CONTROL DATA

CORPORATION

CONTROL DATA®
CYBER 70/MODEL 76 COMPUTER SYSTEM
7600 COMPUTER SYSTEM

SCOPE 2
USER’S GUIDE



REVISION RECORD

REVISION

DESCRIPTION

A

Qriginal printing.

(11-30-72)

Publication No.
60372600

© 1972

by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

or use Comment Sheet in the back of
this manual,



PREFACE

L R

One of the most frequent criticisms of technical manuals is that the manner in which the
material is presented is inconsistent with the needs of those who must use it. For some
it is too technical; for others it is too basic. To avoid such misunderstandings, we
should be sure that we agree on the intent of this guide.

WHO IS THE USER?
The user is an applications programmer/analyst who
° has experience in the use of FORTRAN or COBOL;
° has had little or no experience in the use of SCOPE 2;

P may have, but is not required to have, experience in the use of 6000 SCOPE.

WHAT IS A GUIDE?

e A guide is a document that goes beyond the presentations of bare facts in a
reference manual.

° Its main purpose is to explain; that is, to examine system features, the reasons
for their existence, and the conditions under which they are used.

e A guide makes extensive use of examples and illustrations.

WHAT DOES THIS GUIDE DO FOR YOU?
. It describes the operating environment at a SCOPE 2 installation.
e It contains guidelines that will help you to set up and run your programs.
e It defines system features that can make your programs more efficient.

Because this guide is intended for applications programmers, the features of SCOPE 2
that have meaning only to system analysts have been intentionally omitted. Those who
want more detailed descriptions of the SCOPE 2 operating system and its related products
may refer to the publications listed under Related Publications.

HOW TO USE THIS GUIDE

As a programmer/analyst, you should expect to obtain from this guide the information
you need for defining your jobs and running them under SCOPE 2. To accomplish this
goal, you should be aware not only of the subjects discussed, but also the format in
which the material is presented.

For those who have no experience with SCOPE 2, the introductory material in section 1
provides a brief overview of the hardware and software components of the system and

a brief description of how a job progresses through the system. Section 2 contains gen-
eral information that applies to the structure of all jobs. Section 3 begins with material
that describes how compilers are loaded and executed and how the user causes the

60372600 A iii



programs generated by compilers to be loaded and executed. Following this, the user is
lead into an analysis of the Loader and information telling how to control the loading pro-
cess. Section 4 describes many of the options available to the user for controlling his
job. If these options are not exercised, the system controls the job according to a set
of default parameters. Sections 5 through 9 discuss the organization and transmission

of data and the use of permanent and temporary files. Section 10 describes system
utility operations such as copying, comparing, and positioning files. Section 11 contains
a brief description of file label usage. Features of the system that aid in analyzing the
program and debugging it are described in Section 12,

Before you continue, please note the presence of the comment and evaluation sheet at

the end of this guide. We invite you to make specific comments and suggestions as you
read the guide and to summarize your opinions when you have completed it. Your assess-
ment of this material will help us to improve our guides and provide more of the informa-
tion you need.

RELATED PUBLICATIONS
For readers who want a more detailed description of the SCOPE 2 system, information

about topics not discussed in this guide or information about the members of the product
set, a list of related publications follows.

Control Data Documents Publication Number
CYBER 70/Model 76 Computer System Reference Manual 60367200
SCOPE 2 Reference Manual 60342600
SCOPE 2 Instant Manual 60344300
Record Manager Reference Manual 60307300
Loader Reference Manual 60344200
Loader Instant Manual 60372200
SCOPE 2 Diagnostic Handbook 60344100
SCOPE 2 Installation Handbook 60344000
6000 Series Station SCOPE 3.3 Operator's/Reference Manual 60360400
6000/CYBER 70 Series Station SCOPE 3.4 Operator's Reference Manual 60343800
6000/CYBER 70 Series Station Instant Manual 60360500
COMPASS Version 2 Reference Manual 60279900
COMPASS Version 2 Instant Manual 60282900
COMPASS Version 2 CPU Instruction Card 60279700
COMPASS Version 2 PPU Instruction Card 60279800
UPDATE Reference Manual 60342500
UPDATE Instant Manual 60360200
FORTRAN RUN Reference Manual 60305600
FORTRAN Extended Reference Manual 60384200
60372600 A

iv



Control Data Documents Publication Number

FORTRAN Extended Instant Manual 60327900

COBOL Reference Manual 60384200

SORT /MERGE Reference Manual 60343900

SORT/MERGE Instant Manual 60344400

Programming Aids 60158600
NOTICE

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper func-
tioning of undescribed features or undefined
parameters.

60372600 A v






CONTENTS

PREFACE
CHAPTER 1 GENERAL DESCRIPTION

Introduction to SCOPE 2
Operating Environment
Hardware Configuration
Software Configuration
Job Flow
Job Initiation
Job Processing
Job Termination
The Job Dayfile
Introduction to Logical Files
Naming Files
FORTRAN Object-Time File Names
COBOL Object-Time File Names

CHAPTER 2 USING SCOPE CONTROL STATEMENTS

The Job Name
Optional Job Identification Statement Parameters
6000/CYBER 70 Station Processor Code
Execution Time Limit
Job Priority
Control Statement Section
Separator Cards
End-Of-Section Card
End-Of-Partition Card
End-Of-Information Card
Examples
Control Statement Section
Compile Source Language. Program
Compile and Execute
Two Compilations With Combined Execution of the
Object Programs
Complex Data Structure
Job Step Termination

CHAPTER 3 JOB PROCESSING

Compiling or Assembling Programs

Loading and Executing Programs
Combined Load and Execute Request
Loading of Object Modules

60372600 A

[N
1
ot

1
=t (OO T DD W

I
bt ok b
DN = OO

i

NNDNDNNNNDDNDNDDNNDNDN
1

2-13
2-14

2-15
2-16

vii



Core Image Modules and How They are Loaded 3-10

Loading and Execution as Separate Operations 3-11
Load Sequences 3-14
Selectively Load Modules From Files 3-15
Setting Load Sequence Characteristics 3-17
Using Libraries 3-18
Definition of Library 3-18
Library Sets 3-19
Loading Directly From Libraries 3-22
Loading Partitions From Libraries 3-23
CHAPTER 4 PROGRAM AND JOB OPTIONS 4-1
Using Core Memory 4-1
Automatic Core Memory Management 4-1
User-Controlled Core Memory Mode 4-3
Returning to Automatic Mode 4-6
Presetting Core Memory 4-8
Inserting Comments in the Program Listing 4-9
Pause for Operator Action 4-10
Setting Program Switches 4-11
Processing Interdependent Jobs 4-12
Job Dependency Parameter 4-12
TRANSF Control Statement 4-13

Job Rerun Limit 4-13
Rewinding of Load Files 4-15
CHAPTER 5 FILE STRUCTURES 5-1

File Information Table 5-1
Introduction to FILE Statement 5-1
Multiple FILE Statements 5-2
Carrying File Definitions Across Job Steps 5-2
Specifying Record Type 5-3
Specifying the Maximum Record Length 5-1
5-1

Unblocked File Format -12
Blocked File Format 5-14
The Block 5-14
Partitions 5-19
Sections 5-21
Access Methods 5-26
File Processing Direction 5-217
File Error Options 5-21
Termination on Any Error 5-217
Accept Error 5-27
Drop Bad Data 5-28
Display Bad Data 5-29

viii 60372600 A



CHAPTER 6

CHAPTER 7

CHAPTER 8

60372600 A

MAGNETIC TAPE FILES

Staging Tapes
Prestaging
Post-Staging
Specifying Type of Tape Unit
Specifying Tape Density
Identifying the Station for Staging
Character Conversion and Parity
Staging All or Part of Files
Using On-Line Tapes
Scheduling On-Line Tape Units
Requesting On-Line Tape Units

Specifying Tape Density for On-Line Tapes

Character Conversion and Parity
Positioning On-Line Magnetic Tape Files

Using Volume Serial Numbers With On-Line Tapes

Mount Option

Suppressing Read-Ahead/Write-Behind

Unloading /Returning On-Line Tape Units
Magnetic Tape Recovery Procedures

Standard Recovery

MASS STORAGE FILES

How Mass Storage Files Originate

Introduction to REQUEST Statement

Assignment of Space on Mass Storage
Minimum Allocation Units
Transfer Unit Size

Mass Storage Unit Assignment

Write Check Option

Returning Mass Storage Files

Job Mass Storage Limit

PERMANENT FILES

Using SCOPE 2 Permanent Files
Cycles
Cycle Numbers
Logical and Permanent File Names
Creator Identification
Multiple Read Access
Cataloging an Initial Cycle
Cataloging Subsequent Cycles
Altering the Size of Permanent Files
Purging Permanent Files
Installation Defined Privacy Procedures
Using SCOPE 3.x Permanent Files
Using the Station Parameter

[=2]
I
[y

DA DDHD D
I
= =3 OV WO W DN N

~3 -1 ~3 =1 ~3-3-3~3~
1
i (O 00 D WO WO DN

=0

ix



CHAPTER 9

CHAPTER 10

CHAPTER 11

UNIT RECORD DEVICES AT STATIONS

Card Reader Input
Coded Punched Card Input
SCOPE Binary Card Input
Free-Form Binary Card Input
Printer (List) Output
Identifying Printer Output
Printer Carriage Control
Disposing Print Files to Stations
Punched Card Input
Identifying Punched Output
Separator Cards
Mispunched Cards
Coded Punched Cards
SCOPE Binary Punched Cards
Free-Form Binary Punched Cards
Routing Punched Files to Stations

COPYING AND POSITIONING FILES

Introduction to Copy Routines
How to Copy Files
Selecting the Copy
File Descriptions for Copies
Specifying Buffer Size
Positioning Sequential Files
Positioning Files Forward
Positioning Files Backward
Writing File Delimiters
Comparing Files
Comparing Sections
Comparing Partitions
Comparing S-Records
Error Record Count
List Control Parameters
Abort Parameter

FILE LABELS

Introduction
Labels on Magnetic Tape
Users
Standard Labels
Requesting Standard Labeled Tapes

Providing Standard Label Information
Protection of Unexpired Labeled Tapes

Copying Labeled Tapes
Label Density

Label Parity and Character Conversion

10-1

10-1
10-1
10-1
10-5
10-86
10-7
10-7
10-10
10-12
10~-12
10-13
10-13
10-15
10-15
10-15
10-16

11-1

11-1
11-1
11-1
11-1
11-1
11-2
11-8
11-6
11-8
11-8

60372600 A



CHAPTER 12

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

GLOSSARY
INDEX

[ UL t
R WN - NERWN OO U WN =

1

T UT OO WAWDNI DN DN b et b et b ok ok ek
I

60372600 A

H O O wm >

i£5]

ANALYTICAL AIDS

Controlling Your Job With EXIT Statements
Setting Error Conditions
Setting Loader Error Options
Optaining Program Dumps
Requesting a Standard Dump
Requesting SCM Dumps
Requesting LCM Dumps
Obtaining L.oad Maps
Obtaining File Dumps
Requesting a Dump of Entire File
Specifying a List File
Specifying Dump Limits
Obtaining Dayfile Summaries

APPENDIXES

CDC CYBER 70 STANDARD CHARACTER SET
JOB COMMUNICATION AREA

STANDARD LABELS

SUMMARY OF FILE FORMATS

USING RECORD MANAGER FOR FILE FORMAT
CONVERSION

DEFAULT FILE DESCRIPTIONS

FIGURES

Basic System Configuration

7611-11 Service Station Configuration

6000 or CYBER 70 Series Station Configuration
7611-1 I/O Station Configuration

7611-2 Magnetic Tape Station Configuration
Job Flow Through System

Job Deck Translation

Sample Dayfile Listing

End-Of-Section Card (EOS)

End-Of-Partition Card (EOP)
End-Of-Information Card (EOI)

Structure of Loaded Program

Processing of Control Statements
Unblocked File Format

Blocking Types

Blocked File Format on Mass Storage
End-Of-Partition on Blocked Magnetic Tape

12-1

12-1
12-5
12-8
12-9
12-10
12-11
12-12
12-13
12-17
12-17
12-20
12-20
12-21

Glossary-1

Index-1

I T |

1
= (O bk b e 0O 00 WO
QWM = O

O

CODD DN DNt b b it ek b b
1

xi



I
I =AU WNHWN =W,

H I OOQOOOOWOWO-I~I~IU1U
[

1

-

oy
NN O

=
[
N =

NN DN =
[ )
IO U WK =W

[
== O 000 Ul N =

[
— -
WN O

WWWWWWWWWWWWWNN NN
I

1

3-14

xii

File Hierarchy

Relationship of S and Z Records (C Blocking)
Minimum Allocation Units

MATUs Assigned as a Result of Allocation Parameter
Relationship of MAUs and Transfer Unit Size
Hollerith (026) Coded Card

ASCII (029) Coded Card

Coded Card Images as W Records on INPUT
SCOPE Binary Card

Flag Cards to Delimit Free-Form Binary Deck
Free-Form Binary Card Translation

Printer Banner Page (Two Styles)

Lace Card

Selecting the Proper Copy Statement

Flow Chart of EXIT Processing

Standard Dump

Loader Map Part 1

Loader Map Part 2

Sample of DMPFILE Output

EXAMPLES

Correlating File Names With FORTRAN I/O Statements

Equating File Declarations on FORTRAN PROGRAM
Statements

COBOL File Name Assignments

Sample Job

Job Containing Control Statements Only

Job With Source Language Program

Job With Source Language Program and Data

Job With Two Compiler Language Programs

Job With Complex Data Structure

Job Step Termination

Request for FORTRAN Extended Compilation

Request for COBOL Compilation With Options Specified

LGO File Name Statement

Renaming the Load-and-Go File

No Substitution of File Names on LGO

Substitution of File Names on LGO

Precedence of Equating File Names

Loading From INPUT

Illegal Keyword/Name Call Statement

Load From LGO and INPUT; Then Execute

Selective Load From a File by Program Name

Using LDSET Statements in Load Sequence

Defining Global Library

Combining New and Old Library Sets

Defining a Local Library

Direct Looad From Library Using LIBLOAD

Load Partition From Library Using LOAD

Load Partition From Library Using SLOAD

Job Using Automatic Core Memory Management

Using the CM Parameter to Control SCM

Using the RFL Statement to Control SCM

Mixed Mode Control of SCM

Mixed Mode Control of Both SCM and LCM

LI |
w DN

1
= O O30 & =3k W N

O OOOWWWWW-T=TI~IWU0 WU
I
-

—
NO L
1 =
[\“I \Vee)

12-10
12-15
12-16
12-19

WWWWWWWwWwWwwoww
i
H = OO0 U Ul i DN -

60372600 A



[N}

[
N = O

[0S, 3 THY Ut NI N N N NS
1
LODD = = (D CO =] O

7
I

[ N T A e T e A e A T |
N = O

[eclie-Ne-NeoleoNeoNeoMe-NeelleoNaeNe Moo BEN BEN BEN IEN IEN IEN e rNorNerRorle > NeorNerleorRerNeorler e r IS VLS RV
1
= et R O OO ~NIOUTHRWN DU R WN =R OO0 U WK 00 -3 U1

WN = O

>

O©WOWWWWWOLVOo
1
0O -JOO U WN = =

60372600 A

Comments in Dayfile Listing

Comment Two Lines Long

Directing the Operator Through a PAUSE Statement

Using the SWITCH Statement

COBOL Test of Sense Switches

Job Dependency String

Rewind or No Rewind of Load Files

Placement of FILE Statement

Carrying File Definition Across Job Steps

Overriding Default of W Record Type for FORTRAN
Program

COBOL Assignment of Record Types Through File
Description

Using a FILE Statement to Specify Blocking

FORTRAN Treatment of EOS on Input File

COBOL Treatment of EOS on Input File

Specifying Error Option as Accept With No Display

Prestaging an Unlabeled Tape

Post-Staging an Unlabeled Tape

Identifying the Station for Staging

7-Track Code Conversion for Post-Staged Tape

9-Track Code Conversion for Post-Staged Tape

Prestaging Using Volume Serial Numbers

Partial Staging by Blocks

Partial Staging by Tapemark

Staging Entire File

Scheduling and Requesting On-Line Tape Units

9-Track Code Conversion for On-Line Input Tape

No Recovery and Accept Data Options

REQUEST Statement Placement

Using the REQUEST Statement Allocation Parameter

Using the STAGE Statement Allocation Parameter

Using the REQUEST Statement Transfer Unit Parameter

Use of the REQUEST Statement Write Check Parameter

Returning Mass Storage Files

Permanent File With No Password Requirements

Using the Retention Parameter

¢¢¢¢¢¢¢¢

Modifying a Permanent File

Using the Turnkey Password

Cataloging a New Cycle

Using the ALTER Control Statement

Using the EXTEND Control Statement

Purging a Cycle of a Permanent File

Purging a Cycle and Adding a New Cycle

Moving a Cycle From One Permanent File to Another

Attaching a 6000/CYBER 70 Station Permanent File

Making a 6000/CYBER 70 Station Permanent File into a
7600 Permanent File

Maintaining UPDATE OLDPL at 6000/CYBER 70 Station

Reading Cards From INPUT

Rewinding INPUT

ASCII (029) Coded Punch Input

FORTRAN Binary Input (6000/CYBER 70 Station)

Copy INPUT to OQUTPUT Shifting Each Record

Placement of DISPOSE Statement

Disposing Print File Created by FORTRAN Program

Generate Printer Character Sets

4-9
4-10
4-10
4-11
4-12
4-14
4-16
5-2
5-3

5-11

|
NN N
Co U1 U OO

1 | [} 1 i ] [} 1 1 1 ¥
b b= 00 =T VW Q) = O 00 U1 UT N bt ot b e et ek O =] OY UT WO DN
COUTNRFRO

L N e R R e I |
—

[eciiociisoliecNocio e ReBEN BEN BENEEN BES BEN ler el ex e Ner o or el er o rRlo R MG G) ) BRG]}
I

xiii



9-9
9-10
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14

11-1
11-2

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8

LI B |

QOO O W W W
I
WD ot GO DN

[
1 s DD = = O

o=t (O == W0
1

N NN
1
LN =

Xiv

Punching Binary Output From Compiler

Punching Free-Form Binary

File-to-File Copy

Copying Records

Copying Sections

Copying Partitions

Copying a Tape as Record Type U, Block Type K

Setting MRL

Skipping Records Forward

Skipping Sections Forward

Skipping Partitions Forward

Skipping to End-Of-Information

Skipping Sections Backward on INPUT

Copy and Compare Files

Logical Compare of F Records and W Records

Literal Copy and Compare of Tapes Described as U
Records

Using LABEL Statement for Label Generation With COBOL
Program

Using LABEL Statement for Label Checking With COBOL
Program

Selective Exit Processing

Combination of Exit Paths

Using the MODE Statement

Requesting No Program Execution for Any Loader Error

Request for Standard Dump

SCM Dump Taken Within an Exit Path

User Control of Load Map

Requesting a File Dump

TABLES

System File Names

Requests for Compilation or Assembly

Options Available During Compilation/Assembly

Keyword Statements

Preset Options

FORTRAN Record Type Constraints

COBOL Specified Record Types

COBOL Specification of Blocking

Maximum Block Sizes Allowed for Staged and On-Line
Tapes

COBOL Determined File Organizations

Magnetic Tape Density Parameters

Relation of Allocation Parameter to File Size

Relationship of An and Tn Parameters

Carriage Control Characters

EXIT Statement Processing

MODE Statement Parameters

MAP Options

9-20
9-21
10-2
10-3
10-4
10-5
10-6
10-6
10-7
10-8
10-9
10-9
10-11
10-14
10-14

10-16
11-5

11-7
12-4
12-5
12-7
12-9
12-11
12-12
12-18
12-20

[
-3

U}

QT O U LW W
1
O 00 WO 00 W =t i

-3

60372600 A



GENERAL DESCRIPTION 1

This section introduces the principles of the SCOPE 2 Operating System, gives a brief
description of the hardware and software configurations, and describes how a job pro-
gresses through the system. In addition, it introduces the user to the topic of logical
files, especially those files defined for every job by the system. Files are described
in more detail in Section 5.

INTRODUCTION TO SCOPE 2

An operating system is a group of computer-resident programs or subprograms that
monitors the input, compilation or assembly, loading, execution, and output of all other
programs processed by the computer. The operating system that directs these opera-
tions for the CONTROL DATA® CYBER 70/Model 76 and the CONTROL DATA® 7600
Computer Systems is called SCOPE 2. SCOPE is an acronym for Supervisory Control
Of Program Execution.

SCOPE 2 operates on a multiprogramming basis, using the versatility of the computer
hardware to direct the simultaneous processing of programs. The maximum number of
programs to be executed simultaneously is specified by the system operator. These
programs can be written in compiler languages such as FORTRAN or COBOL, or in
the COMPASS assembly language.

SCOPE 2 is a collection of programs that monitor and control compilation, assembly,
loading, execution, and output of all programs that users submit to the computer.
SCOPE 2 controls storage assignment tasks and the sequence in which jobs are pro-
cessed. For each job, the system prints maps and dumps of memory to aid in de-
bugging, detects errors, and prints diagnostic messages. It allows modification of
stored programs through use of special editing routines. Jobs are submitted to SCOPE
through operator stations. An operator station is a computer system that has been
programmed to communicate with the SCOPE 2 system. SCOPE 2 returns job output
and user-created files to the station at which the job originated.

SCOPE 2 features include:

Multiprogramming of jobs throughout the system
e Record management that supports a variety of tape record and block formats

Permanent file management to protect information from access by unauthorized
persons

e A chronological record called a dayfile for each program run showing the re-
sults of each control statement processed and any problems encountered. This
record is printed automatically when the program has been run.

e Communication with operator stations that submit job and data files to the
SCOPE 2 operating system and receive the job output file and user-created out-
put data files

60372600 A 1-1



OPERATING ENVIRONMENT

SCOPE 2 resides in a CONTROL DATA CYBER 70/Model 76 or 7600 Computer
System. The hardware configuration of the computer system depends on the needs of
the particular installation. The needs will also determine the product set in use. The
following paragraphs briefly describe the components of the computer system and the
possible hardware/software configurations that may exist under SCOPE 2.

HARDWARE CONFIGURATION

The CYBER 70/Model 76 and 7600 Computing Systems are large-scale, solid-state,
general-purpose digital computing systems. The advanced designed techniques incor-
porated in this system provide for extremely fast and efficient solutions for large-
scale, general-purpose processing.

A basic system (Figure 1-1) includes a central processor unit (CPU) and a number of

peripheral processor units (PPU). Some of the PPUs are physically located with

the CPU and others may be remotely located. The PPU provides a communication and
message switching function between the CPU and individual peripheral equipment. FEach
PPU may have a number of high-speed data links to individual peripheral equipment as
well as a data link to the CPU.

The data links may also be used to communicate with a variety of operator stations.
Stations are self-contained processing systems that serve primarily as input/output
processors for the CPU. The stations may connect through a first level PPU (FLPP)
or directly to the CPU, as in the case of the 7611-1 I/O Station.

Central Processor Unit (CPU)

The CPU is a single integrated processing unit. It consists of a computation section,
small core memory, large core memory, and an input/output multiplexer. The sections
are all contained in the main frame cabinet and operate in a tightly synchronous mode.
Communication outside the main frame cabinet is asynchronous.

Computation Section

The computation section of the CPU contains nine functional units and 24 operating
registers. The units work together to execute a CPU program. Data moves into and
out of the computation section of the CPU through the operating registers.

Core Memory

The CPU contains three types of internal memory arranged in a hierarchy of speed
and size.

1. The instruction stack contains 12 60-bit words for issuing of instructions. The
stack holds the latest ten instruction words and the two-instruction word look-
ahead. Program loops can be held in the stack thereby avoiding memory references.

2. The small core memory (SCM) contains 32,768 or 65,538 60-bit words. Each
word holds ten 6-bit characters.

3. The large core memory (LCM) contains 256,000 or 512,000 60-bit words.
Instructions cannot be executed directly from LCM.

1-2 60372600 A




CcC522

I=
.
S=F 407 CARD READER
857 DISK DRIVE
\_
Mcu S.._:_
PPU N
5 -
/1 PPU
/e — =
2 e ] N ]
COMPUTATION PPU N é §;~/_//
coliBo. SES=
3 .
Lo = ==
PPU
4
7638 DISK STORAGE
SUBSYSTEM
I 5 PPU (FIGURE 1-7)
SCM
MUX 51 PPU
77 PPU
’ 1
1 107 PPU
/ \ MODULAR
\ MAGNETIC TAPE
N ppu CONTROLLER
17 2
16 13
PPU 5 14 PPU
PPU PPU L 7
PPU PPU 00l5 yd )
—2°pols -
—~—i_ O 0 A /T
e hd o]
I TO 8 657-X AND/OR 659-X
MAGNETIC TAPE UNITS
2AXIA
Figure 1-1. Basic System Configuration
60372600 A

1-3



The SCM performs certain functions in system operation that the LCM cannot effectively
perform. These functions are essentially those requiring rapid random access to unre-
lated fields of data. The first 4K (octal) addresses in SCM are reserved for the input/
output control and data transfer to service the communication channels to the PPU.

CPU object programs do not have access to these areas. The remainder of the SCM
may be divided between fields of CPU program code and fields of data for the currently
executing program. A small portion contains a resident monitor program,

Input/Qutput Multiplexer

The function of the CPU input/output multiplexer (MUX) is to deliver 60-bit words to
SCM for incoming data, to read 60-bit words from SCM for outgoing data, and to inter-
rupt the CPU program for monitor action on the buffer data. In the basic system, the
MUX includes eight 12-bit bidirectional channels of which one is reserved for use by
the maintenance control unit (MCU).

Peripheral Processor Unit (PPU)

The peripheral processor units (PPU) are separate and independent computers, some of
which may reside in the main frame cabinet. Others may be remotely located. A PPU
may be connected to the MUX, another PPU, a peripheral device, a controller, or a
mix of these. PPUs that connect directly to the MUX, whether on the main frame or
remotely located, are termed first level PPUs (FLPP). PPUs drive many types of
peripherals without the need of an intermediate controller.

Maintenance Control Unit (MCU)

The maintenance control unit (MCU) is a main frame PPU with specially connected I/0O
channels. The MCU performs system initialization and basic recovery for the system.
It also serves as a maintenance station for directing and monitoring system maintenance
activity.

System Mass Storage

System mass storage consists of one or two CONTROL DATA® 7638 Disk Storage Sub-
systems. FEach 7638 Disk Storage Subsystem consists of two controllers and one disk
file. Either one or two 7600 first level PPUs can be connected to each controller.
The approximate data capacity of the system is 845 million 6-bit characters.

Stations
Several varieties of operator stations may be connected to the CYBER 70/Model 76 or

7600. Each station operates under control of its own operating system and is respon-
sible for supporting unit-record, magnetic tape, or communication equipment.

On-Line Magnetic Tape Units

A configuration optionally includes one to eight CONTROL DATA® 657-X or 659-X Mag-
netic Tape Units driven by a controller directly connected to one or two first level PPUs.

On-line magnetic tape units are accessed through record manager requests. Information

is transferred directly to and from the on-line unit without the intermediate transfer to
mass storage that takes place for staged magnetic tapes at stations.

1-4 60372600 A



SOFTWARE CONFIGURATION

Software can be considered as consisting of an operating system (SCOPE 2) and a pro-
duct set that perform as a matched set to translate the user's request into instructions
to the hardware.

The product set complements the SCOPE 2 operating system to meet the user's require-
ments for scientific applications and commercial data management.

The SCOPE 2 product set includes:

COMPASS Assembler

FORTRAN (RUN) Compiler

FORTRAN Extended (FTN) Compiler

COBOL Compiler

Sort/Merge (SORTMRG) Program

UPDATE Library Maintenance Program

7611-11 Service Station Operating System
6000/CYBER 70 Series Station Operating System
7611-1 Input/Output Station Operating System
7611-2 Magnetic Tape Station Operating System

SCOPE 2 consists of a group of program modules. Three of these modules are parti-
cularly significant to the user. These are the loader, the segment loader, and the
record manager,

Loader

The SCOPE 2 loader loads core image (absolute) modules and object (relocatable) modules
in response to calls from the system and from users. Modules, that is, subprograms

and data, can be loaded into user SCM and LCM from system and user libraries and from
files attached to the job. Programs can be called according to program name, file name,

ocbject module are satisfied from

T'wtoarnal rofaranceae made in n
LXie ai: reierences madae 1n an o0jeli modauie

or entry point name. ern
system or user libraries. A reference to an external symbol causes the module con-
taining the symbol as an entry point to be loaded and linked to the module containing the

reference.

Usually, the loader increases or decreases the amount of SCM and LCM available to the
user (field lengths) according to the requirements of the program being loaded. This
automatic core allocation can be overridden if the user desires.

A number of loader options permits the user to request load maps, presetting of core,
execution or no execution following the load, libraries to be used for satisfying externals,
etc.

The loader executes in the user field length. Programs that exceed available core
memory storage can be loaded by organizing them into subdivisions that can be called,
executed, and unloaded through the use of overlays. This process of overlaying is con-
trolled by the user.

60372600 A 1-5



Segment Loader (SEGLOAD)

Programs that exceed available core memory storage can be loaded and executed by
organizing them into subdivisions called segments. The user controls the segmentation
of a program through directives issued to the segment loader (SEGLOAD).

A segmented load is more elaborate than an overlay load. SEGLOAD has the following
features.
° A segment can have more than one entry point.

° Segment loads are implicit., Execution of an instruction that refers to an entry
point in a currently nonloaded segment automatically results in calling the
SEGLOAD resident program (SEGRES) which assumes control of loading of
segments.

e A segment load can involve more than one level. This feature allows gaps in
memory between segments that are logically connected.

. Calls for the SEGLOAD loader can be made through the control statement only.

Record Manager

The record manager acts as an interface between the user logical input/output functions
and SCOPE physical input/output functions. It performs the following functions for the
user.

° Recognizes nine record types, four block types, and three file organizations
(file access methods)
™ Detects the following conditions on a file according to file format:
beginning of information
end-of-record
end-of-section
end-of-partition
end-of-information
° Blocks and deblocks records

Passes data in the form of partial or full records between the user buffer and
system I/O buffers in LCM

° Controls the transfer of large blocks of data from the system devices (mass
storage and on-line tapes) to LCM and vice versa

° Manipulates tape labels

° Detects errors in format

The record manager does not execute in the user field length; it executes in the SCOPE
2 job supervisor area,

COMPASS Assembler

The COMPASS assembler language allows the user to express all hardware functions of
the CYBER 70/Model 76 central and peripheral processors symbolically.

1-8 60372600 A



COMPASS produces a binary file used by the loader to establish an executable program.
Pseudo instructions provide the user with a variety of options for generating macro
instructions and obtaining a listing of source statements and object code ranging from
brief to detailed. Errors detected by the assembler are noted.

FORTRAN Compilers

Two compilers are offered for the CYBER 70/Model 76: FORTRAN (RUN) and FORTRAN
Extended (FTN).

FORTRAN (RUN) gives mixed mode arithmetic, masking (Boolean), logical and relational
operators, shorthand notation for logical operators and constants, expressions as sub-
scripts, variable dimensions, and variable format capability.

FORTRAN also gives conversion formats for all data forms, array references with fewer
subscripts than dimensioned, Hollerith constants in arithmetic or relational expressions,
and left- or right-justified Hollerith constants. The record manager provides access to
files generated by other programming languages.

In addition to the above features, FORTRAN Extended supports random access data files
and provides ANSI diagnostics and a debug facility. It also provides three levels of
optimization selected by the user: standard compilation, fast compilation, and fast
execution.

COBOL Compiler

The COBOL compiler combines with SCOPE and the record manager to simplify the pro-
gramming of business data processing problems. The COBOL compiler produces easily
modifiable source programs decreasing program development time and program conver-

sion costs.

COBOL for the CYBER 70/Model 76 provides full ANSI compatibility through level 3 sort
files in conjunction with the sort/merge program. A report writer facilitates flexible
formats for printed reports. Segmentation and overlay of the object program extend the
flexibility of the COBOL compiler. ’

SORT/MERGE Program

The sort/merge applications program accepts input from magnetic tape or disk and con-
structs sorted output to user specification on tape or disk. Sort/merge executes under

control of SCOPE in a multiprogramming environment. The user may call the flexible

set of routines by a macro instruction in the user's subprogram, by a control statement
in the main program, or by the COBOL SORT verb.

UPDATE Program

UPDATE provides a means of maintaining Hollerith card images in conveniently updatable
compressed format. The user converts a collection of decks, for example FORTRAN

or COMPASS source decks, into a file called the program library. Xach card in each
deck is assigned an identifier when it is placed on the program library. Later, the user
can reference any card for inserting, deleting, or replacing lines of code in the program.
After the program is corrected, the new version of the program can be passed to a
compiler or assembler for processing. Corrections can be temporary for the purpose

of testing new codes or can be permanent modifications to the program library.

60372600 A 1-7



7611-11 Service Station Operating System

The 7611-11 Operating System executes on a 7611-11 Service Station (Figure 1-2). It
services the 7600 or CYBER 70/Model 76 Computer System by sending job decks to it
for batch processing and by processing output files from jobs. Jobs can originate at

a card reader at the 7611-11 or at local and remote batch terminals. Two 7611-11
stations can be connected to a first level PPU. Features of the 7611-11 Service Station
Operating System are that it:

° Links the SCOPE 2 Operating System with unit record equipment
e Multiplexes data flow
™ Serves as local batch entry station for SCOPE 2
° Provides remote batch capability for SCOPE 2
CYBER 70/ MODEL 76
COMPUTER SYSTEM
TO FIRST LEVEL PPU
INTERFACE
A ‘ %N%% PRINTER
320k Ve
CHARACTERS ,,/’
MULTIPLE_PROCE SSORS - O T OLLERS

e CONVERTERS o

LOCAL AND

REMOTE BATCH
e TERMINALS
CARD READER
DISPLAY MAGNETIC
CONSOLE 143M TO 286M TAPE UNIT

CHARACTERS OF 2AX2A
MASS STORAGE

Figure 1-2. 7611-11 Service Station Configuration

1-8 60372600 A



6000/CYBER 70 Statjon Operating System

A site that has both a 7600 Computer System (or CYBER 70/Model 76 Computer System)
and a 6000 Series Computer System (or a CYBER 70/Model 72, 73, or 74 Computer
System) may choose to link the two systems. The 6000 or CYBER 70/Model 72, 73, or
74 serves as a batch entry station and provides the peripheral processing for the 7600
or CYBER 70/Model 76. The station executes under control of either the SCOPE 3.3
or SCOPE 3.4 operating system (Figure 1-3)., It provides the operator with a command
language paralleling that available on the 6000 SCOPE operating system. Job decks
entered at the 6000 station card reader are routed either to the 7600 or the 6000 Series
computer through a parameter supplied by the user on the first card of the job deck
(the job identifier card). Each job sent to the 7600 is tagged with its station origin so
that instructions for the operator and output from the job can be routed back to the sta-
tion that originated the job. Two 6000/CYBER 70 stations can be comnected to a first
level PPU.

CYBER 70 / MODEL 76
COMPUTER SYSTEM

TO FIRST LEVELPPU |

l7683 ] .
CYBER 70/MODEL 72,73, OR 74

OR 6000 SERIES COMPUTER SYSTEM SATELLITE
COUPLER
6683

SATELLITE

COUPLER
e e e e

-7 CONTROLLERS
P AND
- CONVERTERS

SYSTEM MASS CARD READER
DISPLAY MAGNETIC TAPE UNITS STORAGE 2AX3A
CONSOLE

Figure 1-3. 6000 or CYBER 70 Series Station Configuration

60372600 A 1-9



7611-1 Input/Output Station Operating System

The 7611-1 I/O Station Operating System services the 7600 or CYBER 70/Model 76
Computer System by sending job decks to it for batch processing and by processing
output files from jobs. The I/O station operating system resides in all six PPUs that
comprise the 7611-1 I/O Station (Figure 1-4). The normal mode of operation is for
the I/O station to be coupled to a channel of the I/O multiplexer and to be in communi-
cation with the SCOPE 2 operating system.

Features of the 7611-1 I/O Station Operating System include:

° Isolation of the high-speed CPU from low-speed peripheral devices by transfer-
ring all files from the station to system mass storage so that efficient CPU
utilization can be realized

° Automatic routing of input files to the CPU and processing of output files from
the CPU in a manner that optimizes the use of peripheral equipment

e Accounting information maintained for each job in a system dayfile

. Operator control of utility operations independent of SCOPE 2

)

407-1 CARD READER

417-1 CARD PUNCH
AND CONTROLLER

517-1 LINE PRINTERS

PPUO
PPUI

PPU2
PPU3

PPUZ
PPUS MAGNETIC TAPE
CONTROLLER 857 DISK DRIVE

_—

CC522 STATION CONSOLE

607 MAGNETIC TAPE UNITS

2AX4A

CYBER 70/ MODEL 76
COMPUTER SYSTEM

Figure 1-4. 7611-1 I/O Station Configuration

1-10 60372600 A



7611-2 Magnetic Tape Station Operating System

The 7611-2 Magnetic Tape Station (Figure 1-5) has the sole purpose of providing efficient
tape staging for SCOPE 2. Staging is the process of transferring magnetic tape files to
or from system mass storage so that efficient CPU utilization can be realized.

The normal mode of operation is for the 7600 or CYBER 70/Model 76 Computer System
to be linked to at least one batch entry station in addition to the 7611-2 Magnetic Tape
Station. Jobs submitted through the batch entry station request tape staging through
SCOPE 2 control statements. The operator at the 7611-2 Magnetic Tape Station responds
to the requests by mounting or dismounting input and output tapes from the units at the
station.

CYBER 70/ MODEL 76
COMPUTER SYSTEM

2 X 8 MODULAR
MAGNETIC TAPE
CONTROLLER

2 X 8 MODULAR
MAGNETIC TAPE
CONTROLLER

TO FIRST LEVEL PPU 6PPU'S
cc522
DISPLAY /
CONSOLE DRIVE I~ clo
—=°
g

| TO 16 657-X AND/OR 659-X MAGNETIC TAPE UNITS

2AX5A
Figure 1-5. 7611-2 Magnetic Tape Station Configuration

60372600 A 1-11



JOB FLOW

A job enters the system in the form of a job deck submitted at a local or a remote
station. From the station, it is transmitted to the CYBER 70/Model 76 where the job
resides in the job input queue. Information concerning station messages is inserted into
the job's dayfile. From the job input queue, the job proceeds in three phases: job

initiation, job processing, and job termination. Figure 1-6 shows a generalized diagram
of job flow,

]2 T

JOB DECK . ”

STATION

TAPE FILE

Y

4 )
il F
| < - %
—
OUTPUT FILE SYSTEM MASS STORAGE
CYBER 70/ MODEL 76
COMPUTER SYSTEM 2ax6A
Figure 1-6. Job Flow Through System
JOB INITIATION

The operating system examines the job statement parameters to determine whether any
dependencies exist between the job and any other jobs in the system, and to determine
the resources needed. The job remains in the job input queue until dependencies are
satisfied, until system resources (for example, the number of on-line tape drives) re-
quired for initiation are available. The algorithm used for scheduling on-line tape drives
eliminates the possibility of system deadlock when the job is executing even though the
total number of units required is not available.

SCOPE 2 divides the job deck into two files (Figure 1-7): the control statement section
becomes the job control file; the remainder of the deck becomes a file named input.

Initiation of a job includes: preparing a job-related system area and positioning the job
control and input files for the first job step, constructing an SCM image in LCM, and
placing the job in a waiting queue for the CPU.

1-12 60372600 A



5/7/8/9 |

/
1/8/9 l
el INPUT FILE

CONTROL STATEMENTS

~/10B IDENTIFICATION
STATEMENT

\/4)8 CONTROL FILE

2AXT7A

Figure 1-7. Job Deck Translation

JOB PROCESSING

As a job advances from step to step, the operating system reads and interprets control
statements in the job control file. It assigns resources as required. While waiting

(for example, for assignment of resources, operator intervention, staging of files) a
job's residence can change from core (SCM or LCM) to system mass storage in response
to the operating system's evaluation of the job's needs. For example, if I/O access
requires the user LCM area or LCM system buffers, then the operating system furnishes
residence for the job in LCM. The operating system changes residence of a job as
needed by the job and as determined by overall considerations of scheduling the CPU.
Job scheduling establishes the job's residence progressively through three storage levels:
mass storage, LCM, and SCM. Jobs receive an aging increment while waiting in mass
storage and in LCM to ensure that every job is given a chance to execute in SCM. Job
field length requirements are evaluated against available memory to maximize use of
large and small core memory. The CPU scheduling process selects a job to which the
CPU is assigned and controls memory so that the jobs selected can be brought into SCM.

The system under the control of installation selected time limits and options ages the
priority of a job to ensure every job's opportunity to execute.

A history of the job is maintained in a dayfile for the job. At job end, the dayfile is
written in a file named OUTPUT. OUTPUT is also the default name of a file used for
list output by compilers and assemblers. OUTPUT is printed automatically at the
station of job origin.

60372600 A



JOB TERMINATION

At normal or abnormal completion of a job, the operating system returns all resources
stil, assigned to the job to the system for rescheduling. These resources include on-
line tape drives, user field length areas of SCM and LCM, job-related system areas
in SCM and LCM, and files not yet unloaded.

THE JOB DAYFILE

The dayfile is the short list of comments at the end of the output for a job. It presents
an abbreviated history of the progress of the job through the system. FEach control
statement is listed in sequence followed by messages associated with the job step. If

a job is rerun, the control statements processed prior to the rerun are listed without
times. The list is terminated by the message JOB RERUN.

A dayfile usually consists of the following items as illustrated in Figure 1-8,

1. First header line: identifies operating system, its current modification level,
and the date the job was run in two forms. The first form is either month,
day, year, or day, month, year, depending on an installation option. The second
form is Julian notation.

2. Second header line: identifies site and contains information determined by an
installation parameter.

3. Column heads: the leftmost column (up to the first asterisk) identifies the clock
time for each job step, the middle column (between the two asterisks) identifies
the accumulated CPU time for the job. For some job manager messages there
is no CPU time for the job step, and the clock time is in the middle column
rather than the left column., The rightmost column identifies the system module
that used the CPU time, or if execution is in the user field notes USR.
Entries commonly noted are the following.

SYS System (I/O requests, etc)

USR User program, including compilers and assembler time

LOD Loader

JOB Control statement processing

ggg Station processing (ggg is station identifier; for example, CCP

may indicate the 6000 station)

4. Station subheading: gives the time the job was submitted at the station, the
station identification, and the fabricated job name. This line varies according
to the station that submitted the job.

5. Control statement: the first statement is always the job identification statement:
the last control statement listed is the last one processed by the job. Each
control statement is listed in sequence, prefixed by a hyphen. If the job abnor-
mally terminates, not all of the control statements will be listed.

6. Dayfile messages: Any messages related to the control statement processing
are indented below the statement. These messages are listed in detail in the
SCOPE 2 Diagnostic Handbook.

1-14 60372600 A



@—’"" 7000 SCCPE 2.0 **** PRCPL &7J 18713772 72287

esss 7000 CEVELOPMENT CENTER (S/N 12) *°%°®

FH.PM.SS CPL SECCNC CRIGIN /@
15.18.2€ ST7€11 JCESROCS
15.19,1€ 00000.004 JCE. ~JCESAF,CP70,s" 11,
15.1S.1€ 00000.005 LCO. -FTMLR)
15.1%,17 00000.141 LSR. .127 CP SECCNCS CCMFILATICN TIFE
15.19.17 00000.141 JCE. ~RECUESTUTAPEL,*T)

17

15.15.17 00000.142 SYS. JM270 - RECLEST PFT LFASTAFE1l  VSMh=SCRTCk
15.19.26 A4, 41 ASSIGMEC.
15.19.26 00000.143 JCE. -MAE(CM)
15.1S.2€ 00000.143 LOC. -LGC.
15.19.2€ 00000.186 SYS. LDEJ0 - FLS RECLIRED TC LCAL - OCCEE7E CL.CCC
15.19.26 00000.186 SYS. L0603 - EXECLTICN INTTIZTEC CS.EXF
15.19.2€ 00000.187 LSR. FCRTRAN LIERARY 45EC+ 08/12422
1£.19.2€ SYS. 16001 - PT 41 ELCCK 1
15.16.26 SYS. 100C% - REC REAT PARITY ERF FIC = 1
15.19.2€ 00000.202 LSR. S10P
15.19.54 00000.205 JCE. CEXITCS)
15.4S.54 00000.208 SYS. FW770 = FEXTPLF ACTIVE FILES T 1
15.1S.54 00000.208 SYS. | FM771 - CPEM/CLCSE CALLS 43
15.1S.54 00000.20S SYS. | KM772 - CAT# TRANSFER CALLS 594
15.1S.,54 00000.20S SYS. | EM773 - CCNTRCL/PCSITICMING CELLS g1
15.19.54 00000.209 SYS. | RM774 - EF CTATA TRANSFEF CALLS zez
15.19.54 00£00.209 SYS. | EN775 - EF CCMTRCL/PCSITICNING CALLS €5
15.19.54 00000.209 SYS. 1 FM776 - CLELE MANAGER CALLS €2
15.19.54 00000.210 SYS. { FM777 - RECALL CALLS 57
15.19.54 00C00.210 SYS. | scr 3.047  KS
15.19.54 00000.210 SYS. | 1/¢ 0,003 b
15.19.54 00000.210 SYS. | TAPE 0.068 TS
15.1.54 00000.211 SYS. | USEFR C.C3z SEC
15.19.54 00000.211 SYS. I gce 0.213 SEC !
15.19.54 00000.211 SYS. | scouz - 0eoCo1 SC/oLC SwaPS B

2AX60A

Figure 1-8. Sample Dayfile Listing

Accounting Information

When a job reaches completion, SCOPE writes a summary of basic accounting data onto
the dayfile for the job (Figure 1-8). Accounting information consists of the following
data in decimal. Items marked by *% are not included when an installation parameter
is set to inhibit them. An entry is omitted if it is zero or is irrelevant for the job
(for e)xample, the average for on-line tape units appears only for jobs using on-line
tapes).

% 1. Maximum number of files active at any one time during the job. This number

may be higher than expected because it always includes the files that the system
creates for the job: INPUT, OUTPUT, job control file, and the dayfile.

%% 2, TFile open and close requests

x%x 3. Data transfer requests (COMPASS GET/PUT and READ/WRITE macro calls)
%% 4. File control and/or positioning requests (BKSP, SKIPF, etc)

#% 5, Record manager/buffer manager data transfer requests for next buffer

%% 6. Record manager/buffer manager control and/or positioning requests when no
data is in buffer

60372600 A 1-15



¥*

¥*
-3
.

Mass storage requests to queue manager by record manager

*% 8. 1I/O recall requests; number of times job waits for 1/0
** 9 SCM used expressed in kiloword seconds. Each kiloword second means that

the job used a thousand words for a second.

10. LCM expressed in kiloword seconds. Each kiloword second means that the
job used a thousand words for a second. This does not include LCM system
1/O buffers.

11. Number of I/O words transferred by SCOPE for the job in millions of words

¥*% 12. Mass storage used expressed in megaword seconds

¥

13. On-line tape unit usage expressed as tape seconds, that is, each second repre-
sents the CPU time for which the job had possession of an on-line tape unit.

14. User execution time, that is, the CPU time used for executing programs in the
SCM field. This value is expressed to the nearest millisecond.

15. CPU time used by the job expressed to the nearest millisecond. This value
includes system overhead and user execution time.

16. The number of times the job was transferred (swapped) between SCM and LCM

INTRODUCTION TO LOGICAL FILES

A SCOPE 2 logical file is a collection of information identified by a name and delimited
by a beginning of information and an end of information. SCOPE 2 regards all groups

of information in the system as files and is, therefore, said to be a file-oriented system.
Files directly accessible to the computer system can reside on system mass storage and
on on-line magnetic tape units. Other files can exist in the form of punched card decks
or magnetic tapes when they are entered into the system and copied onto mass storage.
Data on files leaving the system can be written on magnetic tape, punched on cards, or
printed.

Users accustomed to 6000 SCOPE must realize that many of the file terms and concepts
with which they are familiar do not apply for SCOPE 2. For example, SCOPE 2 has no
parallel to the physical record unit (PRU).

Information on files is divided into units of data called logical records. SCOPE 2 recog-
nizes a wide variety of logical record formats to allow information interchange with other
computer systems. Logical records, depending on their definition, consist of a fixed or
variable number of 6-bit characters.

NAMING FILES

A SCOPE 2 logical file name (1fn) is a 1 to 7 alphanumeric character symbol, the first
character of which must be A to Z. Any reference to the file (for example, t.o read
from it, write on it, position it, or change its characteristics) must use the file name.

The name of the job input file (INPUT) is assigned by the system and cannot be changed.

In addition to INPUT, the file names listed in Table 1-1 have special meaning.to {SCOPE
2. A file assigned one of these names is automatically processed at job termination,

1-16 60372600 A



TABLE 1-1. SYSTEM FILE NAMES

1fn Action
OUTPUT Line printer listing
PUNCH Punching on 80-column Hollerith cards
PUNCHB Punching in SCOPE binary on 80-column cards
FILMPR Microfile printing
FILMPL Microfile plotting Reserved for future use
HARDPR Hardcopy printing
HARDPL Hardcopy plotting

INPUT, OUTPUT, PUNCH, and PUNCHB are described in Section 9. Processors for
the microfile and hardcopy files are not part of the standard SCOPE 2 system. The
file names are reserved for future use.

The system libraries are also assigned names by the system and are available to any
job.

Most standard programs and product-set members have an established set of file names
that they use for input and output. For example, the COMPASS assembler and the
FORTRAN and COBOL compilers assume source language input is on INPUT, that list
output is on OUTPUT, and that executable binary output is on LGO. The compilers and
assembler all permit the user to substitute other files for the standard set.

Files used by object programs have names assigned by the programmer in the source
language program.

FORTRAN OBJECT-TIME FILE NAMES

The FORTRAN language does not refer to a file directly by its file name. Some of the
I/O statements imply certain system file names; others refer to a file by a unit number.
Thus, the READ fn,iolist statement refers to file INPUT. The PRINT statement refers
toc file QUTPUT, and the PUNCH statement refers to file PUNCH. Other READ and

WRITE statements, positioning statements, and unit checking statements use unit numbers,
where the number can be 1 through 99.

You must correlate the FORTRAN language references with the actual file names through
the file list on the PROGRAM statement. If you use a FORTRAN statement such as
PRINT, PUNCH, or READ fn,iolist, you must list the implied file (OUTPUT, PUNCH,
or INPUT) on the PROGRAM statement. If an I/O statement refers to a unit number,

you must list the file name as TAPEn, where n is the unit number. That is, a refer-
ence to unit 16 is listed as TAPE16, the 1fn by which the system knows it. This does
not mean that TAPE16 must be a magnetic tape file.

60372600 A 1-17



The program illustrated in Example 1-1 contains READ and PRINT statements and a
WRITE statement referring to unit 1, Thus, its PROGRAM statement lists INPUT,
OUTPUT, and TAPEL.

List of files used ‘\

Bl FORTRAN CODING FORM /

¥ . ]

PRCGRAN CANE (INFUTL,CLTFLT,TRFEL)
FRINT & <— Writes on OUTPUT
FORMAT (1FH1)
REZD) 1G0,EASELFEIGHT, I
00 FCARMAT (2F10.21]1) A
IF (I1.CT.C) GCl TC 1:2¢
IF UEASE.LE.O0) GO TC 10%
IF (FEIGKT.LE.0) GC TC 1los
GO T|C 10€
85 CALL] MNSG Reads from INPUT
0€ RREA = JS¥EASE*FEICGKFT
PRINT ilﬂ,ﬁﬂSE,kEIGFT,AAEA
110 FCRMAT (//7,* E2SE=¥Fz0.5,% FEICGFKT
IIF18.5,/4* AREA=*F20.%)
WRITE (1) ARER2
GC TIC 10

<
120 ’E':,EP Writes on TAPE|

[ =\ ]
[ =]

- e

"
-

SUERCLTINE MSC
FRINT 400

4oo FORMAT (///4* FCLLCWINC |[INPUT CATH NEGATIVE [CR ZERC ¥)
RETLURN

U ENL By /_/J-./\_

Example 1-1, Correlating File Names with FORTRAN I/O Statements

Equating File Names

FORTRAN allows you to equate two logical file names. One application of this feature

is to make a READ or WRITE statement more flexible. For example, if the I/O state-
ment refers to a unit number, the user can specify it as INPUT, OUTPUT, PUNCH, or
PUNCHB simply by renaming it on the PROGRAM statement. It is also convenient where
the system or some other subroutines refers to a file by a name that is illegal in the
FORTRAN language.

1-18 60372600 A



Example 1-2 illustrates a FORTRAN program that uses the INPUT, OUTPUT,

PUNCHB files. The statement that writes on unit 1 now writes on PUNCHB.

named PUNCHB is automatically punched in binary when the job terminates.

and
The file

CONTROL DATA

FORTRAN CODING FORM

= b ATY
=
[~}

1Rd

0 REALC

e
Example 1-2.

-

FRCGRAM -CNE (INPUT,CUTFL
FRINT 5
FCRMAT (1k1)
1004EASEHHEIGHY, I
FCRMAT(2F10.211)

IF
IF
IF (HEIGHT.LE.0) GO TC 1j0¢%
GC TiC 106
CALL
AREA =

((I.6T.0) GC
(BASE.LE.Q)

NSG

ARER

COBOL OBJECT-TIME FILE NAMES

The user assigns a SCOPE logical file name to each COBOL inplementor name through

T L _OCNANTD

«E¥BASEFHEIGHT
PRINT 110,BASE,,HEIGHT,AREA
FCRMAT (/77,4*
IF18e5y/y* AREAF‘FZBAS)
WRITE (1)
GC TC 10
STCP
ENC

;\/N

EASE=*FZ0.,

TC 129
GO TC 145

TyFUNCFE, TEPEL1=FUNCH[B)

|

Equates TAPE)
with PUNCHB

Sy* FEIGHTE

1
-«

\

Writes on PUNCHB

4+l TATDOTTT _ANATTMDITM

Equating File Declarations on FORTRAN PROGRAM Statement

Al T
LIIC nuolun ciause l.l.l LIJ.C PR N D SR WA W8 | J.L\:UJ_J ydl d.s.l. O.Pll 111 L IINT UL TUU LU L DCL.L.LU.LI

Any legal SCOPE 2 name can be used.

60372600 A

1-19



Example 1-3 illustrates a COBOL program that has FD entries for COBOL files LIST-
FILE, PARAM-FILE, and
SCOPE files named OUTPUT, INPUT, and DISKI.

1-20

TEST-FILE. The ASSIGN clauses assign these files to

CONTROL DATA

COBOL CODING FORM

DATA
FILE
FO L

ENVIRCNMENT DIVISIGN.

INPU[T-OUTPUT SECTION.

CONTROL .

SELECT TEST-FILE ASSIGN TC DISki.

SELECT LIST-FILE ASSIGN TO CLTPLT.
SELECT PARAM-FILE ASSICGN TC INPUT,.
DIVISION.

SECTION.

IST-FILE

FC P

FC T

|

Example

RAM-FILE

ST-FILE

1-3. COBOL File Name Assignments

60372600 A



USING SCOPE CONTROL STATEMENTS 2

In the typical case, a programmer writes a program in some language (for example,
FORTRAN Extended) and submits it to the computer operator in the form of a job deck.
Where terminals are available, card images may replace the card deck. The same rules
apply for job decks and card images.

In addition to the source language program, the job deck must include SCOPE control

supervise the job and perform job-related and file-related functions. This section
describes how the source program and control statements are organized into job decks.

THE JOB NAME

Assignment of a name to the job is the first step in preparing any job deck. Looking
at Example 2-1 you will see that the name of the sample job is JOBSAM. This name
is punched on the job identification statement. :

A job name must begin in the first column of the job identification statement. A job
name can be any combination of up to seven letters and numbers but the first character
must be a letter. Blanks cannot be embedded within a job name. When the job name
is by itself (unaccompanied by the optional parameters), it must be terminated by a
period or right parenthesis. For example, each of the following job statements shows
the job name correctly terminated.

[JOBNAME. [ JOBNAME)

Each job must be identified by a unique name both at the station and ai the central com-
puter. Suppose you select the name PROCEED for your job and a job with this name
has already been submitted. The problem is twofold. First, how does the station dif-
ferentiate your job from other jobs of the same name, and second, how does SCOPE
differentiate jobs submitted from one station with those of the same name from some
other station?

When the job enters a station, the station automatically replaces the sixth and seventh
characters in the name with two characters unique for each job at the station. As a
result, a job named PROCEED might be processed with the name PROCE14. If the
name consists of fewer than seven characters, the station fills the unused character
positions with zeros and adds the sixth and seventh characters. Thus, a job named K
might be changed to K00006M.

Next, when the station sends the job to the central computer system, it sends a 6-char-
acter internal identifier. The first three characters identify the station originating the
job; the next three characters identify a terminal at the station.

Even though two or more stations might submit a job named KO00006M concurrently,
SCOPE 2 does not confuse the jobs; each job is uniquely identified.

60372600 A 2-1



2-2

CONTROL DATA

FORTRAN CODING FORM

Joss
TNa
TACE(
GO«

~Ewvmn

= =,
[=

05
06

e

[}

/8/9

O N O N
o

VMoo ooho oo

O

/7/849

s CP7
TAPE

/8/9 |4n cof
PRCG
PRIN
FCRM

0.
1,PCST)

jumn one

RAM CNE (I
TE¢S

AT (1t1)

REAq 100,EASE,
FCRMAT(2F10.21

IF (
IF (
IF «
(VN
CaLL
AREA
FRIN
FCRM
Fie.
WRIT
GO T
STCP

ENC

SUER
PRIN
FCRM
RETY

ENC

in cof

0.24
.24
0.00
6.32
G.00
0.00
0.43
.00
0.00
0.09

in

[«

I.GT.0) GQ
EASE.LE.D)
HEIGHT.LE.
C 106
MSG
= +5%BASE

AT (777,*
Sy/4* AREA
E (1) AREA
Cc 10

OUTINE MSS
T 400

AT (/77,*
RN

lumin one

500.76
ElU.7€
700.00
425.358
€00.00
150.00
800.00
300.00
100.00
203.00

olumn one

I

l

Control statement
section

HEIGHT, I
1)
TC 120

0)

HEIGHT

T 110,BASE,HEIGHT ,ARE A
ASE=*Fc0.

*F20.5)

FCLLOWING

NPUT, CUTPL[T,TAPE1)

GC TC 105
GC TC 1ijos

INPUT CATA

S,s* FEIGKTE

T
«

| Program section

NEGATIVE

J

L Data section

—

Example 2-1,

Sample Job

OR ZERC ¥)

60372600 A




SCOPE 2 uses the station and terminal identifier to route output from the job back to
the originating station and terminal. The fabricated job name (without the appended
station and terminal identifier) appears on all of the printer and punch output returned
for a job.

OPTIONAL JOB IDENTIFICATION STATEMENT PARAMETERS

The job name is the only information required on the job identification statement. You
can optionally supply additional information. When supplying parameters, separate each
parameter with a comma and terminate the parameter list with either a period or a
right parenthesis. Comments can follow the terminator. The sequence in which para-
meters are listed is unimportant.

If you supply no other information, the SCOPE 2 system uses default parameters for the
job. Default values and the maximum values allowed for these parameters are deter-
mined by the installation manager at the time SCOPE 2 is installed in the computer
system. The values may vary from site to site. Generally, a system analyst can tell
you the values at your site. Record the default and maximum values for your site in
the table on the inside back cover of this guide.

The following parameters are allowed.

CP70 or CP76 Processor code for 6000/CYBER 70 Station. This parameter
is described in the following text.

Tn CPU time limit in octal. This parameter is described on
page 2-4.

Pn Processing priority in octal. This parameter is described
on page 2-5.

CMn Fixed number of words of small core memory allocated for

the job. This parameter is not usually specified since it
overrides dynamic memory management. The parameter is
described with Using Core Memory, Section 4, page 4-3.

ECn Fixed number of words {expressed in octal thousands) of large
core memory allocated for the job. This parameter is not
usually specified since it overrides dynamic memory manage-
ment. The parameter is described with Using Core Memory,
Section 4, page 4-6.

Dym Job dependency string parameter. This parameter is des-
cribed with the TRANSF control statement with which it is
used (see page 4-12).

Rn Job rerun limit. This parameter is described in Section 4,
page 4-13.

MTn Octal number of on-line 7-track magnetic tape units used

by the job. This parameter is described with the magnetic
tape REQUEST statement with which it is used (see Using
On-Line Tapes, Section 6, page 6-13).

60372600 A 2-3



NTn Octal number of on-line 9-track magnetic tape units used by
the job. This parameter is described with the magnetic
tape REQUEST statement with which it is used (see Using
On-Line Tapes, Section 6, page 6-13).

6000/CYBER 70 STATION PROCESSOR CODE

The CP parameter is relevant for jobs entered through a 6000/CYBER 70 station. If
the parameter is used for a job submitted through some other type of station, the para-
meter is ignored.

When a job is entered through the 6000/CYBER 70 station, the 6000 SCOPE operating
system must determine from the job identification statement which central processor is
to process your job. When the parameter is omitted, 6000 SCOPE uses the system
default, which is most commonly set for processing at the 6000 Series Computer System
rather than the 7600 Computer System.

7600 Processing

Use CP70 to unconditionally specify processing at the 7600 (or CYBER 70/Model 76).

If the 7600 is not currently communicating with the 6000 Series station, the job waits
indefinitely for communication to be established. For this publication, use of CP70 is
conventional.

The following job identification statement allows the job to be processed only at the
7600 Computer System.

( JOB, CP70.

7600 or 6000 Processing

Use CPT76 to specify processing at the 7600 as a first choice but at the 6000/CYBER 70
station if the 7600 is not currently linked to the 6000 station. It is not used for load
leveling. That is, the size of the job queues for the two systems is not a factor in
assigning a processor.

The following job identification statement requests that the job be processed at the 7600
if it is available; otherwise, it is to be processed at the 6000 station.

ﬁOBNAME, CP76.

EXECUTION TIME LIMIT

For each job in the system, SCOPE 2 monitors the amount of time that programs for
the job occupy the central processor unit (CPU). This time does not include the time
spent in the input queue, staging files, waiting for access to the CPU, or waiting for
completion of I/O requests. When SCOPE detects that the execution time has expired,
it terminates job processing. The default time limit is usually 8 seconds. If the
system default time limit is insufficient for your job, supply the T parameter on your
job identification statement. You should also set a time limit if you feel that the default
is too high,

2-4 60372600 A



The time is expressed in seconds as an octal value prefixed by the letter T. You can
either calculate the octal value or you can use the following rule to arrive at an approx-
imation of the octal value.

Rule: The time in octal seconds equals the approximate time in minutes multiplied
by 100. Note, however, that a decimal value of 8 or more must be converted
to the octal equivalent.

secg = 100 x min
For example, if your job requires 4 minutes of CPU time, you would convert this time
to 400 octal seconds for use on the job identification statement. Enter the value as
T400. For 9 minutes, you would enter T1100, having converted the 9 to its octal
equivalent.

The following job identification statement sets the time limit for the job to approximately
9 minutes.

(BIGJOB, CP70,T1100,

If a job contains an EXIT statement, and the job abnormally terminates because of
having used its time, SCOPE 2 extends the limit by 8 seconds to permit you to obtain
a dump or save valuable data.

To be certain that your job will have access to the CPU until it has completed processing,
regardless of the requested time limit, set the execution time parameter to T7777. This
special value acts as an infinite time limit. It also represents the maximum possible
value for the T parameter.

CAUTION

Use caution when setting high or infinite time
limits. If your job contains an error such as
an infinite loop, the program will continue to

execute and you will be charged for the time

used.

JOB PRIORITY

The P parameter is rarely specified. Default priority is adequate for most applications.
A job with very high resource requirements, however, will sometimes warrant an in-
crease in processing priority (for example, if it uses all the on-line units, requires a
large amount of CPU time, uses a large percentage of LCM, or is heavily I/O bound).

