
IPI'JJ)O e
~-=------------------------,--

DISTRIBUTION .----------... ---~
C.K. Bedient
F.A. Bischke
J.l. ear I son
R.E. Dennis
J.B. F arr
G.J. Greve
l.E. l es k J nen
T.M. Miller
J.A. Nauman
M.J. Perreten
R.A. Peter son
J.F. Steiner
R.J. T hi e I en
S.C. Wood

R.B. a ees on
M.D. Carter
R.E. ErIckson
N.E. Fox
O.J. Holm
R.A. Mann

G.S. Barr ett
A.J. laMson

A.C. Rupert
H. A. Wohlwend

R.D. P a I m

J. Sutherland

B.E. S outhwor th
J.H. Wick

P.Y. llou
G.D. McGhie
J.D. Neuhaus
S .l. PI ttm an

ARH254
ARH254
ARH254
,ARH254
ARH254
ARH254
ARH254
ARH25 "
ARH254
ARH254
ARH254
ARH254
ARH254
ARH254

,ARH26C
ARH260
A~H260
ARH260
ARH26C
ARH2bC

ARH263
ARH263

ARH280
ARH280

ARH293

C ANCD 0

MNl02 B
MNA02 B

SVL145
S Vl12 8
SVL128
SVL162

1
05/22/82

~le8se help keep the above distribution list current. If
your name should be removed from the list or another neme
added, contact Bonnie Swlerzbln at ARH260 - extension 3460.

DISTRIBUTION ------- ---._--_
J. l • Kappler
R.H. Kingdon
T.C. McGee
R.M. Medin
N.E. Meyer
J .R. Ruble

N.J. lee
D.J. Maguire

S.w. Fewer
Cl80 Central

E.B. Buck ley
R.S. Cummer
R.K. Endo
A.E. Hiebert
U.S. lundh
W.l. H sr r e II
J. S. White
J.E. Jones
J.A. Walters

ARH254
ARH254
~RH25 4
ARH254
ARH254
ARH254

ARH260
ARH260

ARH263
Oayfile

SVl173
SVl163
SVl128
SVL1438
SVLIO 2
SVl163
SVL lO2F
SVL143
SVl173

2
05/22/82

Please help keep the above distribution list current. If
your name should be removed fro~ the list or another name
added, contact Bonnie Swlerzbin at ARH260 - extension 3460.

3
05/22/82

"" "" EEEEEEE M11 "" 00000
C " " E M M f1 f1 0 0 C
D M M " EEEEE " M " 0 0 D
C ,.,

" E f1 .. 0 a c

" " EEEEEEE ,. f1 00000

DATE t MAY 21, 1982

TO t DISTRIBUTION lOC.AlION I

FROM I 8. J. SWIERZ8IN LOCATION t ARH260

4 Cycle 3 update of the Integration Procedures Notebook is
now available. The Notebook has not changed a great deal
since its extensive revision at Build Q, but there are some
changes of Interest In the util~ty procedures, described in
Section 2.11, and the CYBIL build proce.ss, described in
Appendix C. Keypoint Information has been added to the
doc~.ent in Appendix O. A complete listing of this document
can be obtained through the fat lowing command sequence:

ATTACH,IPNDOC/UNaDEV1.
SES.PRINT IPNOOC

ADVANceo SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - cycte 3

1.0 NOS/VE SYSTEM OVERVIEW

1.1 lSIaIlllu.c.IIDti

The basic components of NOS/Ve include the followlngl

1·-1

05/22/82

A Hardware Initialization Verification Sequencer
(HIVS) component
Modifications to standard Al70 NOS system components
Al70 NOS application programs (and procedure files)
which execute In the Al70 NOS (Real State)
environment, and provide system to system
co m mu n I c a ti 0 n f ac iii tie s.
The Virtual Environment code which Is responsible for
the execution of tasks In t-4atlve Mode in the Virtual
State of the hardware.

The nomenclature used to desCribe NOS/VE components Is
rather confusing. frequently, the Virtual system software Is
what is referred to 8S "NOS/VE". When AI70 NOS and the
supporting utilities are present, the term "Dual State" Is
used. To differentiate the two execution modes of the machine
the terms "Native Modeft , "Virtual ~ode", and "Virtual State"
are used to describe the execution of CIBO Instructions. The
terMs "Real State" and "NOS" are used to refer to the
execution of C170 Instructions.

The model which Is often used to describe the execution of
NOS/VE in Dual State mode is that of one machine front-ending
another, and communication between the two machines occurring
over a communications link. From the software's point of
view, another perspective is used. To the Virtual State
software, the NOS system is merely a Job which happens to be
executing In the Virtual State envelope created by EI. (The
microcode translation of the Cl70 instruction set is
"jnvlslble" to both the NOS and NOS/VE software.) NOS's view
of the Virtual State is merely that or a Job which runs at a
control point, and Is communicated with through the
K-dlsptay. The remainder of this section is meant to describe
NOS/VE with regard to Its components.

1-2
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycte 3

0512.2/82 - ___ . ___ - ___ . ______ - _______ . .., __ .", ___ ", - ", - ", .#111-'" #III ____ , __ ., ",. _______ , _____ _ .#111 _ _ ",,,,,,,

1.0 NOS/VE SYSTEM OVERVIEW
1.1.1 THE HIVS COMPONENT
--------------------.-------.",----------------",,,,------------------",.

1.1.1 THE HIVS COMPONENT

Incladed In the diagnostic WOrld, which establishes the
initial Virtual Execution environment, Is the microcode fer
the CPU 8S wei' as a Native Mode monitor-like program called
the Error Interface (EI). The microcode is strictly supported
by the diagnostic organi2ations, and neither the NOS nor the
NOS/VE software wll I execute without microcode present In the
CPU. The EI program is sUPPorted by Advanced Systems
Development. There are currently two versions of EI, one
which only supports A170 ~OS and does tasks such as eMU
instruction emulation, and one which also supports the
switching between the NOS and MOS/VE CPU monitors. This
latter version of EI requires a partner intermediary called
the NOS Trap Handler which Is statically loaded with the
V I rtual S tate so ftwar e, and Is t oaded dur I ng deadst art of
NOS/VE. In order to assure that the right version of EI is
present, the HIVS tape which is distributed by Advanced
Systems Integratjon for use with NOS/VE is the correct version
to Install.

1.1.2 A170 NOS MODIFICATIONS

The modifications required to support a Dual State
execution environment are primaril, assembted in the BLOl70
procedure 'lie. Few specifics will be given here other than
to state that half a dozen Perlp~eral Processor routines are
Involved, as well as modification to NOS CPU Monitor. The key
as p e c t ton 0 tea b 0 u t the see 0 m po n en t sis th a t asp e cia I
version of A170 NOS deadstart tape must be used. Again, this
deadstart tape version Is supplied by the Advanced Systems
Integration project. There are additional procedure files
which must also be present on this special deadstart tape,
which are not documented here at this time.

1.1.3 AI10 NOS APPLICATIONS

A portion of the software alluded to as A170 NOS
modifications could be classified as A170 NOS Applications.
The applications referred to, however, are not present on the
deadstart tape, but exist as permanent files which are invoked
or processed by procedure files present on the deadstart
tape. In the strict sense of the word, those utilities which
are not execution order dependent or require system residence
are placed on the deadstart tape. uti lities which must be run
in a given sequence (and possibly 8S system origin) are
governed by procedure files which are present on the deadstart

1-3
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

--1.0 NOS/VE SYSTEM OVERVIEW
1.1.3 4170 NOS APPLICATIONS
-_ .. _--------_._--------------------------.-------------------------

tape.

1.1.4 THE VIRTUAL STATE COMPONENT

The Virtual State software consists of both a statically
and dynamica'ly linked component. The statically linked
component Is composed ~f Monitor and T.sk Services modules
while most other tasks are dynamically linked. In order to
staticallY link Monitor and Task Services, the SES utilities
VElINK and VeGEN or their Virtual State equivalents must be
used. In other systems this statical', linked system
component is commonly referred to as the "unconfigured
deadstart tape" or "bootstrao systemft • Once the "bootstrap
system" has been generated which has Its own LINKER/LOADER
equivalent, then it is possibte to deadstart this bootstrap
system and begin dynamic link/loads. One of the attributes of
this staticallY linked component Is that there Is more than
one partition associated with it. In order to keep these
partitions separate during the CI build process, these
partitions are placed on separate 'iles. The content of these
partitions Is described In a subsequent section or this
document.

Tne dynamically linked component of the Virtual State
software consists of II format object text which Is processed
by the NOS/VE LOADER. In order to create II format object
text, it is necessary to either use the utility "CITOII" to
convert el object text to II object text, or else use 8 II
compiler or assembler. In order to ~ake this CITOII utility
available to each task created by the Virtual State software,
the object text for this utility must be statically linked and
loaded Mith Monttor and Task Services. Once this utliity Is
made available to dynamicall, generated tasks, it is necessary
to retrieve the other utl'itles which estab1ish communications
with their A170 NOS counterparts. This Is accomplished by
executing a post-deadstart SeL procedure file which Initiates
the Rem~te Host and Interactive Facilities from the library
·OSLIB" (which in turn was created from the CI object text
file "XlJOSl").

The components mentioned thus far have been the statically
linked modules for Monitor, Task Services, the CITOI! uti lity,
and the dynamlcall y linked ~odules from OSlIB. There are
libraries other than OSlIB, some of which are necessary for
the successful execution of user tasks. Such a library is
SYSLIB which contains the Object Code Utl'ity modules which
provide for the creation of II object text libraries. The
SYSLI8 library must be made part of a job's object library
'1st If any II object library manipulations are to be made.
from the compiler perspective, the run-time libraries CYBIlIB,

1-4
ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

05/22/82

1.0 NOS/VE SYSTEM OVERVIEW
1.1.4 THE VIRTUAL STATE COMPONENT
-----_.--_._--

HATHlI8, FRTl. etc. must be created by ~ job which has SYSlIB
as part of its object library list. The compiler generated
object text for a compiler SUCh as CYBIl names the appropriate
run-time library in the object text records (eg. CYBILIS).
Thus, a Crall program must access the appropriate run-time
library (CYBIlIB) and make this 'ibrary part of the Job's
object 1ib,.ry list. This explicit manipulation of a Job's
object library list wit. eventually be replaced by Job
prologues Mhlch are created during accounting and validation
andlor user prologues which establ ish a job's execution
envlron.ent.

Build Q reflects Phase 2 of the restructuring of the NOS/Ve
oper~tino system into two distinct partitions the system
core and the job template. This restructuring Is necessary in
order to reach the Rl goa' of deadstarting NOS/VE in 1MB of
memory. In this system the system core will be able to
deadstart and support tasking, ~ith~~t the Job template. This
was compfeted in Build P.

The system core contains monitor, the NOS Trap Handler, and
all code that executes in ring 1, and consists of the
following libraries:
XlH~TR - Monitor mode procedures.
XlSl13 - Job mode procedures that have static data, write

Mainframe Wired, Mainframe Fixed or Job Fixed, or
make privileged monitor calls (these are most of the
modules that used to reside In XlJIIFl.

XlS133 A smal' subset of the procedures
XLS123 _ that used to reside in XlJ12F,
XLS130 XLJ13F, and XlJIFF that are
XLSIOD needed by the system core.
In the restructured system, modules in the system core cannot
XREF variables or procedures that are part of the job
template, and Indeed need not know nor depend upon any job
template code. The Job mode segments that come from the
system core will be in the address space of every task
(regardless of Job type) and witl have the same segment
numbers. Code cannot be added to or deleted from the System
core without 8 deadstart.

Atl the rest of the operating system code that does Q~t

reside In the system core is found in the Job template. This
code consIsts of Job Monitor and ring 3/run anywhere task
services, contained in the rollowlng libraries: XlJ223,
XlJ23D, and XLJ2DO (XlJ236 and XlJZ66 are linked In, but are

1-5
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

1.0 NOS/VE SYSTEM OVERVIEW
1.2 VIRTUAL STATE PARTITIONING
--~--.---------------._-----

empty In Build 0). In the restructured system, there may be
multiple Job templates depending upon the specific
requirements of the various Jobs In the system. These job
templates will be staged across the memory link .ft~L the
system core has been deadstarted.

The .odules on f.le XLJS8B consist of user tasks which can
be thought 0' as belonging to a third type of partition. This
latter partItion contains routines which run In Job mode In
the user ring (for the purpose of converting CI compiler
generated output into II format after it has been transferred
fro. the A170 NOS software to the NOS/Ve execution
envlron.ent). In the memory map, which Is described In a
subsequent section, the code for this user partition resides
in the "User Task(s) library" and is made a part of each task
created ror NOS/VE. The system restructure which occurred
with Build M made this partition relatively small (since this
partition must be loaded into memory at deadstart time).
A It" 0 ugh the bu I I d pro c e d u re s a I low for t his par t t t ion t 0 b e
replaced with one which contains additional user tasks, the
preferred method of executing user tasks is to GET them from a
NOS permanent file (after they have been generated by a CI
compiler) to the NOS/VE execution environment and EXECUTE
these tasks using the NOS/VE LOADER. If the execution
enylronment Is the simulator Instead of the hardware, then new
user tasks should be statically loaded In place of XLJBBB
using the NVELINK procedure.

Any XOCl'd symbol within a given partition can be XREF'd by
any module Mjthin the same partition. To allow other
Partitions to XREF these same symbols, the symbols must be
gated. Gating a symbol onty makes the symbol available to
other partitions during the J inking process, It does not
necessarily mean that the XDCltd location can actually be
referenced - that Is controlled by the ring brackets. In
general, only selected XOCL'd symbols are gated. A variable
or entry point may be gated in the source specification using
eYBIL and CPU ASSEMBLER language constructs, or the object
text may be modified by using the SES Object Code Utilities.
Refer to the MAPXX file, produced by the NVElINK procedure,
for a list ot the entry points available to a user task. A
convenient listing of these entry points can be obtained by
running the MAPXX linkmap file through the procedure NVEMAP
and specifying the keyword "TWO". The gated entry points are
f'agged In the section entitled "PYA, NAME SORTS" at the end
of the NVEMAP Iinkmap output. The NVEMAP keyword "GATED" will
list only thoses entry po1nts which are gated (see the
documentation for the procedure NVEMAP in Section 2 of this
doclJ ment).

Occasions arise in which procedures are of common utility
to more than one partition, but should not be gated across

1-6
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

1.0 NOS/VE SYSTEM OVERVIEW
1.2 VIRTUAL STATE PARTITIONING
_~ ______ ~ _____________________________________ ------- _ ____________ NN

partitions. In such instances, these procedures are ptaced
upon a "run-time" library such as CYRILIB, and references to
these procedures are satisfied at "LOAD" time from the
appropriate library. "LOAD" time satisfying of externals can
either be done statically or dynamical I,. A static load is
accomplished through the SES linker and Loader utilities.
Dynamic loads occur through the use of the NOS/VE loader
during the execution of a ClBO Job. Whenever possible,
dynamic lOading of routines is preferred (as in the case of a
compiler s~tlsfylng externals from a run-time library) since
this Is the mechanism which custo"mers of NOS/VE systems wil.
be using.

When bul .dlng a system, monitor must be tlnked first. All
gated symbols within monitor then become available to task
services, which is linked second Although some monitor symbols
can be referenced by task services, the only waY to execute
monitor code Is Yia the exchange jump - i.e., the CAll/RETURN
mechanism Is not valid for use between monitor and Job modes.
User tasks are linked last and can reference gated symbols
defined In task services. It is important to note that
although the linker will allow a reference to a given symbol,
the abi Iity to actually reference the location is determined
by the ring brackets on both ends of the reference.

When dealing with a virtual memory system it is often
necessar y to understand the real memory aspects of the
software which is present in the machine. The following map
describes the real memory aspects of the software, and where
It Is mapped during the deadstart process. To make this map
complete Mould require overlaying it with segment and page
boundaries. Rather than attempt to produce this overlaying
e'fect, su"lce it to say that (by convention) the boundaries
described In this map occur at even page boundaries. Whether
or not the pages which constitute any given area in the map
are paged Is a function of the attributes of the segment to
which the aTea belongs.

The rea' utility of this map is in showing the relationship
of values which are supplied to the SES Virtual Environment
Generator througb the skeleton SYSXOIR file. This skeleton Is
dynamically edited when the NVElINK procedure Is Invoked to
produce the (lw)XlDR file. The SYSXDIR variables are

A OV AN C E D S Y S T EMS IN T E G RAT ION PRO CEO U RES N or E 800 K - eye I e 3

\

1.0 NOS/VE SYSTEM OVERVIEW
1.4 DUAL STATE MEMORY HAP

1-7

05122/82

--------._-------.. -._--------------------_ ... _---------------------
underlined in the relationships described after the map. By
using the relationships 11ven, it is possible to compute the
relative starting locations or different areas within a NOS/VE
dump.

It should be noted that the relationships given here are
expressed In decimal byte addresses, while the machine
addr.sses are hexadeclmat. To pursue hexadecimal addresses
requires a copy of the linkmap file. Specifically, the load
addresses ror Monitor, System Corel Job Template, etc. are
contained in the Virtual Environment Generator output which
Immediately follows the LINKER output.

1-8
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

1.0 NOS/YE SYSTEM OVERVIEW
1.4 DUAL STATE MEMORY MAP
_____________________________ N _____________________________________ _

• • :<--- Machine Address 0 (zero)
: A1 70 N OS 0 per a tin g S y s t e III :

: :
• • • • • t

(Central Memory)

: ~.-----.----------~--.- . .-.---.-----
• t

• t
1
I

t

I I
1 NilS Extended Memor y (ECS) ,

:<--- Maximum NOS Memory Address
+--... .-------.... - ~-~.----- -----..---.------ +
• •
: NOS/VE Page Table

: NOSIVE Monitor
• •
• •
I
I
:

NOS Tr ap Hand I er

:<--- Load Offset
• • • t

:<--- Virtual load Address

I
/

+ . .--~---~------.--.-.-... ---.-----.-----.-~+

NOS/VE Task Services • • • •
(System C ore/Job Temp I ate):

1
I ,
•

I
1
:<--- NOS/VE length

+--~------------------------+ • " : {Available Memory Pages}
• :I

I
/

• • • t

• •
I
I
t •

+----.-.-.--.-~ ... ----.-.... ~--.---------... -+
• t •

: NOS Page Table and EI
• •

• • • • :<--- Highest Machine Address

ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3
2-1

05/22/82

2.0 OVERVIEW Of INTEGRATION PROCESS

The Integration process begins with the transmittal of a
software product, the command language procedures required to
build the product., installation procedure documentation, and
baseline documentation from the software development
organization. Subsequent to this transmittal, the Integration
project Is responsible for maintaining the program library,
sta"dardizlng the installation procedures, maintaining the
Installation procedure documentation, and preparing the
software release package for the Software Manufacturing and
Distribution organization. In the Interim" time bet~een the
Initial transmittal and the release of a software product, the
Integration project schedules periodic builds. The outputs
from these builds are delivered to software development and
test organizations andlor made part of the software release
package.

NOS/VE Procedures and Conventions
NOS/VE Command Interface ERS
NOS/VE Program Interface ERS
SES User's Handbook
CYBER 180 System Interface Standard
Simulated NOS/VE Program Interfaces
VEGEN E~ S
VElINK ERS
CY8Il Language Specification
cYaER 180 CPU CI Assembler ERS
CYBER 180 Simulator ERS
SES Procedure Writers Guide
CYeER 180 Object Code Utilities ERS
Source Code Utility ERS

ER S

Jll~1!.1l'lu1.QJ:

S.W. fewer
DeS - ARH360Q
Des .. - ARH3610
Des - ARH1833
DCS - S21Q6
Des -ARH3125
DC S - ARH25C;1
Des - ARH2816
Des - ARHZ2Qa
Des - ARH16Q3
Des - ARH1729
Des - ARH28q4
Des - ARHZ922
Des - ARH3883

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.2 STANDARDS

2-2

05/22/82

--
2.2 S,IAti12A8.I1S

In order to facilJtate the Installation process, certain
standards wltl have to be set and adhered to by al I members of
the Operating System and Product Set. These standards wi.'
cover the fol'oNing items:

a JA I I pro gr II m libraries will have the sam e f 0,.. mat , this
wilt be defined by (T8D).

b) All output tapes wll' conform to some predetermined
format in terms of n U In be rs of fl' e s and what each f I Ie
will contain. This will be defined by (T80).

ct The above formats are intended to facilitate
establishment of procedurallzed Installation decks.
This Implies that some convenient naming conventions
must be observed. These conventions will be defined
by (TBO).

The Integration project but tds two systems In parae. el and
manages two catalogs for each system. The primary system is
the system that is between the beginning of the build cycle
and the feature code cutoff. The secondary system Is between
the feature code cutoff and the end of the build cycle.
Primary system files begin in the INTI catalog and move to the
INT2 catalog after the system has passed Confidence Testing.
After a system has reached Its feature code cutoff, a
stabilized feature build is moved to the DeVI catalog, the
build from INT2 is moved to DEV2, and this system is now
considered the secondary system. Also at this time, a new
primarY system Is started In the INTI catalog by adding its
planned feature code to the previous primary system. When a
build has completed Its integration cycle, the final bui Id for
that cycle Is moved to the REll catalog. It is at this time
that a build is considered a candidate for transmittal to
other facl I itles for further development work, a final Bui Id
Content Report is distributed and whatever usage documentation
that Is available Is distributed.

ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

2.0 OVE~VIEW OF INTEGRATION PROCESS
2.3 CATALOG MANAGEMENT POLICIES

2-3

05/22/82

~~M __ M_M~_MMM __ MM~ _____ N_N_NNNN_NMMM_N_MMMM __ N_M_N _____ M_M ____ M ____ _

The fol lowing diagram illustrates the function of each
catalogl

• • Primary System Secondary System: Transmitted System:
+ ... ~- --------.-.----.-----+.~-----.-- ---.... -.---..... ----+---.--------------.-----+.-----.---.---~ -.----... ---+
: Working Catalog

: latest Stable
: Build Catalog

• • • •

INTl

I NT2 • • • •

DEVl

OEV2 : REll • ,
• ,

+ -~ -.--.----~-.-.----.-+~----.-.--------.--------+-... ---.... --..-..----------_.--.--. .-_+-_._._----------------------_ ... +

In general, procedures executing from a given catalog
access only those fi les which have the same level of
verification associated with them. The INTl and INT2 catalogs
will access the most recent campi lers" SES tools, etc. whi Ie
the DEVl and DEV2 catalogs access a previous, more stable
level of utilities.

The REll catalog represents the "frozen" catalog for which
chaAges are no longer being accepted (typically a snapshot of
the last build cycle). This is generally the system that Is
being run In SVl closed shop and Is retained for duplicating
problems round there. The REll catalog wilt change no more
frequent'Y than once for each build cycle. The INT2 and DEV2
catalogs contain the latest stable builds (i.e. the builds
haye passed Confidence Testing) for the primary and secondar.y
systems, respectively. The INTI and DEVI catalogs, however,
are "working catalogs" for the debug of neN system 'Ixes, new
procedures, etc. The stability of these catalogs cannot be
predicted.

In order to understand the procedure descriptions which
folloM, something should be said as to the sequence in which
these procedures are used to generate systems. The following
Is an attempt to accomplish this:

2.4.1 INTRODUCTION

The command language procedures corresponding to NOS/VE
bu f Ids a' Ire sid e i n th e I NT 1, IN T 2, 0 e V 1, 0 r 0 EV 2 cat a log s
de~endlng upon the desired level of verification the system
has attained. It is assumed that the DEVl level of
verification Is the minimum level of system verification
required by most users" therefore the OEVl catalog is
frequently referenced in the remainder of this section. To

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

z.o OVERVIEW OF INTEGRATION PROCESS
2.4.1 INTRODUCTION

2-4

05/22/82

----.-._--
obtain a listing of the complete set of command language
procedures provided In the Integration catalog, execute the
following command language sequeocel

SES.lISTPROC S-SESPlIB UN-<Integration_Catalog)

Before running the build procedures as batch jobs, a check
must be made to Insure that the user number under which the
job \If i ., run h 8 S S u f f i c i en t val ida t ion lim its for the Job t 0

execute. The minimum values for certain limits must be as
followsl

eM • 24378
NF • un I i mj ted
MS. un I 1m i ted
OS - 4096
EC • 2008 (If simulator is to use lCM)
DB • unlimited (each tibrary is built via batch job)

The current values may be obtained ~Ith the LIMITS control
statement. If they are not large enough, have the operations
staff change them.

2.4.2 INVOKING THE PROCEDURES

The procedures described below are documented as
"SES.<Procedure_Name)". In actuality, to Invoke the
procedures In this manner assumes that there is a file named
'PROFIlE' In the current catalog which names the Integration
catalog to search for the procedure (via the 'SEARCH'
directive). The alternative mechanism for Invoking these
procedures Is to code the procedure call asl
·SES,(Integratfon_Catalog>.<Procedure_Name>". Many of the
procedures use the 'PR~UNAM' value for substitutable user
names, meaning that the cataloQ In Mhtch the procedure is
found Is the catalog which is searched for files. This is as
It should be, since each of the Integrat10n cataloQs contains
8 different version of the system.

AI. of the procedures described in this document
"HELP" documentation associated with them. Use
SeS,(Integratlon_Catalog>,HELP.<Procedure_Name> call to
procedure documentation printed at your terminal.

