CONTROL DATA’ 6400/6600 COMPUTER SYSTEMS
SCOPE Reference Manual

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales
office listed on the back cover.

CONTROL DATA CORPORATION

Documentation Department

September, 1966 3145 PORTER DRIVE © 1966, Control Data Corporation
Pub. No. 60173800 PALO ALTO, CALIFORNIA Printed in the United States of America

PREFACE

SCOPE, an operating system which directs the execution sequence of

programs on the CONTROL DATA® 6400/6600 computers, is an extension of the
Chippewa Operating System. In addition to performing input/output, com-
pilation, and storage assignment tasks, the SCOPE system includes a linking
loader with segment and overlay loading capabilities.

Familiarity with 6000 hardware and related software manuals describing the
ASCENT, ASPER, and FORTRAN languages is assumed.

This manual is intended to assist the user in programming on the central
processor only.

iii

CONTENTS

SCOPE TERMINOLOGY

CHAPTER 1

CHAPTER 2

INTRODUCTION

1.1 System Components
1.2 Central Processor

1.3 Peripheral Processors

1.3.1 Monitor

1.3.2 System Display
1.4 Disk Storage
1.5 Operation

SYSTEM CONTROL

.1 Control Points

Exchange Jump Area

Storage Allocation and Movements
Central/MTR Communication
Circular Buffer I/0

2.5.1 Buffer Codes

2.5.2 Operation

2.6 Control Card Peripheral Programs

DD NN DN
TR W N

2.6.1 Dump Storage
2.6.2 Load Binary Corrections
2.8.3 load Octal Corrections
2.6.4 Punch Binary Card
2.6.5 Read Binary Record
2.6.6 Request Field Length
2.6.7 SOS
2.6.8 Write Binary Record
2.6.9 HLP
2.6.10 Job Display-DIS

2.7 User-Requested Peripheral Programs
2.7.1 MSG
2.7.2 CHK

B

ot
1
[hary

1 UL |
W NN

T T e Ny S
I I
w

I
w

[\
[} [}
—

| DN N NNDDN NN
| [R U

R e ol ol ol ol = B NI GU R N

BN NN N

1
—
NS

1
[
[==RNeriiNerIN))

(=]

U

J
NN DN

>

NDNDNDNDNNDNDDNDDNDDNDNDN DN
[}
=
NS

CHAPTER 3

CHAPTER 4

CHAPTER 5

vi

EQUIPMENT USE AND FILE STRUCTURE

Binary and Coded Modes
Magnetic Tape Files

3.1 TFile Name Table
3.2 File Format

3.3 TFile Names

3.4 Card Files

3.5 Disk Files

3.6

3.7

CONTROL CARDS AND JOB PROCESSING

4.1 Job Card
4.2 Loading and Executing
4.2.1 LOAD
4.2.2 EXECUTE
4.2.3 Program Call
4.2.4 NOGO
4.3 Equipment Assignment
4.3.1 ASSIGNu,f,dd
4.3.2 REQUESTI,dd
4.4 Common Files
4.4.1 COMMON f{.
4.4.2 RELEASE {.
SWITCH, MODE, EXIT
Comment
Compiler and Program Calls
System Action on Control Cards

rlhﬂkl-hth
0w =1 o »

LOADER

5.1 Loading Types
5.1.1 Normal Loading
5.1.2 Segment Loading
5.1.3 Overlay Loading
5.2 TUser Requests
5.2.1 Parameter List for Calling Loader
5.2.2 Parameter List for Reply From Loader
Relocatable Subroutine Table
5.4 Memory Allocation
5.4.1 System Usage
5.4.2 User Allocations
5.5 Memory Map
5.6 Segmentation
5.6.1 Levels
5.6.2 Loading Segments

ot
W

W W W W W W W W
| [
S BNV o

[L
W W W

1|
(o231 I)]

| |
-3

ol
= o

]
= o 00 00 =3 =3

BB R R R
[\

1
—

U
N NN

|
[

[I |

|
e e e I T T B

mmmmmmmmemmmmmm

CHAPTER 6

CHAPTER 7

5.7 Overlays

5.7.1 Levels

5.7.2 Loading Overlays

5.7.3 Overlay Format
5.8 Loader Cards

5.8.1 Segment Cards

5.8.2 Overlay Cards

DECK STRUCTURES

SCOPE UTILITY PROGRAMS

ENEEN S
w N

Backspace Logical Record
Catalog System Tape File
COPYN

7.

-3

7
C

© o0~ o O

=
= o

~3 =3 -1 =1 =3 ~] =3 ~3 ~q
—

-3 =1 =3 ~3 -3

W W wwww
o ~1 O Ul W

3.
y to Double File Mark
Copy Binary File

Copy Binary Record

Copy Coded (BCD) File
Copy Coded Record

Copy Shifted Binary File

op

3.

[

REWIND

SKIPF

SKIPR

WEOF

Record Identification Card
File Positioning

Sample Job

Error Messages

1:0a0G & liC

Rewind File
.12 Verify Two Files

g1
I

—

2\

1
e e
oo

o

W

Or v W o1 Ut
[
—
B

o2

I]

= -
9]

|
-

=1 3 9 9= -~
1 | I
BowW N

| | |
Nl B eI IS BN ST N |

~3 -3 =3 =3 =3 =1 =3 =3 =3 ~1 ~3 ~3 -3
1
[y

-
1

—

S

vii

SCOPE TERMINOLOGY

byte

contrel point

common files

dayfile

dead start

display code

equipment number

file name table
Ille name tablie

idle program

input files

job display

local files

A 12-bit group of bits operated upon as a unit.

A number, 1 through 7, appearing on the display scope which is
associated with status information about jobs in central memory.

Files that are not discarded upon job completion and may be used
by other jobs.

A disk file containing a running account of all control cards, equipment
assignments, error diagnostics, central and peripheral processor
time used, and I/O packages (e.g., PRINT, READ) used by the jobs in
central memory.

Initial loading of the system tape by manual toggle switching after
setting the panel switches.

A code in which alphanumeric files are stored for console display. Each
line of alphanumeric characters begins at the first 12-bit byte of a
central word and continues two characters per byte to the end of the line.

A unique two-digit octal number which identifies the equipment for job
assignments.

a 1
ix ivaiiiii

Monitor transfers control to this program when no other program is
ready for execution.

Job files which have not been assigned a control point (listed in the job
backlog (H) display with associated priority). A stored form of a job
on disk, or logical file of cards separated by a record separator or
file separator card.

The program that displays only data pertaining to the particular job. (DIS)

Files accessible at specified control points; they may be initiated by a
job and discarded at the end of a job.

ix

output files

pseudo control point

reference address

system display

A list of job files which have not been printed (appearing on the job
backlog (H) display). These jobs are processed on a priority basis.
If equal priorities are encountered, the last one in is the first one out.

A number which does not appear on the display scope; 0 is associated
with the monitor program in PP0, and the display program in PP9.

The address serving as a starting point for subsequent central resident
address modification. (RA)

The program that provides an overall status display for all currently
running jobs. (DSD)

INTRODUCTION 1

1.1

SYSTEM
COMPONENTS

1.2
CENTRAL
PROCESSOR

Control Data 6400/6600 SCOPE controls the execution of a wide variety of
jobs, assures optimum use of I/O equipment and priority processing, and
performs such functions as loading, storage allocation, job scheduling,
accounting, and operator communication.

6400/6600 computers are composed of eleven processors. Ten of these
processors perform peripheral and operating system functions. The eleventh,
the central processor, performs computation and processing at very high
speeds. The eleven processors have separate memories and operate con-
currently under SCOPE control. The large central memory is accessible

to all processors.

SCOPE is initially loaded from the system tape by means of keyed settings
on the Dead Start panel. During this operation, SCOPE components are
distributed among the central memory, the ten peripheral memories, and
the magnetic disk unit.

The central resident portion of SCOPE includes system control parameters
and pointers, communication linkage, and frequently used programs and
subroutines for both the central and peripheral processors.

The peripheral resident portion consists of a resident program stored in
each peripheral memory, the system monitor (MTR) assigned permanently
to processor 0, and the system display program (DSD) assigned permanently
to processor 9.

The remainder of SCOPE is stored on the magnetic disk unit or in central
memory to be called as needed.

The central processor executes computation and production jobs including
operational user programs and compilation and assembly of user source
language programs. These programs are stored in central memory along
with the data necessary for execution and control. Central memory, which
is accessible to both central and peripheral processors, serves as the
communication link between them.

1-1

A number of programs may be in operation concurrently in the central
processor. Central resident contains status information for each running
program which SCOPE uses for orderly control and sequencing of the
programs.

1.3

PERIPHERAL

PROCESSORS The ten peripheral processors (PP) are used by SCOPE to perform all I/0
functions required by the system or the operational programs. They also
perform certain auxiliary system functions connected with job sequencing
and control.

PP programs are stored either in central memory or in a magnetic disk
file. When called, they are transferred to an available PP for execution.

Identical resident programs in each PP sense a location in central memory
for a control word calling for some action. The resident program locates
the required program and loads it into its own memory for execution. A
peripheral program may call additional peripheral programs into its
memory, or call for action by the system monitor.

A common PP pool is available for assignment as needed by the system.
Except for MTR, DSD and the resident programs, peripheral programs
have no fixed processor assignments, and they are loaded each time they
are called. To maintain a maximum I/0 transfer rate all processors
operate concurrently.

1.3.1

MONITOR SCOPE functions under the direction of the system monitor (MTR) which is
permanently assigned to PP0. MTR repeatedly scans a set of central
memory locations which are set by transient peripheral programs to call
for monitor action. MTR also senses the status of the running central
program to determine program terminations and requests for monitor
action.

MTR is used in the assignment and release of all peripheral processors, data

channels, disk storage and I/O equipment. It maintains constant sur-
veillance of all processing in the central and peripheral processors.

1-2

14
DISK STORAGE

1.5
OPERATION

The system display program (DSD), permanently assigned to PPY, serves
as the communication linkage between the system and the operator. Two
console screens provide system monitoring information and displays of

central memory, selectable by the operaior. Through the conscle keyboard

Coilial 0Ny, SCiCluanuic vy Wi O a0l 110Uzl vl CONBULIC KOYLUOall,

the operator can modify central memory contents and request system functions.

The magnetic disk unit contains the non-resident portion of SCOPE including
both peripheral and central library programs. Central resident contains
directories which define the disk location for each library program.

The disk also holds the job stack and the data files for jobs in process.
Output from job execution is collected on the disk for printing or punching
by a peripheral program. In this sense, the disk serves as a large capacity
buffer between the I/0 devices and the processor complex.

The basic unit of storage on the disk is a half-track consisting of either the
odd or the even numbered sectors in a physical track.

A logical file on the disk is defined as a named half-track followed by any
number of continuation half-tracks in a single cabinet. This named file
must begin in the first sector of a half-track and may be of any length up
to the capacity of the cabinet.

Once SCOPE is loaded, all eleven processors execute idling programs while
waiting to be called into operation. Processing is initiated when the operator
selects the system input unit from the console keyboard; the system display
program alerts the monitor to enter information in the system tables and
calls the requested program into operation in a PP. The input program loads
job decks from the system input unit into disk storage. As each job is filed
on the disk, the input program makes an entry in a file name table (FNT)
from which jobs are selected on a priority basis.

As many as seven programs may be active in the central processor at one
time. Each active program is assigned a control peint area which contains
all information necessary to control the program and resume operation after
interrupts. MTR continually senses the status of each PP and the running
central program. When a call for action is detected, MTR either performs
the operation itself or passes the request to one of the other PP's.

MTR interrupts the running central program to pass control to the next
active central program on a priority basis if I/O requests are made. When
program completion is sensed, MTR assigns a PP to search the job stack
for the next program to be assigned to the control point and loaded into
central memory.

A program operating in the central processor may call peripheral library
programs simply by entering the name of the required program in its
reference address location plus one (RA + 1). It can call directly any
peripheral program with a name that begins with a letter. Peripheral
programs whose names begin with numbers are called only by other
peripheral programs.

SYSTEM CONTROL 2

2.1
CONTROL POINTS

2.2
EXCHANGE
JUMP AREA

The control points, numbered 1 to 7 in central resident are used to record
associated activities. The monitor program in PP0 and the display pro-
gram in PP9 are attached to a pseudo control point, numbered 0. Any
other central or PP activity must be attached to control points 1 to 7.

An activity attached to a control point can reserve an area of central
memory and may request use of the central memory and of the central
processor. PP's may also be attached temporarily to a control point.
During normal operation, some control points, used for system operations
such as loading jobs from a card reader, may never require the central
processor.

Central processor operation is initiated or interrupted by an exchange
jump command from MTR. MTR furnishes the central processor with

the first word address of a 16-word area in central memory, the exchange
jump area, which contains all necessary information about the program to
be started or resumed in the central processor. The structure of the
16-word block is shown below:

Words

Program Address (P A0(Address Registers) 0
Reference Address (RA} Al Bl(Increment Register) 1
Field Length (FL) A2 B2 2
it Mode (EM) B3 3
B4 4
B5 5
B 6
1 BT 7 p EXCHANGE PACKAGE
X0 (Opeérand Registers) 10 -
X1 11
X2 12
X3 13
X4 14
X5 15
X6 16
X7 17 J

2-1

2.3

STORAGE
ALLOCATION
AND MOVEMENT

2-2

The central processor enters the information about a new program into the
appropriate registers and stores the current information of the interrupted
program in the same 16-word block in central memory, thereby exchanging
two programs. During this exchange, the normal functions of the central
processor are not in effect.

All central processor reference addresses to central memory instructions
or data are relative to the reference address (RA). The RA and field length
(FL) define the central memory limits of a program (RA plus FL); field
length is the total program length. The program address register (P)
defines the location of a program step within the limits described. Each
reference to memory is made to the address specified by P+RA. Therefore,
relocation of a central memory program is easily performed by moving the
program in memory and resetting RA to the new address in the exchange
jump area.

