@- CONTROL DATA
CORPORATION

60450100 F

6>/
2:0/2',

MODIFY |
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS 1

Name

*BKSP
*CALL
*CALLALL

*COMMENT

*COPY
*COPYPL
*CREATE
*CWEOR
*DECK
*DEFINE
*DELETE
*D

*EDIT
*ELSE
*ENDIF
*IDENT
*[F
*[FCALL
*IGNORE
*INSERT
*
*INWIDTH
*MODNAME

Name

*EDIT
*PULLALL

Page Number

5-2
6-1
6-2
6-2
3-3
3-2
3-2
6-3
4-2
7-1
4-2
4-2
4-3
6-2
6-2
41
6-2
6-1
4-3
4-2
4-2
7-1
4-2

MODIFY DIRECTIVES INDEX

b Name '

*MOVE

_*NIFCALL
- *NOSEQ

*OPLFILE
*PREFIX
*PREFIXC
*PURDECK
*READ
*READPL
*RESTORE
*RETURN
*REWIND
*SEQ
*SKIP
*SKIPR
*UNYANK
*UPDATE
*WEOF
*WEOR
*WIDTH
*YANK

*/

OPLEDIT DIRECTIVES INDEX

Page Number

A-1
A-1

Name

*PULLMOD
*PURGE

Page Number

1-2
6-1
3-3, 6-3
3-2
7-1
7-1
43
5-1
5-1
4-2

52
5-2
6-3
5-2
5-2
4-3
7-2
6-3
6-3
3-3, 6-2
4-3
7-1

Page Number

A-1
A-1

60450100 F

000000 POOOCCDOOO0OCOBRBOOOOOC

G @ CONTROL DATA
CORPORATION

60450100

MODIFY
REFERENCE MANUAL

2P 000000000 CDODO000000000C0C

CDC® OPERATING SYSTEM:
NOS 1

REVISION RECORD

REVISION DESCRIPTION
A Manual released. This manual reflects NOS 1.1 at PSR level 419,
(03-08-76) .
B Revised to update the manual to NOS 1.2 at PSR level 439, and to make typographical and technical
(12-03-76) corrections. New directives IF, ELSE, ENDIF, and NIFCALL are added. The previous DEFINE directive has a new
parameter added that allows a value to be associated with a defined name. This edition obsoletes the previous
edition.
C Revised to update the manual to NOS 1.2 at PSR level 452, to reformat error messages, and to make
(07-15-77) typographical and technical corrections. Support of CDC CYBER 170 Series, Model 171 is also included.
D Revised to update the manual to NOS 1.3 at PSR level 472; to add new information regarding common
(02-03-78) decks; to add examples of the IF, ELSE, ENDIF, and NIFCALL directives; to change the type font of the terminal
sessions; and to make typographical and technical corrections. This edition obsoletes all previous editions.
E Revised to update the manual to NOS 1.4 at PSR level 498, and to make typographical and technical
(06-22-79) corrections. New error messages INITIALIZATION DIRECTIVE OUT OF ORDER and INVALID CS ON INPUT are
added. Support of CDC CYBER 170 Series, Model 176 is also included. This edition obsoletes all previous editions.
F Revised to update the manual to NOS 1.4 at PSR level 530, and to make typographical and technical
(12-05-80) corrections. Sections 1, 2, and 8 have been reorganized. List Option feature is enhanced and expanded. This

edition obsoletes all previous editions.

Publication No.

60450100

REVISION LETTERS I, 0, @ AND X ARE NOT USED

Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphies Division
4201 North Lexington Avenue

© 1976, 1977, 1978, 1979, 1980 _ St. Paul, Minnesota 55112

by Control Data Corporation
All rights reserved

or use Comment Sheet in the back of
this manual,

Printed in the United States of America

ii

C o OC

O 00

o

N \
// ‘/’/

¢

®

OO0

(o

-~
-

S0 00

P 000000000 CDO0O000000000O0

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot

near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

ront Cover
Inside Front
Cover
Title Page
ii
iii/iv
v/vi
vii
viii
1-1

USSR
LN = O N

D OO O =)W RO DD

1
w

Qv O
rTeTeEEe e

F

6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8

9-10
9-11
A-1

PAGE I REVl L
F

R R R R R R e e R e R R R e R i i o R R R B R R Re R R R Re R B I e e R e R Tl e e e e e e e e e e e e B DL

PAGE

REV l

A-2

A-3

A-4

B-1

B-2

B-3

B-4

B-5

Index-1

Index-2

Index-3

Comment
Sheet

Inside Back
Cover

Back Cover

o M mmmmmme Qe

REV

PAGE

REV

l PAGE

REVJ L PAGE

I

60450100 F

iii/iv

C
C
C
C

N
W

C

P 90 0000000 CDODOCO0O00000O00O0CDO0

PREFACE -

“

This manual describes the program library maintenance
utility Modify. Modify is part of the Network Operating
System (NOS) for CDC® CYBER 170 Series Computer
Systems; CDC CYBER 70 Series, Models 71, 72, 73, and 74
Computer Systems; and the CDC 6000 Series Computer
Systems. Modify is used to maintain and update source
files that are on libraries in a compressed format.

AUDIENCE

Because the advantages of Modify are best utilized by a
programmer with a large volume of source program text or
symbolic data, the manual is written for the experienced
NOS applications or systems programmer.

ORGANIZ

The introduction describes features of Modify and presents
an overview of its operation. The remaining sections
describe the directives that the user supplies to control
library creation and editing. Wherever possible, Modify
usage is illustrated through examples.

Appendix A describes the NOS utility OPLEDIT, which
provides the capability to delete and reconstruct previous
modification sets.

RELATED PUBLICATIONS

The NOS Version 1 Manual Abstracts, publication number
84000420, is a pocket-sized manual containing brief
descriptions of the contents and intended audience of all
NOS and NOS product manuals. The abstracts can be
useful in determining which manuals are of greatest
interest to a particular user.

60450100 F

Control Data also publishes a Software Publications
Release History, publication number 60481000, of all
software manuals and revision packets it has issued. This
history lists the revision level of a particular manual that
corresponds to the level of software installed at the site.

For further information concerning Modify and NOS,
consult the following manuals.

Publication

Control Data Publication Number
Modify Instant 60450200
NOS Version 1 Reference Manual,
Volume 1 60435400
NOS Version 1 Reference Manual,
Volume 2 60445300
NOS Version 1 Applications Program-
mer's Instant 60436000
Network Products
Interactive Facility Version 1
Reference Manual 60455250
Network Products
Network Terminal User's Instant 60455270
NOS Version 1 Time-Sharing User's
Reference Manual 60435500
NOS Version 1 Terminal User's
Instant 60435800

DISCLAIMER

This product is intended for use only as deseribed in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or undefined
parameters.

v/vi

QOO0 OQ0QQQQLULl JLOLLLLLLUOOCL

2000000000 CDODO00000O00000C0O0

CONTENTS

L]

1. INTRODUCTION

B Features

Modify Organization
Files Used to Initialize Program Library
Directives
Output Files

Modify Execution
Initialize Program Library
Read Modification Directives
Incorporate Changes/Write Output Files

Name Conventions

Line Identification

ASCI Mode Considerations

Modify Examples

I 2. MODIFY CONTROL STATEMENT

3. INITIALIZATION DIRECTIVES

Preparing the Source File

CREATE - Create Program Library
OPLFILE - Deeclare Additional OPL Files
COPYPL - Copy Program Library to Scratch
COPY - Copy Program Library to OPL
WIDTH - Set Line Width on Compile File
NOSEQ - No Sequence Information
Initialization Directive Examples

4. MODIFICATION DIRECTIVES

IDENT - Identify New Modification Set

DECK - Identify Deck to be Modified

MODNAME - Identify Modification Set to be
Modified

DELETE - Delete Lines

RESTORE - Reactivate Lines

INSERT - Insert Lines

YANK - Remove Effects of Modification Set

UNYANK - Rescind One or More YANK Directives

PURDECK - Purge Deck
IGNORE - Ignore Deck Modifications
EDIT - Edit Decks
Selective Edit Mode
Full Edit Mode
Update Edit Mode
Modification Directive Examples

5. FILE MANIPULATION DIRECTIVES

READ - Read Alternate Directives File
READPL - Read Program Library
BKSP ~ Backspace File

SKIP - Skip Forward on File

SKIPR - Skip Forward Past Record
REWIND - Rewind Files

RETURN - Return Files to System

60450100 F

T
S

LETTERY
Co O LW LWL

R
Lo -

3-1

3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-3

4-1
4-2

4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4

5-1
5-1
5-2
5-2
5~2
5-2
5-2

File Manipulation Directive Examples

6. COMPILE FILE DIRECTIVES

CALL - Call Common Deck

IFCALL - Conditionally Call Common Decks
NIFCALL - Conditionally Call Common Decks
CALLALL - Call Related Common Decks

IF - Test for Conditional Range

ELSE - Reverse Effect of IF

ENDIF - Terminate Conditional Range
COMMENT - Create COMMENT Line
WIDTH - Set Line Width on Compile File
NOSEQ - No Sequence Information

SEQ - Include Sequence Information

WEOR ~ Write End of Record

CWEOR - Conditionally Write End of Record
WEOF - Write End of File)

Compile File Directive Examples

7. SPECIAL DIRECTIVES

/ - List Comment

PREFIX - Change Modify Directives Prefix

PREFIXC - Change Compile File Directives
Prefix

INWIDTH - Set Width of Input Text

DEFINE - Define Name for Use by IFCALL,
NIFCALL, IF

MOVE - Move Decks

UPDATE - Update Library

Special Directive Examples

8. MODIFY FILE FORMATS

Source Decks and Files
Source Decks Prepared by User as Input
to Modify
Source Files Generated by Modify
Program Library Files
Deck Records
Directory Record
Directives File
Compile File
Seratch Files

9. BATCH JOB EXAMPLES

Create Program Library

Modify Program Library

Move Text

Read Directives from an Alternate File
YANK and UNYANK Modification Sets
Purge Decks

Change the Directives Prefix Character
Use of the Z Parameter

Sample FORTRAN Program

7-1
7-2
7-2
7-2

9-1
9-2
9-3
9-4
9-4
9-5
9-5
9-7
9-8

vii

1-2
1-3
3-1
3-2
3-3

viii

OPLEDIT UTILITY

Simplified Modify Execution Flow

Modify Execution from Batch

Modify Execution from Interactive Terminal
Modify Source Deck

Deck with Several Programs

Initialization Directive Examples

APPENDIXES

A-1

B.

INDEX

FIGURES
1-3 3-4
1-5 4-1
1-5 5-1
3-1 6-1
3-2 7-1
3-4 8-1

OUTPUT LISTING AND MESSAGES

Batch Job Creating Program Libraries
Modification Directive Examples

File Manipulation Directive Examples
Compile File Directive Examples
Special Directive Examples

Library File Format

B-1

3-6
4-5
5-3
6-4
7-2
8-1

66450100 F

O 00

_—
o

OO0 0 Co 0

~
J

2 0000000000000 O0000O0DO

INTRODUCTION

“

Modify maintains programs or data files in a compressed
text form. Modify transforms the source file into a
specially formatted file that allows the programmer to
easily meake or rescind changes to individual lines within
the text of the file. This specially formatted file is called
a program library file. Once the program library file has
been created, Modify accepts specific changes, performs
the changes, and produces several files of different types
that reflect the changes. These files can then be saved,
replaced, listed, punched, or compiled as the programmer
desires.

FEATURES
Features of Modify include:

o Formatting of files to facilitate line-by-line
modification.

e Inserting, deleting, deactivating, and reactivating
previously deactivated lines within the file.

o Rescinding one or more groups of changes
previously applied to the text.

e Replacing often-used groups of lines by one-line
calls for their insertion.

e Limiting the range of modifications to specified
records.

® Generating a file in a format suitable for input to
processors such as compilers and assemblers.

e Executing from batch or interactive jobs.

® Processing directives from an alternate file.

e Providing comprehensive statistical output noting
any changes made during the run and presenting

the status of the program library.

e Providing support of 63- and 64-character sets.

MODIFY ORGANIZATION

Modify ean be organized into three main functional blocks:

1. Files used to initialize the program library - these
contain the text from which Modify establishes
the program library. .

2. Directives - these are user-specified instructions
to Modify which establish the program library,
produce changes in the text, perform various
utility funetions upon the files used by Modify,
and alter certain operational characteristics of
Modify.

60450100 F

3. Output files -~ Modify produces these files after it
performs the instructions specified by directives.
Three of these files are updated versions of the
text in different formats; the fourth is a report of
actions taken during Modify's execution.

FILES USED TO INITIALIZE.PROGRAM LIBRARY

Files used to initialize the program library can contain
several programs and/or subroutines (each called a deck)
kept as separate logical records on the file. The user can
designate a group of frequently used source statements
(such as a group of DATA or COMMON statements in a
FORTRAN program) as a deck that can be shared by
several decks, called a common deck. The user can then
direct Modify to insert the text of the common deck within
the text of the program with the appropriate calling
statement.

Files used to initialize the program library contain program
text in one of two forms; source format or program library
format.

Source-format files are files typically prepared either as a
card deck or through the text-file creation facilities of the
NOS Interaetive Facility or NOS time-sharing system (refer
to the Interactive Facility Reference Manual or NOS
Time-Sharing User's Reference Manual). All program
library files begin as source-format files, which Modify
processes to create program library files.

A file in program library format has the following
characteristies.

e It is compressed (Modify has replaced three or
more consecutive blanks within a line with special
codes).

e It is sequenced (Modify has assigned a sequence
number and modification name to each line of the
file).

e It is indexed (Modify has built a directory of the
records on the program library file).

DIRECTIVES

Directives specify instructions to Modify. They allow the
user to create libraries and extensively direct the
correction and modification process. Local and remote
bateh Modify runs specify in the MODIFY control
statement the name of the file where the directives are
located. If Modify is being used from an interactive
terminal, the user may elect to name the file containing
the directives in the MODIFY control statement, or, by
default, have the system prompt the user for the directives.

1-1 e

A Modify directive has the following format.
*dirname p1,P2,---Pn

* The prefix character is in column 1.
Modify initially defines it as an

asterisk, but the user can change it with

the PREFIX and PREFIXC directives.
In this manual, the asterisk is used as
the prefix character.

dirname The directive name starts in column 2.
It must be separated from any
parameters.

Pi Optional directive parameters.
Numeric parameters are decimal.

The directive name and parameters are separated by any
character that has a display code value of 55g or greater;
that is (assuming 64-character set), a character other than:

A through Z
0 through 9
A

Some directives require specific separators. No embedded
blanks are permitted within a parameter. However, any
number of blanks can be between the directive name and
the first parameter or between two parameters, provided
the directive does not exceed 72 eolumns.

Modify directives are of the following types.

Directive Description

Initialization These directives specify the files
Modify is to use to initialize the
program library. They indicate
whether the file is in source
format (thereby causing Modify
to make a copy of it in program
library format) or is in program
library format.

Modification These directives specify
line-by-line changes (insertion,
deletion, deactivation, or
reactivation) for Modify to
make. They also specify which
decks Modify should copy to its
output files.

File Manipulation These directives instruct Modify
to begin reading directives
and/or program text from an
alternate file and position the
file (or other files local to the
job). Certain files (refer to
section 5) cannot be specified in
these directives. :

e 1-2

Directive Description

Compile File These directives allow user
control as the program library is
being written onto the compile
file. These directives are part of
the text on the program library;
thus, they are not processed until
the program library is written to
the compile file (see output files
below). Compile file directives
can be part of the files used to
initialize the program library or
they can be inserted by
modification directives.

Special These directives provide
extended features to Modify.
These directives affect the
operating characteristies of
Modify and are described in
section 7.

OUTPUT FILES

Modify produces several files as output, all of which are

optional. The user specifies these files through options on
the MODIFY control statement.

File Description
Compile The compile file is a program
text file with user-specified
modifications incorporated into
it. It may be used as input to a
language processor (such as a
COBOL or FORTRAN compiler
or the COMPASS assembler),
.directed to an output device such
as a printer or card punch, or
used as data for an application
program.

New Program
Library

The new program library file
contains the same updated text
as the compile file, only in
program library format. Thus
Modify can process this file
directly on subsequent runs.
Source-Text The source-text file contains the
same updated text as the

compile file, However, line
sequence numbers have been
removed and compile file
directives have not been

removed or acted upon by Modify.

Statistical The statistical list file is

List a listing produced by Modify that
shows the program text ehanges
incorporated into the program
library, details the status of the
program library and other files
output by Modify, and notes
errors and other significant
events oceurring during Modify
execution.

60450100 F

COO00C 00000

P

7

N/

»

OO0 QOO0 OO0

-

90000000000 O0OO00O000O00O0O0CO

MODIFY EXECUTION

Refer to figure 1-1 during the following discussion for a
simplified view of a Modify run.

Modify begins execution as a result of the operating system
interpreting a MODIFY control statement (see section 2).
Modify execution then progresses in three phases.

1. Initialize program library.
2. Read modification directives.

3. Incorporate changes/write output files.

INITIALIZE PROGRAM LIBRARY

During this phase, Modify reads initialization directives
(which must precede modification directives) from the
directives file to prepare the program library. The first
file to be included in the program library is the file
declared on the MODIFY control statement by the P
parameter (see section 2). Other files declared by
initialization directives are merged with this file to form
the program library. If the initialization directive specifies
that a file is in source-text format, Modify converts the
file to program library format before merging it with the
program library.

The initialization phase ends when Modify encounters the
first modification directive. File manipulation directives
and special directives do not terminate the initialization
phase.

READ MODIFICATION DIRECTIVES

During this second phase, Modify reads the remaining
directives on the directives file and stores any new text for
insertion during the final phase. The interactive user is
prompted for directives by Modify at the user's terminal or
can specify the file containing the directives with the I
parameter on the MODIFY control statement (refer to
section 2). The batch user specifies the file containing the
directives on the MODIFY control statement by the I
parameter (refer to section 2). The default file is the job
input file. An alternate directives file ean be specified by
the appropriate file manipulation directive (refer to section

INCORPORATE CHANGES/WRITE OUTPUT FILES

During this final phase, Modify performs the requested
changes, incorporating them into the output files requested
on the MODIFY control statement. Each inserted line is
assigned a modification name previously specified by a
modification directive (refer to section 4) and a sequence
number assigned by Modify. These ean be used in later
Modify runs to make further changes to the text. All lines
having the same modification name comprise a modi-
fication set. Compile file directives are also processed at
this time.

PROGRAM OR oLD NEW PROCESS
DATA IN PROGRAM » PROGRAM > CO'Q’I'I’_"E'-E C?:':"LPE' LE
SOURCE CODE LIBRARY LIBRARY DIRECTIVES
PROGRAM OR
DATA IN > NEW PROGRAM
PROGRAM LIBRARY LIBRARY FILE
FORMAT
PROGRAM
LIBRARY FILE _J SPECIAL AND FILE SOURCE
ON TAPE OR [€«—] MANIPULATION [—» CODE FILE
WITHOUT DIRECTIVES
DIRECTORY
STATISTICAL
INITIALIZATION MODIFICATION M%%T,::"\',GR%';,
DIRECTIVES DIRECTIVES \—/_
Figure 1-1. Simplified Modify Execution Flow
60450100 F

1-3 e

This phase can be initiated either by Modify interpreting an
. *EDIT difective (see section 4) on a directive file or by an
edit option parameter on the MODIFY control statement
specifying this phase after Modify has exhausted the
directive file (see section 2; F and U options).

NAME CONVENTIONS

File names used in Modify must conform to the NOS
standard: one- to seven-character names, valid characters
being A through Z and 0 through 9.

Modification set names, deck names, and defined names
can be one- to seven-character names of modification sets,
decks, or names in a *DEFINE directive for use in compile
file directives. Valid characters are:

A through Z
0 through 9
+-%/()$=

LINE IDENTIFICATION

The modification directives DELETE, INSERT, and
RESTORE, and the file manipulation READPL directive
require line identifiers. These identifiers can be specified
in either the complete or abbreviated form.

