60480300

@ CONTROL DATA
| CORPORATION

MESSAGE CONTROL SYSTEM
VERSION1
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1

APPLICATION DEFINITION LANGUAGE

ALIAS Clause 4-12 MEDIUM Clause
Application Data Division 4-7 MESSAGE Paragraph
Application Global Division 4-3 MESSAGE Verb
APPLICATION-NAME Paragraph 4-3 MESSAGES Clause
Application Processing Division 4-22 MODE, Clause
Application Program Division - 4-6 ’ MONITOR-FILE Paragraph
BROADCAST-LIST Paragraph 4-11 Output Section
COLLECTION-QUEUE Paragraph 4-4 OPERATOR Paragraph
CONDITION Clause 4-9 PASSWORD Clause
'CONNECT Condition ’ 4-23 PROGRAM Paragraph
CONNECTION-BROKEN Condition v 4-23 PURGE Verb
- CONNECTION-INACTIVE Condition 4-24 Queue Division

DISABLE Verb 4-25 QUEUE Paragraph
DISCONNECT Condition 4-24 REROUTE Verb
DISCONNECT Verb 4-25 RESIDENCY Clause
DISPLAY Verb : 4-26 'RESPONSE-QUEUE Clause
DUMP-FILE Paragraph 4-4 REVOKE Verb
DUMP Verb 4-26 ROUTE Clause
EGI Paragraph 4-7 Routing Section
ELAPSED-TIME Condition 4-24 SEGMENT Paragraph
ENABLE Verb 4-26 SELECT Paragraph
FIELD Clause ‘ 4-8 SERIAL-NUMBER Clause
IDLE Verb i 4+26 SHUTDOWN Verb
INITIATION Condition 4-24 ’ SIGNATURE Pargraph
INITIATION Paragraph 4-5 SIZE EXCEEDS Condition
INJECTION-QUEUE Paragraph 4-4 Source-Destination Division

' Input Section ‘ 4-15 STATUS Clause
INVITATION-LIST Paragraph 4-11 SUB-QUEUE-n Paragraph
INVOCATION-FILE Clause 4-6 SYMBOLIC-NAME Paragraph
INVOKE Verb 4-27 TIME Condition
JOURNAL Clause 4-18 TYPE Clause
LENGTH Clause 4-8 USE Paragraph

4-19
4-7

4-27
4-13
4-13
4-4

4-16

4-4

4-5, 4-13, 4-19

4-6
4-27
414

4-15, 4-17

4-27
4-19
46
4-27
4-19
4-17
4-8
4-17
4-7
427
43
4-24
4-10
4-14,
4-15
4-10
4-25
4-11
4-22

4-21

60480300 A

60480300

@ E CONTROL DATA
CORPORATION

MESSAGE CONTROL SYSTEM
VERSION 1
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1

REVISION RECORD

REVISION

DESCRIPTION

A

Original release.

(11/30/79)

Publication No.
60480300

REVISION LETTERS I, O, Q AND X ARE NOT USED

Address comments concerning
this manual to:

CONTROL DATA CORPORATION

Publications and Graphics Division
215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086

©COPYRIGHT CONTROL DATA CORPORATION 1979
All Rights Reserved
Printed in the United States of America

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page Revision Page Revision Page Revision

Cover

Inside front cover
Title Page/ii

iiifiv

v/vi

vii/viii

ix/x

xi

| >

thru 1-5
thru 2-5
thru 3-4
thru 4-28
thru 5-11
thru 6-11
thru 74
thru 8-8
thru 9-3
thru A-5

W N

ELN

-1

[« X Q]

1
1
1
1
1

O 00 I

1
1
1
1

>

B-1 thru B-17
C-1 thru C4
D-1 thru D-10
E-1

Index-1 thru -5
Inside back cover
Back Cover

gl g i i gk S e

60480300 A iti/iv

PREFACE

L

This manual describes the CONTROL DATA® Message
Control System (MCS) Version 1.0. This manual is written
for the programmer familiar with the COBOL language,
the Network Operating System (NOS), and Network Host
Products (NHP).

The Message Control System provides a method of
queuing, routing, and journaling messages passed between
COBOL programs and the communication network.

As described in this publication, the Message Contral
System Version 1.0 operates under control of the NOS 1.4

CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems. MCS uses the Network Access
Method (NAM) Version 1.2 for communication with
terminals and interfaces with COBOL. 5.3.

Related information can be found in the publications
listed below. The NOS manual abstracts is an
instant-sized manual containing a brief description of the
contents and intended audience of all NOS and NOS
product set manuals. The abstracts manual can be useful
in determining which manuals are of greatest interest to a

operating system for the CDC® CYBER 170 Series; particular reader.

Publication Publication Number
COBOL Version 5 Reference Manual 60497100
Network Products
Interactive Facility Version 1
Reference Manual 60455250
Network Products
Network Access Method Version 1
Reference Manual 60499500
Network Products
Network Access Method Version 1
Network Definition Language
Reference Manual 60480000
NOS Version 1 Manual Abstracts 84000420
NOS Version 1 Operator's Guide 60435600
NOS Version 1 Reference Manual .
(Volume 1 of 2) 60435400
NOS Version 1 System Maintenance
Reference Manual 60455380

CDC manuals can be ordered from Control Data Corporation,
Literature and Distribution Services, 308 North Dale Street, St. Paul,
Minnesota 55103.

This product is intended for use only as
described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features or parameters.

60480300 A v/vi

CONTENTS

“

- NOTATIONS USED IN THIS MANUAL

1. GENERAL DESCRIPTION

Features
Configuration
Network Software Interfaces
Hardware Requirements
Application Organization
Application Definition
Message Flow
COBOL Interface
Terminals
Application Development
Operational Control

2, TERMINAL ACCESS

Access Procedures
Standard Login Procedure
Automatic Network Application Program
Selection
Abbreviated Login Procedure
Automatic Login
Automatic MCS Login
Login Diagnostics
Switching Network Applications
Disconnect Procedure
Exit From MCS
Exit From the Network
Logout Without Disconnection
Operating Modes
Command Mode
Data Mode
Break Sequences
Commands

3. MESSAGES AND QUEUES

The Concept of Messages
Message Indicators
Message Transmission

Queues
Input Queues
Output Queues
Interprogram Queues
Queue Hierarchy
Priority Queuing

4. APPLICATION DEFINITION LANGUAGE

L.anguage Overview
Language Elements
Reserved Words
Key Words
Optional Words
User-Defined Names
Application Definition Language Names
MCS/COBOL Names
System Names

60480300 A

xi

T
el

—
U
—

- b b b b
VUV S WWNNN -

el

w
e

PRRRRREE oy
WNNNN Lol o

R
ARV RV I g X O

ky
—

YRYYYYY Y Y
EFUWUNNNRFFRF-

Literals
Integers
Nonnumeric Literals
Time Literals
Coding Format
Language Structure
Application Global Division
APPLICATION-NAME Paragraph
SIGNATURE Paragraph
DUMP-FILE Paragraph
MONITOR-FILE Paragraph
INJECTION-QUEUE Paragraph
COLLECTION-QUEUE Paragraph
OPERATOR Paragraph
INITIATION Paragraph
Application Global Division Example
Application Program Division
PROGRAM Paragraph
Application Program Division Example
Application Data Division
EGI Paragraph
MESSAGE Paragraph
Application Data Division Example
Source-Destination Division
SYMBOLIC-NAME Paragraph
INVITATION-LIST Paragraph
BROADCAST-LIST Paragraph
Source-Destination Division Clauses
Source-Destination Division Example
Queue Division
Input Section
Output Section
Routing Section
Queue Division Clauses
Queue Division Example
Application Processing Division
USE Paragraph
USE Paragraph Conditions
USE Paragraph Verbs
Application Processing Division
Example

5. COMPILATION AND EXECUTION

Compilation
Application Definition Libraries
ADLP Control Statement
Compilation Listings
Source Listing
Cross Reference Listing
Library Maintenance Listing
Application Definition Library Maintenance
Creating an Application Definition
Library
Adding Applications to an Application
Definition Library
Deleting Applications from an
Application Definition Library
Application Testing
Collection Queues
Injection Queues
Application Definition for Test Mode
Operation '

4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
b4t
4-4
4-4
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-9
4-10
4-10
4-11
4-11
4-11
4-14
4-14
4-15
4-16
4-17
4-18
4-21
4-22
4-22
4-23
4-25

4-28

t
—

YYVYVYVY o,
W W W N b e b

vii

MCS Events 5-8 DISCONNECT Command 8-3
Application Program Execution 5-8 DISPLAY Command 8-3
Batch Job Submission 5-8 DUMP Command 8-4
MCS-Submitted Jobs 5-9 FNABLE Command 8-4
Application Monitoring 5-10 IDLE Command 8-5
Recovery 5-10 INVOKE Command 8-6
Dump File 5-10 MESSAGE Command 8-6
Queue Recovery 5-11 PURGE Command 8-7
Message Serial Numbers 5-11 REROUTE Command 8-7
RETRIEVE Command 5-11 RESUME Command 8-7
Journal Files 5-11 RETRIEVE Command 8-7
REVOKE Command 8-7
SHUTDOWN Command 8-7

6. EXAMPLES 6-1
9. SYSTEM OPERATOR INTERFACE 9-1

7. USER COMMANDS 7-1

DATA Command
DISABLE Command
DISPLAY Command
ENABLE Command
END Command
Login Commands
Logout Commands
MESSAGE Command

8. APPLICATION OPERATOR

1

\l\l\]l\l\l\l\l\l
£8P W -

Initiation Procedure File

Header Statement

USER Statement

RFL Statement

ONSW Statement

ATTACH or GET Statement
MCS Call Statement
System-Supplied Procedure File
Procedure File Call

Procedure File Example

System Console Commands

\D\O\D\D\D\O\D\D\D\'D\B\O\O\D\O\D\O\O\C
MWWWWRNENNNNNRNNRFRFPR R

8-1 MCS -

CFO.ADL -

ONSW1 -

Defining AOP Eligibility 8-1 OFFSW1 -
AOP Login Procedure 8-1 CFO.GO -
AOP Login Diagnostics 8-1 CFO.START -
AOP Commands 8-1 CFO.IDLE -
DISABLE Command 8-3 CFO.DISABLE -