Each central memory program is assigned to a control point, within which
the first 16 words are reserved for the exchange jump area. When a
central program is ready for execution, the initial values of P, RA and FL
are entered into its exchange jump area by a PP. If this program's priority
is greater than the currently operating central program, MTR initiates

this program with an exchange jump command which interrupts the currently
running program. Otherwise execution will not begin until the running pro-
gram terminates or issues a recall request (RCL), or until its priority
becomes higher than that of the running program.

Control point storage in central memory is allocated contiguously beginning
with control point 1.

Example:

Assuming central resident and library programs occupy from 0 to 13777 8
a possible arrangement is: (octal addresses)

Control Point Reference
Number Address (RA) Field Length (FL)
1 14000 4000
2 20000 10000
3 30000 100000
4 130000 0

24
CENTRAL/MTR
COMMUNICATION

Control Point Reference
Number Address (RA) Ficld Length (FL)
5 130000 0
6 1306000 40000
7 170000 40000

The area of unoccupied central memory starts at RA+FL of control
point 7, 340000.

A PP attached to a control point can request or release storage via the
monitor program. This commonly takes place when a new job with a
different requirement than the previous job is brought to the control point.

When storage allocated to a control point is to be changed, the monitor
moves the storage that has been allocated to control points with larger
numbers.

A central program may request MTR action by entering the name of a
routine in display code left-justified in location RA+1. MTR periodically
scans RA+1 of the running program for such requests. When RA+1 is
non-zero, MTR passes the value to a PP for action. Requests such as
input/output (CIO) are processed in this manner. When RA+1 is cleared,
the running program may assume that the request has been honored, though
not necessarily completed. Any parameters associated with the request
must be put in the lower 36 bits of location RA+1 by the calling program.
The format of the parameter list is dependent upon the program called.

The RA+1 entries take the following forms:

Call Peripheral PP program name in display code in upper 18 bits
of RA+1. Lower 36 bits contain the parameters for
the peripheral program. MTR clears RA+1 as soon
as requested program is passed to PP for execution.
Recall RCL in display code in upper 18 bits of RA+1. MTR
exchanges to next program waiting on a priority
basis. This request should be used whenever the
program cannot continue processing until an outside
function is complete. All system peripheral pro-
grams recall the central program at completion of
requested function.

2-3

2.5
CIRCULAR
BUFFER I/O

2-4

End END in display code in upper 18 bits of RA+1.
MTR calls a peripheral program to advance to
next control statement.

Abort ABT in display code in upper 18 bits of RA+1.
MTR calls a peripheral program to terminate the
job and release the central processor.

MTR also performs the following operations with respect to central program:

Higher priority MTR interrupts a running program in favor of a
higher priority program.

Arithmetic exit MTR exchanges to next equal or lower priority
program when central program address (P) be-
comes zero. Arithmetic exit mode flag is set.

Time limit MTR exchanges to next central program on a
priority basis. When the time limit of the running
program is reached, a flag is set which causes the
program to be terminated.

The circular buffer I/0O (CIO) program may be called to a PP to perform
input and output between a file and a circular central memory buffer. The
user specifies a file name and operation code, plus information about the
buffer, then CIO performs the operation.

Before calling CIO, circular buffer parameters must be set in five central
memory words as follows:

bits 59 17 6 0
file name not code Name (dlsl?lay code left adjusted)
used and operation
not used FIRST Beginning address R
not used IN Current input address
not used ouT Current output address of circular
buffer
not used LIMIT Last address + 1 |

J

The buffer and buffer parameter area must be within the field length of the
job, and addresses are relative (address 0 for the job in absolute word RA).

A central program can call on CIO by entering in its word 1 (absolute RA+1)
the code CIO and the (relative) address of the circular buffer parameters.

bits 59 41 17 0

RA+1 cIo relative address

hd

buffer parameters

J

Example:

CBP is the symbolic address of the parameters:

SX6 031117B CIO in display code
LX6 42 To top of X6

SX5 CBP

IX6 X6+X5 Add in address

SA6 1 Write to (RA+1)

PP calls in RA+1 of a running central program are detected by the monitor
in PP0O. The monitor finds a free PP to perform the task, then clears RA+1
to indicate that the task is started, not completed. The operation code in
the first parameter word is even, and one is added to it by the PP when it
has performed the operation. PP also updates IN and OUT in the parameter
area, according to the function performed.

The central program continues after setting RA+1 but must not use RA+1
again until it is cleared by the monitor. This is programmed either by
looping on non-zero RA+1 during the short time taken by the monitor to
detect a call, or by checking that RA+1 is zero before making a further call.

The central program should inform the monitor with an RCL call if it is
unable to proceed further for the time being, then the monitor will switch

to another program. A central program may buffer input and output in order
to proceed to a certain stage before being delayed.

Continuing the last example, if the central program chooses to wait until
the PP has finished:

2-5

Ll SA1 1 Read (RA+1) to X1
Nz X1, L1 Wait till clear

SA1 CBP Get first parameter word
LX1 59 Determine if odd (PP finished)
NG OK Continue to OK if PP finished

SX6 220314B RCL code

LX6 42 To top of X6
SA6 1 Recall code to (RA+1)
Jp Ll Loop

OK Continue processing

The recall code causes control to be taken from the program. Periodically,
control is returned to the program at intervals of approximately 500 milli-
seconds (depending on priority) or when a PP completing an operation tells
the monitor to recall the corresponding central program. The monitor
clears RA+1 after receiving the RCL. The loop at L1 holds up the program
until the monitor switches control; it allows the program to continue when
control is returned.

Most users need not be concerned with CIO and RCL since their FORTRAN
programs are compiled to include the necessary calls. However, users
programming input and output in machine instructions must remember to
explicitly drop the central processor with a RCL when awaiting progress of
a PP task. A PP call does not in itself cause the central processor to be
switched; progress of a CIO operation is determined by examination of the
parameter area.

The current data in a circular buffer starts at OUT and continues (possibly
round the end of the buffer) to IN-1.

Processing

1
Flow

Partially filled buffers

FIRST FIRST

IN =
ouT
LIMIT | | LIMIT
empty buffer full buffer

When a buffer is filled to capacity, the unused word between IN and OUT

L-IPat PPN Ao 14 P T] Anr Loana sl Al o

distinguishes it from an cmpLy buffer for which IN = OUT. The U'd.pacity
of a buffer is LIMIT - FIRST - 1. A buffer is generally initialized with
IN = OUT = FIRST, then IN and OUT circle the buffer as data is inserted

and extracted.

IN defines the address for insertion of data into a buffer. As data is inserted,
IN is stepped round the buffer but never so as to catch up with OUT to avoid
overstepping buffer capacity.

OUT defines the address for extraction of data from a buffer. As data is
extracted, OUT is stepped round the buffer but never beyond IN since the
buffer is empty by the time OUT = IN.

Commonly CIO, moving IN, reads data from a file to the buffer, and the
data is extracted by a central program moving OUT; or a central program,
moving IN, inserts data into the buffer, and the data is written to a file by
CIO, moving OUT.

File operations include read and write (coded or binary), backspace, write
end record, and write end file mark. Files are stored serially; read and
write refer to the next position of the file. Equivalence is preserved subject
to the limitations of the equipment; for instance, a card or printer file may
not be backspaced; also a file is considered to extend only as far as the last
record written. A file on disk may have only one file mark after the last
record; therefore if an object program is to preserve equivalence between
tape and disk it should not write more than one file mark.

In a CIO write operation, only data sufficient to write physical records for
the file unit is extracted from the circular buffer. For a disk write, for
example, CIO takes only 64-word sectors from the buffer, unless an end-of-
record or end-of-file is requested when a shorter sector of data can be
written to empty the buffer. Similarly, on a read operation, CIO transfers a
physical record to the buffer only if there is room for it. At the end of a read
or write call, the positions of IN and OUT show how much data is left in the
circular buffer.

In writing to the disk, the circular buffer pointers are advanced at the end
of the operation; in reading from the disk, the IN pointer is advanced after
each sector has been read.

The operation code given to CIO via the last 7 bits of the first buffer param-
eter word is also known as the buffer status since CIO returns a code to
these 7 bits when a call has been completed. CIO is given an even code and
adds one to the code after completing a called operation. For read opera-
tions, the code returned also indicates whether end-of-record or end-of-file
terminated the read.

The two fields of the buffer status bits have the following meanings:

Value First Field (4 bits) Second Field (3 bits)

00 Not used Request coded read

01 Buffer I/0 Coded read completed
02 End Record Request binary read
03 File Mark Forward Binary read completed
13 File Mark Backward Not applicable

04 Backspace Request coded write
05 Rewind Coded write completed
06 Rewind unload Request binary write

07 Not used Coded write completed

2.5.1
BUFFER CODES

A command given to CIO is even, the first field specifies the type of opera-
tion. and the second specifies the direction (read/write) and mode (coded/
binary). For buffer I/O, as many physical records as possible are trans-
ferred between file and buffer. In writing, End Record or End File are used
to empty the buffer and write end-of-logical-record or end-of-file for the
particular device. ‘

One is added to the code to inform the program when a PP has finished a
CIO call. For reading, the first field may be changed by CIO to indicate that
the transfer was terminated when end-of-logical-record (EOR) or end-of-file
(EOF) was encountered. A programmer should make certain that a buffer

is emptied of all information to be read, before it is reused.

A backspace operation (040 = coded, 042 = binary) sets the parameters so
data of the new file position can be extracted from OUT. The amount of
information in the buffer (up to IN) depends upon the device and the previous
values of IN and OUT.

Only the Output file buffer is emptied at the end of the job.

In the following discussion, the expressions in parentheses are the binary
values which correspond to the buffer status field, x may be either 0 or 1.

Input (0001, 0x0)

File is read into circular buffer until buffer is filled (0001, 0x1) or until

end record (0010, 0x1) or file mark (0011, 0x1). The mode bit (binary/BCD)
is ignored only when reading from disk or one-inch tape. A file mark
response should never occur with data.

Output (0001, 1x0)

Data in circular buffer is recorded on file for as many complete physical
records as available data. No partial end record is made. (0001, 1x1)

End Record (0010, 1x0)

Data in circular buffer is recorded on file including a short physical record
to mark end of logical record. The last physical record may be of zero
length. IN=OUT=FIRST. (0010, 1x1)

2-9

2-10

File Mark (0011, 1x0)

Data in circular buffer; or
Last buffer status (0001, 1xx)

Data in circular buffer is recorded on file including a short physical record
to mark end of logical record. Then a file mark is recorded. IN=OUT=
FIRST (0011, 1x1)

All others

A file mark is recorded. IN=OUT=FIRST. (0011, 1x1)

Backspace File (1011, 000)

Magnetic tape only; backspace to previous file mark. IN=OUT=FIRST
(1011, 0x1)

Skip File (0011, 000)

Magnetic tape only; skip forward to next file. IN=OUT=FIRST (0011, 0x1)

Backspace Binary (0100, x10)

Backspace to end of last record. A file mark is considered a record in this
case. IN=OUT=FIRST. (0100, 011)

Backspace Coded (0100, x00)

Backspace one coded line. A file mark is considered a coded line in this
case. The last physical record will be left in the buffer beginning at FIRST.
IN and OUT will be adjusted for a one line backspace. (0100, 001)

Rewind (0101, xx0)

Rewind the file. IN=OUT=FIRST. (0101, 0x1)

Rewind Unload (0110, xx0)

Rewind and unload the file. IN=OUT=FIRST. (0110, 0xl)

252
OPERATION

All parameter values (IN, QUT, FIRST, LIMIT) must he set by the calling
program. For input, CIO reads data into the buffer beginning at IN. CIO

continues reading as long as storage is available or until the data is depleted.
IN is advanced by one for each data word read. When the value of IN=OUT-1,

the buffer is full and the operation complete.

If IN=OUT, IN is advanced to LIMIT-1; CIO automatically resets IN to
FIRST and continues in the same read operation until INSOUT-1. The
maximum buffer capacity for any read is LIMIT-FIRST~1.

For output, CIO writes data from the buffer beginning at OUT. Only complete
data blocks are written to the output file; no partial end record is written
unless the end of record or end of file function is given in the CIO call.

If EOR or EOF is not selected, CIO continues writing until there is not room
in the buffer for a full block. If EOR or EOF is selected, CIO writes until
OUT=IN and then sets IN=NOUT=FIRST. OUT is advanced by one for each
word written. When OUT=LIMIT-1, CIO automatically resets OUT to FIRST
and continues the write operation.

The central program must complete writing a record before requesting a
backspace, rewind, or mode change but it need not complete writing a record
before requesting a file mark.

The central program must complete reading a record before beginning
output data to the buffer.

Binary tapes and coded one-inch tapes record 1000 octal word physical records
in odd parity: no special control words are added. A zero length physical
record is generated by recording a partial word (4 bytes). Coded one-inch
tapes use packed display code with short word separators. Coded half-inch
tapes record 120 character BCD code in even parity.

A one-inch tape with mixed binary and coded records presents problems if a
backspace crosses a mode boundary. A problem exists in mode change from
coded input to output on one-inch tape if the file is positioned between two
lines of code. No problem exists if the file is positioned before or after a
file mark. No problem exists in mode change on binary files.

A disk file with multiple file marks or data recorded after a file mark cannot
be substituted for a tape file.

2-11

2.6
CONTROL CARD

PERIPHERAL
PROGRAMS The following peripheral programs may be requested by the programmer with
: control cards.

2.6.1

DUMP STORAGE This program may be called with a control card or from a display console
in any of the forms shown below: An octal jump is entered in the output
file with the central storage address and one data word per line.
DMP.
dumps the exchange area into the output file.
DMP, 3400.
dumps from the reference address to the parameter address.
DMP (4000, 6000)
dumps from the first specified address to the second.

2.6.2

LOAD BINARY

CORRECTIONS This program may be called with a control card or from a display console.
Binary corrections are read from the input file and entered in central
storage. If a parameter is specified in the program call, binary cards are
loaded beginning with that address; otherwise, loading begins at the refer-
ence address. Only one record is read from the input file. A call must be
made for each block of data to be loaded. This program may be called with
either of the following formats:
LBC.
LBC, 2300.
This program is intended for loading cards punched through PBC (section
2.6.4).

