CYBER 180 System Interface Standard

CYBER 180
System Interface Standard
by
Sunnyvale Product Design and Advanced Systems Design

Feb 3, 1986 {updated)

1
86702704

- e

i-1
CYBER 180 SyStem Interface Standard

86/02/04

I T T TR R L b D SR — —-——

1.0 GENERAL

- -

1.0 GENERAL

1.1 BREEACE.IO_CURRENI._ERITION.LSEE_COVER.SHEEI_EQR.DAIE)

Fior hardcopy of the SIS, do {SN4527125 in SVL» SN302 in ARH):
' acquires52196/un=dcs
ses.print s2196
For copy on 85" x 11" inch peper {in SVL)» add print pearameter fc=sp.
{You may have to walt untii evening for copy.)

For current status of pending SIS daps, see file SISDAPS/pwo0336 on SN452.
ADEC/BCCR epproved SIS deps Incorporated In this revision are:

$5036 Change the Key parameter (Wilson)

$5048 Keypoint Ranges {Mages)

$5059 Statistics {Neuhaus) 4

$S5060 Product identifliers for CDCNET: DC & NP {Rundauist)
85062 Product ldentifier for Distributed Files: OF (Sprandei)
$5067 Passing BIT date type paremeters (Barney)

In additions the following pending SIS daPs sasre condlitionalily included:

'$5102 Product identifier for Concurrent Malntenance Utilitiesz CU (Redig)
$5103 Product identifier for CYRIL Formatter: CF {Wachutka)

The Ffollowinyg notes will enable you tc look at updated sections of the SIS
witbout printing the entlire document:

For 55036y see section 2.2+4443» change in KEY prameter,

Fior 55059, see section 3.5.4 Statisticse.

For Product identiflers, see section 4+1l.1.1.

For 55048, see section 4+7+.2.1 Uperating System Keypoint ranges,

For 55067 see sections 5.2.1.1 and 5.2.5.2 {inciuding its subsections).

1.2 CHARIER
1,2.1 PURPOSE

The purpose of thls standard is to ensure a uniformity across the operating
system and product set thet wiill make the total system more essiiy usable and
human engineared,

1.2.2 SCOPE

This standard covers the softwere system which includes both the operating
system and the product set, The standard covers product-to-product,

- product-to-users, operating system—-to-users and product-to—-cperating systewm
I'nterfaces. These interfaces may be documented in the NOS/VE and product

W G B s B i B B e W B

e SN ae BE BN B

. 1-2
CYBER 180 System Interface Standard
86702704
1.0 GENERAL |
1.2.2 SCOPE

ERSs., This System Interface Stendard is the contreiling document for all such
interfaces.

Any external Intefface which is not defined by an industry stsndard msy be
dafined In this System Interface Standard. In corder to achjeve a uniformity
across the product sets certain internal interfaces shall be included In this
standard, e, g, calling sequences,

With respect to command-level calling segquences, parameterss snd options, this
standard includes (see2 section 2.2.4) all options for all parameters of all
calling sequences except those of NOS/VE which are documented in the NOS/VE ERS.
{Among optlons of parameters, there may be inconsistencies from product to
product. Such inconsistencles will be removed In the future by daps against
the SIS and code changess or noted as exceptions - see item 5 of section 1.2.4
below. ALt this times, it Is more importent to document existing usages iIn

order to.sake the 5IS corplete than it is toc remove inconsistencies and
conflicting usages.)

Interfaces in code that do not conform to the SIS, either by commission or
omission, should be PSReds The project—~defined priority of such PSRs may not
be less than seriouss and the such PSRs will not be rejected by projects.
1.2.3 GOALS
The specific gosls of the System Interface Stendard sres

a8, Consistency within and across the system.

bs. Humean engineered for user.

c». Achievabie within CYBER 180 timeframes.

d. Good performance.

8s External Interfaces like CY170 where thls does not
confilct with a» b» ¢ and d atove.

There must be more than trivial gsln in aspects of human
engineering to cause deviation from CY170 external
interfeces.
1.2.4 REVIEWING AND UPDATING THIS DUCUMENT
The 180 SIS has been thrcugh 8 number of review cycles and has been
formally approved by the C1B0 Baseline Change Control Board {(BCCB).,
It Is thus considered falirly sclid.

Howevery 1t is recognized that the SIS is a 1iving document with a

i-3
CYBER 180 System Interface Standard
B6702704%

1.0 GENERAL
1.2+4 REVIEWING AND UPDATING THIS DOCUMENT

- S

continual need for updating. Please follow the following Suldelines
in reviewing and updating this document:

1.

2

3

4,

5.

Limit comments or updates tc aquastion of iInaccuracy, lack of
completenass, or necessary technlcal cthange. Avold gquestions
of personal preference.

For rejatively minor probiems or qguestions resulting from a
normal review» a normal DCS comment 1s appropriate. It 1Is the
responsibllity of the asppropriate authori{s) to resolve the comment.

For more major updates that may be Somewhat controversiais a
stand-alone DAP Is sppropriate. This zllows a thorocugh reviewn
of the issues Invoived. When approveds the DAP wiill be
included In the next 5IS update. The SIS referee or aditor
should be Informed of any plans to submit such a DAP and the
DAP should be In the form of a proposed SIS update.

There #ill be occassional "minor review cycles™ of the SIS to
incorporate minor chenges and previously approved DAPs.
Authors may make minor changes to their sections at this time
For review and approwal.,

If conflicts exist between two products that cannot be resolved or
change is impracticel, the exception will be documented In the 51IS.
The nuaber of exceptions Is expected tc be very smali,

2=-1

CYBER 180 System Interface S5tandard

. T —— T

2+0

867027104

INPLUT

2.0 INPUI

This section describes the standard and conventions for
input to products. Input standard is defined for Systenm
Command Languages Control Statements source fitle
organlzation and contents.

2.1 SYSIENM_CONMAND_LANGUACGE

The System Command Language iIs the set of Janguage rules
and conventlons to be foljowed by any software product
that presents g user Interface {which Is not defined by an
industry standard)e It is documented In the NOS/VE ERS
{DCS documents ARH3609, ARH3610). Ffor exampie, commands
to call productsy and operator commsends will conform to
this language cefinition. It is 2 regquirement that alid
products use the standard command 1sngusge routines to
process system command Janguage statements (such as
product ¢all) commends or product cirectives). The intent
here is that products do not dupiicate code or fTunctions
already provided by standard command Janguage routines.
See NOS/VE ERS (ARH3610) for a description of these
routines.

2.2 PRODUCT_CALL_COMMANDS

This standard specifles the paremeters which can be used
in commands thet call CYBER 180 products. The syntsx of
the command Is documented Iin the NOS/VE ERS.

2.2.1 APPLICABILITY

This section specifles ail parameter names, descriptions
end defaults of parameters on a command that calils a
product. Regquirements for use of the paremeters are:

. If & procuct offers a capabiiity which iIs the same as
one defined in this standard, then the specification
in this stendard must be used.

. A product is not permitted to use a parameter defined
by the standard for a purpose other than that
specified by the standarde

N A product need not Implement ali the parameters or ail
the parts of e parameter In this standard.

. New pasrasmeter names or options must flrst be aPProved

2=2

CYBER 180 System Interface Standarad

86/02/04

2.0 INPUT

2.2+1 APPLICABILITY

- -

as additions to this standard.

If a product provides a function descrived by a pserameter

in

this standards the described parameter name snd Its

standard allases must be supported by the product as a
minimume.

ALIASES

Ao

B.

C.

D.

Standard atiases are made up of the first letters of the
parameter name. All products which use the parameter
must support the standard sliases.

Allases which do not conform to the first Jetter ruiles
but whichk have widespead usager can be standsrd allases
only iIf expilcitly documented as such In section 2+2+443
{Parameter Names and Descriptions) of the 51IS.

Non-standard aslleses are those allases which do not
conform to the first-letter rule, but which are used for
compatibiiity with older wversions of a NOS/VE product.
New products should not support non-standard aliasese.
Older products maey ~ant to phase ocut their non-standard
2aliases.

170 compatibie aliases are those 21iases which do not
conform to the first-letter rule, but which sre used for
compatibiiity with a 170 products. Products shich are
not required to be compatibie with a 170 product should
not use these aliases.

Some guldelines for proposing new parameter names and/or
optlons are:

1.

2e

Use a new option of an existing parameter rather than
2 new parameter name if the capability is an extension
of an already defined parameter (example: use D=DS
instead of Inventing a new psrameter DS for debuy
statements.,

For related parameters, use sllases that emphasize the
redationship (exemple: L0 to retlate listing options to
the list filesy L),

2-3
CYBER 180 System Interface Standard
8670270%

U A S G S DS T D W A - -

2.0 INPUT
22222 TERMINOLOGY

2+2+2 TERMINDLOGY

DaTault2 The vslue used for a parzmeter when the parameter
does not appear In 8 command. Section 4.3 on installation
parameters iIndicates which parameter defaults are
Instalistion chengeatle. The defaults speclfied In
section 2.2+4.2 are those expected to be most often used,

2+2¢3 SYNTAX
The syntax of the command is defined in the NOS/VE ERS.

If a parameter Is omitted, default values are used. Use
of <parameter neme = OFF)> results in turning off 2 single
option pasrameter or boolean single specifled valuse
parameter. Use of <paremeter name> = NONE indicates that
a specified value is nct supplied for a muitiplie value or
myltiple option parameter {(for examples LD = NONE csuses
none of the list options {0 be selected).

When the parameter value is a file namey the file neme
$NULL shouid be used to negate thet flle (for exsmples
B=$NULL ceuses the product not to produce 8 binary object
code file), $NULL is a reserved file name. A read will
respond with an end-of-information. $NULL is an infinite
sink for Writes.

The following stfgorithm is spplied to parameters:s

1. Inltlellys, 811 value optlions for this parameter sre
considered deselected {(j.e. there are no initial
values) .,

2. Onty the option{s) specified In the value 1ist are
then selected.

The <named> used on the command to call 8 product cen be
elther an allas or & long form as follows:

At i as Ltong Form Description
APL a programming fanguage
BASIC beginner's all-purpose sywboillc

fnstruction code
cC The language

CN8oL common busSiness orlented language

2-4
CYBER 180 System Interface Standard
86702704

- s ——

2.0 INPUT
2.2+3 SYNTAX

CyBIL Cyber implementation language

EDIF EDIT_FILE Edit Screen (for raw text)

EDIL EDIT_LIBRARY Edit Screen {(for Source Code
Utility libraries) :

FMU flie management utility

FTN FORTRAN formula transiation

LIS?P 1ist processor

MAP Matrix Algorithm Processor

MERGE merge

PASCAL Pascal

PROLOG ?rogramming in Logilc

PLI programming ianguaSe I

QU gquery update

SCcu source code utility

SORT sort

VX UNIX system emulator

2.2+.4 PARAMETER

Occurrence of sny parameter more than once in a control
statement is an error.

2.2+.4.1 Positional_Orgderivg_of Producf Sei Paramelers

Product set members providing the I, B, and L parameters
must supprort the followingy positional ordering on a
non-keyword caell. There js no gusrenteed common ordering
of other parameters to a product set member except what
might be documented Iin the reference manual for thst
product.

1. INPUT

2+ BINARY {(normaliy the main deslred ocutput of a compiler)

2=5
86702704

CYBER 180 SyStem Interface Standard

- — —— —— — -

2.0 INPUT
2+2e4s1 Posltional COrdering of Product Set Parameters

T me WS W D WD A W T S WD S S N W

3, LIST

2+2.%.2 Iypas.of_Paramalers

See the Command Interface {Part I) of the NDS/VE ERS for a
description of the file references which Is the syntax to
be used for specifying & file name &8s a parameter velue.
If no position is specified, the groduct will reposlition
the fjle before uyse as follouws:

a) for a flle named $INPUT» po rapositioning wili
take place If the file Is at beginning of
informetion, 8t end of Informations, or at a
partition boundary. Otherwise, It will be
repositioned to end of partition tefore use.

b) for a file named 30UTPUT, the product will do no
repositioning before use.

¢) for all other flless the products widl reposition
toc beginning of Informatlion before use.

Example: If a call to SCU has been made to write three
source decks to COMPILE {(the first FTN» the second CYBIL,
the third FTN) &nd they are to be compiled with the object
code pleced on file LGO, the 3$ASIS positioning must be
specified on the second and third compilations since
dafault positioning Is rewind,.

FTN I=COMPILE

CYBIL I=CCMPILE.$ASIS,B=LGO.3ASIS»L=30UTPUT

FTN I=COMPILE+$ASIS»B=LG0.$ASIS,»L=3CUTPUT
There are four kinds of parameters:
{1) Single Specified Value
This is a parameter for which the user must specify a
valuey such as 8 file reference or a boolean as In the
form:

Keyword = <bocleand>

where:
<beolean> s: = <true> ! <falsed

Ltrue> =2 TRUE ! YES ! ON
<false> 3: = FALSE ! NO ! OFF

2=¢€
CYBER 180 System Interface Standard
86702704

2.0 INPUT
2+2+4.2 Types of Parameters

Y S S S U WD MO T W ARD WD WS W S W . W o — - -

For the sake of consistency the velues ON and OFF wilil be
used In this document. Products may choose any of the
vajues for <trued> and <faise> desired and describe the
choices as such in the product documentation, The
operating syster will accept the values for <true> and for
<false> saquivalently when the standard command janguage
routines for the control statement processing are used,

As a results users wiil be able tc enter any of the values
for <true> or for <falsed> without regard for what veslues a
product has chosen to document.

{2) Multiple Speciflied Value

This is 2 parameter for which more than one value {(such as
fi'le references) may be specified. The form
<parameter-name = NONE> will be used to Iindicate that none
of the avallable options for a parawmeter are desired.

{3) Single Gption

This is a parameter for which the user specifies
<option> = ON

{#) Multiple Option

This Is a paranmeter for which the user may specify the
names of more than one option.

For multipie specified value parameters the value list
syntax ls as described in the NOS 180 ERS» Part I sectlon
"Paramaeter Lists and Types®. A value list consists of a
serles of value sets separated by one or more spaces or by
a single comma. When more than one value set is
specifleds the list must be enclosed In parentheses. A
vajue set consists of 8 series of values separated by one
or more sPaces of by a single commas When more than one
value 1s specifled the set must be enclosed in
parenthesess Thke rule is that an outermost pair of
parentheses belong to 8 value list and inner palrs of
parentheses belong to value sete.

The form <parameter name = NONED> will be used to indicate
that none of aveilable options for a parameter are cesired,

2=7
CYBER 180 System Interface Standard
86702704

INPUT
22+4.3 Parsmeter Nemes and Descriptions

- — - —— - - -

2¢204+3 Ppramptec_Nemss_snd._Descripiicns

The parameters ere described in alphabetical order.

Parameter Standard
Name Alias Parameter Description
AUDIT | A AUD is & non-Standard allss for AUDIT.

This parameter Is used to indlicate that
the product Is being run For audit
testing. The parameter causes the
selection of any other parameters which
may be needed for audit testinyg as well
as seiecting the method of processing»
which may differ from normal processing.
For exampley in COBOL the list of i1tems
might include the mode where displays of
numeric items would not be edited.

Single option parameter. Defauits the
option Is not selected,

AUDIT = ON selects this option.

BINARY 8 BINARY_OBJECT and BO are non-standerd aliases
for BINARY.

Binary Objdect code output Flle.

This parameter specifies the flle to
contain the obJject code or text produced
by & complier or assembler.

B = <fjle>

B=$NULL Indicates that no such binary
object code output flie iIs to be written,

Single specified value parameter,

default = $SLOCAL.LGD

If a Jlist of flles Is specified for INPUT,
then ald the binary outputs accumuiate on the
specified BINARY file,

COLLATING_SEQUENCE_X CSA SEQY 1a a 170 compatibliity aliss.
CSN Collstiny sequence (X = Namey, Steps
CSR Remainders, or Alter; and Y=N» 5» Ry or A).
€SS The parameters SEGQN, SEQS, SEQR and SEQA
contrcl dafinitions of coliating
sequences for an spplicable product.

2=-8
CYBER 180 System Interface Standard
86702704

2.0 INPUT
2s2+%4e3 Parameter Nemes end Descriptions

-—— - - fahaadind et

CSNs The CSN parameter signals the
start of a colleting seguence
definitione The definition of one
collating sequence continues wilth CSS»
CS5K» CSA parameters; it is terminated
by any parameter not one (35, C5R»
CSA., The form is:

CSN = <name>» where name Is the name of
the collating secuence.

£SSs Each C55 perameter specifiles
either a single step or & ranga of
steps. The form isz2

€SS = <value-list>, where the
expressions In the value 1ist are
character expressionsa

CSR. This parameter specifles aill
characters In the charecter set not
specified In a CSR parameters explicitiy
or irmplicitliy, The form is:

CSR = ON

CS5A« This parameter may be specified to
alter a2il equated characters in output
records so they become the first
character in the appropriste L3n
parameter. The form Is:

CSA = ON.
COMPILE C Complile file.

This parameter Specifies the output file
on which compliler source statements are
written. Examples are: the output
produced by a conversion aid utlliity; the
updated source output by the source
malntenance utility for input to sn
assembler or compller.

Single specifled value parameter,
default = COMPILE.

COMPILATION_ ¢D if selected> complilation directives {(see

2=-9
86702704

CYBER 180 System Interface Standaerd

— - - —

2.0 INPUT
2+2e%+3 Parameter Nem®s and Descriptions

DIRECTIVES SIS section 2.4) will be recognlzed.
Otherwlse compiletion directives wiil not
be recognized--if directives are expressed
as a speciail Torm of comment they sxlif be
treated as are all other comments.

Single option pBrameter., Default = ON»
directives are recognized.

C170_COMPATIBLE o If selecteds al! possible CYBER 17C to
CYBER 18U product differences wiil be
converted to the Y180 version or
diagnosed with messages. For examplier in
{0BOL items specified as COMP—-4 wiill be
assumed to be COMP. Alt1 products which
support this parsmeter must provide 3 Jist
of such conversions or assumptions In thelr
manuais.

Single option parsmeter, Default: the
option is not selected.

C17C_COMPATIBLE = ON selects the option.

DEBUG_ATIDS DA Debugging aids.
This parameter specifles the debug options
to be selected. Ail products need not
support all options, Multiple options may
be specifled. The defined optlons are:

ALL Ald of the available options are selected
for the DEBUG_AIDS parameter.

DS Debugging ststements. A1l debugging
statements will be compiled, A
debugging stetement Is 8 statesent In
the source shich Is ignored by the
product unless this option is
specified, Debugging statemants
usually specify debug actions for the
modul2 contalning them. See alseo
section 2+4.7 of this standard.

DT DEBUG TABLES. Generate 1ine npumber
and symbol tables gs part of the
object code.

OC ObJject code regardiess. Produce
object codes regardiess of srrors in

2=-10
CYBER 180 System Interface Standard
86702704

-—— -

2.0 INPUT
2.2+%4.3 Parsmeter Names and Descriptions

the source and severity of such

errors. For compllers, execution of a
fine containing a fatsl error shouid
result in a call to an object time
routine which ¥il1l terminate the
execution with a messages, {3See

section 3.4 for error status returned.)
Products with no object time library
may generate @ zero (program error)
Instructon for lines In error.

PC Parameter checking. Generate psrasmeter
checking informatjon as part of the
object codes, If PC Is specifled,
any compllier which supports parameter
checking witl genersete actual and
formal parameter dscription
information In the object code to
enabil2 load-time detection of
parameter mismatches.

TR Fiow tracings Activate trall pragmats
in the source program. Unless TR is
specified, trsce pragmats have no

effect.
Multiple option parameter. The default is
DA=NCONE
DEFAULT_COLLATION DC Thls parameter speclifies the welght table

to be used for the evaluation of character
{string) relational expressions and to be
used by Intrinsic functions which sre
collated sequence dependent (for example
CHAR and ICHAR In FORTRAN). The deflned
options are:

U or USER
A user speciflied weight table is
useds In FORTRAN a collectiocn of user
callabple procedures Is provided for
manipulating the user weight tsble.

F or FIXED
A fixed {unmodifliable) processor
specified welght table Is used.

Single specified value parameter,
default = FIXED.

2-11

CYBER 180 System Interface Standard

- Wy

2.0 INPUT

B57027/04

242+%e3 Parameter Nemes and Descriptions

DIRECTIVES_FILE

ERROR

ERROR_LEVEL

OF

EL

DIRECTIVES Is a non~-sitsndard allase.
DIR is a non-standerd and &8 170 compatible aliss.,

Additional parameters wiil be read frow
this flile after all of the control
statement parameters have been resd,

DF=file-pame
Parameters will be read from flles .
flle-nane.

DF=(file-namelirfile-name2] - »)
Parameters will be read from the
files in the order that they are
named,

Multiple specified vyalue parameter,
default = NO ADDITIONAL PARAMETERS ARE
READ.,

Error File.

This psrameter specifies the name of the
file to yecelve efror llsting
information. In the event of an error
{of EL specified severity or higher) the
dizsgnostic Is written to the E file, It
is hlighly recommended {though not
required) that a product also output the
offending source 1in2 or iines to the E
file In conjunction with the diagnostic,
If there Is 2 listing Ffile (see L
parameter) the error 1ine and dliagnostic
are also written to the L flle., If the
file name of the E Flle Is the same as
the file name of the L filey, then the
error line and diagnostic are not sritten
twice.

Single specified value parameter,
default = $ERRORS

Error Level.

This option indicates the severity level
cf dlagnostics to be printed on the
user's listings The levels are ordered
by increasing severity. Specification of

2~12
CYBER 180 System interface Standard
86702704

A - . N A W W GEN S » - -

2.0 INPUT
2+2+%s3 Parameter Nsmes and Descripticns

—— - - -

a particular 1evel salects that level and

a1l more severe jJevels. Products nitl be
aljowed some flexlbllity In specifyling

the kinds of diagnostics that fail In

each of the four cat2gories: informationals
warning, fatals end catastrophic. The
following descriptions are provided ss a guide.
The levels in increasing order of severity ares

1 Informational. This is an infor@wational
message used to fiag a susplclious usage.
The syntax Is correct but the ussge is
questionable. For 170 compatlibility only,
products are free to use *T? in addition to
117, {However»if only one is used, it must
be I.) Output must aslways be ?1's never 77,

W Warnings This 15 8 dlagnostic where
the syntax is Incorrect but the
product has mace an sassumption (such
as adding a comma) and contlinued,
Messagas indicsting attempts at error
recovery are at this ievel,
Ciagnostics of W Jevel should be
errors that the user can avoid by
progiram modification.

F Ffatale This Is a diagnostic which
prevents the product from processing
the statement in which It occurs.
Unresolvable semantlc errors siso
fall into this class. Such errors
may not relate to a specific
statement In the program unit.
Errors of type 'ERROR! wil] be
treated as eguivalent to *FATAL'.

C Catastrophics This class of error is
fatal to continued processing. The
product is uneble to continue work on
the current program unit, Homever,
it shouid stitl advance to the end of
the current program unit and attempt
to process a subsequent unit {If the
product specificaton allows muitipie
progiam units in a8 compilation).

Single speciflea value parameter,
default = W.

2-13

CYBER 180 System Interface Standard

86702/04

-

2.0 INPUT
2e20

-—

4,3 Parameter Nemes and Descriptions

ESTIMATED_NUMBER_ ENR
RECORDS

EXCEPTION_ ERF
RECORDS_

FILE

EXPRESSION_ EE
EVALUATION

EL=NONE causes no errors to be listed.

Estimated Number of Records.

This parameter speciflies the estimated
number of records to be processed by a
producte. For exasmples SORT can use it to
cause selection of efficlent modes of
processings

Single spacified value parameter)
default = B80CO00/MRL.

This is a file containing exception
informations Products will be allowed
flexibility in defining Its contants.
For examplie, SORT MERGE will use it for
out-of-order merge input records.

Single speclified value parameter, default
is product dependent.

The options of this parameter coOntrol the
style of code generated Ffor the
evaluation of source expressions. Note
that the procaessing controiled by this
parameter Is separate from that
controlied by the optimization level
parameters, but may affect the extent to
which optimization is possibies The
defined options ares

C or canonical
The code generated to evaluate an
expression will mirror the expression
interpretation rules as defined iIn
the product speciflication. For
FORTRAN this would be section & of
the ANSI stsndard. This option salso
servas to Inhibit the CCG “regroup®
cption.

ME or malntain_exceptions
Inhiblt code optimizations which
eliminate Instructions that might
cause hardware exceptions at
execution time. This option alsco
serves to inhibit the CCG
"unsafe_to_safe” option..

2=14%
CYBER 180 System Interface Standard
86702704

2.0 INPUT
2.2+4+3 Parameter Nemes anc Descriptions

D S S S T - A T VD U - - -

MP or maintsin_precision
Inhibit code optimizations which
change a flosting point operation to
2 new form that Is mathematicailly
equivalent but not computationslly
eguivalent. Thisz option also serves
tc select the CCG "maintain_
precision” optione.

R or reference
Intrinsic functions {€.g5. those
defined In CMML) for which a
procedure call Is genersted wiii be
called by reference rather than by
value,

Muitiple optlon perameter.,
Default = NONE» none of the options Is
selected,

EXTERNAL_INPUT EI EX_INPUT is a non-standard allas.,

This file Is for use by products which
provide the capabidity of temporarily or
glternately obtaining source statements
from a file externsl to the input file.
For examples the COBOL COPY statement,.

Single specifled vyalue parameter;
default = $NULL.

FASTIO This parameter can b2 used only by SORT/MERGE.
This parameter |Is on the predecessor product,
SORT 5 on the CYBER 170, and iIs for compatibility
onliy. This parameter has no effects %wlill go away
at a fater releasey and will not be described
in the reference wanual.

FORCED_SAVE FS If selectad, the definition status, of
ell entities within a subprocedure of a
program wili be retalned upon exit from
that subprocedure. Effectively this
disallons placing any variables on the stack,

Single option psreameter, Default = OFF,
definition status need not be retained
except where so required by the product
specification.

2-15
B6/702704

CYBER 180 System Interface Standard

FROM F Cld file,

This parameter specifles the data Input
file for the procuct. For examples the
file from which 8 copy utility reads.

Multipie specifled value parameter;
default = 0OLD.

INPUT I Input file.

This parameter specifies the source input
file name to the products Where reasonabie,
& 1ist of fl1le names is allowed.

Multiple specifled value parameter;
default = S$INPUT.

INSTRUCTION_ IS This parameter specifles whether or not
SCHEDULING instruction scheduling will be performed.

Single option boolean parameter;

YES This optlion selects the parameter.,
default = NO
omitted is same as NO

INTERACTIVE_ I1 This parameter determines whether the product

INTERFACE will Initiate Interactive processing with the
user», instead of opersating in Its usuail batch-
orlented fashion. This consists of displays
written by the product to fite $OUTPUT» and
user-supplied answers from the fille $INPUT.
The interactive Interface can be Invoked
elther from an Interactive terminst,
or a batch jobs

Single option boolean parameter:

YES This cholce initiates the Interactive Interface.
The processing of ali other psrameters on the
command {ine is Product dependent {see the
approprliate product manual), except that the
STATUS parameter is never ignorede The product
mays but is not required to, aliow the user
to decide Interactively whether cor not the
other parameters on the command {ine are to be

KEY

2=-1¢6
CYBER 180 System Interface Standard
86702704

2.0 INPUT
202+%e3 Parameter Nsmes and Descriptions

- -— ——— - -

ignored.

NGO Do not invoke the interactive Interface.
omitted Same as NO.

K Key Fleld(s).
This perameter specifies the key flelds
thet cdetermine the manner in which Input
data might be prcocessad by a product.
for exeamplesr SORT willl use the parameter
to determine the order records wiill be
sorted,
KEY=<value~list>

The format of the KEY parameter is
product dependent.

LEADING_BLANK_ZERD LBZ If selecteds leacing blanks in Numeric

LIST

fields are treated as zeros in arithmetic
staterents and comparisons. If not
selecteds numarijc flelds that contein
bianks are In error.

Single option parameter., Default: the
option is not selected.

LBZ = ON selects the option,
L - Listing fTile.

This perameter specifles the fiie where
the produyct wWrites the source listings
cdlagnosticsy statistics, and any
additional 1ist information (see LC
parameter).,

Single specifled value parameter,

default =$LIST.

If 2 1ist of files Is specifled for input,
then all of the 1list outputs accumul ate on
the specifled LIST fitle.

LIST_OPTIONS Lo {isting options.

The options of this parameter specify
what extra informaetion wxill appear on the

6 B BE B

2=-17
CYBER 180 System Interface Standard
867027104

2.0 INPUT
2¢2e+%+s3 Parameter Nemes and Descriptions

—— - - v - — ———— -

1isting flle (LIST parameter). Multiple
options may be specified. The defined
opticns are:s

A Attributes. A listing of the
attributes of each entity defined
within the program is produced, 1If
R was selected, the references sere
shown on the same listing. See
section 3.3.5 for more informstion
on attributes.

B Prohibit Banner. The banner Is not
sent to the Listing flle.

BO Byte Offset, (Relegse 2 feasture)
If source statements are listed, an
offset fiela Is Included (see
section 3.3+3+3), This option is
meaningful only for wide format
listings.

DE DETAILED EXCEPTIOCNS. #Print out
exceptlion flie messages as often sas
a record Is sent to the exception
File.

M Maps A storage layocut map for
common blocks and equivalence groups.

MS Mergye Statistics. Turn on $isting
of merge stetistics.,

5 Object code listing. A listinyg of
the generated object code with
instruction mnemonicse.

P Prohibit prempt. The normal input
prompts ate not sent to the Listing
file.

R Cross reference listing. A cross

reference of program sntities
showing Jlocetions of definition and
use within the program.,

RA Cross reference 1isting of ailld
program entities whether referenced
or not.

2=-18

CYBER 180 System Interface Standard

86702704

2.0 INPUT

2+2+%+3 Parameter Ne&mes and Descriptions

S T D DD D D A S WD I WD A W B

LITERAL_CHARACTER

LOAD_COLLATING_TABLE LCT

MACHINE_DEPENDENT

LC

MD

RS Record Statisticss List the
statistics for the records
sorted/merged.

S Scurces. Source listing of the
program.

SA Source i1isting of all source
statements including lines turned
off by a source embedded NOLIST
directive. {(See section 2.4.2)

Multipie optlon parameter, default = 5.

LO = NONE causes none of the 1ist optlons
to be selected.

This parameter can be used to change the
character that delimits non—-numeric
fiteralse Default 1iters! character iIs
quotation mark.,

LC=0FF is an erfror.

This paramaeter icads an external weight table
and associates it with a collating Sequence nanme.
The format of the table Is AMTSCOLLATE_TABLE.

LCT={CDOLLATING_SEQUENCE_NAME, WEIGHT_TABLE_NANE)
DEFAULT=no weight table iIs loaded.

This parameter speclflies whether use of
machine dependent sowurce features is to
be disgnosed and 1 f s0» how severely. The
severity level Is one of the following:

I or informational
W or warning
¥ or fatal

Errors of type 'ERROR? will be trested as
equivalent to "FATAL?Y,

Single spacifled walue parameter,
Defauit = NONE» maschine dependéencies are
not to be disgnosed,

CYBER 180 System Interface Standsard

2-19
86702704

——— T ——_— - - 2 ———

2.0 INPUT :
202043 Parameter Names and Descriptions

MASS_STORAGE_LIMIT MSL Mass Storage Limlt. This parameter

———— -

OMIT_DUPLICATES GD

ONE_TRIP_DO IR RY)

OPTIMIZATION_ oL
LEVEL

sPecifies the maximum number of
characters that may reside on mass
storage during execution of the product
{for exanples SORT),

MSL=expr. The number of characters
indicated by expr Is the mass storsage
fimit. Exepr must be an Iinteger.,

This parameter controls omitting al but one of
the records whlch have equal key values.

0D=0ON Omilt all but one of the records sith
egual velues.,

CD=0FF Do not omit duplicate records.
DEFAULT = OFF

This parameter selects the minimum trip
count for FORTRAN DO-1o00ps to be one
rather than zero.

GPTIMIZATION and OPT are non—-standard sijases..

This parameter speciflies the level of
cbJect code optimization. All products
need not support ald defined Jevels.
However If product supports a defined
fevel, It must be seliected by the
specified option name. JIdeally ail
products which support this parameter
shouid recognize aill defined

options and Issue informative diagnostics
for unsupported options that the user
selects. Allowakble options are:

DEBUG Object code s styilzed to
facilitate debuggings Stylized
code contains a separate packet
of instructions for each
executable source statement,
carries no variable values
across statement boundaries in
registerss notifies DEBUG each
tima a beginning of statement or
procedure ls reachedy etce

2=20C

CYBER 180 System Interface Standard

86702704
2.0 INPUT |
2+2+4.3 Parameter Némes and Descriptions
L0W Lowest 12vel]l of production
quality code. Code Is not
completely stylized.
HIGH High level of production Quality

ouTPUT

OWNCODE_FIXED.
LENGTH

OWNCODE_MAXIMUM
RECORD_LENGTH

OFL

OMRL

code.

Singie spacifled value parameter;
gefault = LOW

This pearameter specifies the file where &n
interactive proﬂuct writes Its output.

Single spoecified walue parameter,
default = 30UTPUT.

OWNFL is a 170 compstible alias.

This paramater speciflies the record iength

in characters of all records that will be
input to a product from any owncode
procedure,s See glso OMRL and OPn parameters.

OFL = <integer>. Every record supplied
by 8n owncode procedure will contsin
exactly <integer> characters. Default:
{See OMRL),

OWNMRL is5 a 170 compatibility ailies.

The meximum tength in cheracters of sny
record supplied by any osncode procecute
is specified by this parameter. This
parameter may not be specified If the
product has input or output flies and iIf
gny of thelr associated MRL¥s are st

jeast as large as this MRL., See also OPn.

CMRL = <jnteger>. There will be at
most <integer> characters In any records
supplied by an osncode procedure.

Default: If OFL and OMRL are both
omitted, the record langth specification
wlll depend on the length specificestions
of the Input anda output files., If all
input and output files have fixeid-length
records of the same length that length
will serve as the default for OfL.
Ctherwnise the Jargest MRL or FL from any
input or output file will serve as the

2~-21

CYBER 180 System Interface Standard

86702704

- tnd

2.0 INPUT

2e2e%s3 Parameter Nemes and Descriptions

-

D . 7 T A -

DWNCODE_PROCEDURE_N

RESULT_ARRAY

RETAIN_DORGINAL_
ORDER

£Pn

RA

ROO

default for OMRL.

OWNn is a 170 compatibility alias.
Owncode procedure n {(n = 1, 2» 35 43 5,
sese)s The maximum of n is J2ft to the
individual product. Cuncode procedures
sre user written routines that may be
loaded with the product and executed at
speclified points during product
execution. See other OWNCODDE
parameters for more Information on this
capability.

The Procedure specified by this

parameter widl be exccuted at a

specified point n during product
executions

0Pn = proc_name, The procedurse
proc_nama will be exacuted at z
speciflied point n.

Defauit: No procedure wili be executed.

RESA is a non-standard alias. This psrameter is
used to return all or part of the result array.

RA=grray_name, an SCL array

Defauit: Do not return ahby information from the
rasuit erray.

RETAIN and RET are non-staendard and 170
compatibllity aliases,

Equivalent records or records with
equivalent identifying characteristics
will be output In the same order as
input by & product. ¥for example, #nlth
SORT» the equivelent identifying
characteristics nould be egual keys.
The order in which muitiple input files
are specified is the order In which
records with egquivalent characteristics
are retained with this parsemeter.

RO0=CNe Records with eguivalent
cheracteristics will retain their
original order.

