60450100

G 5 CONTROL DATA
CORPORATION

NOS VERSION 1
MODIFY |
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170
MODELS 171, 172, 173, 174, 175
CYBER 70
MODELS 71, 72, 73, 74
6000 SERIES

ALPHABETIZED DIRECTIVES INDEX

Name Parameters Page Number
*BKSP file 5-2
*BKSP file,n 5-2
*CALL deckname 6-1
*CALLALL string 6-2
*COMMENT comment 6-2
*COPY file, deckname 3-3
*COPYPL file, deckname 3-2
*CREATE file 3-2
*CWEOR 6-3
*DECK deckname 4-2
*DEFINE name 7-1
*DELETE c 4-2
*D c 4-2
*DELETE CysCy 4-2
:,':D C 1, (e} 4 "2
*EDIT PysDoseessD 4-4
*BELSE T = 6-2
*ENDIF 6-2
*IDENT modname 4-1
*IF atr, name, value 6-2
*[FCALL name, deckname 6-1
*IGNORE dname 4-3
*INSERT c 4-3
*1 c 4-3
*INWIDTH n 7-1
*MODNAME modname 4-2
*MOVE dname,., dnamej, dna mey, dnames. ceos dnamen 7-2
*NIFCALL name, deckname 6-1
*NOSEQ 3-3,6-3
*OPLFILE filel, filez, ees filen 3-2
*PREFIX X 7-1
*PREFIXC X 7-1
*PURDECK dname., dnamez, ...,dname 4-3
*PURDECK dnamea . dna.meb n 4-3
*READ file 5-1
*READ file, deckname 5-1
*READ file, = 5-1
*READPL dname 5-1
*READPL dname, €2 Cy 5-1
*RESTORE c 4-2
*RESTORE C1sCo 4-2
*RETURN filel, filegsenes filen 5-2
*REWIND file}, fileg, ..., file 5-2
*SEQ - = = 6-3
*SKIP file 5-2
*SKIP file, name 5-2
*SKIPR file, rname 5-2
*UNYANK modname 4-3
*UNYANK modname, * 4-3
*UPDATE 7-2
*WEOF 6-3
*WEOR 6-3
*WIDTH n 3-3,6-2
*YANK modname 4-3
*YANK modname, ¥ 4-3
#/ comment 7-1

REVISION RECORD

REVISION DESCRIPTION
A Manual released.
(3-8-76)
B Revised to update the manual to NOS 1.2 at PSR level 439, and to make typographical and
(12-3-176) technical corrections. New directives IF, ELSE, ENDIF, and NIFCALL are added. The

previous DEFINE directive has a new parameter added that allows a value to be associated
with a defined name. This edition obsoletesthe previous edition.

C R:evised to update the manual to NOS 1.2 at PSR level 452, to reformat error messages, and to
(7-15-77) make typographical and technical corrections. Support of COC CYBER 170 Series, Model 171 is
also included.

'Publication No.
60450100

REVISION LETTERS {, 0, @ AND X ARE NOT USED

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division

4201 North Lexington Avenue
® 1976, 1977 St. Paul, Minnesota 55112
by Control Data Corporation or use Co t Sheet in the back of
mmen
Printed in the United States of America ee € bae

this manual.

ii

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE l REV I L PAGE REV L PAGE REV
Front Cover| - B-2 C
Inside Front B-3 C

Cover - B-4 C
Title Page - B-5 C
ii C C-1 A
iiifiv C C-2 C
v/ivi C C-3 A
vii B C-4 A
viii C Index-1 B
1-1 B Index-2 C
1-2 B Index-3 B
1-3 C Comment
1-4 B Sheet C
2-1 C Inside Back
3-1 B Cover
3-2 C Back Cover -
3-3 B
3-4 C
3-5 C
3-8 C
4-1 A
4-2 B
4-3 A
4-4 B
4-5 A
4-6 A
5-1 B
5-2 B
5-3 A
5-4 A
6-1 C
6-2 B
6-3 B
6-4 B
6-5 B
6-6 B
7-1 B
7-2 B
7-3 A
8-1 C
8-2 B
8-3 A
9-1 B
9-2 A
9-3 B
9-4 B
10-1 A
10-2 A
10-3 B
10-4 A
10-5 A
10-6 A
10-7 A
10-8 B
10-9 A
10-10 A
10-11 A
A-1 A
B-1 C
60450100 C iii/iv

PREFACE

S

INTRODUCTION

This manual describes the program library mainte-
nance utility Modify. Modify is part of the Network
Operating System (NOS) for CONTROL DATA®
CYBER 170 Series, Models 171, 172, 173, 174,
and 175 Computer Systems; CDC® CYBER 70 Series,
Models 71, 72, 73, and 74 Computer Systems; and
CDC®CYBER 6000 Series Computer Systems.
Modify is used to maintain and update source files
that are on libraries in a compressed and symbolic
format.

The introduction describes features of Modify and
presents an overview of its operation. The remain-
ing sections describe the directives that the user
supplies to control library creation and editing.
Because the advantages of Modify are best utilized
by a programmer with a large volume of source
program text or symbolic data, the manual is writ-
ten for the experienced NOS applications or systems
programmer. Wherever possible, Modify usage is
illustrated through examples.

Appendix C describes the NOS utility OPLEDIT,

which provides the capability to delete and recon-
struct previous modification sets.

60450100 C

RELATED PUBLICATIONS

For further information concerning Modify and NOS,
consult the following manuals.

Control Data Publication Publication Number

NOS Modify Instant 60450200
NOS Reference Manual,

Volume 1 60435400
NOS Applications

Programmer's Instant 60436600
NOS Time-Sharing User's

Reference Manual 60435500
NOS Terminal User's

Instant 60435800
DISCLAIMER

This product is intended for use only as described
in this document. Control Data cannot be respon-
sible for the proper functioning of undescribed
features or parameters.

vivi e

CONTENTS

1. INTRODUCTION 1-1 6. COMPILE FILE DIRECTIVES 6-1
Modify Organization 1-1 CALL — Call Commeon Deck 6-1
Files Used to Initialize Program IFCALL — Conditionally Call Common
Library 1-1 Decks 6-1
Directives 1-1 NIFCALL — Conditionally Call Common
Output Files 1-2 Decks 6-1
Modify Execution 1-3 CALLALL - Call Related Common Decks 6-2
Initialize Program Library 1-3 IF — Test for Conditional Range 6-2
Read Modification Directives 1-3 ELSE — Reverse Effect of IF 6-2
Incorporate Changes/Write Output ENDIF — Terminate Conditional Range 6-2
Files 1-3 COMMENT - Create COMMENT Line 6-2
Features 1-3 WIDTH - Set Line Width on Compile File 6-2
Modify Examples 1-3 NOSEQ — No Sequence Information 6-3
ASCII Mode Considerations 1-4 SEQ — Include Sequence Information 6-3
WEOR — Write End of Record 6-3
. CWEOR - Conditionally Write End of
2. DIRECTIVE FORMAT 2-1 Record 6-3
WEOF — Write End of File 6-3
Line Identification 2-1 Compile File Directive Examples 6-3
3. INITIALIZATION DIRECTIVES 3-1 7. SPECIAL DIRECTIVES 7-1
Preparing the Source File 3-1 / — List Comment 7-1
CREATE — Create Program Library 3-2 PREFIX — Change Modify Directives
JOPLFILE — Declare Additional OPL Files 3-2 Prefix] 7-1
COPYPL — Copy Program Library to PREFIXC - Change Compile File
Scratch 3-2 Directives Prefix 7-1
COPY — Copy Program Library to OPL 3-3 INWIDTH — Set Width of Input Text 7-1
WIDTH — Set Line Width on Compile File 3-3 DEFINE — Define Name for Use by IFCALL,
NOSEQ — No Sequence Information 3-3 NIFCALL, IF 7-1
Initialization Directive Examples 3-3 MOVE — Move Decks 7-2
UPDATE — Update Library 7-2
Special Directive Examples 7-2
4. MODIFICATION DIRECTIVES 4-1
IDENT — Identify New Modification Set 4-1 8. MODIFY CONTROL STATEMENT 8-1
DECK - Identify Deck to be Modified 4-2
MODNAME - Identify Modification Set to
be Modified 4-2 9. MODIFY FILE FORMATS 9-1
DELETE — Delete Lines 4-2
RESTORE — Reactivate Lines 4-2 Source Decks and Files 9-1
INSERT — Insert Lines 4-2 Source Decks Prepared by User as
YANK — Remove Effects of Modification Set 4-3 Input to Modify 9-1
UNYANK - Rescind One or More YANK Source Files Generated by Modify 9-1
Directives 4-3 Program Library Files 9-1
PURDECK — Purge Deck 4~3 Deck Records 9-1
IGNORE — Ignore Deck Modifications 4-3 Directory Record 9-3
EDIT - Edit Decks 4-3 Directives File 9-4
Selective Edit Mode 4-4 Compile File 9-4
Full Edit Mode 4-4 Scratch Files 9-4
Update Edit Mode 4-4
Modification Directive Examples 4-4
10. BATCH JOB EXAMPLES 10-1
5. FILE MANIPULATION DIRECTIVES 5-1 Create Program Library 10-1
Modify Program Library 10-2
READ — Read Alternate Directives File 5-1 Move Text 10-3
READPL — Read Program Library 5-1 Read Directives from an Alternate File 10-4
BKSP — Backspace File 5-2 YANK and UNYANK Modification Sets 10-4
SKIP — Skip Forward on File 5-2 Purge Decks 10-5
SKIPR — Skip Forward Past Record 5-2 Change the Directives Prefix Character 10-5
REWIND — Rewind Files 5-2 Use of the Z Parameter 10-7
RETURN — Return Files to System 5-2 Sample FORTRAN Program 10-8
File Manipulation Directive Examples 5-2

60450100 B vii

A

IB

b ek
'
W I

wWww
W N e

viii

STANDARD CHARACTER SET
OUTPUT LISTING AND MESSAGES

Simplified Modify Organization

Modify Execution from Batch

Modify Execution from Time-Sharing
Terminal

Modify Source Deck

Deck with Several Programs

Initialization Directive Examples

APPENDIXES

A-1 C OPLEDIT UTILITY
B-1

INDEX

FIGURES
1-2 3-4 Batch Job Creating Program Libraries 3-6
1-4 4-1 Modification Directive Examples 4-4

5-1 File Manipulation Directive Examples 5-3

1-4 6-1 Compile File Directive Examples 6-4
3-1 7-1 Special Directive Examples 7-2
3-2 9-1 Library File Format 9-1
3-4

60450100 C

INTRODUCTION 1

Modify is used by the programmer to maintain text
(large programs or data files) in a compressed form
allowing him to easily change individual lines within
the text. Modify transforms text into a specially
formatted file whose structure enables Modify to
make requested changes (or rescind previously
made changes) efficiently. Such a file, a program
library file, is in program library or Modify for-
mat. Once this file has been established, the user
need only specify to Modify the changes he is making
to the text. Modify then performs the requested
changes and produces several files of different types
which reflect the changes. One of these files is the
compile file, a text file acceptable to language
processors (for example, FORTRAN, BASIC, or
COMPASS). This file can also be directed to an
output device for listing or punching.

MODIFY ORGANIZATION

Modify can be organized into three main functional
elements:

® Files used to initialize the program library —
these contain the program text from which
Modify establishes the program library, the
body of text upon which modification direc=
tives act to effect user-requested changes
to the text.

e Directives — these are user-specified in-
‘structions to Modify which establish the
program library, produce changes in the
text, perform various utility functions upon
files used by Modify, and/or alter certain
operational characteristics of Modify,

e Output files —these are produced by Modify
after it performs the instructions specified
by directives. Three of these files are up-
dated versions (in different formats) of the
original text; the fourth is a report of
actions taken during Modify's execution.

Refer to figure 1-1 during the following dlscusston
of the elements of Modify organization.

FILES USED TO INITIALIZE
PROGRAM LIBRARY

These files contain program text in one of two forms:
source format or program library format. Files
used to initialize the program library may contain
several program and/or subroutine decks, kept as
separate logical records on the file. The user can
designate a deck containing frequently used lines
(such as a group of FORTRAN COMMON statements)
as a common deck. The user can then direct Modify

60450100 B

to insert the text of a common deck within the pro-
gram text wherever a CALL directive appears with-
in the program text (refer to section 6 for further
information on the CALL directive).

Source-format files are coded text files, typically
prepared either as a card deck or through the text-
file creation facilities of the NOS time-sharing
subsystem (refer to the NOS Time-Sharing User's
Reference Manual), All program library files begin
as source-format files, which Modify processes to
create program library files.

A file in program library format is defined as fol-
lows.

e It is compressed (Modify has replaced
three or more consecutive blanks within a
line with special codes).

e FEach line of text has been assigned, by
Modify, a sequence number and name,
thereby allowing the user to refer to individ-
ual lines when he wishes to change the
text on subsequent Modify runs.

e [t contains a directory, built by Modify,
which serves as an index of the decks on
the program library file.

DIRECTIVES

The user can control Modify execution by specifying
directives to Modify. These directives (compile
file directives excepted) form a logical record on a
file which the user specifies on the Modify control
statement. If Modify is being executed from a time-
sharing terminal, Modify prompts the user for di-
rectives, unless he has specified otherwise on the
Modify control statement.

The user may direct Modify to begin reading direc-
tives from an alternate file and position this file

(or other files local to his job) with file manipulation
directives. Certain files (refer to section 5) cannot
be operated on by these directives.

Initialization directives declare which files Modify
is to use to initialize the program library. They
indicate whether the file is in source format (thereby
causing Modify to make a copy of it in program li-
brary format) or is in program library format.

Directives which cause text to be changed fall into
two groups: modification directives and compile
file directives.

Modification directives specify line-by-line altera-
tions (insertion; deletion or deactivation; and reacti-
vation) for Modify to make. They also specify
which decks Modify should copy to its output files
with the specified modifications included.

1-1

Files used to How established Modify control Modify
initialize as part of statement output
program library program iibrary option uced files

MODIFY PROCESSOR

PROGRAM LIBRARY -I
/ LJ
CREATE deck 4 directory '
t ¥ > :
Source tex ' deck , 1 file 4 C)
K H c o Compile
fite | decky l Cor
I deck a 1 I
——
P . . 2 deck 5 1
reviously | p parameter on Modify control statement i :
generated P fy > 1 ;’i';:““y l
program 1 ez —-—
library file I i
: : l N New program
file 2 ' H library file
! |
t —
D —
. deck 5 ' f
Previously OPLFILE Y | directory - >
generated hatl 1 file l
program 1 3 s Source -text
library file ! ' format file
1
fileg I + l ~—
4 :‘?;es' appropriate initialization directives _ J| . . .o }?;:e:“;ges
L { files l
' ; L Modification
’ deck g 1 l statistics
COPYPL or COPY ol e 1 directory listing
T Tle—m __, file, I
]
] 1
L o e e e e e —— ——
[}
and insertion [proctives file
(1 parameter on
Modify contro
statement)
Figure 1-1, Simplified Modify Organization
Compile file directives are part of the text on the The compile file is a text file with user-specified
program library; thus, compile file directives were modifications incorporated into it. It may be used as
either on a file used to initialize the program library, input to a language processor, directed to an output
or were inserted by modification directives: An device such as a printer or card punch, or used as
example of a compile file directive is the CALL. data for an applications program.
directive.
The new program library file contains the same up-
Modify includes many other directives providing dated text as the compile file, only in program li-
extended features. These primariiy afiect the op- brary format. Thus, Modify can process this file
erating characteristics of Modify whichare described directly on subsequent Modify runs.,

in section 7.
Modify produces a list of text incorporated into the
program library, details the status of the program
library and the other files output by Modify, and

OUTPUT FILES notes errors and other significant events occurring
during Modify execution.

Modify produces several files as output, all of which

are optional. The user specifies these files through The source-text output file contains updated text

options on the Modify control statement, similar to that of the compile file. However,

1-2 60450100 B

compile file directives on the program library have
not been removed or acted upon by Modify.

MODIFY EXECUTION

Modify begins execution as a result of the operating
system interpreting a Modify control statement.
Modify execution then progresses in three phases:

e Initialize program library
e Read modification directives

. Inco’rpbrate changes/write output files

INITIALIZE PROGRAM LIBRARY

During this phase, Modify reads initialization di-
rectives (which must precede modification direc-
tives) from the directives file to prepare the program
library.
brary is the file declared on the Modify control
statement (P parameter); refer to section 8. Other
files declared by initialization directives are logi -
cally merged with this file to form the program
library. If the initialization directive specifies

that a file is in source-text format, Modify converts
it to a file in program library format before merging
it with the program library.

The initialization phase ends when Modify encounters
the first modification directive. File manipulation
directives do not terminate the initialization phase.

READ MODIFICATION DIRECTIVES

During the second phase, Modify reads the remaining
directives on the directives file and stores any new
text for insertion during the final phase. The time-
sharing user is prompted for directives by Modify

at his terminal, In batch usage, the file containing
the directives is specified on the Modify control
statement. This defaults to the job input file. An
alternate directives file may be specified by the ap-
propriate file manipulation directive (refer to
section 5).

INCORPORATE CHANGES/WRITE
OUTPUT FILES

During the final phase, Modify performs the re-
quested changes on a deck-by-deck basis, incorpor-
ating them into the output files requested by the
Modify control statement. Each inserted line is
assigned a modification name, specified by a modi-
fication directive (refer to section 4), and a se-
quence number generated by Modify. These are
used in later Modify runs to make further changes
to the text. All lines having the same modification
name comprise a modification set,

60450100 C

The first file to be included in the program li-

This phase can be initiated either by Modify inter-
preting an EDIT directive (refer to section 4) on
the directive file, or by the presence of a Modify
control statement option specifying that this phase
should be initiated by Modify after it exhausts the
directive file (refer to section 8).

FEATURES
Features of Modify include:

° Formatting of text files to facilitate line-
by-line modification.

e Insertion, deletion, and restoration of
previously deleted lines according to line
sequence numbers.

® Facilities for rescinding one or more
groups of changes {modification sets) pre-
viously applied to text, thereby preserving
original appearance of text.

e Replacement of often-used groups of lines
by one-line calls for their insertion,

e Facilities for limiting range of modifications
to specified decks.

® Generation of a file in text format suitable
for input to processors such as compilers
and assemblers.

e Execution from either batch-origin or time-
sharing jobs. ‘

e Processing of directives from an alternate
file.

e Comprehensive statistical output noting any
changes effected during the run and pre-
senting the status of the program library.

e Support of both 63- and 64-~-character sets.

