This allows
external control of the calls embedded in source
decks. If the name is not defined, an IFCALL for
a common deck iS ignored. If the name is defined,
a NIFCALL for a common deck is ignored. A
DEFINE directive must be processed in order for
an IF conditional test to be true.

Format:

*DEFINE name. value

name

value

Name used in compile file
IFCALL, NIFCALL, or IF
directive.

Value assigned to symbol
name (maximum value may be
3777777B). If omitted, name
is defined with value zero.

7-1

MOVE - MOVE DECKS
The MOVE directive enables the user to reorder
f'l,p,..Jcc: '11Thn,,. n-rnnn,..;na ~ niPw nrnor;:tm lihrarv. The
------ w• ---- r-- - ------o - --- "" .,;-- - 0- ----- ---- ·- - ·- V -

decks, dname, are moved from their positions on
the old library and placed after dnamer on the new
library.

Format:

UPDATE - UPDATE LIBRARY

Use of this directive causes Modify to continue
sequencing rather than restart sequencing with

batch,45801
$RPL,45H0.
/old ,opl•mainpl·
/J1tOdify,f ,c•coml,n•mainpl,l•8
? */ chanqe pref ix character to I

each deck using the same ID ENT. UPDATE also
causes the order in which decks are edited to be
according to their sequence on the old program
lihrary.

Format:

*UPDATE

SPECIAL DIRECTIVE EXAMPLES

Figure 7-1 illustrates several special directives.
Note that compile file directives can be ignored
(depending on language processor) by changing the
compile file prefix character.

? •pref ix t ~---------------------Change Modify directive prefix character.
7 t1dent mod6
? tdeck deck4
? h 4
I space 4
? tµref ixc J +-:;::::-::-;::-;:-:;---------------I Change compile file prefix character so
·1 tmove deckl ,deck2 ,_deck3 {directives on program library will be inter-
? preted as comments.

MODIFICATION COMPLETE.
/catalog,mainpl,r

1

CATALOG OF MAINPL FILE 1
CK SUM REC NAME TYPE LENGTH DATE

1 DECKl
MODl

2 DECK2
MODI

3 DECKJ
MODI

4 DECK4
MOD4

5 DECKS
6 OPL

7 * EOF *
CATALOG COMPLETE.

7-2

OPL (64) 6I
MOD4

OPL (64) 68
MOD2 MODJ

OPL (64)
MOD4

OPL (64)
MOD6

37

SJ

OPLC (64) 27
OPLD \ 13

3171

5455
MOD4

2333

3857

6354
3675

76/"1/22.

76/81/22.

76/81/21.

76/91/23.

76/81/23.
76/81/23.

SUM •_JIS

Notice reordered decks.

Figure 7-1. Special Di'rective Examples (Sheet 1 of 2)

60450100 B

/copycr,coml
*** MAIN PROGRAM, DECK DECK!.

*WEOR

PROGRAM MAIN(OUTPUT)
COMMON JOT
PRINT*, H BEGIN MAIN PROGRAM. II

CALL SUBJ
IF(JOT.EQ.3)PRINT*,"TIME-SHARING JOB."
IF(JOT.NE.3)PRINT*,"BATCH JOB."
CALL SUSI
PRINT*,"END MAIN PROGRAM."
STOP
END

*** suaROUTINE I, DECK OECK2.
SUBROUTINE SUBI
PRINT*,"ENTER SUBROUTINE l."

* CALL SUBROUTINE SUB2
* IN DECK DECK2.

CALL SUB2
PRINT*,"EKIT SUBROUTINE l."
RETURN
END

*** END l:>ECK2.
*WEOR
*** SUBROUTINE 2, DECK DECK3.

*WEOR

SUBROUTINE SUB2
PRINT*,"ENTER SUBROUTINE 2."
PRINT*,"EXIT SUBROUTINE 2."
RETURN
END

IOENT SUBJ
ENTRY SUBJ

*COMMENT CALL DECK DECKS
*** CALL COMMON DECK.

SPACE 4
*CALL DECKS

SUBJ DATA 0 ENTRY/EXIT
ORIGIN JOT
EQ SUBJ RETURN
USE //

JOT BSS 1
END

COPY COMPLETE.
/copvcr,coml

ENO OF INFORMATION ENCOUNTERED.

Listing of compile file.
Compile file directives
have been ignored.

Figure 7-1. Special Directive Examples (Sheet 2 of 2)

60450100 A

MODI
DEC Kl
MOD4
DECK!
M004
M004
MOD4
DECK!
DECK!
DEC Kl
DECK!
MOD4
MODI
DECK2
DECK2
MOOl
MOOl
OECK2
DECK2
OECK2
DECK2
MODi
M004
MODI
DECK3
DECK3
DECK3
DECl<l
OECK3
MOD4
OECK4
OECK4
OECK4
DECK4
MOD6
DECK4
DECK4
DECK4
DECK4
DECK4
OECK4
DECK4

I
2
1
J
2
3
4
4
5
6
7
1
1
2
3
2
3
4
5
6
7
4
1
1
2
3
4
5
6
1
1
2
J
4
1
5
6
7
8
9

10
11

7-3

MODIFY CONTROL STATEMENT 8

The following control statement causes the Modify
program to be loaded from the operating system
library into central memory and to be executed.
Parameters specify options and files.

The optional parameters,, Pi• may be in any order
within the parentheses. Generally.. a parameter
can be omitted or can be in one of the following
forms.

option

option= value

option=O

where option is one or two characters as defined in
the following text. Unless Q or X is selected,,
parameters CB .. CG,, CL,, or CS are meaningless.
Value is a 1- to 7 -character name of a file or is a
character string.

Option Significance

A - Compressed compile file

omitted

A

Compile file is not in com -
pressed format.
Compile file is in compressed
format.

C - Compile file output

omitted or C

C=filename

C=O

Compile output to be written
on file COMPILE.
Write compile output on
named file.
No compile output.

CB - COMPASS binary; Q or X option only.

omitted or CB COMPASS binary output
written on the load-and-go
file (B=LGO).

CB=filename COMPASS binary output
written on the named file
(B=filename).

CB=O No binary output (B=O).

CG - COMPASS get text option; Q or X option only.
Takes precedence over CS.

CG

CG=filename

CG=O
omitted

60450100 c

Load systems text from
SYSTEXT (G=SYSTEXT).
Load systems text from
named file (G=filename).
SYSTEXT not defined (G=O).
Load systems text from over­
lay named in CS option.

Option Significance

CL - COMPASS list output including ':'comment lines.
Q or X option only.

CL List output on OUTPUT file

CL=filename

omitted or
CL=O

(L=OUTPUT).
List output on named file (L=
filename).
Short list instead of full list is
generated on OUTPUT file
(L=O).

CS - COMPASS systems text: Q or X option only ..

omitted or CS Systems text on SYSTEXT over­
lay (S=SYSTEXT)

CS=filename Systems text on named file
(S=filename)

CS=O No systems text (S=O)

CV - Character set conversion

omitted or
CV=O
CV=63

CV=64

No conversion takes place.

Convert library created using
64-character set to 63-character
set.
Convert .library created using
63-character set to 64-character
set.

I NOTE I
When the CV=63 or CV=64 conversion
option is selected. Modify forces C=O
(no compile file generation). I

Conversion is recommended if the character- set
of the old program library is. not the same as the
character set used when the program library is
modified. Use C ... 4..Ti\LOG to determine the
character set of the program library (refer to
volume 1 of the NOS Reference Manual). Check
with a systems analyst to determine the character
set in use at the site.

D - Debug

omitted

D

F - Full edit

omitted

F

A directive or fatal error aborts
the job.
A directive error does not abort
the job; the D option does not
affect fatal error processing.

Decks to be edited are determined
by the U parameter or by EDIT
directives.
All decks on the library are to
be edited and written on new
program library,, compile file,,
and source file if the respective
options are selected.

8-1

Option

I - Directive input

omitted or I
!=filename

I=O

L - List output

omitted or L

L=filehame

L=O

LO - List options

omitted or LO

Significance

Directives on job INPUT file.
Directives comprise next
record on named file.
No directive input.

List output is written on job
OUTPUT file. This file is
automatically printed.
List output is written on the
named file. It is the user's
responsibility to assure that
the file is saved at job end
or is printed.
Modify does not generate a
list output file.

List options E, C, T, M, W,
D, and S are selected.
Each character (ci) selects an
option to a maximum of seven
options.

c

D
E
I

M

s

T
w

Significance

List active lines in
deck
List directives other
than INSERT, DE­
LETE, RESTORE,
11.irnnl\T A 1\llM" T ,...,.. n
~, ,_,,,.y ... ~ -. ... --

List deck status
List errors
List inactive lines
in deck
List modifications
performed
Include statistics on
listing
List text input
List compile file
directives

N - New program library output

N New program library to be
written on file NPL.

N=filename New program library to be
written on named file. It is
the user's responsibility to
assure that the file is saved
at job end.

omitted or
N=O

Modify does not generate a
new program library.

8=2

I NOTE I

If a new program library is being genera­
ted, an EVICT is performed upon it (NPL
or filename) before it is written on (refer
to the NOS Reference Manual, i\rolume l,
for a description of EVICT).