2-22

CYBER 180 System Interface Standard

oo 2~

86702704

2.0 INPUT

2+2+%4.3 Parameter Nsmes and Descriptions

-

RUNTIME_CHECKS

SCREEN_NAME

RC

SN

ROC=0FF. Records with equivalent
characteristics %wil1! not necesssrily
retein thelr original order.
Default: Same as RDU=0OFF.

This parameter controis which runtime
checks are compiled into the object
code and/or selected for runtinme
tibrary routines. Runtime checks sare
product dependent but If a product
supports one2 of th2 ones described
heres, it must be selected by the value
speciflieds Defined values are:

ALL All supported values are selected.

F Fiies checking. Selects checking of
errors invoiving file variables and
buffer varisbles.

N Pointer checking., Selects checking of
misuse of pointer variables.

R Range checkss This option selects
range checking for one or more of
the fcocllowing
- gcheracter substring expressions
- scalar subrange assignments
- case varliables

S Subscript checks. This option
causes subscript and index
references to be checked to ensure
that they are within progranm
defined limits.

T Tag fleld checkss Selecting this
option ensures that accesses to
varlant records are consistant
with the velue of their tag field
{if cne exists).

This Is a multiple value pafameter.
Default 1s RC=NONE.

The neme identifying an obJject screen
definition to bte Tetfieved from the
user?s object library.

2-23
CYBER 180 System Interface Standard

86702704

2.0 INPUT
2e2+443 Parameter Names and Descriptions

- -

Single speclified value paramter.
Opticnaly no default.

SEQUENCED_LINES S This parameter selects FORTRAN
sequenced mode source line format as
described in section 3.2 of the FTN180
ERS., HNote thast this format is
incompatiblie with the standard SIS
{section 2.3.2) source line format
which allows the length and location of
8 1ine number to be specified in the
source flle attributes.,

Single option perameter. Default = OFF>
source lines conform to the standard
51IS format.

SESSION_TYPE ST One of the keywords EDIT, HELP» UTILITY.
Used to present initial SDF session
environment.

Singile specified valur parameter.
‘Optional, no defauit.

SOURCE 3 SCU iInput.

Line images of the generated program
wiil be written to this filer, in s
format acceptable as input to SCU.

Eech program unit on the S file will be
preceded by an S5CU directive which
indicates the beginning of a new source
deck,

Singie speclified parameter value,
default = $NULL.

STANDARDS_DIAGNGSTICS SD Standards diagnostics. (ANSI or other
appliicable standard).

This parameter speciflies whether use of
non-standard Input source statements
are tc be diagnosed and if s0» howu
severeljys There are two velues
defined: ssveritys and name of
standard. The severity Is one of the
foliowing:

2=24
CYBER 180 System Interface Standard
86702704

2.0 INPUT
2e2+443 Parameter Nemes and Descriptions

- o . o ——

I Informational error. Standards
errors are tregated as errors with
this severlty.

W Standards errors result Iin warning
messages.
F Fatal error. Non-standard usages

result in a fatal error.

Errors of type 'ERROR! Wijil be

treated as equivalent to TFATALY,
The szecond vailuey name of standardy Is
to be defined by the products as
appropriate. IFf this parameter is not
specifiedr then non-standard extensions
to the product ares z2lloweds {not
diagnosed 25 errorsl.

SD=NICNE causes standards errors not to
be diagnosed.

Multipie specifled value parameters
defsult = NONE.

STATUS STATUS Steatus Variabie.
No atlias is permitted for STATUS.

All products are required to support
this parameter.

This parameter speciflies the name of
the SCL status veriable to be set by
the product to indicate the occurrence
of error conditions. See sections 3.4
end 4.4 for an account of the stetus
varlable, 3See also NOS/VE ERS.

Single specified value parameter.,

Errors of type 'ERRORY wil) be treated
as equivalent to *FATALY,

Default: None.

See Error Processing

section 3.4 for & description of error
processing theat resuits from use of the
default status varlable.

CYBER 180 System Interface Standard

——— -

2-25

86702704

2e NPUT
Z2e

01
22423 Parameter

Nemes and Descriptions

-

2~ - - —— -

SUM

SUBPROGRAM

TAPE_SCRATCH_FILES

T3F

Sum Fleldis).,

This parameter specifles that units of
input data having key Fflelds egual (see
KEY parameter) mey be combined into
Items or units In 8 product dependent
manner.

{For example» SCRT will) use the
perameter to combine sll records,
having key flelds equals intoc a singie
records Each sum fleld in the new
record Is formed by summing the values
Iin the corresponding flelds of all
equal recordss)

SUM=<valye—-list>
The value list witd contain one or
more value sets. Units of Input
data with equal key values #%ill be
combined Into new units or items
and flelds speciflied by the value
sets will be summeds according to
product specifications and needs.

Multiple specified value parameter,
default = NO SUM FIELDS.

SP is a non-standard alisas.

If this option 1Is selecteds the program
Is compiled as @ subprogram instead of
as a main program.

SUBPROGRAM = ON selects the option.
Defaultz the option s not selected,

Tape Scratch Files.

The tapes with the names specified by
this parameter #will be used Dy the
product to reduce the disk space used.
The tapes must have already been
recuested prior to execution. The form
Iss

TSF={file_name sfile_name <..)

Defauit: Tape scratch flles wiil not
be used,

2-26
CYBER 180 System Interface Standard

86702704
2.0 INPUT
2024443 Parasmeter Né@mes and Descriptions
"TARGET_MAINFRAME ™ This parameter specifles the machine for which

code is to be generated. The defaultsy If no
option is seliected, is the machine on which
compiliation Is performed.

C1l80MI or C18U_MODEL_INDEPENDENT
The code generated wiil]l run on any
Cyber 180 model.

C180V or C180_VECTDR
The code generated will run on any
Cyber 180 model that has wector
instructions.

default = omitted

TERMINATION_ERROR_ TEL This parameter speclifies the minimum

LEVEL diagnostic severlty level which wilill}
cause a product to return &an sbnorunal
STATUS upon completion of processing.
A normal status Is returned otherwise.
The severity level is one of the
following:

I or Informational
¥ or warning

F or fatasl

C or catastrophic

For 170 compatibility onlys products are
free to use *T* In addition to *I' (howevers
1f only one Is used, It must be *1%).

Cutput #il1 alweys use *I7?,

not 3T?,. Errors of type 'ERRORY will

be treated as equivalent to "FATAL?Y.

Single specified value parameters
default = F.

TEXT_NAME N Names of texts to be read from the
flles or libraries specified by the
TEXT_RESIDENCE parameter. The total
number of values allowed is product
dependents Products that have a text
name directive may choose to support
the TEXT_RESIDENCE but not the
TEXT_NAME parameter. A fatal error
occurs 1f any of the texts specifled is

2=-27

CYBER 180 System Interface Standard

P

86702704

2.0 INPUT

2+2+443 Parameter Nemes and Descriptions

A — ——— T _———" -~

T0

TEXT_RESIDENCE

example 12

TR

not found.

Multiple specified value peramater,
default Is no text.:

New fljia.

This parameter specifies the data
output file for the products For

example: filte to which a copy utiiity

writes.,

Single speciflied value parameter;
default = NEW.

Nemes of residences (l.e. files or
libraries) to be searched to find texts
specified by the TEXT_NAME parameter or
by product directives. The total
number of values allowed is product
dependent. If no text names are
provided the first text of the first
TEXT_RESIDENCE name Is the oniy one
used. If text nemas are provided and
TEXT_RESIDENCE is omitteds, the default
for TEXT_RESIDENCE will be the
TEXT.NAME parameter list. 1In case
texts of duplicate names existy, the
first one found {in the order in which
TEXT_RESIDENCE names are {isted) is
used. For sachk name in the
TEXT_RESIDENCE parameter list, the
product will look for a iocal file with
that name; If not founds the global
Iibrary set will be searched for a
fibrary =ith that neme. If the nawme iIs
not found, as & Fflle or llbrary» a
fatad error wlill occur.

Multiple specified value parameter.,
Default value list is text name value
list.

if file F1 contains texts Ay Cy and D
snd library L2 contains texts B and C
and file F3 conteins texts E and A then

TN={A»B»C»0DsE) and TR=(F1,L2,F3)
widl result In selecting texts as
folliows:

2-28
CYBER 180 System Interface Standard

‘ B6I02704
2,0 INPUT
2+2+%s3 Parameter Nzmes and Descriptions
As» C» and D from file Fi
8 from library L2
E from flle F3
exanple 23 In the above example, if In addition to

a Jibrary L2, the user has & locsl file
named L2 containing texts B and £» then
TN={AsB»Cr»DsE) and TR=(F1lsLl2,F3)
will result In selecting texts as

follous
A C» and D from flie F1
B and E from file L2
nothing from 1ibrary L2
nothing from flle F3

TERMINAL_TYPE 17 Terminal TypPe,

TT=COR
Correspondenca Selectric APL
terminal,

TT=APL
This type is appropriate when the
communications system transiates
APL terminal codes into a standard
intermediste code.

TT=ASCII
For full ASCII terminels not
equippad to print the APL
character set., Also used for
non—-APL correspondence terminals.

TT=UCA
For full ASCII terminals. This
avoids freguent use of the shift
key Ffor letters»

TT=BATCH
For devices that suppori the ASCII
b4-character set. Usualily used
for batch or remote batch ASCII
printers.,

Single specifled vyalue parameters.
Default Is APL for & time-sharing Job;

and BATCH for a batch or remote batch
Job.

2=29
86702704

CYBER 180 System Interface Standard

- -——— -

2.0 INPUT
2+2e4%4e3 Parameter Names and Descriptions

- — - —-— ——— - -

VECTORIZATION_ Vi VECTORIZATION send VEC are non-standard allases.

LEVEL

This parameter specifies the vectorlzation
level, The aliowsble options are:s

HIGH Production—quallity code with a high
jevel of vectorization Is genersted.

IL or INNER_LOOPS
Oniy Inner loops are candlidates for
vecteorization.

NONE VEC=NONE csuses no vectorization to
be performed, :

Default = NONE

VERIFY_MERGE_ YMIC VERIFY and VER are non-standard end
INPUT_ORDER 17C compatibiiity aliases.

Verify merge Input order. Selection of
this option causes verification thast
input records to be merged are In
correct order. The form Is:

VMIO=0ON., Verify for correct order.
VMiC0=0FF. Do not verify for
correct order.,

Default:s VMIO=0OFF.

WORKSPACE ¥S Initial Workspace specification,

This paremeter srecifies the sWorkspace
to be activated when the product Is
called. The pearameter is specified
with values consisting of the following
parameters defined in the NOS/VE ERS:

file

2+3 J0URCE_INBUI

This section deals with the standsrd for the processing of
source input flles by product set members. In this
contexty a file can refer to data originating from an
interactive terminal 8s well as conventional storage
devicess This standard addresses the areas of source file
organizations statement format, blank compressions and

2-30
CYBER 180 System Interface Standard
86702704

2.0 INPUT
203 SOURCE INPUT

- -

response to an empty input file situation.
2e341 SOURCE INPUT FILE ORGANIZATION

Source Input to CYBER 180 product set members may be
dasignated by the 1 directive on the control statement.
If the I directive Is omitted, the source input defaults
to the standard input file {(batch mode) or terminal
{interactive mode)s The source Input has a sequential
structures and iIs accessed by means of standard Record
Manager interfsaces.

Positloning of the source input at open time Is
constrained by the requirsament to allow different product
s2t members within the same job (e.g. different compliers)
to access the same flle for thelr input. Therefore, the
soiurce input Is opened with no-rewind uniess the rewind
parameter Is specified on the control statement (see
Keywords and Parameter Descriptions In section 2.2).

22342 SOURCE STATEMENT FORMAT

Fach record in the source Input contains cone to three
parcels of data:

. statement ldentifler {(optional);
» line number {(optional);
. stetement tody.

Products should be able to handle the optional statement
identifier and line number.

The source Input statement may take the following formss
where

b represents the statement bodys
i fepresents the 1ine numbers
S represents the statement identifier,

and brackets specify the optioral portions of the form:

bl s

s 1 b
s b 1

] b s

2=-31
CYBER 180 System Interface Standard
86702704

- - -

2«0 INPUT
22342+1 Statement Icdentifier

2+3.2.1 Siatsaspi. _ldentlflisr

Input sourc® records may contain optional statement
identiflers such ss SCU identiflers. If present, they
occupy elther the first or tast "n? charecters» where n?
has a maximum value of 18, If the statement identifier
occuples the lest cheracter positlons of a records sglli
records must be the seme jength. The location and length
of the ldentifler are flie attributes; they are made
available via en operating system request.

This festure Is to allow Ffiles crested by sSource code
utilities to be used as source jnput.

2+3.2.2 Lipg_Numbstrs

Line numbers are numeric entities used by complilers and
edjtors, In general, editors will affix iine numbers to
lines and compilers will use these line numbers for
diagnosticss cress reference mepsy run time error
messagess etc. Line numbers should not be confused with
statement identifiers that are produced by SCU and sre
aliphapumeric.

The locstion of the 1ine number in & text 1lne may te
immediately to the left or the right of the text of the
iine. The position of the iine number field Is conveyed
via the flle ettributes. The 1ine number fleld may be

from one to six characters in size. The oniy valid
characters In the field are blanks and the decimal dliglits

0 to 9. Lesading blanks are lgnored. A 1ine number is
terminated by end of field or one or more blank characters.

Additionad semantics for the i1ine number fleld will very
from processor to processor. In particuliars many
compliers may not accept more than six digitss Another
example Is the cross reference map produced by CCM which
only has space for a six digit iine number. Most
processors wlll ailsc Insist that the l1ine numbers be
uniques ascending, and that every 1ine be numbered.

2.3.2.3 Statapept_Body

The body of each source Input record is thet part which
represents the data to be scanned or processed by a
product set member. It begins In position 1 If there are
no statement lIdentiflerss or If the identiflers appear at
the end of the record., Otherwises it begins In position
{n+1) where 'n? js the tength of the statement identifier.

2=-32
86/02/04

CYBRER 180 System Interface Standard

D . ———— A T B . s ms a—— —

2+0 INPUT
2¢3+.2+.3 Ststement Body

——— - - - - -

The maximum size of the statement body is product set
member dependent and conforms to the size specifled for
the assoclated language. Source records shorter thsn the
maximum are scanned to the end of the record. Records
exceeding the meximum size are truncated {(i.e. data is
transferred up to the maximum); a diagnostic Is raturned
by the Record Mansager.

2+3+2.4 Blenk_Compression

The CYBER 180 Record Mansger iS responsible for
compression/expansion of blanks. The capability to read
the source input in compressed form Is not provided. 1T
the requirement for this capabliity emerges (for
performence optimization)y it will be addressed in @
ravision to the standard,

2.3.2.5 Eppty_lpeui_Elle

Diagnosis of an empty input file results in the issuance
of a stendard 1og message: EMPTY SOURCE INPUT FILE
{formatted In accordance with conventlons stated in
sectlion 3.2). 1If the Jjob involved Is interactive In
origin, the message is also sent to the terminal (see
section 3.2.1.2.)e In additions, generation of the primary
output of the product set member Involved (e.5. Flle
specified by B parameter for compilers) Is suppressed and
the SCL STATUS wariable {refer to section 2.2.4.2)y is sat
to reflect the error.

2.3.2.6 Null_Sourge _Lline_Copv¥eption

The number of records in the source flle should be the
same as the numter of sculfce lines in the source list.
Evan though 8 null record has no datay the record should
not be lgnored. Sincey In the source jisty, the absence of
all characters In a reccrd looks the same as a record
containing ail tianks, null recorcs shouid be mapped to
all blanks,

2+3.3 DISPOSITIGN OF INPUT FILE

The flinal acticn to be tsken with respect to the source
input file Is dependent on the manner of termination of
the product set memnber. For norma) tarminstions the Input
file is closed with the no-rexind option; this lnctudes
the case where sn empty file |Is detected. For abnormal
terminationy, the prceduct set member Is responsible for

2-33

CYBER 180 System Interface Standard :
86702704

2.0 INPUT
2+3.3 DISPOSITION OF INPUT FILE

——— o e o ot - -

positioning the input file as If normal processing had
cccurrady using apprepriate faclilties of the Record
Manager.

2.4 COMPILATION_DIRECIIVES

The useér of a Compiler may control wvarious activities of
the compiler by specifying one or more compile time
dirtectlves. The directives are expressed elther In a
speclal form of s comment within s particular lsngusge
{e.g. FORTRAN» COBOL) or In speciel source statements If
the language provides such statements (e.g. CYBIL).
Compilers that slready have speclal source statements for
directives do not have to process directives embedded
inside comments. Compilers which now bave compilation
directives in comments should honor both old and new
directivas. When a compilation directive conflicts with a
control statement perameter option, the compilation
directive overrides +for exampie, the options for the
parameter LO will be overridden by 8 confilcting directive
uniess specificeily stated otherwises such as LO=35A.
However control) statement parameters denoting flle status
or destination would take precendence over directives.,

For example LIST=%nuill would take precedence over any
directives requesting that something be listed.

Since the major prodramming langusges ate subject to
standardization by bodies such as ANSI», FIPS» and 1350,
inltial complisnce with the Torm of compitation directives
in this section may have to be altered in the event of
standards covering this area. BSecausz of the Jonyg term
possibiity thaet the major Janguages will be different,
fuiid uniformity across 180 products 1s unlikely,
Therefores, products with CYBER 170 directives that do not
conform to the syntax contalned here should retain
compatibility with the CYBER 170 form to minimize
migration problems rather than cause a conversion in going
to 180 and possibly have o cause a second conversion to
comply #ith external standards. New directives in ereas
which wiil never te subject to standardization shoulid
follow the form of this section.

The Compllers support two general classes of directives:
. Compiler Cail directives
. Source Embeoded directlves :

As dliscussed In section 2.2» the directives specified on
the commaend calling the compiler are astablished for the

2=-34
CYBER 180 System Interface Standard
86702/04

- - -

2.0 INPUT
2.4 COMPILATION DIRECTIVES

entire compilation process. They apply to all subsequent
compilation units {(program modules or subroutines) xithin
the compile Process.

Source embedded directives are established only for the
compliation unit in which they appesr, They are expressed
either in a special form of a comment within a particuler
fanguage {e.g« FORTRAN, COBOL) or In speclisel source
statements If the langusge provides such statements {(e.g.
CYBIL)s Compilers that siready have specieal source
statements for directives do not have to process
directives embedded inslide comments. The syntax of s
compiler directive within a comment is es follons:2.

$ directive [»dlirective 1 .+ o+ &

Example - FORTRAN source embedded directives
Ct% directive - C in ccluymn 1

Example - CCBCL source embedded directives
% directive - * in column 7

Mydtiple directives may be contained on the same input
stateament.

Where directives have parameters, they foilow S3CL rules.

Source embedded directive format errors are dliagnosed with
Warning or fTatal class error messages, as appropriate.

The fcllowing standard applles to compilers that process
directives embedded Inside comments. A compller is not
required to implement gll the festures listed below, nor
is the list restrictive.

2+441 PAGE EJECT
EJECT

This directive causes the page line counter to be reset

to i. When the line counter Is reset to 1» a standerd
§isting header will be written on the source listing prior
to the next source line. This directive will be Jisted
before the psge line counter Is reset toc 1. If the pade
Is at top-of-form when this directive Is processedy it Is
processed as a "no-op". If a continucus page Is being
wrjttens this directive will simply rasult In a triple
space without 2 new listing header.,

2-35
CYBER 180 System Interface Standard
86702704

0 INPUT
4

2»
2¢4+2 SOURCE LISTING

22422 SOURCE LISTING
LIST and NOLIST

The NOLIST directive causes the listing of the source
modules Incuding compiler directivesy to be suppressed at
this polnt. The LIST directive csuses the listing of the
source module tc resume at this point. The directives
LIST or NGLIST ere 1isted at the point they occur..

2e4+3 LINE SKIP
SPACE = number

This directive causes the specified number of print lines
to be skipped at the point in the source module listing
that 1t Is processed. This directive #ill be listed
before the skip action starts. 1If the page line counter
is exhausted before the specified number of iines have
been skippedy the line counter iIs reset to 1 and skipping
terminates.

number 3 integer value 1 thru n; If omitted
{including the #=v), the default is 1.

2.443.1 LINE_S2ACING
SPACING = number

This directive specifles the number of lines to be
advenced before each source 1ine Is listed. The nem value
for spacing will take effect withk the next line following
the spacling directive. when listing a source line If the
page {ine counter is exhausted before the specified number
of lines have been skipped> the 1ine counter Is reset to 1
and skipping terminates.

number: integer value 1 thru 3 indicating single,
doubte or triple spacing; If omitted
{including tha "x™), the default is "1*%.

20444 TITLE LINES

TITLE = character string

SUBTITLE = cheracter string

These directives define strings of alphanumeric characters
Iin SCL formet which wii) be printed following the standard
page headers on the source module Jlisting {see TITLE Lines
in section 3). TITLE causes a page eject to occurs unless

2-36
86702704

CYBER 180 System Interface Standard

2.0 INPUT
2244 TITLE LINES

- - - o p - -

the page Is slready at top-cof-~Fform. TITLE is listed at
the top of the rew page,

SUBTITLE also cesuses @ page eject to occurs unless the
page IS already at top-of-form or TITLE has just been
processeds SUBTITLE s listed at the at the top of the
page follcwing TITLE if thare Is one.

Compilation Directives
22% 5 RANGE CHECK
RANGE and NORANGE

The RANGE directive directs the compiler to generate
edditional object code which performs range checking for
subscripts» indexess scalar assignmentss cese varisbles,
etc.

The NORANGE directive directs the compiler to not generate
additional renge checking oblect code.

The default for the compilation unit iIs NORANGE.
2+.% 56 EXECUTION TRACE
TRACE and NOTRACE

The TRACE directive directs the compiler to generate
additional object code which Facliltates tracing the flow
of the Program during execution. The TRACE directive Is
ignored uniess the DEBUC_AIDS=TR psrameter is given in the
product call command.

The NOTRACE directive girects the compiier to not generate
additionsl flow tracing object code.

Minimum trace infermetion will alwaeys be provideds See
se2ction 5.4 .1e2

Tha default for the compilation unit is NOTRACE.
2e4e7 DEBUG STATEMENTS

CEBUG and NODEBUG

Source Input stetements that are to be compilied oniy for
debuggling purposes are enclosed between DEBUG and NCDEBUG
directives. Enclosed scurce statements are compited only
iIf the DEBUG_AIDS=DS is given Iin the product cail comrand.

2-37

CYBER 180 Systiem Interface Standard
' 86702704

-

20 INPUT
2+4.7 DEBUG STATEMENTS

A - - - " - —

2e%+3 SEQUENCE CHECK
SEQUENCE and NOSEQUENCE

The SEQUENCE directive diracts the compliler to check the
input source stetement sequence numbers for ascending
ordera. '

1f a seguence error occurss It will be flagged with a
warning diagnostices (See section 2.2:4%.2)

The NOSEQUENCE directive directs the compiler to ignore
Input source ststement sequence numbers.

The defeuit for the compilation unit is NOSEQUENCE.

The SEQUENCE and NOSEQUENCE 1ines themselves are not
checked for segquence.

2+.%.9 OBJECT €ODE LISTING
0BJLIST and NOOBJLIST

The DBJLIST directive directs the complier to print the
object code listing at this point. The NOOBJLIST directs
the compiler to stop printing the object 1isting at this
point. Tke obJect code will appesar in the object code
part of the listing {see section 3.3.4).

OBJLIST and NCCBJLIST act independently of LIST and
NJLIST. The default for the compllation unit is NOCBJLIST,

2410 STACKING COMPILATICN DIRECTIVES

PUSH (compllation directive) and POP

The PUSH commanc will place the speclfied compiiation
directive on the top of the "directive stack™. The PCP
directive will remove the top directive from that stack.
This procedure nill giloxw temporary alteration of the
tocal environment without permanently affecting the global
environment. Ffor exempie, If It Is desired that a called
common deck 1ists its name on the print flle, regardless
of whether the entire common deck is being listedr» then
the following swould be placed In the common decks

PUSH (LIST)
comment incliuding common deck Name.
POP

2—-38
CYBER 180 System Interface Standsrd
86/02/04

o - --———— -~ ——

2.0 INPLT
204410 STACKING COMPILATION DIRECTIVES

—— - - -

2.5 PRODUCTI_DIRECIINES

The format of product directives {commands) must follow
the set of language rulies and conventions of the System
Command Language, These directives freguently occur in
products {often various types of utilities) that are not
compliers and ere thus listed separastely. The standard
parameter names as described In sections 2.2+.4.2 and 2+.5.1
myst be used as appliicable.

2¢5.1 STANDARD PARAMETERS

These parasmeters occur frequently enough to warrasnt meking
sure that all commands using them do so in the same way.

Parameter
Name All as farameter Description
- BRIEF BR This paramefer specifies that 2 brief form of
’ Informetion is requested for display at 2
terminal or print file. 1It is 2 boolean used
in conjunction with the full psrameter. The
brlef selection is used as the default.

FUlLlL FU This parameter speclifies that a full form of
informstion is requested Ffor display at 2
terming]l or print flde. It is & boolean used
in conjunction with the brief parameter.

"COUNT cou This parameter specifies a count of units (e.ge.

files records) assoclated with the command
function. The default value Is one.

FILE F This parameter specifies the local flle name of
a flle used &s the obJject of 2 command
function. It is used when the flle Is not one
of the specific files Identifled in section
202422 (etﬂo CDﬁPILE) INPUT)

WAIT WAI This parameter specifles the requestor should
be placed §n a walt stste if a request can't bde
immecistely processed {e.g. 8 file is busyd.

It Is a boolean used in conjunction with the
nonsit parameter.,

NOWAIT NOW This pearameter specifies the reguestor should
not be placed in a walt state If a reguest
cannoct be immediately processed. It is a
booiean used in conjunction with the walt

USER

2=-39
CYBER 180 System Interface Standard
86702704

INPUT
«1 STANDARD PARAMETERS

2.0
2.5

parareter. The nowait selection Is used as the
defsult.

us This perameter specifies a user
jdentification, It is slways the 3l-character
user and family names 8s specified to gain
access to the system,

: PASSWORD PA This paremeter specifies a 31-character

UPON

password needed to gain sccess to an entity or
to execute 2 function,

This parameter speciflies the 1ocal flile name of
an output flte, It Is used when the flie is
not one of the specific files Identified in
section 2.2+%4+2 (€ege LISTy BINARY-OBJECT).

LIBRARY LI This parameter specliflies the local file name of

@ Iibrery file {e.gs source library» object
library).,

29542 STANDARD COMMANDS

These commands are required> as a minimum, If the functions
described by the commands are inciuded In the utltity,
Utilities may optionaliy Include aliasaes to the required

command.
Command Description
QUIT This directive enables the user to exit» or get

out of, a utility.

3-1

CYBER 180 SyStem Interface Standard

- -

3,0 OUTPUT

v ——

86702704

- -

3.0 QUIRUL

All products will feollow a uniform set of conventions for

generated outputy as specifled herein.

All CYBER 1890

products will use the facilities ¢f the CYBER 180 Record

Manager for such ocutput.

3.1 RECOMMENDED_NUMBER._BASES

The use of hexsdecimal numbers on output producéd by L£Y180

software myst be controtled to promote readability.

Al

products will foilow the set of guldelines set hereine.

321+1 STTUATIONS AND RECOMMENDED NUMBER BASES

Addresss, Address Offset:

Dayfile informaticn:

gbJect Code Listings:
Instructionss:
Cperand fields:

Branch Destination:

Instruction Offsets

Core and Flile Dump:

Page numbers:

Hexidecimale When & length is
specified In conjunction with an
address or address offsets the
length Is represented in
hexidecimal

Decimal statistlicss decimal
resource limits.

Hexadeclimal (4 or 8 hex digits)
Decimal

Hexidecimsl. The value is the
instruction offset of the
destination instruction rather
than the relative offset from
the branch instructlion.

Hex idecimsal .

Various formats shoulid be
availabley Including
hexadecimal, ascli» integers
floating point,

Decimal.

3=-2

CYBER 180 SyStem Interface Standard

86702704

3.0 OUTPUT
3.2 LO6S

3.2 LO6s

——— - - - -—— - - - -

Th2 logs treated In this saction are those maintained by
the oparating system. The 035 provides Interfaces to put
items into the logs and the SIS provides conventions on
how to use these Interfaces and on the contents of data
put Into the logs.

The set of Jogs Is divided into tso major classes, ASCII
and binary. The ASCII 1oys contsain only ASCII-encoded
datas The binsry logs may contain any type of data.

The logs include:

system 1og (ASCII)

Job log (ASCII)

account 1cg (binary)
engineering 1og (binary)
statistic 1og {(btinary)

Job statistic 1og {(binary)

BN T T

3.2.1 ASCII LOGS

Each ASCII Jog contains a set of records ordered by time
of entry into the loge Each record contalns several
fields, some automatically provided by the logging
mechanisms and some providaed by the caller of the
mechanisme The following fields are provided by the
iogging mechanism:

- time of day of the entry of the record iInto the log

- origin of the message (commend» program—issued,
comwand fros procedurey 2tc. —— that Is: callers in
0S5 rings wnay specify the message orfigin in the cali,
caliers In users rings may not and their messsges
are always Yprogram—issued®).

The system log has ah additional system-provided field to
identify the message issuing Job. Alsos, each iog record
contains a field for data provided by the program making
the record entry.

Except for certain operating system programss the
Iinterface to be used bty the 0S5 and product set for putting
messages Into ASCII 1cgs Is that provided by the "message
generator™s a fecility of the 0SS {(see NOS/VE ERS).: The
message generator Is glven a status record that describes
the type of message and any variable data to be "edited”

CYBER 180

3=3
System Interface Standard
86702704

-

3.0 DUTPUT
3.2

«1 ASCII LOG3

——

Into the message. The message generator:

-

—-—

finds the appropriate message skeleton in a Jibrary
which Is in the current Jjob library 1lst

edits the variable data into the message

Jogs the final message in whichever logis) are
specified by a combination ofsz

* dastination specified within the message
skeleton record

* job option selection (2.0 "i0g only errors®,
*Jog 8il fatals", etc.) - things such as
message Importance level ere defined In the
message generagtor calt,

displays the messasge at a terminagl depending upon
job_optiun

The use of a3 message generator esses:

consistency of messages within and across products
physical compression of message text
extraction of message types for documentation

routing/suppression of masssges based uUpon messsage
tevels {ea.gas trivial, fatsl, etc.) and upon user
desire for only certain levels ("level™ or
"importance™ Is specified In the message generator
calls not in the message skedleton)

instaliation control over what kind of messages
should appear In the system log

Arbitrary user—initliated Jogging need not use the meéssage
generator.

3.2.1.1 System_Log

In addition to the besic system-provided fields, 2ach
system log entry contsins a field identifylng the
part;cuiar Jjob from which the message came or to which it
gpplliese.

3=4
CYBER 180 System Interface Standard
86702704

3.0 QUTPUT
3.2+.1.1.1 PURPOSE

- - - - ——— - - e — - - -

32.2+1e1s1 PURPOSE
The primary purpose of the system log is to serve as s
repository for information regarding external systenm
workload. That isy, the work the system was asked to do
via commands and the high ievel responses of the system in
regard to the commands.

322s1e1.2 CONVENTIONS

' The system log contains predominantiy a subset of Job log
messagas that are of Iinterest to the installstion. This
normally Includes at least:.

- all) systen level commands (supplied by 05)

- a}ll commend completion messages

-~ start of esch job executlon {supplied by 0S)

- end of esch job execution (suppllied by 0S)

- rerun of each Jjob execution {suppliied by 05)

- system identification (supplied by 05)

- other information supplled by the 0S like dats,.
hardware and software configurations and changes,
deadstarts, recoveries, etc,

Tha system log should contalin only Indications of the
major changes In state of the system and of indivldual
Jobs.

The specific messages that should be routed to the system
1og in the default "as-shipped” system will be determined
on 8 case-by—-cese basis using these general conventions as
guldel iness

Note that since message destinatlon (which log{s))
Instructlions are separate from the message-issuing codes
this determination does not involve code modification.

See Job Logy Conventions for further guldelines.

3=-5

CYBER 180 System Interface Standard

86702704

3.0
3.2.

JuTPUTY
1.2 Job Log

- —_———— —_— - -

3.221.2 Job_Ligg

3.2.1.2.1

342.142.2

PURPQOSE

The purpose of the job loy is to bhoid a trace of Jjob
execution, Information concerning the work requested and
accompl ished Is recorded here, It provides a sumwmary of
the flow of the jobs prcblams encountered end charges
accrued by the job.

CONVENTIONS

Kaep 109 messages simple and short. Use the logs for
summary Information. Use list files or binary logs for
detalled or repetitive deta.

Messages longer than the listable output "narrow"™ format
are discouraged.

Simple completion messages that convey no more information
than "it's done”™ are not to be put into logs. In 3 batech
casey completion is obvious from the appearance of the
next commands In an interactive case, the 05 will see to
It that the terwinal user is notiflied of compietion.,

Completion messseges that convey a2 small amount of useful
or interesting informetion are encouraged in order to
enhance the "1ive" appearance of the system. For examples
w23 records sorted.” or "Cycle 25 used.". Information not
specific to the operation performed should not be
inciuded, however {1ike CPU time for a compilation).

Messages (at leest the non-brlief mode ones) should have
the general appearance of normal sentences, That is, they
start with a capital letter» are comprised of both upper
and lower case letters, and end with a period. When an
fextended message® of more than one line must be Issued,
each line should nots however, end »with a perlods but each
sentence should. This faulliar sentence-type structure
adds to the "comfortable” faeling that we'd like cur users
to hawve for our systenm,

Accounting and low-level statistical and hardware error
Informaticn Is not to be placed into ASCII logs except by
the 0S.

Message—at~a-time "current status™ messages (1ike
"compliing alphagese. compiling beta...™) are not to be
pllaced In logs. The DS will provide a means fof programs
to post these kinds of messages. The current message witl
be displayed at arn interactive terminal when reguested by

3-6
CYBER 1380 SyStenm Interface Standard :
B 86702704

— - - —-—

3.0 0UTPUT
34201s242 CONVENTICNS

the terminal users. Pocsting of these messages is
encouraged.

The message generstor will supply product and message type
Identification tased upon the status record passed to it
in a call. Procducts should not Include this Informetion
in messages.

¥hen more than one datum is to be i10gged, try to mininmize
the number of messages Jines produced by putting more than
one datum on a line. For examples issues

23 records sorted; Merge order 12 used; 14 insertions.

rather thans
23 records sorted.
Merge order 12 used,
14 Insertions.

3.2+.2 BINARY LOGS

Binary logs are provided In order to allow the recording
of log information in a compact form that Is readable
primaridly by programs. Each blnary log contains CYBIL
records orderec by time of entry into the log. Each
racord contains severesl filelds, some automatically
provided by the ioggling machanisss, and some provided by
the caller of tre mechanism. The folloning flelds sre
provided by the logging mechanism:

- time of day of the entry of the record Into the log

— the ldentification of tha Jjob from which the record
came or to which it applies (this fleld is not
recorded in the Jjob statistic 1og)

- the orlgin of the record {(system or non-systeg --
indicates only whether the caller is inside or
outside system rings» not which product or which
system agency --this latter information Is glven by
the "Iindicator of the type of racord® fleild,)

Fields provided by the calier Include:

- Indicator of the type of record {e.g.» number of FTN
source stetements, 5RJs at end of Jjob, etcs =-the
indicator codes wil1l be assligned and mafagsed in a
manner similar to that used for status condition

3=-7
CYBER 180 System Interface Standard
86702704

3.0 QUTPUT
3.2.2 BINARY L0OGS

codes as descrlibed in section 3.4)
- varlable ceta cepending uPon the record type

Except for certsin operating system programs, the
Interface to be used by the 0S and product set for putting
records Into binary logs is that grovided by the
"statistics facility” of the 0S. The statistics facility
Is given a dats record that describes the type of record
end any varlable information associated with the record.
The statistics faciilty finds Iinformation about the giwven
record type in & "table". This "tabie®” directs the
statistics facitity tc do some combination of the
foilowing things:

- add the verlsble itemis) to counter(s)

- 105 accumul ated counter values tc a8 specified binary
1og or set of binery logs nhen a threshold counter
value Is reached or when a certain time has elapsed
since the Jast “put™ to the iogls) of the
appropriste counteris).: The set of logs is
specified Iin the "tabie"™,

- simply 10¢ this record in the "tsbie-speclfied”
togl(s)

The use of the statistics facliliity for binary logging
eases?