To override the default priority specify the letter P followed by 1 to 4 octal digits.

The highest priority a user can assign is set by an installation parameter (usually 70008).
The priority assigned causes the job to be processed ahead of all jobs having lower
priorities.

The lowest priority that can be assigned and still have the job processed is 1. Any

value between 1 and 777, is automatically reassigned to 1000,. If the priority is 0,
the job will not be processed until the operator assigns a valid priority.

60372600 A 2-5



On the following job identification statement, the priority is set to 2000

g

(SWIFTY, CP70, P2000.

CONTROL STATEMENT SECTION

All control statements applying to a job must be in the control statement section, which
is always the first section in the deck. Control statements cannot appear in any other
part of the job deck. They are processed one at a time and determine all operations
performed on subsequent sections of the job deck.

The control statement section consists of the following kinds of statements.

SCOPE 2 control statements
Loader control statements

Record manager control statements

These statements serve the following purposes.

Identify the job and some of its characteristics
Request devices needed for job processing and specify other file-related activities
Call for compilation or assembly of the source language program

Direct the loading of programs into small core memory and loading of data into
large core memory

Call for execution of the object program resulting from compilation or assembly

Specify exit paths and job termination conditions

All statements must be prepared observing the following syntax rules for control state-

ments.

1.

2-6

Each statement must consist of a 1- to 7-character statement name and a termi-

nator, or must consist of a name followed by a separator, a parameter list, and
a terminator.

The terminator can be either a period or a right parenthesis.

[name. or [ name)

The separator following the statement name is conventionally a comma or a left
parenthesis. However, one or more blanks following the statement name are
also interpreted as a separator; elsewhere, blanks are ignored.

ﬁaame(par‘ameters) or ﬁlame, parameters. or (name parameters.

The parameter list consists of one or more fields of information separated by
commas.

1name(p1,p2,...,pn) or ‘name,pl,pz,...,pn or ﬁlame P1sPgseeesPp -

60372600 A



Parameters in the list are often in keyword form, that is, each p, could be
expressed as X =y or x =y /y2/.../y . Thus, commas, equal éigns, and
slant bars are conventional délimiters in parameter lists.

5. Literals permit any of the characters otherwise illegal or interpreted as separa-
tors to be used in the parameter list. Blanks within a parameter are deleted
except within a literal. A literal is any character string delimited by a pair
of dollar signs. Two consecutive dollar signs within a literal constitute a single
dollar sign. That is, the literal $ab$$cd$ is interpreted as ab$cd.

6. Any characters can follow the control statement terminator. This allows the
remainder of the line to be used for comments.

(name. comments or ﬁlame(parameters)commen‘cs

7. Continuation cards are allowed for statements too long for a single card. To
continue a statement, the card containing the statement to be continued must
end with a (, / or =, It must not contain a terminator. The continuation card
must have a nonblank character in column 1. Comments cannot be continued
because they follow a terminator.

(more parameters)comments

(name(parameters,
I

It is not unusual for a program called by a control statement to require a secondary kind
of control statement known as a directive. Directives for a program can be in the job
deck in a separate section from control statements, or they can be on some other file.
In SCOPE 2, the system routines LIBEDT, TRAP, ANALYZE, and UPDATE each has its
own set of directives. The syntax of these directives is tailored to the needs of each
program.

Each control statement is referred to as a job step. After the operation requested by
the statement has occurred, SCOPE advances to processing the next control statement,
that is, performing the next step in your job.

Sections following the SCOPE control statement section consist of source language decks,
binary object decks, data, and directives required by specific job steps. If no job step
requires input from the job deck, the deck consists of only the control statement section.

Example 2-1 represents the typical case in which the first job step that requires input
from the job deck is the FORTRAN Extended compiler (called by the name FTN). Thus,
the FORTRAN language program is the second section in the deck. The next job step
requiring input from the job deck is the object program. Its execution is called for by
the control statement LGO. Therefore, data for this program forms the third and final
section.

60372600 A 2-1



SEPARATOR CARDS

Cards with certain unique patterns define the structure of a deck and separate decks in
the card reader.

END-OF-SECTION CARD

Terminate each section with an end-of-section card (Figure 2-1). This card has rows

7, 8, and 9 punched in column 1. Columns 2 and 3 optionally contain the Hollerith punch
for octal codes 00 through 16. These are section level numbers. They are irrelevant

in SCOPE 2 but have significance to SCOPE 3. 4. End-of-section cards are often referred
to as end-of-record cards.

Hollerith Punched Octal Level Number

00

L I B T N T Y N T N T TR R T DRI R T N R T R TN T 59 51757 31 5155 56 57 59 39 40

[ sz evarsseceraasason oML HIIBN MJ]

ﬂ'.ﬂﬂﬂﬂ‘]ﬂﬂﬂﬂ’dﬂﬂﬂﬂﬁﬁﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂUﬂﬁcﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬁﬂﬂﬂﬂﬂ
|z:tsx1|slsnn,zn;sx:!)vs:mzxzzzxunz;u:xn:auxn.«uhsnr;sms:u:uu.‘n;:ruuwa:srissnssxn5|s!u:|unsuusﬂuclunnurnsmmuw
llii‘llllllllllllllil!llllIllllllllllllI!illllll]Illllll'llllllllllllllllllll|l|

2221222222222322222222222222222221’222222222222222?2?2222Z
AT I D G NI 04 A0S K4l o0 51 S 35445 5657 S0 S0 GO 612§ 80 65 S 60 D149 80N 12 03 e EERIE R T

33333333‘33333333::3333333333333333333333333333333333333333

2122222272221
N N N R R ST RT
1333333333332

FAAAAA 444048020054 88084840444¢ 4144445@4444444444444444444444444444444444444
R L R T R R I R BT R R 2 3 IR AT TS G AT AR 3 N ST 5 TS ST R BI R G 6 W RO SER I TN IS TG N 8
5‘.}555555'3'335555535555532’155555'55555555555555555555355555555555555555555555555535

SEﬁﬁﬁﬁ5565565555555655555555‘3665555BEGE5555GEE5555655555555555555565555555555&55
DI NN N BN B E RN B 113305 3030 48 A1 AT S 34T 55 0T AR 49 S8 50 SE Y055 00 Sh 99 B0 K1 G0 6D O S GG G RR BN 0 TN I3 I TS iy e )

Iil711111717!111111?1”111777HH1117?71)1717771117)7177777771”111')11711171177
IBBBEBRBBBBQBEHSoBéEBSU5888358835338853888BﬂﬁﬂﬁﬂﬂﬂﬂaﬂBB&HBBB-‘]iEB&IIIﬂBBB&BSBHBBb’

Proa sy e s ‘11]21ii)6”’?Htﬁfi2!:‘12:155!'2!"33![i'll.‘}lls!i1']!!3b".‘ll.’t!ulﬁ:il'li“.ﬁﬁ&'5.'3!)1)3555!“595!51Hﬂil““ﬂilﬂﬂﬂY?HN?;]SN.‘IHW

I?GSHSI99.’.’99H9935199‘:29!!99E]99999999!095999‘JSS599999955999999995!5!99!!!99999!9999!I)

\ 5084

Figure 2-1. End-Of-Section Card (EOS)

2-8 60372600 A



END-OF-PARTITION CARD

Terminate a formatted binary deck (core image or object module) with a single end-of-
partition card or two end-of-section cards. The end-of-partition card (Figure 2-2) has
rows 7, 8, and 9 punched in column 1 and has the Hollerith punch for octal code 17 in
columns 2 and 3. This card is equivalent to the 7600 SCOPE 1.1 end-of-file card
(multipunch 6/7/9). As will be shown later, FORTRAN and COBOL object-time routines
also recognize the EOP separator. In previous 6000 SCOPE systems, the end-of-infor-
mation card is referred to as an end-of-file card.

/Hollerith Punched Octal Level Number

17
/]| 7 3 45 6 7 8 T W 1@ 15 4 15 15 T 1 1 70 21 17 75 7495 26 ©1 28 53 33 41 52 33 34 35 30 3130 39 40 41 42 43 44 43 4% &1 €3 43 50 3097 93 54 53 56 51 58 9 3]

[s1U 62 63 64 a5 6a or 68 6970 11 12 75 74 15 16 17 18 79 ne]

pOO0S000000000GC0002000000000G6000000000000206000000600000000000000000000028069306000

T2 145 61 A UHNIBBENBIAMRANBET AR WHN WU R NBIBNQOUGEA BN RNHHRTADRAFBHSHTRIINIINIEIN "

(| RRERRRE AR RN AR R R R R R R R R RN R R R R R R R R R R R R R R R R R R R R R R R RN R R
2227222122222222222222222222222222222222222022220212222222222222222212222222122211112

121456 13011y EUdi90N2lNNET0MANTNNREITBBAIL0AOGEC B0 DE BN el 2835 MBIV NITNNITD WY

333333333333333333333333333332333333333333333323333333333333333333333333333313333

BAA 4434488044444 44 8844884044488 4484 8844448048444 84448444848344444444444444844441

P13 458 T8 IHMUNDHNHEYBENNRANDIBTINEAN AN BRI B NBA UL MO Y 4TI H GBI BRI 0 SCTEII I IS T I

§5595555555553535595555555955355555535555555555555355555555335555555355333953533535

R —

I E6656666665666656566666656666666666GCG6€C6666666G6CG5660666666660665666660666666036536

234561 TN ARG NN RN PN N BRI RN AN OU G AN NRHGE NS NH PO BEU NN RN EN AN

IIlI??HH71?1177?17711!17!177”.'H?HH?H]H!11ITI!?.HI’HH?”1?”7””1””17
Poc68588383666885382336850085858836¢6360885538888688055303803009053888833683538888889

Pr3aseresnn RORIE BB NNESET RN NE AN IO NS S E TGRS EH GBI TN BTN

$99998999959999599939%396599999539999999993995895999559993999959389333356353599389

]
5094

Figure 2-2. End-Of-Partition Card (EOP)

Terminate the last section of the job deck with an end-of-information (EOI) card. This
must be the only EOI card in your deck. The end-of-information card (Figure 2-3) has
rows 6, 7, 8, and 9 punched in column 1. Some programmers make a practice of
including an EOS card before the EOI card. This practice is unnecessary since the EOI
serves to terminate the last section and the job deck.

60372600 A



T8 N VRS 30536 5T 38 3000 4 aa A8 A4 44 1S 47 48 005 5 57 8 v s

/[| 25 405 6 1 8 9 W 0z 34 518 U5 ) a0 2723 74 08

00020000060600000000000000030050200300C00000023600080C00000000000D00600300000083002¢0

P28 45 671 85 312018 @192 22 25 2677 0 2930 30 31 3038 30 38 30 38 38 83 40 A2 83 44 45 45 4 48 49 5951 52 5334 S5 58 57 38 S8 69 61 b7 63 64 65 V6 87 63 60 10 10 17 3 G4 T3 0§ it iR 1Y 6R

R R R R R R R R N R R R R R R RN

(8 67 6564 65 aa T 6889 78 11 12 15 4 15 15 1173 13 %)

222222222222132222122222222222222222222221222722222272272%3222222222212222222212222221221

P23 45 8 08 9001 2 BBt E 0T % 2 025 3 3T 30 33536 30 30 39 40 40 ¢T3 45 45 &2 S0 43 a0 90 37 35 54 99 35 30 33 S9GE 60 B2 63 o 63 L5 BI MG NI M M N4 S i R0 g0

3333333333333333333333333333333333333333333332333333333333333333233333333323133333

G444 3 3444443443384 3 484488844444 444 8482484884438 8448444883844 448 4344808488488 44444

vrlaas s tasunnduennnResnnny GHV ARV N BB H BB QB UGG BTSSR S8l BN AN ABEN N

5953530359555 359559505055650555555555995555555555555553555555555555535535553555554

' B6GG6665665666666666656666656666666666666G6666666666658G6630666666650G566666666666

T2 34368 902 81319020 72025020 2079 3030 323334 3935 37 38 3940 41 &7 43 49 45 45 47 48 4% 5B 57 L7 38 5% 55 55 57 55 9 8 6 62 63 64 65 56 57 6853 30 G0 2 M IS 06 iV 4 U9 GI

R R R R R R R R R R R R AR R R RN R R R R R R R R R R R R R R R R R R R R R ER RN
Bo083888328686386808088886808088885833C6608€6086662886805663633080080888885883088848

TI3 a3 5 PE 30N il g9 Nn I NI AT 2829 3030 373 M 25 %6 31 3T 40 G0 2 T 44 0 1o 4T 45 45 3050 S7053 94 33 55 57 S8 93 5B 61 B2 E3 40 63 G661 6358 Ty 1 7201 M 4y 15 T i 18 40

$§3935999999999999999999959599995999959959939959996055999959993333993356394993939

1
5084

Figure 2-3. End-Of-Information Card (EOI)

EXAMPLES

CONTROL STATEMENT SECTION

In the simplest case, a job consists of only one section, the control statement section.
This happens when no job step requires card input with the job deck.

Example 2-2 illustrates a job that consists of only the one section.

6/7/8/9
¢——————— EQI CARD

JOBNAME, CP70.

CONTROL STATEMENTS

2AX44A

Example 2-2. Job Containing Control Statements Only

2-10 60372600 A



COMPILE SOURCE LANGUAGE PROGRAM

A job consists of more than one section if one or more of the programs called by the
control statements, that is, job steps, requires card input from the job deck.

Usually, a program requiring input submitted as cards looks for these cards as the next

section in the job deck. Thus, if a compiler is the first program executed, it seeks
the source language program deck in the section immediately following the control state-

ments.

Example 2-3 illustrates a job that calls for compilation of a FORTRAN source language

program.
EOI CARD
6/7/8/9 /

/SOURCE LANGUAGE PROGRAM

(SECOND SECTION)

i e re
! / j _- EOS CARD

| /
i
! (/FTN.
JOBNAME, CP70.
CONTROL STATEMENTS

(FIRST SECTION)

2AX45A

Example 2-3. Job With Source Language Program

60372600 A 2-11



COMPILE AND EXECUTE

Typically, execution of the program compiled by the compiler is called for following the
compilation. In this example, execution is requested through the LGO statement., LGO
is a file on which all the compilers and assemblers place object programs unless some
other file is specified. This statement is described in detail under File Name Calls.

If this object program requires data, it is the next section after the source language
section, as shown in Example 2-4. Again, each section other than the last terminates
with an EOS card and the final section terminates with an EOI card. Notice that the
deck illustrated in Example 2-4 parallels the job illustrated in Example 2-1. That is,
it contains three sections, the control statement section, the source language section,
and the data section.

6/7/8/9

<——————— EOI CARD

Vi

e — DATA SECTION
w4 (THIRD SECTION)

7/8/9

- EOS CARD

2 1/

| e L SOURCE LANGUAGE
| w4 PROGRAM
/ {SECOND SECTION)

< EOS CARD

e |
} /FTN.

JOBNAME, CP70.

J CONTROL STATEMENTS
(FIRST SECTION)

2AX46A

Example 2-4. Job With Source Language Program and Data

2-12 60372600 A



TWO COMPILATIONS WITH COMBINED EXECUTION OF THE OBJECT PROGRAMS

Very elaborate jobs are possible,

of more than one program.

programs.

The object programs are loaded and

1.GO control statement.

60372600 A

such as those that include compilation and execution

/6/7/8/9

EOI CARD

e

__

-—

/ 7/8/9

DATA

EOS CARD

pd

LI
77879

FORTRAN SOURCE
PROGRAM TWO

EOS CARD

) )

FORTRAN SOURCE
PROGRAM ONE

EOS CARD

\
@
134

/FTN.

JOBNAME ,CP70.

CONTROL STATEMENTS

2AX47A

Example 2-5. Job With Two Compiler Language Programs

Example 2-5 illustrates a job containing two FORTRAN
Both calls to the compiler write the object programs on a file named LGO.
executed as a single program through use of the

2-13



COMPLEX DATA STRUCTURE

The data in the job deck need not be confined to a sin

entirely on what the program is doing.

three partitions of data.

Example 2-6 illustrates a job deck

gle section or partition. It depends

containing

In this example, the data is divided into partitions rather than

sections because the FORTRAN object program considers an EOS equivalent to EOP,

/

EOI CARD

e

/

/ 7/8/9 LEVEL I7g

<«———— DATA PARTITION THREE

EOP CARD

e

‘

/7/8/9 LEVEL I7g

i
|
!
. S

<«———— DATA PARTITION TWO

EOP CARD

e

/

/7/3/9

<«———— DATA PARTITION ONE

EOS CARD

~——— FORTRAN SOURCE PROGRAM

EOS CARD

/LGO.

S FIN.
|

JOBNAME,CP70.

CONTROL STATEMENT
SECTION

2AX48A

Example 2-8. Job With Complex Data Structure

60372600 A



JOB STEP TERMINATION

Example 2-7 illustrates a program consisting of a compilation (FTN statement) and
execution of the compiled program (LGO statement). If the compiled program terminates
before it has read the last data card, the next-card pointer is advanced to the beginning
of the next section. In this example, the EXIT statement causes job processing to re-
sume with the second LGO statement calling for re-execution of the compiled program.
This time, the program begins reading at the beginning of the second data section. The
FORTRAN and COBOL compilers generate instructions in the compiled programs that
cause this automatic advancement of the next-card pointer. If your job aborts before the
compiled program reads any of the data cards, this automatic advancement of the next-
card pointer does not take place. The pointer is positioned at the beginning of the first
data section.

/ 6/7/8/9

- EOI CARD

DATA SECTION TWO

POINTER MOVED <« EOS OR EOP CARD
TO HERV P

! | DATA SECTION ONE
| (

- TERMINATION OCCURS HERE
/ 7/8/9

< EOS CARD

FORTRAN SOURCE PROGRAM

/1/8/9

JOB CONTROL ;
| ADVANCES Leo
| TO AFTER

| _EXIT JEXIT.

L./Leo.
/ FTN. ]

JOBNAME, CP70.

EOS CARD

CONTROL STATEMENTS

2AX49A

Example 2-7. Job Step Termination

60372600 A 2-15



JOB PROCESSING 3

L .

This section describes the most common steps in a job and gives further information on
the principles and techniques involved in loading and executing programs.

COMPILING OR ASSEMBLING PROGRAMS

The most common first step in job processing is translation of the source language
program into an object program, that is, into machine language. This occurs through
compilation if the source language program is written in a compiler language such as
FORTRAN or COBOL, or by assembly if it is written in the COMPASS assembly

language.

The request for compilation or assembly is a request for SCOPE t{o load the compiler
into small core memory and execute the compiler program. The compiler translates
the source language program into machine language. Table 3-1 shows the requests
needed to compile or assemble programs written in the languages available with the
SCOPE 2 Operating System. Such requests often resemble the name of the compiler
or assembler called.

<

TABLE 3-1. REQUESTS FOR COMPILATION OR ASSEMBLY

Language Used for Request Issued for
Source Program Compilation/Assembly
FORTRAN Extended FTN.

FORTRAN (RUN) RUN(S)

COBOL COBOL.
COMPASS COMPASS.

The arrow in Example 3-1 points to the request statement that results in the load and
execution of the FORTRAN Extended compiler.

Slleldld CORTRAN CODING FORM

doesnﬂ,cprn.

™. | |

ST AGE (TAPEL ,POST)

LGO.

7/8/9 42]01 codumn one )
PRCGRAM ONE (INPUT, CUTPU[T,TAFE1)

PRINT 5
AT (1H1)

100,BASEJHEIGHT, I ]

Example 3-1. Request for FORTRAN Extended Compilation

60372600 A 3-1



For a job that contains both a COMPASS language program and a compiler language
program, the requests and deck arrangements required for compilation and assembly
vary. They depend on the language used and the order in which the programs are to
be assembled and compiled, as well as other factors.

As you become more familiar with the compiler or assembler language, you will want
to take advantage of the several programming options available on the compiler or
assembler request statement. These options have a direct effect on the compilation or
assembly.

Some options provide different kinds of program listings, others allow you to specify
different files for input and output. All such options are described in detail in the
reference manuals for each language. The most commonly used options are listed in
Table 3-2.

The codes used for the options vary according to the language used. Options are listed
after the word (for example, RUN, FTN, COMPASS, COBOL) that calls the compiler or
assembler. The options can be in any order. The first option is preceded by a comma
or left parenthesis; the last option is followed by a period or right parenthesis. All
other options are separated by commas.

Analyze Table 3-2 to see what happens when all optional parameters are omitted. For
COBOL, COMPASS, or FORTRAN Extended, your program will be read from the job
deck and translated into a machine language object program written on a file named
LLGO. A listing of your source program and any errors that may have occurred during
assembly or compilation will be written on the OUTPUT file and automatically printed.
For FORTRAN RUN, parameters are required to produce the above results; a RUN
statement with no parameters results in compilation and execution without a source
listing.

Example 3-2 illustrates a COBOL request statement that calls for the binary output
from compilation to be suppressed, for the source language program to be on a staged
tape named MYTAPE, and a source library to be on a permanent file named SRCLIB.
Use of staged magnetic tapes is described in detail in Section 6; attaching of permanent
files is described in Section 8.

RULLSS® cosoL coninG FORM

JOBCCE(,CP7

STAGE(MYTA

ATTACH(SRCUIB,PFNAME, IC=ICNAME)
— > C0B0L({H=0,I=MYTAPE,S=SRCLIB)

Example 3-2. Request for COBOL Compilation With Options Specified

3-2 60372600 A



TABLE 3-2. OPTIONS AVAILABLE DURING COMPILATION/ASSEMBLY

Tt FORTRAN
Option COBOL COMPASS FORTRAN RUN Extended
Takes program from INPUT omitted omitted omitted omitted
file or or or or
I I = INPUT I = INPUT I
or or
1 # INPUT I = INPUT
Takes program from file I =1fn I =1n I =1fn I=1n
named 1fn. ¥ or or
INPUT = lfn INPUT = 1lfn
Translates source program omitted omitted S omitted
into object (binary) program or or or
and writes it on LGO in B B B
preparation for loading and or or or
execution. Also produces B = LGO L B = LGO
normal listing of source or or
decks. L L
Translates source program B = lin B = 1fn B = 1fn B = 1fn
into object (binary) program
and writes it on file 1fn in
preparation for loading and
execution. Also produces
normal listing of source
decks.
Punches binary cards of B = PUNCHB| B = PUNCHB| B = PUNCHB B = PUNCHB
object programs.
Compiles and executes G G
or all optional
parameters
omitted

t 1fn = logical file name, 1 to 7 characters, first character must be alphabetic
D

if FORTRAN RUN also recognizes an order-dependent form of the RUN statement for which
missing optional parameters are indicated by commas.

60372600 A

3-3




LOADING AND EXECUTING PROGRAMS

The request to load and execute a program can be very simple, requiring the use of a
single load and execute statement, or can be very complex, involving the use of an
elaborate sequence of control statements called a loader control statement sequence.

COMBINED LOAD AND EXECUTE REQUEST

The LGO Statement

After the program has been compiled or assembled, the most direct way to load the
object program into small core memory and have it executed is with a simple one-
statement request. If your request for compilation or assembly does not explicitly
name a binary output file, your program is written on a file named LGO. In this case,
you can use the following file name statement for loading and execution.

LGO.

Literally, this request tells the computer 'load and go''. In Example 3-3 the arrow
points to the LGO statement.

CONTROL DATA

FORTRAN CODING FORM

JoasaM,cr7o.
FITN.
STAGE(TAPE[1,POST)
N/ 8/9 kh cofuwm .one
RAM CNE (INPUT,CUTFUT,TAPEL)
T5

5 AT (1H1)
w10 100,EASEFEIGHT, I
" ’ —

Example 3-3. LGO File Name Statement

The loader always rewinds LGO before loading from it. If more than one compiler or
assembler writes on LGO before execution is called for, the output from both the lan-
guage processors is loaded and executed as a single program.

The compiler options permit you to rename the load-and-go file., In this case the state-
ment that calls for loading and execution must use the file name you designate.

3-4 60372600 A



In Example 3-4, the load-and-go file is renamed XXX on the FTN statement. XXX
calls for load-and-go of the compiled program.

CONTROL DATA

FORTRAN CODING FORM

,CP7o.
XXX)
TAPE|L,POST)

dn cofumn one
PROGIRAM CNE (INPUT,CUTPUT,TAPFE1L)

N N———

f

Example 3-4. Renaming the Load-And-Go File

Substituting File Names at Execution Time

Usually, the file names you supply on the PROGRAM statement are the names used for
the files at execution time. You can, however, change these names when you execute
the program by supplying parameters on the LGO statement.

If no parameter is specified on the load-and-go statement, the file names are the same
as those in the PROGRAM statement.

In Example 3-5, the program uses files INPUT, OUTPUT, TAPEl, and TAPE2.

FORTRAN CODING FORM

* e——" File definition
statements

~ -
[
o
.

/8/9 Kp column one
PRCERAM TEST (INPUT,OLTPUT,TAPE1,TIAPEZ,TAPEJ=TAPEL)

Example 3-5. No Substitution of File Names on LGO

60372600 A 3-5



File names specified on the load-and-go statement replace the names on the PROGRAM
statement in a one-to-one relationship.

In Example 3-6 the program still uses files INPUT and OQUTPUT. However, files

TAPEL and TAPE2 have been replaced by the files named DATA and ANSW, respectively.
TAPE3 which was equated to TAPE1 is also replaced by DATA. Any reference to TAPE1
or TAPE3 in the program is actually a reference to DATA. Any reference to TAPE?2 is

actually a reference to ANSW.

Bl FORTRAN CODING FORM

qlca,c' "m. ’ |

FRCGRAM TEST (INPUT,OLTAUT,TAPEL1,T|APE2,TAPE3=TAFEL)

—~—— "

Example 3-6. Substitution of File Names on LGO

If the file name on the load-and-go statement specifies a file that has been equated on
your PROGRAM statement, the equate on the PROGRAM statement takes precedence.
That is, the redefinition is ignored.

Note that in Example 3-7, DATA refers to the PROGRAM parameter TAPE1=OUTPUT.
Because TAPE1 has already been equated to OQOUTPUT, the redefinition to DATA is
ignored. Any reference to TAPE1 in the program is actually a reference to QUTPUT.

CONTROL DATA
FORTRAN CODING FORM DATA is lgnored
' because TAPE| Is
08 ,GR70. already equated to
FITN. / OUTPUT

: | —

LIGO (,]y|DATA|y ANSHK)
7/8/9 4in cofumn one
PRCGRAM TEST U(JINPUT 4OLUTPLTY,TAPEL=CUTPUT,TAFER,TAFEQ)

~— :=*-n..,_-—"'-~"‘-.4___...._.-"----"'-

Example 3-7. Precedence of Equating File Names

8-6 60372600 A



Loading from INPUT

If you have on hand the punched deck of an object program, you can load and execute
the program from the job deck. This requires an INPUT statement, as follows:

[ INPUT.

When load is from INPUT, the loader does not rewind the file before loading from it.
That is, the job deck pointer is not set to the beginning of the deck. Terminate the
punched deck with an EOP card or two EOS cards. If the deck is at the end of the job
deck, however, the EOI is sufficient.

Exampie 3-8 illustrates placement of a punched deck (sometimes referred to as a SCOPE
binary deck, an object module, or a relocatable binary deck) in the job deck.

/5/7/8/9 EOI CARD

| /

: ~——— OBJECT MODULE
o

7/8/9
4 o I EOS CARD
/NPUT. /

I )

' / JOBNAME, CP70

I

2AX50A

Example 3-8. Loading From INPUT

Name Call Statement

The LGO and INPUT statements, as well as the compiler and assembler request state-
ments, are examples of a special type of loader statement called the name call statement.
Indeed, many of the statements you will be using in the control statement section are
actually name call statements. That is, they are statements that summon the loader to
load a program in your SCM and LCM fields and then execute it. Keyword statements,
by contrast, request the system to perform some specific action without requiring a
program to be loaded into the user SCM or LCM field. The system recognizes the
SCOPE and loader keyword statements given in Table 3-3.

60372600 A 3-7



TABLE 3-3. KEYWORD STATEMENTS

SCOPE Keyword Statements Loader Keyword Statements
ACCOUNT MAP EXECUTE
ALTER MODE LDSET
ATTACH PASSWRD LIBLOAD
AUDIT PAUSE LOAD
CATALOG PURGE NOGO
COMMENT REDUCE SLOAD
DISPOSE REQUEST

DMP RFL

DMPJSIL, RTRVSIF

DMPJT SATISFY

DMPLC SEGLOAD

DUMPF STAGE

EXIT SUMMARY

EXTEND SWITCH

FILE SYSLIBE

LABEL TRANSF

LIBRARY VSN

LIMIT

LOADPF

Any other control statement is a name call statement. The distinction is made between
these statements and name call statements because no name call statement can be the
same as one of these keywords. In interpreting a control statement, the system first
determines whether the control statement is one of the keywords. If it is, it performs
the requested action. If the statement is not a keyword statement, the system checks

to see whether the statement is a name call statement. If the statement is not recog-
nized as either a keyword statement or a name call statement, a control statement error
occurs,

Name call statements divide into two classes: file name calls, of which LGO and INPUT

are examples; and entry point calls, of which FTN, RUN, COBOL, and COMPASS are
examples.

File Name Statement

This statement consists of the name of a file that contains an object program. The file
name is optionally followed by parameters used by the program to be loaded.

ﬁfn(pl,pz,pB, ces pn)

Thus, any program that resides on a file used by your job can be loaded into SCM and
LCM and executed simply by referring to the name of the file.

The loader rewinds the file before loading from it. An exception to this rule is INPUT,
which the loader does not rewind. Loading continues until the loader encounters EOI,
EOP, or double EOS. A single EOS separates modules (that is, groups:of loader tables
that form a program) to be loaded.

In assigning a name to a file, there is nothing to prevent you from naming a file the
same as one of the keyword statements. However, if you attempt to load and execute
from the file by using a file name call, you will find that the statement is always inter-
preted as a keyword statement.

3-8 60372600 A



Example 3-9 illustrates a futile attempt to load from a file that has the same name as
a keyword statement. In this case, the system interprets the FILE statement as a key-
word statement, not as a name call statement. A file named FILE cannot be loaded in
this way. The user receives an error message because the FILE statement is missing
some required parameters. If the file had been given a name such as EXIT there would

be no error indication.

SUllaebald FORTRAN CODING FORM

1legal attempt to —_—

' I load and-execute
JoBSAM,CP7|0. _—"| from f!le named

FITN (B}=F ILED __— |
l} s FILE

FIILE o«

7/8/9 L;a cofumn one

| PROGIRAM ONE (INPUT,CUTPU[T,TAFE1)
PRINT 5

ORMAT_(1k1)
\? F— . /\NL\/

Example 3-9. Illegal Keyword/Name Call Statement

Entry Point Name Statement

The locations at which execution can begin in a program are known as entry points.
Compilers and assemblers form lists of available entry points when programs are
compiled or assembled. These lists become significant when the programs are placed
on system and user libraries because the user can name an entry point on a control
statement and cause the program containing the entry point to be loaded and executed.

The entry point name statement consists of the name of the entry point (eptname) option-
ally followed by parameters to be passed to the loaded program.

Ep’cname(pl, PosPgs s> pn)

In interpreting the statement, SCOPE 2 first determines that it is not a keyword state-
ment by checking eptname against the list of keywords, and then that it is not a file
name by checking it against the list of files known to the job. Failing to find it in

these two lists, the system assumes that the name is an entry point and searches for

it on the libraries known to the job. To be recognized as an entry point, the name must
have been declared as an entry point in some program on a library. If no library lists
the name as an entry point, the system issues a control statement error.

All of the standard product set members (COMPASS, FTN, RUN, COBOL, etc.) and
many of the SCOPE control statements (COPY, REWIND CONTENT, etc.) fall in the

50372600 A 3-9



classification of entry point name statements. These programs are listed as entry
points on the system nucleus library. They were placed there during installation of
the SCOPE 2 system.

Remember that file name calls take precedence over entry-point name statements.

Thus, if you name a file FTN and then attempt to call the FTN compiler, the loader
will attempt to load from a file named FTN instead of loading the FTN compiler from
the library.

For entry-point name calls, loading and execution can never be separate options and
cannot involve other loader statements.

LOADING OF OBJECT MODULES

The basic program unit produced by a compiler or assembler is an object module. It
consists of several loader tables that define blocks, their contents, and address reloca-
tion information. An object module is sometimes referred to as a relocatable subpro-
gram. When object modules are on a file, they can be called for loading and execution
through a file name call. When they are on libraries, they can be called through entry-
point names.

In either case, loading continues until an end-of-partition or double end-of-section is
encountered. The load may consist of several modules separated by end-of-section
delimiters. Additional loading of modules is required if the loaded modules contain
references to entry points in other subprograms. These are known as external refer-
ences. The process of locating and loading of modules containing the entry points is
called satisfying of externals. The loader does not allow program execution to begin
until all externals are satisfied.

Figure 3-1 illustrates a program consisting of the four object modules PROGA, PROGB,
PROGC, and PROGD. PROGA is on the LGO file produced as a result of a compilation
and assembly. The other modules are on libraries, (Loading from libraries is des-
cribed in greater detail later in this section.) An LGO statement initiates the load se-
quence followed by program execution after all the object modules have been loaded.

A labeled common block is loaded below the program block of the first module that
defines it. The first module is loaded immediately above the job communication ares.
This 1008-Word area is shown in Appendix B.

CORE IMAGE MODULES AND HOW THEY ARE LOADED

The core image module, also referred to as the loaded program or an absolute program,
is the contents of the SCM field and the L.CM field produced by the load operation.

When the core image module is copied onto a file, it is sometimes referred to as an
overlay. A core image module on a file can be reloaded and executed at any time
through a file name call. If the core image module is placed on a library, it can be
called through an entry point name.

Because a core image module is the product of an object module load sequence, all of
its external references have been satisfied. No manipulation of data is necessary.
Loading is very swift and can consist of the one module only,

A core image module is also known as a ''binary machine language program'' because
it requires no processing whatsoever before execution.

3-10 60372600 A



RAS + RASFL
A

ANY OR ALL OF
BLANK COMMON MODULES REFERENCE
BLANK COMMON BLOCK.
LARGEST DECLARATION
IS USED FOR STORAGE
ALLOCATION.

PROGD

PROGC nl

LABELED COMMON BLOCK
(REFERENCED FIRST IN PROGC)

PROGB REFERENCES
ENTRY POINTS IN

- PROGC AND PROGD.
PROGB
g
PROGA REFERENCES
PROGA — ENTRY POINTS IN

PROGB.

LABELED COMMON BLOCK
(REFERENCED FIRST IN PROGA)

RAS + IOO8
RAS+ O JOB COMMUNICATION AREA

2AXBA

Figure 3-1. Structure of Loaded Program

LOADING AND EXECUTION AS SEPARATE OPERATIONS

Suppose you want to load object modules from two different files and execute them as
a single program. This is not possible using just the file name call. It becomes
necessary to separate the load operation from the execute operation.

Another reason for separating the load operation from execution is if you wish to obtain
a load map, but do not wish to execute the program.

60372600 A 3-11



Load and Execute

To illustrate how the load operation can be separated from execution, replace an LGO
statement with the following two statements.

LCADILGO)

EXECUTE.

These two statements combined perform the same action as the L.GO statement alone.

Load From Multiple Files and Then Execute

You can tell the loader to load from more than one file either by specifying all the files
to be loaded on one LOAD statement or by using several LOAD statements prior to the
EXECUTE statement.

The following are equivalent: either sequence causes files ALPHA, BETA, and GAMMA
to be loaded and executed as a single program. Remember that the files must be local
to the job.

LOAD(ALPHA)
LOAD(ALFHA,EETA,GAMNMA) LOAD(BETA,GAMMA)

EXECUTE. EXECUTE.

Another alternative is to use LOAD to load from one or more files and then call for the
final load and execution through a file name call.

3-12 60372600 A



Example 3-10 illustrates this technique.

/fs/wa/s

e

-/ i

—/7/8/9

OBJECT MODULE TWwO

e |~

! f
. < FORTRAN SOURCE DECK

i
V77879
/ NPUT.

: ﬂAD(LGO)
!
I = OBJECT MODULE ONE
s D IS ON FILE LGO
JOB, CP70. |
2AX51A

Example 3-10. Load From LGO and INPUT; Then Execute

Load With No Execution

If you want to load from a file but do not wish to immediately execute the program,
replace the EXECUTE statement with a NOGO statement.

LOAC(LGD)
NOGC.

The NOGO tells the loader that no more loads are to take place and that execution is
not to occur. If a map is requested, the loader generates the map but does not execute
the loaded program.

60372600 A 3-13



Using NOGO To Generate Core Image Modules

In addition to using NOGO to inhibit program execution, NOGO can be used to write
the loaded program onto a file as a single core image module. To do this requires the
following NOGO control statement.

( NOGO(1fn)

The file name is required for this application. One application of this technique permits
execution of programs that would otherwise exceed available LCM. The following se-
quence illustrates this use.

LOAD(LGO)
NOGO(X) Generate core image module
Xe Load core image and execute

LOAD SEQUENCES

The LOAD(LGO) statement followed by EXECUTE or NOGO is an example of a series of
loader control statements known as a load sequence. Usually, a load sequence consists
of a series of loader control statements terminated by an EXECUTE, a NOGO, or a
file name call. The entry point name call is a special case because the load sequence
consists of the entry point name call only. Other loader control statements are LDSET,
LOAD, LIBLOAD, and SLOAD.

As illustrated in Figure 3-2, load sequences are not interpreted in the same way as
SCOPE keyword statements. The set of statements making up the loader sequence
resembles a single job step. The system accumulates all of the statements in a load
sequence,

When the system encounters a terminating statement, the loader processes the entire
sequence and satisfies any unsatisfied external references.

Note that for compatibility with previous systems, three SCOPE control statements, DMP,
MAP, and REDUCE are recognized within a load sequence. Any other SCOPE control
statement or entry point statement such as RUN(S) or COMPASS is illegal inside a load
sequence and causes job termination with the message Ifn FILE UNKNOWN.

3-14 60372600 A



PROCESSING
OF LOADER
CONTROL
STATEMENTS

r
|
|
|
|
!
|
]
|
1
1
|
|
|
1
|
|
1
i
|
|
|
!
1
|
|
]
|
|
|
|
|
|
!
1
|
|
[
|
|
I
|
1
]
|
1
|
|
1
§

BEGIN END-OF - JOB
JOB PROCESSING
SCOPE READS
NEXT CONTROL
STATEMENT
YES | TERMINATE
NO YES
/ ExiT \YeS PERFORM /" TERMINATE \ NO
\ STATEMENT? |~ | PROCESSING JOB?
NO
SCOPE YES PEFORM
CONTROL REQUESTED
STATEMENT? ACTION
NO
LOADER
CONTROL
STATEMENT
e e 1
(ENTRY POINT\ygs | LOADER INITIATES]| | LOADED
NAME- CALL AND COMPLETES |—L—»| MODULES ARE |-
STATEMENT 2 LOADING | EXECUTED
NO '
STORE LOADER i
CONTROL STATEMENT| !
AS LOADER REQUEST :
L ]
]
READ NEXT !
CONTROL 1
STATEMENT SERFORM |
i REQUESTED '
ACTION i
MAP, DUMP, \YES !
OR REDUCE ? !
[}
{
NO [ COMPLETION !
STATEMENT? :
1
i
LOADER PERFORMS !
{ OADS ACCORDING TO COMPLETION |
STATEMENT
LIST OF LOADER s N T
REQUESTS NOGO? !
YES :
H
i
e e e e e e e o 2 o  m o e o e e ] 2AX9A
Figure 3-2. Processing of Control Statements

60372600 A

3-15



Thus, the following sequence is illegal:

re———————

LDSET(PRESET=ZERQ) Begin load sequence
RUN(S) Entry-point name illegal
 — in loader sequence

However, the following is legal:

P ———————— p————

LDSET(PRESET=ZEROQ)
LGO.

Begin load sequence
File name completes
loader sequence

SELECTIVELY LOAD MODULES FROM FILES

Suppose a file has a number of object or core image modules on it and you wish to
selectively load one or more modules. A file name call cannot be used because that
would load all of the modules nor can an entry point name call be used because the file
is not in library format and cannot be declared as a library. Similarly, the LOAD state-
ment does not apply because all the modules are on the same file, not separate files.
The statement that is needed is the SLOAD loader control statement.

(SLOAD(lfn, modnamel, modnamez, modnames, tees modnamen)

SLOAD causes the loader to search the file for the modules named (modnames) by
looking at the PRFX table that precedes each module. The PRFX table is a loader table
created in all object modules and serves to identify the program to the loader. A
module name is the program name assigned to the source program through the FORTRAN
PROGRAM, SUBROUTINE, or FUNCTION statement; COBOL Identification Division; or
COMPASS IDENT pseudo instruction. In addition to being the name of the program,

this name is usually a primary entry point in the module.

Each module is a section on the file. Loading terminates upon encountering the end-of-
section, end-of-partition, or end-of-information.

Remember that for execution to occur, you must complete the load sequence with
EXECUTE or a file-name call. Also, since only selected modules are loaded from the
file, references usually linked with the remaining modules will have to be satisfied from
libraries.

3-16 60372600 A



Example 3-11 illustrates a load sequence that uses SLOAD to load modules ABLE,
FRANK, and XRAY (in the sequence encountered on the file) from a file named PROGS.
The file may contain many programs in addition to those to be loaded.

CONTROL DATA

JOB,CP70. —(

'SLOAD(PROGS, XRAY,ABLE ,FRANK)}

Si
EXECUTE. ngle load sequence

7/8/9 4n co one
» Lu column on l

Example 3-11. Selective Load From a File by Program Name

SETTING LOAD SEQUENCE CHARACTERISTICS

The LDSET loader control statement is a general-purpose statement that allows you to
set a number of characteristics for a specific load sequence. It has the following form:

ﬁ_JDSET(optionl, o_ptionz, option3, oo optionn)

Each option consists of a key which may or may not be equated to a parameter. You
can use LDSET statements. anywhere in the load sequence.

ERR=level Determines level (ALL, FATAL, or NONE) of error for
which loader aborts load and does not initiate execution.
The option is described under Setting Loader Error Condi-
tions, page 12-8. The default is for FATAL errors to result
in job termination.

LIB=1fn1/1fn2/. e /1f1r1n Specifies list of library files to be searched when satisfying
’ externals. This .is described under Using Libraries, page
3-21. The default is that the system library declared during
compilation,

MAP=p/lfn Specifies degree of load map produced and file on which map
is to be written. This is described under Requesting Load
Maps, page 12-17. The default map is determined by an instal-
lation or a MAP statement. The default file name is
OUTPUT.

60372600 A 3-17



PRESET=value Specifies that user SCM and LCM fields are to be preset to
the indicated value. The default is for no presetting to occur,.
The option is described under Presetting Core Memory,
page 4-8.

REWIND and NOREWIN Specifies file positioning prior to load. Default is REWIND.
This option is described under Rewinding of Load Files,
page 4-15.

Example 3-12 illustrates a load sequence that contains two LDSET statements. The
first statement requests core to be preset to zeros and a partial map on file XXX, The
second requests NOREWIN, and for libraries RUNLIB and COBLIB to be used for satis-
fying externals.

CONTROL DATA

JOB,CP70.

LOSET(MAP=B/XXX,PRESET=ZERO)
LOAD(MYFILE) Single load sequence
LDSET (NOREWIN,LIB=RUNLIB/GOELIR)
LOAD(A)

EXECUTE.

Example 3-12. Using LDSET Statements in Load Sequence

USING LIBRARIES
Several times we have alluded to the use of libraries as the source of object modules

and core image modules to be loaded. Now let us consider what libraries are and how
you determine which libraries are searched.

DEFINITION OF LIBRARY
A library is a collection of core image modules and/or object modules that can be

efficiently accessed by the loader through a directory. Libraries are generated using
the LIBEDT program. Libraries can be either system libraries or user libraries.

3-18 60372600 A



System Libraries

When the operating system was installed, several system libraries were placed on mass
storage as permanent files. (A system library need not be attached to be used; it is
not a permanent file in the usual sense.) The names of these libraries are maintained
in a system library table. Often, the programmer will make use of these libraries
without being aware of it., This is because the compilers all make external references
to modules on system libraries. When the loader loads the object program, it knows to
search the proper system library through a library declaration that the compiler inserted
into the object program. As a result, object time programs for FORTRAN RUN declare
libraries named RUNLIB and FORTRAN. Object programs for FORTRAN Extended
declare the library named FORTRAN. COBOL object programs declare the COBLIB
library. Generally a systems analyst can tell you the names of system libraries at your
site.

The NUCLEUS Library

One system library file, the NUCLEUS, contains most of the operating system and pro-
duct set members. The NUCLEUS library contains only core image modules. It con-
tains no object modules and cannot be searched to satisfy externals. The contents of
NUCLEUS are determined when the operating system is installed.

User Libraries

The user can create libraries, and direct the loader to satisfy externals from them
instead of or in addition to the system libraries. A user library must be an input file
for the job; it cannot be a magnetic tape file.

LIBRARY SETS

A library set is the list of libraries to be searched for entry point names and for satis-
fying externals. The user can declare that a library set be used for all subsequent loads
in the job until further notice is given to the loader. This is called a global library set.
The user can slso declare a second, temporary library set, that is, 'a Iist of libraries
to be used for a single load sequence in addition to the global set. This is called the
local library set. In either case, a library set can consist of both system and user

Iibraries, but the number of user libraries is limited to five. The maximum size of a
library set is ten libraries. NUCLEUS is not considered as part of a library set.

The Search For Entry Point Names

As previously note, the loader searches the library set for entry point names when the
loader request consists of an entry point name. The search takes place after the system
has eliminated the possibility that the name is either a keyword statement or a file name.
The library sets are searched in the following order.

The global library set, if any

The local library set, if any

The NUCLEUS library

The Search For Externals

When the loader is attempting to satisfy external references encountered during an object
module load, it searches library sets in the following order.

60372600 A 3-19



The global library set, if any

The local library set: The local library set automatically includes as a minimum
the system library referenced by the compiler used. The RUN compiler refer-
ences RUNLIB and FORTRAN, the FTN compiler references FORTRAN, the
FTN compiler references FORTRAN, the COBOL compiler .references COBLIB.

NUCLETUS is not searched. It contains core image modules only and cannot be used for
satisfying externals.

The loader does not attempt to satisfy externals until it encounters an EXECUTE, NOGO,
or file name call in the load sequence. This is sometimes called load completion.

Defining the Global Library Set

With a LIBRARY statement, you can define your global library set, . declare a new global
set, or add to an existing global library set. Place the statement in your SCOPE control
statements prior to the loader sequences in which you want to use the libraries. The
LIBRARY statement is not a loader control statement and must not occur in a load se-
quence (for example, between LOAD and EXECUTE). The LIBRARY statement has the
following format:

(LIBRARY(libnamel, libname,, libnames, . ..., libname_)

The library files are searched in the order listed. If a user library (local file) and a
system library have the same name, the system library takes precedence. Ten libraries
can be specified with a maximum of five of them being user libraries. It is possible to
completely nullify a previous set and declare an empty set by using the LIBRARY state-
ment with no parameters.

Example 3-13 illustrates a job that creates user library, LIB. The LIBRARY statement
declares this library to be a member of the global library set to be used for satisfying
externals when LGO is loaded. It takes precedence over FORTRAN, the system library
automatically entered in the local library set.

CONTROL DATA ) Generates dlrective
B FORTRAN CODING FORM causing FORTRAN to
. . _—T | be searched as a
t
; BSAA:_C_’ZIE// local library
TNe
Statements
definlng LIB

Declares LIB as
global library

Loader searches
global (ibrary LIB
and local (ibrary
named FORTRAN

Example 3-13. Defining Global Library

3-90 60372600 A



To retain a previous set as part of a new set, use an asterisk in place of a library
name to indicate the point in the new list at which the previous global library set is to
be inserted.

In Example 3-14, the first LIBRARY statement defines the global set as consisting of
systém library FORTRAN and user libraries A and B. After execution of the deck on
INPUT, the second LIBRARY statement defines the global set as consisting of system
library FORTRAN; user libraries A, B, C, and D; and system library COBLIB.

CONTROL DATA

JOB,CP70. \
ATTACH(A,A,ID=A) :
ATTACH(8,8,10=8)
LIBRARY (FORTRANyA,B)
INPUT,
LIBRARY (*,0,N,073LT 1)
LOAD(TN®UT)
INPUT.
7/8/9 in column one

(BINARY DECK CNE)
7/8/9 Level 17

(BINARY DECK THKC)
7/8/9 Level 17

(BINARY DECK THREE)

[778/9 in cofumn ane

Example 3-14., Combining New and Old Library Sets

Defining The Local Library Set

Use the LIB option on the LDSET loader control statement to declare a library local to
the load sequence. DPlace the LDSET statement inside the load sequence for which the

library is to be used. The LDSET statement is a loader control statement and either
initiates or continues a load sequence.

F;DSET(LIB =zlibname 1 llibname2 /libname3 /libnamen)

Library files can be either system or user libraries.

Any library declared by a -compiler or by a previous LDSET statement in the load se-
quence is added to the list of local files. Clear the local set by omitting any parameters.
This also clears any compiler library declarations (for example, it clears FORTRAN
which is declared by the FTN compiler). If no global library set has been declared and
the user clears the local set, there is no way for externals to be satisfied. No libraries
are available to.be searched. As previously noted, LDSET has many optional parameters
of which LIB is only one. The LIB=parameter can occur in any order in the LDSET
statement.

60372600 A 3-21



In Example 3-15, there is no global library set; the local library set consists of
FORTRAN and ULIB.

)

FORTRAN CODING FORM E:ﬁ;a;g;;x;*:: hib-

T local fibrary
Statements defining
user library ULIB

T~ | 7

NPUT, OUTPUNSeF:|Adds ULIB fo local
library set

FP§<&EL11\\
i) Loader searches

1Jc el X— local libraries

FORTRAN and ULIB

CONTROL DATA

Example 3-15. Defining a Local Library

LOADING DIRECTLY FROM LIBRARIES

Now that you know how to declare libraries in global and local library sets, you can tell
the loader to load from them. One loader control statement that can be used is the
LIBLOAD statement. LIBLOAD loads one or more modules from a library in a global
or local library set. Modules are specified through entry-point names.

(LIBLOAD(libname, eptnamel, eptnamez, eptnames, oo eptnamen)

The first parameter must name the library containing the entry points. If one module
contains more than one of the entry points, fewer modules are loaded than entry points.

3-22 60372600 A



Example 3-16 illustrates a load sequence containing a library load request. Library
USER contains entry point names ALPHA and BETA. Notice that a statement that
terminates the load sequence must follow the LIBLOAD statement before execution can
occur. In this case, the file name statement for HEIDI completes loading and begins
execution.

CONTROL DATA

JO? »CP70. Statements
«—— defining HEIDI

[ATTACH(USERyeas)
LDSET(LIE=USER)
LIBLOAD(USER,ALPHA,BETA)
HEIDI.

Example 3-18. Direct Load From Library Using LIBLOAD

LOADING PARTITIONS FROM LIBRARIES

LIBEDT allows each partition on a library to be named. The name is either the program
name for the object module or core image module in the partition, or is a name assigned
by the creator of the library. The LOAD and SLOAD statements both provide options

for loading a partition by name from a given library. Instead of entering a file name on
the LOAD or SLOAD statement, enter a library name and a partition name in the form
libname /pname.

60372600 A : 3-23



LOAD allows loading of modules from both libraries and files,

as shown in Example 3-17,

CONTROL DATA

—

Generates object

JOB,CP70.
ATTACH(A,PERM,IC=A)
FTN(B=LGC1)
COMPASS(E=LGO2)

~4 module SUB on LGO2

\

Writes SUB as par=
tition on LIB

LIBEDT (M)
LOAD(LGC1,LIE/SLB)

7/8/9 4in column one
(COMPASS SUEPROGRAM)
7/8/9 4in column one
(LIBECT DIRECTIVES)
7/8/9 in column one
{DATA)

Example 3-17,

With SLOAD it is possible to load one or more modul
(see Example 3-18).

Remember that LOAD and SLOAD are loa
load sequences.

For LOAD, if the partition contains more

loaded.

Note that SLOAD allows

CONTROL DATA

L !
7/8/9 in column one Loads object modules
(FORTRAN SOURCE FRCCGRAM) from file LGO! and

from partition on
LIB |

\ LIBEDT generates

library named LIB

6/7/8/9 in column one containing partition
‘\L/\/\wB

Load Partition From Library Using LOAD

es from the partition indicated

der control statements and can be used only in
loading of several modules from a partition.
than one module, only the first module is

J0B,CP740.
ATTACH(LIB,PERFILE) p
SLOAD(LIB/SUB,SUB1,SUB3)

EXECUTE.,

Loads modules SUBI

and

SUB3 from parti=-

tion SUB on library

LiB

6/7/8/9 in column one
(DATA)
6/7/8/9 in column one

Example 3-18.

Load Partition From Library Using SLOAD

60372600 A



PROGRAM AND JOB OPTIONS 4

SCOPE 2 provides several options for overriding system defaults that normally affect
every load during processing of the job. For example, a user can specifically designate
the size of the SCM and LCM fields instead of having the loader assign a field length

or he can tell the loader to always set the SCM field or the LCM field to a predetermined
value before loading. This section describes how these options interrelate with the
system-defined default values and tells why a user may want to use them.

Because none of these options is required for normal job processing, the user may wish
to omit this section and continue with Section 5.

USING CORE MEMORY

User SCM and LCM field sizes either are automatically determined by the loader, or
are specifically defined by the user.

AUTOMATIC CORE MEMORY MANAGEMENT

The most common, most efficient, and easiest way of managing SCM and LCM field
lengths is by using the automatic mode. This mode (also called dynamic field assignment
and system -controlled mode) is the system default. It is initially in effect for small
core memory if the CM parameter is omitted from the job identification statement and

is in effect for large core memory if the EC parameter is omitted. Automatic mode is
overridden for the applicable core type if CM or EC is specified on the job statement,

or if an RFL control statement is used.

Automatic mode applies separately to SCM field size and LCM field size. One can be
user controlled while the other can be in automatic mode.

Example 4-1 illustrates a job that consists of five job steps. COMPASS is chosen for
the illustration because of its LCM requirements. The FILE and STAGE' statements
involve the control statement processor only, which uses about 1000, words of SCM and
does not need any LCM. UPDATE executes in the user field length in two passes, each
of which has different SCM requirements. COMPASS Version 2 executes in the user
field length. It has low SCM requirements and high LCM requirements. These require-
ments vary with each of the three passes. The final step is object program execution
(LGO). In this example, the object program requires both SCM and LCM, The SCM
requirements are increased when an overlay load occurs. Requirements for object
programs depend entirely on the source program.

When automatic core memory management is in effect, the only limitation on the size
of the SCM field length for a job step is the amount of SCM available to all users in
the system. This is 60000, for 32K systems and 160000, for 65K systems. Any time
the loader is called, the amount of core assigned to the job is re-evaluated.

LCM limits are slightly more complex because system I/O buffers for a job are in LCM
but are not in the user LCM field length. The sum of the memory used for buffers and
for LCM field length (FLL) cannot exceed an installation parameter that is normally set
at 4000008 for 256K systems and at 14000008 for 512K systems.

60372600 A



CONTROL DATA

Jo8,CP70. R
FILE(OLDPL,RT=S3 No CM or EC
STAGE (CLCPL) parameter
UPDATE.

COMPASS (I=CCMPILE)

LGO,

7/8/9 in column one

(UPCATE DIRECTIVES)
6/7/8/9 in column one

A
------- T--—=--=-«—JOB DEPENDENT
OVERLAY
LOADER
SCM FIELD UPDATE
———
= PRIMARY
LOADER ! LOADER LOADER
COMPASS
v.2
. MAIN | MAIN
FWAS H ]
FLL
i ~«——JOB DEPENDENT
JOB DEPENDENT
i -
LCM FIELD |
1
1
1
)
FWAL
le i < S Sle -
O|®| ® ® i ®

2AXS52A

Example 4-1. Job Using Automatic Core Memory Management

4-2 60372600 A



After each load, the system increases or decreases the field lengths to meet the changed
requirements. Each call for the loader results in loader execution in SCM (about 3000
words). The loader uses tables in system buffers in LLCM, but these buffers are not 8

in the user LCM field length and do not affect the amount of LCM required for field
length.

USER CONTROLLED CORE MEMORY MODE

Although user controlled memory management is provided primarily for compatibility
with other systems, certain types of programs cannot execute under automatic mode.
For these programs, the user must explicitly specify memory requirements.

Automatic mode cannot be used in special cases such as when the program legally con-
tains a reference to a core location that exceeds the highest address loaded with the
core module (for example, it references a blank common block that is not known to the
loader). Only COMPASS allows this type of condition to occur.

Controlling SCM

The amount of SCM assigned for the job can be determined either by the CM parameter
on the job identification statement or by a parameter on the RFL control statement.

CM parameter: On the job identification statement, enter the amount of SCM assigned
to the job as an octal value prefixed by the letters CM. The amount
of SCM assigned the job is the exact amount specified by the CM
parameter. Unlike SCOPE 3.4, no roundup of the value occurs.
Any attempt to load a program beyond this fixed amount of SCM
causes job termination. SCM cannot be set below 1000,, the amount
required for interpreting control statements nor can it “be set above
an installation defined value.

Example 4-2 illustrates a job using the CM parameter. In this
example, the program being loaded occupies 5000, words of SCM
and no LCM. However, the program references addresses in SCM
above 5000, that the loader is unaware of because they are initially
empty and were not generated as part of the core image module to
speed up loading. This technique is described in the COMPASS
Reference Manual.

60372600 A 4-3



CONTROL DATA

JOB,CP70,CM200030.
'ATTACH(PROGA,PERMFILE,ID=XX)
[PROGA.

6/7/8/9 in column one

N

FLS=%00008
BUFFERS
SCM FIELD
5000g | T TTTTTTTTTTTT
CORE IMAGE
MODULE
FWAS

AUTOMATIC MODE WOULD
HAVE SET FLS HERE.

Example 4-2. Using the CM Parameter to Control SCM

2AXS53A

60372600 A



RFIL. statement:

60372600 A

Use the RFL statement to change from automatic control of SCM to
user control or to change the amount of SCM assigned to your job.
Enter the amount of memory needed as an octal value. Place the

statement before the load sequence to be affected. The RFL state-
ment cannot occur within a load sequence.

Example 4-3 illustrates a job that initially acquires 30000 words of
SCM through dynamic allocation and then reduces the requirement to
5000 words before loading the second program.

‘CONTROL DATA |

JCB8 CP70.

-

*

PROG1.

RFL(5000)

PROG2,

7/8/9 in column one

L

\ . .

Example 4-3. Using the RFL Statement to Control SCM

4-5



Controlling LCM

Although some programs do not have any LCM requirements, others make heavy use of
LCM. The FORTRAN Extended, RUN, COBOL, and COMPASS languages all provide
for using LCM.

Compiler or Assembler Language Element That Uses LCM
FORTRAN Extended and RUN LEVEL statement where level is 2 or 3
COBOL SECONDARY STORAGE section
COMPASS USELCM pseudo instruction

If LCM is under user control, remember to schedule LCM for object programs that
use these statements.

Set the amount of LCM assigned to your job (excluding LLCM buffers) through the EC
parameter on the job identification statement or by an RFL parameter,.

EC parameter: On the job identification statement, enter the amount of LCM needed
in octal thousands prefixed by the characters EC. The COBOL com-
piler requires at least 40000, words of LLCM; the COMPASS assembler
requires at least 260008 words.

(JOBNAME, CP70, EC16.

The preceding job identification statement sets LLCM to a fixed value

of 160008 words.

RFL statement: Use the RFL statement to declare user control of LCM or to change
a previous field length assignment. This statement cannot occur
within a load sequence (for example between a LOAD statement and
an EXECUTE statement).

Enter the amount of LCM in octal thousands prefixed by the characters
L.=. There is no minimum for LCM; it can be 0.

( RFL(L=18)

The preceding statement sets LCM to a fixed value of 160008.

RETURNING TO AUTOMATIC MODE

Return the job to automatic mode by placing a REDUCE statement in the control state-
ments as soon as possible.

To return both fields to automatic mode, use REDUCE with no parameters. Otherwise,
use an S to indicate SCM or an L to indicate LCM.

4-6 60372600 A



In Example 4-4, automatic memory management is in effect for the loading and execution
of program ABLE. The RFL statement sets SCM field length to 60000g for the loading
and execution of BAKER. When BAKER has terminated, the user specifies return to
automatic memory management through a REDUCE statement. CHARLIE is then loaded
and executed under memory management.

CONTROL DATA

AR 7 No CM parameter
10B,CP70. 4 1

' < File related

* statements
ABLE. )
RFL(60000)
LGAD(BAKER)‘\ User control
EXECUTE. of SCM
IREDUCE » /
CHARLIE.

* Return to

* automatic mode

Example 4-4. Mixed Mode Control of SCM

In Example 4-5, SCM and L.CM management are initially under user control through the
CM and EC parameters. Program ALPHA can reference the assigned field lengths but
must not initiate any loads that would exceed these limits. In the load sequence for
BETA, however, the management of LCM is returned to automatic through a REDUCE(L)
statement. Note that this statement is a SCOPE control statement. It is allowed to
occur within a load sequence for compatibility with previous operating systems. The
preferred location for the REDUCE statement is before the LOAD(BETA) statement
which begins the load sequence.

Following execution of BETA, the user again assumes control of LCM through an RFL
statement requesting 130000, words of LCM. Finally, for the loading of GAMMA, the
user returns SCM control to automatic with the REDUCE(S) statement.

Unlike SCOPE 3.4, SCOPE 2 allows the value specified on the RFL statement to exceed

the value specified by the corresponding EC or CM parameter on the job identification
statement.

60372600 A 4-7



¥
User control through
e CM and EC

_

' arameters

,JOB,CP?D,CHSOUUO,EClZO./ P l

. File related
ALPHA, §tatements
{LOAD{(BETA) \
REDUCE (L)
EXECUTE. Changes LCM to
RFL(L=130) automatic mode
IREDUCE (S) X
GAMNA, ‘\\\

. Return LCM to

. Changes SCM to user control

. automatic mode through RFL

Example 4-5. Mixed Mode Control of Both SCM and LCM

PRESETTING CORE MEMORY

When the loader determines the SCM and LCM field lengths (either dynamically or under
user-control), it has the option of setting the fields to an installation specified value
(initializing core) or of not setting the fields. For this discussion, let us assume that
the installation default specifies no presetting of core.

One option available is telling the loader to preset the field length for each load sequence
through the use of the LDSET PRESET option. Enter one of the parameters given in
Table 4-1 prefixed by the characters PRESET=. One reason to preset core is to ensure
that any read reference preceding a store into blank common will return zeros. In this
case, use LDSET(PRESET=ZERO).

For NGINF, each location contains its address in the lower bits. For example, if
locations RAS + 10008 and RAS + 10018 are unused, they are set to

4000 0000 0000 0000 1000
and
4000 0000 0000 0000 1001

For SCM, addr is a maximum of 18 bits. For LCM, it is a maximum of 21 bits.

4-8- 60372600 A



TABLE 4-1. PRESET OPTIONS

Option Octal Preset Value

NONE No presetting

ZERO 0000 0000 0000 0000 0000
ONES A o O B & R o i & B A
INDEF 1777 0000 0000 0000 0000
INF 3777 0000 0000 0000 0000
NGINDEF 6000 0000 0000 0000 0000
NGINF 4000 0000 0000 addr
ALTZERO 2525 2525 2525 2525 2525
ALTONES 5252 5252 5252 5252 5252

INSERTING COMMENTS IN THE PROGRAM LISTING

Comments help provide a history of a job. Insert special comments or remarks after
the terminator on any control statement. Such remarks are useful in interpreting pro-
gram listings, or in providing general information. Example 4-6 illustrates some con-
trol statements that include comments.