Option Significance

NR - No rewind of compile file

omitted Compile file is rewound at be­
ginning and end of Modify run.

NR Compile file is not rewound at
beginning and end of Modify
run.

P - Program library input

omitted or P Program library on file OPL.
P=filename Program library on named file.
P=O No program library input file.

Q - Execute named program; no rewind of directives
file or list output file.

omitted or Q=O Assembler or compiler is NOT
automatically called at end of
the Modify run.

Q=program At the beginning of the Modify
run, Modify sets LO=E and sets
the A parameter. At the end of
the run, Modify calls the as -
sembler or compiler specified
by program.

Q At the beginning of the Modify
run, Modify sets LO=E and sets
the A parameter. At the end of
the run, Modify calls the COM­
PASS assembler. When this
option is selected, the CB, CL,
CS, and CG parameters are
meaningful. Compiler input is
assumed to be COMPILE. All
other parameters are set by de­
fault. If CL is not specified
with Q. lines beginning with an
asterisk in column 1 are not
written to the compile file (com­
pile file directives are processed,
however).

S - Source output; illegal when A, Q, or X are selected.

S Source output written on file
SOURCE.

S=filename Source output written on named
file. It is the user's responsi­
bility to assure that the file is
saved at job end.

omitted or S=O Modify does not generate a source
output file.

U - Update edit

omitted Decks to be edited are determined
by EDIT directives or by the F
oarameter.

U Only decks for which directives
file contains DECK directives
are edited and written on the
compile file, new program li­
brary, and source file if the
respective options are on. F, if
specified, takes precedence.

X - Execute named program; directives file and list
output file rewound.

Same as Q option, except Modify
directives input (I parameter) and
list output (L parameter) files are
rewound before processing.

60450100 B

Option Significance

Z - Control statement input

omitted The control statement does
not contain the input direc­
tives.

Z The Modify control statement
contains the input directives
following the terminator; the
input file is not read. This
eliminates the need to use a

60450100 A

Significance

separate input file for the di­
rectives when only a few
directives are needed. The
first character following the
control statement terminator
is the separator character.

Example: MODIFY(Z)/*EDIT.
DECKl/,.~EDIT. DECK2

8-3

MODIFY FILE FORMATS 9

Types of Modify files significant to Modify execu­
tion include:

• Source files

• Program library files

• Directives file

• Compile file

SOURCE DECKS AND FILES

A source file is a collection of information either
prepared by the user or generated by Modify.

SOURCE DECKS PREPARED BY USER AS INPUT
TO MODIFY

A user prepares a source deck for input to Modify
by placing a deck name and optionally a COMMON
statement in front of the source language deck
(figure 3-1). At the same time. the user also in­
serts compile file directives. as required. into the
source language deck to control compile file output
from Modify. Each source deck is terminated by
an end-of-record. A group of decks is terminated
by an end-of-file or end-of-information. The deck­
name and COMMON statements are not placed on
the program library.

Modify source decks should not be confused with a
compiler or assembler program. A Modify source
deck can contain any number of FORTRAN programs.
subroutines or functions; COMPASS assembler
IDEN.T statements; or set of data. Typically. each
Modify deck contains one program for the assembler
or compiler or one set of data.

SOURCE FILES GENERATED BY MODIFY

The source file generated as output by Modify
contains a copy of all active lines within decks
written on the compile file and new program library.
The source file is optional output from Modify and
is controlled through use of the S option on the
Modify control statement. Once generated, the
source file can be used as source input on a sub­
sequent Modify run. The file is a coded file that
contains 80-column images. Any sequencing infor­
mation beyond the 80th column is truncated. When
F is selected on the Modify control statement, the
source file contains all lines needed to recreate the
latest copy of the program library.

60450100 B

When U is selected. the source file- contains only
those decks named on DECK directives; that is. only
the decks updated during the current Modify run.

When neither F nor U is selected. the source file
contains only those decks explicitly requested on
EDIT directives.

PROGRAM LIBRARY FILES

Program library files (figure 9-1) provide the pri­
mary form of input to Modify. When a program
library file is input. it is an old program library
and has a default name of OPL. When it is output.
it is a new program library and has a default name
of NPL.

l
t

prefix table 1

modification table 1

text I

End-of- record 1

prefix table2

::"'.:dificcticr. tabl~2

text2

End-of-record2

prefix table3

End -of-recordn-1

prefix table n

modification tablen

textn

End - of- recordn

prefix tablen+I

directory table

directory

End -of - record n + 1

End-of-information

I Deck (record) I

11

I l
Deck (record)2

1 :r

I Deck (record)n

Figure 9-1. Library File Format

9-1

Before writing the new program library,. an EVICT
is performed on the file. Refer to the NOS Reference
Manual, volume 1, for a description of the EVICT
operation.

A program library consists of a record for each
deck on the library. The last deck record is followed
by a record containing the library directory. The
contents of the new program library is determined
by EDIT directives and the control statement options.
Only edited decks are written on the new program
library.

DECK RECORDS

Each deck record consists of a prefix table, a
modification table,. and text.

Prefix Table Format:

47 17 II 0
ID WordO 7700 1 16 1 0

deck- J --creotlo11 dote

3 lo•t IROdlficotlon dote

l-

169 J ctlarMt

Word Bits Field Description

ID 59-48 Table Identifies table as pre-
type fix table.

47-36 WC Word count; length of
table is 168 words,

35-00 none Reserved for future
system use.

1 59-18 deckname Name of deck obtained
for source deck identi-
fication line; 1 to 7
characters.

17-00 none Reserved for future
system use.

2 59-00 creation Date that deck was
date created.

Format of date is:

yy/mm/dd.

3 59-00 latest Date of most recent
modifica- entry in modification
ti on table. Format of the
date date is the same as for

creation date.

163 11-00 char set Identifies character set
used to create this deck.

00003 63-character
set

00643 64-character
set

9-2

Modification Table Format:

59 47 17 Ii 0

I I
t;N 0 I rn w.,.~ ~ l-1--· ~-·-~1 --mo-d-na-m•-,---------_. ____ _.,,.,.....,--'--------t

: F- modname2 l:l:M 0

t ~:I 0

0

1-:l~ ______ moc1_n_am_•~1~-1:__ _____ -tlo'1-+---------t , t modn-•1

Word Bits Field

ID 59-48 Table
type

47-12 none

11-00 £

Description

Identifies table as modifi­
cation table. The least
significant digit indicates
whether the deck is com­
mon or not as follows:

1 Deck is not common
2 Deck is common

Reserved for future sys­
tem use.

Number of modification
names in table.

wordi 59-18 modnamei 1- to 7-character modifi­
cation set name. Each
modification to a deck
causes a new entry in
this table.

16 Yi YANK flag

Text Format:

0 Modifier not yanked
1 Modifier yanked

Text is an indefinite number of words that contain a
modification history and the compressed image of
each line in the deck. Text for each line is in the
following format.

59 53 3a 17 0

ftd HQ.llO.

I
1111111, I 11111112

i
RINl3 4,,

1 c-pre9Md teat

Bits Field Description

59 a Activity bit:

0 Line is inactive
1 Line is active

58-54 WC Number of words of com-
pressed text.

53-36 seQ. no. Sequence number of line
(octal) according to position
in deck or modification set.

60450100 A

Bits

35-18
and
subse­
quent
18-bit
bytes

Field

mhbi

com­
pressed
text

DIRECTORY RECORD

Description

Modification history byte.
Modify creates a byte for each
modification set that changes
the status of the line. Modifi­
cation history bytes continue
to a zero byte. Since this
zero byte could be the first
byte of a word and the com­
pressed line image begins a
new word, the modification
history portion of the text
could terminate with a zero
word. The format of mhbi
is:

16 0

O·I lllOd.llO. I

a Activate bit

mod.
no.·

0 Modification set
deactivated the
line

1 Modification set
activated the line

Index to the entry in
the modification table
that contains the
name of the modifi­
cation set that chang­
es the line status.
A modification number
of zero indicates the
deck name.

The compressed image of the
line is display code. One or
two spaces are each repre­
sented by 55s: they are not
compressed. Three or more
embedded spaces are replaced
in the image as follows:

3 spaces replaced by 0002
4 spaces replaced by 0003

64 spaces replaced by 0077s
65 spaces replaced by

0011ss8
66 spaces replaced by

001100018
67 spaces replaced by

00770002g, etc.

Trailing spaces are not con­
sidered as embedded and are
not included in the line image.
On a 64-character set program
library or compressed compile
file. a 00 character (colon) is
represented as a 0001 byte. A
12-bit zero byte marks the end
of the line.

The library file directory contains a prefix table
followed by a table containing a two-word entry for
each deck in the library. Directory entries are
in the same sequence as the decks on the library.

60450100 B

Prefix Table Format:

47 SS 11 0 -
J:O WordO 7700 l 16 l 0

2

s . . .
•Se

name

- I ,_,..
date

zeros

A Modify-generated directory has
the name OPL. However, if the
name of the di:r;-ectory is changed
(by LIB EDIT, for example), that
name is retained on new program
libraries f:hen generated.

