
.NOS SYMPl COOING STANDARD l
1

1
06/0l/83

TABLE OF CONTENTS

1.0 Introductf ~n • 1-1

z.o Coding St~ndards • • • • • • • • • • • • • • • • • • • 2-1
2.1 Gener~I • 2-1
2.2 Parameter~ • 2-2
2.3 XREF •• • • • • • • • •••••• • •••• • • • • • 2-2
2.4 DEF • • • • • • • • • • • • ; • • • • • • • • • • • • 2-3
2.5 STATUS •• • • • • •• • • • • • •• • • • • • • • • • 2-3
2.6 COMDECK •• • • • • ••• • •• • • • • • ••• • • • 2-3
2.1 Non-array· Items • • • • • • • • • • • • • • • • • • • 2-4
2.a Arrays •• • • • ••• • •• • • • • • ••• • • • • • 2-4
2.9 FOR l~ops {Fast or Slow> • • • • • • • • • • • • • • • 2~5
2.10 GOTOs and SWITCHes (Case Statement) • • • • • • • • • 2-5
2.11 IF • • • • • • • • • • • • ••• • • • • • • • • • • 2-6
2•12 Bead • 2-6
2.13 PROCs,. FU1Cs, and PRGMs • • •••• • •• • ••• • • 2-6

3.0 Naming Conventions . . . ~ ~
4.0 Code Rea1abtl1ty •••••••••••••••
4.1 Format of Statements •••••••• ~ ••••
4 • Z C o I um n I·· • • • • • • • • • • • • • • • • . • • •
4.3 Blank lines •••••••••• ~ ••••••
4.4 Page EJeets •••••••••••••••••

• • • •
• • • •
• • • •
• • • •
• • • •

3-1

4-1
4-1
4-2
4-2
4-2

5.0 Documentation Standards • • • • • • • • • • • • • • • 5-1
5.1 Comment for~ats and Types • • • • • • • • • • • • • • 5-1

5.1.1 Embedded Comments • • • • • • • • • • • • • • • • 5-1
5.1.2 Single line Comments • • • • • • • • • • • • • • • 5-1
5.1.3 Stand l1one Comments • • • • • • • • • • • • • • • 5-2

5.1.3.1 Brackets <****> • • • • • • • • • • • • • • • 5-2
5.1.3.Z Externa I Comments f***> ••. • • • • • • • • • 5-2
5.1.3.~ Internal Comments <**> • • • • • • • • • • • • 5-2
5 • 1 • 3 • 4 ~ o d u I e C o mm en ts (*) • • • • • • • • • • • • • 5 - 3

5.2 Program Lewef Oocum·entatfon • • • • • • • • • • • • • 5-3
5.3 Documentation of PROCs and FUNCs • • • • • • • • • • • 5-4
5.4 Documentation with Embedded Comments • • • • • • • • • 5-4

5.4.1 Data Oecla~atlon Embedded Comments • • • • • • • • 5-4
5.4.2 AetlGn C!)d~ Embedded Comments • • • • • • • • • • 5-5

5.5 General Documentation for PROCs, PRGMs or FUNCs • • • 5-5

6.0 Examples ••.••••••••••••••
6.1 COMDECK Examples • • ••••••••••
6.2 PROC Exawpt~ • • ·• •••••••••••
6~3 Status list/Status Switch Example •••

• • • • •
• • • • •
• • • • •
• • • •• •

• •
• •
• •
• •

Al.O Addendu• for SMF ProJect • • • • • • • • • • • • • •

6-1
6-1
6-2
6-4

ll-1

NOS SYMPL COOI~G STANDARD

i.o Introduction

1.0 Introductf Gn

. ·-

1-1

06/01/83

The puroose of this standard is to provide a meaningful set of
practices which wl11 lead to •good•, consistent, maintainabte,
organized and' DPtlmized SYMPl code. This document used the SY'1PL
Coding Standards OAP <bes 51831), the NOS COMPASS Programming
Standard, and the SYMPL Coding Standards for the SYHPL project in
S V l as gu I de 11· n es •

This standar~ Is In addition to the NOS COMPASS Programming
Standard. The procedures established In the COMPASS standard
w h i ch ar e " o t ~ lJ n I q u e t o th e C 0 t1 PA SS 1 an g u a g e < I • e • Gen er a I
Requirements, Cbde Transmittal R~les1 and Oayfile Messages) are
to be a dh er e d t o f o r SY MP l pr o gr _am m i n g a I so •

Where th~ word "mu5t" appears In this standard, deviations
wll I not be approved. Where the word "should" appears, rev1ewers
may al low a devf at ion if .the analyst can present convt nel ng
reasons for the devtation.

z-1
NOS SYHPl CODI~G STANDARD

06/01/83

z.o Coding St3ndards

z.o Coding Staidards

2 .1 Gener a f

All declar~tlons pertaining to a PROC or FUNC should use the
folfowtng grouol~g

Formal Parameters
XREFs
OEFs
STATUS names
COMDECKs
I TE Ms
BAS ED ARRAYs
ARRAYs
SWITCHes
Other

' All declarations or cal Is to COMOECKs should be In alphabetfc
order.

Each declaration must start on a separate line and must be
accompanied by a comment describing Its function.

Each executable statement must start on a separate line.

Each BEG!~ and ENO must be on a separa~e I ine.

A decl~rat1Gn which Is a one-bit field should be Boolean.

Self modlrylng eode must not be used.

All label~ begin in column one. Labels must appear on tines
by themselves except for embedded comments. All label names must
be unique within a PROC/FUNC.

TEST must never be used without expl icitty stat1nQ the
Induction varlable 1t is testing.

Define CO~T~OL DISJOINT and CONTROL INERT In a COMOECK. Use
CONTROL OVERLAP and CONTROL REACTIVE to define the exceptions.

Where numerfe constants are established via
I I s ts , th e a s s um e d nu 11 e r i c v a I u e s s h o u I d · no t
coding documentation.