The complete format of a line identifier is:
modname.number

modname One- to seven-character name of a
modification set. A period terminates
the modification name.

Decimal ordinal (1 to 262143) of the
line within the correction set. A blank
or any character other than 0 through
9 terminates the sequence number.

number

The abbreviated form of a line identifier is:
number
When only the number is used for line identification

(modname is omitted), Modify uses the name from the most
recent MODNAME or DECK directive.

e 1-4

ASCIl MODE CONSIDERATIONS

Several problems can arise when using Modify from an
interactive job while the terminal is in ASCII 128-character
set mode. Refer to the NOS Reference Manual, Volume 1,
for a description of ASCII character sets.

Directives entered interactively from the terminal, or
those in an alternate directive input file, must not contain
characters in 6/12 display code; that is, directives must be
entered in all uppercase characters. Modify does not
recognize lowercase characters. Furthermore, any
nonalphanumeric characters used in the directives must be
chosen from the 64-character subset.

When ereating a program library, several precautions
should be taken. While a source file can contain any ASCII
characters, all deck names and compile file directives must
be in uppercase (no eseape codes). Care should also be
taken when entering source lines in ASCII mode. Each
character can actually occupy 12 bits (escape code and
character) and what appears to be a line width of 65
characters, for example, can actually be 130 characters.
The default line width in Modify is 72 6-bit characters with
an upper limit (refer to section 7) of 100 6-bit characters.

MODIFY EXAMPLES

Examples in this manual are for illustrative purposes only.
These examples may be neither the most efficient nor
necessarily recommended methods of using Modify
directives.

Figure 1-2 details a job submitted to loeal or remote batch,
and figure 1-3 illustrates the same job entered from an
interactive terminal. The user need not be concerned with
the meaning of directives or of parameters on the MODIFY
control statement at this point. Instead, the user should
compare the structure of the two jobs.

Subsequent examples in this manual (with the exception of

examples in sections 3 and 9) depict only jobs entered from
an interactive terminal.

The examples pertaining to a group of directives
immediately follow the discussion of those directives.
Some of the files created and modified in an example have
been retained and used in the following example.

60450100 F

OCO000C0O00O0O0C0

O

‘/4"&\

.

0
O
O
O
O
O
O
O
O
O

0000600000

JOBMOD.
USER(USERNUM,PASSWRD, FAMILY)
CHARGE (CHARNUM , PROJNUM)

GET (MAINP)

COPYSBF (MAINP)

MODIFY (P=0,F,N)

SAVE (NPL=MAINPL)

~—~EOR~— : Input directives for Modify statement.
*REWIND MAINP}///

* P
“Sggi{f MiIN {End—of-information is 6/7/8/9 multiple punch
in column 1,

Figure 1-2. Modify Execution from Batch

batch - After logging in, user requests batch subsystem.
$RFL,0.

/0ld,mainp

/1lnh,r

DECK1

¥%% MAIN PROGRAM
PROGRAM MAIN(OUTPUT)
PRINT*,"BEGIN MAIN PROGRAM."

CALL SUB1
PRINT#*,"END MAIN PROGRAM."
STOP
END
-—EQR-= User specifies 1=0 indicating that he does not wish
lto receive Modify output.

DECK3 /——
#%%¥ EMPTY DECK
—EOR— ‘Input directives are requested and entered

/modify,p=0,f,n,1=0 : . : .
2 *cr‘ea’ée ma’lir’lp, immediately following Modify statement. Null

- linput line (carriage return only) terminates

'MODIFICATION COMPLETE. - input.

/replace,npl=mainpl \ {Program notifies user that it has completed
modification.

Figure 1-3. Modify Execution from Interactive Terminal

60450100 F 1-5

QO QOO0 QCCOCLl OO OLOLOLOOOCE

2000000000 CDDO000000O00CO0O00

MODIFY CONTROL STATEMENT 2

“

The following control statement causes the Modify
program to be loaded from the operating system
library into central memory and to be executed.
Parameters specify options and files.

MODIFY (pl, Pgseees pn)

The optional parameters, pj, may be in any order
within the parentheses. Generally, a parameter
can be omitted or can be in one of the following
forms.

Option
Option=value
Option=0

where option is one or two characters as defined in
the following text. Unless Q or X is selected,
parameters CB, CG, CL, or CS are meaningless.
Value is a one- to seven-character name of a file
or is a character string.

Option Significance

A - Compressed compile file

Omitted Compile file is not in com~
pressed format.
A Compile file is in compressed

format.

C - Compile file output

Omitted or C Compile output to be written
on file COMPILE.

Write compile output on
named file.

C=0 No compile output.

C=filename

CB - COMPASS binary; Q or X option only.

Omitted or CB COMPASS binary output
written on the load-and~go
file (B=LGO).

COMPASS binary output
written on the named file
(B=filename).

No binary output (B=0),

CB=filename

CB=0

CG - COMPASS get text option; Q or X option only.
Takes precedence over CS.

CG L.oad systems text from
SYSTEXT (G=SYSTEXT).
Load systems text from
named file (G=filename).

CG=filename

CG=0 SYSTEXT not defined (G=0).
Omitted Load systems text from over-
lay named in CS option.
60450100 F

CL

CS

cv

Option Significance
- COMPASS list output including *comment lines.
Q or X option only.

CL List output on OUTPUT file
(L=OUTPUT).

List output on named file (L=
filename).

Short list instead of full list is
generated on OUTPUT file
(L=0).

CL~=filename

Omitted or
CL=0

~ COMPASS systems text; Q or X option only.

Omitted or CS Systems text on SYSTEXT over-
lay (S=SYSTEXT)

Systems text on named file
(S=filename)

CS=filename

CS=0 No systems text (S=0)

- Character set conversion

Omitted or No conversion takes place.

CVv=0

CV=63 Convert library created using
64-character set to 63-character
set.

CV=64 Convert library created using

63-character set to 64-character
set.

When the CV=63 or CV=64 conversion
option is selected, Modify forces C=0
(no compile file generation).

Conversion is recommended if the character set
of the old program library is not the same as the
character set used when the program library is
modified. Use CATALOG to determine the
character set of the program library (refer to
volume 1 of the NOS Reference Manual). Check
with a systems analyst to determine the character
set in use at the site.

Debug

Omitted A directive or fatal error aborts
the job.

D : A directive error does not abort
the job; the D option does not
affect fatal error processing.

Full edit

Omitted Decks to be edited are determined
by the U parameter or by EDIT
directives.

F All decks on the library are to

be edited and written on new
program library, compile file,
and source file if the respective
options are selected.

Option
I - Directive input
Omitted or I
I=filename

1=0

L, - List output

Omitted or L

L=filename

L=0

LO - List options
Omitted or LO

LO=clcz. . C

Significance

Directives on job INPUT file.
Directives comprise next
record on named file,

No directive input.

List output is written on job
OUTPUT file. This file is
automatically printed.

List output is written on the
named file. It is the user's
responsibility to assure that
the file is saved at job end
or is printed.

Modify does not generate a
list output file.

List Option E is selected if
the list output file is assigned
to an interactive terminal.
Options C, D, E, M, S, T, and
W are selected otherwise.

Each character (c;) selects an
option to a maximum of seven
options. The characters must
not be separated.

Option Significance
A List active lines in
deck
C - List directives other

than INSERT, DE-
LETE, RESTORE,
MODNAME, I, or D
List deck status
List errors

List inactive lines
in deck

List modifications
performed

Include statistics on
listing

List text input

List compile file
directives

Example: LO=ADEMS

=HOo

g4 @ B

N - New program library output

N

N=filename

Omitted or
N=0

New program library to be

written on file NPL.

New program library to be

written on named file. It is
the user's responsibility to
assure that the file is saved
at job end.’

Modify does not generate a

new program library.

If a new program library is being genera=
ted, an EVICT is performed upon it (NPL
or filename) before it is written on (refer
to the NOS Referenice Manual, ¥olume 1,
for a description of EVICT).

Option Significance

NR - No rewind of compile file

Omitted Compile file is rewound at be=
ginning and end of Modify run.

NR Compile file is not rewound at
beginning and end of Modify
run,

P - Program library input

Omitted or P Program library on file OPL.
P=filename Program library on named file.
P=0 No program library input file,

Q - Execute named program; no rewind of directives
file or list output file. .

Omitted or Q=0 Assembler or compiler is not
automatically called at end of
the Modify run.

Q=program At the beginning of the Modify
run, Modify sets LO=E and sets
the A parameter. At the end of
the run, Modify calls the as-
sembler or compiler specified
by program,

Q At the beginning of the Modify
run, Modify sets LLO=E and sets
the A parameter. At the end of
the run, Modify calls the COM-
PASS assembler. When this
option is selected, the CB, CL,
CS, and CG parameters are
meaningful. Compiler input is
assumed to be COMPILE., All
other parameters are set by de-
fault. If CL is not specified
with Q, lines beginning with an
asterisk in column 1 aré not
written to the compile file (com~
pile file directives are processed,
however).

S - Source output; illegal when A, @, or X are selected.

S Source output written on file
SOURCE.
S=filename Source output written on named

file. It is the user's responsi=
bility to assure that the file ig
saved at job end.

Omitted or S=0 Modify does not generate a source
output file.

U - Update edit

Omitted Decks to be edited are determined
by EDIT directives or by the F
parameter,

U Only decks for which directives

file contains DECK directives
are edited and written on the
compile file, new program li-
brary; and source file if the
respective options are on. F, if
specified; takes precedence.

X = Execute named program; dirsctives file and list

output file rewournd.

Saine as Q option, except Modify
direetives inpiit (I parameter) and
list output (L parameter) files are
rewotind before processing.

60450100 F

O
O
O
o
o
o
®
o
o
o

000000000

Option

Significance

Z - Control statement input

Omitted

60450100 F

The control statement does
not contain the input direc-
tives.

The Modify control statement
contains the input directives
following the control state-
ment terminator; the input
file is not read. This elimi-
nates the need to use a sepa-
rate input file for the direc-
tives when only a few direc-
tives are needed. The first
character following the con-
trol statement terminator is
the separator character for
all directives on the control
statement. Any display code

Significance

character which is not used
in any of the directives, in-
cluding a space, can be used
as the separator character.
The directives can extend to
column 72 on the statement.
Continuation cards are not
permitted. :

Do not place a con-
trol statement ter-
minator after the
directives.

Example: MODIFY(Z)/*EDIT
DECK1/*EDIT, DECK2

s

2-3

QO QOO0 QOO QO O«

L

0000000000000 0O00O00CO0O

INITIALIZATION DIRECTIVES 3

“

Modify initialization directives are placed on the
directive file and precede all modification direc-
tives, They are:

CREATE Converts source decks to
program library format for
modification.

OPLFILE Declares additional program
library files as input.

COPY Copies one or more records
from named file to old program
library.

COPYPL Copies one or more records
from named file to an internal
scratch file which is logically
merged with program library.
WIDTH Defines the number of columns
preceding the sequencing in-
formation on the compile and
source files; can occur any -
where in directives file.
NOSEQ Specifies no sequence infor -
mation on compile file.

CREATE, OPLFILE, COPY, and COPYPL are il-
legal after the first use of modification directives.
WIDTH and NOSEQ can be processed as compile
file directives.

DECK1

COMMON <
" COMMON/A/A

COMMON/Z/2z
-EOR-

DECK?2

PROGRAM X
*CALL DECK1

.
-
.

END
-EOI-

PREPARING THE SOURCE FILE

Before Modify can create a program library, the
user must prepare the source file by assigning a
deck name to each record of the source file and by
identifying those decks that are to be common decks.
The deck name must be the first line of the source
deck. A one- to seven-character deck name begins
in column 1. Legal characters are:

A through Z 0 through 9 + - %/ () $ =

If a second deck of the same name is introduced
during initialization, the second deck takes prece-
dence. In directory list output, the name of a re-
placed deck is enclosed in parentheses.

The second line of the source deck can identify the
deck as common. To do so, it must contain-the
word COMMON in columns 1 through 6. An end-of-
record terminates the deck. A set of decks is ter-
minated by an end-of-file (6/7/9 multiple punch in
column 1 for batch origin jobs) or end-of-information

Figure 3-1 illustrates a typical Modify source deck.

Usually a deckname {optionally followed by a
COMMON) precedes each program or subprogram.
However, more than one subprogram may be in-
cluded in a deck as is indicated in figure 3-2, A
user might group two programs if modification of
one requires reassembly or recompilation of both
programs.

Because of the order in which decks are edited
(refer to EDIT directive), it is recommended that
common decks be the first decks on the program
library.

Name of deck
Declares deck as common

Source deck

End-of-record terminates deck
Name of deck

Source deck

End-of-information terminates final deck

Figure 3-1. Modify Source Deck

60450100 F

FDATA
COMMON /
DATA 0
DATA 0
DATA 0
-EOR-
FIRST
IDENT FIRST
END
IDENT SECOND
: !
END
-EOI-

First deck

Program one
Second deck

Program two

Figure 3-2. Deck with Several Programs

CREATE — CREATE PROGRAM LIBRARY

When Modify encounters this directive, it writes
the contents of the named file from its current
position until it encounters an end-of-file onto a
scratch file in program library format with a di-
rectory. CREATE provides a means of initially
creating a program library for subsequent modifi-
cation, for adding decks to the program library, or
for replacing decks on the program library. 1

Format:
*CREATE file

file Name of file containing one or more
source decks. A format error oc-
curs if the name of the file is
omitted from the directive. This
file must be local to the user's job.

OPLFILE — DECLARE ADDITIONAL
OPL FILES

The OPLFILE directive specifies additional files,
already in program library format, that Modify log-
ically merges with any existing program library.
The existing library is made up of the old program
library declared on the Modify control statement

(P parameter) and/or other program library files
established internally by CREATE or COPYPL. t

The total number of files declared by OPLFILE
directives cannot exceed 50 files. Additional files
are ignored with the message:

TOO MANY OPL FILES.

Format:

*OPLFILE filel, filez, ..., file
n
filei Names of one or more files in pro-
gram library format to be merged
logically with the existing program
library.

COPYPL — COPY PROGRAM
LIBRARY TO SCRATCH

The COPYPL directive copies records (decks) al-
ready in program library format to an internal
scratch file which Modify logically merges with any
existing program library. f Modify builds a di-
rectory for this file as it is copied, ignoring any
existing directory on the file from which the copy is
made. All or part of the file can be copied, The
file may reside on either mass storage or magnetic
tape. Modify ignores all records on the file which
are not in program library format.

Format:
*COPYPL file, deckname
file Name of file containing decks

in program library format,
with or without directory, and

with or without other records in -

nonprogram library format.

deckname Optional; name of last deck
(record) to be copied. If deck-
name is omitted from directive,
or is not found on file, Modify
copieg all decks from the file
starting at the current file
position.,

T If the resulting program library contains two or more decks having the same name, the last one introduced
to Modify takes precedence; that is, the previous deck is logically replaced.

60450100 D

COo OO0 OO0 0O

O

0000000000000 000000O0

COPY — COPY PROGRAM
LIBRARY TO OPL

The COPY directive performs the same functions
as the COPYPL directive, with the following differ -
ences.

® The records (decks) are copied to the old
program library file declared on Modify
control statement (P parameter), If P=0
is specified on the Modify control state-
ment, the use of the COPY directive is
not allowed.

. Modify performs an EVICT on the old pro-
gram library file before the copy takes
place. Hence, this file (if it already exists)
should not contain any useful information.
Refer to the NOS Reference Manual,
volume 1, for a description of EVICT.

¢ COPY can be preceded only by file manip-
ulation directives,

® Only one COPY directive is allowed for
each Modify execution.

COPY is useful when copying all or part of a pro-
gram library residing on magnetic tape to a mass
storage device, since the resulting program library
file may be saved as a permanent file without having
Modify create a new program library. Refer to the
NOS Reference Manual, volume 1, for a description
of permanent file control statements.

Format:

*COPY file, deckname

file Name of file containing decks in
program library format, with
or without directory, and with
or without other records in
nonprogram library format.

deckname Optional; name of last deck
(record) to be copied. If deck-
name is omitted from directive,
or is not found on file, Modify
copies all decks from the file,
starting at the current file
position.

60450100 E

WIDTH — SET LINE WIDTH ON
COMPILE FILE

The WIDTH directive allows the user to set the
width of lines prior to the modify program library
and write compile phase. The last (or only) WIDTH
directive encountered on the directives file is used
during the compile phase until a compile file WIDTH
is encountered. A compile file WIDTH directive is
active only for the deck in which it is encountered.
An initialization WIDTH directive is active for all
other decks. If text is being inserted, the WIDTH
directive is left in the text stream and is later pro-
cessed as a compile file directive. WIDTH can

occur anywhere in the directive file.

Format:
*WIDTH n

n Number of columns preceding se-
quence information on compile file
and source file. Modify allows a
maximum of 100 columns, During
initialization of Modify, width is
preset to 72,

NOSEQ — NO SEQUENCE INFORMATION

The NOSEQ directive allows the user to set the no
sequence flag prior to the write compile phase.
When no sequencing is requested, Modify does not
include sequence information on the compile file.

A SEQ directive encountered during the write com-
pile phase clears the no sequence flag. If text is
being inserted, the NOSEQ directive is inserted into
the text stream and processed as a compile file
directive,

Format:

*NOSEQ

_INITIALIZATION DIRECTIVES EXAMPLES

Figures 3-3 and 3-4 illustrate the creation of pro-
gram libraries and the use of several initialization
directives., Figure 3-3 is a detailed terminal ses-
sion; figure 3-4 represents the same job formatted
for batch input. The user can submit the batch
origin job to obtain and examine output produced by
Modify and FORTRAN.

batch .
$RFL,0.
" /old,mainp
/1lnh,r
DECK1
%% MATN PROGRAM
PROGRAM MAIN(OUTPUT)

Listing of source file, showing end-of-record
PRINT* ,"BEGIN MAIN PROGRAM." €———————— ! marks, to be used to create program library.
CALL SUB1

Notice required deck names.

PRINT*,"END MAIN PROGRAM."

STOP

END
~~EOR--
DECK3
*¥%¥% EMPTY DECK
-=EOR-- .
/modify,p=0,1=0,f,n=mainpl ,c=0 Modify statement to create program library
? *create mainp \ .with name MAINPL. MAINPL is the result
s of converting the source text file MAINP to

.M()DIFICATI()N COMPLETE . program library format.
/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSuM DATE
1 DECKI OPL (64) 30 476 T77/10/07.
2 DECK3 OPL (64) 4 1725 77/10/07.
3 OPL OPLD 5 1310 77/10/07.
) ’ ‘ The catalog utility is a convenient means of
* * -
: 4 EOF SUM = 2 \ determining the decks and their types that
were written on the program library. Refer
/CQEAES&COMPLE?E' to the NOS Reference Manual, volume 1, for
/gopgch sub1 information on the CATALOG control state-
’

DECK? | _ment.
*x% SUBROUTINE 1

SUBROUTINE SUB1

PRINT¥*,"ENTER SUBROUTINE 1."

CALL SUB2

PRINT¥* "EXIT SUBROUTINE 1."

RETURN

END @-\l Anc.)the? source deck that the user wishes to
END OF INFORMATION ENCOUNTERED. v malntain on a separate program library.
/rewind,sub1

$REWIND, SUB1.
/modify,p=0,1=0,f,n=altplt,c=0
? *create subl

?

"MUDIFICATION COMPLETE .