Directory Table Format:

17 0

IOWordO 7000 l 0 T l

2

s
..

""i..

0

0

~I

I
~2

I .
•

T ,.,.,
randomacl*-·

I ,,,.2

rucio..._2

.Jo_

Word Bits Field Description

ID

1, 3,
R. -1

59-48 Table type

17-00 R.

59-18 decknamei

17-00 typei

I NOTE I

Identifies table as pro-
gram library directory.

Directory length ex-
eluding ID word.

Name of program library
deck; 1 to 7 characters
left-justified.

Type of record.

6 Old program li­
brary deck (OPL)

7 Old program li­
brary common
deck (OPLC)

10 Old program li­
brary directory
(OPLD)

Other record types are defined but are
ignored by Modify (refer to the NOS
Reference Manual, volume 1, for a com­
plete description of record types).

29-00 random
addressi

Address of deck rela­
tive to beginning of file.

9-3

DIRECTIVES FILE

The directives file contains the Modify directives
record. This record consists of initialization. file
manipulation. and modification directives, and any
source lines (including compile directives) to be
inserted into the program library decks. An option
on the Modify control statement designates the file
from which Modify reads directives. Normally,
the directives file is the job INPUT file. REA.D and
READPL directives cause Modify to stop reading
di rec ti ves from the directives file named on the
Modify statement and to begin reading from some
other file containing directives or insertion lines.

COMPILE FILE

The compile file is the primary form of output for
Modify. It can be suppressed by the user as a
Modify control statement option, when no compila­
tion or assembly follows the modification.

If a compile file is specified on the Modify control
statement, Modify writes the edited programs on it
in a format acceptable as source input to an assem­
bler, compiler, or other data processor. Through
control statement parameters and directives, a
user can specify whether the text on the file is to
be compressed or expanded, sequenced or unse­
quenc ed. If the text is expanded, the user can also
specify the width of each line of text preceding the
SP.quencP. information.

Expanded compile file format for each line consists
of x columns of the expanded line (where x is the
width requested), followed by 14 columns of se­
quence information, if sequencing information is
requested, and terminated by a zero byte. An
end-of-record terminates the decks written on the
compile file.

9-4

Compressed Compile File (A-Mode) Format:

4"'l :!e 17 II 0

0016 cllorMI 0 I
111odno.,. 1 no.,

1 CDfftPFe•td llM I

ID WOH: li----7700----------------t
l

char set

seq. no. i

compressed
line

SCRATCH FILES

-4110111•n HQ.no.n

J COIRPFH8td llnen

Character set of record.
OOOOs signifies 63-character
set. 0064s signifies 64-char­
acter set.

Sequence number of the line
relative to the modification
set identified by modname.

A line in compressed form.
Refer to the compressed text
description for text formats
of deck records.

Modify uses scratch files in three situations.

Scratch File 1 Used when common decks are
(SCR 1) modified and no new program

library i.s requested.

Scratch Fiie 2
(SCR2)

Scratch File 3
(SCR3)

Used when imseriions overflow
memory.

Used when a CREATE or
COPYPL directive is processed.
This file is in program library
format.

These files are returned by Modify at the end of the
Modify run.

60450100 B

BATCH JOB EXAMPLES

CREATE PROGRAM LIBRARY

EXAMPLE 1

This example illustrates how Modify can be used to construct a file in program library format from
source decks. This example contains only one source deck (PROG) consisting of a FORTRAN pro­
gram. The deck is terminated by an end-of-file card. The next record on INPUT contains the
directives. It is the user's responsibility to save the newly created program library (TAPE) for use
in future Modify runs ..

Unless C=O is specified. a compile file is generated. This example shows the compile file (COMPILE)
being used as input to the compiler. The compiler places the compiled program on LGO; the LGO
card calls for loading and execution of the compiled program.

COPYBF(lNPU'f., SOURCEi
MODIFY(P=O., N=TAPE. F)
FTN(I=COMPILE)

:
LGO.
7/8/9
PROO

(SOURCE DECK)

6/7/9

File related cards

*REWIND SOURCE
*CREATE SOURCE---------Directives Input
6/7/8/9

EXAMPLE 2

This example illustrates creation of a library from source decks on a source file other than INPUT.
After the library has been created. it can be modified. edited,, and written on a compile file for use
by an assembler or compiler.

Contents of File SALLY:

RON

(SOUR CE DECK FOR RON)

*CALL TOM
*IFCALL REQ.JACK
7/8/9
TOM
COMMON

(SOURCE DECK FOR TOM)

7/8/9
JACK
COMMON

(SOURCE DECK FOR JACK)

6/7 /8/9

60450100 A

Job Deck:

(JOB CARD)
File related

"----------cards

MODIFY(N. F,, P=O)

7/8/9
~'REWIND SALLY
~'CREATE SALLY

*DEFINE REQ

7/8/9

I Directives Input

10

10-1

MODIFY PROGRAM LIBRARY

EXAMPLE 1

In this example, Modify uses all default parameters. The sequencing information shown for inserted
cards is assigned during modification.

7/8/9
*IDENT MODlO
*DECK BOTTLE
* / *****MODIFICATIONS
*D 10
*D 4.
(CARD TO BE INSERTED IS ASSIGNED MODlO. 1)
*D 20, 22
(CARDS TO BE INSERTED ARE ASSIGNED MODlO. 2 THROUGH MODlO. 4) l Modification

set MODlO
I MOD9. 30
(CARD TO BE INSERTED IS ASSIGNED MODlO. 5)
*EDIT BOTTLE
6/7/8/9

EXAMPLE 2

This job modifies deck EDNA for replacement on the program library. No compile file is produced.

M~~File related cards

7/8/9
*ID ENT A2
::'DECK EDNA
':'MODNAME Al
I :!<>:<>:<>:'MODIFICATIONS
>:'D 30

TAG RJ CHECK
*MODNAME EDNA
*I 7011
ERR SAl LISTl

ZR Xl,ABORT
PRINT (O':'** ERROR 131 ::'::'>:')
EQ ABORT

*D 7644, 7650
':'EDIT EDNA

6/7/8/9

10-2

Modification set A2

Delete card A 1. 30
Insert card A2. 1

}
Insert cards A2. 2 through A2. 5
after EDNA. 7011

Delete cards EDNA. 7644 through
EDNA. 7650

60450100 A

MOVE TEXT
EXAMPLE 1

The job illustrated below calls Modify twice. On the first call. Modify deactivates all but cards 32
through 54 and writes the source for these cards on source file FRANK. On the second call. Modify
deletes the remainder of the cards and reinserts the saved cards at the beginning of KEN •

EXAMPLE 2

.
• +-­.
.
:+-

7/8/9
*IDENT MOVl
*DECK KEN
*D 1. 31
*D 55. 63
*EDIT KEN
7/8/9
*IDENT MOV2
;!<REWIND FRANK
>:•DECK KEN
*D 32. 54
*I 0
*READ FRANK.KEN
*EDIT KEN
6/7/8/9

- File related cards

Modification set MOVl

Delete cards before card KEN. 32
Delete cards KEN. 55 through KEN. 63
Transfer remaining cards (KEN. 32 through

KEN. 54) to source file FRANK
Modification set MOV2

Delete remainder of cards in KEN
Insert cards at beginning of KEN
Read insertion text from deck KEN on file

FRANK

This job moves text cards from one deck to another. On the first call to Modify. cards 32 through
54 of deck KEN on file OPL are saved on source file FRANK. On the second call# the saved cards
are inserted into deck WILL.

7/8/9
*ID ENT
*DECK
*D
*D
*EDIT
7/8/9

Fl
KEN
1. 31
55. 63
KEN

*REWIND FRANK
*IDENT F2
*DECK WILL
*I 25

Modification set Fl

Delete cards KEN. 1 through KEN. 31
Save cards KEN. 32 through KEN. 54 on source

file FRANK

Insert text after card WILL. 25
*READ FRANK. KEN

. *EDIT WILL
Insertion text taken from deck KEN on file FRANK
Deck WILL is written on NPL and compile file MEL

6/7/8/9

60450100 B 10-3

READ DIRECTIVES FROM AN ALTERNATE FILE

This job illustrates how the READ directive can be used to change the source of directives and correction
text from th.e primary input file (in this case INPUT) to some other file.

4---------File related cards

MODIFY.
COMPASS(I=COMPILE)
LGO.
7/8/9
~IDENT
*READ
*DECK

7/8/9

6/7/8/9

Read~ contents of om
*DECK A
*DECK B

6/7/8/9

YANK ·AND UNYANK MODIFICATION SETS

} Corrections for A

} Corrections for B

This example illustrates a job that logically removes all of the modification sets applied to program
library LIB from the modification set named JULY and on. The change is not incorporated into the
library; it is for the benefit of this run only.

4---------------File related cards

MODIFY(P=LIB, F)
COMPASS(l=COMPILE)
LGO.
7/8/9
*IDENT NEGATE
*DECK MASTER
YANK JULY,
6/7/8/9

To incorporate the preceding change on a new program library,, add the N parameter to the Modify
statement.

