
CYBER 180 System Interface Standard

CYBER 180

System Interface Standard

by

Sunnyvale Product Design and Advanced Systems Design

Feb 3, 1986 (updated)

1

86/02/04

:
I

CYBER 180 System Interface Standard

1.0 GENERAL

1.0 GEtifRaL

~or hardcopy of the SIS, do (SN452/125 In SVL, SN302 In ARH):
acqulre,s2196Jun=dcs
ses.print 52196

1-1

86/02/01t

Por copy on 8.5" x 11" inch paper (In SVt), add print parameter fc=sp.
(You may have to wait unt't etenl ng for COpy.)

For current status of pending SIS daps, see flte SISOAPS/pMo0336 on SN452.

ADSCIBCCB approved SIS daps Incorporated In this revision are:

S5036 Change the Key parameter (Wilson)
S5048 Keypolnt RangES (Mages)
$5059 Statistics (Neuhaus)
55060 Product identifiers for CDCNET: DC , NP (Rundquist)
SI062 Product IdentlfJer for Distributed Files: Df (SprandeJ)
55067 Pass1ng BIT data type parameters (Barney)

in add:ttlon, thetalJowing pendlngS[S daPsare conditionallY included'

55102 Product identifier for Concurrent Maintenance utllJtles: CU (Redlo)
S'103 Product IdentIfier for eYBll Formatter: Cf (WachutkaJ

The following notes Nill enable you to look at updated sections of the SIS
wttbout printing the ent.re document:

Fo~ S5036, see section 2.2.4.3, change in KEY prameter.
Ror 55059, see section 3.5.4 Statistics.
for Product Identifiers, see section 4.1.1.1.
For ~5048, see section 4.7.2.1 Operating System Keypolnt ranges.
Por 55067, see sections 5.2.1.1 and 5.2.5.2 (inc'udJng Its subsections).
1.2 CHARIER

1.2.1 PURPOSE

The purpose of thJ$ standard Is to ensure a uniformity across the operating
system and product set that .111 make the totel system more easi'y usable and
human englneered.

1.2.2 '5C OPE

This standard covers the software system w~lch Includes both the operating
system and the product set. The standard covers product-to-product,
product-to-user, operatjng system-to-yser, and product-to-operatlng sJste.
I'nterfaces. These interfaces may be documentedtn the NOS/VE and product

I
I
• • :
:
I
• •
I
:
:
• • :

:
:
• •
:
• •

CVBER 180 System Interface Standard

1.0 GENERAL
1.2.2 SCOPE

1-2

86/02/04

ERSs. This System Interfece Standard Is the controllIng document tor all sucb
Interfaces.

Any external Interface which is not der jned by an Industry standard may be
datlned In this System Interface Standard. In order to achleye a uniformIty
across the product set, certain Internal interfaces shall be Included In this
standard, e.g. caJllng sequences.

With respect to command-level calling sequences, parameters, tnd options, this
standard ~nc1udes (see section 2.2.4) a.1 options for ati parameters of all
ceIling sequences except those of NOS/VE wbic~ are documented In the NOS/Ve ERS.

(Among options of parameters, there may be InconsIstencies from product to
product. Su~h inconsJstencJes wl.1 be removed 1n tbe future by daps against
the SIS and code changes, or noted as exceptjons - see Item 5 of section 1.2.4
befow. At this tIme, it Is more important to document exIsting usages In
order to.sak4 theSIS co~pjete tban 1t is to remove Jncons4stencJes and
confllctlng usages.)

Interfaces in code that do not conform to the SIS, either by co •• lssion or
omission, should be 'SRed. The project-defined priority of such PSRs may not
be less than serious, and the such PSRs will not be rejected by projects.

1. Z.3 GOALS

The spec.f1c goals of the System Interface St.ndard are:

8. ConsJstenc) within and acrOS$ the system.

b. Human engineered for user.

c-_ Achievable w' thin CYBER 180 tJmeframe.

d. Good pe,for.ance.

e. Externa I Interfaces 1:1 ke CY170 wbere this does not
confllet ~Jth a, b, c and d above.

There must be more than trivial geln In aspects of human
engineering to caUse deviation from CYl7a external
'. n t e-rfaces.

1.2.4 REVIEWING AND UPDATING THIS DOCUMENT

The elSO SIS has been thrOugh a number of rev jew cycles and has been
forma,jy approved by the C160 Baseline Change Control Board (BCCS).
It 15 thus considered fairly solid.

However, It is recognized t~at the SIS Is a Jiving document with a

CVBER 180 System Interface Standard

1.0 GENERAL
1.2.4 REVIEWING AND UPDATING THIS DOCUMENT

1-3

86/02/04

contInual need for updating. 'lease follow the foJloNlng guidelines
1n re#lewing and updating this document:

1. limit comments or updates to question of Inaccuracy, Jack of
com~letenes$' or necessary technlcal change. Avoid questions
of personal preference.

·2. For re.l'atjve1y minor problems or Questions resulting froa a
normal reyjeM, a normal DeS comment Is appropriate. It Is the
responsibilIty of t'e approprlate author(s) to resolve the comment.

3. For mor. major updates that may be Somewhat controversla., a
stqnd-alone DAP Is appropriate. ThIs a110ws a thorough revIew
of the Issues Involved. When approved, the OAP w4JI be
included In the next SIS update. The SIS referee or edItor
should bel nformed o,f :any p' ansto subml t such a OAP and the
DAP should be ~n the form Of a proposed SIS update.

4. There will be occasslonal "minor review cycles" of the SIS to
incorporate mInor changes and previously approved OAPs.
Authors may make minor changes to theAf sections at this tiM.
ro~ revJew and approval.

i.if conf J;jcts exist between tNoproducts that cannot be ,resolved or
change is impractlcaJ, the exception will be documented In the SIS.
The nu~ber of Exceptions Is expected to be very small.

CY8ER 180 System Interface Standard
2-1

86/02/04

2.0 INPUT

2.0 ItlEUI

This sectJon describes the standard and conventIons for
lnput to products. Input standard Is defined for Syst ••
Command Language, Control statement, source flle
organizatIon and contents.

Tbe System Command language is the set of language rules
and conventions to be followed by any software product
that presents I user lnterrace (wh'ch Is not defined by an
Industry standard). It is documented In the NOS/VE iRS
(DeS documents ARH3609, ARH3blO). for example, commands
to call products, and operator cOmmands will conform to
this language deflnJtion. It is a requirement that all
products use the standa~d command language rout1nes to
process system command language statements (such as
product c~11 co.mands or product directives). The lntent
here is that products do not dupjic.te code or functions
already provided by standard command language routines.
See NOS/VE ERS (ARH3610) tor a description of these
routines.

This standard speclrles the parameters which can be used
In commands that catl CYBER 180 products. The syntax of
the command Is documented In the NOS/VE ERS.

2.2.1 APPLICABILITY

This section specifies all parameter names, descrJptlons
and defaults of parameters on a command that cal's 8
product. RequIrements for use of the parameters are=

•

..

•

•

If a pro~uct offers 8 capab.alty Mhlch 1s the same as
one deflned 1n this standard, then the specification
in thIs standard must be used.

A product is not permitted to USe a perameter defined
by the standard for a purpose other thAn that
specifled by the standard-

A product need not Implement all tbe parameters or all
the parts of 8 parameter In this standard.

Hew parameter names or options must fIrst be apProved·

CVBER 180 System Interface Standard
2-2

86/02/04

2.0 INPUT
2.2.1 APPLICABILITY

•

•

as additions to thIs standard.

If aproductproYides a functl'on described b,a p.ra •• ter
in this standard, the described parameter name and Its
standard aliases must be supported by the product as a
ml nl mum.

At lASES

A. Standard atJases are made up of the first letters of the
parameter name. AJI products wblch use the parameter
must support the standard aliases.

B. Aliases ~hlcb do not conform to the first Jetter rule,
but which haye wldespead usage, can be standard aliases
only if Explicitly documented as such In sectIon 2.2.~.3
('8r~meter Names and DescriptIons) of the SIS.

c. Non-standard aliases are those alIases which do not
conform to the flrst~letter rule, but which are used for
compatibility witb older versIons of a NOS/VE product.
Ne .. products should notsuppcrt non-standard aliases.
Olcer products may want to phase out thelr non-standard
a I i ases.

D. 170 compatible aliases are those alIases which do not
conform to the first-letter rule, but which are used for
compatlbliity with a 170 product. Produ~ts MhJch are
not requIred to be compatible with a 170 product should
not use these allases.

Some guIdelines for propo5Jng ne_ parameter names and/or
options are:

1. Use a new option 01 an exlstJng parameter 18th., than
a neN parameter name 1f the capability Is an extension
of an already defined parameter (example: use D=DS
Instead of inventing a new parameter OS for debug
statements.

2. for reJated parameters, use atlases that empha$lzl the
re4.tlonshtp (example: LO to relate listing options to
the ,jst file, L).

CYBER 180 System Interface Standard

2.0 INPUT
2.2.2 TERMINDlOGY

2.2.2 TERMINOLOGY

2-3

86/02104

Default: The value used for a parameter when the para.eter
does not appear In a command. Section 4.3 on Inst •• latlon
parameters Indicates which parameter defaults are
Installation changeable. The defaults specIfied In
section 2.2.4.2 ate those expected to be most often used.

2.2.3 SYNTAX

The syntax of tbe command is defined in the NOS/VE ERS.

If a parameter Is omitted, default values are used. Use
of (parameter name: Off> results in turning of# a sjngle
option parameter or boolean single specIfied value
parameter. Use of <parameter name> = NONE Indicates that
a specJfied vatue Is not supplied for a multipf~ value or
multiple option parameter (for example, LO = NONE causes
none of the list options to be selected).

When the parameter value is a flle name, the file n.me
SNULl should be used to negate that ,lie (fof example,
B:$NULL causes the product not to produce a binary object
code file). SHUll Is a reserved file name. A read will
respond with an end-of-tnformatlon. $NUll Is an Infinite
51 nk for writes.

The following algorithm Is applieo to parameters:

1. Initially, all value options for t~ls parameter a~e
considered deselected (l.e. there afe no inltJa'
values).

2. Only the optlcnts) specified In the value list .r.
then selected.

The <name> used on the command to call a product can be
either an alias or a long form as follows:

AI I as

APt

BAS Ie

COBOL

tong form DeScription

a programming language

beginner's all-purpose sy.bollc
Instruction code

The language C

common bUSiness oriented language

CVSER IBO Syste. Interface Standard

2.0 INPUT
2.2.3 SYNTAX

CYBll

EDIf

EOll

FMU

FTN

LISP

MAP

MERGE

PASCAL

PROLOG

PL I

au

scu

SORT

vx
2 • 2 .4 PAR A ME T E R

EDIT_fILE

ED I T _l I BR AR Y

~fORTRAN

eyber implementation langua,.

Edit Screen (for raw text)

Edit Screen (for Source Code
utllJty libraries)

file management utt'ity

formula trans'atlon

Matrix Algorithm Processor

merge

P ascI I

Programming In Logjc

query update

source code utIlity

so;rt

UNIX system emulator

Occurrence of any parameter more than once In a control
statement is an error.

2-4

86102/04

Product set members providing the I, B, and l parameters
must support the foJlowJn~ positional ordering on a
non-keyword call. There Is no guaranteed common ordering
of other parameters to a product set member except ~h8t
might be documented In the reference manuaf for that
product.

1. INPUT

2. BINARY (normally the maIn desired output of a compiler)

CYBER 180 System Interface Standard

2.0 INP UT
2.2.4.1 Positional Ordering of Product Set Parameters

3. LIS T

2-5

86/02.104

See the Command Interface (Part II of the NOS/VE ERS for a
description of the flJe reference, which Is the syntax to
be used;for specifying a file name as a parameter vel14e.
rf no position Is specIfied, the product MI.t reposition
the file before use as folloNs:

a) for a file named $INPUT, no reposltlonJng will
takeptace If the fl'e Is at beginnIng of
information, at end of Information, or at a
partttlcn boundary. Otherwise, It w11. be
repositioned to end of partition before use.

b) for a file named SOUTPUT, the product Mijl do no
repositioning before use.

c) for all 0 ther f lies, the products wi II r epos i tl on
to beginning of Information before use.

Example: If a call to SCU bas been made to write t~ree
source decks to COMPILE (the first FTN, the second CYBIl,
the third FTN) and they are to be compiled with the object
code placed on fl'e lGO, the $ASIS positIoning must be
specified on t~e second and third compj'ations since
default positioning Is rewind.

fTN I=COMP ILE

CYBIl I=CCMPIlE.$ASIS,B=lGO.$ASIS,L=SOUTPUT

fTN I=COHPIlE.SASIS,S:lGO.SASIS,l=SOUTPUT

There are four kinds of parameters:

(1) Single Specified Value

This is a parameter for whlch the user must specify a
value, such as 8 file reference or a boolean as In the
for m=

Keyword = <boolean)
where:
<boolean> :: = <true> ! <false}
<true> :: = TRUE ! YES 1 ON
<false> :: = fALSE! NO 1 Off

CYBER 160 System Interface Standard

2.0 INPUT
2.2.4.2 Types of parameters

2-6

86/02/04

For the sake of consistenc, the values ON and OFf will be
used in thIs document. Products may choose any of the
va.ues for <true) and (fa4se> desired and describe the
choices as suc~ in the product documentation. The
operating system ~III accept the values for <true> and for
<false) equivalently when the standard command JangU8:ge
routines for the control statement processing are used.
As a result, users wl.1 be able to enter any of the yalues
for <true> or for (false) without regard for what v_lues a
product has chosen to document.

(2) MultlpJe Specified Value

This Is a parameter for which tlore than one value (such as
file references) may be specl fJed. The fOrm
(parameter-name = NONE> will be used to Indicate that none
of the avalJable options for a parameter are desired.

(3) Single Option

This is a par.meter for "hJ~h the user speclfJes

<option) = ON

(4) Multlp'e Option

This Js a para.eter for which the user may speclf, the
names of more than one option.

For multJpje specified vaJue parameters the value list
syntax Is as described In the NOS 180 ERS, Part I section
"Parameter lists and Types". A value list consists 01 a
serIes of value sets separated by one or more spaces or by
a single comma. When more than one value set ts
specJfled, the fist must be enclosed In parentheses. A
va1ue set consJsts of 8 series of values separated by one
or more sPaces or by a single comma. When more than one
value Is speclfJed the set must be enclosed In
parentheses. T~e rule is that an outermost pair of
parentheses belong to 8 value list and Inner paIrs of
parentheses belong to yalue set.

The 'form <parameter name:: NONE)td' •• be used to Indicate
that none of ava.labte options for a parameter are ~esJred.

CYBER 180 System Interface Standard
2-7

86/02/04

2.0 INPUT
2.2.4.3 Parameter Nlmes and Descriptions

The parameters are described in ajphabetlcal order.
Parameter Standard

Name Alias Parameter Description

AUDIT A

BINARY B

COllATING_SEQUENCE_X CSA
CSN
CSR
CS5

AUD 158 non-s t andarda. J as for AUDIT.
This parameter Js used to indicate t~8t
the product Is being run for audit
testing. The parameter causes the
selection of any other parameters which
may be needed for audit testIng as wetl
as selecting the method of processing,
wblch may differ fro. normal processing.
For example, In COBOL the Jist of Items
might inciude the mode where dlspJ.}s of
numeric ltems would not be edited.

Single option parameter. Default: the
option Is not selected.

AUDIT = ON selects this option.

BINARy_OBJECT and 80 are non-standard aliases
for BINARY.

Binary Object code output fIle.

This parameter specifies the flJe to
contain the object code or text produced
by a compiJer or assembler.

B = <fl t e)

B-$NULl Indicates that no such bin.r~
object code output fl'e Is to be written.

SIngle specified value parameter,
defau't = SLOCAl.lGO
If a list of fltes Is specified for INPUT,
then alt the bInary outputs accumulate on the
specified 8INARY fi'e.

SEQY 18 a 170 compatJblllty a118s.
Colt8tln~ sequence (X = Name, Step,
Remainder, or Alter; and Y=N, S, R. orA).
The parameters SEQN, SEQS, SEQR and SEQA
control deflnjtlons of collatJng
sequences for an appllcabje product.

CYBER 180 System Interface Standard
2-8

86/02/01t

2. 0 I~PUT
2.2.4.3 Parameter Names end Descriptions

COMPILE c

COMPIlAT.ION_ co

CSN. The CIN parameter signals the
start of a colJatlng sequence
definition- Tbe deflnitJon of one
coJlatlng sequence contjnues wJth CSS,
CSR, CSA parameters; It is terminated
by any parameter not one CSS, CSR,
CSA. The form •• :

tSN = <name>, where neme Is the name of
the collating sequence.

C5S. Each CS5 parameter specifies
eitber a sIngle step or a range of
steps. The form Is:

C5S = <value-Ijst>, where tbe
expressions In the yaJue lIst are
character expressions.

(SR. Tills par.met,er .speclfles all
characters In the char acterset not
speclfled In a CSR parameter, explIcit.,
or Imp I "cl t J y. The form Is:

CSR = ON

CSA. Thls parameter may be specified to
alter all equated characters In output
records so they become the first
character in the appropriate CSn
parameter. The form Is:

CS A = ON.

Camp lief i Ie.

This parameter specIfies the output llle
on which compiler source statements are
written. Examples are: the output
produced by 8 conyerslon aid utlfltYi the
updated source output by the source
maintenance utltJty for Input to an
ass 8mb I er or comp I I er •

Single specified value parameter,
default = COMPILE.

If selected, co.pJlation directives (see

CYaER 180 System Interface Standard
2-9

86/02/04

2.0 It4PUT
2.2.4.3 Parameter Names and DescriptIons

O'{ RECTIVES

cc

OA

SIS sectlon 2.4) ~III be recognIzed.
Otherwise compilation directives .111 not
be recognJzed--Jf dl~ecti¥es are expressed
8S a special form of comment they .IJI ba
tr eat ed flS at' eal I other comments.

Single optIon parameter. Default = ON,
directl¥es are recognized.

If selected, alt possible CYRER 110 to
CYBER 180 product differences wlj. be
converted to the CV1SO version or
dJagnosed with messages. For exampl., In
COBOL Items specified as COMP-4 Mlj. be
assumed to be COMP. Alt products which
support this par.meter must provide a lIst
of suet conversions or assumptions In their
manua's.

Single option paramete,. Default: the
optfon is not selected.

e17o_COMPATIBLE = ON sefects the option.

Debugging aids.
This parameter specifies the debug optIons
to be seJected. All products need not
support aJl options. MultIple options may
be speci#Jed. The defined options are:

All All of the available options are selected
for the DEBUG_AiDS parameter.

OS 0 e buSJs. J n g stat em ent s • A II d ebu g g J n g
statements will be compiled. A
debugging statement Is a stat •• ent In
the source Mhlcb Is ignored by the
product unless thJs option Is
specIfied. Debugging $tatement~
ysually specIfy debug actions for the
module contaln)n~ them. See also
s ee tJ on Z. 4 • 7 of til iss t and ar d •

OT OeBUG TABLES. Generate line nuaber
and symbol tables as part of the
o b J e ct cod e •

DC ObJect code re,ardJess. Produce
object code, regardless or errors In

CYaER 180 System Interface St~ndard
2-10

86/0Z/Olt

2.0 'INPUT
2·.2.4. 3 Parameter Nemes and Des·cr Iptlons

DC

the source and severity of such
errors. For compilers, execution of a
tine conta1nlng a fatal error should
result In a ca" to an object t'm.
routine whIch ~Itl terminate the
execution with a message. (See
sectlon 3.4 for error status returned.)
Products with no object time library
may generate a zero (program error)
lnstructon for Jines In error.

PC Parameter checking. Generate Plf •• eter
checking InformatIon as part of the
object code. If PC is specified,
any compiler which supports paraReter
checktng will generate actual and
formal par emet ef dscription
Information In the object code to
enab'a 'oad-tl.e detection of
parameter mlsmatches.

TR Ftow tracing. Activate trail pragmats
tn the source program. Unless TR Is
specified, trace pragmats haye no
effect.

Multiple option parameter. The defa~tt Is
OA=NONE

This parameter specifies the welQ~t table
to be used for the evaluation of cha~acter
(string) relatIonal expressions and to be
used by IntrlnsJc functions which .re
co'lated sequence dependent (for example
CHAR and ICHAR an fORTRAN). The defined
options are:

U or USER
A user specIfied weight table is
used. In fORTRAN a collection of user
cal J .0 • e pr oc e ~ re sl s pro y I de d for
manjpulating the user weight table.

F or fIXED
A flxed (unmodifiable) processor
speclfled weight table is used.

Single specified value parameter,
defaul t= fIXED.

ERROR

CYBER 180 System Interface Standard
'2-11

86/02/01t

2.0 IN,PUT
2.2.4.3 Parameter Nemes and Descriptions

Of

E

El

DIRECTIVES Is a non-standard alias.
GIRls a non-standard and a 170 compatible at ils.

Additional parameters NJII be read troM
this file after all of the control
statement parameters have been read.

Df=fJle-name
Parameters wi.' be read from ,lie,
fll e·-name.

Df=(ftJe-namel{,11te-nameZl •••)
Parameters will be read from the
fjles In tbe order that they are
named.

Multiple specified valuepar.mete,r,
default = NO ADDITIONAL PARAMETERS ARE
READ.

Error file.

This parameter specJfles the name of the
flle to receive error lIsting
info,matJon. In the event of an error
to f E l s peel fie d sever I tJ or b j ghe r) the
dIagnostic Is written to the E file. It
Is hlgbJy recommended (though not
required) that a product also out,~t the
offending source line or lines to the E
flle In conjunction with the diagnostic.
If there Is a listing file (see l
parameter) the error line and dIagnostic
are .tso written to the L file. If tbe
file name of the E file 1$ the same as
the file name of the l flJe, then the
error ltne and diagnostic are not ~rltten
tw Ice.

Single specified value parameter,
default = SERRORS

Error leve I •

This option Indlcates the severIty level
of dlagnostlcs to be prlnted on the
user's listing. The Jevels are ordered
by increasing severity. Specification or

CYSER 180 System Interface Standard
2-12

86/01104

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

a particular Jevel seJects that level and
all more severe 'eve)s. Products Mltl be
a •• owed some flexIbility In specjfylng
the ki nds of dl agno.s't i cs th at 'faj I In
each of the four categories: lnfor.atlonal,
warnIng, fatal, end Gatastrophlc. The
fo.lo~lng descriptions are provided as 8 guide.
The leve.s In increasIng order of severity are:

I Informational. This is an Informational
message used to flag a suspIcious usage.
The syntax Is correct but the usage Is
questIonable. for 170 compatibility only,
products are f,ee to use -I' In addition to
·1'. (However", only one 15 used, ,t must
be I.) Output must always be ·1'. never 1,-.

W Warning. TbJs 1$ • dJagnostlc M~ere
the syntax is Incorrect but the
product has aaGe an assumptIon (sucb
8S adding a comma) and contInued.
Messages indlcatlng attempts at error
recovery are at this level.
DiagnostIcs of W level should be
errors that the user can avoid by
program modification.

f fatal. This Is a diagnostic whlcb
prevents the product from processlno
the statement in which It occurs.
UnresolvabJe semantic errors also
fat. Into thi5 clas5. Such errors
may not relate to a specific
statement In the program unit.
Errors of type 'ERROR' wlJ. be
treated as equiv.lent to ·fATAlt~

C Catastrophic. This class of error 15
fatal to continued processing. The
p~oduct Is u~.bte to contlnue ~ork on
ttAecurr ant pr cgr am unit,. However,
It shoutd stitl advance to the e~d of
the current program unit and atteMPt
to process a subsequent unit (.f the
product speclflcaton allows multiple
program units In a compilation).

Single speclflec vatue parameter,
def au I t = w.

CYBER 180 System Interface Standard
2-13

86/02/04

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

ESTIMATED_NUMBER_
RECORDS

EXCEfPTION_
RECOROS_
PILE

E Xp RESSI ON_
E'V AlUATI ON

ENR

ERF

EE

El =NONE causes no e,rrors to bel i sted.

Estimated Number of Records.
This parameter specifies the estJ •• ted
number of records to be processed by a
product. For example, SORT can use it to
cause seJectJon of efficient modes of
processIng.

Single specified value parameter,
default = 80000'MRl.

Tbls is a 'I Ie containing exception
information. Products will be al.o~ed
flexibility In defining Its contents.
For example, SORT MERGE wljl use ,t for
out-or-order merge input records.

Single specified value parameter, default
Is product dependent.

The options of this parameter cOntrol the
sty1e of code generated for the
eyaluation of source expressions. Note
that the processing control ted by this
parameter Is separate from that
controlled by the optlmJzation level
parameter, but may affect the extent to
_hich optlmJzatlon is possIble. The
defined options are:

Cor c anon I c a I
The code generated to evaluate an
expression Mlll mIrror the expression
Interpretation rules as defined In
the product speciflcatlon. For
FORTRAN this would be section 6 of
the A~SI standard. This option also
serves to Inhibit the CCG "regroup"
option.

ME or maintaIn_exceptions
Inhibit code optlmjzatlons which
eliminate Instructions that mIght
cause hardware exceptions at
execution time. This option also
serves to Inhibit the CCG
"unsafe_to_sareft option.

frASTIO

CYBER 180 System Interface Standard
2-14

86/02/04

2.0 IN.PUT
2.2.4.3 Parameter Nemes and O~scrlptJons

EI

FS

MP or malntaln_precJsJon
Inhtblt code opt1mazatlons wbicb
change a floating point operation to
a new form that Is mathematlc.ll~
equivalent but not computatlona)I,
equIvalent. This option also serves
to select the CCG "malntaln_
precision" option.

R orr efer en ce
Intrinsic functions (e.g. those
defined In CMHl) fo~ which a
PI' oceduJ" e callis gene·r eted wt. Jbe
catted by reference rather than by
value.

Mu.tlple option parameter.
Default = NONE, none 01 the options Is
selected.

EX_INPUT is a non-standard a.las.

This file Is for use by products which
provide the capabj'Jty of temporarily or
alternate'y obtaining source state.ents
from a flle external to the lnput fIle.
For example, the COBOL COpy statement.

Single specifIed .,Iue parameter;
default ~ SHUll.

This parameter can be used only by SORT/MERGE.
Th Is p .ramat er Is on the p:redecessor product,
SORT 5 on the CYBER 170, and Is tor compatibility
only. This parameter has no effect, Nill go away
at a later release, and wIll not be described
J nth ere f er en cell an U 8 I •

If selectad, the definition status, of
all entitles ~Ithln a subprocedure of a
program w11a be tetalned upon exit from
that subprocedure. Effectively this
dlsa.loMS p1aclng any yarlables on tbe stack.

Single optIon parameter. Oefault = Off,
definition status need not be retained
except where so required by the product
specification.

CYBER lBO System Interface Standard
2-15

86/02/04

2.0 ltiPUT
2.2.4.3 Parameter Names and Descriptions

FROM

INPUT

INSTRUCTION_
SCHEDULING

INTERACTIVE_
INTERFACE

F

IS

II

Old file.

This parameter specifies the data Input
tile tor the product. For example: the
fl'e from which 8 copy utility reads.

Multiple specified value p~ra.eter;
default = OLD.

Input file.

This parameter specifies the source Input·
file name to the produ~t. Where reasonable,
a list of file names Is a.'oNed.

Multiple specifIed value parameter;
default = $INPUT.

This parameter specifies whether Of not
Instruction sche~ullng wlJI be performed.

Sing' e 0 p t ion boo I ea n P a.' .am e ter ;

yES This option selects the para_.tel.
default = NO
omitted is same 8S NO

This parameter determJnes whetber the product
~llt Initiate Interactive processIng with the
user, Instead of opelatAng in lts usual batch­
oriented fashion. Tbis consists of dlspla,s
~rltten by the product to 'lie SOUTPUT, and
user-supplied answers from the flte SINPUT.
The InteractJve Interface can be Invoked
either from an Interactive terminal,
or 8 batch Job.

Sjngle option boolean parameter:

YES This choice Initiates the Interact1ve Interface.
The processing of atl other p.r ••• ters on the
command line Is product dependent (see the
appropriate product manual), except that the
STATUS parameter Is never Jgnore~. The product
may, but Is not r.qulred to, .110M tbe user
to decide Interactively whether or not the
other parameters on the command line are to be

KEY

LIST

CYBER 180 System Interface Standard
2-16

86/02.104

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

K

LSZ

l

Ignored.

NO DC not invoke tbe Interactive Jnterface.

omitted Same as NO.

KeyFletd(sl.

Tnl spar·ametar spe·ci f. es the key fields
that determine the manner In whIch input
data might be proces~ed by ~ product.
for exampie, SORT wlll use t~e parameter
to determine the order records Mill be
sorted.

KEY=(value-IJst>

Tbe format of the KEY parameter Is
product dependent.

If selected, leading blanks in numeric
fields are treated as zeros in arithmetic
statements and comparisons. If not
selected~ numeric fields that contain
blanks are In error.

Single option parameter. Defautt: tbe
option is not selected.

lSZ = ON selects the option.

listing file.

This parameter specifies the rlJe where
the product writeS the source listing,
~Iagnostics, statIstics, and sny
ad d I t I on a Iii s t .j n fo r mati on (s:e e l D
par am eter) •

Singie specified .alue parameter,
default =$lIST.
If a list of files Is specified for Input,
then all of the Jist outputs aCCUMulate on
the specifJe4 lIST file.

lIST_OPTIONS LO listing options.

The options of this parameteT specify
what extra information wilt appear on the

I
I
:
I

CYBER 180 System Interface Standard
2-17

86/02104

2. O[~ PUT
2.2.4.3 Parameter Names and DescriptionS

listing f.1e (LIST parameter). Multiple
oPtions may be specified. The defined
options are:

A Attributes. A listing of the
attributes of each entity defined
within the program is produced. If
R Mas selected, the references are
shown on tbe same listing. See
section 3.3.5 for more Information
onattr. bute.s.

B Proil;J bi t Banner. The banne,. Is not
sent to the listing file.

80 Byte Offset. (Release 2 feature)
If source statements are listed, an
offset field Is included (see
section 3.3.3.3). This option ts
meaningful only for M.de format
listings.

DE DflAI lE 0 EXCEPTIONS. PrJ nt out
exception file messages as often 8$

a recor d J $.s ent to the except ion
fll e.

Map. A storage layout map for
common blocks and equivalence groups.

MS Merge Statlstics. Turn on tlstlng
o f l!l ar sa est at ;j s tics.

o Object code tlstlng. A Jlst'n~ of
the generated object code with
Instruction mnemonics.

P Prohibit prompt. The normal input
prompts are not sent to the lAsting
flle.

Cross reference listing. A cross
reference of program entities
showing locations of definition and
use within the program.

RA Cross reference listing of all
program entities Nhethe~ referenced
or not.

CYBER 180 System Interface Standard
2-18

86/02/04
.... --.---.--... --~- ----.~.---.-- ---...... -- -- ---......... --.-. .-..-.......-----~.~ -~-.---.... --.... ----.... --~ ...
2.0 INPUT
2.2.4.3 Parameter Nemes and DescriptIons

LITERAL_CHARACTER lC

,.,0

RS Record StatIstics. list the
statistics for the records
sorted/merged.

S Source. Source t.sting of the
progr 8m.

SA Source listing of 811 source
statements Jncludlng Itnes turned
off by a source embedded NOLIST
directive. (See section 2.4.2)

Multiple option parameter, default = s.

LO = NONE causes none of the fist options
to be selected.

This parameter can be used to change tbe
character that delimits non-numeric
literals. Default altera' character Is
quotation mark.

LC=OFf is an error.

This parameter loads an external weight table
and assoclates It with. collating sequence name.
The format of the table Is AMTSCOlLATE_TABlE.

lCT={COlLATING_SEQUENCE_NAME, WEIGHT_TABLE_NAME)

DEFAUlT=no Height table Is loaded.

This parameter specifies whether use of
machIne dependent source feature$ Is to
be diagnosed and If so, how severely. The
$ ever I ty I e veil son e 0 f t. e f 0.10 til ng :

I orinfo:rmational
W or warning
f or fatal

Errors of type tERROR- will be treated as
equivalent to wFATAL1.

Single specified .slue parameter.
Oef au. t = NONE, mach J ne dep endenc les are
not to be diagnosed.

CYBER 180 System Interface Standard
2-19

86/02/04

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

OMIT_DUPLICATES

OPTli"1llATION_
l EV El

MSl

00

OTO

Ot

Mass Storage lImit. Tbls paTameter
sPecifies the maximum number of
characters that .ay reside on mass
storage durIng execution of the product
(for examp' e,SORT).

MSl=expr. The number of cbaracters
indicated by expr Is the mass storage
limit. Expr must be an Integer.

This parameter controls o.JttJng a. but one of
tbe records which have equa1 key values.

OD=ON Omit all but one of the records Mlth
equ al yal Ues.

OO=OFF 00 not omit duplicate records.

DEFAULT = OfF

This parameter selects the mlnimu. trip
count for FORTRAN DO-loops to be one
rather than zero.

DPTIMIZ~TION and OPT are non-standard al •• ses.

This parameter specifies the level of
object code optimization. All products
need not support al,1 defined Jevels.
However If product supports a defIned
level, Jt must be seJected by the
specified option name. Ideally all
products which support this parameter
should recognize a.I defined
options and Issue Informative dtagnostlcs
for unsupported optIons that tbe user
selects. AltowabJe options are:

DEBUG Object code Is stylized to
facilitate debugging. St,I'~ed
code contains a separate packet
of inst~uctJons for each
executable source statement,
carries no yariab1e values
across statement boundaries In
registers, notifies DEBUG each
tJme a beginning of statement or
procedure ls reached, etc.

CVBER 180 System Interface Standard
2-20

86/02/04

2.0 INPUT
2.2.4.3 'arameter Names and Descriptions

OUTPUT

OWNCOOE_FIXEO_
LENGTH

OWNCOOE_MAXIMUM_
RECORD_LENGTH

o

OFt

OMRL

LOW lowest level of prOduction
quality code. Code Is not
completely stylized.

HIGH High leyel of production quality
code.

stngle specified waJue paremeter;
default = lOW

Thls parameter speclfJ 8 s the file Nhe~e an
interactIve product writes Its output.

Single specified _due parameter,
defauJt = SOUIPUl.

OWNFL Is a 170 compatible a.las.
This parameter specIfies the record length
In char act ... s of aliI' ecords tha·t ·wl II be
Input to a product from any owncode
procedure. See 1150 OKRL and OPn parameters.

OFL = <Integer>. Every record supplied
by an owncode procedure wll' contain
exactly <Jnteger) characters. Default:
(See OMRl).

OWNMRl is a 170 compatIbility alIas.
The maxlmum lengtb In characters 01 any
record supplied by any owncode procedure
is specified by this parameter. This
parameter may not be specified If the
product has Input or output tl~.s and if
8ny of their associated MRl·s are .t
.east as large 8S this MRl. See also OPn.

OMRL = <integer>. There wIll be at
most <jnteger) characters 1n any records
supplied by an owncode procedure.

Default: If OFl and OMRL are both
omItted, the record length specJflcat'on
will depend on the length specifications
of t~e input anG o~tput files. If all
Input and output f.les have fixed-length
records of the same length that length
wltl serve as the default fo~ Ofl.
Otherwise the largest MRl or fl from any
input or output file wi!. se,,~ as the

CYBER 180 System Interface Standard
2-21

86/02/04

2.0 INPUT
2.2.4.3 Parameter Names and Descrlpttons

RET A I N _ 0 R G r NA L_
ORDER

RA

ROO

default for OMR1.

