
DISTRIBUTION
.... .-._--.-..... ,.-..-- ...

C.K. Bedient
F.A. Bischke
R .. t. Dennis
J.B. farr
J. H. Koch
L.E. Leskinen
T.M. Miller
J.A. Nauman
M.J. Perreten
R.A. Peterson
J.F. Steiner
R.J. Thi"elen
S.C. Wood

R.B. Beeson
R.E. Erickson
R.A. Mann
R. Woodruff

J.J. Krautbauer
H •. A. Wohlwend

R.D. Pa 1m

J. Sutherland

J.H. Wick

C.A. Sheats

ARH254
AR H254
.ARH254
ARH254
ARH254
ARHZ54
ARH254
ARH254
AR HZ 54
AR H2 54
ARH254
ARH254
ARH254

ARH260
A.RH260
ARH260
ARH2bO

ARH280
AR H2 80

ARH293

CANeDO

MNAOZB

SVLl14

1
07/29/81

Please help keep the above distribution list current. If
your name should be removed from the fist or another name
added, contact Bonnie $wierzbin at ARH260 - extension 3460.

DISTRIBUTION
---.-. --~ --.-~-

R.H. Kingdon
T.e. McGee
R.M. Medin
J.R. Ruble

D.J. Maguire
N.E. Meyer

S.w. fewer
C180 Central

E.B. Buckley
R.S. Cummer
R.K. fndo
A.E. Hiebert
U.B. lundh
W.H. Moehrke
J.S. White
D.H. Wit I i a fliS

J. Y. Young

ARH254
ARH254
ARH254
ARH254

ARH260
ARH260

ARH263
Dayfile

SVl173
SVl163
SVl128
SVl143B
SVlI02
SVl163
SVlI02M
SVl102

SVl173

2
07/29/81

Please help keep the above distribution list current. If
your name should be removed from the list or another name
added, contact Bonnie Swlerzbin at ARH260 - extension 3460.

I •
• t

1 • • •

3
07/29/81

11M MM EEEEEEE MM 11M 00000
C M M M M E .. " "- M 0 0 C
0 M M M EEEEE f1 M M 0 0 0
C " M E H H 0 0 C

H M EEEEEEE M f1 00000

DATE : JULY 28, 1981

TO 1 DISTRIBUTION L DC AT ION :

FROM : BJ SW[ERZBIN LOCATION : ARH260

The Build N update of the Integration Procedures Notebook
is nOM available. Change pages may be obtained through the
following command sequence:

ATTACH,CHGPAGE/UN=DEVl
SES.PRINT CHGPAGE

Some parts of the document are now out of date (see
Document Deficiencies below) but have not yet been removed.
However, a complete listing of the document can be obtained
through the following command sequence:

ATTACP,IPNOOC/UNaDEVl
SES.PRINT IPNOOC

Some highlights of this revision are as follows:

'~l~!~~_!~D~~~m~Dl_!gll'lJ~: Section 2.3 has been updated
to reflect how the Integration catalogs are managed for
parallel bui Ids.

~~~ __ f£2~~~YL~~: Sections 2.4.5, 2.5.2, and all of Section 
2.11 have been updated to describe the new procedures NVEBlD, 
NVEREP, GET, SAVE, and NVEMAP. 

U2~~t~~ ___ AR2~D~1~~~: Appendix G now contains (yaIl 
installation information for version 81188. Appendix E 
contains the Build N Helpful Hints document. 

Q2'~mln1 __ U~!1'1~n~1~~: Appendices C, 0 end E are outdated 
and should not be used. Information formerly in Appendix H is 
now In Appendix E and Appendix H should no longer be 
referenced. This document wi" be completely revised for 
Build C. Your comments for that revision wilt be 
aporeci ated. 

• • 

• • 
• • 

• • 
• • 

• • • • • • 

• • • • 
• • • • 
• , 
• I 

• • 



* Subject and verb always has to agree. 

4 
07/29/81 

* Being bad grammar, the writer will- not use dangling 
participles. 

* Parallel construction with coordinate conjunctions is not 
only an aid to clarity but also is the mark of a good writer. 

* Do not use a foreign term when there is an adequate 
English ~y!d_RLA_9U~£_ 

* If you must use a foreign term, it is d~_L~g~L to use it 
correctly. 

* It behooves the writer to avoid archaic expressions. 

* Do not use hyperbole; not one writer in a million can use 
it effectively. 

* Avoid cliches like the ptague. 

* Mixed metaphors are a pain in the neck and ought to be 
thrown out the window. 

* In scholary writing, ~~n!l use contractions. 

* A truly good writer is always especially careful to 
practically eliminate the too-frequent use of adverbs. 

* Use a comma before nonrestrictive clauses which are a 
common source of difficutty. 

* Placing a comma between subject and predicate, is not 
correct. 

* Parenthetical words however should be enclosed in 
commas. 

* Consult the dictionary frequently to avoid mispeiling. 

Reprinted frow the I~~~~ __ H~~~1~11~£ __ t2~ __ ttl~1~~1 
I~&bD~l~~% (Volume 5, Number q, 1978) 



1-1 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

01129/81 

1.0 NOS/VE SYSTEM OVERVIEW 

The basic components of NOS/VE include the following: 

A Hard~are Initialization Verifjcation Sequencer 
(HIVS) component 
Modifications to standard A170 NOS system components 
Al70 NOS appjication programs (and procedure fites) 
which execute in the A170 NOS (Reat State) 
environment. and provide system to system 
communication facilities. 
The Virtual Environment code which is responsible for 
the execution of tasks in Native Mode in the Virtual 
State of the hardware. 

The nomenclature used to describe NOS/VE components is 
rather confusing. Frequent'Y, the Virtual system software is 
what is referred to as "NOS/VE". When A170 NOS and the 
supporting utilities are present, the term "Duaa State" is 
used. To differentiate the two execution modes of the machine 
the terms "Native Mode", "Virtual Mode", and "Virtual State" 
are used to describe the execution of CISO instructions. The 
terms "Rea' State" and "NOS" are used to refer to the 
execution of e170 instructions. 

The model which is often used to describe the execution of 
NOS/VE in Dual State mode is that of one machine front-ending 
another, and communication between the two machines occurring 
over a communications link. From the software's point of 
view, another perspective is used. To the Virtual State 
software, the NOS system is merely a job which happens to be 
executing in the Vi rtuel State envel,ope created by EI. (The 
microcode translation of the C170 instruction set is 
"invisible" to both the NOS and NOS/VE software.) NOS's view 
of the Virtual state is merely that of a Job which runs at a 
control point, and is communicated with through the 
K-display. The remainder of this section is meant to describe 
NOS/VE with regard to its components. 



1-2 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

01129/81 

1.0 NOS/VE SYSTEM OVERVIEW 
1.1.1 THE HIVS COMPONENT 

1.1.1 THE HIVS COMPONENT 

Included in the diagnostic world, which establishes the 
initial Virtual Execution environment, is the microcode for 
the CPU as we" as a Native Mode monitor-like program cal ted 
the Error Interface (EI). The microcode is strictly supported 
by the diagnostic organizations, and neither the NOS nor the 
NOS/VE software witl execute without microcode present in the 
CPU. The £1 program is supported by Advanced Systems 
Development. There are currently two versions of EI, one 
which only supports A170 NOS and does tasks such as CMU 
instruction emulation, and one which also supports the 
switching between the NOS and NOS/VE CPU monitors. This 
latter version of EI requires a partner intermediary called 
"Elf- which is statically loaded ~ith the Virtual state 
software, and is 'oaded during deadstart of NOS/VE. In order 
to assure that the right version of EI is present, the HIVS 
tape which is distributed by Advanced Systems Integration for 
use with NOS/VE js the correct version to Instal'. The 
version of microcode present on this HIVS tape will hopeful.y 
be the right version, but we have not discovered the necessary 
utilities to replace versions of microcode on a HIVS tape from 
an instalJed configuration such as that in which we test 
systems. 

1.1.2 A170 NOS MODIFICATIONS 

The ~odiflcations required to support a Dual State 
execution environment are primarily assembled in the Bl0170 
procedure file. Few specifics will be given here other than 
to state thAt half a dozen Peripheral Processor routines are 
involved, as well as modification to NOS CPU Monitor. The key 
aspect to note about these components is that a special 
version of A110 NOS deadstart tape must be used. Again, this 
deadstart tape version Is supplied by the Advanced Systems 
Integration project. There are additional procedure files 
which must also be present on this special deadstart tape, 
which are not documented here at this time. 

1.1.3 A170 NOS APPLICATIONS 

A portion of the software alluded to as A110 NOS 
mod1fications could be classified as A170 NOS Applications. 
The applications referred to, however, are not present on the 
deadstart tape, but exist as permanent files which are invoked 
or processed by procedure files present on the deadstart 
tape. In the strict sense of the word, those utilities which 



1-3 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

1.0 NOS/~E SYSTEM OVERVIEW 
1.1.3 AI70 NOS APPLICATIONS 

are not execution order dependent or require system residence 
are placed on the deadstart tape. Utilities which must be run 
in a given sequence (and possibly as system origin) are 
governed by procedure files which are present on the deadstart 
tape. 

1.1.4 THE VIRTUAL STATE COMPONENT 

The Virtual State software consists of both a statically 
and dynamically I inked component. The statically linked 
component is composed of Monitor and Task Services modules 
while most other tasks are dynamically linked. In order to 
statically link Monitor and Task Services, the SES utilities 
VElINK and VEGEN or their Virtual State equivalents must be 
used. In other systems this statically linked system 
component is commonly referred to as the "unconfigured 
deadstart tape" or "bootstrap system". Once the "bootstrap 
system" has been generated which has its own LINKER/LOADER 
equivalent, then it is possible to deadstart this bootstrap 
system and begin dynamic link/loads. One of the attributes of 
this statical Iyl inked ~omponent is that there Is more than 
one partition associated with it. In order to keep these 
partitions separate during the Cl build process, these 
partitions are placed on separate files. The content of these 
partitions is described in a subsequent section of this 
document. 

The dynamically linked component of the Virtual State 
software consists of II format object text which is processed 
by the NOS/VE LOADER. In order to create II format object 
text, it is necessary to either use the utility "CITOII" to 
convert CI object text to II object t~xt, or else use 8 II 
compi ler or assembl ere In order to make this CITOII utility 
available to each task created by the Virtual State software, 
the object text for this utility must be statically linked and 
loaded ~ith Monitor and Task Services. Once this utility Is 
made availabte to dynamically generated tasks, it is necessary 
to retrieve the other utilities which establish communications 
with their Al70 NOS counterparts. This is accomplished by 
executing a post-deadstart Sel procedure file which initiates 
the Rem 0 t e H 0 s tan dIn t era c t i ve Fa c i • i tie s fro m the lib r a r y 
"OSlIB" (which in turn was created from the Cl object text 
fi Ie "XlJOSL"). 

The components mentioned thus far have been the statically 
linked m~dules for Monitor, Task Seryjces, the CITOII utility, 
and the dynamically linked modules from OSlIB. There are 
libraries other than OSlIB, some of which are necessary for 
the successful execution of user tasks. Such a library is 
SYSlIB which contains the ObJect Code utility modules which 



1-4 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

1.0 NOS/WE SYSTeM OVERVIEW 
1.1.4 THE VIRTUAL STATE COMPONENT 

provide for the creation of II object text libraries. The 
SYSlIB library must be made part of a Job's object library 
list if any II object library manipulations are to be made. 
From the compiler perspective, the run-time libraries CVBILIS, 
MATHLIB, FRTlI etc. must be created by a Job which has SYSlIB 
as part of its object library list. The compiler generated 
object text for a compi'er such as CYBll names the appropriate 
run-time library in the object text records (eg. CYBIlIS). 
Thus, a CYBll program must access the appropriate run-time 
library (CYBIlIS) and make this library part of the Job's 
object library list. This expljcit manipulation of a Job's 
object library list wil. eventually be replaced by Job 
prologues which are created during accounting and validation 
andlor user prologues which establish a job's execution 
environment. 

The system can be thought of as being divided into three 
partitions which consist of six object text files. Each 
partition has associated with it certain protection, privilege 
and responsibi lity. The first partition consists of those 
routines that run in monitor mode and is known as the 
monitor. The second partition consists of those routines that 
run in job mode and is known as task services. The modules on 
fife XlMMTR make UP the monitor, and the modules on files 
XlJl1F, XlJ12F, XlJ13F and XlJlfF make UP task services. The 
modules on file XlJBBB consist of user tasks which can be 
thought of as belonging to a third type of partition. This 
latter partition contains routines which run in Job mode In 
the user ring (for the purpose of converting Cl compiler 
generated output into II format after it has been transferred 
from the A170 NOS software to the NOS/VE execution 
environment). In the memory map, which is described in a 
subsequent section, the code for this user partition resides 
in the "User Task(s) library" and is made a part of each task 
created for NOS/VE. The system restructure which occurred 
with Bui'd M made this partition relatively sma" (since this 
partition must be loaded into memory at deadstart time). 
Although the build procedures allow for this partition to be 
replaced with one which contains additional user tasks, the 
preferred method of executing user tasks is to GET them from a 
NOS permanent file (after they have been generated by a Cl 
compi ler) to the NOS/VE execution environment and EXECUTE 
these tasks using the NOS/VE LOADER. If the execution 
environment is the simulator instead of the hardware, then new 
user tasks should be statically loaded in place of XlJBBB 
using the NVELINK procedure. 



1-5 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build "29 

07/29/81 

1.0 NOS/VE SYSTEM OVERVIEW 
1.2 VIRTUAL STATE PARTITIONING 

Any XDCLJd symbol within a given partition can be XREf'd by 
any module within the same partition. To allow other 
partitions to XREF these same symbo's, the symbols must be 
gated. Gating a symbol only makes the symbol available to 
other partitions during the linking process, It does not 
necessarity mean that the XDCl'd location can actually be 
referenced - that is controlled by the ring brackets. In 
general, only selected XDCL'd symbols are gated. A variable 
or entry point may be gated in the source specification using 
CVBIl and CPU ASSEMBLER language constructs, or the object 
text may be modified by using the SES Object Code Uti'lties. 
Refer to the MAP(offset)K fi'e, produced by the NVElINK 
procedure, for a list of the entry points available to a user 
task. This 'ist of entry points preceeds the linkage of file 
XLJBBB and is entitled "INBOARD SYMBOL TABLE ENTRY POINTS FROM 
FILE : STSXQST". It should also be noted that a similar t 1st 
exists for the Monitor entry points available to Task Services 
and is entitled simi'arly with the substitution of MTRXOST for 
STSXOST in the above title. 

Occasions arise in which procedures are of common utility 
to more than one partition, but should not be gated across 
partitions. In such instances, these procedures are pieced 
upon a "run-time" I ibrary such as CYBILIB, and references to 
these procedures are satisfied at "LOAD" time from the 
appropriate library. "LOAD" time satisfying of externals can 
either be done statical'y or dynamically. A static load Is 
accomp,jshed through the SES linker and loader util ities. 
Dynamic loads occur through the use of the NOS/VE loader 
during the execution of a Cl80 job. Whenever possible, 
dynamic loading of routines is preferred (as in the case of a 
compiler satisfying externals from a run-time library) since 
this is the mechanism which customers of NOS/VE systems will 
be using. 

When building a system, monitor must be linked first. AI. 
gated symbots within monitor then become available to task 
services, which is linked second. Although some monitor 
symbols can be referenced by task services, the only way to 
execute monitor code is via the exchange Jump - i.e., the 
CALL/RETURN mechanism is not vatid for use between monitor and 
job modes. User tasks are linked last and can reference gated 
symbols defined in task services. It is important to note 
that although the linker will allow a reference to a given 
symbol, the ability to actua.ly reference the location is 
determined by the ring brackets on both ends of the 
reference. 

• , 



1-6 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

071Zc)181 

1.0 NOS/VE SYSTEM OVERVIEW 
1.4 DATA RESIDENCY/LIFETIME BASED ON PARTITION 

The following rules apply to static data defined by modules 
in monitor or task services: 

1) Only modules within monitor may declare static data that is 
mainframe wired. 

2) Ont, modules within ring 1 task services may declare static 
data that is mainframe paged. 

3) Onty modules within ring 2 task services may declare static 
data that Is in the Job fixed segment. No modules may 
declare data in job pagable until the new system generator 
isavei'able. 

4) Only modules within ring 3 task services may declare static 
data that is in the task private segment. 

5) Rules 1 through 5 also mean that all static data for a 
module In a given partition will reside as specified. 

6) Static data for modules that run in the ring of the caller 
(XlJIFF) must be read onty when executing above ring 3. 

When dealing with a virtual memory system it is often 
necessary to understand the reat memory aspects of the 
software which is present in the machine. The following map 
describes the real memory aspects of the software, and where 
it is mapped during the deadstart process. To make this map 
complete would require overlaying it with segment and page 
boundaries. Rather than attempt to produce this overlaying 
effect, suffice it to say that (by convention) the boundaries 
described in this map occur at even page boundaries. Whether 
or not the pages which constitute any given area in the map 
are paged is a function of the attributes of the segment to 
which the area belongs. 

The re·a' util ity of this map is In showing the relationship 
of values which are supplied to the SES Virtual Environment 
Generator through the skeleton VELDCM file. This skeleton is 
dynamically edited when the NVELINK procedure Is invoked to 
produce the lDR(offset)K file. The VElOCM variables are 
underlined in the relationships described after the map. By 
using the relationships given, it is possible to compute the 



1-7 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/61 

1.0 NOS/VE SYSTEM OVERVIEW 
1.5 DUAL STATE MEMORY MAP 

relative starting locations of different areas within a NOS/VE 
oump. 

It should be noted that the relationships given here are 
expressea in decimal byte addresses, while the machine 
addresses are hexadecima.. To pursue hexadecimal addresses 
requires a copy of the MAP(offset)K fife. Specifica"Y' the 
load addresses for Monitor, Task Services, etc. are contained 
in the Virtual Environment Generator output which immediately 
folloMS the LINKER output. 



1-8 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

1.0 NOS/VE SYSTEM OVERViEW 
1.5 DUAL STATE MEMORY MAP 

+------------------------+(-- Machine Address 0 (zero) 

AI70 NOS Operating 
: System 

I I 
I I 

... ------------------------+<-- Maximum NOS Memory Address 
NOS Page Table, EI, 

andEIE 

+------------------------+(-- load Offset 

NOS/VE Page Table 
• t 

• t 

... ------------------------+(-- Virtual load Address 

I 
I 

NOS/VE Monitor 

I 
I 

+---------------.---------+ 

I 
I 

Task Services 

• • 

I 
I 

+------------------------+ 
library Directory : , 

t 

+--.---.--.----------.-.------+ 
User Task(s) library 

... ------------------------+(-- NOS/VE Length 

I 
I 

{Available Memory} 

I 
I 

+------.------------------+<-- M soh i ne High es t Memor y Addr ess 



1-q 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

1.0 NOS/VE SYSTEM OVERVIEW 
1.5 DUAL STATE MEMORY MAP 

Page Size 

Page Table Size 

= [ 1: 2: 4: 8: 16: 32: 64 ] * 1024 
a !AifSIZf~ 

a [ 4: 8: 16: 32: 64: 128: 256: 512: 1024 ] * 1024 

Page Table length • MAXIMUM«Page Size),<Page Table Size») 
= eIlY 

EI length 

load Offset 

= 8 * 1024 
= 8192 
= £lLf~~I~~ 
= [ 256: 128: 64: 0 ] * 1024 • 8 
• [ 2048: lC24: 512: 0 ] * 1024 
= LQADQEElfI~ 

Maximum NOS Memory Address • 19ADafESfI~ - EILfHiltl 
= NDSlf~iIH~ 

Virtual load Address 

Page Table Address 

= 1DA~DfE1EI~ + fIl~ 
a 1~ADAD&~ 

= 10ADOfESfI~ (By convention) 
• fI!1 



2-1 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

0712.9/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 

The Integration process begins with the transmittal of a 
software product, the command language procedures required to 
build the product, installation procedure documentation, and 
baseline documentation from the software development 
organization. Subsequent to this transmittal, the Integration 
project is responsible for maintaining the program library, 
standard~zing the installation procedures, maintaining the 
installation procedure documentation, and preparing the 
software release package for the Software Manufacturing and 
Distribution organization. In the interim time between the 
initial transmittal and the release of a software product, the 
Integration project schedutes periodic builds. The outputs 
from these bui Ids are delivered to software development and 
test organizations and/or made part of the software release 
package. 

NOS/VE Procedures and Conventions 
NOS/VE Command Interface ERS 
NOS/VE Program Interface ERS 
SES User's Handbook 
CYBER 18C System Interface Standard 
Simulated NOS/VE Program Interfaces 
VEGEN ERS 
VEL IN f( E RS 
Cyell language Specification 
CVBfR 18C CPU CI Assembler FRS 
CVBfR 180 Simulator ERS 
SES Procedure Writers Guide 
CYBER lSC Object Code Utilities ERS 
Source Code Utility ERS 

ERS 

S.w. 
DeS 
Des 
Des 
Des 
Des 
Des 
Des 
Des 
Des 
Des 
Des 
Des 
Des 

Fewer 
ARH3609 

- ARH3610 
ARH1833 

- S2196 
ARH3125 
ARH2591 
ARH2816 

- ARH2298 
- ARH1693 

ARH1729 
ARH2894 

- ARH2922 
- ARH3883 



2-2 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07lZql81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.2 STANDARDS 

In order to faci litate the Instatlation process, certain 
standards wi II have to be set and adhered to by all members of 
the Operating System and Product Set. These standards will 
cover the following itemsl 

a) All program librartes will have the same format, this 
will be defined by (TBO). 

b) All output tapes wi.I conform to some predetermined 
format in terms of numbers of files and what each file 
will contain. This wi" be defined by (TBO). 

c) The above formats are intended to facilitate 
establishment of proceduralized installation decks. 
This implies that some convenient naming conventions 
must be observed. These conventions wjll be defined 
by (TBO). 

The Integration project builds two systems in parallel and 
manages two catalogs for each system. The primary system is 
the system that is between the beginning of the bui.d cycle 
and the festure code cutoff. The secondary system is between 
the feature code cutoff and the end of the build cycle. 
Primary system files begin in the INTI catalog and move to the 
INT2 catalog after the system has passed Confidence Testing. 
After a system has reached its feature code cutoff, a 
stabi .ized feature bui Id is moved to the DEVI catalog, the 
build from INT2 is moved to OEV2, and this system is now 
considered the secondary system. Also at this time, a new 
primary system is started in the INTI catalog by adding its 
planned feature code to the previous primary system. When a 
build has completed its integration cycle, the final build for 
that cycle Is moved to the REtl catalog. It is at this time 
that a build is considered a candidate for transmittal to 
other facilities for further development work, a final Build 
Content Report is distributed and whatever usage documentation 
that is available is distributed. 

• • • • 
• I 

• • • • 
• I 

t • 
• • • • 
• • • • • • 



2-3 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.3 CATALOG MANAGEMENT POLICIES 

The fo"owing diagram illustrates the function of 
catalog: 

each 

Primary System Secondary System: Transmitted System: +--_._-----_._. __ ._----+--------_._._----_._--+--_._--------_._-_._--+._---------_._-------+ 
: Working Catalog : INTI DEVI : 
+.----.-----.--------- + -----------.----.----+ -------.-----.----_._-+-_.---------_._------+ 
~ latest Stable 
: Bui Id Catalog • • 

INT2 DEV2 : REt! 

In general, procedures executing from a given catalog 
access only those fi les which have the same level of 
verification associated with them. The INTI and INT2 catalogs 
wi J I access the most recent compi lers, SES tools, etc. whi Ie 
the DEVI and DEV2 catalogs access a previous, more stable 
• eve • of uti lit i e s • 

The REl! catalog represents the "frozen" catalog for which 
changes are no 'onger being accepted (typical.y a snapshot of 
the 'ast build cycle). This is generally the system that is 
being run in SVl closed shop and is retained for duplicating 
problems found there. The RElI catalog wi .1 change no more 
frequently than once for each bu'ld cycle. The INT2 and DEV2 
catalogs contain the latest stable builds (i.e. the builds 
have passed Confidence Testing) for the primary and secondary 
systems, respectively. The INTI and nEVI catalogs, however, 
are "working catalogs" for the debug of new system fixes, new 
procedures, etc. The stability of these catalogs cannot be 
predicted. 

In order to understand the procedure descriptions which 
follow, something should be said as to the sequence in which 
these procedures are used to generate systems. The fol'owlng 
is an attempt to accomp.ish thjs: 

2.4.1 INTRODUCTION 

The command language procedures corresponding to NOS/VE 
builds all reside in the INTl, INT2, or DeVI catatogs 
depending upon the desired level of verification the system 
has atta.ined. It is assumed that the DEVI level of 
verification is the mln,mum level of system verification 
required by most users, therefore the DeVl catalog Is 
frequently referenced in the remainder of this section. To 

" • • , 

• • • • • • • • 

, 
• 



2-4 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.4.1 INTRODUCTION 

obtain a listjng of the complete set of command language 
procedures provided in the Integration catalog, execute the 
fol'owing command language sequence: 

SES.LISTMEM B-PROtLIB UN-<Integration_Catalog) 

Before running the build procedures as batch jobs, a check 
must be made to insure that the user number under which the 
job will run has sufficient validation timits for the job to 
execute. The minimum values for certain limits must be 8S 

f 0 I lows: 

CM - 2437B 
N F = un lim i ted 
MS = unlimited 
OS :: 4096 
EC - 2008 (if simulator is to use LCMl 
DB :: unlimited (each fibrary is built via batch job) 

The current values may be obtained with the LIMITS control 
statement. If they are not large enough, have the operations 
staff change them. 

2.4.2 INVOKING THE PROCEDURES 

The procedures descrjbed below are documented as 
"SES.<Procedure_Name)". In actuality, to invoke the 
procedures in this manner assumes that there is a file named 
lPROFIlE' in the current catalog which names the Integration 
catalog to search for the procedure (via the 'SEARCH' 
directive). The alternative mechanism for invoking these 
procedures is to code the procedure call 8S: 
"SES,<Integratioo_Catalog>.<Procedure_Name>". Many of the 
procedures use the 'PRCUNAM' value for substitutable user 
names, meaning that the catalog in which the procedure Is 
found is the catalog which is searched for files. This is as 
it should be, since each of the Integration catalogs contains 
a different version of the system. 

A" of the procedure.s descr i bedi n thi s document 
"HELP" documentation associated with them. Use 
SES,<Integration_Catalog),HELP.<Procedure_Name> catl to 
procedure documentation printed at your term~nal. 

Practically all of the procedures described in 
document are written to execute in "BATCH" as well as 
mode. In order to provide a consistent result when 

have 
the 

have 

this 
locel 
these 



2-5 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.4.2 INVOKING THE PROCEDURES 

procedures are run, it is necessary to save many of the 
generated files as permanent files. While some purists see 
this as "catalog polution", we make all attempts to preserve 
only those files which are necessary for future reference or 
usage. Whenever possible local file names generated by the 
procedure are given unique names so as not to conflict with 
any user files. In numerous instances, convenient "reserved" 
file names are used to enhance the configurability of these 
procedures. For example, all files accessed by the procedures 
are searched for first as local files, then as permanent files 
in the catalog in which the procedure is executing, then 
(optionally) in the catalog specified by the tAREA' parameter 
vatue, and finally in the catalog in which the procedure was 
found. Thus, if the name of a tool accessed by the procedures 
is knnwn, several versions of this tool can be tried through 
iterative executions of the procedures without requiring 
procedure modification. To aid in the isolation of tools 
accessed by the procedures a "common deck" type structure is 
included jn the procedure libraries which names many of the 
toots to be accessed by the procedures. These structures 
exist as records on the procedure library which are INCLUDEd 
into the retevant procedure fite. Initially we have 
partitioned these tools into the records 'TOOlAll', 'TOOl170', 
and 'TDOL180'. Experience has shown this partititioning to be 
somewhat combersome for some of the procedures, and will 
probably be fine-tuned in subsequent revisions of the 
procedure library. 

Some of the procedures contained on the procedure libraries 
change very frequently due to changes in system structure or 
for other reasons. It is inevitabte that errors creep into 
the procedures at times. Often it is quicker to change the 
KCl generated as a result of invoking the SES procedure than 
to change the procedure 4ihrsry. The SES processor may be 
invoked via the SES,TEST.<Procedure_Name> mechanism and the 
resultant KCl is written to a fi'e named SESTEST. This 
SESTEST file may then be edited, and the offending control 
statement corrected. A subsequent CAll,SESTEST statement may 
then be used to execute the corrected KCl. ~hile we do not 
necessarily condone this approach to fixing procedure files we 
can hardly deny its existence. If, for example, it should 
prove necessary to provide our customers with instal4atjon 
procedures for soft~are which we generate with SES procedures, 
it would be our intent to ship the SES generated KCl 
statements rather than the SES procedure and a copy of the SES 
processor. 



2-6 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW Of INTEGRATION PROCESS 
2.4.3 CURRENT PACKAGING Of NOS/VE SOURCE 

2.4.3 CURRENT PACKAGING OF NOS/VE SOURCE 

There are two execution modes of NOS/VE which are referred 
to as the "standalone" mode and the "dual-state" mode. Allor 
the NOS/VE source modules which execute in the CVI80 Virtual 
State are contained on a program .ibrary named 'NOSVEPlf. The 
program interfaces to the Virtual State system, those 
described in the NOS/VE Program Interface ERS, exist 8S common 
decks on a program library named 'OStPIf. The content of 
these two program I ibraries is referred to as the standalone 
system. A deadstart tape can be produced of the standalone 
system for execution on the hardware, or the output of the 
Virtual Environment generator can be executed directly on the 
Hardware System Simulator. The 1/0 support of this standalone 
system when running on the simulator is defined in a separate 
set of common decks on a program library named 'CVBICMNf. 
Refer to the Simulated 110 ERS for documentation of these 110 
interfaces. 

The dual-state execution of NOS/VE, in conjunction with the 
NOS operating system, requires NOS system modifications and 
the presence of a set of NOS utilities and procedure files. 
The software which supports this dust-state environment from 
the 'NOS' side of the hardware is contained on a program 
fibrary named 'VE170Pl'. Included in this package of NOS/VE 
support programs is a software apptication called the Remote 
Host Facility which supplies job-to-job communication between 
the Virtual State and NOS portions of the eY180 machine. 

2.4.4 UPDATE THE SOURCE LIBRARIES 

The Integration project typically updates the base source 
libraries prior to starting any recompilation or assembly of 
the syste~. In order for a user of these procedures to modify 
the source of a syste~ routine helshe can use the SES 
'GErMOnS' procedure to extract the source being modified, or 
create the source in some other manner. If GETMODS was used 
to extract the source, then REPMODS can be used to put this 
changed source on a MAOIFY program library in the user's 
catalog. Then the filename containing this program library 
must be specified as the value of the 'ASf parameter of the 
NVEBIlD procedure. (Refer to the Source Maintenance Section 
of the SES User's Handbook if you have questions about source 
maintenance.) 



2-7 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZq 

07129/81 

2.0 OVERVIEW Of INTEGRATION PROCESS 
2.4.5 COMPILE/ASSEMBLE FROM SOURCE 

2.4.5 COMPIlE/ASSEMBle FROM SOURCE 

The efficiency of the Integration build procedures is a 
function of how much of the system is being built and how much 
information is supplied to the procedures when they are 
invoked. If the name of each module to be recompiled and its 
object file residency is known prior to invoking the 
procedures, then the most efficient method is to use the 
NVEBIlO procedure and specify the lists of module names and 
library names via the tM. and tl' parameters. If only the 
module names are known, then the NVEBIlD procedure with the 
'M' parameter specified should be used (a search for the 
library names wi' I be used). If only a modset file Is 
available, the scope of changes is not readily apparent (i.e. 
several common decks are changed) or the number of modules to 
be recompiled is prohibitively large for manual specification 
to the NVEBILD procedure, then the NVE8lD procedure can to 
used to automatically generate the correct NVEBIlO procedure 
calls (using a NOSVEPL cross reference). If it has been 
determined ahead of time that several modules on the same 
'ibrary are being changed, then it is more efficient to 
rebuild the entire library using the IL' parameter of the 
NVEBltD procedure. If several I ibraries need to be rebuilt 
(as in a fuJI system build), then the NVEBIlF procedure should 
be used. 

The general philosopy behind the NVEBILD procedure is to 
extract the latest source of a module from a program library, 
compile or assemble the source to produce the appropriate 
object text, replace/add the updated object text to the 
appropriate system library, and save this library in the 
catalog in which the procedure is executed. The final result 
of the execution of the NVEBIlD procedure should be an updated 
system library in the current userts catalog which is ready 
for the 'LINKER' phase of the build. Jobs which run in "user 
mode", that is the interface to the system is ~nl~ through use 
of the program interfaces (OSlPI), are sayed mere', 8S object 
text fi les In the user's catalog and LINKER-LOADER directive 
modifications are required to include these files as part of 
the system. This latter capability wil' gradually be replaced 
by the Virtual State LOADER and Library Generator features as 
they become available. 

• • • • 

• • • • • • 
• • • • • t 

• • 
• • • • • t 

• • 
I • • • 
• , 
• , 



2-8 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.4.6 BEGIN THE LINKER-LOADER PHAse 

2.4.6 BEGIN THE LINKER-LOADER PHASE 

The LINKER (SES.VElINK) and LOADER (SES.VEGEN) are packaged 
together in the Integration procedure NVELINK. This is for 
convenience purposes, in that most LINKER changes to the 
system require a corresponding LOADER directive change, and 
the intermediate results from the LINKER execution are not the 
primary output used for system checkout. Prior to starting 
the LINKER-LOADER phase of system builds, some decisions need 
to be made as to the target execution environment for the 
resultant output. 

If the target execution environment is standalone NOS/VE, 
then the default NVElINK options should be used to produce the 
file named 'lGBOKt. This file can be run on the simulater 
using the NVESIM procedure, or can be used to create a 
deadstart tape using the 'VSN' parameter of the NVESYS 
procedure. 

If the target execution environment is a dual-state 
environment, then the OFFSET parameter must be used to specify 
how large the NOS system will be. The systems produced for 
the Arden Hilts 52 use OFF5ET=256 to produce a lG8256K file. 
The lGB256K file is used by the NVESYS procedure (when 
OFFSfT=256 is specified) to produce 8 deadstart tape image on 
disk named 'TP256K'. This deadstart tape image must then 
replace the file named TPXXXK, which the dual-state deadstart 
procedure UPMYVE will then find. Refer to Appendix E for 
Dual-State and standalone deadstart procedures. 

2.4.7 GENERATE THE DEADSTART FILE 

In order to generate a deadstart tape for standalone 
NOS/VE, it is onty necessary to run the NVESYS procedure and 
specify the VSN of the tape to be written. Prior to 
generating a dual-state deadstart file, however, It Is 
necessary to verify that the utilities necessary to support 
the dual-state deadstart have been rebuilt via the DSBIlO and 
BLDEI procedures. There are two portions of the dual-state 
£1, the A170 portion is built using the SlDEI procedure, and 
the C180 portion is rebuild using the NVEBllO procedure (deck 
named MlAEI). 



2-9 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - 8uild NZ9 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.5 NVEBIlD PROCEDURE DESCRIPTION 

The procedure NVEBIlO is used to add or replace modules on 
a base object text file. NVE8IlD retrieves the source module 
from a program library, using the following search ordera 

1) an alternate base optionally specified by the 
user (looking first In the current catalog, and 
then in the <Integration) catalog) 

2) OSlPI (from the (Integratjon> catalog) 
3) NOSVEPl (from the (Integration) catalog) 

This module is then compiled or assembled, and the 
resulting object text is either added to or replaced on a base 
fi fe. A new version of the base file wilt be created in the 
current catalog, along with the direct access file NOSlIST 
which contains the compilation or assembly listing(s) of the 
module(s) compiled or assembled (one listing per record, 
headed by the matching MADIFY module name, listed via the 
lISTNVE procedure described in this document). If there are 
any compilation errors, the error tisting(s) will be put on 
the direct access file ERRORS (which has the same format as 
NOSlIST) in the current catalog. The direct access file 
ERRlIST will contain a one line error message which indicates 
the type of error detected for all errors diagnosed by the 
procedures. By listing the ERRlIST file from a terminal, a 
summary of the number and types of errors encountered can be 
determined. There are conditions such as unrecoverable disk 
errors which can cause erroneous messages to occur in this 
fi Ie. In such case it is necessary to examine the DAYfILE 
produced by the procedure to isolate the problem. 

If a specified module is to be replaced (i.e. it is 
already part of the existing system), NVEBIlD will by default 
use the same compi'ation options and wi', replace it on the 
same base object text file as when it was first added to the 
system. These options may be overridden by specifying the 
corresponding parameters described below. 

If a specified module is new to the system, the compi letion 
and base object text fi Ie options may be directly specified 
uslng the parameters described below. If a ll~t of new 
modules is specified, the compilation and base file options 
must also be specified as lists, and NVEBILD Mill match 
everything UP positional'y. If these parameters are n~1 
specified, and NVEBIlD is executing in LOCAL mode, a warning 
message ~ill be issued telling the user that the module is not 
in the current system. The user will then be prompted for the 
necessary information. If these parameters are not specified 



2-10 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

071Zql81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.5 NVE8ItD PROCEDURE DESCRIPTION 

and NVEBIlO is executing in BATCH mode, the compilation and 
base file options default as specified below. 

If the '11 parameter is specified, each module's object 
text wilt be copied toa temporarytzt file. The old library 
file will then be purged, and the IZ' file wilt be renamed as 
the new library file. Alt compilation listings will be 
lIBEOIT l ed onto NOSlIST from a temporary listing file at the 
end of the procedure. 

Wh en an en t ire • i bra r y i s be in 9 r e bu j I t v i a the ' t • 
parameter, the module names and their corresponding 
campi latlon options are obtained from a file which contains 
al' this information for each library. NVEBIlD searches for 
this file first in the current catalog, and then in the 
<Integration) catalog. The name of this file must be the name 
of the library minus its first character (e.g. 'lJ13F' for 
the library t X l J 13 F'), and the fir .s t • i n eo f t hi s f i Ie JlLU,i! be 
the ,jle name. To make additional entries or change existing 
entries in this file, the following procedure shoutd be 
followed: 

1) eXTRACT,<.ibdeks>/UN=<Integration>. 
(where <libdeks> is the name of the 
information file for the library as described 
(Integration) is the Integration catalog) 

2) Edit <Iibdeks) to add or change entries. The 
spacing of each entry is important and must be 

«m),(c),(xref),(ll>,<12» 
where 

compi lation 
above, and 

format and 
as follows: 

m = a 7-character left-justified module name 
c = a I-character compilation option (fOf,'lt, or f3'J 

see description of tc l parameter below) 
xref = a 3-character left-justified cross reference 

option (either 'YES' or 'NO 1) 

11 • a 7-character left-Justified destination library 
name. 

12 = a 7-character left-Justified secondary library 
destination name. 

the entries currently in these files all follow this 
format so that eny additional entries may be lined UP 
quite eas i Iy wi th them. 

3) SAVE,<.ibdeks>. 

NVEBIlD (with the .,, parameter specified) may then be used to 
rebui Id the library using these newfmodifled compilation 
opt ions. 



2-11 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/2Ql81 

2.0 OVERVIEW Of INTEGRATION PROCESS 
2.5 NVEBIlD PROCEDURE DESCRIPTION 

The format of the NVEBllD is as follows: 

SES.NVE8Il0 [ m=(module name> •• <module name») ] 
[ 1=< I ibrary name> ] 

m : 

. : 

c • • 

are a : 

10 I 

[ c=«compilation option> •• <compiJatjon option)} 1 
[ area • < user name> ] 
[ xref=( xref option> •• <xref option») 1 
r ab :: <alternate base> ] 
[ omit = «module name> •• <module name» ] 
[ link: link:& (offset value> 1 
[ test: <test file name> 1 
[ pr i nt ] 
[ batch ] 

The module name, or range of modules, or list of 
module names. 

The library name(s) onto which a newly compiled 
module (or modules) Is (are) to be added or 
replaced. If the 'M' parameter has not been 
specified, then the entire library is recompiled. 
To recompile severa' I ibrariesat e time it is 
recommended that the NVEBIlF procedure be used. 

c = 0 to assemble a module 
c .= 1 to compile a CYBll modute (DEFAULT) 
c = 3 to compile a CyaIl mOdule using CYBICMN type 
declarations 

Option to obtain the object files or linker 
perameter fi les from another user's catalog (other 
than the current catalog in which the procedure is 
executing). The default is for no area user 
catalog to be searched. 

list options 
compi lations. 
0, I, W, R, 
(zero). 

to be in force during CYBIl 
May be any combination of A, C, F, 

or 0 (zero). The default is 0 

ab I The user's alternate base program library 
containing new and modified modules. The default 
is 'NEWDKPL'. 

omit Used when running a fu" build, a module name or 
list of module names to omit from the build. The 
default is none. 



2-12 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Buitd N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.5 NVEBIlD PROCEDURE DESCRIPTION 
____ ~~ _______ N _____________________________________________________ _ 

lin k : 

tes t : 

print: 

batch t 

NOlf : 

Option to link the newt, built or modified system 
using the procedure NVElINK. Specifying simply 
the key~ord 'LINK' or ILINK = 0 1 .inks a NOS/VE 
stand-alone system. To link a dual state system, 
specify flINK = <offset>' where <offset) may be 
given the values 256, 128, or 64. The default is 
to not link the system. 

The name of the file containing the NOS/VE test 
commands to be input to the simulator, which will 
be executed after the system has been linked 
(using procedure NVESIM). This par~meter Is 
inva'id if the 'LINK' option has not also been 
specified. The default is to not run the 
simulator test. 

Option to print the link map following the linking 
of the systero. The default is not to print the 
link ma p. 

Run NVEBIlD in BATCH mode. The default is to run 
it locally. 

One of 'm' or 'I' parameters .mliit be specified. 

2.5.1 NVEBIlF PROCEDURE DESCRIPTION 

NVEBIlF is an SES procedure file which submits one batch 
procedure execution of NVEBIlO for each system library, each 
with the 't' parameter specified for the library to be built. 

The format of the NVEBIlF is as follows: 

SES.NVEBIlF [ I = <library name )J 
[ batch ] 

bat ch t 

The 'I' parameter specifies the library to be 
built. It can be one library or a list of 
libraries. The default is to rebuild the entire 
system. 

Run NVEBIlF in BATCH mode. The default is to 
run it locally. 

Note : To rebuild one library, the following are logically 
equivalents 

1) SES.NVEBIlF 1=< I ibrary name> 
2) SrS.NVEBIlO 1=< library name> batch 



2-13 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.5.1 NVEBItF PROCEDURE DESCRIPTION 

The expansion of either of the above procedures can be 
prohibitively long when being run from a terminal. The 
'batch' keyword on the NVEBIlO procedure is implemented for 
the express purpose of freeing up the terminal for other 
purposes (the procedure expansion is done within the BATCHed 
J 0 h). 

2.5.2 NVE8lD PROCEDURE DESCRIPTION 

The NVEBLO procedure generates and ro~tes to the input 
Queue a set of NVEBIlO Jobs which compile the modified or 
replaced decks and those decks which calf modified or replaced 
common decks. first, NVEBlD finds the decks modified by 
creating a list of at. the *DECK lines in the Imf' file(s) and 
a list of all the decks in the 'dkf' filets). It combines the 
two listsl sorting and deleting duplicate names. The combined 
list is checked against the current list of modules which make 
UP NOS/VE, using the cross reference file from the 'xr" 
parameter. Then the procedure again creates two lists: a list 
of modules to be compiled and a list of common decks to be 
checked. A subset of the cross reference is used to generate 
a list of all decks referencing the given common decks. The 
list of modules and the list of decks referencing the modified 
common decks ere combined, sort~d end duplicates are removed. 
This final list is then used to generate the NVEBIlD Jobs to 
compile the necessary modules. 

The format of the NVEBlO is 8S follows: 

SES.NVEBlD [mf = <file_name> ] 
[ dkf a <fi Ie_name> ] 

rof : 

dkf : 

[ xrf = <file_name> ] 
[ nl = <library_name> 1 
[ area = <user_oame> 1 
[ ab • <file_name> ] 
( batch : local : defer : batchn ] 

The file or list of files which contains 
modsets or a list of *DECK deck_names. If 
parameter is omitted the file MODFILE is used. 

The fite or list of files which contains the 
or replacement decks in a group fite format. 
the parameter is omitted the file OECKFIl 
us ed. 

the 
the 

new 
If 
i s 

xr f : The NOS file name for the fite containing the 
cross reference of NOSVEPl. If the parameter is 

• • 
• t 

• • • • 
• • • t 
t • • • • , 
• • 
, 
• 
I • 
• • • , 
• • 
• • 

• • • • 
" t 

• • 



2-14 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.5.2 NVEBlD PROCEDURE DESCRIPTION 

n I : 

are a : 

ab : 

omitted the file XNVEPL is used. 

The list of I ibrary names to be omitted from the 
build. There is no default. 

The search order to find any file. If the 
parameter is omitted the user names of the current 
user and the user name of the procedure are used 
for the default user names. 

The file name of the alternate base. The default 
Is NEWOKPl. 

batch: local defer batchn : The Job run mode of the 
procedure. If none are defined LOCAL is used. 

2.5.3 LISTNVE PROCEDURE DESCFIPTION 

lISTNVE is 8n SES procedure file which extracts the 
compi lation listings of the modules specified by the 'M' 
parameter (module names correspond to the MAOIFY deck name 
given the module) from a text library file and writes them to 
the fite specified by the 'F~ parameter in 8 printable 
format. The 1M' parameter may select a single module, a list 
of modules, and/or a range of modules on the library file. 

The library fj Ie which contains the listings 
selected vis the fIt parameter, and defaults to 
lISTNVE wil' search for this file in the current 
first, and if it is not there it wil' go to the 
specified by the 'UN' parameter. 

may be 
NOSlIST. 
catalog 
catalog 

When lISTNVE has completed, the output file selected by the 
'0' parameter will be a local file. It is n~! automaticatly 
printed unless either the 'PRINT' or 'SATCH' option Is 
selected. 

The format of the lISTNVe is as follows: 

Sf: S.L ISTNVE 

m : 

[ m & ( (module name> •• <module name> ) ] 
[ i == < f i len ame > ] 
[ 0 : (print file name> 1 
[ un = <user name> ] 
[ print] 
[ batch ] 

The module name(s) and I or range of module 
names which are to be extracted for 

t • 
• I 

• • 
• • • • 
t • 

• • • • 
• • • • 



2-15 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW Of INTEGRATION PROCESS 
2.5.3 lISTNVE PROCEDURE DESCRIPTION 

f from 

printing. The default is to extract and 
format ~l! of the modules. 

The name of the text library file from 
which the compijation ,jstings are to be 
extracted. The default is NOSlIST. 

0: to ~ upon: The name of the fi'e which will receive the 

un : 

print: 

bat ch : 

formatted listings to be printed. The 
default is LISTING. 

The name of the catalog to search for the 
library file should it not be found in the 
current catalog. The default is the 
<Integration) catalog. 

Option to print the listing file after it 
is formatted. The default is to not print 
the listing file. 

Run lISTNVE in BATCH mode. The default is 
to run it 'ocatly. 

NVElINK is an SES command language procedure file which 
will cal' both the VE linker and VE Generator (using the 
standard SES procedures VElINK and VEGEN) to produce a 
checkpoint file and link map file. In order to do this it 
will link monitor and task service routines from their object 
text f i , e s • It wi I Is e arc h a I I f i , e s that it requires 1 ) from 
local files 2) from the current catalog, 3) from area user's 
catalog (if the area parameter is specified), 4) from the 
<Integration) catalog. 

NVElINI< will .ink either a stand-a1one or a dual state 
system. The choice is made via the OFFSET parameter (see 
description below). NVElINK will put the checkpoint file on 
the direct access file lGB<offset>K, and the link map Hill be 
placed on the direct access file MAP(offset>K, where the value 
given the OFFSET parameter is substituted into each name for 
<offset). 

To link additional user Jobs into the system, create a file 
in the current catalog containing the commands needed to 
obtains.' the necessary files as well as a call to VElINK for 
each user job to be linked. Specify this file via the ADD 
parameter, and NVElINK will pick it up and physically insert 



2-16 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/2Q/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.6 NVElINK PROCEDURE DESCRIPTION 

it into procedure command stream immediately following the 
I a s t c a I Ito VEL INK • Ib.e_!lr.~.t_li.Di:.._l!l_thls._!i!~_l1!.tS.l_tu:_tb~ 
fil~_!lllm~ll_ 

The formet of the NVElINK is as follows: 

SES.NVElINK 

offset : 

PS : 

pt I : 

save: 

qu i ck J 

add: 

{ offset -= < load offset > ] 
[ ps lII: < page size> ] 
{ pt, -= < page table length > ] 
{ save ] 

{ quick ] 
[ add :a < additional I j nks fi Ie > 1 
[ dump ] 
{ area -= < user name > 1 
[ print ] 
[ test = < test f i Ie name > ] 
[ batch 1 

The load offset, used to determine whether to 
link a stand-alone or a duat state system. 
OFFSET = C links a stand-alone system (DEfAULT) 
OFFEST -= 256 links a dual state system (to use 
on the S2) 
OFFSET • 128 links a 128K dual state system 
OFFSET -= 64 links a 64K duat state system 

Page size of the target NOS/VE system, expressed 
in multiples of 1024 bytes. Values may be 1, 2, 
4, 8, 16, 32, or 64. Default is 8. 

Page table length of target NOS/VE system, 
expressed in multiples of 1024 bytes. Values 
may be 4, 8, 16, 32, 64, 128, 256, 512, or 
1024. Default is 16. 

Option to save the monitor and task services 
segment files created during the link for 
subsequent "quick 'jnk" use by this procedure. 
The default is not to save these segment files. 

Option to do a "quick I ink". A more complete 
description of this option can be found in the 
section entitled "Quick link Option of NVElINK 
Procedure". The default is not to do a quick 
link. 

The name of the file containing 
needed to link additional user 
system. The default is to not 

the commands 
jobs into the 
link in any 



2-17 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/29/61 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.6 NVElINK PROCEDURE DESCRIPTION 

dump 

area : 

print 

test 

batch : 

additional user jobs. 

Option to print a memory dump of the system. 
Default is no memory dump. 

Option to obtain the object files or linker 
parameter fites from another user's catalog 
(other than the current catalog in which the 
procedure is executing). The default is for no 
area user catalog to be searched. 

Option to prjnt the link map. The default is 
not to print the link map. 

The name of the file containing the NOS/VE test 
commands to be input to the simulator, which 
witl be executed after the system has been 
linked (using procedure NVESIM). The default is 
to not run the simulator test. 

Run NVELINK in BATCH mode. The default is to 
run it locally. 

2.6.1 lPF fILE DESCRIPTION 

The LINK commands used in the NVELINK procedure do not 
specify enough information to totally define the requirements 
of the linking operation. Many additional parameters are 
suppl ied to the linker through additional data files. This 
includes information such 8S: 

Ring Numbers 
- Segment Numbers 
- Segment Attributes 
- Execution Privilege 

Currently this information is supplied to the linker via 
the SfS linker Parameter File (LPF) file. The linkage between 
the tinker and the LPf fi'e is activated by the lPf=LIBLCB 
parameter on the LINK commands. For the monitor linkage this 
information is on lPF file MTRlCB, task services linkage 
information is on lPF file STSLCB, and EI/EIE linkage 
information is on EILCB/EIElCB respectively. 



2-18 
ADVANCED SYSTEMS tNTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.6.2 VELDCM I LOR fILE DESCRIPTION 

2.6.2 VELDCM 1 LOR FILE DESCRIPTION 

The VELDC" file used by the procedure NVElINK contains 
directives to the CPF Generator which allow it to produce a 
checkpoint file from the segment files produced by the VE 
linker. These directives set up the physical environment into 
which NOS/VE is placed, and include such things as the 
definition of the page size, Job and monitor exchange package 
addresses, page table address and length, preallocated segment 
array definitions, etc. 

VflDCM is a "skeleton" file which is dynamically edited 
during the execution of the NVElINK procedure, depending upon 
the specification of the OFFSET, PS, and PTL parameters. The 
edited file is then put on a direct access file named 
lDR(offset)K (where (offset) is replaced by the value given to 
OFFSET when the procedure was catled) in the user's catalog. 
It contains the directives to the CPF Generator which set UP 
the physical environment for that particular link. This fi'e 
must remain permanent in the user's catalog after NVELINK has 
been executed, as the procedure NVESYS uses this fi Ie in 
building a deadstart tape. 

2.7.1 INTRODUCTION 

A user task can be defined as a group of modules linked 
together that wit I execute in the 1user ring' of NOS/VE~ 
currently ring 11. This task may make calls to any gated 
entries within task services (rings 1 through 3) if the ca •• 
bracket will al'o~ the cal I. Data defined within task 
services may not be referenced from rings 4-15. 

2.7.2 QUICK LINK OPTION OF NVELINK PROCEDURE 

To do a "quick' ink", specify the QUICK option on the call 
to NVElINK (see the section entitled "NVELINK Procedure 
Description). In this case NVELINK does not link monitor and 
task services from their object text files each time. 
Instead, it uses alt~a~x __ llnh:~ monitor and task service 
environments, and Just links the specified user object files. 

The QUICK option causes NVELINK to run faster and requires 
less resources than the full link, and therefore should be 



2-19 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.7.2 QUICK LINK OPTION OF NVElINK PROCEDURE 

used instead of the ful' link when RQ1~_U~~£_t~~hs are being 
added to NOS/VE. 

NVElINK, with the QUICK option specified, should not 
require any modification to execute in different user task 
configurations. The user can merely add the user object text 
file produced by an assembly or compi1ation to the XlJB88 file 
using the SES.GOF procedure. To fink additional user object 
files into the system, specify the necessary command file via 
the AOO parameter. The contents of this file, its use, and 
the function of the UJ and ADO parameters are described In 
greater detai' in the section entitled "NVElINK Procedure 
Description". 

2.8.1 RUNNING A SIMULATOR TEST (NVESIM PROCEDURE) 

NVESIM is an SES procedure file which will run either a 
batch mode or an interactive simulation of NOS/VE. This 
option is selected via the 'TEST' parameter. If fTEST' is not 
specified, then the simulation will be run interactive'y. If 
a batch mode simulation is desired, then fTEST' is used to 
specify the name of the file containing the NOS/VE test 
commands that are to be input to the simulator. The 'BATCH' 
keyword must also then be specified. If the user wants to use 
his/her own simulator directives file, the 'CMOS' parameter 
must be specified. 

NVESIM also allows the selection of the checkpoint file to 
be used for the start of simulation. A checkpoint file may 
also be optionally saved at the end of the test. The C180 
memory size may be changed via the 'MEM' parameter. 

The NVESIM procedure wilt create severa' permanent files in 
the user's catalog if not run interactively. These are 
itemized as follows: 

1) l~UleUI. This direct access file contains alf of the 
output of the NVESIM procedure, inctuding 

8 copy of the command file used as input to the 
simulator ('TEST' parameter) 
the output produced by the system 
the SESlOG fj Ie 
a reformatted keypoint listing 
OEBUG output (jf 'SIMDBGt was specified on the 



2-20 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/ZQ/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.8.1 RUNNING A SIMULATOR TEST (NVESIM PROCEDURE) 

NVESIM calll 
a summary of al' (paging) disk 110 (HIOlDG file) 
the load map produced by the CITOII conversion and 
execution of XUUTl (SIMlOAD file) 
(optionally) a hex dump of the checkpoint file at 
the end of simulation 
the job dayfile. 

This rile Is automatically sent to the tine printer. 

2) ~f~S~Kf. This direct access file contains the keypoint 
data produced by the simulator. It is reformatted by 
the procedure NVEKEY before being written to the file 
TOUTPUT. 

3) IDAlf. The dayfile of the NVeSIM Job will be written 
to this direct access fi Ie should it terminate 
abnormally. 

Additiona"y, if the 'NCPF' parameter is specified, NVESIM 
will create 4 direct access files which together contain the 
NOS/VE environment at the end of simulation. The file 
specified by the 'NCPF' parameter wi.1 contain the current 
NOS/VE checkpoint fi'e. The other 3 files (formed by adding 
the characters 0, 1, and 2 to the 'NCPF' file name - which 
must therefore be six or less characters 'ong) are used for 
NOS/VE memory paging. 

The format of the NVESIM is as fol lows: 

SES.NVESIM [test: < command file> ] 

test: 

cmds t 

cpf : 

{ cmds = < simulator directives file> 1 
[ cpf : < cteckpoint file> 1 
[ ncpf a < new checkpoint file> ] 
{ mem = < memory size in hex> ] 
{ nods] 
[ run: < instruction count> ] 
[ simdbg ] 
{ dump ] 
( batch J 

The file containing the NOS/VE test commands. 
The default is to run interactively. 

Simulator directives file which should be 
suppl jed by the user. The default is to use the 
one created by the NVESIM procedure. 

The checkpoint file used for the start of 
simulation. The default is "lGBOK". 



2-21 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

0712<"1181 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.8.1 RUNNING A SIMULATOR TEST (NVESIM PROCEDURE) 

ncp f : 

ITem : 

nods : 

run : 

simdbg 

dump : 

ba t ch : 

The checkpoint file to be saved at the end of 
simulation. The default is not to save a 
checkpointfi I e. 

The C180 machine memory size, in hex, needed to 
run the simulation. The default is 
"100000(16)". 

Option to use the version of the checkpoint file 
from the (Integration) catalog which has already 
been deadstarted. The default is to use a 
checkpoint 'i'e which has not been deadstarted. 

A count of the number of suimulated instructions 
to execute. The default is 800000 instructions 
(or the profile variable value for 'RUNCNT'). 

Option to turn DEBUG on for the current 
simulator run. The default is to run with OeBUG 
off. 

opt jon to include the dump of the checkpoint 
fi Ie at the end of simUlation as part of the 
NVESIM output. The default is not to dump the 
checkpoint file. 

Run NVESIM in batch mode. The default is to run 
it locally. 

2.8.2 NVEKEY PROCEDURE DESCRIPTION 

NVEKEY is an SES procedure file which creates a simulator 
generated keypoint trace file. The output of this procedure 
is the local file 'KEYFIlE'. 

The format of the NVEKEY is as fol lows: 

SES.NVfKEY [kpf: < keypoint file> ] 
[ format z < SIM : HOW> 1 

kpf : The keypoint file generated by the simulator 
which is used as input to XXM7KEY. The default 
is ·SfSSMKF'. 

format Specifies 
keypoints 
'S 1M' • 

~hether simulator or hardware format 
are being processed. Default Is 



2-22 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.8.3 DUMPING A SIMULATOR CHECKPOINT FILE (NVEDUMP PROCEDURE) 

2.8.3 OUMPING A SIMULATOR CHECKPOINT FILE (NVEOUMP PROCEDURE) 

NVEDUMP is an SES procedure file which makes a DSD! dump of 
a simulator checkpoint file. 

The format of the NVEOUMP is as followsJ 

SES.NVEDUMP [ cpf • < checkpoint fi Ie > ] 
[ I = (output file> ] 

cpf 

dump : 

print J 

batch : 

{ dump = STNO : All ] 
[ print] 
( batch ] 

The checkpoint file which is to be dumped. The 
default is "CKPT". 

The file which is to receive the dump output. 
This file will be a local file after the 
procedure has finished execution. It is n~l 
automatically printed. The default is 
"OSOIOUT". 

Option to either dump the environment according 
to ASID (DUMP-STNO) or dump the entire 
environment (OUMP:All). If "OUMP=STNO" is 
chosen, then the 0501 directives are taken from 
the fite DSDIX, which the procedure will search 
for first in the current catalog and then in the 
(Integration) catalog. The default is 
"DUMP=STND". 

Option to print the OSOI dump output. The 
default is not to print the dump. 

Run NVEOUMP in BATCH mode. The default is to 
run it locally. 

2.q.l INTRODUCTION 



2-23 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.9.2 CREATING THE FILE (NVESYS PROCEDURE) 

2.9.2 CREATING THE FILE (NVESYS PROCEDURE) 

The SES procedure NVESYS builds a deadstart file from the 
checkpoint file created by the linking of the system. The 
'OFFSET' parameter ~llows the option of building either a 
stand-atone or a dual state deadstart file. If the parameter 
'VSNl is specified, then the deadstart file wilt be written to 
tape; otherwise It is written to the file TP(offset)K where 
the value of the 'OFFSET' parameter is substituted for 
(offset) in the name of the fi Ie. 

NVESYS requires additional object files for inclusion on 
the deadstart file. These object files contain PP object code 
for the following functions: 

1) Deadstart (fi Ie XIOST) 
2) 844 driver (fife XIOSK) 
3) Console/Printer drivers (file XIOSP) - standalone 

only systems 
4) PP helper (file XIHlP) - standalone onty systems 
5) PP Resident program (file XIRES) - standalone only 

systems 
6) NOS/VE disk driver (file XOISK) 
7) NOS/VE MeU Driver (fl Ie XMSPMCU) - standalone onl, 

systems 
8) Dual State MCU Driver (file XMCUPP) Dual State 

only systems 
9) Others to be defined later 

If these files are not present in the current user catalog, 
they wilt be obtained from the appropriate catalog. (Ie. 
SES,INT2. prefixed procedure calls access INT2 level system 
fites only, while SES,INTI. prefixed procedure calls may 
access files from either INT2 or INTI catalogs as is 
appropriate for the system being built.) 

A copy of the linkmap file (Iinker/loader output) will a'so 
be included on the stand-alone deadstart file. A copy of the 
loader directives will be included on the dual state deadstart 
fi Ie. These are the ftles MAP(offset>K and lDR(offset)K 
(descriptions of these files are included in previous 
sections), and must be in the same catalog as the file 
specified by the 'CPFt parameter. 

The format of the NVESYS is as follows: 

SES.NVESYS [vsn = < tape vsn > ] 
[ offset = < load offset> ] 
[ cpf • < checkpoint fi Ie name> 1 



2-24 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/ZQ/Bl 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.9.2 CREATING THE FILE (NVESYS PROCEDURE) 

--------------------------------------------------------------------

vsn t 

offset : 

cpf : 

cyb.ink 

batch : 

[ cybljnk 1 
[ batch ] 

The VSN of the tape to be written. This file 
must be avai'able to the operator. The default 
is to write the file to a tape as specified 
above. 

The toad offset, used to determine whether to 
build a stand-alone or a dual state deadstart 
file. 
OffSET = 0 builds a stand-atone deadstart file 
(DEFAULT) 
OfFSET = 256 builds a dual state deadstart file 
(to use on the 52) 
OFFSET = 128 builds a dual state deadstart file 
for a 128K system 
OFFSET • 64 builds a dual state deadstart file 
for a 64K system 

The checkpoint file used in creating the 
deadstart file. If the fi'e does not exist in 
the current catalog, it will be obtained from 
the <Integration) catalog. The default is 
lGBOK. 

Option to create a tape for CYBE~LINKING to 
CANCeD. The default is to build a hardware 
deadstart fi'e. 

Run NVESYS in BATCH mode. The default is to run 
it locally. 

2.9.3 COMPILING 180 PP CODe (CPP180 PROCEDURE) 

CPPl80 is an ses procedure file which compiles 180 PP 
code. The source for the PP code is retrieved from a source 
program library. If the "AS" parameter is specified, CPP180 
wi II search this PL first before searching NOSVEPl to satisfy 
externals. The "UN" parameter specifies the catalog in which 
"AB" resides. NOSVEPL comes from the (Integration) catalog. 

The format of the CPP180 is as followst 

Sf.S.CPP180 [m· < module name> ] 
r ab = < alternate base) ] 
[ batch ] 



2-25 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/ZQl61 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.Q.3 COMPILING 180 PP CODe (CPP180 PROCEDURE) 

m : 

ab : 

batch : 

The module name of the PP program to 
camp i ted. 

be 

The alternate base searched by CPP180 to satisfy 
externals before searching NOSVEPl. The default 
is to search onty NOSVEPl. 

Run CPP180 in BATCH mode. The default is to run 
it loca"y. 

2.10.1 SLOEI PROCEDURE DESCRIPTION 

SLOE! is an SES procedure file which builds the absolute 
file ·for duel stateEI. The A.B parameter may be specified if 
a program library contajhing the dual state EI source exists 
in the current catalog; otherwise SlOEt retrieves EI from 
NOSVEPL in the (Integration) catalog. 

SlOEt uses the linker parameter file EIleB to link fl. If 
this file does not exist in the current catalog, it js 
obtained from the (Integration) catalog by the procedure. 

The outputs of BLOEI include the direct access absolute 
file tEl' and the direct access file tOSlIST' which contains 
the assembly listing and the link map for E1. 

The format of the SLOel is as follows: 

SES.BlOEl 

i 1 

ab I 

area : 

[ i = ( EI source fite > ] 
[ area • ( user name) ] 
[ batch ] 

The file in the current catalog which contains 
the dual state El source program library from 
which EI is to be built. The default is to get 
the EI source from NOSVEPl in the (Integration) 
catalog. 

The user.s alternate base program library 