Practically all of the procedures described in
document are written to execute in "BATCH" as wetl as
mode. In order to provide a consistent result when

have
the

have

th Is
I oc e'
these

2-5
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

._--2.0 OVERVIEW OF INTEGRATION PROCESS
2.4.2 INVOKING THE PROCEDURES

--
procedures are run, It Is necessary to save many of the
generated files as permanent files. While some purists see
this as "catalog polution", we make al I attempts to preserve
only those files which are necessary for future reference or
usage. Whenever possible local file names generated by the
procedure are given unique names so as not to conflict with
any user files. In numerous instances, convenient "reserved"
file names are used to enhance the conflgurabillty of these
procedures. For example, all files accessed by the procedures
are searched for first as local files, then as permanent files
in the catatogin which the procedure Is executing, then
(optionally) in the catalog specified by the 'AREA' parameter
value, and flnatly in the catalog in which the procedure waS
found. Thus, if the name of a tool accessed by the procedures
is known, several versions of this too. can be tried through
Iterative executions of the procedures without requiring
pro c e du rem 0 d i fie a t i on • To aid i n t he is 0 I at ion 0 f too I s
accessed by the procedures a "common deck" type structure is
included In the procedure libraries which names many of the
tools to be accessed by the procedures. These structures
exist as records on the procedure library which are INCLUDEd
Into the relevant procedure fli I e. Initially we have
partitioned these toots into the records 'TOOlAll', 'TOOll7a',
and 'TQOllaO'. Experience has shown this partttitioninQ to be
somewhat combersome for some of the procedures' and wi' I
probably be fine-tuned in subsequent revisions of the
procedure library.

Some of the procedures contained on the procedure libraries
change very frequently due to changes in system structure or
for other reasons. It is Inevitable that errors creep Into
the procedures at times. Often it is quicker to change the
eeL generated as a result of invoking the SES procedure than
to chanqe the procedure library. The SES processor may be
invoked via the SES,TEST.<Procedure_Name> mechanism and the
resultant eel is written to a file named SESTEST. This
SeSTEST fl Ie may then be edlt~d, and the offending control
statement corrected. A subsequent CAll,SESTEST statement may
then be used to execute the corrected Cel. White we do not
necessarily condone this approach to fixing procedure files we
can hardly deny Its existence. If, for example, It should
prove necessary to provide our customers with installation
procedures for software which we generate with SES procedures,
it Mould be our intent to ship the SES generated eeL
statements rather than the SES procedure ind a copy of the SES
processor.

ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

2.0 OVeRVIEW OF INTEGRATION PROCESS
2.4.3 CURRENT PACKAGING Of NOS/VE SOURCE

2-6

05122/82

--._------------
2.4.3 CURRENT PACKAGING Of NOS/Ve SOURCE

There are two execution modes of NOS/VE which are referred
to as the "standaloneD mode and the "dual-state" mode. A" of
the NOS/VE source modules which execute In the ell80 ~irtual
State are contained on a program library named 'NOSVEPLt. The
program Interfaces to the Virtua. State system, those
described In the NOS/VE program Interface ERS, exist as common
decks on 8 program library named 'OSLPI'. The content of
these two program libraries Is referred to as the standalone
system. A deadstart tape can be produced of the standalone
system for execution on the hardware, or the output of the
Virtual Environment generator can be executed directly on the
Hardware System Simulator. The lID support of this standalone
system when running on the simulator Is defined in a separate
set of common decks on a program library named 'CYSICMN'.
Refer to the Simulated lID ERS for documentation of these 110
interfaces.

The dual-state execution of NOS/Ve, In conjunction with the
NOS operating system, requires NOS system modifications and
the presence of a set of NOS utilities and procedure files.
The software which supports this dual-state environment from
the 'NOS' side of the hardware is contained on a program
library named 'VE170Pll. Included In this package of NOS/VE
support programs is a software application cat led the Remote
Host Facility which supplies JOb-to-job communication between
the Virtual State and NOS portions of the CYIS0 machine.

2.4.4 UPDATE THE SOURCE LIBRARIES

The Integration project typically updates the base source
libraries prior to starting any recompilation or assembly of
the system. In order for a user of these procedures to modify
the source of a system routine he/she can use the SES
'GErMODS' procedure to extract the source being mOdified, or
create the source In some other manner. If GETMOOS was used
to extract the source, then REPMOOS can be used to put this
changed source on a MADIFY program library In the user's
catalog. Then the filename containing this program library
must be specified as the value of the tA8' parameter of the
NVEBIlD procedure. (Refer to the Source Maintenance Section
of the SES User's Handbook if you have questions about source
malntentnce.)

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.4.5 COMPILE/ASSEMBLE FROM SOURCE

2-7

05/22/82

__________________ • _____________ H ____ H __________ -----~ _______ H _____ _

2.4.5 COMPILE/ASSEMBLE fRO~ SOURCE

The efficiency of the Integration build procedures is a
function of how much of the system Is being built and how much
information is supplied to the procedures when they are
invoked. If the name of each module to be recompiled and its
object rile residency Is known prior to Invoking the
procedures, then the most efficient method is to use the
NVEBIlO procedure and specify the lists of module names and
lib r a r y names v j 8 the' M , and , L' par em e t er s • If 0 n I y the
module names are known, then the ~VEaIlO procedure with the
1M' parameter specified should be used (a search for the
library names wi I I be used) • If 0 n I Y8 mo ds e t file is
aya'iable, the scope of changes is not readily apparent (i.e.
severa'common decks are changed) or the number of modules to
be recompiled is prohibitively large for manual specification
to the ~VeBIlD procedure, then the NVEBLD procedure can to
used to automatically generate the correct NVE8IlD procedure
ca"~ (using a NOSVEPL cross reference). If it has been
determined ahead ot time that several modules on the same
library are being changed, then It is more efficient to
rebut td the entire I ibrary using the 'L' parameter of the
NVEBIlO procedure. If severat Ilbrar les need to be rebut It
(as In 8 ful' system build), then the NVEBILF procedure should
be used.

The general phi losopy behind the NVE8IlO procedure Is to
extract the latest source of a module from a program library,
compile or assemble the source. to Droduce the appropriate
object text, replace/add the updated object text to the
appropri~te system library, and save this library in the
Cit a , 0 gin w h I c h the pr 0 c e d u r e j s ex e cu ted. The fin a Ire sui t
of the execution of the NVE8ILD procedure should be an updated
system library in the current user's catalog which is ready
for the 'LINKER' phase of the bui Id. Jobs which run in "user
mode", that Is the interface to the system Is ~nl~ through use
of the program interfaces (OSlPI), are saved merely as object
text files In the user's catalog and LINKER-LOADER directive
modifications are required to Include these files 8S part of
the system. This latter capability will gradually be replaced
by the Virtu.' State LOADER and Library Generator features as
they become available.

ADVANCED SYSTEMS INTEGRATION PROCeDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.4.6 8EGIN THE LINKER-LOADER PHASe

2-8

05/22/82

_________________________________ N _________________________________ _

2.4.6 BEGIN THE LINKER-LOADER PHASE

The LINKER (SES53A6) and LOADER (SES53A5) are packaged
together In the Integration procedure NVELINK. This is for
convenience purpOSes, in that most LINKER changes to the
system require a corresponding LOADER directive change, and
the Intermediate results from the LINKER execution are not the
primary output used for system checkout. Prior to starting
the lIt'lKER-lOADER phase of system but Ids, some decisions need
to be made as to the target execution environment for the
resultant output.

If the target execution environment is standalone NOS/VE,
then the 'lW-SIM' parameter to NVELINK should be used to
produce the file named 'SIMXX'. This file can be run on the
Simulator using the NVESIM procedure, or can be used to create
8 deadstart tape using the 'VSNf parameter of the NVESYS
procedure.

If the target execution environment is a dual-state
environment, then the fLW=SYS' parameter must be used
flrst,then 'lW=JOBf. The 'SYSXX,JOBXXYY' file Is used by the
NVESYS procudure to produce a deadstart tape image on disk
named 'TPXXXK', which the dual-state deadstart procedure NVE
.. I , I t tt enf i n d • R ef e r t 0 A p pen d i x 0 for 0 u a I - S tat e and
standalone deadstart procedures.

2.4.1 GENERATE THE DEADSTART FILE

In order to generate a deadstart tape for standalone
NOS/VE, It is only necessary to run the NVESYS procedure and
specify the VSN of the tape to be written. Prior to
generating a dual-state deadstart file, however, It Is
necessary to verify that the utilities necessary to support
the d u a 1-$ tat e deadstart have been rebuilt Y i a the 0 S B I L 0 and
BlDEI procedures. There are two portions or the dual-state
EIJ the A170 portion Is buitt using the SlOEI procedure, and
the Cl80 portion (the NOS Trap Handler) is rebuilt using the
NVEBIlO procedure (deck named OSANTH).

The procedure NVEBIlO Is used to add or replace modules on
a base object text file. NVEBILO retrieves the source module
frol a program library, using the following search ordera

ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.5 NVE8IlO PROCEOURE DESCRIPTION

2-9

05/22/82

••• ___ ••••••••••• __________________________ • _____ -----___________ NNN

1) an alternate base optional'y specified by the
use r «I 0 0 kin 9 fir s tin til e cur r en tea t a I og , and
then In the (Integration) catalog)

2) OSlPI (from the <Integration) catalog)
3) NOSVEPl (from the <Integration) catalog)

This module is then compiled or 3ssembled, and the
resu1ttng object text Is either added to or replaced on a base
file. A new version of the base file will be created in the
current catalog, if 'FULL' keyword is specified If 'FUII' is
not specified, these procedures will create (or update
existing) library flle(s) In the current catalog, the
resulting contents begin only the modules which were just
compiled (added to any previously modifyed binaries). The
names of the library flle(s) will be the same as the
destination integration library(s) for the modified modules to
enable them to be merged with the integration binaries during
the linking phase. This applies to selected module
compilation only (1m' option). I f the 'LISTING' parameter Is
specified a direct access file NOSLIST which contains the
compilation or assembly listing{s) 0' the module(s) compiled
or assembled (one listing per record, headed by the matching
MADIFY module name, wilt be created. If you specified
'listing • tape vsn t then the listing will be archived to the
tape. THis II stingeln be I isted via the lISTNVE procedure
described In this document). If there are any compilation
errors, the error listing(s) will be put on the direct access
fi Ie ERRORS (which has the same format as NOSlIST) in the
current cata'og. The direct access flleERRlIST wilt contain
a one line error message which indicates the type of error
detected for all errors diagnosed by the procedures. 8y
listing the ERRLIST file fro~ a terminal, a summary of t~e
number and types of errors encountered can be determined.
T h er ear e con d i t ion s s uc has un r e c 0 v er a b led i s k err 0 r s w hie h
can cause erroneous messages to occur in this fi Ie. In such
case it Is necessary to examine toe DAYFILE produced by the
procedure to Isolate the problem.

If a specified module is to be replaced (i.e. it is
already part of the existing system), NVEBILO wit I by default
use the same compilation options and will replace It on the
same base object text file as when it was first added to the
system. These options may be overridden by specifying the
corr.spondtng parameters described below.

If a specified module Is new to the system, the compi lation
and base object text fl Ie options may be directly specified
using the parameters described below. If a ll~t of new
mOdules Is specified, the compilation and base file options

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.5 NVESILO PROCEDURE DESCRIPTION

2-10

05/22/82

- __ ._ •••• _._. _____ ~ _________ N ______________ -----------_____________ _

must also be specified as lists, and NVEBILD will match
everything UP positional'y. If these parameters are Q~t
specified, and NVEBIlO is executing In LOCAL mode, a warning
message wl.I be Issued telling the user that the module Is not
In the current system. The user wi II then be prompted for the
necessary information. If these parameters are not s~ecified
and NVEBILD Is executing in BATCH mode, the compilation and
base file options default as specified below.

If the 'It parameter is specified, each module's object
text NIII be copied to 8 temporary fZ' 'lie. The old library
file 'III' then be purged" and the 'z' fite will be renamed as
the new library fite.411 compilation listings will be
lIBEDtT1ed onto NOSlIST from 8 temporary listing file at the
end of the procedure.

When an entire I.brary is being rebui I tv ia the' I'
parameter, the module names and their corresponding
compilation options are obtained from a file which contains
all this information for each library. NVEBIlO searches for
this fl'e first in the current catalog, and then in the
(Integration) catalog. The name of this file lJlU.s! be the name
of the "brary minus its first character (e.g. 'lJ230' for
the lib r ar y t)(L J 2 3 0'), a nd the fir s t lin e 0 f t hi s l' i I e DlU~ t b e
the 'lie name. To make additional entries or change existing
entrtes in this file, the following procedure should be
folloMed.

1) EXTRACT,(IJbdeks>/UN-<Integratlon>.
(where <llbdeks> is the name of the compilation
information fite for the library as described above, and
<Integration) is the Integration catalog)

2) Edit <Ilbdeks> to add or change entries. The format and
spaCing of each entry is important and must be as follows.

«m>,(c),<xref>,<ll>,<t2»
where

m • a 7-character left-justified module name
c • a I-character compilation option ('0','1', or f3';

see description of 'c t parameter below)
xrer - a 3-character left-Justified crOSS reference

option (either 'YES' or 'NO ')
11 • a 7-character left-Justi fl ed desti nation libra ry

Il ame.
12 • a 7-character left-justified secondary library

destination name.
the entries currently tn these fi les all follow this
'ormat so that any addltiona' entri es may be lined up
quite easily with them.

3) SAVE,<libdeks).

AOVANCeG SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

z.o OVERVIEW Of INTEGRATION PROCESS
Z.5 NVE8IlO PROCEOURE DESCRIPTION

2-11

05/22/82

----_._---
NveBIlO (with the fit parameter specified) may then be used to
rebuild the library using these new/modified compi lation
options.

The format of the NVEBIlO is as follows'

SES.NVESllO [m-«modute name> •• <module name» 1 [,.< I i bra r y name)]
[c:«compllation optJon) •• <compllatlon option»]
[area :I < user name > 1
[xref-« xref option> •• (xref option»)]
[listing: keyword or keyworda(tape ysn)l
[full- keyword 1
[ab • (alternate base) J
[omit :I «module name> •• <module name»]
[link :I (parameter string for NVELINK> 1
[test :I (parameter string for NVESIM> 1
[print]
[betch]

m I The mOdule name, or range of modules, or I ist of
module names.

I I The library name(s) onto which a newly compiled
module (or modules) Is (are) to be added or
rep I ace d • 1ft he' M • p ar am e t e r has not bee n
specified, then the entire library Is recompiled.
To recompile several lIbraries at a time It Is
recommended that the NVEBIlF procedure be used.

C t C a 0 to assemble a module
c • 1 to compile a CrBll mOdule (DEFAULT)
c • 3 to compile a CYBIL module using CYBICMN type
decl arations

area t Option to ohtaln the object fll es or linker
parameter files from another user's catalog (other
than the current catalog in which the procedure is
executing). The default is for no area user
catalog to be searched.

10 •

ab t

list options
compilations.
0, I, 'II, R,
(zero) •

to be in force during CYBll
May be any combination 0' A, C, F,

or 0 (zero). The default Is 0

The user's alternate base program
containing new and modified mOdules. The

library
default

2-12
ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIE~ Of INTEGRATION PROCESS
2.5 NVEBIlD PROCEDURE DESCRIPTION
-----_ .. --... ---

om It 1

is' NE WD KPL '.

Used when running a ful' build, a module name or
list of module names to omit from the build. The
default is none.

listing t For producing compilation listing as a permanent
file or archive the listing to the tape.

fa tit

link t

test t

print 2

batch t

tilIf t

The default Is not to save the listing.

To add or replace modified modules Into object
libraries. The default is only put modified
module(s) into object library.

string passed as the NVELINK parameter list, to
optionally invoke the linker after compi I ing. The
default is to not .ink the system.

String passed as the NVESIM parameter list, to
optionally invoke the simu'ator after linking.
ThiS parameter is invalid if the 'LINK' option has
not also been specified. The default is to not
run the simulator test.

Option to print the link map following the tlnking
of the system. The default Is not to print the
link map.

Run NVEBIlO In BATCH mode. The default is to run
It locally.

One of 'm' or 'II parameters m~~t be specified.

2.'.1 NVEBIlF PROCEDURE DESCRIPTION

~VEB(lF Is an SES procedure file which submits one batch
procedure execution of NVEBIlO for each system library, each
with the 'I. parameter specified for the library to be built.

The format of the NVEBIlF Is as followsl

SES.NVEBIlF [I • <library name)1
[batch]

I a

[listing • (tape vsn>l

The '.' parameter specifies the 1 ibrary to be
built. It can be one library or a list of
libraries. The default Is to rebuild the entire

2-13
ADVANCED SYSTEMS INTEGRATION PROCEDURes NOTEBOOK - Cycle 3

OS/22/82

-----_ ... _--2.0 OVERVIEW OF INTEGRATION PROCESS
2.5.1 HVE8IlF PROCEDURE DESCRIPTION

----------_ .. _--

listing'

r
batch I

system.

To archive the tisting to the tape. The default
is not to archive the listing to the tape.

Run N V E 8 I IF i n B A TC J.f mo de. The d e f au I tis to
run It locally.

Note. To rebui Id one library, the following are logically
equlvalentl

1) SES.NVEBIlF .=< library name>
2) SES.NVEBILO ,-< library name> batch

The expansion of either or the above procedures can be
prohibitively long when being run from a terminal. The
'batch' keyword on the NVE8IlO procedure is implemented for
the express purpose of freeing up the terminal for other
purposes (the procedure expansion Is done Mithin the BATCHed
Job).

2.5.2 NVE8l0 PROCEDURE DESCRIPTION

The NVE8l0 procedure generates and routes to the Input
queue a set of NVEBIlO jobs which compile the modified or
replaced decks and those decks which call modified or replaced
common decks. First, NVEBlO flnds the decks modi,led by
creating a list of all the * 0 E C K tines In the t m f • f I I e (s)a n d
a list of all the decks in the 'dkf' file(s). It combines the
two lists, sorting and deleting duplicate names. The combined
list Is checked against the current list of modu'es which make
up NOS/VE, using the cross reference file from the txrf'
parameter. Then the procedure again creates two I istsl a list 0' lftodul es to be compi I ed and a list of common decks to be
checked. A subset of the cross reference is used to generate
a list of all decks referencing the given common decks. The
list or modules and the list of decks referencing the modified
common decks are combined, sorted and duplicates are removed.
This final list Is then used to generate the NVEBIlO Jobs to
complte the necessary modules.

The format of the NVEBlO Is as fol lows:

SES.NVEBlO [mf a <fi Ie_name>]
[dkf - <file_name>]
[xrf a <fite_name>]
[nl • <library_name> 1
(area • <user_name> 1
[a b • <r i Ie _n am e >]
[listing • <tape vsn>J

2-14
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVe_VIEW OF INTEGRATION PROCeSS
2.5.2 MVEBLD PROCEDURE DESCRIPTION

--

mf t

dkf I

xr f a

[rut I • keyword]
[batch: local : defer : batchn]

The file or list of files which contains the
modsets or a list of *OECK deck_names. If the
parameter is omitted the fife HODFIlE Is used.

The file or list of fites which contains the new
or replacement decks in a group fife format. If
the parameter Is omitted the file DECKFIl Is
used.

The NOS file name ror the file containing the
cross reference of NOSVEPl. If the parameter Is
omitted the file XNVEPl is used.

nl J The list of library names to be omitted from the
bUild. There Is no default.

area t The search order to find any fite. If the
parameter Is omitted the user names of the current
user and the user name of the procedure are used
for the default user names.

ab I The file name of the alternate base. The default
is NEWDKPl.

tlstirlQ t To archive the listing rile to the tape. The
defautt is no listing Is archived.

fu I I I To add or rep'ace modified module(s) Into object
libraries.

batch: local defer batchn I The job run mode of the
procedure. If none are defined LOCAL is used.

2.5.3 lISTNVE PROCEDURE DESCRIPTION

LISTf'lVE Is an SES procedure fila whl ch extracts the
compilation listings of the modules specified by the 'M'
parameter (module names correspond to the MAOIFY deck name
given the module) from a text I iorary file and writes them to
the file specified by the '0 1 parameter in a printable
format. The tH' parameter may select a single module, a list 0' modules, and/or a range of modu'es on the library file.

The 11brary file
selected via the 'I'

which contains the listings may be
parameter, and defaults to NOSlIST.

2-15
AOVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCeSS
2.5.3 lISTNVE PROCEDURE DESCRIPTION
--.----------------. __ .-

LISTNVE Miil search for this 'lie
first" and If It Is not there
specified by the 'AREA' parameter.

in the current catalog
It will go to the catalog

When lISTNVE has completed, the output file selected by the
'Of par ameter wi" be a local f I Ie. It is !l9.t automat lea' Iy
printed unless either the '?RINTf or 'BATCH' option is
selected.

The l' or mat O'f the lIS TN V E I s as f 0 I lows:

SES.lISTNVE

m I

f : f r OIR J

vsn I

[m • (<module name> •• <module name>)]
[i • (fA Ie name'>]
[vsn a <tape vsn>]
[0 • <P r in t f i len am e>]
[area:: <user name>]
[pr I nt]
[fiche • <tape vsn>]
[ba tch 1

The mOdule name(s) and 1 Or range of module
names which are to be extracted for
printing. The default is to extract and
format ~1! of the modules.

The name of the text library file from
which the compllati on 'istlngs are to be
extr acted.

Tape vsn.
to the tape.

For arch i v i n 9 the lis tin g fit e
The default is NOSlIST.

o : to upon I The name of the file which will receive the

ar ea •

pr I n t t

fiche I

formatted I istings to be printed. The
default is LISTING.

The name of the catalog to search for the
library file should it not be found tn the
current catalog. The default Is the
<Integration> catalog.

Option to print the listing file after it
is formatted. The default is to not print
the I istlng file.

Write listing output to the tape with this
VSN in a format suitable for mjcroflching.
The default Is to not microfiche the
listing.

ADVANCED SYSTEMS INTEGRATION PROCEDURes NOTEBOOK - Cycle 3

2.0 OVeRVIEW Of INTEGRATION PROCESS
2.5.3 lISTNVE PROCEDURE DESCRIPTION

2-16

OS/22/82

--.-._------------------------
batch J Run lISTNVE In BATCH mode. The default is

to run it 'ocally.

~VElINK is an SES command language procedure file which
wltl calt both the VI: Linker and VE Generator (supplied by the
Development project) to produce various optional image files
and link map files. In order to do this It wll' link monitor
and task service routines from their object text files. It
will search all files that it requires 1) from local files 2)
trom the current catalog, 3) from area userts catalog (I' the
area parameter Is specified), 4) from the (Integration)
catalog.

It Is no longer necessary to keep complete object libraries
In the current/area catalogs when modlflcatJons have only been
made to 8 few modules. Instead., the .c.b..iQ.,g~g modules should
res Ide on (an) 0 b j e c t f i I e (s), wit h t he s am e n am e (s) as the i r
destJnatlon object library(s), In the 'current/area
cat.'og(s). NVElINK then applies these modifications on top
of the current (Integration) libraries, applying first the
area catalog changes (if any) and then the current catalog
changes (this function is oerformed by the SES GOF utility
entirely on local fi les; at procedure end the I ibrari es
residing in the current/area catalogs remain exactly as they
were before NVElINK was Invoked). This made necessary an
option to dynamically ~~1~1~ modutes no longer needed on a
library. This Is done via the to' parameter, which specifies
a 'lie containing the name(s) of the module(s) to delete and
the lib r a r y (s) to del e t e i t (t hem) fro m. T his f i I e JlUI~.t b e i n
the format 111ustrated by the following example:

F-(XlS1301,MODULE-(PMMSPROGRAM_SERVICES,
JMM$PROGRAM_lEVEl_INTERFACES,PMMSSYSTEM_TIME_REQUESTS,
MlMSHANOlE_SIGNAl)
F-(XlSIOO),MOOUlE-(OSMSINTRINSICS)
F-(XLJ223),MOOUlE-CAVMSINITIAlIlE,AVM$JOB_AccaUNTING_KERNEl,
AVMSJOB_lIMITS_MANAGER,ClM~READ_INPUT_FIlE)
etc •••

!jAil' Each new entry (flagged by "F-") 1Il,U.s1 begin in column
one of a new line. Also,each library file name and list of
mod u I e slIU~.t bee n c I os e din pa ran the s e s •

~VElINK will link anyone of the 'ollowinga the Production
System Core and/or the Recovery System Core, or the Production
Job Template and/or the Recovery Job Template. The choice is

2-17
ADVANCE'D SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.b NVElINK PROCEOURE DESCRIPTION

------._--
made via the 'lW' and 'REe' parameters (see descr Iptlon
below). The fo. lowing table indicates what output fi'es are
saved in the current catalog after NVElINK has completed, and
what their various names are depending upon the flW' and 'REC'
optlons l

: lW-JOB REC : LW-SYS REC
..... ---.. -----....... --.... -----... -.--.... --..--------------.---.--------~---.-,--~-------... --_ --
checkpoint: PJB(cld><jld>: PSY<ctd) :RJ8<cld><Jld>: RSY(cid>
file f ::

linkm8P : PMP<cid><Jid>: P~P<cid> IRMP<cid><Jld>: RMP(cld> -... -- --.-.-..--... ..-,-.--~-... .-------...... -.... ---------------.----.-------~----. ... _------_ _---
outboard
s ymb 0 I
tables

t
: PJBST<ci d)
t •

t
t

: PM T S T < c i d > : RJ B.s T < c i d>
: PSYST<ci d>:

• • : RMTST<cid)
: RSYST(cld>

---~.-..-.~-..---.------ ~-------.-----.---------~------..---.-... ----.--.--.--... -...---------.-.-... -----
loader :
directlvest JOBXLDR
file

link e r
debug
tab' e

• ,
: PJBXDBG

• ,
: pSYXLDR : JOBXlDR

: PMTXOBG : RJ BXDBG
: PSYXD8G

where (cid> • Value given the ern parameter, and
<Jld> • Value given the JID parameter.

