@B corvoraToN

60449900

UPDATE 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:

NOS 1
NOS/BE 1
SCOPE 2

UPDATE DIRECTIVES INDEX

Directive Parameters Abbreviation
*ABBREV none
*ADDFILE Ifn,c *AF
*ADDFILE Ifn, deck *AF
*BEFORE c *B
*CALL deck *CA
*CHANGE oldid, newid, ... ,oldid,newid *CH
*COMDECK deck *CD
*COMDECK deck,NOPROP *CD
*COMPILE deckl.deck2 *C
*COMPILE deckl,deck?, ... ,deckn *C
*COPY deck,c *CY
*COPY deck,cl,c2 * Y
*COPY deck,cl,c2,lfn *CY
*CWEOR level *CW
*DECK deck *DK
*DECLARE deck *DC
*DEFINE namel,name2, ... ,namen *DF
*DELETE cl,c2 *D
*DELETE c *D
*DO identl,ident2, ..., identn none
*DONT identl,ident2, ... ,identn *T
*END none
*ENDIF *E1
*ENDTEXT *ET
*IDENT idname,pl,p2, ... ,pn *ID
*IF type,name,num none
*IF -type,name,num none
*INSERT c *I '
*LIMIT n *LT
*LIST *L
*MOVE deckl,deck2 *M
*NOABBREV *NA
*NOLIST *NL
*PULLMOD identl,identl, ... ,identn *PM
*PURDECK deckl,deck2, ... ,deckn *PD
*PURDECK deckl.deck2 *PD
*PURGE identl,ident, ... ,identn *p
*PURGE identl.ident2 P
*PURGE ident, * *p
*READ Ifn *RD
*RESTORE c *R
*RESTORE cl,c2 *R
*REWIND Ifn *RW
*SELPURGE deck.identl,deck2.ident2, ... ,deckn.identn *SP
*SELYANK deckl.identl,deck2.ident2, ... ,deckn.identn *SY
*SEQUENCE deckl,deck?, ... ,deckn *S
*SEQUENCE deckl.deck2 *5
*SKIP Ifn,n *SK
*TEXT *T
*WEOR level *W
*Y ANK identl,ident2, ... ,identn *Y
*Y ANK identl.ident2 *y
Y ANIKDECK deokl . dack2, ... Jdeckn 0D
*/ comments none

Page

'
it
[

\al\.d\»l‘

W
1 Usi] U
HO\O\D\HH#‘J’-‘U‘E wouw

e
(=]

o

AV RV

\NWU\.{J\N\AU

1
b i b = N O\

WO W
L]
B et AN et

i Vo
b bt] b e s
[y

u\'.uuw

vy
N W

RS
[RN
W

=2

[LR
- 00NN

DR t o
= O\ = ~ =~\V\0Wo v—-mmN

N

1

W

V]

o

1

WOW W AW W W W W W W \.A\rl\ol\'l [R R R A R A
N

e

U

REVISION RECORD

REVISION DESCRIPTION
A Original printing. This manual is a successor to publication number 60342500 for users of NOS 1.0,
(12-15-75) NOS/BE 1.0, and SCOPE 2.1 operating systems.
B This tevision reflects version 1.3 of the Update utility at PSR level 472. Update has been
(3-31-78) modified to allow up to seven secondary old program libraries to be specified. The entire manual

has been reprinted.

Publication No.
60449900

Address comments concerning
REVISION LETTERS I, O, Q AND X ARE NOT USED this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

© 197, 1978
Control Data Corporation

Printed in the United States of America

or use Comment Sheet in the
back of this manual

60449900 B

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page

Revision

Cover

Inside Cover
Title Page

ii

fii/iv

vivi

vii

1-1 thru 1-3
2-1 thru 24
3-1 thru 3-14
4-1 thru 4-5
5-1 thru 5-6
A-l

A2

B-1 thru B-7
C1

D-1 thru D-8
E-1

Index-1
Index-2
Comment Sheet
Return Env
Inside Cover
Cover

(-2 -~ -- - - O -~

60449900 B

Page

Revision

Page

Revision

iii/iv @

PREFACE

m

This manual describes the Update utility for maintaining and NOS/BE 1 for the CDC® CYBER 170 Series; CYBER 70
updating decks in compressed symbolic format on mass Models 71, 72, 73, and 74; and 6000 Series Computer
storage. = As described in this publication, Update 1.3 Systems

cperates under the control of the following operating

SCOPE 2 for the Control Data CYBER 170 Model 176;

systems: CYBER Model 76; and 7600 Computer Systems
NOS1 for the CONTROL DATA® CYBER 170 The user is assumed to be familiar with the operating system
Models 171, 172, 173, 174, and 175; CYBER 70 and computer system in use.
Models 71, 72, 73, and 74; and 6000 Series Computer
Systems Related material is contained in the following publications:
Publication Publication Number
NOS 1 Reference Manual, volume 1 60435400
NOS 1 Reference Manual, volume 2 60445300
NOS/BE 1 Reference Manual 60493800
SCOPE 2 Reference Manual 60342600

CDC manuals can be ordered from Control Data Literature and
Distribution Services, 8001 East Bloomington Freeway, Minneapolis,
Minnesota, 55420.

This product is intended for use only as described
in this document. Control Data cannot be
responsible for the proper functioning of
undescribed features or parameters.

60449900 B vivie

CONTENTS

L

1. INTRODUCTION

Creation Run

Correction Run

Copy Run

Deck List and Directory Order
Update Mode

2. UPDATE FILES

Input File

Program Library Files
New Program Library
Old Program Library

Compile File

Listable Output File

Source File

Merge File

Pullmod File

Scratch Files

3. DIRECTIVES

Directive Format

Card Identifiers

Deck Identifying Directives
DECK Directive
COMDECK Directive

Correction Directives
ADDFILE Directive
BEFORE Directive
CHANGE Directive
COPY Directive
DELETE Directive
IDENT Directive
INSERT Directive
MOVE Directive
PURDECK Directive
PURGE Directive
RESTORE Directive
SEL_PURGE Directive
SELY ANK Directive
SEQUENCE Directive
YANK Directive
YANKDECK Directive

Compile File Directives
CALL Directive
COMPILE Directive
CWEOR Directive
DO Directive
DONT Directive
ENDIF Directive
IF Directive
WEOR Directive

File Manipulation Directives
READ Directive
REWIND Directive
SKIP Directive

60449900 B

¥
[

1
b B B LN e N« SRV, RV, IRV IV, I R g ol

II&I

] U
= \D\O \O ™
oo

\AN\NNU\A\AUW\N\N\N\'N\N\NW\NW\N\AW\JJUW

Input Stream Control Directives
ABBREYV Directive
ENDTEXT Directive
LIST Directive
NOABBREY Directive
NOLIST Directive
TEXT Directive

ecial Directives
DECLARE Directive
DEFINE Directive
END Directive
LIMIT Directive
PULLMOD Directive

/ Comment Directive

4, UPDATE CONTROL STATEMENT

Parameters

A Sequential-to-Random Copy
Random-to-Sequential Copy
Compile File Name
Data Width on Compile File
Edit Old Program Library
Full Update Mode
Pullmod File Name
Character Set Change
Input Stream File Name
Compile File Sequence
Listable Output Options
Merge Program Libraries
New Program Library File Name
Listable Output File Name
Old Program Library File Name
Quick Update Mode
Rewind Files
Source Fiie Name
Omit Common Decks From Source File
Debug Help
Sequential New Program Library Format
Compressed Compile File
Card Image Width on Compile File
Master Control Character
Comment Control Character
UPDATE Control Statement Examples

XX ECHOVODDVOZZIrX"IOTMMUOO®

5. EXAMPLES OF UPDATE RUNS

Library File Creation

Input File Not INPUT
Insertions/Deletions/Copying

Purging and Yanking

Selective Yanking

Selective Writing to Compile File
Addition of Decks

Pullmod Option

Program Library as A Permanent File
Sample FORTRAN Extended Program

AN AN W AN A AN Al AN AN AN W AW AN
EHEWWWWUWWWWNRNNRN

U
—

UL R R B R |

PR REEPPEEERREE B
WA N N RN bt bt bt e bt et et

£e
=W

4-4
4-i
4-4
4-4
4-4
4-4
4-4
4-5
4-5
4-5

5-1

5-1
5-2
5-2
5-2
5-3
5-3
5-4
5-5
5-5
5-5

vii ®

APPENDIXES

A Standard Character Set A-1 D File Format and Structure D-1
B Diagnostics B-1 E Installation Options E-1
C Glossary C-1
INDEX
FIGURES

3-1 General Update Directive Format 3-1 3-38 ENDTEXT Directive Format 3-12
3-2 Full Form of Card Identification 3-1 3-39 LIST Directive Format 3-12
3-3 Expansion of Short Forms of Card 3-40 NOABBREYV Directive Format 3-13

Identification 3-1 3-41 NOLIST Directive Format 3-13
3-4 Examples of Card Identifier Expansion 3-4 3-42 TEXT Directive Format 3-13
3-5 Example of Deck Structure 3-4 3-43 DECLARE Directive Format 3-13
3-6 DECK Directive Format 3-4 3-44 DEFINE Directive Format 3-13
3-7 COMDECK Directive Format 3-5 3-45 END Directive Format 3-13
3-8 ADDFILE Directive Format 3-5 3-46 LIMIT Directive Format 3-14
3-9 BEFORE Directive Format 3-5 3-47 PULLMOD Directive Format 3-14
3-10 CHANGE Directive Format 3-6 3-48 Comment Directive Format 3-14
3-11 COPY Directive Format — Copy to Deck 3-6 4-1 UPDATE Contro! Statement Format 4-1
3-12 COPY Directive Format — Copy to File 3-6 5-1 Update Creation Run 5-1
3-13 Example of Use of COPY 3-6 5-2 Creation of Library From Alternate
3-14 DELETE Directive Format 3-6 Input File 5-1
3-15 IDENT Directive Format 3-7 5-3 Creation of Library With Common Decks 5-1
3-16 INSERT Directive Format 3-7 5-4 Input File Not INPUT 5-2
3-17 MOVE Directive Format 3-7 5-5 Program Library Contents 5-2
3-18 PURDECK Directive Format 3-8 5-6 Modify Old Program Library 5-2
3-19 PURGE Directive Format 3-8 5-7 Compile File Contents 5-2
3-20 RESTORE Directive Format 3-8 5-8 Correction Run 5-2
3-21 SELPURGE Directive Format 3-9 5-9 Use of YANK 5-3
3-22 SELYANK Directive Format 3-9 5-10 Return to Previous Level 5-3
3-23 SEQUENCE Directive Format 3-9 5-11 Use of PURDECK 5-3
3-24 YANK Directive Format 3-9 5-12 Use of DO and DONT 5-3
3-25 YANKDECK Directive Format 3-10 5-13 Use of IF and ENDIF 5-4
3-26 CALL Directive Format 3-10 5-14 Nexted IF Directives 5-4
3-27 COMPILE Directive Format 3-10 5-15 ADDFILE Input on File INPUT 5-4
3-28 CWEOR Directive Format 3-11 5-16 ADDFILE Input on File FNAME 5-4
3-29 DO Directive Format 3-11 5-17 ADDFILE Input on Secondary Input Files 5-4
3-30 DONT Directive Format 3-11 5-18 Correction Run for PULLMOD Example 5-5
3-31 ENDIF Directive Format 3-11 5-19 Pull Modifications 5-5
3-32 IF Directive Format 3-11 5-20 Permanent File Under NOS/BE or SCOPE 2 5-5
3-33 WEOR Directive Format 3-12 5-21 Permanent File Under NOS 5-5
3-34 READ Directive Format 3-12 5-22 FORTRAN Extended Program Library — 1 5-5
3-35 REWIND Directive Format 3-12 5-23 Correction of SUBROUTINE Statement 5-6
3-36 SKIP Directive Format 3-12 5-24 FORTRAN Extended Program Library — 2 5-6
3-37 ABBREV Directive Format 3-12 5-25 Add Deck to FORTRAN Program Library 5-6

TABLES
1-1 Update Mode 1-3 2-4 Update Scratch Files 2-4
2-1 File Summary 2-1 3-1 Summary of Update Directives 3-2
2-2 File Contents and Update Mode 2-2 4-1 Summary of UPDATE Control Statement
2-3 New Program Library Format 2-2 Parameters 4-2

® viii 60449900 B

INTRODUCTION 1

#

Update is a utility for maintaining and manipulating a mass
storage file containing images of coded punched cards or
their equivalent. Once card images have been made a part
of an Update program library, any physical punched cards
can be dispensed with.

A file of card images to be manipulated by Update must be
in a special format known as a program library. Three types
of Update runs generate or manipuiate a program library:

A creation run generates a program library from the
input stream text.

A correction run manipulates the contents of an
existing program library.

A copy run changes the format of a program library
from random to sequential or from sequential to
random.

As each card is written to the program library, Update
assigns it a unique card identifier.

Groups of card images within the program library are known
as decks. Each program library must have at least one deck,
with the maximum number of decks being 262,143. Deck
grouping is significant in terms of extracting card images
from the program library in a format suitable for use by a
compiler, assembler, or print routine. While an individual
card can be referenced for purposes such as deletion of that
card or insertion after that card, the smallest unit that can
be extracted from the program library is the deck.

Typically, use of Update involves maintenance of a group of
compiler or assembly language routines. For convenience,
the programmer often specifies each routine or group of
related routines as an individual deck. One routine can then
be changed or extracted without affecting other routines in
the program library. Because each card image in a deck has
its own identifier (consisting of the deck name) and an
Update-supplied sequence number, it can be referenced
individually in order to correct or change a routine. Then,
the deck containing the modified routine can be extracted
from the program library and used as if it had been entered
into the system as a punched deck.

A deck can be composed of punched cards or images of
punched cards. Update makes no assumptions about
contents. While programs are customary contents, Update is
equally applicable to a set of data cards or any other text.

The programmer controls Update operations through the
following two mechanisms:

The UPDATE control statement parameters specify the
general operations to be performed. The parameters
control the files to be manipulated and influence the
type of operations performed.

The input stream card images specify the detailed
operations to be performed and specify the card images

60449900 B

to be made a part of the program library. The
instructions for Update operation are called directives;
the card images for the program library are called text.
The input stream can be either part of the job deck

containing the UPDATE control statement or a separate
file.
Files used or generated by Update have generic names that
are related to their defoult logical file names. The

following names are used in the remainder of this manual in
describing Update operations:

Input file — the user-supplied file or part of the job
deck that contains the input stream of Update
directives and text.

Output file — the file generated by Update that
contains the status information produced during Update
execution. It is in a format suitable for printing.

Program library — the file generated by an Update
creation run that contains the decks of card images. At
the time the file is created, it is known as the new
program library. At the time the file is corrected, it is
known as the old program library. A correction run can
optionally create a separate new program library that
permanently incorporates the changes made during the
correction run. Card images in the program library are
in a format that can be manipulated by Update, but that
is meaningless for all other purposes.

Compile file — the file generated by Update that
contains card images restored to a format that ie
acceptable to a compiler or assembler. Decks written
to the compile file during any given run are controlled
by the Update mode selected, by control statement
parameters, and directives in the input stream.

Source file — the file generated by Update that

contains card images of an input stream that would
allow regeneration of the program library.

Section 2 contains a detailed discussion of the files used or
generated by Update.

The directives for Update are interspersed with text in the
input stream. They are distinguished by the presence of a
control character contiguous with a directive keyword.

More than 40 directives exist. The directives can be
grouped into those that

Define decks.

Control compile file contents.

Manipulate primary or secondary input streams.
Control overall handling of input files.

Modify program library contents.

Section 3 contains a detailed discussion of Update
directives.

1-1 @

CREATION RUN

A creation run constructs a program library. It is the
original transfer of punched cards or card images into
Update format.

A creation run exists when the first card read from the input
stream is a DECK or COMDECK directive. A creation run
also exists when one or more of the following directives
precedes the first DECK or COMDECK directive:

ABBREYV NOABBREV REWIND
DECLARE NOLIST SKIP

LIMIT READ / (comment)
LIST

The presence of any other directive before the first DECK
or COMDECK directive causes Update to consider the run to
be a correction run.

In addition to the preceding directives, the following are the
only Update directives that can be used during a creation
run:

CALL END ENDTEXT TEXT
CWEOR ENDIF IF WEOR

Each DECK or COMDECK directive defines a deck to be
inserted into the program library under construction. All
text and directives following a DECK or COMDECK
directive, until the next DECK or COMDECK directive, are
considered to be part of the deck. Each card image receives
the deck name and 2 unigue sequence number so that the
images can be referenced individually. The DECK or
COMDECK directive defining the deck itself is assigned the
sequence number one.

Update decks can be one of two types: a regular deck
declared with a DECK directive, or a common deck declared
with a COMDECK directive. DECK and COMDECK differ
in that a common deck can be called by name so that it is
inserted into the text of another deck when the compile file
is being generated. One copy of the common deck exists on
storage, but multiple copies can be part of a compile file.

When the library is created, Update generates a deck named
YANK$$$ as the first deck on the library. The YANK$$$
deck contains all the YANK, SELYANK, YANKDECK, and
DEFINE directives that are encountered during Update runs.
(The YANK$$$ deck is described further in appendix D, File
Format and Structure.) Update also generates a deck list
and directory during a creation run. The deck list contains
the names of all decks in the library and the location of the
first word for each deck. The directory contains one entry
for each DECK, COMDECK, and IDENT directive that is
used for the library.

CORRECTION RUN

A correction run, which is the most common use of Update,
introduces changes into the existing program library. These
changes exist only for the duration of the run unless a new
program library is generated. Update recognizes a correc-
tion run when it encounters a directive other than one of the
following prior to encountering DECK or COMDECK:

ABBREV NOABBREV REWIND
DECLARE NOLIST SKIP
LIMIT READ /

LIST

®1-2

A correction run consists of a read-input-stream phase and a
correction phase. During the first phase, Update reads
directives and text, adds any new decks, and constructs a
table of requested correction operations, During the second
phase, Update performs the requested modifications on a
deck-by-deck basis.

The corrections to the library, that is, the newly inserted
cards, replaced cards, and deleted cards make up correction
sets. The IDENT directive assigns a unique identifier to
each card image inserted by the correction directives. Each
inserted card image is assigned a sequence number beginning
with one for each IDENT name. All card images having the
same correction set identifier comprise a correction set.

Update permits a user to remove (yank) the effects of a
correction set or deck and later restore the correction set or
deck. This feature is convenient for testing new code.
Requests for yanking are maintained in the YANK$$$ deck.
Before obeying a correction, Update checks the correction
identifier against the YANK$$$ deck to see if the correction
has already been yanked. If it has been yanked, an
informative message is issued and processing continues.
This effect on the YANK$$$ deck can be selectively
controlled through DO and DONT directives within the
decks.

The image of a card, even though deleted through DELETE
or yanking, is maintained permanently on the program
library with its current status (active or inactive) and a
chronological history of modifications to its status. The
images contain information known as correction history
bytes. The history bytes, which are generated by Update,
contain the history and status of the card and ic the means
by which Update can reverse status. Deletion of a card, for
example, is accomplished by the addition of a correction
history byte to the card image rather than a physical
deletion of the image. Consequently, the card can be
reactivated at some later time.

Update also allows a complete and irreversible purging of
correction sets and decks. When a correction set or deck is
purged, it is physically removed from the library.

COPY RUN

A copy run changes the old program library format from
sequential to random or from random to sequential. Update
recognizes a copy run when either the A or B parameter is
specified on the UPDATE control statement. Since Update
does not read the input file on a copy run, no other
operations are performed.

DECK LIST AND DIRECTORY ORDER

Update maintains a deck list and directory for its internal
use. They are only significant to the user when ranges of
decks or correction sets are specified on Update directives.
The output file lists the order in which the deck names and
correction set identifiers appear.

The deck list contains a list of all decks in the program
library. The original entries of the deck list correspond to
the order in which decks were written during the creation
run. Subsequent entries are added to the end of the list as
they are introduced in the program library. Therefore, deck
list order might not reflect actual deck order in the program
library, since the user determines deck location within the
program library through directives.

60449500 B

The location of an entry in the deck list is significant in
terms of parameters for PURDECK, SEQUENCE, and
COMPILE directives in which a range of decks can be
referenced. The order of names in a range reference must
be the same as the order in the deck list. The decks named
and all the decks between are then processed in accordance
with the directive. An error exists if they are in reverse
order.

