TPNDO

DISTRIBUTION

CoKo
FeA,
Jele
R+E.
JeBa
Gadoe
L+Es
TeMs
JaA,
Made
RaeA,
JoFos
Redo
SeCo

ReBo
M.D,
Rs+E.
NeEe
Deds
ReAs

Ga+S»
Aol

ACo
He Ao

RaeD»
Jo

BeE.
JeH,

PeYo
GeDo
Je 0o
SeLe

Please help keep the above distribution Jist
be removed

your name should

Bedient
Bischke
Carlson
Dennis
Farr
Grave
Lesklinen
Miller
Nauman
Perreten
Peterson
Steiner
Thielen
Wood

Beeson
Carter
Erickson
Fox

Holm
Mann

Barrett
Lawson

Rupert
Wohlwend

Palm
Sutherland

Southworth
Wick

Liou
McGhie
Neyhaus
Pittman

ARH25 4%
ARH25 4
ARH254
ARH25 4
ARH25 4
ARH25 4
ARH25 4
ARH25 4
ARHZ25 4
ARH25 4
ARH25 4
ARH254
ARH25¢
ARH25 4

ARH26C
ARH26C
ARH260
ARH26C
ARH26C
ARH26C

ARH26 3
ARH263

ARH28¢C
ARH280

ARH293
CANCDD

MNAD2B
MNAQ28B

SVL145
Svilzs
sviizs
SVL162

1
0817122782

current, If

from the list or another name
addedy contact Bonnie Swierzbin at ARH260 ~ extenslion 3460,

DISTRIBUTICN

- -

Jeo Le Kappler

ReHo,
T+Co
ReMe
Ns+Eos
JoRo

Nede
D.J.

SeWe
€180

E.B.
ReSe
ReKos
A.E.
U.B,
Wels
Ja S,
JeEos
Jado

Please help

your name should be removed from

- - ——r - -

Kingdon
McGee
Medin
Meyer
Ruble

Lee
Maguire

Fewer
Central

Buckley
Cummer
Endo
Hiebert
Lundh
Harrell
White
Jones
Walters

ARH25 4
ARH254
ARH25 4
ARH254
ARH25 4
ARH254

ARH260
ARH26C

ARH263

Dayfile

SVL173
SVL163
SviLiz2s
SVL1438
SVL102
SVL163
SVL102F
SVL143
SVL173

or

another

2
05722782

keep the above distribution list current, If
the 1ist

name

addedy contact Bonnie Swierzbin at ARH260C - extension 3460,

3

05722782
MM MM EEEEEEE MM MM 00000
c MMMM E MMMMN O 0 c
D M M M EEEEE MM N O 0 D
c M M E M M O 0 C
n M EEEEEEE M M ooooo
DATE t MAY 21, 1982
TO ¢ DISTRIBUTION LOCATION 3
FROM ¢ B. J. SWIERZBIN LOCATION t ARH26C

SUBJECT ¢ CYCLE_3_REVISION OE_THE_eROCEDURES NOTEBQDK

A Cycle 3 update of the Integration Procedures Notebook is
now availables The Notebook has not changed a great deal
since its extensive revision at Build Q, but there are some
changes of interest in the utility proceduresy, described in
Section 2,11y and the CYBIL build processy described in
Appendix C. Keypoint information has been added to the
document in Appendix Ds A complete jisting of this document
can be obtained through the following command sequence:

ATTACH, IPNDOC/UN=DEV1.
SES.PRINT IPNDOC

1-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycie 3
05/722/82

1,0 NOS/VE SYSTEM DVERVIEW

1.0 NOSZYE_SYSIEM_QVERVIEYW

1.1 INTRODUCTION

The basic components of NOS/VE inclyde the folliowing:

A Hardware Initiastization verification Sequencer

{HIVS) component

- Modifications to standard Al7) NOS system components

- Al170 NOS application programs f{and procedure files)
which execute In the A170 NOS {Real State)
environment, and provide system to system
communication facilities,

- The Virtual Environment code which is responsibie for

the execution of tasks in Native Mode in the Virtual

State of the hardware,

The nomenclature wused to describa NOS/VE components is
rather confusings Frequentliys the Virtual)l system software s
what Is referred to as "N{OS/vVi". When Al170 NOS and the
supporting utilities are presenty the term "Dual Statem |is
useds To differentiate the two execution modes of the machine
the terms "Native Mode®, "Virtual Mode"s and "Virtual State"®
are wused to describe the execution of C180 instructions. The
terms "Real State™ and "NOS"™ are wused to refer to the
execution of C170 instructions,

The model which is often used to describe the execution of
NOS/VE in Dual State mode is that of one wachine front-ending
anothery and communication between the two machines occurring
over a communications 1link, From the software's point of
views another perspective is used., To the Virtual State
softwarey the NOS system is merely 8 job which happens to be
executing in the Virtual State envelope created by EI, (The
microcode transiation of the C170 instruction set is
"invisible™ to both the NOS and NOS/VE softwares) NOS?'s view
of the Virtual State is merely that of a job which runs at a2
control pointy and |Is communicated with through the
K=-display. The remainder of this section is meant to describe
NOS/VE with regard to its components,

1-2
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
, . 05/22/82
1.0 NOS/VE SYSTEM QOVERVIEW
1.1.1 THE HIVS COMPONENT

e 2 P E L X T RE 2L EELEEREEZERSLEEEEREELERENFEEE Y EFFERTLSEXYVYFRFIErEys s 2Ly s s 202287

lelel THE HIVS COMPONENT

Included In the diagnostic worldy which establishes the
initial Virtual Execution environmentsy Iis the microcode for
the CPU as well as a Native Mode monitor~like program called
the Error Interface (EI)e The microcode Is strictly supported
by the diagnostic organizations, and neither the NOS nor the
NOS/VE software will execute without microcode present in the
CPU. The EI program is supported by Advanced Systems
Devejopment. There are currently two versions of EIs one
which only supports Al17¢ NOS and does tasks such as CMy
instruction emul ation, and one which also supports the
switching between the NNS and NOS/VE CPy monitors, This
latter version of EI requires a partner intermediary called
the NOS Trap Handler which 1is statically 1loaded with the
Virtual State softwares and 1Is {oaded during deadstart of
NOS/VE. In order to assure that the right version of EI s
presentsy the HIVS tape which is distributed by Advanced
Systems Integration for usa2 with NOS/VYE is the correct version
to install.

1,1,2 A170 NOS MODIFICATIONS

The modifications required to support a Dual State
execution environment are primarily assembled in the BLD17¢C
procedure file, Few specifics will be given here other than
to state that half a dozen Peripheral Processor routines are
involveds as well as modification to NUOS CPU Monitor. The key
aspect to note about these <components is that a special
version of Al170 NOS deadstart taps must be used. Againy this
deadstart tape version 1is supplied by the Advanced Systems
Integration project, There are additional »procedure files
which must also be present on this special deadstart tapes
which are not documented here at this time,

1.1.3 A170 NOS APPLICATIONS

A portion of the software alluded to as Al70 NOS
modi fications could be classified as Al70 NOS Applications.
The applications referred tos howevery are not present on the
deadstart tapey but exist as permanent files which are invoked
or processed by procedure files present on the deadstart
tapes, In the strict sense of the words those utlilities which
are not execution order dependent or require system residence
are placed on the deadstart tape. Utilities which must be run
in a glven sequence f(and possibly a8s system origin) are
governed by procedure files which are present on the deadstart

1-3
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
05722782
1.0 NOS/VE SYSTEM OVERVIEW
lel1e3 A170 NOS APPLICATIONS

tape,

lele4 THE VIRTUAL STATE COMPONENT

The Virtual State software consists of both a staticailly
and dynamically linked component, The statically Jinked
component Is composed of Monitor and Tesk Services modules
while most other tasks are dynamically linked, In order to
staticalily Ilink Monitor and Task Servicesy the SES utilities
VELINK and VEGEN or their Virtual State equivalents must be
used, In other systems this statically 1linked system
component is commonly referred ¢to as the "unconfigured
deadstart tape™ or "booistrap system™. Oncea the "bootstrap
system®” has been generated which has 1ts own LINKER/LOADER
equivalenty then it 1is possibie to deadstart this bootstrap
system and begin dynamic link/1oads. One of the attributes of
this statically 1linked component is that there is more than
one partition associated with it, In order to keep these
partitions separate during the CCI build processy these
partitions are placed on separate files., The content of these
partitions 1{Is described JIn a subsegquent section of this
document,

The dynamically 1linked component of the Virtual State
softuare consists of II format object taxt which Is processed
by the NOS/VE LOADER. In order to create II format object
texts it is necessary to ejther use the wutility "CITOII™ to
convert CI object text to II object texty or else use 8 I
compliler or assemblers, In order to make this CITOII wutility
available to each task created by the Virtual State softwares
the object text for this utiiity must be statically linked and
foaded with Monitor and Task Services. Once this utiltity is
made available to dynamically generated tasksy it is necessary
to retrieve the other utilities which establish communications
with their Al170 NDS counterparts., This s accomplished by
executing a post-deadstart SCL procedure file which initiates
the Remote Host and Interactive Facilities from the {ibrary
mOQSLIB" {which in turn was created from the CI object text
fitle "XLJOSL"),

The components mentioned thus far have been the statically
linked modules for Monitors Task Servicesy the CITOII utilityy
and the dynamically linked modules from OSLIB. There are
libraries other than 0OSLIB, some of which are necessary for
the successful execution of user tasks. Such a library is
SYSLIB which contains the 0Object Code Utility modules which
provide for the <creation of II object text librariess The
SYSLIB tibrary must be made part of a job!s object (tibrary
tist if any II object library manipulations are to bhe made.
From the compiler perspectives the run—-time libraries CYBILIB,

1-4
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK = Cycle 3
| N | . | 05/22/82
1.0 NOS/VE SYSTEM OVERVIEW
lele4 THE VIRTUAL STATE COMPONENT

MATHLIB» FRTL» etc. must be created by a job which has SYSLIB
as part of its object tibrary ltists The compiler generated
obJect text for a compiler such as CYBIL names the appropriate
run-time 1Jibrary in the object text records (eg. CYBILIR),
Thuss a8 CYBIL program must acce2ss the appropriate run-time
tibrary {(CYBYLIB) and make this {tibrary part of the job's
object tibrary tist, This explicit manipulation of a Jjob's
objJect 1library 1ist will eventually be replaced by job
prologues which are created during accounting and validation
and7or user prologues which establish a jobl's execution
enyironment,

1e2 VIRIUAL_STAIE_PARIITIONING

Build Q reflects Phase 2 of the restructuring of the NOS/VE
operating system into two distinct partitions = the system
core and the job templates This restructuring is necessary in
order to reach the R1 goal of deadstarting NOS/VE in 1MB of
memory, In this system the system core will be able to
deadstart and support tasking, without the Jjob template. This
was completed in Bulld P,

The system core contains monitors the NOS Trap Handlers and
all code that executes in ring 1sy and consists of the
foilowing libraries:

XLMMTR - Monitor mode procedures.,

XLS113 - Job mode procedures that have static datar write
Mainframe Wired, Mainframe Fixed or Job Fixedy or
make privileged monitor calls {(these are most of the
modules that used to reside Iin XLJ11F),

XLS133 A small subset of the procedures

XLS123 _ that used to reside in XLJ12F),

XLS130 XLJ13F, and XLJ1FF that are

XLS1DD needed by the system core.

In the restructured systems» modutes in the system core cannot

XREF wvariables or procedyres that are part of the job

templatey, and Jindeed need not know nor depend upon any Jjob

template code, The job mode segments that c¢come from the
system core will be in the address space of every task

(regardless of job type) sand will have the same segment

numbers. Code cannot be added to or deteted from the systenm

core without a deadstart,

A1l the rest of the operating system code that does not
reside In the system core is found in the job template., This
code consists of Job Monitor and ring 3/run anywhere task
services) contained in the following tibrariest XxXLJ223,
XLJ23Ds and XLJ2DD {(XLJ236 and XLJ265 are ltinked Ins but are

1-5
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
1.0 NOS/VE SYSTEM OVERVIEW
1.2 VIRTUAL STATE PARTITIONING

LA 22 22 2 P 2 R L K2 22X L2 XS L ERELELERZEEREFEFFFaeaeaye s i YL YL ELEEIERENEE R]

empty in Bulld Q)e In the restructured systemy there may be
multinte Job templates depending upon the specific
requirements of the various jobs in thea system. These job
templates will be staged across the memory link gfter the
system core has been deadstarted.

The modules on file XLJBBR consist of user tasks which can
ba thought of as belonging to a3 third type of partition. This
latter opartition contains routines which run In job mode in
the user ring (for the purpose of converting CI compiler
generated output into Il format after it has been transferred
from the Al170 NOS software to the NOS/VE execution
environment). In the memory mapy» which Is described in a
subsequent sectiony the code for this user partition resides
in the "User Taskl{s) Library" and is made a part of each task
created For NNOS/VEe. The system restructure wWwhich occurred
with B8uitd M made this partition relatively small (since this
partition must be loaded into memory at deadstart time),
Although the build procedures allow for this partition to te
replaced with one which contains additional user taskss the
preferred method of executing user tasks is to GET them from a
NOS permanent file (after they have been generated by a CI
compiler) to the NOS/VE execytlon anvironment and EXECUTE
these tasks wusing the NOS/VE LOADER, If the execution
environment is the simulator instead of the hardwarey then new
user tasks should be statically 1Joaded in place of XLJBBS
using the NVELINK procedure,

Any XDCLYd symbo!l within a given partition can be XREF'd by
any module wmithin the same partition, To altow other
partitions to XREF these same symbolsy, the symbols must be
gated, Gating a symbol onily makes the symbol available to
other partitions during the 1linking processy It does not
necessarily mean that the XDCL'd 1locatlion can actually be
referenced - that Is controlled by the ring brackets., In
generaly only selected XDCL'd symbols are gateds A varjable
or entry point may be gated in th2 source specification using
CYBIL and CPU ASSEMBLER 1language constructss» or the object
text may be modified by using the SES Object Code Utilities.
Refer to the MAPXX files, produced by the NVELINK procedures
for a list of the entry points available to a wuser task. A
convenlent \listing of these entry points can be obtained by
running the MAPXX linkmap file through the procedure NVEMAP
and specifying the keyword "TWO", The gated entry points are
flagged in the section entitled "PVA, NAME SORTS"™ at the end
of the NVEMAP tinkmap output. The NVEMAP keyword "GATED"™ will
list only thoses entry points which are gated (see the
documentation for the procedure NVEMAP in Section 2 of this
document).

Dccasions arise in which procedures are of common utitity
to more than one partitiony but should not be gated across

1-6
ADVANCED SYSTEMS INTEGRATICN PROCEDURES NOTEBOOK - Cycle 3
1.0 NOS/VE SYSTEM OVERVIEW
1.2 VIRTUAL STATE PARTITIONING

partitions. In such instancess these procedures are placed
upon a "run-time™ Jibrary such as CYBILIB, and references to
these procedures are satisfisd at "LOAD"™ time from the
appropriate 1library. "LOAD" time satisfying of externals can
efither be done statically or dynamicaltly. A static 1oad is
accomplished through the SES Linker and Loader utilitiase
Dynamic loads occur through the use of the NOS/VE toader
during the execution of a €182 jobe Whenever possibles
dynamic loading of routijnes is prefarred {(as in the case of g2
compjler satisfying externals from a run-time library) since
this is the mechanism which customers of NOS/VE systems will
be using.,

1.3 MANIRULATION OE_NOSZVE_PARIITIONS_AND_LIBRARIES

when building a systemy monitor must be ftinked First, Al
gated symbols within monitor then become available to task
servicess which is linked second Although some monitor symbolis
can be referenced by task servicesy the only way to execute
monltor code Is via the exchange jump = f.es» the CALL/RETURN
mechanism is not valid for use between monitor and Jjob modes.,
User tasks are linked last and can reference gated symbols
defined 1In task services, It is important to note that
although the linker will allow a reference to a given symbol,
the ability to actually refer2nce the Jocation is determined
by the ring brackets on both ends of the reference,

1.4 DUAL.SIALE_MEMORY HAP

When dealing with a virtua! memory system it is often
necessary to understand the real memory aspects of the
software which is present in the machine. The following map
describes the real memory aspects of the softwares and where
it is mapped during the deadstart process. To make this map
complete would require overlaying it with segment and page
boundaries. Rather than attempt to produce this overlaying
effecty suffice it to say that (by convention) the boundaries
described In this map occur at even page boundaries. Whether
or not the pages which constitute any given area in the map
are paged Is a function of the attributes of the segment to
which the area belongse. :

The real utidity of this map is in showing the relationship
of values which are supplied to the SES Virtual Environment
Generator through the skeleton SYSXDIR files, This skeleton is
dynamically edited when the NVELINK procedure is invoked to
produce the <lwdXLDR fife, The SYSXDIR var iables are

1-7
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBQOOK - Cycle 3
05722782

L2 i 2 2 A L4 22 2 2 R Z NS 2422222 EFRELESEELELZELEELZEESZESELLELLELELLELESEEELELSELEE TR YR F

1.0 NOS/VE SYSTEM QOVERVIEW
l+4 DUAL STATE MEMORY MAP

I r X R 22 R 222 2 X R EREEES EFFEEYYEELEREYEYEE FUEFEYFApreopvrvpiprrrey Y 22 E L2 L2 X E 2 F 2 2 F N

undérlined in the relationships described after the map, By
using the relationships giveny it is possible to compute the
relative starting iocations of different areas within a NOS/VE

dump,
It should be noted that the retlationships given here are
axpressed in decimal byte addressesy while the machine

addresses are hexadecimal, To pursue hexadecimal addresses
requires a copy of the linkmap file., Specificallyy the load
addresses for Monitor, System Cores» Job Tempfate, etce are
contained in the Virtua) Environment Generator output which
immediately follows the LINKER asutput.

1-8
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK = Cycle 3
o . _05/22/82
1,0 NOS/VE SYSTEM QVERVIEW
le4 DUAL STATE MEMORY MAP

L a2 2 L & 2 2 A R 4 B R 2 A X2 R EES FESEYE LR EEREZSE FETWFIFEIPFFIFIE EEREZIEEFEFEFE EY Y FF

- - - . 0 = +

${~== Machine Address { (zero)

A170 NOS Operating System

{Central Memory)

- -

U, S e aw G e e -

N3OS Extended Memory (ECS) ¢
1 === Maximum NOS Memory Address

i1{=== Load Offset

NOS/VE Page Table

1
i
]
i
1

=== Yijrtual Load Address
NOS/VE Monitor

N3S Trap Handler

NOS/VE Task Services

(System Core/Job Template)

=== NOS/VE Length

{Avallable Memory pPages}

e Ny, T, HE g we P Ba N N RS BE e Be g SR Ny W B ae e B Be e P B R e B g W e S Rl S we e e e

- A e Am N, N SE BS EE e e N, WSS Ll TS el el Ny Y N en e e B e e e

hBS Page Table and EI
1<{=== Highest Machine Address

- o . 0 o 2 o S o > +

P Gn co ss P

2-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
’ 05722/82

2+0 DVERVIEW OF INTEGRATIpN PROCESS

LA L2 X X 2 R F X X T X F PP RvyryFervysysy-s ¥ 2 22 2 2 2 2 R YRS AL RTIEREESZEEES YN ERESE SN ELEY Z B ¥ N]

2.0 QVERVIEW OE_INIEGRATION_PROCESS

The Integration process begins with the transmittal of a
software oproduct, the command language procedures required to
build the producty instailiation procedyre documentation, and
baseline docymentation from the software development
organization. Subsequent to this transmittal, the Integration
projJect 1Is responsible for maintaining the program library»
standardizing the installation proceduress maintaining the
installation procedure documentationy and preparing the
software relegse package For tha Software Manufacturing and
Distribution organization, In the interim time between the
initial transmittal and the releases of a software productsy the
Integration project schedules periodic builds, The outputs
from these builds are delivered to software development and
test organlzations and/or made part of the software release
package.,

2.1 RELAJED_DOCUMENIS

Document Title Distributor

NOS/VE Procedures and Conventjons SeWe Fewer

NOS/VE Command Interface ERS DCS - ARH3609
NOS/VE Program Interface ERS DCS = ARH351¢
SES User?®s Hsndbook DCS - ARH1833
CYBER 180 System Interface Standard DCS - S$2196

Simulated NOS/VE Program Interfaces ERS DCS - ARH3125
VEGEN ERS DCS - ARH2561
VELINK ERS DCS - ARH2815%
CYBIL Language Specification DCS = ARH2298
CYBER 180 CPU CI Assembler ERS DCS - ARH1693
CYBER 180 Simulator ERS DCS = ARH1729
SES Procedure Writers Guide DCS - ARH2894
CYBER 180 0Object Code Utilities ERS DCS - ARH2922

Source Code Utility ERS DCS ARH38813

2-2
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
| 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.2 STANDARDS

r 2 2 8 F R 2 2 B2 XL E B YR 8L RN NF ¥R FFFF R F R FERFFY RN TR ey vpvaeees "y R F XY E F R R FF O ECE N N

2.2 3JTJANDARDZ

In order to facilitate the 1Installation processs certain
standards wil! have to be set and adhered to by all members of
the Operating System and Product Set, These standards will
cover the following items:

a) A1l program libraries will have the same formaty, this
wilt! be defined by (T8D).

b) All output tapes wilid conform to some predetermined
format in terms of numbers of fjles and what each file
wlill containe This wWill be defined by (TBD).

c) The above formats are intended to facjilitate
establishment of oprogeduralized jnstallation deckss
This Iimptities that some convenient naming conventions
must be observed, These conventions will be defined
by (T8D),

2.3 CATALOG _MANAGEMENI_PCLICIES

The Integration project builds two systems in paratlel and
manages two catalogs for each systems The primary system is
the system that is between the beginning of the build cycle
and the feature code cutoff, The secondary system is betwaen
the feature <code cutoff and the end of the bulld cycle.
Primary system files begin in the INT1l catalog and move to the
INT2 catalog after the system has passed Confidence Testing,
After a system has reached 1Its feature code cutoff, a
stabilized feature build is moved to the DEV]1 catalogy the
build from INT2 is moved to DEVY2, and this system 1J§s now
considered the secondary system. Also at this times 2 new
primary system Is started in the INTl catalog by adding its
planned feature <code to the previous primary system. When 3
build has completed its integration cycley, the final build for
that cycle |Is moved to the REL1 catalog. It is at this time
that a build is considered a candidate for transmittal to
other Ffacilities for further development worky a final Build
Content Report is distributed and whatever usage documentation
that is available is distributed.

2-3
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK =- Cycle 3
2.0 OVERVIEW OF INTEGRATION PROCESS
2.3 CATALDG MANAGEMENT POLICIES

L2 2 A X X I R N4 EN L EREEE YR ENELEFLESRESIEREE ¥ FEIWTIWIPrpepeperrpry F F F F N F Y E FE F U R R ¥ ¥

The following diagram iljustrates the Ffunction of each

catalogs

+ ——— -+ -—— — s e e o e e e e e § o e e e e -
H i Primary Systen ? Secondary System ! Transmitted System!
o e o e e -4 e o o e e o o o o e e - e +
t Working Catalog § INT1L i DEvl L H
+ -— e - - ——— e e e e e e e +
{ Latest Stable : INT2 : DEV2 ! RELL H
! Build Catalog ! H H H
bm———— = o o e . 2 o s s 2 s e o o e

In o9eneraly procedures executing from a given catalog
access only those files which have the same level of
verification associated with thems The INT1 and INT2 catalogs
will access the most recent compilerss SES toolss» etcs while
the DEV1 and DEV2 catalogs access a previousy more stable
level of utilitiess

The REL1l catalog represents the "frozen™ catalog for which
changes are no longer being accepted (typically a snapshot of
the 1ast build cycle)ls This is generally the system that is
being run In SVYL closed shop and is retained for duplicating
problems found there. The REL1 catalog will change no more
frequentily than once for 2ach byild cycle, The INT2 and DgV2
catalogs contain the latest stable builds (i.,e. the bullds
have passed Confidence Testing) for the primary and secondary
systemsy respectively, The INT1 and DEV1 catalogss howevers
are "working catalogs™ for the debug of new system fixess new
proceduresy etc. The stahility of these catalogs cannot be
predicted,

2.4 BUILD PROCEDURE DESCRIPIIONS

In order to understand the »procedure descriptions which
foilows something should be said as to the sequence in which
these procedures are used to generate systems. The following
is an attempt to accomptlish this:?

2.4.1 INTRODUCTION

The command language procedures corresponding to NOS/VE
builds all reside in the INT1, INT2, DEV1» or DEV2 catatogs
depending upon the desired level of verification the system
has attained. It is assumed that the DEV1 level of
verification Is the minimum 1level of system verification
required by most wusersy therefore the DEV1 catalog is
frequentily referenced in the remainder of this section. To

2-4
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK — Cycle 3

| . 05/22/82
2.0 DVERVIEW OF INTEGRATION PROCESS
2.441 INTRODUCTION

obtain a listing of the complete set of command language
procedures provided In the Integration catalog, execute the
following command Janguage sequence?

SES+LISTPROC B=SESPLIB UN=<Integration_Catalog>
Before running the build proceduras as batch jobsy, a check

must be made to Insure that the user number under which the
job witl run has sufficient validation Jimits for the job to

execute, -The minimum values for certain limits must be as
follownss

CM = 24378

NF = unlimited

MS = unlimited

DS = 4096

EC = 2008 (If simulator is to use LCHM)

DB = unlimited (each {library ds built via batch job)

The current values may be obtained with the LIMITS control
statement. If they are not large enoughy have the operations
staff change themnm,

2.4,2 INVOKING THE PROCEDURES

The procedures described below are documented as
"SES«<Procedure_Named", In actuality, to inyoke the
procedures in this manner assumes that there is a Ffile named
'PROFILEY in the current catalog which names the Integration
catalog to search for the procedure (via the YSEARCH1
directive), The alternative mechanism for invoking these
procedures is to code the procedure call asst
#SESs<Integration_Catalog>.<{Procedure_Named", Many of the
procadures use the 'PRCUNAM' yaluye for substitutable user
names» wmeaning that the catalog in which the procedure is
found is the catalog which is searched for files., This is as
it should bes since each of the Integration catalogs contains
a different version of the system.