• •
: RSYXlOR

,
•
: RMTXDBG
: RSYXDBG

TO link additional user JObs Into the system, create a fi Ie
in the current catalog containing the commands needed to
obta ,n af I the necessary fll es as well as a call to VElINK for
each user Job to be tlnked. Specify this file via the ADO
parameter, and NVElINK will pick it UP and physically insert
it .nto procedure command stream immediately following the
last ca •• to VElINK. Ib§_flt~t_l1n~_lQ_tbl~_!i!~_HU~I_b~_tb~
till_0.lIlAll_

The rormat of the NVElINK is as fo'iowsl

SES.NVElINK [Iw • (link option>]
[ree]
[old - (core Id > 1
[Jld • < job id >]
[ps - < page size)]
(p t I • < p a get a b I e I en gt h >]
[d a < DEOM directives file name>]
[add - < additional 'inks file>]
[uJ ::& (I 1st of ob Jec t fi I e s >]

2-18
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.6 NVElINK PROCEDURE DESCRIPTION

--_.--------_._---

I w I

rec t

cld •

Jld t

PS I

pt 1 s

d :

add :

[nvesim • < p sr ameter s tr in 9 for NVESIM > 1
[nvesys .. < parameter s tr in g for NVESYS > 1
[dump/nodump J
[ar ea .. < user name > 1
[debug]
[print .. < link option >]
[batch]

The link option, used to determine which
·pieces" or variations of the system are to be
I Ink ed.
lW a JOB links only the system job template
(DEFAULT).
lW .. SYS links only the system core.

Option to link b~tb the Production and Recovery
System Cores/Job Templates (depending on the
'lW' selection). The default Is to link only
the Production System Core/Job Template.

Two character string which becomes the system
core ident.fl er and is appended to the names of
the NVElINK output files to identify the system
core version which was just linked or which is
to be u sed i nth e c ur r en t Ii n k of a Job
template. The default is lXX 1 •

Two character string which becomes the job
tempt ate identifier and is appended to the names
of the NVELINK output 'iles to identify the Job
template version Just linked. The default is
'VY'.

Page size of the target NOS/VE system, expressed
In multiples of 1024 bytes. Values may be 1, 2,
4, 8, 16, 32, or 64. Default Is 8.

Page table length of target NOS/VE system,
expressed in multiples of 1024 bytes. Values
may be 4, 8, 16, 32, 64, 128, 256, 512, or
1024. Default is 32.

The name of the rile containing. the Information
necessary to delete modules from libraries
before linking. The format of this file is
described above. The default is to not delete
any object modules before linking.

The name of the fi Ie containing the commands

2-19
ADVANCE'D SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
Z.b NVElINK PROCEDURE DESCRIPTION

--
needed to link additional user
system. The default is to
additional user jobs.

jobs Into the
not I ink in any

uJ I (list of) object fi I e(s) containing user
programs which are to be linked into the system
along with the library XlJBBB.

n.eslM t String passed as the NVESIM parameter list, to
optionally Invoke the simulator after linking.

nvesys , String passed as the NVESYS parameter list, to
optional'y build a deadstart file or stand-alone
deadstart tape after linking.

dump/nodump Option to print a memory dump of the system.
The default Is 'NDDUMPJ.

area I Option to obtain the object files or linker
parameter files from another user's catalog
(other than the current catalog in which the
procedure Is executing). The default Is for no
area user catalog to be searched.

debug a Option to save the linker output debug tables as
permanent fi les In the current catalog. The
n am e s 0 f the s e f i , e s " when s a v ed, are 9 i v e n i n
the table above. The default is to D~1 save
these files.

print I The print option, used to determine which
'Inkmaps to print. The default is not to print
the Iinkmap. If only the print keyword Is
specified, the linkmap(s) matching the 'LW'
option selected is printed.

batch t Run NVElINK In BATCH mode. The default Is to
run It locally.

2.6.1 lPF FILE DESCRIPTION

The
specify
of the
supp II ed
includes

LINK commands used
en 0 ugh I n for mat I on to
linking operation.
to the tinker through
information such ast

In the NVElINK procedure do not
totally define the requirements

Many additional parameters are
additional data files. This

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.6.1 LPf FILE DESCRIPTION

2-20

05/22/82

_ •• ___ • ___ ._. ___ • __ •• _______ •• __ •• ~._. _______ • ____________________ MN

- Ring Numbers
- Segment Numbers
- Segment Attributes
- Execution Privilege

Currently this information is supplied to the tinker via
the SES linker Parameter File (LPF) '1 Ie. The linkage between
the linker and the lPF ffle is activated by the
lPF-<file_name> parameter on the LINK commands. For the
monitor linkage this Information is on lPf file MTRXlCB,
system core/Job template linkage information is on LPF fl'es
SYSXlC8 and JOBXlCB, the XlJB88 (and other optional user
object files) linkage information is on lPF file BBBXLCB, and
EI linkage Information Is on EIlCB.

2.&.2 SYS~DIR I LOR FILE DESCRIPTION

The SYSXDIR file used by the procedure NVElINK contains
directives to the CPF Generator which ailoN It to produce a
checkpoint file from the segment fltes produced by the VE
linker. These directives set UP the physical environment into
which NaS/VE is placed, and include such things as the
definition of the page size, Job and monitor exchange package
addresses, page table address and length, prealfocated segment
array definitions.' etc.

SYSXOIR Is a "skeleton" file which Is dynamically edited
during the execution of the NVELINK procedure, depending upon
the specification of the lW, PS, REe, and PTl parameters. The
edtted file Is then put on an indirect access file, named
according to the conventions outlined in the H~ELIH~_fL2~~~UZI
a.~;tlatlQn section, in the userts catalog. It contains the
directives to the CPF Generator which set up the physical
environment for that particular link. This file must remain
permanent tn the user's catalog after NVElINK has been
executed, as the procedure NVESYS uses this fite in building a
deadstart tape.

2.7.1 GENPDT AND BlDGPOT DESCRIPTIONS

An Sel Parameter Descriptor Table (POT) Is a sufficiently
complicated "type" that its declaraton, In particutar its
inltlatlzltlon, In CYRIL Is awkward. Therefore, 8 means of

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK-- Cycte 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.7.1 GENPOT AND BlOGPDT DESCRIPTIONS

2-21

OS/22/82

--_._-
easily generating a POT has been devised.

GEHPOT Is an SES procedure which provides for the
generation of a PDT from a specification that Is virtually
identteal to an Sel proc declaration (see the NOS/Ve Command
Interrace ERS, ARH36091.

The output of GENPOT is a file containing the CYBIL
variable declarations for the PDT specified. As a general
rule this file should be formatted using the CYBll source code
forma tter.

The format of the GENPOT is as follows:
SeS.GENPOT [i a <file name>]

[0 • <file name>]

i t

o I

The name of
dec. erst ion.
ar e a I lowed.

one file containing one PDT
Blank lines and continued lines

The default Is INPUT.

The name of the output file. All lines from Ii'
are eChoed on this ft'e in the form of "block"
comments.

See the ERS for Parameter Descriptor Table Generator for
the PDT declaration format and examples (GPDrERS/UN-SeL).

The SES procedure BLDGPOT but Ids the generate parameter
descriptor table program that is used by GENPDT.

The format of the BlDGPOT Is:

SES.8lDGPOT [I • <file name)]
[b • <f i 'e name>]

I I

b'

The name of the fl Ie which wt II receive the
listing. The default is LISTING.

The name of the file which will receive the
binaries. The default Is GPOrSIN.

2.7.2 GENMT, GNVEMT AND BlDGMT DESCRIPTIONS

GENMT Is an SES procedure which takes as input 1 or more
CYBIl common decks containing Exception Condition Code
definitions with status severity and message template
specified in an accompanying eVaIl comment and produces a

2-22
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.7.2 GENMT, GNVEMT AND BlDGMT DESCRIPTIONS

--
ready-to-compile CYBIl module which consists of eYBIl
variables that represent the message templates. The common
decks that are used as Input should be stripped of the MODIFY
headers and the I ine COMMON. The CY8Il module produced would
next be compiled and included with other object files so the
message formatter can locate the message template.

Tbe format of the GENMT ist

SES. GENMT

: ft

I tJ I

o t

81

[i :: <r i Ie name> 1
[Id :z (2-ch ar act er ide n t I f i er >]
[0 • <f i Ie name)]

[e • <f i Ie name>]

The name of the fi Ie containing common decks to
be used as input. The default is INPUT.

A two-character product identi'ier. The default
Is OS.

The name of the file to contain the eYBIL module
which is output. The default is TEMPLAT.

The name of the fite to be used for error
listing output. The default is OUTPUT.

The SES procedure BLOGMT bui Ids the generate message
templates program, generates the message templates for the
operating sYstem, and produces the message template object
module and puts it in object library XlJ200.

The format of the BlOGMT is as follows:

SES.BLDGMT (I· <fi Ie name) 1

, I

b t

[b· <file name>]

The name of the fi'e to receive the listing.
The default is LISTING.

The name of the file to receive the binaries.
The default is GMTBIN.

The SES procedure GNVEMT produces the message template
object module for the operating system and puts it in the
object Ifbary XlJ20D. (It Is INCLUDEd by BlDGMT and it
INCLUDEs GENMT.)

The format of the GNVEMT Is as follows'

2-23
ADVANCED SYSTEMS INTEGRATION PROCeDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.7.2 GENMT, GNVEMT AND 8l0GMT DESCRIPTIONS

--
SES.GNVEMT [bl· <file name) 1

[e • <file name>]

bl a The name of the file to receive the object
module. The defautt is MTlGO.

e t The name of the output file.
OUTPUT.

The default Is

Z • 8 tjDS,.l.llf_Sltl.ULAIlOti

2.8.1 RU~NING A SI~UlATOR TEST (NVESIM PROCEDURE)

NVESIM 's an SES procedure file which wil' run either a
batch ~ode or an interactive simulation of NOS/VE. This
option Is selected via the 'TEST' parameter. If 'TEST' Is not
specified, then the simulation wilt be run interactively. If
a batch mode simulation is desired, then 'TEST' Is used to
specify the name of the file containing the NOS/VE test
commands that are to be input to the simulator. The 'BATCH'
keyword must also then be specified. If the user wants to use
his/her own simulator directives file, the 'CMOS' parameter
must be specified.

NVESIM also alloNS the selection of the checkpoint fi Ie to
be used for the start of simulation. A checkpoint file may
als~ be optionally saved at the ~nd of the test. The C180
memory size may be changed via the 'MEMI parameter.

The NVESIM procedure witl create several permanent files In
the user's catalog If not run Interactively. These are
iteaized as follows:

1) IQU!£UI. This direct access '1 Ie contains a.1 of the
output of the NVESIM procedure, Inc'udlng

a copy of the command fife used as input to the
simulator ('TEST' parameter)
the output produced by the system
the SESLOG fi Ie
a reformatted keypoint flst1ng
DEBUG output (If 'SIMDBG' was specified on the
NVESIM call)
8 summary of at. (paging) disk 110 (HIOlOG file)
the load map produced by the elTOII conversion and
execution of XUUTl (SIMlOAD file)
(optionally) a hex dump of the checkpoint file at

2-24
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.8.1 RUNNING A SIMULATOR TEST (NVESIM PROCEDURE) ______ . ___ • ________ . _________ . _______ .N_N_.N_ •.•. -----__ ._NN _______ _

the end of simulation
the Job dayfi Ie.

This file is automaticat., sent to the line printer.

2) S.U S,I1Kf • T his d ire c t 8 C C e ssf i I ec 0 n t a j n s the key poi n t
data produced by the simulator. It is reformatted by
the procedure NVEKEY before being written to the fi Ie
TOUTPUT.

3) tIl!!! • T he d a yf i • e of t he N V e S I M job w i I I b e w r itt e n
to this direct access file should it terminate
ab"ormally.

Addltlonalty, If the 'NCPF' parameter is specified, NVESIM
will create 2 direct access files which together contain the
NOS/VE environment at the end of simulation. The file
specified by the 'NCPF' parameter will conta.n the current
NOS1YE checkpoint file. The other file (formed by adding the
character '0' to the 'NCPF' file name - which must therefore
be six or less characters tong) is used for NOS/VE memory
pag' ng.

The format of the NVESIM is as follows:

SES.NVESIM [test = < command fite > 1

test J

cmds a

cpf I

ncpf I

[cmds • < simulator directives fite >]
(cpf • < checkpoint file>]
[ncpf = < new checkpoint file>]
[mem • < memory size In hex>]
[no ds]
[run • < instruction count>]
[simdbg]
[du mp]
[ar e 8 a < user na me >]
[batch]

The ft Ie containing the NOS/VE test commands.
The default is to run interactlvel,.

Simulator directives file which should be
supplied by the user. The default Is to use the
one created by the NVESIM procedure.

The checkpoint fi Ie used for the start of
simulation. The default is "SIMXX".

The checkpoint fi Ie to be saved at the end of
simulation. The default is not to save a
checkpoint file.

2-25
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22182

2.0 OVERVIEW OF INTEGRATION PROCESS
2.8.1 RUNNING A SIMULATOR TEST (NVESIM PROCEDURE)

--
meRt I

nods :

run t

simdbg I

dump t

ar ea :

batch t

The C180 machine memory size, in hex, needed tb
run the simulation. The default is
"500000(16)".

Option to use the version of the checkpoint file
from the (Integration) catalog which has already
been deadstarted. The defautt is to use a
checkpoint file which has not been deadstarted.

A count of the number of sulmutated Instructions
toe x e cu t e • The de f au' tis 800000 Ins t r u c t ion s
(or the profite variable value for 'RUNCNT').

Option to turn DEBUG on ror the current
simulator run. The default Is to run with DeBUG
off.

Option to include the dump of the checkpoint
file at the end or simulation as part of the
NVESIM output. The default is not to dump the
checkpoint fit e.

The name of the catalog to search for the files
needed to simulate the system should they not be
found in the current catalog. The default is
the (Integration) catalog.

Run NVeSIM in batch mOde. The default Is to run
it locally.

2.8.2 NVEKEY PROCEDURE DESCRIPTION

NVEKEY is an SES procedure file which creates a simulator
generated keypoint trace file. The output of this procedure
is the local file 'KEYFILE'.

The format of the NVEKEY is as fol1ows!

SES.NVEKEY [kpf. < keypoint file>]
[format • < SIM : HOW>]
[kd • < list of keypoint descriptor files>]
[area • < user name>]

kpf I The keypolnt file generated by the simulator
wh I ch I s used as I nput to XXM7KEY. The defaul t
is' SESSMKF'.

format s Specifies whether simulator or hardware format

2-26
ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.8.2 NVEKEY PROCEDURE DESCRIPTION

---.-._-

kd I

ar ea I

keypoints are being processed.
'SIM'.

De f 8U I t is

A file or list of files which define(s) the
keypoint descriptions. The default is
'KEYDESC' •

The name of the catalog to search for the f"es
needed to create the keypoint trace file should
they not be found in the current catalog. The
default is the <Integration) catalog.

2.8.3 DUMPING A SIMULATOR CHECKPOINT FILE (NVEDUMP PROCEDURE)

NVEDUMP Is an SES procedure fl Ie which makes a OSOI dump of
a sl~ul8tor checkpoint file.

The format of the NVEDUMP Is as fol tOWSI

SeS.NVEDUMP [cpf • < checkpoint file>]
(I a < output flte >]

cpf t

I t

dump I

pr in t J

areal

[dump • STNO : All 1
[print 1
[area - < user name>]
t batch 1

The checkpoint file whi ch is to be dumped. The
default is "CKPT".

The 'I Ie which is to receive the dump output.
This 'lie wi" be a local file after the
procedure has finished execution. It is Q~!
automatJcally printed. The default Is
"OSOIOUT".

Option to either dump the environment according
to ASIO (OUMP=STNO) or dump the entire
environment (OUMP-ALl). If "DUMP=STND" is
chosen, then the DSOI directives are taken from
the file OSOIX, which the procedure will search
for first In the current catalog and then in the
<Integration) catalog. The defautt is
"DUMP-STNO".

Option to print the 0501 dump output. The
defautt is not to print the dump.

The name of the catalog to search for the files

2-27
ADVANCED SYSTEMS INTEGRATION PROCEDURes NOTEBOOK - Cycle 3

05/22182

2.0 OVE·RVIEW OF INTEGRATION PROCESS
2.8.3 DUMPIHG A SIMULATOR CHECKPOINT FILE tNVeOUMP PROCEDURE)
_____________________________________ N_N ______________ ----_________ _

batch :

needed to make the DSOI dump should they not be
found in the current catalog. The default is
the (Integration) catalog.

Run NVEDUMP in BATCH mode. The default is to
run it loca.ly.

2.9.1 INTRODUCTION

2 • 9. 2 CREATING T H EF I l E (N VE S Y S PROCEDURE)
\

The SES procedure NVESYS bui Ids a deadstart file from the
image fltes created by the linking of the system. The tREC'
Parameter allows the oPtion of building either a Production
SYstem or a Recovery System deadstart file. If the parameter
'VSN' is specified, then the deadstart fite wil' be written to
tape; otherwise it is written to the fi'e TPXXXK.

NVeSYS requires addltlona' object files for Inclusion on
the deadstart fite. These object files contain PP object code
for the following functions'

1) Deadstart (file XIOST)
2) Console/Printer drivers (file XIOSP)
3) PP helper (file XIHlP)
4) PP Resident program (file XIRES)
5) NOS/VE disk drivers supporting multiple.

controllers (fi'es X04, X05A, XD58, XD5C, and
XD5C2)

6) NO S I V EM C U Driver (f i 'eX M S PMC U)
7) SYstem Monitor Unit (file XSMUPP)
8) Monitor Display Driver (fi Ie XMDO)
q) System Monitor Assistant (fi Ie XSMA)

A copy of the 'oader directives (file PSYXlDR) will be
Included on the NOS/VE deadstart 'ile (a description of this
file Is included in 8 previous section). Also included on the
deadstart f11e are the Production System Core Command FI Ie
(OCFIlE), the Recovery System Core Command File (ROCFILE) If
tREe' is specified, and the Configuration Prolog Fi Ie
(PROLOG).

2-28
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEaOOK - Cycle 3

0512.2182

z.o OVERVIE W OF INTEGRA TION PROCES S
2.9.2 CREATING THE FILE (NVESYS PROCEDURE)

---_
If any of the above fites are not present in the current

user catalog, they wilt be obtained from the appropriate
catalog. (ie. SES,INT2. prefixed procedure calls access
INT2 lewel system fi les ani y, .. hi Ie SES,INT1. prefixed
procedure calls maY acceSS flies from either INT2 or INTI
catalogS as Is appropriate for the system being built.)

The format of the NVESYS is as followsl

SES.NVESYS (ysn * < tape vsn)]

vs n I

cpf I

Jtf I

repf I

r Jt f I

ar ea I

cmds I

[cpr • < Production System Core image file)]
[Jtf • < production Job Template image file> 1
[rcp' • < Recovery System Core Image file>]
[rjtf • < Recovery Job Template image file)]
[area • < user name> 1
[cmds * < tape generator commands file>]
[pack]
[nocti]
[rec]
[batch]

The VSN of the tape to be written. This tape
must be available to the operator. The default
is to write the file to a disk file 8:S specified
above.

The Production System Core image fj Ie.
default is PSYXX.

The

The Production Job Template image ffle. The
default is PJBXXYY.

The Recovery System Core image file.
default Is RSYXX.

The Recovery Job Template image file.
default Is RJ8XXYY.

The

The

The name of the catalog to search for the files
needed to bui Id the deadstart tape or fi Ie
should they not be found in the current
catalog. The default is the (Integration)
catalog.

The name of the file containing directives for
use by the deadstart tape generator. The
default is to use procedure-defined directives.

2-29
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.9.2 CREATING THE FILE (NVESYS PROCEDURE) .. ---------_. __ ._--_._--

pack I

noct I t

rec t

batch I

Option to pack the deadstart file for dual
state. The default is to ~~! pack the deadstart
f i Ie.

Option to n2t put eTI on the deadstart flte.
The default is to write eTI to the beginning of
the deadstart 'ile.

Option to build a Recovery System deadstart
file. The default is to build a non-Recovery
System deadstart 'ile.

Run NVESYS in 8ATC~ mode. The default is to run
it I 00 a. I y.

2.9.3 COMPILING 180 PP CODE (CPP180 PROCEDURE)

CPP180 is an SES procedure file which compiles 180 PP
code. The source for the PP code is retrieved from a source
program library. If the "AB" parameter Is specified, CPP180
will search this Pl first before searching NOSVEPl to satisfy
externals. NOSVEPl comes from the <Integration> catalog.

The format of the CPP180 is as follows:

SES.CPP180 [m a (module name) 1

II I

ab I

listing I

ar e8 I

batch I

[ab • < alternate base >]
[area • < user n,ame) 1
[listing • keyword or keyword =(tape Ysn)l
[batch]

The mOdule name or the PP program to
comp i led.

be

The alternate base searched by CPP180 to satisfy
externals before searching NOSVEPl. The default
Is to search only ~OSVEPl.

To save the compilation listing as a permanent
file or archive it to a tape. The default is no
tisting Is sayed.

The n8me of the catalog to search for the Pl
specified by the 'ABI parameter should it not be
found In the current catalog. The default Is
the <Integration) catalog.

Run CPP180 in BATCH ~ode. The default is to run

2-30
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.9.3 COMPILING 180 PP CODe (CPP180 PROCEDURE)
N ___ NN ___ N __

it locally.

2.10 llUAL_S,IAI.E_f.B.DC.fJlUEfS

2.10.1 SLOEI PROCEDURE DESCRIPTION

SlOEI Is an SES procedure file which builds the absolute
tile for dual state EI. The Aft parameter may be specified if
a program library containing the dual state El source exists
in the current catalog; otherwise SlOEI retrieves EI trom
NOSVEPl In the <Integration) catalog.

SlOEI uses the' Inker parameter file EIlCS to link EI. If
this fite does not exist In the current catalog, it Is
obtained from the <Integration) catalog by the procedure.

The outputs of SlOEI include the direct access absolute
file 'Ell and the direct access 'lie lDSlIST' which contains
the ass e mb I y II s tin 9 and the I Ink map for E I •

The format of the SlDEI is as foiloMSI

SES.BlDEI

I J

tlsting t

ab I

Ir es I

[I • < E I source rile>]
[area = < user name> 1
[listing - ~eyword or keyword-<tape vsn> 1
[batch]

The file In the current catalog which contains
the dual state EI source program library from
which EI is to be built. The default is to get
the EI source from NOSVEPl In the <Integration}
catalog.

Option to save the campi lation listing in a
permanent file or to archive the listing to a
tape. The default Is no listing Is created.

The user's alternate base program l.brar.Y
containing new and mod.fied modules.

Option to obtain the object files or linker
parameter files from another user's catalog
(other than the current catalog in which the
procedure Is executing).

2-31
ADVANCED SYSTE~S INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.10.2 BLD170 PROCEDURE DESCRIPTION

--
2.10.2 Bl0170 PROCEDURE DESCRIPTION

SlDl70 is an SES procedure file which builds the A170 dual
state deadstart tape binaries containing the modifications to
A170 NOS to support dual state. The assembled binaries are
put on the direct access file SYSBINS. The COMPASS 3ssembt,
listings may be saved either on disk (file OSLIST) or on tape,
depending upon the specification ot the tlISTINGf parameter.

The ror~8t of the SlOl70 is as follows:

SES.BLD170 [m· < list of module names>]
[ab = < alternate base file>]
[area • (user name>]

m 1

at» J

ar ea I

listing t

batch I

[listing: listing • < tape ysn >]
[be to h]

The mOdule name{s) or the COMPASS routines to be
ass e m b led. The d e f a u I tis to ass em b I e a 11 0 f
the A170 NOS dual state support modifications.

The user's alternate base program tibrary
containing new and modified modules. The
default Is NEWOKPl.

Optional catalog s~ecification to add to the
search list for ft les needed by BlD170. The
default Is the current catalog.

Specifying the keyword 'LISTING' saves the
assembly listings on the direct access fi Ie
DSlIST. Specifying 'LISTING-<tape vsn>' writes
the as sem b I y lis tin 9 s to the tap e wit h the
specified VSN in sorted order. The default is
to n~t save any listings.

Run BlD170 in SATCH mode. The default Is to run
It locally.

2.10.3 SLOICF7 PROCEDURE DESCRIPTION

BlDICF7 Is an SES procedure file which builds the 170
library 'lie lINKlIB. This library contains the binaries for
the 170 side of the Interstate Communication Facility. The
SYMPl/COMPASS listings may be saved either on disk (file
DSLIST) or on tape, depending uoon the specification of the
'LISTING' parameter.

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3
2-32

OS/22/82

2.0 OVeRVIEW OF INTEGRATION PROCESS
2.10.3 8lDICF1 PROCEDURE DESCRIPTION _---.......•.. _--_._-.. _----.. __ .--_._----------.. -._-

The format of theBLDICF1 j s asfo. lows I

SES.BLOICF1 [m • < list of module names>]
[ab • < alternate base file)]
[area • < user n3me > 1

m :

ab t

af ea I

tlstlng I

batch I

[listing: listing a < tape vsn >]
[batch]

The module nameCs) of the routines to be
assembled/compiled. The default is to assemble
411 of the modules which make up the LINKlIB
I t br sr y.

The user's alternate base
containing new and modified
default is NEWOKPL.

Optional catalog sOec1ficatlon
search list for files needed by
de f a u I tis the cu r r en teat a log.

program 1ibrary
modules. The

to add to the
BlOICF7. The

Specifying the keyword 'LISTING' saves the
assembly tistings on the direct access flle
OSlIST. Specifying 'LISTING-<tape vsn>t writes
the assembly listings to the tape with the
specified VSN in sorted order. The default is
to QQ! save any listlngs.

Run BlOICF7 In BATCH mode. The default is to
run it 'ocall y.

2.10.4 BlDIF7 PROCEDURE DESCRIPTION

BlDIF7 Is an SES procedure file which builds the A170
deadstart tape binaries needed to support the NOS/Ve
Interactive and operator Fac111tles. The linked binary
a b so, ute S are put 0 nth e d ire eta cc e s sf •• e S Y S BIN S • The
compilation/assembly listings may be saved either on disk
(tile OSLIST) or on tape, depending upon the specification of
the 'LISTING' parameter.