- Instajlation talioring of what 1s considered to be
accounting, performances etce data, For 2xamples
site A mey consider CPU time to be accounting data,
while site B considers It a workload stetistic snd
considers "number of statements compiled” to be
accounting data

- optional routing of statistics to the Job statistic
1og (based upon user deésire, but constralned by
installstion willingness —- via "table”
information —— to divuige certain information)

Since the statistics facility determines the log into
which 8 given statistic (for examplies PIDFR data) is to be
placed {(based upon an installation and COC defined tatle),
system and product implementors should not be concerned
with which log(s) are used Tor "theilr”™ statistics. This
mapping %llj be determined 1ater.

‘ - 3-8
CYBER 180 System Interface Standard

86/702/04

- o - -

3,0 OUTPUT
3.2+2.1 Account Log

. - -

3.2.2.1 Aggouni.les

3.2+2.1,1 PURPOSE

: The purpose of the account log Is to hold accounting snd
bidling Informations. This consists of resources and/or
sarvices useds "who" used them and "who"™ to charge. The
account log should be the only log needed for an
installation to do billing,

3.2.2.2 Epalpsecing.log

' 342e2e241 PURPOSE

The purpose of the engineering l1og Is to hold Information
ragarding system hardweare usage end errors. The
engineering log should be the oniy Jloyg needed to perforas
hardware usage and error anlaysise.

3.2.2.3 3iatistic. log

3.2+2+3.1 PURPOSE
The purpose of the Statistic log Is to holdz

- detalled system worklioad Informaticn

- detalled system performance Information {i.2.» the
way the system responded to the workload)

Al.though some of this information IS recorded in other
logs» a separate log is maintained in order to:

- keep other logs relatively ¥clean®” or orlented to
thelr own purposes

~ ajllow possitbly large amounts of data to be recorded
in a compact binary form

3¢24244 Job_Statistic_Log

3.2.2.4.1 PURPOSE
The purpose of the job statistic Jog is similar to that of
the {global) statistic 1o+ The global statistic log
contains informetion regarding ail Jjobs iIn the systems, but
may be read onily by priwileged programs / users.,
Individual usersy however» may wish to see Information
that Is avaiiatie about their ownh Jjobs. The job statistic
iog may be read by normal programs / users and contalins

3-9
CYBER 180 System Interface Standard

86702704

3.0 OUTPUT
30242+%4+1 PURPOSE

o — — -

Information regerding a singlie jobr similar tc the “scope®
of the ASCII job log.

3.2.2.5 3lpary.log.Conyeniions
Avoid the use of character datas, Since esch record type
is pre-definedc by a CYBIL record type definition, there iIs
seldom a need to describe the varlous data fields with
keywords or the 1lke.,

Massage type Naming Follows the naminyg conventions
descTibed In 51IS section 3.4.

Use the binary logging facilities for PIDFR data.

See the 05 ERS and the S5I5 Usage Statistics section for
minimum list of jtems to be 1cgged.

‘ Addltional conventions wiill be added as design proceeds.
3.3 LISIABLE_OUIRUI
Wwhen a significent amount of information Is to be returned
to the user, it Is written to a "iistabie output fllev,
The standard formet of such a file is described here.
CYBER 180 Qutput Standard Is defined In terms of:
. Output Flle Organization
. tisting Page Layouts
. Page Header Format
. Format of Esch Listing Type
. Object Code and Debug Code
3.3.1 LISTING PAGE FORMATS
In the sections thet follow, the contents end format of

the standard listings produced by CYBER 180 Products sare
defined in terms of a vertical and horlizontai layout.

3-1¢C

CYBER 180 System Interface Standard
86702704

_—— - - - ——— -

3.0 BUTPUT
3.3.1.1 Vertical Leyout

-~ - - — —— - -

3.3.1.1 Yertlical_Layogul

Vertical layout is defined in terms of the first printable
1ine of a form following top-of-form positioning by the
printing device. This position Is defined as line 1 of a
form and lIs reserved for the first print line of the
standard listing header. The product is not responsible
for the physliced gliignment of Iilne 1 relative to the
perforated fold on fan-foid printer forms. This Is the
rasponslibility of the user on printers with vertical
positioning carriage tape mechanisms Or the responsibility
of the CYBER 18C (S Device Software on printers without
vertical carriege mechanisms.

when the Jast printable line of a form has been sritten,
the product will reset the page line counter to 1. When
the page 1ine counter Is equal to 1, the next print line
written is preceded by a standard listing header with a
top-of—form code in the first chsracter position of the
header print record. The product is not responsibile for
the physical alignment of the iast printabie line relative
to the perforated fold on fan-fold printer forms.

'3.3.1.2 Egrmai_Afiributes

Each product must obtaln the output file attributes from
the operating system at the time the file is opened.
These attributes include print modes page widthsy connect
status, pege formety, and page length. Verticel and

hor izontal print density have operating system defined
dafaults which may be changed by the user.

Dutput flies may be either continuouss which has a 1ine 1
positlion but does not hsve a last line position, or
paginated (non-continuous)s which hes both a line 1
positions and & I2st line position. Continuous form
specification flles are intended for users using
interactive terminals {(displiay or hard-copy) for listable
output. Paginated {or "fan~-fold”) listings are intended
for users using line printers for listable output.

For paginated fites, page liength minus the number of 1ines
of header determines the avallasble lines per page. The
operating systenm provides a (default) standard paye length
of 65 lines per page at & iines per Inch

vertical print density. This provides an 11 Inch form
length. Print mode specifies whether or not the paginated
file Is "burstable”™ or "non-burstable™, with
"non-burstable™ being the default.

CYBER 180 System Interface Standard

3~-11

86702704

3.0 JUTPUT
3¢3.1.2 Format Attributes

'3.3‘1.2.1

34341422

A continucus form file Is detected by checking the flle's
attribute page format. Connected files will default to
continuous form mode, but users msy override this by
specifyling a page length for the connected flle.

CONTINUCUS OUTPLUT FILE

When formatting listable output for a continuous form, the
product uses a standard triple—~space code in the first
character position of the line 1 cutput record {usuelly
the first 1ine of the header) to achieve top-of-form

positionings Products wilil reformat 1istings for terminal

users wmhan reguired by this standard.

Each type of 1isting (source ilsting, attribute 1isting,
etca.) Is preceded by a triple—space and the usual header
1inels), but there Is not pagination as such.

PAGINATED OUTPUT FILES

When Tormatting output for paginated iistingss the product
uses 8 standard top-of—-form code in the first character
position of the tine 1 print record {usually the flrst
iine of the header) toc achieve top-of-form positioning..
In burstable 1isting mode, each type of 1lsting produced
by the product {source listing, attribute 1isting, etc.))
begins at a top-of-form position. In non-burstabie mode
(sometimes referred tc as "papPer saving” mode)y, each type
of 1isting is preceded by a triple-space and the usual
header line{s) If "proper space”™ remains on the current
pagas YProper space” Is defined es5 6 plus the number of
header ilnes {(insuring that at Jleast 3 {ines of output can
be placed at the bottom of the page); If “proper space”
does not remains the triple space Is replaced by a
top-of-forms The source 1isting always begins at
top-of—-forms and user—-specified page ejects (via
compilation directives) always resuilt in a top-of-form
position unless the listing Is alresdy Positjoned there.

3.3.1.3 Standard._Carrlage_Contral_Codas

Carriage control charscters that ere used should be
reastricted tc the following set:

Character Action
blank Spsce verticaily one iine then printe.

0 Space vertically two lines then print,

3-12
CYBER 180 System Interface Standard

86702704

3.0 DUTPUT
3s341e3 Standard Cerrlage Control Codes

o ——— -

- Space wvertically three iines then print.

1 Eject toc the Tirst 1ine of the next page
befcre printing.

+ No advance before printing; allows
overprinting.

This set represents the full extent of compatibiiity
between current CDC usage and the proposed ANSI standerd.

Under NCS 180s horizontsl print density and

vertical print density are File attributes that the user
may modify. The NOSs NOS/BE carrlage controil codes S and
T will not be used to set or clear the 8 lines par Inch
mode.

It wili be necessery to make some provislon for ssiection
of print density when NOS 180 print files ere to be
printed by NDS or NOS/BE. The first release of NOS 180
wlll depend entirely on 170 state for print files.

3.3.1.4 Horizonial_laxous

Horlzontal Jayouts are defined fol the standard wide format,
that is, 132 columns. Assuming a default density of 1C
inches par seconds 132 columns uses 13.2 Inches of the
standard 1l4-inch line printer paper umldth,.

Products are also reguired to support two terminal formats: the
standard "nlde format™y 132 columnss, and the standsrd “narrow
format™, 80 columns. Formatting for other line widths in
additlon to the standard terminal 1ine is permitted. All
formats other than the two standard formats are referred to as
"other formats®.

The first character position of ar output record Is interpreted
by the output device software as the vertical positioning
control character and Is never printed or displayed. The 132
character positions following the first charascter position of an
output record contain the characters to be printed or

displayeds Therefores the character in the second positon of

the output record Is printed or displayed in the first position
of the output line.

3-13

CYRER 180 System Interface Standard

T - 1 T AT N DD, oy ey v, e w00 ———-

86702704

3,0 OUTPUT

3.3.1.5 Standard Listing Header

—— -

3.3+1.5 Standarg._Listing_besadser

All CYBER 180 Products will use a standard 2 1ine page

header format on ali

listings produced by the products,

Through this sections date and time flelds conform to
standerds defined in section 4.1.

3.3.1.6 QIHER_EQRMAIS

If the line width specifled is other than 80 or 132

the heading will be mapped to one of the two standard
fisting headers. Other ocutput will honor the actual 1ine
widthy unless specifically column orianted throughout the
fine {as opposed to column orjented for the first portion
and opan ended for the last portion, such as sourcel.

Line 1 of the common page header contains the folloxing
Flelds (fleld definitions are in COBOL format)l:.

System Name x{(8)

Prioduct Name x{8)

Product vVersion 9.99

Product Level 96959

Listing Name x{14)

Operating System name.

The donghand form of the
product names 1.2.» FORTRAN»
FMUp BASIC» etc.

Product version number. The
number after the decimal
polint is shown left
Justifieds 1.2, 5.1 not
501 This number Is updated
at the product source code
level by the responsidle
development organization for
each new version release.

Product modificstion level contsined
within the product itself. It Is in
the form YYDDD representing the julian
date when the product was complled.,
This number Is updated by the bulld
procedures fTor each new update release,

Name of the particular
1isting being produceds The
acceptable listing names are
defined Iin the following
sactions which define the

3-14%
CYBER 180 System Interface Standard

86702704

—— - - -

3.0 DUTPUT
3234146 OTHER FORMATS

- - " - - -

format of each listing type.

Module Narme x{31) Name of the source module
being complilied or the name of
the input file belng
processeds. The modulie name
Is obtained from the module
jdentification statement
provided within the language,
or» the default name provided
the product when an
jdentification statement Is
not used. This name need not
appear In the first page
beader If uncbtainables The
name wWill appear 1eft
Justified within the field 1If
shorter thsn 31 characters.

Dates x(18) Date at the time the first
header was written (1isting
Page Number reset to 1)+ The
date is obtained from the
CYBER 180 0S using a standard
Progrem Management reguest,
The date format will conform
to the standard glven iIn
section 4.1

Timea: x{12) Time of day at the time the
first header was written
{1isting Page Number reset
t0 1) The time Is obtained
from the CYBER 180 0S5 using a
standard Program Management
request. The time format
will conform to the stendard
glven in section 4.1.

Page Number TPAGEY 2229 Integer number generated by
the product starting at 1 and
incremented by 1 for esch
page header written for s
compllation units The page
number is reset Tor the first
page header written for s
compliation units This field
Is omitted from the stendard

3-15

CYBER 180 System Interface Standard

3.0 DUTPUT
3.3

———— —-———

86702/04

«1.6 OTHER FORMATS

3.3.2 FORMATS

Tao Yoglical

products:

header when a contlnuous form
is speciTleds The two parts
are glways separated by one
bianks ‘

{ine width listing formats are generated by

- Page Formatted 1ines of 132 characters

- 80 Co

lumn Formatted Llines of 80 characters

3.342.1 YWide_Eormal_(132_solumpsl

A standard header will be written at the top-of-form
position of a listing whenever the page line countier is
reset to 1 except when a continuous form Is being

A stendard bhesader will be written only at the
beginning oFf a listing when & continuous form is

writtens

specifled,

A specified page width of 132 or greater wiil

result In the following heading line,

FILE CONTENTS LIST - WIDE FORMAT

Columns

Columns
Columns
Columns
Columns

Columns

Columns
Columns

Columns

i-14

16-46

48-53
55-(54+n)
(56+n)-{(59+n)

{61+n)-89

91-108
110-121

123-132

Listing Name or Columns 1-46
program name

Module Name

System Name

Product Name {(length=n, n<24)
Product Version {length=4)

Product Level (length=5, blank
fitled)

Date {right justified}
Time {right Justifled}

1PAGE? and Page Number {right
Justifled} '

A1Y unspecified columns contain blankse.

3-186
CYBER 180 Syster Interface Standard

86702704

- - -

3.0 DUTPUT
3.3.2.1 Wide Format {132 columns)

- - - - - — " - -

FILE CONTENTS LEGIBLE - WIDE FORMAT

Coluamns 1-14 Listing Name or Columns 1-4b6
progrem name

Colunmns 16=46 Module Name

Columns 48-53 System Name

Columns 55-78 Produgt Name

Columns 80-83 Product Version

Columns 85-89 Product Level

Columns 91-108 Date {left Jjustified}

Columns 110-121 Time {left Justifiedl}

Columns 123-132 PAGE and Page Number {ieft

Justified)

3.3.2.2 Narcow Eormat_{80_Cglumpsl

The product will reformat the standard psge format for a
80 character 1ine. A physical output line formst
greater than the specifiad line size may be right—end
truncated by the product to the required specificstion.
The excess chsracters will appear on the next Jine. A
product msy choose to reformat narrow listings within
the provisions of this document.

The header format {on terminal formatted listings}
consists of two consecutive 1ines contalning the flelds
defined above in the following positions on lines 1 and
1ines 2. The PAGE and Page Number fTlelds are optional
for continuous flles,

This Information wiil appeal within the following column
positions of the first print 1ine (Product Namey Product
Version» and Product Levz2] are Jeft Jjustified, sepsrated
by one blank column):z

FILE CONTENTS LIST
Line 1

Cojumns 1-14 Listing Name

3-17
CYBER 180 System Interface Standard

86702704
;a oUTPUT ToTTTTTT T B
3934242 Narrow Formet {80 Columns)
Columns 16-4¢ Module Name
Columns 48-€35 Date {right Justified}
Columns 70-80 Page {right justified}
Line 2
Colunmns 1-6 System Name
Columns 8-{7-n} Product Name {length=nsn = 24}
Columns {9+n} - {12+n} Product Version {length = 4}
Columns {144n} - 42 Product Level {iength=5, biank
1112
Columns 48-65 Time {right Justified,
left blank padded]
FILE CONTENTS LEGIBLE - 80 Column Format
Line 1
Cofumns 1-14 Listing Name
Columns 16-46 Module Name
Coiumns 48-65 Date {left Jjustifiedl}
Columns 70-80 : Page {left justified}
Line 2
Columns 1-6 System Name
Coiumns 8={7-n} Product Name {length=n, n=241}
Columns {9+n}-{12+n} Product Version {length=4}
Columns {14+n}~-42 Product Level {iength=5 bilank
111}
Columns 4&=65 Time [left Justified,

right biank padded]

3-18
86/02/04

CYBER 180 3ystem Interface Standard

3.0 DUTPUT
3.3.3 SOURCE LISTING FORMATS

‘3.3+3 SOURCE LISTING FORMATS

The following standard applies to compllers, assemblers
end interpreters. Assembiers mey optionaiiy insert binary
Information at the 1eft of the source statement., Page
ejects mey be suppressed Tor subseguent listings of each
module {e.g. Maps Cross reference) if the source listing
is short {(e.g. 172 a page or less).

The number of records In the source file should be the
same as the number of scurce lines Iin the source list,
Therefores null records should be mapped to all bdilanks.
{See section 2+3:246,)

3.3.3.1 Siandard._Hsadec.Contsnts

Every printable source listing contsins the folilowing text
in the Listing Name fleld of the stsndard listing headerz

SOURCE LIST CF
-=14 characters—-

A standard source {lsting header will be wiritten at the
next top-of-form position whenever the page {Ine counter
is reset to 1. Only the first source 1isting header wil}
he aritten on s continuous form.

3+3.3.2 IIILE. LiDes

When source embedded TITLE or SUBTITLE directives are
processed, the page line counter is reset to 1 and ¢
standard header is written., The title text Is printed
beginning In column 25 and ending in column 132 of the
1ine immedlately foliowing the flrst line of the standard
header. The titie lines are followed by a biank line.

standard hesder —-- line 1
title text -- line 2
subtitie text -= Jlne 3 - 11 {if any)
blank -= {inpe n

n may take the value 3 to 12, depending upon the
presence of a subtitie lines.

When e source iisting Is belng formatied for a continuous
forms the titie 1ine 4s simply preceded and followed by a
single blank {ine.,

If a SUBTITLE occurs without a TITLE, a blank iine Is

3~-19
CYBER 180 System Interface Standard

86702704

- - -~

3.0 OUTPUT
3.3.3.2 TITLE Lines

- S S S - " map

pliaced In the position which woulid have been occupled by
the TITLE.

When the source input modulie does not contaln a TITLE
directives, two blank tines immediately folliow the second
line of the stenderd 1isting header.

3.3.3.3 yida_Format

The actusal source statement listing begins on the line
Foidowing the bilank line following the header, or tities
If present. Each source jisting print iine contains the
following optional Fflelds:

Offset Z4(8) A zero supPressed hexadecimal
number (see section 3.1) giving the
byte offset iIn code section of the
first Instruction generated for the
listed source statement. If this
fleld Is supported, It Is selected
by the 1ist option 80. If
sejectedy the field must be
supplied for s8ld source listing
1ines.,

Input Line
Number Z{1G) A pnumericy, zero suppressed number,
up to 10 characters In lengthy
aliocated to the source line. 3See
section 2.3,

{eft Statement
Attributes x{4) Lenguage dependent sttributes.

Rignht Statement
Attributes x(4%) Compiler dependent sttributes.

The Source Record
Is a2 required fieid

Source Record x(132) Up to the flrst 132 characters of
the Input source recorde If the
source line is less than 132
characterss this fleld is left
Justifieds Source Code Utility
{SCU) identiflers are contalnad
within this fleldy, if they exist.

3=-20
86702704

CYBER 180 System Interface Standard

T T YD D > T W D N N . ey

3.0 DUTPUT
3.343.3 Wide Format

- - - - -

If all flelds were present Iin a source 1isting, column
positions would bes

Colunmns 1-8 Offset

Columns 10-13 Left statement attributes

Colunmns 15-24 Line number

Columns 26~125 Source {Iincluding SCU
identificetion when present)

Columns 127-130 Right statement attributes

If an optional field is not used the remaining flields will
be adJusted to the Jeft.

Whan the source record (26-12%5) Iincludes 5CU
jdentification information the following column positions
will be adhered to for the source record

Columns 26=105 Source
107-12% SCU identifier.

The flelds should not be changed (mixed) between
successive uses. Once the flelds desired are estabiished
they must remain unchanged.

Existing flelds before and after the source record may be
bl ank. If the source record overfiows an additional i1ine
Is written within the source record fields 1In this case
the right attritutes fleld of the first line contains
.42 a5 the first three charscters and the rest of the
field and offset fleld sre blank., The overfiow line
contains blanks in the line number fleid and the remainder
of the source record left justifled in the source record
fieids The right attributes flield contsins the
information wnhich would otherwise have appeared In the
first 1ine.

3.3.3.4 Narcow _Egrmat
The source listing format written on a terminal formatted
listing consists of one or more output lines for each
input source record.
The first Iine consists of the following flelds:

Line Identlifier Numeric right Jjustified leading
zZeros suppressed. Optional
variable width fleld up to 1¢C
characters.

Source Record The source recofd fileld size is

3-21
86702704

CYBER 180 System Interface Standard

— - -

3.0 OUTPUT
3.3.3.4 Narrow Format

dependent on the file attribute
maximum record 1ength eand the size
of the 1ine number fleld,

A single blank separates these twc flelds.
The scurce record fleld size is dependent on the flle
attribute masximum record length.

If the source record is longer than the Source Record
fleld then an ecditionel Line Iis written. The lines sre
printed nith the same format conteining blenks in the Line
Number fleld and the remainder of the source line
laft~justiflied in the Source Record field.,

3.3.4 OBJECT CODE LISTING FORMAT

This is the format for Iisting lines of object code
produced by the compilers at the users regquest.
Assembiers list thelr source lines formatted as submitted
from the input file.

The cbject code listing shali take cne of two forms. The
filrst consists of lines describing each CY18C instruction
enbedded in the source listing anc» as Far as possitles
foliowing the same line from which the code Is generated.
The object code i1ine shalil conform to the standard defined
belowe. A group of object code listing lines shall bte
preceded and foliowed by a blank line.

In the second formy the {ines describing the obJject code,
als0 conforming to the standard defined below, are
collected into a separate Jistings the "object code
listing®™ which shall conform to a page format common to
the 1istings prcduced by ali compliiers. This Is defined
as follows.

Object code Jistings consist of instruction descriptions
and comment lines.

Instruction Description

With the exception of BDP Instrucionsy each instruction
enitted |s described bty a single print line optionaliy

pr aceded and/or followed by comment lines. The ‘
Instruction description will contain the folloning flelds
in the following order, beginning iIn column 2 of the
listable output.

Offset 1218) A 2zero suppressed hexadecimal number
{see section 3.1) giving the byte

3-22

CYBER 180 System Interface Standard

86702704

3.0 DUTPUT

34344 OBJECT CODE LISTING FORMAT

Input Line
Number

Blnary

Label

Instruction

X(1)

211179

x{2)
X{20)

X{2)

x{31)

X{2)

X{10)
B(3)
X{21)

offset of the instruction relative to
an impiementation defined base. This
base shall be the same base used in
the offset Tield in the source 1ine
{If provided.)

The number of tbe input tine for which
the code Is being generated {(as FTar as
Is practicable).,

An 4» 8 or 16-digit hexadecimal number
{adjusted to the Jeft) representing

the binary bit pattern corresponding

to the generated Iinstruction or data.
For readability the suggested form is
to arrange the numbers in groups of 4>
separated by blanks. The 4 and 8

dligit numbers are followed by bianks

to complete the fleid, For narrow
format, this fleld wilt not be present.

A 1l to 31 alphsnumeric character
string identifying the Instruction
{abel as defined for the CYBER 180
assembler. The 1abel field can be up
toc 31 characters In lengths It can bde:
used in an implementation manner in
conjunctlion with the comment fleld,

A cheracter string ldentifying the
instruction and Its operands. The
mnemonics to be used are those defined
for the CYBER 180 assembier. The
mneronic ldentifler only may be offset
by 2 or 4 spaces to agistingulsh
particuiar Instrucions of instruction
sequences., f{e.ge to Jdentify code
generated out of seauence with the
source.) Operands are speclfied in
the order defined in assembler
specification which appears Iin an

3=-23
CYBER 180 System Interface Standard
867027104

T D T D D D DDy oy s —————

3.0 OUTPUT
3.3.4 OBJECT CODE LISTING FORMAT

- - - -

Appendix (to be supplied), As shown
in the format description, the
breakdown of the instrfuction is as

follows:
MNEMONIC X110}
X{3)
OPERANDS x{21)
X{1)
Comment X{z5) An implementstion dependent fleld

typically containing user variatle or
lgbel identifler, register use
cross—references.

Narrow Format

The narrox Tormst and 80 Column Format consist of the
of fset» Jine nuwber, label, mnemonic, operands and
concatenated flelds., The binary field will not be
present. If the listed tine exceeds 80 columns the
fine wili be continued on the next line {(called
"folding”)s., For PN other than 80, the actuail width
speclfied willl te honored; excess information will be
foilded,

Bdp Instructions

These are described by 2 Iine formatted as aboves fol fowed
by one or two descriptor descriptions. These are similar
to the iInstruction 1lines except that the mnemonic field is
bl-ank and the operand fleld contains a descriptor in the
form defined by the assembler speclfication.

Comment Lines
These are used to convey more information than can be
accommodated in the comment field of an Instruction

description., They consist of a compent field as defined
for the Instruction description.

3.3.4.1 3isndard_Header._.Cgnienis
Every printable object code {isting contains the following
text §in the Listing Name field of the standard listing
headers

OBJECT LISTING OF

3-24
CYBER 180 System Interface Standard

86702704

- D W DD o, —

3,0 DUTPUT
3034441 Standard Heeder Contents

- - - - —

-=20 Ccharacters—-

A standard obJject 1isting header wiiil be written at the
next top-of~Torm position whenever the page iine counter
Is reset to 1s Only the first obJect Iisting header nitll
b2 wrlitten on a continuocus form.

3.3.4.2 Standard_lostruction Mpemgnlcs

The instruction menmonics used by the compilers wmiil be
those of the CYEER 180 assembler.

3.3.5 ATTRIBUTES LISTING FORMAT

A common format for the Attribute/Cross Reference listing
Is defined here. It is useable by sll currently planned
languages for the Cyber 180 and provides enough
filexibility tc tallor portions of the {isting to
individual janguage needs.

The content of the Attributes Listing mill vary slightly
depending upon wmhether Cross References were selected or
not, but the essential format wil! be the same., If the
user selects both attribues and referencess the normal
format wiill be used., When references are not selected,
the heading will reflect the differencey but the formst
wlil not vary. If references are selecteds but not
sttributess then some of the attribute informetion
provided will not be listed, providing some additional
space for references on the line.

3.3.5.1 Siendard_Hesder.Contenis

Every printable attribute 1isting or attributescross
raference 1isting contains the following text in the
Listing Name field of the standard listing headers

ATTRIBUTES CF
-—=14 charecters—-=—-

If no attribute list is seclected (cross reference selected
oniy) the following text is placed in the Listing Neme
fiejd Instead:

REFERENCES CF
---14 charscters-———-

A standard attribute list header wili be wWritten at the
next top-of-form position or following a triple spaces as

3-2%
CYBER 180C System Interface Standard
B5702704%

o D S 1ot T S - -

3.0 OUTPUT
3+4345,1 Standasrd Heeder Contents

S?Ecjfi’ed by sections 3.3.,1.2.1 and 34341222 and
whanever fclloxing page breaks occuUr., Only the first
attribute 1ist heeder i1l be written on a continuous form.

The standerd hesder is followed by s blank Iine and one or
more 1ines contsining the attribute/cross reference
listing heading., Thls consists of the field descriptions
as defined In the next sectjonss separated by one or more
bl anks. Numeric flelds in the listing are right-aligned
with the right-hand side of the description; character
string Flelds are aligned on the left, where appropriate.
Some of the field descriptions may be spiit between two or
more lines If required, oy omitteds iIf necessary, as
indicated below.

3.3.5.2 Wide_Eormal

The 1isting is nade up of entries describing the objects
defined in the source programe. Eazch entry consists of a
definition llnes folicowed by one or more extension 1lines
If required., The definition line glves the line in which
the object was ceclared {(or first referenced If Implicitiy
declared)s the ldentifler, and attributes. Extension
1ines are used if there zre more attributes than can te
accommodeted on one lines and to hoidd references If
selected. If both attributes and references are selecteds
the references sliways begin on an extension line by
themselves.

The 1ines contain the filelds described in the table belows
In the order specifieds The tabie also contains the field
description to be placed In the tabie heading, The final
section of the dine (for host suppllied free form
attributes and the references) Is continued on extension
lines 8s necesssrye.

Entrlies occur In atphabetical order with a blank iine
Iinserted between groups of Identifliers starting with the
sameé character. Multiply deflined identifiers are
consecutive In corder of Increasing level of nesting or iIn
order of occurrence of block,

Variable format fleids are optional. They are in the
Iindicated order if used, otherwlse the fleld Is not
presaents The sizes for the given fields are maximuam width.

ATTRIBUTE/CROSS REFERENCE LISTING FIELDS

Fixed Formats:

3-2¢

CYBER 180 System Interface Standard

3.0 DUTPUT

3e3e542 Wide Format

Field
Identifier

blank

dafinlition

blank

slze

Haading

IDENTIFIER

DEFINED
ON LINE

SIZE unit

86702704

Size
x{31)

X{1)

Z(5)

x{1l)
X{3)

Meaning

The ldentifier of the entity.
The name appealrs ieft Jjustifiled,
blank Filled.

The source line nUmber iIn which
the entity was defineds or (for
languages with impllicit
definitions) first used., It may
extend into the identifler field
if larger than five {5) digits.
The second line of the heading
~ON LINE- appears onily In the
wide Fformst.

Size of the entity» In unitss
defined by the host (elther bitss
bytess or words)., The units of
the size of the entity witl
appear as “"BIT"», "BYTEY, or
"YORD". Abbreviations are BIT,
BYTs» WRDe Normally the flelds
for size unit combination wili be

size 2{8)
biank X{1)
unit X{4)

If the size fleld exceeds 8
digitss then the fields witl] be

s]ze 2(10)
unit X{3)
Speclial case:

If size units Is no-size, then
the size field Is aliowed to be 2
signed Integer (64-bit)s This
will be right Justiflied under the
SIZE title Iif possidbie, If it is
too larges it "grows™ to the
right. If It 1s so large 8s to
grow Into the TYPE fleids the

3-27

CYBER 180 System Intarface Standard

3.0 QUTPUT
3,3e5.2 Wide Formst

86702704

biank

type of
entity

blank

location

TYPE

LOCATION
SEC+OFF

X(2)
X{10)

X{(1)

Minimum
x{6)

TYPE field Is pushed to the
vights This Is possibie becsuse
the LOCATICN Fleld Is undefined
if the SIZE units are no—size.

The type of the entity being
listed. Chosen from the list in
section 3434544413 !f the host
wishes further qualificaticns
listed they appear in the
attributes 1ist,

The location of the entity,
where "S5EC® is the section neme
of the section containing the
data for the ldentifled
raferences and "off"™ is the
offset tc the beginning of the
sectlon. The section names are:

SLITERAL The section
centalning literal
constant data.

$STACK The section
containing vsesrlisables
that are ailocated
on the stack when
the containing
procedure Is calied,

$PARAMETER A subset of the
$STACK section
containing parawmeter
list variables
eliocated on the
stack by the calling
procedure.,

$STATIC The section
containing varisbles
that are staticsalily
allocateds, are not
in commony and sre
not in an explicitly
named section.

SREGISTER Varliabies not
belonging to sny

3-28
CYBER 180 System Interface Standard
86702704

T -~ . sy -

« 0 DUTPUT
23e5.2 Wide Format

- S T W . S A G AU I W W D W T - -

memory section but
existing oniy in a
herdware registers

$BINDING The binding section,

$BLANK Blank {unnhamed)
common .«

CYBSDEFAULT

HEAP The system heap.

Code section names #iil be set to
the name of the procedure the
section reprasents. User deflined
names of section and user
declared commoen blocks wild s=lso
be speciflied In full {up to 31
characters)s

When a "sec” name Is too {arge to
fit Into the default Ffield size
allocateds the entire name iIs
printeds expanding to the right.
A llne feed and re-allgnment
"hack"™ to the next iisting fleld
allows continuation of cross
raference data generation. For
narrow format {section 3.3.5.3)»
§if the "sec" name does not fit on
the 1ines It will be put on the
next line by itseifs, then the
rest of the mep wildl continue
following a 1ine feed and
re—-alignment to the next fieid.

Varjable Format
For nerrow formset listing the variable format flelds,
continue on a new line beginning Iin coluan 15 and
extending to column B0, For wide format listing the
variable format flelds continue on tha same {ine beginning
in column 75.

Field Headling Stize Meaning

biock number BLOCK 2999 Specifles the block or subroutine
in which the object was defined.

bl ank xX{2)

nasting NEST 2212999 The neasting level of the

3-29

CYBER 180 System Interfece Standard

86702704

W -

3.0 QUTPUT

3+3+5.2 Wide Format

liavel

biank

contalning
entity

blank

basic
attributes

user
attributes

raferences

LEVEL

CONTAIN ©OR
DECLARED 1IN

ATTRIBUTES

{no heading

REFERENCES
For combine
mapys
will be

X{2)
X{31)

xt2)

X{12)

) free
field
start-
ing on
a sepa-
rate
line

declaration of the entity If a
block-structured language. If
the host is not a block
structured language, the nesting
jevel 1s onitted. The second
iine of the heading - LEVEL =~
appears only in the wide format.

The name of the containing or
qualifying entity. Blank If the
entity Is not contained or
qualified, The "contained
within® form is for arrays and
structures. The "declared in"
form Is for local variables.
entire heading is on ons line,

The

The "basic attribute® of the
entity {entry> external, etc,)
chosen from the 1ist in section
3030542l Blank if
non—-appliceble to the entity. If
there are no optional fleids and
the basic attribute Is not
presenty the whole tine iIs
omitted in narrow formate,

Dther host defined attributes
separated by commas. Thase
attributes begin on a

separate line beginning with
column 54 for wide format and
column 15 for narrow format
distings. Each definition
speclified by the host is placed
on one Iine if possibles
othernise each that overflows
starts a new line, I¥ the
definition doesn't fit alone» it
is broken at a8 blank.

2(6)X%x{2) References oh the identifier

d

subheading

line begin at column 54 on.
the 1listing In narrow format
the flrst 1ine has two

3-30
CYBER 180 System Interface Standerd

B6702704
3.0 OUTPUT |
3.3.5.2 Wide Format
raferences. Subsequent

MREFSH, lines start in column 15

starting on and have six references per

a separate lines In wide format all

iine. 1ines stert in column 54 and have

8 references per ilnes For mixed
mode iistingss see discussion
belom.

The format for references is a six diglt, right
Justified, blank filled intager, foliowed by an
optional siash (7)), followed by quaiifying leatter,
chosen from the Jlist In section 3.3.5.4+3+ This
combination is followed by a blank.,

In mixed mode (combined attributes and references),
both the attributes and references are handlied as
described aboves except that the first referencs |ine
has a subtitle -REFS— placed at its 1eft. The subtitie
-REFS= Is pilaced In columns 9-13 on the narrow listing
and In columns 48-52 in the wide Jisting.

Since the user may select the attributes listing
separate fron the references listings the following
changes occur when both are not selected together. If
attributes only are selected, the references are not
listeds If references only are sejecteds the
identifiers line number and references flelds are used
and the references begin at the end of the first lines
not on an extension line.