DE Fs or
appear

STATUS
1n the

Items I# J and K. should be reserved as simple loop or control
var I ab 1 es.·.

1

NOS SYMPt canr~G STANDARD

2.0 Coding Sta~dards
2 .1 Gen er a I

2-2

06/01/83

The code ~ust-not make assumptions about the octal representa­
tion of characters. This representation varies between the
various NOS character sets •

. Ma ch in e 1 rt de pendent I n st r u ct i on_~ w_h en av a I lab I e sh o u I d be us e d
in preference to deoendent structures.

2 • 2 P a r am et er s

Use ca 1 t -by • v a I u e p a r am et e r s . whenever poss I b I e. 0 n I y us e
call-by-addr!ss when the parameter Is modified with.in the
procedure aid the new value of the parameters is returned to the
calling progra~.

Reuse actual Parameter lists whenever possible. If the
parameter~ ar• used for· a number of calls, use the same order of
parameters for more efficient coding. -

Formal par~~eters must be declared within the PROC/FUNC rather
than in a c3m~on deck. They can be ordered alphabetically or
accordinrf to tl1e cal I Ing sequence.

An .array Item ~ust riot be used as a param•ter where a new
value or th! pa·rameter is returned, since this feature is not
supported In SY~PL.

z.3 XREF

Declaration of external procedure names are to be done in the
following fornat. The referenced PROC/FUNC names ere to be in
alphabetic sequence.

Examptei

t
**** PROC Y -~ XREF LIST BEGIN.
t

I

XREF
BEGI~
PROC .APPLE;

. PROC BUUN4;
PROC OR AtiGE;
END

**** PROC Y - XREF LIST END.

'

PARES APPLE I
t PEELS BANANA t
SQUEEZES ORANGE #

I

NOS SYMPL COO!~G STANDARD

2.0 Coding StaAdards
2.4 DEF

z.4 DEF

06/01/83

Use DEF to Pr~vf de symbolic constants for numeric constants
for ease In rl~dln~, identifying_ and modi~~ing parameters.

A DEF must not be used to rename a variable.

A DEF must· not be used to redefine a function call, a reseryed
word, or an GPeratton unless it Is used consistently throughout
the system to l~prove cl~rlty. Otherwise, this may tend to
obscure the actual code. All DEFs which redefine the code or
ma k e i t a c on d 1 t I on a I c om p i _ ta t i o n w I I I be p I a c e d i n a C OM D EC K •

The DEF for•at for a full word octal constant ts in 4-dfglt
pan:els. For· example:

DEF ERRMASK to•o037 7740 0505 0000 7777"#; # ERROR BIT MASK #

2.5 STATUS ---

Status lfsts should contain no unused positions. Any unu~ed
positions must be filled with a dummy argument and have ·a
I RESERVED t or I NOT USED I comment. It may be better to use
DEFs If ther~ ar~ many unused positions or any of the elements
are expected t3 change.

2.6 COMOECK

Executable code should not be placed in a COMDECK.

The declarations for a data structure must be wholly contained
within a sln~le common deck. Where two or more data structures
are interdependent~ the declarations for the Interdependent
structures must be In the same common deck.

logic3fly associated data Items and structures should be
declared •n one COMDECK unless they are only to be used by one
module where ttley !lay be dee I ared locally.

One or wore COMOECKs mu~t contain all declarations affecting
table size which could be changed with the system. This Is to
facilitate maintenance.

Common' decks nust not be listed.

A PRGM, P~OC or FUNC should only call the common decks that It
references.

NOS SYHPL CO~I~G STANDARD

z.o Codin~ St~~dards
Z.6 COMOECK

2-4

06101/83

Every com~oi deck must have an overview description of what It
does. The fol1o~fng format is to be used. The list control
statements begin f~ column 48.

' ~ d eek n a in e -, de s c r f, p t I c n •

t
*** deek name -- description.

* * (pu r? o s e) (s e v e r a I I i n e s c an be use d)

'

Z.7 Non-array 'Items

CONTROL NOLIST;
CDNTROL IFEQ LISTCON1l;
CONTROl LIST;
CONTROL Fl;

CONTROL l IS T;

The items,- the Ya r I ab I e names, the types, the presets and the
embedded eo~ments should each be vertically aligned. Leave roo~
for ten character variable names and leave room for character
counts on character type Items for ease of future maintenance.

Variables should be declared alphabetically.

Z.8 Arrays

Arrays used by more than one PROC must be defined In
_COMDECKs.'

Usage of Items from an array must always be subscripted. rt
is confusing ta default subscripts.

Item declarations must be In ascending order (i.e.
0 to word n 't>tt nl. If ~verlapping declarations are
the Item whlch s~ans other items must be first.

Array Indices should start with zero.

word O t> It
used, then

The array name, bounds and the allocation/size must be
separated by-bt•nks (e.g. ARRAY EXHAPLE [0Zl0l P(2)J).

Items within an arrat are aligned with the begin for ease of
reading. Each Item must be documented.

NOS SYMPL COD!~G STANDARD

2.0 Coding Stand•rds
z.a Arrays

2-5

06/01/83

The item ~a~es, type/positions, preset values, and embedded
comment~ should each be vertically aligned. Leave room for ten
character' ltem names and for two digit "ep11

, "fblt11 1 and "size"
fields and ·use at lcas·t two spaces after the semicolon to Ease
f u tu r e ma I n t e n a n e e. t

2.9 FOR loops <Fast or Slow)

FOR loops ar~ of two type~. In the stow FOR loop, the object
code has a dlr~ct correspondence with the SYMPL statements. This
Is not the case with fast loops. A fast-for-loop is optimized by
pre-evaluatl~g the STEP and UNTIL/WHILE elements. At least one
cycle of the f3op ts executed.

Fast FOR f~ops and slow FOR ·1~ops must be used. A sfmple
FOR stateme~t must not be used. For easier readablllty and

, programmlng,'.use DEF statements -to set up FASTFOR or SLOWFOR
Instead of t~e CONTROL FASTLOOP or CONTROL SLOWLOOP. These OEF
statements s-hoa,f d be pl'aced In a COMOECK.