All of the procedures descrjbed in this document have
HHELP® documentation associated wi th them, Use the
SES»<{Integration_Catalog>»HELP.{Procedure_Name> call to have
procedure documentation printed at your terminal,

Practically all of the procedures described in this
document are uwritten to execute in "BATCH™ as well as locael
mode, In order to provide a consistent result wWhen these

2-5
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS

2.4.2 INVOKING THE PROCEDURES

2 22 2 X E 222 2 2R 22 22 2 X2 R AR XESEYESEEE N FEFFFFApppepwpeprr 2 A 2 XL X2 X EE X ER 22

procedures are runy It {is necessary to save many of the
generated flles as permanent flles., While some purists see
this as "catalog polution”, we make all attempts to preserve
only those files which are necessary for future reference or
usage. Whenever possible local file names generated by the
procadure are given unique names so as not to conflict with
any user files, In numerous instances, convenient "reserved"®
file names are used to enhance the configurability of these
procedures. For examples all files accessed by the proceduyres
are searched for first as local filesy then as permanent files
in the catalog in which the oprocedure is executings then
(optionally) in the catalog spacified by the '"AREA' parameter
valuey and finatly in the catalog in which the procedure was
found, Thusy if the name of a tool accessed by the procedures
is knownsy several versions of this tool can be tried through
lterative executions of the procedures without requiring
procedure modification, To aid in the isolation of tools
accessed by the procedures a "common deck® type structure is
included Iin the procedure libraries which names many of the
tools to be acgcessed by the procedures. These structures
exist as records on the procedure library which are INCLUDEd
into the relevant procedure file. Initially we have
partitioned these tools into the records *TOOLALLY, 'TODOL170Y
and 'T0OOL180's Experience has shown this partititioning to be
somewhat combersome for some of the proceduresy and will
probably be fine—-tuned {in subsegquent revisions of the
procedure library.

Some of the procedures contained on the procedure libraries
change very frequently due to changes in system structure or
for other reasons. It is inevitable that errors creep into
the procedures at times. Often it is quicker to <change the
CCL generated as a result of invoking the SES procedure than
to change the procedure librarye The SES processor may be
invoked via the SES»TEST.<Procedure_Named> mechanism and the
resul tant CCL is written to a file named SESTEST. This
SESTEST file may then be edited, and the offending control
statement correcteds A subsequent CALLsSESTEST statement may
then be wused to execute the corrected CCL. While we do neot
necessarily condone this aspproach to fixing procedure files we
can hardly deny 1Its existence, If, for examples it should
prove necessary to provide our customers with instatilation
procedures for software which we generate with SES proceduress
it would be our intent to ship the SES generated CCL
statements rather than the SES procedur2 and a copy of the SES
Procassor,

2-6
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
| | o 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
24443 CURRENT PACKAGING OF NOS/VE SOURCE

2+443 CURRENT PACKAGING OF NOS/VE SOURCE

There are two execution modes o0f NOS/VE which are referred
to as the "standalone” mode and the "dual-state™ mode. All of
the NOS/VE source modules which execute in the CY180 Virtual
State are contained on a2 program library named 'NOSVEPL'. The
program interfaces to the Virtual State system those
described Iin the NOS/VE pProgram Interface ERS, exist as common
decks on a program library named 'OSLPI's The content of
these two program libraries Is referred to as the standalone
system, A deadstart tape can be produced of the standaione
system for execution on the hardwarey, or the output of the
Virtual! ZEnvironment generator can be executed directliy on the
Hardware System Simulator. The 170 support of this standatone
system when running on the simulator is defined in 2 separate
set of common decks on a program \|ibrary named 'CYBICMNY,
Refer to the Simulated I/0 ERS for documentation of these 1/0
interfaces,

The dual-state execution of NOS/VE, in conjunction with the
NOS operating systemy, requires NNS system wmodifications and
the »presence of a set of NOS utilities and procedure files,
The software which supports this dual-state environment from
the NOS?' side of the harduware is contained on a program
fibrary named *VE170PL?s 1Inciuded Iin this package of NOS/VE
support programs is a software application catled the Remote
Host Facility which supplies Jjob~to-job communjcation between
the Virtual State and NOS portions of the CY180 machine,

2:444 UPDATE THE SOURCE LIBRARIES

The Integration project typlically updates the base source
libraries prior to starting any recompilation or assembiy of
the system, In order for a user of these procedures to modify
the source of a system routine he/she can use the SES
YGETMDDS ! procedure to extract the source belng modified, or
create the source in some other manner. If GETMODS was used
to extract the source» then REPMODS can be used to put this
changed source on a MADIFY nprogram 1iibrary in the user's
catalog., Then the filename containing this program 11ibrary
must be specified as the value of the *ABY parameter of the
NVEBILD procedure. {Refer to the Source Maintenance Section
of the SES User's Handbook if you have questions about source
maintenance,)

2-7
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBODK - Cycle 3
| | 05/22/82
2.0 DVERVIEW OF INTEGRATION PROCESS
2,445 COMPILE/ASSEMBLE FROM SOURCE

PR Y Y Y & R F 2 F P Ty oy oy o E Y RN EY Y R R YR VR R ppepegpepereyer 2 X 2 P ET VR R X FE X 84 F 2

24445 COMPILE/ASSEMBLE FROM SOURCE

The efficiency of the Integration build procedures is a
function of how much of the system is belng built and how much
information is supplied to the procedures when they are
invokeds If the name of 2ach module to be recomplited and its
object file residency 1Is known vprior to invoking the
proceduresy then the most efficient method is to use the
NVEBILD oprocedure and specify the lists of module names and
Jibrary names via the MY and 1|L' parameters. If onty the
module names are knowny then the NVEBILD procedure with the
tM? parameter specified should be used (a search for the
tibrary names will be usad), I*f only a8 modset file is
avaijabler the scope of changes Is not readily apparent (l.e.
several common decks are changed) or the number of modules to
be recompiled is prohibitively targe for manual specification
to the NVEBILD procedur2s then the NVEBLD procedure can to
used to automatically generate the correct NVEBILD procedure
calls (using a NOSVEPL cross reference). If it has been
determined ahead of time that several modules on the same
{ibrary are being changeds then 1[It |is more efficient to
rebuild the entire library using the 'L?' parameter of the
NVEBILD procedure, If severatl libraries need to be rebuilt
(as in a full system build), then the NVEBILF procedure should
be used.

The general philosopy behind the NVEBILD procedure 1Iis to
extract the latest source of a module from a program library,
compile or assemble the source to »produce the appropriate
object text, replace/add the updated object text to the
appropriate system {ibrarys and save this Ulibrary in the
catalog 1In which the procedure is executedes The final result
of the execution of the NVERILD procedure should be an updated
system library in the current user's catalog which is ready
for the 'LINKER?! phase of the byiid, Jobs which run in Tuser
mode™s that Is the iInterface to the system is gply through use
of the program interfaces (0OSLPI)y are saved merely as object
text files 1in the user?s catalog and LINKER~LOADER directive
modifications are required to Include these files as part of
the system, This ltatter capagbitity will gradually be replaced
by the Virtual State LDADER and Library Generator features as
they become avalilable.

2-8
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBODK - Cycle 3
oon | | 05722182
2.0 OVERVIEW DF INTEGRATION PROCESS
24406 BEGIN THE LINKER-LOADER PHASE

2.4.6 BEGIN THE LINKER-LDADER PHASE

The LINKER (SES53A6) and LOADER (SES53A5) are packaged
together in the Integration procedure NVELINK, This is for
convenience purposes» in that most LINKER changes to the
system require a corresponding LOADER directive <change, and
the intermediate results from the LINKER execution are not the
primary output used for system checkout, Prior to starting
the LINKER-LOADER phase of system builds, some decisions need
to be made as to the target executlon environment for the
resultant output.

If the target execution environment is standatone NOS/VE,»
then the 'LW=SIM*' parameter to NVELINK shoyld be used to
produce the file named 'SIMXX', This file can be run on the
simulator using the NVESIM proceduresy or can be used to create
a deadstart tape using the YYSN? parameter of the NVESYS
procedure,

If the target execution environment is a dual-state
environment, then the *LW=5Y3?" perameter must be wused
firststhen 'LW=J0OB's The 'SYSXX,JOBXXYY?' file Is used by the
NVESYS oprocudure to produce a deadstart tape image on disk
named 'TPXXXK?'sy which the dual-state deadstart procedure NVE
will then Ffind. Refer to Appendix D for Dual=State and
standalone deadstart procedures.

2+4.7 GENERATE THE DEADSTART FILE

In order to generate a deadstart tape for standalone
NOS/VEs it is only necessary to run the NVESYS procedure and
specify the VSN of the tape to be written, Prior to
generating a dual-state deadstart filey however, it Is
necessary to verify that the utilities necessary to support
the duyal-state deadstart have been rebuiit via the DSBILD and
BLDEI oprocedures. There are two portions of the dual—-state
EI; the Al170 portion is built using the BLDEI procedures and
the €180 portion (the NDS Trap Handier) is rebuilt using the
NVEBILD proceduyre {deck named OSANTH),

2.5 NYEBILD_PROCEDURE_DESCRIPIION

The procedure NVEBILD is used to add or replace modules on
a base ob ject text file. NVEBILD retrieves the source module
from a program librarys using the following search order?

2-9
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

| | 05/22/82
2.0 OVERVIEW OF INTEGRATIDN PROCESS
2.5 NVEBILD PROCEDURE DESCRIPTION

L X T2 PR A Y ER Y AR L -y A FrEFF2 F NN F I RV EFYYFRropeprrprspryiyr 2 XX A2 XL LA X2 L X 2 2

1) an alternate base optionally specified by the
user {looking first in the current catalogs and
then in the <Integrationd> catalog)

2) DSLPI (from the <Integration> catalog)

3) NOSVEPL {(from the <Integrationd® catalog)

This module is then compiled or assembled, and the
resuiting obJject text Is either added to or replaced on a base
file, A new version of the base file will be created in the
current catalogy if YFULLY keyword is specified If 'FUILI? is
not specified, these procedures will create {or update
existing) library filels) in the current catalogy the
resulting contents begin only the modyles which were just
compiled (added to any previously modifyed binaries). The
names of the library file{(s) will be the same as the
destination integration library{s) for the modified modutles to
enable them to be merged with the integration binaries during
the finking phase, This applies to selected module
compliation only (*m?® option)s If the *LISTING?! parameter s
specified a direct access file NOSLIST which contains the
compilation or assembly listing{s) of the modylels) compiled
or assembled {(one listing per record, headed by the matching
MADIFY module namey will be created, If you specified
*1isting = tape vsn?' then the listing will be archived to the
tape, THis listing can be listed via the LISTNVE procedure
described in this document). If there are any complifation
errorsy the error listing(s) will be put on the direct access
file ERRAORS (which has the same format as NOSLIST) in the
current cataloges The direct access flle ERRLIST will contain
a one 1line error message which indicates the type of error
detected for all errors diagnosed by the procedures., B8y
fisting the ERRLIST file from a terminaly a summary of the
number and types of errors encountered can be determined.
There are conditions such as unrecoverable disk errors which
can cause 2rroneous messages to occur in this file. In such
case it is necessary to examine the DAYFILE produced by the
procedure to isolate the problem.

If a specified modute is to be replaced (iai.e. it is
already part of the existing systam), NVEBILD will by default
use the same compilation options and will! replace Jit on the
same base object text file as when it was first added to the
system, These options may be overriddan by specifying the
corresponding parameters described below.

If a speciflied module is new to the systems the compilation
and base ob ject text file options may be directly specified
using the parameters described bealow. If 8 1ist of new
modules is speciflieds the compilation and base file options

2-10
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

N | 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS

2.5 NVEBILD PROCEDURE DESCRIPTION

e 2 2 2 P Al R X2 LR L EREYEESELENELEEELNEREY NFUFFFFUTRY LYY ERERYERESLE R]

myst also be specified as 1listsy and NVEBILD will match
everything up positionally. If these parameters are ppt
specifieds and NVEBILD js execyting in LOCAL modes a warning
message will be Issued telling the user that the module is not
in the current system, The user wil}l then be prompted for the
necessary {information. If these parameters are not specified
and NVEBILD is executing in BATCH mode, the compilation and
base flile options default as spacified below.

If the '}? oparameter is specified » each module's object
text will be copied to s temporary *2' files The old |Jibrary
file will then be purgeds and the '2!' file will be renamed as
the new Jibrary fite, All compilation 1tistings will ©be
LIBEDITY'ed onto NOSLIST from a temporary listing file at the
end of the procedure.

Wwhen an entire 1library 1is being rebuilt via the |1
parameter, the module namsas and their corresponding
compjiation options are obtalned from a flile which contains
ail! this information for each library, NVEBILD searches for
this file Ffirst in the current catalogy and then in the
{Integration)> catalogs The name of this file nust be the name
of the library minus its first character (e.g. 1J23ny for
the library 'XLJ23D')» and the first 1ine of this file pysi be
the file names To make additional entries or change existing
entries in this filey, the following procedure shouild be
followed:s

1) EXTRACT,<libdeks>/UN=<Integration>.
{where £jibdeks> is the name of the compitation
information file for the library as described abovey, and
<Integration> is the Integration catalog)
2) Edit <libdeks> to add or change entries. The format and
spacing of each entry is important and must be as follows?
(<m>s<coelxrefds<il1>,<12>)
where
m = g T=character left-justifled module name
c = a l=-character compilation option (*Q% '1%, or 937
see description of 'c? parameter below)
xref = 3 3-character teft-justified cross reference
option (ejther 'YES' or 'NO V)
11 = a 7=-character left-justified destination library
name,
12 = 3 7=-character left-justlified secondary |ibrary
destination name,
the entries currently in these files all follow this
format so that any additional entries may be 1lined wup
quite easlily with them,
3) SAVEs<libdeks>.,

2-11
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
2.0 OVERVIEW OF INTEGRATION PROCESS
245 NVEBILD PROCEDURE DESCRIPTION

NVEBILD {(with the %1t parameter specified) may then be used to
rebuild the library wusing these new/modified compilation
options,

The format of the NVEBILD is as follows?

SES.NVEBILD [ms={(<{module named>,.{modufe named) 1
{ 1=< library name > 1]
[c=(<compllation optiond...{compllation optiond) 1]
[area = < user name > 1]
[xref=a(< xref optiond..<xref optiond>) 1
[listing= keyword or keyword=<tape vsn>]
[full= keyword)
[ab = <alternate based> 1]
[omit = (<module named>,.{module named) 1
f link = Cparameter string for NVELINKD> 1
[test = <psasrameter string for NVESIM> 1]
[print 1
[batch 1]

m? The moduile namey or range of modulesy or list of
modyle names,

(I The library name(s) onto which 3 newly compiled
module (or modules) is f(are) to be added or
replaceds If the '™™! oarameter has not been
specifieds then the entire library is recompiled.
To recompile several libraries at a time it s
recommended that the NVEBILF procedure be used.

c ! ¢ = 0 to assembie a module
c = 1 to compile a CYBIL module (DEFAULT)

c = 3 to compile a CYBIL module using CYBICMN type
declarations

area 3 Option to obtain the object files or |inker
parameter files from another user?'s catalog (other
than the current catatog in which the procedure is
executing)., The default 1is for no area user
catalog to be searched.

fo 3 List options to be ijn force during CYRIL
compjlations. May be any combination of Ay C» Fo
O0s Iy Ws Ry or O (zero). The default Is ¢
{zero).

ab ! The user's alternate base program library

contalning new and modified modules. The default

2-12
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
2.0 OVERVIEW Of INTEGRATION PROCESS
2.5 NVEBILD PROCEDURE DESCRIPTION

is INEWDKPL?Y,

omit 3 Used when running a3 full buildy a module name or
list of module names to omit from the build., The
default is none,

listing ¢ For producing compilation listing as a2 permanent
flile or archive the listing to the tape,
The default is not to save the tisting.

futl To add or replace modified modules iInto object
libraries, The defaylt is only put modified
modyle{s) into object tibrary.

link 2 String passed as the NVELINK parameter Ilisty» to
optionally invoke the ljnker after compilings., The
default is to not link the system,

test ¢ String passed as the NVESIM parameter 1lists to
optionally invoke the simutator after linking.,
This parameter is invalid if the *LINK?® option hss
not also been specifled, The default is to not
run the simulator test,

print 3 Nption to print the link map following the tinking
of the system. The default Is not to print the
link map.

batch @ Run NVEBILD in BATCH mode. The default is to run
‘ it locally.

NIIE One of 'm' or '1!' parameters pust be specified,

2¢5+1 NVEBILF PROCEDURE DESCRIPTINN

NVEBILF is an SES procedure file which submits one batch
procedure execution of NVEBILD for each system library, each
with the '1%* parameter specified for the library to be builte

The format of the NVEBILF is as follows!

SESNVEBILF L 1 = <library name >]
{ batch 1
{ tisting = <tape vsnd>]

1 3 The "1? parameter specifies the \library to be
buitt, It can be one library or a list of
librariess The default is to rebuild the entire

2-13
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
2.0 OVERVIEW OF INTEGRATION PROCESS
2.5.1 NVEBILF PROCEDURE DESCRIPTION

e 2 R A LR R L R R Y R R R R Y Y R Y RS pTpeaeeyegpepees e P 2 L X X VR R R 2 X N Y YY)

system,

listings To archive the listing to the tapes, The default
is not to archive the 1isting to the tape,

" hatech @ Run NVEBILF in BATCH mode. The default is to
run it locally.

Note ¢ To rebuild one library, the following are togicsally
equivalent:
1} SES.NVEBILF 1=< library name >
2) SES.NVEBILD 1=< 1ibrary name > batch
The expansion of either of the above procedures can be
prohibitively long when being run from 2a terminal., The
"batch? keyword on the NVERILD procedure is implemented for
the express purpose of freeing up the terminal for other
purposes (the procedure expansion is done within the BATCHed
jOD)o

2.5.2 NVEBLD PROCEDURE DESCRIPTION

The NVEBLD procedure generates and routes to the Input
queye a set of NVEBILD jobs which compile the modified or
replaced decks and those decks which call modified or replaced
common deckse Firsty NVEBLD finds the decks modifled by
creating a list of all the *DECK lines in the "mf? filel(s) and
a list of all the decks in the 'dkf! fjle({s), It combines the
two listsy sorting and deleting duplicate names, The2 combined
list Is checked against the current list of modules which make
up NOS/VEy using the <cross reference file from the ftxrf?
parameter., Then the procedure again creates two lists: a list
of modules to be compiled and a list of common decks to be
checked, A subset of the cross reference is used to generate
2 list of al! decks referencing the given common decks, The
list of modules and the list of decks referencing the modified
common decks are combinedy sorted and duplicates are removed.
This final 1list is then used to generate the NVEBILD jobs to
compile the necessary modules.,

The Pormat of the NVEBLD iIs as follows?
SES.NVEBLD [mf = <file_name> 1]
[dkf = CFfile_named> 1]
{ xrt = <fite_name> 1}
[nl = <ilbrary_name> 1
{ area = user_named> 1]
[ab = <file_named>]
[tisting = {tape vsnd>]

2-14
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

| | | 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
245.2 NVEBLD PROCEDURE DESCRIPTION

[full = keyword]
[batech § local | defer |} batchn]

mf 3 The file or list of files which contains the
modsets or a list of *DECK deck_names, If the
parameter Js omitted the fite MODFILE Is used.

dkf The file or tist of files which contains the new
or replacement decks in a group flile format., If
the parameter Is omitted the file DECKFIL is
used.

xrf ¢ The NOS file name for the file containing the
cross reference of NOSVEPL, If the parameter is
omitted the file XNVEPL is used.

nt 3 The 1ist of tibrary names to be omitted from the
bujlde There Is no default,

area 3 The search order to find any file, If the
parameter is omitted the user namaes of the current
user and the user name of the procedure are used
for the default user names,

ab 3 The file name of the alternate base, The defauylt
fs NEWDKPL.

{fisting ¢t To archive the 1listing file to the tape, The
default is no listing is archived.

full 3 To add or replace modified module(s) into obJject
libraries.

batch §| tocal ¢ defer | batchn ¢t The job run mode of the
procedure. If none are defined LOCAL is used.

245+3 LISTNVE PROCEDURE DESCRIPTION

LISTNVE s an SES vprocedure fila which extracts the
compilation 1listings of the modules specified by the tM?
parameter (module names correspond to the MADIFY deck name
given the module) from a text library file and writes them to
the fitle specified by the '0' parameter in a printable
formate The *M' parameter may select a3 single moduley a 1list
of modules, and/or a range of modules on the library file.

The 1tlibrary file which contains the 1listings msey be
saelected via the 'I'" parametersy and defaults to NOSLIST.

2-15
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
2.0 OVERVIEW OF INTEGRATION PROCESS
2.5.3 LISTNVE PROCEDURE DESCRIPTION

s 22 2 TR L EE L X Y ELER YL LTS FEFFIPTIFIPSEpepsrsr LA LT EE S Y E XX E N ¥

LISTNVE will search for this file in the current catalog
firsty and If it 1Is not there it will go to the catalog
speci fied by the 'AREA' parameter.

When LISTNVE has compietedy, the output file selected by the
0! parameter will be a local flile. It is pot automatically
printed untess either the 'PRINTY or 'BATCH' option is
selected,

The format of the LISTNVE is as foliows?

SES.LISTNVE m = { <module name>,.<module name>) 1]
i = <dfile name> 1

vsn = {tape vsn> 1]

o * <print file named>]

area = <user name>]

print 1

fiche = <tape vsn> 1

batch 1]

(e B e B e T e B o B B o I o]

m 3 The module name{s) and / or range of module
nameg which are to be extracted for
printing. The default is to extract and
format all of the modules.

it f { from 3 The name of the text |Jibrary file from
which the compilation listings are to be
extracted.

vsn Tape vsn, For archiving the listing file
to the tape, The default is NOSLIST,

o} to } upon ' The name of the file which will receive the
formatted 1listings to be printed, The
default is LISTING,

area ¢ The name of the catalog to search for the
librery file should it not be found in the
current catalog, The default is the
{Integration> catalog.

print Option to oprint the listing file after it
is formatted, The default is to not »print
the tisting file,

fiche 1 Write 1listing output to the tape with this
VSN in a format suitable for microfiching.
The defauylt 1Js to not microfiche the
listing.,

2=-16
ADVANCED SYSTEMS INTEGRATION PROCEDURES NDTEBOOK - Cycle 3
. ‘ 05722/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2¢5+3 LISTNVE PROCEDURE DESCRIPTION

ALy F L 2R AR R Y E XA YRR Ry e L R L R P R Y

batch 3 Run LISTNVE in BATCH mode. The default is
to run it locally,

2.6 NVELINK_PROCEDURE_DESCRIPIIQN

NVELINK is an SES command langyage procedure Ffile which
witl call both the VE Linker and VE Generator {(supplied by the
Development project) to produce various optional image files
and tink map filess In order to do this it wiltl link monitor
and task service routines from thelr object text files. It
Wwill® search all fites that it reguires 1) from local fites 2)
from the current catalogs 3) from area user's catalog (if the
area parameter 1is specified)y 4) from the <Integration)
catalog,

It iIs no longer necessary to ke2p compliete object libraries
in the current/area catalogs when modifications have only been
made to a few modules. Insteads the g¢ghanged modules should
reside on {(an) object fila{s)s with the same namel(s) as their
destination ab ject library(s), in the ‘current/area
catafog(s)., NVELINK then applies these modifications on top
of the current <{Integrationd> 1librariesy applying first the
area catalog changes (if any) and then the current catalog
changes {thils function Is performed by the SES GOF wutitity
entirely on 1{1ocal fites; at procedure end the libraries
residing in the current/area catalogs remain exactly as they
were before NVELINK was Invoked). This made necessary an
option to dynamically delate modulies no longer needed on 2a
fibrary, This is done via the *D?' parameters which specifies
a Pile contalning the name{s) of the module(s) to delete and
the library{s) to delete it (them) from. This file pust be in
the format itlustrated by the following example:

F=(XLS13D)yMODULE={PMMSPROGRAM_SERVICES,

JMMS PROGRAM _LEVEL _INTERFACESyPMMESYSTEM _TIME_REQUESTS,
MLMSHANDLE _SIGNAL)

Fa{XLS1DD),MODULE={OSMSINTRINSICS)

F={XLJ223) s MODULE=(AVMS INITIALYZE»AVMSJOB_ACCOUNTING_KERNEL)>
AVMS$ JOB_LIMITS_MANAGER,CLMSREAD_INPUT_FILE)

etCeoe

Ngtet Each new entry (flagged by "F=") myst begin in column
oneg of a new line, Alsoseach ltibrary file name and list of
modules must be enclosed in parantheses.

NVELINK wiil link any one of the followingt the Production
System Core and/or the Recovery System Cores or the Production
Job Template and/or the Recovery Job Template. The choice is

2-17
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK ~ Cycle 3
2.0 OVERVIEW OF INTEGRATION PROCESS
2.6 NVELINK PROCEDURE DESCRIPTION

LA A A2 LR 222 LR L LN LR ER S E LA E Y X E SR FFIFFIpysyry Yy L X 2R LSRR ER S L2 N

made via the 'LW?' and 'RECY' 9parameters {(see description
below). The following table indicates what output fites are
saved in the current catalog after NVELINK has completed, and
what their various names are depending upon the 'LW' and 'REC?
optionst

! LW=J0B 1 LW=3YS i LW=J0B REC | LW=SYS REC

- - T - — Y — W G S D WD A WD B D S W D -

checkpolnt?! PJBLcid><jidd} PSY<cid> IRJIB<cidd<Jid>] RSY<cid>
file ' ! ! :

- - - - - - D o o -

linkmap T PMPLcid><jidd>} PMPLcid> IRMPLcid><jid>! RMPLcid>
outboard ! _ H H '

symbol 1 PIBSTLcid> 1PMTSTCcid>) RIBSTLcid)> | RMTST<cid>
tables H 1PSYSTLci d>} { RSYSTLcid>
loader H ! H H
directives} JOBXLDR P PSYXLDR) JOBXLDR ! RSYXLDR
tile H H 4 H

linker H H H H

debug 1 PJBXDBG ! PMTXDBG | RJBYDBG ! RMTXDBG
table H 1 PSYXDBG 3} ! RSYXDBG

- - - v -

where <{cid> = Value given the CID parametery, and
Jjid> = Value given the JID parameter.