2.6.3

LOAD OCTAL

CORRECTIONS This program may be called with a control card or at a display console.

Octal corrections are read from the input file and entered in central storage.
The octal correction cards must be in the following format:

2-12

[7.
23001 |45020

04000 00042 00044

Address begins in column 1; leading zeros may be dropped in the address.
The data word begins in column 7; spacing in the data word is not important
but the word must contain 20 digits.

LOC.

reads all correction cards in the next input file record and modifies central
storage accordingly.

LOC, 1000.

clears central storage from the reference address to the specified address;
correction cards are then read from the input file.

LOC (2022, 3465)

clears central storage from the first specified address to the second;
correction cards are then read from the input file. This program may be
called to clear storage by providing an empty record in the input file.

2.6.4
PUNCH BINARY CARDS Only a control card may be used to call this program which punches a deck

a crand s Fanmaan o d Pap— . X

PRy IR ey o d o Al - A rnl cdmcan o Qb o~ mmd L2 1 1.
VL blilaly Cdlius UlicCLly 1101l Celitldl dtradge. AOLAdge b 10t Inodliieu Uy
this operation.

PBC, 2000.

a binary deck is punched from the reference address to the specified address.

PBC (2000, 3000)

a binary deck is punched from the first specified address to the second.

PBC.

punches a binary deck using the first word in central storage as a control
word for deck length. The deck always begins at the reference address and
terminates one address less than that indicated in the lower 18 hits of the
first word. This call may be used for punching any central or peripheral
program in standard format.

2-13

2.6.5

READ BINARY RECORD One binary record may be loaded from a file specified by the user.

2.6.6
REQUEST
FIELD LENGTH

2.6.7
SOS

2-14

RBR,n.
n specifies the fifth character of the file name, 1-7. (The
first four characters are TAPE.)

Loading begins at RA+0. If the record cannot fit into central memory, a
dayfile message RECORD TOO LONG appears. RBR uses central memory
locations FL~5 through FL-1 for buffer parameters; the original contents
of these locations are destroyed.

The field length for the execution of a program may be changed.

RFL, nfl.
nfl new field length (octal)
This routine is also used internally by the compiler (RUN). For a short

50005 word program, storage would be used most efficiently by specifying
RFL.

Example:

JOB, 5, 3000, 40000.

RUN(S, 5000)

RFL, 5000.

SAM. (Execute program with FL=5000)

A program may be inserted in the disk portion of the peripheral library.
The program must begin at RA+100g. After SOS has stored the program
on the disk, the control point is released.

2.6.8
WRITE BINARY RECORD

SOS.
Exampie:

JOB, 1, 500,1000.
LBC,100.
SOS.

record separator card (7, 8,9 in column 1)
(PPU binary deck from an ASPER assembly)

file separator card (6,7, 8,9 in column 1)
SOS does not erase a similarly named program on the disk. If two identical

names exist on the disk the system will reference the first, or original,
program.

A binary record may be written from central memory to a file specified
by the user.

WBR,n, rl.
n the fifth character of the file name, 1-7. (The first

four characters of the file name are TAPE.)

rl record length in words. If omitted, the length of the
record is taken from the lower 18 bits of RA+0. When
rl is omitted, the period is specified after n.

WBR begins writing from RA+0. The contents of central memory locations
FL-5 through FL-1 are used by WBR for buffer parameters; the original
contents of these locations are destroyed.

Example: To write a program on tape after patching it:

REQUEST TAPES.
REQUEST TAPE2.
REWIND(TAPES)
REWIND(TAPE2)
RBR,5.

LOC.

WBR, 2.

2-15

2.6.9
HLP

26.10
JOB DISPLAY-DIS

2-16

A program may be inserted in the resident portion peripheral library.
HLP.

After the last word of the program added to the resident library, the HLP
routine inserts a word in the following format:

0000 0000 0000 0000 0001

A similarly named routine will be removed from the library and replaced
by the new routine.

The job display program (DIS) is similar to DSDT, but it is used for informa-
tion more relevant to a single job. With DIS, the B display reveals the
exchange jump area of the job; central memory addresses relative to the
job's reference address are used for data and program displays.

This display can be called either from a control card (DIS.) or by a command
to DSD, and it may be called at any time during the execution of job. The

job display package stops further automatic advance of the job control cards.
The display covers only data pertaining to the particular job. The keyboard
is used to advance the job control cards and to provide any two of the
following displays in the same manner as for the DSD display.

The B display shows only the condition of the control point to which DIS is
attached; it includes the next control statement and a picture of the job's
exchange package. The exchange package is displayed only while the job is
in W, X or blank status. The operator may change priorities and suspend
job execution with DIS.

T DSD (System Display program) is described in the 6000 Chippewa
Operating System Operating Guide, Publication No. 6U172400.

JOB DISPLAY CODES

Codes

A Dayfile

B Job Status

C Data Storage 5 groups of

D Data Storage 4 octal digits
per group

E Data Storage

F Program Storage 4 groups of

G Program Storage 5 octal digits
per group

CHANGING PRIORITY

All jobs are assigned priorities (0-17) from the job control card; a zero
priority job is ignored. The operator may change the priority of any job
through the keyboard, the range is 0-77 g With 77g being highest priority.

Operator procedure:

1. Type in: ENPR,dd.
dd two-digit octal priority number

2. Press the carriage return key. If a priority change is attempted
during a run, the program will stop (normal stop) and the operator
may type in RCP. to resume central processor operation. A
priority change may be made only when the job is assigned to a

control point.

SUSPENDING EXECUTION

Suspending Job

To temporarily suspend execution of a job, the operator may type the
following entries:

DCP. and carriage return

This temporarily suspends the central processor and displays the
exchange jump area.

2-17

2-18

RCP. and carriage return

This resumes central processor execution at the next program
address for a job suspended by a DCP.

Multiprocessing Termination

When a control point is associated with more than one piece of equipment,
subpoints are specified for the additional equipment used.

Operator procedure to terminate a single unit during multi-unit processing:

1. Type in n. ENDX.
n control point

b4 subpoint
2. Press the carriage return key.
The following keyboard entries to DIS refer to the control point to which it
is attached. Some of the entries cause the job to be switched away from the
central processor. Execution can be resumed with RCP. or BKP. Numbers
are in octal.

ENTRIES FOR CHANGING JOB DISPLAY CONTENTS

ENP, 12345. Set P = 12345. (next instruction address, in
exchange jump area).

ENA3, 665000. Set A3=665000 in exchange jump area.
ENB2, 44. Set B2=44 in exchange jump area.

ENXS5,2223 4000 0000 0000 0200. (Spacing is unimportant)
Set X5=22234000000000000200 in exchange package.

ENEM, 7. Set Exit Mode = 7 in exchange jump area.

ENFL, 10000. Set FL=10000 in exchange jump area. (storage
moved if necessary).

ENTL, 200. Set central processor time limit = 2008 seconds.

ENPR, 5. Set job priority = 5.

DCP.

o,
2
g

BKP, 44300.

RNS.

RSS.

ENS. XXXXXXXXXXXXXX.

GO.
ONSW3.
OFFSwW4.

HOLD.

DROP.

DMP(200, 300)

DMP(400)

DMP.

Drop central processor and display exchange jump

area (in display B). When DIS is used, the exchange

jump area is displayed in any case if the job does
not have status A, B etc.

Request central processor. This puts the job in
W status, and it will use the central processor if
its priority is sufficient. The register settings of
the exchange jump area will be used.

Breakpoint to address 44300 in the program.
Central processor execution begins at the current
value of P and stops when P = 44300. DIS clears
44300 to stop the program at that point, and
restores the original word when the stop occurs.

Read and execute next control statement.

Read next control statement and stop prior to
execution.

Allows the entry of any control statement
xxxxxxxxxxxxxx as if it had been entered on a
control card. The statement can then be pro-
cessed using RNS. or RSS.

Restarts a program which has paused.

Set sense switch 3 for the job.

Turn off sense switch 4 for the job.

DIS relinquishes the display console, but the job
is held at the present status. A console must be

reassigned fo continue use of DIS.

DIS is dropped and normal execution of the job is
continued; it does not drop the job.

Dump storage from 200 to 277 in the output file.

Dump storage from the job reference address
to 377.

Dump exchange jump area to output file. (DMP
formats are the same as if used on control cards).

2-19

2.7
USER-REQUESTED

PERIPHERAL
PROGRAMS The following peripheral programs may be requested by the user from
the central processor.
271
MSG With this routine, messages may be sent to the console (displayed at
the third line of the control point) and optionally to the dayfile. The
request to MSG is stored in RA+1 as follows:
60 42 34 24 17 0
MSG ftff aaaaaa
MSG Characters in display code
£t Console/dayfile flag
0 message to console and dayfile
1 message only to console
aaaaaa Address where message begins
2.7.2
CHK CHK allows the user to determine whether anything has been written on

OUTPUT. The request to CHK is stored in RA+1 as follows:
60 42 17 0

CHK aaaaaa

CHK Characters in display code

aaaaaa Address of a word in central memory to be used as an
indicator. If this word equals 0, OUTPUT has not
been written; if it equals 1, OUTPUT has been written.

2-20

EQUIPMENT USE AND FILE STRUCTURE 3

3.1
FILE NAME TABLE

3.2
FILE FORMAT

3.3
FILE NAMES

SCOPE maintains a directory of all files known to the system. This
directory is called the File Name Table (FNT).

Files may be transferred from one device to another since equivalent formats
are used for card, printer, disk, and magnetic tape files. The information
in a file is stored serially. An object program may operate on named files
and the device can be specified on control cards; disk storage is assumed

if no assignment is made.

Except for a tape file which may have more than one file mark, files
consist of a single physical file divided into logical records. A logical
record consists of a number of 60-bit words containing either coded or
binary information. The form of storage and method of separating logical
records depend upon the equipment.

The concept of logical records makes it possible to have equivalent forms
of a file on several devices, without losing the advantages of each form of
storage. For example, cards constituting a logical record can be trans-
ferred to an equivalent form on disk storage where they are blocked in
sectors.

Input and output operations of a central program involve a named file - a
disk, magnetic tape, punched card, or printer file. The physical unit
associated with a file name is controlled by the job control cards and is not
a function of the central program coding. The operating system provides
a common interface between the central program and the peripheral pro-
grams which drive the equipment.

File names must begin with an alphabetic character and may have a
maximum of seven alphanumeric characters.

Five special file names, INPUT, OUTPUT, DAYFILE, PUNCH, PUNCHB
are implied with each job. These names must not be used for temporary
files and other 1/0 files.

3-2

INPUT - the file from which the job cards are read. Each job file is
assigned the name appearing on the job card when loaded. As the job file
is picked up for processing, the job file name is changed to INPUT.

OUTPUT - the file which ends in printer copy at the end of the job. During
job processing, this file name (OUTPUT) is used to collect all records

to be printed. When the job is completed, this file name is changed from
OUTPUT to the name which appeared on the job card.

DAYFILE - a disk file which contains the system history (dayfile) messages
for all jobs.

PUNCH - a disk file which is punched in Hollerith when the job is completed.

PUNCHB - a disk file which is punched in binary when the job is completed.
Example:
The entire dayfile may be dumped with the following job deck structure:

JOBn, p, t,fl.

COMMON DAYFILE.

BKSP (DAYFILE)

ASSIGN52,A.

COPYBRS (DAYFILE, A)

BKSP (DAYFILE)

The dump will be on magnetic tape 52 in binary format with each
line shifted one character position to the right and a leading blank

added. Other formats may be selected with other copy routines.
The dayfile is not updated while this job is being executed.

TAPEnn.

The characters, TAPE, are added by the FORTRAN compiler whenever a
program I/0 statement refers to unit nn. If unit nn is to be designated as
other than a disk file, the name TAPEnn must be used in control cards,
such as COMMON, REQUEST, etc.

34
CARD FILES

Example:

READ(5,10) list

1

mi - T mmnd oo on vty A T £51 t ¥ $ 1A
The control card necessary for the file to be a tape would ©

This FORTRAN statement would generate a reference to file TAPES.

ASSIGN MT, TAPES.

OT ASSIGN 50, TAPES.

REQUEST TAPES.

or with subsequent operator assignment.

The format of a card is as follows:

Column 1

7,8,9 End of logical record
6,7,8,9 End of file

7,9 Binary card

7 and 9 not both in column 1 Coded card

Columns
1 2 3 4 5 77 80
12
11
0 .,é Column Binary Information.) ?
1 2 £
, 3 18 2
T o o]
@ S 1= pe)
8P 2t - :
4 | 8 23 z
(9]
5 g 218 ¢
Biwl @
6 2 T TRTE 2
Q ~
7 § ! @
© ‘ E
8 <
4]
9

Standard Binary Card Format

3-3

35
DISK FILES

3-4

A binary card can contain up to 15 central memory words starting at
column 3. Column 1 also contains a central memory word count in rows

0, 1, 2 and 3 plus a check indicator in row 4. If row 4 of column 1 is Zero,
column 2 is used as a checksum for the card on input; if column 4 is one,
no check is performed on input.

Columns 78 and 79 of a binary card are not used, and column 80 contains
a binary serial number. If a logical record is output on the card punch,
each card has a checksum in column 2 and a serial number in column 80,
which orders it within the logical record.

Coded cards are translated on input from Hollerith to display code, and
packed 10 columns per central memory word. A central memory word

with a lowest byte of zero marks the end of a coded card (it is a coded record),
and the full length of the card is not stored if it has trailing blanks. This
produces a compact form if coded cards are transferred to another device.

Storage for a disk file is reserved by the monitor in half-tracks as needed.
A particular disk file is stored on a number of half-tracks within the same
disk cabinet. A half-track consists of either the even or the odd numbered
sectors of a track. With this format, data can be efficiently streamed
between disk and central memory without the need for large buffers in
peripheral memory.

Each sector of a file contains up to 64 central memory words of data, plus
two control bytes. The first control byte identifies the location of the next
file sector; it contains a sector number if the file is continued on the same
half-track, a logical half-track number if the file is continued on a different
track, or zero if there is no further information in the file.