0 Ef F 1A S T F 0 R
DEF SLCJWFOR

tCONTROl FASTLOOP; FOR#
#CONTROL SLOWLOOP; FOR#

For better optimization consider using STEP/WHILE as an
alternative to STEP/UNTIL.

The fnduetlon v~rlable must not be changed during ·the loop or
by a FUNC cal led whtle evaluating the STEP/UNTIL/WHILE part.

The exit rram a loop
return statement. The
middle of the loop.

should
entry

be through
Into a loop

an UNTIL/WHILE or a
must not be In the

The executable statement(s) after the 00 part of a FOR loop
must be encl~sed In a BEGIN/END pair.

2.10 GOTas aid SWITCHes (Case Statement)

GOTO should be employed only ·tf the resulting source code Is
demonstrably superior In performance, clarity, maintatnab111ty,
or extendlblllty. In spite of structured programming, GOTOs may
make the cGde more efficient if employed properly. GOTOs ~ay
make it .dlfffcu1t to follow logic. Jumps Into FOR loops must not
be used. Ju•ps Into code within a THEN or ELSE should not be
used. Jumps backwards In the code should not be used.

/

2-6
NOS SYHPL COJI~G STANDARD

06/01/83

2~0- Coding St~~dards
2.10 GOTOs and SWITtHes <Case Statement>

A GOTO state•ent specifying a subscripted switch list may be
used to sl•ul•te.a case statement. Each case should end with a
GOTO branching to a common exit, a RETURN statement, or an AB~RT
call. !

·-SI mu I ated case statements may use a multiplicity of labels
for exits, pr·ovided that the selection of exit points Is don.e
to achieve eonsolfdation of similar sequences of code, and that
all such labels are grouped togather. See the Examples section
for an e~amp1~ of a simulated case statement.

2.11 lF

The THEN and ELSE _part of an IF statement must always use a
BEGIN/ENO pal r.f It' embedded comments are needed to descr I be the
condition, they should be placed ~Ith either the THEN/ELSE or the
associated BEGIN/END pair rather than on the IF. A stand alone
comment rottowfng the JHEN or ELSE may be used instead if
embedded co1ments would be too long or ·would restrict the
readabtllty 3f the code.

Related IF statements should not be nested more than 3 deep.
A simulated case statement may be used.

Compound eondltlonals on an IF statement should be ordered
such that the first condition Is the one which will most tlke1y
terminate the condition evaluation.

2.1z Bead

Av o I d us h g be ad fun ct i o n s u n I es s n e c es s a r y. In s t e a d1 the us e
of an arr~y with partial-word items is preferred. Bead functions
are dlfftcult·· to uodate In a program if the data item that Is
beaded Is ever changed. If used1 do not cross-type (btt
functions should be used only on numeric data, byte functions
only on characters>.·

Bead fun:tlons may be used to simulate data
features not c~rrently Implemented with SYHPL such as
groups Mlthln a word.

;

def In It I on
repeating

2-7
NOS SYMPL COOI~G STANDARD

06/01/83

z.o Coding Sta~dards
2.13 PROCs. FU~Cs, and PRGf1s

2.13 PROCs, F0'4Cs, and PRGMs

XOEFs, alternate entry points, and Internal PROCs should not
be used. they are hard to locate in the program and wlfl make
deb u g g I ng a n 1 , 11 o d I f I c a t ·1 o n mo r e dT ff i c u I t •·

PROCs and FUNCs must have a fixed <not variable) number of
parameters.

The F optl on e»n the SYMPl · command must not be used. Instead,
use CONTROL Fnt· In the source when needed.

/

3-1
NOS SYMPL ca~I~G STANDARD

06/01183

3.0 Namtn~ C~nventlons

3.0 Naming Conventions

All deelar~tlons and PROC/FUNC-~a~es sh~uld be descriptive.

Routi~es ~ay use simple local variables named TMPl, TMP2.
etc. However, such name~ can be used only for multt-purpose
Items. Items with a specific computational purpose should have
a meaningful name.

All external identifiers (PRGM, PROC, FUNC names) must be 7 or
less characters~ The loader truncates a name to 7 characters.

All internal identifiers (declarations, arrays, status list
names> must l>e 10 or less charact-ers. A$ may be used as another
letter In the alphabet. However, S Is invalid in the deck name
because. of MOOIFY.

All array· .. lte•s should be prefixed by the first 3 or 4
character~ o' the array name. The last 6 or 7 characters or the
array Item ar~ the desc~iptlve name.

A I I re I ate d · !) E F s · s ho u I d use the same pr e f i x.

All CO~OEC~ names should be 7 characters In length and should
be in the folhwlng form

COMxaaa

where
aaa =Symbolic name of COMDECK
x • One

A s

8 •
c •
D •
E =
F •
I •
K •
M •
p •
s •
T =
u •
Z a

of the COMDECK Indicators:
CO"OECKs used by more than one of the
e, u, or Z SYMPL groups
0 at a m an ager
CPU code
Display driver code
EXEC portion of MSS (SYHPL)
Full screen editor tFSE>
Inl tla llzation
Transaction subsystem
Mass storage error equivalents
PP code
Subsystem text symbols, constants
Tab I es
Utilities CSYHPL)
Driver portion of MSS (SYHPLJ

NOS SYMPL COOI~G STANDARD

4.0 Code Readabltlty

4.0 Code Reada~Jtlty

4.1 Format o' Statements

4-1

06101183

All declar~ttons must begin in column 7 and be finished before
column 72. :olumn 72 must be· blank to separate SYMPL code ~nd

comments fro~ MODIFY sequence numbers. Each line of indentation
Is two so aces.