The effects of a YANK can be nullified in future runs and, consequently, the effects of the yanked
modification sets can be restored through the UNY ANK directive. Such a modification might appear
as follows:

*IDENT RESTORE
*DECK MASTER
*UNY ANK JULY, *

10-4 60450100 A

PURGE DECKS

Decks BAD, WORSE, and WORST are no longer needed. The following job removes them from the library.
They could also be removed through a selective edit using EDIT directives. In either case, the removal is
permanent.

MODIFY(N, C=O., F)

._ _____________ File related cards

7./8/9
*PURDECK BAD., WORSE,. WORST
6/7/8/9

CHANGE THE DIRECTIVES PREFl.X CHARACTER

EXAMPLE 1

This example illustrates how to maintain directives input on a library. Because * is the prefix used
on the library,. a different prefix is required when roodifying the library. In this case,. I becomes the
prefix character.

ATTACH(OPL)
GET(FIX)
MODIFY(P=FIX,. C=Z,. N=FIX2)
REWIND(Z)
COPYSBF(Z,. OUTPUT)
REWIND(Z)
MODIFY(I=Z)
COMPASS(!., S,. B=LTOl)

7/8/9
*PREFIX I
/WIDTH 58
/ID ENT Fl
/DECK CORR
/I 873
*I 1007

LDC
STM

iD 880
/EDIT CORR
6/7/8/9

7777B
STMA+l

The contents of deck CORR on compile file Z are as follows:

*ID ENT
*DECK
*I

*D
*I

NIX
GRMlTD
MHD2.19

997., 1000
1007

LDC
STM

LJM
980,. 984

7777B
STMA+l

STM

CORR 1
CORR 2
CORR 3

CORR 873
Fl 1
Fl 2
Fl 3

CORR 879
CORR 881

} Inserted cards

Instruction CORR. 880
has been deleted

After file z is produced,. the deck GRMl TD is modified by the contents of Z. The resulting compile
file (COMPILE) contains COMPASS language PPU code and is assembled using COMPASS.

60450100 A 10-5

The job produces a new program library (FIX2) which replaces FIX so that the changes to deck
CORR are saved.

The resulting COMPASS listing would appear as follows:

STD
LOC
STM

SM
7777B
STMA+l

Corrections
on File Z

(Correction IDs)

Fl 2
Fl 3

Contents of
COMPILE
(Deck IDs)

GRMlTD 1007
NIX 11
NIX 12

Since the comments go through the correction identification., the INWIDTH directive must be deleted
if a new program library is generated. However. for maintenance. there is an advantage of seeing
the correction identifiers with the deck identifiers.

EXAMPLE 2

This example illustrates changing the compile file prefix character so that when Modify produces the
compile file. it recognizes only directives using the specified prefix. The directives prefix. in this
case. is unaltered.

10-6

ATTACH(OPL)
MODIFY.
COMPASS(!. S,, B)
7/8/9
;'<!DENT TESTl
*DECK TEST
*PREFIXC I
>:'EDIT TEST
6/7/8/9

Deck TEST contains the following:

LDM
STD

*CALL PPC
/CALL PPCA

TCLT
CM

Modify ignores the common deck call to PPC. COMPASS interprets it as a comment card. Modify
acts on the common deck call to PPCA and replaces the /CALL directive with a copy of common
deck PPCA.

60450100 A

USE OF THE Z PARAMETER

EXAMPLE 1

Suppose you want to create a compile file using an alternate OPL. The fo~lowing deck illustrates
this technique.

MOOIFY(Z) / *OPLFlLE., OPLZ /*EDIT., DECKl

6/1/8/9

EXAMPLE 2

Another use of Z might be to request editing of specific decks;

MODIFY(Z)/*EDIT .. DECKl., DECK2

6/?/8/9

60450100 A 10-7

SAMPLE FORTRAN PROGRAM

This set of Modify examples illustrates how Modify can be used for maintaining a FORTRAN Extended program
in p1~og1~au1. library format. The FORTRA~~ p:r-ogram calculates the n.rcn of n. triangle from the base and height
read from the words in the data record.

EXAMPLE 1

The following job places the FOR TRAN program and subroutine as a single deck (ONE) on the new
program library (NPL) and on the compile file (COMPILE). Following Modify execution, FORTRAN
is called to compile the program. The LGO card calls for execution of the compiled program. This
program ~oes not execute because of an error in the SUBROUTINE statement. The name of the
subroutine should be MSG. not MSA.

1.0-8

File related cards

71819 END OF RECORD
ONE ~------------------------Deck name

5
10
100

105
106

110

120

400

PROGRAM ONE (INPUT.OUTPUT, TAPEl)
PRINT 5
FORMAT (lHl)
READ 100, BASE. HEIGHT. I
FOR MA T(2F10. 2, 11)
IF (I. GT. O) GO TO 120
IF (BASE. LE. O) GO TO 105
IF (HEIGHT. LE. O) GO TO 105
GO TO 106
CALL MSG
AREA = • 5*BASE>:'HEIGHT
PRINT 110, BASE, HEIGHT, AREA
FORMAT(/ 11. ':' BASE=':'F20. 5, ':' HEIGHT=':'

IF18. 5, /, >:' AREA =*F20. 5)
WRITE (1) ARE.I\
GO TO 10
STOP
END
SUBROUTINE MSA

!Should be

SUBROUTINE MSG

PRINT 400
FORMAT (///,
RETURN

FOLLOWING INPUT DATA NEGATIVE OR ZERO ':')

END
6/7/9 END OF FILE+------------------End of source deck
':'REWIND S
':'CREATE S ~---------------------Directives input
7 /8/9 END OF RECORD

200. 24 500. 76 l
300.24 600.76
400.00 700.00
326.32 425.36
500.00 600.00
000.00 150.00
700.43 800.00
100.00 300.00
050.00 100.00
150.00 200.00

1
6/7/8/9 END OF INFORMATION

Data record

60450100 B

EXAMPLE 2

Examination of Modify output from the creation job reveals that the erroneous SUBROUTINE state­
ment has card identifier ONE. 20. The following job corrects the error and generates a new program
library.

MODIFY(N. F)
FTN(I=COMPILE)
'LGO.
7 /8/9 END OF RECORD
qDENT MODl
,:,DECK ONE
>:<DELETE 20

SUBROUTINE MSG~-------- Identified as MODl. 1 on NPL
7/8/9

200.24
300.24
Ann nn
"'%VVe VU

326.32
500.00
000.00
700.43
100.00
050.00
150.00

500.76
600.76
700.00
425.36
600.00
150.00
800.00
300.00
100.00
200.00

l

1
6/7/8/9 END OF INFORMATION

60450100 A

Data record

10-9

EXAMPLE 3

This job uses the same input as the first job but divides the program into two decks: ONE and MSG.
Deck MSG is a. common deck. A CALL MSG directive is insertP.d into deck ONE to ensure that MSG
is written on the compile file whenever deck ONE is edited.

10-10

COPYBF(INPUT • S)
MODIFY(P=O. N. F)
FTN (I= COMPILE)
LGO.

-----------File related cards

71819
ONE

END OF RECORD

PROORAM ONE (INPUT, OUTPUT, TAPEl)

5
10
100

105
106

PRINT 5
FORMAT (lHl)
READ 100, BASE, HEIGHT. I
FORMAT(2F10. 2, 11)
IF (I. GT. 0) GO TO 120
IF (BASE. LE. O) GO TO 105
IF (HEIGHT. LE. 0) GO TO 105
GO TO 106
CALL MSG
AREA = • 5*BASE*HEIGHT
PRINT 110. BASE. HEIGHT.AREA

110 FORMAT (/ 11. * BASE=*F20. 5, * HEIGHT=*
IF18~ 5, I.* AREA=*F20. 5)
WRITE (1) AREA
GO TO 10

120 STOP
END

*CALL MSG
'7/o/o
I/ U/ u

MSG
COMMON

END OF RECORD

SUBROUTINE MSG
PRINT 400

Replaced by common deck MSG
on compile f!.le

400 FORMAT(/ 11. ::'FOLLOWING INPUT DATA NEGATIVE OR ZERO:!<)
RETURN
END

617 /9 END OF FILE
*REWIND S
*CREATE S
7 /8/9 END OF RECORD

200.24 500.76
300.24 600.76
400.00 700.00
326.32 425.36
500.00 600.00
000. 00 150. 00 Data record
700.43 800.00
100.00 300.00
050.00 100.00
150.00 200.00

1
6i7/8i9 END OF INFORMATION

60450100 A

EXAMPLE .4

This example adds a deck to the library created in the previous example. With no new program
library generated (N is omitted from Modify card),, the addition is temporary.

