e wan s

NOS SYMPL CODING STANDARD




TABLE OF CCNTENTS

Introduckion « o o + o »

.
o
.
4 .
L]
.
L]

1.0
2+0 Coding Standards « o -bo s & 9 8 » @
2el General o s o o o o o o ¢ 0 2 o 2 o »
2.2 Parameterk'o s 9 S & 5 8 8 8 8 6 2 » @
2'3 XREF E ] L ] L d * * LR » . ® £ d * * * * L 2 ®
2¢4 DEF o o o o o 6 o o o o 0 8 s s s 9 o
25 STATUS o o ¢ o o o 5 o 2 s » . & s 2 9
2+6 COMDECK s 9 8 8 & 9 8 e » o."a PR [}
27 Non-array Ttems 4 5 8 ® 8 a2 8 2 ® e 3
248 ATTAYS o o 5 o o o 8 s 2 2 3 o & » » »
249 FOR Looos: [Fast or SIow) o o o s o o
2.10 60T3s and SWITCHes (Case Statement) .
211 IF * % 8 0 3 8 & 8 8 B 8 8 8 B » 3 ®
2»12 Bead s 6 8 2 8 2 8 e 8 B e 8 % e e
2+13 PROCsy FUNCs» and PRGMS o o o o o s o
3.0 Naming Conventions . s o s o s o o »
, 4,0 Code Readahil1ity o o « o o o s » » * o
4,1 Format of St&tﬂ&éﬂtS»t s 8 8 5 3 & s o
442 COTUNN 1 4 o o o 6 o 2 s 2 3 o s o o.»
4.3 Blank Lines * 6 6 8 & * % e 2 o ® 3 »
44 Page Ejects 2 8 8 5 8 9. s s » & 2 8 »
50 Documentation Standards o+ « s o s o o
5:1 Comment Formats and Types o+ o o » o »
5¢lsl Embedded Comments o+ o o » » o o o
512 Single Line Comments o « s s s o
5143 Stand Alone Comments o o o o ¢ o o
5¢1+43.1 Brackets {#%¥¥¥) o % o s ® 8 @
541232 External Comments (*%%x) , , ,
541433 Internal Comments (*%) , » +
5¢1e3e% Module Comments {(*) 2 2 o 2 @
52 Program Level Documentation « ¢ o o
53 Documentation of PROCs and FUNCS « « &
54 Documentation with Embedded Comments ,
S5e4e1 Data Declaration Embedded Comments
5¢442 Action Code Embedded Comments .+ &
55 General Documentation for PROCss PRGMs
620 Examples 4 o s o o o o o 5 5 8 s o &
6.1 COMDECK Examplas ® o s s o 2 s s 0 2 s
642 PROC EXaNPI2 2 o o o o o @ o 5 a o o »
643 s

Status List/Status Switch Example

A1.0 Addendun for SMF Project o = o o o o

® ®» @ &6 &6 & ¢ ¥ ¢ ® o 0 " s

O ¢ 8 ¢ 8 6 6 ¢ 8 86 6 ¢ & © @

-y

" & & o 9

® & o @

. e o 0

e &6 &6 & & 6 6 4 & b & e e &

e & & b & & 6 &6 5 ¥ 4 s e

> » o &

“n

- ® & & * & ® & 0 5 5 8 e » b

CCe ¢ o o ¢ » 0 0 & & ¢ & o

z

Ve & » ¢ & & ¢ 0 6 & & 8 o @

* ¢ & &

® & & & & @ o 8 " 8 " o

*® ® » o &

» & & »

& * @ & & & & ¢ & » 8 e b

»

e & o » o

® & & & ¢ & & & 5 B s e s

e & o o

»

.« & & & @

» 5 8 » & 6 & 6 ¢ & ¢ s e

® 5 &6 & & 6 5 & 6 8 s s 0 s e

® & ® & 5 & & & ® & & s s

® @& & @ & ¥ 5 6 & B e s e * & & &

e & &

1
06701783

NN NN
1
(o e e NN |

® & @ & ® & & ¢ & o ¢ » € @
A%
l
W

L J
W
]
o

N
]
I N N b el

® & & o »
!

1= NS S NC RV RS S NV RE RE Y EURE BV
| UL SLUSUSLEL
U1 80 W YN 1O I\ b b b e

I

*® ® ® 9 © © O 4 & S S ¢ e @

. 5“1
* 6”1
) 6‘2
. 6=4
» Al-l



1-1
NOS SYMPL CODING STANDARD :
06701783

1.0 Introduction

1.0 Introduction

The purpose of this standard is to provide a meaningful set of
practices which will lead to ™good™, consistent, maintainable,
organized and optimized SYMPL code. This document used the SYMPL
Coding Standards DAP (DCS S1831)» the NOS CCOMPASS Programming
Standards and the SYMPL Coding Standards for the SYMPL project in
SVL as guidelines, A ' '

This standard Is in addition to the NOS COMPASS Programming
Standards.! The procedures established Iin the COMPASS standard
which are not:runique to the COMPASS 1language (i.e. General
Requirementss, Code Transmittal Ruless and Dayfile Messages) are
to be adhered to for SYMPL programming also.

$here the word - "must" appears In this standard, deviations
will not be approved., Where the word "shouid™ appearss, reviewers
may allow a deviation {f the analyst can present convincing
reasons for the deviation, .




