
CYBER 180 System Interface Standard

CYBER 180

System Interface Standard

by

Sunnyvale Proauct Design

and

Advanced SYstems Design

RevIsion J

June 15, 1984
revised Juty 26, 1984

1

84/07/27

• • • •

CYBER 180 SYstem I~terface Standard

1.0 GENERAL

1 • 0 ~fttEB.A.L

Approved SIS CAPs Jncorporated In this revision are:

54646 - Revised Cl80 Common Parameter List Format (John Barney)
(Major changes to section 5.2)

S4658 - Add Deck Classes A and B (Pete Warburton)
54753 - Correct 01alog Parameter (Alan McMahan)
54775 - Change Product IO for BASIC (Bruce Kenner)

1-1

84/07/27

The 'Cl~O SIS has been through a number of review cycles and has been
formalty approved by the CISO Baseline Change Control Soard (SCCS).
It is thus considered fairly solid.

However, It Is recognized that the SIS is a Jiving document with 8

continuaJ need for updating. Please follow the following guidelines
in reviewing and updatinq this document:

1. limit comments or updates to question of Inaccuracy, lack of
completeness, or necessary technical change. Avoid questions
of personal preference.

2. For relatively minor problems or questions resulting from a
normal review, a nor.at DeS comment Is appropriate. it Is the
responsibility of the appropriate author(s} to resolve the
comment.

3. For more major updates that may be somewhat controversial, a
stand-alone OAP Is appropriate. This allows a thorough review
of the Issues Involved. When approved, the DAP will be
Included in the next SIS update. The SIS referee or editor
should be informed or any p'ans to submit such a OAP and the
OA? should be in the form of a proposed SIS update.

4. There will be occassJonal "minor review cycles" of the SIS to
incorporate minor c~anges and previously approved OAPs.
Authors may make minor changes to their sections at this time
~or revIew and aDProvai.

• • :
• I

• t

• f

• I

f • • • • • • • • •

CYBER 180 SYstem Interface Standard

1.0 GENERAL
1.3 CHARTER

1-2

84/07/27

--------- -~-- -------------~ -... ----~~ .. .-..... -~ ... -------.--.... -.-.----------.--. .----------~ ...
1.3 C.1:!!B.lfR

1.3.1 PURPOSE

The purpose of this standard is to ensure a uniformity
across the operating system and product set that wlJI make
the total system more easily usable and human engineered.

1.3.2 SCOPE

This standard covers product-to-product, product-to-user,
5ystem-to-user,- and product-to-operating system interfaces.

Any external Interface which is not defined by an industry
standard may be defined in the System Interface Standard.
In order to achieve a uniformity across the product set,
certain Internal lnterfaces shall be Included In this
standard, e.g. calling sequences.

The product set Includes:

The Comollers, Interpreters, and Assemblers

Data Management Products

Uti Ii ties

Source Code Maintenance

The operating system includes:

Basic operating system (monitor, 1/0 drivers, system
startu~, ooerator communication, permanent file
manager, etc).

Lo ader

Record Manager

Commlnd language

Networks aod Interactive Product

On-Line Maintenance Software

The "system" Includes:

The operating system

1-3
CYRER 180 System Interface Standard

84/07/27

1.0 GENERAL
1.3.2 SCOPE

1.4 GO!1.s'
The product set

The specific goals of the System Interface Standard are:

a. Consistency within and across the system.

b. Human engineered for user.

c. Achievable within CYBER 180 timeframe.

e. External interfaces like CY170 where this does not
conflict with a, h, c and d above.

There must be ~ore than trivia. gain In aspects of human
engineering to cause deviation from CYI10 external
interfaces.

2-1
CYBER 180 System Interface Standard

84/07/27

2.0 INPUT

-..... ---... -.-..-- ---.-.-.---.... ---.-,--.--. .-.-•. -.-------.-.~-----.-... ----. . .------------------_.-__ -----.. ----

This section describes the standard and conventions for
Input to products. Input standard is defined for System
Command language, Control statement, source file
organization and contents.

The System Comnand language is the set of language rules
and conventIons to be followed by any software product
that presents a user Interface {which is not defined by an
industry standard). It Is documented In the NOS/VE ERS
(DeS documents ARH360Q, ARH3610). For example, commands
to call products, and operator commands wl.1 conform to
this language definition. It is a requirement that alt
products use the standard command language routines to
process system command language statements (such as
product call commands or product directives). The Intent
here is that products do not dupl1cate code or functions
already provlded by standard command language routines.
See NOS/VE ERS (ARH3610) for a description of these
routines.

This standard specifies the parameters which can be used
in commands that call CVBER 180 products. The syntax of
the command is documented in the NOS/VE ERS.

2.2.1 APPLICABILITY

This section soeclfies all parameter names, descriptions
and defaults of parameters on 8 command that calls a
product. Requirements for use of the parameters are:

•

•

If a product offers a capability which is the same as
one defIned 1n thls standard, then the specification
in this standard must be used.

A product Is not permitted to use a parameter defined

2-2
CYBER 180 SYstem Interface Standard

84/07/27

2.0 INPUT
2.2.1 APPLICABILITY

•

•

by the sts"dard for a purpose other than that
specified by the standard.

A product ~eed not implement all the parameters or all
the parts of a parameter in this standard.

New parameter names or options must first be approved
as additions to this standard.

A product ~ay support as many aliases as defined for
the parameter. However, if a product provides a
function described by the parameter In this standard,
the described parameter name and 1ts aliases must be
supported by the product as a minimum.

Some guideltnes for proposing new parameter names and/or
options are:

1. Use a new option of an existing parameter rather than
a new para~eter name if the capability is an extension
of an already defined parameter (example: use DaDS
instead of Inventing a new parameter DS for debug
statements.

2. for related parameters, use aliases that emphasize the
relationship (examplel LO to relate listing options to
the 'ist file, L).

2.2.2 TERMINOLOGY

Defaultl The value used for a parameter when the parameter
does not apnear In a command. Section 4.3 on installation
parameters Indfcates which parameter defaults are
installation changeab1e. The defaults specified In
section 2.2.4.2 are those expected to be most often used.

2.2.3 SYNTAX

The syntax of the command is defined in the NOS/VE ERS.

Ifa parameter is omitted, default 'values are used. Use
of (parameter name = OFF) results in turning off a single
option parameter or boolean single specified value
parameter. Use of <parameter name> = NONE indicates that
a specified value js not supplied for a multiple value or

2-3
(YBER 180 System Interface Standard

84/07/27

2.0 INPUT
2.2.3 SYNTAX

multiple option parameter (for example, LO • NONE causes
none of the 11st options to be selected).

When the parameter value is a file name, the file name
SNUll should be used to negate that fite (for example,
B-SHUll causes the product not to produce a bInary object
code file). $~Ull is a reserved file name. A read will
respond with an end-~f-informatlon. SNUlL is an infinite
sink for writes.

The following algorithm is applied to parameters'

1. Initially, al) value options for this parameter are
considered deselected (i.e. there are no initial
values).

2. Only the optlon(s) specified in the value Jist are
then selected.

The <name> used on the command to calJ a product can be
either an alias or a long form as fOllows:

A I j as

APL

BASIC

cc

COBOL

CYBIl

EOIF

EOIl

FMU

FTN

LISP

PASCAL

PLI

Long form

EDIT_FILE

EDIT_LIBRARY

FORTRAN

Description

a programming language

beginner's alt-purpose symbolic
instruction code

The language C

commbn business oriented language

eyber implementation language

Edit Screen (for raw text)

Edit Screen (for Source Code
utility libraries)

file management uti' Ity

formula translation

Jist processor

PASCAL (H ir th)

programming language I

CyaER 180 System Interface Standard

2.0 INPUT
2.2.3 SYNTAX

QU

:Scu

SORT

MERGE

vx

2.2.4 PARAMETER

qUery update

source code utt. Ity

sort

merge

UNIX system emulator

2-4

84/07/27

Occurrence of any parameter more than once in a control
statement Is an error.

Product set me.bers providing the 1,B, and l parameters
must support the rol'owing positional ordering on a
non-keyword call. There is no guaranteed common ordering
of other parameters to a product set member except what
might be documented In the reference manual for that
product.

1. INPUT

2. BINARY (normally the main desired output of a compl'er)

3. LIST

See the Command Interface (Part I) of the NOS/VE ERS for a
description of the ff 1e reference, which is the syntax to
be used for specifying a file name as a parameter value.
If no position is specified, the product will reposition
the file before useasfol'ows:

a) for a file named SINPUT, no repositionIng wit.
take place if the file Is at beginning of
InformatIon, at end of information, or at a
partItion boundary. Otherwise, it wilt be
repositioned to end of partition before use.

2-5
CY3ER 180 System Interface Standard

84/07/27

2.0 INPUT
2.2.4.2 Types of P~rQmeters

b) for a fite named SOUTPUT, the product will do no
repositioning before use.

c) f 0 rtl I lot h e rfl I e s , the pro due ts w II Ire p 0 s J t ion
to begInning of Information before use.

Example: If a call to SCU has been made to write three
source decks to COMPILE (the first FTN, the second CYSll,
the third FTN) and they are to be compiled with the object
code p'aced on file LGO, the $ASIS positioning must be
specified on the second and third compilations since
default posttloning is rewind.

FTN I=C1MP!LE

fTN I=COMPILE.$ASIS,B=lGO.$ASIS,L=SOUTPUT

There are four kinds of parameters:

(1) Single $peclfled Value

This is a parameter for which the user must specify a
value, such as a file reference or a boo.ean as in the
form:

Keyword = <boolean>
wh er e:
<boo.ean> :1 • <true> t <false>
<true) J: :I TRUE ! YES 1 ON
< f a I.s e> :: = F A L S E ! NO! Of f

For the sake of consistency the values ON and OFF will be
used In this document. Products may choose any of the
values for <true> and <false) desired and describe the
choices as such in the product documentation. The
operating system wll I accept the values for <true> and for
<false) equIvalently when the standard command language
routines for the control statement processing are used.
As a result" users 1141" be able to enter any of the vatues
for (true) or for <fa'se> without regard for what values a
product has chosen to document.

(2) Multiple Soecified Value

This is a parameter for which more than one value (such as
file references) may be specjfied. The torm

CVBER 180 System Interface Standard
2-6

84/07/27

2.0 INPUT
2.2.4.2 Types of Parameters

(parameter-name: NONE> witl be used to indicate that none
of the available options for a parameter are desired.

(3) Single Optlon

This is a para~eter for which the user specifies

<option> : ON

(4) Multiple OptIon

This is a parameter for which the user may specify the
names of more than one option.

For .ultiple soeclf'ed value parameters the value jist
syntax is as described in the NOS 180 ERS, Part I section
"Parameter lists and Types". A vaJue 'ist consists of a
series of value sets separated by one or more spaces or by
a single comma. When more than one Y8'ue set Is
specified, the list must be enclosed In parentheses. A
value set consists of a series of values separated by one
or more spaces or by a single comma. When more than one
value Is specified the set must be enclosed in
parentheses. The rtile is that an outermost pair of
parentheses belong to a value jist and inner pairs of
parentheses belong to value set.

The form (parameter name = NONE> will be used to Indicate
that none 0' available options for a parameter are desired.

The parameters are described in alphabetical order.
Parameter

Name Alias Parameter Description

AUDIT Aun This parameter is used to indicate that
the product Is being run for audit
testing. The parameter causes the
selection of any other parameters which
may be needed for audit testin~ as we'.
as selecting the method of processing,
which may differ from normal processing.
Each prOduct must provide a list of Items
affected by the AUDIT parameter. For
example, In COBOL the' i st of Items might
include the mode where displays of

CYBER 180 System Interface Standard
2-7

84/07/27

2.0 INPUT
2.2.4.3 Parameter Na~es and Descriptions

BINARY_OBJECT

numeric items would not be edited.

Single option parameter. Default: the
o~tJon Is not selected.

AUDIT = ON selects this option.

8inary Object code output file.

B = <file)

This parameter specifies the file to
contain the object code or text produced
by a compiler or assembler.

B=$NUll indicates that no such binar,
object code output file is to be written.

Single specified value parameter, default
= $lOCAL.lGO

COllATING_SEQUENCE_X SEQX Collating sequence (X = Name or H, Step
or S, Remainder or R, Alter or Al. The
parameters SEQN, SEQS, SEQR and SEQA
control definitions of collating
sequences for an applicable product.

SEQN. The SEaN parameter signals the
start of a collating sequence
definition. The definition of one
col fating sequence continues with SEQS,
SEQR, SEQA parameters; It Is terminated
by any parameter not one SEQS, SEQR,
SEQA. The form is:

SEQN = (name>, where name Is the name of
the collating sequence.
SEQS. Each SEQS parameter specifies
either a single step or a range of
steps. The form lSI

SEQS = <value-' 1st>, where the
expressions in the value list are
character expressions.

SEQR. This parameter specifies all
characters in the character set not
specified in a SEQS parameter, explicitly
or implicitly. The form is:

CYBER 180 SYstem Interface Standard

2.0 INPUT
2.2.4.3 Parameter Na!lle:s and Descriptions '''!ihllil --------------------.------.------------------------------\

COLUMNS

COMPILE

COMPIlATION_
DIRECTIVES

COL

c

CD

cc

SEQR = ON

')'\~"

"1'1'::1\

SEQ A • T hi s parameter I1l a y be sp e c i fie d to \~,;.~"~
alter. all equated characters In output~!~,
r 'e cor d s sot hey be co met h e fir s t',."
char acter in the appropr i ate SEQs ,"""
parameter. T her 0 r m is: "'"'

II""I'~

SEQA = ON.

This parameter specifies three values:
starting and ending columns containing
source and column containing a d1rectlve
to the product (each product for which
sue had ir e c t iv e is,s up po r ted w i I Ide fin e
the meaning of the information in Its
dJrectlve column). for example, Pl/I may
define the directive column as containing
a print carriage control character.

Single specified value Ijst; default •
(l,n) where n Is language dependent.

Compile file.

This parameter specifies the output file
on which compiter source statements are
written. Examples arel the output
produced by a conversion aid utility; the
updated source output by the source
maintenance utility for input to an
assembler or como)ler.

Single specified value parameter,
default a COMPILE.

If selected, compilation directives (see
SIS section 2.4) will be recognized.
Dtherwlse compilation directives witt not
be recognized--if directives are expressed
as a special form of comment they wilt be
treated as are all other comments.

Single option parameter. Oefault a ON,
directives are recognized.

If selected, atl possible CVBER 170 to
CYBER 180 product differences will be

CYBER 180 System Interface Standard
2-9

84/07/27

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

DEBUG D

converted to the eV180 version or
diagnosed with messages. For example, in
COBOL items specified as COMP-4 will be
assumed to be COMP. All products wi II
pr~vlde a Jist of such conversions or
assumptlons.

Single option parameter. Default: the
option is not selected.

C170_COMPATIBlE = ON selects the option.

Debugging ·option

This parameter specifies the debug options
to be selected. All products need not
support all options. Multiple options may
be specified. The defined options are:

DS Debugging statements. All debugging
statements will be compiled. A
debugging statement is a statement in
the source which is ignored by the
product unless this option Is
specified. Debugging statements
usually specify debug actions for the
Modute containing them. See also
section 2.4.7 of this standard.

NC No checking. 00 not generate
parameter checking information as part
of the object code. Unless NC is
specified, all compilers which support
checking will generate actual informal
parameter description Information In
the object code to enable load-time
detection of parameter mismatches.

NT No tables. Do not generate line
number and symbol tables 8S part of
the object code. Unless NT Is
specified, I:jneand symbol table.s are
generated on all compiles.

DC Object code regardless.
object code, regardless
the source and severity
errors. For compilers,
11ne containing a fatal

Produce
of errors In
of such
execution of a
error should

CYBER 180 System Interface Standard
2-10

84/07/27

2.0 INPUT
2.2.4.3 Parameter Na~es and Descriptions
......... -----------.-.-.------.----.... ---------------~---.--------.... .-.... -.--.---. .-. .--~--~--.----.-----

DEFAULT_COLLATION DC

DIRECTIVES DIR

result In a call to an object time
routine which will terminate the
execution wltha message. (See
section 3.4 for error status returned.)
Products with no object time library
may generate a zero (program error)
Instructon for fines In error.

TR flow tracing. Activate trail pro~mats
tn the source program. Unless TR Is
specified, trace progmats have no
effect.

Multiple option parameter. The default Is
NONE

This parameter specifies the weight table
to be used for the evaluation of character
(string) relational expressions and to be
used by intrinsic functions which are
coltated sequence dependent (for example
CHA~ and ICHAR In FORTRAN). The defined
options are:

U ,or USER
A user specified weight table Is
used. In FORTR4N a collection of user
callable procedures is provided for
manipulating the user weight table.

f or FIXED
A fixed (unmodlfiabte) processor
specified weight table is used.

Single specified value parameter,
default = FIXED.
Directive file.

AdditIonal parameters will be read from
this file after all of the control
statement parameters have been read.

DIR=fi Ie-name
Parameters wl.t be read from fife,
file-name.

DIR=(file-namel[,file-name21 ••• 1
Parameters will be read from the
files in the order that they are

CYBER 180 SYstem Interface Standard
2-11

84/07/27

2.0 INPUT
2.2.4.3 Parameter Na~es and Descriptions

ERROR

ERROR_LEVEL EL

oameo.

MuJtJDle specified vaJue parameter,
defau1t = NO ADDITIONAL PARAMETERS ARE
READ.

Error file.

This parameter specifies the name of the
file to receive error l'stlng
Information. In the event of an error
(of El specified severity or higher) the
diagnostic is written to the E file. It
Is hlghty recommended (though not
required) that a product a'so output the
offending source line or lines to the E
file in conjunction with the diagnostic.
If there Is a listing file (see l
parameter) the error .ine and diagnostic
are a1so written to the l f.le. If the
file name of the E file is the same as
the file name of the L fJ Ie, then the
error tine and diagnostic are not written
twice.

Single specified value parameter.
default = the listing file specified by
$ER~OPS

Error level.

This option Indicates the severity level
of diagnostics to be printed on the
user's listing. The levels are ordered
by lncreaslng severity. Spec'flcatlon of
a particular Jeve) selects that level and
a.lmore severe levels. Products will be
al10wed som~ flexiblilty in specifying
the kInds of diagnostics that fall In
each of the six categories l

non-standard, machine dependent, trivial,
warning, fatal. and catastrophic. The
following descriptions are provided as a
guide. 'The product's status parameter
will be set according to the value of
termination error level (TEL).' The
levels In increasing order of severity
ares

2-12
CYBER 180 System Interface Standard

84/07/27

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

ESTIMATED_NUMBER_
RECORDS

ENR

! Informational. This Is an
informational message used to flag a
suspicious USage. The syntax is
correct but the usage Is
questionable. for 170 compatibility,
products are free to use tT' In
addition to 'I'. However, output
wil1 always be 'It, not 'T'.

W Warning. This is a diagnostic where
the syntax is incorrect but the
product has made an assumption (such
as adding a comma) and continued.
Messages indicating attempts at error
recovery are at this level.
DIagnostics of W .evel should be
errors that the user can avoid by
program modification.

F fatal. This is 8 diagnostic which
prevents the product from processing
the statement in which it occurs.
Unresolvable semantic errors also
'FaJlinto this class. Such errors
may not relate to a specifIc
statement in the program unit.
Errors of type 'ERROR' wilt be
treated as equivalent to 'fATAL'.

~ Catastrophic. This class of error is
fatat to contInued processing. The
product is unable to continue work on
the current program unit. However,
it should still advance to the end of
the current program unit and attempt
to process a subsequent unit (if the
product speclflcaton allows multiple
program units in a compilation).

Single specified value parameter,
default • w.
EL=NONE causes no errors to be tisted.

Estimated Number of Records.
This parameter specifies the estJmated
number of records to be processed by a
product. For example, SORT can use It to
cause selection of efficient modes of

CYBEP 180 SYstem Interface Standard
2-13

84/07/27

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

EXCEPTION

EXPREssrON_
EVALUATION

EXC

EE

processing.

Single specified value parameter,
default = 80000/MRl.

This Is a file containing exception
information. Products will be allowed
flexibility in defining Its contents.
For exatnP Ie, SORT MERGE w III us e i t for
out-af-order merge input records.

Single specified value parameter, defauft
is product dependent.

The options of this parameter control the
style of code generated for the
eva'uation of source expressions. Note
that the processing controlled by this
parameter Is separate from that
controlled by the optimization levet
parameter, but may affect the extent to
which optimization is possible. The
definpd options are:

C or canonical
The code generated to evaluate an
e.pression wilt mirror the expression
interpretation rules as defined in
the product specification. For
FORTRAN this would be section 6 of
the ANSI standard. This option also
serves to inhibit the CCG "regroup"
option.

ME or maintain_exceptions
Inhibit code optimizations which
et Iminate instructions that might
cause hardware exceptions at
execution time. This option also
serves to inhibit the CCG
"unsafe_to_safe" option.

MP or maintain_precision
Inhibit code optimizations which
change a floating point operation to
a new form that is mathematically
equlva'ent but not computatIonally
equivalent. This option also serves
to select the CCG "malntaJn_

2-14
cvaER 180 System Interface Standard

84/07/21

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

EXTERNAL_INPUT_
FILE

INPUT

precision ft option.

R or reference
Intrinsic functions (e.g. those
defined In CMMl) for which 8

procedure call Is generated will be
called by reference rather than by
value.

Multiple option parameter.
Default: NONE, none of the options is
selected.

EX_ External input file.
INPUT

FS

I

ThJs file Is for use by products which
provide the capability of temporarily or
alternately obtaining source statements
fr'omafjle external to the input file.
For example, the COBOL COpy statement.

Single specified value parameter)
default: $NUll.

If selected, the definition status, of
all entities within a subprocedure of 8

proqram will be retained upon exit from
that subprocedure. Effective', this
disal10ws p1actng any variables on the
stack.

Single option parameter. Default • OFf,
deFinitIon status need not be retained
except where so required by the product
specification.

Old -rite.

This parameter specifies the data input
file for the product. for example: the
Flte from which a copy utility reads.

Multiple specified value parameter;
default:: OLD.

Input file.

This parameter specifies the source input

2-15
CYSER 180 SYstem Interface Standard

84/07/2.7

--2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

fife name to the product.

Single specified vatue parameter;
default = S!NPUT.

• • INTERACTIVE_
DIALOGUE

Id,
dialog,
dis

This parameter determines whether the product :
will Initiate an Interactive dialog with the user,:

KEY

Intead of operating In its usual batch-oriented
fashion. This dialog consists of questions and •
explanations written by the product to fite $OUTPU:,
and of user-supplied answers read from fi'e SINPUTl
The dialog can be invoked either from an Interacti:e
termInal, or a batch Job. 1

Single option boolean parameter:
• I

• • • •
YES This choice initiates the

parameters on the command
be ignored except STATUS.
Do not Invoke the dialog.
Same as NO.

dialog. Ali oth:r

NO
omitted

Key 'Fle'd(s).

Ii ne ma'y

ThIs parameter specifies the key fields
that determine the manner in which input
data might be processed by a product.
For example, SORT will use the parameter
to determine the order records will be
sorted.

KEY=<value-list>
The value tistwill contain one or
more value sets. The resutting
output wil' have been processed
according to the key field described
by the leftmost value set. Input
data with equal values for this key
field will be processed according to
the key field described by the next
value set, et cetera.

MultIple specified value parameter. The
default value set specifies

key-l •• mnr, where mnr is the
smal'est of any MNR on a FILE
control statement for Input files.

• • • ,

LIST

2-16
CYBER 180 SYstem Interface Standard

84/07/27

2.,0 INPUT
2.2.4.3 Parameter Names and Descriptions

tal

L

If selected, leading blanks In numeric
fields are treated as zeros in arithmetic
statements and comparisons. If not
selected, numeric fields that contain
btanks are in error.

Single option parameter. Default: the
option Is not selected.

LSI = ON selects the option.
listing file.

This parameter specifies the fiie where
the product wr 1 tes the source list i og,
diagnostics, statistics, and any
additional list Information (see LO
parameter).

Single specified value parameter,
defau't-SlIST.

LIST_OPTIONS LO Listing options.

The options of this parameter specify
what extra Information wIll appear on the
listing file (LIST parameter). Multiple
options may be specified. The defined
options are:

A Attributes. A listing of the
attributes of each entity defined
within the program is produced. If
R was selected, the references are
shown on the same I istlng. See
section 3.3.5 for more information
on attributes.

B Prohibit Banner. The banner is not
sent to the listing file.

BD Byte Offset. (Release 2 feature)
If source statements are listed, an
offset field Is Included (see
section 3.3.3.3). This option is
meaningful only for wide format
tistings.

DE DETAILED EXCEPTIONS. Print out

2-17
CVBER 180 System Interface Standard

84/07/27

2.1) INPUT
2.2.4.3 Parameter Names and Descriptions

exception file messages as often as
a record is sent to the exception
f i Ie.

M Map. A storage layout map for
common blocks and equivalence groups.

MS Merge Statistics. Turn 00 listing
of merge statistics.

o Object code listing. A listing of
the generated object code with
Instruction mnemonIcs.

P Prohibi t prompt. The normal input
prompts are not sent to the listing
f I J e.

R Cross reference listing. A cross
reference of program entities
showing locations of definition and
use within the program.

RA Cross reference listing of al.
program entities whether referenced
or not.

RS Record Statistics. List the
statistics for the records
sorted/merged.

~ Source. Source listing of the
program.

SA Source listing of all source
statements including lines turned
off by a source embedded NOlIST
directive. (See section 2.4.2)

sa Source original. Provides a listing
or the original source. For
example, in COBOL, this listing is
produced before expansion of "COPY"
and "REPLACE" statements.

Multiple option parameter, default = s.

LO • NONE causes none of the .lst options
to be se;' ected.

2-18
CYBER 180 System Interface Standard

84/07/27

2.0 INPUT
2.2.4.3 Parameter Na~es and Descriptions

MACHINE_DEPENDENT

OPTIMIZATION

lC

MD

MSlI'1,
MSl

OTD

OPT

ThIs parameter can be used to change the
character that delimits non-numeric
literals. Default literal character Is
quotation mark.

lC-OFF Is an error.

This parameter specifies whether use of
machine dependent source features is to
be diagnosed and If so, how severel,. The
severity level is one of the following l

! or Informational
W or warning
F or fata.

Errors of type 'ERROR' wilt be treated as
equivalent to 'FATAL'.

Single specified value parameter.
Default = NONE, machine dependencies are
not to be diagnosed.

Mass Storage Limit. This parameter
specifies the maximum number of
characters that may reside on mass
storage during execution of the product
(for example, SORT).

~SLIM = expr. The number of characters
Indicated by expr Is the mass storage
limit. Expr must be an integer.

This parameter selects the minimum trip
count for FORTRAN DO-loops to be one
rather than zero.

Optimization.

This parameter specifies the level of
object code optimization. Ali products
need not support all defined levels.
However if product supports a defined
level, It must be selected by the
speclfied option name. Ideally all
products should recognize all defined
options and issue informative diagnostics
for unsupported options that the user
selects. Allowable options are&

2-19
CY8ER 180 System Interface Standard

84/07/27

2.0 INPUT
2.2.4.3 Parameter Na~es and Descriptions

OWNCOOE_FIXEO_
LENGTH

OWNCODE_MAXIMUM_
RECORD_LENGTH

DEBUG

lOW

HIGH

Object code Is stylized to
facilitate debugging. Stylized
code contains a separate packet
of Instructlons for each
executable source statement,
carries no vsriab1e values
across statement boundaries in
registers, notifies DEBUG each
time a beginning of statement or
procedure is reached, etc.

lowest level of production
quality code. Code is not
completely stylized.

High level of production quality
cOde.

Single specified value parameter)
de "fau It = DEBUG

OWNF Owncode flle. For products which provide
the capability to specify user generated
owncode procedures. This parameter
spectfJes the source of owncode
procedures. See parameter OWNn.

OWNF : file-name. File file-name wil' be
loaded.

Default = omitted.

OWNFL, Owncode fixed length. See also OWNn.
OFL Thls parameter specJfles the record

length In characters of ai' records that
wi II be input to a product from any
owncode procedure. See also OWNMRL
parameter.

OWNFl = <integer>. Every record supplied
by an owncode procedure will contain
exactly (Integer) characters. Defaultl
(See OWNMRl).

OWNM~l Owncode_Haximum_Record_length. The
OMRl maximum length In characters of any

record supplied by any owncode procedure
Is specified by this parameter. This

2-20
CYBER 180 System Inter~ace Standard

84/07/27

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

RETAIN_ORGINAL_
ORDER

parameter may not be specified If the
product has input or output files and If
any of their associated MRl's are at
least as '.arge as this MRL.- See also
OWNn.

OWNMRl = (integer). There will be at
most <Integer) characters In any records
supplied by an owncode procedure.

Defau1t: If OWNFl and OWNMRl are both
omitted, the record length specification
will depend on the length specIfications
of the input and output files. If a"
input and output files have fixed-length
records of the same length that length
wilt serve as the default for OWNFl.
Otherwise the largest MRl or fl from any
input or output file will serve as the
default for OWNMRl.

Owncode procedure n (n = 1, 2, 3, 4, 5,
••••). The maximum of n is left to the
Individual product. Owncode procedures
are user written routines that may be
loaded with the product and executed at
specified points during product
e~ecution. See other OWNCOOE
parameters for more information on this
capability.

The procedure specified by this
parameter will be executed at a
specified point n during product
execution.

awNn • proc_name. The procedure
proc_name will be executed at a
specified point n.

Defau1t: No procedure wll. be executed.

RETAIN, Retain Orglnat Order.
RET

Equivalent records or records with
equIvalent identifying characteristics
wi 11 be output in the same order as
input by a product. For example, with
SORT, the equivalent Identifying

CYBER 180 System Interface Standard
2-21

84/07/27

2,.0 INPUT
2.2.4.3 Parameter Names and Descriptions

RC

Sl

characteristics would be equal keys.
The order in which multiple input files
are specified Is the order in which
records with equivalent characteristics
are retained with this parameter.

RETAIN • ON. Records with equivalent
characteristics wil. retain their
orIginal order.
RETAIN = OFF. Records with equivalent
characteristics Mill not necessarily
retain their original order.
Default: Same as RETAIN=OFf.
This parameter controls which runtlme
checks are compiled into the object
code andlor selected for runtime
library routines. Runtime checks are
product dependent but if a product
supports one of the ones described
here, it must be selected by the value
soecified. Defined values are:

R Range checks. This option selects
range Checking for one or more of
the following
- character substring expressions
- scalar subrange assignments
- case variables

S Subscript checks. This option
causes subscript and index
references to be checked to ensure
that they are within program
defined limits.

T Tag field checks. Selecting this
option ensures that accesses to
variant records are conslstant
with the value of their tag field
(jf one exists).

This is a multiple value parameter.
Default is all supported values
selected.