containing new and modified modules. 

Option to obtain the 
parameter files from 
(other than the current 

object fi les or linker 
another user's catalog 
catalog in which the 



2-26 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVeRVIE~ OF INTEGRATION PROCESS 
2.10.1 SlOEI PROCEDURE DESCRIPTION 

procedure is executing). 

2.10.2 OSBIlO PROCEDURE DESCRIPTION 

OSBIlD is an SES procedure file which builds the dual state 
binaries XOSTVE, XRUNVE, andXTRMVE. All assembly and CYBlt 
compilation'isttngs are put on the direct access text I ibrary 
file eStIST (one listing per record, each headed by the 
corresponding MAOIfY deckname) and the three load maps are 
appended to the compilation and assembly listings. 

The format of the DSBIlD is as fol'ows: 

SES.OSBIlO [ab = < alternate base> ] 
[ batch] 

ab : 

bat ch : 

The user's alternate base program library 
containing new and modified modules. 

Run DS8IlD in BATCH mode. The default Is to run 
it locally. 

2.11 UIILIIl_fE.DCfQ!JBfS 

2.11.1 NVEREP - REPORT SYSTEM CONTENT 

NVERfP is a procedure which dynamically produces NOS/VE 
build content reports based upon bujld information contained 
in the Integration procedure library (PROelIB), or that 
generated dynamically by partner procedures. The reports are 
sorted according to a user supplied primary sort key, and a 
procedure defined secondary key which is associated with the 
primary sort key. The amount of information contained on the 
Integration procedure library is I jmited by the SES Command 
language processor to eighty characters, but the procedure is 
sufficiently generalized to work ~ith expanded information 
produced by partner procedures. These partner procedures are 
not of a general ized nature SO as to be documented at this 
time (primarily due to a series of deficiencies in the current 
CI tools and conventions). 

The format of the NVERFP procedure is as follows: 

SES.NVEREP [ 'eft = < primary key) ] 
[ right • < primary key) ] 

• • 

• t 

• t 

• • • • • • • • • • 

• • 

• • 



2-21 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW Of INTEGRATION PROCESS 
2.11.1 NVEREP - REPORT SYSTEM CONTENT 

te:ft : 

right : 

area : 

f 1 

o : 

: 

print: 

batch : 

[ area = < alternate user name> ] 
[ f • < input source> ] 
[ 0 = < output destination> ] 
[ I :: < lib r a r y n am e > ] 
[ print] 
[ batch 1 

Primary sort key for left side of two paged 
report. Only the first two characters of this 
parameter are significant. May be either 
MOdule, MAdify, LIbrary, or LAnguage. (An 
additional option, VErsion, is only available 
when used in conjunction with partner 
procedures. Option BUild is under consideration 
for future implementation.) The default for 
this parameter is MOdule. No validity checking 
is performed for either the 'left' or 'right' 
parameter values, and an invalid specification 
wi II result In a report which may differ from 
that desired. 

Primary sort key for right side of two paged 
report. See parameter left for valid 
specifications. Default is MAdify. 

Alternate user name to search first for the 
input f i I e specified by the 

• f • 
parameter. 

Default value i s fnul, l , and source for If' is 
found in the user name where the procedure 
resides ( f) R C UN AM ) • 

Name of the file containing build content 
information. Default is PROClIS. 

Name of the file to receive the two paged 
report. Default Is VEREP. (The files lEFT and 
RIGHT currently remain local after the procedure 
has completed. These files contain the left snd 
right hand portions of the two paged report.) 

Name(s) of NOS/VE library (or libraries) which 
are to be included in the report. Default is to 
report on al' primary NOS/VE libraries. 

Keyword to cause output file to be printed. 
Defau't is to not print the report unless batch 
execution has been selected. 

Keyword to cause the batch execution of the 

• 1 

, 
• 
t • • t 

• • 
• • • • 
• • • , 
• • 
t 
ot 

• • • • • • • t 

• • 
• • , 
• • • 

• • • , 

• • • I 

• • 

• • 



2-28 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/2CJI81 

2.0 OVERVIEW Of INTEGRATION PRocess 
2.11.1 NVEREP - REPORT SYSTEM CONTENT 

procedure. Default is to run the procedure in 
tLOCAl' mode. 

2.11.2 PROCEDURE GET - GET A LOCAL FILE 

The GET procedure makes some assumptions about files which 
prove convenient to the procedure writer. The first 
assumption is that any files named by the user represent files 
which are to be modified or interrogated without worry as to 
the access mode of the fi Ie (it may be either 8 DIRECT or an 
INDIRECT access permanent fi'e). The second assumption is 
that the file named by the user may already exist as a local 
f"e,andif it does that the current tocal copy of that ri'e 
is the correct version of that file. The procedure's function 
then is to leave currentl, existing local files alone (unless 
they are attached DIRECT files), and find any remaining files 
to add them to the list of currently active local files. The 
user may wish to specify a search order for the list of files 
to be added to the local file list, and may do so by providing 
a list of user names (in search order, left to right) via the 
'UN' parameter. The user may also wish to accumulate a number 
of fi les upon one filename, and may do so by providing 8 

filename for the 'Mf' parameter. 

The format of the GET procedure is as follows: 

SES.GEl 

Ifo : 

pfo : 

{ < I f n > ] : {( p fn > ] 
[ (un) 1 
[ < mf > ] 
[ msg J 

lo ca. of i I e name by which the f i Ie is to be known 
( may be a lis t of files). If no filename is 
specified for If n, then the filename value for 
the 'PFNt parameter i s used. One of either 
'lFN' or 'PFN' must be specified. A I I 
parameters may be specified pOSitionally, so the 
typical usage of this procedure would bel 
SfS.GET (MYFIlEl,MYFILE2, ••• ,etc.) 

Permanent file name of the file to be made 
local. If no filename is specified for pfn, 
then the assumed value is that specified by the 
'lfN' parameter. The list of pfn values is 
matched positionally with the 'lFN' specified 
values. This is illustrated as follows: 
SES.GET (one,two) (stuffl,stuff2) 

• • 
t • 

• • 

• • • , 
, 
• • • • , 
• • 

• t 

• • 
I • 

, 
t 
t • • • 

• • 
I • • I 

I • 



2-29 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/29/81 

2.0 OVERVIEW Of INTEGRATION PROCESS 
2.11.2 PROCEDURE GET - GET A LOCAL FILE 

un : 

mf : 

msg 

An optional list of user names which directs the 
procedure's search order for files which are 
currently not local. This is convenient if the 
user knows that the file exists in one of 
severa' catalogs, but isn.t sure where to look. 
An example would be: 
SES.GET ipndoc UN=(intl,int2,devl,dev2,rell) 

A filename upon which to stack the named files 
(one file per NOS record). For examples 
SES.GET (ipndoc,bcr) MF-bildoc 

Keyword which causes the generation of messages 
to describe what the procedure is doing. If for 
example the location of a file is in several 
user catalogs, the msg keyword would issue 
messages indicating which catalogs (specified by 
the 'UN' parameter) had been searched for the 
file, and where it had final.y been found. 

2.11.3 PROCEDURE SAVE - MAKE A LOCAL FILE PERMANENT 

Procedure SAVE may be used in conjunction with the GET 
procedure. The redeeming factor about the SAVE procedure is 
that the user need not be concerned about file size. The 
named local flies are made permanent as INDIRECT access files, 
if possible, otherwise DIRECT access files. Files are SAVEtd 
~s SEMI-PRIVATE, READ-ONLY files. This is intentionally done 
to preserve as much precious disk space as possible. (NOS 
allocates DIRECT access fites much less frugally than INDIRECT 
access files.) Be fore~arned that a slight penalty is imposed 
in access time for each sector of disk space saved in this 
manner, and that the actual sector savings is only visible 
from the operator's console (not via CAlLIST). In the 
procedure writerts world of living, this procedure negates the 
worry of predicting file size prior to creating it. 

The format of the SAVE procedure is as foilowS1 

SES.SAVE 

Ifn : 

[ <Ifn> 1 
[ <un> ] 
( msg ] 
[ dir ] 

[ <pfn) ] 

Local filename to be made permanent. Defaults 
to 'PFN' value if not specified. One of IlFN' 
or 'PFNt parameters must be specified. 
Parameters may be specified positionally, and 

I 
I 

• t 

I • • • 

1 • • , 
• • 

1 , 
• 1 

• I , 
• 

• • • t 

• • • , 



2-30 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIE~ OF INTEGRATION PROCESS 
2.11.3 PROCEDURE SAVE - MAKE A LOCAL FILE PERMANENT 

pfn : 

un I 

mS9 : 

d i r : 

typical usage would be: 
SES.SAVE (xlmmtr,xIJllb, ••• ,etc.) 

Permanent fifename for files to be 
Defaults to 'lfNf if not specified. PFN 
are matched positionally within the list 
values. This is illustrated as follows: 
SES.SAVE (one, two) (stuffl,stuff2) 

saved. 
values 
to lFN 

User Name in which to save the local file. This 
parameter is only valid for DIRECT access files 
for which write permission has been granted (in 
another userJs catalog). 

Keyword which causes the generation of messages 
describing the names and destinations of files 
being saved. 

Keyword which directs the procecure to make all 
named files DIRECT access files, regardless of 
their size. 

2.11.4 NVEMAP - REFORMAT NOS/VE lINKMAP 

SES.NVEMAP 

NVEMAP is a procedure to reduce the number or 
printed pages of a NOS/VE I'nkmaPJ while 
maintaining readability, and to provide summary 
reports of information contained wihtin the 
'inkmap. Either all, or portions of the linkmap 
may be processed. The reformatted form of the 
Iinkmap Is also suitable for microfiche, in the 
format defined for the NOS/VE operating system. 

The format of the NVEMAP procedure is 
follows: 

[ i • < input f i I e > 1 
{ 0 :I: < output f j Ie> ] 
[ ar e a = < alternate us er name > ] 
[ cop y -.II: < record count > ] 
[ skip • < rec or d count > ] 
[ print ] 

( gated ] 

[ fiche ] 

[ module ] 
[ S BV e ] 

[ two ] 

( batch ] 

as 

, 
t 

" t 

, 
1 

• , , 
• • • 

• , 

• • • • 
" t 

• • 

• • 

• t 

• I 

• • 



2-31 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - 8uild N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.11.4 NVEMAP - REFORMAT NOS/VE LINKMAP 

i : 

o : 

area 

copy 

skip: 

print: 

gated I 

Input file which contains generated output from 
the execution of the NOS/VE CI (or SES) Linker. 
Default is MAP256K for systems prior to the 
system restructure (Prior to Sulld 0), and 
MAPHXX for restructured systems. 

Name of the output file to receive the 
reformatted linkmap file. Default is to produce 
a local file of the same name as specified by 
the ti' parameter. 

Alternate user name to search for the input file 
specified by the 'it parameter. Oefault value 
is 'nul". 

Count of the number of NOS records to process 
from the current file position of the input file 
(default position BOI). Each invocation of the 
tinker produces a new record upon the output 
file. Thus, to process on'y the first portion 
of the linkmap (typically Monitor for the NOS/WE 
Operating System) 'COPY-l' would be specified. 
Default value for this parameter is to process 
the entire linkmap 801 to E01. 

Count of the number of NOS records to skip prior 
to processing. For the NOS/VE operating system 
'SKIP-Z' would suppress the Monitor and EI 
porticns of a Oua' State Jinkmap. 'SKIP-Z 
COPY-l' would process only the Task Services 
portion of a Dual State linkmap. Use of either 
the 'skip' or 'copy' parameters infers explicit 
knowledge of the content the linkmap. Due the 
the number of variations of linkmap which cen be 
produced it would be impractical to generalize 
these parameters in a more logical manner. 

Keyword to cause output file to be printed. 
Default is to not print the reformatted 
Jinkmap. 'PRINT=TWOMAP' wi" print the contents 
of fi fe named TWOMAP. Key 'PRINT' wi'l print 
TWOMAP jf key 'TWO. is also specified, other~ise 
the fl'e specified by the '0' parameter wil. be 
printed. 'PRINT-All' will print both TWOMAP and 
the file specified by the 10 1 parameter. 

Keyword which eliminates information for al. 
entry points which do not have the GATED 
attribute. Conceivably, a combination such 8S 

t • • • • • , 
• • • 

• 1 

• • 

• I 

• • 

• t 

• • • • 
f • 
I • 
• • 

• I 

• • 
• • • • 
• • • • • 

• • • • • • 



2-32 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

2.0 OVERVIEW OF INTEGRATION PROCESS 
2.11.4 NVEMAP - REFORMAT NOS/VE LINK"AP 

f f c he : 

modute 

save : 

two : 

batch : 

'SKIP a 2 COPY-1 GATED' would produce information 
to a compiler project about which entry points 
within Task Services are GATED for their use. 
Default is to produce reports of all system 
entry points. 

Directs the procedure to place the output of the 
procedure onto the fi Ie NOSLIST for subsequent 
microfiche processing. Default is to not add 
the I inkmap to the NOSlIST fi Ie. 

Keyword which causes the removal of atl entry 
point information from the linkmap. This proves 
useful for auditing module attributes. The 
default is to retain all system entry point 
information. 

Keyword which causes the output files to be 
retained on permanent files for subsequent 
inspection. This option .5 selected if 'batch' 
has been specified, otherwise it is left to the 
discretion of the user to dispose of the local 
copies of the output files. 

Keyword which directs the procedure to twopage 
the linkmap onto the fi'e TWOMAP. TWOMAP will 
always be generated, but wil' only contain the 
summary report information unless 'two' is 
specified. This twopage option is not the 
famil jar SES TWOPAGE option., but rather a 
computed sptit and merge of the reformatted 
map. 

Keyword to cause the batch execution of the 
procedure. Default is to run the procedure in 
t l DC A l1 mod e • 

This procedure wilt always produce two output files. The 
. primary output file is governed by the '0' parameter. A 
secondary output 'TWOMApt is always produced as well. The 
JTWOMAP' file wi •• only contain the summary reports and 
toadmap .f parameter 'two' is not selected. The first summary 
report which is p~oduced is a two paged report of PVAs found 
in the linkmap. The left hand portion of this report is 8 

sort by PYA. The right hand portion of this report Is a sort 
by module and/or entry point name. This report should answer 
the questions: 1. Given a PYA, in which module andlor 
procedure is that PYA contained?, 2. Given an entry point 
name, in which modute is it defined and what is its PYA?, and 

• • • • • • 

• • 
I • • • • • 

• • 
• • 

• • • • 

• • , 
• 

• • • • • • • I 

• • 

I • • • 



2-33 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

011ZQl81 

2.0 OVERVIEW Of INTEGRATION PROCESS 
2.11.4 NVEMAP - REFORMAT NOS/VE lINKMAP 

3. Given the name of a variable within a system defined 
table, what is its location within a dump? 

The final report is a t~o part error summary for the 
linkmap. The first portion of this report Identifies which 
pages of the .inkmap contained one or more errors. The second 
portion of this report is a list of at. of the errors found 
within the linkmap, in the sequence in which they appear in 
the map. 

• , , , 

• , 
I • • • • • 
I 
t 

• , 



3-1 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTE800K - Build N29 

07/29/81 

3.0 DUAL STATE INSTALLATION SEQUENCE 

This section describes how to install all of the 'iles 
neede'd to run NOS/VE In Dual State mode. To do this from 
"scratch~ the folto~ing materials are necessary: 

1 HIVS tape 
1 Dual State NOS Deadstart tape 
- The lOAOPF tape(s} which contain the NOS/VE environment 

If HIVS and eTI are already present and correct, then it Is 
only necessary to install a new deadstart sector on disk or to 
load a new NOS/VE environment. If Al70 NOS has been run on 
this machine prior to the installation of NOS/VE, then chances 
are excellent that the proper versions of HIVS and eTI were 
us ed. 

To clear the pointers, deadstart from the Dual State NOS 
Deadstart tape which is NT, OaPE, faI, lB-KU, and enter: 

*U*--->*I*---)R (Release) 
Channel=xx 
E q= x)( 

Unit-xx 

Deadstart again from the same deadstart tape as above and 
then enter: 

*U*---)*I*---)tCR) (Install DIS module on disk) 
(CR) (Proceed - Response to warning) 
Channel=xx 
E q=)( x 
Unit-xx 

To install HIVS, deadstart from the HIVS tape which is NT, 
O=PE, f=SI, L8=KU, and then enter:, 

*U*--->*T* (Select lDX option) 



3-2 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

3.0 DUAL STATE INSTALLATION SfQUENCE 
3.2 INSTALL HIVS 

'e 1 option (Build directory in eM and copy to disk) 
Disk type=x 
Disk Channel=xx 
Disk Eq=xx 
Disk Unit=xx 
MT type=3 
MT channel-xx 
Eq=xx 
Unit=xx 
User type=02 (Shared O/S) 
Install options-02 (Edited MSL) 
Options=Ol (Build without DIS sector since it was 

already created by eTI.) 

When END appears, HIVS is instal led. 

Deadstart from the NOS Dual State deadstart tape, using the 
deadstart tape which is to be instatled. Choose the 'Of 
option on the first display, for operator intervention. Then 
choose the 'H' option on the next display to see the hardware 
parameters. Enter eM-IOOCO. Optionally, the 'P' display may 
be selected to choose a CMROECK. (CMRDCI4 contains the CANCDO 
S2 configuration, CMRDCK6 contains the ARHOPS S2 
configuration.) Hit carriage return. The system wiJI 
display: 

ENTER LOCATION 
OF MSL/HIVS DEVICE 

Enter the information for the same disk where HIVS was 
instalted previously: 

Channel-xx 
Equipment=xx 
Unit=xx 

After the system is deadstarted, enter the following 
coromands: 

X.DIS. 
COMMON, SYSTEM. 
INSTALl,SYSTEM,EQxx. 

NOTE: xx is the EST ordinel of the disk where the deadstart 
sector is to be instel led; this is the same disk where HIVS 
was instaj'ed previously. 



3-3 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/29/81 

3.0 DUAL STATE INSTALLATION SEQUENCE 
3.4 lOADPf FILES 

The lOAOPF tapes, which are NT, D=PE, f=SI, and l8=Kl, 
contain the NOS/Vf operating system source and binaries, toots 
to assemb1e and link the operating system, and various other 
files. 

Deadstart from the disk upon which the NOS Dual State 
system was installed and lOADPF the files to the desired user 
number. 

Check the indirect access file CMOSl to make sure it 
reflects the hardware configuration: 

*RELOADCH=x. x should be an empty channe •• 
*DISKCH-yl,y2. NOS cannot use channel ,1 or y2 with Dual 
State active. 
*SYST,DISKUz=ON. z can on'y be 0 through 3. 

(Unit z on channel v1 or y2 ~aDD~l appear 
in the NOS CMRDECK or EST.) 

After the NOS Dual State system has been deadstarted, and 
the Dual State execution environment has been installed, 
NOS/VE is brought up by entering the following console 
command: 

X.UPMYVE(CAT=c) 

where: c is the user number in which the execution 
environment was instaJled. Enter K,n. (n:: the control 
point number of the UPMYVE Job) to see the NOS/VE display. 
K.*SYEVE. followed by K.*ENDRUN. wi'l terminate NOS/VE. 
For further information regarding the operation and execution 
of this environment refer to the S2 Machine Usage Document. 



4-.1 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZq 

0712'1/81 

4.0 NOS/VE HARDWARE REGRESSION TESTING 

4.11l!ilEtL1UC.ll.Otf 

The verification currently performed on NOS/VE systems 
consists of the following: 

11 running the simulator test input contained on file 
VQlTST3 until visual examination of the output from this 
test warrants that further testing should be performed, 
and 

2) running the 52 Regression Test Sequence, as outlined in 
the following sections, on the hardware. 

4.2.1 TEST8AM 

TESTBAM Is a file containing the statements necessary to 
execute all of the BAM test cases supptied by W. V. Mahal. 
These procedures exercise various portions of the basic access 
method, and are used to show some level of confidence that BAM 
works as wei' as it has previously. The command sequence 
fo"ows: 

LOGIN USER=DEV NAME=TESTBAM 
lIU,US£R=(OEVl,NVE),PA-OEVlX,A=NOTUSED,PR-NOTUSEO 
GET,SYSlIB,SYSlIB",NVE,B56 
GET,CYBILIB,CYBIILB",NVE,B56 
SET_OBJECT_LIST ADD=SYSlIB 
EXECUTE"",BAMTEST 
TESl 
TES2 
TES3 
TES4 
TES5 
Tf 56 
TE S7 
TESS 
TES9 



4-2 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/2Q/81 

4.0 NOS/VE ~ARDWARE REGRESSION TESTING 
4.2.1 TESTS AM 

TESlO 
TESl1 
T£513 
TE S14 
TES1S 
TES16 
TES20 
BAMSTOP 
GET,SCl180,SCl180",NVE,860 
SUBMIT,SCl180 
J,.,EXIT 

4.2.2 JOBl 

JOBI is a fite containing the NOS/VE commands which stage a 
CI object fjle from the 170 side to the 180 side, convert this 
fite to an II library fite, and replace the II tibrary on the 
170 side. It tests the following NOS/VE features: 

LINK_USER command 
GETPfB60 
CITOII conversion 
Object library Generator 
Display library Information 
REPLACE B56 
JMEXIT 

The command sequence follows: 

LOGIN USER=DEV NAME=JOB 
lIU,USER-(DEVl,NVE),PA a OEVlX,A-NOTUSEO,PR-NOTUSEO 
GET,CITEXT180,CYBIlGO",NVE,B60 
EXECUTE"'CITEXT180,IITEXT180',,,CITOII 
EXECUTE"",COl 
ADD,F-IITEXT180 
DtS,ON=ALL 
GENERATE,lIBRARY=lIBRARY180 
QUIT 
REPlACE,lIBRARY180,CYBIIlB",NVE,B56 
GET,JOB2,JOB2",NVE,86C 
SUBMIT,JOB2 
Jft1EXIT 



4-3 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

4.0 NOS/VE HARDWARE REGRESSION TESTING 
4.2.3 JOB2 

4.2.3 JOB2 

JOB2 is a file containing the NOS/VE commands which stage 
an II library and a CI user job object fi'e from the 110 side 
to the 180 side, convert the Cl user job object file to an II 
object file, and then load and execute this user Job with the 
library. It then stages the lOAOMAP back to the 170 side to 
be printed. JOB2 tests the following NOS/VE features. 

LINK_USER command 
SET_OBJECT_LIST command 
SET_PROGRAM_OPTIONS command 
GETPF 856 
GfTPF 860 
CITOII conversion 
load/Execute User Program + library 
JMROUTE C180 print file 
JMEXIT 

The command sequence follows: 

LOGIN USER=DEV NAME=JOB2 
lIU,USER=(OEVl,NVE),PA=DEV1X,A=NOTUSEO,PR=NOTUSEO 
GET,NEWLIBRARY,CYBIIlB",NVE,856 
SET_OBJECT_lIST,ADO-NEWlIBRARY 
SET_PROGRAM_OPTIONS,MO=(BlOCK,ENTRY_POINT,XREF,SEGMENT ),... <* 
TERMINATION_ERROR_lEVEl=fATAl 
GfT,XPETEST,XPETEST",NVE,B60 
EXECUTE"'XPETEST,lGO',,,CITOII 
EXECUTE LGD 
JMROUTE,NOTUSED,lOAOMAP,PR 
GET,CYBIlIB,CYBIIlB",NVE,B56 
SET_OBJECT_LIST,DELETE=ALL 
SET._PROGRAM_OPTIONS,TERMINATION_ERROR_lEVEl=ERROR 
EXECUTE lGD 
JMROUTE,NOTUSED,lOAOMAP,PR 
GET,TESTBAM,TESTBAM",NVE,B60 
SUBMIT,TfSTBAM 
JMEXIT 

1) Mount the disk labeled "DAHL-Large sector" on 844 Unit 
O. Other disks will not work. 

2) Deadstart A170 NOS: 
Set the deadstart panel to disk deadstart froml 
CH-l 



4-4 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

4.0 NOS/VE HAPDWARE REGRESSION TESTING 
4.3 S2 REGRESSION TEST SEQUENCE 

UNIT=41 
WORD 13-0006 
Push deadstart button. 
Select *0* display. 
Select *H* display. 
Enter eM=IOOCa 
Hit carriage return. 
Enter date/time. 

3) If necessary, update the INT2 catalog and load the 
latest system files into the INTI catalog: 

Mount the INTI and INT2 catalog OUMPPf tapes. 
X.DIS. 
USER,INT1,INTIX. 
SES.UPCATS <INTI=tpul> <INT2=tpu2> <SYSEDIT> 
Hit "." to go into AUTO mode. 
DROP. 

The SES.UPCATS procedure works as follows: 
a) Updates the INT2 catalog by retrievlng the "fast 

files" (CM[MAGE, PPIMAGE, RGIMAGE) and CYBlltS 
from the INTI catalog and by loading selected 
files from the OUMPPf tape mounted on the unit 
specified by the "INTZ" parameter. This parameter 
m~~l be specified for the INT2 catalog to be 
updated. 

b) lOAOPF's the latest system into the INTl catalog 
from the OUMPPf tape mounted on the unit specified 
by the "INTl" parameter (defaults to "50"). 

c) SYSEDIT's the AI70 Remote Host and Interactive 
binaries if the "SYSEDIT" keyword is specified. 

4) Bring up dual state: 
X.UPMYVE(CAT=INT1) 
K,n. (where "nft is the UPMYVE control pOint) 

5) Test if paging 110 is working: 
K.OEClARE P POINTER. 
K.SMOPEN P. 
K.CM P 1*1234/*_ 
K.MMWMP P. 
-) Disk unjt light should flash on 844 Unit o. 
K.DM P 100. 
-> If system is hung at this point then paging is 
not working. 
K.SMClOSE P. 

6l Bring up Al70 Remote Host and Interactive: 
TAFNVE. 

7) Bring UP e170 Remote Host: 



4-5 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

01129/81 

9) Test input file route I Job exit' output fite route: 
X·.DIS. 
USER,INTl,INTlX. 
GET,TESTSAM,JOBl,J082. 
ROUTE,TESTBAM,DC:lP,FC=RH. 
ROUTE,J081,DC-lP,FC-RH. 

NOTE: JOB2 uses the output of JOBI in its execution; 
hence JOB2 cannot be ROUTEfd until JOBI finishes. To 
determine when JOBI is finished: 

Hit "*" key to return to K-display. 
The JOBl dayfile witl be displayed as the Job is 
running. When the system has executed the JMEXIT 
statement, JOBI has finished. The JOBl dayfile wi" 
then be. staged back to the 170 side to be printed. To 
print files, do: 

Make sure the printer is on (i.e. the START light 
is fit). 
FORM32,TM. 
ON32. 

(The dayfiles of the TESTBAM and JOB2 jobs will also be 
printed when these Jobs fjnish.) 
Now J082 can be submitted: 

Hit "*" key to return to DIS. 
ROUTE,JGB2,DC:LP,FC=RH. 
DROP. 

The JOB2 dayfile will be displayed as it is running. 
When all Jobs have finished executing and their 
dayfiles have printed, then NOS/VE and Remote Host may 
be terminated by doing the following: 

2.STOP. (bring down TAFNVE) 
K.*SYEVE. 

When the K-display displays the message that NOS/VE has 
terminated., type: 

K.*ENORUN. 

10) Bring down A170 NOS: 
AB. 
CHECKPOINT SYSTEM. 
E,M. (make sure that all checkpoints complete) 
STEP. 



, 
4-6 

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 
07/2Ql81 

4.0 NOS/VE ~APDWARE REGRESSION TESTING 
4.4 THE CONFIDENCE TESTS 

The Confidence testbase contains a set of tests which are 
to be run after each build. These tests are created by the 
GENTEST procedure. This procedure MUST be rerun after any 
change to OSlPI or the CI CYBIl compiler. The GENTEST 
procedure is designed to be run on SIN 101, but can be run on 
the S2. 

4.5 'DHEl.Qf.tiC.f_l.ESI-'sfIUe_I~SIB.UC.IlDtiS 

Do this setup procedure when the OSlPI, the eI CYBll 
campi ler, or the confidence testbase changes. The GENTEST 
procedure may be run on the NOS state of the CYBER 180 or on 
any NOS system with the fastest CI CYBIl complier, OSlPI, and 
the confidence testbase Pl{CONfPl). 

4.5.1 FILES NEEDED TO RUN THE SETUP CONfIDENCE PROCEDURES 

To run the confidence test setup procedures the following 
fi les are needed: 

CYBIlI1UN=INTl 
OSlPI/UN-INTl 
CONFPl/UN=INTl 
CVBIlC/UN=OEVl 

4.5.2 RUN ON A NONE CYBER 180 

1. login to the same user as the test are to be run under on 
CYBER 16C. 

2. Enter SfS,INTl.GENTEST (BAOOl •• GENCVRT) 
(See section on GENTEST for more details.) 

The test will generate a set of Xfj'es containing the 
binary file for each job, a'so the CVBER 180 Job will 
be appended to the 180 toad fi'e(10180). If it is AI70 
and 180 interacting test the jobs will be appended to 
A170 load fi le(LD170). 

3. Dump the files to tape, use the SES.DUMPPF 
procedure. 

You will then be ready to run the test on the CYBER 180 
after loading the dump tape. 



4-7 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

4.0 NOS/VE HARDWARE REGRESSION TESTING 
4.5.3 RUNNING ON A CYBER 180 WITH NOS/VE UP 

4.5.3 RUNNING ON A CYBER 180 WITH NOS/VE UP 

After laging in to the user which the testbase is to be run 
under do the foltowing: 

SES,INTl.GENTEST (BAOOl •• GENCVRT) CHAROFF 
(See section on GENTEST for more details.) 

1. Deadstart the Dual State NOS system. 
2. load files into the INT1 catalog, if necessary: 

vsn,(tape unit),"Ysnname". 
x.dis. 
user, intI, intl)(. 

ENTER 
request,dump,nt,d-pe,f=si,lb-kl,po-r,vsn-"vsnnam". 
loadpf. 
drop. 

OR ENTER (can be done from a terminal a1so) 
ses,intl.loadpf vsn="vsnnam" 

3. Bring up NAM. 
4. login,intl,intlx. 
5. Bring up VE and IRHF. 
6. Run 180 tests( from terminal ). 

SES.lOTEST 
(See section on lDTEST for more details.) 

7. To get 170 listings. 
0032. 
form32,. 

8. To get 180 listings. 
on32. 
Form32,tm. 

4.7.1 GENTEST 

This procedure will generate a set of A170 and/or C180 load 
fi tes from a testbase program library (PL). The default Pl is 
the confidence testbase on UN=INTI. 



4-8 
ADVANCED SYSTEMS INTEGFATION PROCEDURES NOTEBOOK - Build N29 

07/2Ql81 

4.0 NOS/VE HARDWARE REGRESSION TESTING 
4.7.1 GENTEST 

The forrrat for GENTEST is as following: 

SES,INTl.GENTEST test • <test_name> 
[ base = <file_name> ] 
[ Idl70 : <file_name> ] 
[ Idl80 & <fi'e_name> ] 
[ un • <user_name) ] 
( Ie = <leading_character> ] 
[ norun ] 
[ charerf ] 

test deck d t: m : The test which witl be 
generated from the base Pl. This parameter is 
required for running of this procedure. 

base t pi 
confidence testbase. 
CONFPt. 

b : The file name containing the 
The default is the file name of 

Id170 17: The file to get the 170 and 180 
interacting tests. The default file name is lOl7a. 

IdlSO : 18 : The fi Ie to get the 180 tests. The 
default fi Ie name is L0180. 

un The user name which contains the CONFPl fi'e. 
The default is the owner of the procedure. 

Ic : The leading character of the confidence testbase 
PL. The default is 8 I. 

norun nr: This keyword when used will create a 
load fite on the lD17C file onty. The default is not 
to use this parameter. 

charorf : chaff: This keyword when used witl run the 
tests. These keyword when used without the NORUN 
keyword should only be used when on a Dual State NOS 
system and NOS/VE is UP. The default is not to use 
this parameter. 

Example: 

SES,INTl.GENTEST (BA001 •• GENCVRT) 
(Thi s wi II cause °all the A17e jobs to 
C180 jobs to be saved on the LOIBO 
A170 and C180 Interacting tests to be 
LOI70 file.) 

be run and the 
file. Also the 

saved on the 



4-9 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/2'9/81 

4.0 NOS/VE HARDWARE REGRESSION TESTING 
4.7.1 GENTEST 

SES,INTI.GENTEST (BAOOl •• GENCVRT) CHAROFF 
(This wil I generate the complete testbase creating 
the AI70 job which wi II route in a CIBO job when the 
supporting binaries are created. This example wil' 
only work if running on a dual state NOS system and 
NOS/VE are uP.) 

SES,INTl.GENTEST (BA001 •• GENCVRT) CHARDFF NORUN 
(This wi'. generate only the lOI70 load file for the 
lDTEST procedure. The A170 part of the test will 
route the CIBO job after the supporting binary 'iles 
are created on the dual state NOS system.) 

4.7.2 lOTEST 

This procedure wi. I '0 a das e t of tests from two I oa df i I e s 
one fite containing only C180 jobs and the other file 

containing jobs interactjng tests between the A170 and the 
(180). The procedure has three speeds of loading (fast, 
normal, and low). It also has the option of reloading atl the 
tests as many times as wanted. 

Format of lOTEST is as follows: 

SES,INTl.lDTEST [ Idl80 • <file_name> ] 
[ Id170 • <file_name> ] 
[ speed = (high: normal: low> ] 
[ loop = -<loop_count> ] 

Id180 = 18 : The file containing the CYBER 180 load 
fite produced by the GENTEST procedure. Default is 
LOIBO on the current user catalog. 

Id170 : 17 : The file containing the CYBER 170 load 
file produced by the GENTEST procedure. Default is 
LOl70 on the current user catalog. 

speed • sp : The speed at which the tests wi I I be • 
loaded in to the system. The procedure wi I I only 
test the first letter to get the value. The 
a'Iowabie values are F or H for high speed, M or N 
for normal speed, or any other letter for low 
speed. T "e default i s normal speed. 

loop Ip: The number of times 
the 

the complete 
testbase will be loaded into 
default is only one set of tests. 

system. The 



4-10 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

07/29/81 

4.0 NOS/V£ HARDWARE REGRESSION TESTING 
4.7.2 lOTEST 

Ex am pte t 

SES.lDTEST 
(This wi't load one complete set of tests in to the 
system with a normal wait between loading each test 
job.) 

seS.lOTEST SP-H lOOP-3 

BAM Tests 

(This wit I toad three complete copies of the 
confidence testbase wjth a one second rollout between 
loading jobs. This can be uses to .oad down the 
system.) 

BA001 Issue and verify amp$file and 
ampSget_fi Ie_attributes. 

BA004 Issue and verify ampSget_file_attributes and 
amp$fetch for default and modified attributes. 

BA023 Vertfy record movement, data integrity and rile 
access changes. 

Condition Handler Tests 
CHOOl Test pmp$continue_to_cause from specific handler to 

~ handler for all system conditions. 
CH006 Produce various error codes connected with condition 

handler procedure calls. 
CHOOS Test that the appropriate error code Is generated 

when pmp$continue_to_cause is called. 

sel Tests 
Cl016 Test c'p$declare_variable and clp$remove_varlable 

with Test c'p$remove_variabJe for an 
undeclared variable and for a task variable. 

ClOl7 Test string length boundaries in 
c'pSdeclare_variabte. 

ClOl8 Test c'p$declare_variable dimension boundaries and 
dimension with all command languages. 

Loader Tests 
lOOOl Test stati c and global pOinter initl al ization. 
l0002 Test XDCl procedure by using large array parameters. 
l0003 Test linking a user task to procedures in task 

services. 
l0004 Test linking a user task to procedures in task 



4-11 
ADVANCED SYSTfMS INTEGRATION PROCEDURES NOTEBOOK - Build N29 

01129/81 

4.0 NOS/VE HARDWARE REGRESSION TESTING 
4.8 CONTENTS OF THE CONFIDENCE TESTBASE 

services. 

Remote Host Tests 
RHOOS Test rep'ace existing file with no conversion 

involved. 
RH006 Test replace existing file with conversion involved. 
RHOOq Test replace non-existing file with no conversion 

involved. 
RHOIO Test replace non-existing fi Ie with conversion 

involved. 

GENCVRT Set UP for remote host tests. 

When new tests are added or old tests are removed from the 
confidence the following maintenance is needed: 

This document the new test description must be added or 
the old description must be removed. 

The CONfPl the new deck must be added (see section on 
maintenance of the CONFPl) or the old deck removed. 

The GENTEST procedure must have the new deck name added or 
the old deck name removed. See the section on maintenance 
of the GENTEST procedure. 

4.9.1 CONFPl MAINTENANCE 

When adding a new test to the confidence testbase the test 
should have the fo.'owing calt: 

ICALl USER170 after the A170 Job card 

ICALl T0180 the last card in the A170 job 

ICAlL USER180 after the C180 LOGIN 

The A170 job should NOT have any of the fotlowing commands' 

SES.PRINT 

DEFINE, SAVE, or REPLACE 



4-12 
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Build NZ9 

07/29/81 

4.0 NOS/VE HARDWARE REGRESSION TESTING 
4.9.1 CONfPl MAINTENANCE 

The SAVE, REPLACE. or DEFINE should be replaced be 8 

SES,INTl.SAVEPF cal I before the ICAlL T0180. 

4.9~2 GENTEST PROCEDURE MAINTENANCE 

As new test are added to the testbase the GENTEST procedure 
is the onty procedure which will needed any maintenance. The 
section of the GENTEST procedure which witt change is the test 
names. The foltowing is I ines are those which will be 
changed: 

='BAOOIRUN' 
• 
• 
• 

:'RHC05SAVEf 
• 
• 
• 

·'GENCVRTRUNf 
=n 

The RUN parameter is for any job which has an A170 job to 
produce a file for the C180 test. 

The SAVE parameter is for A170 and C180 interacting tests. 

The n is the count of the last job which can be loaded. 



Al 

07/29/81 

O.r i gin at or ____________________ DATE __ ._L ___ l ___ Tar get B u i t d ____ _ 

Code location: (f!Cled Modsetsl FN= _____________ UN= ____________ _ 

(Decks in "GROUe" format) FNa _____________ UN= ____________ _ 

(2) Code Description File: FN= _____________ UNa ____________ _ 

(3) Code affects system user. yes no _. _____ _ 

Us age Changes Oescr i pt ion Fi. e: FNa __________ . ___ UN-____________ _ 

Modset Identifier(s) 

Code Destinaticn (if a~1 NOSVEPl): PL= _________________________ _ 

New Feature [ ____ ] Corrective Code [ ____ ] 

Dual State [ ____ ] 

PSP(s) Answered __________________________________________________ _ 

tC~~fHI1_IU_I~If'E!II0~ 
(4) Insta.'ation procedure changes required? [ ____ ] 
(4) Dependent upon other feature, fix, or tool? [ ____ ] 
(4) Documentation changes required? [ ____ 1 
(4) CSl?I or Internal Interface changes required? [ ____ 1 

Module(s) to be recompiled 

Has this code been tested? yes (4) no 

~21!s_t~~~L~ln~_~2~~_~~~mltt~!: 
(1) Use right margin of form if more space needed. More forms 

are on FN • XMITIO UN = DEVI. 
(2) Attach copy of descriptionf' Ie to form (both 14 7/8 by 11). 

Format iss #MOOSET_IDENTIFIER (or NEW_DECK_NAME) (upper case) 
Descriptive text which describes code content 
**OECK_MODIFIED (or NEW_DECK_NAME) (upper case) 

(3) Indicate whether this code implements changes that will affect 
a system user. Specify the location of the fite containing 
descriptive text describing b2~ the user is affected. 
Attach copy of this file to form (both 14 7/8 by 11). 

(4) If any of the above are checked, then explain below. 

Code Reyie~er ____________________ Approval ___________________ _ 

t • 

• • 

• • • • 



B1 

07/ZQ/81 

Request Number 

Requestor _________________ ~_ DATE ___ L ___ L ___ PSR Number _______ _ 

Configuration _____________________ Target Entry Oate ___ L ___ L __ _ 

NOS System 

Insta.tatior 
Procedures 

+----+ 

+----+ 

+----+ 

+-----+ 
SES 
Toofs 

+----+ 
Critical Fix: 

+-.---+ 

Integration 
Catalog 

+----+ 
• 1 

+----+ 

+----+ 
Product Set • I 

A170 NOS 
System 

Major PSR 

+----+ 

+----+ 

+-----+ 

+-.---+ 

+-----+ 

Stand-atone 
NOS/VE 

S2 Prototype 
C.osed Shop 

Dual State 
System 

+-----+ 
Other 

+----+ 

+-----+ 

+,----+ 

+----+ 
" • 
+----+ 

+----+ 
-I 
cl 

+.----+ 

Modset Identifier (s) _____________________________________________ _ 

Deck ( s) Mo d i fie d 
(include all common decks) ___________________________________________________ _ 

Approved 8y __________________________ _ 



The purpose of this form is to initiate a mini-build of the 
requested changes into the current build level. The scope of 
the changes requested and the impacts of making these changes 
must be adequately described. This is the only way to make 
changes to a system after the feature code cutoff for that 
build has occurred. 

E:~~~~12£: Name of the person submitting the change. 
O~l:: Date of the request. 
fSB_HYmh~Ll Number of PSR being fixed. 

~bE~k_1b~~A_tihl~b_~Re!% 
S.Lti_l,Ql_S~~l~J!'jJ Change affects the closed shop NOS system. 
ID1~gtatl~n_'a!al~g: A correction is necessary to the INTI, 
INT2, DEVI, or A170INT catalog{s). 
St~o~=~l~n~_tiDSl~f: Change affects only the Virtual State 
execution of NOS/VE. 
losl~11a!1~D __ fLA~~~Y~~~: A correction to the existing 
Installation Procedures is necessary (ie. such as moving a 
module to 8 different library) 
eL~du~1_S~t: Change affects an assembler or compiler. 
~Z_fL~!g!~2~_tl~~~d_Sb~R: Change is necessary to the system(s) 
provided in the 52 lab. 
SES_l~~l~: Some change is necessary to the SES toots used to 
generate systems (ie. linker, loader, Simulator, etc.). 
lllQ_HOS_S~~l~m: A change Is required to the A170 Version of 
the NOS operating system. 
D~~1_S1~1~_Sxsl~m: Change affects the Dual State software. 

C.tl.ti.k.il_.El~: Fixes a problem which cannot be avoided either 
operationally, or programmed around. 
~~J~~_e~E: A serious problem for which a PSR exists and is a 
considerable nuisance to system users. 
Dlb~L: Fixes to nuisance, or time wasting problems. 

t:1Q.d.s.~1_.l.s.t~D1i!1~.t.s.: Name of the modset(s) which need to be 
added to the affected software. 

Q~~.!s.S. ___ t11H1!f.i~.sP Name(s) of module(s) which require 
recoropitation or assembly as a result of this change. 

Q~S~tlRl1~o_~!_fL~bl~m: A description of the severity of the 
problem being fixed, and the scope of the changes caused by 
integrating this change. 

A22t~~~1: AuthoriZation signature for the change, 
requires T.e. McGee approval for NOS/VE, and J.M. 
approval for A170 NOS. 

currently 
Graffius 

82 



C1 
Advanced Systems Integration Bujld Activity Matrix 

07/2CJ/81 

+._._--_._--+---------+-----_._-_._-+--_ .. _---+-------_._+_._-_. __ ._-+,----------+._----_._--+--------+-------.--+ 
: NOS/VE :NOS A170 : S/Bld Cy; : Start: Feature: PSR : Complete: Xmit to : Return: Complete: 
: Build :Sui'd : Freeze : Build: Code : Code : Build : SVlOPS, : from : BCR : 
: : Interfaces: : Cutoff : Cutoff : lTOfAC : SVLDPS : : 

: : (0.15) : (0/5) : : : : 
: 4: : 4125 : 4/25 : 5/1: 5/8 : 612 : 6/4 : 
+--_._----+._--------+---_._._-_._--+-_ .. _----+-_._._-----+--.------+----------+------.---+--------+.----.-----+ 
: I: : 6/3 : 6/10 : 6/24 : 7/4: 7/9 : 7/14 : : 7/14 : 
+-_._. __ ._--+---_._--_._+._----_._----+--_._-_._+-----_._--+--------+-----_._. __ ._+--_._._----+._-------+---_._----+ 
: :: (01 S) : ( 01 S ) : : 
: 5: : 6/16 : 6/16 6/20: 6/23 : 7/10 7/14 

t 
I 

• • 
J 

• • • t 6 

7/16 

6a 

: (O/S) : 
: 7 J 14 

: 7123 

: (O/S) : 
: 8118 

: 7114 

8/6 : 8118 

: 8/18 

(DIS) 
7/18 

8/21 

(DIS) 
S/22 

f • • • 
• • 
I • 

'. • 
1121 8/7 

8/26 

• • 

• t 

8/12 

8/26 

8127 

• • 

• f 

: l 10/9 : 10/16: 10/30 : 11/3 11/5: 11/11: 11/11 : 
+'---"-'-'---+ -.----.----+ -.----------+ --_._---+._--------+ -.-----.--+------.-.---+--.-.------+----.----+--------+ 
t M 11/12 : 11/19: 1212 ~ 12/12 12/16 12/19 : : 12/19 : 
+--------+. __ ._----_._+------_._---+--_._--_.+_._-------+--------+----------+---------.+--------+------.-.--+ 



fi les maintained by Integration 

Source F i I es 

USER 
; NUMBERS 

• • • • 

INTl 
OEVI 

: INT 1 
: DEVI , , 
• • 

INTI 
DEVl 

: Al70INT 

1 • • • 

• • 
1 
t 

LIBRARY 

INT2JINTI 
DEVi 

INT 1 
DEVI 

INTI 
DEVI 

: FILENAME(S) 

• I 

• I 

t • • • 

NQSVEPl 

OSlP I 

VE170Pl 

A1700Pl 
OPl 

PROCLIB 

NOSlIST 

: MTRlCB,EIElCB, 
: EILCB,STSLCB 

LIBlCB 

: FUNCTION 

MADIFY program library 
of Virtual State code 

MADIfY program library 
of NOS/VE Program 
Interface decks. 

MAOIFY program library 
of NOS code which 
supports NOS/VE. 

MODIFY program library 
which matches NOS 
system level for S2. 
(Installed on FMD 
unit 43). 

Command language 
Procedure library 
(Documented in 
Integration Proced­
ures Notebook). 

Contains compilationl 
: assembly listings of 
: all Virtual State 
• , 
• • 

code. Accessed via 
lISTNVE procedure. 

linker directives fi'es 
for monitor, 
error interface, 
task services, and 
user modules 
respectively. 

01 

07129/81 

: VERSION/FREQUENCY Of UPDATE 

: Matches the level of system 
: binaries contained in same 
: catalog. Updated on periodic 

scheduled basis. 

Matches the 'evel of system 
: binaries contained In same 
: catalog. Updated once for 

each build cycle. 

Matches the .evel of system 
binaries contained in same 
catalog. Updated on 
periodic scheduled basis. 

Updated on a scheduled basis. 
: (CPUMTR which supports NOS/VE 
: is on VE110Pl and D~l 
: on this PL). 

Matches the level of system 
binaries contained in the same 
catalog, and accesses the 
appropriate build tool 
versions. Scheduled updates. 

: Matches the leve. of system 
: binaries contained in the 
: same catalog. 
• • 

Matches the level of 
system binaries contained 
in the same catalog. 

: EI is built using the 
: SlOEI procedure, whi Ie 

NVEBIlD is used for EIE. 

• I 

• • 

" • • • 

• • 

• • • I 

, 
• 

• t 
I • • • 

, 
• 

• • 

• • • • 

I • • • 

+-----------+-----------------+--------------------------+-~--------------------------------+ 
: IN T 1 
: OEVI 

: NEWDKPl 
• t 

• , , 
• 

Meaningless Madlfy 
program library 
which users may 
sub.stltute for 
as an al tern ate 
base when using 
Integration compilatton 

: Never, disappears when SCU 
: conversion is complete. 
• • • • 
I • • • • t 



files maintained tJy Integration 

Source Files 

INT2/INTl : MAP(offset)K 
DEVI : 

INTI 
: DEV1 
• • 

INTl 
: DEV1 

: DEVl 

• t 

• • 

• • 
I • 

VQlTST3 

lDR,<offset)K 

KEYOESC 

: procedures. 

Contajns link map of 
Dual State system 

: created, where MAPOK 
: is a standalone NOS/VE 

system and MAP256K 
is a 256K NOS Dual 
S tate system. 

Contains simulator 
: commands for a 
: batch mode test 

of the NOS/VE 
system. 

Contains VE generator 
: directives for Dual 
: State offset toads. 

Contains Keypoint 
descriptions for 
the Keypoint report 
program XXM7KEY. 

• t 

02 

07/29/81 

Each Vel ink of a Dua. 
: State system. 
• • 
'. • • • • • • t 

: As required by system 
: content changes. 

As required by system 
: content or structure 
: changes. 

: Non-standard, updated 
: upon development's request. 
• • 
t • 

• • 
• • • • • t 

I • • • 
I • • • 
t • • • 

• • • t 

• • 
• • • • 



Fi les maintained by Integration 

Object Text Files 

INT 1 
DEVI 

INTl 
DEVl 

INTI 
: DEVI 
t 
1 

INTI 
Of VI 

INT 1 
OEVl 

• t 

• • • • • • 

XLMMTR 

XlJIIF,XlJ12F 
XlJ13F,XlJIFf 

XOlG,XSCl, 
XllMCII 

: X.UCNTl,XUTEST, 
: XUSORT,XUUXER1, 

XUUTt,XUVlEX, 
XUVlEX2 

Object text file 
of modules which 
execute in monitor 
mode. 

Object text files 
: of task services 
: modules which run in 
: job mode with 

ring attributes 
11F,12f,13F and 
lFF respectively. 

Object text files 
: of the Object library 
: Generator, System 

Command language, 
and Object Text 
conver tar. 

Object text files 
of user test 
programs added 
to the system. 

MTRXHDR, : Header files which 
STSXHDR, : name the monitor, 
EIEXHDR, task services, and 

: error interface 
: segment files, 
: produced by 

03 

07/29./81 

: Each recompilation of a 
: monitor mode module. 

• • 
: Each recompilation of 
: a task services 
: module within these libraries. 
t 
t 

Each recompilation of 
: these utilities. 
• • 

Each recompi'ation of 
: these tests 
• • • • 

Each Vel ink of the 
s.ystem. 

I • • I 

• • • • • • 
• • • • 

• • • • 
• t 

• • • • 
• • .. • 

• • • • 

• • 

:: VELINK. : 
+-----------+._-------------_._-+--------_._._-_._------_. __ ._._-+-_._----------_. __ ._-----------------+ 

• • 

INTI 
DEVI 

: IN T1 
: DE V 1 
• • • • 

: MTRXOST, 
: STSXOST, 
: EIEXOST 
• • • • • • 

, 
• 
: STSXIOI thru 
: STSX118 
• t 

Outboard symbol 
: table fi tes for 
: monitor, task 
: services, and 

error interfac·e 
produced by 
VElINK. 

The task services 
segment files 
produced by 
VElINK. 

Each Vel ink of the 
system. 

Each Vel ink of the 
system. 

• • • • 

+-----------+-----------------+--------------------------+----------------------------------+ 
INTI 
DEVl 

: MTRXIOI thru 
: MTRXI05 
• • 

The monitor 
segment fites 
produced by 

Each Velink of the 
system. 



Fj 'es maintained by Integration 

Object Text Files 

1 
I 

: INT 1 
: DEVI 
" " 
I 

" 

INTI 
: DEVI 
1 

" 

• • 
: EIEXIOI thru 

£:1£)(102 

• • • • 

XCPUMTR 

: VELINK. 

The er ror i nter­
: face segment 
: files produced 
: by VElINK. 

A110 NOS CPU 
Monitor module 
binaries. 

04 

071ZQl81 

Each Veliok of a 
Dual State system. 

Each recompjlation due to 
modset corrections or 
changes to the base A170 

:: : NOS leyel system. 

• • 

• • • • 

+-----------+------_._---_._-_._+---_._-------_._--------_._--+-----_._---------------_._-_._----_._+ 
INT2/INTI : lGB(offset)K 

: DEVl 

INT2/INTI CKPT 
OEVI 

• • , t 

• • • • • • , . 
• • 

INT21INTI CKPTO thru 
DEVI CKPT2 

A170INT 

• • • I 

I , 
• • 

NOSTEXT 

The Virtual Envir­
: onment file pro-
: duced by VEGEN. 

The checkpoint file 
from the last 
simulation run as a 
result of running 
the VQlTST3 test 
commands. 

The simulated disk 
files produced 
during the batch 
mode simulation 
run. 

A170 NOS .system 
: text for current 
: NOS version. 

Each VElINK/VEGEN 
: of the system. 

Each batch mode simul­
ation of NOS/VE. 

: Each batch mode simul­
: stlon of NOS/VE. 
t • 

: Each A170 NOS update. 

• • • • 

• , 
• • 

+-_._-------+._._-_._----_._----_._+----------------_.---_._----+-----------_._---------------------+ 

I 
t 

• • • • 

DEVI 

: DE VI 
• • 

DEVI 

• t 

XXM 7K EY 

: XXM70S1 
• J 

• , 

Program to report 
NOS/VE Keypoints 
encountered during 
a simulation run. 

Standalone version 
~ of NOS/VE deadstart 
~f i Ie generator. 

Non-standard ISWl 
: utility. 
• I 

• • 
Non-standard, 

: unsupported. 

: XXOSGEN : Dual state : Upon demand. 
: : deadstart fi Ie : 
: : generator. : 

• • • • 

• t 

• • 
• • : 

+._--------_._+-----------------+---_._---------------------+._---------_._--------------_._---_._+ 
DEVl XIDST,XIDSK, 

: XIOSP,XIHlP, 
: XIRES 

: INT21INTl : TP(offset)K 

: CYBER 180 PPU 
: programs. 

: Dual State 

: Upon demand. 
• • 

: Each time a new 



Fi les maintained by Integration 

Object Text Fites 

~ OEV 1 • • • • 
deadstart fife 
created by the NVESYS 
procedure. 

05 

07/29/81 

deadstart file is 
generated (upon 
demand). 

• • • " 



El 
52 Machine Usage Document 

01129/81 

BUILD N HELPFUL HINTS 

This paper describes helpful hints on how to use build N of 
NOS/VE. It is intended to supplement, rather than to replace, the 
standard NOS/VE documentation. If you have any qustions or 
suggestions, please see Tom McGee or Geoff Barrett. Appendix A 
lists background documents and how to obtain them. 

To obtain additional copies of this document while running on SNIOl 
at Arden Hills, please type: 

GET,NHINTS/UN=GSB 
SES.FORMAl NHINTS TXTfORM 

Date 

12/22/80 
2112181 
6/9181 
6/19/81 

Changes 

Revisions for NOS/VE Phase C 
Additional revisions for NOS/VE Phase C 
Revisions for NOS/VE Build N 
Additional revisions for NOS/VE Build N 

Bui Id N, June 1981 

• • 

• • • , 
• • • • 
• • 

• • 

• • • • 



E1-1 
52 Machine Usage Document 

07/29/81 

El.O MAJOR CHARACTERISTICS OF THIS BUILD 

o The CYBll/eI compiler has been modified to support the SIS 
conformance procedure cat ling sequence. In conjunction with 
this change, the NOS/VE object text (Vl.2) has been revised to 
support building PYAs with a negative byte offset. The result 
of this is that all NOS/VE object files and object libraries 
produced prior to build N are incompatible with the build N 
object code uti I ities, toader and compi lers. Therefore, all 
users of CYBll/eI and NOS/VE build N and build a must recompile 
their modules with the new compiler and reconvert the object 
files and rebuild their NOS/VE object libraries •• 11 code 
generators should be upgraded to the new object text 
definitions. 

Any attempt to use the previous versions of the object text on 
build N will result in the appropriate processor issuing a 
di agnostic. 

NOTE: SES tools and the SCITOII and CITOll converters will 
continue to support the non CYBll/CI Vl.l object 
text. 

o 00 NOT assign the loader map file to the terminal in interactive 
jobs (i .e., f i I e 'OUTPUT' or t SOUTPUT'). This wi II cause a 
system crash. file names are assigned to the map file via 
SET_PROGRAM_OPTICNS, EXECUTE, and PMPSEXECUTE (program 
description). 

o Permanent Fi les now work. NOS/VE permanent files are perwanent 
on Iy untt I a crash or deadstart. 

The files JEDN, SYSlIB and CYBILIS that everyone had to GET from 
the NOS should now be attached as NOS/VE permanent files as 
fotlo ... Sl 

ATTACH .USER1.SYSlIB fAMIlY=FAMllYl 
ATTACH .USfRl.CYBllIB FAMllY:FAMIlYl 
ATTACH .USERl.JEO fAMIlY-FAMIlYl " For editor" 

However users who use the SETUP, CITOII and COL commands (which 
we strongly recommend) should never have to attach these two 
files. If it Is necessary to do so, be aware that the names 

Build N, June 1981 

• • 
'. • 

• t 

• t 

• • 

• • • • 

• t 

• • • • 

• ., 
• • • • 



El-2 
52 Machine Usage Document 

fl.0 MAJOR CHARACTERISTICS OF THIS BUILD 

FAMILYl, USERl wilt be changing to $SYSTEM, $SYSTEM during build 
o. 

o A temporary procedure is available that will perform several 
functions that will be handled by validation and permanent files 
in the Rl system. The procedure is named SETUP, and should be 
cal'e~ first thing after gaining access to NOS/VE in interactive 
jobs and immediatel, after the LOGIN command in batch Jobs. 

o A parameter has been added to the AMPSOPEN request. See 
lProgram Interface status - File Management' for further 
information. 

o Issuing the LOGIN command will cause a permanent file catalog to 
be created for the current user/famif,. Do: 

LOGIN user=xxx 

Interactive jobs have family-NVE and batch jobs have 
famity=REMOTE. An example: 

LOGIN user=Zll 
DEFINE .ZlZ.A 

For an Interactive job creates: 

.lZZ.A FAMIlY=NVE 

For a batch job it creates: 

.ZZZ.A FAMIlY=REMOTE 

Note that the current user name may be specified by the SUSER 
construct -- as in: 

ATTACH $USER.A 

LOGIN should be the first command issued in a batch Job; 
followed by SETUP. For an interactive job, the first NOS/VE 
command issued should be SETUP since interactive users login to 
the NOS NAM. 

o Job and standard files, as documented in the 'Command Interface 
ERS, Rev.B', are available. 

Build N, June lq81 

• • • • 

• • • • 

• • 

• t 

• • 

• • 
• • 

• • 

• • • • 



£1-3 
52 Machine Usage Document 

01129/81 

El.O MAJOR CHARACTERISTICS OF THIS BUILD 

o For interactive jobs, files INPUT, OUTPUT and COMMAND are 
connected (assigned) to the terminal automatically for every 
task in a job. The RMPSREQUEST_TERMINAl request must be used to 
assign files other than COMMAND, INPUT, OUTPUT to a terminal 
device. 

o You can cause Set to output the commands being executed from a 
procedure or include fite by doing: 

connect_fite SECHO SOUTPUT 

o The NDS/VE editor is available on (856) file JEON/un-IFP. The 
editor can be accessed by the EDIT nonstandard command. If you 
want more information about the editor, contact Jack Bohnhoff. 

o The RE~IND and RETURN commands are availab'e. These commands 
accept NAME rather than FILE REFERENCE parameters; this should 
only present e problem in an SCl procedure. All fMxxx commands 
(like FMRETURN) have been removed: 

RETURN A 
RETURN (A,B,C) 

Files cannot be returned if they are open. 

o Files ~l!l be returned at job termination. Files ~it I also be 
closed at task termination. 

o The procedure ClPSGET_STNO_INP has been deleted. 
ClPSPUT_STNO_OUT will be deleted in Build 0 or P. 
should convert to use BAM. 

Procedure 
Everyone 

o When sharing executable files via permanent files (compilers, 
libraries, etc.) you should make the file an object library 
(via the COL uti lity). By sharing object libraries (insteed of 
object files) the code is actually shared among al' tasks using 
the library (the jibrary is not copied to another segment but is 
executed directly). 

o The fite(s) specified by the FILE parameter on the EXECUTE 
command may nct be object library fites. 

o The program option PRESET has no effect since the file system 
does not yet support presetting, 

Build N, June 1981 

• , 
• t 

• • 

t • 

• 1 

I • • • 
• • • t 

• , 

• , 
• • • • 



S2 Machine Usage Document 

El.O MAJOR CHARACTERISTICS OF THIS BUILD 
El.l NOS/VE USAGE EXAMPLES 

fl.l.1 EXECUTING PROGRAMS 

lIMITATIONS 

El-4 

071Zql81 

The file(s) specified by the FILE parameter on the EXECUTE 
c omm and may not be 0 b j e c t lib r a r'Y f i 'f e s • 

The program option PRESET has no effect since the file system 
does not yet support presetting. 

If you are an interactive user, DO NOT cause the map to be 
written to the file 'OUTPUT) or I$OUTPUTl (SET_PROGRAM_OPTIONS 
or EXECUTE) - doing so will crash the system. 

PROCESS 

Create an object text file by campi ling a program on NOS. Then 
perform the following steps on NOS/VEl 

Acquire any necessary libraries (which are o~t quoted in text 
embedded directives) by either: 

o Attaching them from the system catalog, either explicitly or 
via prolog 

or 
o Creatjng the library file via the object library generator 

or 
o Staging the library file from NOS to NOS/VE using the 

GET_FILE command (with 856 conversion mode specified). 

Get the file from NOS and convert the object text fite from the 
CI data mapping to II data mapping by executing the CITOII 
command. 

load and execute the program via the EXECUTE command, specifying 
the necessary libraries with the LIBRARY parameter; 
alternatively SET_08JECT_LIST may be used to Include the 
libraries ina" subsequent EXECUTE commands. 

Stage the loadmap from NOS/VE to NOS for printing by using 
either: 

o The REPLACE_FILE command with Ab conversion mode specified 

Build N, June 1981 

t • 

• • 
• • 

• • • • • • • • 

• • • • • • • I 

• • 



El-5 
S2 Machine Usage Document 

07/29/81 

Fl.0 MAJOR CHARACTERISTICS Of THIS BUILD 
£1.1.1 EXECUTING PROGRAMS 

if running on the simulator. 
or 

o The PRINT command if running on the hardware. 

EXAMPLES 

The fotlowing is an example command sequence for executing a 
program not requiring any libraries for loading: 

Assumptions: all mOdules to be loaded are contained on the NOS 
permanent file 'citxtrs'. 

SETUP JlN JLNX 
CllOII elTXTRS 
EXECUTE CITXTRS PARAMETER-'program parameters' 
PRINT lO.OMAP 

The fo'towing is an example command sequence for executing a 
program requir ingl ibrari es for 'oadi ng: 

Assumptions: the NOS permanent file lcitxtrs. contains object text 
generated by the CYBIl CI compiler. The compiler modules reference 
procedures contained on the user library 'my I ib' and the CYBIl 
run-time library. These libraries have been generated on NOS/VE 
and saved on NOS. 

SETUP JlN JlNX 
GET_FILE MYlIB C-856 
SET_PROGRAM_OPTIONS MAP_OPTIONS=(B,e,X,S) 
CITOII CITXTRS 
EXECUTE CITXTRS 'program parameters' lIBRARY-MYlIB 
PRINT lDAOMAP 

El.l.2 CREATE OBJECT LIBRARY ON NOS/VE AND SAVE IT ON NOS 

o ClG0170 is NOS permanent fi Ie name for file containing CI object 
text for modules to be inctuded in the library. 

o IITEXT180 is NOS/VE local file name for file containing II 
object text for modules to be includ~d in the library. 

o lIBRARY180 is NOS/VE local file name for the library being 
created. 

Build N, June 1981 

• • 

• • 

• • • • 

• • 
• • 

• • • • 

• • • • 

• • 



52 Machine Usage Document 

£1.0 MAJOR CHARACTERISTICS OF THIS BUILD 
£1.1.2 CREATE OBJECT LIBRARY ON NOSfVE AND SAVE IT ON NOS 

El-6 

07/29/81 

_N_NN_N ___ N ____ ~_N __ N ______ N_N ___ N ___ N __ N ___ N_N_N_N ____ N_N_~ _______ _ 

o ILI6170 is NOS permanent file name for file containing the 
library. 

NOS/VE Job Commands 

SETUP JlN JlNX 
CITOll ClG0170 IITEXT180 
COL 
ADO LIBRARY=IITEXT180 
GENERATE lIBRARY=lIBRARY180 
QUIT 
REPLACE_FILE lIBRARY180 IlIB170 C=B56 

Fl.l.3 MODIFY A PREVIOUSLY SAVeD OBJECT LIBRARY 

Notes 

o IlIB170 is NOS permanent fite name for fi'e containg the old 
library 

o LIBRARY180 is NOS/VE local file name for fite containing the old 
fibrary 

o CMODl70 is NOS permanent fi'e name for file containing Cl object 
text for the new module 

o NEWIIMODUlE is NOS/VE local file name for file containing II 
object text for the new module 

o NEWlIBRARY is NOS/VE tocal file name for the library being 
created 

o NlIB170 is NOS local flte name for new library 

NOS/VE Job Commands 

SETUP JLN JlNX 
GET_FILE lIBRARY180 IlIB170 C·S56 
CITOII CH00110 NEWIIMOOULE 
COt 
ADO lIBRARY=lIBRARY180 
~EPlACE fIlE=NEWIIMODUlE 
GENERATE lIBRARY·NEWLIBRARY 
QUIT 
REPLACE_FILE NEWlIBRARY NlIB170 C=856 

• • 

, 
t 

• • 

• • 

• • 

I • • • • • • • 

t • • , 
• • 
, 
• 

• • 



S2 Machine Usage Document 

El.O MAJOR CHARACTERISTICS Of THIS BUILD 
El.l.4 ROUTE AN INPUT FILE FROM NOS TO NOS/VE 

El.l.4 ROUTE AN INPUT FILE FROM NOS TO NOS/VE 

Running from an interactive terminal, enter: 

GET,filename. 
ROUTE,fi lename,OC=LP,fC!.:RH. 

El-7 

07/29/81 

The input file which is sent to NOS/VE must be in 6/12 ASCII (or 
display code subset). The Job file must bea single partition NOS 
record containing NOS/VE commands. Mutti partition input files are 
not supported by NOS/VE so NOS data fi'es used by the program must 
be obtained through the GET_FILE command. 

El.l.5 PRINT A NOS/VE FILE 

At NOS/VE job termination the Job log will be automatically 
returned to NOS. The Job log witl be appended to the NOS/VE output 
fi Ie OUTPUT. NOS/VE print files must be written by BAM as 8/8 
ASCII RT=W. Print files will be converted from 8/8 ASCII RTaW to 
Display Code (64 character set - upper case only) when they are 
sent to NOS. Support for ASCII print files (8/12 ASCII) wi.I be 
added at a later build. All NOS/VE output files will appear In the 
NOS output queue (NOS H,D display) with the name IRHFxxx as a 
banner. In order to route a NOS/VE print file to NOS, the 
following command must be contained in the NOS/VE Job file or be 
entered frow the system console via the K display: 

jobname - name that the pr intfi Ie wi.I have in the NOS/VE 
output queue. 

filename - name of the local NOS/VE file created by BAM that 
is to be printed. 

PR - specifies that the file is a print file (must always be 
Pi< ) • 

REMOTE - name of the NOS/VE fami ty for the print file (must 
always be REMOTE). 

Example of JMROUTE command' 

Build N, June lQSl 

• t 

• t 

• • • • • t 

• • 

• t 

, 
t 

• • 

• • • • 



S2 Machine Usage Document 

El.O MAJOR CHARACTERISTICS Of THIS BUILD 
El.l.5 PRINT A NOS/VE FILE 

El-8 

07/29/81 

The SeL PRINT command can also be used to print files. 
See the command ERS for details. 

On the NOS side, the printer must be physically and 
logically on. To logical'y turn the printer on, under DSD 
enter: 
ON32. 
fORM32,TM. 

Build N, June 1981 

• • 
I • 

• • 
I • 



£2-1 
S2 Machine Usage Document 

07/29/81 

E2.0 COMMAND INTERfACE STATUS 

E2.1.1 LOGIN TO NOS/VE 

To initially login to NOS/VE via TAF, you must cause the first 
login attempt to fail. This can be done by responding to the 
"FAMILY:" login prompt with something like: "A,A,A". This must be 
done because the system wil. try to connect the term1nat to IAF on 
the first logjn attempt no matter what is typed. To access TAF do 
the following on the second "FAMIlYI" prompt: 

You can access TAF from IAF by doing "HElLO,TAF" or by answering 
TAF to the system prompt "APPLICATION:". 

E2.1.2 TERMINAL USAGE 

1) The question mark (1) is the prompt to enter a NOS/VE 
command. Any normal NOS/VE command can now be entered. The 
fut I ASCII char acter set, lower or upper case and all speci at 
characters, can be used. 

2) A lOGOUT command will cause the NOS/VE Interactive Job to 
terminate. A new NOS/VE Interactive Job can then be started by 
responding to the 'APPLICATION:' prompt with TAF. 

3) Terminal breaks (control-T and control-P) now work. It is 
possible to terminate a task or to suspend a task and enter a 
new task to process SeL commands. When a break is entered, the 
options available to the terminal user are: 

R - resume from point of interruption 

T - terminate task; n.b. commands running in the job monitor 

• • 

• • 

• • • • 

• • 

• • 



52 Machine Usage Document 

f2.0 COMMAND INTERFACE STATUS 
E2.1.2 TERMINAL USAGE 

E2-2 

01129/81 

task (e.g. COpy, EXECUTE etc.) cannot be terKinated. 

S - process Set commands. To resume execution at the point of 
interruption use the HCS command THEXIT (temporary). 

E2.1.3 NOS/VE PROGRAM ACCESS TO THE TERMINAL 

I} Interactive NOS/VE jobs are able to obtain terminal input 
through the AMPSGET_NEXT or AMPSGET_PARTIAl program interface 
which can be used by both task services and user ring 
programs. Interactive programs which use this interface should 
be able to handle both upper and lower case input in order to 
make them more convenient to use in both 64 and 96 character 
set modes. 

SMOD 
$CHAR 
SCLOCK 
SDATE 
$FNAME 
$INTEGER 
$NAMf 
SCRD 
$ R.EAl 
$STRING 
$STRlEN 
SSTRREP 
$SUBSTR 
STIME 
$VAR 
fSPECIFIED 
SSET_COUNT 
SVAlUE_COUNT 
$RANGE 
'DEBUG_MODE_ON 
SPARAMETER_lIST 
!PARAMETER 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 

Bujld N, June 1981 

• • 
• • • • 

, 
• 

• • 

• • • • • • 
t • , 
• • • 

• • • t 



S2 Machine Usage Document 

E2.0 COMMAND INTERfACE STATUS 
E2.2.0~O.O.1 System Access Commands 

E2-3 

07/2Ql81 

___ N ___________________ -------_____________________________________ _ 

t..2mmJD.gS_ 

LINK_USER 
LOGIN 
t OGOUT 

unchanged 
new- *1 
new 

*1 A master catalog is created for the user who issues LOGIN 
command. Ne parameters are necessary. 

t.ilmm.anJi_ 

REQUEST_TERMINAL 

C.llmmiD~_ 

FllF 
CCpy 
DUMP_FILE 
COMPARE 

t..QmmllJl.d_ 

HCS GET 
HCS REPLACE 
DEFINE 
ATTACH 
PURGE 
CHAN GE 
PERMIT 
DELETE_PERMIT 
DEfINE_CATALOG 
PURGE_CATALOG 
DELETE_CATAlOG_PERMIT 
PERMIT_CATALOG 

not available 

updated to Rev 8 ERS 
unch an ge d 
unchanged 
unchanged 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
new 
new 

Build N, June 1981 

• • • • 
• • 

I • 

" • • • 
• • 

• • 



52 Machine Usage Document 

E2.0 COMMAND INTERFACE STATUS 
E2.5 PERMANENT FILE MANAGEMENT 

E2-4 

07/29/81 

~N_N4N __ N ___ N~ __ ~NN_N ___ N __ NN ___ NNN ___ NNNN_~~* ________ _____________ _ 

Build N Permanent file Program Interface Deficiencies 

In order to access the NOS/VE permanent fites of a user, a 
master catalog must exist for that user. At release one time, 
the validation facility wi.1 create a master catalog for a user 
when the user is created. At build N, however, the validation 
facility does not exist. To circumvent this problem, the LOGIN 
command has been modified to create a master catalog for the 
user being logged in. Thus, once a user has logged in it will 
be possible to perform NOS/VE permanent file operations for 
that user. Since a LOGIN command wi' I eventually be required 
for alt jobs, it should be no hardship to include it in jobs 
starting with bui Id N. 

2. Permanent files on NOS/VE are only permanent until a NOS/V€ 
deadstart. 

3. The WAIT parameter for ATTACH is always treated 8S if 
PFCSNO_WAIT is specified. 

PROC/PROCEND 
SET_COMMANO_lIST 
OISPLAY_COMMANO_lIST 
REPEAT/UNTIL 
WHIlf/WHILEND 
DECLARE_VARIABLE 
REMOVE __ VARIA8lE 
BlOCK/BLOCKEND 
lOOP/LOOPEND 
FOR/fORENO 
IF/ELSEIf/ELSE/IFENO 
C YC If. 
f.' XI T 
INCLUDE 
CDLLECT_TEXT 
DISPLAY_VALUE 
EXIT_PROC 
ACCEPT 
00 
CONNECT_fILE 
DISCONNECT_fILE 
DISPLAY_CONNECTION 

S.1at.u~ 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged - *1 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchan ged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
parameter changes 
added status parameter 
new 
new 
new 

Build N, June lq81 

• • 
t • • • • • 

• • 

• • : 

• t 

• • 
t 
I 

• • 



S2 Machine Usage Document 

E2.0 COMMAND INTERFACE STATUS 
E2.6 SeL STATEMENTS AND PROCEDURES 

change HCS variable 
display HCS variable 

unchanged 
unchanged 

E2-5 

07/2<:;181 

*1 VarJables can no longer be declared with the same names as the 
boolean constants. 

RESUME 
TERMINATE 

'-l2.mmicsl._ 

CREATE_OBJECT_LIBRARY 
OISPLA.Y_L IBRARY 
SELECT_DISPLAY_LEVEL 
ADO 
R EPl ACE 
COMBINE 
CREATE_MODULE 
B INO_MODUlE 
DEfINE_PROGRAM 
DELETE 
CHANGE 
SATISFY 
REORDfR 
GENERATE 
QUIT 
CI to II Conversion 

new 
new 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchan ge d 
unchanged 
unchanged 
unchanged 
unch an ge d 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 

1) An II object fi Ie or I ibrary can be displ ayed using the 
nonstandard command ORJlIST. 
E)( amp I e I 

OBJLIST II_OBJECT LISTING 

Where II_OBJECT is an II object fi Ie or object' ibrary and 
LISTING is the file containing the formatted object text 
listing. 

Build N, June 1981 

• • • • 

• • 

I • • • 



52 Machine Usage Document 

E2.0 COMMAND INTERFACE STATUS 
f2.8 OBJECT CODE MAINTENANCE 

E2-6 

07/29/81 

--------------------------------------------------------~-----------
2) Users of CREATE_OBJECT_LIBRARY and OBJlIST must now get the 

programs to NOS/VE via the following commands prior to their 
execution. 

ATTACH .USERl.SYSLIB FAMllY=FAMIlYl 
ATTACH .USER1.CYBIlI8 fAMIlY=FAMIlYl 
SETOl AOD=SYSlIB 

The default system prolog used by the SETUP command eliminates 
the necessity of issuing these commands. Using SETUP is the 
recommended approach. 

3) CREATE_OBJECT_lI3RARY expects Vl.2 of the object text and VO.l 
object 'ibraries. This is incompatible with previous releases. 
A. I NCS/VE object files and object libraries must be 
regenerated. 

~.Qmm.e.oJ:l_ 

DISPLAY_lOG UPON changed to OUTPUT - *1 

*1 type· <system: sys : job) instead of type • (system: account 
: engineering: statistics: job: job_statistic) 