2=-1

NOS SYMPL CODING STANDARD
06701783

—-— -

2+0 Coding Standards

2+0 Coding Standards

2.1 General

All dectarations pertaining to a PROC or FUNC should use the
foliowing grouning :

Formal Parameters
XREFs
DEFs
STATUS names
COMDECKs
ITENs
BASED ARRAYs
ARRAYs
SWITCHes
Other

Al dec!araiions or calls to COMDECKs should be in alphabetic
order., : :

Each declaration must start on a separate line and must be
accompanied by a comment describing its function,

Each executable statement must start on a seéarate line,

Each BEGIN and END must be on a separate line.

A declaration which Is a one-blt'field should be Boolean,

Self mod!fyfng cod§ must not be used.

All !abé!s begin in column ones Labels must appear on lines
by themselives except for embedded comments., All label names must

be unique within a PROC/FUNC.,

TEST must never be used #ithout explicitly stating the
induction variable It is testinge. ‘

- . Define CBNTQDL‘DISJBINT and CONTROL INMERT in a COMDECK. stek
CONTROL DVERLAP and CONTROL REACTIVE to define the exceptions,

Where numeric constants are established via DEFs or STATUS
listsy the  assumed numeric values should not appear 1In the
.coding documentation, AREE : :

Items I, J and K should be reseried as simple loop or control
variables. » ‘ : el



2=2
NOS SYMPL CODING STANDARD
06701783

2+0 Coding Standards
2s1 General

" The code nust not make assumptions about the octal representa-
tion of characters, This representation varies between the
various NOS character sets. ' '

. Machine iaﬂependent instructions when available shculd be used
in preference to dependent structures.,

2+2 Parameters

Use call=-by=-value parameters . whenever possible, Only use
call=by=-addrass' when the parameter is modified within the
procedure and the new value of the parameters is returned to the
calling progranm.,

Reuse actual oarameter Jists whenever possible., If the
parameters are used for a number of calls, use the same order of
parameters for more efficient coding.: :

Formal’pé}haetersvmust be declared within the PROC/FUNC rather
than in a common decke They can be ordered alphabetically or
according to the calling sequence, '

An array 1temA 7ust not be used as a parameter where 2a new
value of tha parameter is returnedy since this feature is not
supported in SYMPLS -

23 XREF

Deciaration of external procedure names are to be done in the
foliowing format, The referenced PROC/FUNC names are to be in
alphabetic sequence,

Examptle?
# | :
*%%% PROAC Y = XREF LIST BEGIN.
¥
XREF
S8EGIV ' v : _
“PROC APPLE; # PARES APPLE #
. PROC BANANA; . # PEELS BANANA #
PROC ORANGE , v # SQUEEZES ORANGE #
END

Y | Lo
*¥%% PROC Y - XREF LIST END.
. ;



NOS SYMPL CODING STANDARD
06701783

240 Coding Standards
~2+4% DEF

2.4 DEF

Use DEF to prov{deAsymbolic constants for numeric constants
for ease in finding, idgntifying_gnd‘modifjlng parameters.

A DEF must not be used to rename a variable.

A DEF must not be used to redefine a Tunction cally a reserved
words or an ovoeration unless it is used consistently throughout
the system to improve claritye. Otherwises this may tend to
obscure the actual code. All DEFs which redefine the code or
make it a conditional compilation will be placed in a COMDECK.

The DEF forwnat for a full word octal constant is in 4-digit
parcelss For examples : :

DEF ERRMASK £0"0037 7740 0505 0000 7777"#; # ERROR BIT MASK #
2.5 STATUS

Status lists should contain no unused positionss Any unused
"positions must be fijlled with a dummy argument and have ‘a2
# RESERVED # or # NOT USED # comment, It may be better to wuse
DEFs if there are many unused positions or any of the elements
are expected *o change. :

2e6 COMDECK

Executable code should not be placed in a COMDECK.

The declarations for a datas structure must be wholly contained
within a single common decks. Where two or more data structures
are interdependenty the declarations for the interdependent
structures must be in the same common deck.

Logically associated data items and structures should be
declared in one COMDECK unless they are only to be wused by one
module where they may be declared locally. :

One or . nore CGMDECKs'muSt contain all declarations affectln§
table size which could be changed with the system. This is to
facilitate maintenance. : )

v

Common decks must not be listed.

A PRGMy PROC  or FUNC should only call the common decks that it
references,



2=4
NOS SYMPL CODING STANDARD
06701783

2.0 Coding Standards
2.6 COMDECK

‘Every commnon: deck must have an overview descrlbtion of what |t
doese The following format is to be used, The tist control
statements begin In column 48, :

- # ‘deck name - description., . _ v
: ' CONTROL NDOLISTs

CONTROL IFEQ LISTCON»1:
CONTROL LISTs;
CONTROL F1; -

#

k¥ deck name = descriptions

* _ :

* {purpose) {(several lines can be used)

# .

CONTROL LISTs
27 Non-array’ttems

The items,: the variabte names, the types, the presets and the
embedded conments should each be vertically aligneds Lleave room
for ten character variable names and leave room. for character
counts on character type items for ease of future maintenance.,

Variables should be declared alphabetically.
28 Arrays
Arrays used by more than one PROC must be defined in

COMDECKs.:

Usage of 1tems from an array must élways be subscripted,. It
is confusing to default subscripts.