CONTROL DATA

T FORTRAN CODING FORM

bB,CF U« IREGUIRES €[UJI/CYPFER PC STATICA
TAGE[{ XX X)
CMMENTT . |INSERT FILE STATEMENT HERE IF RT=S FCR SEURCE
TAGENTAPEIZ,POST) RECUIRES WRITE RIMG

TN (INPUT=[xXX) SOURCE CN FILE pxx

OMMENT. [FCRTRAN CCMPILER LSEF SYAGEL

GC e EXECUTE CEYECT PRUGRAM F

/7/8/9, in Jotwm one

Example 4-6. Comments in Dayfile Listing

CURCE FILFE
TACE TAFE

N

CsT

ST OmMmuvoOwmcec

Another way to introduce comments is through a COMMENT control statement. Any
remarks can occupy columns 9 through 80 following the period after COMMENT. Com-
ments can include any characters except the double colon which has special significance
because it may be interpreted as a 12-bit zero byte. Blanks, periods, and other punc-
tuation are allowed.

Remarks following COMMENT. are printed in the dayfile and the first 50 characters of
the statement including COMMENT. are displayed to the operator on the console screen
at the originating station. If you have a message to the operator, however, use PAUSE
rather than COMMENT because comments from the COMMENT statement may not be
displayed at the console long enough for the operator to see them. If a comment is
too lengthy to fit on the line of coding, it can be continued on a second and subsequent
COMMENT statements (see Example 4-7).

60372600 A 4-9



CONTROL DATA

JOB,CP7U.

CCMMENT, #¥+ THIS JCE CALCULLATES THE RESISTANCE, CAPACITENCE, EN[C *%¥
CCMMENT. ¥¥% INLUCTANCE CF CIRCLIT FI2€ IN THE SAKER CSCILLATCR *%«

Example 4-7. Comment Two Lines Long

PAUSE FOR OPERATOR ACTION

The PAUSE statement allows the user to give an operator at one of the stations specific

directions regarding the processing of your job.
to remain on the console screen until it is acknowledged by the operator.

A PAUSE statement causes a message
Meanwhile,

the job has halted processing. The operator acknowledges the message and restarts
the job by typing GO, unless comments on the PAUSE statement direct him to DROP or

KILL the job.

Example 4-8 shows a PAUSE statement that tells the operator at station

RDS to change tape units and rerun the job if any tape parity errors are encountered.
If the user omits the station/terminal identifier, the station that originated the job is

assumed. In the example, (RDS) would be replaced by a period.

The message on the

PAUSE statement has a maximum length of 50 characters and cannot be continued on a
second statement.

CONTROL DATA

J08,CRTD, PAUSE routed t ’
STAGE(CATA,FCST,yHY,ST=RCS) oerafg:uai (o)
FILE(DATA,RT=F,FL=137,CVM=YES) P

station RDS

FAUSE(RCS) IF PARITY ERROR, RETRY CN CTHER LUNIT

Example 4-8. Directing the Operator Through a PAUSE Statement

60372600 A



SETTING PROGRAM SWITCHES

The Job Communication Area (Appendix B) contains, in the lower part of word 0, six
bits that are accessible through control statements and through the FORTRAN language.
These are the pseudo sense switches. They logically simulate manual switches that
were physically present on very early computer models. On early models the operator
had to manually set or clear the switches. With the pseudo switches, however, the
programmer sets or clears them through SWITCH statements.

ON

OFF)

@WITCH(D.

Switches are numbered 1 through 6. All of the switches are initially off. To turn a
switch on or off, specify the switch number followed by ON or OFF, respectively.
Otherwise, omit the setting (ON or OFF) and by doing so specify that the switch position
is to be alternated. That is, if it is off, it is turned on and vice versa.

Example 4-9 illustrates a FORTRAN job that tests the status of sense switch 4.

EILETENY  FORTRAN CODING FORM

JlOBEER,CPTU.

MITCHI(4,4CN)

~3 ™ N
(2]
o
.

8/9 ki coBumn one
PRCG|RAM ALPHA [(INPUT,CLTFLT)
CALL] SSWITCH{4yJ)
EC TIC (30,40)

/7/809] in eolumn one

J“’"‘\U/—\__—-\/‘

[N

Example 4-9. Using the SWITCH Statement

60372600 A



Example 4-10 illustrates a COBOL job that tests the status of sense switches 1 and 2.

Bl  COBOL CODING FORM

COBJCE|,[CP70].
COBCL (IOEXxM)
SWITCH|{L14CND
SWITCH|(|z ,0FF)
LGGC.
7/8/9 ik|ccluin one

ICENTIFICATICN CIVISICN,

PRCGIRAM=TIDSKITCH-TEST,

ENVIRCNMENT CIVISICN,

CCNFIIGURATICN SECTICN.

SCURICE-CCMPLTER. 7600

CEJECT-CCMPLTER, 760C,

SPECIIAL-NAMES.,

SWITCH 1 CN STATLS IS CMNE-CN CFF STATLS IS CMNE-CFF
WITCH 2 CN STATLS IS TwC-CMN CFF STATLS IS ThC-CFF,
CATA| CIVISICN.

TEST| CNE,

IF CMNE-CN CISPLAY #2SWITCH 1 IS CMN2ELSE CISPLAY
SWITCH 1 IS OFF%

TEST| TWC.

F TwWC-CM DISPLAYZ SWITCH 2 IS CNZELSE DISFLAY
SWITCH 2 IS OFFz#

TOP RUN.

6/7/8/9 |4n cofumn one

~l

Example 4-10. COBOL Test of Sense Switches

PROCESSING INTERDEPENDENT JOBS

Sometimes the user is faced with the problem that he must have the output from one job
or the job must satisfy some condition before he can run another job, but would like to
submit both jobs at the same time. SCOPE allows several related jobs to be submitted
and delays the processing of a job until one or more criteria are met. A user controls
the progress of the related jobs through the combined use of the TRANSF control state-
ment and the dependency parameter on the job identification statement.

JOB DEPENDENCY PARAMETER

For each job in the dependency string, whether it supplies a requirement of a waiting
job or whether it is a job waiting for the requirement, enter the Dym parameter on the
job identification statement.

4-12 60372600 A



y is two alphabetic characters (A through Z) that identify the jobs in the string.
That is, it

1. Provides uniqueness for the events in the system. The event name is
formed by taking the first five characters of the job name and then append-
ing the string identifier.

2. Allows the operator using a console command to drop all of the dependent
jobs in a string.

m is a 1 or 2 octal digit count (0-77) of the dependencies the job must have

fulfilled before it can begin processing. For the first job:to be processed in the
string, m must be 0, that is, Dy®0.

TRANSF CONTROL STATEMENT

Enter a TRANSF statement in the control statement sequence each time a job satisfies
a criterion needed by another job.

(I’RANSF(jobl, jobz, e jobn)

A job can contain several TRANSF statements. Also, with one TRANSF the user can
signal several jobs concurrently. Remember, the last job in the string cannot contain
any TRANSF statements.

Parameters of the TRANSF statements consist of the names of jobs in the dependency
string for which the job meets some need. Only the first five characters of the job
name are relevant.

A job will wait indefinitely for its dependencies. Also, if a job posts a dependency for
a job not yet in the system, SCOPE maintains a record of the position so that when the
job is submitted, it can begin processing.

In Example 4-11, the dependency string consists of six jobs all submitted at the same
time and each identified with the identifier AB. JOBI1 has no dependencies so it can
immediately begin processing. Before its completion, JOB1 posts dependencies for
JOB2 and JOB3. Each of these two jobs has one dependency and can now begin pro-
cessing. Each job in turn signals jobs waiting. JOB3 posts dependencies for JOB4 and
JOB5; JOB2, JOB4, and JOB5 each posts a dependency for JOB6. When the dependency
count for a job is reached, it can begin processing.

JOB RERUN LIMIT

The operator may terminate a job and resubmit it (that is, rerun it) at any time during
processing. Circumstances that might prompt such action are hardware problems at the
station, operator errors (for example, mounting the wrong tape), etc. The operating
system itself may also rerun a job upon encountering some system error when processing
the job (for example, if an SCM or LCM parity error occurred within the user's field
length). Following a deadstart recovery, any abnormally terminated jobs are automati-
cally rerun. The user is notified that his job is rerun through a special listing of the
control statements in the dayfile. This listing is terminated by the message JOB
RERUN.

60372600 A



©/7/8/9

e

¢/ OBJECT MODULE

/7/8/9

/INPUT.
JOB6,CP70,DABO3

6/7/8/9

pd

'/ OBJECT MODULE

/7/8/9

/ TRANSF (JOB6)

INPUT.
JOB5,CPT70,DABOI.

/6/7/8/9

e

/OBJECT MODULE

/7/8/9

TRANSF(JOB6)

/INPUT.

6/7/8/9

'J

e

/FORTRAN SOURCE

/1/8/79

/TRANSF(JOB4.JOBS)

/Leo.

/RUNS(S)

{ FORTRAN SOURCE

47/3/9

/TRANSF(JOBG)

/ OBJECT MODULE

/1/8/9

TRANSF(JOB2,J0B3)

Example 4-11.

Job Dependency String

2AX55A

60372600 A



Normally, a job cannot be rerun if one of the following conditions has occurred.
Placing the Rr parameter on the job statement permits the operator to rerun the job
despite the occurrence of one of these error conditions.

1. The job has attached a SCOPE 2 permanent file with extend or modify
permission.

2. The job has cataloged a permanent file under either SCOPE 2 or 6000
SCOPE 3.x.

3. The job is a member of a dependency string, that is, it has a D parameter
on its job identification statement.

If none of the preceding conditions has occurred, there is no limit on the number of
times the job can be rerun.

If the user wants the job to be rerun regardless of the occurrence of any of the stated
conditions, he enters the letter R followed by one or two octal digits. The value speci-
fies the number of times that the job may be rerun unconditionally.

A job named JOB is to be unconditionally rerun a maximum of five times.

(JOB, CP70, R5.

To specify that the job is not to be rerun under any conditions, enter the parameter RO
on the job identification statement.

A job named ONCE is not to be rerun under any circumstances.

(ONCE,CP70,R0.

REWINDING OF LOAD FILES

Generally, positioning files before loading is not of concern. Rewinding of files is
usually assured through an installation rewind option. Refer to the following rules to
ensure that the file is rewound or not rewound before loading from it.

Rules for rewinding:

1. Before loading from the file, the loader always rewinds a file name call (for
example, the LGO file).

2. The REWIND and NOREWIN options of the LDSET statement are available for
specifying that files in the load sequence be rewound or not. This statement
should precede the LOAD or SLOAD statements that refer to the affected files.
After the load sequence is completed, the installation option again takes effect.

3. Use both LOAD and SLOAD loader statements to specify whether a file is to be
rewound or not before loading from it. Do this by entering a file name as
1fn/R to indicate rewind or as 1fn/NR to indicate no rewind. The parameters
on the LOAD and SLOAD statements take precedence over any LDSET state-
ment in the sequence.

60372600 A 4-15



4. The only exception to the preceding rules is the INPUT file which is never
rewound (set to beginning-of-information) by the loader. The loader ignores
any request to rewind INPUT.

5. Use the REWIND statement (Section 10) to explicitly request a file to be rewound
before loading from it. This statement is illegal in the load sequence. It can
be used for repositioning the INPUT file, however. A rewind of INPUT positions
the file to the section following the control statement in the job deck.

6. There is no need to rewind libraries,.

Example 4-12 illustrates load sequences that use a combination of the above options.

Installation defaulf
set for rewind

CONTRDL DATA

{

A is rewound

JoB, 997'3- / B is not rewound

 ————

)
LOAD(A,BINR) C, D, and E are not
LDSET(NORENWIN) rewomm; F is,
LOAD(C3D,E F/R)

SLOAD(G/R 91,96) ! 1
H. \ I

G Is rewound

{

H is rewound; a file}
called by name is
always rewound

LOAD (D)
EXECUTE,

J Is rewound; this
Is a separate load
sequence, original
default applies

Example 4-12, Rewind or No Rewind of Load Files

4-16 60372600 A



FILE STRUCTURES S

SRR -

SCOPE: 2 is a file-oriented system. All information, data, and programs known to the
system are maintained as logical files. The characteristics of files, for example,
record type, are determined by SCOPE 2 defaults, source language programs, or through
control statements. Familiarity with the File Information Table, the mechanism through
which the system and user communicate information about a file, is helpful to obtain an
understanding of how file characteristics are determined.

FILE INFORMATION TABLE

Each logical file used by a job has associated with it a File Information Table (FIT)
through which the system and the user communicate information about the file.

SCOPE 2, and the record manager, in particular, expect to find the following information
about a file in the FIT.

1. Logical file name

2. File organization (sequential, word addressable, or library)
3. Record type and specifications relevant to record type

4. Blocking type, if any

5. Processing direction (input, output, or input/output)

6. Labeling requirements (blocked files only)

7. End-of-data exit options

8. Error exit options

9. Disposition (processing code), if any

10. Other, optional information

Generally, the programmer provides the file name as a minimum and can rely entirely
on the compilers and assemblers to generate a FIT in the SCM field using system de-
fault values to fill in the file description. For example, the FORTRAN compilers gen-
erate a FIT for each file noted in the PROGRAM statement. The COBOL compilers
generate a FIT for each file assigned, using the File Description (FD) entry for the file.

INTRODUCTION TO FILE STATEMENT

Sometimes, the generated FIT does not automatically exactly match the requirements of
the file to be generated or the description of an existing file. When this happens, the
user has the option of overriding the information in the FIT supplied in the object pro-
gram by using a FILE control statement. This statement gives the user considerable
freedom to control the format of data to be read or written.

60372600 A 5-1



Place a FILE statement in the control statement section anywhere before the job step

that requires the file specification. The first parameter must be the logical file name
(1fn).

'FILE(lfn, cel)

All other parameters can be in any order separated by commas. These parameters are
described with related features. For example, the record type parameter (RT) is des-
cribed under Specifying Record Type.

MULTIPLE FILE STATEMENTS

Information from multiple FILE statements that refers to the same file is merged into
the FIT. If a specification is repeated, the most recently encountered specification takes
precedence over earlier specifications.

In Example 5-1, the FILE statement to redefine list output file LO precedes the compi-
lation; the FILE statement that redefines TAPE1 precedes the load-and-go statement.

AR efines G as
]

— | other than default
JOBSAM,CP?O/
STAGE (PRCG) \

FILE (PROG,RT=F,FL=80) -
FIN(I=PRC(,;) - ’ Compiler uses PROG

. for source program
: /

. .
FILE(TAPElsees) -——__ | Defines TAPE| as I

LGO. other than default
. )
TR Object=-time pro
one program
7/8/9('5);16‘?5"”"” uses TAPE|

6/7/8/9 in column one
\

Example 5-1. Placement of FILE Statement

CARRYING FILE DEFINITIONS ACROSS JOB STEPS

Remember that the File Information Table (FIT) is inside the object program. Let us
examine what happens to the file when the object program terminates to see how subse-
quent job steps are able to use the file. For example, suppose that following object
program execution you wish to copy the data file. What file description will the copy

5-92 60372600 A



routine use - the description used by your object program or the system default for
the file? To use the object program description, the answer to both of the following

questions must be ''yes'.

1. Does the object program close the file?

2. Does the routine carry a description from the previous job step to the current
routine? This description is maintained in a File Description Table (FDT)
within the SCOPE 2 Job Supervisor. Information differs somewhat from that
in the FIT.

Neither factor is easily discernible to the user. As a general rule, files are closed
between job steps. Most members of the SCOPE 2 product set, that is, compilers,
assemblers, object-time routines, and library maintenance routines close files and have
SETFIT macros in their file initialization procedures. Copy routines are an exception;
they do not close files.

What this means is that the file definition used by the first step that accesses the file
applies to the entire job if there are no subsequent FILE statements. Example 5-2
illustrates this point.

com@Lum COBOL CODING FORM No FILE statement

_—| required for TFILE
Jos,crflo. |
STAGE ([TFILELPOST)
|

C080L. ! COBOL program

LGO . ' defines TFILE as

EXIT. record type T,block

REWIND|(TFILE) Lepe k.

DMPFILE|(TFILE?

77819 injcolupn one DMPFILE uses defin=
(CPEOL [SCURCE FROGRAMY | 1+ion from object-

6/7/8/9 kn cqumn one time program

\/

Example 5-2, Carrying File Definition Across Job Steps

SPECIFYING RECORD TYPE

The logical record is the basic unit of data handled by the record manager. Its defini-
tion varies according to record type. That is, the end-of-record is defined separately
for each record type other than U, for which it is undefined. Record lengths are defined
in units of 6-bit characters.

The nine record types and their associated FILE statement parameters are briefly
summarized in the following text. Additional detail is provided in Appendix D.

60372600 A 5-3



w Control Word: Each record is characterized by a control word header
containing sizes of current and previous records. This is the system and
FORTRAN (RUN and FTN) default. To specify, place RT=W on the FILE
statement.

FULL WORDS »
|
w
C DATA
w
- ~_ UNUSED
T S BITS
= W CONTROL WORD T
59 54 42 24 18 0 T~~a .00
LENGTH OF PREVIOUS LENGTH OF THIS
RECORD IN WORDS RECORD IN WORDS
INCLUDING W WORD LESS W WORD
A
NUMBER OF UNUSED BITS IN LAST
WORD OF THIS RECORD (ML =<#60)
BITS RESERVED FOR CDC
BITS RESERVED FOR USER
TYPE OF RECORD:
O DATA FOLLOWS
| RECORD IS DELETED (NOT LOGICALLY PRESENT)
2 END-OF-PARTITION; NO DATA FOLLOWS THIS CONTROL WORD
3 END-OF - SECTION; NO DATA FOLLOWS THIS CONTROL WORD
PARITY BIT 2AX6IA
S SCOPE Logical: Each record consists of blocks of data terminated by a

FILE

5-4

short block to which is appended a 48-bit level number or terminated simply
by the level number (called a zero length block). A block is the data be-
tween two interrecord gaps on magnetic tape. This record type is also
known as 6000 SCOPE Standard and 7600 1.1 I-Mode. To specify, place
RT=S on the FILE statement.

SHORT BLOCK KjERO-LENGTH BLOCK

FORMAT |BLOCK |BLOCK { BLOCK BLK|LEVEL LEVEL
\
2AX62A
"60372600 A



X X-Mode: Each record consists of blocks of data terminated by a short
block. If the data ends on a block boundary, the short block consists of

a 48-bit short (zero-length) block. This record type is read only. It is
specified by RT=X on the FILE statement.

%
BLOCK |BLOCK | BLOCK | BLOCK || BLOCK |BLOCK %/
7.

/a

48-BIT SHORT BLOCK,
le—— 1 OGICAL RECORD IF NEEDED

2AX63A

Z Zero Byte: Each record consists of an integral number of 60-bit words in
which the last word has the low-order 12 bits set to zero, that is, contains
a zero byte. The user must specify RT=Z and FL=n on the FILE statement,
where n is a decimal count of characters. It must be large enough to ac-
commodate the largest record on the file. The default for n is 0.

- FULL WORDS >

DATA J 0000

ZERO BYTE

2AX64A

F Fixed Length: Each record consists of a fixed number of characters. This
record type is specified by RT=F, FL=n on the FILE statement, where n is
the decimal count of characters in each record. The default for n is 0.

DATA

FL 2AX65A

60372600 A 5-5



Decimal Count: Each record consists of a number of characters specified
in a decimal count field within the record. The record type is specified
as RT=D. The position of the length field is specified in characters as
LP=n; the length of the length field is specified as LL=m, where m is 1
to 6, The defaults for n and m are 0.

DATA (LENGTH DATA

LLL_, 2AX66A

LP

Record Mark: Each record consists of a series of characters terminated
by a character designated as the record mark character, conventionally ] .
The default for 7600 record manager, however, is a colon. Use RMK-=n,
where n is the decimal or octal equivalent (octal equivalent suffixed by B),
of the character in display code to specify a record mark character. In
addition, it is possible to specify the minimum record length before which
the record mark is not sought by the record manager. For this, use
MNR=m, where m is a decimal character count. Use RT=R to specify R
records.

DATA :I

RECORD MARK CHARACTER 2AX67A

Trailer Count: Each record contains a fixed length header followed by a
variable number of fixed length trailers. The header length is specified as
HL.=hl on the FILE statement. The trailer length is specified as TL=tl.

In addition, the trailer count field which contains a decimal count of the
number of trailers in a record is defined through the count position (CP=cp)
and count length (CL=cl) parameters, where cp indicates the beginning
character position of the count field and cl indicates the length (1 to 6).
The default for all of the parameters is 0. To specify T records, use
RT=T.

HL TL e~ TL—tee-TL —> Q—TL-—>
DATA | n DATA DATA | DATA | DATA DATA
4“ < n TRAILERS
cP 2AXE68A

60372600 A




U Undefined: The size of each record is literally undefined. By using K
blocking with one record per block, the record manager uses block delimiters
as end-of-record delimiters. Use RT=U to specify U record type.

DATA

UNDEFINED 2AX69A

The user can either use the default type specified by the FIT assembled or compiled for
the file or can use the RT and associated parameters on a FILE control statement to
specify some other record type. This must be done with great care since some programs
are not designed to handle all record types. For example, the SCOPE 2 system default
record type is W. No other record type can be used for input or output from the loader
or for the standard files, INPUT, OUTPUT, PUNCH, and PUNCHB.

The FORTRAN Extended and RUN compilers always generate a FIT with the record type
set to W. This is the easiest record type to use. Other record types are subject to
the constraints listed in Table 5-1.

The COBOL compiler generates a FIT for each of the system files INPUT, OUTPUT,
PUNCH, and PUNCHB whether they are assigned in the program or not. If they are
assigned, they have record type W.

For any other file, COBOL sets the record type according to the file description (FD)
entries in the COBOL source program, as shown in Table 5-2.

As a general rule for output, regardless of the file description, a file can be redefined
as W record type. If all of the records are the same length, the file can be defined as
F or Z record type. If records are all multiples of 10 characters (full words), the file
can be redefined as S record type.

60372600 A 5-17



TABLE

5-1. FORTRAN RECORD TYPE CONSTRAINTS

Record Type

Constraint When Writing

w

Recording mode must be binary for magnetic tape., Each write
creates a W record.

Each write creates an S record. Recording mode must be binary.
Read only; no writing allowed,

Recording mode must be binary for magnetic tape., Each write
creates a Z record.

User must ensure that all records are fixed length.

User must insert record length in the decimal count field. Deci-
mal count field must be within FORTRAN object-time buffer limits.

User must supply record mark character that terminates data.
User must insert trailer count in the count field in the header.
The count field must be within the FORTRAN object-time buffer

limits.

Only block type K with one record per block is allowed. Each
write creates a block containing one record.

On a read, with the exception of Z records, if the record does not completely fill the
buffer, the remainder of the area is unchanged from the last read; it is not blank filled.
For Z records, the area is blank filled up to FL.

5-8

60372600 A




TABLE 5-2. COBOL SPECIFIED

RECORD TYPES

FD Entries

01 Entries of
Same Length

01 Entries of
Different Lengths

01 Entry with
OCCURS...
DEPENDING
ON data name

RECORD CONTAINS integer
integer'2 CHARACTERS

BLOCK CONTAINS 1 RECORD or
BLOCK CONTAINS clause omitted

1TO

RECORD CONTAINS integer, TO
integer2 CHARACTERS -

BLOCK CONTAINS integer2
RECORDS or
BLOCK CONTAINS integer‘2
CHARACTERS

RECORD CONTAINS clause
omitted

BLOCK CONTAINS 1 RECORD

RECORD CONTAINS clause
omitted

BLOCK CONTAINS integerz
RECORDS

RECORD CONTAINS integer
CHARACTERS

illegal

illegal

RECORD CONTAINS integer TO
integer CHARACTERS DEPENDING
ON data-name

illegal

INS integer TO
integer CHARACTERS DEPENDING
ON RECORD MARK

illegal

CAUTION

When using COBOL, it is possible for a file
to contain records of more than one type.

60372600 A



In Example 5-3, the FIT generated for TAPEl by the RUN compiler defines record type
as W. The STAGE statement, as will be described later, causes the file to be blocked.
To change the description, the programmer inserts a FILE statement before execution
causing record type to be Z with a record length of 80. 1In this example, block type
(BT) is also specified to change the block type to C from the default for Z which would
have been K.

Sl FORTRAN CODING FORM

- I 1
PBSAM,CP70. Defines record type as Z

TN .

to override default of W,
TAGE(TAPEi,P(_)STL(J'_/Maximum record length Is
ILE(TIAPEL,RT=2,+rL=80,8T=C) 80 characters
GO, -
8/9 kh cofmn one

PROGRAM CNE (INPUT,GUTFUT,TAFEL)
PRINT S

Srrnumnc

S FCRMAT (1K1)

1p READ 100,BASE,HEIGHT,1I

ipgo FCRMAT(2F13.21I1)
IF (1.6T.0) GOjTC 120
IF (BASE.LE.0)|GC TC 105
IF (FEIGHTW.LE.P) GO TC 1ips
C T0 106

105 CALL| MSG

1p6 AREA| = JS*BASETHEIGHT

PRINT 110,BASE,HEIGHT ,ARE
140 FORMAT (///,* EASE=*FZ{.E

«
-
m
=]
(3]
T
=

T

L]

IF18.53/79*% AREAX¥F20,.5)

WRITE (1) AREA{e—= Writes Z-type

GO TC 10 records on flle
120 STCP

NC
e~

Example 5-3. Overriding Default of W Record Type for FORTRAN Program

5-10 60372600 A



Example 5-4 illustrates file description entries for COBOL implementor names LIST-
FILE, PARAM-FILE, and TEST-FILE. From the entries, COBOL determines that
LIST-FILE and PARAM-FILE are record type F. These descriptions are overridden,
however, by the ASSIGN clause which assigns these files to system files OUTPUT and
INPUT, making them W unblocked.

The FD entry for TEST-FILE describes trailer (T) records. Thus, the record type for
DISK1l, to which TEST-FILE is assigned, is set to T.

CIIIE CoBOL CODING FORM

Control statements

§ do not include FILE

ENVIRCNMENT CIVISICN. statement for DISK!

o Defines record type

INPUT-0UTPUT SECTIGN. as W, block type as
FILE| CCNTROL. | unblocked

SELECT TEST-FILE ASSIGN TC LCISK1.
SELECT LIST-FILE ASSIGN TC CLIPLTY '

SELECT FARAM-FILE ASSIGN TC INPLT.
CATA DIVISICN.

FILE SECTION.

FC LIST-FILE.

RECCRD CCNTAINS 120 CHARACTERS
LABEL RECCRDS ARE CMITTEC

DATA RECCRD IS PRINT-LIMNE.

01 [PRINT-LINE

02 PRESET PRICTURE IS X{120) VALUE IS ALL SPACES)
CATA RECCRD IS PARAM=CARD. l
01 |FARAM-CARC.
g2 CCUNT PICTURE IS S(10). Defines record
02 FILLER PICTURE IS X(70). type as T
FQ TEST=FILE .« w—

BLOCK CCNTAINS 5 RECCRCS

RECORD CCNTAINS 10 TC 1010 CHARACTERS

LABEL RECCRDS ARE CMITTED

CATA RECCRD IS TEST-RECCRC.

01 |TEST-RECCRC.

02 HEADER.

03 LENGTH PICTURE IS S{(10)

02 BCOY CCCLURS 1 TO 100 TIMES DEPENCING CN LENGTH.

03 TEST-CATA PICTURE IS 9(i0D).
L

~

Example 5-4. COBOL Assignment of Record Types Through File Description

60372600 A 5-11



SPECIFYING THE MAXIMUM RECORD LENGTH

The MRL parameter on the FILE statement permits the user to specify the maximum
record size for the file. MRL does not apply for F and Z records; for these two re-
cord types, FL serves the same purpose. MRI is significant only for input; it is
ignored on output.

The setting of MRL depends on whether the program I/O routines manipulate full or

partial records. The FORTRAN and COBOL object-time routines always manipulate full
records. Do not use a FILE statement to set MRL because the compiler sets the value
for you. FORTRAN sets the MRL to 150 for coded files and to 327, 680 for binary files.

In COBOL, the size of MRL is determined by the sum of all the fixed length elementary
items plus the sum of the maximum number of variable length items in the record.
Either the RECORD CONTAINS clause or the OCCURS clause is used in determining the
maximum size for variable length records.

The MRL set by the compiler takes precedence over the system default for MRL, which
is 0. MRL of 0 specifies unlimited record size.

To specify MRL, use the MRL parameter on the FILE statement where n is the number
of characters in decimal.

(FILE(lfn, MRL-=n,...)

Rules:
Do not set MRL for the INPUT file to less than 88.

For block types K and E, MRL cannot exceed block size (MBL). (See Blocked File
Format page 5-14.)

UNBLOCKED FILE FORMAT

NOTE

The term ''unblocked'" used in the SCOPE 2
sense, is essentially a gapless format supported
only on a mass storage. It is a continuous
stream of data. In comparison the industry
accepted meaning for unblocked describes the
situation where the information between two
interrecord gaps on magnetic tape comprises

one record. In this case, a block and a record
are synonymous. To SCOPE 2, this is a blocked
format with one record per block.

The unblocked file can exist on mass storage only. Just one record type, the W record
type, permits delimiters of a higher order than records, that is, permits sections and
partitions on mass storage. This is because the unblocked file normally has no vehicle
for maintaining section and partition delimiters. When W control words are present,
they act as such a vehicle (Figure 5-1). Thus, for record types other than W, an un-
blocked file is simply a collection of records. S and X records cannot be unblocked.

5-12 60372600 A



LOGICAL | LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL | LOGICAL

RECORD | RECORD | RECORD | RECORD | RECORD RECORD | RECORD

1 FORMAT OF UNBLOCKED FILES HAVING RECORD TYPES T

OTHER THAN S OR W

BOI EOI
Ecis EOS EOP Eosl fop

SYSTEM MASS STORAGE WlLosicaL ¥ Losicat M WY Losicac [ Losica [ 4 ol LosicaL M)

w| RECORD || RECORD |0 1wl RECORD {-| RECORD 0ot RECORD fofo

7 -
1 = |
e ~
BOI o S~ EOI
Vd \\~\
/’ ‘\\\
Vd S~
-~ W CONTROL WORD ~ee
24 18 T~
LENGTH OF PRE- LENGTH OF THIS
t =0 DATA FOLLOWS VIOUS RECORD RECORD IN WORDS
42 DELETED RECORD IN WORDS LESS W WORD
EOP
3 EOS \NUMBER OF UNUSED BITS IN LAST

WORD OF THIS RECORD (n<60)

FORMAT OF UNBLOCKED FILE USING RECORD TYPE W 2AXIOA

Figure 5-1, Unblocked File Format

Rules for Accessing Unblocked Files

1. Unblocked files can be accessed using any of the file organizations. Remember,
however, that 6000 SCOPE 3.4 does not allow sequential (SQ) files to be un-
blocked.

2. Only unblocked files can be accessed as word addressable (WA) files.

3. Only unblocked files using W record type can be accessed as library (LB) files.

Thus, the LB file organization can be considered as a special case of the word
addressable file.

60372600 A



How to Specify Unblocked

1. The system default for blocking type (BT) in the FIT is normally unblocked for
mass storage files. The default for COBOL is blocked (Table 5-3).

2. The user can specify unblocked for a mass storage file by providing a FILE
statement with a null BT parameter (simply BT).

(FILE(lfn, BT)

Specifying unblocked for a magnetic tape file is illegal.

BLOCKED FILE FORMAT

Blocking of records is the process of grouping a number of logical records before
writing them on a magnetic tape file. This grouping is called a block. Grouping two
or more records per block improves data transfer rates by reducing the number of
interrecord gaps in the file. Blocking usually increases processing efficiency by re-
ducing the number of physical input/output operations required to process the file,

Blocked files can be magnetic tape files (Figure 5-2) or mass storage files (Figure 5-3).
When on magnetic tape, a file must be blocked. Even when it is on mass storage, a
blocked file is basically an image of a magnetic tape file. Therefore, delimiters pos-
sible on magnetic tape file such as interrecord gaps and tapemarks must be simulated
on blocked mass storage files. The vehicle used to simulate these delimiters is the
recovery control word (RCW) (Figure 5-3).

THE BLOCK

On magnetic tape, a block is the information contained between two interrecord gaps.

On mass storage a block is the information between two recovery control words. Except
for the fact that the record manager must be informed that a file is blocked (see rules
for specifying blocking), blocking has little impact on the user. Blocks are invisible to
FORTRAN and COBOL object-time routines because the record manager deblocks the
records on input and blocks them on output. The various blocking types (Figure 5-2)
are designed to meet ANSI standards and/or to provide compatibility with formats used
on other computer systems.

For S, X, and Z records with C blocking, a short block has special meaning. For S
records, it signals either end-of-record (level 0, 48-bit appendage) or end-of-partition
(level 17,, 48-bit appendage)., For X records it signals -end-of-record. For Z records,
it signals either end-of-section (level 0, 48-bit appendage) or end-of-partition (level 178,
48-bit appendage).

Generally, the default block type is the most efficient for the record type. The block
size depends on several factors; in general, it should be around 5000 characters.
Larger sizes tend to increase the chance of parity errors, which in turn reduces
throughput. For on-line tapes, if the application program processes data fast enough
to achieve nonstop 1/0, it may be advisable to use shorter blocks to sustain the I/0.
Also, by selecting a small block size, the user could keep core use to a minimum.
This technique is advisable in a heavily loaded multiprogramming environment.

5-14 60372600 A



LOAD

'(’ggg BLOCKS SEPARATED BY INTERRECORD GAP
(RECOVERY CONTROL WORD ON MASS STORAGE)
EOI
sLock [BLock ||| BLOCK | BLOCK | BLOCK | BLOCK | BLOCK |BLOCK ¢ |%
Pt Sl RECORDS CAN
el S~ SPAN BLOCKS
T C BLOCKING — 0
EACH C BLOCK CONTAINS  |LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL LOGICAL )
MBL OR LESS CHARACTERS | RECORD | RECORD | RECORD | RECORD RECORD RECORD 1
1
1 ]
'
K BLOCKING
EACH BLOCK LENGTH IS SUM [ 5,41 [L0GICAL [LOGICAL [LOGICAL LOGICAL |LOGICAL
OF RB RECORD LENGTHS. RECORD | RECORD | RECORD | RECORD RECORD | RECORD | LAST BLOCK HAS RB
RECORD COUNT (RB) INCLUDES | "CC| 5 s . A 4 OR LESS RECORDS.
ZERO-LENGTH RECORDS.
1
1
1
|
H ]
i |
EACH BLOCK LENGTH IS SUM ! E BLOCKING
OF NUMBER OF RECORDS BLOCK ENDS ON LAST
TR O e “Ororw  |LosicaL lLosicaL |LosicaL |LosicaL LOGICAL | LOGICAL | FULL RECORD THAT DOES
¢ ! . RECORD | RECORD | RECORD | RECORD RECORD | RECORD | NOT CAUSE BLOCK LENGTH
RECORD SIZE AND BLOCK O eper M
SIZE ARE VARIABLE. .
i | RECORDS CAN
. ! SPAN BLOCKS
: I BLOCKING
EACH I BLOCK CONTAINS MBL | |LOGICAL |LOGICAL |LOGICAL |LOGICAL|LOGICAL \ LosicaL| | |LocicaL|LosicaL
OR LESS CHARACTERS. RECORD | RECORD | RECORD | RECORD | RECORD ( RECORD | [ | RECORD | RECORD
/- N,
STICW S W
rd ~
4 S
/’/ \\\
/// \\\\
P \\
INTERNAL CONTROL WORD ANy MBL - MAXIMUM BLOCK LENGTH IN
s 4 8 00 CHARACTERS SPECIFIED IN
FIT: DEFAULT IS UNLIMITED.
BLOCK | NUMBER OF | LOCATION OF RB - RECORDS PER BLOCK; DEFAULT IS I.

ORDINAL | NEXT RECORD | NEXT RECORD

| L— CDC AND USER BITS 2AXIIA
PARITY

Figure 5-2. Blocking Types

60372600 A 5-15



R R R R R R R
c | BLock |c | BLock |c c|BLock |c| BLOCK [c|BLOCK |C
w W w W W w W
1 ,/’ \\\\ t
e ~N
s ~
BOI e . EOI
g \\\
,,/ \\\
//,/ \\\\
I, \\
rd \\
Vd ~

/,/ RECOVERY CONTROL WORD RN

~
, AN

59,754 48 45 24 21 00
SYSTEM MASS STORAGE , | unuseD PREVIOUS BLOCK BLOCK LENGTH

BITS IN {WORDS) (WORDS)
LAST WORD INCLUDING RCW EXCLUDING RCW
= 0 RECORD FOLLOWS Lsmrus: LUNUSED (BIT 21)

= HARDWAR
| EOP MALFUNETION EOV ENCOUNTERED (BIT 22)
2 EOI RECOVERABLE
IRPARITY RECOVERED PARITY ERROR
LOST DATA STATUS (BIT 23)

2AXI2A
Figure 5-3. Blocked File Format on Mass Storage

E type blocking can be used, but is generally not as efficient as K type blocking. How-
ever, for particular applications, E blocking is more suitable than K blocking. For
example, E blocking is preferable when a file contains records that vary widely in size.

I blocking and C blocking allow records to span blocks. For K blocking and E blocking

records cannot span blocks, thus, maximum record length (MRL) cannot exceed maximum
block length (MBL).

Accessing Blocked Files

Blocked files can be accessed as sequential (SQ) files only. Remember that blocked W
records cannot be printed, punched, loaded by the loader, or used as input to LIBEDT.

How to Specify Blocking

1. Blocking is automatically specified by the record manager when the user defines
a file as being on magnetic tape through use of a REQUEST MT control state-
ment or through use of a STAGE control statement. = The default block types are
then determined according to record type as follows:

Record Type Block Type
A\ I
S or X C
other K

5-16 60372600 A



2. Blocking can be specified in the COBOL source language through the BLOCK

CONTAINS clause,

as shown in Table 5-3.

The BLOCK CONTAINS clause

takes precedence over system defaults described in Rule 1.

TABLE 5-3. COBOL SPECIFICATION OF BLOCKING
BLOCK CONTAINS Clause Block Type
BLOCK CONTAINS integer-2 RECORDS
BLOCK CONTAINS integer-1 TO K

integer-2 RECORDS

Clause is omitted

Record Count

BLOCK CONTAINS integer-1 TO
integer-2 CHARACTERS

E
Exact Records

BLOCK CONTAINS integer-2
CHARACTERS

C
Character Count

3. To override the default or COBOL defined block type, or to specify blocking for
a mass storage file, use the following parameters on the FILE control statement.

File Statement

Block Type Parameters

Internal BT=I, MBL=x

Record count BT=K,RB=x

Character
count

BT=C, MBL=x

Exact records BT=E, MBL=x

60372600 A

Notes

BT=I is allowed for W records only. If the
block size (MBL) is unspecified, the default
for x is 5120.

BT=K is not allowed for S or X records.
If the number of records per block (RB)
is unspecified, the default for x is 1.

K blocking is conventional for U records.
RB must be 1 for U records.

Maximum block length is computed from
maximum record length (MRL) multiplied by
records per block (RB). If MRL has not
been previously specified it is set to 5120
by default,

If the number of characters per block is
unspecified, the default for x is 5120.

BT=C is the only block type allowed for S
and X records. It is conventional for Z
records.

If the maximum number of characters per
block is unspecified, the default for x is
5120, BT=E is not allowed for S or X
records.



Rules for Specifying MBL

1. For I blocking, MBL must be 5120 to be compatible with SCOPE 3. 4.

2. For C blocking, MBL must be 5120 to be compatible with SCOPE 3.4 S/L
devices.

3. For S, X, Z, and W records, MBL must be a multiple of 10 characters (full
words).

4. MBL (for BT=K, MRL x RB) is limited by location of the magnetic tape unit as
shown in Table 5-4. The 6000/CYBER 70 station restrictions apply also to
SCOPE 3.4 blocked permanent files.

TABLE 5-4. MAXIMUM BLOCK SIZES ALLOWED FOR STAGED
AND ON-LINE TAPES

Block Size for Block Size for

Location of Tape Unit 7-Track Tape 9-Track Tape
6-Bit Char. Words Binary Coded Words
On-Line tape 25,590 2559 25,590 19,162 2559

7611-11, 6000, or CYBER

70 ‘Station 25,590 2559 5120 3,840 512
7611-2 Magnetic Tape Station 5120 512 5120 3, 840 512
7611-1 I/O Station 5120 512 -- -- --

Example 5-5 illustrates a job that lists a tape created on another computer system.

The tape contains records terminated by a 77, (; in display code). Records are blocked
5120 characters per block and can span blockg. Blocks are even multiples of 6-bit
characters. In this example, C blocking must be specified on the FILE statement to
override the system default of K blocking for R records.

CONTROL DATA

Specifies C-type
blocking

JOByCP70(

STAGE(RTAPE)
FILE(RTAPE,FT=R,RNK=77E,BT=C sMEL=5120)
COPYSP (RTAPE)

6/7/8/9 in colwmn one

g

Example 5-5. Using a FILE Statement to Specify Blocking

5-18 60372600 A



PARTITIONS

End-of-partition is synonymous with the term end-of-file as commonly used for FORTRAN
and COBOL languages and previous operating systems. See Figure 5-4, which illustrates
end-of-partition on magnetic tape. Note that the representation of end-of-partition is dif-
ferent for some of the record types. A single tapemark is equivalent to an end-of-parti-
tion (EOP) for the following:

1. Blocked files with record types F, D, R, T, U, X, and W
9. Z records if they are K or E blocked

For record types S and Z with C blocking, a short block consisting of only 48 bits and
having a level number of 17, signals an end-of-partition. This is known as a zero-length
biock because it contains no data. The contents of this block are not passed to the user
buffer. Instead, EOP status is returned. A single tapemark is unlikely to occur on S
and Z records (C blocked).

For W records, an end-of-partition is signaled through a tapemark or an EOP W control
word, depending on how the EOP is generated. The control word is conventional.

Figure 5-4 illustrates conventional usage. That is, a single tapemark could be used to
indicate end-of-partition on S record tapes or W record tapes by using the WTMK macro
in the COMPASS language instead of the ENDFILE macro, but doing so is not customary.

The following language functions produce an end-of-partition.

Language Function
FORTRAN Extended ENDFILE statement
RUN ENDFILE statement
COMPASS WTMK macro and ENDFILE macro

For all record types, the WIMK macro generates a tapemark when it is used on a
blocked file. The WTMK macro is ignored if it is used on an unblocked file.

The ENDFILE macro (which is used by copy routines and the compiler object time rou-
tines, that is, the ENDFILE statement) does not always generate a tapemark. In parti-
cular, it generates an EOP control word for record type W, whether blocked or unblocked.
This W control word may occur inside of a block. It also generates the short block when
used on S records and Z records with C blocking. For all other record types, it gen-
erates a tapemark. '

On the INPUT file, the end-of-partition is represented by a 7/8/9 card with a level of

178.

An end-of-partition is equivalent to the 7600 SCOPE 1 end-of-file card (6/7/9 multipunch
in column 1) or a SCOPE 1 type 2 boundary control word.

60372600 A 5-19



LOAD

POINT
(Bonz .EoL
BLOCK |BLOCK |BLOCK |% BLOCK % | BLOCK
™ ™
EE

EOP INDICATED BY
SINGLE TAPEMARK

LOAD A. RECORD TYPES OTHER THAN S OR Z WITH C BLOCKING. THIS ILLUSTRATION APPLIES

LOAD. FOR W RECORD TYPE IF WTMK MACRO RATHER THAN ENDFILE MACRO IS USED.
(301)7 EOI
EOL
™
HE
BLOCK BLOCK [BLOCK |BLOCK BLOCK [BLOCK | BLOCK %
[
P i ,J ™
~

59754 42 24 18 T~-<1.00

W CONTROL WORD
EOP INDICATED

BY wCw
LOAD B. RECORD TYPE W. THIS ILLUSTRATION APPLIES WHEN THE FORTRAN ENDFILE
POINT STATEMENTS, OR COMPASS ENDFILE MACRO IS USED.
EO0I
—_—

BLOCK | BLOCK | BLOCK BLOCK [BLOCK |BLOCK

48-BIT APPENDAGE 1

EOP INDICATED BY LEVEL I7g
APPENDAGE ON ZERO-LENGTH BLOCK

C. RECORD TYPES S AND Z WITH C BLOCKING.

2AXI3A

Figure 5-4. End-Of-Partition on Blocked Magnetic Tape

5-20 60372600 A



SECTIONS

In file hierarchy (Figure 5-5), the section lies between the record and the partition.
Thus, for the record types that support sections, records can be grouped into sections
and sections into partitions. However, only the following file types can be divided into
sections.,

W records whether blocked or unblocked

Z records with C blocking

On W records, an end-of-section is indicated in a W control word. On Z records with
C blocking, an end-of-section is indicated by a short or zero-length block with a level
0, 48-bit appendage.

There is no vehicle for indicating end-of-section using any other record type. On S
records, the level 0 appendage indicates end-of-record.

Figure 5-6 illustrates the relationship of S and Z records with C blocking. Note that
the same file containing zero-byte delimiters can be defined as either S or Z records.
The Z definition describes records, sections, and partitions; the S definition describes
records and partitions. The zero bytes are not significant when the file is defined as
S records.

With respect to S records, an end-of-section is referred to as an end-of-record by
earlier 6000 Series operating systems. Note, however, that although other operating
systems may allow several levels of records (levels 0 through 16,), SCOPE 2 allows
only one level (level 0), Levels 0 through 168 as they are used by 6000 SCOPE 3.x
are converted to level 0 by SCOPE 2.

The FORTRAN and COBOL compiler languages have no counterpart to sections. There
is no way of generating a section delimiter when using these languages. The situation
could arise, however, where the user desires to have the FORTRAN or COBOL object-
time program read a file that contains section delimiters. In particular, the user may
want to read from the INPUT file, which conventionally uses end-of-section cards as
separators in the deck.

For this reason, the 7600 FORTRAN Extended and RUN object-time routines consider

an EOS on INPUT as an EOP, If the routines encounter an EOS on any file other than
INPUT, they do not upgrade the EOS to EOP; instead, it is ignored. This implementa-
tion is consistent with object-time routines for 6000 SCOPE 3.x. 7600 SCOPE 1.1,
however, always ignores the EOS for BCD files and considers it an EOP for binary files.
Example 5-6 shows a FORTRAN program that illustrates how FORTRAN object-time
routines handle an EOS encountered on a file other than input (in this case, TAPE1).

To change the job so that it reads from the INPUT file, remove the COPY statement

and change the PROGRAM statement to:

PROGRAM EOS (INPUT,OUTPUT, TAPE1=INPUT)
When the EOS is recognized as an EOP, each section begins a new page of printout.
The COBOL object-time routines make no distinction between the INPUT file and other
files. If an EOS is encountered, it is always treated as an EOP. This implementation

is consistent with 6000 SCOPE 3.4, but differs from 6000 SCOPE 3.3 and 7600 SCOPE
1 implementation, which always ignores the level 0 EQOS.

60372600 A 5-21



FILE

S

PARTITION |

PARTITION 2 PARTITION k

PARTITIONS

CAN BE ON
W-RECORD TYPE
OR BLOCKED
SEQUENTIAL FILES

N

SECTION |

SECTION 2 SECTION m

RECORDI

RECORD 2| [RECORDn

SECTIONS CAN BE
ON W-RECORD TYPE
FILES OR FILES
WITH Z RECORDS
AND C BLOCKING

[ WORD |

5-22

PN

WORD2 | | WORDp
oo E

CHARACTERS

Figure 5-5. File Hierarchy

2AXI4A

80372600 A



FILE DEFINED AS S RECORD TYPE

FILE DEFINED AS Z RECORD TYPE

w (
[0000 0000
0000 C-TYPE BLOCK 0000
0000| f MBL CHARACTERS 1 0000
[oo00 [0000
(< & ( END OF
Z-TYPE
{0000 [ 0000 RECORD
RECORD | |
! [0000 [0000
0000] |  c-TYPE BLOCK ] 0000
0000| { MBL CHARACTERS 0000
[0000 [0000
v T Ve
0000 0000
| 0000 0000
ENDR%E OSF&;I’YPE —TEVEL O SHORT BLOCK CEVEL O | «——— END OF SECTION
(
0000 } 0000
0000 0000
| C-TYPE BLOCK ﬁ
z 2 [ MBL CHARACTERS { Ve
0000 | 0000
END OF RECORD—s| LEVEL O | @—————ZERO -LENGTH — | LEVEL O_| «+——— END OF SECTION
END OF PARTITION—+[ LEVEL 17_| =——— ZERO - LENGTH —% LEVEL 17 | «——— END OF PARTITION
[0000 [0000
SHORT BLOCK
0000 0000
END OF RECORD—s[ LEVEL O [TLEVEL O ]« END OF SECTION
END OF PARTITION-»| LEVEL I7_|«———ZERO-LENGTH BLOCK#{ LEVEL |7 ]<———— END OF PARTITION
* %*
»* - EOI > * 2AXISA
Figure 5-6. Relationship of S and Z Records (C Blocking)

60372600 A

5-23



FORTRAN CODING FORM

J0B, 0.
ATN.
QOPY (INPLT|, TAPEL)
deo. ||
V879 kh cotlonm one
ROGRAM ECS (FILE1, CUTPUT 4 TAPEI=FILE1)
ENTEGER JUNK (8)
ECF| = @
110 EALC|(1,20) JUNK
210 CRMAT(8A10)
FIECF,1)40,30
310 RINT 35,JUNK
35 CRMAT(5X,8A10)
EQF| = @
cC 10 10
4i0 RINT 50
50 CRMRT (/745X ,*EQF ENCCUNTEREL*,77)
ECFFIEQOF+1
F (JECF.MNE.2){GC TO 10
TCP| 0DDO
ND

V879 ik collmn one

ECTILEMN 1| CARD 1
ECTIpN 1| CARC 2 7/
7V8/9 kn coljunm one

|L/9 FCLLCHh
ECTIPN 2| CARC 1
ECTICN 2| CARC 2
IEN 2

A

/9 FGLLCHW

[24]

ECT CARC 3 77

8/9 lin cofumn one

ECTILN 3| CARD 1 €7
6Y7/8/9 cplumn one

‘~.~LL——-L_——--~____—P"“\\\\_ |

Example 5-6. FORTRAN Treatment of EOS on Input File

/878 FCLLLKS

Example 5-7 illustrates how COBOL object-time routines handle an EOS encountered on

a file other than input (in this case, TAPE1l). To change the job so that it reads from

the INPUT file, remove the COPY statement and change the file assignment from TAPE1
to INPUT. When the EOS is recognized as an EOP, each section begins a new page of

printout.

Section delimiters can be generated through the COMPASS language WEOR macro. The
macro is a no-op if it is used on a file type that does not support sections. There is
no corresponding function in either the FORTRAN or COBOL languages.

NOTE

A WEOR on an S-type file should follow a partial
write only. If it follows a full write, it causes a
superfluous zero-length record.

5-24 60372600 A



SRl  COBOL CODING FORM

JoB,cA7a.
coscL qoj=xM)
COPY (INPUT ,/TAPE1)

L6o. || | (
7/8/9 in column one

IDENTIFICATICN DIVISICN,

PROGRAM-ID XXXX.

INPUT~-OUTPUT SECTION.

SELECT FILE1 ASSIGN TQO TAFE1,

ABEL RECCRLCS ARE OMITTEC
CATA RECORD IS FILE{-REC.
Gi FILE1-REC PIC X(E0).
WORKING STORAGE SEGTICN.

77 C[TR PIC SS9 VALUE 0.
PROCEDURE DIVISICN.

STAR[T.

CPEN INFUT FILE1.

PARAI1.

EAD FILE1 AT END GC TC END-READ.
CISPLAY FILE1-REC

ICVE 0 TQ CIR

C
SECTIDK ARD 2 7/8/¢S FOLLCHKS
f/8/9 ift|colupn one

Cih 2 CARD 1
2 EARD 2
SECTI 2 CARC 3 77879 FCLLCHKS

D
7/8/9 inlcoﬂuhn one
SECTIPIN 3 CARC 1 €/7/8/9 FCLLCHS
6/7/8/9] kn colbumn one

Example 5-7. COBOL Treatment of EOS on Input File

SECTI
SECTILC

:C TC PAR-1.
END-KEAC.
2ISPLAY # ECF ENCCUNTERED#.
CC 1 TC CTR.
IF CTR IS NQ 2 GC TC PARA-1
TOP RUN.
7/8/9 4 co one
SECTICN 1 CARD 1
1

60372600 A 5-25



ACCESS METHODS

Another factor that the user must consider when using files is the file organization,
sometimes referred to as access method. The three file organizations are sequential
(SQ), word addressable (WA), and library (LB). Of these, the sequential organization
is by far the most commonly used file organization. Library organization is primarily
used by the operating system, itself, and has little application for the FORTRAN or
COBOL, programmer.

The usual default for FORTRAN is sequential. However, a FORTRAN programmer can
employ word addressable organization through use of the CALL READMS and CALL
WRITMS statements. These are described in the FORTRAN RUN and FORTRAN Extended
Reference Manuals. Any file accessed using READMS and WRITMS is automatically de-
fined as word addressable. The user need not supply a FILE statement for the file.

The index buffer is the last record in the file.

The COBOL programmer can specify the type or organization used through the ORGANI-
ZATION clause, as follows.

ORGANIZATION IS SEQUENTIAL causes the file to be sequential (SQ).

ORGANIZATION IS STANDARD causes the file to be a word addressable (WA) file
compatible with that created with the FORTRAN mass storage routines.

ORGANIZATION IS DIRECT also causes the file to be word addressable (WA) but the
index is a different format.

The ORGANIZATION clause can be omitted. When it is omitted, the file organization
depends on the factors specified in Table 5-5.

The selection of organization is made in the order shown.

TABLE 5-5. COBOL DETERMINED FILE ORGANIZATION

Order Condition Organization
1. A suffix to implementor or name in ASSIGN Direct (WA)
clause
2. ACTUAL/SYMBOLIC KEY clause specified Standard (WA)
3. ACTUAL KEY and/or FILE-LIMITS specified Direct (WA)
4. None of the above conditions exists Sequential (SQ)

Do not change the file organization through the FO parameter on the FILE statement to
conflict with the organization defined for the object-time program.

Only sequential files can be blocked. To save a file having some other file organization
on magnetic tape, copy it to a tape. Then, when the tape is loaded, copy it to an
unblocked file using the original file organization (see Section 10) before attempting to
use the data.

5-26 60372600 A



FILE PROCESSING DIRECTION

The processing direction allowed on a file, that is, whether the file is an input file
permitting reads only, an output file permitting writes only, or an 1/0 file permitting

either reads or writes, is determined by open requests issued by object time routines.
The direction is maintained in a field in the FIT for the file.

COBOL and FORTRAN object times routines and the SCOPE 2 copy routines usually open
a file as input/output. A staged-in file is opened for input; a staged out file is opened
for output.

A parameter of the FILE statement permits a user to specify processing direction, but

this parameter is very seldom needed for mass storage files and may conflict with the

processing directions specified on open requests. If a conflict occurs, the open request
takes precedence over the direction specified on the FILE control statement,

ﬁlLE(lfn, ..., PD=direction)

Direction can be I for input, O for output, or I-O for input/output.

FILE ERROR OPTIONS

When the record manager encounters an error condition, it either terminates the job or
attempts to continue program execution despite the error. The action taken depends on
the setting of the error option (EO) field in the FIT and on the type of error. As will
be shown, processing of read parity errors represents a special case.

TERMINATION ON ANY ERROR

By system default, the error option field is set for termination to occur upon encountering
any record manager error. The FORTRAN compiler, however, generates a FIT with

this field set for accept and display. The COBOL compiler sets the field for termination
if the COBOL program does not contain a USE AFTER STANDARD ERROR PROCEDURE.
When the ERROR PROCEDURE is present, the COBOL program sets the field for accept.

To override the compiler setting or to explicitly set the error option for termination,
use the EOQ=T parameter on the FILE statement.

ﬁ;‘lLE(lfn, ..., BO=T)

ACCEPT ERROR

Instead of job termination, the user or the compiler can specify that if an error occurs
control passes to a user error processing routine, that is, to an error exit. This option
can be taken only when the program includes an error routine; the error exit cannot be
specified on a control statement,

For errors other than read parity errors, the error status is indicated in the FIT and

control passes to the user. For a read parity error, the record manager places the
bad data in the user buffer and passes control to the user.

60372600 A 5-27



In addition to accepting the data, the user has the option of having it written on a file
and automatically listed (displayed).

To explicitly specify accept on an error condition, specify EO=A on the FILE statement
as follows:

r%ILE(Hn,...;Eo=A)

In Example 5-8, EO=A is specified on the FILE statement to override the FORTRAN-
specified accept-and-display.

CONTROL DATA

FORTRAN CODING FORM

Joe,arlo. | \
FIN.

S|TAGE|([TAPE}1)

FILE (TRFE1,RT=2,FL=80,EC=p,ET= Specifles accept
RIS L8, EC=A,ETH0) but not displtay of

Lke. }

718/9 collmn one bad data

A
| (FPRTRAN SCURCE [ECK)
6/7/849]'in cotumn one \_—L__\!

Example 5-8. Specifying Error Option as Accept With No Display

DROP BAD DATA

For a read parity error, the user has the added option of having the record manager
attempt to skip the bad data and resume file processing with the next data known to be
good.

For a mass storage file, this means that all of the data in the sector on which a read
parity error occurred is ignored.

For a magnetic tape file, and in this case a staged tape file is considered a magnetic
tape file, the procedure of dropping the data is much more complex. Depending on the
record and block type, the record manager attempts to save as much data in the bad
block as possible. For W records with I or C blocking, the record manager attempts
to locate the next W control word in the bad block and to resume processing at that
point. For K and E blocking, it positions the file at the beginning of the next good
block. For F records with C blocking, it calculates the next record boundary in the
next block. In all cases, an error severity level is set in the FIT for use by the
error routine.

5-28 60372600 A



To specify that data is to be dropped, enter the EO=D parameter on the FILE statement.
This also causes error conditions other than read parity to be accepted.

(FILE(lfn, ...,E0=D)

This option requires the presence of an error routine.

DISPLAY BAD DATA

The programmer can specify when a read parity error occurs that the bad sector or
block of data be written on a special list file which is automatically routed to the printer
when the job ends.

Displaying is possible regardless of whether the programmer requested termination,
accept, or drop.

To display bad data, append D to the EO parameters already described as follows:

EO=TD Terminate job; write data on special file.
EO=AD Accept data; write data on special file.
EO=DD Drop data; write data on special file.

60372600 A 5-29



MAGNETIC TAPE FILES 6

This section describes how the user can access magnetic tape files directly using on-line
magnetic tape units or indirectly using staged magnetic tape units. Use of tapes, staged
or on-line, requires explicit action on the part of the user. Files are never assigned
to tapes by default. As noted in Section 5, tape files are always blocked sequential
format. The record manager assures this by selecting a default block type whenever

the file is defined as a staged or on-line file.

Tape labels, although mentioned in this section, are defined in Section 11.

STAGING TAPES

Staging is the practice of transferring all or part of a magnetic tape file to or from
mass storage upon demand by the job. Staging isolates the CPU from the magnetic tape
units so that more efficient CPU use can be achieved.

Tape staging requires that the user insert a STAGE control statement before the job
step that first uses the file.

(STAGE(lfn, PysPgses-sP,) and l/STAGE(lfn, POST, ;s Pys---»P,)
Parameters include the following:

PRE or POST Specifies input (PRE) or output (POST) file

MT or NT Specifies 7-track (MT) or 9-track (NT) unit

PE, HY, HI, or LLO Specifies density (PE or HY for 9-track unit and HY, HI,
and LO for T7-track unit)

ies volume serial number

In addition, the A, T, and U parameters described in Section 7 can appear on the
STAGE statement to define mass storage characteristics such as maximum file size.

If insufficient mass storage is allocated, the record manager issues the message MASS
STORAGE EXCEEDED. If you receive this message, resubmit the job with An set to
at least A2. The default is normally Al (2 MAU).

For prestaging, the Ifn parameter is required as a minimum. For post staging, the 1lfn
and POST parameters are required. All optional parameters are order-independent.

Staging does not occur at the time the STAGE statement is processed. The statement
provides information to the record manager for future use. Multiple STAGE statements
for a file are not allowed.

Tape staging makes the practice of extending a tape file by first skipping the information
already recorded and then adding new information at the end both inconvenient and dan-
gerous. If an error occurs during the process of rewriting the tape, information accu-
mulated by a previous run of the job is likely to be irretrievably lost.

60372600 A 6-1



PRESTAGING

Prestaging is requested by default when neither PRE nor POST appears on the STAGE
statement. Inclusion of the parameter PRE produces the same effect as when it is
omitted.

In Example 6-1, SOURCE is prestaged for use by the compiler. It consists of a single
reel (volume). The staging takes place when the compiler attempts to read from file
SOURCE. The job waits for the operator to mount the tape. It resumes processing upon
completion of the prestage operation.

CONTROL DATA.

JOBSAM,CP70.

STAGE (SCURCE)

FTN(I=SOURCE)

LGO.

7/8/9 in column one
(oDATR)

6/7/8/9 in column one

»

Example 6-1. Prestaging an Unlabeled Tape

POST-STAGING
NOTE

A file cannot be both prestaged and post-staged.
Thus, a tape-to-tape copy of a staged file requires
that the input file be prestaged and copied to another
file which can then be post-staged.

Post-staging is requested when POST appears on the STAGE statement. Upon job com-
pletion or return/unload of the file, the file is transferred to a station where it is written

on one or more volumes of magnetic tape.

The operator is told to mount tapes as they are needed. For an unlabeled file, each
volume is terminated by an end-of-information (double tapemark). A file cannot be both
cataloged at the 6000/CYBER 70 Station and post-staged.

If abnormal job termination occurs, the file will not be staged out if it has not been
created or if the fatal error causing abnormal termination involved the file.

A file is automatically rewound before it is post-staged. There is no way to post-stage
part of a file.

6-92 60372600 A



Example 6-2 illustrates post-staging of TAPE1 to a 9-track tape unit (NT) at 1600 bpi
(PE). The FILE statement describes TAPEL as record type Z, block type C rather
than the defaults of record type W, block type 1.

(
RLE & FORTRAN CODING FORM Flle Is created
by objJect program

BSAH,CP?‘D. '
FITN. 1)
flILE (T]aPEL], RT=2,FL=8)0,BT=0)
SITAGE|( AFEi]NT,FE’pG AR S'i'aging occurs
LGO. at job end

8/9 Kk

T, TAFEL)
| 0

N s st

Example 6-2. Post-Staging an Unlabeled Tape

SPECIFYING TYPE OF TAPE UNIT

Staged magnetic tape units can be either 7-track units, 9-track units, or a combination
of units.

The 7611-11 Service ion not support staged
tape. The 7611-1 I/O Station supports 7-track units
only. All other standard stations allow both types
of units. Check with a systems analyst to determine

what units are available.

7ic up

Tapes written on T-track units cannot be read on 9-track units and vice versa.

The presence of NT on a STAGE statement requests a 9-track unit. Otherwise, if the
parameter is omitted or if MT is specified, a 7-track unit is used for staging. In
Example 6-2, file TAPE1 is post-staged to a 9-track unit.

SPECIFYING TAPE DENSITY

When no density parameter is specified, the system assumes that the tape is to be read
at 800 bits per inch or written at 800 bits per inch, regardless of whether the unit is
7-track or 9-track. Inserting the parameter HY on a STAGE statement has the same
effect. This default can be changed by the installation.

60372600 A 6-3



For 7-track magnetic tape units, 800 bits per inch is usually preferred. If the tape is
of questionable quality, however, you may wish to write at a lower density. Similarly,
you may wish to read tapes recorded at lower densities.

For 9-track magnetic tape units, 1600 bits per inch is the preferred density. Table

6-1 summarizes magnetic tape density parameters. See Example 6-2 for an example
of use.

TABLE 6-1. MAGNETIC TAPE DENSITY PARAMETERS

Parameter 7-Track 9-Track
LO 200 bpi -
HI 556 bpi -
HY 800 bpi 800 bpi
PE - 1600 bpi

The density used for labels is not necessarily the same as that used for the data. On
a 7-track input tape, when prestaging labeled magnetic tape files, if the system receives
errors when reading the label at the density specified for labels (this density is set by
the installation), it retries reading the label at other densities. It then uses the density
specified in the label for reading the data.