71819
TWO

END OF RECORD

PROGRAM TWO(INPUT .. OUTPUT)

END

File related cards

*CALL MSG Replaced by common dec.k MSG on
617/9 compile file
*REWINDS
*CREATES
>:<IOENT MOD2
>:<DECK MSG
*DELETE MSG. 3
400 FORMAT(/ 11. :::, FOLLOWING INPUT DATA POSITIVE:::')
>:<EDIT TWO
71819
(DA TA RECORD)
6171819

60450100 A 10-11

STANDARD <;HARACTER SET

ASCII HOLLERITH EXTERNAL ASCII
CDC GRAPHIC DISPLAY PUNCH BCD PUNCH

GRAPHIC SUBSET CODE (026) CODE (029)

; t • OOt 8-2 00 8-2

A A 01 12-1 61 12-1

B B 02 12-2 62 12-2

c c 03 12-3 63 12-3

D D 04 12-4 64 12-4

E E 05 12-5 65 12-5
F F 06 12-6 66 12-6
G G 07 12-7 67 12-7
H H 10 12-8 70 12-8

I I II 12-9 71 12-9

J J i2 i i-i 4i i i-i

K K 13 11-2 42 11-2

L L 14 11-3 43 11-3
M M 15 11-4 44 11-4

N N 16 11-5 45 11-5

0 0 n 11-6 46 11-6
p p 20 11-7 47 11-7

Q Q 21 11-8 so 11-8

R R 22 11-9 51 11-9

s s 23 0-2 22 0-2

T ·T 24 0-3 23 0-3

u u 2~ 0-4 24 0-4

v v 26 0-5 25 0-5

w w 27 0-6 26 0-6

x x 30 0-7 27 0-7
y y 31 0-8 30 0-8

z z 32 . 0-9 31 0-9

0 0 33 0 i2 0
I I 34 I 01 I

2 2 35 2 02 2

3 3 36 3 03 3

4 4 37 4 04 4

5 5 40 5 05 5

t TWELVE OR MORE ZERO BITS AT THE ENO OF A 60-BIT WORD ARE
INTERPRETED AS END-OF-LINE MARK RATHER THAN TWO COLONS.
ENO·QF·LINE MARK IS CONVERTED TO EXTERNAL BCD 1632.

ASCll CDC
CODE GRAPHIC

3A 6
41 7
42 8
43 9
44 +
45 -
46 •
47 I
48 (

49 l
4A $
4B .
4C BLANK

4D ,COMMA)

4E .(PERIOD)

4F •
50 [

51]

52 "1.tt
53 ~

54 -
55 v
56
57 A
58 t
59 ' SA <
30 I
31 >
32 ~

33 ~

34 ..,

35 ; (SEMICOLON)

3AE13A

t t IN INSTALLATIONS USING THE CDC 63-GRAPHIC SET, DISPLAY CODE 00 HAS rm ASSOCIATED
GRAPHIC OR HOLLERITH CODE; DISPLAY CODE 63 IS THE COLON(8-2 PUNCH). THE
SELECTION OF THE 63· OR 64-CHARACTER SET FOR TAPES !S AN !NSTALLAT!ON OPTION.

60450100 A

ASCll
GRAPHIC DISPLAY
SUBSET CODE

6 41
7 42
8 43
9 44
+ 45

- 46

• 47
I 50
(51

l 52
; 53
a 54

BLANK 55
,(COMMA) 56
.(PERIOD) 57

60
[61
l 62 ..,. 63

•(QUOTE) 64
_ (lN>ERUNEl 65

! 66

8 67
'{APOSTROPHE) 70

? 71

< 72

> 73

til 74

\ 75
-(CIRCUMFLEX) 76
; (SEMICOLON) 77

A

HOLLERITH EXTERNAL ASCII
PUNCH BCD PUNCH ASCU
(026) CODE (029) CODE

6 06 6 36
7 07 7 37
8 10 8 38
9 11 9 39
12 60 12-8-6 2B
II 40 11 20

11-8-4 54 11-8-4 2A
0-1 21 0-1 2F

0-8-4 34 12-8-5 28
12-8-4 74 11-8-5 29
I i-6-3 53 i i-6-3 24

8-3 13 8-6 3D
NO PUNCH 20 NO PUNCH 20

0-8-3 33 0-8-3 2C
12-8-3 73 12-8-3 2E
0-8-6 36 8-3 23
8-7 17 12-8-2 58

0-8-2 32 11-8-2 50
8-6 16 0-8~4 25
8-4 14 8-7 2.2

0-8-5 35 0-8-5 5F
11-0 52 12-8-7 21

0-8-7 37 12 2.6
11-8-5 55 8-5 27
11-8-6 56 0-8-7 3F

12-0 72 12-8-4 3C

I 1-8-7 57 0-8-6 3E
8-5 15 8-4 40

12-8-5 75 0-8-2 SC
12-8-6 76 I 1-8-7 SE
12-8-7 77 11-8-6 38

3AE6A

A-1

OUTPUT LISTING AND MESSAGES B

Depending on list options selected on the Modify
control statement. list output for Modify contains
the following.

•
•

~nput directives

Status of each deck

Modifiers are listed first. followed by a
list of activated lines. deactivated lines.
active lines. and inactive lines as they are
encountered. To the left of each line are
two flags,. a status flag and an activity
flag. The status flag can be I (inactive) or
A (active). The activity flag can be D
(deleted) or A (activated). Following
these lines are the unprocessed modifica­
tions and errors. if any. The last line
contains a count of active lines. inactive
lines,. and inserted lines.

60450100 c

•

•

Statistics

This includes lists of the following.

Decks on program library

Common decks on program library

Decks added by initialization directives

Decks on new program library

Decks written on compile file .

A replaced deck is enclosed by parentheses.
Completing the statistics is a line contain­
ing counts of the number of lines on the
compile file and the amou'nt of storage used
during the Modify run.

Errors

Modify prints the line in error. if any.
above the diagnostic message. Error
messages other than those identified as
fatal can be overridden through selection
of the Modify statement D (debug) option.

B-1 •

•
td
I

N

0)

0
t+>­
CJl
0
0
0

MESSAGE

C4RO NOT REAC~EC.

COFY FILE EMPfY •

C~EATION FILE E~PTY.

CV OPTIO~ INVALID.

OIR~CTIVE E~RCRS.

DUPLICATE HCOlFJER NAN£.

E~~OR IN "CCIFV A~GUHENTS.

FIL~ NAHE CONFLICT.

Fl~ST CAQO IS AFTER SECOND CARO.

FC~HAT ~~ROR IN OIRfCTlVE.

Sl:Gt.:I F IC ANCE

Stauenc• number excBeds deck range.

Aeauested ~ldth excueds ~~ximu111 alloMed
UOOI.

No lnfor1111tlo" on proqr~m I lb.,.ary beln9
cooled.

No source ceclcs on 'fl I e be ln9 used for
creat lon.

CV option other than 6J or 64.

I format ef'ror h1s l:>ee" d.ah~eted durlng
Drocessl~q of dlrectlves. Fatal error.

Madlfler o~ IDENT ~as been usec previouslv
for the deck.

'" i~valid parsmeter h!s been enco~ntered on
the OPLEOIT co"trol state~ent.

Tre orograr tlbrary contains an error.
Fat:tl error.

Ille~al o~rameter on Mo11fv control
stat•mert. Fatal error.

Tre sa~e file c1nnot bE us~d for both
applications without conflict. Fatal
error.

Parameters are erroneous or llnes are out
of order.

A for•at error has beer detected i~ t
cUreetl ve.

ACTION

Use correct seouence
number.

Change ~ldt~ to 100 or
less.

Verify that COPY file
exists and.is oropertv
oosltloned ~t ~OI.

Verifv that creation
file contains proper
source decks.

SP•Cifv &3 or 64 for
conversion ootion.

Consult 1 lstinq for
descriotlon of error.

Choose unlQue name for
deck.

Correct control state~ent
and retry.

Use COPY or COPYPL to
create new orogra~
11 br3ry.

Consu It manua I for correct
control statement svntax.

Use different file name
for one of the
a op I i cat 1 o ns •

Verify that correct
tine seQuence is used.

Consu 1 t manua I for
correct forrn3t.

HOl!lIFY

MOIOIFY

HOOIFY

MOillIFY

HODIFY,
OPll.EOIT

MODIFY,
QP!LEOIT

HODIFY

QPiLEDIT

MOO IFY,
OPLEDIT

M'.JO IFY

MJO IFY,
O;J'LEOIT

MOO I FY

MOO I FY,
OPLEOIT

Cl)

~
C1I
0
......
0
0

•

"ESSA GE

ILLEGAL DIRECTIVE.

ILLEGAL NU~ERIC FIELD.

INVALID ATTRieu1E.

-LC-ERROR, MUST BE ECTHHOSIA-

MO::l"ORY O\ll;RFLCh •

MIXED CHARACTER SET OPL.

MOCCS) TO MOO e£FORE THIS lOENT CARO.

MCCIFICATION E~~CRS.

MCOIFICATIO~/Ol~ECTIVE ERRORS.

NAMES SEPARATED ev ••• IN WRONG ORDER.

NC •IF IN PROGRESS.

NC DIRECTIVES.

OPERATION ILLEGAL FROM ALTER~ATE INPUT.

SIGhlFlCANCE

Oirective ls out of seauence. For example.
the CREA f E direct he ls after a 111odi fl cation
directive for ~oa1fy.

I"vatld parameter ow Hodlfy or OPLfOIT
control stateme~t.