A logical half-track number is specified as follows:
(1 bit) Always set (indicates byte is a half-track number and
not a sector number)
(7 bits) Physical track number
(1 bit) Track of odd or even sectors
(3 bits) Head group number
The second control byte specifies the number of central memory words of

information in a sector. End-of-logical-record is indicated if this number
is less than 64. Both control bytes are zero for end-of-file.

3.6
BINARY AND

CODED MODES

3.7
MAGNETIC
TAPE FILES

Each disk file must start at the first sector of a logical half-track. When

a half-track is full, continuation is to the first sector of another half-track.
The forward linkage is constructed when writing and followed when reading.
A sector with two zero control bytes is always generated after a write
operation. The status word of a disk file records the current position. FEnd-

- mnliieitl f
of-file can be gener ated eXpllClm.y Cy an oper tion ¢ Ge, or lx.uPi clvx‘y afte

a write operation.

A binary record on disk storage is the same as a logical record. A logical
record may contain coded records, the end of each is indicated by a central
memory word in which the lowest byte is zero. In this sense, a logical
record of coded records is equivalent on disk storage to a binary record,
and its use depends upon context.

The code for an operation on a named file specifies whether it is to be
performed in binary or coded mode. For some devices, the stored form
of a file is not dependent upon the mode. When writing to disk, for example,
a number of central memory words is transferred from a buffer, and there
is no physical difference between a binary write and a coded write, as the
distinction lies in the contents. This does not destroy equivalence between
devices within their limitations, for instance, a printer always assumes
coded information. For a program copying coded information from disk

to 1/2" tape, the mode in reading from the disk to a central memory buffer
is ignored; but the PP writing on tape will accept coded records (ending in
a central memory word with zero lowest byte) from the buffer, and write

each as a separate physical record on tape in BCD mode. A central pro-
oram mav extract a coded record from a named file with a coded input

s alll Hiay CAlldllL a CoucQ ICCOlQ 110 a llallieQt 11.C 1th a coded ApPRL,

and a search for a blank byte since the PP software will have taken care
of any special hardware action if the device was mode dependent.

The stored form of a logical record is independent of the mode when written
on 1" tape. A logical record is divided into 1000g word (central) physical
blocks; a shorter block marks end-of-logical-record. If the length of a
logical record is not a multiple of 10008 words the data is exactly contained
in the physical blocks; if the length is a multiple of 1000 words, an additional
shorter block of four 12-bit bytes is necessary.

A logical rceord can have zero length {corresponding to successive 7,8,9

3-5

3-6

Any coded records within a logical record end in a word with a lowest byte
of zero. Thus, coded information sent to 1'" tape is blocked in display code.

Exactly the same information is written on 1/2" as on 1" tape in binary mode.
On a coded write to 1/2'" tape BCD records of 120 characters are written.
Each coded record is translated from display code to BCD (IBM external
code), padded with spaces to 120 characters, and written on tape with even
parity. On input from 1/2" tape in coded mode, characters are translated
from BCD to display code, trailing spaces are discarded, and the record

is stored internally in the normal form. End-of-file for 1/2'" and 1'" tapes is
written as the usual file mark.

In reading 1" or binary 1/2' tape, blocks of less than 4 bytes are ignored
as noise. Blocks of less than 6 bytes (12 characters) are ignored when
reading 1/2" tape in coded (even parity) mode.

Disk storage cannot be substituted for tape if a program writes more than
one end-of-file or writes information beyond end-of-file. Also there is no
equivalent to end-of-logical-record on 1/2'" tape in coded mode.

CONTROL CARDS AND JOB PROCESSING 4

A job consists of one or more central programs executed with data files.
Control cards are the first logical record; they identify the programs and
data files, and sequence program execution. The control cards specify how
a job is to be processed; operations performed upon other records of a job
file depend upon the control cards.

Each job must begin with a job card and end with a file separator card, and
all control cards must appear between the job card and the first record sepa-
rator. The end of the control cards is signified by an end-of-record card
(7,8,9 punch) or an end-of-file card (6,7,8,9) if the job consists of control
cards only. No special multipunches are used for control cards and the in-
formation on a control card can start in column 1 (with no imbedded blanks).
The card is free field thereafter. Cards terminate with a period or, if a
parenthesized list appears, a closing parenthesis. The order of cards is
described in Chapter 6.

Except for program call cards and job cards, the control card formats are
unique to the system and must not be used for the names of any programs.

4.1

JOB CARD The first control card of a job indicates the job name, priority, central pro-
cessor time limit, and central memory requirement. If only a job name is
specified, priority 1, time limit 1 minute, field length 40000_ is assumed.
Fields are separated by commas and the last field is termina%ed by a period.

(name,priority,time limit, field length.

name Alphanumeric job name; 1-7 characters, must be-
gin with a letter.

SCOPE replaces characters 5,6, and 7 of the
job name with a unique sequence number, which
indicates the number of jobs run through the
system since dead start.

4-1

priority

time limit

field length

Example:

1 through 17 (octal)

The highest priority job on disk which will fit
in memory is the next to be brought to a free
control point for processing.

The central processor is always given the
highest priority control point that can use it.

Completed job output files are printed in order
of priority.

If a job which is completely compute -bound has the
highest priority (17g), and another job with a great
deal of 1/0 processing issues a recall instruction
and is waiting, the operator may enter a higher
priority for the 1/0 job (the compute-bound program
will still retain the associated control point).

Total time limit for the job in seconds (central
processing time); a maximum of 5 octal digits. The
octal value in hundreds is approximately the time in
minutes; the time limit is rounded up to a multiple
of 10g by the system.

Time and space limits must suffice for the whole
job, including all compilation and execution.

Total field length of the job, in octal, maximum of
6 octal digits. The length is equal to the total stor-
age of the system less that used by SCOPE for per-
manent resident tables. This varies among instal-
lations. The field length is rounded up to a multiple
of 100g by the system.

If the RUN compiler is used and a listing requested,
it prints out the amount of storage that was not
needed, both for itself and the compiled program,
so that future runs may request a lesser amount.

A common trial storage request for compilation is
100000g (32K). The standard amount, 40000g, is
sometimes sufficient for compilation, and usually
adequate for utility jobs such as file copying.

FOB?GS, 3,600,40000.

4.2
LOADING AND
EXECUTING

421
LOAD

422
EXECUTE

Statements on a job card may use different separators, for example:

JOB765(2, 350, 100000)

The load card directs the system to load a file.

LOAD, fn.

fn File name

The system searches the File Name Table (FNT) for the file, and if it does
not appear there, the system searches the system library. The file is
rewound before it is loaded.

All types of loading, normal, segment, or overlay, may be loaded by LOAD

cards but they may not be mixed in one operation. One job may contain any

number of LOAD cards. The type of loading for all LOAD cards within a job
is determined from the first record of the first named file.

The execute card completes loading and transfers control to a program.

N EX 3 2 EER R | .
r ECUTE(name P;sPy pl)

name Entry point of the program. If name is absent, control will
be transmitted to a name in a table generated either by the
compiler (from a FORTRAN PROGRAM card) or by the
assembler (from an ASCENT END card).

P Parameter that is passed to the program to be executed.

4-3

Completion of normal loading includes filling all unsatisfied references with
entry points from the system library or with out-of-bounds references.
Program execution then begins at the entry point named on EXECUTE ot in
the table generated by the assembler or compiler.

When segments are loaded, unsatisfied references are not filled and execution
begins in the first segment. Subsequent segments may be loaded by user
calls in the program.

When overlays are loaded, execution begins in the main overlay. Subsequent
overlays may be loaded by user calls in the program.

4.2.3
PROGRAM CALL
(name(namel,namez, . . .namen)
]
name Name of a system or user program being called.
namen Names of all files referenced in this job, or parameters

to the program. If a called program has no parameters
the line must terminate with a period. A closing parenthesis
terminates a line with parameters.
Examples: RUN(G, 300 000,100000, 3000)
COPYCR(TAPE2, TAPE3, 1000)
LINNEY.
The program call card names a program to be loaded and transfers control
to that program's entry point in the same way as LOAD and EXECUTE cards;
it may be substituted for a LOAD and EXECUTE.
Example: JOHN.
is equivalent to:
LOAD (JOHN)
EXECUTE.

424
NOGO

4.3
EQUIPMENT
ASSIGNMENT

The system searches for the file in the same way as it does for a LOAD

nard Tha fila ie rawonnd hafora it i lnadad Antw anhnraooram alraadss
card, .naf ilig 1S TEWouUnG CCIiCYe 1T 18 10aGeG. ALY Sulprogram aireagqy

J

loaded by LOAD cards will be bypassed and a message will be issued.

Thus, in the case of:

LOAD (NEWSUB)
JOHN.

The subprograms will be loaded from the file NEWSUB and those with
identical names on file JOHN will be bypassed by the program call card.

This card closes out the loading operation, bypassing execution.

(NOGO.

When a NOGO card appears, the loader completes loading of the present
program by satisfying external references wherever possible and writing
the memory map on the output file. The loader then clears out all load
tables, link tables, and availability tables and resets the job to the initial,
unloaded status. Since execution is bypassed, the NOGO card is generally
used to produce a memory map for the purpose of finding loading errors.

Any file not specifically assigned on control cards is assigned by the system
to storage on a disk unit. A job need not request card reader and printer for
normal input/output since its cards are already stored in the job input file
on disk, and output for a printer is sent to the job output file on disk.

Since control cards of a job are processed in order, equipment assignment
must be made before the corresponding file is referenced.

4-5

43.1
ASSIGN v, f,dd

4-6

This control card assigns an available peripheral unit of type u to a file named
f. The type u may be any of the equipment listed below or it may be an equip-
ment number, in which case, operator action is not required.

DA disk cabinet, channel 0 CP card punch

DB disk cabinet, channel 1 CR card reader

DC disk cabinet, channel 2 LP line printer

DD disk cabinet, channel 3 MT 607 magnetic tape (1/2')

DE disk cabinet, channel 4 WT 626 magnetic tape (1'")

DS display console
This must be the first appearance of the name f in the job file. The file

name { is alphanumeric, begins with a letter, and contains a maximum of
seven characters. Multiple file names are not allowed.

The optional density parameter, dd, indicates LO, HI, or HY density (200,
556, or 800 bpi). If dd is omitted, the terminating period directly follows
f, and density is set by the operator.

Examples:

ASSIGN50, TAPE6,LO. Assign equipment number 50, LO density,
to TAPE6. The job will be held up if this
tape is presently assigned to another job.

ASSIGNMT, TAPE2. Operator to assign 1/2" tape to file TAPE2.
ASSIGN WT, TAPE3. Operator to assign 1" tape to file TAPE3.
For MT and WT, a message for the operator is displayed under the
number of the job's control point:
WAITING FOR MT (or WT)

To assign tape 61 to control point 6, the operator would key
6. ASSIGNG61.

ASSIGNO1, TAPE9. Use disk unit 1 to store file TAPE9.

For tape, the ASSIGN statement is intended for scratch tapes only;
the operator may assign any free tape of the specified type.

A user supplied tape should be assigned with a REQUEST statement.

4.4
COMMON FILES

441
COMMON f,

This control card requests the operator at the system display console to
assign to this job the peripheral equipment specified by f. This must be the
first appearance of the name f. The job waits for operator action before
proceeding.

The optional density parameter, dd, indicates LO, HI, or HY density (200,
556, or 800 bpi). If dd is omitted, the terminating period directly follows
f, and density is set by the operator.

Example:

REQUEST TAPE4, HIL

Operator to assign an equipment for file TAPE 4, HI density.

In this case, the message REQUEST TAPE4. is displayed under
the number of the job's control point, and the operator can key
the number of the equipment on which the user's tape is mounted.
For control point 4: 4. ASSIGN71.

The equipment number is related to specific equipment through an equipment
table unique to the installation.

Common files are not discarded upon job completion. Normally, input files
used by a running job (type local) are dropped; disk space is freed or equip-
ment released.” Qutput files are printed and discarded after printing. A
job may declare a file to be common so as to make it available to other jobs.
However, a job to which a common file is attached, can change it to local

so it may be discarded.

This control card has twe effects:

1. If the file name, f, has common status in the FNT and is not being
used by another job, it is assigned to this job until dropped. If
the file is being used by another job or does not have common status,
this job must wait until the file is available.

2. If the file name, f, already appears as a local file name for the job,

the file will be assigned common status in the FNT and becomes
available to any succeeding job after it is dropped by this job.

4-7

442
RELEASE f.

45

SWITCH, MCODE, EXIT

4-8

A file generated by a job may not be declared in a COMMON card until the
job has been completed.

Example: COMMON BFILE.

With this control card, the common file named f currently assigned to this
job will be dropped from common status and assigned local status in the
FNT.

Example:

RELEASE BFILE.

The common file, named BFILE, attached to this job is changed to
type local so that it will be dropped at the end of the job.

f SWITCH n.

This control card sets pseudo sense switches for reference by a subsequent
FORTRAN program; n = 1-6. The settings are preserved at the control
point and copied to RA for use by the central program. Switches may be
changed by a console command.

Example:

SWITCH 6.

MODE n.

This control card may be used to change the arithmetic exit mode. n is a
single octal digit. (See Exchange Jump Information, Section 2.3) The exit
mode is set to 7 unless otherwise specified.

Example:

MODE 3.

(EXIT.

The EXIT card can be used to separate the control cards associated with
the normal execution of a job from a group of control cards to be executed
in the event of an error exit as listed below:

1 TIME LIMIT. Job has used all the central processor time
it requested.

2 ARITHMETIC ERROR. Central processor error exit has occurred.
A dump of the exchange jump package is
automatically written on OUTPUT.

3 PPU ABORT. PP has discovered an illegal request, such
as an illegal file name or request to write
outside job field length.

4 CPU ABORT. Central program has requested that the
job be terminated.

5 PP CALL ERROR. Monitor has discovered an error in the
format of a PP call entered in RA+1 by a
central program (can occur if a program
accidentally writes in RA+1, as can
condition 3).