Similarly, as each deck and correction set is introduced into
the program library, Update creates an entry in an internal
directory in chronological sequence. The location of an
entry in the directory is significant in terms of parameters
for PURGE and YANK directives in which a range of
correction sets can be referenced. The order of reference
must be the same as the order of
identified correction sets and all the sets between are
processed in accordance with the directive. An error exists
when a correction set range is not referenced in the order

the sets were introduced into the library.

[| i W T
I:ll!: u;;‘ggtgryg ife

UPDATE MODE

The content of any compile file, source file, or new program
library produced during a correction run is affected by the
Update mode. (Table 2-2 summarizes the effect of mode
upon file content.) The mode of an Update run is
determined by a combination of the omission or specifica-
tion of the F and Q parameters on the Update control
statement as summarized in table 1-1.

60449900 B

Mode chosen depends on how extensively the user wishes to
modify the program library and its size. If the library
contains many decks and the user wishes to modify only a
few, quick mode would be used. If there are many decks and
the user wants all decks to be processed, full mode would be
used. Normal selective mode would be used when only those
decks modified or specified are wanted in the compile. file.

TABLE 1-1. UPDATE MODE

Parameter Mode

Full mode in which all decks are on the
old program library are processed.

F specified

Q specified Quick mode in which only decks specified
on COMPILE directives and decks added
through ADDFILE directives are

processed.

Both F and
Q specified

Quick mode.

Both F and
Q omitted

Normal selective mode in which the only
decks processed are those modified or
those specified on COMPILE directives.

1> @

UPDATE FILES 2

o e

During its execution, Update manipulates as many as eight
files that can be referenced by the user. The files involved
with any given run depend on

Parameters selected by the UPDATE control statement

Whether the run is a creation run, correction run, or
copy run

The files that Update generates or uses are described below.
Each of these files has a default name, but other names can
be specified through the appropriate parameters on the
UPDATE control statement.

File characteristics are summarized in table 2-1.

Whether or not a file is optional, used, or not applicable on
an Update run depends on the type of run.

Creation run — the user must supply the input file.
Update generates the new program library, compile file,
and output file by default. The generation of a source
file is optional. No other files are applicable on a
creation run.

Correction run — the user must supply the input file,
the old program library, and the merge file (if a merge
is to take place). Update generates, by default, the
output and compile files. The creation of a new
program library, source file, and pullmod file is optional
on a correction run.

Copy run — the user must supply the old program
library. Update generates, by default, the new program
library and the output file. No other files are

mmelianhla am o ane

appiiCacit Gn a Topy run.

The contents of any compile file, source file, or new
program library produced during a run are affected by the

1 Inrlglne maode and the file format of tha ald nroara rr lihnany
wpGaLE MNOGT and g T8 TOMMiaLr OF i€ GG prograim ior'ary,.

The contents of these files are summarized in table 2-2.

INPUT FILE

The input file contains the input stream; it must contain
coded cards or their equivalent. The input stream consists
of directives that direct Update processing and text to be
added to the program library. The directives allowed in the
input stream are determined by the type of Update run.

Update initially reads the input stream from the primary
input file specified by the I parameter of the UPDATE
control statement; default file name is INPUT. Update
stops reading directives and text when it encounters a 7/8/9
card or its equivalent, or end-of-information (EOI).

If Update encounters a READ or ADDFILE directive in the
input stream, it stops reading from the primary input file
and starts reading from the file specified on the directive.
Update reads one system-logical-record from the secondary
input file; reading from the primary input file then resumes.

TABLE 2-1. FILE SUMMARY
File Default Name Contents Type Default Position
Input INPUT The input stream Coded Remains at the end of the

New program library NEWPL Updated library

Old program library OLDPL

Secondary old program| None

Library to be updated

Library from which common decks can | Binary

library be called. cause file must be random.

Compile COMPILE Card images for assembly or Coded Rewound before and after run.
compilation

Output OUTPUT Information for use by the programmer | Coded Remains in current position.

record terminating Update
directives. If Update aborts,
location of input file is unpre-
dictable.

Binary Rewound before and after run.
Binary Rewound before and after run.

Rewinding not necessary be-

File is not rewound.

Source SOURCE Consists of card images that would Coded Rewound before and after run.
allow regeneration of a new program
library
Merge MERGE Second library to be merged into new Binary Rewound before and after run.
program library
Pullmod Source file Re-created correction sets Coded Rewound before and after run.
60449900 B

2-1 @

TABLE 2-2. FILE CONTENTS AND UPDATE MODE

File Normal Mode Full Mode Quick Mode Contents Quick Mode Contents
Contents Contents (sequential OLDPL) (Random OLDPL)
New Regular decks and common | Regular decks and com- | All decks specified on Decks specified on
program decks after corrections are mon decks after correc- | COMPILE directives, any COMPILE directives
library made tions are made common decks they call, and any common decks
and any common decks they call
encountered prior to all
decks of COMPILE
Compile Decks corrected or on Active decks on old Decks on COMPILE direc- Decks on COMPILE

File COMPILE directives and
decks calling a corrected
common deck (unless the
calling deck precedes the
common deck or NOPROP
is specified on COMDECK)

program library

directives and decks
added via ADDFILE
plus called common
decks

tives and decks added via
ADDFILE plus called
common decks

Source Active cards and deck
File required to recreate the

library library

Active cards and decks
required to recreate the | specified on COMPILE

Active cards from
decks specified on
COMPILE directives
and any common decks
they call

Active cards from decks

directives, any common
decks they call, and any
common decks encountered
prior to all decks on
COMPILE

PROGRAM LIBRARY FILES

A program library is created during an Update run and can
be manipulated in later runs. The library consists of a file
of card images and internal information in a special format
that can be processed only by Update. The card images are
grouped into decks. Each card image is represented in a
blank-compressed format that adds a card identifier. The
format also includes history and status information that is
known as correction history bytes.

The program library also contains a deck list and a
directory. The deck list contains the names of all decks in
the library. In addition to deck names, the directory also
contains the names of all correction sets. Unless changed by
the E parameter of the UPDATE control statement, the
names in both the deck list and the directory exist in the
order they were introduced.

Update can create and maintain program library files in two
distinct formats: random and sequential. (These formats
are described in detail in appendix D.) A random program
library can be processed substantially faster than a
sequential program library.

NEW PROGRAM LIBRARY

A new program library is initially generated on a creation
run. It contains directives and text in an updatable format.
File content is determined by the file format of the old
program library and Update mode as shown in table 2-2.
New program library name is specified by the N parameter
of the UPDATE control statement; default file name is
NEWPL.

For subsequent correction runs, the previously generated
new program library is identified as the old program library.
A new program library that incorporates the changes made
during the correction run is generated if requested.

® 2-2

A new program library can be in random or sequential
format. In the absence of the W parameter on the UPDATE
control statement, the format is determined by file
residence and record type as shown in table 2-3.

TABLE 2-3. NEW PROGRAM LIBRARY FORMAT

Format NOS and NOS/BE SCOPE 2

Random File is on mass
storage and W is not

selected

File is on mass storage,
record type is W un-
blocked, and W is not
selected

Sequential | File is on magnetic
tape or W is
selected

File is staged or on-
line tape; or is on mass
storage as record type
S or record type W
blocked; or W is
selected, or R specifies
no rewind

A random new program library cannot be written to an
existing permanent file. A new program library can be made
into a permanent file by saving it after the Update run has
been completed. In contrast, a sequential new program
library can be added to an existing permanent file by writing
the program library at end-of-information. (See the
operating system reference manual for details.)

OLD PROGRAM LIBRARY

The old program library is the file that was generated as a
new program library in a previous run. It contains a record
of changes made since the program library was created. Old
program library name is specified by the P parameter of the
UPDATE control statement; default file name is OLDPL.

60449500 B

An old program library is required for a correction run since
it is the program library to be updated. On a copy run, the
old program library is not modified, but is copied to a
sequential or random new program library. If an oid
program library is specified on a creation run, it is ignored.

In addition to the old program library to be updated, up to
seven additional (secondary) old program libraries can be
specified by the P parameter of the UPDATE control
statement. Decks on the old program library can call
common decks from the old program library or from any of
the other program libraries. iNo Update directive other than
CALL can be used to reference common decks on secondary
old program libraries. = Common decks on secondary old
nrogram libraries can call common decks whlch reslde on

ANy of the old prograim lib

searched in the order specmed to fmd the called common
decks. The called common decks that reside on the
secondary old program libraries are not added to a new
program library.

The secondary old program libraries must be random, have a
unique name, and have the same master control character as
the old program library. If these conditions are not met, a
message is issued.

When creating a new program library on a creation run that
contains calls to common decks that reside on secondary old
program libraries, C=0 must be specified on the UPDATE
control statement.

COMPILE FILE

The compile file contains copies of decks in the program
library restored to a format that can be processed by a
compiler or assembler. The decks written to the file are
determined by Update mode and the file format of the old
program library as shown in table 2-2. Through the control
statement parameters D and 8, the user can specify whether
the text on the file is to have Update card identifiers on
each line of text.

Compile file name is specified by the C or K parameter of
the UPDATE control statement; default file name is
COMPILE. If the K parameter is specified, then decks are
written to the compile file in the order they appear on
COMPILE directives. (Any decks not specified on COMPILE
directives follow those specified.) If the C parameter is
specified, then decks are written on the compile file in the
order they appear in the deck list.

The user has control over the decks written to the compile
file through the compile file directives. Common decks can
be called conditionally or unconditionally according to
compile file directives embedded in the program library
decks. Additional control of compile file format is afforded
the user through directives that cause a system-logical-
record of the specified level to be written at the end of
decks. The compile file directives can be in the original
decks or can be inserted into the program library decks
during correction runs. These directives are interpreted
when the compile file is written; they are not written on the
compile file.

LISTABLE OUTPUT FILE

The listable output file is the print file containing informa-
tion for use by the programmer. Content of the file is
controlled by the L parameter of the UPDATE control
statement with options that can select a listing of directives

60449900 B

processed, errors, comments, and a list of card images in the
program library. The locations of all CWEOR, WEOR, and
CALL directives are listed if a compile file is written. If
L=0, all listable output is suppressed. Output file name is
specified by the O parameter of the UPDATE control
statement; default file name is OUTPUT.

In quick mode only, Update produces an ordered printout of
the deck list of the program library under the heading DECK
LIST AS READ FROM OLDPL PLUS ADDED NEW DECKS.
A quick mode dummy Update run (no decks added) produces

P

a deck usung of the old prograin librar Y.

SCURCE FilE

The source file is an optional file generated during a
correction or creation run. The source file consists of the
card images of an input stream that would allow generation
of a new program library with only currently active card
images in resequenced format during a subsequent creation
run. Only active DECK, COMDECK, WEOR, CWEOR,
CALL, TEXT, IF, ENDIF, and ENDTEXT directives, in
addition to all active text, are part of the source file. The
card images in the source file do not contain card
identifiers.

Source file name is specified by the S parameter of the
UPDATE control statement; default file name is SOURCE.
The content of the file is determined by the T parameter of
the UPDATE control statement and by Update mode and the
file format of the old program library as shown in table 2-2.
The user is responsible for routing the source file to a punch
or other output device.

MERGE FILE

The merge file contains a program library to be merged with
the old program library into a new program library. Update
adds the deck list and directory from the merge file to the
deck list and directory on the old program library. Any
names on the merge file that duplicate names on the old
program library are modified to make them unique as
follows:

The last character of the name is changed by adding 01
(modulo 558) until all valid characters have been tried.

A character is appended to the name and the first step
is repeated. Characters are appended until the name
reaches nine characters.

If no unique name can be generated by this method, the
Update run is abnormally terminated. Directives that
reference these changed names are modified to agree with
the new name. All names that required modification are
listed in the output file.

Merge file name is specified by the M parameter of the
UPDATE control statement; default name is MERGE. All
Update functions that are valid in a correction run are valid
with the merge parameter. Care should be exercised when
including modifications in a merge run. Update might
change a name to which correction cards have been applied.
In this case, corrections can refer to the wrong deck or
correction set.

Decks from the merge file are added to the new program
library after all decks from the old program library are
added. This sequence of decks in the new program library
can be altered by the MOVE directive if desired.

2-3 @

PULLMOD FILE TABLE 2-4. UPDATE SCRATCH FILES

The pullmod file contains directives and text of re-created
correction sets specified on PULLMOD directives. These File Name Function
re-created correction sets produce the same results as the
original sets. The file has the same format as an input file.
This feature permits a user to take an earlier version of the UPDTSCR Used to make copy of decks to be written
library and apply selected correction sets. later to compile file.

UPDTCDK Used to hold common decks for later expan-

File name is specified by the G parameter of the UPDATE sion of CALL directives.

control statement. If no file is specified, pulled modifica-

tions are written to the source file specified by the Sor T UPDTTPL Used as a temporary program library.
parameter; if no source file is specified, the re-created
correction sets are written to a file named SOURCE. UPDTEXT Used to copy card images to be inserted ir

correction run.
UPDTAUD Used to hold temporary audit information.

SCRATCH FILE

S UPDTPMD Used to collect card images in response to
Update uses six scratch files. These files are not available to PULLMOD directives.
the user. They are summarized in table 2-4.

® 2-4 60449900 B

DIRECTIVES 3

F

Directives allow the user to create program libraries.
Directives also extensively control and direct the correction
and modification process. Directives perform the following

Identify decks.

Control compile file contents.

Manipulate primary or secondary input streams.
Control overall handling of the input file.
Modify program library contents.

Each directive is summarized in table 3-1.

DIRECTIVE FORMAT

The general format of Update directives is shown in
figure 3-1. A directive must begin with the master control
character in column one. Comments can be placed after the
last parameter of the directive. The comment and final
parameter must be separated by one or more blanks. Most
directives have both a full keyword and an abbreviated
keyword as shown in table 3-1; when the NOABBREV
directive is in effect, Update does not recognize the
abbreviated forms of directive names. Any card in the input
stream that cannot be recognized as a directive is assumed
to be text.

*keyword p-list

* Master control character which distinguishes a
directive from a text card. Must appear in
column 1. This character can be changed
through the * parameter of the UPDATE
control statement.

keyword Name of one of the Update directives or an
abbreviation for a directive. No blanks can
occur between the master control character and
the keyword; a comma or blank terminates the
keyword.

p-list Parameters identifying decks, cards, or files.
Some directives have no parameters. Multiple
blanks can appear between the keyword and
parameters. Parameters in the list are separated
by commas; embedded blanks cannot appear in
the list. A blank terminates the p-list.

Notice that several parameters contain a period
as part of a single parameter.

Since Update scans all 80 columns when interpreting
directives, comments or sequencing information from a
previous run can be interpreted as the parameter list.
Update interprets comments or sequencing information as
the parameter list when a list is net specified on WEOR,
CWEOR, DECLARE, or ADDFILE directives. To avoid this
problem, a null parameter list should be specified on thesc
directives in the following manner:

*WEOR, ,
*CWEOR, ,

*DECLARE, ,
*ADDFILE, , ,

Specifying a null parameter field ensures that Update will
use the default values as parameters rather than using the
comments or sequencing information. Errors will occur if
Update tries to use the comment or sequencing information
as the directive parameter list.

CARD IDENTIFIERS

Each card image in a program library is uniquely identified
by an identifier and a sequence number. The identifier is
the name of the deck or correction set from which the card
image originated; Update supplies the sequence number.
Card identifiers assigned by Update are usually permanent;
they can be changed only through the use of the SEQUENCE
and CHANGE directives.

Update recognizes one full form and two short forms of card
identifiers. The full form card identifiers are shown in
figure 3-2. The two short forms of card identifiers, which
can be used on BEFORE, INSERT, DELETE, RESTORE, and
COPY directives, are expanded as shown in figure 3-3.

ident.segnum

ident. 1 through 9 character name of a correction
set or deck. A period terminates the
identifier.

seqnum Decimal ordinal (1 through 131071) repre-
senting the sequence number of the card
within the correction set or deck. Any char-
acter other than O through 9 terminates the
sequence number.

Figure 3-1. General Update Directive Format

The master control character is recorded in the program
library. For a correction run, the master control character
should match the character used when the program library
was created. If the characters do not match, Update uses
the character specified in the program library.

60449900 B

Figure 3-2. Full Form of Card Identification

seqnum Expands to idname.seqnum where idname is a
correction set identifier, whether or not it is
also a deck name.

Expands to dname.seqnum where dname is a
deck name.

.segnum

Figure 3-3. Expansion of Short Forms of Card Identification

3-l@

TABLE 3-1. SUMMARY OF UPDATE DIRECTIVES

Directive Keyword

Abbreviation Directive Format Use
S ———————————— |
none *ABBREV Resume checking for abbreviated directives.
*AF *ADDFILE Ifn,name Read creation directives and text from named file and
insert after specified deck or card.
*B *BEFORE ¢ Write subsequent text cards before card identified.
*CA *CALL deck Write common deck to compile file.
*CH *CHANGE oldid,newid, . . . ,oldid,newid Change correction set identifier.
*CD *COMDECK deck,NOPROP Define common deck and propagation parameter.
*C *COMPILE deckl,deck?, . . . ,deckn Write specified decks to compile file, source file, and
new program library.
*COMPILE deckl,deck2 Write inclusive range of decks to compile file, source
file, and new program library.
Y *COPY deck,c Copy and insert specified card from named deck.
*COPY deck,cl,c2 Copy and insert specified range of cards from named
deck.
*COPY deck,el,c2,lfn Copy specified range of cards from named deck to
specified file.
W *CWEOR level Conditionally write end-of-record or end-of-file.
*DK *DECK deck Define deck to be included in program library.
*nNC *DECLARE deck Following corrections restricted to named deck.
*DF *DEFINE namel,name2, . . . ,namen Defines names to be tested by IF directive while
compile file is being written.
*D *DELETE ¢ Deactivate specified card and optionally insert text
in its place.
*DELETE el,c2 Deactivate inclusive range of cards and optionally
insert text in their place.
none *DO identl,ident2, . . . ,identn Reactivate yanked cards in specified correction sets
until a DONT is encountered.
*DT *DONT identl,idert2, . . . ,identn Terminate the DO for specified correction sets.
none *END Provides compatibility with the ENDITSYM program.
*£] *ENDIF Indicates end of conditional text.
*ET *ENDTEXT End delimiter for sequence of cards identifying test.
*ID *IDENT idname,B=num,K=ident,U=ident Define correction set, bias for seqnum, and whether

specified correction sets must be known or unknown
to process this set.

none *IF type,name,num Write specified number of following cards to the
compile file if name of type DECK, IDENT, or DEF is
known.
*IF -type,name,num Write specified number of following cards to the

compile file if name is unknown.

*] *INSERT ¢ ’ Write subsequent text cards after card identified,

® 3.2 60449900 B

TABLE 3-1. SUMMARY OF UPDATE DIRECTIVES (Contd)

Dirfctive l:(e:y\niard Directive Format Use
Abbreviation
*T *LIMIT n Limit listable output to n lines.
*L *LIST Resume listing cards encountered in input stream.
*M *MOVE deckl,deck2 Place deckl after deck2.
*NA *NOABBREV Do not check for abbreviated directives.
*NL *NOLIST Disable list option 4.
*PM *PULLMOD identl,ident2, . . . ,identn Recreate specified correction sets and write them to
file specified by the G option.
*PD *PURDECK deckl,deck?, . . . ,deckn Permanently remove specified decks from program
library.
*PURDECK deckl.deck2 Permanently remove inclusive range of decks.
*P *PURGE identl,ident2, . . . ,identn Permanetly remove specified correction sets from
program library.
*PURGE identl.ident2 Permanetly remove inclusive range of correction sets.
PURGE ident, Permanently remove specified correction set and all
sets introduced after it.
*RD *READ Ifn Read directives and text from specified file.
*R *RESTORE c Reactivate specified card and optionally insert text
after it.
*RESTORE cl,c2 Reactivate inclusive range of cards and optionally
insert text after them.
RW *REWIND Ifn Reposition named file to beginning-of-information.
*Sp *SELPURGE deckl.identl,deck2.ident2, Permanently remove all cards in specified deck that
« « « ydeckn.identn belong to specified correction set.
*SY *SELY ANK deckl.identl,deck2.ident2, Deactivate all cards in specified deck that belong to
« « » ydeckn-identn specified correction set.
*S *SEQUENCE deckl,deck2, . . . ,deckn Resequence all active cards and purge all inactive
cards in specified decks.
*SEQUENCE deckl.deck2 Resequence all active cards and purge all inactive
cards in inclusive range of decks.
*SK *SKIP 1fn,n Reposition named file forward specified number of
logical records.
*T *TEXT Beginning delimiter for sequence of cards identifying
text.
*w *WEOR level Write end-of-record or end-of-file according to
specified level.
*Y *YANK identl,ident2, . . . ,identn Temporarily removes specified correction sets from
program library.
*YANK identl,ident2 Temporarily removes inclusive range of correction
sets.
*¥D *YANKDECK deckl,deck?, . . . ,deckn Temporarily deactivates decks specifeid.
none *[comment Copy text to listable output file.
60449900 B

3-3 @

In the short form, idname is assumed to be the last explicitly
named identifier given on a BEFORE, INSERT, DELETE,
RESTORE, or COPY directive, whether or not it is a deck
name. The dname is assumed to be the last explicitly named
identifier given on a BEFORE, INSERT, DELETE, RESTORE,
or COPY directive that is known to be a deck name. Both of
these default identifiers are originally set to YANK$$$,
therefore, the first directive using a card identifier must use
the full form to reset the default.