OWNn Is a 110 compatlbilit, allas.
ONncode procedure n (n :: 1, Z, 3, It, 5 .•
••••). The maximum of n Js left to tbe
Individual product. Owncode proce~ures
are user written routines that may be
loaded with the product and executed at
specifIed points during product
execution. See otber OWNCODE
parameters for more Jnformatlon on this
capab:J Iity.

The Procedure specified bY this
parameter NIJI be executed at a
specified point n during product
execution-

OPn :: proc_name. The proc.edure
proc_name will be executed at a
specified point n.

Default: No procedure waJI be executed.

RESA Is a non-standard alias. This parameter Is
used to return all or part of the result array.

Oefautt: Do not ~eturn any information from the
result array.

RETAIN and RET are non-standard and 170
compatJbllJtyaliasese

Equivalent records or records with
equivaJent IdentJfying characteristics
will be output In the same order as
Input by a product. For example, Mlth
SORT, the eQuivalent 1dentlfying
characterIstics .ould be equal keys.
The order In whtch multiple Input files
are specified Is the order In which
records wtth equivalent characteristics
8 r e ret a I ned wit h t hi spa r am ·e ter •

ROO=ON. Records with equivalent
characteristics wtJI retain the4r
or I gina lor der •

CVBER lao System Interface Standard
2-22

86/02/04

Z.OiNPUT
2.2.4.3 Parameter Nlmes and Descriptions

RUNTIME_CHECKS RC

SN

ROQ=OFf. Records Nith equivalent
characteristlcs w11. not necessarlly
retain their original order.
Default: 5 ••• as ROO=OFf.

This parameter controls Mhich runtime
cheeks are compiled Into the object
code and/or selected for runtl.e
library routines. Runtime checks are
product dependent but If 8 pcoduct
supports ona of the ones described
bere, It must be setected by the value
speclfled. Deflned values are:

All All supported values are selected.

f Flies checking. Selects cbacklng of
errors lnvolvJng fite variables and
buffer Y.fl.bles.

N Pointer checking. Selects checking of
mlsuse of pointer variables.

R Range checks. This optIon se4ects
range checking for one or more of
the folio w.) ng
- character substring expressions
- scalar subrange asslgnmants
- case variables

S Subsc~.pt checks. This option
causes subscript and Index
references to be checked to ensure
that they are wIthin program
defined limits.

T Tag f lei d checks. S el ect.l ng tb I s
option ensures that acc~sses to
variant records are eonsistant
with the value of their tag flald
(if one exists).

ThIs Is a multiple Value parameter.
Default Is RC=NONE.

The neme identIfying an object screen
definition to be retrIeved from the
user's object IJbrary.

CVBER lao System Interface Standard
2-23

86/02/04

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

SEQUENCED_LINES Sl

SES SION_ TYPE Sf

SOURCE

STANDARDS_DIAGNOSTICS SO

.sln-gl e spec) fJed.al ue paramter.
Optional, no default.

This parameter selects FORTRAN
sequenced mode source line format as
described in section 3.2 of the FTN180
E R S • Note the t tb Is format Is
Incompatible wlth the standard SIS
(sect1on 2.3.2) source 'Ine tormat
which al10ws tbe length and tocatlon of
a line number to be specified in the
source fl1e attributes.

Slng)e option parameter. Oefault = OFF,
source Jines conform to the standard
SIS format.

One of the keywords EDIT, HELP, UTILITY.
Used to present Initial SDF session
environment.

Slng'e specified yalur parameter.
Optional, no default.

SClllnput.

Line images of the generated program
will be wrItten to this file, in a
format acceptable as input to SCU.
Each program unit on tbe S file .ill be
preceded by an StU directive which
Indicates the beginning of a neM source
deck.

Single specIfied parameter value,
default = SNUll.

standards diagnostics. (ANSI or ott.e'r
appl1cable standard).

This parameter specifies whether use of
non-standard Input source statements
are to be diagnosed and If so, how
severeJy. There are two values
defined: severity, and name of
standard. The severity 15 one of the
f o. j ow,j n g:

STATUS

cvaER 160 System Interface Standard
2-24

86/02/0't

2.0 INPUT
2.2.4.3 Paraeeter Nemes and Descriptions

I Informational error. Standards
errors are treated as etrors with
thl s se'verl ty.

w Standards er~ors resu4t In Marning
messages.

F Fatal efTor. Non-standard us.gas
result in statal errer.

Errors of type 'ERROR' NIII be
treated as equivalent to 'FATAL·.

The second value, name of $tanda~d, Is
to be defined by the products as
epPfoprl ate. If thIs parametarts not
specified, then non-standard extensions
to the product are allowed, (not
dJagnosed as errors).

SD=NCNf causes standards errors not to
be dl I'gn osed.

Multiple specified value parameter,
default .:: NONE.

STATUS Status Variable.
No alias is permitted for STATUS.

AI. products are required to support
th Is par am et er •

This parameter speclfles the name of
the Set status YMiable to be set by
the product to indIcate the occurrence
ef error conditions. See sections 3.4
and 4.4 for an account of the status
variable. See aJso NOS/VE ERS.

Single specified value parameter.

Errors of type 'ERROR' NIIJ be treated
as equlYalent to -FATAL'.

Default: None.
See Error Processing
section 3.4 for a description of error
processing that resu.ts from use of the
default status varIable.

SUM

CyeER 180 System Interface Standard
2-25

86/02/01t

2.0 INPUT
2. 2 .4. 3 ip at' am et er Nam as an d Des cr I p t Ions

s
This parameter specifies that units of
tnput data havIng key fields equal (see
KEY parameter) may be combined Into
Items or units 1n a product depend.nt
manner.

(for example, SORT wIll use the
parameter to combine all records,
haYing key fields equal, into a sing'e
record. Each sum field in the new
record Is foraed by summing the values
In tbe corresponding fl.lds of all
equ a Ir eco r ds.)

SUM=<value-llst>
The Value list MIll cont.ln one or
mor e val ue sets. Un I ts of input
data wlth equal key va.ues ~jlJ be
combJned Into new units or ,t •• s
and fields specifIed b, the value
sets ~III bE summed, according to
product specifications and needs.

Hultlpl8 specified value par.meter,
defautt = NO SUM fIELDS.

SUBPROGRAM SP is a non-standard .llas.

TSf

If this optIon Is selected, the progr ••
15 ccmpi1ed as 8 subprogram instead of
as a main program.

SUBPROGRAM = ON selects the option.

Default: the option Is not selected.

Tape Scratch files.
The tapes with the names specif4ed by
thJs parameter ~llj be used by the
product to reduce t~e disk space used.
The tapes must have already been
requested prior to execution. The for.
I $:

Oefault: Tape scratch files wlJI not
be used.

CYBER 180 System Interface Standard
2-26

86/02/04

2.0 INPUT
2.2.4.3 Parameter Names and DescriptIons

TAR GET _MAINF RAME

TERMINATION_ERROR_
LEVEL

TM

TEL

ThIs parameter specifIes the machIne for whicb
code 4s to be generated. The default. If no
option is selected. is the machine on Mhlch
compltatlon Is performed.

C180MI or CleO_MODEL_INDEPENDENT
The code generated wlJI run cn any
(,ber 180 mode I.

Cl80V or CISO_VECTOR
The code generated wll I run on any
C,ber 180 model that bas vector
Ins true t :10 ns •

default: omitted

ThIs parameter speclftes the minimum
diagnostic seYerlty level which Mi ••
cause a product to return an abnor •• t
STATUS upon completjon of processing.
A normal status Is returned otherwise.
T~e severity level is one or the
following:

I or Informational
W orwarn.lng
F or -'atal
C or catastrophic

For 170 compatibility only, products are
free to use -T' In addition to 'Ii (howeyer_
If only one Is used, It must be 'I').
Output ~ill always use .1 1 ,

not JT-. Errors of type 'ERROR- NJI.
be treated as equivalent to 'fATAL'.

SJngle specifIed value parameter,
default = F.

Names of texts to be read from the
files or Ilbra'ies specified bY the
TEXT_RESIDENCE parameter. The teta.
number of yalues aJlo~ed Is product
dependent. Produ~t$ that have a text
name directive may choose to support
the TEXT_RESIDENCE but not the
TEXT_NAME parameter. A fatal error
occurs If any of tbe texts specified is

TO

CYaER 180 System Interface Standard
2-27

86/02/04

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

T

TR

exam p Ie 1:

not found.

Multiple specified value parameter,
default is no text.

NeN f.le.

This p~rameter specifIes the data
output 'iJe for the product. For
example: ftle to Mhich a copy utility
Nf I te.$,.

Single specified yalue parameter;
default = NEW.

Names of resIdences (I.e. fifes or
Ilbrarles) to be searched to find texts
specified by the TfXT_NAME parameter or
by product directives. The total
number of values allowed is product
dependent. If no text names are
provided the first text of the fIrst
TEXT_RESIOENCEnalle Is the onlJone
used. If text names are provided and
TEXT_RESIDENCE Is omItted, the default
for TEXT_RESIDENCE Mill be the
TEXT_NAME parameter list. In case
texts of duplicate names exist, tbe
fIrst one found 'In the order in which
TE Xl _RES I DENC E nalle·s ar e,11 sted) j s
used. For each name In the
TEXT_RESIDENCE parameter list, the
product will JoOk for a local :rl ·Ie)tilth
that name; If not found, the globa'
library set wJ11 be searched for a
library with that name. If the name Is
not found, as a file or lIbrary, 8
fatal error will occur.

HuJtlpJe specified value parameter.
Default vajue Jjst Is text name value
I 1st.

If f II e Fl contains texts A., C, and 0
and library lZ contains texts Band C
and file F3 contelns texts E and A then

TN=(A,B,C,O,E) and TR=(Fl,lZ,F3)
~I~I result In selecting texts as
foltows:

CVBER 180 System Interface Standard
2-28

86/02/04

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

example 2:

TE R MINAl_TY? E TT

A, C, and D from file fl
a from library l2
E 'from fJlef3

In the above exampt~, If In addition to
a library L2, the user has a local fJle
named l2 containing texts Band £, then

TN=(A,B,C,D,E) and TR~(fl,L2.F3)
wtll result In selectIng texts as
follows

A~ C, and D from'" e Fl
a and E from file l2
nothing from library l2
nothing from file F3

Terminal TyPe.

TT=COR
Correspondence Selectric APl
terminal.

TT=APL
This type is appropriate when the
communicatIons system translates
APt terminal codes Into a standard
Intermediate code.

TT=ASC11
For full ASCII termJna.s not
equipped to pr4nt the APL
character set. Also used fer
non-APt correspondence terminals.

TT=UCA
For fuJI ASCII termJnaJs. lhls
avoids frequent use 01 the shIft
k eyf or let ter s •

TT=BATCH
For devices that support the ASCII
64-character set. Usually used
for batch or remote batch ASCII
printers.

Single specified yalue parameters.

Default Is APL for a time-sharing Job;
and BATCH foc a batch or remote batch
Job.

CYB~R 110 System Interface Standard
2-29

86/02/04

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

VECTORIlATION_
LEVEL

VL VECTORIlATION and VEe are non-standard altases.
ThIs parameter specifies the vectorlzatton
I eve I. The a II owabl eoptl onsat e:

HIGH Production-quality code with a hlg~
leyel of vector.zatlon Is Generated.

Il or INNER_lOOPS
Onjy Inner loops are candidates for
¥6ctorlzatlon.

NONE VEC=NONE causes no vectorlzatlon to
be p e,f ,formed.

Default = NONE

VE R"IF Y _M E RGE _
INP UT_ORDER

VMIO VERIFY and VER are non-standard and
170 compatibility aliases.

WORKSPACE

Verify merge Input order. Selection of
this option c.uses verificatIon that
input records to be merged are In
co~rect order. The form Is:

VMIO=ON. VerIfy tor ~orrect order.
VMIO=OFF. 00 notve:r Ify for
CO!"f ec't or de r.

Oefault: VHIO=OFf.

Initlal Workspace specification.

ThIs parameter specifies the workspace
to be activated when the product Is
ca. I ed. The parameter is specJ fle·d
with values consisting of the following
parameters defined in the NOS/VE ERS:

f i Ie

This section dei's with the standard for the processIng of
source input files by product set membe~s. In this
context, a file can refer to data originating from an
Jnteractlve terJri nal 85 wei t as conventional storage
devices. This standard addresses the areas of source flte
organJzatlon~ statement format, blank compression, and

CYBER 180 System Interface Standard

2.0 INPUT
2.3 SOURCE INPUT

response to an empty jn~ut flie situation.

2.3.1 SOURCE INPUT FILE O~GANIZATI0N

Source Input to CYSER 180 product set members may be
designated by the I directive on the controJ statement.
If the I directlye Is omitted, the source Input defaults
to the standard Input f11e (batch mode) or terminal
(interactive mode). The source Input has a sequentJa.
structure, and is accessed by means of standard Record
Mana~et fnterfaces.

2-30

86/02/04

Positioning of the source Input at open time Is
constrained by the requirement to _Itow different p,to'Guct
set members within the same Job (e.g. different compilers)
to access the same file for their Input. Therefore, the
source input Is opened _Jth no-rewind unless the re~lnd
parameter Is specified on the control statement (see
Keywords and Parameter DescriptIons In section 2.2).

2.3.2 SOURCE STATEMENT FORMAT

Eacb record 1n the source Input contains one to three
parcels of data:

• statement Identifier (optional);

lIne number (optional);

• statement body •

Pr'oducts should be able to handle the optional statement
Identifier and Jtne number.

The source Input statement may take the folJowlng ferms,
where

b represents the statement body,
I represents the line number.
s represents the statement Jdentifler,

and brackets

b 1 s
sib

s bl
I b s

specify the optional portions of the for.:

CVBER 180 System Interface Standard

2.0 INPUT
2.3.2.1 statement Identifier

2.3.2.1 S,.t.ltlflJD1_1SZ&Dl1tllt

2-31

86102/04

Input source records may contain optional statement
identifiers suc~ as SCU identifiers. If present, the,
occupy either the fJrst or last -n' characters, where In·
has a maxImum vatue of 18. If the statement IdentlfJer
occup) es ttle list character positions ofa record, all
records #ust be the same length. The location and length
of the identifier are file attributes; they are made
avajjable via an operating system ~equest.

This feature Is to a.lo. tiles created by source code
utilities to be used as source input.

line numbers are numeric entities used bY compilers and
editors. In generaj, editors NlJ. affix alne numbers to
lines and compilers will use these line numbers for
diagnostics, cross reference maps, run t1me error
messages, etc. line numbers should not be confused with
statement Identifiers that are produced by SCU and are
aJ!phanumer. c.

The location of the line number in a text lIne may te
Immediatel, to the teft or the right of the text of the
line. The posjtlon of the line number field as conveJed
via the file attributes. The line number field may be
from one to six characters jn slze. The only valid
characters In the fteld are blanks and the decimal digits
o to 9. leadinQ blanks are Ignored. A 11ne number is
terminated by end of field or one or more blank characters.

Addjtion.g semanttcs for the fine number fIeld will vary
from processor to processor. In partJcuJar, many
compilers may not accept more th,an six digits·. Another
example Is t~e cross reference map produced by CeM .hich
only has space for a six dJglt Jlne number. Most
processors "111 also Insist that the IJne numbers b.
unique, ascendtnQ, and that every line be numbered.

The body of each source Input record Is that part which
rep~esents tbe data to be scanned or processed by I
product set member. It begins In p~sltlon 1 If there are
no statement ldentlflers, or Jf the Identifiers appear at
the end of the record. Otherwise, It begins In position
(n+1) where tnJ is the length of the statement identIfier.

CYBER 180 System Interface Standard

2.0 INP UT
2.3.2.3 Statement Body

2-32

86/02/04

The maximum size of the statement body Is product set
member dependent and conforms to the size specified for
the associated language. Source records shorter than the
maxImum are scanned to the end of the record. Records
exceedJng the maximum size are truncated (I.e. data Is
transferred up to the maximum); a diagnostic Is returned
by the Record Manager.

The CYaER 180 Record Manager is respons4ble for
compression/expansion of blanks. The capabJllty to read
the source Input In compressed form Is not provided. If
the requIrement for thIs capability emerges (for
performance optImization), It wll' be addressed In I
revision to the standard.

Diagnosis ot an empty input file results in the Issuance
of a standard log message: EMPTY SOURCE IN'UT FILE
(formatted .n accordance wlth conventIons stated In
section 3.2). If the Job Involved Is jnteract1ve In
origin, the message Is also sent to the termlna' (see
sectIon 3.2.1.2.). In addItIon, generation of the pr'mary
output of the product set member Involyed (e.g. file
specified by B parameter for compilers) Is suppressed and
t~e set STATUS variable (refer to section 2.2.4.2), Is set
to reflect the error.

The number of records in the source file shoUld be the
same as the number of source tines in the source 11st.
Even though 8 null record has no data, the record should
not be ignored. Since, In the source list, the absence of
ell characters In a record looks the same 8S a record
containing all t1anks, null recor~s should be mappe~ to
at I blanks.

2.3.3 DISPOSITION OF INPUT FILE

The final action to be taken with respect to the source
lnput flte Is dependent on the manner of termInatIon of
tbe product set member. For normal tel.jnatlon~ tbe Input
file ls closed ~jth the no-rewind option; thIs Inetudes
the case where an empty f14. Is detected. For abnormal
termInation, tbe product set member is respons.ble for

cveER 180 System Interface Standard

2.0 INPUT
2.3.3 DISPOSITION Of INPUT FILE

positioning the input 'tIe as l' normal processln~ had
occurred, using apprcprlate facilities of the Record
Man ager.

2-33

86/02.101,

The user of a Compl1er may control various activities of
the complJe, by specifying one or more complJe time
dlTectlves. The directives are e~pressed either In a
special form of a comment within 8 partlcu'ar language
(e.g. FORTRAN. COBOL) or In special source statements If
the language provides such statements (e.g. CYBIl).
Compilers that already have special source state •• nts fo~
dlrect1ves do not have to process dIrectives embedded
lnslde comments. Compilers which nON have compilation
directives In oemments should honor both old and new
dlrectiyes. When a comptlation directive conflicts with a
contra. statement parameter option, the compilation
directive overrides for example, the options for the
parameter LO wi •• be overrl~den bJ a contJlctlng directive
unless speciflcal.y stated otherwise, such as LO-SA.
However control statement parameters denoting flte status
or destlnatlon would take precendence over directives.
For example lIST=$null would take precedence over any
dl~ectlyes requesting that something be listed.

Si'nce the major programming languagesa,e subject to
standardization by bodies such as ANSI, flPS, and ISO,
'nlt]a. compl1a~ce _lth the form of compilation directives
In this section may have to be •• tered in the event of
standards covering this area. Secause of the IGn~ term
posslbtJty that the major J~nguages Mi.J be different,
fujI uniformIty across 180 products is unlikely.
Therefore, products wIth CYBER 110 directives that do not
conform to the syntax contalned here should retain
compatibility wltb the CYBER 170 form to mjnjmJze
migration problems rather than cause a conversIon in going
to lao and possIbly have to cause a second conversion to
comply with extern.' standards. NeN dlrectlYes In areas
which will never be subject to standardization should
foJlo~ the form of this section.

The Compilers support t_o general classes of dlrectl.es:

• Compiler Call djrectlves

• Source Embecded directives
As discussed In section 2.2, the directives specified on
the command cal1Jng the compiler are established for the

CYBER 180 System Interface Standard

2.0 INPUT
2.4 COMPILATION DIRECTIVES

2-34

86102/04

entire compilation process. They apply to all subsequent
compilation units (program modules or subroutines) ~lthjn
the compile PrOcess.

Source embedded dJrectlvesare estabJJshed only tor -the
comp II at.1 on un it in Mhl cn they appear. They are expressed
either 1n a sPEcial form or a comment within a particular
language (e.g. fORTRAN, COBOL) or In special source
statements if the language provides such statements (e.g.
CVBll). Compilers that already have special source
statements for dIrectives do not haye to process
dlrectJYes embedded lnslde comments. The syntax of 8
compiler dlrectlve wjthin a comment is as folloNS:

$ directIve [,dlrectlve 1 • • •
Example - FORTRAN source embedded directives

CS dtrect4ve - C In column 1

Example - COBCL source embedded directives
*$ directive - * In column 7

MultIple directives may be contained on the same Input
st stement.

Whe':r e d I feet ives have p eraMeters, they fo t 10 .. SClrul es.

Souree embedded directive format errors are dJagnosed with
warning or fatal class error messages, as appropriate.

The following standard applies to compilers that process
directives embedded Inside comments. A compiler Is not
required to Implement all the features Jlsted below. nor
Is the Jist restrlctlve.

2.4.1 PAGE EJECT

EJECT

This dIrective causes the page IJne counter to be reset
to.l. When the line counter. 5 reset to 1, a st anderd
41stlng header ~ilJ be written on the source listinG prior
to the next source line. This dlrectiye ~Jjl be listed
before the page line counter Is reset to 1. If the paOe
Is at top-or-torm when this dlrectiYe Is processed, It Is
processed as a "no-op". If a continuous page 1$ beinG
written, this directive will simply r~sult In a triple
space wIthout a new listing header.

CYBER 180 System Interface Standard

2.0 INPUT
2.4.2 SOURCE LISTING

2.4.2 SOURCE LISTING

lIST and NOLIST

2-35

86/02/04

The NOllST dlrectlYe causes the listing of the source
module, I ncud j ngcompil er directives, to be suppresse,dat
this point. Tbe LIST directive causes the listing of the
source module to resume at this point. The directives
LIST or NOlIST Ire listed at the pOint they occur.

2.4.3 LINE SKIP

SPACE- numbe'r

This directive causes the specifled number of print Jines
to be skipped at the point in the source module listing
tbat Jt Is processed. This dIrective ~111 be listed
before the skip 8etton starts. If the page 'Ine counter
Is exhausted before the specified number of lines bave
been skipped, the line counter Is reset to 1 and sklpptng
ter fII j os tes.

number: Integer value 1 thru nj IfomJtted
(including the "="), the default t5 1.

SP AC INS = n umbe r

This directive specifies the number of lines to be
advanced before each source line Is listed. The new value
for spacing will take effect wit. the next lIne fotlo~lng
the spacing directlYe. when lIsting a source IJne If the
page 11ne counter Is eXhausted before the specified na_ber
of lines haye been skipped, the lIne counter 'S reset to 1
and skipping terminates.

number: Integer value 1 thru 3 Indicating single,
double or trlpJe spacing; If omItted
(Including the Ox"), the default Is "1-.

2.4.4 TITLE LINES

TITLE = character string
SUBTITLE = character string
These directives define strings of ajphanumerlc characters
In Sel format "hleb wll' be printed folloNing the standard
page headers on the source module Jlstlng (see TITlf lines
In section 3). TITLE c.uses 8 page eject to occur, unless

CYaER 180 System Interface Standard

2.0 INPUT
2.4.4 TITLE LINES

the page Is already at top-of-form. TITLE is listed at
the top of the neN page.

SUBTITLE also causes a page eject to occur, unless the
page Is already at top-or-form or TITLE has Just been
processed. SUBTITLE 4s lIsted at t.e at the top or the
page following lITlE If there Is one.

Compilation Directives

2.4.5 RANGE CHECK

RANGE and NORANGE

The RANGE directive directs the compiler to generate
addltlonaJ object code whlch performs range checking for
subser ipts, Indexes, scaJar assignments, case Yariables,
etc.

2-36

86/02/04

The NORANGE directive directs the compiler to not generate
addJtlonaJ range checking object code.

The default for the ccmp4jation unit Is NORANGf.

2.4.6 EXECUTION TRACE

TRACE and NOTRACE

Tbe TRACE dlrectlve dlrect$ the compiler to generate
additlonal object code which facilitates tracing the 'low
of the program during execution. The TRACE directive Is
ignored unless the DEBUG_AIOS=TR parameter Is gJYen In the
product call command.

The NOTRACE directive oirects the compiler to not generate
additional fJo~ tracing object code.

Minimum trace Informatjon wlll always be provided. See
section 5.4.1.2.

The default for the compiJatJon unit)$ NOTRACE.

2.4.7 OeBUG STATEMENTS

DEBUG and NDOEBCG
Source Input statements that are to be compiled ont) for
debuggJng purposes are enclosed between DEBUG and NOD£8UG
dlrectlves. Enclosed source statements aTe compiled only
If the DEBUG_AIDS-OS js glven In the product cal. comEand.

CVBER 180 System Interface Standard

2.0 INPUT
2.4.7 OeBUG STATEMENTS

2.4.d S~QUENCE CHECK

SEQUENCE and NOSEQUENCE

The SEQUENCE directive 01 rects thecompi ler to check the
input source statement saquence numbers for ascending
or der.

If a sequence error occurs, It will be fiaQged with a
warning diagnostic. (See section 2.2.4.2)

The NOSEQUENCE dtrectlve directs the compiler to Ignor.
;lnputsource statement sequence numbers.

The default for the compt'atJon u~lt 1s NOSEQUENCE.

The SEQUENCE and NOSEQUENCE Jlnes themselves are not
checked for sequence.

2.4.9 OBJECT CODe LISTING

OBJlIST and NOOBJlIST

2-37

·86/02/04

Tbe OBJlIST directive directs the compiler to print the
object ~ode Jlstlng at this point. The NOOBJlIST directs
the compiler to stop prInting the object listing at this
poJnt. The object code will appear In the object code
part or tbe listing (see sectlon 3.3.4).

OBJLIST and NOOBJlIST act Independently of LIST and
NOLIST~ The default for the compilation unit Is NOOBJlIST.

2.4.10 STACKING COMPILATIDN DIRECTIVES

PUSH (ccmpll.tlon directive) end PO,
The PUSH commanc ~IIJ place the specIfied compljatlon
directIve on the top of the "directive stack". The POP
dlrectlYe wIll remove the top dJrect4ve fro. tbat stack.
Th's procedure tt111 aj 10M temporary al ter atl on of the
local enyjronment without permanentl, affecting the global
environment. For exemp'e, If It Is desl~ed that a called
common deck lists Its name on the print file, regardless
of lIIhether' the entire common deck Is be;jngl i sted, then
the followIng ~ou'd be placed In th. common deck:

PUSH (L 1ST)
comment Including common deck name.
POP

CyaER 180 System Interface Standard

2.0 INPUT
2.4.10 STACKING CDM'llATION DIRECTIVES

2-38

86/02/04

The format of product directives (commands) must follow
the set of language rules and conventions of the System
Command language. These dJrectJves frequentl, occur in
products (often various types of utilities) that are not
camplJers and ere thus listed separately. The standard
parameter names as described In sections 2.2.4.2 and 2.5.1
must be used as applicable.

2.5.1 STANDARD PARAMETERS

Parameter
Name

BRIEF

FUll

COUNT

F~! lE

WAIT

NOWAlT

These paramete,rs occur frequentlyenougn towarraot mak'ng
sure that all commands using them do so In the same way.

Alias

BR

FU

cou

F

WAI

NOW

Parameter Description

This parameter speclfies that 8 brief form of
Information Is requested for display at 8
terminal or prlnt file. It 1$ a boolean used
1n conjunction Mlth the full para.eter. The
brief selection Is used as the default.

This parameter specIfies that a full form of
Information Is requested for display at 8
ter •• na. or print ,.te. It Is a boolean used
In conjunction with the brief parameter.

This parameter specifIes a count of unIts (e.g.
files records) associated w1th the command
function. The default value Is one.
This parameter specifies the local fIle name of
a 'lie used 8$ the obJect of a command
function. It Is used when the file Is not one
of tte specific flies Id6ntJfled In section
2.2.4.2 (e.g. COMPILE, IN'UT).

This parameter specifies the requestor should
be placed 1n 8 Malt state 1f a request ~antt be
Imme~jatelJ processed (e.g. a flJe Is busy).
It ls a boolean used in conjunction with the
nowalt parameter.

ThIs parameter specifies the requestor should
not be placed In a walt state If a request
cannot be immediately processed. It Is a
boolean used In conjunction with the walt

USER

CYBER 180 System Interface Standard
2-39

·86/02/04

2.0 INPUT
2.5.1 STANDARD PARAMETERS

US

par •• etar. The nowait sd.ctlon Is used as the
de'au' t.

This parameter specifies a user
Identification. It Is always the 31-character
user and famlty names as specIfied to gain
access to the system.

PASSWORD PA This parameter specifies a 31-character
password needed to gain access to an ent4t, or
to execute 8 function.

UPON

LIBRARY tI

ThIs parameter specifIes the local file ~a •• of
an output file. It Is usad when the file is
not one of the specific files Identified In
section 2.2.4.2 (e.g. LIST, BINARY-OBJECT).

This parameter speclfJes the local '11e n ••• of
a jlbr&ry file (e.g. source library, object
1 i brary) •

2.5.2 STANDARD COMMANDS

These commands are required, as a minimum, if the functions
described by the commands are included In the utilIty.
utilities may opt'ionally Include aliases to the requifred
command.

Command oeser. pti on

QUIT This dlrecttve enables the user to exJt, or get
out of, a utlJJty.

CYBER 180 System Interface Standard
3-1

86/02104

3.0 OUTPUT

3.0 .oUlfUI

AI. products wi IJ fetlo .. a unitOl"mS8't ,of conventions tor
generated output, as specified bereln. All CYBER 180
products will use the facilities or the elDER 180 Record
Manager for such output.

The use of hexadecimal numbers on output produced bJ eY180
software must be controlled to promote readability. All
products .. ;i II follow the set of guidelines set he,.e In.

3.1.1 SITUATIONS AND RECO~HENOeO NUMBER BASES

Address, Address Offset: Hexjdeclma'. When a length js
specifIed an conjunctIon Mitb an
address or address offset, the
length J s r epl'esen ted In
nexldeclmal.

Dayfile information: OecJmaA statistics, decim.1
res our cell 181 ts.

Object Code listings:

Instructions: Hexadecimal (4 or 8 hex digits)

Operand 'ields: Decimal

Branch Destination: Hexldecimal. The value Is the
j ns tr uet Ion o'ffset of the
destination Instruction rather
than the relative offset from
the branch Instruction.

Instruction Offset: Hexldeclmal.

Core and FIle Dump: Various formats should be
avallab'e, lncludJng
hex adec. mal, ascll,i nteger,
fJ 0 at I ngpo.i nt.

Page numbers: Oeclmal.

CYaER 180 System Interface Standard
3-2

86/02/04

-3.0 OUTPUT
3.2 tOGS

3.2 LOGS.

Tbe logs treated In this section are those maintained by
the ope~atJng system. The OS provides interfaces to put
Items into tbe logs and the SIS provides conyentlons on
how to use these Interfaces and on the contents of data
PU tin t ath e I cgs •

The set of logs Is divided Into two major classes, ASCII
an d bl naf"y. The ASC II lOiS contal n on I y ASC I l-encede d
data. The blnary logs may contain any type of data.

Tbe ~09S include:

- system log (ASCII)
- job log (ASCII)
- account leg (binary)
- engineering 10g (binary)
- statistic 'og (binarY)
- Job stattstlc log (binary)

3.2.1 ASCII lOGS

Each ASCII JOg tontains a set of records ordered by time
or entry Into the log. Each record contaIns several
flelds~ some automatically provided by the loggIng
mechanism, and some provided by the caller of the
mechanism. The following 'Ields are provided by the
togging mechanism:

- time of d~y of tbe entry of the record Into the log

- origin of the messa~e (command' program-issued,
command froll procedure, etc. - that Is: callers In
OS r1ngs .8, specify the message origin In the call,
calters in users rjn~s may not and tbeir messages
ar e a J ways "pr ogr am-I ssued").

The system log has an additional system-provjded field to
Identify the message IssuIng Job. Also, each log record
contains a 'Ieid for data provided by the progra. making
the record entry.

Except for certain operating system programs, the
Interface to be used by the as and product set for putting
messages Into ASCII logs Is that prov)ded by the "Message
generator fl , a facility of the as (see NOS/VE ERS). The
message generator Is given a status record that describes
the type of message and any variable data to be "edIted"

CyaeR 180 System Interface Standard

3.0 OUTPUT
3.2.1 ASCII lOGS

lnto the mess.ge. The message generator;

3-3

86/02.104

- finds the appropriate message skeleton In a Ilb~8ry
whjcb Is in the current Job library list

- edits the vartable data into the message

- Jogs the final message in whichever log(s) .re
specified by 8 combination of:

* destination specifIed within the message
skeleton record

• Job option seJectlon (e.g., "log onty errors·,
"log 81 I fatal s",etc.) -,- tbings such as
message Importance level are defined In t ••
message generator cat'.

- displays the message at a termlna) dependIng upon
Job oP'tlon

The use of a message generator eases:

- consistency of messages wltbin and across products

- physical compression of message text

- extra~t.on of message types tor documentation

- routing/suppression of messages based upon messege
levels {e.g., trivlat, fatal, e-tc.'and upon user
desire for only certain levels (ftle,eJ" or
"Importance" Is speclfJed In the message generator
call, not in the message skeleton)

- installation control over what kInd of messages
should appea~ In the systea 'Og

Ar'bltrary user-In Itleted logging need not use the .essage
generator.

In addition to the basic $ystem-provlded fields, each
system log entry contains a field Identifying the
particular Job from whlcb the message came or to which It
ap pll es.

CYBER 180 System Interface Standard

3.0 OUTPUT
3.2.1.1.1 PURPOSE

3.2.1.1.1 PURPOSE

3-4

86102/04

T~e primar, purpose of the system JOG Is to serve as a
repository for information regarding external system
workload. Thst I $, the work the system Mas asked to do
via commands and the high level responses o? t-. system in
regard to the commands.

3.2.1.1.2 CJN'ENTIONS
The system Jog contains predominantly a subset of Job log
messages that 8,e of Interest to the Install.tlon. ThIs
normally Includes at least:.

- ail system leyel commands (supplied by OS)

- all command completion messages

- start of each Job execution (supplied by aS)

- end of each Job executIon IsupplJed by OS)

- rerun of each Job execution (supplIed by OS)

- system identification (supplied by OS)

- other Infer.atlon supplied by the OS like date,
hardware and software configurations and changes,
deadstarts, recoveries, etc.

The system log should contain only Jndlcatlons of tbe
major changes an state of the system and of indiYI~ual
.Jobs.

The specIfic messages that shouJd be routed to the system
log in the default ".s-shlpped" s1stem _III be determined
on 8 casa-bY-C8se basis using these general conventions as
QU J de I I nes.

Note that slnce message destination (whJch log(s)
Instructions are separate from the message-Issuing code,
this determination does not Involve code modltlcation.

See Job log, Conyentlons tot furt~e, guIdelines.

CYBER 180 System Interface Standard

3.0 OUTPUT
3.2.1.2 Job log

3 .. ,2 .1. 2 ~Qll_"~.Q

3.2.1.2.1 PURPOSE

3-5

86/02/04

The purpose of the Job log is to bold a trace of Job
execution. In'formatJon concern<Jngttle Morkrequested and
accomp.lshed I sr ecorded here. It provides a $'Ulllilf.y of
thef:low of the job, problems encountered and charges
accrued by the Job.

3.2.1.2.2 CONVENTIONS
Keep JOg messages simple and short. Use the Jogs for
summary Informatton. Use list files or binary JogS for
detailed or repetitive data.

Messages 'onger than the lJstabt. output "narrow" for.at
ar e dJ scour .aged.