To link addlitional user Jjobs Into the systems create a file
in the current catalog containing the commands needed to
obtain ail the necessary files as well as a call to VELINK for
each user Job to be linked, Speclify this flle via the ADD
parameters and NVELINK witl pick It up and physically insert
it into procedure command stream immediately following the
tast call to VELINK. JThe_ first lips_in_this_ file MUSI be_the
file_pamell_

The format of the NVELINK is as followns?
SESNVELINK [tw = € link option > 1

{ rec]

[cid = € core id > 1

[jid = < job id > 1

[ps = £ page sized>]

[ptl = < page table length > 1

[d = < DEOM directives file name > 1
[add = ¢ additional tinks fite > 1

[uj = € list of object files >]

2-18
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK = Cycle 3
| . | | | 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.6 NVELINK PROCEDURE DESCRIPTION

[nvesim = < parameter string for NVESIM >]
{ nvesys = < parameter string for NVESYS > 1]
[dump/nodump 1}
[area = < user name >]
[debug 1
{ print = ¢ tink option > 1
{ batch]
Iw ¢ The 1link options used to determine which
"pieces” or variations of the system are to be
iinked,

LM = JOB 1inks only the system job template
(DEFAULT).,
LW = SYS links only the system core.

rec Option to link foth the Production and Recovery
System Cores/Job Templates (depending on the
WY selection). The default is to tink only
the Production System Core/Job Templ ate.

cid ¢ Two character string which becomes the system
core identifier and is appended to the names of
the NVELINK output files to identify the system
core version which was just 1inked or which is
to be wused in the current tink of a _job
template, The defaullt is *XX*',

Jid s Two character string which becomes the job
tempiate jdentifier and is appended to the names
of the NVELINK output files to identify the Jjob
template version Just 1inked, The default s
fYY!,

ps ¢ Page size of the target NOS/VE systemy expressed
Iin multiples of 1024 bytes. Values may be 1s 2»
4y By 165 32, or 54. Default Is 8.

pty Page table 1length of target NOS/VE systemy
expressed in multiples of 1024 bytes. Values
may be 4 8y 16y 32, 64y 128, 256, 512, or
1024%. Default is 32,

d ¢ The name of the file containing the information
necessary tec delete modules from libraries
before linkings The format of this file is
described above, The default is to not delete
any obJject modules hafore {inking.

add 1@ The name of the file containing the commands

2-19
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

e | | | o 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.6 NVELINK PROCEDYRE DESCRIPTION

e L 2 R Yy EE FYE F2 X E X2 VY LA RE Y EREFEYFIpgprprprpogeyepsr g F X 2 R Y E XY 2 F 2 F R Y N

needed to link additional user Jjobs 1Into the
system, The default is to not link in any
additiconal user jobs.

uj {List of) object filels) containing user
programs which are to be linked into the systenm
along with the library XLJBBB.

nvesimn 3 String passed as the NVESIM parameter 1ist, to
optionally Invoke the simulator after Jinking.

nvesys 3 String passed as the NVESYS parameter tisty to
optionally build a deadstart file or stand=-alone
deadstart tape after linking.

dump/nodump DOption to print a memory dump of the system.
The default is 'NADUMPTY,

area ¢ Option to obtain the object files or linker
parameter files from another wuser's catalog
{other then the current catalog in which the
procedure |Is executing). The default is for no
area user catalog to be searched,

debug Option to save the linker output debug tables as
permanent files in the current cataloge. The
names of these filesy when saved, are given in
the table above. The default is to pgt save
these filess

print 3 The print optiony, wused to determine which
linkmaps to print. The default is not to print
the linkmap. If only the print keyword Is
specified) the tinkmap{s) matching the *LW?
option selected is printed.

batch Run NVELINK in BATCH modes The default 1Is to
run it locally.

2.641 LPF FILE DESCRIPTION

The LINK commands wused in the NVELINK procedure do not
speci Ffy enough information to totalty define the requirements
of the \linking operation, Many additional parameters are
suppiied to the linker through additional data fliles. This
includes information such as?

2-20
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK ~ Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS

2,6,1 LPF FILE DESCRIPTION

LA LA 2 P E L P2 R 2 2 X2 22 2 RS EEEELESELZEEEEEELEYEFFPWFYRELELELELELRESE S E RSN

- Ring Numbers

- Segment Numbers

- Segment Attributes
- Execution Privilege

Currently this information is supplied to the tinker via
the SES Linker Parameter File (LPF) file, The linkage between
the 1] nker and the LPF file Is activated by the
LPF={file_named> parameter on the LINK commands. For the
monitor 1inkage this information 1is on LPF file MTRXLCB,
system core/ job template linkage information is on LPF fijes
SYSXLCB and JOBXLCBy, the XLJBBB (and other optional uyser
objJect files) linkage informatjon is on LPF file BBBXL(CB» and
EI tinkage information Is on EILCBH,

24642 SYSXDIR 7/ LDR FILE DESCRIPTION

The SYSXDIR file used by the oprocedure NVELINK contains
directives to the CPF Generator which allow It to produce a
checkpoint flile from the segment #files produced by the VE
Linkers, These directives set uo the physical environment into
which NOS/VE is placeds and include such things as the
definition of the page size» job and monitor exchange package
addressesy psage table address and tength, prealiocated segment
array definitionsy etc.

SYSXDIR Is a Yskeleton” file which is dynamically edited
during the execution of the NVELINK orocedures depending upon
the specification of the LWy PSs RECy» and PTL parameters. The
edited file Is then put on an indirect access files named
according to the conventions outlined in the NVELINK_Procedurse
RQescriptian sections in the user?s catalog. It <contains the
directives to the CPF Generator which set up the physical
environment for that particular link. This file must remain
permanent in the wusert's c¢atalog after NVELINK has been
executed» as the procedure NVESYS uses this file in building a
deadstart tape.,

2.7 RARAMEIER _DESCRIPIOR._TABLE_AND MEJSAGE TEMPLATE_BUILDING

2¢7¢1 GENPDT AND BLDGPDT DESCRIPTIONS

An SCL Parameter Descriptor Table (PDT) is a sufficientty
complicated "type® that its deciaratons, in particular its
initiatlizationsy in CYRIL Is awkwarde Therefore, a8 means of

2-21
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBDOK - Cycie 3
05722/82
2.0 OVERVIEW OF INTEGRATION PROCESS
271 GENPDT AND BLDGPDT DESCRIPTIONS

easily generating a PDT has been devised.,

GENPDT s an SES vprocedure which provides for the
generation of a PDT from a specification that is virtuailly
identical to an SCL proc declaration {(see the NOS/VE Command
Interface ERSy ARH356C9).

The output of GENPDT is a fite containing the CYBIL
variabla declarations for the PDT specified., As a general
rule this file should be formatted using the CYBIL source code
formatter.

The format of the GENPDT is as follows:
SES <GENPDT [i = <file named>]
f o = <File named)

i The name of one file containing one PDTY
declaration, Biank lines and continued lines
are allioweds The default is INPUT.,

o ! The name of the ocutput fiies All lines from 'i?
are echoed on this file in the form of "block™
comments.

See the ERS for Parameter Descriptor Table Generator for
the PDT declaration format and examples (GPDTERS/UN=SCL).,

The SES procedure BLODGPDT builds the generate parameter
descriptor tabile program that is used by GENPDT,

The format of the BLDGPDT is:

SES.BLDGPDT L 1t = <file named> 1]
f b = (file named 1

| I | The name of the Ffile which wiill recelve the
listinge The default is LISTING,

bt The name of tha file which will receive the
binariess The default Is GPDTBIN,

2742 GENMT» GNVEMT AND BLOGMT DESCRIPTIONS

GENMT Is an SES procedure which takes as Iinput 1 or more
CYBIL common decks containing Exception Condition Code
definitions with status severity and message template
specified in an accompanying CYBIL comment and oproduces g

2-22
ADVANCED SYSTEMS INTEGRATION PROCEDURES NDTEBOOK - Cycle 3

| | 05722182
2.0 OVERVIEW OF INTEGRATION PROCESS
2.7+2 GENMT, GNVEMT AND BLDGMT DESCRIPTIONS

ready-to-compile CYBIL module which consists of CYBIL
variables that represent the message temptatess The commen
decks that are used as Iinput should be stripped of the MODIFY
headers and the line COMMON, The LYBIL module produced would
next be compiled and included with other object files so the
message formatter can locate the message template.

The format of the GENMT js?

SES +GENMT L i = <file name> 1]
L id = <2=character identifier>]
[o = <file named> 1
{ e = <file named>]

I O | The name of the fijle contalning common decks to
be ysed as input. The default is INPUT,

id @ A two-character product identifier, The default
Is 0OS.
o 3 The name of tha file to contain the CYBIL module

which is output. The defaull is TEMPLAT,

e 3 The name of the file to be wused for error
listing output. The default is JUTPUT.

The SES procedure BLDGMT builds the gepnerate megssage
templates programs generates the message templates for the
operating systemy and produces the message template object
module and puts it in object library XLJ2DD.

The format of the BLDGMT is as folloys?

SES.BLDGMT { I = <file name>]
[b = Lfile named> 1

{ I | The name of the fjle to receilve the 1listing.
The default is LISTING.,

b ¢ The name of the file to receive the binaries,
The default is GMTBIN.

The SES procedure OGNVEMT produces the message template
object module for the operating system and puts it in the
object libary XLJ20D, (It 1is INCLUDEd by BLDGMT and it
INCLUDEs GENMT.)

The format of the GNVEMT is as follows?

2-23
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOODK ~- Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS

2.7.2 GENMT» GNVEMT AND BLDGMT DESCRIPTIONS

LAl 2 A 2t K2 ELELEREELELSELELE YRS ELZLEREE N R VI FIFTIWIRTPSY S 2R R 2 X KL E X X2 X N]

SES.GNVEMT [bl = (file named>]
[e = <file named> 1

bl The name of the Ffile to receive the object
moduie, The default is MTLGO.

e 2 The name of the output file, The default Iis
guTPUT.,

2.8 NOSZME_SIMULATION

2+8s1 RUNNING A SIMULATCOR TEST (NVESIM PROCEDURE)

NVESIM (s an SES procedure file which will run either a
batch mode or an interactive simulation of NOS/VE. This
option Is selected via the 'TEST? parameter. If 'TEST?! is not
specified, then the simulation will be run interactively., If
a batch mode simulation is desireds then ¥TEST? is used to
speclify the name of the file containing the NOS/VE test
commands that are to be input to the simujator. The YBATCH?
keyword must also then be specifieds If the usar wants to use
his/her own simulator directives fila, the ICMDS' oparameter
must be specified.

NVESIM atlso allows the selection of the checkpoint file to
be used for the start of simulation, A <checkpoint file may
also be optionally saved at the end of the test. The (180
memory size may be changed via the *MEM! parameter,

The NVESIM procedure will create several permanent files in
the user's catalog (f not run interactively, These are
itenized as followss

1) IQUIPUI. This direct access file contains asll of the

output of the NVESIM procedures including

- a copy of the command file wused as input to the
simulator ('TEST?! parameter)

- the output produced by the system

- the SESLOG file

- a reformatted keypoint listing

- DEBUG output (if 'SIMDBG'* was specified on the
NVESIM call)

- a summary of all (paging) disk I/0 (HIDLDG file)

- the toad map produced by the CITOII <conversion and
execution of XUUTL (SIMLDAD file)

- J{optionally) a hex dump of the checkpoint file at

2-24
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK —- Cycle 3
2.0 OVERVIEW OF INTEGRATION PROCESS
2.8.1 RUNNING A SIMULATOR TEST (NVESIM PROCEDURE)

the end of simulation
- the Jjob dayfile,
This file is automaticatliy sent to the line printer.

2) SESSMKE«. This direct access file contains the keypoint
data oproduced by the simulator. It is reformatted by
the procedure NVEKEY before being written to the file
TOUTPUT.

3) IDAYE. The dayfile of the NVESIM job will be written
to this direct access file should it terminate
abnormally,

Additionallyy if the NCPF! parameter is specifiedy NVESIM
will greate 2 dijrect accegs fileas which together contain the
NOS/VE environment at the end of simulation. The file
specified by the 'NCPF?! parameter wlll contain the current
NOS/VE checkpoint files, The other file (formed by adding the
character *0' to the 'NCPF' file name - which must therefore
be six or less characters long) is used for NOS/VE memory
paging.

The format of the NVESIM is as follows?

SES.NVESIM [test = < command fitle > 1]
{ cmds = < simulator directives file > 1]
I cpf = { checkpoint file >]
[ncpf = < new checkpoint file > 1
[mem = < memory size in hex > 1]
[nods 1
L run = < instruction count > 1
[simdbg 1
[dump 1]
{ area = ¢ user name >]
[batch 1
test The file containing the NOS/VE test commands.
The default is to run interactively,
cmds 3 Simulator directives file which should be
suppilied by the users The defaylt is to use the
one created by the NVESIM procedure.
cpf 1 The checkpoint file used for the start of
simyglations The default is "SIMXX",
ncpf 3 The checkpoint file to be saved at the end of

simulation, The default is not to save 2
checkpoint file,

2-25
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK = Cycle 3
N | | 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
24841 RUNNING A SIMULATOR TEST (NVESIM PROCEDURE)

mem $ The C180 machine memory sizey, in hexs needed to
run the simulation. The defauylt is
n500000(16)", '

nods ¢ Option to use the version of the checkpoint file
from the <Integration) catalog which has already
been deadstarted. The default is to use 2
checkpoint file which has not been deadstarted,

run 3 A count of the number of suimuiated instructions
to executes The default iIs 800000 instructions
{or the profilte variabie value for 'RUNCNT?).

simdbg 3 Option to turn DEBUG on for the current
simulator run. The default Is to run with DEBUG
off.

dump ¢ Option to include the dump of the checkpoint

file at the end of simulation as part of the
NVESIM output, The default is not to dump the
checkpoint file,

area ¢ The name of the catalog to search for the fijles
needed to simulate the system shoyld they not be
found in the current catalog. The default is
the <Integration> catalog,

batch Run NVESIM in batch modes. The default is to run
it locally.

2482 NVEKEY PROCEDURE DESCRIPTION

NVEKEY is an SES procedure file which creates a simutator
generated keypoint trace file. The output of ¢this procedure
is the 1ocal file 'WEYFILE?Y,

The format of the NVEKEY is as follows?

SESNVEKEY [kpf = < keypoint file > 1
{ format = < SIM | HDW > 1
[kd = < list of keypoint descriptor files >]
{ area = < user name >]

kpt The keypoint file ogenerated by the simulsator
which 1is used as Input to XXM7KEY., The default
is YSESSMKF?,

format @ Specifies whether simulator or hardware format

2-26
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK = Cycle 3

| | | | 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.8.2 NVEKEY PROCEDURE DESCRIPTION

keypoints are being processed, Default is

TSIMT,
kd 3 A file or 1list of files which definel(s) the
keypoint descriptions, The default is

TKEYDESCY,

areg ¢ The name of the catalog to search for the files
needed to create the keypoint trace file should
they not be found in the current catalog. The
default is the <Integration> catalog.

24843 DUMPING A SIMULATOR CHECKPDINT FILE (NVEDUMP PROCEDURE)

NVEDUMP is an SES procedure file which makes 2 DSDI dump of
a simulator checkpoint file.

The format of the NVEDUMP |Jjs as folliows?
SES.NVEDUMP [cpf = < checkpoint file > 1
{1 = < output file > 1]

{ dump = STND | ALL 1

[orint 1

[area = < user name > 1
{ batch 1

cpf ¢ The <checkpoint file which is to be dumped. The
defaylt is "CKpT™,

1 3 The file which is to receive the dump output.
This file witl! be a 1local file after the
procedure has finished execution, It is npot

automatically printad. The default is
"DSDINUTY,
dump 3 Option to either dump the environment according

to ASID {DUMP =STND) or dump the entire
environment (DUMPs=ALL). If "OUMP=STND™ is
chosensy then the DSDI directives are taken from
the file DSDIX, which the procedure will sesrch
for flirst in the current catalog and then in the

<Integration> catalog., The default is
"DUMP=STND",.
print @ Option to print the DSDI dump output. The

default is not to print the dump.

area @ The name of the catalog to search for the files

2-27
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

. o | 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
24843 DUMPING A SIMULATOR CHECKPOINT FILE (NVEDUMP PROCEDURE)

needed to make the DSDI dump should they not be
found in the current cataloge. The default is
the <Integrationd> catalog.

batch Run NVEDUMP in RBRATCH mode, The default 1Iis ¢tfo
run it iocally.

2.9 BUILDING_A_DEADSTARI_EILE

2+9.1 INTRODUCTION

2¢9+2 CREATING THE FILE (NVESYS PROCEDURE)
\ \

The SES procedure NVESYS builds a deadstart file from the
image files created by the linking of the system, The REC?
parameter ajjows the option of building either a Production
System or a Recovery System deadstart file. If the parameter
TYSN? is specifieds then the deadstart file will be written to
tape; otharwise it is written to the file TPXXXK,

NVESYS requires additional object files for iInclusion on
the deadstart file. These object files contain PP object code
for the following functions:?

1) Deadstart {(file XIDST)

2) Console/Printer drivers {(file XIDSP)
3) PP helper (file XIHLP)

4) PP Resident program (file XIRES)

5) NOS/VE disk drivers supporting multiple.
controllers (files XD&4y» XDSA» XD5Bs, XD5C» and
XD5C2)

6) NOS/VE MCU Drijver (file XMSPMCU)

7) System Monitor Unit (file XSMUPP)

8) Monitor Display Oriver (file XMDD)
9) System Monitor Assistant (Ffile XSMA)

A copy of the toader directives (file PSYXLDR) will be
included on the NOS/VE deadstart file (a description of this
fite Is included in 8 previous section)s Also included on the
deadstart Ffile are the Production System Core Command File
{DCFILE)s the Recovery System Core Command File (RDCFILE) if
IRECY is specifieds and the Configuration Prolog File
(PROLOG) »

2=28
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBDOK - Cycle 3
. . 05722782
2.0 OVERVIEW OF INTEGRATION PROCESS
20922 CREATING THE FILE {NVESYS PROCEDURE)

AL X222 XL 2 R ALY EEEEEEFEREELLEREESY YN T YA LEEELSEESEL ALY S AL LA EEX RS

If any of the above files ara not prasent in the current
user catalogsy they wil! be obtained from the appropriate
catalog, (ie. SES»,]INTZ2. prefixed procedure calls access
INT2 level system files onlyy while SES,INTI1. prefixed
procedure calls may access files Ffrom ejther INT2 or INT1
catalogs as Is appropriate for the system being built,)

The format of the NVESYS is as followst

SESNVESYS [vysn = < tape vsn > 1
[cpf = < Production System Core image file > 1]
{ jtf = < production Job Template image file > 1
[rcp?t = ¢ Recovery System Core image File > 1
[rjtf = < Racovery Job Template image fite > 1}
{f area = < yser name > 1]
[cmds = < tape generator commands file > 1
[pack 1
{ nocti 1
[rec 1
[batch 1

vsn ¢ The VSN of the tape to be writtens This tape
must be available to the operator, The default
is to write the fitle to a disk File as specified
above,

cpf ¢ The Production System Core image fijle, The
default is PSYXX,

Jtf @ The Production Job Template image file. The
default is PJBXXYY,

rcpf ¢ The Recovery System Core image file, The
defaylt is RSYXX,

rjtr ¢ The Recovery Job Template 1image file. The
default is RJBXXYY,

area $ The name of the catalog to sesarch for the files

needed to build the deadstart tape or file
should they not be found in the current
catalog. The default 1Is the {Integration>

catalog.
cmds 3 The name of the file containing directives for
use by the deadstart tape generator. The

defaylt is to use procedure~defined directives,

2-29
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
05722182

2+0 OVERVIEW OF INTEGRATION PROCESS
249+2 CREATING THE FILE (NVESYS PROCEDURE)

pack 3 Option to pack the deadstart file for dual

state, The default is to pngt pack the deadstart
File,
nocti ¢ Option to pot put CTI on the deadstart fitle,

The default is to write CTI to the beginning of
the deadstart file.

rec 3 Option to bulild a Recovery System deadstart
file, The default is to build a non-Recovery
System deadstart fite,

batch 1 Run NVESYS in BATCH mode. The default is to run
it locatlly,

2+9.3 COMPILING 180 PP CODE (CPP180 PROCEDURE)

CPP180 is an SES vprocedure file which compites 180 PP
code., The source for the PP code is retrieved from 3 source
program library. If the "AB"™ parameter Is specifliedy, CPP189
Wil search this PL first before searching NOSVEPL to satisfy
externals, NOSVEPL comes from the {Integration> catalog.

The format of the CPP180 is as follows?

SES.CPP180 [m = < module name >]
{ ab = ¢ ailternate base >]
[area = < user name > 1
[listing = keyword or keyword =<tape vsn>]
{ batch 1

m The modute name of the PP oporogrem to be
compiled.,

ab ¢ The alternate base searched by CPP180 to satisfy
externals before searching NOSVEPL. The defgult
is to search only NOJSVEPL,

listing To save the compitation listing as a permanent
file or archive it to a tape. The defaylt is no
fisting is saved,

area ! The name of the catalog to search for the PL

specified by the "AB? parameter should it not be
found in the current cataloge The default is
the <Integration> catalog.

batch Run CPP180 in BATCH modes. The default is to run

2-30
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
| | 05722782
2.0 OVERVIEW OF INTEGRATION PROCESS
2.9.3 COMPILING 180 PP CODE (CPP180 PROCEDURE)

it locally,

2+10 DUAL_STATE_PROCEDURES

2+10.1 BLDEI PROCEDURE DESCRIPTION

BLDEI Is an SES procedure flile which bullds the absolute
file for dual state FI, The AR oparameter may be specified if
a program library containing the dual state £l source exists
in the current catalog; otherwise BLDEI retrieaves EI from
NOSVEPL Iin the <{Integrationd> catalog.

BLDEI wuses the linker parameter file EILCB to tink EIl. 1If
this file does not exist in the current catalogy it s
obtained from the <Integration> catalog by the procedure.

The outputs of BLDEI inciude the direct access absolute
file 'EI?" and the direct access File *DSLIST? which contains
the assambly listing and the link map for EIl.

The format of the BLDEI is as follows?

SES.BLDEI L I = < EI source file > 1
[area = < user name > 1]
[listing = keyword or keysword=<{tape vsnd> 1
{ batch 1

i3 The file in the current catalog which <contains
the dyal state EI source program library from
which £ is to be buitt, The default is to get
the EI source from NOSVEPL in the <{Integration®>
catalog.

listing ¢ Option to save the compilation 1listing in a
permanent fite or to archive the listing to a
tapes The default is no tisting Is created.

ab The wuser's alternate base program library
containing new and modified modules.

area ! Option to obtain the object fliles or linker
parameter files from another wuser?s c¢atalog
{other than the current <catalog in which the
procedure s executing).

2-31
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2+0 OVERVIEW OF INTEGRATION PROCESS

2.10,2 BLD170 PROCEDURE DESCRIPTION

2 L 22 A PR ELERLEEENSEELEEREYRNLELELEL LN FEFFIRIRFpvFSYE X EL R L2 L XYL E XY RN]

2410,2 BLD170 PROCEDURE DESCRIPTION

BLD170 §is an SES procedure file which builds the A170 dusl
state deadstart tape binaries containing the modifications to
A170 NOS to support dual states. The assembled binaries are
put on the direct access file SYSBINSs The COMPASS assembity
listings may be saved either on disk (file DSLIST) or on tapes
depending upon the specification of the 'LISTING? parameter.

The format of the BLD170 is as followss

SESBLD1I70 (m = < {ist of module nameg>]
[ab = < alternate base flle > 1
[area = < user name > 1
[tisting § listing = < tape vsn > 1
[batch 1
m 3 The module name{s) of the COMPASS routines to be
assembleds The default is to assemble 311 of
the A170 NOS dual state support modifications,
ab 3 The userts alternate base program ¢tibrary
containing new and modified moduyl es, The
default is NEWDKPL.
area Optionat catalog specification to add to the

search list for files neaded by BLD170. The
default is the current catalog,.

tisting ¢ Specifying the keyword $LISTING' saves the
assembly listings on the direct access file
DSLIST. Specifying 'LISTING=<tape vsnd>! writes
the assembiy listings to the tape with the
specified VSN in sorted order. The default is
to not save any listings.

batch ¢ Run BLD17¢ in 8ATCH mode., The default is to run
it ’OCal'y»

24103 BLDICF7 PROCEDURE DESCRIPTION

BLDICF? is an SES »procedure file which buitds the 170
library file LINKLIB, This library contains the binaries for
the 170 side of the Interstate Communication Facility. The
SYMPL/COMPASS tistings may be saved either on disk (file
DSLIST) or on tapey, depending uoon the specification of the
FLISTING' parameter.

2-32
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS

2.10.3 BLDICF7 PROCEDURE DESCRIPTION

Ly 2 2 2N ¥R EELE L EREYYEREFYEEELYESFEELE R F X RPN LESELESELERSSEESE]

The format of the BLDICF7 is as follows:

SESBLDICF7? I m = < 1list of module names)]
f ab = < alternate base file > 1
{ area = < uyser nama >]
[tisting ! listing = < tape vsn > 1]
[batch 1

m 3 The module namel{s) of the routines to be
assembled/compiled, The default is to assemble
all of the modules which make wup the LINKLIB
library,

ab The user's alternate base program 1library
containing new and modified modules, The
default is NEWDKPL,

area ! Optional <catalog soeclification to add to the

search Jist for fjles needed by BLDICF7. The
default is the current catalog,

tisting Specifying the keyword PYLISTING' saves the
assembly listings on the direct access file
DSLIST. Specifying *LISTING=<tape vsn>? writes
the assembly 1tistings to the tape with the
specified VSN in sorted order.s The default is
to pnot save any listings.,

batch 3 Run BLDICF7 in BATCH mode,. The defaylt is to
run it lpcally,

2410+4 BLDIF7 PROCEDURE DESCRIPTION

BLDIF? is an SES procedure file which builds the A170
deadstart tape binaries needed to support the NOS/VE
Interactive and Qperator Facilities. The 1inked binary
absolutes are put on the direct access fife SYSBINS. The
compilation/assembly listings may be saved either on disk
{fi12 DSLIST) or on taper depending upon the specification of
the 'LISTING? parameter.,

The format of the BLDIF? is as follows!

SESBLDIF7 [ab = < alternates base file >]

{ area = < user name > 1]

[debug 1

L listing | listing = < tape vsn > 1
[batch 1

2-33
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK = Cycle 3

| | | 05722182
2.0 OVERVIEW OF INTEGRATIQON PROCESS
241044 BLDIF7 PROCEDURE DESCRIPTION

P22 X 2 LR 2 R AR Y L P F R TN Iy o Tl E YR E ey e L E L P R R YRR R

ab 3 The user?'s alternate base program fibrary
containing new and modified modules. The
default is NEWDKPL.,

area 3 Optional catalog specification to add to the
sgarch 1ist for fites needed by BLDIF7. The
default Is the current catalog.

debug ¢ Option to tink Interactive with NETIOD, The
default is to link with NETIO,

listing Specifying the keyword PYLISTING' saves the
assembly listings on the direct access file
DSLIST. Specifying 'LISTING=<tape vsnd>?' writes
the assembly listings ¢to the tape with the
specified VSN in sorted order, The defaull is
to pot save any listings.

batch ¢ Run BLDIF7 in BATCH mode. The defaylt is to run
it tocally.