Attribute speclfled on IF dlrective ls
other than EQ, NEt DEF, or UNOEF.

llleqal list optlor. reouested. Fatal
erro,...

tnsuf flciert f ielci length has bee~ specified
for OPLEOIT to ~~ecute.

CPLEOIT detected d~cks on the orogram library
that are in different character s•ts C63 and
6~, for example).

A modi f ic1t ion dir•ect ive or a dl f ferent
I CENT d irec t1 ve re fer to the curre~t
111odn:1me.

~odify has detected errors during the
moc:Uflcatlo" ohaso; fatal If O ootlon is
not selected.

~odificatlon and/or directive errors are
encountered when debug mode ls selected.

~•Quested decks not ln correct seauence.

A~ ELSE or ENDIF directive w3s encountered
Mlthout a previou~ IF oirecti•e•

Directives file empty. Fatal error.

Fl•e manipulation attempted from other than
original directives file.

ACTION

Use correct se~uence.

Verify control stateeent
parameters and retry.

Use correct attribute.

SP•Cify either E. c. '·
M9 H, o, s, It or A for
I lst option.

Increase fietd length
with RFL contro I
statement and retry.

Use Hodlfy to recreate
erroneous dec~s under
one character set and
retry.

Choose a different
Modiflcatlon n~~e for
the IOENT directive.

Consult listing and
correct specified
errors.

Consu•t 11st1nq and
correct specified
errors.

Determine corr~ct sequence
and retry.

Check for omitted IF
directive or unnecessary
ELSE OR tNOIF directive.

Verify that directives
file exists and is
correctly positioned
at BOI.

Move file ~inioulation
directives to original
dlrecti ves f i I e •

ROUTINE

t100IfY•
OPLEDIT

HODIFY,
OPLEOIT

'10DIFY

MODIFY

OPLEOIT

OPLEDIT

HOO I FY

t1001FY

MODIFY

"OOIFY,
OPLEOIT

1100IFY

HOOlFY,
OPLEOtT

1100IFY

•
ID
I

ii:.

(I)

0
ii:.
(,JI

0
0
0

MESSAGE

OPLEDIT COMPLETE.

OPLEOIT ERRORS.

OVERLAPPING HCOIFICATION.

PL ERROR IN OECk deckna•e·

PRCGRAH LIBRARY EMPTY.

RECORD NOT FOUHC.

RECURSIVE •IF.S ILLEGAL.

REDUNDANT CCN~ERSION IGNORED~

RESERVED FILE NAME.

s OPTION ILLEGAL WITH At x. oa a.

rco HANY OPL FILES.

S.JGNIFICANCE

l"for•atlve message lnolcating that OPLEOIT
has co•Pleted proce$S1"9•

Errors •ere encoijntE?reo dur lf'lg OP LEO IT
exeeut 1 o,,.

Line Modified ~ore thar o"ce.

'" error MIS detect~d ln the program
llbrarv for•at d~rl"g processing of deck
na••d· Fatal error.

No lnfor•1tion on flle soeclfied as
progra• llbrarv. F~tal error.

Modlfv •as unable to locate reQuested
record on flte speclfled.

A~ IF directive ~as encouf'ltered Mhile a
previous IF rar.ge Ras still active Cno ELSE
or ENOIF e"cou~tere~t. F~tal error.

A~ atte•pt MIS •ade to convert the program
llbrsry file to a llke character set C&3 to
63 or 64 to &41. Conversion option set to
zero.

O~aratlo" atte"pted on a file na~e
reserved by this utJlltv.

Source opt lon not h!ga I when A, x, or Q
option ls selected. Fatal error.

"ore thin 20 orogram library flies
declared.

ACTION

None.

Consult outout listing
for description of
errors.

Remove redundant line
modi f icat lons.

RepJ3ce or recreate
erroneous deck.

Verify that program
11 brarv fl le ls
available for Modify
to manloul ate.

Verify that record
exists on soeclfied
fit e.

Chee~ for missing ENDIF
or ELSE directive or
unnecessary IF
directive.

Verify conversion mode
desired.

Choose a nonreserved
f i te name.

Remove S option from
control statement and
soecifv on separate
mod 1 f l c at ion ~

Soecifv excess program
11br3rles on subsequent
Hodlfv runs.

ROIJTINE

OPtEOIT

OP\. EDIT

MODIFY

HOi::IIFY,
OPtEOIT

M01HFY,
O?tEDIT

HOOIFY

HO!HFY

HOUIFY

HOOIFY,
Eon,
OPtEOIT

MO~t IFY

MOO I FY

Oj
I

CJ'l

•

UhlCNONN OECK.

UNKNONN HOOIFlE~.

VALUE ERROR•

X CR Y ILLEGAL ~ltHOUt CO"PLLE•

deckname - INVALID CS, bJ AS~UMEO.

d~ckname • ~l•Et CHARACfE~ SEt 0£tECtEO.

SIGNlr:ICANCE

~~able to locate reauested dee~ o" orogram
1 arary.

~odif ler not ln woa11·1catlon table for
dtC:"·

talue soeclf led on IF or DEFINE dlrectl•e
ls gr•ater tha" l111111a. Fatal error.

Selection of x or Q ootlor reQulres that a
compile flle na~e te selected.

t~e lo"er byte of Aora 16~ of the orefix
t1ble tor the naNed dee~ on the oro9ram
libr~ry does not contain 0000 or OOG~.

~Pon editing t~e named dee~ on t~e program
llbrary, t~e character set w~s dlffere~t
from the c~aract~r set of orewlously eolted
cectcs.

ACtIOM

ferlff that deck name ls
correct.

Determine correct
modl f ler.

Select valwe less than
or eQual to 31111119.

Soeclff c ootlon on
"odlff control state•ent
Cftot c=ot.

lf 6~·character set ts
desired, the deck •wst
be recreatei:i.

Recreate tne dee~ wndtr
the desired cna~act•r
set~

ROUttN&:

l'tOOtFf

l'tOOlFf

fllOOtFT

fltOOlFT

111001n.
OPL£01t

l'IOOlFt

OPLEDIT UTILITY c

OPLEDIT is an NOS utility used in conjunction with
Modify-formatted old program libraries (OPLs).
The OPLEDIT routine is used to completely remove
specified modification decks and modification iden­
tifiers from an OPL. It can also be used to extract
the contents of specified modification sets on an
OPL file.

The following are the OPLEDIT directives.

*EDIT

*PULLALL

*PULLMOD

*PURGE

Edit deck

Generate modification set

Reconstruct modification set

Remove modification set

The format of OPLEDIT directives is essentially
the same for Modify directives (refer to section 2).
The main difference is that OPLEDIT does not
allow the user to change the prefix character.
Therefore, the asterisk (':') must be used.

EDIT - EDIT SPECIFIED DECKS

The EDIT directive requests OPLEDIT to edit a
program library deck and transfer it to the new
program library. The deck names specified nor­
mally are the decks that contain the modification
identifiers.

Format:

>:'EDIT Pt, p2 •••• , P n

60450100 A

A deck name or range of
decknames in one of the
following forms:

decknamea. decknameb

The first form edits a deck on
the library; the second form
requests a range of decks
starting with decknamea and
ending with decknameb•

If the deck names are in the
wrong sequence, OPLEDIT
issues the error message:

NAMES SEPARATED BY
*· >:< IN WRONG ORDER.

If OPLEDIT fails to find one
of the decks, it issues the
message:

UNKNOWN DECK - deckname.

PULLALL - GENERATE MOD-IFICATION
)ti

The PULLALL directive allows the user to generate
a modification set that contains the net effect of all
current modification sets or all modification sets
added after and including a specific modification set.

Formats:

*PULLALL

*PULLALL modname

modname First modset to be included: all
modsets following modname are
also included, provided modname
appears in the edited deck.

For the first format, OPLEDIT builds a directive file
suitable for submission to Modify using the *READ
Modify directive. The file (specified by the M param­
eter on the OPLEDIT control statement) contains the
net effect of all modifications currently applied to the
program library. As such .. all Modify IDENT direc­
tives are deleted and replaced by an !DENT >:'>:'>:'***::'
at the beginning of the file.

PULLMOO - RECONSTRUCT
MODIFICATION SET

With the PULLMOD directive. the user can reconstruct
one or more modification sets applied to edited decks.
The structure of the original modset is maintained;
that is, Modify IDENT directives are not changed or
deleted as in the PULLALL directive.

Format:

modname.
l

Modification name· to be generated
onto file specified by M param­
eter on OPLEDIT control state­
ment.

PURGE - REMOVE MODIFICATION SET

The PURGE directive enables the user to completely
remove the effects of a previous modification set or
group of modsets from decks written on the new pro­
gram library. The modification identifiers are no
longer maintained in the history bytes (refer to Text
Format .. section 9) of the new program library.

C-1

Formats:

*PURGE modname

PURGE mod.name.

modname Modification set to be removed.

Indicates that the modset and all •
subsequent modsets are to be re­
moved. provided modname appears
on the edited decks.