Simple completIon messages that convey no Rore Jn~ormatlon
than "It's done- ate not to be put into logs. In a bitch
case, completion is obvious from the appearance of the
next command. In an interactive case, the oS will ~eeto
It that the ter.lna' user is notified of completion.

Completion messages that convey a small amount of useful
or jnterestlng Information are encouraged In order to
enhance tbe "live" appearance of t.e system. For .x.m,le,
"23 records so,ted." or "Cycle 25 used.". Information not
specIfic to the operation performed should not be
lnciuded, however (11ke CPU time for a compIlation).

Messages (at least the non-brief mode ones) should have
the general appearance of normaJ sentences. That is, they
start with a capital letter, are comprised of both upper
and lower case letters, and end wJth a period. When an
"extended messaie" of more than one lIne m~st be Issued,
each line should not, however, end .Jth a period, but each
sentenc~ should. This tamlliar sentence-type structure
adds to the ·comfortable" faellng that we'd like our users
to have for our system.

Accounting and low-IeYel ~tattstJca' and hardware error
InformatIon Is not to be placed Into ASCII logs except by
tn e OS.
Message-at-a-tlme "current status" messages (lIke
"compiling a1pbs ••• compiling bet •••• ") are not to be
placed In Jogs. The OS wi'l provide a me.nstor programs
to post these kinds of me~sages. The current message Mill
be d1spjsyed at an Interactive termlna1 when requested by

CYBER 180 System Interface Standard

3.0 OUTPUT
3.2.1.2.2 CONVENTIONS

the termlnat users. Posting of these messag.s Is
en caur aged.

3-0

86/02/04

Tbe message generator will sUPPly product and .essage type
Identification based upon the status record passed to it
In a call. Products should not Include thjs Infor •• tlon
In messe ges.

When more than one datum Is to be JOgged, try to minlaJze
the number of messages lines produced by putting more than
one datum on a Jlne. for example, Issue:

23 records sorted; Merge order 12 used; 14 insertions.

rather than:
23 records sorted.
Merge order 12 used.
14) Rse rt Ions.

3.2.2 BINARY LOGS

Binary logs are proyjded In order to alloN the recording
of log jntormatJon in a compact form that Is readable
primarily by programs. Each binary log contaJns CYell
records ordered by time ot entrytnto tbe log. Each
record contains severaJ flelds, some automatically
p~owlded by the logging machanls., and some provided by
the ealler of t~e mechanism. The following fields .r.
provided by the logging mechanism:

- time of day of the entry of tbe record Into tbe log

- the ldent.facatlon of the Job from wblch the record
came or to which it applies (this field is not
recorded In the Job statistic log)

- the or i gl n ot t"'e record (s)stem or non-system
Indicates only w~ether the caller is Inside or
outside system rJngs, not Mhlch product or which
system agencY --this latter Information Is given by
the "Indicator of the type of record" field.)

Fiejds provJded by the caller Includel

- IndJcator of the type of record {e.g., number of FTN
source statements, SRJs at end of Job, etc. --the
I n dl cat 0 r codes w f , 3 be assigned and lit ana g e d . In 8
manner slm!lar to that used for status condItion

CyaER 180 System Interface Standard

3.0 OUT,PUT
3.2.2 BINARY LOGS

codes as described In section 3.4)

- varlabJe data oependlng uPOn the record type

3-7

86/02/01t

Except for certain operating system prOGrams, the
lnterface to be used by the OS and product set tor putting
records Into binary logs is that provided by the
"statlstlcs faci'fty" of the OS. The statistics facility
Is given a data record that describes t~e type of record
and any varlable information associated with tbe record.
The statistics facj41ty finds Informatjon about the gi¥en
record type In a -table". This -tab'.- directs tbe
statistics facility to do some combinatIon of the
following things:

- add ttl e v ar I a b I el t em's) to counter (s)

- log accumulated counter values to a specified binary
lo~ or set of binary JOgS when a threshold counter
vatue is reached or when a certain tim. bas elapsed
sanee the last "put" to the loo(s) of the
approprtate counter(s). The set of logs Is
specified In t~e "tabJe".

- slmpl) tOG this record In tbe "tabte-speclfJed"
10g(S)

The ~se of the statistics facility for blnary logging
eases:

- InstaJlatlon tailoring of what 1$ considered to be
accounting, performance, etc. data. For exa.pJe,
site A may consider CPU tlme to be accounting data,
while site B constders It a workload statistIc end
consIders "number of statements compIled- to be
accounting data

- optJona' routIng of statistics to the Job statistic
log (based upon user desIre, but constrained by
lnstaJJatlon wlilingne~s -- yja fltable"
Informatlon -- to diyulge certain information)

Since the statistics facility determines the log Into
which a given statistic (for examp4e, PIDFR data) J. to be
pl~ceo (based upon an lnstaJlatlon and CDC defIned table),
system and product Implementors s~ould not be concerned
~jth wblch log's) are used for "tbelrft statistics. This
mapp)ng wJJJ be determIned tater.

CYBER lao SY5tem Interface Standard

3.0 OUTPUT
3.2.2.1 Account log

3.2.2.1 A~~~YDt_LQ~

"3.2.2.1.1 PURPOSE
T~e purpose of the account log Is to hold accountInG and
billIng Info,mation. Thl$ consists of resources and/or
services usee, "who" used them and "who" to charge. The
account log should be the only log needed for an
Installation to do bj.ling.

'3.2.2.2.1 PURPOSE

3-ti

86/02/0,-

The purpose of the engineering JOg Is to bold Infor.atlon
regarding system hardware usage and errors. The
engineering 'og should be the only log needed to perform
h8rd~are usage and error anla,s)s.

3.2.2.3 StJtlitl~_lQ~

3.2.2.3.1 PURPOSE
The purpose of th est at 1st Ie log Is to hold:

- detailed system workload Information

- detailed system performance Intormatlon tl.e., tbe
way the system responded to the Morkload)

AI,though some of this information Is recorded in ctber
logs, a separate log Is maintained In order tot

- keep other togs relative'y flclean- or orIented to
the1r own purposes

- allow possibly large amounts of data to be recorded
In a compact binary form

3.2.2.4 lA~_~iatl~11~_LgS

3.2.2.4.1 PURPOSE
the purpose of the Job statistic Jog Is sl.llar to that ot
the (global) statistic lo~. The global statistic log
contains information regarding atJ Jobs In the system, but
may be read only by prl.jje~ed programs / users.
Individual users, however, may wish to see InformatIon
that 1s availatae about their own JObs. The Job statistic
log may be read by normal programs I users and cont.Jns

CYBER 180 System Interface Standard

3.0 OUTPUT
3.2.2.4.1 PURPOSE

3-9

66102/04

InformatIon regarding a single Job, similar to the "scope"
of the ASCII Job log.

Avoid the use of character data. Since each record type
Is pre-deflne4 by a CYBIl recoTd type definition, the,e Is
seldom a need to describe the various cata fi el dswlth
keywords or the. Ike.

Message type naming follows the n8mln~ conventions
described In SIS section 3.4.

Use the blnaty JogginG facIlities for PIDFR data.

See the OS ERS and the SIS Usage Statistics section for
minimum list of items to be logged.

Additional conventions will be added as design proceeds.

3 • 3 LIS,IAIU .. E._ClJlfUI

When a sign If I cen t amount 0 fi n-form at ion Is to ber et u'fned
to the user, It .s written to a "IJstabie output f.le-.
Tbe standard format of such a fife is described here.

CYaER 180 Output Standard Is defined In terms of:

-.

•

•

•

•

Output File Organization

lIsting Page layouts

Page Header Format

Format of Each llstlng Type

Object Code and Debug Code

3.3.1 LISTING PAGE FORMATS

In the sections that follow, the contents end tormat of
the standard listings produced by CYBER 180 Products are
defJned In terms of a vertical and horlzontaj layout.

CYBER ISO System Interface Standard

3.0 OUTPUT
3.3.1.1 Vertlcal L8)Out

3-10

86/02/04

Vertical la,out is defined In terms of the first printable
tine of a form following top-ot-form positIoning by the
p(intlng dEH/ice. This poslt.lon Is defined a·sline 1 of a
form and Is reserved for the first print line ot the
standard Jlsting header. The product is not responsible
for the physic.' alignment of line 1 relative to the
perforated fo1d on fan-fold printer toras. Thjs Is tbe
r"es pons' b II J ty of th e user on pr inter $.. I th ver ti ca I
posit1onJng carrlege tape mechanisms or the responsibilIty
of the CYBER 1St OS De,ice SoftMare on prInters without
vertical carriage mechanisms.

When the last printable Jine of a fOrm has been written,
the product will reset the page Ilne counter to 1. When
the page lIne counter Is equal to 1, the next print Jine
~rltten Is preceded by a standard listing header wjth a
top-of-form code in the fJrst character positIon of the
header print record. The product Is not responsible for
the physlca' atjgnment of tbe last printaba. line r.'at.ve
to the perforated fold on fan-fold printe~ forms.

Eacb product must obtain tbe output file attrIbutes from
the operating system at the ttme the ftle js opened.
These attributes include prInt mode, page Mldth, connect
status, page format, and page length. Vertical and
horizontal print density have operating system defined
daf~ults which may be changed by the user.

Output files maJ be elther contln~ous, whlcb ~as a line 1
position but does not have a last lIne position, or
paginated (non-continuous), whlch has both a line 1
positJons and a lIst line position. Continuous for.
specification files are Jntended for users usIng
lnteractjve term.nals (display or hard-copy) for Jistable
output. Paginated (or "fan-fold-) listings are intended
for users using line printers for Jistable output.
far paginated files, page Jiengtb ml nus the number 0·' tines
of header determInes the aval .able JInes per page. T~.
operating syste~ provides a (default) standard paye length
of 66 IJnes per page at b lines per Inch
vertical print densIty. Thls provides en 11 Inch form
length. Print mode specifies Mhetber or not the paginated
fIle Is "burstable" or "non-burstabt.-, with
"no~-burstable" being the default.

CyaER 180 Systea Interface Standard

3.0 OUTPUT
3.3.1.2 Format Attributes

3-11

86/02/04

A continuous form fIle Is detected by checking the flle's
attribute Pigeformat. Connected files w.11 de'tault to
continuous form mode, but users may overrIde this bJ
specifylng a page length for the connected file.

3.3.1.2.1 CONTINUOUS OUTPUT filE
When formatting listable output for a continuous form. the
product uses a standard triple-space code In the fl,st
character position of the line 1 output record (usually
the first line of the header) to achleve top-or-tor.
positioning. Products will reformat listings for termJna'
users when required by thJs standard.

Each type 0 f • Is tl n g (sourced J stl n g, at t r J bute lis t J ng,
etc.) Is preceded by 8 trIple-space and the usus. beader
11ne(s), but there Is not pagination as such.

3.3.1.2.2 PAGINATED OUTPUT fILES
When formatting output for paginated listings, the product
uses a standard top-of-form code In the first character
pos j t i on of th e I In e 1 pr j ntr ecord (usus II y the' l·r5 t
IJ~e of the helder) to achieve top-or-form positioning.
In burst.ble listing mode, each type of tlsting produced
by the product (source listing, attribute listing, etc.})
beg1ns at a top-of-form position. In non-burstabl. mode
(sometimes referred to as "paper saw1oo" mode), eac~ type
of listing Is preceded by a triple-space and the usual
header linels) If "proper space" remains on the cu~rent
page. "Proper space" Is defIned 85 6 plus the number of
header Aines (Insuring that at least 3 lines of output can
be placed at the bottom of the page);)f "proper space"
does not remain, the triple space Is replaced by a
top-of-form. The source IlstJng al •• ,s begins at
top-of-torm, and user-specified page ejects (via
compidatlon directives) always result 1n a top-of~for.
position unless the listing Is already positioned there.

Carriage control characters that are used should be
restricted to the fo.lowlng set:

Ch at acter

b I Ink

o

Action

Space vertically one line then print.

Space vertlcal.lytwo lines then print.

CYBER 180 System Interface Standard

3.0 OUTPUT
3.3.1.3 Standard CarriaGe Control Codes

Space .ertlcally three lines tben print.

1 Eject to t~e first line of the next page
be f or e pr In tin g •

+ No advance before printing; alloMs
overprl ntl.ng.

3-12

86/02/04

ThIs set represents t~e full extent of compatIbility
bet~een current CDC usage and the proposed ANSI standard.

Under NOS 180, horizontal prJnt density and
vertical print densIty are file attributes that the user
may modify. The NOS, NOS/BE carriage control codesS and
T will not be used to set or ctear the S tines per inch
mode.

It wI" be necessary to make some provision for setectlon
or print densltJ wben NOS 180 print flies are to be
printed by NOS or NOS/BE. The fIrst release of NOS 180
wI II depend entirely on 170 state for print files.

Horizontal layouts Ire defined for the standard Mide format,
that 1s, 132 columns. Assuming a default density of Ie
lnches per second, 132 columns uses 13.2 Inches of the
standard 14-inc~ line printer paper width.

Pr~ducts are also required to support two terminal formatsl the
standard ftwlde format", 132 columns, and the standard -narroM
format", 80 columns. Formatting for otber Jjne wldths In
additIon to the standard terminal line Is permitted. All
formats other than the two standard formats are referred to as
"0 therform ats".

The first character position of an output record Is interpreted
by the output device software as the vertle,J positionIng
control character and Is never printed or d.sp.~yed. The 132
character positions following the first char.ct.r position of an
output record contain the characters to be printed or
dlspl8yed. Therefore, the characte, In the second positon of
the output record J s p r I ntador <st spl afedl n the fl rstpos I t I o'n
of t·he output I In e.

CYB~R 180 System Interface Standard
3-13

86/02/04

3.0 OUTPUT
3.3.1.5 Standard listing Header

AJl CYBER 160 Products wl14 USe a standard 2 Itne page
header format on all J j st .. lngs produced by the products.

Through this section. date and time fields conform to
standards der.ned in section 4.1.

If the Jjne width specified is other than 80 or 132
the headlng Nill be mapped to one of the two standard
listing headers. Other output will honor the actual line
wi d til, unJ ess .specl flea I J),column or. ented throughout the
lane {as opposed to column oTJanted for tbe fIrst portion
and open ended for the last portion, such as source}.

Line 1 of the common page header contains the following
fIelds {fieJd definitions are tn COaOL format):

'System Name xes)

Pr'o duct Name x(8)

Product Version 9.99

Product level 99999

LI s tin g N am e x (14)

Operating Syst •• name.

The tonghand for. of the
product name, i.e., FORTRAN,
Ft1U, 8 AS Ie., etc.

Product verston number. The
number after the decimal
point is shown left
Justified, I.e. 5.1, net
5.01. This number Is updated
at the product source code
level by the responsIble
development organJzatJon for
eacn new version retease.

Product modification leYel contained
within the product Itself. It Is In
the form YYDOO representing the Julian
date w'.n the product Mas compiled.
This nURlber Is updated by the bull d
procedures for each ne. ~,dat. release.

Name of tbe particular
listing being produced. The
acceptable ljstlng na.es are
defined In the following
sections which define the

CYBER 180 System Interface Standard
3-14

86/02/04

3.0 OUTPUT
3.3.1.6 OTHER FORMAlS

Module Name .(31)

Date: x (18)

Time: x (12)

Page Number • PAGE'zzz9

format of each listing tJPe.

Name of t~e source module
being compiled or the n ••• of
the input file being
processed. The module n •••
Is obtained from the module
Jdenttflcatlon statement
provided withIn tbe •• nguage,
or, the default name provided
the product when an
Identification statement Is
not used. Thls name need not
appear In the first page
header If unobtainable. The
name will appear 'eft
Justified wttbln the rJeld If
shorter than 31 cbaracters.

Date It the time tbe first
~eader was written (Jlstlng
Page Number reset to 1). Tbe
date Is obtained from the
CYBER 180 OS usIng a standard
Program Management request.
The date format will contor.
to the standard gIven In
sectIon 4.1.

Time of day at the tJme the
first header .as written
(listing Page Number reset
to 1). The time Is obtained
from the CYBER 180 as using a
standard ProGram Manaoement
request. The tIme for.at
will conform to the st.ndard
given in section ~.l.

Integer number generated by
the product st.~ting at 1 and
incremented by 1 for each
page header wrItten for I
compilation unit. The page
number Is reset fo~ the f1tst
page header written for a
compilation unlt. This field
Is omitted from the standard

3-1'
CYBER 180 System Interface Standard

86/02.104

3.0 OUTPUT
3.3.1.6 OTH~R FORMATS

3.3.2 FORMATS

header when a continuous torm
is specifIed. lbe two parts
are alwaYs sep.rated by one
bjank.

Two logical tine width listing format$ are generated by
products:

Page Formatted lines of 132 characters

80 Column Formatted Llnes of 80 cbaraeters

A standard header will be Mrltten at the top-ot-for.
position of a listing wbenever the page line counter Is
reset to 1 except when a contInuous form Is being
written- A standard header will be written only at the
beginnJng of a listing when a continuous form is
specifIed. A spectfJed page width of 132 or greater wltl
~esult In the following headlng line.

fILE CONTENTS LIST - WIDE FORMAT

C oj umns 1,-14

Columns 16-1t6

Columns 48-53

Col umns 55-(54+n)

Col umns (56 +n)- (59+n)

C oj umns (61+n)-Sq

Columns 91-108

Columns 110-121

Col umns 123-132

listing Name or Columns 1-46
progr am name

Module Name

System Name

Product Name (Iength=n, n<2~)

Product Version (.en~th=~)

Product level (lengtha S, blank
:ftIJed)

Date {riGht JustIfied}

Time {right Just~fled}

'PAGE' and Page Number {riGht
Just. f I ad}

AI' unspecified columns contajn b1anks.

CVBER 180 Systen Interface Standard

3.0 OUTPUT
3.3.2.1 Wide format (132 columns)

fILE CONTENTS LEGI8lE - WIDe FORMAT

Columns 1--14

Columns 16-46

Col umr.s 48-:53

Columns 55-78

Columns 80-83

C o~1 umns 65-69

Columns 91-108

Columns 110--121

Col umns 123-132

Listing Name or Columns 1-46
pr ogr •• name

Module ttame

System Neme

Pr 0 duct Name

Product Version

Product level

Date {left Justified}

Time {left Justified}

PAGE and Page Number {left
Just;)f I ad}

3-16

86/02/04

The product ~It I reformat the standard page format for a
80 character Ifne. A physJcal output line format
greater than the specified line size ma, be r1oht-end
truncated by the product to tbe required specification.
The excess cbaracters will appear on the next line. A
product may choose to retormat narrow Ilstlngs Nathln
the provisions of this document.

The header format {on terminal formatted 1 •• tJngs}
consists of two consecutIve lines containing the fields
defIned above in tbe following posltJons on Ilnes 1 and
I Jnes 2. The PAGE and Page Number fields are optlona'
for continuous files.

This lnformatlon NIII appear within the folloNlng column
positions of the first print line (Product Name, Product
Version, and Product leval are left Justified, separated
by one blank column):

fILE CONTENTS LIST
II ne 1

Co. umns 1-14 lJstlng Name

CYaER 180 System Inte;rface St,andard
3-11

86/02/0 It

3.0 OUTPUT
3.3.2.2 Na,rroM for II at (8 0 Cot umns)

Columns 16-46

Co I umns 48-65

Columns 70-eO

LI ne 2

Col umos 1-0

Columns 8-{1-n}

Co lumns {9+n} -
Co J utnns {14+n} -
Co I umns 48-65

{lZ+n}

42

Ho du Ie Nail e

Date {right Justified}

Page {right Justlfjed}

System Name

Product Name {Iengtb=n~n a 24}

Product VersAon {length = 4}

Product Level {length:5, blank
fll '}

TAme {right Justified,
left blank padded]

fILE CONTENTS LEGIBLE - BOColulln Format

line 1

Columns 1-14

Co I umns 16-46

Co j umns 48-65

Co tumns 70-80

tIne 2

Co J umns 1-6

Co. umns :S-{7-n}

Co t umns {9+n}-{12+n}

Co J umns {14+n}-42

Cojumns 48-65

LI st. n.g Name

Date {left Justified}

Page {left Justified}

System N·.me

Product Name {Iength=n, n=Z4}

Product VersIon (Jength-4}

Product level {jength=5 blank
fIll}

Time [left Justified,
right blank padded]

cveER 180 System Interface Standard

3.0 OUTPUT
3.3.3 SOURCE LISTING FOR"ATS

3.3.3 SOURCE LISTING FORMATS

3-18

86/02/04

Therol jowing standard appJ teste compilers., assemblers
end Interpreters. Assemblers may optiona'.y Insert binary
Information at the left of the source stateMent. 'age
ejects may be suppressed for subsequent listings of each
module (e.g. Map, Cross r~terence) it the source listing
Is short (e.g. 1/2 8 page or less).

The number of records In the source fite should be the
same as the nuabe, of source lines In the source list.
Therefore, null records should be mapped to at. b •• nks.
(See section 2.3.2.6.)

Every prlntabJe source listing contains the follo~lng text
In the Listing Name field of the standard listing header:

S DUReE LIST Of
--14 char8cters--

A standard source tlsting header wilt be ~rltten at the
next top-or-form position whenever the page 11ne counter
Is reset to 1. Only the first source lIstinG header Mill
be Hrltten on a continuous form.

When source emhedded TIllE or SUBTITLE directives are
processed, the page line counter Is reset to 1 and 8
standard header is written. The tltt. text Is printed
beginning In column 25 and endinG in column 132 of the
tine immedlatel, foJlowing the first line of the standard
header. The title lines are followed by a b'ank IJne.

standard heeder
title text
subtitle text
blank

line 1
line 2
line 3 - 11 (If any)
line n

n may take the value 3 to 12, dependIng upon the
presence of a subtitle lines.

When a source 11stlno Is belng formatted for a continuous
fo~m, the title line .$ sJmply preceded and followe~ by a
slnole blank line.

If a SUBTITLE occurs without a TITLE, a blank line Is

CYBER 180 System Interface Standard

3.0 OUT:PUT
3.3.3.2 TITLE lines

p'iaeedl n the pes It ion whi en would have been occupied by
the TITLE.

When the source Input module does not contaIn a TITLE
dlrectlve, two blank lines immediately fo'iow the second
line of the st,ndard listIng header.

The actual source statement listing begins on the .Ine
following the blank line 10.lo .. lIng tbeheader, or titles
I' present. Each source lIsting print line contains the
following optional fields:

Offset Z(8) A zero sUPpressed hex.declm~1

3-19

86/02/04

number (see section 3.1) giving the
byte offset in code sectJon of the
first Instruction vaneratedfar the
listed source st8t~ment. If this
field Is supported, It's selected
by the Jist option BO. It
selected, the field must be
supplied for all source listing
tines.

Input l J ne
Number ZIIO) A numeric, zero suppressed number,

lef t s ta tement

up to 10 characters In length,
a.Joeated to the source line. See
section 2.3.

Attributes x(4) language dependent attributes.

Right Statement
Attributes x(4) ComplJer dependent attrlb~tes.

The Source Record
I s a r equ 1 r ed f j e I d

Source Record x(132) Up to the first 132 characters of
the Input source record. If the
source lIne Is less than 132
characters, this field's left
justified. Source Code utllltJ
(SCU) f dent:lfl ers are cont;a Ined
wit hi n t hi s ·f Ie. d, I f they e JC J st.

CYBER liO System Interface Standard

3.0 OUTPUT
3.3.3.3 WJde format

If atl fields ~ere present In a source tJstJng, column
positions would be:

Columns
Columns
Columns
Columns

Columns

1-8
10-13
15-2lt
26-125

127-130

Offset
left statement attrl butes
l'l ne number
Source (Including SCU
Identification when present)
Right statement attributes

3-20

86/02/01t

If an optIonal fleld is not used the remainlng fields Mltl
be adjusted to the left.

When the source reco~d (26-1Z5) Includes StU
Identlflcat.loninformatlon the fol,loMlng colulln positions
will be adhered t c fer the source record

Columns 26-105 Source
107-125 SCU IdentJfier.

The fields should not be changed (mixed) between
successive uses. Once the flelds desJred are estab'ished
they must rema.n unchanged.
ExlstJng fle1ds befo~e and after the source record •• , be
blank. If the source :record oyer'floNs anadditJonal line
15 Mrltten wlthln the source record field. In this case
the right attributes fleld of the first lIne contains
•••• ' as the first three characters and the rest of the
field end o'f"fset field are blank. lbe oyerflow ,line
contains blanks in the Itne number field and the remainder
or the source record left JustifIed in the source record
f'J eld.The right attributes field contains the
Information which would otherMlse have appeared In the
fIrst I Jne.

The source Jlstlng format written on a terminal forsatted
listIng consIsts of one or more output Alnes for each
Input source record.

The first line consists of the fO'lowIng fields:

line Identifier

Source Record

Numeric right Justified leadlng
zeros suppressed. OptIonal
variable width fIeld up to 10
ch·arac tets.

The source record fleld size Is

CVBER 160 System Interface Standard

3.0 OUTPUT
3.3.3.4 Narrow Fo~.et

3-21

86/02/0"

dependent on the 'fie attribute
maximuM record length and the size
of the Jlne number fle1d.

A single blank separates these tNO fields.
Th e sour ce record f I et d sJ ze J s dep endent on the fit e
attribute maximum record length.

If the source record Is longer than the Source Record
fl e. dthen an additional Line is written. The I Jnes 81' e
prInted MJth tbe same format contalnina blanks In t~e line
Number field and the remainder of the source line
left-JustifIed in the Source Record field.

3.3.4 OBJECT CODE LISTING FORMAT

This is the format for listing lines of object code
produced by the compilers at the users request.
AssembJers list their source lines formatted 8S sub.1tted
ffom the Input file.
The object code listing sha1. take one of two forms. The
first consists of tines describing ea~h eY180 Instruction
embedded in the source listing ano, as far as possible,
foljoMlng the same line from which the code Is generated.
The object code line 5'all conform to the standard defined
belo~. A group of object code listing Itnes shall be
preceded and follo~ed by a blank jjne.

In the second form, the tines describing the object code,
also conformJng to the standard derlned below, are
collected Into 8 separatetlstlng, the "object code
tlstJngW which shall conform to a page format co •• on to
the listings prcduced by alj compilers. ThJs Is defined
8sfolloMS.

Object code listings conslst of instructIon descriptions
and comment lines.

Instruction Oescrlptlon

WJtb the exception of BOP Instrueloos, each Instruction
emitted Is described by 8 single print line optlonallJ
preceded andlor followed by comment 11nes. The
Instruction description wil,l contain the folloNJnoflelds
'n the folloNlng order, beginnIng In column Z of the
listable output.

Offset Z (8) A zero suppressed hexadec.eaa number
(see section 3.1) giving the byte

CyaER 180 System Interface Standard
3-22

86/02/04

3.0 OUTPUT
3.3.4 OBJECT CODE LISTING FORMAT

Input line
Number

BI n alY

label

Instruction

Xll)

offset of the I nstl"uctJon I'elatlve to
an Impaementatlon defined base. This
base shal I be the same base used in
the offset 'Ield 1n the source line
t If proyl ded.)

ZZlZZ9 The number of tbe Jnput line ~or MbJch
the code 1$ being generated (as f.r 8S
Is practicable).

x (2)

X(ZO) An 4, 8 or 16-dlylt hexadecimal number
(adjusted to the left) representing

X{Z)

the binary bit pattern correspondjng
to the generated Instruction or data.
For readability the suggested for. Is
to arrange the numbers in groups of 4,
separated by blanks. The 4 and 8
digit numbers are followed by blanks
to complete the field. For narro~
fermat, this fIeld wilt not be present.

X(31) A 1 to 31 alp~8numerlc character
$t~.ng identifying the InstructIon
label as defined tor the CYSER 180
assembler. Tte label field c~n be up
to 31 characters in length. It can be
used In an ImplementatJon manner in
conjunctIon wIth the comDent field.

X(2)

X(lO)
B (3)

X(21J

A character string IdentIfying the
fnstTuctlon and Its operands. The
mnemonics to be used are those defined
for the CYBER 180 assemb'er. The
mnemonic IdentlfJer only may be offset
by 2 or 4 spaces to dJstlnguJsh
particular Instruclons or instruction
sequences. (e.g. to Identify code
generated out of sequence with the
source.) Operands are specl fi ad In
the order defined in 8ssembler
specification which appears In an

CVBER 180 System Interface Standard

3.0 OUTPUT
3.3.4 OBJECT CODE LISTING FORMAT

X(I)

Appendix (to be supplied). As sho.n
1n the format descriptton, the
breakdown of the instruction is as
follows:

MNEMONIC

OPERANDS

XIIO)
X(3)
llZl)

3-23

86/02/04

Comment X12') An Jmplementatlon dependent field
typicall, contalnJng user varlatle or
labet Identifier, regJste, use
cross-references.

Narrow Format

The narrow format and 80 Column Format consist of the
offset, line n",aber, labe~, mnelRonlc, operands and
concatenated fields. The binary tJeld will not be
'Present. If the listed 'tne exceeds BOco lumns the
lIne wll' be continued on the next 11ne (ca.Jed
flfoldJng"). fOr PH other than 80, the actual width
specified wIll be honored; excess InformatIon wilt be
fo j ded.

6dp In.structjons

These are described by a line formatted as above, foltowed
by one or two descriptor descrJptJons. These are similar
to the instruction lines except that the mnemonic field is
blank and the operand field contains a descriptor in the
form defined by the assembler specifIcation.

Comment lines

These are used to conyey more information than can be
accommodated jn the comment field of an Jnstructlon
descrtptlon. lbey consist of a comment field as defined
for the Instruction descrlptlon.

Every printable object code tlstlng contains the following
text In the listing Name fIeld of the standard listing
header:

OBJECT LISTING Of

CVBER 180 System Interface Standard

3.0 OUTPUT
3.3.4.1 Standard Header Contents

--20 characters--

3-Z4

86/02/04

A standard object lIsting header wIll be written at tbe
next top-or-form position "hen.ver the page lIne count.r
1s reset to 1. Only the first object listing header ~Itl
be Mrltten on a continuous form.

The Instruction menmonics used by the compilers will be
those of the CIBER 180 assembler.

3.3.5 ATTRIBUTES LISTING fORHAT

A common format for the Attribute/Cross Reference Ilstlng
Is deflned be~e. It Is useable by ell currently planned
languages fot t~e Cyber 180 and provides enough
'texlbJllty to tailor portions of the lIsting to
lndlvldual janguage needs.

The content of the Attributes lIstIng »IIJ vary sllght.y
depending upon ~hether Cross References Mere selected or
not, but the essentla' format Mill be the same. If the
user selects both attrtbu8S and references, the normal
format will be used. When references are not selected,
the heading will ~eftect the difference, but the format
wlj. not vary. If references are selected, but not
attrlbutes, then some of the attrlbute lnfor •• tlon
proylded will not be Itsted, proYldin~ some additional
space for references on the line.

Every prJntable attribute IJsting or attribute/cross
reference J Istlng contains the following text In the
listIng Name field of the standard 'dstJng header:

ATTRIBUTES Cf
---14 characters----

If no attrlbute Jist is selected (cross reference selected
only) tbe fo11ohlng text Js placed in the listing N.me
fie J dl nste ad:

REFERENCES OF
---14 char acters---

A standard 8ttrlb~te tist header wjlJ be wfitten at tha
next top-ot-torm position or following 8 triple space, as

3-25
CYBER 180 System Interface Standard

86/02/0lt

3.0 OUTPUT
3.3.5.1 Standard Header Contents

specJfJed by sections 3.3.1.2.1 and 3.3.1.2.2, end
whenever foJlohlng page breaks occur. Only the first
attribute 11st header Mill be written on a contlnuous for ••

The standard header Is foJlowed by 8 blank .ine and one or
more lines cont,lnlng the attribute/cross reference
listing heading. This consists of the field descriptions
8S defIned In the next sections, separated by one or more
blanks. Numeric fIelds in the lJsting are rlght-allgned
with the rlght-hand side 0' the descrlptlonJ character
string fields are a'igned on the 'eft, where approprIate.
Some of the field descriptIons may be spilt between tNO or
more 11nes If required, or omitted, .~ necessary, as
Indicated below_

The lIsting is .ade UP of entries describing the objects
defIned in the source progr~m. Each entry consists of a
definItion line, follo~ed by one or more extenslon lines
If reQuJred. The definitIon 11ne gives the 11n. In which
the object was declared (or '.rst referenced l' .a,ti.cJtly
declared), the ldentiflerl and attributes. Extension
'I~es are used If there are more attributes than can be
accommodated on one line, and to ho.d references If
se. ected. l'f both a ttl' I butes ana references are se I ected.,
the references ,tways begin on an extension line by
ttl emse I 'ves.

The 41nes contain the fieJds described In the table below,
1n the order specIfied. The table •• so contains the fIeld
descrJptJon to be placed 1n tbe table heading. The fJnal
section of the 4Jne (for host supplled free form
attributes and the references) Is contInued on extenston
Ii nes 8S neeessar y.

Entries occur In a1phabetlcat order wltb a blank Itne
Inserted between groups of Identifiers starting wlt~ the
same character. Multiply defined identifiers are
consecutIve In order of Increasing level of nesting or In
order of occurrence of block.
Variable format fields are optional. Tbey are in the
lndicated order jf used, otherwlse th~ fleld is not
present. The sizes for the given fjetds are maxJmua _Idth.

ATTRIBUTE/CROSS REfERENCE LISTING fIELDS

F'I xed Format:

CVBER 180 System Interface Standard
3-Z6

86/02/04

3.0 OUTPUT
3.3.5.2 Wide Format

F J"e"' d

Identifier

bl a n1<

defJnltlon

blank

size

Head:) ng

IDENTIFIER

DEFINED
ON LINE

SIZE uni t

Size

X(31)

X(1)

1(5)

x (1)

XC)~

Meaning

lbe Identifier of the entity.
The name appears left Justlfted,
blank f I I Jed.

The source Ilne nUmber In which
tbe entJty was defined, or (for
languages with implicit
deflnltJons) first used. It •• Y
extend Into the identifIer field
if Jarger than five (5) dIgits.
The second line of the heading
-ON LINE-appearscn.ty In the
"I de for m8 t.

Size of the entity, In units,
delaned by the host (eJther bits,
bytes, or .ords). The units of
the size of the entity Nill
appear as -SIT", "8YTEfl, or
"WORD". Abbreylatlons are BIT,
BYT, WRO. Normafly the fields
for size unit combination wll' be

size Z(8)
blank X(l)
unit X(4)

If the size field exceeds 8
digits, then the fleJds witl be

size Z(lO)
un it X(3)

Special case:

If sIze units Is no-size, then
tbe size field 1s allowed to be a
signed lnteaer (64-blt). This
will be right JustIfied under the
SIZE title If possible. If It Is
too large, It "grows" to the
right. If J tl s so I at ge'$ to
grow lnto the TYPE fIeld, the

CYBER 180 System Interface Standard
3-27

86/02/04

3.0 OUTPUT
3.3.5.2 Wide Format

blank

type of
entIty

bl ank

I 00 att on

TYPE

LOCATION
SEC+OFF

X(Z)

X(lO)

X (1)

TYPE field is pushed to tbe
right. This Is possJbje becluse
the lOCATION field Isundefl~ed
if the SIZE units are nO-Size.

The type o~ the entlt, being
II sted. Chosen from the I is tJ n
section 3.3.5.4.1; If the host
wishes further qualifications
listed theY appear in the
attr J butes I i st.

