1
CYBER 180 System Interface Standard
847067727

CYBER 180
System Interface Standard
by
Sunnyvale Product Design
and

Advanced Systems Deslign

Revision J

, June 15, 1984
revised July 26s 1984

- s

1-1
CYBER 180 System Interface Standard
847077127

——— - — T - W S S B I -~ —— -

1.0 GENERAL

1.0 GENERAL
1.1 PREEACE_IQ REVISION J_{REVISED 26 JULY_1982)

Aporoved SI1I5 DAPs Incorporated in this revision are:

S4646 ~ Revised C180 Common Parameter List Format (John Barney)
© {Major cthanges to section 5.2)

S4658 - Add Deck Classes A and B {Pete Warburton)

$4753 - Correct Dialog Parameter (Alan McMahan) ,

5477% -~ Change Product ID for BASIC (Bruce Kenner)

1.2 REVIEWING AND _UPDATING THIS DOCUMENT

The C189) SIS has been through a number of review cycles and has been
formally approved by the L180 Baseline Change Control Board (BCCB}.
It is thus considered fairly solid,

Howevers tt Is recognized that the SIS iIs a living document nwith a
continual need for updating. Please Tollow the following guidelines
in reviewing and updatinag this document:

1. Limit comments or updates to guestion of Inaccuracys 1ack of
completenesss» or necessary technical change. Avoid questions
of personal preference,

2 For retatively minor problems or questions resulting from a
normal reviews a normal DCS comment is appropriates it is the
responsibility of the appropriate author{(s) to resocilve the
commaent,

3. For more major updates that may be somewhat controversialsy a
stand-glone DAP Is appropriate. This allows a thorough review
of the lssues Involved., When approvedy the DAP will be
included in the next SIS updates The SIS referee or editor
should be informed of any plans to submit such a DAP and the
DAP should be in the form of a proposed SIS update.

4, There will be occasslonal "minor review cycles™ of the SIS to
incorporate minor changes and previously approved DAPs,
Authors may make minor changes to their sections at this time
far review and anproval,

W B B we B S S R N W s S

1=-2
CYBER 180 System Inter¥face Standard
84707727

1.0 GENERAL
1.3 CHARTER

1.3 CHARIER

1+3.1 PURPDSE
The purpose of this standard is to ensure a3 uniformity
across the operating system and product se2t that wiil make
the total system more easily usable and human engineered,.

1.3,2 SCOPE

This standard covers product—to-products product-to—-user,
system-to~user» and product—-to—-operating system interfaces.

Any external Interface which Is not defined by an industry
standard may be defined in the System Interface Standard.
In order to achieve a uniformity across the product sety
certain internal) Interfaces shall be Included In this
standardy e.g9, calling sequencesa
The product set Includes:

The Comoilersy Interpretersy and Assemblers

Data Manag2ment Products

Utilities

Source Code Malntenance
The operating system includes:

Basic operating system (monitors I/0 driverss, system

startugs overator communicationy permanent file

managery etc),

Loader

Reacord Manager

Command Language

Networks and Interactive Product

On=Line Maintenpance Software

The "system™ includes:

The operating system

1-3

CYRER 180 System Inter face Standard

L ———— oo o~

84707727

W ol A T~ — " - - ——— — - s —— - -

1.0 GENERAL
l1.32.2 SCOPE

1s.4 GOALS

The product set

The specific gnals of the System Interface Standard are:s

A

b

Cs

de

€

Consistency within and across the system.
Human engineered for user,

Achievable within CYBER 180 timeframe,
Good performance,

External interfaces like CY170 where this does not
conflict with a» by» ¢ and d above,

There must b2 more than trivial galn In aspects of human
engineering to cause deviation from CY170 external
interfaces,

2=-1
CYBER 180 System Interface Stangard
847071727

2.0 INPUT

This section describes the standard and conventions for
Input to productss Input standard is defined for System
Command Languages Control Statements source file
organization and contents,

2.1 SYSIEM_COMMAND LANGUAGE

The System Command Language is the set of language rules
and conventlons t» be followed by any software product
that presents a user Interface {which Is not defined by an
industry standard). It Is documented in the NOS/VE ERS
{BCS documents ARH3609, ARH361C). For exampley, commands
to call productss, and operetor commands wjll conform to
this language definitions It is 3 requirement that aill
products use the standard command language routines to
process system command language statements (such as
product call commands or product directives). The intent
here is that products do not duplicate code or functions
already provided by standard command language routines.
See NOS/VE ERS {(ARH3610) for a description of these
routines.

2.2 BRODUCT CALL_COMMANDS

This standard specifies the parameters which can be used
in commands that call CYBER 180 products. The syntax of
the command is documented in the NOS/VE ERS.,

2.2.1 APPLICABILITY

This section soecifies all parameter namesy descriptions
and defaults of parameters on a command that calls a
product., Requirements for use of the parameters aret

. If a product nffers a capability which is the same as
one defined in this standards then the specification
in this standard must be used,

» A product Is not permitted to use a parameter defined

2=2
CYRER 180 System Interface Standard
84707127

INPUT
«1 APPLICABILITY

A caan S - -~ - - - - " T " - - T . - - W - -

.
[3% JE]

by the standard for a purpose other than that
specified by the standard.,

. A product need not implement ajll the parameters or all
the parts of a paramater in this standard,.

» New parameter names or options must first be approved
as additions to this standard.

» A product may support as many aliases as defined for
the parameter, Howevery if a product provides a
function described by the parameter in this standards
the described parameter name and its allases must be
supported by the product as a minimum,

Some guidelines for oroposing new parameter names and/or
opticns are?

1s Use a new option of an existing parameter rather than
a new parameter name if the capability is an extension
of an already defined parameter {(example! use D=DS
instead of Inventing a new parameter DS for debug
statements,

2. For refated parametersy use allases that empbasize the
relationship (examplas LD to relate listing options to
the Jist files L),

2+2.2 TERMINOLOGY

Defaults The value used for a parameter when the parameter
does not apoear In a command., Section 4.3 on installation
parameters Indicates which parameter defaults are
installation changeable. The defaults specified iIn
section 2.2¢%4+2 are those expected to be most often used.

2¢2+3 SYNTAX

The syntax of the command is defined in the NDS/VE ERS.

1f a parametar is omitted, default values are used., Use
of <parameter name = DOFF> results in turning off a single
option parameter or bool2an single specified value
parameter. Usa of <parameter name> = NONE indicates that
3 specified value Is not supplied for a multiple value or

2-3
CYBFR 180 System Interface Standard
B4107127

240 INPUT
2e243 SYNTAX

W - - -~ - - - —

multipte option parameter {(for exampiey LD = NONE causes
none of the 1ist optlons to be selacted),

When the parameter value is a file namey the file name
$NULL should be used to negate that file (for example,
B=$NULL causes the product not to produce s binary object
code file), SNULL is a reserved file names A read wiill
respond with an end-of-information. SNULL is sn infinite
sink for writes.

The following algorithm is applied to parameterss

i Initially, all value options for this parameter are
considerad deselected {i.es there are no initlal
valuas).

Ze DOnily the option{s) specified in the walue 1ist are
then selected,

The <name> used on the command to c¢ali a product can be
either an altias or a long form as follows:

Alias Long Form Description
APL 8 programming language
BASIC beginner's all-purpose symbolic

instruction code

ccC The language C

co80L common business oriented language

CYsIL Cyber implementation language

EDIF EDIT_FILE Edit Screen (for raw text)

EDIL EDIT_LIBRARY Edit Screen (for Source Code
Utitity 1ibraries)

FMU file management utility

FTN FORTRAN formula translation

LISP Iist processor

PASCAL PASCAL (wirth)

PLI ’ programming language I

2=4%
CYBER 180 System Interface Standard

84/07/27

2.0 INPUT
2223 SYNTAX

Qu query update

SCuU source code utility
SORT sort

MERGE mer ge

VX UNIX system emulator

2e2¢4 PARAMETER

Jccurrence of any parameter more than onte in a control
statement JIs an error.

2+2+%.1 Positiopal Qrdecipng.ef_Product_Sei _Parameters

Product set members providing the I, B8y and L parameters
must support the following positional ordering on a
non-keyword call, There is no¢ guaranteed common ordering
of other parameters to a product set member except what
might be documented In the reference manuai for that
product.

l. INPUT

2e¢ BINARY (normally the main desired output of a compiler)

3. LIST

2.2¢4.2 Types.of_Pacamelars

See the Command Interface (Part I) of the NDS/VE ERS for a
description of the file referencey, which is the syntax to
be used for specifying a file name as a parameter value,
1f no position is specified, the product will reposition
the flle befora use as followss

a) for a file named $INPUT», no repositioning will
take place if the file is at beginning of
informationy at end of iInformations or at a
partition boundarvy. Otherwisesy it will be
rapositioned to end of partition before use.

2=5

CYBER 180 System Interface Standard

-———— v -

84/07/27

- - - - —

2 Types of Parameters

b)Y for a file named $0UTPUT» the product wiil do no
repositioning before use,

¢) for all other flles, the products wiill reposition
to beginning of information before use.

Example: If a call to SCU has been made to write three
source decks to COMPILE (the first FTN» the second CYBIL,
the third FTN) and they are to be compiled with the object
code placed on File LGDO» the $ASIS positioning must be
specified on the second and third compi!atinns since
default positioning is rewind,

FTN I=COMPILE
CYBIL TI=COMPILE«SASIS,B={GO.3ASISsL=30UTPUT
FTN I=COMPILE «3ASIS»B=LGO.3ASIS,L=30UTPUT
There ar2 four kinds of parameters:
{1) Single Specified Value

This is a parameter for which the user must specify a
values such as a file reference or a boolean as in the
forms

Keyword = <boolean>

where:s

<boolean> 3t = Ltrued 1 <falsed
{true> 12 = TRUEF ! YES ! ON
<false> 33 = FALSE ! NO ! (QFF

For the sake of consistency the values ON and OFF will be
used In this document. Products may choose any of the
values for Ltrue> and <falsed> desired and describe the
choices as such in the product documentation. The
operating system will accept the values for <trued> and for
{falsad> equivalently when the standard command }language
routines for the control statement processing are used,

As 3 resulty» users Wwill be able to enter any of the values
for <true> or for <falsed> without regard for what values a
product has chosen to document.

{2) Multiple Speacified Vajue

This is a parameter for which more than one vajue {such as
file references) may be specifiedes The form

2=5

CYBER 1BU System Interface Standard

T —— - -

B4/7C7/27

2.0 INPUT
2420442 Types of Parameters

. s o - — - -—— - -

Kparameter—-nama = NONED> witl be used to indicate that none
of the available options for a parameter are desired.

{3) Single DOption

This is a parameter for which the user specifies
option> = ON

{#) Multiple DOotlon

This is a parameter for which the user may specify the
names of more than one option.

For multiple snecified value parameters the value list
syntax is as describead in the NOS 180 ERS» Part I section
“"pParameter Lists and Types"., A value list consists of a
series of value sets separated by cne or more spaces or by
a single commae. When more than one value set is
specifieds the list must be enclosed In parentheses, A
value set consists of a series of values separated by one
of more spaces Oor by a single commas. When more than one
value Is specified the se2t must be enclosed In
parentheses, The rule is that an oputermost pair of
parenthesss belong to a value iist and inner palrs of
parentheses belong to value set.

The form <{parametar name = NONE> will be uysed to iIndicate
that none of avallable cptions for 2 parameter are desired.

2+2+44+3 Parameter_Names._aod_Descriptions

The parameters are described in alphabetical order,

Parameter

AUDIT

Name

Alias Parameter Description

AtID This parameter is used to indicate that
the product Is being run for audit
testing. The parameter causes the
selection of any other parameters which
may be needed for audit testing as well
as selecting the method of processings
which may differ from normal! processing.
Each product must provide a list of items
affected by the AUDIT parameter. For
exampley in COBOL the list of items might
include the mode where displays of

2=7
CYBER 180 System Tnterface Standard
B4/707127

2.9 INPUT
222+%43 Parametar Names and Descriptions

— - — — - - -

numeric items would not be edited.

Single option parameter, Default: the
option Is not selected.

AUDIT = ON selects this option.
RINARY_NRJECT 2 Rinary Object code output file,
B = Lfile>

This parameter specifies the file teo
contain the object code or text produced
by a compliler or assembler,

B=gNULL indicates that no such binary
objact code output fite is to be uritten.

Single specified value parameters defauit
= $LDCAL.LGD

COLLATING_SEQUENCE_X SEGX Coliating sequence {X = Name or N» Step
6r Ss» Remainder or Ry Alter or A). The
parameters SEQN, SEQS», SEQR and SEQA
control definitions of collating
sequences for an applicable product,

SEQN. The SEQN parameter signals the
start of a collating segquence
definition. The definition of one
collating seauence continues with SEQS»
SEQR, SFQA parameters; it is terminated
by any parameter not one SEQS» SEQR»
SEQA, The form is:

SEQN = <name>y where name is the name of
the collating sequence.,

SEQS. Each SEQS parameter specifies
efther a single step or a range of

stepses The form is:

SEQS = <value-~listds where the
expressions in the value list are
char acter expressions.

SEQRs This parameter specifles all
characters in the character set not
specifiad Iin a SEQS parameter, explicitiy
or implicitliyes The form iss3

CYBER 180 System Interface Standard

2.0 INPUT

2e2+%+3 Parameter Namas and Descriptions

-~

COLUMNS

COMPILE

COMPILATION_
DIRECTIVES

C170_COMPATIBLE

coL

ce

cc

SEQR = ON

) ‘%“
SEQA, This parameter may be specified to ﬂhmm,
alter alil equated characters In output %
records so they become the first !%%y
character in the appropriate SEOQs L™
parameter. The form is:? W%M

SEQA = ON. b

This parameter specifies three values?
starting and ending columns containing
source and column containing a8 directive
to the product {(each product for which
such a directive is supported will define
the meaning of the information in Its
directive column), For exampley PL/I may
define the directive cojumn as containing
a print carriage control character.,

Single specified value 1ist; default =
{1»n) where n Is janguage dependent.

Compile file,

This parameter specifies the output flle
on which compiler source statements are
written., Examples are! the output
produced by a conversion aid utility; the
updated source output by the source
maintenance utility for input to an
assembier or compiier.,

Single specified value parameters
default = COMPILE,

If selectedy compiltation directives {(see
SIS section 2.4) will be recognized.
Otherwise compilation directives will not
he recognized=-—if directives are expressed
as a special form of comment they will be
treated as are all other comments.,

Single option parameter. Defaulit = 0N,
directives are recognized.

If selectedy all possible CYBER 170 to
CYBER 18(¢ product differences will be

2=9

CYBFR 180 System Interface Standard

- . A

2.0 INPUT

84707727

2424443 Parameter Names and Descriptions

T - — - - -

DEBRUG

converted to the CY180 version or
diagnosed with messagess, For exampie, in
COBOL items specified as COMP=4 will be
assumed to be COMP. All products will
provide a list of such conversions or
assumptions.

Single option parameter. Default: the
option is not selected.

C170_COMPATIBLE = ON selects the option.
Debugaing option

This parameter speclflies the debug eptions
to be sejecteds Al} products need not
support all options. Multiple options may
be specifieds The defined options are:

DS Debugging statements., A1l debugging
statements will be compiled. A
debugging statement is a statement in
the source which Is ignored by the
product unless this option is
specified, Debugging statements
ysually specify debug actions for the
moduie containing them., See also
section 2+447 of this standard.

NC Mo checkings. Do not generate
parameter checking information as part
0f the object codes Unless NC is
specifiedy all compilers which support
checking wiil generate actual informal
parameter description Information in
the object code to enable load~time
detaction of parameter mismatches.

NT No tables. Do not generate line
number and symbol tables ss part of
the object codes Unless NT is
specifiedy line and symbol tables are
generated on all compliles.,

NC 0Object code regardless. Produce
object codes regardless of errors in
the source and severlity of such
errorse. For compilers, execution of a
1ine contalining a fatal error should

2=10
CYBER 180 System Interface Standard
8470717127

- A - — A ———-— ————-— - ——

2«80 INPUT
2e2+% 43 Parameter Names and Descriptions

N - - - - - -

result Iin a call to an obJject time
routine which wiil terminate the
execution with a message. {(See
section 3.4 for error status returned.)
Products with no object time library
may generate a zero {program error)
Instructon for lines in error.

TR Flow tracing. Activate trail progmats
in the source program. Uniess TR is
specifiedy trace progmats have no

effect,
Multliecle option parameters The default Is
MONE
DEFAULT _CDLLATION ne This parameter specifiss the weight table

to be used for the evaltuation of character
{string) relational expressions and to be
used by intrinsic functions which are
collated sequence dependent {(for example
CHAR and ICHAR In FORTRAN). The defined
options ares

U or USER
A user specijfied welght table is
useds In FDRTRAN a coljection of user
callable procedures is provided for
manipulating the user weight table.

F or FIXED
A fixed (unmodifiable) processor
specified weight table is used.

Single specifled value parametery
default = FIXED,
DIRECTIVES DIR Directive File.

Additional parameters wlll be read from
this file after all of the control
statement parameters have been read.

DIR=file-name
Parameters will be read from file,
file=name.

DIR=(file=~namellsfile=name2] s s+ »)
Parameters will be read from the
files in the order that they are

2=-11
CYBER 180 System Interface Standard
841077127

2.0 INPUT
224443 Parameter Names and Descriptions

- - - - -

pamed,
Multiole specified value parameter,
default = NO ADDITIONAL PARAMETERS ARE
READ.,

ERROR

1}

Error File,

This parameter specifies the name of the
file to recejve error listing
informations In the event of an error
{of EL specified severity or higher) the
diagnostic is written to the E file.s It
Is highly recommended {though not
required) that a product also output the
offending source line or 1ines to the E
file in conjunction with the diagnostic.
If there is a tisting file {(see L
parameter) the error line and diagnostic
are also written to the L files ITf the
file name of the E file is the same as
the flle name of the L flley, then the
grror line and diagnostic are not sritten
twice.

Single specified vyalue parametery
default = the listing file specified by
SERRNRS

ERROR_LEVEL EL Error Level,

This option indicates the severity level
of diagnostics to be printed on the
user's listings The levels are ordered
by Increasing severity., Specification of
a particular level selects that level and
all more severe levels:s Products wilil be
aliowed some flexibility In specifying
the kinds of diagnostics that fall in
aach of the six categoriess

non=-standards, machine dependent, trivial,
warnings fatals and catastrophice The
following descriptions are provided as a
guide, 'The product'!s status parameter
will be set according to the value of
termination error level (TEL).' The
tevels In increasing order of severlty
ares

2=12
CYRBER 180 System Interface Standard
Bar107727

2.0 INPUT
2224443 Parameter Names and Descriptions

T Informationats. This Is an
informational message used to flag a
suspicious usages. The syntax is
correct but the usage is
questionable, For 170 compatibility,
products are free to use 'T? jn
addition to 'I', Howevers output
Wwil) always be ¥Iv, not 'TY,

W Warninge This is a dlagnostic where
the syntax is incorrect but the
product has made an assumption (such
as adding a ccmma) and continued.
Messages indicating attempts at error
recovery are at this level,
NDiagnostlics of W level should be
errors that the user can avoid by
program modification.

Fatal., This is a diagnostic which
prevents the product from processing
the statement in which it occurs.
Unresolvable semantic errors also
fall into this class. Such errors
may not relate to a specific
statement in the program unite
Errors of type VERROR! will be
treated as equivalent to 'FATAL?',

hal

i Catastrophice This class of error is
fatat to continued processings The
product is unabie to continue work on
the current program unit. However,
it should still advance to the end of
the current program unit and attempt
to process 3 subsequent unit (if the
product speclificaton allows multiple
program units in a compilation).

Singla specified value parameters
default = W,

EL=NDONE causes no errors to be listed,

ESTIMATED _NUMBER_ ENR Fstimated Number of Records.,

RECDRDS This varameter specifles the estimated
number of records to be processed by a
product. For example, SORT can use It to
cause selection of efficient modes of

Z2=13
CYRER 1B0 System Interface Standard
B4I07127

2.0 INPUT
2+24%43 Parameter Names and Descriptions

- - — - - - - a

procaessing.

Single specified value parameters
default = BOOQD/MRL.,

EXCEPTION EXC This Is a file contalning exception
informationas Products wil!l be allowed
flexibility in defining Its contents,
For 2xamples SORT MERGE will use It for
cut-of-order merge input records,

Single specified value parameter, default
is product dependent.,

EXPRESSION_ EE The options of this parameter conftrol the

EVALUATION style of code generated for the
evaluastion of source expressionse Note
that the processing controliled by this
parameter is separate from that
controlled by the optimization levei
parametery but may affect the extent to
which optimization is possibles The
defined options are:

C or canonical
The code genarated to evaluate an
expression will mirror the expression
interpretation rules as defined in
the product specification. For
FORTRAN this would be section 6 of
the ANSI standards. This coption also
serves to inhibit the CCG “regroup"”
option.,

ME or maintain_exceptions
Inhibit code optimizations which
eliminate instructions that might
cause hardmare exceptions at
execution time., This option also
serves to inhibit the CCG
"unsafe_to_safe™ option.

MP or maintain_precision
Inhibit code optimizations which
change a3 floating point operation to
a new form that is mathematically
equivalent but not computatlonally
egquivalent, This option also serves
to select the CCG "maintalin_

. 2=14
CYBER 180 System Inter®ace Standard
84707727

2.0 IWHPUT
2+2+%+3 Parameter Names and Descriptions

- - ——— - - - A A T D WD T W W W W D S S S

precision” option,

R or reference
Intrinsic functions {e.gs, those
defined in CMML) for which a
procedure call is generated will be
called by reference rather than by
value,

Mujtiple option parameter.
Default = NONE» none of the options is
sefjeacted.,

EXTERNAL_INPUT_ EX_ External input file,
FILE INPUT

This flle Is for use by products which
provide the capability of temporarily or
alternately obtaining source statements
from a File external to the input file.
For examples the COBOL COPY statement,

Single specified value parameter;
default = $NULL.

FORCED_SAVE Fs If selectedy the definition status, of
all entities within a subprocedure of 2
program will be retained upon exit from
that subprocedure. Effectively this
disallows placing any variables on the
stacke.

Single option parameter, Default = 0OFF)
definition status need not be retained
axcept where so required by the product
specification,.

FROM DId File,
Thls parameter specifies the data input
file for the product. For example: the
file from which a copy utility reads.,.

Multiple specified value parameter;
default = 0OLD.

INPUT I Input flle.

This parameter specifies the source input

2=15

CYRER 180 System InterTace 3Standard

84707727

2.0 INPUT

2e2+4¢3 Parameter Names and Descriptions

- — -~ ..

INTERACTIVE_ id,
DIALDGUF dialog,

dia
KEY

file name to the product,

Single specified value parameter;
default = $INPUT.

This parameter determines whether the product

will Initiate an interactive dialog with the user,
intead of operating in its usual batch-oriented
Fashien, This dialog consists of questions and
2xplanations written by the product to file $0UTPUL,

- e B e

and of user-supplied answers read from file $INPUT}

The dialog can be invoked either from an interactiie
terminals or a3 batch Job.

Single option boolean parameter:

YES This choice injtiates the dialog., Ald oth
parampeters on the command 1ine may
be ignored except STATUS.

N0 Do not Invoke the dialog.

omitted Same as NO.

e e e e RS W e e
-

Key Fleldi(s).

Thls parameter specifles the key fields
that determine the manner in which input
data might be processed by a product.
For example, SORT will use the parameter
to determine the order records witl be
sorted,

KEY=<value—-1ist>
The value fist will contain one or
more value sets. The resutlting
output wili have been processed
according to the key field described
by the leftmost value set, Input
data with equal values for this key
field will be processed according to
the key field described by the next
value sety et cetera.,

Multiple specified value parameter. The
default value set specifies

key=l.smnrs where mnr is the
smallest of any MNR on a FILE
control statement for Input files.

2=16
CYBER 180 System Interface Standard
~ B4/07727

——— - s - -

2e2e%+3 Parameter Names and Descriptions

LEADING _BLANK_ZERD LBZ If selected, leading bianks in numeric
fields are treated as zeros in arithmetic
statements and comparisons. If not
selecteds, numeric Ffields that contain
blanks are in error.

Single option parameters. Defaull: the
option Is not selected,

LBZ = ON selects the option.
LIST L Listing file.

This parameter specifies the File where
the product writes the source fisting,
diagnosticss statisticss and any
additional list information (see LD
parameter).

Single specified value parameter,
defaultt =%LIST.

LIST_OPTIONS L0 Listing options.

The oprtions of this parameter specify
what eaxtra information will appear on the
listing file (LIST parameter)s, Multipile
optlions may be specifieds The defined
options ares

A Attributes., A listing of the
attributes of each entity defined
within the program is produceds, If
R was selectedy the references are
shown on the same listings, See
section 3.3.5 for more information
on attributes,

n Prohibit Banner. The banner is not
sent to the Listing file,

30 Byte Dffsets {(Release 2 feature)
Tf source statements are Jisted, an
offset field Is included (see
section 3.3+3.3). This option is
meaningful only for wide format
{istings.,

DE DETAILED EXCEPTIONS. Print out

CYBER 180 System Interface Standard

A > —— . W TS D W A

20 INPUT

8470

2=17
7727

- - - -

2e2+4e¢3 Parameter Names and Descriptions

MS

D

RA

W)

SA

30

—

exception file messages as often as
a record is sent to the exception
file,

Map. A storage layout map for
common blocks and esguivalence groups

Merge Statisticse. Turn on listing
of merge statistics,

Object code Jlistings A listing of
the generated object code with
instruction mnemonicse.

Prohibit prompts The normal input
prompts are not sent to the Listing
file,

Cross reference listings A cross
reference of program entities
showing locations of definition and
use within the program,

Cross reference listing of all
program entities whether referenced
or not.

Record Statisticss List the
statistics for the records
sorted/merged.

Sources Source listing of the
Programe

Source listing of all source
statements including lines turned
off by a source embedded NOLIST
directive. {(See section 2+.4.2)

Source original, Provides a listing
of the original sources, For
examples in COBDL, this listing is
produced before expanslion of “COPY"
and "REPLACE"™ statements.

Multiple option parameter, default = S,

LD = NONE causes none of the I1ist options
to be selected.

£

2=-18
CYBFER 180 System Interface Standard

B&4/707727
2.0 INPUT
2424443 Parameter Names and Descriptions
LITERAL _CHARACTER LC This parameter can be used to change the

character that delimits non=numeric
literals, Default literal character is
quotation mark,

LC=0FF js an error.

MACHINE _DEPENDENT MD This parameter specifies whether use of

machine dependent source features is to
be diagnosed and If s0» how severely., The
saverity level is one of the following?

or iInformational
or wWarning
or fatal

Tt % v

Frrors of type 'ERROR?!' will be treated as
eqguivalent to 'FATALY,

Single specifled value parameter,
Default = NONE, machine dependencies are
not to be diagnosed.

MASS_STORAGE_LIMIT MSLIY, Mass Storage Limit, This parameter

MSL specifies the maximum number of
characters that may reside on mass
storage during execution of the product
{for example, SORT).

MSLIM = expre The number of characters
indicated by expr §is the mass storage
}imite Expr must be an integer.

ONE_TRIP_DOD nTD This parameter selects the minimum trip

count for FORTRAN DO-lpops ton be one
rather than zero.

OPTIMIZATION ner Optimization,

This parameter specifles the level of
object code optimization. A11 products
nead not support aill defined levels.
Houwever if product supports a defined
fevely 1t must be selected by the
spacified option name, Ideally all
products should recognize all defined
options and issue informative diagnostics
for unsupported options that the user
selects, Allowabile options ared

2=19
CYBFR 180 System Interfsce Standard

84707727

o0 INPUT
2924443 Parameter Names and Descriptions

DEBUG Db ject code Is styilzed to
facilitate debuggings Stylized
code contains a separate packet
of Instructions for each
executable source statement,
carries no variable values
across statement boundaries in
reglsterss notifies DEBUG each
time a beginning of statement or
procedure is reachedsy etc.

L OW Lowest la2vel of production
quality codes CLode is not
completely stylized,

HIGH High ievel of production quality
coOde.

Single specified value parameter;
default = DEBUG

DWNCDDE_FILE DWNF Dwnecode flles For products which provide
the capability to specify user generated
owncode procedures. This parameter
spaclifies the source of owncode
procedures, See parameter OWNn.

DWNF = file=-names File file-pname will be
loaded.

Default = omitted,

OWNCODE _FIXED_ OWNFLs Dwncode Fixed Lengths See also OWNnN.

LENGTH OrL This parameter specifles the record
length in characters of all records that
will be input to 2 product from any
owncode procedure, See also OWNMRL
parameter.

OWNFL = <integer>. Every record supplied
hy an owncode procedure will contain
exactly <integer> characters. Default:
{See DWNMRL).

DWNCODE _MAXIMUM_ ODWNMRL DOwncode_Maximum_Record_Lengths, The

RECORD_LENGTH NMRL maximum length In characters of any
record supplied by any owncode procedure
Is specified by this parameter. This

2=20

CYBER 180 System Interface Standard

T T A G Y . - I

2«0 INPUT

84707727

2+2e4+3 Parameter MNames and Descriptions

DWNC ODE_PROCEDURE_n

RETAIN_DRGINAL _
ORDER

OWNn

— - v -

parameter ma2y not be specified If the
product has input or output files and if
any of their associated MRL's are at
least as large as this MRL., See also
Dubdn .

OWNMRL = <integer>., There will) be at
most <integer)> characters in any records
supplied by an owncode procedure,

Default: If OWNFL and OWNMRL are both
omittedsy the record length speciflcation
will depend on the Ytength specifications
of the Input and output files. If ali
input and output files have fixed—-length
records of the same length that length
Wwill serve as the default for OWNFL.
Otharwise the largest MRL or FL from any
input or output file will serve as the
default for QWNMRL.

Owncode procedure n (n = 15 25 3y 4y 5,
ssvs)s The maximum of n is j1eft to the
Indivyidual products. Owncode procedures
ara user written routines that may be
loaded with the product and executed at
spacified points during product
exacution, See other (OWNCODE
parameters for more information on this
capability.

The procedure specified by this
parameter will be executed at a
specified point n during product
exacution.

OWMn = proc_name, The procedure
proc_name will be executed at a
specified point n.

Dafault: No procedure wlll be executed,

RETAINs, Ratain Orginail QOrder,

RET

Equlvatent records or records with
equlivalent identifying characteristics
will be output in the same order as
input by a product. For exampley with
SNRT» the equivalent ldentifyling

2-21

CYBER 180 System Interface Standard

84/C7727

2«0 INPUT

222+%e3 Parameter Names and Descriptions

RUNTIME _CHECKS

SEQUENCED _LINES

_C

SL

characteristics would be 2qual keys.
Th2 order in which multiple input files
are specified is the order in which
racords with equivalent characteristics
are retained with this parameters,

RETAIN = ONs. Records with equivalent
characteristics wiil retain their
original order.

RETAIN = OFF. Records with equivalent
characteristics will not necessarlly
retain their original order.,

Daefault: Same as RETAIN=0FF.

This parameter controls which runtime
checks are compliliaed into the object
code and/or selected for runtime
Jibrary routines., Runtime checks are
product dependent but if a product
supports one of the ones described
herey it must be selected by the value
specified, Defined values are:

R Range checkss. This option selects
range checking for one or more of
the following
- character substring expressions
- scalar subrange assignments
- case varjiabies

S Subscript checks. This option
causes subscript and index
references to be checked to ensure
that they are within program
defined limits.,

T Tag fleld checks. Selecting this
option ensures that accesses to
yariant records are consistant
With the value of their tag field
{if one exists).

This is a multiple value parameter.,
Default is all supported values
selected.

This parameter selects FORTRAN
sequenced mode source line format as
described in section 3.2 of the FTN18D
FRSe Note that this format Is

2=22
CYRER 180 System Interface Standard
84707727

2.0 INPUT
2+2+%¢3 Parameter Names and Descriptions

- B

incompatible with the standard SIS
{sectlion 2.2.2) source line format
which allows the 1ength and location of
a4 1ine number to be specified in the
source file attributes.

5ingle option parameter, Defaylt = QOFF,
spurce lines conform to the standard
SIS format.

SDURCE S SCU input.

Line images of the genarated program
will be written to this filey in a
format acceptable as Input to SCU.

fach program unit on the S fite will be
praceded by an SCU directive which
indicates the beginning of a new source
dack,

Single specified parameter value,
daefault = $SNULL.,

STATEMENT_LENGTH 5L Statement Jengths, This parameter
specifies the maximum l2ngth of a
source statement. The default is to be
specifiad by each product which
recognizes this parameter.