MODIFY EXAMPLES

Examples in this manual are for illustrative purposes
only. These examples are neither the most efficient
nor necessarily recommended methods of using the
Modify directives.

Figure 1-2 details a job submitted to local or remote
batch and figure 1-3 illustrates the same job entered
from a time-sharing terminal. The user need not
be concerned with the meaning of directives or of
parameters on the Modify control statement at this
point, Instead, he should compare the structure of
the two jobs.

Subsequent examples in this manual (with the excep-
tion of section 3 and section 10, Batch Job Examples)
depict only jobs entered from a time-sharing
terminal.

The examples pertaining to a group of directives
immediately follow the discussion of those direc-
tives. Some of the files created and modified in
an example have been retained and used in the
succeeding example.

1-3

JOBMOD.

USER (GSERNUH , PASSWRD, FAMILY)
CHARGE (CHARNUM , PROJNUM)

GET (MAINP)

COPYSBF (MAINP)

MODIFY (P=8,F,N)

SAVE (NPL=MAINPL)

~—~EOR=~ '

-Input directives for Modify statement.
*REWIND MAINP}4_,___—————‘“’—————————‘————_—_'

*CREATE MAINP
—eBOLl=—=

End-of-information is 6/7/8/9 multiple punch
in column 1,

Figure 1-2, Modify Execution from Batch

batch «—

$RFL, 8.
/0ld,mainp
/lnh,x
DECK1 .
khk MAIN PROGRAM
- PROGRAM MAIN(OUTPUT)
PRINT*,"BEGIN MAIN PROGRAM,"

CALL SUB1
PRINT* ,“"END MAIN PROGRAM."
STOP
END
~—EOR=~=~
DECK3
*** EMPTY DECK
—~EOR~—

/modify,p=0,£f,n,1=0

After logging in, user requests batch subsystem.

User specifies (1=0) indicating that he does not wish

/ {to receive Modify output.
Input directives are requested and entered

immediately following Modify statement. Null

? *rewind mainp
? *create mainpf =™
?

MODIFICATION COMPLETE, =«

input line (carriage return only) terminates
input.

Program notifies user that it has completed

/save,npl=mainpl

modification.

Figure 1-3. Modify Execution from Time-Sharing Terminal

ASCll MODE CONSIDERATIONS

Several problems may arise when using Modify from
a time-sharing job while the terminal is in full ASCII
character set mode. Refer to appendix A of the NOS
Reference Manual, voiume i, for a description of
ASCII character sets,

Directives entered interactively from the terminal,
or those in an alternate directive input file, must
not contain ASCII characters with escape codes;
that is, directives must be entered in all uppercase
characters. Modify does not recognize lowercase
directives that contain escape codes,

When creating a program library, several precau-
tions should be taken. While a source file can con-
tain full ASCII characters, all deck names and
compile file directives must be in full uppercase (no
escape codes). Care should also be taken when
entering source lines in full ASCII mode. Since each
character may actually occupy 12 bits (escape code
and character), what appears to be a line width of
75 characters, for example, may actually be 150
characters. Modify does not allow line widths
greater than 100 6-bit characters.

60450100 B

DIRECTIVE FORMAT 2

Directives allow the user to create libraries and
extensively control and direct the correction and
modification process., File initialization directives
identify old program libraries and source decks to
be placed on the new program library. Modification
directives identify the text to be inserted, set pa-
rameters of the modification process, and inform
Modify of insertions, deletions, and other correc-
tions. File manipulation directives allow user
control of the input files. Compile file directives
can be in source decks originally or can be inserted
during a Modify run. These directives are manipu-
lated much like source lines during the creation,
updating, and correction phases but are recognized
when the compile file is written.

A directive has the following format.

*dirname PysPgseecsPy

s

The prefix character is in
column 1, [t is initially de~
fined by Modify as an asterisk,
but may be changed with
PREFIX and PREFIXC direc-
tives. In this manual, the
asterisk is used as the prefix
character.

The directive name starts in

column 2, It is terminated by
one or more blanks or a sepa-~
rator (for example, a comma).

dirname

Optional directive parameters.
Numeric parameters are deci-
mal.

The directive name and parameters are separated
by any character that has a display code value of
55g or greater; that is (assuming 64 -character set),
a character other than:

tA-Z0-9+-% /()%=

60450100 C

Some directives require specific separators. No
embedded blanks are permitted within a parameter.
However, any number of blanks can be between the
directive name and the first parameter or between
two parameters, provided the entire directive does
not exceed 72 columns.

LINE IDENTIFICATION

The modification directives DELETE, INSERT, and
RESTORE, and the file manipulation READPL direc-
tive require line identifiers. These identifiers can
be in either the complete or abbreviated form.

The complete format of a line identifier is:

modname. number

modname. 1- to 7-character name of a
modification set or deck. A
period terminates the modifi-
cation name.

Decimal ordinal (1 to 262143)

number

: of the line within the correc-
tion set or deck. Any char-~
acter other than 0 through 9
terminates the sequence
number,

The abbreviated form of a line.identifier is:

number

When only the number is used for line identification
(modification name is omitted), Modify uses the name
from the MODNAME directive or the most recent
DECK directive.

INITIALIZATION DIRECTIVES I 3

Modify initialization directives are placed on the
directive file and precede all directives other than
file manipulation directives. They are:

CREATE Converts source decks to
program library format for
modification.

OPLFILE Declares additional program
library files as input.

COPY Copies one or more records
from named file to old program
library.

COPYPL Copies one or more records
from named file to an internal
scratch file which is logically
merged with program library.
WIDTH Defines the number of columns
preceding the sequencing in-
formation on the compile and
source files; can occur any-
where in directives file,
NOSEQ Specifies no sequence infor-
mation on compile file.

CREATE, OPLFILE, COPY, and COPYPL are il-
legal after the first use of modification directives.
WIDTH and NOSEQ can be processed as compile
file directives.

DECK]1 <

PROGRAM X
*CALL DECK?2

.
-
-

END
-EOR- <«—

DECK2 <

COMMON <

COMMON/A/A

COMMON/Z/Z
-EOI- <

When a second deck of the same name is introduced
during initialization, the second deck takes prece-
dence. In directory, list output, the name of a re-
placed deck is enclosed in parentheses. '

\
PREPARING THE SOURCE FILE

Before Modify can create a program library, the
user must prepare the source file by assigning a
deck name to each record of the source file and by
identifying those decks that are to be common decks.
The deck name must be the first line of the source
deck. A 1-to 7-character deck name begins in
column 1. Legal characters are:

A through Z O through 9 + - x [() $ =

The second line of the source deck can identify the
deck as common. To do so, it must contain the
word COMMON in columns 1 through 6. An end-of-
record terminates the deck. A set of decks is ter-
minated by an end-of-file (6/7/9 multiple punch in
column 1 for batch origin jobs) or end-of-information.

Figure 3-1 illustrates a typical Modify source deck.

Usually a deckname (optionally followed by a
COMMON) precedes each program or subprogram.
However, more than one subprogram may be in-
cluded in a deck as is indicated in figure 3-2. A
user might group two programs if modification of
one requires reassembly or recompilation of both
programs.

Name of deck

Source deck

End-of-record terminates deck
Name of deck
Declares deck as common

Source deck

End-of-information terminates final deck

Figure 3-1. Modify Source Deck

60450100 B

FIRST
IDENT FIRST
END
IDENT SECOND
END

-EOR-

FDATA

= COMMON

DATA 0
DATA 0
DATA 0

-EOI-

Program one

;
First deck
Program two

Second deck

Figure 3-2, Deck with Several Programs

CREATE — CREATE PROGRAM LIBRARY

When Modify encounters this directive, it writes
the contents of the named file from its current
position until it encounters an end-of-file onto a
scratch file in program library format with a di-
rectory, CREATE provides a means of initially
creating a program library for subsequent modifi-
cation, for adding decks to the program library, or
for replacing decks on the program library. {

Format:
*CREATE file

file Name of file containing one or more
source decks. A format error oc-
curs if the name of the file is
omitted from the directive. This
file must be local to the user's job.

OPLFILE — DECLARE ADDITIONAL
OPL FILES

The OPLFILE directive specifies additional files,
already in program library format, that Modify log-
ically merges with any existing program library.
The existing library is made up of the old program
library declared on the Meodify control statement

(P parameter) and/or other program library files
established internally by CREATE or COPYPL. {

The total number of files declared by OPLFILE
directives cannot exceed 20 files. Additional files
are ignored with the message:

TOO MANY OPL FILES.

Format:
*OPLFILE ﬁlel, filez, cees filen

file, Names of one or more files in pro-
! gram library format to be merged
logically with the existing program
library.

COPYPL — COPY PROGRAM
LIBRARY TO SCRATCH

The COPYPL directive copies records (decks) al-
ready in program library format to an internal
scratch file which Modify logically merges with any
existing program library. t Modify builds a di-
rectory for this file as it is copied, ignoring any
existing directory on the file from which the copy is
made. All or part of the file can be copied, The
file may reside on either mass storage or magnetic
tape. Modify ignores all records on the file which
are not in program library format.

Format:
*COPYPL file, deckname

file Name of file containing decks
in program library format,
with or without directory, and
with or without other records in
nonprogram library format.

deckname Optional; name of last deck
(record) to be copied. If deck-
name is omitted from directive,
or is not found on file, Modify
copies all decks from the file
starting at the current file
position.

1 If the resulting program library contains two or more decks having the same name, the last one introduced
to Modify takes precedence; that is, the previous deck is logically replaced.

60450100 C

COPY — COPY PROGRAM
LIBRARY TO OPL

The COPY directive performs the same functions
as the COPYPL directive, with the following differ-
ences:

® The records (decks) are copied to the old
program library file declared on Modify
control statement (P parameter). If P=0
is specified on the Modify control state-
ment, the use of the COPY directive is
not allowed.

® Modify performs an EVICT on the old pro-
gram library file before the copy takes
place. Hence, this file (if it already exists)
should not contain any useful information.
See the NOS Reference Manual, volume 1,
for a description of EVICT,

e COPY can be preceded only by file manip-
ulation directives.

® Only one COPY directive is allowed for
each Modify execution.

COPY is useful when copying all or part of a pro-
gram library residing on magnetic tape to a mass
storage device, since the resulting program library
file may be saved as a permanent file without having
Modify create a new program library. See the NOS
Reference Manual, volume 1, for a description of
permanent file control statements.

Forinat :
*COPY file, deckname

file Name of file containing decks in
program library format, with
or without directory, and with
or without other records in
nonprogram library format.

deckname Optional; name of last deck

(record) to be copied. If deck-

M mittad £ e swvmanticerna
name is omitted from directive,

or is not found on file, Modify
copies all decks from the file,
starting at the current file
position.

60450100 B

WIDTH — SET LINE WIDTH ON
COMPILE FILE

The WIDTH directive allows the user to set the
width of lines prior to the modify program library
and write compile phase. The last (or only) WIDTH
directive encountered on the directives file is used
during the compile phase until a compile file WIDTH
is encountered. If text is being inserted, the WIDTH
directive is left in the text stream and is later proc-
essed as a compile file directive., WIDTH can occur
anywhere in the directive file.

Format:
*WIDTH n

n Number of columns preceding se-
quence information on compile file
and source file. Modify allows a
maximum of 100 columns., During
initialization of Modify, width is
preset to 72,

NOSEQ — NO SEQUENCE INFORMATION

The NOSEQ directive allows the user to set the no
sequence flag prior to the write compile phase.
When no sequencing is requested, Modify does not
include sequence information on the compile file.

A SEQ directive encountered during the write com-
pile phase clears the no sequence flag, If text is
being inserted, the NOSEQ directive is inserted into
the text stream and processed as a compile file
directive.

FORMAT:
*NOSEQ

INITIALIZATION DIRECTIVES EXAMPLES

Figures 3-3 and 3-4 illustrate the creation of pro-
gram libraries and the use of several ipitialization
directives., Figure 3-3 is a detailed terminal ses-
sion; figure 3-4 represents the same job formatted
for batch input. The user can submit the batch or-
igin job to obtain and examine output produced by
Modify and FORTRAN

batch,45000 < (User selects batch subsystem, requesting

S$SRFL,45000. 45000 words of CM.

/cléd,mainp

/lnh,r

DECK1

bkl MAIN PROGRAM
PROGRAM MAIN(OUTPUT) Listing of source file, showing end-of-record
PRINT*, "BEGIN MAIN PROGRAM."«———— ! marks, to be used to create program library.
CALL SUB1 ’ Notice required deck names.
-PRINT* ,"END MAIN PROGRAM."
STOP
END

~-EQR~--

DECK3

ko EMPTY DECK

--=EOR-~-

/modify,p=0,1=0,f,n=mainpl,c=0 Modify statement to create program library

? *create mainp \ with name MAINPL. MAINPL is the result

2 of converting the source text file MAINP to

MODIFICATION COMPLETE.
/catalog,mainpl,r

program library format.

CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE

1 DECK1 OPL (64) 30 4476 76/01/22.

2 DECK3 OPL (64) 4 1725 76/81/22.

3 OPL OPLD 5 1310 76/81/22.

The catalog utility is a convenient means of
* * =
1 4 EOF Sum 41 determining the decks and their types that

were written on the program library. Refer
to the NOS Reference Manual, volume 1, for
information on the CATALOG control state-

CATALOG COMPLETE.

‘ment.

/save,mainpl
/get,subl
/cooycf,subl
DECK2
LA SUBROUTINE 1

SUBROUTINE SUB1

PRINT*,"ENTER SUBROUTINE 1." <— Anc_)the? source deck that the user wishes to

CALL SUB2 maintain on a separate program library.

PRINT* ,"EXIT SUBROUTINE 1."

RETURN

END

END OF INFORMATION ENCOUNTERED.
/rewind,subl
SREWIND,SUBI. .
/modify:pnﬂ,1-0,f,n=a1tp11,c=u <] Modify statement to create program library
7 =create subl | ALTPLIL.
?
MODIFICATION COMPLETE.
/catalog,altpll,r
CATALOG OF ALTPL1 FILE 1
REC NAME TYPE LENGTH CKSUM DATE

1 DECK2 OPL (64) 30 5613 76/01/22,

2 OPL OPLD 3 2117 76/81/22.

3 * EOP * SUM = 33
1
/g::‘h:(l)fépfllgnfLETE. User obtains alternate program library that
/catéloq ,al\:;lz,t he had created at an earlier session.

" CATALOG OF ALTPL2 FILE 1
REC NAME TYPE LENGTH CKSUM DATE

1 DECK3 OPL (64) 25 0100 76/061/21.

2 OPL OPLD 3 2517 76/81/21.

3 * EOF * SUM = 30

Figure 3-3. Initialization Directive Examples (Sheet 1 of 2)

3-4

60450100

1

CATALOG COMPLETE. Program library MAINPL is renamed OPL.

/rename,opl=mainpl In thi i
z E is manner, the P parameter is not needed
$RENAME,OPL=MAINPL. on the Modify statement.

/modify,f,1=08,n=mainpl (
? *oplfile altpll \ Modif i i

y run to merge OPL with program library
; *copypl altpl2,deck3 } ALTPLI1 and then use ALTPLZ to replace deck

DECK3 on OPL. The compile output of MAINPL,
is written on the default file COMPILE.

MODIFICATION COMPLETE.
/catalog,mainpl,r

CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECK1 OPL (64) 30 4476 76/01/22.
2 DECK3 OPL (64) 25 pleo 76/081/21.
3 DECK2 OPL (64) 39 5013 76/061/22.
4 OPL OPLD 7 5011 76/01/22.
5 * EOF * SUM = 114

1
CATALOG COMPLETE.
/replace,mainpl

/copyef,compile

*kk MAIN PROGRAM DECK1 1
PROGRAM MAIN (OUTPUT) DECK1 2
PRINT* ,"BEGIN MAIN PROGRAM." DECK1 3
CALL SUB1 DECK1 4
PRINT* ,“"END MAIN PROGRAM." ' DECK1 5
STOP DECK1 6
END DECK1 7

kkk SUBROUTINE 2 DECK3 1
SUBROUTINE SUB2 Listing of compile file DECK3 2
PRINT*,"ENTER SUBROUTINE 2." created by Modify. DECK3 3
PRINT*,"EXIT SUBROUTINE 2." Notice sequencing DECK3 4
RETURN information. DECK3)
END DECK3 6

*kk SUBROUTINE 1 DECK2 1
SUBROUTINE SUBI1 DECK2 2
PRINT* ,“ENTER SUBROUTINE 1." DECK2 3
CALL SUB2 DECK2 4
PRINT*,“EXIT SUBROUTINE 1." DECK2 5
RETURN DECK2 6
END DECK2 7

END OF INFORMATION ENCOUNTERED.

/rewind,compile

$REWI!§ID,COM?ILE. o Compile file is used as input to FORTRAN

/ftn,i=compile,1=0 < [Extended compiler
.145 CP SECONDS COMPILATION TIME *

/1 m
/1490

BEGIN MAIN PROGRAM.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
EXIT SUBROUTINE 2.< Execution of FORTRAN program.
EXIT SUBROUTINE 1.
END MAIN PROGRAM.
.006 CP SECONDS EXECUTION TIME

Figure 3-3. Initialization Directive Examples (Sheet 2 of 2)

3-5
60450100 C

I 3-6

Figure 3-4.

JOBL.
USER(USERNUM, PASSWRD, FAMILY)
CHARGE(CHARNUM, PROJNUM)

MNT NIAr A TR
JSLLAIVAQLING

COPYSBF(MAINP)
MODIFY(P=0, F, N=MAINPL, C=0)
CATALOG(MAINPL,R)
SAVE(MAINPL)
GET(SUB1)
COPYSBF(SUBL1)
REWIND(SUBI1)
MODIFY(P=0, F, N=~ALTPL1, C=0)
CATALOG(ALTPL1,R)
GET(ALTPLZ2)
CATALOG(ALTPLZ2,R)
RENAME(OPL=MAINPL)
MODIFY(F, N=-MAINPL)
CATALOG(MAINPL, R)
REPLACE(MAINPL)
COPYSBF(COMPILE)
REWIND(COMPILE)
FTN(I=COMPILE)

LGO.

-EOR-

*CREATE MAINP

-EOR-

*CREATE SUB1

-EOR-

*OPLFILE ALTPL1
*COPYPL ALTPLZ2, DECK3
-EOI-

Batch Job Creating Program Libraries

60450100 C

MODIFICATION DIRECTIVES 4

Modification directives and their accompanying
insertion lines are placed on the directives file
after the last initialization directive. The first
occurrence of a modification directive terminates
the initialization phase.