Item declarations must be in ascending order (i.e. word O bit
0 to word n bit n)e If overlapping declarations are wused, then
the item which spans other items must be first,

Array Indices should start with zero.

The array name, bounds and the allocation/size must be
separated‘by'b!anks {e.g. ARRAY EXMAPLE [0:10] P(2); ). ‘

Items within. an array are aligned with the begin for ease of
reading. Each ftem must be documented. : -~



: 2=5
NOS SYMPL CODING STANDARD

06/01/83

240 Coding Standards
248 Arrays

The item names, type/positionss preset valuessy and embedded
comments should each be vertically aligneds Leave room for ten
character item names and for two digit ™ep™, "fbit"y and *"size"™
fields and use at least two spaces after the semicolon to ease
future maintsnance,: _ ,

29 FOR Loops {Fast or Siow)

FOR loops are of two types. In the siow FOR loops the objJect
code has a3 direct correspondence wWwith the SYMPL statements. This
Is not the case with fast loops. A fast-for-—ioop is optimized by
pre—-evaluating the STEP and UNTIL/WHILE elements. At least one
cycle of the toop Is executed.

Fast FOR 1oops and slow FOR loops must be used, A simple
FOR statement must not be wused. For easier readability and
. programmings use DEF statements to set wup FASTFOR or SLOWFOR
instead of the CONTROL FASTLOOP or CONTROL SLOWLOOP, These DEF
statements should be praced in a CCMDECK,

DEF FASTFOR  #CONTROL FASTLOOP; FOR#
DEF SLOWFOR #CONTROL SLOWLOOP; FOR#

For bettar optimization <consider wusing STEP/WHILE as an
alternative to STEP/UNTIL. o

The 1Induction variable must not be changed during the loop or
by a FUNC catled while evaluating the STEP/UNTIL/WHILE part,

The exit from a loop should be through an UNTI(IwHILE or a
return statement, The entry into a loop must not be in the
middlie of the loop,:

The executable statement(s) after the DO part of a FOR 1oop
must be enclosed in a BEGINIEND pair,

2410 60TDs and SWITCHes (Case Statement)

GOTO should be employed only if the resulting source code is
demonstrably superior in performances claritys, maintainabllity,
or extendibility, In spite of structured programming, G60T0Ds may
make the code more efficient if employed properly. GOTOs may
make it difficult to follow logices Jumps into FOR loops must not
be wused,: Jumps into code within a THEN or ELSE should not be
used. Jumps backuards in the code shou!d not be used.



: 2=-6
NOS SYMPL CODING STANDARD -
06/01723

2.0 Coding Standards
210 60T0s and SWITCHes (Case Statement)

- A GDTD statement specifying a subscripted‘swltch list may be
used to simulate a case statement., Each case should end with a
GOTO branching to a common exity, a RETURN statements or an ABORT
calile . - i

Simulated case statements may use a multiplicity of labels
for exitss provided that . the selection of exit points is done
to achieve consolidation of similar sequences of codes and that
all such labeils are grouped together. See the Examples section
for an example of a simulated case statement,

2411 IF

The THEN and ELSE part of an IF statement must aiways use a
BEGIN/END pair.! If embedded comments are needed to describe the
conditions they should be placed with elther the THEN/ELSE or the
associated BEGIN/END pair rather than on the IF. A stand alone
comment following  the THEN or ELSE may be wused instead if
embedded conaments would be too long or would restrict the
readability of the code,

Related IF statements should not be nested more than 3 deepn,
A simulated case statement may be used.

Compound conditlonais on an IF statement should be ordered
such that the first condition Is the one which will most tikely
terminate the condition evaluation.

2.12 Bead

Avoid using bead functions unless necessarys Insteads the use
of an array with partial=-word items is preferred, B8ead functions
are difficult to undate In a program if the data 1item that |is
beaded 1is ever changed. If wuseds do not cross—type ({(bit
functions should be used only on numeric data byte functions
only on characters), '

Bead functions may be wused to simufate data definition
features not currently implemented with SYMPL such as repeating
groups within a word, '




2=7
NOS SYMPL CODING STANDARD
06701783

2.0 Coding Standards
2413 PROCs» FUNCss and PRGMs

2¢13 PROCsy FUNCs» and PROMs

XDEFss alternate entry pointss and Internal PROCs should not
be used. they are hard to locate in the program and will make
debugging and nodification more difficult,

PROCs and FUNCs must have'a fixed (not wariabie) number of
parsameters, :

The F option on the SYMPL ~ command must not be used. Instead,
use CONTROL FTN- in the source when needed. :



3-1
NOS SYMPL CODING STANDARD
: 06701783

. S A G A A G W W A

3.0 Naming Conventions

3.0 Naming Conventlons

Al declarations and PROC/FUNC names should be descriptive.

Routines may use simple local variables named TMPl, TMP2,
etc, However, such names can be used only for wmulti-purpose
jtems, Items atth a specific computational purpose should have
a meaningful name. ‘ :

Al extéfda!?identifiers (PRGMs PROC, FUNC names) must be 7 or
less chsracterss, The loader truncates a name to 7 characters,

~ A1l internal identifiers {(declarations, arrayss status tist
names) must be 10 or less characterss A % may be used as another
fetter in the alphabet. Howevers $ is invalid in the deck name
because of MDDIFY, ‘

A1l array’ Items should be prefixed by the first 3 or 4
characters of the array name. The last 6 or 7 characters of the
array item are the descriptive name. '

All related DEFs should use the same prefix.