2¢10+5 BLDRH7 PROCEDURE DESCRIPTION

BLDRH? is an SES procedure file which compiles/assembies
the modules which make up the Al1l70 side of the Remote Host
Facitity and produces the updated RHAL70R library file
containing the Al17C relocatable Remote Host binaries. When
RHAL170R has been builty BLDRH?7 will tink to produce the five
absolute files which are added to the Al70 NOS systenm
deadstart tape to support the Remote Host. This happens gonly
if no MADIFY/compilation/assembly errors occurred during their
respective phases.s To be able to link successfullyy, the
module must be recompiled/reassembled error-free. The |inked
absolutes are added to the direct access file SYSBINS in the
current catalog. The compilation/assembliy listings may be
saved either on disk (file DSLIST) or on tapes depending wupon
the specification of the *LISTING' par ameter,

The format of the BLDRH? is as follows?

SES.BLDRM7Y m € list of module names> 1]
c <

{ =

[= processor option > 1

{ ab = < alternate base file > 1]

[area = < user name > 1]

L tisting § tlisting = ¢ tape vsn > 1]
L

batch]

m The module namel{s) of the Remote Host routines

2-34
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK —- Cycle 3
| | | | 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.10+5 BLDRH7 PROCEDURE DESCRIPTION

L L X 2 X2 8 i AR LARSELELEESSALLELSESLSZELEEEEEEEEEFEYLLELIELSEEELEELELESEESEELE R]

to be compiled/assembled, The default is to
compile/assamble gll of the modules which make
up A17C Remote Host,

c ! For a pgx moduley the processor option for
compiling or assembling the module. Specify
1{=11' for CYBIL CC modules and 'C=0Y for COMPASS
modules, The default is 1Cs1lt for pew moduless
and internally defined defaults (stored with the
module name within the BLDRH7 procedure itself)
for existing modules,

ab The wuser's alternate base program library
containing new and modified modutes, The
default §is NEWDKPL,

area 3 Optional catalog specification to add to the
search list for files needed by BLDRH7. The
defaylt is the current catalog.

listing ¢ - Specifying the keyword 'LISTING' saves t he
assembly 1listings on the direct access file
DSLIST, Specifying 'LISTING=<tape vsn>! writes
the assembly 1listings to the tape with the
specifled VSN In sorted orders. The default s
to ngt save any listings.

batch 3 Run BLDRH7 in BATCH modee The default is to run
it locatiy.

210.6 DSBILD PROCEDURE DESCRIPTION

DSBILD Is an SES procedure file which builds the dual state
binaries XDSTVE, XRUNVE, and XTRMVE, All sssembly and CYBIL
compiltation listings are put on the diract access text library
file DSLIST (one 1listing per records each headed by the
corresponding MADIFY deckname) and the three load maps are
appended to the compifation and assembly listings.

The format of the DSBILD is as follows:

SES.DSBILD [ab = < alternate base >]
[area = < user name >]
[listing = keyword or keyword=<tape vsn> 1
[batch 1]

ab 1 The usert!s alternate base program \1ibrary
containing new and modified modules,

2-35
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK =~ Cycle 3
| 05/22/82
2,0 OVERVIEW OfF INTEGRATION PROCESS
24106 DSBILD PROCEDURE DESCRIPTION

Lt 222 2 2 XX RN REEEEERELLERER N2 EETE S FF ¥ W ITIvRsysrre FELZELE RS X LS LR XL ELE LR]

listing Option to save a compilation 1listing as 3
permanent file or to archive the listing to a2
tape. The default 1Is no tisting will be
created,

area ¢ Dption to obtain the PL specifiad by the tARY
parameter from another user?'s catalog should it
not be found in the current catatog.,

batch Run DSBILD in BATCH modes The default is to run
it tocally.

2011 UIILIIY PROCEDURES

2¢11.1 NVEREP - REPORT SYSTEM CONTENT

NVEREP is a procedure which dynamicaltly produces NOS/VE
build content reports based upon builtd Iinformation contained
in the Integration procedure 1llbrary (PROCLIB)s or that
gener ated dynamically by partner procedures, The reports are
sorted according to a user supplied primary sort keys and a2
procedure defined secondary key which is associated with the
prinary sort key. The amount of information contained on the
Integration procedure library is limited by the SES Command
Language processor to eighty charactersy but the procedure is
sufficiently generalized to work with expanded Iinformation
produced by partner procedures, These partner procedures are
not of a generalized nature so as to be documented at this
time {primarily due to e series of deficiencies in the current
CI tools and conventions).

The format of the NVEREP procedure is as followms?

SESJNVEREP [Jeft = < primary key > 1
[right = < primary key> 1
[area = < alternate user name > 1]
{ f = < input source > 1]

{ o = < output destination > 1]
[1 = < tlibrary name > 1]

L

18

print 1
batch]

teft Primary sort key for 1left side of two paged
report. Only the first two characters of this
parameter are significant. May be either
MOduley, MAdifys, LIbrarys or LAnguage. {An

2=36
ADVANCED SYSTEMS INTEGRATION PROCEZDURES NOTEBOOK - Cycle 3
05722782
2+0 OVERVIEW OF INTEGRATION PROCESS
2s11e1 NVEREP = REPORT SYSTEM CONTENT

B DOI AT DGO PO TG N DE PO 0 0GP AT PP PIPEA DEPE ST NP DTN NN I PO PN IO NN NN NN

additional options, VErsion, is only available
when used in conjunction with partner
procedures, 0Option BUild is undar consideration
for future implementation,) The default for
this parameter is Mndule. No validity checking
is performed for either the 'left?! or *right?
parameter valuesy and an invalid specification
will result in a report which may differ fron
that desired,

right Primary sort key for right side of two paged
report, See parameter feft for valid
specifications. Default is MAdify,

area Alternate user name to search first fgr the
input ¢€file specified by the 'f' parameter,
Default value Is "nullt'y and source for ?¥f' |jgs
found in the wuser name where the procedure
resides {PRCUNAM).

f Nameg of the fjle containing bullid contant
information., Default is PROCLIB.

o Name of the file to receive the two paged
reports Default is VEREP., (The files LEFT and
RIGHT currently remain tocal after the procedure
has completed, These files contain the teft and
right hand portions of the two paged report,)

| Name{s) of NJS/VE library {or fibraries) which
are to be included in the report, Default is to
report on all primary NOS/VE tibrariess

print Keyword to <cause output file to be printed.
Default is to not print the report uniess batch
execytion has been selected,

batch 3 Keyword to cause the batch execution of the
procedure., Default is to run the procedure in
TL0CAL? mode,

2011 .2 PROCEDURE GET - GET A LOCAL FILE

The GET procedure provides a "working copy”™ of a file (ie.
one which ¢an be written tos or read froms without concern as
to whether the flle is accessed as a DIRECT or INDIRECT
file), Severa) user catalogs may be searched for the file by
specifying a list of vajues for the UN parameter. If a locsl

2-37
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

. e oo, » __ . 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2+e11.2 PROCEDURE GET = GET A LOCAL FILE

P R R R RN L N N R Y ey Y R RN R SRy Y Y 2R TR T XN E R R Y N

file already exists with the same name as that specified by
the LFN or PFN parameters then the 1local file is either
rewound or converted to a working file., 0One message per flle
is {issued to indicate the action performed on the filenames
specified on the procedure calls The MF parameter specifies 2
fitename upon which the working files are to be appended,

The format of the GET procedure is as followss

SES.GET { 1fn = < local filename >]
[pfn = £ permanent flilename >]
f un = < user name >]
[mf = < merge filename >]
L a i nal

ifn 3 Local fite name by which the file is known (may
be a list of files), If no fitename is
specified for 1{fny, than the filename value for
the PFN parameter s positionally wused, A
common usage of this procedure is as follows:
SESLGET (“YFILEI’MYFILEZ) R setc.)
In the above procedure call the permanent files
MYFILEl» MYFILE2» etces would be made local
working fites named MYFILEl, MYFILEZ, etc.

pfn 3 Permanent file name to be made a local working
files If no filename is specified for pfny then
the value specified for the LFN parameteris
used, The 1list of PFN wvalues s matched
positionally with the LFN specified values,
This Is {llustrated as follows?
SESJGET (onestwo) (stufflsstuff2)
The above procedure call would create working
files named ONE and TWD from the permanent files
STUFF1 and STUFF2 respectively,

un 3 An optional list of user names to direct tbhre
search order for fliles which are currently not
local. This is conveniant {if the user knows
that the file exists in one of several
catalogs, An example would be:s
SES.GET IPNDDC UN={intlsint2,devlsdev2sreil)
The above procedure call would search 1local
files for a file named IPNDOC followed by the
catalogs INT1ls, INT2, etc, until the file s
found or the search is exhausted.

mf 3 A filename wupon which to stack the resultant
working filess For examples

2-38
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

| | o 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.2 PROCEDYRE GET = GET A LOCAL FILE

Ll E X2 2 X REZFELELES L LY EERELEEELEEZESENESE ST EREZFFFEYYEESLELELESSEELEEEEES S J

SES.GET (IPNDOC,BCR) MF=BUILDOC

The above procedure call gets the files IPNDOC
and BCR as working filess then appends them to
the fjle BUILDDC. IPNDOC and BCR remain as
working files along with BUILDDC,

a i nat ¢t Keyword swhich determines whether the procedure
should abort in FILE NOT FOUND situations.
Default is to REVERT,ABDORT,

2+11.3 PROCEDURE SAVE — MAKE A LOCAL FILE PERMANENT

Procedure SAVE may be used in conjunction with the GET
procedure, The redeeming factor about the SAVE procedure s
that the wuser need not be concerned about file size. The
named local files are made permanent as INDIRECT access filesy
if possibles otherwise DIRECT access fites, This s
intentionally done to preserve as much orecious disk space 2s
possible. (NOS allocates DIRELT access Ffiles much {ess
frugatly than INDIRECT access files.) Be forewarned that a
slight penalty 1Is imposed in access time for each sector of
disk space saved in this manner» and that the actual sector
savings is only vyisible from the operator?s conscle (not via
CATLIST). In the procedure writer's world of livings this
procedure negates the worry of predicting flle slize prior to
creating it., Files are SAVE'd as SEMI-PRIVATE READ=-ONLY
filesy wunless changed via the CT and M parameter or profile
variable values,

The format of the SAVE procedure is as follows?

SES.SAVE [1fn = ¢ local filename >]
[ofn = < permanent filename > 1]
{ ct = < catalog type > 1]
[m = €< gaccess mode > 1]
{ dir 1
{ a i nal
1fn 1 Ltocal filename to be made permanent, Defaults

to PFN value if not specified, Parameters may
be speciflied positionally, and typical usage is
as fFollows:

SES.SAVE (xImmtroxt jlibs esee setcs)

In the above procedure call the files
XLMMTR, XLJLIB» etc, are SAVEd as permanent
filess, A message is Issued to indicate the type
of file created (DIRECT or INDIRECT).

: 2=39
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBROOK - Cycle 3
05722782

2.0 OVERVIEW OF INTEGRATIQN PROCESS
22113 PROCEDURE SAVE - MAKE A LOCAL FILE PERMANENT

pfn 3 permanent flilename for files to be saved.
Defaults to LFN {if not specifieds PFN values
are matched positionally within the Jist to LFN
values, This is illustrated as follows:
SES.SAVE (onestwo) (stufflsstuff2)
The above procedure call saves flles ONE and TW(O
as permanent files named STUFF1 and STUFF2,

ct 3 Catalog Type of the file when made permanent,
Default Iis to make flles semi-private (CT=S).

m 3 Mode of the fite when accesseds Defaylt is read
accass {(M=R),

dir 2 Keyword which directs the procecure to make all
named files DIRECT access filess regardliess of
their sizes

a ! na Keyword which determines whether the procedure
shouid abort if FILE IS NOT A LOCAL FILE.
Default is to REVERT»ABORT.,

2e¢11 .4 NVEMAP ~ REFORMAT NOS/VE LINKMAP

NVEMAP is a procedure to reduce the nuymber of printed pages
of a NOS/VE linkmaps while maintaining readability, and ¢to
provide summary reports of Iinformation contained wihtin the
finkmape Either allsy or portions of the 1linkmap may be
processed, The reformatted form of the linkmap 1is also
sultable for microfichey in the format defined for the NOS/VE
operating system,

The format of the NVEMAP procedure is as followuwst

SESNVEMAP [i = < input file > 1

0 = < output file> 1]

area = < alternate user name >]
copy = < record count > 1]
skip = < record count >]
print 1]

gated 1

fiche 1]

module 1]

save]

two 1

batch 1

N Py P Y gy P TS ey Y ey

i3 Input file which contains generated output from

2-40
ADVANCED SYSTEMS INTEGRATION PROCEDURES NDTEBOOK - Cycle 3

. _ 05722182
2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.4 NVEMAP — REFORMAT NOS/VE LINKMAP

TR 2 R L R YN Y Py R Y A R R Y Y R R R ey T R A X N R Y R R

the execution of the NOS/VE CI (or SES) Linker.
Default is MAPXX for the system.

o 3 Name of the outoput file to receive the
reformatted 1inkmap file. Default Is to produce
a 1locel file of the same name as specified by
the %§i?% parameter,

ar=sa 3 Alternate user name to search for the input file
specifled by the %§i? parameter., Default value
is 'nutll?,

copy 3 Count of the number of NOS vrecords to Dprocess
from the current file position of the input file
{defaylt position BOI)s. Each invocation of the
linker produces a na2w record upon the output
file., Thuss to process only the first portiaon
of the tinkmap (typically Monitor for the NOS/VE
Operating System) 'COPY=]1' would be specified.
Default vsaslue for this pasrameter is to process
the entire linkmap BDI to EO0OI.

skip Count of the number of NDOS records to skip prior
to processing, For the NOS/VE operating system
'SKIP=2% would suppress the Monitor and £7
portions of a Dual State 1linkmap, tSKIP=2
CoPY=1? would process only the Task Services
portion of a Dual State {inkmape. Use of elther
the 'skip' or 'copy! parameters infers explicit
knowledge of the content the linkmap. Due the
the number of variations of linkmap which can he
produced it would be Impractical to generalize
these parameters in a more logical manner.,

print ¢ Keyword to cause output file to be printed.
Default is to not print the reformatted
linkmaps 'PRINT=TWOMAP?! will print the contents
of flle named TWOMAP, Key !PRINT? will print
TWOMAP if key 'TWDY is also specifiedy otherwise
the Ffile specified by the Yo' parameter will be
printed, 'YPRINT=ALL' will print both TWOMAP and
the file specified by the %0 parameter,

gated 3 Keyword which eliminates information for all
entry points which do not have the GATED
attribute. Conceivablyy a combination such as
1SKIP=2 COPY=1 GATED? would produce information
to a compiler project about which entry points
Within Task Services are GATED for their use.

2-41
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS

2.11.4 NVEMAP - REFORMAT NOS/VE LINKMAP

a2 2 P LR AR YA R P 2 Y N T 2 X 2 ¥ L R Fprr r Py vipepseper sy ¥ Y X X ¥ T X R R R

Default Is to oproduce reports of all system
entry points,

fiche Directs the procedure to place the output of the
procedure onto the Fflile NOSLIST for subsequent
microfiche processing, Default i§s to not add

the linkmap to the NOSLIST file,

module 3 Keyword which causes the removal of all entry
point information from the linkmap. This proves
useful for auditing module attributes., The
default is to retain all system entry point
information,

save 3 Keyword which causes the output ¢€files to be
retained on permanent files for subsequent
inspections It is teft to the discretion of the
user to dispose of 1ocal copies of the output
files,

two ¢ Keymword which diracts the procedure to twopage
the Jinkmap onto the file TWOMAP., TWOMAP will
always be generateds but will only contain the
suymmary report information wunless *two? s
specified. Thls twopage option 1Is not the
famitliar SES TWOPAGE options but rather a
computed split and merge of the reformatted
mape

batch 13 Keyword to <cause the bsatch execution of the
procedure, Default is to run the procedure in
'*LOCAL* mode.

This procedure will always produce two output fites. The
primary output file is governed by the o' parameter, A
secondary output *TWOMAP' §s always produced as well. The
YTWOMAPY flle will only contain the summary reports and
foadmap if parameter 'two' is not selected.s The first summary
report which is produced is a two oaged report of PVAs found
in the Jlinkmap, The Jleft hand portion of this report iIs a
sort by PYA, The right hand portion of this report is a sort
by module and/or entry point name, This report should answer
the questions: 1. Given a PVA, in which module and/or
procedure 1Is that PYA contained?y 2. Given an entry point
names in whijch modyle is it defined and what is its PVA?» and
3. Given the nsme of a wvariable within a system defined
tables what s Its tocation within a dump?

The final report is a two part error summary for the

2=42
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
05722782

2.0 OVERVIEW OF INTEGRATION PROCESS
2¢11+4 NVEMAP - REFORMAT NOS/VE LINKMAP

linkmap., The first portion of this report Iidentifies which
pages of the linkmap contained one or more e2rrors. The second
portion of this report is a lijst of all of the errors found
within the 1linkmaps in the saquence in which they appear in

the map.

2-43
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.5 PROCEDURE FORMPROC - FORMAT PROCEDURE

L E XY Y ET R EEER NN L EEEYFREPEEEE L FRE Y'Y FE R FI P Egrropemegepegeypey FF R 2R3 EF R EE YT ¥ XX ¥ N

2.11,5 PROCEDURE FORMPROC - FORMAT PROCEDURE

This procedure reformats a single SES5 or CCL procedure
which is present on a GROUP file, Nesting levals of the
procedure are used to compute a floating margin to indent
statements contained within If, IFE, WHILE, ROUT, or SKIP
biocks,

The first TOKEN of each line is processed as follows:

- IF a double quote (") then leave the line asis.

- IF a backward stant (\) then process the second TOKEN.,

- IF a blank and DELETE boolean FALSE, then leave asis.

= IF AND or DR, then this lina is continuation of SES IF or
ORIFy adjust margins appropriately if INROUT booiean is
FALSE.

- IFf a CCL IFEy WHILE, SKIPy 2tc, and CCL boolean TRUE then
adjust margins, and add blank lines as appropriate.

- IF none of the aboves, or a ROUT - RIOUTEND block and DOROUT
boolean is falses then leave line asis.

The second TOKENy for lines having backward slant as their
first TOKENy is processed as follows?

- IF a valid SES reserved names then uppercase the TOKEN and
adjust margins as appropriate.

- IF not a valid SES reserved namey then GENLOWR the TOKEN
and SUBSTR the value to a seven character values (This is
typically a statement assigning a value to a SES
variables)

Conventions for spacing and indentation were established
through trial and error with several complex procedures. Most
all of the values which govern these conventions have been
externalized as parameters and PROFILE wvariables to allow
tailoring to individual tastes. Blank 1flines are used to
signify the start or end of a IF, ROUT, WHILEs or SKIP bilock
or to highltight the presence of INCLUDE, CYCLEs ACCEPTy or
EXIT statements.

Special timitations are imposed upon procedures formatted
by this procedure, If the formatted 1length of a statement
exceeds 79 <characters (a SES restriction) then a terse
diagnostic is issued and the line is teft unformatted. Each
diagnostic or message issued indicates the {ine number being
processed as well as the line number being writtens Thuss the
growth or shrinkage of 8 procedurea can be observed while
formatting 1{Is taking pltace, Informative messages are issued
to indicate when a8 new indentation "nest"™ level has been
reached, These informative messages are intended to glve the
warm Ffeeling that the procedure is doing something.

2-44
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

. . | i} 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.5 PROCEDURE FORMPROC - FORMAT PRAOCEDURE

The format of the FORMPROC procedure Is as follows?

SES.FORMPROC £ | = < filename >]
[o = < filaname > 1]
{ control = ¢ string > 1
[indent = < number > 1
[after = < number > 1]
[blanks = < boolean > 1
{ delete = < boolean > 1
[ccl = £ bootean > 1]
{ dorout = < boolean > 1

I Input filename contalning the procedure file
source, Default name is GROUYP,

o1 Qutput filename to which formatted procedure is
to be writtens Default is GROUP.

control A string which defines the SES directive

character for the procedure to be formatted.,
Default is \ (backwards slash)y ™commercial at"
character cannot be used,

indent Number of spaces to indent from left margin.,.
Default value is two spaces (for unnested SES
directives column 1 <contains '* and column 2
contains a blank characters for CCL IfFs WHILE,
or SKIP commands columns 1 and 2 contain bilanks
if the CCL bootean Is TRUE).

after Nuymber of spaces to indent lines occurring after
IF» WHILEs ROUT or SKIP statements, Default
value is two spaces.

blanks 3 Boolean which if TRUE causes the iInsertion of
blank lines 1into the formatted procedure {if
needed), Defagult is TRUE,

delete 18 Boolean which if TRUE causes the deletion of all
uynneccessary blank linese. Default is FALSE.
ccl 1 Boolean which if TRUE causes CCL (inctuding NGS

Command Language Statements) to be indented
along with other procedure statements. Default
Is TRUE,

dorout 3 Boolean which if TRUE <causes ROUT - ROUTEND
statements other than SES directives to be
formatted. Default 1is FALSE., WARNINGItY A
TRUE value for this parameter can create havoc
with HELP documentation.

Notet When formatting orocedures which contain only CCL
statements It Is recommended that INDENT=0Q and BLANKS=FALSE be
specified, '

2-45
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS

2,11.6 PROCEDYRE SIZES - REPORT MODULE SIZES

LAl A2 X2 R 2 42 X2 R ARl 2 X 2R 2 R R A 2 R 22 Y EEELE YR NTEFTRELLELELELELLLEE S LA LS L XS

2411.6 PROCEDURE SIZES - REPORT MODULE SIZES

This procedure yses partner orocedures NVEMAP and HEXTDEC
to produce a Yquick and dirty" reoort of module slzes in
decimal and hexadecimal tyte lengths from a VELINK 1ink mape.
Very little sophistication has been worked into this procedure
whose purpose is to provide data for the Majintenance Task
Force {in thelr analysis of Remote Maintenance technigues in a
Binary Release environment,

The format of the SIZES procedure is as follows?

SESLSIZES [i = < filename > 1
{ o = < filename >]
{ un = £ user name > 1]

i Input filename <containing a VELINK link map.
This parameter is required.

03 OQutput filename to write report to. Default is
same as Input filename.

un 3 User name in which input file is to be found.

Default is current user?s catalog.

2,12 PRE-INIEGRAILON_BUILDS

Juring the Build 0O timeframe a small group of people
consisting of 3 developers and 1 1{Integrator formed the
Pre~Integration Build Team, The purpose of this group is to
ease and expedite the formal build process by turning around
problems and generating fixes before a formal Integration
build is performed. When a major features» requiring a great
deal of code and causing substantial impact upon the systems
is ready for integrationy the Pre-Integration Build Team goes
to work on It first. The code is applied to the PL's in the
Integration catalog (INT1l), and the entire system is compiled
gulgkly in the pre-integration build catalog. Modsets are
generated by this group to correct any compilation errorsy the
system is 1linked and a deadstart tape is built for testing on
the hardware., The regression tests are run on this system,
and fixes are generated to solve problems found. When the
Pre-Integration Build Team has fixed as many problems as it
can or needs tos Integration makes its formal build in the
Integration (INT1) catalog with the original code plus Ffixes.

In order to build the entire system in a timely mannery
pre=integration build procedures have been developed and are
out!i ined in the folitowing sections,

2-46
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

| | | | | 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.12+1 GENDEK PROCEDURE DESCRIPTION

2412,1 GENDEK PROCEDURE DESCRIPTION

The GENDEK procedure takes the latest list of deck names of
each of the 0S libraries from the Integration PROCLIB {i.e.
LMMTR» LS113» LJ23D» etc.)» and creates two files of MADIFY
directives -~ one file (the last 4 characters of the jibrary
file appended to the string 'ADX') contains a *EDIT directive
for each assembier decky and the other file (the last 4
characters of the library file appended to the string 'CDK?)
contalns a *EDIT directive for each CYBIL deck, If a
particuiar library does not contain any assembler decks (or
any CYBIL decks)s GENDEK will issue an informative message
stating as much, and no ADK____ (CDK____) fite will be
created. The ADK____/CDK flles will be saved in the
current catajog for a subsequent BILDLIB run,

The format of the GENDEK 1Is as follouws?

SES.GENDEK

2012.2 BILDLIB PROCEDURE DESCRIPTION

The BILDLIB procedure takes the ADK__._ and CDK____ files
(if they exist) for a particular tibrary {created by GENDEK),
and assembles/compiles all the modules for that {ibrary. For
each assembler deck on the ADK____ file a separate call to the
C180) assembler is performeds and the packed assembled binariles
are copied to the library fite, The CDK____ file is wused to
make one call to MADIFY to write gi]l CYBIL modules to one
compile files which in turn is fed ¢to CYBIL. The CYBIL
binaries are copied to the library file following the
assembler binariess and the 1library filtle is saved in the
current catalog. No compilation tistings are produced, The
dayfile for the job is saved in the current catalog (the last
4 characters of the library name .appanded to the string 'DAY?)
for input to the CHKLIB procedureses The GENDEK procedure pgust
be run prior to a BILDLIB run.

The Pformat of the BILDLIB is as follows?

SES.BILDLIB [1ib = < library indicator >]

{ plu = < uyser name > 1]

f b= < PL name > 1

[ab = ¢ alternate base > 1

{ abu = ¢ alternate base user name > 1
L

local 1

1ib The last & characters of the name of the library

2-47
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
o 05/22/82
2.0 OVERVIEW OF INTEGRATION PROCESS
2.12.2 BILDLIB PROCEDURE DESCRIPTINN

to be builts This parameter is regulirted.

pliu 3 The name of the catalog to search for the PL's
and the compilar, The default is the
LIntegration> catalog.

b The name of a PL in the currant catalog to
include in the MADIFY PL search lists This
parameter is optional.

ab 3 The name of a PL in another wusert?!s catalog to
jnclyde in the MADIFY PL search list, This
parameter is optional,

abu 3 The name of the catalog to search for the PL
specified by the 'AB' parameter., This parameter
Is required if the 'YAB' parameter is specified
and Ignored [if the 'AB' parameter 1is ot
specifijed.

focal ¢ Run BILDLIB locallys The default is to run it
in BATCH mode.

NOIE: The modules RHMSINTERIM_SIMULATED_ID (deck RHMSIO in
fibrary XLJ23D) and QOCMSOMC_SIMULATED_ID_RODUTINES (deck QOCMCIO
in 1ibrary XLJBBB) will gluays have compilation errors. Both
modules require common decks from CYBICMN, but including
CYBICMN in the MADIFY PL search list for these two libraries
causes many more compilation errors in other modules.
Currentiysy these two modules must be rebuilt, after running
BILDLIB for their resgpective librariesy using the procedure
NVEBILD (see the documentation for this procedure in a
previous section),

2012+3 BILDALL PROCEDURE DESCRIPTION

The BILDALL procedure simply submits a batch BILDLIB run
for sach of the 0S5 libraries.