This parameter selects FORTRAN
sequenced mode source line format as
described In section 3.2 of the FTN180
EQS. hote that this format is

CYSER 180 System Interface Standard
2-22

84/07/27

2.0 INPUT
2.2.4.3 Parameter Na~es and Descriptions

s nURC E s

STATEMENT_LENGTH Sl

STANDARDS_DIAGNOSTICS SD

incompat1ble with the standard SIS
(section 2.3.2) source line format
which allows the length and location of
a .ine number to be specified in the
source file attributes.

Single option parameter. Default • OFF,
source Jines conform to the standard
SIS format.
SCU input.

Line images of the generated program
will be written to this file, in a
format acceptable as Input to SCU.
Each program unit on the S 'ite will be
preceded by an SCU directive which
indicates the beginning of a new source
deck.

Single specified parameter value,
derault :: SNUll.

statement tength. This parameter
specifies the maximum length of a
source statement. The default is to be
speci,jed by each product which
recognizes this parameter.

Standards diagnostics. (ANSI or other
applicable standard).

This parameter specifies whether use of
non-standard input source statements
are to be diagnosed and Jf so, how
severely. There are two values
deflnedl severity, and name of
standard. The severity is one of the
following:

I Informatlona' error. Standards
errors are treated as errors with
this severit:y.

W Standards errors result In warnJng
messages.

F Fatal error. Non-standard usages
result Ina fatat error.

2-23
(YBER 180 System Interface Standard

84/07/27

.2.0 INPUT
2.2.4.3 Parameter Na.es and Descriptions

STATUS ST

SUM

Errors of type 'ERROR' will be
treated as equivalent to 'FATAL'.

The second value, name of standard, is
to be defined by the products as
appropriate. If this parameter Is not
specified, then non-standard extensions
to the product are allowed, (not
diagnosed as errors).

STD=NONE causes standards errors not to
be d i .agn·osed.

Multiple specified value parameter,
defau.t -- NONE.

Status Variable.

This parameter specifies the name of
the Sel status variable to be set by
the product to indicate the occurrence
of error conditions. See sections 3.4
a"d 4.4 for an account of the status
variab4e. See a4so NOS/VE ERS.

S1ngle specified value parameter.

Errors of type 'ERROR' wll' be treated
as equivalent to 'FATAL'.

Default status variable name is
STATUS. See Error Processing
section 3.4 for a description of error
processing that results from use of the
default status variable.

Sum Field(s).

This parameter specifies that units of
input data having key fields equal (see
KEY parameter) may be combined Into
items or units in a product dependent
manner.

(For example, SORT will use the
parameter to combine all records,
having key fields equal, into a sing'e
record. Each sum field in the new
record Is formed by summing the values
in the corresponding fields of atl

CY8fR 180 System Interface Standard
2-24-

84/07/27
-----.... ~.- ... -~---.-----.-.- . .-.-------.--~ ----_ -----_------.----.-.~ -------~.--.--.---.----.--. .-

2.e) INPUT
2.2.4.3 Parameter Na~es and DescrIptions

SUAPROGRAM

TERMINATION_ERROR_
LEVEL

51>

equal records.)

SUM=(vaJue-list)
The value list wi.1 contain one or
more value sets. Units of Input
data with equal key va1ues wit) be
combined into new units or Items
and fields specified by the value
sets wall be summed, according to
product specifications and needs.

Multiple specIfied yalue parameter,
default • NO SUM fIELDS.

If this option is selected, the program
is compiled as a subprogram Instead of
as a main program.

Default: the option Is not selected.

SUBPROGRAM: ON selects the option.
TAPES, Tape Scratch Fi les.
T The tapes with the names specified by

this parameter wlJI be used by the
product to reduce the disk space used.
The tapes must have already been
requested prior to execution. The form
is:

TEL

Default' Tape scratch files wl1t not
be used.

This parameter specifies the minImum
diagnostic severity level which will
cause a product to return an abnormal
STATUS upon completion of processing.
A normal status Is returned otherwise.
The severity level is one of the
f 01 low i ng:

I or informational
IN or warning
F or fat at
C or catastrophic

For 110 compatlblllty, products are
free to use 'T' in addition to 'I'.

2-25
CYaER 180 SYstem Interface Standard

84/07/27

2.0 INPUT
2.2.4.3 Parameter Names and Descriptions

TN

TO

TEXT_RESIDENCE TR

However, output wltl always use tI',
not fT'. Errors of type 'ERROR' will
be treated as equivalent to 'fATAL'.

Single specifIed value parameter,
de faul t :: F.

Names of texts to be read from the
fi les or I ibrar les specified by the
TEXT_RESIDENCE parameter. The total
number of values allowed Is product
dependent. Products that have a text
name directive may choose to support
the TEXT_RESIDENCE but not the
TEXT_NAME parameter. A fatal error
occurs If any of the texts specified is
not found.

Multiple specified value parameter,
default Is no text.
New fi Ie.

This parameter specifies the data
output file for the product. For
example: file to which a copy utility
writes.

Single specified value parameter;
default:: NEW.

Names of residences (I.e. fIles or
libraries) to be searched to find texts
specified by the TEXT_NAME parameter or
by product directives. The total
number of values allowed Is pr~duct
dependent. If no text names are
provided the first text of the first
TEXT_RESIDENCE name Is the only one
used. If text names are provlded and
TEXT_RESIDENCE is omitted, the default
for TEXT_RESIDENCE will be the
TEXT_NAME parameter tist. In case
texts of dupl icate names exist, the
first one found (in the order In which
TEXT_RESIDENCE names are t isted) Is
used. For each name in the
TEXT_RESIDENCE parameter tlst, the
product will took for a local file with
th at name; I f not found, the globa.

2-26
CYBER 180 SYstem Interface Standard

84/07/27

2.0 INPUT
2.2.4.3 Parameter Names and DescrIptions

example 1:

examp I e 2 I

TERMINAL_TYPE TT

I ibrarv set will be searched for a
Jlbrary with that name. If the name Is
not found, as a file or library, a
fatal error will occur.

Multiple specified value parameter.
Default value 11st is text name value
I I st.

If file F1 contains texts A, C, and 0
and lIbrary LZ contains texts Band C
and file F3 contains texts E and A then

TN=(A,8,C,D,E) and TR=(Fl,l2,f3)
will result In selecting texts as
fol'ows.

A, C, and 0 from file Fl
B from library l2
E from file F3

In the above example, if in addition to
a library L2, the user has 8 local file
named l2 contalning texts Band E, then

TN=(A,B,C,D,E) and TR=(Fl,l2,F3)
will resuJt in selecting texts as
follows

A, C, and 0 from file Fl
Band E from fi1e l2
nothing from 1ibrary l2
nothing from file F3

Terminal Type.

TT=COR
Correspondence Selectric APl
terminal.

TT=APl
This type Is appropriate when the
communications system translates
APl terminal codes into a standard
intermediate code.

TTeAseII
For fuji ASCII termlnais not
equipped to print the APl
character set. Also used for
non-APl correspondence terminals.

TT=UCA

2-27
CYQER 180 System Interface Standard

84/07/27

2.0 INPUT
2.2.4.3 Parameter Names ind Descriptions

VERIFY_MERGE_
INPUT_ORDER

WORKSPACE

For futl ASCII terminals. This
avoids frequent use of the shift
key for .etters.

TT=8ATCH
For devices that support the ASCII
64-character set.· Usual'y used
for batch or remote batch ASCII
printers.

Single specified value parameters.

Default Is APl for a time-sharing Job;
and BATCH for a batch or remote batch
,job.

VERIFY, Verify merge input order. Selection of
VER this option causes verification that

input records to be merged are in
correct order. The form 1st

ws

VERIFY:: ON.
VERIFY:: OFf.
correct order.

Verify for correct order.
00 not verify for

Default: VERIFY· OFF.

Initial Workspace specification.

This parameter specifies the workspace
to be activated when the product Is
called. The parameter Is specified
with values consisting of the following
parameters defined in the NOS/VE ERS:

file

This section deals with the standard for the processing of
source input files by product set members. In this
context, a file can refer to data originating from an
interactive terminal as well as conventional storage
devices. ThIs standard addresses the areas of source file
organization, statement format, blank compression, and
response to an empty Input file situation.

CYBER 180 System Interface Standard
2-28

84107/27
- ~-.-.---------~.--..... - - ... --.. -----:~ - -.-.-... --.. .-,.-.... ---........ --....... -----~.-.--~---.. .--=---
2.0 INPUT
2.3.1 SOURCE INPUT FILE ORGANIZATION

2.3.1 SOURCe INPUT FILE ORGANIZATION

Source input to CYBER 180 product set members may be
designated by the I directive on the control statement.
If the 1 directive is omitted, the source input defaults
to the standard input file (batch mode) or terminal
(Interactive mode). The source Input has a sequentlat
structure, and is accessed by means of standard Record
Manager interfaces.

Positioning of the source Input at open tame 1$
constrained by the requirement to allow different product
set members within the same job (e.g. different compt1ers)
to access the sam ef i Ie for their input. Therefore, the
source Input is opened with no-rewind unless the rewind
parameter is specified on the control statement (see
Keywords and Parameter Descriptions in section Z.ll.

2·.3.2 SOURCE STATEMENT FO~MAT

Each record In the source input contains one to three
pa.reels of data:

• statement IdentlfJer (optlona');

• line number' (opt f ana 1);

• statement body.

Products should be able to handle the optional statement
identifier and fJne number.

The source Input statement may take the following forms,
where

b represents the statement body,
• represents the line number,
s represents the statement Identifier,

and hr ackets

b t s
sib

s bl
I b s

specify the optional portions of the form:

2-29
CYBER 180 System Interface Standard

84/07/27

2.0 INPUT
2.3.2.1 statement Identifier

Input source records may contain optional statement
identifiers such as SCU identifiers. If present, they
OCcupy either the first or last 'n' characters, where tn'
has a maximum value of 18. If the statement identifier
occupies the last character positions of a record, all
records must be the same 'ength. The location and length
of the identifier are file attributes; they are made
available via an operating system request.

This feature is to at 'ow fi les created by source code
utilities to be used as source input.

Line numbers are numeric entitles used by compilers and
editors. I~ general, edltors will affix line numbers to
lines and compilers will use these line numbers for
diagnostics, cross reference maps, run time error
messages, etc.; line numbers shaul d not be confused wi th
statement ldentlflers that are produced by stu and are
alphanumeric.

The location of the line number in a text line may be
immediately to the left or the right of the text of the
line. The oositJon of the line number field Is conveyed
via the fi Ie attributes. The line number field may be
from one to six characters in size. The on'y valid
c h a r a'c't er s In the fie 'dare b I an k s and the dec I fA a , d I gl t s
o to 9. leading blanks are ignored. A l'ne number is
terminated by end of field or one or more blank characters.

Additional semantics for the line number field will vary
from processor to processor. In particular, many
compilers may not accept more than six digits. Another
example is the cross reference map produced by CCM which
only has sp~ce for a sIx digit line number. Most
processors wtll' also insist that the line numbers be
unique, ascending, and that every line be numbered.

2-30
CYBER 180 System Interface Standard

84/07/27

2.0 INPUT
2.3.2.3 statement Body _ _--._- ---_ -............. -------_._ ... _----_ .. _----------_-,.---- --------.... _--- . .-,----------......

The body of each source input record is that part which
represents the data to be scanned or processed by a
product set member. It begins In poslt~on 1 If there are
no statement identifiers, or if the identifiers appear at
the end of the record •. Otherwise, it begins in position
(n+1) where 'n' is the length of the statement identifIer.

The maximum size of the statement body is product set
member dependent and ccnforms to the size specified for
the associated language. Source records shorter than the
maximum are scanned to the end of the record. Records
exceeding the maximum size are truncated (i.e. data is
transferred up to the maximum); a diagnostic is returned
by the Record Manager.

The CYBER 180 Record Manager is responsible for
compression/expansio" of b1anks. The capabl11ty to read
the source input in compressed form is not provided. If
the require~ent for this capability emerges (for
per for rna n ceo p t I mi z a t i on), i t w i I I be ad d res sed ina
revision to the stan1ard.

Diagnosis 0' an empty Input fite results In the Issuance
of a standard log message: EMPTY SOURCE INPUT FILE
(formatted In accordance with conventions stated In
section 3.21. If the Job involved is interactive In
origin, the message Is also sent to the terminal (see
section 3.2.1.2.). In addition, generation of the primary
output of the product set member involved (e.g. file
specified by B parameter for compilers) 1s suppressed and
the Set STATUS v~riable (refer to section 2.2.4.21, is set
to reflect the error.

The number of records in the source fite should be the
same as the numher of source lines In the source list.
Even though a null record has no data, the record should

2-31
CYBfR 180 System Interface Standard

84/01127

2.0 INPUT
2.3.2.6 Nul' Source LIne Convention --- . .-.--------------------....... ----.-.- --.-,-----~ . .--------------------.-.-----.. ----.-~~.--..... --.... --

not be Ignored. Since, 10 the source list, the absence of
atl characters In a record looks the same as a record
containing ai' blanks, nut. records should be mapped to
all blanks.

2.3.3 DISPOSITION OF INPUT FILE

The final action to be taken with respect to the source
Input file Is dependent on the manner of termination of
the product set member. for normal termination, the Input
file is closed with the no-rewind option; this Includes
the case where an empty file Is detected. For abnormal
termination, the product set member is responsible for
positioning the input file as if norma. processing had
occurred, using appropriate facIlities of the Record
M.anager.

The user of a Compiler may control various activities of
the compiler by specifying one or more compile time
directives. The directives are expressed either in a
special form of a comment within a particular language
(e.g. FORTRAN, COBOL) or in special source statements If
the language pr~vtdes such statements (e.g. CVSll).
Compiiers that already have special source statements for
directives do not have to process directives embedded
Inside comments. Compilers which now have compilation
directives In comments should honor both old and new
directives. When a compilation directive conflicts with a
control statement parameter option, the compilation
directive over~Jdes For example, the options for the
parameter LO will be overridden by a conflicting directive
unless specifically stated otherwise, such as lO-SA.
However control statement parameters denoting file status
or destination would take precendence over directives.
For example LIST:$nul I would take precedence over any
directives r~questlng that somethtng be listed.

Since the major programming languages are subject to
standardization by bodIes such as ANSI, FIPS, and ISO,
Initial como'11nce wtth the form of compIlation directives
in this section may have to be altered In the event of
standards covering this area. Because of the long term
possiblity that the major languages will be different,
full uniformity across 180 products Is unlikely.

2-32
CYBER 180 SYstem Interface Standard

84/07/27

2.0 INPUT
2.4 COMPILATION DIRECTIVES

Therefore, products with CVeER 170 directives that do not
conform to the syntax contained here should retain
compatibility with the CVBER 170 form to minimize
migration problems rather than cause a conversion In going
to 180 and possibly have to cause a second conversion to
comply with external standards. New directives In areas
which will 'never be subject to standardization should
follow the form of this section.

The Compilers support two general classes of directives:

• Compiler Call directives

• Source Embedded directives
As discussed In section 2.2, the directives specified on
the command calling the compiler are established for the
entire compilation process. They apply to all subsequent
compilation units (program modules or subroutines) within
the compile pr~cess.

Source embedded dlr.ctlves are established onl, for the
compilation untt In which they appear. They are expressed
either in a special form of a comment within a particuiar
language (e.g. FORTRAN, COBOL) or in special source
statements if the language provides such statements (e.g.
CYBll). ComplIers that already have specla. source
statements for dlrectlves do not have to process
directives embedded inside comments. The syntax of a
compiler dlrectlve wIthin a comment Is as followst

$ directive {,directive] • • •

Example - FORTqAN source embedded directives
CS directIve - C in column 1

Example - COBOL source embedded directives
., directive - * in column 7

MultlpJe dlrectlves may be contained on the same input
statement.

~here directives have parameters, they follow Sel rules.

Source embedded dlrect1ve format errors are diagnosed with
warning or fatal class error messages, as appropriate.

The following standard applies to compilers that process
dIrectives emb~dded Inside comments. A compiler Is not
required to Implement all the features listed below, nor

2-33
CY8ER 180 System Interface Standard

84/07/27

2.0 INPUT
2.4 COMPILATION DIRECTIVES

is the list restrictive.

2.4.1 PAGE EJECT

EJECT

This directive causes the page line counter to be reset
to 1. When the line counter is reset to 1, a standard
listing header witl be written on the source listing prior
to the next source line. This directive wi., be listed
before the page line counter is reset to 1. If the page
is at top-or-form when this directive is processed, It is
processed as a "no-op". If a continuous page is being
written, this dIrective will slmp'Y result in a triple
space without a new 'i st i ng header.

2.4.2 SOURCE LISTING

LIST and NOLIST

The NOlIST directIve causes the listIng of the source
module, incud1ng compiler directives, to be suppressed at
this point. The lIST directive causes the listing of the
source module to resume at this point. The directives
LIST or NOlIST are tisted at the point they occur.

2.4.3 LINE SK.IP

SPAt E: number"

This directIve causes the specified number of prInt lines
to be skipped at the point in the source module listing
that it is processed. Th.s directive wit. be listed
before the skip action starts. If the page line counter
is exhausted before the specified number of lines have
been skipped, the tine counter is reset to 1 and skipping
terminates.

number :1 nte'Jerv3' ue 1 thru nj if omt tted
(Including theft:"), the default Is 1.

CYBER 180 SYstem rnter~ace Staridard

2.0 INPUT
2.4.3.1 LINE SPACING

SPACING: number

2-34

84/07/27

This directive specifies the number of Jines to be
advanced befor~ each source line Is listed. The new value
for spacing wi" take effect with the next tine following
the spacing directive. When listing a source line if the
page line counter is exhausted before the specified number
of lines have been skipped, the line counter Is reset to 1
and skipping terminates.

number: Integer value 1 thru 3 indicating single,
double or triple spacing; If omitted
(including the "x"), the default Is "1".

2.4.4 TITLE LINES

TITLE· character string
SUBTITLE = character string
These directives define strings of alphanumeric characters
In Sel format whIch wi" be printed following the standard
page headers on the source module listing (see TITLE lines
in section 3). TITLE causes a page eject to occur, unless
the page is already at top-or-form. TITLE is listed at
the top of the neW page.

SUBTITLE also causes a page eject to occur, unless the
page is already at top-of-form or TITLE has Just been
processed. SUBTITLE)s listed at the at the top of the
page folJowlng TITLE if there is one.

Compi I at ion 01 r'ect i ve s

2.4.5 RANGE CHECK

RANGE and NO~A~GE

The RANGE directlve dIrects the compiler to generate
additional abject code which performs range checking for
subscripts, Indexes, scalar assignments, case varlab'es,
etc.

The NORANGE dlrectlve directs the compiler to not generate

2-35
CYBER 180 System Interface Standard

84/01121

2.0 INPUT
2.4.5 RANGE CHECK

additional range checking object code.

The default for the compllation unit is NORANGE.

2.4.6 EXECUTION TRACE

TRACE and NOTRACE

The TRACE directive directs the compiler to generate
additlona' object code which facilitates tracing the flow
of the program durlng execution. The TRACE directive Is
Ignored unless the DEBUG-TR parameter Is given In the
product call command.

The NOTRACE directive directs the compiler to not generate
additional flow tracing object code.

Minimum trace information will always be provided. See
sec t Jon 5 .• 4 • 1 .2 •

The default for the compllatton unIt is NOTRACE.

2.4.7 DEBUG STATEMENTS

DEBUG and NODE~UG
Source input statements that are to be compiled only for
debugging purposes are enclosed between DEBUG and NODEBUG
directives. Enclosed source statements are compiled only
jf the DEBUG-OS Is given in the product call command.

2.4.8 SEQUENCE CHECK

SEQUENCE and NQSEQUENCF

The SEQUENCE directive directs the compiler to check the
Input source statement seQuence numbers for ascending
or der.

If a sequence error occurs, it wit. be f'agged with a
warning diagnostIc. (See section 2.2.4.2)

The NOSEQUENCE directive directs the compiler to Ignore
input source statement sequence numbers.

cyaER 180 System Interface Standard

2.0 INPUT
2.4.8 SEQUENCE CHECK

2-36

84/07/27

-~-."..-.-... --.... ----... ~--.- -.... -... ------... ----.. ---.--------.. -... ---.-.~ ~ ... -.. ~ ... ~---.-~---.--.-

The default for" the compilation unit is NOSEQUENCE.

The SEQUENCE and NOSEQUENCE lines themselves are not
checked for sequence.

2.4.9 OBJECT CODE LISTING

OBJlIST and NOOBJlIST

The OBJlIST directive directs the compiler to print the
object code listing at this point. The NOOBJlIST directs
the compiler to stop printing the object listing at this
pojnt. The object code will appear in the object code
part of the listing (see section 3.3.4).

OBJlIST and NOOBJlISr act Independently of LIST and
NOlIST. The default for the compilation unit is NOOBJlIST.

2.4.10 STACKING COMPILATION DIRECTIVES

PUSH (compilation directive) and POP
The PUSH command wi' I place the specified compilation
directive on the top of the "directive stack". The POP
directive will remove the top directive from that steck.
This procedure will aSlow temporary alteration of the
local environment without permanently affecting the global
en vi ron m en t • F '0 r ex e m p , e, i fit J s des Ire d t h at a c a I led
common deck lists its name on the print file, regardless
of whether the entire common deck is being listed, then
the following ~ould be placed In the common deck:

PUSH (LIST)
comment Including common deck name.
POP

The format of product directives (commands) must follow
the set of language rules and conventions of t~e System
Command Language. These directives frequently occur In
products [often various types of utilities) that are not
compilers and are thus I isted separately. The standard

2-37
CyaER 180 System Interface Standard

84/07/27

2.0 INPUT
2.5 PRODUCT DIRECTIVES

parameter names as described in sections 2.2.4.2 and 2.5.1
must be used as applicable.

2.5.1 STANDARD PARAMETERS

P ar amet er
Name

BRIEF

FUll

COUNT

FILE

WAIT

NOWAIT

USER

These parameter~ occur frequently enough to warrant making
sure that at' commands using them do so In the same way.

AI i as

BR

FU

cou

F

WAI

NOW

us

Parameter Description

This parameter specifies that a brief form of
Information is requested for dispiay at a
terminal or print 'i'e. It is a boolean used
in conjunction with the full parameter. The
brief selection Is used as the default.

This parameter specifies that a full form of
Information is requested for display at a
ter~lna' or print f"e. It Is a boolean used
In conjunction with the brief parameter.

This parameter specifies a count of units (e.g.
fifes records) associated with the command
'unction. The default value is one.
This parameter specifies the local file name of
a fi Ie used as the object of a command
functlon. It is used when the file 1s not one
of the specific files identified In section
2.2.4.2 (e.g. COMPILE, INPUT).

This parameter specifies the requestor should
be placed In a wait state if a request can't be
Immediately processed (e.g. a f.le Is busy).
It Is a boolean used in conjunction with the
"await parameter.

Thls parameter specifies the requestor should
not be placed jn a wait state jf a request
cannot be Immediately processed. It Is a
boolean used in conjunction with the walt
par~meter. The nowait selection is used as the
default.

Thls parameter specifIes a user
Identification. It is always the 31-character
user and family names as specified to gain

2-38
CYBER 180 System Interface Standard

84/07/27 -.-.- -....,-.-........ ..-,-.-.---~ ----.. ----.-...... --.-------.. --... --... --.------~-.------.----... ~.-.-- ... ------.-~.-
2.0 INPUT
2.5.1 STANDARD PARAMETERS

access to the system.

PA SSWOR D PA This parameter specifies a 31-character
password needed to gain access to an entity or
to execute a function.

UPON

LIBRARY II

ThIs parameter specifies the local file name of
an output fiJe. It is used when the file Is
not one of the specific files identified in
section 2.2.4.2 (e.g. LIST, 8INARY-OBJECT).

This parameter specifies the local file name of
a library file (e.g. source Jlbrary, object
library).

2.5.2 STANDARD COMMANDS

These commands are required, as a minimum, jf the functions
described by the commands are included in the utility.
utilities may optlonat'y include aliases to the required
command.

Command Description

QUIT ThIs directIve enables the user to exit, or get
out of, a utility.

3-1
CYBER 180 System Interface Standard

84107/27

--
3.0 OUTPUT

3.0 QUI2.UI

All products will fo1 Iowa uniform set of conventions for
generated output, as specified herein. All CVBER 180
products wi" use the facilities of the CYBER 180 Record
Manager for such output.

The use of hexadecimal numbers on output produced by CYIBD
software must be controlled to promote readability. All
products will follow the set of guidelines set herein.

3.1.1 SITUATIONS AND RECOMMENDED NUMBER BASES

Address, Address Offset: Hexldeclmal. When a length Is
specified In conjunction with an
address or address offset, the
length is represented in
hexldeclmat.

Dayfile inrormatlon: Decimal statistics, decimal
resource limits.

Object Code LIstings:

Instructions: Hexadecimal (4 or 8 hex digits)

Operand fields: Decimal

Branch DestlnatJon: Hexldeclma1. The value Is the
instruction offset of the
destination instruction rather
than the relative offset from
the branch Instruction.

Instruction Offset: Hexidecimal.

Core and File Dump: Various formats should be
aval Jable, including
hexadecimal, ascii, Integer,
floating point.

3-2
CYBER 180 System Interface Standard

84/07/27
---- . .---.----------------...... -----.... ----.-:.---.. ~..-.---.----..-.----- -----------.-._------... ---------_ ...
3.0 OUTPUT
3.1.1 SITUATIONS AND RECOMMENDED NUMBER BASES
~-------------,...-----... -~..-.--.-- ----- --------.---~ ... --...... ---~-.------.------.-----------------

3.2 LOGS.

Page numbers: Decimal.

The logs treated In this section are those maintained by
the operating system. The as provides interfaces to put
items into the logs and the SIS provides conventions on
how to use these Interfaces and on the contents of data
put into the Jogs.

The set of logs Is divided Into two major classes, ASCII
and binary. The ASCII logs contain only ASCII-encoded
data •. The binary JOgS may contain any type of data.

The IOQsinclude:

- system Jog (ASCII)
- Job log (ASCII)
- account lo:;} (binary)
- engineering log (binary)
- statistic Jog (blnary)
- job statistic 'Og (binary)

3.2.1 ASCII LOGS

Each ASCII log contains a set of records ordered by time
of entry into the log. Each record conta1ns several
fields, some a~tomatlcaJly provided by the logging
mechanism, and some provlded by the caller of the
mechanism. The following fields are provided by the
logging mechanism:

- time of day of the entry of the record Into the log

- origin of the message (command, program-issued,
command from procedure, etc. -- that is: callers ·in
as rings may specify the message orjgln In the cal',
callers 'n users rings may not and their messages
are always "program-Issued").

The system log has an additional system-provided field to
Identify the message Issuin:J Job. Also, each log record
contains a field for data provided by the program making
the record entry.

3-3
CYBER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.2.1 ASCII LOGS

Except for certain operating system programs, the
interface to be used by the as and product set for putting
messages Into ASCII logs is that provided by the "message
generator", a facilIty of the OS (see NOS/VE ERS). The
message generator is given a status record that describes
the type of message and any variable data to be "edited"
into the meSS8Qe. The meSsage generator'

- finds the appropriate message skeleton in a library
which is in the current Job library list

- edits the variable data into the message

- .I09S thetinal message in whichever logls) are
specified by a combination of:

* destination specifIed within the message
si<eleton record

* Job option selection (e.g., "log only errors",
"log all fatals", etc.) -- things such as
message importance level are defined in the
message generator call.

displays the message at a terminal depending upon
job option

The use of a message generator eases:

- consistency of messages within and across products

- physical compression of message text

- extraction of message types for documentation

- routing/suppression of messages based upon message
levels (e.g., trivial, fatal, etc.) and upon user
desire for only certain levels ("Ieve'" or
"importance" is specified in the message generator
call, not In the message skeleton)

- installation control over what kind of messages
shoulrf appear In the system log

Arbitrary user-Initiated togging need not use the message
generator.

3-4
CYBER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.2.1.1 System log

In addition to the basic system-provided fields, each
system J09 entry contains a field Identifying the
particular job from which the message came or to which It
applies.

3.2.1.1.1 PURPOSE

The primary pur~ose of the system log Is to serve as a
repository for information regarding external system
workload. That Is, the work the system was asked to do
via commands and the high Jevel responses of the system In
regard to the commands.

3.2.1.1.2 CONVENTIONS

The system log contains predomlnantly a subset of Job 10g
messages that are of interest to the Installation. This
normally includes at least:

- all system level commands (suppJied by OS)

- all command completion messages

- start of each Job execution (supplied by OS)

- end of each Job execution (supplied by aS)

- rerun of each Job execution (supplied by aS)

- syste~ Identification (supplied by OS)

- other Information supplied by the OS like date,
hardware and software configurations and changes,
deadstarts, recoverjes, etc.

The system log should contain only indications of the
major changes fn state of the system and of individual
jobs.

The specific messages that should be routed to the system
log in the default "as-shipped" system will be determined
on a case-by-case basis using these general conventions as
guidelines.

Note that since message destination (which 'Og(s»

3-5
CYBER 180 SYstem Interface Standard

84/07/27

3.£) OUTPUT
3.2.1.1.2 CONVENTIONS

instructions are separate from the message-Issuing code,
this determination does not involve code modification.

See Job Log, Conventions for further guidelines.

3.2.1.2 J.all_1..iUl

The purpose of the Job log Is to hold a trace of Job
execution. Information concerning the work requested and
accomplished Is recorded here. It provides a summary of
the flow of the Job, problems encountered and charges
accrued by the Job.

3.2.1.2.2 CONVENTIONS

Keep log messages simp1e and short. Use the logs for
summary lnfnrmatlon. Use list files or binary logs for
detailed or repetitive data.

Messages Jonger than the Jistable output "narrow" format
are discouraged.

Simple completion messages that convey no more information
than "it's done" are not to be put into logs. In a batch
case, completion Is obvious from the appearance of the
next command. In an interactive case, the as will see to
it that the terminal user is notified of completion.

Completion ~essages that convey a small amount of useful
or interesting lnformation are encouraged In order to
enhance the "live" appearance of the system. For example,
"23 records sorted." or "Cycle 25 used.". Information not
speclflc to the operation performed should not be
included, however (tlke CPU time for a compilation).

Messages (at least the non-brief mode ones) should have
the general appearance of norma' sentences. That Is, they
start with a cap Ita) letter, are compr'sed of both upper
and lower case letters, and end with a period. When an
"extended message" of more than one line must be issued,
each line should not, however, end with a period, but each
sentence should. This familiar sentence-type structure
adds to the "comfortable" feeling that we'd like our users
to have for our system.

3-6
CYBER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.2.1.2.2 CONVENTIONS

Accounting and low-level statisticat and hardware error
informatIon Is not to be placed Into ASCII logs except by
the as.
Message-at-a-time "current status" messages (Jike
"compiling alpha ••• compiling beta ••• ") are not to be
placed In logs. The OS wil) provide a means for programs
to post these kinds of messages. The current message wilt
be displayed at an interactive terminal when requested by
the terminal users. Posting of these messages Is
encouraged.