No retries at other densities occur for unlabeled tapes.

IDENTIFYING THE STATION FOR STAGING

By system default, the station that is used for staging is the station of job origin., If
the job originates at a station that does not include magnetic tape units, or if the user
desires to either read a tape or write a tape at some other station, he can include
ST=gggttt on the STAGE statement. ggg identifies the station and ttt (optional) identifies
a terminal of that station.

(STAGE(lfn, . ..,ST=gggttt)

The system waits indefinitely for the station to be logged in if the identifier is not
recognized as a currently logged in station.

6-4 60372600 A



In Example 6-3, the 7611-1 1/O Station has been logged in as AAA and the 7611-2 Magne-
tic Tape Station has been logged in as MTS. The 7611-1 operator is told to mount the
input tape IN for prestaging and the 7611-2 operator is told to mount the output tape

OUT for post-staging.

CONTROL OATA

JCB,CP70.
STAGE(IN,ST=AAA)
STAGE(CLT,PCST,ST=NTS)
FILEC(IN,RT=UL)
FILE(GUT,4RT=U)
COPY(IN,CLT) )
6/7/8/9 in column one

TN

Example 6-3. Identifying the Station for Staging

CHARACTER CONVERSION AND PARITY

On 7-track tapes, binary data is written in odd parity and coded data is written in even
parity. On 9-track tapes, data is always written in odd parity, regardless of mode.

The recording modes (binary and coded) are functions of the tape drivers. A user can
select conversion mode only through parameters on the FILE statement or through a
COMPASS language subroutine. The system default is binary mode because it is more
efficient than coded mode, which requires character conversion.

Where the block length is an even number of words (a multiple of 120 bits) or an even
number plus 48 bits, the data records are written without modification. When the block
length is an odd number of words, however, or an odd number plus 48 bits, the 9-track
tape driver must supply an extra 4 bits of padding to complete the last tape frame.
When the tape is read, the record manager removes the padding. In general, the
record manager removes any trailing bits that do not constitute a full 6-bit character.

SCOPE 2 mode selection for FORTRAN 1/O is not like previous systems which considered
FORTRAN READ/WRITE statements as coded and allowed user specification of mode on
BUFFER IN/OUT statements. Specification of mode on BUFFER IN/OUT statements is
ignored under SCOPE 2. READ/WRITE statements will handle either binary or coded
tapes depending on the CM parameter on the FILE statement. Similarly, for copy rou-
tines, the statements COPYBR/COPYBF and COPYCR/COPYCF, which implied binary

or coded copies on previous systems, do not affect tape mode under SCOPE 2 (see
Section 10).

For a staged tape, conversion occurs at the station when the tape is prestaged or post-
staged. Conversion prohibits the occurrence of a double colon (12 bits of zero) in the
coded record. Zero bytes are converted to blanks. For the same reason, do not
attempt to convert W, Z, or S records. SCOPE 2 cannot read coded tapes in these
record formats.

60372600 A 6-5



7-Track Conversion

To select even parity, coded mode tape when using a 7-track magnetic tape unit, place
the parameter CM=YES on the FILE statement.

(FILE(lfn, ...,CM=YES)

The FILE statement must precede the job step that first uses the file.

On output, CM=YES causes each binary 6 bits of data to be converted from display code
to a 6-bit external BCD character (Appendix A) and recorded in even mode. On input,
conversion from BCD to display takes place.

In Example 6-4, TAPE1 is post-staged in even mode with code conversion from display
code to 6-bit external BCD.

FORTRAN CODING FORM

M, CP7(0 . I

TIAPEL],RT=F,FL=50,CN=YES) Conversion occurs

when tape Is
((TAPE1,PCST) post=staned

NPUT, CUTPLIT,TAFED)

FEIGHT, I

Example 6-4. 7-Track Code Conversion for Post-Staged Tape

9-Track Conversion

To select odd-parity coded-mode tape when using a 9-track magnetic tape unit, use
CM=YES in the same way as for 7-track tape conversion. CM=YES on output causes
each 6 bits of data to be converted from display code to an 8-bit system default (either
ASCIIf or EBCDIC) and recorded in odd parity. ASCII conversion can be requested
explicitly by placing US on the STAGE statement.

(FILE(lfn, CM=YES,...)

(STAGE(lfn,NT, PE,US,...)

tANSI Standard X3.4-1968 American Standard Code for Information Interchange

6-6 60372600 A



As an alternative, you can convert to or from a 64-character EBCDIC character set by
supplying the parameter EB in place of US on the STAGE statement for the file. This
parameter is relevant for data conversion only when the FILE statement specifies
CM=YES and the STAGE statement specifies NT.

FILE(lfn, CM=YES, ...)

rETAGEGﬁLNT,PE,EB,“.)

On input, any lowercase letter is converted to uppercase. Any other character not in
the B63-character subset is interpreted as a blank.

In Example 8-5, the sample program writes TAPEl on a 9-track tape with conversion
from display code to EBCDIC code.

(

FORTRAN CODING FORM Specifies characferI

CONTROL DAT

/] convers ion

pesaM, cP7io. ,//
TN, ,

TLE (TWFE1[,RT=F 4FL=80 4CM=YES)
TAGE|(TAFE[LyNT,FE,EB,PCST) Specifies i
GO. NN ——

5/9 lih collumn one conversion to EBCDIC
RCGRAM ONE (INPUT,CUTFUJT,TAFEY1)
RINT 5
CRMAT (1KH1)
EAQl 4nQ_FASE,HEIGHT

N M T

= N
[}

———

Example 6-5. 9-Track Code Conversion for Post-Staged Tape

STAGING ALL OR PART OF FILES

The user can choose how much of his tape file is to be prestaged at a time. This
affects how much of the file is concurrently accessible by the program.

The options available to the programmer are:

1. Stage-by-volume which permits an ordered progression of labeled reels (volumes)
to be automatically prestaged upon completion of the previous volume.

2. Stage-by-partial volume, which permits a selected portion of a single unlabeled
volume to be prestaged, and

3. Stage-by-file, which permits all volumes to be prestaged upon the first use of the
file, and for the entire file to be on mass storage at the same time.

60372600 A 6-7



Stage by Volume

The system default causes a labeled file to be staged in a reel at a time. Each reel is
called a volume, The first time the user program attempts to read the file, the record
manager sends a message to the operator to mount the first volume of the file to be
staged. When the operator has complied with the request, the system transfers the first
or only volume to mass storage. Upon completion of the transfer, the job can begin
processing the data on the mass storage copy of the file. When the program encounters
the end-of-volume label, the record manager requests staging of the next volume and

the process is repeated. FEach staged volume overwrites the previous volume on mass
storage. Staging of labeled multifile volumes is not possible.

For an unlabeled tape file, automatic volume switching does not take place. To the
FORTRAN and COBOL user, this means that unlabeled tape files that exceed one volume
should be staged by file, not by volume. Note, however, that if a COBOL programmer
knows exactly how much data is on each volume, he can control volume switching within
his program by using CLOSE REEL.

When a file is staged by volume, a rewind positions the file to the beginning of the first
volume, The operator is told to remount the first volume. This allows multiple passes
on a staged file., Backspacing or skipping backwards will not produce the same effect.
You cannot backspace across volume boundaries.

End-of-volume on an unlabeled tape file created under SCOPE 2 consists of a double
tapemark; it is the same as an end-of-information. Unlabeled volumes created under
6000 SCOPE are terminated by the end-of-volume label. Automatic volume switching is
possible when using these tapes.

Using Volume Serial Numbers for Prestaging

When tapes are staged, the operator is told to mount a volume identified according to a
volume serial number (vsn). The significance of the vsn differs for labeled and unlabeled
tapes.

Unlabeled Tapes

In the case of unlabeled tape volumes, the vsn usually refers to a visual identifier manu-
ally provided in a sticker on the tape reel. It is provided primarily as an aid to the
operator for locating the correct volume. As will be described later, it has additional
significance when stage-by-file is requested.

When no VSN parameter is provided on the STAGE statement, the system uses SCRTCH
as the vsn. To specify a vsn other than SCRTCH, use the following format:

(STAGE(lfn, ..., VSN=vsn_ fvsn, /... /vsn )

vsn. is a 1 to 6 alphanumeric character identifier to aid the operator in locating the
correct tape.

Labeled Tapes

For a labeled tape volume, the vsn refers to both the external sticker of a reel and the
contents of a field in the HDR1 label (see Section 11). When no VSN parameter is sup-
plied on the STAGE statement, the contents of the vsn field in the HDR1 label for the

6-8 60372600 A



volume is checked against blanks. If the field contains other than blanks, an error
message is issued saying that no vsn was specified on the STAGE statement. The VSN
parameter must correctly list each of the vsn's for the volumes in the tape file. Other-
wise, the operator must mount the correct tape or give permission to use the mounted
tape.

ﬁTAGE(lfn, e VSN=vsn1/vsn2/. .. /vsnn, E)

Each vsn is a 1 to 6 character identifier matching the vsn used when the file was
created. E indicates that a label exists (see Section 11).

Remember that the list must be long enough to encompass all the volumes of a file.
In Example 6-8, TAPELl is an unlabeled tape identified by vsn DAC; TAPE2 is a multi-
volume labeled tape identified by vsn's JRV1, JRV2, JRV3, and JRV4.

(

Record and block type

GLUULAS  COBOL CODING FORM

determined by COBOL

JCEB,CPI7ID . source program
ICOBCL
STAGE ([{AFEf , VSK=CAC) ?
STAGE(TAPEZ,VS?\=JRV1/JRV2/JFV3IJEV&,E)
LGO.
7/8/9 ikl codumn one E indicates label

(cldecL] SCURCE PRCGERAM) exists for TAPE2
6/7/8/9 kn dolumn one

Example 6-6. Prestaging Using Volume Serial Numbers

Staging of Partial Volumes

The VSN parameter has an alternate application that allows portions of a volume to be
staged. This feature is particularly convenient for a file that lacks a standard end-of-
information. Partial staging should also be used when several partitions of a multi-
partition tape file are to be processed or whenever several blocks of a large file are

to be processed. Using partial staging increases throughput by decreasing mass storage
requirements and staging time.

Only unlabeled tape files can make use of this feature and only portions of one volume
can be staged.

The user has the choice of staging a partial volume by blocks or by tapemarks.

60372600 A 6-9



Prestaging by Blocks

To stage by blocks, use a VSN parameter with the following format:
VSN-$vsn/B/n/m$

vsn is the volume serial number (1 to 6 characters). B indicates blocks. n is the
decimal count of blocks to be skipped before staging is to commence. If n is omitted,
staging begins at the first block. For example, if the sixth block is the first block
desired, set n to 5. The m parameter is the decimal count of blocks to be prestaged.
If m is omitted, staging terminates when a tapemark is encountered.

Example 6-7 illustrates partial staging of a volume by blocks. In this example, the
contents of blocks 101 through 110 (640 records) are copied to OUTPUT.

CONTROL DATA

JOB,CP70.
FILE(SANPLE,ET-’»F,RE:EQ,FL:SU,CP=YES)
STAGE(SAMFLE,VSA=$CATA/B/10071C1)
COPYSP (SANMPLE)
6/7/8/9 in column one

Transfers 10 blocks
starting with block
101 on reel DATA

Example 6-7. Partial Staging by Blocks

Prestaging by Tapemarks

To stage by tapemarks, use a VSN parameter with the following format.
VSN=$vsn/F/n/m$

In this case, F indicates tapemarks. The parameter is a count of partitions on files

with record type F, D, R, T, U, or Z with K or E blocking. For record types W,

X, S, and Z with C blocking, tapemarks do not normally occur within the file.

The n parameter is the number of tapemarks to be skipped before staging can begin.
m is the number of tapemarks to be prestaged.

6-10 60372600 A



In Example 6-8, file ASCII does not have a standard EOI but terminates with a single
tapemark., It is successfully staged in by specifying staging of one tapemark.

CULSAALY FORTRAN CODING FORM

Indicates staging

Jdoa,CPlro. by tapemarks
TN,

SITAGE|(JASCI|I, VSN=*DAC/F//1¢)

FIILE (AISCII, RT=R4RMK=[?7B,RT¥=C()

Lis0.

7V8/9 kKh cofumn one

FRCGRAM ASCII [(INFUT,CUTFUT,ASCII,TAFEL=ASCIf)

REAC{(1) AREA

id

7/8/p|in cplumn one

LA M/’\MM'\/\

Example 6-8. Partial Staging by Tapemark

O~

Stage by File

Sometimes a user must have all volumes of a labeled tape file on mass storage concur-
rently so that multiple passes over the data are possible and so that the file can be
repositioned meaningfully.

Specification of SF causes prestaging of the entire file rather than a single volume when
the file is first opened. SF applies only for prestaging.

éTAGE(lfn, «..,SF)

If vsn's are specified, remember that you must list all vsn's comprising the multivolume
file.

By using stage-by-file, it is possible to prestage a multivolume unlabeled tape file.

Volumes are staged in until the list of vsn's is exhausted or until the mass storage limit
is reached.

60372600 A 6-11



In Example 6-9, FN1 is a 3-volume unlabeled tape created under SCOPE 2.

(CONTROL DATA

COBOL CODING FORM

JOB,CP713.,
COBCL.
[STAGE(FN1,SF,VSN=1/2/3)
LGO.
7/8/9 in column one

(CCRCL SCURCE)
6/7/8/9 in column one

/

Operator is told to
mount volumes |, 2,
and 3

-

Lo~~~ —

Example 6-9. Staging Entire File

Using Volume Serial Numbers for Post-Staging

When post-staging a tape file, you have the option of specifying a vsn.
the vsn when used for unlabeled tapes merely serves to identify the reel to be mounted
by the operator. For labeled tapes, however, it results in an identifier being placed in

a field in the HDR1 label.

As for prestaging,

For unlabeled tapes, when no VSN parameter is provided, the system uses SCRTCH for
all volumes. For labeled tapes, when no VSN parameter is provided, a vsn is requested
from the operator. The vsn supplied by the operator is then written in the vsn field in

the HDR1 label.

To supply vsn's, use a parameter with the following format:

VSN=vsn1/vsn2/vsn3/. .. /vsnn

For a labeled tape, be sure that there are enough vsn's specified for all volumes of the
post-staged file., Otherwise, if the list is exhausted before the end-of-information is
reached, the last volumes of the file will be created with operator supplied vsn's.

USING ON-LINE TAPES

Use of on-line magnetic tape units requires scheduling of the tape units on the job iden-
tification statement and insertion of a REQUEST statement prior to the job step using

the unit.

NOTE

REQUEST statements for SCOPE 2 are not compa-
tible with REQUEST statements for SCOPE 3.x.

6-12

60372600 A



SCHEDULING ON-LINE TAPE UNITS

To acquire on-line tape units, place one or both of the following parameters on your
job identification statement.

MTd to schedule d T7-track units

NTd to schedule d 9-track units
In either case, d is a one or two digit octal number specifying the maximum number

of units of each type that your job can use concurrently. When neither parameter is
present, the job cannot use on-line tape units.

(jobname, ...,MTd,NTd.

The scheduling parameter does not cause the units to be assigned to the job. Your job
will not be assigned the units or be charged for their use until they are requested by
the job.

REQUESTING ON-LINE TAPE UNITS

Place a REQUEST statement before the job step that requires the on-line tape file.

I MT
EQUE 1
l\ REQUEST(lfn, NT’"* )

The MT or NT parameters must be present to distinguish the REQUEST from a mass
storage REQUEST. MT requests a 7-track unit; NT requests a 9-track unit.

A new request may be issued for a file after the previously requested file has been
unloaded. Otherwise, multiple REQUEST statements are not allowed for a file. A
STAGE statement and a REQUEST statement cannot be used concurrently for the same
file.

60372600 A 6-13



Example 6-10 illustrates a job that uses a 7-track unit and two 9-track units.

CONTROL DATA

==

JOB,CP70,NTZ,MT1%

Schedules two 9=
track units and one
T7=-track unit for
the Job

REQUEST(CLOPL,MT)

FILE(CLCPL,RT=S,MRL=200000)

UPDAIE(C)‘—-_____-~—~‘
RETURN (OLDPL)

FIN(I=CCMFILE)

UPDATE uses one
7=track unit

RETURN(CCMPILE?
REGUESTI(TAFPEL1,N1)
REQUEST(TAPEZ2,NT)

LGO.

7/8/9 anoxfumn one

Following RETURN,
Job can no longer
request 7=track
unit

(UPDATE TNRSLT)
6/7/819 in column one

Example 6-10.

Object program uses
two 9=track units

SPECIFYING TAPE DENSITY FOR ON-LINE TAPES

Tape density parameters serve the sam

tapes. See page 6-4.

CHARACTER CONVERSION AND PARITY

Character conversion for on-line tapes follows the same conversions
For on-line tapes, however, the tape driver

or write of the tape., See page 6-6.

B

Scheduling and Requesting On-Line Tape Units

¢ purpose for on-line tapes as they do for staged

as for staged tapes.
performs conversion on each physical read

60372600 A



Example 6-11 illustrates use of a 9-track on-line tape with conversion to EBCDIC code.

CONTROL DATA
Ereoey FORTRAN CODING FORM

i
————
Schedules 9=track

=g, Ch=YES) [ tape unit

EE)
NPUT, CU T, TAFE1N] Specifies conversion

HEICHT, 1 T t

oU

1) Speci
pecifies use
T0 120 of EBCDIC
GC TO 105

D) GO TC 1pS J

Example 6-11. 9-Track Code Conversion for On-Line Input Tape

POSITIONING ON-LINE MAGNETIC TAPE FILES

A rewind of an on-line magnetic tape file positions the tape at load point for the current
volume. To rewind to the beginning of the first volume, close and unload the file and

re-request the first volume.
Similarly, you cannot backspace or skip backward across volume boundaries.

When processing the file in the forward direction, upon encountering end-of-volume on

the current reel, the system rewinds and unloads the reel and issues a request to the
operator to mount the next volume.

The VF parameter on the FILE statement allows a user to override the system default.
VF requests that the volume be simply rewound, or neither rewound nor unloaded when

end-of-volume is reached.

@LE(lfn, ee., VF=x)

Use VF=R to specify rewind and use VF=N to specify no rewind. VF=U is the same as
the system default which specifies rewind and unload.

60372600 A 6-15



USING VOLUME SERIAL NUMBERS WITH ON-LINE TAPES

Volume serial numbers serve the same purpose for on-line tapes as for staged tapes.
That is, for unlabeled tapes, they serve to aid the operator in identifying the reel to
be mounted and for labeled tapes they aid in checking or creating the vsn field of the
HDR1 labels (Section 11).

The parameter has the same form as for staged tapes.

VSN=VSH1/VSH2/VSI'13 [ee. /Vsnrl

However, the alternate form of vsn allowed for partial prestaging (VSN=$vsn/t/n/m$)
has no application for on-line tapes.

MOUNT OPTION

To reduce the time required for operator intervention on multivolume files, you can
specify M2 to request that two tape volumes be mounted concurrently. The system
alternately accesses volumes from the two units.

MT

N> M2,...)

(REQUEST(Ifn,

When using this parameter, schedule enough tape units of the required type on your job
identification statement. Remember that you will be charged for both units until you
return the file, When the parameter is omitted or specified as M1, only one volume
can be mounted at a time. The only allowable forms of the parameter are M1 and M2,

SUPPRESSING READ—AHEAD/WRITE—BEHIND

Usually, the record manager remains a step ahead of the user when he is reading or
writing an on-line tape. That is, if your job reads an on-line tape, the record manager
acquires the next block and places it in an LCM buffer before it is requested. If your
job is writing an on-line tape, the record manager lags the write request by at least

one block. This technique, sometimes called multiple buffering, requires additional
buffer space in LLCM, but expedites processing when the tape is being read sequentially.
Multiple buffering may not be desirable when the job is not accessing the tape file sequen-
tially or is frequently repositioning the file. You might prefer to reduce L.LCM require-
ments by suppressing the read-ahead/write-behind processing.

To suppress the read-ahead/write-behind processing and cause system reads and writes
to be synchronized with those in your program, place the SPR=YES parameter on the
FILE statement for the file.

(FILE(lfn, «+.,3SPR=YES)

If the parameter is omitted or if SPR=NO is used instead, normal read-ahead/write-
behind processing takes place.

6-16 60372600 A



UNLOADING/RETURNING ON—LINE MAGNETIC TAPE UNITS

Occasionally, you may want to rewind and unload an on-line magnetic tape file before
the job has completed processing. To do this without reducing the number of tape units
scheduled for your job on the job identification statement, use the UNLOAD statement.

rUNLOAD(lfnl, 1fr12, we.s1fn )
n

Suppose that at least one of the lfn's is the name of an on-line magnetic tape file.
Following the UNLOAD, your job can use a REQUEST statement to acquire the magnetic
tape unit for a different file.

Do not use UNLOAD if the job no longer has a need for the units on which the files are
mounted. Use RETURN, instead.

rRETURN(lfnl, 1fn2, ooy 1fnn)

While both RETURN and UNLOAD reduce the number of active tape units assigned to your
job, RETURN is preferable because it reduces the needs of the job and may allow it to
complete processing sooner.

In either case, returning or unloading the file causes the file to be detached from your
job. If you UNLOAD your unit and your job is not the job with the lowest tape unit
requirements, the unit may be reassigned to another job.

Example 6-10 illustrates a job that returns a 7-track tape unit to the system. Note that
the job identification statement has a request for one 7-track unit and two 9-track units.
Following the RETURN, only 9-track units can be used by the job.

MAGNETIC TAPE RECOVERY PROCEDURES

The action taken by the tape driver when it encounters a parity error on a read or write
is called a recovery procedure. The procedures are different for each station and for
on-line tapes.

STANDARD RECOVERY PROCEDURES

Procedures for on-line tapes and the 6000 Station generally follow the CDC Magnetic
Tape Error Recovery Standard 1.87.004. The 7611-1 I/O Station does not follow these
standards. The 7611-2 Magnetic Tape Station procedures deviate from the standard,
especially in the area of system noise blocks. (See the 7611-2 Operator's/Reference
Manual.) No recovery is attempted by the 7611-1 I/O Station.

If recovery is not possible, the operator is given control to retry the procedures, to
accept the data, or to terminate the job.

Specifying No Recovery

On a tape read parity error, under some conditions the user may elect to accept the
bad block. When reducing analog data, for example, the presence of a bad block may
not adversely affect the results.

60372600 A 6-17



Place NR on the STAGE or REQUEST statement to notify the driver that it is not to
attempt recovery of a read parity error but is to pass the data to the CPU.

( REQUEST(Ifn, ..., NR) or ( STAGE(fn, ...,NR)

If NR is specified or if the operator has authorized continued processing, the action
taken by the record manager when it encounters the read parity error depends on the
setting of the error option (EO) field in the FIT for the file as described in Section 5.

In Example 6-12, NR is specified on the STAGE statement and EO=A is specified on the
FILE statement.

A

B}  FORTRAN CODING FORM Specifies

) /ﬂO recovery
T R
Jo8,CPi70. ‘
FITN.
SITAGE|(TAPEL ,NT ,NR, VSN=33V,E) |See Section 11 for
FILE(TIAPEL1,, E0=A,CM=YES) _~1label handling
LReeL|(TAPER ,R, LR APE) - -
LGO. i
7/8/9 b column one Speci fies accept

(FCRTRRE SOLRGE) but not display
6/7/8/p|4n cplumn one of bad data
L/

Example 6-12, No Recovery and Accept Data Options

Noise Blocks

NOTE

A tape written using standard error recovery proce-
dures may not be acceptable for input at a station
such as the 7611-1 because of the presence of system
noise blocks. Similarly, a data tape prepared on
some other computer system could have valid blocks
composed of 8 or less characters. When standard
recovery is used these short blocks will be assumed
to be noise blocks and will be filtered out of the data,

When standard error recovery procedures are in effect, blocks less than a specified
minimum are considered noise and are not passed to the CPU. For T-track tapes,
blocks shorter than 8 characters are considered noise; for 9-track tapes, blocks shorter
than 6 characters are considered noise.

If noise blocks are not removed from the file by a station, they are passed to the CPU.
The record manager attempts to read them as if they were good data.

6-18 60372600 A



MASS STORAGE FILES 7

F

The only storage and peripheral devices that your program can directly access are system
mass storage devices and on-line tape units. This section describes how space is allo-
cated on system mass storage.

System mass storage offers efficient, easy-to-use, data storage capacity. The only
mass storage device currently available is the 7638 Disk Storage Subsystem. These are
nonremovable disk files. This section will be expanded as other devices are added to
the system.

HOW MASS STORAGE FILES ORIGINATE

An output file referenced by your job is assigned to system mass storage unless you
explicitly define the file as being an on-line magnetic tape file. That is, the system
default always assigns an output file to mass storage. Subsequently, a job can use the
mass storage file in any of the following ways:

1. It can use the file as a temporary scratch file that provides input to the same
program or to some later job step and is then released. The LGO file is a
very common example of a scratch file.

2. The job can use the file as a gsceratch file and then catalog it as a permanent
file before job end.

3. The job can post-stage the file to magnetic tape. In this case, the STAGE state-
ment requesting post-staging must precede the first reference to the file.

4, The job can route the file to a printer or punch.

SCOPE 2 assigns mass storage and associated LCM buffers to the file before writing

— 4
L

on file

he
Similarly, an input file referenced by your job is assumed by the system to be on mass
storage unless your job has explicitly defined the file as being an on-line magnetic tape
file. The file may have originated in one of the following ways:

1. It may have originated from punched cards read in as the INPUT portion of the
job deck.

2. It may be a prestaged magnetic tape file. The STAGE statement describing the
file as prestaged must precede the first reference to the file. The first attempt
to open the file causes all or part of the file to be transferred from the station
to mass storage.

3. The input file may be a permanent mass storage file. In this case, an ATTACH
statement precedes the first use of the file. For a CYBER 70/6000 Station
permanent file, the first attempt to open the file for input causes the file to be
transferred from the station to SCOPE 2 mass storage.

4. The file may be a scratch file created earlier in the same job.

60372600 A 7-1



INTRODUCTION TO REQUEST STATEMENT

When a file is on mass storage, the user has the option of supplying a REQUEST state-
ment to define characteristics relating to mass storage usagé. The REQUEST statement
differs from that for on-line magnetic tapes in that no device type is specified. The
control statement has the following format:

[/REQUESTGﬁLplqﬁ,pn)

p; Significance

An Allocation unit

Tn Transfer unit size

Un Mass storage unit assignment
WCK Write check

The preceding parameters, which can be in any order, are described in greater detail
later in this section.

The same parameters that appear on a mass storage REQUEST statement can also
appear on a STAGE statement and affect the mass storage allocated for the file.
The REQUEST statements and STAGE statements are mutually exclusive, that is,
you cannot use both statements for a file.

The FILE statements and REQUEST statements are complementary, however, and often
appear together for a file. They can be in any order but the REQUEST statement must
be in the job control section before the program that first accesses the file. Example
7-1 illustrates REQUEST statement placement.

NOTE

Multiple REQUEST statements are not allowed
for a file.

|

CONTROL DATA
SALRa  FORTRAN CODING FORM REQUEST precedes
Afirs‘f use of TAPE)
JoasaM,crP7o. = r -
FITN. ‘,/”/’
R QUEST(TAFEl,HCK,T,bl) TAPEl is a mass
LGO. storage file used
DISPOSIE (TAPEL,PR) by object program
V8/9 ik collumn one
PROGRAM CNE (INPUT,CUTPUlT,TAPEY)
PRINT S
5 FORMAT (1F1)
1 READ| 100 ,EASEJHEIGHT, I

1jud FCRMAT(EF10.21I})
; IF (I.GT.0) GC| TC 120
IF (BASE.LE.Q0)| GC TC 105

IF (WU) G0 _J&

Example 7-1. REQUEST Statement Placement

7-2 60372600 A



ASSIGNMENT OF SPACE ON MASS STORAGE

The record manager assigns space to a mass storage output file as needed. Through
parameters of the REQUEST statement, the user can control the size of the transfers
and the amount of mass storage allocated on each mass storage assignment. The user
can also specify that the file be assigned to a specific mass storage unit.

MINIMUM ALLOCATION UNITS

The unit of storage used for assignment of mass storage is called a minimum allocation
unit (MAU) (see Figure 7-1). An MAU consists of 25,600 characters (five sectors on

the 7638 Disk Storage Subsystem).

25,600 CHARACTERS
(5 SECTORS)

2AXI6A

Figure 7-1. Minimum Allocation Unit

The first time a file is opened, one or more contiguous MAUs are allocated to it.
More space is allocated as it is used. The number of MAUs assigned at a time is
determined by the following factors:

1. For the INPUT file and permanent files attached from the 6000/CYBER 70
Station, the number of MAUs is determined by an installation option.

2. The number of MAUs can be specified through use of an An parameter on a
REQUEST statement or STAGE statement.

(REQUEST(lfn, ..., An) or STAGE(fn, ..., An)

3. The number of MAUs can be set by system default if no An parameter is spe-
cified. The default is normally set for one unit.

As shown in Table 7-1 and Figure 7-2, the number of units allocated increases as an
exponent of 2 as you increase n. The allocation parameter impacts the maximum size
allowed for a file because SCOPE 2 allows space to be allocated a maximum of 1012
times. (The limit is imposed by the size of a table which has a maximum of 1012

entries.)

60372600 A 7-3



TABLE 7-1.

RELATION OF ALLOCATION PARAMETER TO FILE SIZE

ALLOCATION SIZE

MAXIMUM FILE SIZE

An MAUs Sectors Tracks Characters Sectors Tracks Characters
A0 1 5 1/8 25, 600 5060 126.5 25,907,200
Al 2 10 1/4 51,200 10, 120 253 51,814,400
A2 4 20 1/2 102, 400 20,240 506 103, 628, 800
A3 8 40 1 204, 800 40,480 1012 207,257, 600
A4 16 80 2 409, 600 80, 960 2024 414,515,200

When specifying the An parameter, keep in mind that your job is charged for all allocated
mass storage. Thus, if An is very large, and you use but a small portion of the last

set of MAUs allocated, you will be charged for a great deal of unused space.

Figure 7-2,

A3

MAUs Assigned as a Result of Allocation Parameter

2AXITA

This con-

dition is even more undesirable when applied to a permanent file because the wasted
space is tied up indefinitely.

7-4

60372600 A




Example 7-2 shows a REQUEST statement for a FORTRAN output file (TAPE 5) which the

user knows is going to be very large.

CONTROL DATA

FORTRAN CODING FORM

4

40 sectors allocated

FTN.
REGUE[S[T(TAPES ,A3)
1jG0.
CATAL
/9 i
; (
/9

(
6y7/8/

t Co n on

ih cofumn one

C(TAPES,FF,IC=NANME)

0

1 e

FCRTRIAN SOLRCE |FROGRAM)
A

0

9

each time mass store-

Jos,CPlfU. / age is assigned.

Example 7-2. TUsing the REQUEST Statement Allocation Parameter

Example 7-3 shows a tape-to-tape copy of a full 2400-foot reel at 800 bits per inch.
If A0 were used as the An parameter for the post-staged file, the file could be staged
in but not staged out since A0 is not adequate for containing a full reel of tape.

|

CONTROL DATA

System uses Al
for mass storage

JoB,CP70.
FILE(CNE,RT=U)
FILE(TWC,RT=U)
STAGE (CNE, A1)
STAGE(THC,PCST,A1)

CCPY (ONE THC) =—
6/7/8/9 in column one

allocation

If AO were specified
copy would abort
with message MASS

| STORAGE EXCEEDED

‘________,,\~,,~\,.,,—~\,.,—\.-._J

Example 7-3. Using the STAGE Statement Allocation Parameter

60372600 A



TRANSFER UNIT SIZE

The user can specify the size of the LCM buffer for a mass storage file. He does this
by specifying the Tn parameter on the REQUEST statement where n is omitted or is 1
to 4. The smallest unit that can be requested is one sector; the largest is 80 sectors.
The allocation parameter (An) affects the size you can specify for Tn because the amount
of data transferred cannot exceed the amount of space allocated at a time. However,
less data can be transferred and you can reduce your LCM requirements by specifying

a transfer unit smaller than the number of allocation units.

(REQUEST(lfn, ..., Tn)

Transfer Buffer Area in
Parameter Characters
T 5,120
TO 25, 600 Allocation can be A0, Al, A2, A3, or A4
T1 51,200 Allocation can be Al, A2, A3, or A4
T2 102, 400 Allocation can be A2, A3, or A4
T3 204, 800 Allocation can be A3 or A4
T4 409, 600 Allocation must be A4

If no Tn parameter is specified, the system uses the An parameter as the default for
the Tn parameter. In this case, the LCM buffer size is equal to the sum of the MAUs
allocated at a time. Space is allocated for each mass storage transfer. This relation-
ship is shown in Table 7-2 and Figure 7-3.

TABLE 7-2. RELATIONSHIP OF AN AND TN PARAMETERS

Tn
An T TO T1 T2 T3 T4
A0Q 5120 25,600
Al 5120 25, 600 51,200
A2 5120 25, 600 51,200 102, 400
A3 5120 25,600 51,200 102, 400 204, 800
A4 5120 25,600 51,200 102,400 204,800 | 409,600

7-6 60372600 A



T4 —>»
‘ [ wau|
MAU MAU
MAU
MAU MAU |—
MAU
MAU MAU |—
MAU
T3 MAU T3 MAU
] MAU
MAU MAU MAU | —
MAU
T2 MAU T2 MAU T2 MAU
¥ I f f MAY
Ti MAU TI MAU Tl MAU Ti MAUV
'y ¥ MAU
0y | may Tf_L MAU Ty | Mau Tfj__“ﬁé!_—
A A
T T T

2AX18A

Figure 7-3. Relationship of MAUs and Transfer Unit Size

60372600 A



The An and Tn parameters must be considered on an input file as well as an output
file. For a permanent file attached from SCOPE 2 mass storage, Tn cannot be set
larger than the allocation parameter used when the file was created. The An parameter
must be the same as when the file was created. If the allocation parameter is not
readily known, it may have to be obtained by trial and error. However, the system
default is usually adequate.

For the INPUT file and permanent files attached from the 6000/CYBER 70 Station, the
transfer unit size equals the allocation units size defined by system default.

Usually, the system default (A0, TO) is the most efficient. The Tn parameter can also
be used on a STAGE statement for a staged file. Referring back to Example 7-3, the
transfer unit size for both files ONE and TWO is two MAUs by default.

In Example 7-4, notice that there is a REQUEST statement for TAPEL.

poltekald  FORTRAN CODING FORM é

, Allocation unit size
0BSAM,CP70. | is system default.
FITN . Transfer unit size
RIEGUE[SIT(TAPE1,T) is 5120 characters

CATALIOIG(TAPE1,MYFILE,ID=JYR,TKEhOGXF)
7Y8/9 ki column one
PRCGRAM CME (IINPUT,CUTPLU[T,TAPE1)

HEIGHT, I
1)

10 120
GC TC 105
0) GO TC 1[5

WX
(=]

—/\"—__-\H

L~

Example 7-4, Using the REQUEST Statement Transfer Unit Parameter

MASS STORAGE UNIT ASSIGNMENT

The Un parameter (where n is an octal unit number) on the REQUEST statement is pro-
vided in the event that a user wishes his mass storage file assigned to a particular
mass storage unit.

ﬁaEQUEST(lfn, ...,Un)

If the 7638 Advanced Disk Subsystems are installed so that they are not all the same
speeds, you may want to explicitly request the higher speed unit. Some installations
may also prefer that certain types of files (for example, permanent files) be directed
to a specific unit.

7-8 60372600 A



Unit number assignments and default assignments are installation dependent and will vary
from site to site. Generally, a systems analyst can tell you assignments at your site,
If the specified unit is not available, the job aborts.

The Un parameter can also be used on a STAGE statement.

WRITE CHECK OPTION

An option of the REQUEST statement permits a user to request that the record manager
follow each write with a read. If the read fails, the record manager aborts the job.
The feature provides slower I/O but reduces the possibility of wasting a great deal of
time in generating a bad file.

To specify write check, include WCK in the parameter list for the REQUEST statement
for the file.

(REQUEST(lfn, ..., WCK)

Example 7-5 illustrates a FORTRAN program that uses WCK on file TAPEl. Here, use
of WCK could prevent cataloging of a useless file. There is no way to recover the file
following the abort.

FORTRAN CODING FORM

BSAM,CP70. REQUEST and FILE can

FTN. ‘|be In any order but
ILE (TIRPEL,RT=F,FL=80) |y 4y must precede

EQUEISIT (TAPEL, AL, HCKyT2) | o0 ¢ file TAPE!
O. "
TALGG(TAPEI,HYFILE,ID=J1R,TK=hﬁGXF) \

7¢/9 Lih cofumn one]

ROGRAM ONE (INPUT,

RINT S

UTPUT,TAFED)

5 CRMAT (1H1)
1 EAC 100,8ASE,HEIGHT, 1
100 CRMAT(2F10.211)

f (I.GT.0p GC TC 120
pSE.LE.D) GO

L~

Example 7-5. Use of the REQUEST Statement Write Check Parameter

WCK is also allowed on a post-stage STAGE statement. This feature allows mass storage
errors to be detected as the file is written rather than later when the completed file is

to be staged out.

60372600 A 7-9



RETURNING MASS STORAGE FILES

You can cause one or more files and their resources to be returned to the system by
using a RETURN statement. Reasons for doing so include the following:

1. Receive a partial output of a very large file

2. Assure that output is not lost if an abort occurs later in the job

3. Reduce resources used by the job, thus reducing job cost and promoting efficient
use of system resources

Post a dependency (TRANSF)

Close a blocked permanent file and reattach it with some other description
INPUT is the only file that cannot be returned.

Use a RETURN statement, as follows:

(RETURN(lfnl,lfn ltng, ..., 1n )

2,
Returning a scratch file causes its mass storage space to be released. Returning an
implicitly disposed file (for example, OUTPUT, PUNCH, or PUNCHB) causes the accu-
mulated data to be disposed. If the file is reopened, a file with the same name and
disposition code becomes available. An implicitly disposed file can be returned many
times in the same job.

Returning a file routed with a delayed DISPOSE statement (see Section 9) causes the file
to be immediately disposed to a station unit record device.

Returning a post-staged file causes immediate staging out of the file. Returning a pre-
staged file causes its mass storage space to be released. Returning a permanent file
causes it to be detached from the job. 1If the file is a 6000/CYBER 70 Station permanent
file, the 7600 mass storage used for the working copy is released. If a new cycle is

to be cataloged, the cycle is staged to the 6000/CYBER 70 Station. Returning an
attached 7600 permanent file causes it to be detached from the job. If it was attached
with permissions other than read, returning the file makes it available for other users.

An UNLOAD statement has the same effect as RETURN for mass storage files.

When a file is returned, its LCM buffers are released.

7-10 60372600 A



Example 7-6 illustrates a job that returns files ST, OLDPL, and COMPILE when they
are no longer needed by the job.

CONTROL DATA

JOB,CP70.

STAGE(ST)
ATTACH(CLDPL,PFNAME,IC=USER 0]
UPDATE(G,I=ST)

RETURN(CLOPL,ST)

FIN(I=CCMFILE)

RETURN(COMPILE)

LGO.

6/778/9 in column one

P S N -

Example 7-6. Returning Mass Storage Files

JOB MASS STORAGE LIMIT

SCOPE 2 provides a LIMIT statement which can be used as a precaution against having
a programming error occur that would result in an abnormal amount of mass storage

being used.

[ LIMIT(n)

LIMIT acts on a job basis; n specifies the number of muitiples of 40960 characters of
mass storage that can be assigned to all the files in your job before the job will abort.

If no limit is defined, a default value set by the installation is used.

60372600 A



PERMANENT FILES 8

A permanent file is a mass storage file cataloged by the system so that its location and iden-
tification are always known to the system. Frequently used programs, subprograms, and
data bases become immediately available to requesting jobs. Permanent files cannot be des-
troyed accidentally during normal system operation including deadstart; they are protected
by the system from unauthorized access according to the privacy controls specified when
they are created.

Any mass storage file available to your job that is not already permanent can be made per-
manent. A mass storage file is not made permanent unless you explicitly specify that it be
made permanent through a CATALOG request. You may acquire (attach) a permanent file
from either of two sources: SCOPE 2 system mass storage or SCOPE 3.x mass storage at
the CYBER 70/Model 72, 73, or 74 (or 6000 Series) Station if your system has one. You may
also catalog a permanent file at either location.

USING SCOPE 2 PERMANENT FILES

CYCLES

The SCOPE 2 permanent file manager maintains one to five separate and distinct permanent
files under each permanent file name. Each one of these separate files is called a cycle and
is identified by the permanent file name and a cycle number. All cycles of a permanent file
share the access restrictions (permissions) applicable to that permanent file name. Most
commonly a new cycle is a more recent version of a previous cycle.

CYCLE NUMBERS

A cycle number is a decimal number (1 to 63, inclusive). Duplicate cycle numbers under a
single permanent file name are not allowed. If you do not specify a cycle number when you
catalog a file, the permanent file manager assigns cycle number 1. If you fail to &pecify a
cycle number when you attach a permanent file, the cycle with the largest number is attached.

LOGICAL AND PERMANENT FILE NAMES

Each permanent file has a permanent file name under which its entry in the permanent file
directory is listed. Permanent file statements that associate a permanent file with a user's
program must include a logical file name. User programs reference logical file names only.

The CATALOG statement declares a logical file name (1fn) to be a permanent file under the
permanent file name (pfn). pfn is 1 to 40 alphanumeric characters. If characters other than
0 through 9 or A through Z are desired, the special characters occur in a literal (that is,
they must be preceded and followed by a dollar sign. The dollar signs do not become
part of the name).

CREATOR IDENTIFICATION

The creator identification is a 1 to 9 alphanumeric character identifier entered into the per-
manent file directory that identifies the creator of the permanent file. The purpose of the

60372600 A 8-1



ID parameter is to supply a file owner/user name to the permanent file manager., It is recom-
mended that an ID for a permanent file be defined when the first cycle of the file is cataloged.
Examples in this guide assume that ID parameters are defined.

SCOPE 2 has no IDs reserved in contrast to SCOPE 3.x which assigns special meaning to the
IDs of PUBLIC and SYSTEM.

MULTIPLE READ ACCESS

Any number of users may simultaneously attach any number of cycles of a permanent file for
read-only access. Any user that attaches a cycle for a purpose other than reading obtains
exclusive access to that cycle. If the cycle is in use when the request for the cycle is made,
the job must wait for the cycle to become available. If others request the cycle while a user
has exclusive access, they must wait until the job with exclusive access releases that cycle

of the permanent file. Multiread access is possible only when the extend, modify, and control
passwords are established for the file.

CATALOGING AN INITIAL CYCLE

Cataloging a permanent file merely means declaring a logical file associated with the creator's
program to be a permanent file. Cataloging is accomplished by the CATALOG statement
which creates one cycle of a file at a time. CATALOG creates an entry for the permanent

file in the permanent file directory. This entry includes the permanent file name, the cycle
number, the creator identification, and any passwords defined by the creator of the file.

As the creator of a permanent file you can grant or withhold permissions. When you catalog
the initial cycle of a permanent file, you can supply passwords protecting the file from un-
authorized operations such as increasing the size of the file, writing over existing data, cata-
loging a new cycle, or purging an existing cycle. If you do not specify any passwords when
you catalog the initial cycle, any program that attaches the file has exclusive access to the
file with all permissions. If you specify passwords covering one or more operations, anyone
to whom you reveal the passwords can exercise the permissions that the passwords represent.
If you specify all passwords but reveal none of them, only you as the creator has any of the
permissions relating to the permanent file.

In this way, the creator of the initial cycle of a permanent file determines how permissions to
deal with all cycles under that permanent file name are granted or withheld. Those who wish

to perform operations on that cycle or any other cycle of the permanent file use the passwords
they know to establish their rights to access the file,

If you catalog a file, the permanent file becomes available to other jobs when your job termi-

nates or when your job releases the file through a RETURN or UNLOAD statement. Until
then, the job remains attached to your job with all permissions granted.

Catalog With No Passwords

If you have a relatively limited or short-term need for a permanent file and are not concerned
about file privacy or multiread access, you may want to catalog a file with no password re-
quirements using the following control statement.

ﬁjATALOG(lfn, pfn, ID=id)

This allows any user to attach the file simply by using the corresponding ATTACH statement.

ﬁ&TTAC H(1fn, pfn, ID=id)

8-2 60372600 A



Because all permissions are implicit to this type of catalog, multiread access is not possible.

Example 8-1 illustrates two interdependent jobs that use the same file. TAPEI1 is declared
as a permanent file on mass storage so that it survives job termination. JOBI1 then returns
the file to the system and posts the dependency so that the file can be used by JOB2 which is
waiting. JOB2 is then able to begin processing. It attaches the file, uses it, and purges it
using the 1fn. As will be shown, any job that attaches a cycle of a file with control permis-
sion can purge the cycle.

AN

FORTRAN CODING FORM Creates TAPE! on
mass storage

CONTROL DATA

JOB1,{CP70,[CFFO0. —— :
FITN. / k

LGO. 1 Catalogs TAPE| as
C TALGG(TAPEi,HYFILE,ID=JyR)*/_;:ejnanenf tile
UNLOAD[( TAPEL) -
TRANSFl(JoBl) @@ ?

. \ ——__|Defaches TAPE|

7V8/9 Lk co one \ [ )

(FDRTRPN SOURCE PROGRAMY |~ [Notifles JOBZ that
6f7/8M|in colum one degendency has been
e

L
{
Bl  COBOL CODING FORM
Logical file name is
J082,0P(70,0FFa1. :55:9"‘“ on Job
FILE(COBINSRT=h,BT) asts
ATTACH(CCBIN,MYFILE,ID=JVR)
COBOL., /
L60.
A ! Attaches permanent
PURGE ([CICEIN) f1le MYFILE and
. assigns |fn of COBIN

7/8/9 Zh|colum one
(CPBCL |[SCURCE FRCGRAM)
Releases all space

6/7/8/9|4n column one,
n cofum i_;__;_-\--"---::j;?ned to MYFILE

Example 8-1, Permanent File With No Password Requirements

4

60372600 A 8-3



Using the Retention Parameter

As the creator of a cycle, you can specify the period for which the cycle is to be
retained, in the form RP=n where n indicates 0 to 999 days. A retention period of
999 days is interpreted as an indefinite retention period. If no retention period is
specified when you catalog a cycle, the default retention period is 1 day. Expiration
of a retention period does not cause the cycle to be automatically purged. Usually,

a systems analyst or operator obtains a list of expired files which are considered can-
didates for a periodic purging.

Example 8-2 illustrates a job that defines the retention period as 30 days for cycle one
of permanent file MYFILE,

1

CONTROL DATA
FORTRAN CODING FORM Retention period

Joesal,crfo. s 30 days
FITN. /
LGo.
CATALIIC (TAPE1,MYFILE|, ID=MYNANE|,FP=20)
V8/9 UK co. one

ROGRAM CNE (INPUT,CUTPUT,TAFE1)

5

5 CRMAT (1F1)
1

Example 8-2. Using the Retention Parameter

Using the Cycle Number Parameter

When cataloging or attaching a cycle of a permanent file, you have jhe option of
assigning a cycle number in the form CY=n, where n is a decimal value from 1 to

63. This parameter is seldom specified when cataloging the initial cycle but becomes
significant when cataloging a new cycle. The cycle number, if unspecified on a catalog
defaults to 1. If cycle n already exists, another cycle n is not allowed. The cycle
number if unspecified on an ATTACH defaults to the highest numbered cycle in the
permanent file,

In Example 8-3, file X of JOBA contains information of a confidential nature so the
creator wishes to restrict reading to those whom he has given the read password.

JOBB attaches the file with read permission. It is accessed as TAPEI1 by the FORTRAN
object program.

8-4 60372600 A



/

CATALOG does not
initiate stage in of
X. Therefore, user

igigésxu' must copy or sl.dp on
5KIPB(x,2621q3) file to cause it fo
CATALOG (x,PFN, I0=PFI0,RO=PRIvATE) | D° ST28%¢ 1"
. !
Establishes read

. ) password as PRIVATE
6/7/8/9 in column one

. oty o~ "_ﬁ——ﬁ'\-‘

g T gl

CONTROL DATA

JOBE,CP70.
FILE(TAPEL,ET=1)
' ATTACH(TAPE1,PFN,IC=PFIC,PW=PRIVATE)

FTN.
LGO.
7/8/9 in column one Password |ist in=
(FORTRAN SOURCE PRCGRAM) |cludes ?“VATE:read
i permission is
e
6/7/8/9 in column on Branted

L

Example 8-3. Defining the Read Password

Using the Extend Password

The extend password (EX=expw, where expw is 1 to 9 characters), if specified on the catalog
of the initial cycle of & permanent file, permits any user who knows the password to increase
or decrease the size of any cycle of a permanent file.

The cycle number is unrelated to the number of cycles currently in the permanent file.

Catalog With Passwords

Passwords specified for read, modify, extend, or control operations restrict the exercise of
that permission to those who know the password. If any password is undefined on an initial
catalog, its corresponding permission is automatically granted on any attach of the file.
Passwords are further protected through the practice of censoring their listing in the dayfile
for the job.

680372600 A 8-5



When cataloging additional cycles of a permanent file, the passwords for later cycles are the
same as for those established when the first cycle was cataloged. You cannot establish new
passwords when cataloging additional cycles,

NOTE

Multiread access is possible only when the EX, MD,
and CN passwords are established on the initial catalog.
Specification of these three passwords is recommended.

The CATALOG statement with password definitions has the following format when used to
create the initial cycle of a permanent file. The password parameters can be omitted or
can be in any order after the 1fn and pfn parameters. The same character string can be

used for more than one password.

(CATALOG(lfn, pfn,ID=id, ..., RD=rdpw, EX=expw, MD=mdpw, CN=dnpw, TK=tkpw)

Using the Read Password

The read password (RD=rdpw, where rdpw is 1to 9 characters), if specified on the initial cycle
of a permanent file, permits only those users who know the password to read any portion of

any cycle of the permanent file. That is, any user attaching the file for the purpose of reading
it must include the read password on the ATTACH statement, as follows.

(ATTACH(lfn, pfn,ID=id, ..., PW=rdpw)

The extend permission does not imply read permission; that is, if you specify the extend pass-
word, you must also specify the read password to be able to read the file. Without extend per-
mission, you can write beyond the EOI for your file, but the information does not become a
permanent part of the file. When your job terminates, the information beyond the original EQI
is lost. When the extend password has been defined, any user attaching any cycle of the file
for the purpose of extending or altering the size of the file must include the extend password
on the ATTACH statement, as follows.

(ATTACH(lfn, pfn, ID=id, ..., PW=expw)

When a user attaches a file and obtains extend permission, he obtains exclusive access to
that cycle of the permanent file.

Using the Modify Password

The modify password (MD=mdpw, where mdpw is 1 to 9 characters), if specified on the catalog
of the initial cycle of a permanent file, permits any user who knows the password to rewrite
any portion of the existing data on any cycle of a permanent file. The modify permission does
not imply read permission; that is, if you specify the modify password, you must also specify
the read password to read the file. When the modify password has been defined, any user
attaching any cycle of the file for the purpose of modifying data up to the EOI must include the
modify password on the ATTACH statement, as follows.

(ATTACH(lfn, pfn, ID=id, . .., PW=mdpw)

8-6 60372600 A



When a user attaches a file with modify permission, he obtains exclusive access to that cycle
of the permanent file. In Example 8-4, JOB1 creates a word addressable file. JOB2 changes
some of the records on the file. The modify permission when used in conjunction with the
extend permission also permits you to reduce the size of your file.

FORTRAN CODING FORM

CONTROL DATA

J e1;cr7o1

———

iLIGC .
CIATALCIG (TA] €5,IC=CCLyMC=MCBIFY}p
7/8/9 K one

RCGRAM TEST1 (TAPES)
IMEINSION INCEx (10F
0)

s INCEXs18,0)
Stores | to 100
100 in each record
200 sA (1) 4180,{)
HH *¥*% FINISHED WRIT[ING ARRAY [F¥¥)
a/7/8

v

BALSRI  FORTRAN CODING FORM
Jb82,EP70. ] l
FTN. .
ATTACH|[(TAPE15, TEST,IE=COL ;PR=NMLLIFY) Reqm;es that attach
LGO. use different 1fn
71879 kh collumn one // than catalog
RCGRAM ROBACK| (TAPE{E,CLTPUD) ‘
IMENSION CINCEX (10)
INENSION N(10p)
N 1B, INDEX,1
; SQL;03F§=23153-:} DEX,10p ) Stores 1001 to 1100
‘31 0 N(I)ET+1000 N in each record from
: 0 2[00 I=1,4 I to 4; leaves 5 to
2p0 ||cALL| KRITHS (1F,A(13,10,1) 9 alone
; ALL| CLCSMS (1B)
CALL| REMARK (3BH *** FINISHEC MCCIFYING ARRA
END
6/7/849 in qolumn one ﬁ

Example 8-4. Modifying a Permanent File

60372600 A 8-17



Using the Control Password

The control password (CN=cnpw, where cnpw is 1 to 9 characters), if specified on the catalog
of the initial cycle of a permanent file, permits the user who knows the password to catalog a

new cycle or attach a cycle and purge it from the permanent file. The control permission
implies no other permission.

Using the Turnkey Password

The turnkey password (TK=tkpw, where tkpw is 1 to 9 characters) restricts no specific permis-
sions; however, if a turnkey password is defined on the catalog of the original cycle of a per-
manent file, only the user who knows the password can exercise permissions specified or
defaulted for any cycle of the permanent file.

Thus, the turnkey password must be specified in addition to any other passwords when you
wish to attach a file or catalog additional cycles of a file.

ﬁATTACH(lfn, pfn, ID=id, ..., PW=tkpw)

Example 8-5 shows how the turnkey password is used. JOBX shows the initial catalog.
JOBZ shows attaching of a later cycle with control permission. In this case, the turnkey
password also grants read permission since no read password is defined on the initial catalog.

CONTROL DATA

JOBX,CF70,
COBCL.
LGO.
CATALQG(CUT,DE,ID=CEI,RP=€9€,TK=63,Ex=1,FD=E,Ch=3)
7/8/9 in colwin one

[
[

CONTROL DATA

JOBZ,CP70.
ATTACH(IN,CB,IC=CDI, FW=63,3,CY=1)
INPLT.
PURCE(IN)
7/8/9 in column one

(BINARY CECK GF PRCGRAM THAT REACS IN)
6/7/8/9 in column one

J—

Example 8-5. Using the Turnkey Password

60372600 A



Password List

On the initial catalog of the first cycle of a permanent file, each password is listed
separately because this is how they are established. Once established, these passwords
are referred to in password lists on subsequent catalogs of new cycles and on attach
requests for existing cycles.

or

(ATTACH(Ifn, pfn,ID=id, ..., PW=passwor‘d1, passvvordz, s passwordn)
CATALOG

A password list is ignored if it is used on an initial catalog statement. Simi{arly, any
attempt to establish or define a password (for example by using MD=mdpw) on a catalog
of a new cycle is ignored. The password list can be in any order after the 1fn and pfn
parameters. Suppose that the initial catalog uses the following CATALOG statement.

(CATALOG(ALPHA, MF, ID=ME, MD=MOD, EX=EXTEND, CN=CONTRL, TK=TURNKEY)

The only permission for which no password is defined is read permission. Thus, the
following password lists grant permissions as indicated.

Password List Permission Granted
PW=TURNKEY Read
PW=TURNKEY, EXTEND Read and extend
PW=TURNKEY, EXTEND, MOD Read, extend, and modify
PW=TURNKEY,CONTRL Read and control (catalog and purge)
PW=EXTEND, MOD None; turnkey password is missing
PW=TURNKEY, MOD Read and modify )

Note that when a turnkey is defined, it must be supplied on any attach. Failure to
supply the turnkey password would mean that no permissions would have been granted
on the attach, a condition that causes job termination.

All Passwords the Same

If you catalog an initial cycle of a file with one or more of the passwords having iden-
tical character strings (for example, MD=XYZ and EX=XYZ), you can enable all of the

passwords having identical character strings by supplying the string once in the pass-

word list. For example, PW=XYZ grants both modify and extend permissions.

CATALOGING SUBSEQUENT CYCLES

Creation of a subsequent cycle of an existing permanent file differs from the creation

of the original cycle in that control permission and possibly the turnkey permission must
be obtained. If neither permission was defined on the original catalog, no password list
is required to obtain permissions. Use the following form of CATALOG when adding a
new cycle to an existing permanent file.

(CATALOG(lfn, pfn, ID=id, RP=rp, CY=n, PW=password, pas swordz)

60372600 A 8-9



The parameters for lfn, pfn, RP, CY, and ID have the same meanings as in the previous
descriptions. The default for the cycle number is still 1; you will want to specify a
cycle number on a new cycle catalog. Example 8-6 shows a job adding a new cycle to

a permanent file. The initial cycle of the permanent file for which the pfn is PERNAME
was cataloged with TK=XYZ and CN=JOE. The creator ID is SMITH.

Attaches highest
numbered cycle.
Read permission is

granted since no
JOB,CP?E_.——__//—-—— read password was

ATTACH(SLCPL,FERNANME,ID=SMITF,Fh=xY2) |defined on initial

CONTROL DATA

UPDATE (N=NEWPL) catalog
FIN(I=CCMFILE) S esssssE————
LGO.

CATALOG (NEWPLJPERNANE , IC=SMITH,RP=100,CY=2,Fh=XYZ,JCE)
7/8/9 in CoTmms

(CATA)
6/7/8/9 in column one

Catalogs new cycle

with 100-day reten-

tion period; cycle
b

Example 8-6. Cataloging a New Cycle

ALTERING THE SIZE OF PERMANENT FILES

As previously noted, you can rewrite information in a cycle of a permanent file if you
have modify permission. No permanent file statements other than the ATTACH state-
ment are required.

If you want to change the size of a permanent file, however, you can do so only by
using either the ALTER or the EXTEND control statements. The ALTER statement
allows you to lengthen or shorten a cycle of a permanent file. You must have acquired
both modify and extend permission when you attached a cycle of the file to be shortened.
Only extend permission is required to lengthen a file.

The ALTER control statement has the following format.

r ALTER(1fn)

The EXTEND statement allows you to lengthen the cycle but not shorten it and requires
only extend permission. The control statement has the following format.

EXTEND(Ifn)

O

60372600 A



Because the attached file is used as a logical file, the only parameter required following
the ALTER or EXTEND statement is the logical file name used when the file was
attached. If a file is to be extended only, it must be positioned at end of information
before any writing occurs. If it is a blocked file, it must be closed.

Example 8-7 illustrates how ALTER can be used to create an empty cycle of a per-
manent file.

CONTROL DATA

ATTACH(ALT JALT,ID=XXyPh=MCD,EXT)

LGO.
REWIND (ALT)
ALTER(ALT)
. ™~ File ALT is empty
Example 8-7. Using the ALTER Control Statement

In Example 8-8 the permanent file GROW was initially cataloged with no password
requirements. Hence, none need be specified to extend any cycle of the file, In the

example, INPUT causes the program that writes on GROW to be loaded and executed.
The EXTEND makes the addition permanent.

CONTROL DATA

JOB,CP70. 1 ]
ATTACH{GRCK4GRCh,IC=XX) .
SKIFF(GRGH,2621A3)<—-—:?ség"on file GROW
INPLUT.
EXTEND (GRCW) (
7/8/9 in column OR®
(0BJECT MCCLLE) ALTER(GROW) coul!d be
7/8/9 Level 17 used instead of
(BATA DECK) EXTEND(GROW)
6/1/8/9 in column one

Example 8-8. Using the EXTEND Control Statement

60372600 A 8-11



PURGING PERMANENT FILES

If you have attached a cycle of a permanent file with control permission, you have the
authority to purge that cycle from the permanent file. The control statement has the
following format.

| PURGE(1fn)

When the job terminates, or if you issue a RETURN or UNLOAD of file 1fn, the mass
storage used by the file is returned to the system. No subsequent job can attach the
file,

In Example 8-9, a user with the ID of JDOE decides to clean out three obsolete cycles
from his permanent files to make room for new files.

CONTROL DATA

JCB,CP70.
ATTACH(A,PFA,IC=JCCE,CY=1,Pk=CN)
PURGE (A)
ATTACH(E,PFE,ID=JDCE,CY=60,FK=CXyTX)
ATTACH{C,PFE,IC=JCCE,CY=61,Fh=CX,TX)

PURGE (B)
PURGE(C) CX is control pass-
. word
. TX is turnkey pass=-
word

[ |6/7/8/9 in column one )

Example 8-9. Purging a Cycle of a Permanent File

The status of the purged file for the remainder of the job is determined by whether the
purge is partial or complete. A partial purge requires control permission as a minimum
and all but one permission as a maximum. After the PURGE statement is processed,
file 1fn still has all of the characteristics of a permanent file until the file is returned
or the job terminates. Thus, for example, if you do not have read permission you can-
not read the file even though it has been purged. This is because the pfn and all the
permissions are still associated with the 1fn.

Example 8-9 illustrates a partial purge because only control permission has been granted.

In contrast, a complete purge takes place when all permissions are granted. In this
case, after the PURGE statement is processed, file 1fn does not have the characteristics
of a permanent file but instead resembles a temporary file. The 1fn is no longer asso-
ciated with the pfn. This means that if your permanent file contains five cycles, a com-
plete purge can be immediately followed by a new cycle catalog in the same job. This
would not be possible using a partial purge since with a partial purge the permanent file
would appear to have all five cycles until the job ended or the file was returned or
unloaded.

8-12 60372600 A



Example 8-10 shows a job that performs a complete purge of a cycle of a permanent
file to make room for a new cycle.

CONTROL DATA

e ~

JOE,CP70.
ATTAGCH(PLL,FERNMLIE,IC=USERIL,CY=1,Fh=0,E,C)
ATTACH(PLS,FERMLIE,IC=LSFRIL,CY=5,FW=2,E,C)

(FRGGRAM USES PLS5 TC GENERATE PLS)
. Complete purge makes

. /__/room for new cycle
PURGE (PLY1}

CATALCC (PLESFERMLIE,IN=USERIC,CY=F,Ph=() ¢
6/7/8/9 in o one

Catalogs new cucle

[ N |

Example 8-10. Purging a Cycle and Adding a New Cycle

Another advantage of a complete purge is that it allows a user to recover a permanent
file during EXIT processing if an abnormal termination occurs.

A complete purge also allows you to attach a cycle of a file, and without copying it,
remove it from its current location under one file name and recatalog it under a different
file name. In Example 8-11, the user moves a permanent file from a permanent file
named WRONGPLACE and recatalogs it under RIGHTPLACE. Since this represents th
initial catalog of a cycle under RIGHTPLACE, the CATALOG contains password definitions.

CONTROL DATA

JOB4CP7C.
ATTACK(ZyWRCNGELACEZIC=FISyLY=E4Ph=z=ALFE,(4CyE)
PURGE(2)
CATALCG(ZyRIGHTPLACE,IC=MINE,ZCN=MYCNJEX=MFYEX, NM[=NMYMD)
6/7/8/9 in column one
e WS

Example 8-11, Moving a Cycle From One Permanent File to Another

60372600 A 8-13



INSTALLATION DEFINED PRIVACY PROCEDURES

Your site may define its own privacy procedures to be used instead of or in addition to the per-
missions described in this manual. Check with your systems analyst to see if your site has
defined additional requirements for accessing permanent files.

USING SCOPE 3.x PERMANENT FILES

So far, you have learned how to use permanent files on system mass storage at the CYBER
70/Model 76 or 7600 Computer System. Suppose your site has a CYBER 70 Series Station or
a 6000 Series Station, and you know of a permanent file there that you would like to access or
perhaps you would like to maintain a permanent file of your own at the 6000 Station. SCOPE 2
allows both of these operations. You cannot, however, modify, extend, or purge a file at the
6000 Station. These restrictions arise from the fact that when you attach a cycle of a 6000
Station permanent file, you do not obtain direct access to the file on the 6000. Instead, the
first time your attached file is opened, the 6000 Station sends a working copy of the cycle re-
quested over to 7600 mass storage where it resembles a temporary file more than it does a
permanent file. Similarly, a catalog of a 6000 Station permanent file results in a copy of your
file on 7600 mass storage being sent over to the 6000 Station as soon as the file is unloaded.