The following modification directives assign a
modification name to the corrections being made,
identify the deck being modified, and give the
modification set name to be used when the short
form of the line identifiers is used.

IDENT Specifies modification name
to be assigned to new modifi-
cation set.

DECK Identifies deck to be altered.

MODNAME Identifies modification set

within deck to be modified
when short form of line iden-
tifier is used and the modifi-
cation name is different from
that used in the last IDENT or
MODNAME directive.

The following modification directives are used for
inserting and deleting lines,

DELETE or D Deactivates lines and optionally
inserts lines in their place.

RESTORE Reactivates lines and optionally
inserts text after them.
INSERT or I Inserts lines after specified

line.
These directives indicate to Modify that:

e New lines are to be inserted into the deck
and sequenced according to the correct

Y. TrE PP PRTRY. T
modification set identifier.

° Old lines are to be deleted.

While inserting, Modify interprets file manipulation
directives (for example, READPL changes the
source of insertion lines but does not terminate in-
sertion). Insertion terminates when Modify next
encounters another modification directive or end-
of-record.

Insertion lines can include compile file directives.
These directives are not interpreted but are in-
serted as if they were text; the prefix character
written on the program library is that specified on
the directive.

Other directives described in this section include:

YANK Deactivate modification set,
UNYANK Reactivate modification set.
PURDECK Remove all lines in a deck.

60450100 A

IGNORE Ignore subsequent modifica-
tions to a named deck.
EDIT Modify and write named deck

to files specified on Modify
control statement.

IDENT — IDENTIFY NEW
MODIFICATION SET

The IDENT directive assigns a name to a modifica-
tion set, Modify does not require any IDENT direc-
tive; however, this practice is discouraged. If the
directives file does not contain an IDENT directive,
the system uses “*kx%%% as the modname. This
default name should not be used when a new program
library is made. The user can use one IDENT for
several decks or can use several IDENT directives
for one deck. There is no restriction on the place-
ment of IDENT within the modification directives
input file.

Format:
*[DENT modname

1~ to 7T-character modification
name to be assigned to this
modification set. This name
causes a new entry in the
modification table for each deck
for which the modification set
contains a DECK directive until
the next IDENT. Each line
inserted by this set, and each
line for which the status is
changed, receive a modification
history byte that indexes this
modname.

modname

Normally, sequencing of new
lines begins with one for each
deck using the modification
name, However, when the
UPDATE directive is used,
sequence numbers continue
from deck to deck.

Omitting modname causes a
format error. If modname
duplicates a name previously
used for modifying a deck,
Modify generates the message

DUPLICATE MODIFIER NAME.

A duplicate modname or en-
countering modifications that
refer to this modification name
prior to this *IDENT modname
cause a fatal error accompanied
by the message MOD(S) TO MOD
BEFORE THIS IDENT CARD.

DECK — IDENTIFY DECK TO BE MODIFIED

The DECK directive identifies the name of the deck
to which subsequent modifications apply.

Format:
*DECK deckname

Name of deck for which
modifications following this
line apply. The modifications
for this deck terminate with
the next DECK directive. A
DECK directive is required
for each deck being modified.

deckname

If the deckname is not found,
Modify flags the error with
the message

UNKNOWN DECK.

Omitting the deckname causes
a format error.

MODNAME — IDENTIFY MODIFICATION
SET TO BE MODIFIED

By using the MODNAME directive, the user indicates
that subsequent line identifiers for which a modifica-
tion name is omitted apply to modification set
modname previously applied to the deck. Subsequent
directives need only the sequence number for the
modification set. The system assumes that the line
is in set modname of the deck being modified.

A MODNAME directive is effective only to the next
deck or MODNAME directive, The hierarchy for
line identifiers is such that if the MODNAME direc-
tive is used and the user wishes to return to use of
the deckname as the assumed line identifier, he
must restore the deckname by use of another
MODNAME directive or use the long form of the
line identifier, specifying the deck name. A
MODNAME directive does not terminate an inser-
tion if it is encountered in text being inserted.

Format:

*MODNAME modname

modname Name of modification set pre-

viously applied to the deck.
A line identifier that does not
specify a modname is assumed
to apply to this modification
set. The modname remains
in effect until another

MODNAME or DECK direc-
tive is encountered.

DELETE — DELETE LINES

With the DELETE or D directive, the user deacti-
vates a line or block of lines and optionally replaces
it with insertion lines following the DELETE direc-
tive.

The next modification directive (or EOR) terminates
fmamrti A ™l (SRS S P SN NSy ¥ RSP S S
ANSEILIUII. £iig€ allgliipuiaiiovn QITECLIVES are mer-
preted and may change the source of insertion lines
but do not terminate insertion and are not inserted
into the deck. Insertion lines can include compile
file directives.

A deactivated line remains on the library and retains
its sequencing, but is not included in compile decks
or source decks.

Formats:
*DELETE ¢ or *D e
*DELETE €1, Co or *D €y, Cq
c Line identifier for single line
to be deleted.
€ysCq Line identifiers of first and last

lines in sequence of lines to be
deleted. ¢4 must occur before
cg on the library. Any lines in
the sequence that are already in-
active are not affected by the
DELETE.

RESTORE — REACTIVATE LINES

With the RESTORE directive, a user reactivates a
line or block of lines previously deactivated through
a delete or yank and optionally inserts additional
lines after the restored line or block of lines. The
lines to be inserted immediately follow the RESTORE
directive. The next modification directive (or EOR)
terminates insertion. File manipulation directives
are intérpreted (and may change the source of in-
sertion lines) but do not terminate insertion. They
are not inserted into the deck. Insertion lines can
include compile file directives.

Formats:

*RESTORE c

*RESTORE c,, ¢,
c Line identifier of single line to
be restored.

Line identifiers of first and last
lines in sequence of lines to be
restored. Any lines in the se-
quence that are already active
are not affected by the RESTORE,
c1 must occur before cg2 on the
library.

Cl. 02

INSERT — INSERT LINES

To insert new lines in the program library, use the
INSERT directive., The line to be inserted immedi-
ately follows the INSERT or I directive on the direc-
tives file, The next modification directive (or EOR)
terminates insertion. File manipulation directives
are interpreted (and may change the source for in-
sertion lines) but do not terminate insertion. They
are not inserted into the deck. Insertion lines can
include compile file directives.

60450100 B

Formats:
*INSERT c or ol '

c - Identifies line after which
new lines will be inserted.

YANK — REMOVE EFFECTS OF
MODIFICATION SET

The YANK directive is used to deactivate a modifi-
cation set. Modify searches the edited decks for
all lines affected by the named modification set.

If a line was activated by the modification set,
Modify deactivates it. If a line was deactivated by
the modification set, Modify reactivates it. Thus,
Modify generates a new modification history byte
for every line that changed status as a result of the
YANK and effectively restores the edited decks to
the status they had prior to modification modname
or all modifications subsequent to modname.

For the first format, only the one modification set
is yanked. For the second format, Modify yanks all
modification sets applied after modname, provided
modname appears on the edited decks. YANK or
UNYANK directives contained in the yanked modifi-
cation set are not rescinded.

YANK affects only those decks that are edited
through the EDIT directive or the F or U options
on the Modify control statement. In this way, the
YANK directive can be selective.

Formats:

*YANK modname
*YANK modname, *

Name of modification set pre-
viously applied to decks in the
library. Omitting modname
produces a format error.

If Modify fails to find the
modname in the modification
table for the library, it issues
an error.

modname

UNYANK — RESCIND ONE OR MORE
YANK DIRECTIVES

With the UNYANK directive, the user can rescind
previous YANK directives. For the first format,
only the one modification set is rescinded. For the
second format, Modify rescinds all of the yanked
modification sets, starting with modname, provided
modname appears on the edited decks.

Formats:

*UNYANK modname
*UNYANK modname, *

modname Name of only modification set

to be rescinded or name of

60450100 A

first of two or more modifi-
cation sets to be rescinded
for the library. Omitting
modname results in a format
error,

PURDECK — PURGE DECK

A PURDECK directive causes the permanent removal
of a deck or group of decks from the program li-
brary. Every line in a deck is purged, regardless
of the modification set it belongs to. A deck name
purged as a result of PURDECK can be reused as
either a deck name or a modification name.

A PURDECK directive can be any place in the direc~
tives input. It terminates any previous correction
set, Therefore, INSERT, DELETE, and RESTORE
cannot follow a PURDECK directive but must come
after an IDENT directive. Purging cannot be re-

scinded.
Format one:

*PURDECK dname dname2. cees dnamen

1’
Deck names for decks to be
purged.

dname,

Format two:

*PURDECK dnamea. dnameb

The deck named dnameg and all decks up to and in-
cluding dnamey, listed in the deck list are purged.

IGNORE — IGNORE DECK MODIFICATIONS

An IGNORE directive causes any further modification
directives for the designated deck to be ignored.
Modify skips modification directives other than
IDENT, EDIT, and DECK. When one of these direc-
tives is encountered, Modify processes it and re-
sumes processing the input stream. Any modification
directives for the decks that precede the IGNORE
directive are processed normally. The EDIT deck
name(s) encountered after an IGNORE directive are
checked against the current ignore list.” Any EDIT
deck names are deleted., If an ignored deck is en-
countered in the EDIT directive form deckname,.deck=~
namey,, the directive is flagged and is considered as
having a modification error. The following message
is issued.

FORMAT ERROR IN DIRECTIVE
Format:

*IGNORE dname

EDIT — EDIT DECKS

Editing is a process of modifying a deck, if modifi-
cations are encountered during the modification phase,
and writing the deck on the compile file, new program
library, and source file.

The three possible modes of editing are selective,
full, and update. The modes are selected through
Modify control statement options.

Plnpzn"-!pn

p. A deckname or range of decknames
in one of the following forms:

deckname
decknamea. decknameb

The first form requests that Modify
edit a deck on the program library;
the second form requests a range of
decks starting with deckname, and
ending with decknamey,. If deck-
names are in the wrong sequence,
Modify issues the error message:

NAMES SEPARATED BY *,* IN
WRONG ORDER.

If Modify fails to find one of the
decks, it issues the message:

UNKNOWN DECK =~ deckname,

SELECTIVE EDIT MODE

When selective editing is desired (neither F nor U
selected on the Modify control statement), Modify
edits only the decks specified on EDIT directives.
EDIT directives cause a deck to be written regard-
less of whether it was corrected or not. Decks are
edited in the sequence encountered on EDIT direc-
tives unless an UPDATE directive specifies other-
wise. Modifications encountered during the modifi-
cation phase are not incorporated in a deck if the
deck is not specified on an EDIT directive. In
particular, calling a common deck from within a
deck being edited does not automatically result in
the common deck being edited.

batch, 45000
SRFL,45000.
/get,opl=mainpl
/modxfy,f 1=0,n=mainpl
*ident modle
*deck -deck3
*delete deck3.1l
LA subroutine 2, deck deck3.
*deck deck2 [
L)

*q 1<
aE% subroutine 1, deck deck2z.
*insert 3

* call subroutine sub2

* in deck deck2.

*delete 7

ik end deck2.

*deck deckl

*G 1

k& main orogram, deck deckl.

N M N R)))) W) W)))))

MODIFICATION COMPLETE.

Figure 4-1,

If decks are being replaced or new decks are added,
the new decks are placed at the end of the library.

T Aanly £ ~liadaA TNTT aanmianno
Luun, a Gedk i1oriner J.J l.u\.;.uucu ;u an ilisia SeQudnee

will no longer lie within the sequence.

FULL EDIT MODE

When a full edit is requested (F selected on Modify
control statement), Modify ignores EDIT directives.
It writes all decks in the sequence encountered on the
program library. This option provides for creating
a complete new program library. Because the same
decks that are written on the new program library
are also written on the compile file, a user wishing
to obtain only a partial set of decks on the compile
file must request separate runs of Modify — one run
for creating the new program library and one run
for creating the compile file.

UPDATE EDIT MODE

If the U option is selected on the Modify control
statement, Modify edits only those decks mentioned
on DECK directives and ignores the EDIT directives.
Thus, only decks being updated by the Modify run
are written on the compile file. This mode is not
normally requested when a new program library or
source file is desired.

MODIFICATION DIRECTIVE EXAMPLES

Figure 4-1 is a detailed example of some of the
modification directives presented in this section.

This modification set is given name MOD1.

mpile file in figure 3-3

2 noan nitmalh Ao
uence numoers.

Modification Directive Examples (Sheet 1 of 3)

60450100 B

/copycf ,compile

k& MAIN PROGRAM, DECK DECK1. MOD1
PROGRAM MAIN(OUTPUT) DECK1
PRINT*,“BEGIN MAIN PROGRAM." DECK1
CALL SUBl DECK1
PRINT*,“END MAIN PROGRAM." DECK1
STOP Listing of compile DECK1
END] file created by DECK1

*kk SUBROUTINE 2, DECK DECK3. Modify. MOD1
SUBROUTINE SUB2 DECK3
PRINT*,“ENTER SUBROUTINE 2.* DECK3
PRINT*,"EXIT SUBROUTINE 2.* DECK3
RETURN DECK3
END DECK3

LA SUBROUTINE 1, DECK DECK2. MOD1
SUBROUTINE SUB1 DECK2
PRINT*, “ENTER SUBROUTINE 1.* DECK2

* CALL SUBROUTINE SUB2 MOD1

* IN DECK DECK2. MOD1
CALL SUB2 DECK2
PRINT*,"EXIT SUBROUTINE 1.“ DECK2
RETURN B Noie that user inadvertentiy deieied DECK2

*k® END DECK2. statement, MOD1

END OF INFORMATION ENCOUNTERED.

/modify,lsﬁ,gqnainpl,n=mpll,c=com1

? *ident mod

? *deck deck2 e L . -

? *restore 7 Modlflc?.tlon run to restore deleted line, and

? *q modl.3 delete line MOD1, 3.

? *tedit deck2

?

MODIFICATION COMPLETE.

/copycf,coml Note that compile

**&« SUBROUTINE 1, DECK DECK2. file contains only MOD1
SUBROUTINE SUB1 edited deck(s). DECK2
PRINT*,“ENTER SUBROUTINE 1." DECK2

* CALL SUBRQUTINE SUB2 . MOD1
CALL SUB2~ Note deieted iine. DECK2Z
PRINT* ,"EXIT SUBROUTINE 1." DECK2
RETURN _ DECK2
END < END statement restored. DECK2

LA END DECK2. MOD1

END OF INFORMATION ENCOUNTERED.

/modify,1=9,p=mpll,n=mpl2,c=com2

? *ident mod3

? *deck deck2

? *modname modl

; :::gt"g;iz Line deleted in previous Modify run is restored.

?

MODIFICATION COMPLETE.

/copycf,com2

LA SUBROUTINE 1, DECK DECK2. MOD1
SUBROUTINE SUB1) DECK2
PRINT* ,“ENTER SUBROUTINE 1.*“ DECK2

* CALL SUBROUTINE SUB2 MOD1

* IN DECK DECK2.« Restored line. MOD1
CALL SUB2 DECK2
PRINT* ,“EXIT SUBROUTINE 1.* DECK2
RETURN DECK2
END DECK2

ek END DECK2. MOD1

END OF INFORMATION ENCOUNTERED.
/rewind,mainpl ,mpl2
SREWIND,MAINPL,MPL2.

The LIBEDIT utility provides a convenient
means of replacing or adding records on a file.

/libedit,i=8,p=mainpl ,lsﬂ,bsmPIZ,c/ Refer to the NOS Reference Manual, volume 1,

EDITING COMPLETE. for a description of the LIBEDIT utility.

Figure 4-1. Modification Directive Examples (Sheet 2 of 3)

60450100 A

BANNLWNWOENINNLWNE IR & WN -

a3 OVUY B N WD N

BN WNDWN -

4-5

/catalog,mainpl,r

CATALOG OF MAINPL

REC NAME TYPE
1 DECK1 OPL (64)
MOD1
2 DECK3 OPL (64)
MOD1
3 DECK2 OPL (64)
MOD1 MOD2
4 OPL OPLD
5 * EOF * SUM =

1
CATALOG COMPLETE.
/replace,mainpl

/modify,1=6,p=mainpl,c=com3,n=nplx ¢«——----—m

? *ident modx
? *deck deck2
? *yank mod3

? *edit deck2

?

MODIFICATION COMPLETE.

1

hhk

FILE 1
LENGTH CKSUM DATE
37 7732 76/81/22.
34 3117 76/81/21.
55 5026 76/01/22.
MOD3
11 7477 76/01/22.
161

|

deck DECK2.

/catalog,nplx,r
CATALOG OF NPLX FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECK2 OPL (64) 55 6626 76/01/22.
. MOD1 MOD2 (MOD3)
2 OPL OPLD 3 2117 76/81/22.
3 % EOF * SUH = 68 \[Note that yanked modification set is enclosed
parentheses.
CATALOG COMPLETE.
/copycf,com3
SUBROUTINE 1, DECK DECK2. MOD1
SUBROUTINE SUB1 DECK2
PRINT*,"ENTER SUBROUTINE 1.“ DECK2
CALL SUBROUTINE SUB2 MOD1
CALL SUB2 DECK2
® " -
PRINT* ,"EXIT SUBROUTINE 1. Compare with previous DECK2
RETURN S g DECK2
END compile file of DECK2. DECK2
END DECK2. MOD1

Rk

END OF INFORMATION ENCOUNTERED.

Figure 4-1,

Modification Directive Examples (Sheet 3 of 3)

Temporary modification run to deactivate
modification set MOD3 and selectively edit

AU BN WN -

60450100 A

FILE MANIPULATION DIRECTIVES 5

e

File manipulation directives allow user control over
files during the initialization and modification
phases. Two of these directives, READ and
READPIL, may be used to change the source of di-
rectives and insertion text from the directives file
to an alternate file. While an insertion is in prog-
ress, a file change does not terminate insertion.
Insertion continues until Modify reads the next
modification directive. File manipulation directives
are illegal when Modify is reading from an alternate
file and result in the following message:

OPERATION ILLEGAL FROM ALTERNATE FILE
INPUT.

The file manipulation directives include:

READ Read record or group of records
from specified file.

READPL Read deck or portion of deck from
program library.

BKSP Backspace specified number of
records on file.

SKIP Skip forward specified number of
records on file.