Each BEGI~/E~O is on a separate line. The first BEGIN Is In
column 7. Subsequent BEGINs are each indented two spaces. Code
following the BEG!~, up to and Including the next ENO, has the
same lndent~tton as the BEGIN unless exempted by some other ru1e
(I.e. labets· are In column ll. ·The END statement reduces the
following 1ndentatlon ~Y two spaces. Any BEGIN/END pair that
brackets mar~ than ten statements should have matchJng embedded
comments on the 8EGIN and END. Redundant BEGIN/END pairs should
not be used to highlight module structure. This function Is
better accomolJshed wit~ stand alone comments.

Each T~EM/ELSE/00 is on a separate line and Is placed directly
beneath the IF or FOR portion of the statement. ·

A stateme~t which overflows the tine must indent 2 spaces from
the origfnal state~ent.

Compound eondltlonals in an IF statement must be separated at
the OR/ANO 1r· the entire statement does not f It on a single
line. If the statement needs to be separated because of Its
length or at the programmer-s option, then the ANO/OR plus Its
condition needs a separate tine and Is lnden_ted two spaces.

Examples

IF C
OR f A A ND 8)

r'HEN
BEGIN
•
•
•
ENO

IF 8
OR C
OR D

THEN
3EGIN
•
•
END

If 8 OR C OR 0
THEN

BEGIN
•
•
•
•
END

The format Bf the FOR statement follows the IF. If the entire
stat em en t · ., , I P n o t- f I t on a s I n g I e I I n e, the n th e s tat em en t 11tu s t
be separated lito two tines and Indented two spaces.

I

4-2
NOS SYMPL CO~I~G STANDARD

06/01/83

4.0 Code Readablllty
4.1 Format o, Statements

FASTFOR I•l STEP 1
UNTIL. 7

DO
SEGPf ·

•
•
•
END

4 • 2 C o I uit n 1

The foltowtig items must begin In column i:
labels
PRGM/PRQCIFUMC statements
Sinq1e 11ne comments
Stand atone comments

4 • 3 B I a nk l 1 1 es

A blank tine must be used Jn the following cases:

As the f lrst I lne in each common deck.
Bet~ e en a 1 1 de c I ar at i o n gr o up I n gs
Before and after every stand-alone comment
Before and after all groups of conditional code

(except COHDECK list control)
After ever~ EMO statement
Before every I abel tor sequence of labels)

Blank llnes (In addition to those required) may be
used to lmPr3V! the readabi llty of the code.

4.4 Page Ejects

A page eject must be used as a separat~r between the
declsratlon 1roups and the body of code.

1

If the dee1~r~tlon groups and the body of code wi II flt
on a single page, five blank lines may be used rather than
a page eJect.t

I

NOS SYMPL CODI~G STANDARD

5.0 Document9tlan Standards

5.0 Documentation Standards

5-1

06/01183

All d~cuwentatlon must conform to the NOS operating system
requi.-ements.~ This Includes 1:ules concerning complete sentences,
c a p I t a I I z at h n, Dun ct u at i o n, a b r "~ v I at i on s , etc • A I I s ta n d-a I o n e
comments ar• co•Plete English sentences with correct punctuation,
ending with a pertod.

5.1 Comment For~ats and Types

Comments can appear in thre~-different formats: stand alone,
s I n g I e I I n e a n d' e "'b e d de d • S t and a I one , comm en ts h av e f ou r t y p e s
determined b~ the number 4f a~terlsks on the initial tine o' a
sequence of I Ines with asterisks In column 1. These four tyoes
are recognf z-ed by the DOC HE NT ut 11 lty and· cause some comments for
code) to be-Included In DOCMENT output depending on DOCMENT run
time parameters~

s.1.1 Embedded Cbmments

Embedded comments appear on the same line following a
declaration or executable statement. The left delimiter must be
preceded by at least two spaces and ·followed by only_ one space.
At least one soace follows the co•ment text before the right
delimiter·~ At least one space must follow the right dellrnlter.
Column pos1tfnn1ng rules for the left delimiter are given Jn the
section "Oocamentatlon with Embedded Comments".

5.1.Z Single line Comments

These co~ments have a left comment delimiter In column i, the
text starting In column 3 for title lines or in column 7 for
common deck ~eaders, and a right comment delimiter proceeded by
at least one s?aee all on a single line. This comment rorm Is
used In the rot1owing cases:

Tl t le I Ines
Common deck headers

NOS SYHPL COOI~G STANDARD

5.0 Documentation Standards
5.1.3 Stand lf 3ne C~mments

5.1.3 Stand Af ~ne Comments

These co~men~s consist or at least 5 I Ines with
I as t be In g b I an k 1 1 n es, the s econ d. -·an Q n ex~ _to I as t
a comment d~llmlter in column 1 with the comment
w I t h I I ne 3 • . E a ch 1 I n e o f the c om men t body h as an
column 1 wltn blanks normally found in columns 2-6.

5-2

06/01/83

the f f rs t and
having (onty)
body starting
aster I sk In

The inftlal line of the co~ment body <line 3) may have 1, 2, 3
or 4 asterisks starting in column 1 depending on the type of·
output desired fr~m the DOCMENT utility.

5.1.3.l Brac~~ts <****>

A pair or stand alone comment~ of this form causes OOCMENT to
copy the com~ent body starting with the opening bracket, and at1
subsequent code until· the closing bracket. This Is required for
XREF dectar~ttons. An- example Is Indicated with the XREF
description. It-. may also be employed for other declarations or
code which should be included on a OOCMENT run.

The com~e~t body consists of asterisks in columns 1-4. with
text on the rest· of the first lfne. The comment text should
clearly 1nd1eate which is the opening bracket and which Is the
closing bracket.

A comment b o d y wh i ch i s to be i n c I u de d i n a n y 0 DC MEN T r u n
<external or l"ternal) has 3 asterisks in columns 1-3 of the
first tine or the comment body. The 3 asterisk form Is generally
used to explati the interface to a SYMPL PRGH. It is also used
in the header· documentation for common decks.