STANDARDS _DIAGNOSTICS €D Standards diagnosticse (ANSI or other
applicable standard).,

This parameter specifies whether use of
non=-standard Iinput source statements
are to be diagnosed and if so» how
severely., There are two values
d2finadt severity, and name of
standard., The severity is one of the
following:

T Informational error. Standards
errors are treated as errors with
this severity.

W Standards errors result In warning
messagess ’

Fatal error. Non-standard usages
result In a fatal errore.

T

2=23
CYBER 189D System Interface Standard

B4/107727

2.0 INPUT
2e2e%+3 Parametar Names and Descriptions

Errors of type 'ERROR?! will be

treated as egquivalent to 'FATALY,
The second value, name of standard, Is
to he defined by the products as
appropriate. If this parameter Is not
specified, then non-standard extensions
to the product are allowed, (not
diagnosed as errors).

STD=NONE causes standérds errors not to
be diagnosed, '

Multiple specified value parameters
default = NONE.

STATUS ST Status Variable.,

This parameter specifies the name of
the SCL status vyarjable to be set by
the product to indicate the occurrence
of error conditions. See sections 3.4
and 4.4 for an account of the status
variablie., See also NOS/VE ERS.,

Single specified value parameter.,

Errors of type 'ERROR' will be treated
as equivalent to 'FATAL?,

Default status variable name is

STATUS. See Error Processing

section 3.4 for a description of error
processing that resuits from use of the
defaylt status variable.

SUM Sum Fleld(s).,

This parameter specifies that units of
input data having key fields equal {see
KEY parameter) may be combined Into
ftems or units in a product dependent
manner.

(For examples SORT will use the
parameter to combine all records,
having key fields equal, into a single
records Each sum field in the new
record Is formed by summing the values
in th2 corresponding fields of all

2=~24
CYRBER 180 System Interface Standard
847077127

- - ——— -

2.9 INPUT
2+2+¢443 Parameter Names and Descriptions

T — " - - - A SO A W A = g -

equal records,)

SUM=¢value~§ist>

The value list witl contain one or
more value sets., Units of input
data with equal key values will be
combined into new units or items
and fields specified by the value
sets will be summeds according to
product specifications and needs.

Multiple specified value parameters
default = NO SUM FILELDS.

SURPRNGRAM sP If this option is selecteds the program
is compiled as a subprogram instead of
as 2 maln progranm.

Default: the option Is not selected,

SUBPRNGRAM = 0ON selects the option.
TAPE_SCRATCH_FILES TAPES, Tape Scratch Files,

T The tapes with the names specified by
this parameter willl be used by the
product to reduce the disk space used,
The tapes must have already been
reguested prior to executions The form
is?

TAPES = {fjijle_name sFlile_name a+s+4)

Defaults Tape scratch fliles will not

be used.,
TERMINATION_ERRDR_ TEL This parameter specifies the minimum
LEVEL d1agnostic severity 1evei which will

cause a product to return an sbnormatl
STATUS upon complietion of processing.
A normal status Is returned otherwise,
The severity level is one of the
followings

or informational
or warning

or fatal

or catastrophic

Ty NE k4

For 170 compatibilityy products are
free to use 'T? jn addition to 'I?,

CYBEZR 180 System Interface Standard

———— - — - -~

8470

2.0 INPUT

- w—_— -—— —— - ——. - —

2=25
7127

292e%+3 Parameter Names and Descriptions

TEXT _NAME

T0

TEXT_RESTIDENCE

TN

TR

-

Howevery output will always use 'I¢,
not 'T', Errors of type YERROR! will
be tra2ated as equivalent to YFATAL?'.

Single specifiad value parameter,
default = F,

Names of texts to be read from the
files or libraries specified by the
TEXT_RESIDENCE parameter, The total
number of values allowed is product
dependent. Products that have a text
name directive may choose to support
the TEXT_RESIDENCE but not the
TEXT_NAME parameter. A fata} error
occurs if any of the texts specified is
not found.,.

Multiple specified value parameter,
dafault is no text.
New File,

This parameter specifies the data
output file for the product. For
examplet: file to which a copy utility
wrltes.

Single specified value parameter;
default = NEW.

Mames of residences (f.e. fliles or
Jibraries) to be searched to find texts
specified by the TEXT_NAME parameter or
by product directives, The total
number of values aliowed is product
dependent, If no text names are
provided the first text of the first
TEXT_RESIDENCE name is the only one
useds If text names are provided and
TEXT_RESIDENCE is omitted, the default
for TEXT_RESIDENCE will be the
TEXT_NAME parameter 1ist, In case
texts of duplicate names existsy the
first one found (in the order In which
TEXT_RESIDENCE names are listed) Is
used, For each name in the
TEXT_RESIDENCE parameter 1ists the
product will took for a local file with
that name; If not found, the global

CYBER 180 System Interface Standard

A S T T D J S O SN T D FUAD D WD T D WD -

2.0 INPUT

2~26
B4/707727

- - — -

2s2e%43 Parameter Names and Descriptions

example 13

example 21

TERMINAL_TYPE

TT

- - - v - -

library set will be searched for a
jibrary with that name, If the name is
not foundy, as a file or {ibrarys a
fatal error will occura.

Multiple specifijed value parametera,
Default valye 1ist is text name value
jist,.

If fite F1 contains texts A» C» and D
and ilbrary L2 contains texts B and C
and file F3 contains texts E and A then
TN={A»B»CsDsE) and TR={F1l,L2,F3)

will result In selecting texts as
follows:?

As Cy» and D from file F1

B from library L2

E from file F3

In the above examples if in addition to
a library L2» the user has a local file
named L2 contalning texts B and £y then
TN={A»B»CsDyE) and TR={F1l,L2,F3)

will result in selecting texts as
follows

As» C» and D from flle F1

B and E from file L2

nothing from 1ibrary L2

nothing from file F3

Tarminal Type.

TT=CDOR
Correspondence Selectric APL
terminal.

TT=APL
This type is appropriate when the
communications system translates
APL terminal codes into a standard
intermediate code,

TT=ASCII
For full ASCII terminails not
egquipped to print the APL
character set. Also used for
non=APL correspondence terminals,

TT=UCA

2=27
CYRER 180 System Interface Standard

M T - s WP S YD e W - — - - -

2.0 INPUT
2e2 0423 Parameter Names and Descriptions

Y o — _ W T W W N W T Sl U W T HD e S S WD D NP D

84707127

For full ASCII terminalss. This
avoids frequent use of the shift
key for ftetters,

TT=BATCH
For devices that support the ASCII
b4=~character set. Usualiy used
for batch or remote batch ASCII
printers.

Single specified value parameters.

Nnefault Is APL for a time-sharing Jjob;
and BATCH for a batch or remote batch

d0he
VERIFY_MERGE_ VERIFYs Verify merge input order. Seiection of
INPUT_ORDER VER this option causes verificatjon that

input records to be merged are in
correct orders The form is?

VERIFY = 0ON. Verify for correct order.
VERIFY = OFF, Do not verify for
correct order.

Default: VERIFY = (OFF.
WORKSPACE WS Initial Workspace specification.

This parameter specifies the workspace
to be activated when the product is
calleds The parameter is specified
#with values consisting of the foliowing
parameters defined in the NOS/VE ERS:

file

2.3 30URCE_INBUI

This section deals with the standard for the orocessing of
source Iinput files by product set members. In this
contexts a file can refer to data originating from an
interactive terminal as well as conventional storage
devices, Thils standard addresses the areas of source fille
organizationy statement format, blank compressiony and
response to an empty Input file situation.

2=28
CYRER 180 System Tnter face Standard
84107727

2.0 INPUT
2+3.1 SOURCE INPUT FTLE ORGANIZATION

2+.3.1 SOURCE INPUT FILE ORGANIZATION

Source input to CYBER 180 product set members may be
designated by the I directive on the control statement,
If the I diractive Is omittedy the source input defaults
to the standard input file {(batch mode) or terminal
{interactive mode)s, The source Input has 3 sequential
structurey and is accessed by means of standard Record
Msnager interfaces.

Positionling nf the source Input at open time iIs
constrained by the requirement to atlow different product
set members within the same job {e.g. different compilers)
to access the same File for their input. Therefores the
source input Is opened with no=rewind unless the rewind
parameter Is specified on the control statement {see
Keywords and Parameter Descriptions in section 2.2).

2+3¢2 SOURCE STATEMENT FDRMAT
Each record in the source input contains one to three
parcels of data:
N statement identifler {(optionall;
. line number’ {optionall;
. statement body.

Products should be able to handle the optional statemant
identifier and line number.

The source input statement may take the following forms,
where

b represents the statement bodys
i reprasents the line number,
s represants the staterent identifier,
and brackets specify the optional portions of the form:

1 s
b

2=29
CYBER 180 System Interface Standard
84/077127

— -~ - - s -

2.0 INPUT ,
293421 Statement Identifier

23,201 3tstepent Ideptifier

Input source re2cords may contain optlional statement
identifiers such as SCU identifiers, If praesent, they
occupy 2jther the first or last 'n?' characterss where 'n!?
has a2 maximum value of 18, If the statement identifier
occuples the last character positions of a recordy all
records must be the same length. The location and length
of the identifier are file attributes; they are made
avalilable via an operating system reguest.

This feature is to allow files created by source code
utilities to be used as source input.

2.3.2.2 Lipe_Numbers

Line pumbers are numeric entities used by compilers and
editors. 1In generals editors will affix 1ine numbers to
fines and compilers will use these Yine numbers for
diagnostics» cross reference mapss run time error
messagessy etecs: Line numbers should not be confused with
statement Jdentiflers that are produced by SCU and are
alphanumeric,

The location of the line number in a text iline may be
immediately to the left or the right of the text nf the
lines The position of the line number field Is conveyed
via the file attributes. The line number field may bhe

from one to six characters in size. The only valid
characters In the fleld are blanks and the decimal digits

0 to 9. Leading hlanks are ignorede A Jline number is
terminated by end of field or one or more blank characters.

Additional semantics for the line number fleld will vary
from processor to processor. In particulary many
compilers may not accept more than six digitss Another
example Is the cross reference map produced by CCM which
only has space for a six diglt line number, Meost
processors #~il) also Insist that the {ine numbers be
uniques ascendings and that every line be numbered.

2-30
CYBER 180 System Intarface Standard
84707727

2.0 INPUT
2234223 Statement Body

A o— - — A - - - - - - om -

2+342+3 Statemeni_Body

The body of each source input record is that part which
represents the data to be scanned or processed by a
oroduct s2%t member. It begins In position 1 If there are
no statement identifiers, or if the identifiers appear at
the end of the record.. DOtherwises it begins in position
{n+1) where "n' is the lenrgth of the statement identifier.

The maximum size of the statement body is product set
member dependent and conforms to the size specified for
the associated language. Source records shorter than the
maximum are scanned to the end of the record. Records
exceeding the maximum size are truncated {i.2. data is
transferred up to the maximum); a diagnostic is returned
by the Record Manager.

2e3+24% Blapk_Compression

The CYBER 180 Record Manager is responsible for
compression/expansion of blanks. The capabliity to read
the sourc2 input in compressed form is not provided. 1If
the requirement for this capsbility emerges (for
performance optimization), it will be addressed in a
revislion to the standard,

2e342.5 Empty_lIppuf Eile

Diagnosis of an empty Input file results In the lIssuance
cf a standard log message?: EMPTY SQURCE INPUT FILE
(formatted In accordance with conventions stated in
section 3.2). If the Jjob involved is interactive in
origins the message ls also sent tc the terminal (see
section 3+42¢1e2+)s In additions generation of the primary
output of the oroduct set member involved {e,g., file
specified by B8 parameter for complilers) is suppressed and
the SCL STATUS variable {refer to section 2.2+4+2)s is set
to reflect the arror.

2.3.2.6 Nyll_Source _Line Conyenilign

The number of records in the scurce file should be the
same as the number of source lines In the source lliste.
tven though a null record has no data, the record should

, 2=-31
CYBER 180 System Interface Standard
84/07727

2+342+56 Null Source Line Convention

not be lgnoured., Sinces In the source 1isty the absence of
all characters in a record looks the same as a record
centaining all bhlankss» null records should be mapped to
all blanks.

24343 DISPOSITION DOF INPUT FILE

The final action to be taken with respect to the source
input file Is dependent on the manner of termination of
the product set member., For normatl terminationy the input
file is closed with the no-renwind option; this includes
the case where an empty file is detected., For abnormal
terminations the product set member is responsibie for
positioning the input file as if normal processing had
occurvedy using appropriate facilities of the Record
Manager.,

2.4 COUPILATION _DIRECIIVES

The user of a Compiler may control warious activities of
the compiler by specifying one or more compile time
directivess The directives are expressed either in a
special form of a comment within a particular language
{e.gs FORTRAN, CNROL) or in speclial socurce statements If
the language provides such statements {(es.ge. CYBIL).
Compilers that already have special source statements for
directives do not have to process directives embedded
Inside comments., Compilers which now have compitation
directives in comments should honor both old and new
directivess, When a compilation directive conflicts with a
contrel statement parameter optiony, the compilation
directive overrides For example, the options for the
parameter LO will be overridden by a conflicting directive
unless specifically stated otherwises such as L0O=SA.
However contro! statement parameters denoting fite status
or destination would take precendence over directives.

For example LIST=%null would take precedence over any
directives regquesting that something be listed.

-Since the major programming Janguages are subject to
standardization by bodies such as ANSI» FIPS, snd IS0,
initial compliiance with the form of complilation directives
in this section may have to be altered in the event of
standards covering this area. Because of the long term
possiblity that the major languages will be different)
full uniformity across 180 products Is unilkely.,

2=32
CYBER 180 System Interface Standard
84707727

2.0 TINPUT
2+4 COMPILATION DIRECTIVES

—_— - — - ~ ——

Therefores» oroducts with CYBER 170 directives that do not
conform to the syntax contalned here should retalin
compatibility with the CYBER 170 form to minimize
migration problems rather than cause a conversion in going
to 18C and possibly have to cause a second conversion to
comply with 2xternal standards. New directives in areas
which will never be subject to standardization should
follow the form of this section.

The Compilers support two general classes of directivess
N Compiler Call directives

. Source Embedded directives

As dliscussed In section 2.2, the directives specified on
the command calling the compiler are established for the
entire compilation process. They apply to all)l subsequent
compilation units {program modules of subroutines) within
the compile process.

Source emhedded directives are established only for the
compliation unit In which they appear. They are expressed
either in a special form of 2 comment within a particular
tanguage {e.g9., FDRTRANy COBOL) or in special source
statements iIf the language provides such statements {e.g.
CyBIL). Compllers that aiready have special source
statements for directives do not have to process
directives a2mbedded inside comments. The syntax of a
compiler directive wlthin a comment Is as follows:?

3 directive [sdirective 1 + » »

Example = FORTRAN source embedded directives
C4% directive - C in cotumn 1

Example -~ COBDOL sourca embedded directives
¥3 directive - % in column 7

pMultiple dlrectives mavy be contalned on the same input
statement.

where directives have parameterssy they follow SCL rules.,

Source embedded directive format errors are diagnosed with
warning or fatal class error messagess as appropriate.

The following standard applies to compilers that process
directives embedded Inside commentss A compller Is not
required to implement all the features listed belows nor

2=33
CYBER 180 System Interface Standard
84/07127
2+0 INPUT
2e% COMPILATION DIRECTIVES

is the list restricitive.

2+441 PAGE EJECT

EJECT

This directive causes the page line counter to be reset

to 1. When the line counter is reset to 1s a standard
listing header will be written on the source listing prior
to the next source line., This directive will be listed
before the page line counter is reset to 1. If the page
is at top-of-FTorm when this directive is processedsr It is
processed as a "no-op", If a continuous page is being
wrltteny, this directlive will simply resuit in a triple
space without a new listing header.

2+4%+2 SOURCE LISTING

LIST and NQLIST

The NOLIST directive causes the listing of the source
moduley incuding compliter directivessy to be suppressed at
this points, The LIST directive causes the listing of the
sgurce module to resume at this point. The directives
LIST or NOLIST are {isted at the point they occur.

2+%¢3 LINE SKIP

SPACE = number

This directive causes the specifled number of print lines
to be skipped at the point in the source module listing
that it is porocessed. This directive will be listed
before the skip action starts. 1If the page line counter
its exhausted before the specifled number of Iines have
been skippeds the Jine counter is reset to 1 and skipping
terminates.

number ¢ iInteger vajue 1 thru n3} if omitted
{including the "="), the default is 1.

2=34
CYRER 180 System Interface Standard
B4/I0T727

o -

2.0 INPUT
2'% L]

I
«3+.1 LINE SPACING

- A T -

2+443.1 LINE_SBACING

SPACING = number

This directlive specifies the number of 1ines to be
advanced before egach sourc2 line is listeds The new value
for spacing will take effect with the next line follouing
the spacing directives, When listing a source 1ine if the
page line counter is exhausted before the specified number
cof lines have heen skijppedy the !line counter Is reset to 1
and skipping terminates.

number?® Integer wvalue 1 thry 3 indicating singles
double or tripie spacing; If omitted
{including the "x"), the default is “1?.

2e4e4 TITLE LINES

TITLE = character string

SUBTITLE = ckaracter string

These directives define strings of alphanumeric characters
in SCL format which will be printed following the standard
page headers on the source modula2 jisting (see TITLE Lines
in section 3). TITLE causes a page eject to occury» uniess
the page is already at top—of=-form. TITLE is ljsted at
the top of the new page,

SUBTITLE also causes a page gject to occursy uniess the
page is already at top-of-form or TITLE has just been
processeds SUBTITLE Is listed at the at the top of the
page following TITLE if there Is one.

Compilation Directives
2+%.% RANGE CHECK

RANGE and NORANGE

The RANGE directlive directs the compiler to generate
additional object code which performs range checking for
subscriptss Iindexes, scalar assignmentss case variabiles,
etce

The NORANGE dlirective directs the complier to not generate

2=-35
LYRER 180 System Interface Standard
B4707727

2.0 INPUT
2+%+5 RANGE CHECK

——— -~ — A —— - -

additional range checking object code,

The default for the compilation unit is NDRANGE,
2eheb EXECUTION TRACE

TRACE and NOTRACE

The TRACE directive directs the compiler to generate
additional obJect code which facilitates tracing the flow
of the program during execution. The TRACE directive is
ignored unless the DERBUG=TR parameter Is given in the
product call command.

The NOTRACE direactive directs the compiler to not generate
additional flow tracing object code.

Minimum trace information wiil always be provided. See
section 5+%4e1420

The default for the compliation unit is NOTRACE.
22447 DEBUG STATEMENTS

DEBUG and NODEBRUG

Source input statements that are to be compiled only for
debugging purposes are enclosed between DEBUG and NODEBUG
directives. Enclosed source statements are compited only
if the DEBUG=DS Is gliven in the product call command,

2+4eB SEQUENCE CHECK

SEQUENCE and NNSEQUENCE

The SEQUENCE directive directs the compiler to check the
Input source statement saquence numbers for ascending
order.,

If a sequence error occursy it will be flagged with a
warning diagnostic. {Se2 section 2e¢2+:442)

The NOSEQUENCE directive directs the compller to lgnore
input source statement seguence numbers,

2=36
CYBER 180 System Interface Standard
8470717127

2.0 INPUT
Z2e4 o8 SEQUENCE CHECK

e - - - - -

The default for the compilation unit is NOSEQUENCE.

The SEQUENCE and NOSEQUENCE lipes themsaelves are not
checked for sequence.

2+4.9 OBJECT CODE LISTING

OBJLIST and NOOBJLIST

The 0OB8JLIST directive directs the compiler to print the
ohject code listing at this points The NOOBJLIST directs
the compiler to stop printing the object Jlisting at this
pointe The object code will appear in the object code
part of the listing (see section 3.3.4),

OBJLIST and NROBJLIST act Independently of LIST and
NOLIST. The default for the compilation unit is NOOBJLIST.

2+441C STACKING COMPILATION DIRECTIVES

PUSH (compilation directive) and POP

The PUSH command will place the specified compilation
directive on the top of the "directive stack™. The POP
directive will remove the top directive from that stack.
This procadure wil] allow temporary alteration of the
1ocal environment without permanently affecting the global
environment. For exemple, if it Is deslired that a called
common deck 1ists its name on the print file, regardiess
of whether the entire common deck is being listeds then
the following would be placed in the common deck:?

PUSH (LIST)
comment including common deck name.
POP

2.5 PROQUCT _DRIRECIIVES

The format of product directives {commands) must follow
the set of language rules and conventions of the System
Command Languag2s. These directives frequently occur in
products {(often various types of utilities) that are not
compilers and are thus listed separately, The standard

245,

2=37
CYBER 180 System Intarface Standard
B471GT77127

- ——— — - S~ - -

240 INPUT
2+5 PRODUCT DIRECTIVES

- O T S S

parameter names as described In sections 2+2+%4.2 and 2.5.1
must be used as applicable.

1 STANDARD PARAMETERS

Thase parameters occur Frequently enocugh to warrant making
sure that all commands using them do so In the same way,

Parameter
Name Alias Parasmeter Description

BRIEF B8R This parameter specifies that a brief form of

FuLL

information is requested for displsy at a
terminal or print file. It is a boolean used
in conjunction with the full parameters The
brief selection is used as the default.

Fu This parameter specifies that a full form of
information is reguested for display at a
terminal or print file. It is a bocolean used
in conjunction with the brief parameter.

COUNT cou This parameter specifies a count of units {(e.g.

FILE

WATT

files records) associated with the command
functions The default value is one,

F This parameter specifies the local file name of
a2 file used as the object of a command
functlion., Tt is used when the file |Is not one
of the specific files identified in section
2e20&0?2 (eogo COMPILE, INPUT).

WAI This parameter specifijes the requestor should
ba placed In a wait state if a request can't be
immediately processed {e.ges a flile is busy).

It is a boolean used in conjunction with the
nowalt parameter.,

NOWAIT NOW This parameter specifies the reguestor should

not be piaced in a wait state if a request
cannot be Immedliately processed. It Is a
hoolean used in conjunction with the walt
parameters, The nowait selection is used as the
default,

us Thls parameter specifles a user
fdentifications It is always the 31=-character
user and family names as specified to gain

PASS

UPON

LIBR

245

2=38
CYBER 1B0 System Interface Standard
, 847077127

——— - ——

2.0 INPUT
2+521 STANDARD PARAMETERS

access to the system.

WORD PA This parameter specifijes a 31l-character
passwdrd needad to gain access to an entity or
to execute 2 function,

This parameter specifies the local fijle name of
an output files, It is us=2d when the flle is
not one of the specific files identified in
saction 2.2+%442 (€sge LISTy BINARY-OBJECT).

ARY LI This parameter specifies the local file name of
a 1ibrary flle {e.gs source librarys object
1ibrary).

2 STANDARD COMMANDS

These commands are rggquiredy as a minimums if the functions
described by tha commands are included in the utility.
Utitities mav ootlonally iInclude allases to the required

coemmand.,.
Command Description
QUIT This directive enables the user to exit» or get

out of, a utility.

3=-1
CYRFR 180 System Interface Standard
B4/1GT727

—— - - - - - - —— - —— -

3.0 OUTPUT

3.0 QUIRUIL

All products will follow a uniform s2t of conventions for
generated outputy» as specified herein., A1l CYBER 180C
products will use the facilities of the CYBER 180 Record
Manager for such output.

3.1 RECOMUENDED _NUMBER_ZASES

The use of hexadecimal numbers on output produced by CY18C8
software must be controlled to promote readability. All
products will follow the set of guidelines set herein,

3141 SITUATICONS AND RECOMMENDED NUMBER BASES

Addregsy Address NOffset: Hexideclmwal, When a Jength is
specified In conjunction with an
address or address offsety the
length is represented in
hexidecimal.

Dayfile informationt Decimal statistics, decimal
rasource limits.

Object Code Listings:
Instructions: Hexadecimal {4 or 8 hex digits)
Oparand fieslds: Decimal

Branch Destinationt Hexidecimale The value Is the
instruction offset of the
destination instruction rather
than the relative offset fron
the branch instruction.

Instruction Nffset? Hexidecimel.

Core and File Dump? Various formats should be
avallabley including
hexadecimaly ascily, Integery
floating point,

3=-2
CYBER 1880 System Inter face Standard
84707727
2.0 OUTPUT
3211 SITUATIONS AND RECOMMENDED NUMBER BASES

- -~ - - - - - —— - —— oo -

Page numbers? Decimal.

The logs treated in this section are those maintained by
the operating systems The 0S provides interfaces to put
items into the 1ogs and the SIS provides conventions on
how to use these interfaces and on the contents of data
put into the Jogs,

The set of logs Is divided into two major classess ASCII
and binary. The ASCII logs contain only ASCII-encoded
datas, The binary logs may contain any tyvpe of data.

The logs include:

- system log (ASCTI)

- Job log (ASCII)

- account log (binary)

- engineering log (binary)

- statistic log (blinary)

- Jjob statistic log (binary)

3.2.1 ASCII LOGS

Each ASCII log contalins a set of records ordered by time
of entry into the log. Each record contains several
fieldsy some automatically provided by the logging
mechanismy and some provided by the caller of the
mechanisme Tha following fields are provided ty the
logging mechanisnms

- time of day of the entry of the record into the log

- origin of the message (command, program=issued,
command from procedursy, etc. == that is: cajljlers in
0S5 rings may specify the message origin In the calls
callers In users rings may not sand their messages
are always "program—issued”™).,

The system log has an additional system=-provided field to
Jdentify the message Issuing Jobe. Also» each log record
contains a field for data provided by the program making
the record entry,

3=-3
CYRER 180 System Inter face Standard
: 84/CGT/27

3.0 OUTPUT
3.2.1 ASCII LOGS

Except for certalin operating system programss the
interface to be used by the 0S and product set for putting
messages Into ASCII logs is that provided by the "™message
generator®”, a3 facility of the 0SS (see NOS/VE ERS)s The
message generator is glven a status record that describes
the type of message and any variable data to be "edited®
into the messajge., The message genseratort

~ finds the appropriate message skeleton in a library
which is in the current Jjob library list

- edjts the variable data into the message

- jogs the final message in whichever logi{s) are
specified by a combination of:

¥ destination specified within the message
skelaton record

* Jjob option selection {2.g+.» "10g onily errors™,
"log all fatals"™, etcs) == things such as
message importance level are defined in the
message generator call,

- displays the message at a terminal depending upon
Jjob option

The use of a message genarator easess

- consistency of messages within and across products

- physical compression of message text

- extraction of message types for documentation

- routing/suppression of messages based upon message
levaels {2,3.» trivial, fatal, etc.,) and upon user
desire for only certain levels ("level®” or
"importance®” js specified in the message generator
cally not In the message skeleton)

- jnstallation controi over what kind of messages
should appear In the system log

Arbitrary user=initiated 1ogging need not use the message
generator.

CYBER

180 System Interface Standard

3=4

84707727

3.0 DUTPUT

3¢201a

1 System Log

3.2.141 System_Log

3¢2.1.1.1

3e2e101.2

In addition to the basic system=-provided fleldsy each
system Jog entry contains a field identifying the
particular job from which the message came or to which it
applies,

PURPOSE
The primary purpose of the system log Is to serve as a
repository for information regarding external system
Wworkload, That J1sy the work the system was asked to do
via commands and the high Jlevel responses of the system iIn
regard to thas commands.
CONVENTIONS
The systam 30og contains predominantly a subset of job 1og
messages that are of int2rest to the installations This
normally includes at least:s

- all system leve! commands {suppliad by 0S)

- atl command completion messages

- start of each Jjoh execution (supplied by 0%5)

- end of 2ach job execution {(supplied by 0S)

- rerun of each Job execution (supplied by 0OS)

- system jdentiflication {(supplied by 0S5)

- other information supplied by the 0S Jlike dates

har dware and software configurations and changes,
deadstartsy recoveriesy etc.

The system 103 should contain only indications of the
major changes in state of the system and of individusal
jObSo
The specific messages that should be routed to the system
fog in the dafault "as=shipped” system will be determined
on a case-by-case basis using these general conventions as
gulidelines,

Note that since massage destination (which logl(s))

CYRER

3-5
180 System Tnterface Standard
B4/G7727

A T 2 S A - - o T - - —— —

3.0 oUTPUT

342410

- -

1.2 CONVENTIONS

instructions are separate from the message-issuing codey
this determination does not involve code modification.

See Job Logs Conventions for further guidelines,

3.2.142 Job_lega

302'1'2.1

3.2‘102-’2

PURPDSE

The purpose of the Jjob log Is to hold a trace of Job
executions, Information concerning the work requested and
accomplished is recorded heres It provides a summary of
the flow of the joby, problems encountered and charges
accrued by the Job.

CONVENTIONS

Keep log messages simple and short. Use the logs for
summary Information, Use list fliles or binary logs for
detailed or repetitive data.

Messages Jonger than the listable cutput "narrow®™ format
are discouraged,

Simple completion messagas thast convey no more information
than "it's done™ are not to be put into logs. In a batch
cases completion Is obvious from the appearance of the
next commands In an interactive cases the 0SS witl see to
it that the terminal user is notified of completion.

Completion messages that convey a small amount of useful
or interesting Information are encouraged in order to
enhance the "live"™ appearance of the system. For example,
23 records sorted,” or “Cycle 25 used.", Information not
specific to the operation performed should not be
included, however {like CPU time for a compilation).

Messages {at l12ast the non-brief mode ones) should have
the general appearance of normal sentences, That Is» they
start with a capital letter, are comprised of both upper
and lower case lettersy and end with a periode. When an
"extended message” of more than one 1ine must be issued
each line should nots however, end with a period, but each
sentence shoulde This Ffamiliar sentence-type structure
adds to the "comfortable™ feeling that we'd like our users
to have for our system.

3-&
CYRER 180 System Interface Standard
B4707727

- - Y W T T S T W - -

3.0 QuUTPUT
3¢24142+2 CONVENTIONS

aAccounting and low-leyel statistical and bardware ertor
information Is not to be placed into ASCII logs except by
the 0S.

Message~at-a~-time "current status"™ messages {(like
“compiling 2lphas..s compiling betas+e™) are not to be
piaced in Jogs. The 0S will provide a means for programs
to post these kinds of messagese The current message will
be displayed at an interactive terminal when requested by
the terminal users, Posting of these messages s
gncouraned,

The message generator Wwill supply product and message type
jdentificatlion based upon the status record passed to It
in 8 calle Products should not include this information
in messages.

When more than one datum is to be loggedy try to minimize
the number of nessages lines produced by putting more than
ene datum on a line. For examples Iissues

23 records sorted; Merge order 12 used; 14 insertions.

rather thant
23 records sorted,
Merge order 12 usead,.
14 Insartions.

34,22 BINARY LOGS

Binary logs are provided in order to allow the recording
of iog Information In a compact form that is readable
primarily by programss., Fach binary log contains CYBIL
records ordered by time of entry into the log. Each
record contalns sevaral fields, some automaticsally
provided by the logging mechanismy, and some provided by
the caller of the mechanisme The following fields are
provided by tha logging mechanism:

- time nf day of the entry ¢f the record Into the 1o0g

- the identification of the job from which the record
came or to which it applies (this field is not
recorded In the Job statistic log)

- the origin of the record {(system or non~system ==
indicates only whether the caller is inside or

CYBER 1B0 System Interface Standard

- —————

3.2.2 BINARY LOGT

ou

3=-7

84707727

— —

TPUT

outside system ringss not which product or which
system agency =-=this latter information is gliven by
the "indicator of the type of record” field.)

Flelds provided by the caller include?

- indicator of the type of record (2.9 number of FTN
source statementsy SRJs at end of jobs etc. —-the
indicator codes will be assigned and managed In a
manner similar to that used for status condition.
codes as described in section 3.4)

- yariable data depending upon the record type

Except for certaln operating system programsy the
interface to b2 used by the 0S5 and product set for putting
records into bhinary logs is that provided by the
“statistics facllity” of the 0S. The statistics facifity
is given a data record that describes the type of record
and any variable information associated with the record,
The statistics facility Ffinds information about the gliven
record type in a "table™. This "table” directs the
statistics facility to do some combination of the
following things:

- add the varjable Jtem{s) to counter{s)

- Jog accumulated counter wvalues to a specified binary
log or se2t of binary logs when a threshold counter
value Is reached or when a certaln time has elapsed
since th2 last ™put™ to the logl{s) of the
appropriate counter{s). The set of logs is
specified in the "table”,

- simply 1log this record In the "table=-specified®
fogls)

The use of the statistics facility for binary logging
easess

- jnstallation talloring of what is considered to be
accountings» performances etc. data, For examples
site A may conslider CPU time to be accounting data,
while site B considers It 8 workload statistic and
considers "numbar of statements compiled” to be
accounting data

- optional routing of statistics to the Job statistic
1og (based upon user desires but constrained by

3-8
CYBER 1By System Interface Standard
R&/0GT727

3.0 DUTPUT
3.2.2 BINARY LOGS

——— — —— - o = -

instaltation willingness -— via ¥table”
information == to divulge certain information)

Since the statistics facility determines the log into
which a given statistijc (for exampley, PIDFR data) is to be
placed (based upon an instaliation and CDC defined table),
system and product implementors should not be concerned

with which logls) are usad for "their™ statistics. This
mapping wliil be determined latere.