3.3.5.3 Marros_Eorpal

The narrow format listing will have the same format as
the wide listing with the exceptions noted in the
describitions in section 3.3+.5+2. and with the
exception thet the attributes and refernces flelds witl
continue on en extension iine beginning In cclumn 15
and extending to cclumn 80.

3.3.5.4 Standard_Elsld_¥Yslues
343045441 ENTITY TYPES
Each entity is esslgned a basic» cross-language type.
These appear in the "Type” field as one of the foliowing:
TYPE ABBREVIATED fFORM

Simple vars VAR

3-31
CYBER 180 System Interface Standard
86702704

- —

3.0 OUTPUT
323+5.%4+1 ENTITY TYPES

- - —-——— —-—— - ad

Afrays ARR
Structure» STRU
Member, MEM
Conditions COND
Constant, CONS
Types TYPE
DEF» DEF
Programs PROG
Module MGD
Procedure» PROC
Functiony FUNC
Label» LAB
Suitch, SWCH
File, FILE
Formats FMT
Paragraphs PARA
Sections SEC
Impl names {for Implementor name) IMPL
Group, GRP
Aljes ALIA
gError ERR
Attr name, ATTR

Each host need not support all types of entities on this
1isty but should cefline a consistent mapping into a subset
of the above. The final entry [("Error™) should be used
for entities whose definitions contaln syntax errors
sufficlent to prevent the compiler from determining the
user?'s intentions.

3e3+54%.2 BASIC ATTRIBUTES

This fleld contains attributes basic to the entity
dafinition which 2re exclusive of one snother. If the
entity does not Fail iInto one of the foliowing catagorles
of attributess then the fleld Is 1eft blank.s These are:

Attribute Abbreviated Form
undefined UNDEF
unreferenced UNREF
EntryPoint ENTRY
External EXTRN

None (field is blenk)

3-32
CYBER 180 System Interface Standard

86702704
3.0 OUTPUT
303454443 REFERENCE TYPES
30e3e544.3 REFERENCE TYPES
The stenderd reference type abbrevietions wiil be:
M the entity was set (modified),
{blank)s the entity was used {(slash Is alsoc omjtted)
A the stetement defined an entity attribute,
5 the entity was a subscrist ©or index,
I the entity {(usualily s file) was referenced In

an 1/C statement

R the entity was read into {or» if a Tile» was
reacd)

W the entity as written from {(ors if a Tlle, was
written)

P the entity was used as #n actual parameter

For all listings conteining references there Is a legend

of the possible reference types and their one character
abbreviations at the bottom of each page. This legend is
right Jjusti¥ied and takes the form abbrev = full names +s40s

For examplez M=modify, A=attributer» S=subscript,
I=170 refs R=resd, W=write, P=parem.

Fach host may ctoose to use the entire set or a subset
thereof, tut It is hoped that most hosts witll use the
entire set.

3.3.6 DIAGNDSTIC LISTING

The dlisgnostic listing for compllerss assemblerss
Interpretersy, etc.» consists of diagnostic messagess
Diagnostics are listed in either of twec modes, at the
host?'s choices The first method lists ali disgnostics and
a diagnostic summary at the and of the {istings following
the Attribute/Reference 1ist {(If selected). The second
method lists syntax disgnostics In the source 1isting as
they are detected, with later (non-syntax) diagnostics and
the diagnostic summery being Jlisted at the end of the
Attribute/Reference list., If the first method is
selecteds the host may also choose to have the iocation of
the diaghostic cccurrence flagged In the source Jisting
(by means of & caret symbol under the offending column).

when compilation occurs xith zero diagnostics a diagnostic
summary #ii}! be produced conslisting of the single tine *NO
ERRORS?,

3-33
CYBER 180 System Interface Standard
86702704
3.0 DUTPUT
3234641 Standard Hesder Contents

3.3.6.1 33andard_bsader.Cgntenis

Every orintable error listing/summary contains the
followling text in the 1listing name fleld of the standard
fisting header:

ERROR LIST CF
———=l4 gcharecters=—=——-—

A standerd error 1isting header wiill) be written et the
next top~-of-form position or following a triple space, as
specified by sections 343412241 and 3.3.1+.2.25 and
whenever 3 subsequent page break occurss. Only the first
error 1isting header Is written on a continuous form.

3.3.6.2 3tandsrd_Dlagpestic_Listipg_Eocmat

Al) diasgnestic 1istings, whether grouped together at the
end of the other 1istings or printed intermixed with the
source 1isting %ill have the same basic format. When
groupeds they will be {isted In source line/statement
column/diagnostic number order. When groupsd and the
diagnecstic number is not b2ing printeds they wlill be
1isted in source line/statement column/order of jssuance
order. ¥hen printed intermixed with the source listing»
they will be printed in the order the host detects them,

Coiumn positiorns are specified for the case where ail
filelds are useds and remain the same I1f an optional fleld
Is not used.

Col umn

Position Contents Format Meaning

1-9 jevel X{%) error severlity level of the
diagnostic

11-17 tine nr. Z16)9 source statement number on
which the error occurred. For
diagnostics Iintermixed with
the source listings this field
contains *ERROR%,

22=24 dlage nos 2799 dlagnostic number of the error
{assigned by the host). This
fleld Is optional.

26=28 CoL X{3) The abbreviatlon for the word

column in Intermixed mode. 1If

3-34
CYBER 180 System Interface Standard
B6702/04
3.0 DUTPUT
3.3.6.2 Stancdard Disgnostic Listing Format

the column number fleld
contains zeros *COL? is
suppressed. In grouped mode
this field contains the column
number described belows and
that fleld is blanka.

30-32 cols Nos 179 column number In which the
error was detected., Blenk if
not applicable. In grouped
mode the column number is
present in the col {26-28)
flela and the column number
field is blank.

34-eol text the diagnostic text {(defined
by the host). Each word
within the text is separated
by one space and the line Is
filled as reguired.s. Extension
1ines begin with tha text
position through the end of
the 1iney single-spaced. In
intermixed modey, the *ERROR*
Indicetor is re-lssued on
extension lines.

Diagnostic summery for products that use diagnostics
Intermixed with source should Include a page 1lst of pages
with diagnosticse.

3¢3+603 3tandard_Dizapgstic_Sunmary Eormat

The diagnostic summary will follow the diggnostic 1isting
for grouped diegnosticsy, or stand-alone for Iintermixed
diagnostics. 1Ir elther case It provlides the user with a
summary of diagnostics detected and listeds as directed by
the EL parameter,

There will be an diagnostic summary {ine for each fevel of
diagnostic detected during the complilation. If no
compilation errors {at any level) were detected, then that
is noted. The foillowing format will be used for all of
the summary liness

columns 3-6 dd ok Summary line flag

columns 9=-14% Number of diagnostics of a
given categorys In the format
21{5)9.

3=-3%
CYBER 180 System Interface Standard
‘ 85!02104

3.0 DUTPUT
3.3.6.3 Standard Diegnostic Summary Format

- - - D S A - -

columns lé—ecl Texts, in the format "aasa
diagnostics™» where asaaa iIs
the category being
summarized. If the
diagnostics were not listed
{due to EL setting) then
"lunlisted)” is appended to
the message.

If only one disgnostic at a given lavel was issueds the
word "dlagnoscics” will be "diagnostic™ in the messsges.

3.3.7 COMPILATIGON OPTIONS

The compilers will procduce one or mor2 ilines of output to
indicate which control statement options were selected for
this compile (either by default or explicitiyl. The
format of this line will refiect section 2.2 of this
standard. This 1ine will appear safter al) other listings
for each module. It is produced shenever any list option
Is sejected and not produced for LO=NONE.

3.4 CRROR_MEISAGES

This section describes conventions for ail ASCII error
meSsagess. This includes log messages {to system and Job
fogs)s Interactive messagess and error messages wrjtten to
the OQUTPUT or other files {(reference logsy section 3.2).
The conventions Iinclude the use of the Message Genersator,
massage ldentifications, and message wording.

3.4+1 CONDITION CODES» EMBEDDED PRODUCTSs AND MESSAGE GENERATION

3.4.1.1 Condifion_Codes

A sumwmary of the NOS/VE status record filelds Is noted
beloWw. The NOS/VE ERS should be referenced for a complete
description of the status record and the Message Generator
interfaces. All productsy Including products embeded in a
host product» shali adhere to these conventlons.

Normal - A boolean which has a value of FALSE if a request
coulid not be processed correctly and TRUE If it has been
processed correctiy.

Conditlion Code - A unique condition code is defined by a
two-character product identifier (see section 4.1.1.1)
plus a flve—digit error code indicating the specific error
{esge» IDnnnNnNnd). Atl CDC error numbers must

3-36
CYBER 180 System Interface Standard
86702704

3.0 OUTPUT
3.4.1.1 Condition Codes

be In the range 1 to 9999, Error numbers In the range
10000 to 195999 are reserved to lidentify errors from user
developed productss

In cases where the condition code Is communicated
In a for® other than a status record {e.g.» FORTRAN
TO0STAT, AAM's ET fleld) the fleid "condition” from
the status record must be used.

Text = A string used to substitute text into the error
message template assoclated with the condition,s, The first
character of the text signifies the character used ss the
text detimiter., All text Items are terminsted by the
delimiter or the end of text.

3e4.1.2 Epbedged_Broducts

The embedded product should return gsbnormal conditions to the
host vla the stendard status variables, and with condition code
and product identifier of the embedded product. Condltions
anticipated by the host should be transiated by the host into
the appropriate condition with the host product identifier eand
condition code where user actlon Is required, Conditions not
anticipeted by the host can be psssed on to the user.

Conditions Issued by the embedded product should be clear enough
for the user to determine raequired corrective actions

including the need for PSR submittal where appropriate.

3.4.1.3 Message_gehecatiop

The NOS/VE Messege Generator Is used to format and output
g8ll error messages output to logs or to an interactive
users terminal {(note this does not Include dlagnostics
generated during compilation)., It procduces a standardized
message using the NOS/VE status record and message
templates from ¢ messege dictionary.

3.4.2 MESSAGE TEXT

The message templates are determined by each product and
Included In a message dictionary. The NOS/VE ERS should
be referenced tc determine the formats of messag®
templates.

3-37
CYBER 180 System Interfece Standard

86702704
3.0 DUTPUT
3.4.2.1 Message Formats
3.4.2.1 Message_fEormals
The message generator formats and ocutputs messages
gccording to conventions based on the message's
dastinations terminals, logs Ffile, or returned to the
caller.
Terminal:
Format: text ...+» or IDnnnnnn text siene
Fxample:z Permanent file {(pfu) not found,
logs DUTPUT» or other File:
Formats I10nnnnnn text ...
Example: CBp32¢ Incorrect delimiter, comma
assumed.
Returned to cellers
Formats IDnnnnnn SID nmm text se000
ExamPlez AM1234 sgp Q12 File {1fn) =21ready
openeda.
Wherez

text se0se Text of message

ID = Product identifler

nnnnnn = The error conditlion code
{unlque error number for a gliven
product)

SID = Product subidentifler

mmm = Subconcition code,

The combination IDnnnnnn will be known externally es the

" 180 error number®., It is a unigque system—nide code by
which any error message can be jdentified to the user. It
is always printed before the messege text on al} batch
{istings. It cen opticnelly be Included with messages
output to an Interactive terminal and is available to the
terminal user requesting additionsal erfror enalysis
asslistance via the NOS/VE HELP facillity.

3.4.2.2 Erroc_Sunparigs_ipo_loags

when error summseries are listed on & flley log messages
shouid be Issued to both the system and user Joy according
to the following rules end formats:

3-38
CYBER 180 System Interface Standsard

| 86702704
3.0 nuTeUT D
3e4e2+42 Error Summseries in Logys
System and User Log
n fatel errors [in x]
User Log Only
n warning or trivial errors [in x1]
n number of errors
X Is the neme of the module» programs subroutine

that contains the errors.

Error summaries should onjy be used when it is
Inconvenlient to provide a2 description of an actual error.

Catestrophic errors are not inclucéd because they should
always result in a log message indicating the catastrophic
error. The errcr counts shouid be issued to the l1og even
If the EL l(error level) parameter excludes them fros the
listing.

3.4.2.3 Hessags_dorgdling

Error messages represent a very important, though often
neglected, interface between software and user. Proper
attention to producing polites corrects and clear error
messages can do 3 ot toward Improvinyg the overall
usabllility of the system, The following conventlons should
be used In defliring error message text:

. Messages should be polite and courteous. Words such
as "lllegal™ Should be avoldec In favor of words iike
"Incorrect®™ or “"unknown". Error messages should,
where approepriates suygest whet the user ought to do
to correct the error. For exampler use:

The 1ine number parameter must be an integer.
not:
Il1egsl 1ine number.

» Messages must be formatted For 80 character displayse.
Telegraph style Is much better than long-winded
prose. However, the messsge pust be descriptive of
the error. Messages like "™Bad Argument®™ don?t say
enough.

. Consistent terminclogy Is extremely important., for
system-wide terms consuit Section 6.0 of the 5IS. For
terminodogy specific to a producty, agaln consistency
is the important factor.

3-39
CYBER 180 System Interface Standard
. 86702704

- -

3.0 OUTPUT
344243 Message HWorclng

v——— -

. Identification must be provided with varlabie
infcrmaetlon. For example:
uses
File {1fn) not found,
Veriable {var) must be scalar.

not:

{1frn) not found.
Veriable {var) must be scalsar.

. Use ending punctuation. It indicates to the user that
the message is not continued on the next line and adds
to the resdebility of the message.

. Messages skculd be coriented toward an Inexparienced or
casual user such thst the message can be understoond
and approprieately responded to without reference to a
manusi.,

- Abbreviations should te avolded. Whenever possible
1imit the characters used to alphanumerics plus
engllish punctuation. Avold use of characters that
appear differently on different devices. CDC's
64-cheracter ASCII subset and lowercase alphanumerics
c8n be useda.

. Words beglinning with "multi™ end "non" are not
hyphenated. Don't use "{s)"™ to Indicate an optional
plural usage; elther singular or plural is acceptebile.

. Error messages shouild use uPPer and lowelr case as they
are normally used In the English Jlsnpgusge. Upper case
should be used to distingulsh "computer™ words from
normal Engllish words. For example:

File FRED not found. Specify keyword NEW.

3.5 UIAGE_STAIISIICS

Al 1l products are required to collect and 1og statistical
Iinformatione.

This section describes what these statlistics are used fors
the NOS/VE Statistics Facilitys which statistics wiil be
coliected by products and which wil) be coilected by the
0/S and when statistics should be logged,

Recause the Statistics Facllity iIs under controd of NCS/VE

3-40
CYBER 180 System Interface Standard
: 86702704

3.0 OUTPUT
3.5 USAGE STATISTICS

product designers are requested to convey statistics
requirements and plans to the NOS/VE design teanm.

3,5,1 PURPDSE OF STATISTICS

Statistics logged by products may be used for biilings
measuring reliabiiity, measuring performances debugging,.
product planning or some other purpose. The ultimate use
of the data cannot be determined when the product is bdeing
designed. For examples, a statistic such as "number of
Source statements compiied”, which is normally considered
2 performance statistic, could Jjust as easily be used as
the basls for charging or billing & user. It*'s not
inconceivable that a8 student could be billied based ubPOn
{number of source statements) — (number of comment lines)
+ n ¥ {number of efrors) if this deta were avallabie for
each complle.

There are three physicaily different logs for recording
statistics. They are the accountings Jobs» and system
statistics logs. See section 3.2. A particular statistic
may apply to one or 8lil three of these lcgs. To prevent
products from having to Issue the same statistic several
timess to prevent product designers from having to declde
which statistics will be used for which purpose, and to
provide instaliations and users meximum control over
statistics getherings NOS/VE prowvides a centraljzad
Statistics Facility.

3.542 STATISTICS FACILITY

NOTE: This Is preliminary information. The NUS/VE
ERS should be referenced for a more complete
and up to date speciflication. The ERS Is the
contrelling document for this product to /9
inter face.

The NOS/VE Statistics Facility Is used by Products and the
0/S to accumulgte stetistics and write records iInto binary
‘DQSQ

The Statistics Facitity

- assoclates & statistic code from a status record with
8 particular table entry

- adds Job and task identificatlion to the veriabile data
‘1f eppropriste. Task 1dentiflcetion specifies which

3-41
CYBER 180 System Interface Standard
86702704

3.0 OUTPUT
3e342 STATISTICS FACILITY

- - - - -

of the possibie several asynchronous instances of
axecution within a job the current statistic belongs
£C e

- routes the stetistic to the apgpropriate log or logs
and/or adds it to & specific counter ss determined by
the table entry. Counters csn be dumped to binary
logs at specific times or events.

Data passed to the Statisties Facility include:

- statistical code - ordinal of thiz particular
statistic,

- optional byte string — for procductis this string
contains product IDs module identifiers if
appropriates and any other product or ststistlic unique
descriptive dets. Product ID is the two character
identifler defined in section 4.,1.,1,

- optional count fields - 0 to n numbers, the numeric
part of the statistic,

Data returned includez

- Status - boolean indicating whether or not the
previous Stetlistic Facility request was processed
correctly.,

The method for essigning statistics ordinails will be

speciflied In the ERSs A separate renge of numbers witl
probably bte reserved for users.,

3.5.3 PRODUCT STATISTICS COLLECTED BY NODOS/VE
In genarals, the 0/S is responsible for collecting job step
statistlics that can be determined external to the product,
that is statistics that the 0/5 is capabtie of determining.
For each product icentified In SIS section 4.1 that Is
directly invoked by the user, @.3e» via command or as a
program Initlated tasky NOS/VE will record resources used
per iInvocatlion. Rescurces accounted for include:
- total CP-tine
- maximum virtual memory used

- meximum resl memory used

3=-42
86702/04

CYBER 180 System Interface Standard

- - —— - —- -

3.0 DUTPUT
3.5.3 PRODUCT STATISTICS COLLECTED BY NOS/VE

- average working set sijze

- CP-time per memory size used

- number of I/0 recquests

- amount of deta read/written tc flles

Additional dats to be collected for each inveocation of a
product Include:

- origin of job step - batch commands, terminal command,
procecure file, executing Jjob.

- type of termination ~ normaly, product errory tinme
1imit, Invalic memory requests operator dropr, etc. A
recovered condition does not cause product termination.

- average Interactive response time for interactive
products - the average el apsed time between Input data
available and output data Issued to terminal,

- the fact thst the product was invoked (added to count
of the number of separate invocations).

- number of modules loaded {(input units for the locader)

- source languages of modules lcaded {added to fanguage
usage count).

- disk accesses per CP second.

These same statistics» resource usage and additjional datas
may be collectec for any user initliated job step whsther
It is a user supplied program or 8 CDC supplied product.
Statistics for products will be identiflied by product ID»
correction level informstion» and tssk number acquired
during loading.

Task number ldentifies which invocation of product x
Issued the steatistic. Several asynchronous tasks may be
executing the same product. Statistics for user written
tasks may be identified by primary module name, task
number» and other data gleaned from the file ID.

Number of invocstions will be coliected for a2aill products
both user calied end product called service products such
8s Access Methodss and all user tasks. It could be

3~43
CYBER 180 System Interface Standard
B6702704
3,0 DUTPUT
3.5.3 PRODUCT STATISTICS COLLECTED BY ND3S/VE

——— - - - -

collected for all modules on system Jibraries. For
productsy It represents the number of times the product
was Invoked over a given time span; for user progranms it
represents the number of times a program module written in
language x was used over a glven time span. The time span
is Instaliation definable.

3454 STATISTICS COLLECTED BY PRODUCTS

In general, products are responsible for coliecting internatl
statistics that only they can know. These statistics provide
a means of charscterizing the work performed by a product;
they 4@re used for evalusting product performance., Statistics
to be emitted ere specified In the product?s DR. There are
two classes of product gen2rated statistics - input units

and Internal usage statistics.

3.5+4.1 Jppui._Upif.Siatistics

This class of statistics is concerned #with the number and
nature of user controlled data processed by the product.
Ai{ products are reguired to log number of Input units
processed per invoccation.

Input unlits for vearlous product types are:

Product Type Input Unit
Language trensiators, such as Source
FTN, COBDL», CYBIL, lines
Utitities such as SORTIMERGE» FMU Data records
Services such as AAM Functionail
reguests

Other meaningful input unlt related statistics must be emltted
by products, Wwhere applicable. AU/R specified measuresent of
performance requlres generation of such statistics for certsin
productss. Exampies of these other input statistics zare:
language Transisators

- number of mcdules procassed

- number of scurce ststements

- number of {ines consisting solely of blanks

W B e NS B S e

L2

B OW Be BE BB B SO Be BB B B Qn BE BDE Gn BN B8

3-44
CYBER 180 System Interface Standard
86702704

—— - G -

3.0 DUTPUT
3e5.061 Iniﬂit Unit Statistics

-— — - ———- . -

- number
- number
Utidities

- number
by the

- number
Services
- number
- number
Many other
possible.

edditionsal
exampie Is

of 1ines consisting soclely of comments

of socurce statement errors for each error Jevel

of records of each recognlzable Tecord type supported
product

of records in error

of functions of sach defined type
of Illeget/sifi—-formed requests

potential iy useful input reiated statistics are
Products devejopers are encouraged to collect
input statistics they feel are worthwhile. An
source statement frequencys le.e.» number of

each type of source statemant encountered.

This class

3.5+4.2 Internal_Statistlics

of statistics is concerned u#ith internal measures of

the product as opposed to measures of the Input datse.

An example

of such a statistic isz

product options in effect for this execution e«.g9.»
nwhat control statement parameters were selectad.

Products are recguired to log major options selected {such as
optimization level usea by a complier). Each product Is required

to specify

ahich options are majore.

Many sdditionel statistics (such as Internal errors encountered)

may be appilicable to specific products. Developers sre encouraged

to cottect

other statistics they feel are sworthshite.

3¢545 WHEN TO LOG STATISTICS

The two lssues of concern are:

- when should detalled optionals statistics be
accumui ated and logged?

- when should subordinate service products such as AA

-

- B e

-

-

-

W B G B BN BE B S

- Ne B Ge G oe B os

3~45
CYBER 180 System Interface Standard
86702704

———————— - - P

3.0 DUTPUT
3+5.5 WHEN 7O LO6 STATISTICS

——— A —— o~ 1> - - - ——— -,

jog statistics?

All statistics will be controlied by instellation or user
controlled switches. The statistics Faclility will provide
the mechanism for setting and clearing these switches.
Fach procedure that Issues dlagnostics must check the
appropriate switch before calling the statistics

Facility. The switches will probsbly exist as an array of
bits that can be referenced but not changed by user

tasks. The NDS/VE ERS will specify the exact foram.
Subordinate products and routines may either issue
continuous statistics at product determined intervsis or
eyvents or they may accumulate and report them under
control of the host product.,

For products such as AM and AA whose statistics couid be
meaningfTul regardless of the hosty, the Ffirst approach is
acceptable. For examples statistics could be gathered
from file open to file close Tor each file. Anyone
Interested In AA statistics for a Job step would hawe to
sum up the Individual statistics on the 1og file.

For subordinate products and routines sSuch as the common
compiler modules whose statistics are not meaningful out
of contextsy & wmechanism should be provided to enable the
host to force out statistics on demand. That is» the host
mist be able tc Inform the subordinete that Its work is
complete. If the subordinate actually Iissues the
statisticss» the host must provide its product ID to the
subordinates so that ID can be Included in the

statistics. If the host actusily Issiues the statistics
the subordinate must return all data and identifying
information., The first method is preferred since the host
does not need to know which or how many statistlics the
subordinate is coliecting,

Note that all methods of statistic reporting require
products to recover from catastrophic external and
internal errors. Products must regaln control so that
they can output the accumulated statistics. Furthermores
since 075 logs the reason for terminations producis that
racover from asbnormail external conditions must be abie to
tet the abort hsppPen after they Issue thelr statistics so
that the correct reason for the termination Is recorded,
Prioducts that cdetect internal errors must be sbie to
indicate that such an error happened when they aborts so
that "internal error" is recorded as the reason for the
abort. A product may choose to terminate via an abort
wheéen no product error has occurred.

3-48
CYBER 180 System Interface Standsrd
86702704

3.0 OUTPUT
3¢545 WHEN TO LO6 STATISTICS

4=1
CYBER 180 System Interface Standard
86702704

A T - ——

4,0 SYSTEMWIDE CONVENTIONS

4.0 SYSIEMMWIDE_CONMENIIONS

This section describes the operating system and product
set conventlon shich must be followed ty aill standard
so ftware.

The term "global" as used In this section refers to
constant end type definitions that sre global to seversal
products. It does not mean "global"” within a particulsr
product.

4.1 NAMES2.DAIES_AND.IINES

Standard syste® naming conventions arz needed for the
foliowling reasons:

1. Permit recognition of the origih and maybe the purpose
of the named entity Just by Its name.

2e Prevent duplication of names betwesen different
products.

3. Deslignate cetegories of names that are reserved for
CDC usage so thst they will not be cuplicated by
application programmers.

These names mey be declared as entry point namess File
namess 3SCU deck names, or as names for common systes
entities such &s instailation options. The common system
entity names must be declared in & form that provides a
simple source of svallabiilty for use by any system
impiementation languages, {CYBIL or assembly).

4.1.1 NAMING CONVENTIONS

The system defined global names will be genersted
sccording to the following convention:

PPCH XXX
wheres
PP == Is 2 2 character alphenumeric product
identifler or other globsal ldentifler for the
onner of thlis symbol.

C -- jdentifies the class of the name.

CYBER 180 5

ystem Interface Standard

4=-2

86702704

40 SYSTEMWIDE CONVENTIONS

421.1 NAMIN

G CONVENTICNS

$

- - - -

~= §s the speciel character %

XXX == 2 or more slphanumeric characters which

establish unigueness within the levels of
identification described above. The maximum
length of this field Is determined by the other
users of these names. Example: The loader
determines the maximum length of an entry
point, the record manager the maximum length of
a file name.

4.1.1.1 Product _Idsptiflers

AA
AD
AL
AM
AP
AY
BA
BC
cC
]
CF
C6
CL
cH
csS
Cu
cy
cY
DA
D8
DC
DD
DF.
DM
Dp
DS
DU
£S
FA
FC
FD
FL
FH
|
{Double
FS
FT

Advanced Access method

Ada

Assembly Langusge

Access Method

APL

Accounting Validation

Basic Aceess methods

BASIC <o

Common Compliler modules {CCM)
COBCL

CYBIL Fermatter

Common code Generator {CCG)
Command Languege
Configuratiocn Management
Character virtual terminal Screen management
Concurrent meintenance Utilitles
CYBER Vectorizing Code Generator
CYBIL

DCN dump Analyzer

, ctive Debug

Distributed Communications
Dsta Dictionary

Distributed Files

Device Management

Display

Deadstart/recovery

NOS Dump Analyser Utility
Edit Screen

File migration Aids

FORTRAN Comgiller

Format Uisplay

FCRTRAN run time Library
File Msnagement {(in BAM)

File Management utllity

use of M to be resolved by DAP, If there Is a problem)

File System
FGRTRAN, ©Globel to FC and FL

LK

- W

4-3
CYBER 180 System Interface Standard
B867C2704

- - -

4.0 SYSTEMWIDE CONVENTIONS
4els1el Product Identifiers

—— - - -

Fv CDC FORTRAN {Vectorizing)

GS Graphlics virtual terminal Screen management

HP Har dware Performance analyzer {HPA)

HY Help Utilitles

ic Interstste Communication

1F Interactive Facility

11 Interactive Interface

IM Information Mansgement

I3 Input/Cutput

Jd Job File manager

aM Job Msnsgement

J35 Job Swepper

KR Keypoint Reporting Utility

LG Logs

LI LISP

iL Loader/Library generator

N Logicel Name

L0 Loader

iy Link User

MA Maintenance Application Language for Egquipment
Testing (MALET)

MC Marketing Configurator

ML Math Library

MM Memory Management

MP Matrix Ajgorithm processor

MS Maintensnce Services

MT Monitor

My MAIL/VE Electronic maj! system

NA Network Access method

NC Network Configurator

NF Network Flle Trensfer

NP Network Performance

0c Object Code utilities

OF Operator fFacltity

0s Operating System

PA Pascal

PE Programwing Environment

PF Permanent File menagement

{to be phased out, per SIS Dap $54730)

PM Program Menagement

pp Peripheral Processor

PR PROLOG

PS Product Set

PT Per formence Tools

PU PF Utilitles

P1 PLYI

QF Queued Filles

Qu Query Update

RF Remote Host Fecility Access Mathods

4—4

CYBER 180 System Interface Standard

86/02/04

—— - — - -

4,0 bYSTEHwIBE CBNyENTIBﬁs
4e1s1e1 Product Identifiers

RH
RM
SC
SO
SE
SF
SM
SR
ST

e e - —— -

Remote Host facility
Resgurce Management
Source Code utility
Screen Desliaon Fecility
Set management
Statistics Facitity
Sort Merge

Conversion services
Scftware Tools

{Current use of ST for Sets wiil be phesed out in faver of SE)

v
SY
™
™
TJ
TW
us
uT
vC
VX
Z3

Shared Variebles processor
Systen

Test Data base

Task Menager

Terminal Utility
Transiater Writing System
User {e«ges for "user™ statistics)
Tests

C Compliler

VX/VE = UNIX Emulator

leus

4.1.1.2 Qibec._Gloksl _lgdgeptifiers

RA

Release Administrator

This product identiflier is used to identify
Instalietion paremeters and procedures associated
with a NOS/VE product.

4.1.1.3 Classas_ocf _Napes

The following list cf Identifiers naming classes is used
for code and deck naming purposess

A
B

Kmi M0 (wile

-= architectural and design documentation
-- design documentation {internal to CDC).
Also the three following special blocks:
CYBSDEFAULT_HEA®P
DBBSNE_LINE_ENCOUNTERED
DBBSNEW_PROC_ENCOUNTERED

-- constant

-=- decleration {(decks containing types and/or
constants)

-~ exception condition name

-=— file

== documentation {headers, inline text)
-= fnllre code or Installation/integration
-=- keypolnt or kevword

4-5
CYBER 180 SyStem Interface Standard
86702704

4,0 SYSTEMWIDE CONVENTIONS
441.1.3 Classes of Names

-= module
-- procedure
section (static data section and/or common
block)
-~ type
-=- varjeble
== XDCt"d (decks containing procedures or T
) _wvarisbles)
XY#eF
4e1.1.4 Special Cbaracters

>¢ @ -f Vi o=
i
|

The yse of the $ sign In a name ldentifles the name as one

bajonging to CCL. CDC users will savold sny duplication

with CDC names by not using the $ in any of their nemes,
I R

Some programming languages such as FORTRAN do not ailow

imbedded dollar sign cheracters In their names. COC

supplied procedures caliable Trom these langusges will not

conform to the ¢ sign rule.

4.1.1.5 User_Glcobal Names

User global names follow the ruies defined in
sactions 4.1l.1-4.1.1.4, except the form of &
user giobal name is2

PPC#XXX
4.1.1.6 Deck_Namips.Gulgdellipes
Relatlonship of Ccde and Deck names

The deck name must be the same as the code name wheéepnever
possible. In instances where it Is absolutely necessary
to group types», constants, etc. in the same decks» then it
Is aliowabla to use 8 conglomerate deck name which Is
different than the component code names.

"beslgn Documentation® Deck Names (A and B)

Class A decks are for architectursl and design documentation
releasatle with the code.

Class B decks are for requirement/design documentation not
relesasable with the code {(2.9.» DR-type speciflicationss such as
performance) but relevent to code maintensnce.

A "design dotumentation® deck ha$S the EXPAND sattribute value of
TRUE or FALSE» depending upon the needs of the products, The content

4=
CYBER 180 SyStem Interface Standard
867027104

4,0 SYSTEMWIDE CUNYVENTIONS
4s1.1.6 Deck Naming Guldelines

cf this deck end all decks *CUOPYed by this deck are input to the
processor named in the PROCESSOR field of the SCU deck. The PROCESSOR
is in the Tform of a strinyg which represents the command by which the
processcr Is invoked. Documentation decks may not be processed by a
compiler but rather by a text formatter processor. For Instance,
documentation decks might be processed on the C170; then the
PROCESSOR might be TXTCODE. In the future, documentation decks may be
processed on the C180 by a text processor.

Documentation decks not to be released to customers must be
ldentifled (by group) by the development project to Integration,
which will remove such decks during preparation of SMD release
materials.

"compiiable™ Deck Names (M and F)

A "compllable™ deck has an EXPAND attribute value of

TRUE. The content of this deck and ali decks *COPYed by
this deck are Input to the Processor named Iin the
PROCESSOR field of the SCU decke. The PROCESSOR fieid is
in the form of 2 string which represents the command by
wnhich the processor Is invoked, Parameters which are to
be passed tc the processor» and which are meant to be
Invariant [such as optimization levels, or debug level)d,
may be included in this string. The order in which
invariant parameters sre specified Is precisely the order
in which they are defined for the commend, even though the
parameters are specified as equivelenced psrameters. File
raferences are dlsaliowed In the processor string.

M class decks contain a processor deflned "compiiation
unit®., Examples of such complilation units are: MOCULE to
MODEND for CYBIL, IDENT to END for ASSEMBLE» PROUGRAM to
END for FORTRAN, etc. Module decks represent the units
which are maintazined In a Binary Module Replacement
environment. A pszrent/child refatlionship exists between M
and P {or V) decks which contaln XREFs. To denote this
associations the name of the parent M deck Is assigned as
e GROUP attribute of the child P or V deck. Thus» any
modiflcations mede to the child deck results in the
ability to generate the parent deck by interrogating the
GROUP attributes of the child deck. Likewlise, al} decks
which *¥COPY the child deck can be generated through use of
the INCLUDE_COPYING_DECKS Criteria Flle directives The
name assocljated with a M class deck Is the same as that
speciflied on the MODULE» IDENT» PROGRAM, etc. statements.
If a M deck contains code which is later Bound into &
Module of a different name via the BIND_MODULE subcommand
of CREOL» then the name of this Bound Module Is assigned

4-7

CYBER 180 SyStem Interface Standard

86702704

4,0 SYSTEMWIDE CONYENTIDNS

-

4,1+.1.6 Deck Naming Guldelines

- - — - -

as a GROUP attribute of the M deck. The name Oof a
corrasponding F deck which contains specific CREDL
directives associeted with the binding of this module Is
specified as a GROUP attribute of thlis M deck.

F class decks contain source data which Is retained as a
files or conteins processor directives for the processor
named by the processor fiegid. These decks contains or
*¥*COPY decks containing, informatlion necessary for
establishing program descriptionss omitting entry points
from Bound Modules, or establishing 3CL procedure
{ibraries. A typical F deck might contalin COLLECT_TEXT
and ADD_MCDULE commendss and *COPY?s to procedure decks (P
decks) mhich contein the source of procedures to be added
to a procedure library. Another use of F decks is s a
container for directives to the Real Memory Bullder or
Virtual Memory Linker in which segment sttributes are
defineds IFf a 3CL procedure is to be executed from a file
rather thsn a procedure 1ibrary, then the processor type
of the F deck is SCL rather than CREGL. The name
associnated With F decks is the name of this file as It is
accessed when the processor Is invokeds, or the name of the
resultant file which Is to be created,

"Non—compilable" Deck Nsmes {C» E» I, K» P» S» T» V)

A "non—compilable” deck is one with the SCU deck EXPAND
attribute value of FALSE., This type of a deck is *COPYed
by "compilable® decks and assumes any attributes
assocliated with the *COPYing deck.

K ciass decks contain KEYPODINT» KEYWORD» or statistic
codes. These codes are defined in terms of a constsnt
plus relative offsety and define & set of refated data.