The format of the BLDIF7 Is as followsl

SES.BLDIF7 (ab. (alternate base file>]
[area - < user name>]
[debug]
[listing: listing • < tapevsn >]
(batch]

2-33
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.10.4 8lDIF7 PROCEDURE DESCRIPTION ______ ~ ____________________ N_N ____ • _____ ._. ___ •••• -.--__ • __ • ______ ~_

ab t

ar ea 1

debug t

listing I

batch t

The user's alternate
con t a I n i n g n ew and
default Is ~EWOKPL.

base program library
modified modules. The

Optional catalog specification to add to the
sear ch I 1st for '1 I as needed by BlOIF7. The
default Is the current catalog.

Option to link Interactive with NETIOD.
default is to 'ink with NETIO.

The

Specifying the keyword 'LISTING' saves the
assembly listings on the direct access file
OSlIST. Specifying tLISTING=<tape vsn>' writes
the assembly listings to the tape with the
specified VSN in sorted order. The default is
to n~1 save any' istings.

Run BlDIF7 In BATCH mode. The default Is to run
it locally.

2.10.5 SlORH7 PROCEDURE DESCRIPTION

SlORH? is an SES procedure file which compiles/assembtes
the modules which make UP the A170 side of the Remote Host
Facility and produces the updated RHA170R library 'ile
containing the A170 reloeatable Qemote Host binaries. When
RHA170R has been built, BlORH7 wi" 'ink to prodUce the five
absolute f11es which are added to the A170 NOS system
deadstart tape to support the Remote Host. This happens ~Dl~
if no MADIFY/compi lation/assembly errors occurred during their
respectlye phases. To be able to link successfully, the
module must be recompl led/reassembled error-free. The I inked
absolutes are added to the direct access file SYSBINS in the
current catalog. The compilation/assembly I istlngs may be
saved either on disk (file DSLIST) or on tape, depending upon
the specification of the 'LISTING' parameter.

The format of the BLORH7 is as follows.

SES.BLDRH7 [m = < list of module names>]
[c • < processor option>]

m :

[ab • < alternate base fi Ie >]
[ar e 8 • < use r n 3 me> 1
[listing: listing = < tape vsn >]
[batch 1

The module name(s) of the Remote Host routines

2-34
ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cyc'e 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.10.5 BlDRH7 PROCEDURE DESCRIPTION

--

C 1

ab ,

area:

Ilstlno I

batch t

to be compiled/assembled. The default is to
compile/assemble all of the modules which make
up A170 Remote Host.

For a D:~ module, the processor option for
compiling or assembling the module. -Specify
.e-l' for CYBIl CC modules and 'C-O' for COMPASS
modules. The default is tC-l' for D:~ modules,
and Internally defined defaults (stored with the
module name within the BlORH7 procedure itself)
for existing modules.

The user's alternate
containing new and
default is NEWDKPL.

base program library
modified modules. The

Optional catalog specification to add to the
search list for files needed by BlORH7. The
default is the current catalog.

Specifying the keyword 'LISTING' saves the
assembly listings on the direct access file
DSlIST. Specifying 'lISTING-<tape ysn)' writes
the assembly 'Istlngs to the tape with the
specified VSN In sorted order. The default Is
to ngl save any listings.

Run 8lDRH7 tn BATCH mode. The default is to run
it loca"y.

2.10.6 'S8IlO PROCEDURE DESCRIPTION

DSBIlD Is an SES procedure file which builds the dual state
binaries XOSTVE, XRUNVE, and XTRMVE. AI I 8ssembly and eYBIl
compilation listings are put on the direct access text library
"Ie OSLIST (one listing per record, each headed by the
corresponding HAOIFY deckname) and the three load maps are
appended to the compilation and assembly listings.

The format of the DSBILD is as follows:

SE~.DS8[lO [ab - < alternate base>]
[area - < user name > 1

ab I

{listing • keyword or keYMord-<tape vsn>]
[batch]

The user's alternate base program library
containing new and modified modules.

2-35
ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

05/22/82

2.0 OVeRVIEW OF INTEGRATION PROCESS
2.10.6 OS8IlD PROCEDURE DESCRIPTION

--
listing t

ar ea 1

batch 1

Option to save a
per man ent f I I ear
tape. The default
created.

campi tation listing as a
to archive the listing toa

Is no I'stlng will be

Option to obtain the Pl specified by the lAB'
parameter from another user's catalog should it
not be found in the current catalog.

Run DSBIlO in 8ATCH mode. The default is to run
it locally.

2.11 UIILIII_!&O~fQU&fS

2.11.1 NVEREP - REPORT SYSTEM CONTENT

NVEREP is a procedure which dynamical'y produces NOS/VE
build content reports based upon bui Id Information contained
In the Integration procedure library (PROClIB), or that
generated dynamically by partner procedures. The reports are
sorted according to a user suop1ied primarY sort key, and 8

procedure defined secondary key which is associated with the
prl.ary sort key. The amount of information contained on the
Integration procedure I ibrary is limited by the SES Command
Language processor to eighty characters, but the procedure is
sufficiently generalized to work with expanded Information
produced by partner procedures. These partner procedures are
not of a generalized nature so as to be documented at this
time (prlmarlty due to 8 series of deficiencies in the current
eI tools and conventions).

The format of the NVEREP procedure is as foiloMSI

SES.NVEREP [left· < primary key>]
[right • < primary key>]

t eft a

[area • < alternate user name>]
[, • < Input source> 1
[0 • < output destination>]
[I • < tibrary name>]
[print]
[batch]

Primary sort key for teft side of two paged
report. Only the first two characters of this
parameter are significant. May be either
MOdule, MAdlfy, LIbrary, or LAnguage. (An

2-36
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

0512.2/82

2.0 OVERVIE,W OF INTEGRATION PROCESS
2.11.1 NVEREP - REPORT SYSTEM CONTENT

--

right I

area :

f I

o :

I I

prJ nt J

batch 1

additions' option, VErsion, is ()nly available
when used In conjunction with partner
procedures. Option 8Uild is under consideration
for future implementation.) The default for
this parameter is Module. No validity checking
Is performed for either the 'left' or 'right'
par ameter va I ues, and an i nva 1 ids pec i fica ti on
will result In a report which may differ from
that des I red.

Primary sort key for right side of two paged
report. See parameter .ert for valid
specifications. Oefault is MAdify.

Alternate user name to search first for the
I npu t f i I e SpeC i f ied by the • fe, par ameter.
Default value Is 'null', and source for 'f' Is
found in the user name where the procedure
resides (PRCUNAM).

Name of the
i nformat ion.

file containing build
Defautt is PROClIS.

content

Name of the file to receive the two paged
report. Default Is VEREP. (The files LEFT and
RIGHT currently remain 'ocal after the procedure
has completed. These fi las contain the left and
right hand portions of the two paged report.)

Name(s) of NQS/VE library (or libraries) which
are to be included in the report. Oefault is to
report on all primary NOS/VE Ilbrari es.

Keyword to cause output f.le to be printed.
Default is to not print the report unless batch
execution has been selected.

Keyword to cause the batch execution of the
procedure. Defau It is to run the procedure In
, lac AL' m ode.

2.11.2 PROCEDURE GET - GET A LOCAL FILE

The GET procedure provides a "working copy" of a file (je.
one whleh can be written to, or read from, without concern as
to ",hether the , I t e is accessed as a DIRECT or INOIR.ECT
file). Severa. user catalogs may be searched for the file by
specifying a list of values for the UN parameter. If a local

2-37
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05122/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.2 PROCEDURE GET - GET A LOCAL FILE --_________ • _________________________________ N ___ ------------._.----

file already exists with the same name as that specified by
the lFN or PFN parameters then the local file is either
rewound or converted to a working "ie. One message per fi Ie
is issued to indicate the action performed on the filenames
specified on the procedure call. The MF parameter specifies a
filename upon which the working files are to be appended.

The for~at of the GET procedure is as followSI

SE S .GET

If n I

p'n •

un a

mf I

[Ifn= < 10 c a I f i I eneme)]
[pfn • < permanent filename> 1
[un • < user n am e >]
[mf • < merge fi lename >]
[a : na]

local file name by which the file is known (may
be a list of files). If no fi'ename is
specified for 'fn, then the 'ilename value for
the PFN parameter is positionally used. A
common usage of this procedure is as follows:
SeS.GET (MYFILel,MYFIlE2, ••• ,etc.)
In the above procedure call the permanent files
MYFIlEl, MYFILEZ, etc., would be made local
working fites named MYFILEl, MYFILE2, etc.

Permanent ffle name to be made a local working
'.Ie. If no filename is specified for prn, then
the value specified for the lFN parameteris
used. The list of PFN values is matched
positionally with the lFN speci'led values.
This Is Illustrated as follows'
SES.GET (one,two) (stuffl,stuffZ)
The above procedure cal' Mould create working
'lies named ONE and TWO from the permanent files
STUFFl and STUfF2 respectivety.

An optional list of user names to direct the
search order for files which are currently not
local. This is convenient if the user knows
that the 'lie exists in one of several
catalogs. An example Mould be:
SES.GET IPNDOC UN={lntl,lntZ,devl,dev2,rell)
The above procedure cal. would search local
fi les for a f i'~ named IPNOOC fot lowed by the
catalogs INTl, INT2, etc. until the flte Is
found or the search is exhausted.

A filename upon Which to stack the resultant
working'iles. For examplel

ADVANCED SYSTEMS INTEGRATION PROCeDURES NOTEBOOK - Cycle 3
2-38

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.2 PROCEDURE GET - GET A LOCAL FILE _____ ••• __________ • ____ • _____ ••• NN ______ --____ ••• -_ ••• ____ ••••••••••

SES.GET (IPNDQC,BCR) MF-SUIlDOC
The above procedure ca" gets the files IPNDOC
and BCR as working files, then appends them to
the file BUIlDOC. IPNDOC and BCR remain as
Morking 'iles alon~ with BUIlDOC.

a : na 1 t KeYMor d which determines whether the procedure
should abort in FILE NOT fOUND situations.
Default is to REVERT,ABORT.

2.11.3 PROCEDURE SAVE - HAKE A LOCAL FILE PERMANENT

Procedure SAVE may be used in conjunction with the GET
procedure. The redeeming ractor about the SAVE procedure is
that the user need not be concerned about file size. The
named local fifes are made permanent as INDIRECT access files,
jf possible, otherwise DIRECT access files. This Is
intentionally done to preserve as much precious disk space 8S

possible. (NOS allocates DIRECT access files much tess
frugally than INDIRECT access files.) Be forewarned that a
slight penalty Is imposed in access time for each sector of
disk space saved In this manner, and that the actual sector
savings is only visibte from the operator's console (not via
C A Tl 1ST) • In the pro c e dur e w r i t e r' s wo rid 0 f I i v I n~ , t his
procedure negates the worry of predt cting flte size prior to
ereatinQ it. Files are SAVE'd as SEMI-PRIVATE READ-ONLY
files, unless changed via the CT and M parameter or profile
v ar I a b I e va' u e s •

The format of the SAVE pro~edure is as followSl

SES.SAVE

t f n I

[Ifn • (10 c a' fi lename >]

[pfn • < permanent filename >]
[ct • < cata log type >]
[m • < access mode)]
[di r]
[a • na 1 t

local filename to be made permanent. Defaults
to PfN value If not specified. Parameters may
be specl fled pos It lonally, and typical usage Is
as followSl
SES.SAVE (xlmmtr,xIJllb, ••• ,etc.)
In the above procedure call the files
XlMMTR,XlJlIB, etc. are SAVEd as permanent
files. A message is Issued to Indicate the type
of file created (DIRECT or INDIRECT).

2-39
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.3 PROCEDURE SAVE - MAKE A LOCAL FILE PERMANENT ----.. _ ... _.----------------------------------_._----.... -----_

pfn t

ct I

m a

dlr 1

a : n8

permanent filename for files to be saved.
Defaults to lFN if not specified. PfN values
are matched positionally within the list to lFN
va I u e s • T his i s i I Ius t rat e d as' 0 J I ow S I
SES.SAVE (one,two) (sturfl,stu'f2)
The above procedure call saves files ONE and TWO
as permanent files named STUfFl and STUfF2.

Catalog Type of the "'e when made permanent.
Default Is to make files semi-private (CTaS).

Mode of the fite when accessed. Oefault is read
access (M::R).

Keyword which directs the procecure to make all
named files DIRECT access files, regardless of
thei r size.

Keyword which determines whether
should abort if FILE IS NOT
Default is to REVERT,ABORT.

the procedure
A LOCAL FILE.

2.11.4 NVEMAP - REFORMAT NOS/VE LINKMAP

~VEMAP is a procedure to reduce the number of printed pages
of • NOS/VI: Iinkmap" white maintaining readabi Itty, and to
provIde summary reports of Information contained wihtin the
linkmap. Either at., or portions of the linkmap may be
processed. The reformatted form of the linkmap is also
suitable for microfiche, in the format defined for the NOSIVE
operating system.

The format of the NVEMAP procedure is as follows:

SES.NVEMAP [i • < input fi Ie>]
[0- < output file)]

I I

[area • < alternate user name)]
[coPy a < record count) 1
[skip a < record count>]
[print]
[gated]
[f i ch e]
[module 1
[s ave]
[two]
[batch]

Input file which contains generated output from

2-40
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

OS/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.4 NVEMAP - REFORMAT NOS/VE lINKMAP
-------------.-------------_.---------------------------------------

o :

area S

copy I

sk i p I

pr i nt s

oated a

the execution of the NOS/WE CI (or SeS) Linker.
Oefault is MAPXX for the system.

Name of the output file to receive the
reformatted .inkmap file. Default Is to produce
a local file of the same name as specified by
the 'j' parameter.

Alternate user name to search for the input fl Ie
specified by the 'it parameter. Default value
Is 'null'.

Count of the number of NOS records to process
from the current flte position of the input file
(default position BOI). Each invocation of the
linker produces a new record upon the output
file. Thus, to process only the first portion
of the linkmap (typically Monitor for the NOS/VE
Operating System) 'COPY-l' would be spec if jed.
Default value for this parameter Is to process
the entire Iinkmap 801 to EOI.

Count of the number of NOS records to skip prior
to processing. For the NOS/VE operating system
'SKlpaZ' would sUPpress the Monitor and EI
portions of a Dual state linkmap. 'SKIP-Z
COPY-1' would process only the Task Services
port ion of a Dual State' fnkmap. Use of either
the 'skip' or 'copy' parameters infers explicit
knowledge of the content the linkmap. Due the
the number of variations of linkmap which can be
produced It would be tmpractlc·al to genera'ize
these parameters in a more logical manner.

Keyword to cause output file to be printed.
Default is to not Print the reformatted
Iinkmap. 'PRINT-TWOMAP' wil' print the contents
of file named TWOMAP. Key 'PRINT' wi' I print
TWOMAP if key 'TWO' is also specified, otherwise
the file specified by the '0' parameter will be
printed. 'PRINT-All' wi II print both TWOMAP and
the fi Ie specified by the '0' parameter.

Keyword Nhlch eliminates information for all
entry points which do not have the GATED
attribute. Conceivably, a combination such as
'SKIP-Z COPY-1 GATED' would produce information
to a compiler project about which entry points
within Task Services are GATED for their use.

2-41
ADVANCE~ SYSTEMS INTEGRATION PROCEDU~ES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
Z.11.4 NVEMAP - REFORMAT NOS/VE lINKMAP

--

fiche I

module J

save:

two 1

batch'

Oefault Is to produce reports of all system
entry points.

Directs the procedure to place the output of the
Procedure onto the r"e NOSlIST for subsequent
microfiche processing. Default is to not add
the linkmap to the NOSlIST file.

Keyword which causes the removal of all entry
point information from the linkmap. This proves
useful for auditing module attributes. The
default is to retain at. system entry point
Information.

Keyword which causes the output files to be
retained on permanent files for subsequent
Inspection. It Is left to the discretion of the
user to dispose of loca' copies of the output
files.

Keyword which directs the procedure to twopage
the linkmap onto the file TWOMAP. TWOMAP wilt
always be generated, but ~ill only contain the
summary report information unless 'two' is
specified. This twopage option Is not the
familiar 5ES TWQPAGE option, but rather a
computed sptlt and merge of the reformatted
map.

Keyword to cause the batch execution of the
procedure. Default is to run the procedure in
'LOCAL' mode.

This procedure will always produce two output files. The
primary output 'ile is governed by the '0' parameter. A
secondary output tTWOMAP' is alwaYs produced as we". The
'TWOHAP' file wit I only contain the summary reports and
toadmap if parameter 'two' is not selected. The first summary
report which Is produced Is a two paged report of PVAs found
In the Iinkmap. The left hand portion of this report Is a
sort by PYA. The right hand portion of this report is a sort
by module and/or entry point name. This report should answer
the questiansl 1. Given a PVA, In which module and/or
procedure Is that PYA contained?, 2. Given an entry point
name, in which module is it defined and what is its PYA?, and
3. Giyen the name of 8 variable within a system defined
tabte, what Is Its location within a dump?

r"he final report is a two part error summary for the

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW Of INTEGRATION PROCESS
2.11.4 NVEMAP - REfORMAT NOS/VE lINKMAP

2-42

05/22/82

-------------------------_._-----------------------_.---------------
linkmap. The first portion of this report identifies which
pages of the linkmap contained one or more errors. The second
portion of this report is a list of al I of the errors found
Mlthin the Iinkmap, in the sequence in which they appear in
the map.

2-43
ADVANCED SYSTEMS INTEGRATION PROCEDURes NOTEBOOK - Cycle 3

05122/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.5 PRoceOURE fORMPROC - FORMAT PROCEDURE
._.-_._._._-----------_._._----------._----_._----------------------

2.11.5 PROCEDURE FORMPRoC - FORMAT PROCEDURE

This procedure reformats a single SES or eel procedure
which is present on a GROUP fl'e. Nesting levels of the
procedure are used to compute a floating margin to indent
statements conts I ned with I "IF, IF E" WHILE, ROUT, or SK I P
blocks.

The tirst TOKEN of each line is processed as follows:
IF a double quote (n) then leave the line as1s.
IF a backward stant (\) then process the second TOKEN.
IF a blank and DELETE boolean FALSE, then leave asis.
IF AND or OR, then this line is continuation of SES If Or
ORIF, adjust margins appropriately if INROUT boolean is
FAtS E.
If a eCl IFE, WHILE, SKIP, etc. and eCl boolean TRUE then
adjust margins, and add blank lines as appropriate.
IF none of the above, or a ROUT - ROUTENO block and DO ROUT
boolean is false, then leave line asis.

The second TOKEN, tor lines having backward slant as their
first TOKEN, Is processed as followsl

IF a v~lld SES reserved name, then uppercase the TOKEN and
ad jus t m ar gin s a sap pr 0 p ria t e •
I F not a val idS E S r es e r v e dna me, the n G E N LOW R the T OK E N
and SUSSTR the value to a seven character value. (This is
typically a statement assigning a value to a SES
variable.)

Conventions for spacing and Indentation were established
through trial and error with several complex procedures. Most
all of the values which govern these conventions have been
externa'lzed as parameters and PROFILE variables to allow
tailoring to individuat tastes. Siank tines are used to
signify the start or end of a IF, ROUT, WHILE, or SKIP block
or to highlight the presence of INCLUDE, CYCLE, ACCEPT, Or
EXIT statements.

Special limitations are Imposed upon procedures formatted
by this procedure. If the formatted length of a statement
exceeds 79 characters (a SES restriction) then a terse
diagnostic Is issued and the line is left unformatted. Each
diagnostic or message issued indicates the tine number being
processed as well as the II ne number bel ng wr I tten. Thus, the
growth or shrinkage of a procedure can be observed white
formatting Is taking place. Informative messages are issued
to Indicate "hen 8 neM Indentation "nest" level has been
reached. These Informatlye messages are Intended to give the
H8r~ feeling that the procedure is doing something.

2-44
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
Z.11.5 PROCEDURE FORMPROC - FORMAT PROCEDURE
--~---.-.. ~-.~-.. -.-~-.-~.---.-.......... -... --... -............ _--..

The format of the FORMPROC procedure is as follows'

SES.fORHPROC [i • < filename>]
[0 : < f II en 811e >]

I I

o t

control I

indent I

att er t

blanks 1

delete I

eel 1

dorout I

[co n t r 0 I = (s t r i n 9 >]
[I n den t • (n um b e r >]
[after • < number >]
[blanks • < boolean>]
[delete • < boolean> 1
[cel - < boolean>]
[dorout • < boolean)]

Input fi 'ename containing the procedure file
source. oefault name is GROUP.
output filename to which formatted procedure is
to be written. Default Is GROUP.
A string which defines the SES directive
character for the procedure to be formatted.
Defau't is' (backwards sl ash), "commerci al at"
character cannot be used.
Number of spaces to indent from left margin.
Defaul t value is two spaces (for unnested SES
directives column 1 contains "t and column 2
contains a blank character, for eel IF, WHILE,
or SKIP commands columns 1 and 2 contain blanks
1ft he eel boo I e a n 1sT R UE).
Number of spaces to Indent lines occurring after
IF, WHILE, ROUT or SKIP statements. Default
value is two spaces.
Boolean which if TRUE causes the Insertion of
b I a nk lin es I n tot h e for mat ted ,p roc e d u r e (I f
needed). Default is TRUE.
Boolean which if TRUE causes the deletion of ai'
unneccessary blank lines. Default Is FALSE.
800lean which if TRUE causes eel (Including NOS
Command language Statements) to be indented
atong NI th other procedure statements. Oefau It
Is TRUE.
800lean which if TRUE causes ROUT - ROUTENO
statements other than SES directives to be
formatted. oefault is FALSE. WARNING!!! A
TRUE value for this parameter can create havoc
Mith HELP documentation.

Note. When formatting procedures which contain only eel
statements It Is recommended that INOENT-O and BLANKS-FALSE be
spec i fie d.

2-45
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22182

2.0 OVERVIEW OF INTEGRATION PROCESS
2.11.6 PROCEDURE SIZES - REPORT MODULE SIZES -_._._._.-_._-_. __ ._----.---

2.11.6 PROCEDURE SIZES - REPORT MODULE SIZES

This procedure uses partner procedures NVEM4P and HEXToEC
to produce a "quick and dirty" report of module sizes In
decimal and hexadecimal hyte lengths from a VELINK link map.
Very little sophistication has been worked into this procedure
whose purpose is to provide data for the Maintenance Task
Force In their analysis of Remote Maintenance techniques in a
Binary Release environment.

The format or the SIZES procedure is 8S follows:

SES.SIZES

i a

o •

un I

[i • < filename>]
[0 • < filename>]
[un • < user name >]

In put f i I en am e con t a i n in 9 a VEL INK lin k map.
This parameter is requi red.
Output 'ilename to write report to. Default is
same as Input filename.
User name in which input file is to be found.
Oefault is current user 1 s catalog.

2.12 eB.E=ltilfiiAIIOH_.8Ul.LDS

!)urlng the Build 0 timeframe, 8 sma" group of people
consisting of 3 developers and 1 Integrator formed the
Pre~Integratlon Build Team. The purpose of this group is to
ease and expedite the formal build process by turning around
problems and generating fixes before a formal Integration
build is performed. When a major feature, requiring a great
deal of code and causing SUbstantial impact upon the system,
is ready for Integration, the Pre-Integration Build Team goes
to Mork on It fl rst. The code Is appl led to the Pl's In the
Integration catatog (INTI), and the enti re system is compi led
~.u.L"kl~ in the pre-integration build catalog. Modsets are
generated by this group to correct any compilation errors, the
system is 'Inked and a deadstart tape is built for testing on
the hardMare. The regression tests are run on this system,
and fixes are generated to so've problems found. When the
Pre-Integration Build Team has fixed as many problems as it
can or needs to, Integration makes its formal build in the
Integration (INT1) catalog with the orl~in8' code plus fixes.

In order to build the entire system In a timely manner,
pre-integration build procedures have been developed and are
outlined In the foltowingsections.

ADVANCED SYSTEMS INTEGRATIDN PROCEDURES NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.12.1 GENDEK PROCEDURE DESCRIPTION

2-46

05/22/82

--
2.12.1 GENDEK PROCEOURE DESCRIPTION

The GEHDeK Procedure takes the latest list of deck names of
each of the OS libraries from the Integration PROClIB (i.e.
LMMTR, LSl13, LJ230, etc.), and creates two fltes of MADIFY
directives one file (the last 4 characters 0' the library
file appended to the string IAOK') contains a *EDIT directive
for each assemb,er deck, and the other file (the last 4
characters of the library file appended to the string teDK')
cont~lns a *eOIT directive for each CVBIL deck. If a
particular library does not contain any assembler decks (or
any CYBIl decks), GENOEK wi' I issue an informative message
stating as much, and no AOK ____ (CDK ____ ' file wi It be
created. The ADK ____ 1CDK ____ fltes will be saved in the
current catalog for a subsequent 8IlOLIB run.

The format of the GENDEK Is as followSI

SES.GENOEK

2.12.2 BIlOlIB PROCEDURE DESCRIPTION

Th e BI l Dl IB pr ocedure take s the A DK ____ and C OK____ fit es
(if they exist) for 8 particular Jihrary (created by GENDEK),
and ass e AI b I es I com p I I e 5 a I I the mod u I e s for t hat t i br a r y • For
each assembler deck on the AOK ____ file a separate call to the
Cl80 assembler Is performed, and the packed assembled binaries
are copied to the library file. The COK ____ 'ile Is used to
make one call to MADIFY to write III CYBll modules to one
compi Ie file, which In turn is fed to CYBll. The CYBll
binaries are copied to the library file folloHing the
assembler binaries, and the library fl Ie is saved in the
current catalog. ti~ compilation listings are produced. The
dayfile for the job is saved in the current catalog (the last
It c h a rae t er 5 0 f the lib r a r y name ,,:~a p pen de d to the s tr I n 9 I DAY')
for input to the CHKlIB procedure. The GENOEK procedure mu~l
be run prior to a BIlOlIB run.