3.24201 Aggcoupnt _Loa

3422011 PURPOSE
The purpose of the account log is to hold accounting and
billing Informatlon, Thils consists of rescurces and/or
services usad, "who™ used them and "who" to charges The

account log should be the onily log needed for an
installation to do bilting,.

3.2+.2.2 Epglpeerina_Loa

322+2+2¢1 PURPOSE
The purpose of the engineering log is to hold information
regarding system hardware usage and 2rrors. The

engineering log should be the only log needed to perform
hardware usage and error anlaysis.

3.2.2.3 Sfatlstic Loa

3.242»3.1 PURPOSE
The purpose of the statistic log is to hoids
- detailed system workload information

- detalled system performance information (l.e,» the

3-9
CYBER 180 System Tnterface Standard
84707727

- - - —— - — -

3.0 OJUTPUT
342024301 PURPGSF

- - - -

Wway the system responded to the workload)

Although spome of this information Is recorded in other
jogss a separate log is maintained Iin order to?d

- keaep other logs relatively "clean™ or coriented to
their own purposes

- allow possibly large amounts of data to be recorded
in a compact binary form

3.242.4 Job _Statistic loa

3.

2e

+#.1 PURPOSE

The purpose of the job statistic log is similar to that of
the {global) statistic 1oa. The global statistic log
contains information regarding all Jobs in the system» but
may be read only by orivileged programs / users.
Individual userss however, may wish to see information
that is available about thelr own Jjobs. The job statistic
iog may be read by normal pregrams / users and contains
information regarding a single job, similar to the "scope"®
of the ASCIT Jjob l1og.

3.2.2.5 Bipary_Loa_Convenilons

Avoid the use of character data. Since each record type
Is pre-defined by a CYRIL record type definition, there Is
seldom a need to describe the varlious data fields with
keywords or the like.

Message type naming follows the naming conventions
describad in SIS section 3.%.

Use the binary logging facilities for PIDFR data.

See the NS ERS and the SIS Usage Statistlics section for
minimum list of items to be logged.,

Additional conventions will be added as design proceeds.

3-10
CYRER 180 System Interface Standard

B&4/C7727

—— - —_— - -

3.0 QUTPUT
3.3 LISTABLE DUTPUT

3.3 LISTABLE _QUIPUT

When a significant amount of information is to be returned
to the us=2ry it is written to a "listable output filem.
The standard format of such a file is described here.

CYBER 180 Output Standard is defined in terms of:
. Output Fil2 Drganization

. Listing Page Layouts

» Page Header Format

. Format of Each Listing Type

» ObJect Code and Debug Code

3.3.1 LISTING PAGE FORMATS

In the sections that follows the contents and format of
the standard listings produced by CYBER 180 Products are
defined in terms of a vertical and horizontal layout,

3.3.1.1 Yertical._laxoul

Vertical lavout is defined in terms of the first printable
}ine of a form following top—of-form positioning by the
printing device, This position is defined as line 1 of a
form and is reserved for the first print line of the
standard listing header. The product is not responsible
for the physical alignment of line 1 relative to the
perforated fold on fan-foid printer forms, This is the
responsibility of the user on printers with vertical
positioning carriage tape mechanisms or the responsibility
of the CYBER 180 NS Device Software on printers without
vertical carriage mechanisms,

when the tast printable line of a form has been written,
the product will reset the page line counter to 1, When
tha page 1ine counter is equal to 1y the pext print 1ine
vritten is preceded by a standard listing header with a
top=of~form code in the first character position of the
header print re2cord, The product Is not responsible for
the physical alignment of the last printabie 1ine relative

3-11
CYRFR 180 System Interface Standard

84707127

2.0 QUTPUT
+3¢141 Vertical Layout

- . w— -~ g -

to the perforated fold on fan-fold printer forms.

3.3+.142 Eormaf_ Atiributes

fach product must obtain the output file attributes fronm
the operating system at the time tha file is opened.
These attributes inciude print mode, page widthy, connect
statusy page2 Formaty and page length. Vertical and
horizontal print density have operating system defined
defaults which may be changed by the user.

OQutput files may be either continuouss which has a line 1
position but does not have a Jlast iline positiony, or
paginated {non=-continuous)y, which has both a line 1
positions and a last line position. Continuous form
specification fltes are intended for users using
interactive terminals {display or hard=copy) for listable
output. Paginated (or "fan-fold") {istings are intended
for users using line printers for listable output.,

For paginated files, page fength minus the number of |ines
of header determines the available lines per pages The
operating system provides a {default) standard page 1ength
of 66 lines per page at 6 lines per inch

vertical print density. This provides an 11 Inch form
jengths Print mode specifies whether or not the paginated
fite is "burstable”™ or "non—-burstable", with
"non=burstable”™ being the default.

A continuous form file is detected by checking the filel's
attribute page formate. Connected files will default to
continuous form modes but users may override this by
specifying a page Je2ngth for the connected flle.

343.1.2.1 CONTINUDUS QUTPUT FILE

When formatting listable output for a continuous forms the
product uses a standard triple-space code In the first
character position of the line 1 output record {usually
the first Jline of the heacer) to achleve top-of-form
positioning. Products will reformat listings for terminal
users when requlired by this standard.,

Esch type of listing (source listings attribute listing
etcs) is precederd by a triple-space and the usual header
fine({s)y, but there Is not pagination as such,

3-12
CYRER 1B0O System Interface Standard
B4/707727

- - - - —— - - —

3.0 QUTPUT
3¢34142.1 CONTINUDUS DUTPUT FILE

32341.2.2 PAGINATED DUTPUT FILES

Whan formatting output for paginated Yistingsy the product
uses a standard top~of-form code in the first character
position of the line 1 print record {usually the first
line of the header) to achieve top—of-form positioning.

In burstable listing mode, each type of listing produced
by the product (scource listings attribute listing, etc.))
begins at a top—~of~form position. In non-burstable mode
{sometimes refarred to as "paper saving™ mode)s each type
of 1isting Is oraceded by a triple~space and the ysual
header tinels) if "proper space” remains on the current
pages. "Prorer space®™ Is defined as 6 plus the number of
header lines {insuring that at least 3 lines of ocutput can
be placed at the bottom of the page); if "proper spaca™
doas not remains the tripie space is replaced by a
top-of-form. The source 1listing always begins at
top=of=-forms and user-specified page ejects {(via
compilation directives) always result in a top-of~form
position unless the listing is already positioned there.

3.3.1.3 Standard Carclage Coptrol Codes

Carriage control characters that are used should be
restricted to the following sett

Character Action
blank Space verticaily one line then print.
0 Space vertlcally two lines then print.
- Space vertically three lines then print.
1 Eject to the first line of the next page

before printing.

+ No advance before printing; allows
overprinting.

This set reoresents the full extent of compatibiiity
between current CDC usage end the proposed ANSI standard.

Under NOS 180s horizontal print density and
vertical print density are fille attributes that the user
may modify, The NQOS» NOS/BE carriage contro! codes S and

3=-13
CYBER 180 System Interface Standard
84707727

- - D

3.8 QUTPUT
3+3+1+3 Standard Carriaga Contro} Codes

—— D - -——— -

T will not be used to set or ciear the 8 lines per Inch
mode.,

It witl be necassary to make some provision for selection
of print density when NOS 18¢ print files are to be
printed by NOS or NOS/Bfs The first release of NOS 180
will depend 2ntirely on 170 state for print files.

3.3.1.4 Horizontal Layout

Horizontal layout is defined in terms of output line
character positions (celumns) for a standard 132 column
liney the "wide"™ format. At a default

horizontal orint density of 10 characters per inch the
standard printer paper is assumed to be 14 inches wide.
Products are ra2qulred to support a format consistent with
the standard tarminal lines the "parrow” format., This is
defined to have 72 columns. Products are also required to
support a format conslistant with terminals with a capacity
greater than 72 columnss The two other widths speci-
ficalily supported on terminals are 80 column and 132
column formats (where 132 column format is a shared
formatsy usually assoclated with hard copy)s Formatting
for other line widths In addition to the standard terminal
line is permitted, and wiil be referred to as "other
formats."

Character position 1 of an output record is interpreted by
the output device software as vertical positioning control
and is never printed (displayed), Character positions 2
thru 133 of an output record contain printed (displayed)
characters, Column 1 of an output {1ine is character
position 2 of the output record.

3.3.1.5 Stapdacd_Llstlng Header
All CYBER 180 Products will use a standard 2 1ine page
header format on all {istings produced by the products.

Through this sa2ctions date and time fields conform to
standards defined In section 4.1,

3-14
CYBER 180 System Interface Standard
B&1GT127

—— -— - e - - - o

3.0 OQUTPUT
3¢3.1,.6 OTHER FORMATS

-~ oo~ - e e - — -

If the 1ine width specified is other than 72» 80 or 132,
the heading will be mappad to one of the three standard
listing headers., Other output will honor the actual line
widths unless speclflically column orlented throughout the
line {as opposad to column oriented for the first portion
and open ended for the last portions, such as sourcel.

{ine 1 of the common page header contains the following
fields {field definitions are in COROL format):

System Name x{8) Operating System name.

Product Hame x{8) The longhand form of the
product name, i.24y FORTRAN,
FMU, BASIC» etce

Product Verslon 9,99 Product version number. The
number after the decimal
point is shown left
Justifiads ise, 5.1» not
S+s0le This number Is updated
et the product source code
tevel by the responsible
development organizstion for
each new verslon release,

Product Leveal 22229 Product PSR modification
jevel contained within the
product itseif. This number
is updated by the build
procedures for each new
update release,

Install Date 29929 Ordinal Date, In YYDDD
formaty, when product was
added to the library, The
date Is obtained from the
CYBER 180 0S wusing a standard
Program Management request.

Listing Name x(14) Name of the particular
tisting being produced., The
acceptable listing names are
defined in the following
sections which defline the

3-15
CYBER 180 System Inter face Standard
84707727

3.0 OUTPUT
3.3.1.6 OTHER FORMATS

format of each listing type.

Module Name x131) Name of the source module
being compiled or the name of
the input file being
processed, The module name
is obtained from the module
identification statement
provided within the languages
ors the default name provided
the product when an
identification statement is
not used, This name need not
appear in the first page
header if unobtalnable, The
name Will appear left
Justified within the field if
shorter than 31 characters.

Date: x{12) Date at the time the first
header was written (listing
Page Number reset to 1). The
date Is obtained from the
CYRBER 18¢ 0OS wusing 8 standard
Program Management request.
The date format will conform
tec the standard glven iIn
section 4.1,

Times x{12) Time of day at the time the
first header was written
{Jisting Page Number reset
to 1) The time is obtalned
from the CYBER 180 0S using a
standard Program Management
requests The time format
will conform to the standard
given in section 4,1,

Page Number 1PAGEY 2229 Integer number generated by
the product starting at 1 and
incremented by 1 for each
page header written for a
cempilation units, The page
number is reset for the first
page header written for a
compilation unit, This fieild
is omitted from the standard

3=-156
CYRER 180 Systaem Interface Standard
B4/707727

3.0 DUTPUT
3+3+.146 OTHER FORMATS

- — - - — -

header when 3 continuous form
is specified, The two parts
are always separated by one
blank,

Three logical line width listing formats are generated by
products:

- Page Formatted lines of 132 characters

- 80 Column Formatted Lines of 80 characters

- Narrow Formatted {lIines of 72 characters

3434241 Hide Eormat {132_columns)

A standard header will be written at the top—of-form
position of a listing whenever the page {ine counter is
reset to 1 except when a continuous form is being
written, A standard header wll! be written only at the
beginning of a listing when a continuous form is
specifieds A specified page width of 132 or greater will
result in the following heading line.

FILE CONTENTS LIST - WIDE FORMAT

Columns 1-14 Listing Name or Columns 1-46
program name

Columns 16=45 Module Name

Columns 48=-53 System Name

Columns 55={54+n) Product Name (length=n, n<24)

Columns {56+n)={59+n) Product Version {length=4)

Columns {61+n)~-89 Product Level {length=5, blank
filled)

Columns 91-108 Date {right justified)}

: 3=~17
CYBER 180 System Interface Standard

84707727
3.0 D;;PUT“ -
3+.3.2.1 Wide Format {132 columns)
Columns 110-121 Time {right justified}
Columns 123-132 '"PAGE!' and Page Number {right
Justified}
All unspecified columns contain blanks.
FILE CONTENTS LEGIBLE - WIDE FORMAT
Columns 1-14 Listing Name or Columns 1-46
program name
Colunmns 16-46 Mcdule Name
Columns 48-53 System Name
Columns 55=78 Product Name
Cotumns 30-83 Product Version
Columns 85=-809 Product Level
Columns 91-108 Date {left Justified}
Cotumns 110-121 Time {left justified}
Columns 123-132 PAGE and Page Number {left

Justified}

3.3.2.2 Narrow Eormai (82 _Columpsl

The product will reformat the standard page format for a
BO character line. A physical output line format
greater than the specifled 1ine slze may be right—end
truncated by the product to the required specification.
The exgess characters will appear on the next line., A
product may choose to reformat narrow listings within
the provisions of this document.

The header format fon terminal formatted {istings}
consists of two consecutive lines containing the fields
defined abova in the following positions on lines 1 and
lines 2, The PAGE and Page Number fields are optional
for continuous Tiles.

This Informatlion will appear within the following column
positions of the first print line (Product Names Product
versions and Prcduct Lavel are jeft Justified, separated

CYBER 1BU Syst

3-18
em Interface Standard

84/0C7727

QuTPUT
2+2 Narrow Format {80 Columns)

by one blank coiumn):

Line 1
Columns
Cotunmns
Columns

Columns

Line 2
Columns
Columns
Columns

Colunns

Columns
FILE
Line 1
Columns
Columns
Columns
Columns
Line 2
Celumns
Columns
Columns

Cotumns

FILE CONTENTS LIST

1-1% Listing Name
16-45 Module Name
48=65 Date {right justified}
70-RD Page {right justified}
1-6 System Name
g={7-n} Product Name {length=nsn = 24}
{94n} - {12+n} Product Version {length = 4}
{14+n} - 42 Product Level {length=5, blank
it}
48=-59 Time {right justifiedl
CONTENTS LEGIBLE - 80 Column Format
1—14 Listing Name
16~46 Module Name
48=65 Date {left justified}
70-80 Page {left justified}
1=-6 System Name
B8={7=-n} Product Name {length=n, n=24}
{9+n}={124n} Product Version {length=4}
{144n}~-42 Product Level {iength=5 blank

fitld

CYBER 180 System Interface Standard

3-19

847071727

————— - - -

UtTpPuT

-
[AN R}

+2 Narrow Format {30 Columns)

- -~

—-nnn - -

Coiumns 48-59

3.3.2.3 Narrow_formati (72 _colums)

The header format {on terminal formatted listing) consists

- —— -, - - . w— v—— - -

Time {left Jjustified}

of two consecutive lines containing the fields defined
above in the following positions on Lines 1 and 2. The
PAGE and Page Number fields are optional for continuous

files,

Line 1
Columns
Columns
Columns

Cotumns

Line 2
Columns
Columns

Columns

Cclumns

Columns

FILE CONTENTS LEGIBLE

Line 1

FILE CONTENTS LIST

20=25

27=-{26+n)

{284+n)={31+n)

{(33+n)-01

Columns 1-14%

Listing Name
Module Name
Time {right justified}

YPAGE!' and Page Number {right
Justified}

Date {right Justified}
Systenm

Product Name (length=n,
n<24)

Product Version (length=4%)
Product Leve] {(length=5,
blank filled)

- NARROW FORMAT

Listing Name or columns
1=46 program name

3=20
CYBER 180 System Intarface Standard
B4/07727

3.0 DUTPUT
3234243 Narrow Format {72 colums)

Columns 156-45 Module Name

Columns 49-580 Time {left Jjustifiled}

Columns &2 YPAGE'Y and Page Number
Lieft Justified}

Line 2

Columns 1-18 Data {left Justified}

Columns 20=25 System

Columns 27-%0 : Product Name {left
Justified}

Ceoelumns 52=-55 Product Vaersion {ieft
Justified)

Columns 57-51 Product Leavel {left
Justified}

3.3.3 SOURCE LISTING FORMATS

The following standard applies to compilerss assemblers
and interpreters. Assembiers may optionajily Insert binary
information at the left of the source statement, Page
ejects may be suppressed for subsequent listings of each
module (2.9 Mapy Cross reference) if the source listing
is short (e.3., 172 a page or less)a

The number of records iIn the source file should be the

same as the number of source lines in the source Iist,

Thereforesy nul?l records should be mapped to all blanks,
{See section 2¢342404)

3.3.3.1 3fandard _Header CLantents

Every printable scurce listing contains the foliowing text
in the Listing Name fleld of the standard listing header:?

SOURCE LIST 0OF
-=14 characters—-

A standard source }listing header will be written at the
next top—of=-form position whenever the page line counter
is reset to 1. 0Only the first source listing header will

3=21
CYBER 1BU System Interface Standard
847067727

s 2 - .y - - - -

be written on a continuous forme.

3.3.3.2 IIILE Lipes

When source embedded TITLE or SUBTITLE directives are
processed, the page line counter is reset to 1 and a
standard header s written. The title text Is printed
beginning in column 25 and ending in column 132 of the
line immediately following the first line of the standard
header., The title lines are followed by a blank lines

standard header == line 1
title text -= {ine 2
subtitle text -= }ine 3 - 11 {if any)
blank -= line n

n may take the value 3 +o 12y depending upon the
presence oF a subtitlie lines,

When a source listing Is being formatted for a continuous
formy the title llne is simply preceded and followed by a
single blank 1ine.

I1f a SUBTITLE occurs without a TITLE, a blank line is
placed in the position which would have been occupled by
the TITLE.

When the source input module does not contain a TITLE
directivey, two blank lines immediately follow the second
line of the standard listing header.

3.3.3.3 Yide Format

The actual source statement listing begins on the line
following the hlank Jline following the header, or titles
if present. Each source 1isting print 1ine contalns the
following optional fields:

Dffset 7{8) A zero suppressed hexadecimal
number (see section 3.1) giving the
byte offset in code section of the
first instruction generated for the
fisted source statement. If this
field Is supported, it is sefected
by the 1ist option BO. If

3-22
CYBER 18D Systam Interface Standard
Be4i07727

-~ . - b ———— . - -~ ——

3.0 DUTPUT
3434323 Wide Format

S T 4o A D WD WD A T V" - - ——— - -

sefectedy the field must be
supplied for all source listing
1ines.,

Input Line
Number 2Z112) A numericy zero suppressed number,
up to 10 characters in lengths
allocated to the source Jine, See
section 2.3,

Left Statement ,
Attributes x{4&) Language dependent attributes.

Right Statement
Attributes x{4) Compiler dependent attributes.

The Source Record
is a reaquired field

Source Record x{132) Up to the first 132 characters of
tha input source record. If the
source line Is Jless than 132
characters, this field is 1eft
Justifieds Source Code Utility
{S5CU) identifiers are contained
within this fieldy If they exist,

If all fields were present in a source listings column
positions would be:

Columns 1-8 Nffset

Colunmns 10=-13 Left statement attributes

Coiuimns 1%5=24 Line number

Columns 26=12% Source {including SCU
Identification when present)

Columns 127-130 Rjijght statement attributes

If an optional field is not used the remaining fields will
be adjusted to the jeft,

Whan the source record (26=125) includes SCU
identification Information the following column positions
%ill be adhered to for the source record

Columns 26=10% Source
107-125 SCU identifier.,

The fields should not be changed (mixed) between

3=23
CYRER 180 System Intarface Standard

84707727

3.0 OUTPUT
3+3+343 Wide Format

- - -

successive usess 0Once the Ffields desired are established
they must remain unchanged.,.

Existing fialds hefore and after the source record may be
bianks, If the source record overflows an sdditional line
is written within the source record fields In this case
the right attributes field of the first 1ine contains
'.2s' as the first three characters and the rest of the
field and offsat field are blanke The overfiow line
centains blanks in the line number field and the remainder
of the source record left justified in the source record
fields The right attributes fleld contains the
information which would oth2rwise have appeared in the
first 1ine,

3.3.3.4 Narcod Format_and_80_Columpn_Eormat

The source listing format written on a terminal formatted
1isting consists of one or more output Jines for each
input source racord.

The first line consists of the following fields:

Line Identifier Numeric right Jjustified leading
zeros suppresseds, Optionsal
varjable width field up to 10
characters.,

Source Racord The source record field size is
dependent on the file attribute
max bmum record length and the size
of the line number fileld,

A single blank separates these two fields.
The source record field size is dependent on the file
attribute maximum record length,

If the source racord is longer than the Source Record
field then an additional Line is written. The lines are
printed with the same format containing blanks in the Line
Number fleld and the remainder of the source line
left=-justified in the Source Record field.

3=24
CYBER 180 System Inter face Standard
B4/0T7127

3.0 QUTPUT
2e3.4 OBJECT CODE LISTING FORMAT

T . . w———— — - . g -~ —— -— - -

3.3.4 OBJECT CODE LISTING FORMAT

This is the format for listing lines of object code
produced by the compilers at the ysers request.
Assembiers 1ist their source {ines formatted as submitted
from the input file,

The obJject code listing shali take one of two forms. The
first consists of lines describing each CY180 instruction
embedded in th2 source listing ands as far as possible,
fellowing the same {ine from which the code is generated,
The object code line shall conform to the standard defined
belovws A groun of obJect code tisting lines shall be
pracedead and followad by a blank {ine.

In the se2cond forme the lines describing the object code,
alss conforming to the standard deflined belows are
collected into a separat2 listings the "object code
fisting” which shall conform to a page format common to
the listings produced by all compilers. This is defined
as folilows,

Qb ject code listings consist of instruction descriptions
and comment lines.,

Instruction Description

With the exception of BDP instrucionss each Instruction
emitted is described by a single print line optionaliy
preceded and/or followed by comment lines, The
instruction description will contsain the following fields
in the following orders beginning in column 2 of the
listable output,

Offset zi2) A zero suppressed hexadecimal number
{see section 3,1) giving the byte
offset of the instruction relative to
an inplementation defined bases This
base shall be the same base used in
the offset field in the source line
{if provided,)

X{1)

Input Line
Number 727779 The number of the input line for which
the code Is belng generated (as far as
is practicabile),

3=25
CYBER 180 Systam Interface Standard
847107727

v - - o —— - —— - - - -

2)
Binary X{20) An 4, B8 or 1lé6-digit hexadecimail number
: {adjusted to the left) representing
the binary bit pattern corresponding
to the generated instructiocn or data.
For readabitity the suggested form is
to arrange the numbers In groups of 4,
separated by blanks. The 4 and 8
" dligit numbers are followed by blanks
to complete the fieldse For narrow
formaty this field will not be present.

X{2)

Label X({31) A 1 to 31 alphanumeric character
string ldentifying the iInstruction
fabel as defined for the CYBER 180
assemblers The tabet fileld can be up
to 31 characters in lengthe It can be
used in an Iimplementation manner in
conjunction with the comment field.

X{2)

Instruction X{10) A character string identifying the
B{3) instruction and its operands. The
X{21) mnemonics to be used are those deflined

for the CYBER 180 assembler. The
mnemonic identifier only may be offset
by 2 or 4 spaces to distinguish
particular Iinstrucions or instruction
sequencese (es.ge to identify code
generated out of sequence with the
source.) Operands are specifled in
the order defined in assembler
specification which appears in an
Appendix (to be supplied)s As shown
In the format description, the
breakdown of the instruction is as

follows:
MNEMONIC X{10)
X{3)
NPERANDS X(z1)
X{1)
Comment X{25%) An implementation dependent field

typically containing user variable or
Iabel identifiersy register use

3=-26
CYBER 189 System Interface Standard
B4/0Q7727

3.0 DUTPUT
3+3.4 OBJECT CODE LISTING FORMAT

- — -

cross~references.
Marrow Format and 85 Column Format

The narrow format and 80 Column Format consist of the
offset, 1line numbers, label, mnemonics operands and
concatenated fields, The binary field will not be
present. If the listed line exceeds 72 or 80 columns the
line will be continued on the next line {(called
"foiding™). For PN other than 72 or 80, the actual width
specified will be honored; excess information will be
folded,

Bdp Instructions

These are described by a line formatted as aboves Followed
by one or two descriptor descripticnss These are similar
to the jnstruction lines except that the mnemonic field is
bltank and tha operand field contains a descriptor in the
form defined by the assembler specification,

Comment Lines

These are used to convey nmore information than can be
accommodated in the comment field of an instruction
descriptiones They consist of a comment field as defined
for the instruction description.

3.3.4.1 Standard_Headsc_Contents

Every printable object code listing contalins the following
text in the Listing Name field of the standard tisting
header:

OBJECT LISTING OF
-=20 characters-—-

A standard oblact Jisting header wiltl be written at the
next top-of-form position whenever the page line counter
is reset to 1. DOnly the first object listing header wiil
be written on a continuous form.

3=27
CYBER 180 System Interface Standard
B4/07727

2 - - -~ - - - -——

3.0 DUTPUT
3+.3+442 Standard Instruction Mnemonics

3.3.4.2 Standard_Instructlon_Hnemonics

The instruction menmonics used by the compilers will be
those of the CYRER 189 assembiler.,

343.5 ATTRIBUTES LISTING FDRMAT

A common format for the Attribute/Cross Reference 1isting
Is defined here, It Is useable by ald currently pianned
fangueges for the Cyber 180 and provides enough
flexibility to tallor portions of the listing to
individual language needs,

The contant of the Attributes Listing will wvary slightly
depending upon whether Cross References were selected or
noets» but the essential format will be the same., If the
user selacts both attribues and references, the normal
format will be used., VWhen references are not selected,
the heading will reflect the differences but the format
wild not varvye If references are selected, but not
attributesy then some of the attribute information
proyided will not be listeds providing some additional
space for references on the lline,

3+3+5.1 3tapdard._Header lonkenis

Every printable attribute Ilsting or attribute/cross
reference listing contains the following text in the
Listing Name field of the standard 1isting header:?

ATTRIBUTES 0OF
-—=14 charactersg=——=-

If no attribute list is selected (cross reference selected
only) the following text is placed in the Listing Name
fielid Instead:

REFERENCES O0OF
--=14% characters=——-

A standard attribute list header will be written at the
next top=of-form position or following a triple spacey as
specified by sections 3+3+4142¢]1 and 3.3.1.2.2» and

vhenever Ffollowing page breaks occure 0Only the first
attribute list header wili be written on a continuous form,

3=-28
CYBER 180 System InterfTace Standard
B4/077127

e - o - A —— —— - S -~ _—— e ——

DUTPUT
+541 Standard Header Contents

- g —— —— - —— - - —_—— - - - - ———

The standard header Is followed by a biank line and one or
more lines containing the attribute/cross referaence
listing heading, This consists of the fiald descriptions
as defined in the next sectionss, separated by one or more
biankss Numeric fields In the tisting are right=aligned
with the right=hand side of the description; character
string flelds are aligned on the 1efts where appropriate.
Some of the field descriptions may be split between two or
more Jines If required, or omitted, if necessary, as
indicated below,

3.3.5.2 Yide_ Egrmat

The listing is made up of entries describing the obJjects
definad in the soyrce program. FEFach entry consists of a
definition 1in2y followed by one or more extension lines
if requireds, The definition line gives the line In which
the object was declared (or first referenced if Implicitily
declared)s the identifier», 2and attributes, Extension
tines are used 1f there are more attributes than can be
accommodated on one |ine, and to hold references iIf
selected, If both attributes and references are selected,
the references always begin on an extension line by
themselves.,

Tha lines contain the fields described in the table below
in the order specifieds The table also contains the field
description to be pjaced in the table heading, The final
section of the line (for host suppiied free form
attributes and the references) is continued on extension
lines as necessary.

Entries occur In alphabetical order with a blank line
inserted betwean groups of identifiers starting with the
same character, Multiply defined identifiers are
consecutive In order of Increasing level of nesting or In
crder of occurrence of block,

Variable format fields are optionale. They are in the
indicated order if used, otherwise the field is not
present. The sizes for the given fleids are maximum width,

ATTRIBUTE/CROSS REFERENCE LISTING FIELDS

Fixed Formats:

Field Heading Size Meaning

identifier IDENTIFIER X{31) The identifier of the entity.

3=29
CYBER 180 System Inter face Standard
B4/07727

3.8 JUTPUT
3:3.542 Wide Format

The name appears left Jjustified,
blank filled.,

blank X{1)

definition DEFINED Z43) The source line number in which
ON LINE the entity was defineds or {for

tanguages wlith Implicit
definitions) first used.s It may
extend Into the jdentifier field
if larger than five {(5) digits.
The second line of the heading
=0ON LINE~ appears only in the
wide format.

biank X(1)

size SIZE unit X{

Gl

) Size of the entlitys in units,
defined by the host (either bits,
bytess or words), The units of
the size of the entity wili
appsar as "BIT", “BYTE"™, or
P"WORDY™, Abbreviations are BIT,
BYTs, WRDe Normally the fields
for size unit combination will be

size 2{8)
btank X{1)
unit X{4&)

If the size field exceeds 8
digitss then the fieids will be

slze Z2{1¢0)
unit X{3)
Special case:

If size units is no-sizey then
the size flald is alliowed to be a
signed integer {564=-bit). This
will be right Jjustified under the
SIZE title If possible, If it Is
too fargey, it "grows” to the
rights If it Is so large as to
grow into the TYPE fields the
TYPE field Is pushed to the
righte This is possible because
the LOCATION field is undefined
if the SIZE units are no-size.

3=-30
CYRER 180 Svstem Interface Standard

84707727
3.0 QUTPUT '
3+43.%.2 Wide Format
blank X{(2)
type of TYPE X{10) The type of the entity being
entity iisteds Chosen from the list in
section 3+3.5.4.,13 If the host
wishes further qualifications
Jisted they appear in the
attributes 1ist.
biank X{1)
location LOCATION Mininum The location of the entity,
SEC+DFF X{6) where "SEC"™ is the section name

of the section containing the
data for the identified
referencey and "off" s the
offset to the beginning of the
section, The section names ared

SLITERAL The section
containing literal
constant data.

$STACK The section
containing variables
that are aliocated
on the stack when
the containing
procedure Is called,

$PARAMETER A subset of the
$STACK sectlion
containing parameter
1ist varilables
allocated on the
stack by the calling
procedure,

$STATIC The section
containing variables
that are statically
atlocated, are not
in commons and are
not in an explicitly
named section,

$REGISTER Variables not
belonging to any
memory section but
existing only in 3
hardware register.

$BINDING The binding section.

3-31
CYRER 180 System Tnterface Standard

BaiCTI27
3.0 oUTPUT
323e%0f Wide Format
$BLANK Biank {unnamed)
COMMON .
CYRSDEFAULT
HEAP The system heap.

Code section names will be set to
the name of the procedure the
section represents. User defined
names of section and user
declared common blocks wlll also
be specified In full (up to 31
characters).

when a "sec" name is too large to
fit into the default field size
allocatedy the entire name is
printed, expanding to the right.
A line feed and re~alignment
"back” to the next listing field
allows continuation of cross
reference data generation. For
narrow format {section 3.43.54.3),
if the "sec™ name does not fit on
the liney, it will be put on the
next line by itsalf, then the
rest of the map will continue
following a line fead and
re—allignment to the next field.

Variahle Format

For narrow or A0 column format listing the variable format
fields continue on a new itine beginning in column 15 and
extending to column 70 or 80. For wide format listing the
variable format flelds continue on the same line beginning
in column 75.