SKIPR Skip forward past the specified

: record on file,
REWIND Rewind named files.
RETURN Return named files to system,

These operations cannot be performed on the follow-
ing reserved files (or their equivalents).

INPUT Source of directives
OUTPUT Statistics output
COMPILE Compile

SOURCE Source output

OPL Old program library
NPL New program library
SCR1 Scratch file 1

SCR2 Scratch file 2

SCR3 Scratch file 3

These file names are reserved only through their
respective Modify control statement options. For
example, if the S option is not specified, the file
SOURCE is not reserved and the user can use file
manipulation directives specifying a file of that
name. However, file names SCR1, SCR2, and
SCR3 should not be used.

60450100 B

READ — READ ALTERNATE
DIRECTIVES FILE

The READ directive causes Modify to temporarily
stop reading the directives file and begin reading
directives and insertion text from the specified
record on the named file or current position if
deckname is omitted (or *). Unless * is the
deckname field, Modify reads from the alternate
directives file until it encounters an end-of-record
and then resumes with the next directive on the
primary directives file.

If Modify is unable to find the named record, it
issues the message

RECORD NOT FOUND.
Formats:

*READ file
*READ filg, dname
*READ file, *

file Name of file containing insertion
text and/or directives.

dname Optional; if dname is specified,
. text must be in source file
format; that is, the first word
of record is the name of the
record. Modify discards the
name before processing any

text.

* Optional; if specified, Modify
processes all records on the
file up to an end-of-file or a
zero-length record. These
records must be in source file
format.

READPL — READ PROGRAM LIBRARY

The READPL directive causes Modify to temporarily
stop reading the directives file and begin reading
directives and insertion text from the specified
Modify deck, It allows a user to insert text from

one deck on the program library into another program,
or to move text within a program,

Formats:

*READPL dname
*READPL dname, cysC

2
dname Name of deck on old program
library.
Cys Co Portion of deck to be read;

must be more than one line.

5-1

Modify inserts all the active lines in the deck or
portion of the deck specified by the READPL,, If
c1,c2 are omitted, it reads the entire deck before

ern F3V A
........ & vV vix LI LLLLYVT 11:CT.

During processing of the READPL direc-
tive, Modify does not perform any modi-
fications to the text in the deck it is read-
ing. If the user wishes the new text to be
modified, he must make the corrections
to the deck into which the text is being
inserted; that is, the text is taken from
the deck exactly as it is on the program
library.

BKSP — BACKSPACE FILE

The BKSP directive repositions the named file one
or more logical records in the reverse direction.

It does not backspace beyond the beginning-of-infor-
mation.

Formats:

*BKSP file
*BKSP file,n

file Name of file to be positioned.

n Number of records to be
skipped in the reverse direc-
tion. If n is omitted, Modify
backspaces one record.

SKIP — SKIP FORWARD ON FILE

The SKIP directive repositions the named file for-
ward one or more logical records. If an end-of-
information is encountered before the requested
number of records has been skipped, the file is
positioned at the end-of-information.

Formats:

*SKIP file
*SKIP file,n

file Name of file to be positioned.

n Number of records to be
skipped in the forward direc-
tion. If n is omitted, Modify
skips one record,

5-2

SKIPR — SKIP FORWARD PAST RECORD

The SKIPR directive repositions the named fiie
forward past the specified logical record. It does
not position the file past the end-of-information.

If Modify is unable to locate the record in the for-
ward search, it positions the file at the end-of-infor-
mation and issues the message

RECORD NOT FOUND.

Format:

*SKIPR file, rname
file Name of file to be positioned.

Name of record on file that file
is positioned after.

rname

REWIND — REWIND FILES

The REWIND directive repositions one or more files
to their first records.

Format:
*REWIND filel, filez. vees ﬁlen

filei Names of files to be rewound.

RETURN — RETURN FILES TO SYSTEM

The RETURN directive immediately returns files to
the operating system,

Format:
*RETURN filel, filez, cees fllen

file.l Names of file to be returned.

FILE MANIPULATION DIRECTIVE EXAMPLES

Figure 5-1 illustrates several of the file manipulation
directives discussed in this section.

60450100 B

batch,
SRFL,4
/old,d
/lnh,r

45000
5600.
irfil

PRINT* ,"LINE 1 ADDED BY MODIFICATION SET MODX."

-~EOR-~

«=EQR~~

DECRX

PRINT*,“LINE 2 ADDED BY MODIFICATION SET MODX."
.

PRINT*,“LINE 3 ADDED BY MODIFICATION SET MODX."

~=EQR=~

*“EDIT
“EDIT
«*EDIT

DECK1
DECK2
DECK3

—=BOR~~
/old,opl=mainpl

/get.d
/modif
*ski

*dec
*i 2
*rea

*dec
*i 3
*rea

*dec
*j 4

*gki
*rea
*ret

N W D W) W W)) W))N) N W)W

*jdent modx

*bksp dirfil,2

*rewind dirfil

*read dirfil

icfil
y.1=0,n=newpl,c=comx
p dirfil,2

k deck2

d dirfil,deckx

k deck3

d dirfil File manipulation directives.

k deckl

pr dirfil ,deckx
d dirfil
urn dircfil

MODIFICATION COMPLETE.

/copyc
*kk

kkk

k&
kkk

f ,comx
MAIN PROGRAM, DECK DECKIl.
PROGRAM MAIN(OUTPUT)

PRINT*,"BEGIN MAIN PROGRAM."
CALL suBl

PRINT*,“LINE 1 ADDED BY MODIFICATION SET MODX."
PRINT*,“END MAIN PROGRAM."

STOP

END

SUBROUTINE 1, DECK DECK2.

SUBROUTINE SUB1)

PRINT*,“LINE 3 ADDED BY MODIFICATION SET MODX."
PRINT* ,“ENTER SUBROUTINE 1."

CALL SUBROUTINE sSuUB2

IN DECK DECK2. Compile file containing

CALL SUB2 F .

™ “ modifications from
ggiggn' EXIT SUBROUTINE 1. alternate directives
END file.
END DECK2.

SUBROUTINE 2, DECK DECK3.

SUBROUTINE SuB2

PRINT*,“ENTER SUBROUTINE 2."

PRINT* ,“LINE 2 ADDED BY MODIFICATION SET MODX.*
PRINT* ,"EXIT SUBROUTINE 2."

RETURN

END

END OF INFORMATION ENCOUNTERED.

Alternate directives file.

MOD1
DECK1

DECK1
DECK1

MODX
DECK1
DECK1
DECK1
MOD1
DECK2
MODX
DECK2
MOD1
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1
MOD1
DECK3
DECK3
MODX
DECK3
DECK3
DECK3

Figure 5-1. File Manipulation Directive Examples (Sheet 1 of 2)

60450100 A

AU B WNEBEIAUVNEWNWHFNMSNOWU = 8W N -~

5-3

/catalog,newpl,r

CATALOG OF NEWPL FILE
REC NAME TYPE LENGTH
1 DECK1 OPL (64) 47
MOD1 MODX
2 DECK2 OPL (64) 65
MOD1 MOD2 MOD3
3 DECK3 OPL (64) 44
MOD1 MODX
4 OPL OPLD 7
S * EOF * SUM = 207
1
CATALOG COMPLETE.
/rewind,comx
SREWIND ,COMX,
/ftn,i=comx,1=0

.215 CP SECONDS COMPILATION TIME
/1lgo

BEGIN MAIN PROGRAM,
LINE 3 ADDED BY MODIFICATION SET MODX.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
LINE 2 ADDED BY MODIFICATION SET MODX.
EXIT SUBROUTINE 2.
EXIT SUBROUTINE 1.
LINE 1 ADDED BY MODIFICATION SET MODX.
END MAIN PROGRAM.

.909 CP SECONDS EXECUTION TIME

1
CKSUM DATE
7152 76/81/22.
6115 76/81/22.
MODX
7430 76/81/21.
74083 76/81/23.

Execution of modified program.

Figure 5-1, File Manipulation Directive Examples (Sheet 2 of 2)

60450100 A

COMPILE FILE DIRECTIVES 6

The directives described in this section provide
user control during the write compile file phase.
These directives are interpreted at the time the
program library decks are written onto the compile
file. A call for a common deck results in the deck
being written on the compile file. Other directives
allow control of file format.

The user can prepare his original source deck with
compile file directives embedded in it, or he can
insert compile file directives into program library
decks as a part of a modification set. Compile file
directives are not recognized when they are on the
directives file; they do not terminate ingertion, but
are simply considered as text lines to be inserted.

Compile file directives include:

CALL Write called deck onto com-
pile file.
}FCALL Write called deck onto com-
pile file if name is defined.
NIFCALL Write called deck onto com-
pile file if name is not de-
fined.
CALLALL Write all decks onto compile
file that have deckname be-
ginning with specified char-
acter string.

iF Include lines in compile file
if specified attribute is true
and until a reversal directive
is encountered (ELSE or
ENDIF).

ELSE Reverse an IF directive con-
ditional range.

ENDIF Terminate an IF directive
conditional range.
COMMENT Generate COMMENT pseudo
instruction for COMPASS.
WIDTH Define number of columns
preceding sequence informa-
tion on compile file.

NOSEQ Specify no sequence infor-
mation on compile file.

SEQ Specify sequence informa-
tion on compile file.

WEOR Write end-of-record on com-
pile file.

CWEOR Write end-of-record on com-
pile file if the buffer is not

empty.

60450100 C

WEOF Write end-of-file on compile
file.

A common deck cannot call another
common deck. That is, if the directives
CALL, IFCALL, NIFCALL, or CALL-
ALL are in a common deck, they are
ignored.

CALL — CALL COMMON DECK

Modify places a copy of the requested deck on the
compile file. It does not copy the request to the
compile file. However, the new program library
and the source file contain the CALL directive,

Format:
*CALL deckname

Name of common deck to be
writteh on compile file.

deckname

IFCALL — CONDITIONALLY CALL
COMMON DECKS

Modify places a copy of the requested deck on the
compile file if the conditional name has been defined
on a DEFINE directive during the modification
phase. If the name has not been defined, the com-
mon deck is not written on the compile file. Modify
does not copy the IFCALL directive to the compiie
file.

Format:

*IFCALL name, deckname

name 1= to 7-character conditional
name.
deckname Name of common deck to be

written on compile file if name
is defined.

NIFCALL — CONDITIONALLY CALL
COMMON DECKS

Modify places a copy of the requested deck on the
compile file if the conditional name has not been
defined (refer to DEFINE directive, section 7)
during the modification phase. If the name has
been defined, the common deck is not written on
the compile file.

Format:

*NIFCALL name, deckname

name 1- to 7-character conditional
name.
deckname Name of commmon deck to be

written on compile file if
name is not defined.

CALLALL — CALL RELATED
COMMON DECKS

Modify places a copy on the compile file of every
deck name beginning with the specified character
string.

Format:

*CALLALL string

IF — TEST FOR CONDITIONAL RANGE

Modify tesis the specified condition and, if true,
writes all following lines onto the compile file un-
til encountering a reversal (ELSE) or termination
(ENDIF) directive. If the condition is false, the
lines are skipped until a reversal or termination
directive ig encountered. Lines skipped’in such
a range are treated as inactive,

Format:

*IF atr, name, value

atr Attribute; must be one of the
following:
DEF name defined
UNDEF name undefined
Q name equal to value
NE name not equai to
value

ELSE — REVERSE CONDITIONAL RANGE

ELSE is a conditional range reversal directive.
When encountered, the effects of a previous IF
directive are reversed. An ELSE directive en-
countered without an IF range in progress is
diagnosed as an error.

Format:

*ELSE

6-2

ENDIF — TERMINATE CONDITIONAL RANGE

ENDIF is a conditional range termination directive.
When encountered, the effects of a previous IF
directive are terminated. An ENDIF directive en-
countered without an IF range in progress is diag-
nosed as an error.

Format:

*ENDIF

COMMENT — CREATE COMMENT LINE

This directive causes Modify to create a COMPASS
language COMMENT pseudo instruction (beginning
in column 3) in the following format. Modify obtains
the dates from the operating system.

LOCATION OPERATION

COMMENT | crdate

VARIABLE SUBFIELDS

moddate

comments

crdate Creation date in the format
Ayy/mm/dd.
moddate Modification date in the format
Ayy/mm/dd.
Format:

¥COMMENT comments

comments Character string.

WIDTH — SET LINE WIDTH ON
COMPILE FILE

The WIDTH directive allows the user to change the
width of lines during the compile phase. Modify
uses the new width until it encounters another
WIDTH directive.

Format:
*WIDTH n

n Number of columns preceding
sequence information on com-
pile file and source file.
Modify allows a maximum of
100 columns.

During initialization of Modify, width is
set to 72; additional columns of data are
truncated,

60450100 B

NOSEQ — NO SEQUENCE INFORMATION

The NOSEQ directive allows the user to set the no
sequence flag during the write compile file phase.
When no sequence information is requested, Modify
does not include sequence information on the com-
pile file. A SEQ directive encountered subsequent
to NOSEQ resumes sequencing.

Format:

*NOSEQ

SEQ — INCLUDE SEQUENCE INFORMATION

The SEQ directive allows the user to clear the no
sequence flag during the write compile file phase and
to begin placing sequence information on the compile
file. A NOSEQ directive encountered subsequent to
a SEQ sets the no sequence flag.

Format:

*SEQ

WEOR — WRITE END OF RECORD

Modify unconditionally writes an end-of-record on
the compile file when encountering the WEOR direc-~
tive,

Format:

*WEOR

60450100 B

CWEOR — CONDITIONALLY WRITE END
OF RECORD

Modify writes an end-of-record on the compile file
if information has been placed in the buffer since the
last end-of-record was written,

Format:

*CWEOR

WEOF — WRITE END OF FILE
Modify writes an end-of-file on the compile file.
Format:

*WEOF

COMPILE FILE DIRECTIVE EXAMPLES

Figure 6-1 illustrates several of the compile file
directives presented in this section.

6-3

batch, 450400

SRFL,45000.
/old,opl=mainpl
/get,csub
/copycr ,csub\ Copy of source file to be incorporated inio
DECK4 { program library. .
IDENT SUB3
ENTRY SUB3
*COMMENT CALL DECK DECKS
whE CALL COMMON DECK.
*CALL DECKS < Notice call to common deck DECKS5.
SUB3 DATA 9 ENTRY/EXIT
ORIGIN JOT
EQ SUB3 RETURN
USE //
JoT BSS 1
END

COPY COMPLETE.
/copycr ,csub

DECK5

COMMON

ORIGIN MACRO A
Sal 668 GET JOB ORIGIN
MX0 24
BX6 -X0*X1
AX6 24
SA6 A STORE JOB ORIGIN
ENDM

COPY COMPLETE.
/modify,f,p=0,1=8,n=mainpl,c=coml, s=mainp
*oplfile opl
*rewind csub

*create csub
*jident mod4 Modify run to create new program library

*deck deckl consisting of source file and OPL.
*i 2
common jot
*j 3
call sub3
if(jot.eq.3)print*,"time-sharing job.™
if(jot.ne.3)print*, "batch job."
rdeck deck4
*ji @
*weor
:ciletﬂzk deck3 Addition of compile file directives,
*weor
*deck deck2
*j @
*weor

NV NN NN NN R RN NN RN W N W W

MODIFICATION COMPLETE.

/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECK1 OPL (64) 61 3171 "76/81/22.
MOD1 MOD4
2 DECK3 OPL (64) 37 2333 F6/61/21.
MOD1 MOD4
3 DECK2 OPL (64) 60 5455 76/81/22.
MOD1 MOD2 MOD3 MOD4
4 DECK4 OPL (64) 47 5663 76/01/23.
MOD4
5 DECKS OPLC (64) 27 6354 76/081/23.
6 OPL OPLD 13 3706 76/81/23.
7 * EOF * SUM = 311
1

CATALOG COMPLETE

Figure 6-1, Compile File Directive Examples {Sheet 1 of 3)

6-4

60450100 B

/copycr ,com}

kk& MAIN PROGRAM, DECK DECKI1.
PROGRAM MAIN(OUTPUT)
COMMON JOT
PRINT* ,“BEGIN MAIN PROGRAM."
CALL SUB3
IF (JOT.EQ.3) PRINT*,*TIME~SHARING JOB.*"
IF(JOT.NE.3) PRINT*,"BATCH JOB."
CALL SUB1
PRINT*,"END MAIN PROGRAM.*
STOP
END

COPY COMRLETE.

/copycr ,coml

e hk SUBROUTINE 2, DECK DECK3.

SUBROUTINE SUB2 Listing of compile file.
PRINT*, “"ENTER SUBROUTINE 2. Notice separation into
PRINT* ,“EXIT SUBROUTINE 2.“ records.

RETURN

END

COPY COMPLETE.
/copycr ,coml
*kk SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUB1
PRINT* ,“ENTER SUBROUTINE 1.*
* CALL SUBROUTINE SUB2
* IN DECK DECK2.
CALL SUB2
PRINT* ,“EXIT SUBROUTINE 1."
RETURN
END
LA END DECK2.
COPY COMPLETE.
/copycr ,coml
IDENT SUB3
ENTRY SUB3
COMMENT 76/01/23. 76/01/23. CALL DECK DECKS

bkl CALL COMMON DECK.

ORIGIN MACRO A
sal 668 GET JOB ORIGIN xCAI.I, DECKS is re-
g:‘(g f; a%x1 placed bydcotlztents of
AXE 24 common deck,
SAS A STORE JO8 ORIGIN
ENDM

SUB3 DATA 0 ENTRY/EXIT
ORIGIN JOT
EQ SUB3 RETURN
USE //

JoT BSS 1
END

COPY COMPLETE.
/copycr ,coml

END OF INFORMATION ENCOUNTERED.
/replace,mainpl
/pack,comrl

PACK COMPLETE.
/ftn,i=coml,1=0

.503 CP SECONDS COMPILATION TIME

/1lgo

BEGIN MAIN PROGRAM.

TIME~-SHARING JOB.

ENTER SUBROUTINE 1.

ENTER SUBROUTINE 2.

EXIT SUBROUTINE 2.

EXIT SUBROUTINE 1.

END MAIN PROGRAM.

.089 CP SECONDS EXECUTION TIME

/primary,.mainp

SPRIMARY ,MAINP.

Notice that Modify has
replaced *COMMENT
directive with COMPASS
COMMENT statement on
compile file.