~~~DIDg - If you print display log output on a line printer, you 
must use the PRINT <file name> SHIFT-YES command or YOU wil' get
one I ine per page.

t,Qmmao.Q_

HCS JMROUTf

C. Qm!lLi!l~_

SET_OBJECT_lIST
SET_PROGRAM_OPTIONS

unchanged

unchanged
unchanged

Build N, June 1981

• •

• • • •

, , ,
•

• ,

52 Machine Usage Document

E2.0 COMMAND INTERFACE STATUS
E2.ll PRCGRAM EXECUTION

E2-7

07J2CJ/81

_NNMN __ NN_NNN ____________ N_N ________________________________ N ______ _

DISPLAY_PROGRAM
EXEC UTE
"name call"
PUSH_DEBUG_MODE
POP_DEBUG_MODE
SET_DEBUG_MODE
S ET_DEBUG_R ING
TERMINATE_TASK

unchen ged
unchanged - *2
unchanged - *1
un changed
unchanged
unchanged
unchanged
new

*1 j~£nl~~ - "name call" works on'y for SeL procedures unless a
FILE command has been issued to specify that the flee is an
object file and the structure is data. The FILE commend must
be reissued every time the file is attached or brought over
from NOS.

*2 If YCU are an interactive user, do not specify the values
'OUTPUT' or 'SOUTPUT' for the parameter MAP; doing so will
crash the system.

SUBM.IT
DISPLAY_JOB_STATUS
DROP_JOB
P~INT
DROP_FILE
DISPLAY_PRINT_STATUS

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

In this buitd, severat NOS/VE commands have been implemented as
Sel procedures in order to make the system look more like the final
version_ Users are urged to use these procedures rather than their
interim counterparts since the interim commands will ultimately be
wi thdrawn.

In order to have these procedures available in your Job, you
should use the SeTUP command using the default system prolog. The
procedures will be loca' files in your job, so name conflicts
should be avoided.

Sui Id N, June 1981

• • • •
t ,

• • • • • ,

• t

• •
• • • • • •

• I

• •

52 Machine Usage Document

E2.0 COMMAND INTERFACE STATUS
£2.13.1 GET_FILE

E2-8

07/2Q/81

___ 8 ___ _

This procedure i s identical to the version documented in the
NOS/VE ERS except that the default conversion is 146. We intend to
change the ERS to use this default as we II •

£2.13.2 REPLACE_FILE

This procedure i s identical to the version documented in the
NOS/VE ERS except that the default conversion i s A6. We intend to
change the ERS to use this default as we I I •

EZ.13.3 PPINT

This procedure is similar to the version documented in the
NOS/VE ERS except that it returns the local flte after touting it
to NOS. This is a deficiency of the JMROUTE command as well.

In addition, the PRINT command does not add carriage control to
the file to be printed, if necessary. This can be done by using
the SHIFT parameter of the command.

The following is a description of the build N PRINT command:

print file=list of <file>
(s~ift=<boolean)]

Cstatus=<status variable)]

file: This par.ameter .specifies a list of files to be printed.
These files witl be returned after the files are routed
to the printer.

shift: s: This parameter specifies whether or not carriage
control characters are to be added to the fite.

Omission will cause NO to be assumed.

status: See ERROR HANDLING.

Build N, June 1981

t •

t • • t

• ,

• •

• •

I
t

t •

,
• • t

52 Machine Usage Document

£2.0 COMMAND INTERfACE STATUS
E2.13.4 CREATE_OBJECT_LIBRARY : COL

E2-9

07/2Ql81

__ ftN __ _____________ _

This procedure ii identical to the version documented in the
NOS/VE ERS except that only the command alias COL is available.

The following commands provide a nonstandard means of performing
various frequently performed functions. They will be superceded in
subsequent builds by standard commands and capabilities.

E2.14.1 SETUP

The purpose of this command is to provide a "prolog" capability
for a user. This Is an interim command and witt be withdrawn when
the full validation and permanent file capabilities are available.

Only a single SETUP command should be issued in a batch Job or
terminal session. Any SETUP commands issued after the first will
fail due to the presence of the LINK_USER command. The SETUP
command should be the first NOS/VE command issued in an interactive
Job and should be issued Immediately following the LOGIN com~and in
a batch job.

setup user-(name)
password=(name)
[prolog=<name)l
[system_prolog-<name)l
[family=(name)l
[status=(~tatus variable)]

user: uJ This parameter specifies the name of the user
responsible for the processing to be accomplished.

password: PWI This parameter specifies the user password.
The password together with the user and family name will
be used to construct a link_user command. This 'Ink_user
command witl be processed as a part of the setup
command.

prolog: p: This parameter specifies the name of a NOS file
which wit I be copied to the current session environment
(get operation). This file wi" then be interpreted

Build N, June 1981

t • • t

• •

• • • •

• •

I • • •
,
• • • • ,
• •
• t

• •
• •

t • • •

• • • •

52 Machine Usage Document

E2.0 COMMAND INTERfACE STATUS
E2.14.1 SETUP

E2-10

07/29/81

using the include capability. Omission will cause a file
name of PROLOG to be used.

system_prolog: spt This parameter specifies the name of a
NOS/VE fi Ie, wi thin the USERl catalog, which wi II be
attached to the current session environment (ATTACH
operetion). This fi Ie wi.I then be interpreted using the
include capability. Omission wilt cause a file named
SYSPROf to be used. The functions performed by SYSPROF
can be determined by either doing a COpy SYSPROf or COpy
NOTE command to see the contents at a terminal.

family: f: This parameter specifies the name of the family to
be accessed. Omission witl cause a family name of NVE to
be used.

status: See ERROR HANDLING.

E2.l4.2CITOI1

The purpose of this command is to get a C1 object file or object
library from NOS and to convert it to an II object file suitable
for processing by the NOS/VE loader and/or object library
gener ator.

citoi i ci=<NOS file name)
[ii=(NOS/VE Ifn)]
[user=(NOS user name)]
[status-(status variable)]

cit This parameter specifies the NOS permanent file name of
the Cl object file or object library to be converted.

iit This parameter specifies the NOS/WE file name on which the
converted (i .e. II) object fj 'e is to be written.

Omission ~jll cause the CI fite name to be used.

user: This parameter specifies the NOS user name in whose
catalog the CI object fi te is located.

Omission will cause the user name of the user jssuing the
command to be used.

status: See ERROR HANDLING.

Build N, June 1981

• •
I

• • •
• • • •
• • • •
• • • •

• •

S2 Machine Usage Document

E2.0 COMMAND INTERFACE STATUS
E2.14.3 OBJlIST

E2.14.3 OBJlIST

E2-11

07/29/81

The purpose of this command is to produce a formatted listing of
a NOS/VE object module produced on NOS/VE (i.e. II object text).

objlist object=<'fn)
[tist=(lfn)]
[status=<status variable>]

object: 01 This parameter specifies the object file or object
library to be listed.

list: II This parameter specifies the rite on which the
formatted listing Is to be written.

Omission will cause the listing to be printed on the
locel printer.

status: See ERROR HANDLING.

The LINK_USER cowmand is the same as documented in the NOS/VE
command interface with the exception that the alias LIU is
supported in the current system and the CHARGE and PROJECT
parameters are optional (and in fact not useful in the current
environment sjnce we disable that feature on the NOS side).

E2.14.5 GfT

This command is an interim implementation of the final GET_fILE
command that is documen.ted in the NOS/VE command interface. Alt
users should use the GET_FILE procedure now avai lable as the GET
command will be withdrawn in subsequent builds.

The GET command obtains a copy of a perwanent file residing on
the 170. The 170 permanent fj Ie can be either a direct or an
indirect access permanent file. All parameters on the GET command
are positional. On'y the 'tfn' parameter is required. A LINK_USER
command must be issued (for the 170 family on which the permanent
fi Ie resides) prior to issuing the GET ccmmand. The form~t of the
GET command isl

Build H, June 1981

• •

• •
t •

• I

• t

• • • •

• •

52 Machine Usage Document

E2.0 COMMAND INTERFACE STATUS
E2.14.5 GET

E2-12

011ZCJ/81

Ifn (tocal file name) - This is the name of the loca' NOS/Ve
file to which the 170 permanent file wil' be transferred.

pfn (permanent file name) - This is the name of the 170
permanent file that is to be accessed. If this parameter is
omitted then l1fn1 wi'l be used for the 170 permanent file
name.

pw (password) - This is the password that will be used to
access the 110 permanent file if a password is required to
access the file on the 170.

un (user name) - This is the user name (alternate catalog) on
which the 170 permanent file resides.

fm (family) - This is the family on which the 170 permanent
file resides. Currently the on'y 110 family on the S2 Dual
State system is NVE.

cs (conversion atternatives) - This parameter specifies the
type of conversion that is performed by the IRHF on files
transferred from 110 to 180. If this parameter is omitted
then a defau't of 860 will be assumed. Values for this
parameter are:

860: Basic Binary

The full 60 bits of each 170 word are transferred to the
lower 60 bits of each 64 bit 180 word. The upper 4 bits
of each 64 bit 180 word are set to O. The file is written
to 180 using BAM with Block Type: System and Record Type
= Undefined (RT=U) so no control information is inserted
in the file. The 170 logical record structure is dropped
(i.e., EORs are deleted causing the logical records to be
packed together.

856& C180 Binary

The lower 56 bits (7 8 bit bytes) of each 170 word are
packed into contiguous 8 bit bytes on the 180 (i.e., 7 8
bit bytes from the first 170 word and 1 8 bit byte from
the second 110 word go into the first 180 word etc.). The
170 logical record structure (EORs) are dropped. The way
that the 180 file which was transferred frDm 170 is
accessed should correspond to the method used to create it
on the 180 originally (assuming that the fite originated

Build N, June lq81

I •

52 Machine Usage Document

E2.0 COMMAND INTERFACE STATUS
E2.14.5 GET

on the 180}.

A6: 6/12 ASCII

E2-13

Al70 6/12 ASCII character fj les (used by XEOIT and most
SES utilities) are converted to 180 8/8 ASCII with Block
Type = System) and Record Type = Variable (RT=W). The 170
logical record structure EORs are dropped.

AS: 8/12 ASCII

170 8/12 ASCII character files are converted to 180 8/8
ASCII with Block Type = System and Record Type • Variable
(RT=W). The 170 logicat record structure (EORs) are
dropped.

064: Display Code 64 Character Set

170 Display Code character files are converted to upper
case 180 8/8 ASCII with Block Type = System and Record
Type = Variable (RT=W). The 170 logicat record structure
EORs are dropped.

Example of GET command:

LIU,US=(FAB,NVE),PA=FABX,A=7136,PR-73E08802.
GET,TEXT,TEXTbI2",NVE,A6.

Note: When the GET command is used on the Simulator, the
file specified by the 'pfn' parameter must be a 170
file which is local to the simulator Job.

E2.14.6 REPLACE

This command is an interim imptementation of the final
REPLACE_fILE command that is documented in the NOS/VE command
interface. AI' users should use the REPLACE_FILE procedure now
available as the REPLACE command will be withdrawn in subsequent
builds.

The REPLACE command transfers a copy of a 180 focal file to a
permanent file on the 170. If a permanent fi'e of the same name
does not exist for the specified user (catalog), a direct acccess
permanent file is created. If a direct access permanent file of
the same name already exists in the catalog and the file can be
attached with write mode then the existing direct access file is

Bui Id N, June lq81

• •

• •

• •

• • • •

$2 Machine Usage Document

E2.0 COMMAND INTERFACE STATUS
E2.14.6 REPLACE

E2-14

07/29/81

overwritten with the file from the 180. If an indirect access
permanent file of the same name atready exists in the catalog then
the indirect access file is replaced by the file from the 180. An
existing indirect access file wit. 021 be changed to a direct
access file if the user.s indirect access file size limit is
exceeded. REPLACE command. Atl parameters Alf P8rameterson the
REPLACE command are positional. Only the tlfnt parameter is
required. A LINK_USER coromand must be issued (for the 170 family
on which the permanent file resides) prior to issuing the REPLACE
command. The format of the REPLACE command is:

'fn (local file name) - This is the name of the local NOS/VE
fife which wilt be transferred to a permanent file on the
170.

prn (permanent file name) - This is the name of the 170
permanent fi'e that is to be created or replaced. If this
parameter is omitted then 'Ifn' wi'. be used for the 170
permanent file name.

pw (password) - This is the password that wilt be associated
with & newt, created direct access file or which is used
to gain access to an already existing direct or indirect
access permanent fi Ie.

un (user name) - This is the user name (catalog) on which an
existing 170 direct or indirect access file resides. This
parameter is i Ilegsl if the file does not exist.

fm (family) - This is the fami I, on which the 170 permanent
file is to reside. Currently the only 170 family on the
52 Dual State system is NVE.

ca (conver'on alternatives) - This parameter specifies the
type of conversion that is performed by the IRHf on files
transferred from 180 to 170. If this parameter is omitted
then a default of 860 will be assumed. Values fer this
parameter are:

8601 Basic Binary

The lower 60 bits of each 64 bit 180 word are transferred
to the fut I 60 bits of each 110 word. The upper 4 bits of
each 64 bit 180 word are discarded. The 180 file which is
to be transferred should be written by BAM with Bleck Type
~ System and Record Type = Undefind (RT-U). The fite is

Build N, June lQ81

S2 Machine Usage Document

E2.0 COMMAND INTERFACE STATUS
1=.2.14.6 REPlAC,E

E2-15

07/29/81

transferred to the 170 as a singte logical record (i.e.
files with multiple fORs cannot be created on the 170 from
the 180).

856: C180 Binary

Groups of 7 contiguous 8 bit bytes from the 180 will be
transferred to the lower 56 bits of each 170 word (I.e.
the first 7 8 bit bytes from the first 180 word go to the
'ower 56 bits of the first 170 word, the 8th 8 bit byte of
the first 180 word and the first 6 8 bit bytes from the
second 180 word go to the lower 56 bits of the second 170
word etc.). The way that the 180 fite to be transferred
is created does not matter because the entire structure of
the 180 'i'e is preserved on the 170. The file is
transferred to the 110 as a single logicat record.