Modify st i
/catalog,altpll,r ‘ ’ A I?TIP{, iatement to create program library
CATALOG OF ALTPL1 FILE 1
REC NAME TYPE LENGTH CKSuM DATE
1 DECK2 OPL (64) 30 5013 77/10/07.
2 OPL OPLD 3 217 77/10/07.
3 *EOF * SUM = 33

1 "
/ggf?g‘l’gpg‘zwmﬁ . M ‘ User obtains alternate program library

/catalog,altpl2,r] created at an earlier session.
} CATALOG OF ALTPL2 FILE 1
REC NAME TYPE LENGTH CKSUM. DATE
1 DECK3 OPL (64) 25 0100 77/10/06.
2 (OPL OPLD 3 2517 T77/10/06.
3 ¥ EOF % SUM = 30

1
CATALOG COMPLETE.

Figure 3-3. Initialization Directive Examples (Sheet 1 of 2)

g.4 60450100 E

YO O000C0O0O0

™
S/

¢

SO0 0O OO

09000000000 CDO0CO000000000O0

/rename,opl=mainpl -—

Program library MAINPL is renamed OPL.

$RENAME ,OPL=MAINPL.
/modify,f,1=0,n=mainpl
? *oplfile altpli

? *copypl altpl2,deck3
?

) MODIFICATION COMPLETE.
/catalog,mainpl,r

CATALOG OF MAINPL FILE
REC NAME TYPE LENGTH
1 DECK1 OPL (64) 30
2 DECK3 OPL (64) 25
3 DECK2 OPL (64) 30
4 oPL OPLD 7
5 ¥ EQOF ¥ SUM = 114

1

CATALOG COMPLETE.

/replace,mainpl

/copyef,compile

*%% MAIN PROGRAM
PROGRAM MAIN(OUTPUT)
PRINT*,"BEGIN MAIN PROGRAM."
CALL SUB1
PRINT*,"END MAIN PROGRAM."
STOP
END

¥%%¥ SUBROUTINE 2
SUBROUTINE SUB2
PRINT#*,"ENTER SUBROUTINE 2."
PRINT* ,"EXIT SUBROUTINE 2."
RETURN
END

*#%% SUBROUTINE 1
SUBROUTINE SUB1
PRINT#¥ "ENTER SUBROUTINE 1.%
CALL SUB2
PRINT#,"EXIT SUBROUTINE 1."
RETURN
END

END OF INFORMATION ENCOUNTERED.

/rewind,compile

$REWIND,COMPILE .

—

1
CKSUM

4476
0100
5013
5011

In this manner, the P parameter is not needed
on the Modify statement.

Modify run to merge OPL with program library
ALTPL1 and then use ALTPL2 to replace deck
DECK3 on OPL. The compile output of MAINPL,
is written on the default file COMPILE.

DATE

77/10/07.
77/10/06.
77/10/07.
T77/10/07.

DECK1
DECK1
DECK1
DECK1
DECK1
DECK1
DECK1
DECK3
Listing of compile DECK3
created by Modify DECK3
Notice sequencing DECK3
information. DECK3
DECK3
DECK2
DECK2
DECK2
DECK2
DECK2
DECK2
DECK2

~NOUITEWN = OV EWN=~10U1 &~W N —

Compile file is used as input to FORTRAN

/ftn,i=compile,1=0
.111 CP SECONDS COMPILATION TIME

/1go

BEGIN MAIN PROGRAM.

ENTER SUBROUTINE 1.

ENTER SUBROUTINE 2.

Extended compiler.

EXIT SUBROUTINE 2. <
EXIT SUBROUTINE 1.
END MAIN PROGRAM.

.005 CP SECONDS EXECUTION TIME

Execution of FORTRAN pfogram.

Figure 3-3. Initialization Directive Examples (Sheet 2 of 2)

60450100 D

JOB1

USER(USERNUM, PASSWRD, FAMILY)

CHARGE(CHARNUM, PROJNUM)

GET(MAINP)
COPYSBF(MAINP)
REWIND(MAINP)

MODIFY(P=0, F, N=MAINPL, C=0) «—— Creates new program library MAINPL.

CATALOG(MAINPL, R)
GET(SUBI)
COPYSBF(SUBI)
REWIND(SUBI)

MODIFY(P=0,F, N=ALTPL], C=0) «——— Creates new program library ALTPLI1.

CATALOG(ALTPLL R)
GET(ALTPL2)
CATALOG(ALTPL2,R)
RENAME(OPL=MAINPL)
MODIFY(F, N=MAINPL)
CATALOG(MAINPL, R)
REPLACE(MAINPL)
COPYSBF(COMPILE)
REWIND(COMPILE)
FTN(I=COMPILE)

1.GO.

-EOR~

*CREATE MAINP
-EOR-

*CREATE SUBI

-EOR-

*OPLFILE ALTPL1
*COPYPL ALTPL2, DECK3
-EOI-

Figure 3-4.

Batch Job Creating Program Libraries

Merges MAINPL,ALTPL1, and ALTPL2 through DECK3.

CoCO0O00O0O 00O

®

D
7

o C

OO0 COCOOC0C

000 000000200000 000O00

MODIFICATION DIRECTIVES | 4

Following the last initialization directive, place
the modification directives and their accompany-~
ing insertion lines on the directives file. The
first occurrence of a modification directive
terminates the initialization phase.

The following modification directives assign a
modification name to the corrections being made,
identify the deck being modified, and give the
modification set name to be used when the short
form of the line identifiers is used.

IDENT Specifies modification name
to be assigned to new modifi-
cation set.

DECK Identifies deck to be altered.

MODNAME Identifies modification set

within deck to be modified
when short form of line iden-
tifier is used and the modifi-
cation name is different from
that used in the last DECK or
MODNAME directive.

The following modification directives are used for
inserting and deleting lines.

DELETE or D Deactivates lines and optionally
inserts lines in their place.

RESTORE Reactivates lines and optionally
inserts text after them.
INSERT or I Inserts lines after specified

line.
These directives indicate to Modify that:

® New lines are to be inserted into the deck
and sequenced according to the correct
modification set identifier.

° Old lines are to be deleted.

While inserting, Modify interprets file manipulation
directives (for example, READPL changes the
source of insertion lines but does not terminate in-
sertion). Insertion terminates when Modify next
encounters another modification directive or end-
of~record.

Insertion lines can include compile file directives.
These directives are not interpreted but are in-
serted as if they were text; the prefix character
written on the program library is that specified on
the directive.

Other directives described in this section include:

YANK Deactivate modification set,

UNYANK Reactivate modification set.

PURDECK Remove all lines in a deck.
60450100 F

S L A S TS

IGNORE Ignore subsequent modifica-
tions to a named deck.
EDIT Modify and write named deck

to files specified on Modify
control statement.

IDENT — IDENTIFY NEW
MODIFICATION SET

The IDENT directive assigns a name to a modifica~-
tion set. Modify does not require any IDENT direc-
tive; however, this practice is discouraged, If the
directives file does not contain an IDENT directive,
the system uses *#*#%#%k*k ag the modname. This
default name should not be used when a new program
library is made, The user can use one IDENT for
several decks or can use several IDENT directives
for one deck. There is no restriction on the place-
ment of IDENT within the modification directives
input file.

Format:
*IDENT modname

One- to seven-character
modification name to be
assigned to this modifica-
tion set. This name causes
a new entry in the modifica-
tion table for each deck for
which the modification set
contains a DECK directive
until the next IDENT. Each
line inserted by this set,
and each line for which the
status is changed, receive
a modification history byte
that indexes this modname.

modname

Norrmally, sequencing of new
lines begins with one for each
deck using the modification
name. However, when the
UPDATE directive is used,
sequence numbers continue
from deck to deck.

Omitting modname causes a
format error. If modname
duplicates a name previously
used for modifying a deck,
Modify generates the message

DUPLICATE MODIFIER NAME.

A duplicate modname or en-

countering modifications that

refer to this modification name
prior to this *IDENT modname
cause a fatal error accompanied
by the message IDENT NAME
PREVIOUSLY REFERENCED.

DECK — IDENTIFY DECK TO BE MODIFIED

The DECK directive identifies the name of the deck
to which subsequent modifications apply. Subse-
quent directives that specify a line identifier need
only the sequence number if the modname of the
line identifier is the same as the deck name (refer
to Line Identification in section 2).

Format:
*DECK deckname

Name of deck for which
modifications following this
line apply. The modifications
for this deck terminate with
the next DECK directive. A
DECK directive is required
for each deck being modified.

deckname

If the deckname is not found,
Modify flags the error with
the message

UNKNOWN DECK.

Omitting the deckname causes
a format error.

MODNAME — IDENTIFY MODIFICATION
SET TO BE MODIFIED

By using the MODNAME directive, the user indicates
that subsequent line identifiers for which a modifica-
tion name is omitted apply to modification set
modname previously applied to the deck., Subsequent
directives need only the sequence number for the
modification set. The system assumes that the line
is in set modname of the deck being modified.

A MODNAME directive is effective only to the next
DECK or MODNAME directive. The hierarchy for
line identifiers is such that if the MODNAME direc-
tive is used and the user wishes to return to use of
the deckname as the assumed line identifier, he
must restore the deckname by use of another
MODNAME directive or use the long form of the
line identifier, specifying the deck name., A
MODNAME directive does not terminate an inser-
tion if it is encountered in text being inserted.

Format:

*MODNAME modname

modname Name of modification set pre-

viously applied to the deck.
A line identifier that does not
specify a modname is assumed
to apply to this modification
set. The modname remains
in effect until another

MODNAME or DECK direc~
tive is encountered.

DELETE — DELETE LINES

With the DELETE or D directive, the user deacti=
vates a line or block of lines and optionally replaces
it with insertion lines foliowing the DELETE direc-
tive.

4-2

The next modification directive (or EOR) terminates
insertion. File manipulation directives are inter-
preted and may change the source of insertion lines
but do not terminate insertion and are not inserted
into the deck. Insertion lines can include compile
file directives.

A deactivated line remains on the library and retains
its sequencing, but is not included in compile decks
or source decks.

Formats:
*DELETE ¢ or *D ¢
*DELETE €1, Co or *D Cys Cy
c Line identifier for single line
to be deleted.
CysCy Line identifiers of first and last

lines in sequence of lines to be
deleted. cq; must occur before
cg on the library. Any lines in
the sequence that are already in-
active are not affected by the
DELETE.

RESTORE — REACTIVATE LINES

With the RESTORE directive, a user reactivates a
line or block of lines previously deactivated through
a delete or yank and optionally inserts additional
lines after the restored line or block of lines. The
lines to be inserted immediately follow the RESTORE
directive. The next modification directive (or EOR)
terminates insertion. File manipulation directives
are interpreted (and may change the source of in-
sertion lines) but do not terminate insertion. They
are not inserted into the deck. Insertion lines can
include compile file directives.

Formats:

*RESTORE c
*RESTORE CysCy

c Line identifier of single line to
be restored.

Line identifiers of first and last
lines in sequence of lines to be
resgtored. Any lines in the se-
duence that are already active
are not affected by the RESTORE.
¢j must occur before cg on the
library.

Cl, 02

INSERT — INSERT LINES

To insert new lines in the program library, use the
INSERT directive. The lines to be inserted immedi-
ately follow the INSERT or I directive on the direc-
tives file. The next modification directive (or EOR)
terminates insertion, File manipulation directives
are interpreted (and may change thé source for in-
gertion lines) but do not terminate ingsertion. They
are not inserted into the deck., Insertion lines can
include compile file directives.

60450100 F

@QGQQGO@G

O

-
~

—
o

O O

_~
S’

GQOQ@Q@

0000000000 CDO0000000000O0

Formats:
*INSERT c¢ or *I ¢

c Identifies line after which
new lines will be inserted.

YANK — REMOVE EFFECTS OF
MODIFICATION SET

The YANK directive is used to deactivate a modifi-
cation set. Modify searches the edited decks for
all lines affected by the named modification set.

If a line was activated by the modification set,
Modify deactivates it. If a line was deactivated by
the modification set, Modify reactivates it. Thus,
Modify generates a new modification history byte
for every line that changed status as a result of the
YANK and effectively restores the edited decks to
the status they had prior to modification modname
or all modifications subsequent to modname.

For the first format, only the one modification set
is yanked. For the second format, Modify yanks all
modification sets applied after modname, provided
modname appears on the edited decks. YANK or
UNYANK directives contained in the yanked modifi-
cation set are not rescinded.

YANK affects only those decks that are edited
through the EDIT directive or the F or U options
on the Modify control statement. In this way, the
YANK directive can be selective,

Formats:

*YANK modname
*YANK modname, *

Name of modification set pre-
viously applied to decks in the
library. Omitting modname
produces a format error.

If Modify fails to find the
modname in the modification
table for the library, it issues

. an error.

modname

UNYANK — RESCIND ONE OR MORE
YANK DIRECTIVES

With the UNYANK directive, the user can rescind
previous YANK directives. For the first format,
only the one modification set is rescinded. For the
second format, Modify rescinds all of the yanked
modification sets, starting with modname, provided
modname appears on the edited decks.

Formats:

*UNYANK modname
*UNYANK modname, *

modname Name of only modification set

to be rescinded or name of

60450100 F

first of two or more modifi-
cation sets to be rescinded
for the library. Omitting
modname results in a format
error, "

PURDECK — PURGE DECK

A PURDECK directive causes the permanent removal
of a deck or group of decks from the program li-
brary. Every line in a deck is purged, regardless
of the modification set it belongs to. A deck name
purged as a result of PURDECK can be reused as
either a deck name or a modification name.

A PURDECK directive can be any place in the direc~-
tives input. It terminates any previous correction
set, Therefore, INSERT, DELETE, and RESTORE
cannot follow a PURDECK directive but must come
after an IDENT directive. Purging cannot be re-
scinded,

Format one:

*PURDECK decknamel, deckname,

cﬁlecknamen 2
deckname. Deck names for decks to be
Format two: pgrged.
*PURDECK decknamea. decknameb I

The deck named decknamegy and all decks up to and
including decknamey, listed in the deck list are purged.

v

IGNORE — IGNORE DECK MODIFICATIONS

An IGNORE directive causes any further modification
directives for the designated deck to be ignored.
Modify skips modification directives other than
IDENT, EDIT, and DECK. When one of these direc-
tives is encountered, Modify processes it and re-
sumes processing the input stream. Any modification
directives for the decks that precede the IGNORE
directive are processed normally. The EDIT deck
name(s) encountered after an IGNORE directive are
checked against the current ignore list. Any EDIT
deck names are deleted. If an ignored deck is en-
countered in the EDIT directive form deckname,.deck-
namey,, the directive is flagged and is considered as
having a modification error. The following message
is issued.

FORMAT ERROR IN DIRECTIVE

Format:
*IGNORE deckname I

EDIT — EDIT DECKS

Editing is a process of modifying a deck, if modifi-
cations are encountered during the modification phase,
and writing the deck on the compile file, new program
library, and source file.

The three possible modes of editing are selective,
full, and update. The modes are selected through
Modify control statement options.

Format:
*EDIT PisPogseess pn

Py A deckname or range of decknames
in one of the following forms:

deckname

decknamea. decknameb
The first form requests that Modify
edit a deck on the program library;
the second form requests a range of
decks starting with deckname, and
ending with decknamey. If deck-
names are in the wrong sequence,
Modify issues the error message:

NAMES SEPARATED BY *, * IN
WRONG ORDER,

If Modify fails to find one of the
decks, it issues the message:

UNKNOWN DECK - deckname,

SELECTIVE EDIT MODE

When selective editing is desired (neither F nor U
selected on the Modify control statement), Modify
edits only the decks specified on EDIT directives.
EDIT directives cause a deck to be written regard-
less of whether it was corrected or not. Decks are
edited in the sequence encountered on EDIT direc-
tives unless an UPDATE directive specifies other-
wise. Modifications encountered during the modifi-
cation phase are not incorporated in a deck if the
deck is not specified on an EDIT directive. In
particular, calling a common deck from within a
deck being edited does not result in the common
deck being edited unless the common deck is
specified on an EDIT directive prior to the current
deck being edited.

If decks are being replaced or new decks are added,
the new decks are placed at the end of the library.
Thus, a deck formerly included in an EDIT sequence
will no longer lie within the sequence. :

If a common deck is to be modified and a deck that
calls the common deck is to be modified, the com-
mon deck must be edited before the calling deck.
Otherwise, the calling deck will receive a copy of
the unmodified common deck.

“FULL EDIT MODE

"When a full edit is requested (F selected on Modify

control statement), Modify ignores EDIT directives.
It writes all decks in the sequence encountered on the
program library. This option provides for creating
a complete new program library. Because the same
decks that are written on the new program library
are also written on the compile file, a user wishing
to obtain only a partial set of decks on the compile
file must request separate runs of Modify — one run
for creating the new program library and one run

for creating the compile file. o

If a common deck to be modified is called by a deck
that precedes the common deck on the OPL, the
NPL receives a copy of the modified common deck,
but the compile file receives a copy of the unmodi-
fied common deck. The programmer can in two
ways ensure that the compile file receives a copy
of the modified common deck; the common deck can
be moved ahead of the calling deck on the OPL be-
fore the modifications to the decks are made, or a
second modification run can be made using the NPL
of the first run as the OPL for the second run.

UPDATE EDIT MODE

If the U option is selected on the Modify control
statement, Modify edits only those decks mentioned
on DECK directives and ignores the EDIT directives.
Thus, only decks being updated by the Modify run
are written on the compile file. This mode is not

normally requested when a new program library or
source file is desired.

If a common deck is to be modified and a deck that
calls the common deck is to be modified, the com-
mon deck must be edited before the calling deck.
Otherwise, the calling deck will receive a copy of
the unmodified common deck.

MODIFICATION DIRECTIVE' EXAMPLES

Figure 4-1 is a detailed example of some of the
modification directives presented in this section.

60450100 F

o 000000 C

i ;
.

!
Ed

—
.

20000000000 CDODO0CO00O00000O0C0C

batch
$RFL,0. |
/get ,opl=mainpl
/modify,f,1=0,n=mainpl
*ident mod1 This modification set is given name MOD1.
¥deck deck3 ’
*delete deck3.1
¥%% subroutine 2, deck deck3.
*deck deck2
¥ 1 < i : Refer to listing of compile file in figure 3-3
®%% subroutine 1, deck deck?. to reference line sequence numbers.
*insert 3
* call subroutine sub2
* in deck2.
*delete 7
%% end deck2.
*deck deck1
*d 1
¥¥¥ main program, deck deckl.

N 2D 0D 0D 4 03D 0 0D 03] o) ex) axd 21D ax) ax) e

MODIFICATION COMPLETE .
/copyef,compile
#EE

MAIN PROGRAM, DECK DECK1. MOD1
PROGRAM MAIN(OUTPUT) DECK T
PRINT*,"BEGIN MAIN PROGRAM." DECK 1
CALL SUB1 DECK 1
PRINT¥,"END MAIN PROGRAM." DECKT
STOP DECK1
END DECK1
¥%% SUBROUTINE 2, DECK DECK3. . , MOD1
SUBROUTINE SUB2 Listing of compile DECK3
PRINT#,"ENTER SUBROUTINE 2." file created by DECK3
PRINT*,"EXIT SUBROUTINE 2." Modify. DECK3
RETURN DECK3
END DECK3
¥%% SUBROUTINE 1, DECK DECK2. MOD1
SUBROUTINE SUB1 ' DECK2
PRINT*,"ENTER SUBROUTINE 1." DECK2
* CALL SUBROUTINE SUB2 MOD1
* IN DECK2. MOD1
CALL SUB2 DECK?2
PRINT*,"EXIT SUBROUTINE 1." DECK2
RETURN Note that user inadvertent] cie DECK2
**% - BND DECK2, <—————{ 0te that | v deleted END MOD1

END OF INFORMATION ENCOUNTERED.
/modify,1=0,p=mainpl,n=mpl1,c=coml
? ¥ident mod2

~)

? *deck deck2

z :gezggg’e; i Modification run to restore deleted line, and
- . d 2 R .

2 *odit deck? elete line MOD1. 3

: :

"MODIFICATION COMPLETE.

ﬁgpycﬂcom Note that compile

SUBROUTING SBT file contains only DK
PRINT*,"ENTER SUBROUTINE 1." edited deck(s). DECK2
¥ CALL SUBROUTINE SUB2 MOD1
CALL SUB2 Note deletéd line. DECK2
PRINT¥* ,"EXIT SUBROUTINE 1." DECK2
RETURN , DECK2
END END statement restored, DECK2
¥%¥%¥ END DECK2. : MOD1

END OF INFORMATION ENCOUNTERED.
/modify,1=0,p=mpl1,n=mpl2,c=com?
*ident mod3
*deck deck?