The format of the BILDALL Is as follows?
SES.BILDALL [plu = € user name >]

I b= < PL name > 1]

[ab = < alternate base > 1
L

[

abu = < alternate base user name >]
batch 1

plu 1 The name of the catalog to search for the PL's

2-43
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
2.0 OVERVIEW OF INTEGRATIQN PROCESS
2.12.3 BILDALL PROCEDURE DESCRIPTION

and thea compiler, The default is the
{Integration> catalog.

b ¢ The name of a PL in the current catalog to
include in the MADIFY #PL search list. This
parameter is optional,

ab 3 The name of a PL in another userts catalog to
jnctude in the MADIFY PL se2arch 1ist, This
parameter Is optlional,

abu 3 The name of the <catatog to search for the PL
specified by the '"AB? parameter, This parameter
Is required I{If the 'AB?' parameter Is specified
and ignored {if the 'YAB' oparameter s pgt
specified,

batch 3 Run BILDALL 1in BATCH mode. The default is to
run it locally.,

2412.%4 CHKLIB PROCEDURE DESCRIPTION

The CHKLIB procedure uses the dayfjle saved from a BILDLIR
run {'DAY____" filey see BILDLIB description) to report any
MADIfFY/assembler/CYBIL errors, It simply wuses XEDIT to
extract the necessary information, which Is displayed on the
fite '0UTPUTY,

The format of the CHKLIB is as follows:

SESCHKLIB [Jib = ¢ library indicator >]
[batch 1]

tib 3 The last 4 characters of the name of the library
which was bullts This parameter is regulred.

batch @ Run CHKLIB in BATCH mode. The default is to run
it tocaltly.

2012.5 PURDEK PROCEDURE DESCRIPTION

The PURDEK procedure simply »purges all the ADK ’

CDK____» and DAY____ files from the current catalog at the end

of a pre-integration when they are no longer needed.,

The format of the PURDEK is as follows?

2-49

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
05722/82

2.0 OVERVIEW OF INTEGRATIOQN PROCESS
241245 PURDEK PROCEDURE DESCRIPTION

LAl 2 2 2 A 82 A A R4 A 22 X222 2 A A2 X2 2 2 X 2 R FEELVENTEFFFYEEELLELIELESFZEEREE S E RN J

5ES.PURDEK

3-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
05722782

3,0 DUAL STATE INSTALLATION SEQUENCE

X 2 2 F 2 2 RN X AR RSy ¥Yryyri 2 il st R X X R ELELESELEEALEL LSS E L E A L 2K

3.0 QUAL_STIAIE_INSIALLATION_SEQUENCE

This section describes how to iInstall all of the flles
needed to run NOS/VE in Dual State mode. To do this from
Heeratch®” the foltowing materials are necessary?

1 MSL tape
1 Dua) State NOS Deadstart tape -
-~ The LDADPF tape(s) which contain the NOS/VE environment

If MSL and CTI are already present and corrects then It iIs
only necessary to install a new deadstart sector on disk or to
load a new NDS/VE environment,

3.1 RELEASE_RESERVED._SBACE_AND_INSTALL CII

WARNING-__Ihis__progcess..should__onix__be_ _done by the site
analysta.

To release reserved disk spaces deadstart from the Dual
State N0OS Deadstart tape which is NTs D=PEy F=I, LB=KU» and
enter?

U for the Utitities display
I for Install CTI to disk

-This display will appear?

ENTER ONE OF THE FOLLOWING
{CR) - INSTALL DEADSTART MODULE 0ON DISK
R - RELEASE CTI-MSL/HIVS RESERVED DISK SPACE

Enter R and this display will appears

RELEASE CTI-MSL/HIVS
RESERVED DISK SPACE

Enter the disk parameters as they are reguested,

CH 00
EQ 00
UN D0

3-2
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK = Cycle 3
05722782

3.0 DUAL STATE INSTALLATIQN SEQUENCE
3.1 RELEASE RESERVED SPACE AND INSTALL CTI

r 2 22 X 2 2 R 2 AR R R R R L EXLEE R F R N FF EEFIpasyeyeyrr i ALY EEE LR ELERE LS N]

~This display will appear:

ENTRY OF CR WILL CAUSE RELEASE OF
CTI-MSL/HIVS RESERVED DISK SPACE

Enter a carriage return and RELEASE COMPLETE, (CR) T
PROCESS DIFFERENT DEVICE il appear. Enter a carriage
return.

-The ENTER ONE OF THE FOLLOWING display will appear againj;
this time enter a carriage returne. A WARNING message will
appear; enter another carriage return.,

This display will appear:?
INSTALL DISK DEADSTART MODDULE

Enter the disk parameters as above, The following messages
Wwill appear:

INSTALLING CTI TO DISK

INSTALL COMPLETE.

3.2 INSIALL_HM3L

~-Deadstart from the MSL tape {(CTI is on the tape aiso.) From
the %A% djsplayy type in U for Utitities, From the *Ux
displays type in T for INSTALL MSL/HIVS TO RMS.

-This display witl appear?
TDX
DISK AND TAPE TRANSFER UTILITY
CR TN CONTINUE

Enter a carriage return and 2nter disk and tape parameters
as they are requested. These parameters are for the disk to
which MSL is to be loaded and the tape from which it Is to be
loadede.

DISK CH 01
DISK UN 00

TAPE TYPE 03
0=60Xs 1265Xs2566X» 326T7X

TAPE CH 13

\ 3-3
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
05722782

3.0 DUAL STATE INSTALLATION SEQUENCE
3.2 INSTALL MSL

TAPE EQ 00
TAPE UN 00

-This dijsptay will appear:
A-BUILD MSL FROM TAPE
B=-BUILD CB LIBRARY ON MSL
C-ADD PROGS. TO MSL
D-ADD €B-S TO MSL
FE-COPY PROGS. TO TAPE
F=COPY C8~S TO TAPE
G-DIS SYS TBLS
Enter A and the following display will appear?
MSL INSTALLATION OPTION

A=HIVS
BaMSL/70S SHARED
CeMSL/MAINTENANCE ONLY
Enter B.

-This display will appear:

~HAS A COMMAND ByFFER LIBRARY BEEN BUILT AT
STARTING CYL 1420 THAT YOU WANT TO SAVE
Y=YESy) N=ND

Enter N» and the screen will show CHECKING STARTING
CYLINDER)y BUILDING SRT» and BUILDING PNT,

The next displays and corresponding entries are?

COPY FROM
-CR= = FIRST NAME

Enter a carrlage return,
CTI ON TAPE (Y/N)
Enter Y

COPY THRU
-CR= = LAST NAME

Enter a carriage return.

3-4
ADVANCED SYSTEMS INTEGRATICN PROCEDURES NOTEBOOK - Cycle 3

| o | 05/22/82
3.0 DUAL STATE INSTALLATION SEQUENCE
3,2 INSTALL MSL

DATA VERIFY {(Y/N)
Enter N

-The MSL Tape will ltoad at this point and this display will
appear?

LAST USED
CYL 1l4nn TRK 0000 SEC 00OOm

343 CHMRDECK_CHANGES _AND _CMDS1_EILE

3.3.1 NOS CMRDECK AND LIBDECK CHANGES

a, When deadstarting NDS to run a dual state environment,
it Is required that one or more of the following
commands be processed by the NOS CMRDECK command
processor, The command{(s) which must be specified by
the operator will be dictated by the type of NOS
environment which is to be supported during dual state
operation.

MINCM=xXXXXX4 The parameter ?'xxxxx! defines
the minumum amount of central
memory words which NOS will use
for the following opersting
system execution. The parameter
is an octal value expressed in
multiples of 100, If this
command is not specifiad the
systenm assumes a default of
300,000(8) or 98K(10) central
memory wWords.,

VE, This command estab!ishes a Duasal
State Communication Block (DSLB)
in NOS Central Memory Resident
(CMR), The DSCB is required to
enable the operator to deadstart
NAS/VE,

VEmsxxxxXx, This command establishes a DSCB
in NOS CMR and also reserves,
for use by NOS/VE, the number of

3-5
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK — Cycle 3

o o . 05/22/82
3.0 DUAL STATE INSTALLATION SEQUENCE
3.3.1 NOS CMRDECK AND LIBDECK CHANGES

central memory wWords expressed
by the parameter ?xxxxx?'., The
parametar must be an even number
and is an octal value expressed
in multipies of 1000,

EQxx=DE,STyOP»SZsFDeThis command Is requirad if UEM
{soft ECS) is to be wused by
NaAS. The SZI parameter 1is en
octal value (minimum of 10)
expressad in multiples of 1C0C,
The remaining parameters are
defined in the NOS Instattation
Handbook, NOTE: IFf this command
is specified in the NGS CMRDECK,
it is mandatory that the
VE=xxxxx, command be specified
if NOS/VE will be deadstarted.

The algorithm used by NOS to determine if the memory
size parameters specified by these commands sare ?ilegal?
iss

{Machine Field Length) >= (MINCM + UEM + NOS/VE)

Some examples of how to wuse these commands when
deadstarting NOS for execution in a dual state
environment are as followss assuming a 16MB mainframe?

VE. No UEM and the default
MINCM will be used. NQOS
will allow NOS/VE to use
atl but 98K or 300,000(8)
words of the machine field

fangth,
VE. No UEM and NOS will atlow
MINCM=10000. NOS/VE to use all but 262K

or 1»,000,000(8) words of
the machine field tength,

VE=5000. No UEM and NOS will allow
NOS/VE to use a maximum of
10MB8 or 55000,000(8) words
of the machine field
lengths NOS wil} use 6MB.,

VE=5000. NDOS will altow NOS/VE to
EQ5=DE,ST,0P»2C00sFD, use a maximum of 10MB or

3-6
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
_ I . o o ' . 05722782
3.0 DUAL STATE INSTALLATION SEQUENCE
3,341 NOS CMRDECK AND LIBDECK CHANGES

L2 L e X 2 AR it Rt AL EEELEEEERELELENELLEELEELESE LN R IFE N LT ELEE LR LA L b A KK 2 Xk R b A X J

55000,000(8) words of the
machine field length. NOS

will allocate 4M3 or
2:00D,000(8) words for UEM
and wiil us e ZM3 cr

1,000,000(8) words for CHM,

be Al1 CM= lines should be deleted as all memery aliocation
is dynamic.,

¢, All NOS/VE mass storage davices must be specified In the
N33 CHMRDECK as DO WN devicesy e
EQnn=DQ=1sD0OWNS0s4Gsr2.

de The digk controlware that N3S loads to FM type
controllers at deadstart is the correct controlware Ffor
the NOS/VE 7155-1x disk controlters. Add the following
line to the CMRDECK to cause controlware to be l1oaded to
bo th the NOS and NOS/VE disk controllers:
LBCyFMschlrsch2sch3. {The chi are disk channels as
appropriate.)

es The NDS LIBDECK myst be modified to include the new
procedures necessary for deadstart, *PREC SETVE and
*PROC OPERFAC must be added and *PROC UPMYVE should be
deleted,

343.2 CMDS1 FILE

2+ A feature has been added to Cycle 3 to improve the
transportability of the DSTVYE directive file CMDS1., IFf
*MEMORY=0, is entered in CMDS1l, DSTVE will always
request all availablte memory from Al170 NOS. It is
essential with this feature to enter In the NOS CMRDECK
the entry MINCM=10300. to prevent NOS from giving
NIS/VE so much memory that A170 NAOS will not run weli,

bse The default value €for the NOS/VE system device disk
channel is specified on the following command 1{in the
CMDS1 file:

3-7
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
| | e, 05/22182
3.0 DUAL STATE INSTALLATION SEQUENCE
343,2 CMDS1 FILE

*¥SYSTyDSPANELSOFFFOO(16) =c,

This means that it is no longer necessary to
rebuild IOPQUER to connect the NOS/VE disk to
the proper channel,

Cce The default value for the NOS/VE deadstart command flle
number (DCF) is specified on the following command in
the CMDS1 fites

¥SYSTsDSPANEL »CFFFFF(16)=n,

de The channel number x in the following command should be
an empty channel?! *RELOADCH=x,

e» Debug flag number 2 should be TRUE to enable recovery to
work automaticallys e.g. *¥S5YST,DEBUGZ2=TRUE.,

3.4 INSTALL_SYSIEM

Deadstart from the NOS Dual State deadstart tapes using the
deadstert tape which Iis to be installed, Choose the 1IQ?
option on the first display, for operator Iintervention.
Optionatly, the 'P* dispiay may be selected to choose a
CMRDECK, {CMRDC14 contalns the CANCDD S2 <configurations
CMRDCKE contains the ARHOPS S2 configurations) Hit carrlage
returns The system will display?

ENTER LOCATION
OF MSL/HIVS DEVICE

Enter the iInformation for the same disk where MSL was
instalied previousiy!

Channel=xx
Equipment=xyx
Unit=xx

After the system is deadstartady, enter the following
commands $

X.DIS.
COMMON,SYSTEM.
INSTALLsSYSTEMs»EQxxs

3-8
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBDOK - Cycle 3
| | | 05722182
3,0 DUAL STATE INSTALLATION SEQUENCE
3.4 INSTALL SYSTEM

NOTE: xx is the EST ordinal of the disk where the deadstart
sector s to be installed; this is the same disk where MSL was
installed previousliy.

3.5 LOAQRE_EILES

The LOADPF tapess which are NTy D=PE, £=5I, and LB=KLl,
contain the NOS/VE operating system source and binariesy tools
to assemble and 1link the operating systems and various other
files,

Deadstart from the disk upon which the NOS Duyal State
system was installed and LOADPF the files to the desired user
number,

3.6 RRING.UP_DUAL_STAIE

Refer to the current Helpful Hints documenty Section 4» for
information regarding the operation and execution of NOS/VE.

4=-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

4,0 NOS/VE HARDWARE REGRESSIDN TESTING

4«0 NOSZYE _HARDWARE _REGRESSION_IESIING

4.1 INIRQDUCTIION

The verification currently performed on NOS/VE systems
consists of running the $S2 Regression Test Segquences as
outiined in the following sectionsy on the hardware,

4+2 $2_BEGRESSION_IESIS

4¢2.1 J0B2

JOR2 is a8 fite containing the NJS/VE commands which stage
an II ltibrary and a CI user Jjob object file from the 170 side
to the 180 sides convert the CI user job object file to an II
object fliley, and then 1o0ad and execute this user job with the
tibrary. It then stages the LOADMAP back to the 170 side to
be printed. JOB2 tests the following NJS/VE features:

LINK_USER command

SET_OBJECT_LIST command
SET_PROGRAM_OPTIONS command

GETPF B56

GETPF B6D

CITOII conversion

Load/Execute User Program + Library
JMROUTE C180 print flle

SUBMIT of batch job

JMEXIT

The command sequence follows:

LOGIN USER=DEV1 NAME=JDB2
LIUsUSER=(DEV1IsNVE)»PA=DEV1IX» AxNOTUSED, PR=NOTUSED
GETSNEWL IBRARY,CYBIILBss»DEVIINVE»B5SS
SET_JBJECT_LISTADD=NEWLIBRARY
SET_PROGRAM_DPTIONSs LOADMAPy 4s s
MO={BLOCKsENTRY_POINTXREFSSEGMENT) 5400
TERMINATION_ERROR_LEVEL=FATAL
GET»XPETEST»XPETEST»»DEVIINVE,BHD

4=2
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

e ———— | ~05/22/82
4,0 NOS/VE HARDWARE REGRESSION TESTING

4.2.1 J082

XX F 2R F Y RS R LY EREEREELE R NI EFEFPEYFRpapipigeryrs L 2 XL RS ELEEE SR]

EXECUTE» o *XPETEST,LG0%»»CITOII
EXECUTE LGO

JMROUTE, NOTUSED »L OADMAP, PR
SET_DOBJECT_LIST,DELETE=ALL
GET,CYBILIB,CYBIILB,»»DEV1ISNVE,B5H
SET_PROGRAM_OPTIONS LIST1 TERMINATION_ERROR_LEVEL=ERROR
EXECUTE LGO
JMROUTESNOTUSEDsLIST1,PR
GET»J0OB3,J0B3,s»NVE, A6

SUBMIT, J0OB3
GET»JOB4»J0B4ss sNVE, AL
SUBMIT,J0OB4

JMEXIT

4.2.,2 JOB3

JAB3 §s the same NOS/VE procedure file as JOB2 and tests
the same NOS/VE features with one additions instead of doing a
GET of the I1 version of CYBILIB from the 170 JOB3 dpes 2
NOS/VE permanent file ATTACH of CYBILIB from the 3$SYSTEM
catalog.

The command sequence follows:

LOGIN USER=DEV1 NAME=JNR3

LIUsUSER=(DEV1,NVE)» PA=DEVIXsA=NOTUSED,PR=NOTUSED
ATTACH $SYSTEML.CYBILIB NEWLIBRARY s 4 o
ACCESS_MDDE=(READSEXECUTE)
SET_OBJECT_LIST»ADD=NEWLIBRARY
SET_PROGRAM_DPTIONS,LOADMAP s v e

MO={BLOCKyENTRY _POINT»XREF»SEGMENT Y 00
TERMINATION_ERROR_LEVEL=FATAL
GETsXPETEST s XPETEST» s DEV1SNVESBSD
EXECUTE» o YXPETEST»LGOYs»»CITOII

EXECUTE L6O

JMROUTE»NOTUSED»LOADMAP, PR
SET_DBJECT_LIST,DELETE=ALL

RETURN NEWLIBRARY

ATTACH 3SYSTEM.CYBILIB ACCESS_MNDE=(READYEXECUTE)
SET_PROGRAM_OPTIONS LIST1 TERMINATION_ERROR_LEVEL=ERROR
EXECUTE L6GO

JMROUTE s NOTUSEDHLIST1,PR
GETSTESTBAMTESTBAMy » sNVE, A

SUBMIT,TESTBAM

JMEXIT

4-3
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBDOK - Cycle 3

4.0 NOS/VE HARDWARE REGRESSION TESTING

4.2.3 JOB%

2 2 2 2 2 E 22X EZZERZLEREELENEELELLEEEEYYESEFEEEREE LR F RF YN FNIFIEIEIPWry YR E EEE X NN

4.2.3 JOB4

JOB4 is a File contalning the NNS/VE commands which execute
the NOS/VE SETUP command to set up the 180 job environment
{see Appendix D for the description of the SETUP command)s
followed by a CITOII <conversion of a 170 object file user
program and an EXECUTE of this programs. The loadmap is staged
back to the 170 side to be printed, JOB4 tests the following
NOS/VE featurest

CONNECT_FILE command

SETUP command

CITOII conversion
SET_PROGRAM_OPTIONS command
Load/Execute User Program + L ibrary
JMROUTE €180 print fitle

JMEXIT

The command sequence follows?

LOGIN USER=DEV1 NAME=J0B4

CONNECT_FILE $ECHO QUTPUT

SETUP DEV1 DEV1X

CITOIXI II=LGO CI=XPETEST USER=DEV]1

SET_PROGRAM_OPTIONS LIST1 TERMINATION_ERROR_LEVEL=ERROR
EXECUTE LGO

JMROUTE » NOTUSED pLIST1,PR

JMEXIT

4.2.4 TESTBAM

TESTBAM is a flle containing the statements necessary to
execute atl of the BAM test <cases supplied by the BAM
project, These procedures exercise various portions of the
basic access methodsy and are used to show some level of
confidence that BAM works as well!l as it has previously.

The command sequence follows:?

LOGIN USER=DEV1 NAME=TESTBAM
LIUsUSER=(DEV1sNVE)»PA=DEVIX,A=NOTUSED, PR=NOTUSED
COLLECT_TEXT BAMINP

TES1

TES2

TES3

TES4

TESS

4=4
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK —- Cycle 3

. | 05/22/82
4.0 NOS/VE HARDWARE REGRESSION TESTING
4.2.4 TESTBAM

Y2 2 X 22 32X F R X Yy Y g YV NP YR R F R gy Ry ey vyt L L E Y R P R R]

TESS

TES?

TESS

TES9

TES10

TES11

TES12

TES13

TES1l4

TES15

TES1H

TES20

TES21

TES22

TES23

TES24

TES25

TES26

TES27

TES28

TES29

TES31

TES32

TES33

TES34

TES35

TES36

TES37

TES38

BAMSTOP

¥ %

ATTACH 3SYSTEM.SYSLIB SYSLIB ACCESS_MODE=(READ, EXECUTE)
ATTACH $SYSTEML.CYBILIB CYBILIB ACCESS_MODE=(READEXECUTE)
SET_OBJECT_LIST ADD=(SYSLIB,CYBILIB)
EXECUTE» » "BAMINP ' 559 BAMTEST
GET»SCL180»S5CL1BOs»»» NVE»AS
SUBMIT,SCL18O

JMEXIT

4.3 S2_REGREIJSION _TESI_SEQUENCE

1) Deadstart A170 NOS3
- Set the deadstart panel to disk deadstart from:
CH=1
UNIT=41
WORD 13=0006
- Push deadstart button,
- Select *0* display.

4=5
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

, v | 05/22/82
4,0 NOS/VE HARDWARE REGRESSION TESTING

4,3 52 REGRESSION TEST SEQUENCE

- Hit carriage return,
- Enter date/time.
2) If necessary, update the INT2{DEV2) <catajog and Iload
the 1atest system fites into the INT1(DEV1) catalog:
Mount the INT1(DEV1) and INT2(DEV2) catalog DUMPPF
tapes.
- XODISO
USERy INTLI(DEV1)» INTI(DEV1) X,
SESJUPCATS <Wl=tpyld> <SC=tpu2> <LSYSEDIT>
Hit "," to go into AUTO mode,
DROP,
The SES.UPCATS procedure works as follows?

3. Updates the INT2{DEV2) catalog by
retrijeving OSLIB, SYSLIBy, COLLIBs, and
CYBIILB from the INT1{DEV]) catalog and by
foading selected files from the DUMPPF tape
mounted on the unit specified by the ®SCw

parameter., This parameter pust be
specified for the INTZ2{DEV2) catalog to be
updated,

be LOADPF's the latest system into the
INT1(DEV1) <catalog from the DUMPPF tape
mounted on the unit specified by the M“WyC»
parameter {(defaults to "50%"),

cs SYSEDIT!'s the A170 Remote Host and
Interactive binar ies if the ®"SYSEDIT®
keyword is spacified,

de LOADPF's the Confidence Test binaries from
the fite CONFTST» and then purges CONFTST
from the cataloge.

3) Bring up Al70 Remote Host and Interactives
TAFNVE.

4) B8ring up dual state:

Make sure the NVE Subsystem Environment 1is set up?
XeSETVE(DEV1,UN=DEV1,C=6) Then bring up the NVE
Subsystem?: n.NVEDEV1, {where n is any free NOS
control point)

5) When the NVE control polnt requests the Operator

4=6
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
4,0 NOS/VE HARDWARE REGRESSION TESTING |
4.3 S2 REGRESSION TEST SEQUENCE

Facility control point, do:
Ksn, (where n is the OPFAL control point)

6) Bring up NAM?
FNC5,7700C.
N.NAMS2, (where N 7= 2 js NAM control point)

7) Build and save the 180 object files needed to complete
deadstart of NOS/VE (and needed to perform subsequent
deadstarts of this system)» and begin execution of the
180 system tasks to support Interactivey Remote Hosts
and the dayfile displays:

KebLIU {(DEVI,NVE) DEV1IX,
K+GETF DS
K+DS TRUE FALSE FALSE TRUE SIF=TRUE.

B) When the system displays the message "READY FOR
COMMANDS", start toading the Confidence Test Base into
the system (see Section 4.5 balow), Make sure that the
ASCII vprinter is readys Je.e. that the START light is
1it and that a Y“FORM33,TM,” has been entered, To
moni tor the 180 Jjobs as they anter the systemsdo K.VED
CP to bring up the NOS/VEZ control point display.

9) The system is now ready to be taken down?
NeCFOJDIpNE, {N is the NAM control point; this
disables NAM)
25TOP. (Bring down 170 Interactive, Remote Host,
and Operator Facility)
Ke*BYEVE. {Bring down NDOS/VE)

IMPORTANT: This last step must be performed at the NVE
Subsystem K displays NOT the Operator Facility K
display.

Wwhen all control points are ™auiet", proceed to the next
step.

10) Bring down Al170 NOS@
AB.,
CHECKPOINT SYSTEM,
Ey M, {make sure that all checkpoints complete)
STEP.

4¢4 INIJRODUCTION TO_CONEIDENCE TESIS

The oconfidence test base is a set of testspused to
determine §iT a byild is readys for installation in an closed
shop environments The test base consists of a set of tests In
each area of the operating systems oresently under analysis by

4=7
ADVANCED SYSTEMS INTEGRATION PROCEOURES NOTEBOOK - Cycie 3

| 05/22/82
4,0 NOS/VE HARDWARE REGRESSION TESTING
4,4 INTRODUCTION TO CONFIDENCE TESTS

the evaluation unit. The tests are described in section 4.7,
Any questions or probiems should be addressed to R. E.
Jarosz, x6834,

4+5 INSTALLAIION

The following procedure should be followed when instsalling
this test base.

1 REQUESTITAPE)VSN=CNFTAPyNT»D=PE, | BasKLyF=]1y PD=R,
2. LOADPF»B=TAPE,TY=ALL
This witl install two files,
1. The test source PL (CONFPL)
2« The SES procedure library (CNFPROQC)
3 Load any files from a tape created with the CLEANUP
procedure.
4, Two variables must then be added or changed in the user
PROFILE,
They are as folilows.
\ USEBIN = gL [?
A RUNLVL = 'DEV1?

For more information on these profile varisbles refer to
sections 4.,8,2 and 4.8.4»

At this point the confidence test base is instajled and
ready to be run,

4.6 EXECUTION

Before the tests are executed it is necessary to establish
the ACR routines which collect the test results. Because of
the changesy that are on going in ACRy, the routines will
remain under the control of the Evaluation Unit. To use ACR,
do the following before executing any tests.

1l GET,ACRJOB/UN=EVAL.
2, ROUTE,ACRJDB,DC=IN,

You are now ready to execute the tests in the confidence test
bases To begin do the following?

SESsLPFN=CNFPROC.LDTB D=(BA001..RH021) B=CONFPL OLD»sas.

ve? DELAY'ZO

At this pointy you can run test IFD094 by following the

4-8
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
| | 05/22/82
4,0 NOS/VE HARDWARE REGRESSION TESTING
4.6 EXECUTION

L2 2 2 X R 2 2 L LRSS EEERNSLEELEESESEENFYEE LR FFFFEIL L S L EL S LA RS L A A A R 2 2 8 4

instructions in section 4.5.1 of this documante.