A6: 6/12 ASCII

A 180 8/8 ASCII character fj Ie with Block Type = System
and Record Type = Variable (RT-W) is converted to a 170
6/12 ASCII file (used by XEDIT and most SES utilities).
The 'ile is transferred to the 170 as a single logical
record.

ASI 8/12 ASCII

A 180 8/8 ASCII characterf. Ie with Btock Type = System
and Record Type = Variable (RT=W) is converted to a 170
8/12 ASCII file. The 170 file can be routed direct.y to
the printer with the 170 ROUTE command with the EC-A9
parameter. The file is transferred to the 170 as a single
logical record.

064: Display Code 64 Character Set

A 180 8/8 ASCII character fi Ie with Block Type • Sy.stem
and Record Type = Variable (RT=W) is converted to a 170
Display Code file with lower case characters mapped to
upper case. ASCII specjal characters that do not have a
Display Code equivalent are converted to Display Code
blanks. The file is transferred to the 170 as a single
log i cat r e cor d.

Example of REPLACE command!

lIU,US·(FAB,NVE),PA-FABX,A-7136,PR-73E08802.
REPlACE,MYfIlE,fIlEB56",NVE,B56.

Build N, June 1981

52 Machine Usage Document

EZ.O COMMAND INTERFACe STATUS
E2.14.6 REPLACE

E2-16

07/29/81

Note: When the REPLACE command is used on the Simulator, the
fi1e specified by the 'prnt parameter will become a 170
fite which is local to the simulator Job.

Build N, June lQSl

• •

E3-1
S2 Machine Usage Oocument

01129/81

E3.0 PROGRAM INTERfACE STATUS

The 'status· co'umn indicates whether the procedure is unchanged
from the previous build, modified from the previous build or not
available in this build. Footnotes are numbered within each
section.

e.t~,k~.dilL~_

ClPSSCAN_PARAM_lIST
ClPSTEST_PARAMETER
ClPSGET_KEYWORO
ClPSGET_SET_COUNT
ClPSGET_VAlUE_COUNT
ClPSTEST_RANGE
ClP$GEI_VAlUE
ClPSOEClARE_VARIABlE
ClPSREMOVE_VARIARLE
ClP$READ_VARIABlE
ClP$WRITE_VARIABlE
CLPSSCAN_COMMAND_FIlE
ClP$END_SCAN_COMMANO_FIlE
ClP$SCAN_COMMAND_lINE
ClPSPUSH/POP COMMAND LIST
ClPSCREATE_FIlE_CONNECTION
ClP$DElETE_FIlE_CONNECTION

f.J:{1~JJ1ll.c.~_

OSP$fORMAT_MESSAGE
OSPSSET_STATUS_ABNORMAl
OSP$APPEND_STATUS_PARAMETER
OSPSAPPEND_STATUS_INTEGER

un chan ged
unchanged
un chan ged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
new
new

unchanged
unchanged
unchanged
unchanged

Build N, June 1981

• t

,
t

• •

• • • •

S2 Machine Usage Document

E3.0 PROGRA~ INTERFACE STATUS
E3.3 RESOURCE MANAGEMENT

£3-2

01129/81

NNNNNNMNNN_WNNNNN __ NN _____________________________ N ___ --------------

fL~k~~UL~_

RMPSREQUEST_MASS_STORAGE
RMPSREQUEST_TERMINAl

unchanged
unchanged

All terminal attributes can be specified on the
RMP$REQUEST_TERMINAl cal' but only the following are
operational:

o auto_input
o transparent_mode
o prompt_file
o prompt_string

Files ass1gned to a terminal device can be accessed via the
following BAM requests:

o AMP$OPEN
o AMPSGET_NEXT
o AMPSGET_DIRECT
o AMPSGET_PARTIAl

_ 0 A~PSPUT_NEXT

o AMPSPUT_DIRECT
o AMPSPUT_PARTIAl
o AMPSClOSE

eL~~I~UL~_

PMP$fXIT
PMPSEXECUTE
PMPSTERMINATE
PMP$AWAIT_TASK_TERMINATION
PMPSMOOUlE_TABlE_ADDRESS
PMPSENTRY_POINT_TABlE_AOORESS
PMP$PUSH_JOB_DEBUG_MODE
PMPSPOP_JOB_OESUG_MOOE
PMPSSET_JOB_DEBUG_MODE
PMPSJOB_OEBUG_MOOE_ON
PMPSPUSH_TASK_DEBUG_MOOE
PMPSSET_TASK_OEBUG_MOOE
PMP$TASK_DEBUG_MOOE_ON

unchanged
unchanged - *1
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

Build N, June lQSl

• •

• •

• • ,
I

• •

• t

• I

• •

52 Machine Usage Document

E3.0 PROGRAM INTERFACe STATUS
E3.4 PROGRAM EXECUTION

PMPSSET_DEBUG_RING
PMPSDEBUG_RING
PMPSCHANGE_DEBUG_lIBRARY_lIST
PMPSPOP_TASK_DEBUG_MODE

unchan ged
unchanged
unchanged
unchanged

E3-3

07/2Q/81

*1 00 NOT specify the vatues 'SOUTPUT' or 'OUTPUT' for the field
lOAD_MAP_FIlE of the program description - doing so will crash
the system.

e.'[it~,e ihu:~_

OSPSAWAIT_ACTIVITY_COMPlETION
PMPSCEFINE_QUEUE
PMPSREMOVE_QUEUE
PMPSCONNECT_QUEUE
PMPSDISCONNECT_QUEUE
PMPSSENO_TO_QUEUE
PMP$RECEIVE_FROM_QUEUE
PMP$STATUS_QUEUE
PMPSSTATUS_QUEUES_DEFINEO
'"PIGET_QUEUE_LIMITS

E 3.6 _.cQ!::UllllDti_fRQ~f.s.slti.G

f.t.n".ej;J.u.t,il_

PMPSESTABLISH_CONDITION_HANDLER
P"PSDISESTABLISH_COND_HANDLER
PMPSCAUSE_CONOITION
PMP$CONTINUE_TO_CAUSE
PMPSTEST_CONOITION_HANDlER
PMP'~AlIOATE_PRfVIOUS_SAVE_AREA
PMPSESTABlISH_DEBUG_CfF
OSPSSET_STATUS_FROM_CONOITION

e. I..2" ~,gltt~_

PMPSGET_TIME

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
un changed
unchanged
new

unchanged

Build N, June 1981

• • • •

• • • ,

• f

• •

• •
• •

$2 Machine Usage Document

E3.0 PROGRAM INTERFACE STATUS
E3.1 PROGRAM SERVICES

E3-4

07/29/81

~N~N ____________ N __ ~_~ ___ N __ NN _______ N __ N ___________ N~_~ _______ N __

PMPSGET_"ICROSECOND_ClOCK
PMPSGET_TASK_CP_TIME
PMP$GET_OATE
PMPSGET_USER_IDENTIFICATON
PMPSGET_ACCOUNT_PROJECT
PMPSGET_JOB_NAMES
PMP$GfT_JOB_ID
PMP$GET_JOB_MODf
P MP'SGET _PROGR AM
PMPSGET_ lASK._IO
PMPSMANAGE_SENSE_SWITCHES
PMPSGET_OS_VERSION
PMP5GET_PROceSSOR_ATTRIBUTES
PMPSDEFINE_OEBUG_ENTRY
PMPSGET_OEBUG_ENTRY
PMP$MODIFY_DEBUG_ENTRY
PMPSREMOVE_OEBUG_ENTRY

f.t~ &~~h.l!..e_

PMP$lOG
PMPSlOG_ASCII

Sequential Access
Byte_Addressable Access
Record Access
Segment Access
W_System Specified
W_User Specified
U_System Specified
U_User Specified
f_System Specified
F_User Specified

AMP$DESCRIBE_NEW_FIlE
AMPSFIlE
AMPSGET_fIlE_ATTRIBUTES
A MPSFETC H

unchanged
unchanged
unchanged
unchanged
unchanged
un chan ged
unchanged
unchan ged
unchanged
unchanged
unchanged
unchanged
unchanged
unchan ged
unchanged
unchanged
unchanged

s..ta1..u.s.

unchanged
unchanged

*1
unchanged
*1
unchanged
unchanged
neM
un chan ged
new
unchanged
new

unchanged
unchanged
unchanged
un chan ged

Build N, June 1981

• •

• • • •

• • • • • •

• I

• • • t

52 Machine Usage Document

E3.0 PROGRAM INTERFACE STATUS
E3.9 fILE MANAGEMENT

AMPSSTORE
AMPSCOPY_FIlE
AMPSPENAME
AMPSRETURN_LOCAl_FIlE
AMPSOPEN
AMPSClOSE
AMPSFETCH_ACCESS_INfOPMATION
AMP$SKIP
AMP$REWIND
AMPSWRITE_ENO_PARTITION
AMPSGET_NEXT
A"PSGET_DIRECT
AMP5GET_PARTIAl
AMPSGET_PARTIAl_DIRECT
AMPS PUT_NEXT
AMPSPUT_OIRECT
AMP$PUT_PARTIAL
AMPSPUT_PARTIAl_DIRECT
AMP$SEEK_OIRECT
AMPSGET_SEGMENT_POINTER
AMP$SET_SEGMENT_EOI
AMP$SET_SEGMENT_POSITION
AMP$SET_lOCAl_NAME_ABNORMAl
AMPSSET_FILE_INSTANCE_ABNORMAl
AMPSACCESS_METHOD
AMPSFETCH_FAP_POINTER
AMP$STORE_FAP_POINTER

unchanged
new
new
new

E3-5

07/29/81

unchanged added parameter
unchanged
unchanged
*4
*2
new
*1, *5
unchanged
*1, *6
unchanged
*1
unchanged
*1, *3
unchanged
unchanged
unchanged
unchanged
unchanged
new
new
new
new
unchanged

*1 user specified blocking is now supported

*2 AMPSREWINO
The WAIT parameter on the procedure call is not supported.

*3 AMPSPUT_PARTIAl
PUT_PARTIAL with the TERM_OPTION = AMCSSTART does n~l start a
new record.

*4 AMP$SKIP
If the number of units to skip • 0 and the file is positioned
mid-unit the file will remain positioned mid-unit.

*5 AMP$GET_NEXT
A GET_NEXT with a working_storage length • 0 will return an
undefined file position. A request of zero length is invalid
and will result in abnormal termination in later bui Ids.

*6 AMPSGET_PARTIAL
A GET_PARTIAL of record type = undefined never returns file

Bui Id N, June lq81

• •

• •
• t

• • • •
I •
t
t

• • • •

S2 Machine Usage Document

E3.0 PROGRAM INTERFACE STATUS
E3.9 fILE MANAGEMENT

position of end-or-record.

ft.2Sl,g.l.U:.e_

PFPSOEf INE
PFP$ATTACH
PfP$PURGE
PfP$CHANGE
PfPSPERfllIT
PFPSOElETE_'ERMIT
PFPSOEfINE_CATAlOG
PfPSPURGE_CATALOG
PFP$PERMIT_CATAlDG
PFP$OELETE_CATAlOG_PERMIT

parameter changes
parameter changes
parameter changes
parameter changes
parameter changes
parameter changes
parameter changes
parameter changes
parameter changes
parameter changes

E3-6

071lCJI81

Build N Permanent File Program Interface Deficiencies

1. In order to access the NOS/VE permanent files of a user, a
master catalog must exist for that user. At release one time,
the val idation facil i ty wi I. create a master catalog for a user
when the user i screated. At bui Id N, however, the val idation
facility does not exist. To circumvent this problem, the LOGIN
command has been modified to create a master catalog for the
user being logged in. Thus, once a user has logged in it will
be possible to perform NOS/VE permanent file operations for
that oser. Since a LOGIN command wit I eventually be required
for atl Jobs, it should be no hardship to include it In Jobs
starting with buitd N.

2. Permanent files on the NOS/VE are only permanent until B

NOS/VE deadstart.

3. The ~AIT parameter for ATTACH is always treated as if
PFC$NO_WAIT is specified.

MMP$AOVISF_IN
MMP$AOVISE_OUT
MMP$AOVISE_OUT_IN
MMPSWRITE_MOOIFIEO_PAGfS
MMP$CREATE_SEGMENT

un ch an Qed
unchanged
unchanged
unchanged
unchanged

Build N, June lQal

• •
I
I

I •
• •
t • • •
• •

• •

• • • I

• •
• I

E3-1
S2 Machine Usage Document

07/29/81

E3.0 PROGRAM INTERfACE STATUS
E3.11 MEMORY MANAGEMENT
____ ¥_N ________ ~ ______________________________________ _____________ _

MMPSOElETE_SEGMENT
MMPSSTORE_SEGMENT_ATTRIBUTES
MMPSFETCH_SEGMENT_ATTRIBUTES
MMPSVERIFY_ACCESS
MMPSFREE
MMPSlOCK_PAGES
MMPSUNLOCK_PAGES
MMPSFETCH_PVA_UNWRITTEN_PAGES

SFPSESTABLISH_STATISTIC
SfPSENABlf_STATISTIC
SFPSDISABlE_STATISTIC
SFPSOISESTABlISH_STATISTIC
SFPSEMIT_STATISTIC
SFPSEMIT_SYSTEM_STATISTIC

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

new
new
new
neM
new
new

The following summarizes the exception code ranges currently
assigned to NOS/VE. These code ranges represent a finer breakdown
than the one specified in the SIS for internal NOS/VE development
purposes. However, it is important to remember that only the
product identifjers documented in the SIS may appear in error
messages.

Common Modules
Common Code Generator

Exception Code

1 - 158,Q99
159,000 - lS9,G9Q
160,000 - 169,999

160,000 - 163,999
164,000 - 164,999
165,000 - 165,999
166,000 - 166,999

167,000 - 167999
170,000 - 119,999
180,000 - 189,999
190,000 - lQ9,999

9,000 - 9,999
8,000 - 8,999

Product
Identifier Product Name

Reserved
Sy
AM
SA
IN
Jf
SR
eM
Cl
JM
II

System Core
Basic Access Methods
8asic Access
local Name Mgr
Job File Mgr
Conversion Services
Configuration Mgmt
Command language
Job Management
loader

Buitd H, June 1981

• •

t •
• •

I •

I • • I

• •

:
• • • •

• • • •

I •

S2 Machine Usage Document

E3.0 PROGRAM INTERfACE STATUS
f3.!3 NOS/VE EXCEPTIONS

200,000 - 209,Q99
200,000 - 204,999

205,000 - 205,999
210,000 - 219,999

210,000 - 210,999
211,000 - 211,999
212,COO - 212,999
213,000 - 213,999
214,000 - 214,999
215,000 215,999
216,000 - 216,999
217,000 - 217,999
218,000 - 218,999
219,000 - 219,QQQ

220,000 - 229,999
221,000 - 221,999
222,000 - 222,999

230,000 - 239,999
240,000 - 24Q,999
250,000 - 259,9QQ
260,000 - 269,999
270,000 - 279,999
280,000 - 289,999
290,000 - 299,999
300,000 - 309,999
310,000 - 319,999
320,000 - 329,999
340,000 - 349,999
330,000 - 339,999
500,000 - 509,999
510,000 - 519,999
520,000 - 529,999
530,000 - 539,999
540,000 - 549,Q99
550,000 - 559,999
560,QCO - 569,999
570,000 - 579,999
580,OCO - 589,999
590,000 - 599,999
600,000 - 609,999
610,000 - 619,999
620,000 - 629,99Q
640,000 - 649,999

MM
MM
MM
OS
OS
MT
10
10
OM
ML
IF
TM
TM
JS
PF
S1
PU
PM
RM
OF
AV
Ie
RH
oc
DB
MS
~eserved

SF
US
AA
AG
Al
AP
SA
CA
CB
CV
FT
PA
Pl
SM
SC
DB

Memory Management
Monitor Level
Task level
Operating System
as
EXEC
11S 110
Tape I/O
Device Management
Memory Link
Interactive
TM Monitor
TM Task
Job Swappers

E3-8

Permanent File Management
Set M an age men t
Permanent File Utilities
Program Management
Resource Management
Operator Facility
User Administrator
Interstate Communication
Remote Host facility
Object Code Utilities
Deadstart/Recovery
Maintenance Services

Statistics Fee.
User Errors
Advanced Access Method
ALGOL
Assembly language
APl
BASIC
Conversion Aids System
COBOL
CYBll
FORTRAN
PA SC Al (W i r t h)
Pl/l
Sort Merge
Source Code utility
Debug

Buitd N, June 1981

• • • • • • • • • • • •

t ,
• •

• • • • • • • •

• • • •
• •
• •
• •
• ,

• • • •

• I

• •
• •
:

S2 Machine Usage Document

E4.0 DUAL STATE DEADSTART AND OPERATION

E4-1

07/29/81

o The system is configured to run with three fMD units (41, 42 and
43).

o Set the DIS panel to deadstart from the primary system disk.
This is Un i t 43 for all Bui I d N systems.

0 Push DIS button
0 Select ttO" dispfay
0 Select '"Htt di sp I ay
0 Enter CM::10000
0 Enter (CR)

0 En ter date/time

Wait for deadstart to complete.
Notel The deadstart tape DUAlbN (which is currentty installed on
unit 43) is found jn the area in the northeast corner of the room
where the tape cabinet is found.

o FMD Unit 43

This unit contains the folJowing:

A170 NOS (Sui Id 6 level), eTI, CMSE., EI binaries, NOS
deadstart files
Files associated with user number LIBRARY
F i • es assoc i a ted with user number SES
Files associated with DEVI, DEV2, REll, INTI.

o FMO Unit 41

This is a scratch unit

o FMO Unit 42

Buitd N, June 1961

• I

• •

• • • •

• •

• •

S2 Machine Usage Document

E4.0 DUAL STATE DEADSTART AND OPERATION
E4.2 CURRENT DUAL STATE CONFIGURATION

E4-2

071ZQ181

--
This unit contains the following:

NDS/VE Development Area Pl's and Member Pl's
NOS/VE Deadstart Files to be tested (saved in individual
user's catalogs)
Fifes associated with user number INT2

1) The convention used for creating user numbers on NOS/VE is as
follows:

o Your user number will be your initialse
o Your password wil' be these 3 letters followed by the letter

t x' •
o You must see COMSOURCE (R.K.

a user index

2) PF dumping and loading

Cooper - x3092) to be assigned

You may use "SES.DUMPPf" on SN/IOI to dump your permanent fies
to tape, and then 'oad them onto your user number on A170 NOS
using "SES.lOADPF". Documentation on how to use these SES
procedure and what their parameters are is included in the SES
"User's Guide, or they can be obtained by typing:

"SES,HElP.DUMPPf" and "SES,HELP.lOAOPF".

o The following file must be available in your catalog on the S2S

TPXXXK contains a NOS/VE deadstart image. This must be a copy
of the dual state deadstart images avai table from the I ink
procedures.

CMIMAGE, PPIMAGE, RGIMAGf are "fast" files, which are built from
TPXXXK the first time you deadstart NOS/VE. These fi les are
then used on subsequent deadstart attempts. Before a new TPXXXK
can be used, these "fast" files must be purged off your user
number.

o For Build N: Mount the disk labeled "DAHL-large sector" on 844
unit 0 (other disks witl not work). The HCS dlsk driver (for

Build N, June 1981

• t

• •

• ,
• •

52 Machine Usage Document

E4.0 DUAL STATE DEADSTART AND OPERATION
E4.4 NOS/VE DEADSTART

sma •• sector 844's) wil) not work in Build N.

E4-3

07/29/81

o For Builds 0 greater than 05: Mount one of the disks labeled "S2
SIN 104 system scratch" on 844 unit 1. This cannot be a large
sector disk! For Builds n > 23 and 0 > 5 the remote
host/interactive 170 binaries must be sysedited into the running
system until the deadstart tape has been updated:

X.DIS.
USER,SCAT,SCATX.
where "scat" = DEVI for Sui Id N
"scat" = INTl for build a
CALl,SYEDNV£.
DROP.

o Bring UP dual state:
X.UPMYVE (CAT-mycat, DEVl-scat)
where mycat = user catalog (as before'

scat = system ctalog - INT2, INTI or OEV2

o The UPMYVE job wil' display the foltowing:

RFQUEST *K* DISPLAY on the B display

Type K,n. where n is the control point number of the UPMYVE
job.

NOS/Vf Is currently generated and initialized on both NOS and
NOS/VE. All source and object libraries that make up the NOS/VE
system are produced on NOS and therefore must be converted from
their C1 to II counterparts. Other parts of installing and
initializing the system (e.g. building the SSYSTEM catalogue) are
performed by command language procedures on NOS/VE. Since the same
system will be deadstar many times in a closed shop environment, it
is advantageous to only perform the conversion from eI to II a
single time; save the resutts in the NOS file system and then
simpty bring the fi les back during deadstart.

The actual fi les that get tnstalled and loaded on each deadstart
are determined by a command language procedure (the system profile)
interpreted on NOS/VE. This procedure can be modified by each site
to initialize their NOS/VE environment in the most suitable
fashion. The process of building the system profile an of
performing the eI to II conversions is referred to as an
installation deadstart and the process of executing the system
profi Ie and of fetching previously converted files from NOS and
making them available in the NOS/VE file system is referred to as a
deadstart. A single command is avaitable to perform both an

Build N, June 1981

, ,
• •
I • • • • •

• • • •

• •

• • • •

• •

• • • • • t

• •

S2 Machine Usage Document
E4-4

07/2<1/81

E4.0 DUAL STATE DEADSTART AND OPERATION
E4.4 NOS/VE DEADSTART

installation deadstart and a deadstart.

E4.4.1 OS

The p~rpose of this command is to perform an installation
deadstart or a deadstart of NOS/VE.

ds [instal'=(boolean)J
r'oad_source_libraries=(boolean)l
['oad_products=(boolean)]
[status=(status variable)]

instalf : i: This parameter specjfies whether an instatlation
deadstart is to be performed. Valid specifications are!
TRUE - installation deadstart to be performed
FALSE - deadstart to be performed

Omission wilt cause a deadstart to be performed.

load_souree_libraries: lsi: This parameter specifies whether
SCU libraries are to be loaded. Valid specifications
af e:
TRUE - libraries are loaded
FALSE - libraries are not loaded

On the Arden Hil.s closed shop 52 system, the SCU
libraries to be loaded are:

OSLPI - operating system program interface
Subset of NQSVEPL - operating system source library

Omissjon will cause SCU libraries to be loaded.

load_products: 'p: This parameter specifies whether the
object libraries defining the current product set are to
be loaded. Valid specifications are:
TRUE - the products are loaded
FALSE - the products are not loaded

On the Arden Hitts closed shop S2 system, the product set
to be loaded consists of:

CYRIL
SCU

Omission wit. cause the product set to be loaded.

status: See ERROR HANDLING in the NOS/Ve ERS.

Buitd N, June 1q81

• • • •

,
•

• •

.,
t

• •

• •

t • • • • t

• • • •

E4-5
S2 Machine Usage Document

£4.0 DUAL STATE DEADSTART AND OPERATION
£4.4.1 OS

If you change any of the fo'towing decks you MUST use the
installation deadstart from your own catalog (with files CYBIlSO,
XlJOSl, and XlJlIB):

AMMTSA BAMOVR BAMPC4 8AMPC2 BAMPCl BAMPC 3 IIMRSE IIMRlE
IfMEXEC IIMA72H IIMTDEl IIMRUSM IIMDC2S oeMREO
DC MSDl OCMENO OC MlP aCMC PY ac MCRM OCMGEN
OCMOlG oeMeot DC MOBJ ac MC HA OCHOFH OCMADD
ac Meo M OCMSAT RHMQAF RHMQIP RHMSFM
RHMQTE RHMlCf RHMlOG RHMQRE
RHMWlf RHMRTN RHMGOM USORT UUSERI

E4.4.2 EXAMPLE Of NOS/VE INSTALLATION DEADSTART

Type
K,n. where n is the UPMYVE control point number.
K.lIU (your un,NVEl your_password.
K.GET,OS,DS"SCAT,NVE,A6.
K.DS TRUE fALSE fALSE.

The system is UP when the following message comes upt

SYSTEM IS NOW All UP AND RUNNING
WAITING fOR MORE INPUT

E4.4.3 EXAMPLE Of NOS/VE DEADSTART

OCMMUR
OCMMOMS
OCMNP
RHMlOF
RHMA12
UUTl

OCMSIM
oeHOEF
OCMOEl
RHMMlI
RHM12A

• •

t • • •
t
t
t
t

t •

The Integration system has had the installation deadstart run on
it. Also the files produced by the installation deadstart have
been made semi-private and are found on the catalog used in the
UPMYVE cal'.

• t

• •
Type (where OeVI is the same as the CAT=value in the UPMYVE
call):
K,n. where n is the UPMYVE conttol point number.
K.lIU (OEVI,NVE) OEVIX.
K.GET,DS,DS",NVE,A6.
K. OS.

The system is UP when the following message comes up:
SYSTEM IS NOW All UP AND RUNNING
WAITING FOR MORE INPUT

Build N, June 1981

t
t

t • • •
t • • •

I
I

• • • •

IIMRUM

OCMREP
oeMOt8
RH"OOP
RHMROU

• t

• •
• • • • • •

52 Machine Usage Document

E4.0 DUAL STATE DEADSTART AND OPERATION
£4.5 NOS/VE TERMINATION

o Bringing down dual state:

K.*SYEVE.

o If not a normal termination

K.*RUN.
K.*ENOlST.
K.*ENORUN.

To create an Express Deadstart Dump (EOo) tape:

1) Mount scratch tape (ring in) on a 9-track drive.

2) Push O/S button.

3) Select U (utillties) display.

4) Select E (EOO) display.

5) Set channel (S2=13).

6) Set ECUU (S2=01uu)

E • equipment

c = 1 for 67X drives
2 for 66X drives

uu = unit number of the tape drive to be used.

7) Answer "non zero inhibits rewind" with a CR.

8) Answer "dump number" with a CR.

q) Answer "dump controlware" with a CR.

E4-6

0112<"1181

* - Warning if this step is omitted, 0501 csnot process
the dump tape.

To create a I isting of the EOD tape:

Bui Id N, June lQS1

• •
• •

• •
• • • •

52 Machine Usage Document

E4.0 DUAL STATE DEADSTART AND OPERATION
E4.6 eSDI INfORMATION

2) GET,OSDI/UN*DEVI. (On SIN 101.)

or

GET,DSDI/UN:DEVI. (On S2.)

3) Create OSOI directives file:

A DSOI directive fife should include the fo'towlng:

IOUMR.
PROMR.
MEMMR.
PRORF.

£4-7

W,first_byte_sddress,last_byte_adress,asld. (where the
first_byte_address and last_byte_sddress are hex byte
addresses and asid is the asid of the segment to be
dumped)

4) Execute DSDI:

RFl,60000.
OSDI,M,D,I="input directives filed.

51 10 run (after the first time)'

(Does not read tape again.)

6) To run interactively:

Same as above, except to do W command must first dOl

OUTPUT,lISTfIL.

7) e110 OSD[information can be found in Chapter 10 of the
NOS SYSTEM MAINTENANCE Manual.

A170 DSDI info can be found in document ARH3060 -- GID
for AI70 NOS/52.

8uild N, June lq81

£4-8
52 Machine Usage Document

07/29/81

E4.0 DUAL STATE DEADSTART AND OPERATION
E4.7 AI70 NOS SHUTDOWN

Before leaving the mactdne, it is necessary to bring NOS
down. If NOS has crashed, a level 3 deadstart must be attempted
even if the on'y reason is to bring NOS down. To bring NOS down,
do the following:

1) Enter:

CHE
The screen wil' display:
CHECKPOINT SYSTEM.
Enter: carriage return

2) Make sure no mass storage device has a checkpoint rquested.
To do this, enter: E,M. If the display shows there are no
"etls in the status field, then at' devices are checkpointed
and you may continue.

3) Enter:
STEP.

4) Push deadstart button.

The following precautions must be taken when running dual
state with the Interim Memory link.

1) Drop IRHF170, PASSON and al' permanent f.'e partner jobs
before doing *SYEVE (via 2.STOP.)

2) 00 not rollout IRHFI7C, PASSON or permanent file partner Jobs
at any time.

3) Before doing a CHECKPOINT SYSTEM, drop IRHF170, PASSON and
al' permanent file partner jobs (via 2.STOP.)

4) If the system crashes a NOS/AI70 'evel 3 deadstart is the
preferred action. If for some reason you must do an MCU
recovery (REC command) do the fot lowing:

C.ear word 17(8) via:
qq.
17, O.

8uild N, June lq81

• •

E4-9
$2 Machine Usage Document

07/29/81

E4.0 DUAL STATE DEADSTART AND OPERATION
E4.8 INTERIM MEMORY LINK STORAGE MOVE CONSIDERATIONS

Enter REC on the MCU console.
finish up in A170 only mode (i.e., do not do an UPMYVEJ,
then do a level 3 deadstart. If YOU bring UP NOS/VE again
without doing a level 3 deadstart, the results are
unpredictable.

£4.9.1 OPERATOR INITIATION

To bring up the NOS/VE interactive facility do the fotlowing a

1) Bring up NOS/VE.

2) Bring UP NAM

At the system console enter:
3.NAM.

3) If IAf is not up at control point 1, enter:
I AF.

4) Bring up AI70 part of interactive:

TAfNVE.

Control point two must be free or rot .outable (i .e. NAM should
not be there). This a'so brings UP PASSON and the MlI subsystem
control points.

E4.9.2 OPERATOR TERMINATION

To terminate NOS/VE interactive any of the following may be
donet

3.CfO.DI,AP-TAF. (3 is the NAM control point number)

This is the preferred method. To bring NOS/VE interactive
back up, you must first do a 3.CFO.EN,AP=TAF.

3.CFO.DI,NE. (3 is the NAM control point number)

Build N, June 1981

,
•

• •

52 Machine Usage Document

E4.0 DUAL STATE DEADSTART AND OPERATION
£4.9.2 OPERATOR TERMINATION

E4-10

07/29/81

This terminates the entire network including IAF,RBF, etc.

E4.q.3 OTHER OPERATOR CAPABILITIES

To send a "shutdown warning" to all termina.s logged on to TAF
do:

3.CFO.IO,AP=TAF. (2 is the NAM control point number)

To send a message to al1 terminals do:

3.CFO.MSG,All,mesage. (Z is the NAM control point number)

PASSON has the ability to record various types of diagnostic
information. This capability is controlled via the sense
switches at the PASSON control point. To turn a sense switch
on (off) at control point N do:

N.ONSWX. (N.OFFSWX.)

Where X is the desired sense switch (1 to 6). The PASSON
default is alt sense switches off. It will take a short
period of time before PASSON detects a change tn a sense
switch end reacts to it. The sense switches currently used by
PASSON are:

~.tIl.t~b_!_

1

2

3

Networ k Tr ace

PASSON logic Trace To Dayfile

Memory link Trace To Dayfile

The following commands need to be entered from deadstart

o Push DIS button
o Select "un display
o Select "S" display
o Select TYPE=3
o Select eM-1
o Select CH=l

Build N, June 1981

t
t

t •
• • • t

• • ,
•

S2 Machine Usage Document

E4.0 DUAL STATE DEADSTART AND OPERATION
E4.10 TO RELOAD CONTROLWARE FOR THE DAHL-LARGE SECTOR 844

E4-11

07/2CJI81

~~.-----------------------------*--~--------------------------------
o Select fQ=O
o Select UN-the unit number of the system pack (43)
o Select "M" display
o Carriage return
o Type In new MA8 22" carriage return wait until LOADED
o Then redeadstart using section 1

E4.10.1 ROUTE AN INPUT FILE FROM e170 TO CISO

Through the system console, enter:

Type

x .0 IS.
USER,A,B.
GET,fi'ename.
where fi lename identifies the input fi Ie to be routed.
RDUTE,fIJename,OC=lp,FC=RH.

Support of 6-12 ASCII from the console (K display) causes the
foltowing changes:

ltif1l1_ IEA.tiS1.!lf'o_Ill_ IblfUI_ IEAH-S1.Alftl_IQ

11 A It [

12 .. I)]

13 # 1+ >
14 $ 1- <
15 (reversed I) /- •
16 . 1* • (single quote) ,
17 ? II J
18 { I, :
19 } IA to Il a - z (lower case)
/0 (underscore)

(The major incompatibilities with earlier systems are for
characters for; and '. To get a semicoton, type 16, to get
8 t (single quote), type 1*

Bui Id N, June 1981

I • • t

• • • •
• :I

• •

E5-1
S2 Machine Usage Document

07/2Q/81

E5.0 ARDEN HIllS DEVELOPMENT LAB SUPPORT BY INTEGRATION

What we have established in the lab so far is the following:

A 600 tape capacity tape rack for general use. If you project
would like to reserve 8 section of this tape rack, contact Tim
McGibbon or Bonnie Swierzbin.

A tape and disk cabinet for storage of system support
materials which this project will manage and keep up to date.
(If yOU have been using this cabinet for unauthorized storage
- beware. We have the key to the Jock!) More will be
published about the contents of this cabinet later, and a
cabinttindex wi II be posted in the lab to help locate where
things are supposed to be placed within the cabinet. This
cabinet is currently located in the southeast corner of the
lab, is 6 ft. 8 in. tat I, gray in color and with sl iding
door.

A two-level documentation rack for system documentation
listings. This contains the current build compilation listing
and Ijsting of the NOS/VE PPU routines, system link map. This
rack is along the west wall at this time.

A desk documentation rack for reference manuals and Tom
McGeefs collection of "how to" goodies. The objective is to
have this reference information at arm's length of the
console, but it is currently on top of the two-level unit by
the West wall.

At or near the console is a smal' notebook containing the NOS
System Programmer's Instant, NOS Application Programmer's
Instant, and the 180 Instruction codes.

Feel free to examine and use a.' of the above materials while in
the lab. Q~_o~t_£~m2~~_Q£_~~~~~_An~_~1_1h~~~_mal~L1Al~a_ Please
notify Tim McGibbon or Bonnie Swierzbin of any problems or
deficiencies of these materia's. leave a note if we are not
available.

Build N, June 1981

t ,

• I

• I

• •

• ,
• I

E5-2
S2 Machine Usage Document

07129/81

E5.0 ARDEN HIltS DEVELOPMENT LAB SUPPORT BY INTEGRATION

1.0 Hardware Overview

1.1 An Introduction to CYBER 180

1.2 C180 Instant

1.3 Model Independent Genera' Design Specification - ARH1700

2.0 NOS Reference Manuals

2.1 XEDIT V3.0 - 60455730

2.2 IAF VI.O User's Guide - 60455260

2.3 NOS Reference Manua. - Vol 1, 60435400 - Vol Z, 60445300

2.4 NOS Instant

2.5 NOS Operators Guide - 60435600

2.6 NOS Diagnostic Handbook

2.7 NOS AI70 ERS

2.8 NOS A170 GID - ARH3060

3.0 NOS/VE Reference Documents

3.1 Program Interface ERS - ARH3610 - obtained from Karen
Rubey (482-3966) or via SES.TOOlDOC

3.2 Command Interface ERS - ARH3609 - obteined from Karen
Rubey (482-3966) or via SES.TOOLDOC

3.3 NOS/VE Procedures and Conventions - SeSDOIO - obtained by
SfS.TOOlDOC

3.4 listing of all NOS/VE Modules - obtained by
SES,DEV1.LISTNVE. See Integration Procedures Notebook

Bui Id N, June 1981

• 1

• •

E5-3
52 Machine Usage Document

07/2<1181

£5.0 ARDEN HIllS DEVELOPMENT LAB SUPPORT BY INTEGRATION

for detai Is.

3.5 NOS/VE Internal Interface Maintenance Procedures

Memo avai'able from S.C. Wood.

3.6 Integration Procedures Notebook

Obtained by:

Acqulre,IPNOOC/UN=OEVl. SES.PRINT,IPNDOC.

4.0 Tools Reference Documents

4.1 eYBIl Interactive Debugger - ARH3142

4.2 SES User's Guide - ARH1833

4.3 eYBIl Specification - ARH2298

4.4 C180 Assembler ERS - ARH1693

4.5 Simulator ERS - ARH1729

4.6 VfGEN ERS - ARH2591

4.7 VEL INK ERS - ARH2816

4.8 Simulated 1/0 ERS - ARH3125

4.G Object Code Utilities ERS - ARH2922

4.10 CYBIl Implewentation Dependent Handbook - ARH3078

Build H, June 1981

• t

• "

,
I

• t

I •

Fl-l
NOS/VE USERS GUIDE

0112~/81

Fl.O INTRODUCTION

fl.l fUlfOSf

The purpose of this document is to give an overview of the
NOS/VE system (formerly catfed HCS) from the following
perspectives:

- Adding user tasks (tests)
- Modifying NOS/VE components
- Adding new NOS/VE components
- System usage - hardware and simulator
- Hints

Build N, June lQBl

NOS/VE USERS GUIDE

F2.0 ADDING USER TASKS TO NOS/VE

F2.0.1 INTRODUCTION

A user task can be defined
together that will execute
currently ring 11. This task
within task services (rings 1
allow the call. Data defined
referenced from rings 4-15.

F2.0.2 USING THE VE LINKER

F2-1

07129/81

as a group of modules linked
in the • user r Lng' of NOS/VE,

may make ea.'s to any gated entries
through 3) if the catl bracket will
within task services may not be

The general format of the LINK command is:

SES.VElINK LFL=CYBILIB lPF=LIBlCB OFL=LGO NS=lIBX

The lPf parameter specifies the file containing Virtual
Environment Linker variables that control the linkage. If the
LPF parameter is not specified, these variables default to values
provided by the VELINK procedure. The vatues for both the lFl
and OFl parameters may be anything the user requires - it is
these parameter that define the makeup of a given user task. The
VE linker ERS should be consulted for a detailed description of
the available parameters.

Every LINK command creates one unique user task. The value
for the NS parameter must be unique among all user tasks in a
given virtual environment build. The value given must be 4
characters and cannot be either MTRX or STSX, as these vatues are
used for monitor and task services.

The following example should help to clarify how to make the
modifications. Suppose we want to create two user tasks. The
first requires object files A and 8 from the current users
catalog and file CC from catalog INT2. The second task requires
object files 0 and E from the current catatog and fibrary file
LI. The necessary commands are'

ACQUIRE,CC/UN=INT2

Build N, June 1981

F2-2
NOS/VE USERS GUIDE

07/29/81

f2.0 ADDING USER TASKS TO NOS/VE
F2.0.2 USING THE VE LINKER

SES.VElINK lFl=CYBIlIB LPF=lIBlCB OFl=(A,B,CC) N$:lIBX
SES.VElINK lFl=(ll,CYBIlIBl lPF=tIBlCB OFl-(O,E) ••
NS-lIBZ

There are five things to note about this example:

1) The use of multiple values with the lfl and Ofl parameters (up
to 10).