Minimum The location of tbe entity,
X(6) where ·SEC" Is the section olm.

of the section containing the
data for the Identified
reference, and "off" is the
offset to the beginning of the
section. The section names are:

$lITERAl

$STACK

$PARAMETER

$STATIC

$REGISTf~

The section
containing literal
constant data.
The section
containing varIables
that are aJlocated
on the stack _hen
the contaIninG
procedure Is called.
A subsetot the
SSTACK section
con t 81 n :1 ng par a II e t e r
list verlabl'es
allocated on the
stack by the callIng
procedure.
The section
contalnln~ variables
that are statically
allocated, are not
In common, anc .re
not In an expllcJtly
named s ecti on.
Va r I ab j es no t
bejong 1 ng to In y

CYBER 180 System Interface Standard
3-28

86/·02/04

3.0 OUTPUT
3.3.5.2 Wide Format

$BINDING
$BlANK

CYB$ OEFAUL T

memory section but
eXisting only In a
bardware register.
The bJndtng section.
Blank (unnamed)
common.

HEAP The system heap.

Code sectIon names wllJ be set to
the name of the procedure the
section represents. User deflned
names of sect.on and user
declared commen blocks Mill 8'50
be specified In fuJI (up to 31
en aT acters).

When a ·secft name Is too '.rge to
fit Jnto the default flald size
allocated, the enti~e name 1s
printed, expanding to the right.
A line feed and re-allgnment
"back" to the next lIsting fleld
allow. con ti nuatlonof cross
reference dat. generation. for
narrow format (section 3.3.5.3),
If the "sec· name does not fit on
the Jlne, It Nil. be put on the
next line by itself, then the
rest of the map Nil. continue
foJlowJng _ lIne feed and
re-alignment to the next field.

Vat'lable format

Field

For n8rro~ format listIng the variable format fields,
continue on a new line be~jnnlng In column 15 and
extendJng to column 80. For ~Ide format listing the
variable format fields continue on the same line beginning
In column 75.

Heading Size Meaning

block number BLOCK Z999 Spec.f·les tbe block or subroutine
In which the object Mas detl ned.

blank X(Z)

nesting NEST 12Z999 The nesting level of the

CVBER 180 System Interface Standard
3-2'1

86/02/04

3.0 OUTPUT
3.3.5.2 Wlde Format

lievel

blank

containIng
entity

blank

basic
attributes

user
attributes

l;EVEl

CONTAIN OR
DECLARED IN

ATTRIBUTES

(no heading)

X(Z)

)((31)

X(Z)

X(12)

free
field
start­
ing on
a sepa­
fate
II ne

declaration of the entity If •
block-structured language. If
the host Is not a block
structured language, the nesting
jevel is omItted. The second
jlne of the headIng - lEVEL -
appears on'y In the wlde for.at.

The name of the containing or
qualifying ent1ty. Blank Jf the
entIty Is not conta.ned or
qualified. The "contained
within" for. Is for arrays and
structures. The -declared In"
form is for Jocal variables. The
entire ~eadlng is on one line.

The "basIc attrIbute" of t~e
entity (entry, external, etc.)
chosen from the lIst In section
3.3.5.4.2. atank t~
non-appllcabJe to the entJty. If
there are no optional fields and
the basJc attribute Is not
present, tbe whole lIne Is
omitted In narrow format.

Other host defJned attributes
separated by commas. These
attributes begin on a
separate line beglnntng with
column 54 for wl4e format and
column 15 for narrON format
JJstlngs. Each definition
specified by the host Is placed
on one line If possJble,
otherwise each that overflows
starts a new line. If the
definition doesn't fIt .'one. it
Js broken at a blank.

references REFER ENe ES Z(6)X(Z) References on the ldentl'Jer
For combined
m.ap, sub:heaclno
wi) J be

line begin at column 54 on.
the listing In narrow format
the fIrst line has two

CYBER 180 System Interface Standard

3.0 OUTPUT
3.3.5.2 Wide format

relerences. Subsequent
Ii n e sst a,r tin co I um n 15
and have six references per
line. In wide format all

3-30

86/02/0't

UREFS",
starting on
a separate
I J ne. lines start in coSumn 54 and have

e references per line. Fot .Ixed
mode IlstJngs, see discussion
below.

The format for references is a six digit, right
Justified, blank filled integer, fol'owed by an
optlon~1 slash (/), foJlowed by quallfy)n; letter,
chosen from tbe list In section 3.3.5.4.3. This
comb~natlon Is followed by a blank.

In mIxed mode (combined attrIbutes and references),
both the attributes and references are ~8ndJed as
described above, except that the first reference line
has a subtitle -REFS- placed at its left. The subtitle
-REfS- Is ptaced In columns 9-13 on the narrow listing
and In columns 48-52 in the ~Ide listing.

Since the user may select the attributes Jlstlng
separate fro. the references lIsting, the following
changes occur wben both are not selected together. If
attrJbutes only are selected, the references are not
listed. If references on1 yare $1' ect,ed, the
Identifier, line number and ~Iferences fields are used
and the references begin at the end of the first line,
not on an extension line.

The narrow format IlstJng NIII have the same format as
the wide listing Mlth the e~c.pt'ons noted In tbe
describJtlons In section 3.3.~.2. and w4th the
exception that the attrJbutes and refernces fields wilt
continue on an extension line beginning In cGJumn 15
and extending to column 80.

3.3.5.4 Stl~~it~_flll~_~.lYJl

3.3.5.4.1 ENTITY TYPES
Each entity Is assigned a basic, cross-language type.
These appear In the "Type" field as one of the foltowlng:

TYPE ABSREVIATEDfORM

Simple var, VAR

CYBER 180 System Interface Standard

3. 0 OUT~PUT
3.3.5.4.1 ENTITY TYPES

Ar ray,
St·ructure,
Member.'
Condition,
Constant,
Type,
Off,
Pro gr am,
Module
Procedure,
Function,
label,
Sw I ten,
F II e,
Fo rm.at,
Par agr aph,
Section,
Impl name,
Group"
AlIas
Error
Attr name,

ARR
STRU
MEM
COND
CONS
TYPE
OEF
PROG
MOO
PROC
FUNC
LAB
SWCH
FILE
FHT
PARA
SEC

(for Implementor name) IMPl
GRP
ALIA
ERR
ATTR

3-31

86/02/04

Eac~ host need not SUPPDrt all types of entities on this
tj~t, but should defJne a consistent mapping into 8 subset
of the above. The final ent~y ("Error") should be used
for entities whose definitions contain syntax errors
sutflclent to prevent the compl'er from determining tbe
use·r's Intent·ions.

3.3.5.4.2 BASIC ATTRIBUTES
Thjs field contains attrtbutes basIc to the entJty
definition which are exclusive of one another. It the
entJty does not fall Into one of the following cataaolles
of attrIbutes, then the fleJd Is left blank. These are:

Attribute Abbreviated Form

undefined UNDEf
unreferenced UNREF
EntryPolnt ENTRY
External EXTRN
None (field Is blank)

CYBER 180 System Interface Standard

3.0 OUTPUT
3.3.5.4.3 REfERENCe TYPES

3.3.5.4.3 REfERENCE TYPES
The standard reference type abbrevIations ~11. be:

M the entity was set (modified),
(blank), the entity was used (slash Is also omitted)

A the statement defined an entity attribute,
S the entity was a subscript Or Index,

3-32

86/02/0't

I the entIty (usually 8 file) ~as referenced In
an II {) $ tatement

R the entity "as read into (or, if a flle, M8$
read)

W t~e entIty as written from (or, i~ a file, was
kir I tt en)

p the entity was used ssen actual parameter

For all Jistjngs containIng refe~ences there Is a legend
of the possible reference types and the~r one character
abbrev1ations at the bottom of each page. This legend Is
right Justified and takes the form abbrev = ful. name, ••••

for example: M=modify, A=attribute, S=subscrlpt,
1:1/0 ref, R=read, W=wrlte. P=parem.

E8~h host may c~oose to use the entIre set or 8 subset
thereot, but It 15 hoped that most hosts w •• ' use tbe
entire set.

3.3.6 DIAGNOSTIC LISTING

The diagnostic listing for complJers, assemblers,
Interpreters, etc., consists or dJagnostlc messages.
Diagnostics are. isted in either of two modes, at the
host'$ choice. The first method IJsts alJ diagnostics and
a diagnostic summary at the end of the tlstlng. following
the Attribute/Reference list 'If selected). The second
metbod lists syntax diagnostIcs In the source listIng as
they ere detected, with later (non-syntax) diagnostics and
tne diagnostic summary being listed at the end of the
AttrIbute/Reference list. If the first method is
selected, the host may also choose to have the location of
the diagnostic OC'Ufrence fJagged In the source tasting
(by means of a caret symbol under the offending column).

When compilatlo~ occurs wlth zero diagnostics a diagnostic
summary ~IJ I be produced conslstlng of the single line INO
ERR DRS· •

CYBER 180 5ystem Interface Standard

3.0 OUTPUT
3.3.6.1 Standard Header Contents

Every printable error listing/summary contains the
fa •• owlng text in the listing name fl.ld of the standard
II.stlng heade'r:

ERROR ll'ST OF
---14 characters----

3·-33

86/02/04

A standard error l'stlng header wlil be wrItten at the
next top-af-form positIon or following a trIple space, as
specified by sectlons 3.3.1.2.1 and 3.3.1.2.2, and
whenever a subsequent page break occurs. Only the first
error listing header Is written on 8 contInuous fora.

All diagnostic listings, whether grouped together at the
end 01 the other listings or prInted intermixed wit~ the
source listing kill have tbe same basic format. When
grouped, they witl be listed In source .tne/statement
column/diagnostic number order. When grouped and the
dl~gnostjc number Is not being printed, they will be
ll~ted in source line/statement column/order 01 ~ssuance
order. When printed intermixed .. I·th the sou,rce listing,
the, will be printed In the orde, the host detects them.

Cojumn positIons are speclfied for the case where all
fIelds are use~, and remain the same It an optl~nal field
Is not used.

Co I umn
PosItIon Contents format MeanIng

1-9 level X(9) error severIty level of tbe
dJ agnostic

11-17 line nr. Z(6)9 source statement number on

22-24 dlag. no. IZ99

26-28 COL X(3)

whIch the error occurred. For
diagnostics Intermixed .Ith
tile ·source I·j stt ng., til I sf. e I d
contains *ERROR*.

diagnostic number of the error
(assJgned by the host). This
fIeld Is optional.

The abbrevIation for the Mord
column In Intermixed mode. If

CYBER ISO System Interface Standard
3-34

86/02/04

3.0 OUTPUT
3.3.6.2 Standard Dlsg~ostic listing Fermat --- --- --.-.-.--.... -...-.~-.---.--. - -..-..... ---..... -.--~-,.--..... ---..-..-..--.-. --~~--~.~ .. ~--~--~

30-32 col. no. ZZ9

34-eol text

the column number field
cont:alns zero,·COlJ Is
suppressed. In grouped mode
this field contains the column
number described bel ON, and
that fJald Js blank.

column number In which the
error was detected. Blank If
not applicable. In grouped
mode the cojumn number Is
present In the col (26-28)
f lei G and the col umn number
field Is blank.

the diagnostic text (defined
by the host). Each word
MJthJn the text 15 separated
by one space and the tIne Is
filled as required. Extension
Ilnes begIn wJth the text
position tbrough the end of
the line, slng'e-spaced. In
intermixed _ode, the *ERROR*
Indicator is re-lssued on
extension lines.

Diagnostic summer} for products that use diagnostIcs
Intermixed wlt~ source Should Include a page tlst of pages
with diagnostics.

The diagnostic summary wi). follow the diagnostic tlstlng
for grouped dle~nostlcs, or stand-alone for intermjxed
diagnostics. In e1ther case It provides the user Mlth 8
summary of dIagnostics detected and lIsted, as directed by
the El parameter.

There will be a~ diagnostic SummafY line for each level of
diagnostic detected during the compilation. If no
compilation errors (at any levell were detected, then that
15 noted. The fo.lowlng format will be used for a" of
the summary Jines:

columns 3-6
co J umns9-14 **** Summary line flag

Number of diagnostics of 8
given category, In the for.at
Z(5)9~

3-35
CYBER ISO System Interface Standard

86/02/04

3.0 OUTPUT
3.3.6.3 Standard OJagnostic Summary Format

co I umns 16-eo I Text, in the format "asa.
diagnostics·, where aase Is
the category being
summarized- If the
dJagnost~cs were not listed
(due to El setting) then
"(unllsted)fl Is appended to
the message.

If only one diagnostic at a given leve. HaS issued, the
word "dIagnOstics" will be fldJagnostlc" in the messages.

3.3.7 COMPILATION OPTIONS

The compilers .11. produce one or more Jines of output to
Indicate wh~ch control state.ent options Mere selected for
this compile (eJtber by default or expllclt.y). The
format of this line will reflect section 2.2 of this
standard. This .Jne will appear after a_I other listings
for each modul e. Itis produced wheneyer any I ,1st option
Is selected and not produced for LD=NONE.

This section describes conventJons for all ASCII error
meSSages. This Includes jOg messages (to system and Job
togs), Interact'vE messages, and error messages written to
the OUTPUT or other files (reference logs, section 3.2).
The conventions Include the use of the Message Gene~ator,
massage Identification, and message Mordlng.

3.4.1 CONDITION CODES, EMBEDDED PRODUCTS, AND "ESSAGE GENERATION

A summary of the NOS/VE status record f.efds Is noted
below. The NOS/Ve ERS should be referenced for a complete
description of the status record and the Message Generator
interfaces. All products, lncludlng products embedad In a
host product, shall adher~ to these conventions.

Normal - A boolean which has a value of FALSE If a request
coutd not be processed correctty and TRUE If It has been
processed correctly.

CondItion Code - A unique condItion code Is defined bJ •
two-character product identifier (see section 4.1.1.1)
plus a five-digit error code indicating the specific error
(e.g., IOnnnnn). Atl CDC error numbers must

CVBER 180 System Interface Standard

3.0 OUTPUT
3.4.1.1 Condltion Codes

3-36

86/02104

be In the range 1 to 9999. Error numbers In the ranGe
10000 to 19,999 are reserved to Ident)fy errors from user
developed products.

In cases where the condition code Is communicated
1n a form other than a status record (e.g., FORTRAN
lOS TAT, A AM I s E'S field) thef. e I d tI co n d I t Ion" from
the status record must be used.

Text - A string used to substitute text Into the error
message template associated with the condition. The first
character of the text signIfies the character used as the
text delimiter. AI1 text Items are terminated by the
de1tmiter or the end of text.

The embedded product should return abnormal conditions to the
~ost v1a the standard status varlabte, and with condition code
and productJ dentl f 1 eir of the embedded p'foduct. Cond J-tl ons
anticipated by the host should be translated by the host Into
the appropriate condition with the host productldentifilerend
condition code ~here user action Is required. Conditions not
anticipated by the host can be P8£sed on to the user.
Conditions Issu£d by the embedded product shou.~ be clear enougb
for the user to determine required correctIve actIon,
including the need for PSR submIttal where appropriate.

The NOS/Vf Message Generator Is used to format and output
811 error messages output to JOgS or to an Interactive
us ers term Ina. (note ttd s does not In c I \Ide dJagnos tics
generated during compilation). It produces a standardized
message usJng the NOS/VE status record and message
templates from t message dictIonary.

3.4.2 MESSAGE TEXT

The message templates are determined by each product and
IncJuded In a message dictionary. The NOS/VE ERS should
be referenced to determine the formats of message
templates.

CYBER 180 System Interface Standard

3.0 OUTPUT
3.4.2.1 Message Formats

The meSSage generator formats and outputs messages
according to conventions based on the message's
destination: terminal, log, file, or returned to tbe
caller.

Terml nail

Format: text ••••• or IDnnnnnn text •••••
Ex amp 18-: Permanent fi'e (pfu) not found.

log, OUTPUT, or other file:

format::
Example:

IOnnnnnn
Ca0326

Returned to caller:

format:

text •••••
Incorrect delimiter, comma
assulled.

SID mmll text •••••

3-37

86/02/04

Ex amP' e:
IOnnnnnn
AM1234 SOP 01-2 file (I tn) -al ready

opened.

Where:

text
10

.......
nnnnnn

SID
mmm

.::

.::

.::

.::

Text 0 f message
Product Identifier
The error condition code
(unique error number for. given
p.roduct)
Product subJdentifJer
Subcon~ltlon code.

The combination IOnnnnnn will be known externaJl, as the
flCISO error number". It Is a unique system-wIde code by
which any error message can be Jdentl-tled to the user. It
15 always prJnted before the message text on all batch
4lstlngs. It cen optionally be JncJuded with messages
output to an InteractIve terminal and is available to tbe
termlna' user requesting additIonal error analysis
assistance via the NOS/VE HELP facllJty.

When error summeries are listed on 8 file, log messages
should be Issued to both the system and user log according
to the f~IJoNJng rules and formats:

CYBER 180 System Interface Standard
3-38

86/02/04

3.0 OUTPUT
3.4.2.2 Error Summ8rl~s In logs

System .nd User log

n fatal errors lin xl

User log On I)'

n warning or trjyjat errors [jn xl

n number of errors
x Is tbe name of the module, progra., subroutine

that contains the errors.

Error summaries shoutd only be used Mhen it Is
Inconvenient to proylde a description of an actual error.

Catastropblc errors are not Included because they s~oUld
always result in 8 log message Jndlcatlng the catastrophic
error. The errer counts should be issued to the 'og even
If the El (error 'evel) parameter excludes them from the
J.istlng.

Error messages represent a very important, tbough often
neglected, Interface between software and user. Proper
attention to producing polite, correct, and clear error
messages can do a lot toward Improving tbe overall
usability of the system. The fo'loMing conventIons should
be used In deflrlng error message text:

•

•

•

Messages should be polite and courteous. Words such
as "Illegal" 5bould be avoided In favor of words like
"Incorrect" or "unknown". Error message~ should,
where appropriate, su~gest whit the user ougbt to do
to correct the error. For example, use:

The line number parameter must be an Integer.
not:

I I I ega I II n e number.

Messages must be formatted for 80 character displays.
Telegraph style Is much betteT than lOng-Minded
prose. However, the message must be descrlptJve of
the er,ror. Messages J I ke "Bad Argument" don.t say
enough.
Consistent terminology Is extremely 4mportant. For
system-wide terms cons~lt Section 6.0 of the SIS. For
termlnojogy spe~lfjc to a product, again consistency
Is the Important factor.

CYBER 180 System Interface Standard
3-39

86/02/04

3.0 OUTPUT
3.4.2.3 Message WordJng

•

•

•

•

•

Identification must be provided with variable
Information. for example:
use::

File (Ifn) not found.
Variable (var) must be scalar.

not:

(I fn) not found.
VarIable (ysr) must be scala,.

Use ending punctuatIon. It Indicates to the user that
the message Js not continued on the next line and adds
to the readability of the message.

MeSS8ges s'cutd be oriented tOward an Inexperienced or
casual user such that the message can be understood
and appropriately responded to without reference to a
manual.

Abbrevlatlcns should be avoided. Whenever possjb1e
lImIt the c~aracters used to alphanumerics plus
english punctuation. Avoid use of characters that
appear differently on different devices. CDC's
64-cbaracter ASCII subset and lowerc.se alphanumerics
can be used.

Words beginnIng with "multi" end "non" are not
hyphenated. Don't use "(s)" to Indicate an optional
paural usage; either singular or plural Is acceptable.

Error messages should use uPPer and lower case 8S the,
are normally used In the EnglIsh language. Upper case
should be used to distinguish ·computer" words from
normal English words. For example:

file FRED not found. SpecifY keyword NEW.

All products are required to collect and log statistl cal
In :format I on.

This section descrlbes what these statistics are used for,
the NOS/~E StatistIcs FacilJty, which statistics wIll be
collected by products and wh~ch witl be collected by t~e
DIS and when statfstlcs should be logged.

Because the Statistics Facility Is under controJ or NCS/VE

CVBER 180 SYstem Interface Standard

3.0 OUTPUT
3.5 USAGE STATISTICS

proc1Jctdeslgners are requested to convey statistics
requIrements and plans to the NOS/VE design team.

3.5.1 PURPOSE OF STATISTICS

3-40

86/02/04

statistics Jogged by products may be used for billing,
measuring rellablltty, measuring performance, debugGing,
product p.l.annl ng or some other purpose. The ultlm·ate use
of the data cannot be determined when the product Is being
desIgned. for example, a statistic such as -number of
source statements compiled", which Is normally consldared
a performance statistic, could Just as easily be used as
the basis for charging or billIng a user. It's not
Inconceivable that 8 student could be billed based uPOn
(numbe.rof source statements) - (number of comment lines)
+ n * (number of errors) Jf thls data were av~l.bfe for
ea en compII e.

There are three physically different logs for recording
statistics. They are the accounting, Job, and system
statIstics logs. See section 3.2. A particular stat1stlc
may app I y to one or ai' thr'ee of thes e logs. To prevent
products from hiving to Issue the same statIstic several
tlmes, to prevent product desJgners from bavlng to decide
which statl5tlcs will be used for which purpose, and to
provide installations and users maximum control over
statlstlcs gattering, NOS/VE proyldes a centralized
Statistics FacilIty.

3.5.2 STATISTICS fACILITY

NOTE: This Is preliminary Information. The NOS/VE
ERS should be referenced for a more complete
and UP to date specification. The ERS Is the
controlling document for this product to CIS
Interface.

The NOS/VE Statistics facility Is used by products and the
DIS to accumulate statlstJcs and ~rlte records Into binary
'0 gS.

The Statistics faclJlty

associates a statistIC code from a status record ~Ith
a particular table entry

adds Job and task Identification to the var)able data
If appropriate. Task IdentifJcation specifies ~hlch

CYaER 180 System Interface Standard

3.0 OUTPUT
3.5.2 STATISTICS FACILITY

of the possible several asynchronous Instances of
execution .Ithin 8 Job the current statistic belongs
to.

3-41

86/02/04

routes the statistIc to the appropriate Jog or logs
andlor adds it toa specific counter as determined by
the table entry. Counters can be dumped to binary
lo;s at speci#lc times or events.

Data passed to the St8t1stl~s Facility Include:

statistical code - ordInal of this particutar
statistic.

optiOnal byte string - for products this strIng
contains product 10, module ldentiflers If
appropriate, and any other product or statistic unique
descrIptive data. Product ID Is the two character
identifier defined in section 4.1.1.

optlona' count fields - 0 to n numbers, the numer'c
part of the statistic.

Data returned Include:

status - bootean Indicating whether or not the
preyious stat Istic faclS i ty request W8.S processed
correctly.

The method for aSSigning statistics ordinals will be
specified In the ERS. A separate ranQe of numbers _III
probably be reserved for users.

3.5.3 PRODUCT STATISTICS COLLECTED BY NOS/VE

In general, the O/S is responsible for collecting Job step
statistIcs that can be determined external to the product,
that is statistics that the OIS Is capable of determining.

For each product Identified In SIS section 4.1 that Is
dJrectly Invoked by the user, e.g., via command or 8S 8
program InitIated task, NOS/VE wJ11 record reSOUTQeS used
per Invocation. Rescurce~ accounted for include:

to t al C p-t I me

maximum vlrtual me~or$ used

maximum re&1 memory used

CYBER lao System Interface Standard

3.0 OUTPUT
3.5.3 PRODUCl STATISTICS COLLECTED BY NOS/VE

average working set size

CP-tlme per memory size used

number of 1/0 reGuests

amount of data read/written to riles

Additlona' data to be collected for each Jnvocatlon of •
product Include:

3-42

86/02.104

origin of Job step - batch commend, terminal command,
procedure file, executing Job.

type of termination - normal, product error, time
limlt,lnvatld memory request. operator drop, etc. A
recoyered conditIon does not cause product ter_instlcn.

average Interactive response time for Interactlye
products - the average elapsed time between Input data
available and output data Issued to termtnal.

the tact that the product was Jnvoked (added to count
of the number Of separate jnvocations).

number of modules loaded (input units for the loader)

source languages of moduJes loaded (added to language
usage count).

dIsk accesses per CP second.
These same statistics, resource usage and addltiona1 data,
may be collecteo for any user InItiated Job step whether
It Is a user supplied pro~ram or a CDC supplied product.
Statistics for products will be Identified by product 10,
correction j e _ eli n f 0 fro 8 t ion, an d t 8S k n u m be rae qU Ire d
d u r J n g loading.

Task number Identifies wblch jnvocatlon of product x
Iss ued the stat is tic. Sever a. asyn CAr anous tasks may be
executing the same product. Statistics for user ~ritten
tasks may be Identified by primary module name, task
number, and other data gJeaned from the flle 10.

Number of invocations wil) be collected for all products
both user called end product called service products such
as Access Metbo~s, and all user tasks. It could be

CVBER 180 System Interface Standard

3.0 OUTPUT
3.5.3 PROOUCl STATISTICS COLLECTED BY NDS/VE

3-43

86/02104

collected for ai' modu1es on system libraries. for
pr"oducts,J t represents the number of times the product
was Invoked over a given time span; for user prograas it
represents the number of times a program module written in
language x was used over a gIven time span. T~e t.me span
Is Instal.etlon definable.

3.5.4 STATIST1CS COLLECTED 8Y PRODUCTS

In general, products are responsible for collect4ng tnternal
statistics that only tbe, can know. These statistics provide
a means of cbafacterlzlng the work performed by a productJ
they are used for evaluating product performance. Statistics
to be emitted are speclfled1n tne product's OR. There are
two classes of product generated statistics - input undts
end Internal usage statistics.

This class of statIstics 15 concefned wIth the number and
nature of user controlled data processed by the product.
At. products are required to log number of Input units
proc.essed per Invocation.

Inpyt units for various product types are:

Pr 0 duct Type

language translators, such as
FTN, COSOL, eYB Il,

utilitIes such as SORT/MERGE, fMU

Sarvtces such as AAM

Input Unit

Source
Jines

Date records

Funct j onat
.requests

other me.nlngful Input unit related statIstics must be emitted
by products, where applIcable. AO/R specified measurement of
performance requires generation of such statistics for certain
products. Examples of these other tnput statistics are:

language Translators

number of modules processed

number of source statements

number of lines consisting sOJely of blanks

:
I
t

:
I
• • :
:

• •

• • • •
I
I
I •
I
:
:
• • :
I
I
• • :
I
:
• •

:
:
:
• •

CYBER 1<30 System Interface Standard
3-44

86/0.2/04
....... -.---.-.--.-----... -----..... --~ .. --------... --....... -.... --~~--.---..... ~--.......... --.-.~ ~---~ ... --.-~--
3.0 OUTPUT
3.5.4.1 Input UnIt Statistics

number of lines consisting solely of comments

number of source statement errors for each error 'evel

uti. i tJ as
:

number of records of each recognizable record type supported I
by the product :

number of records in error

'Services

number of lunctions 01 each defined type

number of Illegal/Jll-formed requests

Many other potentlal'y useful input related statistics are
possible. Products developer. are encouraged to collect
edditJoneJ Input statistics they feet are Northwhile. An
exampje Is source statement frequency, I.e., number of
each type of source statement encountered.

This class of statistics Is concerned Mith internal measures of
the product as opposed to measures of the Input date.

An example of such a statistic Is=

product options in effect for this executjon e.g.,
wh~t control statement parameters were selected-

Products are required to jog major options selected (such as
optimization leye. usee by a complter). Each product Is required
to specify which options are major.

Many additional statistics {such as Internat errors encountered)
may be applicable to specific products. Developers are encouraged
to co~1ect other statistics they feel are Morthwhlle.

3.5.5 WHEN TO LOG STATIS1ICS

The two Issues of concern are:

when should detal'ed optional, statistics be
accumulated and logged?

when should subordinate service products such as AA

• ,

• •
• •
•

• •
I
• • • •
1
J
:
• •

• • • • • •
t
I
• • :

CYBER 180 System Interface Standard

3.0 OUTPUT
3.5.5 WHEN TO lOG STATISTICS

"logstatistlcs7

3-45

86102/04

All statistIcs will be controlled by instalJationor user
controlled swltches. The statistics facility will provIde
the mechanism for setting and clearIng these switches.
Eacb procedure that Issues dlagnDstlcs must cbeck the
appropriate s.ltch before calling the statistics
Facility. The switches wit. probably exist as an arra, ot
bits tbat can be referenced but not changed by user
tasks. The NOS/VE ERS will specify the exact form.
Subordinate prOducts and routines may either issue
continuous statistics at product determJned intervals or
events o,r they me y accumul ate and r epor t them under
control of the bost product.

For products sucb as AM and AA whose statistics could be
meanjngful TsgardJess of the host, the first approach Js
acceptable. for example, statIstics could be gathered
from f.le open to 'i'e c.ose for each 'ile. Anyone
Interested In AA statistics for 8 Job step Mould hate to
sum UP the Individual statIstics on the Jog flle.

For subordinate products and routines SUch as the common
compiler modules ~ho$e statistics are not meaningful out
of context, a mechanism should be provided to enabl. the
host to force out statIstics on demand. That Is, t~e bost
must be abJe to 1nform the subordinate that its work is
complete. If the subordinate actualty lssues the
statistics, tbe host must provide Its product 10 to the
subordinates so that 10 can be Included In the
statistics. If the host actual1y Issues the statistic,
the subordinate must return all data and IdentifYing
Information. Tte first method is preferred since the host
does not need to know which or ho~ many statistIcs the
subordinate is collecting.

Note that a.1 methods of statIstic reporting require
products to recover from catastrophic external and
Internat eTrors. Products must regain contro. so tbat
t~ey can output the accumulated statistics. Furthermore,
sInce DIS logs the reason for termInation, products that
recover from abnormal external conditions must be able to
let the abort ~&Ppen after they Issue theIr statlstlos so
that the correct reason for the termInation Is recorded.
Pr'oducts that detect Internal errors must be able to
Indicate that such an error happened when they abort, so
that "Internal error" 15 recorded 8S the reason for tbe
abort. A prodYct may choose to terminate vIa an abort
Mhen no product error has occurred.

CYBER 180 System Interface Standard

3.0 OUTPUT
3.5.5 WHEN TO lOG SlATISTICS

3-#t6

86/02104

cyeER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS

ThJs section descrIbes the operatIng system and product
set convention ~hich must be followed by a.1 standard
so ftwa;re.

The term "global" as used In this section refers to
constant and type deflnitlons that are global to several
products. It does not mean "global" ~Jtbin a partIcular
product.

standard system naming conventions are needed for tbe
fo.' ow I n g reasons:

4-1

86/02/04

1. Permit recognition of tbe origin and maybe tbe purpose
of the named entity Just by its name.

2. Prevent duplicatIon of names between different
p.roduct.s.

3. Designate categories 0' names that are reserved fer
CDC usage so that they wi.t not be duplicated by
application programmers.

These names may be declared as entry poInt names, file
names, seu deck names, or as names for common syste.
entities such 8$ Installation options. The common system
entity names must be declared in a form that provides 8
simple source of availability for use by any system
implementation language, (CYBIL or assembly).

4.1.1 NAMING CONVENTIONS

The system defined globsJ names wi" be generated
sccordlng to the folJowln~ convention:

PPC$XXX

where:

PP Is 8 2 character alphanumeric product
Identifier or other global Identifier for the
owner of this symbol.

C IdentJfles the class of the name.

cYaER 180 System Interface Standard
4-2

86/02/04

4.0 SYSTEMWIDE CONVENTIONS
4.1.1 NAHING CONVENTIONS

AA
AD
Al
AM
AP
AV
SA
Be
CC
CB
CF
CG
CL
eM
CS
CU
CV
CV
OA
DB
DC
DO
OF
DM
DP
OS
OJ
ES
FA
'Fe
FD
'fL
'fM
FM

$ Is the specla. character $
XXX 2 or more alphanumeric characters which

establish unlqueness within the Jevels of
Identification descrjbed above. The maximum
lenoth of this field Is determined by the other
users of these names. ExampJe: The loader
determines the maximum len~th of an entr,
po,Jnt, the record manager the maximum length 0"
eflle name.

Advanced Access method
Ada
Assembly Language
Ace ess file tho d
APl
Accountj~g Validation
Bas i c Ae"eess me thods
BASIC c,.,

Common 'Compiler modules {'CM)
COBOL
CYBll formatter
Common code Generator teeS)
Command language
ConfiguratIon Management
Character virtual terminal Screen management
Concurrent maintenance utilities
CYBER VectortzJng Code Generator
CYSIl
DCN du.p Analyzer
Inter:a.c.tJ-ve Debug
DistrIbuted CommunicatIons
Data Dictiona.ry
DIstributed files
Device Management
Display
Deadstfrt/recover)
NOS Du~p Analyser utility
Ed J t Sere en
fIle migration Aids
FORTRAN Com~ller
format DI sp lay
FORTRAN run time library
Flle Management (~n BAM)
File Management utilIty

CD 0 ub I e
FS

use of fM to be resolved by DAP, If there Is a problem)
F 11 e System

FT FORTRAN. Global to Fe and Fl

I
:

• • • •

• •
I ,
• •

CYaER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
~.l.l.l Product I~tntJflers

FV CDC FOR1RAN (Vectorizlng)
GS Graphics virtual terminal Screen management
HP Hardware Performance analyzer (HPA)
HU Help utilities
ICInt et st at e C ommun i cat ion
IF InteractJve FacilIty
II Interact've Interface
1M Information Management
IO Input/Output
JF Job file manager
JM Job Management
-JS Job Swapp er
KR Keypoint Reporting utility
lG logs
II lIS P
lL Loader/library generator
l N log i c a I N am e
LO loa der
LU lInk User
MA MaIntenance App"catJon Langua~e for Equipment

lestlng (MAlET)
Me Marketing Confjgu·rator
Ml Hat h l i hr a r y
MM Memory ~anagement
MP Matrix A1gorithm processor
MS Maintenance Services
HT Monitor
MV MAIl/VE Electronic mall system
NA Network Access method .
NC Network Conflgurator
Nf Network fIle Transfer
NP Network Performance
OC abject Code ut4 Iitl es
OF Operator facIlity
OS Operating System
PAPas ca t
PE Program.lng Environment
PF Permanent File management
(to be phased out, per SIS Oap 54730)
PM Program M 8n agement
PP Peripheral Processor
PR PROLOG
PS Product Set
PT Performance Tools
PU PF utilities
Pi PLI I
Of Que ued FI t es
QU Query Update
RF Remote Host Facility Access Met~ods

4-3

86/0Z/01t

:
• ,

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.1.1.1 .roduct I~tntlfJers

RH Remote Host facility
RM Resource Management
SC Source Code utility
SO Screen Design Facility
SE Set management
SF Statlstlcs Facility
SM Sort Merge
SR Conyers Ion services
S1 Software Tools

it-It

86/02/01t

(Current use of ST for Sets w.l. be phased out in favor of SE)
SV Shared Variables processor
SY System
TO Test Data base
TM Task Manager
TU 1 e r min al Uti I It)'
TW Trans.ater WritIng SYstem
US User (e-g., for "user" statistics)
UT Tests
VC C Compiler
VX VXJVE - UNIX Emulator
ZS Zeus

RA ReJease Administrator

This product Identifier Is used to identify
Installation parameters and procedures associated
~Ith 8 NOS/VE product.

The following list of Identlfjers namJng classes is used
for code and deck naming purposes:

A arcbitectural and design documentation
B design documentation (Internal to CDC).