The message generator wilt supply product and message type
Jdentlficatlon based upon the status record passed to It
in a call. Products should not include this information
in messages.

When more than one datum is to be logged, try to mInimize
the number of ~essages lines produced by putting more than
one datum on aline. For example, Issue:

23 records sorted; Merge order 12 used; 14 insertions.

rather than:
23 records sorted.
Mer ge or der 12 us ad.
14 Insertions.

3.2.2 qINARY lOGS

Binary logs are provided in order to allow the recording
of 'Og Information In a compact form that Is readable
primarily bv programs. Each binary log contains CYBll
records ordered by time of entry into the log. Each
record contaln~ several fields, sowe automatically
provided by the logging mechanism, and some provided by
the caller of the mechanism. The following fieldS are
provided by the logging mechanism:

- time of 1ay of the entry of thg record Into the JOg

- the Identification of the job from which the record
came or to which it appties (this field is not
recorded In the Job statistic log)

- the orlgin of the record (system or non-system
indicates only "hether the caller is Inside or

crSER 180 System Interface Standard
3-7

84/07/27

3.0 OUTPUT
3.2.2 BINARY lOGS
--.--... ---.-.----.---------.-,.-.-------.---.~---- .. -----.----.--.~------..... ~------------_.-.-----------._ --..-.--------.--

outside system rings, not which product or which
system agency --this latter information Is given by
the "Indicator of the type of record" field.)

Fields proyJded by the caller includel

- indicator of the type of record (e.g., number of FTN
source statements, SRJs at end of Job, etc. --the
Indicator codes will be assigned and managed 1n 8

manner similar to that used for status condition
codes as described in section 3.4)

- variable data depending upon the record type

Except for certaIn operating system programs, the
interface to be used by the as and product set for putting
records Into blnary logs is that provided by the
"statistics facility" of the as. The statistics facility
is gjven a data record that describes the type of record
and any variable information associated with the record.
The statistics facility finds Information about the given
record type in a "table". This "table" directs the
statistics facility to do some combination of the
following things:

- add the variable Item(s) to counter(s)

- log accumulated counter values to a specified binary
log or set of binary logs when a thresho.d counter
value Is reached or when a certain time has elapsed
since the last "put" to the Jog(s) of the
appropriate counter(s). The set of logs Is
specified 1n the "table".

- simply log thIs record In the "table-specified"
109(S)

The use of the statistics facility for binary logging
eases:

- Installation tailoring of what is considered to be
accounting, performance, etc. data. for example,
site A may consIder CPU time to be accounting data,
while sIte a considers it 8 workload statistic and
conslder~ "number of statements compiled" to be
accounting data

- optional routing of statistics to the Job statistic
tog (based upon user desire, but constrained by

3-8
CYBER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.2.2 BINARY LOGS

installation wl11ingness -- via "table"
information -- to divulge certain information)

Since the statistics facility determines the log into
which a given statistic (for example, PIDFR data) I's to be
placed (based upon an installation and CDC defined table),
system and,product implementors should not be concerned
with which 'og(s) are used for "their" statistics. This
mapping will be determined later.

3.2.2.1.1 PURPOSE

The purpose of the account log is to hold accounting and
billing Information. This consists of resources andlor
services uS9d, "who" used them and "who" to charge. The
account log should be the only log needed for an
installation to do bill jng.

3.2.2.2.1 PURPOSE

The purpose of the engineering log is to hold information
regarding system hardware usage and errors. The
engineering log should be the only log needed to perform
hardware usage and error anlaysls.

3.2.2.3.1 PURPOSE

The purpose of the statistic log is to holdl

- detailed system workload information

- detailed system performance lnformatlon (I.e., the

CYBER 180 System lnterface Standard
3-Q

84/07/27
.......... -... --.. -.. ---.---------.... -.... ----.-------------.--... -~--------.-... -~---.----..... .- ---------.-..--.-
3.0 OUTPUT
3.2.2.3.1 PURPOSE

way the system responded to the workload)

Although so~e of thJs Information Is recorded in other
• 0 g:s , a separate Jog Is in a , n t a i n e dl no r d e r to:

- keep other logs relatively "clean" or oriented to
theIr own purposes

- allow possibly large amounts of data to be recorded
in a compact binary form

3.2.2.4.1 PURPOSE

The purpose of the Job statistic log is similar to that of
the (global) statistic log. The global st~tlstic log
contains information regarding all Jobs in the systeml but
may be read on'y by privileged programs I users.
Individual users, however, may wish to see information
that is available about their own Jobs. The Job statistic
tOg may be read by normal programs 1 users and contains
information regarding 9 single Job, similar to the "scope"
of the ASCII Job log.

Avoid the use of character data. Since each record type
Is pre-defined by a CYRIL record type defInition, there Is
seldom a need to describe the various data fields wlth
keywords or the like.

Message type naming follows the naming conventions
oeser I bed in SIS sect ion 3.4.

Use the binary 'ogglng facilities for PIOfR data.

See the OS ERS and the SIS Usage StatIstics section for
minimum list of items to be logged.

Additional conventions wll' be added as design proceeds.

CYBER 180 System Interface Standard
3-10

84/07/27
---~--.---... ~-,-..- -.... -.. -.--------.-..... -.-.---..... ----~-.--... --.----..-.. -------------~-.. -~.-----
3.0 OUTPUT
3.3 lISTABLE OUTPUT

3.3 Ll~IABLE_DUlfUI

When a significant amount of information is to be returned
to the user, It Is written to a "listable output file".
The standard format of such a file is described here.

CyeER 180 Output Standard Is defined In terms ofl

• Output File Organization

• listing Page layouts

• Page Header· Format

• Format of Each Listing Type

.. Object Code and Debug Code

3.3.1 LISTING PAGE FORMATS

In the sections that folJow, the contents and format of
the standard listIngs produced by CYBER 180 Products are
defined in terms of a vertical and horizontal layout.

Vertical layout is defined in terms of the first printable
line of a form fol'owlng top-of-form positioning by the
printing device. This position Is defined as 11ne 1 of a
form and is reserved for the first print line of the
standard listing header. The product Is not responsible
for the physical alignment of line 1 re'atlve to the
perforated fold on fan-fold printer forms. This Is the
responsibility of the user on printers with vertlca]
positioning carriage tape mechanisms or the responsibility
of the CVBER 180 OS Oevlce Software on printers without
vertical carriage mechanisms.

When the last printable Ijne of a form has been written,
the product will reset the page line counter to 1. When
the page line counter Is equal to 1, the next print line
written Is preceded by a standard listing header with a
top-or-form code in the first character position of the
header print record. The product Is not responsible for
the physical atl gnrnent of the last pr tntable line relative

3-11
CY8ER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.3.1.1 Vertical layout

to the perforated fold on fan-fold printer forms.

Each product must obtain the output file attributes from
the operating system at the time the file is opened.
These attributes include print mode, page width, connect
status, page format, and page length. vertical and
horizontal print density have operating system defined
defaults which may be changed by the user.

Output files may be either continuous, which has a line 1
position but does not have a last line position, or
paginated (non-continuous), which has both a tine 1
positions and a last line position. Continuous form
specification files are Intended for users using
interactive ter'minals(dlsplay or hard-copy) for listable
output. Paginated (or "fan-fold") listings are Intended
for users using line printers for listable output.
For paglnated fIles, page 4ength minus the number of lines
of he a de r de t e r;m J n e s the a v a i • 8 b I e 'i n e s per page. The
operating system provides a (defauJt) standard page length
of 66 lines per page at 6 I ines per inch
vertical print densIty. This provides an 11 Inch form
length. Print mode specifies whether or not the paginated
file is "burstable" or "non-burstabJe", with
"non-burstable" being the default.

A continuous for'm flle is detected by checking the file's
attribute page format. Connected files will default to
continuous form mode, but users may override this by
specifying a p~ge length for the connected file.

3.3.1.2.1 CONTINUOUS OUTPUT FILE

When formatting listable output for a continuous form, the
product uses a standard triple-space code In the first
character position of the I ine 1 output record (usually
the first line of the heaoer) to achieve top-of-form
positioning. Products wit' reformat listings for terminal
users when requIred by this standard.

Each type of listing (source. isting, attribute listing,
etc.) is preceded by a triple-space and the usual header
line(s), but there is not pagination as such.

3-12
CYBER 180 SYstem Inter'face Standard

84/01/27

3.0 OUTPUT
3.3.1.2.1 CONTINUOUS OUTPUT FILE

3.3.1.2.2 PAGINATED OUTPUT FILES

When formatting output for paginated listings, the product
uses a standard top-or-form code In the first character
position of the line 1 print record (usua'Iy the first
tine of the header) to achieve top-or-form positioning.
In burstable listing mode, each type of listing produced
by the product (source listing, attribute listing, etc.)}
begins at a top-of-form position. In non-burstable mode
(sometimes referred to as "paper saving" mode), each type
of listing Is oreceded by a triple-space and the usual
header tine{s) 1f "proper space" remains on the current
page. "Proner' spaceftJs defined as 6 p.lus the number of
header lines (insuring that at least 3 lines of output can
be placed at the bottom of the page); If "proper space"
does not remain, the triple space is replaced by a
top-or-form. The source listing always begins at
top-of-form, and user-specified page ejects (via
compilation directives) always result in a top-or-form
position unless the I Jsting is already positioned there.

Carriage control characters that are used should be
r estr i ctad to the following set.

Character Action

blank Space vertically one line then print.

o Space vertically two flnes then print.

Sp~ce vertically three lines then print.

1 Eject to the first 'ine of the next page
before prInting.

+ No advance before printing; allows
overprinting.

This set reoresents the full extent of compatibility
between current CDC usage and the proposed ANSI standard.

Under NOS 180, horlzonta1 print density and
vertIcal print density are file attributes that the user
may modify. The NOS, NOS/BE carrJage control codes Sand

3-13
CyaER 180 System Interface Standard

84107127

3.0 OUTPUT
3.3.1.3 Standard Carr"Jage Control Codes

T wl., not be used to set or clear the 8 lines per Inch
mode.

It wi.1 be necessary to make some provision for selection
of print density when NOS 180 print files are to be
printed by NOS or NOS/BE. The first release of NOS 180
wi.' depend entirely on 170 state for print files.

Horizontal layout is defIned in terms of output line
character positions (columns) for a standard 132 column
line, the "wide" format. At a default
horizontal print density of 10 characters per Inch the
standard print~r paper is assumed to be 14 Inches wide.
Products are requIred to support a format consistent with
the standard terminal I Joe, the "narrow" format. This is
defined to have 72 columns. Products are also requIred to
support a format conslstant with terminals wIth a capacity
greater than 72 co1umns. The two other widths speci­
fically supported on terminals are 80 column and 132
column formats (where 132 column format is a shared
format, usuall. associated with hard copy). Formatting
for other line widths In addition to the standard terminal
line is permitted, and wi" be referred to as "other
formats."

Character positIon 1 of an output record is interpreted by
the output device software as verties' positioning control
and is never printed (displayed). Character positions 2
thru 133 of an Qutput record contain printed (displayed)
characters. Column 1 of an output tine is character
position 2 of the output record.

All CYBER 180 Products wi' I use a standard 2 ,jne page
header format on a II "st i ngs pr oduced by the pr oducts.

Through this section, date and time fields conform to
standards defined In section 4.1.

3-14
CYBER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.3.1.6 OTHER fOR~4TS

If the line wIdth specified is other than 72, 80, or 132,
the heading wl'l be mapped to one of the three standard
aisting headers. Other output will honor the actual line
width, unless specifically column oriented throughout the
line {as opposed to column oriented for the first portion
and open ended for the last portion, such as source}.

line 1 of the common page header contains the following
fields (field definitions are in COBOL format):

System Name x(8)

x(8)

Product Verslo" q.99

Product Level zzzz9

Instal t Date q999Q

listing Namp. x(14)

Operating System name.

The longhand form of the
product name, i.e., FORTRAN,
FMU, BASIC, etc.

Product verslon number. The
number after the declmaJ
point is shown left
Justified, i.e. 5.1, not
5.01. This number Is updated
at the product source code
I e·v at by the res pons 1 bl e
development organization for
each new version release.

Product PSR modification
leve' contained within the
product Itself. This number
is updated by the build
procedures for each new
update release.

Ordinal Date, In YYODD
format, when product was
added to the library. The
date Is obtained from the
CYBER 180 as using a standard
Program Management request.

Name of the particular
tlstlng being produced. The
acceptable listing names are
defined in the following
sectJons which define the

CYBER 180 System Interface Standard

3.0 OUTPUT
3.3.1.6 OTHER FORMATS

Module Name x(31)

Date:)((18)

Time:)«12)

Page Number 'PAGE' z2z9

3-15

84/07/27

format of each listing type.

Name of the source module
being compiled or the name of
the input file being
processed. The module name
Is obtained from the module
identification statement
provided within the language,
or, the default name provided
the product when an
identification statement is
not used. This name need not
appear in the first page
header If unobtainable. The
name will appear left
Justified within the field If
shorter than 31 characters.

Oate at the time the first
header was written (listing
Page Number reset to 1). The
date Js obtained from the
CYBER 180 as using a standard
Program Management request.
The date format will conform
to the standard given In
section 4.1.

Time of day at the time the
fjrst header was written
(listing Page Number reset
to 1). The time is obtained
from the CYBER 180 OS using a
standard Program Management
request. The time format
will conform to the standard
given In section 4.1.

Integer number generated by
the product starting at 1 and
incremented by 1 for each
page header written for 8

compilation unit. The page
number is reset for the first
page header written for a
compilation unit. This field
Is omItted from the standard

CyaeR 180 System Interface Standard
3-16

84/07/27

3.0 OUTPUT
3.3.1.6 OTHER FORMAT~

3.3.2 FORt-tATs

header when a continuous form
is specified. The two parts
are always separated by one
blank.

Three logical line wIdth listing formats are generated by
products:

Page formatted lines of 132 characters

80 Column Formatted lines of 80 characters

Narrow ~or~atted tines of 72 characters

A standard hea1er wit I be written at the top-of-form
posItion of a listing whenever the page IJne counter is
reset to 1 except when a continuous form is being
written. A standard header will be written only at the
beginning of a 1 isting when a continuous form is
specified. A specified page width of 132 or greater wll'
result in the following heading Ijne.

FIlF CJNTE~TS LIST - WIDE fORMAT

CoSumns 1-14 listing Name or Columns 1-46
program name

Columns 16-46 Module Name

Columns 48-53 System Name

Columns 55-(54+n) Product Name (Iength=n, n(24)

Columns (Sb+n)-(5('}+n) Product Version (length=4)

Columns (61+n)-89 Product level (length-5, blank
filled)

Col u mns Ql-108 Date {right justified}

3-11
CVBER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.3.2.1 Wide Format (132 columns)

Columns 110-121

Co I umns 123-132

Time {right Justified}

'PAGE' and Page Number {right
Justified}

All unspecified columns contain blanks.

FILE CONTENTS LEGIBLE - WIDE FORMAT

Columns 1-14

Col u mns 16-46

Columns 48-53

Co, u mns 55-78

Co.umns 80-83

Columns as-Sf.)

Columns 91-108

Cotumns 110--121

Col u mns 123-132

listing Name or Columns 1-46
progr am name

Module Nat.ne

System Name

Product Name

Product Version

Product level

Date {left Justified}

Time {'eft justified}

PAGE and Page Number {teft
justified}

The product wi 11 reformat the standard page format for a
80 character line. A physical output line format
greater than the specified line size may be right-end
truncated by the product to the required specification.
The excess characters will appear on the next line. A
product may choose to reformat narrow lIstings within
the provisio~s of thls document.

The header' format {on terminal formatted listings}
consists of two consecutive lines containing the fields
defined above In the following positions on lines 1 and
'ines 2. The PAGE and Page Number fle.ds are optional
for continuous files.

This InformatJonwlll appear within the following column
positions of the 'first print I ine (Product Name, Product
Version, and Product level are left Justified, separated

CY8ER 180 System Interface Standard
3-18

84/07/27
.-.._ _-... .-___ ._ . ..-... ---.. - - ... - -~'ltMo --... ---~ __ .. _____ . .._._._-..-___ -. __ .. _____ .. _.~ __ _

3.0 OUTPUT
3.3.2.2 Narrow format (80 Columns)
---~----- --... ..-.-~ . .-.-------.--.-.~ -.-..... -.---~.-- ----.. -.. ----.---~---------..... ~ ... -.-.------~-...

by one blank column)t

FILE CONTENTS LIST
line 1

Columns 1-14

Columns 16-46

Co. umn s 48-65

Columns 70-RO

line 2

Columns 1-6

Columns 8-{7-n}

Columns {9+n} -
Columns {14+n}

Columns 48-59

{12+n}

- 42

listing Name

Module Name

Date {right Justified}

Page {right justified}

System Name

Product Name {Iength-o,n - 24}

Product Version {length a 4}

Product level {length-5, blank
f i , I }

Time {right Justified}

FILE CONTE~TS LEGIBLE - 80 Column Format

Line 1

Columns 1-14

Columns 16-46

Columns 48-65

Columns 70-80

Line 2

Columns 1-6

Cotumns 8-{7-n}

Columns {9+n}-{12+n}

Columns {14+n}-42

Listing Name

Module Name

Date {left Justified)

Page {left Justified}

System Name

Product Name {Iength=n, n*24}

Product Version {length-4}

Product level {length=5 blank
f i I I }

3-19
CYBER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.3.2.2 Narrow Format (80 Cotumns)

Columns 48-SQ Time {left Justified}

The header for~at (on terminaJ formatted listing) consists
of two consecutive lines containing the fIelds defined
above in the following positions on Lines 1 and 2. The
PAGE and Page iumber fields are optional for continuous
files.

FILE CONTENTS LIST

Line 1

Columns 1-14

Columns 16-46

Columns 4Q-60

Columns 62

Line 2

Columns 1-1.3

Columns 20-25

Columns 27-(26+n)

Columns (28+0)-(31+n)

Columns (33+n)-61

Listing Name

t1odu'e Name

Time {right Justified}

'PAGE' and Page Number {right
.justified}

Date {right Justified}

System

Product Name (length=n,
n(24)

Product Version (Jength=4)

Product level (length=5,
blank filled)

fILE CONTENTS LEGIBLE - NARROW FORMAT

Line 1

Columns 1-14 listing Name or columns
1-46 program name

cvaER 180 SYstem Interface Standard

3.0 OUTPUT
3.3.2.3 Narrow Format (72 cotums)

Columns 16-46

Columns 49-60

Columns 62

line 2

Columns 1-18

Columns 2()-25

Col umn s 27-5()

Columns 52-55

Columns 51-61

3.3.3 SOURCE LISTING FOR~ATS

t10dule Name

Time {'eft Justified}

'PAGEt and Page Number
{'eft Justified}

Data {left Justified}

System

Product Name {left
Justified}

Product Version {teft
justified}

Product level {left
Justified}

3-20

84/07/27

The following standard applies to compilers, assemblers
and Jnterpreter~. Assemblers may optionally Insert binary
information at the 'eft of the source statement. Page
ejects may be sUPpressed for subsequent listings of each
module (e.g. Map, Cross reference) if the source listing
is shor t (e.g. 1/2 a page or I ass).

The number of r~cords In the source file should be the
same as the nu~ber of source lines in the source list.
Therefore, null records should be mapped to all blanks.
(See section 2.3.2.&.)

Every printable source listing contains the following text
in the Listing Name field of the standard listing headerl

SOURCE LIST OF
--14 characters--

A standard source listing header wi" be written at the
next top-of-form position whenever the page line counter
is reset to 1. Only the first source listing header will

3-21
CyaER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.3.3.1 Standard Header Contents

be written on a continuous form.

When source embedded TITLE or SUBTITLE dlrectives are
processed, the page line counter is reset to 1 and a
standard header 15 written. The title text Is printed
beginning in column 25 and ending in column 132 of the
line immediately following the first line of the standard
header. The titte J fnes are foJlowed by a blank line.

standard header
title text
subtitle text
blank

line 1
1 i ne2
line 3 - 11 (If any)
line n

n may take the value 3 to 12, depending upon the
presence of a subtItle Jines.

When a source listing Is being formatted for a continuous
form, the tItle line 1s simpl, preceded and followed by a
s j n g I e b I a n kl I n e •

If a SUBTITLE occurs without a TITLE, a blank line is
placed in the position which would have been occupied by
the TITLE.

When the source input module does not contain a TITLE
directive, two blank lInes Immediately foJlow the second
line of the standard listing header.

The actual sour~e statement listing begins on the line
following the blank line following the header, or titles
if present. Each source listing print line contains the
following optional fl eldSl

Offset zea) A zero suppressed hexadecimal
number (see section 3.1) glvlng the
byte offset In code section of the
first instruction generated for the
listed source statement. If this
field Is supported, It Is selected
by the fist option ao. If

3-22
CyaER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.3.3.3 Wide Format ---.---.. -.--.---.-,--.-. --~- •. -----.--~ .. .------~.-------. ... ---,..,--.-.---~-------..---~------.------

Input line

selected, the field must be
supplied for ail source 'isting
I fnes.

Number ZelO} A numeric, zero suppressed number,

Left Statement

up to 10 characters in length,
allocated to the source line. See
section 2.3.

Attributes x(4) language dependent attributes.

Right statement
Attributes x(4) Compiler dependent attributes.

The Source Record
is a required field

Source Record x(132) UP to the first 132 characters of
the Input source record. If the
source line Is Jess than 132
characters, this field is 1eft
Justified. Source Code utIlity
(SCU) identifiers are contained
within this field, If they exist.

If all fields were present in a source listing, column
posltions would be:

Columns
Columns
Columns
Columns

Columns

1-8
10-13
15-24
26-12 ;

127-130

Offset
Left statement attributes
line number
Source (including SCU
IdentificatIon when present)
Right statement attributes

If an optional field is not used the remaining fields will
be adjusted to the left.

When the source record (26-125) includes SCU
identification Information the following column positions
will be adhered to for the source record

Columns 26-105 Source
107-125 SCU identifier.

The fields should not be changed (mixed) between

3-23
CY8ER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.3.3.3 Wide Format

successive uses. Once the rlelds desired are established
they must remain unchanged.
Existing fIelds before and after the source record may be
blank. If the source record overflows an additional line
is written within the source record field. In this case
the right attributes field of the first line contains
' ••• ' as the first three characters and the rest of the
field and offset field are blank. The overflow line
contains blanks in the line number field and the remainder
of the source r~cord left JustifJed in the source record
field. The right attributes field contains the
information which would otherwise have appeared in the
first 1 ine.

The source listing format written on a terminal formatted
listing consists of one or more output lines for each
input source record.

The first line consists of the fol lowing fields:

line Identifier

Source Record

Numeric right Justified leading
zeros suppressed. Optional
variable width field up to 10
characters.

The source record field size is
dependent on the file attribute
maximum record length and the size
of the line number field.

A stngle blank separates these two fields.
The source record field size Is dependent on the file
attribute maxl~um record 'ength.

If the source record Is longer than the Source Record
field then an additional Line Is written. The lines are
printed with the same format containing blanks in the line
Number field and the remainder of the source line
left-justified 1n the Source Record field.

3-24
CYBER 180 SYstem Interface Standard

84/07/21

3.0 OUTPUT
3.3.4 OBJECT CODE LISTING FORMAT

3.3.4 OBJECT CODe LISTING fORMAT

This is the for~at ror listing lines of object code
produced by the campi lers at the users request.
Assemblers lIst their source lines formatted as submitted
from the input file.
The object code listing shalt take one of two forms. The
first consjsts of lines describing each eYISD instruction
embedded in the source listing and, as far as possible,
following the same line from which the code Is generated.
The object code line shall conform to the standard defined
below. A group of object code listing lines shall be
preceded and followed hy a blank line.

In the second form, the fines describing the object code,
a'so conforming to the standard defined below, are
coJlected into a separate Jisting, the "object code
listing" which shall conform to a page format common to
the listings produced by all compilers. This is defined
as fo. tows.

Object code listings consist of instruction descriptions
and comment lines.

Instruction Description

with the exception of BOP instrucions, each Instruction
emitted is described by a single print line optionally
preceded and/or' followed by comment I ines. The
instruction description wi II contain the following fields
in the following order, beginning in column 2 of the
listable output.

Offset

Input Line
Number

Z(8)

X(l)

A zero suppressed hex'decimal number
(see section 3.1) giving the byte
offset of the instruction relative to
an implementatIon defined base. This
base shal1 be the same base used in
the offset field in the source 'Ine
(if provided.)

llZ7Z9 The number of the input line for which
the code Is being generated (as far as
is practicable).

3-2.5
CY8ER 180 SYstem Interface Standard

84/07/27

3.0 OUTPUT
3.3.4 OBJECT CODE LISTING fORMAT

Bin af Y

Label

x{21
X(20) An 4, 8 or 16-digit hexadecimal number

(adjusted to the left) representing

X(21

the binary bit pattern corresponding
to the generated Instruction or data.
For readability the suggested form is
to arrange the numbers In groups of 4,
separated by blanks. The 4 and 8
digit numbers are followed by blanks
to complete the field. For narrow
format, this field wi'l not be present.

X(31) A 1 to 31 alphanumeric character
string identifying the instruction
label as defined for the CYBER 180
assembler. The labe' field can be UP
to 31 characters in length. It can be
used in an Implementation manner In
conjunction with the comment field.

X(2)

Instruction xtlO)
S(3)
X(21)

A character string identifying the
instruction and its operands. The
mnemonics to be used are those defined
for the CVaER 180 assembler. The
mnemonic identifier on'Y may be offset
by 2 or 4 spaces to distinguish
particular instrucions or instruction
sequences. (e.g. to Identify code
generated out of sequence with the
source.) Operands are specified In
the order defined in assembler
specification which appears In an
Appendix (to be supplied). As shown
In the format description, the
breakdown of the Instruction Is as
fo1lows:

Comment

MNEMONIC

OPERANDS

Xtl)

X(lO)
X(3)
X(Zl)

X(25) An implementation dependent field
typically containing user variable or
lahel Identifier, register use

CYBER 180 System Interface Standard

3.0 OUTPUT
3.3.4 OBJECT CODE LISTING FORMAT

cross-references.

Narrow Format and 80 Column Format

The narrow format and 80 Column Format consist of the

3-26

84/07/21

off setl J 1 ne numbe r ,Ia be I, mnemonJ c, operands and
concatenated fields. The binary field witt not be
present. I' the listed line exceeds 72 or 80 columns the
I ine wi II be continued on the next I ine (cal Jed
"foldlng fl). For PM other than 72 or 80, the actual width
specified wit' be honored; excess Information will be
folded.

Bdp Instructions

These are described by a line formatted as above, followed
by one or two descriptor descriptions. These are sImilar
to the Instruction lines except that the mnemonic field is
blank and the ~perand field contains a descriptor in the
form defined by the assembler specification.

Comment Lines

These are used to convey more information than can be
accommodated in the comment field of an instruction
description. They consist of a comment field as def'ned
for the Instruction description.

Every printable object code listing contains the following
text in the listing Name field of the standard listing
header:

OBJECT LISTING OF
--20 characters--

A standard object listIng header will be wrjtten at the
next top-af-form position whenever the page line counter
is reset to 1. Only the first object listing header will
be written on a continuous form.

3-27
CYBER 180 SYstem Interface Standard

84/07/27

3.0 OUTPUT
3.3.4.2 Standard Instruction Mnemonics

The instruction menmonics used by the compilers will be
those of the CYeER 180 assembler.

3.3.5 ATTRIBUTES LISTING FORMAT

A common format for the Attribute/Cross Reference listing
Is defined here. It Is useable by all currently planned
Jangueges for the Cyber 180 and provides enough
flexibility to tailor portions of the listing to
individual language needs.

The content of the Attributes listing wit' vary sllghtl,
depending uoon whether Cross References were selected or
not, but the essential format will be the same. If the
user selects both attribues and references, the normal
format will be used. When references are not selected,
the heading witl reflect the difference, but the format
will not vary. If references are selected, but not
attributes, then some of the attribute information
provided will not be listed, providing some additional
space for references on the line.

Every prlnt3ble attrlbute 11stlng or attribute/cross
reference listing contains the following text In the
Listing Name field of the standard tisting header:

ATTRIBUTES Of
---14' char acter s----

If no attribute list Is selected (cross reference selected
only) the following text is placed In the listing Name
fi e I dins tea d:

REFERENCES OF
---14 characters----

A standard attrIbute list header will be written at the
next top-of-form position or foJlowing a triple space, as
specified by sectIons 3.3.1.2.1 and 3.3.1.2.2, and
whenever following page breaks occur. Only the first
attribute list header wi II be written on a continuous form.

3-28
CYBER 180 System Interface Standard

84/07/2.7

3.0 OUTPUT
3.3.5.1 Standard Header Contents

The standard header Is followed by a blank line and one or
more Jines containing the attribute/cross reference
listing heading. This consists of the field descriptions
as defined in the next sections, separated by one or more
blanks. NumerIc fietds In the listing are right-aligned
with the right-hand side of the descript'on; character
string fields are aligned on the 'eft, where appropriate.
Some of the field descriptions may be spilt between two or
mor~ Jjnes l' required, or omitted, if necessary, as
indicated below.

The listing is made up of entries describing the objects
defined in the sOurce program. Each entry consists of a
definition tine, foJlowed by one or more extension lines
if required. The definition line gives the 'ine In which
the object was declared (or first referenced If implicitl,
dectared), the identIfier, and attributes. Extension
lines are used 1f there are more attributes than can be
accommodated on one line, and to ho1d references if
selected. If both attributes and references are selected,
the references always begin on an extension line by
themselves.

The lines contain the fields described in the table be1ow,
in the order specified. The table also contains the field
descriptIon to be placed in the table heading. The final
section of the line (for host supplied free form
attributes and the references) is continued on extension
lines as necessary.

Entries occur In alphabetical order with a blank line
inserted between gr~ups of Identifiers starting with the
same character. Multiply defjned identifiers are
consecutIve In order of 'ncreaslng level of nestIng or In
order of occurrence 0' block.
Variable format fields are optional. They are In the
indicated order if used, otherwise the field is not
present. The sizes for the given fle1ds are maximum width.

ATTRIBUTE/CROSS REFERENCE LISTING FIELDS

Fixed J:ormat:

Field Heading Size Meaning

identifier IDENTIfIER ;«31) The Identifier of the entity.

CYBER 180 System Interface Standard
:3-29

84/07/27
-.-. -----.... .-.----.-- ---.--.---.---... --~- ---.---... -.. ~--..... ---. ... -~~---.... -.--.-,-. ... -----~ ... ---
3.0 OUTPUT
3.3.5.2 Wide format
----... --.----.-.---... -.-----.-.-....-.-------~.-------.... ---~----.---~---------.------------~-. ---------.-.-...

bt ank

definition

blank

size

DEFINED
ON LINE

SIZE lJolt

X(l)

ZIS)

X(l}

XC)~

The name appears left Justified,
blank fllJed.