K decks are given & conglomerate name which Indicates the
type of date being described (KEYPOINT, statistics or
KEYWORD)

C class decks contain Constantss Constsnts are used to
Impose an upper limlt on ranges», end provide a starting
point from which relative offsets are computeds A
constant is giobal in nature by virtue of Its appearance
In a C decke. Throse constants which define product
restrictions due to thelr design {eg. OSCSMAX_NAME_SIZE)>
and thoss constents which represent Instaliation options
ere the two categories of constants with packaging
affects. The fcrmer category of constants are named so as
to describe the scope of effect upon other products or
subproducts. Product specific constants should be named

4-8
CYBER 180 System Interface Standard
86702704

v - - - - —— - —

4.0 SYSTEMWIDE CONVENTIONS
401e1.6 Deck Naming¢ Guidellnes

us ing product specific two-character jdentiflers. The
latter category of constants are nemed with the RA product
identiflier to indicete that the "Release Administrator”
assumes ownership for the value assigned to the constant.
Si'nce source code will be unavallabie at many sites, the
use of constant values must be avoided. Global constants
should exist as one constant per deck. The name of the
deck shouid be the same as that of the constant being
defined, Ownership of a constant is assumed by the decks
which *COPY a constant deck. Automsted generation of all
decks affected by 8 change to a constant deck is
accompiished through the INCLUDE_COPYING_DECKS Criterie
File Directive.

T and E class cecks contain Types and Exception conditions
respectively. Since Exception conditions are typicelly
described In terms of a constant plus & relative offset,
it is acceptable for a constant declaration to appear
within the E deck. £ decks are glven a conglomerate name
for the condition range., Types may be elther fixed or
adaptable., In such cases where 3 type Is defined in terms
of constant {(such as an equivailenced ordinal type) then
the constant velue may be contained In the T decks, T
decks are named the same as the primary type defined in
the deck., If the type is a records then the name of the
dack is the name of the record defined In the deck.

P class decks contaln code procedures. The content of
such decks Is the source of non-XDCL'd proceduress SCL
procadure definitionss or XREF declsrations for XDCitd
proceduress. A SCL procedure definition wilt contain e
PROC to PROCEND sequence If the P deck is used to forw a
procedure librsarys otherwise the procedure will be deflined
in 2 F decks Ccde seguences which are noct bracketed by
PROC to PROCENDs or & corresponding sequence such as
SUBROUTINE and END» should be contalned Iin I {intine code)
cl:ass decks. Each external procedure should have an
accompanying H deck that documents the procedure.

V class decks contain variable declarations, or the XREF
to XDCL"d varisbles. A child/parent relationship exists
between a V deck contesining an XREF and the corresponding
M or ¥ deck in w»hich the varlable Is XDCL'd. The nsme of
the V deck is the same as name of the variable which Is
defined In the decks The name of the parent M of F deck
is assligned as g GROUP atiribute of the V deck.

H class decks contain documentation, such as headers or text
that may be calied into 2 generated document such as an ERS.,

4-9

CYBER 180 S¥stem Interface Standard

86702704

—— . W -

4.0 SYSTEMWIDE CONVENTIONS
4eleslet Deck Naming Guidelines

- - -

(A and B class decks msy be used for high-lJevel architectural
eand design documentstion, H decks may be used for detalled deslgn
documentations particularly to supporit externsal proceduress,)

I ciass decks contsin inline code or integration/instaiiation
parameters., INn the case of coder the Justification for such
decks Involves performances where repeated code cannot be
formed Inteo a8 PROCEDURE due to the expense incurred In the
procedure call, OUthersises FUNCTIONS or INTRINSICS mey be
contained In I decks., Inline text Is text used Ffor code
documentation purposes which may also be calied intc e
ganefated document such as an ERS.

S class decks contsin blocks of related data such as
static data of Common Blockse. An aggregate name is
assocliated with this coliection of data unless the text
date describes & specific entity. In such cases, the text
data2 assumes the same descriptive string as that
associated with the entity It Is describing leg.
OSSSMAINFRAME_FPAGEABLE_HEAP),.

"Non-complilable” Deck Nsmes (Dy» X)

Dacks belonging to this category reprasent packaging
anomal les» snd should be avoided whena2ver possible.

D class decks coentain conglomerates of Types and/or
Constants. Since it is difficult tc ascribe meaningful
Tdentity to such combinatlions, the use of the D class
should be avoided when possibles It iIs advantageocus to
define parameters for procedures Iin a D ¢cless deck. This
anomaly exlsts cue to the nature of the constructs
necessary to cefine procedure parameters. -

X class decks coentain the XDCL definition of procedures or
variables. The recommended location Tor the source of
XDCL?*d procedures or vsriables is within a compilable deck
(M or ¥ class). Combining XDCL'd procedures into a single
module Is a function of the CREATE_OBJECT_LIBRARY utility
command BIND_MODULE., If the XDCL'd procedure Is GATED to
other products end/or userss then the XDCL'd name 1s
preserved as 8 result of Bindings otherwise the name lIs
discarded provided there s a corresponding XREF at
binding time. Therefores It is a product's responsibitity
to CHANGE_MCDULE_ATTRIBUTES of the Bound Module to OMIT
names wWithin Bound (or Unbound) modules which are not to
be external ized by the product. It Is recognized that
baing able to combine several XDCL'd procedures and/or
variables into g single compilation unlt can provide

4=-10
CYBER 180 System Interface Standard
86702704

o — - - - — v ——

4,0 SYSTEMWIDE CONWENTIONS
4alelsd Deck Naming Guldelines

additional debug capabilities provided by a complijer. It
1s for debug purposes that X class decks exist.

4414107 SCU_GROUP_NAMING_GUIDELINES

Critical to the structure of the product?s source libraries, and

to the efficiency of the source maintenance proceduress Is the

asscclation of SCU "group names™ wlth each deck on the {library.
 These groups mey be wused to wmsnipulate "blocks™ or "groups"” of

decksy such as alil decks in a Jjob template or system core |library»

Falrly easily.

The different types of groups are identified by the conventions
used to name them. Except for the "processor” and "™generic™ groups
{described beliow), the format of all group names is:3

XXy$aaeasa

where *xx? Is the product identifler, "a3asaaa”™ Is a descriptive name
for the particulsr group, and "y” js on2 of the foliowing:

) Specifies a "Source™ groups i.e. a subdivision of the
source library into component llbraries, Several
examples of groups Of this type are:

osstprogram_interface losf3program_Iinterface)
fecstfront_end
cbsscobol_source

F Specifles a "destination File” group (j.e. 2a file onteo
which & deck is to be placed after processing). Seversl
examples of groups of thils type are:

aéf$449_1ibrary
osfsmoni tor
osfsobJject_code_utilities

G Specifies a "Group"”, l.e. a <cOllection of decks that
have been declided would be useful to be able to refsr to
en masse., Several examples of groups of thls type sares

cbgdprccedure_common_decks
cbgtrun_time_procedures
fcgtbridge_modules

NOTE: All decks on the source iibrary which belong In the library
psfsexternal_interface_source should bDe assoclated with the group
name "psfiexternsl_interface_source®. Keypolint decks and error
codes should also belong to this group.

4-11

CYBER 180 System Interface Standard

86/02/04%

4,
4.

0 SYSTEMWIDE CONVENTIONS
1

«1.7 SCU GROUP NAMING GUIDELINES

- —— —— - ——— -

Most other groug names wil! folloyx the conventions described in
the previocus text for the product source Jibraries. Howevers there
are two <¢lasses of groups for which this is Inappropriate:
"processor™ groups and Tgeneric®™ groups.,

A "processor™ group will be given the same nage as the
corresponding pProcessory £.0e the group name fTor decks to be
compiled by CYBIL will be "CYBIL"™, Other processcr group names are:s

assemble
fortran
cokbol
pp_ccmpass
cp_Ccompass
cybil_c¢c

Note that some of these must obyiousiy be procassed on the NDOS
side of the machine.

A "generic"” group Is wused In those cases where knowing the
processor for a deck Is insufficlent for some purpose. The generic
groups thet have been identified and are requiredy if applicable,
are:

common
program_descriptions
message_templates
scli_procedures
ccl_procedures
scu_s2lection_criteria
bulld_procs
delieted_decks

All decks which =2are called by other decks wiil belong to the
aroup "common™. When 8 deck needs to be deleted, It should belong
to a group "deleted decks™., At this point in times the deck Is not
really deleteds so the build procedure must be specifically
excluding this deck until someone {In integration c¢an physicaily
delete the deck. This will only be done between releases to Insure
our ability to back up to a previous level.

Some of these generic groups overlap to some extent wlith the
PTOC2550T groupPS.

A deck may have up to 255 group nemes assoclated with it. At

this point in times a group cannot Le asscciated to ancother group.
A DAP has been writtep to allow this capabliity. For the time
beings, issue the change_deck SCU command to establish all deck to

4-12
86702704

CYBER 180 System Interface Standard

4,0 SYSTEMWIDE CONVENTIONS
4+1.1.7 SCU GROUP NAMING GUIDELINES

group assocclations.
4,1.2 RESERVED FILE NAMES
The following files will have special uses:

INPUT 1Is that portion of the primary iInput flle that
follonws the System command statements.

DUTPUT Is the primary cutput file and contsins 3 Copy of
the Jjob dayfile 8t the end when printed.

For Interactive jobs, the terminal Is assumed to be both
INPUT and OUTPUT.

4.1.3 DATE AND TIME

While NGS/VE provides date and time data in several
formats, products are restricted to using one format
uniess language standards dictate othervwlse. The format
to be used is the instsliation defined default Tormat,

For fixed position 1istiny and file formats, date and time
Flelds must be large enoudh to accoamodate the longest
forms returned ty the 0/S5.

4.2 INIERACIIVE_PROCE23ING

Tals secticn identifies capabiilities products must provide
to support users interfacing the system from intersctive
terminals.

Products support different levels of interactive usage.
Therefore a product does not necessarjly support all of
the capatllities described below. For exampler products
that typlically perform batch functions l(e.g. compile
FORTRAN source) do not provide the same level of
Interactive capebliity as one that typicalily performs an
interactive function (e.g. query a file).

Many of the capebilities are provided by the operating
system and therefore are avaliable to all terminal users
independent of the program/application being used.

Speclific Interactive capabliities to be provided by €180
products are described belowe A key is used to indicste
which products must Incilude design end implementation of
the capabilities. The keys are:

A - It is the responsibility of all products to support

4-13

CYRER 180 System Interface 3tandard

86702704

4.0 SYSTEMWIDE CONVENTIONS
4,2 INTERACTIVE PROCESSING

- — —— - -

the capabilities marked with the A key.

This keéy notes the terminal cspabilities supported In
the Implementation of the opersting systems Theése are
avaliabie with 81l interactive usage and sre provided
bys

Job Mansgement

Mess age Generator

File Routing

Basic Access Method

Transaction Executive
Network/Communications Access Method

s & ® 5 &

This key notes the terminal cepsbilities supported by
"interactive products™, These programs normally carry
on 8 dislogue with 8 terminal user to obtaln feedback
and dynamically direct processing. They Include:

Job Mansgement
Messape Generstor
File Routing

HELP Utility
Transaction Executive
BASIC

APL

0S utitities
Query/Update

Report Writer

FMU

Interactive Debuggers
SORT/MERCGE

SCU

gditors

Conversion Utilitles

® & & & o & O & & o & b 6 s o &

4.2.1 INTERACTIVE TUTPUT

4.2.1.1 Geparal

a)

k)

The page width and length at an output device verlies
not only by device type», but zlsc by the size of paper
being used in the device. The user must be able to
Indicate the operational page width and pags iength of
the output device. Defaults thet correspond to the
terminal characteristics are supported,

..0-

Lines of dets that exceed the output device page #sidth

CYBER 180 System Interface Standsard

. O T T Oy oy - — o

4,0 SYSTEMWIDE CONVENTIONS

4=-14

86702704

4.2+121 Genersal

<)

d)

)

must be delivered without Joss of data. Dafa that
would be output beyond the right side of the page must
be folded onto 8 second or successive line {reference

section 3+2:145)
-0

The user must be able to have every output line
formatied so as noct to exceed the output device page
width provided the output device page wldth Is not
jess thean 80 characters. As a minimum, the user must
be able to specify that output be formatted for page
widths of 8C or 132 print posltions {reference
section 3.3.1.4).

-Q-

Any output that mey go to an ASCII sequential file may
instead go to & terminal.
-0-

Any output may contaln a carriage control character
{reference section 3.3.1.31},
_0*

The carriage controd character wiil direct printing of
an output fide and %ill not appear in the print output.
_0-

4.2.1.2 MeSsages

al

b)

¢)

d)

e)

Messages must be cOurteous. ¥Words such as "illegsl”
shouid be avolded in fTavor of words llke "Incorrect®

or “unknown®. Error messages must» where approprlates
suggest what the user ought tc do to correct the error.
.—A.—

Messages must bte formatted for narrow listings.

..A..

Messages must be mesningful such that an inexperienced
or casual user is able to understand the message and
respond appropriately without reference to a manust.
....A..

Any messsge longer than 20 chersecters must have an
alternate trief counterpart.
"’A"

A user must be able tu setect either a brief or long
form of a message. When using the brief form of
messages the user should be able to reguest that the

CYBER 180 System Interface Standard

A T B W W W TS S W~

4-15

86702704

4,0 SYSTEMWIDE CONVENTIONS
4,2+142 Messages

. S A W ——

f)

g)

last message be repeated iIn its 1ong form.
-

Messages soliciting input (prompts) should aiways be
used to indicate that the user Is expected %o supply
Input.

Prompts shculd appear on the same 1ine as the Input
whenever physically possible.

4.2.1.3 Llstinas

a)

b)

c)

d)

Pages of output that are longer than the output device
page Jength must be dellvered uwithout 1oss of data.
Data that exceeds the page length must be contlinued
onto & second or successive page,

-0-

Pages of output must not be delivered to a
nen—hardcopy output device so Tast as to overwrlite any
previous output before the user can resd it iIf 2 malt
optlon has been selected by the terminal user.

—G-

The user should be able to have heading information
repeated on the second and successive terminal pages
of a listings When display space is limited and the
information band width is lows, the user might choocse
to not use spece to dispiey repetitive headings and be
able to see more data. Where the 1isting consists of
meny columns that are hard to differentiates the user
might choose to have h2adings repeated on every page.
This capsbility requires that: 1) Page Header text be
jdentified so It can be dlscarded, and 2) Title text
be identified so It can be replicated.,

-I_

When Inftisting a function the user must be able to
select alternate amounts of deteail to be Included in
the 1istings. By selecting less detail, the user ought
to be able to have more items displayed on 2ach page
and not just get less information per pages

.—A_

4-16

CYBER 180 System Interfece Standerd

—— o ——— -

4,0 SYSTEMWIDE CONVENTIONS
4.2+2 INTERACTIVE INPUT

86702704

——— o

- — - -

4.2.2 INTERACTIVE INPUT

These standards supplement section Z2.3.

4.2.2.1 Gengral

a)

b)

c)

d)

e)

f)

a)

h)

User dlscovered typing errors must be correctable by
backspacing and retyping.,
.-0.-

The user must be able to cancel the input line being
typed at any point before input completion Is
indicated.

—G—

No extr aneous blanks will be gppended to the end of
the user defined input data for padding. Application
of this rule Is ondy requirea I1¥f allowed within a
product?!s standard.

-—A-

No user typed trailiing blanks will be deleted from the
input datae. The application of this rule is only
requirad If allowed within a product?s standards.

_A—

Any input that may com2 from an ASCII sequentiai file
may instead be supplied by a terminal connected as
thet files

A single input may consist of more than one line. A
prompt may gllow multiple lines of input In response,
An input collection mode may be implemented In this
manner.

_o-.

Operatiocns requiring only a few paremeters should not
require more than a8 single Input.s The user may enter
al} parameters for a directive or ail directives for a
single system level command &s a single Input in order
to reduce the number of interactions end the time to
complete the directive or command.

-o—

The user must be sble to use the stendard
abbreviations for command names, directives and
parameter identifiers in order to reduce typinge.
-A'

4=-17

CYBER 180 System Interface Standard

86702704

— - - -

4.0 SYSTEMWIDE CONVENTIONS

4.2.2.1

General

T U Uy D D S W S T S A VD U O W A S - -

i)

After input of a2 command or direcilve has been
completeds iIncomplete input should not be treated as
an errors but should cause further prompting for the
missing parameters.

-]

4.2.2.2 Input_Disgnosss

a)

b)

c)

d) .

4e2+.3 CONTROL

Errors In Input witd e diagnosed immediately
followlng the offending input 1ine.
..I_

Diagnosed Input errors must be correctable without
"exiting™ the dislogue with the program.
_.I..

Where possibie allow diagnosed input errcors to be
corrected without re-entering the entire line.

Any input diagncsed to the terminal must be
correcteble by terminsal input iamediatety follosxing
the dlagnostic whether or not the original Input was
from the terminagl {see 442¢341)s After receiving the
corrected Input from the terminal input wilil revert to
the primary source.

...‘I-

4.2.3.1 Copnectlylly

a)

b)

c)

d)

The ys®r must be able to have his terminal connected
as &n ASCII seguential Input file ang an ASCII
seguentigl cutput flle for any programa.

..A..

The user must be abile to suppress the verification
Iisting of input when the input source and the cutput
destination are both the terminel.

...A_

Products thet allow input directives from a file cther
than INPUT must alliow the user to have input
directives from a source other than the terminal
listed for veriflication at the terminal.,

-A-

Products thst allow Input directives from a file other

CYBER 180 System Interface Standard

4-18

86702704

4,0 SYSTEMWIDE CONYENTIONS
422431 Connectlivity

e)

than INPUT nmust aliow the user to have Input
directives from a scurce other than the terminal
diazgnosed to the terminal.

- -

The user should be 2bie to loglically disconnect tkhe
terminal from an executing program without causing the
program to be suspendsd. The program shouid contlinue
execution snd the user should be able to
simultaneousliy enter other commands (including
execution of other programs).

.-0 -

4+.2+3.2 Iptacrrupis_apng_Cocppection_Braaks

a)

b)

c)

d)

e)

f)

a)

The user must have a method for gaining control over a
program In execution. This Is known as an Interrupt.
-Q_

An interrupted program will not be sborted as a result
of the interrupt.
-)-

For a program written to execute In an interactive
environments an interrupt must cause the program to
enter a known state. This state wiil normaliy be one

that solicits directives or commands from the terminal.

-I-

For a8 progrem written to execute jn a batch
environments, an Interrupt must cause the program to be
suspended in such a manner as to be restartable during
the seme terminel session. Control lIs returned to the
command langusge interpreter.

"0"

A connection break is often caused by a communication
line fallure. A connection bresk must not cause the
terminal session to be aborteds but must cause It to
be suspendecd in such a manner as tc be restartable
when the terminal user can again get connected.

-O-

A user must be able to restart 2 suspended progran.

-0

A user must be able to terminate a suspended program
wlthout first restarting It.
-0_

4=-19

CYBER 180 System Interface Standard

86702704

4.0 SYSTEMWIDE CONVENTICONS
4:2+3.2 Interrupts and Connectioh Bresks

h)

(B

N

4+2+3.3 Sistus

a)

b)

c)

d)

A program written to axecute In an Interactive
environment must accept a termination directive in the
state entered as 3 resuit of an Interrupt. This
directive must be the same as the corresponding system
command to termineste 3 suspended program.

-I,—

AnyY Iincomplete terminal input request from a progran
that Is suspended should be relssued (with the proper
prompt) shen the program is restarted.

...I..

The terminal user must be able to Interrupt the output
being delivered to the terminal and cause the
remainder of the output to not be delivered to the
terminal untit the next prompt.

—G-

The terminel user must be able to solicit a report to
determine the process of a program, without causing a
change In the state of the program.

- ¢ T

Progress reports must Indicate the functional progress
of the programs For examples:

neompliiling program SAMeea?
veompiling subroutine TOMes.™

"preparing global cross—referenceess”
-I.—

The terminel user must be able to sollclt a report to
determine the system environment within which a
program Is running without causing a change in the
state of the program. An instaliation option tso
disable this must be provided.

.o

The system environment report must indicate (possibly
indirectiy) the response time the terminal uUsel can
expect to experience. This might be by Indicating the
iength of swap-out gqueuess the number of interactive
usersy etc. An iInstallation option to disable this
must be provided.

4=20

CYBER 180 System Interface Standard

A " W U AT o s e - —— -

86702704

4,0 SYSTEMWIDE CONVENTIONS
4.2.3.3 Status

D S D S D D AT U AR W W G SR WS U A D W S A TS W A A A S S QD G YD T D WD WD WD TS WD DD

2)

f)

9)

4.2+.3.4%4 Help

a)

-

The termingl user must be abie to sclicit a report of
the state of its prcoram without ceusing a8 change in
the program?s state. An instaliation option to
disable this must be provided.

-G.—

The progrsm state report must indicate the rate at
which the user's program Is progressing relative to
real times end the Impadiment to progress. For
a2xamplez

P,14223213 - 2.54 (P secohds Swapped Dut®
",14:24240 - 5,72 CP seconds Running™
",14227210 ~ H.21 CP seconds Finlshed®

Possible stetes should recognize the points of delay
in the system; these might be Paging, Swap—-outs
Walting for terminal jnput, etc.

-.0..

The termingl user must be abie to define terminal
attributes to be sssoclated with an Interactive

session {eeg.» backspace charscters, echo moder screen
size). The terminal user must be atle to display the
terminal attributes currently in effect for a terminal.
...O...

The terminal user should always be able to get a
reasonable response to the input HELP, The resconse
should identify the user?s alternatives and possible
correct Input. As a directiver HELP shouid Indicate
what directives are sbie to be used at that point.
The user should be sble to pProceed after the response
to a HELP input as If the iInteraction had neaver taken
place.

"‘G"‘

4.2.4 PRODUCT SET RUN TIME COMMANDS

4-21
CYBER 180 System Interface Standard

86702704

—— - -——— -—

4.0 SYSTEMWIDE CONVENTIONS
4e2e4s1l PAUSE and S5T0P Litersl

-]~ -~ —

4.2.4.1 PAUSE_3pd_SI0P_Llteral

PAUSE n {in FORTRAN) s&nd STOP literel {in COBOL) are very
simitar, They should be processed in the same way. .

g8, The message PAUSE text will te displayed on the
operator?s termins!l or conscie. Text is n or 1itersci,
and is a maximum size of 58 characters. ¥For bsatch
Jjobss the cperator is the primary system operator. An
OFPSSEND TO OPERATOR with an CPERATDR ID of *SYSTEM
OPERATORY s executed to send the message. For
interactive Jjobss an AMPIPUT NEXT request referencing
the flle OUTPUT is executed tc send the message. This
will resuit In &8 message on the terminal,

b. In bstchs 8n GFPSRECEIVE FROM OPERATOR with the WAIT
peremeter and the same Id as sbove Is executed to
suspend the job and walt for the typein from the
system operstor. The operator will respond with 2
REPLY ACTICN command. In interaective mode, an
AMPSGET NEXT request on the file INPUT is executed
{this may not be legsls ancther connected file may
have to be used). In elther cases the data is thrown
away and the Jjob Is continued.

4020402 ACCERI_EBOM.CONISOLE

The ACCEPT FROM CONSOLE (in CDOBOL) should be processed In
exactly the same way as STOP litered {4.2.4.1), Text
would be the data froem 2 previously executed DISPLAY UPON
CONSOLE WITH NC ADVANCING or the message 'ENTER COBGL
INPUT VIA REPLY ACTICN® if there was no DISPLAY.
Interaction iIs #»ith the system operstor only. (If
messages sent via OFPSSEND TO OPERATOR also appeared on
the terminals §t could cause confusion for the terminal
operator.)

4.3 INSIALLATICON_PARAMEIERS

NOS/VE will permit modification of e2li system parameters
dynamically during system executicne The term
"instellation peremeter”y as used In the classical CDC
s2nses Js not valid for NOS/VE.

System perameteérs fall into the following general
categor)es:

. Hardware cheracteristics {(2.9.s» # of CPU?s, type of
cPU)

4-22
CYBER 180 System Interface Standard
86702704

] - - - -

4.0 SYSTEMWIDE CONVENTIONS
4e3 INSTALLATION PARAMETERS

- System and product defaults {e.gey defauit tape
density)

. Accounting persmeters
. Limits parameters {e.ge» maximum FL)
. Timing parsmeters

System parameter defaults can be set at the following
times:

- Complie time {compiiation at CDC)
. Build time {deadstart tape buitd at user site)
» Deadstart time {via operator type-in)

These paremeters may be tested dynawlcaily and action
taken accordingly. The product set will require no
parameter specifiation, and will dynemically test system
paremeters during execution via requests to NOS/VE.

The following table indicates the permitted range of
system parameter control for the product set and opersting
system. An X indicates that the cption is allowed, and s
bilank entry iIndicetes that the option is not allowed. Any
excaption must have the expllicit approvel of ADELC,

sis s Bub Vil VEE ye G Y VS s VB B g o G e Sl S P

——————————————— T S —— -4+ - +
Time of Set ¢ Set Times 1! Use Tlimes !

and Use te—ecmeccetoca- $-- + ++ + +

Typa of 3 ComP. ! Bulld ¢ DIS } Exec. 3! D/S ! Exec. |
Parameter 1 Time 2 Time ! Time 3 Time ! Time ? Time !
—_— - —————f e ————— - - - - - + +
Product Set ! !] ! ! H H
Hardwer e H H ! ! 1! 3 X]
Defaults]]] H 1! ! H
Accounting 1 H i ! i] !
Limits H 1 1 | 13] X !
Tuning . H i] 11 H H

H ! ! H 1! 1 !

0s H H H 1 11 1 H
Hardware | X H X) X 12 X 1 X 1 X H
Defaults 3 X] X ! X ! X 1 X 1 X !
Accounting 1 X H X H X 1 X 1! X 3 X H
Limits H X 1 X 1 X 1 X i3 x 1 X H
Tuning ! X 1 X] X 1 X 1 X X !

423
CYBER 180 System Interface Standard

B6702/04
4,0 SYSTEMWIDE CONVENTICNS
4.3 INSTALLATION PARAMETERS
- - - o e e e e e + -4+ + +

4.3.1 GENERAL GUIDELINES

As a general rutes the number of system parameters should
ba xept to an sbsolute minlmumes. This will minimlize the
additionsal testing imposed by these options and will
reduce the number of "giffarent® wersions in the fielg.

A firm regulrement on both the operating system and the
product set Is thst no recompilation at a user site witl
ever be required to install the software. This is s
requiremant of binary release.

4+3,2 LIST OF PRODUCT SET PARAMETERS

The following system parameters may be tested dynamically
by the product set via requests to NOS/VE {(Including
natworking):

type of CPLU

0S name and version

line midth or screen wldth
terminal type

screen length or page langth
print lines timit

*. 5 & @ @

4.4 ERBOR_BROCESSING

The purpose of this section is tc describe the conventions
and responsibllities of processing different error
conditions.

Ge%o1 STATUS VARIABLE

Adi} command and procedure Interfaces {o the system thst
are vislible to the end user must have a status varisble as
a parameter. The status varlable is used to convey the
result of the command or procedure and» In case of error,
provide Information explaining what went wrong.

For commandss the status paramater shouild siwmays be
optional. When It is quoted by a user» the assumptlion Is
that the varliable will be tested subsaquently in the
command stream snd some sppropriate action taken.
Therefores the conditions returned to the user should only
convey Information the user is likely to understand.

For proceduress the status parameter }s required. Again

4-24
CYBER 180 System Interface Standard
B6/02704

4.0 SYSTEMWIDE CONVENTIONS
4.4.1 STATUS VARIABLE

- am .- -——

the conditions returned should be as understandable to the
user as possibie. This is particularly important when
there are muitiple procedure calis made within our
software as the resuit of a single call by a user
procedures Emphasis should be placed on Improving the
status returned to the user rather than blindly passing
back obscure ststus from the2 depths of the system.

Detailed formats of the status verlable are available in
the NOS/VE ERS.

4.4.2 ERROR TERMINATIGON

There are a number of errors that can occur in a products
some of which cen be detected and some of which can?t,
This section desls with the processing to be performed
when detectablie errors occur.

First of ally the product should try to detect as many
errors as gracefully as possible. This means that
internal softwere tests should be used to detect errors as
well as using the condition handling faclliities of the
operating system to receive contrecl In the event of a
system or hardware detected error. The product cannot
simply rely on the standard oparating system abort
processing,

Wwhen an error Is detected, the product should provide as
much of the Tollowing error localization information as
possible. Some of the information wiili not be applicabie
to all productse.

. Type of error termination (stendard System messsges
shouid be used folf this message).

» Ffull traceback of the call sequence to the Procedure
containing the error. This will be by procedure name
and line number or relative zddress cepending upon the
amount of traceback/debug Iinformation released with
the products

» Information regsrding the user data being processed.
For a compilery this might be the procedure name sand
line number currently being processed., For s utitity
or data mansgement products it might be the current
records

. Optional dumps of useful !nte:nai tables.

The asbove Iinformation should only be logged for error

4=-25
CYBER 180 System Interface Standard
86702704

4,0 SYSTEMWIDE CONVENTIONS
4.4.2 ERROR TERMINATICN

- - -

terminations that are probably caused by product Tallure,
It should not te dogged for conditions such as time limit
or operator drop which are clearly not product errors.

4.4.3 INTERACTIVE ERROR PROCESSING

This saction supplements saction 4.2 "Interactive
Processing”,

In conslidering this toplc it is necessary to distinguish
between error messages and diagnostics. These terms ere
difficult to define precisely but are Intuitively distinct
nonetheless, An error message Is generally a2 summary of a
command; In an interactive environment it wants to be
displayed at the terminel so the user can find out whet
bappened. Diagnostics are generally a part of a larger
whole (e.g.s listeble cutput) which due to their voilume
only want to be selectively displeyed,

An example Is 8 compiler which provides a single error
message telling how many errors occurred during
compliaticon and produces a diagnostic for each complistion
errore.

4.4.3.1 Ercor._Messases

e A}l error messsges should be Issued via the standard
message generator. The message generator will
determine shether the message should go to the
terminal or the log, etce.

b. Messages must be courteous. Feople tend to reasct In a
more emoticnal Tashion when using 2 computer
interactively than when using it In a batch mode.
Words such 8s "lllegai” shouild be avoided In favor of
words 1lke "incorrect®™ or "unknown™, Error messages
should explsin to the users what they did wrong and,
if possibie, how to correct it.

c. Messages must be meaningful such that en Inexperienced
or casual uselr Is able to understand the messages and
respond appropriately without reference to a manusl.

d. Any message longer than twenty characters must have an
alternate brief counterpart. The user must be sble to
select elther the brief or the long form of the
message.

4-28
CYBER 180 System Interface Standard
86702704

. had N, A - -

4,0 SYSTEMWIDE CONVENTIONS
4e4e3,2 Diagnostics

4+4+3.2 Digapgsilics

a) Polints b ancd c» ebCve also apply to diagnosticse.
Diagnostics should expliain the problem from the user's
perspective rather than the program?s. For example:

“Comma missing after third parametern
instead of
"QVPPARSEPR detected Jllegsl syntax™.,

b) While diegnestics sre not typlically dispiayed at a
terminal by default, they are Jlooked at by interactive
userss This must be considered when defining tke
location of the diagnostics in the llistings
identifying the diagnostics with a mark that iIs
uniquely detectable with a text editors etc.

4+4+3.3 Inpui_Diagoosis

This section epplies to all input that can reasonably be
expected to come frcm a terminal (e.g.» command utility
subcommands),

a, Errors in input wiill be dlagncsed immediately
following the incorrect input.

b. Diagnosed input errors must be correctable Without
exiting the dliatogue with the program,

¢e Diagnosed input errors may be corrected without
reentering the entire line.

ds Any Input dlagnosed to the terminal must be
correctable by terminal Input immediately following
the diagnostic whether or not the original Input was
from the terminal,

4.4.4 BATCH ERROR PROCESSING

4.4.40.1 Error _Messages

Batch ervor messages should fcllow exactiy the same
guidelines as interactive particulariy the usage of the
message generators

4=27
CYBER 180 System Interface Standsard
86102704

—-—— - - —————

4.0 SYSTEMWIDE CONVENTIONS
4abe4.2 Input Dlagroesis

A T S T S MDA D e W - - -

4.4.4.2 Ippui_Dlagnesis

Tae kind of user interaction that Is desireble in
interactive mode Is of course Inappropriate in batch

modes Emphasis should be placed on detecting as many reasl
errors 8s possible even after a Tatasl error has occurred,
The key word here is "real®”; producing a large number of
extraneous error messages or diagnostics wiil ultimately
laad to peopie only correcting one probiem at a time.

4e445 TRANSACTION ERROR PROCESSING

This section wiil be sdded when more design on the
transaction facility hes occurred.

4e446 RESTART

This section wiil be added when more design on the system
restart capsbitities has occurred.

45 ELEECIIVE_USE.DE.CLEQ_HARDMWARE
4.5.1 HARDWARE OPERATION

This section describes software conventions which must be
folloved ¥or the hardware to function in a prediciable
manner.

4.5.1.1 Ipferigck._Mords

Convention: Locste all interiock sords in cache bypsss
segrents.

Speclal system instructions are provided In the CPU and
the I0U to interiock muitjple processors/I0U. In genereal,
these function by exchanging the contents of a register
end a word in memory. Foliowing this exchange the
register may be Investigeted to determine whether the lock
has been set. For exsampler» a zero word in memory cen be
selected to mesn "no lock™, then by exchanging a non-zero
raglister the lock will have been set if a zero value Is
returned. It Is imperative that such iInterliock words be
unique. To gusrantee this they are placed in cache bypass
segments. Notice that the Instructions which are desligned
to test and set 1ocks automatically bypass cache,

Problems arise when the interlock wmords are accessed by
other Instructions such as 1oads.

4~28
LCYBER 180 System Interface Standard

86702704

T W T . s i, s —-— —-——

4,0 SYSTEMWIDE CONVENTIONS
4e541.2 Pre-serialization of Clear Lock

- - - - ol ——— -

%e5ele2 Pre=-ssriaglizafiop.of._Clear_Lock

Convention: Before clearing 8 single bit lock {via s Store
Bit Instruction) first set the 1ock by & Test
and Set Bit Instructicon.

Care must be taken whenever an interlock wnord Is set or

cleared to pre-serialize the operstion. This Is done to

ensure thets in the event that memory references are being
satisfied out of sequence, all]l outstanding memory
rafaerences are completed before changing the lock. 1In
practices CYBER 180 systems deslgned to date always
satisfy memory references in sequence., Howevery this may

not always be the case. The instruction which sets a

single bit lock {Test and Set Bit) performs the necessary

pre~-serfalization. Homever, to clear the lock a Store Bit

{with a zero operand) must be used. 3Since this

instruction has 2 general utility It does not

pre~serjalize. To compensate, the Test and Set Bit

instruction post-serlializes. Hencer, To ensure a

pre-serializaticn of the clear 10cks the lock should first

be set {with a Test and Set Bit instruction), then cieared
by the next instruction,

4.5.13 Reglstar _Reseryations

Conventlon: Registers A0O-A4 and XC-X1 shall be reserved
for speclal functions.

The CYBER 180 instructions make use of certain registers
to hoid given velues, The assignments are as follows:

AC - Dynamic Space Pointer (DSP)

Al - Current Stack Frame Polnter (C3SF)
A2 - Praevious Save Area Pointer {(PFA)
A3 - Binding Section Pointer (BSP)

A4 - Argument List Pointer (ALP)

These registers hold those values by software convention,
but a convention which Is supported by the hardware.

Hences it Is very important that they be supported by all
so ftware procedures. In particulsar, Al and A2 must never
be altered by instructlons other than Call, Return snd Pop.