*modname mod 1

*restore 3 v
¥edit deck;\\ Line deleted in previous Modify run is restored.

.M()DIFICATI()N COMPLETE .

D *) 0D o) o) o)

Figure 4-1. Modification Directive Examples (Sheet 1 of 2)

60450100 D

J‘:O\U'IJ:'UUI\)UUT\)-—\O\UWJ:U)NA\TO\UT.P:UJI\)—\

FNOU =W N -

/copyef,com2
[Tt

SUBROUTINE 1, IECK DECK2.
SUBROUTINE SUB1
PRINT#*,"ENTER SUBROUTINE 1."
CALL SUBROUTINE SUB2

Restored line.

The LIBEDIT utility provides a convenient
means of replacing or adding records on a file.
Refer to the NOS Reference Manual, volume 1,

MOD1
DECK2
DECK2
MOD1
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1

ENOOVTEWNDWN =

for a description of the LIBEDIT utility.

* IN DECK2. <€
CALL SUB2
PRINT*,"EXIT SUBROUTINE 1."
RETURN
END
¥%% END DECK2.
END OF INFORMATION ENCOUNTERED.
/rewind,mainpl ,mpl2
$REWIND,MAINPL ,MPL2.
/libedit,i=0,p=mainpl,1=0,b=mpl2,c -
EDITING COMPLETE .
/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM
1 DECK1 OPL (64) 37 7732
MOD1
2 DECK3 OPL (64) 34 3117
MOD1
3 DECK2 OPL (64) 55 3134
MOD1 MOD2 MOD3
4 opL OPLD 1 TUT7
5 *EQOF ¥ SUM = 161

1

CATALOG COMPLETE.
/replace,mainpl

/modify,1=0,p=mainpl,c=com3,n=nplx «—0—

? *ident modx
? *deck deck?
7 *yank mod3
? *edit deck?
5

.M()DIFICATI()N COMPLETE .

FILE

/catalog,nplx,r
CATALOG OF NPLX
REC NAME TYPE LENGTH
1 DECK2 OPL (64) 55
MOD1 MOD2 (MOD3
2 OPL OPLD 3
3 ¥ EQF * SUM = 60
1
CATALOG COMPLETE.
/copycef,com3
R

SUBROUTINE 1, DECK DECK2.

SUBROUTINE SUB1

PRINT*,"ENTER SUBROUTINE 1."
CALL SUBROUTINE SUB2
CALL SUB2

PRINT* ,"EXIT SUBROUTINE 1,"

RETURN
END
*%% END DECK2.
END OF INFORMATION ENCOUNTERED.

4-6

Figure 4-1. Modification Directive Examples (Sheet 2 of 2)

1
CKSUM

4734

2117

[Note that yanked modification set is enclosed in

DATE
T77/10/07.

77/10/06.

77/10/07.

77/10/07.

deck DECK2.

DATE
77/10/07.

77/10/07.

parentheses.,

Compare with previoﬁs
compile file of DECK2.,

MOD1
DECK2
DECK2
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1

Temporary modification run to deactivate
modification set MOD3 and

selectively edit

60450100 D

COO0Q0COCOCOCOC

—a |
S

c ool

)

© 0O

© 0 OC

2 000000000000 00000C0C@0O0

FILE MANIPULATION DIRECTIVES 5

e e

File manipulation directives allow user control over
files during the initialization and modification
phases. Two of these directives, READ and
READPL, may be used to change the source of di-
rectives and insertion text from the directives file
to an alternate file. While an insertion is in prog-
ress, a file change does not terminate insertion.
Insertion continues until Modify reads the next
modification directive. File manipulation directives
are illegal when Modify is reading from an alternate
file and result in the following message.

OPERATION ILLEGAL FROM ALTERNATE FILE
INPUT.

The file manipulation directives include:

READ Read record or group of records
from specified file.

READPIL. Read deck or portion of deck from
program library.

BKSP Backspace specified number of
records on file.

SKIP Skip forward specified number of
records on file,

SKIPR Skip forward past the specified
record on file.

REWIND Rewind named files.

RETURN Return named files to system.

These operations cannot be performed on the follow-
ing reserved files (or their equivalents).

INPUT Source of directives
OUTPUT Statistics output
COMPILE - Compile

SOURCE Source output

OPL Old program library
NPL New program library
SCR1 Scratch file 1

SCR2 Scratch file 2

SCR3 Scratch file 3

These file names are reserved only through their
respective Modify control statement options. For
example, if the S option is not specified, the file
SOURCE is not reserved and the user can use file
manipulation directives specifying a file of that
name. However, file names SCR1, SCR2, and
SCR3 should not be used.

60450100 F

- READ — READ ALTERNATE

DIRECTIVES: FILE

The READ directive causes Modify to temporarily
stop reading the directives file and begin reading
directives and insertion text from the specified
record on the named file or current position if
deckname is omitted (or *), Unless * is the
deckname field, Modify reads from the alternate
directives file until it encounters an end-of-record
and then resumes with the next directive on the
primary directives file.

If Modify is unable to find the named record, it
issues the message

RECORD NOT FOUND.

Formats:
*READ file
*READ file, deckname I
*READ file, *
file Name of file containing insertion

text and/or directives.

deckname Optional; if deckname is speci- |
fied, text must be in source
file format; that is, the first
word of record is the name
of the record., Modify dis-
cards the name before pro-
cessing any text.
Optional; if specified, Modify
processes all records on the
file up to an end=~of-file or a
zero-length record. These
records must be in source file
format.

READPL — READ PROGRAM LIBRARY

The READPI, directive causes Modify to temporarily
stop reading the directives file and begin reading
directives and insertion text from the specified

Modify deck. ‘It allows a user to insert text from

one deck on the program library into another program,
or to move text within a program, ’

Formats:

*READPL deckname
*READPL deckname, c1, ¢
deckname Name of deck on old program
library.

c.sC Portion of deck to be read;
172 L
must be more than one line.

Modify inserts all the active lines in the deck or
portion of the deck specified by the READPL. If
€1, €2 are omitted, it reads the entire deck before
returning to the directive file.

During processing of the READPL direc-
tive, Modify does not perform any modi-
fications to the text in the deck it is read-
ing. If the user wishes the new text to be
modified, he must make the corrections
to the deck into which the text is being
inserted; that is, the text is taken from
the deck exactly as it is on the program
library.

BKSP — BACKSPACE FILE

The BKSP directive repositions the named file one
or more logical records in the reverse direction.

It does not backspace beyond the beginning-of-infor-
mation.

Formats:

*BKSP file
*BKSP file,n

file Name of file to be positibned.

n Number of records to be
skipped in the reverse direc-
tion. If n is omitted, Modify
backspaces one record.

SKIP — SKIP FORWARD ON FILE

The SKIP directive repositions the named file for-
ward one or more logical records. If an end-of-
information is encountered before the requested
number of records has been skipped, the file is
positioned at the end-of-information.

Formats:

*SKIP file
*SKIP file,n

file Name of file to be positioned.

n Number of records to be - -
skipped in the forward direc-
tion. If n is omitted, Modify
skips one record.

SKIPR — SKIP FORWARD PAST RECORD

The SKIPR directive repositions the named file
forward past the specified logical record. It does
not position the file past the end-of-information.

If Modify is unable to locate the record in the for-
ward search, it positions the file at the end-of-infor-
mation and issues the message

RECORD NOT FOUND.
Format:

*SKIPR file, rname

file Name of file to be positioned,

Name of record on file that file
is positioned after.

rname

REWIND — REWIND FILES

The REWIND directive repositions one or more files
to their first records.

Format:
*REWIND filel. filez, e fllen
filei Names of files to be rewound.

RETURN — RETURN FILES TO SYSTEM

The RETURN directive immediately returns files to
the operating system.

Format:

*RETURN filel, file2, cees filen

filei Names of file to be returned.

FILE MANIPULATION DIRECTIVE EXAMPLES

Figure 5-1 illustrates several of the file manipulation
directives discussed in this section.

60450100 B

o000 O0OOCCO

coeoceoccoo0o0

-

A

L WV

G

2 000 0000000000000 0QCQO00O

batch
$RFL,0.

/old,dirfil <€ Alternate directives file.

/lnh,r
PRINT#*,"LINE 1 ADDED BY MODIFICATION SET MODX."
--EOR-~
PRINT#*,"LINE 2 ADDED BY M()DIFICATI()N SET MODX."
—-E(OR--
DECKX
PRINT*,"LINE 3 ADDED BY MODIFICATION SET MODX."
--EOR--
*¥*EDIT DECK1
¥EDIT DECK2
*¥EDIT DECK3
—-EOR--
/old,opl=mainpl
/get,dirfil
/modify,1=0,n=newpl,c=comx
? ¥gkip dirfil,2
¥ident modx
*deck deck?2
*¥j 2
*read dirfil,deckx
®bksp dirfil,?2
*deck deck3
* 3
*pead dirfil File manipulation directives.
*rewind dirfil
¥deck deckl
¥y
¥read dirfil
*skipr dirfil,deckx
¥read dirfil
¥return dirfil

0 o) 1)) 0D o) o) 0 0] 4D 6D) ex) o) o))

MODIFICATION COMPLETE.
/copyef,comx
#%% MATN PROGRAM, DECK DECK1.
PROGRAM MAIN{OUTPUT)
PRINT*,"EEGIN MAIN PROGRAM."
CALL SUB1
PRINT*,"LINE 1 ADDED BY MODIFICATION SET MODX."
PRINT*,"END MAIN PROGRAM."
STOP
END
#%% SUBROUTINE 1, DECK DECK2.
SURROUTINE SUB1
PRINT*,"LINE 3 ADDED BY MODIFICATION SET MODX."
PRINT*,"ENTER SUBROUTINE 1."
* CALL SUBROUTINE SUB2
* IN DECK2.

CALL SUB? Compile file containing
PRINT* ,"EXIT SUBROUTINE 1." modifications from
RETURN alternate directives
END file.

¥%% END DECK2.
#%% SUBROUTINE 2, DECK DECK3.
SUBROUTINE SUB2
PRINT*,"ENTER SUBROUTINE 2."
PRINT*,"LINE 2 ADDED BY MODIFICATION SET M()DX "
PRINT*,"EXIT SUBROUTINE 2."
RETURN
END
END OF INFORMATION ENCOUNTERED.

MOD1
DECK1
DECK1
DECK1
MODX

DECK1-

DECK1
DECK1
MOD1
DECK2
MODX
DECK2
MOD1
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1
MOD1
DECK3
DECK3
MODX
DECK3
DECK3
DECK3

Figure 5-1, File Manipulation Directive Examples (Sheet 1 of 2)

60450100 D

UL WN 2 E0OUTEWNW AN =10V - Ewh—

/ catalbg ,hewpl,r
CATALOG OF NEWPL FIIE
REC NAME TYPE LENGTH
1 DECK1 - OPL (64) 47
MOD1 MODX
2 DECK2 OPL (6U4) 65
MOD1 MOD2 MOD3
3 DECK3 OPL (64) v}
MOD1 MODX
4 OPL OPLD 7
5 ¥ E(F * SUM = 207

1
CATALOG COMPLETE.
/rewind ,comx
$RE‘WIND COMX.
/ftn,i= comx ,1=0
. 145 CP SECONDS COMPILATION TIME
/1go
BEGIN MAIN PROGRAM.

LINE 3 ADIED BY MODIFICATION SET MODX.

ENTER SUBROUTINE 1.

ENTER SUBROUTINE 2.

LINE 2 ADDED BY MODIFICATION SET MODX.
EXIT SUBROUTINE 2.

EXIT SUBROUTINE 1.

LINE 1 ADDED BY MODIFICATION SET MODX.

END MAIN PROGRAM.
.007 CP SECONDS EXECUTION TIME

Figure 5-1. File Manipulation Directive Examples (Sheet 2 of 2)

1
CKSUM

7152
7M1
MODX

7430

Th403

DATE

77/10/07.
77/10/07.
77/10/06.

77/10/10.

Execution of modified program.

80450100 D

ool -l -l-Nellc ol

»

0000 C

&

S0 00O

Q000000000

09000000000

COMPILE FILE DIRECTIVES 6

o ————.

The directives described in this section provide
user control during the write compile file phase.
These directives are interpreted at the time the
program library decks are written onto the compile
file. A call for a common deck results in the deck
being written on the compile file. Other directives
allow control of file format.

The user can prepare his original source deck with
compile file directives embedded in it, or he can

insert compile file directives into program library
decks as a part of a modification set. Compile file
directives are not recognized when they are on the
directives'file; they do not terminate insertion, but
are simply considered as text lines to be inserted.

Compile file directives include:

CALL Write called deck onto com-

pile file.
IFCALL Write called deck onto com-

pile file if name igs defined.
NIFCALL Write called deck onto com-
pile file if name is not de-
fined.
CALLALL Write all decks onto compile
file that have deckname be-
ginning with specified char-
acter string.

IF Include lines in compile file
if specified attribute is true
and until a reversal directive
is encountered (ELSE or
ENDIF).

ELSE Reverse an IF directive con-
ditional range.

ENDIF Terminate an IF directive
conditional range.

COMMENT Generate COMMENT pseudo

instruction for COMPASS.

WIDTH Define number of columns
preceding sequence informa-
tion on compile file.

NOSEQ Specify no sequence infor-
mation on compile file.

SEQ Specify sequence informa-
tion on compile file.

WEOR Write end-of-record on com-
pile file.

CWEOR Write end-of-record on com-

pile file if information has

been written since the last

end-of-record was written.

60450100 F

WEOF Write end-of-file on compile
file. .

A common deck cannot call another
common deck. That is, if the directives
CALL, IFCALL, NIFCALL, or CALL-
ALL are in a common deck, they are
ignored.

CALL — CALL COMMON DECK

Modify places a copy of the requested deck on the
compile file. It does not copy the request to the
compile file. However, the new program library
and the source file contain the CALL directive.

Format:
*CALL deckname
deckname

Name of common deck to be
written on compile file.

IFCALL — CONDITIONALLY CALL
COMMON DECKS

Modify places a copy of the requested deck on the
compile file if the conditional name has been defined
on a DEFINE directive during the modification
phase. If the name has not been defined, the com-
mon deck is not written on the compile file. Modify
does not copy the IFCALL directive to the compile
file.

Format:
*[FCALL name, deckname

name One- to seven-character condi-
tional name.

deckname Name of common deck to be

written on compile file if name

is defined.

NIFCALL — CONDITIONALLY CALL
COMMON DECKS

Modify places a copy of the requested deck on the
compile file if the conditional name has not been
defined (refer to DEFINE directive, section 7)
during the modification phase. If the name has
been defined, the common deck is not written on
the compile file.

Format:
*NIFCALIL name, deckname .
name One- to seven-character
conditional name.
Name of common deck to be

written on compile file if
name is not defined.

deckname

CALLALL — CALL RELATED
COMMON DECKS ’

Modify places a copy on the compile file of every
deck name beginning with the specified character
string. :

Format:

*CALLALL string

IF — TEST FOR CONDITIONAL RANGE

Modify tests the specified condition and, if true,
writes all following lines onto the compile file un-
til encountering a reversal (ELSE) or termination
(ENDIF') directive. If the condition is false, the
lines are skipped until a reversal or termination
directive is encountered. Lines skipped in such
a range are treated as inactive.

Format:

*IF atr, name, value

atr Attribute; must be one of the
following:
DEF name defined
UNDEF name undefined
EQ name equal to value
NE name not equal to

value
name One- to seven-character string

that is to be compared to names
previously specified in a DEFINE
directive.

value Numeric value to be compared
to the value set by a DEFINE
directive. This parameter is
not required for DEF or UNDEF"
attributes. ‘

ELSE — REVERSE CONDITIONAL RANGE

ELSE is a conditional range reversal directive.
When encountered, the effects of a previous IF
directive are reversed. An ELSE directive en-
countered without an IF range in progress is
diagnosed as an error.

Format:

*ELSE

ENDIF — TERMINATE CONDITIONAL RANGE

ENDIF is a conditional range termination directive.
When encountered, the effects of a previous IF
directive are terminated. An ENDIF directive en-
countered without an IF range in progress is diag-
nosed as an error.

Format:

*ENDIF

COMMENT — CREATE COMMENT LINE

This directive causes Modify to create a COMPASS
language COMMENT pseudo instruction (beginning
in column 3) in the following format. Modify obtains
the dates from the operating system.

LOCATION OPERATION

COMMENT | crdate

VARIABLE SUBFIELDS

moddate comments

crdate Creation date in the format
Ayy/mm/dd.
moddate Modification date in the format
Ayy/mm/dd.
Format:

*COMMENT comments

comments Character string.

‘WIDTH — SET LINE WIDTH ON'

COMPILE FILE

The WIDTH directive allows the user to change the

width of lines during the compile phase. Modify
uses the new width until it encounters another
WIDTH directive. A compile file WIDTH directive
is active only for the deck in which it is encoun-
tered. An initialization WIDTH directive is active
for all other decks.

Format:
*WIDTH n

n Number of columns preceding
sequence information on com-
pile file and source file.
Modify allows a maximum of
100 columns.

During initialization of Modify, width is
set to 72; additional columns of data are
truncated.

60450100 F

200000 CO00O0

© 0O

-

CO0 OO0 OCC0C

2000 0000000000000 0O00O0

NOSEQ — NO SEQUENCE INFORMATION

The NOSEQ directive allows the user to set the no
sequence flag during the write compile file phase.
When no sequence information is requested, Modify
does not include sequence information on the com-
pile file. A. SEQ directive encountered subsequent
to NOSEQ resumes sequencing,

Format:

*NOSEQ

SEQ — INCLUDE SEQUENCE INFORMATION'

The SEQ directive allows the user to clear the no
sequence flag during the write compile file phase and
to begin placing sequence information on the compile
file. A NOSERQ directive encountered subsequent to
a SEQ sets the no sequence flag.

Format:

+SEQ

WEOR — WRITE END OF RECORD

Modify unconditionally writes an end-of-record on
the compile file when encountering the WEOR direc-
tive.

Format:

*WEOR

60450100 F

CWEOR — CONDITIONALLY WRITE END
OF RECORD

Modify writes an end-of-record on the compile file
if information has been written to the compile file
since the last end-of-record was written.

Format:

*CWEOR

WEOF — WRITE END OF FILE
Modify writes an end-of-file on the compile file.
Format:

*WEOF

COMPILE FILE DIRECTIVE EXAMPLES

Figure 6-1 illustrates several of the compile file

 directives presented in this section.

Copy of source file to be incorporated into
program library.

ENTRY/EXIT ‘
RETURN

GET JOB ORIGIN

STORE JOB ORIGIN

Notice call to common deck DECK5. If MYTEXT is
defined during the modification run, DECKS is not
written on the compile file.

Modify run to create new program library
consisting of source file and OPL..

batch
$RFL,0.
/0ld,opl=mainpl
/get,csub
/copyer,csub
DECKY
IDENT SUB3
ENTRY SUB3
*COMMENT CALL DECK DECKS
Lddd CALL COMMON DECK.
*NIFCALL MYTEXT,DECKS
SUB3 DATA
ORIGIN JOT
EQ SUB3
USE
JOT BSS
END
COPY COMPLETE.
/copyer,esub
DECK5
COMMON
ORIGIN MACRO
SA1 66B
MXO0
BX6 -X0*x1
AX6
Sa6
ENDM
COPY COMPLETE.
/modify,f,p:O,l:O,n:mainpl,c:eom1,s:mainp
*oplfile opl
*rewind csub
*create csub
*ident mody
¥deck deck?
*i 2
common jot
call sub3

*deck
* 0
*weor
*¥deck
* 0
*weor
*deck
¥ 0
*yeor

N o) 430 o 40 0D)) o)) 01) o) ex) e 93] 81D en) o) &) e3))

if(jot.eq.3)print*, "time-sharing job."

if(jot.ne.3)print*,"batch job."

deckh

deck3

deck?