Also the three following special blocks:
CYB$OEFAUlT_HEAP
OBB$NE_lINE_ENCOUNTEREO
DBB SNE W_P ROC_ENe OUNTERE 0

Cconstant
o decleration (decks contaJnlng types andlor

constants)
E exception conditIon name
Frlle
H documentation (headers, in.Jne text)
I Jnllne code or installation/integratIon
K keypoJnt or keyword

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.1.1.3 Classes of Names

11
p
S

module
procedur e
sect1o~ (static data section and/or common
block)

T -- type
V variable
X XD-C-t"d (deckscont.alnlng procedures or .---' 'Variables)
.v tJ :::
~i IL l:,.

4.1.1.4 S21~1~1_'b.L.~1~E~

1t-5

86/02/04

The use of the $ sign In a name Identifies the name 8S one
baJonglng to CDC. CDC users wJJI avoid any dupJlcatlcn
Mith CDC names by not using the $ in any of their n8me!~ _

_ - ... -----.-"!;,c::~r -

Some programming languages such as fORTRAN do not a'lo~
imbedded dollar s.ign characters'n thel .. names. CDC
supplied procedures caJ'8bl~ from these languages will not
conform to the $ sign rule.

User global names fo'lo~ the rUles defined In
sectlons 4.1.1-4.1.1.4, except tbe form of e
user gJobal name is:

PPC'X)(X

4.1.1.6 QI~~_~amlo~_~~1~.11D&'

Relationship of Cede and Deck names

The deck name must be the same 8S the code name whenever
possible. In instances where it Is absoJute'y necessary
to group types, constants, etc. in the same deck, tben It
1s a.jowable to use 8 conglomerate deck name which J~
different than the component code names.

flOeslgn Documentation" Oeck Names (A and B)

Class A decks are for archltecturaJ and design dOCUEentatlon
releasable w~th the COde.

Class B decks are forrequJrement/deslgn documentation not
releasab'e with the code (e.g., DR-type speciflcatlons. such as
performance) but reI event to code maintenance.

A "design docu.entatlon" deck has the EXPAND attribute value of
TRUE or fALSE, depending upon the needs of the product. The content

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.1.1.b Deck Namln~ Guidelines

4-6

86/02/04

or thls deck end all decks *COPyed by this deck are Input to the
processor named In the PROCESSOR field of the SCU deck. The PROCESSOR
Is In tbe form of a strJn~ which represents the command by which the
processor Is Invoked. Documentation decks may not be processed by 8.
complier but rather by a text formatter processor. for Instance,
documentation decks might be processed on the e110; then the
PROCESSOR might be TXTCODE. In the future, documentation decks maY be
processed on the C180 by a text processor.

Documentation decks not to be reteased to customers must be
Identified (by group) by the development proJect to Integration,
which will remove such decks during preparation of SHD refease
materials.

flCompllable" Oeck Names(M and F)

A "compllable" deck has an EX'AND attribute value of
TRUE. The content of this deck and all decks *COPYed by
thls'deck are Input to the processor named In the
PROCESSOR field of the stu deck. The PROCESSOR field Is
in the form of • string which represents the command by
which the proce~sor ls invoked. Parameters which are to
be passed to t"e processor, and which are meant to be
Invariant (such as optimization level, or debug 'evel),
may be included in this string. The order in which
Invariant parameters are specified Is precJsety the order
In which they are defIned for the cOMmand, even thoug~ the
parameters are specified as equtvelenced paramet.rs. File
references are ~15allowed In the processor string.

M class decks contain a processor deflned "compJtatlon
unjtR • Examples of such compilation units are: MOCUlE to
MOO END for CYBll, IDENT to END for ASSEMBLE, PROGRAH to
E~D for FORTRAN, etc. Module decks represent the unJts
which are maintained In a Binary Module Replacement
envIronment. A p&rent/child relationship exists between M
and P (or V) decks which contain XREFs. To denote this
association, t~e name of the parent M deck Is assigned as
e GROUP attribute of the chjtd P or V deck. Thus, any
modifIcations mide to tbe child deck results in the
abitlty to generate the parent deck by Interrogating the
GROUP attrIbutes or the child deck. likewise, a11 decks
which *COPV the child deck can be g6nerated throu~h use of
the INCLUDE_COPYING_DECKS Criteria File directive. The
name associated with a M class deck Js the same as that
specified on the MODULE, IDENT, PROGRAM, etc. statements.
If a M deck contaJns code which Is tater Bound lnto a
Module of a dlffe~ent name via tbe BIND_MODULE subcomaand
of CREOl, then the name of this Bound Module Is assigned

CVSER 180 System Interface Standard

4.0 SYSTEMWIDE CONIENTIONS
4.1.1.6 Deck Namln, Guidelines

3$ a GROUP attribute of the M deck. The name of a
corresponding f deck which contains specific (REDl
dlrectlves associated with the binding of this module is
specified as a GROUP attribute of tbls M deck.

4-7

86/02/04

f class decks ~cntaln source data which Is retained as a
fiie, or contains processor directives for the processor
named by the processor flead. These decks contain, or
*COpy decks containing, information necessary for
establIshing program descriptions, omitting entry points
from Sound Modules, 01 establishing SCt procedure
libraries. A typical f deck might contain COLLECT_TEXT
and ADD_MCDULE commands, and *COPY·s to procedure decks (P
decks) wblch contain the source of procedures to be added
to a procedure 11brary. Another use of F decks Is 8S •
container for d1rectlves to the Reaf Memory Builder or
Virtual Memory linker in which segment attributes are
dafined. If a SeL procedure is to be executed from a tile
rather than a procedure lIbrary, then the processor type
of the f deck Is Set rather than CREOla The name
associated with F decks Is the name of this ,t.e as It is
accessed when tbe processor Is Invoked, or the name of the
resultant file which Is to be created.

"Non-compJJable M Oeck Names (C, E, I, K, p, S, T, V)

A unon-campilable" deck is one Mlth the Stu deck EXPAND
attribute value of fALSE. This type of a deck Is *COPYed
by "comptlable" decks arid assumes any attributes
associated ~Jth the *COPYlng deck.

K class decks contain KEYPOINT, KEYWORD, or statistic
codes. These codes are defjned In terms of a constant p' us relative offset, and def'lnea set of related data.
K decks are gj~en a conglomerate name which indicates the
type of dsta beJng described (KEYPOINT, statistic, or
I<E YWORO) •

Cola,s decks cGntatn Constants. Constants are used to
Impose an upper Ijmlt on ranges, and provide 8 starting
point from whlc~ retatlve offsets are computed. A
constant Is gl o,b.I"ln,~nature by virtue of I ts appearance
In a C deck. T~~$e constants which define product
restrictions due to their design (eg. OSC$MAX_NAME_SIZE1,
and those constants which represent Installatlon options
Ire the two categorl es of constants .,1 th··"R.,.<:kegjng
ett",ec.ts. The fGrmer cate~ory o'f constants are named so as
to d~scrlbe the scope of effect upon other products or
subproducts. Product specific constants should be named

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONYENTIONS
4.1.1.6 Deck Namin" Guidelines

4-8

86/02/04

using product specific two-character identiflef"s. The
latter category of constants are named wIth the RA product
identl'lerto Indicate that the "Release Administrator­
assumes ownership for the vatue assigned to the constant.
'Si~ncesourcecode wI II be unavailable at many sites, the
use of constant values must be avoided. GJobaJ constants
shou4d exIst as one constant per deck. The name of the
deck should be the same as that of tbe constant be'ng
defined. O.nershlp of a constant Is assumed by the decks
which *COPY a constant deck. Automated generation of all
decks affected by 8 change to a constant deck Is
accomplished through the INCLUDE_COPYING_DECKS Criteria
Fi. e D I r ect J ye.

T and E class ~Ecks contsln Types and Exception conditions
respectively. Since Exception condItions are typlcalty
described in terms of a constant plus 8 relatJve offset,
It is acceptable for a constant declaration to appear
within the E deck. E decks are given a conglomerate name
for the condItion range. Types may be either fixed or
adaptable. In such cases where a type Is defined In terms
of constant (such 8S an equivalenced ordinal type) then
the constant value may be contained In the T deck. T
decks are named the same as tbe prJaary type deflned In
tbe deck. If the type is a record, then the name of the
deck is the na.e of the record defined In the deck.

p c1ass decks contain code procedures. The content of
such decks Is the source of non-XDCl'd procedures, Sel
procedure definItions, or XREF declarations for XDCltd
procedures. A Sel procedure deflnJtJon ~ilt contain 8
PROC to 'ROCEND sequence If the P deck Is used to for. a
procedure lIbrary, otherwIse the procedure will be defIned
In a f deck. Code SEquences Mhlchare not bracketed by
PROC to PROCEND, or a corresponding sequence such as
SUBROUTINE and END, should be contained In I (4nllne code)
cLass decks. Each external procedure should have an
accompanylng H deck that documents the procedure.

V class decks contain variable declarations, or the XREF
to XOC l' d v ar I ables. A cbl. d /Pll,ren t r eJ atl onsh I p ex I sts
between a V dec~ ,ontalntng an XREF and the correspondjng
M or F deck In ~hJch the variable Is XDCL'd. The name of
the V deck is the same 8S name of the Yarlable which Is
defined In the deck. The name of the parent M or F deck
1s assIgned as 8 GROUP attribute of the V deck.

H class decks contain documentation, such as headers or text
that may be cal ted into 8 generated document sucb as en ERS.

4-9
CYaER 180 SYstem Interface Standard

86/02/04

4.0 SYSTEMWIDE CON~ENTIONS
4.1.1.6 Deck Naming Guidelines

fA :and B cl ass decks rna, be used ~for hi gh-Jevel arc'hJtectu'ral
and design documentation. H" decks may be used for detailed design
documentation, pa~t1cul8rJy to support external procedures.)

I cta5s decks contain InlJne code or integration/Installation
parameters. In the case of code, the JustJflcation for such
dec~s Involves performance, where repeated code cannot be
·for med '} nto a PROCEDURE due to the expens e I ncurred I n the
procedure call. Otherwise, FUNCTIONS or INTRINSICS may be
contained In I decks. lnline text Is text used for code
documentatIon purposes whlch may also be cat1ed into 8
generated document such as an ERS.

S class decks centeJn blocks 0' related data such as
static data of Common Blocks. An aggregate name is
associated with this collection of data unJess the text
data describes a specJfjc entity. In such cases. the text
data assumes the same descriptive string 8S that
associated w.t~ the entity lt Is descrIbing (eg.
OSSSHAINFRAME_PAGEABlE_HEAP).

uNon-compllabte" Deck Names (0, X)

Decks belonging to this category represent packaging
anomalIes, end should be 4¥oided whenever possible.

o class decks contain congJomeTates of Types and/or
Constants. Since It's difficult to ascrIbe meaningful
ldentlty to suc~ combinations, the use of the 0 class
should be avoided when possible. It Is advantageous to
define parameters for procedures In a 0 class deck. Thts
anomaly exists due to the nature of the constructs
necessary to defIne procedure parameters •.

X c tass decksccn tal n the XOC l--·'ej"ef I nl t Jon of procedures or
variables. The recommended locatlon for the source of
XDCl-d procedures or variables Is within 8 compijable deck
(M or f class). Combining XDCl'd procedures into a sJngle
module Is a function of the CREATE_OBJECT_LIBRARY utility
command BIND_MODULE. If the XDCL'd procedure Is GATED to
other products end/or users, then the XDCl'd name Is
preserved as 8 result of BInding, otherwlse the name Is
discarded provIded there Is a corresponding XREF at
blndlng time. Therefore, It is a PToduct's responsibility
to CHANGE_MODUlE_ATTRIBUTES of the Bound Module to CHIT
names wlthJn Bound (or Unbound) modules whjch are not to
be externalized by the product. It Is recognized that
baing able to combine several xotl'd procedures and/or
varJables Into 8 single compilation unit can provide

CYBER 180 System Interface Standard
4-10

86/02/04

4.0 SYSTEMWIDE CONIENTIONS
4.1.1.6 Deck Namln, Guidelines

additional debug capabilities provided by a compiler. It
Is for debug purposes that X class decks exist.

Crltlca1 to the structure of the product's source libraries, and
to the efficiency of the source maintenance procedures, Is the
association of seu "group names" with each deck on the library.
These groups may be used to manipulate "blocks" or "groupsU of
decks, such as al' decks In a Job template or system core library,
f a 1,1 yeas i I y.

The different types of groups are Ident4fled by the conventions
used to name them. Except for the ·processor" and "generic· groups
(descrlbed below), the format of all group names Is=

xXySaa88Sa

where ~xx, Is t'e product IdentIfier, "aaaaaaft Is a descrlptjve name
for the particular group, and ",ft j$ one of the following:

s Specifies a "Source" group, i.e. a subdlvis'on
source library Into component libraries.
eX3mpies of groups of this type are:

oss$program_interface (osf$program_1nterfacel
fcs$front_end
cbsScobol_source

of the
SeveraJ

F Specifies a "destination File" group (J.e. a f.te onto
whiCh a deck js to be placed after processing). Several
examp'es of groups of this type are:

aaf$44D_1 ibrary
osf$molil tor
osf$obJect_ccde_utlllties

G SpecIfies a "Group", I.e. a COllection of decks t~at
have been decided would be useful to be able to refar to
en masse. Several examples of groups of this type are:

cbg$procedure_common_decks
cbgSrun_tlme_procedures
fcg$bridge_modules

NOTE: All decks on the source library which belong In the library
psfsexternaJ_lnterface_source sho~ld be associated Math the group
name "psf$external_lnterfa08_source ft • Keypojnt decks and error
codes should •• 50 belong to this group.

CYBER 180 System Interface Standard

4.0 5YSTEMWIDE CONVENTIONS
4.1.1.7 SCU GROUP NAMING GUIDELINES

4-11

86/02/0 It

Most other group names .111 follo~ the conventions descrJbed in
the previous text tor the product source libraries. Ho*ever, there
are two classes of groups for which thIs is Inappropriate:
"p~ocessorft groups and "generIc" groups.

A "processor" group wltl be gJven the same na.e as t~e
corresponding processor, e.g. the group name for decks to be
com!) lied by (YBll wi II be "CYBll". Other p.rocessor group nalles are:

assemble
fortran
cobol
pp_ccmpass
cp_compass
cybj ,_cc

Note that some of these must obviously be processed on the NOS
-;1 de of t~e mach I ne •

A ffgenerlc" group Is used in those cases wbere knowing the
processor for a deck Is Insufficient for some purpose. The generic
groups t~8t have been Identified and are required, It applicable,
are:

common
program_descriptions
Ressage_templates
sc. _procedur es
eel_procedures
scu_se'ectton_c~lterta
bu' I d_p roes
de. etec_decks

AIJ decks whJcb are called by other decks wlJI belong to the
group "common". ~hen a deck needs to be deleted, It should belong
to a group "deleted decks". At this point In time, the deck Is not
really deleted, 50 the bui Id procedure must be specifically
excluding this deck until ~omeone 1n 'nteg~atlon can physically
delete the deck. This will on1, be done between releases to Insure
our ability to back UP to 8 previous leyel.

Some of these ge"erlc groups overlap to some extent .Ith the
PTocassor groups.

A deck may have up to 255 group names associated ~Jth it. At
thIs point In time, a group cannot be associated to another group.
A OAP has been written to alloN this capabIlity. For tbe time
belng, issue the change_deck SCU command to estabJish all deck to

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.1.1.7 SCU GROU' NAMING GUIDELINES

group associations.

4.1.2 RESERVED fILE NAMES

The fol' ow. ng ft I es will haye speci a. uses:

INPUT Is that portion of the primary Input ,lie th.t
~oltows the System command statements.

OUTPUT Is the prj_ary output file and contains a Copy of
the Job dayfile at the end when printed.

For Interactive Jobs, the terminal Is assumed to be both
INPUT and OUTPUT.

4.1.3 DATE AND TIME

While NOS/VE provides date and time data in several
formats, products are restricted to using one format
unless language standards dictate otherwise. The forgat
to be used Is the Installation defined default format.

4-12

86/02/04

For fixed posit jon Jlstlng and file formats, date and ttme
fields must be large enough to accommodate the longest
forms returned by tbe O/S.

Tbls section Identifies capabilIties products must provide
to support users fnterfaclng the system from interactive
te r ml n a Is •

Pr'oducts support different levels of interactive usage.
Therefore a product does not necessarIly support all of
the capabilities described below. For example, products
that typlcall, perform batch functions (e.g. comp •••
FORTRAN source) do not proyjde the same leyet of
Interactive capabllJty as one that typicaljy performs an
interactive functIon (e.g. query a file).
Many of the capabllittes are provJded by the operating
system and therefore are 8val1able to all terminal users
Independent of the program/application being used.

Specific lnteractJve c6pablJltles to be provided by C180
products ate described below. A key Is used to lndJcate
which products must Include design and implementation of
the capabilities. The keys ere:

A - It Is the responsibility of all products to support

CVBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2 INTERACTIVE PROCESSING

the capabJIJties marked with the A key.

4-13

86/02/04

o - Thjs key notes the terminal c&pabjjltJes supported In
the implementation of the operating system. These are
avsltable htth 811 Interactive usage and are provided
by:

•
•
•
•
•
•

Job Management
Mess age Gener.·tor
File Routi ng
BasIc Access Method
Transaction Executive
Network/CommunJcatJons Access Method

r - This key notes the terminal cepabllJt1es supported by
"Interactive products". These programs normally carr,
on 8 dialogue wIth 8 termJnal user to obtain feedback
and dynamically direct processing. They lnclu4e:

•
•
•
•
•
•
• .•

•
•
•
•
•
•
•

Job Man age men t
Message Generator
file Routing
HELP utility
Transactton Executlve
BASIC
APl
OS utI Iitl es
Query/UPdate
Report writer
FMU
Interactive Oebugg~rs
SORT/MERGE
StU
Ed J t Of S
Conversion utilities

4.2.1 INTERACTIVE DUTPUT

4.2.1.1 1iiQ~.t.ll

a) The page width and length at an output devjcevar'es
not only by device type, but 81so by the size of paper
being u£ed In the device. The user must be able to
lndicate the operational page width and page length of
the output devJce. Oefaults that correspond to the
termlnal characteristics are supported.
-0-

b) lines of deta that exceed the output device page width

cveER 180 System Interface Standard

~.o SYSTEMWIDE CON~ENTIONS
4.2.1.1 General

4-14

86102./04

must be delIvered without loss of data. Data that
woutd be output beyond the right side of the pege must
be fotded onto a second or succEssive line (reference
section 3.3.1.5).
-0-

c) The user must be able to have every output line
formatted so as not to exceed the Qutput device page
width provided the output device page width Is not
less th.n 80 characters. As a minimum, the user must
be able to specify that output be formatted for page
widths of 80 or 132 print positions (reference
section 3.3.1.4).
-0-

d) Any output that may go to an ASCII sequential file .a,
Instead go to 8 terminal.
-0-

e) Any output ~ay contain a carriage control character
(reference sectton 3.3.1.3).
-0-

f) The carriage control character ~III direct printing of
an output 'i4e and will not appear in the print output.
-0-

a) MessageS must be courteous. Words such as fliJleg.'"
shoUld be avoided I n favor of words like "Incorrect"
or "unknown". Error messages must, where appropriate,
suggest Mhst the user ought to do to correct the error.
-A-

b) Messages must be form4ittedfor narrow listings.
-A--

c) Messages must be meaningful such that an in~xperlenced
or casual user Is able to understand the message and
respond appropriately without reference to a manu.l.
-A--

d) Any message longer than 20 characters must have an
alternate brief counterpart.
-A-

e) A user must be able to select either a brle-f or long
form of a message. When using the brief form of
message, the user should be ab1e to request that the

CYaER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2.1.2 Messages

last message be repeated In Its long form.
-0-

f) Messages soliciting input (prompts) should a'ways be
used to Ind4cate that the user Is expected to suP,ly
Input.
-:1-

g) Prompts should appear on the same tine as the input
whenever physlcal.y possible.
-1-

4-15

86/02/04

a) Pages of output that ~re 10nQer than the output device
page length must be delivered without loss of deta.
Data that exceeds the page length must be continued
onto a second or successive page.
-0-

b) Pages of output must not be delivered to a
non-hardcopy output device so fast as to overwrite any
previous output before the user can read it If I ~81t
option has been selected by the termInal user.
-0-

c) The user should be ab.le to have headinginfo:rmatlon
repeated on the ~econd and successive termInal paGes
of a Jistlng. When display space Is limited and the
Information band wldth is low, the user might cboose
to not use space to dIsplay repetitive headlngs and be
able to see more data. Where the IlstJno consists of
meny columns tbat are bard to differentiate, the tiser
might choose to ~a.e headings repeated on ever, page.
Thls capability requires that: 1) Page Header text be
identified so It can be dIscarded, and 2) Title text
be Identified so It can be replicated.
-1-

d) When Initiating a function the user must be able to
select alternate amounts of detatt to be lncJuded In
the lIsting. By selectJng Jess detaIl, the user ought
to be able to haye more Items displayed on each page,
and not Just get Jess Information per page.
-A-

CYBER 180 System Interface Standard

4.0 SYSTEMWIoe CONVENTIONS
4.2.2 INTERACTIVE INPUT

4.2.2 INTERACTIVE INPUT

T~ese standards supplement section 2.3.

a) User discovered typing errors must be correctable by
backspacing and retypJng.
-0-

b) The user must be able to cancel the Input line being
typed at any point before input completion Is
I nd i cated.

4-16

86102/04

c) No ex tr aneO\l$ blanks wi al be appended to the end of
the user defined input data for padding. Application
of this rule is ont, requIred If alloMed within a
product's standard.
-A-

d) No user typed tt8jl1n~ blanks ~ill be deleted from the
Input data. The application of this rule is only
required If allowed ~ithln a product·s standards.
-A-

e) Any input that mey coma from an ASCII sequentiat file
may Instead be supplied by a termlna. connected as
that fi Ie.
-A-

f) A single Input may consist of more th.n one line. A
prompt may allow multiple lines of input In response.
An Input collection mode may be Implemented In this
manner.
-0-

g) Operations requlrjng only a fe_ par.meters should not
require more than a slng'e Input. The user may enter
all parameters for a directive or all dlrectJves for a
single system level command 65 a slng'e Input in order
to reduce the number of Interactions and the time to
complete the directive or command.
-0-

hl The user must be able to use the standard
abbreviations for command names, directives and
parameter Identifiers 4n order to reduce typing.
-A-

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONWENTIONS
4.2.2.1 General

I) After input of a command or dlrectlve ~as been
completed, Incomplete input should not be treated as
an error, but should cause further promptinQ for the
m4ssJng parameters.

;~} Error sl n Input w I I. be d iagnosedj mmedlate',
fo11owlng the offending input line.

b) OJagnosed Input errors must be ~orrectabJe wIthout
nex~tJnQ" the dialogue wlth the program.
-1-

c) Where possible allow diagnosed input errors to be
corrected without re-entarlng the entire Ijne.
-I-

4-17

86/02/0lt

d) Any input d,lagnosed to the term:lnal must be
correctabte by terminal input Immedlately followIng
the d]agnostlc whether or not the origjnal Input was
from the te~mlnal (see 4.2.3.1). After recelylng the
corrected Input from the terminal Input will revert to
the primary source.
-I-

4.2.3 CONTROL

8) The YSer must be able to haye his termina' connected
as an ASCII sequential Input file ano an ASCII
sequentlat output file for any program.
-A-

b) The user must be able to suppress the verificatIon
JJstlng of Input when the Input source and the output
destination are both the terminal.
-A-

cJ Products that alloN input dlle~tlyes from a tite other
than INPUT must allow the user to have input
directives from a source other than the terminal
listed fo~ ¥erJflcatlon at the terminal.
-A-

d) Products th&t allow Input directives from a file other

CYBER 180 System Interface Standard
4-18

86/02/01t ----..... -- --~~ --.--------.-.----.. ------.---.-..... ~--.-.---... ---~------... -----... .-.-.. -.-..... -.-.-~-.... -....
4.0 SYSTEMWIDE CONVENTIONS
4.2.3.1 ConnectIvity

tban INPUT must alJow the user to have input
dJ~ectJye$ from 8 source other than the terminal
diagnosed to the terminal.
-A-

e) The user should be abJe to loglcalJy disconnect the
termJnaJ from an executing program without causing the
program to be suspended. The program should continue
execution and the user should be able to
simultaneously enter other commands (Including
execution cf other programs).
-0-

4.2.3.2 IDtl££U21a_.Q~_'Q~QI~tlgQ_~£Aak~

a) The user must have a method for galnlng control oyer a
program In execution. This Is known as an Interrupt.
-0-

b) An interrupted program wl11 not be aborted as a result
of the Interrupt.
-0-

c) For a program written to execute In an jnteractlve
environment, an Interrupt must cause the program to
enter a knOhn state. ThIs state MiJI normally be one
that solicits directives or commands from the ter.lnal.
-1-

d) For a program wr J tten to execute} n a batch
envIronment, an lnterrupt must cause the progra. to be
suspended In such a manner as to be rest.rtable durJng
the same termln.' session. Control 1s returned to the
command language Interpreter.
-0-

e) A connection break Is often caused by a communicatJon
line faIlure. A connection break must not cause the
terminal session to be aborted, but must cause It to
be suspended In such a manner as to be restartable
when the terminal user can again get connected.
-0-

f) A user must be able to restart a suspended progr.aa.
-0-

g) A user must be able to terminate a suspended program
wltbout first restarting It.
-0-

CyaER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2.3.2 Interrupts and Connect jon Breaks

4-19

86/02/04

h) A program written to execute in an Interactive
envIronment must accept a termanation directive In the
state entered as a result of an Interrupt. This
directIve must be the same as the corresponding system
command to terminate a suspended program.
-1-

1) AnY Incomplete termlna1 Input request from a program
that ls suspended should be relssued (with the proper
prompt) when the program is restarted.
'-1-

j) The term 1 ns'. user must beabl e to Interrupt the output
being delivered to the terminal and cause the
remainder of the output to not be delivered to the
termJnal untll the next prompt.
-0-

8} The terminel user must be abje to solicit a report to
determine the process of a PTogram, without causing a
change In the state of the program.
-0-

b) Progress reports must Indicate the functjonal progress
of the program. For example:

"cGmplJlng program SAM ••• "

"compiling subroutJne TOM ••• "

flprep8rl~g global cross-reference ••• "
-1-

c) The termine. use:r must be able to solicit • report to
determine the system environment within whlcb 8
program Is running without causing a change In the
state of the program. An InstallatIon option to
disable tbJs must be provided.
-0-

d) The system enyjronment report must jndicate (possibly
Indirectly) the response time the terminal user can
expect to experience. This might be by IndJcatlng the
:Jength of sMap-outqueues, the number of interactlye
usersJ etc. An Installation option to dIsable thJs
must be provided.

crBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2.3.3 Status

-0-

4-20

86/02/04

e) The termlne. user must be abJe to solIcit a report of
the state of Its program without causing a change In
the program's state. An installatjon opt jon to
dlsable this must be provided.
-0-

f) The prog;ram state report must indicate the rate at
which the user's program Is progressing relative to
real time, and the Jmpadlment to progress. For
example,:

".14=23:13 2.54 CP seconds Swapped out"

" .14: Z4: 40 - 5.72 CP seconds Running"

".14:27=10 - 6.21 CP $ econos ;FJnlshed"

Possible stites should recognize the points of delay
In the system; these mlght be Paging, Swap-out,
W.aitingfOr terminal input, etc.
-0-

g) The terminal user must be able to define terminal
attributes to be assocIated with an Interactive
sessJon (e-g., backspace character, echo mode, screen
size). The terminal user must be able to display tbe
termInal attributes current., in effect for a terminal.
-0-

a) The terminal user shaul d always be fibl e to get a
reasonable response to the Input HELP. The response
should Identify the user·s a.ternatlves and possible
correct lnput. As a directive, HELP sbou1d IndIcate
what directives are able to be used at that point.
The user should be able to proceed after th9 response
to a HELP input as If the Interaction had never taken
place.
-0-

4.2.4 PRODUCT SET R~N TIME COMMANDS

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2.4.1 PAUSE and SlOP tltereJ

4-21

86/02/04

PAUSE n (In FORTRAN) and STOP I i teT al (in COBOL) are very
sl m lIar. They shou'd be p.rocessed In the salle May. '

a. The message PAUSE text wi II be displayed on the
operator 1 s terminal or cansoje. Text Is n or literal,
and is a maximum size of 58 characters. for batch
Jobs, the ope~atcr is the primary system operator. An
OfP$SEND TO OPERATOR with an OPERATOR 10 of 'SYSTEM
OPERATOR~ Is executed to send the message. For
InteractivE Jobs, an AMPSPUT NEXT request referencing
the tile OUTPUT .s executed to send the message. ThIs
wll. result In a message on the termlna ••

b. In batch, an OFP$RECEIVE fROM OPERATOR wlth the WAIT
parameter and the same ad as sbovels executed to
suspend the Job and Malt for the typein from the
system operator. The operator ~JIJ respond with a
REPLy ACTION command. In interactive mode, an
AMPSGET NE~l request on the ftle INPUT is executed
(this may not be 1egel, another connected file may
have to be used). In eIther case, the data Is thrown
away and the Job Is continued.

The ACCEPT fROM CONSOLE tin COBOL) should be processed 1n
exactly the same way as STOP liter •• (4.2.4.1). Text
would be the data from 8 preylously executed DISPLAY UPON
CONSOLE WITH NO ADVANCING or the message 'ENTER COBOL
INPUT VIA REPLY ACTION~ If there was no OISPLAY.
InteractIon Is ~Ith the system operator only. tIf
messages sent via OfP$SENO TO OPERATOR also appeared on
the terminaJ,ttcould cause confusion for the termtnal
operator.)

NOS/VE will permit modification of ell system p~rameters
dynamically dur1ng system execution. The term
"Installation parameter", as used In the classical CDC
sense, Js nct valid for NOS/VE.

System parameters fat. into the followIng general
categorl es:

• Hardware characteristics (e.g., , of CPU's, type of
CPU)

CYBER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONWEN1IONS
4.3 INSTALLATION PARAMETERS

•

•

•

•

System and product defaults (e.g., default tape
dens;' ty)

Accounting parameters

limits para~eter$ (e.g., maximum FL)

Timing parameters

System parameter defaults can be set at the following
tj mes:

.. ComplJe tl~e (comptJatlon at CDC)

• Bul1d time (deadstart tape build at user site)

• Deadstart time (via operator type-In)

These parameters may be tested dynamlcatly and action
taken accordIngly. The product set wi.1 require no
parameter specifiatJon, and _J'I dynamically test s,stem
parameters durlng execution via requests to NOS/VE.

4-22

86/02./04

The follo"lng table IndJ cates the permitted 'range of
system parameter control for the product set .nd operating
system. An X Indicates that the option is allowed, and a
bij ! 8 n ken t r yl n di c at e $ t hat the 0 p ti on i s not 81 I owed. A n1
exceptlon must tave the expllclt approval of ADte.

+-.------:---.. - --- --.---.-----.-.-.-. .. + ... ~.~~.---.-.---- -.-.----.--... -.-... ----.... ,-.---.++ ... ~-----... --............ --.--+
! Time of Set ! Set TImes 1 ! Use Tlme.s I
I and Use + ___ ~. ____ +.--_-.----_+-_____ + --.-a:---.++-...... -... ----+.-.... ------... + · , Type of t CCIIlP. 1 Bullo I DIS I Exec. t • DIS 1 Exec. t • • ••
! Parameter , Tille f Time J Time ~, Time I .. Time t Time · . .. · +-_ _._ _-_ __ .. _--_.-.._--+-_-.- ... _.+------ _--+-----_ _+--------.----++.-~-.-.--+~-~.----+

Product Set • I , • • I I • · .. • • • •
1 H sr'dwar e .. I ! f • I X • .. • · ... • ..
! Defaults I I • ! 1 ! • 1 • •

Account. ng 1 • 1 ! !1 t 1 ,. • ..
J l hi'll ts t I • J I. I X 1 .. · ' . .,. ,. · .,. •
t Tunlno , • t • f • ! 1 · .- • .. ,. · .
1 • I 1 1 t I 1 ! ,. · ·
! OS I 1 t t I! 1 I • • ,.
• H I'r dwar e t X ! X • X 1 X ,t X , X • · · • · ,

Oe~ault.s !) I X t X 1 X ! ! X • X I ·it · • • • Accounting 'I X • X I X X I ! X I X 1 .. • , limits X • X , X 1 X • I X ! X I . · .. • · . · Tuning , X ! X 1 X I X ! 1 X ! X

CyaER 180 System Interface Standard

4.0 SYSTeMWIDE CONVENTIONS
4.3 INSTALLAtION PARAMETERS

4.3.1 G~NERAL GUIDELINES

4-23

86/02.104

As a generaJ rule, the number of system parameters should
be kept to an absolute minimum. This wlj. minimize the
additional testing Imposed by tbese optJons and will
reduce the number of -different- yerslons in tbe field.

A firm requIremEnt on both the oper.tlng system and the
pr~duct set IS that no recompJtatlon at a user site wIll
ever be required to Instalj the software. This Is a
requJrement of binary retease.

4.3.2 LIST OF PRODUCT SEl PARAMtTERS

The following system parameters may be tested dynamically
by the product set yia requests to NOS/VE (Including
networking):

•
•
•
•
•
•

type of CPU
as name and version
line ~idth or screen wIdth
terminal type
screen length or page length
pr Inti tnes lima t

The purpose of this section Is to describe the conventions
and responslbl'itles of processing different error
co no It J ons.

4.4.1 STATUS VARIABLE

Alii command and procedure I nterfaces to the system that
are visIble to the end user must have a status variable as
a parameter. The status variable Is used to convey the
resujt of the command or procedure and, In case of error,
provide Information explaining what went wrong.

For commands, the status parameter should always be
optional. When It is quoted by a user, the assumption Is
that the variable will be tested subsequently In the
command stream and some appropriate action taken.
Therefore, the conditions returned to the user should only
con~ey lnformatjon the user Is lIkely to understand.

For procedures, the status parameter Is requtred. Again

CYSER 180 System Interface Standard
4-ZIt

86/02/04

4.0 SYSTEMWIDE CONVENTIONS
4.4.1 STATUS VARIABLE

the conditions returned should be as understandable to the
user as pcssJbJe. Thls 15 p~rtlcularlY Important when
there are multiple procedure calls made within our
software as the result of a single call by a user
procedure. Emphasis should be placed on Improving the
status returned to the user rather tban b,jndJy passing
back obscure status from the depths of the system.

Detailed formats 01 the status yarlable are available 1n
the NOS/VE ERS.

4.4.2 ERROR TERMINATION

There are a number of error~ that can occur 1n a product,
some of which c.n be detected and some of which can.t.
This section deals with the proce$sjn~ to be performed
when detectable errors occur.

First of all, the product should tr, to detect as man,
errors as gracefully as possible. This means that
internal sOftware tests should be used to detect errors 8S
well as using the condition handlIng facilities of the
operating system to receive control In the event of a
system or hard~8re detected error. The product cannot
simply rely on the standard operating system abort
processing.
When an error Is detected. the product should provide 8S
much of t~e following error Iccallzatlon information IS
possIble. Some of the informatlon _Ill not be applJcabJe
to at I products.

•

•

•

•

Type of error termination (standard system messages
should be used for this message).

full traceback of the catl sequence to the Procedure
contalnlng the error. This will be by procadure name
and tine number or relative address dependJng upon the
amount of traceback/debug Information released ~Ith
the product.

Information regardIng the user data being processed.
For a compiler, this mlght be the p~ocedu~e name and
line number currently being processed. For a utility
or data management product, It might be the current
record.

Optional dumps of useful Inte,rnaJ tables.