6 OPERATOR DROP. Operator has requested the job be dropped.

7 TRACK LIMIT. The limit of 10004 half tracks assigned to a
control point has been exceeded.

When one of these conditions occurs, an error flag (numbered as above) is
set at the control point. In cases 1, 2, 5, 6, 7, a dayfile message is
issued; and in case 3, the fault-finding PP issues a message (BUFFER ARG.
ERROR from CIO, or NOT IN PPLIB).

When an error flag is set, a search is made for the next EXIT control card;
and if it is not found, the job is terminated. If an EXIT card is found, the
error flag is cleared and succeeding control cards are processed. If an
EXIT card is encountered when no error flag is set, the job is terminated
normally at that point.

4.6
COMMENT

4-10

Example:

MYJOB, 1,400,100000.
REQUEST TAPEL.
RUN.

EXIT.

DMP.

DMP, 1000.

7,8,9

(Program)

7,8,9

(Data)
6,7,8,9

Job card

Request scratch tape

Compile and execut
Dump exchange package
Dump first 10008 words of storage

End of control cards

The dumps are made only if an error condition occurs.

Record Separator

This card, consisting of a 7, 8,9 punch in column 1, separates the different
types of records (control cards, source language cards, data cards) within

a job.

This card, consisting of a 6,7,8,9 punch in column 1, must be the last card
of each job deck. No job may use information beyond this card.

(COMMENT. comments

This control card allos m

17118 COlle Ca aiiCwWs com

following the T is mandatory.

ments to be listed in the dayfile. The period

4.7
COMPILER AND
PROGRAM CALLS

After the job card, any control card other than ASSIGN, REQUEST,
COMMON, RELEASE, MODE, EXIT, or SWITCH, is a call for a central
or PP program to be executed. A program may be in the library, or
stored on a file used by the job. The control cards of a job are processed
in order, and a number of programs may be executed in one job. A job

is a set of programs using the same data files.

Parameters of a central program call follow on the same control card, for
example:

RUN(P) Compile, punch, and do not execute
next record of INPUT file.

COPYBF(TAPE1,DISK2C) Copy binary file from file TAPEL to file
DISK2C.

RUN. Compile, execute, and do not list program
on next logical record of input file.
(Assumed by RUN if no compile mode
parameter given.)

A program, compiled by RUN, is written as a binary record on a disk file
with the same name as the program. The program can thus be executed
separately, for example:

RUN(S) Compile, list, and do not execute program.
PGS8C. Execute program called PG8C.
A program call control card is interpreted as follows:

1. The names of files attached to the job's control point are searched
for the named program, and it is read to central memory from the
next record of the file.

2. The library of central programs on disk 0 is searched for the named
program; if found, the program is read to central storage.

3. The library of peripheral programs on disk 0 is searched for the
named program, and the program is assigned to a PP.

The parameters of a central program are entered beginning at RA+2, left
adjusted in display code, before execution. Parameters are normally
compiled into a program, and overridden only if new parameters are
specified by a control card call. A peripheral program may have two
numerical parameters of at most 6 octal digits. These are enlered in the
input register of the PP which executes the program.

4-11

4.8
SYSTEM ACTION ON
CONTROL CARDS

4-12

The first card of a program compiled by RUN is not a control card. It is
part of the program and must include a list of files used by the program,
for example:

PROGRAM SAMS3 (INPUT, OUTPUT, TAPE1)

Such a statement supplies to RUN a list of files used by the program, which
RUN enters from RA+2 as parameters in the binary form of the program.

If the program is compiled and executed directly, those files will be used;
but a separate call for the program can specify other files to be used instead.
The binary form of SAMS3 in which the parameters have been compiled could
be used from the INPUT file:

JOB6,,,100000.

REQUEST FRED.

INPUT(, , FRED)

7,8,9

(SAMS3 on binary cards)

7,8,9

(Data)

6,7,8,9

Here, any reference to TAPEL in the source code of SAM3 would

actually use FRED. As the first two file names were not overridden

by the INPUT card, they would be used as in the source code.

NPU OUTPUT are reserved for the job deck and output
file for printing.

When a job is brought to a control point, the first record of the input file is
copied to a 96-word buffer in central memory attached to the control point.
If the control cards will not fit in this buffer, the message TOO MANY
CONTROL CARDS appears inthe dayfile and the job is terminated. Since
cards are compactly stored 10 columns to a word without trailing blanks, a
large number of control cards (about 40) are allowed; and the error usually
arises from the omission of the 7, 8,9 card following the control cards.

When a job is neither using nor awaiting the central processor or PP's, the
monitor processes the next control card. If there are no more control
statements, the job is terminated.

LOADER)

5.1
LOADING TYPES

The loader performs the following functions:

Loads absolute and relocatable binary programs

Links separately compiled or assembled programs

Loads library subprograms and links them to user programs
Detects errors and provides diagnostics

Outputs a memory map

Generates and loads overlays

Loads segments

When data is to be transferred from any input or storage device to central
memory, SCOPE calls the loader. Initially the call to the loader is generated
by control cards but a running program may call it with user requests. All
errors detected are written as diagnostics on OUTPUT. During the loading
process the loader links subprograms together and generates overlays as
directed. The memory map is created for all Programs other than the main
programs loaded from the system library. At completion of loading, the
subprograms are ready for execution. The loader operates in both the
central and peripheral processors. The central processor portion is loaded
into the user's job area. The loader performs three types of loading:
normal, segment and overlay; but all loading within one operation must be of -
the same type. The loader determines the type of loading from the file to

be loaded.

With segments and overlays, programs which exceed storage may be organ-
ized so that portions or groups of programs may be called, executed and
delinked as needed. Since segments and overlays represent distinct types

of loading, they may not be intermixed. To facilitate loading and delinking,
both segments and overlays are identified by relative priorities called levels.
A segment has one level number (1). An overlay has 2 levels, one Primary
and one secondary (1,1).

51.1
NORMAL LOADING

5.1.2
SEGMENT LOADING

5.1.3
OVERLAY LOADING

5.2
USER REQUESTS

5-2

Relocatable binary subprograms may be corapiled or assembled independently
and brought together for execution. The loader links the subprograms by
associating external symbols with entry points in other subprograms. It
some external symbols remain unsatisfied, the loader attempts to satisfy
them from the system library. I unsatisfied externals still remain, they
will be satisfied with out-of-bounds references; but if this is done and the
instruction is executed, the job is terminated and a message is issued.

When loading is completed, control cards instruct the loader to proceed

with execution or to bypass it and output the memory map.

A segment is a group of relocatable subprograms or sections loaded and
delinked as a unit. A section is a collection of relocatable programs with
one section name; it is included in the loader scheme to reduce the number
of program names in segment calls. The user defines the programs and
sections which are to be included in a given segment. Segments allow the
user to dynamically select programs which he requires in memory. Seg-
ment loading proceeds like normal loading. However, when additional
segments are called, they may destroy existing segments.

An overlay is a portion of a program written on a file in absolute form and
loaded at execution time without relocation. Therefore the resident loader
for overlays is substantially reduced in size. The user defines the overlay.

Loading an overlay may destroy previously loaded overlays in much the same
way as segments operate.

A program may call the loader with the following calling sequence:

RJ LOADER

CON param

param is the location at which the user has established a parameter
list for the desired load sequence.

When a job area is initially loaded with program data a small resident is
placed within the user's field length. LOADER is an external symbol which
will be satisfied by the loader and which will ultimately rcference an entry
point in this small resident.

Files are not rewound at the beginning of a loading operation initiated by a

loader request. It is the user's responsibility to position his file properly.

Loading is performed from the file in an end-around fashion from current
position until the required programs are found or until the end-of-file is
reached for the second time. In the latter case a fatal error occurs. All
loading operations search in the same end-around fashion.

5.2.1
PARAMETER LIST FOR
CALLING LOADER The parameter list is composed of 2-word entries:
WORD 1 fno slig
2 [v |lmiki{s |f c lwa fwa
WORD 2 1 2
6 6 1 11|11 1 18
59 48 42 40 38 3635 17 0

The parameter list is terminated by 60 bits of zero in word 1. Names may

not exceed seven characters.
Word 1

fn is one of the following:
1 name of the file from which programs are to be loaded
2 name of an entry point in a program
3 subprogram name
4

system library if fn = 0

sl

For normal loading:

list of subprograms or entry points to be loaded from file fn.
If s¢ is blank, the entire file is loaded.

For segment loading:

the location of a segment or a list of sections and/or sub-
programs to be loaded as a segment.

5-4

Each entry in the s list has the following format where name is
the subprogram word.

59

name

e Uy

18

Subprogram name

The s{ list is terminated by a zero word.

Word 2

lwa

fwa

Segment level (1-63)if s=1andv=20

Primary overlay level if s = 0 and v = 1

Secondary overlay level.

Overlay flag; if v=1 an overlay load operation is requested.

NOMAP flag. If m =1 all maps of Segment or overlay loads
will be suppressed. Otherwise a map will be written on the
OUTPUT file.

Search key; if k = 1, fn is the name of an entry point. The
search key is used to find the address of a previously loaded
entry point; no loading is performed.

Segment flag; if s =1, a segment loading operation is requested.

Complete flag. Ifc =1, loading is to be completed by loading
subroutines from the resident subroutine library and/or the
central disk Hhvgv-y_

al CIsXk 120rar

Fill flag. If f = 1, unsatisfied external symbols will be filled
with out-of-bounds references.

Last location, relative to RA, available for the loading operation.
If Iwa = 0, RA+FL (FL = user's field length) will be used.
LOADER will place its tables at Iwa-1.

Initial location, relative to RA, to begin loading. If fwa = 0,
loading begins at the next available location as determined by
the current state of the loading operation.

The following are examples of parameter lists which might be processed
by the loader.

Load From File

fn = name of file

sf=0

v=20
=0

s=0

All subprograms are loaded from fn until end-of-file is encountered.
£ is ignored.
If ¢ = 1 loading will be completed.

Load Named Entry

fn is one of the following:
fn 1 name of entry point in a subprogram

2 name of a subprogram

sf=0
v=90
k=0
s=0

The named routine will be loaded from the system library.
£ is ignored.
If ¢ = 1 loading will be completed.

Load Segment From File

The segment defined by the list at sf will be loaded from fn at
level £. If £ > current segment level, the segment will be loaded
at the current level +1. If L= current level, segments at a higher
level will be removed. If a subprogram specified in the segment
list is not located on fn, the system library is searched. fn is
not rewound prior to loading.

fn = name of file

sf = address of list containing a segment name or section names
and subprogram names only.

5-6

2 = desired level

=0
m=1
k=0
s=1

If ¢ = 0 loading will be completed by establishing the origin and
length of blank COMMON.

If ¢ = 1 loading will be completed normally.

If f = 1, unsatisfied external references will be set to out-of-bounds
references.

No memory map is output.

Load Named Subprograms From File

The list of subprograms specified by the list at s{ will be loaded
from fn and the system library.

fn = name of file

sf = address of list

v=20
k=0
s=0
£ is ignored

If ¢ = 1 loading will be completed.
If fn = 0, only the system library is searched.

If fn = 0 and sf contains only 1 entry name, it is the same as
sf = 0 and fn = entry name.

Load Overlays

fn = name of file

sl = zero

Ql = primary level
!22 = secondary level

v=1

s, f, c and k are ignored.

The overlay file built during the initial load from overlay cards
and binary text is searched for the unique identifier £, £_.

The overlay is then loaded into its absolute locations. The
absence of such an overlay will cause the loader to set the

ataT Aae

fatal error flag.

522

PARAMETER LIST FOR

REPLY FROM LOADER When LOADER has completed the requested operation (loading not necessarily
completed) LOADER signals the caller by setting the parameter list as

follows:
Word 1 0
Word 2 |¢ ne|fe aa ea
6 111
59 54 37 35 17 0
£ Level at which the segment was loaded. ¢ = 0 if segment loading

was not requested.

ne Non-fatal error flag. ne =1 if the following loading errors were
detected:

Unsatisfied externals if ¢ =1

Duplicate occurrence of a named program; all but the first
occurrence will be ignored.

fe Fatal error flag. fe =1 if the following loader errors were
detected by LOADER.

Improper deck structure
Improper parameter specification

Requested file name, program name, or entry point not
found.

ea Entry address of named entries, specified in a transfer table.
If f = 0, ea is the location (relative to RA) of last encountered
named entry. If there is more than one entry named in the table,
the last encountered entry will be in ea, and the previous entry
will be in aa.

If k = 1,ea is the location (relative to RA) of the named-entry fn.
If v=0, ea is the entry point to the overlay. If ea = 0, no name
was found.

aa Additional entrv address of named transfers. aa = 0 if less than
two named transfers were encountered. aa = address of next to
last name if more than one named transfer was encountered.

If s¢ was non-zero, fn=0, and s=0 in the parameter list, the list of entry
points and/or subroutines to be loaded from the library will contain the
address at which each name is loaded. If the name was not loaded the
address will be zero.

The list will then have the form:

59 17 0
NAME 1 ADDR
NAME 9 ADDR
1
I
|
0

5.3

RELOCATABLE

SUBROUTINE TABLES The loader requires certain information about each subprogram in order to
load, relocate, and link it. This information, output by ASCENT and the
various compilers in the form of tables, forms part of the logical record
of each subroutine.

5.4
MEMORY
ALLOCATION

54.1

SYSTEM USAGE Storage areas are allocated within the user's declared field length in
contiguous memory locations. The first 1004 locations of the area are
automatically assigned as follows:

5-8

RA+0 . -
RA+1 reserved for use during execution

+
R{* 2 Parameters from the program call card which are
. available to the user during execution
RA+63
RA+64 Number of parameters in lower 12 bits
RA+65 Zero
RA+66 Address of the origin of user's program area
RA+67 Loading control words
RA+70 . .
. Upon initial entry from a named routine call or an EXECUTE
. card, these locations will contain the card image, in display
RA+TT code, of the card which called for execution.