Field Heading Size Meaning

block number BLOCK 199¢ Specifies the block or subroutine
in which the obJject was defined.

blank X{2)

nesting NEST 722399 The nesting level of the

fevel LEVEL deciaration of the entity iIf a

block=structured language. if
the host Is not a biock
structured language, the nesting

3-32
CYRER 180 System Interface Standard
84707727

3.0 DUTPUT
3234502 Wide Format

level Is omitteds The second
jine of the heading - LEVEL =-
appears only in the wide format,

blank X(2)

containing CONTAIN NOR X{31) The name of thes containing or
entity DECLARED IN gualifying entity. Blank if the
. entity is not contained or

quallifieds The “contalned
within®™ form is for arrays and
structures, The "declared in®
form is for local variables. The
entire heading is on one iine.

blank X{2)

basic ATTRIBUTES X{12) The "basic atiribute” of the

attributes entity (entry, externaly etcs)
chosen from the list in section
303050% 620 Blank if
non—~applicable to the entity. If
there are no optional flelds and
the basic attribute is not
presents the whole line is
omitted in narrow format.

user {nc heading) free Other host defined attributes
attributes field separated by commass These
start- attributes begin on a
Ing on separate line beglinning with
a sepa=- column 54 for wide format and
rate column 15 for narrow format
line listings. Each definition
specified by the host Is placed
on one line if possible,
otherwise each that overflowus
starts a new lines If the
definition doesntt fit alone, it
is broken at a blank,

references REFERENCES Z{5)X12) References on the identifier
For combined tine begin at column 54 on.
maps subheading the listing In narrow format
will be the first line has two
references. Subsequent
“REFSY fines start In column 15
starting on and have six references per

32 separate fines In wide format all

2-33
CYBER 180 System Interface Standard

84/07727
3.0 OUTPUT
3+3e542 Wide Format
tine. lines start in column 54 and have

8 references per Jines For mixed
mode listings, see dliscussion
below.

The format for references is a six digit, right
Justified, blank filled integery, followed by an
optional slash {/), followed by qualifying letter,
chosen from the list in section 3«3+.5+4+3. This
combination is followed by a bianka.

In mixed mode {combined attributes and references),
both the attributes and references are handled as
described aboves 2xcept that the first reference line
has a suhtjtle -REFS- placed at Its 1eft., The subtitie
=REFS~ is placed Iin columns 9~13 on the narrow listing
and in columns 48-52 in the wide tisting.

Since the user may select the attributes listing
separate from the refarences Jistings, the folloxwing
changes occur when both are not selected together. 1If
sttributes only are sejectedy the references are not
listed. 1If references only are selecteds the
identifiery, line number and references fields are used
and the refarences bhegin at the end of the first 1ine,
not on an extension line.

3e3e543 Marrow Format_and_ 20 _Column_Eocmat

The narrow format llsting will have the same format as
the wide tisting with the exceptions noted in the
describitions in section 3.3+.5.2. and with the
exception that the attributes and refernces fields will
continue on an extension tine beginning in column 15
and extending to column 70 or 8GC.

3¢3.5¢4 Stapndacd_Eield Yalues

3¢3.5e441 ENTITY TYPES

Each entity is assigned a basicy cross—language type.
These appear in the "Type™ field as one of the followings

TYPE ABBREVIATED FORM

Simple vars VAR

3-34

CYBER 180 System Inter face Standard
84107727
3.0 DUTPUT
3+3.5.4%4,1 ENTITY TYPES
Arrays ARR
Structure STRU
Member MENM
Conditiony COND
Constant, CONS
Types TYPE
DEF), DEF
Programs PROG
Module MOD
Proceduyre, PROC
Function, FUNC
Label, LAB
Switchy SWCH
Files FILE
Format, FMT
Paragraphy PARA
Sectiony SEC
inmpl nama, {for Implementor name) IMPL
Groups GRP
Atias ALIA
Error ERR
Attr namey ATTR
gach host need not support alil types of entities on this
1ist» but should define a consistent maopling into a subset
of the above, The flnal entry {"Error*") should be used
for entities whose definitions contain syntax errors
sufficient to prevent the compiler from determining the
user's intentions.
323054422 BASIC ATTRIBUTES

This field contains attributes basic to the entity
definition which are excluslve of one another, If the
entity does not fall into one of the following catagories
of attributesy then the field is l1eft blanke These ares

Attribute Abbreviated Form
undef inad UNDEF
unreferenced UNREF
EntryPoint ENTRY
External EXTRN

None (fleld is blank)

3=-3%
CYBER 180 System Interface Standard

B&7GT727
3.0 OUTPUT
3+3.5%.443 REFERENLCE TYPES
343454443 REFERENCE TYPES
The standard reference type abbreviations will bes
M the entity was set (modified),
{biank)s the entity was used [slash is also omitted)
A the statement defined an entity attributes
S the entity was a subscript or index»
1 the entity {usuaily a flie) was referenced In
an 170 statement
R the entity was read into (or» if a files was
read)
W the entity as written from {(or, if a file, was
written)
p the entity was used as an actual parameter

Fer all listings contalning references there Is a legend

of the possible referance types and their one character
abbreviations at the bottom of each page, This legend is
right Justified and takes the form abbrev = full names ess»

For examplet M=modifys» A=attribute, S=subscripty
I=170 refs R=r2ads W=writey P=param.,

Each host may choose to use the entire set or a subset
thereofy, but it is hoped that most hosts will use the
entire set.

3.3.6 DIAGNOSTIC LISTING

The diagnostic listing for compilerss assemblers,
interpreterssy etc.» consists of dliagnostic messages.
Diagnostics are listed in either of two modes, at the
host'!s choices The first method lists all diagnostics and
a diagnostic summary at the end of the listingsy following
the Attributa/Reference list (if selected)s The second
method 1ists syntax diagnostics in the source listing as
they are detecteds with later {non-syntax) diagnostics and
the diagnostic summary being listed at the end of the
Attribute/Reference 1ist, If the first method is
selected, the host may also choose to have the location of
the diagnostic occurrence flagged in the source listing
{by means of a caret symbol under the offending column).

When compilation occurs with zero diagnostics a diagnostic
summary will be produced consisting of the single line IND
ERRQRS?,

3=35%
CYBER 180 System Interface Standard
84707727

3+3.6.1 3Stapndacd_Header Zontents

Every printable error listing/summary contains the
following text In the listing name field of the standard
listing header:

ERROR LIST DF
mmw]dy characters—w=—-—

A standard error listing header will be written at the
next top—of-form position or following a tripie space, as
specified by sections 3.341+42+1 and 3+3+1+42e25 and
whenever a subseqguent page break occurs. Onily the first
error listing header is written on a continuous forme.

3+.3¢642 Standard.Riagnostlic Listipg Eormat

All dlagnostic llstingsy whether grouped togsther at the
end of the other listings or printed intermixed with the
source listing #wiil have the same basic format. When
groupedy they will be listed in source line/statement
column/diagnostic number order, When grouped and the
diagnostic number §is not being printeds they will be
fisted in source linse/statement column/order of issuance
order. When printed Intermixed with the source listing,
they will be printed in the order the host detects them.

Column positions are specified for the case where all
fields are usedy, and remaln the same If an optional fleld
is not used.

Column

Position Contents Format Meaning

1-9 level X{9) error severity level of the
diagnostic

11-17 1ine nre Z(6)9 source statement number on

which the error occurred. For
diagnostics intermixed with
the source listingsy this field
contalins *ERRQOR*,

22=24 diags noe 72799 diagnostic number of the error

3=-37
CYBER 180 System Interface Standard
84707727

- —— - ——— - - ———

3.8 DUTPUT
3434642 Standard Dlagnostic Listing Format

——— —— ——— —_——

{assigned by the host)., This
field is optional.,

26=28 £oL X{3) The abbreyliation for the word
coftumn In intermixed mode. If
the column number fjeld
contains zero, 'COLY is
suppressed, In grouped mode
this fleld contains the coluan
number described below, and
that field is blanke.

3a0-32 cols nos, 729 column number in which the
error was detected. Blank if
not applicables In grouped
mode the column number is
present In the col (26-28)
field and the column number
field Is blank.,

34~eo0l text the diagnostic text (defined
by the host). Each word
within the text is separated
by one space and the line is
filied as required., Extension
1ines begin with the text
position through the end of
the lines single-spaced, 1In
intermixed modey the *ERROR*
indicator is re—-issued on
extension lines,

Diagnostic summary for products that use diagnostics
intermixed with source should include a page {1ist of pages
with diagnostics.,

3+.3.6.3 Stapndard. Diaangstic Summacy._Eotrmat

The diagnostic summary will follow the diagnostic listing
for grouped diagnosticss or stand-alone for intermixed
diagnosticse 1In e2lther case It provides the user with a
summary of diagnostics detected and listed, as directed by
the EL parameter,

There will be an diagnostic summary line for each Jlevel of
diagnostic detected during the compilations If no
compilation 2rrors {at any level) were detected, then that
is noteds The following format will be used for all of
the summary lines:

3-38
CYBER 180 System Interface Standard

B470T7127
3.0 DUTPUT
3434543 Standard Dlagnostic Summary Format
columns 3-6 * dokok Summary line flag
columns 9~14 Number of diagnostics of a
given categorys, in the format
Z(5)9.
columns 16=~2p01 Texty In the format “aaas

diagnostics”, where gaaaa is
the category being

summar ized, If the
diagnostics were not jisted
{due toc EL setting) then
"{unlisted)” is appended to
the message,

If only one diagnostic at a gliven jevel was issuyed, the
word "diagnostics"™ will be “diagnostic" in the messages.

3.3.7 COMPILATION OPTIDNS

The compilers will produce one or more lines of output to
indicate which control statement options were selected for
this complie {2ither by default or explicitly). The
format of this line will reflect section 2.2 of this
standard, This line will appear after all other listings
for each modulea., It is produced whenever any list option
is selected and not produced for LO=NONE,

3.4 ERROR_BEISAGES

This section describes conventions for ail ASCII error
messages, This Includes log messages {(to system and Jjob
logs)s interactive messagesy and error messages written to
the QUTPUT or nther flles {reference 1o0ogsy section 3.2).
The conventions Include the use of the Message Generators
message identification» and message wording.

3.4.1 MESSAGE GENERATOR USAGE

The NOS/VE Message Generator is used to format and output
all error messages output to logs or to an interactive
usars terminal {note this does not Include dlagnostics
generated during compiltation)s It produces a standardized
message using the NOS/VE status record and message
templates from a message dictionary.,

3=-39
CYBER 180 System Tnterface Standard
B47G7727
3.0 DUTPUT
3.4.1 MESSAGE GENERATOR USAGF

A summary of the NIS/VF status record fields is noted
belows The NNS/VE ERS should be referenced for a complete
description of the status r2cord and the Message Generator
interfaces.

Normal - A boolean which has a value of FALSE if a request
could not be processed correctiy and TRUE if it has been
processed correctly,

Identifier - The two character product identifler
associated with the product generating the status record,
The identiflers are as defined in sections 4.1.1.1 and
3e401s1 of this document,

Condlition - A six diglt unique system wide code indicating
the specific error. The values for this fileld are defined
by each product according to the conventions specified in
the foliowing section.

Text = A string used to substitute text into the error
message template associated with the condition. The first
character of the text signifies the character used as the
text delimiters Al]l text items are terminated by the
delimiter or the end of text.

3.4.1.1 Stapndard _Condition_Codes

To guarantes2 generation of unique system wide condition
codesy a range of numbers are assigned for each product,
Each product must assign codes within that range and
determine the message template to be associated with that
codes, Product ldentifiers are as assigned in

section 4.1.1.1 and are repeated below.

All CCM and CC5G errors will be reported using host
condition codes. The codes to be used are chosen by each
host. A host must provide at least 250 conditlon codes
for reporting CCM errors and 250 codes for CCG errors.

3-40

CYBER 18U System Interface Standard

- -

B47077127

3.0 QUTPUT

3etslsl Standard Condlition Codes

Condition

1
160,000

170,000
180,000
190,000
200,000
210,000
2205000
2305000
240,000
250,000
260,000
2705000
280,000
290,000
3005000
310,000
320,000
330,000
340,000
3505000
3605 000
37045000

3805000

-

Code

159,999
169,999

179,999
189,999
199,999
209,969
2195999
229,999
239,999
249,999
259,999
269,999
2795999
289999
299,999
309,999
319,999
329,999
339,999
349,969
359,999
369,999
379,999

4995999

Product

Identifier

Resarved
AM

cL
J#
LL
MM
0s
PF/FS
pM

RM

SF
cM
HU
NA

Reserved

Product Name

Basic Access Methods
Command Language

Job Management

Loader

Memory Management
Operating Systenm
Permanent File Management/File Systenm
Program Management
Resource Management
Operator Facility
Accounting/Validation
Interstate Communication
kRemote Host Faclllity
Object Code Utitities
Deadstart/Recovery
Maintenance Services
Interactive Facility
User (e.ge.» for "user™ statistics)
Statistics Facility
Configuration Management
Help Utilities

Network Access Method

CYRER 18D System Tnterface Standard

3-41
84707727

3.0 OUTPUT
3+42121 Standard Condition Zodes

500,000
510,000
520,000
530,000
540,000
550,000
5605000
570,000
580,000
585,000
590G, 000
600,000
510, 000
620,000
630,000
640,000
650,000

560,000

67C,000
6580, 600
690,000
7002000
710, 0G0
720,000

509,999
519,999
529,999
539,999
249,999
5595999
569,999
2795999
5845999
£89»999
599,959
6095999
©19,999
6295999
6395999
£49,999
©59,999

669,999

6795999
£895999
699, 999
7095999
7195999

7295999

AA

ES

FL
PA
P1
SM
sC
FM
DB
HP

MA

ML
IM
ST
LI
FA
AD

Advanced Access Method
Edit Screen

Assembly Language

APL

BASIC

DCN Dump Anailyzer
COBGL’

CyYsIL

FORTRAN CDMPILER
FORTRAN LIBRARY

PASCAL (Wirth)

PL/I

Sort Merge

Source Code Utility
FMY

Debug Facility
Hardware Performance Analyzer (HPA)

Maintenance Application Language
for Equipment Testing (MALET)

Math Library

Information Management Facliiity
Software Tools

LISP

Flle Migration Alds

Ada

. - - -

=42
CYBER 180 System Interface Standard
84/07127

E - - - —

3.0 DUTPUT
32%41s]1 Standard Condition Codes

- —— v - - - - D S S A D Y G S S U T S S D 2 D S T N

730,000 - 739,999 Fv CDC FORTRAN {(Vectorizing)
T40,000 = 7492999 ve C compiler
750,060 = 759,999 VX VX/VE = UNIX Emulator

30442 MESSAGE TEXT

The message templates are determined by each product and
included in a message dictionary. The NOS/VE ERS should
be referencad to determine the formats of message
templates.,

3.4.2.1 Messaae_FEormats

The message generator formats and outputs messages
according to coanventions based on the message's
destination: terminaly, Jogs file, or returned to the
callera.

Terminal:

Format: text evess or IDnnnnnn text oseen
Example:? Permanent file {pfu) not found.,

Logy OUTPUTs or other file:

Formats ICnnnnnn text essne
Exampies CRG32% Incorrect deljmitery comma
assumed.,

Returned to caller:

Format: IDnnnnnn SID mmm text ssese
Exampl e AM1234 SOp 012 Flle {(1fn) already
ppened.
Where?

text osssses = Text of message

ID = Product Jdentifier

annnnn = The error condition code
{unique error number for a given
product)

SID = Product subidentifier

mmm = Subcondition code.

3=43
CYBER 180 System Inter face Standard

84707727

VO N T AU VD TP W Vi WS -~ Eaad -

3.0 DUTPUT
2.44.2+1 Message Formats

The combination IDnnnnnn will be known externally as the
"C1i80 error number”™., It is a unigque system—wide code by
which any error message can be ldentifled to the user. It
is always printed before the message text on all batch
jistingss It can optionally be Included with messages
output to an interactlive terminal and is available to the
terminal user requesting additional error analysis
assistance via the NOS/VE HEILP facility.

3.4.242 Error_Summariss_io_logs
When error summaries are listed on a files, log messages
should be issu2d to both the system and user log according
to the following rules and formatss
System and Yser Log

n fatal errors [in x]

User Log QOnly

n warning or trivial errors [in x]
n number of arrors
X Is the name of the moduley programy subroutine

that contains the errorse

Error summaries should oniy be used when It is
inconvenient to provide a description of an actus) error.,

Catastrophic errors are not included because they shouid
always result In a log message indicating the catastrophic
errors. The error counts shoyld be Issued to the log even
if the EL {error leval) parameter excludes them from the
Jisting,

3.4.2.3 Message_Wording

Error messages represent a very Iimportants though often
negiectedy Interface between software and user., Proper
attention to producing polite, correct, and clear error
messages can do a lot toward improving the overall
usability of the systems The following conventions should
te used in defining error message text:

=44
CYBER 1BO System Interface Standard
B4/(G717127

QUTPUT '
+2»3 Message Wordling

3.0
3.4

» Messages should be polite and courteous. Words such
as "1ljeqal” should be avolded In favor of words 1ike
"incorract” or "unknown®. Error messages shouild,
where appropriates suggest what the user ought to do
to correct the error. ¥or examples use?

The line number parameter must be an Integers
nots
Illegal line number,

. Messages must be Fformatted for 72 character displays,
Telegraph style is much better than long-winded
proses, However, the message must be descriptive of
the error, Messages fike "Bad Argument” dont't say
2noughe.

N Consistent terminology is extremely importants For
system—wide terms consult Section 6.0 of the SIS, For
terminology speclflic to a products agaln consistency
is the important factor.

N Identification must be provided with variable
informations For example:?
uset
Fite {1fn) not found.,
Variable (var) must be scalar.

nots

{1fn) not found.,
Variable {(var) must be scalar,

. Use anding punctuation, It Indicates to the user that
the message is not continued on the next line and adds
to the readability of the message.

» Messages should be oriented toward an Inexperienced or
casual user such that the message can be understood
and appropriately responded to without reference to a
manual .

N Abbreviations should be avolided. Whenever possibie
jimit the characters used to alphanumerics plus
english npunctuation. Avold use of characters that
appear differently on different devices, CDC?s
b64~character ASCII subset and Jowercase alphanumerics
can be used,

» Words beglinning with "multi" and "non"™ are not
hyphenateds Don't use "{s)" to indicate an optional
plural usage; either singular or plural is acceptable.

3=-45
CYRER 180 System Interface Standard
B410GT127

- - - - A YU S S T U WD DD A o W D -

3.0 DUTPUT
3+4.2+.3 Message Wording

. Error messages should use upper and lower case as they
are normally used in the English language. Upper case
should b2 used to distinguish "computer” words from
normal English words. For examples

File FRED not found. Specify keyword NEW.

3¢5 USAGE_SIAIISIICS

AlY products are requlired to collect and Jog statistical
information,

This section describas what these statistics are used for,
the NOS/VE Statistics Facilitys» which statistics will be
collected by products and which will be collected by the
075 and when statistics should be jogged.

Because the Statistics Facility is under control of NOS/VE
product deslgners are requested to convey statistics
requirements and plans to the NOS/VE design teams

3.%,1 PURPOSE OF STATISTICS

Statistics logged by products may be used for billing,
measuring reliability, measuring performances, debuggings
product planning or some other purpose. The ultimate use
of the data cannot be determined when the product is being
designeds For exampley a statistic such as "number of
source statements compiled”, which is normalily considered
a performance statisticy, could Just as 2asily be used as
the basis for charging or billing a users It?s not
inconceivable that a student could be billed based upon
{number of source statements) - {number of comment |ines)
+ n % (number of errors) If this data were avallable for
each complile,

There are three physically different logs for recording
statistics. They are the accountings Joby, and system
statistics logs, Se2 section 3.2, A particular statistic
may apply to one or alil three of these logs. To prevent
products from having to issue the same statistic several
timess to prevent product designers from having to decide
which statistics will be used for which purpose, and to
provide instaltations and users maximum control! over

3=48&
CYBER 180 System Interface Standard
B4/0T/127

T T T S T - o - —-—

3.0 DUTPUT
3.5.1 PURPOSE OF STATISTICS

statistics gatherings NOS/VE provides a centralized
Statistics Facility.

3¢5e2 STATISTICS FACILITY

NOTE: This Is preliminary information. The NOS/VE
ERS should be referenced for a more complete
and up to date specifications The ERS is the
controlling document for this product to D/S
interface.

The NOS/YE Statlstics Facility Is used by products and the
075 to accumulate statistics and write records into binary
'OQS:

The Statistics Facility

- associates a statistic code from a status record with
a particular table entry

- adds Jjoh and task identification to the varisble data
if appropriate, Task identification specifies shich
of the possible several asynchronous instances of
execution within a Jjob the current statlistic belongs
to.

- routes the statistic to the appropriate log or logs
and/or adds it to a specific counter as determined by
the table entry., Counters can be dumped to binary
logs at specific times or events.

Data passed to the Statistics Facility include:

- statistical code - ordinsd of this particular
statistice.

- optional byte string - for products this string
contains product ID, module identifiers if
appropriate, and any other product or statistic unique
descriptive data. Product ID is the two character
identifler deflined in sectlon 4.1.1,

- optional count flelds - ¢ to n numbersy the numeric
part of the statistice

Data returned Incliude:

3I-47
CYBER 180 System Intarface Standard
84707727

2.0 OUTPUT
3,542 STATISTICS FACTLITY

- 5tatus = bootean indlcating whether or not the
pravious Statistic Facility regquest was processed
corraectiv,

The method for assigning statistics ordinals will be

specified in the ERSe A separate range of numbers will

probably be reserved for users.
3.5,3 PRODULT STATISTICS COLLECTED BY NOS/VE

In generaly, the N/5 is responsible for collecting Jjob step

statistics that can be datermined external to the product,

that is statistics that the 0/S is capable of determining.

For each product identified in SIS section 4,1 that is

directly invokad by the users e.g9.» via command or as a

program jnitiated tasks NOS/VE will record resources used

per invocatlon, Resources accounted for includes

- total CP=time

- maximum virtual memory used

- maximum real memory used

- average working set size

- CP-time per memory slze used

- numbar of I/0D requests

- amount of data read/written to files

Additional data to be colliected for each Invocation of a
product include:

- origin of Jjob step - batch commandy, terminal command,
procedure flley, executing Jjobe.

- type of termination ~ normals product error, time
Jimity invalid memory reguesty operator drops etc. A
recoverad condition does not cause product termination.

- average interactive response time for interactive
products - the average elapsed time between input data
avallable and output data Issued to terminal.

3=438
CYRER 180 System Inter¥face Standard
B&r1077127

- - - ————

3.0 DUTPUT
3.5,3 PRODUCT STATISTICS COLLECTED BY NOS/VE

L] - -

- the fact that the eroduct was invoked {added to count
of the number of separate Invocations).

- number of modules 1oaded (input units for the loader)

- source languages of modules loaded {added to language
usage count),

- disk accesses per (P second.

These same statisticsy, resource usage and additlonal datas
may be collected for any user initiated job step whether
it is a user supplied program or a COC supplied product.
Statistics for products will be identified by product ID»
correction level Information, and task number acqulired
during loading.,

Task number identifies which invocation of product x
issued the statistic. Several asynchronous tasks may be
executing the same producte. Statistics for user written
tasks may be identiflad by primary module name, task
numbers and other data gleaned from the file ID.

Number of invocations will be collected for all products
both user callad and product called service products such
as Access Methodsy and altl user taskso It could be
collected for all modules on system libraries. For
products, it represents the number of times the product
was invoked over a given time span; for user programs it
represents the number of times a program module written in
{anguage x was used over a given tlime span. The time span
Iis installation definable.

3¢5+.4 STATISTICS COLLECTED BY PRODUCTS

In general, products are responsible for collecting
internal statistics that only they can knowes There are
two classes of product generated statistics - input units
and internal usage statistics.

3e50441 Ipnput Unit_Statisilics

This class of statistics is concerned with the number and
nature of usa2r controlled data processed by the product.
The number of input units is what PIDFR (Product Input

3=-49
CYBER 180 System Interface Standard
B4/07727
2.0 DUTPUT
2+%4%4e1 Input Unit Statistics

P - WA A Y B Tl S A N S D F D W W SO S B WO D 1S D 40D WD U T MO W - -

Data Failure Rate) calculations are based upon. All
products are reguired to log number of input units
processad per Invocation,

Section 84642 of the AQ/R (ARH 1688) defines input units
for various products and (/%S lsvels, In summary they are:

Product Input Unit
Language translators esges Source

FTNs CDROL, CYBIL» DDL fines
Utltities such as SORT/MERGE> Data records
FMU» EDMS utilities, GCU
Services such as AMy» AA» Functional
and DMS180's Query sarvice requests

Input unjit rejated statistics other than count which are
required where applicables incluyde:

Language Translators

- number of modules processed

number of declarative statements

number of executable statements

number of comment and blank lines

- number of source statement errors for each error level
Utilities

- number of type n records

n = each recognizable record type supported by the
product

number of records In error
- merge order used
- average key slze
- average key type

Services

3-50
CYBER 180 System Interface Standard

84707727

3.0 DUTPUT
3.%.%4.1 Input Unit Statistics

- number of functions of type n

- number of illegal/ill-formed requests

Many other potentially useful input related statistics are
possibles Products developers are encouraged to coilect
additional input statistics they feel are worthwhile. An
example is source statement freguencys» ie.2.» number of
each type of source statement encountered.

3.5.4.2 Ipierpal_Statistics

This class of statistics is concerned with internal
measures of the product as opposed to measures of the
input data, These statistics report internal product
information that the 0/S5 is not aware of.,

Examples of such statistics are:?

- product optlons In effect for this execution 2.04»
what control statement parameters were selected.

- internal errors encountered

Products are required to iog optlions used and number and
type of internal errors encountereds The other statistics
are highly desirable and should be collected at least on
an optional basis.

Many additional statistics may be applicable to specific

productses Devalopers are encouraged to coliect other
statistics they feel are worthwhile.

3.5.5 WHEN TO LOG STATISTICS

The two issues of concern ares

- when should detalled optlonaly, statistics be
accumulated and 1ogged?

- when should subordinate service products such as AA
tog statistics?

A1)l statistics will be controlled by installation or user
controllad switchess, The statistics Facllity wii1l provide
the mechanism for setting and clearing these switches.

3-51
CYRER 180 System Tnterface Standard
B&4/107727

3.0 QUTPUT
3.%5.,% WHEN TO LOG STATISTICS

W S T W SO A A W W - - -

Each procedure that Issues diagnostics must check the
appropriate switch before calling the statistics

Faclility, The swlitches will probably exist as an array of
bits that can be referenced but not changed by user

taskse The NDS/VE ERS will specify the exact form.
Subordinate products and routines may either issue ;
continuous statlistics at product determined intervals or
events or they may accumulate and report them under
control of the host product.

For products such as AM and AA whose statlistics could be
meaningful regardless of the hosty the first approach is
acceptables For example, statistics couid be gathered
from file open to Ffile close for each file. Anyone
interested In AA statistlics for a job step would have to
sum up the individual statistics on the Jlog file.

For subordinate products and routines such as the common
compiler modules whose statistics are not meaningful out
of contexty, a mechanism should be provided to enable the
host to force out statistics on demand. That iss, the host
must be able to Inform the subordinate that its work is
complete, If the subordinate actually Issues the
statisticsy the host must provide its product ID to the
subordinates so that ID can be included Iin the

statisticss, If the host actually issues the statisticy
the subordinate must return st] data and jdentifying
informatione The first method is preferred since the host
does not need to know which or how many statistics the
subordinate iIs collecting.

Note that all methods of statistic reporting require
products to recover from catastrophic external and
Internal errors. Products must regain control so that
they c¢an output the accumulated statisticses Furthermore,
since 0/S5 1o0ogs the reason for terminations products that
recover from abnormal external conditions must be able to
jet the abort happen after they issue their statistics so
that the correct reason for the termination is recorded.
Products that detect internal errors must be able to
indicate that such an error happened when they abort, so
that "internal error™ is recorded as the reason for the
aborts A product may choose to terminate via an abort
when no product error has occurred.,

4=1
CYRER 180 System Interface Standard
84707127

v - — — - o o N D = U S - A o . S W T——— - A W " -

4,0 SYSTEMWIDE CONVENTIONS

- - - - T - - - - . -——

4.0 JYSIEMWIDE_CONVENIIONS

This section describes the operating system and product
set convention which must be foliowed by aill standard
spftware,

The term "global®” as used In this section refers to
constant and type definitions that are global to saveral
products, It does not mean Yglobai®™ within a particular
product,

4.1 NAMES, DAIES _AND_TIMED

Standard system naming conventions are needed for the
following reasons:

1. Permit recognition of the origin and maybe the purpose
of the namad entity Just by its name.

2+ Prevent duplication of names between different
products.

3. Designate categorles of names that are reserved for
CDC wusage so that they witl not be duplicated by
application programmers.,

These names may be declared as entry point names, file
namesy SCU deck namesy or as names for common system
entities such as installation optionse The common system
entity names must be declared In a form that provides a

simple source of avallability for use by any system
implementation languagey, {(CYBIL or assembly).

4.1.1 NAMING CONVENTIODNS

The system defined global names wii) be generated
according to the following convention:
PPCHXXX

wheres

PP ~= is a 2 character alphanumeric product

Y2
CYBER 180 System Interface Standard
' 84707727
440 SYSTEMWIDE CONVENTIDNS
4.1s1 NAMING CONVENTIONS

-~ - - u——— - -

identifier or other global identifier for the
oWner of this symbol,

C -= jdentifies the class of the name.,

% -= §s the spacial character %

XXX == 2 or more alphanumeric characters which
establish uniqueness within the levels of
jdentification described above, The maximum
length of this field is determined by the other
users of these names, Example: The loader
determines the maximum length of an entry
polnty, the record manager the maximum length of
a file name,

4.1.1.1 Broduct ldepniifliecs

AA Advanced Access Method

AL . Assembly Language

AM Access Method

AP APL

AV Accounting Validation

BC BASIC

cC Common Compiler Modules {(CCM)

8 LOBOL

(Y Common Code Generator {(CCG)

cL Command Language

M Configuration Management

cy CYBER Automatic Vectorizing and
Language Independent Compliler (CAVALIER)

cYy CYBIL

DA DCN Dump Analyzer

08 Interactive Debug

bS Deadstart/Recovery

ES Edit Screzen

FA ~ Flie Migration Alds

FC FORTRAN Compliler

FL FORTRAN run time Library

M File Managenment Utility

£S File System

FT FORTRAN, Giobal to FC and FL

Fy CDC FDRTRAN (Vectorizing)

HP Hardware Performance Analyzer {(HPA)

HU Help Utillitles

IC Interstate Communication

IF Interactive Facility

M Information Management Faclility

LT a7 g

; 43
CYBER 1BD System Interface Standard

B470717127
4.0 SYSTEMWIDE CONVENTIONS
4elelsl Product Identifiers
M Job Management
LI LISP
R Loader/iibrary generator
MA Maintenance Application Language for Egqulipment
Testing (MALET)
ML Math Library
MM Memory Management
MS Maintenance Services
NA NHetwork Access Method
ac ObJject Code ULtilitles
OF Operator Facility
gs Operating Systen
PA PASCAL (Wirth)
PF Perman2nt File Management
P¥ Program Management
PS Product Set
PR PROLAOG
P1 PLIT
QU Query Update
RH Remote Host Facility
&M Resource Management
5¢C Source Code Utility
SE Set Management
SF Statistics Facility
SM Sort Merge ‘
ST S0Ftware Tools
Sy Shared Yariabiles Processor
us User {(2.9.» for "user" statistics)
Ve . ¢ Comoiter
VX VX/IVE - UNIX Emulsator

4.1.1.2 Otber.Global ldeptifiers

RA Rel=asa Administrator
This product ldentifler Is used to identify

Installation parameters and procedures assocliated
with a NOS/VE product.

4+14143 Classgs_of_Names
The following list of jidentiflers naming classes is used

for code and de2ck naming purposes:

A == Architectural and Design documentation

H=4
CYRER 180 System Interface Standard
Ba/07727

- A —— - -

4.0 SYSTEMWIDE CONVENTIONS
4414143 Classes of Nanes

-= Dasign documentation linternal to CDC)

constant

-= daclaration (decks containing types and/or
constants)

-= exception condition name

- fila

-= fnline text or code

-~ kaypoint or keyword

—— module

oW
|
|

procedure

-- sagtion {static data section and/or common
block)

- typea

-— yariable
- XDCL'd {decks containing procedures or
variables)

X e WU R OR e T
1
I

4.1.1.% Special_Chacacters

The use of the % sign in a name identifies the name as one
belonging to CDC., (D¢ users will avoid any duplication
with CDC names by not using the % in any of thelr names.

Some programming languages such as FORTRAN do not allow
imbedded doliar sign characters in their names. CDC
supplied procedures callable from these languages will not
conform to the % sign rule.