The above information should only be Jogged for error

CyeER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.4.2 ERROR TERMINATION

4-25

86/02/04

termjnatlons that are probab.y caused by product failure.
It should not te logged for conditions such as time limit
or operator drop _hlch are clearly not product errors.

4.4.3 INTERACTIVE ERROR PROCESSING

Thjs sectIon supplements section 4.2, -Interactive
Process J ng".

In consIdering this topIc it Is necessary to distinguish
between error messages and diagnostics. These terms are
difficult to defIne precIsely but are Intuitively dlst4nct
nonetheless. An error message Is general.y a sUMmary of 8
command; 1n an Interactive envIronment It wants to be
dl~played at t.e termlna' so the user can lind out what
happened. OJagnostjcs are general., a part of a larger
whole (e.g., listable output) which due to their yc'u.e
only want to be selectivelY displayed.
An example 1$ 8 compller whlch provIdes a stngle error
message telling how many errors occurred during
compilation and produces a diagnostic for each compilation
er ror.

8. All error messages should be Issued via the standard
message generator. The message generator w)ll
determine whether the message should go to t~e
terminal or the log, etc.

b. Messages must be courteous. People tend to react In a
more emotiona. '.shlon when using a computer
Interactlvejy than when using it In a batch mode.
Words such as "Illegal" should be avoIded In favor of
Nords I Ike "Incorrect" or ·unknown". Error messages
should explain to the users what they did wrong and,
If posslble, how to correct It.

c. Messages must be meanJngful such that an Inexpe,lenced
or casual user Is able to un~erstand the messages and
respond appropriate1y without reference to a manu •••

d. Any message tonge, than twenty characters must have an
alternate brief counterpart. The user must be able to
select eIther the brief or the long form or the
message.

CY8ER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.4.3.2 OJagnostlcs

8) Polnts band c, above also apply to diagnostics.

4--26

86/02/04

Diagnostics s~ould explain the problem from the userls
perspective tether than the ptogram-s. For example:

"Comma missing after third parameter"

instead of

"QVPPAR5EPR detected Iitegal syntax".

b) While diagnostics are not typicaJly displayed at 8
termInal by d~fault, they are looked at by Interactive
users. T~js must be considered when deflnjng t~e
location of the diagnostics In the lIsting,
identIfyIng tte diagnostics wIth a mark that Is
unIquely detectable wlth a text editor, etc.

TbJs section applies to all Input that canreasonab.y be
eKpected to come fTom a terminal (e.g., command utility
su bcommands) •

a. Errors In Input wl)1 be diagnosed lmmed •• tel,
following the Incorrect Input.

b. Dlagnosed Input errors must be correctable Without
exIting the dl.fogue with the program.

c. Diagnosed input errors may be corrected without
reentering the entire line.

d. An, lnput diagnosed to the terminal must be
correctable by terminal Input immediately folJotcing
the diagnostic wnet:ber 01 not the original Input .. as
from the termlnal.

4.4.4 BATCH ERROR PROCESSING

4.4.4.1 f~~~~_H&~aig&~

Batch error messages should follow exactlY the same
guidelines as Interactive particularly the usage of the
message generator.

CyeER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.4.4.2 Input OJagrosls

Tbe kind of user Interaction that Is desirable in
Interactive mode Is of course Inappropriate in batch

4-27

86102/04

mode. Emphasis should be placed on detecting as many real
errors as possible even after a fatal error has occurred.
The key ~ord here Is "real-; producing a large number of
extraneous error messages or diagnostics "III ultimate',
lead to people only correcting one problem at a time.

4.4.5 TRANSACTION ERROR 'ROCESSING

This section w." be added when mere design on the
transaetlon facility has occurred.

4.4.6 RESTART

This sectJon wll. be added when more design on the system
restart capabilities has occurred.

4.5.1 HARDWARE OPERATION

This section describes software conventions which must be
followed ror the .ardware to function in a predIctable
manner.

Convention: locite al1 interlock ~ords In cache byp.~s
segD'ents.

Special system jnstructions are provided In the CPU and
the IOU to interlock muJtJple processors/IOU. In general,
these functJon by exchanging the contents of 8 register
end a Nord in memory. Following this exchange the
regjster may be Investigated to determJne whether tbe tock
has been set. For example, a zero ~ord In memory can be
selected to mean "no lock", then by exchanging a non-zero
register the Jock will have been set if a zero value Is
returned. It Is imperative that such Interlock words be
unique. To guarantee this they are placed In cache bypass
segments. Notice that the JnstructJons Nhlch are desIgned
to test and set tocks automatically bypass cache.
Problems arIse when the interlock ~ords are accessed by
other Instructions such as loads.

CYBER 180 System Interface Standard
4-28

86/02104
.... ------~~---~--~-.-.--.,.--.-. ~ -.... ---- -.... .-..-.-..---.... ---.-.._ --. __ -...... _---------.-.---..... -
4.0 SYSTEMWIDE CONVENTIONS
4.5.1.2 Pre-serIalization of Clear lock

Convention: Befere clearing a single bit lock (via 8 store
Bit Instruction) first set the 10ck by a lest
and Set BIt InstructIon.

Care must be takenwheneve,r' an Interlock word Is set or
cleared to pre-serialize the operation. This is done to
ensure that, In the event that memory references are being
satisfied out of sequence, all outstanding memor,
references are completed before changing the lock. In
pr"a'cti ce, CYBER 180 Systell1S desl gned to date at ways
satisfy memory references in sequence. However, thIs may
not aiNays be the case. The instruction whIch sets a
sJ~gle bit Jock {Test and Set Bit} performs the necessary
pre-serialization. Ho~eyer, to clear the lock a Store Bit
(with a zero operand) must be used. S1nce this
Instruction has a general atillty It does not
pr'e-seri ,al.i ze. To compensate, the Test and Set 81 t
Instruction post-serlaJjzes. Hence, to ensure a
pre-serJalJzatlcn of the clear 1ock, the lock should first
be set (with a Test and Set Bit Instruction), then cleared
by the next instruction.

Convention: Registers AO-A4 and XO-XI shall be resefyed
for special functions.

The CYBER 180 Instructions make use of certain registers
to hold gJven values. The assignments are as fotlows:

AO - Dynamic Space Pointer (OSI)
Al - Current Stack Frame PoJnter (eSF)
A2 - Prevlous Save Area Pointer (PFA)
A3 - Binding Section Pointer (8SP)
A4 - Argument list Pointer (Al')

These registers hold those values by sort-are convent.on,
but a convention which Is SUPPoTted by the hardware.
Hence, it is very important that they be supported by a11
sGftware procedures. In particular, Al and A2 must never
be aftered by Instructions other than Cal" Return and POP.

In addltlon to the reservatJons above, registers XO and Xl
have a special meaning In the hardMsre. For many
InstructIons, the XO designator Is used to Indicate no
re~l$ter. Hence, register XO cannot be used by these
Instructions. Both XO and Xl are used as fIxed utility
regIsters for seve,al lnstructJons. Examples are=

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4 • 5. 1. 3 Reg 1 $ t erR: «s e r y a t Ion s

11 load/Store multiple and CALL InstructIons use XO
for a save area descrIptor.

4-29

86./02/04

2) All compare Instructlons return a value to
Xl-Right, 85 does the Mark to Boolean Instruction.

3) The BOP Instructions option_ii, use XO-Rlght and
Xl-Right to ~old operand lengths.

Since these registers are used for special purposas, care
must be exercised if they are used in a genera' manner.

Convention: Align certain tables and Mords on specified
boundar I es.

Although CYBER 180 Is nomina. I,. byte addressable
macblne, real memory Is organjzed Into b4-bit words.
Consequently, the performance of certain operations has
been optlmJzed by piacing the operands on word
boundaries. Tbe complete set of data atignments necessary
Is gIven below, along with a brIef description of why the
alignment Is TeQu)red and what wlJI bappen when the data
Is not aligned correctly.

4.'.1.4.1 64-81T WORD BOUNDARIES
The followIng deta either must be, 01 should be aligned on
word boundaries:

1) Process Segment Table - For performance reasons the
hard~are lndexes Into the
segment table at 8 worc
boundary. The vIrtual memory
address translatjon mechanism
w 11 ,I'f:&1 I 'f th e segment
table 1s incorrectly alIgned.

2) Binding Sections - To maximize the reach Into
the Binding SectIon by the
Call Indirect Instruction,
access Is made to a word
boundary. If the Binding
Section Is incorrectly
alIgned, then an Address
SpecJflcatlon Error results
whens Ca.1 Indirect is
Issued.

CYBER 180 Syste~ Interface Standard
4-30

86/02/04

4.0 SYSTEMWIDE CONVENTIONS
4.5.1.4.1 64-BIT WORD BOUNOAR1ES

3) Procedure Entry Points - To maximize the reach of the
Ca1) Relative Instruction, a
branch Is made to a word
boundar,- Since t~e
lnstructlcn forces the
address to a word address,
results HIli be unpredictable
If the procedure target was
not correctly aligned. Note
that eyen though Jt Is not
strJctjy necessary for
procedures cal. ad v Is 8
Binding Section to be Nord
all goed, d I ffl cu I ti es coul d
stili result Jf they are

4) Debug list Entries

5) Interlock Words

6) .St ackF ram es

not. This 1$ because the
CYBER 180 library Generator,
In the process of "binding"
may convert Ca11 Indirect
instructions to Call Relative
Instructions.

- To sJmpllfy the hardware, and
to optimize performance _hen
In debug mode, the hardware
accesses debug list entries
on word boundaries.
Incorrect alignment MIll
cause unpredictable results.

- Interlock words used In
conjunction with the
Compare/Swap operation must
be aligned on a Nord
boundary. ThJs Is necessary
for the processor ~o satisfy
the non-preemptive
requirements of the
instruction. Processors
utilize the 64-blt memory
exchange function In this
operation. That function
operates on a real memor)
word. Incorrect align_ant
will yield an Address
SpecIficatIon Error.

- By software cOnvention o~ly,

CYBER 180 System Interface Standard
4-31

86/02/04

4.0 SYSTEHW1DE CON~ENTIONS
4.5.1.4.1 64-811 WORD BOUNDARIES

7) Central Memory Data
AccEssed by the IOU

4.5.1.4.2 OTHER BOUNDARIES

stack frames should be
aligned on word boundaries.
This enables the hardware to
load and store the re91sters
held In the save area from,
data on word boundarIes.
Incorrect atJgnment wll' not
cause any problems sInce tbe
hardware alva,s adjusts
(forces) the Dynamic Space
Pointer to a word boundary
before accessing a stack
:fr ame.

- The IOU can only reference
central memory words. Hence,
It Mould require some special
code In ppas to decode data
not stored on word
boundaries. ThIs is reali, a
pragmatic software con¥entJon
sInce a PP has no way to
specify a central memory
address other than on & word
boundary.

The follo~lng data must be aJ Igned on boundar.es ot~er
than 64-blt wore or 8-blt byte.

tl) Exchange Packages - 12S-bit (2 _ord) Boundaries

To optimize the performance of the exchange Jump on some
processors, the hardware addresses two words at one time.
Results will be unpredlctabte If the exchange package ts
IncorrectlyalJgnea.

(2) lnstr uct,1 on-5 -Parcel (2-byte) 80 undar j eS

Instructions, .~lch ere either 16-blt or 32-blt
Quanti tie 5, m us t be 8 I I g ne don p ar eel boundar j e $.

Failures to do thIs will eltber result 1n unpredictable
behavior, or an Address SpeclflcatJon will be detected.

(3) Page Tab'e - Page TabJe length Boundary
To mInimize the time needed to translate addresses from
vlrtuaJ to real, the hardware catenates (~ather than adds)

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.5.1.4.2 OTHER BOUNDARIES

4-32

86/02/01t

the Page Table Addresses (PTA) to the page table Index.
For the catenation to yield the correct address, the
low-order bits of the PTA, as determined by the page table
length, must be zero. fellu,e to structure the PTA in
this manner wll) cause the address translate mechanism to '.11.

4.5.2 HARDWARE PERFORMANCE

Whereas the previous section dealt with conventions
necessary to make the hardware work correctly, this
sect jon deals _ith conventions necessary to make the
hardware work efficiently. As such they are not
~andatot}' and in some cases represent merely suggestions
as to how to optimize certain functions.

Convention: Plac. all code and all data to be used at one
tIme In one place, and keep to a minimum the number of
segments requIred to execute a given task.

The eYDER 180 virtual memory organization provides the
basis fOr the system security and simpJlfies the explicit
or vanlzatlon of a program Into overlays. However, :8' I
programmers have responsibltltJes if system thrioughputis
to be optlmlze~. A prime responslbllJty Is to maintain a
strict locality of reference. That Is collect all code
and alt data that Is to be used at one time Jnto
contiguous pages in one segment (each for code and data).
This has two advantages, It minimizes the working set (the
number of pages allocated in real memory at any given
point of time), and It 8'SO minimizes the number of
entries whIch must be made In the buffer memories. 8y
minimizIng the ~orklng set the number of concurrent tasks
which can be held In real memory Is maximized. This, In
turn, maximizes s)stem throughput.

OptimJzing around the buffer memories represent a slightly
different problem. These have a finite size and Gontain
the most recently used Segment Descriptor fntrJes and Page
Table Entries. If a large number of segments are In use
at one time, or If a large number of pages are in use at
one time, then the butfer memories wit. be unable to hold
all the necessary entries and they ~JJJ be constantly
loading new values. The ~frect wilt be similar to not
having them at all and performance _j.1 degrade
conslderabt y.

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.5.2.1 locality of Reference

Consequent.y, not onl, should programmers maintain a
locality of reference, but they should also try to
locajlze the number of segments used by a given task.

4-33

86/02104

Convention: Allocate A-Registers and X-Registers from t~e
small numbers on up.

As a result of the specla' functions rOr which AO-A4 and
XO-Xl are used, and the method of savlng/restorinQ
contiguous registers by the CAll/RETURN instructions,
regIster usage shoutd alNayS start witb the smallest
possibJe number (typlcatly A5 and X2). This _J •• help to
minimize the nuwber of re~isters ~hich must be saved
across procedure calls. This, tn turn, will optimize
performance In this area.

4.5.3 SECURITY

This section lists software conventions needed to provide
a secure environment at a.1 times. Since a major
objective of the (VBER 180 program 1s to provide a highly
secure system, these conventions become mandatory. These
conventions are ct05ely reJated to those In Section 2.
Just as they are required to make the hardware operate in
8 correct, predictab.e manner, so are these requlred to
guarantee that the security and protection algorithms
'unctlon correct.y.

Convention: 1) AIMayS use caJAer's argument list pointers
for accessing caller's data.

2) Always load pointer parameters directly
into A-Re~lsters - yla Load A Instructions.

3) Whenever possIble avoid moving record
structures that contain pointers.

4) Avoid passing pointers between ringS
either way.

5) Avoid data structures contaJnlng direct
poJnters that cross rings either May.

These conyentlons are mandatory for those procedure calls
from one procedure to 8 second one ~ith more privilege.

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.5.3.1 Procedure Pafameters

4-34

86/02/04

Wnen a procedure Is called byanather procedure, J t
executes on betel' of the cal'er. It Is the
responslbillty of the cellae to ens~re that Jt does not
8xecutewlth mere privilege than ca'l et. The hard ... r e
pr+ovldes the basi c security mechanisms. In tn. s case, It
ensures that callee is called from _!thln its call ring
bracket, and that Itls csJiled Yla 8 S,indlng Section. It
may then access code and data belonging to or accessible
by eal1er. ThJs code and data is referenced vIa pointers
held In A-Registers, and the hatd~are performs a rlno
number vote w~enever an A-Register Is loaded. This
mechanism ensures the lea5t prIvilege (highest ring
number) Is always accorded the user. However, there are
many ways tbls mechanism can be be-passed. The simplest
method Is ~or cellee to load a pointer Into an X-Register,
then copy it to an A-Register. If caller p'aces a 10M
ring number (zero would do) In the pointer, then it N."
end up with callee's ring number in the A-Reglster. That
Is it will end up with more prlvJlege than that to ~hich
ca.ler is entitled. It Is callee's responsibJ1ity to
ensure tbls does not happen. The onus for maintaIning
security always fells on the more privileged procedure.
Hence, the con~ention.

EBCDIC data can be diVided Into t~o distinct classes:

1. all a-bit cbaracter data (also known as coded data,
IncludJng unpacked numeric data types); and

2. Intermi xed character Gnd non-character data.

Support for the former (atl character) Is provided by tbe
operatln~ system. If EBCDIC is specified on the request
card, the tape driver automatically translates to ASCII
when readJng the tape end translates back to EBCDIC Mhen
wri tin g the t 8 P e.

Support for the tatter (intermixed character and
non-character), and for the EBCDIC collating sequence,
Yarles by product:

c P F S f C
0 l a I Ii R
B I R M U M
0 I T
l R

A

0
M
S
1
8
0

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CON~ENTIONS
4.6 SUPPORT OF EBCDIC DATA

EBCDIC SUPPORT

Intermixed EBCDIC Input file

Intermixed EBCDIC output file

ESCDIC collating sequence

N

e

e

x

x = support required at Rl of product
e = eventual support desirable

x

x
X

x

4-35

86/02/04

Support 01 intermixed Input and output files meanS use of
the special C180 instructions to pTocess the following
"translated" non-character EBCDIC data types:

• Binary (stgned and unsigned)

• Packed Decimal (s I gnedand unsigned)

The CYISO keypoint facilIty proyjdes a mechanism to enable
col .actJon of statIstics for performance monitoring. A
data reductJon software package Is available to sua.arlze
these statistics based on descriptors contained In a
keypolnt descriptor file (KDF). This section documents
the conventIons to be fotlowed by the operating system and
product set In the usage of this facility.

4.7.1 KEYPOINT CLASSES

five keypolnt classes named ENTRY, EXIT, UNUSUAL, DEBUG,
and DATA are defIned for the operating system and product
set.

ENTRY

EXIT

Every gated procedure plus alt major
Internal procedures (those shared across
functional areas) should contain a
keypoJnt of thJs class. These keypolnts
should be placed as close as posslbje to
the entry to the procedure.

Every gated procedure plus al' major
Internal procedures (those shared across
fynetlonaJ areas) should contain a
keypoJnt or this class. Thase keypolnts
sbould be placed as close as possible to
the exit from the procedure.

CYBER 180 System Interface Standard
4-36

86/02JOit

4.0 SYSTEMWIDE CONVENTIONS
4.7.1 KEYPOINT CLASSES

UNUSUAL

DEBUG

DATA

Every s i tuat j on which' s unexpected or
quite unusual should contain a keypoJnt of
this class. It Is Intended that these
ke,points would be enabled at al) times.
The frequency of encountering these
keypoints shoufd be ~erJ Jow. The DATA
keypolnt class is nct allowed In
conjunction with a keypolnt 01 class
unusual.

These keypoints .ould be for provIding
additional trace Information as an a,sslst
In debugg)ng of hardware or software
problems. OEBUG class keypolnts ~ould be
most useful in the more complex areas of
the system. The primary use of keJPoints
In He! and NOS/Vf UP to this pojnt has
been for debugging purposes.

This keypolnt class can be used wlt. the
ENTRY, EXIT, and DeaUG keypolnts for tbe
gathering of extra data. All DATA
keypolnts encountered are supplying
addltlonaJ data which wll' be assocIated
with .the Jast ENTRY, EXIT or DeBUG
keypoint. Hence, they should 'oIJo~ as
cJosely as possible atter the ENTRY, EXIT,
or OeBUG keypointJ In particular, there
should be no Intervening CALL
Instruction. DATA keypoints sbould be
used with care since t~e PMF hardware can
onty buffer UP 16 keypoints; ke)Point
ctusterlng can cause Jost keypojnts.

Keypolnt Data and IdentIfication:

Upon successful execution each keypoint instruction wij)
provide a total of 32 bits of Information. The conwentlan
uses 12 bIts of this for keypolnt Identification and the
remaining 20 bits as user supplied data. Try to use this
20 b1ts to provide meaningful informat.on (taskJd, segment
number, fileld, queue length, page number, tlme, etc.).
On DATA class keypolnts the data be'ongs to the previous
keypoint and the full 32 bits is Ivallable for additional
user data.

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.1.1.1 Operating System

Tbe keypolnt classes fOr NOI/VE are as fottows:

OSC$DAT A=O
OSC$UNUSUAl=l
OSCSENTltY=2
OSC$EXIT=3
aSC$OEB UG=4

Keypoint class 5 Is reserved for NOS/VE.

The operating system keypoJnt multiplier Is aSKSM.

The keypolnt classes fOr the product set are as follo~s:

PSC$OATA·=6
pSt $UNUSUAl =7
PSCSENTRY=S
PSC$E XIT=9
PSC$OEBUG=lO

The product set keypoint multIplier Is PSKSM.

The keyp01nt classes 11-14 are reserved for users.
Keypolnt class 15 ts reserved tor PMF bard.are control.

4-31

86/0210 It

Tbe keypolnt multiplier for ~ser defIned keypoints is aSKS".

4.7.2 KEYPOINT IDENTIFIERS

A maximum of 65535 keypclnt Identifiers are avaIlable tor
(each) NOS/VE and the product set. The combination of
ke,point ctass and IdentIfier Is unique wltbln the system.

The set of 4096 aval lab'e identIfiers is assigned to operating
system areas in blocks of 50. Some areas (tf needed) NIJI receive
twoconsecuti VI btocks of 50. The HO.S/Vi: pe.rformance project has
responslbliity for assigning the ranyes to areas of the operating
system.

:
:
:
J
J
I
• • :

CVBER 180 System I"terface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.7.2.~ Operatlng System

4-38

86/02/04

The currently Esslgned values for the operatIng system are:

Ar e a Identifi e r

(not used)
AM Access Method
SA Basic Access Method
Cl Command language
eM ConfJguratlon Management

(#uture expansion)
DM Device Management

(future expansion)
IC Interstate Communications
IF Interactive FacIlity
II Interactive Interface

(future expansion)
JM Job Management
LG Lo gs

(future ~xpansion)
LO loader

(future expansion)
Ml Memory ttnk
MM Memory Management Monitor Mode
MM Memory Management Job Mode
MS Malnte~ance ServJces
HT Monitor
DC Object Code Utility
Of Operator facility
as Operating System

(future expanslon)
PF Permanent flies

(future expansion)
PM Program Management
RH Remote Host
SR Conversion Serv1ces
ST Software Tools/Set Management
TM Task ~an8gement Mont tor Mode
TM Task M.nagement Job Mode
JS Job S~apper Monitor Mode
JS Job SMIPpcr Job Mode
AV Accounting Validation
Sf Statistic facility
10 Input I Output

(future expansion)
OM Device Management/Tape
ST System
NA Network Access Method
NL Network Access Method
Nl Network Access Method

R.ange

0 - 49
50 - 149

150 - 249
250 - 299
300 - 349

400 - 549

600 .- 649
650 - 699
700 - 749

800 - 849
850 - 899

9'50 - 999

1050 - 1099
1100 -1149
11;0 - 1199
1200- 1249
1250 - 1299
1300 - 1349
13:50 - 1399
1400 - 1449

1500 - 1.599

1600 - 1699
1750 - 17~9
1800 - 18't9
1850 - 1899
1QOO - 1949
1950 - 19q9
2000 - 2049
2050 - 2099
2100 - 2149
21:50 - 2199
2200 - 2249

2300 - 2349
2350 - 2399
2400 - 2499
2500- 2549
2550 -25q9

:
• •
I • :
I
• I

:
I

• • • •
I
:
• •
:
• •
:
• • :
• • • • :
I

I
• t

• • :
:
• •
I
:
• • :
:
• • • •
I
:
• •

CYBER 160 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.7.2.1 Operating System

(future expansion)
FM fl Ie Manegement
FSFi Ie Sys tem
RM Resource Management
NA Network Access I Monltot Mode

(future expansion)
MT Monitor

2700 - 2799
2800- 2899
2900 - 2999
3000 - 3049

4000 - 4049

4-39

86/02/04

:
• • :
:
:
:
I

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.7.2.1 Operating System

4-ItO

86/02/04

The keypolnt reduction utility and the continuous monitoring
facility depend upon the following keypolnt va.ues. These routines
should be modified to use the keypoJnt names and not the keypoJnt
values listed below. This modificatIon should be completed by
NOS/VE release 1.2.1 (second qUarter 1986).

4001 Enter 1 Exit MonItor Mode
4002 Enter I Exit NOS 110
4003 Monitor Mode Trap Handler
4004 Job Mode Trap Handler
2200 Series 'hysical 110
1106 P :agef au I tP rocessor
11~9 Convert PVA to SVA
1906 Queue Task
1918 Switch Task

mtkSJob_entry_exlt
mtkS170_entry_extt
mtkSmonitor_mode_trap
mtkSJob_mode_trap

mmk$page_'au It
mmkSsystem_vITtuaj_8ddress
tmk$·queue_ task
tmkSsjfl tch_t ask

The set of 65~35 available identifiers is assigned to products
In blocks of 50. Those product set members which require more
than 50 wil' be assigned one or more additional b'ocks.

• ,
I
• I

I
:
• ,
:
:
I
I
• • :
:
:

• ,
• ,
I •
I
:

CYBER 160 System Interface Standard
4-41

86/02/04
----~-.-.----.-.- -..... --..--.-.-..-..-. ---.--.- --------------~ ---,--.--- --..-... ----~..-.---.... ~.-.---
4.0 SYSTEMWIDE CONVENTIONS
4.7.2.2 Product Set

Assigned ranges are:

Product Identl'ter

(InYalld)
AA Advanced Access Method
AP APt
Be BASIC
CB COBOL
DB Interactlwe Debug
FC fORTRAN Compiler
fL fortran Run-Time
fH FiJe Management Utility
FI FORTRAN Gjobal
1M Information ManaQement
PAPascal
Pl fl/I
QU Query Update
SM Sort/Merge
SV Shared Variables Processor
CC Common Compiler Modules
CG Common Code Generator
(fut ur cpr cau ct)
Ml Math library
CY CYBIl
SC Source Code utility
Al Assembler
fA Fife Migration Aids
II LISP
AD Ada
fV CDC Fortran
VX VX/VE
VC C compiler
PI Performance Tools
KR Keypolnt Reporting utility
NF Network File Transfer

(ReseTYed for future products)

AA Advanced Access (2nd bloCk)

(Reserved for future products)

4.7.3 KEYPOINT USE

Range

o
1 -49

50 - 99
100 - 149
150 - 199
200 - 249
250 - 299
300 - 349
350 - 39q
400 - 449
450 - 499
500 - 549
550- 559
600 - 649
650 - 699
700 - 749
750 - 79CJ
800- 849
850 - 899
900- 949
950 - 999

1000 - 1049
1050 - 1099
1100 - 1149
1150 - 1199
1200 - 1249
1250 - 1299
1300 - 1349
1350 - 1399
1400 - 1449
1450 - 1499
1500 - 1549

1550 - 1999

2000 - 2049

2050 - 65535

From a software point of view, keypolnts are special
commands that are inserted In a module according to the
guldeJlnes specified in section 4.7.1. For 8 module
wr'l tten In CY8Il, the IKEYPOINT Intrinsic can be used to

:
t •

cvaER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.7.3 KEYPOINl USE

4-42

86/02/01t

----~---~,.----------.-- ... --.. -.. -...... --------..... --- .. -... -------... ---~- -.... ----_,. .. --....... --..-.--

generate the keypoJnt instruction (refer to CYBIl language
SpecificatIon, ARH2298, and HIGDS, ARH1700, for details).

T~e main entry keypolnt IdentifyIng a product set member
should Include data which indicates the actual version of
the product. This Is useful for tracking simUltaneous
execution of the same or different versjons o~ a prOduct.

CYBER 160 System Interface Standard

5.0 COMPILER AND ~SSE"BlY CODE CONVENTIONS

This standard Is to be followed by the object code
generated by the compljers and by any assembler code
wr-Itten as part of standard software.

I n ad d i t I on tot he s est an dar d 5, as s em bier co Q e
(handwritten or compiler generated) wiJI conform to the
coding standards described in CY8ER 180 MAINTENANCE
SOFTWARE COOING CONVENTIONS (oAP ARHZ160).

5-1

86/02/04

1. The loader specification Is lImited to that written In
Jts formal documentatIon. Programmers shall not
depend on additional characteristics determined by
empirical observation, as such behavior may be subject
to ch.nge. Examples which have caused trouble on
CY170 are tbe presettlng of undefined variables, the
order of Joadlng from a I ibrary, and the address at
which the first code 1s loaded.

2. Runtlme routines shall not lImit the program
structures of their users. On (Y170 all CRM 1
routines must be In the root segment of a segmented
load, and eMM must have at least one routine in the
main overJay of 8n overlaid program. Such
restrictions must be avoided on CY180.

3. The following table shows in which sections particular
types of data should be alJocated, and the attrIbutes
the section should have.

Attributes R = read, W = write, B = Binding and
E = execute.

Section
Data Type Type Att Comment and Examples

"Statlc fl Working R,W AI. variables not
allocated on the stack, In
common or explicitly
allocated to a section­
Includes FORTRAN local
variables, CYBll [STAlIC]
and [XDCl] varl~bles.

Constants(l) Working RAil Iiterat constants

CVBER 180 System Interface Standard
5-2

86/02/04

5.0 COMPIl£R AND N5SEHBLY CODE CONVENTIONS
5.1 USE Of LOADER FEATURES

Constants(Z)

"XREf"

Heaps

Code

Binding

common
extens­
i b I e

Nhjch for reason of
Indirect addressing or
lengtb cannot be expressed
directly in the code.

E Optionally, constants as
In tl} which are less than
8 bytes long and
convenientl, accessed
tbrou~h the lBYTP
InstructIon. Note that
the "constant" may not be
a PYA.

8 Data declared In another
unit of compilation are
usually referenced through
pcintsrs placed in the
binding section by the
loader (rather than in
user sections indIrectly
refer enced through the
blnd4ng section, where
they would be Inaccessible
to the bl nder).

R#W For the system beap see
section 5.4.3. Other
heaps are declared In
CYBIl.

4. The tollowJng action should be taken .f a compiler
detects a fatal error In the source code It Is
compiling, unless the complleT was called with
"DEBUG=OC" (see section 2.2):

An lOR record shall be Issued containing the string

"errors in compilation"

In the com~ent fleld. The non-executable attrIbute
shall be set.

If DEBUG=OC was selected, the complier shall continue
normal processing as far as posslbJe.

5. All compilers should emIt loader names (common block

CYBER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
'.1 USE OF LQADER FEATURES

5-3

86/02/01t

names, XREf names, module names, etc.) using upper
case alphabetic letters when letters occur in the
names. An exception to this rule Is made tor any
language which requires the distinction between upper
and lower case names.

Purpose

The purpose of the Interlan~uage catJlnQ sequence Is to
'acljitate inter-1anguage procedure calls. This Is
pa~tlcularl~ deslrabae on CYSER 16C because of the system
level support for sharing of code between executing
tasks. For example, It ~ouJd be desIrable to have only
one set of mathematical routlnes to be used by aJI
languages.

Restrictions

AI. CYSER 180 Compilers must be capable of generating the
CYBER 180 Interlanguage Calling Sequence for an externally
relerenceable code module. It Is a goal in tbe definition
of this calling sequence that It be useable by the
majority of tbe compliers as a subset of their standard
calling sequence. It obvious1y cannot meet all of the
needs of languages as dlyer~e as BASIC and Pl/l. It Mould
be a~ceptable (but certainly not preferable) If a
partJcuJar langu~ge were to requIre speclat declarations
or attrJbutes on 8 procedure call to cause the generation
of this ceJlin~ sequence.

It Is expected t~8t users In the various pro~r8mming
languages may hawe to take additional steps with respect
to data declarations to guarantee that tbe alIgnment and
packing correspond to that specified by thJstnterchange
standard. The user Is also responsible for the values
passed vla thIs calling sequence. For example, a Boolean
variable might contain values 0-7 (since It occupies 8
byte) but the common calling sequenCe only assures
Jnterlanguage capabilIty for the values 0 and 1.
In general, a campi ler may employ any calJjng sequence It
chooses between itself and it~ library or non-external
procedures. ExceptJons to this will be for routines Mhlch
can be of ~eneral use to many languages (e.g., math
l1br-ary routines). Such routines may haYe a fast calling
sequence but must also provide an entry polnt confor.Jng
to the interJanguage call1n~ sequence.

CYBER 180 Syste~ Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
~.2.1 CALLING SEQUENCE fORMATS

'.2.1 CAllI~G SEQUENCE FORMATS

5-4

86/02104

The Interlanguage calling sequence Is defined to Include not only
the layout of the parameter 'lst, but also the Jayout of any
descriptors associated with parameters 1n the jist. Two formats for
the Jnterlanguage calting sequence are avaltable. The term
"lnterlanguage calling sequence" Is used to refer to these two
formats collectlvel,. Two different formats are required In order
to provide flexibility of usage fr05 language to language while not
unreasonably degradlno performance end usability. These two formats
will be referred to as the ·System" and "General" tormats.
Extensions to either of these fOrmats may be made via 8 DAP against
the SIS.

The calling sequence proylded by a complier for use between Internal
procedures a~d functions known to be written in the same language
need not conform to either format of the JnterlanQuage ca.ling
sequence. Additionally there Is no requirement to use the
JnterJanguage caljlng sequence between compiler generated procedures
and functions and any assembler procedures and functions provided In
8 runtime library specIfic to that janguage. In genera', assembler
procedures and fUnctions are responsAbJe for accepting a parameter
list format of the kind generated by theIr potential callers.
However calls to the scalar CHMl caJI-by-reference procedures and
functions must conform to the System format, whIle ca'.s to the
vector/arrs) CMMl call-by-reference procedures and functIons Must
conform to the General format.

FOT purposes of exposition, siX kinds of parameters wil' be
dlstJnguJshed: simple value parameters, extended value parameters,
sImple reference parameters, extended reference parameters, simple
bit reference parameters, and extended bit reference parameters.

Value parameters sre t~ose parameters for Milich a va,tue Is Intended
to be passed. The calting program can assume that the actual
~TgUment It passes Mil. not be chan,ed by the catJed program. Note
that thIs does not Imp') a specific Implementation technique
(several are possible). Some value parameters also require that
certain descrlptcr Information must be passed along w.tb the value.

Simple value per,meters are tbose val~e parameters ~hlch require
only a valye to be passed to the called routine.

Extended ¥slue parameters are those value parameters _hlch .re
composed of a v81~e plus a descriptor. Included in this category
are potnters-to-PrOcedure when they are accompanied by 8 static
link.

• • • • :
:
:
• •

5-5
CYBER 180 System Interface Standard

86/02/0 It

5.0 COMPILER AND ASSE M8lY CODE CONVENTIONS
5.2.1.1 Kinds of 'arameters

ReferenGe parameters are those parameters for wbich an object Is
Intended to be passed. The calling program must assume that the
actuai argument It passes may be changed by the cat led program.
Note that this does not imply a specIfic Implementation technique,
although at least an address must normal'l be passed. Some
reference parameters also re~uire that certain descriptor
information must be passed along with the address.

Simple reference parameters are those reference para •• ters
requIre only an address, or only an address plus a
descriptor, to be passed to the calling routine.

which
str ing

Extended reference parameters are those reference parameters whicb
are composed of an address plus a string descriptor plus 8
non-string descriptor, or of an address P'us a non-string
descriptor.

Slmpje bit reference parameters are those reference par.meters which
reQul~e only an address plus a bit strlng descriptor pJus 8 bit string
offset to be passed to the ca4Jlng routine.