After location RA+77 g the storage is allocated as follows:

Usually the user's first loaded subprogram will be originated at RA+100.
However, if a section card appears prior to an initial loading operation,
a section definition table (SDT) will be originated at RA+1008. The actual
origin of the user's program area can be found in the lower 18 bits of
RA+66.

The system establishes loader tables at the high end of the user's field
length area. These tables, which are present during the loading operation,
are discarded when normal or overlay loading is complete.

If a segment was loaded, the tables are moved to a point immediately
following the last loaded subprogram common block. Blank common may
overlay the loader and its tables. Conversely, if the loader is called again,
it may overlay blank common. The user must allow for the loader, its
tables, and blank common within his field length definition if he wants to
preserve his data.

There is no protection against the programmer destroying the loader or
loader tables. Both of these areas are checksummed and this checksum is
verified upon initial entry into LOADER. If the loader is destroyed, the
next RJ LOADER will cause the verification routine to call it again. But if
this initial verification routine is destroyed the results of RJ LOADER may
be meaningless.

24

42
USER ALLOCATIONS

5.5
MEMORY MAP

5.6
SEGMENTATION

5-10

Subprograms and their associated labeled common blocks are assigned
memory area as they are encountered. The initial declaration of a labeled
common block establishes the maximum length for that block. Declarations
in subsequent programs must have a length which is less than or equal to the
original declaration; otherwise, a diagnostic will be issued.

Blank common relocation information is preserved until loading is completed,
at which time it is allocated to the area following the last loaded program
and/or labeled common block. Declarations of blank common may vary
between subprograms; the largest declaration determines the memory
allocation.

After completion of loading, a map of the user's area is provided on the
OUTPUT file. The map is optional and can be suppressed by setting the
NOMAP bit in the LOADER parameter to 1. The map includes:

Names, lengths, and locations of loaded programs

Names and locations of entry points with a sublist of all programs
referencing the entry point

Name and locations of common blocks

Total length of all loaded programs and common blocks, both
labeled and blank.

Length of the loader and its tables
Unsatisfied external references

During execution of a segmented or overlay job, a record of a new segment
or overlay load is provided each time a call is made to LOADER.

The user defines a segment with a SEGMENT card, which is a loader card
described in section 5.9. Segments are loaded by the loader during initial
load. A running program may load a segment with a user request.

5.6.1
LEVELS

5.6.2
LOADING SEGMENTS

Each segment is assigned one level number (0-77 g) by the user. The

level serves as a programmer's tool for rapid delinking of segments.

Level zero is reserved for the initial or main segment which remains in
memory during segment execution; subsequent segments may be loaded at
any level. The number of segments in central memory at one time is limited
only by the amount of memory available.

The loader indicates the level at which the segment was loaded in the param-
eter list (5.3.2).

When a segment is loaded, its external references will be linked to their
corresponding entry points in subprograms and common blocks of previously
loaded segments at lower levels. Unsatisfied references in the segments
will remain unsatisfied. Subsequent segments loaded may include entry
points to satisfy them; or the user may specify that they be satisfied from
the system library. If execution is attempted and unsatisfied externals
exist, the job will be terminated and a message issued.

Levels are used to delink segments that are no longer needed. If a segment
is loaded at a requested level which is less than or equal to the level of the
last loaded segment, all segments at levels down to and including the re-
quested level will be delinked and removed. If a segment is loaded at level
6, any segments previously loaded at level 6 or 7,8, and upward will be
delinked and removed. When a segment is delinked, the linkage of its
entry points to external references in lower levels are destroyed and the
externals are unsatisfied once again.

Example:

A SINE routine is loaded in a segment at level 2. If any external
symbols refer to entry points in level 1, they are linked. To try an
experimental version of SINE, the user loads a segment containing
new SINE at level 3. The original SINE remains at level 2 and so do
its links to level 1; but, any new segments loaded at higher levels will
link to the new SINE at level 2. The linkage will remain until a new
level 3 is loaded, in which case the SINE at level 3 would be wiped out
and any references to it left unsatisfied. If a new SINE were loaded at
a level higher than 3, any segments loaded afterward would be linked
to it.

5-11

5.7
OVERLAYS

5.7.1
LEVELS

5.7.2
LOADING OVERLAYS

5-12

Overlays are generated by the loader via an overlay card and written on
a file to be called as needed for execution. The overlay card, which is a
loader card, is described in 5.9.

Each overlay in a program must have a unique identifier, consisting of a
pair of numbers or levels (0-77 g The first number is the primary level,
the second is the secondary level. An overlay with a non-zero primary level
and a zero secondary level (1,0) is a primary overlay. Any overlay with

the same primary level and a non-zero secondary level (1,1) is associated
subordinate to it and is a secondary overlay. This difference is

significant when overlays are loaded.

Level 0,0 is reserved for the initial, or main overlay which is neither
primary nor secondary but a special case which remains in memory during
overlay execution. Overlay numbers (0,1) to (0,77) are illegal.

The main overlay (0, 0) is loaded first. All primary overlays are loaded
at the same point immediately following the main overlay. Secondary
overlays are loaded immediately following the primary overlay. Loading
the next primary overlay destroys the first loaded primary overlay and
any associated overlays. Likewise, the loading of a secondary overlay
destroys a previously loaded secondary overlay.

Two levels of overlay, one primary and one secondary, are available to
the programmer.

Example: MAIN OVERLAY 0,0
1,0 2,0 4,0 6,0 |70
2,1
L1 | 1,2 4,1 14,2)4,3

5.7.3
OVERLAY FORMAT

0,0 is the main overlay which remains in memory during execution. 1,0

is a primary overlay. When 1,1, a secondary overlay, is loaded, it is
subordinate to 1,0 and there are two levels of overlay. Loading 1,2
destroys 1,1 and 1,2 becomes subordinate to 1,0 but there are still two
levels of overlay. When 2,0 is loaded, it destroys 1,0 and its secondary
overlay; and there is only one level of overlay until 2,1 is loaded. Similarly,
when 4,0 is loaded, it destroys 2,0 etc.

All external references in overlays must be directed upward. For example,
the primary overlay may contain references to the main overlay but not

to the secondary overlay. The secondary overlay may contain references
to the main overlay or to the primary overlay. The primary overlay calls
the secondary overlay through the loader.

When the loader detects illegal overlays (identification or size error), loading

of all overlays is completed and memory maps recorded on output; but an
abort flag is set which causes the system to bypass the next execution.

Each overlay consists of a logical record in the following format:

Word 1
*
22 !ll fwa ea

59 47 41 35 17 0

* Unused

fll Primary overlay level

2 5 Secondary overlay level

ea Entry point to the overlay

fwa First word address of overlay (overlay is loaded at fwa)

Word 2 through end of record: 60-bit data words.

5-13

8
OADER CARDS

58.1
SEGMENT CARDS

5-14

Loader cards are processed directly hy the loader rather than hy the

monitor. They provide the 1oader with information necessary for generating
overlays and segments. All loader cards must precede the subprogram
text to be loaded. Formats are the same as for SCOPE control cards.

ire Drocess

All subprograms named in a segment must reside in the same file.

SEGZERO

All programs requiring segment loading must have a SEGZERO card de-
fining the first segment. There may be only one SEGZERO card in the
initial load. If the user wishes to load a new segment level zero, it must
be defined in the user's parameter list and called in by the user's program.

fSEGZERO(sn,pnl,pnz, .. .pni)

sn Segment name
pni Names of subprograms or sections
SEGMENT

Segments other than segment zero may be defined by a segment card or in
the user's program.

SEGMENT (sn, pn, , pn . pni)

1 97"

sn and pni are defined as in SEGZERO

SECTION

This card defines a section, or group of programs within a SEGMENT.

(SECTION (sname,pnl,pnz, - ,pni)
sname Name of the section
pni Name of a subprogram belonging to the section

If more than one card is necessary to define a section, consecutive cards
with the same sname may follow. Whenever the named section is loaded,
all subprograms within a section will be loaded.

All section cards must appear prior to the SEGMENT cards which refer
to the named sections.

5.8.2
OVERLAY CARDS

OVERLAY (fn,! 1,2 9’ Cnnnnnn)

fn File name onto which the generated overlay is to be written

i level
Ly Primary level number must be 0,0 for first overlay card
Ly Secondary level number

Cnnnnnn optional; nnnnnn is 6-octal digits.
If absent, overlay is loaded normally.
If present, overlay is loaded nnnnnn words from the start of
blank common. This provides a method for changing the size
of blank common at execution time.

The first overlay card must have an fn. Subsequent cards may omit fn,
and the overlay is written on the same fn.

5-15

DECK STRUCTURES

The following card deck indicates the arrangement of control cards to begin a job, separate job

records, and terminate a job. The record separator which must be used between different types of

cards has 7, 8,9 punches in column one. The file separator which terminates a job has 6,7, 8,9

punches in column 1.

6 file separator
7
8

©

7 record separator
8
9
1 LL
]
data cards
7 record separator
8
9
((source deck
g record separator |
i
9 1
(all control cards

7 J0B002,p, t, fl.

SEGMENT LOADING

Load segments from INPUT and FILEI,
and execute program PROGA.

end-of-file

ol RN >

data

end-of-record

0 o~

end-of-record for last
9 binary program

=

binary decks

other segment cards

(SEGMENT, NAME3, PROGC, PROGD.

SEGZERO, NAME2, PROGB.

.
other section cards

(" SECTION, NAME1, PROGA.
7

J S end-of-record

(EXECUTE, PROGA.

(LOAD, FILE1.
rLOAD, INPUT.

JOB, 7,100, 30000.

6-2

OVERLAY LOADING

Generate overlays on file LOADA and execute overlay 0, 0.

O o= >

end-of-file card

.
.

Binary decks and overlay cards for subsequent
overlays

f

Binary decks for overlay
0,0 separated by end
of record cards.

OVERLAY, LOADA, 0, 0.

7
8
9

end-of-record

INPUT.

4 JOB, 7,100, 30000.

6-3

ASPER SOURCE DECK

J END

(Asper instructions
!

(ASPER progname

|
|

|

ASCENT SOURCE DECK

(END entryname

£

A

(Ascent instructions

ENTRY entryname

l ASCENT progname

|
|
|

(at least one
entry name)

SIMPLE ASCENT/ASPER ASSEMBLY; output listing, binary decks, and COSY decks

€O 00~ &

l ASCENT/ASPER source decks

7
8
9

ASCENT (LIST, PB, PC)

jobname, priority, timelimit, 106000.

SIMPLE ASCENT ASSEMBLY FOR LOAD-AND-GO; output listing only

[{ode cL e)

(INPUT data

0o ~I

FINIS

Z

(ASCENT source deck

© W=~
I

" DRIVE. I

REWIND(DRIVE)

ASCENT(LIST, LGO, DRIVE)

jobname, priority, timelimit, 106000.

6-5

ASCENT/ASPER ASSEMBLY FROM COSY DECKS with modifications; output listing, and binary

Annlra Qimnmna na DTATITATM nawnd ig inalicdaAd 4l dmvued £31Aa 30 A Aials
ucuno. PLLIUT 11V l\--L'J‘CzUJJIIJ.I. valu 410 Lu\.du.uwu, [P L) .I.llt}blb LilT 1D VIl Uidih.
6
7
8
9 !
7 1 ¥
a "]
r COSY deck | }
| 7 ‘I
8 |
K |F
]/ COSY

—\
©0 o ~1

COSY deck

r7
8
9

¢ COSY

Z

w4
-
(REPLACE/INSERT/DELETE cards '

%\
o)
—

Woo =1

ASCENT(LIST, PB)]l

jobname, priority, timelimit, 106000.

S

ASCENT/ASPER ASSEMBLY FROM COSY DECKS with five COSY decks on a tape named RIBBON,

O 00 ~1.0

(COSY

7
8
9
COSY
/,f
DELETE/REPLACE/INSERT cards
7
8
9
‘ COSY
7
8
9

ya

A

(COSY
i

DELETE/REPLACE/INSERT cards

1
8
9

4 COSY

7
8
9

ASCENT(LIST, PB, COSYIN, RIBBON)

‘ REQUEST RIBBON.

y
jobname, priority, timelimit, 106000.

6-7

ASCENT/ASPER ASSEMBLY FROM COSY DECKS; with five COSY decks on a tape that will be
named RIBBON; the second program to be named PRONTO and the fourth EPIC. Modifications

(IDENT

Nelo]

(COoSY —

DELETE/REPLACE/INSERT cards
for "EPIC"

(7

8

9
(IDENT EPIC

7
8
9

(COSY

(W DELETE/REPLACE/INSERT cards

for "PRONTO" -
8
9

r IDENT PRONTO

[NeRe o N

(ASCENT (LIST, PB, COSYIN, RIBBON)
(REQUEST RIBBON.

‘/ jobname, priority, timelimit, 106000.

FORTRAN Load and Run

Job 1
INPUT and OUTPUT are the only I/O files used; no special control cards.

Nelo N Kol

Va
L.
L
£

(data cards
(7

S

7

PROGRAM OVA (INPUT, OUTPUT)

W=l

1] —

| /S
s RUN.

(JOB456, 3, 500,30000.

FORTRAN Load and Run

Job 2
Three tape references:
TAPE1 — assumed input tape which operator loads on a particular unit

TAPES

TAPEG output scratch tapes drawn from tape pool

[NelesloN Nep)

l data deck

source deck

rPROGRAM ALFRED(INPUT, OUTPUT, TAPEL, TAPES5, TAPEG6)
I

7
8
9

l RUN.
f REQUEST TAPEL.

(ASSIGN WT, TAPES.

ASSIGN WT, TAPES.

/
|

MADO001, 2, 400,27000.

6-10

FORTRAN Compile and Execute with Mixed Deck

6
\ 7
8
9
Z
I//
(data
7
8
9
1 1
1
ENTRY Al
- ASCENT language
ASCENT — subroutine
(in cols. 11-186)
A
I.l | SUBROUTINE MI(p3) FORTRAN subroutine
Source Vs |
Deck ﬁ
(SUBROUTINE S1(pl,p2) H FORTRAN subroutine
PROGRAM DONE (INPUT,OUTPU
- r (D - FORTRAN program
7 _"‘J
8
9

RUN.