After all the tests haye completedy do the following
replacement of ACR results files to the 170!

GET» y0B1/UN=DEV1
ROUTE»JOB1» DC=IN

At this pointy run the RESLTS procedure to recieve the ACR
results listing.

This Jjob wit1 also produce a 18C listings of the system
statisticssy for comparasion purposa2s,

SES,UNsEVALRESLTS I=RESULTS O=ljsting_*Ffile

4.6,1 EXECUTIODN OF IF094

This test is somewhat differant in that it requires running
by hand under NOS/VE IAF. To execute this test do the
following.

On NOS
SESYLPFN=CNFPROCSGENBIN D=IF094sB=XIF0%% 40
PL=CONFPLSCI»S=180,0LD
This Will create the object code part of the test,
ON NOS/VE do the following:?
ATTACH_FILE JEVALLEVAL_SETUP
INCLUDE_FILE EVAL_SETUP
ACR TEST_NAMEsIF(G94 PRODUCT_IDENTIFIER=IF
GET_FILE TO=XIF094 DATA_CONVERSION=860
EXECUTE_TASK PARAMETERS='XIF094sLG0DY,SP=CITOITLIRRARY=SYSL
LGO
At this point do what the program tells you to.
If you feel! |t performed as expected do the foliowing?
ACR STATE=PC REPORT=TRUE ACTION=FULL
Otherwise
ACR STATE=FAIL REPORT=TRUFE ACTION=FULL

4.7 IESIS
TEST TEST FUNCTIONS
EERREEK ok okl koo K KRk K

BACO1 AMPESFILE

4=9
ADVANCED SYSTEMS INTEGRATION PROCEDURES NDTEBOOK - Cycle 3

| 05/22/82
4,0 NOS/VE HARDWARE REGRESSION TESTING
AMPS$GET _FILE _ATTRIBUTES
BAO24 AMP$GET _DIRECT
AMPSPUT_DIRECT
BAO27 AMPSGE T_NEXT

AMPSPUT_NEXT
AMPSGET _PARTIAL
AMPSPUT_PARTIAL

BAQO4S AMPSGET _SEGMENT_POINTER
AMPSGET_SEGMENT_POSITION
AMPSGET _SEGMENT _EOI

BAQ55 AMPSGET _FILE_ATTRIBUTES
BAQS2 cary
CHOO1 PMPSESTABLISH_CONDITION_HANDLER

PMPSDISESTABLISH_COND_HANDLER
PMPSCONTINUE_TO_C AUSE

cLo29 DISPLAY_VALUE

CLo039 DECLARE_VARIABLE

cLo58 EXITy CYCLE

CLOb1 IF CLAUSE

cL103 FILE CONNECTIONS

LDO34 BASIC LOADER OPERATIONS
LDO37 PMPSEXECUTE

DCOo44 RETAIN IN CREATE_OBJECT_LIBRARY
PF101 VERIFY FILE CYCLES (DEFINE)
PF125 VERIFY LFN,PFN RELATIONSHIP
PF140 VERIFY FILE CYCLES (PURGE)
PF145 CHANGE

PF156 DEFINE_CATALQDG

PF157 PURGE_CATALDOG

PMO16 OSPSAWAIT _ACTIVITY_COMPLETION
PMO50 JOB LOCAL QUEUES

QF100 SUBMIT

RHOO1 GET B60

RHO11 REPLACE A6

RHO14 REPLACE A8

RHO21 GET 856

IF094 VERIFY CONDITTONAL_BREAKS

INTERACTIVE INPUT/OUTPUTS
TERMINAL ATTRIBUTES

NOTEs IFQ094 MUST BE EXECUTED BY HAND, SEE Section 4.6.1.

4.8 100LS

This sectlion describes the ACR and SES proceduress used by
the testsy in the confidence test base.

| 4=-10
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
| | 057122182
4,0 NOS/VE HARDWARE REGRESSION TESTING

4.8.1 AUTOMATIC CHECKING ROUTINES - ACR

' 2 XA AR R L ERLYE R X RENRELER SV Y EF I RFRNFFpgpryrgrpepayper L L ELE ER Y E XL E LN

4+8,1 AUTOMATIC CHECKING ROUTINES - ACR

The 180 common ACR is described in the Interim Test Tools
ERS,. (DCS number ARH4207)

4.8.2 LDT8

This SES procedure is used to 1oad a set of tests into the
170 input queues Ffrom a Madify source program library. The
parameters are shown below.

DECK § D! This required paraneters is a list of deck names
that are to be expanded and loaded, This parameter may be
a 1isty a range or both, Because these decks are expanded
by MADIFY they can not be common decks.

PL ! 8¢ This required parameter Is the library where the
decks 1listed on the preceding parameter reside,

DELAYS This parameter specifies the number of seconds
between submisslion of jobs. If it is ommitteds, 60 is
assumed,

UNS This parameter is the user number where the program
jibrary specified on the PL parameter resides, If it is
ommittedy, the user number of the executing job is
utilized.,

OLD § NEW: This keyword is used to replace the profile
variable USEBIN. This profite variable is used by the
GENBIN procedure (see Se2ction 4.8.4)s This parameter allows
for a decisiony to be made at execution time2s, on whether or
not to create any binary files needed with this test.

The default is NEW.

PRINT 1 NOPRINT: This kayword determines if the 170 output
file Is printed or not. The default Is NOPRINT.

4.8.3 CLEANUP

When tests use the GENBIN procedurey to create (I object
codes two files are created (DUMPDIR and PURGEF). The CLEANUP
procedure uses these files to archieve the object code files
and purge theme The parameters for CLEANUP are shown balow.

4-11
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
. 05722782
4,0 NOS/VE HARDWARE REGRESSION TESTING
4+8+.3 CLEANUP

VSNt This required parameter Is the VSN of the tapes where
the DUMPPF is done.

KL ¢ KUt This optional keyword describes the {abel
characteristics of the tape spegified aboves The default
is KL,

NOTES The following table shows the other characteristics of
the tape specjfjed on tha VSN parameter,

TRACK NT {nine track)
DENSITY PE {1500 bpi)
FORMAT I {internal)

The Ffijle written on this tape can be raloaded using the LDADPF
UTILITY.

4.8.4 GENBIN

This procedure optionally creates a {C or CI object file
from an expanded c¢ybil source file or MADIFY deck. The
parameters are shown below,

D ¢+ J i ALL?t Thijs is the list of MADIFY decck names to be
expanded and compiled,

PL: This parameter is the library where the decks specified
on the previous parameter reside,

AB | APLS? This optional parameter describes the
user numbered file namesy to be considered as alternate base
for expansion of decks or source fl less

UN: This optional parameter is the user number of the file
specified on the PL parameter,

SFt This parameter Is an optional file namey tellling the
procedure to work from a source fjle jnstead of a MADIFY
decks

CFt This Is the file name where the expanded deck will
residey and it is the input file to CYBIL.
The default is COMPILE.,

L ¢ This Is the file where the CYBIL compilation listing
is placed. The default is LISTING,

4-12
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
. B | 05/22/82
4,0 NOS/VE HARDWARE REGRESSION TESTING
44844 GENBIN

r X222 2 X R E YL S ER LR EEEEEE L EREYYEE YN R S F I Fyryrpeypersy L2 2 LY 22 R X LR 2 2 ¥]

SYS § St This parameter causes 3 specfic fite to be used sgs
a ajternate base as shown by the following table,

SYS FILE

D — o~ oo

101 ! CYBICMN/UN=SES H

170 H CYBCCMN/UN=SES H

180 H DSLPI/UN=1v| H

————— > v =

..l-.'nn.

LVLt This optional parameter is the 1ocation of OSLPI that
will be used as an alternate bases The default is either
the profile variable RUNLVL or DEV1.

BIN | B2 This required parameter is the name of the file
checked for when the keyword OLD is specifieds It is
also the name of the file where the obJlect code wilil
reside if NEW is specified.

CC % CIt This paremeter is unique In that the value is

used along with the keywords If just the keyword Is coded
the proper compiler is recieved From a default user number,
If the value is coded the proper compiler is received fronm
the used specified, The default user number is either the
value of the RUNLVL profile variable or DEV1s The default
value for the keyword is CC.

NEW } OLD? This keyword determines if the object code file
coded for the B parameter will be produced or not. If NEW
is coded the file coded on the B parameter will be created,
If OLD is coded and the file exists then that file will be
used and no compllation takes place, If the file does not
exist then the file will be created.,

The default value used is taken from the USEBIN profile
variable,

4-13
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBDOK - Cycle 3
05722782

4.0 NDS/VE HARDWARE REGRESSION TESTING
4.,8.,5 PRTLIST

kel A 2 L AL A2 LS ESERSELISESESELES NELELEREEEELEES EL N FFN LA ELE LS L L2 R A B A R A A N A 2 X J

4.8,5 PRTLIST

This procedure is totalliy intarnal to the tests and the
discussion is jeft to the help File,

Al

VB;

Al

057221782
Originator - - - DATE ___ZLZ_._.L... Transmittal No. _____
Code {Locationt {PACKed Modsets) FN= - - UN= - —-—
{Decks in “GROUP™ format) FN=___ o UN= e
Code Description File: FN=_ — UN= e
IF module has a call bracket of D 0OR
code affects system user in some other way THEN
Usage Changes Desc., Filat FN=_ —_— - UN= __
Code Destination (if pof NOSVEPL): Pl= o
Modset Identifier(s) _ ... e e i e e e e
New Feature [____1] R éorractlve Code [___.1

Module(s) to be recompiled _ _ o e

How has this code been tested? {Use right margins)

COMMENIS _TQ_INIEGRAIION
NOTE? IF any of these are checked, then axplain in right margin.

Instaitation procedure changes required? [____1

Dependent upon other feature, fixy, or tool? [...1 (List below)
OSLPI or Internal Interface changes required? S |

Should GNVEMT (Generate NOS/VE Message Templates) be run? {]

Notgs.cegacrding_code submittal:

More forms are on FN = XMIT10 N = DEV1,

* Attach copy of description file to form (both 14 7/8 by 11).

Format ist#MODSET_IDENTIFIER (or NEW_DECK_NAME) (upper case)

E£PSR Number (Omit If feature codes)
Descriptive text which describes code content
*kDECK_MODIFIED {or NEW_DECK_NAME) {upper case)

%% Attach copy of Usage Changes Description File to form

{both 14 7/8 by 11).

AITACHMENT _CHECKLISI RERENDENCY LISI

Description File R | -

Proof of Compilationl____1

Proof of Execution [____1
]
]

(Continue in right margin)

{Usage Changes Desc.l____
{PSR) {

Target Buitd _____
Should this code be added to the successor build cycle? {

Files maintained by Integration

31

which users may
substitute for

as an alternate
base when using

05722132

Source Fitles

P m———————— S S — ——— o e e - -
1 USER H H H H
} NUMBERS t FILENAMELS) i FUNCTION H VERSIGN/FREQGENCY bF UPOATt H
+ - -t - e o o e -+
H H H H !
T INT17INT2 § NOSVEPL i MADIFY program jibrary i1 Matches the tevel of system H
i DEV1/DEV2 ¢ t of Virtual State code { binaries contained in same H
: : : { catalog. Updated on periodic H
H H : t scheduled basise. H
+ -—t- - - - o v e e - s e 2 2
+ INT17INT2 § OSLPI ! MADIFY program library 3} Matches the level of system !
{ DEV1/DEV2 } of NOS/VE Program { binaries contained in same H
H H ! Interface decks. ! catalog. Updated once for H
H : H 1 each bulld cycle. H
B e e e i s e o o e o + ot i o e o e e e o e e e e o o e o e e +
$ INT17INT2 § VE170PL ! MADIFY program library ! Matches the level of svstam H
H QEVIIDEVZ : i of NOS code which ! binaries contained in same !
: : ! supports NOS/VE. i catalogs. Updated on v H
: : H ! periodic scheduled basis, H
+ — -t R ———. o o s 2 o s e i -
: : : QODIFY program library ! Updated on a scheduled bhasis. H
t LIBRARY 1 0PL ! which matches NOS t (CPUMTR which supports NOS/VE H
: : ! system lavel for 52, ! is on VE17CPL and not '
: H i {Instatlied on FMD i on this PL). ?
H H P unit 43). H H
b - ———t —— - e e e -——
t INT1/7INT2 % SESPLIB i Command L anguage i Matches the level of systenm H
! DEV1/DEV2 { Procedure Library ! binaries contained in thes same !
: : t (Documented in 1 catalogy and accesses the !
H H { Integration Proced- i appropriate bulild tool H
: : { ures Notebook)., i versions. Scheduled updates. H
+ + —f——— -—— - T -
! magnetic ! 1listing files i Contains compilation/ ! Matches the tevel of system H
1 tape : i assembly listings of i binaries contained in the :
: H i a1 Virtual State \ same catalog, H
H H ' code, Accessed via H H
H H i LISTNVE procedure, H H
- - -+ -—— - b ————————————— - -+
1 INT17INT2 ? MTRXLCB» ! Linker directives files | Matches the Ievel o’ H
t DEV1/DEV2 ¢ EILCB,SYSXLCB t for monitor, ! systerm binaries contained :
H 1 JOBXLCB»BBBXLCB ! error interfacey t in the same catsalog, H
H H ! system corey Jjob ! EI is built using the H
H H ! template, and user i BLDEI procedure. H
: : 3 modules respectively. H H
S . - ————— - - e e e o e e e - - -
i INT1 t NEWDKPL ! Meaningless Madify ! Nevers disappears when SCU !
i DEV1 H ! program library ! conversion is complete, H
[]] |] [] 3
; ; ; ; :
H : H H H
: H H : !
H H H H H

Integration compilation

B2
Fites majntained by Integration
057227182
Source Flles

procedures,

!
]
'

JBXDBG,RJIBXDBG

D S - T A —— - -

H H H :
+ + + +
H H H H
1 INT17INT2 § PMPXX ! Contains link map of { Each Velink of a
! DEV1/DEV2 | PMPXXYY i particular system ! Production/Recovery
: 1 RMPXX { createds where RMPXX ! System Core/dob Temnlate,
H : } RMPXX are the Produyction/}
: H ! Recovery System Core H
H H ! Maps and PMPXXYY/RMPXXYY 3}
H : t are the Production/Recovery
H H ! Job Template maps., H
B o - o o o - P o v s s s o e - - o - N - ——— - - - - — e - - - - - - -
¢ INT17INT2 § PSYXLDR i Contains VE generator i As required by system
i DEV1/DEV2 | RSYXLDR i directives for Dual i content or structure
H H i State offset loads, i changes.
e e o e e 2 < o 2 2 i i i 2 2 2 T o o e e s e
? INT1/7INT2 | KEYDESC i Contains Keypoint i Non-standards updated
% DEV1/DEV2 3 3 descripti?ni for ! upon deyelopment's reouest,
: H 3 the Keypoint report :
: H ! program XXMTKEY, :
e ————————— - - ——— - - P ——————————— - -—
! INT17INT2 § PMTXDBG»RMTXDBG ' Contains debug tables ! Each Velink of a Production/
! DEV1I/DEV2 1 PSYXDBCsRSYXDBG { produced by the linking | Recovery System Core/Job
: HE 4 y of the system, HE 3
+ + +

A > o o - - . Y Y T - —— A W W M D W e W W N A D > D W WD A A A A W A > - - W . S vy W Y

.-

P e A o e mi P s S aw W o e s

- Sl ma e e sl w s

Files maintained by Integration

Object Text Files

a3

05722782

I
i
|
i
i
!
i
i
i
I
i
|
{
i
|
i
|
]
|
i
i

+

ach recompilation of a

E
monitor mode module.

ach recompitlation of
system core
odule within these libraries,

S W . - - -

'
i

E
a
m

[}
1
|
[}
[}
1
i
|
|
i
[
i
[}
i
}
]
!
]
i
i
[}
|

ach recompilation of
Jjob template

module within these libraries.

l
i
i
|
1]
i
[}
]
]
I
i
'
]
!
]
[}
i
]
'
1
]
]
I
l
]
)
i
]
i
[}

- +- —-— + —
H H H

§ INTIZINT2 § XLMMTR ! Object text file

t DEV1/DEVZ ¢ { of modules which

: H ! execute in monitor

H H ! mode.

$ INT17INT2 ¢ XxLS113, i Oblect text files

3 DEV1/DEV2 1 XLS133,XLS13Dy 1§ of system core

: ! XLS1DD ! modules which run in

: H 1 Job mode and execute

: : t in ring 1.

+ + —— - oo - o > - —— -
i INTI/7INT2 | XLJ223,XLJ236, 1 Object text files

$ DEVI/DEV2 | XLJ266»XLJ23Dy 1| of job template

: 1 XLJ20D { modules,

+ —— -+ - T P — -

¢+ INT17INT2 | XLJOSL,XLJLIB» | DObJject text filles

3 DEV1/DEV2 § XLJBBB,XLJOCM ! of Remote Hosty

H ! XLJSG ! Interactivey CITDII,

: H i the Object Library

: : ! Generator, and various

: H ! user utility programs.

+ - ——remee——o——— - -

i INTL1/7INT2 | PMTSTXX) i Outboard symbol

! DEV1/DEV2 § PSYSTXX, ! tabte files for

H ! RMTSTXX ! Production/Recovery syste
: 1 RSYSTXX ! Monitors and Production/
H H ¥ Recovery System Core

: H ? produced by

H : Y VELINK,

Y -— -+ ——— e ———
! INTIZ7INY2 | PSYXXsPJBXXYY ! The Virtual Envir-

1 DEV1/DEVZ2 § RSYXX»RJIBXXYY i onment files pro-

H : i duced by VEGEN.,

- 4= -+ —-——— - ——
i INT1 ! NOSTEXTH»PSSTEXT § A170 NOS system

! DEV1 1 SSYTEXT ! texts for current

H : ! NOS version.
fomrcnn—————t - - + - - o o
H H :

? INTIZINT2 | XXM7KEY i Program to report

i DEV1/DEV2 ¢ ! NOS/VE Keypoints

H H ! encountered during

H H t a simulation run,

pom—— - - - fm————— -

! INTL/INT2 ! XXM7DSI ! NOS/VE deadstart

: : 1 flle generator.,

T T -— + ——————— e —————————————
! INT1/INT2 ! XIDST,XMOD, ! CYBER 180 PPU

! DEV1/DEV2 § XIDSP»XIHLP, ! programs,

H : :

XIRESsXSMA,

ach reccmpilation of a

E
module within these libraries,

i
]
)
'
1
i
[}
1
4
i
'
i
|
t
i
]
t
1
I
'
|
|
i
|
]
)
1
i
]
[}
i
i
'
]

Each Velink of the
system.

T —— - — T " V. — Y -

ach VELINK/VEGEN
f the systenm,

QO m

Fach A17C NOS undate.

S T - - - - ——

on-standard ISWL

N
utility.

4
i
1
)
i
i
!
!
i
!
1
1
i
]
1
i
i
1
1
{
i
1
i
[}
L]
i
i
1
i
[}
|
1
i
[

on-standards supplied
y the Deadstart project.

A A " S - N - Y vt W W o " - -

Upon demand.,.

N
b

OO wm e P O ne P G Gl we B CB P S en WS e B BB EE CE ca w20] we e P ee e e e Ll BT P e RS N P B Wl e Ee o R e we G we

LB S A W Gl SR e e S s GE S ww e e N s A L B e e N ue e G Ll e ol e

Files maintained by Integration

05722/
Object Text Files
H ! XD5ByXDS5CsXD5C2s 3 H
: 1 XMSPMCU H H
+ - - + - -
¢ INTL/INT2 § TPXXXK i Dual State ! Each t
{ DEV1/DEV2 3 i deadstart file i deadst
H H ! created by the NVESYS ' geners
H H i procedure, ! demand
+ + +

- > v v - - - - -

B4

82

ime a new
art flle is
ted (upon
)

i i o e e s s o s . o s i S o T D o T 0 T o 2 "

-

G caay e o *

€1-1
CYBIL Ingtallation Documentation
05722782
Object Text Flles

Cl.0 BUILD CATALOG SETUp

kb £ K 2 & K & 2 X L A K £ X2 X 2 F FNFYFFLELELESEEEELELESLIELELLELEEELESEEELSELSEEE RN X]

Cl.0 BUILD _CATALOG_SEIUP

Before beginning the CYBIL compiler buildsy perform the
following setup process in the build catalog?

1) GET,PROCFIL/UN=LP3,
SAVE, PROCFIL/CT=SyM=R,

2) DEFINEsSCYBPLIB/CT=SyMaR,
ATTACH, SESPLIB/UN=LP3,
COPY,SESPLIB,CYBPLIB, V.
RETURN, SESPLIB,CYBPLIB,

3) Check that the PROFILE variable "PASSWORY is defined,
and set to the password of the build catalog.

4) Check that the Deferrad B3atch job limit is set to
UNLIMITED in the build cataloqg,.

All CYBIL bulld procedures are on the INT1 SESPLIB. They
will: generally be runy howevers, in a catalog gther thap an
officlal Integration catalog. Therefores all procedures
outlined below should be callad via "SES,INT1l.<Procedure
Named>®™, or else add INT1l to the PROFILE variable SEARCH list
in the build catalog.,

The general CYBIL byild progass is documented in the next
section, The individual procedures are documented in
subsequent sections.

_ £2-1
CYBIL Instaliation Documentation
057221782
Object Text Fitles

L X 2 XX AN ELESEERELEERSENIEEELIENELESAESEEEEZZE S EEELLESSELELELEREESEEN Y Z)

€C2,0 CYBIL BUILD PROCESS

LR 2 PR 2V Y Fr ey rps ey rysyrpeprr s Z LA Y PR P LR RN P R TR R R XY YR R R Y Y

C2.0 CYBIL_BUILD_2RUCESS

The various CYBIL compilers are built and tested in the
Tollowing ordery, via the procedures indicated:?

BLDCC 1) Buiid the € compiler front end and cocde
generator; 1link them together to form the
CYBILC compiler; build CYBCLIB.

TESTCC 2) Test the execution of the CC compiler and
cyBCLIB,

CNVRGCC 3) Test the CC compiler for convergence (i.e,
can it compile 1itself and produce identical
binaries); rerun tests from 2) above,

BLDCI 4) Build the CI code generator with the CYBILC
compiler built in 1)-3) above; link it with
the common front end built In 1) above to form
the CYBILI compiler,

TESTCI 5) Test the execution of the CYBILI compiler,

BLDILIB 6) Build CYBILIB with the CYBILI compiter built
in 4) ahove; test the new CYBILIB with
cysItLl.

RUNREG 7) Set up the environment for running the CI
compliler regression tests and submit them.

BLDIIS B) Build and test the II compiler for the
simulator,

BLDIIZS 9) Build and test the II OPT=2 compiler for the
simulator,

BLDIIH 10) Build the II compiler for the hardware.,

RUNREG 11) Set up the environment for running the (I
compiler regression tests with the "0OPTa2®
option specified on the compiler cally and run
them,

1)-6) nust be run serially; 7)-10) may be ruyn
concurrentliy. 11) cannot be run untii 7) has completed.

£3-1
CYBIL Instaitation Documentation
05722182

C3.0 CYBIL BUILD PROCEDURES

€3.0 CYBIL_BUILD_PROCEDURES

gach CYBIL bulld procedure that resides on the Integration
SESPLIB is outtined belowe Note that most procedures have ga
"CHAIN® parameter., If "CHAIN" is keyad on any ona of the
procadures, all subsequent procedures will be automatically
submitted at the appropriate times in the order specified
above, This allows you to submit atl build jobs by typing in
only one procedure call ("SES.BLDCC CHAIN"); it salso allows
you to restart the build process at any point should errors te
discovered,

Note also that the CC and €1 »procedures write status
messages to the iIndirect access file CYBSTS in the build
catalog. This file can be interrogated on~-line or printed to
obtain the results of the building and testing stages of these
compilers, The II compiler builds produce listings which must
be checked to verify that the compilers were indeed correctly
built {see procedure descriptions below),

C3.1 CC_COMPILER BUILD_AND TEST _PROCEZDURES

C3.1.1 BLDCC PROCEDURE DESCRIPTION

The SES vprocedure BLDCC builds the CYBIL CC front end and
code generator binary libraries (PFELIB and PCGLIR7
respectively) and then 1links them together to generate the
CYBILC compiler., At the same times it recompiles the changed
CYBCLIB moduless» saves them on an object file (CYBLOBJ)» and
REPULIBYs them onto the existing SES version of CYBCLIB to
gener ate the ypdated CYBCLIB, Status messages are uwritten to
the file CYBSTS in the current catatog (BLDCC is the gopnly
procedure which purges this file If Jjt exists; all other
procedure append information to the end of the file),

BLDCC creates the following permanent files in the build
catalogt PFELIB, PCGLIB7y CYBCOBJ, CYBCLIBy CYBILCs» CMAP,
CYBSTSs The format of the BLDCC is as follows:

SES.BLDCC I m = C {1ist of) module name(s) > 1
[fe | cc]

C3-2
CYBIL Instaliation Documentation
05722782
C3.,0 CYBIL BUILD PROCEDURES
C3.1+1 BLDCC PROCEDURE DESCRIPTIDN

YRyl R R XN RN L EE YRS E N F IR YRR NE NI NEE Yy y s s A R ELESE EEEREERER]

{ chain 1
[1ocall

m 3 The name{s) of the CC compiler modules to
compile, The default is to compile all <CC
compiler modyles,

fe §{ cc Keyword indicating whether the modules specified
by "M* are Front end {fe2) or code generator (cc)
modulese. This keyword Is regulred if ™M™ is
specified,

chain Option to submit subs2guent CYBIL build jobs
after BLDCC comoletes. The default is to pot
submit these jobs.,

tocal 1 Run BLDLC in LOCAL mode. The default is te run
it in BATCH,

C3+1.2 CNVRGCC PROCEDyYRE DESCRIPTIDN

The SES procedure CNVRGLC tests the CC compiler built by
the BLDCC procedure for convergence, This means that the
compiter must be able to compile itseify producing binaries
identical to those which make it up., First it saves all the
files created by BLDCC by copying them to files named by
changing the first character of the file name to "A" (e.g.
PFELIB -> AFELIB, CYBCLIB =-> AYBCLIB, etce)e It then rebullds
the front endy code generators and CYBCLIB binaries with the
CYBILC compiler built by the BLOCC procedures generates and
tests a new compitery and compares the new binaries to the
previously bullt ("A"~prefixed) ones. If the binaries are pgt
identicals CNVRGCC makes a second attempt at convergence (this
time saving the binaries on "g"-prefijxed fliles) and agsin
compares the binary \libraries. If the binaries verify, the
job to buitd the CI compiler (BLDCI) is submitted; if they do
pat verify after 2 attempts at convergences the procedure ends
and the CYBIL projJect must be notified., Status messages are
written to the indirect access file CYBSTS in the current
catalog.