All COMDECKX names should be 7 characters in length and should
be in the following form

C0OMxaaa

where :
gaa = Symbolic name of COMDECK
x = One of the COMDECK indicators:
A = COMDECKs used by more than one of the
Es Us or Z SYMPL groups
Data manager ‘
CPU code
Display driver code
EXEC portion of MSS (SYMPL)
Full screen editor (FSE)
Initialization
Transaction subsystenm
Mass storage error equivalents
PP code
Subsystem text symbolss constants
Tables
Utitities (SYMPL)
Driver portion of MSS (SYMPL)

NC-HNDIX - TIMOO®
R EEEEEEE R



‘ 4=1
NOS SYMPL CODING STANDARD
06701783

———

4.0 Code Readability

4.0 Code Readability

4.1 Format of Statements ‘ , ~

All declarations must begin in column 7 and be finished before
column 72, Column 72 must be blank to separate SYMPL code and
comments from MODIFY sequence numbers. Each line of indentation
is two spaces.’ - ‘ '

Each BEGIN/END is on a separate lines The first BEGIN is 1in
column 7. Subsequent BEGINs are each indented two spaces. Code
following: the BEGIN» up to and including the next END» has the
same iIndentation as the BEGIN unless exempted by some other rufle
(ieee labels are Iin column 1). The END statement reduces the
following 1indentation by two spaces. Any BEGIN/END pair that
brackets more than ten statements should have matching embedded
comments on the BEGIN and END. Redundant BEGIN/END pairs should
not be used to highlight module structure. This function Is
better accomolished with stand alone comments.

Each THEN/ELSE/DO is on a separate line and is placed directly
beneath the IF or FDOR portion of the statement. ’

A statement which overfions the !fne must indent 2 spaces from
the original statement.

Compound conditionals in an IF statement must be sepasrated at
the OR/AND {if the wentire statement does not fit on a single
lines If the statement needs to be separated because of its
fength or at the programmer-s options then the AND/OR plus its
condition needs: a separate line and Is indented two spaces.,

Examples
IF C IF8 IF B OR C OR D
"OR (A AND B) OR € THEN
THEN OR D BEGIN
BEGIN  THEN .
. | | BECIN .
END END | END

.The format of the FOR statement follows the IF, If the entire
statement  will not - fit on a single lines then the statement must
be separated into two lines and Iindented two spacese.

. y



NOS SYMPL CODING STANDARD
06701733

4,0 Code Readabitity
41 Format of Statements

FASTFOR I=1 STEP 1
UNTIL 7 ‘

DO '
BEGIN

Y - . C

END
442 Column 1

The following items must begin in column 12
Labetls ‘
PRGM/PRACIFUNC statements
Single line comments
Stand atone comments

4,3 Blank:-Lineas:

A blank !iné-must be used in the following cases:

As the first line Iin each common deck

Between all declaration groupings

Before and after every stand-alone comment

Before and after all groups of conditional code
{exceot COMDECK list control)

After every END statement

Before avery {abel {or sequence of labeis)

Btank linas (In addition to those required) may be
used to imprave: the readability of the code,

4.4 Page Ejects

A page eject mus{ be used as a separator between the
declaration 3roups and the body of code.

If the: declaration éroups and'the body of code will fit
on a single pagey five blank lines ‘may be used rather than
‘a page elect.! ; ;




' 5-1
NOS SYMPL CODING STANDARD
' : 06701783

50 Documentation Standards

5.0 Documentation Standards

All docunentation must <conform to the NOS operating systenm
requirementss! This includes rules concerning complete sentencess
capitalizations, punctuation, abraeviations, etc. All stand-alone
comments are complete English sentences with correct punctuation,
ending with 2a period.

5.1 Comment Formats snd Types

Comments can appear in three different formats: stand atones
single line and embedded, Stand alone comments have four types
determined by the number of asterisks on the initial 1ine of a
sequence of lines with asterisks in column 1. These four tyoes
are recognized by the DOCMENT utility and cause some comments (or
code) to be . included in DOCMENT output depending on DOCMENT run
time parameters,

5e1e1 Embedded Comments

Embedded comments appear on the same line following a
declaration or executable statement, The (eft delimiter must be
preceded by at least two spaces and followed by only one space,
At Jeast one space follows the comment text before the right
del imiter, At~ least one space must follow the right delimiter,
Column positioning rules for the left delimiter are given . in the
section "Documentation with Embedded Comments®™, : ‘

54142 Slngie‘tlne Commehts ‘

These conments have a left comment delimiter in column 1s the
. text starting in column 3 for title lines or in column 7 for
common deck headers, and a right comment delimiter proceeded by
-at least one space all on a single lines This comment form |Is
used in the following cases?
-= Title tines
- Common deck headers



| | 5-2
NOS SYMPL CODING STANDARD
» 06/01/83

50 Documentation Standards
51,3 Stand Al>ne Comments

5143 Stand Atone Comments

These comnments consist of at least 5 lines with the first and
. tast being blank linesy the second_and next to last having {only)
a comment delimiter in column 1 with the comment body starting
with 1ine 3, Each 1ine of the comment body has an asterisk in
cofumn 1 with dYanks normally found in columns 2-6.