MOD1
DECK1
MOD4
DECK1
MOD4
MOD4
MOD4
DECK1
DECK1
DECK1
DECK1

MOD1

DECK3
DECK3
DECK3
DECK3
DECK3

MOD1
NECK2
DECK2
MOD1
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1

DECK4
DECK4
DECK4
DECK4
DECKS
DECKS
DECKS
DECKS
DECK5S
DECKS
DECKS
DECK4
DECK4
DECK4
DECK4
DECK4
DECK4

Figure 6-1. Compile File Directive Examples (Sheet 2 of 3)

60450100 B

SR BB W W N -

RNV BWN -

BLNAVMAEWNWN -~

= RNOWOSAN NN E W R bW

s

-~EOR~
DECK3
*WEOR

Rk

--EOR~
DECK2
*WEOR
T3]

)
-=EOR-
DECK4
*WEOR

*COMME

an

*CALL
sUB3

JoT

~~EOR-

DECKS

COMMON
ORIGI

MAIN PROGRAM, DECK DECK]1.
PROGRAM MAIN({QUTPUT)

COMMON JOT

PRINT*,"BEGIN MAIN PROGRAM."
CALL SuUB3
IF(JOT.EQ.3) PRINT*, “TIME~-SHARING JOB."
IF(JOT.NE.3) PRINT*, “BATCH JOB."
CALL Susl

PRINT*,"END MAIN PROGRAM."

STOP

END

Contents of source file created by Modify.

SUBROUTINE 2, DECK DECK3.
SUBROUTINE SUB2
PRINT*,“ENTER SUBROUTINE 2."
PRINT*,"EXIT SUBROUTINE 2."
RETURN

END

-

SUBROUTINE 1, DECK DECK2.
SUBROQUTINE SUBl
PRINT*,"ENTER SU3BROUTINE 1."
CALL SUBROUTINE SUB2

IN DECK DECK2.

CALL SuB2
PRINT#,"EXIT SUBROUTINE 1.*
RETURR
END
END DECK2.
IDENT SUB3
ENTRY SUB3
NT CALL DECK DECKS
CALL COMMON DECK. Note that source file contains call to common
DECKS deck.
DATA @ ENTRY/EXIT
ORIGIN JOT
EQ suB3l RETURN
USE //
RSS 1
EKD
N MACRO A
SAl 66B GET JOB OQORIGINW
MX9 24
BX6 -X0*X1
AX6 24
SA6 A STORE JOB ORIGIN

N3
ENDH

~=EOR-~

Figure 6-1, Compile File Directive Examples (Sheet 3 of 3)

60450100 B

SPECIAL DIRECTIVES 7

L~

The directives described in this section provide
extended features. They can be any place in the
directive file for either creation or correction and
primarily affect the operating features of Modify.

/ List comment.

PREFIX Changes prefix character for
-directives other than compile
file directives.

PREFIXC Changes prefix character for
compile file directives.
INWIDTH Sets width of input line to be
compressed.

Defines name under which sub-
sequent IFCALL directive may
cause a common deck to be
written, or NIFCALL may
prevent a common deck from
being written.

DEFINE

MOVE Moves decks on new program

library.

UPDATE Specifies editing sequence

and modification set number-

ing.

/ — LUST COMMENT

Other than being copied onto the Modify statistics
(list) output, a comment line is ignored. It can
occur any place in the directives file.
Format:

*[/ comment

Example:

%[sk MODIFIC AT IONS skt

PREFIX — CHANGE MODIFY
DIRECTIVES PREFIX

The PREFIX directive resets the prefix character
for subsequent Modify directives. It does not affect
the prefix of compile file directives. When Modify
is initialized, the character is preset to *. Modify
uses * if a PREFIX directive is not used.

Format:
*PREFIX x
x " Character used in first column
of directive (except compile

file directive). A blank char-
acter is illegal.

60450100 B

PREFIXC — CHANGE COMPILE FILE
DIRECTIVES PREFIX

The PREFIXC directive resets the compile directive
character so that only compile file directives with
the x prefix are recognized. If a PREFIXc directive
is not encountered, the default (¥) is used.

Format:
*PREFIXC x

X Character used in first column
of compile file directive. A
blank character is illegal.

INWIDTH — SET WIDTH OF INPUT TEXT

The INWIDTH directive allows the user to set the
width of input text from primary and alternate sources
before it is compressed and written in the Modify
library deck. An INWIDTH directive takes prece-
dence over any previously defined width. INWIDTH
can be placed anywhere in the directives file.

Format:
*INWIDTH n

n Number of columns on input
line to be compressed. Modify
allows a maximum of 100
columns. During initialization
of Modify, width is preset to
2.

DEFINE — DEFINE NAME FOR USE BY
IFCALL, NIFCALL, IF

By defining a name and its associated value, a user
establishes the conditions that must be met for a
conditional call of a common deck. This allows
external control of the calls embedded in source
decks. If the name is not defined, an IFCALL for
a common deck is ignored. If the name is defined,
a NIFCALL for a common deck is ignored. A
DEFINE directive must be processed in order for
an IF conditional test to be true.

Format:

*DEFINE name, value

name Name used in compile file
IFCALL, NIFCALL, or IF
directive.

value Value assigned to symbol

name (maximum value may be
3777777B). If omitted, name
is defined with value zero.

7-1

MOVE — MOVE DECKS

The MOVE directive enables the user to reorder

decks while producing a new progra

m libr

ary. The

decks, dname, are moved from their positions on
the old library and placed after dnamey on the new

library.

Format:

*MOVE dnamer, dnamel, dnamez. dnamei,1

UPDATE — UPDATE LIBRARY

Use of this directive causes Modify to continue
sequencing rather than restart sequencing with

batch, 45800
SRFL,45000.
/o0ld,opl=mainpl

/modify,f,c=coml,n=mainpl,1=0

*prefix ¥ <«

*/ change prefix character to #

each deck using the same IDENT. UPDATE also
causes the order in which decks are edited to be
according to their sequence on the oid program
library.

Format:

*UPDATE

SPECIAL DIRECTIVE EXAMPLES

Figure 7-1 illustrates several special directives.
Note that compile file directives can be ignored
(depending on language processor) by changing the
compile file prefix character,

#1dent modé6
#deck deck4
1 4
space 4
jorefisc g<

Change Modify directive prefix character.

{ Change compile file prefix character so

L ICHIE L VLS IS IV

MODIFICATION COMPLE
/catalog,mainpl,r

#move deckl,deck2,deck3

CATALOG OF MAINPL

REC NAME
1 DECK1
MOD1
2 DECK2
MOD1
3 DECK3
MOD1
4 DECK4
MOD4
S DECKS
6 OPL
7 % EOF *

1
CATALOG COMPLETE.

FILE

1
CKSUM

3171

5455
MOD4

2333

3657

6354
3675

directives on program library will be inter-
preted as comments.

DATE

76/81/22.
76/81/22.
76/81/21.
76/81/23.

76/01/23.
76/81/23.

Notice reordered decks.

TE .

TYPE LENGTH

OPL (64) 61

MOD4

OPL (64) 60

MOD2 MOD3

OPL (64) 37

MOD4

OPL (64) 53

MOD6

OPLC (64) 27

OPLD \ 13
SUM =\ 315
Figure 7-1,

Special Directive Examples (Sheet 1 of 2)

60450100 B

/copycr ,coml

kkk MAIN PROGRAM, DECK DECKI1.
PROGRAM MAIN(OUTPUT)
COMMON JOT
PRINT*,"BEGIN MAIN PROGRAM."
CALL SUB3
IF(JOT.EQ.3) PRINT*, " TIME~-SHARING JOB.*
IF (JOT.NE.3) PRINT*,"BATCH JOB."
CALL SuBl
PRINT*, "END MAINR PROGRAM."“
sTOP
END

*WEOR

kkk SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUB1
PRINT*,“ENTER SUBROUTINE 1.*

* CALL SUBROUTINE SUB2
* IN DECK DECK2.
CALL SUB2
PRINT* ,“EXIT SUBROUTINE 1."
RETURN
END
bl END DECK2.
*WEOR

Al SUBROUTINE 2, DECK DECK3.
SUBROUTINE SUB2
PRINT*,“ENTER SUBROUTINE 2.“
PRINT*,“EXIT SUBROUTINE 2.*

RETURN
: END
*WEOR
IDENT SUB3
ENTRY SUB3
*COMMENT CALL DECK DECKS
kK CALL COMMON DECK.
SPACE 4
*CALL DECKS
SUB3 DATA @ ENTRY/EXIT
ORIGIN JOT
EQ SUB3 RETURN
USE //
JOoT BSS 1
END

COPY COMPLETE.
/copvcr ,coml
END OF INFORMATION ENCOUNTERED.

Figure 7-1. Special Directive Examples (Sheet 2 of 2)

60450100 A

Listing of compile file,
Compile file directives
have been ignored.

MOD1
DECK1
MOD4
DECK1
MOD4
MOD4
MOD4
DECK1
DECK1
DECK1
DECK1
MOD4
MOD1
DECK2
DECK2
MOD1
4OD1
DECK2
DECK2
DECK2
DECK2
MOD1
MOD4
MOD1
DECK3
DECK3
DECK3
DECK3
DECK3
MOD4
DECK4
DECK4
DECR4
DECK4
MOD6
DECK4
DECK4
DECK4
DECK4
DECK4
DECK4
DECK4

[y

HRAWOLAAN= B WA NBWN LA BEWNWNEENUT D WA W N -

7-3

MODIFY CONTROL STATEMENT 8

The following control statement causes the Modify
program to be loaded from the operating system
library into central memory and to be executed.
Parameters specify options and files.

MODIFY (pl. Pgseces pn)

The optional parameters, pj, may be in any order
within the parentheses. Generally, a parameter
can be omitted or can be in one of the following
forms.

option

option=value

option=0
where option is one or two characters as defined in
the following text. Unless Q or X is selected,
parameters CB, CG, CL, or CS are meaningless,

Value is a 1~ to 7-character name of a file or is a
character string.

Option Significance

A - Compressed compile file

omitted Compile file is not in com~
pressed format.

A Compile file is in compressed
format.

C ~ Compile file output

omitted or C Compile output to be written
on file COMPILE.

Write compile output on
named file.

C=0 No compile output.

C=filename

CB - COMPASS binary; Q or X option only.

omitted or CB COMPASS binary output
: written on the load-and-go
file (B=LGO).

CB=filename COMPASS binary output
written on the named file
(B=filename),

CB=0 No binary output (B=0).

CG - COMPASS get text option; Q or X option only.
Takes precedence over CS.

CG Load systems text from
SYSTEXT (G=SYSTEXT).

CG=filename Load systems text from
named file (G=filename),

CG=0 SYSTEXT not defined (G=0).

omitted Load systems text from over-

lay named in CS option.

60450100 C

Option Significance

CL - COMPASS list output including *comment lines.

Q or X option only.

CL List output on OUTPUT file
(L=OUTPUT).
CL=filename List output on named file (L=
filename).
omitted or Short list instead of full list is
CL=0 generated on OUTPUT file
- (L=0).

CS - COMPASS systems text: Q or X option only.

omitted or CS Systems text on SYSTEXT over-
lay (S=SYSTEXT)

CS=filename Systems text on named file
(S=filename)
CS=0 No systems text (S=0)

CV - Character set conversion

omitted or No conversion takes place.

Cv=0

CVv=63 Convert library created using
64-character set to 63-character
set,

CV=64 Convert library created using
63-character set to 64-character
set,

When the CV=63 or CV=64 conversion
option is selected, Modify forces C=0
(no compile file generation).

Conversion is recommended if the character set
of the old program library is not the same as the
character set used when the program library is
modified, Uge CATAIOG to determine the

character set of the program library (refer to
volume 1 of the NOS Reference Manual). Check
with a systems analyst to determine the character
set in use at the site.

D - Debug

omitted A directive or fatal error aborts
the job.

D A directive error does not abort
the job; the D option does not
affect fatal error processing.

F - Full edit

omitted Decks to be edited are determined
by the U parameter or by EDIT
directives.

F All decks on the library are to

be edited and written on new
program library, compile file,
and source file if the respective
options are selected.

Option

I - Directive input

omitted or 1
I=filename

I=0

L - List output
omitted or L

L=filehame

L=0

LO - List options
omitted or LLO

LO= CysCgeeeCp

Significance

Directives on job INPUT file.
Directives comprise next
record on named file,

No directive input.

List output is written on job
OUTPUT file. This file is
automatically printed.

List output is written on the
named file. It is the user's
responsibility to assure that
the file is saved at job end
or is printed.

Modify does not generate a
list output file.

List options E, C, T, M, W,
D, and S are selected.

Each character (c;) selects an
option to a maximum of seven
options.

Option Significance

A List active lines in
deck

C List directives other
than INSERT, DE-
LETE, RESTORE,

MODNAME, I, or D
List deck status
List errors

List inactive lines
in deck

List modifications
performed

Include statistics on
listing

List text input

List compile file
directives

=Ho

Pt

g4 « 2

N - New program library output

N

N=filename

omitted or
N=0

New program library to be

written on file NPL.

New program library to be

written on named file. It is
the user's responsibility to
assure that the file is saved
at job end.

Modify does not generate a

new program library.

If a new program library is being genera-
ted, an EVICT is performed upon it (NPL
or filename) before it is written on (refer
to the NOS Reference Manual, ¥olume 1,
for a description of EVICT).

Option Significance

NR - No rewind of compile file

omitted Compile file is rewound at be-
ginning and end of Modify run.

NR Compile file is not rewound at
beginning and end of Modify
run.

P - Program library input

omitted or P Program library on file OPL.
P=filename Program library on named file.
P=0 No program library input file.

Q - Execute named program; no rewind of directives
file or list output file.

omitted or Q=0 Assembler or compiler is NOT

automatically called at end of

the Modify run,

At the beginning of the Modify

run, Modify sets LO=E and sets

the A parameter. At the end of
the run, Modify calls the as-
sembler or compiler specified
by program.

Q At the beginning of the Modify
run, Modify sets LO=E and sets
the A parameter. At the end of
the run, Modify calls the COM-
PASS assembler. When this
option is selected, the CB, CL,
CS, and CG parameters are
meaningful. Compiler input is
assumed to be COMPILE. All
other parameters are set by de-
fault. If CL is not specified
with Q, lines beginning with an
asterisk in column 1 are not
written to the compile file (com~
pile file directives are processed,
however).

Q=program

S - Source output; illegal when A, Q, or X are selected.

S Source output written on file
SOURCE.
S=filename Source output written on named

file. It is the user's responsi-
bility to assure that the file is
saved at job end,

Modify does not generate a source
output file.

omitted or S=0

U - Update edit

omitted Decks to be edited are determined
by EDIT directives or by the F
parameter.

U Only decks for which directives

file contains DECK directives
are edited and written on the
compile file, new program li-
brary, and source file if the
respective options are on. F, if
specified, takes precedence.

X - Execute named program; directives file and list
output file rewound.

Same as Q option, except Modify
directives input (I parameter) and

list output (L parameter) files are
rewound before processing.

60450100 B

Option

Significance Option

Z - Control statement input

omitted

2

60450100 A

The control statement does
not contain the input direc-
tives.

The Modify control statement
contains the input directives
following the terminator; the
input file is not read. This
eliminates the need to use a

Significance

separate input file for the di-
rectives when only a few
directives are needed. The
first character following the
control statement terminator
is the separator character.

Example: MODIFY(Z)/*EDIT,
DECK1/+EDIT, DECK2

8-3

MODIFY FILE FORMATS 9

S

Types of Modify files significant to Modify execu-
tion include:

Source files

Program library files

Directives file

Compile file

collection of information either

el is a
prepared by the user or generated by Modify.

SOURCE DECKS PREPARED BY USER AS INPUT
TO MODIFY

A user prepares a source deck for input to Modify
by placing a deck name and optionally a COMMON
statement in front of the source language deck
(figure 3-1). At the same time, the user also in-
serts compile file directives, as required, into the
source language deck to control compile file output
from Modify. Each source deck is terminated by
an end-of-record. A group of decks is terminated
by an end-of-file or end-of-information. The deck-
name and COMMON statements are not placed on
the program library.

Modify source decks should not be confused with a
compiler or assembler program. A Modify source

deck can contain any number of FORTRAN programs,

subroutines or functions; COMPASS assembler
IDENT statements; or set of data, Typically, each
Modify deck contains one program for the assembler
or compiler or one set of data.

SOURCE FILES GENERATED BY MODIFY

The source file generated as output by Modify
contains a copy of all active lines within decks
written on the compile file and new program library.
The source file is optional output from Modify and
is controlled through use of the S option on the
Modify control statement. Once generated, the
source file can be used as source input on a sub-
sequent Modify run., The file is a coded file that
contains 80-column images. Any sequencing infor-
mation beyond the 80th column is truncated. When
F is selected on the Modify control statement, the
source file contains all lines needed to recreate the
latest copy of the program library.

60450100 B

When U is selected, the source file-contains only
those decks named on DECK directives; that is, only
the decks updated during the current Modify run.

When neither F nor U is selected, the source file
contains only those decks explicitly requested on
EDIT directives.

PROGRAM LIBRARY FILES

Program library files (figure 9-1) provide the pri-
mary form of input to Modify, When a program
library file is input, it is an old program library
and has a default name of OPL. When it is output,
it is a new program library and has a default name
of NPL.

prefix table

modification table,

Deck (record)
text

End-of-record;

prefix tabiep

modification toblep

Deck {record)p
textp

End-of-recordy

prefix tablex

End -of —recordg -

prefix tablen

modification tablen

Deck (record)n

textp

End-of -recordy

prefix tableny

directory table

directory

End-of-record 4
End-of-information

Figure 9-1. Library File Format

Before writing the new program library, an EVICT

is performed on the file. Refer to the NOS Reference
Manual, volume 1, for a description of the EVICT
operation.

A program library consists of a record for each

deck on the library. The last deck record is followed
by a record containing the library directory. The
contents of the new program library is determined

by EDIT directives and the control statement options.
Only edited decks are written on the new program
library.,

DECK RECORDS

Each deck record consists of a prefix table, a
modification table, and text.

Prefix Table Format:

59) 47 33 17 1} [*]

ID Word 0 100 | 18] °

t dechnome reserved

2 creation date

3 los? modificction dote

S 19008

16 char set
Word Bits Field Description

D 59-48 Table Identifies table as pre-
type fix table.

47-36 wc Word count; length of
table is 16g words,

35-00 none Reserved for future
system use.

1 59-18 deckname Name of deck obtained

for source deck identi-
fication line; 1 to 7
characters.

17-00 none Reserved for future
system use.