JOB123, 6,400,27000.

6-11

FORTRAN Compile and Produce Binary Cards; do not execute.

Three files of I/0O - INPUT, OUTPUT and TAPE1

Nete ol N fop]

source statements

/ PROGRAM BOB(INPUT, OUTPUT, TAPEL)

6-12

7
8
9

¢ RUN(P)

RA6600,7,100,40000.

Job card
Job name
Priority
Time limit

field length

RA6600

7

0 TyInes

ot~

I E e) T R
SPPTOXIMIately + minute

40000

8

words

FORTRAN Compile and Execute (plus a prepunched binary subroutine deck)

Woo=1

data

©wow=1

N
=3

binary deck

7
8
9

source statements

|

(PROGRAM

PIP(INPUT, OUTPUT)

7
8
9

completes loading from

(LOADGO. :I— file LOADGO.
- loads binary routines
LOAD(INPUT) —,— from input
RUN(S) —— FORTRAN control card

ACCO015,5,200,220000.

———Job card

6-13

Load and Execute a Prepunched Binary Program

The binary cards in the input file following the record separator are loaded into central memory when
the program call card INPUT is encountered.

[leJooloN Yo r)

) 1]
data cards ’ k !

7

8

9 —
(binary deck

(INPUT.

Lo~

L

Z

Z

r ASSIGN MT, FILE. —————— Control cards
/7

GM1111,6,400,20000.
—t— Job card

6-14

Compile Once and Execute Twicel with Different Data Decks

6
7
8
9
4 1
—
Data Set #2
7
8
9
:ll‘x
Data Set #1
7
8
9
i B
8
9
1
—
PROGRAM TWICE(INPUT, OUTPUT) J
(7
8
9
(LOADGO.

r REWIND(LOADGO)

’/RUN.

f REPT2, 5, 600, 20000.

T Program TWICE must read the end-of-record card.

6-15

SCOPE UTILITY PROGRAMS 7

The SCOPE library contains a set of utility programs which may be called
by control cards during the execution of any job. These programs include
card-to-tape, tape-to-tape, tape-to-print, and general file manipulation as
well as creation of new files.

All utility operations are performed with named files, each of which de-
signates a specific peripheral device, such as a card reader, tape unit,
printer, card punch or disk file.

Before the first reference to any named file, an equipment must be assigned
to it by the operator or programmer through the ASSIGN statement; other-
wise the system assigns the file to a disk unit. Therefore all files, except
disk, specify a unique peripheral equipment and all references to a specific

equipment are made through the file name.

Utility jobs conform to the normal deck structure. The utility job deck
contains the following:

Job Card First control card
Request cards Equipment assignment
Program cards Data operations
6,7,8,9 End of job

The job card includes job name, job priority, time limit and field lengths.

If only utility programs are to be executed a short field may be specified
(2000). In all copy operations, the central memory buffer is automatically
set up to use the entire field length of the job. Some operations between
high speed devices may be accelerated with a larger field length.

All necessary files which do not reside on the disk should request the operator
to assign equipment. Tapes can be rewound and positioned upon request.

The program cards name the utility routines. The copy routines are used

for positioning files by copying unassigned temporary files to the position
point.

7-1

Examples:
To print the third and fourth coded files from a tape:

TAPEFRT, 17,1000,2200. (Job card)

Assign unique file names, PRINTER and MAGTAPE, with REQUEST
control card to a printer and tape unit.

REQUEST PRINTER. * (Operator would assign available printer
i.e.,3. ASSIGN20)

REQUEST MAGTAPE. (Operator would assign specific tape unit
i.e.,3.ASSIGN53.)

Rewind tape unit to be sure of actual position.
REWIND(MAGTAPE)

Skip tape to beginning of third file by copying first two files to an
unused dummy file XXX.

COPYCF(MAGNTAPE, XX, 2)
Copy the two coded files to the printer.
COPYCF(MAGTAPE, PRINTER, 2)

An end-of-file card completes the job.

© 00~ ™

The following routines can be called by control cards with the entry be-
ginning in column one.

7.1
BACKSPACE
LOGICAL RECORD

BKSP(filel, n)

This program allows backspacing of multiple logical records as specified by
the decimal n. Backspacing will terminate if file hecomes rewound

7-2

7.2
CATALOG
SYSTEM TAPE FILE

CATALOG({ilel, file2)

This routine provides a convenient means for identifying the contents of a
system tape. It may include information as to record and routine lengths in
addition to checksum information which will uniquely identify a particular
version of a system component on that system tape.

The information is taken from filel and listed on file2. If parameters are
omitted, LIBRARY,OUTPUT are assumed.

CATA.LOG output is formatted as follows:

RECORD

LENGTH

PACKAGE

CKSUM

Number of the logical record with respect to its
position on tape. Zero-length records produce a
record number.

Length of the logical record as determined from the
total number of central memory words contained in
the binary cards.

Routine name. A dash appears whenever a legitimate
name does not appear in bits 52-18 of the first word
of the logical record.

A 12-bit checksum of the logical record or routine.

A field length of at least 40000 (octal) should be used for any job using

CATALOG.

The following program will catalog the system tape.

(REWIND(LIBRARY) J

6
7

8
9

r REWIND (LIBRARY)

CATALOG.

(REQUEST LIBRARY. (operator assigns a

{ JOB,10,100,40000.

| specific tape unit)

7-3

7-4

Logical records from up to ten binary input files (in, -in. ,) may be extracted
and written on an output file (out). Input and output files not defined by
REQUEST cards, are assumed to be disk files. The record format is
indicated by p;; a non-zero value indicates the identification field (]D)T of the
logical records is to be omitted from the output file, zero indicates the
records are to be copied verbatim. If the records do not contain an ID,

or if the ID is in Chippewa 1.1 format, the records are copied verbatim.

Text cards associated with the COPYN routine determine the order of the
final tape. A routine may be selected from a composite tape, temporarily
written on a scratch tape and transmitted as input to a translator, assembler,
or programmer routine, eliminating the need for tape manipulation by the
second program. Several tapes may be merged with COPYN to create a
composite COSY or library tape. In its most basic form, COPYN can
perform a tape copy.

The file names (in; -in; o) reference binary files on tape, disk, or cards. A
binary tape file is defined as the information contained between load point
and a double end-of-file; the tape file may contain any number of single
end-of-file marks. A disk file ends in one file mark, and a card deck must
be terminated by a record separator (7, 8,9 punch in column one). The
output file name may reference a disk, tape, or card punch. A file mark
for an output tape is written by a WEOF card or may be copied in a range
of records and be counted as a record (7.3.5).

The records being copied may or may not have an ID prefix control number
(12 bits), number of words in the prefix (12 bits), and the name associated
with the logical record. A record ID in Chippewa 1.1 format consists of
the first seven characters of the first word of each logical record. If
logical records of the input file are not prefixed, all record identification
cards must use the record number — the position of the logical record
from the current position of the file.

T The ID referred to is produced automatically by FORTRAN 2.0 and
ASCENT 2.0.

REWIND, SKIPF, SKIPR, WEOF (write End-Of-File), and record identifica-
tion cards may be used in conjunction with COPYN: these text cards are
read from INPUT and are terminated by a record separator (7, 8,9 punch

in column 1). The text cards are free field; they may contain blanks but
must include the separators indicated in each card description.

7.3.1
REWIND
REWIND (p)
This card generates a rewind of file p which must be one of the input or
output file names given on the COPYN control card. File p may not be the
system INPUT file.
7.3.2
SKIPF
[SKIPF (p, +n)
With this card, n file marks on file p may be skipped. File p must be a
tape; requests for other types of files will be ignored. The skip may be
forward (+n) or backward (-n). There is no indication when SKIPF causes
a tape to go beyond the double end-of-file or when the tape is at load point.
7.3.3
SKIPR

(SKIPR (p, +n)

With this card, n records may be skipped on file p. File p must be a tape;
requests for other types of files will be ignored. The skip may be forward

(+n) or backward (-n). Zero length records and file marks must be included
in n.

7-5

7.34

WEOF
(WEOF (p)
This card writes a file mark on file p, which must be one of the input or
output file names on the COPYN control card.
7.3.5
RECORD

IDENTIFICATION CARD

Pl,PZ,P3

The parameters on this card identify a record or set of records to be
copied from a given file.

p, Record to be copied or the beginning record of a set of records to
be copied. The name associated with the record or a number giving
the position of the record from the current position of the file may
be specified.

Last record to be copied in a set of records.

decimal integer n n logical records are copied, beginning with
P;. Zero length records and file marks
are counted.

* P, through an end-of-file mark are copied.

*k i through a double end-of-file mark are
copied.

/ pl through a zero length record are copied.

0 or blank only p; is copied.

p3 Input file to be searched. If p; is a name, and Pg is omitted, all
input files declared on the COPYN card are searched until the p
record is found. If it is not located, a diagnostic is issued. If Py
is a number and p,, is omitted, the last input file referenced is
assumed. If this is the first text card, the first input file on the
COPYN card is used.

7-6

7.3.6
FILE POSITIONING

Examples:

SIN, TAN, INPUTA Copies all logical records from SIN through TAN
from file INPUTA.

SIN, 10, INPUTA Copies 10 logical records from file INPUTA, from
SIN through SIN+9.

SIN, TAN Searches all input files beginning with current file.
(I this is the first text card, the first input file
named on the COPYN card is used). When SIN is
encountered, all logical records from SIN through
TAN are copied.

SIN, , INPUTA Copies logical record SIN from file INPUTA.

1, TAN, INPUTA Copies the current logical record through TAN
from file INPUTA.

1,10, INPUTA Copies ten logical records, beginning with the
current logical record on file INPUTA.

1,*,INPUTA Copies the current logical record through the first
file mark encountered on file INPUTA.

The files manipulated during a COPYN operation are left in the position
indicated by the previously executed text card, they are moved only during
a search. If the file name (pg) is omitted from the record identification
card, all files mentioned on the COPYN card will be searched end-around.
The end of a file is determined by a double end-of-file if tape, or a single
end-of-file if disk. The first input file declared is searched until either
p, or the original position of the file is reached, whereupon a search of
the second input file begins. In this manner, all files remain effectively
in the same position except the file containing pl, which is positioned at
p2+1.

If the system INPUT is declared as one of the input files, it is not searched;
the first record encountered must be p1 or an error diagnostic is issued.

The output file is not repositioned after a search so that the COPYN routine
may be re-entered, if desired. Therefore, the programmer is responsible
for any REWIND, SKIP, or WEOF requests referencing the output file that
may be necessary prior to exiting the job.

7-7

Example 1: Record identification card: REC,,INPUT1

Input file INPUT1: |ABLE|BAKER...|REC [SIN | TAN|ZEE

=0
S

If INPUT1 were positioned at TAN, TAN and ZEE would be examined for
REC. The double end-of-file would cause ABLE to be the next logical
record examined, continuing until REC is read and copied to the output
file. INPUT1 would then be positioned at SIN.

Example 2: Record identification card: RECA
file INPUT, 1 EE
Input file ; Al |B1...|z1 |00
positioned at Bl: FF
s EE
Inpt}t‘flle INPUT2, . A2 |RECA | D2 |00
positioned at loadpoint F
i EE
Input file INPUTS, A3 |B3 |c3 |... |z3 |oO
positioned at loadpoint FF

All routines from Bl through Al are compared to RECA and INPUT1 is
repositioned at Bl. A2 is compared, then RECA is copied to the
output file and INPUT2 is positioned at D2. INPUTS3 is not searched.

Example 3:
Record Identification cards and binary logical records on INPUT file.

REC, ,INPUT

JOB1,JOB3, INPUT

ABLE, ,IN2

Record Separator (7, 8,9 punch in column 1)
REC (binary)

Record Separator

JOB1 (binary)

Record Separator

JOB2 (binary)

Record Separator

7.3.7
SAMPLE JOB

JOB3 (binary)

Record Separator

Since there is no end-around search of the INPUT file, REC and
JOB1-JOB3 must directly follow the requesting record identification
cards in the order specified by those cards. An incorrect request for
an INPUT record terminates the job.

In the following example, the SIN routine is being updated and placed on
the library tape. Tape files COSYLIB, OLDLIB, and LIBRARY must be
defined with REQUEST cards. The COSY tape COSYLIB is searched for
logical record SIN; this routine will be written verbatim on the disk file
COSY. ASCENT reads COSY and the newly modified SIN is written on
PUNCH. Next, COPYN copies the OLDLIB tape to LIBRARY, replacing
SIN from PUNCH.

JOB, 5, 500,40000.

REQUEST COSYLIB.

COPYN(, COSY, COSYLIB)
REWIND(COSY)

ASCENT (L, COSYOUT, PUNCH, COSYIN, COSY)
REQUEST OLDLIB.

REQUEST LIBRARY.

COPYN(X, LIBRARY, PUNCH, OLDLIB)
Record Separator card (7, 8,9 punch in column 1)
SIN, , COSYLIB

Record Separator card

(COSY corrections)

COSY

Record Separator card
REWIND(PUNCH)

REWIND(LIBRARY)
REWIND(LIBRARY)

REWIND(OLDLIB)

1,COS, OLDLIB

SIN, , PUNCH

TAN, **, OLDLIB

WEOF (LIBRARY)

WEOF (LIBRARY)

REWIND(LIBRARY)

7.3.8
ERROR MESSAGES

7-10

The text cards are written on the system OUTPUT as they are read and
brocessed. When an error occurs, the abort flag is set, and a message
from the following list is printed on OUTPUT followed by the card in error.
This card is not processed and an attempt is made to process the next text

card. When the last text card is processed, the abort flag is checked; if it
is set, the job is terminated. Otherwise, control is given to the next
control card.

NO INPUT FILE ON THE COPYN CONTROL CARD
At least one input file must be specified on the COPYN card.

CONTROL CARD REWIND(INPUT) IS ILLEGAL
The system INPUT cannot be rewound.

P2 IS NOT IN INPUT FILE P3
Logical record Py must be in file pg; if bg is omitted, Py must be in the
same file as pl.