Before attempting to use a permanent file at the 6000 Station, read the section on permanent
files in the SCOPE 3.3 or SCOPE 3.4 Reference Manual, depending on the operating system
in use at the 6000 Station.

Restrictions on use of SCOPE 3.x permanent files are:

1. You cannot dispose or stage a file either attached from the 6000 Station or cataloged
at the 6000 Station.

2. Under certain conditions, the user must assure that the transfer of an attached file
has taken place before his job accesses the file.

3. The SCOPE 2 file organization lidrary (L.B) cannot be used under SCOPE 3.4. You
can catalog files having this organization at the 6000 Station but they cannot be ac-
cessed by a SCOPE 3.4 job. None of the SCOPE 2 file organizations is available
under SCOPE 3. 3.

4., SCOPE 3.4 requires blocking for sequential (SQ) files.

5. SCOPE 3.4 permanent files using SIS, SDA, and IORANDM are not interchangeable.

6. If you do not supply a FILE statement for the attached SCOPE 3.x permanent file, it
is assumed by default to be record type W, unblocked. Remember that the default file
type for a file created under SCOPE 3.x is S record type, C blocked. S records are
the only file type interchangeable with SCOPE 3. 3.

7. Files to be cataloged at the 6000 Station from the 7600 must be unlabeled.

8. Although exceptions exist, relocatable binary files are, in general, not interchange-
able.

USING THE STATION PARAMETER
Addition of the station parameter (ST=ggg, where ggg is the station identifier) to the ATTACH
statement notifies SCOPE 2 that the file to be attached is at the 6000 Station. Adding ST=ggg

to CATALOG causes the file to be cataloged at the 6000 Station. You can catalog initial cycles
or new cycles of existing files. When the ST parameter is present, parameters generally are

8-14 60372600 A



subject to the requirements of the SCOPE 3.x permanent file manager. One exception is that
SCOPE 2 requires that the ATTACH or CATALOG specify an 1fn parameter even though pfn

is specified (a feature of SCOPE 3.4 permits 1fn or pfn to be omitted) and that if pfn is omitted
that the positional comma be present. Another exception is that if the cycle number is speci-
fied on a catalog of a new cycle or the attach of a cycle, that it be in the range 1 through 64
even though SCOPE 3.4 now allows cycle numbers to go as high as 999. To avoid this restric-
tion, it is best to always omit the cycle number; SCOPE 3.4 default for an omitted cycle num-
ber on a catalog of a new cycle provides the highest numbered cycle plus 1.

When the ST parameter is used on a CATALOG or ATTACH statement that is continued on
additional cards, be sure that the parameter is on the first card of the statement. SCOPE 2
searches only the first 80 characters of the statement for the parameter.

Example 8-12, shows how to acquire an UPDATE old program library that exists as a perma-
nent file at the 6000 Station for assembly and execution on the 7600. The old program library
is S record format, requiring a FILE statement. No read password is defined for SRCELIB,
so anyone is free to read the file.

CONTROL DATA

ATTACH(CLOPL,SRCELIB,I0=MSMITH,ST=CCF)
FILE(CLCFL,RT=S,MRL=20000)

UPDATE.

COMPASS(I=CCMPILE)

LGC.

7/8/9 in column one
(LPCATE INFLT)

JOB,CP7U. }

In Example 8-13, a user wishes to obtain a copy of a cycle of a 6000 permanent file and recat-
alog it at the 7600 so that the information exists under both permanent file systems. In this
case, the user must initiate the transfer of the file from the 6000 Station through a copy or skip
operation since the CATALOG statement does not open the file. The transfer to the 7600
occurs when the user first opens the file.

CONTROL DATA

JOB,CP?70.
ATTACH(A,FRCGyIC=CREATOR,yST=CCP4PR=WOXXF)
SKIPB(A,262143)

CATALCG(AyJNEWPF yID=TAKERyRP=CCGC,RL=74Ch=7,EX=?)
6/7/8/9 in colwm one

Example 8-13. Making a 6000/CYBER 70 Permanent File into a 7600 Permanent File

60372600 A 8-15



Example 8-14 shows an UPDATE old program library being created under SCOPE 2

and cataloged under SCOPE 3.4 at the 6000 Station (identified as SVL).
is then attached using a job that can be processed under either system.

This cycle
In this case,

it is important to supply a cycle number since the default for cycle number on a new

catalog differs between systems.

The ST parameter is ignored by SCOPE 3.4.

CONTROL DATA

JOR1,CP7n,
FILE(PL,RT=S)
STAGE(PL,POST)
UPDATE (N=PL,W,L=1234)
CATALOG(PL 4PERMUPLIB,TD=JONES,ST=SVL, TK=XX}
7/8/9 in colwmn one

(UPDATF CREATION NFECKS)
6/7/8/9 in column one

———

V

CONTROL DATA

JCEB,4CP7U.
FILE(CLCPL,RT=S)
FILE(NEWFL,RT=S)
DTTACP(CLEPL,FERMUFLIE,ST=S\AL,IE=JU\ES,F$~=)‘X)
LPDATE(P=CLLCFL yN=NEWFL4L=123t,h)
CATALCG(NEWFL 4 PERMUFLIE,ST=SVL,I0=uCMES 2CY=Z2,Fb=XX)
7/8/9 4in column one

(ULPCATE CCRFECTICN CECK)
6/7/819 4in column one

L

™ N

Example 8-14. Maintaining UPDATE OLDPL at 6000/CYBER 70 Station

60372600 A



UNIT RECORD DEVICES AT STATIONS 9

“

All unit record devices are at stations and are not directly accessible to the CPU. 1In
particular, this includes all card readers, printers, and card punches. Tape units are
described in Section 6.

When you originate data at a unit record device, the station passes it to SCOPE 2 as
a mass storage file which is accessible to your program. Thus, when your program
reads a card from your job deck, it actually reads the image from a mass storage file.

When you want data to be put out on a unit record device (that is, printed or punched),

your program places the data on a mass storage file which is then passed to the station
for disposition upon request or when the job terminates. This means that when a pro-
gram 'punches' a card, it actually writes the card image on mass storage. When the

job terminates, the station punches the card.

This section familiarizes you with the programmer's role in such offline transfers of
data, referred to as ''spooling."

CARD READER INPUT

The INPUT file contains the portion of your job deck that most concerns you. Each
section or partition in your job deck becomes a section or partition of INPUT. A
section consists of sequential, unblocked W records that vary in size according to
whether your deck section is coded cards, formatted binary cards, or free form binary
cards.

SCOPE 2 normally terminates the INPUT file with an EOS/EOP/EOI sequence. If the
last card in the job deck is an EOP, SCOPE adds a second EOP before the EQI, In
this card there is no EOS preceding the EOP.
The FORTRAN language READ fn,iolist statement automatically refers to the next
record on INPUT (see Example 9-1). Any other file can be equated to INPUT by adding
the parameter TAPExx=INPUT to the program statement. In this case, the READ or
BUFFER IN statement that references the unit as xx will actually read from INPUT.

It is also possible to equate TAPExx=INPUT to enable the INPUT file to be referenced
by a unit number. This allows you to check for EOF on INPUT, since the IF(EOF)
statement requires a unit number.

You can cause your COBOL program to read from INPUT through use of the COBOL
ASSIGN clause.

The INPUT file cannot be returned or unloaded. Although it is not protected from being

redefined as some other file organization or record type, you should avoid redefining
it. You can also change the MRL between job steps.

60372600 A : 9-1



CONTROL DATA

FORTRAN CODING FORM

BSAM,CP7|0.
TAPE1,POST)

/9 kh coflumn one
FRCGRAM CNE (INPUT,CUTPL[T,TAFE1)
PRINT 5
FCRMAT (1+1) Reads a coded card
REALC in)EASEyl“EIGHT,I < from the next
FCRMAT(2F10.21I}1) .

IF (1.6T.g) 6C TC 120 2ect lon of JPUL
IF (BASE.LE.U) GC TC 105
IF {FEIGHT.LE.O) GC YC 1p¢
GO TC 1d6
05 CALL| MSC
06 ARKEAl = ,S*BASEfFHEIGHT
FRINT 110,BASE|,HEIGHT ,AREA
110 FCRMAT (/774* EASE=*FZ0.E,* FEIGHTE
IF1805)/,¥ AREA=‘F20-5)
WRITE (1) AREA

~3 oMo
b4
(o)
m
—

= AN
[==]

[
[=)
(=<}

[~

]
*

iGC TIC 10
120 STCP
ENC
SUERICLTINE MSG
PRINT 4UD
4i0 0 FCRMAT (///,* FOLLOWING OINPUT CATA] NEGATIVE PR ZERC ¥)
RETURN
ENC
7V8/9 Kh column one
210i0 « 2 4 500.76 3 )
0[0.24 €00.76
L0D.00 7C00.00
RE .32 425,.3¢€ )
50j0. 00 £00.00 4 Coded input data
jjc.00 1€4.00
700« 43 800.00 ! }
10j0. 00 3Co0.00
050, 00 100,00
1€l . 00 200.00
i

4/7/-8 9 in dolumn_one. v/\_’—’—-\.f——-

Example 9-1. Reading Cards from INPUT

60372600 A



Remember, that unlike 6000 SCOPE, the INPUT file does not contain control statements.
Thus, a rewind or skip to BOI positions your file at the second section in your job deck.

Example 9-2 illustrates this feature.

Unlike other files, the loader does not rewind INPUT before loading from it.

CONTROL DATA

~

Execute using data

JOB,CP70. on INPUT
STAGE {SRCE)

FIN(I=SESS

LGC. Rewind INPUT

Rewind EE?{NE (INPLT)

m 7/8/9M
(DATE) Execute again

7/8/9 Level 17 using same data

{DATA)
6/7/8/9 in column one

Example 9-2. Rewinding INPUT

CODED PUNCHED CARD INPUT

You are probably familiar with 80-column punched cards. However, not all punched
cards use the same punch conventions. The two sets supported by SCOPE 2 are the
026 (Hollerith) set and the 029 (ASCII)T set. Look at Appendix A; you will see that
for letters and numbers the punches are the same. It is in special characters that
the sets differ. Thus, depending on the punch used for keypunching your cards, you
will want to signal SCOPE that the card deck is 026 coded or 029 coded.

Unless you indicate otherwise, the system assumes that cards are coded using 026
punch format. ft

TANSI Standard x3.4-1968

ftAs an installation option, the default can be changed to 029 at the 6000/CYBER 70
Station and the 7611-11 Station. The relationship of 026 and 029 is then reversed.

60372600 A 9-3



Hollerith (026) Punched Card Input

Usually, your job identification statement, control statements, source language program,
directives, and data are punched using the Hollerith (026) character set (Figure 9-1).

HECDErGAT  JELHNOPER  STUNVHETE Ulcasomrng  T-F-195= 5. \
EE:EZII]IIIIIIITHN uSU<lmmz#HH?‘NNZ'UZ!Wﬂﬂ3!kﬁxi?]l'ﬂﬂllLﬁj‘Eﬁﬂl!wﬂSlﬂﬂssﬁslﬂaiﬂ
'.l.lllll (11 @'ﬁ G @O 86 T 2 AR TR

V224567 3 9B 25060018 M2 222328252527 20293031 5233 34 35 36 37 38 33 40 43 42 43 44 €5 46 47 48 49 50 51 525354355550 S8 SO GO BN GZ IIGNGS GRS 68 GI ML IZ I3 IS G N UG MM EY

boooooenco0000000000000000000 NN llllﬂﬂll)l]ﬁﬂllﬂﬂﬂﬂDBﬂﬁllUBﬂﬂlﬂﬂUﬂl][lnﬂﬂl!ﬂllllﬂﬂﬁllﬂllﬂ
HBH
IHIH.]IHIIIllllllllllllllllHlllllllllllllllllllll.llllIIIIHHHIIHIHIIIH

2222222.2222222222.22222?2Z2|2222Z222222.222‘122ZZZ222222222222222222222222222222

T23 45878800 MGHSBTABAN2BNERT WML T3 353657362980 40 4243 44 45 45 47 4549 59 51 NN H BT BN GETNG BINRE

33333333.3333333333|333333333|33333333333|33333333333333||3||333333333vasass $i3
4454|4444444444|44444:4¢4|44444444444|444444444|4||44444444444444444444¢444

444414
PIIASE TN R RIUSEN AN RS USRI AN AR ABA A E N0 GEIBS RAUS SIS DD R BGGRIRBRT NN ERN DR
55358

55555'5555555555.355555555.55555555555.555555555555555555555555555555555555
BESSBEEGEGGIEEGSBGGEGEIEG5ESGSEE'E555656SEEEIEEEGGSGES66556856555666658555855855

VI3 45870 S 0IMMNIMIE BB RL 2N SB222293930 3233343 353033962 43 43 4348 45 45 47 43 48 59 5t NAHB BRIV B UGS NI NONH BTN

TN R 1 111131111111113 ¢ ]
{ sesescssssosalcascessaoclfasancaassecsscnccaashassaafell BEsBNo3coa8838686888888848

P24 S8 TR SHURBUGETISONE 2D MG W33 271338355 37 33 3940 41 024348 43¢5 47 48 43 50 51 NSRS OR OGN NSNS

!999!1!!SHH!!l!ﬁ!!!999!9.999999993'9399995’.‘993.99939!95!9999999'9939!99999559955

5084

Figure 9-1. Hollerith (026) Coded Card
ASCII (029) Punched Card Input

The control statements, source language program, and data can be punched using the
029 character set (Figure 9-2). The set is limited to the 64 characters given in
Appendix A.

To signal that 029 punched cards follow, punch the characters 29 in columns 79 and 80
of the job identification statement, EOS, or EOP card preceding the data. The system
assumes all coded information following is in 029 punched format until it encounters
an EOS or EOP that contains a 26 punch in columns 79 and 80. The 029 mode termi-
nates upon encountering the EOI for the job.

- ; I i1 e = s,
/I 73 Vi3 14 15 16 17 15 19 20 21 22 v 23 25 26 27 28 29 303 3 33 34 35 IE EXE DX +5l 47 45 43 50 5 57 53 54 5556 57 58 58 60]
1R RAENN [ | NED | B R SN IR PR ER N Y R TN
vosooaosoanoogoooncoocconcoo WENNNEENooMoooooooooooosoMoooooMeooooo0co00600000000
T2 3456 139NNV EETBBEN3HI52%20828K 3 323334 35 36 37 38 35 37 41 42 €3 49 45 45 47 43 49 58 51 S25354 55 5657 56 SIGD 61 62 G3 G4 GSEEEI BRLI MW N 2 I MU 59677 18 79 68
IIIlllllll!IllIIlllllll!lllI|llIlIlIlllllIllllllllIllllIllIlllllllllllllllllllll

2222222'2722222222.222222222.22222222222.222222222222222222222222222222222212222

V23456 T 880011 12131596 1718182820 222324 2526 77 20 25 30 31 32 33 34 35 35 37 38 39 47 41 42 43 44 45 45 47 48 49 58 51 52 53 54 55 5 57 58 54 60 §! GIEIGAESEEEI BB N TI R II T IS I6 2T 8 19 80

3333333303333333333M33333333303333333333303333233233323333M33MM3333333333333333333
diaadsaalisaaaqacaalasasrasaalanaasaaanaalaaanaaeaaDesaeaaaaaaa090400000004dase

T2 345078 900 1270WI5 161 1019700 2773382525 27792930 31 3053 34 35 36 37 38 39 46 41 42 43 48 45 45 47 48 43 50 §1 52 53 55 555650585960 G 7G4 G5 CHEVBRER TOTI 2 3TN TG T M 9 A0

555555555505555555555Ms 5555665 Ms5555555555M5555555555MM555555555555555655555555
66666666666Mescooco666MocscaceocMeccesooooccMocoooMocooosMocecc66666666666666666

V2345 6 7 0 9010120001516 171098 2820 222024 7526 20 28 22 30 30 32 33 34 35 35 37 38 38 40 47 42 &3 44 45 45 47 48 43 50 51 §2.53 54 55 55 57 58 59 G0 61 62 63 64 65 §6 67 6B €9 TN 71 127374 1S 5 17 T8 18 80

bbbl 11111 1111111111111111 11
uaannauanssasluanasaaaaslnnansaaaslﬂaaanssaasnlssalslsllllsllaasssussasssansesaa

T2 345678 ST RBUIEN B e8I 2385%27R8309052334 35 35 3139 3947 41 47 43 44 45 35 47 43 49 5051 57 52 54 55 56 57 58 59 60 61 62 63 64 5 6 67 63 69 70 7/ 72 RUNERI RN

'19!9!999395!!5.!599999999'995999999'99999999999.99999999599999399“9999999999999

\ 5004
————

Figure 9-2. ASCII (029) Coded Card
9-4 60372600 A



Example 9-3 illustrates a job containing a FORTRAN source deck punched in the 028

punch format.

6/7/8/9

/

/ DATA

(/ |

7/8/9 29

/

ﬁ)NTROL STATEMENTS

i J08,CP70.

026 CODED CARDS

SIGNALS THAT 026
PUNCHED CARDS FOLLOW

FORTRAN SOURCE
(029 CODED CARDS)

SIGNALS THAT 029
PUNCHED CARDS
FOLLOW

026 CODED CARDS

JOB STATEMENT

2AX56A

Example 9-3. ASCII (029) Coded Punch Input

60372600 A



INPUT Record Size for Coded Cards

Each coded card becomes a W record containing display code characters. The size of
the record is determined by the station of origin. Trailing blanks are truncated. There
is no record of the number of blanks truncated. If they are significant in your data,
there is no way to recreate them.

6000 and 7611-11 Stations

A coded card from the 6000 Station or 7611-11 Service Station has trailing blanks trun-
cated to 2 characters less than a full word, or if the card contains information in col-
umns 79 or 80, the station adds blanks up to 88 characters. Thus, a coded card image
is a minimum of 8 characters and a maximum of 88 characters (Figure 9-3). This pro-
cedure is required for the JANUS interface between the two systems, which uses a zero-
byte terminator.

When reading cards from INPUT, be sure to allow sufficient buffer size. For example,
do not set the MRL on a FILE statement for INPUT to 80 for copy routines.

7611-1 Station

A coded card from the 7611-1 Station has all of the trailing blanks removed. If the card
contains 79 or 80 characters of data, the record is 79 or 80 characters, respectively.
Figure 9-3 illustrates coded card images on INPUT.

4-CHARACTER LOGICAL RECORD

w
76111 —— CONTROL| X X X X
w
XXX | STATION 0

8-CHARACTER LOGICAL RECORD

6000 W
STATION—| CONTROL | X X X X | AAAA
WORD
80-CHARACTER LOGICAL RECORD
w
76111 ———| CONTROL| X X X X X X X X X X} X X X X X X
vos X000000K /snmou WORD
88-CHARACTER LOGICAL RECORD
N 6000 w
STATION——|CONTROL| X X X X X X X X X X]] X [ AAAAAAAA
WORD

CHARACTER POSITION 80

2AXISA

Figure 9-3. Coded Card Images as W Records on INPUT

9-6 60372600 A



SCOPE BINARY CARD INPUT

Figure 9-4 illustrates a SCOPE binary card. The station recognizes the card as SCOPE
pinary by the presence of the 7/9 punch in column 1. It takes the data from columns

3 through 77 and packs it into W records, the size of which is determined by the station.
For the 6000 Station, for example, each W record is 630 characters.

A binary card contains up to 15 80-bit CPU words starting at column 3. Column 1 con-
tains a count of 60-bit words in rows 0, 1, 2, and 3, plus a check indicator in row 4.
1f row 4 of column 1 is 0, column 9 is used as a checksum for the card on input; if
row 4 is 1, no check occurs on input.

Column 78 of a binary card is unused; columns 79 and 80 contain a binary sequence
number,

|1 2 3 4 5
12 l
1 || L
(o] ’2 3 COLUMN BINARY INFORMATION
2|8 | g
! @
(o]
2 |83 3
ol|la o =
3 | = g w w
N —0Q
4 s 2 2
' : '6 g
5 — gz — < &z
6 2 a »
T [+<
7 © S
8
9

2AX20A

Figure 9-4. SCOPE Binary Card

All of the decks to be loaded by the loader, that is, object modules and core image mo-
dules consist of SCOPE binary cards. For a more complete description of the loader
tables that comprise the object module or core image module, refer to the Loader Refer-
ence Manual. The loader ignores the W record delimiters when it reads SCOPE binary
decks. The record delimiters are significant in a FORTRAN or COBOL program.

NOTE

When you use FORTRAN or COBOL I/O statements

to read a formatted binary record, you do not re-
ceive the data between two 7/8/9 cards as you would
on previous operating systems. Instead, you receive
a W record, the size of which depends on the station
of origin. For example, for a 6000 Series or 7611-11
Station, you receive 630 6-bit characters of data.

60372600 A 9-17



As shown in Example 9-4, this does not promote a one-to-one correspondence between
output statements and input statements. (See also, Punched Card Output, page 9-18.)

CONTROL DATA

JORi,F 70.
FTN.
LGO.
1 7/8/9 b cofwnmn one
ROGIRAM P8 (PUNCHR,TAPE1=PUNCHB)
IMFINSTON A(10(0)

0 =1,5
19 oI%g flf'gé Each WRITE writes
ND 100 words

6/7/8/9| in dolumn one

CONTROL DATA

JOR2,4,CP70.

FTN. t

LGO.

7/8/9 ki collmn one
ROGRAM RA {INPUT,TAPE1=[INPUT,0UTPUT)
TMEINSION AC10j0)
0 10 I=1,5

10 el LS Reads from INPUT
N

7/8/9 |[ith cofumn one

{{IDECK [PUNCHED BRY| Jn81)
61778/ in doLumn one

P S

Example 9-4. FORTRAN Binary Input (6000/CYBER 70 Station)

FREE-FORM BINARY CARD INPUT

Free-form binary cards, also referred to as 80-column binary, contain data in all 80
columns.

When you place free-form binary decks in your job deck, a binary flag card must pre-
cede and follow the free-form deck (see Figure 9-5). This flag card has all rows of

column 1 punched and all rows of any other column punched. The card can contain no
other punches.

9-8 60372600 A



FREE - FORM

FLAG s < —BINARY DECK
CARD T
]

2AX2IA

Figure 9-5. Flag Cards to Delimit Free-Form Binary Deck

When SCOPE 2 produces free-form binary decks, the first card and the last card of
the deck (except for EOS, EOP, or EOI cards) are flag cards. If the free-form deck
was created under some other system, you must add these cards.

The station does not transfer the flag cards to the INPUT file. Each free-form binary
card is transferred as a W record consisting of 160 display-coded characters (Figure
9-86).

EOS and EOP cards are not recognized inside of free-form binary decks.

ROW
21001 23 456 789
1] T T T T
coLuUMN | /1 GHAR | CHAR 2,
i CHARZ CHAR 4 160 CHARACTERS
) ) 1 ]
1 [ 1 1
1 ] 1 1
i 1 w
i i CHAR|CHAR | CHAR|CHAR|CHAR |CHAR |CHARJ)| CHAR [CHAR
l ' CONTROL |\ ™" " 31 "4 | 75 |6 | 7 /)| 159 | 160
REVERSE SIDE WORD
OF CARD
Popd
s i i 2AX22A
1
0 NG N B S

Figure 9-6. Free-Form Binary Card Translation

NOTE

When you use an I/O statement to read free-form
binary, you do not receive all the data between
the flag cards. Instead, you receive a W record,
that is, 160 characters of data.

9-9
60372600 A



PRINTER (LIST) OUTPUT

Every job processed by SCOPE 2 results in some printer output, even if it consists
merely of the dayfile history of the job. Much of the printer output you will receive is
generated by the compilers, assemblers, and utility programs. You will have more
direct control over other list output resulting from output statements you have used in
your source language program.

Whether you are responsible for formatting the list output or whether it is formatted
for you, the data to be printed must adhere to certain requirements and conventions.

1. To be printed, a file must consist of unblocked W records.

2. The file is assumed to consist of display code characters. That is, every six
bits are interpreted as the display code representation for the character to be
printed. (See Appendix A.)

3. The first character of each W record is assumed to be a carriage control
character.

4. Normally, 137 characters including the carriage control character constitute a
print line. For the 6000/CYBER 70 Station and 7611-11 Station, if a record is
greater than 137 characters, additional characters are continued on subsequent
lines. Only the first character of the record is interpreted as a printer control
character. For the 7611-1 Station, characters beyond the 137th are ignored.

When printing at the 6000/CYBER 70 Station or 7611-11 Service Station, a double
colon (zero byte) in the low order 2 characters of a word prematurely terminates
a print line.

Generally, the object program as well as the compilers and assemblers will be writing
the list output on the system file named OUTPUT. This file is automatically printed
when the job terminates. Many of the compilers and assemblers let you direct your list
output to a file other than OUTPUT. Also, you may want to write your output on a file
other than OUTPUT and list it. In this case, it is your responsibility to use a DISPOSE
statement to route the file to a station where it will be printed. If you do not properly
dispose a file, it is lost.

IDENTIFYING PRINTER OUTPUT

Each printout of a file generated by a job begins with two pages containing the modified
job name in large characters (Figure 9-7). These are called banner pages and precede
data on the OUTPUT file or any other file routed for printing. The banner page helps
the operator identify list output for your job and route it back to you.

PRINTER CARRIAGE CONTROL

The first character of each logical record to be printed must be a carriage control
character. The character itself is not printed but is part of the record on mass storage.
Buffer areas must be large enough to accommodate this character. When the record is
copied to a device other than the printer, the character is considered as the first char-

acter of the data.

Table 9-1 gives the printer control characters.

9-10 60372600 A



7611 SCOPE v2.0
OPERATING SrSTEM

60372600 A

JIIIIIIIIILS JJ9200 H 78923393388 5538555585 ARALAAAAAR 111 GGGGHGGGGH
ENNNNFNNRNNN] ©20000030  398RA3813988 SSSSSSSSSSSS  AANAAAAAAAAS 1111 656666666666
J 00 21 33 83  SS S aa Ad 111 GG G
JJ jolo} 0 00 81 R4 SS as an 11 6G
49 00 03 1 R3  SS aa aa 11 49
99 00 9 27 88 89 sS aa an 11 66
m 08 3 03 83 38 SS Iy an 11 66
JJ on 2 07 739n331373898  SS5SSSSSSSS  4a aa 11 66
Ju o0 o REREELLLEEELL L] SSSSSSSSSSS  AAasianasaan 11 GG GGGG
FA] 00 2 97 A 84 SS  AaAAsAnaAnal 11 99 {3449
3 0 2 03 88 a3 SS a2 as 11 49 66
Ju e 9 07 88 88 SS A4 a2 11 GG GG
9 07 9 0y 3 an Ss  aa aa 11 66 GG
JJ JJ ooo 22 a3 a9 s SS AA aa 11 G! GG
EENNNRE] 000300307 319PA 1939888  $SSS5555SSSS AR 48 111111111111 GGGGEGGGGGER
FNRNN) 0 202220 33303334393 $SS555SSSSS as a4 111111111181 5666656666
18.13.57 13713772
$33ESES Y I$$2TELRTE €S ERE8E2E TeE3IE3I3T €1¢3 £33 tgeeecge JAPS816
£33328314 19$3RITIFT  $3iT3FCIS sregeeese gges 2 32323233 Jnessia
33 i3 L3 S £33 LA 31 ege et s JOPSB16
%3 fe € g3 3 Tt s $¢ fe g 3¢ JNeSBLG
15 < F§  TEIXFEI3 3FEIFEST is 3% $35¢ k33 JnesiG
%3 E31 ¢ 33ITTILIL TEECCTRY T 33 A2311 s¢c Jonsan
%t €3 3f €T 33 e e gggfgegess ¢ £33 898 Jooesags
it b33 g ¢ f¢ i3 i3 TSETEEEILS b 34 k34 $3¢¢ JoosaLs
133 i3 2t it €% A3 1t £¢ s k33 e JNeSaLG
111 33 < g 3% £¢ £3  ¢¢ €3 < T €2 Jopsatg
$838883 $e3sEgRerT  TICETTLCCY FIggggeCT e £33 3131 fgreegge JOPSALG
$ELLER3 TeeFTTE 333338883 FREEISLLS 7s fs E223343 3e3§9247 Jnasatn

SESS IS IIETTICNLieSIESORITITECISCETCeTER gEteRiLeiTReLeteerTIRSLLLITETLTICTC LS gegge
BSSSSLEI S ITIRe9eTeTTEITTITeISTeETrrsssResserEEesetteILeCesesescIesseFatessseetersyssy
S PSS ERSIssereraTEiTstererertestitssgtIserseespiggregarceegetseceaczrresgenegroggrisesst

Figure 9-7.

Printer Banner Pages (Two Styles)

2AX57A



TABLE 9-1. CARRIAGE CONTROL CHARACTERS

Character Action

A Single space, post-print page eject

]é , Single space, post-print skip to last line of page (line 64)

D Single space, post print page eject

E Single space, skip to line 4 or 34

F Single space, skip to line 4, 24, or 44

G Single space, skip to line 4, 19, 34, or 49

H Single space, post-print skip to line 2

3 l Single space, post-print page eject

K Single space, post-print skip to last line of page

L Single space, post-print skip to line 1

M

g Single space (like blank)

P

PM Display remainder of line to operator; wait for operator action; not
recognized by 7611-1 Station.

Q Clear auto page eject, suppress remainder of line; default for
6000/CYBER 70 and 7611-11 Stations.

R Select auto page eject, suppress remainder of line; default for
7611-1 Station

S Select 6 lines per inch; suppress remainder of line

T Select 8 lines per inch; suppress remainder of line

U

v Single space (like blank)

w

X Page eject

Y Skip to last line of page

z Skip to line 1

0 Double space

1 Page eject

2 . .

3 Skip to last line of page

4 Page eject

5 Skip to line 4 or 34

6 Skip to line 4, 24, or 44

K Skip to line 4, 19, 34, or 49

8 Skip to line 2

9 Skip to line 4

+ No spacing

- Triple space before printing

All special characters act like blanks

9-19 60372600 A



Any preprint operation of 1, 2, or 3 lines that follows a post skip operation will be
reduced to 0, 1, or 2 lines.

Issue the functions Q through T at the top of a page. S and T cause spacing to be
different from the stated spacing if given in other positions on a page. Q and R cause
a page eject before the next line is printed.

Printing 6 lines per inch allows a maximum of 85 lines per page. However, with auto-
matic page eject, only lines 4 to 64 are used, thus allowing for 61 lines. If the printer
is switched to 8 lines per inch (either manually or by the carriage control character T),
88 lines can be printed on a page but only lines 5 to 85 are used if pages are skipped
automatically.

Printing Without a Printer Control Character

Suppose you want to print a file that contains your source language program. If you
were to route it to a printer or copy it to OUTPUT, the first character of each line is
data and would be interpreted erroneously as a carriage control character. A control
statement that you can use to overcome this problem is the COPYSBF (or COPYSP).
This stands for Copy Shifted Binary File (or Copy Shifted Partition). The control state-
ment can have either of the following formats.

COPYSBF
or (1fn. ,1fn

COPYSP i Mot

The routine takes each record in the next partition of a file, inserts a blank character
before the first character, and copies the record to another file. The second file is by
default OUTPUT, but can be a file to be disposed. The file must be unblocked W re-
cords to be disposed, however. The input file is by default INPUT, but can be any file.
Each end-of-section causes a page eject.

Example 9-5 illustrates a job that effectively performs a card-to-print operation; it
copies a partition on INPUT to OUTPUT.

CONTROL DATA

JOB,CP7i.
COPYSEF.
7/8/9 in column one
(CCDEC GCATA TO BE LISTED)

6/7/8/9 in cofumn one

-

Example 9-5. Copy INPUT to OUTPUT Shifting Each Record

60372600 A 9-13



DISPOSING PRINT FILES TO STATIONS

If you have a mass storage file that meets the requirements of a print file (unblocked
W records containing display code characters with the first character a carriage control
character), you can cause the file to be immediately routed to a station to be printed by
placing the following control statement after the job step that last uses the file.

(DIS POSE(1lfn, PR)

You cannot dispose staged or on-line magnetic tape files because they are blocked.
However, you can dispose permanent files if they are at the 7600, not at a 6000/CYBER
70 Station.

Print blocked data by copying it to an unblocked file and then dispose the copy of the
file.

Type of Printer

Designate the type of printer to use at the 6000/CYBER 70 or 7611-11 Station by using
P1 instead of PR to indicate a 501 printer or by using P2 to indicate a 512 printer.
Your file will be placed in the queue for the printer of the requested type. The 7611-1
considers PR, P1, and P2 equivalent; all printing takes place on a 517 printer.

Forms Control

If you want the printing to take place on special forms, you can notify the operator by
expanding the disposition code (PR, P1, or P2), as follows:

(DISPOSE(Ifn, Px=Cyy)

¥y is a two-character code unique to your installation. Check with your systems analyst
or the operator to determine what codes, if any, have been assigned to your installation.
When your file is routed to the station, the operator is informed via a console display
message that he must assign a printer and mount the form you requested.

Delayed Disposition

If you place the DISPOSE control statement before the job steps that create or use your
print file (Example 9-6), you must prefix the disposition code with an asterisk to indicate
that you do not want immediate routing of the file to the station. The file will be routed
at job termination or upon issuing a RETURN or UNLOAD statement. Failure to use *
causes an empty file to be sent for printing. This placement of the DISPOSE statement
affords a degree of protection for the file description. That is, you will receive an
error message if any job step attempts to redefine the file as blocked. It also guaran-
tees that the file will be disposed if an abort condition occurs later in the job, as long
as the fatal error did not directly involve the file.

9-14 ’ 60372600 A



MIMLRVLY  FORTRAN CODING FORM
: [- ¥PR specifies
:Ti:c o, | dc?lay_'ed disposition
CIISFQ G(TJPEi,'FRf’A of file TAPEI
LGC.
7Y8/9 Wh colmn one
PROGIRAM CNE (INPUT,CUTPUT,TAPEL)
PRINT 5
g FCRMAT (1F1)
1jo REAC| 100 ,EASEHEIGHT, I
L [FORMAL{2F10.211) \
= = RN

Example 9-6. Placement of DISPOSE Statement

Routing to Another Station/Terminal

Consider the possibility that you want your file printed at some station or terminal other
than the one through which your job was submitted. To specify the destination of your
file, add the ST parameter to your DISPOSE statement:

ﬁ)IS POSE(1fn, Px, ST=gggttt)

In this case, ggg is a 3-character station identifier assigned to the station when it was
logged in (CCP is the default identifier for the 6000/CYBER 70 Station: IOS is the de-
fault identifier for the 7611-1 Station). The terminal identifier ttt is optional, but when
it is present, it identifies a terminal linked to the station designated by ggg. If ttt is

present, the Px parameter cannot include forms control.

If you are routing to a 6000/CYBER 70 Station or 7611-11 Station EXPORT/IMPORT
terminal or INTERCOM terminal, you can designate the terminal by expanding the

disposition code rather than using ttt on the ST parameter. This form is compatible
with 6000 SCOPE 3.4 disposition.

(EHSPOSEaﬁLPy=Eyy) EXPORT/IMPORT terminal

( DISPOSE(1fn, Px=Iyy) IMPORT terminal

When these codes are used, you cannot use forms control nor ttt on the ST parameter.
yy is a 2-character code defined by the installation.

Example 9-7 illustrates a FORTRAN job that creates a print file named TAPEL and
disposes it to a 501 printer.

60372600 A 9-15



CONTROL DATA

Jpasap,ceip.

FITN.

LG0.

DESPOSE (TAPE1,F1)

71879 kb cotlumn one
RCGRAM CNE (INPUT, CUTPU[T,TAFE1)
RINT 5

5 CRMAT (1k1)

1p EAD| 100,EASELFEIGHT, 1

1po CRMAT(2F10.21I)1)

F (I.GT.0) GC| TC 120
F (BASE.LE.D)] GC TG 105
F (FEIGHTLLE.D) GO TC 1p¢

/h__/

Example 9-7. Disposing Print File Created by FORTRAN Program

Example 9-8 illustrates a FORTRAN program that generates each of the 64 characters
in the character set in display code and writes a line of the character on OUTPUT.
OUTPUT will be printed on the next available printer at the station of job origin (in this
case, a 6000 Station) when the job terminates. Before job termination, the job rewinds
OUTPUT (the dayfile has not yet been added) and writes it on a file to be disposed at
some other station for comparison. (In this example, the file is routed to a 7611-1.)
Note that the printer driver for the 6000/CYBER 70 Station handles the % and : differ-
ently from the 7611-1 and that the FORTRAN program is unable to generate the 00 code.

I

Gl eted  FORTRAN CODING FORM Returning OUTPUT
‘ separates FTN [ist

Jos,CFlra. | GENERATE |cHARACTER 7| OUtPUT from object-
FITN. / time output
RETURM (oLTpLT )< {
LEO. - Writes character
REWIND|(CLTFLT) set on OUTPUT
CLPY (OLTPUTyPRINT) ~-
D SPOSE(PRIhT,ST=Aﬂn:EFT‘-~‘~ (
7Y8/9 kih column one [

RCGRAM CCOE (CLTFUT Copies OUTPUT

' IMENSION IC(8l0) to file PRINT

C 2| I=1,€4 ) Y

c 1] J=1,87
1 C (U=1-1 Routes PRINT to
2 RINT 1000,IC(1), IC 7611=1 Station (AAA)
1400 CFRMAT(* CCCE F *CZy1CXx jBOR1) | for printing., Dis-

ND position code is PR,
6]/7/8/9r4‘_n _Lumn one e -

Example 9-8. Generate Printer Character Sets

9-16 60372600 A



6000/CYBER 70 STATION

CODE = 00
CODE = 01 ll‘lllllill‘lllllllllll!lll!A!lll!lﬂlllllllllI!tllllllllllllllllllilllllllllllll
CODE = 02 E!BEEBEBEBEEEEEEBEEEEEEEEEEEEE!SEEEEEEEEEEEEEEEEEEEEEBEEEEEEE!BEEEEE!BEEHEBEEEEE
COOE = 03 ceeecceecce cececcecceececccceceeeeccecceeccecccecceeecccceccecccecceccece
COOE = 04 BDUDEDtDtOBE[ﬂntntcbﬁtntttttnEﬂDEtEEBEE[tttEt(EtCDOtUttEtCDEEOﬁEDCBCtDE[tCDCBEED
CODE = 05 EEQEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE!EEEEE!EEEEEEEEEEEEEEEEEiEEEEEEEEEEEEEEEE
CODE = Q€ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFfFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
CODE = 07 GGGGGGEGGEGGGGGGG(—GEEEBEGGEEGGGGGEGEGEE(GESGQ(G(EGEEGGEG(-GGGEGGGGGGGGGGGEGGGEGGG 76“_' I/o STATION
CODE = 10 HHHHHHEHFEHEFHEFHEHER PHERREFHEEHERRRRERERERREERFEREERHEREERREEFERRREERRERRHEEFRE
CODE = 11 !lll!IlIll!Illlll]IlII!I]Il]Illll!llllllIIIIIJIlllllIlIIlIIIIlIlIIIIIlI]IIIIIIIX
cnuz;lz JJJJJJJIIII|L!I'I JoddJdid |vl'll\lllll|I‘I_I.]ll|llll|ll|llllllll|'lll‘l|lll.|JJ
CODE = 13 KKKKKKKKKKKKKKKKKKKKKKKKEKKKKKKKKKKKKKEKEKKKKKEKRKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
CODE = 14 [RRNNERINN)
CODE = 15 PUMNMMENRD
CODE = 1€ RANNNNRNRY CoDE = 22
CODE = 17 cccecocect CODE = 11 AARAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAARAAANARAARAAAAAANAAALAARAAANALAAAAAAAAAAAAR
COCE = 20 FPPPPPFPFf CODE = 32 n3933833306BRRABARZ833333338873343A9933373R8 33333RBI8R319R3333333383836388
CODE = 21 g¢ggecccact CODE = 23 CCCCCCCCCCCCCQCCCCCCﬁCCCCCCCCCCCCZCCﬁCCCCCCCCCCCCCCCCCCCC:CCCCCCCCCCCCCCCCCCCCCC
CODE = 22 RRRRRREREF CODE = %4 DDDODDDDJDDUDDJJODDD)DJD1))303)DOJDGDDQGODJDD)DDJ0037DJDO)DDD?DDDDDDJDJDODOODODB
GOOE = 23 SESSSSESE! CODE = 35 EEEEEEEE€EEEEEEEEEEEEEEEEEEEEEEEZEEEEE?E?EEE?EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
CODE = 24 TTTITTITITN CoDE = 36 FFFFFFFFFFFFFFFFFFFFFFEFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFF
CODE = 25 LLeuLeLiet CODE = 37 6666G6E6656666666656G656566666655655666655666665666666 556563666G566666665666666666
CODE = 26 YWYV CODE = 10 HHHHHHH! 4 , - 1
CODE = 27 RERWRRNNE] CODE = 11 IIIIIIIIIXIII![II[IIII[IIIIIII[I[II!II!IIIIIIIIIIIIII[IIII!IIIIIIIIIIIIIIIIXIIII
CCDE = 20 EXXXXXBXD] CODE = 12 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
CCDE = 31 yryyriyy CODE = 13 KKKKKKKKK(KKKKKKKKKK(K(K(KKKKK(K((KKKK(KKK(KK(KKKKK‘(KKKK<KKK(KKKKKKK(((KKK&K(KK
CODE = 32 2222222122 CODE = 1& LLLLLLLLLALLLLLLLEL L LLLELLLLLLLLLLLLLLLLLLLLLLLLELLLLLL L L LLLLLLLLLLLLLLLLLLLL
CODE = 33 6o000060c! CODE = 15 MHMMMMMMN MMMMMMM M MY 1M AMHMMMM MMM MMMY M MMM MMMMMM
COCE = 34 1111111113 CODE = 16
COOE = 35 2z222222¢ei COOE = 17 000000000000000000000000000000)0000000000000000000000000030000000000000000000000
CODE = 36 333333233 CODE = 20 PPPPPPPPPPPPPPPPPPP PO PIPPPPPPPPPPPPPPPEPPP PPPPPPPPPPP P PPPOPPPPPPPPPPPPPPPPPP
CODE = 37 Lhlbble b il CODE = 21 Q00002002206362AN00092009320003072Q962002Q3002202220AQI00 2000200000004 2A0AGAAA0
CODE = &0 5£555555¢! CoDE = 22 RRRPRRRRIRRRRPIRRR]IR? R RRARARRIZRIIRARRARRR IRRRRRARR! RRR RRRRRIRRRRRRR]
COO0E = &1 EEEEEEEEE! CODE = 23 SSSSSSSSSSSSSSSSSSSSSiSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS;SSSSSSSSSSSSSSSSSSSSSS
CODE = &2 2777707 CODE = 24 TTTYTTYTTYTTTTYTTTTTVTTTTTTTTTTTTTT!TTT1T1TTTTTTTTTYTTTTTT!TTTTYTTTTIITTTTTTT?TY
CODE = 43 LLLELELEY CODE = 25 UBUYUUULLUU UUUULYUU LU UBUULLUUUUYIYUUY UY U UUUUL LU UUUUUUBUL BUBUUULUIULUY UL UULUIUILLY
COCE = &4 95999959¢* CODE = 26 VYYVVVVVVYV VYV VYV VY VYV YV YV VYV VYV VU VUV YV VYV VYV VYV VYV VY VYV VOV VYV VUV VY Y
CODE = &% sEreeb R CODE = 27 WHAERAHHHWH AR AR Y AR WA AW R AW R WHHH
CODE = &6 B CODE = 30 XOOOOONCXX KX XXX XXX XEKXX XX XK K XXX XXX XX XOKEXX XXX KX X KHXXX XX XXX XXX XXX KXXKK XX XXX
= 47 sesreoEn I CODE = 31 YV Y YYY Y PV YY Ty Y Y YV Yy Yy Yy Yy vy Y Y Y Y Y Yy Y YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
= S0 1142070710, CODE = 32 ZZZZZZZZZZZZZZZZZZZZZZZZZZZ272ZZZZZZZZZZZZZZZZZZ7ZZZZZZZZZZZZZZZZZZZZZIZZIZZIZZZ
= 51 ceeeeeece CODE = 33 033200003300000010303330133UGQ?GJ’QDBBQQUOJEGQQ?QE!0!09E?]0BU1UGS]GUDQ1000000090
= §2 nnnIHY CODE = 3& 1111111111111111111111111111111lll1111111111111111111111111111111111111111111111
=z 53 33838888 CODE = 35 2222222222222?222222222222222222?22222222222222222222222222222222222222222222222
z 5§ szss==3T=t CODE = 36 333333333333333333333333!333*333333333333333333333333333333333333333333333333333
z §§ CODE = 37 GULLLUELELEELLEGLLELLLLELELLLLEEY el ol el bty ettt lolotilelelolilels bl le Gl tlelalele o lalytels ol LY
= S€ 19999999 CODE = &) 55555555555595555555555555555555555555555555555559555655555555555555555555555555
z 57 CODE = &1 £6566666666666666666656566566665666665555566666666 63 B666666666666666666666
= 60 CODE = &2 777777777777777777777777777?717?777?77777?7777777?7?777?77777?777777777777777777
= 61 1194444449 CODE = &3 B!8855853558&05050855615555ﬂR%R%i56!88$§56%55843885%%888!35695585888866556806665
= €2 1M CODE = 44 9999999999999999999929§999999999999999999999999999999999999991999999999999999999
z €3 sIs3t3st2 CODE = 45 +EEEEEIEE RS reeEFE FEEREEFE LS * + +
= 64 iR I 22 2] COOE = 46 - P
= 6% pespprers, CODE = &7 FEEERENIFIEIEIIFBIBI NN ERERE FEFSEISIITTTRIITRTS szsssny
= €6 evvvvvyve: CODE = S0 R riiidiiiiiiiiggiiiaiiaaaaiiiiiya
= 67 AAAAAALAS. CODE = 51 (((((((((l((((((!((((((((((l((((((((((((((((((((((((((((((((((((((((((((((((((((
=70 trerseery CODE = 52 3303000300013 00330333303330330333003303000190330330000)03300)300 1NN
= 7 3484844 CODE = 53 !SKKSSSSSSSitstislitiiiiittiliititx$!S%S(tf%ti‘!t!t%‘t‘sstttt&ttt!liiiS!&S(SS $43
=z 72 €egCeL e CODE = 54 =
z 73 2333>>3>> CODE = 55
2 7% CODE = 56
=15 CODE = S7
* 76 CODE = 60
= 333333333 CODE = 61 frerecroeeoocrerrgrereereererorroeecreoererereeeteereegeceorrreereeereeeceeceet
CODE = 62 ll)llllllll!!ll)l!llll]l]l)))!)!lllllll)lll)Yl!)ll))lll]!l)l)l))!)ll)l)l)llll!ll
CODE = 63 ALALLAAKL LA AL LAL A AL AL L LLNANL LALAAL DAL LX AL LA AL AL A LN AL L LA L L LA LLLXAALARL LA AL
CODE = 64 FELLLLIRLIERRRLLILLLLLELLLLYL PELPLLLLLIRFILRLLLLESLRLLELRLLLLLLLLLLLLR2LLLE
CODE = 85 e e
CODE = 66 VYVYVVVVVVY VY VYV VYV VYV YYRVVVVYVVYIVYVVVV VYV VVYVVVVVVVVVVVVYVVVVYVVVVVVYVVVYYVVVYY
CODE = 67 AAAAAAAAAAAAARAAAAARAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAARAARAAAAAARARAAA
CODE = 70 000'0!09'0000?09"'9”'0?90"’?90700099000QO99’0000000'0!!QQ'?”’Q?OQ"Q’OQQQ"’
CODE = 71 P e ey R R R XL X i hed e + 122221222227
CODE = 72 €L LLLLCLLLLCLELLLLLCCLLCLCLLLLLLLLECLCLCLLCCCLCLCLCLLLLLLLELLLLCLLCLLCCCCCCCcc
CODE = 73 ))>>>>>>>>>>>>>>>>>>>>>)>>>>>>>>>)>>>>))>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>»>)>>>>
CODE = 7& < CELLEELEeEeeeesgseeLsess
CoDE = 75
CODE = 76
COOE = 77 S TITTE8StastI LT BTIE RSBt Rt B E NI T i IEI st NItILBIETIIIIIITILAIILLLY

2AX58A

Example 9-8. Generate Printer Character Sets (Cont'd)

60372600 A 9-17



PUNCHED CARD OUTPUT

Earlier, we described how to read punched cards from your job deck. Now, we shall
describe how these cards can be generated as output from your job. Punch options in-
clude coded punched cards (026 or 029), formatted binary cards, and free-form binary
cards.

IDENTIFYING PUNCHED OUTPUT

Each time a file is punched, the deck begins with a lace card that contains the modified
job name in large characters. The lace card (Figure 9-8) precedes data automatically
punched from files routed for punching. The lace card helps the operator identify
punched output for your job so that he can route it back to you.

NN T I FHITHTHITHIE

Joocooo00020000000000000600093002800030000080000000063600000000000060600000000008af

P23 4S8 89l oSN a3380 0BR8N 008SBT 8830 1385 B T0S0H0REBHTMRNIEINGET RN

(RN L LT AR L R L LR R AR R IR E At | 1] RRARRORET I ARRRRRI [ V11111 RRT]
2222202202222 Q222222 Q222222222220 Q02 e 22222 22222 2222220020

123456878801 NRBUHBBNIYREDNNNNINHSBN HBHTNLBBUQBHGENBRAT IS T BB PN SKIRNRHNRONIBITRR

I FRREREE] | EREI | ERERERI IH 1111 EERE TTTTE T T ERRT | ERERY | ERERI 11 EERER] | FEREEEEEEE] |
Ry | LRy | R Ry | L | R Ry | IR Ry [ R N RNy | e 1 Xt 111 |

P23 45 0T 0Nyl Ed SRS BaladlldsSNSNE OG5 08020 S S SINRRGEHERANNIINSEN AR

BooMBossMEssSMlssssss sl Mlss55555a5 Mool 5555555550050
RS CHRRNRARs s cHRNuERNNRNcRRRRNNRnNc cannannnEccRlscoscolBocsRANANcsssHRNRARRN sl

P24 S BT I RURDUBKETERNYNAONLEDT R BRI NN HFIEBB A2 QUG TR0 5283%5 3557 D6 236 6SETRE NI MISHE IS

BT I I it 111111111111111171
IR A e NN
12314534 £

T8 S 101231508171 (928 20 222320 25 75 21 28 70 28 31 3233 24 35 3 77 3339 40 41 42 40 2% 43 4G 47 49 4S 5930 52 53 54 55 58 57 5 53 69 61 67 6I 68 65 65 67 NUNBBNRENHB@

\lIlIlIlIIIIIIl-IIIIIIIIIIIIIIIIIIIIIIIIllIIIIIIIIIIIIIIIIIIIIlll'llli,ialllllllllll/

Figure 9-8, Lace Card

SEPARATOR CARDS

Any delimiters in the file (that is, EOS, EOP, or EOI W control words) cause a corres-
ponding file separator card to be punched, and for some stations, offset in the punch
hopper. W control words for records are not punched.

MISPUNCHED CARDS

If the system detects an error while punching a card, it offsets the card and repunches
the data. 1If you have difficulty reading punched cards, check to see that these mis-
punched cards have been removed. In particular, check the sequence numbers (in
columns 79 and 80) for SCOPE binary cards.

9-18 60372600 A



CODED PUNCHED CARDS

For a file to be punched as coded cards, it should conform to the following conventions.
1. It must contain unblocked W records.

2. The file is assumed to consist of display code characters, that is, every six bits
are interpreted as the display code representation of the character to be punched.

3. Normally, the record consists of 80 or less characters which constitute a single
punched card. If a record exceeds 80 characters, the 6000/CYBER 70 Station
and 7611-11 Station continue the record on as many cards as are needed to hold
the record. Each record begins a new card. Remember, that when the cards
are read in, each card becomes a W record so there is not necessarily a one-
to-one correspondence between reads and writes. For the 7611-1, if a record
exceeds 80 characters, information beyond the 80th character is ignored; only
one card is punched.

When the station punches a file, it does not punch the W control words. You can impli-
citly request coded punch output by writing on the PUNCH file, or you can explicitly
route the file to a station for punching through the DISPOSE statement.

SCOPE BINARY PUNCHED CARDS
For a file to be punched as SCOPE binary cards, it must contain unblocked W records.

Normally, the record consists of a complete core image module or object module deck
and is intended as input for the loader. The file is punched as if it contained pure bi-
nary information, but it can contain display code information. Punching coded informa-
tion in binary (sometimes called 'crunch' format) provides a more compact card deck
than punching it in coded format, but presents some problems when you are trying to
reconstruct the logical records on input.

When the station punches a binary file, it does not punch W control words. Thus, there
is no way for you to know whether the data consisted of one or many records before it
was punched or where the end-of-records occurred. Usually, the deck results from a
single output statement and consists of a single record, the maximum size of which is
limited only by the maximum for W records.

You can implicitly request formatted punched binary output by writing on the PUNCHB

file, or you can explicitly route a punch file to a station by using the DISPOSE control
statement.

60372600 A 9-19



Example 9-9 shows compiler output being directed to PUNCHB instead of to LGO.

997‘,—77"9;{9”‘.‘. FORTRAN CODING FORM | writes binary on

_| PuNcHB, not LGO
wa)/

r: codu.mn one —— | Loads object module
FIORTRAN SCLRCE) and begins execution

{
/7/3/|9 in ialu.mn one.

PPo.
FUNC

~N D M

O

Example 9-9. Punching Binary Output from Compiler

FREE-FORM BINARY PUNCHED CARDS

Any file containing unblocked W records can be punched in free-form binary. There
is no system file that is automatically routed to a station and punched in free-form
binary. You can request free-form binary only through the DISPOSE statement.

When the station punches free-form binary cards, it precedes and follows the deck with
a free-form flag card.

W control words are not punched. Thus, there is no way for you to know by examining
the deck whether the file consisted of one or many records or where the end-of-records
occurred. On input, the deck will be divided into 160-character W records.

ROUTING PUNCH FILES TO STATIONS

If you have a mass storage punch file other than PUNCH and PUNCHB, you can route it
to a station and have it punched by placing a DISPOSE statement after the job step that
last uses the file. You cannot dispose staged or on-line magnetic tape files (remember
they are blocked).

You can dispose permanent files at the 7600 but not at the 6000/CYBER 70 Stations. For
tape files, you can copy the data to an unblocked file and then dispose the copy.

(DISPOSE(Ifn, disposition)

Disposition is a 2-character code designating the punch format, as follows:

PU Punch Hollerith (026) coded format
PB Punch SCOPE binary

P8 Punch free-form binary

PA

PZ Reserved for future use

P9

9-20 60372600 A



Forms Control

If you want to punch special cards, notify the operator by expanding the disposition code.
For example,

[EHSPOSECMn,Px=cyy)

yy is a 2-character code unique to your installation. Check with your system analyst or
the operator to determine what codes, if any, have been assigned to your installation.
When your file is routed to the station, the operator is informed via a console display
message that he must assign a punch and load the cards you requested into the punch
hopper. Your file is punched when he informs the system that he has taken the re-
quested action.

Other options for disposing punch files resemble those described for print files, page 9-14.

Example 9-10 shows card input being copied to free-form binary. INPUT is copied to
file FFB, which is disposed as P8. You will receive an exact copy of the input deck
if it is in free-form binary. If the input deck is in coded format, the output will be
compressed. If the input deck is SCOPE binary, the data in columns 3 through 77 will
be copied onto the free-form binary cards.

JCB,CP70.,
COPY(INPUT,FFB)
CISPOSE (FFB,P8)
7/8/9 in column one
(CARDS TC EE PUNCHED)
16/7/8/9 in column one

Example 9-10. Punching Free-Form Binary

60372600 A 9-21



COPYING AND POSITIONING FILES 10

f

This section presents the general principles of copying files. It does not consider the
impact of factors such as code conversion, labels, station choice, device type, etc.
The impact of these factors on files in general is covered in previous sections.

INTRODUCTION TO COPY ROUTINES

Users familiar with 6000 SCOPE 3.4 and earlier systems will be accustomed to the idea
that a COPY statement is tailored to a specific purpose and that the contents and format
of the output file exactly duplicate the contents and format of the input file. Thus,
COPYBF served to copy a binary file and COPYCF gerved to copy a coded file. SCOPE
3.4 copy routines do not use record manager. Files are copied as binary or coded.
Any FILE statements are ignored.

Under SCOPE 2, the copy routines all use the record manager, and as a result, the
scope of the copy routines has been broadened considerably. Indeed, a copy as formerly
viewed, becomes a special case - a case in which conversion does not take place. In
this context, conversion means file redefinition, that is, any change between the copy
input file and the output file record type, block type, or file organization. This is not
to be confused with character code conversion which is described in Section 6, Magnetic
Tape Files.

Copying of files generally has no effect on the data in the record. In some cases, how-
ever, if the record type has changed between the input file and the output file, the re-
cord is expanded to a new fixed length or is truncated as required by the new record
type. (See Appendix E, Using Record Manager for File Conversion.)

HOW TO COPY FILES
Copying files involves the following steps.

Selecting a COPY statement

Describing the formats of the input file and the output file

Specifying the size of the copy buffer
Copy routines open the files for I/O. This initiates prestaging of the input file, if
necessary. The routines do not reposition the files before copying. Upon completion,
copy routines do not close the files. A message is placed in the dayfile stating the

number of EOR, EOS, and EOP delimiters encountered during the copy. The routines
do not copy labels.

SELECTING THE COPY

For all copies, the default input and output files are INPUT and OUTPUT; the default
number of records, sections, or partitions (n) is 1.

60372600 A 10-1



copy FILE

CoPYP PARTITIONS

COPYCF | PARTITION | PARTITION 2 PARTITION k CAN BE ON

COPYBF W- RECORD TYPE
OR BLOCKED

SEQUENTIAL FILES

COPYS SECTIONS CAN BE
COPYCR SECTION | SECTION 2 SECTION m ON W-RECORD
COPYBR TYPE FILES OR
FILES WITH Z
RECORDS AND
C-B8LOCKING
COPYR RECORD | RECORD 2 RECORD n
2AX23A

Figure 10-1. Selecting the Proper Copy Statement

File

To copy an entire file from its current position to end-of-information, use the following
control statement.

( COPY(ln, ,1lfn_ )

Example 10-1 shows COPY being used to copy the data on INPUT to file TAPEL.

EEETE FORTRAN CODING FORM

JbB’C ?U' 1

FITN.

ESEY(’TAPE“ Reads from TAPEI

7¥8/9 lin cotlmn one ]
(FCRTRIAN SOULRCE)

7V8/9 Jin- collumn one Data copled onto
(CATA) TAPE]

V8/9 |Lpvet 17
(BATA)

6(7/8/p|4in cplumn one

e gl o

Example 10-1. File-to-File Copy

10-2 60372600 A



Records

When copying records, use the following control statement.

ﬁzo PYR(lfnin, 1fnout’ n)

The number of records (n) is expressed in decimal.

Example 10-2 illustrates a job that effectively skips 100 records by copying them to a
scratch file. It then copies the next 100 records to the OUTPUT file.

CONTROL DATA

JOB,CP70,
STAGE(SAMPLE)
COPYR(SAMPLE,NULL,100)
COPYR(SANMFLE,,100)
6/7/8/9 in column one

L'\/ =

Example 10-2. Copying Records

Sections

When copying sections, use one of the following control statements:

@PYsafnin, 1tn_,n)

‘ COPYBR(fn. ,1fn_ ,n)
in out

( COPYCR(lin,_,1fn_.n)

The results are identical regardless of the statement used. However, COPYBR and
COPYCR provide a degree of compatibility with SCOPE 3.4. COPYS is not available
under SCOPE 3.4.

Copying sections is meaningful only when the input record type is W, or is S or Z
with C blocking. In the special case of copying S records, each S record becomes a

W section.

Upon completion of the copy, an EOS delimiter is written on the output file. The number
of sections (n) is expressed in decimal.

60372600 A 10-3



In Example 10-3, the program reads from files TAPE! and INPUT. The first data
section on INPUT is copied onto TAPEI1.

B L FORTRAN CODING FORM

Joe,qd7u. I )

FITN.

COPYUR (5 TAPEL ) <— Copies first data

LGGO. | section to TAPE]

7Y 8/9 lik cotlu.mn one | f

L (FICRTRIAN SOLRCE |PRGGRAM)

718/9 kh colmn one Copied onto TAPE|
(CATA [SECTICN CNE) «=—

7V8/9 W co one
(0ATA [SECTICN THWC)

617/8/9) in cplumn one

} | [ m,

L e

Example 10-3. Copying Sections

Partitions

When copying partitions, use one of the following:

(COPYPGHL,lﬁl ,n)
in out

(bOPYBFﬂm.,Hn ,n)
in out

(bOPYCFﬂmJ,Hn 1)
in out

The results are identical regardless of the statement used. However, COPYBF and
COPYCF provide a degree of compatibility with SCOPE 3.4. COPYP is not -available
under SCOPE 3.4.

Copying partitions is meaningful for W record type files (either blocked or unblocked)
and for blocked files using other record types. It is not meaningful for unblocked
sequential or word addressable files. Also, if you are performing a U to U copy of a
file that contains W records or S or Z records with C blocking, the partition delimiters
inherent to the original record type will not be recognized.

10-4 60372600 A



The number of partitions to be copied is expressed in decimal. Upon completion of
the copy, an EOP is written on the output file. In Example 10-4, file A is a tape
containing several partitions. Since it contains F records, partitions are indicated by
tapemarks. The job copies the first five partitions to file B. File B is then post-
staged to magnetic tape.

JOB,CP70.
FILE(A,RT=F,FL=80)
FILE(ByRT=F,FL=280)
STAGE(A)
STAGE(B,POST)
COPYP(A,E,5)
6/7/8/9 in column one

o

Example 10-4. Copying Partitions

FILE DESCRIPTIONS FOR COPIES

Describe your input file and output file exactly the same, using FILE statements if
necessary. The SCOPE 2 COPY routines do not check to see that the output file des-
cription matches the input file description. For an exact copy, make sure that both
files are either unblocked or blocked by specifying the BT parameter. Be especially
careful of this when copying to or from magnetic tape since a magnetic tape file is
blocked by default and mass storage and unit record files are unblocked. You can, of
course, purposely use this feature to block or deblock a file. The fastest copy occurs
when both files have record type W. Deleted records on the input file are not copied
to the output file. The record manager recognizes and regenerates all EOS and EOP
delimiters (zero length W control words). However, the W control words on the new file may
not compare bit-for-bit with those on the original file because the irrelevant fields on the new
control words are not zeroed but are filled with transient information.

When the input file does not contain W records, redefining it as record type U is most
efficient because there is much less data manipulation required by the record manager.

Example 10-5 illustrates a job that stages in a tape as record type U, block type K,
copies it, and stages it out. Both tapes are recorded in odd parity (binary mode) at
800 bpi and are unlabeled.

The input tape consists of 5120-character blocks that actually contain a variable number
of records in record mark (R) format. By defining the file as U type rather than R
type, the R records are simply copied as data without being examined on input or output.
This is a considerably faster mode of copying than defining the files as R record type.
Upon completion of the copy, the dayfile actually contains a block count instead of a
record count.

60372600 A 10-5



CONTROL DATA

lDescribes Input tape
JCB,CP70.
STAGE(TAPE1L) i

FILECTAPEL,RT=L]
STAGE(TAPEZ2,POST)
FILE(TAFE2,RT=L}
COPY(TAPEL1,TAPE2)
6/7/8/9 in column one

L ~—

Describes output tane

Example 10-5. Copying a Tape as Record Type U, Block Type K

SPECIFYING BUFFER SIZE

Check to see that the copy buffer is adequate for the copy. When SCM dynamic memory
assignment is in effect, the size of the buffer used for copying will be the default maxi-
mum record length (5120 characters) unless a different MRL is specified on a FILE
statement. MRL or FL can be specified for either file or both the input and output files.
The copy routine uses whichever explicitly defined MRL or FL is larger for the two files.
Thus, if no MRL or FL is specified for the input file and MRIL=88 is specified for the
output file, the buffer size used for the copy is 88 characters.