Note that it is not possible to remove modsets implic­
itly; that is, *PULLMOD A. B is illegal. Also,
PULLMOD A, does not pull modset A and all
modsets that follow (as on the *PURGE directive).
Rather, it pulls modset A and modset *·

Modification names requested are removed only
from decks edited. Modsets generated by OPLEDIT
are in a form suitable for use by Modify as follows:

*READ, file,,:,

*READ, file. ident ·

That is. each modset is a separate record. with
ident being the first line. The *PULLALL modset,
if used. is the first record on the file. The file
(specified by the M parameter) is returned before.
and rewound after use.

OPLEDIT CONTROL STATEMENT

The control statement format is:

OPLEDIT(p1, p2 •••• , pn)

C-2

pi Any of the following in any order:

I Use directive input from
file INPUT. If the I
option is omitted. file
INPUT is assumed.

I=O
p

Use directive input from
file lfn1•

Use no directive input.

Use file OPL for the old
program library. If the
P option is omitted. file
OPL is assumed.

P=lfn2 Use file lfn2 for the old
program liorary.

P=O Use no old program
library.

N Write new program
library on file NPL.

N=lfn3 Write new program
library on file lfn3•

N=O Write no new program
library. If this option is
omitted, N=O is assumed.

L List output on file
OUTPUT. If the L option
is omitted, file OUTPUT
is assumed.

L=lfn4 List output on file lfn4•

L=O

rv!=lfn5

List no output.

Write output fro111
*PULLMOD and *PULLALL
directives on file lfn5. If
Mis omitted, M=MODSETS
is assumed.

LO=x Set list options x; each bit
in x. if -set. turns on the
corresponding option.

F

D

u

U=O

z

OPLEDIT EXAMPLES

001 Errors

002 Directives

004 All other input
statements

010 Modifications
made

020 Directives pro-
cessed from the
program library

040 Deck status

100 Directory lists

200 Inactive statements

400 Active statements

If this option is omitted.
x= 177 is assumed (that is.
the first seven options
listed).

Modify all decks~

Debug; ignore errors.

Generate *EDIT directives
for all decks.

Generate no *EDIT direc­
tives. If the U option is
omitted. generate *EDIT
directives for common
decks.

The OPLEDIT control
statement contains the in­
put directives following
the terminator; the input
file is not read. This
eliminates the need to use
a separate ha.put file for
the directives when only a
few directives are needed.
The first character fol -
lowing the control state­
ment terminator is the
separator character. If
Z is omitted, the ·control
statement does net contain
the input directives.

I NOTE I

Do not place an -
other terminator
after the
directives.

Figure C-1 illustrates the four OPLEDIT directives.

60450100 c

batch~45"88
$RFL,45888.
/get,mainpl
/catalog,mainpl,t

CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH Cl<SOM DATE

1 OECICl OPL (64) 61 3171 76/81/22.
MODl MOD4

2 DECICl OPL (64, Jl 2JJ3 76/81/21.
MOOl M004

l OEC«2 OPL (64, 68 5455 76/81/22.
MOOl MOD2 MOD3 MOD4

4 DECK4 OPL (64) 4l seu 76/81/!J.
M004

s OEC«S OPLC (64J 27 6JH 76/8l/ZJ.
6 OPL OPLO 13 J186 76/H/U.

l * EOF * SOM • 311
l

CATALOG COMPLETE.
/opledit,p•mainpl,m-mods,lo•l,n•newpl
? •purge 110<!4, •
1 •pullaod mod2,mod3
? •pullall modl
? •edit deckl.dect4
1
OPLEDIT CGMPLET8.

/catalo9,newpl,r
CATALOG oe NEWPL FILE 1

REC MAME TYPE LEtfGTB CtCSOM DATE

1 OECU OPL (64, 11 llJZ 16/H/22.
MOOl

2 DECK] OPL (64) 14 3117 76/fJl/21.
MODI

l OECK2 OPL (64J 55 5826 76/81/22.
MOOl M002 MODl

4 DECl'.4 OPL . (64) 44 8216 76/81/23 •
5 OPL OPLO 11 4876

6 * E-OF ~ SUM K
.,..,.r
1:.£;J

1
...

CATALOG COMPLETE.
/primary.mods
SPRIMAllY,MODS.

Figure C-1. OPLEDIT Examples (Sheet 1 of 2)

60450100 A
C-3

C-4

/lnh,r

*I DENT
:;DECK
*D,l

*I,2

MAIN PROGRAM, DECK DECKl.

*I,3

*DECK
*I,lt

·•NEOR
·*D,l

*DECK
*I,I
*NEOR
*D,l

*I,3

COMMON JOT

CALL SUBJ
IF (JOT. EQ. 3) PRINT*, ''TIME-SHARING JOB."
IF(JOT.NE.3)PRINT*,"BATCH JOB."

DECK3

SUBROUTINE 2, DECK DECK3.
DECK2

SUBROUTINE 1, DECK DECl2.

* CALL SUBROUTINE SUB2
* IN DECK DECK2.
*I,7
*** END DECK2.
--EOR--
MOD2
*I DENT MOD2
*DECK DECK2
*D,MODl.3
*RESTORE,7
--EOR--
MOD3
*IOENT MODJ
*DECK DECK2
*RESTORE,MODl.3
--EOR--

PULLALL directive

PULLMOD directive

Figure C-1. OPLEDIT Examples (Sheet 2 of 2)

60450100 A

A option 8-1
Activate bit 9-3
Active line 9-2
Activity bit 9-2
Alternate directives file 1-2; 5-1
Alternate DPL file 3-2
ASCII-mode considerations 1-4

Backspace file 5-1
Batch job examples 10-1
BKSP directive 5-2

C option 8-1
Call common deck 6-1
CALL directive 6-1
Call related common decks 6-2
CALLALL directive 6-2
CB option 8-1
CG option 8-1
Change prefix character 7-1; 10-5
Character sets 9-4·; A-1
Character set conversion 8-1
CL option 8-1
COMMENT directive 6-2
Comment line 6-2; 7-1
Common deck

call 6-1
declaring 3-1
identification 9-2
purpose 1-1

COMMON line 3-1
COMPASS binary_ output 8-1
COMPASS COMMENT pseudo instruction 6-2
COMPASS get text option 8-1
COMPASS list option 8-1
COMP ASS system text option 8-1
COMPILE file 8-1
Compile file

compressed format 1-1
compressed mode 8-1
contents 9-4
directives 6-1
end-of-file 6-3
end-of-record 6-3
line width 3-3; 6-2
no rewind 8-2
output 8-1
sequencing 3-3; 6-3
write phase 1-3

Compressed compile file 8-1
Compressed lines 1-1; 9-3, 4
Conditional call common deck 6 -1
Conditional range 6-2
Control statement 8-1 ·
Control statement input 8-3
COPY directive 3 -3
Copy program library 3-2
COPYPL directive 3-2
CREATE directive 3-2
Create comment line 6-2
Creation date 9-2
Creation of program library 3-2; 10-1

60450100 B

INDEX

CS option 8-1
CV option 8-1
CWEOR directive 6-3

D directive 4-2
D option 8-1
Deactivate line 4-2
Dubug option 8-1
Deck

common 1-1; 3-1; 6-1
edit 4-3
identification 4-2
ignore 4-3
move 7-2
purge 4-3
records 9-2
remove 4-3
replace 3-2

DECK directive 4-2
Deck name

duplicate 3-1
identify 4-2
location 3-1
purpose 3-1

Deck status B-1
Declare OPL files 3-2
DEFINE di rec ti ve 7 -1
Define IF name 7 - 1
Define IF value 7-1
Define IFCALL name 7-1
Define NIFCALL name 7-1
DELETE directive 4-2
Delete lines 4-2
Directive

format 2-1·
input 8-2
prefix character 2-1; 7 -1
separator 2-1

Directives
alternate file 5-1
compile file 6-1
file 9-4
file manipulation 5-1
initialization 3-1
Modify input 8-2
modification 4-1
on program library 5-1
special 7-1

Directory
library 1-2; 9-3
record 9-3
table 9-3

Edit deck
full edit 4-3
OPLEDIT C-1
selective edit 4-3
UPDATE edit 4-3

EDIT directive 4-3
EDIT (OPLEDIT) directive C-1
ELSE directive 6-2
End conditional range 6-2

Index-1

End-of-file 6-3
End-of ~record 6-3
End-of-record, conditional 6-3
ENDIF directivP. 6-2
Error messages B-2
EVICT of NPL 8-2 ·
Execute COMPASS 8-2
Execute program 8-2
Execution of Modify 1-3

F option 4-4; 8-1
Features of Modify 1-3
File formats 9-1
File manipulation directives 5-1
File positioning 5-2
File, return 5-2
File, rewind 5-2
Files

compile 8-1; 9-4
COMPILE 8-1
directives 1-1; 8-2
list output 8-2
NPL 8-2
OPL 8-2; 9-1
program library 1-1; 8-2; 9-1
reserved 5-1
scratch 5-1; 9-4
source '3·-1; 8-2; 9-1
SOURCE 8-2
used to initialize program library 1-1