4.1.1.% Naming_Guidellines

kRetationshiop of Code and Deck names

The deck name must be the same as the code name whenever
possibles In instances where it §Is absolutely necessary
to group typess constantsy etc. in the same deck, then it
is allowablie to use a conglomerate deck name which is
different than the component code names.

"Design Documentation™ Deck Names (A and B)

Class A decks are for architectural and design documentation
releasable with the code,

Class B decks are for requirement/design documentation not
rejeasable with the code (e.g.» DR—-type specificationss such as
performance) but relevent to code maintenance.

S SR SN B B SN NS S S Be

]
CYRER 180 System Intar¥face Standard

B4/J07727
4.0 SYSTEMWIDE CONVENTIDNS
4910145 Naming Guidellnes
A "design documentation® deck has the EXPAND attribute value of :

TRUE or FALSEs dependling upon the needs of the product. The content?
of this deck and all decks *COPYed by this deck are input to the H
processor named in the PROCESSOR field of the SCU decks The PROCESS?

R

is in the form of a3 string which represents the command by which thi

processor Is invoked, Documentstion decks may not be processed by ai
compiler but rather by a text formatter processor. For Instance,
documentation decks might be processed on the C170; then the
PROCESSDR might be TXTCODE. In the future, documentation decks may
processed on the C180 by a text processor.

Documentation decks not to be released to customers must be
identified (by group) by the development project to Integration,
which will r2move such decks during preparation of SMD release
materials.,

W e R S NG we S BE Be e

“"Compilabie™ Deck Names (M and F)

- e

A "compilable” deck has an EXPAND attrilbute value of

TRUEs The content of this deck and all decks *C0OPYed by
this deck are Input to the processor named in the
PROCESSOR field of the SCU decks The PROCESSOR field is
in the form of a string which represents the command by
which the processor is invokeds. Parameters which are to
be passed to the processors and which are meant to be
inyvariant {such as optimization level, or debug level),
may be included in this strings The order in which
invariant parameters are specified is precisely the order
in which they are defined for the commands, even though the
parameters are specifled as equivalenced parameters, Flle
references are disallowed in the processor string.

M class decks contain a processor defined "compilation
unit™. Examplas of such compllation units aret MODULE to
MODEND for CYBIL, IDENT to END for ASSEMBLE, PROGRAM to
END for FORTRAN, etcs. Module decks represent the units
which are maintained in a Binary Module Replacement
environment. A parent/child relationship exists between M
and P {or V) decks which contain XREFss To denote this
assoclations the name of the parent M deck is assigned as
a GROUP attribute of the child P or V deck, Thus, any
modifications made to the child deck results in the
ability to generate the parent deck by interrogating the
GROUP attributes of the child decks Likewisey all decks
which *C0OPY the chijld deck can be generated through use of
the INCLUDE_CNPYING_DECKS Criteria File directivees The
name associated with a M class deck is the same as that
speciflied on the MODULE, IDENT» PROGRAMy eftcs. statements.

CYBER

180 System Interface Standard

4=-6

84707727

4.0 SYSTEMWIDE CONVENTIONS

40101

5 Naming Guldelinss

T S T T - -

If a M deck contains code which is fater Bound intop a
todule pf a different name via the BIND_MODULE subcommand
of CREOL, than the name of this Bound Module is assigned
as a GROUP sttribute of the M decks, The name of a
corresponding F deck which contains specific CRECL
directives asspclated with the binding of this module is
specifiad as a GROUP attribute of this M deck.

F class decks contain source data which is5 retained as a
files or contains processor directives for the processor
named by the processor flelds These decks contains or
*COPY decks containings information necessary for
establishing program descriptionss omitting entry points
from Bound Modules, or establishing SCL procedure
jibrariess A typical ¥ deck might contain COLLECT_TEXT
and ADD_MODULE commandsy and *COPY's to procedure decks {P
decks) which contain the source of procedures to be added
to a procedure libhrary. Another use of F decks Is as a
container for directives to the Real Memory Builder or
Virtual Memory Linker In which segment attributes are
defined, If a SCL procedure is to b2 executed from a file
rather than a procedure library, then the processor type
of the F deck is SCL rather than CREOL. The name
assocliated with F decks ls the name of this file as It is
accessed when the processor is invckeds or the name of the
resultant file which Is to be created.

"Non=compilable®™ Deck Names (Cy, £ Iy Ky Py S» Ty V)

A "non=-compilahle” deck is one with the SCU deck EXPAND
attribute value of FALSE. This type of a deck is *COPYed
by "compliable™ decks and assumes any attrlbutes
associated with the *COPYing deck.

K class decks contain KEYPOINT» KEYWORDs or statistic
codes. These codes are deflned In terms of a constant
plus relative offsety and define a set of related data.

K decks are glven a conglomerate name which indicates the
type of data being described (KEYPDINT» statisticy» or
KEYWORD) »

C class decks contain Constants., Constants are used to
impose an upper Jlimit on rangesy and provide a starting
polint from which relative offsets are computeds, A
constant is global in nature by virtue of its appearance
in a2 C decks Those constants which define product
restrictions due to their design (egs. OSCSMAX_NAME_SIZE),
and those coanstants which represent Installation options
are the two categories of constants with packaging

CYBER

——— -~

O SYSTEMWIDE CONVENTIONS
1

4-7
180 System Interface Standard
84707727

affects. The former category of constants are named so as
to describe the scope of effect upon other products or
subproducts. Product specific constants should be named
using product specific two-character identifiers, The
fatter category of constants are named with the RA product
jdentifier to indicate that the "Ralease Administrator?®
assumes ownarship for the value assigned to the constant.
Since source code will be unavailable at many sitess the
use of constant values must be avoldeds., Globatl constants
should exist as one constant per decks The name of the
deck should be the same as that of the constant being
defined. DOwnership of a constant Is assumed by the decks
which *COPY a constant decks. Automated generation of all
decks affected hy a change to a constant deck Is

accompl ished through the INCLUDE_COPYING_DECKS Criteria
File Directlive,

T and E c}ass decks contain Types and Exception conditions
respectively, Since Exception conditions are typically
described in terms 0f a constant plus a relative offset,
it is acceptable for a constant dectlaration to appear
within the F decks E decks are glven a conglomerate name
for the condition range. Types may be either fixed or
adaptable., In such cases where a type is defined in terms
of constant {such as an equivalenced ordinal type) then
the constant value may be contained in the T deck. 7T
decks are named the same as the primary type defined in
the decks If the type is a record, then the name of the
deck Is the name of the record defined in the deck,

P class decks contain code procedures. The content of
such decks 1s the source of non=XDCL'd proceduress SCL
procedure dafinjtionsy or XREF declarations for XDCL?'d
proceduras, A SCL procedure definition will contain a
PROC to PROCEND seguence jf the P deck Is used to form a
procedure librarys, otherwise the procedure will be defined
in a F decks Code sequences which are not bracketed by
PROC to PROCEND, or a corresponding sequence such as
SUBROUTINE and END, should be contained in I (inline code)
class deckse

V class decks contain variable declarations» or the XREF
to XDCLYd variables, A child/parent relationship exists
between a V deck containing an XREF and the corresponding
M or F deck in which the variable is XDCL'd., The name of
the V deck §s the same as name of the varliable which iIs
defined in the decke The name of the parent M or F deck
is assigned as a GROUP attribute of the V deck.

4 4=5
CYBER 180 System Interface Standard
‘ B&/CT727

T T T — " Y - " - O " U NP b - - - - -~ —

4,0 SYSTEMWIDE CONVENTIONS
4,1+1.5% Naming Guldelines

- - —— - - - A - - - -~

1 class decks contain Inline code or documentations. In
the case of codes the Justification for such decks is for
performance reasons where repeated code cannot be formed
fnto a PROCEDURE due teo the expense Incurred in the
procedure calls DOtherwisey, FUNCTIONS or INTRINSICS may be
contained in I deckss Inline text is text used for code
documentation nurposes which may also be called Into a
generated document such as an ERS,

S ciass decks contain blocks of related data such as
static data of Common Blocks. An aggregate name Is
associated with this collection of data unless the text
data describes a specific entity., In such casesy the text
data assumes the same descriptive string as that
associated with the entity it s describing (eg.
GSSHPMAINFRAME _PAGEARLE_HEAP)

“Non—-compi jable” Deck Names (D» X)

Decks belonging to this category represent packaging
anomaliesy and should be avoided whenever possibie,.

D class decks contalin conglomerates of Types and/or
Constants. Since it is diffjcult to ascribe meaningful
identity to such combinationsy the use of the D class
should be avoided when possible. It is advantageous to
dgefine parameters for procedures in a D class decke This
arnomaly exlists due to the nature of the constructs
necessary to define procedure parameterss

X class decks contain the XDCL definition of procedures or
varjables., The recommended Jocation for the source of
XDCL'd procedures or variables §s within a compilable deck
{M or F class)e. Combining XDCL'd procedures into a single
module is a function of the CREATE_DBJECT_LIBRARY utility
command BIND_MADULE., TIFf the XDCL'd procedure Is GATED to
other products and/or usersy then the XDCL'd name is
preserved as a result of Bindings otherwise the name is
discarded provided there is a corresponding XREF at
binding time, Therefore, it is a product?s responsibility
to CHANGE_MODULE_ATTRIBUTES of the Bound Module to OMIT
names within Bound {or Unbound) modules which are not to
be externalized by the products. It Is recognized that
teing able to combine several XDCL'd procedures and/or
variables jnto a single compilation unit can provide
additional debug capablilities provided by a compiler. It
is for debug purposes that X class decks exist,

CYBER 180 System TInterface Standard

. S A V- S] A Y WO S 5 W N S WO - T WD W T i o - - - —— -

4=9
84107727

4.0 SYSTEMWIDE CONVENTIDNS
4e142 RESERVED FILE NAMES

—— w— - A o o —— - - . wws

-

4,1.,2 RESERVED FILE NAMES

The following Files wlll have special uses:

INPUT is5 that portion of the primary input file that
follows the System command statements,

QUTPUT is the porimary output file and contains a copy of

the Jjob dayfile at the end when printed,

For interactive Jobss, the terminal Is assumed to be both

INPUT and DUTPUT.

4.1.2 DATE AND TIME

While NDS/VE provides date and time data in several
formatsy products are restricted to using one format

unless language standards dictate otherwise. The format

to be used is the instaliation defined default formate.

For fixed position listing and file formatsy» date and time

fields must be larg=s enough to accommodate the longest

forms returned by the 0/5.

4.2 INTERACTIVE_PROCESSING

This section identifies capabilities products must provide
to support users interfacing the system from interactive

terminals.

Products support different levels of Interactive usage,
Therefore a nroduct does not necessarily support all of
the capabilities described belows For exampies products

that typically perform batch functions (e+g. complle
FORTRAN source) do not provide the same leveil of

interactive capability as one that typically performs an
interactive function (e.g3. query a file).

Many of the capabllities are provided by the operating
system and therefore are available to aill terminail users
independent of the program/application being used.

Specific interactive capabilities to be provided by C180
products are described belows A key is used to indicate
which products must include design and implementation of

4=-10
CYBER 180 System Interface Standard
B&/0GT127
4.0 SYSTEMWIDE CONVENTIONS
4,2 INTERACTIVE PROCESSING

- - - -

the capabilitiess The keys are?l

A - It is the responsibility of all products to support
the capabllities marked with the A key.

0 - This key notes the terminal capabilities supported in
the implementation of the operating system, These are
available with all interactive usage and are provided
by

Job Management

Message Generator

Flile Routing

Basic Access Method

Transactlion Executive
NMetwnrk/Communications Access Method

* & * o &

I -~ This kxey notes the terminal capsbilities supported by
“"interactive products”. These programs normally carry
on a dialogue with a terminal user to obtain feedback
and dynamically dlirect processinge They include:

Job Management
Message Generator
File Routling

HELP Utitlity
Transaction Executive
BASIC

APL

05 Utitlities
Query/Update

Report Writer

FMU

Interactive Dabuggers
SORTIMERGE

SCU

Editors

Conversion Utilities

& & & & & 5 & 8 ® & - 8 6 & & @

4.2.1 INTERACTIVE OQUTPUT

4,24.1+1 Geperal

a) The page width and length at an output device varies
not only by device type, but also by the size of paper
being used In the device. The user must be able to
indicate the operational page width and page length of

4=-11
CYRER 180 System Interface Standard
847077127

- - e -

4,0 SYSTEMWIDE CONVENTIDNS
4222141 General

the outout devices. Defaults that correspond to the
terminal characteristics are supported.
_Q-

b) Lines of data that sxceed the output device page width
must be dellvered without loss of data. Data that
swould be output beyond the right side of the page must
ba foided onto a second or successive line {reference
section 3.3.,1.5).

-Q-

¢} The user must be able to have every output line
formatted so as not to exceed the output device page
width provided the output device page width s not
fess than 72 characters. As a minimums the user nmust
be able to specify that output be formatted for page
widths of 72 or 132 print positions (reference
section 3a3ele4)s
-{}—

d) Any output that may go to an ASCII sequential file may
instead go to a terminal,
o (e

) Any output may contain 3 carriage control character
(reference section 3,3.1.3).
-g_

f) The carriage control character will direct printing of
an output file and will not appear In the print outout,
-

424142 Massages

a) Messages must be courteouss Words such as "illegal”
should be avoided in favor of words like "incorrect®
or "unknown™, Error messages musts where appropriate)
suggest what the wuser ought to do to correct the error.
-

b) Messages must be Formatted for narrow listings.
_A-.

¢) Messages must be meaningful such that an Inexperienced
or casual user }js able to understand the message and
respond appropriately without reference to a manuale.
..A-.

4=12

CYBER 180 System Interface Standard

84707727

- - ——

40 SYSTEMWIDE CONVENTIONS
4.2+1.2 Messages

-

e)

f)

g)

——— —— —— o

Any message longer than 20 characters must hsve an
alternate brief counterpart.
-

A user must be able to select elther a brief or long
form of a messages. When using the brief form of
messager the user should be able to request that the
last message be repeated in its long form.

-.-{}..

Messages sollciting input (prompts) shouid always be
used to indicate that the user is expected to supply
input.

-I-

Prompts should appear on the same line as the jnput
whenaver physically possible,
-] -

4,2.1+3 Lisiings

3)

bl

c)

d)

Pages »f outpuf that are longer than the output device
page langth must be delivered without 1oss of data.
Data that exceeds the page length must be continued
onto a second or successive page.,

-Q_

Pages of output must not be delivered to a
non=hardcopy output device so fast as to overwrite any
previous output before the user can read it if a wait
pption has been selected by the terminal user.

-

The user should be able to have heading information
repeated on the second and successive terminal pages
of a 1istings, wWhen display space Is limited and the
information band width is lows the user might choose
to not use space to display repetitive headings and be
able to see more data. Where the listing consists of
many c¢olumns that are hard to differentiate, the user
might choose to have headings repeated on every page.
This capabitlity requires that: 1) Page Header text be
identified so0 It can be discardedy and 2) Title text
be identified so it can be replicated,

..I_

When initiating a function the user must be able to

CYRER 180 System Intarface Standard

—ien -y - o - - -

4=13

84/07727

4.0 SYSTEMWIDE CONVENTIONS
422.123 Listings

-

—— - - - -~ -

select alternate amounts of detail to be included in
the listing. By selecting tess details the user ought
to be able to have more ltems displayed on each page,
and not Just get less information per pages

- -

4.2.2 INTERACTIVE INPUT

These standards supplement section 2.3,

4.2.2¢1 Ggnecsl

a)

b)

c)

d)

€)

f)

g)

User discovered typing errors must be correctable by
backspacing and retyping.
-(}-

The user must be abie to cancel the Input tine being
typed at any point before input complation is
Indicated.

No extraneoys blanks will be appended to the end of
the user defined input data for padding. Application
of this rule Is only requilred If allowed within a
product's standard,

-p -

No user typed trailing blanks will be deleted from the
Input data. The application of this rule Is only
required If allowed within a product's standards.

-A-

Any input that may come from an ASCII sequential file
may Instead be suppliied by a terminal connected as
that file,

- -

A single input may consist of more than one line, A
prompt may allow multiple lines of input in response.
An input cnllection mode may be Implemented In this
manner.

..g_

Operations requiring only a few parameters shouid not
require more than a single input., The user may enter
all parameters for a directive or all directives for a

4~-14

CYBER 180 System Inter face Stangard

g 84707727

4.0 SYSTEMWIDE CONVENTIONS

4.2+2+1 General

h)

i)

‘singie system level command as a single input in order
to reduce the number of interactions and the time to
complet2 the directive or command,

The user must be able to use the standard
abbreviations for command namesy directives and
parameter fdentiflers in order to reduce typing.
- -

After Input of a command or directive has been
completedy incomplete input should not be treated as
an errory but should cause further prompting for the
missing parameters.

-]

4.2.2.2 Ioput_Diagnosss

44243

a)

t)

¢)

d)

CONTROL

Errors in input will be diagnosed immadiately
following the offendling input Ilne.
.

Diagnosed input errors must be correctable without
"exiting” the dialogue with the program,
-]

Adher2 possible allow diagnosed input errors to be
corrected without re—-entering the entire line.
_I...

Any input diagnosed to the terminal must be
correctable by terminal input immediately following
the diagnostic whether or not the original input was
from the terminal {see 4+.2+3.1)e After recelving the
corrected input from the termina!l Input wili revert to
the primary source.

-I-

4-15
CYRER 180 System Interface Standard
B4/1GTI27

S o - - -

440 SYSTE%HIDE CONVENTIONS
422031 ﬁennectivit?

402341 Conpagctivity

a) The user must b2 able to have his terminal connected
as an ASCII sequentiail input file and an ASCII
sequential output file for any programe
...A...

b) The user must be able to suppress the verification
listing of Input when the input source and the output
destination are both the terminal.

..A-

¢) Products that allow input directives from a file other
than INPUT must allow the wuser to have input
directives from a source other than the terminal
Jisted for veriflicetion at the tarminal.
A

d4) Products that allow input directives from a file other
than INPUT must allow the user to have input
directives from a source other than the terminal
diagnosad to the terminal.
-p-

e} The user should be abie to Iogically disconnect the
terminal from an #xecuting program without causing the
program to be suspended, The program should continue
execution and the user should be able to
simultansously enter other commands (lnc!udlng
execution of other programs).

_{}-

4.2+3.2 Ipnterrupts_apd_Coppnection _Breaks

3) The user must have a method for gaining control over a
program In executlion. This Is known as an Interrupt,
-.,0—

b)Y An Interrupted program will not be aborted as a result
of the interrupt.
-=

¢} For a program written to execute Iin an interactive
environmenty, an Interrupt must cause the program to
enter a known state, This state will normalily be one
that sollcits directives or commands from the terminal.

CYBER 180 Swstem Interface Standard

84/C

-

4
4

4~16

7727

A T U T Y U T T T . -

O SYSTEMWIDE CONVENTIONS
442322 Interrupts and Connection Breaks

- — -

d)

2)

f)

g)

h)

i)

)

a)

For a program written to execute in a batch
environment, an interrupt must cause the program to be
suspended in such 2 manner as to be restartable during
the same terminal session. Control is returned to the
command language interpreter.

-

A connection break is often caused by a communication
1ine fallure, A connectlon break must not cause the
terminal) session to be aborted, but must cause it to
be suspended In such a manner as to be restartable
when the terminal user can again get connected,

-.;g-

A user must bhe able to restart a suspended programa
"ﬁ*‘

A user must be able to terminate a suspended program
without first restarting it,
-(}-_

A program written to execute in an interactive
environment must accept a termination directive in the
state entered as a result of an interrupte This
directive must he the same as the corresponding system
command to terminate a suspended program.

...‘I.-.

Any incomplete terminal input request from a program
that is suspended should be reissued (with the proper
prompt) when the program Is restarted,

-

The terminal user must be able to interrupt the output
belnyg delivered to the terminal and cause the
remainder of the output to not te delivered to the
terminal untit tha next prompt.

-}

The terminal user must be able to solicit a report to
determine the process of a programs without causing a
chanyga in the state of the program,

4=-17

CYRER 180 System Interface Standard

B4/0T/27

[%]
. -

—— ‘ -~ - T - W A Y Y Wl W AU . WD S WD ———

STEMWIDE {ONVENTIONS
3 Status

- - -

c)

d)

e)

f)

Prograss reports must indicate the functional progress
of the programe For example?

"compiling program SAMa..."
"compiling subroutine TOMassa®

“oreparing global cross=referencess "
-]

The terminal user must be able to solicit a raport to
determine the system environment within which a
program is running without causing a change in the
state of the program., An instsilation option to
disabie this must be provided.

e

The system environment report must indicate {possibly
indirectly) the response time the terminal user can
expect to experience. This might be by indicating the
fength of swap-out queuess the number of interactive
usersy etces An Installatlion option to disable this
must be provided,

—Qu

The terminal user must be able to solicit a report of
the state of its program without causing a change in
the program's states, AD installation option to
disable this must be provided,

-0

The program state report must indicate the rate at
which the user's program is progressing relative to
real timay and the Iimpediment to progress., For
examples
",14223313 -~ 2.54 (P seconds Swapped Dut®
14224240 - 5,72 CP seconds Running”
",14:27:10 ~ 5.21 CP seconds Finished™
Possible states should recognize the points of delay
in the system; these might be Pagings Swap=-outy
Waiting for terminal inputy, etc.
-O_

The terminal user must be able to define terminal

4-18
CYBER 180 System Interface Standard
84707727

—— - - e ———— N 10 -0 T - -

440 SYSTEMWIDE CONVENTIDNS
“a2e3+43 Status

- W V-~ - W A - a— A d - ———

attributes to be associated with an interactive

session {esg.» backspace character» echo modes» screen
size)s The terminal user must be able to display the
terminal attributes currently in effect for a terminal.,

a) The tearminal user should always be able to get a
reasonsble response to the input HELP. The response
should identify the user?'s alternatives and possible
correct inoput, As a directivey, HELP should Indicate
what directives are able to be used at that point.
The user should bhe abie to proceed after the response
to a HELP input as if the interaction had never taken
place,

-g}-

4+2+44 PRODUCT SET RUN TIME COMMANDS

4020401 PAUSZ and 3102 Liferal

PAUSE n (in FORTRAN) and S5TOP literal {in COBOL) are very
similar., They should be processed Iin the same way.

as The message PAUSE text will be displayed on the
oparator?s terminal or console. Text is n or literal,
and Is 2 maximum size of 58 characters. For batch
Jobsy the operator is the primary system coperatore. An
OFPSSEND T0 NPERATOR with an QOPERATOR ID of ISYSTEM
JOPERATOR?Y is executed to send the message. For
Interactive Jobsy an AMPSPUT NEXT request referencing
the file DUTPUT is executed to send the messagee. This
will result in a message on the terminal.

bse In batchy an DFPSRECEIVE FROM QOPERATOR with the WAIT
parameter and the same id as above is executed to
suspand the Job and wait for the typein from the
system operator. The operator will respond with a
REPLY ACTION commands, In interactive mode, =an
AMPSGET NEXT request on the file INPUT is executed
{this may not be legatls another connected fjle may
have to be used)s In ejther cases the data is throun
away and the job Is continued,

4=-19
CYBER 180 System Interface Standard
84707727

4,0 SYSTEMWIDE CONVENTIONS
4e2e%41 PAUSE and STOP Literal

. ———— - . — - — - w-—— -

4e204.2 ACCERI_ERQM_CONIOLE

The ACCEPT FROM CONSOLE {in COBOL) should be processed in
exactly the same way as STOP literal (4.2.4.1)s Text
wouid be the data from a previousliy executed DISPLAY UPON
CONSDLE WITH NO ADVANCING or the message 'ENTER COBROL
INPUT VIA REPLY ACTIONM' If there was no DISPLAY.
Interaction is with the system operator only. (If
messages sent via DFPESEND TO OPERATOR also appeared on
the terminaly, 1t could caus2 confusion for the terminal
operator,)

4.3 INSTALLATION _PARAMEIERZ

NOS/VE will permit modification of all system parameters
dynamically during system executione. The term
"instaliation parameter®”, as used in the classical CDC
sensey Is not valld for NOS/VE.

System parameters fall into the following general
categorjes:

" Hardware characteristics {(eegss # of CPUVs, type of

CPY)

» Systam and product defaults (e,gs» default tape
density)

. Accounting parameters

. Limits parameters {e@.g.» maximum FL)
N Timing parameters

System parameter defaults can be set at the following
timess

» Complie time {complilation at CDC)
» Build time {deadstart tape build at user site)
» Deadstart time {via cperator type-in)

These parameters may be tested dynamically and action
taken accordingly. The product set will require no

4e2{
CYRER 180 System Interface Standard
B4/707727

4.0 SYSTEMWIDE CONVENTIONS

perameter specifiation, and will dynamically test system
parameters during execution via requests to NOS/VE.

The following table Indicates the permitted range of
system parameter contrel for the product set and operating
systems An X indicates that the option is allowed» and a
blank entry indicates that the option is not allowed. Any
exception must have the expliclt approval of ADEC,

T - e e e e e e 2 s 2 e e 2 e e ++ +
! Time of Set ! Set Times 11 Use Times i
1 and ise + b - + + ++ + -
1 Type of Y Compse ¥ Build 1 D/S } Execs 1! D/S Y Execs !
! Parameter 1 Time !} Time ! Time ! Time ! Time ! Time !
S - - + e s s o e o e s Fh————— R T +
1 Product Set 1 1 1 1 11 H]
H Hardware H ! ! ! 1" H X H
! Dafaults ! ! H ! " ! !
! Accounting 1 1 H 3 11 H i
1 Limits 1 L 1 1 1" H X]
1 Tuning ! ! ! H 1 ! H
! 1 H 1 H 11 H 1
1 058 H 1 1 1 11 H 1
1 Hardware H X H X H X 1 X 11 X 1 X !
H Dafaults 1 X 1 X H X ! X HR x 1 X !
1 Accounting 1 X H X 1 X ! X 11 X 1 X 1
! Limits ! X H X H X 1 X i X 1 X 1
! Tuning ! X ! X ! X 1 X 1! X 1 X]
$ o o e e e et e e $ o e i R o frmm——— ttmm———— R +

4.3.1 GENERAL GUIDELINES

As a general ruley the number of system parameters should
be kept to an absolute minimum. This will minimize the
additional testing imposed by these options and will
reduce the number of "different" versions in the fleld,

A firm requirement on both the operating system and the
product set Is that no recompifation at a user site wiill
ever be required to instalt the software. This Iis a
requirement of binary release.,

4=21

CYBER 180 System Interface Standard

B4/7071727

- - -

4,0 SYSTEMWIDE CONVENTIONS

4e342 LIST OF PRODUCT SET PARAMETERS

444 ERRQ

The foliowing system parameters may be tested dynamically
by the product set via regquests to NOS/VE {including
networking):

type of CPU

S name and wversion

1ine width or screen width
terminal type

screen l2ngth or page length

; print llnes timit
.

ROCESIING

The purpose of this section is to describea the conventions
and responsibhbiltlities of processing different error
conditions.,

4e4+.1 STATUS VARIABLE

All command and procedur2 Interfaces to the system that
are visibie to the end user must have a status varlabie as
a parameter, The status varliable is used to convey the
result of the command or procedure and, In case of error,
provide information explaining what went wronge

For commandss the status parameter should always be
optional. When it is aguoted by a usery the assumption lIs
that the variable Wwill be tested subsequently in the
command stream and some appropriate action taken.
Therefores the conditions returned to the user should only
convey information the user §s likely to understand,

For proceduresy the status parameter is required. Again
the conditions returned should be as understandable to the
user as possible, Thls is particularly important when
there are multiple procedure calls made within our
software as the result of a single call by a user
procedure, Emphasis should be placed on improving the
status returned to the user rather than blindly passing
back obscure status from the depths of the system.

Detailed formats of the status variable are available in
the NOS/VE ERS.,

4=22
CYBRER 180 System Inter¥face Standard
841077127

4,0 SYSTEMWIDE CONVENTIONS
924.1 STATUS VARIABLE

4+4.2 ERROR TERMINATION

There are a number of errors that can occur in a product,
some of which can be detected and some of which can't.
This section deals with the processing to be performed
when detectable errors occur.

First of alls the product should try to detect as many
errors as gracefylly as possible. This means that
internal software tests should be used to detect errors as
well as using the condition handiing facilities of the
operating system to receive control in the event of a
system or hardware detected error. The product cannot
simply rely on the standard operating system abort
processing.

When an error §is detected, the product should provide as
much of the following error locallzation information as
possiblie, Some of the information will not be applicable
to all products.

» Type of error termination (standard system messages
should bhe used for this message).

N Full traceback of the call sequence to the procedure
containing the error., This will be by procedure name
and Jine number or relative address depending upon the
amount of traceback/debug information released with
the product,.

. Information regarding the user data being processed.
For g compilers thijs might be the procedure name and
{ine number currently belng processed, For a utility
or data management product, it might be the current
record,

. Optional dumps éf usa2ful internal tables.,

The abovz information should oniy be logged for error
terminations that are probably caused by product failure,
It should not be loygged for conditions such as time Jimit
or operator drop which are clearly not product errors.

4=-23
CYRER 180 Systenm Interface Standard
84707727

4.0 SYSTEMWIDE CONVENTIONS
44443 INTERACTIVE ERRDOR PROCESSING

T A T T T - - — -

42%.2 INTERACTIVE ERROR PROCESSING

This section supplements section 4.2y "Interactive
Processing®,

In considering this topic it Is necessary to distinguish
betwaen error nessages and diagnostics. These terms are
difficult to define precisely but are Intultively distinct
nonetheless., An error message is generaliy a summary of a
command; in an interactive environment it wants to be
displayed at the terminal so the user can find out what
hrappened, Dliagnostics are generaily a part of a larger
whole (24,349 listable output) which due to their volume
cnly want to be selactively displayed.

An example is a compiler which provides 3 single error
message telling how many errors occurred during
compilation and produces a diagnostic for each compilation
Brror.

4.4.3.1 Error_Messages

as, All error messages should be issued via the standard
message generator. The message generator wiltl
determine whether the message should go to the
tarminal or the logs, etce

bs Messages must be courteous. People tend to react in a
more amotional fashion when using a computer
interactively than when using it in a batch mode.
Wwords such as "illegal"™ should bhe avoided in favor of
vwords like "Incorrect™ or ™unknown™, Error messages
should explalin to the users what they did wrong ands
if possible, how to correct it.

ce Messages must be meaningful such that an Inexperienced
or casual user Iis able to understand the messages and
respond appropriately without reference to a manual.

d. Any message longer than twenty characters muyst have an
alternate brlef counterparts The user must be able to
select either tha brief or the long form of the
MesSSaAGEes

4=24

CYBER iB{ System Interface Standard

B4/707/27

4.0 SYSTEMWIODE CONVENTIONS
4.

%.3+2 Diagnostics

- - - -~

4.4+3,2 Digapgstics

a)

b)

Points b and ¢» above also apply to diagnosticsa
Diagnostics should explain the problem from the user's
perspective rather than the program?s, For examplet

"Comma missing after third parameter®
instead of
PAVPPARSEPR detected il1legal syntax™.

While diagnostics are2 not typicalily displayed at a
terminal by defaulty they are looked at by interactive
users. This must be consldered when defining the
location of the diegnostics in the {isting,
identifying the diagnostics with a mark that is
uniquely detectable with a text editors, etc.

4.4.3.3 Jpeuf.Diaangsis

This section applies to alt input that can reasonably be
expected to come from a terminal {(esgs» command utility
subcommands).

8

b

Ca

de

Errors in input will be diagnosed immediately
following the incorrect input,

Diagnosed input 2rrors must be correctablie without
exiting the dialogue with the program.

Diagnosad input errors may be corrected without
reentering the entire line.

Any input diagnosed to the terminal must be
correctable by terminal input immediately following
the diagnostic whether or not the original input was
from the terminal.

4e%.4 BATCH ERROR PROCESSTING

4=25
CYBER 180 System Interface Standard

84707727

———_— - - -

4.0 SYSTEMWIDE CONVENTIONS
424+4,]1 Error Messages

- - —-——— -

4e4.%4s1 Error_Messagsas

Batch error messages should foilow exactly the same
guidelines as interactive particulariy the usage of the
message generator.

4.%.4.2 Input_Diagnosls

The kind of user interaction that is desirable in
interactive mode Is of course inappropriste Iin batch

modes, Emphasis should be placed on detecting as many real
errors as possible even after a fatal error has occurred.,
The key word here is "real™; producing a large number of
extraneous 2rror messages or dlagnostics will ultimately
lead to people only correcting one problem at a time.