All deck names are also identifiers (but all identifiers are
not deck names). Thus, if EXAMPLE is the deck name last
used, and there is no subsequent explicit reference to a
correction set identifier, then both .281 and 281 expand to
EXAMPLE.281 as the card identifier. If there is an explicit
reference to a correction set identifier ABC after the
explicit reference to the deck name, then 281 would expand
to the card identifier ABC.281 while .281 would expand to
EXAMPLE.281.

Figure 3-4 shows the differences in identifier expansion
depending on the order of the directives. A is a deck name
and B is a correction set identifier on an old program
library.

DELETE, BEFORE, or RESTORE directive), it is terminated
by any condition which normally terminates insertion. The
contents of the deck, including the DECK or COMDECK
card, are identified by the correction set name and are
numerically sequenced as if they were normal insertion text.

Frequently, a DECK or COMDECK directive precedes each
program or subprogram in a given program library. More
than one subprogram, however, can be included in a deck, as
is indicated in figure 3-5. Normally, two programs are
grouped together if modification of one program requires
reassembly of both programs.

*IDC
*INSERT A.2

data card
*INSERT B.1

data card
*D 2, 3 expands to *DELETE B.2, B.3
*D 4, 5 expands to *DELETE B4, A5
*D 7,5 expands to *DELETE A.7, B.5
*- 5, .10 expands to *DELETE A.G, A.10
whereas:
*IDD
*INSERT B.1

data card
*INSERT A.2

data card
*D 2, 3 expands to *DELETE A.2, A3
*D 4, 5 expands to *DELETE A.7, A5
*D 7, 5 expands to *DELETE A.7, Ab
*d 9 .10 expands to *DELETE A.9, A.10

*DECK FIRST
IDENT FIRST
END
IDENT SECOND
END

*COMDECK FDATA
BLOCK DATA
COMMON/J3/A(10)
DATA A/3*0., 7*1.0/
END

Figure 3-4. Examples of Card Identifier Expansion

DECK IDENTIFYING DIRECTIVES

Each deck to be placed on a program library must be
introduced into the system by a DECK or COMDECK
directive during a creation or correction run. When Update
encounters one of these directives in the input stream prior
to any correction directive, the run is considered to be a
creation run. When Update encounters one of these
directives while inserting new text cards, it terminates the
insert and adds the decks to the program library following
the card specified.

When a deck is added through the use of a DECK or
COMDECK directive during a creation run or an ADDFILE
directive during a correction run, termination of that deck
occurs when Update encounters another DECK or
COMDECK directive, or the end of a system-logical record.
Cards within that deck are identified by the name of the
deck or common deck to which they belong and are
numerically sequenced beginning with 1 for the DECK or
COMDECK directive. When a deck is inserted as text in a
correction run (that is, through the use of an INSERT,

® 3-4

Figure 3-5. Example of Deck Structure

Because DECK and COMDECK directives can be
deactivated by DELETE, YANK, or SELYANK, card images
belonging to one deck at the beginning of an Update run can
belong to a different deck at the end of the run. When a
DECK or COMDECK directive is deactivated, all card
images in the deactivated deck become members of the
preceding deck on the program library; they retain their
original card identifiers.

DECK DIRECTIVE

The DECK directive establishes a deck in the program
library. It is one of the two directives that establishes the
existence of a creation run. The directive can also be used
in any correction run to add a deck to the location indicated
by a preceding INSERT, BEFORE, DELETE, or RESTORE
directive. Each deck must have a unique name within the
program library. The DECK directive itself is part of the
program library and has a sequence number of one within the
name established by the directive. DECK directive format
is shown in figure 3-6.

*DECK deck

deck Name of deck. Must be 1 through 9 characters.
A through Z, O through 9, or + -/ * () $ =
Must not duplicate the name of any other deck
in program library.

Figure 3-6. DECK Directive Format

COMDECK DIRECTIVE

The COMDECK directive establishes a common deck that
can be called from other decks as they are being written to
the compile file. It is one of the two directives that
establishes the existence of a creation run. The directive
can be used in any correction run to add a common deck to
the location specified by a preceding INSERT, BEFORE, or

60449900 B

RESTORE directive. Each common deck must have a unique
name. The COMDECK directive itself is part of the
program library and has a sequence number of one within the
name established by the directive. COMDECK directive
format is shown in figure 3-7.

statement and continues processing the primary input
stream. When the file specified on the ADDFILE directive
is the primary input file, however, Update adds card images
until a noncreation directive or the end of the system-
lagical record is encountered.

*COMDECK deck,NOPROP

deck Name of deck. Must be 1 through 9
characters A through Z, 0 through 9, or
+-/* () $=. Must notduplicate name of
an existing deck.

NOPROP Indicates that decks calling this common deck
are not to be considered as modified when
the common deck itself is modified; that is,
the effects of common deck changes are not
to be propagated during normal Update mode.
Optional.

Figure 3-7. COMDECK Directive Format

The NOPROP parameter of the COMDECK directive deter-
mines whether a deck calling a corrected common deck is to
be considered as having been corrected. If NOPROP is
specified, only the common deck is considered to be
corrected. On the other hand, if NOPROP is not specified,
the common deck and the calling decks are considered to be
corrected.

A common deck should be placed before any of the decks
that call it. If the common deck is placed after a deck that
calls it, Update may not be able to find it. In addition,
decks calling a corrected common deck are not written to
the compile file if the calling deck precedes the common
deck and the mode is normal selective,

CORRECTION DIRECTIVES

Correction directives control updating of the old program
library. New text is assigned a unique card identifier based
on the correction set identifier. The corrected program
library is written on the new program library; the old
program library is not actually changed. Correction
directives are illegal on a creation run,

ADDFILE DIRECTIVE

The ADDFILE directive causes Update to add a file of decks
to the new program library. ADDFILE differs from the
READ directive in that the contents of the specified file are
limited to those allowed on a creation run. Unless the
specified file is the primary input file, the READ directive
cannot appear in the file. The first card image of the
specified file must be a DECK or COMDECK directive. If
the input file is specified, the READ directive can be the
first image; a DECK or COMDECK directive must then be
the first card image on the file specified by the READ
directive. An ADDFILE directive cannot appear among
directives read from the file specified by a READ directive.
ADDFILE directive format is shown in figure 3-8. If only
one parameter is specified, it is assumed to be Ifn.

When the specified file is not the primary input file, Update
adds directives and text until the end of one system-logical
record is encountered. Update then returns to the file
specified by the I parameter of the UPDATE control

60449900 B

*ADDFILE Ifn,name

Ifn Name of file from which decks are to be added.
If Ifn is omitted, the default is the file specified
by the | parameter of the Update control state-

the separators are still reguire

ment, the separators are stil

name Name of deck or identifier of card after which
decks are to be placed on the program library.
if omitted, the addition is made after the iast deck
on the program library.

If the name parameter is *, it refers to the ident
that is known to be a deck name most recently
mentioned on a BEFORE, COPY, DELETE,
INSERT, or RESTORE directive. If no such
directive precedes the ADDFILE, YANK$$S$ is
used.

Figure 3-8. ADDFILE Directive Format

Update does not reposition the file specified on the
ADDFILE directive. Any repositioning must be requested by
the SKIP or REWIND directive.

BEFORE DIRECTIVE

The BEFORE directive inserts text card images and compile
file directives in the program library before the specified
card images. The card images to be inserted are placed
immediately after the directive. Card images cannot be
inserted into the YANK$$$ deck. The inserted card images
receive card identifiers established by the correction set
name of the preceding IDENT directive. BEFORE directive
format is shown in figure 3-9.

*BEFORE ¢
c Card identifier of card before which the insertion
is to be made.

Figure 3-9. BEFORE Directive Format

Unless a TEXT directive has been encountered, Update
terminates an insertion when it encounters the next inser-
tion directive or a PURGE, PURDECK, IDENT, SELPURG,
ADDFILE, or SEQUENCE directive. On the other hand,
compile file directives are inserted as if they be text after
Update checks for correct syntax. Update interprets all
other directives without terminating insertion; however, the
directives are not inserted into the deck.

CHANGE DIRECTIVE

The CHANGE directive renames correction set identifiers.
It cannot be used to change deck names. As a secondary
effect, changing the name of the correction set invalidates
any YANK or SELYANK directives that refer to the set by
its previous name. Since a CHANGE directive goes into
effect immediately, any subsequent references to the

3-5@

correction set must use the new name. The CHANGE
directive need not be part of a correction set. CHANGE
directive format is shown in figure 3-10.

*CHANGE oldid,newid, . . . ,oldid,newid
oldid Name of correction set to be changed.

newid New correction set name. Must be 1 through 9
characters A through Z, 0 through 9, or + - / *
() $ =. Must not duplicate the name of any
other correction set in the program library.

Figure 3-10. CHANGE Directive Format

COPY DIRECTIVE

The COPY directive copies active card images from a deck
on the old program library and inserts the images into
another deck as if they were text in an input stream, or the
COPY directive copies active card images to a specified
file. Since Update copies the card images into a deck before
applying corrections to them, card images can be copied and
original images can be modified in the same run. An
attempt to copy card images introduced during the same
Update run produces an informative message. COPY
directive format for copying card images to a deck on the
program library is shown in figure 3-11. COPY directive
format for copying card images to a file is shown in
figure 3-12.

*COPY deck,c1,c2,Ifn

deck Name of deck on old program library that con-
tains cards to be copied.

cl,c2 Card identifiers of first and last cards in
sequence of cards to be copied.

Ifn Name of file onto which cards are to be copied.
The user is responsible for the disposition of
this file since it is not positioned either before
or after the copy. The file is written as a
coded file that contains 80-column card images
with one system-logical record for each COPY
directive; sequencing information is not included.

Figure 3-12. COPY Directive Format — Copy to File

A. Copy specified card.
*COPY deck,c

deck Name of deck on old program library that
contains the card to be copied.

c Card identifier of card to be copied.
B. Copy range of cards.
*COPY deck,c1,c2

deck Name of deck on old program library that
contains cards to be copied.

clc2 Card identifiers of first and last cards in
sequence of cards to be copied.

A. Valid use of COPY.

*IDENT X

*INSERT BLAP.11

(text cards)

*COPY BDECK,BDECK.4,BDECK.8

B. Invalid use of COPY.

*IDENT X
*COPY BDECK,BDECK.4,BDECK.8

Figure 3-13. Example of Use of COPY

DELETE DIRECTIVE

The DELETE directive deactivates a card image or a group
of card images and optionally inserts text and directives
after the deleted card images. The card images to be
inserted are placed immediately after the directive. The
inserted card images receive card identifiers established by
the correction set name of the preceding IDENT directive.
DELETE directive format depends on whether card images
to be deactivated are specified by card identifier or by a
range of cards, as shown in figure 3-14.

Figure 3-11. COPY Directive Format — Copy to Deck

An INSERT, DELETE, BEFORE, or RESTORE directive must
be in effect to use COPY to copy card images to a deck. In
figure 3-13A, the use of the COPY directive is valid because
a preceding INSERT directive has initiated insertion. Card
images BDECK.4 through BDECK.8 are copied and inserted
after the text cards. The copied card images are sequenced
as part of correction set X. The input stream in
figure 3-13B is not valid because insertion is not in effect to
indicate where to write the card image copies.

Placement in the input stream of a COPY directive that
copies card images to a file is not restricted; COPY can
appear anywhere in the primary input stream. Copying card
images to a file is illegal, however, when a secondary input
stream is being read as a result of a READ directive.

® 3-6

A. Delete specified card
*DELETE ¢
c Card identifier for single card to be deleted.
B. Delete range of cards
*DELETE c1,c2
c1,c2 Card identifiers of first and last cards,
in sequence of cards to be deleted. Card
¢1 must appear before c2 in the existing

library. The range can include cards already
in a deactivated state.

Figure 3-14. DELETE Directive Format

60449900 B

Unless a TEXT directive has been encountered, Update
terminates an insertion when it encounters the next inser-
tion directive or a PURGE, PURDECK, IDENT, SELPURGE,
ADDFILE, or SEQUENCE directive. On the other hand,
compile file directives are inserted as if they be text after
Update checks for correct syntax. Update interprets all
other directives without terminating insertion; however, the
directives are not inserted into the deck.

IDENT DIRECTIVE

The IDENT directive establishes the name for the set of
corrections being made. Cards added in this correction set
are sequenced within the name specified. All correction set
names must be unique. If a new program library is not being
generated, a correction set need not begin with an IDENT
directive. In this case, Update uses the default name of
.NO.ID. for new text cards. The established correction set
identifier remains in effect until Update encounters another
IDENT directive or a PURGE, SELPURGE, PURDECK,
ADDFILE, or SEQUENCE directive. IDENT directive
format is shown in figure 3-15.

INSERT DIRECTIVE

The INSERT directive inserts text card images and compile
file directives in the program library after the specified
card image. The card images to be inserted are placed
immediately after the directive. Card images cannot be
inserted into the YANK$$$ deck. The inserted card images
receive card identifiers established by the correction set
name of the preceding IDENT directive. INSERT directive
format is shown in figure 3-16.

c Card identifier of card after which insertion is to
be made.

*|DENT idname,B=num,K=ident,U=ident

idname Name to be assigned to this correction set.
Must be 1 through 9 characters A through
Z, 0 through 9, or + - / * {) $ = Must
not duplicate the name of another correction
set or deck. This directive causes a new entry
in the directory.

B=num Bias to be added to sequence numbers within
deck. Optional.
K=ident Indicator that specified correction set name

must exist in the directory of the library

before corrections can be made. Optional.
U=ident indicator that specified correction set name
must not exist in the directory of the library.
Optional.

Figure 3-15. IDENT Directive Format

Omitting idname causes a format error. If idname
duplicates a name previously used, Update issues an error
message. Both errors are nonfatal as long as no new
program library is created in the same run.

The B, K, and U parameters on the IDENT directive can
appear in any order. If more than one B parameter is
specified, Update uses the last one encountered. More than
one K or U parameter can be specified; in this instance, all
correction set names must be known or unknown as specified
before the correction set is processed. (An identifier is
known whether it is active or inactive; an identifier that has
been yanked is still known. To become unknown, an
identifier must be purged.) If the criteria of these
parameters is not met, Update skips the correction set and
resumes processing with the next IDENT, PURGE,
SELPURGE, PURDECK, or ADDFILE directive.

In the following example, the bias of 100 is added to all ZAP
correction set card sequence numbers:

*IDENT ZAP,B=100,K=ACE,U=NON,U=ARF
The first card image in correction set ZAP has a sequence

number of 101, not 1. Update skips the correction set if
ACE is unknown or either NON or ARF is known.

60449900 B

Figure 3-16. INSERT Directive Format

Unless a TEXT directive has been encountered, Update
terminates an insertion when it encounters the next inser-
tion directive or a PURGE, PURDECK, IDENT, SELPURGE,
ADDFILE, or SEQUENCE directive. On the other hand,
compile file directives are inserted as if they be text after
Update checks for correct syntax. Update interprets all
other directives without terminating insertion; however, the
directives are not inserted into the text.

MOVE DIRECTIVE

The MOVE directive enables the user to reorder decks while
producing a new program library. The deck to be
repositioned is moved from its position on the old program
library and placed after the specified deck on the new
program library. The YANK$$$ deck cannot be moved. A
MOVE referencing a deck introduced in the same Update run
produces an informative message. This directive does not
terminate insertion and need not be part of a correction set.
MOVE directive format is shown in figure 3-17.

*MOVE deck1,deck2
deck1 Deck name on old program library to be moved.

deck? Deck name after which deck1 is to be placed
on new program library.

Figure 3-17. MOVE Directive Format

PURDECK DIRECTIVE

The PURDECK directive permanently removes a deck or
group of decks from the program library. The YANK$$$
deck cannot be purged. Every card image in the deck is
purged, regardless of what correction set it might belong to.
Purging, unlike yanking, cannot be rescinded. A PURDECK
directive can appear anywhere in the input stream, its
appearance terminates the current correction set.
PURDECK directive format depends on whether decks to be
purged are specified individually by deck name or by a range
of deck names, as shown in figure 3-18.

The name of a purged deck is removed from the deck list; it
can be reused as a deck name. An entry for the purged deck
remains in the directory, however, until removed through
the use of the E parameter on the UPDATE control
statement. The deck name can also be removed from the
directory by resequencing the library, that is, by creating a
source file in one Update run and then using the source file

3-7 0

as input on a subsequent creation run. Until a deck name is
removed from the directory, it cannot be used as a
correction set identifier.

A. Purge decks listed
*PURDECK deck1,deck2, . . . ,deckn

deck Name of deck to be purged. Names
can appear in any order.

B. Purge range of decks
*PURDECK deck 1.deck?2
deckl.deck2 Names of first and last decks, inclu-
sive, to be purged. Names must

appear in the relative order in which
decks exist in the deck list.

Figure 3-18. PURDECK Directive Format

PURGE DIRECTIVE

The PURGE directive permanently removes a correction set
or group of correction sets from the program library. Every
card in the correction set is purged, regardless of its status
as active or inactive. Purging, unlike yanking, cannot be
rescinded. A new program library written during the same
run will treal the purged correction set as if it had never
existed. A PURGE directive can appear anywhere in the
input stream; it terminates the current correction set.
PURGE directive format, as shown in figure 3-19, depends
on whether correction sets to be purged are specified
individually by correction set name, by a range of correction
set names, or by relative time of introduction into the
program library,

If Update cannot locate a specified correction set, it issues
an error message. Purged identifiers can be reused on
subsequent correction sets provided they do not appear in
the YANK$$$ deck as a YANK directive parameter.

RESTORE DIRECTIVE

The RESTORE directive reactivates a card image or a group
of card images previously deactivated through a DELETE
directive. Any text card images and compile file directives
immediately following the RESTORE directive are inserted
after the last card image identified on the directive. Any
inserted card images receive card identifiers established by
the correction set name of the preceding IDENT directive.
RESTORE directive format depends on whether card images
to be reactivated are specified by card identifier or by a
range of cards, as shown in figure 3-20.

Unless a TEXT directive has been encountered, Update
terminates an insertion when it encounters the next
insertion directive or a PURGE, PURDECK, IDENT,
SELPURG, ADDFILE, or SEQUENCE directive. On the
other hand, compile file directives are inserted as if they be
text after Update checks for correct syntax. Update
interprets all other directives without terminating insertion;
however, the directives are not inserted into the deck.

® 3-8

A. Purge listed correction sets

*PURGE ident1,ident2, . . . ,identn

ident Identifier of a correction set to be
purged. Identifiers can appear in any
order.

B. Purge range of correction sets
*PURGE ident1.ident2

identl.ident2 Identifiers of first and last correction
sets, inclusive, to be purged. ldentifiers
must appear in the relative order in
which the correction sets were intro-
duced into the program library; that is,
they must appear in the order they
exist in the directory.

C. Purge later correction sets
PURGE ident,

ident Identifier of correction set to be purged
along with all correction sets introduced
after the specified correction set.

* Indicator that the program library is to
return to an earlier level. Intervening
purge directives and SEQUENCE pre-
vent compiete retum.

Figure 3-19. PURGE Directive Format

A. Restore specified card.
*RESTORE ¢
c Card identifier of card to be restored.
B. Restore range of cards.
*RESTORE c1,c2
clec2 Card identifiers of first and last cards,
inclusive, in sequence of cards to be
restored. Card c¢1 must appear before c2 in
the existing library. Any cards in the

sequence that are already active are not
affected.