The initial line of the comment body (line 3) may have 1ls 2, 3
or 4 asterisks starting in column 1 depending on the type of
output desired from the DOCMENT utility, :

5¢1+3.1 Brackets (®%&¥)

A opalr of stand alone comments of this form causes DOCMENT to
copy the comnent body starting with the opening bracket, and atl
subsequent code until the closing bracket. This is required for
XREF declarations.. = An- example 1Is iIndicated with the XREF
descriptions It- may aiso be employed for other declarations or
code which should be included on a DOCMENT run. :

The commant body consists of asterisks in columns 1-4 with
text on the rest: of the first lines The comment text should
clearly indicate which is the opening bracket and which {is the
closing bracket. : :

5+1¢3+2 External Conments (k¥%)

A comment body which is to be included in any DOCMENT run
{external or Internal) has 3 asterisks in columns 1-3 of the
first tine of the comment bodye The 3 asterisk form is generally
used to explala the interface to a SYMPL PRGM. It is also wused
in the header documentation for common decks. :

5¢1+3.3 Internal Comments (f*)

A comment body which is to be . included in a DOCMENT run

- selecting Internal documentation in addi tion to external

documentation has asterisks in columns 1 and 2 of the first line

of the comment body. This is generatly used to describe the

interface for each PROC/FUNCs It may also be used to describe
~other important Information about a PROC/FUNC/PRGM.



: 5=3
NOS SYMPL CODING STANDARD

06701783

5.0 Docum2ntation Standards
5014344 Module Comments (%)

54143¢4 Module Comments (%)

A comment body which is not to be included in a DACMENT run
simply has 1 asterisk on the first line of the comment body.
"This type of stand alone comment is generaily wused tg¢ document
design information which helps one maintain or code review a
module.

" This type of-commént can present design information for the
entire PROC/FUNL» or for a sequence of codes It should answer
the questiont "how does this PROC/FUNC code segment work?"® :

52 Program Level Documentation

Every PRGY must have an overview describing what it does and
external documentation describing how it is useds The overview
documentation is very general. A description of the fields is In
. the NOS coding standardse. '

# . .

k% {heading)"

* :

¥* {purpose)’

*

* {command format)

*

* PRGM program name.

* s

* ENTRY,: sosses

*

* EXIT. i‘. 299

¥

* MESSAGES.,! eeses

* ' }

* NOTES. s eees

* : o

* COPYRISHT CONTROL DATA CORPORATION, 1983,
i ) o

In addition, a PRGM may have internal and module comments as
- appropriate.’



54
NOS SYMPL CODING STANDARD
- 06701/83

-——— - ae aan -

5.0 Documentation Standards
53 Documentation of PROCs and FUNCs

53 Documentation of PROCs and FUNCs

Every PROCY/FUNC needs an internal documentation section. It
- shoutd answer the question: "how is this PROC/FUNC wused?”. The
description of the different fields 1is 1In the NOS Coding
~Standards. : : ’

 MESSAGES  aeieen

' NGTES “v{’ * e

#

*¥ {heading)

*

* (purpose)’

x _ )
* {PROC or FUNC statement with semicolon omitted)
* .

* ENTRY  esesee

*

L EXIT : veis e

*

*

*

*

x

#

If a PROC or FUNC references a based array whose pointer is in
a common blocks, and the PROC or FUNC assumes that the pointer for
that array Is set before the PROC or FUNC is calledy the entry
condition comments should state that assumption. ,

In additiaon, a PROC/FUNC may have additional internal comments
and module comments as appropriate. ‘

Where a higher level of documentation is needed for a related
group of PROCs: an extra PROC should be added to <contain the
unifying docunentation. .

5¢%& Documentétion with Embedded Comments

Embedded comments are of two documentation forms (i.e. data
declaraction or action code). This is the only type of a comment
that nesd not be a complete sentence. This type of comment
shouid not be continued onto sanother 1line. If absolutely
necessarys the comment may be continued on the following line,
In this case the second line must not contain code,

THEN S e k; # comment which is too long
: IR T e continuation of commment #




: 5-5
NOS SYMPL CODING STANDARD
06701783

5,0 Documentation Standards
5e4«1 Data Declaration Embedded Comments

541 Data Dectlaration Embedded Comments

Every arrayy itemy, status 1itemy DEF and XREF item must be
documented with appropriate information, Each declaration should
appear on a separate line accompanied by embedded comments
describing Its function (optionallys if this is an “important
arrayy 1§t may be bracketed by comment lines with asterisks in
columns 1 through 4 so that DOCMENT wil! process it.

Presets shouyld be commented individually to reflect thév
. function of the praset.. ‘ - i

The left delimiter of the embedded comment should be in column
38 unless the statement extends beyond column 35 in which case
the delimiter is placed at least two 3spaces to the right of the
statement, : T ~ : ‘

5¢442 Action Code Emﬁeddgd Comments

For BEGIN and END statementss the embedded comments are placed
two spaces to the right of the statement, For other statements
the embedded comments begin in column 38 wunless the statement
extends beyond cotumn 35 in which case the delimiter is placed at
least two spaces to the right of the statement, :

55 General Documentation for PRCCs» PRGMs or FUNCs

Each PRGMy PROCs» FUNC statement must have a corresponding END
statement followed by the PRGMy PRCCsy FUNC name as a comment on
that same line. SYMPL comments containing COMPASS~-tike titie
pseudo=ops must appear as the second line in a SYMPL PRGM, PROC
or FUNCQ '

PRGM OK3;
# TITLE K = description of PRGM OK.