5.1.3.3 Internal Comments <**>

A comment · b o d y wh I ch i s to be . i n c I u de d I n a 0 OC MEN T r u n
selecting l~te~nal documentation in addition to external
docueentatlon has asterisks In columns 1 and 2 of the first llne
of the comment body. This Is generally used to descrlbe the
ln.terface f3r~ each PROC/FUNC. It may also be used to descrl be
other Important Information about a PROC/FUNC/PRGM.

NOS SYMPL COOI~G STANDARD

5.0 Docum~ntatlon Standards
5.1.3.4 Modul~-Comments <*>

06/01183

A comment body which is not to be Included in a OrJCMENT ruo
simply has 1 asterisk on the first tine of the comment body.
This type of stand ·alone comment -i-:-s g·enera-1 IY used tc document
design Information which helps one maintain or code revle~ a
module.

This type or comment can present design information tor the
entire PROC/FU~C, or for a- sequence of code. It should answer
the questton: "how does this PROC/FUNC code segment work?"

5.Z Progra~ L~v~1 Documentation

Every PRG~ ~ust have an overview describing what it does and
external doeu•entation descrlb1ng how it is used. The overview
documentation Is very general. A description of the fields is In
the NOS eod1~v stand~rds~ -

' *** (headhql ·

* * <purpose)

* * (comma"d fDrmat>

* * PRGM program name.

* *
*
* * *'
*
*
*

ENTRY•

EXIT• -

MESSAGES.!

NOTES.

•••••

... ·-·
•••••

•••••

* COPYRISHT" CO~TROL DATA CORPORATION, 1983 •

•
In addition, a PRGM may have Internal and module comments as

appropr late.'

NOS SYMPL COOI~G STANDARD

5.0 Documentation Standards
5.3 Oocu•entatlon of PROCs and FUNCs

5.3 Docu•entat1on of PROCs and FUNCs

Every PROCYFUHC needs an internal documentation
shout d answe.- the question: "how. Js - ~h Is ~R_OC/ FUNC

·description of the different fields is In the
Standards. ·

,
** (headligl

* * (purpose)

*

5-4

06101/83

section. It
used?". The

NOS Coding

* (PROC 3r FUMC statement with.semicolon omitted)

*
* *
*
* *
* *
* •

ENTRY.

EXIT

MESSAGES

NOTES

•••••

. •'• ..
•••••

••••••

If a PRoc· or FU~C references a based array whose pointer Is In
a common btoek, and the PROC or FUNC assumes that the pointer for
that array Is set before the PROC or FUNC is called, the entry
condition eo~mants should ,tate that assumption.

In addltti>n, a ?ROC/FUNC may have additional Internal comments
and module c~mwents as appropriate.

Where a hfgher _level of documentation Is needed for a related
group of PROCs. an extra PROC should be added to contain the
unifying docu~entation.

5.4 Documentation with Embedded Comments

Embedded eo•ments are of two documentation forms (I.e. data
declaractlon or"' action code). This Is the only type of a comment
that need ~ot be a complete sentence. This type of com•ent
should not be continued onto another line. If absolutely
necessary~ t~e comment may be continued on the follo~lng line.
In this case tne second I ine must not· contain code.

THEN #.comment which is t~o long
continuation of commment t

5-5
NOS SYMPl CO'I~G STANDARD

06/01183

5.0 Documentation Standards
5.4.1 Data Deelar~tlon Embedded Comments

5.4.1 Data Declaration Embedded Comments

Every art~y~ Item. status item, DEF and XREF item must be
docu~ented with appropriate information. Each declaration should
appear . on a separate · I I ne a c·comp-an I e d- ·by embedded cornmen ts
describing Its function (optionally, If this Is an "important
array, It •ay· be bracketed by comment lines with asterisks In
columns 1 thr~ugh' so that DOCMENT will process It.

Presets sh3uf d be commented
. function of the preset.

Individually to reflect the

The left dell~lter of the embedded comment should be In column
38 unless the statement extends beyond column 35, in which case
the delimiter Is placed at least two spaces to the right of the
statement.

5.4.2 Action Code Embedded Comments

for seGIN and END statements, the embedded comments are placed
two spaces to the right of the statement. For other statements
the embedded com•ents begin in column 38 unless the statement
extends beyond column 35 In which cas~ the delimiter is placed at
least tMo spaces to the right of the statement.

5.5 General ~oeumentation for PROCs, PRGHs or FUNCs

Each PRGM, PROCt FUNC
statement folt3wed by the
th a t s alft e I t n e • S Y f1 PL
pseudo-ops ~ust apoear as
or FUNC.

PRGl1 OK;

statement must have a corresponding ENO
PRGM1 PROC, FUNC name as a coMment on

comments containing COMPASS-like title
the second line in a SYMPL PRGM, P~OC

t TITLE)K -- description of PRGM OK.

BEGI~ t OK t

•
•
•
ENO • me.

'

NOS SYHPL COlt~G STANDARD

6.0 Examples

6. 0 E x a mP I es

6.1 COHOECK Examples

1 7

COMAS PC
COM HON

COM AS P: - S TE P P 0 INT C 0 NT R 0 l •

BEGIN I C!JMASPC #

' *** CO"ASPC
0

~ STEP POINT CONTROL.

*

38

&-1

06/01/83

48

CONTROL NOL IS T;
.CONTROL IFEQ LISTCOH1l;
CONTROL LIST;
CONTROL FI;

• *COMASPC• CONTAINS DECLARATIONS usen~OR CONTROL OF STEP MODE.