APPENDIXES
A STANDARD CHARACTER SETS A-1 D APPLICATION DEFINITION LANGUAGE
B DIAGNOSTICS B-1 SUMMARY . D-1
C GLOSSARY C-1 E APPLICATION DEFINITION LANGUAGE
RESERVED WORDS E-1
INDEX
FIGURES
1-1 MCS Software Interfaces 1-1 4-13 PROGRAM Paragraph Format 4-6
1.2 MCS Application Organization 1-3 4-14 INVOCATION-FILE Clause Format 4-6
1-3 MCS Application Definition 1-3 4-15 RESPONSE-QUEUE Clause Format 4-6
2-1 Sample Login Dialog 2-5 4-16 Application Program Division Example 4-6
3-1 End Indicator Example 3-1 4-17 Application Data Division Skeleton 4-7
3-2 Message Flow Using MCS 3-2 4-18 EGI Paragraph Format 4-7
3-3 Input Queue Hierarchy Example 3-3 4-19 MESSAGE Paragraph Format 4-7
3-4 Priority Queue Example 3-4 4-20 SERIAL-NUMBER Clause Format 4-7
4-1 Application Global Division Skeleton 4-3 4-21 SEGMENT Paragraph Format 4-8
4-2 APPLICATION-NAME Paragraph Format 4-3 4-22 ILENGTH Clause Format 4-8
4-3 SIGNATURE Paragraph Format 4-3 4-23 FIELD Clause Format 4-8
4-4 DUMP-FILE Paragraph Format 4-4 4-24 CONDITION Clause Format 4-9
4-5 MONITOR-FILE Paragraph Farmat 4-4 4-25 Application Data Division Example 4-10
4-6 INJECTION-QUEUE Paragraph Format 4-4 4-26 Source-Destination Division Skeleton 4-10
4-7 COLLECTION-QUEUE Paragraph Format - 4-4 4-27 SYMBOLIC-NAME Paragraph Format 4-10
4-8 OPERATOR Paragraph Format 4-5 4-28 INVITATION-LIST Paragraph Format 4-11
4-9 PASSWORD Clause Format, Application 4-29 BROADCAST-LIST Paragraph Format 4-11
Global Division 4-5 4-30 TYPE Clause Format 4-12
4-10 INITIATION Paragraph Format 4-5 4-31 ALIAS Clause Format 4-12
4-11 Application Global Division Example 4-5 4-32 MESSAGES Clause Format 4-13
4-12 Application Program Division Skeleton 4-5 4-33 MODE Clause Format 4-13

viil : 60480300 A

PASSWORD Clause Format,
Source-Destination Division

STATUS Clause Format,
Source-Destination Division

Source-Destination Division Example

Queue Division Skeleton

Input Section Format

QUEUE Paragraph Format, Input Section

SUB-QUEUE-n Paragraph Format

Compound Queue Structure Examples

ADL Compound Queue Definition Examples

Output Section Format

QUEUE Paragraph Format, Output Section

Routing Section Format

SELECT Paragraph Format

JOURNAL. Clause Format

MEDIUM Clause Format

PASSWORD Clause Format, Queue Division

RESIDENCY Clause Format

ROUTE Clause Format

STATUS Clause Format, Queue Division

Queue Division Example

Application EXAMPLE Input Queue
Structure

Application Processing Division Skeleton

USE Paragraph Format

CONNECT Condition Format

CONNECTION-BROKEN Condition Format

CONNECTION-INACTIVE Condition Format

DISCONNECT Condition Format

EL APSED-TIME Condition Format

INITIATION Condition Format

SIZE EXCEEDS Condition Format

TIME Condition Format i

DISABLE Verb Format

DISCONNECT Verb Format

DISPLAY Verb Format

DUMP Verb Format

ENABLE Verb Format

IDLE Verb Format

INVOKE Verb Format

MESSAGE Verb Format

PURGE Verb Format

REROUTE Verb Format

Interactive Virtual Terminal Classes

End Indicators Interpreted by MCS

Source-Destination Division Clause
Usage

Queue Division Clause Usage

60480300 A

4-75
4-14 4-76
4-77
4-14 5-1
4-14 5-2
4-15 5-3
4-15 5-4
4-15 5-5
4-15
4-16 5-6
4-17 5-7
4-17
4-17 5-8
4-17
4-18 5-9
4-19
4-19 5.10
4-19 5-11
4-19
4-20 5-12
4-21 5-13
4-22 6-1
4-23 6-2
4-23
4-23 6-3
4-24 6-4
4-24 6-5
4-24 6-6
4-24 6-7
4-24
4-24 6-8
4-24
4-25 6-9
4-25 7-1
4-25 7-2
4-26 7-3
4-26 8-1
4-26 8-2
4-27 8-3
4-27 8-4
4-27 9-1
4-27 9-2
4-27
TABLES
1-2 4-3
3-1 44
7-1
4-12 8-1
4-18

REVOKE Verb Format

SHUTDOWN Verb Format

Application Processing Division Example

ADLP Control Statement

Source Listing

Source Listing Containing Error

Cross Reference L.isting

Cross Reference Listing Showing
Undefined Name

Library Maintenance Listing

Creating an Application Definition
Library

Adding an Application Definition
to a Library

Deleting Application Definitions
from a Library

Test Mode Message Flow

Application Definition for
Test Mode Execution

Sample Job Stream

Invocation File Example

ADLP Source Listing of Application
MAILBOX

Compound Input Queue Structure for
Application MAILBOX

Invocation File MSGFILE

Invocation File TOOFILE

Source Listing of Program MSGDROP

Source Listing of Program TOOMANY

Application MAILBOX Terminal User
Session :

Application MAILBOX Input Queue
Display

Output From Program TOOMANY

Input Queue Display Format

Output Queue Display Format

Input Queue Display Example

Application Status Display Format

Terminal Status Display Format

COBOL Program Status Display Format

Terminal Status Display Example

System-Default Procedure File

Procedure File Example

USE Paragraph Conditions
USE Paragraph Verbs
User Commands

AOP Commands

LU
Loadi =]

b1

\n\ooomooqow\:\:ma\
NNOOUVMEWNNEE

4-24
4-25
7-1
8-2

ix/x

NOTATIONS USED IN THIS MANUAL

“

UPPERCASE

UNDERLINED

lowercase

60480300 A

Uppercase words are Application
Definition Language reserved words.
They must be spelled correctly,
including any hyphens; they cannot be
used in a source program except as
indicated. When used in examples of
terminal dialog, uppercase indicates
information generated by MCS or by the
network.

Underlined uppercase words are
required when the format in which they
appear is used.

Lowercase words are generic terms
which represent the words or symbols
supplied by the programmer. When
generic terms are repeated in a format,
a number is appended to the term for
identification in the subsequent
discussion. When used in examples of

[]

U

terminal dialog, lowercase indicates
information entered by the terminal
user.

Brackets indicate an optional portion of
a format. All of the format within the
brackets can be omitted or included at
programmer option. If items are
stacked vertically within the brackets,
only one of the stacked items can be
used.

Braces indicate the portion of a format
that is required, but a selection of one
of the vertically stacked items within
the braces must be made.

The ellipses is a repitition indicator.
The portion of the format enclosed in
the immediately preceding braces or
brackets can be repeated at
programmer option.

xi

GENERAL DESCRIPTION 1

The Message Control System (MCS) provides the COBOL
programmer with a telecommunications message handling
capability. MCS is a network application program that
utilizes the Network Access Method (NAM) to. transfer
data between COBOL programs and terminals and
between COBOL programs. :

FEATURES

A central feature of MCS is the Application Definition
Language that allows an application developer to tailor an
MCS application to specific needs. Other features are as
follows:

e A set of commands provides the terminal user with
execution-time control over certain aspects of the
MCS application with which the user is
communicating.

e A set of application operator commands provides a
designated application ‘operator with additional
control over MCS operations.

e Application status information can be copied to a
monitor file to be used for analyzing the activities of
an application. MCS provides facilities for specifying
how often or under what circumstances the copying is
to be performed.

e MCS applications can execute independently of the
network for purposes of testing message routing and
Application Definition Language program logic.

e Essential application status information can be copied
to a dump file for recovery purposes. MCS provides
facilities for naming the dump file and for specifying
how often or under what circumstances the copying is
to be performed.)

e A COBOL Communication Facility allows COBOL
programs to interface with MCS.

CONFIGURATION

The hardware and software configuration needed to
support MCS is similar to that of any network application
program using the network software to service interactive

terminals.

NETWORK SOFTWARE INTERFACES

MCS is a network application program that interfaces
with the Network Access Method (NAM), Through NAM,
MCS interfaces with the Communications Supervisor
module and the Network Validation Facility of the
network software. . The Communications Supervisor
supervises the establishment and maintenance of a
communication path between a terminal and MCS. Login
dialog and access security are provided by the Network
Validation Facility (NVF). The relationships of MCS with
NAM, NVF, the Communications Supervisor, and COBOL
programs are shown in figure 1-1.

60480300 A

Host Computer
Network Software
Communications V“;?itc‘;;:ill(n
Supervisor Network Facility .
Access acility NPU Data Terminal
Method Communication =]
Network
McS COBOL
Programs
Figure 1-1. MCS Software Interfaces

MCS uses the system control point feature of the NOS
operating system. MCS, when running, implies the use of
three control points, one for each of the following
modules:

e NAM
e MCS

e COBOL program

For installations where control point resources are
limitied, MCS should be shut down when applications are
not in use; the control points are then available to other
programs.

HARDWARE REQUIREMENTS

The MCS software requires one CDC host computer
(configured for network software operation), one 255x
series Network Processing Unit and communications line
adapter, and any terminal supported by the Interactive
Virtual Terminal (IVT) interface. The IVT interface
supports 14 classes of terminals. Most terminal classes
correspond to an actual terminal, as shown in table 1-1.

TABLE 1-1. INTERACTIVE VIR TUAL TERMINAL CLASSES

Line Terminal Archetype
Protocol Class Terminal
Asynchronous 1 Teletype Corporation
Model 30 Series
2 cbC 713
4 IBM 2741
5 Teletype Corporation
Model 40-2
6 . | Hazeltine 2000
7 cDC 751
8 Tektronix 4000 Series
Asynchronous
HASP 9 HASP Protocol
Synchronous Multileaving
Workstation
Mode 4 10 cDC 200
Synchronous User Terminal
11 CDC 214-1X
12 coc 711-10
13 CDC 714-10/20
14 CDC 731-12 or 732-12
15 CDC 734

Certain characteristics might vary from terminal to
terminal. For example, print with no line advance does
not work on mode 4 terminals. The user should consult
site analysts for information on these characteristics.