2 59-00 creation Date that deck was
date created.

Format of date is:
yy/mm/dd.

3 59-00 latest Date of most recent
modifica- entry in modification
tion table. Format of the
date date is the same as for

creation date.

16g 11-00 char set Identifies character set

used to create this deck.

0000g 63-character
set

0084g 84-character
set

9-2

Modification Table Format:

59 47 i7 1] (]
ID Weid O TOO: ! raserved “ 1
| modname | y
2 modnomeg YAy o
4 : &
£-1 modnome o _ 4 y . [+]
t modname ¢ y)
Word Bits Field Description
D 59-48 Table Identifies table as modifi-

type cation table. The least
significant digit indicates
whether the deck is com~
mon or not as follows:

1 Deck is not common
2 Deck is common

47-12 none Reserved for future sys-
tem use.
11-00 ¢ Number of modification
names in table.
word; 59-18 modname; 1-to 7-character modifi-

cation set name. Each
modification to a deck
causes a new entry in
this table.

YANK flag

0 Modifier not yanked
1 Modifier yanked

16 Yi

Text Format:

Text is an indefinite number of words that contain a
modification history and the compressed image of
each line in the deck. Text for each line is in the
following format.

5o 53 » 7 0
o] we 30050, whdy whby
w mnby whby whbg

= :]

Bits Field Description
59 a Activity bit:
0 Line is inactive
1 Line is active
58-54 we Number of words of com-
pressed text,
53-36 sedq. no. Sequence number of line

(octal) according to position
in deck or modification set.

60450100 A

‘zero byte could be the first

Description

Modification history byte.
Modify creates a byte for each
modification set that changes
the status of the line. Modifi-
cation history bytes continue
to a zero byte. Since this

byte of a word and the com-~-
pressed line image begins a
new word, the modification
history portion of the text
could terminate with a zero
word. The format of mhbj

is:

Bits Field

35-18 mhb i

and

subse-

quent

18-bit

bytes
com-
pressed
text

DIRECTORY RECORD

ID Word O

&C‘Om N -

59

Prefix Table Format:

AT 35 17 o

7700

| 16 |)

I reserved

name

A Modify-generated directory has
the name OPL. However, if the
name of the directory is changed
(by LIBEDIT, for example), that
name is retained on new program

. ° libraries then generated,
B e]
Directory Table Format:
a Activate bit
0 Modification set 5 ar 29 14 °
- deactivated the oworao | 7000 | ° !
line 1 decknome, trpe
1 Modification set 2 ° I rondom oddress |
activated the line s decknome] typen
mod. Index to the entry in . ° | fondom addrese,
no. the modification table Jd, H d
that contains the T . T
name of the modifi- £-1 Gockomt /2 T etz
cation set that chang- ’ P I ————
es the line status.
A modification number
of zero indicates the
deck name. Word Bits Field Description
‘The compressed image of the o
line is display code. One or D 59-48 Table type Identifies table as pro-
two spaces are each repre- gram library directory.
sented by 553; they are not 17-00] Directory length ex-
compressed. Three or more cluding ID word.
embedded spaces are replaced 7
in the image as follows: 1,3, 59-18 deckname; Name of program library
3 spaces replaced by 0002 cses deck; 1 to 7 characters
4 spaces replaced by 0003 L -1 left-justified.
- 17-00 type; Type of record.

64 spaces replaced by 0077g 6 Old program li-
65 spaces replaced by brary deck (OPL)
007755g 7 Old program li-

66 spaces replaced by brary common
00770001g deck (OPLC)
67 spaces replaced by 10 Old program li-

00770002g, etc.

Trailing spaces are not con-
sidered as embedded and are
not included in the line image.

On a 64-character set program
library or compressed compile

file, a 00 character (colon) is

represented as a 0001 byte. A
12-bit zero byte marks the end
of the line.

The library file directory contains a prefix table
followed by a table containing a two-word entry for

each deck in the library.

Directory entries are

in the same sequence as the decks on the library.

60450100 B

brary directory
(OPL.D)

Other record types are defined but are
ignored by Modify (refer to the NOS
Reference Manual, volume 1, for a com~-
plete description of record types).

random
addressi

2,4, 29-00

Y

Address of deck rela-
tive to beginning of file.

9-3

DIRECTIVES FILE

The directives file contains the Modify directives
record. This record consists of initialization, file
manipulation, and modification directives, and any
source lines (including compile directives) to be
inserted into the program library decks. An option
on the Modify control statement designates the file
from which Modify reads directives. Normally,
the directives file is the job INPUT file. READ and
READPL directives cause Modify to stop reading
directives from the directives file named on the
Modify statement and to begin reading from some
other file containing directives or insertion lines,

COMRPILE FILE

The compile file is the primary form of output for
Modify. It can be suppressed by the user as a
Modify control statement option, when no compila-
tion or assembly follows the modification.

If a compile file is specified on the Modify control
statement, Modify writes the edited programs on it
in a format acceptable as source input to an assem-
bler, compiler, or other data processor. Through
control statement parameters and directives, a
user can specify whether the text on the file is to
be compressed or expanded, sequenced or unse-
quenced, If the text is expanded, the user can also
specify the width of each line of text preceding the
sequence information.

Expanded compile file format for each line consists
of x columns of the expanded line (where x is the
width requested), followed by 14 columns of se-
quence information, if sequencing information is
requested, and terminated by a zero byte. An
end-of-record terminates the decks written on the
compile file,

9-4

Compressed Compile File (A-Mode) Format:
7 ol 14 1t
00 | ooie | char et | [
! modname l seq. no.;
2

B

o

ID Word O

compressed line

rgd

L

* o
. -«
.

wodname l 9. 10,y

compressed line,

char set Character set of record.
. 0000g signifies 63-character
set. 0064g signifies 64-char-

acter set.

Sequence number of the line
relative to the modification
set identified by modname.

seq. no. ;

compressed A line in compressed form.

line Refer to the compressed text
description for text formats
of deck records.

SCRATCH FILES

Modify uses scratch files in three situations.

Scratch File 1
(SCR1)

Used when common decks are
modified and no new program
library is requested.

Scratch File 2 Used when insertions overfiow

(SCR2) memory.
Scratch File 3 Used when a CREATE or
(SCR3) COPYPL directive is processed.

This file is in program library
format.

These files are returned by Modify at the end of the
Modify run.

60450100 B

BATCH JOB EXAMPLES 10

CREATE PROGRAM LIBRARY
EXAMPLE 1

This example illustrates how Modify can be used to construct a file in program library format from
source decks. This example contains only one source deck (PROG) consisting of a FORTRAN pro-
gram. The deck is terminated by an end-of-file card. The next record on INPUT contains the
directives. It is the user's responsibility to save the newly created program library (TAPE) for use
in future Modify runs.

Unless C=0 is specified, a compile file is generated. This example shows the compile file (COMPILE)
" being used as input to the compiler, The compiler places the compiled program on LGO; the LGO
card calls for loading and execution of the compiled program.

COPYBF({INPUT, SOURCE)
MODIFY(P=0, N=TAPE, F)
FTN(I=COMPILE)

m;\ .
7/8/9 File related cards
PROG

(SOURCE DECK)

6/7/9

*REWIND SOURCE _ . .
*CREATE SOURCE € Directives Input
6/7/8/9

EXAMPLE 2

This example illustrates creation of a library from source decks on a source file other than INPUT.
After the library has been created, it can be modified, edited, and written on a compile file for use
by an assembler or compiler.

Contents of File SALLY: Job Deck:

RON (JOB CARD)
. . File related
: 1€ cards

(SOURCE DECK FOR RON) MODIFY(N, F, P=0)

*CALL TOM 7/8/9

*[FCALL REQ,JACK *REWIND SALLY

7/8/9 *CREATE SALLY

TOM b4 .

COMMON : Directives Input
. ‘ *DEFINE REQ

(SOURCE DECK FOR TOM) :
. 7/8/9

7/8/9 .

JACK

COMMON

(SOURCE DECK FOR JACK)

6/1/8/9

60450100 A 10-1

MODIFY PROGRAM LIBRARY
EXAMPLE 1

In this example, Modify uses all default parameters. The sequencing information shown for inserted
cards is assigned during modification.

MOD File related cards

7/8/9

*IDENT MOD10

*DECK BOTTLE

[wkxxMODIFICATIONS

*D 10

*D 4.

(CARD TO BE INSERTED IS ASSIGNED MOD10.1)

*D 20, 22 Modification
(CARDS TO BE INSERTED ARE ASSIGNED MOD10. 2 THROUGH MOD10. 4) set MOD10
I MODS9. 30

(CARD TO BE INSERTED IS ASSIGNED MOD10, 5)
*EDIT BOTTLE
6/7/8/9

EXAMPLE 2

This job modifies deck EDNA for replacement on the program library. No compile file is produced.

MOW File related cards

7/8/9

*IDENT A2 Modification set A2
*DECK EDNA

*MODNAME Al

#f wxxxxMODIFICATIONS

=D 30 Delete card A1, 30
TAG RJ CHECK Insert card A2.1
*MODNAME EDNA
*1 7011
ERR SA1 LIST1
ZR X1, ABORT Insert cards A2.2 through A2,.5
PRINT (0*** ERROR 131 k%x%) after EDNA. 7011
EQ ABORT
*gDI'I? 644}:_-’1;1320 Delete cards EDNA. 7644 through
EDNA. 7650
6/7/8/9

SN

10-2 60450100

MOVE TEXT
EXAMPLE 1

The job illustrated below calls Modify twice.

On the first call, Modify deactivates all but cards 32

through 54 and writes the source for these cards on source file FRANK. On the second call, Modify
deletes the remainder of the cards and reinserts the saved cards at the beginning of KEN.

MODIFY(S=FRANK, C=0)

MODIFY(N, C=CAL)

7/8/9

*[DENT MOV1
*DECK KEN
%D 1,31
%D 55,63
*EDIT KEN
7/8/9

*[DENT MOV?2
*REWIND FRANK
*DECK KEN

*D 32, 54

* 0

*READ FRANK, KEN
*EDIT KEN
6/7/8/9

EXAMPLE 2

This job moves text cards from one deck to another.

/

File related cards

Modification set MOV1

Delete cards before card KEN. 32

Delete cards KEN, 55 through KEN, 63

Transfer remaining cards (KEN, 32 through
KEN. 54) to source file FRANK

Modification set MOV2

Delete remainder of cards in KEN

Insert cards at beginning of KEN

Read insertion text from deck KEN on file
FRANK

On the first call to Modify, cards 32 through

84 of deck KEN on file OPL are gaved on source file FRANK. On the second call. the saved cards

are inserted intc deck WILL.

:\

MODIFY(S=FRANK, C=0)

MODIFX. CMED)

7/8/9

*[DENT F1
*DECK KEN
*D 1,31
*D 55,63
*EDIT KEN
7/8/9

*REWIND FRANK
*[DENT F2
*DECK WILL
*1 25

*READ FRANK, KEN
. *EDIT WILL
6/7/8/9

60450100 B

File related cards

Modification set F1

Delete cards KEN. 1 through KEN. 31
Save cards KEN. 32 through KEN. 54 on source
file FRANK

Insert text after card WILL. 25
Insertion text taken from deck KEN on file FRANK
Deck WILL is written on NPL and compile file MEL

10-3

READ DIRECTIVES FROM AN ALTERNATE FILE

This job illustrates how the READ directive can be used to change ihe source of directives and correciion

text from the primary input file (in this case INPUT) to some other file.

o€ File related cards

MODIFY.
COMPASS(I=COMPILE)
LGO.

7/8/9

*IDENT JAN

*READ DIR

*DECK C

Read contents of DIR

. 7 *DECK A

: _ N Corrections for A
7/8/9 *DECK B

. : } Corrections for B
6/7/8/9 _ 6/7/8/9

Return to INPUT file

YANK AND UNYANK MODIFICATION SETS

This example illustrates a job that logically removes all of the modification sets applied to program
library LIB from the modification set named JULY and on. The change is not incorporated into the
library; it is for the benefit of this run only.

P i File related cards
MODIFY(P=LIB, F)
COMPASS(I=COMPILE)

*[DENT NEGATE
*DECK MASTER
YANK JULY,
6/7/8/9

To incorporate the preceding change on a new program library, add the N parameter to the Modify
statement.

The effects of a YANK can be nullified in future runs and, consequently, the effects of the yanked
modification sets can be restored through the UNYANK directive. Such a modification might appear

as follows:

*IDENT RESTORE
*DECK MASTER
*UNYANK JULY, *

10-4

60450100 A

PURGE DECKS

Decks BAD, WORSE, and WORST are no longer needed. The following job removes them from the library.

They could also be removed through a selective edit using ED

permanent.

MODIFY(N, C=0, F)

S —

* <

« %

7/8/9

*PURDECK BAD, WORSE, WORST

6/7/8/9

File related cards

CHANGE THE DIRECTIVES PREFIX CHARACTER

EXAMPLE 1

This example illustrates how to maintain directives input on a library. Because * is the prefix used
on the library, a different prefix is required when modifying the library. In this case, / becomes the

prefix character.

ATTACH(OPL)

GET(FIX)

MODIFY(P=FIX, C=Z, N=FIX2)
REWIND(Z)

COPYSBF(Z, OUTPUT)

REWIND(Z)
MODIFY(i=Z)

COMPASS(I, S, B=L.T01)

7/8/9
*PREFIX
/WIDTH
{IDENT
{DECK
/1

*[

/D
{EDIT
6/7/8/9

/
58
F1
CORR
873
1007

LDC
STM

oouU

CORR

1717B
STMA+1

The contents of deck CORR on compile file Z are as follows:

*IDENT
*DECK
*L

=D

NIX
GRMI1TD
MHD2.19

997, 1000

1007
LDC
STM

.
.
.

LJM
980, 984

T11TB
STMA+1

STM

CORR
CORR
CORR

CORR
CORR

1

w N

873

2 Inserted cards

879
881

Instruction CORR. 880
has been deleted

IT directives. In either case, the removal is

After file Z is produced, the deck GRM1TD is modified by the contents of Z, The resulting compile
file (COMPILE) contains COMPASS language PPU code and is assembled using COMPASS.

60450100 A

The job produces a new program library (FIX2) which replaces FIX so that the changes to deck

CORR are saved.

The resulting COMPASS listing would appear as follows:

Corrections
. on File Z
. {Correction IDs)
STD SM
LOC 7777B F1 2
STM STMA+1 Fl1 3

Contents of

Since the comments go through the correction identification, the INWIDTH directive must be deleted
if a new program library is generated. However, for maintenance, there is an advantage of seeing

the correction identifiers with the deck identifiers.

EXAMPLE 2

This example illustrates changing the compile file prefix character so that when Modify produces the

compile file, it recognizes only directives using the specified prefix.

case, is unaltered.

ATTACH(OPL)
MODIFY.
COMPASS(], S, B)
7/8/9

*IDENT TEST1
*DECK TEST
*PREFIXC |/
*EDIT TEST

6/7/8/9

Deck TEST contains the following:

*CALL PPC
/CALL PPCA

The directives prefix, in this

Modify ignores the common deck call to PPC. COMPASS interprets it as a comment card. Modify
acts on the common deck call to PPCA and replaces the /CALL directive with a copy of common

deck PPCA.

10-6

60450100 A

USE OF THE Z PARAMETER
EXAMPLE 1

Suppose you want to create a compile file using an alternate OPL.,
this technique.

.
.
-

MODIFY(Z)/*OPLFILE, OPLZ/+EDIT, DECK1

6/1/8/9

EXAMPLE 2

Another use of Z might be to request editing of specific decks:

MODIFY(Z)/+EDIT, DECK1, DECK2

él?lelg

60450100 A

The following deck illustrates

SAMPLE FORTRAN PROGRAM

This set of Modify examples illustrates how Modify can be used for maintaining a FORTRAN Extended program

[P P I N 1 e SR ¥ T a TPTADTD AN o B
in program library format. The FORTRAN program calculates the area of o triangle from ¢

read from the words in the data record.

EXAMPLE 1

yagse and height
Se and nelignt

The following job places the FORTRAN program and subroutine as a single deck (ONE) on the new
program library (NPL) and on the compile file (COMPILE). Following Modify execution, FORTRAN
is called to compile the program. The LGO card calls for execution of the compiled program.
program does not execute because of an error in the SUBROUTINE statement. The name of the

subroutine should be MSG, not MSA.

COPYBF(INPUT, S)
MODIFY(P=0, N, F)

FTN(I=COMPILE)
LGO.

7/8/9 END OF RECORD

File related cards

ONE <—
PROGRAM ONE (INPUT,OUTPUT, TAPE1)
PRINT 5

5 FORMAT (1H1)

10 READ 100, BASE, HEIGHT, I
100 FORMAT(2F10.2, 1I1)
IF (I.GT.0) GO TO 120
IF (BASE.LE.0) GO TO 105
IF (HEIGHT.LE.0) GO TO 105
GO TO 106
105 CALL MSG
106 AREA = [5*BASE*HEIGHT
PRINT 110, BASE, HEIGHT, AREA
110 FORMAT (///,* BASE=%F20.5,* HEIGHT=*
IF18,5, /,* AREA=*F20.5)
WRITE (1) AREA
GO TO 10

Deck name

Should be

120 STOP SUBROUTINE MSG
END
SUBROUTINE MSA

PRINT 400

400 FORMAT (///,* FOLLOWING INPUT DATA NEGATIVE OR ZERQ *)

RETURN
END
6/7/9 END OF FILE <

End of source deck

*REWIND S __

*CREATE S

7/8/9 END OF RECORD
200. 24 500. 76
300. 24 600. 76
400, 00 700. 00
328,32 425,36
500. 00 600. 00 Data record
000. 00 150. 00
700,43 800. 00
100. 00 300. 00
050, 00 100, 00
150. 00 200. 00

1
6/7/8/9 END OF INFORMATION

10-8

Directives input

This

60450100 B

EXAMPLE 2

Examination of Modify output from the creation job reveals that the erroneous SUBROUTINE state-
ment has card identifier ONE. 20. The following job corrects the error and generates a new program
library.

-
.
.

MODIFY(N, F)
FTN(I=COMPILE)

1.GO.