BEGIN # 0K #

END # OC %



NOS SYMPL COJING STANDARD

6-1

DEF STEPCNT
DEF STEPPNT

STATUS STEPVAL
51
S2»
S3»
D1,
D23

COMMOM ASPCCOM;
BEGIV

ITEM HPMASK
- ITEM STEPMASK

ARRAY 4PT [OSSTEPCNTI P(1);

-BEGIV

CITEM HPTSLINK

END

¥o ¥;

(I) #B<{I)»1>STEPM

LR B

# ASPCCONM #

#
#

us
Us
#

U(00s42518);

END # ASPCCOM #

END  # COMASPC ¥

ASK#3 # STEP POINT #

STEP POINT VALUES #

STAGING STEP POINT 1
STAGING STEP POINT 2
STAGING STEP POINT 3
DESTAGING STEP PODINT
DESTAGING STEP POINT

HALTED PROCESS MASK #

STEP PCINT MASK #

HALTED PROCESS TABLE

N g 38

¥

06/01783
6.0 Examples
60 Examples
- 6e1 COMDECK Exampleé -
1 7 ) 38 48 71
+ + + + -t
COMASPC
COMMON
$ COMASPS - STEP POINT CONTROL. #
CONTROL NOLIST; ,
CONTROL IFEQ LISTCONs1;
CONTROL LIST;
S - CONTROL FI
BEGIN # COMASPC #
' ‘ . L
%%  COMASPZ - STEP POINT CONTRCL.
* ' ‘ : : ST
* *COMASPC® CONTAINS DECLARATIONS USED FOR CONTROL OF STEP MODE,

# NUMBER OF STEP POINTS - 1 #

EIE

# HALTED PROCESS CHAIN LINK #

CONTROL LIST;




6-2
NOS SYMPL CODING STANDARD
| 06701783

6.0 Examples
6.2 PROC Exanple:

6.2 PROC Exanole

1 7 . | 38 48

- > - h g

PROC PSFINI{NDVALUE)»(SPVALUE));
# TITLE PSFIN - INITIALIZES THE CONFIGURARTION.

BEGIN # PSFIN #

*¥ PSFIN - INITIALIZES THE CONFIGURATION.
* _ 3
* #PSFIN® INITIALIZES THE CONFIGURATION OF A FAMILY OF
* DEVICES. |
* ‘ .-
* PROC PSFINCINDVALUE)s (SPVALUE))
* ENTRY  (NDVALUE) = NUMBER OF DEVICES IN A FAMILY,
* “ {SPVALUE) * SPACE ASSIGNED TO EACH DEVICE.
* ARRAY' HEADER = PSEUDD PFC.
. |
* EXIT  CONFIGURATION IS INITIALIZED.
* : o ~
* NOTES  THE SPECIFIED VALUES ARE PLACED IN THE HEADER,
3 | AL .
ITEM NOVALUE u; # NUMBER OF DEVICES #
ITEM SPVALUE us # SPACE AVAILABLE PER DEVICE #
S |
#%k%x  PROC PSFIN - XREF LIST BEGIN.
*
XREF
BEGIN
PROC PSLOCKS ¥ INTERLOCKS THE PSEUDD PFC #
PROC PSUNLCK; # RETURNS THE PSEUDO PFC #
END
*

**%% PROC PSFIN - XREF LIST END.



. : 6=3
NOS SYMPL CODING STANDARD

06701783 " -
6.0 Examples
6+2 PROC Examoie
DEF DFFSET  #4#; ' # DEVICE ENTRY OFFSET IN PFC #
DEF LISTCON 2043 ~ # DO NOT LIST COMDECKS #
*CALL COMAMSS - .
*CALL COMZHED v S
ITEM I I , # LOOP VARIABLE #

ITEM NUM . Us o # CALCULATED NUMBER #
: CONTROL EJECT;

PSLOCK{HEADER) 3

SET VALUES IN THE HEADER.

» o

HEADSNITO1 = NDVALUE;
HEADSSPDEVIO) = SPVALUE;

NUM = NOVALUE * SPVALUE;
HEADSSPFAMIO) = NUM;
HEADSSPAVFLO] = NUM; -

SLOWFOR "I = 1 STEP 1 UNTIL NDVALUE

DO % SET SPACE AVAILALBE # -
BEGIV. ‘
HEADSXXTI + OFFSET] = SPVALUE?
END

PSUNLCK{HEADER);
RETURN;
END # PSFIN #

TERM



b=t
NOS SYMPL: CODING STANDARD -
) 06/01/83

60 Examples
6. 3 Status ListIStatus Switch Example

643 Status List/Status Switch Example

STATUS ERSTAT ~ # ERROR STATUS #
ERRORND, - # NO ERROR #
ERRORFE, # FILE ALREADY EXISTS #
ERRORFNy - # FILE NOT FOUND #
ERROINY, # UNABLE TO WRITE PFC #
L ’ # END OF *ERSTAT* # ‘

»

ITEM FLAG SIERSTAT; ERROR CONDITION #

SWITCH ERRCASESERSTAT # ERROR LIST #
: OK:ERRORND» # NO ERROR #
PFEXISTSIERRORFE, # FILE ALREADY EXISTS #
NOENTRYIERRORFN» # FILE ONT FOUND #
WRATITERR:ERRORNN; # UNABLE TO WRITE PFC #