'
DEF ST PC"IT
DEF ST PP NT

#~#; # NUMBER OF STEP POINTS - 1 t
<I> tB<<I>,l>STEPHASK#; I STEP POINT I

STATUS STEPVAl
s1,
s2,
53,
01,
02;

COMM 0 r1 AS P C C !J f1 ;

BEGI'4· f ASPCCOM#

ITEM HPMASK
ITE11 STEPMASK

u;
U;

STEP POINT VALUES #
t STAGING STEP POINT 1

• STAGING STEP POI~T 2

' STAGING STEP POINT 3

• DESTAGING STEP POINT
OESTAGING STEP POINT

I HALTED PROCESS MASK I
t STEP POINT HASK #

' #
t
1
2

ARRAY l.fPT ro:STEPCNTl P(l)j # HALTED PROCESS TABLE #
BEG I 'f

' t

ITEM H~T$LINK U.too.42,1a1; ' HALTED PROCESS CHAIN LINK #
EHO

EMO I ASPCCOM I

ENO I Cl MAS PC I'

CONTROL LIST;

71

NOS SYKPL COOI~G STANDARD

6.0 Examf> 1 es
6.Z PROt Exa~pf e

6.2 PROC Exa11ple

1 7 38

PROC PSFINf f~DVALUEl,(SPVALUEl>;
t TITLE PSFI~ --INITIALIZES THE CONFIGURARTION.

BEGIN t PSFIH t

·' ** PSFIN -· IHI TI ALIZES THE CONFIGURATION.

*

48

6-2

06/01183

* *PSFIN* INITIALIZES THE CONFIGURATION OF A FAMILY OF
* DEV IC ES•

* * PROC PSFINttNDVALUE),(SPVALUE))

* * ENTRY (~OVAlUE) : NUMBER OF DEVICES IN A FAMILY. * ... f SPVALUEl a SPACE ASSIGNED TO EACH DEVICE.
* ~RRAY HEADER = PSEUDO PFC.

* * EXIT :nNFIGURATION IS INITIALIZED.

*
* #

NOTES THE SPECIFIED VALUES ARE PLACED IN THE HEADER.

•
I TE M NI) V 4 l U E
ITEM SPVlllJE

u;
u;

**** PRQC PSFIM - XREF LIST BEGIN.
t

'

XREF
BEGI'4
PROC PSLOCK;
PROC PSUNLCK;
ENO

**** PROC PSFIM - XREF LIST ENO.
I

NUMBER OF DEVICES t
t SPACE AVAILABLE PER DEVICE t

I INTERLOCKS THE PSEUDO PFC 4
f RETURNS THE PSEUDO PFC t

71

6-3
MOS SYMPl CO'l~G STANDARD

'1-''

06/01183'

6.0 Examples
6.Z PROC Exa1t1>f e

: jt
. ._...-.... .__._._~-·----.....,-~.-.----~-----~.-....-.--~---~----~--~..-,--~--..-,_, __ ._.._..._~._._--..._._._ ... _____ .

DEF OFF;SET t4t; # DEVICE ENTRY OFFSET IN PFC t
< '· f l ~\'.

DEF LIS TC OM #OIJ
*CALL CO~AMSS
•CALL COHZHEJ

I TE 11 I I;
ITEM NUM U;

PSL OCK(HE ADER J·;

I DO NOT LIST COMDECkS t

t LOOP VARIABLE t
CALCULATED NUMBER I

CONTROL EJECT;

* SET VALUES IN THE HEADER.

HEADSNlt3J • NOVALUE;
HE40$SPDEVCOJ = SPVALUE;
NU, • ~DVALUE * SPVALUE;
HEADSSPFAMCOJ • NU~;
HEA0$~PAVF[OJ a NUM;
SLIJWFO~ I • i· STEP 1 UNTIL NDVALUE
DO t SET SPACE AVAilALSE #

BEGt'i
HEAOSXXtI + QFFSETl = SPVALUE;
END

PSUNLC< f !iEADER);
RETURN;
ENO t PSFIN I

TERM

6-4
NOS SYK~PU CotH'4G ST ANDA RD

06/01183

6.0 Examples
6.3 Sta·tus ·lfst·fStatus Switch Example

6.3-Status list/Status Switch Example

STATUS E~STAT
ERRO~NO,
ERRO~ FE, -
ERRORF~:.
ERRO~ N~h
• ,

ITEM FL~G StERSTAT;

SWITCH ERRCASEtERSTAT
OK: ER RORN01

PFEXISTSsERRORFE,
t-mE~TR Ya ER RORF th
W~ I TER. R: ERRORNW;

I

• #

' •
•
' #

II

ERROR STATUS #
NO ERROR #
FILE ALREADY EXISTS ' FILE NOT FOUND I
UNABLE TO WRITE PFC ' END OF *ERSTAT* #

ERROR CONDITION #

ERROR LIST I
NO ERROR #
FILE ALREADY EXISTS I
FILE ONT FOUND #
UNABLE TO WRITE PFC f

A st at us I t s t ma y . a I so b e de f i n e·d w i th an up p e r I i m i t en tr y
put -at the e~nd of the llst.- Thls 1 upper limit can be used In
the code to t~st that a variable Is within its defined range.
In this styt• the upper limit entry Is terminated with •
a semi-colon on the same line.

Example:

ST~TUS ERSTAT
ER~O~~o,

ERRO~FE,
ERRO~F~1
ERRO~~Hh
ERRO!:tE~O;

ERROR STATUS #
NO ERROR #
FILE ALREADY EXISTS I
t FILE NOT FOUND I
I UNABLE TO WRITE PFC J
I END OF *ERSTAT* J

6-5
NOS SYMPl COOI~G STANDARD

6 • 0 Ex a mJ> I e s
6.3 Status List/Status ·switch Example

t
* PROCESS THE ERROR RESPONSE.

GOTO E~RCASECFLAGJ;

• * stand al3ne comment here or an embedded comment on the label.

PFEXISTSt

NOENTRY:

GOTO E~O:ASE;

WRITERR:

GOTO E~OCASE;

OK:

GOTO E .. OC ASE;

ENDCASE:

* PROCESS.THE ERROR RESPONSE •

•

embedded comment t

embedded comment #

embedded comment #

I embedded comment I

NOS SYHPL-coot~G STANDARD

Al.O Addendu• for SMF Project

This· addendum describes chan~es to the NOS. SYMPt coding
standard·: for· the Screen Management Faci 11 ty CSMF> project.
Certain oarts· 3f this change in the standard shal I be · retevent
only to the Futl Screen Ed1tor and not t~ tha·screen formatter.