CNVRGCC creates the following permanent flles in the build
catalog! AFELIB» ACGLIB7?s AYBCDRJs ACYBILCs AYBCLIB, ACMAP
{also BFELIBs BCGLIB7» BYSCOBJ, BCY3ILC, BYBCLIB, BCMAP if
convergence does not occur on the first iteration)s The
format of the CNVRGCC Is as follows?

C3-3
CYBIL Instaltation Documentation
051722182
3.0 CYBIL BUILD PROCEDURES
€3.1,2 CNVRGCL PROCEDURE DESCRIPTION

e 2 Ly 2 Y2 Y P N R N XAy y R XE FER TR FWTOWISENWIFE S ELELE L E L E LR S A X NS LN]

SES.CNVRGCL [chain]
[iocal 1]

chain 2 Option to submjt subsequent CYBIL build Jjobs
after CNVRGCC complietes, The default is to ngit
submit these jobs.,

local 1 Run CNVRGCC in LDCAL wodes The default iIs to
run it in BATCH,

£3.1.3 TESTCC PROCEDURE DESCRIPTION

The SES »procedure TESTCC runs the CYBIL compiler tests
SEQUEN» EXITLP» and PPRDC2 against the CYBILC compilers built
by the 3LDCC and CNVRGCC proceduress These tests reside on
the test base TESTPL in the HAW catalog. Status messages are
written to the indirect access fjle CYBSTS in the current
catalog.

TESTCC creates no new permanaent fllese. The format of the
TESTCC is as follows?

SES.TESTCC [cnvg 1
f chain 1
{ tocal 1}

cnyvg 1! Keyword indicating that the compiter belng
tested was built using the CNVRGCC vprocedure.
This parameter is needed to make the status
messages written to CYRSTS more meaningful. The
default assumes that the CYBILC being tested wsgs
buitt by BLDCC - i.e. it has not gone through
convergence vet,

chain @ Option to submit subseguent CYBIL build jobs
after TESTCC completes. The default is to ngat
submit these jobs.

local Run TESTCC iIn LOCAL modes. The dafault is to run
it in BATCH.

3.2 CI_CoMPILER_SUILD _AND _TEST_PROCEDLRES

£3-4
CYBIL Instaliiation Documentation

05/22/82
€3.0 CYBIL BUILD PROCEDURES
€3,2.1 BLDCI PROCEDURE DESCRIPTION

X222 X R R L E P RN X N F For R R VY FE YN YR Y YRR N R Y vpe ey Y R R T R R R N R Y R

C3.2.1 BLDCI PROCEDURE DESCRIPTION

The SES procedure BLDCI builds the code generator binary
library (PCGLIB8BY) for the CYBIL CI compiler. It then links
this file with the common front end (PFELIB) produced by the
BLDCC orocedure to generate the CYRILI compiler. Status
messages are written to the indirect access file CYBSTS in the
current catalog.

BLDCI creates the following permanent files in the build
catalog: PCGLIBBy CYBILI» CMAPS, The format of the BLDCI 1is
as follows:

SES.BLDCI { m= < {tlist of) module name{s) >]
[chain]
[local]

m 3 The namel(s) of the CI code generator module(s)
to be compited. The default is to compile gll
CI code generator modutles,

chain 3 Option to submit subsequent CYBIL build jobs
after BLDCI completase The default 1is to not
submit these jobs.

jocsal @ Run BLDCI in LOCAL modes The default is to run
it in BATCH.

C3.2.2 TESTCI PROCEDURE DESCRIPTION

The SES procedure TESTCI runs the CYBIL compiler tests
SEQUEN» EXITLPs and PPROC2 against the CYBILI compiler and
CYBILIB (built by BLDCI and BLDILIB, respectively). These
tests reside on the test base TESTPL in the HAW catalog.
Status messages are written to the indirect access fite CYBSTS
in the current catalog.

TESTCY creates no new permanent files., The format of the
TESTCI is as follows?

SESLTESTCI [1ib 1]
[chain 1]
{ tocatl]

1ib ¢ Keyword indicating that this run of TESTCI tests
the CYBILIB built by BLDILIB, This keyword |is
needed to make the status messages written to

C3-5%
CYBIL Installation Documentation '

05/22/82
€3.0 CYBIL BUILD PROCEDURES
3.2,2 TESTCI PROCEDURE DESCRIPTION

P Y 2 E X2 R X2 Y EF FSELESEEEYER YN T LR S FFFTFRFIprpegey r 2 s 2 F R L EYEESEYN Y Y FF]

CYBSTS more meaningful, The default assumes
that this run of TESTCI tests the CYBRILI
compiler built by BLDCI.

chain ¢ Option to submit subsegquent CYRIL build Jobs
after TESTCI completes, The default is to pot
submit these jobs,

local Run TESTCI in LOCAL modes The default is to run
it in BATCH.

C3+2+3 BLDILIB PROCEDYRE DESCRIPTINON

The SES procedure BLDILIR compileas the CYBILIB modules
which have changed and saves them on the object file CYBIONBJ.
It then GgOL*s them on the current SES version of CYBILIB to
generate the wupdated CYBILIB, BLDILIB also creates the
CYBILGD file which is used in creating the version of CYBILISB
which is wused on the hardware {done In DS). Finally, it
resubmits the CI compller tests (TESTCI with ®LIB" option
specified) which now use the pew CYBILIS as a means of testing
CYBILIB, Status messages are written to the indirect access
file CY3STS In the current catalog.

BLDILIB creates the following permanent files in the build
catalog?t CYB3IOBY, CYBILIB, CYBILGOs LBSRCBO, The format of
the BLDILIB is as follows?

SESSBLDILIB L chain 1
[tocal]

chain 1 Option to submit subsequent CYBIL build Jobs
after BLDILIB compietes., The default is to pot
submit more Jjobse

focal 3 Run BLDILIB in LOCAL mode, The default is to
run it in BATCH.

C3¢2+4 RUNREG PROCEDURE DESCRIPTIDN

The SES vprocedure RUNREG sets wup the build catalog
environment to be able to run the CI compiler regression
tests., The tests reside on an SCU test base PL In the HAW
cataloge RUNREG first creates the alternate SCU base "MYBASE"™
in the buiild catalog which allows for the regressjon tests to
be run from that cataloge It then submits the deferred batch

C3=-6
CYBIL Instaliation Documentation

05/22/82
3.0 CYBIL BUILD PROCEDURES
C3.2.4 RUNREG PROCEDURE DESCRIPTION

222 2 AN F TV EY R LRy PR NI N PRy yrnvyeysysy s T EZZ E X X 22 2 EF FE N T ¥ ¥R

Job which runs the tests (CYD01..LY999)s To obtain the test
resultsy run

SES,LPFN=CYBPLIB.RUNANL

the morning after the regression tests are runes In order to
run this oprocedure, the deferred batch 1timit in the build
catalog must be set to UNLIMITEDy and the user must have the
PROFILE variable "PASSWOR™ defined.

RUNREG creates the foliowing permanent files in the build
catajogt MYBASE, CIDAY, The format of the RUNREG is sas
follows?

SESRUNREG [opt2 1
{ tocal 1]

opt2 gption to test the compiler #with the 0OPT=2

option. The default is to run the tests without
the 0OPT=2 option,

focatl 3 Run RUNREG in LOCAL modes., The default is to run
it Iin BATCH.

€C3.3 II_COMBILERS_BUILD_AND_TZ3T _RROCEDURES

C3¢3.1 BLDIIS PROCEDURE DESCRIPTION

The SES procedure BLDIIS builds the front end and code
generator binary files (CYBIIFE and CYBIICGs respectively) for
the II1 complilier for the simulator, and then links these two
files together to produce the compiler checkpoint file (IICPF)
used as input to the simuiator, It then submits a simulator
test run of this compiier, The output of this test run
consists of a compilation 1listing (ahich should contain pg
compilation errors)s the simulator SESLOGs and a dayfile
{which should also show no compilation 2rrors),

BLDIIS creates the following permanent files Iin the buitd
catalogt CYBIIFE, CYBIICGy IICPFs IIMAPs SESLOG» LISTX, The
format of the BLDIIS js as follows:

SES.BLDIIS [local 1

local Run BLDIIS in LOCAL mode. The default is to run

C3-7
CYBIL Installation Documentation
05722782
€3,0 CYBIL BUILD PROCEDURES
C3.3.1 BLDIIS PROCEDURE DESCRIPTION

it in BATCH.

C3.,3,2 BLDII2S PROCEDURE DESCRIPTION

The 3SES procedure BLDII2S bhuilds the front end and code
generator binary files for the II O0OPT=2 compiler for the
simulator (CYBI2FE and (YBI2CGs respectively), and then Iinks
these two Files together to produce the compiler checkpoint
file (I2CPF) used as input to the simulator. It then submits
a simulgtor test run of this compiler., The output of this
test run consists of a compifation 1tisting (which shoutld
contain pg compilation errors)y the simulator SESLOG, and a
dayfile {which should also show no compilation errors).

BLDII2S <creates the following permanent files in the build
catalogs CYBYI2FEs CYBI2CGy I2CPFs I2MAPs SESLOGs LISTX. The
format of the BLDII2S is as follows?

SES.BLDII2S [1ocal 1

local 3 Run BLDII2S in LDCAL modes The default is to
run it in BATCH.

C3+3.3 BLDIIH PROCEDURE DESCRIPTION

The SES »procedure BLDIIH bullds the front end and code
generator binary fites (CYBHIFE and CYBHICGs respectively) for
the I1 compiler binary that is used on the hardware, At the
same timey, it generates the II hardware version of CYBILIB
{CYBHOBJ), It then takes these three files and some other
miscellaneouys routines and GOFts them together to create the
UNCONVERIED and UNBQOUND version of CY3IL II (CYBHBIN).

BLDIIH <creates the following permanent files in the build
catalog: CYBHIFE, CYBHICG» CYBHOBJ, CYBHBIN, The format of
the BLDIIH Is as follows:?

SESBLDIIH [1o0catl 1

focal 13 Run BLDIIH in LOCAL mode. The default is to run
it in BATCH.

Dl-1
CYRIL Instaliation Documentation
05722182
Object Text Flles

D1.0 KEYPOINTS

D1.0 KEYROINIS

Keypoints are used tpo give an execution time trace of
program Tlow by showing that a given function is being performed
{that Iss that a given procedure is being executed) .

Keypoints may also be used to display request parameters,
status and error conditionse.

Dl.1 ISIUING_KEYPOINIJ ERJM_CYBIL_CODE

The general form of the keypoint instruction is:

#INLINE (vkeypoint'» keypoint_classy oskd¥m * datay keypoint_id);

Dlele1 KEYPOINT CLASSES

A keypoint is identified by both classy and identifier, ,
The following deck 2xplains the partitioning of the keypoint
classes.

OSDKEYS
COMMON

CONST

{ Keypoint Classes ¢

{

{ The 16 keypoint classes supported by the hardware are

{ partitioned between the Systems Product Set and User as follows.

osk$system_class = 0 { O .+« 5 }
osk$product_set_class = 6 { & oo 10 3},
osk$user_class = 11 {11 .o 14 3}
osk3pmf_control = 15;

CYBIL Ingtallation Documentation

pD1-2
05122782

ObJect Text Files

D1.0

Dl.1.

KEYPOINTS
1 KEYPDINT CLASSES

L2 22X 2 A 2 2 X R R A2 AR Rt X2 R 2 2 R R K X R FAE NI EELELSELELELESELEL L E L L R 22 L X

P PR R gy g phy PRy ey ey gy ey ey ey ey ey ey gy phy py

Keypoint Mujtipliers

By conventiony
the 32 bit keypoint code supported by the hardware
is split into two fields, The right field contains a keypoint
identifier which Is used to identify a function within a
keypoint class., For exampley iFf a particular keypoint class
represents exit from a procedures
then the keypoint identifier might identify exit from
procedure A versus exit from procedure B8,

The left field Is used as a data parameter appropriate to the
function identified by the keypoint identifier. In the
procedure exit axample aboves
the data parameter fleld might be used to indicate the
status of the procedure call,

The keypoint multiplier is used to partition the keypoint
code into the two fieldss Tha data parameter should bhe
multiplied by the keypoint multiplier to prevent it from
overlapping the keypoint identifier field,

CONST
osk$m = 4096;

Dl.1.,2 NOS/VE KEYPOINT CLASSES

Five keypoint classes named ENTRY, EXIT, UNUSUAL, DEBUG,

and DATA are defineds taking five of the available sixteen classes
by the hardware,

ENTRY ~ Every gated procedure plus all major internal procedures
{those shared across functional areas) should contain a
keypoint of this class., These keypoints should be placed
as close as possible to the 2ntry to the procedure.

EXIT - Every gated procedure plus 31l major internal procedures
(those shared accross fyunctional areas) should contain a
keypoint of this class., These keypoints should be placed
as closed as possible to the exit to the procedure.

UNUSUAL - Every situation which is unexpected or quite unusual
should contain a keypoint of this class., It is intended
that these keypoints would be enabled at atl timess. The
fr equency of encountering these keypoints SHOULD BE
very low. The DATA keypolint class is not allowed in

D1-3
CYBIL Installation Documentation
' 057122182
D1.0 KEYPOINTS
Dis1le2 NOS/VE KEYPDINT CLASSES

2 2 R XA N R 2 ETREXEE S E XL EZSEREIYEREE SN EFPIETR I L ESLESEL AL ELESESELEZ RS N

conjunction with a keypoint of class unusual.

DEBUG = These keypoints are for providing additional trace
information as an assist in debugging hardware or software
problems., DEBUG class keypoints would be most useful in
the more complex areas of the system,

DATA -~ This keypoint class can be used with ENTRY, EXITs and
DEBUG keypoints for the gathering of extra data., All DATA
keypoints encountered are supplying additional date which
will be associated with the last ENTRY» EXIT» or DERYUG
keypoint,

DATA keypoints should be used with care since the PMF
hardware can only buffer up 16 keypointss keypoint cluster
can cause lost keypoints,

The following deck defines the NIS/VE 0S class constants,

OSDKEYC
COMMON
{Define KEYPOINT CLASS Codes,

CONST
osk$data = gskS$system_class + 0y { OS5 -~ DATA keypoint}
osk$Sunusual = osk$system_class + 1, {U OS - Unusual keypoint.}
osk3entry = osk$system_class + 2o {£ 0SS - Entry keypnint)}
osk$exit = osk$system_class + 3, {X 0S -~ Exit keypoint}
osk$debug = oskssystem_class + 43 {D 0S - Debug keypoint.}

{*callcsosdkeys

Dle1+3 KEYPOINT DATA AND IDENTIFICATION

Upon successful execution each keypoint instrucion will
provide a total of 32 bits of informations Qur convention uses
12 bits of this for keypoint identification and the remaining 20
bits as user supplied data, Try to use this 20 bits to supply
meaningful information (taskidy segment number, file identifier,
queuye langth, page number, timey etcs)e The keypoint
jdentification codes are defined in the attached common deck, Cn
DATA ctlass keypoints the data betongs to the previous keypoint
and the full 32 bits Is available for additional user data,

Dl1-4

CYBIL Installation Documentation

05712217182

Dbject Text Rlles . v
D1.0 KEYPOINTS
Dl.1.4 EXAMPLE ISSUING KEYPOINTS

r 2 A R X 2 XA N R A2 2 B XL EZSEENSEREYERIF Wy AL LY R ESELELELEEEENIELELELELSESE X]

Dl.1.4 EXAMPLE ISSUING KEYPOINTS

ENTRY keypoint with data:

#INLINE{'keypoint?, osk3entry, osk$m*taskid.index»
tmksexit_task);

UNUSUAL keypoint with no data:?
#INLINE {'keypoint?y oskSunusualy Oy mmk$no_memory);
ENTRY keypoint with extra data:

#INLINE ('keypoint?', osk%entrys osk3m * segment_numbers
mmk$page_fault);
#INLINE {('keypoint?, osk#datay offsety, 0);

Dlele5 KEYPOINT IDENTIFIERS

Each area of the operating system has been given a range of
jdentifiers to use for keypoints. The base for each area is
defined on common deck DOSDKEYD. £Each area should
haye a deck xxDKEY (where xx is the product identifier)
where the areas keypoint constants are defined(e.g.tmkgexit_task).
Please reference the section on keypoint description deckss for an
example of one of these decks.,

DSDKEYD
COMMON
{This deck defines constants for use with KEYPDINTS.

{Define base keypoint procedure ldentifiers for each area of the
{0s.

CONST
amk$base = 100, {10C - 149}
bak$base = 200, {200 - 249}
clk$base = 250, {250 - 299}
cmk$base = 300, {300 - 349}
dbksbase = 350, {350 - 399}
dmk$hase = 400, {400 - 549}

CYBIL Instaltation Documentation

D1-5

05722182

Object Text Files

D1,0 KEYPOINTS
Dls1le5 KEYPOINT IDENTIFIERS

{

fmk$base = 550, {550 - 599}
ick3base = 600, {600 - 649}
ifk3base = 650, {65C - 699}
jiik$base = 700, {700 - 749}
ink$base = 750, {750 - 799}
Jmk$base = 800, {800 - 849}
1gk$base = 850, {850 - B899}
11k$base = 900, {90C - 949}
lok$base = 950, {950 - 999}
fuk$base = 1000, {1C00 - 1049}

mik3base = 1050, {1050 - 1099}
mmk$monitor_base = 1100, {1100 - 1149}
mmk$% job_base = 1150, {1150 - 1199}
msk3base = 1200, {1200 - 1249}

mtk$base = 1250, {1250 - 1299}
ock$base = 1300, {1300 - 1349}
ofk3hbase = 1350, {1350 - 1399}
osk$base = 1400, {1400 - 1449}
pfk3base = 1500, {1500 - 1549}
pmk3base = 1600, {16C0 - 1539}
rhk$base = 1750, {1750 - 1799}

srk3base = 1800, {18C0 - 1819}
stk$base = 1850, {1850 - 1899}
tmk$monjtor_base = 1900, {1900 - 1949}
tmks job_base = 1950, {1950 - 1999}
Jsksmonitor_base = 2000, {2000 - 2049}
Jsk$ job_base = 2050, {2050 - 2099}
avk$base = 2100, {2100 - 2149}
sTkthase = 2150, {2150 - 2199}
iok3bhase = 2200, {2200 - 2249}
rmk$bhase = 2250, {2250 - 2300}
mtk3assembly_language_base = 40003 {4000 - 4095}
0S assembly language 4000 - 4095}

{*callicsosdkeyc

D1.2 COLLECTING KEYPQINIS

Dl-%
CYBIL Ingtatliation Documentation
05722782
D1.0 KEYPDINTS
D1.2.1 ON THE SIMULATOR

Dl.2.1 ON THE SIMULATOR

When executing on the simulator all keypoint instructions cause
an entry to be added to the Yocal file SESSMKF,

D1+2.2 ON THE HARDWARE

Software keypoint collection is avaitable for collecting system
and Jjob keypoints. System keypoints are2 those keypoints in the
entire system and Job keypoints are only those dealing with a
particular jobs 0Only one system keypoint coliector
can be active at one timey but 2ach job may have an active
job keypoint cotlector, Software keypoints are collected on a
flle local to the Jjob in which the keypoint collection task is
running, After keypoint collection is terminated this file can
saved on the 170 side and analyzed by the keypoint analyzer,

Three commands are supplied to ytilize the keypoint feature?
KEYON, KEYOFF, and KEYPOINT.

Dl.2.2.1 KEYON_command

The KEYON command initiates keypoint recording and collecting,
It has the form ofs

KEYONsrecording_modes environment, kmm, kmj,
keypoint_class_starty keypoint_class_stop,
keypoint_file_name, keypoint_buffer_size,
collector_timeout_period

recording_mode = 'software'! or 'hardware', defaylt is software

environment = % job?' or 'system? » default is job

keypoint_mask_monitor = 0 .. J2FFFFf16) s default Is OfFff(16)
keypoint_mask_job = 0 .. OFFFF(16) » default is QOFFff(16)

keypoint_class_start = 0 ,, 15

This specifies that keyoolnt collection should not
start until a keypoint of this class in encountered,

D1-7
CYBIL Instaitation Documentation

0857227182
Object Text Filles

t 2 2 RF F X2 & £ 22 N ZFE LA FILEEEEESEEZLZESEEEE S XN ELFEREEZEZESEELENESELELERESEEFEESEN]

D1.0 KEYPOINTS
D1e2+.2.1 KEYON command

2 > rr X i 2y 2 s 7 X222 Ry r2 Ryt R Ry R R R R XX R Trrparrysripsy g s EL A 2R R LA R L 2 2

default is to begin collecting immediately.,
keypoint_class_stop = 0 +4 15

This specifies that keypoint collection should stop

when a keypoint of this class is encountered,

keypoint_file_name = file name on which keypoints are saved,
used #ith software keypoints only, default is KEYFILE,

keypoint_buffer_size = 0 .., halfword s default is 250C
For software keypoints oniy.,

colisctor_timeout_period = 0 +« halfword » default is 50

milliseconds.
For use with software keypoints only.

D1.2.2.2 KEYQEE command

The KEYOQOFF command terminatas keyooint collection,

KEYDFF= environment

D1.2.2.3 KEYPQINI command

This command §is used to issue keypoints.,

KEYPOINT = keypoint_class_numbers keypoint_code
keypoint_class_number = 9 .. 15 » default s 15
keypoint_code = (G .. halfword » default is ¢

&
After keypoint collection Is terminated the keypoint filey
can be saved on the 170 by a REPLACE_FILE #with B56
conversions. For example,

REPLACE FILEskeyflileskeyfilesb5s

On the 170 side this can be analvzed by using NVEKEY»
format = HDOW.

D1-8
CYBIL Instaltation Documentation
D5/722182
D1.0 KEYPOINTS
D1s2+2+e3 KEYPOINT command

D1.3 KEYPOINI_ANALYZER_UIILIIY

D1e3+1 NVEKEY

The SESSMKF file produced on the simuiatory or the
KEYFILE produced on the hardware can be reformatted into »
readable (1sting by executing the following procedure,

SES.NVEKEY UKPF= 1 [FORMAT= 1 {KD=] [AREA=]

NVEKEY creates a simuiator generated keypoint trace file,

The "kpf"™ parameter Is the keypoint flile used as input,

The "kd"™ parameter is a file or list of files which define(s)
the keypoint descriptions.,

weeeD ARAMETER=—==e==DEFALL T===-~ —emALLOJABLE VALUES=—=——w=-
kpf TSESSMKF? file name
‘KEYFILE? if format=HDW
format *SIM? simshdn
kd YKEYDESCY file namels)
area LUSERE user name

If run interactively, when the procedure terminates the
reformatted 1isting Is on local file KEYFILE.

D1.3.2 KEYPOINT DESCRIPTION FILE

The keypoint descriptions are used by the keypoint
analyzer utility to direct the reformatting of the
keypoint information,

D1-9
CYBIL Instaltation Documentation

0512217182
Object Text Fliles

D1,0 XKEYPOINTS
D1+3+2+1 keypoint decks

2 F 2 F 2 X2 X2 R E NS R VENE RN EEXE YN FWEFIEOyysypnpyrpswyryr Z 2 F X E Y 2 2 X X N E 2 F L F N]

Dl.3.2,1 keypoint_ decks

EFach area has a keypoint constant deck xxDKEY (where xx
Is the product id), The keypoint descriptions are now
included in this deck immediately following the keypoint
constants (similiar to the message templates).

Each description has the following format,
Note: 2ach elament (if given) is positionally dependant.

{CLASS TSUB_ID_FIELD) KEYPOINT_LABEL [DATA_LABEL]) [DATA_FIELD]

CLASS of keypoint - required
E Entry
X eXit
U Unusual
D Debug

SUB_ID_FIELD - optionat ~ (described |ater)

KEYPOINT_LABREL - required - This is a string that
describes the purpose of the keypoint,

DATA_LABEL - optional - This is a string of yp to 8
characters describing the data portion of the keypoint,

DATA_FIELD_DESCRIPTOR - optional - This consists of data
fornat and length.

data_Fformat
H Hex
I Integer {decimal)
A ASCII

Concatenated to this Is the tength of the data portion of
the keypointy in decimal bits.
For examplet: 120

Dle3+¢2¢1.1 EXAMPLE KEYPOINT DECK

STDKEY
COMMON

{ PURPOSE:
{ This deck containg all of the set manager keypoint constants.

CONST

01-10
CYBIL Installation Documentation
05722182
D1.0 KEYPOINTS
D1.3+2+1+1 EXAMPLE KEYPDINT DECK

LA LA A L L A2 A AR L 8 i L L i 2 LAl X2 R 2 R B2 YV ¥ Pr s A RL XAl 2 i Al it i R s 2 A 2 XX R

stk$create_set = stkstbase + 1,
{E tstp3create_set! 'ring T H)
{X tstpscreate_set? 'status ' I2¢ }

stk$purge_set = stktbase + 2,
{E 'stp$purge_sett }
{X 'stp$purge_set! *status * 120 3}

stk3cant_dm_store_set_ord = stkibase,
{U 'cant dmp$store_avt_set_ordinalt vavtindx ' H20 3}

stk3pf _root_size = stk$base + 53
{D 'pf_root_size' 'rootsiz ' H20 }

2? PUSH (LIST = (QFF) 27
{*callc osdkeyd
1? P0P 172

Dl.3.2,1.2 SUB_ID_FIELD

This optional field allows a means of subdividing a single
keypoint into several descriptors. The particular descriptor
is chosen on the basis of a selectable number of bits of the
data field. This field has the following formats?

SUB_ID_LENGTH,SUB_ID_MATCH

SUB_ID_LENGTH - This specifies tha number of bits {(right most)
of the data field to uses to determine which
descriptor to choose,

SUB_ID_MATCH - This specifies the integer identifier used to
match the data portion,

Examplet
mmkS$Spage_fault = mmk$monitor_base + 6
{E *"page fault processor? }
{E 4,1 'Page foyund In avail queue? 'pfti ' Hl16)
{€ 4.2 'Page found in avail modifiad queue ' 'pfti ¢ H16}

If this keypoint was issued and produced data of 2» the
descriptor with the sub_id_match flield of 2 would be
used (*page found in avail modified queue!),
These keypoints were issued with a sub_id_length = 4,
thus the 4.,x, For example?
#INLINE (tkeypoint?'y osksentry, osks$m *

{pfti % 16 {2 ** sub_id_length} + 2{sub_id_match}),

Dl1-11
CYBIL Installation Documentation
05122782
D1,0 KEYPOINTS
D1e¢3e241.2 SUB_ID_FIELD

AL FE R R L L T F XN R R R R R R R YR Ry pipesegegeper E LR Z E L EZ NN E Y TN EE FE]

mmk$page_fault);

Dl.3.2.2 geperating _the_descriptor _file

The keypoint descriptions are2 kept on a file called KEYDESC
on the integration catalogs This file may be produced by?