Format of directive 2-1
Full edit mode 4-4; 8-1

Generate modification set C-1

History byte 9-3
History of modifications 9-3

I directive 4-2
I option 8-2
!DENT directive 4-1
Identify modification set 4-1, 2
IF, .define value for 7-1
IF directive 6-2
IFCALL directive 6-1
Ignore deck modifications 4-3
IGNORE directive 4-3
Inactive line 9-2
Initialization directives 3-1
Initialize program library phase 1-3
Input directives file 1-1; 8-2
Input on control statement 8-3
Input text width 7 -1
INSERT directive 4-2
Insert lines 4-2
INWIDTH directive 7-1

L option 8-2
Line deactivation 4-2
Line identification 2-1; 4-2
Line insertion 4-2
Line reactivation 4-2
Line width 3-3; 6-2
List comment 7-1
List options 8-2
List output file 8-2; B-1
LO options 8-2

Index-2

Messages, error B-2
Modification date 9-2
Iviodification db:·ectives ·1-1
Modification history byte 9-3
Modification name 4-1
Modification ·table 9-2
Modification set

deactivate 4-3
generate C-1
identifier 1-3; 4 ;..1
name 1-3; 4-1
reconstruct C-1
remove C-1

Modify
batch examples 10-1
batch processing example 1-4
comments 7 -1
control statement 8-1
error messages B-2
examples, general description 1-3, 4
execution 1-3
file formats 9-1
general description 1-1
listing B-1
organization 1-1, 2
output files 1-2
time-sharing processing example 1-4

Modify program library example 10-2
MODNAME directive 4-2
Move decks 7-2
MOVE directive 7-2
Move text 10-3

N option 8-2
Name

deck 3-1; 4-2
default 3-1; 4-2
define 7-1
modification 4-1

Ne~ program library file 8-2
NIFCALL directive 6-1
No rewind of compile file 8-2
No sequence flag 3-3; 6-3
No sequence information 3-3; 6-3
NOSEQ directive 3-3; 6-3
NPL file 8-2
NR option 8-2

Old program library file 8-2; 9-1
OPL file 8-2; 9-1
OPLEDIT control statement C-2
OPLEDIT error messages B-2
OPLEDIT utility C-1
OPLFILE directive 3-2
Organization 1-1,, 2
OUTPUT file 8-2

P option 8-2
PREFIX directive 7-1
Prefix character 2-1; 7-1; 10-5
Prefix table 9-2, 3
PREFIXC directive 7 -1
Preparing source file 3-1
Program library 1-1

containing directives 5-1
creation 3-2
file 8-2; 9-1

PULLALL (OPLEDIT) directive
PULLMOD (OPLEDIT) directive
Purge decks 4-3; 10-5

C-1
C-1

60450100 c

I

PURGE (OPLEDIT) directive C-1
PURDECK directive 4-3

Q option 8-2

Random address 9-3
Range. conditional 6-2
Reactivate lines 4-2
Read alternate directive file 5-1; 10-4
READ directive 5-1
READPL directive 5-1
Read directives from program library 5-1
Read modification directives phase 1-3
Reconstruct modification set C-1
-Record type 9-3
Remove deck 4-3
Remove modification set C-1
Reorder decks 7 -2
Replace decks 3-2
RePOsition file 5-2
Rescind YANK directive 4-3
Reserved file names 5-1
RESTORE directive 4-2
RETURN directive 5-2
Return flle ·5-2
Reverse conditional range 6-2
REWIND directive 5-2
Rewind file 5-2

S option 8-2
Sample FORTRAN program 10-8
Scratch files 5-1; 9-4
Selective edit mode 4-4
Separators for directives 2-1
s~ directive 5-3
Sequence file 6-3; 7-2
Sequence number 9-4
Sequencing

disable 3-3; 6-3
enable 6-3
flag 3-3; 6-3
SEQ directive 6-3
update 7-2

SKIP directive 5-2
Skip forward on file 5-2
Skip records 5-2
SKIPR directive 5-2
SOURCE file 8-2

60450100 B

Source file
compile file directives on 1-2
generated by Modify 8-2; 9-1
preparation · 3 -1; 9-1

Special directives 7-1
Standard character set A-1
Statistics B-1
Status of deck B-1
Systems text selection 8-1

Terminate conditional range 6-2
Test for conditional range 6 -2
Text format 9-2
Time-sharing considerations 1-3. 4
Type of record 9-3

U option 4-4; 8-2
UNYANK directive 4-3
Unyank modification set 4-3; 10-4
UPDATE directive 7-2
Update edit mode 4-4; 8-2
Update library 7-2 ...

Value. define for IF 7-1

WEOF directive 6-3
WEOR directive 6-3
-WIDTH directive 3-3: 6-2
Width of line 3-3; 6-2
Write end-of-file 6-3
Write end-of-record 6-3
Write end-of-record. conditionally 6-3
Write output files phase 1-3

X option 8-2

YANK directive 4-3
Yank modification set 4-3; 10-4

Z option 8-3; 10-7

I (insert comment) 7-1

Index-3

...
~I
~I
~I
~I

COMMENT SHEET

MANUAL TITLE __ c_n_c_, _N_o_s_v_e_r_s_i_o_n_l_M_o_d_if_· ~y_R_e_f_e_r_e_n_c_e_M_a_n_u_a_I ____ _

PUBUCATION NO. _6_0_4_5_0_1_00 ____ _ REVISION __ C ___ _

FROM: NAME:---
8USINESS AOORESS: _____________________________ _

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.
FOLD ON DOTTED LINES ANO STAPLE

STAPLE STAPLE

FOlD FOLD

---~

FOLD

BUSINESS REPI. Y MAIL
NO POSTAGE STAMP NECESSARY If MAILED IN U.S.A.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
ARH219
4201 North Lexington Avenue

Saint Paul, Minnesota 55112

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS. MINN.

FOLD

IU z
::;
0 z g
• ...
:::>
u

CORPORATE HEADQUARTERS, P.O. BOX O; MINNEAPOLIS, MINNESOTA 55440 LITHC IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~~
CONT~OL DATA CORJ'Of\'\TION

MODIFY CONTROL STATEMENT PARAMETERS

A Presence of A causes compressed compile file.

C Compile file output; COMPILE if C or omitted. :::\o compile file if C=O. Otherwise, output
on file named (C=lfn).

CB COMPASS binary output file; used with Q and X options only. Output on LGO if CB. No
binary if CB=O. Otherwise, output on file named (CB=lfn).

CG COMPASS get text option; used with Q and X options only. Systems text on SYSTEXT if CG.
No systems text if CG=O. Defined by CS option if CG is omitted. Otherwise, systems text on
file named (CG=lfn).

CL COMPASS list output; used with Q and X options only. Short list if CL=O or omitted. Output
on file OUTPUT if CL. Otherwise, iist output on fiie named (CL=lfn).

CS COMPASS systems text; used with Q and X options only. Systems text on SYSTEXT overlay
if omitted or CS. No systems text if CS=O; otherwise, systems text on file named (CS-lfn).

CV Program library character set conversion. None if CV is omitted; 63 to 64 if CV=64; 64 to
63 if CV=63.

D Debug option. Directive error or fatal error causes job abort if D is omitted. ::--Jo job abort
for directive errors if D is used.

F Full edit. If omitted, deck editing determined by U option or by EDIT directives. If F is
specified, all decks are edited and \Vritten on compile file, ne\v program library, and source
file.

Directives input. If omitted, directives and corrections on II\PlIT. If I=O there is no input
file. Otherwise, on named file (l=lfn).

L List output. Omitted or L, listings on OCT PCT. L:.:lfn, output to named file.

LO List options. Omitted or LO, options E, C, T, M, W, D, and S are selected. Otherwise,
LO=c 1, c2 ••• Cn to a maximum of seven options (AECDIMST or W).

N New program library. Omitted or N=O. No nevv library. ::--J, output on NPL. N=lfn, output
to named file.

NR No rewind on compile file. Omitted, compile file revrnund before and after MODIFY run.
RN. no rewinding.

P Program library input. Omitted or P, library on OPL. P=lfn, library on named file. P:::O,
no program library input file.

Q Execute assembler or compiler; no rewind of directives file or list output file. Omitted or Q=O,
assembler or compiler not automatically called. Q, Modify sets A parameter and LO=E and calls
COMPASS. This option enables CB, CG, CL, and CS options. If Q=lfn, l\lodifv calls assembler
on lfn. "

S Source output (illegal if A, Q, or X selected). Omitted or S=O, no source output. S, output
on SOCRCE. S=lfn, output on named file.

C Cpdate edit. Omitted, editing set by F or by EDIT directives. F takes precedence over C.
If U, only decks changed (named on DECK directives) are edited and written on compile file,
new program library, and source file.

X Execute assembler or compiler; same as Q except directives file and list output file are rewound.

Z Directives on ::\1odify card. Omitted, directi\..-es are next record on I:::\PCT or identified by
one option. Z, directives follow parameters on :.V1odify. A separator bar separates two
directives.

	0001
	0002
	002
	003
	005
	007
	008
	01-01
	01-02
	01-03
	01-04
	02-01
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	08-01
	08-02
	08-03
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	I-01
	I-02
	I-03
	replyA
	replyB
	xBackB
	xbackA