7/8/9 END OF RECORD
*IDENT MOD1

*DECK ONE

*DELETE 20
SUBROUTINE MSG < Identified as MOD1.1 on NPL

71819

200. 24 500. 76

300, 24 600. 76

400. 00 700, 00

326. 32 425. 36

500. 00 600. 00

000. 00 150. 00 Data record

700, 43 800. 00

100, 00 300. 00

050. 00 100. 00

150. 00 200, 00

1
6/7/8/9 END OF INFORMATION

60450100 A

EXAMPLE 3

This job uses the same input as the first job but divides the program into two decks: ONE and MSG.
Deck MSG is a commen deck. A CALL MSG directive is inserted into deck ONE to ensure that MSG
is written on the compile file whenever deck ONE is edited.

10-10

COPYBF(INPUT, S)
MODIFY(P=0, N, F)
FTN(I=COMPILE)
LGO.

L« File related cards

7/8/9 END OF RECORD

ONE
PROGRAM ONE (INPUT, OUTPUT, TAPE1)
PRINT 5

5 FORMAT (1H1)

10 READ 100, BASE, HEIGHT, I

100 FORMAT(2F10.2, I1)
IF (I.GT.0) GO TO 120
IF (BASE.LE.0) GO TO 105
IF (HEIGHT.LE.0) GO TO 105
GO TO 106

105 CALL MSG

106 AREA = ,5*BASE*HEIGHT
PRINT 110, BASE, HEIGHT, AREA

110 FORMAT (///,* BASE=*F20.5, * HEIGHT=*
IF18.5, /,* AREA=%*F20.5)
WRITE (1) AREA

GO TO 10
120 STOP
END
*CALL MSG <« Replaced by common deck MSG
71819 END OF RECORD on comnpile file
MSG
COMMON
SUBROUTINE MSG
PRINT 400
400 FORMAT (///, * FOLLOWING INPUT DATA NEGATIVE OR ZERO *)
RETURN
END
6/7/9 END OF FILE
*REWIND S
*CREATE S
7/8/9 END OF RECORD
200, 24 500. 76
300. 24 600, 76
400, 00 700, 00
326.32 425, 36
500, 00 600, 00
000. 00 150. 00 Data record
700. 43 800,00
100,00 300. 00
050, 00 100. 00
150, 00 200. 00

1
6/7/8/9 END OF INFORMATION

60450100 A

EXAMPLE 4

This example adds a deck to the library created in the previous example. With no new program
library generated (N is omitted from Modify card), the addition is temporary.

COPYBF(INPUT, S)

MODIFY. .
FTN(I=COMPILE) File related cards
iL.Go.

7/8/9 END OF RECORD
TWO '
PROGRAM TWO(INPUT,OUTPUT)

END
*CALL MSG «— Replaced by common deck MSG on
6/7/9) compile file

*REWIND S

*CREATE S

*[DENT MOD2

*DECK MSG

*DELETE MSG. 3

400 FORMAT (///,* FOLLOWING INPUT DATA POSITIVE %)

*EDIT TWO

7/8/9

(DATA RECORD)

6/7/8/9

60450100 A 10-11

STANDARD CHARACTER SET A

ASCII HOLLERITH | EXTERNAL | ASCII ASCIL . HOLLERITH | EXTERNAL AsCLI
coC GRAPHIC | DISPLAY | PUNCH BCD PUNCH | ASCII cbC GRAPHIC DISPLAY PUNCH 8CD PUNCH] ASCII
GRAPHIC | SUBSET | CODE 026) CODE (029) | CODE GRAPHIC SUBSET CODE (026) CODE (029) CODE

H D 001t 8-2 00 8-2 3A 6 6 41 6 06 6 36
A A [o]] 12-1 61 12-1 41 7 7 42 7 07 T 37
B 8 02 12-2 62 12-2 42 8 8 43 8 10 8 38
c c 03 12-3 63 12-3 a3 9 9 44 9] 9 39
D D 04 12-4 64 12-4 44 + + 45 12 60 12-8-6 28
E E 05 12-5 65 12-5 45 - - 46 i 40 N 20
F F 06 12-6 66 12-6 46 L] * 47 11-8-4 54 ti-8-4 2A
G G o7 12-7 67 12-7 a7 / / 50 0-1 21 0-1 2F
H H 10 12-8 70 12-8 48 ((51\ 0-8-4 34 12-8-5 28
1 | 1 12-9 Tl 12-9 49 l)) 52 12-8-4 T4 11-8-% 29
J J iz ii=i Gi ii-i 4A i 3 H 53 ii-8-3 53 i8-3 24
K K 13 11-2 42 11-2 4B = . 54 8-3 13 8-6 30
L L 14 11-3 43 n-3 4C BLANK BLANK 55 NO CH 20 NOPUNCH | 20
] '] (1] -4 44 -4 40 LCOMMA) ,{(COMMA) $6 0-8-3 33 0-8-3 2C
N N 16 11-5 45 1"-s 4E .{PERIOD) (PERIOD) $7 12-8-3 73 12-8-3 2E
o o 17 ti-6 46 1-6 4F = * 60 0-8-6 36 8-3 23
(4 [4 20 -7 a7 H-7 50 4 L 6l 8-7 17 12-8-2 S8
Q Q 21 1-8 $0 11-8 Si]] 62 0-8-2 32 1-8-2 50
R R 22 11-9 51 -9 52 %tt % 63 8-6 16 0-8-4 25
S S 23 0-2 22 0-2 53 # " (QUOTE) 64 8-4 14 8-7 22
T - T 24 0-3 23 0-3 54 - . {UNDERLINE) 65 0-8-5 35 0-8-5 SF
U U 25 0-4 24 0-4 55 v L 66 11-0 52 12-8-7 21
v v 26 0-5 25 0-5 56
w w 27 0-6 26 0-6 57 A & 67 0-8-7 37 12 26
X X 30 o-7 27 0-7 58 t '(APOSTROPHE) 70 11-8-5 55 8-5 27
Y Y 31 0-8 30 0-8 59 { ? T 11-8-6 56 0-8-T | 3F
z k4 32 . 0-9 31t 0-9 SA < < T2 12-0 72 12-8-4 3C
0 V] 33 0 iz 4] 30
| \ 34 | o1 [} 3i > > 73 il1-8-7 57 0-8-6 3E

-2 2 35 2 02 2 32 < (] 74 8-5 15 8-4 40
3 3 36 3 03 3 33 2 \ 75 12-8-5 75 0-8-2 SC
4 4 37 4 04 4 34 - —~(CIRCUMFLEX) 76 12-8-6 76 -8-7 SE
5 S 40 H] 0s 5 35 s (SEMICOLON) | ; (SEMICOLON) 77 12-8-7 77 11-8-6 38

JAEI3A SAESA

1 TWELVE OR MORE ZERO BITS AT THE END OF A 60-BIT WORD ARE
INTERPRETED AS END-OF-LINE MARK RATHER THAN TWO COLONS.
END-QF - LINE MARK 1S CONVERTED TO EXTERNAL BCD 1632,

tt IN INSTALLATIONS USING THE COC 63 -GRAPHIC SET, DISPLAY CODE OO0 HAS "0 ASSOCIATED
GRAPHIC OR HOLLERITH CODE: DISPLAY CODE 63 IS THE COLON(8-2 PUNCH). THE
SELECTION QF THE 63- OR 84-CHARACTER SET FOR TAPES IS AN INSTALLATION QPTION,

60450100 A A-1

OUTPUT LISTING AND MESSAGES B

Depending on list options selected on the Modify
control statement, list output for Modify contains
the following.

Input directives
Status of each deck

Modifiers are listed first, followed by a
list of activated lines, deactivated lines,
active lines, and inactive lines as they are
encountered. To the left of each line are
two flags, a status flag and an activity
flag. The status flag can he I (inactive) or
A (active). The activity flag can be D
(deleted) or A (activated). Following
these lines are the unprocessed modifica-
tions and errors, if any. The last line
contains a count of active lines, inactive
lines, and inserted lines.

60450100 C

Statistics
This includes lists of the following.

Decks on program library

Common decks on program library
Decks added by initialization directives
Decks on new program library

Decks written on compile file .

A replaced deck is enclosed by parentheses.
Completing the statistics is a line contain-
ing counts of the number of lines on the
compile file and the amount of storage used
during the Modify run.

Errors

Modify prints the line in error, if any,
above the diagnostic message. Error
messages other than those identified as
fatal can be overridden through selection
of the Modify statement D (debug) option.

2-d e

J 00105%09

MESSAGE

CARD NOT REACHEC.

CCLUNN OUT OF RANGE.

CQOFY FILE ENPTY,

CREATION FILE EWPTY.

Cv OPTION INVALID.

DIRECTIVE ERRCRS.

DUPLICATE MCDIFIER NAME.

ERROR IN ARGUFENTS,

ERKOR IN DIRECTCRY.

ERROR IN MNCCIFY ARGUMENTS.

FILE NAME CCNFLICT.

FIRST CARD IS AFTER SECOND CARD,

FCRMAT ZRROR IN DIRFCVIVE.

SIGNIFICANCE

v ecosnewnes

Sequence number ¢xcaeds deck range.
Requaested width excoeds maximum allowed
1000,

Ko Information on program library being

conled.

No source cecks on file being used for
creation.

CV option other than 63 or 64

4 format error has been detected during
processing of directives. Fatal errore

Hodifier or IDENT bas been usec previously
for the ceck.

An Invalid parsmeterr his baen encountered on

the IPLEDIT control statement,

The orograr (lbrary contains an error,
Fatal error,

Itlezat parameter on Modify control
statement, Fatal error.

Tre same file canmat bte used for both
applications without conflicts Fatal
error.

Parameters are erroneous cor |lnes are out
of order.

A format error has beer detected ir 23
directive.

ACTION

Use correct seauence
number.

Change width to 100 or
less.,

Verify that COPY file
exists and is oroperty
positlioned at AOCI.

Verify that creation
file contains proper
source decks.

Speclfy 63 or 64 for
conversion ootion.

Consutt listing tor
description of error.

Choose unlaque name for
deck,

Correct controtl statement
and retry.

Use COPY or COPYPL to
create new orogran
library.

Consult manua! for correct
control statement syntaxe

Use different file name
for one of the
applications.

Verify that correct
Ilne sequence is used.

Consult manual for
correct format.

ROUT INE

MODIFY
MODIFY

MODIFY

MODIFY

MODIFY,
OPLEDIT

MODIFY,
OPLEDIT
MODIFY

OPLEDIT

MODIFY,
OPLEDIT

MIDIFY

MIDIFY,
OPLEDIT

MODIFY

MODIFY,
OPLEDIY

O 00105309

® g-4

MESSAGE

coacaass

ILLEGAL DIRECTIVE.

ILLEGAL NUNMERIC FIELD.

INVALID ATTRIBUIE.

-LC-ERROR, MUST BE ECTMWDSIA-

MZIMORY OVERFLCH.

MIXED CHARACTER SET OPL.

MOC(S) TO MOD EEFORE THIS IDENT CARD.

MCCIFICATICN ERRCRS.

MCCIFICATION/OCIRECTIVE ERRORS.

NAMES SEPARATED BY *.* IN WRONG ORDER.

NC *IF IN PROGRESS.

NC DIRECTIVES.

OPERATION ILLEGAL FROM ALTERNATE INPUT.

SIGNIFICANCE

cescsccccccces

Qlrective ls out of sequence. For example,
the CREATE directive is after a moditication
directive for Mogifye

Irvalid parameter on Modifty or OPLEDIT
centrol statement.

Attribute specified on If directive Is
other than EQy NEy DEF, or UNDEF.

Titegal 1ist optior recuestede Fatal
errors

Insufticiert field length has been speciftied
for OPLEDIT to executeae.

CPLEDIT detected decks on the oprogram |jibrary
that are in different character sets (63 and
6hy for exampled, .

A modlfication diraective or a different
ICENT directive refer to the current
fodname.

Moaify has detected errors during the
mocdification phases fatal [f O option is
not selected,

Fodification and/or directive errors are
encountered when debug mode Is selecteds

Reguasted decks not in correct sequence.

An ELSE or ENDIF. directive was encountered
without a previous IF oirectiwves.

Oirectives file empty. Fatal error.

Flle manipulatlion attempted from other than-
original directives fila.

ACTION

Use correct saauence.

Verify control statement
parameters and retry.

Use correct atteribute.

Speclify either Ey Co Ty
My Wy Dy Sy Iy or A for
tist option.

Increase tiatld length
with RFL control
statement and refry.

Use Modify to recreate
erroneous dacks under
one character set and
refryes

Choose a different
modification nave for
the IDENT directive.

Consutt listing and
correct speclfied
arrorse.

Consult iisting and
correct specified
arrors. :

Determine corract sequence

and reftry,

Check tor omitted IF
directlive or unnecessary
ELSE OR ENDIF directlive.

Yerity that directlves
fite exists and Is
corractly positioned
at BOI.

Movae file manjoulation
directives to origlnal
directives file.

ROUTINE

cccccas

MOOIFY,
OPLEDIT

MODIFY,
OPLEDIT

MODIFY

MODIFY

OPLEDIT

OPLEDIT

MODIFY

MODIFY

MODIFY

MODIFY,
OPLEDIT

MOOIFY

MODIFY,
OPLEDIT

MODIFY

-4 e

O 0010S%09

HESSAGE

OPLEDIT COMPLETE.

OPLEDIT €ERRORS.

OVERLAPPING MCDIFICATION.

PL ERROR IN DECK deckname.

PRCGRAM LIBRARY EMPTY,.

RECORD NOT FOUNC.

RECURSIVE ®*IFsS ILLEGAL.

REJUNDANT CCNVERSION IGNOREOD.

RESERVED FILE NANE.

S CPTION ILLEGAL WITH Ay X, OR Q.

TCC MANY OPL FILES.

SIGNIFICANCE

Informative message indicating that OPLEDIT
has completed processirge.

Errors were encounterec during OPLEDIT
executlion.

Line modifled more thar once.

An error was detected In the program
florary formst during processing of deck
named. Fatal arror.

No information on fite speciflied s
program !lliorary., Fatal errore

Modlfy was unable ta locate regquested
record on flle specifled.

Ar IF directive nas encountered while a
previous IF rarge nas still active (no ELSE
or ENDIF encourtered). Fatal error,

An attempt was made to convert the program
library fite to a tlke character set (63 to
63 or 64 to 64)s Converslion option set to
Zero.

Creratlon atterpted on a3 file nare
reserved by this utility.

Source option not legal when A, X, or Q
option Ils setected. Fatal error.

More than 20 program llibrary flles
declared,

ACTION

None.

Consult output listing
for description of
errors.

Remove redundant line
modifications.

Replace or recreate
erroneous deck.

Verlty that program
fibrary file is
avaliiable for Modify
to manipulate.

Verify that record
exists on specified
fileeo

Check for missing ENDIF
or ELSE directive or
unnecessary IF
directive.

Verity conversion mode
desired.

Choose a nonreserved
fite name.

Remove S option from
control statement and
speclfy on separate
modifications

Specify excess program
libraries on subsequent
Modify runs.

ROUTINE

OPLEDIT

OPLEDIT

MODIFY

MODIFY,
OPLEDIY

MODIFY,

OPLEDIT

MODIFY

MODIFY

MOOIFY

MOODIFY,
EDIT,
OPLEDIY

MO IFY

MODIFY

D 00105309

® c-g

MESSAGE
UNKNOWN DECK.
UNKNOWN MOOIFIER,

VALUE ERROR.

X CR Q ILLEGAL WITHOUT COMPILE.

deckname - INVALID CSy 63 ASSUMED.

deckname = MIXEC CHARACTFER SET DETECTEOD.

SIGNIFICANCE

asscscncsctaca

Unrable to locate reauested deck on progranm
library.

moditler not in nodification table for
decRk.

Value specitied on IF or DEFINE directive
is greater than $27727218. Fatal error.

Selection of X or C optior requires that a
compile file name te setecteds

The lomner tyte of mord 167 of the prefix
tabie for the naned deck on the program
tiorary does nat ¢ontain 0000 or 0064,

Lpon editing the named deck on the progran
library, the character set mas different
trom the character set of previously eaited
CeCKSe .

ACTION

Verity that deck name Is
correct.

Determine correct
moditier,

Select vatue less than
or equal to 37777778,

Speclty C option on
Modity control statement
(not C=00),

It 6s=character set (s
desiredy, the deck aust
be racreated,

Recreate the deck under
the desired character
set,

ROUT INE
MO01F?
MOOLFY

MIOIFY

MOOLFY

MODLFY,
OPLEDIT

MOOLFY

OPLEDIT UTILITY C

OPLEDIT is an NOS utility used in conjunction with
Modify-formatted old program libraries (OPLs).
The OPLEDIT routine is used to completely remove
specified modification decks and modification iden-
tifiers from an OPL. It can also be used to extract
the contents of specified modification sets on an
OPL file,

The following are the OPLEDIT directives.

*EDIT Edit deck

*PULLALL Generate modification set
*PULLMOD Reconstruct modification set
*PURGE Remove modification set

The format of OPLEDIT directives is essentially
the same for Modify directives (refer to section 2).
The main difference is that OPLEDIT does not
allow the user to change the prefix character.
Therefore, the asterisk (*) must be used.

EDIT — EDIT SPECIFIED DECKS

The EDIT directive requests OPLEDIT to edit a
program library deck and transfer it to the new
program library. The deck names specified nor-

mally are the decks that contain the modification
identifiers.

Format:
*EDIT PpsPysesesb

A deck name or range of
decknames in one of the
following forms:

deplrrnarma
UTCAIALLIT

51

deckname,.decknamey,

The first form edits a deck on
the library; the second form
requests a range of decks
starting with deckname, and
ending with decknameyp,.

If the deck names are in the
wrong sequence, OPLEDIT
issues the error message:

NAMES SEPARATED BY
*.% IN WRONG ORDER.

If OPLEDIT fails to find one
of the decks, it issues the
message:

UNKNOWN DECK - deckname.

60450100 A

PULLALL — GENERATE MODIFICATION
SE1

The PULLALL directive allows the user to generate
a modification set that contains the net effect of all

"current modification sets or all modification sets

added after and including a specific modification set.
Formats:

*PULLALL
*PULLALL modname

First modset to be included: all
modsets following modname are
also included, provided modname
appears in the edited deck.

modname

For the first format, OPLEDIT builds a directive file
suitable for submission to Modify using the *READ
Modify directive. The file (specified by the M param-
eter on the OPLEDIT control statement) contains the
net effect of all modifications currently applied to the
program library., As such, all Modify IDENT direc-
tives are deleted and replaced by an IDENT sickskkskk
at the beginning of the file.