In addition to the reservations atove, reglisters X0 and X1
hayve a special meeaning in the hardwere, For many
instructions, the X0 designator is used to indicate no
register. Hences register X0 cannoct be used by these
instructions. Both X0 and X1 are used as fixed utitity
reglsters for several instructions., Examples are:

4-29
CYBER 180 System Interface Standard
86702704

4.0 SYSTEMWIDE CONVENTIONS
4.541+3 Reglster Ritservations

1) Load/Store multipie and CALL Instructions use X0
for a save area descriptor.

2) A}l compare Instructions return a value to
X1-Rjght, 8s does the Mark to Boclean instruction.

3) The BDP Instructions optionelly use XO0-Right and
X1-Right to brold ope2rand lengths.

Since these reglisters are used for special purposes, care
must be exercised If they are used Iin s general mannere

4.5.1.4 Allappepi_gof_lables_and.kords

Conwvention: Align certain tables and words on specified
boundarles.,

Although CYBER 180 Is nominally 8 byte addressabis
machine, Teal memory is organized into 64-bit words.
Conseguentiys the performance of certain operations hss
been optimized by placing the operands on word

boundaries. The complete set of deta aslignments necessary
is given belows alonrg with a brief description of why the
alignment 1s recuired and what will happen when the dsts
Is not 2llgned correctly.

4:5:10401 64~BIT WORD BOUNDARIES
The followlng dets either must bes or should be allgned on
Wword boundaries:

1) Procass Segnment Table -~ For performance reasons the
hardware indexes into the
segment table at a worg
boundary. The virtual memory
address translation mechenism
#witl fgll if the segment
table Is incorrectly aligned.

2) Binding Sections - To maximize the reach Into
the Binding Section by the
Call Indirect instructlons
access Is made to a word
boundarys If the Binding
Section is incorrectly
allgneds then an Address
Specification Error results
when a Cail Indirect is
Issued.,

4-30
CYBER 180 System Interface Standard
B6702/704
4,0 SYSTEMWIDE CONVENTIONS
4e54104.1 64~-BIT WCRD BOUNDARIES

3) Prccedure Entry Points - To meximize the reach of the
Call Relative instructions, 2
branch Is made to a word
boundarys Since the
instruction forces the
address to a word addresss
resuits will be unpredictable
if the procedure target was
not corractly aligned. Note
that even though It Is not

"strictiy necessary for
procedures called via a
Binding Section to be word
aligned, difficulties could
stil] result If they are
nct. This ls because the
CYBER 180 Library Generators
In the process of "binding”
may convert Cald Indirect
instructions to Caill Relstive
instructions.

4) Debug List Entries - To simplify the hardwsre, and
to optimize performance shen
in debug mode, the hardusare
accesses debug list entries
on word boundaries,

Incorrect alignment wiil
cause unpredictable results.

5) Interliock Words — Interlock words used In
conjunction with the
Compare/Swap operation must
be aligned on a wWord
boundary. This Is necessary
for the processor tc sstisfy
the non—preemptive
requirements of the
instructions Processors
utitize the 64~-bit memory
exchange function in this
operation, That functlon
operates on a real memory
worde Incorrect alignment
will yleld an Address
Specification Error.

6) Stack Freames - By software convention only,

4-31
CYBER 180 System Interface Standard

86702704

4.0 SYSTEMWIDE CONVENTIONS
4454104¢1 64-BIT WORD BOUNDARIES

stack frames should be
aligned on word boundaries.
This epables the hardware to
toad and store the reglsters
held In the save area from
data on word boundaries,
Incoerrect alignment will not
cause any problems since the
hardware always adjusts
{forces) the Dynamic Space
Pointer to a word boundary
before accessing a stack

frames
7) CLentral Memory Dats - The 10U can only reference
Accessed by the 10U cantral memory words. Hences

it mould require some special
code in PP?s to decode dsata
not stored on word
boundaries. This Is resily a
pragmatic software conwvention
since & PP has no way to
specify a central memory
gaddress other than on & word
boundary.

4e5414442 OTHER BOUNDARIES

Tne followling data must be al lgned con boundardes other
than 64-bit worc or 6-bit byte.

{1) txchange Psackages - 128-bit {2 word) Boundaries

To optimlze the performance of the exchange Jjumy on some
processors» the hsrcware addresses two words at one time.
Results will be unPredictable if the exchange package is
Incorrectly aligned.

{2) Instructions - Parcel {2-byte) Boundaries

Instructionsy which ere either 16-bit or 32-bit
quantities, must be aligned on parcel boundaries.
Fajlures to do this will either result In unpredicteble
behavliors or an Address Specification will be detacted,

{3) Page Table - Page Tgbie Length Boundary
To minimize the time needed to trenslate sddresses from
virtual to reals the heardware catenstes {(rather than adds)

4-32
CYBER 180 System Interfasce Standard
86702704

—_————_—— — ——— Ty JR——y ——— - ———

4.0 SYSTEMWIDE CONVENTIONS
405010442 OTHER BOUNDARIES

the Page Table Addresses {PTA) to the page tabie index.

For the catenation to yield the correct address, the

low-order bits of the PTA» as determined by the page table
length, must be zero. Failure to structure the PTA in

this manner will cause the address transliste mechanism to fail.,

4.,5.2 HARDWARE PERFORMANCE

Wheress the previous section dealt with conventions
necessary to meke the hardware work correctiys this
section deals with conventions necessary to make the
hardware work efficiently.s As such they are not
mandatorys and in some cases represent merely suggestions
as to how to optimize certain functlons.,

4.5.2.1 Logalliy_of Refarence

Conventionz Place all code and ail data to be used at one
time In one places and keep to a minimum the number of
segments required to execute a glven tasks

The CYBER 1280 virtual memory organization provides the
basis for the system security and simplifies the explicit
oryanlzetion of a program into overlays. Howevers zll
programmers have responsibiilities Iif system throughput is
to be optimized. A prime responsibiliity Is to maintain s
strict locality of referenca., That Is collect all code
and alil dsta thet |Is to be used at one time into
contiguous pages in one segment {each for code and data).
This has two advantagesy It minimizes the working set (the
number of pages allocated in real memory &t sny gliven
point of time)s and it also minimlizes the number of
entries shich must be made Iin the buffer memories. By
minimlzing the working set the number of concurrent tasks
which can be held in real memory iIs maximized. This, iIn
turn, maximizes system throughput.

Optimizing around the buffer memories represent a slightly
di fferent problem. These have a finite size and contain
the most recentiy used Segment Descriptor Entries and Page
Table Entries. If a 1arge number of segments are in use
at one time, or if a large number of pages are in use at
one times» then the buffer memoriles wili be unable to hoid
all the necesssry entries and they wiil be constantly
loading new values. The affect will be simliar to not
having them at &ll and performance #iill degrade
considerably.

4-33
CYBER 180 System Interface Standard
867402704
4,0 SYSTEMWIDE CONVENTIONS
4,542.1 Locallty ot Reference

- - - i - -

Consequently» not only should progremmers maintain e
locallity of reference, but they should also try to
locsilze the number of segments usecd by a given task.,

4.5.2.2 Realster_Allogastion._and. Usage

Convention: Allocate A-Registers and X-Registers from the
small numbers on up.

As a result of the special functions For which AO0-A%4 and
X0=X1 are usedr and the method of saving/restoring
contiguous reglisters by the CALL/RETURN instructions,
register usage should always start with the smalliest
possible number {(typlcally AS and X2). This will help to
minimize the nunber of registers which must be saved

BCr 0ss procedure calis., Thiss In turn, wili optimize
performance In this area.

4,5.3 SECURITY

This section lists software conventions needed to provide
a secure envircnment at all times. Since & maljor
cbjective of the CYBER 180 program is to provide a highly
secure systems these conventions become mandatory. These
conventions are closely related to those in Section 2,
Just as they are reguired to make the hardware operate in
8 corrects predictabie manner» so are these required to
guarantee that the security and protection algorithms
function correctiy.

4e5+3.1 Brocegdure_Parsmeiers

Convention: 1) Always use calier's argument Iist polnters
for accessing caller's data.

2) Always load pointer parameters directily
inte A-Reylsters - via Load A instructions.

3) Whenever possible avoid moving record
structures that contaln pointers.,

4) Avold passing pointers tetween rings
elther waye.

5) Avold data structures containing direct
pointers that cross rings either way.

These conventions are mandatory for those procedure csalls
from one procedure to a second oneé with more privilege,

4-34
CYBER 180 System Interface Stendard
B6702704

4,0 SYSTEMWIDE CONVENTIONS
4¢54321 Procedurse Parameters

A A - 7 - A - - U - - — - - -

When 2 procedure Is caiied by another procedure, it
executes on behalf of the caller., It Is the
responsibiiity of the calliese to ensure that It does not
execute #with more privilege than cafier. The hardwsre
provides the besic security mechenisms, In this case, It
ensures thst csllee is calied from within its call ring
bracket, and that It Is caliled vie a Binding Section. It
may then access code and idata belcnging to or accessible
by calier. Thils code and data is refearenced via pointers
held Iin A-Registerss, and the hardware performs a ring
nimber vote whenever an A-Reglister is tosded. This
mechanism ensures the least privilege (highest ring
number) Is siways accorded the user. However» there are
many weys thils mechanism can be be-passed., The simpiest
methed Js for cellee to load a pointer Into an X-Registers
then copy It to an A-Register. If calier places a low
ring number (zero would do) in the pointer, then 1t wiil
end up with callee's ring number in the A-Register. That
Is it will end up with mora2 privilege than that to which
caller Is entitied. It is callee?s responsibliity to
ensure this does not happen. The opnus for maintalning
sacurlty slvays fz2lls on the more privileged procedure.
Hencey, the convention,

4.6 SUPRDRI_OE_EBCDIC_DAIA
FBCDIC data can be divided into two distinct classess

le @il 8-blt character data (also known as coded dgtas
including unpacked numeric data tyres); and

2e intermixed character and non-character data.

Support for the former (all character) is provided by the
operating system. If EBCDIC is specified on the reguest
cardy the tepe driver automaticaily transliates to ASCII
wnen reading the tape 2nd translates back to EBCDIC when
writing the tope.

Support for the 41atter f(intermixed character and
non-character), and for the EBCDIC collating sequences
varjes by product:

Fowoo
Lt
> X400
=
=
x0O
COMHVIO

4=35
CYBER 180 System Interface Standard
86702704
40 SYSTEMWIDE CONNENTIONS
4.6 SUPPORT OF EBCDIC DATA

- - 000 - - A —— . - - - -~

EBCDIC SUPPORT N
Intermixed EBCDIC input file e X
Intermixed EBCDIC output file e X
EBCDIC collating seqguence X X X

X = support required at R1 of product
e = eventusl support desirable

Support of intermixed input and output flles means uUse of
tha speclel C180 instructions to process the following
"translated” non-character EBCDIC deta types:

5 Binary {(signed and unsigned)
. Packed Declimal {signed and unsigned)

4¢7 KEYRDINI_UJAGE

The CY180 keypoint facility pFfovides a mechanism to enable
coliection of statistics for performance monitoring. A
data reduction software package Js avalilasbie to summarize
these statistics based on descriptors contained in a
keypoint descriptor ¥flile {KDF). This section ducuments
the conventions to be followed by the operating system and
product set In the usege of this facility.

4»7e1 KEYPODINT CLASSES

Five keypolint classes named ENTRY» EXIT» UNUSUAL, DEBLUG,
and DATA are cefined for the operatinyg system and Product
set.

ENTRY Every geted procecure plus ail major
Internal procedures {(those shared across
functional areas) should contain a
keypoint of this cless. These keypoints
should be placed as close &as possible to
the entry to the procedure.

EXIT Every gated procedure plus all major
internal procedures {those shared across
functional areas) should contain a
keypoint of this class. Thase keypoints
should be placed as close as possibie to
the exit from the procedure,

4-386
CYBER 180 System Interface Standard
86702704

——_— L ——_—— - Y L - a—————

4.0 SYSTEMWIDE CONVENTIONS
4¢7+1 KEYPOINT CLASSES

—— - -

UNUSUAL Every situation which Is unexpected or
auite unusual should contain a keypoint of
this class., It Is intended that these
keypoints would be enabled at all times.
The freguency of encountering these
keypoints should be very low. The DATA
keypoint class Is not allowed iIn
cenjunction with a keypoint of class
ynusual.

DEBUG These keypoints would be for providing
additlonal trece Informetion as an sssist
in debugging of hardware or software
problems. DEBUG class keypoints would be
most useful In the more complex aress of
the systeme The primary use of keypoints
in HCS and NOS/VE up to this point has
been for debugging purposes.

DATA This keypoint class can be used witk the
ENTRY» EXIT, and DEBUG keypoints for the
gathering of extra datas All DATA
keypoints encountered are supplying
additional deta which nill be assoclated
with the Jast ENTRY, EXIT or DEBUG
keypoint. Hencey they should follox as
closely as possible after the ENTRY» EXIT»
or DEBUG keypoint; In psarticulars there
should be no Intervening CALL
instruction. DATA keypoints should be
used with care since the PMF hardware can
only buffer up 16 keypoints; keypoint
clustering can cause Jost keypoints.

Keypoint Data and Identification:

Upon successful execution each keypoint instruction will
provide a total of 32 bits of information. The conwention
uses 12 blits of this for keypoint ldentification and the
remalning 20 bits as user supplled datas Try to use this
20 blts to provide meaningful information {(taskids, segment
nimber, fiteldy» queue lenythy page number, time, etc.)e.

On DATA class keypoints the dats Lbelongs to the previocus
keypoint and the full 32 bits is evallable for additional
user data.

4=-37
CYBER 180 System Interface Standard

86702704

0 SYSTEMWIDE CONVENTIONS
7+1.1 Opersting Systen

- - —— - e

4
4.

%e7.1.1 Dpecating.dysiecn
The keypoint classes for NDS/VE afe as foliowus:
O5C$0ATA=0
OSCSUNUSUAL=1
OSC3ENTRY=2
OSC$EXIT=3
OSC3DEBUG=4
Keypoint class 5 is reserved for NOS/VE.
The operating syStem keypoint muitiplier Is OSK3$Ms
4.7.1.2 Produgi_sSst
The keypoint claesses for the product set are as follows:
PSCSCAT A=6
PSCEUNUSUAL =7
PSCSENTRY=§

PSCSEXIT=9
PSCSDEBUG=1C

The product set keypoint muitiplier Is PSKENM.

4.7.1.3 Qtbhecr._Classes

The keypoint classes 11-14 are reserved for users.
Keypolnt class 15 is reserved for PMF hardsare control.

The keypoint muiltiplier for user defined keypoints Is OSK3$NM.
4e7+2 KEYPDINT IDENTIFIERS

A maximum of 65535 keypelint ldentiflers are avajlabile for
{each) NOS/VE snd the product set. The combination of
keypoint class snd ldentifler is unique within the systenm.,

4.7.2.1 Operatipa_Systienm

The set of 4096 availeble identiflers is assigned to operating
system areas in blocks of 50, Some areas {({f needed) will receive
two consecutive blocks of 50. The NOS/VE performance project has
responsibility for assigning the ranges to areas of the operating
system.

WE B B B BN Ge B BE

CYBER 180 System Interface Standard

4,0 SYSTEMWIDE CONVENTIONS
4e7+2.1 Operating System

4-38
86702704

D d

—-— -

The currently essigned values for the operating system are:

Area ldentifier

{not used)

AM
BA
CcL
CH

DM

IC
IF
11

JM
LG

R E

ML
MM
MM
MS
MT
ac
OF
as

PF

PN
RH
SR
ST
™
™
JS
J3
AV
SF
10

DM
ST
NA
NL
NL

Access Method

Basic Access Method
Command Language
Configuretion Management

{future expansion)

Device Management

{future expansion)

Interstate Communications
Interactive Facility
Interactive Interface

(future expansion)

Job Mznagement
Logs

{future expansion)

Loader

{future expsnsicn)

Memory Link

Memory Menagement Monitor Mode
Memory Management Job Mode
Malintenance Services

Monitor

OCbJject Code Utitity

Cperator Fecility

Operating System

{future expsnsion)

Permanent fFiles

{future expansion)

Program Mensgement

Remote Host

Conversion Services

Softwere Tools/Set Management
Task Fanagement Honitor Mode
Task Mensgement Job Mode

Job Swepper Monitor Mode

Job Swepper Job Mode
Accounting Validation
Statistic Fecility

Input /7 Cutput

{future expansion)

Cevice Management/Tape
Systen

Network Access Method
Network Access Method
Network Access Method

¢
50
150
250
300

400

600
650
700

800
850

950

1050
1100
1150
12C0
1250
1300
1350
1400

1500

1600
1750
1800
1850
1900
1950
2600
2050
2100
2150
2200

2300
2350
2400
2500
2550

Range

ey i

[TR TN O I T OO N R A N A N RO B R |

I I I B

49
149
249
299
349

549

649
699
749

849
899

999

1099
1149
1199
1249
1299
1349
1399
1449

1599

1699
1799
1849
1899
1949
1999
2C49
2099
2149
2199
2249

2349
2399
2499
2549
2599

BB B GE B B BN G BN DS G G B G0 SN B BE W WE WE B0 B0 BB B BN B VI BB G0 WS G BN W BN G BE GE B BE Bw BE BN BE B0 BN B BT e e Be

CYBER 180 System Interface Standard

4-39
86702704

- - -

4.0 SYSTEMWIDE CONVENTIONS
4e7+2+1 Operating System

———

{future expansion)

M File Mgnagement

FS File System

RM Resource Masnegement

NA Network Access 7 Monltor Mode
{future expansion)

MT Monitor

2700
2800
2900
3000

4000

- 2799
- 2899
- 2999
~ 3049

i

4049

B BE B BDE B6 6 Be

4=40
CYBER 180 System Interface Standard
86702704

N w—_— -

440 SYSTEMWIDE CONVENTIONS
4e74+2+1 Operating Systen

W W S S o A T S WD A WS S S S W G - e . -

The keypolnt recduction utility and the continuous monitoring
facility depend upon the follonwing keypoint values. Thesa routines
should be modified to use the keygoint names and not the keypoint
values listed below. This modification should be complieted by
NOS/VE release 1.2.1 (second quarter 19856).

4001 Enter 7 Exit Monitor Mode wmtiksjob_entry_exit

4002 Enter 7 Exit NDS 170 mtk3170_entry_exit

4003 Monitor Mode Trap Handler mtkimonitor_mode_trsap

4004 Job Mode Trap Handler mntk3job_mode_trap

2200 Series Physlcal 1/0

1106 Page Fault Processor mmkipage_fault

1149 Convert PVA to SVA mek$system_virtual_eaddress
1906 Quaue Task trk$gqueue_task

1918 Switch Task tmk$snitch_task

%e7+2+2 2roduct_Set

The set of 65535 aveliable identifiers is sssigned to products
in blocks of 5C. Those product set members which require more
than 5C wiil be assigned one or more additional blockse.

W WS Gl BE GBe GBS SN B BE S e e BE we G

Wk i W W S

CYBER 180 System Interface Standard

4=41
86/02/04

- S A U W W T

4,0 SYSTEMWIDE CONVENTIONS
4.7+2+2 Product Set

-

Assigned ranges are:

Product Identifier

{invalid)

AA Advenced Access Method
AP APL

BC BASIC

cB COBOL

DB Interactive Debuy

FC FORTRAN Compiler

FL fFortrar Run-Tlme

FM Fiie Menagement Utility
FT FORTRAN Giobal

iM Informetion Management
PA Pascal

Pl PL7I

QU Query Update

SH Sort/Merge

SV Shared Verisbles Processor
€C Common Compiler MHodules
CG Common Code Generator
{future product)

ML Math Library

cYy cYsiIL

5C Source Code Utllity

AL Assembler

FA File Migration Alds

L1 LIse

AD Adza

FV CDC Fortran
VX VX/VE

vC C coumpiler

PT Performance Tools

KR Keypolnt Reporting Utility
NF Network File Transfer
{Reserved for future products)
AA Advanced Access {(2nd block)
{Reserved fcr future products)

4.7.3 KEYPOINT USE

Range
0
1 - 49
50 - 99
100 - 149
150 - 199
200 - 249
250 - 299
300 - 349
350 - 3996
400 - 449
450 - 499
500 - 349
550 - 35§
600 - 649
650 - 699
700 = 749
750 - 799
800 - 849
850 - 899
900 - 949
850 - 999
1000 - 1049
1050 - 1099
1100 - 1149
1150 - 1199
1200 - 1249
1250 - 1299
1300 = 1349
1350 - 1399
1400 - 1449
1450 - 1499
1500 - 1549
1550 - 1999
2000 - 2049

2050 - 65535

From a software point of views» keypolints are speclal
commands that are inserted in a mcdule according to the

gulidelines specified in sectlion 4+7.1.

For 2 module

wr'ltten in CYBIL, the #KEYPOINT intrinsic can be used to

Ym0 2
CYBER 180 System Interfasce Standard
B6/027/04

SO D TS U P AP T S VD U VD oy oy o o O W M T ST 2O D . — -

4,0 SYSTEMWIDE CONYVENTIONS
4.7.3 KEYPOINT USE

- - —— - - - e - ——— -~

ganerate the keypolnt instruction {refer to CYBIL Lanhguage
Specifications ARH2298, and MIGDS» ARH1700, for detsiils).

The main entry keypoint identifying a product set member
should include cd¢ata which indicates the actusl version of
the product. This Is useful for treacking simultaneocus
execution of the same or different versions of a product,

5-1
86702704

CYBER 1480 System Interface Standard

D — -

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS

-—— - - - —— - -——— ———

5.0 COMRPILER.AND.ASSEMBLY_CORE_CONVENIIONS

This standard Is to be fecilowed by the object code
generated by the compliers and by any assembler code
written as part of standard softwere.

In addition to these standards, essembler code
{handuritten or compiter generated) will conform to the
coding standards described in CYBER 180 MAINTENANCE
SOFTWARE CODING CONVENTIONS {DAP ARH2160).

5.1 USE_QE_LOADER.EEAILRES

1. The loader specification is $imited to thst written In
jts formal documentstion. Programmers shail not
depend on additional characteristics determined by
empirical observation, as such behavior may be sublject
to chsnge. Examples which have caused trouble on
CY170 sre the presetting of undefined variabies, the
order of loeding from a ! ibrary, and the address at
which the first code Is loadec.

2. Runtime routines shali not 1imit the program
structures of thelr users. On CY17C ail CRM 1
routines must be In the root segment of a segmented
joads and CMM must have at lesst one routine in the
mein overiey of an overlaid program. Such
restrictions must be avolded on CY180.,

3. The following table shows in which sectlons particular
types of data should be aliocateds and the attributes
the sectlion should have.

Attributes R = reads W = writes B
£ = execute.

Binding and

Section
Data Type Tyre Att Comment and Examples
“Jtatic® Working Rs¥W All varlables not

aliocated on the stack, In
common or expllicitiy
allocated to a section.
Includes FORTRAN local
varlables, CYBIL I[STATIC]
and [XDCL) veariables.

Constants{i) Working R Al 1iteral constants

5=2

CYBER 180 System Interface Standard

86702704

5.0 COMPILER AND AISSEMBLY CODE CONVENTIONS

5.1 USE OF LOADER FEATURES

- 0o -

4.

Se

A A G A T U - - - - - — -

which for reason of
indirect addressing orv
tength cannot be expressed
directiy In the code,

Constants{2) Code £ Optionally, constants as
in {1) which are less than
8 bytes long and
convenientily accessed
through the LBYTP
instruction. Note that
the "constant®” may not be
a PVA,.

NYXREFW Binding B Data declared in another
unit of compilation are
usually referenced through
pcinters placed in the
binding section by the
joader {rather than in
user sections indirectly
referenced through the
binding sections where
they would be inaccessible
to the binder).

Heaps cocmmon
extens-
ibile R»¥W For the system heap see
section 5.4.3. Other
heeps are declared iIn
CYBIL.

The following actiocn should be taken If a compiler

detects a fatal error In the source code it is

compilings uniess the compiler was called with

"OEBUG=0C" (see sectiun 2.2)z2

An IDR record shall be Issued contalining the string
merrors in compijation”

in the comment fietd, The non-executable attribute
shall be set.

If CEBUG=D0C wes selected, the compiler shal}]l continue
normal processing as far as possible.

Al} compllers should emit toader names {common block

5-3
CYBER 180 System Interface Standard
86702704

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.1 USE OF LOADER FEATURES

—————————— v v ——— > o ——

names» XREF names» module names, etc.) using upper
case alphatetic letters when letters occur in the
names. An exception to this rule is made for any
language which recuires the distinction between upper
and lower cese names.

5.2 INICRLANGUAGE _CALLING_SEQUENCES
Purpose

The purpose of the Interlengjuage c2liing sequence is to
facliitate inter-language procedure calls, This Is
particularly desirable on CYBER 18C because of the system
tevel support for sharing of code between executing
tasks. For exampies It wouid be desirable to have only
one set of mathematical routines to be used by ail
languages.

Restrictions

Al1 CYBER 180 Compilers must be capsble of generating the
CYBER 180 Interianguage Calling Sequence Tor an externally
referenceable code module. It is a gcal 1n the definition
of this celiing sequence that It be useable by the
majority of the complilers as a subset of their standard
calling sequence. It obviousiy cannot meet all of the
needs of languages as divers2 as BASIC and PL/I. It would
be acceptable {but certainly not preferabie) If a
particular language were to reguire special declaratlions
or attributes on e procedure cajl tco cause the generation
of this celling sequence,

It is expected thst users In the various programming
languages may hawve to take additlionsal steps with respect
to datas declarations to guarantee that the allgnment and
packing correspond to that specified by this interchange
stendard. The user Is also responsible for the values
passed via this cailing seguence. For exampler» a Boolean
varlable might contain values 0-7 {(since it occuplies ¢
byte) but the common csliling sequence only assures
interlangusage capablliity for the values 0 and 1.

In generals a compiler may employ any calling sequence |t
chooses between itself and its library or non-external
proceduress. Exceptlions to this wiil be for routines which
can be of general use to many languages {(€.G.» math
1ibrary routines). Such roufines may havYe a fast calling
seauence but must aiso provide an entry polnt conforaming
to the interlanguage calliny sequence,

5=4b
CYBER 180 System Interface Standard
B6/02/04
5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
Be2e1 CALLING SEQUENCE FDRMATS

i - s - s 2 - —— - — e P

502¢1 CALLING SEQUENCE FORMATS

The Iinterisngusge caliing seguence Is defined to Include not only
the 1layout of the persmeter 1list, but ailso +ithe layout of sany
descriptors assoclated with parameters In the list. Two formats for
the Interlanguage celling sequence ware avalliable. The term
“"interlangusge celling sequence™ is used %o refer to these two
formats cojiectively. Tuwo different formats are required in order
to provide Tlexibility of usage from language to language while not
unraasonably degreding rerformance #nd usability. These two formats
will be referred to as the ®™System™ and "General® formats,
E:tensions to either of these formats may be made vla @ DAP against
the S1IS.

The calling seguence provlided by a compiler for use belween Internal
procedures and functions known to be written in the same langusge

need not conform to eilther format of the Interlanguage csailing
sequence. Addlitionsglly there Is nce requirement to wuse the
interianguage calling seguence betwseen compiler gensrated procedures
and Tunctions and any assembler procedures and functions provided in
8 runtime library specific to that janguage. In generals assembiler
procedures and functions are responsible for accepting a parameter
tist format of the kind generated by thelr potentlial csilers.
However «c¢alls to the scalar CMML call-by-reference procedures and
functions must conform to the System format, while <calis to the
vector/array CMML cali-by-reference procedures and functions must

conform to the Genafal format.

5¢2.1.1 Kipnds_of _Parametsers

For purposes of expcositions six kinds of parameters wiiil be
distinguished: simple value parameters, extended value parameters,
simple reference parsmeters, extended reference parameterss simple
bit reference parameterss and extended blt reference parameters.

Value parameters ere those parameters for which a value Is Intended
to be passed, The caliing progrem can assume thst the actusl
argument It passes wi11 not be changed by the called program, Note
that this does not imply a specific impiementation technlague
{several are possible), Some value parameters also require thst
certain descripter Information must be passed atong with the value.

Simple value paremeters are those veliue parameters Which require
only a vajue to be passed to the calied routine,

Extanded velue parameters are those value parameters which are
composed of a value plus & descriptor. Included In this category
are pointers—to-Procedure when they sre accompanied by s static
lirk.,

- W B e S e

5=5
CYBER 180 System Interface Standard
86702704

——— - - -

5.0 COMPILER AND ASSENMBLY CODE CONVENTIONS
5¢2+1.1 Kinds of P&raneters

Reference parameters sre those parsameters for which an object Is
intended to bLe passed. The calling program must assume that the
actual argument it passes may be changed by the caifed progrem,
Note that this does not imply a specific implementaticn technique,
although at 1lesst an address must normally b3 passed. Some
reference paremeters also require that certain descriptor
information must be passed along with the address.

Simpile reference';arameters are those reference parameters which
require only an saddresss or only an address plus a string
descriptor, to be passsed to the callirg routine.

Extencded reference parameters are those rteference parameters which
are compoesed of an address pius a8 string descriptor »plus @
non-string descrivtor» or of an address plus a non-string
descriptor.

Simple bit reference parameters are those reference psrameters which
reaulre only an address plus 2 bit string descriptor plus 2 bit string
offset to be passed to the caliing routine.

Extended bit reference parasneters are those reference psrameters which
are composed oF sn sddress plus a bit string descriptor plus a bit
string offset plus & non-string descriptor,

5¢2.142 Jystenm_formaef. of the Interisnguags _Csiling_Ssauencs

This formet 1Is the one used by the system implementation language
{(CYBIL)» ancd all operating system Interfaces. This format is
documented In deteid in section 5.2+5.1 of the SIS.

5+2+1.3 General_tEormai_of_tbe_ Interisnguage _Callipa_Ssguspce

This format Is more general than the system format. It willl be used
by Ade and CDC FORTRAN. This format is documented in detall in
section 5.2.5.2 of the SIS.

5¢201e4 Jumpary . of_Eormat Differepnces

The primery difference betWween the System and General formats is in
the placement and content of descriptors. System format and General
format actual parameter lists are identical iIf only simple reference
parameters are psssed.s All System format descriptors are placed
directiy in the perameter list following the PVA of the object being
described» while Geperai format non-string descriptors are placed
outside the parameter tist. The General format parameter 1list
contains the PVA of the descriptor as weli as the PVA of the object
being described.

B B W DS Sn BB Ge B8 Se

CYBER 180 SyStem Interface Standard
86702704

. - -~

50 COMPILER AND ASSEMBLY CODE CONVENTIONS
522124 Summary of Format Differences

T A A (S D U D D B > - -~ ——— -

The System format does not support extended value parameters

except for polinters~to-procedure., For simple walue parsmeterss

the System Formet and the Genersail Format are identical except when
the value parameter Is less than one word in size, The General format
reguires that the value parameter be right aligned with slign fill on _
the Jleft fof iIntegers end subranges of JIntegers end zero fill}
otharwises while the System format requires right alignment but does
not define the fil) bits on the left.

Use of the Genersl format of the Interlanguage <ceaeiling sequence
reaulres that a ®"big" (j.e. 1longer than a word) value parameter
which is passed via a pointer will have been copied by the <caller.
The passed pcinter Is a pointer to the copy» and the called program
is free to write into the memory polinted to. The System format does
not specify whether or not a "big" vaiVe parasmeter will have been
copied by the calier» so in thls case the called progras should not
write into the memory pointed to.

5¢2.145 Calls_Poteptialiy from_ _Apothsr_language

Any procedure or function which Is intended to be celiabie from an
external module rpotentially written in another Jlanguage should
accept for that call one {or 2 subset of one) of the two formats of
the Interlanguage celling sequence. Each compiler must document
which of the two sequence formats It acceptss» or state that none of
1ts procedures and functions are externally caltable frem another

janguage.

fanguege Interianguage Format Accepted
ADA General Format

BASIC -not interlanguage caliable-
C ~t0 be determined-

CGBCL System format

CYBIL System formset

FORTRAN General format

Pascal -not interlanguage callable-

5.2.1.6 Lalls_Poteptially Lo Apgther _Lapauage

A compller may sssume thet no cail It generates Is an iInterianguage
call unless the =author of the source program has explicitly
indicated that a particular call Is Interlanguage. This means that
each 1langusge #hlich supports calis to modules written in another
tanguage must provide a mechanism within the source Jlanguage with
which the author of the source progrem can explicitiy Indicate that
a particular <cail 1Is interlangusge. This mechanism must be

Ccy

5.
D

5e2alaba

5.2.2 CA

5=7
BER 180 SyStem Interface Standard
86702704
0 COMPILER AND ASSEMBLY CCODE CONVENTIONS
2+1.6 Cglils Potentislly to Another LlLanguege

- . - —— - - -

formulated such that the author Is Pfurther required to state
explicitiy (by neme) which other language is being <csiled. It is
then up to the compller tc generate the correct interlanguage
caliing seguence for the call. Thus the compliler must know which
languages accept which catling sequences. It remalns the
responsibliity of the author, not the compliler, to ensure that the
actual and formal parameters of the <c¢all are compatibie. The
compller hasS the responsibility to generate the correct 1ayout for
the parameter 1ist and parameter descriptorss, as expected by the
called {anguage.

These provisions do not require a compller or language ¢to provide
intarianguage cellsy but they do define restrlictions on how
inter language caliing Is to be supported. A language may support
interianguage cseils to only a timited number of other languagess If
it so chooses. Note that even If a language supports direct
Interianguage <calis, It is not required to also support indirect
interlianguage calls via dereferenced pointers-to-procedure.

1 SUPPORT FOR CALLS TO ANOTHER LANGUAGE

IT a languag? supports catis to modules written Iin ancther language,
and that other 1Janguege accepts calils with simple reference
parameters, then the celiing ltanguage must, at the minimum» support
cail's with simple reference parsmeters. A string descriptor must be
supplied for sny cbject which takes oney unless the suthor of the
calling program bhas explicltly indlicated that no string descriptor
need be passed. An explicit Indication is possible In {Janguagess
such as CYBIL, which slliow the reference parameter In an external
procedure declaretion ¢to be speclified as either fixed type
{descriptor need not be passed) or adaptable type {descriptor must
be passed).

The callling tanguage is strongly encouraged to also provide support
for calls with velue perameters and extended reference parameters if
the called langusge accepts such calis, This support would consist
of a mechanism within the source lsngusge to expdicltly Indicate,
for each actual perameter of the Interianguage calis whether the
parameter Is to be passed by values by simple references or by
extended reference, The compller +then has the responsibliiity to
genar ate the appropriate calling seguence.

iL
The procedure call instruction CALLSEG, Reference #115 as

dafined In the CYBER 180 MIGDS will be used to perform the
procedure cail.