The source line number in which
the entity was defined, or (for
janguages with Implicit
definitions) first used. It may
extend Into the identifier field
jf larger than five (5) digits.
The second IJne of the heading
-ON LINE- appears only in the
wide format.

Size of the entity, in units,
defined by the host (either bits,
bytes, or words). The units of
the size of the entity will
appear as "BIT", "BYTE", or
"WORD". Abbreviations are BIT,
BYT, WRO. Normally the fields
for size unit combination will be

size I(8)
btank X(I)
unit X(4)

If the size field exceeds 8
digits, then the fie'ds wi II be

size Z(10)
unit X(3)

Spec i a' case:

If size units is no-size, then
the size field is allowed to be a
signed Integer (64-bJt). This
will be right Justified under the
SIZE title If possible. If It Is
too J ar ge, It "gr OMS" to the
right. If it Is so large as to
grow into the TYPE field, the
TYPE field Is pushed to the
right. This is possible because
the LOCATION field Is undefined
if the SIZE units are no-s1ze.

3-30
CYBER 180 SYstem Interface Standard

3.0 OUTPUT
3.3.5.2 Wide format

hlank:

t y pear
entity

btank

location

TYPE

LOCATION
SEC +Off

X(Z)

X(lO)

X(l)

Minimum
X(6)

84/0"7/21

The type of the entity being
Jisted. Chosen from the list in
section 3.3.5.4.1; If the host
wishes further qualifications
listed they appear In the
attributes t ist.

The location of the entity,
where "SEC" is the section name
of the section containing the
data for the Jdentlfied
reference, and "off" Is the
offset to the beginning of the
section. The section names are:

SlITERAl

$STACK

$PARAMETER

$STATIC

$REGISTER

$BINOING

The section
containing literal
constant data.
The section
containing variables
that are allocated
on the stack when
the containing
procedure Is called •
. A subset of the
SSTACK section
containing parameter
"st variables
allocated on the
stack by the calling
procedure.
The section
containing variables
that are statlcal.y
allocated, are not
In common, and are
not in an expl icitly
named section.
Variables not
belonging to any
memory section but
existing only in a
hardware register.
The binding section.

CYBER 180 System Interface Standard
3-31

84/01127 -..... --..--.-------.------~~.-.-.~.-----.. .-. ~-.--.--.-.----.---.---- --.----.----------.---... .---~--.-.----
3.0 OUTPUT
3.3.5.2 Wide Format

$BlANK Blank (unnamed)
common.

CYB$OEFAUlT
HEAP The system heap.

Code section names wilt be set to
the name of the procedure the
section represents. User defined
names of section and user
declared common blocks wIll a.so
be spec if led I n full (up to 31
ch ar acter s).

When a "sec" name is too large to
fit into the default field size
allocated, the entire name is
printed, expanding to the right.
A line feed and re-allgnment
"back" to the next listing field
allows continuation of cross
reference data generation. For
narrow format (section 3.3.5.3),
if the "sec" name does not fit on
the line, it w111 be put on the
next line by itself, then the
rest of the map wi.1 continue
following a line feed and
re-allgnment to the next field.

Variable Format

Field

For narrow or BO column format listing the variable format
fields continue on a new Aine beginning In column 15 and
extending to column 70 or 80. For wide format I isting the
variable format fields continue on the same line beginning
in column 75.

Heading Size Meaning

block number BLOCK 7999 Specifies the block or subroutine
in which the object was defined.

blank

nesting
Ie ve t

NEST
LEVEL

X(2)

ZZZ90Q The nesting 'eve) of the
declaration of the entity if a
block-structured language. If
the host Is not a block
structured tanguage, the nesting

3-32
CVBER 180 System Interface Standard

84/01/27

3.0 OUTPUT
3.3.5.2 Wide Format -.... -.... ---..,--.--.-.----------.-----... .---.--.-.---..-.----~---..... ----.... --,...---.-----.... ---..- ---.-.~--~.---.~.-----.-

blank

containing
entity

blank

b as Ie
attributes

user
attributes

references

CONTAIN OR
DECLARED IN

ATTRIBUTES

(no heading)

X(Z)

XC)l)

X(Zl

X(12)

free
fie 1 d
star t-
1 ngon
a sepa­
rate
lJne

Jevel Is omitted. The second
tine of the heading - LEVEL -
appears only in the wide format.

The name of the containing or
qualifying entity. Blank if the
entity is not contained or
qualified. The "contained
within" form is for arrays and
structures. The "declared in"
form is for local variables. The
entire heading is on one line.

The "basic attribute" of the
entity (entry, external, etc.)
chosen from the list In section
3.3.5.4.2. Blank if
non-applicable to the entity. If
there are no optional fields and
the basic attribute is not
present, the whole fine Is
omitted in narrow format.

Other host defined attributes
separated by commas. These
attributes begin on a
separate line beginning wIth
column 54 for wide format and
column 15 for narrow format
listings. Each definition
specified by the host Is placed
on one line if possible,
otherwise each that overflows
starts a new tine. If the
definition doesn't fit alone, it
is broken at a blank.

REFERENCES Z(6)X{Zl References on the/identifier
for combined
map, subheading
wi II be

"REFS",
starting on
a separate

tine begin at column 54 on.
the 'isting In narrow format
the first line has two
references. Subsequent
tines start In column 15
and have six references per
line. In wide format atl

3-33
CYSER 180 System Interface Standard

84/07/27 -------------... -..-..~.-.-~---.-... -------.---.--.... -..... -... -.... -----.------... -.-.---.. .--------. __ .-__ --_.-.
3.0 OUTPUT
3.3.5.2 Wide Format

tine. lines start In column 54 and have
8 references per line. For mixed
mode listings, see discussion
below.

The format for references Is a six digit, right
Justified, blank filled integer, followed by an
optional slash (/), followed by qualifying .etter,
chosen from the list in section 3.3.5.4.3. This
combination is fol lowed by a blank.

In mixed mode (combined attributes and references),
both the attrlbutas and references are handled as
described above, except that the first reference Ijne
has a subtItle -REFS- placed at Its 'eft. The subtitle
-REFS- is placed in columns 9-13 on the narrow listing
and in columns 48-52 in the wide listing.

Since the user may select the attributes 'lstlng
separate from the references listing, the followIng
changes occur when both are not selected together. If
attributes only are selected, the references are not
listed. If references only are selected, the
identlf.ier, 1 Joe number and references fields are used
and the references begjn at the end of the first fine,
not on an extenslon tine.

The narrow format listing will have the same format as
the wide listing with the exceptions noted in the
describitlons 1n section 3.3.5.2. and with the
exception that the attributes and refernces fields will
continue on an extensIon 'Ine beginning in column 15
and extending to column 70 or 80.

3.3.5.4.1 ENTITY TYPES

Each entity is assigned a basic, cross-language type.
These appear I~ the "Type" field as one of the followtng:

TYPE ABBREVIATED FORM

Simple var, VAR

3-34
CYBER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.3.5.4.1 ENTITY TYPES

Ar ray,
structure,
Member,
Condition,
Constant,
Type,
DEF,
Progr am .•
Module
Procedure,
Function,
label,
Switch, F, t 8,

format,
Par agraph,
Section,
Impt name,
Group,
A 'i as
Error
At tr name,

ARR
STRU
MEM
CONO
CONS
TYPE
DfF
PROG
MOD
PROC
FUNC
LAB
SWCH
FILE
FMT
PARA
SEC

(for Implementor name) IMPl
GRP
ALIA
ERR
ATTR

Each host need not support al. types of entities on this
11st, but should define a consistent mapping into a subset
of the above. The final entry ("Error") should be used
for entities whose definitions contain syntax errors
sufficient to prevent the compiier from determining the
user's Intentions.

3.3.5.4.2 BASIC ATTRIBUTES

This field contains attributes basic to the entity
definition which are exclusive of one another. If the
entity does not faJI Into one of the following catagorles
of attributes, then the field is left blank. These are:

Attribute

undefined
unreferenced
EntryPolnt
External
None (field Is blank)

Abbreviated form

UNDEf
UNREf
ENTRV
EXTRN

CYBER 180 SYstem Interface Standard
3-35

84/07/27
~., -----.~---..... -... ,-... .---~ ... ~---.... ---.--.... -..... --.-........... -.-.-----.--------.-... .-.----.-----.-------
3.0 OUTPUT
3.3.5.4.3 REFERENCE TYPES

3.3.5.4.3 REFERENCE TYPES

The standard r~ference type abbreviations wilt be:
M the entity Mas set (modified),

(blank), the entity was used (slash is also omitted)
A the statement defined an entity attribute,
S the entity was a subscript or index,
I the entity (usua'" a fJle) was referenced In

an !/Ostatement
R the entity was read into (or, if a file, was

read) ,
W the entity as written from (or, jf a fl1e, was

written)
p the entity was used as an actual parameter

For all listings containing references there Is a legend
of the possible reference types and their one character
abbreviations at the bottom of each page. This legend is
right Justified and takes the form abbrev • fuJI name, ••••

For example: M=modjfy, A=attribute, S=subscrjpt,
1=1/0 ref, R=read, W=write, P=param.

Each,host may choose to use the entire set or a subset
thereof, but it Is hoped that most hosts wi" use the
entire set.

3.3.6 DIAGNOSTIC LISTING

The di agnostJc J Ist.i og for compi Jers, assemblers,
interpreters, etc •• consists of diagnostic messages.
Diagnostjcs are listed in either of two modes, at the
host's choice. The first method lists all diagnostics and
a diagnostic summary at the end of the listing, following
the Attrlbute/Reference list (if selected). The second
method lists syntax diagnostics In the source listing as
they are detected, with Jater (non-syntax) diagnostics and
the diagnostic summary being listed at the end of the
Attrlbute/Refer~nce 'lst. If the first method Is
selected, the host may also choose to have the Jocation of
the diagnostic occurrence flagged in the source listing
(by means of a caret symbol under the offending column).

When compilation occurs with zero diagnostics a diagnostic
summary will be produced consisting of the stngle line 'NO
ERRORS'.

CYaER 180 SYstem Interface Standard

3.0 OUTPUT
3.3.6 DIAGNOSTIC LISTING

3-36

84/07/27

----.-- --.... -.... --.----.... -----.. --...... -"-.--------~-~-- -.-..----... ----------.- . .-.-------------.... ----

Every printable error listing/summary contains the
following text In the listing name field of the standard
listing header:

ERROR lIST OF
---14 char~cters----

A standard error listing header will be written at the
next top-of-form position or following a triple space, as
specified by sections 3.3.1.2.1 and 3.3.1.2.2, and
whenever a subsequent page break occurs. Only the first
error listing header is written on a contInuous form.

Atl diagnostic lIstings, whether grouped together at the
end of the other listings or printed intermixed with the
source listing wIll have the same basic format. When
grouped, they wl11 be I jsted in source line/statement
column/dIagnostic number order. When grouped and the
diagnostic number is not being printed, they will be
listed in sourbe line/statement column/order of Issuance
order. When printed Intermixed with the source listing,
they will be printed In the order the host detects them.

Column positions are specified for the case where all
fields are used, and remaIn the same If an optional field
is not used.

Column
Position Contents Format Meaning

1-9 level X(Q) error severity teve) of the
diagnostic

11-17 line nr. Z(6)Q source statement number on
which the error occurred. For
diagnostics intermixed with
the source listing, this field
contains *ERROR*.

22-24 dlag. no. Zzqq diagnostic number of the error

3-37
CYBER 180 System Interface Standard

84/07/27 --..... -----~----------.- ... -••• -.--.-----~.- ------.----------..... ----... .---------.--------.-.---.-..... ------
3.(; OUTPUT
3.3.6.2 Standard Diagnostic listing format

26-28 COL X(3)

30-32 co I. no. l Zq

34-eol text

(assigned by the host). ThIs
field is optional.

The abbreviation for the word
column In Intermixed mode. If
the column number field
contains zero, 'COL' is
suppressed. In grouped mode
this field contains the column
number described below, and
that field is blank.

column number in which the
error was detected. Blank If
not applicable. In grouped
mode the column number is
present In the cot (26-28)
field and the column number
field Is blank.

the diagnostic text (defined
by the host). Each word
within the text is separated
by one space and the line is
filled as required. Extension
lines begin with the text
position through the end of
the line, single-spaced. In
intermixed mode, the *ERROR*
indicator Is re-issued on
extension lines.

Diagnostic summary for products that use diagnostics
intermixed with source should include 3 page tist of pages
with diagnostics.

The diagnostic summary wilt follow the diagnostic listing
for grouped diagnostics, or stand-alone for intermixed
dJagnostlcs. In eJther case It provides the user with a
summary of diagnostics detected end listed, as directed by
the El parameter.

There will be an diagnostIc summary line for each Jevel of
diagnostic detected during the compilation. If no
compi latjoo ertars (at any level) were detected, then that
is noted. The followIng format will be used for all of
the summary lines:

CYBER 180 System Interface Standard
3-38

84/07/27

3.0 OUTPUT
3.3.6.3 Standard Diagnostic Summary Format

columns 3-6
co"umns 9-14

columns 16-eot

**** Summary IJne flag
Number of diagnostics of a
given category, In the format
Z(5)9.
Text, In the format "aaaa
diagnostics", where aaaa is
the category being
summarized. If the
diagnostics were not listed
(due to EL setting) then
"(unlisted)" Is appended to
the message.

If only one diagnostic at a given Jevel was issued, the
word "diagnostics" will be "diagnostic" in the messages.

3.3.1 COMPILATION OPTIONS

The complJers will produce one or more lines of output to
indicate which control statement options were selected for
this compile (either by default or explicItly). The
format of this 1 ine will reflect section 2.2 of this
standard. This 'lne will appear aofter all other listings
for each module. It is produced whenever any list option
is selected and not produced for lO-NONE.

This section describes conventions for at1 ASCII error
messages. This Includes log messages (to system and Job
logs), interactive messages, and error messages written to
the OUTPUT or other 'lIes (reference logs, section 3.2).
The conventions lnclude the use of the Message Generator,
message Jdentlflcatlon, and message wording.

3.4.1 MESSAGE GENERATOR USAGE

The NDS/VE Message Generator is used to format and output
all error messages output to logs or to an interactive
users terminal (note this does not Include diagnostics
generated during compilation). It produces a standardized
message using the NOS/VE status record and message
templates fro~ a message dictionary.

3-39
CYeER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.4.1 MESSAGE GENERATOR USAGE

A summary of the HOS/VE status record fieJds is noted
below. The NOS/VE ERS should be referenced for a complete
description of the status record and the Message Generator
interfaces.

Normal - A boolean which has a value of FALSE If a request
could not be pr~cessed correctly and TRUE if it has been
processed correctly.

Identifier - The two character product Identifier
associated ~Ith the product generating the status record.
The identifIers are as defined in sections 4.1.1.1 and
3.4.1.1 of this document.

ConditIon - A six digit unique system wide code indicating
the specific error. The values for this field are defined
by each product according to the conventions specified in
the followIng section.

Text - A string used to substitute text into the error
message template associated with the condition. The first
character of the text signifies the character used as the
text delimiter. All text items are terminated by the
delimiter or the end of text.

To guarantee generation of unique system wide condition
codes, a range of numbers are assigned for each product.
Each product must assign codes within that range and
determine the message template to be assoc1ated with that
code. Product Identifiers are as assjgned in
section 4.1.1.1 and are repeated below.

All CeM and CCG errors will be reported using host
condition codes. The codes to be used are chosen by each
host. A host must provide at least 250 condition codes
for reporting CCM errors and 250 codes for CCG errors.

3-40
CyaER 180 System Interface Standard

84/07/27

3.0 OUTPUT
3.4.1.1 Standard CondItion Codes

Condition Code

1- 159,999
160,000 - 169,999

210,000 - 219,999

220,000 - 229,999

240,000 - 249,999

250,00D - 259,999

260,000 - 269,999

270,000 - 279,999

280,000 - 28Q,999

290,000 - 299,999

310,000 - 319,999

320,000 - 329,999

330,000 - 339,999

340,000 - 349,999

370,000 - 379,999

Product
Identifier

Reserved
AM

Cl

JM

II

MM

os

?F/FS

PM

RM

OF

A\I

Ie

RH

DC

os

MS

IF

US

SF

eM
HU

NA

Reserved

Product Name

Basic Access Methods

Command language

Job Man agement

loader

Memory Management

Operating System

Permanent File Management/File System

Program Management

Resource Management

Operator Facility

Accounting/Validation

Interstate Communication

Remote Host Facility

Object Code Utilities

Deadstart/Recovery

MaIntenance Services

Interactive Faci t Ity

User (e.g., for "user" statistics)

Statistics Facility

Configuration Management

Help utJ II tl es

Network Access Method

CYBER 180 SYstem Interface Standard
3-41

84/07/27

3.0 OUTPUT
3.4.1.1 Standard Condltion Codes

500,000 - 509,999 AA

ES

520,000 - 529,999 Al

530,000 - 539,999

ae

550,000 - 559,999 DA

CB

570,000 - 579,999 Cy

580,000 - 584,999 Fe

Fl

?A

PI

SM

620,000 - 629,999 sc

630,000 - 639,999 FM

640,000 - 649,999 DB

HP

MA

670,000 - 679,999 Ml

IM

ST

II

110,000 - 719,9Q9 FA

720,000 - 729,999 AD

Advanced Access Method

Edit Screen

Assembly language

APt

BASIC

DeN Dump Analyzer

COBOL

CYRIL

FORTRAN COMPILER

FORTRAN LIBRARY

PASCAL (Wirth)

PL/I

Sort Merge

Source Code Utility

FMU

Debug F sci I i ty

Hardware Performance Analyzer (HPA)

Maintenance Application language
for Equipment Testing (MALET)

Math library

Information Management Facility

So ftwar e Tool s

IISP

File Migration Aids

Ada

• •

CVBER 180 SYstem Interface Standard

3.0 OUTPUT
3.4.1.1 Standard Condition Codes

730,000 - 739,Q99 FV CDC FORTRAN (Vectorizing)

140,000 - 749,999 vc c compiler

vx VX/VE - UNIX Emulator

3.4.2 MESSAGE TeXT

3-42

84./07/27

The message templates are determined by each product and
Included In a message dictionary. The NOS/VE ERS should
be referenced to determine the .formats of message
templates.

The message generator formats and outputs messages
according to conventIons based on the message's
destination: terminal, log, file, or returned to the
cat I er •

Terminal:

Format: text ••••• or IDnnnnnn text •••••
Example': Permanent fi'e (pfu) not found.

Log, OUTPUT, or other file:

Format:
Example:

IDnnnnnn
CB0326

text •••••
Incorrect delimiter, comma
assumed.

Returned to caller:

Format:
E)(amp Ie:

Where:

• •• • • text
10
nnnnnn

SID
mmm

IOnnnnnn
AM12 3 4

SID mmm
SOP 012

tex t •••••
FJ Ie (Ifn) already
opened.

•
=

=
=

Text of message
Product identifier
The error condition code
(unique error number for a given
product)
Product subldentifier
Subcondltion code.

3-43
CYBER 180 System Interface Standard

84/07/21 -... --.-.-------~----.. ----.~ . .-.• --.--.--.... ---.... ..-.... ~.-.-.... -.... ~ --.-.-... --....... ------......... ...-, -~ .. --.-.--
3.0 OUTPUT
3.4.2.1 Message Formats

. .-.------ -------... ---.--.-.-.~.--...... -•. .-------------... -,..-.-.-------...... ----~--.. ~-----.-.--.---.-

The combination IOnnnnnn will be known externally as the
"ClSO error number". It is a unique system-wide code by
which any error message can be Identified to the user. It
is always printed before the message text on all batch
listings. It can optionally be Included with messages
output t oa n i n t e r'a c t I vet e r m j n a 1a n d is a vat I a b I e to the
terminal user requesting addltlona' error analysis
assistance via the NOS/VE HELP facility.

When error summaries are listed on a file, log messages
should be issued to both the system and user log according
to the following rules and formats:

System and User Log

n fatal errors [Inx]

user log Only

n warning or trivial errors [in x]

n number of errors
x Is the name of the module, program, subroutine

that contains the errors.

Error summaries should on', be used when it is
inconvenient to provide a description of an actual error.

catastrophic errors are not included because they shoutd
always result In a log message indicating the catastrophic
error. The error counts should be Issued to the log even
if the El (error level) parameter excludes them from the
listing.

Error messages represent a very Important, though often
neglected, Interface between software and user. Proper
attention to producing polite, correct, and clear error
messages can do a Jot toward improving the overall
usability of the system. The following conventions should
be used in deflntng error message text:

CYBER 180 System Interface Standard
3-44

84/07/27

3.0 OUTPUT
3.4.2.3 Message Wording

• Messages should be polite and courteous. Words such
as "illegal" should be avoided tn favor of words like
"incorrect" or "unknown". Error messages shouJd,
where appropriate, suggest what the user ought to do
to correct the error. for example, use:

The lIne number parameter must be an Integer.
not:

Illegal I ine number.

• Messages must be formatted for 12 character displays.
Telegraph style Is much better than long-winded
prose. However, the message must be descriptive of
the error. Messages like "Bad Argument" don't say
enough.

• Consistent terminology is extremely important. For
system-wide terms consult Section 6.0 of the SIS. For
terminology specifIc to a product, again conslstency
is the Important factor.

• Identification must be provided with variable
information. For example:

•

•

•

•

usef
File (Ifn) not found.
Variable (var) must be scalar.

not:

(,fn) not found.
Variable (var) must be scalar.

Use ending punctuation. It Indicates to the user that
the message 1s not continued on the next line and adds
to the readability of the message.

Messages s~ould be oriented toward an Inexperienced or
casual user such that the message can be understood
and appropr'lately responded to without reference to a
manual.

Abbreviatloris should be avoided. Whenever possible
limit the characters used to alphanumerics plus
english punctuation. Avold use of characters that
appear dlfferently on different devices. CDC's
64-character ASCII subset and lowercase alphanumerics
can be used.

Words beginning with "multi" and "non" are not
hyphenated. Don't use "(s)" to Indicate an optlona1
plural usage; either singular or plural is acceptable.

CYBER lBO System Interface Standard

3.0 OUTPUT
3.4.2.3 Message Wording

3-45

84/07/27

• Error messages should use upper and lower case as they
are normally used In the English language. Upper case
should be used to dlstlnguish flcomputer" words from
normal Engl Ish words. For example:

f i J e F~ E 0 no t f 0 un d. S pee i f y key w or d NEW.

All products are requIred to collect and log statistical
informatIon.

This section describes what these statistics are used for,
the NOS/VE Statistics facility, which statistics will be
collected by products and which will be collected by the
DIS and when statistics should be logged.

Because the Statistics faciJity is under control of NOS/VE
product deslgners ara requested to convey statistics
requirements and plans to the NOS/VE design team.

3.5.1 PURPOSE OF STATISTICS

statistics logged by products may be used for billing,
measuring reliability, measuring performance, debugging,
product planning or some other purpose. The ultimate use
of the data cannot be determined when the product is being
designed. For example, a statistic such as "number of
source statements compiled", which is normally considered
a performance statistic, could just as easily be used as
the basis for charging or billing a user. It.s not
inconceivable that a student could be billed based upon
(number of source statements) - (number of comment lines)
+ n * (number of errors) If this data were available for
each compile.

There are three physically different logs for recording
statistics. They are the accounting, Job, and system
statistics logs. See section 3.2. A particular statistic
may apply to one or all three of these logs. To prevent
products from having to issue the same statistIc several
times, to prevent product designers from havIng to decide
which statistics will be used for which purpose, and to
provide installations and users maximum control over

CY3ER 180 SYstem Interface Standard
3-46

84/07/27

3.0 OUTPUT
3.5.1 PURPOSE OF STATISTICS

statistics gathering, NOS/VE provides a centralized
Statistics Faci 1 tty.

3.5.2 STATISTICS fACILITY

NOTE: This Is preliminary information. The NOS/VE
ERS should be referenced for a more complete
and up to date specification. The ERS Is the
controlling document for this product to OIS
Interface.

The NOS/VE Statlstics ~acl1jty Is used by products and the
OIS to accumulate statistics and write records into binary
logs.

The Statistics Facility

associates a statistic code from a status record with
a particular table entry

adds Job and tas~ identification to the variable data
if appropriate. Task identification specifies which
of the possible several asynchronous instances of
executIon within a Job the current statistic belongs
to.

routes the statistic to the appropriate log or logs
and/or adds It to a specific counter as determined by
the table entry. Counters can be dumped to binary
logs at specific times or events.

Data passed to the Statistics Facility include:

statistIcal code - ordinal of this particular
statjstlc.

optional byte string - for products this string
contains product ID, module identifiers if
appropriate, and any other product or statistic unique
descriptive data. Product 10 is the two character
identifier defined In section 4.1.1.

optional count fields - 0 to n numbers, the numeric
part of the statIstic.

Data returned Include.

3-47
CYBER 180 System Interface Standard

84/07/27
... --- ... -.------.-.... .--~-.. --.---.... -..... --.--.. -... --- ----.-..-----.--------.--~----.-.-..--.---.---..-.-~-----
3.0 OUTPUT
3.5.2 STATISTICS FACILITY -----... ------.-----..-.----........ -... --..... -----~-.-------... --...-... ----------...... --~-... .-.-... -.... -.... -... --

status - boolean indicating whether or not the
previous StatIstic facility request was processed
correctly.

The method for assigning statistics ordinals wIll be
specified 1n the ERS. A separate range of numbers wil1
Pfobabfy be reserved for users.

3.5.3 PRODUCT STATISTICS COLLECTED BY NOS/VE

In general, the O/S is responsible for collecting Job step
statistics that can be determined external to the product,
that is statistics that the DIS is capable of determining.

For each product Identified in SIS section 4.1 that is
directly inyoked by the user, e.g., via command or as a
program jnitJated task, NOS/VE will record resources used
per invocatIon. Resources accounted for Includes

total CP-tlme

maximum virtual memory used

maximum real memory used

average wor~Jng set size

CP-time per memory size used

number of IIO requests

amount of data read/written to files

Addttional data to be collected for each Invocation of a
product includea

origin of Job step - batch command, terminal command,
procedure fIle, executing Job.

type of termination - normal, product error, time
limit, InvalId memory re~uest, operator drop, etc. A
recovered condition does not cause product termination.

average Interactive response time for Interactive
products - the average elapsed time between input data
avallabJe and output data Issued to terminal.

CYBER 180 System Interface Standard
3-48

84/07/27

3.0 OUTPUT
3.5.3 PRODUCT STATISTICS COLLECTED BY NOS/VE

the fact that the product was invoked (added to count
of the number of separate Invocations).

number of ~odules loaded (input units for the loader)

source languages of modules loaded (added to language
usage count).

disk accesses per CP second.
These same statIstics, resource usage and additional data,
may be collected for any user initiated job step whether
it is a user supplled program or a CDC supplied product.
Statistics for products will be identified by product 10,
correction level Information, and task number acquired
du.r i og load I ng.

Task number Identifies which invocation of product x
Issued the statIstIc. Several asynchronous tasks may be
executing the same product. Statistics for user written
tasks may be Identified by primary module name, task
number, and other data gleaned from the file 10.

Number of invocations wilt be collected for all products
both user called and product called service products such
as Access Methods, and all user tasks. It CQuid be
collected for 811 modules on system libraries. for
products, It represents the number of times the product
was invoked over a given time span; for user programs it
represents the number of times a program module written in
language x was used over a given tIme span. The time span
is installation defi nable.

3.5.4 STATISTICS COLLECTED BY PRODUCTS

In general, nroducts are responsible for collecting
internal statistics that only they can know. There are
two classes of product generated statistics - input units
and internal usage statistics.

Thjs class of statistics is concerned with the number and
nature of user control'ed data processed by the product.
The number of input units is what PIOFR (Product Input

3-49
CYBER 180 System Interface Standard

84/01/27

--3.0 OUTPUT
3.5.4.1 Input Unit Statistics

--
Data Failure Rate) calculations are based upon. All
products are required to Jog number of input units
processed per invocation.

Section 8.6.2 of the AO/R (ARH 1688) defines input units
for various Dr~ducts and CIS levels. In summary they are:

Product

language translators e.~.,
FTN, CDBOl, CYRIL, DOL

utilities such as SORT/MERGE,
FMU, EOMS utilities, OCU

Services such as AM, AA,
and ONS180's Query service

Input Unl t

Source
I I nes

Data records

Funct i ona I
requests

Input unit related statistics other than count which are
required where applicable, Include:

language Translators

number of modules processed

number of declarative statements

number of executable statements

number of comment and blank lines

number of source statement errors for each error level

Utl'ities

number of type n records
n : each recognizable record type supported by the
product

number of re cor d sin err or

merge order used

average key size

aVerage key type

Services

CYBER 180 SYstem Interface Standard

3.0 OUTPUT
3.5.4.1 Input Unit Statistics

number of functions of type n

number of il legal/III-formed requests

:3-50

84107/27

Many other potentially useful input related statistics are
possible_ Products developers are encouraged to collect
additional input statistics they feel are worthwhile. An
example Is sour~e statement frequency, I.e., number of
each type of source statement encountered.

This class 0' statistics is concerned with internal
measures of the product as opposed to measures of the
input data. These statistics report Internal product
information that the OIS is not aware of.

Examples of such statistics are:

product optIons In effect for this execution e.g.,
what control statement parameters were selected.

internal errors encountered

Products are required to log options used and number and
type of internal errors encountered. The other statistics
are highly desirable and should be collected at least on
an optional hasis.

Many additional statistics may be appl1cable to specific
products. Developers are encouraged to collect other
statistics they feel are worthwhile.

3.5.5 WHEN TO lOG STATISTICS

The two issues of concern are:

when should detailed optional, statIstics be
accumulated and Jogged?

when should subordinate service products such as AA
log statistics?

All statistics will be controlled by installation or user
controlted swItches. The statistics facility will provide
the mechanism for setting and clearing these switches.

CY8ER 180 System Interface Standard

3.0 OUTPUT
3.5.5 WHEN TO LOG STATISTICS

Each procedure that issues diagnostics must check the
appropriate switch before calling the statistics

3-51

84/07/27

Facl'ity. The switches will probably exist as an array of
bits that can be referenced but not changed by user
tasks. The NOS/VE ERS will specify the exact form.
Subordinate products and routines may either issue
continuous statistics at product determined tntervals or
events or they may accumulate and report them under
control of the host product.

for products such as AM and AA whose statistics could be
meaningful regardJ~ss of the host, the first approach is
acceptable. For example, statistics could be gathered
from file open to fite close for each file. Anyone
interested In AA statistics for a Job step would have to
sum UP the lndlvldual statistics on the log file.

for subordinate products and routines such as the common
compiler modules whose statistIcs are not meaningful out
of context, a mechanism should be provided to enable the
host to force out statistics on demand. That Is, the host
must be able to inform the subordinate that its work is
complete. If the subordinate actua •• y Issues the
statisticsl the host must provide its product ID to the
subordinates so that ID can be Included In the
statistics. If the host actually issues the statistic,
the subord1nate must return all data and Identifying
information. The first method is preferred since the host
does not need to know which or how many statistics the
subordinate Is collectIng.