Figure 3-20. RESTORE Directive Format

SELPURGE DIRECTIVE

The SELPURGE directive permanently removes the effects
of the specified correction set on the specified deck. Only
the card images belonging to the specified correction set are
purged from the specified deck. Card images belonging to
the specified correction set that are in other decks are not
purged- Card images in the YANK$$$ deck can be purged
thorugh SELPURGE. A SELPURGE directive can appear
anywhere in the input stream; it terminates the current
correction set. SELPURGE directive format is shown in
figure 3-21,

60449900 B

*SELPURGE deck1.ident1, . . . ,deckn.identn
deck Name of deck from which correction set is to
be removed.

ident Name of correction set to which cards to be
removed belong. It must be separated from
the deck by a period.

SELYANK DIRECTIVE

The SELYANK directive termporarily removes the effects
of the specified correction set on the specified deck. Only
the card images belonging to the specified correction set are
yanked from the specified deck. Card images belonging to
the specified correction set that are in other decks are not
yanked. Card images in the YANK$$$ deck can be yanked
through SELYANK. A SELYANK directive must be part of a
correction set; it is placed in the YANK$$$ deck.
SELYANK directive format is shown in figure 3-22.

*SELYANK deckl.ident1, . . . ,deckn.identn

deck Name of deck from which correction set is to
be removed.

ident Name of correction set to which cards to be

removed belong. It must be separated from
deck by a period.

Figure 3-22. SELYANK Directive Format

SEQUENCE DIRECTIVE

The SEQUENCE directive resequences active cards and
purges inactive cards from the specified decks. Only those
decks explicitly mentioned on the SEQUENCE directive are
resequenced. Thus, if a correction set (for example, SET1)
affects more than one deck on a program library (for
example, DECK1 and DECK2), and only DECK1 has been
subsequently resequenced through SEQUENCE, the
SEQUENCE directive does not affect SET1 cards within
DECK 2. The YANK$$$ deck cannot be resequenced.
SEQUENCE directive format, as shown in figure 3-23,
depends on whether decks to be resequenced are specified
individually by name or are specified as a range of decks
names.

Update normally allows deck and correction sets having the
same name to coexist on the old program library. If a deck
having the same name as a correction set is resequenced and
cards for the correction set are in other decks, Update
purges any modifications made by that correction set
outside the resequenced deck to prevent duplicate
identifiers.

SEQUENCE does not result in identifiers being deleted from
the directory even if, as a result of resequencing, no
references to an identifier are on the library. This situation
arises when all the corrections of a correction set refer to a
deck that is resequenced. Deletion of the identifier, in this
case, requires an edit or PURGE in a subsequent Update run.

60449900 B

A deck cannot be renamed and resequenced in the same
Update run. (To rename a deck, delete the first card of the
deck and replace it with a new DECK directive containing
the new name.)

A. Resequence listed decks.
*SEQUENCE deck1,deck2, . . . ,deckn
deck Name of deck to be resequenced.
B. Resequence range of decks.
*SEQUENCE deck1.deck2
deck1.deck2 Name of first and last decks, inclusive,
to be resequenced. Deck1 must

appear before deck2 in old program
library.

Figure 3-23. SEQUENCE Directive Format

YANK DIRECTIVE

The YANK directive temporarily removes a correction set
or group of correction sets from the program library. Card
images activated by the correction set are deactivated; card
images deactivated by the correction are reactivated. If a
correction set has been yanked, it is ignored during compile
file or source file generation. The effects of an yank can
be selectively nullified through the introduction of DO and
DONT directives in the decks. Update places the YANK
directive in the YANK$$$ deck. YANK directive format, as
shown in figure 3-24, depends on whether correction sets to
be yanked are specified individually by correction set name
or by a range of correction set names.

A. Yank listed correction sets
*YANK ident1,ident2, . . . ,identn

ident Identifier of a correction set to be
yanked. Identifiers can appear in
any order.

B. Yank range of correction sets
*YANK ident1l.ident2

identl.ident2 identifiers of first and last correction
sets, inclusive, to be yanked. Identi-
fiers must appear in the relative order
in which the correction sets were
introduced into the program library;
that is, they must appear in the order
they exist in the directory.

Figure 3-24. YANK Directive Format

The YANK directive differs from PURGE in several
respects. YANK must be part of a correction set. YANK
does not terminate the current correction set. And, the
effects of a YANK directive can be rescinded.

39 @

YANKDECK DIRECTIVE

The YANKDECK directive temporarily removes all cards
within the decks specified. All cards are deactivated, even
if they belong to a correction set. YANKDECK differs from
PURDECK in several respects: YANKDECK must be part of
a correction set; it does not terminate the current
correction set; and its effects can be rescinded.
YANKDECK directive format is as shown in figure 3-25.

*YANKDECK deck1,deck?, . . ., deckn

deck Name of deck to be yanked. Names can appear
in any order.

Figure 3-25. YANKDECK Directive Format

The deck YANK$$$ cannot be deactivated as a whole.
Individual YANK directives within this deck can be yanked
by a YANK directive, however.

COMPILE FILE DIRECTIVES

Compile file directives provide control over the compile
file. These directives are interpreted when the program
library decks are being corrected and written onto the
compile file. Calls for common decks result in the common
deck being written on the compile file. Other directives
allow control of file format. None of the compile file
directives are written on the compile file.

The user can prepare the original deck with embedded
compile file directives (except for DO or DONT) or the user
can insert compile file directives into program library decks
as a part of a correction set. Compile file directives are not
processed when they are encountered in the input stream
(except for COMPILE); they are simply considered as text
cards to be inserted and are sequenced accordingly after
update checks for correct syntax. To be recognized while
the compile file is being written, these directives must have
the same master control character as defined when the
library was created.

CALL DIRECTIVE

The CALL directive causes the active text of a common
deck to be written onto the compile file. The directive
itself is stored as part of a deck and can be referenced by its
card identifier. CALL is effective only within a deck or
common deck. Common decks can call other common decks,
but a common deck must not either call itself or call a
common deck that contains a call to the common deck.
Neither the CALL directive nor the COMDECK directive
which defined the deck is written to the compile file.
COMDECK directive format is shown in figure 3-26.

COMDECK encountered according to the order of the
secondary old program libraries as specified by the P
parameter of the UPDATE control statement.

COMPILE DIRECTIVE

The COMPILE directive indicates which decks are to be
written to the compile file during normal or quick Update
mode. The directive is ignored during a full Update.

Normal mode Decks specified on COMPILE
directives and corrected decks are
written to the compile file.

Quick mode Decks specified on COMPILE
directives and any common decks
they call are written to the compile
file.

The directive also affects the contents of any new program
library and source file as shown in table 2-2. COMPILE
directive format, as shown in figure 3-27, depends on
whether decks to be written are specified individually by
name or are specified as a range of deck names.

A. Compile listed decks
*COMPILE deck1,deck?, . . . ,deckn

deck Name of deck to be written to the
compile file, new program library file,
and source file.

B. Compile range of decks
*COMPILE deck1.deck2

deckl.deck2 Names of first and last decks in range,
inclusive, to be written to the compile
file. The name of deck1 must appear
before the name of deck 2 in the old
program library deck list.

*CALL deck

deck Name of an existing common deck to be written
to the compile file.

Figure 3-26. CALL Directive Format

Common decks can also be called from secondary old
program libraries. If COMDECK names are duplicated on
any secondary old program libraries, Update uses the first

® 3-10

Figure 3-27. COMPILE Directive Format

Decks are written to the compile file in the order that the
decks exist on the old program library, unless the K option is
selected on the UPDATE control statement. If the K option
has been specified, the decks are written in the order they
appear on the COMPILE directive.

When a deck is being introduced in the same run that
contains a COMPILE directive for the deck, the DECK
directive must appear before the COMPILE directive.
Otherwise, COMPILE directives can be anywhere in the
input stream. They do not affect the current correction set
name.

CWEOR DIRECTIVE

The CWEOR directive causes the termination of the current
system-logical record on the compile file with the specified
level only if information has been placed in the output
buffer since the last system-logical record was written.
CWEOR directive format is shown in figure 3-28.

60449900 B

*CWEOR level
ievel Levei of system-iogicai record.

For SCOPE 2, the following:

RT=W 0 thru 14
RT=W 15

RT=S 0 thru 15
RT=Z 0 thru 15
BT=C 0 thru 15

end-of-section
end-of-partition
end-of-record
end-of-section
end-of-section

Figure 3-28. CWEOR Directive Format

DO DIRECTIVE

The DO directive causes Update to rescind a yank of
specified correction sets while writing text to the compile
file. If a card was deactivated as a result of a YANK or
SELYANK, the card is reactivated. Likewise, if a card was
activated by a YANK or SELYANK, Update deactivates it.
A DO remains in effect until a DONT directive is
encountered. The DO directive can be placed anywhere in
the library. If Update encounters a DQ for an unyanked
correction set, an informative message is issued and the DO
is ignored. DO directive format is as shown in figure 3-29.

*DO identl,ident2, . . . ,identn

ident Name of correction set for which yanking is
to be rescinded or initiated.

Figure 3-29. DO Directive Format

DONT DIRECTIVE

The DONT directive terminates a DO directive. It can also
be used to initiate a yank of an unyanked correction set.
When Update encounters a DONT for a correction set that
has not been yanked, it yanks the set until it encounters a
DO directive for the set. If the correction set has already
been yanked, Update issues an informative message and
ignores the DONT. The DONT directive can be placed
anywhere in the program library. DONT directive format is
as shown in figure 3-30.

and is written on the compile file. ENDIF directive format
is shown in figure 3-31.

*ENDIF

Figure 3-31. ENDIF Directive Format

IF DIRECTIVE

The IF directive conditionally writes text on the compile
file. When Update encounters an IF directive, the text
following the directive is written or skipped depending on
the condition. IF directive format, as shown in figure 3-32,
depends on whether the specified name is to be known or

unknown for the text to be written on the compile file.

A. Name must be known.
*IF type,name,num

B. Name must be not known.
*IF -type,name,num

type Type of condition name.

DECK Name is deck name. To be known, it
must be in the deck list on the primary
old program library.

IDENT Name is correction set identifier. To
be known, it must be in the directory
on the primary old program library.

DEF Name is defined through DEFINE
directive on the old program library.

When type is not preceded by a minus sign, the
name must be known for text to be written. When
type is preceded by a minus sign, the name must
not be known for text to be written.

name Deck name, correction set identifier, or defined

name, according to type.

num Number of active card images to be skipped if
condition is not met. Optional.

*DONT ident1,ident2, . . . identn

ident Name of correction set for which yanking is to
be rescinded or initiated.

Figure 3-30. DONT Directive Format

ENDIF DIRECTIVE

The ENDIF directive indicates the end of conditional text.
It is used with IF when the num parameter is omitted from
the IF directive. ENDIF should not be used if num is
specified on the IF directive. Since num takes precedence,
the ENDIF directive is included in the count of active cards

60449900 B

Figure 3-32. IF Directive Format

If the num parameter is omitted and the condition is not
met, Update searches for an ENDIF directive and resumes
processing of the deck at that point. When the condition is
met, no cards are skipped.

When an IF directive is encountered on a secondary old
program library, Update will only search the directory, deck
list, and YANK$$$ deck on the primary old program library
in trying to satisfy the conditional. The deck lists,
directories, and YANKS$$$ decks of the secondary old
program libraries are not searched.

When both an IF directive is encountered as a result of a
CALL and a matching ENDIF directive is found as the resuilt
of a second CALL, the range of the IF, ENDIF pair is
unpredictable.

3-11 @

WEOR DIRECTIVE

The WEOR directive causes the termination of the current
system-logical record on the compile file with the specified
level. WEOR directive format is shown in figure 3-33.

*WEOR level
level Level of system-logical record.

For SCOPE 2, the following:

RT=W 0 thru 14
RT=W 15

RT=S 0 thru 15
RT=Z 0 thru 15
BT=C 0 thru 17

end-of-section
end-of-partition
end-of-record
end-of-section
end-of-section

Figure 3-33. WEOR Directive Format

FILE MANIPULATION DIRECTIVES

File manipulation directives control secondary input files
during Update processing. These directives can only appear
in the primary input stream. They are illegal on a secondary
input file.

The READ directive temporarily stops reading the primary
input stream and begins reading an input stream from the
specified file. READ differs from ADDFILE in that the
content of the file specified by READ is not restricted
except to prohibit the appearance of another READ
directive or the ADDFILE, SKIP, and REWIND directives.
Update reads from the specified file one system-logical
record. Processing then continues with the main input
stream. READ directive format is shown in figure 3-34.

*READ Ifn

Ifn Name of alternate file containing input stream.

Figure 3-34. READ Directive Format

The specified file cannot be one of the reserved files
specified by a parameter on the UPDATE control statement.
It can only be a secondary input file.

REWIND DIRECTIVE

The REWIND directive repositions the specified file to
beginning-of-information. The file to be rewound cannot be
one of the reserved files. It can only be a secondary input
file. REWIND directive format is shown in figure 3-35.

*REWIND Iin

ifn Name of file to be rewound.

SKIP DIRECTIVE

The SKIP directive repositions the named file forward one or
more system-logical records. A system-logical record of
level 17, or end-of-information terminates skipping. SKIP
directive format is shown in figure 3-36.

*SKIP Ifn,n
Ifn Name of file to be positioned.

n Number of logical records to be skipped in the
forward direction. If n is omitted, Update skips
one record.

Figure 3-36. SKIP Directive Format

INPUT STREAM CONTROL DIRECTIVES

The input stream control directives allow the user to specify
whether or not Update is to recognize abbreviated
directives, delimit text, or control which input stream cards
are to be listed on the output file.

ABBREV DIRECTIVE

The ABBREV directive causes checking for abbreviated
directives to be resumed. It is used in connection with the
NOABBREYV directive. ABBREV directive format is shown
in figure 3-37.

*ABBREV

Figure 3-37. ABBREYV Directive Format

ENDTEXT DIRECTIVE

The ENDTEXT directive ends the condition established by a
prior text directive. If ENDTEXT is encountered before
TEXT, Update ingores it. ENDTEXT directive format is
shown in figure 3-38. Any information in columns 10
through 80 is taken as a comment.

*ENDTEXT

Figure 3-38. ENDTEXT Directive Format

LIST DIRECTIVE

The LIST directive causes listing of cards in the input
stream to be resumed. It is used in connection with NOLIST.
LIST directive format is as shown in figure 3-39.

*LIST

Figure 3-35. REWIND Directive Format

® 3-12

Figure 3-39. LIST Directive Format

60449900 B

NOABBREV DIRECTIVE

The NOABBREV directive causes Update to stop checking
for the abbreviated forms of the directives, Update expands
the name when it reads an abbreviated form so that it is a
full name. Because checking for the abbreviated forms and
expanding them is a time-consuming feature, the user has
the option of not using abbreviations and of turning off the
check through the NOABBREV feature. In this mode, an
abbreviated directive is not recognized but is taken as text.
NOABBREYV directive format is shown in figure 3-40.

*NOABBREV

Figure 3-40. NOABBREYV Directive Format

NOLIST DIRECTIVE

The NOLIST directive disables list option 4. Update stops
listing cards in the input stream when it encounters a
NOLIST and resumes listing cards when it encounters a LIST.
NOLIST directive format is shown in figure 3-41.

*NOLIST

Figure 3-41. NOLIST Directive Format

LIST and NOLIST can occur anywhere in the input stream.
They do not terminate insertion or a correction set. The
LIST/NOLIST directives are ignored if list option0 is
selected.

TEXT DIRECTIVE

The TEXT directive, used in connection with ENDTEXT,
causes all following card images to be treated as text,
whether or not they begin with the master control character
and would otherwise be considered as directives. When
Update encounters a TEXT directive, that card image and
all following it up to and including the ENDTEXT directive
are considered as text and are writien on the program
library. A TEXT directive in the input stream must be
either in a deck or in text being inserted. The TEXT and
ENDTEXT directives are maintained on the program library
as text card images; however, they are not written on the
compile file. TEXT format is shown in figure 3-42. Any
information in columns 10 through 80 is taken as a comment.

*TEXT

Figure 3-42. TEXT Directive Format

SPECIAL DIRECTIVES

The special directives provide extended features. With the
exception of DEFINE and PULLMOD, they can appear any
place in the input stream for creation or correction runs.

DELCARE DIRECTIVE

The DECLARE directive protects decks other than the
declared deck from being inadvertently altered. Subsequent

60449900 B

corrections are restricted to the named deck until Update
encounters a DECLARE directive with no deck name or
another DECLARE directive with a different deck name.
This directive can only be used when the DECLKEY
installation option has been assembled. DECLARE directive
format is shown in figure 3-43.

*DECLARE deck

deck Name of deck to which following corrections are
restricted.

Figure 3-43. DECLARE Directive Format

When the DECLARE directive is encountered, the foliowing
restrictions go into effect:

PURGE and YANK directives are illegal.

INSERT, DELETE, RESTORE, and BEFORE directives
can apply only to cards in the declared deck. If they do
not, the operation is not performed and Update issues
an informative message.

Inserting or reactivating a DECK or COMDECK
directive is illegal.

New decks inserted via the ADDFILE directive need not be
named in a DECLARE directive.

DEFINE DIRECTIVE

The DEFINE directive establishes a condition to be tested by
the IF directive. The names on a DEFINE directive are
unrelated to correction set identifiers or deck names.
Update places DEFINE directives in the YANK$$$ deck. A
DEFINE directive can be placed anywhere in a correction
set. DEFINE directive format is shown in figure 3-44.

*DEFINE namel,nameil, . . . ,namen

name Name for subsequent testing by IF directive.

Figure 4-44. DEFINE Directive Format

END DIRECTIVE

The END directive provides compatibility with the EDITSYM
program. Update ignores an END directive if it encounters
one in a deck. Update does not copy the END directive onto
the program library. END directive format is shown in
figure 3-45.

*END

Figure 4-45. END Directive Format

LIMIT DIRECTIVE

The LIMIT directive changes the maximum size for the
listable output file from the default value of 6000 lines to
the specified number of lines. It should be one of the first

3-13 @

cards encountered in the input stream. The LIMIT directive
will not appear in the new program library. LIMIT directive
format is shown in figure 3-46.

*LIMIT n

n New line limit for listable output.

The user is responsible for determining whether or not the
reconstructed correction sets accurately reflect the original
corrections. PULLMOD is unable to determine if card
images have been purged subsequent to the addition of the
correction sets requested.

Figure 4-46. LIMIT Directive Format

When the specified limit is reached, options 3 (card image,
deck name, and modification key) and 4 (input stream) are
turned off. Errors and directives are still listed, however, if
options 1 and 2 were selected. Options 5 through 9 are not
affected. Refer to L parameter in section 4.

PULLMOD DIRECTIVE

The PULLMOD directive causes the program library to be
searched for all card images belonging to each specified
correction set and reconstructs a set of directives and text.
The reconstructed correction set produces the same results
as the original set. The search of the library is performed at
the end of the Update run. Therefore, any modifications
made by the current run are reflected in the PULLMOD
results. Each reconstructed correction set is written to the
file specified by the G parameter on the UPDATE control
statement. All of the sets are contained within one system-
logical record on the file. PULLMOD directive format is
shown in figure 3-47. The PULLMOD directive can be used
only when the PMODKEY installation option has been

Ananemb o LI

£ome P,
naaculuncd wl upuai‘.e.

® 3-14

*PULLMOD ident1,ident2, . . . ,identn

ident Name of correction set to be recreated.

Figure 4-47. PULLMOD Directive Format

A pullmod file has the same format as an input file. This
feature permits a user to take an earlier version of the
library and apply selected correction sets.

/ COMMENT DIRECTIVE

The / directive introduces a comment into the listable
output file. Update ignores this card except to copy it to
the output file. A comment can appear at any place in the
input stream. The slash can be redefined as another
character through the / parameter of the UPDATE control
statement. The / comment directive format is shown in
figure 3-48. The slash must appear in column 2. Column 3
must be a comma or blank.

*/ comment

Figure 3-48. Comment Directive Format

60449900 B

UPDATE CONTROL STATEMENT 4

5 —

The Update utility is called by the UPDATE control
statement. Parameters specify options and files for the run.
The format of the call is shown in figure 4-1. The waord
UPDATE must begin in column one. See the operating
system reference manual for additional control statement
syntax requirements.

UPDATE(n-list)

p-list Parameters specifying options. Parameters in the
list are separated by commas. A left parenthesis
or a comma must separate the list from the word
UPDATE. A right parenthesis or a period termin-
ates the statement.