4.4,%5 TRANSACTION ERROR PROCESSING
This section will be added when more design on the
transaction Facility has occurred.

4eb.6 RESTART

This sectlon will be added when more design on the systenm
restart capabilities has occurred,

4.5 EEEECTIVE_USE_QE_CL82 _HARDWARE

4.5.,1 HARDWARE OPERATION

This sectlion descrilbes software conventions which must be
followed for the hardwar2 to function in a predictable
manner.

4=25
CYBER 180 System Interface Standard
B84/CT/27

- - Y - A S S T S R W W VI A W W D Y S -~

40 SYSTEMWIDE CONVENTIONS
4254101 Interlock Words

—- s - - - - —-— A W A - W S - -

4.5+.1.1 Jpterlock XWords

Conventions: Locate all interlock words in cache bypass
segments.,

Special system Instructions are provided in the CPU and
the IDU to Interlock wmultiple processors/I0OU. In general,
these function by exchanging the contents of a reglister
and a word In memory., Following this exchange the
register may b2 investigated toc determine whether the lock
has been set. For examples a zero word in memory can be
selected tc mean "no lock®™, then by exchanging a non-zero
register the lock will]l have been set if a zero value is
returned, It is imperative that such Interilock words be
unique, To guarantees this they are placed in cache bypass
segments, Notica that the instructions which are designed
to test and set locks automaticaliy bypass cache.

Problems aris2 whan the interlock words are accessed by
cther iInstructions such as 1pads.

4054142 Pre=serialization_of Clegar_Lock

Conventiont 3efore clearing a single bit tock {via a Store
31t Instruction) first set the lock by a Test
and Set Bit Instruction.

Care must bes taken whenever an interlock word Is set or

cleared to pre-serjalize the operatione. This is done to

ensure that» In the event that memory references are being
satisfied out of sequence, all outstanding memory
references are completed before changing the locke In
practices, CYBER 180 systems designed to date always
satisfy memory references in sequence. Howevers this may

not always he the case. The instruction which sets a

single bit lock {(Test and Set Bit) performs the necessary

pre-serialization. Howevery, to clear the lock a Store Bit

{with a zerp operand) must be used, Since thls

instruction has a general utility it does not

pre~serialize, To compensate, the Test and Set Bit

instruction post-serializes, Hences to 2nsure a

pre~seriallization of the clear lock, the lock should first

be s2t (with a Test and Set Bit instruction)s then cleared
by the next instruction,.

4=27
CYBER 180 System Interface Standard
847077127

e - —— - -

4.0 SYSTEMWIDE CDONVENTINNS
225143 Register Reservations

4250143 Registec Beservations

Conventiont Reglisters AD-a4 and X0-X1 shall be reserved
for special functions.

The CYBER 180D iInstructlions make use of certain registers
to hold given valuess The assignments are as foilowss

AD Dynamic Space Pointer (DSP)

Al Current Stack Frame Poilnter {((CSF)
A2 = Previous Save Area Pointer (PFA)
A3 - Binding Section Pointer (BSP)

A4 Argqumant List Pointer (ALP)

These registers hold those values by software conventions
but a convention which is supported by the hardware.

Hencey it Is very lmportant that they be supported by all
software procedures, In particulary Al and A2 must never
be altered by instructions other than Lall» Return and Pop.

In addition to the reservations above, reglisters X0 and X1
have 2 special meaning in the bhardware., For many
instructionss the XU designator is used to indicate no
register, Hences register X0 cannot be used by these
instructlons. Both XD and X1 are used as fixed utility
registers for several instructions. Examples are:?

1) Load/Store multiple and CALL instructions use X0
-~ for a save area descriptor.,

2) All compare instructions return a value to
X1-Rights as does the Mark to Boolean instruction.

3) The BDP Instructions optlionally use X0=-Right and
X1=-Right to hotld operand lengths,

Since these registers are used for special purposess care
must be exercised if they are used In a general manner.

4+50144 Aligpment_of Tables.and_¥ords

Convention: Align certain tabies and words on specified
boundaries.

Although CYRER 180 is nominally a byte addressable
machkiney real memory Is organized into 64-bit words,
Consequentlys the performance of certain operatiocons has

428
CYRER 180 System Interface Standard
B4 /07127

40 SYSTEMWIDE CONVENTIDNS
4.5.1.4 Alignment of Tables and Words

been optimized by placing the coperands on word

boundariess The complete set of data alignments necessary
iz given below» along with a brief description of shy the
alignment is regulired and what wiil]l happen when the data
is not aligned correctly.

The following data either must bey or should be alligned on
word boundaries:

1) Process Segment Tablje - For performance reasons the
hardware Indexes Into the
segment table at a word
boundarye. The virtual memory
address translation mechanism
widi Tai) if the segment
table Js incorrectly aligned,

2) Binding Sections -~ To maximize the reach Into
the Binding Section by the
Caill Indirect instructions
access Is made to a word
boundary. IF the Binding
Section Is iIncorrectly
aligneds, then an Address
Specification Error results
when 3 Call Indirect is
Issued,

3) Procedure Entry Points = To maximize the reach of the
Call Relative instruction, a
branch is made to a word
boundary. Since the
instruction forces the
address to a word address,
results will be unpredictable
If the procedure target was
not correctiy aligned, Note
that even though it is not
strictly necaessary for
procedures called via a
Binding Section to be word
atignedy difficulties could
still result if they are
not. This Is because the
CYBER 180 Library Generator,
in the process of "binding”
may convert Call Indirect

4m29G
CYBER 180 System Interface Standard
B4I1GT127

- - - e wn

4.0 SYSTEMWIDE CONVENTIONS
425010421 64-BIT WORD BOUNDARIES

instructions to Call Relative
instructions,

4) Debug List Entries - To simplify the hardware, and
to optimize performance when
in debyg modes the hardware
accesses debug Ilst entries
on word boundariese.

Incorrect alignment willd
cause unpredictable results.

%) Interlock Words —~ Interlock words used in
conjunction with the
Compare/Swap operation must
be aligned on a word
boundary., This is necessary
for the processor to satisfy
the non-preemptive
requirements of the
instruction, Processors
utilize the 64~bjt memory
exchange function in this
operation, That function
operates on a real memory
word. Incorrect alignment
will yield an Address
Speciflcation Error,

6) Stack Frames - By software convention only,
stack frames should be
aligned on word boundaries.
This enables the hardware to
foad and store the registers
held in the save area from
data on word boundaries.,
Incorrect alignment will not
cause any problems since the
hardware always adjusts
{forces) the Dynamic Space
Pointer to a word boundary
before accessing a stack

frame.
7) Central Memory Dats - The I0OU can only reference
Accessed by the IDU central memory wordse. Hence,

it would require some special
code in PP's to decode data
not stored on word
boundaries., This is really a

4=30
CYBER 180 System Tnterface Standard ’
B4/I07727
o0 SYSTEMWIDE CONVENTIONS
4052414441 64=BIT WORD BNUMDARIES

" - - - - - A — - - -

pragmatic software convention
since a PP has no way teo
specify a central memory
address other than on a word
boundary.

4e5e1e%e2 OTHER BOUNDARIES

The following data must be aligned on boundaries other
than 64-bit word or B=bit byte,

(1) Exchange Packages = 128-bit {2 word) Boundaries

To optimize the performance of the exchange jump on some
processorss the hardware addresses two words at one time,
kResults will be unpredictable If the exchange package is
incorrectly aligned.

{2) Instructions - Parcel {2-byte) Boundaries

Instructionsy which are gither 16=bit or 32-bit
quantitiess, must be aligned on parcel boundaries.
Fallures to do this will either result in unpredictable
behavior, or an Address Speciflcation will be detected,

{3) Page Tahle - Page Tabie Length Boundary

To minimize the time needed to translate addresses from
virtual to real)y the hardware catenates {rather than adds)
the Page Table Addresses (PTA) to the page table indexe.
For the catenation to yield the correct address, the
low=order bits of the PTA» as determined by the page table
jengthy, must be zero. Failure to structure the PTA In
this manner will cause the address transiate mechanism to
fai 1 I

4.5.,2 HARDWARE PERFORMANCE

Whereas the previous section dealt with conventions
necessary to make the bhardware work correctly, this
section desls with conventions necessary to make the
hardware work afficientliy. As such they are not
mandatorys and in some cases represent merely suggestions
as to how %tn optimlize certain functions.

4=-31
CYRER 180 System Interface Standard
B47GT127

- - - el e

4.0 SYSTEMWIDE CONVENTIONS
4.5,2 HARDWARE PERFORMANCE

4.5.2.1 Locallity._of Reference

Convention: Place all code and all data to be used at one
time in one placey and keep to a2 minimum the number of
segments required to execute a glven task,

The CYBER 180 virtual memory organization provides the
baslis for the system security and simplifies the explicit
organlzation of a program into overlays., Howevers, all
programmers have responsibilities if system throughput is
to be optimized., A prime responsibility Is to maintain a
strict locality of reference. That Iis collect all code
and all data that is to be used at one time into
contiguous pages in one segment (each for code and data).
This has two advantagess it minimizes the working set {the
number of pages allocated in real memory at any glven
point of time), and it also minimizes the number of
entries which nust be made in the buffer memorliess, By
minimizing the working set the number of concurrent tasks
which can be held In real memory is maximizeds This, In
turny maximizes system throughput.

Optimizing around the buffer memories represent a slightly
different problem, These have a finlte size and contain
the most recently us2d Sagment Descriptor Entries and Page
Table Entries, If a large number of segments are In use
at one times or If a large number of pages are in use at
one timey, then the buffer memories will be unable to hold
all the necessary entries and they will be constantly
loading new values, The affect will be similar to not
having them at all and performance will degrade
considerably.

Consequentlyy not only should programmers maintain a
locality of references but they should also try to
locallize the number of segments used by a given task.

4+5.2.2 Registec _Allocatlon_and_Usagse

Conventlont Allncate A-Registers and X-Reglsters from the
spall numbers on ups

As a result of the special functions for which AC-A4 and
XG=X1 are useds and the method of saving/restoring
contiguous r2gisters by the CALL/RETURN instructions,
register usage should always start with the smallest

4=32
CYBFER 180 System Interface Standard
BRICGTI27

N S —_ T - W A .

4,0 SYSTEMWIDE CONVENTIDNS
4.5.2.2 Register Allocation and Usage

T —— A T WV Y —— —— - - - - T G - A 4

possible number {typically A5 and X2)., This wilil heip to
minimize the numbar of registers which must be saved
across procedure calls, Thisy in turny will optimlze
performance in this area,

4¢5.3 SECURITY

This section lists software conventions needed to provide
a secure environment at altl times. Since a major
objective of the CYBER 180 program is to provide a highly
secure systemy these conventions become mandatory. These
conventions are clos2ly related to those in Section 2.
Just as they are required to make the hardware operate in
a corrects predictable mannersy so are these required to
guarantes that the seacurity and protection aigorithms
function correctly.

4.5.3.1 Procedure_arametecrs

Convention: 1) Always use calier?s argument 1ist pointers
for accessing callerts data,

2) Alwavs load pointer parameters directly
fnto A~Registers = via Load A instructions,

3) Whenever possible avoid moving record
structures that contain pointers,

4) Ayoid passing pointers between rings
either wave

%) Avoid data structures containing direct
pointers that cross rings either way.

These conventions are mandatory for those procedure calls
from one procedure tn a second one with more privilege.
When a procedure is called by another procedure, it
executes on behalf of the caller. It is the
responsiblility of the callee to ensure that it does not
exacute with more privilege than caller, The hardware
provides the basic security mechanismses In this cases it
ensures that callee Js called from within its call ring
brackets and that it is called via a Binding Section. It
may then acce2ss code and data belonging to or accessible
by callers This code and data is referenced via pointers
held in A-Registers» and the hardware performs a ring

4=-33
CYRER 18U System Interface Standard
B&47CGT127

4,0 SYSTEMWIDE CONVENTIONS
4.5.3¢1 Procedure Par‘ameters

number vote whenever an A-Register Is loaded. This
mechanism ensures the least privilege {(highest ring
number) is always accorded the users. Howevers there are
many ways this mechanism can be be-passeds The simpiest
method is for caliee to load a pointer into an X-Register»
then copy it to an A-Register. If caller places a low
ring number {zero would do) in the pointer, then it will
end up with calleet's ring number in the A~Register. That
is it will end up with more privilege than that to which
caller is entitleds, It Is callee's responsibiiity to
ensure this doas not happen. The onus for maintsining
security always falls on the more privileged procedure,
Hences the convention.

4.6 JURPORI_QE_EBCORIC _DATA

ERCDIC data can bhe divided Into two distinct classest

1e all 8=bit character data {also known as coded data,
including unpacked numeric data types); and

2. Intermixed character and non=-character datss

Support for the former (all character) is provided by the
operating system. IF EBCDIC is specified on the request
cards the %tape dAriver automatically transiates to ASCII
when reading the tape and transiates back to EBCDIC when
writing the tape,

Support for the latter (intermixed character and
non=-character), and for the EBCDIC collating segquences
varies by product:

C P F S F C D

0 L 0 / M R M

B / R M U M 5

n 1 T 1

L R 8

A Q0

EBCDIC SUPPORT N

Intermixed E3CD0IL input file -] X
Intermixed ER0NTIC output file e X

EBCDIC collating sequence X X X

L
CYBER 180 System Interface Standard

84707127

- — N~ w—— - -~ —

4.0 SYSTEMWIDE CONVENTIONS
4.6 SUPPORT OF EBCDIC DATA

X = support required at R1 of product
e = eventual support desirable

Support of intermixed input and output files means use of
the special £180 Instructions to process the following
“translated"” non-character EBCDIC deta types:

. Binary {sianed and unsigned)

» Packed Decimal {signed and unsigned)
4.7 KEYPOINI_USAGE

The LY180 keypoint facility provides a mechanism to enable
collection of statistics for performance monitoring. A
data reduyction software package is available to summarize
these statlstlics based on descriptors contained In a
keypoint descriptor file (KDF)e This section documents
the conventions to be foliowed by the operating system and
product set in the usage of this facility.

44741 KEYPOINT CLASSES

Five keypoint classes named ENTRY, EXIT, UNUSUALs DEBUG)
and DATA are defined for the operating system and product
set.

ENTRY Fvery gated procedure plus all major
internal procedures {(those shared across
functional areas) should contain a
keypoint of this class. These keypoints
should be placed as close as possible to
the entry to the procedure.

EXIT Every gated procedure plus all major
internal procedures {(those shared across
functional areas) should contain a
keypaint of this class, These keypoints
should be placed as close as possible to
the exit from the procedure.

UNUSUAL Every situation which is unexpected or
aqulte unusual should contain a keypoint of
this class.s It is Iintended that these
keypoints would be enabled at all times.

4=-35
CYRER 180 System Interface Standard
84IGT127

4.0 SYSTEMWIDE COMVENTIONS
4¢7.1 KEYPOINT CLASSES

. - -~ - -

The frequency of encountering these
keypoints should be very low. The DATA
keypolint class §s not allowed In
conjunction with a keypoint of class
unusual.

DEBUG These keypoints would be for providing
additlonal trace information as an assist
in debugyging of hardware or software
problems, DEBUG class keypoints would be
most useful in the more complex areas of
the systems, The primary use of keypoints
In HCS and NOS/VE up to this point has
been for debugging purposes,

DATA This keypoint class can be used with the
ENTRY,s EXIT», and DEBUG keypoints for the
gathering of extra data. All DATA
keypoints encountered are supplying
additional data which will be sssociated
with the Jast ENTRY, EXIT or DEBUG
keypoint, Hences» they should follow as
closely as possible after the ENTRY, EXIT,
or DEBUG keypoint; in particulars there
should be no intervening CALL
instruction. DATA keypoints should be
used Wwith care since the PMF hardware can
only buffer up 16 keypoints; keypoint
clustering can cause lost keypoints.

Keypoint Data and Identifications

Upon successful execution each keypoint instruction will
provide a total of 32 bits of information. The convention
uses 12 bits of this for keypoint identification and the
remaining 20 bits as user supplied data. Try to use this
20 bits to provide meaningful information (taskids, segment
numbers fileid» queue lengths page number, times etce.).

On DATA class keypoints the dasta belongs to the previous
keypoint and the full 22 bits is avallable for additional
user data.

4,7.1.1 Qperating_Syster

The keypoint classes for NOS/VE are as follows?

OSC3DATA=D

4=36
LYBER 180 System Interface Standard
84707727

- - T A - T S S T W T S A Y AN S 4 D U T G S T T T - —

4,0 SYSTEMWIDE CONVENTIONS
4474141 Operating System

———— - — o W — - -——— T - O S U A - -

OSC3SUNUSUAL=]
OSC3ENTRY=?
DSC3EXIT=3
OSCHDEBUG=%

Keypoint class 5 Is reserved for NOS/VE.

4.7.1.2 BProduct Set

The keypoint classes for the product set are as follows?

PSC3DATA=6
PSC3UNUSUAL=7
PSC3ENTRY=8
PSC3EXIT=9
PSCHDEBUG=1D

4474143 (Jther Classes

The keypoint classes 11-14 are reserved for users.,
Keypoint class 1% Is reserved for PMF hardware control.

44742 KEYPOINT IDENTIFIERS

A maximum of 4095 keypoint identifiers are available for
{each) NOS/VE and th2 product s2t, The combination of
keypoint class and identifier s unique within the system.

4.7.2.1 Qpgrating_lystzo

{To be supplied)

4.7.2+.2 Product_set

The set of 4005 avaitlable Identifiers is partitioned into
a primary rang2 table and an overflow range table, Every
product set menmber has an entry In the primary table; the
range size Is 50. Those product set members which require
more than 50 will be assigned one or more entries in the
overflow tables which also has a range size of 50,

The primary range table js given below?

CYBER 180 System Interface Standard

4-37
84707727

———v——

4,0 SYSTEMWIDE COMVENTIONS
4470202 Product 3et

. -~ -

Product Identifler

AA
AP
BC
C8
DB
FC
FL
M
FT

IM

PA
P1
Qu
SM
sV
CCHM
C6
HC
ML
cy
SCU
AL

FA

Advanced Access Method
APL

BASIC

cosoL

Interactive Debug
FORTRAN Compiler
Fortran Run~-Time

Flle Management Utility
FORTRAN Giobal

Information Management
Facility

PASCAL

PL/T

Query Update

Sort/Merge

Shared Variables Processor
Common Compiler Modules
Common Code Generator
Host Compiler

Math Library

CYRIL

Source Code Utility
Assemhler

Fila Migration Aids

Primary range

0
50

49

99
149
199
249
299
349
399
449

499

549
559
649
699
749
799
849
899
949
999
1649
1099
1149

- -

4=38
CYBER 180 System Interface Standard
B84/07/27
%.0 SYSTEMWIDE COUONVENTIONS
4:7e2¢2 Product Set

LI LISP 1150 - 1199
AD Ada 1200 - 1249
Fv CDC Fortran 1250 - 1299
VX VXIVE 1300 -~ 1349
Ve C compiler 1350 - 1399
{Reseryed for future 1400 - 1999
oroducts)

The overflow range extends from 2000 to 4095.

Assignment is based on an as—-needed basis in groyps of
50+ A given product may have more than one assignment
in the overflow range.,

4.7.3 KEYPOINT USE

From a software point of view, keypoints are special
commands that are inserted in a2 module according to the
guidelines specjified In section 4.7+.1. For a module
vritten In CYRILy the #KEYPOINT Intrinsic can be used to
generate the kaypoint instruction (refer to CYBIL Language
Specificationy ARH2292%, and MIGDS» ARH1700» for details).

The maln entry keypolint ldentifylng a product set member
should include data which indicates the actual version of
the product.e Thls is useful for tracking simultaneous
execution of the same or different versions of a product.

e

- e

5«1
CYRER 180 System Interface Standard
B4/07727

- Y . o s -

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS

—— v - E A N S W W - -

5.0 COMPILER_AND_ASSEMBLY CODE_CONVENIIONS

This standard is to be followed by the object code
generated by the compllers and by any assembler code
written as part of standard software,

In addition to these standardss assembler code
{handwritten or compiler generated) will conform to the
coding standards described in CYBER 180 MAINTENANCE
SOFTWARE CODING CONVENTIONS {(DAP ARH2160).

5.1 USE_DE_LOADER.EEAIURED

1« The loader specification is limited to that written in
its formal documentation. Programmers shall not
depend on additional characteristics determined by
empirical observations as such behavior may be subject
to change., Examples which have caused trouble on
CY170 are the presetting of undefined variabless the
order of Ionading from a librarys and the address at
which the first code is locaded.

2. Runtime routines shall not limit the program
structures of thelr userse. 0On CY170 all CRM 1
routines must be in the root segment of a segmented
load, and CMM must have at least one routine In the
main overlay of an overlaid program. Such
restrictions must be avoided on CY180.,

3., The following table shows in which sections particular
types of data should be allocatedy and the attributes
the sectlion should have,

Attributes R = reads W = uritey B = Binding and
E = execut=s,.

Section
Data Type Type Att Comment and Examples
"Static" Working RsW Af} variables not

aliocated on the stacky In
common or explicitly
allocated to a section.
Incliudes FORTRAN local
varlables, CYBIL {[STATIC]

5=2
CYBER 180 System Interface Standard
84707727

- -~ - - o W T ———— -

5,0 COMPILER AND ASSEMBLY CDDE CONVENTIONS
51 USE OF LOADER FEATURES

—— - -

and I[XDCL] variables.

Constants{l) Working R All titeral constants
which for reason of
indirect addressing or
length cannot be expressed
directly in the code,

Constants{2) Code £ Optlionallys constants as
in {1) which are less than
8 bytes long and
conveniently accessed
through the LBYTP
instruction, Note that
the "constant” may not be
a PVA.,

"XREF" Binding B Data declared in another
unijt of compilation are
usually referenced through
pointers placed in the
binding section by the
loader {(rather than in
user sections indirectiy
referenced through the
binding sectionsy where
they would be inaccessible
to the binder).

Heaps common
extens-
ibtle P»W For the system heap see
section 5.443. Other
heaps are declared in
CyBIL.

4y The following action should be taken if a compiler
detects a fatal error in the scurce code it is
compilings unless the compiler was called with
HDEBUG=NCY (see saction 2.2)18
An IDR record shal! be issued containing the string
Yarrors in compilation"

in the comment fleld, The non—-executable attribute
shnall be set.

If DEBUG=DL was selecteds the compiler shall continue

£5=3
CYRER 180 System Inter face Standard
84707727

540 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.1 USE OF LOADER FEATURES

- - - -

normal processing as far as possible,

e« A1)l compilers should emit loader names {common block
namesy XREF namess mndule namesy, etc,) using upper
case alphabetic letters when letters occur In the
names, An exgception to this rule is made for any
languag2e which requires the distinction between upper
and lower case names.,

5.2 INIERLANGUAGE CALLING_SEQUENCES

Purpose

The purpose of the interlanguage caliing sequence Is to
facilitate Inter—-languyage procedure callse This is
particutarly desirable on CYBER 18C because of the system
level support for sharing of code between executing
tasks. For exampley It would be desirable to have onily
ene s2t of mathematical routines to be used by all
ianguages.

Restrictions

A1) CYBER 180 Compilers must be capable of generating the
CYBER 180 Interlanguage Calling Sequence for an externally
referencaable code module. It is a goal in the definition
of this cailling seguence that it be useable by the
majority of the compilers as a subset of their standard
calling sequence, It obviousiy cannot meet all of the
needs of languages as diverse as BASIC and PL/I. It would
be acceptable (but certainly not preferable) if a
particular language were to require special declarations
or sttributes on a procedure call to cause the generation
of thls calling sequence,

It is expected that users in the various programming
languages may have to take additional steps with respect
to data declarations %to guarantee that the allgnment and
packing correspond to that specified by this interchange
standard, The user Is also responsiblie for the values
passed via this calling sequence., For exampley a Boolean
yariable might contaln values (=7 (since it occuples a
byte) but th2 common calling sequence only assures
interianguages capability for the values {0 and 1.

In generaly, a compiler may employ any caijiling sequence it
chooses between Itself and its library or non-external
procedures, Exceptions to this will be for routines which

54

CYBER 180 System Inter face Standard

-~ —

84707727

A A - W W A T S W S T . M S W N D U W U D U T T W >

COMPILER AND ASSEMBLY CODE CONVENTIONS
INTERLANGUAGE CALLING SEQUENCES

- - -

can be of general! use to many languages (e.9.» math
library routines)s, Such routines may havs a fast calling
sequence but must also provide an entry point conforming
to the interlanguage calling sequence.

54241 CALLING SEQUENCE FORMATS

5-201.1

The interlanguage calling sequence is defined to include not only
the Jlayout of the parameter 1ist, but also the Jayout of any
descriptors associated with parameters in the list. Two formats for
the interlanguage calling sequence are avallable, The term
"interlanguage calling sequence®™ js used to refer to these two
formats collectively, Two different formats are required in order
to provide flexibility of usage from language to language while not
unreasonably degrading performance and usabllity. These two formats
will be referred to as the "System”™ and "General" formats.
Extensions to ejther of these formats may be made via a DAP against
the SiS.

The calling segquance provided by a compiler for use between internal
procedures and functions known to be written in the same language
need not conform to elther format of the Interlanguage calling
sequence, Additionatly there is no requirement to wuse the
intertanguage calling seauence between compiler generated procedures
and functions and any sassembler procedures and functions provided in
a runtime library specific to thst language, In generail, assembler
procedures and functions are responsible for accepting a parameter
list format of the kind generated by their potential callers.
However calls to the scalar CMML call-by-reference procedures and
functlions must conform to tne System format, while <calls to the
vector/array CMML call_by_reference procedures and functions must
conform to the General format.,

Klnds_of Parametars

For purposes of expositions three kinds of parameters will be
distinguishedt value parameterss simple reference parameters, and
extended reference parameterss

Value parameters are those parameters for which a vajlue is intended

to be passed, The calliny program can assume that the actual

argument it passes will not be changed by the called program. Note

that this does not imply a specific impiementation technique

{several are posslihie), Y S
£ : Lot & (f{

Reference parameters are those parameters for which an obJject is
intended to be 9passed. The calling program must assume that the

s

b BN S8 B0 L5 o ﬂ§ W e B B B Gl S S R SN Ml N G Gl W BN Gl S B S S B B RS Ga BB R B G WS B R B e S G e

k8

A

TQ

-

5-5

CYRER 180 System Interface Standard

84707727

- W W~ - —— - - : . S D WD W TS

5.0 COMPILER AND ASSEMBLY CDDE CONVENTIONS
5424141 Kinds of Parameters

- -~ - - -

5¢2+102

§O2'1.3

actual argument it passes may be changed by the <called progranm,
Note that this does not imply 8 specific implementation techniague)
although at 11east an address must normally be passed. Some
reference parameters also requijre that certain descriptor
information must be passed along with the address.

Simple reference parameters are those reference parameters which
require only an addressy or only an address plus a8 string
descriptors to be passed to the calliing routine.

Extended reference parameters are those reference parameters which
are composed of an address plus a string descriptor plus 2
non=-string descriptors or of an address plus a non-string
descriptor.,

Sysigm_Eormat_of itba_lnterlanguage Callipg _Seauencge

This format 1Is the one used by the system implementation language
{CYBIL)» and all operating system interfaces., This format is
documented in detall In section 5.2.5.1 of the SIS.

Geperal_Eocrmat_of _the_ lInpteclanguage _Calling Seguence

This format is more general than the system formate. It wili be used
by CDC FORTRAM. This format is documented in detail in section
5.2+5+2 0f the SIS,

Summpacy.of Format Differences

The primary difference betweep the System and General formats is in
the placement and content of descriptors. System format and General
format actual parameter lists are identical if only simple reference
parameters are passed, Al]l System format descriptors are placed
directly in the oarameter Jlist following the PVA of the oblject being
describeds while General format non-string descriptors are placed
outside the parameter list. The General format parameter I1ist
contains the PYA of the descriptor as well] as the PVA of the object
being described,

General format value parameters have the same form as System format
vajue parameters except when the value parameter Is less than one
word in size or is a pointer to procedures. The General format
requires that th2 yalue parameter be right atigned with sign fill on
the teft for Integers and subranges of Integers and 2zero fitl
othervwise, while the System format requires right alignment but does
not define the fii1) blts on the left,

BN NS S B SR EE B BE SE BE LR S B G B BE NG BE RS B B g s BB WS el K B G B B BN S B G B B G W S Se B GE BB K B G e

5=6

CYBER 180 System Interface Standard

- - -

84/07727

- ———

5.0 COMPILER AND ASSEMABLY CODE CONVENTIONS

5424145

524105

- ———— ———— . — - -

Use of the General format of the Interlanguage <caliing sequence
requires that a "big"™ {i.e. longer than a word) value parameter
which is passed via a poilnter will have been copled by the caller.
The passed pointer Is a pointer to the copys, and the called program
is free to write into the memory pointed to. The System format does
not specify whether or not a Ybig"” value parameter will have been
copled by the callery so In this case the called program should not
write into the ma2mory pointed to.

Calls_Potentially from._Another _Language

Any procedure or function which is Intended to be callable from an
external module potentially written in another Jlanguage should
accept for that call one {or a subset of cne) of the two formats of
the Interianguage calling sequence. Each compiler must document
which of the two sequence formats it acceptsy or state that none of
its procedures and functlons are externally callable from another
1anguage.

Language Interianguage Format Accepted
ADA -not interlanguyage callable~
BASIC ~not Interlanguage caliable~
¢ -to be determined=-
coBaL System format
cyYsiIL System format
FORTRAN General format
PASCAL -not interlanguage caliable~-

Calls_Potentially_to_Another._language

A compiler mayv assume that no call it generates is an interlanguage
call unless the author of +the source program has explicitly
indicated that a particular call is interlangusge. This means that
each language which supports calls to modules written in another
language must provide a mechanism within the source {anguage with
which the 2uthor of the source program can explicitly indicate that
a particular call s interlangusge. This mechanism nust be
formulated such that the author Is further required to state
explicitly (by name) which other language is being called. It is
then wup to the compller to generate the correct interlanguage
calling sequence for the call. Thus the compiier must know which
languages accent which calling sequences. It remains the
responsibility of the authory not the compilery, to ensure that the
actual and formal parameters of the <c¢all are compatible. The

W B B B B G G NG S G OB GB BB G B BE NS SN N N B B BB B B RS S S L BE S Gl BE S e ER W BB G GE BB R G W B W B el e

5=7

CYRER 180 System Intar face Standard

B4/1GT727

5.0
"5020

5e2el0b.

. - - — - — -

COMPILER AND ASSEMBLY CODE CONVENTIONS
1.6 Calls Potentially to Another Language

o - -—— - —— - - -~ -

compiler has the responsiblifity to generate the correct layout for
the parameter Vlist and parameter descriptorss as sxpected by the
called language,

These provisions do not require a compiler or Jlanguage to provide
interianguage callssy but they do define restrictions on how
intertanguage calling is to be supported. A language may support
interianguage calls to only a limited number of other languages, If
it so chooses. Note that even if a language supports direct
interianguage calls, it is not required to also support indirect
interlanguage calls via dereferenced pointers~to=-procedure.

1 SUPPDRT FOR CALLS T ANDTHER LANGUAGE

1f 3 language supports calls to modules written Iin another languages
andg that other 1language accepts calls with simple reference
parameterss than the calling language musty at the minimums» support
calis with simple refarence parameters., A string descriptor must be
supplied for any oblect which takes ones unless the author of the
calling program has explicitly Indicated that no string descriptor
need be passeds, An exoplicit indication is possible in Jlanguagess
such as CYBILy, which 21low the reference parameter In an external
procedure declaration to be specified as either fixed type
{descriptor need not be passed) or adaptable type {(descriptor must
be passed).

The cailing language is strongly encouraged to also provide support
for calis with value parameters and extended reference parameters if
the called language accepts such calis., This support would consist
of a mechanism within the source language to explicitly indicates
for each actual parameter of the interianguage catl» whether the
parameter is to he passed by valuey by simple referencey or by
extended reference, The compliler then has the responsibility to
generate the appropriate calling sequences

52202 CALL

The procedure call instruction CALLSEG, Reference #115 as
defined in the CYRER 180 MIGDS will be used to perform the
procedure call.