Refer to the appropriate terminal operator's manual for
information on terminal operation.

APPLICATION ORGANIZATION

An MCS application consists of the COBOL programs,
terminal environment, message queues, and journal files
that are defined through the Application Definition
Language. One or more MCS applications can be active at
any given time; however, communication between

- applications is not possibie. One or more terminals can be

connected to a single application; however, a single
terminal cannot be connected to more than one
application at a time. The association between physical
terminals and the terminal environment described in the
application definition is established at login time. One or
more COBOL programs can be included in a given
application; a COBOL program can be included in more
than one application provided it is defined in each
application definition that uses the program. The
relationships of the elements of two MCS applications are
illustrated in figure 1-2. :

APPLICATION DEFINITION

To use the capabilities of MCS, the MCS Application
Definition Language (ADL) must be used to establish an
application definition. ADL performs the following
functions:

e Defines which COBOL programs are to execute
within the application environment.

o Defines the message queues that are to be used by
the COBOL programs and their residency (central
memory or disk).

e Defines which terminals can be _connected to the
application.

e Specifies the criteria to be used by MCS for routing
messages between terminals and queues.

e Specifies supervisory processing for conditions such
as accumulation of a given number of messages in a
queue, or chronological events.

® Assigns user-defined names to programs, terminals,
journal files, and queues.

Application Definition Language programs are compiled
by the Application Definition Language processor, which
produces a collection of tables for use by MCS. These
tables, known collectively as the application definition,
are then added to the application definition library, which
is a collection of MCS application definitions. Each
application definition resides on this library and is

completely independent of other application definitions.

Figure 1-3 illustrates the elements of an MCS application
defined in the application definition.

60480300 A

COBOL Programs for

COBOL Programs for

Terminals for
Application A

Application A Application Z
i]
A \
Message Queues and Journals
|- icati
MESSAGE for Application A
I CONTROL
SYSTEM
z Message Queues and Journals
) for Application Z
Application NETWORK
Definition ACCESS
Library METHOD -
\ ,
| | | NETWORK I l I l ,

Terminals for
Application Z

Application Definition

coBoL Terminals
Programs

Message

Queues Journals

Figure 1-3. MCS Application Definition

MESSAGE FLOW

Under MCS, messages are routed between COBOL
programs. and terminals, and among COBOL programs.

60480300 A

Figure 1-2. MCS Application Organization

The mechanism- that allows programs and terminals to
communicate is the message queue. Messages are
buffered through queues where they await delivery to the
appropriate destination. The flow of messages is from
terminals to input queues and then to programs, from
programs to output queues and then to terminals, and
from programs to interprogram queues and then to other
programs. All queues, programs, and terminals are
referenced by symbolic names defined in the application
definition.

COBOL INTERFACE

COBOL programs perform the message processing
functions of an MCS application. The COBOL 5
Communication Facility (CCF) enables COBOL programs
to communicate with MCS. CCF provides language
statements for interfacing with MCS. Following is a brief
summary of these statements. Refer to the COBOL 5
reference manual for more detailed information.

1.3

RECEIVE

Acquires a message or part of a message from the
named input queue, and optionally suspends the
program containing the RECEIVE statement when no
complete message is available in the named queue.

SEND

Releases a message or part of a message to MCS for
transmission to the named destinations.

ACCEPT MESSAGE COUNT

Obtains the count of complete messages currently
existing in the named input queue.

PURGE

Deletes incomplete messages released to MCS by the
program issuing the PURGE statement.

DISABLE

Breaks the logical path between sources and input
queues or between output queues and destinations.

ENABLE

Establishes the logical path between sources and
input queues or between output queues and
destinations.

In addition to the preceding statements, the STRING and
UNSTRING statements in COBOL 5 can facilitate the
character handling necessary for construction and analysis
of messages.

TERMINALS

Each terminal that is to input data to, or receive data
from, an MCS application is referenced by a symbolic
name within the COBOL programs of that application.
This name is not necessarily the same name that is used
in network definition files and internally within the
Network Access Method. At login time, MCS associates
the symbolic name used in the COBOL programs with the
name used in the Network Access Method.

There are two ways to establish this association between
physical device or user and a symbolic name. The first is
through the Application Definition Language, = which
provides syntax for defining this association. The second
way is through a dialog between MCS and the terminal. In
this second method, the symbolic name must still be
declared in the application definition, but it is not
permanently associated with a specific terminal or user.

A given physical terminal can be defined in more than one
application definition. For this reason, when a terminal is
first connected to MCS, the terminal user must indicate
the application desired. The terminal user can then
indicate, when appropriate, which symbolic name should
be associated with the terminal.

Once the terminal identity is established, the terminal
user can select the mode of operation. In data mode, ail
input from the terminal is routed to the appropriate input
queue and is available to COBOL programs within the
application. In command mode, the user can enter
commands to control certain aspects of MCS operation.
The initial mode is established in the application
definition. The technique for switching modes is
described in section 2, Terminal Access.

1-4

The initial connection between a terminal and MCS is
either established as part of the login sequence, or is
predefined through the Network Definition Language.
When the connection is predefined, the login sequence is
controlled by parameters specified in the application
definition.

APPLICATION DEVELOPMENT

Detailed knowledge of the network definition is not
necessary to develop an MCS application. However,
terminals used by the application must be included in the
network definition.)

The following steps are necessary to develop and bring
on-line an MCS application:

e Prepare the application definition using the
Application Definition Language.

e Process the application definition using the
Application Definition Language processor to create
the application definition tables. These tables are
added to the application definition library.

® Prepare the COBOL programs that are to
communicate with MCS. .

® Prepare any data bases and data base definitions
required by the COBOL programs.

e Test the application definition and COBOL programs
off-line using the test mode facilities provided by
MCS. :

e Prepare an operational guide for users of the
application.

e Test the application on-line.

OPERATIONAL CONTROL

MCS is started, idled, and shut down by commands issued
from the CYBER Operator's Console. Once MCS is
running, control of individual applications is accomplished
via commands issued from terminals that have connected
to MCS. Commands that request status information or
affect only the terminal issuing the command can be
issued by any terminal that is connected to MCS. These
commands enable the terminal user to:

e Display information about input and output queues.

e Disable, and subsequently enable, the terminai.

o Terminate the terminal's connection to MCS.

e Send messages to the application operator.

However, the full repertoire of commands is available
only to a terminal user designated as the application
operator (AOP). The additional commands allow the AOP
to monitor and control the activities of an MCS
application. The AOP commands provide the capability to:
o Initiate the application.

e Disable, and subsequently enable, any queue or
terminal in the application.

e Idle, and subsequently resume, the application.

60480300 A

e Disconnect any terminal connected to the application
(except the AOP terminal).

e Display information about the status of the
application.

e Display the contenfs of message queues,

e Abort a program execu‘ting under MCS.

e Initiate execution of user COBOL programs.

® Reroute messages destined for terminals.

e Send messages to all terminals or selected terminals.

e Shut down the application.

60480300 A

The Application Definition Language provides syntax for
naming the terminals eligible for AOP status and for
defining a password to protect this capability. The
application operator is then designated at login time by
specifying the correct password. A given application
cannot have more than one AOP at a given time; however,
when an AOP logs off, another user can log in as the AOP.

The MCS commands are also available to COBOL
programs. Messages sent to the application name are
interpreted as MCS commands and are not enqueued for
routing to a terminal or another program. MCS responses
to these commands are enqueued in the program's
response queue, which is defined in the application
definition.

1-5

TERMINAL ACCESS | 2

D .

Before a terminal can communicate with MCS it must
first gain access to the network and then indicate with
which NAM application program it wishes to communicate
(in this case MCS). This section describes the procedure
used to connect the terminal with the network via the
Network Validation Facility (NVF), access MCS and an
MCS application, and disconnect the terminal from the
network.

ACCESS PROCEDURES

An access procedure consists of connecting the terminal
to NVF to begin a login procedure. The available login
procedures are standard login and automatic login.

In the standard login procedure, the network prompts the
user for the necessary information. An abbreviated form
of the login procedure allowing the user to enter all of the
togin information on a single line instead of waiting for
prompts is also available.

A terminal can be configured for automatic login; in
which case NAM supplies all of the necessary
information. Terminals can also be configured for a login
procedure in which some of the information is supplied by
the user, and the remainder is supplied by NAM.

When the terminal is dedicated to MCS in the network
definition, the standard login procedure is not applicable.

STANDARD LOGIN PROCEDURE

The login sequence begins with the terminal displaying
three lines. The first line is the date, time, and terminal
name, in the following format:

yy/mm/dd. hh.mm.ss. xxxxxxx

The date is given by year/month/day and the time in
hours.minutes.seconds. The terminal name is represented
by xxxxxxx, a 1- to 7-character name that the network
uses to identify the terminal. For example, if the login
for terminal TERM201 began at 12 minutes and 44 seconds
after 2 o'clock in the afternoon of the third day in
December, 1979, the first line would read:

79/12/03. 14.12.44 TERM201
The second line is an identifying header that is defined by
installation; it might give the company name, the
operating system, and the version of the operating system,
as shown in the following example:

CONTROL DATA CORP. NOS 1
The third line is:
FAMILY:

60480300 A

This line requests the family name of the mass storage
device that contains the terminal user's permanent files.
For example, if AAA is an approved family name, enter:

AAA
The network software next requests the user name:

USER NAME:

The user name identifies the terminal user in the NOS
validation files. This is the identifier by which the
terminal user is known until a session is terminated by
logoff. User name is made up of letters, digits, and the
asterisk, in any combination.

The prompting line is responded to by entering a valid user
name. For example, if 87X32 is the assigned user name,
enter:

87X32

The network software then responds with a request for
password:

PASSWORD:

or
PASSWORD:

EEEEEAEN
The password assigned to a terminal user to provide
access security must be entered. For example, if the
assigned password is PASS123, enter:

PASS123
For terminals capable of overstriking characters, the line

of blackouts preserves password privacy after entry.