Figure 4-1. UPDATE Control Statement Format

PARAMETERS

All Update parameters are optional and can appear in any
order. Parameters are summarized in table 4-1. They are
described in detail below.

A SEQUENTIAL-TO-RANDOM COPY

This parameter copies a sequential old program library to a
random new program library. No other Update operations
are performed; any I parameter is ignored. The only other
control statement parameters that can be used with the A
parameter are those specifying files, L=0, R, ¥, and /. An
error results if the old program library is not sequential or
the new program library is not random. For SCOPE 2, the
new program library cannot be blocked.

omitted No copy made.

A The sequential old program iibrary is
copied to a random new program library.

B RANDOM-TO-SEQUENTIAL COPY

This parameter copies a random old program library to a
sequential new program library. No other Update operations
are performed; any I parameter is ignored. The only other
control statement parameters that can be used with the B
parameter are those specifying files, L=0, R, %, and /. An
error results if the old program library is not in random
format.

omitted No copy made.

B The random old program library is copied
to a sequential new program library.

C COMPILE FILE NAME
This parameter specifies the name of the compile file. The
content of the compile file is determined by the Update
mode as shown in table 2-2.

omitted Decks are written to the file named
orC COMPILE.

60449900 B

C=lfn Decks are written to file named Ifn.

C=PUNCH Decks are written to file named PUNCH.
The D and 8 parameters are implied.

—~_

C=0 Compiie file suppressed.

The C parameter is ignored if K is also specified

D DATA WIDTH ON COMPILE FILE

This parameter specifies how many columns are to be used
for data on the COMPILE file. Data width does not include
sequencing information.

omitted 72 columns of data

D 80 columns of data

E EDIT OLD PROGRAM LIBRARY

This parameter specifies that the old program library is to
be edited. During editing, the directory and deck list are
rearranged to reflect the actual order of decks on the
program library; all previously purged identifiers are
removed. Identifiers that exist simply as entries in the
directory and have no cards associated with them are
purged. Any cards other than YANK, SELYANK,
YANKDECK, or DEFINE that exist in the YANK$$$ deck
are also purged.

Two edit runs are required to edit the library completely.
The first edit run removes purged identifiers and flags
unused identifiers as purged. The second edit run deletes
the unused identifiers from the directory.

omitted No editing is done.
E The program library is edited.
The E parameter can only be used when the EDITKEY

installation option has been assembled for Update.

F FULL UPDATE MODE

This parameter specifies full Update mode.

omitted Normal selective Update mode, as long as
Q is not specified.
F Full Update mode.

G PULLMOD FILE NAME

This parameter specifies the name of the pullmod file.

omitted Output from PULLMOD directives is

appended to the source file.

G=lfn Output from PULLMOD directives is
written on file named Ifn. The listable
output file (O parameter) cannot be
specified.

The G parameter can only be used when the PMODKEY
installation option has been assembled for Update.

4-1 @

TABLE 4-1. SUMMARY OF UPDATE CONTROL

STATEMENT PARAMETERS

Parameter Function

A Copy sequential old program library to new
random program library.

B Copy random old program library to new
sequential old program library.
Specify name of compile file.

D Define compile file card image width
excluding Update sequence information.

E Remove from directory previously purged
identifiers and purge identifiers that exist
Simply as directory entries.

F Select full update mode.

G Specify name of Pullmod file.

H Specify character set.

I Specify name of file with input stream.

K Write decks on compile file in order
specified on COMPILE directives.

L Select listable output file contents.

M Merge specified program library with old
program library.
Specify name of new program library file.
Specify name of listable output file; content
is determined by L parameter.

P Specify names of old program library and
secondary old program libraries.
Select quick update mode.
Rewind specified files.
Specify name of source file; content includes
common decks and is determined by mode.
Same as S, but omit common decks.

V] Do not terminate execution if fatal error
oceurs.
Specify sequential new program library file.

X Specify compressed format for compile file.
Define compile file card image width
including Update sequence information.

. Redefine master control character for
directives.

/ Redefine control character for comments.

® 4-2

H CHARACTER SET CHANGE

This parameter allows the user to override the character set
type specification in the old program library.

omitted Update treats the old program library
or H character set as the character set
indicated in the old program library.

H=3 Update treats the old program library as a
63-character set program library regard-
less of the character set specified in the
old program library.

H=4 Update treats the old program library as a
64-character set program library regard-

less of the character set specified in the
old program library.

| INPUT STREAM FILE NAME

This parameter specifies the name of the primary input file.

omitted Directives and text are on the file named
orl INPUT.
I=Ifn Directives and text are on file named lfn.

K COMPILE FILE SEQUENCE

This parameter specifies that decks are to be written to the
Compile file in the order in which the deck names are
encountered on COMPILE directives. If a deck name is
mentioned more than once, its last specification determines
the deck's place within the compile file.

This parameter takes precedence over the C parameter.

omitted L.ocation determined by C parameter.

K Decks to be written on file named
COMPILE in COMPILE directive
sequence,

K=lfn Compile output decks to be written on file
named Ifn in COMPILE directive
sequence.

L LISTABLE OUTPUT OPTIONS

This parameter specifies the content of the output file.

omitted For a creation run, selects options A, 1,
and 2.

For a correction run, selects options A, 1,
2,3, and 4.

For a copy run, selects options A and 1.

L=c...c Each character in string c. . .c selects one
of the following options. The character 0
overrides any other options specified and
suppresses the entire listing.

A List known deck names and correc-
tion set identifiers, COMDECK

60449900 B

60449900 B

directives that were processed,
known definitions (DEFINE directive),
and decks written to the compile file.

All options except 0.
All listing is suppressed.

List cards in error and the associated
error messages. The flag *ERROR*
appears to the left and right of an
erroneous card image.

List all active Update directives
encountered either on the input file
or on the old program library. Those

dirantivas on i i f
directives encountered in input are

flagged with five asterisks to the left
unless the directive is abbreviated or
the card identifier is in short form.
In this case, the directive is flagged
with five slashes. If the directive has
been encountered on the old program
library, the name of the deck to
which this card belongs is printed in
palce of the five asterisks or slashes.

Comment on each card that changed
status during current run. Comments
include the deck name, card image,
card identifier, and an indicator of
action taken for that card.

—

Card added.
Inactive card reactivated.

Active card deactivated.

v 0O »

Card purged. If the card
was active, ACTIVE also

appears.
SEQ Card resequenced.

List text cards encountered in the
input stream. Cards read as a result

the right with the file name. Cards
inserted as a result of an ADDFILE
directive are listed only when
option 4 is explicitly selected. Cards
inserted as a result of a COPY
directive are identified to the right
by the word copy.

Option 4 may be turned on by a LIST
directive and off by a NOLIST
directive.

List all active compile file directives.
List number of active and inactive
cards by deck name and correction
set identifier.

List all active cards; identify to the
right with an A.

List all inactive cards; identify to the
right with an L

List correction history of all cards
selected by list options 5, 7, and 8.

List options 5 through 9 are provided for auditing an old
program library. These options are available only when the
AUDITKEY installation option is assembled. Output is
written to a temporary file and appended to the listable
output file at the end of the Update run. When the F
parameter is selected, options 5 through 9 apply to all decks
on the old program library. If F is not selected, options 5
through 9 apply to decks listed on COMPILE directives only.

If the old program library is sequential and F is not selected,
called common decks that precede the decks that call them
must be explicitly named on COMPILE directives to be
audited. A common deck is audited automatically if it
follows the deck that calls it. If the old program library is
random, called common decks are audited automatically.

M MERGE PROGRAM LIBRARIES

This parameter merges two program libraries as one new
program library. The M parameter is ignored on a creation
run.

omitted No merge file.

M Program library to be merged with the old
program library is on file MERGE.

M=ifn Program library to be merged with old
program library on file named Ifn.

N NEW PROGRAM LIBRARY FILE NAME

This parameter specifies the name of the new program
library.

omitted Suppress new program library generation
if correction run, otherwise write new
program library to file named NEWPL.

N Write new program library to file named
NEWPL.

N=Ifn Write new program library to file named
Ifn.

O LISTABLE OUTPUT FILE NAME

This parameter specifies the name of the output file.
Output file content is determined by the L parameter.

omitted Write output to file named OUTPUT.
or O

O=Ifn Write output to file named lfn.

P OLD PROGRAM LIBRARY FILE NAME

This parameter specifies the name of the old program
library; it is ignored on a creation run.

omitted Old program library resides on file named

or P OLDPL.

P=Ifn Old program library resides on file named
Ifn.

P=1fn/sl/s2/ Old program library resides on file named
oo ofs? Ifn. Secondary old program libraries
reside on files sl, 82, ..., 87.

4-3 @

P=/sl/s2/ Old program library resides on file
A EY OLDPL. Secondary old program libraries
reside on files sl, s2, ..., ss7.

Q QUICK UPDATE MODE

This parameter specifies quick Update mode. It takes
precedence when both F and Q are specified.

omitted When F is also omitted, normal selective
Update mode.
Q Quick mode.

Corrections other than ADDFILE that reference cards in
decks not specified on COMPILE directives are not
processed in quick mode and Update abnormally terminates
after printing the unprocessed corrections.

In @ mode, using a random old program library, a single
correction set containing corrections to both a DECK and a
COMDECK may cause trouble if the COMDECK logically
precedes the DECK on the old program library. No errors
will be detected, but if the same run is repeated with the N
parameter specified on the UPDATE control statement
and/or the old program library is sequential, the sequence
numbers assigned to the text cards in the correction set will
not be the same as they were in the Q mode run. This
situation cannot be prevented without sacrificing the speed
for which Q@ mode was designed. The correct sequence
numbers are those assigned when N is specified or the old
program library is sequential.

R REWIND FILES

This parameter specifies files to be rewound before and
after an Update run.

omitted Rewind the old program library, the new
program libary, the compile file, the
source file, and the pullmod file.

R Do not rewind any files.

R=c...c Each character in string indicates a file to

be rewound.
C Compile
N New program library

P Old program library and merge
library

S Source and pullmod

S SOURCE FILE NAME

This parameter specifies the name of the source file. The
content of the source file is determined by the mode in
which Update is operating, by the decks named on COMPILE
directives, and by the farmat of the old program library in
use (random or sequential).

omitted Suppress source output file unless it is
selected by the T parameter.

S Source output file to be written on file
named SOURCE.

S=Ifn Source output file to be written on file

named Ifn.

@ 4-4

T OMIT COMMON DECKS FROM SOURCE FILE

This parameter specifies that common decks are to be
excluded from the source file. It takes precedence over the
S parameter.

omitted Suppress source file unless it is selected
by the S parameter.
T Source output to be written on file named
SOURCE, with common decks excluded.
T=Ifn Source output to be written on file named
Ifn, with common decks excluded.
U DEBUG HELP

The U parameter does not prevent Update from proceeding
to pass 2 (correction phase) if errors are encountered in
pass 1 (read-input-stream phase). The user should be aware
that because of the method in which Update works, pass 1
errors could conceivably cause the flagging of pass 2 items
which are not errors.

omitted Update execution terminates when a fatal
error is encountered.
U Update execution is not terminated by a

fatal error.

W SEQUENTIAL NEW PROGRAM LIBRARY FORMAT

This parameter specifies that the new program library is to
have sequential format.

omitted New program library format is determined
by file residence as shown in table 2-3.
w New program library is a sequential file.

X COMPRESSED COMPILE FILE

This parameter specifies .that the compile file is to be
compressed.

omitted Compile file is not written in compressed
format.
X Compile file is written in compressed

format (appendix D).

8 CARDIMAGE WIDTH ON COMPILE FIiLE

This parameter specifies total card image width on the
compile file including seqeuncing information (appendix D).

omitted Compile file output is composed of
90-column card images.
8 Compile file output is composed of

80-column card images.

60449900 B

* MASTER CONTROL CHARACTER

This parameter specifies the master control character. If
the character specified for a correction run is not the same
as the character used when the old program library was
created, the old program library character is used.

omitted The first character of each directive is *.
*=c The first character of each directive for
this Update run is c, c can be any char-
- . 7 N il - *

an.,u:: f'\ l.luuugll L, U ulluugll /’ Ul + =
/ $ or =. (The $ character should be
specified as *=$$$$ or /=$$$$.)

/ COMMENT CONTROL CHARACTER

This parameter specifies the comment control character.

omitted Comment control character is /.

/=c The comment control character is c; ¢ can
be any character A through Z,
Othrough9, or + — * [/ $ or = (The $

character should be specifeid as *=$$$$ or
1=$$$%.) Note, however, that the
character should not be changed to one of
the abbreviated forms of a directive
unless NOABBREYV is in effect.

UPDATE CONTROL CARD EXAMPLES
The UPDATE control statement
UPDATE(C=0,I=IN, L=F ,N=TEST2,P=TEST1,S,*=+)

selects the following options in addition to default values for
the omitted parameters:

C=0 A compile file is not generated.

I=IN The input stream is on the file named IN.

L=F A full output listing is generated.

N=TEST2 A new program library named TEST2 is
generated.

P=TEST1 The old program library is on the file
named TESTI1.

S A source file is generated on file named
SOURCE.

*=4 The master control character is +.

60449900 B

The UPDATE control statement

UPDATE(A,N=RAN,P=SEQ)
causes Update to copy the sequential old program library,
SEQ, to a random new program library named RAN. The L,

O, *, and / parameters assume their default values. No
other parameters are applicable when A is specified.

The UPDATE control statement

UPDATE.

selects the following default values:
C=COMPILE
G=SOURCE (correction run)
I=INPUT

L=A,1,2 (creation run)
A,1,2,3,4 (correction run)

N=NEWPL (creation run)
O0=0UTPUT

R=C,N,P,S

P=0OLDPL (correction run)
¥

=/

In addition; the following defaults apply:

The compile file has 90 columns with 72 columns for
data.

No editing is performed.

Update mode is normal selective.

No merging is performed.
Execution is terminated if a fatal error occurs .

New program library file format is determined by file
residence.

The compile file is not in compressed format.

4-5 @

EXAMPLES OF UPDATE RUNS 5

This section contains several examples of Update runs. The
directives illustrated include ADDFILE, PULLMOD, yanking
and purging. Examples also show how to save a program
library as a permanent file under the varicus operating
systems. Also included in this section is an example of a
FORTRAN Extended program maintained as a program

library.

LIBRARY FILE CREATION

Figure 5-1 shows an example of an Update creation run in
which several COMPASS and FORTRAN routines become a
program library. The UPDATE control statement indicates
a new library is to be created with the name PL. Since no
other parameters are specified, Update uses their default
values.

The example in figure 5-2 shows a creation run in which
directives are read from the alternate input file REMTAPE,
Update reads text and directives from REMTAPE until the
end of the system-lgoical record is encountered. Update
then resumes reading from the main input file, INPUT. The
resulting new program library contains decks A, B, C, and
LOCAL.

job statement

UPDATE(N=PL)

7/8/9

*DECK COMGROUP
COMPASS program

*DECK COMGROUP1
COMPASS program

*WEOR

*DECK FORGROUP
FORTRAN program

*DECK FORGROUP2
FORTRAN program

6/7/8/9

A. Update job deck.

job statement
UPDATE(N)

7/8/9

*READ REMTAPE

*DECK LOCAL
text of LOCAL

6/7/8/9

B. Contents of REMTAPE

*DECK A
text of A

*DECK B
text of B

*DECK C
text of C

Figure 5-1. Update Creation Run

Since the first directive encountered is DECK, Update
recognizes a creation run and begins construction of a new
program library. All cards following the first DECK
directive, up until the second DECK directive, are writen as
a deck with the name COMGROUP. The first card is
assigned the identifier COMGROUP.2, the next
COMGROUP.3, and so forth. (The DECK directive itself is
also a part of the library and has the identifier
COMGROUP.1.)

A new deck, with card identifiers in the form
COMGROUPL.n, begins when Update encounters the second
DECK directive. In this example (figure 5-1), two
COMPASS programs form the first two decks; COMGROUP
and COMROUP1; two FORTRAN programs make up the last
two decks: FORGROUP and FORGROUPIL. At the end of
the Update run, a program library exists with four decks.

The compile file produced by the run in figure 5-1 contains
two system-logical records as a result of the WEOR
directive. All four decks are written to the compile file. It
has the default name of COMPILE.

60449900 B

Figure 5-2. Creation of Library From Alternate Input File

The program library, NEWPL, created by the example in
figure 5-3 contains four decks, two of them are common
decks. The compile file that is produced by default contains
decks XA and XB in that order. Deck XB is expanded by
Update to contain common deck D2 on the compile file.

job statement
UPDATE(N)

7/8/9
*COMDECK D1
text of D1
*COMDECK D2
text of D2
*DECK XA

text of XA
*DECK XB

text of XB
*CALL D2
6/7/8/9

Figure 5-3. Creation of Library With Common Decks

5-1 @

INPUT FILE NOT INPUT

Text and directives do not have to be part of the job deck.
They can be in a file specified by the I parameter of the
UPDATE control statement. In figure 5-4, Update creates a
program library from information contained in file Al. The
library that is produced contains three decks having cards
identified by their deck name and sequence number as shown
in figure 5-5.

A. Update Job Deck
job statement

UPDATE(1=A1, N)

6/7/8/9

B. Contents of A1

*COMDECK CSET
COMMON A,B,C

*DECK SET1
PROGRAM ZiIP

C A DO-NOTHING JOB
STOP
END

*DECK SET2
SUBROUTINE JIM
A = B - SIN(C)
RETURN
END

Figure 5-4. Input File Not INPUT

*COMDECK CSET CSET.1
COMMON AB,C CSET.2
*DECK SET1 SET1.1
PROGRAM ZiP SET1.2
C A DO-NOTHING JOB SET1.3
STOP SET1.4
END SET1.5
*DECK SET2 SET2.1
SUBROUTINE JIM SET2.2
A =B - SIN(C) SET2.3
RETURN SET2.4
END SET25

Figure 5-5. Program Library Contents

INSERTIONS/DELETIONS /COPYING

The Update run illustrated in figure 5-6 modifies the decks
SET1 and SET2 of the program library created by the run in
figure 5-4. As a result of the correction run, SET1 appears
in the compile file as shown in figure 5-7.

Figure 5-8 shows the modification of an old program library
named FN and the production of an assembly listing. The
compile file that is read by COMPASS contains deck XA
since that deck was modified by Update.

job statement
UPDATE(N,F)

7/8/9
*IDENT ADD1
*DELETE SET1.3, SET24
*CALL CSET
B=1.0
C=3.14159
CALL JIM
*COPY SET1, SET1.5
*COPY SET2, SET2.2
*CALL CSET
*COPY SET2, SET2.3, SET25
6/7/8/9

Figure 5-6. Modify Old Program Library

PROGRAM ZIP SET1.2
COMMON AB,C CSET.2
B=1.0 ADD1.2
C=3.14159 ADD1.3
CALL JIM ADD14
STOP ADD15
END ADD1.6
SUBROUTINE JIM ADD1.7
COMMON AB,C CSET.2
A =B — SIN(C) ADD1.9
RETURN ADD1.10
END ADD1.11

Figure 5-7. Compile File Contents

job statement
UPDATE(P=FN)
COMPASS(1=COMPILE)

7/8/9

*IDENT CS1

*INSERT XA.1
Insertions

*DELETE XA.20, XA.23

6/7/8/9

Figure 5-8. Correction Run

PURGING AND YANKING

The purge directives differ from the yank directives in that
yank operations are temporary. Cards yanked from the
program library are temporarily deactivated. They can be
reactivated by a subsequent yank of the yank directive that
deactivated the card images.

60449900 B

In contrast, any change made to a program library through a
purge directive is permanent. A reversal of a purge
operation is possible only through the re-introduction of the
cards into the library as if they had not previously existed.