1. Structural changes

a. ~ested procedures/functions are allowable under the
folfowfn~ conditions. The terminology us~d here shalt be
•compllat1on unit" for an outermost PRGMiPROC/FUNC, s1nce
that Is the scope of the map and cross-reference In the
fisting.

Procedures and functions may be nested. A compllatlon unit
may cont~1n XDEF-ed Internal routines provided that a
PROC/FU~C compilation unit is ne~er called via the main entry
point• 'ny routine may.contain internal routines which are
not XOEf-·ed .-, Th at Is, nest ·1 ng of XDEF-ed PROCs Is on t y
allowed one level deep. ·

The see~nd tev~I- of nestirig ·~s used only for routi~es which
perform an algorith• nof expe~ted to be of value outside of
~:he : p are, t r o'u t i ne • S e c on d ·· I eve I ·, n e s t e d rout i ne s s ho u I d be
v er y s hu, t e 1 n t he i r · I o g t:c: a I s t ni ct u r e • The s am e pr 1· n c I p t es
M I t I a pp I y f o r deeper· a· eve I r o Ot i' n es •

{"i

Non-XOEF Internal procedures must have the same header
doc·umen ta t1 on as any extern a I ·:· pfoc·edur e.

b. · Exterhal symbols may b~ more than 7 characters long. The
programmer 1s responsible to assJre uniqueness within the
first 7 eharacters. These oversize external names, white
per.mlss'' le,· are discouraged and shou Id be used on I y when the
pro·gram!fter cannot reduce the routine! name to a 7 character
name wit~ sufficient clarity.

c. COMPASS subroutines are allowed for optimization of tight
loops. Sue~ routines should be designed to contain a minimum
of deelslon-mak:lng logic.

Al-2
NOS SYMPl COOI~G STANDARD ,.. • ~·, ', \ i

06/01/83

d • E a c h c () ll;P ·f I a t I o n un i t I n t he e d i to r s ha t I c a I I CO HA F S E as " ·i
I ts ff r st common deck. This d eek con ta Ins symb o I and mac.r 0.1~'. i:;I'~ f,: ,, ;•

deflnltf()ns which must appear early in the source code. Otheres~15:
common decl<s may be·_cal led either in alphabetic order or·:-, if)!' •r, n;
functlonaf order. One example .of functional order would be
the storage mapping of a common block which can only be~2
described by us"fng several colifinon- deck's" (this can arise 1n a
situation ~here nested common decks Mould be desired but the ~
product ts Is built via MODIFY> correct storage mapping would
t h us r e q tJ f r ·e th a t t he common d ec ks b e c a I t e d I n a pa r t I e u I a r ~ t·

order for' _,hlcn alphabetic naming may not be reasonable.

z. Statement rormats

a. The FOR keyword may be used. CONTROL FASTLOOP fFASTF!JR),
is not per•f tted.

,,
l'

b. FOR 1oops and simulated case statements are a11owed to ~
termfriate wtth a RETURN statement or the IORET macro. In the
editor, the .ERRJUHP cal I may be, used .to .ter,inate any blt>ck
of code."··. ERRJUHP w i 11 be a procedure which • s I tse If a If owe·d ·
to ex~cut>e a .,Jump Into a pr;.ocedure. ERRJUMP Is ·:used to clear··
the e d I t ~ r · . r n t o a no mi n a I con d I t i on at t e r enc o un t er 1 n g ;'a
syntax er·r_,r. In the editor,, .co~e .may aliso be termf nated by,~·;
a calf to a ratal-error routine.

Loops may tJe based on labels .a"d GOTO-s In place of FOR on·l·Y'.·:<
when the prbgrammer can defend this usage as substantially
more errtctent or as being simpler to maintain thand
functtonallY equivalent structured code.

.. ' '!

S I mu I ate d c as e s t at em en ts m. a y :· use a back war d Jump to a ch I e <V;'1!t ,
the common exit when the ·case ··Is embedded In an lteratl'(e., , ..
structure for which labels and GOTO-s are allowed.

-\1-3
NOS SYM.Pl. C 0) I~ G STAN DARO

1 . ., ·•

Ob.lO.l/ .. 83

Al.O Ad~~~dum for SMF P~oJect

'· '

c •. l PRIJCll=lJNC lPRGH statement sha.11 b,egi n 1·n co fumn 1 1'or a
coapllat•o~ ~nit and for a flist~l~~et nested P~OCIFUNC.
PRO~/FUt-.fC'. statements nested ., to d~·eper levels. shal I be
i n d ~n t e d 2 co 1 um n s p er I ~ v e I • ·· T tl e body o f co de I n a rout I n e
sha·lt be Indented 2 columns from .the PROC/FUNC statement.
Code contained ln a CONTROL If bracket shall be indented 2
coluMns fro~ the CONTROL statejent. B~&INs and ENOs shall be
indented Z columns, and the code within the BEGIN/ENO shall
be _al lgned wl th the BEGIN/END. In the editor, IOBEGIN and
I 0 E NO ma e r o s sh a I I be i n d en t e d as though the y a re .BE GIN I P-4 O •

3. Documentation

a. Ooeuwe~taton of ENTRY/EXIT
usage must lnc1ude assumptions
pointer ~or~s for based arrays.

conditions
regarding

and of storage
manipulations or

b. For compilation units Mhose main entry point is uncalled,
the ma1n e,tr~ may carry doc~mentation considered app1lcable
to .~1 t eJJbedded pr.oc.edu:r.es., .. ,~ , ..

c. XREF and XO,f:,F may .. -be. pro.-vl-ded by. I is;ts of routJ,n~e."na~~s
in comrno11 decks_- Such: lt'sts of XDEF sho:uld be .1 isted, but
suc·h lists of XREF should not be. ·1 iste·d .. except for a comment
noting t~e call to the common-deck. otiCMENT brackets are not
requ1 red.

d. Stand alllne comments may be .a single I ine starting wt th
a pound s I g n f n co, I um n l and , end I n g. . w I th a po u n d s I g n I n
colu'ln 11·, rather than the COMPASS. style comment (asterisk In
colµmn.,.1 of' the comment body). · ·" ..