PULLMODR — RECONSTRUCT
MODIFICATION SET

With the PULLMOD directive, the user can reconstruct
one or more modification sets applied to edited decks.
The structure of the original modset is maintained;

that is, Modify IDENT directives are not changed or
deleted as in the PULLALL directive.

Format:

*PULLMOD modnamel, modnamez, .o, modnan e

modname; Modification name to be generated
onto file specified by M param-
eter on OPLEDIT control state-
ment.

PURGE — REMOVE MODIFICATION SET

The PURGE directive enables the user to completely
remove the effects of a previous modification set or
group of modsets from decks written on the new pro-
gram library. The modification identifiers are no
longer maintained in the history bytes (refer to Text
Format, section 9) of the new program library.

Formats:

*PURGE modname
*PURGE modname, *

modname Modification set to be removed.

* Indicates that the modset and all .
subsequent modsets are to be re-
moved, provided modname appears

on the edited decks.

Note that it is not possible to remove modsets implic-

itly; that is, *PULLMOD A.B is illegal. Also,
*PULLMOD A, * does not pull modset A and all
modsets that follow (as on the *PURGE directive).
Rather, it pulls modset A and modset *,

Modification names requested are removed only
from decks edited. Modsets generated by OPLEDIT
are in a form suitable for use by Modify as follows:

*READ, file, *
*READ, file, ident -

That is, each modset is a separate record, with
ident being the first line. The *PULLALL modset,
if used, is the first record on the file. The file
(specified by the M parameter) is returned before,
and rewound after use.

OPLEDIT CONTROL STATEMENT

The control statement format is:
OPLEDIT(pl, Pgseess pn)

P; Any of the following in any order:

I Use directive input from
file INPUT. If thel
option is omitted, file
INPUT is assumed,

Use directive input from
file lfni.

1=0 Use no directive input.

P Use file OPL for the old
program library, If the
P option is omitted, file
OPL is assumed,

Use file lfny for the old
program library.

Use no old program
library.

N Write new program
library on file NPL.

Write new program
library on file ifng.

Write no new program
library. If this option is
omitted, N=0 is assumed.

L List output on file
OUTPUT. If the L option
is omitted, file OUTPUT
is assumed,

L=1fn4 List output on file 1fny.

L=0

AA=1On

LJ.'._LL{;5

LO=x

OPLEDIT EXAMPLES

List no output.

L 1 7 O ¥ W S R Y
WILE CULpul LUV

*PULLMOD and *PULLALL
directives on file Ifng. If
M is omitted, M=MODSETS
is assumed.

Set list options x; each bit
in x, if set, turns on the
corresponding option.

001 Errors

002 Directives

004 All other input
statements

010 Modifications
made

020 Directives pro-

cessed from the
program library

040 Deck status

100 Directory lists

200 Inactive statements
400 Active statements

If this option is omitted,
x=177 is assumed (that is,
the first seven options
listed).

Modify all decks.
Debug; ignore errors,

Generatie *EDIT directives
for all decks.

Generate no *EDIT direc-
tives, If the U option is
omitted, generate *EDIT
directives for common
decks.

The OPLEDIT control
statement contains the in-
put directives following
the terminator; the input
file is not read. This
eliminates the need to use
a separate input file for
the directives when only a
few directives are needed.
The first character fol-
lowing the control state-
ment terminator is the
separator character. If
Z is omitted, the control

statement does not contain

the input directives.

Do not place an-
other terminator
after the
directives.

Figure C-1 illustrates the four OPLEDIT directives.

60450100 C

batch, 45000

S$RFL,45000.
/get ,mainpl
/catalog,mainpl,r
CATALOG OF MAINPL FILE 1)
REC NAME TYPE LENGTH CKSUM DATE
1 OECKL OPL (64) 61 3171 16/61/22.
MOD1 MOD4 ,
2 DECK3 oPL (64) 37 2333 16/01/21.
#“0D1 MOD4
3 DECK2 OPL (64¢) 60 5455 76/01/22.
001l #0D2 HO0D3 “0D¢
4 DECK4 OPL (64) 47 5063 76/64/723.
“MOD4
S DECKS OPLC (64) 27 6354 76/01/23.
6 oPL oPLD 13 3706 76/01/23.
7 « EOF ¢ SUM = 311
‘ .
CATALOG COMPLETE.
/opledit,p=mainpl ,m=mods,l0o=]1,n=newpl
? “purge mod4,*
? *pullmod mod2,mod3
? *puliall modl
? *edit deckl.deckd
? .
OPLEDIT COMPLETE.
/catalog,.newpl, ¢t
CATALOG OF NEWPL FILE 1
REC NAME TYPE LENGTH CKSUM OATE
1 DECK1 OPL (64) 37 7732 T6/01/722.
MOD1
2 DECK3 OPL (64) 34 3117 76/61/21.
#OD1
3 DECK2 OPL (64) S5 5026 76/01/22.
HOD1 MOD2 ~0D3
4 DECK4 OPL .(64) 44 9216 76/61/23.
S oPL oPLD 11 4876
6 ® EOF = SUM = 225

1 S
CATALOG COMPLETE.

/primarcy,mods

SPRIMARY ,MODS.

60450100 A

Figure C-1., OPLEDIT Examples (Sheet 1 of 2)

/inh,r

I
*IDENT

bl MAIN PROGRAM, DECK DECKI1.
COMMON JOT
CALL SUB3

IF (JOT.EQ.3) PRINT*, "TIME-SHARING JOB."
IF(JOT.NE.3) PRINT* ,“BATCH JOB."

*DECK DECK3

*I'b

- *WEOR

~*D' 1

ok SUBROUTINE 2, DECK DECK3.
*DECK DECK2

*1,9

*WEOR PULLALL directive
*D'I

hK SUBROUTINE 1, DECK DECK2.
*1,3 .

* CALL SUBROUTINE SUB2

* IN DECK DECK2.

*I '7

hk END DECK2.

==EOR=~

MOD2)

*IDENT MOD2

*DECK DECK2

*D,MOD1.3

*RESTORE,7

PULLMOD directive
--EOR-~ ‘______‘___,___——~——-‘"‘
MOD3

*IDENT MOD3

*DECK DECK2
*RESTORE, MOD1. 3
-=EQR--

Figure C-1. OPLEDIT Examples (Sheet 2 of 2)

60450100 A

INDEX

A option 8-1 CS option 8-1
Activate bit 9-3 CV option 8-1
Active line 9-2 CWEOR directive 6-3

Activity bit 9-2

Alternate directives file 1-2; 5-1

Alternate OPL file 3-2 D directive 4-2

ASCII-mode considerations 1-4 D option 8-1
Deactivate line 4-2
Dubug option 8-1

Backspace file 5-1 Deck
Batch job examples 10-1 common 1-1;3-1;6-1
BKSP directive 5-2 edit 4-3
identification 4-2
ignore 4-3
C option 8-1 - move T-2
Call common deck 6-1 ., purge 4-3
CALL directive 6-1 . records 9-2
Call related common decks 6-2 remove 4-3
CALLALL directive 6-2 replace 3-2
CB option 8-1 DECK directive 4-2
CG option 8-1 Deck name
Change prefix character 7-1; 10-5 duplicate 3-1
Character sets 9-4; A-1 identify 4-2
Character set conversion 8-1 location 3-1
CL option 8-1 purpose 3-~1
COMMENT directive 6-2 Deck status B-1
Comment line 6-2; 7-1 Declare OPL files 3-2
Common deck i DEFINE directive 7-1
call 6-1 Define IF name 7-1
declaring 3-1 Define IF value 7-1
identification 9-2 Define IFCALL name 7-1
purpose 1-1 Define NIFCALL name 7-1
COMMON line 3-1 DELETE directive 4-2
COMPASS binary output 8-1 Delete lines 4-2
COMPASS COMMENT pseudo instruction 6-2 Directive
COMPASS get text option 8-1 ' format 2-1-
COMPASS list option 8-1) input 8-2
COMPASS system text option 8-1 prefix character 2-1; 7-1
COMPILE file 8-1 separator 2-1
Compile file Directives
compressed format 1-1 alternate file 5-1
compressed mode 8-1 compile file 6-1
contents 9-4 file 9-4
directives 6-1 file manipulation 5-1
end-of-file 6-3 initialization 3-1
end-of-record 6-3 - Modify input 8-2
line width 3-3; 6-2 modification 4-1
no rewind 8-2 on program library 5-1
output 8-1 ’ special 7-1
sequencing 3-3; 6-3 Directory
write phase 1-3 library 1-2; 9-3
Compressed compile file 8-1 record 9-3
Compressed lines 1-1; 9-3, 4 table 9-3

Conditional call common deck 6-1
Conditional range 6-2

Control statement 8-1 Edit deck

Control statement input 8-3 full edit 4-3

COPY directive 3-3 OPLEDIT C-1

Copy program library 3-2 selective edit 4-3
COPYPL directive 3-2 UPDATE edit 4-3
CREATE directive 3-2 EDIT directive 4-3

Create comment line 6-2 EDIT (OPLEDIT) directive C-1
Creation date 9-2 ELSE directive 6-2

Creation of program library 3-2; 10-1 End conditional range 6-2

60450100 B Index-1

End-of-file 6-3

End-of-record 6-3
End-of-record, conditionai ©6-3
ENDIF directive 8-2

Error messages B-2

EVICT of NPL 8-2-

Execute COMPASS 8-2
Execute program 8-2
Execution of Modify '1-3

F option 4-4; 8-1
Features of Modify 1-3
File formats 9-1
File manipulation directives 5-1
File positioning 5-2
File, return 5-2
File, rewind 5-2
Files
compile 8-1; 9-4
COMPILE 8-1
directives 1-1; 8-2
list output 8-2
NPL 8-2
OPL 8-2; 9-1
program library 1-1; 8-2;9-1
reserved 5-1
scratch 5-1; 9-4
source 3-1; 8-2; 9-1
SOURCE 8-2
used to initialize program library
Format of directive 2-1
Full edit mode 4-4; 8-1

Generate modification set C-1

History byte 9-3
History of modifications 9-3

I directive 4-2

I option 8-2

IDENT directive 4-1

Identify modification set 4-1, 2
IF, .define value for 7-1

IF directive 6-2

IFCALL directive 6-1

Ignore deck modifications 4-3
IGNORE directive 4-3

Inactive line 9-2

Initialization directives 3-1
Initialize program library phase 1-3
Input directives file 1-1; 8-2
Input on control statement 8-3
Input text width 7-1

INSERT directive 4-2

Incart line 4-2

BTN 100

INWIDTH directive 7-1

L option 8-2

Line deactivation 4-2

Line identification 2-1; 4-2
Line insertion 4-2

Line reactivation 4-2

Line width 3-3; 6-2

List comment 7-1

List options 8-2

List output file 8-2; B-1
1O options 8-2

Index-2

1-1

Messages, error B-2
Modification date 9-2
Modification directives 4-1
Modification history byte 9-3
Modification name 4-1
Modification table 9-2
Modification set

deactivate 4-3

generate C-1

identifier 1-3; 4-1

name 1-3; 4-1

reconstruct C-1

remove C-1
Modify

batch examples 10-1

batch processing example 1-4

comments 7-1

control statement 8-1

error messages B-2

examples, general description 1-3, 4

execution 1-3

file formats 9-1

general description 1-1

listing B-1

organization 1-1, 2

output files 1-2

time-sharing processing example 1-4
Modify program library example 10-2
MODNAME directive 4-2
Move decks T7-2
MOVE directive 7-2
Move texi 10-3

N option 8-2
Name

deck 3-1; 4-2

default 3-1; 4-2

define 7-1

modification 4-1
New program library file 8-2
NIFCALL directive 6-1
No rewind of compile file 8-2
No sequence flag 3-3; 6-3
No sequence information 3-3; 6-3
NOSEQ directive 3-3; 6-3
NPL file 8-2
NR option 8-2

Old program library file 8-2; 9-1
OPL file 8-2; 9-1

OPLEDIT control statement C-2
OPLEDIT error messages B-2
OPLEDIT utility C-1

OPLFILE directive 3-2
Organization 1-1, 2

OUTPUT file 8-2

P option 8-2
PREFIX directive 7-1
Prefix character 2-1; 7-1; 10-5
Prefix table 9-2, 3
PREFIXC directive 7-1
Preparing source file 3-1
Program library 1-1
containing directives 5-1
creation 3-2
file 8-2; 9-1
PULLALL (OPLEDIT) directive C-1
PULLMOD (OPLEDIT) directive C-1
Purge decks 4-3; 10-5

60450100 C

PURGE (OPLEDIT) directive C-1
PURDECK directive 4-3

Q option 8-2

Random address 9-3 .
Range, conditional 6-2 -
Reactivate lines 4-2

Read alternate directive file 5-1; 10-4

READ directive 5-1
READPL directive 5-1

Read directives from program library 5-1

Read modification directives phase
Reconstruct modification set C-1
Record type 9-3

Remove deck 4-3

Remove modification set C-1
Reorder decks 7-2

Replace decks 3-2

Reposition file 5-2

Rescind YANK directive 4-3
Reserved file names 5-1
RESTORE directive 4-2
RETURN directive 5-2

Return file 5-2 .

Reverse conditional range 6-2
REWIND directive 5-2

Rewind file 5-2

S option 8-2

Sample FORTRAN program 10-8
Scratch files 5-1; 9-4

Selective edit mode 4-4
Separators for directives 2-1
SEQ directive £-2

Sequence file 6-3; 7-2

Sequence number 9-4

Sequencing .
disable 3-3; 6-3
enable 6-3

flag 3-3; 6-3
SEQ directive 6-3
update 7-2
SKIP directive 5-2
Skip forward on file 5-2
Skip records 5-2
SKIPR directive 5-2
SOURCE file 8-2

60450100 B

Source file

compile file directives on 1-2

generated by Modify 8-2; 9-1
preparation: 3-1; 9-1
Special directives 7-1
Standard character set A-1
Statistics B-1
Status of deck B-1
Systems text selection 8-1

Terminate conditional range 6-2
Test for conditional range 6-2
Text format 9-2

Time-sharing considerations 1-3, 4

Type of record 9-3

U option 4-4; 8-2

UNYANK directive 4-3

Unyank modification set 4-3; 10-4
UPDATE directive 7-2

Update edit mode 4-4; 8-2

Update library 7-2-

Value, define for IF 7-1

WEOF directive 6-3
WEOR directive 6-3

-WIDTH directive 3-3; 6-2

Width of line 3-3; 6-2
Write end-of-file 6-3
Write end-of-record 6-3

Write end-of-record, conditionally 6-3

Write output files phase 1-3

X option 8-2

YANK directive 4-3
Yank modification set 4-3; 10-4

Z option 8-3; 10-7

[(insert comment) 7-1

Index-3

. CUTALONGUNE_

PRINTED IN USA

AA3419 REV, 7/78

COMMENT SHEEY

MANUAL TITLE CDC NOS Version 1 Modify Reference Manual

pusLicaTION No, 80450100 revision __C
FROM: NAME:

BUSINESS

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLLO ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

——‘ﬁ-—L~—~--—-———————-———-——.——--

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WiILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
ARH219

4201 North Lexington Avenve
Saint Paul, Minnesota 55112

2
:

CUT ALONG LINE

CORPCRATE MHEADQUARTERS, P.O.BOX 0. MINNEAPOLIS, MINNESOTA 55440 LETHS IN VUS4,
SALES OFFICES AND SERVICE CENTERS IN MAJOR CIiTIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

MODIFY CONTROL STATEMENT PARAMETERS

MODIFY (p;,Pgs s +sPp)

A

CB

CG

CL

CS

cv

-

LO

Presence of A causes compressed compile file,

Compile file output; COMPILE if C or omitted. No compile file if C=0. Otherwise, output
on file named (C=1fn),

COMPASS binary output file; used with Q and X options only. Output on LGO if CB. No
binary if CB=0. Otherwise, output on file named (CB=1fn).

COMPASS get text option; used with Q and X options only. Systems text on SYSTEXT if CG.
No systems text if CG=0. Defined by CS option if CG is omitted, Otherwise, systems text on
file named (CG=1fn).

COMPASS list output; used with Q and X options only. Short list if CL=0 or omitted. Output
on file QUTPUT if CL. Otherwise, list output on file named (Ci.=ifn).

COMPASS systems text; used with Q and X options only. Systems text on SYSTEXT overlay
if omitted or CS. No systems text if CS=0; otherwise, systems text on file named (CS-1fn).

Program library character set conversion. None if CV is omitted; 63 to 64 if CV=64; 64 to
63 if CV=63.

Debug option. Directive error or fatal error causes job abort if D is omitted. No job abort
for directive errors if D is used,

Full edit. If omitted, deck editing determined by

all decks are edited and written on ¢
s il QeCKs are eqiied ana written en ¢

U option or by EDIT directives. If
nil 5
pil

t c
e file, new program library, and
n file, new program library, and

Directives input, If omitted, directives and corrections on INPUT. If I=0 there is no input
file, Otherwise, on named file (I=1fn).

List output. Omitted or L., listings on OUTPUT. L-=lin, output to named file,

List options. Omitted or LO, options E, C, T, M, W, D, and S are selected. Otherwise,
LO=c1, C9...Cpn to a maximum of seven options (AECDIMST or W).

New program library. Omitted or N=0. No new library. N, output on NPL. N=lfn, output
to named file,

No rewind on compile file. Omitted, compile file rewound before and after MODIFY run.
RN, no rewinding.

Program library input., Omitted or P, library on OPL. P=lfn, library on named file, P=0,
no program library input file.

Execute assembler or compiler; no rewind of directives file or list output file. Omitted or Q=0,
assembler or compiler not automatically called. Q, Modify sets A parameter and LLO=E and calls
COMPASS. This option enables CB, CG, CL, and CS options. If Q=1fn, Modify calls assembler
on 1fn.

Source output (illegal if A, Q, or X selected). Omitted or S=0, no source output. S, output
on SOURCE. S=1fn, output on named file,

Update edit. Omitted, editing set by F or by EDIT directives. F takes precedence over U.
If U, only decks changed (named on DECK directives) are edited and written on compile file,
new program library, and source file.

Execute assembler or compiler; same as Q except directives file and list output file are rewound.

Directives on Modify card, Omitted, directives are next record on INPUT or identified by
one option. Z, directives follow parameters on Modify. A separator bar separates two
directives.

	0001
	0002
	002
	003
	005
	007
	008
	01-01
	01-02
	01-03
	01-04
	02-01
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	08-01
	08-02
	08-03
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	I-01
	I-02
	I-03
	replyA
	replyB
	xBackB
	xbackA