5-8
CYBER 180 System Interface Standard
B6702704

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5e243 REGISTER SAVING CONVENTIONS

- — o ———— - — - — - -

5223 REGISTER SAVING CONVENTIONS
For generalized external calds and calls to formal
proceduresy the compiler may not assume thet the called
procedure will save and restore registers. Any registers
to be saved must be saved on the stack using the save
mechanism of the CALL instruction.
internai calls need not use the CALLSEG» Reference #115
Instruction. They may use CALLREL Reference #116 or 2ny
other code seguence which meets thelr needs. For internal
calis the compilers have the opticn whether tc save
ragisters or not. Internsal cells Include calls to:z
a) the compiter?s own library routines,
b) nested procedures within the same Compilatiocn unit,
5.2.3.1 Ipformaticn_Regsuired Agcross.Call

The following Information may be Tequired in making a call.
Some ¢f the Informaticon Is not always required — See footnotes.,

Dynamic to Caller and Caljee

o basic stack control registers (A0, Al, A2)%*%
. parameter list pointer (A4)%*%

N static chain/display*

N binding section pointer {(A3)*%x%

. product defined information

Dynamic to Caliees Static to Caller

. line number of call {see traceback section)**k
. number of perameters(X0» bits 32-47)*%*

o descriptor esrea indicator

. descriptor erea pointer (if any)

Static to Calier and Callee

» name of callee {(see traceback section)

5-9
CYBER 180 System Interface Standard
86702704
5.0 COMPILER AND ASSEMBLY CODE CONVENTICONS
5e2e341 Information Required Across Call

» size of display/nesting depth*, ¥k
. frame size/language*¥*
. type of frame; €.9., pirocy funcy, co-prock*

* Block structured langusges only.
%% Traceback mode only.
**% Ragulred on calls made with the Interianguage calling sequence.

5224 FUNCTIONS

A Function is @ procedure that returns a value. The
function vatue iIs In the registers or in wemory depéending
on the type of value beilny returned. Since function
raferences are usualiy part of ancther expression that is
baling evaluated, It is generally desirable to have the
value returned in 2 register.

If the Tunction value is a pointer, then the value is
returned as a PVA In AF. A procedure calling s
pointer-valued function must not save register AF on the
call. A pointer—valued function mey have the ring nunber
fleld of AF altered by the RETURN instruction If it is
cal led across a ring boundary.

If the function value is a scalar of known length less
than or egqual to 64 bits in length, it is returned right
alilgned In XF. A procedure calling such & Functlon must
not save register XF on the cell.

If the function value is double precision or complex then
the value Is returned in reglisters Xt and XF., XF hoilds

the least significant 64 bits of the value. A procedure
calling such a functlion must not save XE or XF on the caili.,

I? the functlion value is non-scalar then it is stored at
the address de¥fined by the first element of the parsmeter
1ijste The second element of the parameter 1ist specifles
the first actugl parameter.

A scalar fTunction result is defined as followuws:

. CYBIL - characters boolegn, integery, ordinals,
subrengess celly, pointer.

5 FORTRAN - Joglicaly Integer» reals double precisions
complexs FORTRAN bocleans*

5=10
CYBER 180 System Interface Standard
86702704

A T - 8.

Se2+4 FUNCTIONS

- - — - - - - - e

N cosol - comp» comp—-l, comp-2, boolean,

. PL/I - integer{(FIXED REAL)» real{FLOAT REAL)»
complex{COMPLEX)

. BASIC - real.

. Pascal - int?ger, {enumerated type, sub-range),
res

Scalar function values sre returned right aligned in the
result register. FI111 (1T any) Is zerc blts. Note that 8
byte numeric ltems recuire no fill.

¥ FORTRAN boolean corresponds to a fuil CYBER 180 word w»ithout
types It is not the sagme as the bLOolesan type mentioned
el sewhere In this section.

5.2+5 PARAMETER LIST

The parameter list §s aliccated on & word boundery In memory. Each
entry in the parameter list must also begin on & word boundary. On
entry to the callee, register A4 will point to the paremeter list.
Bits 32-47 of reglister X0 willl contaln the number of perasmeters
{including the pseudo peremeter for non-scalar valued functions).
If the procedure belng called Is a8 function whose value is to be
returned in memory, the first element of the parameter list defines
the Jocation at whichk the value Is to be stored. If no parameters
{nor pseuco parameters) are to be psssed, then the contents of A4
are undefined end X0 wust specify zero parameters. Under certsin
clrcumstances ueteiled belowr a flag word must immediastely precede
the first dord of the parsmeter list,

5.2.5.1 Sysien_forpai_Paremegter._List

IThis 1Is currentdiy documented in the CYBIL Handbooky, DCS# ARH3078,
sections YCYBIL CisII TYPE AND VARIABLE MAPPING"™ {(old section 7.1)
and "RUN TIME ENVIRCONMENT"™ subsection "PARAMETER PASSAGE™ (oid 8.3).
The following adcition must be made to thst documentation in order
to conform to the S1IS.]

For any potentielly interianguage call in which a System format
actual persmeter list Is passed that contains oniy simple reference
parameters: The parameter 1J1ist must be immediately preceded by a

flag word whose value 1s the 64-bit Integer 2zero. The string
descriptor must be included for any object which takes one, unless
the author of the source program has explicitiy indicated that It
need not be passed. These restrictions are made to Insure
compatibility between the release 1.1.2 product set calting

5-11
CYBER 180 System Interface Standsrd
86702704

— - S e - -

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5e245.1 System Formeat Parameter List

conyventions and those for 81l future releases. A flag word need not
precede any other System format actue) parameter lists.

5.205.2 Gegperal Forwat Perapeter List

The General format parameter 11st must always be preceded by a flag
word. The parsneter 1list itself is composed of two parts. The
first part has exasctly one word for eacn parameter {(including the
pseudo parameter for non—-scalar valued functions). If the fisg word
preceding the parsmeter list is zeroc then only this first part is
present, otherwise the second (extension) part must saiso be present.
This parameterl list extension follows Immedistely after the first
part of the parameter 1ist» and has exactly the ssme length iIn
wordse. There Is 2 one-to-one correspondence between word J of the
first part and word J of the extension.

The parameter list extensjon is reguired If and oniy if one

or more of the actual parameters Is an extended value psrameter
or an extended reference parameters, or a {simple or extended)
bit reference parsmeter.

5e2¢5¢2¢1 FLAG WORD PRECEDING PARAMETER LIST

The flag word immediately preceding e OGenerai format aectual
parameter list must be present for sany potentialiy iInterianguege
callt, This flag word has the followming internal structure:

record
Fl2 O+ OfFfFFfFIFEFFrL(16)>
£22 Q0.,.0FF(16)>
f3: 0..0fF{16)>

receand

Fleld f1 must elways be set to integyer zero. It is reserved for
future uses, Fleild f2 hes a language dependent values but may be
nonzero only It fleld f3 is nonzero. Fleid f3 must be set to
Iintager zero if the parameter Jlist extenslion iIs absent, and must be
set to Integer one otherwise, Any {anguage accepting calls
according to the General format must accept Interlanguage calls for
which flelc f2 1is zero. Arn interianguage calier uwil! never be
required to set field f2 to a non—-zero vajue., If fleld F2 Is set to
a non-zero value for an Interlanguage cally it is the responsibility
of the caller to set the fleld according to the expectations of the
callee.

e Be we

-

5=-12
CYBER 180 System Intelfface Standard
86702704

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5¢2+5+2+2 GENERAL FORMAT SIMPLE VALUE PARAMETERS

5e2+¢5+2+2 GENERAL FCORMAT SIMPLE VALUE PARAMETERS

If a simple value param®iter Is greater than one word In length and is
not a pointer-to-procedure, then it is passed using an identical format
to that for a reference parameter.

If a simple value parameter Is a pointer-to-procedure then the first
part of that paremeter list entry must contsin the Jleft Jjustified PVA
of the Code Base Pointer of the procedure in the binding section. The
second part of the entry {(when 2n extension is required) must .
contain the NIL pocinter. The 16 bits to the right of each of these PVAs
is unused and undefined, This can be diagrammed ass

FR—. - - ——— +

i PVA (Code Bese) 3 undef 1§ 3 NIL i undef |

- - -+ _ P

If a simple value perameter Is less than or egual to s word in iength,
then a copy of the velue Parameter is pilaced directly in the first .
part of the parameter list right aligned in 8 words with sign fill on
the left for integers and subranges of integers and zereo T131 otherwise.
The assoclated word In <the second gpart {(when @n extension Is
required) Is unused and undefined. MNote thet If a PVA having no
assocliated descriptor is passed by veluey then by this ruls the PVA

is placed directly in the parameter lists right aligned In a word,
with the word zerc-fiilled on the left. This can be diagrammec¢ as:

+

o e - - ¥ - -

} value {right justified) 1} H undefined H

502¢542¢3 GENERAL FORMAT EXTENDED VALUE PARAMETERS

If an extended velue parameter Is grester then one word in length
{excluding the descriptor) and is not a8 pointer-to-procedure, then
It is passed using an identical forwat to that for a reference
parameter. Use of extended value perameters requires that fleld
number three of the flagy word preceding the parsmeter list must
hava been set to cne,

If an extended value parameter §s a polnter-to-procadures then the
first part of thet parameter list entry must contain the jeft
Justifled PVA of the Code Base Polinter of the procedure In the
binding sectlon. The second part of the entry must contain the
1eft Jjustifled PVA of the static Ilnk. The 16 bits to the right
of each of these PVAs is unused and undefined. This can be
dlagrammed as?

te e ——————— - + + - - -
] PVA (Code Base) } undef} H Static Link i undef!

S A

- B

5-13
CYBER 180 System Interface Standard

86702704
5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
50245+2+3 GENERAL FCRMAT EXTENDED VALUE PARANMETERS
. — -+ + - -+

If an extended velue parameter Is less than or egual to & word in
fengths then & copy of the value parameter Is placed directly In
the first oart of the parameter list rlght aligned in a word, with
slgn fill on the Jleft for Integers and subranges of integers, and
zero fild otherwise., The essociated word In the parameter list
extension for this entry »i11 contain the PVA of a location {(which
must be on s worc boundary) in memory where the descriptor Is
focateds The PVA In the pagameter list extension Is left aligned
in a snord with the rightmost 16 bits belng unused and undefined.
This can be clagrammec as:

+ - ———% + -+
1 Value {right Jjustified) @ i PVA {descriptor)! undef }
—_——— -+ +- -

52245224 GENERAL FORMAT SIMPLE REFERENCE PARAMETERS

Simple reference parameters are passed elther as a PVA or as a PVA
plus stripng descriptor. Parameters consisting solely of ¢ PVA sre
placed directliy in the first part of the parameter Jlist entry left
aligned In a #sord; with the rightmost 16 bits of the word unused and
und2fined, The value of the word in the associated second part (Iif
an extenslon is required) must be the 64-blt integyer zero. This can
be diggrammed as:

o o 20 o ot . S o 2 s s + -
3 PVA {object) ! undef} : C H
o ——— e e e + ——

Simple reference perameters consisting solely of a PVA plus 8 string
descriptor are placed directly in the first part of the parameter
1ist entry with the PVA 1eft allignec In a words followed immedjately
by the twe byte long string descriptore The value of the word |In
the assoclated second pert (iIf an extension Is required) must be the
64~bit integer zero, This can be diegrammed as:

o - re + o - - -

! PVA (object) ilength? : ¢ ;

b ———— - ————f—————t 4= P -

5e2¢5e2¢5 GENERAL FCOCRMAT &XTENDED REFERENCE PARAMETERS

Extended reference parameters requlire that the non-string descriptor
be psassed indirectly using the parameter list extensions regardiess

e B B

" we

5-14
CYRER 180 System Interface Standard
86702704

o = _— . T~ > - - - - —— -

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5e2e5s2¢5 GENERAL FORMAT EXTENDED REFERENCE PARAMETERS

- - ——— -

of the size of thet descriptor. Field f3 of the Tlag word preceding
the parameter list must have been set to one. The first part of the
parameter 1ist entry wiil contain the PVA of the object referenced,
left allgned. If the refaerence includes 8 string descriptor then
thet descriptor Is pleaced in the 16 bits immediately folilowing the
PVAy otherwise those 16 blts are unused and undefined., The
parameter list extension for this entry willi contain the PVA of a
jocation (which must be on a word boundary) in memory wheres the
descr iptor is loceted. The PVA In the parameter 1ist extension is
jeft aligned 1Irn a word sith the rightmost 16 blits being unused and
undaefineds This c¢an be diagrammed &s one of:

- + —— o + +
1 PYA {oblect) { undef} i PVA {descriptor) { undef}
- -4 -+ o . - - -+
$- - - - - + : * -+
i PVA {object) itengthi i PVA (descriptor) § undef!
+ + + + + -+

54245426 GENERAL FCORMAT SIMPLE BIT REFERENCE PARAMETERS

Simpie bit reference parameters are passed as a PYA plus a bit string
descriptor plus a bit string offset., The PVA and bit string descriptor’
are placed directiy in the first part of the parameter iist entry

with the PVA left siigned in a words followed immediately by the
two-byte long bit string descriptors, The value of the wWord In the
assocliated second part {an extension is always required) consists of

a left aligned 4£~bit integer zeros Followed by the two-byte long

bit string offset. This can be diagrammed as=3

¥ W— ——— + —— t— + +
3 PVA (oblect) {lengthi H C ioffseti
fom e ——f e e +- - + -+

5e2e5+2+7 GENERAL FORMAT EXTENDED BIT REFERENCE PARAMETERS

Fxtended bit reference parsmeters require that the non-string descriptor
be passed indlrectliy using the parameter 1ist extensions regardliess of
the size of that cdescriptor. Field 3 of the flag word preceding the
parameter list must have been set to one. The first pasrt of the
paramater iist entry widl contain the PYA of the object referenced,
1eft allgned, with a bit string descriptor placed in the 16 bits
Immedliately following the PVA. The parameter iist extension for this
entry wi%l contain the PVA of a location {(which must be on a word

~ boundary) In memory where the descrriptor is located, The PVA in this
paramater 1ist extenslion Is jeft aligned in a words Fciiowed by the

BE B GG D6 GE GBS GR GBS doe B BE LE BE B6 BE DO BN BB SE B SE B NN BB BB S0 B S8 W W

5-1%5
86702704

CYBER 180 System Interface Standard

T . G TS Tt T TR U Wy gy e A —_—— -

5.0 COMPILER ANC ASSEMBLY CODE CONVENTICNS
522+542.7 GENERAL FURMAT EXTENDED BIT REFERENCE PARAMETERS

T S S WD D M NAS G W N B - -

two-byte long bit string offset. This can be diagrammed as:

e o e o e e e o e e e + - D +
§ PYA (cbject) $length! 3 PVA (descriptor) loffset!
Fom e —————————— ————— + + +

5¢2e¢542¢8 GENERAL FORMAT STRING DESCRIPTORS

A string descriptor 1Is a 16-blt unsigned Integer {0+265535)
indlcating the length of a string In bytes. When presents it is
placed in the primary portion of the parameter 1ist immediately
Following {and In the same word as) the PVA of the object being
described. A string <descriptor is required Tor sil reference
parameters to objects of <type <character, subrange of character,
string, substrings or array over a component ¢type of <characters
subrange of character, string» or substring. The string descriptor
for an array Indicates the length in bytes of a single siement.

5e2e542.9 GENERAL FCORMAT EBIT STRING DESCRIPTORS

A bit string descriptor is a 16-blt unsigned Integer {00..65535)
Indicating the length of a bit string In bytes. When present, it is
piaced in the primery portion of the parameter list immediately
following (end In the same word as) the PVA of the object being
described. A bit string descriptor is required for ail reference
paramaters to the objects of type bits blt strings bit substring, or
array over & component type of bits bit string, bit substring- The
bit string descriptor for an array indicates the length in bits of

2 single element.

542¢5+2+.10 GENERAL FORMAT BIT STRING OFFSET

A bit string offset Is a8 16-bit unsigned Integer Wwith a vaiue in the
subrange Cee7. indicating the offset of a bit strings in bits, from a
byte address. When presents it Is placed right aligned In the extended
portion of the perameter list. A bit string offset is required for all
parameters to objects of type bit, bit string, bit substring, or erray
over a component type of bit, bit strings, bit substring. The bit
string offset for anafrasy indicates the offset of the first element

of the array from a byte address.,

5¢2+5+2+411 GENERAL FORMAT ARRAY DESCRIPTORS

The layout of an srrey descriptor must adhere to the pseudo~-CYBIL
description glven below. Note that "extent™ refers to the number of

W i WO G e NS G Gn B

WS Wi BB RS Gw B6 S G GE P BB P DB G B BE BB BB B Gk BE O WO W BE BE BE B B

5-16
CYBER 180 System Interface Standard
86702704

5.0 COMPILER AND ASSENMBLY CODE CONVENTIONS
5024522411 GENERAL FORMAT ARRAY DESCRIPTORS

. o - e T — i 3 T ———— - o o 1 -~ -

elements In a particular dimensiony "stride™ refers toc the distance
{measured In terms of srray elements) between two consecutive
elements of the seme dimensions and "rank™ refers to the number of
dimensions In the array. Array descriptors must be aligned on a
word boundary.

array_descriptor = array {1 .. rank] of record
extent: Integer,
stride: integer,
lovWer _bound: iIntegers

recend;

5.245.2.11.1 3%rlgse

For 1languages such as CYBIL and FORTRAN 77, arra¥s are represented
and stored as contlgucus cblects; stride Is & function solely of the
extents. However the introduction of array sections In CDC FORTRAN
necesslitates that en explicit stride be passed in the parameter {ist
since sections need not be contiguous in memory; they may have a
non-unity Increment 1In each dimension of the array, nhich must be
Inciuded in the celcutlation of the stride. The stride walue for
multi~dimensional sarrays 1is <calculated differentiy depending upon
whether arrays sre stored columnwise or rovuise, For one
dimenslional arrays the formulas are equivalent. Note that one
dimensional contiguous arrays have & stride of one,

For arrays whlch gre stored columnuise in memory {l.e. with the
leftmost subscript varylng fastest) the Ffollowing formula 1s uysed:

-1

stride(i) = incr(i) * E())

- W Wi
e ww

j:O

where stridel{l) Is the stride Iin the I-th dimensiony incr(i) is the
increment of the i-th dimensions and E{0) is defined to be one. For
contiguous arraysy E(Jj) is the extent of the j-th dimension. For
erray sectionsy E{(J) Is the extent cf the J-th dimension of the
cont iguous array of which this is a section. For example If we have
the FORTRAN declarstion:

DIMENSION C(15,30)
tten for C WE have: Incr(l)=1, fner(2)=1y extent{l)=15,
extent(2)=30s E£(1)=15, E{2)=30s stride{l)=1l, and siride(2)=15. For
the section:

C{131022, 12:22:3)
we have: lIncr{l)=2, incr{2)=3, extent{l)=5, extent{2)=4>» E{(1l)=15,

e e B e -

5-17
CYBER 180 System Interface Standard
86702104
5.0 COMPILER AND ASSEMBLY CUDE CONVENTIODNS
DealeDaa1l.1 Strice

- e = - - -—— ——— -

E{2)=30» stride(l)=2%1=2, and stride(2)=3%1%15=45,

For arrays which ere stored rouwise in memory {J.e. with the
rightmost subscript varying fastest) the folilowing formuls is used:

r+l

|
i
|
t
}
{
{
|
i

stride{i) = incrtli) * EL

- -
- |

J=i+1

whera stride{l) is the stride In the i~-th dimensions incrili) is the
increment of the I-th cimenslion, r is the renk of the array, sand
E{r+1l) iIs defined to be one. For contiguous arrayss E(J) §s the
extent of the j-th dimension, For array sections, E(J) 1Is the
extent of the j-th dimension of the contiguous array of which this
Is a section. For exemple If we have the FORTRAN declarations
ROWKWISE R{15,30)
then for R we have: r=2, iIncr{lil=1ly iIncr(2l)=1, extent{l)=15,
extent{2)=3C, E(1)=1%, E(2)=30, stride{l)=30, and stride(2)=1. For
the section:
R{131022, 12:322:3)
we havesd r=2y iner(l)=2, Iincri{2)=3, extent{ll)=5, extent{2)=4%,
E{1)=1%5s E(2)=30, stricde{1)=2*%1%30=60» and stride{2)=3%1=3,

50240 DATA REPRESENTATION

The following subsections define the representations of
data which must be used If an item of a particular type iIs
to be passed between languages. Lsnguages may have t{ypes
beyond these but dats of those types cannot be passed to
other languages. A language 1s nct forced to provide for
all of the following deta types.

5.246.1 Ipiager

An integer may occupy 1 to 8 bytes of storage. For
languages with slze sllocstions dependent on the subrenge
of Integers specified, the amount of storage allocated
must be the minimum number of bits needed to hold the
specified range rounded up to the next full byte,
Subranges that iIncliude negative numbers must use the
teftmost blt of the field as the sign bit. Negative
values are represented as negative two's complement
auantities. Subranges of only positive numbers will not
provide 8 sign tit. The range of signed Integers Is
-2%%63 < § < 2%%63-1, The range of unsigned integers is 0

CYBER 180 System Interface Standsrd

A O U G WD D G W M A, - - -

5.0 COMPILER AND ASSEMBLY COUDE CONVENTIONS
5222621 Integer

5-18

86702704

5‘2 .6‘1‘1

5‘2'6'1.2

- - - - - A A A U S S G -

< i € 2%%63-1.,

Several languages have 8n enumerated type called
ordinalse These are mapped onto the non-negstlve
integers, Allocation rules are the same as for unsigned
integerss 1If crdinals are passed to a language without
ordinals they must be treated as Integer vslues and
vice~versa,

Toc slzes of integers correspond to easiiy manipulated
hardware formats and are jdentified as separate subtypes
of integer to provide for languages wlth only options for
half or full word signed Integer values.,

4 BYTE INTEGER

A half Integer wiill be representec by a 4 byte {32 bit)
quantity in the CYBER 180 integer formzat J.e.» a signed
two's complement 32-bit guantitys in which the Jeftmost
bit is the sign bit. The range of & byte iIntegers is
~2%%3] < | < 2%%31-1.

8 BYTE INTEGER

A full integer wiil be represented by an 8 byte (64 bit)
quantity in the CYBER 180 Integer format j.e.» a signed
two's complement t4~-bit guantity, In which the leftmost
bit is the sign bits The range of 8 byte integers Is
~-2%%¥63 < | < 2*%*%p53-1.

5.2.6+2 Elxaed _Lengib_Charscter_f(3iringl

Fixed length chsracter data will be stored as a sequence
of consecutive 8 bit bytes. The character set #%ill be
ASCII,

Raal cata wilil be rePresented by an 8 byte (64 bit)
quantity in the CYBER singyle precision floating point
format. All real data will be normalized,

5.2.6.4 Doubis _Pregcislion

Double preclision data wil] be represented by a8 16 byte
{128 bit) quantity in the CYBER 180 double precision

floating point format. It must be normalized. The PVA In

the parameter 1ist points to the flrst byte of the double
precision datum. The second (lower Preclision half) Is

5=-19
CYRER 180 System Interface Standard
86702704

50 COMPILER AND ASSEMBLY CODE CONVENTIONS
522eb:% Double Precision '

- vne - A — - - - -

jocated at PVA+8 bytes. The sign and exponent fields of
the lower part sre considered to be correct at any given
time. Input and constant assignment routines are
responslible for Insurlng corrct signs and exponents upon
Initial construction of the number. Double precision
operations will maintain this formsat.

5.2.6.5 (omRlex

Complex data will occupy 16 bytes (128 bits) in memory and
will consist of two reziss, where the first real represents
the "real"™ part and the second resl represents the
"jmaginary"™ part of the complex quantitys The PVA in the
parameter list points to the first byte of the complex
datum {the real part)., The imaginery part is located at
PVA+8 bytes.

5.2.6.6 Bogpoleaan

Boolean data occuples 8 single byte. A value of one
indicates true and a value of zerc indicates false.

5.2.6.7 Poloter

A pointer Js a PVA, 1t occupies six bytes. Pointers may
identify data of any of the other data types. The nil
pointer is defined as a PVA with a ring fleld value of "F®
haxadecimel, segment field value "FFF™ hexadecimal, and
address field value "20C00000"™ hexadecimal.

5.2+7 DATA ALIGNMENT AND PACKING

The purpose of the common calling sequence is to provide
the ability to pass dete between diverse 1anguages. The
Interlanguage call is assumed to represent a small
percentage of 211 cslils and generally be used by
knowledgeable users. Therafores for performance in the
word orlented lenguages (FORTRAN, in particular) a
least-common-denominator allgnment of word IS Used.

Data types which require 3 bytes to store are required to
be word aligned to improve performance. This permits the
use of the load/store word Instructions which are faster
than ioad/store of 8 bytes. The spac2 penalty for mord
eligning simple variables is felt to be small especlially
since It costs a2 maximum of 7 bytes per procedure 1f gil
the word sllgned items are stored contiguously.

5-20
CYBER 180 System Interface Standard
86702704

- - ——— -~ —— - -

5.0 COMPILER AND ASSEMBLY CODE CUNVENTIONS
5¢2+741 Varliables

B -——— o —r—— - ——— —— —— -

5.2+7.1 Y¥arlaples

Varlebles may be of any of the above data types. The
gl'ignment of 2 particuler type must be as foliomws:

Data Typse Alignment
1-7 Byte Integer Byte
8 Byte Integer Word
Character{String) Byte
Rea) Wword
Double Precision Word
Compiex Word
Boolesan Byte
Pointer Byte

5.2.7.2 Siructures
Structures must begin sord aligned.

Al ignment of deta to be passed between languages in
structures must be as followsz

Cata Type Alignment
1-7 Byte Integer Byte
8 Byte Integer Word
Cheracter{String) Byte
Real Word
Double Precision Word
Compilex Word
Boolean Byte
Pointer Byte

If a byte aligned item is followed bty a word aligned item,
up to seven bytes may be skipped {and 1eft unused) to
ragain vord allignment. If a byte item follows a byte
items they may be in consecutive bytes.

52731 ARRAYS OF VARIABLES
The arrays represent a2 collection of data items of cone
unl form type. Arrays must be word asligned Iif the date
type they contain is word aligned. Unless required by san
external standard atil languages should store arrays with
the rightmost subscript varying fastest. FORTRAN, for
examples Is constralned by ANSI standards to store arrays
with the leftmost subscript varying fastest. If a user

CYBER 180 System Interface Standard

5-21

86702704

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS

52247322

52474343

5227431 ARRAYS

OF VARIABLES

passes a multicdimensiona! arraey between langusges wxlith
different storsge orderss it §is the user's responsibiility
to handle this. Arrays must be byte aligned If all of the
constituent elements are byte aligned. The parameter i1ist
PVA ldentifiles the first element of the array. Subseguent
2l ements must be contiguous and In ascending storage
address seguence.

ARRAYS CF STRUCTURES
If any element of the structure is required to be word
el'igneds each array element must stert on 8 word boundary.

COMMON BLOCKS

Items within common blocks must be aligned consistentiy to
achieve interisnguage communication, Common biocks will
begin word aligned. Allgnment of deta within the comszon
block wiil be the same 8s for structures.

5e248 LANGUAGE INTERCHANGE TABLE

caller
CYBIL
PASCAL

FORTRAN

The folloning teble shows the possibla parameter types
that may be used between languages. If a letter appears
at an Intersection in the table, that type may be pessed,

Types are encoded as follows:

J = 1-3, 5-7 Byte Integer 0 = ordinsl
H = 4 Byte Integer I = 383 Byte Integer
C = Character (string) R = Real
D = Double Precision Z = Complex
B = Boolegn P = Pointer
A = Array S = Structure
All = all types of the langusage
cal |egn
CYBIL PASCAL FORTRAN cos80L PLZ1 8ASIC
Al HIJCBPSAGCR ICARD HICBSARD HICBPSAR CR
HIJCBFSAQR ALL ICA HICBSA HICBPSA C
ICARD ICA Al ICRDA ICRDZA CRA

5-22
CYBER 180 System Interface Standard

86702704
5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5028 LANGUAGE INTERCHANGE TABLE
:
COBOL ? HICBSARD HICBS A ICRDA Al HICBRDSA CRA
3
1
PL/I ! HICBPSAR HICEP SA ICRDZA HICBRDSA All CRA
:
BASIC 1 CR C CRA CRA CRA Ald
+

el — - —— - ——

Notes:

1) PL/I may not have g double precision data type due to
possibie high overhead Iin supporting the maximum
precision ruless This will be determined later.

2) If arrays are permitted between two languages, the
type of the array Is restricted to the types of
variables that are permitted between the two languages.

3) Arrays ©f characters jn BASIC cannot be passed to
other langusgess snd vice versa.

5.2.8.1 Extendad _Ipiercbscas

The languasge interchange table defines the psrameter types
that can be used between pairs of lsnguages. In many
cases restrictions exist because a particular langusage
lacks a data type. For example, BASIC lacks Integyer type
since it stores them &s reals. In many Instances the type
mismatches could te mapped by Iinterface code beiween the
procedure calls. The foliowing mechanism Is propused to
support such mspping when and if it becomes a reguirement.

In order to map parameterss an Intercept routine must gain
control from the cailer, map things and pass control to
the callee. The reverse may be necessary upon return.
The user should not have to be awsre of the activities of
the iInterface routine or invoke It directly. To achleve
this» the loader must have a mechanism for datecting the
need for an Interface routine and inserting same in the
call/return Pathe The insertion mechanism can be similar
to the one used for Analyze Program Dynamics (APD).
Datection of the need for inserting the interface routine
can be done with load time argument checking mechanisms.

For each pair of languages (X and Y) where interface
mapping Is desired, loader tables defining relevant
Iinformation about actual and formal parameters must be
defineds A routine {(zctivated during lcading by the
loader if a call from X to Y is found) wili compare the
actual and formel parameter {ists to determine if mapping
is required. If nots the loader simply 1inks as usual.,

5-23
CYBER 1B0 System Interface 3Standard

86702704

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5¢2¢8+.1 Extended Interchsange

- - - -

Otherwises a8 X to Y mapping routine from 2 1ibrary is
inserted into the tinkage by the iloader.

The X to Y mapping routine recelves the actual and formal
par ameter 1ist information from the {oader.

The caller informaticn is obtsined by giving the P address
ef caller tc a loader service routine which returns a PVA
If tha actual psraemeter list information for the current
call. The calliee Information Is obtained by giving the
code base pointer of callee to a loader service routine.

The mapping routine uses this Information to transform the
par ameter list end/or deta representations before celiing
the callee, When the calize returnss the mapper will
recelve contrecl to do any mapping on return parameterse.

'5.2.9 REGISTER CALL FUNCTIONS

In many languages there exist commonly used sets of
functlions (for example, mathematical functions) for which
it is more efficient (though less general) to pass s
limited set of parameter walues via registers. Up to
elght {64 bit velues) can be passed in registers X2 - X9.
The first parameter value would be in X2, the second in
X3, etc. If a couble word value {say, doubie precision)
Is regulred, It uses two consecutive registers, The
specific register used for a routine may be Inferred from
the type of the psrameter. For examplesr SORTI{X) will use
X2 while DSQRTIL) will use X2 ana X3, These rules egpply
to the following date types as psrameters:

1-7 byte integers
8 byte Integers
Real

Double Precision
Complex

Retufn reglisters for register call functions {(see $.2.3)
must not be saved In calling them.

No rules are specified for character, boolean or pointer
data pending identification of functions using these
ar gument types that are of general utility.

The reglister ceil entry point Is not bound by the
conventlons of the common calling sequence.

All reglster call functions intenced for geNeral use pist

E-24
CYBER 180 System Interface Standard
867027104

——— —— 1 - " A . -

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
52249 REGISTER CALL FUNCTIONS

—— i ———] v~ - - - s _———

aliso offer an entry point that accepts the common calling
saqguence {5.2 above) and referenceabla by a CALLSES
instruction,

5.3 INIERPRODUCI_FILE_USAGE

Interproduct file sharing batween executing subsystems
¥i1l be addresseds, It will specify under what conditlons
2 product will be able to perform I/0 on a flle declared
by another product. It will also address closing and
flushing of files at job st2p termination when
Interlanguage files are belng used.,

5.4 SIORAGE_MANAGEMENT
Purpose

In order that user object code frcem di¥fferent compilers
can co-exist Iin one Jjob step while using a 1imited number
of segments, certaln conventions must be observed.

Each user will have 2 limited number of Segments. This
means that object code from different compilers must be
able to share certain data segments.

5441 STANDARD STACK FRAME

This section describes the standard stack frame which will
te set up in conjuncticn with the CALL instruction. The
parpose of standardlizing the stack frame Jayout is to
provide common tracebeck and debugging Interfaces. At the
same times allowance Is made for e minimum frame for
janguages such ss batch mode FORTRAN» with extensions for
the complexity of 1angusges such as PL/I.

A stack frame consists of two aress:

l. The save srea.
2» Tha "environmental" area,

The save gres belongs to the caller» the "environmental®™
area belongs to the callee and both exist In the
appropriste rings.

5=25
CYBER 180 System Interface Standard

B6/02704

L A D D D D D . O Y e, - — ——— —

50 COMPILER AND ASSEMBLY CODE CONVENTIONS
Sefhelsl Traceback

- . A MDA SR WD VD D U A T D - — -

5«4e1e1 Irgcshbagk

Traceback Is considered to be the lowest level of
debugging and ss such requires the support of both the
loader and the compilers/assembier. Minimum traceback
Information widl elways be produced to facilltate some
tracing from #within the system.

The compilers/assembler will produce traceback tabiles iIn
the object module which correlate object—code address of
entry points anc calls with source-code procedure nsmes
end line numbers. The loader wild maintain the releation
of these object code addresses. When traceback Is
required, these tresceback tables», plus the stack, will be
interpreted to give the source-code names and line numbers
associated with the PVAs obtained during traceback. In
full traceback mode entries will exist Tor 2ach i1ine or
source ststement; in minimim traceback mode oniy entry
points and cslils are monitored.

5.441.2 Stetlc _Chalp_y¥s.__Display

{See Glossary for definitions.)

It 1s not the dntention of this standard to dictate
whether compiled code will reference gliobals via the
static chain or a display. Either Is permitted and must
be maintained by the software., Note: this oniy appliies to
calis to a nested procedure and hence Is Intralangusge.

5+4.2 CHAINS OF ON-CONDITION PROCESSORS

Softvware conventlons for a standard on—-condition processor
chain format are recuired to ensure that on-conditions can
be processed correctlya.

The on-condition flag (OCF) In the save ares is used to
Indicate that the stack frame has assoclated on—condjtion
processors. The first eight bytes of the stack frame
{pointed to by the current stack frame (CSF) of the save
area) are reserved for the head of the on-condition
processor chain. A1l cblect code generators must
accommodate the head of chaln reservation. If the OCF is
set In the save area» the elght bytes pointed to by CSF is
the head of the on-condition processor ctaine. If the OCF
Is not set, the contents of the elght bytes Is undefined.

5-26
CYRER 180 System Interface Standard
86702704

————— —— - - N A"y -~ - - [

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
S5e4e¢3 DYNAMIC NON-STACK STORAGE

——— et

5e%e3 DYNAMIC NON-STACK STORAGE

Pe4¢3,1 Dypamic_Seumepts

NOS/VE provides the capsgbility of creating newn segments
dur ing product execution. Since this Increases the number
of segments in sctive use and potentially causes a

per formance degradation, its use should be limited to
situations where the alternatives are less satisfactory.

5+.4.3.2 Elxed=Peslilon_Dypapic_Siorage

The fundamental support for fixed-position dynamic storage
allocation Is provided by the CYBIL ALLCCATE statement
with no IN optionos

Products coded in CYBIL and needing fixed-position d¥namic
storage should use the ALLOCATE statement directiy.
Products not coded in CYBIL and needing fixed-position
dynamic storage may €ithers

1) inciude CYBIL subroutines contsining the appropriate
ALLOCATE ststements, or

2) uyse a set of common routines which will provide a CMM
compatible interface to the ALLOCATE statement.

5.4+3.3 Variable-Position Dynamic_Stocage

Var iable-position dynamic storagé is not currentiy planned
for suppolt.

5.5 COMMON_SUBRURI.MODULES

This section wilil define nodules which wlll be avaijabile
for general use.

Math Routines

For a detalled esccount of the math routines to be provided
sae C180 Common Modules Math Libresry (CMML) ERS with DCS
log ID 529259, The routines will offer both a register
calling sequence and the common cslliing sequence. Entry
point names Wiil meet the speclifications of section 4.1.1.