A status list may also be defined with an upper limit entry
put at the end of the list., This- upper limit can be used In
the code to test that a variable is within its defined range.
In this style the upper Llimit entry 1Is terminated with a
a semi-colon on the same I|ine,

Example:?
STATUS ERSTAT # ERROR STATUS #
ERRDRAIND» # NO ERROR #
ERRNRFEY # FILE ALREADY EXISTS #
ERRORFNy # FILE NOT FOUND #
ERRDORINW» # UNABLE TO WRITE PFC #
ERRARENDS; # END OF *ERSTAT* #




: 6=5
NOS SYMPL CODING STANDARD

06701783

6.0 Examples ‘ '
6¢3 Status List/Status Switch Example
#
* PROCESS THE ERROR RESPONSE.
# . , ' '

GOTD EIRCASELFLAGI;
# .
* stand alone comment here or an embedded comment on the label,
PFEXISTSt - : ’ '_ # embedded comment #

GOTO ENDZASEs
NOENTRY: o . : ~ # embedded comment #

GOTD ENDIASE; ,
WRITERR: - o # embedded comment #

GOTD ENDCASE;
OKs : : ' # embedded commeht #

" 60T0D ENDCASES
ENDCASE: '
# ’ '
* PROCESS THE ERROR RESPONSE.

¥



o A1-1
NOS SYMPL CODING STANDARD |
nr e 06701783

Ai.o Addendum for SMF ProJect

This addendum describes <changes to the NOS SYMPL coding
standard: for' the Screen Management Facility (SMF) project.
Certain-parts-of this change in the standard shall be retevent
only to the Full Screen Editor and not to the screen formatter,

-1e Structural changes o
a. MNested oprocedures/functions are allowable under the
foliowing conditionse The terminology wused  here shall be
®compilation unit" for an outermost PRGM/PROC/FUNCs since
that is the scope of the map and cross—reference 1in the
listing, ‘ : ‘

Procedures and functions may be nesteds A <compilation unit
may contain XDEF-ed 1iInternal routines provided that a
PROC/FUNLC compitation unit is never called via the main entry
point, Any routine may contain internal routines which are
not XDEF=-ad,  That 1is» nesting of XDEF-ed PROCs 1is only
allowed ana2 level deep. : '

The second tevel of. nestihg is used only for routines which
perform an algorithm not expected to be of value outside of
the :parent routine. Second: levé! ‘nested routines should be
very simple in their logical structure, The same principles
will apply for deeper level routinese.

Non=XDEF internal procedures must have the same header
documentatlon as any external prbéedufe.

~ External symbols may be more than 7 characters longe. The
programmer Is responsible to assure uniqueness within the
tirst 7 characterse These oversize external names, while
permissibliey, are discouraged and should be used only when the
programmer cannot reduce the routine name to a 7 character
name with sufficient claritye.

Ce CQnPASSVsubroutines are allowed for optimization of tight
loopses Such routines shouid be designed to contain a minimum
of decision=-making logice.




Al=2
NOS SYMPL CODING STANDARD Ve THNT R
06/01/83

-——— - » R

A1.0 Addendum for. SMF Project | | © R aba Dtk

de Each compitation unit in the editor shall call COMAFSE as.-!
jts first common decks This deck contains symbaol and macrozinsg'y
definitions which must appear early in the source codes Other:wi s’
common decks may be called either in alphabetic order or-.in* yvire
functional order, One exampie of functional order would be
the storage mapping of 8 common block which can only beri .}
. described: by using several common decks {(this can arise in a
sjituation where nested common decks would be desired but the =
product Is Is built via MODIFY) correct storage mapping would -
thus require that the common decks be calied in a particular:~
order for which alphabetic naming may not be reasonable,

2+ Statement formats

a. The FOR keyword may be used. CONTROL FASTLOOP (FASTFIR). -
is not pernitted, ’ , : E

bs FOR 1loops and simulated case statements are allowed to
terminate with a RETURN statement or the IORET macro. In the
editory the ERRJUMP call may be used to terminate any block:"
of code.” ERRJUMP will be a procedure which Is Itself allowed-
to execute a jump into 8 procedure., ERRJUMP is used to clear '/
the editor . into a nominal condition after encountering:a::
syntax errar. In the editors code.may also be terminated by:.
a call to a fatal-error routine,

oS

Loops may be based on labels and 60T0O-s in place of FOR only.:
-when the programmer can defend this wusage as substantially
more efficient or as being simpler to maintain than
functionally equivalent structured code. : Lo

, Sren
Simulated case statements may use a backward jump to achieve ..
the common exit when the case:.is embedded in an iterative ..
structure for which labels and GOTD~-s are alloweds. oo




NDS SYMPL CODING STANDARD

A1-3
06/01/83

Al,0 Addendum for SMF Project

3.

4.