The next network software prompt is for the name of the
application with which connection is desired:

xxxxxxx-APPLICATION:

where xxxxxxx is the l- to 7-character name used to
identify the terminal. To select MCS, enter:

MCS
MCS responds with the message:

MCS 1.x yy/mm/dd. hh.mm.ss
The specific version of MCS being accessed is represented
by %, and yy/mm/dd and hh.mm.ss indicate the date and

time access begins.

This completes the login and establishes a connection to
MCS.

2-1

Once a terminal has gained access to the network and
established a connection to MCS, the terminal user must
then specify the desired MCS application (unless the
terminal is dedicated to a particular application in the
application definition). MCS issues the prompt:

MCS APPLICATION 7

In response to this prompt, enter the name of the desired
MCS application:

MCS APPLICATION ? application

When the application has not been initiated by the
application operator (as described in section 8), the
following message is displayed:

APPLICATION NOT RUNNING

When the application has been activated and is available
to terminal users, MCS issues the following prompt.

SYMBOLIC NAME ?

In response to this prompt, enter either one symbolic
name or two symbolic names separated by a space. Each
terminal with which an MCS application communicates is
referenced by a symbolic name within that application.
- This name is not necessarily the same as the name used by
NAM to reference the terminal. MCS associates the
symbolic name used in an application with the name used
by NAM. Symbolic names must be defined in. the
application definition.

When a single name is entered, that name must be defined
in the application definition as either a source name, a
destination name, or an interactive name. When two
names are specified, the first must be defined as a source
name, and the second as a destination name. For
example, to associate the symbolic name SOURCEB with
the terminal, enter:

SOURCEB

When the terminal is dedicated to a particular symbolic
name in the application definition, MCS does not issue the
SYMBOLIC-NAME prompt. See section 4 under ALIAS
clause for an explanation of dedicated.

MCS next issues the following message:

mmmm MODE
?

When the terminal is dedicated, MCS issues the following
message:

DEDICATED TERMINAL
APPLICATION=xxxx
SYMBOLIC NAME=yyyy
STATUS=zzzz

mmmm MODE

”?

In these examples, mmmm is either DATA or COMMAND
(indicating the operating mode of the terminal as
described in this section under Operating Modes) and ? is
the MCS prompt for user input. In the second example,
xxxx is the application name, yyyy is ' the terminal
symbolic name as defined in the application definition,
zzzz is ENABLED or DISABLED.

This completes the procedure for establishing a
connection to MCS.

2-2

AUTOMATIC NETWORK APPLICATION
PROGRAM SELECTION

The Network Validation Facility (NVF) is designed to
perform automatic network application program selection
whenever the terminal is allowed to access only one
network application program. Automatic network
application program selection is performed immediately
following successful validation of the terminal. The
APPLICATION prompt is not issued, and any network
application program name entry is ignored.

Automatic network application program selection occurs
only on the first login in a given terminal session (initiai
login); after that, MCS must be entered in response to the
APPLICATION prompt. To repeat the automatic login
procedure, the physical connection must be broken and
reestablished.

ABBREVIATED LOGIN PROCEDURE

The login procedure can be shortened by entering all of
the login information at once. For example:

FAMILY:
familyname,username,password,application

The information must be entered after an NVF prompt and
must be separated by commas. These parameters are
order-dependent, and any default or unused parameters
must be indicated by separator commas. When the
abbreviated login procedure is used, subsequent system
prompts are suppressed.

For example, to login and connect to MCS with a family
name of AAA, a terminal user's name of AB123, and a
password of XYZ, enter:

AAA,AB123,XYZ,MCS
To use the default value for family name, enter:

,AB123,XYZ,MCS |

AUTOMATICLOGIN

When the network is configured so that NAM performs
automatic login of terminals, NAM supplies the proper
family name, user name, and network application program
name to NVF. No login prompts are -displayed at the
terminal, and MCS is connected automatically.

If NVF is not provided with all of the required parameters,
NVF issues prompts to the terminal for the missing
parameters. The terminal user must then respond to the
prompts by entering the requested parameter. No
password parameter is used for terminais configured for
automatic login.

AUTOMATIC MCS LOGIN

When a terminal is dedicated within MCS, MCS
automatically selects the application and terminal
symbolic name upon connection to MCS. The MCS
APPLICATION and SYMBOLIC-NAME prompts are not
displayed.

60480300 A

When a terminal is associated with (but not dedicated to)
a specific user or terminal in the ALIAS clause of the
application definition, MCS automatically assigns the
terminal symbolic name when the user or terminal selects
that MCS application. The SYMBOLIC NAME prompt is
not displayed. .

LOGIN DIAGNOSTICS

An unsuccessful login sequence is indicated by the
diagnostic messages described in the following paragraphs.

If insufficient system resources are available to allow the
terminal to gain access to the network, the following
message is displayed:

LOGIN ABORTED, TRY LATER

If MCS is not running at a host computer control point,
the following message indicates that the connection could
not be made:

APPLICATION NOT PRESENT.
xXXxxxx-APPLICATION:

where xxxxxxx is the terminal name. The name of
another network application program must be entered or a
logoff procedure performed.

NVF can prevent more than one terminal with the same
user name from being logged into MCS. The following
message shows that login has been performed correctly
and that an attempt has been made to connect to MCS,
but connection is prohibited because another terminal user
with the same family name and user name is currently
connected.

CONNECTION PROHIBITED, TRY AGAIN LATER
xxxxxxX-APPLICATION:

where xxxxxxx is the terminal name. Although it is
necessary to wait until the current user has finished
before a new connection to MCS is permitted, another
application can be requested.

In times of heavy usage or if available resources such as
computer memory are limited, MCS can become
saturated. If this occurs, MCS is unable to accept any
additional connections. The following message is issued:

CONNECTION REJECTED

and the wuser must either select another network
application or attempt an MCS connection at a later time.

An unacceptable family name, user name, or password is
indicated by the message:

IMPROPER LOGNN, TRY AGAIN
FAMILY:

The login procedure must be restarted from the beginning,
regardless of the step in the procedure at which the
diagnostic occurred. :

After four unsuccessful attempts to enter family name,
user name, and password, the following message appears:

ILLEGAL USER
If this occurs for a switchable terminal, the terminal is

disconnected from the network; further attempts to log in
are not possible until the terminal is reconnected to NVF.

60480300 A

If the application name entered in response to the
APPLICATION prompt is unknown to NVF, or the
application is not available to the logged in user, the
following message is displayed:

ILLEGAL APPLICATION, TRY AGAIN.
xxxxxxx-APPLICATION:

where xxxxxxx is the terminal name. After a fixed
number (installation option with defauit of 4) of
unsuccessful attempts to enter an application name, the
following message is disptayed at the terminal:

APPLICATION RETRY LIMIT

If the application retry limit is exceeded, the terminal is
disconnected from the network.

Once a connection to MCS has been established, the
terminal user is allowed a limited number of tries
(installation option with a default of 3) to correctly select
an MCS application name and symbolic terminal name. If
an incorrect application name is entered in response to
the MCS APPLICATION prompt, the following message is
displayed:

UNKNOWN APPLICATION

and MCS reissues the MCS APPLICATION prompt.

If an incorrect symbolic name is entered in response to
the SYMBOLIC-NAME prompt, the following message is
displayed:

UNKNOWN DESTINATION
or

UNKNOWN SYMBOLIC NAME
or

INVALID SYMBOLIC NAME

and MCS reissues the SYMBOLIC-NAME prompt.

An attempt to log in under a symbolic name that is being
used by another terminal user resuits in the message:

DESTINATION ALREADY IN USE
or
SOURCE ALREADY IN USE

depending on how the symbolic name is defined in the
application definition. The user must enter a different
symbolic name.

If the established limit for login attempts is exceeded, the
following message appears:

SOLICITATION LIMIT EXCEEDED

and the terminal is logged out of MCS; the network
reissues the APPLICATION prompt, and the user must
select a new network application.

If a user attempts to connect to an application that has
not been initiated, the following message is displayed:
APPLICATION NOT RUNNING

MCS reissues the MCS APPLICATION prompt, and the
user must select a different MCS appiication.

If a user attempts to connect to an idle appllcatlon, the
following message is displayed:

APPLICATION IDLE

and the user must select a different MCS application.

An attempt to log into an application that is running in
test mode is rejected.

A response to any non-MCS login prompt must be entered
within a system-specified time interval (installation
option with default of 2 minutes). If the terminal user
takes too much time to respond to a prompting message,
the following message is displayed:

TIMEOUT

If this occurs, the terminal is disconnected. No further
login entries are possible at a dialup terminal until the
telephone connection is broken and reestablished. The
login sequence is restarted at a hardwired terminal by
entering any character and pressing the transmission key.

If -an internal error causes MCS to abort or the system
operator disables MCS after the terminal has been
connected, the following message is displayed:

APPLICATION FAILED.
MCS CONNECT TIME hh.mm.ss.
xxxxxxX-APPLICATION:

The parameters hh.mm.ss specify the length of time the
terminal was connected to MCS; xxxxxxx represents the
terminal name.

A complete list of terminal error messages, and an
explanation of each message, is included in appendix B.

| SWITCHING NETWORK APPLICATIONS

To transfer the terminal connection from MCS to another
network application program, the terminal user must
enter the LOGIN command from MCS command mode. A
prompt for a new application name is eventually displayed
as part of the responses to the LOGIN command.

After disconnection from MCS, NVF indicates that a
connection switch is in progress by issuing the fouowmg
message:

'MCS CONNECT TIME hh.mm.ss.

where hh.mm.ss indicates the time elapsed since
connection with MCS occurred.

After this message appears, another prompt for a network
application program name is issued, unless the terminal is
dedicated to MCS.

The command form:

LOGN application

can also be used to switch network applications. This
command is described in section 7.

DISCONNECT PROCEDURE

During the login procedure, two sequential logical
connections are established within the network. The first
connection is with NVF; this occurs when the family

2-4

name, user name, and password are requested. These
provide the security and accounting information needed
for NVF to establish the second connection. The second
connection is established (to a network . application
program such as MCS) when the response to the
APPLICATION prompt is entered successfully. The
logical connection to the network application program
must be severed before the user can be logged off from

the network.

EXIT FROM MCS

A terminal user ends the logical connection with MCS by
entering an END, HELLO, LOGON, or LOGIN command
(described in section 7). These commands disconnect the
terminal from MCS and transfer control to NVF.