The r 0 r II at 0 f the B I l Ol I B i s a s f 0 flo W s I

SES.8ILDlIB [lib • < lib r ar y i n d i ca to r >]

[plu • < use r name > 1
(b • < Pl name>]
[ab :I < alternate base > 1
(abu • < alternate base user name > 1
[10 ca I 1

II b I The last 4 characters of the name of the library

2-47
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

OS/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.12.2 BIlDlIB PROCEDURE DESCRIPTION
-----_ .. _---------------._--

plu I

b I

ao I

abu I

tocal t

to be bui It. This parameter is £~gUl£.~.

The name of the catalog to search for the PL's
and the compiler. The default is the
<Integration) catalog.

The name of a PL in the current catalog to
include in the MADIFY Pl search list. This
parameter is opti on al.

The name of a PL In another
Include in the MAOIFY Pl
parameter is options'.

user's catalog to
search list. This

The name of the catalog to search for the Pl
specified by the tAB' parameter. This parameter
Is required If the 'AB' pa.rameter is specified
and Ignored If the tAB' parameter Is Q~t
specified.

Run BIlOlIB loca.ly. The default is to run it
In BATCH mode.

~JJIEI The modules RHM$INTERIM_SIMUlATED_IO (deck RHMSIO in
library XlJZ30) and OCMSOMC_SIMULATED_IO_ROUTINES (deck DCMelO
in library XlJBBB) will ~lwa~~ have compilation errors. Both
modules require common decks from CYBICMN, but including
CYBIC~N In the MAOIFY PL search list for these two libraries
c au s e s II any JIUlt.A C om pi' a t ion err or sin 0 the r mod u I e s •
Currently, these two modules must be rebuilt, ~!t:t. running
BIlDlIB for their respective libraries, using the procedure
NVEBIlD (see the documentation for this procedure in a
preylous section).

2.12.3 3IlOALl PROCEDURE DESCRIPTION

The BtlOAll procedure simply submits a batch BIlOLIB run
for each of the OS libraries.

The for mat of the Bl lDAll I s as fo I lows I

SES.BILDAll [plu • < user name)]
[b • < Pl name >]

plu t

[ab • < alternate base >]
tabu • < alternate base user name>]
t batch]

The name of the catalog to search for the Pl's

2-48
ADVANceo SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycte 3

05/22/82

2.0 OVERVIEW OF INTEGRATION PROCESS
2.12.3 BIlOAlL PROCEDURE DESCRIPTION

.---

b t

ab :

at. U I

batch J

and the complter. The default I s the
<Integration) catalog.

The name of a Pl in the current catalog to
include in the MADIFY Pl search list. This
parameter is optional.

The name of a Pl in another user's catalog to
inc'ude In the MADIFY Pl search list. This
parameter Is optional.

The name of the catalog to search for the Pl
specified by the 'AB' parameter. This parameter
Is required If the lAS' parameter Is specified
and ignored if the 'AB' parameter is lUll
specified.

Run BIlOAll tn BATCH mode. The default is to
run it locally.

2.12.4 CHKLIB PROCEDURE DESCRIPTION

The CHKlI8 procedure uses the dayfile saved from a BIlDLI8
run (.OAY ____ ' file, see BIlOlIa description) to report any
MADlfY/assembier/CYSIl errors. It simply uses XEDIT to
extract the necessary information, which is displayed on the
file 'OUTPUT'.

The format of the CHKLIB is as 'ollows:

seS.CHKlIB [lib • < library Indicator>]
[batch 1

lib : The last 4 characters of the name of the I I brary
which was built. This parameter is L~~~lL~~.

batch I Run CHKlIB in SATCH mode. The default is to run
It tocally.

2.12.5 PURDEK PROCEDURE DESCRIPTION

The PUROEK procedure simp" purges all the AOK ____ ,
CDK ____ , and OAY ____ files from the current catalog at the end
of a pre~lntegration when they are no longer needed.

The format of the PUROEK is as follows:

ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

2.0 OVERVIEW OF INTEGRATION PROCESS
2.12.5 PURDEK PROCEDURE DESCRIPTION

2-49

05122182

--
SeS.PIJRDEK

3-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82.

----_._---3.0 DUAL STATE INSTALLATION SEQUENCE

This section describes how to Install all of the 'lies
needed to run NOS/VE in Dual State mode. To do thi s from
"scratch" the following materials are necessary'

1 MSL tape
1 Dual State NOS Oeadstart tape
- The LOAOPF tape(s) which contain the NOS/VE environment

If ~Sl and CTI are already present and correct, then It Is
only necessary to install a new deadstart sector on disk or to
load a new NOS/VE environment.

WARt:tlt:l.G= __ I.b.ls. __ RJ:A.;Jt5.i __ ~b~1.l1.Q __ ~n !!t __ .b.l __ g,~U:l1:_ll~_ttl!:_~i.t~
aQal~st&_

To release reserved disk space, deadstart from the Dual
State ~OS Deadstart tape which is NT, O-PE, FaI, LS-KU, and
enter.

U for the Utilities display
I for lnstat. eTI to disk

-This display will appearl

ENTER ONE OF THE FOLLOWING
(CR) - INSTAll DEAOSTART MODULE ON DISK

R - RELEASE CTI-MSL/HIVS RESERVED DISK SPACE

Enter Rand this disp 'ay Hi II appear:

RE~EASE CTI-MSL/HIVS
RESERVED OISK SPACE

Enter the disk parameters as they are requested.

CH 00
EQ 00
Uti 00

3-2
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTE800K - Cycle 3

05/22/82

3.0 DUAL STATE INSTALLATION SEQUENCE
3.1 RELEASE RESERVED SPACE AND INSTALL eTI ------~ _____________________ ~ ________ M ___ N _____ ------.--___________ _

-This display will appear:

ENTRY OF CR WIll CAUSE RELEASE OF
CTI-MSl/HIVS RESERVED OISK SPACE

Enter a carriage return and RELEASE COMPLETE, (CR) TO
PROCESS DIFFERENT DEVICE wit. appear. Enter a carriage
return.

-The ENTER ONE OF THE FOLLOWING display will appear again;
this t I !II e en t e ra carr I age return. A WARNING message wi I I
appear; enter another carriage return.

This display wit. appear.

I~STALl DISK DEAOSTART MODULE

Enter the disk parameters as above. The following messages
w i I I ap pear I

I~STAlLING eTI TO DISK

INSTAll COMPLETE.

3.2 ltiS,IALJ._ttS,l.

-Oeadstart from the MSl tape (CTI Is on the tape also.) From
the *A* display, type in U for utilities. From the *U*
display, type in T for INSTAll MSl/HIVS TO RMS.

-This display wi" aPPear:
TOX
DISK AND TAPE TRANSFER UTILITY
CR TO CONTINUE

Enter a carriage return and enter disk and tape parameters
as they are requested. These parameters are for the disk to
which ~Sl is to be loaded and the tape from which it is to be
loaded.

DISK CH 01
DISK UN 00

TAPE TYPE 03
0-60X,1-65X,Z-b6X,3-67X

TAPE CH 13

ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEBOOK - Cycle 3

3.0 DUAL STATE INSTALLATION SEQUENCE
3.2 INS TALL M Sl

3-3

05/22182

--
TAPE EO 00

TAPE UN 00

-This display will appear:

A-BUILD MSl FROM TAPE
8-~UILD CB lIBRARY ON MSL
C-'ADD PR OGS. TO M Sl
D-ADD C8-S TO MSL
E-COPY PROGS. TO TAPE
F-COPV C8-S TO TAPE
G-'DIS S'fS TBtS

Enter A and the following display wi.1 appear:

MSl INSTALLATION OPTION

A- HIVS
S-MS II OSSHAREO
C-MSl/MAINTENANCE ONLY

Enter B.

-This display will appear:

HAS A COMMAND BUFFER LIBRARY BEEN BUILT AT
STARTING CYL 1420 THAT YOU WANT TO SAVE
Y-YES, NaND

Enter N, and the screen will show CHECKING STARTING
CYLINDER, BUILDING SRT, and BUILDING PNT.

The next displays and corresponding entries are:

COpy FROM
-CR- • FIRST NAME

Enter a carriage return.

CTI ON TAPE (YIN)

Enter Y

COpy THR U
-CR- • lAST NAME

E'nter a carriage return.

3-4
ADVANCEO SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

3.0 DUAL STATE INSTALLATION SEQUENCE
3.2 INS TAll r1Sl
_____________________________ N_N __ N _____________ ------_______ N_N ___ _

DATA VERIFY (YIN)

Enter N

-The t1Sl Tape will load at this point and this display wilt
appear'

LAST USEO
CYt 14nn TRK 0000 SEC OOOOm

3.3.1 NOS CMROeCK AND lI8DECK CHANGES

a. When deadstarting NOS to run a dual state environment,
It Is required that one or more of the following
commands be processed by the NOS CMRDECK command
processor. The command(s) which must be specified by
the operator will be dictated by the type of NOS
environment which Is to be supported during dual state
00 er a t Ion.

MINCMzxxxxx.

vee

ve-X)(Xxx.

The parameter 'xxxxx' defines
the mlnumum amount of central
m9mory words which NOS will use
for the following operating
system execution. The parameter
I s an octal value expressed in
multiples of 100. If this
command is not specified the
system assumes a default of
300,000(8) or 98K(lO) central
memory words.

This command establishes a Dual
State Com~unication Block (OSeS)
in NOS Central Memory Resident
(CMR). The osee is required to
enable the operator to deadstart
NilSfVE.

This command estabtishes a osee
In NOS CMR and also reserves,
for use by NOSIVE, the number of

3-5
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

3.0 DUAL STATE INSTALLATION SEQUENCE
3.3.1 NOS CMRDECK AND lIBOECK CHANGES

-------------------------------------~------------------------------
central memory words expressed
by the parameter lXXXXX·. The
parameter must be an even number
and i s an 0 c t alva I u e ex pre sse d
In multiples of 1000.

EQxx-OE,ST,OP,SZ,FD.This command is required if UEM
(soft ECS) is to be used by
NOS. The SZ parameter is en
octal value (minimum of 10)
expressed in multiples of 1000.
The remaining parameters are
defined tn the NOS Installation
Handbook. NOTe: If this command
is specified in the NOS CMRDECK,
it is mandatory that the
ve-xxxxx. command be specified
I r NOS/VE will be deadstarted.

The algorithm uS9d by NOS to determine if the memory
size parameters specified by these commands ere flegal 1

I s I

(Machine Fie.d Length~ >- (MINCM + UEM + NOS/VE)

Some examples of how to use these commands ~hen

deadstartlng NOS for execution In a dual state
environment are as follows, assuming a IbM8 mainframes

'VE.

VEe
MINCM-IOOOO.

VE·5000~

VEa5000.
EQ5·0E,ST,OP,ZOOO,FD.

No UEM and the default
MINCM wil' be used. NOS
w I I I a I low NO S I VEt 0 use
all but 98K or 300,000(8)
words of the machine field
I en gt h.

"10 UEM and NOS will allow
NOS/VE to use a" but 262K
or 1,000,000(8) words of
the machine field 'ength.

No UEM and NO S wi' I a I I ow
NOS/VE to use a maximum of
10MB or 5,000,000(8) words
of the machine field
length. NOS will use 6MB.

NOS will allow NOS/VE to
use a maximum of 10MB or

3-6
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

3.0 DUAL STATE INSTALLATION SEQUENCE
3.3.1 ~OS CMRDECK AND LIBOECK CHANGES

05/22/82

_____ ._ ... ____________ . __ M _____________ . __ N_N __ M--------------------

5,000,000(8) words of the
machine field length. NOS
wi I t allocate 4MB or
2, OOQ,OOO(8) words for UEM
an d wi' • us e 2M B or
1,000,000(8) words for eM.

b.AII eM- lines shou.d be deleted asatl memory al 'ocatlon
is dynamic.

c. AI I NOS/VE mass storage devices must be spectfled In the
NaS CMROEeK as DOWN devices, e.g.
EQnn-OQ-l,OOWN,O,40,Z.

d. The disk controlware that NOS loads to FM type
control'ers at deadstart is the correct controlware for
the N OS I V E 71 5 5 -1)(disk con t r 0 I te rs • Add t hef 0 t low j n g
line to the CMRDECK to cause controlware to be loaded to
both the NOS and NOS/VE disk controllers:
L8C,FM,ehl,ch2,ch3. (The chi are disk channet~ as
8ppr opr i ate.)

e. The NOS lIBOECK must be modified to include the new
procedures necessary for deadstart. *PROC SETVE and
*PROC OPERFAC must be added and *PROC UPMYVE should be
deleted.

3.3.2 C'1051 FILE

a. A feature has been added to Cye'e 3 to Improve the
t ran s p or tab i I I t y of t he OS T V E dire c t i ve fit e CMOS 1 • If
*MEMORY.O. is entered in CMOSl, DSTVE wil' always
request all avaIlable memory from AI70 NOS. It Is
essential with this feature to enter In the NOS CMROECK
the entry HINCM-I0000. to prevent NOS from giving
N:JS/VE so much memory that~170 NOS wl" not run well.

b. The default value for the NOS/VE system device disk
c h ann el iss pee i fie d on the follow i n g command f n the
CMOSl fl tel

ADVANCED SYSTEMS INTEGRATION PROCEDUReS NOTEaOOK-- Cycle 3

3.0 DUAL STATE INSTALLATION SEQUENCE
3.3.2 CMOSl FILE

3-7

05/22/82.

~_~. ______ ~N~ ______ N __ NN ___ N _______________________________________ _

This means that it is AO longer necessary to
rebuild IOPQUER to connect the NOS/VE disk to
the proper channel.

c. The default value for the NOS/VE deadstart command file
number (OCF) is specified on the following command in
the CMOSl f ilea

*SYST,DSPANEL,CFfFFF(16)=n.

d. The channel number x in the followinl~ command should be
an empty channel: *RElOADCH=x.

e- Debug flag number 2 should be TRUE to enable recovery to
work automatically, e.g. *SYST,OEBUGZ-TRUE.

Deadstart from the NOS Dual State deadstart tape, using the
deadstart tape which Is to be fnstalled. Choose the '0'
option on the first display, for operator Intervention.
Optionally, the .pt display may be selected to choose a
CMRDECK. (CMRDC14 contains the CANCDO 52 configuration,
CMROCK6 contains the ARHOPS 52 configuration.) Hit carriage
return. The system will display'

ENTER lOCATION
OF MSl/HIVS DEVICE

Enter the Information for the same disk where MSL was
installed previoustyl

Channel-xx
Equipment-xx
Unit-xx

After the system is deadstarted, enter the fol lowing
cornm an ds a

X.DIS.
COMMON,SYSTEM.
INSTAll,SYSTEM,EQxx.

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

3.0 DUAL STATE INSTALLATION SEQUENCE
3.4 INSTALL SYSTEM

3-8

05/22/82

--
NOTE: xx is the EST ordinal of the disk where the deadstart

sector Is to be Installed; this is the same disk where MSl was
Ins tall e d pr ev I cus • y •

3.5 1.!lAQ!f_E1J.£s'

The lOADPF tapes, which are NT, D=PE, F=SI, and lS=Kl,
contain the NOS/VE operating system source and binaries, tools
to assemble and link the operating system, and various other
'lies.

Deadstart from the disk 'JPon lot hi Ch the NOS Dual State
system \!f8sinsta" ed and lOAOPF the fi les to the desired liser
number.

Refer to the current Helpful Hints document, Section 4, for
information regarding the operation and execution of NOS/VE.

4-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

4.0 NOS/VE HARDWARE REGRESSION TESTING

4.1 ltiI8.QD.UC.llllti

The .erlflcatlon currently performed on NOS/VE systems
consists of running the 52 Regression Test Sequence, as
outlined In the rotlowlng sections, on the hardware.

4.2.1 JOez

J082 Is a file containing the NDS/VE commands which stage
an II library and a CI user Job object file from the 170 side
to the 180 sl de, convert the CI user job object file to an II
object file, and then load and execute this user Jab with the
Itbr·ary. It then stages the lOAOMAP back to the 110 side to
be printed. JOB2 tests the 'ollowing NOS/VE features:

LINK_USER command
SET_OBJECT_LIST command
SET_PROGRAM_OPTIONS command
GETPF 856
GETPF 860
CITOII conversion
load/Execute User Program + Library
JMROUTE C1SO print file
SUBMIT of batch job
JMEXIT

The command sequence follows:

LOGIN US E R- DEVl NAME· JOB2
LIU,USER-(OEV1,NVE),PA-OEVIX,A-NOTUSED,PR-NOTUSEO
GET, ~ EWl I 8R.ARY, CY 81 I LS" 0 E Vl, N VE,a 56
SET_Q8JECT_lIST,AOO-NEWLISRARY
SET_PROGRAM_OPTIONS,lOAOMAP, •••
KO-(BlOCK,ENTRY_POINT,XQEF,SEGMENT), •••
TERMINATION_ERROR_lEVEL-FATAL
GET,XPETEST,XPETEST"OEVl,NVE,B60

4-2
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycte 3

05/22/82

4.0 NOS/YE HARDWARE REGRESSION TESTING
4.2.1 J08l -_ .. _ _-_ .. -.-._-_ _------.... _---... .

EXECUTE"-XPETEST,lGO·,,,CITQII
EXECUTE LSO
JMROUTE,NOTUSEO,LOAOMAP,PR
SET_QBJECT_lIST,DElETE=ALl
GET,CY8IlI8,CYBIIlB"DEVl,NVE,856
SET_PROGRAM_OPTIONS LISTl TE~MINATION_ERROR_LEVEt·ERROR
EXECUTe LGO
JMROUTE,NOTUSEO,LISTl,PR
GET,JOB3,JOB3",NVE,A6
SUBHIT,J083
GET,JOB4,JOB4",NVE,A6
SU8MIT,J084
JMEXIT

4.2.2 JOB3

JOB3 Is the same NOS/VE procedure file as JOB2 and tests
the same NOS/VE features with one addition' Instead of doing a
GET of the II version of CYBILIS from the 170, JOB3 does a
NOS/VE permanent file ATTACH or CYBILla from the SSYSTEM
catalog.

The command sequence fo,tows:

LOGIN USER-OEVl NAME-JOS3
LIU,USER-(DEV1,NVE),PA=DEVIX,A-NOTUSEO,PR-NOTUSEO
ATTACH SSYSTEM.CYBILIS NEWLI3RARY, •••
ACCESS_MOOe-(REAO,eXECUTE)
SET_08JECT_lIST,ADO-NEWlIBRAQY
SET_PROGRAM_OPTIONS,LOADMAP, •••
MO-(BLOCK,ENTRY_POINT,XREF,SEGMENT1, •••
TERMINATION_ERROR~LEVEl-fATAL
GET,XPETEST,XPETEST"OEV1,NVE,860
EXECUTE"'XPETEST,lGO',,,CITQII
EXECUTE lGO
JMROUTE,NOTUSED,LOADMAP,PR
SET_OBJECT_lIST,OElETE=ALL
RETURN NEWlIBRARY
ATTACH SSYSTEM.CYBILIS ACCESS_MaDE·(~EAD,EXECUTE)
SET_PROGRAM_OPTIONS LISTl TERMINATION_ERROR_lEVEl-ERROR
eXECUTE LGO
JMROUTE,NOTUSEO,LISTl,PR
GET,TESTBAM,TESTBAM",NVE,A6
SUBMIT,TESTBAM
JMEXIT

4-3
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

0.5.122/82 _ •• _ .••• -.------,.--.,,-,. •• ,.-.•. - .. """,#l1li-",.,.--.".",..".,,,,.,.,,.,, . .,,_"",.,._ .•• ____ ,. _ .. ,..,,_

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.2.3 J084 -._._.-.... --_ .. -._--_._----""",,,,._--------_.,,, .. _-------"""''''''''''''''''.'''''''

4.2.3 JOB4

J084 Is a file containing the NOS/VE commands which execute
the NOS/VE SeTUP command to set UP the 180 Job environment
(see Appendix 0 for the description of the SETUP command),
followed by a CITOII conversion of a 170 object file user
program and an EXECUTE of this program. The loadmap is staged
back to the 170 side to be printed. J084 tests the following
NOS/VI: features'

CONNECT_FILE command
SeTUP command
CITOIt conversion
SET_PROGRAM_OPTIONS command
Load/Execute User Program + Library
JMROUTE ClSO print fite
J~EXIT

The command sequence follows:

LOGIN USER-DEVl NAME-JOB4
CONNECT_fILE SECHO OUTPUT
SeTUP DEVl OEVIX
eITOII II-LGD CI-XPETEST USER-DEVl
SET_PROGRAM_OPTIONS LIST1 TERMINATION_ERROR_lEVEl-eRROR
EXECUTE tGO
JMROUTE,NOTUSED,lIST1,PR
JMEXIT

4.2.4 TEST8AM

TESTBAM Is a fl Ie containing the statements necessary to
execute al' of the BAM test cases supplied by the BAM
project. These procedures exercise various portions of the
basic access method, and are used to show some level of
confidence that BAM works as well as It has previously.

The command sequence follows:

LOGIN USER-DEVl NAME-TESTBAM
LIU,USER-(DEV1,NVEl,PA-DEVIX,A=NOTUSEO,PR-NOTUSED
COLLECT_TEXT BAMINP
reSl
TES2
TES3
TES4
rES5

4·-4
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycte 3

05/22/82

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.2.4 TEST!3AM ••••• _ •• _ •• __ • __ • ____________ ._. _____ • ________ • ___ -NN~ ___ ••• ______ NN

TES6
TES7
TESS
TES9
TESlO
TESll
T ES12
TESt3
TESl4
TES15
TES16
TES20
TES21
TES2Z
TES23
TES24
TES25
TES2b
TES27
TES28
TES2Q
TES31
TES32
TES33
TES34
TES35
TES36
TES37
TES38
BAMSTOP

** ATTACH SSYSTEM.SYSLIB SYSLIB ACCESS_MODE=(READ,EXECUTE)
4TTACH SSYSTEM.CYBIlIB CYBILIS ACCESS_MODE-(REAO,EXECUTE)
SET_OBJECT_LIST ADO-(SYSLI8,CYBIlIB)
EXECUTE"'8AMINP',,,BAMTEST
GET,SCl180,SCL180",NVE,A6
SUBMIT,SCL180
J 11 EXI T

1) !) eadstar t A 170 NOS:
Set the deadstart panel to disk deadstart from:
CH-1
UNIT-It1
WORD 13- 0006
PUSh deadstart button.
Select *0* display.

4-5
ADVANCEO SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.3 S2 REGRESSION TEST SEQUENCE
______ M ___________________________ M ________________________________ _

Hit carriage return.
Enter date/time.

2) If necessary, update the INT2(DEVl) catalog and 'oad
the latest system fj 'es into the INTl(DEVl)catalogt

M 0 un t the IN T 1 (0 E V 1) and I NT 2 (DE V 2) cat a log 0 U M P P F
tapes.
X. 0 IS.
USER,INT1(OEV1),INT1(DEVI1X.
SES.UPCATS <WC-tpul> <SC-tpu2> <SYSEOIT>
Hit "." to go into AUTO mode.
DROP.

The SES.UPCATS procedure works as follows'

a. Updates the INT2(OEVZ) catalog by
retrieylng OSlIS, SYSlIB, COLLIS, and
CYSIILB from the INT1{OEVl) catalog and by
loading selected files from the OUMPPF tape
mounted on the unit specified by the "SCn
parameter. This parameter ma~t be
specified for the INT2(OEVl) catalog to be
updated.

b. LOADPf's the latest system Into the
INT1(OEVll catalog from the OUMPPF tape
mounted on the unit specified by the "We"
parameter (defaults to "50").

c. SYSEDITts the A170 Remote Host and
Interacti ve binar les If the "SYSEDIT"
keyword is specified.

d. LOADPF's the Confidence Test binaries from
the file CONFTST, and then purges CONFTST
from the catalog.

3) ~rlng UP A170 Remote Host and Interactive.
TAFNVE.

4) Bring up du al st atet
Make sure the NVE Subsystem Environment I s set uP'

X.SETVE(OEVl,U~-OEVl,Ca6) Then br i ng up the NVE
Subsystem' n.NVEOEVl. (.. her e n i s any fr ee NOS
contro I po i n t)

5) When the NVE control point requests the Oper ator

4-6
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/22/82

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.3 52 REGRESSION rEST SEQUENCE ------.. --.--------.-----.---.---------~--.-------------------------

Facility control point" do:
K,n. (where n is the OPFAC control point)

6) Bring up NAM:
FNC5,7700.
N.NAKS2. (where N ,- 2 is HAM contra' point)

7) guild and save the 180 object fi les needed to complete
deadstart of NOS/VE (and needed to perform subsequent
deadstarts Of this system), ~nd begin execution of the
180 system tasks to support Interactive, Remote Host,
and the dayfile displays:

K.lIU (OeVl,NVE) DEV1X.
K.GETF OS
K.DS TRUE FALSE FALSE T~UE SIF-TRUE.

8) When the system displays the message "READY FOR
COMMANDS", start loading the Confidence Test Base into
the system (see Section 4.6 below). Make sure that the
ASCII printer is ready, I.e. that the START light Is
'It and that a "FORM33,TM." has been entered. To
monitor the 180 Jobs as they enter the system,do K.VED
Cp to bring up the NOS/VE control point display.

9) The system is now ready to be t,aken downl
N.CFO.OI,NE. (N is the NAM control point; this
disables NAM)
2.STOP. (8rlng down 170 Interactive, Remote Host,
and Operator Facility)
K.*BYEVE. (Bring down NOS/VE)

IMPORTANT! This last step must be performed at the NVE
Subsystem K display, NOT the Operator FaciJity K
display.

When a.1 control points are "quiet", proceed to the next
step.

10) Bring down A110 NOSI
AS.
CHECKPOINT SYSTEM.
E,M. (make sure that a"checkpoints complete)
STEP.