2) The fact that local files are referenced first by the linker
before they are searched for in the user's catalog.

3} The use of a continuation (••) card.
4) The unjque NS values LIBX and tIBl.
5) The assumption that CV8llIS exists in the current catalog, or
is a'ready local to the Job. If neither of these cases is true,
then CVBIlIS must be ACQUIRE'd from the catalog which contains
the desired version. The same assumption holds for lIBlCB.

The changes to be to the VElOCM file are described below.
Immediately after the directives:

lOAOJOB STSX

directives of the format:

lOAClIB NS PNAME

shoutd be placed. There should be one directive per user task
(i.e., one per user task LINK command in the VElOCM file). The
NS parameter value must be the same as the value specified for
the NS parameter on the LINK command. The value for PNAME may be
anyone to eight character name and Is the name of this 'program'
when it resides on the NOS/VE 'fibrary'.

It is important to note that all code and data must fit into
rea' memory at the time of loading and deadstart. The simulator
imposes a 500K {16M with next release) byte restriction on
maximum size and the hard~are is restricted to 2M bytes. If the
memory required exceeds the default maximum of lAOOO (16) bytes,
then the VElOCM fite must be changed to reflect this. The size
of the page table must be increased so that it has 2 to 4 times
as many entries as the number of rea' memory pages. The page
table size is changed in the VElOCM file In three different
places, however, it is not just a simple substitution.
Assistance should be obtained when any VELOCM file modifications
are required. The following diagram shows the virtual
environment after loadingJ

memory

NOS/VE USERS GUIDE

F2.0 ADDING USER TASKS TO NOS/VE
F2.0.2 USING THE VE LINKER

address ----> 0+------------+
: Page Table:

: Monitor .+_._-------_._-+
: Ta sk
: Services
+--------_ .. _-- +
: library
: Directory
+--------.-_ . .-_--..... +

User
: Task (s)
: (library)

,
t
t ,

+ ---.-.-.--~ -.-- +

f2-3

07/2Ql81

Using the exampte from above, the two directives to be added
to the VElOCM file are:

lOADlIB LI8X PROGA
lOAOlIB lI8Z PROGB

The names PROGA and PRUGB can be whatever is desired, but must
be unique within a single NOS/VE build.

To execute fROGA, the following NOS/VE command is used:

EXEC PROGA .stringl

One final note about the VElDCM file. One of the last
commands is a tOM ALL' command which produces a hex dump of the
virtual environment file. This command may be removed If the
dump is not wanted.

When using the VE linker specifica'Iy to produce NOS/VE
systems it is recommended that the procedure NVElINK, as
described in the Advanced Systems Integration Procedures
Notebook, be used to produce these systems. Use of any other
procedures may lead to erroneous versions of interrelated
software components.

Bui Id N, June 1981

F3-1
NOS/VE USERS GUIDE

07/2~/81

F3.0 EXECUTION

F3.0 flf'UIlD~

F3.1 I~I!DQU'Ilg~

NOS/Vf will run on either the C180 hardware or the simulator.
Any differences between the two are resolved by NOS/VE itself or
by the procedures used to run it.

NOS/VE provides three different types of commands. The first
type allows access to most of the software facilities within the
system, such as:

Execution Management
logical Name Management
Task Management
File Management
Segment Management
Memory Management
Heap Management
Signal Management

The second type provides a debugging capability to be used
within an executing task. The features available are:

Breakpoint
Trace Back
Register Manipulation
Memory Manipulation

Both of the first two types are available on both the hardware
and the simulator. The third type of command Is available only
on the hardware. These commands are processed by the PPU console
driver, and offer the following features:

Memory Manipulation
Register Manipulation
Print Memory
as Oisp1ays (Dayfile)

NOS/VE currently supports
within that job. A task

a single
may be

job and
executed

multiple tasks
synchronously or

NOS/VE USERS GUIDE

f3.0 EXECUTION
F3.1 INTRODUCTION

asynchronously with other tasks.

F3-2

NOS/VE commands a.low the user access to a large number of
functions provided by the system. In genera', any parameter to
one of these commands may be either an explicit value or a
logical name space (LNS) variabte. One exception to this is the
use of task status blocks or signal control blocks, which must
always be lNS variables. A logical name space is associated with
a job, a fact which must be considered when running multiple
tasks.

The foltowing types of LNS variables and parameters are
a va i I ab Ie:

INTEGER
CHARACTER
NAME
BOOLEAN
VSTRING
POINTER
SIGNAL CONTROL BLOCK (temporary for HCS only)
TASK STATUS BLOCKS

Within the descriptions which fol1ow, optional parameters are
enclosed in square brackets ([ll.

F3.2.1 DECLARE

This command is used to create variables within the logica'
name space of the current job.

Synta)(1 DECLARE NAM E TYPE

NAME - lNS variabje name, 1 to 31 characters.

TYPE - Variable type, must be one of the following:

INTEGER
BOOLEAN
POINTER
sca
VSTRING

A 64 bit integer.
The value TRUE or fALSE.
A pointer to ce'l.
A signal control block.
A STRING (*) variable.

Bui Id N, June 1981

NOS/VE USERS GUIDE

F3.0 EXECUTION
F 3 .2 • 1 0 EC l A R f

CHARACTER
TSS

F3.2.2 REMOVE

A single character.
A task status block.

f3-3

07/2CJI81

This command is used to remove a variable definition from the
foglca' name space of the current job.

Syntax: REMOVE NAME

NAME - lNS variable name, 1 to 31 characters.

F3.2.3 PfSTATS

This command is used to display the fottowing page fault
statistics:

avail Q

avai I mod q

valid in pt

no memory

locked

on disk
p t fu II

cio reject

new page

syntax: PfSTATS

Number of times a page was found in the
avai'ablequeue.

Number of times a page was found in the
available/modified queue.

Number of times the page was found in the page
t ab , e.
Number of times a page fault could not be
satisfied because no real memory was
available.

Number of times 8 page fault could not be
satisfied because the page frame was locked (10
was active).

Number of times a page was found on a disk.
Number of times a page fault could not be
satisfied because an empty entry couid not be
found in the page table.
Number of times a page fault could not be
satisfied because of an 110 error.

Number of times that a new page was created.

Build N, June 1981

NOS/VE USERS GUIDE

F3.0 EXECUTION
f3.2.4 TSTATUS

F3.2.4 TSTATUS

f3-4

01129/81

This command is used to display the status of all currently
active tasks. The following information is displayed:

Task Name
Execution Time Used
Number of page faults

syntax: lSTATUS

f3.2.5 TMCYClE

This command causes a task to give up its turn for execution
until alt other ready tasks have had at least one chance to
ex ecu tee

syntax: TMCYClE

F3.2.6TMDElAY

This command causes a task to be kept from executing for a
specified number of mi1liseconds.

syntax: TMOELAY MS

MS- Number of mjl1iseconds to delay.

f3.2.7 TMABORT

This command causes the current task to be aborted.

syntax: TMABORT 'MES'

MES - A string to be displayed when the task Is aborted.

Bui Id N, June 1981

F3-5
NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.2.8 TMEXIT

F3.2.8 TM£XIT

This command causes the current task to terminate normally.

syntax: TMEXIT

F3.2.9 EXEC/EX

This command causes a new task to be created and executed
subordinate to the current task.

syntax: EXEC PROGRAM [PARAMl (lSB]
-or-

PROGRAM

PARAM

TSB

EX PROGRAM [PARAM] CTSBJ

The name of the program on the system 'Iibrary' to be
executed.

A string that is passed to the program vis the
program header.

One of the following:

DEBUG Specifies that the task is to be
executed by the debug processor.
The task is run synchronously.

A Specifies that the task should be
executed asynchronously, but
without any task status block
being used.

Other non-blank - Specifies that a task status
block variable of the name given
is to be created in the current
jobfs LNS and the neM task is to
be run asynchronously with the
current task. The task name in
this case wi'l be the value given
for this parameter. The user can
determine the status of a task by
printing the value of the task
status block.

If the parameter is omitted, the task will be run
synchronously_

Bui Id N, June 1981

NOS/ve USERS GUIDE

f3.0 EXECUTION
F3.2.10 lMTERM

F3.2.10 TMlERM

f3-6

This command is used to terminate a specific task and all
cal lees of that task.

syntax: TMTERM TASK NAME

TASKNAME - The name of the task to terminate.

F3.2.l1 SMOPEN

This command causes a segment access open to be performed on a
local fi Ie, or causes a transient segment to be created.

syntax: SMOPEN PYA [NAME] [SEGNUMl [Rl] [R21 [ATTR]

PYA The name of an lNS pointer variable to receive the
segment pointer.

NAME The name of the local file (1 to 8 characters) to open
as a segment. If this parameter is omitted, a transient
segment is created.

SEGNUM- The segment number to be assigned to the segment. If

Rl

this parameter is omitted, an unused segment number wi.t
be chosen.

The Rl vatue for the segment.
omitted, 11 is used.

If this parameter is

Rl The R2 value for the segment. If this parameter is
omitted, 11 is used.

ATTR The attributes of the segment. A legal value is any
valid combination of the following lettersl

R - Read
W - Write
X - Execute
8 - Binding
l - Execute local Privilege
G - Execute Globst Privilege
I - Wired
K - Stack
C - Cache Bypass

Build N, June lq81

NOS/VE USERS GUIDE

f3.0 EXECUTION
F3.2.11 SMOPEN

f3-7

07129/81

• __ N~ __ WN ___ NN _____ N ____ N ___ N __ NN ________ N_N ____ N _____ _____________ _

S - Shared
Q - Sequential Access

The default is RW.

F3.2.12 SMCLOSE

This command causes a segment of the current task to be
removed from that task's address space.

syntax: SMClOSE PYA

PYA - A pointer to a celt. The segment represented by this
pointer witt be ctosed.

F3.2.13 SMCHANGf

This command allows some of a segments attributes to be
changed after it has been created.

syntax: SMCHANGE PYA [Rll {R2] {ATTRl

PYA - Same definition as SMOPEN

Rl - Same definition as SMGPEN

R2 - Same definition as SMOPEN

ATTR - Same definition as SMOPEN.

F3.2.14 MMADVI

This command
specified range
possible.

caoses the system to be notified that the
of virtual memory should be paged in as soon as

syntax: MMADVI [PYA] (LEN]

PYA - A pointer to the first byte of virtual memory to be paged
in. The default is NIL.

LEN - The number of bytes to page in. The default is 1.

Build N, June lq81

NOS/VE USERS GUIDE

f3.0 EXECUTION
F3.2.15 MMADVO

F3.2.15 MMAOVO

f3-8

07129/81

This command notifies the system that the specified range of
vjrtua' memory may be paged out (removed from the working set).

syntax: MMADVO [PYA] [LEN]

PYA - Same 8S in MMADVI, except that memory Is paged out.

LEN Same as in MMAOVI, except that memory is paged out.

F3.2.16 f4$MAOVOI

This command performs the functions of both the MMAOVO and
MMAOVI commands. The page out is performed first.

syntax: MMAOVO {PVAO] {LEND] [PVAI] [LEN!]

PVAO S arne as i n MMAOVO.

LEND Same as i n MMAOVO.

PVAI - Same as in MMAOVI.

LENI S arne as in MMADVI.

f3.2.17 MMWMP

This command is similar to the MMADVO command except that the
pages are written to disk immediatly.

syntax: MMWMP [PYA] [LEN] [WAIT]

PYA - Same as MMADVO.

LEN - Same as MMAOVO.

WAIT - The value TRUE if the user desires to wait until all
paging liD is complete, otherwise FALSE. The default is
TRUF.

Build N, June lqal

NOS/VE USERS GUIDE

f3.0 EXECUTION
F3.2.18 MMFREE

F3.2.1B MMFREE

f3-9

07129/81

This command causes the pages representing the specified range
of virtual memory to be released.

syntax: MMfREE PVA [LEN]

PVA - same as in MMAOVI.

LEN - same as in MMAOVI.

f3.2.19 CONPVA

This command converts a process virtual address (PVA) to a
real ~emcry address (RMA).

syntax: CGNPVA PYA [MODEl

PYA - The pointer to be converted to an RMA.

MOOE - One of the following values:

DIRECT The specified PVA is to be converted. This Is
the default value.

INOIR - The specified PYA is a pointer to the PVA to be
converted.

F3.2.20 HPINIT

This command causes a heap to be created and initialized.

syntax: HPINIT HEAP? LEN

HEAPP The name of an LNS pointer variable. It wilt be set to
point to the heap.

LEN - The length of the heap in bytes.

8uild N, June 1981

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.2.21 HPAllOC

F3-10

07129/81

___ N~~N __ N ______ N_N_NN_N ______________________________ ----_________ _

F3.2.21 HPALLOC

This command allocates space within a previously created
heap .•

syntax: HPAllOC PTR LEN [PAGECROS] [ZERO] HEAPP

PTR - The name of an lNS pointer variable. It will be set to
point to the allocated area.

LEN - The number of bytes to allocate.

PAGECROS- This parameter has no affect.
compatibility.

It is included for

ZERO - The value TRUE if the allocated area is to be preset to

HEAPP

the value zero or FALSE if it is to be left 8S is.
The default is fALSE.

- A pointer to the heap in which the space is to be
allocatee.

F3.2.22 HPfREE

This command frees a block of space previously allocated from
e heap.

syntax: HPfREE PTR HEAPP

PTR - The name of an lNS pointer variable which points to the
block to be freed.

HEAPP- A pointer to the heap in which the block is a'located.

F3.2.23 SHINIT

This command is used to initialize a signal control blOCk.

syntax: SHINIT sea [TYPE] [VSTR]

sea - The name of an lNS signal control block variable to be
initial ized.

Build N, June 1981

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.2.23 SHINIT

TYPE - The signa' type to be associated with the SeB.
one of the following:

EVENT
Sf ME
IORESP
MESSAGE

F3-11

07129/81

Must be

VSTR - If TYPE is message, then this parameter specifies a string
variable whose size is the maximum message size allowed
when using this SCS, and whose location is where the data
will be placed.

f3.2.24 SHSEND

This command causes a send signal operation to be performed on
the specified signa' control block.

syntax: SHSEND SeB [INT] [lSTRI]

seB - The lNS signal control block variable to which the signal
is sent.

INT - Integer value to be sent with the signa.

STR - A string (in Quotes)
signal. If both INT and
precedence.

F3.2.25 SHWAIT

to be sent 8S data along with the
STR are specified, STR takes

This command causes the current task to wait until a specified
amount of time has passed, or until any of up to three signals
are sen t.

syntax: SHWAIT [ITIMEl [SC8l1 [SC621 (Se831

ITIME- The number of mi II iseconds to walt. If this parameter is
omitted, infinity is used.

Build N, June 1981

NOS/ve USERS GUIDE

F3.0 EXECUTION
F3.2.25 SHWAIT

F3-12

011ZQl81

SCSi - Up to three lNS signa' control block variabtes to wait for
a signa' on.

F3.2.26 CHANGE lNS VALUE

This command allows the value of
changed. Signal control block and task
cannot be changed.

synta Xl lNSN c NY

an lNS variable to be
status block variables

lNSN - The name of the LNS variable to be changed.

NV - The new value.

f3.2.27 PRINT lNS VALUE

This command causes the value of an lNS variable to be
displayed.

syntax: lNSN

lNSN - The name of the lNS variable to be displayed.

F3.2.28 ECHOINP

This command causes atl command input to NOS/VE to be echoed
back to the output device. This command is useful only when used
as the first command to a batch mode simulation.

syntax: ECHOINP

F3 •. 2.29 STOPSIM

This command causes NOS/VE to stop execution via a CPU hatt
when running on the simulator.

syntax: STOPSIM

NOS/VE USERS GUIDE

F3.0 eXECUTION
F3.2.30 S5ET

f3.2.30 55fT

F3-13

07/2Ql81

This command a'iows some of the NOS/VE control parameters to
be changed dynamically.

syntax l SSET CPH [NV]

CPN - The name of the control parameter being changed. The value
must be one of the following (entries followed by an * are
not intended for general use):

QUANTUM Basic task time slice (microseconds) for at.
tasks created after the execution of this
command.

MAXIOlE* - Maximum amount of time spent in monitcr idle
loop before looking for lost interrupts.

TICKTIME*- Used for paging control.

DfOELAV* - Minimum amount of time between the issuing of
dayfile messages. Used to stow down the
scrol,jng action of the console dayfile
display.

KEYMAX Maximum value of the id field from a keypoint
that will be pi aced in the keypoint buffer.
Any keypoJnt with an id field greater than
this value wil' be ignored.

STEPCNT* - Maximum number of monitor requests allowed
before monitor goes into wait loop.

D8RING lowest ring that can be executed while in
debug mode.

PQTHRESH*- Number of pages kept in the page queues.

KM Keypoint mask used for every task created
after execution of this command.

UM

Monitor mask used for every task created
after execution of this command.

User mask used for every task created after
execution of this command.

Build N, June 1981

NQS/VE USERS GUIDE

f3.0 EXECUT ION
F3.2.30 5SfT

F3-14

07/29/81

PITVAl* The value that the PIT is reset to after
every PIT interrupt.

OISDElAY- How often tmi I. i seconds) the system status
display (3 lines on the console) is updated.

NV - The new value for the specified control parameter. If NV
is om itt ed, th e cur r en t val ue wi I' bed i s p I 8 Y e d.

It is important to note that these commands are used primarily
for hardware and monitor debugging and may change or disappear at
any time.

F3.2.31 FMCREATE

This command makes a fite known to the system.

syntax: FMCREATE fILENAME

FILENAME The name of the file being created (1 to 8
characters).

f3.2.32 fMOElETE

This command deletes a fite previously made known to the
system with the FMCREATE command.

syntax: fMDElETE fILENAME

FILENAME - Name of the file being deleted.

F3.2.33 FMDOWNAU

This command identifies bad areas on disk and keeps them from
being allocated.

syntax: FMDOWNAU UNIT CYLINDER TRACK SWlBUG SECTOR

UNIT Unit number of the disk device.

CYLINDER - Cylinder number.

8ujfd N, June 1981

NOS/VE USERS GUIDE

F3.C EXECUTION
f3 .2,.33 FMOOWNAU

TRACK

SWlBUG

SECTOR

Track number.

F3-15

07129/81

This parameter is present because of a compiler
bug.

Sector to be marked as bad within the specified
unit/cy'lnder/track.

Commands to the system are entered via the console keyboard.
With the exception of messages to the operating system, all
commands entered must include a two-character command identifier
or a two-character operating system display identifier. Some
commands require parameters, others do not. All command input
lines are restricted to 60 characters or 'ess; a" are terminated
by depressing the carriage return key.

F3.3.1 DISPLAY CENTRAL MEMORY

The following commands provide display of only the right-most
60 bits of central memory words {they use the 60 bit PPU cm
read/write instructions).

Displays an installation-specified number of central memory
words; two words are disptayed per display tine along with the
byte address of the left-most word of the line.

<addrs): A 1-8 digit hexadecimal L~Jl_m~m2£~_b~1~_~~~L~~~ which
defines the first ~2L~ to be displayed. The specified
address is forced to zero module eight if it is not so
specified by the command.

F3.3.1.1.2 DP,+

Increments the most recently specified memory address and
displays a set of memory words which are contiguous with those
most recently displayed. This command is used to "roll" forward
through memory.

Build N, June 1981

NOS/VE USERS GUIDE

f3.0 EXECUTION
F3.3.1.1.3 Op,-

F3-16

07/29/81

Decrements the most recently specified memory address and
displays a set of memory words which are contjguous with those
most recently displayed. This command is used to "rolt" backward
through memory.

F3.3.1.1.~ DP

This command may be used to reinstate the most recent central
memory display after the screen has been used for other
purposes.

The following commands provide display of atl 64 bits of
centra' memory words. There are a number of characteristics of
these commands of which the user should be aware:

• These commands use the
mechanism.

64-blt central memory access

Displays an installation-specified number of central memory
words; two words are displayed per display line along with the
byte address of the left-most word of the line.

<addrs>: A 1-8 digit hexadecimal L~~1_mlm~£~_~~1~_~~4£~~~ which
defines the first ~~L~ to be displayed. The specified
address is forced to zero module eight if it is not so
specified by the command.

Increments the most recently specified memory address and
displays a set of memory words which are contiguous with those
most recently displayed. This command is used to "roll" forward
through memory.

Decrements the most recently specified memory address and
displays a set of memory words which are contiguous with those
most recently displayed. This command is used to "roll" backward
through memory.

Build N, June 1981

NOS/VE USERS GUIDE

F 3.0 EXfCUT ION
F3.3.1.2.4 Of

F3.3.1.2.4 Of

F3-17

This command may be used to reinstate the most recent centraJ
memory display after the screen has been used for other
purposes.

F3.3.2 CHANGE CENTRAL MEMORY

F3.3.2.1.1 CP,<ADDRS)=(VAlUE>

This command inserts a specified value into the right-most 60
bits of a 64-bit centra. memory word; the left-most 4 bits of the
central memory word are unconditionally set to zero.

< add r s>: A 1-8 dig i the x ad ec i m alI.~al_m~m.Qt;x_lt~1~_,j.tt.ttI.:.s.s wh j ch
defines the centra' memory ¥~L~ which Is to be
modified. The specified address is forced to zero
module eight if it is not so specified by the command.

<value>: A 16 digit hexadecimal value which Is to be inserted
into the central memory word; all 16 digits must be
specified. Btank characters may separate hex digits if
desired to simp' ify value specification; for example,
the two value specificatjons shown below yield the same
result:

valuel 0123456789ABCOEf
value2 0123 4567 89AB COEF

F3.3.2.2.1 CF,(ADDRS)=(VAlUE>

This command inserts a specified value into the full 64 bits
of a 64-bit central memory word.

<addrs>: A 1-8 digit hexadecimal £i~l_mim~I.~_~xti_~~~L~~~ which
defines the central memory HQL~ which is to be
modified. The specified address is forced to zero
module eight if it is not so specified by the command.

<value>: A 16 digit hexadecimal value which is to be inserted

Build N, June 1981

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.3.2.2.1 CF,<AOORS)=<VAlUE>

F3-18

07/29/81

--
into the centra' memory word) all 16 digits must be
specified. Blank characters may separate hex digits if
desired to simplify value specification; for example,
the two value specifications shown below yield the same
result:

valuel 0123456789ABCDEF
value2 0123 4567 aqAB COEF

F3.3.3 PRINT CENTRAL MEMORY

This command provides a listing of centra' memory to a line
prjnter. four words are listed per line along with the byte
address of the left-most ~ord of the line.

<addrs>: A 1-8 digit hexadecimal ~~al_m~mg£%~b%l~_A~~L~~~ which
defines the first centra. memory ~~t~ to be listed.
The specified address is forced to zero module eight if
it is not so specified by the command.

<words>: A 1-5 digit decima' value which specifies the number of
central memory words to be listed.

A listing operation may be terminated prior to its normal
completion by depressing the carriage return at the keyboard.

F3.3.4 DISPLAY/CHANGE SYSTEM ELEMENT REGISTERS

This command causes display of an installation defined set of
registers of a system element.

<elld>: A two-character system element identifier which
specifies the ete~ent of which registers are to be
displayed. Valid system element identifiers are listed
under the section entitled "System Element
Identifiers". The registers dispJayed for each system

Bui Id NI June 1981

NOS/VE USERS GUIDE

f3.D EXECUTION
F3.3.4.1.1 DR,<ElIO)

F3-19

element are listed under the section entitled "System
Element Registers".

f3.3.4.2.1 CR,<ElIO>,<REGIO)=<VAlUE>

This command permits mOdification of system element registers
for which the maintenance channel has write access.

<elid>: A 2 character system element identifier which specifies
the element of which a register is to be modified.
Refer to the section entitled "System Element
Identifiers" for a 'ist of valid identifiers.

(regid)l A 1-4 character register identifier which specifies the
register which is to be modified. Refer to the section
entitled "System Element Registers" for a list of valid
register identifiers for each system element.

<value>: A 16 digit hexadecimal vatue which is to be inserted
into the register; atl 16 digits must be specified.
Blank characters may separate hex digits If desired.

•
•

Following is a list of valid system element identifiers.

M2
P2

Identifies the central memory element
Identifies the centra' processor unit

The following subsections I ist, according to system element,
those registers which may be displayed and which may be modified
(assuming that the maintenance channel has write access to the
specific register).

F3.3.4.4.1 CENTRAL MEMORY REGISTERS

Build N, June 1981

NOS/Vf USERS GUIDE

f3.0 EXECUTION
F3.3.4.4.1 CENTRAL MEMORY REGISTERS

REGISTER
MNEMONIC

55
EC
8R
eElO
UC 10
UC20

REGISTER NAME

Status Summary
Environment Control
Bounds Register
Corrected Error log, Distributor 0
Uncorrected Error log 1, Distributor 0
Uncorrected Error log 2, Olstributor 0

F3.3.4.4.2 CENTRAL PROCESSOR REGISTERS

REGISTER
MNEMONIC

S5
EC
p
MeR
UCR
UP
JPS
?FS
CEll
CEl2
CFl3
CEl4
KC
KCN
Tt
SIr
CMA
eMS
PTM
MDW
DEC
MSl

REGISTER NAME

Status Summary
Environment Control
Program Address
Monitor Condition Register
User Condition Register
Untranslatable Pointer
Job Process State
Processor Fault Status
Retry Corrected Error log
Control Memory Corrected Error log
Cache Corrected Error Log
Map Corrected Error log
Kevpoint Code
Keypoint Class Number
Trap Enables
System Interval Timer
Control Memory Address
Control Memory Breakpoint
Processor Test Mode
Model Dependent Word
Dependent Environment Control
Maintenance Scan limit

f3.3.5 DISPLAY PPS PROGRAM ADDRESS REGISTERS

F3-20

07129181

ACCESS
ATTRIBUTES

R
RIW
R/W
R/W
R/W
R/W

ACCESS
ATTRIBUTES

R
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Rill
R1W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

Build N, June 1981

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.3.5.1 PP

F3-21

MN_NNNNNN_N ___ NN __ N _____ N~ __ * _____ NM ______ N ______ N __ MN _____________ _

This command causes display of the program address register of
each PPU in the PPS.

F3.3.6 CLEAR DISPLAY

This command is used to deactivate a currently active
d i sp' ay,.

<screen>: Is L, R, or B to specify left screen, right screen, or
both screens, respective I,.

F3.3.1 START SYSTEM

f3.3.7.1 SS

This command is used during system deadstart after the message
"P~OCfED" is displayed at the console; this command causes final
initialization to occur and the CPU to be started. The command
is valid at no other time.

F3.3.8 HALT CENTRAL PROCESSOR

F3.3.8.1 J:iI

This command is used to halt the central processor.

f3.3.9 START CENTRAL PROCESSOR

Build N, June 1981

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.3.9.1 GO

F3-22

01129/81

This command is used to start the centra. processor after it
has been halted with the HT command.

F3.3.10 OPERATING SYSTEM DISPLAYS

Various operating system displays are available to the
console; a specific display may be called by typing its unique
2-character identifier and a carriage return.

DO - Dayfile of the system Job.

F3.3.11 CONSOLE MESSAGES TO THE OPERATING SYSTEM

Single line messages of 60 characters or less may be sent to
the operating system from the console keyboard. Any line of
input from the keyboard is sent to the operating system if both
of the f~llowing conditions are met:

1. The first two characters of the I ine do not match a console
command or an operating system display identifier.

2. The number of characters in the input line equals or exceeds
1 character.

The debug fa~ility of NOS/VE provides a set of capabilities
intended to assist in testing of programs which execute under
control of NOS/VE. Services provided by the facility are task
oriented: selection of the debug faci Iity is at the option of the
user at the time of task invocation. NOS/VE uses the CYBER 180
debug hardware to provide these capabilities.

Build H, June 1981

f3-23
NOS/VE USERS GUIDE

07129/81

F3.0 EXECUTION
F3.4.1 SUMMARY OF DE8UG fACILITY SERVICES

f3.4.1 SUMMARY OF OeBUG fACILITY SERVICES

Set Breakpoint:

Remove Breakpoint:

Change Breakpoint:

list Breakpoint:

Trace Back:

Display Stack Frame:

Display Register:

Change Register:

Display Memory:

Change Me~ory:

Runs

Selects a program interrupt which is to
occur upon occurrence of a specified
condition within a specified virtua.
address range.

Deselects a previously selected program
interrupt.

Changes the virtual address range of a
previous', sP~cified breakpoint.

Provides a list of currently selected
breakpoints and associated conditions.

Provides information relevant to stack
frames associated with an interrupted
procedure and its predecessor
procedures.

Disp'ay selected information from a
specified stack frame.

Display the contents of a specified
register of an interrupted procedure.

Sets a specified vaJue into a specified
register of an interrupted procedure.

Displays the contents of a specified area
of virtuaf memory.

Sets a specified value into a specified
location of virtual memory.

Invokes program execution after a
selected program interrupt has occurred.

F3.4.2 DEBUG FACILITY COMMANDS

Build N, June 1981

f3-24
NOS/VE USERS GUIDE

07129/81

F3.0 EXECUT ION
f3.4.2.1 Parameter Definitions
NNN_NNN ____ NNNNW _____ N ________________________________ _____________ _

f 3 .4. 2 • le,aL.-.Im~.t~.t_Il~!lD11J.ll-.DS.

<name> II: 1-8 character breakpoint name
<condition> ::= READ:WRITE:RNI:SRANCH:CAll:OIVflT:ARlOS:

AROVFl:EXOVFl:eXUNFllFPlOS:FPINOEF:INVSDP
<base> tIc process virtual address
<offset> tl- integer
(length) tt- integer
<frame> ::= 1 •• 100
<count> tt: 1 •• 100
(regid) It= X:A:P
<regno) I:. O •• 15:0 •• 0F(16)
<hex_vstring) :1: 'hex string'
<time) :t= 1 •• (2*.31)-1
<vstring) :t· 'charstring'
(datatype) ::= HEX:ASCII:ASC:OECIMAl:OEC
<selector> :t= fUll:AUTO:SAVE

Within the descriptions which follow, optional parameters are
enclosed in brackets. Defautt values for optional parameters are
also defined.

F3.4.2.2.1 SET BREAKPOINT

Selects a program interrupt which is to occor upon occurrence
of a specified condition within a specified virtual address
range.

syntax: BP <name> (condition> [(base>] [(offset)] [(length>]

The base parameter is required when specifying a new
breakpoint name; offset and length specifications are optional In
this case. When adding a new condition selection to an existing
breakpoint, base, offset, and length parameters may not be
speci fi ed.

Base, offset, and length parameters define the desired virtual
address range: <base> + (offset> yields a first-byte-address;
first-byte-address + <length) -1 yields a last byte address.

Default parameter values:

(offset>: 0
(length>: 1

Build N, June 1981

F3-Z5
NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.4.2.2.2 REMOVE BREAKPOINT
NN_N_N ___ W ________ N __________ N ________________________ _____________ _

F3.4.2.2.2 REMOVE BREAKPOINT

Deselects a previously selected program interrupt.

syntax: RB <name> [(condition>]

If only the name parameter is specified, alt conditions
associated with the breakpoint are deselected and aft evidence of
the breakpoint is removed. If the condition parameter is
specified, only that condition is deselected; however, If the
specified condition Is the onl, condition se'ected, atl evidence
of the named breakpoint is removed.

F3.4.2.2.3 LIST BREAKPOINT

Provides a t ist of currently se.ected breakpoints and
associated conditions.

syntax: LB [(name)]

If the name parameter is specified, information is displayed
for the named breakpoint only. If the name parameter is not
specified, information is displayed for all currently defined
breakpoints.

F3.4.2.2.4 CHANGE BREAKPOINT

Changes the virtual address range of a previously specified
breakpoint.

syntax: CB <name> <base) [(offset>] [(length)]

Base, offset~ and tength parameters define the desired virtuat
address rangel <base> + (offset) yields a first-byte-address;
first-byte-address + (length) -1 yields a last byte address.

Default parameter values:

(offset>: 0
(length>: 1

F3.4.2.2.5 TRACE BACK

Provides information relevant to stack frames associated with
an interrupted procedure and its predecessor procedures.

Information displayed for each setected stack fra~e consists
of:

Build N, June lq81

NOS/VE USERS GUIDE

f3.0EXECUTION
F3.4.2.2.5 TRACE BACK

Stack frame number;
Current P-address of the associated procedure;
Virtual address of the start of the stack frame;
Virtual address of the stack frame save area.

syntax: TB [(frame>] [<count>]

f3-26

The frame parameter specifies the number of the first stack
frame for which information is to be displayed. (Stack frame
number one is associated with the interrupted procedure, stack
frame two is associated with the interrupted procedure's
predecessor, etc.)

The count parameter specifies the total number of stack frames
for which information is to be displayed.

Oefault parameter values:

<fr ame>: 1
<count>: 1

F3.4.2.2.6 DISPLAY STACK FRAME

Display selected information from a specified stack frame.

syntax: OS [(frame)] (selector)]

The frame parameter specifies the number of the stack frame
for which information is to be displayed. (Stack frame number
one is associated with the interrupted procedure, stack frame two
is associated with the interrupted procedure's predecessor,
et c.)

The selector p~rameter identifies a region of the specified
stack frame:

A·UTO:

SAVE.

FUlla

Causes the automatic region of the stack frame to be
displayed.

Causes the save area of tbe stack fr •• e to be
displayed.

Causes both the automatic and save areas of the stack
frame to be displayed.

Default parameter yalues.

(frame)l 1

Build N, June 1981

NOS/ve USERS GUIDE
F3-27

07/29/81

--------------------------_._-----------------------------_.---_._--
F3.0 EXECUTION
F3.4.Z.Z.6 DISPLAY STACK FRAME

--
<selector>' FUll

F3.4.2.2.7 DISPLAY REGISTER

Display the contents of a specified register of an interrupted
procedure.

syntax. DR (regld) [(regno)] [(detatype)]

Default parameter valuesl

<regno)! 0
(datatyp.)' HEX

F3.4.2.2.8 CHANGE REGISTER

Sets 8 spec.fied value into 8 specified register of 8n
Interrupted procedure.

syntaxt CR (regid) (regno) [(datatype)] (ystring)

Default paraMeter yaluesl

(datatype)' HEX

Displ.ys the contents of a specified area of virtual .emory.

syntax. OM (base) [(length)]

Default par •• eter valuesl

(length)' 8

Sets a specified value into 8 specified location of virtual
meMory.

syntaxl eM (base) <hex_vstring)

f3.4.2.2.11 RUN

Invokes program execution after a setected program interrupt
has occurred.

syntax. RUN (time)

Build N, June 1981

NOS/VE USERS GUIDE
F3-28

07/29/81

------------------------------_._------------------------------------
F 3.0 EXECUT ION
F3.4. 2.2 .11 RUN

--
The time parameter specifies the maximum number of

microseconds the program Is to execute; a program Interrupt will
occur upon attaining this execution limit.

Default parameter valuesl

<tfme)J Infinite

Error codes .re displayed as 6 hex digits In the foiloNing
formatl

AANNNN

The AA field designates the functionaa a,ea that Issued the
error. The possible yalues arel

01
02
03 -
04 -
05 -
06 -
07 -
08 -
09-
OA
OC -
00 -
OE -
Of
10 -
11 -
12

Signal Handler
Circular Buffer Handter
Heap Hanager
Misc Task Services
NIA
File "anager
NIA
Task Manager
"emory "anager
Job Manager
loader
Centr a I I/O
o ISf):atcher
Co •• and language Processor
logical Name Manager
Debug Processor
Configuration Manager

The NNNN "eld Is a detailed error number within the specified
functional .rea.

F3.5.1 DETAILED ERROR CODeS

All numeric va.ues are given in hex.

8ulld N, June 1981

NOS/VE USERS GUIDE
f3-29

07/29/81

--F3.0 EXECUTION
f3.5.1.1 Signal Handler

--

1 • timeout
2 • slgnat buffer fu'l
3 • task swapped
4 • invalid signal Id
5 • incompatible signa' type
6 • message buffer too sma ••
7 • eapty walt list

1 • buffer not initialized
2 • buffer full
3 • message too long

None

None

1 • KFD not available
Z • F II e act i ve
3 • FI'e not actlv~
4 • PFD not available
5 • Fie ex is ts
6 • Fi e not created
7 • f i, e open
8 • Mu tlpSe usage
9 • Fi e not temporary
OA • F Ie not permanent
08 • f Ie not attached
OC • F Ie attached
00 • F Ie not open
Of • Invalid KfDl Index
OF • KFD not active
10 • Invalid PFOl index
11 • PFD not active

Build N, June 1981

F3-30
NOS/VE USERS GUIDE

0712'"1/81

--F3.0EXECUTIDN
F3.5.1.5 File Manager

--
12 11 Active 1/0
13 11 No units configured
14 = No active units

1 • Task not found

1 • Page already in page table
2 • Page table full
3 • No free pages
4 • locked page free request
5 • Page not in page tabie
6 • Invalid PYA
7 • Page frame not locked
8 • Page frame not assigned
9 - IE • MIA
If • Invalid ring number
20 • Segfftent table Is full
21 • Seg.ent number Is In use
22 • Segment number not in use
23 • Nil segment pointer invalid
24 • Segment number too big
25 • Cannot change segment number
26 • Unsupported ~eyword

None

1 • program not found

1 • IORP not available
Z • End c ff i I e
3 • Invalid byte count
4 • Invalid buffer length
5 • Invalid buffer address

Build H, June 1981

NOS/VE USERS GUIDE

'F3 .0 EXECUTION
F3.5.1.10 Central 1/0

F3-31

07/29/81

--
b • Invalid MS function code
7 • Invalid CIn hardware type
8 = Feature not supported
9-40 = MIA
41 = End of device
42 • End of allocation
43 = File nat allocated
44 = File already allocated
45 = Invalid cylinder
46 • Invalid track
47 = Invalid sector
48 = AUD not defined
49 • AUD allocated
itA - 80 • N/A
81 • CBO not ayailable

1 a Invalid task Id
Z a PTlful1
3 • Invalid running job ordinal

1 • missing parameter
2 • Inyalid character
3 • undefined parameter type
It • Integer out of range
5 • unknown co •• and
6 • unknown syntax
7 • not supported
8 • bad parameter ty~e
9 • token too fong
OA • bad co.bination of parameters
OB • bad value for pointer
OC • unknown par.meter n.me
00 • yalld passNord required
OE • see not event

1 • Entry not found
2 • Type mismatch on put
3 • Entry already exists
4 • Illegal put request

Build N, June 1981

NOS/WE USERS GUIDE
F3-32

07/29/81

-------------------_. __ .. _---_ _---------_ .. _----- .. -------------------
F3.0 EXECUTION
F3.5.l.13 logical Name "anager

------------_ .. _---
5 • Buffer Mrong size
6 • Buffer too small

1 • Debug not initialized
2 a Breakpoint n •• e exists
3 • 88se parameter not specified
4 • Invaltd breakpoint condition
5 • Condition already selected
6 • MaximuM number of breakpoints already set
7 • Invalid address range
8 • Inva.id breakpoint n •••
9 • Condition not selected
OA • No trap has occurred
08 • Invalid stack frame specified
Ot • Register not in stack fra.e
00 • Invalid data type definition
O£ • Invalid register type
OF • Invalid P-reg value
10 • Invalid A-reg value
11 • Inyalid X-reg value
12 • InYaltd selector
3-0FE • MIA
OFF • Unused error code

1 • Invalid function code
2 • Not mass storage
3 • Unit not active

These values are stored in register XE Just before NOS/VE halts
the processor'

1 • Hardware failure
2 • Task aborted in ring 1 or Z
3 • Task aborted while abort In progress
4 • Task executing had negative PIT
301 • Hardware failure

8uild N, June 1981

NDS/VE USERS GUIDE
F4-1

01129/81

--F4.0 CODING CONVENTIONS AND SOURCE USAGE

------------------------.--------------------------.-----.-------------

The conventions presented In this section r~flect the current
state of the NOS/VE system, former'y known as the Hardware
Checkout System (HCS). The final NOS/VE Syst •• wtfl differ froM
the current system In .any ways, such as different functten.1
a,eas, neM functional areas, different n •• lng conyentlons, etc.
The conventions to be used In· tbe final NOS/VE SJst.. .r.
documented in the NOS/VE Project - Procedure and Conyentions
document. The information presented in this section is intended
to assist users while HCS conventions are stili In use.