EXIT FROM THE NETWORK

An exit from the network can be accomplished by entering
a LOGOUT, LOGOFF, BYE, or GOODBYE command.
MCS interprets each of these commands as an alternate
END command; MCS responds by sending LOGOUT to NVF
without being prompted. Therefore, the terminal can be
disconnected from both MCS and the network by the
LOGOUT, LOGOFF, BYE, or GOODBYE command. When
the terminal console connection to MCS is terminated but
the terminal is not disconnected from the network, the
following message is displayed:

MCS ENDED yy/mm/dd. hh.mm.ss.
MCS CONNECT TIME hh.mm.ss.

Actual disconnection can take up to several minutes;
therefore, any entry that is made before disconnection
causes the login procedure to be restarted. Once a diaiup
terminal has been disconnected from the network, it must
be reconnected. The NVF logout procedure does not
disconnect a hardwired terminal from the network. When
the terminal is queued for disconnection, the following
message appears:

LOGGED OUT.

LOGOUT WITHOUT DISCONNECTION

The terminal user can log out and initiate the login dialog
without disconnecting the terminal from the network.
When the user exits MCS by entering a LOGIN, LOGON,
or HELLO command, or responds to the APPLICATION
prompt with a HELLO or LOGIN command, the terminal is
logged out and disassociated from its current user number,
and the login procedure is restarted.

A sample dialog illustrating the login procedure is shown
in figure 2-1.

OPERATING MODES

While a terminal is connected to MCS, it can operate in
one of two modes: command mode or data mode. The
Application Definition Language allows the user to specify
the initial mode for each of the application's terminals.

The initial operating mode of a terminal is displayed
immediately after the user enters the termlnal symbolic
name. For example:

SYMBOLIC NAME ?terml12
COMMAND MODE

60480300 A

CFAMILY: myfam
USER NAME: myname

PASSWORD: pwrd NVF has
TNAME - APPLICATION: mes control
MCS 1.0 79/10/05. 08.22.30.

MCS APPLICATION ?app?
SYMBOLIC-NAME ?term1

COMMAND MODE .

?data

DATA MODE ‘

MCS has
control

<b2><cr>
COMMAND MODE
?end

MCS ENDED 79/10/05. 08.25.15.)/
Mcs CONNECT TIME 00.32.52. }NVFhas
LOGGED OUT, control

Figure 2-1. Sample Login Dialog

The initial mode of a terminal, when not otherwise
specified in the application definition, is command mode.
In either mode, the MCS prompt for user input is a
question mark (7). (In data mode, the prompt is issued
only when serial number echoing is selected in the
application definition, as described in section 4.)

NOTE

MCS does not distinguish between uppercase and
lowercase letters. Therefore, when entering
commands or messages, either form can be used,
and MCS maps to uppercase.

COMMAND MODE

When a terminal is in command mode, input messages are
treated as MCS commands. No data messages are sent to
the application while command mode is active. Terminals
can be switched to command mode by entering the
break-2 control sequence. MCS responds with the
message:

COMMAND MODE
?

The question mark is the MCS prompt for user -input.
When a command is entered, MCS checks the command
for correctness. ‘If the command is unrecognizable, MCS
issues the message:

UNKNOWN COMMAND

and the user can reenter the command.

DATA MODE

When a terminal is in data mode, messages entered at the
terminal are sent to input queues, and application output
messages are delivered to the terminal. Terminals can be
switched to data mode by entering the command:

DATA

60480300 A

MCS responds with the message:

DATA MODE
?

When in data mode, MCS issues prompts only if serial
number echoing is specified in the application definition
(as described in section 4).

The routing procedures that determine the destinations of
messages entered in data mode are defined in the
application definition. For example, an application might
route a message to the queue specified in the first field of
the message, where the field is delimited by a comma.
For this example, the following dialog switches the
terminal to data mode and sends messages to queues Q6
and Q25:

?data

DATA MODE

7925, today is tuesday
SERIAL NUMBER =1
?g6, let's go home
SERIAL NUMBER = 2

End-of-segment, end-of-message, and end-of-group
conventions for messages entered from a terminal are
described in section 3.

BREAK SEQUENCES

MCS recognizes the break-1, break-2, and cancel
(control x) terminal control sequences. A terminal in
command mode can be switched to data mode by entering
break-2.

Break-1 can be used to terminate output to the terminal.
This feature is useful when user commands, such as
DISPLAY, result in excessive output.

For asynchronous terminals (classes 1 through B8) only,
cancel can be used to delete a partial message. This
feature can be used to correct errors when entering
messages in data mode. For example, where
indicates carriage return and indicates line feed, the
dialog:

?first message (€1)
first segment of second message @
second segment of second message

enters a compleie message followed by two segments of a
second message. A cancel entered at this point would

delete the two segments of the incomplete second
message, allowing the user to reenter those segments.

COMMANDS

MCS provides a set of commands that allows users to

-control certain aspects of its operation.. These commands

are divided into two categories: user and AOP. User
commands control the operation of a given terminal
connected to MCS and are available to alt MCS users. The
user commands are described in section 7. AOP
commands control the operation of an MCS application
and are restricted to the Application Operator. The AOP
commands are described in section 8.

MESSAGES AND QUEUES

The basic unit of data manipulated by the interface
between MCS and a COBOL program is the message.
Messages from a terminal to a program, messages from a
program to a terminal, or messages from a program to
another program are collected in message queues while
awaiting processing or transmission. This section
discusses the message concept as it relates to MCS and
the queue structure wused to accomplish message
manipuiation.

THE CONCEPT OF MESSAGES

A message. is a string of characters with an implied
beginning and end. A message can contain one or more
physical lines to be displayed at a terminal.

Messages can be logically subdivided into smaller units of
data called segments. The maximum length of an MCS
message segment is 4100 characters. However, there are
certain criteria affecting what MCS interprets as a
message segment. The subsection on message
transmission discusses these criteria.

MESSAGE INDICATORS

-Message indicators delimit messages and notify MCS or a
COBOL program that a specific condition exists. An
end-of-segment indicator (ESI) delimits a message
segment within a message. An end-of-message indicator
(EMI) delimits a message, which can consist of one or
more segments, from_ the next message. Similarly, an
end-of-group indicator (EGI) logically separates a group of
vgveral messages from succeeding messages. An EGI
implies an ESI and an EMI, because a group of messages
contains: both messages and message segments. An EMI
implies an ESI, because a message contains message
segments. Figure 3-1 illustrates the end indicator
hierarchy.

ESI ESI ‘EMI ESI EMI EGI
! !
[1

1 | T
[
I
|
1

Segment :Segmentk Segment Segment:Segment Segment

i ——
~ ~N \’\~ v’

Message Message Message

Group of Messages

Figure 3-1. End Indicator Example

MESSAGE TRANSMISSION

On output, the COBOL program that uses MCS to send the
message text to the terminal indicates which end
indicator, if any, is associated with that text. At a
terminal, MCS starts each message and each message

60480300 A

segment sent to the terminal on a new line. When the last
message in a group of messages is sent to a terminal, MCS
signals the end of the group to the terminal. An EGI
character is displayed at the terminal, followed by a
carriage return. Section 4, Application Definition
Language, describes the syntax to define an EGI.

On input, a combination of terminal user actions and MCS
conventions determines where the end indicators are in
the message text entered by the terminal user. Table 3-1
shows which end indicator MCS interprets after a
particular terminal action. If a terminal user inputs text
longer than the defined page width for that terminal, MCS
inserts additional ESI indicators so that no message
segment is longer than the defined page width.

TABLE 3-1. END INDICATORS INTERPRETED BY MCS

Terminal Type | Terminal Action | End Indicatort

=
New Line

Carriage Return
Synchronous EMI
Send

ETX

Line Feed
New Line EST
ATTN

Asynchronous
~Carriage Return EMI

A terminal action normally interpreted as an
EMI is interpreted as an EGI when the character
immediately preceding the terminal action is
defined as an EGI in the application definition.

The communication description (CD). area of a COBOL
program issuing a RECEIVE is updated by MCS to show
which end indicator, if any, is associated with message
text. See the COBOL 5 reference manual for detailed
information. The COBOL programs of an application must
perform any message processing functions that are
required.

QUEUES

A queue is a storage area for messages awaiting delivery

to a COBOL program or transmission to a terminal. A
queue consists of the collection of related messages
stored in it. Queuing messages provides for message
buffering and message routing. One or more COBOL
programs can communicate with one or more terminals
through queues. Conversely, one or more terminals can
communicate with one or more COBOL programs through
queues. The process of placing messages in a queue is
called enqueuing. Dequeuing is the process by which
messages are removed from a queue. MCS can acquire

and enqueue messages from a terminal when no COBOL
message processing programs are running. MCS can
continue to send messages to terminals after the programs
that generated the messages have terminated. MCS can
be shut down with unprocessed messages in queues. When
MCS is started again, messages in mass storage queues are

still intact in the queues. Messages in central memory
queues are discarded at application shutdown time. The

user defines where message queues reside in the
application definition. Figure 3-2 shows the flow of
messages in an on-line data processing application using
MCS.

INPUT QUEUES

Messages from terminals are placed into input queues by
MCS while awaiting disposition by a COBOL program.
Portions of messages are not available to the program;
MCS does not enqueue an incoming message until all the
segments of that message have been sent from the
terminal. When MCS acquires a message from a terminal,
it determines into which input queue to place the message
based on the source of the message, the content of the
message, the time of day, or any combination of these
three. The application definition can specify that
messages from one group of terminals be routed into one
input queue, that messages from a second group of
terminals be routed into a second input queue, and so
forth. The same possibilities exist for routing messages
based on content or time of day. Any COBOL program

defined as part of the application can receive messages -

‘from any of the input queues. Section 4 describes the
syntax for specifying message disposition.

There are three types of special-purpose input queues.
These are the injection queue, the collection queue, and

the response queue. The injection queue and the
collection queue are used when an application is running in
test mode. MCS enqueues messages from a test message
generation program in the injection queue. MCS enqueues
messages that are normally output to terminals in the
collection queue. Test mode is explained in section 5.

The response queue is a special destination used when a
COBOL. program sends commands to MCS. MCS responses

to these commands are enqueued in the response queue.
Section 4 describes the syntax for defining these
special-purpose queues.