Extended bit reference parameters are those reference parameters which
are composed of $n address plus a bit string descriptor plus a bit
strtng offset plus 8 non-string descriptor.

This format Is the one used by the system ImPlementatIon language
(CYSIl), and ali ope;rattn.g system Interfaces. This format is
documented In detei~ In section 5.2.5.1 of the SIS.

This format Is more general than the system format. It wIll be used
by Ada and CDC FORTRAN. This format Is oocumentedin detail in
section 5.2.5.2 of the SIS.

The primary difference bet~een the SYstem and General formats is In
the placement and content of descriptors. System format and Gener ••
format actual palrameter IIst5 are Identical If only simple f'eterence
parameters are passed. At. System format descriptors are placed
directly in the parameter list following the PYA of tbe object being
described, while General format non-strIng descrJptors are placed
outside the parameter lIst. The General format param.ter list
contains the PYA of the descriptor as welt 8S the pYA ot the object
be.ing described.

• •
I
:
:
• •
I
:
• • :

CyaER 110 System Interface Standard

5.0 COMPILER AND AJ~SEMBl Y CODe CONVENTIONS
5.2.1.4 Summary of format Differences

86/02/04

The System format does not support extended value parameteTs
except for polnters-to-procedure. for simple value parameters,
the System Format and the General Format are ldentical except when
the value p~rameter Is tess than one word In size. The Generat format
requires that the vatue parameter be right aligned with sign f.,1 on
the left tor Integers and subranges of integers and zero fill
otharw1se, while the System format requires right allgn_ent but does
not define the '41j bits on the left.

Use of the Genera1 format of the Interlanguage caJllng sequence
reQuires thataftb I g" (i.e. longer than a Hard) va .ue P aramete,r
whlch js passed ~la a pointer wtlt have been copied by the ca.ler.
The passed point" Is a pointer to the copy, and the called program
15 free to wrIte Into the memory pointed to. The System format does
not specify ~'ether or not a "big" vatue parameter w.l. have been
cop1ed by the calfer, so In this case the called program should not
write into the memory pointed to.

Any procedure or function which 15 intended to be catlable from an
external module potentially written in another language should
accept for that call one (or a subset of one) of tbe two tormats of
the Interlanguage calling sequence. Each compJler must docu.ent
which of t~e two sequence formats It aocepts, or state that none of
its procedures and functions are externall, callable' from another
I engu age.

language

ADA
BASIC
C
COBOL
eYBIl
fORTRAN
P asca1

Interlanguage Format Accepted

General format
-not interlanguage callable-

-to be determined-
System format
System format
General format
-not interlanguage callabJe-

A compiler may assume that no call Jt generates Is an lnterlanguage
ca1. unless the author of the source program hal expl4cltly
Indicated that a particular 0811 Is InterJanguage. T~ls means that
esch language whJch supports calls to modules written In another
language must provide a mechanism withln the sOurce language with
whlcb the author of the source program C6n expll~lt.y Jndleate that
8 par t 1cu lar cal' Is interlanguage. This mechanIsm must be

(veER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS
5.2.1.6 Calls Potentl.ll, to Another language

5-7

86/02/04

---.. -.-- ... ------... .-.-,.---.-.--.----... --.----~---------. ... -- -...... ---.... ,... .. .-.--.... .-,..-... ,-~ --.......

formulated such that the author Is further teQulred to state
explleltl, (by name) which other language is being called. It Is
then up to the compiler to generate the correct InterJanguage
cali jn~ sequence for the call. Thus the compiler must know Mhlch
languages accept whIch calling sequences. It remains the
responsibility of the author, not the compiler, to ensure that the
actual and formal parameters of the cal' are compatIble. The
compiler has the responsibility to generate the correct layout for
the parameter list and parameter descriptors, as expected by the
call ed:1 anguage.

T~ese provisions do not require a complJer or language to provide
Interlanguage eat's, but they do define restrictions on hOM
IntertanQuage calJing Is to be supported. A language .ay support
Interlanguage calls to only a limited number of other languages, If
It so chooses. Note that even If a language supports direct
InterJanguage calls, It Is not required to also support Indirect
Interlanguage calls via dereferenced polnters-to-procedure.

5.2.1.6.1 SUPPORT fOR CALLS TO ANOTHER LANGUAGE
I~ a languaga supports calls to modules written In anotber language,
and that othe~ language accepts calls with slap)e reference
parameters, then the ceiling language must, at the minimum, support
calls with simple reference parameters. A string descriptor must be
supplied for any object whiCh takes one, unJess the .uthor of the
calling program has explicitly indIcated that no string descriptor
need be passed. An explicit Indication Is possible In tanguages,
such 85 CYBIl, which a110w the reference parameter In an external
procedure declaration to be $pecl~Jed 8S either fixed type
(descriptor need not be passed) or adaptable type (descriptor must
he passed).

The cajtlng language Is strongJy encouraged to also provide support
for calls ~Ith value parameters and extended reference parameters If
the called language accepts such calls. This support Mould consIst
o~ a mechanism within the source language to exp~lcltly Indicate,
for each actual parameter of the Interianguage cal., whether the
parameter Is to be passed by vaJue, by simple reference, or by
extended reference. The compiler then has the responsibility to
generate the approprIate calling sequence.

;.2.2 CAll

The procedure call instruction CAlLSEG, Reference #115 as
defined In the CYBER 180 MIGDS will be used to perfor. the
procedure ca. I •

CYBfR 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.3 REGISTER SAVING CONVENTIONS

5.2.3 REGISTER SAVING CONVENTIONS

5-8

86/02/04

For generalized external ca.as and calls to formal
procedures, the compiler may not assume that the catled
procedure will save and restore rewisters. Any registers
to be saved must be saved on the stack usIng the save
mechanism of the CALL tnstruction.

Internal calls need not use tbe CAllSEG, Reference '115
Jnstruction. Tbey may use CAllREl Reference '116 or any
other cede sequence Mhich meets their needs. for jnt.rnal
calls the compilers have the option whether to save
registers or not. Interna' calls Include calls to:

8) the compJler's o.n library routines,

b) nested proced\Jres within the s,ame compilation unit,

The following Information may be required 1n making a call.
Some of the Information Is not aJways reQuired - See footnotes.

Dynamic to Catler and CalJee

• basic stack control registers tAO, AI, A2)***

• parameter list pointer (A4)***

• static chaAn/dlsplay*

• bindIng section pointer (A3)***

• product defJned Information

Dynamlc to Cal tee, Static to Caller

• 11ne number of call {see traceback sectlon)***

• number of Plrameters(XQ, bits 32-47)***

• descriptor area Indicator

• descrIptor Brea pointer (if any)

Static to Calter and catles

name of calJee (see traceback section)

CYBER 180 System Interface Standard

5.0 COMPILER AND ~5SE"BlY CODe CONVENTIONS
5.2.3.1 Information Required Across Call

• sJze of display/nesting depth*,**

• frame sizeJlanguage.*

• type of frame; e.g. PfOC, tunc, co-proc**

* Block structured languages only.
** Traceback mode only.

5-9

86/02/04

*** Required on calls made wltb the lnterlanguage calltng sequence.

;.2.4 fUNCTIONS

A function 15 • procedure that returns a value. The
function value Is In the registers or In memory dependJng
on the type of value beln» returned. Since function
raf~rences are usual., part of another expression that Is
being evaluated, It is generally deslrabJe to have the
,alue returned in a register.

If the functJon vaJue is a pointer, then the value is
returned as a PVA In Af. A procedure callIng a
pointer-valued functIon must not save register Af on the
c31'. A pointer-valued function may have the ring number
fl-eld of AF altered by the RETURN instruction If it is
called across a ring boundary.

If the function value Is a scalar of known length less
than or equal to 64 bits In length, it is returned right
a I ,I gn e din X F • Apr 0 C e du r e c all. n g $ ye h 6f u ne t I on must
not save register XF on the call.

It the functlon value is double precision or compJex then
the value Is returned In registers xe and XF. XF holds
the least significant 64 bIts of the value. A procedure
cal ling such a functIon must not save XE or XF on the ca.l.

If the functJon value Is non-scalar then it Is stored at
the jddress defined by the first element of the parameter
list. The second element of the parameter list specifies
the first actual parameter.

A scalar funct10n result 15 defined as follows:

• CYaIl

• FORTRAN

ch8~acter, boolean, integer, ordinals,
subranges, cell, pointer.

loglca', Integer, real, double precision,
complex, FORTRAN boolean ••

CYBER 180 System Interface Standard

5.0 COMPILER AND ~!SE"BlY CODE CONVENTIONS
5.2.4 FUNCTIONS

'.
•

•

•

COBOL

Pl/I

BASIC

Pasca:1

comp,comp-l, comp-2, boolean.

lnteger(flXED REAL), real(flOAT REAL),
complex(COMPlEXJ

real.

Integer, (enumerated type, sub-ranGe),
real

5-10

86/02/04

Sca4ar functlon values Ire returned right a11gned In the
result regl ster. fit J (.4f any) Is zero bl ts. Note that 8
byte numeric Items reQuire no fiJI.

* fORTRAN boolean corresponds to 8 ful) CyaER 180 word without
type. It is not the same 8S the bOolean type mentioned
elsewhere In this section.

5.2.5 PARAMETER LIST

The parameter list is allocated on 8 word boundary In memory. Each
entr~ In the parameter list must also begin on a word boundary. On
entty to the cal' ee , register A4w 11 j point to tbe parameter I j st.
Bits 32-47 of reolster XO will contain the number of par.meters
(Including the pseudo parameter for non-scalar valued functions).
If the procedure being called Is a function wbose yalue is to be
returned in memory, the first element of the parameter list defines
the location at which tte value Is to be stored. If no parameters
(nor pseudo parameters) are to be psssed, then the contents of A4
are unde~lned and XO must specJfy zero parameters. Under certain
clTcumstances Gets.Jed below, a flag word must Immediately precede
the first word of the parameter list.

[This Is currentt, documented in the CYBll Handbook, DeSt ARH3078,
sections "CYBll el111 TYPE AND VARIABLE MAPPING" (old section 7.11
and "RUN TIME ENVIRONMENT" ~ubsectlon "PARAMETER PASSAGE" (old 8.3).
The following ad~ltjon must be made to that documentation in order
to conform to the SIS.]

For any potent,J'lly lnterl anguage call tn which. Syste. format
actual parameter list Is passed that contains only simple reference
parameters: The parameter list must be Immediatel, preceded by a
flag word whose value Is the 64-b1t Integer zero. The string
descrIptor must be Included for any object whJch takes one, unless
the author ot tbe source program has explicitly indicated that It
need not be passed. These restrictlons are made to Insure
compatibility between the release 1.1.2 product set cal.tng

CVBER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.5.1 System Format Pa~ameter list

5-11

86/02l0,-

co.nventlons and ttlosefor all future releases. AtlagNOrd need not
precede any other System format actual parameter lists.

The General format parameter '1st must alMayS be preceded by a flag
word. The parameter IJst itself Is composed of two parts. The
rlrst part has exactly one ~ord for each parameter (Includjng the
pseudo parameter for non-scalar valued functions). If the fJag word
preceding the parameter list is zero then onl, this first part Is
present, otherwise the second (extension) part must also be present.
This parameter list extension fo.lows Immediately aftar the first
part of the para'meter List, and has exactly the salle length In
words. There is a one-to-one correspondence between word J of the
first part and word J of the extenslon.

The parameter list extension Is required If and only if one
or more of the actual parameters is an extended ,alue perameter
or an extended reference parameter, or a (simple or extended)
bIt reference perimeter.

5.2.5.2.1 FLAG WORD PRECEDING PARAMETER LIST

The flag word immedIately preceding 8 General format actual
parameter list must be present for any potential'} Interlangu8ge
call. This fJag tford has the following inte'rna' structure:

record
f1: O •• Offffffffffff(16),
f2:0 •• O'ff (16),
f3: 0 •• Off (16),

recend

field f1 must alM8yS be set to tntewer zero. It is reserved for
future uses. Field f2 has a langU8Qe dependent value, but may be
nonz era on I y I f fl e I df3 i s nonzero .FJ el",'j 13 must be set to
lnta~er zero If the parameter list extension 1$ absent, and must be
set to Integer one otherwise. Any language accepting cal's
accordIng to the Genera' format must accept InterJanguage calls tor
which field f2 Is zero. An InterJanguage caller wl'l neyer be
required to set field fZ to a non-zero va1ue. If tleld '2 Is set to
a non-zero value for an Interlanguage catl. It Js tbe responsibility
of the calle~ to set the field accordIng to the expectations of the
cellee.

:
• • :

I
• •

I

CVBER 180 System Interface Standard
5-12

86/02/04
--.----.----....... -.--.. --.-~---~-..... -----.-.... -.-----.-.-.---.-...--------.... .--... .-.-... ~~~-....... ----------..
5.0 COMPILER .AND ASSEMBLY CODe CONVENTIONS
5.2.5.2.2 GENERAL FORMAT SIMPLE VALUE 'ARAMETERS

§.2.5.2.2 GENERAL FORMAl SIMPLE VALUE PARAMETERS

If a simple value parameter Is greater than one word In length and is
not a polnter-to-procedure, then it ls passed using an IdentlcaJ for •• t
to that for 8 reference parameter.

If a sImple value parameter Is a polntef-to-procedure then the first
part of that parameter list entry must contain the lett Justified PYA
of the Code Base Pointer of tbe procedure in the binding section. Th.
second pa.rtofthe ent.ry (when an extension Is re4ul.red) must .,
contain the NIt pointer. The 16 bits to tbe right of each of these PVAs
Is unused and undefined. This can be diagrammed as:

: PVA (Code Base) : under : : NIL : undef
+._---------.-----------_._------------------+

If a simple vatue parameter is less than or equal to a Nord In length,
then a copy of the value parameter Is pJaced directlf in the first
part of the parameter list rl ght aligned in a tford, with sign f. t I on
the left for integers and subranges of integers and zero fill other.l.e.
The associated ~ord In the second part (Mben an extension Is
req~lred) Is unused aod undefined. Note that If a PVA having no
associated descriptor Is passed by value, then by this rul. the PVA
is placed directly In the parameter list, right aligned in a word,
with the ~ord zero-filled on the left. This can be diaGrammed as:

+--.-.-_-_._-_ ... :_ ... ----_ _-._-----+
: value (rlght Justified) : : undefined I • +-------------------------+ +-------------------------+

5.2.5.2.3 GENERAL fORMAl EXTENDED VALUE PARAMiTERS

If an extended yalue parameter Is greater than one word in length
(excluding the descriptor) and Is not a polnter-to-procedure, then
It Is passed u£i~g an identical fermat to that for a reference
parameter. Use of extended value psrameters requires that ffeld
number three 01 t~e flag word preceding the parameter 11st must
have been set to one.

If an extended value parameter Is a polnter-to-Plocedure, then the
fIrst part of that parameter list entry must contain the teft
Justified PVA of the Code Base Pointer of the procedure In the
binding sectlon. The second part of the entry must centaln the
teft Justified 'VA of the static link. The 16 bIts to the right
of each of these PYAs 1s unused and undefined. This can be
dl ag r ammecJ as::

+-------------------------+
P~A (Code Base) : undeft

+-------------------------+ ,
• Static link : undetl

:

:
:

CYBER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.5.2.3 GENERAL fORMAT EXTENDED VALUE PARAMETERS

+------------------------.+

5-13

86/02/04

If in extended value parameter Is less than or equal to 8 word In
length, then a COFY of the value parameter 1$ placed directly In
the first part of the parameter Jist tight aligned in a word, with
sign fiJI on the left for Integers and subranges of Jntegers, and
zero fllJ otherwise. The associated word In the par •• eter tlst
extension for this entry hill conts.n the PVA of a location (which
must be on a word boundary) in memory where the descriptor Is
located. The PYA In the parameter list extension Is left aiioned
In a word with the rightmost 16 bits being unused and undefined.
This can be dlagTammed as:

+-------------------------+ +--_._------_._-------_._-_._+
: Va1ue (rtght Just1fJed) : : PVA IdescrJptor): undef : +_._._-_._._-------_._._-------_.+ - - -

5.2.5.2.4 GENERAL FORMAT SIMPLE REfERENCE PARAMETERS

Simple reference parameters are passed either as a PVA or as a PVA
plus string descriptor. Parameters consjstlng soJely of e PVA are
plsced directly in the first part of the parameter jist entry left
aligned In a ~ordi ~Jth the rightmost 16 bits of the word unused and
undefined. The .alue of the word In the associated second part (If
an extensIon is required) must be t~e 64-blt integer zero. ThJs can
be diagrammed as:

+----.--------.------+------+
: PVA (object) l undef: +----_. __ ._--_._----_._+--_._--+ - - -

+--.-.-------~.--.-..... - -~-.--.... -....... ---.+
• • o • •

Simple reference parameters conslstlng soJely of a PYA plus a £trlng
descriptor aTe placed directly in the first part of the parameter
.1 s t entry with the P V AI eft a I I g n e Q In a .. or d , f 0 • Jo .. e c1 i m m e d J ate I y
by the two byte long string descriptor. The value of the Nerd In
the associated second paTt (If an e~tenslon Is required) must be the
64-bjt integer zero. Thjs can be diagrammed as:

+-.... -----~------.. - -- +--... _-.+
: PVA (obJect) : length:
+------------------+------+

+ ... _ .. __ ._ ... _.-,.-.. .-_._ _ _--... -- - +
1 • c
+-------------------------+

5.2.5.2.5 GENERAL fORMAT EXTENDED REFERENCE PARAMETERS

Extended reference parameters require that the non-str'ng descriptor
be passed indirectly using the paremeter list extension, regardless

:
:
I

1
I
I •

CYSER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS

5-14

86/02/04

5.2.3.2.5 GiNfRAl FDRMAT EXTENDED REfERENCE PARAMETERS

of the size of that descriptor. F~eld 13 of the flag word prEcedlng
the parameter list must have been set to one. The fl,st part of the
parameter Jist entry w'" contain the PYA of the object re~erenced,
left aligned. If the reference includes 8 string descriptor then
that descriptor is placed tn the 16 bits immedJatety fo11owing the
PYA, otherwIse those 16 bits are unused and undefined. The
parameter list extension for thIs entry w114 contain the PVA of a
location (~h1ch must be on a word boundary) In memory where the
descriptor is located. The PVA In tbe parameter list extensIon Is
teft aligned I~ a ~ord ~Ith the Tightmost 16 bits being unused and
undefined. This can be dia~rammed as one of:

+--.... - _ -- ----... - ... ---~-.. +------.-... +
: PVA Cob Ject) : undef: : PVA (descriptor) : under:
+------------------+------+ - - -

+--.. -.-..------.--~--~ ... ---+-... .-.--- ... +
: PVA (descriptor) : undef:

- - - +--~--.... ------........ --.-. .-. ---+-.... --... --+
I
I

5.2.5.2.6 GENERAL FORMAT SIMPLE SIT REfERENCE PARAMETERS I

Slmpje bit reference parameters are passed as a PVA plus 8 bit string
descriptor plus a bit string offset. The PVA and bit string desc~Jptor
are p'aced directly In the first part of the paramete~ list entry
with the PVA lett aligned In a word, folJowed Immediatel, by the
two-byte long bit string descriptor. The value of the word 1n the
associated second part (an extension Is atways required) consists of
a left alIgned 4E-blt Integer zero, folloNed by the two-byte long
bit :strlng offset. This can be diagr.8mmed as: :

+-------_._-----_._._-+------+ .. ---_._-----_. __ ._----+ ------+
: PYA (object) :Iength: : 0 :offset:
+._.----.---.--- -_ .. _---_._+--- -_._+

5.2.5.2.7 GENERAL fORMAT EXTENDED BIT REFERENCE PARAMETERS

• I

:
:
:
:
1 ,
:
:

Fxtenoed bltreferenee parameters require that the non-strIng descriptor.
be passed IndJrectly usIng the parameter 11st e_tension, regardless of :
the size of that descriptor. Fjeld f3 of the fJag word preceding the
parameter list must have been set to one. The fIrst p'rt of the
parameter tlst entry wJ11 contain the PVA of the object refetenced,
teft alIgned, with a bit string descriptor placed tn the 16 bits
Immedlate1y follo_lng the PYA. The parameter list extensIon for this
entry Hil. contain the PVA of a location (whIch must be on 8 ~ord
boundary) In memory where the descrrlptor Is Jocated. The PVA In this
parameter list extension Is left aligned in e word, followed by the

• t

:
• •
I
I
• •

5-15
CYBER 180 System Interface Standard

86/02/0"

5.0 COMPILER ANO ASSEMBLY CODE CONVENTIONS
5.2.5.2.7 GENERAL FORMAT EXTENDED SIT REFERENCE PARAMETERS

two-byte long bit string of~set. This can be diagrammed as:

+------------.-------+-------+
~ PVA (object) :Iength: : PVA (descriptor) :offset:
+ ------------ ---------+ -------+

5.2.5.2.8 GENERAL fORMAT STRING DESCRIPTORS

A string descriptor Is a 16-blt unsigned Integer (0 •• 65535)
indicating the length of a string In bytes. When present, Jt Is
placed in the primary portion of the parameter list immediately
following (and In the same word as) the PVA of the object being
described. A strIng descriptor is required for atl reference
parameters to objects of type character, sUbrange of character,
string, substring, or array over 8 component type of character,
subrange of character, strin:g, or substring. Th,e str;Jng descriptor
for an array Indicates the length in bytes of a single e.ement.

S.2.5.2.9 GENERAL FORMAT eIT STRING DESCRIPTORS

A bit string descriptor is a 16-blt unsigned Integer (00 •• 6553'.
Indicating the tength of a bit string 1n bytes. When present, It Is
placed In the prJmary portIon of the parameter list Jmmedlately
following (and In the same word as) the PVA of the object being
descrlbed. A bit string descriptor is r.qulred for all rererence
parameters to the objects of type bit, bit string, bit substring, or
array over a component type of blt, bIt st~lng, bit substring. The
bit string descriptor for an array Jndl~ates tbe jength In bits of
a single element.

5.2.5.2.10 GENERAL FORMAT 8IT STRING OFfSET

A bit st~Jng offset Is a 16-bit unsigned Integer with a yalue in the
subrange C •• 7. Indicating the offset of a bit string, In bits, trom a
byte address. Whe~ present, lt Is placed right aligned In the extendeA
portion of the perameter Jist. A bit string offset Is requIred for 81J
parameters to objects of type bit, bit strlno, bit substring, or array
over a component type of bit, bit -string, bit substring. The bIt
st~jng offset for anarray IndIcates the offset of the first element
of the array from a byte address.

5.2.5.2.11 GENERAL fORMAl ARRAY DESCRIPTORS

The Jayout of an array descriptor must adhere to the pseudo-CYBIl
description given be4ow. Note that "extent" refers to the number of

• • • •
I
J
I
I
: ..
t

• •

:
• • :
I
• •
I • .. •
I
• ..
• • : .. • • • :
:
: .. •
I
I
• • :
• • • • • • • • :
• • :
I

CVBER 180 System Interface Standard
5-16

86/02.IOIt
.-.--.. ----.......... --..-.- _.----.-.--. __ .. .--...... .-.---. .----.~----.--.. --.-.---.-.--.-----.... --~ ---.--... ~ .. -----..... .-.
5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.5.2.11 GENERAL FORMAT ARRAY DESCRIPTORS

elements In a particular dimension, flstrlde" refers to the dlst.nce
(measu~ed In terms of array elements) between two consecutive
elements of the same djmensjon, and "rank" refers to the number of
dimensions In the array. Array descriptors must be aligned on a
word boundary.

arT ay_des cr i pto r·- array {l •• rank J of r ecor d
extent: Integer,
str ide: integer.'
lower_bound; Integer,

recendj

For languages such as CYBll and FORTRAN 77, arraYs are represented
and stored as contlguoys objects; strIde Is a function solely of the
extents. However tbe introduction of arrs, sections In CDC FORTRAN
necessitates that an explicit stride be passed in the parameter list
since sections need not be contiguous in memory; they may have a
non-unity Incre.ent In each dImension of the array, hhlch must be
Inctuded -.in the calculation of the stride. The stride value for
multi-dimensional arrays Is catculated differentl, depending upon
whether arrays are stored cotumnwJse or rowwlse. For one
dimensional arr 8,S the formu I as are equIvalent. Note that one
dimensional c~ntlguous ar~8ys baye & strJde of one.

for arraYs _hlch are stored columnwJse in memory (I.e. Mlth the
leftmost subscript varying fastest) the following formula Is used:

strlde(1) - tncrtl) * :
:

1-1

J·=O

EIJ)

wbere strlde(l)Is the stride In the J-th dimension, iner(j) Is
Increment of the j-th dimensIon, and EtO) is defined to be one.
contIguous arrays, E(J) is the extent of the J-th d).enslon.
array sections, EtJ) Is the extent of the J-th dimension of
contiguous array of which this Is 8 sectJon. for example If we
the FORTRAN dectaratlon:

DIMiNSION C(15,30)

the
For
for
the

have

then for C WE have: Incr(l):l, fncr(Z)=l, extenttl):l5,
extent(Z)=30, E(1):15, EtZ}:30, strlde{!)=l, and strlde(Zl=15. for
the section:

C (1:': 10:: 2, 12:22: 3)
we have: Incr(1)=2, Incr(Z)=3, extent(1)=5.' extent(Z}=4, E(l)=l.5,

I
• •
I
:

CVBER 180 System Interface Standard

5.0 COM.PIlER AND A'SSEMBlY CODE CONVENTIONS
5.2.5.2.11.1 Str'de

E(Z) ;:; 30,s t rid e (1);:; 2* 1 :: 2, and s t r J de (2) ;:: 3 * 1 * 15:: 45 •

5-17

86/02/04

For arrays which are stored rowMlse in memory (I.e. with the
rightmost subscript varying fastest) the foJjowlng formula is used:

t
"

r+1

strlde(J) : Inertj) * : : E(J)
I t
t I

J=i+l

where str,ideIJ) is the strAde 1n the I-til dimension., incr'l) Is the
Increment of the J-th dimension, r is the rank of the array, and
E(r+l) is defined to be one. For contiguous arrays, E(J) Is the
extent of the J-th dimension. For array sections, E(J) Is the
extent of the J-th dimensIon of the contiguous array of which this
Is a section. For exemple Jr We have the FORTRAN declaration:

ROWWISE R(15,30)
then for R 'Me have: r=2, lncr(1)=1,lncr(Z)-1,e.xtentCl)=15,
extent(Z)=30, E(1)=15, E(2,=30, strJde(1)=30, and strlde{Z)=l. for
the s ectl on,:

R (1: 10: 2, 12: 22: 3)
we have :r: 2, In cr (1) :: 2,1 ncr (2) = 3, ex ten t(l) =5, extent (2) =4,
E(l)=lS, E(Z)=30, stride(1)=2*1*30=60, and strlde(Z)=3*1=3.

5.2.6 DATA REPRESENTATION

The fo'jo~Jng subsectJons define the representatJons of
data whIch must be used Jf an item of a particular type Is
to be passed between languages. languages may have types
beyond these but data of those types cannot be passed to
other languages. A language Is net forced to provide for
alt of the following data types.

An Inte~er may occuPY 1 to 8 bytes of stofaoe. For
languages wlth sIze allocations dependent on the subrenge
of Integers specified, the amount of storage allocated
must be the minimum number of blts needed to bold t~e
specified range rounded up to the next full byte.
Subranges that Include negative numbers must use the
leftmost bit of the field as the sIgn bit. Negative
values are represented 8S negative two·s complement
quantities. S~branges of only positive numbers wl.t not
provide a s19n bJ t. The range of signed Integers Is
-2**63 < i < 2**63-1. The fange of unsJgned jntegers 15 0

CYBER 180 System Interface Standard

5.0 COMPILER AND ASSE"BlY CODE CONVENTIONS
5.2.6.1 Integer

< i< 2**63-1.

Several languages have an enumerated type called
ordinals. These are mapped onto the non-negative
InteDers. Allocation rules are the same as for unsigned
Integers. If ordinals are passed to a language without
ordinals they m~st be treated as Integer yalues and
vlce-yersa.

5-18

86/02/01t

Two sizes of Integers correspond to esslty manipulated
hardware formats and are Jdenttfled as separate subtypes
of integer to provide for languages with only options for
half or fuJI kord signed lnteger values.

5.2.6.1.1 4 BYTe INTEGER
A haJf lnteger ~iJI be represented by a 4 byte (32 bit)
quantity in t~e CYBER 180 Integer format I.e., a sjgned
two's complement 32-blt quantity, in which tbe lettmost
bIt is the sign bIt. The range of 4 byte lntegers Is
-2**31 < J < 2**31-1.

5.2.6.1.2 8 BYTE INTEGER
Af u j I Integer .. J., b er e pr 'e s en ted by an 8 byte (6 It bit)
quantity In the CYBER 180 Integer format •• e., a signed
two's complement b4-btt quantity, In whJch the leftmost
bl~ Is the sign bit. The range of 8 byte integers Is
-2**63 < I < 2**63-1.

Fixed length character data will be stored as a sequence
of consecutIve 8 bit bytes. The character set wIll be
ASC I I.

'.2.6.3 RaiL

Rea4 data wltl be represented by an 8 byte (64 bIt)
Quantlt) in the CYBER sln~le precIsion floating point
Parmat. AI. real data hili be normalIzed.

Double precision data wltl be represented by 8 16 b,te
(128 bit) quantJty 1n the CYBER 180 double precision
floating point format. It must be normalIzed. The P~A In
tha parameter Itst points to the first byte of the double
pr'eclslon datum. The second (lower precision half) Is

CYSER ISO SYstem Interface Standard

5.0 COMPILER AND AISSEMBl Y CODE CONVENT.IONS
5.2.6.4 Double Precision

located at PVA+B bytes. The sign and exponent fields of
tbe IOMer part are considered to be correct at any given
time. Input and constant assignment routines are
responsible for InsurIng corrct signs and exponents upon
InltJal construction of the number. Double precision
operations wil' maintain this format.

:; • 2 .6. 5 'cQmallll

5-1q

86/02/01,

Complex data wlf. occupy 16 bytes (lZ8 bits) In memory and
Mill consist of two reals, where the first reat represents
tbe "realfl part and the second real represents the
"Imaginary" part of the complex quantity. The PYA in the
parameter 11st points to the first byte of the complex
datum (the real part). The Imaginary part is located at
PVA +8 bytes.

5.2.6.6 B.QQ1iJQ

Boolean data occupies a single byte. A value of one
Indicates true snd a value of zerc indicates false.

5.2.6.7 eQiotlt

A pointer is a PYA. It occupJes six bytes. Pointers may
Identify data of any of the other data types. The nil
pointer Is defined as a PVA with a ring fteld value of HFU

hexadecimal, segment field value ftfFF" hexadecimal, and
address fie1d vatue "80000000· hexadecimal.

5.2.7 DATA ALIGNMENT AND PACKING

Tbe purpose of the common calling sequence is to provide
the abJllty to pass date between dIverse 1anguaQes. The
Interlanguage cal I Is assumed to represent a sma11
percentage of ell caljs and generalty be used by
knowJ~dgeable users. Therefore, for performance in t~e
word oriented languages (fORTRAN, j~ particular) a
'east-common-~enomJnator alignment of word Is used.

Data types Mh1ch require 8 bytes to store are required to
be word a.tgne~ to Improve performance. This permits the
use of the load/store word Instructions whIch are faster
than load/store of 8 bytes. The space penalty for Mord 8. jgnlng slmpl~ variables Is felt to be small especially
slnca It costs a maximum of 7 bytes p~r procedure If a11
the word allgned items are stored contiguously.

CYBER 180 System Interface Standard

5.0 COMPILER AND ASSEM8lY CODE CONVENTIONS
5.2.7.1 VarIables

Variables may be of any of the above data types. T~e
el) gnment of a parti cui I'r type must be 85folloW5:

Oata Type

1-7 8)te .Integer
8 Byte lnte,er
Ch ar act ar cstr Ing)
Real
Doub1 e Pr eels ,ion
Complex
Boofean
Po J nter

Alignment

Byte
Word
Byte
Word
Word
Word
Byte
Byte

Structures must begin word aligned.

At ignment of data to be passed between languages In
structures must be as folJows:

Data Type

1-7 B)t a In te ger
8 Byte Integer
Cheracter(Strlng)
Real
OoublePrecision
Complex
Boolean
Pointer

A II gnment

Byte
Word
Byte
Word
Word
Word
Byte
Byte

5-20

86/02/04

If a byte aligned item is foltowed bY a word aligned Item,
up to seven bytes may be skipped (and left unused) to
re~aln Mord at Ignment. If 8 byte item follows a byte
item, they may be in consecutive bytes.

5.2.7.3 AtIll.i

5.2.1.3.1 ARRAYS OF VARIABLES
The arrays represent 8 collection of data items of one
uniform type. Arrays must be word aligned If the data
type the) contain is word altgned. Unless requJred by an
external standard att languages should store arrays with
the rightmost subscript varying fastest. FORTRAN, for
example, Is constralned by ANSI standards to store arrays
with the leftmost subscript varying fastest. If a user

CYSER 180 System Interface Standard

5.0 COM P ItER AND A SSEMBl Y CODE CONVENTIONS
5.2.7.3.1 ARRAYS Of VARIABLES

5-21

86/02/04

passes a muJtldimensJona1 array between 'anguages Mlth
different stora~e orders, At is the user's responsJbility
to handle thls. Arrsys must be byte aflgned If all of the
constltuent elements are byte aligned. The para.eter '1st
PYA IdentIfIes the f41st a.ement of the array. SubseQuent
elements must be contiguous andlnascendJng storage
address sequence.

5.2.7.3.2 ARRAYS Uf STRUCTURES
If any element of the structure Is requlred to be Nord
aJ i~ned, each array element must start on a word boundary.

5.2.7.3.3 COMMON BLOCKS
Items ~JthJn common blocks must be aligned consistently to
achieve interlanguaQe communication. Common blocks Mill
begin Mord alJgned. Alignment of data within the com.on
b';ock wi It be the same 8S for structu.re.s.

5.2.8 LANGUAGE INTERCHANGE TABLE

+
+

+
+

The 'oIJo~ing table shows the possible parameter types
that may be used between languages. If a letter appears
at an Intersection in t~e tabJe, that type may be passed.

Types are encoded as fo Itow $:

J -= 1-3, 5-7 Byte Inte~er 0 -= ordinal
H -= 4 Byte In tege·r I -= 8 Byte Integer
C - Character (string) R -= Real
0 .: Double Pr ec I s Ion Z -= Comp I ex
B = Boolean P -= Po Inter
A .: Array S = structure
A J I -= a II t.YP es of the language

ca I I ee

CYBIl PASC Al fORTRAN COBOL Pl/I BASIC

c a"1 I e·r +---- --- ------ -. -- -..----- -- .------.-----... ------..... -------... -----.--........ ..-.-.. .-.. ~.-------..... - ... -
• • • AI I HIJCBPSAOR ICARD HIC8SARO HICl:lPSAR CR * CYS:[l
• •

PASCAL • HI JCBfSAQR All leA t-lICBSA HIe BPSA C • ,
•

FORTRAN Ie ARO leA Atl ICROA ICRDZA CRA

COBOL

P'llt

SA S Ie

CYBER 180 System Interface Standard
5-22

86102/04

'5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.8 LANGUAGE INTERCHANGE TABLE ------.-... - ----..... -----.-------.... --...... .-.------.-.... .-.~.-.....---............. ---- --.-~ --....................... -.---~-- ...