Note that all methods of statistic reporting require
products to recover from catastrophic external and
Interns4 errors. Products must regain control so that
they can output the accumulated statistics. Furthermore,
since DIS jogS the reason for termination, products that
recover from abnormal external conditions must be able to
tet the abort happen after they issue their statistics so
that the correct reason for the termination Is recorded.
Products that detect internal errors must be able to
indicate that such an error happened when they abort, so
that "internal error" 1s recorded as the reason for the
abort. A product may choose to terminate via an abort
when no product error has occurred.

CY8ER 180 System Interface Standard

4.0 SYSTEMWIDE CONVE~TIONS

4-1

84/01/27

This section describes the operating system and product
set conventlon which must be foJlowed by atl standard
software.

The term "global" as used In this sectIon refers to
constant and type definitions that are global to several
products. It does not mean flglobal" within a particular
pr oduc t.

Standard system naming conventions are needed for the
fa' lowing reasons:

1. Permit recognition of the origin and maybe the purpose
of the named entity Just by its name.

2. Prevent duplication of names between different
pr oduc ts.

3. Designate categories of names that are reserved for
CDC usage so that they wil. not be duplicated by
application programmers.

These names may be declared as entry point names, fiie
names, SCU deck names, or as names for common system
entities such as installation options. The common system
entity names must be declared In a form that provIdes a
simple source of aval lability for use by any system
implementation language, (CYBIl or assembly).

4.1.1 NAMING CONVENTIONS

The system defined global names witl be generated
according to tbe following convention:

PPC$XXX

where:

PP -- is a 2 character alphanumeric product

tYBER 180 SYstem Interface Standard
4-2

84/07/27

4.0 SYSTEMWIDE CONVE~TIONS
4.1.1 NAMING CONVENTIONS

AA
At
AM
AP
AV
Be
CC
ca
C (;
CL
eM
cv

CV
OA
OS
OS
ES
fA
Fe
fl
FM
FS
FT
fV
HP
HU
Ie
IF
IM

identifier or other globa' identifier for the
owner of this symbol.

C identifies the class of the name.

S Is the special character $
XXX 2 or more alphanumeric characters which

establish uniqueness within the levels of
tdentlficatJon described above. The maximum
length of this field is determined by the other
users of these names. Example: The loader
deter~Jnes the maximum length of an entry
point, the record manager the maximum length of
a f I len am e.

Advanced Access Method
Assembly language
Access Method
APl
Accounting Validation
BASIC
Common Complier Modules (CeM)
COBOL
Common Code Generator (CCG)
Command l angu age
Configuration Management
CYBER AutomatIc Vectorizing and
Language Independent Compl1er (CAVALIER)
(VBIL
DCN Dump Analyzer
Interactive Oebug
Deadstart/Recovery
Ed j t Screen
File Migration AIds
FORTRA,'4 Comp 1 J er
FORTRAN run time library
File Management Utility
File System
FORTRA~. Gtobal to FC and FL
CDC FORTRAN (Vectorlzing)
Hardwar~ Performance Analyzer {HPA}
He J 0 L.J tit I t J e s
Interstate Communication
Interactive faci,jty
Information Management Facility

t

"

CYBER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVE~TIDNS
4.1.1.1 Product IdentIfIers

JM Job Management
l I lIS P
lL loader/llbrary generator
MA Maintenance Application language for Equipment

Testing (MAlET)
Ml Math Llbrarj
MM Memory Management
MS Maintenance Services
NA Network Access Method
ac Object Code"Utllitles
OF Operator Facility
OS Operating System
PA PASCAL (Wirth)
PF Permanent FI1e Management
PM Program Management
PS Product Set
PR PROLOG
PI Pl/I
QU Query Update
RH Remote Host Facility
RM Resour~e Management
SC Source Code Utlllty
SE Set Management
SF Statistics Facility
SM Sort Merge
51 Software Tools
SV Shared Variables Processor
US User (e.g.# for "user" statistics)
\Ie ' C Conn)' 1 ar
VX VX/VE - UNIX Emulator

RA Release Ad~inlstr8tor

4-3

84/07/27

This product Identifier is used to Identify
Installation parameters and procedures associated
with a NOS/VE product.

The fat lowing list of Identifiers naming cfasses Is used
for code and deck naming purposes:

A Archltectural and Design documentation • •

4-4
CY8ER 180 System Interface Standard

84/07/27

4.0 SYSTEMWIDE CONVENTIONS
4.1.1.3 C'asses of Names

B
C
o

E
F
I
K
M
p

.s

T
V
X

Design documentation (internal to CDC)
constant
declaration (decks containing types and/or
cons tants)
exception condition name
flte
JnJine text or code
keypolnt or keyword
module
procedure
section (static data section and/or common
block)
type
varfable
XOCL 1 d (decks contafnlng procedures or
varfab'les)

The use of the $ sign In a name identifies the name as one
belonging to COC. CDC users will avoid any duplication
with CDC names by not using the S in any of their names.

Some programming '.nguages such as FORTRAN do not allow
imbedded dol1ar sign characters in their names. CDC
supplied procedures callable from these languages wit. not
conform to the $ sign rule.

Relationship of Code and Deck names

The deck name must be the same as the code name whenever
possible. tn Instances where It Is absolute'y necessary
to group types. constants, etc. in the same deck, then It
is allowable to use a conglomerate deck name which is
different than the component code names.

"Design DocumentatIon" Deck Names (A and B)

Class A decks are for architectural and design documentation
releasable wit~ the code.

Class B dec~s are for requirement/design documentation not
releasable with the code (e.g., OR-type specifications, such as
performance) but re1event to code maintenance.

t •

• • • • • • • • • •

CYaER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.1.1.5 Naming GuidelInes

4-5

84/07/27

A "design documentation" deck has the EXPAND attribute value of :
TRUE or FALSE, dependIng upon the needs of the product. The content:
of this dec'kand all decks *COPYed by this deck are input to the :
processor named in the PROCESSOR field of the SCU deck. The PROCESS:R
is in the form of a string which represents the command by which th:
processor Is Invoked. Documentation decks may not be processed by a:
compiler but r~ther by a text formatter processor. For Instance,
documentation decks mIght be processed on the e170; then the :
PROCESSOR might be TXTCODE. In the future, documentation decks may :e
processed on the CIaO by a text processor.

Documentation decks not to be released to customers must be
identjfied (by group) by the development project to Integration,
which wilt remove such decks during preparation of SMD release
materials.

"Compllable" Deck Names (M and F)

A "compllable" deck has an EXPAND attribute value of
TRUE. The content of this deck and all decks *COPYed by
this deck are Input to the processor named in the
PROCESSOR field of the SCU deck. The PROCESSOR field is
tn the form of a string which represents the command by
which the processor is invoked. Parameters which are to
be passed to the processor, and which are meant to be
invariant (such as optimization level, or debug leve'),
may be included in this string. The order In which
invariant parameters are specified is precisely the order
in which they are defined for the command, even though the
parameters are specJfled as equivalenced parameters. File
references are disallowed in the processor string.

M class decks contain a processor defined "compi lation
unit". Examples of such compilation units aret MODULE to
MODEND for CYSll, IDENT to END for ASSEMBLE, PROGRAM to
END for FORTRAN, etc. MoouJe decks represent the units
which are maintalned In a BInary Module Replacement
environment. A parent/child relationship exists between M
and P (or V) decks which contaJn XREFs. To denote this
association, the name of the parent M deck is assigned as
a GROUP attribute of the child P or V deck. Thus# any
modifications made to the child deck results in the
ability to generate the parent deck by interrogating the
GROUP attributes of the child deck. likewise, all decks
whlch *COpy the child deck can be generated through use of
the INCLUDE_COPYING_DECKS Criteria File directive. The
name associated with ~ M class deck Is the same as that
specified on the MODULE, IOENT, PROGRAM, etc. statements.

• t

:
• •
• I

• t

• • • •

4-6
CYBER 180 System Interface Standard

84/07/27

4.0 SYSTEMWIDE CONVE~TIONS
4.1.1.5 Naming Guldellnes

If a " deck contains code which is tater Bound into a
Module of a dIfferent name via the BIND_MODULE subcommand
of CREOl, then the name of this Bound Module is assigned
as a GROUP attrlbute of the M deck. The name of 8
corresponding F deck which contains specific CREOl
directives associated with the binding of this module Is
specified as 3 GROUP attribute of this M deck.

F class decks contain source data which is retained as a
file, or contains processor directives for the processor
named by the processor fIeld. These decks contain, or
*COpy decks containing, information necessary for
establishing program descriptions, omitting entry points
from Bound Modules, or establishing Sel procedure
libraries. A typical F deck might contain COLLECT_TEXT
and ADD_MODULE commands, and *COPY's to procedure decks (P
decks) which contain the source of procedures to be added
to a procedure Ilbrar y. Another use of f decks is as a
container for directives to the Real Hemory Builder or
Virtual Memory linker In which segment attributes are
defined. If a SeL procedure is to be executed from a file
rather than a orocedure library, then the processor type
of the f deck is Sel rather than CREOl. The name
associated w1th F decks Is the name of this file as It Is
accessed when the processor is invoked, or the name of the
resultant file which is to be created.

"Non-compll~ble" Deck Names fe, E, I, K, p, S, T, V)

A "non-compllable" deck is one with the SCU deck EXPAND
attribute value of FALSE. This type of a deck is *COPYed
by "compJlahle" decks and assumes any attributes
associated with the *COPYing deck.

K class decks contain KEYPOINT, KEYWORD, or statistic
codes. These codes are defined In terms of a constant
plus relative offset, and define a set of related data.
I< decks are given a conglomerate name which indicates the
type of data being described (KEYPOINT, statistic, or
KEYWORD).

C class decks contain Constants. Constants are used to
impose an upper limit on ranges, and provide a starting
point from which relative offsets are computed. A
constant is global in nature by virtue of its appearance
in a C deck. Those constants which define product
restrictions due to their design (eg. OSCSMAX_NAME_SIZE),
and those constants whIch represent Installation options
are the two categories of constants with packaging

CY8ER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVE~TIONS
4.1.1.5 Naming GulderJnes

4-7

84/07/27

affects. The former category of constants are named so as
to describe the scope of effect upon other products or
subproducts. Product specific constants should be named
using product specific two-character identifiers. The
latter category of constants are named with the RA product
identifier to Indicate that the "Release Administrator"
assumes ownership for the value assigned to the constant.
Since source code will be unavailable at many sites, the
use of constant values must be avoided. Global constants
shou1d exist as one constant per deck. The name of the
deck should be the same as that of the constant being
defined. Ownership of a constant Is assumed by the decks
which *COPY a constant deck. Automated generation of all
decks affected by a change to a constant deck is
accomplished through the INCLUDE_COPYING_DECKS Criteria
file DirectIve.

T and E class decks contain Types and Exception conditions
respectivel,. Since Exception conditions are typicall,
described in terms of a constant plus a relative offset,
it is acceptable for a constant declaration to appear
within the E deck. E decks are glv~n a conglomerate name
for the condition range. Types may be either fixed or
adaptable. In such cases where 8 type is defined in terms
of constant (such as an equivalenced ordlnaf type) then
the constant value may be contained in the T deck. T
decks are named the same as the primary type defined tn
the deck. If the type is a record, then the name of the
deck Is the name of the record defined in the deck.

P class decks contain code procedures. The content of
such decks Is the source of non-XDCl'd procedures, SeL
procedure deflnitlons, or XREF declarations for XDCl'd
procedures. A Set procedure definition will contain a
PROC to PROCEND sequence jf the P deck Is used to form a
procedure lIbrary, otherwise the procedure wit' be defined
in a F deck. Code sequences which are not bracketed by
PROC to PROCEND, or a corresponding sequence such as
SUBROUTINE and END, should be contained in I (intine code)
class decks.

V class decks contain variable declarations, or the XREF
to XOCl'd variables. A child/parent relationship exists
between a V deck containing an XREF and the corresponding
M or f deck in which the variable is XDCl'd. The name of
the V deck Is the same as name of the variable which Is
defined in the deck. The name of the parent M or F deck
is assigned as a GROUP attribute of the V deck.

4-8
CYBER 180 System Interface Standard

84/07/27

4.0 SYSTEMWIDE CONVE~TIONS
4.1.1.5 Naming GuidelInes

1 class decks contain Inline code or documentation. In
the case of code, the Justification for such decks is for
performance reasons where repeated code cannot be formed
tnto a PROCEDURE due to the expense Incurred In the
procedure call. Otherwise, fUNCTIONS or INTRINSICS may be
contained In I decks. Inllne text is text used for code
documentation purposes which may also be called Into a
generated docu~ent such as an ERS.

S class decks contain blocks of related data such as
static data of Common Blocks. An aggregate name Is
associated with this collection of data unless the text
data describes a spect,jc entity. In such cases, the text
data assumes the same descriptive string as that
associated with the entity It is describing Ceg.
OSS$MAINFRAME_PAGEABl~_HEAP).

"Non-compIJable" Oeck Names to, X)

Decks belonging to this category represent packaging
anomajjes, and should be avoided whenever possible.

o class decks contain conglomerates of Types and/or
Constants. Since it is difficult to ascribe meaningful
ldent1ty to such combinations, the use of the 0 class
should be avoided when possible. It Is advantageous to
define parameters for procedures in a 0 class deck. This
anomaly exists due to the nature of the constructs
necessary to define procedure parameters.

X class decks contain the XDCl definition of procedures or
variables. The recommended location for the source of
XDCl'd procedures or variables is within a compllable deck
(M or F class). Combining XDClld procedures into a single
module is a function of the CREATE_OBJECT_LIBRARY utility
command BIND_M10UlE. If the XOCl'd procedure Is GATED to
other products and/or users, then the XOCl'd name is
preserved as a result of Binding, otherwise the name is
discarded provided there is a corresponding XREF at
binding time. Therefore, it Is a product's responsibility
to CHANGE_MODULE_ATTRIBUTES of the Bound Module to OMIT
names withj~ Bound (or Unbound) modules which are not to
be externalized by the product. It Is recognized that
being able to combine several XDCL'd procedures and/or
variables into a single compjlation unit can provide
additionaj debug capabilities provided by a comp.'er. It
is for debug purposes that X class decks exist.

CV8ER 180 System Interface Standard

4.0 SYSTEMWIDE CO~VE~TIONS
4.1.2 RESERVED fILE NAMES

4-9

84/07/27

-'-'-~----""'-'-----'------'-'--'--'--'-'.--.--- ... ---."---'-.---'----.... -.-~----- ------.-.~ .. --.... ---.---
4.1.2 RESERVED FILE NAMES

The fotlowing files wit. have special uses:

INPUT is that portion of the primary input fite that
follows the System command statements.

OUTPUT is the primarY output file and contains a copy of
the Job dayflte at the end when printed.

For Jnteractlve jobs, the terminal Is assumed to be both
INPUT and OUTPUT.

4.1.3 DATE AND TIME

While NOS/Ve provides date and time data in severa'
formats, products are restricted to using one format
unless language standards dictate otherwise. The format
to be used Is the installation defined default format.

for fixed position lIsting and file formats, date and time
fields must be large enough to accommodate the longest
forms returned by the DIS.

This section identifies capabilities products must provIde
to support user~ Interfacing the system from interactive
terminals.

Pro due t s suo P 0 r't d 1 f f e re n t I eve Iso fin t era c t I v e us age.
Therefore a pr~duct does not necessarily support all of
the capabilities described below. for example, products
that typical'y perform batch functions (e.g. compile
FORTRAN source) do not provide the same leve' of
interactive c8DablJlty as one that typically performs an
interactive function (e.g. query a file).
Many of the capablllttes are provIded by the operating
system and ther'efore are avai lable to at. termioat users
independent of the program/application being used.

Specific interactive capabilities to be provided by C180
products are described below. A key Is used to indicate
which products must inctude design and implementation of

4-10
CYBER 180 System Interface Standard

84/07/27

4.0 SYSTEMWIoe CONVENTIONS
4.2 INTERACTIVE P~OCESSING

the capabilities. The keys are:

A - It is the r.sponstbjlity of all products to support
the capabilities marked with the A key.

a - This key notes the terminal capabilities supported in
the implementation of the operating system. These are
available with at I Interactive usage and are provided
by:

•

•
•
•
•

Job Management
Message Generator
file Routing
Basic Access Method
TransactIon Executive
Network/Communications Access Method

I - This key notes the terminal capabijities supported by
"interactive products". These programs normally carry
on a dIalogue with a terminal user to obtaln feedback
and dynamically direct processing. They include:

,.
• ..
•
•
•
•
•
•
•
•
•

•
•
•

Job Management
Message Generator
File Routing
HELP utility
Transaction Executive
BASIC
APl
as ut I 1 I tie s
Query/Update
Report Writer
fMU
Interactive Oebuggers
SORT/MERGE
SCU
Editors
Conversion Uti "ties

4.2.1 INTERACTIVE OUTPUT

a) The page width and length at an output device varies
not only by device type, but also by the size of paper
being used In the device. The user must be able to
indicate the operational page width and page length of

CYaER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2.1.1 General

4-11

84/07/27

..... -.. ~--~.-~----~-...... ----~ ------.-----~----....... -.-... --~-.-------.-... .-.------... --........ --.------~~

the output device. Defaults that correspond to tbe
terminal characteristics are supported.
-0-

b) Lines of data that exceed the output device page width
must be delivered without Joss of data. Data that
would be output beyond the right side of the page must
be folded onto a second or successive line (reference
section 3.3.1.5).
-0-

c) The user must be able to have every output line
formatted so as not to exceed the output device page
width provided the output device page width Is not
less than 72 characters. As a minimum, the user must
be able to specify that output be formatted for page
widths of 72 or 132 prInt positions (reference
section 3.3.1.4).
-0-

d) Any output that may go to an ASCII sequential file may
instead go to a terminal.
-0-

e) Any output may contain a carriage control character
(reference section 3.3.1.3).
-0-

f) The carriage control character witl direct printing of
an output file and wl.1 not appear In the print output.
-0-

4.2.1.2 ~e.s.s.a,Sl.e~

a) Messages must be courteous. Words such as "illegaJ"
should be avoided In favor of words .ike "Incorrect"
or "unknown". Error messages must, where appropriate,
suggest what the user ought to do to correct the error.
-A-

b) Messages must be formatted for narrow listings.
-A-

c) Messages must be meaningful such that an Inexperienced
or casual user' is abl e to understand the message and
respond appropriately without reference to a manual.
-A-

4-12
CYBER 180 System Interface Standard

84/07/27

4.0 SYSTEMWIDE CONVENTIONS
4.2.1.2 Messages

d) Any message longer than 20 characters must have an
alternate brief counterpart.
-A-

e) A user must be able to select either a brief or 'ong
form of a message. When using the brief form of
message, the user should be able to request that the
Jast message be repeated in its long form.

f) Messages solIciting input (prompts) shou1d always be
used to indicate that the user is expected to supply
input.
-1-

g) Prompts 5hou1d appear on the same line as the input
whenever physically possible.
-1-

a} Pages of output that are longer than the output device
page length must be delivered without toss of data.
Data that exceeds the page length must be continued
onto a second or successive page.
-0-

bl Pages of output must not be delivered to a
non-hardcopy output device so fast 8S to overwrite any
previous output before the user can read it if a walt
option has been setected by the terminal user.
-J-

c) The user should be able to have heading information
repeated on the second and successJve terminal pages
of a listIng. When display space is limited and the
information band width is tow, the user might choose
to not use space to display repetitive headings and be
able to see more data. Where the listing cons1sts of
many columns that are hard to differentiate, the user
might choose to have headings repeated on every page.
This capabiltty requires that: I} Page Header text be
identified so It can be discarded, and 2) Title text
be identified so it can be replicated.
-1-

d) When initiating a function the user must be able to

CYBER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVE~TIONS
4.2.1.3 listings

4-13

84/07/27

select alternate amounts of detait to be Included In
the listing. By selecting .ess detail, the user ought
to be able to have more Items displayed on each page,
and not Just get less information per page.
-A-

4.2.2 INTERACTIVE INPUT

These standards supp'ement section 2.3.

a) User discovered typing errors must be correctable by
backspacing and retyping.
-0-

b) The user must be able to cancel the input line being
typed at any point before input completion is
Indicated.
-0-

c) No extraneous blanks will be appended to the end of
the user defined input data for padding. Application
of this rute Is on'y required If a"owed within a
product's standard.
-.A-

d) No user typed trailing blanks will be deleted from the
Input d3ta. The application of this rute Is only
required If allowed within a product's standards.
-A-

e) Any input that may come from an ASCII sequential ftle
may Instead be supplIed by a terminal connected as
that file.
-.A-

f) A sIngle input may consist of more than one line. A
prompt may allow multiple lines of Input in response.
An input collection mode may be implemented In this
manner.
-0-

g) Operations requiring only a few parameters shoutd not
require mor~ than a single Input. The user may enter
all parameters for a directive oraoll directives for a

cr8ER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2.2.1 General

4-14

84/07/27

single system 'evel command as a single input In order
to reduce the number of interactions and the time to
complete the directive or command.
-0-

h) The user must be able to use the standard
abbreviations for command names, directives and
parameter IdentIfIers in order to reduce typing.
-A-

i) After Input of a command or directive has been
completed, incomplete input should not be treated as
an error, but should cause further prompting for the
mjssin~ Dar~meters.

-1-

a) Errors In input will be diagnosed immediately
following the offendIng input line.
-I~

b) Diagnosed Input errors must be correctable without
"exiting" the dialogue with the program.
-1-

c) ~here possible allow aiagnosed input errors to be
corrected ~ithout re-entering the entire tJne.
-{-

d) Any Input diagnosed to the terminal must be
correctable by terminal input immediately following
the dia~nostic whether or not the original input was
from the termInal (see 4.2.3.1). After receiving the
corrected input from the terminal Input wit J revert to
the primary source.
-1-

4.2.3 CONTROL

CY~ER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2.3.1 Connectivity

4-15

84/01127

a) The user must be able to have his terminal connected
as an ASCII sequentiai Input rl'e and an ASCII
sequential output file for any program.
-.A-

b) The user must be able to suppress the verification
listing of lnput when the input source and the output
destinatIon are both the terminal.
-A-

c) Products that aLlow Input directives from a file other
than INPUT must allow the user to have Input
directives from a source other than the terminal
I istedforverl f I cetl on at the terminal.
-A-

d) Products that allow input directives from a fiJe other
than INPUT must allow the user to have input
directives from a source other than the terminal
diagnosed to the terminate
-A·-

e) The user should be able to 10glcal.y disconnect the
terminal trom an executing program without cIusing the
program to be suspended. The program should continue
execution and the user should be able to
slmultaneously enter other commands (Inctudlng
execution of other programs).
-0-

a) The user nust have a method for gaining control over a
program In executIon. This Is known as an Interrupt.
-0-

b) An Interrupted program wilt not be aborted as a result
of the interrupt.
-0-

c) For a program written to execute in an interactive
environment, an Interrupt must cause the program to
enter a known state. This state wi" normally be one
that so'letts directives or commands from the terminal.

4-16
CYBER 180 SYstemInter~ace Standard

84/07/27

4.0 SYSTEMWIDE CONVE~TIONS
4.2.3.2 Interrupts and Connection Breaks

-1-

d) For a program wr I tten toexecutei n a batch
environment, an Interrupt must cause the program to be
suspended in such a manner as to be restartable during
the same terminal session. Control Is returned to the
command language interpreter.
·-0-

e) A connectIon break is often caused by a communication
lIne faIlure. A connectIon break must not cause the
terminal sesslon to be aborted, but must cause it to
be suspended In such a manner as to be restartable
when the termInal user can again get connected.
-'0.-

f) A user must be able to restart a suspended program.
-0-

g) A user ~ust be able to terminate a suspended program
without first restarting it.

h} A program written to execute in an interactive
environment must accept a termination dIrective In the
state entered as a result of ao interrupt. This
directive must be the same as the corresponding system
command to terminate a suspended program.
-1-

i) Anyi ncampl ete terml nsl input request from a program
that is suspended should be reissued (with the proper
prompt) when the program Is restarted.
-1-

J) The termlnal user must be able to interrupt the output
being delivered to the terminal and cause the
remainder of the output to not be delivered to the
terminal until the next prompt.
-0-

4 • 2 • 3 • 3 s't..a:tUs.

a) The terminal user must be able to sol jcit a report to
determine the process of a program, without causing a
chan~e 1n the state of the program.
-0-

4-17
CYBER 180 SYstem Interface Standard

84107/27

4.0 SYSTEMWIDE CONVE~TIONS
4.2.3.3 Status

b} Progress reports must indicate the functional progress
of the program.' for example:

"compiling program SAM ••• "

"compiling subroutine TOM ••• "

t'preparlng global cr·oss-reference ••• tI
-I-

c) The terminal user must be able to solicit a report to
determine the system environment within which a
program is running without causing a change in the
state of the program. An instatlatlon option to
disable this must be provided.
-0-

d) The system environment report must indicate (possibly
indirectly) the response time the terminal user can
expect to experience. This might be by Indicating the
length of swap-out queueS, the number of interactive
users, etc. An Installation option to disable th1s
must be provided.
-0-

e) The termInal user must be able to soljcit a report of
the state of Its program without causing a change in
the program's state. An Installation option to
disab1e this must be provided.
-0-

f) The program state report must indicate the rate at
which the user's program is progressing relative to
reat time, and the Impediment to progress. For
example:

".14:23:13 - 2.54 CP seconds Swapped Out"

".14:24:40 - 5.72 CP seconds Running"

".14:27:10 - 6.21 CP seconds Finished"

Possible states should recognize the points of delay
in the system; these might be Paging, Swap-out,
Waiting for' terminal input, etc.
-0-

g) The termInal user must be able to define terminal

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVE~TIONS
4.2.3.3 Status

4-18

84/07/27

.-.--------.... -.-.. --.-------.- ---...... -.-.----.---.--.... -.--... ~---.-..----------~---------------.... ----
attributes to be associated with an interactive
session (e.g., backspace character, echo mode, screen
size). The terminal user must be able to dtsplay the
terminal attributes currently In effect for 8 terminal •
... ·0-

a) The terminal user should always be able to get a
reasonable response to the Input HELP. The response
should identify the user's alternatives and possible
correct IRout. As a directive, HELP should Indicate
what dir~ctlves are able to be used at that point.
The user should be abje to proceed after the response
to a HELP input as jf the interact jon had never taken
place.
-0-

4.2.4 PRODUCT SeT RUN TIME COMMANDS

PAUSE n (in FORTRAN) and STOP literal (in COBOL) are very
similar. They should be processed In the same way.

a. The message PAUSE text wilt be displayed on the
operator's terminal or console. Text is n or literal,
and Js a max'mum size of 58 characters. For batch
Jobs, the operator is the primary system operator. An
OFP$SEND TO OPERATOR with an OPERATOR 10 of 'SYSTEM
OPERATOR' is executed to send the message. For
Interactlv~ Jobs, an ~MP$PUT NEXT request referencing
the fiJe OUTPUT Is executed to send the message. This
wl)1 result 1n a message on the terminal.

b. In batch, an OFPSPECEIVE FROM OPERATOR with the WAIT
parameter and the same id as aboye Is executed to
suspend the Job and wait for the typein from the
system operator. The operator will respond with a
REPLY ACTION command. In interactive mode, an
AMP$GET NEXT request on the file INPUT Is executed
(this m-ay not be legal, another connected file may
have to be used). In eIther case, the data is thrown
away and the Job Is continued.

CVBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.2.4.1 PAUSE and STOP literal

4-19

84/01127

--........ .-----~.------..... ---~ -...,--.-----.--.. -..... .-.-~-----------~--.--.----------~ ~.--------.... ---

The ACCEPT FROM CONSOLE (in COBOL) should be processed In
exactly the same way as STOP litera. (4.2.4.1). Text
would be the data from a previously executed DISPLAY UPON
CONSOLE WITH NO ADVANCING or the message 'ENTER COBOL
INPUT VIA REPLY ACTION' If there was no DISPLAY.
Interaction is with the system operator only. (If
messages serlt via OFP$SENO TO OPERATOR also appeared on
the terminal, It could cause confusion for the termlna.
operator.)

NOS/VE will permit modification of all system parameters
dynamically during system execution. The term
"installatJon parameter", as used in the classical CDC
sense, is not valid for NOS/VE.

System parameters fal J into the following general
categories:

•

•

•

•

•

Hardware characteristics (e.g., # of CPU's, type of
CPU)

System and product defaults (e.g., default tape
density)

Accounting parameters

limits parameters (e.g., maximum Fl)

Timing parameters

System parameter defaults can be set at the following
times:

• Compile tl~e (compIlation at CDC)

• Build time (deadstart tape build at user site)

• Deadstart time (via operator type-in)

These parameters may be tested dynamically and action
taken accordingly. T~e product set will require no

CYBER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVE~TIONS
4.3 INSTALLATION PAR'METERS

4-20

84/07/27

parameter specifiation, and will dynamlcally test system
parameters during execution via requests to NOS/VE.

The following table Indicates the permitted range of
system parameter controJ for the product set and oper3tlng
system. An X IndIcates that the option is allowed, and a
blank entry indicates that the option Is not allowed. Any
exception must have the explicit approval of AOSC.

+--.... ---- ... -..- -----... -~ ----.+-,---.---,---------------------.. ..-.--------.++--_._------_._-----+
Time of Set Set Times 1« Use Times

t and Use .+-_.-. . .-... _ + -.----.. -+-.... --~---+-..--------+ +.---.-... .-.~+---~..,..-.. - +
t Type of

Par:3meter
! Camp. ! Bui 10 1 DIS ! Exec. 11 DIS ! Exec. 1
! Time! Time ! Time! Time !1 Time! Time !

+-.---~--.--.-.---.--.... ---.... --+---.---. .-.. +---------.+------+-------.--++-------+----... ---+
t Product set ! t 1 ! ! t • • .:t ,. '. t Hardware I , I X • • •

Defaults t f I • .. · .. · t .Ac count. ng J ! I 11 I I
1 limits t ! , ! ! 1 X ! ,.
! Tuning , ,

! t , .. · • ..
I !I I !

OS !
, t ! ! I ! I ,. •

Hardware X X X ! X ! • X X ! · Defaults X X X t X ! ! X ,
X

,
I Accounting ! X X ! X t X 1 t X 1 X t
! limits ! X X X 1 X t ! X • X 1 '. J Tuning X X X ! X ! ! X X t ..
.... -~ -.-.---~ ... -----------... +- ---.-~ .. -.+ ---~----.,.------+--... -... .--+-+----... -+----.----+
4.3.1 GENERAL GUIDELINES

As a genera' rule, the number of system parameters should
be kept to an absolute minimum. This will m4nlmlze the
additional testing imposed by these options and will
reduce the number of fldifferent" versions in the field.