5243 REGISTER SAVING CONVENTIONS

For generalized axternal calls and calls to formsal
proceduresy the cowmpiler may not assume that the called
procedure will save and restore registers. Any registers
to be saved must be saved on the stack using the save

g T 4 :: N
56 /ﬁ%wrﬁfeﬁ&n ﬁ“gw N o &ﬁ%&qu l C%Q(”(’
1 - b A \, Y R ——,, |

i S 3] ; ”
S Luv‘#jb-f"’x DARAAAL 5Ok f\éﬂwﬁxﬁx CALAED A g By

W W S B DS G G BE BN G B B NG G BE B G DS PG B B B WE B B B BW S B B WS SR G B Bs B PN

e e S8

=g
CYRER 180 System Interface Standard

B4/C7/27
5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
54223 REGISTER SAVING CONVENTIONS

mechanism of the CALL instruction.

Internal calls need not use the CALLSEGy Reference #115
instruction. They may use CALLREL Referenca #116 or any
other code sequence which meets their needs. For Internal
calls the compilers have the option whether to save
registers or nat., Internsal calls Jnclude calls tos

g8} the compiler¥s own library routiness

b) nested procedures within the sama compilation unit,
5¢2¢3.1 Ipformation_Reauiced. Across._Call

The following information may be reaquired in making a cali.

Some of the Information is not always required - See footnotes.

Dynamic to Caller and Callee

N basic stack control registers (A0, Al, A2)**x*

. parameter 1ist pointer {A4)%*%

. static chain/display*

. binding section pointer (A3)*¥¥k

. product defined information

Dynamic to Callee, Static to Caller

’ 1ine number of call (see traceback section)**%x

. number of parameters{(X0, bits 32-47)%*x

N descriptor area indicator

. descriptor area pointer (if any)

Static te Caller and Callee

. name2 of callee {(see traceback section)

. size of display/nesting depth¥*,¥x*

. frame slze/language**

- o8 S8

5=9
CYBER 180D System Interface Stanogard
B84/07727

——— ——— -~ - — - A - -

50 COMPILER AND ASSEMRBRLY CDDE CONVENTIONS
502321 Information Required Across Call

-————— - - - w2 - - ——,

» type of Fframe3} e.0. procs func, co=-proc#**

* Block structurad languages only.
*% Traceback mode only,
*%% Reguired on calls made with the Interlanguage calling segquence.

5+2+4 FUNCTIONS

A function Is a procedure that returns a value, The
function value is in the registers or in memory depending
on the type of value being returned. Since function
references are uysually part of another expression that is
being evaluated, 1t Is generally desirable to have the
value ra2turned in a register.

If the function value is a pointers then the value is
returned as a PVYA in AF., A procedure calling s
pointer-valued function must not save register AF on the
callse A pointer-valued function may have the ring number
field of AF altera2d by the RETURN instruction if it is
called across a ring boundarye.

If the function value Is a scalar of known length less
than or equal to 54 bits in lengthy it is returned right
aligned in XF. A procedure calling such a functlion must
not save register XF on the call,

If the functlion value is double precision or complex then
the vajue is returned in registers XE and XF. XF holds

the least significant 54 bits of the values A procedure
calling such a function must not save XE or XF on the caltl.

If the function value is non-scalar then it is stored at
the address deflned by the first element of the parameter
fiste The second element of the parameter 1ist specifies
the first actual parameter.,

A scatar funciion resutt is defined as follows?

. CYBIL - characters bocleans integer, ordinalss
subrangess celly, pointer.

. FORTRAN - Jloglcaly integer, realy, double precision,
complexy FORTRAN boolean,*

. COBOL - comps comp—1» comp-2» boolean,

. PL/I - integer{FIXED REAL), real{FLOAT REAL),

e - e

5=1C
CYBER 180 System Interface Standard

847077127
ﬁ;Q”E;HPIL;Q Axg Asggmgi;fggag CEQ;ENTISN; ------------
54244 FUNCTIONS
comp lex{COMPLEX)
. BASIC - real.
» PASCAL - int?ger; {epumerated type, sub-range),
rea

Scalar functlon wvaluas are returned right aligned in the
result register, Fill (if any) is zero bits. Note that 8
byte numeric ftems raquire no flll,

* FORTRAN boolean corresponds to a full CYBER 180 word without
type. It is npot the same as the boelean type mentioned
elsewhere In this sectlion,

5.2¢5 PARAMETER LIST

The parameter list Is allocated on a word boundary in memory. Each
entry in the parameter list must also begin on a word boundarys. On
entry to the calleey raglister A4 will point to the gparameter Ilist,
Bits 32-47 of register X0 will contain the number of parameters
(including the pseudo parameter for non-scalar valugd “functions).
If the procedure being called is a function whose vafue Is to be
returned In memorys» the first element of the parameter list defines
the 1location at which the value is to be stored. If no parameters
{nor psaudo parameters) are to be passeds then the contents of A4
are undefined and XD must specify zaro parameters. Under certain
circumstances detalled below, a flag word must Immediately preceds
the first word of the parameter list,

5¢245.1 System Formal_Parameter_List

[This is currently documented in the CYBIL Handbooky, DCS# ARH3078,
sections 7.1 and 8.2, The following addition must be made to that
documentation in order to conform to the SIS,]

For any potentially interlanguage <call In which a System format
actual parameter list is passed that contains only simple reference
oarameters: The vparameter list must be immedlately preceded by a
flag word whose value is the 64-bit integer zero. The string

< descriptor wpust be included for any obJject which takes one, unless
the author of the source program has explicitly 1indicated that it
need not be passed. These restrictions are made to insure
compatibility beotween the release 1l.1.2 product set calling
conventions and those for aill future r2leases. A flag word need not
preced2 any other System format actual parameter lists.

LT 73

5-11

CYBER 18D System Inter face Standard

S —— -

540
5e2

847077127

T A T . S Y W W - ———

COMPILER AND ASSEMBRLY CODE CGHVENTIGNS'
5.1 System Format Paramsater List

- — - - ——— ——————— - - a— w— o -—

5+2+5+2 Geperal_Eormat_Pacameter_list

The General format parameter Jist must always be preceded by a flag
WOrds The parameter list itself -is composed of two parts. The

first part has exactly one word for each parameter {including the
e

58205020

pseudo parameter for non-scalar valued tTunciions)e If the flag word
preceding the parameter list is zero then only this first part is
present, otherwise the second (extension) part must also be present.
This parameter 1ist extenslon follows immediately after the first
part of the parameter 1lists» and has axactly the same length in
wordss There is a one~to-one correspondence between word j of the
First part and word J of the extensicn,

The paramater list extension is required if and only If one or more
of the actual parameters is an extended refarence parameter or is a
pointer-to-procedure value parameter with a static link.,

1 FLAG WORD PRECEDING PARAMETER LIST

The flag word immediztely opreceding a General format actual
parameter list must b2 present for any potentially interilanguage
calle This flag sword has the following internal structures

record
f13 DeodDFFfffFFFFEFF{16),
f23 DeadFFfL1B),
£33 De.WoDFF(16) s

recend

Field f1 must always be set to integer zeroe. It is reserved for
future uses. Fjeld Ff2 has a8 language dependent valuey, but may be
nonzero only If fijeld f3 1is nonzero, Fleld f3 must be set to
integer zero If the parameter Jist extension is absent, and must be
set to 1iInteger’ one otherwise. Any Jlanguage accepting calls
according to the General format must accept interlanguage calls for
which fleld f2 1Is zero, An iInterlanguage caller will never be
required to set fjijeld f2 to a non~zero value., If fileld £2 is set to
a8 non-zero value for an intertanguage cally it is the responsibility
of the caller to set the fleld according to the expectations of the
callee,

2 GENERAL FORMAT VALUE PARAMETERS

If a value parameter jis greater than one word in length and is not a
pointer-to~procedure, then it is passed using an identical format to
that for a reference parameter.

B G G B GG S0 B S B B NG G NG BB S S BE D BB PG B GE G SN SR BN B B BE R B B S B BE WS S B B G BN B RS ~§U - s B

\

5.2

5-12
CYBER 180 System Interface Standard
84707727
520 COMPILER AND ASSEMSBLY cmn& CONVENTIONS
52205 2.2 GENERAL FOIMAT VALU& PARAﬂETERS

If a8 value paramater is 2 pointer-to—-procedure then the flirst part
cf that parameter list entry must contain the Jeft Justifiecd PVA of
the Code Base Pointer of the procedure in the binding section. The
second part of the entry {(when 2an extension is required) must
contain the la2ft Jjustifled PVA of the static fink or must contain
the NIL pointer if there is no static linke The 16 bits to the
right of each of these PVYAs is unused and undefined, This c¢an be
diagrammed ast

- - PR + + + +
i PVA {Code Base) |} undef} H static 1ink/7 NIL § undefi

A - Bl e s - - ——_——— - o - ————— - - - -

If a2 valu2 parameter js less thsn or egual to a word in iength, then
a copy of the value parameter is placed directly In the first part
of the parameter 1list rioht aligned in a wordy, with sign flll on the
left for integers and subranges of integers and zero fild otherwise.
The associated word 1In the second part {(when an extension is
required) is unused and undefined, Note that if a PVA having no
associated descriptor Is passed by value, then by this rule the PVA
is placed directly In the parameter list» right aligned in a word,s
with the word zero-fijled on the left., This can be diagrammed as3

: il o —— o - - - e i

+
1 value {right Justiftied) } H undefined
+

- = e o v

T

e5e2 3 GENERAL FORMAT STIMPLF REFERENCE PARAMETERS

Simple reference parameters are passed either as a PVA or sas a PVA
plus string descriptor. Parameters consisting solely of a PVA are
placad directly 1in the first part of the parameter list entry left
aligned in a word; with the rightmost 16 bits of the word unused and
undefined., The value of the word In the assocliated second part {If
an extension is renauired) must be the 64=bit integer zero. This can
be diagrammed as?

- - ——— e + pmmm e —————————————— +
i PVA (nobJect) i undef] H c H
+- - - + + o -t

Simple reference parameters consisting solely of a PVA ptlus a string
descriptor are placed directly in the first part of the parameter
list entry with the PVYA left aligned in a word, followed immediately
by the two byte long string descriptor. The value of the word in
the assoclated second part {(if an extension Is required) must be the
64=bit integer za2ros. This can be diagrammed ast

B BB e S BH NG G SR e G B D B SN S SN B S GG BE S Gl G BE G R R S BE R B NN G B Gw B B B W S SR WS BE B WS B B e e

5-13

CYBER 180 System ITnterface Standard

B&/0717127
5.0 COMPILER AND ASSEMRLY CODE CONVENTIONS
56225 e2+3 GENERAL FORMAY SIMPLE REFERENCE PARAMETERS
+ — dom -+ $omn - +
1 PVA {objact) ilengthl H ¢ H
- + - - - +

5e2e5e2¢% GENERAL FORMAT EXTENDED REFERENCE PARAMETERS

Extended reference paraneters require that the non-string descriptor
be passed Indirectly using the parameter Jlist extensions regardiess
of the size of that descriptor. Field f3 of the flag word preceding
the parameter 1ist must have been set to one. The first part of the

parameter

list

1eft alignad,.

that desecr

iptor

PVA» otherwise

parameter
location
descriptor

list
{whic
is |

feft allgned

entry will contain the PVA of the obJect referenced,
If the reference incjudes a string descriptor then
Is piaced in the 16 bits immediately following the
those 16 bits are wunused and undefined. The
extension for this entry will contain the PVA of a
h must be on a word boundary) in memory where the
ccated, The PVA in the parameter Jist extension 1s
In a word with the rightmost 16 bits being unused and

undefinedese This can be diagrammed as one ofs
+- - e + O - + -
i PVA {ahlect) 1 undefi 1 PVA {descriptor) § undef}
. ————fm————t e B S
- - o e e e e fm——— o e o o e s e Ao e o
1 PVA {oblect) Jlengthi 1 PYA {descriptor) 1 undef}
I e e e e st s o o e — - +

5e2+542+4% GENERAL FORMAT STRING DESCRIPTORS

A string
indicating

desc
the

riptor is a 16=-bit unsigned integer {0.s65535)
length of a string in bytess When presenty it iIs

placed in the primary portion of the parameter 1ist Iimmediately

following
described.
parameters

{and
A
to

in the same word as) the PVA of the object being
string descriptor is required for all reference
nbJects of +type character, subrange of character,

strings substrings or array over a component type of character,

subrange

of character» strings or substring. The string descriptor

for an array Indicates the length In bytes of a single element,

5e2e5¢246 GENERAL FORMAT APRPRAY DESCRIPTORS

The tayout of an array descriptor must adhere {0 the pseudo=-CYBIL
description given belows. Note that "extent® refers to the number of
elements in a particular dimensiony "stride™ refers to the distance

W e M B G BE S RS B B B e W NG W NG S B W N R R B W S RN R W e R R B S B Gl B G BB BE BE BE B e R DR e S RS G

5-14
CYBER 180 System Interface Standard

- -

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5e2.542.6 GENERAL FDRMAT ARRAY DESCRIPTORS

B47107727

{measured In terms of array alements) between two consecutive
elements of the same dimensions and "rank" refers to the number of
dimensions in the array, Array descriptors must be allgned on a
word boundary.

array_descrijotor = array [1 ++ rankl of record
extent: integer,
stridet integar,
ower_bound:! integer,

recend;

5e2e5424b01 Siride

For languages such as CYRIL and FORTRAN 77» arrays are represented
and storad as contiguous objects; stride is a function solely of the
extents. Houwsver the iIntroduction of array sections in CDC FORTRAN
necessitates that an explicit stride be passed in the parameter list
since sections nead nnt be contiguous In memory; they may have a
non=-unity Increment in each dimension of the array, which must be
included in the calculation of the stride. The stride value for
multi-dimensijonal arrays is <cajculated differently depending upon
whether arrays are stored columnwise or rowwise, For one
dimensional arrays the formulas are equivalent. Note that one
dimensional contiguous arrays have a stride of one,

For arrays wnhich are stored columnwise in memory {i.e, with the
leftmoest subscrist varying fastest) the following formula is used:

stride{l) = incri{i) * } 1 EL])
1]
J=0

where stridell) Is the stride in the i-th dimensions incr{i) is the
increment of the I-th dimensions and E{(0) is defined to be one, For
contiguous arrayss E£(J) is the extent of the j=th dimension., For
array sectionss E{]J) is the extent of the Jj=th dimension of the
contiguous array of which this is a section. For example if we have
the FORTRAN declaration:

DIMENSION 2115,30)
then Ffor C We hayes incrll)=1» incr{2)=1,» extent(1l)=15,
extent{2)=30, FE(1)=15, E(2)=30y stride(l)=1l, and stride{2)=15, For
the section:

Cl1:1032, 12:22:3)
we haves incr{l)=2, incr(2)=3, extent{l1)=5, extent{2)=4, E(1l)=15,
t(2)=30y stride(1)=2%1=22, and stride(2)=3%1%15=45,

D BN e WS WS S EG S sl S NG RS S Rl B BE BE e Gl S Sl e N S W B B M Bl e W Sl B R B S e WD W B W W S N Y N B B e

£-15
CYRER 180 System Interface Standard
B4/GT127

B0 COMPILER AND ASSEMBLY CODE CONVENTIDNS
50205924601 Stride

For arrays which are stored rowwise in memory {(l.e. with the
rigbtmost subscript varying fastest) the following formula is used:

A —————

]
]
strida{i) = incrii) * 1 B

. e W

J=i+1

where strideli) is the stride in the i-th dimensiony incr{i) is the
increment of the i-th dimensions r is the rank of the arrays and
E{r+l) is defined teo be one, For contlguous arrayss E{J) Is the
extent of the Jj=th dimensions. For array sections, E{J) is the
extent of tha j=-th dimension of the contiguous array of which this
is a sections For example if we have the FORTRAN declaration:
ROWWISE R{15,30)
then for R we have? r=£y incr{l)=1ls, incr{2)=1y, axtent{l)=15,
extent{2)=30, E{(1)=15s FE(2)=30» stridel{l)=30s and stridel{2)=1l. For
the section:
R{1:1022, 12222:33)
we havel r=2, incri{l)=2, incr{2)=3y extent{l)=5, extent{2)=4,
E{l1)=15» E{2)=30s stridel(l)=2%1%30=260» and stride{2)=3%1=3,

542¢6 DATA REPRESENTATICN

The following subsections define the representations of
data which must be used if an item of a particular type is
to be passed batween languages. Languages may have types
beyond these but data ¢f those types cannot be passed to
other languagess. A language is not forced to provide for
all of the following data tyrpes.

5¢2.641 Inteagsr

An integer may occupy 1 to 8 bytes of storage. For
languages with size allocations dependent on the subrange
of integers specified, the amount of storage allocated
must be the minimum number of bits needed to hold the
specified range rounded up to the next full byte.
Subranges that include negative numbers must use the
leftmost bit of the fleld as the sign bit. Negatlve
values are representesd as negative two's complement
quantities. Subranges of only positive numbers will not
provide a sign bits The range of slgned integers Is

i W R W G B B B G e P U e R B BE RS S RS BE e R e B RN S e B

= e e

CYRER 180 System Interface Standard

S S A 0 S -

5=-16

84/07727

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5+2+6.1 Integer

562462141

5e20bH0142

-2%%63 < | ¢ 2%%63~1, The range of unsigned integers Is

i < 2%%63-1.

Several languages have an enumerated type calied
ordinalses These are mapped onto the non—-negative
integerss, Allocation rules are the same as for unsigned
integers., If ordinals are passad to a language without
ordinals they must be treated as integer values and
vice=versa,

Two sizes of integers correspond to easjly manipulated
hardware fTormats and are identified as separate subtypes

of integer to provide for languages with only options for

half or full word signed integer values,

4 BYTE INTEGER

A half integer will be represented by a 4 byte {32 bit)
quantity in the CYBER 180 integer format las.e.s 3a signed
two's complement 32-bit quantitys, in which the leftmost
bit is the sign bit., The range of 4 byte Integers is
-2%%31 < § < 2%%31~-1.

8 BYTE INTEGER

A full integer will be represented by an 8 byte (64 bit)
quantity in the CYBER 180 integer format i.es.y» a signed
two's complement 64-bHit quantity, in which the leftmost
bit is the sign bits The range of 8 byte integers Is
-2%%H3 < | ¢ 2%%$2-1,

5.2.6.2 Eixed _Lenath Charactec.{Stringl

Fixed length character data will be stored as a sequence
of consecutive 8 bit bytes. The character set will be
ASCII.

5.2+643 Real

Real data will be repr2sented by an 8 byte (64 bit)
quantity in th2 CYBER single precision floating point
format. A1t real data will be normalized,

e - - .

e e e we

" e e

5-17
CYZER 180 System Inter face Standard
84/07/27

5.0 COMPILER AND ASSEMBLY CDDRE CONVENTIONS
5;:2.@@3 Real

S5«2+5+4 Double Pragisliaon

Double precision data will be represented by a 16 byte
{128 bit) guantity in the CYBER 18C doubile precision
floating point format. It must be normalized, The PVA in
the parameter 11st polnts to the first byte of the double
precision datume. The second {(lower precision half) is
jocated at PVA+8B bhytes, The sign and exponent fields of
the lower part are considered to be correct at any given
time, Input and constant assignment routines are
responsible for jinsuring corrct signs and exponents upon
initial construction of the number. OQOouble precision
oparations will maintain this format.

5.2¢60% Lomplex

Complex data will occupy 16 bytes (128 bits) in memory and
will consist of two realss where the first real represents
the "real™ part and the second real represents the
"imaginary”™ part of the complex qguantity. The PVA in the
parameter Jlist points to the first byte of the complex
datum (the real! part). The imaginary part is located at
PVA+8 bytes.

52e64% Boglean

Boolean data occuples a single byte, A vatue of one
indicates true and a value of zero Indicates false.

5e2e5.7 Pointet

A pointer is a PVA, It occupies six bytess Pointers may
identify data of any of the other data types. The nil
pointer is defined as a PVA with a ring field value of "F®
hexadecimaly segment fleld value "FFF™ hexadecimal, and
address field value "200CC000" hexadecimal.

527 DATA ALIGNMENT AND PACKING
The purpose of the common calling sequence is to provide

the ability to pass data between diverse languages. The
interlanguage call Is assumed to represent a small

- i e

- s W

_- e e

- e we

- e a8

5-18
CYBER 180 System Intarface Standard
B&/0T127

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5e247 DATA ALIGNMENT AND PACKING

- - - - -

percentage of all catlls and generally be used by
knowledgeable users, Therefore, for performance in the
word orianted languages {FORTRAN, in particular) a
{east-common-denominator alignment of word is used.

Data types which require 8 bytes to store are required to
be word alioned to Improve performances This permits the
use of the load/store word instructions which are faster
than {oad/store of 8 bytes. The space penalty for word
aligning simple vartiables is felt to be small especially
since it costs a maximum of 7 bytes per procedure if all
the word aligned items are stored contiguously.,.

524741 Yatrlables

Variables may be of any of the above data types, The
alignment of a particular type must be as follows?

Data Type Alignment
1i=-7 Byte Integer Byte
8 Byte Integer Word
Character{(String) Byte
Resl Word
Double Preclision Word
Complex Word
Boolean Byte
Pointer Byte

5024742 Sktrugtures

Structures must begin word aligned,

Alignment of data to be passed between languages iIn
structures must be as followss

Data Type Allgnment
1-7 Byte Integer Byte
8 Byte Integer Word
Character({String) Byte
Real Word
Double Precision Word
Complex Word
Boolean Byte

Pointer Byte

-l e

e we w8

CYBER

5-19
180 System Inter face Standard
84707727

-~ - - - —

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS
5422742 Structures

— ——— —r— v - - -

If a byte altiogned jtem is followed by a word allgned item,
up to seven bytes may be skipped {and left unused) to
regain word allgnment. If a byte item follows a byte
itemy they may be in consecutive bytes.,

5’3‘?‘3"91

5‘2.?‘3 '2

5e2e7034.3

ARRAYS DOF VARIABLES

The arrays represent a collection of data items of one
uniform type. Arrays must be word aligned if the data
type they contalin is word aligneds Unless required by an
external standard all Yanguages should store arrays with
the rightmost subscript varying fastest, FORTRANy for
examples is constrained by ANSI standards to stor2 arrays
with the leftmost subsceript varying fastest, If a user
passes 2 multidimensional array between languages with
different storage ordersy it is the user?'s responsibiiity
tc handle this. Arrays must be byte aligned if all of the
constlituent ele2ments =are byte aligned, The parameter 1ist
PVA identifies the first element of the arraye. Subsequent
elements must be contliguous and In ascending storage
address seqguence.

ARRAYS OF STRUCTURES

If any element of the structure is requirad to be word
atignedy each array element must start on a word boundary.
COMMON BLOCKS

Items within common blocks must be aligned consistently to
achieve interlanguage communications Common blocks will

begin word aligned. Alignment of data within the common
block will be the same as for structures.

5¢2.8 LANGUAGE INTERCHANGE TABLE

The following table shows the possible parameter types
that may be used between languages., If a letter appears

- W M W B

- AN e

- e e

- e e

5-20

CYBER 180 System Interface Standard

B4/07727

5.0 COMPILER AND ASSEMBLY CODE CONVENTIONS

54283 LANGUAGE INTERCHANGE TABLE

A T D e D SO T I W D A S DD W VS T T e W D TS HD D D Bl T DO N D T VO A - -

Caller
CYBIL
PASCAL(W)
FORTRAN
coanL
PL/I

BASIC

at an intersection

in the table, that type may be passed.

Types are encoded as Tollows:
Jd = 1=3y 5=7 Byte Integer 0 = ordinal
H = 4 Byte Integer I = B Byte Integer
C = Character {(string) R = Real
D = Double Precision Z = Complex
B8 = Boolean P = Pgointer
A = Array S = Structure
All = all types of the language
Callee
CYBIL PASCALLW) FORTRAN c0oB0L PL/I BASIC
Al HIJCBPSADR ICARD HICBSARD HICBPSAR CR
HIJCBPSAOR ALL ICA HICBSA HICBPSA C
ICARD ICA Al ICRDA ICRDZA CRA
HICBSARD HICRSA ICRDA All HICBRDSA CRA
HICBPSAR HICBPSA ICRDZA HICBRDSA Al CRA
c _ CRA CRA CRA Al
Notes:
1) PL/I may not have a double precision data type due to
possiblie high overhead in supporting the maximum
precision rules. This #ill be determined Jater.
2) If arrays are permitted between two languagesy the
type of the array is restricted to the types of
variables that are permitted between the two languages.
3) Arrays of characters in BASIC cannot be passed to

other languagess and vice versa,

524841 Lxtended lnfcrcbanas

The language Interchange table defines the parameter types

that can be us=2d between pairs of Jlanguages.
cases restrictions exist because a particular

In many
language

- s

5=21
CYBER 180 System Interface Standard
B#7077127

v - —— -

50 COMPILER AND ASSEMBLY CODE CONVENTIONS

- —— -~ ro— - - o——

lacks a data type. For example, BASIC lacks integer type
since it stores them as reals. In many instances the type
mismatches could be mapped by interface code between the
procedure calls, The foliowing mechanism Is proposed to
support such mapping when and if it becomes a requirement.

In order to mao parameterss» an intercept routine must gain
control from the caller, map things and pass control to
the callee, The reverse may be necessary upon returne.
The user should npot have to be aware of the activities of
the interface routine or invoke it directly, To achieve
this» the inader must have a mechanism for detecting the
need for an interface routine and inserting same in the
call/return paths The insertion mechanism c¢an be similar
to the one ysed for Analyze Program Dynamics (APD).,
Detection of the nesd for inserting the interface routine
can be done with load time argument checking mechanisms.

For each pair of languages (X and Y) where interface
wapping Is desired, Ionader tatles defining relevant
information about actual and formal parameters must be
defineds A routine {activated during loading by the
joader If a call from X to Y Is found) will compare the
actual and formal parameter lists to determine if mapping
is requireds If noty the lIpader simply 1inks as usual.
Otherwises a2 X to Y mapping routine from a library is
inserted Into the linkage by the loader,

The X to Y mapping routine recejves the actual and formal
parameter 1lst Iinformation from the loader.

The caller Information Is obtained by giving the P address
of caller to a Joadar service routine which returns a PVA
if the actual parameter list information for the current
calls, The catlee Informatlion is obtained by giving the
code base pointer of callee to a loader service routine,

The mapping routine uses this information to transform the
parameter list and/or data representations before calling
the callee, When the callee returns, the mapper will
receive control! to do any mapping on return parameters.,

529 REGISTER CALL FUNCTIONS

In many languages there exist commonly used sets of
functions {for examples mathematical functions) for which
it is more efficlent {(though less general) to pass a
fimited set of parameter values via registers. Up to

S ww S

E=22
CYRER 180 System Interface Standard
B4/07727

——— ~ o — - —— S - Y S S S N A WY - T .

5.0 COMPILER AND ASSEMBLY CORE CONVENTIONS

T T A —— A " " (- - - -

eight {64 bit values) can be passed In reglisters X2 - X9.
The first parameter value would be in X2» the second in
X3, etcs If a double word value (say» double precision)
is reauireds it uses two consecutive reglsterss, The
specific reaister used for a routine may be inferred from
the type of the parameters. For example, SQRTI{X) will use
X2 while DSORTI(D) will use X2 and X3. These rules apply
to the following data tvypes as parameters:?

1-7 byte integers
8 byte integers
Real

Double Precision
Complex

Return registers for register cail functions (see 5.2.3)
must not be saved Iin calling them,

No rules are spacified for characters boolean or pointer
data pending identification of functions using these
argument types that are of general utility.

The register call entry point is not bound by the
conventions of the common calling seaguence.,

Afl reglister call functions Intended for general use must
also offer an a2ntry point that accepts the common calling
sequence (5,2 above) and referencesbie by a CALLSEG
instruction.

5.3 INTERPRQODUCT EILE USAGE

Interproduct flle sharing between executing subsystems
will be addraesseds It wiil specify under what conditions
a product will be ablte to perform I/0 on a file declared
ty another product. It will also address closing and
fltushing of flles at Job step termination uwhen
interlanguage files are being used,

5.4 SIORAGL_MANAGEMENT

Purpose

In order that user obJect code from different compllers
can co=-exist In one Job step while using a ftimited number
of segmentsy certalin conventions must be observed.

=23
CYBER 180 System Interface Standard
B4/707727
50 COMPILER AND ASSEMBLY CODE CONVENTIONS
544 STORAGE MANAGEMENT

Each user will have a limited number of segments. This
means that object code from different compilers must be
able to shara certaln data segments.,

5e4e1 STANDARD STACK FRAME

This section describes the standard stack frame which will
be set up In conjunction with the CALL instruction, The
purpose of standardizing the stack frame layout is to
provide common traceback and debugging interfaces, At the
same timey atlowance Is made for a minimum frame for
{anguages such as batch mode FORTRAN, with extensions for
the complexity of languages such as PL/I.

A stack frame consists of two areas:

1l The save area.
2» The "environmental™ area,

The save ar2a bhelongs to the callery the "epnvironmental®
area belongs to the callee and both exist in the
appropriate rings.

5.4,1.1 Iraceback

Traceback is considered to be the lowest level of
debugging and as such requires the support of both the
loader and the compilers/assembler,s Minimum traceback
jnformation will always be produced to facilitate some
tracing from within the system.

The complters/assembler will produce traceback tables in
the ob ject module which correlate object—-code sddress of
entry points and calls with source—=code procedure names
and ltine numbers. The loader wiil maintain the relation
of these oblect code addresses, When traceback is
required, these traceback tables» plus the stacks will be
interpreted to give the source~code names and line numbers
assocliated with the PVAs obtained during traceback, 1In
full traceback mode entries will exist for each 1ine or
source statement; in minimum traceback mode onily entry
polints and calls are monitored.

CYRER 18D System Interface Standard

5-24
84707727

5.0 COMPILER AND ASSEMRBRLY CODE CONVENTIONS
4e1+2 Static Chain vss Display

——— - — = ——-— - -

5+%41.2 Static Chaln_vysa.__Display

{See Glossary for definitions,)

It §s not the intention of this standard to dictate
whether compiled code will reference globads via the

static chain or a2 display. FEither is permitted and must
be maintained by tha software. Note: this only applles to
calds to a nasted procedure and hence is intralanguage.

5.4.2 CHAINS OF ON-CONDITION PROCESSORS

Scftware conventions for a standard on-condition processor
chain format are required to ensure that on-conditions can

be processed correctly,.

The on—~condition flag {(OCF) in the save area Is used to
indicate that the stack frame has associated on-condition

processorss Th2 first eight bytes of the stack frame

{pointed to by the current stack frame (CSF) of the save

area) are reserved for the head of the on=-condition

processor chain., All object code generators must

accommodate tha head of chain reservation. If the

aCcF is

set In the save areas tha elght bytes pointed to by CSF is

the head of the on-condition processor chains If the

OCF

is not sets, the contents of the eight bytes is undefined.

5.%43 DYNAMIC NON=3TACK STORAGE

5.4.3.1 Dypamic._Sgaments

NOS/VE provides the capability of creating new segments
during product executione. Since this increases the number

of segments In active use and potentially causes a
performance degradationy, its use should be limited to

situations where the alternatives are less satisfactory.

=25
CYRER 180 System Interface Standard
84/07127

.0 COMPILER AND ASSEMBLY CODE CONVENTIONS -
5044342 Fixed=Poslitlion Dynamic Storage

A A - S A SO o S] A T W 2 S - " - - — -

Febs3.2 Eixed-Position Dypnamigc _Storage

The fundamental support for fixed-position dynamic storage
gilocation is provided by the CYBIL ALLOCATE statement
vith no IN optlion.

Products coded in CYBIL and needing fixed=position dynamic
storage should use the ALLOCATE statement directly.
Products not coded In CYBIL and needing flxed=-positicon
dynamic storage may 2jithear

1)} include ZYRIL subroutines contalning the appropriate
ALLOCATE statementsy or

2) wuse a set of common routines which will provide a CMM
compatible interface to the ALLOCATE statement.

5+4.3.3 VYariable=-Positlon_Dynanmlc_3torage

Variable-position dynamic storage is not currentiy planned
for support,

5.5 COMMON_SURPORI_MODULES

This section will daflina modules which will be avallable
for general use,

Math Routines

For a detalled account of the math routines to be provided
see C180 Common Modules Math Library (CMML) ERS with DCS
iog ID S2929. The routines will offer both a register
calling s2quence and the common calling sequence. Entry
point names will meet the specifications of section 4.1.1,

Numeric Conversion Routines

Routines wll! he provided for all products (compller or
runtime systems) to perform numeric input and output
conversion, This will ensure that the same numeric
representation matches the same interna) bit value by all
processors., See also Cl80 common modules math library
(CMML) ERS with DCS log ID S26929» and CMML
Assembly—-language Support System ERS with DCS Jlog ID S3410.