The YANK directive in figure 5-9 becomes the first card on
the new program library. The identifier for this card is
NEGATE.l. The effects of the YANK can be nullified in
future runs (and consequently the effects of the correction
set GOTTOGO are restored) by specifying

*IDENT RESTORE
*DELETE NEGATE.]

or *IDENT RESTORE
*YANK NEGATE

or *PURGE NEGATE
If the correction set NEGATE contained other corrections as
well as the YANK, the YANK could be permanently removed
by specifying

*SEL PURGE YANK$$$.NEGATE

or it could be temporarily removed by specifying

*SELYANK YANK$$$.NEGATE

identifier BAD but physically located outside of the deck
BAD are not purged.

ob statement
UPDATE(P=LI B,N=NEWBAD,C=0)

‘7/8/9
*PURDECK BAD
6/7/8/9

job statement
UPDATE(P=LI B,N=NEWLIB)

7/8/9

8IDENT NEGATE
*YANK GOTTOGO
6/7/8/9

Figure 5-9. Use of YANK

The Update run in figure 5-10 returns a program library to a
previous level. The program library LIBAUG was modified
periodically over a number of months. LIBAUG is the most
recent (August) version of the program library. This run
recreates a library modified only through May. The run
purges all modifications made after May (beginning with
JUNMODLI in the directory).

job statement
.UPDATE(N=LI BMAY,P=LIBAUG,C=0)

7/8/9
PURGE JUNMOD?1,
6/7/8/9

Figure 5-11. Use of PURDECK

As a means of comparing the effects of YANK, SELYANK,
and YANKDECK, consider the following:

*Y ANK GLDMOD

This directive causes all effects of the correction set
OLDMOD on the entire library to be nullified. Card
images introduced by OLDMOD are deactivated; card
images deactivated by OLDMOD are reactivated.

*SELY ANK OLDDECK.OLDMOD

This directive accomplishes the same effect as the
YANK directive above except its effect is limited to
card images within the deck OLDDECK.

*YANKDECK OLDDECK

This directive affects all card images in OLDDECK,
without regard to which correction set they belong.

The effects of the purge directives PURGE, SELPURGE, and
PURDECK work the same as the YANK directives except
the results are permanent.

SELECTIVE YANKING

The text stream in figure 5-12 illustrates the use of the DO
and DONT directives. The deck ZOTS had contained cards
introduced by the correction set DART; a later correction
set contained a YANK directive that yanked correction set
DART. The user wishes to nullify a portion of the YANK
that affects the cards following ZOTS.19 through ZOTS.244;
all other cards belonging to the correction set DART are to
remain yanked. Inserting a DO at ZOTS.19 and a DONT at
ZOTS.244 causes Update to rescind the yank while writing

the deck ZOTS to the compile file.

*IDENT REST
*INSERT ZOTS.19
*DO DART
*INSERT Z0TS.244
*DONT DART

Figure 5-10. Return to Previous Level

The run in figure 5-11 permanently removes deck BAD from
the library. LIB is the most recent program library.
NEWBAD is the new program library with BAD purged.
*PURDECK BAD oeprates so that any cards having the

60449900 B

Figure 5-12. Use of DO and DONT

SELECTIVE WRITING TO COMPILE FILE

During the correction phase Update processes the following
directive:

*DEFINE ABC

5-3 @

It is placed in the YANK$$$ deck. PROG2, a deck to be
written on the compile file, contains the following sequence:

*DECK PROG2

*IF DEF,ABC

*ENDIF

Since ABC is defined, all active cards between the IF and
ENDIF pair are written as if they are part of PROG2.
Removing the DEFINE from the YANK$$$ deck would cause
these text cards to be skipped.

The input stream in figure 5-13 has mutually exclusive
requirements depending on the availability of correction set
IDC. If IDC is known, the first 15 active cards after the
first IF are written to the compile file. IF IDC is not known,
the cards following the second IF through the ENDIF are
written to the compile file.

specified but the two separators must be included (either
space and comma or two commas). Each of the ADDFILE
directives in figure 5-17 will cause Update to read from a
separate file that is not the main input file. Common deck
D1A and its text are on FILEA; deck SYSTEXT and its text
are on FILEB; deck XC and its text are on FILEC.

*DECK DECKA

*IF IDENT,IDC,15
*IF - IDENT,IDC
active text cards

*ENDIF

job statement
UPDATE(N,C=0)

7/8/9
*ADDFILE INPUT, YANKS$$$ or *ADDFILE,, YANK$$$
*COMDECK D1A

'*ADDFILE INPUT or *ADDFILE
*DECK SYSTEXT

.*ADDFILE INPUT,XB or *ADDFILE, XB
*DECK XC

6/7/8/9

Figure 5-15. ADDFILE Input on File INPUT

Figure 5-13. Use of IF and ENDIF

Nesting of IF directives is illustrated in figure 5-14. The
deck ROCK has an IF-controlled sequence containing a
second IF-controlled sequence. The text following the first
IF is written if PEBBLE is known; the text following the
second IF is written if both PEBBLE and STONE are known.
The ENDIF terminates both IF controlled sequences.

A. Update run

B. Contents of file FNAME

*DECK ROCK
*IF IDENT,PEBBLE
*IF IDENT,STONE

*ENDIF

job statement
UPDATE(N,C=0,I=FNAME)

6/7/8/9

*ADDFILE FNAME, YANK$$$ or *ADDFILE, YANK$$$
*COMDECK D1A

*ADDFILE FNAME or *ADDFILE
*DECK SYSTEXT

.*ADDFILE FNAME,XB or *ADDFILE, XB
*DECK XC

Figure 5-14. Nexted IF Directives

ADDITION OF DECKS

A new program library, NEWPL, is to be constructed from
the old program library, OLDPL, with the addition of one
new common deck and two new decks. The new common
deck, D1A, will be the first deck after the YANK$$$ deck;
the new deck XC will follow deck SX; and the new deck
SYSTEXT will be the last deck on the new program library.
No compile file will be produced. All three of the
ADDFILEs in figure 5-15 are to be read from the main input
file INPUT. The ADDFILEs in figure 5-16 are to be read
from the main input file INPUT. The ADDFILEs in
figure 5-16 are to be read from the Update input file
FNAME. In both these cases, the input file need not be

® 5-4

Figure 5-16. ADDFILE Input on File FNAME

job statement
UPDATE(N,C=0)

7/8/9

*ADDFILE FILEA YANK$$S
*ADDFILE FILEB
*ADDFILE FILEC,XB
6/7/8/9

Figure 5-17. ADDFILE Input on Secondary Input Files

60449900 B

PULLMOD OPTION

The program library created by the example in figure 5-4
(Input File Not Input) has been altered by the correction run
in figure 5-18. As a consequence of the run, the deck SET1
contains the following cards:

*DECK SET1
PROGRAM ZIP

Cc THIS IS FOR PULLMOD EXAMPLE
STOP
END

job statement
UPDATE (N=PL2)

7/8/9

*IDENT PMEX

*DELETE SET1.3

C THIS IS FOR PULLMOD EXAMPLE
*COMPILE SET1

6/7/8/9

Figure 5-18. Correction Run for PULLMOD Example

The Update run in figure 5-19 re-creates the correction set
that changed SET1; the file PMFILE contains the following
re-created correction set:

*IDENT PMEX
*DELETE SET1.3,S5ET1.3
C THIS IS FOR PULLMOD EXAMPLE

job statement

accounting statements
UPDATE(N=PL,W,L=1234)
SAVE(PL=UPLIB}.

7/8/9

*DECK ONE

6/7/8/9

job statement

UPDATE(G=PMFILE, P=PL2)
7/8/¢

*PULLMOD PMEX

6/7/8/9

Figure 5-19. Pull Modifications

PROGRAM LIBRARY AS A
PERMANENT FILE

The job deck in figure 5-20 illustrates the creation and
saving of a program library as a permanent file under
NOS/BE and SCOPE 2; the deck in figure 5-21 saves a
program library as an indirect access file under NOS. See
the appropriate operating system reference manual for
additional details.

job statement

accounting statements
REQUEST(PL,*PF)
UPDATE(N=PL,W,L=1234)
CATALOG(PL,PLIB,iD=JONES)
7/8/9

*DECK ONE

6/7/8/9

Figure 5-Z1. Permanent Fiie Under NOS

SAMPLE FORTRAN EXTENDED PROGRAM

This set of Update examples illustrates how Update can be
used for maintaining a FORTRAN Extended program in
program library format. The FORTRAN program is simple.
It calculates the area of a triangle from the base and height
read from the data record.

The job in figure 5-22 places the FORTRAN program and
subroutine as a single deck (ONE) on the new program
library (NEWPL) and on the compile file (COMPILE).
Following Update execution, FTN is called to compile the
program; the source is on the COMPILE file. LGO calls for
execution of the compiled program. This program does not
execute because of an error in the SUBROUTINE statement.
The name of the subroutine should be MSG, not MSA.

job statement

UPDATE(N,F)

FTN(I=COMPILE)

LGO.

7/8/9

*DECK ONE
PROGRAM ONE(INPUT,OUTPUT,TAPE1)
PRINT 5

5 FORMAT(1H1)

10 READ 100, BASE,HEIGHT,I

100 FORMAT (2F10.2, 11}
IF (1.GT.0) GO TO 120
IF (BASE.LE.0) GO TO 105
IF (HEIGHT.LE.0) GO TO 105
GO TO 106
105 CALL MSG
106 AREA = .5 * BASE * HEIGHT
PRINT 110, BASE, HEIGHT, AREA
110 FORMAT (///, * BASE=*F20.5, * HEIGHT=*
F18.5, * AREA=*F20.5)
WRITE {1} AREA
GO TO 10
120 STOP
END
SUBROUTINE MSA
PRINT 400
400 FORMAT (///,* FOLLOWING INPUT DATA
NEGATIVE OR ZERO *)

RETURN
END
7/8/9
data
6/7/8/9

Figure 5-20. Permanent.File Under NOS/BE or SCOPE 2

60449900 B

Figure 5-22. FORTRAN Extended Program Library —1

5-5 ®

Examination of Update output from the creation job reveals
that the erroneous SUBROUTINE statement has card
identifier ONE.20. The job in figure 5-23 corrects the error
and generates a new program library.

job statement

UPDATE (N,F!}
FTN(I=COMPILE;
LGO.

7/8/9

*IDENT MOD1

*DELETE ONE.20
SUBROUTINE MSG

7/8/9

data

6/7/8/9

The example in figure 5-25 adds a deck to the library
created in the previous example (figure 5-24). Since no new
program library is generated (N is omitted from Update
call), the addition is temporary.

Figure 5-23. Carrection of SUBROUTINE Statement

The job in figure 5-24 uses the same input as the job in
figure 5-22 but divides the program into two decks, ONE and
MSG. Deck MSG is a common deck. A CALL directive is
inserted into deck ONE to assure that MSG is written on the
compile file whenever deck ONE is.

job statement

UPDATE.
FTN{I=COMPILE)
LGO.

7/8/9
*IDENT MOD2
*INSERT ONE.20
*DECK TWO
PROGRAM TWO(INPUT,OUTPUT)

END

*CALL MSG

*DELETE MSG.3

400 FORMAT(///, * FOLLOWING INPUT DATA
I POSITIVE*)

7/8/9

data

6/7/8/9

job statement

UPDATE(N,F)
FTN{I=COMPILE)
LGO.

7/8/9
*COMDECK MSG
SUBROUTINE MSG.
PRINT 400
400 FORMAT (///,* FOLLOWING INPUT DATA
| NEGATIVE OR ZERO *)
RETURN
END
*DECK ONE
PROGRAM ONE(INPUT,OUTPUT,TAPE1)
PRINT 5
5 FORMAT(1H1)
10 READ 100, BASE,HEIGHT,!
100 FORMAT (2F10.2, 11)
IF (1.GT.0) GO TO 120
IF (BASE.LE.O}) GO TO 105
IF (HEIGHT.LE.O) GO TO 105
GO TO 106
105 CALL MSG
106 AREA = .5 * BASE * HEIGHT
PRINT 110, BASE, HEIGHT, AREA
110 FORMAT (///, * BASE=*F20.5, * HEIGHT=*
F18.5, * AREA=*F20.5)
WRITE (1) AREA

GO TO 10
120 STOP
END
7/8/9
data
6/7/8/9

Figure 5-24. FORTRAN Extended Program Library — 2

® 5-6

Figure 5-25. Add Deck to FORTRAN Program Library

60449900 B

STANDARD CHARACTER SET A

e

CONTROL DATA operating systems offer the follewing
variations of a basic character set:

CDC é4-character set
CDC 63-character set
ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified when
the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use). Under
NOS/BE, the alternate mode can be specified by a 26 or 29

60449900 B

punched in columns 79 and 80 of the job statement or any
7/8/9 card. The specified mode remains in effect
throughout the job unless it is reset by specification of the
alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or
29 punched in columns 79. and 80 of any 6/7/9 card, as
described above for a 7/6/9 card. In addition, 026 mode can
be specified by a card with 5/7/9 multipunched in column 1;
029 mode can be specified by a card with 5/7/9

multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal or
printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable to
BCD terminals; ASCII graphic characters are applicable to
ASCII-CRT and ASCII-TTY terminals.

A-l @

STANDARD CHARACTER SETS

cbc ASCII
Display Hollerith External .
Code Graphic Punch BCD (;Tl;p::tc F('g;;l; (g::a':)
{octal) (026) Code
oot : (colom) T 8-2 00 : (colon) TT 8-2 072
01 A 12-1 61 A 12-1 101
02 B 122 62 B 12-2 102
03 c 123 63 c 123 103
04 D 12-4 64 D 124 104
05 E 125 65 E 125 105
06 F 126 66 F 126 106
07 G 127 67 G 127 107
10 H 128 70 H 128 110
1 | 129 71 | 129 1
12 J 111 41 J 111 112
13 K 112 42 K 112 113
14 L 113 43 L 113 114
15 M 114 44 M 114 115
16 N 15 45 N 15 116
17 o 116 46 o 116 117
20 P 117 47 P 117 120
21 Q 118 50 Q 18 121
22 R 119 51 R 119 122
23 S 02 22 (3 02 123
24 T 0-3 23 T 03 124
25 u 04 24 V] 04 125
26 Y 05 b3 v 05 126
27 w 06 26 w 06 127
30 X 07 27 X 07 130
31 Y 08 30 Y 08 131
32 Z 09 31 b4 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 1 9 9 on
45 + 12 60 + 1286 053
46 " 1 40 " 1 055
47 1184 54 1184 052
50 / 01 21 / 0-1 057
51 (084 34 (1285 050
52) 1284 74) 1185 051
53 $ 1183 53 $ 1183 044
54 = 83 13 = 86 075
55 blank no punch 20 blank no punch 040
56 , (comma) 08-3 33 , {comma) 083 054
57 . {period) 1283 73 . (period) 1283 056
60 = 086 36 # 83 043
61 [87 17 (1282 133
62] 082 32 b} 1182 135
63 9% Tt 86 16 % 1T 084 045
64 = 84 14 " (quote) 8-7 042
65 -~ 085 35 __(underline) 085 137
66 v 110 or 11.82111 52 ! 1287 or 11:0'T1 041
67 A 087 37 & 12 046
70 t 1185 55 ' {apostrophe) 85 047
71 | 1186 56 ? 087 ... 077
72 < 12.0 or 1282111 72 < 1284 or 120" 074
73 > 1187 57 > 086 076
74 < 85 15 @ 84 100
75 > 1285 75 \ 082 134
76 - 1286 76 -~ {circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

TTwere zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than

two colons.

TtIn installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon (8-2 punch).

yield a blank (55

).
11 The alternate HolFerith (026) and ASCII (029) punches are accepted for input only.

The % graphic and related card codes do not exist and translations

604499

2
f=)
[ve)

DIAGNOSTICS B

“

Diagnostic messages can either appear in the dayfile or are
intermixed with Update output in the output file. In

addition to detecting errors, Undate detects overlapping

corrections when the EXTOVLP installation option has been
assembled.

DIAGNOSTIC MESSAGES

All diagnostic messages that can be issued during an Update
run are listed in alphabetic order in table B-1. One of the
following codes is included for each diagnostic:

Type Meaning
I An informative message; processing continues.
N A non-fatal error; processing continues.
F A fatal error; processing is terminated.

OVERLAPPING CORRECTIONS

Update can detect four overlapping correction situations.
When any of these types are detected, Update prints the

offending line with the words TP.n OVLP appended on the
far right. Type n is one of the following:

Type Meaning
1 Two or more modifications are made to one

o~
card bv a auluu: correction set.

2 A modification attempts to activate an
already active card.

3 A modification attempts to deactivate an
already inactive card.

4 A card is inserted after a card which is
inactive on the old program library and is
inactive on the new program library.

The listing of overlap lines is controlled by list option 3.

Detection of an overlap does not necessarily indicate a user
error. Overlap messages are advisory, and they point to
conditions in which the probability of error is greater than
normal. If any overlap condition is encountered, a dayfile
message is printed.

Type TP.2 and TP.3 are detected by comparing existing
correction history bytes with those to be added. Complex
operations involving YANK and PURGE might generate
these overlap messages even though no overlap occurs.

TABLE B-1. DIAGNOSTICS

Message Type Significance Action
A OPTION INVALID WITH RANDOM F The old program library is not Correct the error.
OLDPL OR SEQUENTIAL NEWPL sequential or the new program
library is not random or is not
on a random device for a
sequential-to-random copy.
***ADDFILE CARD INVALID ON F The ADDFILE directive cannot Remove the ADDFILE direc-
REMOTE FILE*** be used in the file specified by a tive from the file specified by
READ directive. the READ directive.
***ADDFILE FIRST CARD MUST BE F The first card on the file specified | Correct the error.
DECK OR COMDECK *** by the ADDFILE directive is not a
DECK or COMDECK directive.
***ALL YANK, SELYANK, YANKDECK, I If Update changes any identifiers None.
AND CALL CARDS AFFECTED HAVE during a merge, it also changes
BEEN CHANGED*** the corresponding Y ANK, SEL -
YANK, YANKDECK, and CALL
directives.
B OPTION INVALID WITH SEQUENTIAL E The old program library is not Do not specify B on the control
OLDPL random for a random-to- statement.
sequential copy.
***BAD ORDER ON YANK N Identifiers separated by a period Correct the order of the
DIRECTIVE**#* on the YANK directive are in the identifiers.
wrong order.
604499008

B-le

TABLE B-1. DIAGNOSTICS (Contd}

Message Type Significance Action
***CARD NUMBER ZERO OR INVALID F Sequence number field on the Correct the sequence number.
CHARACTER IN NUMERIC FIELD*** correction directive is erroneous.
*xxCONTROL CARD INVALID OR F Update detected a format error Correct the error.
MISSING on a directive, deleted, a direc-
tive that was unrecognizable, or
detected an illegal file name.
lllegal operations such as INSERT
prior to an IDENT could also have
been attempted.
***COPY TO EXTERNAL FILE NOT N Na copy is made. Correct the error.
ALLOWED WHEN READING ATERNATE
INPUT UNIT***
COPYING INPUT TO TEMPORARY I A sequential new program library None.
NEWPL was requested on a creation run.
COPYING OLDPL TO A RANDOM FILE I The old program library is being None.
copied to a random file.
CREATING NEW PROGRAM LIBRARY I Indicates that a new program None.
library is being created.
***DECK NAME ON ABOVE CARD NOT I When a DECLARE directive is in Add appropriate DECLARE
LAST DECLARED DECK**#* effect, only card images belonging | directives or remove directives
to decks specified can be modified | which reference non-declared
or referenced. decks.
***DECK SPECIFIED ON MOVE OR 1 The specified deck will not be Correct the error.
COPY CARD NOT ON OLDPL, CARD moved or copied.
WILL BE IGNORED*#**
DECK STRUCTURE CHANGED I A deck has been moved or deleted. | None.
*%*DO/DONT IDENT idname IS NOT I A DO directive to negate the None.
YANKED/Y ANKED NULL effect of a YANK references an
DO/DONT *** identifier that has been
yanked, or a DONT directive to
restore a YANK references on
identifier that was already yanked.
***DUPLICATE DECK dname NEWPL F/N Update encountered an active Change one of the deck names.
ILLEGAL *#* DECK of COMDECK directives
that duplicates a previous dir-
ective. This condtion is fatal if
a new program library is being
created; nonfatal is a new program
library is not being created.
*x*DUPLICATE FILE NAME OF file, F Same file name has been assigned Change one of the file names.
JOB ABORTED*** to two Update files.
***DUPLICATE IDENT CHANGED TO N Update changed a duplicate iden- | None.
ident*** tifier name to a unique one.
*#*DUPLICATE IDENT NAME*#** F During a merge run, Update en- Change one of the identifiers.
countered a duplicate identifier
name that it coult not make
unigue.
*x*xDUPLICATE IDENT NAME IN F The name of a correction set to Change the name of the

ADDFILE***

be added as a result of an ADD-
FILE directive duplicates a correc-
tion set name on the old program
library.

correction set.