A firm requirement on both the operatJng system and the
product set Is that no racompi'atlon at a user site will
ever be required to install the software. This is a
requirement of binary release.

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.3.2 LIST OF PROOUCT SET PARAMETERS

4.3.2 LIST Of PRODUCT SeT PARAMETERS

4-21

84/07/21

The following system parameters may be tested dynamical',
by the product set via requests to NOS/VE tlnctuding
networking):

• type of CPU
• as name and version
• line width or screen width
• termJnat type
• screen length or page length
• prlnt lInes lImit

4.4 fB!UR_fRDCfSSlHG

The purpose of this section is to describe the conventions
and responsIbilities of processing different error
conditions.

4.4.1 STATUS VARIABLE

All command and procedure Interfaces to the system that
are visible to the end user must have a status variable as
a parameter. The status variable is used to convey the
result of the command or procedure and, In case of error,
provide information explaining what went wrong.

For commands, the status parameter should always be
optional. When it Is quoted by a user, the assumptlon Is
that the variable wit I be tested subsequently In the
command stream and some appropriate action taken.
Therefore, the conditions returned to the user should only
convey information the user Is Ilkel, to understand.

For procedures, the status parameter is required. Again
the conditions returned should be as understandable to the
user as possIble. This is particularly important when
there are multiple procedure ca'Js made within our
software as the result of a single ca" by a user
procedure. Emphasis should be placed on improving the
status retur~ed to the user rather than blindly passing
back obscure status from the depths of the system.

Detailed formats of the status variable are available in
the NOS/VI: ERS.

CYBER 180 System Interface Standard
4-22

84/07/27

4.0 SYSTEMWIDE CONVENTIONS
4.4.1 STATUS VARIABLE

4.4.2 ERROR TERMINATION

There are a nu~ber of errors that can occur in a product,
some of which can be detected and some of which can't.
This section deals with the processing to be performed
when detectable errors occur.

first of ai', the product should try to detect as many
errors as gracefully as possible. This means that
internal software tests shoutd be used to detect errors as
wet' as using the condition handling facilities of the
operating system to receive control in the event of a
system Of hardware detected error. The product cannot
simply rely on the standard operating system abort
processing.
When an error is detected, the product should provide as
much of the following error localization information as
possible. Some of the Information wilt not be applicable
to all products.

•

•

•

Type of err~r termination (standard system messages
should be used for this message).

full traceback of the call sequence to the procedure
containing the error. This wi II be by procedure name
and line number or relative address depending upon the
amount of traceback/debug information released with
the product.

Information regarding the user data being processed.
For a compiler, this might be the procedure name and
tine number currently beIng processed. For a utility
or data management product, It might be the current
record.

Optional dlJmps of useful internal tables_

The above information should only be logged for error
terminations that are probably caused by product faiture.
It should not be IOJged for conditions such as time limit
or operator drop which are clearfy not product errors.

4-23
CYBER 180 System Interface Standard

84/07/21

4.0 SYSTEMWIDE CONVENTIONS
4.4.3 INTERACTIVE ER~OR PROCESSING

4.4.3 INTERACTIVE ERROR PROCESSING

This section supplements section 4.2, "Interactive
Processlng t '.

In considering this topic it Is necessary to distinguish
between error nessages and diagnostics. These terms are
difficult to define precisely but are Intultlvel, distinct
nonetheless. An error message is general'y a summary of 8
command; in an Interactive environment it wants to be
displayed at the terminal so the user can find out what
happened. Diagnostics are generally a part of a larger
whole (e.g., listable output) which due to their volume
onty want to be selectively displayed.
An example Is a compi ler which provides 3 single error
message telling how many errors occurred during
compilation and produces a diagnostic for each compilation
error.

a. All error ~essages should be issued via the standard
message generator. The message generator wl.,
determine whether the message should go to the
terml nat or thet og,etc.

b. Messages must be courteous. People tend to react In a
more emotional fashion when using a computer
Interactively than when using it in a batch mode.
Words such as "i Ilegal" should be avoided in favor of
words like "1ncorrect" or "unknown". Error messages
should explain to the users what they did wrong and,
If possible, how to correct It.

c. Messages must be meaningful such that an Inexperienced
or casual user is able to understand the messages and
respond appropriately without reference to a manua ••

d. Any message longer than twenty characters must have an
alternate brief counterpart. The user must be able to
select either the brief or the long form of the
message.

4-24
Cl8ER 180 SYstem Interface Standard

84/01127 -... -----------.--..-..-----~--------.--.-,-~------~,-- ---~-.-------~----.---.---------.... ---.~~ ...
4.0 SYSTEMWIDE CO~VENTI0NS
4.4.3.2 Diagnostics

a) Points band c, above also apply to diagnostics.
Diagnostics should explain the problem from the user's
perspectlve rather than the program's. For example l

"Comma missing after third parameter"

instead of

"QVPPARSEPR detected Illegal syntax".

b) While diagnostics are not typicatly displayed at a
terminal by defau,t, they are looked at by interactive
users. This must be considered when defining the
location of the diagnostics in the listing,
identifying the diagnostics with a mark that Is
uniquely detectable with a text editor, etc.

This section applies to all input that can reasonably be
expected to come from a terminal (e.g., command utility
subcommands) •

a. Errors in input will be diagnosed Immediately
following the Incorrect input.

b. Diagnosed Input errors must be correctable without
exiting the dialogue with the program.

c. Diagnosed Input errors may be corrected without
reentering the entire line.

d. Any input diagnosed to the terminal must be
correctable by terminal input immedlate'y following
the diagnostIc whether or not the originaJ input was
from the terminal.

4.4.4 BATCH ERROR PROCESSING

CY8ER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVENTIONS
4.4.4.1 Error Messages

4-25

84/07/27

---.---..-.---.... -.----- ~.---.-~--, ,---.--... ----.---.-----... .--.--..-.--~ ... --.-~---------~.---.---

Batch error messages should follow exactly the same
guidelines as interactive partlcular1y the usage of the
message generator.

The kind of user Interaction that is desirable in
tnteractJve mode Is of course Inappropriate In batch
mode. Emphasis should be placed on detecting as many real
errors as possible even after a fatal error has occurred.
The key Nord here is flreal"; producing a large number of
extraneous error messages or diagnostics will ultimately
lead to people only correcting one problem at a time.

4.4.5 TRANSACTION ERROR PROCESSING

This section will be added when more design on the
transaction facility has occurred.

This section wIll be added when more design on the system
restart capabiJ itles has occurred.

4.5.1 HARDWARE OPERATION

This section describes software conventions which must be
followed for the hardware to function in a predictable
manner.

CYBER 180 System Interface Standard
4-26

84/07/27

--
4.0 SYSTEMWIDE CONVE~TIONS
4.5.1.1 Interlock Words

Convention: Locate al I interlock words in cache bypass
segments.

Special system Instructions are provided in the CPU and
the IOU to Interlock multiple processors/IOU. In genera',
these function by exchanging the contents of a register
and a word In memory. Fo.lowing this exchange the
register may be Investigated to determine whether the lock
has been set. for example, a zero word in memory can be
selected to mean "no lock", then by exchanging a non-zero
register the lock wil. have been set if a zero value is
returned. It is Imperative that such Inter'ock words be
unique. To guarantee this they are placed in cache bypass
segments. Notice that the instructions which are designed
to test and set 'ocks automaticatly bypass cache.
Problems arise when the interlock words are accessed by
other Instructions such as loads.

Convention: Before clearing a single bit lock (via a Store
Bit Instruction) first set the lock by a Test
and Set Bit Instruction.

Care must be taken whenever an interlock word Is set or
cleared to pre-serialIze the operation. This is done to
ensure that, In the event that memory references are being
satisfied out of sequence, af. outstanding memory
references are completed before changing the Jock. In
practice, CYBER 180 systems designed to date a_ways
satisfy memory references in sequence. However, this may
not always be the case. The instruction which sets a
single bit lock (Test and Set Bit) performs ,the necessary
pre-serialization. However, to clear the lock a Store Bit
(with a zero operand) must be used. Since this
instruction has a general utility it does not
pre-serialize. To compensate, the Test and Set Bit
instruction post-serializes. Hence, to ensure a
pre-serialIzation of the clear lock, the lock should first
be set (with a Test and Set Bit instruction), then cleared
by the next instruction.

CVBER 180 System Interface Standard

4.0 SYSTEMWIDE COMVENTIONS
4.5.1.3 Register Reservations

4-27

84/01127

-~----.... -.... -.--~-.----,-------........ -..... ~ .. --.... --------- ---.-----..... .-.~ ... ~ .. ~ ----....... --..--...

Convention: Registers AO-A4 and XD-Xl shalt be reserved
for special functions.

The CYBER 180 Instructions make use of certain registers
to hold given values. The assignments are as fotJows:

AO - Dynamic Space Pointer (OSP)
Al - Current Stack Frame Pointer (CSF)
A2 - Previous Save Area Pointer (PFA)
A3 - Binding Section Pointer (BSP)
A4 - Argument list Pointer (ALP)

These registers hold those values by software convention,
but a convention which is sUPPorted by the hardware.
Hence, it Is very ifAPortant that they be supported by all
software procedures. In particular, Al and A2 must never
be altered by Instructions other than Call, Return and Pop.

In addition to the reservations above, registers XO and Xl
have 8 special meaning in the hardware. For many
instructions, the XO designator is used to indicate no
register. Hence, register XO cannot be used by these
instructions. Both xO and Xl are used as fixed utility
registers for sever~1 instructions. Examptes aret

1) Load/Store multiple and CAll instructions use XO
for a save area descriptor.

2) All co~par. instructions return a value to
Xl-Right, as rtoes the Mark to Boolean instruction.

3) The BDP 1nstructloos optionally use Xa-Rlght and
Xl-qight to hold operand lengths.

Since these registers are used for special purposes, care
must be exercised if they are used In a general manner.

Convention: Align certain tables and words on speclfied
bOtJndaries.

Although CYAER 180 is nominally a byte addressable
machine, real ~emory Is organized into 64-bit words.
Consequently, the performance of certain operations has

4-28
CYBER 180 System Interface Standard

84/07/27

4.0 SYSTEMWIDE CONVE~TIONS
4.5.1.4 Alignment of Tables ~nd Words --------.-------.-.-. --.--..... ---.-..-.-.--~-~-----~-------~ --------------~.--.---------------.~

been optimized by placing the operands on word
boundaries. The complete set of data alignments necessary
is given be'ow, along with a brief description of why the
alignment Is r~qulred and what witl happen when the data
is not aligned correct.y.

~.5.1.4.1 64-BIT WORD BOUNDARIES

The followi~g data either must be, or should be aligned on
wor d bouodar i e s:

1) Process Segment Table For performance reasons the
hardware Indexes Into the
segment table at a word
boundary. The virtual memory
address translation mechanism
wll' fal J If the segment
table Is incorrectly aligned.

2) Binding Sections To maximize the reach Into
the 8inding Section by the
Catl Indirect instruction,
access Is made to a word
boundary. If the Binding
Section Is Incorrectly
aligned, then an Address
Specification Error results
when a Cal. Indirect Is
Issued.

3) Procedure Entry Points - To maximize the reach of the
Call Relative instruction, a
branch is made to a word
boundary. Since the
instruction forces the
address to a word addressl
res u I ts wi I I be u np r ad Ie tab Ie
If the procedure target was
not correctly aligned. Note
that even though it Is not
strictly necessary for
procedures called via a
Binding Section to be word
aligned, difficulties could
still result if they are
not. This Is because the
CVBER 180 Library Generator,
in the process of "binding"
may con~ert Call Indirect

CYBER 180 System Interface Standard
4-29

84/07/27

4.0 SYSTEMWIDE CDNVE~TIONS
4.5.1.4.1 64-8I1 WORD BOUNDARIES

4) Debug LIst Entries

5) Interlock Words

6) Stack fr:ames

7) Central Memory Data
Accessed by the IOU

Instructions to Call Relative
instructions.

- To simplify the hardware, and
to optimize performance when
in debug mode, the hardware
accesses debug jist entries
on word boundaries.
Incorrect alignment wl.t
cause unpredictable results.

Interlock words used In
conjunction with the
Compare/Swap operation must
be aligned on a word
boundary. This is necessary
for the processor to satisfy
the non-preemptive
requirements of the
instruction. Processors
utilize the 64-blt memory
exchange function in this
operatIon. That function
operates on a real memory
word. Incorrect alignment
will yield an Address
Specification Error.

By software convention only,
stack frames should be
aligned on word boundaries.
This enables the hardware to
load and store the registers
held in the save area from
data on word boundarIes.
Incorr ect all gnment wi J:, not
cause any problems since the
hardware always adjusts
(forces) the Dynamic Space
Pointer to a word boundary
before accessing a stack
fr·ame.

The IOU can only reference
centrat memory words. Hence,
it would require some special
code In PP's to decode data
not stored on word
boundaries. This is really a

4-30
CY8ER 180 System Interface Standard

84/01127

4.0 SYSTEMWIDE CO~VENTrONS
4.5.1.4.1 64-81T WORD BOUNDARIES -.-- ~.-.----.-------.... -.---~-..---.-.- ... -----... ----.-----.--.-.---.-.~ --.-... -"..--.~------.-..-.-.. ---

4.5.1.4.2 OTHER BOUNDARIES

pragmatic software convention
since a PP has no way to
specify a central memory
address other than on a word
boundary.

The following data must be aligned on boundaries other
than 64-blt wor~ or a-bit byte.

(1) Exchange Packages - 128-bit (2 word) 80undaries

To optimize the performance of the exchange Jump on some
processors, the hardware addresses two words at one time.
Results will be unpredictable if the exchange package is
incorrectly aligned.

(2) Instructions - Parcel (Z-byte) Boundaries

Instructions, which are either 16-blt or 32-bit
quantities, must be aligned on parcel boundaries.
failures to do this will either result in unpredictable
behayior~ or an Address Specification will be detected.

(3) Page Table - Page Tabje length Boundary
To minimize the time needed to translate addresses from
·'virtual to ft!al, the hardware catenates (rather than adds)
the Page Table Addresses (PTA) to the page table Index.
For the catenation to yield the correct address, the
low-order blts of the PTA, as determined by the page table
length, must be zero. Failure to structure the PTA In
this manner will cause the address translate mec~anism to
f a I I •

4.5.2 HARDWARE PERFOR~4NCE

Whereas the previous section dealt with conventions
necessary to make the hardware work correctly, this
section deals w1th conventions necessary to make the
hardware work efficiently. As such they are not
mandatory, and in some cases represent merely suggestions
as to how to ootlmlze certain functions.

CYBER 180 System Inter~ace Standard

4.0 SYSTEMWIDE CONVENTIONS
4.5.2 HARDWARE PERFORMANCE

4-31

84/07/27

Convention: Place at I code and all data to be used at one
time in one place, and keep to a minimum the number of
segments requJ r'ad to execute ag I yen task.

The CyaER 180 virtual memory organization provides the
basis for the system security and simplifies the explicit
organization of a program into overlays. However, all
programmers have r~sponsJbillties if system throughput is
to be optimized. A prime responsibility Is to maintain a
strict locality o'f reference. That is collect all code
and all data that Is to be used at one time into
contiguous pages in one segment (each for code and data).
This has two advantages, it minimizes the working set (the
number of pages allocated In real memory at any glven
point of time), and it also minimizes the number of
entries which ~ust be made in the buffer memorIes. By
minimizing the working set the number of concurrent tasks
which can be held In real memory is maximized. This, In
turn, maximlzes system throughput.

Optimizing around the buffer memories represent a sJightly
different prohlem. These have a finite size and contain
the most recently us!d Segment Descriptor Entries and Page
Table Entr1es. If a large number of segments are In use
at one time.' orl"f a lar;Je number of pages are in use at
one tIme, then the buffer memories witt be unable to hold
all the necessary entries and they will be constantly
loading new values. The affect will be similar to not
having them at all and perform~nce will degrade
considerably.
Consequently, not only should programmers maintain a
locality of reference, but they should a'so try to
localize the number of segments used by a given task.

Convention: Allocate A-Registers and X-Registers from the
smat I numbers on up.

As a resutt of the special functions for which AO-A4 and
XO-XI are used, and the method of saving/restoring
contiguous registers by the CAll/RETURN Instructions,
register usage should a'ways start with the smallest

4-32
CYBER 180 S.ystem Inter·face Standard

84/07/27

4.0 SYSTEMWIDE CONVENTIONS
4.5.2.2 Register Allocation and Usage

possible number' (typically A5 and X.2). This wiLt help to
minimize th~ number of registers which must be saved
across procedure calls. This, in turn, will optimize
performance In this area.

4.5.3 SECURITY

This section lists software conventions needed to provide
a secure environment at al' times. Since a major
objective of the creER 180 program is to provide a highly
secure system, these conventions become mandatory. These
conventions are closely related to those in Section 2.
Just as they are required to make the hardware operate In
a correct, predictabte manner, so are these required to
guarantee that the security and protection algorithms
function correctly.

Convention: 1) Always use cal.er's argument list pointers
for accessing caller's data.

2) Always load pointer parameters directly
Into A-Registers - via load A Instructions.

3) Whenever possible avoid moving record
structures that contain polnters.

4) Avoid passing pointers between rings
either way.

5) Avoid data structures containing direct
pointers that cross rings either way.

These conventions are mandatory for those procedure calls
from one procedure to a second one with more privilege.
When a procedure Is called by another procedure, It
executes on behalf of the caller. It is the
responsibility of the callee to ensure that it does not
execute with more prlvJlege than caller. The hardware
provides the b~slc security mechanisms. In this case, it
ensures that cal lee Is cal Jed from within Its call ring
bracket, and that it is called via a Blndlng Section. It
may then access code and data belonging to or accessible
by caller. This code and data Is referenced via pOinters
held in A-Registers, and the hardware performs a ring

4-33
CYRER 180 SYstem Interface Standard

84107127

4.0 SYSTEMWIDE CDNVE1TIONS
4.5.3.1 Procedure Par~meters

number vote whenever anA-Register Is loaded. This
mechanism ensures the least privilege (highest ring
number) is always accorded the user. However, there are
many ways this mechanism can be be-passed. The simplest
method Is for calJee to load a pointer into an X-Register,
then copy it to an A-Register. If catler ptaces a low
ring number (zero would do) In the pointer, then it will
end up with callee t s rlng number in the A-Register. That
is it will end UP with more privilege than that to which
caller is entitled. It Is calleets responslb141ty to
ensure this does not happen. The onus for maintaining
security always fal Is on the more privileged procedure.
Hence, the convention.

EBCDIC data can be divided Into two distinct classes'

1. all a-bit character data (also known as coded data,
including unpacked numeric data types); and

2. Intermixed character and non-character data.

Support for the former (all character) Is provided by the
operating system. If EBCDIC is specified on the request
card, the tape driver automatically translates to ASCII
when reading the tape and translates back to ESCOIC when
writing the tape.

Support for the latter (Intermixed character and
non-character), and for the EBCDIC collating sequence,
varies by product:

C P F S F C
0 l 0 I M R
B I R M U 11
0 I T
l R

A
EBCDIC SlJoPORT N

Intermixed E3C~IC input file e x

Intermixed E3Cr)IC output file e x

EBCDIC collating sequence x x x

0
M
S
1
8
0

4-34
CYBER 180 System Interface Standard

84/07/27

4.0 SYSTEMWIDE CONVE~TIONS
4.6 SUPPORT OF EBCDIC DATA

x = support required at Rl of product
e = eventual support desirable

Support of intermixed input and output files means use of
the special C1BD lnstructions to process the following
"translated" non-character EBCDIC data types:

• Binary (signed and unsigned)

• Packed Decima' (signed and unsigned)

The CY180 keypoint facility provides 8 mechanism to enable
collection of statistics for performance monitoring. A
data reduction software package is available to summarize
these statistics based on descriptors contained In a
keypoint descrlptor f.'e (KDF). This section documents
the conventions to be fo •• owed by the operating system and
product set in the usage of this facitlty.

4.7.1 KEYPOINT CLASSES

five keypoint classes named ENTRY, EXIT, UNUSUAL, DEBUG,
and DATA are defIned for the operating system and product
set.

ENTRY

EXIT

UNUSUAL

Every gated procedure plus all major
Internal procedures (those shared across
funct'onalareas) should contain a
keypoint of this class. These keypoints
should be pJaced as cJose as possible to
the entry to the procedure.

Every gated procedure plus all major
Internal procedures (those shared across
functional areas) should contain a
keypofnt of this class. These keypolnts
should be placed as close as possible to
the exit from the procedure.

Every situation which is unexpected or
quite unusual should contain a keypoint of
this class. It is Intended that these
keypoints would be enabled at all times.

CYBER 180 System Inter~ace Standard
4-35

84/07/27

4.0 SYSTEMWIDE CONVE~TIONS
4.7.1 KEYPOINT CLASSES

DEBUG

DATA

The frequency of encountering these
keypoints should be very low. The DATA
keypofnt class Is not allowed tn
conjunction with a keypoint of ctass
unusual.

These keypoints would be for providing
additional trace information 8S an assist
In debugging of hardware or software
problems. DEBUG class keypoints would be
most useful in the more complex areas of
the system. The primary use of keypolnts
In HCS and NOS/VE UP to this point has
been for debugging purposes.

This keypolnt class can be used with the
ENTRY, EXIT, and DEBUG keypoints for the
gathering of extra data. Alt DATA
keypoJnts encountered are supplyIng
additionsA data which will be associated
with the last ENTRY, EXIT or DEBUG
keypoint. Hence, they should follow as
closely as poss.ble after the ENTRY, EXIT,
or DEBtJG keypolntJ in particular, there
should be no intervening CAll
InstructIon. DATA keypotnts should be
used with care since the PMF hardware can
only buffer up 16 keypoints; keypo'nt
clustering can cause lost keypoints.

Keypoint Data ~nd Identification:

Upon successful execution each keypoint instruction will
provide a total of 32 bits of information. The convention
uses 12 bits of this for keypotnt Identification and the
remaining 20 bits as user supplied data. Try to use this
20 bits to provide meaningful information <taskld, segment
number, fileld, queue length, page number, time, etc.).
On DATA class ~eypoints the data belongs to the previous
keypoint and the full 32 bits is available for additional
user data.

The keypotnt classes for NOS/VE are as fol1ows1

OSC$DATA=O

4-36
CV8ER 180 System Interface Standard

84/07/2.7

4.0 SYSTEMWIDE CONVE~TI0NS
4.7.1.1 Operating System
-.~ ---.---~-----.-----.----~~-------.-,--------------------~.----~--..----... -.. --~-.----~------

OSCSUNUSUAl=l
OSC$.ENTRY=~
OSC$EXIT=3
OSC$DEBUG=4'

Keypoint class 5 Is reserved for NOS/VE.

The keypoint classes for the product set are 8S follows:

PSC$OATA=6
PSC$UNUSUAL-1
PSC$ENTRY=8
PSC$EXIT=9
PSC$OEBUG=lO

The keypoint classes 11-14 are reserved for users.
Keypolnt class 15 Is reserved for PMF hardware control.

4.1.2 KEYPOINT IDENTIFIERS

A maximum of 4095 keypoint identifiers are available for
(each) NOS/VE and the product set. The combination of
keypoint class and identifier is unique within the system.

(To be supplied)

The set of 4095 available identifiers is partitioned Into
a primary range table and an overflow range table. Every
product set member has an entry In the primary table) the
range size Is 50. Those product set members which require
more than 50 wi' J be assigned one or more entries in the
overflow table. which also has a range size of 50.

The primary range table is given belowl

CYBER 180 SYstem Interface Standard

4.0 SYSTEMWIDE CONVE~TIONS
4.7.2.2 Product Set

Product IdentifIer

AA Advanced Access Method

AP APt

Be BASIC

CB COBOL

DB I n t er'a c t I v e Debug

Fe FORTRAN Compiler

Fl fortr an Run-Time

FM fl' e Management ut II ity

FT FORTRAN GJ 0 b a'
1M Information t1anagement

Fact 1\1 ty

PA PASCAL

PI Pt/I

OU Query Upda te

SM S or tl Merge

SV Shared Variables Processor

CeM Commo1'l Compi ler Modu t es

CG Common Code Generator

He Host Compiler

ML Math Library

CY CYBll

scu Sour c e Code Ut I I • t y

At Assemh'er

FA File ~ i gr at i on Aids

4-37

84/07/27

Primary range

0 - 49

50 - 99
• •

100 - 149

150 - 199

ZOO - 2·49

250 - 299

300 .- 349

350 - 399

400 - 449

450 - 499

500 - 549

550 - 559

600 - 649

650 - 699

700 - 749

750 - 799

800 - 849

850 - 899

900 - 949

950 - 999

1000 - 1049

1050 - 1099

1100 - 1149

CYBER 180 System Interface Standard

4.0 SYSTEMWIDE CONVE~TIONS
4.1.2.2 Product set

LI

AD

FV

vx

vc

LISP

CDC Fortran

VX/VE

C compi) ar

(Reserved for future
oroducts)

1150 - 1199

1200 - 1249

12'50 - 1299

1300 - 1349

1350 - 1399

1400 - 1999

The overflow range extends from 2000 to 4095.

4-38

81t/07/Z7

Assignment is based on an as-needed basis in groups of
50. A given product may have more than one assignment
In the overflow range.

4.7.3 KEYPOINT USE

From a software point of view, keypolnts are special
commands that are inserted in a module according to the
guidelines specified In section 4.7.1. For a module
written In CYBIl, the IKEYPOINT Intrinsic can be used to
generate the keypo1nt instruction (refer to eYBll Language
Specification, ARH22 Q 11, and MIGDS, ARH1700, for details).

The main entry keypolnt Identifying a product set member
should include data which indicates the actual version of
the product. Thls is useful for tracking simultaneous
execution of the same or different versions of a product.

• •
t • • -.

• •

5-1
CYaER 180 SYstem Interface Standard

84/07/21

5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS

This standard Is to be followed by the object code
generated by the compilers and by any assembler code
written as part of standard software.

In addition to these standards, assembler code
(handwr j tten or campi I er gener ated)w ill conform to the
coding standards described in CYBER 180 MAINTENANCE
SOFTWARE CODING CONVENTIONS (OAP ARH2160).

1. The loader specification is limited to that written in
its formal documentation. Programmers shall not
depend on additional characteristics determ1ned by
empirical observation, as such behavior may be subject
to change. Examples which have caused trouble on
CY170 are the presetting of undefined variables, the
order of loading from a library, and the address at
which the first code is 'oaded.

2. Runtime routines shall oot limit the program
structures of their users. on CYI70 all CRM 1
routines must be in the root segment of a segmented
load, and eMM must have at least one routine In the
main overlay of an overlaid program. Such
restrlctto~s must be avoided on CY180.

3. The following table shows in which sections partlcutar
types 0' data should be allocated, and the attributes
the section should have.

Attributes R = read, W : write, B = Binding and
E = execute.

Data Type

"static"

SectIon
Type Att Comment and Examples

WorkIng R,W AI. variables not
al located on the stack, In
common or explicItly
allocated to a section.
Includes FORTRAN local
variables, CYBtl [STATIC]

5-2
CYBER 180 System Interface Standard

84101127

5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS
5.1 USE Of LOADER FEATURES

Constants(l)

Constants (2)

"XREf"

Heaps

Working

Code

Binding

common
ext ens­
Jble

and [XDCtJ variables.

R A.I' iteral constants
which for reason of
indirect addressing or
length cannot be expressed
directl, in the code.

E Optionally, constants as
in (11 which are less than
8 bytes long and
convenientl, accessed
through the l8YTP
Instruction. Note that
the "constant" may not be
a PYA.

B Data declared in another
unit of compilation are
usuall, referenced through
pointers placed in the
binding section by the
loader (rather than tn
user sections indirectly
referenced through the
binding section, where
they would be Inaccessible
to the binder).

p,w For the system heap see
section 5.4.3. Other
heaps are declared in
CYBIl.

4. The following action should be taken if a compjler
detects a fatal error in the source code it is
compiling, unless the compiler was calted with
"DEBUG-aC" (see section 2.2)'

An lOR record shall be issued containing the string

fferror~ 1n compilation"

In the comment field. The non-executable attribute
shat I be set.

If DEBUG=DC was selected, the compiler shal. continue

CYBER 180 SYstem Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.1 USE OF LOADER FEATURES

normal processing as far as possible.

5-3

84/07/27

.~ ., . All compilers should emit loader names (common block
names, XREF names, module names, etc.) using upper
case alphabetic letters when letters occur In the
names. An exception to this rule is made for any
language which requires the distinction between upper
and lower case names.

Purpose

The purpose of the interlanguage calling seqUence Is to
facilitate Inter~tanguage procedure calls. This is
particular.Y desirable on CYBER 180 because of the system
level support for sharing of code between executing
tasks. For example, It would be desirable to have onty
one set of mathematical routines to be used by all
I an gu a gas.

Restrictions

AI) CYBER 180 Compilers must be capable of generating the
CYBER 180 Inter"language Calling Sequence for an externally
referenceab'e code module. It is a goa' in the definition
of this caltlnq sequence that It be useable by the
majority of the campi Jers as a subset of their standard
calling sequence. It obviousl, cannot meet all of the­
needs of I anguaQ'es as diverse as BASIC and Pl/I. It would
be acceptable (but certainly not preferable) If a
particular language were to require special declarations
or attributes on a procedure catt to cause the generation
of this caltlng sequence.

It is expected that users in the various programming
languages may have to take additional steps with respect
to data declarations to guarantee that the alIgnment and
packing correspond to that specified by this interchange
st~ndard. The user Is also responsible for the values
passed via this callIng sequence. For example, 8 Boolean
variable might contain values 0-7 (since It occupies a
byte) but the common calling sequence only assures
inter I anguaqe oapabi Itty for the values 0 and 1.
In general, a compiler may employ any calling sequence it
chooses betwee~ Itself and Its library or non-external
procedures. Exceptions to this will be for routines which

5-4
CYBER 180 System Interface Standard

84/0712.7

5.0 COMPILER AND ASSEMBly CODe CONVENTIONS
5.2 INTERlANGUAGE CALLING SEQUENCES

can be of general use to many languages (e.g., math
library routlnes). Such routines may have a fast calling
sequence but must also provIde an entry point conforming
to the interlanguage calling sequence.