The confidence test base is a set of tests,used to
determine if a build is ready, for Instaltation in an closed
shop environment. The test base consists of a set of tests In
each area of the operating system, presently under analysis by

4-7
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/2.2/82

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.4 INTRODUCTION TO CONfIDENCE TESTS
---_._-----.-.------_.--

the evaluation unit. The tests are described in section 4.7.
Any questions or proble.s should be addressed to R. E.
Jarosz, x6834.

4.5 ItJS,IALL.&IltltJ

The folloMlng procedure should be fol lowed when installing
this test base.

1. REQUEST,TAPE,VSN-CNFTAP,NT,DaPE,lB-Kl,F-I,PO-R.
2. lOAOPF,8 aTAPE,TY=ALL

This will install two fifes.
1. The test ~ource PL (CONFPL)
2. The SES procedure library (CNFPROC)

3 Load any fifes from a tape created with the CLEANUP
procedure.

4. Two variables must then be added or changed in the user
PROfILE.
They are as follows.

\ USEBIN - 'OLO'
\ RUNlVl • 'DEV1'

For more information on these profi levari abies rerer to
sections 4.8.2 and 4.8.4.

At this point the confidence test base is installed and
ready to be run.

4.6 fl£CUII!ltJ

Sefore the tests are executed it is necessary to establish
the ACR routines which collect the test results. Because of
the changes, that are on goinq in ACR, the routines will
remain under the control of the Evaluation Unit. To USe ACR,
do the 'ol'owing before executing any tests.

1. GET,ACRJOB/UN-EVAL.
Z. ROUTE,ACRJOB,DC-IN.

You are nOM ready to execute the tests in the confidence test
base. To begin do the followingl
SES,lPFN-CNFPROC.lOTB O·(BA001 •• RH021) e-CONFPl OLD, ••
•• ? DELAY-20

At this poInt, YOU can run test IFOQ4 by following the

ADVANceD SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

4.0 NOSIVe HARDWARE REGRESSION TESTING
4.6 EXECUTION

4-8

05/22/82

_.M_M_. _____ . ______________ N ___ ~ ___ . _____________ --------__________ _

instructions In section 4.6.1 of this document.

After all the tests have completed, do the fot lowing
replacement of ACR results 'iles to the 1701

GET,JOBI/UN-DEVl
ROUTE,JOB1,OC-IN

At this point, run the RESLTS procedure to recieve the ACR
results listing.

This Job wtl. also produce a 180 listing, of the system
statistics, for comparasion purposes.

SES,UN-eVAl.RESlTS I=RESULTS Q=listtng_fIJe

4.6.1 EXECUTION OF IF094

This test Is somewhat different in that it requires running
by hand under NOS/VE IAF. To execute this test do the
following.

On NOS
SeS,lPfN-CNFPROC.GENBIN D=!F094,S-XIF094, ••
Pl-CONFPl,CI,S-180,OlD

This will create the object code part of the test.
ON NOS/Ve do the fol towing:

ATTACH_FILE .EVAl.EVAl_SETUP
INCLUDE_FILE EVAL_SETUP
ACR TEST_NAME-IF094 PRODUCT_IDENTIFIER-IF
GET_fILE TO-XIf094 OATA_CONVERSION-B60
EXECUTE_TASK PARAMETERS·fXIF094,lGO·,SP·CITOII,lIBRARY·SYSl
LGO

At this point do what the program tel.s you to.
If you feel It performed as expected do the followlngl

ACR STATE-PC REPORT-TRUE ACTION-FUll
Otherwise

ACR STATE-fAIL REPORT-TRUE ACTION-FUll

4.7 IESI~

TEST
***.*.
8A001

TEST FUNCTIONS

AMP!FIlE

A DV AN CEO S Y STEM SIN TE G RA 11 0 N PRO CEO U RES N OT E BOOK - C y c I e 3

4.0 NOS/VE H4RDWARE REGRESSION TESTING
1t.7 reSTS

4-9

05/22/82

--
13 A02 It

8AOl7

BA048

8A055
BAOb2
CHOO!

CL029
Cl039
CL05S
CLObl
ClI03
l0034
lD037
OC044
PFIOI
PF125
PFlitO
PF145
PF156
PF157
PM016
PM050
QFIOO
RHOOl
RHOl1
RH014
RHOZI
IF094

AMPSGET_FILE_ATTRIBUTES
AMPSGET_DIRECT
AMP$PUT_DIRECT
AM PSGE T _NE XT
AMPSPUT_NEXT
AMPSGET _PART IAl
AMPSPUT_PARTIAL
AMPSGET_SEGMENT_POINTER
AMPSGET_SEGMENT_POSITION
AMPSGET_SEGMENT_EOI
AMPSGET_FILE_ATTRI8UTES
COpy
PMPSESTABlISH_CONDITION_HANDlER
PMPSDISESTABLISH_CONO_HANDLER
PMP$CONTINUE_TO_CAUSE
DISPLAY_VALUE
DEClARE_VARI~BLe
EXIT, CYCLE
If CLAuse
FILE CONNECTIONS
BASIC LOADER OPERATIONS
PMPSEXECUTE
RETAI" IN CREATE_OBJECT_LIBRARY
VERIFY FILE CYCLES (DEFINE)
VERIFY LFN,PFN RELATIONSHIP
VERIFY FILE CYCLES (PURGE)
CHANGE
DEFINE_CATALOG
PURGE_CATALOG
OSPSAWAIT_ACTIVITY_COMPLETION
JOB LOCAL QUEUES
SUBMIT
GET B60
RE PlAC E A6
REPLACE A8
GET B56
VERIFY CONDITIONAL_BREAKS
INTERACTIVE INPUT/OUTPUTS
TERMINAL ATTRIBUTES

NOTEa IF094 MUST BE EXECUTED BY HAND. SEe Section 4.6.1.

4.8 ILUlLs'

This section describes the ACR and SES procedures, used by
the tests, I n the conf i dence te st base.

4-10
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

05/2.2/82

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.8.1 AUTOMATIC CHECKING ROUTINES - ACR ... __ __ .. _---_ .. _--_._--_ ... _-_ _-------------------------

4.8.1 AUTOMATIC CHECKING ROUTINES - ACR

The 180 common ACR is described in the Interim Test Tools
ERS. (OCS number ARH4207)

4.8.2 lDTS

This SES procedure Is used to load a set of tests into the
170 Input queue, from a Madl fy sour ce program' Ibrary. The
parameters are shown below.

DECK: 0: This required psra;neters is a 1 Lst of deck names
that are to be expanded and loaded. This parameter may be
a list, 8 range or both. Because these decks are expanded
by MADIFY they can not be common decks.

PL: sa This required parameter Is the library where the
decks listed on the preceding parameter reside.

DELAYl This parameter specifies the number of seconds
bet N e en sub m Iss Ion 0 f Job s • I fit Iso m mit ted, 60 i s
assumed.

UNa This parameter is the user number where the program
library specified on the PL parameter resides. If it is
ommltted, the user number of the executing Job is
utilized.

OLD: NEW: This keyword Is used to replace the profile
variable USEBIN. This profile variable is used by the
GEN8IH procedure (see Section 4.8.4). This parameter allows
for a decision, to be made at execution time, on whether or
not to create any binary files needed with this test.
Th e d e f aut tis NEW.

PRINT: NOPRINT: Thl s keyword determi nes if the 170 output
"Ie Is printed or not. The default Is NOPRINT.

4.8.3 CLEANUP

When tests use the GENBIN procedure, to create CI object
code, two files are created (OUMPDIR and PURGEF). The CLEANUP
procedure uses these fltes to archleve the object code fifes
and purge them. The parameters for CLEANUP are shown below.

4-11
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

0512.2./82

4.0 NOS/VE HAROWARE REGRESSION TESTING
4.8.3 CLEANUP ___ M _______ • _______________ • __ ._ ••• _. __ •••• ____ .----.------_. ______ _

VSNt This required parameter Is the VSN of the tape, where
the DUMPPF Is done.

Kl : KUt This optional keyword describes the label
characteristics of the tape specified above. The default
Is KL.

NOTE' The following table shows the other characteristics of
the tape specified on the VSN parameter.

TR~CK NT (nine track)
DENSITY PE (1600 bpi)
FOR MA T I (in te rna')

The file written on this tape can be reloaded using the lOAOPF
UTILITY.

4.8.4 GENBIN

Th Is procedure opt lonally creates a CC or CI object fi Ie
fro 11 an ex pan d e d c y b i Iso u r c e f i I ear MAD IF Y dec k. The
Parameters are shown below.

D : J : ALLa This is the list of MAOIFY decck names to be
expanded and compiled.

Pla This parameter Is the library where the decks specified
on the previous parameter reside.

AS : APL' This optional parameter describes the
user numbered file nemes, to be considered as atternate base
for expansion of decks or source fi les.

lINa This optional parameter is the user number of the file
specified on the Pl parameter.

SFI This parameter Is an optional file name, telling the
procedure to work from a source file instead of a MADIFY
deck.

eF: This Is the file name where the expanded deck wil I
reside, and it is the input 11 Ie to CYBIl.
The defautt is COMPILE.

l I This Is the file where the CYBIl compilation listing
Is placed. The default is LISTING.

4-12
ADVANCED SYSTEMS INTEGRATION PR.OCEDURES NOTEBOOK - Cycle 3

05/22/82

4.0 NOS/VE HARDWARE REGRESSION TESTING
1t.8.1t GENBIN

------_._---
SYS : SI This Parameter causes a specfic file to be used as
a alternate base as shown by the following table.

S YS fILE

101 CYBICMN/UN=SES

170 CYBCCMN/UN-SES

180 • • OSLPI/UN=lvl • •

lVla This optional parameter is the location of OSlPI that
will be used as an alternate base. The default is either
the profile variable RUNlVl or DEVl.

BIN: Sa This required parameter is the name of the file
checked for when the keyword OLD Is specltled. It Is
also the narne of the file where the object code will
reside if NEW is specified.

CC : CIS This parameter is unique In that the value is
used .'ong with the keyword. If just the keyword Is coded
the proper compiler is recieved from a default user number.
If the value is coded the proper compiler is received from
the used s p e c i f led. Tn e de f aut t us er n u m bert s e i the r the
value of the RUNLVl profile varl:able or DEV1. The default
value for the keyword is CC.

~EW J OLDa This keyword determines If the object code file
coded for the B parameter wl.I be praduced or not. If NEW
Is coded the file coded on the B parameter will be created.
If OLD is coded and the file exists then that file wi II be
~sed and no compilation takes place. If the fl Ie does not
exist then the file will be created.
The default value used is taken from the USE8IN profile
variable.

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK - Cycle 3

4.0 NOS/VE HAROWARE REGRESSION TESTING
4.8.5 P RTlIST

4-13

05122/82

.-._-._---------_ .. _--
4.8.5 PRTlIST

This procedure is totallY internal to the tests and the
discussion Is left to the help file.

Al

05/22/82

Origlnator _________________ DATE ___ L ___ L ___ Transmittal No. ____ _

AI code locationl (fAt,ed Modsets) FN- _____________ UN= ____________ _

(Oeck sin "l1itJUf" fo rmat) FNlI _____________ UN- __________ . ___ .

Code Description File: FN= _____________ UNa _____________ *

If module has a call bracket of D OR
code af'ects system user in some other way THEN

Usage Changes Desc. file: FNa _____________ UNa _____________ **
Code Destination (if n~1 NOSVEPl): PL· _________________________ _

8: Modset Identlfier(s)

New Feature [____] OR Corrective Code [____]

Module(s) to be recompi led

How has this code been tested? (Use right margin.)

'aaaf~Il_IQ_l~Ifi&AIl~H
NOTEI If any of these are checked, then explain in right margin.

Installation procedure changes required? [____]
Dependent upon other feature, fix, or tool? [____] (List below)
OSlPI or Internal Interface changes requi red? [____]
Should GNVEMT (Generate NOS/VE Message Templates) be run? [____]

tJJlt~J._tt.~.atl1.1.DSI_~aulil_.il.lhmllj;all
More forms are on FN a XMITIO UN = DEVl. * Attach copy of description file to form (both 14 7/8 by 11).

Format IS1'MODSET_IOENTIFIER (or NEW_DECK_NAME) (upper case)
£PSR Number (Omit If feature code.)
Descriptive text which describes code content
**DECK_MOOIFIED (or NEW_DECK_NAME) (upper case)

** Attach copy of Usage Changes Description Ftle to form
(both 14 7/8 by 11).

jlIA'HaE~I_~~ft~LlSI
Description FI Ie [____]
Proof of Comp.lation[____]
Proof of Execution C ____ l
(Usage Changes Desc.[____]
CPSRJ [____] (Continue lor i 9 h t margin)

Target Build ____ _
Should this code be added to the successor build cycle?

Files Maintained by Integration

Source Files

I USER I •
: NUMBE·R S : FILENAME(S)

• •
: I NT1/INT2 :
: DEVI/OEV2 :
t • :

• •
:

INTI/INT2 :
J D EV11 DEVZ :

I
• • • •

NOSVEPL

OSlPI

: INT1/INT2 : VE170Pl
: OEVI/DEVZ :
• • • •

• • • •

: FUNCTION

MADIFY program library
: of Virtual State code
• I

• •
MADIFY program library

: of NOS/VE Program
: Interrace decks.

MADIFY program library
: of NOS code which
: supports NDS/VE.

~l

05/22/82

: VERSION/FREQUENCY OF UPDATE

Matches the leve. 0' system
: binaries contained in same
: catalog. Updated O~ periodic

scheduled basis.

Matches the 'evel of system
binaries contained in same
catalog. Updated once 'or
each bui Id cycle.

: Matches the level of system
: binaries contained in same
: catalog. Updated on
: periodic scheduled basis.

• .~

• .~

• 1

• • • t

• l

• •

+-.-.. -- -.-.---+-. .----..... -~- ... ----------.--.... + ... --~-.---- ... ~-----.-.-------.~..-~---+--..... -... --.. -----.---.-.-----... -----~ ... -.----. ..----.-+
• 1

• LIBRARY • • • • • • • • • • • • • • t

OPL
MODIFY program library
which matches NOS

: system leve. for $2.
: (Installed on FMD
: unit 43).

: Updated on a scheduled basis.
~ (CPUMTR which supports NOS/VE
: is on VE170Pl and02t
: on this Pl).

t • •]

• ,
1 •

+ -..--~--.-.~,..+-~.--... .-,.-----.-------.--+----.------------... -------.....--~.-... :--+-----.... .-.--.. .---.-.-.------.-.... ----~-... .-.---... -+
INTI/INT2 • SESPlIB • Command l angu age Matches the level of system I I

: DEVI/DEV2 • .. Procedure library binaries contained in the same • • • • (Documented in catalog, an d accesses the • • • ,
• • Integr at I on Pro ced- I appr opr I ate bu I I d too' I • • • 1

• ur es Notebook). • versions. Scheduled updates. • • • t

J m agnat I c • tlstlng f i Ie s Contains co m pi' 8 t ion I Matches the leve' of system • • tape • • assembly listings of • binaries contained in the • • • •
I • t al I Vi rtual S ta te • same catalog. • • • • code. Accessed via • • • • • • lISTNVE procedure. • • • • ,
+-----------+-----------------+--------------------------+----------------------------------+ : INTl/INT2 :
: 0 E Vll 0 E V2 :

• •

• • • •

MTR XlCB,
EIlCB,SYSXlCB
JOBXlCB,BB8XlCB

linker directives files
for monitor,
error Interface,
system co re, Job
template, and user
modules respectlve'y.

Matches the level of
syste~ binaries contained
in the same catalog.
EI is built using the
BlOEI procedure.

+.~-;. .. --~..., +-----------.-.--.--------+.--.------... ----.... -... ---.------.-... ----+-.-. ... ~ -----..... .-.---.... .- --.--------.---... ----+
I NTl

I DEVl

I
I

NEWDKPl Meaningless Madi',
program library
which users may

: substitute for
: as an alternate
: base when using
: Integration compilation

Never, disappears when ~CU
: conversion Is complete.
• • • • • • • •
:

• ,
• 1

• • • J ,
J

• t

B2
Files maintained by Integration

05/22'82
S ou r c e F I I e s

: pr ocedure s.

• • • • , • • • • INT1/INTZ • PMPXX • Contains link map of • Each Velink of a • • , • • OEV1/DEV2 • PMPXXYY particular s.ystem • Production/Recovery • • t

: , RMPXX created. where RMPXX • System Cor e I Job Temo'ate. • • • • • RMPXX are the Production/: • • t

• • • Recovery System Core • • • • t

• • • Maps and PMPXXYY/RMPXXYY • ! • • t • • • ar e the Production/Recovery t • • t

I • Job Template maps. • • f

+ ... --...... - .. ---.- ... +--~..-,....,--..-..- ... ,~.-.-~- ... --+-.----.----.... -.-.--.------.------.---... ---+.--.--..----~--.- --.... --... .-.---..... --~-.-.-.--..-.- -+
: INT1/INT2 : PSVXlDR
: DEV1/OEVZ : RSYXLOR
: :

: Contains VE generator
: directives for Dual
: 5 tat e 0 f f se t loa d s •

: As required by system
: content or structure
: changes.

+ ----.... --..-. -----+ ----.... ----.-.--.---------+-----.-... --------.... ---~----.. --..-----.. -+ ... -~--~-.-~---- ... -~.------ - ... -..-------...... ----...... --
INT1/INT2

: OEV1/DEV2 :
• • :

• • • •

KEYDESC : Contains Keypoint
: descriptions for

the Keypoint report
Pr 0 9 r am)(XM 7K EY •

Non-standard, updated
: upon development's request.
• t

• • • t ,
+.--.----.----------_._+ .-------._-_ ... _.------ ---+ ---- ------- - .--.-.... - _-.-... -- .-...-. . ..---+------.-.. ----. .-------.- - .. ~ .. --.----.--.----.... -..., -. +
: INTI/INT2 : PMTXOBG,RMTXOBG : Contains debug tables
: OEV1/DEV2 : PSYXOBC,RSYXOBG : produced by the linking
: : P J B X 0 B G, R J 8)(D 8G : 0 f the s Y s t em.

Each Vel ink of a Production'
: Recovery System Core/Job
: Template.

t
'J ,
•

+----~ ... ~----~~+ ~------ -. .-.~--.---~--+ ----. ..-~-- ... - -.--------.---.-,--.-----+ ... ---... ---.--.... ---- -... -- .. -.-.--..... -------~--..-. -.-.-,-+

83
Files maintained by Integration

05/22/82
Object Text Flies

I I • • f l

INTI/INTZ • Xlr1HTR • Object text f i I e Each recompi'ation of 1) • • t ,
DEVI/OeV2 t • of modules which monitor mode mOdule. • • • 1

t • • execute i n mont tor 1 • • • ~

• • • mode. I • •
, INTlfINT2 XlSl13,

, Object text fit es Each r e com pi' at ion of t • , a

• OEY1'OEV2 t XlS133,XlS13D, t of SYstem cOre • a sy stem core • • • • t

XlSIDO t modules itt hi ch run i n t module within these , i br ar I es. • • J t

: • job mode and execute t • • • 1

• • • in ring 1. t • • 0' f t ~

+--........... ~ ---.-.... --+----... ---------~----... -.-+---------.-. --------...... ----.... -.... -.-------+.--... --.--... -- ... ------~ --.... --..-.-------.-.-,-------+
: INTI/INTZ : XlJ223, XlJ236,
: DEVI/OEV2 : XLJZ66,XlJZ30,
I : XlJ2DD

INTIIINT2 :
: DE VI/DEV2 :

• t

:
• • • • :
• • • • • • • •

INTlfINTZ
DEVI/OEV2

• •
• • • •
• • • • • • • • • • • • • t

XlJOSL, XLJlI S,
Xl J 8 B 8,X l J DC M
XlJSG

PHTSTXX,
PSYSTXX,
RHTSTXX
RSYSTXX

: Object text files
: of job template
: modules.

Object text ftles
of Remote Host,
Interactive, eITOII,
the Object library

: Generator, and various
user uti' Ity programs.

Outboard symbol
table f i I es for

: Each recompi'ation of
: a jo b temp I ate
: module within these libraries.

: Each reccmpllation of a
: module within these libraries.

Each Ve'ink of the
• system.

ProductlonlRecovery system
Monitor, and Productlonl • t

Recovery System Core • •
produced by • • •
VELINK. • •

t
t

• 1

• ~

• • • ~

• l

• ~

• t

!

• °1

• J

• ,
t
1

• •
+-..... ---.... ----.-+-~-.,..,-----.-.-~-..... --... -+----------..... ------.---.-.-... _-----------+_. __ __ .-_-----_ _---.-..... _--------_ .. _---_ +
I [NT1/INT2 : PSVXX,PJBXXYY
: DEVlfOEVZ : RSYXX,RJBXXYY

~ The Virtual Envlr­
: onl1ent riles pro-
: due e d by VE G EN.

I Each VElINK/VEGEN
: 0 f t he system •

• •
t ,
• ,

+~~-.--... --..... ~+--.--.-.-.---~------.-.----+--------------.- -------.~.-..---+~.---- ... --,-... ---------.--,.-~-..----~-~---.-----+
INTl

I OEVl
: NOSTEXT,PSSTEXT : AI10 NOS system
: SSYTEXT : texts for current

: NOS v ers i on.
• • • I

Each Al10 NOS update. • 1

I
1

t
t

+-----------+-~---------------+--------------------------+----------------------------------+ • • • INTI1INT2 t XXM7KEY Progr am to r e por t • N 0 n- s tan dar d IS Wl • • ~ • • • OEVlfDEVZ • • NOS/VE Ke yp 0 i nts • utility. t • • • • J

t • • encount~red during t • • • • • t

• • • a simulation run. t • • t •
+-----------+-----------------+--------------------------+----------------------------------+ : INTIIINT2 : XXM70S1
:

: NOS/Ve deadstart
: f I leg en era tor.

: Non-standard, supplied
: by the Deadstart project.

+~-----------..... --+ ---..----.---.....,~--.-,------+ ~--~.--------_ ... --.... _----..---.-.... -----+--... - ------------ -.- - ---.- --------- - __ ... _-- -- +
INTIIINT2
OEVI/OEV2

XIOST ,XMOD,
XIDSP,XIHlP,
XIRES,XSMA,

C,(B E R 1 80 P PoU
programs.

Upon demand. • ~

• ,

Files maintained by Integration

Object Text Files

• •
: X05B,X05C,XD5C2,:
:XMSPMCU

: INTI/INTZ : TPXXXK
t DEVI/DEV2 :
: • •

: Dua' State
: deadstart file
: created by the NVESYS
: procedure.

,
•
t
I

84

05/22/82

: Each time a new
: deadstart file Is
: generated (upon
~ demand).

• • • .~

• ~

• J

• ,
• !

+....--... .-. ----.--+~-----..-----.... ----~--..-.+----..-..---.. -----... .---.. -.. -... -.-.. ----.--+--.---.-~-.... -... -.-- -... -----.-.-------.. -~-... -----.+

C1-1
CYall Installation Documentation

05/22/82.
Object Text files --•..................... -.... _----_
Cl.O BUILD CATALOG SETUp

Before beginning the Cyall compiler builds, perform the
follo.,lng setup process in the build catalog:

1) GET,PROCFIl/UN=lP3.
SAVE,PROCFIl/CT-S,M=R.

2) OEfINE,CYBPlIB/CT-S,M-R.
ATTACH,SESPlIB/UN=lP3.
COP Y , S ESP LIS, C yap l Ill, v.
RETURN,SESPlIB,CYBPlIB.

3) Check that the PPOFIlE variable "PASSWORD Is defined,
and set to the password of the build catalog.

4) Check that the Deferred Batch Job limit is set to
UNLIMITED in the build catalog.

"I I CVall build procedures are on the INT! SESPlIB. They
will generally be run, however, in a catalog a.th:r. t.hall an
official Integration catalog. Therefore, all procedures
outlined below should be called via "SES,INTl.<Procedure
Name)", or else add INT! to the PROFILE variable SEARCH list
in the build catalog.

The general CYBll build 2~~~~~~ is documented in the next
section. The individual 2J:~~I.dl.lLJ~ are documented In
subsequent sections.

CYBIl Installation Documentation
C2-1

05/22/82
Object Text Files
~~ .. --.. ~-.-.. ~ .. -.... ---.... ---.-.. -.-------.-.--.-.---------------
Cl.O CYBll BUILD PROCESS

C2.0 ClJ1IL_flU1J.D._e.ao.c.fSS

The various CYBll compi lers are bui It and tested in the
rol'~wlng order, via the procedures indicated:

Bloce

TESTCC

CNVRGCC

BlDct

TE STC I
BlDIlIB

RUNREG

BlOIIS

BlOII2S

BLDIIH
RUNREG

1) Build the CC compiler front
generator; I ink them together
CYBIlC compiler; build eYBClIB.

end
to

and
form

co de
the

2) Test the execution of the CC
eYBClIS.

c omp II e r and

3) Test the CC compiler for convergence (i.e.
can It compile Itself and produce identical
binaries); rerun tests from 2) above.

4) Build the CI code generator with the CYBlle
co m p i I e r b u i I tin 1) -3) a b ov e ; lin kit \III I t h
the common front end built In 1) above to form
the CYBILI compiler.

5)
6)

7)

8)

q)

10)
11)

Test the execution of the CYBIlI compiler.
Build CYSIlIS with the CYBIlI compiler bUilt
In 4) above; test the new CYBILIS wi th
eVBIlI.
Set up the environment for running the CI
compiler regression tests and submit them.
Build and test the II compiler for the
simulator.
Build and test the II OPT-Z compiler for the
simulator.
Build the II co~pi1er for the hardware.
Set up the environment for running the CI
compiler regression tests with the "OPT=2"
option specified on the compiler ca.l, and run
them.

1) -6) mJi1 t be r un sa r I a I I y; 1) -1 0) may b e run
concurrently. 11) cannot be run until 7) has completed.