MODIFICATION COMPLETE .

/catalog,mainpl,r
REC NAME
1 DECK1
MOD1
2 DECK3
MOD1
3 DECK2
MOD1
4 DECKY
MODY
5 DECK5
6 (OPL
T *EOF %

1

CATALOG COMPLETE.

6-4

CATALOG OF MAINPL

TYPE

OPL (64)
MODY

OPL (61)
MODY

OPL (64)
MOD2

OPL (64)
OPLC (64)
OPLD

SUM =

Addition of compile file directives,

FILE

LENGTH
61

37

60
MOD3

47 -

27
13

311

1
CKSUM

3171

2333

3077

MODY
5063

6354
3706

DATE

77/10/07.

77/10/06.

T77/10/07.

77/10/10.

77/10/10.
77/10/10.

Since no modifications are made to the common
deck (DECKS5), it is acceptable to have the com-
mon deck after the calling deck (DECK4) on the
program library, The next section will show
how to rearrange the decks on the program
library.

F‘igure 6~1. Compile File Directive Examples (Sheet 1 of 3)

60450100 D

CCOOCLOCOCO0OO0

-

D

D0000000CO0O0CC

2P 000000000 CDO0C0CO0O00000O00O0

/copyer,coml

*¥%% MAIN PROGRAM, DECK DECK1.
PROGRAM MAIN(QOUTPUT)
COMMON JOT
PRINT*,"BEGIN MAIN PROGRAM."
CALL SUB3

IF(JOT.EQ. 3) PRINT* ,"TIME-SHARING JOB."

IF(JOT.NE.3)PRINT*,"BATCH JOB."
CALL SUB1 -
PRINT*,"END MAIN PROGRAM."
STOP
END

COPY COMPLETE.

/copyer,com

#%%¥ SUBROUTINE 2, DECK DECK3.
SUBROUTINE SUB2
PRINT*,"ENTER SUBROUTINE 2."
PRINT*,"EXIT SUBROUTINE 2."
RETURN
END

COPY COMPLETE. "

/copyer,coml

¥%¥%¥ SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUB1
PRINT*,"ENTER SUBROUTINE 1."

* CALL SUBROUTINE SUB2

* IN DECK2.
CALL SUB2
PRINT* ,"EXIT SUBROUTINE 1."
RETURN
END

¥%¥% END DECK2.

COPY COMPLETE.

/copyer,coml
IDENT" SUB3
ENTRY SUB3
COMMENT 77/10/10. 77/10/10. CALL DECK DECK5
X% CALL COMMON DECK.
ORIGIN MACRO A
SA1 66B GET JOB ORIGIN
MX0 24
BX6 -X0¥xX1
AX6 24
Sa6 A STORE JOB ORIGIN
ENDM
SUB3 DATA O ENTRY/EXIT
ORIGIN JOT
EQ SUB3 RETURN
USE //
JOT BSS 1
END
COPY COMPLETE.
/copyer,coml

END OF INFORMATION ENCOUNTERED.
/replace,mainpl
/pack,com1
PACK COMPLETE.
/ttn,i=com1,1=0
.401 CP SECONDS COMPILATION TIME
/1go
BEGIN MAIN PROGRAM.
TIME-SHARING JOB.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
EXIT SURROUTINE 2.
EXIT SUBROUTINE 1.
FND MAIN PROGRAM.
.007 CP SECONDS EXECUTION TIME
/primary,mainp
$PRIMARY ,MAINP.

Listing of compile file,
Notice separation into
records.

Notice that Modify has
replaced *COMMENT
directive with COMPASS
COMMENT statement on
compile file,

MYTEXT was not de-
fined during the modifi-
cation run. Thus, the
contents of DECKS5 have
been written on the com-
pile file.

MOD1
DECK1
MOD4
DECK1
MOD4
MODY
MODY
DECK1
DECK1
DECK1
DECK1

MOD1

DECK3
DECK3
DECK3
DECK3
DECK3

MOD1
DECK2
DECK2
VOD1
MOD1
DECK2
DECK2
DECK2
DECK?2
MOD1

DECKY4
DECK4
DECKY4
DECKY4
DECK5
DECK5
DECK5
DECK5
DECK5
DECK5
DECK5
DECKY
DECKY4
DECKY4
DECKY
DECK4
DECKY

Figure 6-1. Compile File Directive Examples (Sheet 2 of 3) ’

60450100 D

VUl W N — ~NOUI =W NW =N —

E_OoOUlwWwNhwWwN—

S OWONOTOUT&EWN = W —

—_

/1lnh,r

DECK1

#%¥% MATN PROGRAM, DECK DECK1.
PROGRAM MAIN(OUTPUT)
COMMON JOT
PRINT*,"BEGIN MAIN PROGRAM."
CALL SUB3
IF(JOT.EQ.3) PRINT*,"TIME-SHARING JOB."
IF(JOT.NE.3)PRINT¥,"BATCH JOB."
CALL SUB1
PRINT*,"END MAIN PROGRAM."
STOP
END

--EOR--

DECK3

*WEOR

*%% SUBROUTINE 2, DECK DECK3.
SUBROUTINE SUB2
PRINT*,"ENTER SUBROUTINE 2."
PRINT*,"EXIT SUBROUTINE 2."
RETURN
END

--EOR-~

DECK?2

*WEOR

#%% SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUB1
PRINT*,"ENTER SUBROUTINE 1."

* CALL SUBROUTINE SUB2

* IN DECK2.

CALL SUB2
PRINT* ,"EXIT SUBROUTINE 1."
RETURN
END
##% END DECK2.
--EOR--
DECKY
*UEOR
IDENT SUB3
ENTRY SUB3
¥COMMENT CALL DECK DECKS
i CALL COMMON DECK.
*NIFCALL MYTEXT,DECKS
SUB3 DATA O ENTRY/EXIT
ORIGIN JOT
EQ SUB3 RETURN
USE //
JoT BSS 1
END
~-EQR--
DECK5
COMMON
ORIGIN MACRO A
SAT = 66B GET JOB ORIGIN
MXO 24
BX6 -XO*X1
AX6 24
SA6 A STORE JOB ORIGIN
ENDM
--EOR--

Contents of source file created by Modify.

Note that source file contains call to common
deck.

Figure 6-1. Compile File Directive Examples (Sheet 3 of 3)

60450100 D

coco0o00CcCoO0O00OC0C

N
/
b

0 0O

»

COO0OOCO

2 0000000000000 0CQ000O00O0

SPECIAL DIRECTIVES 7

L

The directives described in this section provide
extended features. They can be any place in the
directive file for either creation or correction and
primarily affect the operating features of Modify.

/ List comment.

PREFIX Changes prefix character for
directives other than compile
file directives.

PREFIXC Changes prefix character for
compile file directives.
INWIDTH Sets width of input line to be
compressed.

DEFINE Defines name under which sub-
sequent IFCALL directive may
cause a common deck to be
written, or NIFCALL may
prevent a common deck from
being written.

MOVE Moves decks on new program
library.

UPDATE Specifies editing sequence
and modification set number-
ing.

/ — LIST COMMENT

Other than being copied onto the Modify statistics
(list) output, a comment line is ignored. It can
occur any place in the directives file.

Format:

*/ comment

PREFIX — CHANGE MODIFY
DIRECTIVES PREFIX

The PREFIX directive resets the prefix character.
for subsequent Modify directives. It does not affect
the prefix of compile file directives. When Modify
is initialized, the character is preset to *, Modify
uses * if a PREFIX directive is not used.

Format:
*PREFIX x
b4 Character used in first column
of directive (except compile
file directive). A blank char-
acter is illegal.
60450100 E

PREFIXC — CHANGE COMPILE FILE
DIRECTIVES PREFIX

The PREFIXC directive resets the compile direc-
tive character so that only compile file directives
with the x prefix are recognized. If a PREFIXC
directive is not encountered, the default (*) is used.

Format:
*PREFIXC x

bd Character used in first column
of compile file directive. A
blank character is illegal.

INWIDTH — SET WIDTH OFblNPUT TEXT

The INWIDTH directive allows the user to set the
width of input text from primary and alternate sources
before it is compressed and written in the Modify
library deck. An INWIDTH directive takes prece-
dence over any previously defined width. INWIDTH
can be placed anywhere in the directives file.

Format:
*INWIDTH n

n - Number of columns on input
line to be compressed. Modify
allows a maximum of 100
columns. During initialization
of Modify, width is preset to
72.

DEFINE — DEFINE NAME FOR USE BY
IFCALL, NIFCALL, IF

By defining a name and its associated value, a user
establishes the conditions that must be met for a

. conditional call of a common deck. This allows

external control of the calls embedded in source
decks. If the name is not defined, an IFCALL for
a common deck is ignored. If the name is defined,
a NIFCALL for a common deck is ignored. A
DEFINE directive must be processed in order for
an [F conditional test to be true.

Format:

*DEFINE name, value

name Name used in compile file
IFCALL, NIFCALL, or IF
directive.

value Value assigned to symbol

name (maximum value may be
177777g). If omitted, name is
defined with value zero.

- MOVE — MOVE DECKS

The MOVE directive enables the user to reorder
decks while producing a new program library. The
decks, deckname, are moved from their positions
on the old library and placed after deckname,. on
the new library.

Each deckname is selected for inclusion on the
new program library by:

° The use of the F option on the MODIFY
control statement (all decks on the
library are selected for the move).

° The use of the U option on the MODIFY
control statement (only those decks on
the directives file for this run are
selected for the move).

° The use of *EDIT directives when
neither the F nor the U options are
selected on the MODIFY control
statement.

Format:

*MOVE decknamer, decknamey, decknameg,
. ..deckname,

batch
$RFL,0.
/0ld,opl=mainpl

/
3
?
?
?
?
?
?
?
P

H

modify,f,c=coml,n=mainpl,1=0
¥/ change prefix character to #
*prefix #

UPDATE — UPDATE LIBRARY

Use of this directive causes Modify to continue
sequencing rather than restart sequencing with
each deck using the same IDENT. UPDATE also
causes the order in which decks are edited to be
according to their sequence on the old program
library.

Format:

*UPDATE

\

SPECIAL DIRECTIVE EXAMPLES

Figure 7-1 illustrates several special directives.,
Note that compile file directives can be ignored
(depending on language processor) by changing the
compile file prefix character.

#ident modb
#deck deckld
#i 4

space 4
#prefixc # <

Change Modify directive prefix character.

#move deck5,deck!,deck?,deck3, deckd
MODIFICATION COMPLETE.

‘ Change compile file prefix character so

preted as comments.

/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
REC NAME T¥PE LENGTH CKSUM DATE
V The common deck (DECKS5) now comes
1 DECK5 OPLC (64) 27 6354 77/10/10. <—— s :
> DECK] OPL (64) 61 3171 77/10/07. before any deck that might call it.
MOD1 MOD4
3 DECK2 OPL (64) 60 3077 77/10/07.
MOD1 MOD2 MOD3 MODY
4 DECK3 OPL (61) 37 2333 77/10/06.
MOD1 MODY
5 DECK4 OPL (64) 53 3057 77/10/10.
MODY MOD6
6 OPL (PLD 13 1175 77/'10/10 .
7T *EOF ¥ SUM = 315
1
CATALOG COMPLETE.
/replace,mainpl
Figure 7-1. Special Directive Examples (Sheet 1 of 3)
7-2 60450100 F

directives on program library will be inter-

COOoCO0O0O00O000O0

>

¢

© OO

Q:;

~

> ©

© © 00O

P 0000000000000 000000O0

‘'/copycr,coml
*#% ° MAIN PROGRAM, DECK DECKT. MOD1 1
PROGRAM MAIN(OUTPUT) DECK1 2
COMMON JOT MOD4 1
PRINT*,"BEGIN MAIN PROGRAM." DECK1 3
CALL SUB3 : ; MODY 2
IF(JOT.EQ.3)PRINT#*, "TIME-SHARING JOB." MODY 3
IF(JOT.NE.3)PRINT#*,"BATCH JOB." MODY4 b
CALL SUB1 DECK1 il
PRINT*,"END MAIN PROGRAM." DECK1 5
STOP DECK1 6
END DECK1 7
*WEOR MODY 1
##% SUBROUTINE 1, DECK DECK2. MOD1 1
SUBROUTINE SUB1 DECK2 2
PRINT*,"ENTER SUBROUTINE 1." ' DECK2 3
* CALL SUBROUTINE SUB2 MOD1 2
IN DECK2. MOD1 3
CALL SUB2 DECK2 i
PRINT#*,"EXIT SUBROUTINE 1." DECK2 5
RETURN DECK2 6
END LECK2 7
¥#% END DECK2. MOD1 4
*WEOR Listing of compile file. MODA 1
¥ SUBROUTINE 2, DECK DECK3. Combpile file directives MODI !
SUBROUTINE SUB2 have been ignored. DECK3 2
PRINT*,"ENTER SUBROUTINE 2." DECK3 3
PRINT*,"EXIT SUBROUTINE 2." DECK3 i
RETURN DECK3 5
END DECK3 6
#UEOR MODY 1
IDENT SUB3 » DECKY 1
ENTRY SUB3 DECKY4 2
$COMMENT CALL DECK DECK5 DECKH 3
#% CALL COMMON DECK. DECKY4 y
SPACE U MOD6 1
¥CALL DRECKS DECKY 5
SUB3 DATA O ENTRY/EXIT DECKY4 6
ORIGIN JOT DECKY4 7
EQ SUB3 RETURN . DECK4 8
UsE // DECKY 9
JoT BSS 1 DECKY4 10
END DECKY4 1
COPY COMPLETE.
/copyer,coml
FND OF INFORMATION ENCOUNTERED.
/modify,c=com2,1=0,n=mainpl,u EXAMPLE is defined before modset
? *define examplee\ .MOD?7 is identified. Thus, when modset
? *ident mod7 MOD7 goes into effect during this modifi-
? *deck deckl cation run, EXAMPLE will be defined
? *modname modk but not as part of modset MODT.
? *insert 2 :
? ¥if def,example
? print¥, "example has been defined."
? ¥else
? print¥*, "example has not been defined."
? ¥endif
?
MODIFICATION COMPLETE.
/copyef,com?
##% MATN PROGRAM, DECK DECKI. MOD1 1
PROGRAM MATN(OUTPUT) , DECK1 2
COMMON JOT : MODLY 1
PRINT* ,"BEGIN MAIN PROGRAM." DECK1 3
CALL SUB3 MODY 2
PRINT*,"EXAMPLE HAS BEEN DEFINED." «—Inserted line. MOD7 2
IF(JOT .EQ. 3)PRINT#* ,"TIME-SHARING JOB." MODY 3
IF(JOT.NE.3)PRINT*,"BATCH JOB." MODL Y
CALL SUB1 DECK1 Y
PRINT* ,"END MAIN PROGRAM." DECK1 5
STOP DECK1 6
END DECK1 7

END OF INFORMATION ENCOUNTERED.

Figure 7-1. Special Directive Examples (Sheet 2 of 3)

60450100 D

émﬁggiﬁ;ﬁ? 120, p=mainpl EXAMPLE is not defined during

2 this modification run., The *ELSE

/copycf‘ com3
MAIN PROGRAM, DECK DECK1.
PROGRAM MAIN(()UTPUT)
COMMON JOT
PRINT* "BEGIN MAIN PROGRAM."
CALL SUB3
PRINT#* ,"EXAMPLE HAS NOT BEEN DEFINED. "4——Inserted line,
IF(JOT EQ 3)PRINT#* "TIME-SHARING JOB."
IF(JOT.NE.3)PRINT#* "BATCH JOB."
CALL SUB1
PRINT*,"END MAIN PROGRAM."
STOP
END
END OF INFORMATION ENCOUNTERED.

Figure 7-1. Special Directives Examples (Sheet 3 of 3)

MOD1
DECK1
MOD4
DECK1
MODY
MOD7
MODY
MODY
DECK1
DECK1
DECK1
DECK1

~NOoOVIEEWENW=SN =

60450100 D

© CC

O

W

o OoCO

-

L W

C

cecocoooceo

O
O
O
o
O
O
O
O
O

290000060000

MODIFY FILE FORMATS '8

Types of Modify files significant to Modify execu-
tion include:

Source files

Program library files

Directives file

Compile file

SOURCE DECKS AND FILES

A source file ig a collection of information either
prepared by the user or generated by Modify.

SOURCE DECKS PREPARED BY USER AS INPUT
TO MODIFY

A user prepares a source deck for input to Modify
by placing a deck name and optionally a COMMON
statement in front of the source language deck
(figure 3-1). At the same time, the user also in-
serts compile file directives, as required, into the
source language deck to control compile file output
from Modify. Each source deck is terminated by
an end-of-record. A group of decks is terminated
by an end-of-file or end-of-information. The deck-
name and COMMON statements are not placed on
the program library.

Modify source decks should not be confused with a
compiler or assembler program. A Modify source
deck can contain any number of FORTRAN programs,
subroutines or functions; COMPASS assembler
IDENT statements; or set of data. Typically, each
Modify deck contains one program for the assembler
or compiler or one set of data.

SOURCE FILES GENERATED BY MODIFY I

The source file generated as output by Modify con- i
tains a copy of all active lines within decks written
on the compile file and new program library. The
source file is optional output from Modify and is
controlled through use of the S optiQn on the Modify
control statement. Once generated, the source
file can be used as source input on a subsequent
Modify run. The file is a coded file that contains
80-column images. Any sequencing information .
beyond the 80th column is truncated. When F is
selected on the Modify control statement, the
source file contains all lines needed to recreate the
latest copy of the program library. '

60450100 F

When U is selected, the source file contains only
those decks named on DECK directives; that is, only
the decks updated during the current Modify run.

When neither F nor U is selected, the source file
contains only those decks explicitly requested on
EDIT directives.

PROGRAM LIBRARY FILES-

Program library files (figure 8-1) provide the pri-
mary form of input to Modify. When a program
library file is input, it is an old program library
and has a default name of OPL., When it is output,
it is a new program library and has a default name
of NPL.. During execution of Modify, the program
library files must reside on mass storage.

prefix table

modification table

Deck {record) |

text

End-of-record,

prefix tablep

modification tablep

Deck (record)p
textp

End-of-recordy

prefix tabley

End -of-recordp-~|

prefix tablen

modification tablepn

Deck (record)p

textn

End-of -recordp,

prefix tablen

directory table

End-of-record, 4

End-of-information

Figure 8-1. Library File Format

Before writing the new program library, an EVICT
is performed on the file.
Manual, volume 1, for a description of the EVICT
operation.

A program library consists of a record for each
deck on the library,
by a record containing the library directory. The
contents of the new program library is determined

by EDIT directives and the control statement options.

Only edited decks are written on the new program
library.

DECK RECORDS

Each deck record consists of a prefix table, a
modification table, and text.

Prefix Table Format:

59 47 35 17 1 0
0 7700 | 16 | 0
| deckname .] reserved
2 creation date
3 last modification date
H
L zeros
7
10g
: comments
16g char set
D
Word Bits Field Description

0 59-48 Table Identifies table as pre-
type fix table.

47-36 : we Word count; length of
table is 16g words,

35~-00 none Reserved for future
system use.

1 59-18 deckname Name of deck obtained
for source deck identi-
fication line; one to
seven characters,

17-00 none Reserved for future
system use.

2 59~00 creation Date that deck was
date created.

Format of date is:
yy/mm/dd,

3 59-00 latest Date of most recent
modifica- entry in modification
tion table. Format of the
date date is the same as for

creation date.

16g 11-00 char set Identifies character set
used to create this deck.