SES .GENCOMP M=0OSMKEYS AB=((NOSVEPL,OSLPI,INT2)) CF=KEYDESC

The user may add keypoints to her xxDKEY deck locallys and
the KEYDESC flile may be produced as aboves specifying the
additionatl tocal basess The KEYDEST file wmay then be saved
on her cataiog.

If new keypoint decks are addeds, *callc 's to these new decks
choyld be added to the deck OSMKEYSy and the appropriate
base constants added to deck 0OSDKEYD.

When transmitting changes to keypoint deckssy be sure to inform
integrationsy via the transittal forme to recreate the file
KEYDESC.

Dle3.2+3 gspkeys_format

This section will only be usaful to those desiring to add
additional keypoint classesy, keypoint class base constantsy
or new keypoint description decks.

The classesy identifierss and descriptions are each buffered
by a comment, For exemples to add another keypoint class?
{$%% START KEYPDINT CLASSES $3%}
CONST

psksentry = osk$product_set_class + 1; {E PS - entry keypoint}
{$%% END KEYPOINT CLASSES $%% }
notet The £ foliwoing the *"{" uill be used in the description.

This new section shoutd be appended to the end of the KEYDESC
file, Readers desiring more information should reference the
attached BNF, and the attached decks NSMKEYS,

The following represents a sample of how to set up
the description module,
Notet Comment put around *call for sake of documentation only.

D1i-12
CYBIL Instaltation Documentsation

0E7227182
D1.0 KEYPRINTS
D1.,3+2.3 osmkeys format

QS MKEYS

22 LEFT 3= 1y RIGHT t= 110 ?°?
MODULE keypoint_description_file;
{*callcsrosdkeys

{$%% START KEYPOINT CLASSES 333}
{*catlcsosdkeyc

{388 END KEYPOINT CLASSES $$%}
{$%% START KEYPDINT IDENTIFIER BASES %333
{*catlcrosdkeyd

{$3%% END KEYPOINT IDENTIFIER BASES $3%%}
{3$%% START KEYPDINT DESCRIPTIDONS %43}
{*catlcy andkey

{*callcsbadkey

{*catlcyclidkey

{*callicscmdkey

{*callcrdbdkey

{*callcs dmdkey

{*#callcsTmdkey

{*calleslicdkey

{#*callcyifdkey

{*callcsiidkey

{*caltlicyindkey

{*callcy jmdkey

{*callicylgdkey

{*catllicsltdkey

{*callicylodkey

{*callcy ludkey

[*callcyml dkey

{*calticymmdmkey

{*callcymmd jkey

{*callcymsdkey

{*calicy mtdkey

{*callcsocdkey

{*calicrofdkey

{*callcyosdkey

{*callcspfdkey

{*callcsy pmdkey

{*callcyrhdkey

{*callcysrdkey

{*callcrstdkey

{*catlcs tmdmkey

{*calicytmd jkey

{*callcy Jsdmkey

{*callcy jsdjkey

{*callcyavdkey

{*callcssfdkey

{*callcy,iodkey

Di-1232
CYBIL Instaltation Documentation
057221782
D1.0 KEYPOINTS
D1s3+¢2+3 osmkeys format

Al L 2L R R X EEEELEE YR EE LR L2 RN RN Ry Ll X T Y A RN E N BT EZF

{*calicsrmdkey
{$%8 END KEYPOINT DESCRIPTIONS 4335}
MODEND keypoint_description_file;

Dl.4 REEQRMAIIEN _EILE_DESCRIPIION

The output from procedure NVEKEY is a file called KEYFILE.,
This reformatted 1isting contains two sections. The first
section is a listing of all the keypoints in the order they were
issueds The second section is a summary of the number of times
each keypoint occured.

Each tine in the first section has the following format;

RT TSL DATA DATA_LABEL S TN AREA_ID KP_LABEL

The RT field designates the value of the free running
microsecond clock {(time since deadstart) when the keypoint was
executed, On the simulator the clock is incremented by 1 for
each Instruction axecuted,

The TSL field designates the time (microseconds) since the
fast keypoint instruction was executad,

The DATA fleld specifies the value of the data portion of the
keypoint in the format described Iin the keypoint description
file for this keypoint.,

The DATA_LABREL fleld Is the data tabel field from the
keypoint description file for this keypoint,
This identifies the data being displayed,

The S fleld specifies the state of the machine when the
keypoint was issued and is one of the following!

M - Monitor mode
J = Job mode
\
An % preceding the S field indicates that
trap processing is activey, that is the trap handler has
been enteredy but not exited,.

The TN Field gives the global task id of the task that
was executing when the keypoint was jssued,
The system is task 1.

Dl-14
CYBIL Instaliation Documentation
D57122/82
Object Text Files

D1.0 KEYPOINTS
Dl.4 REFORMATTED FILE DESCRIPTION

E L X2 2 2 2 2 X e 2 i 8 b N2 EREELEELERIESNELSEESFFEIEFEELEEEEELELSELLESESEESEEERE N

The AREA_ID fieid is the area lidentifier for the area
issuing the keypoint,

The KP_LABEL is the keypoint label fiejd from the keypoint
description fitese This describas the keypointe.

NOTEt For an undefined keypoint» that iss one which has no
descriptor entry,) the area_Iid fleld contalins the
integer for the keypoint classe the ciass field
on the output is specified as "UND"» and the KP_LABEL
becomes the id_number of the kasypoint.

D1.5 BNE_KEYPOINI_DESCRIPIION

{analyzer_descriptor_input)> 1$= <{keypoint_class_allocation_deck)>
[<definition_deckd> +0s 1

<keypoint_class_allocation_deck> $31= {cybil code and/or comments>
f <class_base_definitionsd> «e¢s 1]
<cybil code and/or comments>

{class_base_definitions) 1t= {class_base_id> <spc> = <spc> <based

<class_base_id> 13= osk$system_class | osk$product_set_class |
osk$user_class | osk$pmf_control

{spe)> tts [<spaced ess J
{base> 23= (integer>

{definition_deck)> tt= (class_definition_deck> }
¢base_definition_deck> !
<keypoint_definition_deck>

class_definition_deck> 3:= {$$% START KEYPOINT CLASSES 3$%%}
{cybil code and/or comments>
[<class_definitionsd> eos 1
{cybil c¢code and/or comments>
{¢%% END KEYPOINT CLASSES $3%)

<class_definitions> ti1= <(keypoint_class> <spc> = <spc>

Dl=-15
CYBIL Instaltation Documentation
057221782
Object Text Files

L2 2y 2 A E Xl e E 2222 ELEEZEIEEALESESFEEEEEELERSLESELEEEEZEL Y EYEEREEREEZR]

D1.0 KEYPOINTS
D1.5 BNF KEYPOINT DESCRIPTICN

LA XA R L 2 L AR 2L L A2 R EAEELELELE E N FFF PR el Ll E R Al A L b df A R A L R R A

<class_base_id> <offsetd
{ ¢keypoint_class_id> <cybil comment>

{keypoint_class> t11= <identifier>

Coffsetd tt= + <spc> Kintegerd <Ldelimiter>
<delimiter> 2= , } 3

{keypoint_class_id> 33= <character>

<base_definition_deck)> 31=
{3% START KEYPOINT IDENTIFIER BASES %%3}
{cybil code and/or comments>
[<range_base_definitions> see 1]
<cybil code and/or comments>
{33% END KEYPOINT IDENTIFIER BASES 3¢3%}

{range_basa_definitionsd> 3:= <keypoint_base> <delimiter>
<base_ranged

{keypoint_base> 31= {spcd <base_id> <spc> = <spc)> <based>
<base_id> $3= <jdentifier>

<base_ranged> 33= <{spc> { <low_based> <sp> - <high_based> [} 1
low_base> 31= <integer>

<high_base)> $t= <integer>

<keypoint_definition_deck> t1=
{3%% START KEYPOINT DESCRIPTIONS 3%%)
{cybhil code and/or comments>
L <xxdkey_deck> see 1
<cybil code and or comments>
{833 END KEYPOINT DESCRIPTIONS 333}

{xxdkey_deck> 33ta [<cybi! code and/or comments> 1]
[<keypoint_info> s 1

<keypoint_Infod> 33 = <keypoint_constant_1line> <{delimiterd> <eol)>
[<keypoint_descriotor) <+, 1
[<blank lines> 1

<keypoint_constant_line> ::= <keypoint_constantd> <spc> = <spc>
Kkeypoint_base> <spc> [<offsetd 1 <spcd>

D1-16
CYBIL Instafliation Documentation
05722182
Object Text Files

r 2 2 2 X2 F LA LA 222X ERELEELEEEEELERELEELENREZLEXESEELEEELEEELLEEEESEEELESEXE]

D1.0 KEYPOINTS
D1e5 BNF KEYPOINT DESCRIPTICN

L Xl 2 L X2 KR AL SR 2L ELELELELEZSIEELER R FERFWFvERIFE L2 A2 P AL ELZEZ AL ERE SRS L]

<keypolint_constant> 3i= <(identifler>
<keypoint_base> ti= (jdentifier>

<keypoint_descriptor> 3:= { <keypoint_descriptor_listd> <sped> [} 1
<eol>

<keypoint_descriptor_1listd 21= {keypoint_class_id> <spc>
[<special_case_code> 1 <spec>
[<sub_id_fiald> 1 <spc> <keypoint_label>
<spc> [<data_field 1

<special _case_code> t3= M | N | S | T
(M = Mtry N = Nos» S = task Switchy and T = Trap)

{sub_id_field> t1t= {sub_id_tength> , <sub_id_matchd>
£sub_id_length> 33= <Ffield_length>

<fleld_length> tt= 0..52 (in pits)
{sub_id_match> 33= {small_integer>

<small_integer> 3= Q,.0 FFFFFFFFFFFFF(16)

{keypoint_1labeld> 13= <labeld

<label> tt= ' Lcharacter_string> ?

<character_string> 3t= any visible characters except !
<data_field> tt= {data_label> <spc> [<Kdata_field_descriptor> 1]
{data_labeld> 33= {label>

¢data_fleld_descriptor> t3= <data_formatd> [<data_field_length> 1]

{data_format> 33= A } H } I
{A = Alphanumerics H = Hexy I = Integer)

{data_field_tlength> t11= <(field_length>

(NOTEt <sub_id_tength> + <data_fjeld_length> must be <= 52 bits)
{NOTE? operating system <keypoint_class_id> = {DyE»UyX2})

{NOTEt <keypoint_class_id> for any keypoint used for

additional information to previous keypoints

must be 8 space)

{NOTEt a <definlition_deck> remains in effect until

D1~-17
CYBIL Installiation Documentation

05/22/82
D1.0 KEYPOINTS
D1.5 BNF KEYPOINT DESCRIPTION

PR X2 2 2 XY ERLEE YR YR AR YER L L R TR Farrpryryegvpgpeyerr I 22 X2 2 22 XXX R EY ERE 2 ¥]

superceeded by a deck which redefines the
area to which it pertains)

Table of Contents

1.0 NOS/VE SYSTEM OVERVIEW + +

1.1 INTRODUCTION o o o o o o =
l.1.1 THE HIVS COMPONENT . . .
1142 A170 NOS MODIFICATIONS .
1«1.3 A170 NOS APPLICATIONS . o
1,1, THE VIRTUAL STATE COMPONENT

VIRTUAL STATE PARTITIONING + » &

® ® ¢ ©

® ® © » =

¢ @& & o 5 o -
* e & ® g =
® o & & o 4
“« & ® & o O

.

e » o

WO #ﬂuN

DUAL STATE MEMORY MAP & o & o o o o o »

OVERVIEW OF INTEGRATION PROCESS
RELATED DOCUMENTS o o o o o o
STANDARDS e & 5 0 » % e v
CATALOG MANAGEMENT POLICIES
BUILD PROCEDURE DESCRIPTIONS
2»#-1 I”TRQQUCTIQN * 8 9 » ®* 2
244,2 INVOKING THE PROCEDURES .
24443 CURRENT PACKAGING OF NOS/VE S
4 UPDATE THE SOURCE LIBRARTES

5 COMPILE/ASSEMBLE FROM SOURCE
6 BEGIN THE LINKER~LOADER PHASE
7
E

NN e e
o« o o o

L] [2N J L]

URC

]
»
.
.
.
*
L]
0
»
L]

GENERATE THE DEADSTART FILE .
BILD PROCEDURE DESCRIPTION . .
«1 NVEBILF PROCEDURE DESCRIPTION
+542 NVEBLD PROCEDURE DESCRIPTION
«5¢3 LISTNVE PROCEDURE DESCRIPTION

NVELINK PROCEDURE DESCRIPTION . &
+6.1 LPF FILE DESCRIPTION . ., , & .

2+6+2 SYSXDIR /7 LDR FILE DESCRIPTIDN o
2.7 PARAMETER DESCRIPTOR TABLE AND MESSAGE
2e7.1 GENPDT AND BLDGPDT DESCRIPTIONS . .

2472 GENMT, GNVEMT AND BLDGMT DtSCRIPTIJNS
2.8 NOS/VE SIMULATION o o o o o o » * e e

*
*
*
®
|

4
4
4
4
N
5
5

® © o & 5 v 6 5 e e s o © » &

2

® 8 ® @& & ¢ ¢ & & o TTe o © @ o & @»

L
»
*
L]
L
L]
*
.
L]
»
-
L]
L]
»
L
L4
L]
L4
L
T

m

® 20 & 8 6 5 6 6 & 4 4 & & s 6 s s e

2+8+1 RUNNING A SIMULATOR TEST (NVESIM PROCED

2.3.2 NVEKEY PROCEDURE DESCRIPTION o o o

248,3 DUMPING A SIMULATOR CHECKPOINT FILE (NVE

PROCEDURE) o+ o o & S L T T S R S S
2.9 BUILDING A DEADSTART FILE o o o o o o »
2‘9.1 INTRBDUCTIGN L] L [] » L * [] *]] L] »
24942 CREATING THE FILE (NVESYS PROCEDURE)

2¢9.3 COMPILING 180 PP CODE (CpP180 PROCEDURE)

2,10 DUAL STATE PROCEDURES o o o o o o o » »
2+.10.1 BLDEI PROCEDURE DESCRIPTION .
2.10.2 BLD17C PROCEDURE DESCRIPTION
2.10.3 BLDICF7 PROCEDURE DESCRIPTION
2¢10.% BLDIF7 PROCEDURE DESCRIPTION
2.10.5 BLDRH7 PROCEDURE DESCRIPTION
210.6 DSBILD PROCEDURE DESCRIPTION

2,11 UTILITY PROCEDURES & o o s s o o

¢ ®© & ® o ¢4 ©
e ® ¢ & ® 4 ®
® & o o o o @

® o 5 o & »

MANTPULATION OF NOS/VE PARTITIONS AND LIBRA

*

L

¢« ® & 6 o & &

©

e e o o Fo ® & ® & o ¢ & & & b o s ¢ * 8 e s @

2
»
*
R

.

o (The & o & & & »

]
.
L4
*
*
*
L]
®
»
»
[]
L]
*
*
»
»
.
L
*
T
*
»
*
R
L]
D
L]
»
»
Ed

® o ® & ® o o &

m

* o & & 4 » @

.

® 5 & * ¢ 8 O B O & & & 6 & v p & o @

® 6 © & b o 8 & g & B 6 ¢ RXe we s

L

6 6 & 6 6 (=8 6 6 6 ® 8 & & & & & o 05 v 4 s 8 s @

<

® ® ¢ ¢ » B 3 o @

¢ o & o ® & ¢ ¢ ¢ ¢ & o

el

® & o ® o ™ O 4 & & & © & & B © & B " "V 6 & & o &

¢ ® & & o & » ® o

® e & & & 9 o & » ¢ o s

* o © ® o M4 " g S ¢ & & b ¢ S o & ¢ b * o 8 & e 3 ¢« ® ¢ @ o & s o

¢« @& & & » & e © 5 s & s o

1

057227182

® o & & 8 OO 8 O & P & & s & s b s e e 6 b e

® & o & » © 9 ¢ ¢

e e Mmoo

ot ot b ot ok fd ol i s
[J O T T I T 2 |
GO W NN b

UL

)

NN NNV NN YD
O WNO O WHRIN

2
2=12
2-14
2-1¢
2-19
2-20
2-20
2-20
2=-21
2-23
2-23
2=25

[}
oy
3%

2=-26
2-27
2-27
2-27
2-29
2=-3C
2=-30
2-31
2-31
2=32
2-33
2=34
2=-35

2+11,1 NVEREP -~ REPDRT SYSTEM CONTENT

PROCEDURE GET - GET A LOCAL FILE
2¢11+3 PROCEDURE SAVE - MAKE A LOCAL FILE PERMANE
2¢11.,4 NVEMAP -~ REFORMAT NOS/VE LINKMAP

2.11.2

2.11.5

2+.11.%5 PROCEDURE SIZES - REPORT MODULE
2,12 PRE-INTEGRATION BUILDS
2.12.1 GENDEK PROCEDURE DESCRIPTION
2412.2 BILDLIB PROCEDURE DESCRIPTIDN
2.12,3 BILDALL PROCEDURE DESCRIPTION
2¢12.4 CHKLIB PROCEDURE DESCRIPTION
2.12.5 PURDEK PROCEDURE DESCRIPTION

»

.

L]

3,0 DUAL STATE INSTALLATION SEQUENCE
3,1 RELEASE RESERVED SPACE AND INSTALL

3.2 INSTALL MSL o 2 o o &

*

3.3 CMRDECK CHANGES AND CMDS1 FILE

343+1 NOS CMRDECK AND LIBDECK CHANGES

34342 CMDS1 FILE o o &
3.4 INSTALL SYSTEM . . .
3.5 LOADPF FILES o« o « o
3.5 BRING UP DUAL STATE

£]

.
.
*

4.0 NOS/VE HARDWARE REGRESSION

4.1 INTRODUCTION o o » o »
4.2 S2 REGRESSION TESTS
4¢2¢1 JOB2 4 o o o &

“02'2 JGB3 » » - * L]
4.2.3 J084 * L] * * .
4e2¢4% TESTBAM o+ o &
4.3 S2 REGRESSINN TEST
4.4 INTRODUCTION TO CON
4e5 INSTALLATION o o+ &
4.6 EXECUTION o o o o
4.6.1 EXECUTION OF IF
4.7 TESTS o s o o o »
4.8 TODLS o s o o o &
4+.8¢01 AUTOMATIC CHECK
4.842 LDTB . . &
4+8¢3 CLEANUP

L]

ODe o ¢ o

E
I

9

N

* L]

4e8+% GENBIN .
4.8‘5

® o 5 o pio o s o NG ¢ o

s o O & (N & P

L] *
L .
] ®

PRTLIST

NOS/VE Transmlttal Form

Files Maintained By Integration

™M Z

0

® 6 & & e & v o & ZIMe & ¢ &

c
E
U

m

-

& & 6 & e & & » o

CYBIL Installation Documentation

Cl1.0 BUILD CATALOG SETUP .

® ¢ ®» © [TTe & & ¢ © {(f1e © ¢ & ¢ & @

-t

L * ° * ® Ure ® * [] [] L d

2]

.

[L] ®

*

* ® 8 @ O 4 ¢ ® & 8 o © ¢

*® & ® & o

¢ @& o ©

® @ 9 & (e O & o & & ¢ O O & o b o ¢

L] >

PROCEDURE FORMPROC -~ FORMAT PROCEDURE

SIZES

» » []

¢ & & o
& & ¢ @
¢ & & 9 e

e ® ¢ & s & o &
% & & & » ® ¢ o @

® ® & & & & o &6 & 6 & & 4 &

s & & & & & & & 5 B 6 0 b & e & 6 b e
® & ®» & © 4 &6 6 & g & & b & 6 s * & ®

¢ & &6 ¢ ® & ¢ @

® & & @ & & @ ¢ @

& & & 6 § & O & & o * s & » & 0 »

.

»

® @ b & % & @ 0

® @ * & o & ¢ g

® & ® 9 ® § & g O ¢ © 8 & y b v & & @

T

® & ¥ 6 ¢ » @ b e Ze o

e e * ¥ o & * ¢ »

® & 6 & & & O 8 & & O @ ® o b 8 e ¥

L[]

¢

$ @& ® ¥ & & & & @

e & & & & o ¢ 4 @

s & 6 & & & & ¢ & o ¢ ¢ o O s ¢ o s

® & & o & & ¢ & O ¥ 8 o

® & & & ¥ o O g &

@ ® ® ¢ & ¥ & S & g b s ¢ O 6 ¢ 2 » @

¢ & & e o » 8 O & " s b

® @ ® o & & O 5 o

o o o o L] - e o [] ® © ® @ . & L] e o® .

2

05722782

. 2-35
[2"'3{3
. 2-38
. 2“'39
» 2"43
. 2~45
N 2=4%5
. 2-46
. 2"'46
» 2"‘!‘7
] 2~438
. 2"48
» 3“"1
. 3~-1
. 3"‘2
» 3-4
. 3-4
L) 3""6
(] 3-17
. 3"'8
. 3-8
. tf’“l
L] ‘?-1
. 4=-1
» 4~1
. 42
. 4=13
. 4-3
L] l!"?
. ‘?-b
. 4=~7
» (0"'7
* "‘8
» 4-8
. 4"9
. 4-10
L) 4'10
. 4-10
. 4-11
1] 11"13
. Al
. B1
. €1
] Cl-l

C2.0 CYBIL BUILD PROCESS o o o o« o o o » o

€3.0 CyB8IL BUILD PROCEDURES .+ o+ « »
C3.1 CC COMPILER BUILD AND TEST PRDCEDUQ”S
C3.1.1 BLDCC PpROCEDURE DESCRIPTINN . .
C3+1.2 CNYRGCC PROCEDURE DESCRIPTION .
C3.+1.3 TESTCC PROCEDURE DESCRIPTION .,
C3.,2 CI COMPILER BUILD AND TEST PROCEDURE
C3.2.1 BLDCI PROCEDURE DESCRIPTION . .
C3+2+,2 TESTCI PROCEDURE DESCRIPTION
C3.2.3 BLDILIB PROCEDURE DESCRIPTION .
C3+42¢4 RUNREG PROCEDURE DESCRIPTION
C3.3 I1 COMPILERS BUILD AND TEST PROCEDUR
C3.3.1 BLDIIS PROCEDURE DESCRIPTION .
€3.,3,2 BLDII2S PROCEDURE DESCRIPTION o
C3.3,3 BLDIIH PRDCEDURE DESCRIPTION .,

Ne

® o ¢ Mo ¢ » o

KEYPDINTS L] » * L £l » * * ® L] » » * *

-

Dl‘o KﬁYPBINTS » * E E] * L] * 2 * -* »
Dl.1 ISSUING KEYPOINTS FROM CYRIL EGDE
Dislel KEYPOINT CLASSES o o o » o
D1.,1.2 NOS/VE KEYPOINT CLASSES « & .
D1e1.3 KEYPOINT DATA AND IDENTIFIZ ATIQN
D1+l EXAMPLE ISSUING KEYPOINTS
D1.1,5 KEYPOINT IDENTIFIERS ., .
D1.2 COLLECTING KEYPODINTS .
Dle2+.1 DN THE SIMULATOR
D1+2+2 ON THE HARDWARE 4+
D1e2+¢2¢1 KEYON command .
0102.202 KEYDFF command
D1.2+2+.3 KEYPOINT command
D1.3 KEYPDINT ANALYZER UTILITY
D1e3¢l NVEKEY 4 o o o o o o
D1.3.2 KEYPOINT DESCRIPTION FIL
D1.3.2+1 keypoint decks o
D1e3¢2+1e1 EXAMPLE KEYPOINT DFCK
D1s3¢2¢1s2 SUB_ID_FIELD =+ o o o
D1.3.2.2 generating the descripto
D1.3.2.3 OSMKQyS format T)
- Dl.4 REFORMATTED FILE DESCRIPTION .
D1.5 BNF KEYPOINT DESCRIPTION .+ o o

. ® @
* o & o

. £]

® & o € &
e ® © & » ¢ @

ITI® ¢ & o & ¢ & @

L]
L]
*
L]
2
[]
»
*
*
.
L]
L]

-

® ® ® w=¢ 5 & o © & & © & b » 6 ¢ s

® e ¢ ™ e 8 & & & » O & & s & @

»
.
»
.
L]
»
*
L]
L]
L]
L]
*
r
L]
L]
L4

S

®

-

L] . 9 @ v & & & & 9 & 8 ¢ o

® o & o ® & & & B & ¢ S o 8w & § =8

* & &

[]

® & & o 8 & 6 & & & 6 &

L]

& 8 & & & ¢ & @ 6 & 4 b B S @ B & & ¢ * s b oo

® 8 & & & o & ® & ¥ & " 4

e 8 ¢ & & ¥ B 5 O P s & o e ¢ & ¢ b 4 & 2 s b

*

¢ & & 6 & 8 @ * O 2 0 * 4 ®

® & & 8 & & & 5 O 8 O O 5 & & S o O "t o a0»

L]

O o & & & & & S b & & 8 b

L]

® @ O § & 9 6 & O 8 b & g & 9 6 3 b e 6 b b »

.

$ & ¢ & ® 9 0 & & 0 9 ¢ 5 © & O & b v S é s 0

*® & & 6 & & & & & v s & ¢ ¥

.« ® » © ¢ @& @ ®© & O & b & »

® & » & O @ & 6 8 O 6 & 3 b 8 & s b O 0w ¢ &

*

¢ & ¢ ® & O 9 b B & " s e

L]

® ® & & © & & P e & & S g 4 6 & ¢ & O s b e

3

05722782

® ® g ® ¢ & 9 & o 5 ¢ & e @

e ® & 85 & & & & & 6 ¢ O B & O " & 6 b s b e

c2-1

C3-1
€3-1
€3-1
€3-2
C3-3
€3-3
€3-4
C3-4
€3-5
€3-5
C3-¢
C3-¢
C3-7
C3-7

D1

D1-1
D1-1
Dl-1
D1~2
01-3
D1-4
D1-4
D1-5
D1-6
D1-¢
D1-6
D1-7
D1-7
D1-8
p1-8
D1-8
D1-9
D1-9
D1-10C
01-11
D1-11
D1-13
Pl-14