OUTPUT QUEUES

Messages sent from COBOL programs to destinations
(terminals) are routed through output queues. Programs
can send partial segments, partial messages, or message
segments; incomplete messages are buffered by MCS until
an EMI is sent by the program. When an EMI is received
by MCS, the message is enqueued in an output queue prior
to transmission to a terminal. Programs can send
messages to terminals that are not presently connected or
that are temporarily disabled. MCS accepts such
messages and holds them in the output queues until the
terminal is connected (logs in) or is reenabled. When a
message is sent to a connected terminal, MCS routes the
message according to routing information specified in the
application definition.

INTERPROGRAM QUEUES

Interprogram message routing can be used in applications.
Interprogram message queues are input queues that hold
messages destined for other COBOL programs until the
othier programs request them.

COBOL
Program

" Application

Definition -
Library ’

Network Access Method |

I O A T

Message

Control l\oﬂassage
System- ueues
- i

TERMINALS o .

Figure 3-2. Message Flow Using MCS

3-2

- 60480300 A

QUEUE HIERARCHY

Four levels of input queues can be defined by the user to
explicitly control the messages being enqueued and
dequeued. These hierarchal divisions of queues are known
as subqueues. The four levels are named queue,
sub-queue-1, = sub-queue-2, and sub-queue-3. The
four-level structure allows specification of multiple
conditions on which to base message routing. Figure 3-3
shows a four-level input queue structure. Any number of
queues can be defined at any of the subqueue levels. For
example, QA of figure 3-3 could include three
sub-queue-1 level queues, each with three sub-queue-2
level queues, and each of these queues could have three
sub-queue-3 level queues. An application can include
zero, one, or more hierarchal input queue structures.

A queue with subqueues is a compound queue; a queue
with no subqueues is a simple queue. In figure 3-3, queues
A, B, C,D, E, F, and G are all compound queues, because
they have queues below them in the hierarchy.. Queues H,
L J K, L, M, N, and O of figure 3-3 are simple queues,
because they have no queues below them in the hierarchy.
Any queue at the queue, sub-queue-1, or sub-queue-2 level
can be either a compound or a simple queue depending on
whether or not there are any queues below it. All
sub-queue-3 level queues are simple queues, because there
can be no lower-level queues.

Only simple queues store messages. An incoming message
is tested at each level of the queue hierarchy, according
to the routing conditions specified in the application
definition, until the message arrives at a simple queue.
Section 4 describes the syntax for defining routing
conditions.

The message MCS releases to a COBOL program depends
on the COBOL RECEIVE request. When a COBOL
program requests a message from a compound queue, MCS
searches the named compound queue from left to right
until a .nonempty simple queue is found and returns the
next message in that queue. MCS also updates the
COBOL program CD area to indicate from which
subqueue the message was returned. When the next
message in a given subqueue is requested by the COBOL

program, the request must specify both the queue name
and any subqueue names. It is possible for a partial
message to remain in a queue if the COBOL program
receiving area is not large enough to contain the entire
message. A subsequent RECEIVE against the same queue
and any subqueues returns the remainder of the message.
Using figure 3-3, the following examples illustrate the
messages returned when MCS gets a RECEIVE request
from a COBOL program:

e The COBOL program requests a message from:

Queue A
MCS returns message 1 and updates the CD area

e The COBOL program requests a message from:

Queue A
Sub-queue-1 C
MCS returns message 10 and updates the CD area

® The COBOL program requests a message from:

Queue A

Sub-queue-1 B

Sub-queue-2 E

MCS returns message 6 and updates the CD area

e The COBOL program requests a message from:

Queue A

Sub-queue-1 B

Sub-queue-2 E

Sub-queue-3 J

MCS returns no message because message 6 was
previously returned

e The COBOL program requests a message from:

Queue A

Sub-queue-1 C
Sub-queue-2 G
Sub-queue-3 N

MCS returns message 13

QUEUE { A
SUB-QUEUE-1 { B ' c
SUB-QUEUE-2 § D E F G
SUB-QUEUE-3 { H 1 J L M N (o}

1 3 6 7 10 12 13 16
MESSAGE 2 4 8 1 14 17

5 9 ' R 15
Figure 3-3. Input Queue Hierarchy Example
60480300 A g 3-3

PRIORITY QUEUING

content can be routed into one input queue by MCS, while
messages considered lower priority can be routed into

The queuing mechanism provides a way of assigning other input queues. High priority queues should be -on the
priorities in the processing of messages. Messages that left in the queue structure, as shown in figure 3-4. See
the user considers high priority because of their source or section 4 for syntax for assigning priorities.
PRIORITY
QUEUE
High
Priority HIQ1
Queue
LOQ3 Low
Priority
Q
Loa1 | LoQz eves

3-4

Figure 3-4. Priority Queue Example

60480300 A

APPLICATION DEFINITION LANGUAGE 4

Applications that use MCS are described by the
Application Definition Language (ADL). In the context of
MCS, an application is a collection of COBOL programs,
queues, subqueues, communication devices (sources),
output devices (destinations), and journal files. This
section describes the functions, formats, and uses of ADL
in specifying the various entities that make up a complete
application.

LANGUAGE OVERVIEW

Three interfaces exist in the MCS environment. First is
the MCS/COBOL program interface in which a COBOL
program communicates with MCS., Second is the
MCS/terminal user interface where a user directs MCS to
send messages to a COBOL program. Third is the
ADL/user interface that defines certain external aspects
MCS uses in message routing. The external aspects
include naming to MCS the COBOL programs included in
the application, the message queues the application uses,
and the sources and destinations to and from which
messages are routed. ADL provides the syntax for
defining these external aspects. Additionally, ADL is used
to define the following:

e The association between a physical device (terminal)
and the symbolic name an application uses to
reference that terminal.

e The names of job invocation files and the conditions
under which each job stream is submitted to the
operating system by MCS.,

e The criteria MCS uses in routing messages into input
queues.

o The hierarchal structure of input queues.

e The terminals eligible for application operator (AOP)
status and the password to protect this status.

e The queues, programs, and terminals that are
monitored, the frequency with ~which monitored
information is recorded, and the name of the file on
which- this information is recorded.

e The dump file, and how often or under what
circumstances the copying is performed.

The various options available through ADL allow a user to
tailor an application to a particular requirement, while
providing flexibility in defining and modifying the external
aspects of the application. ADL has a COBOL.-like format
and syntax enabling programmers familiar with COBOL to
define an application easily. ADL uses a division, section,
paragraph, and clause structure to allow a logical grouping
of application entities, and it employs the COBOL coding
format standards (discussed in the following subsection).

60480300 A

An ADL program has six divisions. All divisions are
required, and they must appear in a specific order. The
division names in the required order are as follows:

APPLICATION GLOBAL DIVISION
APPLICATION PROGRAM DIVISION
APPLICATION DATA DIVISION
SOURCE-DESTINATION DIVISION
QUEUE DIVISION

APPLICATION PROCESSING DIVISION

These divisions are each discussed separately later in this
section.

LANGUAGE ELEMENTS

Several types of language elements are used in writing an
application definition with ADL. Each type of language
element has a specific use within an application definition.

RESERVED WORDS

A reserved word is an ADL word listed in appendix E that
is used in ADL programs in a given context. Reserved
words must not appear in an ADL program as user-defined
names. Reserved words can be used only as specified in
the ADL formats. Reserved words can be keywords or
optional words in the formats.

Key Words

A keyword is a reserved word that is required when the
format in which the word appears is used in an ADL
program. Within each format, keywords are indicated by
uppercase letters and underlining.

Optional Words

An optional word is a reserved word that is not required
when the format in which the word appears is used in an
ADL program. The presence of an optional word often
adds to the understanding of the format, but does not
affect execution. Within each format, uppercase letters
without underlining indicate optional words.

USER-DEFINED NAMES

A user-defined name is a word that must be supplied by
the programmer to satisfy the format of a paragraph or
clause. User-defined names can be formed using the
uppercase letters A through Z, the digits 0 through 9, and
the hyphen. The maximum length of a user-defined name
is 12 characters. The first character in the name must be
alphabetic, and the last character of the name must not
be a hyphen. All user-defined names must be unique

- within an application and cannot be reserved words.

Application Definition Language Names

ADL user-defined names are internal to an ADL program.
The ADL names are data names and condition names.

Data Names

A data name is a name that represents a unit of storage
that can assume different values. Data names are defined
in the MESSAGE paragraphs of the Application Data
Division.

Condition Names

A condition name is a name that assigns a specific vaiue,
set of values, or range of values to a data name.
Condition .names are defined in the CONDITION clauses of
the Application Data Division.

MCS/COBOL Names

MCS/COBOL names represent elements that are known to
both MCS and a COBOL program that uses MCS. This
category of user-defined names includes queue names and
symbolic names.

Queue Names

A queue name represents a message storage queue. Queue
names are defined in the Queue Division.

Symbolic Names

A symbolic name represents a source (terminal),
destination (output device), a group of sources or
destinations, an interactive terminal that is both a source
and a destination, an interprogram queue, or a journal file
to which messages are written after they are enqueued
and/or dequeued. Symbolic names are defined in the
Source-Destination Division.

System Names

System names are used to communicate with the
operating system. They can be from one to seven
characters in length. They are formed using the
uppercase letters A through Z, and the digits 0 through 9.
The first character in the name must be alphabetic.
System names cannot include a hyphen. User-defined
system names are file names and routine names.

File Names
A file name represents a storage medium used by MCS in
cooperation with the operating system to record relevant
information.

Routine Names

A routine name represents an executable code module
(program) external to MCS. :

4-2

LITERALS

A literal is a character string whose value is implied by
the ordered set of characters that make up the string.
Three types of literals can be defined using ADL: integer
literals, nonnumeric literals, and time literals.

Integers

An ADL integer is a numeric literal composed of a string
of characters using the digits 0 through 9. ADL does not
recognize signed numeric literals or those including a

. decimal point. The maximum value of an ADL integer is

2151 (32 767).

Nonnumeric Literals

A nonnumeric literal is a character string of 1 through 80
characters delimited on both ends by quotation marks.
Any character in the 64-character display code set (see
appendix A) can be part of a nonnumeric literal. Trailing
blanks are not significant.

When a quotation mark is part of the nonnumeric literal,
it must be represented as two contiguous quotation marks
within the character string. ~Two quotation marks
embedded between other characters produce a single
quotation mark within the literal. An example of a
nonnumeric literal with a quote is:

wnwEMBEDDED" " " "QUOTE" "
Produces the value "EMBEDDED" "QUOTE"

A character used in. a source program as a quotation mark
might appear on an output device as a different character,
depending on the device and the character set. In
particular, a quotation mark might appear as # on a print
file.