0000g 63-character
set

00648 64 -character
set

8-2

Refer to the NOS Reference

The last deck record is followed

Modification Table Format:

50 a7 17 1 0
1D Word 0 700x | reserved |]

| modnome 1 y

2 modname y

3 .

ban
T N

I L
17

£~ modname ;_, y

¢ modname ¢ y

D 1

Word Bits Field Description

0 59-48 Table Identifies table as modifi-

type -cation table. The least
significant digit indicates
whether the deck is com-~-
mon or not as follows:

1 Deck is not common
2 Deck is common

47-12 none Reserved for future sys-

tem use,

11-00 ¢ Number of modification

names in table.
word; 59-18 modname; One- to seven-character
modification set name.
Each modification to a
deck causes a new entry
in this table,

YANK flag

0 Modifier not yanked
1 Modifier yanked

16 -Yi

Text Format:

Text is an indefinite number of words that contain a
modification history and the compressed image of
each line in the deck. Text for each line is in the
following format.

59 53 35 17 9]
af wc seq. no. mhb mhba
mhb3 mhbg mhbg
T : T
compressed fext
Bits Field Description
59 a Activity bit:

0 Line is inactive

1 Line is active
58-54 we Number of words of com-
pressed text,

Seqﬁence number of line
(octal) according to position
in deck or modification set.

53-36 seq. no. '

60450100 F

©CCOCOCOC0CO0O

@

)
s

~
S

C

o/

N-N-R-ReR-ReRe

09000000 000CDOO0O0D0O0D00O00O00O0O0CO0

Bits Field Description Prefix Table Format:
S 59 47 35 17 0
35-18 mhb, Modification history byte. 0 7700 | 16 I 0
and ' Modify creates a byte for each | name { reserved
subse- modification set that changés 2 date
quent the status of the line. Modifi- H
18-bit - cation history bytes continue ® zeros
bytes to a zero byte. Since this 7
'~ zero byte could be the first 10g
byte of a word and the com- . comments
pressed line image begins a 18g
new word, the modification
history portion of the text name A Modify-generated directory has
could terminate with a zero the name OPL. However, if the
word. The format of mhbj name of the directory is changed
is: (by LIBEDIT, for example), that

name is retained on new program
libraries then generated.

Directory Table Format:

a Activate bit
0 Modification set 59 47 29 7 o
deactivated the wordo [7000 | ° ! !
line | deckname | type | ;
1 Modification set 2 o | random address | !
activated the line 3 deckname » typep |
mod. Index to the entry in 4 ° | rondom addressp I
no. the modification table Jd, . 4,
that contains the v 9 . T
name of the modifi- 21 deckname ¢ /7 type g /2
cation set that chang- 1 ° random address g /7
es the line status. - :
A modification number _
of zero indicates the ID 1
deck name. Word Bits Field Description
com- The compressed image of the |
pressed line is display code. One or 0 59-48 Table type Identifies table as pro-
text two spaces are each repre- gram library directory.
sented by 55g; they are not 17-00 ¢ Directory length ex-
compressed, Three or more cluding ID word.
embedded spaces are replaced
in the image as follows: 1,3, 59-18 deckname; Name of program library
3 spaces replaced by 0002 cees deck; 1 to 7 characters
4 spaces replaced by 0003 ¢ -1 left-justified.
17-00 type; Type of record.
64 spaces replaced by 0077g 6 Old program li-
65 spaces replaced by : : brary deck (OPL)
007755g 7 Old program li-
66 spaces replaced by brary common
00775555 deck (OPLC)
67 spaces replaced by 10 Old program li-
007700028, etc. brary directory
Trailing spaces are not con-) (OPLD)
sidered as embedded and are "
not included in the line image.
On a 64-character set program
library or compressed compile .
file, a 00 character (colon) is
represented as a 0001 byte. A
12-bit zero byte marks the end
of the line. Other record types are defined but are
ignored by Modify (refer to the NOS
Reference Manual, volume 1, for a com-
DIRECTORY RECORD plete description of record types).
The library file directory contains a prefix table
followed by a table containing a two-word entry for
each deck in the library. Directory entries are 2,4, 29-00 random Address of deck rela-
in the same sequence as the decks on the library. ceesl address; tive to beginning of file.
60450100 F 8-3

DIRECTIVES FILE

The directives file contains the Modify directives
record. This record consists of initialization, file
manipulation, and modification directives, and any
source lines (including compile directives) to be
inserted into the program library decks. An option
on the Modify control statement designates the file
from which Modify reads directives. Normally,
the directives file is the job INPUT file. READ and
READPL directives cause Modify to stop reading
directives from the directives file named on the
Modify statement and to begin reading from some
other file containing directives or insertion lines,

COMPILE FILE

The compile file is the primary form of output for
Modify. It can be suppressed by the user as a
Modify control statement option, when no compila~-
tion or assembly follows the modification.

If a compile file is specified on the Modify control
statement, Modify writes the edited programs on it
in a format acceptable as source input to an assem-
bler, compiler, or other data processor. Through
control statement parameters and directives, a
user can specify whether the text on the file is to
be compressed or expanded, sequenced or unse-
quenced. If the text is expanded, the user can also
specify the width of each line of text preceding the
sequence information.

Expanded compile file format for each line consists
of x columns of the expanded line (where x is the
width requested), followed by 14 columns of se-
quence information, if sequencing information is
requested, and terminated by a zero byte. An
end-of-record terminates the decks written on the
compile file.

8-4

Compressed Compile File (A-Mode) Format:

59 47

35 17 1l 0

ID Word 0 7700 |

oois | chor st] Py

modnamol I $eq. no. |

2

compressed line |

{ L
J

.
. -
.

modname, I seq. no.p

compressed line

char set

seq. no. ;

compressed
line

SCRATCH FILES

Modify uses scratch files in three situations.

Scratch File 1
(SCR1)

Scratch File 2
(SCR2)

Scratch File 3
(SCR3)

Character set of record.
0000g signifies 63-character
set. 0064g signifies 64-char-
acter set,

Sequence number of the line
relative to the modification
set identified by modname.

A line in compressed form.
Refer to the compressed text
description for text formats
of deck records.

Used when common decks are
modified and no new program
library is requested,

SO0 00C0O0O0CO

Used when insertions overflow
memory.

Used when a CREATE or
COPYPL directive is processed.
This file is in program library W Y

Az
S

These files are returned by Modify at the end of the

Modify run.

format.

-~
Ner/

60450100 F

cooocoo0C

P 0000000000000 O0CO0000Q0O0O0O0O

BATCH JOB EXAMPLES

_

CREATE PROGRAM LIBRARY

EXAMPLE 1

This example illustrates how Modify can be used to construct a file in program library format from
source decks. This example contains only one source deck (PROG) consisting of a FORTRAN pro-
gram. The deck is terminated by an end-of-file card. The next record on INPUT contains the
directives. It is the user's responsibility to save the newly created program library (TAPE) for use
in future Modify runs.

Unless C=0 is specified, a compile file is generated. This example shows the compile file (COMPILE)
being used as input to the compiler. The compiler places the compiled program on LL.GO; the LLGO
card calls for loading and execution of the compiled program.

COPYBF(INPUT, SOURCE)
MODIFY(P=0, N=TAPE, F)
FTN(I=COMPILE)

LGO.

77879 File related cards
PRf:i"———"—’___,,_————ﬂ“"’-~———_

(SOURCE DECK)

6/7/9

*REWIND SOURCE
*CREATE SOURCE
6/7/8/9

Directives Input

EXAMPLE 2

This example illustrates creation of a library from source decks on a source file other than INPUT.
After the library has been created, it can be modified, edited, and written on a compile file for use

.by an assembler or compiler.

Contents of File SALLY: Job Deck:
TOM (JOB CARD)
COMMON . File related
. . cards
. MODIFY(N, F, P=0)
(SOURCE DECK FOR TOM)
: 7/8/9
*REWIND SALLY
7/8/9) *CREATE SALLY
JACK . .
COMMON . Directives Input
: . *DEFINE REQ
(SOURCE DECK FOR JACK) :
. 7/8/9
7/8/9)
RON

(SOURCE DECK FOR RON)

*CALL TOM
*[FCALL REQ, JACK
6/7/8/9

60450100 F

9-1

' MODIFY PROGRAM LIBRARY
; EXAMPLE 1

In this example, Modify uses all default parameters. . The sequencing information shown for inserted
cards is assigned during modification. .

MOB/(\// File related cards

7/8/9

*[DENT MOD10

*DECK BOTTLE

#[xexkMODIFICATIONS

*D 10

*D 4

(CARD TO BE INSERTED IS ASSIGNED MODIO0.1) o L
*D 20,22 Modification
(CARDS TO BE INSERTED ARE ASSIGNED TO MODI0. 2 THROUGH MODIO. 4) ‘set MOD10
*1 MODS. 30 ,

(CARD TO BE INSERTED IS ASSIGNED MODIO0. 5)
*EDIT BOTTLE
6/7/8/9

EXAMPLE 2

This job modifies deck EDNA for replacement on the program library. No compile file is produced,

MOW File related cards

7/8/9
*IDENT A2 v Modification set A2
*DECK EDNA

*MODNAME A1
[ks MODIFICATIONS

*D 30 Delete card Al. 30
TAG RJ CHECK Insert card A2.1
*MODNAME EDNA) .
* 7011
ERR SA1 LIST1
ZR X1, ABORT Insert cards A2,2 through A2.5
PRINT (0*%* ERROR 131 *xx%) after EDNA. 7011
EQ ABORT)
*D 7644, 7650
“EDIT EDNA } ~ : Delete cards EDNA. 7644 through
; EDNA. 7650
6/7/8/9 ‘
9-2 60450100 F

COoOCO0O00O0CO0OO0

3
_/

© o<

SCOCOCO OO OO

P 0000000500 CDO0C0CO00000O00O00O0

MOVE TEXT
EXAMPLE 1

The job illustrated below calls Modify twice.

On the first call, Modify deactivates all but cards 32

through 54 and writes the source for these cards on source file FRANK. On the second call, Modify
deletes the remainder of the cards and reinserts the saved cards at the beginning of KEN.

MODIFY(N, C=CAL)

7/8/9

*IDENT MOV1
*DECK KEN
*D 1,31

*D 55,63
*EDIT KEN
7/8/9

*IDENT MOV2
*REWIND FRANK

*DECK KEN
*D 32, 54
* 0

*READ FRANK, KEN
*EDIT KEN
6/7/8/9

EXAMPLE 2

This job moves text cards from one deck to another.

File related cards

Modification set MOV1

Delete cards before card KEN. 32

Delete cards KEN, 55 through KEN. 63

Transfer remaining cards (KEN, 32 through
KEN. 54) to source file FRANK

Modification set MOV2

Delete remainder of cards in KEN

Insert cards at beginning of KEN

Read insertion text from deck KEN on file
FRANK

On the first call to Modify, cards 32 through

54 of deck KEN on file OPL are saved on source file FRANK. On the second call, the saved cards

are inserted into deck WILL.

MODIFY(S=FRANK, C=0)

MODIFY (N, C=MEL)

7/8/9

*[DENT F1
*DECK KEN
*D 1,31
%D 55,63
*EDIT KEN
7/8/9
*REWIND FRANK
*IDENT F2
*DECK WILL
*[25

*READ. FRANK, KEN.

*EDIT WILL
6/7/8/9

60450100 F

File related cards

Modification set F1

Delete cards KEN, 1 through KEN. 31
Save cards KEN. 32 through KEN 54 on source
file FRANK

Insert text after card WILL. 25
Insertion text taken from deck KEN on file FRANK
Deck WILL is written on NPL and compile file MEL

9-3

READ DIRECTIVES FROM AN ALTERNATE FILE

This job illustrates how the READ directive can be used to chénge the source of directives and correction
text from the primary input file (in this case INPUT) to some other file.

. File related cards
MODIFY.
COMPASS(I=COMPILE)
LGO.
7/8/9
*IDENT JAN
*READ DIR d D
*DECK C Rea Nccntents of IR
. *DECK A
: : v Corrections for A
7/8/9 *DECK B
. : Corrections for B
6/7/8/9 6/7/8/9

Return to INPUT file

YANK AND UNYANK MODIFICATION SETS

This example illustrates a job that logically removes all of the modification sets applied to program
library LIB from the modification set named JULY and on. The change is not incorporated into the
library; it is for the benefit of this run only.

. File related cards
MODIFY(P=LIB, F)

COMPASS(I=COMPILE)

LGO.

7/8/9

*IDENT NEGATE

*DECK MASTER

*YANK JULY, *

6/7/8/9

To incorporate the preceding change on a new program library, add the N parameter to the Modify
statement.

The effects of a YANK can be nullified in future runs and, consequently, the effects of the yanked
modification sets can be restored through the UNYANK directive. Such a modification might appear
as follows: '

*IDENT RESTORE
*DECK MASTER
*UNYANK JULY, *

b 9-4 60450100 F

OCCOCOO0O0OO0C0CO0

5
7

P00000C00CO0O0C

2000000000 CDODO0CO0DO0D0O0D00D00O0O00O0

PURGE DECKS

Decks BAD, WORSE, and WORST are no longer needed. The following job removes them from the library.

They could also be removed through a selective edit using EDIT directives. In either case, the removal is
permanent.

MODIFY (N, C=0, F)

. File related cards -

7/8/9 .
*PURDECK BAD,WORSE, WORST
6/7/8/9

CHANGE THE DIRECTIVES PREFIX CHARACTER
EXAMPLE 1 ’ ’

This example illustrates how to maintain directives input on a library. Because * is the prefix used
on the library, a different prefix is required when modifying the library. In this case, / becomes the
prefix character. .

ATTACH(OPL)

GET(FIX)

MODIFY(P=FIX, C=Z, N=FIX2)
REWIND(Z)

COPYSBF(Z, OUTPUT)
REWIND(Z) :

MODIFY(I=Z)

COMPASS(I, S, B=LLT01)

.
.
.

7/8/9

*PREFIX /
/WIDTH 58
/IDENT F1
/{DECK CORR

/1 873
[1007
1L.DC 77778
STM STMA+1
/D 880
/EDIT CORR
6/7/8/9

The contents of deck CORR on compile file Z are as follows:

*IDENT - NIX . CORR 1
*DECK GRM1TD : CORR 2
*1 MHD2.19 CORR 3
*D 997, 1000 CORR 873
*1 1007 Fl 1
ILDC "B F1 2 Inserted cards
STM STMA+1 F1 3
LJM STM CORR 879 Instruction CORR. 880
*D 980, 984 CORR 881 has been deleted

After file Z is produced, the deck GRMI1TD is modified by the contents of Z. The resulting compile
file (COMPILE) contains COMPASS language PPU code and is assembled using COMPASS.

60450100 F 9-5

The job produces a new program library (FIX2) which replaces FIX so that the changes to deck
CORR are saved, :

The resulting COMPASS listing would appear as follows:

Corrections Contents of
. on File Z COMPILE
: : (Correction IDs) (Deck IDs)
STD SM GRMITD 1007
LDC 7777B F1 2 NIX 11
STM STMA+1 F1 3 NIX 12

.
.
.

Since the comments go through the correction identification, the INWIDTH directive must be deleted
if a new program library is generated. However, for maintenance, there is an advantage of seeing
the correction identifiers with the deck identifiers,

EXAMPLE 2

. This example illustrates changing the compile file prefix character so that when Modify produces the
compile file, it recognizes only directives using the specified prefix. The directives prefix, in this
case, is unaltered,

.
-
-

ATTACH(OPL)
MODIFY.
COMPASS(I, S, B)
7/8/9

*IDENT TEST1
*DECK TEST
*PREFIXC [
*EDIT TEST
6/7/8/9

Deck TEST contains the following:

*CALL PPC
/CALL PPCA

Modify ignores the common deck call to PPC., COMPASS interprets it as a comment card. Modify
acts on the common deck call to PPCA and replaces the /CALL directive with a copy of common
deck PPCA. .

80450100 ¥

200000 CCOO¢)OOOOOCCOOO

e —

52000000000

©O000000000

USE OF THE Z PARAMETER

EXAMPLE 1

Suppose you want to create a compile file using an alternate OPL. The following deck illustrates
this technique.

MODIFY (Z)/+*OPLFILE, OPLZ/*EDIT, DECK1

°
.
.

6/7/8/9

EXAMPLE 2

Another use of Z might be to request editing of specific decks:

MODIFY{Z)/*EDIT, DECK1, DECK2

.
.
.

8/7/8]9

60450100 F

SAMPLE FORTRAN PROGRAM

This set of Modify examples illustrates how Modify can be used for maintaining a FORTRAN Extended program

in program library format.
read from the words in the data record.

EXAMPLE 1

The FORTRAN program calculates the area of a triangle from the base and height

The following job places the FORTRAN program and subroutine as a single deck (ONE) on the new

program library (NPL) and on the compile
is called to compile the program. The LG
program does not execute because of an er
subroutine should be MSG, not MSA.

COPYBF(INPUT, S)
MODIFY(P=0, N, F)

file (COMPILE). Following Modify execution, FORTRAN
O card calls for execution of the compiled program. This
ror in the SUBROUTINE statement. The name of the

FTN(I=COMPILE) ’ ’ Fll? related cards
LG/

.

Deck name

7/8/9 END OF RECORD

ONE
PROGRAM ONE (INPUT, OUTPUT, TAPE1)
PRINT 5

5 FORMAT (1H1)

10 READ 100, BASE, HEIGHT,
100 FORMAT(2F10.2, I1)
IF (L.GT.0) GO TO 120
IF (BASE.LE.0) GO TO

I

105

HEIGHT=x*

Should be

‘ /[SUBROUTINE MSG
SUBROUTINE MSA

ING INPUT DATA NEGATIVE OR ZERO *}

End of source deck

Directives input

Data record

IF (HEIGHT.LE.0) GO TO 105
GO TO 106
105 CALL MSG
106 AREA = ,5*BASE*HFIGHT
PRINT 110, BASE, HEIGHT, AREA
110 FORMAT (///,* BASE=+F20.5, *
IF18.5,/,*% AREA=+%F20.5)
WRITE (1) AREA
GO TO 10
120 STOP
END
PRINT 400
400 FORMAT (///,* FOLLOW
RETURN
END
6/7/9 END OF FILE <—
*REWIND S _
*CREATE S
7/8/9 END OF RECORD
200. 24 500. 76
300. 24 600, 76
400, 00 700, 00
326. 32 425, 36
500. 00 600, 00
000. 00 150, 60
700, 43 800, 00
100. 00 300, 00
050, 00 100, 00
150,00 200, 00

1
6/7/8/9 END OF INFORMATION

9-8

60450100 F

PO OO0 Qo000 00C0

00 0C

> OO0 OO O

2000000000000 0000000¢C

EXAMPLE 2

Examination of Modify output from the creation job reveals that the erroneocus SUBROUTINE state-
ment has card identifier ONE. 20. The following job corrects the error and generates a new program

Identified as MOD1.1 on NPL

library.

MODIFY(N, F)

FTN(I=COMPILE)

1L.GO.

7/8/9 END OF RECORD

*IDENT MOD1

*DECK ONE

*DELETE 20

SUBROUTINE MSG

7/8/9
200. 24 500, 76
300, 24 600. 76
400. 00 700. 00
326. 32 425. 36
500, 00 600. 00
000. 00 150. 00
700, 43 800. 00
100. 00 300, 00
050. 00 100. 00
150, 00 200, 00

1
6/7/8/9 END OF INFORMATION
60450100 F

Data record

9-9 1

EXAMPLE 3

This job uses the same input as the first job but divides the program into two decks: ONE and MSG.
Deck MSG is a common deck. A CALL MSG directive is inserted into deck ONE to ensure that MSG
is written on the compile file whenever deck ONE is edited.

COPYBF(INPUT, S)
MODIFY(P=0, N, F)
FTN(I=COMPILE)
LGO.