C3-1
CYBIl Insta'iation Documentation

05/22/82
Object Text Fi les
-----._.-------------------------_._--------------------------------
C3.0 eYBIl BUILD PROCEDURES

Each CYRIL build procedure that resides on the Integration
SESPlIB Is outlined below. Note that most procedures have a
·CHAIN" parameter. If "CHAIN" Is keyed on anyone of the
procedures, al' subsequent procedures wit' be automat Icat Iy
submitted at the appropriate times in the order specified
abo y e • This a I lows you t os uh ,. i t a' t b u i I d jobs by tv pin 9 in
only one procedure call ("SES.BlDCC CHAIN"); it also at lows
you to restart the build process at any point should errors be
di scover ed.

~ote also that the CC and CI procedures write status
messages to the Indirect access file CYBSTS In the build
catalog. This file can be interrogated on-tine or printed to
obtain the results of the building and testing stages of these
compilers. The II compi ler bui Ids produce I istings which must
be checked to verify that the compilers were Indeed correctly
bull t (see procedure descriptions be'ow).

C3.1.1 SlOCC PROCEDURE DESCRIPTION

The SES procedure SlOCC bui Ids the CYSll CC front end and
code generator binary libraries (PFElIB and PCGlI87,
respectively) and then links them together to generate the
CYBllC compiler. At the same time, It recompiles the changed
CY8elIS modules, saves them on an object file (CYBCOSJ), and
REPUlI8's them onto the existing SES version of CYBClIS to
generate the UQ~.t~~ CY8CLIB. Status messages are written to
the file CYBSTS in the current catalog (SlOCC is the ~Ql~
procedure WhiCh purges this file I,. It exists; all other
procedure append Information to the end of the file).

SlotC creates the following permanent fites in the bui Id
catalogS PFElIS, PCGlIB7, CY8COBJ, CYBClIB, CYBIlC, CMAP,
CYBSTS. The format of the BLOee Is as fol 'OWSI

SES .SLOCC [m • < (list of) module name(s) >]
[fe : cc]

C3-2
CYBIl Installation Documentation

05/22/82
ObJ ect Text F I 'es
•••••••••••••• ____ .---------•••••••••• --------------.-____ N __ • _____ _

C 3.0 eY8 I l au I l D P R ac ED UR E S
C3.l.l SlOCC PROCEDURE DESCRIPTION ____ .N_.N. __ ._. __ ._. ______________________________ --------_____ .• __ _

m I

fie : c c •

en a In t

toea' 1

[ch a In]
['ocal]

The name{s) of the CC
compile. The default is
compifer mOdules.

compiler modules
toe 0 m p i I a a 11

to
CC

Keyword indicating whether the modu'es specified
by "M" are front end (re) or code generator (cc)
modules. This keyword is L~~U1L~d if "M" Is
specified.

Option to submit subsequent C'BIL bui td jobs
after SlOCC Completes. The default is to OQt
sUbmit these jobs.

Run SLOCC In LOCAL mode. The default is to run
it in BATCH.

C3.1.2 CNVRGCC PROCEDURE O~SCRIPTION

The SES procedure CNVRGCC tests the CC compiler built by
the SlOCC procedure for convergence. This means that the
compiler must be able to compile itself, producing binaries
identical to those which make it UP. First it saves all the
files created by SLOCC by copying them to files named by
changing the first character of the fi Ie name to MAtt (e.g.
PFELIB -) AFElIB, CYBClIB -> A'SelIS, etc.). It then rebuilds
the front end, code generator' and CY8CLIB binar ias wi th the
CYBIlC compiler built by the SlOCC procedure, generates and
tests a new compiler, and compares the new binaries to the
preylously buIlt (nAn-prefixed) ones. If the bfnarles are n~l
identical, CNVRGCC makes a second attempt at convergence (this
time saving the binaries on "Btl-prefixed files) and egain
compares the binary Ilbr·arles. If the binaries ver Ify, the
job to build the CI compiler (BlOCI) is submitted; if they do
ggl verify after 2 attempts at convergence, the procedure ends
and the CYBll project must be notified. Status messages are
written to the indirect access fi Ie CyaSTS in the current
catalog.

CNVRGCC creates the following permanent files In the build
catalog' AFElIB, ACGlIB7, AYBC03J.,~CYBILC, AYBClIB, ACMAP
(a • $ 0 8 F El I B, 8 C Gl I B 7 , B Y Be 0 B J , Be Y B I l C , B Y BeL I s, Be MAP i f
convergence does not occur on the first Iteration). The
format of the CNVRGCC Is as follows t

C3-3
CYBll Installation Documentation

05/22/82
Object Text Files
------_._--._---
C3.0 CYRIL BUILD PROCEDURES
C3.1.2 CNV~GCC PROCEDURE DESCRIPTION

--_.--------------------
SES.CNVRGCC [chain 1

[.ocal]

chain J

local t

Option to submit subsequent CYBll build Jobs
after CNVRGCC completes. The default is to a~l
sUbmit these jobs.

Run CNVRGCC In LOCAL mode. The default Is to
run i t i nSA Te H.

C3.1.3 TESTCC PROCEDURE DESCRIPTION

The SES procedure TESTCC runs the CYall compiler tests
SEQUEN, EXITlP, and PPROC2 against the CYBIlC compilers bui It
by the SlOeC and CNVRGCC procedures. These tests reside on
the test base TESTPl In the HAW catalog. Status messageS are
written to the indirect access fi Ie CYBSTS in the current
catalog.

TESTCC creates no new permanent files. The format of the
TESTCC is as followSI

SES.TESTCC [cnvg]
[ch a I n 1
[IOC8']

cnvg 1 Keyword Indi eating that the compiler bel ng
tested was built using the CNVRGCC procedure.
This parameter is needed to make the status
messages wrl tten to CYeSTS more mean Ing1ul. The
default assumes that the CYBILC being tested was
built by SlOeC - i.e. It has not gone through
convergence yet.

chain I

local I

Option to submit subsequent eYBIL build jobs
after TESTCC completes. The default Is to Q~!
sUbmit these jobs.

Run TESTCC In LOCAL mode. The default is to run
I tin BATCH.

C3-4
Cyall [nstallatlon Documentation

ObJect Text F I 'es
--C3.0 CyeIt BUILD PROCEDURES
C3.Z.1 BLOCI PROCEDURE DESCRIPTION

---.------------------
C3.2.1 BloCt PROCEDURE DESCRIPTION

The SES procedure BLOCI builds the code generator binary
I I bra r Y (P C Gl I 8 8) for the C Y B I leI com P i I e r • Itt h en I Ink s
this file with the common front end (PFElIS) produced by the
SlOtC procedure to generate the eVBIlI compiler. Status
messages are written to the indirect access fi Ie CYBSTS In the
current catalOg.

BlOCI creates the foiloMing permanent fi les in the bui fd
catalog' PCGlIBa, CVBILI, CMAPa. The format of the BlOCI is
as folloMsl

SES.8LDCI

m I

ch a in t

local t

[m • < (list of) module name(s) >]
[chain]
[local]

The name(s) of the CI code generator module(s)
to be compiled. The default is to compile B!!
CI code generator modules.

option to submit subsequent CVBIl build Jobs
aft e r B L 0 C I com pie te s • The de f a u', tis' tOll j21
Submit these jobs.

Run BLDCI in LOCAL mode. The default is to run
It In BATCH.

C3.2.2 TESTC! PROCEOURE DESCRIPTION

The SES procedure TESTeI runs the CVaIl compiler tests
SEQU~M, EXITLP, and PPROC2 against the CYBILI compiler and
CYBIlIB (built by BLoCI and SlOrLIB, respectively). These
tests reside on the test base TESTPL in the HAW catalog.
status messages are written to the indirect access file CyaSTS
in the current catalog.

TESTel creates no new permanent files. The format of the
TESTey Is as follows'

seS.TESTCI [lib 1
[chain]
['ocal 1

lib: Keyword indicating that this run of TESTe! tests
the CYBILIB built by BLOILIB. This keyword Is
needed to make the status messages written to

C3-5
CYSIL Instal'atlon Documentation

ObJ ect Text F I I es --_._ .. _-----_ .. -------.... -_ .. -•........ _.----_.-----.-.. _ _----
C3.0 eVBIl BUILD PROCEDURES
C3.2.2 TESTer PROCEDURE DESCRIPTION -_._.-... _--.------_._---... _--.. -.. -._-... __ .--_ ... _----_.-.---_ .. -

chain t

local I

CYBSTS more me3nlngful. The default assumes
that this run of TESTCI tests the CYBllI
compiler built by BlOCI.

Option to submit subsequent Cyall build Jobs
after TESTCI co~ptetes. The default is to Q~l
submit these jobs.

Run TESTCr tn LOCAL mode. The default Is to run
It in BATCH.

C3.Z.3 BlDIlIB PRoceOURE DESCRIPTION

The SES procedure BlOIlle compiles the CYBIlIB modules
which have changed and saves them on the object file CYBIOBJ.
It then GOl-s them on the current SES version of CYBIlIS to
generate the updated CYBILIS. BlOILI8 also creates the
CYBILGO file which is used in creating the version of CYBILIB
w hie his used 0 nth e ha r d wa r e (d on e I nOS). Fin a t I y , i t
resubmits the eI compiler tests (TESTeI with "LIB" option
specified) which now use the nJ~ CYBILIS as a means of testing
CYBIlIB. Status messages are wrl tten to the Indl rect access
file CYBSTS In the current catalog.

BLOILIS creates the following permanent files in the build
cataloga CY8IOBJ, CYBllIB, CYBIlGO, L8SRC80. The format of
the B l 0 I lIB I s as f 0 , low s I

S E S • Bl OI lIB [ch a in]
[local]

chain I

t 0081 I

Option to submit subsequent CVaIL buIld Jobs
after BlDIlIB completes. The default Is to n~!
submit more Jabs.

Run BlDILIB in LOCAL mode. The default is to
run It in BATCH.

C3.2.4 RUNREG PRoceOURE DESCRIPTION

The SES procedure RUNREG sets UP the build catalog
en y i ron", en t to b e 8 b let 0 run the C I com p tie r reg res s ion
tests. The tests reside on an SCU test base Pl in the H~W
catalog. RUNREG first creates the alternate SCU base "MY8ASE"
In the bu. Id catalog which allows for the regression tests to
be run from that catalog. It then submits the deferred batch

C3-6
CYBIl Installation Documentation

0512.2./82
Object Text Files

--C3.0 CV8Il BUILD PROCEDURES
C3.2.4 RUNREG PROCEDURE DESCRIPTION

--
Job which runs the tests (CY001 •• CVqqq). To obtain the test
r esul tSJr un

SES,LPFN=C YBPLI B .RUN ANl

the morning after the regression tests are run. In order to
run this procedure, the deferred batch I imi t in the bui ad
catalog lu~l be set to UNLIMITED, and the user must have the
PROFILE variable "PASSWOR" defined.

RUNREG creates the foitowiniJ permanent fi les in the bui td
catalogl MYBASE, CIDAY. The for~at of the RUNREG is 8S

foilowsl

SES.RUNREG [opt2 1
[local 1

opt2 I Option to test the campi ler with the OPT-Z
option. The default is to run the tests ~!lbg~!
the OPT=2 option.

loca' I Run RUNREG in lOCAL mode. The default is to run
it In BATCH.

C3.3.1 SlOllS PROCEDURE DESCRIPTION

The SES procedure BtOIIS builds the front end and code
generator binary files (CYBIIFE and CYSIICGJ respectively) for
the II compiler for the simulator, and then links these two
files together to produce the compiler checkpoint file (IICPFl
used as input to the simulator. It then submits a simulator
test run of this campi ter. The output of this test run
consists of a compilation listing ("hich should contain D~
co mp I I 8 t ion err 0 r s) , the s i m u I a tor S E S lOG, and a day f i I e
(which should also show no compilation errors).

BLDIIScreates thefo.1 owl ng permanent f i I es In the bul t d
catalogs CVBIIFE, CYBIICG, IICPF, IIMAP, SESLOG, lISTX. The
forMat of the SlOIIS is 8S follows:

SES.SLDIIS [local 1

local t Run SlOllS in LOCAL mode. The default is to run

C3-7
CYBIl Installation Documentation

05122182
Object Text Files
------------------------_._.-......... --_._----.-._-_ _----------
C3.0 CY~Il BUILD PROCEDURES
C3.3.1 SlOllS PROCEDURE DESCRIPTION . __ -._ ... _ -----.. _• -._------... ----_ .. -.

it in BATCH.

C3.3.2 BlDII2S PROCEOURE DESCRIPTION

The SES procedure BlDIt2S builds the front end and code
generator binary 'iles for the II OPT=2 compiler for the
slmu1ator (CYBI2FE and CYSIlCG, respectively), and then links
tbese two files together to produce the compiler checkpoint
f i I e (12 C P F) us e d a sin pu t to the s i m u I at or • Itt h en sub mit s
8 simulator test run of this compiler. The output of this
test run consists of a compilation listing (which should
contain .D~ compilation errors), the simulator SESLOG, and a
dayfile (which should also show no campi lation errors).

BlOII2S creates the follow1ng permanent files in the build
cataloo' CYBIZFE, CYBI2CG, I2CPF, I2MAP, SESLOG, LISTX. The
format of the BlOII2S is as follows:

SES.BLDII2S [loca']

loca. J Run BlOII2S in LOCAL mode. The default is to
run it In BATCH.

C3.3.3 BlDIIH PRoceOURE DESCRIPTION

The SES procedure BLOIIH bu I' ds the fr ont end and code
generatGr binary files (CY8HIFE and CYBHICG, respectivety) for
the II compiler binary that is used on the hardware. At the
same tl.e, it generates the II hardware version of CVBILIB
(CYBHOBJ). It then takes these three fi les and some other
mlsceltaneous routines and GOF's them together to create the
UH,a~~EiIED and U~aOUHQ version or cYaIL II (CYBHBINl.

BlDIIH creates the following permanent fi les in the bui Id
catalogs CYBHIFE, CYBHICG, CYBHOBJ, CYBHBIN. The format or
the BlOII,", Is as followsl

SES.BLOIIH [Ioca']

local t Run BLOIIH in LOCAL mode. The default is to run
it In BATCH.

01-1
CY81l Installation Documentation

05/22/82
Obj ect Text F I I es ____ •••••• _ •••••• __ ••• __ ••••••••••••• __ ••••• _ ••••••••• ___ .N ________ _

01.0 KEYPOINTS

01.0 l£!!Dlt:lIS

Keypolnts are used to give an execution time trace of
pro3ram ',ow by showing that a given function is being performed
(that Is, that a given procedure is being executed) •
Keypoints may also be used to display request parameters,
status and error conditions.

The general form of the keypolnt Instruct'on lSI

tINlINE (tkeypoint', kevpoint_class, oSk$m * data, keypoint_id);

01.1.1 KEYPOINT CLASSES

A keypolnt is identified by both class, and Identifier.
The following deck !xp'ains the partitioning of the keypoint

classes.

QSDKEVS
COMMON

CONST

{ Keypoint Ctasses t
{
{ The 16 keypoint classes supported by the hardware are
{ partitioned between the Syste~, Product Set and User as follows.

oskSsystem_class • 0 { 0.. 5},
oskSproduct_set_class • 6 { 6 •• 10 },
osk$user_class • 11 {II •• 14 },
oskSpmf_control • 15;

01-2
CY8Il Installation Documentation

05/22/82
Object Text Files --.---.. --------.. ---.--------.--.--.-----~ .. ---.---------------_._-
01.0 KEYPOINTS
01.1.1 KEVPOINT CLASSES -_._--_._.--.. ---_._---------_._ .. _-----_._-------------------.-._--

{ Keypolnt MUltiplier'
{
{ BY convention,
{ the 32 bit keypoint 'code supported by the hardware
(is split into two fields. The right field contains a keypoint
{ identifier which Is uSed to identify a function within a
{ keypolnt class. For example, if a particular keypolnt class
{ represents exit from a procedure,
{ then the keypoint identifier might Identify exit from
{ procedure A versus exit from procedure B.
{ The left field Is used as a data parameter appropriate to the
{ function identified by the keypoint identifier. In the
{ procedure exit example above,
{ the data parameter field might be used to indicate the
{ status of the procedure cal ••
{ The keypoint multiplier is used to partition the keypoint
{ code Into the two fields. The data parameter should be
{ multlptled by the keypoint multiplier to prevent It from
{ overlapping the keypoint identifier field.

CONST
osk$m • 4096;

01.1.2 ~OS/VE KEYPOINT CLASSES

Five keypoint classes named ENTRY, EXIT, UNUSUAL, DEBUG,
and DATA are defined, taking five of the available sixteen classes
by the hardware.

e~TRY - Every gated procedure plus all major internal procedures
(those shared across functional areas) should contain a
keypolnt of this class. These keypoints should be placed
as close as possible to the entry to the procedure.

I

EXIT - Every gated procedure plus all major internal procedures
(those shared aceross functional areas) should contain a
keypolnt of this class. These keypolnts should be placed
8S closed as possible to the exit to the procedure.

~NUSUAl - Every situation which is unexpected or quite unusual
should contain a keypoint of this class. It Is Intended
that these keypoints would be enabled at all times. The
frequency of encountering these keypoints SHOULD BE
yery low. The DATA keypolnt class is not allowed in

CY8IL Installation Documentation

Object Text Files

01-3

05/22/82

--_._._--_._._----_._. __ ._--
01.0 KEYPOINTS
01. 1. 2 NOS 1 VE KE Y POI N TeLA SSE S

--.---------------------------
conjunction with a keypoint of class unusual.

DEBUG - These keypoints are for providing addltiona' trace
information as an assist in debugging hardware or software
problems. DEBUG class keypoints would be most useful in
the more complex areas of the system.

DATA - This keypolnt class can be used with ENTRY, EXIT, and
DE8UG keypoints for the gathering of extra data. All DATA
keypolnts encountered aresupp tying additional date ... hi ch
wilt be associated with the last ENTRY, EXIT, or DEBUG
keypoint.
DATA keypoints should be used with care since the PMF
hardware can only buffer up 16 keypo'nts, keypolnt cluster
can cause lost keypoints.

The folloNing deck defines the NOS/VE OS class constants.

OSOKEVC
C0f1r10N
{Define KEYPOINT CLASS Codes.

C!lt4ST
oskSdata • oskSsystem_class + 0, { as - DATA keypoint}
OSkSuAusual • oskSsystem_ctass + 1, {U OS - Unusual keypoint.}
oskSentry • oskSsystem_class + 2, {E as - Entry keypoint)}
oskSexit • oskSsystem_class + 3, {X OS - Exit keypoint}
oskSdebug • oskssystem_class + 4; {O OS - Debug keypoint.}

{*callc,osdkeys

01.1.3 KEYPOINT DATA AND IDENTIFICATION

Upon successful execution each keypointinstrucion wi"
provide a total of 32 bits of Information. Our convention uses
12 bits of this for keypoint identification and the remaining 20
bits as user supplied data. Try to use this 20 bits to supply
meaningful Information (taskid, segment number, ft Ie identifier,
queue length, page number, time, etc.). The keypotnt
Identification codes are defined in the attached common deck. Cn
DATA class keypoints the data belongs to the previous keypoint
and the rut' 32 bl ts Is avail able for additional user data.

D1-4
CYBIL Installation Documentation

05/22/82
Object Text Files

--01.0 KEYPOINTS
01.1.4 EXAMPLE ISSUING KEYPOINTS

--
01.1.4 EXAMPLE ISSUING KEYPOINTS

ENTRY keypoint with data2

'tNLINE('keypolnt t , oskSentry, osk$m*taskid.lndex,
tmkSexit_task);

UNUSUAL keypolnt with no data:

'INLINE (tkeypolnt" oskSunusual, 0, mmkSno_memofY);

ENTRY keypolnt with extra datal

tINlINE (tkeypointt, oSkSentry, osk$m * segment_number,
mmkSpage_fautt);

tINlI~E ('keypoint', osk.data, offset, 0);

Each area of the operating system has been given a range of
Identifiers to use for keypoints. The base for each area is
defined on common deck OSOKEYO. Each area should
have a deck xxOKEY (where xx is the product identi'ler)
where the areas keypolnt constants are defined(e.g.tmk$exit_task).
Please reference the section on keypolnt description decks, for an
example ot one of these decks.

OSDKEYO
COMMON
{This deck defines constants for use with KEYPOINTS.

{Define base keypoint procedure Identifiers for each area of the
{OS.

CONST
amkSbase • 100, {lOO - 149}
bakSbase • 200, {ZOO - 249}
clkSbase • 250, {Z50 - 299}
cmkSbase • 300, {300 - 349}
dbkSbase • 350, {350 - 399}
dmkSbase • 400, {400 - 549}

01-5
CYBIl Installation Documentation

05122/82
Object Text Files

-~--------------------------------~--------------------------------01.0 KEYPOINTS
01.1.5 KEYPOINT IDENTIFIERS
-------------------------------_______ N-----------------------------

fmkSbase • 550, {'50 - 599}
IckSbase a 600, {600 - 649}
IfkSbase • 650, {650 - 699}
iikSbase a 700, {700 - 749}
InkSbase • 750, {750 - 799}
jmkSbase a 800, {SOO - 849}
IgkSbase • 850, {85C - 899}
.IkSbase a 900, {900 - 949}
lokSbase • 950, {950 - 999}
lukSbase • 1000, {lOCO - 1049}
mlkSbase a 1050, {1050 - l099}
mmkSmonltor_base • 1100, {llOO - l149}
mmk$Job_base • 1150, {l150 - 1199}
mskSbase a 1200, {1200 - 1249}
mtkSbase • 1250, {1250 - 12Q9}
ockSbase • 1300, {1300 - 1349}
orkSbase • 1350, {1350 - l399}
oskSbase a 1400, {1400 - 144Q}
pfkSbase • 1500, {1S00 - 1549}
pmkSbase • 1600, {l600 - 16~Q}
rhkSbase • 1750, {1750 - 1799}
srkSblse • 1800, {1800 - 1819}
stkSbase a 1850, {1850 - 1899}
tmkSmonltor_base • lQOQ, {19QO - 1949}
tmkSJob_base • 1950, {1950 - 1999}
JskSmonltor_base • 2000, {lOOO - 2049}
JskSJob_base • l050, {l050 - 2099}
8vkSbase • 2100, {ZIOO - 2149}
sfk$base • 2150, {l150 - 2199}
lokSbase • 2200, {2200 - 2249}
rmkSbase • 2250, {2250 - 2300}
mtk$assembly_language_base • 4000; {4000 - 4095}

{ OS assembly language 4000 - 40Q5}
{*callc,osdkeyc

01-6
CYBIl Installation Documentation

05/22/82
Object Text Fifes

-----._---01.0 KEYPOINTS
01.2.1 ON THE SIMULATOR
------_._---

01.2.1 ON THE SIMULATOR

When executing on the simulator at' keypolnt instructions cause
an entry to be added to the local 'ile SESSMKF.

01.2.2 ON THE HARDWARE

Software keypoint collection is available for collecting system
and Job keypolnts. System keypoints are those keypoints in the
entire system and Job keypoints are only those dealing with a
particul.r Job. Only one system keypoint collector
can be active at one time, but each job may have an active
Job keypolnt collector. Software keypoints are collected on a
file local to the Job In which the keypolnt collection task is
running. After keypoint collection is terminated this file can
saved on the 170 side and analyzed by the keypoint analyzer.

Three commands are supplied to uti' Ize the keypolnt feature:
KEYON, KEYOFF, and KEYPOINT.

The KEYON command initiates keypoint recording and collecting.
It has the form ofS

KEYON,recordlng_mode, environment, kmm, kmj,
keypolnt_class_start, keYPoint_class_stop,
keypolnt_file_name, keypoint_buffer_size,
collector_timeout_period

recording_mode • 'software' or 'hardware', default is software

environment • 'Job' or 'system' , default is Job

keypotnt_mask_monitor = 0 •• Jffff(16) , default Is Of"f(16)

, default is Offff(16)

keypoint_class_start • 0 •• 15
This spectfles that keyoolnt collection should not
start until a keypoint of this class in encountered,

01-7
CYBll Installation Do~ument8tion

05/22/82
Object Text Files

--01.0 KE Y POI MTS
01.2.2.1 KEVON command .. __ N _",. .. _. ___ .. ", _ ,.,.._ N ___ . _____ ,. _,. __ ,. _ "", _", ., _./l1li ____ .. _ .. _,._ .fI/I iliff _ iliff _ .. ______ .. ___ N _,.

default is to begin cot'ecting immediately.

keypofnt_class_stop = 0 •• 15
This specifies that keypolnt cotlection should stop
"hen a keYPoint of this c'ass is encountered.

keypoint_flle_name - file name on which keypolnts are saved,
used with software keypoints only, default Is KEYFIlE.

keypoint_buffer_size • 0 •• ha.fword
For software keypoints only.

, default is 2000

coltector_tlmeout_period = 0 •• halfword , default Is 50
m III Is e co n ds •
For use with software keypolnts only.

The KEYOFF command terminates keyooint collection.

KEYOFF- environment

This command is use~ to issue keypoints.

, default is 15

keypolnt_code • 0 •• halfword , default is 0

•

After keypolnt coltection Is terminated the keypolnt flte,
can be saved on the 110 by a REPLACE_FILE with 856
con,erston. For example.

REPlACE_FIlE,keyflle,keyft'e,b56

On the 170 side this can be analyzed by using NVEKEY,
forlllat • HOW.

01-8
CYBll Installation Documentation

05/22/82
Object Text Fi I es

------_._---D1.0 KEYPOINTS
01.2.2.3 KEYPOINT command

-------.--

The SESSMKF file produced on the simutator, or the
KEYFltE produced on the hardware can be reformatted into a
readable listing by executing the following procedure.

seS.NVEKEV [KPF-] [FORMAT- 1 CKO-] [AREA-]
NVEKEY creates a simulator generated keypoint trace file.
The "kpf" parameter Is the keypolnt fl Ie used as Input.
The "kd" parameter is a fite or 'ist of files which define(s)
the keypolnt descriptions.
----·PARAl1ETER-------OEFAUL T--------AlL OW ABLE VAL UE S------

kpf 'SESSMKF' file name
'KEYFIlEt If format-HOW

for~at 'SIM' sim,hdw
kd 'KEYDESC' rile nameCs)
area &USER& user name

If run interactively, when the procedure terminates the
reformatted listing Is on local flte KEYFILE.