5.2.1 CALLING SEQUENCE FORMATS
t • • t

• •
The Intertanguage calling sequence is defined to include not only:
the layout of the parameter list, but also the layout of any:
descriptors associated with parameters in the Jist. Two formats for:
the Intertangu~ge catllng sequence are available. The term:
"interJanguage cat lin~ sequence" is used to refer to these two:
formats collectively. Two different formats are required In order:
to provide flexibility of usage from language to language while not:
unreasonably degrading performance and usability. These two formats:
will be referred to as the "System" and "Genera'" formats.:
Extensions to either of these formats may be made via a nAP against:
the SIS. I • • t

The eal1inJ sequence provided by a compiler for use between internal:
procedures and functions known to be written in the same language:
need not conform to either format of the Inter'anguage calling:
sequence. Additlonal.y there is no requirement to use the:
interJanQuage calling seQuence between compiler generated procedures:
and functions and any assembler procedures and functions provided in :
a runtime library specIfic to that language. In general, assembler:
procedures and functions are responsible tor accepting a parameter
Jist format of the kind generated by their potential callers.

• JI

if
~owever calls to the sea.ar CMMl catl-by-reference procedures and
functions must conform to the System format, whi Ie calls to the
vector/array CMMl cal '_by_reference procedures and functions must
conform to the General format. ---..------ • • • • • •
For purposes of exposition, three
distinguished: value parameters,
extended reference parameters.

kin d s 0 f par am e t e r 5 W I I I be:
simple reference parameters, and:

• • • 1

o Value parameters are those parameters for which a value is Intended:
to be passed. The cal J ing program can assume that the actual --~'"
argument it passes wit I not be changed by the called program. Note:
that this does not imp'y a specific implementation technique:
(s eve ra I are DOS S 1 hie) • t'>: ~~L eLf.' ;
Reference parameters are those parameters for which an object is:
intended to be passed. The call lng program must assume that the 1

CY3ER 180 SYstem rnter~ace Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.1.1 Kinds of Parameters

5-5

84/07/27

actual argument It passes may be changed by the ca'ied program. :
Mote that this does not imply a specific implementation technique, t
although at least an address must normally be passed. Some
reference parameters also require that certain descriptor:
information must be Passed along with the address. :

o Simple reference parameters are those reference parameters which:
require on), an address, or only an address plus a string:
descrjptor~ to be passed to the calling routine. ,

• :
• Extendedreferencepar'ameters are those reference parameters which:

are composed of an address plus a string descriptor plus a:
non-string descriptorf or of an address plus a non-string:
descriptor.

This format Is the one used by the system implementation language

• • • •

t •
(CVBIl), and all operating system interfaces. This format is:
documented in detail In section 5.2.5.1 of the SIS. :

• •
• • • •

This format is more general than the system format. It wl't be used:
by CDC fORTRAN. This format is documented in detail in section:
5.2.5.2 of the SIS.

• • • •
0' f

• •
The primary difference between the System and General formats is In :
the placement an1 content of descriptors. System format and General:
format actual parameter lists are identical if only simple reference:
parameters are passed. All System format descriptors are placed:
directly in the para~eter list following the PYA of the object being:
described, while General format non-string descriptors are placed:
outside the para:neter list. The General format parameter list:
contains the PVl of the descriptor as well as the PYA of the obJect:
being described. :

• • • t General format value parameters have the same form as System format
value parameters except when the value parameter Is less than one:
word in size or is a pointer to procedure. The General format:
requires that the value parameter be right aligned with sign filion:
the 'eft for Integers and subranges of Integers and zero '1.,
otherwise, while the System format requires right alignment but does:
not define the fill bIts on the left. • t

CYHER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.~.1.4 Summary or Format Differences

5-6

84/07/27

---...-.... -~-------... "..----.-.-------.----.... .-.. --------------------------.-~------ ... ---------... --.--~----
• •

Use of the General format of the Inter'anguage calling sequence 1
requires that a "big" (j.e. longer than a word) yalue parameter:
which is passed vla a pointer will have been copied by the cal'er.:
The passed pointer Is a pointer to the copy, and the called program:
is free to write Into the memory pointed to. The System format does:
not specify whether or not a "big" value parameter will have been:
copied by the ca'ler, so In this case the catted program shou.d not:
write into the memory pointed to. • •

t • • ,
• • • ,
• ,

Any procedure or function which is Intended to be callable from an
external module potentially written in another language shoujd:
accept for that call one (or a subset of one) of the two formats of :
the Intertanguage call ing sequence. Each compiler must document 1
which of the two sequence formats It accepts, or state that none of
Its procedures and functions are external'y callable from another:
language.. :

language

ADA
BASIC
C
COBOL
CYBIl
fORTRAN
PASCAL

Interlanguage Format Accepted

-not interlanguage callable-
-not Interlanguage callable-

-to be determlned-
System format
System format
General format
-not interlanguage callabte-

:
• • • • , ..

• ., , ,
I
t

• t

• t

• t

" ..
I •

A compiler may assume that no call it generates is an interlanguage:
call unless the author of the source program has explicitly:
Indicated that a particular call is interlanguage. This means that:
each language whlch supports calls to modules written in another:
language must provide a mechanism within the source language with:
which the author of the source program can explicitly Indicate that:
a particular ca.l is intertanguage. This mechanism must be:
formulated such that the author Is further required to state:
explicitly (by name) which other language is being called. It is:
then up to the compIler to generate the correct jnterlanguage :
calling sequence for the catt. Thus the complier must know which:
languages acceDt which calling sequences. It remains the:
responsibility of the author, not the compi ler, to ensure that the:
actual and 'or~al parameters of the cal' are compatible. The

CYBER 180 SYstem Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.1.6 Calls Potentially to Another language

5-1

84/01127

compiler has the responsIbility to generate the correct layout for
the parameter '1st and parameter descriptors, as expected by the 1
cat. ed language. • • • •
These provisions do not require a compiler or language to provide
interlanguage calls, but they do define restrictions on how
interlanguage cal ling is to be supported. A language may support
interlanguage cal Is to only a limited number or other languages, If :
it so chooses. Note that even if a language supports direct ~
interlanQuage calls, It is not required to also support indirect:
jnterlanguage cal Is via dereferenced pointers-to-procedure. 1

5.2.1.6.1 SUPPORT FOR CALLS TO ANOTHER LANGUAGE
• • • •
t
'f

If a language supports calls to modules written in another language, :
and that other language accepts eat's with sImple reference:
parameters, then the calling language must, at the minimum, support:
calls with simple reference parameters. A string descriptor must be :
supplied for any object which takes one, unless the author of the
catling program has explicitly Indicated that no string descriptor:
need be passed. An explicit indication is possible in languages, :
such as eYBll, which allow the reference parameter In an external
procedure declaration to be specified as either fixed type:
(descriptor need not be passed) or adaptable type (descrtptor must:
be passed). 1 • • t

The cailing language is strongly encouraged to atso provide support:
for calfs with value parameters and extended reference parameters if :
the called language accepts such calls. This support would consist:
of a mechanism within the source language to explicitly indicate,
for each actual parameter of the Interlanguage cat), whether the
parameter is to be passed by value, by simple reference, or by
extended reference. The compiler then has the responsibility to
generate the appropriate calling sequence.

5.2.2 CALL

The procedure call Instruction CALlSEG, Reference #115 8S
defined in the CyeER IRO MIGDS will be used to perform the
procedure call.

5.2.3 REGISTER SAVING CO~VENTIONS

For generalized external calls and calls to formal
proceduresl the compiler may not assume that the called
procedure wi.1 save and restore registers. Any registers
to be saved must be saved on the stack using the save

E.f:! /r.,;' C, tJ,dt.'"l !~~·l {) t;.6<"t'Lt~\,) {?f.t <. . (
, ! :r:--~~. ('_),' ',1'"1 >. . (. .' \ ~,', '

£ i-o.,.Jt<,. ~ 1;" .. Jt~i,.>'V\.,t ~~ .Q../1'J.,..{./~-;;... c 'C, ... , {) (,it .. ,-,,!.) -.\1f')1

• •

• • :
• •

5-8
CY8ER 180 System Interface Standard

84/07/27

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.3 REGISTER SAVING CONVENTIONS
-~----------.,...----... -.... ---•. ~-.---.. -.. -.----.---~ . .-----.--... ..---,... ... ~-~---... ~~ ... -----.----.-.--.---~---

mechanism of the CAll Instruction.

Internal calls need not use the CALlSEG, Reference .115
instruction. They may use CALLREl Reference #116 or any
other code sequence which meets their needs. for Interna.
calls the compilers have the option whether to save
registers or not. Internal calls Include calls to:

a) the compiler's own I ibrary routines,

b) nested procedures within the same compilation unit,

The following information may be required in making a catl.
Some of the Information is not always required - See footnotes.

Dynamic to Caller and Cal lee

• basic stack control registers (AO, AI, A2)***

• parameter list pointer (A4)***

• static chaln/display*

• binding section pointer (A3)***

• product deflned information

Dynamic to Cal lee, Static to Caller

• line number of call (see traceback section).**

• number of parameters(XO, bits 32-47)***

• descriptor area indicator

• descriptor area pointer (if any)

static to Call~r and Cal lee

• name of calJee (see traceback section)

• size of display/nesting depth*,**

• frame size/language ••

• ,
• t

• •

CyaeR 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS
5.2.3.1 Information Required Across Catt

• type of frame; e.g. proc, func, co-proc**

* Block structured languages onJy.
** Traceback mode only.

84/07/27

*** Required on calls made with the Interlanguage calling sequence.

5.2.4 FUNCTIONS

A function Is a procedure that returns a value. The
function value is in the registers or in memory depending
on the type of value being returned. Since function
references are usually part of another expression that is
being evaluated, It Is generally desirable to have the
value returned in a register.

If the function value is a pointer, then the value is
returned as a PYA in AF. A procedure calling 8

pointer-valued function must not save register AF on the
call. A pointer-valued function may have the ring number
fleld of AF altered by the RETURN instruction if it is
called across a rIng boundary.

If the function value Is a scalar of known length Jess
than or equal to 64 bits in length, it is returned right
aligned in IF. A procedure calling such a function must
not save register XF on the call.

If the function value 1s double precision Or complex then
the value is returned In registers XE and XF. XF holds
the least significant 64 bits of the value. A procedure
calling such a function must not save XE or XF on the calt.

If the functio1 value is non-scalar then it is stored at
the address deflned by the first element of the parameter
• 1st. The second element of the parameter list specifies
the first actu al par ameter.

A scalar function result Is defined as foilowsl

• CYBIL

• FORTRAN

• COBOL

• PLII

character, boo'ean, integer, ordinals,
subranges, cell, pointer.

logical, integer, real, double precision,
complex, FORTRAN boolean ••

comp, comp-l, comp-2, boolean.

IntegertFIXED REAL), reat(FLOAT REAL),

" f

• • • t

CYBER 180 System Interface Standard

5.0 COMPILER AND ASSEMAlY CODe CONVENTIONS
5.2.4 fUNCTIONS

5-10

84/07/27

------ - ------_.----------...., ---- --.... - _ . .-.-_--._--_ ... --------... -------~.-----.-.-.--.-.- ---.. -----

• BASIC

• PASCAL

como lex(COr1PlEX)

real •

integer, (enumerated type, sub-range),
rea 1

Scalar functJon values are returned right aligned In the
result register. Fi I I (if any) is zero bits. Note that 8
byte numeric Items require no fill.

* FORTRAN boolean corresponds to a full CVBER 180 word without
type. It is not the same as the boolean type mentioned
elsewhere In this sectIon.

5.2.5 PARAMETER LIST

• .,
• •

• • • •
• •

The parameter list is allocated on a word boundary In memory. Each:
entry in the parameter 'ist must also begin on a word boundary. On:
entrY to the cs,lee, register A4 wltl point to the parameter list.:
8 i ts3Z-47 of r egi s t af XO will cont a in the nu mb~r 1q!~J~1...a.1Jl~ICS :
(including the pseudo parameter for non-sca.ar virue'cl"""r-unc'·'fTons). :
If the procedure being cal.ed is a function whose value Is to be
returned in memory, the first element of the parameter list defines:
the location at which the vatue is to be stored. If no parameters:
(nor pseudo para~eter~) are to be passed, then the contents of A4
9re undefined and XO must specify zero parameters. Under certain:
circumstances detailed below, a flag word must immediately precede:
the first word of the parameter list. :

• t

t
t •

(This is currentl, documented in the Cyall Handbook, DeS' ARH301S,
sectloris 1.1 and 8~3. The following addition must be made to that:
documentation In order to conform to the SIS.] :

• •
for any potentially interlanQuage call In which 8 System format
actual parameter list Is passed that contains onl, slmpte reference:
par am e t e r s : The p ~ ram e t e r lis t m u s t bel m me "1t-l ate I y pre c e de d by a :
flag word whose value is the 64-bJt Integer zero. The string:

/

... desc.rlPtor mlJst be I nctU .. dedfor any 0. b. Ject which takes one, unless 1
the author of the source program has explicitly indicated that It:
need not be passed. These restrictions are made to lnsure
compatibility b!tween the release 1.1.2 product set calling
conventions and those for a.j future reteases. A flag word need not:
precede any other System format actual parameter lists. :

CYBER 180 SYstem Interface Standard

5.0 COMPILER AND ASSEMBLY cone CONVENTIONS
5.2.5.1 System Format Parameter list

5-11

84/01127

• I

• • • •
:~--­

The General format parameter list must always be preceded by a flag ~
word. The parameter list itself is composed of two parts. The:
first part has exactly one word for each parameter (IncludIng the:
pseu~~ parameter for non-scalar valued Turictions). If the flag word:
preceding the parameter 1ist Is zero then only this first -part Is:
present, otherwise.the secpnd",Jextension) part must also be present. :
This parameter list extension follows Immediatel, after the first:
part of the parameter Jist, and has exactly the same length In :
wordS. There ls a one-to-one correspondence between word J of the:
first part and word J of the extension.

The parameter list extension is required If and only If one or more:
of the actual parameters is an extended reference parameter or is a:
pointer-to-procedure value parameter with a static link.

5.2.5.2.1 FLAG WORD PRECEDING PARAMETER LIST
t • • I

• •
The flag word immediately precedIng a General format actual:
parameter list must be present for any potential', interlanguage
call. This flag word has the following internal structurel

r eca r d
fll O •• Offffffffffff(16),
f21 O •• :)ff(16),
f 3: 0 •• 0 f f (16) ,

recend

• •
• • • • • '. • • • •

Field f1 must always be set to Integer zero. It is reserved for:
future uses. Field f2 h~s a language dependent value, but may be:
nonzero only If field f3 Is nonzero. Field f3 must be set to :
integer zero If the parameter Jist extension is absent, and must be:
set to Integer" one otherwise. Any language accepting calls:
according to the General format must accept interlanguage cal.s fOr:
which fle'd f2 1s zero. An InterlanQuage caller wilt never be :
required to set field f2 to a non-zero value. If field f2 is set to :
a non-zero value for an interlanQuage cal" it is the responsibility:
of the caller to set the field according to the expectations of the
cal lee.

5.2.5.2.2 GENERAL FOR~AT VALUE PARAMETERS

1 • :

• •
If a value paraneter is greater than one word in length and Is not a :
pointer-to-procedure, then it is passed using an identical format to :
that for a reference parameter. :

CYBER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.5.2.2 GENERAL FO~MAT VALUE PARAMETERS

5-12

84/07/27

'. •
If a value parameter is a pointer-to-procedure then the first part:
of that parameter list entry must contain tbe left Justified PYA of :
the Code Base Pointer of the procedure in the binding section. The:
second part of the entry (when an extension Is required) must:
contain the left justified PYA of the static link or must contain:
the NIL pointer If there is no static link. The 16 bits to the:
right of each of these PYAs is unused and undefined. This can be:
diagrammed as: • • • •

+------------------+------+ +------------------+------+ :
: PYA (Code Base) : under: t static linkl NIL: under:
+_.-__ __ .--_._ . .-._ __ ._._--+-------+ - - - +_._--------_ .. _--------+-----.... _-+

• • • • • •
If avatue parameter is Jess than or equal to a word In length, then:
a copy of the value parameter is placed directly In the first part:
of the parameter list right aligned In a word, with sign filIon the:
left for integers and subranges of integers and zero fill otherwise. :
The associated word In the second part (when an extension is :
required) is unused and undefined. Note that if a PYA having no:
associated descriptor 1s passed by value, then by this rule the PYA :
is pJaced directly 1n the parameter list, right aligned in a word, :
with the word zero-fiJ ted on the left. This can be diagrammed as:

: value (right Justified) : undefined • • +----------.--. .------------~--.---+ - - .- +--_._----------------.... _-----_ ... _ ... -+

5.2.5.2.3 GENERAL FORMAT SIMPlF REFERENCE PARAMETERS

• • • • • • :
t • • • • • • • • •

Simple reference parameters are passed either as a PYA or as a PVA :
plus string descriptor. Parameters consisting solely of a PYA are:
placed directly In the first part of the parameter list entry 1eft :
al igned in a word; with the rightmost 16 btts of the word unused and t
undefined. The value of the word In the associated second part (If:
an extension Is required) must be the 64-bit integer zero. This can:
be diagrammed as: :

+ ----------_._--- - --+------+ +-------------------------+ : PVA (object) : undef: c
+------------------+------+ +-------------------------+

,
• • • • •
I
• •

Simple reference parameters consisting solely of a PVA P'us a string:
descriptor are placed directly in the first part of the parameter:
list entry with the PVA left aligned In a word, followed Immediately:
by the two byte long string descriptor. The value of the word In 1
the associated second part (If an extension Is required) must be the:
64-bit integer zero. This can be diagrammed as: :

5-13
CYBER 180 SYstem Interface Standard

84/07/27

--5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS
5.2.5.2.3 GENERAL FORMAT SIMPLE REFERENCE PARAMETERS

+_. __ .-_--.. _ ---_ ... ,..----+ .. _---._-+
: PVA (object) :Iength: o • • +---------------,---+------+ +-------------------------+

5.2.5.2.4 GENERAL FORMAT EXTENDED REFERENCE PARAMETERS

• • • •
I • • • • t

• 1

:
• •

Extended reference parameters require that the non-string descriptor
be passed Indirectly using the parameter Jist extension, regardless:
of the size of that descriptor. Field f3 of the fJag word preceding:
the parameter Jist must have been set to one. The first part of the:
parameter list entry will contain the PYA of the object referenced, :
left atigned. If the reference includes a string descriptor then:
that descriptor is placed in the 16 bits immediatel, following the
PYA, otherwlse those 16 bits are unused and undefined. The;
parameter Jist extension for this entry will contain the PVA of a:
location (which must be on a word boundary) In memory where the:
descriptor is located. The PYA in the parameter list extension Is:
left aligned In a word with the rightmost 16 bits being unused and:
undefined. This can be diagrammed as one of: :

+-------_._--_._-,-----+------+ +------------------+------+ : PVA (object) : undef: : PYA (descriptor) : undef:
+------------------+------+ +------------------+------+
+------------------+------+ +------------------+------+ : PVA (object) :Iength: : PYA (descrIptor) : under:
+----... ---~-.-----.. -....... -+ -.-.----+ +.---------.... -----.--.---.. +.-.... -~----+

5.2.5.2.5 GENERAL FORMAT STRING DESCRIPTORS

• •
• t

• •
• t

t
t

• • • • • •
t

A string descriptor is a 16-bit unsigned integer (0 •• 65535):
indicating the length of a string In bytes. When present, It Is
placed in the prlmary portion of the parameter list Immediately:
following (and In the same word as) the PYA of the object being:
described. A string descriptor is required for a.1 reference
parameters to objects of type character, subrange of character, :
string, substring, or array over a component type of character, J
subrange of character, string, or substring. The string descriptor:
for an array Indicates the length In bytes of a single element. :

5.2.5.2.6 GENERAL FOR~AT ARRAY DESCRIPTORS

• t

• t

• •
The layout of an array descriptor must adhere to the pseudo-CYBll:
description given beJow. Note that "extent" refers to the number of :
elements in a particular dimension, "stride" refers to the distance 1

CYBER IBO System Interface Standard

5.0 COMPILER AND ASSEMBLY cone CONVENTIONS
5.2.5.2.6 GENERAL FORMAT ARRAY DESCRIPTORS

5-14

84107/27

(measured In terms of array elements) between two consecutive:
elements of the same dimension, and "rank" refers to the number of:
dimensions In the array. Array descriptors must be a.lgned on a :
word boundary.

array_descriptor = array [1 •• rank] of record
extent: integer,
stride: Integer,
tower_bound: integer,

r ecend;

• " • •
'. '1

• • • • • • • • • • • • • • • •
For languages such as eyeIl and FORTRAN 77, arrays are represented
and stored as contiguous objects; stride is a function solely of the:
extents. However the Introduction of array sections in CDC FORTRAN:
necessitates that an explicit stride be passed in the parameter list:
since sections need not be contiguous In memory; they may have a:
non-unity incr~ment In each dimension of the array, whleh must be :
included in the calculatIon of the stride. The stride value for ~
multi-dimensional artays is calculated differently depending upon:
whether arrays are stored columnwise or rowwise. For one:
dimensional arrays the formulas are equivalent. Note that one:
dimensional contiguous arrays have a stride of one. • • • ,
For arrays wh1ch are stored columnwlse in memory (i.e. with the:
leftmost subscript varyIng fastest) the following formula Is used: t

j -1

strldeCI) :: Iner(i) *
j=O

t • ,
• E(j)

where stride!l) is the stride in the i-th dimension, inerC}) is
increment of the I-th dImension, and E(O) is defined to be one.
contiguous arrays, E(J) is the extent of the j-th dimension.
array sections, EeJ) is the extent of the J-th dimension or
contiguous array of which this is a section. for example if we
the FORTRAN declaration:

DIMENSION :(15,30)

t
t

• t

• •
t
I

• t ..
• • •

the:
For
For
the

have 1
• • • •

then for C we havel incr(l)=l, incr(l)=l, extent(1)=l5,:
extent(2)a30 .. E(1)-15, E(Z)-30, strldetl)-l, and strlde(Z)-15. For:
the section:

C(1=1012, 12:22=3)
we have: incr(1'=2, incr(Z):3, extent(l)-5, extent(Z)-4, E(1)-15,
(2)-30, strlde(1)-Z*1=2, and strlde(Z)=3*1*15-45.

CYBER 180 System Interface Standard

5.0 COMPILER AND aSSEMBLY CODE CONVENTIONS
5.2.5.2.6.1 strIde

5-15

84/07/27

............... ---.----.-~-.-... --..... -... ~----.--..... ~---.. -... -~.-~-... -.... ---... ~------.-..-~.-.--------.-.-.--

For arrays which are stored rowwlse in memory (I.e. with the
rightmost subscrIpt varying fastest) the following formula is used:

r+1

stride(l) = Inerti) * E(J)

• "
• • • • • •
t • • • • • :
• • • •

where stridetl) is the stride in the i-th dimension, Iner() Is the:
increment of the i-th dimension, r is the rank of the array, and:
E(r+l) is def1ned to be one. for contiguous arrays, EIJ) Is the:
extent of the J-th dimension. For array sections, ElJ) is the:
extent of the J-~h dimension of the contiguous array of which this:
is a section. F~r example if we have the FORTRAN declaration: ,

•
ROWWISE R(15,301 :

then for R we have: r:2, incrtl)=l, incr(2)=1, extent(1)=15, :
extent(2)=30, E(1)=15, E(Z)=30, stride(1)=30, and stride(Z)=l. for:
the section: • •

R(ltlOl~, 12:22:3) :
we have: r=2, incr(1)~2, incr(Z}=], extent(l)-', extent(Z)=4,:
E(1)=15, E(Z)=30. stride(1}-Z*1*30-60, and strjde(Z)-3*1-3.

5.2.6 DATA REPRESENTATIO~

The following subsections define the representations of
data which must be used if an item of a particular type is
to be passed between languages. Languages may have types
beyond these but data of those types cannot be passed to
other languages. A language is not forced to provide for
atl of the fo"owing data types.

An integer may occupy 1 to 8 bytes of storage. For
languages with size allocations dependent on the subrange
of integers specified, the amount of storage allocated
must be the minimum number of bits needed to hold the
specified range rounded up to the next full byte.
Subranges that include negative numbers must use the
leftmost bit of the fIeld as the sign bit. Negative
values are represented as negative two's complement
quantities. S~branges of only positive numbers will not
provide a slgn bit. The range of signed Integers Is

• • ,
t

• , ,
•

,
• ,
• • •

CY8ER 180 SYstem Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.6.1 Integer

5-16

84107/27

-2**63 < i (2*.63-1. The range of unsigned integers Is 0
< i < 2** 63-1.

Several languages have an enumerated type called
ordinals. These are mapped onto the non-negative
integers. Allocation rutes are the same as for unsigned
integers. If ordInals are passed to a language without
ordinals they ~ust be treated as integer values and
vice-versa.

Two sizes of Integers correspond to easily manipulated
hardware formats and are identified as separate subtypes
of integer to provide for languages with only options for
half or fuji ~ord signed integer values.

5.2.6.1.1 4 BYTE INTEGER

.A half integer will be represented by a 4 byte (32 bit)
quantity In the CYBER 180 integer format I.e., a signed
two's complement 32-bit quantity, in which the leftmost
bit is the sign hit. The range of 4 byte integers Is
-2**31 < i < 2**31-1.

5.2.6.1.2 8 BYTE INTEGER

A fu I lIn t eger w 11 I he repr e sented by an 8 b yt e (64 bit)
quantity in the CYSER 180 integer format i.e., a signed
two's complement 64-blt quantity, in which the leftmost
bit is the sign bit. The range of 8 byte integers Is
-2**63 < I < 2**63-1.

Fixed length character data witl be stored as a sequence
of consecutive 8 bit bytes. The character set wil' be
ASCII.

Real data will be represented by an 8 byte (64 bit)
quantity In th~ CYBE~ Single precision floating point
for m at. A I' r"e a I d a taw i I I ben or m a liz e d •

• t

• •

• I

• •

• ,

:
• •

5-17
CYBER 180 SYstem Interface Standard

84/07/27

5.0 COMPILER AND ASSEM8lY CODE CONVENTIONS
5.2.6.3 Real

Double preclsion data wit I be represented by a 16 byte
(128 bit) quantity in the CVBER 180 doub.e precision
floating point format. It must be normalized. The PYA in
the parameter list points to the first byte of the double
precision datum. The second "ower precision half) is
located at PVA+B bytes. The sign and exponent fields of
the lower part are considered to be correct at any given
time. Input and constant assignment routines are
responsible for 'nsur log corrct signs and exponents upon
initial construction of the number. Double precision
operations wll' maintain this format.

5 .2.6. '5 C.nm2.1~.l

Complex data will occupy 16 bytes (128 bits) in memory and
will consist of two rea's, where the first real represents
the "real" part and the second reaJ represents the
"imaginary" part of the complex quantity. The PYA In the
parameter Jist po1nts to the first byte of the complex
d at u m (the rea I par t) • The i mag ina r Y par tis I 0 cst e d at
PVA+8 bytes.

5.2.6.6 fi~.Q!~.in

Boolean data occupies a single byte. A value of one
indicates true and a value of zero indicates false.

5.2.6.7 e..Qln1£tt.

A pointer is a PYA. It occupies six bytes. Pointers may
identify data of any of the other data types. The nil
pointer is defined as a PyA with a ring field value of "F"
hexadecimal, segment field value "FfF" hexadecimal, and
address fie.d value "60000000" hexadecimal.

5.2.7 DATA ALIGNMENT AND PACKING

The purpose of the common calling sequence Is to provide
the ability to pass data between diverse languages. The
jnterlanguage call Is assumed to represent a small

• •
" t

• • • t

• • • t

• •

• •
" '. • •

• t ,

5-18
CYBER 180 System Interface Standard

84/07/27

5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS
5.2.7 DATA AlIGNME~T AND PACKING
-- ---------_ _--.. -.-- ---......... -- -.----.-..... --;-.-............. .------~~------.-. -..-.. ----.~~--...

percentage of aJ I cal Is andgeneral.y be used by
knowledgeable users. Therefore, for performance in the
word oriented languages (FORTRAN, in particular) a
4east-common-denominatoral ignment of word is used.

Data types which require 8 bytes to store are required to
be word aligned to Improve performance. This permits the
use of the load/store word instructions which are faster
than load/store of 8 bytes. The space penalty f~r word
aligning slmplevarlabJes is felt to be sma,'1 especially
since it costs a maximum of 7 bytes per procedure If ai'
the word aligned items are stored contiguously.

Varlables may be of any of the above data types. The
alignment of a particular type must be as followsl

Data Type

1-7 Byte Integer
8 Byte Integer
Character(Strlng)
Rea I
Double Precision
Com·pJex
Boolean
Pointer

A Ii gnment

Byte
Word
Byte
Word
Word
Word
Byte
Byte

structures must begin word aligned.

Alignment of data to be passed between languages In
structures must be as foltOHsl

Data Type

1-7 Byte Integer
8 Byte Integer
Character(String)
Real
Double Precision
Complex
Boolean
Pointer

Alignment

Byte
Word
Byte
Word
Word
Word
Byte
Byte

• • • • • ,

• •
• 1

5-19
CY8ER 180 System Interface Standard

84/07/27

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.7.2 Structures

If a byte alIgned item js followed by a word aligned item,
UP to seven bytes may be skipped (and left unused) to
regain Nord aJlgnment. If a byte item follows a byte
item, they may be in consecutive bytes.

5.2.7.3.1 ARRAYS OF VARIABLES

The arrays represent a collection of data items of one
uniform type. Arrays must be word at (gned if the data
type they cont~in is word aligned. Unless required by an
external standard all'anguages should store arrays with
the rightmost subscrIpt varying fastest. FORTRAN, for
example, is constrained by ANSI standards to store arrays
with the leftmost subscript vary1ng fastest. If a user
passes a multIdimensional array between languages with
different storage ordersl It is the user's responslbtj'ty
to handle this. Arrays must be byte aligned if all of the
constituent elements are byte aligned. The parameter 41st
PYA identifies the first element of the array. Subsequent
elements must be contiguous and in ascending storage
address sequence.

5.2.7.3.2 ARRAYS OF STRUCTURES

If any element of the structure is required to be word
aligned, each array element must start on a word boundary.

5.2.7.3.3 COMMON BLOCKS

Items within common blocks must be aligned consistently to
achieve interlanguage communication. Common blocks wilt
begin word aligned. Alignment of data within the common
block wi II be the same as for structures.

5.2.8 LANGUAGE INTERCHANGE TABLE

The following table shows the possible parameter types
that may be used between languages. If a 1etter appears

• I

• ,
• • • t

• • • t

• I

• ,

t •
t •
t
!I

• • :
• •

5-20
cyaER 180 System Interface Standard

84/07/27

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.2.8 LANGUAGE INTERCHANGE TABLE

at an intersection in the table, that type may be passed.

Types are encoded as follows:

J • 1-3, 5-7 Byte Integer 0 = ordinal
H = 4 Byte Integer I = 8 Byte Integer
C = Character (string) R = Real
o • Double Precision Z • Complex
B = Boolean P = Pointer
A = Array S = Structure
All =a11 types 0 f the I anguage

Ca'lee

CYBll PASCAL(W} FORTRAN C OaOl PLI I BASIC

Caller

C VBIl

PASCAL (\~)

FORTR.AN

caSOl

i> II I

BAS Ie

At t HIJCBPSAOR ICARD HICBSARD HICBPSAR

HIJCBPSAOR All ICA HIC8SA HICBPSA

ICARD IC,l A 11 leRDA ICRDZA

HICBSARD I1ICBSA leRDA A. I HICBROSA

HICBPSAR HICBPSA ICRDZA HIC8ROSA A I I

CR c eRA CRA eRA

Notes:

1) PL/I may not have a double precision data type due to
possible high overhead in supporting the maximum
precision rules. This wil. be determined later.