All global NOS/VE names haye the fotlowlng format.

AATSNNN

The AA field designates the functional area to which the name
applies, and can be one of the followlngt

SH -
HP -
FM -
PM -
f1f1 -
J" -
II
CI­
ns -
CL
IN -
DB -
CM -
OS -
MH -
OM -
"T -

Signal Handler
Heap Manager
FI'e Manager
Task Manager
"e.ory "anager
Job "anager
loader
Centra. 1/0
Dispatcher
Co •• and language Processor
logical H •• e Space "anager
Debug Processor
Configuration Manager
General NOS/liE
Machine Code Breakout
Data Management
Monitor Interrupt Processor

The T field represents the type of the name, and can be one of
the following valuest

Build N, June lq81

NOS/VE USERS GUIDE
F4-2

07/29/81

--F4.0 CODING CONVENTIONS AND SOURCE USAGE
FIt.l "'"ES -----------------------.. -- -_ ... ---.... _ .. -_ .. ----------------_ --.-------

P - Procedure
V - Variable
E - Error Constant
K - Keypolnt Constant

The NNN field Is a descriptive string describing the object.

F4.2 l£Jl-1lt!UI

NDS/VE contains a routine that alloNs text input to be
performed easity, and without regard to whether execution is on
the h8rdM8re or the simulator. When running on the stmul.tor the
system executes the 10 Machine Instruction (opcode Ff) _hlch
reads from the file specified on the I par.meter Mhen the
simulator was catled. When running on the hardware, text Is
input fro. the console. If more than one task attempts to read
input at the same time when running on the simulator. the 'first'
task ~i'l get the data. If this happens on the hardware, anyone
of the tasks may get the data.

The name of the routine Is ClPSGET_STND_INP and has the
following declaratlonl

*c al I RClGE TS

The variable cstring contains the input text and is defined 8S
foiloNSI

RECORD
lHI,RHI 1 0 •• 255,
S I STRING (255).
RECENOJ

The lHI field potnts to the leftMost character of the string.
Any nUMber of blanks _ay precede the first character of the
st~tng. A semicolon Mi.1 be added as the tast nen blank
character of the strtng and the RHI field will point to the
semicolon.

F4.3 IflLIlUlfUI

NOS/VE contains a routine that allows text output to be
performed easily, and without regard to Mhether execution Is on
the hardware or the simulator. When running on the sl.ulltor,

Build H, June 1981

NOS/VE USERS GUIDE
FIt-3

01129/81

--~~--------F4.0 CODING CONVENTIONS AND SOURCE USAGE
F4.3 TeXT OUTPUT -----.---.--

the system executes the 10 .achlne Instruction (opcode FF) ~hich
writes to the file specified on the 0 parameter when the
simulator was catted. When running on the hardware, text Is
output to the dayfile, which is scrolled on the consol. screen.
If more than one task outputs to the console, the outputs will be
inter.lxed. NOS/VE does not identify the output as to which task
issued it.

The name of the routine is CLPSPUT_STNO_OUT and has the
following declaratlonl

*c a II RClPUTS

Note that the string S Is a VAR para_eter, and as such, a
literal string cannot be passed.

NOS/VE contains various routines that will aid in the process
of command cracking. The user eQuid read a line of text input
via ClPSGfT_STNO_INP and then use these utilities to crack the
command line. The following capabilities are ayallablet

This routine uses a p.rameter descriptor tabl. to crack the
syntax of a co •• and. A par.Meter value table Is built specifying
the actual yalues from the command.

CLPSGET_TOKEN -

This routine returns the next token from 8 command string.

This routine converts 8n ASCII string to • binary value.

This routine converts a binary nUMber to Its ASCII
representation.

For more Infor.ation on these routines, see a current source
listing of the",.

There are two ways to use these routines. One way would be to

Build H, June 1981

NOS/VE USERS GUIDE
Fit-it

07129/81

--F4.0 CODING CONVENTIONS AND SOURCE USAGE
F4.4 COMMAND UTILITIES

--
write a user task program which called on them directly. The
second Nay is to .odify the NOSIVE co •• and language interface
(routine ClP$JOB~CO""AND_PROCESSOR) to process the desired
co •• ands. This second .ethod might reMOye the need for a user
task progr.m to aid In program checkout.

NOS/VE provides a set of routines which externalize cert.'n
hardware Instructions to a CYBIl progr... These routines are
described fully in a DAP written by Jack Steiner.

When a user task is executed via the EXEC comm.nd_ the text
string portion of the co •• and is made avaitable to the program.
Also, the program can set the status return variable and haye It
displayed by the system at task termination.

This co •• unicatlon is performed via the par.meters of the
PROGRA" stateMent, which has the following for.ats

PROGRAM NAME (P I ASTRING (255);
Sl I 0 •• 4096)
VAR STATUS s OSTSSTATUSJJ

The P parameter points to the string
command, and Sl is the length of
program calls, P can be declared 8S
structure can be passed.

specified on the EXEC
the string. For internal

a ACEll and then ·any

The general for. at of a NOS/VE common deck name lSI

XAANNNN

The X field denotes the type of deck and is one of the
folloNingl

T - TYPE/CONST deck
R - Procedure XREF deck

The AA field denotes the functional area the deck d~8ls Mlth.
The field may take on the same values as the AA field described
in section 5.1.

Build N, June. 1981

NOS/VE USERS GUIDE
F4-'

07/29/81

--f4.0 CODING CONVENTIONS AND SOURCE USAGE
F4.6 CO"MON DeCK NAMING CONVENTIONS
---_ .. _-----

Then NNNN field contains the first four characters of the name
of the Item the deck represents. For XREF's It is the first four
characters from the descriptive part of the name_ Ignoring the
characters PI_. and _. For a TYPE/CONST deck the value Mill be
TYPE. for 8 TYPf/CONST deck defining tables tbe yalue will be
l8lS.

Some examples would be-

Deck name rmcompa from .'compare_swap.

Deck name re'puts from name clpSput_stnd_out.

The following NOS/VE eo.mon decks are Morthy of notel

TOSlYPE - General OS definitions.
THOWIYP - Hardware structure definitions.
TM"TYPE - Memory management definitions.
TSMTYPE - Segment management definitions.
TCLTYPE - Co •• and language definitions.

The following rules apply when using NOS/Ve co •• on decks'

1) TYPE/CONST decks include .1. necessary keYMords and end with a
se_leo'on.

2} Procedure XREF decks end Mith a semicolon. Other co •• on decks
may be required to define the types for the par.meters
specified.

3) Variable XREF decks do not contain the VAR keyword and end
with • co.ma r.ther than 8 semicolon. Both the VAR keyword
and ending semicolon must be supplied In the surrounding
text. Other co •• on decks may be required to define the type
symbol.

NOS/VE USERS GUIDE
f5-1

07/Zq/81

--F5.0 KEYPOINTS

--
F5.0KfltDltiIS

Keypolnts are used to give an execution time trace of program
flow by showing that a glYen function Is being performed Ci.e.,
that a given procedure is being executed). KeJPoints are also
used to display request parameters, status and error conditions.

The general format of the source statement used to generate a
keypolnt from 8 CYBIl program lsI

The SECTION parameter identifies the functional area that is
Issuing the keypotnt. It .ust be In the range 1 to 15. The
following values are currently deflnedl

o • Denotes 8 continuation of data from the previous
keypolnt (the occurance of a trap m.y not allow this
feature to work correctly).

1 - System information (10 numbers 1-63 are reserved for
use by 8ssembler code routines) (OSKS)

2 • Memory Manager CMMK$l
3 • Cpm.and language (eLKS)
4 • Oebug (OBKS)
5 • CID (elKS)
6 • File Manager (FMKS)
7 • Task Services (TSKI)
8 • Dispatcher (DSKS)
9 - Unused
10- Job Manager (J"KS)
11- Signal Handler (SHKS)
12- Loader (llKS)

13-15. Unused

The DATA para.eter can be any 24 bit or less integer Yalue,
and is nor •• lly used to display data that relates to • particular
keypolnt. The value must be shifted left 8 bits '.ultlptled by
256) so that it will not overlap with the 10 value.

Build N, June 1981

NOS/VE USERS GUIDE
F5-Z

07/Ztf/81

--F5.0 KEYPOINTS
f5.1 SOURCE coDe CONVENTIONS

--
The ID p.ra.eter is used to identify the keypotnt within a

seetion. The value must be In the range 0 to 255. Values less
thin 31 are considered critical, unexpected, unusual, etc.

A user .ay add his OMn keypoints by using section 15 with
appropriate DATA and 10 values.

A circular buffer of the last ZOO keypolnts is aaintalned in
memory. These may be displayed on the console using the
folloMing co •• andl

OM (real me.ory address of the buffer)

The buffer Is defined by the symbol OSVSKEYPOINT_BUFFER, which
wil. appear in the lINK"AP where the monitor tables are defined.
The real memory address is computed by adding the address 01
OSVSKEYPDINT_8UFFER to the length of the page table (monitor
tables follow the page table).

Keypoints produced on the hardware are not nearly as useful as
simulator keypolnts because only the last 200 are available and
they are displayed In an unedited format (i.e •• a hex memory
dump). HONever, they can be usefut In ShaMing the sequence of
events leading up to a system crash.

The format of the keypolnt buffer Is an array of words with
each word having the fottoNing forMatl

left 28 bits

Next 4 bits
Next 24 bt ts
Next 8 bits

Value of free running .icrosecond clock when
keypotnt occured.

- Keypolnt class
- Oat. yalue.

Keypoint Id value

the

When executing on the siMulator, ai' keYPo'nt Instructions
cause an entry to be added to the local file SESS"KF. When
execution is complete, this file may be processed by a utility
program to produce 8 listing of the keypolnt Information in 8
r eada b I efor.at.

Build N, June 1981

NOS/VE USERS GUIDE
F5-3

07/29/81

--F5.0 KEYPOINTS
FS.3.1 KEYPOINT REfORMATTING UTILITY

--
F5.3.1 KEYPOINT REfORMATTING UTILITY

The SESSMKF file produced by the siMulator can be re~or.atted
Into a readable tlstlng by executing the folJowlng procedure'

SES.NVEKEY [KPF- 1 [FORMAT- 1 [AREA-]

The 8 par.meter, If present, causes the procedure to be run as
a batch Job.

The FN paraaeter specifies the name of the f.le containing
keypolnt data. The default Is SESSMKF. If this file is not a
local file, or the procedure is running in batch mode, the fl'e
wil' be obtatned fro. the current catatog.

The PR par.meter~ If present, causes the refor.atted listing
to be sent to the printer.

If run InteractiYely, when the procedure ter.inates the
reforc.tted listing Is on local file KEYFILE.

The RNVEKEY procedure requires two addltiona' files as Input.
The first file defines hOM the keypoint inforMation is to be
reformatted. The name of this flte is KEYDESC and it Is obtained
from the current catalog or, If not present there, froe the
NOS/VE catalog. The format of this file Is described in section
6.3.2.

The second input fi'e provides directives to the utility
prograM which direct its execution. The following directives .r.
supported'

tv NAXPROCID N

This directive causes all keypolnts Mith Id values greater
than N to be Ignored.

CV UNDEFINED

This co •• and causes both defined and undefined keypolnts to be
printed. An undefined keypoint is one that does not have a
definItion in the KEYDESC file.

tV DEfINED

This command causes only defined keypolnts to be printed.

Build N, June 1981

NOS/VE USERS GUIDE
f5-4

07/29181

--F5.0 KEYPOINTS
F5.3.1 KEYPOINT REFORMATTING UTILITY

--
CV IOEMT

This command causes the keypolnt processor to Indent the
output produced based on the NS field of the KEYDESC file.

RUN

This co •• and causes the processor to make one pass over the
keypoint file. It is used after the CV co •• ands have specified
how to process the keypoint Information.

END

This co •• and terminates the keYPoint processor. It must be
the last co •• and.

These directives are read from file RNOSKEl. This file Is
obtained from the current catalog or. If not found there, fro.
the NOS/VE catalog.

F5.3.2 KEYPOINT oeSCRIPTION FILE

The keypoint description file is used by the keypotnt
reformatting utility to direct the reformatting of the keypoint
information. Each line In the file describes one keypolnt, and
has the following format.

SID SeN Pto LN F LEN FMT CSTR NS DT

The SID field represents the section tD and Is 2 characters
long. An example would be "" for a.aory .anager.

The SCN field is the section c.ass number, which equals the
SECTION value from the keypotnt Instruction.

The PIO field is the procedure 10, which equals the 10 value
frOM the keypolnt Instruction. The SeN and 'ID •• Iues uniquely
define a keypoint all of the other Infor •• tlon Is used for
reformatting.

The IN field is used to cause 8 line on the keypoint listing
to be preceeded by a * If the IN value Is zero. This feature Is
used to .ark a given keypoint as special.

The F field specifies that this Is 8 special keypolnt CI.e.,
has special meaning to the prograM that forMats the keypolnt

Build N, June 1981

NOS/VE USERS GUIDE
f5~5

01129/81

--F5.0 KEYPOINTS
f5.3.2 KEYPDINT DESCRIPTION fILE

--
file). The values aust be one of the fot'oNlngl

o - Not special
1 - Task switch
2 - Begin trap
3 End trap
4 - Begin monitor
5 - End monitor

Any neM keypolnt descriptions should specify this field as
zero unless the utility progr •• Is modified to handle the new
yafue(s).

The lEN field specifies the length of the data portion of the
keypoint in bytes.

The F"T field specifies in Mhat format the data portion of the
keypolnt should be displayed, and can be one of the fofloMin,.

H - Hex
I - Integer
A - ASCII

The CSTR 'ield Is 8 1 to 8 ch.~acter string describing the
data portion of the keypoint.

The NS field specifies the number of spaces to indent the DT
string on the refor •• tted file. This feature can be used to ShON
procedure nesting vie keypolnts.

The or field is • text string that describes the purpose of
the keypolnt. It may fi" the rest of the current line.

The user may add his OMn keypoint descriptions to this 'ile
and save it In his catalog. When RNVEKEY.s run, the existing
NOS/VE keypolnts and user defined keypoints will be listed
together. If the NOS/VE keypolnts are not wanted, their
descriptions may be deleted from the file.

f5.3.3 REFORMATTED fILE DESCRIPTION

The reforMatted listing file contains two sections. The first
Is a su •• ary of the number of tiMes each keypolnt occurred. The
second section is a listing of a't thekeypolnts in the order
they Mere issued. Each line of the second section has the
folloMlng formatl

Build H, June 1981

NOS/VE USERS GUIDe
F5~6

07129/81

--f5.0 KEYPOINTS
f5.3.3 REfOR"ATTED FILE DESCRIPTIDN

--
Rl TSl DATA CSTR S TN SID DT

The RT field designates the value of the free running
aterosecond clock (tlse since deadstart) when the keypolnt was
executed. On the slmul.tor the ciock is inere.ented by 1 for
each Instruction executed.

The TSl field designates the time '.Ieroseconds) since the
last keypolnt instruction was executed.

The DATA field specifies the value of the data portion of the
keypotnt in the for.at described in the keypoint description file
for this keypolnt.

The CSTR field Is the CSTR field from the keypolnt description
file for this keypoint.

The S field specifies the state of the machine when the
keypofnt Mas Issued and is one of the following'

" - Monitor Mode
J - Job mode

An * preceding the S field Indicates that trap processing
is active. i.e., the trap handler has been entered but
not exited.

The TN field gives the global task Id of the task that Mas
exec:

NOS/VE USERS GUIDE
f6-1

07/29/81

--.---------F6.0 DEADSTART PROCEDURES

---.
F6.0 JlEADSlliI-lB.Dk.EIlU!fS

o Set the PPS deadstart panel as folloNs'
(Note th.t this Is not the settino for the IOU)

1..".1.10 SJll11tui lUUlU&lJJUl

1 7513 DCN
2 2001 LOe
3 0000
It 7713 fMC
5 0060 (Warmstart

un ItO)
6 7413 leN
7 7113 lAM

10 6200

readt 556 bpi,

o Set SWEEP/LOAD/DUMP switch on the PPS pane' to LOAD posttion~

o Hount deadstart tape on unit O.

o Verity that the 512 printer Is READY.

o Depress DEADSTART button at keyboard/display console (the
message "PROCEED· should appear on the left screen).

o Type SS (followed by 8 carriage return) to co.plete s,ste.
Initialization.

F6.2 JlfAQSIA!I_~lIJ:f.JJIl1l11g

This deadstart procedure uses the Co •• on Test and
Inltla'ization (CTI) facility of NOS/170 to deadstart NO~/VE. It
requires two tape units, one for the NOS/170 deadstart tape and
one for the NOS/VE deadstart tape.

Detailed information on the use of eTI Is located In chapter 2

NOS/VE USERS GUIDE
F6-2

07/29/81

-------------------.------------.-------------------------------------
F6.0 DEADSTART PROCEDURES
F6.2 DEADSTART WITH NOS/170 -.--------------------------------------.-.----------------.-----.------

of the NOS Version 1 Operators Guide (60435600 J).

a Set the deadstart panel 8S folloNs'

1
2
3
It
5
6
7
10
11
12
13
14

'sJttlilUI

0000
0000
0000
75TT
77TT
eDOD
74TT
11TT
7301
RPXX
RPXX
0000

TT Is the channel number of the tape unit containing the
NOS/170 deadstart tape.

E is the equipment number of the tape controller.

DOD Is broken down as followsa

FFU

FF specifies the type of unit being deadstarted fro. and Is
12 for 67X tapes, 26 for 66X tapes and 3U for 844/885
disks.

U (or UU) Is the unit nUMber of the device.

Words 12 and 13 (RPXX) can be ignored as they are only used
during MOS/170 deadstart.

o Mount the NOS/170 deadstart tape on the unit described by the
deadstart panel settings. "ount the NOS/VE deadstart tape on
another unit. Press the deadstart button. The eTI *A*
display should appear.

o Select the U (utilities) option. The eTI *U* display should
appear.

o Select the A 'alternate deadstart) option. eTI will ask for
the device type, channel, equipment and unit of the device to
be deadstarted from. The values supplied by the user should

Build H, June 1981

F6-3
NOS/ve USERS GUIDE

07/29/81

------.------.--
F6.0 DEADSTART PROCEDURES
f6.Z DEADSTART WITH HOSt1l0

--
be the ones for the NOS/VE deadstart tape unit.

o The message "PROCEEO· should appear. to start
NOS/VE.

Build N, June 1981

NOS/VE USERS GUIDE
Fl-1

07/29181

--.-----Fl.0 NOS/VE TEST PROGRAMS

--

NOS/VE has a set of prograMs which run 8S user tasks. These
programs provide the following featuresl

checking specific hardware features.

- checking specific NOS/VE software 'eatures.

creating 8 heavy andlor unlfor. load on the system.

F7.1.l SORT

This program creates an array of records with random keys,
then sorts this array and checks the results.

The program allows a controlled amount of load to be applied
to the system paging mechanism.

syntax l EX SORT tNR,RS'

NR The nu.ber of records to be created and sorted.

RS A factor affecting the size of each record. By varying
record size, the user can change the ratio of CP time to 10
time for a test. The approximate record size is given by
the formulal

32+8*RS

F7.1.2 USER1

This program will display the linel

'user task executing'

Build H, June 1981

NOS/VE USERS GUIDE
F7-Z

07/29/81

---•. -----------.------------------.------------------------------.----
F7.0 NOS/VE TEST PROGRAMS
F7.l.2 USERl

--
and then terminate. It is used to show that the system can at
'east execute a very small test case.

syntax. £X AAAA 'STRING-

STRING If this parameter Is present, it Mill be output after
the 'user task executing' message.

F7.1.3 UUTl

This program provides a variety of different test cases, and
also alloNs them to be run In a repetltiYe manner.

syntaxl EX UUTl 'STR'

STR A string describing which program to run and hOM to run
it. The various programs are described below.

This program generates an environment specification error.

syntaxl ex UUTl 'ENVSPEC'

F7 .1.3.2 JJUlXfJ.

This progr •• generates an arithmetic overflow error.

syntax. EX UUTL 'AROYFLt

This program generates an Instruction specification error.

syntax' EX UUTl 'INSSPEC'

F7.1.3.4 JlIJf11

This program generates a divide fault error.

syntaxl EX UUTl 'OIVFlT'

Build N, June 1981

NOS/VE USERS GUIDE
f1-3

07129/81

--F7.0 NOS/VE TEST PROGRA"S
f7.l.3.5 LA ---------------------------,-----_._----------------------------------

F7.l.3.5 .LA

This prograa performs an LA (toad address) instruction on a
specified PVA. It can be used tatest various forms of memory
protecti on.

syntaxl EX UUTl 'lA,PVA'

PVA - The virtual address to be loaded from.

This program performs an SA (store address) Instruction on a
specified PYA. It can be used to test various foras of .eEory
protection.

PYA - The virtual address to be stored Into.

F7.l.3.7 BfIUltJ

This program .odlfles the previous stack frame area and then
returns to see what effect the modifiction will have.

syntax l EX UUTL 'RETURN,N'

N - "odiflcatlon option. Must be one of the fotlowing l

1
Z
3 ,.
5
6 -
7
e

Set value of A2 so It is not 0 mod 8.
Set A2 bit 32 to 1.
Set A2 seg_ent nUMber invalid.
Set A3 segment nUMber to seg.ent without
Set P register segment nu.ber inyalid.
Set P register so It is not 0 Mod 2.
Set P register btt 32 to 1.

Set P register SegMent number to
seg_ent.

9 - Set final AO < > A2.
10 Cause YMID error.
11 Cause InNard return.
12 Cause return to CI70 mode.

read access.

non executable

Build N, June 1981

NOS/VE USERS GUIDE
F1-4

07129/81

--F7.0 NOS/VE TEST PROGRAMS
F7.1.3.8 TESTME"

--
F7.1.3.8 Iflll:1.E!I

This program creates, writes and
records. The record size Is such that
located on 8 word boundary, some on
boundaries, some witl cross pages, etc.

syntax 1 ex UUTl 'TESTMEM,8Ct

verifies an array of
SOMe records will be
all seven (other) byte

BC - Number of bytes to be altocated to the records. The number
of records created lsI BC DIV 17+1.

This progra. Is slmllar to TESTMEM, except that BOP
Instructions are used to compare and moYe records.

syntaxl EX UUTL ITESTMOVE,BC'

Be - Nu.ber of bytes to be allocated to the records. The number
of records created lSI Be DIY 255*Z + 1.

This prograM calls a procedure recurslvel,.

syntaxl EX UUTL 'RECURSE,N'

N - The number of times to recurslyely c8.1 the procedure.

F7.1.3.11 kl.C.l£

This progr •• cycles for a specified number of ."Ilseconds.
It can be used to toad the syste. with 'Idle tasks.

syntaxl EX UUTl 'CYClE,MS'

MS - The number of milliseconds to cycle for.

F7.1.3.12 Il!1f1l.UI

This prograM delays for a specified aMount of tl.e in
increments.

Build N, June 1981

NOS/VE USERS GUIDE
F7-5

07/29/81

--_ .. _-----------------------F7.0 NOS/VE TEST PROGRAMS
F7.1.3.12 TIMEOUT .. __ .. -_ --------------------_ .. --.... _ -.......... -----_ -_ .. _-----------

syntaxl EX UUTl 'TIMEOUT,Tl,T2'

Tl The number of .iliiseconds in each pmpSdelay r.quest.

T2 - The total number of milliseconds delayed.

F7.1.3.13 LOaf

This progr.m loops (executes) tor a specified •• ount of tiMe.
It can be used to load the system with active tasks.

"5 - The number of .IItlseconds to execute for.

This
binding
code.
gets to
0178).

progr.m creates a segaent with read, write, execute and
attributes, places Cl70 code Into It and executes that
The code executed counts dOMn an X register and when it
zero, executes an Illega' Cl70 Instruction (op code

syntaxl EX UUTl 'A170,N'

N This v.'ue times 1000000 is placed In the X register being
decremented to zero.

F7.1.3.15 !Uf'I

This program synchronously executes 8 progr •• a given number
of times.

PH - Name of the program to execute.
present in the NOS/VE library.

It can be any program

N - The number ot times to execute program PM.

STR The parameter string passed to the prograM when It begins
execution. Note the use of double quote .ar~s _ithln a
quo ted s t r j n g •

Build H, June 1981

NOS/VE USERS GUIDE
f7-6

07/29/81

--f7.0 NOS/VE TEST PROGRA"S
f7.1.3.16 CALLER

--_.----------------------

This program is similar to REPEAT,' but the tasks are run
asynchronous',.

The para.eter definitions are the same as REPeAT.

F7.1.3.17 JUU.K

This program
number of tilles.
with a randoll
abnor 1Ia II y.

runs a number of different programs a specified
This test Is used primarily to load the system

mi. of programs. Some programs wilt ter.lnate

N - The number of times to execute tbe entire list. The
following programs (Nith parameters) ar. executed'

lOOP"
TIMEOUT,5
CYCLE,5
INS SPEC
ADRSPEC
ENYSPEC
PRtVINS
LA, 257800000000(16)
5A,100200000000(16)
AROVfl

X If this parameter Is specified (any value except 1) then the
test will be run asynchronously - that is, each test in the
list wi" be started and 8fter they are a" running, the BULK
test Mill Nait for the. a" to COMPlete. This procedure Is
repeated N tiMes.

If this para.eter Is not specified, or Is specified 8S 1, each
test Mill be alloNed to COMPlete before the next test In the
list is started.

Build H, June 1981

Nos/ve USERS GUIDE
Fl-7

07/29/81

--f7.0 NOS/VE TEST PROGRAMS
f7.1.3.18 BULKNTC

--

This program is similar to BULK, except that all of the
programs run .re expected to complete nor •• ,ly.

syntax1 EX UUTl 'BULKHTC,N,X'

N - Same as for BULK, except the program Ilst'ls the folloMlng'

LOOP,500
lOOP,5
TIt1EOUT,5,500
CYClE,500
RECURSE,5000
LOOP,10
TEST"Ef1,lOOOOO
TES1"OVE,100000
lOOP,lOOO

x - Same as for BULK.

This progr •• causes an address specitlcation error.

syntax' EX UUTL 'ADRSPEC'

This progr •• causes 8 prlYileged Instruction error.

syntax t EX UUTL 'PRIVINS'

F7.2 llA.t1f.LfS

To run the sort program on 1000 records of size 200 dOl

EX SORT '1000,200'

To run 53 asynchronous cop'es of same sort test dOl

Build N, June 1981

NOS/VE USERS GUIDE
F7-8

07/29/81

--F7.0 NOS/VE T£ST PROGRAMS
F7.2 EXAMPLES

--

To run the same sort test 45 times in succession, do

HINT' When running progra.s which may run for a lono period of
time, use the tAt option on the EX co •• and. This runs the
programs asychronous'y with the co •• and processor. This
a'loMs you to status the test to see what Is happ~nlng
(TSTATUS, PFSTATS) or to terminate the test If it runs too
long (TMTERM).

8ulld N, June 1981

CY8Il Installation Documentation
61-1

07/29/81

---.----Gl.0 CYBll VERSION 1.0 lEVEL 81188

--

Tool 10 CV

Tool Files

Source Plws

PFESRC - Co.pile, Front End
PCGSRC7 - CC code generator
PCGSRC8 - CI code generator
PAXC"" - 'toba' co •• on decks
PlBSRC7 - CC run tiMe library
lBSRC80 - CI run tlse library

Binary Files

PFELI8 - Compiler Front End
PCGLIBl - CC code generator
PCGLtB8 - CI code generator
CYBCOBJ - CC run tlee blnafles
CYBIOBJ - CI run tl •• binaries
CYBCLIS - CC run tlee library
CY8ILIS eI run tim. Ilbfary
CYBH8IN - II front end, code generator and run time bfnaries

Absolute Files

CYBtle CYBll-CC co.plter
CYBIlI - CYBIl-CI cOItPIler

Build H, June 1981

CYBll Installation Docuaentation
(;2-1

01129/81

--------------.-------------------.------------------------------.-----
G2.0 BUILD INTERDEPENDENCIES

--

The following tools and files must be ayailab'e tor the build
process to execute.

"ADIFY - ASCII version of Modify
SESUlIB 110 and miscellaneous routines supplied by the SES

project. Found on SES numbered file SESxxxx.
PROClIB File containing SES procedure CO"PII for building the

II front end and code generator. Found In lP3.
SIMCOBJ Simulated NOS/VE Interfaces supplied by the SES

project. Found on SES numbered file SESxxxx.
SIMIOBJ Simulated NOS/V£ interfaces supplied by the ses

project. Found on SES numbered file SESxxxx.
C180 ASSEMBLER C180 Asseabler and SYSTEXT supporting the neM

object text
C180 OCU - Generate Object library command
CY8Il-CC - An existing CYBIl-CC com,iler
CYBll-CI - An existing CYBIL-tl comp.ler
CYBCCMN - SES common decks for eYBIL-IO and SES utilities. Fo~nd

on SES numbered file SESxxxx.
CYBCIMN - SES cO.llon decks for Sillulated-IO and SES utilities.

Found ~n SES nUllbered file sesxxxx.
CCCOMPl - Interfacas to the Common Compiler MOdules.
CC"lIB - Binaries of the CO.Mon Compiler Modules.

8uitd·N, June 1981

CYBll Installation Documentation
63-1

07/29/81

--------.----------------------.------.----------.--------------------.--
G3.0 CYBll CO"PIlER 8UILDS

--

This paper describes the procedures required to bu"d the
CYBIL CC, CI and II cOM,llers. At' of the builds are adaptabl.
to run In any user catalog. The builds for the CC and CI
compilers and .1. of the libraries are written predominant'y in
eCl with associated usage of SES procedures. The build for the
II coepiler Is an SES procedure.

The gener.I approach to building the COMPilers is first to
generate an object library for each loglca' entity of the
compilers and then tor the CC and CI compilers to co.blne these
objects into en absolutlzed coapiler. For the II cOMpl'er. the
object libraries are combined with the run time library
binaries. When the COMPilers are built for a non-CYBIL project
catalog. the run-time checking and debug code should be turned
off.

G 3.1 !IUltflJ..

Get "'e PROCFIl from LP3 and saye In the catalog wbere the
builds wl., be processed.

G3.2 JUILl!_UQc..EJU1B..E1

To co.plte the source Pls, the following command Is usedl

For building the CIIII library the eCl begln_co •• and iSI

BEGIN,BCYBIOB,PROCFIl,src,srcun,obJ.chk,debug,SI"'HDWR.

Build N, June 1981

CYBIl Installation Documentation
G3-2

07/29/81

-----------------------_._--,.,------,.._---------------.,-----.,-------,.--
G3.0 CYBIl COMPILER BUILDS
G3.2 BUILD PRoceOURES
---_.-------------.,------------_._---------,..,-----------------------

proc_name Name of the build procedure. default is appropr'ate
tlte name 8S listed In section 1.0.

src - Name of madify Pl containing the source, default Is
appropriate file name listed above.

srcun User n •• e for src. default Is LP3.

lib/obJ Name of file to recelYe new object library or object
file, default as for src. If the f.le already exists
It will be overwritten. otherwise it wilt be
DEFINEd. For BeYRIOB with the HDWR option the file
na.e must be specified if default Has used with the
SI" option.

chk Run-time checking mode for compiler being built,
default Is no checking CCHK-O). CHK key alone implies
all checking options tCHK-NRS), otherwise specify
desired CHK para_eters.

debug Debugging option for complter being built, default is
no debug, keyword .Ione i.plles co.plle internal
coep"er debug code.

SIM/HDWR Par.meter for eCY8IOB, SI" spec1fles that library
will be used Mith the CI co.pller, HDWR specifies
that library wilt be used with the II com,'ler.

BEGIN,BPFElIB.
BEGIN,BCYBIOB.
BEGIN,BCYBCOB.
BEG IN, BPCGlB7.
BEGIN,BPCGlB8.

{Compile front end}
{Comp.le cl Ilbr:.ry}
{Co.plle cc library}
{Compile cc code generator}
{Compile ci code generator}

To build a compiler with checking mode turned on add the CHK
parameter. To enable the comp.ler debug code add the DEBUG
paraMeter.

G 3 .3 UJJ.uI1

The SES Procllb must no~ be moved from the lP3 catalog to
access the procedures that complete the co.p"er builds.

Build N, June 1981

• •

G3-3
CYBll Installation Documentation

07/29/81

--63.0 CYBIl COMPILER BUILDS
G3.4 BUILD PROCEDURE FOR II COMPILER

--

To co_pile the source Ptts. the following co •• and Is used

mods - module names to be compiled, for the front en~, .ods
Mould be A8SNEG •• WRITEPR,BIGQIO •• PXQOPEH,CY8I1II.
For the code generator mods would be IBA8SRl •• UNSATRF

obJ - Name of file to receive new object file. There is no
default. If the file already exists It wll. be
overwritten, otherwise it wilt be DEFINEd.

type specify FE for front end or CG for code generator

typun - user n •• e for compiler to be used. Default Is lP3.

G3.5.1 TO BUILD (YBll/Ce

SES.GENCIl ce.

G3.5.2 TO BUILD (YBIl/Ct

SES.GENCIl CI.

G3.5.3 TO BUILD THE II CO"PILER

SES,SSS.GOF BASE • (FEobJ, CGobJ. lIBobJ) UPON • CYBHBIN

feobJ na.e of the file containing the II coapller front end
binaries
cgobJ naMe of the file containing the II co.pller code
generator binaries
tlbobJ - name of the "'e containing the II run tiMe binaries

Build N, June 1981

CYBIl Installation Documentation
G3-4

07/29/81

-------------------.-----------------------------------.--------------
G3.0 CYBIL COMPILER BUILDS
G3.5.4 TO BUILD CC RUN TIME LI8RARY

--
&3.5.4 TO BUILD CC RUN TIME LIBRARY

ACQUIREICY8COBJ}

ACOUI RE(SESUl IB-SES xxxx/un-SES

ACQUIRE(SIMCOBJ-SeSnnnn/un-SES

SES.REPUlI8(CYBCOBJ,SESUlIB,SIMC08J) Nl-eY8ClIB NX-l

Note. See SES re.ease lIanager for actual per.anent file
names SES.xxx and SESnnnn shown aboye.

G3.5.5 TO BUILD THE CI LIBRARY

ACQUIR£CCYBIOBJ)

ACQUIRE(SI"IOBJ-SESnnnn/un-SES)

RETURN(llbteIlP)

SES.GOL f-(CYBIOJB,SIMIOBJ) UP-'ibtemp

SES.REWRITE IlbtellP CVBILIS

Note. See SES releae lIanager for actual per.anent flte naMes
SESnnnn shown above.

This library nOM includes tbe si.ulated NOS/Ve interfaces.

G3.6.1 CC REGRESSION TESTING

The basic testing for the CC comp.ler Is the convergence of
the cOMpiler.

BulldN,June 1981

CY8Il Installation Documentation
63-5

07/29/81

--G3.0 CYBIl COM'ILER BUILDS
G3.6.2 Cl REGRESSION TESTING

---.--------
G3.6.2 CI REGRESSION TESTING

The test cases exist on file CIBASE/UN-HAW. Co •• on deck
PROLOG contains the attach for the compiler to be tested. Co •• on
deck COMPILE contains the complter call statement and associated
options. These co •• on decks should be checked to ensure they are
setup for the Intended run.

To submit all the tests dOl

After completion of the execution of the test cases dol

SES.RUNANl

to analyze the results of the revression run.

G3.6.3 II TESTING

The current tests to be run are Test!, Test2. Test3. Test4,
Testl fro. Testpl/un-TJR, Test" and TestH froa testpl/un-ROD. To
get the tests from testp" use the SES procedure lencomp.

Build H, June 1981

• •

• •

NOS/VE Deadstart Information
til-l

07/29/81

.•. --.. -----------.--------------
G3.0 CYBIl COMPILER BUILDS
HI.1 A170 NOS DEADSTART

--.-------------------

Build N15
Datel 1t/30/81

o The SysteM Is configured to run with three FMD units (~1,
ItZ and 43).

o "ount the pack labeled "Advanced Systems Integration EI
Pack" on any 81t4 disk drive EXCEPT UNIT o.

o Set the DIS panel to deadstart frOM the primary system
disk. This is Unit 43 for all Build N systems.

o Push DIS button
o Do an alternate deadstart to tape DUAL6NI

- Select au" display
Select ·S" d'splay

- Deadstart Device Type - Z (CR)
- Channel - 13 (CRt
- Equipment - 0 feR)
- Unit - XI (CR) (where ·xx· is the tape unit nu_ber)

o Select ·0" display
o Select "H" displa,
o Enter C"-10000
o Enter CACHEO-3-0FF
o EnterlCR)
o Syste. will display the .essage "ENTER LOCATION OF "SL/HIVS

DEVICE". Ent er I
- Channel - 03 (CR)
- Equlp.ent - 0 (CR)
- Unit - xx (CR) (~here ·xx" Is the unit Au_ber of the

844 drive where the EI pack Is .ounted)
o Enter date/tiae

Walt for deadstart to complete.
Notel The deadstart tape DUAl6N and the EI pack are both found

in the area in the northeast corner of the rooa where the tape
cabinet and bookcase of disk packs are found.

o FMD Unit 1t3
This unit contains the folloNlngl
- A170 NOS (Build 6 level), CTI, MSl, EI binaries, NOS

deadstart files
- Files associated with user number LIBRARY
- Files associated with user nUMber SES
- Files associated with DEVI, RElI, INTI.

o f"D Unit 1t1

Build N, June 1981

• • :
• • :
• • • • • • • • :
:
• • • • :
:
• •

• •
I
• • • • :
• • • t

• • • •
• • • • :
• •

• •

NOS/V~ Deadstart Information
H1-2

07/29/81

--~-----------------------G3.0 CYBIl CO"PILER BUILDS
Hl.2 CURRENT DUAL STATE CONFIGURATION

---_.-.---
This is a scratch unit

o FMD Unit 42
This unit contains the followlngl
- NOS/ve Develop.ent Ara Pl's and Member PL's
- NOS/VE Deadstart Files to be tested (sayed in

Individual user's catalogs)
Files associated with user number INTZ

a The following file must be available in your catalog on the
S21

TPXXXK contains a NOS/VE deadstart Image. This must be 8 copy
of the dual state deadstart Images available fro. the link
procedures. CIMAGE, "IMAGE, RGIMAGE are "fast" f.tes. which are
built fro. TPXXXK the first time you deadstart NOS/VE. These
files are then used on subsequent deadstart atte.pts. Before a
new TPXXXK can be used, these "fast" files must be purged off
your user number.

o Mount the disk labeled -DAHL-Large sector· on 844 unit 0
(other disks wi" not work). The default disk dr'ver for
build M is the NOS/VE driver.

o Bring up dual statel X.UPMYVE (CAT-.ycat, DEVI-scat) where
.ycat • user catalog (as before)

scat • syste. catalog - INT2 or INTI Cdefaults to DEV!) :
o The UPMYVE Job Mi" display the foiloMlng l REQUEST *K*

DISPLAY on the B dlsp'ay Type K,n. where n is the control
point nUMber of the UP"YVE Job.