60449900 B

TABLE B-1. DIAGNOSTICS (Contd)

Message Type Significance Action
DUPLICATE SECONDARY OLDPL I Two secondary old program Correct the error or ignore.
IGNORED libraries have the same name.
***ERROR#**NOT ALL MODS WERE F All changes indicated in the input Make sure that names specified
PROCESSED*#** stream were not processed. on correction directives corre-
spond to identifiers on the old
program library (or on the
COMPILE directive if in quick
mode).
**xF [LENAME OF file IS TOO LONG, F A file name exceeds seven char- Caorrect the file name.
UPDATE ABORTED*** acters.
**xFJLENAME ON ABOVE CARD F A file name exceeds seven char- Correct the file name.
GREATER THAN SEVEN acters.
CHARACTERS***
FILE NAME ON UPDATE CARD GR F A file name on the UPDATE con- Correct the error.
7 CHARACTERS trol statement is greater than
seven characters.
G AND O FILES CANNOT HAVE SAME F The G and O control statement Change one of the names.
FILENAME options specify the same file
name.
GARBAGE IN OLDPL HEADER, F Invalid data was found in the Rerun job/recreate program
UPDATE ABORTED random index. library. If the problem still
exists, notify systems analyst.
***]DENT CARD MISSING, NO NEWPL I/F If no new program library is gen- Add IDENT directive if new
REQUESTED, DEFAULT IDENTIFIER OF erated, then a correction set need program library is to be
NO.ID. USED*** not be introduced by an IDENT generated.
directive. The identifier .NO.ID.
is used.
***[DENT LONGER THAN NINE F An identifier can only have up to Correct the identifier.
CHARACTERS#*** nine characters.
***[DENTIFIERS SEPARATED BY F The specified identifiers are not Switch the identifiers.
PERIOD IN WRONG ORDER *** the correct order.
***[I | EGAL CONTROL CARD IN F ADDFILE insertions cannot con- Remove the correction
ADDF ILE*¥* tain correction directives. directives.
IMPROPER MASTER CHARACTER N The character specified on the * Use the same master control
CHANGED TO char control statement parameter is not | character as on the old pro-
the same as the master control gram library.
character on the old program
library.
INSUFFICIENT FIELD LENGTH, F The table manager ran out of room | Allocate more field length.
UPDATE ABORT for internal tables.
***[T MAY EXIST IN A DECK NOT F An identifier references a card in a | Correct the error.
MENTIONED ON A COMPILE CARD*¥** deck not specified on a COMPILE
directive (only if in quick mode).
¥INVALID NUMERIC FIELD* F The directive does not contain Correct the directive.
required numeric field.
***¥ ENGTH ERROR ON OLDPL. F Card length on old program Rerun job. If problem still

UNUSABLE OLDPL OR HARDWARE
ERROR***

***_ISTED BELOW ARE ALL IDENT

NAMES WHICH WERE CHANGED
DURING THE MERGE***

60449900 B

library is greater than the maxi-
mum allowed or is less than one.

Update changes any duplicate
identifiers to make them unique
when merging two program
libraries.

exists, then recreate the pro-
gram library.

None.

B-3 @

TABLE B-1. DIAGNOSTICS (Contd)

Message Type Significance Action
**¥NEW IDENT ON CHANGE CARD IS F An attempt was made to change Correct the error.
ALREADY KNOWN#*** a correction set identifier to one
already in existence.
***¥NO ACTIVE CARDS WERE FOUND N All card images within the None.
WITHIN THE COPY RANGE. NULL specified range are inactive.
COPY ¥*%
xNO DECK NAME ON DECK CARD* F No name was specified on the Specify a name.
DECK directive.
NO INPUT FILE, Q@ MODE, UPDATE F In quick mode, Update relies on Put appropriate COMPILE
ABORT the input file to determine what directives in the input file.
is written to the compile file.
NO OLDPL, NOT CREATION RUN, F No old program library was Correct the error.
UPDATE ABORT supplied on a non-creation run.
*ENULL ADDFILE*** I The first read on the file specified | Correct the error.
by ADDFILE encountered an end-
of-record. If the input file was
specified, the first read encount-
ered an illegal directive.
*HANULL IDENT *** F An identifier was not found on a Correct the directive.
directive where one was expected.
NULL DECK NAME* F During ADDFILE or a CREATION Correct the directive.
run; Undate encountered a DECK
or COMDECK directive that did
not have a name.
*x*OLDPL READ ERROR - POSSIBLE F A parity error on other error has Rerun the job.
LOST DATA AFTER FOLLOWING occurred while processing an old
CARD*** card image ***AND BEFORE program library. As a result
THE FOLLOWING CARD*** card Update is uncertain of the position
image of the old program library. The
first card shown is the last card
Update successfully processed.
The second card is the next valid
card that Update was able to find
following the error.
OLDPLS HAVE DIFFERENT I The merging of two old program Use program libraries with the
CHARACTERS SETS libraries with different character same character set.
sets is not allowed.
***QUTPUT LINE LIMIT EXCEEDED. N Update output exceeds the line Use the LIMIT directive to
LIST OPTIONS 3 AND 4 DEFEATED*** limit specified by default or by increase one unit.
the LIMIT directive.
PLS HAVE DIFFERENT CONTROL F The merging of two program Use program libraries with the
CHARACTERS, ABORT libraries with different control same control characters.
characters is not allowed.
***PREMATURE END OF RECORD ON F A PRU of level 0 was encountered | Rerun the job. If error still
OLD PROGRAM LIBRARY *** in the midst of a card image. exists, recreate the program
library.
RANDOM NEWPL CANNOT BE A F The new program library cannot Unblock the new program
BLOCKED FILE be blocked (RT=S) when the A library.
parameter is specified on the
UPDATE control statement
under SCOPE 2.
READING INPUT I The input file is being read by None.

® B-4

Update.

60449900 B

TABLE B-1. DIAGNOSTICS (Contd)

Message Type Significance Action
*%¥*RECURSIVE CALL ON COMDECK F A common deck has called itself Correct the error.
dname IGNORED. FATAL ERROR*** or common decks that contain

calls to the specified common
deck.

SECONDARY OLDPL NOT RANDOM F Secondary old program libraries Use random secondary old
must be random. program libraries.

**xSEQUENCE NUMBER EXCEEDS F The proper range of sequence Correct the error.

131071 %** numbers is 1 thorugh 131071.

STACK DEPTH EXCEEDED F Stack in which card images are Notify systems analyst
placed became full while proces- (increase RECURDEP).
sing a BEFORE or ADDFILE
directive.

TABLE MANAGER LOGIC ERROR F There is not enough table space Increase field length.

to accommodate the old program
library tables.

***THE ABOVE CALLED COMMON F The called common deck could Check the spelling of the deck
DECK WAS NOT FOUND*** not be found. name. If creating a program
library with calls to secondary
dd program libraries, set C=0
on the UPDATE control

statements.
***THE ABOVE CARD IS ILLEGAL F A directive that is not allowed on Remove the illegal directive.
DURING A CREATION RUN**% a creation run was encountered.
***THE ABOVE CONTROL CARD IS N CHANGE, PURGE, and YANK Remove the illegal directives.
ILLEGAL AFTER A DECK HAS BEEN directives are illegal after a deck
DECLARED#*** has been specified on a DECLARE
directive. They are ignored.
***THE ABOVE LISTED CARDS I Only YANK, YANKDECK, SEL- None.
CANNOT EXIST IN THE YANK DECK YANK, and DEFINE directives
AND HAVE BEEN PRUGED DURING are kept in the YANK$$$ deck.
EDITING***
***THE ABOVE OPERATION IS NOT F The specified operation is Correct the error.
LEGAL WHEN REFERENCING THE illegal when referencing the
YANK DECK*** YANK$$$ deck.
***THE ABOVE SPECIFIED CARD F Update could not locate the Make sure that the correct
WAS NOT ENCOUNTERED*** specified card on the old pro- identifier is specified.
gram library.
*#*THE INITIAL CARD OF THE COPY N No copy was made. Make sure that the correct
RANGE WAS NOT FOUND. NULL identifier is specified.
COPY ***
***THE TERMINAL CARD OF THE I The terminal card specified was Make sure that the correct
COPY RANGE WAS NOT FOUND. not found - the rest of the deck identifier is specified.
COPY ENDS AT END OF SPECIFIED was copied.
DECK***
*x¥THE TERMINAL CARD SPECIFIED F While processing a card range, Make sure that the correct
WAS NOT ENCOUNTERED*** Update could not locate the last identifier is specified.
card of the range.
THIS UPDATE REQUIRED n WORDS OF 1 It took n words of memory for None.
CORE the update.

60449900 B B-5e

TABLE B-1. DIAGNOSTICS (Contd)

Message Type Significance Action

*¥*TOO MANY CHBS -- INCREASE F Correction history bytes exceed Notify systems analyst.

L.CHB*** the specified limit of 1008 for a
card.

TOO MANY SECONDARY OLDPLS F Up to seven secondary old pro- Specify seven or less

SPECIFIED gram libraries can be specified. secondary old program

libraries.

***UNBALANCED TEXT/ENDTEXT N Update encountered more None.

CARDS, LAST ENDTEXT CARD ENDTEXT directives than TEXT

IGNORED*** directives.

*EXUNKNOWN IDENTIFIER idname*** F A correction directive references Make sure that the correct
an identifier not found in the identifier is specified.
directory.

UPDATE COMPLETE I The update is completed. None.

UPDATE CONTROL CARD ERROR(S) F The UPDATE control statement Correct the erroneous
contains unacceptable parameters. | parameters.

The erroneous parameters are
listed on the next line.

UPDATE CREATION RUN 1 This Update run was a creation None.
run.

WAITING FOR 450008 WORDS I Update is waiting for the operat- None.
ing system to allocate it enough
memory.

*4¥WARNING***0OLDPL CHECKSUM 1 At least one updated deck from Rerun job. If problem still

ERROR**#* the old program library is bad. exists, notify systems analyst.

*¥WARNING, RETURNING PRIOR I Two consecutive Updates were To save both new program

NEWPL *** processed, each of which created libraries, give them unique
a random new program library of names.
the same name. Update returns
the new program library created
by the first update.

*¥Y ANK, SELYANK, OR YANKDECK N The identifier referenced on a Remove the yank directive

ident NOT KNOWN*** YANK, SELYANK, or YANK- from the YANK$$$ deck.
DECK has probably been purged;
this applies to cards already on
the library.

***deckname IS NOT A VALID DECK F A deck name has 1 through 9 Correct the deck name.

NAME*#*

¥n ERRORS IN INPUT*

**#n ERRORS IN INPUT, NEWPL,
COMPILE, SOURCE SUPPRESSED***

characters; legal characters are:
A through Z, 0 through 9, and + -
*[()$=

Update encountered n fatal errors

in the input stream. Processing
continues in order to detect addi-
tional errors. This message is
issued only if the U parameter is

specified on the control statement.

Update encountered n fatal errors
in the input stream. Processing
continues in order to detect
errors. A new program library,

a compile file, and a source file is
not generated.

None.

None.

60449900 B

TABLE B-1. DIAGNOSTICS (Contd)

Message

Significance

Action

n ERRORS IN UPDATE INPUT

n DECLARE ERRORS

n FATAL ERRORS

n NONFATAL ERRORS

n OVERLAPPING CORRECTIONS

n UPDATE ERRORS, JOB ABORTED

First pass of Update processing
encountered n fatal errors while
reading a correction set.

Indicates the number of directives
that reference card images in
decks not specified on DECLARE
directives.

Indicates the number of errors

sasbnindn vove s i
which caused U

Indicates the number of errors
which did not cause Update to
abort.

A correction set changed the
status of some cards more than
once or referenced an inactive
card image.

Errors were encountered in
reading the input file.

None.

None.

None.

None.

None.

None.

60449900 B

~1

GLOSSARY C

f

CARD IDENTIFIER -~ The combination of identifier and
sequence number that uniquely identifies each card
image in a program library.

COMMON DECK — A deck that is written on a compiie fiie
as a result of a CALL directive. The COMDECK
directive introduces a common deck.

viPILE FIiE — The file generaied by Update that
contains card images restored to a format that is
acceptable to a compiler or assembler.

COPY RUN - An Update run that performs a sequential-
to-random or random-to-sequential copy of a program
library. Contrast with creation run and correction run.

CORRECTION HISTORY BYTE — A byte added to a card
image by Update each time the status of the card image
changes. The correction history byte tells Update
whether or not a card image is active or inactive and
which correction set modified the card image.

CORRECTION RUN — An Update run in which changes can
be made to a program library. Contrast with copy run
and creation run.

CORRECTION SET — A set of directives and text that
direct Update to modify a program library. The IDENT
directive introduces a correction set.

CREATION RUN - An Update run that constructs a
program library. It is the original transfer of cards into
Update format. Contrast with copy run and correction
run.

DECK — A deck consists of a DECK or COMDECK
directive and all text and directives until the next
DECK or COMDECK directive. It is the smallest unit
that can be extracted from a program library.

DECK LIST — A list internal to Update that contains the
names of all decks in the program library and the
location of the first word for each deck.

DIRECTORY — A list that contains one entry for each
DECK, COMDECK, and IDENT directive that is used
for the program library.

FULL UPDATE MODE - An Update run in which the F
parameter is selected on the control statement causing
Update to process all decks on the library. Contrast
with normal selective mode and quick Update maode.

IDENTIFIER — The name of a deck, common deck, or
correction set.

INPUT FILE - The user-supplied file or part of the job deck
that contains the input stream of Update directives and
text.

MASTER CONTROL CHARACTER — A character in
column 1 that informs Update that the card contains a
directive.

MERGE FILE ~ The file that contains a program library to

be merged with the old program library into a new
program library.

60449900 B

NEW PROGRAM LIBRARY — The program library initially
generated on a creation run. A new program library
that incorporates the chagnes made during a correction
run is generated if requested.

NORMAL SELECTIVE MODE — An Update run in which the
F and Q options are not selected on the control
statement. All decks specified on COMPILE directives
as well as all corrected decks are processed. Contrast

with full Update mode and quick Update made.

OLDPROGRAM LIBRARY — The program library to be
maodified.

OUTPUT FILE — The file generated by Update that
contains the status information produced during Update
execution. It is in a form suitable for printing.

PROGRAM LIBRARY - The file generated by an Update
run that contains the decks of card images. Card
images in the program library are in a format that can
be manipulated by Update, but that is meaningless for
all other purposes.

PULLMOD FILE - A file that contains directives and text
or recreated correction sets specified on PULLMOD
directives.

QUICK UPDATE MODE - An Update run in which the Q
option is selected on the control statement. Only decks
specified on COMPILE directives and called common
decks are processed. Contrast with full Update mode
and normal selective mode.

SECONDARY OLD PROGRAM LIBRARY - A program
library from which decks on the old program library can
call common decks.

SEQUENCE NUMBER — A number supplied by Update that
uniquely identifies a card image.

SOURCE FILE — The file generated by Update that
contains card images of an input stream that would
allow regeneration of the program library.

SYSTEM-LOGICAL RECORD - Under NOS/BE, a data
grouping that consists of one or more PRUs terminated
by a short PRU or zero-length PRU. These records can
be transferred between devices without loss of
structure.

Equivalent to a logical record under NOS.
The following table shows equivalency under SCOPE 2.

Type Level Equivalency
RT=W 0 thru 16B end-of-section
RT=W 178 end-of-partition
RT=S 0 thru 178 end-of-recard
RT=2Z 0 thru l78 end-of-section
BT=C 0 thru 178 end-of-section

C-l1e

FILE FORMAT AND STRUCTURE D

The files generated and used by Update have formats
determined by both the operating system in use and the user.
This appendix describes default file formats, allowed file
formats, and the interchangeability of files among operating
systems. Table D-1 summarizes file structure according to
the operating system used.

LIBRARY FILE FORMATS

Update can create and maintain library files in two
distinctly different formats: random and sequential. These
formats are described in detail below. Random format
should be used whenever possible because it can be
processed substantially faster than sequential format.

RANDOM FORMAT

On a random format library, each deck is a system-logical-
record as shown in figure D-1. The deck records are
followed by records containing the deck list, the directory,
and the random index.

YANKS$$$ Deck

Deck 1

Deck 2

Deck n

Deck List

Directory

SCOPE 2 Header
Random index

Random Index
(SCOPE 2 Only)

Figure D-1. Random Program Library Format

60449900 B

Random Index

The random index tells Update where the directory and deck
Timb bommiom oo d bon Do Al e Thom fomdoo. Voo a3
LIdL UTYLT dilid 1IUW LU UIBY diCe 11T IHNIUBA didU Cconicdins
such information as what master control character and
which character set was used when the library was

generated. Random index format is shown in figure D-2.

Two copies of the random index are generated under
SCOPE 2 because Update generates another copy when it
closes the file. The closing of the file is a process internal
to Update.

Under SCOPE 2, Update adds a two word header to the
random index that indicates the number of words in the
index. SCOPE 2 header format is shown in figure D-3.

Copying to Tape

Random program libraries should be copied to tape through
Update parameters. To copy a random program library to
tape under NOS or NOS/BE, use the UPDATE control
statement

UPDATE(B,P=plname,N=1n)

where plname is the library name and Ifn is the tape file. To
copy the library back to mass storage, use

UPDATE(A,P=1fn,N=newpl)

where 1fn is the tape file and newpl is the new program
library name.

Under SCOPE 2, use the UPDATE control statement
UPDATE(F,P=plname,N=1fn)

to copy a random program library to tape. The program
library name is plname and Ifn is the tape file. To copy the
library back to mass storage, use

UPDATE(F,P=1fn,N=newpl)

where Ifn is the tape file and newpl is the new program
library name.

SEQUENTIAL FORMAT

Update optionally creates new program libraries in
sequential format. On magnetic tape, a sequential library
(SI tape format) is written as one record in binary
(figure D-4). The first word in the file is a display code key
word (figure D-5); the second is a counter word containing
the number of deck names in the deck list and the count of
correction set identifiers in the directory (figure D-6). The
last word in the file is a checksum (figure D-7).

D-l1e®

TABLE D-1. FILE STRUCTURE AND OPERATING SYSTEM

Update NOS/BE NOS SCOPE
Files Tape Mass Storage Tape Mass Storage Tape Mass Storage
P=OLDPL Binary Random or Binary Random or Binary, sequentialT Random:
sequential sequential RT=Wor S RT=W unblocked
Sequential:
RT=W unblocked
RT=W
N=NEWPL Binary | Random or Binary Random Binary, sequential | Random if unblocked
W - sequential W - sequential | RT=Wor S Sequential if blocked or if W
specified on Update control
statement.
RT=W unblocked by default.
RT=blocked W or S; specified
through FILE control
statement.
Cannot be blocked if random.
C=COMPILE | NOS/BE | Sequential Deter- Sequential RT=W, I blocked. RT=W unblocked
coded mined by Other types RT=S if compressed file; S
REQUEST determined by specified through FILE control
control FILE control statement.
statement statement
I=INPUT NOS/BE | Sequential Deter- Sequential RT=W, I blocked. RT=W unblocked
coded mined by Other blocking or RT=W blocked or RT=Z,
REQUEST RT=Z, FL<100 FL <100 through FILE control
control through FILE statement
statement control statement.
O=0UTPUT | NOS/BE | Sequential Deter- Sequential RT=W, I blocked. RT=W, unblocked
coded mined by Other types possi-~
REQUEST ble through FILE
control control statement.
statement
S$=SOURCE | NOS/BE | Sequential Deter- Sequential RT=W, I blocked. RT=W, unblocked
coded mined by Other blocking or RT=W blocked or RT=Z if
REQUEST RT=Z, FL<100 specified through FILE
control through FILE control statement.
statement control statement.
*READ NOS/BE | Sequential Deter- Sequential RT=W, I blocked. RT=W, unblocked
coded mined by Other blocking or RT=W blocked or RT=Z if
REQUEST RT=Z, FL <100 specified through FILE
control through FILE control statement.
statement control statement.

TRandom files can be put on tape by copying the file to tape. To access this file, it must first be copied to a W unblocked file.
W records are 5120 characters in length. SCOPE 2 Update checks for presence of directory header containing DIRECT$ to
identify random file and for presence of CHECK in word 1 of sequential file. If both tests fail, library format is unacceptable.
Randnm format library must be unblocked W records.

e D-2

604499500 B

59 47 29 23 17 11

7000 dil dlira
unused dirl dirra
unused m X lab y
fabel
label (cont.}

7000 Identifies random directory record.
dif Length of the deck list in words.
dilra Random address of first word of deck list.
dirl Length of directory in words.
dirra Random address of first word of directory.
m Indicates presence of deck bits in deck list
1 deck bits present
other deck bits not present
X Character set identifier determined by IP.CSET parameter.
3 (36g) IP.CSET is set for a 63-character set
4 (37g) IP.CSET is set for a 64-character set
lab Label flag:
nonzero words 3 and 4 contain tape label.
0 words 3 and 4 not present
SCOPE 2 does not recognize tape labels.
y Indicates which character set was used when the library was generated.
Y or null 64 character set used
other 63 character set used
c Indicates master control character in use when the library was created.
Figure D-2. Random Index Format
59 17
DIRECTS$ unused
n
n Number of words in the random index.