2) If arrays are permitted between two languages, the
type of the array is restricted to the types of
variables that are permitted between the two languages.

3) Arrays of characters in BASIC cannot be passed to
other languages, and vice versa.

The language Interchange tabJe defines the parameter types
that can be used between pairs of languages. In many
cases restrictions exist because a particular language

CR

C

CRA

CR.A

eRA

A II

• I

t • • t

CYSER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY COOE CONVENTIONS
5.2.8.1 Extended Interchanqe

5-21

84/07/27

Jacks a dat~ type. For example, BASIC lacks integer type
since it stores them as reals. In many instances the type
mismatches could be mapped by interface code between the
procedure calls. The following mechanism Is proposed to
support such mappin~ when and if it becomes a requirement.

In order to mao parameters, an intercept routine must gain
control from the caller, map things and pass control to
the callee. The reverse may be necessary upon return.
The user should not have to be aware of the activities of
the interface r~utlne or invoke it directly. To achieve
this, the loader must have a mechanism for detecting the
need for an interface routine and inserting same 10 the
caJ1/return path. The insertion mechanism can be similar
to the one used for Analyze Program Dynamics (APOl.
Detection of the need for inserting the interface routine
can be done with load time argument checking mechanisms.

For each pair of languages (X and Y) where interface
mapping is desired, loader tables defining relevant
information about actual and formal parameters must be
defined. A routine (activated during loading by the
loader If a ca" from X to Y Is found) will compare the
actual and formal parameter lists to determine if mapping
is required. If not, the loader simply Jinks as usual.
Otherwise, a X to Y mapping routine from a library is
inserted Into the linkage by the loader.

The X to Y mapping routine receives the actual and formal
parameter list Information from the loader.

The caller Information Is obtained by giving the P address
of caller to a loader service routine which returns a PYA
jf the actual parameter list information for the current
call. The eel lee Information Is obtained by giving the
code base pointer of cal lee to a loader service routine.

The mapping routine uses this information to transform the
parameter lIst andlor data representations before calling
the cal tee. When the calfee returns, the mapper wlJ.
receive control to do any mapping on return parameters.

5.2.9 REGISTER CALL FUNCTIONS

In many languages there exist commonly used sets of
functions (for example, mathematical functions) for which
it is more efflctent (though less genera') to pass a
limited set of parameter values via registers. Up to

• •
t
1

5-22
CY8ER 180 System Interface Standard

84/07/21

5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS
5.2.q REGISTER CALL FUNCTIONS

eight (64 bit v~'ues) can be passed In registers X2 - X9.
The first parameter va'ue would be in Xl, the second In
X3, etc. If a double word value (say, double precision)
is required. it uses two consecut.ve registers. The
specific register used for a routine may be inferred from
the type of the parameter. For exampJe, SQRT(X) will use
Xl whi Ie OSQRT(O} will use XZ and X3. These rules apply
to the fo.'owlng data types as parameters:

1-7 byte integers
8 byte integers
Rea.
Double PrecIsion
Complex

Return registers for register call functions (see '.2.3)
must not be saved In ca'ling them.

No rutes are snecified for character, boolean or pointer
data pending identification of functions using thes~
argument types that are of general utility.

The register cal) entry point is not bound by the
conventions of the common calling sequence.

All register call functions Intended for general use must
also offer ~n entry point that accepts the common calling
sequence (5.2 above) and referenceable by a CAlLSEG
instruction.

Interproduct fl Ie sharing between executing subsystems
wilt be addressed. It wil' specify under what conditions
a product wll) be able to perform 110 on a file declared
by another product. It will also address closing and
flushing of files at Job step termination when
jnter'an~uaQe fites are being used.

Purpose

In order that user obJect code from different compilers
can co-exist In one Job step while using a limited number
of segments, certain conventions must be observed.

crBER 180 System Interface Standard

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.4 STORAGE MANAGEMENT

5-23

84/07/27

Each user will have a limited number of segments. This
means that object code from different compilers must be
able to share certain data segments.

5.4.1 STANDARD STACK FRAME

This section describes the standard stack frame which wil'
be set up In conjunctIon with the CAll instruction. The
purpose of standardizing the stack frame layout is to
provide common traceback and debugging Interfaces. At the
same time, allowance Is made for a minimum frame fer
languages suoh as batch mode FORTRAN, with extensions for
the complexity of languages such as Pl/I.

A stack frame consists of two areas:

1. The save area.
2. The "environmental" area.

The save area belongs to the caller, the Denvironmentat"
area belongs to the calles and both exist in the
appropriate rIngs.

Traceback is considered to be the lowest leve. of
debugging and as such requires the support of both the
loader and the compilers/assembler. Minimum traceback
information will always be produced to facilitate some
tracing from within the system.

The compilers/assembler will produce traceback tables In
the object module which correlate object-code address of
entry points and calfs with source-code procedure names
and 'ine numbers. The loader wl.' maintain the relation
of these object code addresses. When traceback is
required, these traceback tables, plus the stack, wJ11 be
interpreted to give the source-code names and line numbers
assoctated with the PYAs obtained during traceback. In
fult traceback mode entries will exist for each line or
source statement; in minimum traceback mode only entry
points and cal's are monltored.

5-24
CYBER 180 SYstem Interface Standard

84/07/27
~-..-.-------.--------... --... .-..-.-...-.-.... ---.--... ---... .-.---... --------.---------.--~--. .-.--~----.------

5.0 COMPILER AND ASSEMBly CODE CONVENTIONS
5.4.1.2 Static ChaIn vs. DIsplay

(See G'ossary for definitions.)

It Is not the Intention of thjs standard to dictate
whether compiled code wi" reference globa4s via the
static chain or a display. Either is permitted and must
be maintained by the software. Notes this only applies to
calls to a nested procedure and hence Is intratanguage.

5.4.2 CHAINS OF ON-CONDITION PROCESSORS

Software conventions for a standard on-condition processor
chain format are required to ensure that on-conditions can
be processed correctly.

The on-condition flag (OCF) in the save area Is used to
indicate that the stack frame has associated on-condition
processors. The first eight bytes of the stack frame
(pointed to by the current stack frame (CSF) of the save
area) are reserved for the head of the on-condition
processor c~aln. A,1 object code generators must
accommodate the head of chain reservation. If the OCf Is
set In the save area. the eight bytes pointed to by CSF is
the head of the on-condition processor chain. If the OCF
is not set, the contents of the eight bytes is undefined.

5.4.3 DYNAMIC NON-STACK STORAGE

NOS/VE provides the capabi.lty of creating new segments
during product execution. Since this increases the number
of segments In active use and potentially causes a
performance degradation, its use should be I imited to
situations wher~ the atternatlves are less satisfactory.

5-25
CYBER 180 System Interface Standard

84/07/27

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS'
5.4.3.2 Fixed-PosItion Dynamic Storage

The fundamental support for fixed-position dynamic storage
allocation is provided by the CVaIl ALLOCATE statement
with no IN optIon.

Products coded In CYRIL and needing fixed-position dynamic
storage should use the ALLOCATE statement directly.
Products not coded In CYBIl and needing flxed-posltlon
dynamic storage may either:

1) include CY9Il subroutines containing the appropriate
ALLOCATE statements, or

2) use a set of common routines which wil) provide a CMM
compatible interface to the ALLOCATE statement.

Variable-position dynamic storage is not currently pJanned
for support.

This section wll' define modules which will be available
for general use.

Math Routines

for a detailed account of the math routines to be provided
see C180 Common Modules Math library (CMMl) ERS with DCS
log 10 S292Q. The routines will offer both a register
calling sequence anj the common calling sequenc~. Entry
poJnt names wIll meet the specifications of section 4.1.1.

Numeric Conversion Routines

Routines wll' be provIded for alt products (compiler or
runtime systems) to perform numeric input and output
conversion. This wi" ensure that the same numeric
representation matches the same Internal bit value by a"
processors. See also C180 common modules math library
(CMMl) ERS with DeS log 10 S2929, and CMMl
Assembly-.anQuage Support System ERS with DCS log IO 53410.

CYaER 180 SYstem Interface Standard
5-26

84/07/27

5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS
5.5 COMMON SUPPORT MODULES
--

TO

FROM

Integer

Real

Longreal

ASCII

ASCII
(nondec.)

BOP*

Unpacked
decimal
trai ling
sign
combined
hollerith

Number 110

I R
n e
t a
e 1
9
e
r

X XCI}

X

x x

l A A
0 S S
n C C
g I I
r I I
e (nondec.)
a
I

x X

Xil)

XlI)

X (1) X(Z}

X

*inc'udes al' BOP types except: alphanumeric

BDP* Unpacked Number-
trailing 170
sign
combina-
tloo
hoI Jeri t h

X

X

(1) there are additiona1 routines for handling real and longreal conversions
to and fro m as c I I I n pie c e me al fa s h i on

(2) translation, move, etc.

Uti I ities

A set of co~mon utl11ties wl., be provided to carry out
the following functions:

• Oi agnostic Hand) i ng - the formatting of dj agnostic

5-27
cvaER 180 SYstem Interface Standard

84/07/27

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.5 COMMON SUPPORT MODULES

•

•

•

lines of output and the construction of the diagnostic
listings.

Source 'Istlng formatting - the formatting of the
source listing including output of the source lines to
a print fite.

storage map/Attribute/Cross Reference listings - the
formatting of this listing and output of its contents
to a printfJle.

CompIler Usages StatIstIcs - the generation of usage
statistics messages.

CYBER 180 SYstem Interface Standard
6-1

84/07/27
""--'~-"-''''''----'''-'--''''''-'''''-'''''~'-'-----''''------.'''''--------''''---~-~-''-... .--.. ----.-..... ------~ ~ .. ---
6.0 GLOSSARY OF TERMS

In writing the System Interface Standard It became
necessary to clarify the meaning of certain words. This
gtossary contains those words which required
clarification. Thetlst will be extended.

-a-adjective
-0- noun
-v- verb

Bootean

FORTRAN
Boolean

Diagnostic

Display

Error Message

-8- Of base 2. Not to be used without
qualification to mean the object code
output from a compiler. Note object
code fi'es are one of many different
forms of binary fites.

-n- Data type which can hold the values
"true" or "false".

-n- Boolean data but required to OCCUpy a
full computer word.

-n- Generally a part of a larger entity,
such as listable output, as opposed
to an error message, which is
generally a summary of a command.
Diagnostics are genera", Issued by a
number of the product set, such as a
compiler. See also - error message.
Example; A compiler may provide a
single error message telling how many
errors occurred during compilation
and produce a diagnostic for each
compilation error.

-n- A mechanism for accessing globa'
variables of a program using a table
of stack frame pointers; one pointer
for each accessible scope and one
table for each active scope.

-n- Generally a summary of a command, as
opposed to a diagnostic, which is
generally a part of a larger entity,
such as listable output. The error
message Is general'y Issued by the

CYBER 180 System Interface Standard
6-2

84/07/21
-.... ----.-.----:.-.. ----.. ~~-------... ---~ -----....,---.. --...... ---.-. ... ~---..---.-. .. ---.----.---... --
6.0 GLOSSARY OF TERMS

Invoke

Job Step

load Module

operating system or by a product via
the operating system. See also -
dlagnostJc for an example.

-y- Applies only to spirits, witches,
etc. Procedures are called.

-n- A Job step is the work done as 8
result of a single command In the Job
deck/file. Job steps execute
sequentially within a job.

-n- Object Information produced by object
library generator and input to the
loader or back into object library
generator. load modules are designed
to facilitate processing by the
loader.

Object Module -0- An object module Is a unit containing
code and/or data definition that is
produced by compilers.

Object Program -0- An object program is a set of object
Plodul esorg an Ized toper f or m some'
specific function (e.g., compile
COBOL statements). An object program
Is prepared for executIon by the
loader.

process(ing} -v- Comput(ing). Unrestricted to mean
either hardware or software.

Processor -0- Restricted to hardware CPU or PPU.

Product

Product Set

record

May be used for software If
sufficiently qual ified, e.g. language
processor.

-0- Any part of the standard software
which is covered by the System
Inerface Standard.

-n- That part of the System which Is not
p~rt of the Operating System.

-n- A unit of data on a file. e.g. 8

card Image, 'ine image. Not to be
used without qual ification if meaning
a "eYBIl" record or "Sel" record.

6-3
CYaER 180 System Interface Standard

6.0 GLOSSARY OF TERMS

standard

Static chain

System

Task

84/07/27

-n- Plural-Standard not Standards when
used In the sense of the System
Inter face s tandar d.

-n- A mechanism for accessing globaJ
variables of a program uslng 11nks
through the steck frames.

-0- All products (q.v.) operating as a
whole - to be distinguished from
Operating System.

-n- A task is an Instance of execution of
an object program. Multiple tasks
can execute within a single Job
step. Each task has its own address
space (set of memory segments).
Tasks may be initiated either
svnchronously or asynchronous'y to
the initiating task.

1
CYBER 180 SYstem Interface Standard

84/01121

Table of Contents

1.0 GENERAL •••••••••••••••••••
1.1 PREFACE TO REVISION J (REVISED 26 JULY 1984) •
1.2 REVIEWING AND UPDATING THIS DOCUMENT •••••
1.3 CHARTER •••••••••••••••••••

1.3.1 PURPOSE •••••••••••••••••
1.3.2 SCOPE ••••••••••••••••••

1.4 GOALS ••••••••••••••••••••

• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

2.0 INPUT •••••••••••••••••••••••••••••
2.1 SYSTEM COMMAND LANGUAGE ••••••••••••••••••••
2.2 PRODUCT CALL COMMANDS •••••••••••••••••••••

2.2.1 APPLICABILITY •••••••••••••••••••••••
2.2.2 TERMINOLOGY ••••••••••••••••••••••••
2.2.3 SYNTAX •••••••••••••••••••••••••••
2.2.4 PARAMETER •••••••••••••••••••••••••

2.2.4.1 Positiona' Ordering of Product Set Parameters •••••
2.2.4.2 Types of Parameters ••••••••••••••••••
2.2.4.3 Parameter Names and Descriptions ••••••••••••

2.3 SOURCE INPUT ••••••••••••••••••••••••••
2.3.1 SOURCE INPUT FILE ORGANIZATION •••••••••••••••
2.3.~ SOURCE STATEMENT FORMAT ••••••••••••••••••

2.3.2.1 statement IdentIfier ••••••••••••••••••
2.3.2.2 Line Numb,rs ••••••••••••••••••••••
2.3.2.3 Statement 80dy •••••••••••••••••••••
2.3.2.4 Blank Compre~sion •••••••••••••••••••
2.3.2.5 Empty Input FIle ••••••••••••••••••••
2.3.2.6 Nul' Source line Convention ••••••••••••••

2.3.3 DISPOSITION OF I~PUT FILE •••••••••••••••••
2.4 ca~PILATI0N DIRECTIVES •••••••••••••••••••••

2.4.1 PAGE ·EJECT •••••••••••••••••••••••••
2.4.2 SOURCE LISTING •••••••••••••••••••••••
2.4.3 LINE SKIP •••••••••••••••••••••••••

2.4.3.1 LINE SPACING ••••••••••••••••••••••
2.4.4 TITLE LINES ••••••••••••••••••••••••
2.4.5 RANGE CHECK ••••••••••••••••••••••••
2.4.6 EXECUTION TRACE ••• • ••••••••••••••••••
2.4.7 DeBUG STATEMENTS ••••••••••••••••••••••
2.4.8 SEQUENCE CHECK • • • • • ••••••••••••••••••
2.4.9 OBJECT CODE LISTING ••••••••••••••••••••
2.4.10 STACKING COMpIl~TION DIRECTIVES ••••••••••••••

2.5 PROOUCT DIRECTIVES •••••••••••••••••••••••
2.5.1 STANDARD PARAMETERS ••••••••••••••••••••
2.5.2 STANDARD COMHlNDS •••••••••••••••••••••

3.0 OUTPUT ••••••••••••••••••••
3.1 RECOMMENDED NUMBER BASES •••••••••••

3.1.1 SITUATIONS AND REC"MME~OEO NUMBER BASES •
3.2 LOGS •••••••••••••••••••••

3.2.1 ASCII lOGS ••••••••••••••••
3.2.1.1 System log ••••••••••••••

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

1-1
1-1
1-1
1-2
1-2
1-2
1-3

2-1
2-1
2-1
2-1
2-2
2-2
2-4
2-4
2-4
Z-b

2-27
2-28
2-28
2-29
2-29
2-30
2-30
2-30
2-30
2-31
2-31
2-33
2-33
2-33
2-34
2-34
2-34
2-35
2-35
2-35
2-36
2-36
2-36
2-37
2-38

3-1
3-1
3-1
3-2
3-2
3-4

2
(VBER 180 System Interface Standard

84/07/27

3.2.1.1.1 PURPOSE ••••••••••••••
3.2.1.1.2 CONVENTIONS ••••••••••••
3.2.1.2 Job Log •••••••••••••••
3.2.1.2.1 PURPOSE ••••••••••••••
3.2.1.2.2 CONVENTIONS ••••••••••••

•
•
•
•
•
•

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • • 3.2.2 BINARY lOGS •••••••••••••••

3.2.2.1 Account Log •••••••••••••
3.2.2.1.1 PURPOSE ••••••••••••••
3.2.2.2 Engineering Log •••••••••••
3.2.2.2.1 PURPOSE ••••••••••••••
3.2.2.3 Statistic LOl ••••••••••••
3.2.2.3.1 PURPOSE ••••••••••••••
3.2.2.4 Job Statistic log ••••••••••
3.2.2.4.1 PURPOSE ••••••••••••••
3.2.2.5 Binary Log Conventions ••••••••

• • • • • • • • •
• • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

3.3 LISTABLE OUTPUT ••••••••••••••• • • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

3.3.1 LISTING PAGE fORMATS •••••••••••
3.3.1.1 Vertical layout •••••••••••
3.3.1.2 Format Attributes ••••••••••
3.3.1.2.1 CONTINUOUS OUTPUT fILE •••••••
3.3.1.2.2 PAGINATED OUTPUT FILES •••••••
3.3.1.3 Standard Carriage Control. Codes •••
3.3.1.4 Horizontal layout ••••••••••
3.3.1.5 Standard listing Header •••••••
3.3.1.6 OTHER fORMATS ••••••••••••

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

3.3.~ FORMATS •••••••••••••••••
3.3.2.1 Wide Format (132 cotumns) ••••••
3.3.2.2 Narrow Format (80 Columns) ••••••
3.3.2.3 Narrow format (72 colums) ••••••

• • • • • • • • •
• • • • • • • • •

3.3.3 SOURCE LISTING FORMATS ••••••••••
3.3.3.1 Standard Header Contents •••••••
3.3.3.2 TITLE Lines •••••••••••••
3.3.3.3 Wide format •••••••••••••
3.3.3.4 Narrow Format and 80 Column Format ••

• • • • • • • • •
• • • • •
• • • •
• • • • •
• • • • •

3.3.4 OBJECT CODe LISTING FORMAT ••••••••
3.3.4.1 Standard ~eader Contents •••••••
3.3.4.2 Standard Instruction Mnemonics ••••

• • • • •
•
•

3.3.5 ATTRIBUTES LISTING FORMAT ••••••••
3.3.5.1 Standard Header Contents •••••••
3.3.5.2 Wide Format •••••••••••••
3.3.5.3 Narrow Format and 80 Column Format •••
3.3.5.4 Standard Field Vafues ••••••••
3.3.5.4.1 ENTITY TYPES ••••••••••••
3.3.5.4.2 BASIC ATTRIBUTES ••••••••••
3.3.5.4.3 REFERENCE TYPES ••••••••••

•
•
•

•
•
•
•

3.3.6 DIAGNOSTIC LISTING •••••••••••••
3.3.6.1 Standard Yeader Contents •••••••
3.3.6.2 Standard DJa~nostjc listing Format ••
3.3.6.3 Standard Dlaqnostic Summary Format ••

•
•
•

3.3.7 COMPILATION OPTIONS •••••••••••
3.4 ERROR MESSAGES ••••••••••••••••

3.4.1 MESSAGE GENERATOR USAGE •••••••••
3.4.1.1 Standard Condition Codes •••••••

•
•
•
•

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • •
• • • •

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

3-4
3-4
3-5
3-5
3-5
3-6
3-8
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9

3-10
3-10
3-10
3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-16
3-16
3-17
3-19
3-20
3-20
3-21
3-21
3-23
3-24
3-26
3-27
3-27
3-27
3-28
3-33
3-33
3-33
3-34
3-35
3-35
3-36
3-3&
3-37
3-38
3-38
3-38
3-39

3
CYBER 180 System Interface Standard

84/07/27

3.4.2 MESSAGE TeXT ••••••••••••••••••••••••
3.4.2.1 Message Formats ••••••••••••••••••••
3.4.2.2 Error Summaries In togs ••••••••••••••••
3.4.2.3 Message Wording ••••••••••••••••••••

3.5 USAGE STATISTICS ••••••••••••••••••••••••
3.5.1 PURPOSE OF STATISTICS •••••••••••••••••••
3.5.2 STATISTICS FACILITY ••••••••••••••••••••
3.5.3 PRODUCT STATISTICS COLLECTED BY NOS/VE •••••••••••
3.5.4 STATISTICS COLLECTED BY PRODUCTS ••••••••••••••

3.5.4.1 Input Unit Statlstlcs •••••••••••••••••
3.5.4.2 Internal Statistics ••••••••••••••••••

3.5.5 WHEN TO LOG STATISTICS •••••••••••••••••••

4.0 SYSTEMWIDE CONVENTIONS •••••••••
4.1 NA~ES, DATES AND TIMES •••••••••

4.1.1 NAMING CONVENTIONS •••••••••
4.1.1.1 Product Identifiers ••••••
4.1.1.2 Other Global Identifiers ••••
4.1.1.3 Classes of Names ••••••••
4.1.1.4 Special Char~cters •••••••
4.1.1.5 Naming GuidelInes •••••••

4.1.2 RESERVED FILE NAMES ••••••••
4.1.3 DATE AND TIME •••••••••••

4.2 INTERACTIVE PROCESSING •••••••••
4.2.1 INTERACTIVE OUTPUT •••••••••

4.2.1.1 Generat ••••••••••••
4.2.1.2 Messages ••
4.2.1.3 lIstings ••

4.2.2 INTERACTIVE INPUT

• • •
• • •

• •

• • • • • • •
• • • • • • •
• • • • • • •

4.2.2.1 General ••••••••••••
4.2.2.2 Input Diagnoses ••••••••

4.2.3 CONTROL ••••••••••••••
4.2.3.1 Connectivity ••••••••••
4.?3.2 Interrupts and Connection Breaks
4.2.3.3 Status •••••••••••••
4.2.3.4 Help ••••••••••••••

4.2.4 PRODUCT SET RUN TIME COMMANDS •••
4.2.4.1 PAUSE and STOP Literal •••••
4.2.4.2 ACCEPT fRDM CONSOLE ••••••

4.3 INSTALLATION PARAMETERS ••••••••
4.3.1 GENERAL GUIDELINES •••••••••
4.3.2 LIST OF PRODUCT SET PARAMETERS •••

4.4 ERROR PROCESSING ••••••••••••
4.4.1 STATUS VARIABLE ••••••••••
4.4.2 ERRO~ TERMINATION •••••••••
4.4.3 INTERACTIVE ERRO~ PROCESSING ••••

4.4.3.1 Error Messages •••••••••
4.4.3.2 Diagnostics ••••••••••
4.4.3.3 Input Diagnosts ••••••••

4.4.4 BATCH ERROR PROCESSING •••••••
4.4.4.1 Error Messages •••••••••
4.4.4.2 Input Diagnosis ••••••••

4.4.5 TRANSACTION ERROR PROCESSING ••••

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

3-42
3-42
3-43
3-43
3-45
3-45
3-46
3-41
3-48
3-48
3-50
3-50

4-1
4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-9
4-9
4-9

4-10
4-10
4-11
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-18
4-16
4-18
4-19
4-19
4-20
4-21
4-21
4-21
4-22
4-23
4-23
4-24
4-24
4-24
4-25
4-25
4-25

It
CVBER 180 System Interface Standard

84/07/27

4.4.6 RESTART ••••••••••••••••••••••••••
4.5 EFfECTIVE USE OF ClBO HARDWARE •••••••••••••••••

4.5.1 HARDWARE OPERATION •••••••••••••••••••••
4.5.1.1 Interlock Words ••••••••••••••••••••
4.5.1.2 Pre-serialization of Clear Lock ••••••••••••
4.5.1.3 Register Reservations •••••••••••••••••
4.5.1.4 Alignment of Tables and Words •••••••••••••
4.5.1.4.1 64-8IT WORD BOUNDARIES ••••••••••••••••
4.5.1.4.2 OTHER BOUNDARIES •••••••••••••••••••

4.5.2 HARDWARE PERFORMANCE ••••••••••••••••••••
4.5.2.1 locality of Reference •••••••••••••••••
4.5.2.2 Register Allocation and Usage •••••••••••••

4.5.3 SECURITY ••••••••••••••••••••••••••
4.5.3.1 Procedure Parameters ••••••••••••••••••

4.6 SUPPORT OF EBCDIC DATA •••••••••••••••••••••
4.7 KEYPOINT USAGE •••••••••••••••••••••••••

4.7.1 KEYPOINT CLASSES • • • • ••••••••••••••••••
4.7.1.1 Operating System ••••••••••••••••••••
4.7.1.2 Product Set ••••••••••••••••••••••
4.7.1.3 Other CJasses •••••••••••••••••••••

4.7.2 KEYPOINT IDENTIFIERS ••••••••••••••••••••
4.7.2.1 Operatlng System ••••••••••••••••••••
4.1.2.2 Product Set ••••••••••••••••••••••

4.7.3 KEYPOINT USE ••••••••••••••••••••••••

5.0 COMPILER AND ASSEMBLY CODe CONVENTIONS •••••••••••••
5.1 USE OF LOADER FEATURES •••••••••••••••••••••
5.2 INTERlANGUAGE CALLING SEQUENCES ••••••••••••••••

5.2.1 CALLING SEQUE~CE FORMATS ••••••••••••••••••
5.2.1.1 Kinds of Parameters ••••••••••••••••••
5.2.1.2 System Format of the Interlanguage Call ing Sequence ••
5.2.1.3 General Format of the Interlanguage Calling Sequence ••
5.2.1.4 Summary or Format DIfferences •••••••••••••
5.2.1.5 Calls Potentially from Another Language ••••••••
5.2.1.6 Calls Potentla"y to Another language •••••••••
5.2.1.b.1 SUPPORT FOR CALLS TO ANOTHER LANGUAGE ••••••••

5.2.2 CALL ••••••••••••••••••••••••••••
5.2.3 REGISTER SAVING CONVENTIONS ••••••••••••••••

5.2.3.1 Information Required Across Call ••••••••••••
5.2.4 fUNCTIONS •••••••••••••••••••••••••
5.2.5 PARAMETER LIST •••••••••••••••••••••••

5.2.5.1 System Format Parameter list ••••••••••••••
5.2.5.2 General Format Parameter List •••••••••••••
5.2.5.2.1 FLAG WORO PRECEDING PARAMETER LIST ••••••••••
5.2.5.2.2 GENERAL FO~MAT VALUE PARAMETERS •••••••••••
5.2.5.2.3 GENERAL FORMAT SIMPLE REFERENCE PARAMETERS ••••••
5.2.5.2.4 GENERAL FORMAT EXTENDED REFERENCE PARAMETERS •••••
5.2.5.2.5 GENERAL FORMAT STRING DESCRIPTORS ••••••••••
5.2.5.2.6 GENERAL FORMAT ARRAY DESCRIPTORS •••••••••••
5.2.5.2.6.1 Stride •••••••••••••••••••••••

5.2.6 DATA REPRESENT4rrON ••••••••••••••••••••
5.2.6.1 Integer ••••••••••••••••••••••••
5.2.6.1.1 ~ BYTe INTEGER ••••••••••••••••••••

4-25
4-25
4-25
4-26
4-26
4·-27
4-27
4-28
4-30
4-30
4-31
4-31
4-32
4-32
4-33
4-34
4-34
4-35
4-36
4-36
4-36
4-36
4-36
4-38

5-1
5-1
5-3
5-4-
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-7
5-8
5-9

5-10
5-10
5-11
5-11
5-11
5-12
5-13
5-13
5-13
5-14
5-15
5-15
5-16

5
CYAER 180 System Interface Standard

84/01127

5.2.6.1.2 8 BYTE INTEGER •••••••
5.2.6.2 Fixed Length Character (String)

•

5.2.6.3 Rea' ••••••••••••••
5.2.6.4 Double Preclsion ••••••••
5.2.6.5 Complex ••••••••••••
5.2.6.6 Boolean ••••••••••••
5.2.6.7 Pointer ••••••••••••

5.2.1 DATA ALIGNMENT AND PACKING •••••
5.2.7.1 Variables •••••••••••
5.2.7.2 structures •••••••••••
5.2.7.3 Arrays ••••••••• • • • •

• • • •
• • • •

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

5.2.7.3.1 ARRAYS OF VARIABLES •
5.2.7.3.2 ARRAYS OF STRUCTURES •
5.2.7.3.3 COMMON SLOCKS •••• • • • • • • • • • • • • • • • •

• • • 5.2.8 LANGUAGE INTERCHANGE TABLE •
5.2.8.1 Extended Interchange ••

5.2.9 REGISTER CAll FU~CTIONS ••
5.3 INTERPRODUCT FILE USAGE •••••
5.4 STORAGE MANAGEMENT •••••••

5.4.1 STANDARD STACK FRAME ••••

•
• • • •
• • • •

• • •
• • • •
• • • •

5.4.1.1 Traceback •••••••••••
5.4.1.2 Static ChaIn ys. Display •••

5.4.2 CHAINS OF ON-CONDITION PROCESSORS •
5.4.3 DYNAMIC NON-STACK STORA~E •••••

5.4.3.1 Dynamic Segments ••••••••
5.4.3.2 fixed-Position Dynamic Storage.
5.4.3.3 Variable-PosItion Dynamic storage

5.5 COMMON SUPPORT MODULES •••••••••

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • • •

b.O GLOSSARY OF TERMS •

5-16
5-16
5-16
5-17
5-17
5-11
5-17
5-17
5-18
5-18
5-19
5-19
5-19
5-19
5-19
5-20
5-21
5-22
5-22
5-23
5-23
5-24
5-24
5-24
5-24
5-25
5-Z5
5-25

6-1