Ce A PRGCIFUNCIPRGH statement shall begin in column 1 for a
coap?!ation unit and for a first-level nested PROC/FUNC,
PROC/FUNS' statements nested  to deeper leveis shall be
indented 2 columns per level, The body of code in a routine
shall be indented 2 columns from the PROC/FUNC statement,
Code contained in a CONTROL IF bracket shall be indented 2
colunns from the CONTROL statement. BEGINs and ENDs shall be
indented 2 columnss and the code within the BEGIN/END shall
be aligned with the BEGIN/END. In the editory IOBEGIN and
I0END macros shall be indented as though they are BEGIN/END,

Documentation

Be rounentaton of ENTRY/EXIT conditions and of storage
usage must include assumptions regarding manipulations of
pointer words for based arrayss i

be For compilation units whose main entry point is uncaltied,
the main entry may carry documentation considered applicable
to all enbedded procedures... : . o

Ce XREF and XDEF may be provided by lists of roLtibéiﬁégés o

in common Jecks. Such; Iists of XDEF should be [listed, but
such tists of XREF should not be listed.except for a comment
noting the call to the common- deck. DOCMENT brackets are not
required,: : ' .

ds Stand atone comments may be a single line starting with
a pound sign in column 1 and ending with a pound sign in
column 71y rather than the CGﬂPASS style comment (asterisk in
column.1 of the comment body), . ,

The use of preceeding and proceeding blank lines Is
negotiable between the programmer and reviewer to achieve a
mutually’ satisfactory visual ,effects  Note that this
simplified form for stand alone comments Is .only applicable
for. comments not intended to be printed by the DOCMENT

-utilityo

Pseudo-reentrancy considerations {for FSE‘and'SﬂFEx on!y)Q

as The SMFEX Executive may contain a limited number of
labels within if or for blockss and external f{abels wlthin
procedures, as necessary to implement pseudo-reentrancy.

be SMFEX and FSE will contalin procedureS’subJect to reentry
under control of the SMFEX Executive. A reentrant procedure
is a procedure which calls another reentrant procedure or
uses the delay or recall statements. There «cannot be
reentrant functionse. : ’ : ‘ ‘ ,

G Gl




Al-4
NOS SYMPL CODING STANDARD e
| ‘ 06701783 & ne

Al.0 Addenduw for SMF Project =~ 7

¢e The reentrancy technique severly restricts the usage of
foca! storage and of parameters. The programmer should‘
dedicate common block storage to the functions performed by’

a reentrant routines, in preference to 1ocals. Note that" the- ”f
common block includes one general purpose variable which 1is '
stackable, so that reentrant routines can dynamically '~
aliocate storage on a !imited scale, R

.

T

de Reentrant procedures must minimize the use of local ™'
storage. Any sequence of code in a reentrant procedure which "~

. uses local storage must be preceded and followed by stand:
alone comments of the form

# LOCAL #
# END LDCAL #

The code within' the comments cannot. catll any ”Teentfénf:“
routlnes.% |

2. Qeentrant procedures must mln!mize the use of parameters. '~
When parameters are used, it is essential that the parameters
~ be read-only (i.e. the subroutine does not compute a new
‘value)s and they must be used before any reentrant procedure -
is calleds Use of parameters shall be followed by a stand
alone cowment of the forms o

# END PARAMETERS # ' R

f+ Reentrant routines 1{ose control by' calling DELAY or
RECALL.: In: the single-user version, these are CQHPASS'
subroutines which execute recall macros. In the ~multi-user’
version, these are DEF-ed to be calls into certain entry
points within SMFEX to invoke the multi-tasking executive.

gs Reentrant routines are bracketed by the IOBEGIN and IDEND
macros. In the single-user  version, these are DEF-ed St
simply yield BEGIN and END. "In the multi-user versions these' °
are DEF=-ad to generate code to maintain data structures uhlchf
help the SMFEX multi-task executive supervise the reentry, -
Reentrant routines cannot use the RETURN statements but can
use the I0ORET macro.




: ' Al-5
NOS SYMPL CODING STANDARD
| | 06/01/83

Al.0 Addendum for SMF ProJject

he Reentrant routines must be restricted as to the type of
monijtor calls they can issue either explicitly or by caltling
other routines.: In particular, reentrant code must use only
CIO and each CI0 call must be explicits This effectively
bans the use of the standard NOS common decks. Furthermores
the onily file which can be dealt with by reentrant code is
the editor workfile. Terminal I/0 will be funneled into one

- module of codes, which shall conditionally compile to yield
conventional FET-s and CIO calts for FSEs and calls to the
SMFEX Executlive for SMF,

ie The only writeable storage which can be used other than
local storage as described above shall reside in a single
common blocky or shalil reside in based arrays whose pointer
words are in the common blocks The common block shall be
orgenized into several sectlions based on the varlous degrees
of reentrancy services provided by the SMFEX Executive. in
the singte~uyser editors portions of this common block must be
complied to map exactly the same as the wmulti-user version,
since that-portion of the common block is tranferred verbatinm
through _the workfile for communication between the two
versions of the editor., Al]l critical storage mapping must be
identified as such in documentation.

Jeo Reentrant code shall minimize dynamijc relocation of based
arrayse. Ralocation is allowed If the pointer word is treated
as non-reentrant. Relocation 1{is possible with  limited
reentrancy provided the pointer word is mapped into the
reentrant section of the common blocks Note that while this
will keep-a pointer value alive for the duration of disk I/0s
it is not able to keep any pointer valid across terminal 1I/0
unless the polinter points wWwithin reentrant common itself,
This Is due to the re~-mapping of array locations performed by
the SMFEX ' Executive upon internal swaps. For those _arrays
re-maoped by SMFEX swappings no module except SHFEX can ever
change the painter Words