For T- and D-type records, MRL must be large enough to include the count field. Other-
wise, MRL can be less than the actual record size. If records are short, it is desir-
able that MRL be specified to reduce core requirements. Copies are more efficient
when the actual MRL for the files is specified.

Example 10-6 illustrates a tape-to-tape copy of SCOPE logical (S) records. The longest
record on the file is 100008 characters.

CONTROL DATA

JOB,CP7U.

STAGE(A)

STAGE(8,FCST)
FILE(A,RT=S,MRL=1000GD)
FILE(R,RT=S,MRL=10000)
COPY(A,E)

6/7/8/9 in catumunz

Example 10-6. Setting MRL

10-6 60372600 A



POSITIONING SEQUENTIAL FILES

Sequential files often require repositioning before or after their use. This is not true
for files using other file organizations (for example, word addressable). A control
statement request to position a file usually initiates staging in if the file is a prestaged
file that has not yet been staged in. REWIND is an exception; it does not initiate staging.
For on-line tapes and for tapes staged by volume, the operator is told to mount tapes

if additional volumes are required to complete the positioning request in the forward
direction. Staged tapes are rewound to the beginning of information but on-line tapes

are rewound to the beginning of the current volume. Neither staged or on-line tapes can
be skipped backward past the beginning of volume.

POSITIONING FILES FORWARD

Skipping Records Forward

SCOPE 2 does not have a SKIPF statement for skipping records forward. A technique
that can be used to skip records is that of copying the records to be skipped onto a null
or dummy file. Example 10-7 illustrates this technique.

/

e 2R Position file at
third record

JOB,CP70.
STAGE (INP) {
COPYR(INP,NULL,2)
COPYR(INP,CLT,2) <—0o] COPY third and
COPYR{UINP,NULL,2! fourth records
RETURN (NCLL) T

y Skips fifth and
sixth records

6/7/8/9 in column one }

/\.——\_\- Returns file to
— | conserve disk space

Example 10-7. Skipping Records Forward

Skipping Sections Forward

SCOPE 2 provides a SKIPF statement that can be used for skipping sections forward on
those file types that support sections (Z with C blocking and W) and as a special consi-
deration, can be used for skipping S records. The statement has the following format:

‘ SKIPF(1fn, n)

80372600 A 10-7



Parameter n is a decimal count of the sections (or S records) to be skipped. The
default is 1.

The SKIPF terminates at EOI if it fails to encounter the requested number of sections
or S records on the file. Encountering an EOP does not terminate the skip nor is the
EOP included in the count of sections - unless it is also an EOS. That is, on W re-
cords, the EOP is counted if it is not immediately preceded by an EOS W control word.

Example 10-8 illustrates skipping of sections forward followed by a tape-to-print copy
of 10 sections.

CAL contains
_~ [-blocked W records

JOB,CP70. / A ———
STAGE (CAL? s
SKIPF(CAL y2)e——__] Skips to third
COPYS(CAL,,10) sectlon

6171819 in coam‘x -
/\_.——\ Copy next 10 sec‘l’ioni

onto OUTPUT

CONTROL DATA

Example 10-8. Skipping Sections Forward

Skipping Partitions Forward

SCOPE 2 provides a parameter on the skip forward statement (SKIPF) for skipping parti-
tions on files having record types W, F, and R, or having record types X, S, and Z
with C blocking. Skipping is possible on files having D, T, or U records if the block
type is K and records per block are 1. For these record types, skipping forward can
be achieved by copying partitions to a null file.

To indicate that partitions rather than sections are to be skipped, the third parameter on
the SKIPF statement must be 17g.

@PFufn,n, 17)

The skip terminates at EOI if it fails to encounter the requested number of partitions
on the file. The default for n is 1.

NOTE

SCOPE 3.4 allows a fourth parameter, the mode
parameter, or SKIPF and SKIPB. This parameter,
if present, is ignored by SCOPE 2.

10-8 60372600 A



Example 10-9 illustrates skipping of partitions on a file divided into four partitions, one
for each quarter of the year. Each partition consists of three sections, one for each

month in the section.

CONTROL DATA

~

JOB,CP70.

STAGE {(MCNTHS)
SKIPF{NCNTHS,3,17)
COPYS(MCNTHS)€&—]

¢

Position file at

Z fourth quarter

List data for Octob-
er only on OUTPUT

6/7/8/9 in column one

w

Example 10-9, Skipping Partitions Forward

Skipping to End-Of-Information

For compatibility with 6000 SCOPE systems, SCOPE 2 issues a skip to end-of-informa-

tion upon encountering the following:

(SKIPF(lfn, 262143)

The statement is a no-op if issued when the file is at EOI.

Example 10-10 illustrates

skipping to EOI. The user knows the data is in the last partition on the file but he
doesn't know how many partitions are on the file.

CONTROL DATA

COBOL CODING FORM (

JOB,CP7 0.
cQoBO0L.
STAGE ([CATA)

SKIPF(CRTA,)2€2143)

LGO.
7/8/9 Lh colufmm one
(c

SKIPF(C[ATA,17 )€ |

Skip forward to EOI

(

Skip backward
one partition

Example 10-10, Skipping to

60372600 A

iﬁm ELti'URcs PRCGRAM) //
6/7/8/‘9“ cofumn pne

End-Of-Information

10-9



As an added option on the FILE statement, you can specify OF=E to position a mass
storage file at EOI when it is first opened. This is convenient when extending a per-
manent file.

(FILE(lfn, ..., OF=E)

POSITIONING FILES BACKWARD

Skipping Records Backward

SCOPE 2 does not have a SKIPB statement for skipping records in the reverse direction.
The user must rewind the file and copy records to a null file.

Skipping Sections Backward

SCOPE 2 provides a skip backward statement (SKIPB) and a backspace statement (BKSP)
for skipping sections in the reverse direction on those files that support section delimi-
ters (Z with C blocking and W) and as a special consideration can be used for skipping
S records backward. The statement formats are:

SKIPB(ifn, n)

| BKSP(ifn, n)

Parameter n is a decimal count of sections to be skipped. The default is 1. The SKIPB
or BKSP terminates at EOP or BOI if it fails to encounter the specified number of
sections,

For INPUT and other system files, the system terminates the file with an EOS/EOP/EOQI
sequence., In this case, if you are at end-of-information you cannot skip sections back-
wards because the first EOP terminates the skip.

Example 10-11 illustrates how BKSP can be used to reposition the INPUT file. In this

example, INPUT is backspaced one section before the second execution of LGO. LGO is
loaded and executed twice using the same data.

10-10 60372600 A



FORTRAN CODING FORM

CONTROL DATA

B,QdPl70.

Ne

C.

SPUINPLTYD

Oo l

&/9 kih column one
(FICRTRAN SOURCE [PRCCGRAM)

§/9 |[dh cofumn one
(cla T 2|

7/8/9] in dofumn one

Backspace
+o here

E‘ \nr'cnr"'nés

16

e

—~

Example 10-11. Skipping Sections Backward on INPUT

Skipping Partitions Backward

SCOPE 2 provides a parameter on the skip backward statement (SKIPB) for skipping par-
titions in the reverse direction. Skipping backward is possible on files having record
types W, F, and R or having record types S, X, and Z with C blocking., Skipping is
possible on files with D, T, or U record types if the files are described as BT=K and
RB-=1.

To indicate that partitions rather than sections are to be skipped, the third parameter
on the SKIPB statement must be 178.

I SKIPB(ifn,n, 17)

Parameter n is the number of partitions to be skipped. The default is 1. The SKIPB
terminates at BOI if it fails to encounter the requested number of partitions.

Skipping to Beginning-Of-Information (Rewinding)

Use the REWIND statement to position one or more files to beginning-of-information (BOI).
REWIND does not initiate staging of a prestaged file or transfer of a 6000 Station perma-
nent file.

(REWIND(lfnl, lfnz, cen ,1fr1n)

680372600 A 10-11



For compatibility with 6000 SCOPE systems, SCOPE 2 issues a rewind upon encountering
either of the following statements:

(SKIPB(lfn, 262143)

(BKSP(lfn, 262143)

Either statement initiates staging if it is used before a file is prestaged. These state-
ments are no-ops if issued when the file is at BOI.

Specifying Rewind or No Rewind on Open or Close

The OF=p and CF=p options on the FILE statement are allowed for specifying rewind (R)
or no rewind (N) of a file when it is next opened (OF) or closed (CF).

(FILE(lfn, «..,0OF=p,CF=p)

These options may conflict with macros internal to the program causing unpredictable
results. In addition, since the loader does not open a file before loading from it, the
parameters are not relevant for load files,

WRITING FILE DELIMITERS

A user can insert new delimiters when copying from one record type to another by
writing null sections or partitions at the point at which the delimiter is desired. An
attempt to write an end-of-section on other than Z with C blocking or W-type files is
ignored except for S records where it causes a zero-length record.

COMPARING FILES

The information stored on one file can be compared with that stored on another file to
see whether the contents of both units are identical. Often the comparison is desirable
after copying to assure that the input file was copied without error. Labels, if present,
are not compared. With SCOPE 2, because COMPARE uses the record manager, it is
possible to compare files that are exactly identical, including record and blocking struc-
ture, or if you have changed the record type or blocking structure, it is possible to
compare just the data in the logical records. To perform an exact comparison, both
files must be defined the same. For the most straightforward and fastest comparison
of two mass storage files, define them both as record type U, unblocked. For this
comparison the record manager does not manipulate the data.

NOTE

The two files will fail to compare using the U
definition if they were copied using W definition.
This occurs because records marked as deleted
from the input file were not copied onto the out-
put file and because zero-length W control words
are not precisely duplicated.

For a logical comparison, the record manager gets records from the two files and com-
pares just the data (without W control words, zero bytes, blocking control, etc.). The

10-12 60372600 A



record types do not have to be the same. Thus, even though you have changed the
logical structure of the data by copying to a different record type or block type, you
can compare the data on the files as long as the copy did not add or delete any file
delimiters (EOS or EOP). An exception is S records which can be compared only with
S records. That is, if one file is S record type, both must be. (The restriction does
not apply to Z records with C blocking.)

Comparison begins at the current position of each file and moves ahead record-by-record.
In addition to comparing the contents of each pair of logical records, COMPARE checks
file delimiters to see if they are the same level. They must match to produce a good
compare and for the compare to continue. For example, if EOP status occurs on one
file while EOS status occurs on another, the compare terminates.

COMPARING SECTIONS

Unless you specify otherwise, a compare will compare the contents of one section on
one file with the contents of one section on another. If the file type does not support
sections, the compare will terminate on an EOP or EOI.

( COMPARE(lfn,, 1fn,)

Using the preceding statement, one section will be compared. To specify more than one
section, follow lfn2 with a decimal count of the number of sections to be compared.

(COIVIPARE(lfnl, lfnz, n)

COMPARING PARTITIONS

The COMPARE statement includes a fourth parameter that allows you to specify that
partitions rather than sections be compared; n then specifies the number of partitions.
If n is omitted, its comma must still appear. Parameters on COMPARE are position-
ally dependent.

COMPARE(lfnl, lfnz, n, 17)

The 17 indicates partitions. If the file type does not support partitions, the comparison
continues to EOI.

Example 10-12 illustrates a job that copies and compares a complete file. Both files
are described as record type U, block type K. FEach record/block is 137 characters.

60372600 A 10-13



CONTROL DATA

JOB,CP70. /
STAGE (X)

STAGE(Y,PCST) By default, block
FILE(X,RT=U,MRL=137) | +type is K, records
FILE(Y,RT=U,MRL=137) per block is one
COPY(X,Y)
REWINC (X, Y)
COMPARE (X, Y)
6/7/8/9 in column one

Example 10-12. Copy and Compare Files

Example 10-13 illustrates a job that copies and compares the fifth partition on file

FDATA. The input file contains K-blocked F records, the output file contains unblocked
W records.

i
Position inout file

‘/’,,/’ at fifth partition
JOB,CP70.

FILE(FCATA,RT=F,FL=80CT=K,kEB=E4)

STAGE(FCATA) Copy one partition
COPYCF(FCATA,WDATA)

REWIND(WCATAY _ —
SKIFE(FLATA,917) Reposition files
COMPARE(FCATA,WCATA,,17)
6/7/8/9 4in column one

CONTROL DATA

M

Compare data

Example 10-13. Logical Compare of F Records and W Records

10-14 60372600 A



COMPARING S-RECORDS

When comparing S-type records, you can specify any level from 0 to 17, as the fourth
parameter and the COMPARE will terminate when it has encountered the  specified number
of records that have a level number equal to or greater then the level specified.

ERROR RECORD COUNT

If your file contains a very large number of error records in one section or partition,
or is not divided into sections or partitions, you can indicate the number of error re-
cords to be compared before termination through a decimal count (r parameter). Re-
member, the parameter is positionally dependent - the e parameter is described in the
following text. The default for r is 30, 000,

The r count will terminate the compare even if n sections, S records of level lev, or
partitions have not been encountered.

(COMPARE(lfnl, lfnzn, lev, e, £)

LIST CONTROL PARAMETERS

The previously mentioned COMPARE statements produce only messages in your dayfile,
for example, UT070 GOOD COMPARE or UT071 BAD COMPARE. You can indicate on
the COMPARE statement that you desire a listing of a specified number of noncomparison
word pairs and a file to receive the noncomparison output through the e parameter and
the 1lfn, parameter. e is expressed as a decimal number; the default is zero. 1fn, is

a file hame; the default is OQUTPUT. If you specify other than OUTPUT, you are res-
ponsible for having the file listed; for example, you can list it through a DISPOSE
statement.

(COMPARE(lfnl, Ifny, n,lev, e, v, a,1fn,)

Example 10-14 illustrates a request for list output generated by a literal comparison of
U record input and output.

60372600 A 10-15



CONTROL DATA 7
JOEB,CP70,MT1. Abort job [f compare
FILE(TAFEL1,RT=L) is bad
FILE(TAFEZ2,RT=L) ‘
REQUEST(TAPEL,NMT)

STACE(TAFE2,FCST) Write error output
COPY(TAPEL1,TAPEZ) on file TAPE3
REWIND(TAPEL,TAPE2)
COMPARE(TAPEI,TAF’EE,253,17,100,,AECRT,TAFE3I ’
EXIT(S) .
CISPOSE(TAPE3,PR) té;:ag?szg J‘gadgon'
6/7/8‘/14,;1 column one =~ | in_each record

At

200 partitions

Example 10-14. Literal Copy and Compare of Tapes Described as U Records

ABORT PARAMETER

Normally, a bad comparison produces only informative messages; the job is not termi-
nated. 1If you wish to specify job termination on a bad comparison, enter a nonblank
value for the a parameter.

)

rCOMPARE(lfnl, 1fn2, n,lev, e, r,a, lfn3

Remember that the parameter is positionally dependent. Example 10-14 illustrates this
feature. Notice that one of the tapes is on-line, the other is staged.

10-16 60372600 A



FILE LABELS 1

f

INTRODUCTION

As you learned earlier, a file is generally identified by a logical file name assigned
when the file is created. In addition to logical file names, labels containing further
identification can be associated with a file. The primary purpose of a label is to
uniquely identify the file. Other uses depend on the type of label and the device on
which the file is stored.

Currently, labels can be used only for magnetic tape files. All other files are con-
sidered unlabeled.

LABELS ON MAGNETIC TAPE

On magnetic tape, labels can be associated with each file recorded. These labels
serve the following purposes:

1. Like the logical file name, the label can be used to identify a file. It also
contains such information as the edition number and creation data to further
differentiate one file from another in the system. Similar labels identify the
volume (reel of tape) on which a labeled file resides.

9. A label can protect a file from accidental destruction by preventing a user from
writing on the file until the expiration date specified on the label has elapsed.

USERS

The most predominant users of labeled files on tape are COBOL programmers. For
this reason, the information and examples in this section are directed primarily toward
them. Labels may also be used by those programming in other languages, such as
FORTRAN and COMPASS. The procedure for labeling in FORTRAN is described in the
FORTRAN Extended and FORTRAN RUN Reference Manuals.

STANDARD LABELS

Labels used most commonly for files processed under SCOPE 2 are written in the
standard format. This format conforms to the American National Standards Institute
(ANSI) Magnetic Tape Labels for Information Interchange X3.27-1969 Specifications.
This standardization means that magnetic tape labels created in this format can be pro-
cessed under many other computer systems. Standard labels are described further in
Appendix C.

REQUESTING STANDARD LABELED TAPES

To specify that a label is to be generated on an output tape or that a label exists and
is to be checked requires parameter specification on the STAGE or REQUEST statement
for the file.

60372600 A 11-1



To specify creation of a new label, place N on the statement; to specify checking of an
existing label, place E on the statement. If neither parameter is used, the file is
assumed to be unlabeled. If E (existing label) is specified and the file is opened for
output, a new label is created. N has no significance when prestaging.

MT N MT N, POST)
REQUEST (Ifn, seees ) or STAGE(lfn, ey
NT E NT E)

Label writing (W or omitted) or reading (R) can, as an alternative, be supplied on a
LABEL statement. This specification, if a LABEL statement is supplied, takes prece-
dence over the N or E parameter on the STAGE/REQUEST statement. To specify crea-
tion of a new label, place W for write on the LABEL statement. For checking an
existing label, place R for read on the statement. The statement must precede the
first use of the file. Parameters after lfn describe label field values as explained in the
following text.

(LABELafn,f;,, o)

PROVIDING STANDARD LABEL INFORMATION

The information used to generate or check the label is usually supplied through the
source language program. If no information is provided by the user program or if the
user wishes to override the information, he can supply a LABEL statement for the file.

NOTE

The LLABEL statement does not require the exis-
tence of a REQUEST or STAGE statement for the
file. It can be used to label a blocked sequential
mass storage file. However, permanent files at
the 6000 Station cannot be labeled.

Specification of characters other than A through Z and 0 through 9 is possible by using
$ delimiters. For the file identification field, for example, specifying L=value limits
the characters in the string to A through Z and 0 through 9, but by using the form
L=8value$, any of the 63 characters in the subset can be used. However, if a dollar
sign is to be significant in the string, it must be represented as $$. To specify the
character string *FILE%+FILE$*, delimit the string as follows in display code char-
acters:

$*FILE%+FILE$$*$

Label Creation Information

The contents of label fields are generated as described in the following paragraphs
using values supplied on the LABEL statement. An exception is the VSN field in the
Volume Header Label, information for which is supplied on the STAGE or REQUEST
statement.

11-2 60372600 A



File Identifier

If no file identifier is specified, the system uses the logical file name (lfn). To supply
a file identifier, use the L=value parameter on the ILLABEL statement, The value is 1
to 17 alphanumeric characters. Remember to delimit characters other than A through
Z and 0 through 9 with the $ delimiters.

Set Identification

If no set identification is specified, the system uses blanks. Specify a name for a
multifite volume by using the parameter M=name, where name is 1 to 6 alphanumeric
characters.

File Section Number

If no file section number is specified, the system uses 0001 for the first volume, 0002
for the second volume, etc. Setting this parameter on an output file would be highly
irregular and would cause sequencing to begin at the specified value. The parameter
that would reset the file section number is V=n, where n is 1 to 4 digits.

File Sequence Number

The file sequence number applies only for a multifile volume.

The system uses 0001 for the first file, 0002 for the second file, etc.,if no file sequence
number is specified. Setting this parameter on an output file would be highly irregular

and would cause sequencing to begin at the specified value. The parameter that would
reset the file sequence is P=n, where n is 1 to 4 digits.

Generation Number

The default for the file generation number is 0001. Specify a new number through the
parameter G=n, where n is 1 to 4 digits.

Generation Version Number

The default for the generation version number is 00. If you wish to use the field to
designate successive iterations of a file, specify the E=n parameter where n is 00 to 99.

Creation Date

The default value for the creation data is the current date. Supplying some other date
is unusual but can be done by supplying the parameter C=yyddd, where yyddd specifies
the date in Julian format.

Expiration Date

The default date for the expiration date is the current date. A different date can be
supplied as a number of days which will be converted into Julian form before it is
placed in the label, or it can be supplied in Julian form. To supply a number, use
the parameter T=n, where n is 1 to 4 digits. To supply a Julian date, use the para-
meter U=yyddd.

60372600 A 11-3



Example 11-1 illustrates a COBOL program that supplies label values for creation.
Information for the label is obtained from the data card. Notice that the program sets
the file identification field to LBTAPE. The date written field is zeroed, the reel
number and edition number fields are set to 1, and the retention cycle field is 10. The
user has overridden the file identification field by renaming the file NEWLIB and has
set the retention cycle to 100 by specifying T=100 on the LABEL statement.

Label Checking Information

When reading a labeled input file, the user can supply information on a LABEL state-
ment to be used for checking the label and for defining the initial volume to be read and
the initial position on the volume currently mounted.

File Identifier

If no file identifier is specified, the file identifier is not checked. A file identifier can
be supplied in the user program through the compiler language or COMPASS language
program or can be specified on the LABEL statement in the form L=value. The value
must match the character string used when the file was generated.

Set Identification

If no set identification is supplied by the user program or on the LABEL statement, no
check is made. To specify the value on the LABEL statement, use M=name, where
name must match the character string used when the file was created.

File Section Number

If no file section number is supplied by the user program or on the LABEL statement,
processing of the file begins with volume 1. To specify a volume when you wish pro-
cessing to begin at other than the first volume, use the V=n parameter on the LABEL
statement. Remember, however, to also specify the correct beginning VSN on the cor-
responding STAGE or REQUEST statement. Both the file section number and the volume
serial numbers must match those on the mounted tape.

File Sequence Number

When no file sequence number is specified by the user program or on the LABEL state-
ment, the first file on the volume of a multifile volume is processed. To specify that
processing is to begin at other than the first file, use the P=n parameter on the LABEL
statement.

Generation Number

In no generation number is specified by the user program or on a LABEL statement,
no check is made of the field. To specify a generation number on the LABEL state-
ment, use the G=n parameter where n must match the number specified when the file
was generated.

Generation Version Number

The generation version number is always checked. If no number is specified for check-
ing by the program or on a LABEL statement, the record manager uses 00. To specify
a generation version number, use the E=n parameter where n must match the number
specified when the file was generated.

11-4 60372600 A



COBOL CODING FORM Data is odd parity,
JOB,CPI7[a,NT S e prpredes Jabel
) sNT|1, is EBCDIC coded mode
REQUES|TI(LET|APE yNTyN ,HY,EB)/ on 9-track tape unit
L ABEL (LIETAPE,L=NEWLIE,T=100)
COBOL » \
LGO. File identification
7/8/9 in column one and expiration date
TCEMYIFICATION CIVISICN. are redefined by
PRCGIkAM=-ID. CCEWRT. LABEL statement
CATE|-CCMPILEC.
ENVIRONMENT CIVISIGON.
CCNFIIGURATICN SECTION.
SCUR[CE-CCMPUTER. 760C.
OEJEICT-CCMPLTER. 7€00.
INPYT=-OLTPLUT SECTICN.
FILE[-CONTROL.
SELECT TAFER ASSIGN TO LBTAFE.
DATA CIVISICN.
FILE| SECTICN.
FC TJAPER
L ABEL RECCRD IS STANCARC VALLE CF IC IS LABNAME
CATE-WRITTEN IS CATNAY
REEL-NUMBER IS RLNUM
€E0ITION-NUMBER IS ECNUM
RETENTICN-CYCLE IS RETCYC
CATA RECORD IS LETAPE.
04 RLETAPE.
02 TAPE-REC PICTLRE IS Xx(E0}.
WORKIING-STORAGE SECTION.
77 CNTR-1 PICTURE IS ©9 VALLE IS ZERC.
01 DATA-CARD.
02 LAENAME PICTLRE IS X(1%) VALLE IS SPRCEES.
02 CATMNAN PICTURE IS S(€) VALLE IS ZERCES.
02 RLNUM PICTURE IS <(4) VALUE IS ZERCES.
02 ECMUM PICTULRE IS 9(2) VALLE IS ZERCES.
02 RETCYC PICTURE IS €(2) VALLE IS ZERCES.,
PRCCECURE DIVISICN.
ISEGIIN.
ACCEFT CATA-CARD.
CFEN OLTPLT TAPER.
ICARD-TC-TAPE.
ACCEFT TAFE-REC.,
WRITE LBTAPE.
ACC 4 TC CNTR-1. IF CNTR=-1 LESS THAN
3
GO TC CARC~-TC-TAFPE.
FIRYT-CLCSE.
CLOSE TAPER.
STOF RUN. Edition number field
7/8/9 in column one F:——Re'l'enﬂon cycle field
BTAPEl 0JU5U6000U161C10
1 XXXXX T _Reel number field
YYYYHY Creation date field
2222)2 Lonical file name field
-

Example 11-1, Using LABEL Statement for Label Generation With COBOL Program

60372600 A

11-5



Creation Date

If no creation date is specified by the user program or on a LABEL statement, no
check is made of the field. Specification of a creation data for label checking is not
conventional but can be specified through the C=yyddd parameter on the LABEL state-
ment.

Expiration Date

If the T or U parameter is supplied for input, the expiration date is checked. If the

file is opened for output, any existing label on the file is checked against the current

date. If the date is unexpired, the tape cannot be written on without operator permis-
sion.

Other Fields

The record manager does not check any other fields. For example, it does not check
the owner identification field or accessibility fields.

In Example 11-2, suppose that we want to use the labeled tape file created by the pro-
gram in Example 11-1 as input to another COBOL program. For simplicity, let us
assume that the sole purpose of the program is to print the contents of the file; the
contents of the label will be checked when the file is opened. In most cases where
labeled files are used, much more intricate or varied processing occurs; but the prin-
ciples of referencing and checking labeled files remain the same. In this example,
the tape created on-line is prestaged.

PROTECTION OF UNEXPIRED LABELED TAPES

Any output tape, in addition to requiring a write enable ring, cannot be written on with-
out operator consent if it contains a label having an unexpired date. All tape drivers
before writing on an output tape check the mounted tape for a label. If the tape is
unlabeled, writing begins. 1If the tape is labeled and contains an unexpired date, the
operator must respond by replacing the tape or by indicating that it can be written on
before writing can begin.

COPYING LABELED TAPES

The copy routines (Section 10) can be used for copying labeled tapes as well as unlabeled
tapes. If the input tape contains a label, the label is checked but is not copied to the
output file. Copying begins after the HDR1 label and terminates before the EOF1 label.
Labeling of the output file requires that the STAGE or REQUEST contain an N parameter
or that the LABEL statement contain the W parameter. The output tape will be '"blank-
labeled" if the STAGE or REQUEST for the output tape specifies N and there is no
accompanying LABEL statement. When the LABEL statement is present, the record
manager uses it as the source of label information. When labeling is specified, the
tape to be copied must not be a multifile volume. The copy routines cannot handle

more than one labeled file on a volume.

If you want to copy the labels as well as the data on a file, or if you want to copy a
multifile volume, you must declare both the input file and output file as unlabeled. In
this case, the labels are treated as partitions of data. No label checking takes place,
When using this technique, both files must be defined as record type U, block type K,
and both labels and data must be recorded in even parity, coded mode,

11-6 60372600 A



LU COBOL CODING FORM

LGO.

Example 11-2,

60372600 A

JOB,CP[70 .
STAGE (
LABEL (
COBCL.

Scu

01

7/8/9 in column o
LeTAPE |

6/7/8/9 in column one

Using

SECCNC-CLOSE.

ETARE,NT,E,FY,ER)
BTAPE,L=NEWLIE,T=10C)

7/8/9 in column one

IBEMTIFICATICN CIVISICN.
PROGrRAM-ID. CCEBRDC.
CATE-COMFILEC,
ENVIRCNMENT CIVISICN.
CCNFIGURATICN SECTICMN,

CE-CCMPUTER. 7€0LC.

CBJECT-CCMPLTER, 7€00.
INPYT-CUTPUT SECTICN.
FILE-CCNTRCL.

SELECT TAPER ASSIGN TO LEBTAFE.

CATAl CIVISICN,

FILE SECTION.
FC T|APER

LAREL RECCRD IS STANCARC VALLE CF ILC IS LABMAME
CATE-WRITTEN IS CATMNAWN

REEL-NUMBER IS KLNUWM

ECITICN=-NUMBER IS ELNLWM

RETENTICN-CYCLE IS RETICYC

CATA RECCRDO IS LETAFE.

LETAPE.

02 TAPE-REC PICTLRE IS Xx(E€0).

WORKIING-STORAGE SECTICN.,

77 CNTR-2 PICTURE IS ©¢ VALLE IS ZERC,

01 CATA-CARC.,
02 LAENAME PICTLRE IS x(15) VALLE IS SPACES.
L2 CATNAM PICTURE IS CS(€) VALLE IS ZERCES.
02 RLNUM PICTURE IS S(4) VALUE IS ZERCES,
g2 ECNUM PICTLRE IS 9(2) VALULE IS ZERCES.
12 RETCYC FICTURE IS S(3I) VALUE IS ZERCES.

PROCIECURE DIVISICN.
EEGIN.

ACCEFT CATA-CARD.,
CPEN INFUT TAPER.

TAPE[-TO-PRINTER.

REAC TAFER AT ENLC GC TC SECCMBLC-CLCSE.
CISPLAY TAPE-REC.

ACC 4 TC CNTR-2. IF CNTR=-2 LESS THAMN 3
GC TC TAFE-TC-PRIMNTEE.,

ICLOSE TAPER.
STOP RUN.

ne
| poococaouieidin

LABEL Statement for Label Checking With COBOL Program

11-7



LABEL DENSITY

For an output tape, labels and data are always written at the same density. For a
9-track input tape, labels and data are always read at the same density because the
9-track tape units allow density selection at load point only. For a 7-track input tape,
labels and data need not be at the same density. A tape driver attempts to read a
label at all densities until it performs a successful read. It then reads the data at
the density specified by the user.

For SCOPE 3.4, the LABEL statement includes a label density parameter. This para-
meter is not recognized by SCOPE 2.0,

LABEL PARITY AND CHARACTER CONVERSION

All labels are recorded in coded mode (with character conversion), regardless of the
presence of the CM=YES parameter. CM=YES applies to data only. For 7T-track tapes,
labels are written (or when reading assumed to be written) in External BCD.

For 9-track tapes, the character set used is determined by whether or not EB is spe-
cified on the STAGE or REQUEST statement. If you recall the description of 9-track
character conversion in Section 6, EB used in conjunction with CM=YES caused the data
to be converted to EBCDIC rather than ASCII. For labels, the parameters work dif-
ferently.

To specify that data on a 9-track tape is to be binary mode but that labels are to be

in EBCDIC rather than ASCII (the default character set), specify CM=NO or omit the
parameter from the FILE statement and specify EB on the FILE or STAGE statement.
To specify that data and label are to be in coded mode, include the CM=YES parameter
on the FILE statement. Similarly, specifying US (or omitting US) will effect conversion
to or from ASCII. On input, any lower case letter is converted to upper case. Any
other character not in the 63-character subset is interpreted as a blank.

11-8 60372600 A



ANALYTICAL AIDS 12

—

Hopefully, your program will run perfectly the first time it is compiled and executed.
If your program should happen to terminate prematurely, however, you will want to
make use of analytical aids available through the operating system. Options include

the use of EXIT statements to allow a job to resume processing despite the occurrence
of abort conditions, specifying that certain types of errors or conditions be ignored
rather than resulting in job termination, generation of core memory dumps for analysis,
and generation of listings of files for determining possible causes of program termina-
tion.

This section deals primarily with the use of SCOPE 2 features.

In addition to the listing of instructions in your program, which is automatically printed
in source (compiler or assembler) language, other listings of these instructions in ob-
ject code can be obtained as a compiler option. Compiler options are used primarily
by experienced programmers to isolate specific errors in object-coded instructions.

The TRAP program is another aid available to you. It has two options, TRACK and
FRAME. The TRACK option provides a printed analysis of program instructions in
terms of storage references, operand references, and arithmetic register use over a
user-specified range of instructions. The FRAME option provides printouts of selected
areas of storage at the time specified instructions are executed. This routine gives
you a picture of a small portion of SCM or LLCM at any given moment. The TRAP
program and its options (TRACK and FRAME) are not described in this guide but are
described in the Loader Reference Manual.

CONTROLLING YOUR JOB WITH EXIT STATEMENTS

If an abnormal termination (abort) condition occurs during loading or execution of one
of your job steps, all need not be lost. SCOPE allows you to specify through EXIT
statement processing to resume despite an abort con-

statements that you want control

dition.

When an abort condition occurs in your job, SCOPE skips control statements until it
encounters an EXIT statement. Figure 12-1 and Table 12-1 show whether SCOPE aborts
the job when it encounters the EXIT statement or whether SCOPE resumes control state-
ment processing (continues the job) with the statement following the EXIT statement.
Statements following the EXIT statement might dump the SCM image of your job, save
files, catalog or purge a permanent file, request an entirely different program sequence,
ete,

The allowable forms of the EXIT statement are as follows:

EXIT. Normal abort processing
EXIT(S) Selective processing
EXIT(C) Conditional processing
EXIT(U) Unconditional processing

SCOPE 3.4 does not recognize EXIT(C) and EXIT(U) statements.

60372600 A 12-1



BEGIN JOB
PROCESSING

SCOPE READS

STATEMENT

EOQI?

STATEMENTS

BEING SKIPPED ?

EXIT., EXIT(C)
OR EXIT(S)?

NO

EXIT(U)?

NO

12-2

SKIP THE
STATEMENT

YES

YES

TERMINATE
JoB

EXIT.
OR EXIT(S)?

TERMINATE
JoB

EXIT (S)?

YES

TURN OFF
SKIPPING

NO
ABORT YES TURN ON
CONDITION? SKIPPING
PROCESS
STATEMENT
NO

TURN OFF
SKIPPING

SEkECTIVE

BORT
CONDITION?

YES

YES

SELECTIVE \ NO
ABORT
CONDITIONS?}

EXIT.

TERMINATE
JoB

Figure 12-1.

Flow Chart of EXIT Processing

2AX24A

60372600 A




TABLE 12-1. EXIT STATEMENT PROCESSING
EXIT. EXIT(S) EXIT(U) EXIT(C)
Normal job termination; End job End job Continue Continue
no errors encountered job job
Abort condition resulting from: Continue Continue Continue End job
Program execution error (not over- job job job
ridden through MODE statement)
Operator has issued DROP com-
mand at station
Time, mass storage, or LCM
limit exceeded
Irrecoverable mass storage or
tape parity error
Control statement syntax error
System aborts, for example,
record manager errors
Selective abort condition resulting from: |Skip until | Continue Skip until Skip until
Compilation errors end-of- job end-of- end-of-
job or job or job or
Number of on-line tapes scheduled |EXIT(S) EXIT(S) EXIT(S)
has been exceeded
SCM/LCM parity errors
‘Irrecoverable abort condition resulting |End job End job End job End job
from operator issuing RERUN or KILL
command
60372600 A 12-3




In Example 12-1, the EXIT statement allows job processing to continue following abnormal
job termination. In this example, the DMPFILE statement requests a printout of the con-
tents of file TAPEIL.

(CONTROL DATA

LeREaRa

FORTRAN CODING FORM

08saM, CFA2.
TN.
GCC
ISPOSE (TAPEL,BR)
XIT(Sp
MFFILE ( TAIPEL)

7/8/9 4in column ome
KAM CNE (INPUT, CUTFUT,TAFFE1)

comormc

T 5
5 AT (1+1)
i 10U EASEHEIGHT, T
1 AT(ZF1u.211)

1.61.0) ccd;g,Laa.N

Example 12-1. Selective Exit Processing

Example 12-2 illustrates a job that contains a combination of EXIT statements. The first
thing the user wishes to do is to purge file A if it is still a cycle of a permanent file.

If the file has already been purged, the attempt to attach it will cause an abort condition.
The EXIT(U) allows processing to continue with the STAGE(OLDPL) statement. Following
execution of the object program on LGO, a second unconditional EXIT statement assures
that the contents of file XXX are printed regardless of whether or not the object program
abnormally terminates. Then, if an abort condition does occur, SCOPE takes an SCM
dump of the first 10008 words. Finally, if a selective condition occurs, the EXIT(S)
assures that the LLGO Tile is saved as a permanent file.

12-4 60372600 A



CONTROL DATA

JOB,CPT7U., ,
| PERMFILE,IC=XX) -

2322;:;1;, : ’ \ If permanent file A

EXIT(U) is not present, an

zbort condition

STAGE(CLCPL)
SKIFE(CLCFL 426
CATALCG{(CLCFL,CLC®
UPDATE (FyW)

CCMFASS({I=CCVMFILE)

COLDPL is to be
staned regardliess

‘éig;(ui of abort. Primary
CISPCSE (XXX,FR) sequence beains.
g:?%?é}uua) [f abort occurs,
CATALCCILGC,XYZ,I0=XX) gcgpe takes core
7/8/9 in cofumn one ump

(LPCATE INFLT)
6/7/8/9 in column one {

Example 12-2. Combination of Exit Paths

SETTING ERROR CONDITIONS

SCOPE 2 allows you to override some of the error conditions that can occur during
execution of your object program. The conditions over which you have some control are
the following:

SCM direct range error This condition results from an attempt to

reference an operand outside your SCM
field length,

field len gth.
QOverflow error This condition occurs if the floating point
functional unit generated an infinite operand.

Indefinite operand error This condition occurs if the floating point
unit generated an indefinite operand.

Underflow error This condition occurs if the floating point
unit generated a smaller operand than it is
possible to represent in floating point no-
tation.

The underflow error condition is not detected on a 6000 Series or CDC CYBER 70/Model
72, 73, or 74 Computer System. For compatibility with SCOPE 3.4, the installation
option for program error mode is usually set so that your program is abnormally ter-
minated if any of the conditions other than underflow occurs. This is the same as
MODE (7). In addition, underflow occurs often enough so that generally it should not

be selected as an abort condition.

60372600 A 12-5



-

Error conditions over which you have no control and which always result in job termi-
nation are the following:

LCM direct range error

SCM or LCM block range error

Program range

error

This condition results from an attempt to
reference an operand outside the LLCM
field length.

These conditions result from a block copy
that references an address outside the res-

pective field length.

This condition results from an attempt to
execute a word containing zero.

NOTE

For any range error - including the SCM direct
range error - the program takes the error exit.
In the case of the SCM direct range error, how-
ever, error processing by SCOPE allows the
error to be ignored through the use of the MODE

statement.

If you want to continue program execution despite the occurrence of one of the error
conditions (except where noted), or if you want to terminate execution if an underflow

error occurs, you can place a MODE statement in the control statem
job deck (see Table 12-2 for MODE parameters).

TABLE 12-2,

ent section of your

The MODE statement affects all sub-
sequent job steps until another MODE statement is encountered or until job end.

MODE STATEMENT PARA METERS

Error Condition Causing Job Termination
MODE Parameter Underflow Indefinite Overflow SCM Direct Range
(Bit 23) (Bit 22) (Bit 21) (Bit 20)

0
1 X
2 X
3 X X
4 X
5 X X
6 X X
7 X X X
10 X
11 X X
12 X X
13 X X X
14 X X
15 X X X
16 X X X
17 X X X X

12-8

60372600 A



The format of the MODE statement is as follows:

MODE (n)

Example 12-3 illustrates the use of a MODE(1) statement to designate that job termination
is to occur only if an SCM direct range error occurs. MODE statements are used pri-
marily as an aid while debugging your program.

NOTE

The MODE(0) statement is usually used as a last
resort when debugging a program that does not
run to completion for no apparent reason. The
MODE(0) statement forces the job to run to com-
pletion.

CONTROL DATA

: FORTRAN CODING FORM

Joesgn,cpfu.
(TAPE}L ;FCST)

7/8/9 in column one
! PRCGIRAM CNE (INPLT,CUTPUT,TAPEY)

RINT &

5 CRMAT (1k1)
1 100 ,EASEZHEIGHT, 1T
100 Jo21Il1)

e

Example 12-3. Using the MODE Statement

60372600 A 12-7



SETTING LOADER ERROR OPTIONS

SCOPE 2 allows you to override some of the error conditions that can occur during
loading of your object program. When the loader detects an error during the load
sequence, it takes the following action depending on the severity of the error.

Terminal errors Immediately terminate loading and terminate the job

Fatal errors Complete the load sequence and then terminate the job
without executing the loaded program

Nonfatal errors Continue normal processing of the job but issue an
informative message

The LDSET ERR option lets you specify job termination for terminal errors only, or

for any error, despite its severity. The SCOPE 2 loader also detects normal conditions
that result in informative messages but do not cause a job to terminate. Such conditions
are not considered error conditions.

Placing the following control statement in the load sequence causes the loader to issue
an error message and continue job processing for either fatal or nonfatal errors. A
terminal error causes immediate job termination.

(LDSET(ERR=NONE)

The following option causes the loader to terminate the job even for errors that are
normally nonfatal.

i LDSET(ERR=ALL)

The following ERR option is equivalent to the normal default mode.

(LDSET(ERR:FATAL)

In Example 12-4, the LDSET (ERR=ALL) causes execution of LGO to be prevented even
though the loader detected an error that was normally nonfatal, for example, if the
loader failed to satisfy all externals.

12-8 60372600 A



LOUIRL  FORTRAN CODING FORM

Jossap,cr7pn.
SITAGE[(TAPE[ ,FOST)
FITN.
———— LPSET{(ERR=jALL)
LGO.
7/8/% in column one
RCGRAM CMNE (INFUT,CUTFLT,TAFED)
RINT 5
CRMAT (1F1)
£ap| 100,RASE,HEIGHT,I
00 CRMAT(2F10.21I}1)

F (I.GT.0) GC| TC 120

F (BASE.LE.0)| GC TC 1C5
2 /\.
n N_A LR I e

= b A
[=]

Example 12-4. Requesting No Program Execution For Any Loader Error

OBTAINING PROGRAM DUMPS

If an error prematurely terminates your job, SCOPE 2 automatically generates a Standard
Dump of SCM and writes it on the OUTPUT file. This dump (Figure 12-2) includes:

Contents of the exchange package used for communication between your job
and SCOPE, including the current contents of all arithmetic registers in the
central processor unit

Assuming that the arithmetic registers contain addresses, the dump includes
a listing of the contents of the addresses referenced in the registers.

Contents of the first 210, locations in the SCM field (RAS+0 to RAS+207). The
first 1008 locations are “the job communications area.

Contents of the 77, locations immediately preceding the location at which execu-
tion abnormally terminated and the 77, locations immediately subsequent to the
termination point, as well as the contents of the termination address

Figure 12-2 illustrates a sample standard dump.

60372600 A 12-9



USER EXCHANGE PACKAGE

P 00 001013 A0 900124 BP 080008 SC(AD)s 1725 2420 2526 0303 00D8 SC(P )z 0400 4010
017320 41 000005 B1 00001 SCCALI= 2000 OUOD 0270 0000 D009 SC(®1)e QOO0 0000
092107 AZ 800155 B2 000035 SC(AZ): 5110 0001 5001 0000 0520 SC(82)x 0000 000U

00 060007 A3 801435 B3 000023 SC(ASi= (116 2025 2600 0000 0600 SC(E3)= 0000 0060
RAL 00 002007 AW BOD761 B4 DDOSO2 SCEAe)s J000 0000 D000 0J0Q 2005 SC{Bk)= 0000 8000
DUMP OF FLL 00 603007 AS 000136 PS5 600003 SC(AS)= 3000 0UOR 0200 GJ00 0G4 SC(BS)x 0000

0w 0
WEA 40 016147 A6 88130 D6 GODNG0 SCtAel= 1000 000N 0300 0000 1157 SC(Bel. 0000 0900 0000 8003 0000
EXC HANGE EEA G0 010460 A7 800761 B7 001521 SC(AF)=z 0000 QDOR G000 0000 3005 SC(B7)= 1116 2002
9 X0 77T7 7777 7777 7777 7776 sClxp= L=
PACKAGE 1 0800 2000 0000 SCUX1)= 1000 0009 0GOC 0009 1GU0 LCEXi)*
X2 0600 0000 0343 scex2is 0000 0006 5735 (CCX2)=
X3 1116 2025 9000 sCex3Ns 0000 0000 LC(X3)=
X6 0800 0003 0008 SCixe)= 0300 2277 LCOXDx
X5 0000 9007 ooe3 SCEx5)x 0000 0100 LC(XS)x
\ X6 0600 0003 1157 SCUxs)s €006 6800 LC(X6)=
X7 8000 0003 0308 0477 7777 SCex?)= 2000 lun 0070 0000 G000 LC(XTI=

080000 03000300000070000000 02000000000790008000 1{162025250000001100 24012005 3400000031 00 INPUT & TAPEL A
0000064 1725242025267000012% 09000000000J00000600 011715202 30000060277 06241622150120000333 QUTPUT AT COMPS B FTNRWAP C§
0000010 06241617292410000%7 000 0 76 0DOOOD0GDN00Q00GS7 76 FTNOPT C 0.
luuuu 030000000 01070000000 20233403

0.
PSICTLE &

DUMP OF

JOB COM-
MUNICATION
AREA

SCM
CORE
DUMP

*38‘63}485‘.3&14%81423

010101400 000300235262

000000900001000 00000
0000

00000000000000003700
0000

00006206020060000000
00000004 304900000 05
000000

6 00

00 09070000000
000

0010000000

08000000 15

909
020000009 00010000000
50
090033007 09070000000 T:

nnnn uauncnnn-nuu
1667

3
06000000 000000003 03
)

i 0.
00000900000100065673
0000

18
0000 000

00

mm

ou03

3261053035262

n« 20099009 300000000¢C
o

TEWI25I5 02152273750
040003202 46190046000
5321055 3252672226€33
9316332051516000046 3
27506151506361067€61
0315078 7% 30443000742
714800777 443766 76600
475730408 00074346000
021009800 061106 45000

013000010 46111046090
64

215227355004000 32016

36762030703202643000
4360376 52

614377797305200 32118
222270460801750 Y6727
22264731131150566800
67545055200174366300
6211137761307 7748
6152030801

61607776320540032187
206031521 32070112661
03723007316635746200
43400043007074310677
20425665087130000007
72507777754,

010003240661 000460 00
517980615151 11
5312051390 00 0
367716352561 00066300
046000074266 32246J 00
0006008900 61 §0Q46) 0

1170151

017000040 62

03150007

55£6555555;

5120000766

67 6300

031800

70
226015685 51541054115
76

119066000
126232043 654530 46 800
013000840 10070091372
637109101 70351801820
712009182 4043000101 3
LI

1484

00046000 61
snnunuuzr 2654728 01

52247777765 302021428
010000

2170301

sagtoy nz: 7120001847

hnwnwlnluuhwn

3 04 7060!

225741277 54€18056 326
617003050 #0415001022

3 225736711 61277546000 071

040040106 461100 46000
87623010556 110045800

B46000105 76110046009 202061

ﬂ‘-

070730 182756776 46
61500008066140000002
88184354 32646080
£1120000015160000502
202561582067331 54661

#9716001035

0 61700000746718413777

67775225726711612775
95 mnlnssuu 9266000
03031018576 36 3041066
05309810515622167662

01
70000207
o

0401 6000600503
sunlunnsu 001201
40100000014 10
nuthnunwmsﬁuu
712! 106 00801713
6160000001 3709450 90
202063642367 775562 36
061400102705100010 35
562360410001 063677 75
547760600001 022463 80
612000001266 320464 00
663200662201 051450 80

303030552 295931 72204
010067990 09910000080

6766154661
55161616161616161616
111705222255550 04378

o
552215031 72204551501
040040187261008 46000

7t 7551
558611160555 303030 3

16010705225505222217
%100535104305211605

M

M50
.
0.~

so

160 [
[N

PSICTLIC)

38U250) N6/ Q) W2 /0 cvuxwl 289¥ A CTO O

0 CPT O 8G /1 6L 6UH T

SOESUV R 0 & (n:m

CNCP (L5 D #R -

7/ 6F M-vnlr € 6 2

0100!57:/’ 858 v o
6F Q. X 9P7, X 80 €1 O

aET

6 o
D 6. D U SHA O /lwmuxl;u
JSTBLRS 80 eea

P LID M PLVD HKD SR

5
R.6M - EBVGG MKz
00

G H D PP ,P gM- EX H(ZAN Z PAEL

D N. D PP .- - ( n

o FILE uu

o n(culn vmmwnw IE Dunn HANAGER ERRD
1065 L1 HEZHBEQME

4307TINTE06150600801 1356 7516000163011745 23557217063775712757 515000163111 47512666 B60 7  AK, |. Anms OFk M./ LYI®(Y

216305150 00163243066 15460367455170001063 naus;xsunuususs 56775525100801243436 P EN ASTXIN-C »{ H I W ABQ = UM AT13
234361145 42047446000 01030013536100046800 227155477 43311203331135320352 P8 LaP*S A& KE D R %) ( DEYJCOT2IC)

085117 01000013606170046000 2066051400014 3436664 sxsonnnunz wu 71100001876100066000 & X ELABS ( H PN HA® D

B8R883888484858803884888488384448444

g

2AXT3A

Figure 12-2. Standard Dump

REQUESTING A STANDARD DUMP

If you want a standard dump even if no error has occurred,
the DMP statement.

you can request it through

DMP.

As shown in Example 12-5, the request is generally written after the request that exe-

cutes your program.

12-10 60372600 A



FORTRAN CODING FORM

M, CPO,MT1.
Map (chp
SIT(TAPEL,MT)

7/8/9 in cofumn one
PROGIRAM CANE (INPUT, CUTPUT,TAFEL)
PRINT S
FCRMAT (1F1)
EEADl 100,FEASELHEIGHRT,I
0 0 FCRMAT(2F10.2T1)

%F (1.67.0) GQ TC 120

L\ E 1.ﬂﬁ§.E'LEOB)V

Example 12-5. Request for Standard Dump

b AT
=

REQUESTING SCM DUMPS

Depending on the nature of your job, you may want a dump to indicate the contents of
locations other than those normally shown on a standard dump. You can specify more
or fewer locations to be printed. For example, you can request a dump that will show
the contents of all words from the beginning of your SCM field (RAS) to any specific
address beyond RAS. To dump from RAS to a specified address, use the statement

l DMP(lwa)

where lwa is the octal address of the last location you want listed. You can also specify
the beginning relative address as well as the ending relative address for the dump. To
do so, use the following form of the DMP statement.

(DMP(fwa,lwa)

Thus, if you wished a dump of locations 2008 through 5008, you would use

[ DMP(200, 500)

You can place the DMP statement after an EXIT statement if you wish the dump taken
following abnormal job termination. Example 12-6 illustrates a job in which an SCM
dump is generated during EXIT processing.

60372600 A 12-11



If you should happen to specify fwa the same as lwa, the system generates a dump as if
you had simply specified DMP.

Unlike 6000 SCOPE, 7000 SCOPE 2 does not provide a means of obtaining a dump of
SCM using absolute rather than relative addresses.

CONTROL 0ATA

FORTRAN CODING FORM

JossAM,ce7o.
FiTN .
SITAGE|(|TAPE[1,FOST)
LGo.
EXIT.
DMP (Hojoo, 506 )
CICMMEN[T. E[RRCR IN PRCGRAM, SPECTIAL DUMF [TAKEN
7/8/9 in column one
ROGIRAM CNE (INPUT,CUTPU[T,TAFE1)

RINT 5
5 CRMAT (1H1)
110 EAD 10U,EASELFEIGHT,I
100 CRMAT(2F19.,21I})

IF (I.GT.0) GC| TC 120
IF (BASE =l 0 T0 135

Example 12-6. SCM Dump Taken Within An Exit Path

REQUESTING LCM DUMPS

The standard dump does not include a listing of any of the contents of the user LCM
field. SCOPE 2 provides two control statements, DMPL and DMPECS, which you can
use to obtain listings of locations in LCM. Except for statement name, the control
statements are identical,

To request a dump that will show the contents of all words from the beginning of your
LCM field (RAL) to any specific address beyond RAL, use one of the following statements.

‘ DMPL(1lwa) or F DMPECS(1lwa)

where lwa is the octal address of the last LCM location you want listed.

You can also specify the beginning relative address as well as the ending relative address
for the dump. To do so, use the following form of the DMPL or DMPECS statement:

(bMPwaaJwa) or (bMPECSGW&IWM

12-12 60372600 A



Specifying LCM Dump Format

By default, the LLCM dump is printed in a format similar to that used for the SCM dump
shown in Figure 12-2. That is, SCOPE lists the LCM address followed by four groups
of 20 octal digits indicating the contents of the address and the next three locations.

To the right of the octal listing is a display code interpretation of each two octal digits
(00 is interpreted as blank). You can request that words be listed only two at a time
rather than four at a time. If you are listing octal instructions, you may prefer that
the contents of the two words be listed in 15-bit groups (4 to a word) rather than having
all 20 digits in a group. However, if you are listing data, you may feel that the listing
is easier to read if the word contents are broken into five 12-bit bytes.

To obtain any of these options, specify the format parameter as the third parameter on
the DMPL or DMPECS statement:

@MPL(fwa, lwa, f) or (DMPECS(fwa, lwa, f)

Specify f as follows:

null, 0 or 1 List 4 words per line in 4 groups of 20 octal digits
accompanied by character interpretation

2 List 2 words per line in 4 5-digit groups accompanied by
character interpretation

3 List 2 words per line in 5 4-digit groups acconpanied by
character interpretation

4 List 2 words per line in 2 groups of 20 octal digits accom-
panied by character interpretation

Specifying LCM Dump File

For LCM dumps, you also can specify a file other than OUTPUT to receive the dump.
Remember, if you specify a file other than OUTPUT you are responsible for saving the
file or routing it to a printer through the DISPOSE statement. Specify a file as the
fourth parameter on the DMPL or DMPECS statement:

‘ DMPL(fwa, lwa, f, 1fn) or (DMPECS(fwa,lwa,f, 1fn)

The comma terminating the f field must be present even when f is null.

OBTAINING LOAD MAPS

Each time the loader is called for an object module (that is, relocatable load) you have
the option of requesting a listing that describes where each module is loaded and what

entry points and external symbols were used for loading. This listing is called a load
map. You can control the contents of the map and can designate the file to receive it.
A load map optionally contains the following items (Item 1 through 15 are illustrated in
Figure 12-3. Items 16 through 18 are illustrated in Figure 12-4).

60372600 A 12-13



1. Identifies the output as a load map
2. Identifies which version of the LOADER is being used
3. Page number

4. Present only for overlay generation; identifies the overlay for which this is
a map :

5. Present only for overlay generation; indicates where overlay will be loaded
when called (octal value).

6. Symbolic name for point of entry

7. Absolute value for point of entry in octal

8. Program or overlay length (SCM) in octal

9. Program or overlay length (LCM) in octal

10. A block name within the program or overlay, where // means blank common

11.  Absolute beginning address of block, where an L following address indicates
an LCM address

12. Length of the block

13. A list of entry points occurring in the program or overlay

14. A list of subroutines that references these entry points

15. The absolute address within the subroutine where the entry point is referenced
16. A list of unsatisfied externals

17. A list of subroutines in which the unsatisfied externals occur

18. The absolute address within the subroutines where the unresolved external was
referenced

A system parameter determines whether or not you receive a map with each load. This
parameter can be set to specify no map, a partial map, or a full map. You may want
to check with a systems analyst to learn what the default is for your site. For this dis-
cussion, let us assume that the system default specifies no map.

You can change this default for the duration of your job by using a MAP control statement,

or you can change it for a load sequence through the use of the LDSET MAP option. Op-
tions also apply for overlay and segment generation.

MAP Statement

To change the map default for the job, place a MAP statement in your control statement
section before the loads that are to be affected. Although it is a SCOPE control statement
and not a loader control statement, MAP can occur within a load sequence for compatibi-
lity with previous systems (see Table 12-3 for MAP parameters).

12-14 60372600 A



vV 0092LE0S

¢1-¢l

®

LOAD_MAP

OVERLAY (03, 2)

BLOCK

{00,00)

(03,00)

(03,02)

C0B0L32

PACKLCM

PASS1H
/!

@ enTrY

PACKLCM
PACKLCM

@@sETBUFH
RSTRBFH

@ passiv
PASS1H

PROGRAM WILL BE ENTERED AT PASSIH

ADDRESS

100
10016
12347
12330
12350
12645

0

ADDRESS

12517
(® 12565
12574

(1 12645

® ®

LOADER VER, 1.0 PAGE 1
LOAD AT ( 12347)
7 ®
( 12645) SCM LENGTH 15720 LCM LENGTH o]
LENGTH
1
1
1
[
275
3053
0o
REFERENCES
PASS1H 12763
PASS1H 15607
PASS1H 15610

h____—F—____’_’,,_———\___,,—————~.__——-—\\__‘_,_,—”‘———_——'—'—__N“———"'—__“*-\_______,\_____,—————/’p\\_______,’——s._/—'_"‘\._____,—»————”’_~\‘-_\N‘___

2AX25A

Figure 12-3. Loader Map-Part 1



91-¢1

V 0092L€09

P,
LOAD MaP LDADER VER. 1,0 AGE 1
OVERLAY (04, 0) LOAD AT ( 1001s6)
PROGRAM WILL BE ENTERED AT CREF ( 10230) SCM LENGTH 10433 LCM LENGTH )

BLOCK ADDRESS LENGTH

(00,00) 100 1

(04,00) 10016 1

COBOL40 10017 0

CREF 10017 414

0 0
ENTRY ADDRESS REFERENCES
CREF
CREF 10230

UNSATISFIED EXTERNALS

©)

EXTERNAL REFERENCES

SMCON7 CREF 10232 10277
W’—W

Figure 12-4, ILoader Map-Part 2




LDSET Option

To override the system default when there is no MAP statement or to override the MAP
statement on a temporary basis, use an LDSET loader control statement with the MAP
option specified (see Table 12-3 for options).

TABLE 12-3. MAP OPTIONS

MAP Contents MAP Statement LDSET Option
Parameter
No map OFF MAP=0 or MAP=0
Partial map (items 1-9) --- MAP=S
Partial map (items 13-15
omitted) PART MAP=B
Partial map (items 14,
15 omitted) --- MAP=E
Full map ON MAP=X

In addition to allowing you greater control of map contents, the LDSET option also lets
you determine the file to receive the map. You can specify a file by specifying the para-
meter as MAP=p/1fn where 1fn is the name of the file to receive the map and p is the
map option, or can change the file without changing the current map default by simply
specifying MAP=/1fn. The default lfn is OUTPUT.

Example 12-7 illustrates user control of load maps.

OBTAINING FILE DUMPS

As an analytical aid, SCOPE 2 provides a utility routine that lists portions of a file.
This routine is called with the DMPFILE statement and includes a number of options.

The dump format (Flgure 12-5) resembles the standard dump format in that it lists the
contents UJ. the file in gluupb UL u)ux words dL,\,Uiupcuucu UV a L,u.al.u.dy code repr esentation
of the contents. The number of words listed in each record and the number of records,
sections, and partitions listed are user options. A file word address precedes each
listing of the contents of a record. Because DMPFILE uses the record manager, any
parity errors are noted but do not cause DMPFILE termination. The definition of a
logical record is determined by record type. If you want to list all of the contents of
the file, including W control words, I blocking control words, and recovery control words,
or want to list the 48-bit appendages for S or Z record types, you can redefine the file
as record type U, unblocked, before using DMPFILE. A blocked file must be closed
before it can be redefined with a different file type. If the file is post-staged or is an
on-line tape, you will not be able to redefine it as unblocked.

REQUESTING A DUMP OF ENTIRE FILE

Use the following control statement to list an entire file on the OUTPUT file:

‘DMPFILE(lfn)

60372600 A 12-17



CONTROL DATA

Assume map default
| 1s off, No map
JOB,CF73, Is generated.

. ,
Map written on OUT-
FIEEi- PUT with statistics

. blocks, and entry
points

LCSET(MAF=E)

FILEZ.
. Return to default;
: -4——_—_—,——_——¢———————" no map Is generated
FILE3. ———

Set map for
LOSET (MAP=S/ELUE)<«——— !02ad sequence
NAP (PART)
FILE4.

Change default. Fo
this sequence, LCSE
takes precedence

REN)
FILES.

Map contains statis=-

N~ tlcs and is written

of file BLUE.

Map set by default;
written on file
GREEN

Example 12-7. User Control of Load Map

12-18 60372600 A



CPFFILELE, 2R=2)

CRCRE R |

FILE CATZ EEGIANING 2T FILE WCRC 3

111114
cooots
€00010
000014
ceoce0
Co0Ceu
00020
00024
(41 LET:)
COGGud
cegose
Q00054
goooed
LOGCES
cocoro
cooo7e
900100
600104
€00110
400114
6oa01z0
€oo1z4

6EEEEEEEN13E
€56555¢C4 341
BEESEECA 3L

€EEhET
€6ESEEC LN
555555423

5
5
5
5
€

€

5N AR AN R AR D D e e

ere3e 233333333232237331313 1 3 300006C4C0E
5EELz ESESS5556555565E5543 0006000002 € ? ¢
52434 £5556555555555553435 < 16 1 1z
£I44D SSEEE55555555555 44l 13 14 15 1€
€34kl ESEEEEEESSEEEEEEI5 17 18 1¢ 2c
I€3€ SEEEE555E55556551537 21 2z 23 24
£1642 S55EE5555665555653543 25 ] 27 2e
S1634 5555£55555555555361¢ 2¢ H 31 3z
E3€ul EESEESSEECEESESE3641 33 1 3¢ 3¢
£ieus 55555555555555553732 37 e 3¢ ot
53736 £556£555555555553737 41 “z PE] au
53742 55555555555555553743 s “e «? ot
£4024 ESSEESSSESSE5555403¢ 4 € 51 s
5L04L0 555565556E5555554041 53 <a st SE
54044 55555555555555554133 57 ] s¢ 6t
5413€ 55555656655555554127 61 €z 63 64
54142 55555555555555554143 65 €€ €7 68
£1234 EEECESSEEEEESEEE4L23S 69 70 71 7e
54240 55555555555555554241 73 74 75 7€
€uzk S55SE55EE5555555433 7¢ 7¢ 80
54336 55555552 —

3 dte
- 35555555364235 ey 76 ars ez

—s 555£3€L23E = EETH
€00579 E5CEIEuzUc 5 sgel
0ges7y SESEIeudIL € 2
Q00€QD EEE53€4 340 €
200€Cs E5E5 364Ul © LR
ago€e1d $5SSJELAIE S €2
000€1N £6CSIeU Ll ESEESE €3

ENC CF RECCRC 1L / LENCTH €20 WCRDS ANC CC LMLSEC EITS, (F &(CGC

FILE CATS BECIMMING AT FILE wCRL €21

EEEECEEEEECEEEEEEgAY

GooGeo

800064 2323333333332223333¢
00010 SSEE5555555555555%544
000014 $555€55555555555343¢
0000Z0 $SSEEEEE5EESES953 A4
000024 €5555556555555553534
£00020 £55E555€555555E53¢4l
000024 55555555555555553 844
0oocA0 €IEIE
GODOuA EEESCETENLC
cooocn < €5EE65CCEE6E3 T4
0a00Ss €S €555374C
0000€0 <&

000064 55

gcopoe?e ¢S

000074 S¢S

tucul 555555555556563€4241 373 7. irs 37€
€lhzhh 555555555555553€4333 arz ire ire 86
€L3J€ S555E5555ESE5EIE4II? 381 282 28 s
L3462 S55EE555555E555364343 3es 8¢ 87 388
€LtIu 555565555555553€4435 Jac 266 391 292
€LLaD 55555555555555364k441 3s3 cu 295 3¢
E4hbh 5555555555555555555¢€ 97 ice 29¢ ’
C CHARACTERS /7 CF SECTICN 1C OF PARTITICM 1C
33332332331333733330 1 H 30600064000
€5656555655555555543 0060000002 € 7
5555555555555555343¢ S 10 1z
55556555555555553441 13 1t 1€
€E5EEESEEEEESE5E3533 17 18 20
5555€555555555553537 21 e 2%
€5656555555€55553543 2¢ 2€ 28
5555£555555555553635 29 3o 3z
EEEEEEGEECECEESEIENT 33 I 3€
55555555555555553733 37 kL] 13
£555£565555555553737 41 LT3 (1]
€5556555555555553743 45 “E »8
€5EECES5554035 &< <t 5z

55555555554041
55555655665 o s ngy

EESE5E5EEEE6IE423E
EC2ELlal

0006s

ENC CF RECCRL 2T / LENCTF = €20 WCRCS FML GC LM SEC EITS, (R &LLC

3kzZ( - SKIFFING MEST CF SECTTCH

o w8 8 s <KIFFINC STCFS AT FILE »CRC 4&301 / END CF INFCRMZTICH

FILE WCRC ACCRESS AT ENC CF FRCCESSING 1€ 2303

KECCRCS FEBL 4&C ¢ SECTICAS REAL 0L ¢ FASTITICAS REAC 1C

m——rRca23C 369
5555£555555555 364241 373 75
6SEEE5E6CE5E553E4333 37 i7¢
£556£5555555553€4337 381 82
€EEGECSSEECEEEIELILT 3ac 87
£55565655E5555364435 388 391
E555£5555€55553E 4461 2¢3 < 398
5555655555555555555¢€ 397 3ce 9¢ ,

C CWARACTERS / CF SECTICN {C OF PARTITICM 10

T

Figure 12-5.