01.3.2 KEYPOINT DESCRIPTION FILE

The keypoint descriptions are used by the keypoint
analyzer utility to direct the reformatting of the
keypolnt Information.

01-9
CYBfl Installation Documentation

05/22/82
Object Text Files __ ._---_._-----------_ _------.. _------.-----_._.-
Dl.O KEYPOINTS
D1.3.2.1 keypolnt decks
-----_.----------_ .. _ .. _._._-------------_._--------------------._--

Each area has a keypoint constant deck xxDKEY (where xx
Is the product idle The keypoint descriptions are now
included In this deck immediately following the keypoint
constants (slmllJar to the message templates).

Each description has the following format.
Notel each element (if given) is positionally dependant.

CLASS of keypoint - required
E erl tr y
X eXit
U Un usu al
D Debug

SUB_10_FIELD - optional - (described laterl

KEYPOINT_lA8El - required - This is a string that
describes the purpose of the keypoint.

DATA_LABEL - optional - This is a string of uP to 8
characters descrlblng the data portion of the keypoint.

DATA_FIELD_oeSCRIPTOR - optional - This consists of data
'Ofllat and length.
data_for mat

H Hex
I Integer (decimal)
A A SC I I

Concatenated to this Is the length of the data portion of
the keypoint, in decima' bits.
For examplet 120

01.3.2.1.1 EXAMPLE KEYPOINT DECK

STDKEY
COMMON

{ PURPOSE'
{ This deck contains atl of the set manager keypoint constants.

CONST

CYBIL Installation Documentation
01-10

05/22/82
Object Text Files
-----------.. _------_._--_.---01.0 KEYPOINTS
Dl.3.2.1.1 EXAMPLE KEYPOINT DECK ------.. --

stkScreate_set • stkSbase + 1,
{E t stpScr eat e_s et. I ring
{X tstpScreate_set' 'status

stkSpurge_set • stkSbase + 2,
{E 'stpSpurge_set t }

ex 'stpSpurge_set' 'status

1 H }
, 120 }

, 120 }

stkScant_dm_store_set_ord • stkSbase,
{U 'cant dmp$store_avt_set_ofdinal' 'avtindx t H20 }

stkSP'_foot_slze • stk$base + 5;
{O 'pf_foot_slze' 'rootslz ' H20 }

1? PUSH (LIST a. OFF) 11
{*callc osdkeyd
11 POP??

This optional field allows a means of subdividing a single
keypolnt Into several descriptors. The particular descriptor
is chosen on the basis of a selectable number of bits of the
data field. This field has the following format:

SUB_IO_LENGTH - This specifies the number of bits (right most)
of the data field to use, to determine which
descriptor to choose.

SUB_IO_MATCH - This specifies the integer identifier used to
match the data port jon.

ExampleS
MmkSpage_fault • mmk$monitor_base + 6,

{E 'page fault processor' }
rE 4.1 'Page found In aval' queue' 'pftl
{E 4.2 'Page found in avail modi fied queue

• H16}
• tpfti f H16}

If this keypoint was issued and produced data of Z, the
descriptor with the sUb_id_match field of 2 would be
used ('page found in avail modified queue').
These keypoints were issued with a sUb_ld_length • 4,
thus the 4.x. For example:
'1NLINE ('keypolnt', osk$entry, oskSm *

(pfti • 16 {Z ** sub_id_length} + 2{sub_id_match}),

D1-11
CYBIL Installation Documentation

05/22/82
Object Text Files

--Dl.O KEYPOINTS
D1.3.2.1.2 SUB_ID_fIElD
____________________________________ N ___________ ------____________ ._

The keypotnt descriptions are kept on a file called KEYDESC
on the Integration catalog. This file may be produced by'

SES~GENCOMP H-OSMKEYS AB-«NOSVEPl,OSlPI,INT2) Cf-KEYOESC

The user may add keypolnts to her xxOKEY deck locally, and
the KEYDESC file may be produced as above, specifying the
additional tocal bases. The KEYDESC file may then be saved
on her catalog.

If new keypo.nt decks are added, *callc 's to these new decks
chould be added to the deck OSMKEYS, and the appropriate
base constants added to deck OSOKEYD.

When transmitting changes to keypolnt decks, be sure to Inform
Integration, via the transitta' form, to recreate the file
KEYDESC.

This section wl., only be useful to those desiring to add
additional keypolnt classes, keypolnt class base constants,
or new keypolnt description decks.

The classes, identifiers, and descriptions are each buffered
by a comment. For example, to add another keypoint class:
{SSS START KEYPOINT CLASSES $$$}
CONST

pskSentry • oskSproduct_set_class + 1; {E PS - entry keypoint}
{SSS END KEYPOINT CLASSES S$$ }
notel The E follwoing the n{n wilt be used in the description.

This neM section should be appended to the end of the KEYDESC
tile. Readers desiring more information should reference the
attached SNF, and the attached decks OSMKEYS.

The following represents a sample of how to set up
the description module.
Notel Comment put around *call for sake of documentation only.

01-12
eYBIl Installation Documentation

05/22/82.
Object Text Files ---.--.. ---... ---.-.. -.--.. -~--~.-.. -.. ~-.------.--.. -_ .. _----------
01.0 KEYPOINTS
01.3.2.3 osmkeys format
---.--.------.-----.. ----.--------~----------.. -------.. _-------....

OSPtKEYS
11 lEFT Ja 1, RIGHT la 110 11
MODULE keypolnt_deserlptloo_'ila;
C*callc,osdkeys
{SSS START KEYPOINT CLASSES SSS}
<*eallc"osdkeyc
{SSS END KEYPOINT CLASSeS SSS}
{SSS START KEYPOINT IDENTIFIER SASES 'is}
{*ca t 10, os d keyd
{SSS END KEYPOINT IDENTIFIER BASES SIS}
{ISS START KEYPOINT DESCRIPTIONS $$S}
{*ca tic, 8m dkey
{*callc,badkey
{*ea" c, cl dkey
{*ca Ilc,cmdkey
{*ca 11 c, db dkey
{tea I c, dmdkey
<*ca Ic,fmdkey
{*ca le,lcdkey
{*ca 'c, If dkey
{*ca Ic, i I dkey
{*ca Ie, 1 n dkey
<*ca Ie, Jmd key
{tea J c,1 g dkey
<*ea e,lldkey
<*ca e,lodkey
{tea c,ludkey
{tea c,mldkey
<*ea c, mftldmkey
{*ca c,mllldJkey
{tea c,msdkey
{*ca c, mt dkey
<*ea c,ocdkey
{tea c, of dkey
{*ca c,osdkey
(*ca c,pfdkey
(*ea c, pmdkey
{tea c,rhdkey
(*ea c,sr dkey
{tea c,stdkey
(*ca e, trndmkey
{tea c, tmd Jke y
{*ca c, Jsdmkey
{tea c, Js dJkey
(*ea e,avdkey
{tea c,sfdkey
<*ca c,lodkey

01-13
CYBIl Installation Documentation

05/22/82
Object Text Fltes ----_ -._------_ .. __ .. _--_. __ .-.. _----_ .. _._--.. _--._ ... ---.
Dl.O KEYPOINTS
01.3.2.3 osmkeys format --. __ ._-----------_.-.. _----_. __ _._._-------_.----_ .. -... --.. _-

{*ca' Ie, rmdkey
{SSS END KEYPOINT DESCRIPTIONS ISS}
MODEND keypoint_description_file;

The output from procedure NVEKEY Is a file called KEVFIlE.
This reformatted listing contains two sections. The first
section is a listing of all the keypoints in the order they were
issued. The second section Is a summary of the number of ti~es

each keypolnt occured.
Each tine in the first section has the following format;

The RT field designates the value of the free running
.Icrosecond clock (time since deadstart) when the keypolnt was
executed. On the simulator the clock is jncremented by 1 for
each Instruction executed.

The TSl 'ield designates the time (microseconds) since the
last keypolnt instruction was executed.

The OATA fleld specifies the value of the data portion of the
keypolnt In the format described in the keypoint description
'ile tor this keypolnt.

The DATA_LABEL field Is the data label field from the
keypolnt description rile for this keypoint.
This identifies the data being displayed.

The S fle'd specifies the state of the machine when the
key~olnt lIt8S Issued and is one of the followings

M Monitor mode
J - Job mode

An * preceding the S field indicates that
trap processing is active, that is the trap handler has
been entered, but not exited.

The TN field gives the global tasl< 11 of the task that
Mas executing when the keypoint was Issued.
The system Is taSk 1.

01-14
eYBIl Installation Documentation

05122/82
Object Text Files ___ • ____ ._. _____ ••• _._._. ___ ~ ••• ___ ._ •••• N.N_N.N ••• _ •• _ •••••••••••••

01.0 KEYPOINTS
01.4 REFORMATTED FILE DESCRIPTION ___ • ______ • ____ • ______ •• ______ •• _____ •• _ •• _-••••••• ---__ •• _N _______ _

The AREA_tO field is the area identifier for the area
Issuing the keypoint.

The KP_lASEl is the keypoint label field from the keypolnt
description 'lie- This describes the keypoint.

NOTEI For an undefined keypoint, that Ls, one which has no
descriptor ·entry, the area_ldFleld contains the
Integer for the keypoint class, the class field
on the output is specified as "UNO", and the KP_lABEl
becomes the id_number of the keypotnt.

<analyzer_descriptor_input> a:= <keypolnt_class_atlocatlon_deck>
((definition_deck) ••• 1

<keypoint_ctass_allocation_deck> IS= (cybil code and/or comments>
[<class_base_deflnltlons> •••]

<cybil code and/or comments>

<class_base_ld> ::- oskSsystem_class : oskSproduct_set_class
oskSuser_class oskSpmf_control

(spc) I:. [(space) •••]

(base> tl- (Integer>

(definition_deck> ::- <class_definition_deck> :
<base_definition_deCk> :
<keypoint_definltton_deck>

<class_definltion_deck> :Is {$$S START KEYPOINT CLASSES $$$}
(cybi I code and/or comments>
[(class_definitions) •••]
<cybi I code and/or comments>
{I$S END KEYPOINT CLASSES SSS}

(class_definitions> 1:- <keypoiot_class> (spc) : (spc>

01-15
CYBll Installation Documentation

05/22/82
ObJ ectT ext F II es -.. -.-~.-.~-~~.--.. -.--.. -.----.. ---.--.-.---------------_.---------
01.0 KEYPOINTS
01.5 BMF KEYPOINT DESCRIPTION .. -.--~-.------.-.--.-_ .. -

<class_base_ld> <offset>
{ (keypolnt_ctass_id> (cybil comment>

(key po In t_ c I ass> :.- < i den t if i e r)

<offset> It- + <sPc> <integer> <de'iml ter>

(delimiter> It. , : ;

<base_deflnltlon_deck> ala

{SS START KEYPOINT IDENTIFIER BASES SiS}
(cybi I code and/or comments>
[(range_base_deflnltlons> •••]
(cybi) code and/or comments>
{SSS END KEYPOINT IDENTIFIER BASES $$5}

(range_bas8_derinitjons> II. <keypoint_base> (delimiter>
(bas e_, an ge>

<keypolnt_base) 11= (spc> <base_id> <spc) = (spc) (base>

<base_id> Ita <identifier)

<base_range) la- <spc) (<low_base> <sp) - <high_base> [},]

(low_base> taa <integer>

<high_base> II_ (Integer)

<keypoint_definitjon_deck> tl.
{SSS START KEYPOINT DESCRIPTIONS $$$}

(cybll COde and/or comments>
[(xxdkey_deck> ••• 1
< c y b i I co d ea n d or comments>
{SIS END KEYPOINT DESCRIPTIONS S$$}

(xxdkey.deck) :1- [(cybil code and/or comments) 1
[<keypoint_tnfo> ••• 1

Ckeypolnt_ln'o> :,- <keypoJnt_constant_llne> <del'miter) <eol>
[(key poi n t_ des c rip tor> •••]
[(blank tines>]

<keypolnt_constant_' ine> ::= <keypotnt_constant> <sPc> = (spc)
< key poi n t _ bas e) < s pc> [< 0 f f set>] < s pc>

01-16
CY81L Installation Documentation

05/22/82
Object Text Fi les
_w ____ ¥ ___ - ____________ _

01.0 KE·YPOI MTS
01.5 B~F KEYPOINT DESCRIPTION

--_._._-------
<keYPolnt_constant> ala <identifier)

<keypolnt_base> 1:= <identifier>

<keypofnt_~escrtptor> 1:- (<keypoint_descriptor_' 1st) <spc) [}]
(eol>

<keypoint_descriptor_Iist> IS- <keypoint_c'ass_id> <spc>
[<special_case_code>] <spc)
[<sub_id_field>] (spc> <keypoint_label>
<spc> ((dat3_ fi el d>]

<speci ai_ease_code> II- M : N : S : T
(M • Mtr, N eNos, S : task Switch, and T - Trap)

<sub_id_~ield> 1:- <sub_id_Iength> • <sub_id_match>

<sub_ld_length> ::- <·'ield_length>

<field_length> II- 0 •• 52

<small_Integer> tl. 0 •• 0 FFFFFFFFFfFFF(16)

<keypolnt_tabel> 1:- <'abe'>

<Iabe') 11= , <character_string) t

<character_string) :1- any visible characters except'

<data_'abel> II. <label>

(In bits)

(data_field_descriptor> 1'- <data_format> [<dats_fleld_length>]

<data_format> 11= A : H : I
(A - Alphanumeric, H a Hex, I • Integer)

<data_'ield_length> ss- <fleWd_length>

(NOTEI <sub_ld_length> + <dats_fJeld_Iength> must be <- 52 bits)
(NOTE' operating system <keypoint_class_id) • {O,E,U,X})
(NOTEa <keypolnt_class_ld> for any keypoint used for
additional information to previous keypolnts
must be a space»
(NOTEI a <definition_deck> remains In effect until

01-17
CYBll Installation Documentation

05/22/82
Object Text Fifes
••••••• _. _____ • ___ ••• ____ • _______ M _________________________________ _

01.0 KEYPOINTS
01.5 BNF KEyPOINT DESCRIPTION
__ ---M--_-_____________ _

superceeded by a deck which redefines the
area to which it pertains)

1
05122.182

Table of Contents

1.0 NOS/VE SYSTEM OVERVIEW •••••••••••••••••
1.1 INTRODUCTION • • • • • • • • • • • • • •••••••••

1.1.1 THE HIVS COMPONENT •••••••••••••••••
1 • 1. 2 Al 7 0 NOS HOD I fIe A T I ON S • • • • • • • • • • • • •• •
1.1.3 A170 NOS APPLICATIONS •••••••••••••••
1.1.1t THE VIRTUAL STATE COMPONENT ••••••••••••

1.2 VIRTUAL STATE PARTITIONING •••••••••••••••
1.3 MANIPULATION OF NOS/VE PARTITIONS AND LIBRARIES ••••
1.4 DUAL STATE MEMORY MAP •••••••••••••••••

2.0 OVERVIEW Of INTEGRATION PROCESS ••••••••••••
2 .1 RELATED DOC Uri E N T S ••••••••• • • • • •• • • • •
2.2 STANDARDS ••••••••••••• • • • • • • • • • •
2.3 CATALOG MANAGEMENT POLICIES ••••••••••••••
2.4 BUILD PROCEDURE DESCRIPTIONS ••••••••••••••

2.4.1 INTRODUCTION ••••••••••••••••••••
2.4.2 INVOKING THE PROCEDURES ••••••••••••••
2.4.3 CURRENT PACKAGING OF NOS/VE SOURCE •••••••••
2.4.4 UPDATE THE SOURCE LIBRARIES ••••••••••••
2.4.5 COMPILE/ASSEMBLE FROM SOURCE ••••••••••••
2.4.6 BEGIN THE LINKER-LOADER PHASE •••••••••••
2.1t.1 GENERATE THE DEADSTART FILE ••••••••••••

2.5 NVE8IlO PROCEDURE DESCRIPTION •••••••••••••
2.5.1 NVEBILF PROCEDURE DESCRIPTION •••••••••••
2.5.2 t-4VEBLD PROCEDURE DESCRIPTI3N ••••••••••••
Z • 5 • 3 lIS TN V E P R OC E 0 U REO ES C RIP T ION • • • • • • • • • • •

2.6 NVELINK PROCEDURE DESCRIPTION ••••••••• ' ••••
2.6.1 LPFFILE DESCRIPTION ••••••••••••••••
2.6.ZSYSXDIR I LOR FILE DESCRIPTION •••••••••••

2.7 PARAMETER DESCRIPTOR TABLE AND MESSAGE TEMPLATE BUILDING
2 • 7.1 G e ~ PDT AND B l D G PDT DESCRIPTIONS ••••••••••
2.7.2 GENMT, GNVEMT AND BLOGHT DESCRIPTIONS •••••••

2.8 NOS/VE SIMULATION •••••••••••••••••••
Z .8.1 RLJ NNI N GAS I M U l A T OR T EST (N V E S IMP R 0 CE DU R E) • • • •
2.8.2 NVEKEY PROCEDURE DESCRIPTION ••••••••••••
2.8.3 DUMPING A SIMULATOR CHECKPOINT FILE (NVEOUMP
PROCEDURE) ••••

2.9 BUILDING A DEADSTART FILE •••••••••••••••
2.9.1 INTRODUCTION ••••••••••••••••••••
2.9.2 CREATING THE fILE (NVESV$ PROCEDURE) ••••••••
2.9.3 COMPILING 180 PP CODE (CPP180 PROCEDURE) •••••

2 .1 0 D U A L S TAT e p R DC E D U RES • • • • • • • • • • • • • • • • •
2.10.1 SlOEI PROCEDURE DESCRIPTION ••••••••••••
2.10.2 Sl0170 PROCEDURE DESCRIPTION •••••••••••
2.10.3 BlDICF7 PROCEDURE DESCRIPTION •••••••••••
2 .10. 4 B l D If 7 PROCEDURE DESCRIPTION • • • • • • •• • • •
2.10.5 BlDRH7 PROCE OURE OESCRIPTION •••••••••••
2.10.6 DSBIlD PROCEDURE DESCRIPTION •••••••••••

2.11 UTILITY PROCEDURES ••••••••••••••••••

1-1
1-1
1-2
1-2
1-2
1-3
1-4
1-6
1-6

2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-6
2-6
2-7
2-8
2-8
2-8

2-12
2-13
2-14
2-16
2-1q
2-20
2-20
2-20
2-21
2-23
2-23
2-25

2-26
2-27
2-27
2-27
2-29
2-3C
2-30
2-31
2-31
2-32
2-33
2-.34
2-35

2
05122/82

2.11.1 NVEREP- REPORT SYSTEM CONTENT ••••••••••
2.11.2 PRoceOURE GET - GET A LOCAL FILE •••••••••
2 • 11.3 P R OC ED UR E S A V E - M AK E A L!] CALF I LE PER MANE NT • • •
2.11.4 NVEMAP - REFORMAT NOS/VE LINKMAP •••••••••
2.11.5 PROCEDURE FORMPROC - FORMAT PROCEDURE •••••••
2.11.6 PROCEDURE SIZES - REPORT MODULE SIzes •••••••

2 .12 PRe - I f\l TE G RAT I ON BUILDS •••••• • • • • • •• • • •
2.12.1 GENDEK PROCEDURE DESCRIPTION •••••••••••
Z .12. 2 8 I lO l I 8 P R ac E 0 U RED ESC RIP TID. N •• • • •• • • • • •
2.12.3 BIlDAll PROCEDURE DESCRIPTION •••••••••••
2.12.4 CHKLIB PROCEDURE DESCRIPTION •••••••••••
2.12.,5 'URDEK PROCEDURE DESCRIPTION •••••••••••

3.0 DUAL STATE INSTALLATION SEQUENCE ••••
3.1 RELEASE RESERVED SPACE AND INST~lL eTI •
3.2 INSTAll MSl ••• • • • • • • • • • • •
3.3 CMRDECK CHANGES AND CMOSl FILE •••••

·
• • • • • • • • · ·

3.3.1 NOS CMRDECK AND LIBDECK CHANGJ:S ••
3.3.2 CMOS! FILE •••••••••••••

3.4 INSTALL SYSTEM • • • • • • • • • • • • •

• • • • • • • •
• • • • • • • •

3.5 LOADPF FILES ·
3.6 BRING UP OUAl STATE •••••••••• ·
4.0 NOS/VE HARDWARE REGRESSION TESTING.
4.1 INTRODUCTION
4.2 S2 REGRESSION TESTS ••••••••

4.2.1 JOB2 • • • • • • • • • • • • ••
4.2.2 J083 ••••••••••••••
4.2.3 JOB4
4.2.4 TESTBAM ••••••••••••

4.3 S2 REGRESSION TEST SEQUENCE ••••
4.4 INTRODUCTION TO CONFIDENCE TESTS
4.5 INSTALLATION ••••••••••••
4. b EXEC UT ION •••••••••••••

4.6.1 EXECUTION OF IF094 •••••••
4.7 TESTS
4.8 TOOLS • ••

4.8.1 AUTOMATIC CHECKING ROUTINES - ACR
4.8.2 LOTS
4.8.3 CLEANUP ••••••••••••
4.8.4 GENBIN •••••••••••••
4.8.5 PRT~IST ••••••••••••

·
• • • • • • • • • •
• • • • • • • • • • ·
• • • •• • • • • •
•• • • • • • • • •
• • • • • •• • • • ·
• • • • • • • • • • ·
• • • •• •• • • • · ·

• • • • • • • • • ·
..
• • • • • • • • • •
• • • • • • • • • •

NQS/Ve Transmittal Form

2-35
2-36
2-38
2-39
2-43
.2-45
2-45
2-46
2-46
2-47
2-48
2-48

3-1
3-1
3-2
3-4
3-4
3-6
3-7
3-8
3-8

4-1
4-1
4-1
4-1
4-2
4-3
4-3
4-1,
4-6
4-7
4-7
4-8
4-8
4-9

4-10
4-10
4-10
4-11
4-13

Al

Flies Maintained 8y Integration •••• • • • • • • • • • • 81

CYBIL Installation Documentation •• • • • • • • • • Cl

Cl.O BtJIlD CATALOG SETUP •••••• • • C1-1

3
05/22/82

C2.0 CYBIl BUILD PROCESS ••• • •• • • • • • • • • • • • •

C 3. 0 C YSI t 8U I l D P R ac E 0 U RES • • • •• • • • •• •• • • • •
C3.1 CC COMPILER BUILD AND rEST PROCEDURES •••••••••

C3.l.l BLOCC pROCEDURE oeSCRIPTION ••••
C3.1.2 CNVRGCC PROCEDURE DESCRIPTION •••
C 3 .1.3 T EST C CPR OC E 0 U REO ESC RIP T r :[} N • • •

C3.2 CI COMPILER BUILD AND TEST PROCEDURES.
C3.2.1 BLDCI PROCEDURE DESCRIPTION ••••
C3.2.12 TeSTe t PROCE DURE oesc R IPT ION • • •
C3.Z.3 BLDIttB PROCEDURE DESCRIPTION •••
C3.2.4 RUNREG PROCEDURE DESCRIPTION •••

C3.3 II CO~PIlERS BUILD AND TEST PROCEDURES

• • •
• • •
• • •
• • •
• • •
• • • .. • •
• • •
• • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

C3.3.1 BLOIIS PROCEDURE DESCRIPTION •••••••••••
C3.3.2 BlDII2S PROCEDURE DESCRIPTION •••••••••••
C3.3.3 8lDIIH PRoCEDURE DESCRIPTION •••••••••••

C2-1

C3-1
C3-1
C3-1
C3-2
C3-3
C3-3
C3-4
C3-4
C3-5
C3-5
C3-6
C3-6
C3-7
C3-7

KEYPOINTS •••••••• • • • • • • • • • • • • • • • • • 01

01.0 KEYPOINTS •
01.1 ISSUING KEYPOINTS FROM CYBll CODE •••••••••••

01.1.1 KEYPOINT CLASSES •••••••••••••••••
01.1.2 NOS/VE KEYPOINT CLASSES ••••••••••••••
01.1.3 KEYPOINT DATA AND IDENTIFICATION •••••••••
Dl.1.\4 EXAMPLE ISSUING KEYPOINTS •••••.••••••••
D1.1.5 KEYPOINT tOENT IFIERS •••••••••••••••

01.2 COLLECTING KEYPOINTS. • • • • •• • • • • • • • •••
,D1.2.11 ON THE SIMULATOR •••••••••••••••••
!)l.Z. Z ON THE HARDwARE • • • • • • • •• • • • • • • •••

01. 2.2.1 K EYON. co mm an d • • • • • • • • • • • • • • • • •
01.2.2.2 KEYOFF command ••••••••••••••••
01.2.2.3 KEYPOINT command •••••••••••••••

01.3 KEYPOINT ANALYZER UTILITY •••••••••••••••
01.3.1 NVEKEY ••••••••••••••••••••••
01.3.2 KEYPOINT DESCRIPTION FILE •••••••••••••

01.3.2.1 keypoint decks ••••••••••••••••
01.3.2.1.1 EXAMPLE KEYPOINT OECI(••••••••••••
01.3.2.1.2 SUB_tO_FIELD ••••••••••••••••
01.3.2.2 generating the descriptor file ••••••••
01.3.2.3 osmkeys format ••••••••••••••••

01.4 REFORMATTED FILE DESCRIPTION •••••••••••••
01.5 B~F KEYPOINT DESCRIPTION •••••••••••••••

D1-1
01-1
01-1
01-2
01-3
01-4
01-4
01-5
01-6
01-6
01-6
01-1
01-7
01-8
01-8
01-8
D1-c;
01-9

01-10
01-11
01-11
01-13
01-14