The use af preceedlng and p;oc~edlng blank tines Is
negottab1;e bet.,een the, programme.r an,d .reviewer to achieve a
mutually satisfactory visual ,effe~t~. N~te that this
s I mplt f I ed form for stand at one co'1men·fs·, Is .. on I y app 11 cab I e
tor: comments not intended to be printed by the, OOCMENT
utl,ity.

4. Pseudo-ree~trancy considerations (for FSE and SMFEX only).

a. The SMFEX Executive may contain a· I imlted number ot
labels within if or for blocks, and e~ternal labels within
procedures, as necessary to Implement pseudo-reentraney.

b. SMFEX and FSE wltl contain procedures subject to reentry
under contr~I of the SMFEX Executive. A reentrant procedure
Is a proeedur~ which· calls another reentrant procedure or
uses the delay or rec al I statements. There cannot be
reentrant functions.

NOS SYMPl caot~G STANDARD
Al-4

06/oi183' :;,.' ·i;.

A 1. 0 Ad d·.e·n d"U'lt;'' I, ()r .' s pt F pr o··J e ct J . .A:.~- ~~ :Jr~~ ·,~q
1

•
4

•

.... _..-....... .-..~ ... ---.-....-..... --.,_._ ... _.._._._....~----.-.-.._..-.-.,_._,._.._..._ ___ .._~__._~·-----~------.-.._~~J.i:: ~~}. :~.'· ~ '

c. The r~entra~cy technique severly restricts the ~sag' of
locat· storage and of parameters. The programmer shou'd'
dedicate ct>1u1on' block stor'a.ge to the functions performed by~ '
a reentrant r·outine, in pre·ference to locals. Note that'· the·· ·~,.
common b t oc k I n c I ud es one g·e n e· r a I purpose v' a r I ab fe . w h I ch I s ·
stackabfe, so that reentrant routines can ·dynamically··,;;,
a 11 oeate storage on a I Im I ted ·-sca-1 e. · !·

d. Reentr~nt procedures must minimize the use of local~
s to r a g e • ~ n y · s e q ue n c e of co de · I n a r e en t rant p r o c e du r e w hf ch
uses focal stor~ge must be preceded and followed· by stand~
alone co~~ents of the form

LOCAL' t . '

The code w1thin the comments cannot call any ··reentrant'-'·
routJnes.t

e. Reentrant procedures must minlraize the ·use of parameters.
When pa r·a rn e t e rs are use d, i t I s es sen tfa I · tha t the pa r am et e rs
be re a d-o n t y , fl • e • the sub rout I n e does no t _ com pu t e a _ n e w
valu'e) 1J and 'they· must be used' before' any reentrant procedure
I s ca I t e d • , t.J s e 0 f p· a r a me t e r s·· S'h a rt b e . f ~o ... 0 ••e d I? y . a st a n 'd
a I one· co1ment o·r the form:

t E~D PARAMETERS #

r. Reentrant routines lo~e contr~I by calling DELAY or i·

REC Al L. In: the s Ing I e-os e(· version, these are COMPASS ·1 •

subroutfn es wh I ch execute 're ca fl macros. In the mu It I-us er·
version, these are DEF-ed to be cal Is into certal·n· efltry "
points within SMFEX to Invoke the multi-tas~ing executive.

g. Reentrant routines· ate ·b·r\;acketed by the IOSEGIN and. IOEHD' 0

·-

macro s. In t he s I n g· t e-us er ' . v'er s I on, th es e a r e DE F-e d · t;o · · ~- ·
slmpl y yl ehf BEGIN. and END·~ ·in- the multi-user vers Ion, these·'
are OEF-ed to generate cod·e .to maintain data structures which
he I p th e S t1 FE X mu I t I - task .ex e c u t I v e s up e r v i s e the r e en tr y • ,.
Reentrant- r~utlnes cannot use the RETURN statement, but can
use the IORET •aero.

Al-5
NOS SYHPL.CO~I~G STANDARD

Ob/01/83

Al.O AddenduM tor SMF Project

h. Reentrant routines must be restricted as to the type of
monitor call~ they can Issue. either explicitly ~r by calling
other · r ou t 1 n es • i In p ar t i cu I a r, r e en tr ant code 11 us t us e on I y
CIO ~nd each CIO call must be.explicit. This effectively
bans the use of the standard NOS common decks. Furthermore,
the onty· fl te .which can b·e_ dealt ttl th by reentrant code Is
the edttor workflle. Termlnal._I/6 wlli ~e funneled Into one
module o' code, which shall conditionally compile . to yletd
conventlonal FET-s and CID calls for FSE, and calls t~ the
SMFEX Execatlve for SMF.

I. The only· writeable storage which can be used other than
loca1·storage as described above shall reside in a slng1a
common blbck, or shall reside In based arrays wh~se pointer
words are In the common block. The common block shall be
organized Into several sections based on the various degrees
of reentr~~cy services provided by the SMFEX Executive. In
the slngf e•·user· editor, po·rt-lons of this common block must be
compiled t~ map exactly the same as the multi-user version,
sJnce that portion of the co~mon block ls tranferred verbatim
through ... tt1e workfi le . for communication between the two
versions or the editor. All critical storage mapping must be
Identified as such in documentation.

J. Reentrant code shall minimize dynamic relocation of based
arrays. Relocation ls alloMed If the pointer word is treated
as non-r•entrant. Relocation is possible with· limited
reentraney prov1ded the polntet word is mapped Into the
reentrant· section of the common block. Note that whf le thls
will keeo a pointer value alive for the duration of disk I/Q,
It is not ah1e to keep any pointer valid across terminal I/O
unless the pointer points within reentrant commGn itself.
This Is due to the re-mapping of array locations performed by
the SMFEX·' Executive upon Internal swaps. For those arrays
re-maQped ~Y SMFEX swapping, no module except SHFEX can ever
change t~e pointer word.