60372600 A

e ——— —
2AXT74A
Sample of DMPFILE Output
»
12-19



SPECIFYING A LIST FILE

If you want your DMPFILE output placed on a file other than OUTPUT, specify a list

file as L=1fn0ut.

(DMPFILE(lfn. ,L=1fn )
in ou

t

Remember that if you specify a list file other than OUTPUT, you are responsible for
saving the file contents.

SPECIFYING DUMP LIMITS

When listing a file with very long records, you may want to sample only the beginning
of each record. Similarly, if your file is very large, you may want to list only so
many sections of each partition or so many partitions on the entire file. Several X
parameters permit you to specify dump limits. These parameters and the L=parameter
can be in any order after the comma for the input file field.

The allowable parameters are as follows:
XW=n n is a decimal count of the number of words in each record to be

dumped. If n is 0, DMPFILE lists the size and number but not
the contents of the records in the file.

XR=n n is a decimal count of the number of records in each section to
be dumped.

XS=n n is a decimal count of the number of sections in each partition to
be dumped.

XP=n n is a decimal count of the number of partitions in the file to be
dumped.

In Example 12-8, the user requests a dump of file TAPE6 following abnormal job termi-
nation. The statement requests the first 14 words of each of the records on the file.
The listing is written on OUTPUT.

Sl  FORTRAN CODING FORM

Joe,cplro. | !
FITN. By default, RF=W
STAGE|(TAPEL,POST) » RT=W,
ko, ’ T —— BT=1, MRL=520
EXIT. characters
REWIND[(TARES)

OMPFILE (TAPEE, Xh=14)

7/8/9 in column one
|  (FERTRAN SOURCE |FROGRAM)

6/7/8/9 in column one

Example 12-8. Requesting a File Dump

12-20 60372600 A




OBTAINING DAYFILE SUMMARIES

To analyze the performance of specific job steps, you can obtain intermediate accounting
information at a specific point in your job. Place a SUMMARY statement in your job
deck after the step you want analyzed. When SCOPE encounters the statement, it gives
an accounting for the job up to that point. SUMMARY has no parameters.

Example 12-9 illustrates a job in which the user wants information about the compilation
and the assembly. By comparing these two intermediate summaries with the job comple-
tion summary, he can determine the resources used for each job step.

Here are some simple guidelines for reducing the use of resources while running a job.

1. Use dynamic memory allocation. If you must use user-controlled memory allo-
cation, don't increase your field size until just before the job step that requires
the memory, and then return to automatic mode immediately after the job step.

2. Don't acquire a resource before you need it. In general, this means that you
should place statements such as REQUEST and ATTACH before the job step
that uses them. For example, if your FORTRAN job uses an on-line tape
named TAPE1l, the REQUEST (TAPE1l, MT) statement should lie between the
FTN. and LGO, statements, not before the FTN statement.

3. Relinquish a resource as soon as you no longer need it. This means that you
should return any mass storage file or unload any on-line tape when you are
through using it without waiting for job termination. This includes post-staged
tapes and disposed files.

‘

CONTROL DATA Summary No, | taken
hera
— ——

JOB,CP7(yMT2,
FTN.
SUMMARY s f
gg::::s: Summary No. 2 taken F
REQUEST(TAPE1,MT) — here
REQUESTU(TAPEZ,,MT)
LGO.
7/8/9 4in column one

{FCRTRAN SCOURCE™RECGRAM) -
7/8/9 in column one.‘\\\\\‘\~\\\\\ s oo

(CCMPASS SCLRCE PRCGRAMN occurs at job
7/8/9 in column one comp letion

{(DATA)
§/7/8/9 in column one

N

Example 12-9. Intermediate Accounting Information

60372600 A 12-21



V 009¢L€09

ASCIHI Hollerith External | ASCII ASCII Hollerith | External ASCII
CcDC Graphic Display Punch BCD Punch [ ASCII cDC Graphic Display Punch BCD Punch ASCII
Graphic Subset Code {026) Code (029) Code Graphic Subset Code (026) Code (029) Code

it . oot 8-2 00 8-2 3A 6 6 41 6 06 6 36
A A 01 1241 61 121 41 7 7 42 7 07 7 37
B B8 02 12-2 62 12-2 42 8 8 43 8 10 8 38
C Cc 03 12-3 63 12-3 43 9 9 44 9 1" 9 39
D s} 04 124 64 124 44 + + 45 12 60 12-8-6 28
E E 05 12-6 65 125 45 - - 46 1 40 1" 2D
F F 06 12-6 66 126 46 * * 47 11-8-4 54 11-8-4 2A
G G 07 127 67 127 a7 i / 50 0-1 21 0-1 2F
H H 10 128 70 128 48 ( { 51 0-8-4 34 12-8-5 28
] | 1M 129 7 129 49 ) ) 52 12-8-4 74 11-8-5 29
J J 12 11 41 111 4A $ S 53 11-8-3 53 11-8-3 24
K K 13 1-2 42 1-2 48 = = 54 8-3 13 8-6 3D
L L 14 11-3 43 11-3 4C blank blank 55 no punch 20 no punch 20
M M 15 114 44 114 4D , {comma) , lcomma) 56 0-8-3 33 0-8-3 2C
N N 16 115 45 115 4E . {period) . {period) 57 12-8-3 73 12-8-3 2E
(o] (o] 17 116 46 11-6 4F = = 60 0-8-6 36 8-3 23
P P 20 11-7 47 11-7 50 | [ 61 8-7 17 12-8-2 58
Q Q 21 118 50 11-8 51 ) 1 62 0-8-2 32 11-8-2 5D
R R 22 119 51 19 52 %Tt % 63 8-6 16 0-8-4 25
S S 23 0-2 22 0-2 53 * ' (quote) 64 8-4 14 8-7 22
T T 24 03 23 0-3 54 - (underline) 65 0-8-5 35 0-8-5 5F
U V] 25 0-4 24 0-4 55 v ! 66 11-0 or 52 12-8-7 or 21
\ Vv 26 0-5 25 0-5 56 11-8-2ttt1 110ttt

w w 27 0-6 26 0-6 57 A & 67 0-8-7 37 12 26
X X 30 0-7 27 0-7 58 1 ! (apostrophe) 70 11-8-5 55 8-5 27
Y Y 31 0-8 30 0-8 59 1 ? 7 11-8-6 56 0-8-7 3F
4 4 32 09 31 0-9 5A < < 72 12-0 or 72 12-84 or 3C
0 0 33 0 12 0 30 12-8-21tt 120ttt

1 1 34 1 o1 1 31 > > 73 11-8-7 57 0-8-6 3E
2 2 35 2 02 2 32 < @ 74 8-5 15 84 40
3 3 36 3 03 3 33 2 \ 75 12-8-5 75 0-8-2 5C
4 4 37 4 04 4 34 - ~(circumflex) 76 12-86 76 1187 5E
5 5 40 5 05 5 35 ; (semicolon) ; (semicolon) 77 12-8-7 77 11-86 38

-V

t For 6000 SCOPE, 12 or more zero bits at the end of a 60-bit word are interpreted as end-of-
line mark rather than two colons. End-of-line mark is converted to external BCD 1632.

t 1 In installations using the CDC 63-graphic set, display code 00 has no associated graphic or
Hollerith code; display code 63 is the colon (8-2 punch).

t 1t The alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

13S YILOVAVHO QIVANVIS 04 ¥349AD OAD



RA(S)+538
RA(S)+548

RA(S)+638
RA{S)+64g
RA(S)+658

RA(5)+6634
RA(S)+67g
RA(S)+70g

RA(S)+774

60372600 A

JOB COMMUNICATION AREA

59 55

36 29 18

13 06

00

H

kl ss | sl

User/System Interface

Parameters from the program callj statement

(Available to user during job expcution)

-

Used for absolute program loading

name np
lwaec(lcm) | 1lwacm(scm)
x| fwaec(lcm) fwacm(scm)
Reserved for loader c Reserved for Joader

z

Control statement image

z




Word

RA(S) =

RA(S)+1

RA(S)+2
through
RA(S)+63

RA(S)+64

8

8

Bits

59-18
17
16-13
12

11-06
05-00

59-00

59-00

59-18

17-00

Field

none

none

ss
sl

user/
system
interface

params

name

np

Significance
Reserved
Abort flag (SCOPE 3. 4 only)
Reserved
Go/pause flag

0 Go

1 Pause; wait for go
Sense switches

Sense lights

Reserved for use during execution (SCOPE 3. 4 only)

Parameters from the program call card; available to
user during execution

A keyword or value occupies bits 59-18. A delimiter
is converted to a code and placed in bits 03-00.

*odd

parameter
Code Delimiter Character
00 Continuation None
01 comma ,
02 Equal sign =
03 Slash /
04 Left parenthesis (
05 Plus sign +
06 Minus sign -
07 Blank
10 Semicolon ;
11
12
13 Reserved
14
15
16 Other
17 Termination . or)

Name of file or program from control card or macro

Number of parameters

60372600 A



Word Bits
53- 36

35-19

18
RA(S)+658<

_17-00
59

58-36

RA(S)+66, £
35-19

18

17-00
N\

RA(S)+678{ 59-30

29
28-00
RA(S)+70
through 59-00
RA(S)+774
T

SCOPE 3.4 only.

60372600 A

Field

lwaec(lem)

none

L

lwacmi(scm)

X

fwaec(lecm)

none

fwacmi{scm)

Reserved

Reserved

card
image

Significance

Last word address +1 of loadable area in ECS/LCM of
most recently completed load operation.

Unused; zero

T :

0 Name is a file name

1 Name is a library name

Last word address +1 of loadable area in CM/SCM of
most recently completed load operation.

Set to 1 if CPU programT

First word address of loadable area in ECS/LCM of
most recently completed load operation.

Library flag

can issue XJ instruction.

Unused; zero
RSS flag ! :

0 Not in RSS mode
1 RSS mode while using DIS

First word address of loadable area in CM/SCM of
most recently completed load operation.

Used by loader

LDV completion flag; set by LDV upon completion of
execution. Required for SCOPE 3. 3 compatibility.

Used by loader

Control card image



STANDARD LABELS C

—

STANDARD LABEL TYPES

The four types of labels in the Standard are identified by the first four characters of
the label. Contents of labels are described later.

Type Identifier Significance
Volume Header VOL1 Beginning of volume
File Header HDR1 Beginning of information
End of Volume EOV1 End of volume
End of File EOF1 End of information

LABEL GROUPS

Each occurrence of one or more of the labels is called a group. The following groups
are possible;

Volume/header group composed of a VOL1 label and a HDRI1 label separated from
each other by an interrecord gap and from the beginning of information on the file
by tapemark.

End-of-file group composed of an EOF1 label separated from the end of information
on the preceding file by a tapemark. If the volume contains only one file, the EOF1
label is followed by a double tapemark. If the volume contains multiple files, the
EOF1 label is separated from the next volume/header group by a tapemark.

End-of-volume group composed of a EOV1 label separated from the information by
a tapemark and followed by a double tapemark.

Several different combinations of files and tapes are possible. First consider the simp-

lest case, the single volume of tape containing only one file, This volume has label
groups as shown in Figure C-1.

END -OF-VOLUME MARKER

BEGINNING -OF -VOLUME REFLECTIVE MARKER
\ 801 EOL
¥ ¥
/4
volt | HOR1 [%| FuEA 7{ %*| EOF1 |%|%
7
o~

2AX27A
Figure C-1. Single Volume File

60372600 A C-1



Notice that the tape cannot be read beyond the double tapemark. If the information on
the tape is extended beyond the current end-of-information, the EQF1 label and double
tapemark are overwritten and a new label and double tapemark are written following the
data.

Notice also that the terminating label group consists of an EOF1 label, not an EQOV1
label. An EOV1 label is written only when data must be continued on a subsequent
volume. In other words, the EOV1 label tells you that file information is coming from
another reel. As an example, consider the multivolume file illustrated in Figure C-2.

BOI

y//2
voLt HDR1 [ FILE A { | EOVL || %

/A

voLt [HORL |%| (ENEde) ?{ *| EOF1 [%|%

R f 555
EQI

Figure C-2. Multivolume File

2AX28A

Notice that when a file is continued on a second reel (Figure C-2), it is headed again by
a volume/header group. On the final volume for the file, it is terminated by an end-of-
file group.

Both tapes in the preceding illustrations terminate with double tapemarks. This is stan-
dard for all SCOPE 2 tapes. Figure C-3 illustrates a volume containing multiple files.

Here, a file is not terminated by a double tapemark when it is followed by another file.

This format is not currently supported by SCOPE 2.

Bgl’ E?I B?‘I “ Egl

VOL1 |HDR1 |%|FILEA [%| EOF1 |%| HDR1 |3%|FILEB |%| EOF1 |%[%
7 f [

2AX29A

Figure C-3. Multifile Volume
Let us also consider the multivolume multifile set composed of several labeled files

occupying several volumes (Figure C-4). Although this combination is allowed under 6000
SCOPE, it is not allowed under SCOPE 2.

C-2 60372600 A



) I\
VOL1 | HDR1 |% FIL&A EOF1 }%|HDR{ |% FILJE18* EOV1 3|

|77}
FILE 8_“
VOLL |[HDR1 |3 (CONTINUE)I))) % EOVI 3¢ ¢

VOL1 |HDRI [% (O&','}fma,eg % | EOF1 |%|HDR1 | |FILE C|%| EOF1
—

2AX30A

Figure C-4. Multivolume Multifile

On rare occasions, the end-of-volume reflective marker and the end-of-information may
coincide. When this occurs, the labeling that terminates a reel is somewhat different
from the labeling previously described. For example, Figure C-5 shows that the end-
of-volume marker is reached at the same point that file A concludes. A tapemark is
written followed by an end-of-volume label and a double tapemark,

REFLECTIVE MARKER

} FILE A ¥ EOVI || % ] ) FIRST VOLUME
] _—

2AX3IA

Figure C-5. Simultaneous EOI and EOV Marker

In this case, the end-of-file label must be recorded on the next volume. Figure C-6
illustrates the format used on the second reel:

SECOND VOLUME
VOL1 | HDR1 [% || EOF1L [ [% g/_

END OF FILE A 2AX32A

Figure C-6. Continuation of EOF Labeling

60372600 A



The double tapemark between the volume/header group and the end-of-file trailer group
indicates that no further data appears within file A. Since this condition constitutes a
multivolume set, file A cannot be followed by a second file for SCOPE 2 usage. That
is, the presence of file B would produce a multivolume multifile set.

LABEL CONTENT
In the following description, if a field is optional, it contains either the designated infor-

mation or blanks. Digits are 0 through 9. A character is any of the characters listed
for the 63-character subset. (See Label Parity and Character Conversion.)

Volume Header Label

The volume header label is an 80-character block that must appear as the first block
of every tape volume (reel).

Character Field Length
Position Name in Characters Contents

1-3 Label identifier 3 Must be VOL

4 Label number 1 Must be 1

5-10 Volume serial number 6 Six characters permanently assigned
by the owner to identify this physical
volume and supplied on STAGE or
REQUEST statement

11 Accessibility 1 A character that indicates any restric-
tions on who may have access to the
information in the volume. A blank
means unlimited access. Any other
character means special handling in
the manner agreed between the inter-
change parties.

12-37 Reserved for future 26 Must be blanks

standardization

38-51 Owner identification 14 Any characters identifying the owner
of the physical volume

52-79 Reserved for future 28 Must be blanks

standardization
80 Label standard level 1 1 means the labels and data formats

on this volume conform to the require-
ments of this standard. Blank means
the labels and data formats on this
volume require the agreement of the
interchange parties. Record manager
uses 1.

C-4 60372600 A



File Header Label

The file header label must be the first 80-character block of a file. When a file is the
first on a volume or is continued on more than one volume, the file header label must
be repeated after the volume header label on each new volume for the file.

Character
Position

1-3

4
5-21
22-217

28-31

32-35

36-39

40-41

42-47

48-53

60372600 A

Field
Name

Label identifier
Label number

File identifier

Set identification

File section number

File sequence number

Generation number
(optional)

Generation version
number (optional)

Creation data in
Julian format

Expiration date in
Julian format

Length
in Characters

3
1

17

Contents
Must be HDR
Must be 1

Any characters agreed on between the
originator and the recipient

Any characters to identify the set in
which this file is included. This iden-
tification must be the same for all files
of a multifile set.

0001 for the first header label of a
file. This value is incremented by 1
for each continuation of the file on a
new volume.

Four digits denoting the sequence of
files within the set: the first file is
0001, the second 0002, etc. In all
labels for a single file, this field will
contain the same number.

Four digits denoting the current stage
in the succession of one file being gen-
erated by an update to a previous file,
When a file is first created, its genera-
tion number is 0001,

Two digits distinguishing successive
iterations of the same generation. The
generation version number of the first
attempt to produce a file is 00.

A space followed by two digits for the
year, followed by three digits (001-366)
for the day.

Same as the preceding field. The file
is regarded as expired when today's
date is equal to or later than the expi-
ration date. When the file is expired,
the remainder of this volume may be
overwritten. Thus, to be effective on
multivolumes, the expiration date of

a file must be less than or equal to
the expiration date of all previous files
on the volume. SCOPE 2 checks only
the first file expiration date.



Character
Position

54

55-60

61-73

74-80

Field Length

Name in Characters
Accessibility 1
Block count 6
System code (optional) 13
Reserved for future 7
standardization

End-of-File Label

Contents

A character that denotes any restric-
tions on who may have access to the
information in this file, A blank means
unlimited access. Any other character
means special handling in a manner
agreed between the interchange parties.
Record manager uses blank.

Must be zeros
Thirteen characters identifying the
operating system that recorded this

file. Record manager uses blanks,

Must be blanks

The 80-character end-of-file label is the last block of a file.

Character
Position

1-3

4
5-21
22-27
28-31
32-35

36-39

40-41

42-27
48-53
54

55-60

Field Length

Name in Characters
Label identifier 3
Label number 1
File identifier 17 ‘
Set identification 6
File section number 4
File sequence number 4
Generation number 4
(optional) T
Generation version 2
number (optional)
Creation date 6
Expiration date 6
Accessibility 1 )
Block count 6

Contents
Must be EOF

Must be 1

Same as the corresponding fields in
the first file header label for this file

Six digits denoting the number of data
blocks (exclusive of labels and tape-
marks) since the preceding HDR label

group.

60372600 A



Character
Position

61-73

74-80

Field
Name

System code (optional)

Reserved for future
standardization

End-of-Volume Label

Length
in Characters

13

Contents

Same as the corresponding field in
the first file header label for this file

. Must be blanks

The 80-character end-of-volume label appears at the end of all but the last volume in a

set.

Character
Position

1-3

4
5-21
22-27
28-31
32-35

36-39

40-41

42-47
48-53
54

55-60

61-73

74-80

60372600 A

Field
Name

Label identifier
L.abel number

File identifier

Set identification
File section number
F'ile sequence number
Generation number
(optional)
Generation version
number (optional)
Creation date
Expiration date
Accessibility

Block count

System code

Reserved for future
standardization

Length
in Characters

3
1

17 )

13

Contents
Must be EOV

Must be 1

Same as the corresponding fields in
the first file header label of the last
file begun on this volume

Six digits denoting the number of data
blocks (exclusive of labels and tape-
marks) since the preceding HDR label

group

Thirteen characters identifying the
operating system that recorded this
file. Record manager uses blanks,

Must be blanks



SUMMARY OF FILE FORMATS D

This appendix summarizes record types and block types supported by the record manager.

W RECORDS

The W record type is the most important record type in the SCOPE 2 system. It is the
only record type recognized by the loader and is the only record type that can be dis-
posed, that is, printed or punched. It is also used for the INPUT file. Refer to Section
9 for descriptions of printer input, and punched card input and output.

In the SCOPE 2 system, the default record type is W. A notable exception is COBOL.
For W to be the default within COBOL requires a combination of variable length records
according to the RECORD CONTAINS clause, and the BLOCK CONTAINS clause. Other-
wise, the user can explicitly set the record type to W by using a FILE statement with
RT=W. :

On an output request (for example, a FORTRAN WRITE statement) the record manager
expands the data to the nearest full-word boundary and prefixes the data with a W control
word (Figure D-1). Thus, in its recorded form, the W record consists of a W control
word followed by an integral number of 60-bit words. The last word may be partially
unused, that is, a field in the W control word indicates how many bits of the last word
in the record do not contain data. The unused bits are zeroed.

NOTE

If you want your program to be able to accept
W or S records, always read or write full words.

A W record is considered ''zero-length'' when it consists of a W control word only and
is not accompanied by data. Zero-length records serve as partition and section delimi-
ters.

On an input request (for example, a FORTRAN READ statement) the record manager re-
moves the W control word and places the data in the user buffer.

On magnetic tape, W records can be recorded in binary mode only. When using format-
ted reads and writes, the maximum record size is limited to 150 by the FORTRAN object-
time routines.

S RECORDS

S records are also known as 6000 SCOPE Standard and 7600 SCOPE 1.1 I-Mode. This
is the only record type recognized by both SCOPE 3.3 and SCOPE 2.

Only two record types, S and X are defined in terms of physical blocks. The S record
(Figure D-2) consists of blocks of data terminated by a short block. For S records,
blocking is set to C-type by the system BT=C is not required. The short block has

a 48-bit level number appended to it where level is 0-16,. If the data portion of the
record terminates on a block boundary, the terminating short block is considered as
zero-length because it consists of the 48-bit level number only. Another kind of zero-
length block, the partition delimiter where level is 17g, can also occur.

60372600 A D-1



LOAD
POINT

(BOI)—\

BLOCKS SEPARATED BY INTERRECORD GAP
(RECOVERY CONTROL WORD ON MASS STORAGE)

P

EOI
_Eor
BLOCKED
ORONETIC TAPE BLock [BLockfl| sLock | BLock | BLOCK [ BLOCK | BLOCK | BLOCK 2¢ 3¢
STORAGE
e Tl RECORDS CAN
Pt C BLOCKING l_\*\__spﬂ'amcxs
EACH C BLOCK CONTAINS  |LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL LOGICAL
MBL OR LESS CHARACTERS. | RECORD | RECORD | RECORD | RECORD RECORD RECORD
K BLOCKING
EACH BLOCK LENGTH IS SUM
LOGICAL [LoGICAL |LoGICAL [LoGICAL LOGICAL [LOGICAL
OF RB RECORD LENGTHS. RECORD | RECORD | RECORD | RECORD RECORD [ RECORD | LAST BLOCK HAS R
RECORD COUNT (RB) INCLUDES | "= > 3 P ‘ RB-) RB OR LESS RECORDS.
ZERO-LENGTH RECORDS.
!
EACH BLOCK LENGTH IS SUM E BLOCKING BLOCK ENDS ON LAST
ggn';mgg""?zgfc"aﬂgfﬂ LOGICAL |LoGICAL |LOGICAL |LoGICAL LOGICAL | LOGICAL | FULL RECORD THAT DOES
. RECORD | RECORD | RECORD | RECORD RECORD | RECORD | NOT CAUSE BLOCK LENGTH
RECORD SIZE AND BLOCK 1o Excren o
SIZE ARE VARIABLE. '
RECORDS CAN
SPAN BLOCKS
I BLOCKING T
EACH I BLOCK CONTAINS MBL |2 |LoGIcAL [LosicaL |LosicaL |LosicaL|LosicaL woeica |  [!fiosicar [LosicaL
OR LESS CHARACTERS. w| RECORD | RECORD | RECORD | RECORD | RECORD RECORD RECORD | RECORD
RECORD USER SEES
UNUSED BITS IN
l “TLAST WORD € 60
BOI TNeael gt €or
LOGICAL | LOGICAL LOGICAL | LOGICAL | LoGICAL LOGICAL | LOGICAL
UNBLOCKED MASS STORAGE | pecorp | RECORD RECORD | RECORD | RECORD RECORD | RECORD
2AX33A
Figure D-1. W Record Control Word Format

60372600 A



In the user buffer, the S record consists of the data without the 48-bit appendage. On
an output request (for example, a FORTRAN WRITE or BUFFER OUT), the record
manager blocks the data and adds the 48-bit level number. On output, the level number
is always zero for records.

On an input request (for example, a FORTRAN READ or BUFFER IN statement), the

record manager deblocks the data, removes the 48-bit level number, and returns end-of-
record status. End-of-record status is passed to the user. The level number is main-
tained in the FIT. An S record must be a multiple of 10 characters (full 60-bit words).

To specify record type S, set RT=S on the FILE statement. On magnetic tape, S records
can be recorded in binary mode only. When using formatted reads and writes, the maxi-
mum record size is limited to 150 by the FORTRAN object-time routines.

C BLOCKING RECORD CAN SPAN BLOCKS
EACH BLOCK OTHER
THAN LAST IN
RECORD CONTAINS BLOCK }
MBL CHARACTERS
N BLOCK CONTAINS ALL OR PART OF A RECORD g
\\\\ ' ’I/,/
\\\ /”’
AN -
\\ ’/
N, -
LOAD SHORT OR ZERO-LENGTH SN _-~"" ZERO-LENGTH BLOCK
POINT BLOCK WITH LEVEL 0-16g > -~ WITH LEVEL I7g ol
(BOI) 48-BIT APPENDAGE 3 -~ 48 -BIT APPENDAGE —
( BLOCK | BLOCK {|BLOCK |BLOCK | |BLOCK | BLOCK [BLOCK| |EOP|BLOCK |BLOCK | BLOCK | BLOCK i' b e ]‘}
............ J ~. 1 \ -
.
] Sl
- S~
LOGICAL SHORT / )
RECORD IN BLOCK BLOCK BLOCK BLOCK BLOCK TO
STORAGE 1 2 n-2 n-1 16
APPENDAGE
LOGICAL
RECORD IN

USER BUFFER

2AX34A

END OF RECORD

Figure D-2. S SCOPE Logical Record Format

60372600 A D-3



X RECORDS

SCOPE 2 allows reading of files consisting of X records.

It does not allow a user to
create files with X records.

X record type is the same as X-mode format for 6000

SCOPE 3.2 and 7600 SCOPE 1.1.
containing 60-bit words.
end-of-record.

A logical record is divided into fixed-length blocks
Each block contains 5120 characters. A short block marks

If the length is an exact multiple of blocks, an additional short block, sometimes called
a zero-length block because it contains no data, is necessary. On input, the record
manager then deletes this zero-length block consisting of 48 bits of zero.

X records differ from S records in that the 48-bit appendage appears only when neces-
sary, and there is no level number associated with the record.

An X record must be a multiple of 10 characters (full 60-bit words). To specify type
X, set RT=X on a FILE statement.
Conventionally, end-of-information is not defined for X-mode tapes. It is the user's
responsibility to know the structure of the tape (that is, number of partitions as indi-
cated by tapemarks). 6000 SCOPE 3.2 and 7600 SCOPE 1.1 append four and two tape-
marks respectively, at the end of data.

RECORD CAN SPAN BLOCKS

C BLOCKING
EACH BLOCK OTHER
THAN LAST IN
RECORD CONTAINS BLOCK
5t20 CHARACTERS
N BLOCK CONTAINS ALL OR PART OF A RECORD et
. -~
\\\\\ /z’//
\\\ //’/
N -
LOAD SHORT OR ~ -
POINT ZERO-LENGTH N o £or
(80D \ BLOCK X /;/“EOP
hY ,\,’ —_—
BLOCK emcn”smcx BLOCK | [BLOCK |BLOCK | BLOCK %|BLOCK |BLOCK {BLOCK | BLOCK %%
~ 2 B
LOGICAL
SHORT SHORT OR ZERO-LENGTH BLOCK
2?83285'" BLoCK, BLoCk , BLOCK o | BLOCK | Block TERMINATES RECORD
LOGICAL
RECORD IN
USER BUFFER

Figure D-3.

2AX35A

END OF RECORD

X X-Mode Logical Record Format

60372600 A



Z RECORDS

The Z (zero byte) record type is commonly used in the 6000 SCOPE systems and the
7600 SCOPE 1.1 system for print or card files.

On a file, the Z record consists of an integral number of 60-bit words of data in which
the last word has the low-order 12 bits set to zero (contains a zero byte).

In the user form, the Z record consists of a fixed number of characters of data. The
user does not see the zero bytes.

Consider first what happens on an output request such as a FORTRAN WRITE or BUFFER
OUT statement. Referring to Figure D-4, the record manager takes a specified number
of characters (FL) from the buffer and either (A) removes trailing blanks to the nearest
word boundary minus 2 characters and inserts 12 bits of zero in the low-order position
of the word, or (B) adds blanks to the nearest word boundary minus 2 characters and
appends a 12-bit zero byte. For example, if FL is 80 and you supply 62 characters of
data followed by 18 blanks, the record manager removes 12 blanks to make 68 characters
and adds a zero byte to make a full 7 words. If, on the other hand, you had supplied

79 characters, the record manager would add 9 blanks making 88 characters which, with
the addition of the zero byte, makes the Z record 9 words.

Now consider what happens on an input request such as a FORTRAN READ or BUFFER
IN statement. When reading Z records from a file, the record manager takes full words
of data until it detects a word with a zero byte in the low order position of the word.

It removes the zero byte and places the data in the user buffer. If the number of char-
acters of data is less than FL, the record manager adds blanks to FL characters. This
means if FL is 80 and the record manager reads a 88-character record (discounting the
zero byte), the data is expanded to 80 characters. On input, when the record manager
reads 88 characters (of which 9 are blanks added on the write), the Z record exceeds the
FL specified. This does not result in an error since the record manager allows a Z re-
cord to exceed FL by as much as one word as long as the characters are all blanks.

FULL WORDS
FILE FORMAT A DATA 0000
ZERO BYTE

USER FORMAT A DATA Aaal anan

A. BLANK FILL TO FL CHARACTERS. f

FL
FULL WORDS

FILE FORMAT B DATA AIAAAA A A A AO00O
USER FORMAT B DATA A

B. ADDITIONAL WORD REQUIRED 2AX38A

FOR ZERO BYTE. FL

Figure D-4. Padding of Z Records

60372600 A D-5



Z-record specification requires two parameters on the FILE statement,
meter and the FL parameter.
user record in characters.
on the file,

the RT=Z para-
FL supplies the decimal count of the fixed length of the
It must be large enough to accommodate the largest record

Usually, the FL parameter will be equivalent to a coded card and (FL=80) or to a print
line (FL=137). FL must be large enough to accommodate the largest record.

When Z records are blocked according to block types E and K, partition delimiters are
in the form of tapemarks; section delimiters are not possible. When Z records are C-
blocked, a section delimiter consists of a short or zero-length block appended by a 48-bit

level number -where level is 0-168. A partition delimiter consists of a 48-bit level 178
appendage.

When generating Z records, it is the user's responsibility to assure that two display code
colons do not occur in the lowest order character positions of a word causing a super-
fluous record delimiter. If the application has records with many trailing blanks, Z re-
cords can provide savings in storage because less data is stored when blanks are re-
moved. However, processing of Z records is slower than processing of W records.
magnetic tape, Z records can be recorded in binary mode only.
reads and writes,
routines.

On
When using formatted
the maximum record size is set to 150 by the FORTRAN object-time

LOAD SHORT OR ZERO-LENGTH

ZERO-LENGTH BLOCK

BLOCK WITH LEVEL 0-16 WITH LEVEL I7g
48-BIT APPENDAV\ /-4B-BIT APPENDAGE

POINT.
(8o1) /
L

BLOCK | BLOCK ) BLOCK |BLOCK |EOS | BLOCK

BLOCK |BLOCK |EOS

EOP|BLOCK |BLOCK |BLOCK | BLOCK

~ ’,”” \\\
/”” \\\
Ple N,
/’/ \\
e AN
- ™. RECORD CAN
g “\SPAN BLOCKS
- € BLOCKING N
EACH BLOCK OTHER
THAN LAST IN LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL LOGICAL
SECTION OR RECORD | RECORD | RECORD | RECORD RECORD RECORD
PARTITION HAS MBL
CHARACTER

LOGICAL RECORD
IN STORAGE

LOGICAL RECORD
IN USER BUFFER

Figure D-5.

END OF RECORD
(FL CHARACTERS)

Z Zero Byte Records with C Blocking

2AX37A

60372600 A



LOAD

Pgm;r BLOCKS SEPARATED BY INTERRECORD GAP
(BOI (RECOVERY CONTROL WORD ON MASS STORAGE)
EOP EOP
EOI
BLOCKED }
gse::glsc TAPE BLOCK |BLOCK ||| BLOCK | BLOCK |% | BLOCK | BLOCK | BLOCK | BLOCK [% 2%
STORAGE
a”"’—‘ \\\\
Pprtas SN
- K BLOCKING ~o
LOGICAL |LOGICAL [LOGICAL [LOGICAL LOGICAL |LOGICAL
EACH BLOCK LENGTH IS SUM RECORD | RECORD | RECORD | RECORD RECORD | RECORD LAST BLOCK IN PARTITION
OF RB RECORD LENGTHS. | 2 3 4 RB | RB HAS RB OR LESS RECORDS.
1
1
]
]
]
EACH BLOCK LENGTH IS SUM E BLOCKING BLOCK ENDS ON LAST
OF NUMBER OF RECORDS
MR OF e COnomy | LosicaL |LosicaL |LosicaL [LosicAL LOGICAL | LOGICAL | FULL RECORD THAT DOES
- RECORD | RECORD | RECORD | RECORD RECORD | RECORD | NOT CAUSE BLOCK LENGTH
RECORD SIZE AND BLOCK 10 EXCEED MBI,
SIZE ARE VARIABLE. ’

LOGICAL RECORD
IN STORAGE

LOGICAL RECORD
IN USER BUFFER

/
,/ WORD BOUNDARY
/

/
4

BOI

UNBLOCKED MASS STORAGE

Figure D-6.

60372600 A

BLANK// BLANK
DATA FILL | FILL
\\ ,I
\\\ //,
‘\ / END - OF - RECORD
“ / (FL CHARACTERS)
\\ /,
\\ ,/
\ //
\\\ /
\ / EOI
N\, /
| N / |
N /
LOGICAL | LOGICAL LOGICAL | LOGICAL | LOGICAL LOGICAL | LOGICAL
RECORD | RECORD RECORD | RECORD | RECORD RECORD | RECORD

2AX3BA

Z Zero Byte Records Unblocked or with K and E Blocking



F RECORDS

Fixed length (F) records are commonly used in the computer industry and are the most
efficient for COBOL to handle in terms of CPU utilization and throughput.

F records (Figure D-7) are the same as 7600 SCOPE 1.1 E-mode files. F record type
is required for the SCOPE 2 direct (DR) file organization. On an output request such as
a FORTRAN WRITE or BUFFER OUT, the record manager takes a fixed number of char-
acters (FL) from the user buffer and writes them on the file. On an input request such
as a FORTRAN READ or BUFFER IN, the record manager reads the next FL characters
on the file and places them in the user buffer.

LOAD
"g'ON)T BLOCKS SEPARATED BY INTERRECORD GAP
(BOI (RECOVERY CONTROL WORD ON MASS STORAGE)
P
wor co co
BLOCKED
ey T\PE BLOCK [BLOCK ||[BLOCK | BLOCK % | BLOCK | BLOCK | BLOCK | BLOCK |3 (%
STORAGE
e RN RECORDS CAN
7 S SPAN BLOCKS
T C BLOCKING —
EACH C BLOCK CONTAINS LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL LOGICAL
MBL OR LESS CHARACTERS. | RECORD | RECORD | RECORD | RECORD RECORD RECORD
i
|
K BLOCKING
LOGICAL |LOGICAL |LOGICAL |LOGICAL LOGICAL {LOGICAL
EACH BLOCK LENGTH IS SUM | ‘ar conn | RECORD | RECORD | RECORD RECORD | RECORD
OF RB RECORD LENGTHS.
I 2 3 4 RB-| RB
I
]
1
1
E BLOCKING
BLOCK ENDS ON LAST
EACH BLOCK LENGTH IS SSUM LOGICAL [LOGICAL |LosicaL |LocicaL LOGICAL | LOGICAL | FULL RECORD THAT DOES
OF NUMBER OF RECORD RECORD { RECORD | RECORD | RECORD RECORD | RECORD | NOT CAUSE BLOCK LENGTH
CONTAINED IN MBL. 1O EXCEED MBL
S, ] /’
. A
S il
e -~ "END-OF -RECORD
BOI RN .~~~ (FL CHARACTERS) Eo1
t . - l
UNBLOCKED LOGICAL | LOGICAL LOGICAL | LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL | LOGICAL
MASS STORAGE | RecORD | RECORD RECORD | RECORD | RECORD | RECORD | RECORD RECORD | RECORD

2AX39A
Figure D-7. F Fixed Length Record Format

D-8 60372600 A



F records are generated by COBOL object time routines according to the File Definition
entry.

Specification of F records requires the RT and FL parameters on the FILE statement.
FL supplies a decimal count of the fixed length in characters.

On magnetic-tape, F records can be recorded in either binary or coded mode.

Section delimiters are not possible; partition delimiters are equivalent to tapemarks on
blocked files.

D RECORDS
Decimal count (D) records are provided primarily for COBOL usage.

D records (Figure D-8) are handled by the record manager as follows. On an output
request (for example, a FORTRAN WRITE or BUFFER OUT) the record manager ex-
tracts the decimal character count from a length field placed in the data by the user,
and writes that number of characters on the file.

On an input request, the record manager again looks at the length field and places the
specified number of characters in the user buffer,

To use D records, you must specify the following FILE statement parameters:
RT=D Specifies record type as D

LL=m m is the length in characters (1 to 6) of the length field in each
record. The maximum record size allowed is determined by the
LL parameter. If LLP is 0, no data precedes length field. If LL=6,
the maximum record size is 999,999. If it is 5, the maximum re-
cord size is 99,999, etc. However, MRL takes precedence if it is
less than the maximum allowed for the field.

LP=n n is the beginning position in characters of the length field. The
first character in the record is numbered zero. LP+LL must not
exceed the record length.

The decimal size must be in the length field right-justified in display code with display
code zero fill. The record size includes the length field.

Section delimiters are not possible; partition delimiters are equivalent to tapemarks on
blocked files.

60372600 A D-9



LOAD

fg'o'g BLOCKS SEPARATED BY INTERRECORD GAP
(RECOVERY CONTROL WORD ON MASS STORAGE)
EOP EOP
1 EOl
BLOCKED
’g:ﬂ;‘i;'sc TAPE BLOCK [BLOCK|||BLOCK | BLOCK 3¢ | BLOCK | 8LOCK | BLOCK | BLOCK [% %%
STORAGE
e ANY RECORDS CAN
el S~ SPAN BLOCK
P C BLOCKING ey OCKS
EACH C BLOCK CONTAINS  |LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL LOGICAL
MBL OR LESS CHARACTERS. | RECORD | RECORD | RECORD | RECORD RECORD RECORD
i
' i
K BLOCKING
EACH BLOCK LENGTH IS SUM [, o6 ca1 [1LoGIcAL [LoGicaL [LocicaL LOGICAL |LOGICAL
OF RB RECORD LENGTHS. eaoRb | Hos A |LosICaL |LOGICAL RECORD | RECGRD | LAST BLOCK IN PARTITION
RECORD COUNT (R8) INCLUDES | REC s < s Rl B HAS RB OR LESS RECORDS.
ZERO-LENGTH RECORDS.
1
i
]
1
]
EACH BLOCK LENGTH IS SUM E BLOCKING
OF NUMBER OF RECORDS BLOCK ENDS ON LAST
SN o CORDS, | LosicAL |LosicaL |LogicAL |LosicaL LOGICAL |LOGICAL | FULL RECORD THAT DOES
. RECORD | RECORD | RECORD | RECORD RECORD | RECORD | NOT CAUSE BLOCK LENGTH
RECORD SIZE AND BLOCK T ExCeED Mo,
SIZE ARE VARIABLE. ’

f 1S DECIMAL COUNT OF
LENGTH IN DISPLAY
CODE CHARACTERS.

4
\‘\\ LL"— ,/' T

~ e
RNy _,~” END-OF-RECORD
e .~~~ (4 CHARACTERS)
BOI ~. e oI
t \\\\\ ///
LOGICAL | LOGICAL LOGICAL | LOGICAL | LOGICAL LOGICAL | LOGICAL
UNBLOCKED MASS STORAGE | pecorp | RECORD RECORD | RECORD | RECORD RECORD | RECORD

2AX40A

Figure D-8, Decimal Count Record Format

D-10 60372600 A



R RECORDS

Record mark (R) records (Figure D-9) are a COBOL record type. On output, the record
manager takes the characters up to and including the record mark character from the
user buffer and writes them on the file. On input, the record manager reads the record
including the record mark character and places it in the user buffer.

R-type records are variable length. The largest must not exceed the maximum record
length (MRL) specified in the FIT.

The conventional record mark character is ]. This is the default for COBQL and for
6000 record manager. 7600 record manager, however, defaults to a colon, which is 00
in display code.

If you are a COBOL programmer and wish to change the record mark character, or if
you are a FORTRAN programmer and wish to read a file that has a record mark char-
acter other than colon, you can use the RMK parameter on the FILE statement.

NOTE

If the FILE statement changes the character, the
data name RECORD-MARK cannot be used to move
the character to an output record area.

In the RMK specification, use the decimal or octal equivalent (octal value is suffixed
with B) of the display code value for the desired record mark character. Thus, to spe-
cify the ] character, use either RMK=50 or RMK=62B. Use RT=R to specify R record
type. When using R records, it is the user's responsibility to assure that the record
mark character does not occur elsewhere in the record.

When using R type records, it is possible to define a minimum record length (MNR=n
characters) which allows the record mark character to occur before the minimum char-
acter position without being detected by the record manager. Using MNR also speeds
up processing because all the records are greater than a certain number of characters.
Record manager begins searching for the record mark character at the character follow-
ing the nth character. If no MNR is specified, record manager begins searching with
the first character in each record, or in the case of COBOL programs, according to
the RECORD CONTAINS clause.

R type records can be recorded in either binary or coded mode on magnetic tape.

Section delimiters are not possible; partition delimiters are equivalent to tapemarks on
blocked files.

60372600 A D-11



LOAD
POINT

BLOCKS SEPARATED BY INTERRECORD GAP

(Bon (RECOVERY CONTROL WORD ON MASS STORAGE)
P
EOP EO £ol
BLOCKED
e 1o TAPE BLOCK [BLOCK [|[BLOCK | BLOCK |% | BLOCK | BLOCK | BLOCK | BLOCK [% 2|3
STORAGE
e RS RECORDS CAN
P “~ SPAN BLOCKS
e C BLOCKING Ry
EACH C BLOCK CONTAINS  |LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL LOGICAL
MBL OR LESS CHARACTERS. | RECORD | RECORD | RECORD | RECORD RECORD RECORD
1
| ]
' :
1
| K BLOCKING !
GICA AL |LoGICA A CA
EACH BLOCK LENGTH IS SUM | ‘RreGRD | Recons | Neachar |micat j oD | isas | LAST BLOCK IN PARTITION
OF RB RECORD LENGTHS. , s 5 4 J BT Rp HAS RB OR LESS RECORDS.
1
1
1
1
{
]
EACH BLOCK LENGTH IS SUM E BLOCKING
OF NUMBER OF RECORDS BLOCK ENDS ON LAST
S NTAIMBER OF RECORDS | LosicaL |LosicaL {LosicaL |LosicaL LOGICAL | LOGICAL | FULL RECORD THAT DOES
: RECORD | RECORD | RECORD | RECORD RECORD | RECORD | NOT CAUSE BLOCK LENGTH
RECORD SIZE AND BLOCK NOT CAuSE BLOC
SIZE ARE VARIABLE. °

\‘\ Pid
el _~“END - OF - RECORD
~ _-~(RECORD MARK CHARACTER)
BOI TS~ e EOL
S vd
| /
LOGICAL | LOGICAL LOGICAL | LOGICAL | LOGICAL LOGICAL | LOGICAL
UNBLOCKED MASS STORAGE | gecoRrp | RECORD RECORD | RECORD | RECORD RECORD | RECORD
2AX41A
Figure D-9. R Record Mark Character Record Format
D-12 60372600 A



T RECORDS

Trailer (T) records (Figure D-10) are the most complex record type. T records are
specified by COBOL programs as shown in Table 3-2.,

FORTRAN programs using T-type records require a file statement with the following
parameters specified.

RT=T Specifies T record type

HI.=hl Length of header in characters

TL=tl Length of each trailer in characters

CL-=cl Length of count field in characters (1 to 8)

CP=cp Beginning character position in header of count field. CP+CL

must not exceed the header length. The first character is
numbered 0.

No data precedes the trailer count field if CP=0. The number of fixed length trailers
must be inserted into the trailer count field in display coded decimal, right-justified
with display code zero fill, 6000 record manager allows blank fill; 7600 record manager
does not.

The size of the record is determined by the header length plus the sum of the trailer
lengths. This value must not exceed the maximum allowed for a record (MRL) set in
the FIT.

On an output request, the record manager determines where the count field is from the
FIT, takes the header length plus n times the trailer length characters, and writes them
onto the file.

On input, it performs a similar operation to read the record and places it in the user

buffer. Section delimiters are not possible; partition delimiters are equivalent to tape-
marks on blocked files.

60372600 A D-13



LOAD

pggq;r BLOCKS SEPARATED BY INTERRECORD GAP
(BOI (RECOVERY CONTROL WORD ON MASS STORAGE)
EOP EOP £o
BLOCKED
sy TAPE BLOCK |BLOCK || BLOCK | BLOCK| %|BLOCK | BLOCK | BLOCK | BLOCK |% ¢ |5
STORAGE
e e RECORDS CAN
T ~ SPAN BLOCKS
/,—’/ C BLOCKING r—“\—v
EACH C BLOCK CONTAINS  |LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL LOGICAL
MBL OR LESS CHARACTERS. | RECORD | RECORD | RECORD | RECORD RECORD RECORD
1 1
' |
K BLOCKING 1
EACH BLOCK LENGTH IS SUM | 'SeGRE | ot | o |HosICAL LeeeoR | eeors | LAST BLOCK IN PARTITION
OF RB RECORD LENGTHS. | 5 3 4 maol B HAS RB OR LESS RECORDS.
1
i
i i
I :
]
EACH BLOCK LENGTH IS SUM ! E BLOCKING
OF NUMBER OF RECORDS BLOCK ENDS ON LAST
N TR R OF e COR DS, |LosicaL |LosicaL | LoicaL |LosicaL LOGICAL | LOGICAL | FULL RECORD THAT DOES
: RECORD | RECORD | RECORD | RECORD RECORD | RECORD | NOT CAUSE BLOCK LENGTH
RECORD SIZE AND BLOCK T Evoran e
SIZE ARE VARIABLE. '

UNBLOCKED MASS STORAGE

BOI CP Tl e EOI
\\\\ ’/

' . |

LOGICAL | LOGICAL LOGICAL | LOGICAL | LOGICAL LOGICAL | LOGICAL

RECORD | RECORD RECORD | RECORD | RECORD RECORD | RECORD

2AX42A
Figure D-10. T Trailer Count Record Format
60372600 A



U RECORDS

The undefined record type (U) is commonly used in the computer industry. It is some-
times referred to as ''universal" format.

For U format records (Figure D-11), the record manager receives no definition of what
to interpret as a record. Thus, on an unblocked, C blocked, or E blocked file, the
entire file consists of a single U record on input.

In the special case of K blocking with one record per block, the record manager uses
block delimiters as end-of-record delimiters thus giving the U records some definition.
U records can be generated in a COBOL program depending on the RECORD CONTAINS
and BLOCK CONTAINS clauses.

To specify record type as U, set the RT=U parameter on the FILE statement.

A file is often defined as U when no other definition is applicable. For example, the
COPYXS routine uses a U description to convert X mode tapes to S type records. For
U-type records, C blocking and E blocking are possible when accessed through a COM-
PASS language program. These combinations are not illustrated.

Section delimiters are not possible; partition delimiters are equivalent to tapemarks on
blocked files.

BLOCKS SEPARATED BY INTERRECORD GAP
LOAD (RECOVERY CONTROL WORD ON MASS STORAGE)

POINT
N EQP EOP

(BOI’)7 V '

BLOCKED MAGNETIC
TAPE OR

BLOCK |BLOCK {{BLOCK |BLOCK (%|BLOCK |BLOCK [BLOCK |BLOCK %

MASS STORAGE
\\ //,
RN -~ END-OF -RECORD WITH
~ .~ K BLOCKING,
BOI S L IRECORD PER  EOI
i AN e BLOCK
\\ ,/
UNBLOCKED LOGICAL
MASS STORAGE RECORD

|__ END-OF-RECORD
UNDEFINED

t MULTIPLE RECORDS PER BLOCK AND C AND E BLOCKING ARE
POSSIBLE WHEN USING COMPASS LANGUAGE I/0 ROUTINES. 2AX43A

Figure D-11. U Undefined Record Format

60372600 A D-15



USING RECORD MANAGER FOR FILE FORMAT CONVERSION E

A file format conversion, that is, change in record type, block type, or file organization,
occurs when the description for the input file for a copy differs from the description for

the output file. This feature is not compatible with SCOPE 3.4 for which the copy utili-
ties do not recognize FILE statements.

HOW COPY CONVERTS FILES

Any of the COPY statements cause the copy routines to be loaded and executed. Neither
the input file nor the output file is repositioned before its use. The copy routine opens
the files and establishes a buffer in SCM to use for the copy, as described in Section
10. Assuming that automatic core memory is in effect, the size of the buffer is by de-
fault 1000, words (5120 characters) or is determined by whichever MRL or FL is larger
for the two files. The MRL may be the maximum length of a partial record rather than
the entire record. Setting MRL, except when using R-type records or when converting
from S, X, Z, or R record types to W record types, does not limit the maximum size
of the records that can be handled by the copy. If output record type is W, the copy
must be able to determine full record size before writing out any of the record because
the W control word precedes the record. Thus, if input record type is S, X, Z, or R,
the MRL must be large enough to accommodate the largest record on the input file. If
the buffer is inadequate for the copy, the job is terminated accompanied by the message
EXCESS DATA in the dayfile.

The copy routine gets all or part of a record from the input file and places the data in
the SCM buffer. Any recovery control words, internal control words, W control words,
zero bytes, or level number appendages are removed. That is, normal record proces-
sing performed by the record manager takes place.

The copy routine checks status to determine whether EOR, EOS, EOP, or EOI has
occurred. If EOR has not occurred, the partial record is put in the output file. In
writing out the record, the record manager adds any recovery control words, internal
control words, W control words, zero bytes, or level number appendages required by
the format defined for the output file. In the case of D, T, and R output records, the
count field or record mark character must be in the input data; it is not generated or
altered by the copy routine. The record manager uses the count or record mark char-
acter to determine how much data to write.

Upon encountering EOR, the copy routine writes the remainder of the record and incre-
ments the record count. If the copy is COPYR, the copy terminates after n records
have been copied or if a higher-order delimiter is encountered on input. If the copy is
COPYS, COPYBR, or COPYCR, the copy terminates after n sections have been copied

or a higher order delimiter is encountered. A COPYS of S record considers each re-
cord a section. If the copy is COPYP, COPYCF, or COPYBF, the copy terminates when
n partitions or an EOI is encountered. Upon completion of the copy, the copy routine
writes an EOS if copying sections or an EOP if copying partitions.

PROCEDURE FOR CONVERTING FILE FORMATS

1. Describe your input file using a FILE statement shown in the accompanying tables,
if necessary.

2. Describe your output file using a FILE statement shown in the accompanying tables,
if necessary. Record type cannot be X,

60372600 A E-1



4.

The

size of the buffer used for the copy/conversion is determined by whichever max-

imum record length (MRL) or fixed length (FL) is larger for the two files. The de-

fault
FL.

a.

MRL is 5120 characters (1000, words) if neither of the files specifies MRL or
The buffer size is a factor in the following cases.

If input or output record type is T or D, MRL must be large enough to include
the count field.

If output record type is W, the copy must be able to determine the record size
before writing the record. This means that MRL must be large enough to incor-
porate the largest record on the input file when the input record type is S, X,
Z, or R.

If only one file specifies MRL or FL, that value sets the size of the buffer for
both files.

NOTE

If input file is INPUT and output FL/MRL is
80, input data may exceed MRL due to JANUS
processing as described in Section 9.

Select the copy routine you wish to use as you would for an exact copy.

W RECORD CONVERSIONS

FO BT FILE Statement Notes and Rules
SQ Unblocked None; defaults all apply 1,2,3,9
I FILE(1fn, BT=I) 1,4,10
C FILE(1fn, BT=C) 1,5, 10
K FILE(ifn, BT =K) 1,6,10
E FILE(1fn, BT=E) 1,5,10
WA Unblocked FILE(1fn, FO=WA) 1,3,7
LB Unblocked FILE(1fn, FO=LB) 1,3,7,8,9

Notes and Rules

1.

The

following delimiters are recognized on input and recreated on output. W control

words are removed from the data before it is placed in the buffer and are added to

data

EOR
EOS
EOP
EOI

when output is W record type.

Type 0 W control word (neither flag bit nor delete bit set)
Type 3 W control word (flag bit and delete bit both set)
Type 2 W control word (flag bit set; delete bit not set)

Input on magnetic tape: a pair of tapemarks or a tapemark, EOF1 label,
and a double tapemark

Output: a double tapemark

Section delimiters will be lost if input type is W and output type does not support
sections (not W or not Z with C blocking).

60372600 A



10.

Partition delimiters will be lost if input type is W and output file type does not
support partitions (that is, output type not W or not blocked sequential).

Usually, W records cannot be converted to S records because S records must be
full words of data.

If input file contains on S, X, Z, or R record that exceeds 5120 characters, the FILE
statement for input file or output file must specify MRL to guarantee that the buffer
for the copy is large enough to hold the record. Maximum record size allowed is
determined by amount of SCM available.

If input record type is D or T, MRL must be large enough to encompass the count
field.

The largest record that can be converted to W format is 2,621,420 characters.
Al

Recovery control words are removed from blocked files on input and reinserted on
output if the output file is to be blocked.

If input file is W records, deleted W records (Type 1 W control word) are not copied.
On a W-to-W copy, control words may not be exactly duplicated.

The unblocked W record file is the most important format in the SCOPE 2 system.
It is the only format recognized by the loader and is the only format that can be
used for unit record files.

When input to the loader originates on magnetic tape or when you wish to go tape-to-
punch or tape-to-print, you must copy the tape file to an unblocked W file which can
then be loaded, punched, or printed.

This file type cannot be used with a STAGE or magnetic tape REQUEST statement.
For SQ files, the file will become blocked (see I blocked file). For WA or LB
files, blocking is illegal.

BT=I is not required if REQUEST MT or STAGE is used. This is the only file des-
cription using I blocking. Default block size is 5120 characters and is the only size
allowed by SCOPE 3.4. Maximum block length (MBL) must be a multiple of 10
characters (full words).

The default maximum block length (MBL) is 5120 characters. MBL must be a multi-
ple of 10 characters (full words). K and E blocking are not commonly used with W
records because neither allows records to span blocks.

Default records per block (RB) is 1; default maximum record length is 5120 char-
acters. MBL must be a multiple of 10 characters (full words); MBL=MRL x RB.
Zero-length W control words are also counted as records (EOS and EOP).

An attempt to copy/convert a WA or LB file results in an informative message.
Since deleted records are removed, an index for a word addressable file will be in-
validated by the copy when records are deleted.

This is the only file type using FO=LB.

Unblocked sequential files are not supported by 6000 SCOPE 3.4.

On magnetic tape, W records can be recorded in binary mode only.

60372600 A E-3



S RECORD CONVERSIONS

FO BT FILE Statement Notes and Rules

SQ C FILE(lfn, RT=S) See below

Notes and Rules

Default blocking type is always C when record type is S.

S records are also known as 6000 SCOPE standard and 7600 SCOPE 1.1 I-mode. An
S record must be a multiple of 10 characters. Copy aborts if output is S and input
record is not a multiple of 10 characters. Thus, copying from INPUT to a file with
record type S is not possible.

Default block size (MBL) is 5120 characters. This is the equivalent of a 6000 SCOPE
physical record unit (PRU) for S/L devices. MBL must be a multiple of 10 characters
(full words).

If the file is being converted to W format, either the input file or the output file must
specify MRL to guarantee that the SCM buffer for the copy is large enough to hold the
record. Maximum record size allowed is determined by amount of SCM available.

An S record that contains display code with zero-byte delimiters can be redefined as Z
record type. On magnetic tape, S records can be recorded in binary mode only (odd
parity).

When COPYS or its equivalent (COPYBR/COPYCR) is used, each S record is interpreted
as a section. For all other copies, each S record is interpreted as a record. That is,
for all but COPYS, COPYBR, and COPYCR, the following delimiters are accepted on S
record input.
EOR A short or zero-length block with a level 0 through 168 48-bit appendage
EOP A zero-length block with a level 178

EOI A pair of tapemarks or a tapemark, EOF1 label, and two tapemarks

48-bit appendage

For S record output, the following delimiters are generated.
EOR A short or zero-length block with a level 0 to 168 48-bit appendage. Levels
1 to 168 are not lost in copying S and Z records.
EOP A zero-length block with a level 178 48-bit appendage
EQI Two tapemarks
On mass storage delimiter, information is maintained in recovery control words. Re-
covery control words and 48-bit appendages are not transferred to the copy buffer. They

are removed from input or inserted on output. Corresponding status is returned to the
copy routines.

E-4 60372600 A



X RECORD CONVERSIONS

FO BT FILE Statement Notes and Rules

SQ C FILE(lfn, RT=S) See Notes and Rules

Notes and Rules

X records can be input only. You cannot copy to X. Default blocking type is always C
when record type is X.

X records are also known as 6000 X-MODE and 7600 SCOPE 1.1 X Format. They are
not supported on SCOPE 3.4.

An X record must be a multiple of 10 characters; otherwise COPY aborts. Default block
size (MBL) is 5120 characters. This is equivalent to a 6000 SCOPE physical record unit
for an S/L device. MBL must be a multiple of 10 characters.

If the file is being converted to W format, either the input file or the output file must
specify MRL to guarantee that the SCM buffer for the copy is large enough to hold the
record. Maximum record size allowed is determined by the amount of SM available.

The following delimiters are recognized on input.
EOR A short or zero-length block
EOP A single tapemark

'I_\f\I

EGC A pair of tapemarks or a tapemark, EOF1 label, and two tapemarks

Partition delimiters on the input file will be lost if the output file type does not support
partitions (not W or not blocked sequential). On blocked mass storage, tapemarks are
maintained in recovery control words.

SCOPE 2 includes a utility named COPYXS designed solely to convert X-mode tapes to
S record type.

(COPYXS(lfn. Jlfn ., 1)
in out

Parameter n is a count of the partitions to be copied. A tapemark is interpreted as an
end-of-partition.

COPYXS assumes that the input file is described as follows:
FILE(TAPE1, RT=U)

By default, then, BT=K, RB=1, and MBL=5120.

The input file can be renamed on the COPYXS statement; otherwise, any change to the
description causes the job to abort. COPYXS assumes that the output file is described
as follows:

(FILE(TAPE 2, RT=S)

The file can be renamed on the COPYXS statement; use a FILE statement to alter any
other characteristics.

Following the copy, both files are closed.

60372600 A E-5



Z RECORD CONVERSIONS

FO BT FILE Statement Notes and Rules
SQ Unblocked FILE(lfn,RT=Z, FL=f1) 1,2

C FILE(lfn, RT=Z, FL=f1, BT=C) 1,3,4,8

K FILE(fn,RT=Z, FL=fl, BT=K) 1,5,6,8

E FILE(lfn,RT=Z,BT=E) 1,4,6,8
WA Unblocked FILE(lfn, FO=WA,RT=2Z, FL=fl) 1,7

Notes and Rules

1.

Fixed length in characters (FL) is required. There is no default. On Z Precord
input, the zero bytes and recovery control words are removed. The data is filled
to FL. characters with display code blanks,

On Z record output, the record manager removes trailing blanks from the data until
the record is full words of data with a 12-bit zero-byte in the least significant 2
characters of the last word. If FL consists of data with one or no trailing blanks,
the record manager adds a word of blanks to accommodate the zero byte. To avoid
truncation, FL must be greater than or equal to the input MRL or FL. Truncation
results in an informative message. Recovery control words are added on output if
the output file is blocked.

Unblocked sequential files are not supported by 6000 SCOPE 3.4.

Z records with C blocking are a special case and can be redefined as S record
type. The following delimiters are recognized on input.

EOR 12 low-order bits of a word are zero.

EOS A short or zero-length block with a level 0 through 168 48-bit appendage
EOP A zero-length block with a level 178 48-bit appendage

EOI A pair of tapemarks or a tapemark, EOF1 label and two tapemarks

The following delimiters are generated on output.

EOR 12 low-order bits of a word are zero

EOS A short or zero-length block with level 0 to 168 48-bit appendage. Levels
1 through 168 are not lost.

EOP A zero-length block with a level 178 48-bit appendage
EOI Two tapemarks

On blocked mass storage, these delimiters are maintained in the form of recovery
control words,

The maximum block length (MBL) is 5120 by default. It must be a multiple of 10
characters (full words).

BT=K is not required if REQUEST MT or STAGE is used.
Default records per block (RB) is 1; if default MBL is RL x RB. Record length

(RB) is usually determined from FL., MBL must be a multiple of 10 characters
(full words).

60372600 A



The following delimiters are recognized on input and recreated on output.

EOR 12 low-order bits of a word are zero

EOP A single tapemark

EQI Input: Two tapemarks, or tapemark, EOF1 label and two tapemarks
Qutput: Two tapemarks

Section delimiters will be lost if they are on the input file. Partition delimiters on

the input file are lost if the output file type does not support partitions (not W or not

blocked sequential).

On blocked mass storage, tapemarks are maintained in recovery control words.

An attempt to convert/copy a WA file results in an informative message.

On magnetic tape, Z records can be recorded in binary mode (odd parity) only.

F RECORD CONVERSIONS

FO BT FILE Statement Notes and Rules
SQ Unblocked FILE(lfn, RT=F, FL=f1) ’ 1,2,7

C FILE(lfn, RT=F, FL=f1, BT=C) 1,3,5

K FILE(lfn, RT=F, FL=f1, BT=K) 1,4,5

E FILE(lfn, RT=F,FL=f1, BT=E) 1,3,5
WA Unblocked FILE(fn, FO=WA,RT=F, FL=f1) 1,2,6

Notes and Rules

1
)

Fixed length in characters (FL=fl) is required. There is no default. For output,

fl must be greater than or equal to input MRL or FL to avoid truncation. Truncation
results in an informative message. When converting to F, if fl on output specifies

a record longer than the input record (for example, a W record), the record is filled
with blanks if CM=YES and with zeroes if CM=NO.