• • • ,
I • • • • • • J

HICBSARO HICeS A ICRDA AI I HIC.BRDSA

HICSPSAR HI cap SA ICRDZA HICBROSA A II

CR C eRA eRA eRA

Notes:

1) PlJI may not have a doubl e pree Is I on data typ.e due to
possible high overhead In supportlnQ the maximum
precision rules. This wi" be determined Jater.

Z) If arrays are perm I tted between two I anguages.l the

eRA

eRA

All

type of the array Is restricted to the types of
variables that are permitted between the tWG languages.

3) ArTayS of characters in BASIC cannot be passed to
other languages, and vJce versa.

The language Interchange table defInes the parameter types
that can be used between pairs of 18n~Uages. In many
cases restrictions exist because a particular language
lacks a data type. for example, BASIC lacks Inte~er type
since It stores them 8S reals. In many Instances the type
mismatches could be mapped by Interface code between the
procedure calls. The following mechanism Is proposed to
support such mappIng when and if It becomes a requjrement.

In order to map parameters. an Intercept routine must gain
control from the catler, map thIngs and pass control to
the cat lee. The reverse may be necessary upon return.
The user should not have to be aMare of the actlvitles of
the 1nterface routine or lnvoke It directly. To achieve
this, the .oadet must have a mec~anlsm for detecting the
need for an Interface routine and jnsertJng same in the
ca'J/return Path. The in£ert·ion mechanism can be similar
to the one used for Analyze Program Dynamics (APO).
Detection of the need for inserting the Interface routine
can be done with load time argument checking mechanJsms.

For each palr of languages (X and Yl Mhere Interface
mappio g I s des I red, loader ta bias def i n·1 ng re I evant
lnformation about actual and formal parameters must be
defined. A routine (activated during joadlng by the
loader Ita cal. from X to Y Is foundl wll' compare the
actual and 'form,a' parameter lists to determl ne It mapping
is required. If not, the loader slmpJy JInks as usual.

CYBER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.8.1 Extended Interchange

Otherwise, 8 X to Y mapping routine from a lJbrary IS
Inserted into the linkage by the loader.

5·-23

86/02/04

The X to Y mapping routine receives the actual and format
parameter IJst lnformatJon from the loader.

The caller information is obtained by giving the P address
or estJer to a loader service routine Mhlch returns a PVA
If the actual parameter 'lst Information for the current
calJ. The calfee Information Is obtained by giving the
code base pointer of ca. lee to a loader service routine.

The mapptng routtne uses this Information to transfor. the
parameter Jist and/or data representatIons before celjing
the callee. When the callee returns, tbe mapper will
receive control to do any mapping on return parameters.

5.2.9 REGISTER CALL fUNCTiONS

In many languages tbere exist commona~ used sets of
functions (for example, mathematical functions) for which
It is moreefficl ant (though less genera')to pass ;&

limited set of paramete, values via registers. Up to
eight (64 bJt ysjues) can be passed in registers Xl - Xq.
The first parameter value would be in X2, the second In
X3, etc. If a double word value (say, doubte precisJon)
Is required, It uses two consecutive registers. The
specific regIster used for a routine may be Inferred from
the type of t~e parameter. for example, SQRTtX) wIll use
X2 while OSQRT(O) wi •• use X2 and X3. These rules apply
to the fol1o~ing data types as parameters:

1-7 byte Integers
8 byte Integers
Real
Double PrecisIon
Complex

Return registers for register call functions (see '.2.3)
must not be saved In catling them.

No rules are specIfied for character, boolean or pointer
data pending Jdentlflcation of functions using these
argument types that are of general utIlity.

The re~lster celJ entry point Is not bound by the
conventions of the common calling sequence.

AI I register call functions Intended for generaJ use .ust

CYSER 180 System Interface Standard
5-24

86/02104
--.------ -.-.......... .---.... --.--.... -.... ----.--.-.-... -...... -~----~--.-.----------~~ --~~ -----..... -~..---
5.0 COM'IlER AND AiSSEMBl Y CODe CONVENTIONS
~.2.q REGISTER CAll FUNCTIONS

al~o offer an entry point that accepts tbe common ceiling
sequence (5.2 aboye) and referenceable by 8 CALLSEG
Ins tru ct IOn.

Interproduct file sharing between executing subsystems
WI.t be addressed. It will specify under what conditions
a product wIll be able to perform 110 on a flte declared
by anotber product. It wJll also address clos4ng and
flushing of files at Job step termination when
InterlangU8Qe files are being used.

Pu r pose

In order that user object code frem different compilers
can co-exist In one Job step while usIng a limited number
of segments, certain conventions must be observed.

Each use~ will have a limited number of segments. This
means that object code from different compliers must be
able to share ~ertaJn data segments.

5.4.1 STANDARD STACK fRAME

This section descrJbes the standard stack frame which will
be set up In conjunction wJth the CAll Instruction. The
purpose of standardizing tbe stack frame la,out 15 to
provide common traceback and debugging Interfaces. At the
same time, allo~8nce Is made for 8 minimum frame for
languages such .$ batch mode fORTRAN, wJt~ extensions for
the complexity of languages such as Pl/I.

A stack frame consists of two areas:

1. The save area.
2. The "envlronmenta'" area.

The save area belongs to the cal ler, the "environmenta'"
area belongs to the cal tee and both exist In the
appropriate rings.

CYBER 180 System Interface Standard

5.0 COMPILER AND ASSEMBL Y CODE CONVENTIONS
5.4.1.1 Traceback

Traceback 1s consjdered to be tbe lowest level of
debugging and as such requJres the support of both the
loader and the complIers/assembler. MinJmum traceback
Information will always be produced to facilitate some
tracing from within the system.

5-25

86/02/04

The compilers/assembler wAIA produce traceback tables ~n
the object module which correlate object-code address of
entry points and catls with source-code procedure names
and line numbers. Tbe loader Mit. maintain tbe relation
of these obJect code addresses. When traceback Is
required, these traceback tables, plus the stack, wIll be
Interpreted to give the source-code names and line numbers
associated wit~ the PVAs obtained during traceback. In
fuJI traceback mode entries will exist for each lIne or
SOdrce statement; In minImum traceback mode onty entry
points and cal Is are mon1tored.

(See Glossary for definitions.)

It Is not tbe intention of tbls standard to dictate
whether comp.jed code wltl reference globa'S via the
statIc chain or a display. Either Is permitted and must
be maintained by the software. Note: thIs only applies to
calls to a nested procedure and hence Is Intra1an~u.ge.

5.4.2 CHAINS Of ON-CONDITION PROCESSORS

Software conventions 'or a standard on-condition processor
chain format are required to ensure that on-conditions can
be processed correctly.

The on-conditIon fJag toeF) In tbe save area Is used to
Indicate that the stack frame has associated on-conditIon
processors. The first el~ht bytes of the stack frame
(pointed to by the current stack frame (CSF) of the save
area) are reserved for the head of the on-condition
processor chain. Atl ObJdct code genefators must
accommodate the head of chain reservation. It the OCF is
set In the save area, the eight bytes pointed to by CSf Is
the head of the on-conditIon processor chaIn. If t*e DCf
Is not set, the contents of the eight bytes Is undeflned.

CVBER 180 System Interface Standard

5.0 COMPILER AND ~SSEM8lY CODe CONVENTIONS
5.4.3 DYNAMIC NON-SlACK STORAGE

5.4.3 DYNAMIC NON-SlACK STORAGE

5-26

86/02/04

NOS/VE provides the capability of creating neM segments
during product executlon. Since this Jncreases the number 0' segments In active use and potent1all, causes a
performance degradation, its use should be limited to
situations where the stternatjves are less satisfactory.

The fundamental suppo~t for fixed-posItion dynamic storage
allocatJoo Is provided by the CYBll ALLOCATE statement
with no IN opt Ion.

Products coded in CYBIl and needing fIxed-position dYnamic
storage should use the ALLOCATE statement directly.
Pr~ducts not co~ed in CYBIl and needJng fixed-position
dynamic storage may either:

1) include CYBIl subroutines containIng the appropriate
ALLOCATE statements, or

2) use a set of common routines which will provide a eM"
compatible Interface to the ALLOCATE statement.

Variable-position dynamic storage Is not current.y planned
for support.

This section wlll define modules whlch wllJ be available '0 r gener al use.

Ma t h R 0 uti n e s

For a detailed account of the math routInes to be provided
sse C180 Common Modules M4th Librsry (CMML) ERS with DeS
IOQ 10 52929. The routines will offer both a reglste~
calling sequence and t~e common calling sequence. Entry
point names witl meet the specifications of section 4.1.1.

Numeric Conversion Routines

CYBER 180 System Interface Standard
5-27

86/02/04
,-------_ -----_ ----.---_ --... ---------.-.. ---.-~.-.--................ ----.-....-.--... -... --.. ~--...... ~-.-
5.0 COM PIlER AND AS SE MBl Y CODE CONVENTIONS
5.5 COMMON SUPPORT MODULES

TO

+
+

+
+

Integer

Rea.

l"ongreal

ASCII

ASCII
(nondec.)

Unpacked
decimal
tr a ,IIi ng
sign
combined
bolJerith

+

Number 1 70

Routines will be provided for alA products (complle~ Or
runtlme systems) to perform numeric input and output
conversion. T~js will ensure that the same numeric
representation matches the same Internat bIt value by all
processors. See also C180 common modules math libra"
(CMMl) ERS wIth DeS log 10 $2929, and CHMl
Assembly-language Support System ERS with DeS log ID S3410.

I R l A A 80P* Unpacked
n e 0 S S tr a III ng
t 8 n C C sign
e I 9 :1 I combi na-
g r I I tion
e e (nondec.) hollerith
r a

+ I

• ,
1 X X 1

• ,
• X{l) • t
I

• X{l) • • • • X XIl} X{l) X (2) X 1 ,
•

X

X ,
1 ,

X •
" •
J ,
• • • • • • • • • X X •

Number-
170

+--
*Inc'udes aij BOP types except: alphanumeric

(1) there are additional routines for handJlng reel and longfeat conversions
to and fr om ascii J n pieCEmeal fashion

(21 translation, move, etc.

CyaER 180 System Interface Standard
;-28

86/02/04

s.o COMPILER AND ASSEMBLY CODE CONVENTIONS
5.5 COMMON SUPPORT MODULES

utilities

A set of common utilities wllJ be provided to carry out
the following functions:

•

•

•

Diaonostic Handling - tbe formatting of dJaQnostJc
Ilnes of output and tbe construction of the diagnostic
listings .•

Source listing formatting - the formatting of the
source listing IncJudlng output of the source Jines to
a print file.

Storage map/Attribute/Cross Reference tlstlngs - the
formatting of this listing end output of Its contents
to 8 P'f in t f II e.

Compiler Usages StatIstics - tbe generation of usage
statistics ~ess8ges.

CYBER 180 System Interface Standard
6-1

86/02/04

6.0 GLOSSARY OF TERMS

In writing the System Interface Standard It became
necessary to clerlfy the meaning of certain words. This
glossary contaAns those words which required
clarification. The list Mil. be extended.

-8- adjective
-n- noun
-v-ve;rb

Bt nary

Boolean

FO RTRAN
So o. asn

Oia gnost Jc

Dlsp'ay

Error Message

-8- Of base 2. Not to be used Mlthout
Qualification to mean the object code
output from 8 compiler. Note object
code files are one of many different
form~ of binary files.

-n- Data type which can hold the values
"true" or "false".

-0- Boolean data but reQuired to occupy a
full computer word.

-n- Generally a part of a larger entity,
such as listable output, as opposed
to an error message, which Is
generally a summary of a command.
Diagnostics are generally Jssued by 8
number of the product set, suc~ as a
compiler. See aJso - error message.
Example: A compiler may provide a
single error message teJling bON many
errors occurred during compilation
and ~roduce a diagnostic for each
compilation error.

-n- A mechanism for accessing glob.1
vartaoles of 8 program usIng a table
of stack frame pointers; one pointer
for each accessible scope and one
table for each active scope.

-n- Generally 8 summary of a command, as
opposed to a diagnostic, which is
generally a part of a Jarger entity,
such as listable output. The error
message 1$ generall, Jssued by the
operating system or by a product via

eYBER 180 System Interface Standard
6-2

86/02/04

6.0 GLOSSARY OF TERMS

the operating system. See also -
diagnostic for an example.

Invoke -Y- Applies onl, to spIrits, wJtches,
etc. Procedur esare called.

Job step -0- A Job step is the Nork done as a
result of a single command in the Job
deck/fl'e. Job steps execute
sequentiatl, within 8 Job.

load Module -n- Object informatIon produced by object
library generator and Input to the
loader or back Into object IAbrary
generator. load modules are designed
to facitltate processing by the
, oader.

Object ModuJe -n- An obJect module 1$ a unit containing
code and/or data definition that Is
produced by compliers.

Object Program -n- An object program Is a set ot object
modules organized to perform some
specific function (e.g., compi'e
COBOL statements). An object program
Is prepared for execution by the
loader.

process(lng) -v- Computelng). Unre.strlcted to mean
either hard~are or software.

Pr'ocessor -n- Restricted to hardware CPU or PPU.

Product

Product Set

record

Standard

May be used for soft.are If
sufficiently qualJfled, e.g. language
processor.

-n- Any part of the standard softMare
which Is covered by the System
Inerlace Standard.

-n- Th~t part of the System which Is not
part of the Operating System.

-n- A unit of data on a flle. e.g. 8
card Image,IJne image. Not to be
used without qualification if weaning
8 "CYBIl" record or "Sel" record.

-n- Plural-Standard not Standards ~hen

CYBER 180 System Interface Standard
6-3

86/02/04

6.0 GLOSSARY OF TERMS

'Static chat n

System

Task

used 1n the sense of the System
Interface standard.

-n- A mechanism for accessing g,oba'
variables of 8 prOgram using links
through the stack frames.

-n- All products (q.v.) operating 8S a
~hole - to be distinguished from
Operating System.

-n- A task is an Instance of execution of
an object program. Multiple tasks
can execute wlthln a slngle Job
step. Each task has its own address
space (set of memory segments).
Tasks may be Initiated either
synchronously or asynchronously to
the initiating task.

CVBER 180 System Interface Standard

Table of contents

1.0 GENERAL •••••••••••••••••••••• ••
1.1 PREFACE TO CURRENT EDITION (SEE COVER SHEET FOR DATE)
1.2 CHARTER •••••••••••••••••••••• • •

1.2.1
1.2.2
1.2.3
1.2.4

PUR? O'S E •••••••
SCOPE •• ••• • • •
GOALS ••••••••
REVIEWING AND UPDATING

• • • • • • • • •
• ". . . • • • • •
• • • • • • • • •
THIS DOCUMENT • •

• • •
• • • • . ..
• • • • • •
". · ,. ,. ,. .

2.0 INPUT ••••• ,. ,. •• ,. •••••••••••••••
2.1 SYSTEM COMMAND LANGUAGE ••••••••••••••••
2.2 PRODUCT CAll COt1MANOS •• •••••••••••• ••

2.2.1 APPLICABILITY •••••••••••••••••••
2.2.2 TERMINOLOGy ••••••••••••••••••••
2.2.3 SYNTAX •••••••••••••••••••••••
2.2.4 PARAMETER •••••••••••••••••••••

2.2.4.1 PositIonal Ordering of Product Set Parameters •
2.2.4.2 Types of Per. meters ••••••••••••••
2.2.4.3 Parameter Names and DescrIptions ••••••••

2.3 SOURCE INPUT ••••• , •••••••••••••••••
2.3.1 SOURCE INPUT FILE ORGANIZATIOH •••••••••••
2.3.2 SOURCE STATEMENT fORMAT ••••••••••••••

2.3.2.1 Statement IdentifIer ••••••••••••••
2.3.2.2 Line Numbers ••••••••••••••••••
2.3.2.3 statement Body •••••••••• ,. ••••••
2.3.2.4 Blank Compression •••••••••••• _ ••
2.3.2.5 Empty Input fIle ••••••••••••••••
2.3.2.6 Nu11 Source line ConventJon ••••••••••

2.3.3 DISPOSITION OF INPUT FILE •••••••••••••
2 • 4 COMPILATION 01 R EC T I V t S • • • • • • • • • • • • •• • • •

2.4.1 PAGE EJECT •••••••••••••••••••••
2.4.2 SOURCE LISTING ••••••.••••••••• ,. •••
2.4.3 LINE SKIP •••••••••••••••••••••

2.4.3.1 LINE SPACING ••••••••••••••••••
2.4.4 TITLE LINES ••••••••••••••••••••
2 .4 .5 RANGE CHECK '..... • • • • •• • •• • • • •• •
2.4. 6 EXEC UTION TRACE ••••••••••••••••••
2.4.7 DeBUG STATEMENTS ••••••••••••••••••
2.4.8 SEQUENCE CHECK •••••••••••••••••••
2.4.9 OBJECT CODE lISTING ••••••••••••••••
2.4.10 STACKING COMPILATION DIRECTIVES ••••••••••

2.5 PRODUCT DIRECTIVES •••••••••••••••••••
2.5.1 STANDARD PARAMETERS
2.5.2 STANDARD COMMANDS •••••••••••••••••

3.0 OUTPUT ••••••••••••••••••••
3.1 RECOMMENDED NUMBER BASES •••••••••••

3.1.1 SITUATIONS AND RECOMMENDED NUMBER BASES •
3.2 lOGS •••••••••••••••••••••

3.2.1 ASCII lOGS ••••••••••••••••
3-2.1.1 System log ••••••••••••••

• •
• •
••
• •
• •
• •

• • •
• ••
• • •
• • •
• • •
• • •

1

86/02104

· . . '. .
• • • • •
•• • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
•••• •
• • • • •
•• • • •
• • • • •
• • • ••
• • • • •
•• • ••
• • • • •

·
• • • • • ·
• • • • • · . '. . .
• • • • • .. ". . . .
• • • ••
•• • • •
". · ".
• • • • •
• • • •• · .. '. .
• • • • •
• • • ••
• • • • • · '. . . .
• • • • •
• • • ••
• •• • •
• • • • •
• • • • • .. ". . .
· . '. . .
• • • • •
• • • • • · . . '. .
• •• • • · . . ". .

1-1
1-1
1-1
1-1
1-1
1-2
1-,2

2-1
2-.1
2-1
2-1
2-3
2-3
2-4
2-4
2-5
2-7

2-29
2-30
2-30
2-31
2-31
2-31
2-32
2-32
2-32
2-32
2-33
2-34
2-35
2-35
2-35
2-3'
2-36
2-36
2-36
2-31
2-37
2-31
2-38
2-38
2-39

3-1
3-1
3-1
3-2
3-2
3-3

CYBER 180 System Interface Standard
2

86/02/04

3.2.1.1.1 PURPOSE ••••••••••••••••••••••••
3.2.1.1.2 CONVENTIONS ••••••••••••••••••••••
3.2.1.2 Job log •••••••••••••••••••••••••
3.2.1.2.1 ¥URPOSE ••••••••••••••••••••••••
3.2.1.2.2 CONVENTIONS ••••••••••••••••••••••

3.2.2 BINARY lOGS •••••••••••••••••••••••••
3.2.2.1 Account Log •••••••••••••••••••••••
3.2.2.1.1 PURPOSE ••••••••••••••••••••••••
3.2.2.2 EngineerIng Log •••••••••••••••••••••
3.2.2.2.1 'URPOSE ••••••••••••••••••••••••
3.2.2.3 StatJstlc Log ••••••••••••••••••••••
3.2.2.3.1 PURPOSE ••••••••••••••••••••••••
3.2.2.4 Job Statlsttc log ••••••••••••••••••••
3.2.2.4.1 PURPOSE ••••••••••••••••••••••••
3.2.2.5 Binary Log Conventions ••••••••••••••••••

3.3 LISTABLE, OUTPUT •••••.••••••••••••••••••••
3.3.1 LISTING PAGE fORMATS ••••••••••••••• ' ••••••

3.3.1.1 Vertical Layout ' •••••••••••
3.3.1.2 Format Attributes ••••••••••••••••••••
3.3.1.2.1 CONTINUOUS OUTPUT fILE •••••••••••••••••
3.3.1.2.2 PAGINATED OUTPUT FIlE.S •••••••••••••••••
3.3.1.3 Standard Carriage ControJ Codes •••••••••••••
3.3.1.4 HorIzontal layout ••••••••••••••••••••
3.3. 1 .5 Stan d ar d Lis tin g He ad er •••••••••••••••.••
3.3.1.6 OTHER FORMATS ••••••••••••••••••••••

3.3.2 FORMATS •••••••••••••••••••••••••••
3.3.2.1 Wide format (132 columns) ••••••••••••••••
3.3.2.2 Narrow Format (80 Columns) ••••••••••••••••

3.3.3 SOURCE LISTING FORMATS ••••••••••••••••••••
3.3.3.1 Standard HeaCler contents •••••••••••••••••
3.3.3.2 TITLE lines •••••••••••••••••••••••
3.3.3.3 Wlde Format •••••••••••••••••••••••
3.3.3.4 Narrow Format ••••••••••••••••••••••

3 • 3 • 4 OBJECT CODE lISTING FORMAT • • • • • • • • • •• • • • • • • •
3.3.4.1 Standard Header Contents •••••••••••••••••
3.3.4.2 Standard Instruction Mnemonics ••••••••••••••

3.3.5 ATTRIBUTES lISTIN6 FORMAT ••••••••••••••••••
3.3.5.1 Standard Header Contents •••••••••••••••••
3.3.5.2 Wlde Fermat •••••••••••••••••••••••
3.3.5.3 Narrow format ••••••••••••••••••••••
3.3.5.4 Standard Field Values ••••••••••••••••••
3.3.5.4.1 ENTITY TYPES ••••••••••••••••••••••
3.3.5.4.2 BASIC ATTRIBUTES ••••••••••••••••••••
3.3.5.4.3 REfERENCE TYPES ••••••••••••••••••••

3.3.6 DIAGNOSTIC LISTING ••••••••••••••••••••••
3.3.6.1 Standard Heeder contents •••••••••••••••••
3.3.6.2 Standard Diagnostic listing format ••••••••••••
3.3.6.3 Standard Dlegnostic Summary Format ••••••••••••

3.3.7 COMPILATION OPTIONS •••••••••••••••••••••
3.4 ERRnR MESSAGES ••••••••••••••••••••••••••

3.4.1 CONDITION CODES, EMBEDDED PRODUCTS, AND MESSAGE GENERATION ••
3.4.1.1 Condition Codes •••••••••••••••••.••••
3.4.1.2 Embed~ed Products ••••••••••••••••••••

3-4
3-4
3-5
3-5
3-5
3-6
3-8
3-8
3-8
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9

3-10
3-10
3-11
3-11
3-11
3-12
3-13
3-13
3-15
3-15
3-16
3-18
3-18
3-i8
3-19
3-20
3-21
3-23
3-2ft
3-24
3-24
3-25
3-30
3-30
3-30
3-31
3-32
3-32
3-33
3-33
3-34
3-35
3-35
3-35
3-35
3-36

3
CVBER 180 System Interface Standa~d

86/02/04

3.4.1.3 Message generation ••••••••••••
3.4.2 MESSAGE TEXT ,. ••••••••••••••••

3.4.2.1 Message Form,sts •••••••••••••
3. 4. 2. 2 Err 0 r:S um mar I es t n logs ••• •• • • ••
3.4.2.3 Message Wording •••••••••••••

3.5 USAGE STATISTICS •••••••••••••••••
3 .;5 • 1 PUR? 0 S E OF STATISTICS •••• • • • • • • ••
3.15.2 STATISTICS fACILITY •••••••••••••
3.5.3 PRODUCT STATISTICS COLLECTED BY NOS/VE ••••
3.5.4 STATISTICS COLLECTED BY PRODUCTS •••••••

3.5.4.1 Input Unit Statistics ••••••••••
3.5.4.2 Internal StatistIcs •••••••••••

3.5.5 WHEN TO LOG STATISTICS ••••••••••••

•• a • •• • •

• • • • • • • •
• • • • • • •• .. '.
• • •• • • • •
'. a·e • e • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• •• • • • • •
• • • • • • • •

4.0 SYSTEMWIDE CONVENTIONS ••••••••••••••••••••••
4.1 NAMES, DATES AND TIMES ••••••••••••••••••••••

4.1.1 NAMING CONVENTIONS ••••••••••••••••••••••
4. 1. 1.1 Pr 0 du ctI de n t I fl er s •••••••••••••••••••
4 • 1. 1 • 2 0 the ,r G • 0 OS 'I den tl fie r s. • • • • • •• • • •• •• • • •
4.1.1.3 CJasses of N8~eS •••• e ••••••••••••••••

4.1.1.4 Special Characters •••••••••••• • •••••••
4 .1. 1.5 User G lob 8' N 8 m e s ••••••••••••••••••••
4.1.1.6 Deck Naming Guidelines ••••••••••••••••••
4.1.1.7 SCU GROUP NAMING GUIDELINES •••••••••••••••

4.1.2 RESERVED fILE NAMES •••••••••••••••••••••
4.1.3 DATE AND TIME ••••••••••••••• • ••••••••

4 • 2 IN TE R AC T I ViE PROCESSING • • • • • .• • • • • •• • • • • • • • • • •
4.2.1 INTERACTIVE OUTPUT ••••••••••••••••••••••

4.2.1.1 General •••••••••••••••••••••••••
4.2.1.2 Messages •••••••••••••••••••••••••
4.2.1.3 lJstlngs •••••••••••••••••••••••••

4.2.2 INTERACTIVE INPUT ••••••••••••••••••••••
4.2.2.1 General •••••••••••••••••••••••••
4.2.2.2 Input Diagnoses •••••••••••••••••••••

4.2.3 CONTROL •••••••••••••••••••••••••••
4.2.3.1 Connectivity •••••••••••••••••••••• •
4.2.3.2 Interrupts anC Connection Breaks •••••••••••••
4.2.3.3 Status ••••••••••••••••••••••••••
4.2.3.4 Help •••••••••••••••••••••••••••

4.2.4 PRODUCT SET RUN TIME COMMANDS ••••••••••••••••
4.2.4.1 PAUSE and STOP Literal •••••••••.•••••••••
4.2.4.2 ACCEPT fROM CONSOLE •••••••••••••••••••

4.3 INSTALLATION PARAMETERS •••••••••••••••••••••
4.3.1 GENERAL GUIDELINfS ••••••••••••••••••••••
4.3.2 lIST Of PRODUCT SET PARAMETERS ••••••••••••••••

4.4 ERROR PROCESSING •••••••••••••••••••• • ••••
4.4.1 STATUS VARIABLE •••••••••••••••••••••••
4.4.2 ERROR TERMINATION •••••••••••••••• ,. •••••
4.4.3 INTERACTIVE ERROR PROCESSING •••••••••••••••••

4.4.3.1 Error Messages ••••••••••••••••••••••
4.4.3.2 Diagnostics •••••••••••••••••••••••
4.4.3.3 Input DJagnosts ••••••••••••••••••• e •

4.4.4 BATCH ERROR PROC'ESSING ••••••••••••••••••••

3-36
3-36
3-37
3-37
3-38
3-39
3-40
3-40
3-41
3-43
3-43
3-44
3-41t

4-1
4-1
4-1
it-Z
4-4
4-4
4-;
4-5
4-5

it-lO
4-12
4-12
4-12
4-13
4-13
4-llt
4-15
4-16
4-16
4-17
4-17
4-17
4-18
4-19
4-20
4-20
4-21
4-21
4-21
4-23
4-23
4-23
4-23
4-24
4-25
't-25
4-26
4-26
4-2&

CYBER 180 System Interface Standard
It

86/02/04

4.4.4.1 Error Messages ••••••••••••••
4.4.4.2 Input Diagnosis •••••••••••••

4.4.~ TRA~SACTION ERROR PROCESSING •••••••••
4.4.6 RESTART •••••••••••••••••••

4.5 EffECTIVE USE Of C180 HARDWARE ••••••••••
4.5.1 HARDWARE OPERATION ••••••••••••••

4.5.1.1 Interlock Words •••••••••••••
4.5.1.2 Pre-serializatIon of Clear lock •••••
4.5.1.3 Register Reservations ••••••••••
4.5.1.4 Alignment of Tables and Words ••••••
4.5.1.4.1 64-81T WORD BOUNDARIES •••••••••
4.5.1.4.2 OTHER BOUNDARIES ••••••••••••

4.5.2 HARDWARE PERFORMANCE •••••••••••••
4.5.2.1 Locality of Reference ••••••••••
4.5.2.2 Register Allocation and Usage ••••••

4.~.3 SECURiTY •••••••••••••••••••
4.5.3.1 Procedure Parameters •••••••••••

4.6 SUPPORT Of EBC01C DATA ••••••••••••••
4.7 KEYPOINT USAGE ••••••••••••••••••

4.7.1 KEYPO INT elAS SES • • • • • • • • • • •• • • •
4.7.1.1 Operating System •••••••••••••
4.7.1.2 Product Set •••••••••••••••
4.7.1.3 Other ClasseS ••••••••••••••

4.7.2 KfYPOINT IDENTIFIERS •••••••••••••
4.7.2.1 Operating System •••••••••••••
4.7. 2.2P·roduct Set •••••••••••••••

4.7.3 KEYPOINT USE •••••••••••••••••

• •• •• • • •
• • • • • • ••
• • • • • • • •
• ••• • • • •
• •• • • • • •
• ••• • • • • · . :.
• • • • • • • •
••• • • • • •• •
• • • • • •• • ..:.
• • • • • • • •
• • • • • •• • •
• • • •• • • •
• • • • • • • •
• • • • • • • • ·• . . .• ·
• •• • • • • • •
• • • • • • • • ·
••• • • •• •
• • • • •••••
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS ••••••••••••••
5.1 USE Of LOADER fEATURES ••••••••••••••••••••••
S.2 INTERlANGUAGE CALLING SEQUeNCES •••••••••••••••••

5.2.1 CALLING SEQUENCE fORMATS •••••••••••••••••••
5.2.1.1 Kinds of Parameters •••••••••••••••••••
5.2.1.2 System format of the InterJanguage CallIng Sequence •••
5.2.1.3 General Format of the Interlanguage Calling Sequence •••
5.2.1.4 Summary of Format Differences ••••••••••••••
5.2.1.5 Calls Potentially from Another language •••••••••
i.2.1.6 Calls Potent41.ty to Another Language ••••••••••
5.2.1.6.1 SUPPORT fOR CAllS TO ANOTHER LANGUAGE •••••••••

5.2.2 CALL •••••••••••••••••••••••••••••
5.2.3 REGISTERSAVINGCC1NVENTIONS •••••••••••••••••

5.2.3.1 Informatlon Required Across Call •••••••••••••
5.2.4 FUNCTIONS ••••••••••••••••••••••••••
5.2.5 PARAMETER LIST ••••••••••••••••••••••••

5.2.5.1 System Format Parameter List •••••••••••••••
5.2.~.2 Genera. Format Parameter List ••••••••••••••
5.2.5.2.1 FLAG WORD PRECEDING PARAMETER LIST •••••••••••
5.2.5.2.2 GENERAL fORMAT SIMPLE VALUE PARAMETERS •••••••••
5.2.5.2.3 GENERAL FaR~AT EXTENDED VALUE PARAMETERS ••••••••
5.2.5.2.4 GENERAL fORMAT SIMPLE REfERENCE PARAMETERS •••••••
5.2.5.2.5 GENERAL FOR~AT EXTENDED REfERENCE PARAMETERS ••••••
S.2.5.l.b GENERAL FORMAT SIMPLE SIT REfERENCE PARAMETERS •••••
'.2.5.2.7 GENERAL FORMAT EXTENDED BIT REFERENCE PARAMETERS ••••

4-26
4-27
4-2.7
4-27
4-27
4-27
4-27
4-28
4-28
4-29
4-29
4-31
4-32
4-32
4-33
4-33
·4-33
It-31t
4-35
4-35
1t-37
4-37
4-37
4-37
4-37
4-40
4-41

5-1
5-1
5-3
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-8
5-9

5-10
5-10
5-11
5-11
5-12
5-12
5-13
5-13
5-1't
·S-llt

CYBER 180 System Interface Standard

5.2.5.2.8 GENERAL FORMAT STRING DESCRIPTORS •••
'.2.5.2.9 GENERAL FORMAT BIT STRING DESCRIPTORS •
5.2.5.2.10 GENERAL FORMAT BIT STRING OffSET •••
5.2.5.2.11 GENERAL fORMAT ARRAY DESCRIPTORS •••
5.2.5.2.11.1 Stride

5.2.6 DATA REPRESENTATION
5.2.6.1 Integer ••••••••••••••• ••
5.2.6.1.1 4 BYTE INTEGER •••••••••••••
5.2.6.1.2 8 BYTE INT~GER
5.2.6.2 Fixed Length Character (String) •••••
5.2.6.3 Real
5.2.6.4 Double Precision •••••••••••••
5.2.6.5 Complex ,. ...
5.2.6.6 Boolean
5.2.6.7 PoInter

5.2.7 DATA ALIGNMENT AND PACKING ••••••••••
5.2.7.1 Variables
5.2.7.2 Structures ••••••••••••••••
5.2.7.3 Arrays ••••••••••••••••••
5.2.7.3.1 ARRAYS Of VARIABLES ••••••••••
5.2.1.3.2 ARRAYS OF STRUCTURES ••••••••••
5.2.7.3.3 COMMON BLOCKS •••••••••••••

5.2.8 LANGUAGE INTERCHANGE TABLE ••••••••••
5.2.8.1 Extended Interchange • ,. •••••••••

5.2.9 REGISTER CALL fUNCTIONS
5.3 INTERPRODUCT FILE USAGE •••••••••••••
5.4 STORAGE MANAGEMENT ••••••••••••••••

5 • 4 • IS T AN 0 A R 0 S T A C Kf RAM f • • • • • • •• .• • • • •
5.4.1.1 Traceback ••••••••••••••••
5.4.1.2 Static ChaIn vs. Display ••••••••

5.4.2 CHAINS Of ON-CONDITION PROCESSORS ••••••
5.4.3 DYNAMIC NON-STACK STORAGE ••••••••••

5.4.3.1 Dynamic Segments •••••••••••••
5.4.3.2 fixed-Position Dynamic storage ••••••
5.4.3.3 Varlable-Positlon Oynamlc Storage ••••

5.5 COMMON SU'PORT MODULES ••••••••••••••

86/02/04

• • • • • • ••
• •• • •• • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
•• • • ••• • •
• • • • • • • •
• • • • • • • •
• • • • • • •• ·
•• • • • •• •
• • • • • • • •
• • • • • • • • ,. . .
• • • •• •• ••
• • • • • • • •
• • • • • • • •
•• •• • • • •
• • • • • • • • '. . .
• • • • • • • •
• •• • • • • • • · .. ,.
• • • • •• • •
• • • • • • • •
• • • • • • • •
• •• •• • • •
• • • •• • ••
• •• • ••• •
• • •• •• • • •
• • • • • • • •
• • • • • • • •
•• • • • • ••
• • • • • • • •
• • • • • • • •

6.0 GLOSSARY OF TERMS • • • • •• • • • • • •• • • •• • • • • • • • •

5-15
5-15
5-15
5-15
5-16
5-17
5-17
5-18
5-18
5-18
5-18
5-18
5-19
5-19
5-19
5-19
5-20
5·-20
5-20
5-20
5-21
.'-21
5-21
·5-22
5-23
5-24
5-Z4
5-ZIt
5-25
5-25
5-25
5-26
5-26
5-26
5-26
5-26

6-1