60449900 B

Figure D-3. SCOPE 2 Random Index Header Format

D-3e

Display Code Key Word

Counter Word

Directory

Deck List

YANKS$$ Deck

Deck 1

Deck 2

Checksum

Figure D-4.

Sequential Program Library Format

YANKS$$$ DECK

The YANK$$$ deck is automatically created on a creation
run as the first deck on the program library. It does not
have a DECK card as its first card image. On correction
runs, Update inserts into the YANK$$$ deck any YANK,
SFLYANK, YANKDECK, and DEFINE directives that it
encounters during the read-input-stream phase. These
directives acquire identification and sequence information
from the correction set from which they originate. On a
merge, the two YANK$$$ decks are merged into a single
deck.

Although the YANK$$$ deck as a whole cannot be yanked or
purged, cards in the deck can be deleted, yanked, or purged
from it. If information other than the four directive types
mentioned inadvertently gets into the YANK$$$ deck, it can
be purged through the E option on the Update control
statement.

DECK LIST

The deck list is a table that contains an entry for each deck
on the program library. Each entry on a seqeuntial program
library consists of one word containing the deck name; bit
three is reserved for the deck bit that indicates whether or
not the deck is a common deck. Each deck list entry on a
random program library consists of two words as shown in
figure D-8.

DIRECTORY

The directory is a table that contains one entry for each
DECK, COMDECK, and IDENT that has ever been used for
this library. Directory entries each consist of one word
containing the 1 through 9 character identifier in display
code, left-justified with zero-fill. Correction set identifiers
and deck names are listed chronologiclaly as they are
introduced into the library.

CH

lab

59

29 23 17 11 5 0

CHECK

00 |m X lab Y c

ECK Identifies the file as being a sequential file.

Indicates presence of deck bits in deck list:

1 deck bits present
other deck bits not present

Character set identifier determined by IP.CSET parameter:

3 {36g) IP.CSET is set for a 63 character set
4 (37g) IP.CSET is set for a 64 character set

Label flag:

L indicates labeled tape
nuli indicates unlabeled tape

SCOPE 2 does not recognize tape labels.

Indicates which character set used when the library was generated:

Y or null 64 character set used
other 63 character set used

Indicates master control character in use when the library was created.

® D-4

Figure D-5. Display Code Key Word Format

60449900 B

A deck name that has been purged remains in the table
although it is not printed on the listable output file. The
purged deck names are not removed from the table unless
the E (edit) parameter is specified on the Update control
statement.

The number of identifiers in the directory is limited by the
amount of central memory (or small core memory) available.

Each directory entry has the format shown in figure D-9.
For a purged identifier, bits 59 through 6 are zeros, and bits
5 through 0 contain a 208.

COMPRESSED TEXT FORMAT

Text is an indefinite number of words that contain a
correction history and the compressed image of each card in
the deck. Information for each card is in the format shown
in figure D-10.

OLD SEQUENTIAL FORMAT

Update accepts library files in the old (pre-SCOPE 3.3)
Update sequential format as shown in figure D-11. These
libraries resemble the new sequential format but do not

59 35 17 g
unused idcount dcount
idcount Number of identifiers in the directory.
dcount Number of deck names in the deck list.
Figure D-6. Counter Word Format
checksum
checksum Count of bits in the program library.
Figure D-7. Checksurm Format
59 29 53 0
dname d

unused

ra

dname
on library. The first dname is YANKSS$S.

1 through 9 alphanumeric character deck name obtained from DECK or COMDECK directive when deck was placed

d Deck bit. Indicates kind of deck.
0 common deck
1 regular deck
ra Random address of first word of compressed text for the deck.

Figure D-8. Randam Program Library Deck L.ist Format

59

identifier

unused

Figure D-9. Directory Format

60449900 B

D-5e

59 53 35 17 0

¢ alun we seqnum chb 1

¢ unused chb 2 chb 3 chb 4

¢ unused chb n-2 chb n-1 chb n
compressed card

c Correction history byte flag. Indicates the last word containing correction history bytes.
0 Not last word
1 Last word
a Activity bit for the card.
0 Card is inactive
1 Card is active
we Number of words of compressed text for this card, excluding words containing correction history bytes.
seqnum Sequence number of card (octal) according to position in deck or correction set identified by chb 1.
chb Correction history byte. Update creates a byte for each correction set that changes the status of the card.

The format of chb is.

17 [
yla ident no
y Yank bit:
0 Card not yanked
1 Card has been yanked
a Activity bit:
0 Correction set deactivated the card
1 Correction set activated the card
identno Index to the entry in the directory that contains the name of the correction set or deck that

introduced the card or changed the card status.

Compressed card The compressed image of the card in display code. Single and double spaces are unaltered. Three or more
embedded spaces are replaced in the image as follows:

3 spaces replaced by 0002
4 spaces replaced by 0003
5 spaces replaced by 0004

64 spaces replaced by 0077g

65 spaces replaced by 0077558

66 spaces replaced by 007755558

67 spaces replaced by 007700028, and so forth

When a space is the first character of a line, it is always represented as 558 even when it is part of a
string of spaces.

Trailing spaces are not considered as embedded and are not included in the card image. A four-digit
octal code 0000 or word count (wc) reached marks the end of the card. This is conditional on the
CHARG64 option.

When the full-character set installation option is assembled, a byte of 0001 represents a colon.

Figure D-10. Compressed Text Format on Program Library

® D-6 60449900 B

contain the CHECK word or checksun, and the text format
and correction history bytes are different. Word 2 on the
new format is the same as word 1 on the old format. Update
no longer generates this obsolete sequential format.

identifier deck

unused count count

DIRECTORY

DECK LIST

YANKSS$S Deck

Figure D-11. Old Sequential Program Library Format

INTERCHANGEABILITY OF LIBRARIES

Random format libraries have limited interchangeability
among the operating systems when they have been copied to
tapes. This interchangeability is shown in table D-2.

Sequential program libraries are interchangeable among
operating systems when they are system-logical-records
(Record Manager type S records).

TABLE D-2. FILE INTERCHANGEABILITY

System to Read
System That : ¥
Generated Random Random Library From Tape

Library on Tape NOS | NOS/BE | SCOPE 2

NOS 1 Yes No No
NOS/BE 1 Yes Yes No T

SCOPE 2 No No Yes

+
'A yes indicates the tape can be read; a no indicates it
cannot.

’H'Must be copied to unblocked mass storage file when
read in.

COMPILE FILE FORMAT

Through control statement parameters, the user can specify
whether the text on the compile file is to be compressed or
expanded, and sequenced or unsequenced. The expanded
compile file format for each card consists of 72 or 80
columns of data followed by 0 to 18 columns of sequence
information. The maximum size of a card image is 90
columns.

Update attempts to place sequence information in the
columns remaining in the card image after the data columns
have been allocated. When the data field is 72 and the card
image is 90 columns, column 73 is blank and 17 columns are
available for sequencing information. In this case, the 1 to 9
character identifier is left-justified in column 74, and the
sequence number is right-justified in column 86.

When the data field is 72 and the card image is 80 columns,
8 columns are available for sequencing information. If the
data field is 80 and the card image is 90, 10 columns are
available for sequencing information. In either of these
cases, if the identifier and sequence number exceed the
field, Update truncates the least significant (right most)
characters of the identifier leaving the sequence number
intact.

If the data field and card image are both 80, the compile file
output cannot have sequence information appended.

The example in figure D-12 shows how Update positions
sequencing information for the various control statement
options.

73174 80 86 90
— |A|S|JE|JV]|E]|N]C | i 141]4
SJE]JVIE|N]JC] I 11414
S]1E]V]E ! 1] 4

WITH 8 OPTION
L—— WITH D OPTION
L NORMAL COMPILE OUTPUT

Figure D-12. Sequencing Farmat for Compile File

60449200 B

D-7@

If the 80 (90) character card image on the compile file has The format of the compressed compile file is shown in

two blanks as the last two characters, these are converted figure D-13. The first word is a loader prefix table (77,).
to a 0000 line terminator and the card image is 8 (or 9) Compressed format is generated through the X option on the
words long. If the last two columns do not contain blanks, a UPDATE control statement.

word containing 8 blanks and a zero byte line terminator are
added, thus making the card image 9 (or 10) words long.
This same procedure is used for creation of the soruce file.

59 53 47 41 35 17 0
77 00 00 00 unused
l——— sequence field 1
nw 1
17 compressed card 1 ‘7
sequence field 2
nw 2
4 U L
compressea cara £ [
sequence field n
nw n
/r compressed card n T
sequence field 17 characters comprising card columns 74 through 90. Column 73 is always blank.
nw Binary number of words in compressed card;.
compressed card Columns 1 through 72 of a COMPASS source card in compressed form. That is, each 00 character is
replaced by the 12-bit value 0001, and three or more consecutive blanks (to a maximum of 64) are
replaced by a 12-bit value 0002 through 00778. A single blank is represented in display code {55q);
two consecutive blanks are represented by the 12-bit value 55558. If the last word is not full, it is
padded on the right with binary zeros. Because word count nw is present, an extra all-zero word is
not required to guarantee 12 zero bits.

Figure D-13. Compile.File Compressed Format

o D-8 60449900 B

INSTALLATION OPTIONS E

The following Update features are available through

assembly options.

DECLKEY

CHARG64

PMODKEY

AUDITKEY
EDITKEY

OLDPLKEY

SCOPE33

60449900 B

Enabies DECLARE directive (section 3).

SUPPORTS full 64-character set (refer to
compressed text description appendix D).

Enables PULLMOD directives and G
option (sections 3 and 4).

Allows audit functions (section 4).
Allows merge and edit (section 4).
Enables Update to read both old-style and
new-style old program libraries

(appendix D).

Declares that interface is with SCOPE 3.3
or later system, if SCOPE33 is defined.

Otherwise, interface is with earlier
versions.

EXTOVLP Enables detection of four types of overlap
involving two or more cards in a
correction set (appendix B).

ia axnansion, Whan
AT CApPQI ISVl LAR RN}

this option is assembled, Update
automatically expands tables as required
and dynamically requests the operating
system to change the user field length to
accommodate the additional table area.
At the end of the run, the field length is
reduced to that requested by the user.

An attempt to use features when the option has not been
assembled causes Update to issue error messages. For
example, when PMODKEY is not set, the PULLMOD
directive is not recognized as a legal directive. Refer to the
installation Handbook for more details.

B e

A parameter 4-1

ABBREV directive 3-12

ADDFILE directive
description 3-1, 3-5
examples 5-4

C parameter 4-1
CALL directive
description 3-10
example 5-2
Card identifier 1-1, 3-1
CHANGE directive 3-5
COMDECK directive
description 1-2, 3-4
example 5-1
Comments 3-1, 3-14, 4-5
Common decks (see Decks)
COMPILE directive 3-10
Compile file (see Files)
Control Statement (see UPDATE control statement)
COPY directive
description 3-6
example 3-6, 5-2
Correction run
description 1-2
example 5-2
files 2-1
Correction set 1-2, 3-7
Carrection history bytes 1-2
Copy run 1-2, 2-1
Creation run
description 1-2
example 5-1
files 2-1

CWEOCR directive 3-1, 3-10

D parameter 4-1
Debugging 4-4
DECK directive
description 1-2, 3-4
example 5-1
Deck list 1-2, 3-7, D-4
Decks
common
description 1-2, 3-4
calling 3-10
example 5-1
reqular 1-2, 3-4, 5-1
DECLARE directive 3-1, 3-13
DEFINE directive
description 3-13
example 5-3
DELETE directive
description 3-6
example 5-2
Directives
compile file 2-3, 3-10
correction 3-5
deck identifying 3-4
description 1-1, 3-1

60449900 B

INDEX

file manipulation 3-12
input stream control 3-12
special 3-13

Directory 1-2, 3-7, D-4

DO directive
description 3-11
example 5-3

DONT directive
description 3-11
example 5-3

E parameter 4-1

END directive 3-13

ENDIF directive
description 3-11
example 5-4

ENDTEXT directive 3-12

F parameter 4-1
Files
compile
control statement parameters 4-1, 4-2, 4-4
description 1-1, 2-3
format D-7
input
description 1-1, 2-1
contrcl statement parameter 4-2
example 5-1
new program library
description 1-1, 2-2 .
control statement parameter 4-3
merge file 2-3, 4-3
old program library
description 1-1, 2-2
control statement parameter 4-3
output
description 1-1, 2-3
control statement parameter 4-2, 4-3
pullmod 2-4, 4-1, 5-5
scratch 2-4
secondary old program library 2-3, 3-10, 4-3
source 1-1, 2-3, 4-4
Full mode (see Update mode)

G parameter 4-1
H parameter 4-2

I parameter
description 4-2
example 5-2

IDENT directive 3-7

IF directive
description 3-11
example 5-4

Input file (see Files)

Input stream 1-1, 2-1

INSERT directive
description 3-7
example 5-2

Installation options E-1

Index-1

K parameter 4-2

L parameter 4-2
LIMIT directive 3-13
LIST directive 3-12

M parameter 4-3

Master control character 3-1, 4-5
Merge file (see Files)

MOVE directive 3-7

N parameter 4-3

New program library (see Files)
NOABBREYV directive 3-13

NOLIST directive 3-13

Normal selective mode (see Update mode)

O parameter 4-3
Old program library (see Files)
Output file (see Files)

P parameter 4-3
Primary input stream (see Input stream)
Program library (see also Files)
auditing 4-3
editing 4-1
random and sequential
description 2-2, 4-1, 4-4
format D-1
PULLMOD directive
description 3-14
example 5-5
Pullmod file (see Files)
PURDECK directive
description 3-7
example 5-3
PURGE directive
description 3-8
example 5-3

Q parameter 4-4
Quick mode (see Update mode)

R parameter 4-4

Random program library (see Program library)

READ directive 3-12

Reqular deck (see Decks)
RESTORE directive 3-8
REWIND directive 3-12

Index-2

S parameter 4-4
Scratch files (see Files)
Secondary input stream (see Input stream)
Secondary old program library (see Files)
SELPURGE directive
description 3-8
example 5-3
SELYANK directive
description 3-9
example 5-3
SEQUENCE directive 3-9

Sequential program library (see program library)

SKIP directive 3-12
Source file (see Files)

T parameter 4-4
TEXT directive 3-13

U parameter 4-4

UPDATE control statement
description 4-1
parameters 1-1, 4-1
examples 4-5

Update mode
full 1-3, 4-1
normal selective 1-3, 4-1, 4-4
quick 1-3, 2-3, 4-4

W parameter 4-4

WEOR directive
description 3-1, 3-12
example 5-1

X parameter 4-4, D-8

YANK directive
description 3-9
example 5-3

YANKDECK directive
description 3-10
example 5-3

YANK$$$ deck 1-2, D-4

8 parameter 4-4
/ comment directive 3-14
/ parameter 4-5
* parameter 4-5

60449900 B

CUT ON THIS LINE

i oa———— ewa——r—

2 e

COMMENT SHEET

TITLE: UPDATE 1 Reference Manual

PUBLICATION NO.

60449900 REVISION B

G2

CONTROL DATA
CORPORATION

This form is not intended to be used as an order blank. Controi Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which vou use this man

al.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME:

POSITION:

COMPANY"
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOIDONDOTTFD | INFS AND STAPL F

STAPLE STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

—
BUSINESS REPLY MAIL —
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I
CE—
E—
POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION SE——
Publications and Graphics Division —
215 Moffett Park Drive [—

Sunnyvale, California 94086
S
[]
—
STEm—

T T

STAPLE STAPLE

CUT ON THIS LINE

Manual Title UPDATE 1 Reference Manual Pub. No. 60449900 Rev. B

As part of Control Data's continuing quality improvement program, we invite you to complete this questionnaire so
that you may have a more direct influence on the manuals you use.

Please rate this manual for each general and individual category on a scale of 1 through 5 as follows:

1 - Excellent 2 - Good 3 - Fair 4 - Poor 5 - Unacceptable
1 Writing Quality D. | am interested primarily In
. user guides designed io teach
A. Technical accuracy the user about a product or
B. Completeness certain capabilities of a product.
C. Audience defined properly - —_—
D. Readability VI. We recognize that we have a wide
E. Under§taqdability variety of users. Please identify your
F. Organization primary area of interest or activity:
Il. Examples A. Student
) B. Applications programmer
A. Quantity C. Systems programmer
B. Placement_ D. How many years programming
C. Applicability experience do you have?
D. Quality E. What languages
E. Instructiveness 1. Algol
2. Basic
1l. Format 3. Cobol
. 4, Com
A. Type size - 5. Fomp;:)ss I
B. Page density - 6 PL/} R
C. Art work - 7° Other —
D. Legibility) B—
E. Printing/Reproduction F. Have you ever worked on
non-CDC equipment?
IV. Miscellaneous
1. If yes, approximately
A Index - what percent: of your
B. Glossary experience is on non-
CDC equipment?
V. Please provide a yes or no answer
regarding manuals in general: 2. How do you rate CDC
manuals against other
A. | prefer that a manual on a software similar manuals using

product be as comprehensive as

possible; physical size is of little

the 1-5 ratings.
(Example: XYZ Corp. 2

importance. means XYZ manuals are good

as compared to CDC manuals.)
B. | prefer that information on a Burroughs

software product be covered in DEC

several small manuals, each Hewlett-Packard

covering a certain aspect of the Honeywell

product. Smaller manuals with IBM

limited subject matter are easier NCR

to work with, Univac
Other

C. | am interested primarily in
reference manuals designed for
ease of locating specific
information.

General Comments

STAPLE STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL —
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. L
—
—

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION R
Publications and Graphics Division ——
215 Moffett Park Drive SEE—
Sunnyvale, California 94086 —
——
E——
—
—

- fsOLo0 - T T T T T T T T T T 77 TFow

STAPLE STAPLE

CUT ON THIS LINE

v}

UPDATE CONTROL STATEMENT PARAMETERS

Sequential-to-Random Copy

omitted no copy
A copy

Random-to Sequentiai Copy
omitted no copy

B copy

Compile File Name

omitted

orC COMPILE
C=lfn Ifn
C=PUNCH PUNCH
C=0 none

Data Width On Compile File

omitted 72 columns
D 80 columns

Edit Old Program Library
omitted no editing
E editing

Full Update Mode

omitted normal selective mode
F full mode

Pullmod File Name

omitted source file
G=lfn Ifn

Character Set Change

omitted

or H default set
H=3 63

H=4 64

Input Stream File Name

omitted
corl o “INPUT
I=ifin ifn

Compile File Sequence

omitted C parameter determines deck location
K COMPILE directive sequence on file COMPILE
K=lfn COMPILE directive sequence on file Ifn

Listable Output Options
omitted creation run: A, 1, 2

correctionrunt A, 1,2, 54
copy run: A, 1

L=0 suppress listing

L=c...c options 1 thru9, Aor F

Merge File Name

omitted no merge
M MERGE
M=lfn I¥n

~

New Program Library Name

omitted
or N NEWPL
N=Ifn Ifn

Listable Output File Name

omitted
or O OUTPUT
O=ifn iin

Old Program Library Name

omitted

orP OLDPL

P=lfn Ifn

P=lfn/sl/

s2/ ... 1fn; secondaries on si

P=/s1/s2. . . OLDPL; secondaries on si

Quick Update Maode

omitted normal selective mode
Q quick mode

Rewind Files

omitted rewind files
R no rewinding
R=c. ., .c rewind specified files (C, N, P, S)

Source File Name

omitted none
s SOURCE
S=ifn Ifn

Omit Common Decks From Source File

omitted none

T SOURCE

T=Ifn Ifn

Debug Help

omitted fatal error ends execution

8] fatal errors do not end execution

-~ Sequentisl New Program Library Format

omitted random if possible
W sequential

Compressed Compile Fiie

omitted not in compressed format
X in compressed format

Card Image Width On Compile File

omitted 90 columns
8 80 columns

Master Control Character

omitted *
*mp c

Comment Control Character

omitted /
/=c c

_ITRO NS A

©2

CONTROL DATA CORPORATION