F-type records can be converted to S-type records if fl is a multiple of 10 characters.

This file type cannot be used with a STAGE or magnetic tape REQUEST statement.
For SQ files, the file will become blocked (see K blocked file). For WA files,
blocking is illegal.

The default maximum block length (MBL) is 5120 characters.

BT=K is not required if REQUEST MT or STAGE is used. Default records per block
(RB) is 1; default maximum record length is 5120 characters. MBL=MRL x RB.

The following delimiters are recognized on input and recreated on output.

EOR f1 characters read/written
EOP Single tapemark
EOI Input: Two tapemarks, or tapemark, EOF1 label and two tapemarks

Output: Two tapemarks

60372600 A E-T7



Section delimiters will be lost if they are on the input file. Partition delimiters on
the input file are lost if the output file type does not support partitions (not W or
not blocked sequential).

On blocked mass storage, tapemarks are maintained in recovery control words.

An attempt to convert/copy a WA file results in an informative message.

Unblocked sequential files are not supported by 6000 SCOPE 3. 4.

D RECORD CONVERSIONS

FO BT FILE Statement INotes and Rules
SQ Unblocked FILE(fn,RT=D,LL=m, L P=n) 1,6

C FILE(1fn, RT=D,LL=m,LP=n,BT=C) 1,2,3

K FILE(lfn,RT=D, LL=m, LP=n, BT=K) 1,2,4

E FILE(1fn, RT=D, LL=m, LP=n, BT=E) 1,2,3
WA Unblocked FILE(1fn, FO=WA,RT=D,LL=m, LP=n 1,5

Notes and Rules

1.

The parameters specifying length of the decimal count field (LL) and position of the
field (LP) are required. There are no defaults. The length field length (LIL=m)
can be 1 to 6 characters. This indirectly limits the size of records. If LL=1,
record length can be 1 to 9. If LL is 2, record length can be 1 to 99, etc., to a
maximum of 999999 when LL is 6. The decimal count field contains the record
length in display code decimal.

LP + LL must be less than or equal to MRL (the buffer size).

When reading D records, the record manager gets as many characters from the file
as specified by the length field. When generating D records, the record manager
writes the number of characters specified by the contents of the length field.

The LP and LL parameters used to describe the position and size of the length
field for the output file, actually describe the location and size of the decimal count
field on the input file, regardless of the record type of the input file.

If the input file is W records, conversion consists of removing the W control words.
The input file is basically a D record type file over which the W record structure
has been superimposed. If the input file is Z records, conversion consists of re-
moving the zero bytes and padding the records to FL characters and writing out the
number of characters indicated by LL. If the LL field specifies a record longer
than the input record, the record is filled with whatever is in the buffer.

If the LL field specifies a record shorter than the input record, truncation occurs
accompanied by an informative message.

The following delimiters are recognized on input and recreated on output.
EOR (LL) characters read/written

EOP Single tapemark

60372600 A



EOI Input: Two tapemarks, or a tapemark, EOF1 label, and two tapemarks

QOutput: Two tapemarks
On blocked mass storage, a tapemark is maintained in a recovery control word.

Section delimiters are lost if they are on the input file. Partition delimiters on the
input file are lost if the output file type does not support partitions (not W or not
blocked sequential).

Default maximum block length (MBL) is 5120 characters.

BT=K is not required if REQUEST MT or STAGE is used. Default records per block
(RB) is 1. Default MRL is 5120 characters. MBL = RB x MRL.

An attempt to convert/copy a WA file results in an informative message.

Unblocked sequential files are not supported by 6000 SCOPE 3.4.

R RECORDS CONVERSIONS

FO BT FILE Statement Notes and Rules
SQ Unblocked FILE(1fn, RT=R, RMK=char) 1,6

C FILE(fn, RT=R, RMK=char, BT=C) 1,2,3

K FILE(lfn, RT=R, RMK=char, BT=K) 1,2,4

E FILE(lfn, RT=R, RMK=char, RT=E) 1,2,3
WA Unblocked FILE(fn, FO=WA, RT=R, RMK=char) 1,5

Notes and Rules

1,

RMK ig usually specified. If not specified, it defaults to 00 which is a display code
colon. The conventional character is |, specified in the form RMK=62B. The ] is
the standard default for 6000/7000 COBOL and for 6000 record manager under SCOPE

2 A
De T

When the input file is R record type all the characters from the beginning of the
record up to and including the record mark character comprise the record. MRL
must be large enough to encompass the entire record or the message UT202 F/R/Z
DATA TRUNCATED is issued.

SCM buffer size is set to the larger MRL for the two files.

When the output file is R record type, all the characters in the buffer up to and in-
cluding the record mark character are written out. The record mark character must
be in the input record. Truncation of the input record may occur. For example,
when converting in the 71st character position, the R record output will consist of
71-character records.

The following delimiters are recognized on input and recreated on output.

EOR Characters up to and including the record mark character are read/written

EOP Single tapemark

60372600 A E-9



EOQOI Input: Two tapemarks, or a tapemark, EOF1 label, and two tapemarks
Qutput: Two tapemarks

On blocked mass storage, a tapemark is maintained in a recovery control word.

Section delimiters will be lost if they are on the input file. Partition delimiters on

the input file are lost if the output file type does not support partitions (not W or

not blocked sequential).

Default maximum block length (MBL) is 5120 characters.

BT=K is not required if REQUEST MT or STAGE is used. Default records per block
(RB) is 1. Default MRL is 5120 characters. MBL=RB x MRL.

An attempt to convert/copy a WA file results in an informative message.

Unblocked sequential files are not supported by 6000 SCOPE 3.4.

T RECORD CONVERSIONS

FO BT FILE Statement Notes
SQ Unblocked FILE(1fn,RT=T, CP=cp, CL=cl, HL=hl, TL=t1) 1,6
C FILE(lfn, RT=T, CP=cp, CL=cl, HL.=hl, TL=t]l, BT=C) 1,2,3
K FILE(lfn, RT=T, CP=cp, CL=cl, HL.=hl, TL=tl, BT =K) 1,2,4
E FILE(lfn, RT=T, CP=cp, CL=cl, HL.=hl, TL=tl, BT=E) 1,2,3
WA Unblocked | FILE(lfn, FO=WA,RT=T,CP=cp, CL=cl, HLL=hl, TL=tl) 1,5

Notes and Rules

1.

CP, CL, HL, and TL are required. There are no defaults. The count position
(CP), starting with 0, plus the count field length (CL) must be less than the header
length in characters (HL).

The count field contains the number of trailers in the record. The size of the re-
cord is determined from the header length plus the contents of the count field times
the trailer length. Thus, if conversion is to W record type, the count field must be
in the first portion of the input record placed in the SCM buffer.

When the output file is T record type, the CP, CL, HL, and TL parameters actually
describe the count field, trailer length and header length on the input file, regardless
of the record type of the input file.

In other words, the input file is basically a T record type file over which some other
record structure has been superimposed. For example, if the input file is W records,
conversion consists of removing the W control words. If the input file is Z records,
conversion consists of padding the records to FL characters, removing the zero bytes,
and writing out the number of characters computed as the record size. If the com-
puted size exceeds the input record size, the record is filled with whatever is in the
buffer. If the computed size is less than the input record size, truncation occurs.

E-10 60372600 A



2. The following delimiters are recognized on input and recreated on output.

EOR Header length character count plus n time the trailer length characters have
been read/written. n is the number of trailers.

EOP Single tapemark

EOI Input: Two tapemarks, or a tapemark, EOF1 label, and two tapemarks
Output: Two tapemarks

On blocked mass storage, a tapemark is maintained in a recovery control word.

Section delimiters will be lost if they are on the input file. Partition delimiters on

the input file are lost if the output file type does not support partitions (not W or

not blocked sequential).

3. Default maximum block length (MBL) is 5120 characters.

4. BT=K is not required if REQUEST MT or STAGE is used. Default records per block
(RB) is 1. Default MRL is 5120 characters. MBL=RB x MRL

5. An attempt to convert/copy a WA file results in an informative message.

6. Unblocked sequential files are not supported by 6000 SCOPE 3.4.

U RECORD CONVERSIONS

FO BT FILE Statement Notes and Rules
SQ Unblocked FILE(1fn,RT=U, BT)
K FILE(lfn, RT=U, BT=K) 2

Notes and Rules

1. Unblocked sequential files are not supported by 6000 SCOPE 3.4. The BT parameter
can be omitted if the file is already unblocked. Default MRL is 5120 characters.

2. BT=K is not required if REQUEST MT or STAGE is used. Records per block must
be 1. This is the default for RB. Default MBL is RB x MRL. Default MRL is
5120 characters. The following delimiters are recognized on input and recreated on
output.

EOR Data between two interrecord gaps, that is, one block
EOP Single tapemark
EOI Input: Two tapemarks, or a tapemark, EOF1 label, and two tapemarks

Output: Two tapemarks
On blocked mass storage, a tapemark is maintained as a recovery control word.
Section delimiters are lost if they are on the input file. Partition delimiters on the

input file are lost if the output file type does not support partitions (not W or not
blocked sequential).

60372600 A E-11



CONVERSION EXAMPLES

1. A very common application of COPY is to block or deblock W record files. This
example illustrates a job that copies data on INPUT to a magnetic tape file (it per-
forms a card-to-tape operation). Neither file requires a FILE statement because
defaults apply. The only difference between file descriptions is that the input file
is unblocked whereas the output file is I-blocked because of the STAGE statement.
Remember, however, that the size of each W record depends on whether the cards
in the deck are Hollerith, SCOPE binary, or free-form binary.

CONTROL DATA

JOB,CP7G.

STAGE (QUT,PCST)

COPY(,CLT)

7/8/9 in column one
(CATA)

6/7/8/9 in column one

2. Example 2 illustrates how to print from an external-coded, even-parity tape recorded
one print line per block (Industry standard unblocked). Each print line is 136 char-
acters; the first character of which is a printer control character. Tape density is
556 bits per inch. The file format is also known as E mode for SCOPE 1.1.

CONTROL DATA

JOB,CP70,
STAGE(CF)
FILE(CF4RT=F4FL=13€,CM=YES)
COPY(CF,CUTFLT)

6/7/8/9 in column one

E-12 60372600 A



on-line, perhaps at another site.
The first job blocks an unblocked
the file must be unblocked before

In this example, library USELIB is saved on staged magnetic tape and later loaded

USELIB is an unblocked W format sequential file.
file. The process is reversed in the second job;
the loader can load from it.

60372600 A

CONTROL DATA

J081,CP70. (

-

ATTACH(USELIB,TESTLIERARY,,Ph=REAC, I0=XX)
STAGE (SAVE,FCST)
COPY(USELIE,SAVE)

6/7/8/9 in column gne

CONTROL DATA

a

Chbomat ON

J0B2,CP70,MT1.

REGUEST(SAVE,MT)
COPY(SAVE,LUSELIE)
CATALCG(USELIR,XTRALTIA,TD=XXye0s)

617189 4in column one

-



This example illustrates an S to W conversion using COPYS. Each S record is a
library routine. To be able to be used at all by LIBEDT, each routine must be con-

verted to a section in W format. COMPARE cannot be used following this copy to
show equivalence.

JOB,CP70.
FILE(OLD,RT=S)
STAGE(CLD)
FILE(KWSEC)
COPYS(CLC,yWSEC,20)

6/7/8/9 in column one

In this example, the first X record on tape XTAPE contains
ages. Each image consists of full words of data terminated by a zero-byte in the
low-order position of the last word. The data cannot be considered as Z records
because section delimiters are in X-record format. Blocking type is C. The job
copies XTAPE to DATA, which is in S-record format. DATA is then closed and
rewound by the SKIPB statement and then redefined as Z records with C blocking,

The Z records are then copied to PUNCHB in unblocked W format. Each of the
card images becomes a W record.

coded punched card im-

CONTROL DATA

Stages I'n X-mode
tape. Do not use

JOB’CPN./ a FILE statement.
STAGE(XT)

COPY(XT,CLDPL) ‘

UPDATE \'

7/8/9 in column ond

(LPOATE DIRECTINGS) [ ppaTE reads OLDPL
6/7/8/9 in column one as S records not

X records
—\N\/‘

Convert X 1o S

)

60372600 A



Here, we have a job that converts a tape in X-record format to a file in S-record

format. The X-record tape contains 1000 FORTRAN source card images terminated
by zero-byte terminators. Thus, the file can be redefined as Z-type records with
FL of 100 for use as input to FORTRAN. The SKIPB(CARDS, 262143) statement

rewinds CARDS and closes it so that it can be redefined.

JOB,CP73.
STAGE (XMCCE)
FILE (XMCCE RT=X,MRL=183000)

6/778/9 in column one

— T T —

60372600 A

FILE(CARDS yRT=S) ——

]

Defines input file;
block type is C

R !

Defines output file
block type is C

COPY (XMCCE,CARCS)
SKIPE(CARDS,262143) )
FILE(CARUS,RT=2,FL£TB§§\\\\\
FIN(I=CARDS) l Rewinds and closes
. | i1e CARDS
)

‘ File CARDS is read

| as Z records




In this example, the second section on INPUT is a free-form
nally consisted of 137-character print lines in the form of Z
deck has W control words inserted every 160 characters.
control words are removed through a W to U copy.
fined as Z-type and copied to the QUTPUT file.

binary deck that origi-
records. On input, the
The job shows how the W
Then, the U-type file is rede-

y / /
ZERO BYTE—
EVERY 137
W CONTROL A[0000] CHARACTERS Y
WORD EVERY 0000
160 CHARACTERS LA
W CONTROL
WORD EVERY
»[0000 A[0000 14 WORDS
LA
4[0006] A[0000 ] L
L %
L
— -_— ]
4[06600] wTOU »[0000 ZTOo W r
7
4 AJ0000] —
a[0000 2[G609)
J—
/ I
UNUSED BITS
. 4[0000 >0F LAST WORD
A[0000) [

FILE INPUT CONTAINS
160 -CHARACTER
W RECORDS

FILE UZ CONTAINS
5120-CHARACTER

U RECORDS, OR MANY
137-CHARACTER

Z RECORDS

FILE OUTPUT CONTAINS
14-WORD W RECORDS

2AXT0A

CONTROL DATA

JOB,CP70.
FILE(LZ,RT=L)
COPY(INPLT,LZ)
FILE(UZ4RT=2,FL=127)
REWINC(LZ)
COPY(UZ,CUTPLT)
7/8/9 in column oue

(FREE FCRM EINARY DECK)
6/7/8/9 in column one

60372600 A



8. The user has a COBOL-generated file containing R records with E blocking. The
record mark character is | . He wishes to convert the file to C-blocked Z records
for use as a SCOPE standard permanent file at the 6000 Station (blocking not shown).
Each tapemark on input becomes a level 17g 48-bit appendage (EOP).

25 CHARACTERS

] [I[aaJoooo
31 CHARACTERS
J[aaaaaaao000 }
* 50 CHARACTERS
]
AAAAAAAL[0000
e —
RTOZ
» 63 CHARACTERS
i [I[asaa][0600
15 i
1laAAA]0000
i ] 20 CHARACTERS
]
AAAAAAALL[OOOO
FILE RE FILE ZC
2AXTIA

Program generates
file RE. No FILE

JOB,CPz:LL—_'______,__————""”s*aTemenT required,
COEGL.

GONTROL DATA

LGO. L
FILE(ZC ,RT=Z,FL=80,ET=C:‘\ FILE statement re=-
COPY (RE,2C) quired for file ZC

CATALCC(ZC4PFN3ST=CCPyose)

7/8/9 in cofumn one /
(COBOL SCURCE) T 7c
6/7/8/9 in column one ransfers ZC to
station as permanent

/

Defines file RE as
RT=R,RMK=62B, BT=E

Ve

60372600 A



9. This example illustrates use of a copy routine to convert T records to W records.
The T records contain a trailer count in the eighth through tenth character positions
of each record. This count field is not removed by the conversion. The input file
is K blocked; the output file is unblocked. Blocking is not illustrated.

I o TJ250
2]
l 3l b ___]
250 I e
CHARACTERS ) oo __
________________ 1_T2s1 Jo[isol
1
L]
iso Jy i+ L -
CHARACTERS ) |_______________]
1I_Ji151 JoTioo
W CONTROL
[20 [ 20 ] WORDS
1100 _—
CHARACTERS TTOW o
I _[norfoT350
L5 ]
350 ) N D R S ——
CHARACTERS oo ]
------------ 1 L e e ]
i_T3asiJoJioo
100 L_.L. Lo_.
CHARACTERS
FILE TK FILE W 2AXT72A

I

FILE statement

l1s required
JOB,CRP 20 7
FILE(TKSRT=T,CP=7,CL=3,HL=100,TL=50,RE=E) [\ "0y 6 Cfotoment
SRy (TR L for output file W
COPY(TK,yH)=- p
.
.‘; /
. Job steps using
6/7/8/9 in column one file W

\-—-—'\MN

E-18 60372600 A



DEFAULT FILE DESCRIPTIONS F

The following table summarizes characteristics of files acceptable by SCOPE 2 and its
product set. Except for LIBEDT libraries, the default file organization (FQ) is sequen-
tial (SQ). Any tape file is assumed to be unlabeled and in binary mode. The default
file name (Ifn) can be overridden.

System Routine/Program 1fn RT BT Redefinable with FILE Statement
Loader
Object module --- W unbl No
Core image module --- W unbl No
Utilities
COPY, COPYS,
COPYP, etc.
Input file INPUT W unbl Yes; see Appendix E
Output file OUTPUT W unbl Yes; see Appendix E
COPYSP
Input file INPUT W unbl Yes
Output file OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined
COPYXS
Input file TAPE1 U K No
Output file TAPE2 C No
COMPARE
File one OLDLIB W unbl Yes
File two NEWLIB W unbl Yes
List file OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined
DMPFILE
Input file INFILE W unbl Yes
List file OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined
SKIPF, SKIPB, FILE W  unbl Yes; record type can be F, R, or Z with
and BKSP C blocking, or any other record type if
BT=K, RB-=1
FORTRAN compilers
Source input file INPUT W  unbl Yes; record type can be Z or F is
FL<90; otherwise, warning message is
issued
List output file OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined
Object binary file LGO W unbl Cannot be printed under SCOPE 2 if
redefined

60372600 A F-1



System Routine/Program 1fn RT BT Redefinable with FILE Statement

COBOL compiler

Source input INPUT W unbl Yes; any block type is acceptable; record
: type can be F or Z or can be U if RB=1
List output OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined
Object binary LGO W unbl Cannot be loaded under SCOPE 2 if
redefined

COMPASS assembler

Source input INPUT W unbl Yes; can be blocked. Record type can
be Z (coded with FL<100) or can be S
(binary)

Compile file COMPILE W unbl Yes; can be I-blocked with W record type.

Record type can be Z (coded with FL<100)
or S (binary) -

List output OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined

Object binary LGO W  unbl Cannot be loaded under SCOPE 2 if
redefined

UPDATE program

Old library OLDPL W unbl Yes; blocked or RT-=S
New library NEWPL W  unbl Yes; blocked or RT-=S
Compile file COMPILE W unbl Yes; RT=S if compressed
Source input INPUT W unbl Yes; can be blocked; record type can be
RT=Z, FL<100.
List output OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined
LIBEDT
Directives input INPUT W  unbl Must be W but can be blocked
List output OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined
Libraries --- w unblT Not recommended
Sequential files --- W unbl Yes; can be blocked or RT=S
TRAP
Directives input INPUT W  unbl Yes; can be RT=Z or F, FL5100
List output OUTPUT W unbl Cannot be printed under SCOPE 2 if
redefined
SEGLOAD
Directives input INPUT unbl Yes; can be RT=Z or F, FL<100

Loader input --- unbl Cannot be loaded by SEGLOAD if redefined

unbl Cannot be loaded by SEGRES if redefined

s =2 =

Segment output ABS

tWord addressable file organization

F-2 60372600 A



GLOSSARY

{HE e —

ABORT

ABSOLUTE ADDRESS

ABSOLUTE INFORMATION

ADDRESS

ALLOCATE

ALLOCATION UNIT

ASSEMBLE

ASSIGN

ATTACH

AUDIT

60372600 A

To terminate a program or job when a condition (hard-
ware or software) exists from which the program or
computer cannot recover.

1. An address that is permanently assigned by the
machine designer to a storage location.

2. A pattern of characters that identifies a unique
storage location without further modification. Synon-
ymous with machine address.

Optionally included as a block in an object module, this
information must be stored at a specific origin in the
field length. Generally, it is used to store information
in the job communication area from RA(S) + 77,. It is
not acceptable for segment or overlay loading.

1. An identification, as represented by a name, label,
or number, for a register, location in storage, or
any other data source or destination such as the
location of a station in a communication network.

2. Any part of an instruction that specifies the location
of an operand for the instruction.

To reserve an amount of some resource in a computing
system for a specific purpose (usually refers to a data
storage medium).

The smallest amount of storage space (for example, 5
sectors of mass storage) that can be assigned upon
request.

To prepare an object language program from a symbolic
language program by substituting machine operation codes
for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

To reserve a part of a computing system for a specific
purpose (usually refers to an active part such as an 1/0
device or a computation module).

Allows a job to gain access to a permanent file. The
type of access can be controlled by requiring passwords,
if desired, before the file can be read and/or written.

A listing of non-private type permanent file information

(obtained from permanent file catalog entries) which
can be used for accounting or historical purposes.

Glossary-1



BASE ADDRESS

BLANK COMMON BLOCK

BLOCK

BUFFER

CARD IMAGE

CATALOG (Noun)

CHANNEL

CHARACTER

CODE

COMMON BLOCK

CORE IMAGE

Glossary-2

A given address from which an absolute address is de-
rived by combination with a relative address.

A common block into which data cannot be stored at

load time. The first declaration need not be the largest.
In basic loading and segmented loading, but not in overlay
loading, the blank common is allocated after all object
modules have been processed. For overlay loading, allo-
cation of blank common is more complex.

A group of contiguous characters recorded on and read
from magnetic tape as a unit. Blocks are separated by
record gaps. A block and a physical record are synon-
ymous.

A storage device used to compensate for a difference in
rate of flow of data, or time of occurrence of events,
when transmitting data from one device to another. It
is normally a block of memory used by the system to
transmit data from one place to another. Buffers are
usually associated with the I/0 system.

A one-to-one representation of the contents of a punched
card, for example, a matrix in which a 1 represents a
punch and a 0 represents the absence of a punch.

A list or table of items with descriptive data, usually
arranged so that a specific kind of information can be
readily located. (Example: the Permanent File Catalog.)

A path along which signals can be sent. (Example: data
channel, output channel.)

A logical unit composed of bits. Internally, SCOPE 2
uses 6-bit display code characters. 8-bit characters
on 9-track magnetic tapes are converted to and from
6-bit characters.

1. A system of characters and rules for representing
information in a form understandable by a computer.

2. Translation of a problem into a computer language.

A block that can be declared by more than one object
module. More than one module can specify data for a
common block, but if a conflict occurs, information is
loaded over previously loaded information. A module
may declare no common blocks or as many as 509 com-
mon blocks. The two types of common blocks are labeled
common and blank common.

Also referred to as the loaded program or an absolute
program. This is the final image produced by the load
operation. For control-statement-initiated load, the core
image is the entire job field length from RA(S) + 100
through RA(S) + field length -1. In addition, it may
include the ECS/LCM field image.

60372600 A



CORE IMAGE MODULE

CYCLE

DATA

DAYFILE

DEADSTART

DEBUG

DIAGNOSTIC

DISPOSITION CODE

END-OF-INFORMATION
DELIMITER

END-OF-PARTITION
DELIMITER

60372600 A

For a user-call-initiated load operation the core image
occupies only that portion of the field length specified
by the user as being available.

The core image module is loader tables consisting of
the core image. It can be saved on a file for subse-
quent reloading and execution.

One of up to five separate and distinct files under a
permanent file name. Each cycle is identified by the
permanent file name and a cycle number.

1. Information manipulated by or produced by a computer
program.

2. Empirical numerical values and numerical constants
used in arithmetic calculations. Under SCOPE, data
is considered to be that which is transformed by a
process to produce the evidence of work. Para-
meters, device input, and working storage are con-
sidered data. In the CPU, the exchange jump pack-
age is considered data.

A short history of a job, that includes a list of control
statements, comments, and messages.

That process by which an inactive machine is brought
up to an operational condition ready to process jobs.

To detect, locate, and remove mistakes from a routine
or malfunctions from a computer. Synonymous with
troubleshoot.

1. Pertaining to the detection and isolation of a mal-
function or a mistake.

2. A message printed when an assembler or compiler

detects a program error.

A code used in I/O processing to indicate the disposition
to be made of a file when its corresponding job is ter-

minated or the file is closed (for example, print, punch
Hollerith, punch binary).

1. A card with a 6/7/8/9 punch in column 1.

2. End-of-information of job file.

1. A card with a 7/8/9 punch in column 1 and a level
178 Hollerith punch in columns 2 and 3.

Glossary-3



END-OF-SECTION
DELIMITER

ENTRY POINT

EXCHANGE JUMP

EXTERNAL REFERENCE

FILE

Glossary-4

2. A W format flag record (zero length, flag bit set).

3. A tapemark or equivalent RCW for a blocked file
with record type other than W, X, S, or Z with
C blocking.

4. A level 17, 48-bit appendage on a C blocked file
with record type S or Z.

1. A card with a 7/8/9 punch in column 1 and (option-
ally) level 0 to 168 in columns 2 and 3.

2. A W-format flag record on a file (zero length, flag
and delete bit set).

3. A level O to 168 48-bit appendage in a Z record C
blocked file.

A location within a block that can be referenced from
object modules that do not declare the block. Each
entry point has a unique name associated with it. The
loader is given a list of entry points in a loader table.
A block can contain any number of entry points.

The loader accepts an entry point name that is 1 to 7
characters; colons are illegal.

Some language processors may produce entry point names
under more restricted formats due to their own require-
ments,

Execution of a CPU program is initiated by an exchange
jump. The particular program is defined by the contents
of the exchange package area before the exchange jump
took place. In order for the program to execute, the
proper contents of its operational registers must be
loaded into the CPU. These contents are what is con-
tained in the exchange package area associated with the
program in question.

A reference in one object module to an entry point in

a block not declared by that module. Throughout the
loading process, externals are matched to entry points
(this is also referred to as satisfying externals); that is,
addresses referencing externals are supplied with the
correct address. In some cases, for SCOPE 3.4, this
process is inhibited (for example, OMIT request); the
external reference then remains unsatisfied.

A logically connected set of information. It is the largest
collection of information that may be addressed by the
name. FEach FILE has a logical file name and reference
to it must be by name. A file has a beginning called

the beginning-of-information, before which no data exists,
and an end-of-information, after which no data exists.
Tape labels are not considered part of file data.

60372600 A



FILEMARK

GLOBAL LIBRARY SET

INPUT FILE

JOB

JOB CONTROL FILE

JOB CONTROL STATEMENT

oy
@)
v3]

DAYFILE

JOB DECK

60372600 A

Refer to tapemark.

A library set to be used for all subsequent loads in your
job until you give the loader further notice.

After the job has entered the system and has become a
candidate for processing, the second through last sections
are separated from the first section and become the
INPUT file. This file contains the programs/data refer-
enced by various job steps. The user can manipulate the
INPUT file just like any other file (excluding write oper-
ations).

1. An arbitrarily defined parcel of work submitted to
a computing system.

2. A collection of tasks submitted to the system and
treated by system as an entity. A job is presented
to the system as a formatted file. With respect to
a job, the system is parametrically controlled by the
data content of a job file.

After the job has entered the system and has become a
candidate for execution, the job control statement section
is made into a separate file called the job control file
(also known as control statement file). The user cannot
manipulate his job control file.

Any of the statements used to direct the operating system
in its functioning, as compared to data, programs, or
other information needed to process a job but not intended
directly for the operating system itself. A control state-
ment may be expressed in card, card image, Or user
terminal keyboard entry medium.

During the execution of the job, a special log or dayfile
is maintained. At job termination, the job dayfile is
appended to the OUTPUT file of the job. The job dayfile
serves as a time ordered record of the activities of the
job--all control statements executed by the job, significant
information such as file assignment or file disposition,

all operator interactions with a job, and errors are re-
corded in this file.

The physical representation of a job, before execution,
either as a deck of cards or as a file of W-format re-
cords. The first section of the job file begins with a

job statement and contains the job control statement which
will be used to control the job. Following sections con-
tain the programs and data which the job will require for
the various job control statements. The job deck is ter-
minated by an end-of-information delimiter.

Glossary-5



LABEL (Standard)

LABELED COMMON

LIBRARY FILE

LIBRARY SETS

LOAD COMPLETION

LOADER TABLES

LOADING

Glossary-6

An 80-character block at the beginning or end of a
magnetic tape volume or file, which serves to identify
and/or delimit that volume or file. The record manager
supports the following ANSI standard labels:

1. VOL1
2. HDRI1
3. EOV1
4. EOF1

A common block into which data can be stored at load
time. Depending on the type of source statement (FOR-
TRAN, COMPASS, etc.), a labeled common block may
specify CM/SCM or ECS/LCM for storage. Upon en-
countering the first declaration of a labeled common
block, the loader allocates the amount of memory re-
quired of the type specified. A later declaration of the
same block should not be larger than the initial declara-
tion. If it is, a non-fatal error occurs and the original
declaration holds.

A mass storage file composed of a directory and a set
of sequentially organized partitions. Both system and
user library files have the same structure and are
created in the same way. This file organization manages
the directory for the user and allows the user to position
to the start of a partition and to subsequently retrieve
the records contained in the partition.

A list of libraries to be searched for entry-point names
and for satisfying externals. It can consist of both Sys-
tem and user libraries. NUCLEUS is excluded.

Actions taken by the loader after all requests have been
performed. The last action normally taken is to start
execution of the loaded program. Only a certain type of
request can be the last request processed before the load
is completed. All other requests, when processed, cause
the loader to seek the next request to be processed.

The form in which object code and loader object direc-
tives are presented to the loader. Loader tables are
generated by compilers and assemblers according to
loader requirements. The tables contain information
required for loading such as type of code, names, types
and lengths of storage blocks, data to be stored, etc.

A sequence of tables is sometimes referred to as an ob-
ject module,

The placement of instructions and data into core so that
it is for execution. Loader input is obtained from one
or more local files and/or libraries. Upon completion
of loading, execution of the program in the job's field
length is optionally initiated.

60372600 A



LOCAL FILE

LLOCAL LIBRARY SET

NUCLEUS LIBRARY

OBJECT MODULE

ON-LINE TAPE

OPERATING SYSTEM

OUTPUT FILE

OVERLAYING

60372600 A

Loading also involves performance of load-related ser-
vices such as generation of a load map, presetting of
unused core to a user-specified value and generation of
overlays or segments. A load that does not generate
overlays or segments is referred to as a basic load.

A file associated with a particular job on a temporary
basis (not a permanent file).

A library set to be used for a single load sequence in
addition to the global library set.

The library that contains most of the operating and pro-
duct set members as core image modules. It contains
no object modules and cannot be searched for externals,

Often referred to as a relocatable subprogram, this is
the basic program unit produced by a compiler or assem-
bler. COMPASS normally produces an object module
from source statements delineated by IDENT and END.

In FORTRAN, the corresponding beginning statements

are PROGRAM, SUBROUTINE, BLOCK DATA, or FUNC-
TION. The corresponding end statement is END.

An object module consists of several loader tables that
define blocks, their contents, and address relocation
information.

A magnetic tape unit from which a file is accessed
directly without first being copied to mass storage. The
concepts of staging tapes and on-line tapes are mutually
exclusive, as are the configurations they represent. That
is, under SCOPE 2, the stations do not read/write tape
directly and the on-line tapes are not staged.

1. The executive, monitor, utility, and any other rou-
tines necessary for the performance of a computer
system.

2. A resident executive program (an executive routine
in internal storage which has a language of its own
and automates certain aspects of machine operation).

This file contains the list output from compilers and
assemblers unless the user designates some other file.
At job end, the dayfile is added to the OUTPUT file and
the file is sent to a station for printing.

A technique for bringing routines into high-speed storage
from some other form of storage during processing, so
that several routines will occupy the same storage loca-
tions at different times. Overlaying is used when the
total storage requirements for instructions exceed the
available main storage.

Glossary-T7



PARTITION

PARTIAL STAGING

PERMANENT FILE

PHYSICAL RECORD

PROGRAM

PROGRAM BLOCK

PROGRAM NAME

PURGE

Glossary-8

This is a group of sections which is terminated by a
special record or condition. The terminator is different
for different types of records.

W type records Undeleted W flag

S type records and Z Level 178
record with C blocking

Other types Tapemark or recovery control
word (indicating tapemark)

A technique permitted only for unlabeled tapes. It allows
the user job to stage some blocks while bypassing others.

A file known to the operating system as being permanent
(the file will survive deadstarts). Permanent files may
be:

1. Created by a job (by cataloging a local file)
2. Attached by a job for its own use

3. Detached by the job (returned to the operating system)
when finished

Permanent files may have certain restrictions for their
access such as:

1. Access only with a special keyword identifier

2. Read only access
Refer to block.

1. A sequence of coded instructions that solves a prob-
lem.

2. To plan the procedures for solving a problem. This
may involve, analyzing the problem, preparing a flow
diagram, providing details, developing and testing
subroutines, allocating storage, specifying I1/O for-
mats, and incorporating a computer run into a com-
plete data processing system.

The block within an object module that usually contains
executable code. It is automatically declared for each
object module (though it may be zero-length). It is local
to the module; that is, it can be accessed from other mo-
dules only through use of external symbols. Data placed
in a program block always comes from its own object
module.

Also referred to as ident name or deck name, it is the

name contained in the loader PRFX table at the beginning
of each module. A program name is 1 to 7 characters;
colons are illegal.

To delete a permanent file from the system. This enables

releasing its mass storage space, erasing its catalog en-
tries, etc.

60372600 A



RECORD

REEL

REFERENCE ADDRESS

RELOCATE

REQUEST

RESOURCE
REWIND

SECTION

SEQUENTIAL FILE

SOFTWARE

SPOOLING

60372600 A

A group of contiguous words or characters related to
each other by virtue of convention. A record may be
fixed or variable length. Record and logical record are
synonymous.

Refer to volume.

The starting absolute address of the field length assigned
to the user's job.

In programming, to move a routine from one portion of
internal storage to another and to adjust the necessary
address references so that the routine, in its new loca-
tion, can be executed.

Instruction addresses are modified relative to a fixed
point or origin. If the instruction is modified using an
address below the reference point, relocation is negative.
If addresses are above the reference point, relocation is
positive. Generally, a program is loaded using positive
relocation.

To specify the need for a system resource such as an
on-line magnetic tape unit.

An element that can be temporarily assigned upon request.
To return a tape or disk to its beginning.
A group of records that is terminated by a special re-

cord or condition. Generally it is greater than a record
but less than a partition. Terminators are:

W type records Deleted W flag

Z record with C Level O to 168

blocking

S record None (except for COPYS which

considers each record a section)

Other types None

A collection of records that are placed in physical rather
than logical order. Given the location of one record,

the location of the next can be determined by the physical
position of the previous record. A tape file, punch card
file, printer file, etc., are all classified as sequential.

The collection of programs and routines associated with
a computer system; for example, compilers, library
routines.

A system-controlled process by which 1/O to and from a

unit record device is handled on a lower priority basis
for overall system efficiency.

Glossary-9



STAGED TAPE

SYSTEM LIBRARY

SYSTEM TABLES

TABLE

TAPEMARK

TIME SLICE

UNIT RECORD DEVICE

UNLOAD

UNSATISFIED EXTERNAL

VOLUME

WORD

WORD ADDRESSABLE FILE

Glossary-10

A file from which a volume is copied from magnetic
tape unit at a station to the system mass storage or
vice versa. The user accesses the file from the system
mass storage copy when needed.

That file or group of files containing the core image sys-
tem overlays and the system relocatable code available
to all users on a read-only basis. The system library
may include code generated and inserted by the user.

Tables used by the operating system and which lie out-
side of the user's field length.

A collection of data, each item being uniquely identified
either by some label or by its relative position.

A special hardware bit configuration recorded on magnetic
tape. It indicates the boundary between files and labels.
It is sometimes called a file mark.

The maximum amount of time during which the CPU can
be executing a job without a re-evaluation at to which
job should have the CPU next.

A device such as a card reader, line printer or card
punch.

To remove a tape from ready status by rewinding beyond
the load point. The tape is then no longer under control
of the computer.

An external reference for which the loader has not yet
loaded a module containing the matching entry point.

A physical unit of storage media. The term volume is
synonymous with reel of magnetic tape.

A group of bits (or 6-bit characters) between boundaries
imposed by the computer. Word size must be considered
in the implementation of logical divisions such as char-
acters. In this publication, a word is assumed to be

60 bits.

A mass storage file that may be considered by the user
as continuously non-blocked data. Data is written to/re-
trieved from the file by specification of a relative word
address on the file. The data on the file may be unstruc-
tured (U record format) or structured (any other record
format except S).

60372600 A



f

A parameter

REQUEST T7-3

STAGE 7-3
Absolute modules 1-5; 3-10
Access methods 5-26
Accessibility label field C-4,6,7
ACCOUNT statement

See SCOPE Reference Manual
Accounting information

Control 12-21

Dayfile 1-15
ALTER statement 8-10
Assembly 3-1
ATTACH statement

SCOPE 2 8-2

SCOPE 3.x 8-14
Automatic core allocation 4-1

Banner page 9-11
Bad data
Accept 5-27
Display 5-29
Drop 5-28
Binary, free-form 9-8,20
Binary, SCOPE 9-7,19
Binary machine language program 3-10
BLOCK CONTAINS Clause 5-9
Blocking
C-type 5-14
Character count 5-14
Default on magnetic tape 5-14
Exact 5-14
E-type 5-14
I-type 5-14
Internal b5-14
K-type 5-14
Maximum block size 5-17,18
Records per block 5-17
Rules 5-18
Unblocked 5-12
BT parameter on FILE statement
Blocked 5-14
Unblocked 5-12

C parameter on LABEL 11-3,6
Cards, punched 9-1,18
CATALOG

Initial 8-2

60372600 A

INDEX

Subsequent 8-9
SCOPE 2.0 8-2
SCOPE 3.x 8-14
C parameter on LABEL 11-3,6
Cards, punched 9-1,18
Central processor unit (CPU) 1-2
CF parameter on FILE statement 10-12
Character sets
ASCII A-1;6-6; 9-3
Display code A-1
EBCDIC A-1;6-6; 11-8
TLabels 11-8
Magnetic tape 6-6
Punched card 9-3
Printer 9-10
CL parameter on FILE statement 5-6;
D-13; E-10
Clock time on dayfile 1-14
CM parameter on FILE statement
Labels 11-8
Magnetic tape data 6-6
CM parameter on job statement
General description 2-3
User control of SCM  4-3
CN control password/permission
ATTACH 8-9
Initial CATALOG 8-8
Later CATALOG 8-9
COBOL compiler
Block types 5-17
Tile description entries 5-9, 17
Introduction 1-7
Object-time file names 1-19
Record Types 5-9
Statement 3-1
Coded mode on magnetic tape
CM parameter 6-6; 11-8
Comma as separator 2-6
COMMENT statement 4-9
Comments
After terminator 2-7; 4-9
COMMENT statement 4-9
Dayfile 1-14
To operator 4-10
PAUSE statement 4-10
VSN statement
See SCOPE 2 Reference Manual
Configuration
Hardware 1-2
Software 1-5
Continuation of statement 2-7
COMPARE statement 10-12
COMPASS assembler
Introduction 1-6

Index-1



Statement 3-1
Compilation 3-1
Computation section 1-2
Computer System
7600 1-2
CDC CYBER 70/Model 76 1-2
Control password/permission 8-8
Control statements
ACCOUNT (see SCOPE 2 Reference
Manual)
ALTER 8-10
ANALYZE (see SCOPE 2 Reference
Manual)
ATTACH 8-6,14
AUDIT (see SCOPE 2 Reference Manual)
BKSP 10-10,11, 12
CATALOG 8-2,9,14
COBOL 3-1
COMMENT 4-9
COMPARE 10-12
COMPASS 3-1
CONTENT (see SCOPE 2 Reference
Manual)
COPY 10-2
COPYBCD (see SCOPE 2 Reference
Manual)
COPYBF 10-4
COPYBR 10-3
COPYCF 10-4
COPYCR 10-3
COPYL (see SCOPE 2 Reference
Manual)
COPYLB (see SCOPE 2 Reference
Manual)
COPYLM (see SCOPE 2 Reference
Manual)
COPYP 10-4
COPYR 10-3
COPYS 10-3
COPYSBF 9-13
COPYSP 9-13
COPYXS E-5
DISPOSE 9-14,20
DMP 12-10
DMPECS 12-12
DMPFILE 12-17
DMPIL 12-12
DUMPF (see SCOPE 2 Reference
Manual)
Entry point name 3-9
EXECUTE 3-12
EXIT 12-1
EXTEND 8-10
FILE 5-1
File name call 3-8
FTN 3-1
INPUT 3-7

Index-2

Job identification 2-1

Keyword 3-8

LABEL 11-2

LDSET 3-17,21; 4-8,15; 12-8, 17

LGO 3-4

LIBEDT (see SCOPE 2 Reference Manual)

LIBLOAD 3-22

LIBRARY 3-20

LIMIT 7-11 _

Listed in dayfile 1-14

LOAD 3-12,23

Loader 3-8

LLOADPF (see SCOPE 2 Reference
Manual)

MAP 12-14

MODE 12-6

Name call 3-7

NOGO 3-13

On dayfile 1-14

PASSWRD (see SCOPE 2 Reference
Manual)

PAUSE 4-10

Processing 3-15

PURGE 8-12

REDUCE 4-6

REQUEST 6-13; 7-2

RETURN 6-17; 7-10

REWIND 10-11

RFL 4-5,6

RTRVSIF (see SCOPE 2 Reference
Manual)

RUN 3-1

Section in job deck 2-86

SKIPB 10-10, 11,12

SKIPF 10-17,8,9

SLOAD 3-16,23

SORTMRG (see SORT/MERGE
Reference Manual)

STAGE 6-1

SUMMARY 12-21

SWITCH 4-11

SYNTAX 2-6

TRANSF 4-13

TRAP (see LOADER Reference Manual)

UNLOAD 6-17; 7-10

UPDATE (see UPDATE Reference
Manual)

VSN (see SCOPE 2 Reference Manual)

COPY statement 10-2
COPYBF statement 10-4
COPYBR statement 10-3
COPYCFEF statement 10-4
COPYCR statement 10-3
COPYP statement 10-4
COPYR statement 10-3
COPYS statement 10-3
COPYSBF statement 9-13

60372600 A



COPYSP statement 9-13
Copying labeled tapes 11-6
COPYXS statement E-5
Core image module
Introduction 1-5
Loading 3-10
NOGO generation 3-14
NUCLEUS library 3-19
Core memory
Allocation 2-3; 4-1
Instruction stack 1-2
LCM 1-2; 4-6
Presetting of 4-8
Size 1-2
SCM 1-2; 4-3
Types 1-2
Core memory allocation 4-1
CP parameter on job statement 2-3,4
CP parameter on FILE statement 5-6;
D-13; E-10
CPU 1-2
CPU time
Dayfile 1-14
Total for job 1-16
Creation date, label 11-3,6
CYBER 70/Model 76 1-2
Cycle number 8-1
CY parameter §8-4

D record type 5-6; D-9; E-8
D parameter on job statement 2-3; 4-6
Date, label creation 11-3,6
Date, label expiration 11-3,6
Date on dayfile 1-14
Dayfile 1-14
Decimal count records
Dependency count 4-12
Directive 2-8
Disk storage subsystem 1-4
DISPOSE statement
Delayed 9-14
Forms control 9-14, 21
Placement 9-14, 20
Printer codes 9-14
Punch codes 9-20
Station identification 9-15
Use 9-14, 20
DMP statement
Placement in load sequence 3-14
Use 12-10
DMPECS statement 12-12
DMPFILE statement 12-17
DMPL statement 12-12
Dollar sign for literals 2-7
Double EOS 3-10
Dynamic field assignment 4-1

60372600 A

E parameter on LABEL 11-3,4
E parameter on REQUEST 11
EB parameter

REQUEST 6-6,14

STAGE 6-6
EC parameter

Introduction 2-3

User control of LCM 4-6
EO parameter on FILE statement 5-27
End-of-file label C-6
End-of-file label group C-1
End-of-file

See end of partition
End-of-information 2-9
End-of-partition

Blocked files 5-19

Card 2-9

End load 3-10

S records 5-19

Z records, C blocked 5-19

W records 5-19
End-of-record card (see end-of-section)
End-of-section

Card 2-8

Double to end load 3-10

W records 5-21

Z records, C blocked 5-21
End-of-volume label -7
End-of-volume label group C-1
Entry point name call 3-9
Entry point search 3-19
EO parameter on FILE 5-27
EOF

See end-of-partition
EOFI label C-6
EOI

See end-of-information
ING )=

See end-of-partition
EOR
See record type
EOS
See end-of-section
EOVI label C-7
Equal sign as separator 2-6
ERR loader option 3-17; 12-8
EX Extend password/permission
ATTACH 8-9
Initial CATALOG 8-5
EXECUTE statement 3-12
Execution
Explicit call 3-12
Load and execute 3-4
Inhibited 3-13
Execution time limit 2-4
Limit 2-4
Used 1-16

Index-3



EXIT statement 12-1
Expiration date, label 11-3,86
EXTEND statement 8-10
Externals, search for 3-19

F record type 5-5; D-8; E-7
Fabricated job name
Banner page 9-11
Lace card 9-18
Formation 2-1
Features of SCOPE 2 1-1
Features, undescribed v
File
See logical file
File definition 5-1
File header label C-5
File identifier field 11-3,4
File information table 5-1
File name 1-16;5-1,2
File name substitution
FORTRAN PROGRAM statement
3-6
Load-and-go statement
File section number field
File sequence number field
FILE statement
BT parameter
CF parameter
CL parameter
CM parameter
CP parameter
EO parameter
FL parameter
FO parameter
HL parameter
LL parameter 5-6; D-9; E-8
Logical file name 5-2
LP parameter 5-6; D-9; E-8
MBL parameter 5-17
MNR parameter 5-6; 10-6; D-11
MRL parameter 5-12; E-1
OF parameter 10-12
PD parameter 5-27
Placement 5-1
RB parameter 5-17
RMK parameter 5-6; D-11; E-9
RT parameter 5-3; D-1
SPR parameter 6-16
TL parameter 5-6; D-13; E-10
FIT 5-1
First level PPU 1-4
Fixed length records 5-5
FL parameter on FILE statement
F record type 5-5; D-8; E-7
Related to MRL. 5-12; E-1
Z record type 5-5; D-5; E-6
FLPP 1-4
FO parameter on FILE statement

1-17;

3-6
11-3,4
11-3,4

5-14, 17

10-12

5-6; D-13; E-10

6-6; 11-8

5-6; D-13; E-10

5-27

5-5,12; D-5,8; E-1,6,7
5-26

5-6; D-13; E-10

5-26

Index-4

FORTRAN compiler

Equating file names 1-17; 3-6
Introduction 1-7
Object-time file names 1-17
Statement 3-1

Functional units 1-2

G parameter on LABEL 11-3,4
Generation number 11-3,4
Generation version 11-3,4
Global library set 3-20

Guide, purpose of iii

Hardware configuration 1-2
HDRI label C-5
HI parameter
REQUEST 6-4,14
STAGE 6-4
HL parameter on FILE statement
D-13; E-10
HY parameter
REQUEST 6-4,14
STAGE 6-4

5-6;

ID parameter for permanent file 8-1
INPUT file
ASCII coded 9-4
Free from binary cards on 9-8
Hollerith coded 9-4
Introduction 1-12,16
Load from 3-7
Punched card format 9-3
Positioning 9-3; 10-11
Rewind 3-7
SCOPE binary cards on 9-7
Source statements on 3-3
Unblocked required 9-1
W records required 9-1
INPUT statement 3-7
Input/output multiplexer
Instruction stack 1-1

1-4

Job
Dayfile 1-14
Flow 1-12
Initiation 1-12
Maximum number 1-1
Priority 2-5
Processing
Standard files
Step 2-8
Termination 1-14

JOB on dayfile 1-14

Job communication area 3-10; B-1

Job control file 1-12

1-13
1-16

60372600 A



Job identification statement 2-1
Parameters 2-3
Syntax 2-1

Job name 2-1

Julian date on dayfile 1-14

Keyword statements 3-8

L parameter on LABEL 11-3,4
L parameter on REDUCE 4-7
Label
Content C-1
Density 11-8
Groups C-1
Parity 11-8
Character conversion 11-8
Fields checked 11-4
Fields generated 11-2
Protection 11-6
Standard 11-1; C-1
LABEL statement 11-2
Lace card 9-18
LCM
Allocation 4-1
Used by job 1-16
User control 4-6
LDSET loader statement
ERR option 3-17; 12-8
Introduction 3-17
LIB option 3-17,21
MAP option 3-17; 12-17
NOREWIN option 3-17; 4-15
PRESET option 3-17; 4-8
""" 3-17; 4-15
Level number
COMPARE statement
Partition 2-10
SCOPE logical record 5-19,21; 10-13
SKIPB statement 10-10
SKIPF statement 10-7

10-13

Section 2-9
Z record 5-19,21
LGO file

Load from 3-4

Used by compilers, assemblers 3-4
LGO statement 3-4
LIB loader option 3-17,21
LIBEDT 3-18
LIBLOAD loader statement 3-22
Libraries

Definition 3-18

Global 3-19

Local 3-19

60372600 A

NUCLEUS 3-19

Sets 3-19
System 3-19
User 3-19

Library organization of a file 5-26
Library set definition
Global 3-20
Local 3-21
LIBRARY statement 3-20
LIMIT control statement 7-11
Literals 2-7
LL parameter on FILE statement 5-6;
D-9; E-8
LQC parameter
REQUEST 6-4,14
STAGE 6-4
Load
Call for 3-12
Followed by execution 3-4
From libraries 3-18,22,23
From multiple files 3-12
From INPUT 3-7
Introduction 1-5
Maps 12-13
Order of search 3-8
Sequence 3-14
Statements 3-8, 14
Without execution 3-13
Load-and-go file 3-4
LGO 3-4
Renamed 3-5
Substituted names 3-6
Load sequence 3-14
LOAD statement
Load from file 3-12,23
Load from library 3-16
L.oader statements
EXECUTE 3-12
INPUT 3-7
LDSET 3-17,21; 4-8,15; 12-8,17
LGO 3-4
LIBLOAD 3-22
LOAD 3-12,23
Name call 3-7
NOGO 3-13
SLOAD 3-16
Local library set 3-21
LOD on dayfile 1-14
Logical file
Active for job 1-15
Blocking 5-14
COBOL block types 5-17
COBOL object time name 1-19
COBOL record types 5-9
Conversion, character 6-6; 11-8
Conversion, record or block E-1

Index-5



Copying 10-1 Minimum record mark character 5-6; D-11

Data transfer requests 1-15 MNR parameter on FILE statement
Equating file names 1-18 5-6; D-11
Error recovery 5-27; 6-18 MODE control statement 12-6
Even mode 6-6 Modify password/permission 8-6
FORTRAN record constraints 5-8 MRL parameter on FILE statement
FORTRAN object time name 1-17; 3-4 5-12; 10-6; E-1
INPUT file 1-12,16; 3-7; 9-1 MT parameter
Introduction 1-16 Job statement 2-3; 6-13
Labeled 11-1 REQUEST 6-13
Magnetic tape 6-1 STAGE 6-3
Mass storage 7-1 Multifile volume C-2
Maximum used by job 1-15 Multiprogramming 1-1
Naming conventions 1-16; 3-4; 5-1 Multivolume file C-2
No recovery 6-18 Multivolume multifile C-3
Odd mode 6-6 MUX 1-4
Open/close requests 1-15 M2 parameter on REQUEST 6-16
OUTPUT file 1-17; 9-10
Parity 6-6
Positioning requests 1-15
Processing direction 5-27 N parameter
PUNCH file 1-17; 9-19 REQUEST 11-2
PUNCHB file 1-17; 9-19 STAGE 11-2
Record types 5-3, 8; D-1; E-1 Nine-track tapes 6-3,13
Suppress read ahead 6-16 NOGO statement 3-13
System files 1-16 Noise blocks 6-17
Unblocked 5-12 No recovery 6-17
Write check 7-9 NOREWIN option 3-17; 4-15
LP parameter on FILE statement 5-6; NR option on LOAD 4-15
D-9; E-8 NR parameter on REQUEST 6-18

NR parameter on STAGE 6-18
NT parameter
Job statement 2-4;6-13
M parameter on LABEL 11-3,4 REQUEST 6-13
Magnetic tape units STAGE 6-3
Multiple amount 6-6
On-Line 1-4; 6-13
Requesting 6-13

Staged 6-1 Object module 1-5; 3-10
Types 6-3 OF parameter on FILE statement 10-12
Maintenance control unit 1-4 On-line tapes
MAP loader option 3-17; 12-17 Configuration 1-4
MAP statement Accounting information 1-16
Debug aid 12-14 Scheduling 6-13
Inside load sequence 3-14 Use 6-13
Mass storage Used by job 1-16
Job limit 7-11 Operating registers 1-2
System 1-4; 7-1 OUTPUT file
Used 1-16 Dayfile 1-14
Maximum block length 5-17 Default for assemblers/compilers 1-17
Maximum record length 5-12; 10-6; E-1 Default for copy routines 10-1
MBL parameter on FILE statement 5-17 Default for map 12-17
MCU 1-4 Format 9-10
MD modify password/permission 8-6 Introduction 1-17
Messages Disposition of 9-14
Dayfile 1-14 Printer control 9-10
Operator 4-10 Unblocked required 9-10

See comments

Index-6 60372600 A



W records required 9-10
Writing on  9-10

P parameter on LABEI, 11-3,4
P parameter on job statement 2-5
Parenthesis, left as separator 2-6
Parenthesis, right as terminator 2-6
Partition
Comparing 10-13
Copying 10-4
File structure 5-19
Punched 9-18
Separator card 2-9; 9-18
PAUSE statement 4-10
PB on DISPOSE 9-20
PD parameter on FILE statement 5-27
PE parameter
REQUEST 6-4,14
STAGE 6-4
Period as terminator
Control statement 2-6
Job statement 2-1
Peripheral processor unit 1-4
Permanent file
Altering 8-10
Attaching 8-2,14
Cataloging 8-2,9,14
Cycles 8-1
Extending 8-10
Modifying 8-7
Name 8-1
Passwords 8-5
Permissions 8-9
Purging 8-12
Retention period 8-4
SCOPE 2.0 8-1
SCOPE 3.x 8-14
POST on STAGE 6-2
PPU 1-4
PR on DISPOSE 9-14
PRE on STAGE 6-2
PRESET option 3-17; 4-8
Printer output 9-10
Priority, job 2-5
Privacy procedures 8-14
Processing direction 5-27
Processor code 2-4
Product set, SCOPE 2 1-5
PU on DISPOSE 9-20
Publications, CDC iv
PUNCH file
Disposition 9-19
Format 9-19
Introduction 1-17
Unblocked required 9-19
W records required 9-19

60372600 A

PUNCHB file
Disposition 9-19
Format 9-19
Introduction 1-17
Unblocked required 9-19
W records required 9-19
Punched cards
ASCII input 9-3
Coded input 9-3
Coded output 9-19
Disposition 9-20
EOI 2-9; 9-18
EOP 2-9; 9-18
EOS 2-8; 9-18
Forms control 9-21
Free-form binary input 9-8
Free-form binary output 9-20
Hollerith input 9-3
Hollerith output 9-19,20
INPUT 3-7
Input 9-3, 7, 8
Lace card 9-18
Mispunched 9-18
Output 9-18
Separator cards 9-18
SCOPE binary input 9-7
SCOPE binary output 9-19
PURGE statement 8-12
PW parameter 8-9
P1 on DISPOSE statement 9-14
P2 on DISPOSE statement 9-14
P8 on DISPOSE statement 9-20

R option on LOAD 4-15
R record type 5-6; D-11; E-9
R parameter on job statement 2-3; 4-13
R parameter on LABEL 11-2
RB parameter on FILE statement 5-17
RD password/permission 8-6
Read password/permission 8-6
Record

Logical 5-3; D-1

Physical (see block)
Record mark character 5-6; D-11; E-9
Record mark records 5-6; D-11; E-9
RECORD CONTAINS Clause 5-9
Record manager 1-6; 5-1; D-1; E-1
Record type

D Decimal count 5-6; D-9; E-8

F Fixed length 5-5; D-8; E-7

R Record mark 5-6; D-11; E-9

S SCOPE logical 5-4; D-1; E-4

T Trailer 5-6; D-13; E-10

U Undefined 5-7; D-11; E-11

W Word control 5-4; D-1; E-2

X X-mode 5-5,D-4; E-5

Index-7



Z Zero byte 5-5; D-5; E-6
Record type specification 5-3
REDUCE statement

In load sequence 3-14

Use 4-6
Relocatable modules 1-5; 3-10
Rerun job 4-13
REQUEST statement

On-line 6-13

Mass storage 7-2
Retention period 8-4
RETURN statement

Disposed file 7-10; 9-14

Magnetic tape 6-17

Mass storage 7-10

On-line tape 6-17

Permanent file 7-10

Staged file 7-10

System file 7-10
Rewind before load 3-4; 4-15
Rewind of load file 4-15
REWIND option on LDSET 3-17; 4-15
REWIND statement 4-15; 10-11
RFL statement 4-5,6
RMK parameter on FILE statement

5-6; D-11; E-9
RP parameter on CATALOG 8-4
RT parameter on FILE statement
5-3; D-1; E-1
RUN compiler

Introduction 1-7

Object time file names 1-17; 3-4

Statement 3-1

S parameter on REDUCE 4-6
S record type 5-4,16; D-1; E-4
Satisfying of externals 3-10, 14,19
SCM
Maximum allowed 4-3
Minimum required 4-3
Used by job 1-16
User control 4-3

SCOPE logical records 5-4,16; D-1; E-4

SCOPE 2
Features 1-1
Introduction 1-1
Meaning of acronym 1
Operating environment
Product set 1-5
Section
Comparing 10-13
Copying 10-3
Control statement 2-6
File structure 5-21
Punched 9-18
Separator card 2-8

-1
1-2

Index~-8

SEGLOAD 1-6
Segment loader 1-6
SEGRES 1-6
Selective load 3-16,23
Separator cards
End-of-information 2-9; 9-18
End-of-partition 2-9; 9-18
End-of-section 2-8; 9-18
Free-form binary 9-8
Separators on control statements 2-6
Sequential file organization 5-26
SF parameter on STAGE 6-11
Single volume file C-1
SKIPB statement 10-10
SKIPF statement 10-7
Slant bar as separator 2-7
SLOAD loader statement 3-16,23
Sort/merge program 1-7
Spanning of blocks 5-16
Small core memory
See SCM
Software configuration 1-1
Spooled files 9-1
SPR on FILE statement 6-16
ST parameter
ATTACH 8-14
CATALOG 8-14
DISPOSE 9-15
PAUSE 4-10
STAGE 6-4
STAGE 6-1
Staging 6-1
Stage by blocks 6-10
Stage by file 6-11
Stage by volume 6-8
Station
General description 1-4
Maintenance 1-4
On day file 1-14
6000 or CYBER 70 1-9
7611-1 I/O station 1-10
7611-2 Magnetic tape station 1-11
7611-11 Service station 1-8
SUMMARY statement 12-21
Swap count 1-16
SWITCH statement 4-11
Switch, program 4-11
Switch, pseudo sense 4-11
SYS on dayfile 1-14
System controlled mode 4-1
System mass storage 1-4

T parameter on LABEL 11-3,6
T record type 5-6; D-13; E-10
T on job statement 2-3

T transfer unit parameter

60372600 A



REQUEST 7-6 V parameter on LABEL 11-3,4

STAGE 7-6 VF parameter on FILE 6-15

Tape density Volume header label C-4
REQUEST 6-3,14 Volume/header label group C-1
STAGE 6-3 VOLI label C-4

Time limit for job 2-3,4 VSN parameter

Time used by job 1-16 REQUEST 6-186

TK password/permission 8-8 STAGE 6-8

TL parameter on FILE statement 5-6;

D-13; E-10

Trailer count records 5-6; D-13; E-10

TRANSF statement 4-13 W parameter on LABEL 11-2

TRAP statement 12-1 W record type 5-4,16; D-1; E-2; 9-1

Turnkey password/permission 8-8 WCK parameter on REQUEST 7-9

Word addressable organization 5-26

U parameter on LABEL 11-3,6
U record type 5-7; D-11; E-11 X record type 5-5,16; D-4; E-5
U unit parameter

REQUEST 7-8

STAGE T7-8
Undefined records 5-7; D-11; E-11 Z record type 5-5; D-5; E-6
UNLOAD statement Zero byte 5-5

Disposed file 7T-10 Zero-length record

Magnetic tape 6-17 S record 5-4

Mass storage 7-10 W record 5-4

On-line tape 6-17 X record 5-5

Permanent file 7-10

Staged file 7-10

System file 7-10
UPDATE program 1-7
US parameter

REQUEST 6-6; 11-8

STAGE 6-6; 11-8
USR on dayfile 1-14
User, identified iii

60372600 A Index-9



CUT ALONG LINE

PRINTED IN USA

A3419 REV. 11/69

COMMENT SHEET

MANUAL TiTLE__CONTROL DATA® CYBER 70/MODEL 76

COMPUTER SYSTEM - SCOPE 2 USER'S GUIDE
60372600

PUBLICATION NO. REVISION A

FROM: NAME:

BUSINESS
ADDRESS!

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the froat of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE



STAPLE STAPLE

o am cms wmm wme mmn e G e e S w— = = wmn e o amm - e -

Technical Publications Department
4201 North Lexington Ave.
Arden Hills, Minnesota 55112

_____________________________________________ -
|

FIRST CLASS |

PERMIT NO. 8241 I

MINNEAPOLIS, MINN. :

|

|

BUSINESS REPLY MAIL |

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |
|

[

POSTAGE WILL BE PAID BY :
CONTROL DATA CORPORATION I
|

|

|

|

|

|

I

|

-
(o]
-
(v
-
o
[y
o

CUT ALONG LINE



INSTALLATION DEFINED PARAMETERS

Use the following table to record values of parameters defined at your site.

The table

lists only those installation-defined defaults that affect control statement processing.
Other default values are either not alterable, affect the internal performance of the

system, or are not directly related to control statements.

Parameter

Job time limit (Tn)
Job priority (Pn)
SCM field assignment (CMn)

LCM field assignment (ECn)

7-track magnetic tape units (MTn)
9-track magnetic tape units (NTn)
9-track conversion code (US/EB)

Tape data density (HI,HY, LO, PE)

13

Tape label density

Retry count for parity errors

Staging direction

Mass storage limit for job
Loader map
Loader abort conditions

Loader preset value

Load file positioning

Coded punched card format

Station identifier (ggg)

Terminal identifier (ttt)

Default
8 seconds

|
Automatic

Automatic

0 units

0 units

m———————

characters

Range

0 to 777774 (infinite)

0 to

2
8 to 8 words
0 to 8 thousand words
0 to 8 units
0 to 8 units
ASCII or EBCDIC
200, 556, or 800 bpi

~200, 556, or 800 bpi or

same as data

Pre or post

1 to 16 MAU (A0 to A4)

L (ol L ?

characters

None, S5, B, E, or X
All/fatal/none

None, zeros, ones, indef,
inf, ngindef, nginf, ali.
zeros, alt., ones.,

Rewind or no rewind

Hollerith (026) or ASCII
(029)



CONTROL DATA

CORPORATION

CORPORATE HEADGUARTERS, 8100 34th AVE. S0., MINNEAPOLIS, MINN. 55440
SALES OFFICES AND SERVICE CENTERS 1N MAJOR CITIES THROUGHGUT THE WORLD

LiTwidd W oo



	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	F-01
	F-02
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	replyA
	replyB
	xBackA
	xBackB