. € File related cards

7/8/9 END OF RECORD

MSG
COMMON
SUBROUTINE MSG
PRINT 400
400 FORMAT (///,* FOLLOWING INPUT DATA NEGATIVE OR ZERO *)
RETURN
END

7/8/9 END OF RECORD
ONE

PROGRAM ONE (INPUT, OUTPUT, TAPEL)
PRINT 5
5 FORMAT (1H1)
10 READ 100, BASE, HEIGHT, I
100 FORMAT(2F10.2, I1)
IF (L.GT.0) GO TO 120
IF (BASE.LE.0) GO TO 105
IF (HEIGHT.LE.0) GO TO 105
GO TO 106
105 CALL MSG
106 AREA = ,5*BASE*HEIGHT
PRINT 110, BASE, HEIGHT, AREA
110 FORMAT (///,* BASE=*F20,5, * HEIGHT =*
IF18.5,/,* AREA=*F20,5)
WRITE (1) AREA

"GO TO 10
120 STOP
END

*CALL ~ MSG <~ ___ Replaced by common deck MSG
6/7/9 END OF FILE ' on compile file
*REWIND S
*CREATE S
7/8/9 END OF RECORD

200, 24 500, 76

300. 24 600, 76

400,00 700, 00

326. 32 425, 36

500,00 600, 00 .

000, 00 150. 00 Data record

700. 43 800.00 |

100.00 300, 00

050,00 100.00

150. 00 200, 00

: 1
6/7/8/9 END OF INFORMA TION

9«10 ' 60450100 F

CCOCOCOCLOOC

-

]

B4

EXAMPLE 4

This example adds a deck to the library created in the previous example. With no new program
“library generated (N is omitted from Modify card), the addition is temporary. -

COPYBF(INPUT, S)
MODIFY.

FTN(I=COMPILE)
LGO.

File related cards

7/8/9 END OF RECORD
TWO
PROGRAM TWO(INPUT,OUTPUT)

END
*CALL MSG < Replaced by common deck MSG on
6/7/9 compile file
*REWIND S
*CREATE S
*IDENT MOD2
*DECK MSG
*DELETE MSG. 3
400 FORMAT (///,* FOLLOWING INPUT DATA POSITIVE *)
*EDIT TWO
7/8/9
(DATA RECORD)
6/7/8/9

Q000000000

60450100 F ‘ 9-11 1

o
o
o
o
o
°
®
°
°
(4]

CQCO0O0QCQCOQQOCLCLl J0CQLLoLUwo0o00cC

2 000000000 CDOD00000000O00C

- OPLEDIT UTILITY A

—

OPLEDIT is a NOS utility used in conjunction with
Modify-formatted old program libraries (OPLs).
The OPLEDIT routine is used to completely remove
specified modification decks and modification iden-
tifiers from an OPL. It can also be used to extract
the contents of specified modification sets on an
OPL file.

The following are the OPLEDIT directives.

*EDIT Edit deck

*PULLALL Generate modification set
*PULLMOD Reconstruct modification set
*PURGE Remove modification set

The format of OPLEDIT directives is essentially
the same for Modify directives (refer to section 2).
The main difference is that OPLEDIT does not
allow the user to change the prefix character.
Therefore, the asterisk (*) must be used.

EDIT — EDIT SPECIFIED DECKS

The EDIT directive requests OPLEDIT to edit a
program library deck and transfer it to the new
program library. The deck names (p;) specified
normally are the decks that contain the modifica-
tion identifiers.

Format:
*EDIT PysPgseces b

p; A deck name or range of
decknames in one of the
following forms:

deckname
deckname,. decknamey,

The first form edits a deck on
the library; the second form
requests a range of decks
starting with decknamey and
ending with decknamey.

If the deck names are in the
wrong sequence, OPLEDIT
issues the error message:

NAMES SEPARATED BY
*.% IN WRONG ORDER. -

If OPLEDIT fails to find one
of the decks, it issues the
message:

UNKNOWN DECK - deckname.

60450100 F

PULLALL — GENERATE MODIFICATION
SET

The PULLALL directive allows the user to generate
a modification set that contains the net effect of all
current modification sets or all modification sets
added after and including a specific modification set,

Formats:

*PULLALL
*PULLALL modname

modname First modset to be included; all
modsets following modname are
also included, provided modname
appears in the edited deck.

For the first format, OPLEDIT builds a directive file
suitable for submission to Modify using the *READ
Modify directive. The file (specified by the M param-
eter on the OPLEDIT control statement) contains the
net effect of all modifications currently applied to the
program library. As such, all Modify [DENT dlrec-
tives are deleted and replaced by an IDEN'T skt

at the beginning of the file,

PULLMOD — RECONSTRUCT
MODIFICATION SET

With the PULLMOD directive, the user can reconstruct

one or more modification sets applied to edited decks.
The structure of the original modset is maintained;
that is, Modify IDENT directives are not changed or
deleted as in the PULLALL directive.

Format:

*PULLMOD modname modnamez, cees modnamen

1’

modnamei Modification name to be generated
onto file specified by M param-
eter on OPLEDIT control state-
ment..

PURGE — REMOVE MODIFICATION SET

The PURGE directive enables the user to completely
remove the effects of a previous modification set or
group of modsets from decks written on the new pro-
gram library. The modification identifiers are no
longer maintained in the history bytes (refer to Text
Format, section 9) of the new program library.

Formats:

*PURGE modname
*PURGE modname, *

modname Modification set to be removed,

* Indicates that the modset and all
subsequent modsets are to be re-
moved, provided modname appears
on the edited decks.

Note that it is not possible to remove modsets implic-
itly; that is, *PULLMOD A.B is illegal. Also,
*PULLMOD A, * does not pull modset A and all
modsets that follow (as on the *PURGE directive).
Rather, it pulls modset A and modset *.

Modification names requested are removed only
from decks edited. Modsets generated by OPLEDIT
are in a form suitable for use by Modify as follows:

*READ, file, *
*READ, file, ident

That is, each modset is a separate record, with
ident being the first line. The *PULLALL modset,
if used, is the first record on the file. The file
(specified by the M parameter) is returned before
and rewound after use.

OPLEDIT CONTROL STATEMENT

The control statement format is:
OPLEDIT(p,, Py, svesp,)

p; Any of the following in any order:
1 Use directive input from
file INPUT, 1If the I
option is omitted, file

INPUT is assumed.

I=1fn1 Use directive input from

file lfnl.
I=0 Use no directive input.
P Use file OPL for the old"

program library. If the
P option is omitted, file
OPL is assumed.,

P=lfn2 Use file lfnz for the old
program library.

- P=0 Use no old program
library.
N Write new program

library on file NPL.

N=lfng Write new program
library on file 1fng.

N=0 Write no new program
library. If this option is
omitted, N=0 is assumed.

L List output on file
© OUTPUT. If the L option
is omitted, file OUTPUT
is assumed,

L=lfn4 List output on file 1fny.

M=Ifn5

LO or
omitted

Lo=01C2

seeCph

List no output,

Write output from
*PULLMOD and:
*PULLALL directives on
file 1fn If M is omitted,
M= MOBSETS is assumed,

Select List Options. List’
option E is selected if the
list output file is assigned
to an interactive terminal.
Options C, D, E, M, and
S are selected otherwise,

List
Option Significance
C Input directives
D © Deck status
E Errors
M Modifications made
S Directory lists

Each character (c;) selects
an option to a max1mum of
five options. The charac-
ters must not be separated.

Modify all decks.

Debug; ignore errors.

Generate *EDIT direc-
tives for all decks.

Generate no *EDIT direc-
tives. If the U option is
omitted, generate *EDIT
directives for common
decks only.

The OPLEDIT control
statement contains the in-
put directives following
the control statement ter-
minator. The input file
is not read, This elimi-
nates the need to use a
separate input file for -
the directives when only
a few directives are
needed. The first char-
acter following the con-
trol statement terminator
is the separator charac-
ter for all directives on
the control statement. Any
dlsplay code character which
is not used in any of the
directives, including a
space, can be used as the
separator character.

60450100 F

C O C O

C

SO0OCOCCOCC

The directives can extend to
column 72 on the statement.
Continuation cards are not
permitted. If Z is omitted,
the control statement does
not contain the input
directives.

OPLEDIT EXAMPLES

Figure A-1 illustrates the four OPLEDIT directives.

Do not place
control state-
ment termi-
nator after
the directives.

2000000000 CODCO00O00000000

batch
$RFL,0.
/get,mainpl
/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECKS OPLC (64) 27 6354 77/10/10.
2 DECK1 OPL (64) 61 3171 77/10/07.
MOD1 MODY
. 3 DECK2 OPL (64) 60 3077 77/10/07.
MOD1 MOD2 MOD3 MODY
4 DECK3 OPL (64) 37 2333 77/10/06.
MOD1 MOD4
5 DECK4 OPL (64) 53 3057 77/10/10.
MODY . MOD6
6 (OPL OPLD 13 1175 77/10/10.
7 *EOF * SUM = 315
1
CATALOG COMPLETE.
/opledit,p=mainpl,m=mods,lo=1,n=newpl
? ¥purge modl,*
? *pullmod mod2,mod3
? *pullall modt
? *edit deckl.deckh
?
OPLEDIT COMPLETE.
/catalog,newpl,r
CATALOG OF NEWPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECK1 OPL (6U4) 37 7732 T77/10/07.
MOD1 _
2 DECK2 OPL (64) 55 3134 77/10/07.
MOD1 MOD2 MOD3
3 DECK3 OPL (64) 34 3117 77/10/06.
MOD1
4 DECKA OPL (64) il 0216 T77/10/10.
5 0OPL OPLD 11 2101
6 ¥ EOF * SUM = 225

1
CATALOG COMPLETE.

Figure A-1, OPLEDIT Examples (Sheet 1 of 2)

60450100 F A-3

/copyer ,mods

RRRRESR

¥$TDENT FRRERRR

*¥DECK DECK1

D1

:** MAIN PROGRAM, DECK DECK1.
1,2

COMMON JOT

*T,3
CALL SUB3
IF(JOT.EQ.3)PRINT*, "TIME~SHARING JOB."
IF(JOT.NE.3)PRINT#*, "BATCH JOB."

¥DECK DECK2

*1,0

*WEOR

*D,1

:** SUBROUTINE 1, DECK DECK2.

1,3

* CALL SUBROUTINE SUB2

* IN DECK2. :

*1,7

%% END DECK2.

*DECK DECK3

*1,0

*WEOR

*D,1

*%% SUBROUTINE 2, DECK DECK3.

COPY COMPLETE.

/copyer ,mods

MOD2

*TDENT MOD2

¥DECK DECK2

*D,MOD1.3 (3)

*¥RESTORE, 7

COPY COMPLETE.

These numbers indicate the location

Results of the PULILALL directive

/copyer ,mods
MOD3
*IDENT MOD3
¥DECK DECK2
*RESTORE ,M)D1.3 (3)
COPY COMPLETE.
/copyer ,mods
END OF INFORMATION ENCOUNTERED.

of a directive affecting a modset.

They are the last active sequence number
in the deck from which the directive

was copied (refer to figure 4-1).

Figure A-1. OPLEDIT Examples (Sheet 2 of 2)

directive

Results of the PULILMOD

60450100 F

SCOoCOCOCOC0O

Q0000000 O02C0C

O
O
O
o
o
®
®
o
®
a

OUTPUT LISTING AND MESSAGES B

R

Depending on list options selected on the Modify
control statement, list output for Modify contains
the following:

Input directives
Status of each deck

Modifiers are listed first, followed by a
list of activated lines, deactivated lines,
active lines, and inactive lines as they are
encountered. To the left of each line are
two flags, a status flag and an activity
flag. The status flag can be I (inactive) or
A (active). The activity flag can be D
(deleted) or A (activated). Following
these lines are the unprocessed modifica-
tions and errors, if any. The last line
contains a count of active lines, inactive
lines, and inserted lines.

60450100 C

Statistics
This includes lists of the following:

Decks on program library

Common decks on program library
Decks added by initialization directives
Decks on new program library

Decks written on compile file

A replaced deck is enclosed by parentheses.
Completing the statistics is a line contain-
ing counts of the number of lines on the
compile file and the amount of storage used
during the Modify run.

Errors

Modify prints the line in error, if any,
above the diagnostic message. Error
messages other than those identified as
fatal can be overridden through selection
of the Modify statement D (debug) option.

QO QOO0 Q¢

XATACK
LIaa1do
AdTIAOK

AJTIAOR

1Iqd1d0
XITAON

AATAOR

LIad1d0
AITAOR

LIQE1d0

ZITAOR

LIQASAS

ATII0¥d

. TVAQOR
ASVIEI'T

LIQd1d0
XATAOKH

— AATAOR
AATAON

AITAOR
AATAOR

AJTAOW

INILAOY

*9ATIOSATP INHQI 343
103j 2wWeu UOTIBDTIFpow
" 3usI93ITP B @sooy)

*3BWIOJ 3D9110D
103 Tenuew 3TnNSuo)

*pesn ST aousanbss aury
3921100 3jeyl LJTIap

*suor3leor1dde
@Yyl jo auo 103
9WEU ITTJ IUaIaIITP asp

*XBluLs
JuswWaIeIS TOIIUOD 38X
~10D 103 TENUBW ITNSUO)H

*L1eIqIT
wei3oxd mau 93v9ID
03 IdAd0OD 10 Xd0D @s()

*£13921 pue jusm
~23831S TOI3UOD 3IDDI10)

*}o9p
103 eweu anbiun asooy)

*30119
10J UOSEal SUTWIDIDP
03 2713 Indino sutmexyg

*u0T3do UOTSIDAUOD
103 %9 10 g9 £3¥I3dg

*S302p @danos
19doad suye3uod °TI3
uoTIe91d eyl KITIep

*10d 3e pouor3Tsod
A1xedoad sT pue s3isTx®
9TT3 X400 3Byl £3Ti=p

*8SaT
20 00l ©3 YIPIM 38uey)

*19qunu
sousnbas 310991100 esp

NOILOV

O
o
w

J

*SUBUPOW JUSIIND Y3 03 I9J91 SATIOSITP INWAIL
JUSISIITP B I0 DATIDSITP UOTIBLITIFpoW ¥

*DATIDDITP
® UT Pa3ldalep ueaq SeY I0I1Id IBWIOT Y

-I9pio Jo
IN0 9IB SSUIT 10 SNOSUOIID 2iB SADISWEBIRG

*10119d

Te3Bd *3IDTTIUCD Inoylfm suorieoridde
Yyioq Io3y pasn 8q jouued I} ouwes oyl

*10119 TelB *JUDWOIBIS
Toa13u00 XJIAOW uo 193sweied TeS8aTTI

) *I01x9 Teleg
*J0119 UEB SUTBIUOD AIeiqI wexBoid ayj,

*JusWeIEIS JOJIJUOD IIQATII0 °Y3
uo pa193juncdud uvaq sey 1olsuweied PITRAUT uy

*)jo9p aYy3z 103
A1snotaead pasn usaq sey INFQI UO IA9TITPOR

*10132 Teiwj ~I011D UF 2I9M S§9ATI09a1p ndul
10w 10 auo jJeyl BurIedIpul a8essem alIIheq

*%9 10 €9 ueyl 1ayjo uorido 4)

*UOTIBDID
103 pesn 3ureq 9TFJ UO SYIOP 20IN0S O

epotdod
8ureq £1e1qrT weaBoid uO UOTIPWIOIUT Of
q q

*(001)
PeMOT TR WNWIXRW SpPoadxXa Y3ipim poisonbay

*23uex YD9p sposdxe yaqunu sousnbag

HONVOIAINDIS

*QEONENITY LTISAOTIATYI AWVN INIAT
“EATTOINIA NI HCUNI IVIod

HEEVD (NGDES WALAY SI «®IVD ISHTI

*IDITANGD HWVN HTTA

C*SINZWNOYV ZITAOW :NI dnddd

* REOLOIYTA NI dMoydd
*SINTHADYY NI MOWSE

“HWVN SIIJIQ0W FIVOITANG

*S40¥NA FATIDBHIA

“UTTIVANT “NGIIID KD
“ALAWE FITA NOIIVIND

*ALdWE F1Id XdOD
CEDNVY d0 100 NWATOD

*dEHOVAY ION @IVD

FOVSS AN

C OO0 OO0 0O00C

60456160 ¥

2

IIQ31d0
AATAOR

LIqdTd0
AATA0R

AITAO0R
RITAOK
— XATAOR
LIQd1d0

L1ad1d0

A4TAOR

AATAOW

AJTAOR

AATAOR
LIQETdO
AATA0KW
LIAAT1d0

A4TA0W

ANTINGE

Q000000000 CDOO0CO00CO0OO6GOOGOOOGECE

*104 3®
pauoTifsod £T3091100

ST pue S3ISTXe 9TIJ
S9ATIDSITP Y} AJTIAB

*£1391 pue aduanb
—-9S 1091100 2UTWASIBQ

*S10119
pet3roads 3091100
pue 8ullsI] ITNSUE)

*S10113
pat13Toads 3991100
pue 3urisTT 3I[NsSuUC)

«auoN

£330
pue 39S JI9310BIBYD SUO
Iopun SYNO9pP SNOPUOAAD
931e91%91 03 AJTPOoW 2sn

*£1391 pue jusWaIIERIS
To13u0o TI¥ YITA
y38usT pIe1J osesaoul

epejeiedss aq jou umia
sia3joeaeyd 9yl °-uorado
ISTT 103 siIa3deaeyd
259yl JO UOTIBUTQUOD

® 10 ¥ I0 ‘1T ‘g ‘Qq
‘MW ‘I ‘O ‘9 %mﬁumﬂm
*39s

13310BIBYD SWES 9Yy3 ¥sn

yloq os 14 92yl 10 BIEP
andutr a2yl I9Y3To 3IILAUOYH

*23INQIIIIB 3091100 I3sSf

v

*19P10 DATIVDIATP 3031100
103 Tenuew 3ITNSUO)

+£1391 pue saezoweaed
juowelels TOIJU0D KITIDA

*2ouanbas 3091100 °S)

NOTIOV

*1ox1o Teieg <£3dwd O[T SOATIVBIIQ

*9ouanbas 3091100 uT jou syoop peilsenbay

*pa309T9s 30U
sT uorido @ JI Teled ¢eseyd uorledTJIpow
9yl Sutanp sioiis pa3lda3ap sy AFTPOR

*pPa102T9s ST 9pou 8ngap uUaYM POI23UNOIUD
218 $1011® SATIDSITP 10/pPuUB UOTIBIFITPOR

*SOATID2ITP
9yl Jo uoliIndexe palafdwod sey AITPOW

s (e7dwex® 103 ‘w9 pue £9)
$398 19310BiBYD JUSILDJJIP UT °ae eyl KAIeIqrT

wei8oxd ay3 uo sNO9p Pa3IvelIdP IIQHAIAD

+23Ind8%d 03 IIQAIJ0N 103
pe1JToeds uweeq sey yiBual PISTI IJUSIOTIINSUT

+10119
Telel -<poisenbex uorido 31sTT TeS9TTI

*19§ 1230BIRYO-CQ 9Yl sasn T4 9yj Inqg
‘398 1930BIABYD-H9 3yl sasn ejep Induy ayj

*JIQANQ 20 ‘FFQ ‘IN ‘0F ueyl asyle
ST ®AT1021Tp JI uo poarjroads ainqrazay

*9ATIO2ITP
UOFIBZTTETITUT 9Yl 2I1039q Pa133UNOCOUS
SBM DATIDIATP UOTIBZTITRIITUTUOU ¥

°JUsWSIEIS TOIAIUOD
11QE1d0 10 XITAOW uo xejaweded prieaul

*£JTPOW I0J 2AT1093TP

UOTIBDTITPOW B I93Je ST SATIOVATP HIVIED 2yl
‘oTdwexs 104 <@douanbas Jo Ino ST BATIVBIL(Q

JONVIIJINDIS

*SHATLOAYEIA ON

S4IQEO ONOUM NI %°x A4 QIIVEVAIS SHWVN

°S¥0¥¥d NOILVOILAIAOW

*S¥0¥Yd HAILOTEIA/NOIIVOIAIQOW

SHLATAWOD NOILVOIJAIAOW

°1d0 1ES ¥HIDVIVHO UIXIR

*MOTIYEIAO XEOWEAR

-VISAMRIOZ H9 ISOW “d409¥d-0T-

*ILAdNI NO SO QITVANI

*EINETYLIV AITVANI

*¥IQ¥0 40 LOO FAILDAYIQ NOIIVZITVIIINI

*QTETd OT¥ERAN TYOIATII

CHAILDIEIA TVDEATII

JIVSSHH

60450100 F

QO OO

AATAOR

XIT3L
X34vI
J4AAVIVA
11ad
L1aado

XJTAOR

A4TAOR
AITQOR

1IQd1d0
AATAOR

110I1d0
AATAOR

AITAOR

LIqd1d0

1143140
XITAOK

- RATAOR

ANILAOY

C QO C

suofledTIIpOom

a3eiedes uo £Jroads
pue juawWAIBIS TOIJUOD
woay uorido § saAoway

oweu ITIJF
paalasaiuou B 3sooy)

*paiysep
2pow UOTSIBAUOD KJTABA

*DATIDDITP

J1 Aaessadsuun

10 9ATIODIATP ASTH 10
JIQNE Sursstm 103 Yo°3Y)

*dTT3
pa213Io2ds uo s1sTXe
pxooa1 3eyl AJTasp

*23endruem o3
KAJTPOR 103 ITqeTTRAR
ST o113 Areaqry
wex3oxd eyl LJTasp

*}09p SNOdUOAID
93831091 10 9deTday
1

*SuoOTIBITITpou
QUIT JUBpPUNPII DAOWDY

*S10139
jJo uoridraosap 103
SutasiT Indino 3Tnsuc)

*<3uoN

*9TTJ SOATIVDIATP
1eUT8TI0 031 SSATIVDITP
uorjerndruew 9TIJ SAOK
*®AFIO2ITP JIANT ¥O HSTA
Aaessadauun 10 IATIVBILP

41 pe3dTwo 103 %29Y)

NOILOV

O
O
O
w
O

*J0119 Jejed °poIdaTes ST uorido
D 10 ‘Y ‘y ueuym TeS8aT 3jou uorido adanog

+pasn £731091100U] SBM SWEU ST]J POAIISaT Y

~0192
031 39s uorido UOTSIBAUO) *(49 01 H9 IO €9

031 ¢g9) 19s I930BaEBYD 9YIT B 03 @TTF KIBIqI]
weiBoad ay3 319Auod 03 opem sea 3dweize uy

*30119 Telej - (peI231uNOduUs JIQNA IO

dSTd ou) SATIOR TTIIS sem a@3uex JT snoradad .