5=26
CYBER 180 System Inter face Standard

847107727

A - S - A Y - . - ot

50 COMPILER AND ASSEMBLY CODE CONVENTIONS
5.5 COMMON SUPPORT MODULES

0 BDP% Unpacked Number-

trailing 17¢
slign
combina=-
tion
nondec.) hollerith

“ D WD
- DR

-— YL D O
ot b Y L B

s g bt T T

FROM

Integer X X

Real X{1)

Longreal X{1)

ASCII X Xt1) X{1) xt{2) X

ASCIT X
{nondec.)

BDP* X
Unpacked X

decimal

trailing

sign

combined

hollerith

Number 1790 X X

¥ jncludes all BDP types axcept: alphanumeric

{1) there are additional routines for handiing real and Jongresl conversions
to and from asclii In plecemeal fashion

{2) transliations moves etc.

Utilities

A set of common utiiities wlil be provided to carry out
tha foillowing functions:

. Diagnostic Handling - the formatting of diagnostic

=27

CYRBER 180 System Interface Standard
847077127

A - - D A S T S T S T W T

—— -

Yines of output and the construction of the diagnostic
tistings.

» Source listing formatting - the formatting of the
spurce Yisting including output of the source lines to

a print file,

» Storage map/Attribute/Cross Reference listings = the
formatting of this listing and output of its contents
to a print file,

. Compller Usages Statistlics - the generation of usage
statistics messagess

CYBER 180 System Inter face

-

5.0 GLOSSARY OF TERMS

6.0 GLOSIARY. _QE_TERMI

- - - -

A . i -~

6=-1
Standard
84707127

In writing the System Interface Standard It became
necessary to clarify the meaning of certain wordss This
glossary contains those words which required

clariflcation,

The

=-g= gdjective

-N= noun
-y=- yarb

Binary

Booiean

FORTRAN
Boolean

Diagnostic

Display

Error Message

-a=

) -

—-n—

-n_

-y -

1ist will be extended,

Of base 2. Not to be used without
qualification to mean the object code
output from a compiler. Note object
code files are one of many different
forms of binary files,

Data type wmhich can hold the values
rrue™ or "fajse",

Roolean data but required to occupy a
full computer word.

Generaliy a part of a larger entltys
such as listable output, as opposed
to an error messages which is
gen2rally a summary of a command.,
Diagnostics are generally lIssued by a
number of the product set, such as a
compilar, See also = error message.
Example: A compiler may provide a
single error message telling how many
errors occurred during compilation
and produce a diagnostic for each
compilation error.

A mechanism for accessing global
variablies of a program using a table
of stack frame pointers; one polinter
for each accessible scope and one
table for each active scope.

Generally a summary of a command, as
opposed to a diagnosticy which is
generally a part of a larger entity>
such as listable outputs The error
message Is generally iIssued by the

CYBER 180 System InterTace

6=2
Standard
84707727

-

6.0 GLOSSARY OF TERMS

Invoke

Job Step

Lpad Module

Object Module

Db ject Program

process{ing)

Processor

Product

Product Set

record

-—v‘

- -

—n-

—v-

bt £ Lad

u.n-

Lt £ Rl

operating system or by a product via
the operating system., See also -
diagnostic for an example,

Applies only to spiritsy mitches,
etcs Procedures are called.

A Jjob step Is the work done as a
resuit of a single command in the job
deck/files Job steps execute
sequentially within a Jjob.

Nbject information produced by cobject
library generator and input to the
loader or back into object library
generator. Leoad modules are designed
to facilitate processing by the
foader.

An object module is a unit containing
code and/or data definition that is
produced by compilers.,

An obJject program is a set of object
modules organlzed to perform some
specific function {e.3+» compile
£0B3L statements). An object program
is prepared for execution by the
ioader,

Computling). Unrestricted to mean
elither hardware or software.

Restricted to hardware CPU or PPU.
May be used for software If
sufficiently qualifieds 2.9+ language
Processors

Any part of the standard software
which is covered by the System
Inerface Standard.

That part of the System which iIs not
part of the Operating System.

A unit of data on a files €9, a
card images line images. Not to be
used without qualification if meaning
a "CYBIL"™ record or "SCL™ record,

6-3
CYBER 1B{0 System Interface Standard ’
84707727

640 GLOSSARY OF TERMS

v N - —— W - ——

Standard ~n= Plural=Standard not Standards when
used In the sense of the System
Interface standard,

Static chain -n= A mechanism for accessing global
variables of a program using 1links
through the stack frames,

Systenm -n= All1 products {(q.v.) operating as a
4hole - to be distinguished from
Operating Systenm,

Task -n= A task is an instance of execution of
an obJject program. Multiple tasks
can execute within a single Job
steps. fach task has its own address
space {set of memory segments).

Tasks may be initiated either
synchronously or asynchronously to
the initiating task.

CYBER 180 System Tnterface Standard

Table of Contents

1.63 {;{qugAL L4 » » . L . * »] » » * £] »

le1 PREFACE TO REVISION J (REVISED 26 JULY 1984)
1.2 REVIEWING AND UPDATING THIS DOCUMENT o » »
1‘3 CHAQTER - » L] » » » » * L] » » » * » » » * *
1+.3.1 PURPOSE 2 % 8 8 % & 2 9 8 B 8 e B 2 9 @
l.3.2 SCQPE P I T T T R e A e A T
1.4 GQALS »] » * » » * E]] * E » * £ J » * ® » : 2
2.0 INPUT 2 % 8 8 8 e % 2 B2 2 . e * & B ® 8 %
21 SYSTENM COMMAND LANGUAGE o ¢ o o o 2 o o 2 o
222 PRODUCT CALL COMMANDS 4 o 2 o 2 2 2 5 2 » »
2e2e1 APPLICABILITY 4 o o 2 o o 2 o 5 2 o o »
2+2¢2 TERMINDLOGY ® 2 e 2 5 2 2 8 & 8 8 » e 9
2023 SYNTAX o 4 2 » 2 5 2 o » o % 2 o 5 o 2 »
2e2s% PARAMETER o o 2 o » s s s 2 o 2 s »
2e2+%441 Positional Brderinq of Product Set P
2¢2+44+2 Types of Parameters 2 2 8 9 % » 8 »
2+2+%43 Parameter Names and Descriptions «
2e3 SOURCE INPUT 4 o 5 o o 9 » » 2 » s a » o
2+341 SOURCE INPUT FILE QRGANIZATIDN » s s s
24342 SOURCE STATEMENT FORMAT & o o o » o o »
2034241 Statement Identifier o o o o o o » »
2e34242 Line NUmMDBTS o o o » s o ¢ 2 » 5 o »
2e3.2:3 Statement BodY o s o o 2 o 2 o 2 o »
2+23+2+4 Blank Compression 2 2 2 8 e 8 s 3 =»
2934245 Empty Input File 4 o o o o 5 2 o o o
2e342¢6 Null) Source Line Convention « o« o
24343 DISPOSITION OF INPUT FILE o 4 s o o o »
2% COMPILATION DIRECTIVES o o 2 5 o 5 » o » »
2.“‘1 pAG? ﬁJECT » » K J * » L] » » > £] L] » L] * »
2.”', SQUPCF LISTING E L] » . » A J » L] » » 2 - £]
2.4‘3 LI&E 3KI? * * » * * » » » » » L] » * * »
2e4a301 LINE SPACING o o 5 o » & o o 5 2 o o
2.4.& TITLE LINES . L L] . » » » £ d . » L] - L] »
2.4.5 RANGE CHECK * L] L » » * L] » » » * 2 .
2e%esb EXECUTION TRACE o o o o o 2 & 5 o o 9 »
2ete7 DEBUG STATEMENTS o o o 5 o o o o » 5 & o
2+4.8 SEQUENCE CHECK 2 o o o s o » » s 2 o » »
2+.4,9 DBJECT CODE LISTING o o o o o 2 o s » »
24410 STACKING COMPILATION DTIRECTIVES o » o »
2¢5 PRODUCT DIRECTIVES 4 o o o o o o 2 s s o o
2¢541 STANDARD PARAMETERS o 4 o o o o @« » o o
2502 STANDARD COMMANDS 4w 4 o o o o o 5 » o o
3 0 n‘«jTPUT L] » 2 E] » » - L » L] E J * 2]] E J * » E]
3+1 RECOMMENDED NUMBER BASES o« o o o o s o »
3¢1lel SITUATIONS AND RECDMMENDED NUMBER BASES
302 LOGS o o 5 o o o 2 o o 0 8 o s o 3 8 5 8 o o
3e2e1 ASCIT LOGS o o 2 o s o o o » s o 2 o o »
Q42141 System LOG o o » o o o o o 5 ¢ o o »

® 6 6 6 @ ¥ & & e & 8 S 6 & & B 6 & B & B &6 6 & @ & & NS ¥ S & 6 & @

¢« & & & ¥ - @

e ® & & & o

& & B @ & @

& & 06 6 o & & 6 & 6 8 4 6 6 & b 6 & b B ¥ s b b e B S T E S e 8 b

¢ % 9 O o @

$ % o @ ¥ & @

® 6 6 » ® b ¢ S & b ¢ ® b S & ¥ B §g b & & 0 O 4 e & O T e & O » ¢ ¢ @

» & o & & @

® & @ & E & 8 6 B B b 6 Y & 6 6 6 O & & W B G b B N g b & 8 s " & % » 9 & o

e & ¢ & & @

@ & & & & &

® & & @ & b

® & & 6 & & ¥ & & & b b 6 & W b b 8 " & & ®© © & 8 b @

« & & @& & @

® ® ¢ 0 & & B B 6 & B S B b B G b B 8 ¥ B & ¥ O & B & & 8 & B & e @ ® ¥ & & ¢ o @

*e ® » 8 & @

B 6 o & 6 S 8 & b 8 e & W B e B O 5 b 6 b B s 8 O ¥ e b b e @ B " o s 4 & & & & @

& & o @ & @

® & & B B @ & O & § S B B 6 B & & P T B S & S & & O & & 4 ¢ 5 ¢ & o » « » B & ¢ s @

® ° & ° &

¢ * B 8 & 6 S & S & & B S 8 & B 4 S O ¢ B b B 6 s eSS ¢ & » e b b @

¢ & & ¢ ¢ »

® & & & B B 6 8 O ¥ & e b 6 0 & b B b B B B e B b oe * % & o & o @

. & ® & & @

1

84/707/27

2=27
2=28
2-28
2=29
2=29
2=30
2=-30
2=30
2=-30
2=-31
2=-31
2-33
2-33
2=33
2=34
2=34%

2=35
2=-35

CYBER 180 System Interface Standard

3+241slel PURPDOSE & »
3.2+1+1.2 CONVENTIONS
322+142 Job LOQ » o+ »
342012241 PURPOSE + &
322+102.2 CONVENTIONS
30242 BINARY LOGS o » o
342,241 Account Log .
3.2e2+4141 PURPOSE . &
3¢2+2+2 Engineering Log
30202021 PURPOSE & »
2¢2+3 Statistic Log .
+2+3+1 PURPOSE . + &
.2.4 Job Statistie Log
"0 1 PHRPDS" + 2 0 »
3. 2.2 5 Binary Loa CZonventi
3.3 LISTABLE QUTPUT & » o » »
3.3.1 LISTING PAGE FDORMATS .,
3234141 Vertical Layout .
3.2.,1.2 Format Attributes s @
3¢3.14241 CONTINUDUS QUTPUT FILE
323122 PAGINATED DUTPUT FILES

@ # ® & & e 9

“« & & * 6 & O ¢ b 8 b

wmww

»
»
]
L]

2
2
2

n

¢ 9 & B » @ b 0 ¥ b & & & & v @ ¢

»
L]
.
.
-2
.
»
»
»
.
»
2
»
.
S
.
.
»

»
»
»
»
»
»
»
*
»
)
»
.
»
»
0
»
»
»
*

»1e% Horizontal Lavout .+ «
o145 Standard Listing Header
6 OTHER FORMATS & o o s
DRNATS i!"ltleO'

L]

3
.

*® » O

0
L]

DURCE LISTING FORMATS o o »
1 Standard Header Contents
2 TITLE Lines s 2 % 3 8
3 Wide Format 2 2 2 2 s @

L * » -

BJECT CODE LISTING FDRMAT .
1 Standard Header Contents

L

-
WU W W W W W nwuwwwwwuwwwuwwwwmuw
® & & ® o @& & & & ¢ & & b & S B € W 0 & & E & € e @

-&\‘w'n«:wwwc*wwwwmwumusw#mwwuwwww&www

3. TTRIBUTES LISTING FORMAT & & o »
+3+5«1 Standard Header Contents « » »
«5e2 Wide Format 8 2 8 e » e » e
3¢2+5,3 Narrow Format and 80 Column Forma
2544 Standard Field Values + o o+
- . Oi*%ll ENT{TY TYPES » 2 L] » £] » E] »
e50442 BASIC ATTRIBUTES o o o o o «
e594e3 REFERENCE TYPES & o o o o »
3. TAGNOSTIC LISTING o o o o o o » »
E ebel Standard Header Contents . 0
«e2 Standard Diagnostic Listing Forma
3.3.6+.3 Standard Diagnostic Summary Forma
3.3, OMPILATION DPTIONS & o o o o » o
3.4 ERRQOR MESSAGES « o 'y P T T S S S
34441 MESSAGE GENER&TGQ USAu * o s s o
3.4.1.1 Standard Condition Codes + +

1 Wide Format (132 columns)
2 Narrow Format (80 Columns)
3 Narrow Format (72 colums)

4 Narrow Format and 80 Coiu

& @8 ® @& 8 " & ® 6 B e @ # 8 @ & e ¥ e 8 b

3 13 Standard Carriage Control

* & o @

o =3 6 o o @

"
F
2
2
2
N
3
3.
3,
3.
0
4,
442 Standard ITnstruction Mnemonlcs
A
5e
5
5
5
5
5
5
n
&
6o
6
¢

o]

® @ & B ¥ 6 & P 4§ S & & & S O B b b ® &

des

& & 8 # ¢ & b 4 & & & D &6 &6 & 6 & V&6 8 b+ & & & 5 2 " b w e s

F

-

® o o & FH H e ¢ o ¢ ® & H e e & e 8 & e e 6w & »2 w s e e @

(]

® & 8 & T T e F 8 8 b 8 TE 4 8@ 6B TE 8 P 6 6 BB 6 S B WS B 8 G e G WG e s s @ & e s s 8w o

.
»
»
»
»
»
»
»
»
»
.
»
.
.
»
*
»
»
»
.
)
e
»
»
.
»
»
»
.
.
.
»
»
0
s e
»

* 8 @& & & & 5 & B 6 & 4 & S S b O B S B ¥ B e E s e s bR e E B e e s N e o

® & & & 5 & & 2 & B & B G B & » O & S 6 5 & 6 S 6 T B S & & 8 6 & B ¢ 6 B b B e 4 G B " s &6 0 & b 6 & &

® & & & & 4 & & & & & & & & O B B S ¥ 6 P 4 & 8w € & W & 6 & 8 & & W & G & 6 4 & s & B B & O b s " s e s

¢ 8 & ¢ & 5 & & & & & 5 B B P B OB b e b & & e b b 8 "G 8P es s P s e s e s e e b e e s

® & ¢ @ €6 o 8 ¥ S & & b & B b ¢ B & & ¥ & 8 B 8 B p b & 4 B 6 ¥ F & b B & O "B b " 6 " e b e b ¥

® & & b 5 85 6 5 & B & & B 8 &6 ¥ 6 U B s G E § W b b B & & & @ O & ¥ 6 b & ® O $ b e b P b & ¢ & P e b

® 8 9 & & & B v & B & 6 9 6 & B & b 6 B S U P SN E e G s S e EE e s ke e v

@ 5 4 O & & & B 6 P b & B 6 & B 6 B b 8 B BB Ve e b e P e L e B e P e e Vo

® & & & & @ 8 ¥ ¢ & 6 ¥ O B b B ¢ b B b B * B O B & O B b W G & B bV & b O+ G " b b b e eos e

2

84707727

¢ & & & & 5 4 O 6 5 5 06 B 6 4 & B b P b 6B 8 P eGP PSS S s Y PSS e s e e o

LK TN BN BN BN 2EE TN RN N DN IEE 2EE T IEN TEY BN NN NN T BEE REN BN JEK T NN N RN BN BN 2NN N IR TN BT DN Y R T RN RN N N B IR N R RN B A)

3
CYBER 18D System Interface Standard

84707127

Be%e2 MESSAGE TEXT 2 o o o » % 3 o 2 2 3 o 2 3 % 2 5 5 » 8 3 s » » 3=42
3.4.2+,1 Message Formats a2 9 s 8 8 % B B B2 % 8 8 % 8 2 ®» B 8w » =42
2427242 Error Summarles In Lngs 2 8 2 5 2 ® B B B 8 B B B S P 3=43
344223 Message wording M N R N I R TN T T T T T T T ST S T) 3=~43

3¢5 USAGE STATISTICS o s 6 2 5 2 o 5 % 3 2 3 2 2 8 o # 5 2 2 3 » » » 3-45
3.541 PURPOSE OF STATESTICS L T T I R R I D T T I T Y B I I 3-4%
30502 STATISTICS FACILITY $ 9 2 9 8 & 2 2 B 2 2 S5 P B B B B B B N 3’46
3542 PRODUCT STATISTICSE COLLECTED BY NOS/VE o o o s 2 o » 5 » » » 3=-47
3e5.4 STATISTICS COLLES TFB BY PRODUCTS o o 2 s 5 2 2 3 5 o 2 3 o » 3-48
384441 Input Unit Statistics I T T T S R R O L TR T T R T 3=-48
3+5+44.2 Internal Statistics [T T S 2 I T U ST T T T T S T N 3=-590
3.5.% WHEN TO LOG QTATI&TICS (I T T T I N 2 T T T R T T TR T BN R) 3-50
4,0 SYSTEMWIDE CONVENTIONS 4 s » 2 o 2 5 2 5 2 2 5 5 2 8 5 2 » » » 4=-1
el NAMES, DATES AND TIMES 4 o o 2 o o o 2 5 2 & o 5 06 35 2 8 % % % » 4=1
Aheleal NAMING CONVEﬂTIGMS 2 8 4 8 8 8 8 S5 % B e B e B B B 3 e BN 8 » 41
4+1+1.1 Product Identifiers 2 8 & ® B e % 3 % » 2 3 3 8 3 = ® @ 4=-2
4o1lels2 Other Global TdentiIflers » » o s ¢ o 2 2 o o 2 o 2 2 3 4-3
4a10le3 Classes of Names s s o s o o » o s & 2 % 5 & s s 2 s » = 4=-3
Yaloloets Specia! Characters o+ « » s 5 2 o s % 2 3 2 o 2 o » » o » =4
421e1+4% Naming Guldelines * % 2 8 3 8 8 % % 8 . ® 3 8 B B S e o @ H=4
4;1.3 RESERW&Q FILg NA&ES L2 BT I T 2 D T T I DI EEE D I 2 D I 2R I 4=9
z*"l‘.a OATE ANQ TIEE 2 .] £] L] » * » * » » £ L » » E] E] * * L] - L » . 4-9
4.2 INTERACIIVE PRQCEQS}NG [2NN B I N 2 D I D AT I R SR N RN T NN SN TN BN SN) 4=-9
o201 INTERACTIVE DSUTPUT 4 » * o o o o 2 ¢ 2 8 5 » o o s s % 2 8 B 4=10
4e2¢1sl General " 2 3 3 & * 3 B & B T B B B2 " B B 5 P 8 8 B 8 4-10
4e221a2 MEBSSAJRS » » o & 5 5 o » 5 2 5 o % 2 ¢ 5 5 2 5 5 o 8 » » 4-11
e2¢1.3 Llstin;s 9 2 8 2 % B & B 8 B O 5 A& 8 8 B 2 P 8 9 B 8 ® 4-12
44202 INTERACTIVE INPUT 8 % 8 8 8 B % 2 B e 8 A B B B 8 B 8 @ 4-~13
422+2e¢1 General s 8 8 8 B % s m B S B N B 8 e B e 8 A B A2 w8 @ 4=-13
420242 Iﬂput D;agﬂ95es 2 % B 8 e s % B B s 3 8 B B B B2 B 8 8 4=14
44243 CONTROL S % 8 8 e 5 a4 8 % 8 8 B e B B B 8 8 B P B S 8 8 » P 4=-1%
44203,1 COnneCt‘Vity " e s 2 2 8 & B B % 8 3 B 8 8 8 8 3 % B = 4=-15
4.7+3.2 Interrupts and Connection Breaks o+ s o o o o o 5 s o s » 4-15
4420343 StAtUS o o » 2 4 o 2 0 2 2 e 8 s 4 2 s 0 4 & 8 s e s 2 » 4=-16
40203 0% H839 « 8 e o o » ® 8 8 8 8 8 8 9 & 5 8 9 98 ® » 4-18
4+2+% PRODUCT SET RUN TIME CQ“MANDS 2 % 8 e 2 8 % e 8 3 s % % o w » 4-18
4a2eh.1 PAUSE and STOP Literal « o o 2 o o 5 2 o o 5 5 o 2 2 o » 4-18
4420447 ACCEPT FROM CONSOLE a8 8 2 8 8 8 B B 8 & 8 2 5 2 B 8 B 4=-19

4e3 INSTALLATION PARAMETERS 4 o » o % 5 s & o ¢ o 5 o o o v 2 2 o » 4-19
“ 3 1 GENERAL GHIDELINES . L -» L] * * . » » : J » E] » » L] L] L] » - * 4-\20
4.,3,2 LIST OF PRODUCT SET PA?AﬂETERS S T T T T T 4=21
¢4 ERRNR PROCESSING o o o ¢ o o o 2 o 6 2 8 o 5 o 2 2 8 2 8 2 o o » 4-21
4.%,1 STATUS VARIABLFE 2 8 8 8 8 % B B W " 8 B 8 8 & B 8 2 B B e @ 4-21
42442 ERROR TERMINATIDN S 8 % 8 % 8 8 2 8 % 2 B e 8 B 2 B P 8 % @ 4=22
4.4.3 INTERACTIVE ERRDQ PROD CESSIMG 2 8 8 o » 2 e » e ° 2 92 s 8 » @ “'23
4s% 0341 Error MQSSQQ&S TN I D T T T B B S T T T T S S S RS R S 4=23
4.4,3,2 Diagnostics S e 2 2 8 A B A B 8 P 8 B 2 P B2 B e 2 " @ ® =24
bo%a3,3 Input Diaqnosis 2 % 32 8 8 8 e 8 B 3 e 8 B 8 8 B S B2 8 » G=24
4ebdoed BATCH ERROR PROCESSING o o o 3 o s o o 2 5 5 o 2 2 2 » » » = 4=24
h.%e%s1 Error MBSSAURS o o » o 5 5 o » 6 5 5 5 5 o 2 2 o & » & » 4=-25
boh o422 Input Dlagnosia 2 8 8 8 82 8 8 B8 8 8 B M e 9 8 B ® 8 9 @ 4=25
4e4s5 TRANSACTION ERROR PROCESSING o o o o o » 2 o 5 o 2 % 2 o o » 4=25

CYRER 3180 System Interface Standard

4.40{3 QESTAR}. L] » i 4 » * » » » L]

4.5 EFFECTIVE USE OF C18D HARDWARE 4 o o o o 2 o » » » »
44501 HARDWARE CPERATION 4 2 % » & o » o o & o s 2 o »
4.,5.1¢1 Interiock Words P L T T T S S S S
4454142 Pre=~serialization of Clear Lock + o o o » »
4e541e¢3 Register Resarvations 2 8 2 % 8 9 2 8 B 3 #
4.5.144 Alignment of Tables and Words + o« o o o o
4»§ 1 4 1 ﬁé BIT QDRU ?ﬂUNBAQIcS 2 3 2 2 2 8 2 2 2
4e5eles2 OTHER BDUMDARTES o o o o » 5 2 o 5 2 o » »
44542 HARDWARE PERFORMANCE 4 4 o o # o o 2 o o o 2 » o
4,5,2,1 LOca'itY of Reference e 2 2 8 8 8 B s B3 * @
454242 Reglister Allocation and Usage + s « o s o »
4.5'3 SfCURITY * t 4 » * » » :] » » E] » » L] L » d » » » »
4454341 Procedure Parameters + » » » » s o » » s s »
#“6 SLJQDDRT UF Egcglg DATA » » - * » »] » 2 ® » » » » E]
7 KEYPOINT USAGE o 5 o o o o s 5 2 o 5 5 5 o o o » » »
4’7’1 KEYPQINT CLASQES :] » » » » » < » .2 L] E] » * » L d »
4.7.1.1 Bpefating SYStem 2 % 8 2 & 3 s 3 8 » 8 2 » @
4472142 Product Set I R L TR T T T S S S S S S S
427213 Other Classes a 2 2 0 A a2 9 2 s 8 3 8 2 ® 8
4e7+2 KEYPOINT IDENTIFIERS @ o 5 o 2 » o 2 5 5 5 2 » »
447e2e1 Qperatinﬂ SYSYECM o o o 5 » 5 5 s & » 8 @2 o o
4e7 022 Product 3Set I T T S S S S S T
4.7.3 KLY?DIQT {.3SE » » L] . 3 £] 2 L] » * * £ » » » » E] » : J
5.0 COMPTILER AND ASSEMBLY CODE CONVENTIONS o o o o » »
5¢1 USE OF LOADER FEATURES 4 o o o s 5 5 o 2 o o » » »
502 INTERLANGUAGE CALLING SEQUENCES o o o o » o » » N
54241 CALLING SEQUENCE FORMATS o o o s » » o » o » N
5+2+1el Kinds of Parameters 2 & 2 3 8 e 3 * o »
5e221le2 System Format of the Interlanguage Calling S
52413 General Format of the Interlanguage Calling
52014 Summary o0f Format Differences o+ o o o o

5¢221e5% Calls Potantially from Another Language
54241486 Calls Potentially to Ancother lLanguage .
Be2elebal SUPPORT FOR CALLS TO ANOTHER LANGUAGE

502‘2 CALL L] * » L] L *] L] * » » . Ed » L] » L] » L

-
5023 REGISTER SAVING CONVENTIONS o o o o o o s »
5e2+3.1 Information R2quired Across Call o+ « «
5.204 FUNCTIDNS 1] » » * » » » » * » » L] » » :] »
5’2'5 PARAH&TER LIST L] L] E J L] L] L] * » 2 » L] * »]
542e5.1 System Format Parameter List « o o o o
542+5.2 General Format Parameter List o+ o+ o o »
50205241 FLAG WORD PRECEDING PARAMETER LIST o« &
562454222 GENERAL FORMAT VALUE PARAMETERS o o »
B5e2.54243 GENERAL FNORMAT SIMPLE REFERENCE PARAMETER
5e20e5020e% GENERAL FDRMAT EXTENDED REFERENCE PARAMET

522452245 GENERAL FORMAT STRING DESCRIPTORS o
B5s2e5¢2+.6 GENERAL FORMAT ARRAY DESCRIPTORS
5e20502eB0l SLrid@ o o s s o o o & 2 2 s »
Se2eb DATA REPRESENTAT?DN e« 2 2 2 2 % 0 0
52621 Integer * 2 e 8 8 % 8 s m . ® 8 e @
6.? » » - L] » L] > E *

2e601e1 4 BYTE TINTEGER

e 4 & 6 @
® o o o % & [TIITie & & © & 6 ¢ & & & ¢ ¢ & DT e o & o o
e & o © » & NI Ee o & % & ® &5 © & 5 » & @

. & & @& &
¢ & o &

R

& & 8 B & * & & & B 4 8 b b @ " & ¢ " s e

& & & o & & LV 6 & o % 8 & 8 6 & & & ¥ ¥ DLW b 6 s e

¢ & ¢ b o B & & & B b 8 4t & S 6 ¥+ w8 & s s

® ® 8 ® & 8 8 6 & 6 B b 8 B o b & 6 & 6 e L De o b e @

& ® % 8 B & & & 5 & & ¥ & 4 8 & B 4 2 B " s b e

* & 8 B 0 8 % b 6 B ¥ 6 B O b b 8 6 b e B DO e & b oo

* & & o » $ & & & @ & & 5 6 B 6 S B B W & % s B e s s s b

¢ & o 6 2 & O & ¥ O o & e b ¥ 0 & & & & »

4

84707727

& & & & & & $ @ & 6 ¢ & B b S b 4 & & ¢ 8 >

® & & & ¢ O & O & 6 & & & & P b B O b ¥ & B 8 & b e o 0w

& & 5 & @ 8 5 6 ¢ & B b 4 & b 4 b e s

® $ o & & @ ¥ & & 4 6 b b b b+ & ¥ ¥ ¥ S & 2 B b @ & e

4-25
4~25
4=-25
4=-26
4-256
4=27
4=-27
4-28
4=39
4-30
4-31
4-31
4=32
4-32
4=-33
4=34%
4=34%4
4-35
4-36
4=36
4=36
4=-35
4=36
4=-38

5=-1
5=-1
5-3
5~4
5=4
5-5
5=5
5-5
5=6
5-6
5-7
5-7
5-7
5-8
5-9
5-10
5-10
5-11
5-11
5-11
5-12
5-13
5=-13
5-13
5-14
5-15
5=15
5-16

CYRER 180 System Interface Standard

522e601+2 8 BYTE INTEGER o o &

. s #
5¢2+.6.2 Fixed Lenath Character {String
5222643 R2al o 2 a2 o 5 2 2 5 » o s 3 »
5222644 Double Precision o« o« ¢ s o o »
5e23H45 Cﬁmpi'&x s 2 2 8 ® e ® 8 8 @
B+2+H6.6 Boolean 2 9 2 B 8 8 » s B 8
B5e2e847 Pointer % 8 B B % B 2 % &

5e2+7 DATA ALIGNMENT AND PACKING o o o »
5e2e¢7+1 Variables 2 % % 2 2 3 8 2 8 »
Be20T02 STructuras o o s » » s » 2 o »
Fe207 3 ATTBYS » o o o 8 8 2 o 5 2 »
5e2+7+321 ARRAYS OF VARTABLES & 4+ » »
5:2e7+3+2 ARRAYS 0OF STRUCTURES o 4 &
522474323 COMMON BLOCKS 4 o o s o o
54248 LANGUAGE INTERCHANGE TABLE o o & »
522841 Extended Interchange « « » + »
5429 REGISTER CALL FUNCTIONS o o o o o
53 INTERPRODUCT FILE USAGE o o s 5 o »
544 STORAGE MANAGEMENT 4 s o o s o 2 » o »
52841.1 Traceback * 9 2 2 B e & 2 8 »
5¢4s1e2 Static Chain vse. Display .« o

54,2 CHAINS OF ON~CONDITION PROCESSORS
Sehe3 DYNAMIC NON=STACK STORAGE & o o »
5+4s3e]1 Dynamic Segmants + s » s o o
5242342 Fixed=Position Dynamic Storage

52%+2.3 Variable—-Posltion Dynanmic Stora

5.5 COMMON SUPPORT MODULES o o o o o & o o

6520 GLOSSARY OF TERME o o o o o s » o » o

L d

'

® 8 b 8 & B B 6 8 & & S B S 6 O & 4 b ® b b e w8 s @
8 B B & & & & B S & B 6 5 8 b & 6 S O & & & s & & & @
® 6 5 8 4 ¢ B B B * B B & & B b B b G 6 s e e+ b e 6 0 @
® ® 9 & % & @ & * & O b & & 6 S B b 6 b w & & s * b @
® & % & ¢ 5 B S & O 8 W ¢ & 6 & & s B S B S ¢ ¥ e ¥ * g
® ® © B 4 B B B & 6 B 6 & & &5 6 @ & S T & S b B e & -
® & & & & ® & & & * ¥ @ & & & 5 & B O 4 & & @ & v
® ® © » & & $ 8 & & & 5 G 8 S B B » B & & b O & b » v @
® B ¥ & 5 & 0 & 6 6 ¥ & b & B 4 & 6 & ¥ b ¥ & b b e ¢ &
® & @ B 6 & & 8 4 B & B ¥ & B ¢ & & & 5 6 6 * o 6 " &
¢ B & B B S 6 & & & 5 B & ¥ 5 8 4 & 8 8 " 8 b s e e b @
® ® ® & b b * B B B O 6 B & & 4 5 & & ¥ s W b e @

» LKi & o » & ¥ & & ¢ & & o 6 B & & B s & B ¢ ¢ & s

5

B4707727

5=-16
5-16
5«16
5=17
5-17
5-17
5-17
5«17
5-18
5=-18
5-19
5-19
5-19
5-19
5=-19
5-20
5=21
5=22
5=-22
5-23
5=-23
5-24
5=-24
5=24
5=-24%
5-25
5=25
5=25

6-1