Type
TAFNYE.
Control point two must be free or rolfoutab'e (t.e., HAM
should not be there). This also brings up PASSON and the
"LI subsyste. control points.

Build N. June 1981

NOS/VE Deadstart Information
Hl-3

07/29/81

--G3.0 CYBIl COMPILER BUILDS
HI.S BRING UP C180 --.---------.------.------------------------------------_.-------------

The folloMing sections use the files of LO or Ll to enter the
needed co •• ands to bring up a'i the needed 180 tasks to run
NOS/VE at this .evet.

If you change any of the following decks you MUST use the lO
deadstart from your OMn catalog (with files CYBllOG, XlJOSl, and
XLJlIB)1

A""TSA BAMDVR 8A"'C4 8A"PC2 BAMPel BA"'C3 IIMRSE IIMRl£ II"RUM
IFMEXEC IIMA72H IIMTDEl IIHRUSK IIMDC2S DeMRED OC""UR OeMII"
OCMSDl OC"END OCMLP OCMCPY OeMCR" OCft6EN DeMONS OCMDEF OCMREP
OC"OlG DeMeOl OC"08J OCMCHA OCMOfH OCMADD DC""' OCKDEL DeMolB
OCMeO" OCHSAT RHMQAF RHLFN RH"QIP RHSENO RH"lOF R""NlI RH"QOP
RH"QTE RH"lCF RHTIME RHLOG RHMGRJ RH"QRE RH88812 RH81288 RHROUTF
RHWRTlf RHRTRNF RHFETCH RHGETDM USORT UUSERI UUTL

Hl.5.1 8RING THE SYSTEM UP FOR THE FIRST TIME FROM YOUR CATALOG

Type
K,n. where n Is the UPM'VE control point nuabe,.
K.LIU Cyourun,MVEJ your_password.
K.GET,lO,lO"OeVI,NVE,A6.
K.INCLUOE lO.

The s,stea Is UP when the followlnl aessa,e c.aes up'
SYSTEM IS NOW All UP AND RUNNING
WAITING FOR "ORE INPUT

Hl.5.Z BRING UP THE INTEGRATION SYSTEM (OR YOUR.S AfTER lSTTI"E)

The Integration s,ste. has had the lO file ran'on It. Also
the flte produced by the LO deadst.rt:ha.e b •• d •• de s •• '-publlc
and at found on the catatog used Intbe U'M'VE ca.l.

Ty,e (where DEV1 Is the sa.e as the CAT •••• u. In the UPMYVE
ca'I)'

K,n. where n Is the U'"'VE control point nvaber.
K.lIU CDEVI,MVE) DEVil.
K.GET,ll,Ll",NVE,A6.
K.INClUDE ll.

The s,st •• Is UP when the followlnl .essa.e coaes uP'
SYSTfM IS NOW ALL UP AND RUNNING
WAITING fOR MORE INPUT

Build N, June 1981

NOS/VE Deadstart Information
Hl-4

07/29/81

--G3.0 CYBll COMPILER BUILDS
Hl.6 NDS/VE TER"INATIDN

--

Bringing down dual statel

K.*BYEYE.
K.*ENDRUN

HI.7.1 TO CREATE AN EXPRESS DEADSTART DUMP (EDD) TAPEI

o Mount scratch tape (ring in) on a 9-track drlye.
o Push DIS button.
o Select U (utilities) display.
o Select E (EDO) display.
o Set channel (S2-13).
o Set ECUU (SZ-Oluu)

E • Equipment
C - 1 for 67X drives

2 for 66X drives
uu • unit number of the tape drlye to be used.

o Answer "non zero inhibits rewind" with a CR.
G AnsMer "dump nUMber" with a CR.

o Answer Rdu.p controlware" with a CR.

Hl.7.2 TO CREATE A LISTING OF THE EDD TAPEI

o REQUEST,OUMP,NT,O-PE,F-S,lB-KU,PO-R,VSN-your choice.
GET,DSDI/UN-OEVI. (On SIN 101.)

or
GET,DSDI/UN-DEVI. (On S2.)

o Create DSDI directives file.
A DSOI directive file should Include the folloNingl
IOUMR.
PRO"R.
MEM"R.
PRORF.
W,flrst_byte_address,last_byte_address,8sid. (where the
first_byte_address and .ast_byte_address are hex byte
addresses and asld Is the asld of the SegMent to be
dumped)
or
W,first_byte_address_last_byte_address,SegMent_

Build N, June 1981

NOS/VE Deadstart Inforsatlon
Hl-5

01/2CJ/81

--G3.0 CYBIl COMPILER BUILDS
HI.7.Z TO CREATE A LISTING Of THE EOD TAPEI

--
nultber,exchange_package. Exchange_package is the RMA of
an exchange package or the keywords MPS or JPS.

o Ex ecute OSDIJ
RFL,60000.
DSDI.M,O,I."input directives flle ft •

o To run (after the first tt.e)1
OSDI, tan.
(Does not read tape again.)

o To run interactively'
S.me as above, except to do W co •• and .ust first dOl
OUTPUT,lISTFIl.

o Cl70 OSOI Information can be found In Chapter 10 of the NOS
SYSTEM MANTENANCe Manual. A170 0501 Info caR be found In
dOCuMent ARH3060 - GIO for All0 NOS/S2.

The following co •• ands need to be entered froM deadstart
o Push DIS button
o Select ·U" display
o Select ·S" dlspla,
o Select TYPE-3
o Select eM-I
o Se tect CH-1
o Select EQ-O
o Select UN-It3
o Select "M" display
o Carriage return
o Type in "CV MA8 22" carr I age returANalt unt. t 'LOADED
o Then redeadstart using section 1

o For the use of COL (CREATE_OBJECT_LIBRARY) the following
180 co ••• nds are needed'

GET,SYSlIB,SYSlIB"DEV1,Nve,856
GET,CYBIlI8,CY8Ill8"OEV1,NVE,856
SETOl ADD-SYSLI8

o The above co.mands will be needed for a'i utilities other
then eITOII.

Build N, June 1981

:

:

1
07/29/81

Table of Contents

1.0 NOSIVE SYSTEM OVERVIEW •••••••••••••••••
1.1 INTRODUCTION ••••••••••••••••••••••

1.1.1 THE HIVS COMPONENT •••••••••••••••••
1.1.2 1170 NOS MODIFICATIONS •••••••••••••••
1.1.3 A170 NOS APPLICATIONS •••••••••••••••
1.1.4 THE VIRTUAL STATe COMPONENT ••••••••••••

1.2 VIRTUAL STATE PARTITIONING •••••••••••••••
1.3 MANIPULATION OF NOS/VE PARTITIONS AND LIBRARIES ••••
1.4 DATA RESIDENCY/LIFETIME BASED ON PARTITION •••••••
1.5 DUAL STATE MEMORY HAP •••••••••••••••••

2.0 OVERVIEW Of INTEGRATION PROCESS ••••••••••••
2.1 RELATED DOCUMENTS •••••••••••••••••••
2.2 STANDARDS •••••••••••••••••••••••
2.3 CATAlDG MANAGEMENT POLICIES ••••••••••••••
2.4 BUILD PROCEDURE DESCRIPTIONS • • • • • • • • • • • • • •

2.4.1 INTRODUCTION ••••••••••••••••••••
2.4.2 INVOKING THE PROCEDURES ••••••••••••••
2.4.3 CURRENT PACKAGING OF NOS/VE SOURCE •••••••••
2.4.4 UPDATE THE SOURCE LIBRARIES ••••••••••••
2.4.5 COMPILE/ASSEMBLE fROM SOURCE ••••••••••••
2.4.6 BEGIN THE LINKER-lOADER PHASE •••••••••••
2.4.7 GENERATE THE DEADSTART FILE ••••••••••••

2.5 NVEBIlD PROCEDURE DESCRIPTION •••••••••••••
2.5.1 NVEBILf PROCEDURE DESCRIPTION •••••••••••
2.5.2 NVESlD PROCEDURE DESCRIPTION ••••••••••••
2.5.3 LISTNVE PROCEDURE DESCRIPTION •••••••••••

2.6 NYElINK PROCEDURE DESCRIPTION •••••••••••••
2.6.1 LPF FILE DESCRIPTION ••••••••••••••••
2.6.2 VELDC" I LOR FILE DESCRIPTION •••••••••••

2.7 ADDING USER TASKS TO NOS/VE ••••••••••••••
2.7.1 INTRODUCTION ••••••••••••••••••••
2.7.2 QUICK LINK OPTION OF NYElINK PROCEDURE •••••••

2.8 NOS/VE SIMULATION •••••••••••••••••••
2.8.1 RUNNING A SIMULATOR TEST (NVESt" PROCEDURE) ••••
2.8.2 NVEKEY PROCEDURE DESCRIPTION ••••••••••••
2.8.3 DUMPING A SIMULATOR CHECKPOINT FILE (NVEDUMP
PROCEDURE) ••••••••••••••••••••••••

2.q BUILDtNG A DEADSTART FILE •••••••••••••••
2.9.1 INTRODUCTION ••••••••••••••••••••
2.9.2 CREATING THE FILE (NVESYS PROCEDURE) ••••••••
2.9.3 COMPILING 180 pp CODE (CPP180 PROCEDURE) •••••

2.10 DUAL STATE PROCEDURES •••••••••••••••••
2.10.1 BLOEI PROCEDURE DESCRIPTION ••••••••••••
2.10.2 DS8IlD PROCEDURE DESCRIPTION •••••••••••

2.11 UTILITY PROCEDURES ••••••••••••••••••
2.11.1 NVEREP - REPORT SYSTEM CONTENT ••••••••••
2.11.2 PROCEDURE GET - GET A LOCAL FILE •••••••••
2.11.3 PROCEDURE SAVE - MAKE A LOCAL FILE PERMANENT •••

1-1
1-1
1-2
1-2
1-2
1-3
I-It
1-5
1-6
1-6

2-1
2-1
2-2
2-2
2-3
2-3
2-1t
2-6
2-6
2-7
2-8
2-8
2-9

2-12
2-13
2-14
2-15
2-17
2-18
2-18
2-18
2-18
2-19
2-19
2-21

2-22
2-22
2-22
2-23
2-24
2-25
2-25
2-26
2-26
2-26
2-28
2-29

2.11.4 NVEKAP - REFOR"AT NDS/VE LINK"AP •••••••••

3.0 DUAL STATE INSTALLATION SEQUENCE • • • • • • • • • • • •
3.1 CLEAR P~INTERS AND INSTAll eTI • • • • • • • • • • • • •
3.2 INSTAll HIVS •
3.3 INSTALL SYSTEK •
3.4 LOAOPF FILES •
3.5 BRING UP DUAL STATE • • • • • • • • • • • • • • • • • •
4.0 NOS/VE HARDWARE REGRESSION TESTING •••••••••••
4.1 INTRODUCTION •••••••••••••••••.•••••
4.2 S2 REGRESSION TESTS ••••••••••••••••••

~.2.1 TEST8A" ••••••••••••••••••••••
4.2.2 JOBI ••••••••••••••••••••••••
4.2.3 J082 ••••••••••••••••••••••••

4.3 S2 REGRESSION TEST SEQUENCE ••••••••••••••
4.4 THE CONFIDENCE TESTS ••••••••••••••••••
4.5 CONFIDENCE TEST SETUP INSTRUCTIONS •••••••••••

4.5.1 FILES NEEDED TO RUN THE SETUP CONfIDENCE PROCEDURES
4.5.2 RUN ON A NONE CY8ER 180 ••••••••••••••
4.5.3 RUNNING ON A ClBER 180 WITH NOS/YE UP •••••••

4.6 CONFIDENCE TEST OPERATOR INSTRUCTIONS •••••••••
4.7 CONFIDENCE TEST8ASE PROCEOURES •••••••••••••

4.1.1 GENTEST ••••••••••••••••••••••
4.7.2 lOTEST •••••••••••• ~ ••••••••••

4.8 CONTENTS OF THE CONFIDENCE TESTBASE ••••••••••
4.9 CONFIDENce TEST8ASE MAINTENANce ••••••••••••

4.9.1 CONFPL "AINTENAMce •••••••••••••••••
4.9.2 GENTEST PROCEDURE MAINTENANCE •••• •••••••

2-30

3-1
3-1
3-1
3-2
3-3
~3

4-1
~l
4-1
4-1
4-2
4-3
4-3
4-6
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-9

4-10
4-11
4-11
4-12

NOS/VE Transmittal For. •••••••••• • • • • • • • • Al

Software Change Request For. • • • • • • • • • • • • • • • • 81

Advanced Systems Integration Build Actlylty Katrlx • • • • • Cl

Files Maintained By Integration •••••••••••••• 01

52 Machine Usage Oocu.ent ••••••••••••••••• El

El.O MAJOR CHARACTERISTICS OF THIS BUILD ••••••••••
£1.1 NOS/VE USAGE EXAMPLES •••••••••••••••••

£1.1.1 EXECUTING PROGRAMS ••••••••••••••••
El.1.2 CREATE OBJECT LIBRARY OM NOS/VE AND SAVE IT ON NOS
£1.1.3 MODIfY A PREVIOUSLY SAVED OBJECT LIBRARY •••••
£1.1.4 ROUTE AN INPUT FILE FROM NOS TO NOS/VE ••••••
El.1.5 PRINT A NOS/VE FILE ••••••••••••••••

E2.0 CO"MAND INTERFACE STATUS •••••••••••••••

El-1
EI-4
EI-4
EI-5
EI-6
El-7
EI-7

E2-1

3
07/29/81

£2.1 ACCESS TO NOS/VE IN DUAL STATE ••••••••••••
£2.1.1 LOGIN TO NOS/WE ••••••••••••••••••
E2.1.2 TERMINAL USAGE ••••••••••••••••••
£2.1.3 NOS/VE PROGRAM Access TO THE TERMINAL •••••••

£2.2 COMMAND FUNCTIONS •••••••••••••••••••
E2.2.0.0.0.1 System Access Co •• ands ••••••••••

E2.3 RESOURCE MANAGEMENT ••••••••••••••••••
E2.4 FILE MANAGEMENT ••••••••••••••••••••
E2.5 PERMANENT filE MANAGEMENT •••••••••••••••
E2.6 Sel STATEMENTS AND PROCEDURES • • • • • • • • • • • • •
E2.7 INTERACTIVE COMMANDS •••••••••••••••••
£2.8 OBJECT CODE MAINTENANCe ••••••••••••••••
E2.9 USER SERVICES •••••••••••••••••••••
E2.10FItE ROUTING •••••••••••••••••••••
EZ.lI .ROGRAM EXECUTION ••••••••••••••••••
E2.12 JOB MANAGEMENT ••••••••••••••••••••
E2.13 NOS/VE COMMANDS IMPLEMENTED AS PROCS •••••••••

EZ.l3.l GET_fILE •••••••••••••••••••••
£2.13.2 REPLACE_fILE •••••••••••••••••••
E2.13.3 PRINT ••••••••••••••••••••••
E2.13.4 CREATE_OBJECT_LIBRARY : COL •••••••••••

£2.14 NON STANDARD COMMANDS ••••••••••••••••
E2.14.1 SETUP ••••••••••••••••••••••
E2.14.2 CITOII ••••••••••••••••••••••
E2.14.3 OBJlIST •••••••••••••••••••••
£2.14.4 LINK_USER: lIU •••••••••••••••••
E2.14.5 GET •••••••••••••••••••••••
E2.14.6 REPLACE •••••••••••••••••••••

E3.0
E3.1
£3.2
E3.3
E3.4
E3.5
£3.6
E3.7
E3.8
1:3.9
E3.10
E3.11
E3.12
E3.13

PROGRAM INTERFACE STATUS •••••••
COMMAND PROCeSSING • • • • • • • • • •
MESSAGE GENERATOR ••••••••••
RESOURCE MANAGEMENT •••••••••
PROGRAM EXECUTION • • • • • • • • • •
PROGRAM COMMUNICATION ••••••••
CONDITION PROCESSING • • • • • • • • •
PROGRAM SERVICES • • • • • • • • • • •
LOGGING •••••• • • • • • • • • •
FILE MANAGEMENT,......

PERMANENT FILE MANAGEMENT ••••••
MEMORY MANAGEMENT • • • • • • • • • •
STATISTICS fACILITY •••••••••

NOS/VE EXCEPTIONS ••••••••••

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

£4.0 DUAL STATE DEADSTART AND OPERATION ••••••••••
£4.1 A170 NOS DEADSTART ••••••••••••••••••
E4.2 CURRENT DUAL STATE CONFIGURATION •••••••••••
E4.3 DUAL STATE, NOS OPERATION •••••••••••••••
E4.4 NOS/WE DEADSTART •••••••••••••••••••

E4.4.1 DS ••• •••••••••••••••••••••
E •• 4.2 EXAMPLE OF NOS/VE INSTALLATION DEADSTART •••••
E4.4.3 EXAMPLE Of NOS/VE DEADSTART ••••••••••••

E4.5 NOS/YE TER"INATION ••••••••••••••••••
E4.6 DSDI INFOR"ATION •••••••••••••••••••

£2-1
E2-1
E2-1
£2-2
E2-2
£2-3
E2-3
E2-3
E2-3
E2-it
£2-5
E2-5
E2-6
£2-6
E2-6
E2-7
E2-7
E2-8
E2-8
£2-8
E2-9
E2-9
E2-9

£2-10
E2-11
E2-11
E2-11
E2-13

E3-1
E3-1
E3-1
E3-2
E3-2
£3-3
E3-3
E3-3
E3-4
E3-4
£3-6
£3-6
E3-7
E3-7

E4-1
E4-1
E4-1
E4-2
EIt-2
E4-1t
£1t-5
E4-5
E4-6
E4-6

4
07/29/81

E4.7 A170 NOS SHUTDOWN •••••••••••••••••••
E4.8 INTERI" H£HDRY LINK STORAGE MOVE CONSIDERATIONS ••••
E4.9 NOS/YE INTERACTIVE FACILITY OPERATION •••••••••

E4.9~1 OPERATOR INITIATION ••••••••••••••••
E4.9.2 OPERATOR TERMINATION •••••••••••••••
E4.9.3 OTHER OPERATOR CAPABILITIES ••••••••••••

£4.10 TO RELOAD CONTROLWARE FOR THE DAHL-LARGE SECTOR 844 ~
E4.10.1 ROUTE AN INPUT FILE FRO" e170 TO C180 ••••••

£4.11 K DISPLAY ASCII •••••••••••••••••••

E5.0 ARDEN HILLS DEVELOPMENT LAB SUPPORT 8Y INTEGRATION • •
APPENDIX A MOS/VE BACKGROUND DOCUMENTS • • • • • • • • • • •

NOS/ve USERS GUIDE • •

fl.O INTRODUCTION
f 1.1 PUR POSE • •

• •
• • •

• • •• • • • • •

• • • • • • • • •
• • • • • • • • •

F2.0 ADDING USER TASKS TO NOS/VE ••••
F2.0.1 INTROOUCTION •••••••••
F2.G.2 USING THE VE LINKER ••••••

• •

• •
• •

• •
• •
• •

F3.0 EXECUTION •••••••••••••••
f3.1 INTRODUCTION •••••••••••••
F3.2 NOS/VE COMMANDS ••••••••••••

F3.2.1 DECLARE ••••••••••••••
F3.2.2 REMOYE ••••••••••••••
F3.2.3 PFSTATS ••••••••••••••
F3.2.4 TSTATUS • • • • • • • • • • • • • •
F3.2.5 '"CYCLE ••••••••••••••
F3.2.6 THDELAY ••••••••••••••
F3.2.7 T"ABORT ••••••••••••••
F3.2.8 T"EXIT ••••••••••••••
F3.2.9 EXEC/EX ••••••••••••••
F3.2.10 T"lER" ••••••••••••••
F3.2.11 SMOPEN ••••••••••••••
F3.2.12 SMCLOSE •••••••••••••
F3.2.13 SMCHANGE •••••••••••••
F3.2.14 "MADYI ••••••••••••••
F3.2.15 MMADVO ••••••••••••••
F3.2.16 "MADVOI •••••••••••••
F3.2.17 M"WMP ••••••••••••••
F3.Z.18 ""FREE ••••••••••••••
F3.2.1q CONPVA ••••••••••••••
F3.2.20 HPINIT ••••••••••••••
F3.2.21 HPALLOC •••••••••••••
F3.2.22 HPFREE ••••••••••••••
F3.2.23 SHINIT ••••••••••••••
F3.2.24 SHSEND ••••••••••••••
F3.2.25 SHWAIT ••••••••••••••
F3.2.26 CHANGE LNS VALUE •••••••••
f3.2.27 PRINT lNS VALUE •••••••••

• • • • • •• •

• • • • • • • •
• • • • • • • •

• • • • • • • •
• •••••••
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• •••••••
• •••••••
• • • • • • • •
• • • • • • • •
• •••••••
• • • • • • • •
• •••••••
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• •••••••
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

EIt-8
Eit-8
E4-9
EIt-9
£4-9

EIt-l0
Eit-l0
E4-11
EIt-ll

E5-1

E5-2

FI

Fl-l
Fl-1

F2-1
F2-1
F2-1

F3-1
F3-1
F3-2
f3-2
F3-3
Fl-3
F3-4
F3-it
F3-4
F3-4
f3-5
F3-5
F3-6
f3-6
F3-7
F3-7
F3-7
F3-8
F3-8
F3-8
F3-9
F3-9
F3-9

F3-10
F3-10
F3-10
F3-11
F3-11
F3-12
F3-12

5
07/29/81

F3.2.28 ECHOINP •••••••••••••••••••••
f3.2.Z9 STOPSI" •••••••••••••••••••••
f3.2.30 SSET •••••••••••••••••••••••
F3.2.31 FMCREATE •••••••••••••••••••••
F3.2.32 FNDELETE •••••••••••••••••••••
f3.Z.33 fMDDWNAU •

F3.3 CONSOLE COMMANDS •••••••••••••••••••
fl.3.1 DISPLAY CENTRAL MEMORY ••••••••••••••

Fl.3.I.l DlsP'ay - Partial Mode ••••••••••••
Fl.3.l.1.1 OP,(ADDRS> •••••••••••••••••
F3.3.1.1.2 OP,. • •••••••••••••••••••
F3.3.1.1.3 DP,- ••••••••••••••••••••
F3.3.1.1.4 OP •••••••••••••••••••••
F3.3.l.2 Display Full Mode ••••••••••••••
F3.3.l.2.1 Df,(ADDRS> •••••••••••••••••
F3.3.1.2.2 OF,. • •••••••••••••••••••
F3.3.1.2.3 OF,- •••••••••••• • •••••••
F3.3.1.2.4 OF •••••••••••••••••••••

F3.3.Z CHANGE CENTRAL MEMORY •••••••••••••••
F3.3.Z.1 Change-Partla' Mode ••••••••••••••
F3.3.Z.1.1 CP,<AODRS>-<VAlUe> •••••••••••••
F3.3.2.2 Change-Full Mode •••••••••••••••
F3.3.Z.2.l CF,<ADDRS>-<VAlUE> •••••••••••••

F3.3.3 PRINT CENTRAL "EMORY •••••••••••••••
F3.3.3.1 PM,<addrs>,(words) ••••••••••••••

F3.3.4 DISPLAY/CHANGE SYSTEM ELEMENT REGISTERS ••••••
F3.3.4.1 Display Etement Registers •••••••••••
f3.3.4.1.1 DR,<ELIO> ••••••••••••••••••
Fl.3.4.2 Change Element Registers •••••••••••
F3.3.4.2.1 CR,<ELIO),<REGID)-<VAlUE> ••••••••••
F3.3.~.3 SysteM Element Identifiers ••••••••••
Fl.3.4.4 System EleMent Registers •••••••••••
F3.1.4.4.1 CENTRAL MEMORY REGISTERS ••••••••••
F3.3.4.4.2 CENTRAL PROCESSOR REGISTERS •••••••••

fl.3.5 DISPLAY PPS PROGRAM ADDRESS REGISTERS •••••••
Fl.3.5.l PP ••••••••••••••••••••••

F3.3.6 CLEAR DISPLAY •••••••••••••••••••
F3.3.b.1 CO.<screen) ••••••••••••••••••

F3.3.7 START SYSTEM •••••••••••••••••••
F3.3.7.l SS ••••••••••••••••••••••

F3.l.8 HALT CENTRAL PROCESSQR ••••••••••••••
F3.3.S.1 HT ••••••••••••••••••••••

F3.3.9 START CENTRAL PROCESSOR ••••••••••••••
F3.3.9.1 GO ••••••••••••••••••••••

F3.3.10 OPERATING SYSTEM DISPLAYS ••••••••••••
F3.3.10.l Displa, Identifiers and Descriptions •••••

F3.3.11 CONSOLE HESSAGES,TO THE OPERATING SYSTEM •••••
F3.4 DEBUG FACILITY •• ~ •••••••••••••••••

F3.4.l SUMMARY OF DEBUG FACILITY SERVICES ••••••••
F3.4.2 DEBUG FACILITY COMMANDS ••••••••••••••

F3.4.2.1 Para.eter Definitions •••••••••••••
F3.4.2.2 Co •• and Descriptions •••••••••••••
F3.4.2.2.1 SET BREAKPOINT •••••••••••••••
F3.4.2.2.2 REMOVE BREAKPOINT ••••••••••••••

F3-12
F3-12
F3-13
F3-14
F3-14
F3~14

F3-15
F3-15
f3-15
F3-15
F3-15
f3-16
F3-16
F3-16
F3~l6

F3-16
F3-16
F3-17
F3-17
F3-17
F3-17
F3-17
F3-17
F3-18
F3-18
F3-18
F3-18
F3-18
F3-19
F3-19
F3-19
F3-19
F3-19
f3-20
F3-20
F3-21
F3-21
F3-21
F3-21
f3-21
F3-21
f3-21
F3-21
F3-22
F3-22
f3-22
F3-22
F3-22
f3-23
F3-23
f3-24
F3-24
F3-24
F3-Z5

b
07/29/81

F3.4.2.2.3 LIST BREAKPOINT •••••
F3.4.2.2.4 CHANGE BREAKPOINT ••••
f3.4.2.2.5 TRACE BACK •••••••
f3.4.2.2.6 DISPLAY STACK fRAME •••
F3.4.2.2.7 DISPLAY REGISTER ••••
F3.4.2.2.8 CHANGE REGISTER •••••
f3.4.Z.2.9 DISPLAY MEMORY •••••
F3.4.2.2.10 CHANGE MEMORY •••••
f3.4.2.2.1l RUN ••••••••••

f3.5 ERROR CeDES ••••••••••••
F3.5.l DETAILED ERROR CODES •••••

F3.5.t.1 Sign.1 Handler ••••••
f3.5.1.Z Circular Buffer Handler ••
F3.5.1.] Heap "anager •••••••
F3.5.1.4 Mise Task Services ••••
F3.5.1.5 File Manager •••••••
F3.5.1.6 Task Manager •••••••
F3.5.l.7 Memory Hanaoer ••••••
F3.5.1.8 Job "anager ••••••••
F3.5.1.9 Loader •• ••••••••
F3.5.l.10 Centra. 110 •••••••
F3.5.l.11 Dispatcher ••••••••
F3.5.l.12 Co ••• nd Language Processor
F3.5.l.13 Logical Naae "anager •••
f3.5.1.14 Debug Processor •••••
F3.5.t.1S Configuration Manager ••
F3.5.1.16 CPU MONITOR •••••••

• •••••••••
• • • • • • • • • • · ~ . .
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• •••••••••
• • • • • • • • • •
• • • • • • • • • •
• •••••••••
• • • • • • • • • •
• •••••••••
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• •••••••••
• • • • • • • • • • · . . ~
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

f4.0 CODING CONVENTIONS AND SOURCE USAGE • • • • • • • • • •
FIt.l NAKES •••••••••••••••••
F4.2 TeXT INPUT •••••• ~ •••••••
F4.] TeXT OUTPUT • • • • • • • • • • • • • •
f4.1t COM"AND UTILITIES •••••••••••
FIt.5 PROGRAM HEADER DESCRIPTION ••••••
F4.6 CO"MON OeCK NAMING CONVENTIONS ••••
FIt.7 IMPORTANT CO""ON DEC«S ••••••••
F4.8 DeCK USAGE ••••••••••••••

f5.0 KEYPOINTS •••••••••••••••
F5.1 SOURCE coDe CONVENTIONS ••••••••
F5.2 KEVPOIM' DATA USING THE HARDWARE •••
F5.3 KEYPOINT DATA USING THE SIMULATOR •••

F5.3.1 KEYPOINT REFOR"ATTING UTILITY •••
F5.3.2 KEYPOINT DESCRIPTION FILE • ~ •••
f5.3.3 REFOR"ATTED FILE DESCRIPTION •••

F6.0 DEADSTART PROCEDURES •••••••••
F6.1 STAND ALONE DEADSTART (WITHOUT NOS/170)
F6.2 DEADSTART WITH NOS/170 ••••••••

F7.0 NOS/VE TEST PROGRAMS •••••••
F7.1 ExtSTIN~ TEST CASES ••••••••

F7.t.l SORT •••••••••••••
F7.1.2 USERl •••••••••••••

• •
• •
• •
• •

• • • • • • • •
• • • • • • • •
• • • • • • •••
• •••••••
• • • • • • • •
• •••••••
• • • • • • • •
• •••••••

• • • • • • • •
• • • • • • • •
• •••••••
• ••••••••
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• •••••••
• •••••••

• • •• • •• •
• • • • • • • •
• • • • • • • •
• • • • • • • •

F3-2S
F3-25
F3-Z5
F3-26
F3-21
F3-27
F3-27
F3-27
f3-27
F3-28
F3-28
F3-29
F3-29
F3-29
F3-29
F3-29
F3-30
F3-30
f3-30
F3-30
F3-30
F3-31
fl-a1
f3-31
F3-32
f3-32
F3-32

FIt-l
Flt-l

·FIt-2
FIt-2
FIt-3
FIt-4
Fit-it
flt-5
flt-5

F5-1
F5-1
F5-Z
F5-Z
F5-3
F5-it
F5-5

F6-1
F6-l
f6-1

F7-l
F7-1
f7-1
F7-1

1
07/29/81

F7.l.3 UUTl •••••••••••••
F7.l.3.1 ENVSPEC ••••••••••
Fl.1.3.2 AROYFl ••••••••••
F7.1.3.3 INSSPEC ••••••••••
f7.1.3.4 DIVFLT ••••••••••
F7.1.3.5 LA ••••••••••••
f7.1.3.6 SA ••••••••••••
Fl.1.3.7 RETURN ••••••••••
Fl.l.3.8 TEST"EM ••••••••••
Fl.1.3.9 TESTMOVE •••••••••
f7.1.3.10 RECURSE •••••••••
F7.1.3.11 CYCLE ••••••••••
Fl.1.3.12 TIMEOUT •••••••••
F7.1.3.13 LOOP •••••••••••
fl.1.3.l4 A170 •••••••••••
F7.1.3.15 REPEAT ••••••••••
Fl.1.3.16 CALLER •••••••.•••
F7.1.3.17 BULK •••••••••••
F7.1.3.18 BULKNTC •••••••••
F7.1.3.19 ADRSPEC •••••••••
F7.1.3.20 PRIVINS •••••••••

F7.Z EXAMPLES •••••••••••••

CYBIl Installation Documentation. • • •
GI.O CYBIL VERSION 1.0 LEVEL 81188 • • •

G2.0 BUILD INTERDEPENDENCIES • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •
G3.0 CYBll COMPILER BUILDS •••••••••••••••••
G3.1 PROCFIL ••••••••••••••••••••••••
G3.2 BUILD PROCEDURES •••••••••••••••••••
G3.3 PROCLIB ••••••••••••••••••••••••
G3.4 BUILD PROCEDURE FOR II COMPILER ••••••••••••
G3.5 BUILD CO"'LETION •••••••••••••••••••

G3.5.1 TO BUILD ClBlliCC •••••••••••••••••
G3.5.2 TO BUILD CYBIL/CI •••••••••••••••••
G3.5.3 TO BUILD THE II COMPILER •••••••••••••
G3.5.4 TO BUILD CC RUN TIME LIBRARY •••••••••••
G3.5.5 TO BUILD THE CI LIBRARY ••••••••••••••

G3.6 TEST COMPILERS ••••••••••••••••••••
G3.6.1 CC REGRESSION TESTING • • • • • • • • • • • • • • •
G3.6.2 CI REGRESSION TESTING •••••••••••••••
G3.6.3 II TESTING ••••••••••••••••••••

Current Deadstart Inform.tlon •••••••••••••••
Hl.1 Al70 NOS DEADSTART ••••••••••••••••••
Hl.2 CURRENT DUAL STATE CONfIGURATION •••••••••••
HI.3 NOS/VE DEADSTART •••••••••••••••••••
Hl.4 BRING UP Cll0 REMOTE HOST ••••••••••••••
Hl.5 BRING UP CleO ••••••••••••••••••••

Hl.5.l BRING THE SYSTEM UP FOR THE FIRST TI"E FROM YOUR

f~Z
Fl-2
Fl-Z
F7-2
F7-2
F7-3
F1-3
Fl-3
F7-4
Fl-4
F7-4
F7-4
Fl-4
F7-5
F7-5
f7-5
F7-6
Fl-6
Fl-7
F7-7
F7-7
F7-7

Gl

Gl-1

G2-1

G3-1
G3-1
&3-1
G3-2
G3-3
&3-3
G3-3
&3-3
G3-3
G3-4
G3-4
G3-4
G3-4
63-5
G3-5

HI
Hl-1
Hl-I
HI-Z
Hl-2
Hl-3

8
07/29/81

CATALOG ••••••••••••••••• • • • • • • • •
Hl.5.2 BRING UP THE INTEGRATION SYSTEM (OR YOUR'S AFTER
1ST TIME) ••••••••••••••••••••••••

Hl.6 NOS/VE TERMINATION ••••••••••••••••••
Hl.7 DSCI INFORMATION •••••••••••••••••••

HI.l.1 TO CREATE AN eXPRESS DEADSTART DUMP (EDD) TAPEI •
H1.7.2 TO CREATE A LISTING OF THE EDD TAPEI •••••••

H1.8 TO RELOAD CONTROLWARE FOR THE DAHL-LANGE SECTOR 844 •
H1.9 ADDITION NOTES ON BUILD ••••••••••••••••

H1-3

H1-3
HI-4
HI-4
HI-4
HI-4
HI-5
HI-5

1
07/29/81

Table of Contents ATIDN RE)

• • Gl.0 CYBll VERSION 1.0 lEVEL 81188 •

G2.0 BUILD INTERDEPENOENCIES ••• • • •

. " .
• •

G3.0 CYBIl CO"PItER BUILDS •••••••••
63.1 PROCfll ••••••••••••••••
63.2 BUILD PROCEDURES •••••••••••
63.3 PROClIB • • • •••••••••••••
G3.4 BUILD PROCEDURE fOR II COMPILER ••••
G3.5 BUILD COMPLETION ••••••• e •••

G3.5.1 TO BUILD eYBIl/CC •••••••••
63.5.2 TO BUILD eYBILICt •••••••••
G3.5.3 TO BUILD THE II COMPILER •••••
G3.5.4 TO BUILD CC RUN TIME LIBRARY •••
63.5.5 TO BUILD THE el LIBRARY ••••••

G3.6 TEST COMPILERS ••••••••••••
G3.6.1 CC REGRESSION TESTING •••••••
63.6.2 CI REGRESSION TESTING •••••••
G3.6.3 II TESTING ••••••••••••

• • • • • • • •

• • • • • • • •

• • e •••••

• • • • • • • •
e • • • • • • •

• •••••••
• ••• e' •••

' •• e ••• e •

• • • • • • • •
• •••••••
• • e • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
e • • • • • e •

• • • • • • • •
• • • • • • • •

Current Deadstart Information •••••••••••••••
Hl.1 A170 NOS DEADSTART ••••••••••••••••••
Hl.2 CURRENT DUAL STATE CONFIGURATION • • • • •••••••
Hl.3NOS/VE DEADSTART •••••••••••••••••••
HI.4 BRtNG UP C170 REMOTE HOST ••••••••••••••
Hl.5 BRING UP CleO ••••••••••••••••••••

HI.5.1 BRING THE SYSTEM UP FOR THE FIRST TIME FROM YOUR
CATALOG •••••••••••••••••••••••••
Hl.5.2 BRING UP THE INTEGRATION SYSTE" (OR YOUR'S AFTER
1ST TIME) ••••••••••••••••••••••••

Hl.6 NOS/VE TERMINATION ••••••••• ' •••••••••
Hl.7 OSDI INFORMATION •••••••••••••••••••

Hl.7.l TO CREATE AN EXPRESS DEADSTART DU"P (EOD) TAPE' •
Hl.7.Z TO CREATE A LISTING Of THE EDD TAPEI •••••••

HI.8 TO RELOAD CONTROLWARE FOR THE DAHL-LANGE SECTOR 844 •
Hl.9 ADDITION NOTES ON BUILD ••••••••••••••••

1-1

2-1

3-1
3-1
3-1
3-2
3-3
3-3
3,-3
3-3
3-3
3-4
3-4
3-4
3-4
3-5
3-5

HI
Hl-l
Hl-l
Hl-2
Hl-2
Hl-3

Hl-3

Hl-3
HI-It
Hl-it
Hl-it
HI-It
Hl-5
Hl-5