B 9TTUYM pPoI23UNOdUd SBM DATIOIATP AT uy

*po13Foads 9TTJ UO PpIOIBI
peisanbax 23207 03 @7qeun sem LJTPOK

+10x1® Teieg °*Laeaqyr wezaSoad
se po13roeds 9[IJ UO UOTIBWAOIUT ON

*loale Telej °pouwEu

Woop jo Burssadoad Suranp jpwrol AIRAQIT
wei8oad syl ul pelo9ISP SeBM I01AD Uy

*90U0 UBY) dI0W PITITpPoW IUTT

*UOF INDIXD

1104140 Sulanp paIsjuUNOIUS 9IBM SI0IIF
*3urssoooad pajeTdumod sey

1109740 I'yl SulledTpur a8esSssm 2ATIPWIOIUT

*3TTJ SOATIO2ITP TEUFSIIO
uey3 I9yjo woij paidweije uorierndiuem STTI

*9AT1021TpP JI snofaead e jnoyiia
pPoI93UNOOUS SBM DATIODITP JATANY JI0 ISTd Uy

ADNVOTAINIIS

Se

-

*D MO X ¥ HIIM TVOIITII NOIIA0 8

CEWVN T8 AIAYESHY

.nmﬁosz.mOHmMmbzeu,HZQQZShM&

*IVOITII S‘dIx AAISVNDTY

*aNNOd LON -g8003d

“ALIWE XIVEEIT WWEDoEd

*2UWEUNDIP MDHA NI dOWET Td

“NOIIVOTATAOW DNIdaVTEIAD

~SUOWEE ITAETA0

*HLITARGD LIAdATE0

*IAdNT FIVNIILTY WOo¥d TVOETII NOIIVIELO

*S8EY¥D0Yd NI dIx ON

TIVSSIN

QL0 00CC¢C

80450100 ¥

*§j09p
*398 po1Ipe A1snofaexd jo 39S Id30BIRYD OY} WOIF
1931oBIBYD POITSOP 8yl JuU9I9JJIP SBM 398 I230BIBYD oyl ‘A1eiqIl
AITAOR I9pun }o9p 2yl 93ed1d3Y weaSoxd ay3a uo ¥Oop psweu ay3l Surirpe uodp +@HI013d IS ¥YAIOVEVHD (IXIW - 2WEUND9D
+pa3Ba10931 3¥q *%900 10 (000 UTE3IUOD 3jou s20p AIBIQIT
114047140 Isnm }o9p 9yl ‘paarsep weildoid ay3l uo YO°p paweu Yl 103 a1qe
AJTAOK ST 3198 19310BIBYI-%9 3II x1301d 9yl JO g9| piom Jo 934q IamoT ¥YL *QIRNSSY €9 ‘SO QITVANI - @weuydap
*(0=0 30U)
juawele3s Toaluod AITPOR +pe3defes oq sweu o1I3 3TTdmod
AdTIAOR uo uorido p £3Toedg ® 3jeyl saagnbax uorido P 10 X JO UOTIIATAS *ITIdW00 LOOHIIM TVOETII O ¥0 X
eqg/llLL1 ©3 Tenba 10 -30310 Te3I®d °*€//[[[/]| UeYyl I923ea18 ST
AATA0H ueyl sSSI8T SNTBA 303735 9AT3091TP INIJAQ 10 41 Uo patyrdads onfep *y0¥Ed INIVA
*I9T3Tpou *qoap
AATAOKW 39921200 2uTWILII(103 @7qe3 UOTIBOTITPOW UT Jou IS3TITPON *HITATAOW NMOMNINO
*30923100 «L1vIqTT
AITAOK ST oweu 09p 3Ivyl LJTIABA weidoad uo }oop peisenbax s3ed0T 03 STqRU M0FA NMONINA
esun1 AJTPOR
juaonbasqns uo S9TIRIQTT - paae1oap o
AITAOR wex3o0ad ssaoxa LJToodg soT13 AaeaqrT weiSoad g ueyl aIoK *QETId TdO ANVH 0O0OL %
i
ANTILOOE NOILOV FONVOIAINDIS HOVSSHAN 3
. 3
©w

CO0O0O0CO0O0000O0CO 0000660600600 06C

OO0 00000 C0OO0O

O ¢

C
O
C

> OO0 OO

523000000000 CDOD0CQO0000000O00

INDEX

A option 2-1 ' CS option 2-1

Activate bit 8-3 ' CV option 2-1
Active line 8-2 CWEOR directive 6-3

Activity bit 8-2

Alternate directives file 1-3; 5-1

Additional OPL files 3-2

ASCIl-mode considerations 1-4 D directive 4-2
D option 2-1
Deactivate line 4-2
Debug option 2-1

Backspace file 5-2) Deck
Batch job examples 9-1 Common 1-1; 3-1; 6-1
BKSP directive 5-2 Edit 4-3
Identification 4-2
Ignore 4-3
Move T7-2
C option 2-1 Purge 4-3
Call common deck 6-1 Records 8-2
CALL directive 6-1 Remove 4-3
Call related common decks 6-2 Replace 3-2
CALLALL directive 6-2 DECK directive 4-2
CB option 2-1 Deck name
CG option 2-1 Duplicate 3-1
Change prefix character 7-1; 9-5 Identify 4-2
Character sets 1-1,4; 2-1; 8-4 Location 3-1
Character set conversion 2-1 Purpose 3-1
CL option 2-1 Deck status B-1
COMMENT directive 6-2 Declare OPL files 3-2
Comment line 6-2; 7-1 DEFINE directive 7-1
Common deck Define IF name 7-1
Call 6-1 Define IF value 7-1
Declaring 3-1 Define IFCALL name 7-1
Identification 8-2 Define NIFCALL name 7-1
Purpose 1-1 DELETE directive 4-2
COMMON line 3-1 Delete lines 4-2
COMPASS binary output 2-1 Directive
COMPASS COMMENT pseudo instruction 6-2 Format 1-1
COMPASS get text option 2-1 Input 2-2
COMPASS list option 2-1 Prefix character 1-2; 7-1
COMPASS sytem text option 2-1 Separator 1-2
COMPILE file option 2-1 Directives
Compile file Alternate file 5-1
Compressed format 1-1 Compile file 1-2; 6-1
Compressed mode 2-1 File 1-1; 8-4
Contents 8-4 File manipulation 1-2; 5-1
Directives 6-1 Initialization 1-2; 3-1
End-of-file 6-3 - Modify input 2-2
End-of-reerod 6-3 Modification 1-2; 4-1
Line width 3-3; 6-2 On program library 5-1
No rewind 2-2 Special 1-2; 7-1
Output 2-1 Directory
Sequencing 3-3; 6-3 Library 8-3
Write phase 1-3 Record 1-2; 8-3
Compressed compile file 2-1 ‘ Table 8-3

Compressed lines 1-1; 8-3,4
Conditional call common deck 6-1
Conditional range 6-2

Control statement 2-1 Edit deck

Control statement input 2-3 Full edit 4-4

COPY directive 3-3 OPLEDIT A-1

Copy program library 3-2 Selective edit 4-4

COPYPL directive 3-2 - UPDATE edit 4-4

CREATE directive 3-2 EDIT directive 4-3

Create comment line 6-2 EDIT (OPLEDIT) directive A-1

Creation date 8-2 ELSE directive 6-2

Creation of program library 3-2; 9-1 End conditional range 6-2

60450100 F Index-1 ®

End-of-file 6-3
End-of-record 6-3
End-of-record, conditional 6-3
ENDIF directive 6-2

Error messages B-2

EVICT of NPL 2-2

Execute COMPASS 2-2
Execute program 2-2
Execution of Modify 1-3

F option 2-1; 4-4

Features of Modify 1-1

File formats 8-1

File manipulation directives 5-1
File positioning 5-2

File, return 5-2

File, rewind 5-2

Files ’
Compile 1-2; 2-1; 8-4
COMPILE 2-1

Directives 1-1; 2-2

List output 2-2

NPL 1-2; 2-2

OPL 1-2; 2-2; 8-1

Output files 1-1,2

Program library 1-1; 2-2; 8-1

Reserved 5-1

Scratch 5-1; 8-4

Source 2-2; 3-1; 8-1

SOURCE 2-2

Statistical list 1-2

Used to initialize program library 1-1
Format of directive 1-2
Full edit mode 2-1; 4-4

Generate modification set A-1

History byte 8-3
History of modifications 8-3

I directive 4-2

I option 2-2

IDENT directive 4-1

Identify modification set 4-1,2
IF, define value for 7-1

IF directive 6-2

IFCALL directive 6-1

Ignore deck modifications 4-3
IGNORE directive 4-3
Inactive line 8-2

Incorporate changes phase 1-3
Initialization directives 3-1
Initialize program library phase 1-3
Input directives file 2-2

Input on control statement 2-3
Input text width 7-1

INSERT directive 4-2

Insert lines 4-2

INWIDTH directive 7-1

L option 2-2

Line deactivation 4~2

Line identification 1-4; 4-2
Line insertion 4-2

® Index-2

Line reactivation 4-2

*.. Line width 3-3; 6-2

List comment 7-1

List options 2-2

List output file 2-2; B-1
LO options 2-2

Messages, error B-2
Modification date 8-2
Modification directives 4-1
Modification history byte 8-3
Modification name 4-~1
Modification table 8-2
Modification set
Deactivate 4-3
Generate A-1
Identifier 1-4; 4-1
Name 1-4; 4-1
Reconstruet A-1
Remove A-1
Modify
Batch examples 9-1
Batch processing example 1-5; 9-1
Comments 7-1
Control statement 2-1
Error messages B-2
Examples, general description 1-4
Execution 1-3
File formats 8-1
General description 1-1
Interactive processing example 1-4
Listing B-1
Organization 1-1,2
Output files 1-2
Modify preogram library example 9-2
MODNAME directive 4-2
Move decks 7-2
MOVE directive 7-2
Move text 9-3

N option 2-2
Name
Conventions 1-4
Deck 3-1; 4-2
Default 3-1; 4-2
Define 7-1
Modification 4-1
New program library file 1-2; 2-2
NIFCALL directive 6-1
No rewind of compile file 2-2 -
No sequence flag 3-3; 6-3 -
No sequence information 3-3; 6-3
NOSEQ directive 3-3; 6-3
NPL file 2-2
NR option 2-2

Old program library file 2-2; 8-1
OPL file 2-2; 8-1

OPLEDIT control statement A=2
OPLEDIT error messages B-2
OPLEDIT utility A-1

OPLFILE directive 3-2
Organization 1-1,2

OUTPUT file 1-2; 2-2

P optionn 22

60450100 F

COCOCOCOCO0OCCC

{1
v

.-

./

S0 000C

2000000000 CDODO0CO0O00000CO0O0

PREFIX directive 7-1
Prefix character 1-2; 7-1; 9-5
Prefix table 8-2,3
PREFIXC directive 7-1
Preparing source file 3-1
Program library 1-1
Containing directives 5-1
Creation 3-2
File 2-2; 8-1
Format 1-1
PULLALL (OPLEDIT) directive A-1
PULLMOD (OPLEDIT) directive A-1
Purge decks 4-3; 9-5
PURGE (OPLEDIT) directive A-1
PURDECK directive 4-3

Q option 2-2

Random address 8-3

Range, conditional 6-2

Reactivate lines 4-2

Read alternate directive file 5-1; 9-4
READ directive 5-1

READPL directive 5-1 X
Read directives from program library 5-1
Read modifieation directives phase 1-3
Reconstruct modification set A-1
Record type 8-3

Remove deck 4-3

Remove modification set A-1

Reorder decks 7-2

Replace decks 3-1,2

Reposition file 5-2

Rescind YANK directive 4-3

Reserved file names 5-1

RESTORE directive 4-2

RETURN directive 5-2

Return file 5-2

Reverse conditional range 6-2
REWIND directive 5-2

Rewind file 5-2

S option 2-2

Sample FORTRAN program 9-8
Seratch files 5-1; 8-4

Selective edit mode 4-4
Separators for directives 1-2
SEQ directive 6-3

Sequence file 6-3; 7-2
Sequence number 8-4

Sequencing
Disable 3-3; 6-3
Enable 6-3

Flag 3-3; 6-3
SEQ directive 6-3
Update 7-2

60450100 F

SKIP directive 5-2

‘Skip forward on file 5-2

Skip records 5-2

SKIPR directive 5-2

SOURCE file 1-2; 2-2

Source file)
Compile file directives on 1-2
Generated by Modify 2-2; 8-1
Preparation 3-1; 8-1

Special directives 7-1

Statistics B-1

Status of deck B-1

Systems text selection 2-1

Terminate conditional range 6-2
Test for conditional range 6-2
Text format 8-2

Type of record 8-3

U option 2-2; 4-4

UNYANK directive 4-3

Unyank modification set 4-3; 9-4
UPDATE directive 7-2

Update edit mode 2-2; 4-4
Update library 7-2

Value, define for IF T7-1

WEOF directive 6-3

WEOR directive 6-3

WIDTH directive 3-3; 6-2

Width of line 3-3; 6-2

Write end-of-file 6-3

Write end-of-record 6-3

Write end-of-record, conditionally 6-3
Write output files phase 1-3

X option 2-2

YANK directive 4-3
Yank modification set 4-3; 9-4

Z option 2-3; 10—7

/ (insert comment) 7-1

Index-3 ®

COOQ00OCCOCCC O

[

000000 0QC0O0

2000000000

CUT ALONG LINE

AA3419 REV. 4/79 PRINTED IN U.S.A.

COMMENT SHEET

MANUAL TITLE: CDC Modify Reference Manual
PUBLICATION NO.: 60450100 REVISION: F

NAME:

COMPANY:

STREET ADDRESS:

CITy: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE
0
C
FOLD _ FOLD
NO POSTAGE T
NECESSARY (y
IF MAILED
IN THE -
’ UNITED STATES ({)
.| -
BUSINESS REPLY MAIL EE—— N
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. [P W {‘ *
L | S
POSTAGE WILL BE PAID BY . (ZD \
CONTROL DATA CORPORATION e
| -
Publications and Graphics Division R o \
ARH219 IR @
4201 North Lexington Avenue L | ‘ N
Saint Paul, Minnesota 55112 —— ({)
‘ L] 4
L]
-~
w4
1
1
FOLD) o T _ “Folp | O
C
(:’A
F
o
]

CB

CG

CL

Cs

Cv

MODIFY CONT‘ROL STATEMENT PARAMETERS

MODIFY (p].ypZ,---’pn)

Presence of A causes cofnpressed compile file.

Compile file output; COMPILE if C or omitted.
No compile file if C=0. Otherwise, output on
file named (C=Ifn).

COMPASS binary output file; used with Q and X
options only. Output on LGO if CB. No binary
if CB=0. Otherwise, output on file named
(CB=1fn).

COMPASS get text option; used with Q and X
options only. Systems text on SYSTEXT if CG.
No system text if CG=0. Defined by CS option
if CG is omitted. Otherwise, systems text on
file named (CG=Ifn).

COMPASS list output; used with Q and X
options only. Short list if CL=0 or omitted.
Output on file OUTPUT if CL. Otherwise, list
output on file named (CL=1fn).

COMPASS system text; used with Q and X
options only. Systems text on SYSTEXT overlay
if omitted or CS. No systems text if CS=0;
otherwise, systems text on file named (CS=Ifn).

Program library character set conversion. None
if CV is omitted; 63 to 64 if CV=64; 64 to 63 if
CV=63.

Debug option. Directive error or fatal error
causes job step abort if D is omitted. No job
step abort for directive errors if D is used.

Full edit. If omitted, deck editing determined
by U option or by EDIT directives. If F is
specified, all decks are edited and written on
compile file, new program library, and source
file.)

Directives input. If omitted, directives and
corrections on INPUT. If I=0 there is no input
file. Otherwise, on named file (I=1fn).

List output. Omitted or L, listings on
OUTPUT. L=Ifn, output to named file. L=0, no
list output.

LO

NR

List options. Omitted or LO, option E if list
output file is assigned to a terminal; options E,
C, T, M, W, D, and S if not assigned to a
terminal. Otherwise, LO=cycq, toa
maximum of seven options (lA DEIMST or w).

New program library. Omitted or N=0, no new
library. N, output on NPL. N=lfn, output to
named file.

No rewind on compile file. Omitted, compile
file rewound before and after MODIFY run.

Program library input. Omitted or P, library on
OPL. P=Ifn, library on named file. P=0, no
program library input file.

Execute assembler or compiler; no rewind of
directives file or list output file. Omitted or
Q=0, assembler or compiler not automatically
called. Q, Modify sets A parameter and LO=E
and calls COMPASS. This option enables CB,
CG, CL, and CS options. If Q=1fn, Modify calls
assembler on 1fn. :

Source output (illegal if A, Q, or X selected).
Omitted or S=0, no source output. S, output on
SOURCE. S=lfn, output on named file.

Update edit. Omitted, editing set by F or by
EDIT directives. F takes precedence over U. If
U, only decks changed (named on DECK
directives) are edited and written on compile
file, new program library, and sourece file.

Execute assembler or compiler; same as Q
except directives file and list output file are
rewound.

Directives on Modify control statement.
Omitted, directives are next record on INPUT
or identified by I option. Z, directives follow
the Modify control statement terminator. Each
directive must be preceded by a separator
character.

60450100 F

CORPORATE HEADQUARTERS, P.0. BOX O, MINNEAPOLIS, MINN. 55440 .
SALES OFFICES AND SERVICE CENTERS.IN MAJOR CITIES THROUGHOUT THE WORLD

GID,

CONTROL DATA CORPORATION |

LITHO INUSA. .

0000000000 CO0000000006 O