Numeric Conversion Routines

5-27

CYBER 180 System Interface Standard

86702704

5.0
5.5

- - o

COMPILER AND ASSEMBLY CODE CONVENTIONS
COMMON SUPPORT MOCULES

FROM
Integer
Real
Longresal
ASCII

ASCII
{nondec.)

BDP*

Unpeacked
decimal
trailing
slan
combined
holilerith

Number 170

*¥includes aili

{1) there

to end from ascii In piecemeal

Routines will be provided for ali products {(compller or
runtime systems) to perform numeric input and output
conversion., This will ensure that the same numeric
rapresentation matches the same internal bit value by all
processors. See giso C180 common modules math library
{CMML) ERS with DCS log ID 32929y and CMML
Assembly-janguege Support System ERS with DCS iog ID $3410.

1 R L A A BDP* Unpeacked Number-
n e) 5 s tralling 170
t 8 n c C sign
e) q 1 1 combina-
g r I 1 tion
e e {nondec,) hoiderith
r 8
+ 1

*- ————————— - -— -~ ——

H

H

! X X

:

H X{1)

H

H X{1)

]

ioX X{1) X{(1) X{(2) X

k]

3

L ¢

;

H X

:

i X

:

:

H

H

H

H

HE X

+

A ——— o — -~ - - —]~ "~

BDP types except: slphanumeric

are additionel routines for handling resl conversions

fashion

and longreal

{2) transiation, move, etc.

5~-28
CYBER 180 System Interface Standard
86702704
Te0 COMPILER AND ASSEMBLY CUDE CONVENTIDNS
5% COMMOMN SUPPURT MODULES

mone s - - - - -

Utilities

A set of commeon utilities will be provided to carry out
the foitlosing functions:

. Diagnostic Handling — the formatting of diagnostic
lines of output and the construction of the diagnestic
Jistings.

. Scurce listing formatting - the formatting of the
source listing Including output of the socurce lines to
g print file.

N Storage map/Attribute/Cross Reference listings ~ the
formatting of this listing and cutput of its contents
to & print fltle.

» Compiler Ussges Statistics —~ the generatlon of ussage
statistics messages.

6-1

CYBER 180 SyS5tem Interface Standsard

86702704

6.0 GLOSSARY OF TERMS

—— " A S o - — ——]

6.0 GLOSSARY_QE_IERMI

In writing the System Interface Standard it became
necessary to clerify the meaning ¢f certain wmords. This
glossary contains those words #shich regquired

The list will be extended.

clarificaticn.

-a- adJjective

=n= noun
-y= verd

Binary

Boolean

FORTRAN
Booiean

Diagnostic

Display

Error Message

-n—

R A

-n-

0f base 2., Not t0 be used without
gualification to mean the object code
cutput from & compilier. MNote object
cocde files are one of many different
forms of binary files.

Date type whick can hold the values
Ytrue"” or "falise™.,

Bcolean data but required to occupy 2
fulil computer vord.

Generally a part of a larger entity,
such as listsble outputs as opposed
to an error messages, which iIs
generally a summary of a command.
Diagnostics are generally lssued by a
number of the product set, such as a
compiler. See aiso — error message.
Exampzlez A compliier may provide g
singie error message telling how many
errors occurred during compilation
énd produce s diagnostic for eeach
compilation error.

A mechanism for accessing globasal
variables of a program using & table
of stack frame pointers; one pointer
for each accessliblie scope and one
teble for each active scope.

Generally a summary of a command, as
opposed to 8 dlagnostics which is
generally a part of a larger entity,
such as listable output. The error
message Is generally Issued by the
operating system or by a product via

CYBER 180 System Interface Standard

————— ——————— - o

6-2

B67027/04

6.0 GLUSSARY 0OF TERMS

—— T A S AT VD WD U U D e g, . B D S S

Invoke

Job Step

Load Module

Ob ject Module

DbJject Progranm

processiing)

Processor

Product

Product Set

record

Standard

_V’

—n-

-n-

- -

-n—

—n-

-n-

the operating system. See also ~
diagnostic for an example.
Applies only to spiritsy witches,
etce Procedures are called,

A Jjob step is the work done as &
result of a single command in the Jjob
deck/file, Job steps execute
sequentially within a2 Jjob.

ObJect information Produced by object
1ibrary generator and input to the
loader or back into object tibrary
generators Load modules are designed
to facilitate processing by the
1oader.,

An object module is a unit contalning
code and/or data definltion theat is
producad by compilers.

An object program Is a set of obJject
modules organized to perform some
specific function (e.g.> compiie
CGBOL statements). An object program
is prepared for execution by the
loader.

Comput{ing)e Unrestricted to mean
el ther hardware or software.

Restricted to hardware CPU or PPU.
May be used for software If
sufflciently gqgualified, e.g.
Processor.

l anguage

Any part of the stenderd software
which Is covered by the Systew
Inerface Standstrd.

That part of the System which Is not
part of the Cperating System,

A unit of data on a file. e.g. @
card Imagey, Jline image, NoOt to be
used without quajification if meaning
g "CYBIL"Y™ record or "SCL" recorde.

Plural-Standerd not Standards when

CYBER 180 System Interface Standard

6-3
86702704

— A — - - -

6.0 GLOSSARY COF TERMS

used in the sense of the System
Interface stendard.

Statlic chain -n~ A mechanjism for accessing givbel

varlables of a program using 1inks

through the stack frames.

System -n=- All products (ge.v.) operating ss a

vhole - to be distinguished from
Cperating System.

Task -n= A task Is an instance of execution of

an obJect program. Muitiple tasks

can exacute within a single Jjob

step. Each task has its own sddress

space {set of memory segments).
Tesks may be initliated either
synchronously or asynchronously
the initiating task,

1,0 GENERAL
1.1 PREFACE TO CURRENT EDITION
1.2 CHAQTER » * » £] - * » - » * *

1‘2.1 ?ERPG%E - » » » - » - » L] » » E] 2 E]
192’2 SCGP£ » » » » » E] - » L] » » » > » L]
1‘2‘3 GDALS » - » » E] L] » L] » » » k] L]
1.2.4 REVIEWING AND UPDATING THIS QQCUﬂENT
2‘0 IN?UT L] * » » . > - * » » E] » » L * E J »
241 SYSTEM COMMAND LANGUAGE o s o o o s o o
2.2 PRODUCT CALL COMMANDS o o o 2 » s @ » »
2201 APPLICABILITY 4 o o o o s 8 3 o 2 »
2 2 2 TfRMINBLOGY » L] » » » » E] t] » » L] E]
2 2 3 SYNTﬁx E » » - » » - L] - E] - » L] k] -»
2 2 4 ?ARAMETER »] L] E » * t E]) L] L J L
2¢24%4+1 Positional Grderlng of Product S
2220442 Types of Parsmeters o+ o« » « » '»
2e2-%+3 Parameter Names and Descriptions
2'3 SSURCE INPUT 2 * » » .AI » » » » ® E » »
231 SOURCE INPUT FILE CRGANIZATION o o
23,2 SDURCE STATEMENT FORMAT & 4 = o o
2+3+s2+1 Statement Identifier » s « + o
2234242 Line NUMBErs o o o s ¢ o 2 s & »
2234243 Statement BoOUY + s o o s s » »
223+s2e% Blank Compresslion 2 8 2 8 ° @ @
2e3.2+% Empty Input Flle = 2 o o o » » »
2+3.2+6 Null Scurce Line Convention .+
223.3 DISPOSITICON OF INPFUT FILE & » o » »
2e% COMPILATION DIRECTIVES o o o o o ¢ 2 o o
2e%+1 PAGE EJECT o o » o » % o o o » o » '@
2'4.2 SBURCE LISTING - - - * * - » » » » -
20403 LINE SKIP E) []] .] * L E L]] L] L] E J
2‘4 3.1 LiNE SPACING E » 2 E] > E » L » E d
20404 TITLE LINﬁS L 2 » £] » » * » k] L] » * »
2-(’!05 RANGE CHECK » » - . - L] L] » * » * L]
2eie6 EXECUTION TRACE o o o o o 2 2 o »
2447 DEBUG STATEMENTS o o o o o o o s o
2.4.8 S%QUENCE CHECK t] E » » -* . » » * E] L
2249 OBJECT CODE LISTING o o o o » s o »
2410 STACKING COMPILATICN DIRECTIVES « »
2¢5 PRODUCT DIRECTIVES o 5 o s o 2 2 2 » » »
2e5¢1 STANDARD PARAMETERS o o o o o o o s
2e5+e2 STANDARD COMMANDS 4 o o o o o » » o
300 DUTPUT . s @ . . 2 ® - » » - s » » * » »
3.1.1 SITUATIGNS AND RECOMMENDED NUMBER BASES
3.2 LDGS 2 t] * t] * - * * * :] L] E :] L] L] » * L]
3‘2'1 ASCII LGGS » - - L] L] - * .] 7 2 [) E]]
322101 System LOQ e o 3 » e o » * ®» ® »

CYBER 180 System Interface Standard

Teble of Contents

L * * 2 » » » » - * B » £ *

£]

(SEE COVER SHEET

»

¢ @ ¢ @

® O ¥ & & S & & & & 5 g b 6 8 8 % & & B s 6 B & ¥ s e & 6 & 5 s &

L]

»
-

»
L
*
»
]

® B & & & s & ¢ B 6 & & 5 ¢ & ¥ & b B ¥ & 6 6 B b 5 TUe & ¥ b ¢ 8 o

]

L}

£
»
.

& B & 6 B &5 & ¢ 6 & b & 6 & B B b " & B8 b 6 s e b Y e 4 b s s o

¢« & ¥ 8 &

& 8 & 5 & 5§ 8 B & 6 4 ¥ & & 5 & 5 & O B ¥ s " 4+ B s 2 oée v e b s

¢ & & & O

® & & B & ¥ S 6 B 6 5 6 ¥ & B & & & & b B & B b 6 B s e 5 B s B e e

*« & & & o

* & » *
FOR DATE)
] s » .]
- L d > -

® % 6 9 8 8 & & @ 6 b B 8 6 b B 5 B G 6 B & 6 O B 6 8™ g o8 s s e

*» & » 8 & 9

& ¥ o @

S & 5 & 6 4 & O & & b & & 6 ¥ BB 6 e & % 4 " b e

& & & & o

® & & 5 & & @

& & ¥ @& 0 v &

& & & & o

® & 8 & & 5 & & & 5 & w b W & P B 6 B 0 B BT s s e s

® & 6 & 5 ¢ 0 % 6 B ¥ B B 8 5 6 B 5 B 6 1 B 6 b 8 O & & B b s Y W ¢ & & @ O & @

» % & ¥ u @

N EEEEEEEEEEEEEE N EEEEEE ® & 5 & ¢ & s & & @

® & o & & & @

¢ & » & &

B & & & ¥ & & 8 & % O & & & bV b B L 6 b " 6 6 B b W b B E e E o & & » o s ¢ @

¢ & & & o B

e & & ¢ o

d & 5 & & ¢ 8 6 O P b 6 & ¥ B b & ¢ & b 0 2 & P b s b e s e 6 8 v

® & &5 & & & 5 S & 5 5 S 4 & B & b G B ¥ " P sV E e s e s

.« ® & & & @

1

86702704
»
L
o o
* »

1-1
i-1
1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-1
2=-3
2-3
2=4
2=4
2-5
=7
2-29
2-30
2-30
2-31
2=-31
2-31
2=-32
2-32
2-32
2~32
2-33
2=34
2-35
2=35
2=-35
2-35
2=-36
2-36
2=36
2-37
2-37
2=-37
2-38
2=-38
2-39

3-1
3-1
3-1
3-2
3=-2
3-3

3-4
3-4
3-5
3-5
3-5
3-6
3-8
3-8
3-8
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-10
3-10
3-11
3-11
3~11
3-12
3-13
3-13
3-15
3-15
3-16
3-18

-
.
-
2
-
»
»
L 4
»
.
-
»
»
-
-
*
]
-
-
-
2

]
L]
E]

B6/027/04

L]

*

»
»
»
»
L4
.

.
£]
-
»

- »
»
- []
»
L] »

»
-

»
:]
*
-
*
*
»
»
»

* »
* »
. 1
CUTPUT FILE
»]

»
-

-
-
»
»
.
-
»
»
-
.

»
»
»
*

»

o2 CONVENTIONS

Job Log
»1 PURPOSE

«1 PURPOSE
202 CUGNVENTIONS

INARY LOGS
+2»1 Account Log

3.2.2.1.1 PURPOSE

CYBER 180 System Interface Standard
o1
o1
o1
o1
1
B

323.1+2.2 PAGINATED CUTPUT FILES .
343013 Standard Carriage Control Codes
3+e3+s1e4 Horlzontal Leyout

3e3.2+2 Narrow Format {80 Cotumns)

342+2+5 Binary Log Conventions +
3

3.3 LISTABLE OUTPUT
343¢2.1 Yide Format (132 columns)

3+341.5 Standard Listing Hesder

3+3.1.6 OTHER FORMATS

3.2.2.4 Job Statistic Log
3.3.2 FORMATS

3.2.2+2 Engineering Log
3.2¢2+2+41 PURPOSE
3.2.2+2 Statistic Log
3’2»2'401 PURPGSE

3.2¢2¢3s1 PURPDSE
30341.2 Format Attritutes
3.3.1.2.1 CONTINULBUS

3434141 Vertical Lavout

3.2
3.2
3.2
3.2
3.2
2.2
3.2
3.3.1 LISTING PAGE FORMATS

3.

«3 SOURCE LISTING FORMATS

3

RO ORNMETTNOOO mt NN M M IO AN IO
rled AN NANNNANNMMOAOMMOMOMNHNMOMNMNM®N
B
MO EOEOMOMNMMEOMMMMENMMMMNMME M
& 2 S 2 2 & 0 ® 2 8 O 2 S 8 9 O 9 & 2 0 a
® & 8 2 2 % B " S 9 8 0 2 0 P NN e ¢ P 2 e s 0 0
& 2 8 % 2 @ & 0 0 e 9 e 9 0 e g 8 0T e 0
e]
® S 0 & & 9 2 & 8 & O ° 2 8 " 2" 8t e P srd 0 0
-
e 0 B P P 9 e & s e 9 2P e % s 9 ex 2 @
[+ 4
@ 2 S 8 2 AR e T e T O P e " e e 9 9 sl " e
=
® 8 0 8 6 5 2 2 8 e 2 8 0 e . 2 B s e 2 ell) e @
(5]
2 0 0 @ 8 a ® 8 & e P e 2 e e O 0 s 0 L2)
(28]
2 A 0 ® 2 2 & 2 @ 9 % & 2 e 8 g & 2 0t 2 2D e a
-
® e @ ® 8 2 S 8 e 8t e P e 02 e 0 2 P e eiN e
(7]
8 * ® 0 92 8 a8 s 9 9 e a9 % s 2 " e el e @
=
LI S T Y S I RN A B T DY R N TN Y N Y Y IR) e o
Q
L2 S I R T I 2 D D DY RN R B B B R B IS I - R B - S)
[] X
28 ® e e e et rEE & L]
b b LY
0 8 AN e e % 2 e 0 2 e 90D O0O ® () ® =
o . U | ad
® 2 2 S % & G 9 0 S 4 8 S 5 9 e 0 e a¢) o o
[= [« 38 =2
*® a2 ® 9 8 e e e * a2 a2 e L b O 2 * @
= PR] o
e 8 ® e eI D e e e s e 0 e N E e el o o
b -~ C Lol » 0 E <18
LI < T BT el o C e e o e o G 3 e o ® @
] - @ - @ n @ - N Q
2 dd 9 @ 8T S LT AP 0 G e e * o) e @
[- [< A 3 » - S o 2 c oo []
O ¢ ¢ D OO * ¢em 8N ¢ Dwnrm & 2D o
(8 e € J O ad i N (S & 1Y "
LI O W ¢ A epelll @ wn L] +
[0 = I [- Qe =0 OWwm = wno
QW e . LW YW Yamaro wCCE sl 3
Q L i B & B A S o ZE O DO o R
[Lol B B N 9o o [R IR O B I N @ I«]
D N+ ED D QA E o=l Qoo b N QO -
O Xt X NT @ bbb T OO oUW Q.
CEO.J Lo} E O <1 Z w4 o [I =3
Qe e L T od O b . T D W4V uo *J 0w
b -~ Q [S - O o b= 0 OX o G e €y - @
] L 20O 0 @V SU X GmmMidde 8 § 80 0N L]
2 OO0 TV ID QU NUM TV U Z v T
Ced B D CECFRCORCZSUFCCCPLrOQDODR
(IR i « B PN WHDOT e TLUIOKD O X O << C.0
A b sem O o dd et O D e U Dt I 0O E
N RZDDNNHNITZANANMMZT ANV OLW
58] o e & oD a. o
TN PerA N rf NN T T ICANNE EZ N
e 8 & oD ¢ ¢~ 2 & * o o 2 oFri o o o) C) o o
MO AOMOFE I NN O0O000LKOr
e o o o L e ® & 2 o * @ e o ® C . @
MO MEOFEOMOOMOED®MOOMOMM-OMOOMNSO S
* 2 & 92 ¢ @ * & P O & & O & ® 9 6 e 8 O o O 9
L * L [] L] L
™ [22] [v2} MM
.
(4]

3
CYBER 180 Systew Interface Standard

86702704

Bshaleld Message GENETELION o o o 5 o o o 5 8 5 o % o % 5 2 5 3 8 o 3~-36
Bale2 MESSAGE TEXT o o 5 o o o 2 2 % 2 5 o s 5 5 » s 2 5 2°2 o » % » 3-36
3+s4.241 Mess&ge Fformets 4 85 ® 2. % B % 8 # » 8 ® @ 8 B m = 8 = s = 3-37
324222 Error Summerles in Logs e 5 9 8 8 3 5 8 8B B 8 B B2 8 5 B B 3-37
3044223 Messag2 WOPdING o o o o o s s » o 2 5 2 o 5 » s 5 » o » » 3-38

3.5 USAGE STATISTICS o s 2 s o o o 2 5 o 8 o 5 3 5 2 o« % 2 4 % 5 9 o » 3‘39
3 501 PU?PGSE GF STATIQYICS » 2 8 » L I » ®» 8 @ = ® * o » 2 = 5 9 3-60
3¢5e2 STATISTICS FACILITY o & e % o 5 » s s s a2 ® 2 oa e e 8w s w 3-40
3.5+3 PRODUCT STATISTICS CGLLECTED BY NOS/VE o 5 s ¢ 5 2.8 o o » o » 3=-41
3254 STATISTICS COLLECTED BY PRODUCTS o 2 o o 2 o = 5 2 2 2 o s » '« 3-43
3e5e%el Input Unit StatiStiIcS o o o o o o ¢ o s 4 o 2 o 9 8 8 o » 3<43
3.5.4.2 Internal Statistics 2 8 8 8 ® P 5 2 B 8 e W " s B B B P 3~-44
3.5. 5 wHEN TB i.ﬂg STAT IST Ics » » » » » » - » * » - - - L] * - - > . ® 3’&‘
4.0 §YSTEMWIDE CENVQNTIBNS 2 5 9 5 9 8 5 B B P B 5 B B B F B 2 '8 s 8 4-1
4.1 NAMESy DATES AND TIMES + o o o » o 5 s o 2 8 » 5 5 o 2 8 2 % 8 o @ 4=-1
4.101 NAMING CONVENTIONS o o o o o o 2 5 o 2 5 % a » o 2 2.3 2 » » » 4~-1
4e1s1s1 Product Identifiers ® 5 o 5 B B 82 2 % B 8 B % B B 8 B B @ 4=2
4e1le1s2 Other Global IdentifTiers o o » s o » 5 2 2 » o 2 o o » a » 4-4
4141+3 Classes OF NBRCS o o o o o o o 2 o 2 2 2 0 5 o 2 o o o & » 4=4
4214104 Speciai Characters » a » s « o % 2 5 » % » % 2 8 %5 » o » » 4=3
4412145 User Global Names S s 2 ° 8 B B B s 8 B B B ® B2 B 8 s s 4-5
H42121,6 Dack Naming Guidelines o » » » 5 o o s 2 2 » & 3 5 » » » 4=5
4e1e1+7 SCU GROUP NAMING GUIDELINES o o s s e o o 5 2 2. o s s s » 4-10
44142 RESERVED FILE NAMES s 8 8 2 2 B B B %2 8 B B B 8 B 8 0 8 8 0 8 4-12
4.1.3 DATE AND TIME » ® & s B ® 8 5 ® B # S 2 8 » 5 3 5 &4 8 8 e 8 » 4=-12
4s2 INTERACTIVE PROCESSING o 5 o 2 5 » 2 2 o s s o 2 2 s 9 2 s s s s » 4-12
4421 INTERACTIVE OUTPLT o o o 8 2 ¢ o s ¢ o 2 o 2 8 5 8 8 8 % 2 » 4~13
4+2.1.1 General P T I T L T O S S R T 4-13
4432e1e2 MESSAGES » » » o 5 5 & 2 5 & » 8 8 5 5 2 5 8 5 9 5 v 8 o » 4=-1%
4.2:1.3 L‘St;ngs 2 8 8 8 A % 8 ® 8 8 ® 8 2 8 »2 8 8 B A s e » e e 4=15
402e2 INTtRAC!KVE INPUT ® & 8 8 B 8 2 6 8 8 2 B P % 2 2 @2 ® e s 4=-16
4.2.2.1 General 2 ® 8 B 8 e 8 8 B 8 B B B B S A 8 B e 8 B ® e e 4=-16
bhele2e2 Input aiaﬁﬂoses a & » 2 ® a2 2 ® ® 3 ® s » WM. e s 8 B B = 4-17
4e2¢3 CONTROL e 2 8 B 6 8 5 8 8 8 * 8 5 B 5 8 % B B B BB 8B B 0D 4-17
3020321 CONNECLIVILY o o o o o 2 o o 2 o 5 5 » 5 2 5 o 5 o 5 3 o » 4-17
4+.243+2 Interrupts and Connection Breaks o o « o 2 o o = o o o o » 4-18
422433 StatusS » o o o 5 o o o ¢ 5 2 o % 5 0 % 2 2 8 % 2 9 8 ® o @ 4~-19
4022e3.% He)p ® % 8 ® 8 % ® B B e B 8 " B 8 * B 8 e S B B B 0 B & » 4=20
4e204% PRODUCT SET RUN TIME COMMANDS 4 o o s ¢ 5 o 5 o 2 o 8 5 o o o 4-20
402¢%4]1 PAUSE and STCOP Literal o« » o o s o 2 » » 2 5 5 o o o = » @ 4=-21
4020402 ACCEPT FROM CCONSOLE o o o o 0 o s 2 o 5 ¢ o o o 5 o o 2 = 4-21

4.3 INSTALLATION PARAMETERS s % 2 o B 8 @ B % 8 B B S S P B B B T O @ 4-21
4‘3'1 GENERAL GUIDELINfS L] » - » » » - L] E] - » » * - - L] . - * » * - 4-23
44342 LIST DOF PRODUCT SET PARAMETERS o o o o o 5 2 o 2 2 2 '3 o o o » 4-23
4.4 ERRBR PRDCESSING L d £ * L » » E J E] » » * L] » E » » » L) * L] L4 * E] L] - 4‘23
4.4'1 STATUS vAR{ABLE L d » . » - » » - » » - » - L] - » * » - - -» - » 4‘23
4.4.2 ERROR TERMINATION e 8 5 5 2 2 & 0 B 8 5 % 2 6 B 0 B &6 % » 0 09 4=24
Lo4e3 INTERACTIVE ERROR PROCESSING 4 9 o # s o o 5 o o o o » o o 2 = 4=25
bdee3e]l ETTOr MESSEUES o o s o 2 s o & o 5 » & o 5 5 o6 5 o o o o @ 4=-25
fota3del Diagnostics ® % 3 ® ®» = e s 3 ® 8 8 ®© % 85 © 5 g 5 9 8 9 0 4=-26
4e%4e¢3¢3 Input Dlagnosis 2 % & e 5 8 e ® 2 8 3 8 " 8 B B8 e 6 e s » 4-256
4.4.4 BATCH ERROR PRQC%SSING ® 8 & & B 8 5 B 8 B 8 ° B B B B S 2 4=25H

4.5 EFFECTIVE USE OF CISG HARDHARE »

A
4,

5
Se
5

CYBER 180 System Interface Standard

Sbehoftel Error Messages .
4.4.4,2 Input Dlagnosis

4.4,5 TRANSACTICON ERROR PRGCESSENG

b.4.6 RESTART o

»

4.5.1 HARDWARE OPERATION .

4,5.1.1 Interlock

4,

ah SECUR{TY s 2

SUPPORT OF EBCDIC
EYPOINT USAGE .+
«1 KEYPODINT CLASS
+7e1e1 Dperating

4
6
7
4

. 1102 Prﬁduct Se

wWords

ls2 Pre—-serislization of Clear
1.3 Reglister Reservations . .
le4 Alignment of Tables and Wor
le4el 64-BIT WORD BOUNDARIES
l.4,2 OTHER BOUNCARIES 4« o« » »
HARDWARE PERFCURMANCE o o o » o
+2+1 Locality of Reference .+ »
2292 Register Allccation and Usa

DATA »
ES L] -
System
t .

1.3 Other {lasses .

7
.7'

4.7.2 KEYPOINT IDENTIFIERS
Te

221 Operating

4
4

A

4

FA

5

4

4

]
4+5+.341 Procedure Psasremeters
3

K

7

'A

4

4

7

4

System

4,7+2+2 Product Set * »

4.7.3 KEYPOINT USE »

» 2 »

E] »

- ® - » .

e & & & = s @
e & o & + & @

- » - »

(o]
x

¢« (38 & o ® & & @

s
.
2
-
»

e

. » » -

8 8 8 6 & & 6 8 & 0 b &) ® B e 6 DLe I"™P 6 s " e b @
® & 8 6 & B 6 B 6 B & & & O & b & b 5 ¥ 8 b & 8 ¥ & @
& 6 & 5 5 8 & 6 6 5 b & T & B & B b 6 & O b b e
6 & & ® & & 8 & 5 & 5 B 8 O B 6 B B B B & b b @ b ¥ e
¢ ® & & & & & & 5 b 8 S & 6 B ¥ 6 & & & & b e * s e
5 & & & & 6 B 2 & B S b 8 b 6 b 6 6 B B b s b e b oo
o P 5 B 8 & & ¥ S 0 8 b 5 B b b & & b 6 s " o e W o
e 6 B B B 5 & & 6 B G b & & 6 4 B U b & B 6 & e b s
& % & O 5 0 & & P &P B BB O P e e e o
6 6 8 8 6 668 0 5 " ® & 0 & 6 4 & 6 & b 4 B b e

¢ & » & & S & B 5 0 4 O s B b v s

s & & 5 " 6 & s &

¥ & & & b 8 o s &

* 6 & & 0 s 9 s s e
® & & & & s & s b e s
& 6 6 & & b & o e
$ & & & & & & & & o b @

$ & & & 5 & & & 8 ¥ ¥ & 6 & b W 6 E & b s b e s o

o0 COMPILER AND ASSEMBLY CODE CONVENTIONS 4 o o o o 2 o » 2 3 @
1 USE G; LDADER FEATURES » * * » . * * * * E] » » » » » k] » » »
o2 INTERLANGUAGE CALLING SEQUENCES &+ 2 o o o 5 2 3 o » o 2a-» »
S5e2e1 CALLING SEQUENCE FORMATS 4 o o o o % 0 2 2 5 % o » 2 o »
5.2+s141 Kinds of Parameters e 5 8 8 8 A 5 ® B B B 8w B ® »
5e2s1.2 System Format of the Interlanguage Callling Segquence
502143 Genersl Formet of the Interianguage Calllng Sequence
5¢2+1+% Summary of Formet DIFFerences « « o« o 2 s o » o '3 o
H5e2e1e%5 Calls Potentielly from Another Language +» =« « o o »
52221.6 Calls Potentialily to Ancther Language o+ o s s » o »
5e2+1ebe1 SUPPORT FOR CALLS TOUO ANOTHER LANGUAGE o o o » » o
;502'02 CALL » * » ® L] * t] * L J t £ d L] E] L 2 L] * » L] L] L] E] E] »
5.2+3 REGISIER SAVING COUNVENTIONS o o 2 o o o 2 2 8 s » o o »
5¢2¢3s1 Information Reaquired Across Call o+ » o s o 2 ¢ o » »
5020'4 FUNCT IDNS » E J » » L] » k] » 2 * * * L d » » * Ed » » E J » - »
5'2’§ PARAHETER LIST » » L] - L] L] - » 2 - » » - L] - L] ® : » L] -
H5e2e¢5e1 System Format Parameter LISt o o » o o o o o 5 o o o
522052 Generel Formet Parameter List 2 5 8 ® » e ® s 8 ®
5e2e5+2¢1 FLAG WORD PRECEDING PARAMETEK LIST s s 8 e ®
Hel2eHal2se2 GENERAL FORMAT SIMPLE VALUE PARAKETERS o s o &
5¢205e2e3 GENERAL FORMAT EXTENDED VALUE PARA&ETERS e o o »
542¢5e2+4 GENERAL FORMAT SIMPLE REFERENCE PARAMETERS s o o
5e2e5+2.5 GENERAL FORMAT EXTENDED REFERENCE PARAMETERS s .
54256206 GENERAL FORMAT SIMPLE BIT REFERENCE PARAHETERS o
522527 GENERAL FORMATY EXTENDED BIT REFERENCE PARAMETERS .

® & & ¢ % & ¢ 0 P B O 6 B ¥ 5 B ¥ 6B E e el

® & & & 5 3 & & 6 & & ¥ P O b b 5 ¥ ¢ ¥ & " 00

4

86702704

® & ¥ 5 & & 6 s & b ¢ b B & v " B 6 6 b B s 8 B

$ & & & 6 & 6 5 5 P & 6 & P 5 B 8 B & e 5 & P

& 5 & % & & 8 & 9 b s & 6 b 5 ® 5 & 6 & " & e b 50

® & & & & B » 0 & 5 & 5 5 O 8 B F O & 6 s sV s

4=26
4=-27
4=-27
4=27
4-27
4=-27
4=27
4-28
4-28
4-29
4-29
4=-31
4-32
4-32
4=33
4-33
4-33
434
4=35
4-35
4=-37
4-37
4-37
4=-37
4-37
4=40
4-41

5-1
5-1
5-3
5-4

5=4

5-5
5=5
5-6
5=6
5-7
5=7
5-8
5-8
5-9
5-10
5-10
5-11
5-11
5=-12
5-12
5-13
5-13
5-14
5-14

5
CYRER 180 System Interface Standard

86702704

522¢542+8 GENERAL FURMAT STRING DESCRIPTORE & o o s a 2 2 2 s » » 5-15
De2s5e2¢9 GENERAL FORMAT BIT STRING DESCRIPTORS o o o o 2 s 2 o 5~15
502e¢5 42410 GENERAL FCRMAT BIT STRING OFFSET o o » 2 2 4 s s s « o 5=15
D5e2¢5+2e11 GENERAL FCRMAT ARRAY DESCRIPTORS o o o s o s o 2 o = 5-15
5a2+522+11s1 Stride 2 8 % % 8 2 B 8 8 S 3 B 8 5 5 B B B B 0 8 2B 5-16
5:2'6 DATA REPRESENTAT10N ® B B 3 B 8 B 8 B B B B e S B 5 B S 2 # @ §“17
5el2ebal Iﬂteger s 5 B 8 B e ® e T B 8 8 M 8 B s B 8 9 B B 6 B ® 5"17
5&2.6‘101 4 BYTE INTEGER o + s » 2 2 2 # 2 a2 » » » » o o o » 2 2 @ 5’18
5o206t1 2 8 BYTE INTEGER s 9 & & * % 2 2 B B2 B 2 A B 8 8. 2 B 9 2 » 5-18
Gel2ebe?2 Flxed Length Charecter {String) 2 & 9 8 & B 82 s e & » e 5-~18
52246023 R221 2 2 s 2 2 5 o o » 2 3 » s » 2 2 5 2 5 » & #a.2 3 2 3 » 5-18
542eCe% Double Pracision o o o o o ¢ s » 2 ¢ 5 2 2 o 5 2 5 2 2 » » 5~18
S5e2+He% Campiex 2 % ® 8 3 B 2 8 B3 W B B B S B B B A B B S % ® B 5-19
5s.2eb6.6 Boolean 2 ® 8 & 8 8 B3 e 8 8 9 3 8 8 B S B B 5 8 2 2 5 » = 5=-19
522257 Polnter » B 8 8 2 ® ® @ B B B e ® B B B O B 2. B 8 B P e » 5-19
5247 DATA ALIGNMENT AND PACKING o o o o 2 2 2 3 2 2 5 2 2 2 5 » o » 5=-19
5e2+7«1 Varisbles s % 8 ® & ® 3 3 ® % 8 & 3 B B B B, s s @ e 8 5=20
502722 SETUCLUTIeS o o ¢ o o o 2 s o 5 % 2 o 2 2 8 2 2 3 » » s » » 5~-20
S5e2e723 ATTEYS » s » » » » e 8 5 B 2 8 B 3 B B S B 8 . ® B S WP S 5=-20
5e2e72s3e1 ARRAYS CF VARIABL&S 2 % 8 8 & 2 5 % 8 % 8 w B 8 2 9 » » 5-20
H5e2e7e3¢2 ARRAYS OF STRUCTURES o o o ¢ 5 5 ¢ 2 5 2 o 3 o 5 2 % 2 » 5=21
5.2‘713!3 COMMON BLDCKS * @ 3 3 B B 3 B @ 3 W 8 B 8 8 B B T W_» 5-21
5e2¢8 LANGUAGE INTERCHANGE TAEBLE o o o o 5 o o 2 » # 2 2 s 5 2 2 » o« 5«21
S52+8s]1 Extended INtErchancge « o s o o 2 5 5 5 o o 2 2 2 8 o » » % H-22
5.2+9 REGISTER CALL FUNCTIONS ® o » 32 % 3 ® 3 ® ®» s 3 m s w8 8 »® & » 5-23
53 INTERPRODUCT FILE USAGE o o o o o o ¢ o 5 5 o 5 8 s 35 2 2 o o % o 5=24
Se4 STORAGE MANAGEMENT o 2 o 2 o o 5 2 o 2 2 2 2 2 2 5 #» » » 5 & » s 8 5-24
504 1 STANDARD STACK FRAME o o o o o 5 2 5 2 o » » s 3 2 3 2 2 2 2 = 5-24
542121 Traceback 2 % 3 8 8 6 & B B B B 5 B O 9 B B B S s A 8 » 525
5.4.1.2 Static Chain vs. Display * & % ® 8 8 A2 % = 2 ® B "B P B » 5-25
Beha2 CHAINS OF UON=CONDITION PRCCESSORS o o s o 2 o o o o o s s » o 5=-25
Bete2e] Dynamic SEGMENES +» o o 3 » 2 2 o o s o 2 5 = 5 2 » o 2 » » 5«26
Se4es34.2 Fixed=Poslition Dynﬂm‘c SEOrage o« o« o » s o o 8.8 » o » & » 5-286
5+443.3 Variable-Position Dynamic StOrege .+ o« » o o s » o o o o « 5-26

55 COMMON SUPPORT MODULES o o ¢ o o o s s o 8 8 o 5 o o o o 8 o 8 2 » 5-26
6.0 GLOSSARY OF TERHNMS 5 9 & & 8 6 8 ° ® 8 8 B 2 8 S B ® W e 8 8 5 8 = 6-1