ID NAME (P1) IS REQUIRED ON ALL TEXT CARDS
The first parameter on any of the text cards is required.

P1 IS GREATER THAN SEVEN CHARACTERS
Record identification card names must not exceed seven characters.

TEXT CARD CONTAINS AN ILLEGAL SEPARATOR
The only acceptable separators are + - , () or blanks.

NO OUTPUT FILES ON THE COPYN CONTROL CARD
An output file must be specified in the COPYN control card.

ID NAME NOT IN INPUT FILE(S) BEING SEARCHED
Either p1 or p2 cannot be located by the COPYN routine.

BINARY RECORD MISSING FROM INPUT
Logical records requested from the system INPUT file must begin with
the next logical record on the INPUT file.

P2 NUMERIC EXTENDS BEYOND DOUBLE EOF
A numeric Py is specified on the record identification card which
indicates a logical record located past the double end-of-file mark
that terminates the file.

74
COPY TO
DOUBLE FILE MARK

COPY (filel, file2)

The named filel is copied onto file2 until a double file mark is detected on
the first file. Both files are then backspaced over the last file mark. If
parameters are omitted, INPUT,OUTPUT are assumed.

This routine is used in creating a new input job tape. For example, if input
is from cards and output to tape a sample deck structure would be:

(COPY(CARD, WTAPE)
(REWIND(WTAPE)
(REQUEST WTAPE.

(operator ASSIGN of
specific tape unit and

(REQUEST CARD. card reader)

JOB, 17,100, 2000.

l
|
|
i

| N

It may be necessary for the operator to drop a control point read
operation to make a card reader available.

7.5
COPY BINARY FILE

COPYBF (filel, file2, n)

The number of binary files specified by n (decimal) are copied from filel to
file2. If parameters are omitted INPUT, OUTPUT, 1 are assumed.

When multiple files are copied onto a disk file, only one file is created.

7.6
COPY BINARY
RECORD
[COPYBR(filel ,file2, n)
The number of binary records specified by n (decimal) are copied from filel
to file2. I parameters are omitted INPUT, OUTPUT,1 are assumed.
This operation terminates on reading a file mark from filel or when the re-
quired number of records has been read. A file mark is not written on file2.
7.7
COPY CODED
(BCD) FILE
{ COPYCF (tilel, file2, n)
The number of coded (BCD) files specified by n (decimal) are copied from
filel to file2. If parameters are omitted, INPUT, OUTPUT, 1 are assumed.
7.8
COPY CODED
RECORD (COPYCR(ﬁlel file2, n)

The number of coded records specified by n (decimal) are copied from filel to
file2. If parameters are omitted, INPUT, OUTPUT, 1 are assumed.

7-12

7.9
COPY SHIFTED
BINARY FILE

COPYSBF (filel, file2)

A single binary file of coded information is copied from filel to file2, shifting
each line one character and adding a leading space. If parameters are
omitted, INPUT,OUTPUT are assumed.

This routine is used in formatting a print file where the first character of
every line is not a control character and is to be printed. The space charac-

ter added will result in single line spacing when the file is printed.

Example: Control cards to print a Hollerith card file.

Nelo X o]

7
8
9

(COPYSBF(CARDS, OUTPUT)
(REQUEST CARDS.

CARDCPY, 1,100, 3000.

The Hollerith card file read into operator assigned card reader will
be printed on OUTPUT f{ile of job CARDCPY.

7-13

7.10
UNLOAD FILE

(UNLOAD(filel)
i

Filel is rewound and unloaded. This does not release the file assignment to
the control point. If parameters are omitted, the current file is assumed.

7.11
REWIND FILE

REWIND(filel)

This central program rewinds filel. If parameters are omitted, the
current file is assumed.

7.12
VERIFY TWO FILES

VERIFY(filel, file2, P> P2)

This routine compares the contents of two binary files. Comments regarding
the success of the comparison are provided. Filel and file2 are the files to
be compared; p; is the number of comment lines of type 5 to be printed in the
event of an unsuccessful comparison. p,_ is the destination file for the
comments (normally assigned to OUTPUZF).

The field length required to verify two files is approximately 40008K Since
the buffers are used in a circular fashion, no additional allowance is needed
for large records.

The parameters may be truncated at any point from right to left; the routine
assumes the following values:
filel = FILEL
file2 = FILE2
b, = 1
OUTPUT

By

7-14

The following diagnostics are issued with VERIFY:

1.

VERIFY OK

This comment indicates a successful comparison of the two files.
This message is also placed in dayfile.

VERIFY FAILURE

This comment which is also placed in dayfile indicates a failure to
compare for one of the following reasons.

The number of logical records does not agree
The number of words in a record does not correspond
A word in a record does not compare with the corresponding
word
n(10) m(8) EXCESS RECORDS IN FILE (f)

The named file, f, contained n more records than the other file.

n(10) m(8) EXCESS WORDS IN RECORD p(10) q(8) OF FILE (f)

Record p of file f contains n words more than the corresponding
record of the other file.

nannnn word 1 word 2

This comment is printed for each pair of words not in agreement.
The location n is octal. Each line is identified by a record number.

7-15

INDEX

ASCENT 6-4, 6-11 COPY 7-11

ASPER 6-4 COPYBF 7-12
ASSIGN card 4-6 COPYBR 7-12
Assignment, equipment 4-5 COPYCF 7-12

COPYCR T7-12
COPYSBF 7-13

Backspace routine (BKSP) 7-2 COPYN 7-4

BCD-coded mode 3-5 COSY 6-6

Binary mode 3-5

Binary programs 6-14

BKSP 7-2 Dayfile 3-2

Buffer codes 2-9 Deck structure 6-1
Diagnostics, VERIFY 7-15
DIS 2-16, 2-18

Card files 3-3 Disk

CATALOG card 7-3 Files 3-4

Catalog routine 7-3 Storage 1-1, 1-3
Central memory 1-1 Display

Central processor 1-1 Job (DIS) 2-16, 2-18
Central processor programs 1-3, 2-2 System (DSD) 1-1, 1-3
CHK 2-20 DMP 2-12

CIO 2-4, 2-9 DSD 1-1, 1-3

Circular buffer 1I/0 (CIO) 2-4, 2-9 Dump, storage (DMP) 2-12

COMMENT card 4-10
COMMON card 4-7

Common files 4-7 Equipment assignment 4-5

Compiler, FORTRAN (RUN) 6-9 Error Messages 7-10

Control cards 4-1, 4-12 Exchange jump area 2-1
ASSIGN card 4-6 EXECUTE card 4-3
COMMENT card 4-10 Execution suspension 2-17
COMMON card 4-7 EXIT card 4-9

EXECUTE card 4-3
EXIT card 4-9

JOB card 7-1 File
LOAD card 4-3 Card 3-3
MODE card 4-8 Magnetic tape 3-5
NOGO card 4-5 Name table 1-3
Program call card 4-11 Names 3-1
RELEASE card 4-8 Positioning 7-7
REQUEST card 4-7 Separator card 4-10, 6-1
SWITCH card 4-8 Structure 3-1

Control points 2-1 Field length (FL) 2-2

Index-1

FL 2-2
FORTRAN 6-9

HLP 2-16

Job
card 7-1
display (DIS) 2-16, 2-18
termination 4-9, 4-12, 7-10

LBC 2-12

Levels 5-11
Overlay 5-12
Segment 5-1

Library 7-3, 7-9

Load
Binary corrections (LBC) 2-12
card 4-3

Octal corrections (LOC) 2-12
Loader

control cards 5-14

parameters 5-3

reply parameter list 5-7
Loading

normal 5-2

overlay 5-2, 5-12, 6-3

segment 5-2, 5-10, 6-2
LOC 2-12

Magnetic tape files 3-5
Memory
Allocation 5-8
Central 1-1
Map 5-10
Peripheral 1-2
Messages, error 4-12, 7-10
MODE card 4-8
Modes
BCD coded 3-5
Binary 3-5
Monitor, system (MTR) 1-1, 2-2
Multi-processing termination 2-18

Index-2

Normal loading 5-2
NOGO card 4-5

Octal corrections cards 2-12

Peripheral processor 1-2
Peripheral programs 1-3, 2-2
Positioning, file 7-7
Priority 2-2, 2-17, 4-2
Processing, job 4-1
Processors

Central 1-1

Peripheral 1-2
Program call card 4-4
Pseudo control point 2-1
PUNCH 3-2
PUNCHB 3-2
Punch binary cards (PBC) 2-13

Read binary record (RBR) 2-14
Record identification cards 7-6
Record, logical 3-5

Record separator card 4-10, 6-1

Reference address (RA) 1-4, 2-2, 2-5, 5-9

RELEASE card 4-8
Request card 4-7
Request field iength 2-14
Rewind 7-14

Run 4-11, 6-9

Section 5-14

Segments 5-10
SEGMENT card 5-14
SEGZERO 5-14

SKIPF 7-5

SKIPR 7-5

SOS 2-14

Storage allocation 2-2
Storage, disk 1-1, 1-3
Storage, dump (DMP) 2-12
SWITCH card 4-8
System components 1-1

System display (DSD) 1-1, 1-3, 2-16
System monitor (MTR) 1-1, 2-2

Termination
Suspending execution 2-17
Multiprocessing 2-18
Job 4-9, 4-12, 7-10

Verify 7-14
Verify diagnostics 7-15

WEOF T7-6
Write binary record (WBR) 2-15

Index-3

CORPORATION

CONTROL DATA
| comromarion |

COMMENT AND EVALUATION SHEET

6400/6600 Computer Systems
SCOPE Reference Manual

Pub. No. 60173800 September, 1966

THIS FORM 1S.NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS. MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM nawme:

BUSINESS
ADDRESS @

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPL.E

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

L]

BUSINESS REPLY MAIL I

NO POSTAGE STAMP NECESSARY |F MAILED IN U,S,A, |

]

L]

POSTAGE WILL BE PAID BY ——

CONTROL DATA CORPORATION S
Documentati rtment

3145 P:RT‘:;O:RIIJVCg wrime —

PALO ALTO, CALIFORNIA I

[

IR

[]

R

]

S T T T S - - - - - - T T T T T T T T T FoLD

STAPLE STAPI F

Pub, No, 60173800

CONTROL DATA SALES OFFICES

ALAMOGORDO, NEW MEXICO
ALBUQUERQUE, NEW MEXICO
ATLANTA, GEORGIA

AUSTIN, TEXAS

BILLINGS, MONTANA
BIRMINGHAM, ALABAMA
BOSTON, MASSACHUSETTS
BOULDER, COLORADO

CAPE CANAVERAL, FLORIDA
CEDAR RAPIDS, IOWA
CHICAGO, ILLINOIS
CINCINNATI, OHIO
CLEVELAND, OHIO
COLORADO SPRINGS, COLORADO
DALLAS, TEXAS

DAYTON, OHIO

DENVER, COLORADO
DETROIT, MICHIGAN
DOWNEY, CALIFORNIA
GREENSBORO, NORTH CAROLINA
HARTFORD, CONNECTICUT
HONOLULU, HAWAII
HOUSTON, TEXAS
HUNTSVILLE, ALABAMA
IDAHO FALLS, IDAHO
INDIANAPOLLIS, INDIANA
KANSAS CITY, KANSAS

LAS VEGAS, NEVADA
LIVERMORE, CALIFORNIA

LOS ANGELES, CALIFORNIA
MADISON, WISCONSIN
MIAMI, FLORIDA

MILWAUKEE, WISCONSIN
MINNEAPOLIS, MINNESOTA
MONTEREY, CALIFORNIA
NEWARK, NEW JERSEY

NEW ORLEANS, LOUISIANA
NEW YORK, NEW YORK
OAKLAND, CALIFORNIA
OMAHA, NEBRASKA

PALO ALTO, CALIFORNIA
PHILADELPHIA, PENNSYLVANIA
PHOENIX, ARIZONA
PITTSBURGH, PENNSYLVANIA
PORTLAND, OREGON
ROCHESTER, NEW YORK
SACRAMENTO, CALIFORNIA
ST. LOUIS, MISSOURI

SALT LAKE CITY, UTAH

SAN BERNARDINO, CALIFORNIA
SAN DIEGO, CALIFORNIA

SAN FRANCISCO, CALIFORNIA
SAN JUAN, PUERTO RICO
SANTA BARBARA, CALIFORNIA
SEATTLE, WASHINGTON
TULSA, OKLAHOMA

VIRGINIA BEACH, VIRGINIA
WASHINGTON, D. C.

ADELAIDE, AUSTRALIA
AMERSFOORT, THE NETHERLANDS
AMSTERDAM, THE NETHERLANDS
ATHENS, GREECE

BOMBAY, INDIA

CALGARY, ALBERTA, CANADA
CANBERRA, AUSTRALIA
DUSSELDORF, GERMANY
FRANKFURT, GERMANY

GENEVA, SWITZERLAND
HAMBURG, GERMANY
JOHANNESBURG, SOUTH AFRICA
KASTRUP, DENMARK

LONDON, ENGLAND

LUCERNE, SWITZERLAND
MELBOURNE, AUSTRALIA
MEXICO CITY, MEXICO
MONTREAL, QUEBEC, CANADA
MUNICH, GERMANY

OSLO, NORWAY

OTTAWA, ONTARIO, CANADA
PARIS, FRANCE

ROME, ITALY

STOCKHOLM, SWEDEN
STUTTGART, GERMANY

SYDNEY, AUSTRALIA

TEHERAN, IRAN

TEL AVIV, ISRAEL

TOKYO, JAPAN (C. ITOH ELECTRONIC
COMPUTING SERVICE CO. LTD.)

TORONTO, ONTARIO, CANADA
VANCOUVER, BRITISH COLUMBIA, CANADA
ZURICH, SWITZERLAND

CONTROL DATA
[comroraTion

RPORATION
8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440 c ©

Litho in U.S.A.

o)
A
o)
N
)]
(o))
0
0]
7))
0
0
T
m
A
e
1
®
3
0
o
<
p
3
c
E :

	001
	002
	003
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	Index-1
	Index-2
	Index-3
	replyA
	replyB
	xBack