Time Literals

A time literal is a special type of nonnumeric literal that
produces a value representing a chronological quantity.

This chronological quantity is represented in the following
form:

"hh.mm.ss"
where hh represents hours, mm represents minutes, and ss
represents seconds. Time literals represent 24-hour clock
time as opposed to 12-hour clock time. For example:

"23.23.23"

is 23 minutes and 23 seconds after 11 o'clock at night.

CODING FORMAT

Each line in an ADL program can be represented as an
80-column punch card. Columns define areas of varying
- significance within a line as follows:

Columns “ 73 through 80 contain optional program
identification.

Columns 1 through 6 contain sequence numbers for
the source line.

60480300 A

Columns 7 through 72 contain language statements.
These columns are divided into three areas:

7 Indicator area
8 thru 11 Area A
12 thru 72 Area B

The indicator area can contain one of four characters that
identify the type of line in which it occurs:

space Normal line to be compiled.

- Continuation line if a word, integer, or
nonnumeric literal is split between lines.

* Comment line listed as it is encountered.

/ Comment line that causes a page eject to
occur for the source listing before the
comment line is listed.

Area A is used to begin the following language elements:

Division header

Section header

Paragraph header

Area B is the starting area for:
Continuation of clauses
Clauses can begin in either area Aor area B.

No punctuation, such as periods at the end of division
headers, is allowed in ADL.

LANGUAGE STRUCTURE

Each of the six ADL divisions specifies a particular aspect
of the application being defined. The remainder of this
section is devoted to a complete description of each
division.

APPLICATION GLOBAL DIVISION

The Application Global Division names an application and
specifies certain aspects of it that apply to the entire
application. This division provides for application validity
checking, application dump files and monitor files,
application initiation and testing parameters, and an
application operator (AOP).

The division header is:

APPLICATION GLOBAL DIVISION

The header must appear on a separate line, beginning in
area A. Figure 4-1 shows a skeleton of the Application
Global Division. All paragraphs except the
APPLICATION-NAME paragraph are optional. When any
of the optional paragraphs of this division are used, they
must appear in the order shown in figure 4-1.

60480300 A

APPLICATION GLOBAL DIVISION

APPLICATION-NAME paragraph
[SIGNATURE paragraph}
[DUMP-FILE paragraph]
[MONITOR-FILE paragraph]
[INJECTION-QUEUE paragraph]
[COLLECTION-QUEUE paragraph]
[OPERATOR paragraph].
[INITIATION paragraph]

Figure 4-1. Application Global Division Skeleton

APPLICATION-NAME Paragraph

The APPLICATION-NAME paragraph -names the
application. This paragraph must be present in an ADL
program, and it must be the first paragraph in the
Application Global Division. The APPLICATION-NAME
paragraph must begin in area A. Figure 4-2 shows the
format of the APPLICATION-NAME paragraph.

APPLICATION-NAME IS routine-name

Figure 4-2. APPLICATION-NAME Paragraph Format

Routine-name identifies the application to MCS during
execution. Routine-name also identifies the application in
a library containing numerous application definitions.
Routine-name must be unique in a library of application
definitions. '

Routine-name can also be used as the name of a symbolic
destination. This symbolic destination is used when a
COBOL program sends commands to MCS. A program can
send to MCS any of the commands listed in sections 7
and 8 except DATA, or the login or logout commands.
MCS responses to these commands are enqueued in the
response queue associated with the program (see the
Application Program Division subsection for a discussion
of the response queue).

SIGNATURE Paragraph

The SIGNATURE paragraph names a single password used
for protection by the entire application. This paragraph is
optional. When used, this paragraph must appear
immediately after the APPLICATION-NAME paragraph.
The SIGNATURE paragraph must begin in area A.
Figure 4-3 shows the format of the SIGNATURE
paragraph.

SIGNATURE IS nonnumeric-literal

Figure 4-3. SIGNATURE Paragraph Format

Nonnumeric-literal in this paragraph is the password for
assigning application operator status and for verifying
that an application can enable or disable a particular
source, destination, or queue. Nonnumeric-literal can be
a maximum of 10 characters in length.

When this paragraph is omitted, there is no password
protection for the application except where a PASSWORD
clause is present in the OPERATOR paragraph of the
Application Global Division, in the Source-Destination
Division, or in the Queue Division (see the subsections on
these divisions). When the SIGNATURE paragraph is
present and a PASSWORD clause is also present, the
specific password from the PASSWORD clause is required
to gain application operator status, or to enable or disable
a particular source, destination, or queue.

" DUMP-FILE Paragraph

The DUMP-FILE paragraph names a file to record
application information about the status of internal tables
used by MCS. See section 5 for more detailed information
on the dump file.

This paragraph is optional. When used, it must appear in
the order shown in figure 4-1. The DUMP-FILE paragraph
must begin in area A. Figure 4-4 shows the format of the
DUMP-FILE paragraph.

When the OWNER phrase is present, nonnumeric-literal
must be a system-validated user name. When the OWNER
phrase is omitted, the system assumes MCS is the file
owner; the system takes the user name from the MCS
procedure file (see section 9 for information on the
procedure file).

INJECTION-QUEUE Paragraph

The INJECTION-QUEUE paragraph names a queue that is
used for input messages when the application is in test
mode. This paragraph is optional. When used, it must
appear in the order shown in figure 4-1. The
INJECTION-QUEUE paragraph must begin in area A.
Figure 4-6 shows the format of this paragraph.

INJECTION-QUEUE IS gqueue-name

DUMP-FILE IS file-name

[OWNER 1S nonnumeric-literal]

Figure 4-4. DUMP-FILE Paragraph Format

When the DUMP-FILE paragraph is omitted, application
dumps are not possible. When the OWNER phrase is
present, nonnumeric-literal must be a system-validated
user name. When the OWNER phrase is omitted, the
system assumes MCS is the file owner; the system takes
the user name from the MCS procedure file (see section 9
for information on the procedure file).

MONITOR-FILE Paragraph

The MONITOR-FILE paragraph names a file to which
application status displays are written. The displays
written to this file are the same as those transmitted to
the application operator when the DISPLAY verb or
command is used. The displays written to the monitor file
include all terminals connected to the application, all
input and/or output queues used by the application, and
the status of ail COBOL programs. See section 5 for
more detailed information on the monitor file.

The MONITOR-FILE paragraph is optional. When used, it
must appear in the order shown in figure 4-1. The
MONITOR-FILE paragraph must begin in area A.
Figure 4-5 shows the format of this paragraph.

MONITOR-FILE IS file-name

[OWNER IS nonnumeric-literal]

Figure 4-5. MONITOR-FILE Paragraph Format

4-4

Figure 4-6. INJECTION-QUEUE Paragraph Format

Queue-name must refer to a simple input queue named in
a QUEUE or SUB-QUEUE-n paragraph of the Input Section
of the Queue Division. In test mode, MCS solicits the
named queue for input messages. Thus, this queue is a
substitute for input from a terminal. Messages stored in
this queue are from a message generation program that
sends messages to this queue. See section 5 for a
discussion of test mode.

COLLECTION-QUEUE Paragraph

The COLLECTION-QUEUE paragraph names a queue for
copying outbound messages when the application is in test
mode. This paragraph is optional. When used, it must
appear in the order shown in figure 4-1. The
COLLECTION-QUEUE paragraph must begin in area A.
Figure 4-7 shows the COLLECTION-QUEUE paragraph
format.

COLLECTION-QUEUE IS queue-name

Figure 4-7. COLLECTION-QUEUE Paragraph Format

Queue-name must refer to a simple input queue named in
a QUEUE or SUB-QUEUE-n paragraph of the Input Section
of the Queue Division. In test mode, MCS copies
messages bound for external destinations from output
queues to the queue named in this paragraph. Thus, this
queue is a substitute for a network terminal. An
application output analysis program can be written to
receive messages from this queue. See section 5 for a
discussion of test mode.

OPERATOR Paragraph

The OPERATOR paragraph names a terminal or group of
terminals that can be the application operator (AOP). The
AOP is the controlling entity for the application; the AOP
is the primary source of commands to MCS, and the
primary destination of status messages from MCS. See
section 8 for more information about the AOP. '

60480300 A

The OPERATOR paragraph is optional. When used, it
must appear in the order shown in figure 4-1. The
OPERATOR paragraph must begin in area A. Figure 4-8
shows the OPERATOR paragraph format.

OPERATOR IS symbolic-name
[PASSWORD clause]

Figure 4-8. OPERATOR Paragraph Format

Symbolic-name is a source or destination named in a
SYMBOLIC-NAME paragraph of the Source-Destination
Division. Symbolic-name can also name a group of
sources or destinations, as defined in an INVITATION-LIST
or BROADCAST-LIST paragraph of the Source-
Destination Division. Each of the named sources or
destinations can be the AOP, but for each application
there can be only one active AOP at a time.
Symbolic-name cannot refer to a source or destination
that is declared as dedicated in a SYMBOLIC-NAME
paragraph of the Source-Destination Division.

PASSWORD Clause

The PASSWORD clause names a password used for
validation of AOP status. The PASSWORD clause is
optional. When the PASSWORD clause is omitted from
the OPERATOR paragraph, the SIGNATURE paragraph
must name an application password, or there can be no
AOP for the application. See figure 4-9 for the format of
this clause. Nonnumeric-literal can be a maximum of 10
characters in length.

PASSWORD 1S nonnumeric-literal

Figure 4-9. PASSWORD Clause Format,
Application Glabal Division

INITIATION Paragraph

The INITIATION paragraph defines how an application is
started. This paragraph is optional. When used, it must
be the last paragraph in the Application Global Division.
The INITIATION paragraph must begin in area A.
Figure 4-10 shows the format of this papagraph.

INITIATION 1S {&J_T%_Ilg [@1}

EXPLICIT

Figure 4-10. INITIATION Paragraph Format

When the INITIATION paragraph specifies EXPLICIT, an
AOP must be named in the OPERATOR paragraph. The
application is then started when a terminal gains AOP
status. The system console operator can also start the
application when EXPLICIT is specified.

60480300 A

When the INITIATION paragraph specifies AUTOMATIC,
the application is started at the same time that MCS is
started. When this paragraph specifies AUTOMATIC
TEST, the application is started in test mode at MCS
startup time (see section 5 for a discussion of test mode).

When the INITIATION paragraph is omitted, the system
assumes automatic. Explicit initiation is recommended,
because active applications require central memory space
at the MCS control point even when there are no
application users connected.

Application Global Division Example

Figure 4-11 shows an example of the Application Giobal
Division. The name of the application is EXAMPLE.
MCSRM in the SIGNATURE paragraph is the password for
verifying that EXAMPLE can enable or disable the sources
and destinations named in the Source-Destination
Division, and the queues named in the Queue Division.
Password MCSRM does not assign AOP status, because
there is an OPERATOR paragraph with a password.

APPLICATION GLOBAL DIVISION
APPLICATION-NAME IS EXAMPLE

SIGNATURE IS "MCSRM"

DUMP-FILE IS DMPF OWNER IS "CDC123"
MONITOR-FILE IS MNTRF OWNER IS "“CDC123"
INJECTION-QUEUE IS INJECQ
COLLECTION-QUEUE IS COLLECQ

OPERATOR IS TERMS PASSWORD IS "WRITER"
INITIATION IS EXPLICIT

Figure 4-11. Application Global Division Example

File DMPF is the file t6 which an application dump is
written when the DUMP verb is used (see the Application
Processing Division subsection for a discussion of the
DUMP verb). CDC123 is a system-validated user name
and names the owner of the dump file. This user name
also appears in the MONITOR-FILE paragraph and names
the owner of the monitor file. MNRTF is a file to which
application status displays are written when the DISPLAY
verb is used in the Application Processing Division.

The queue INJECQ is the input queue where incoming
messages are enqueued when EXAMPLE is in test mode.
INJECQ is defined in a QUEUE paragraph in the Queue
Division of EXAMPLE. The queue COLLECQ is the input
queue to which outbound messages are copied when
EXAMPLE is in test mode. This queue is also defined in a
QUEUE paragraph of the Queue Division.

The OPERATOR paragraph names TERMS as the group of
terminals eligible for AOP status and WRITER as the
password that must be used to gain this status. TERMS is
defined as a -group of terminals in an INVITATION-LIST
paragraph in the Source-Destination Division of
EXAMPLE. Any of the terminals in the group TERMS can
be the AOP. MCS assigns AOP status to the first terminal
from group TERMS that enters the password WRITER
when selecting application EXAMPLE at MCS login time
(see section 2 for login procedure). When one terminal
from -the group TERMS is active as the AOP, other
terminals from the group can log into the application, but
these other terminals cannot be the AOP. The AOP can
control the application’ with any of the commands listed in
section 8.

4-5

INITIATION IS EXPLICIT means that - application
EXAMPLE is started when a terminal from the group
TERMS logs in with the password WRITER and becomes
the AOP. The system console operator can also start
EXAMPLE.

APPLICATION PROGRAM DIVISION

The Application Program Division names the COBOL
programs in the application and specifies their interface
with MCS. The division can be made up of a number of
PROGRAM paragraphs, each PROGRAM paragraph
naming a separate COBOL program. While the division is
mandatory in an ADL program, the PROGRAM paragraph
can be omitted. MCS supplies a default paragraph when
the PROGRAM paragraph is omitted.

The division header is:

APPLICATION PROGRAM DIVISION

The header must appear on a separate line, beginning in
area A. Figure 4-12 shows a skeleton of the Application
Program Division.

is the file owner; the system takes the user name from the
MCS procedure file (see section 9 for information on the
procedure file).

INVOCATION-FILE IS file-name

[OWNER 1S nonnumeric-literal]

APPLICATION PROGRAM DIVISION

[PROGRAM paragraph] . . .

Figure 4-12. Application Program Division Skeleton

PROGRAM Paragraph

The PROGRAM paragraph names a COBOL program.
Every COBOL program that is part of the application
must be named in a separate PROGRAM paragraph. If
there are no programs in the application and, therefore,
no PROGRAM paragraphs, MCS supplies a default
program name that is the application name from the
Application Global Division. The PROGRAM paragraph
must begin in area A. Figure 4-13 shows the PROGRAM
paragraph format. Routine-name must be the first seven
characters of the COBOL program name from the COBOL
PROGRAM-ID paragraph.

Figure 4-14. INVOCATION-FILE Clause Format

MCS submits the file denoted by file-name to the
operating system job input queue when the COBOL
program named in the associated PROGRAM paragraph is
called by the INVOKE verb or the AOP INVOKE
command. If this clause is omitted, the COBOL program
named in the PROGRAM paragraph cannot be executed by -
use of the INVOKE verb or command. See section 5 for
an invocation file example.

RESPONSE-QUEUE Clause

The RESPONSE-QUEUE clause names an input queue to
store MCS responses to commands that a COBOL program
can send to MCS. For example, the command DISPLAY
ALL sent to MCS from a COBOL program causes the
queue display described in section 7 in the subsection on
the DISPLAY command to be stored in the queue named in
this clause.

The RESPONSE-QUEUE clause is optional. Figure 4-15
shows the RESPONSE-QUEUE clause format. Queue-
name must name a simple input queue defined in a QUEUE
or SUB-QUEUE-n paragraph of the Input Section of the
Queue Division.

RESPONSE-QUEUE IS queue-name

PROGRAM IS routine-name
[INVOCATION-FILE clause]

[RESPONSE-QUEUE clause]

Figure 4-13. PROGRAM Paragraph Format

INVOCATION-FILE Clause

The INVOCATION-FILE clause names a job submission file
(invocation file) containing the control statements and job
statements necessary to execute a COBOL program. This
clause is optional. Figure 4-14 shows the format of the
INVOCATION-FILE clause.

File-name must name an indirect access public permanent
filee When the OWNER phrase is present, nonnumeric-
literal must be a system-validated user name. When the
OWNER phrase is omitted, the system assumes MCS

4-6

Figure 4-15. RESPONSE-QUEUE Clause Format

Application Program Division Example

Figure 4-16 shows an example of the Application Program
Division. Application EXAMPLE of figure 4-11 has only
one COBOL program associated with it, program
MAWTEST. Program MAWTEST can receive messages for
processing, and this program can send processed messages
to a terminal using MCS. Execution of MAWTEST can be
initiated by MCS. When INVOKE MAWTEST is used in the
Application Processing Division, file INVF is submitted to
the operating system job input queue. INVF contains
control statements necessary to execute MAWTEST.
CDC123 is a system-validated user name that names the
invocation file owner.

APPLICATION PROGRAM DIVISION
PROGRAM IS MAWTEST
INVOCATION-FILE IS INVF
OWNER IS "CDC123"
RESPONSE-QUEUE IS RESAQ

Figure 4-16. Application Prog'rarﬁ Division Example

60480300 A

The queue RESQ is a simple input queue named in a
QUEUE paragraph of the Queue Division. RESQ stores
MCS responses to commands from MAWTEST.

APPLICATION DATA DIVISION

The Application Data Division describes input data that is
enqueued based on the contents of the message, sets up a

field within a message to store a number to identify each.

message, and provides for specification of an EGI. The
division can consist of two types of paragraphs: the EGI
paragraph and the MESSAGE paragraph. Both types of
paragraphs are optional. When the EGI paragraph is
present, it must appear before any MESSAGE paragraphs.

The division header is:

APPLICATION DATA DIVISION

The header must appear on a separate line, beginning in
area A. Figure 4-17 shows a skeleton of the Application
Data Division.

APPLICATION DATA DIVISION

[EGI paragraph]

_[MESSAGE paragraph] . . .

Figure 4-17. Application Data Division Skeleton

EGI Paragraph

The EGI paragraph specifies an application end-of-group
indicator that signals the end of a group of messages to
MCS or to a COBOL program. This paragraph is optional.
When used, the EGI paragraph must appear befare any
MESSAGE paragraphs, and it must begin in area A. If the
EGI paragraph is omitted, messages input to a COBOL
program cannot be associated with an end-of-group
indicator, and messages that are output to a terminal with
an end-of-group indicator are equivalent to messages
output with an end-of-message indicator (EMI).
Figure 4-18 shows the EGI paragraph format.

EGI IS nonnumeric-literal

Figure 4-18. EGI Paragraph Format

Nonnumeric-literal in this paragraph must be one
character in length. Nonnumeric-literal can be any
character in the 64-character display code set (see
appendix A).

MESSAGE Paragraph

The MESSAGE paragraph describes the format of message
data that is enqueued based on the contents of the
message. Incoming message text is tested against the
descriptions in MESSAGE paragraphs before being routed
to the proper queue. This paragraph is also used to
describe a field within a message to store an identifying
number assigned for each message. There must be a

60480300 A

separate MESSAGE paragraph for each type of application
message that is enqueued based on contents. For
example, an inventory control application might include
one type of message updating number of parts on hand
that is enqueued based on the first three characters of the
part number, and another type of message tracking
inventory at each of several locations that is enqueued
based on a location code. This paragraph is optional.
When used, the MESSAGE paragraph must begin in
area A. Figure 4-19 shows the MESSAGE paragraph
format. ’

MESSAGE IS data-name
[SERIAL-NUMBER clause]

[SEGMENT paragraph] . . .

Figure 4-19. MESSAGE Paragraph Format

SERIAL-NUMBER Clause

The SERIAL-NUMBER clause specifies how a serial
number to identify each input message is assigned. This
clause is optional. When the SERIAL-NUMBER clause is
omitted, no serial numbers are assigned to messages.
Figure 4-20 shows the SERIAL-NUMBER clause format.

SUPPLIED }

ERIAL-NUMBER |
- SERIAL-NUVBER 1S {GENERATED

[IN data-name] [WITH ECHO]

Figure 4-20. SERIAL-NUMBER Clause Format

When the SERIAL-NUMBER clause specifies SUPPLIED,
the message originator must include the serial number as
part of the message text. The serial number must contain
onby the digits 0 through. 9 and must not exceed
2301 (1 073 741 823). When SUPPLIED is specified, the
IN phrase must be used. Data-name must be a field within
the message text; the length of the field determines the
largest serial number that can be supplied (2301 requires
a field 10 characters in length). MCS does not validate
supplied serial numbers; two messages can have the same
serial number.

When this clause specifies GENERATED, MCS assigns a
serial number to the message. MCS assigns serial numbers
on an application basis beginning with 1 for each
application with a maximum of 2301, When
GENERATED is specified, the IN phrase is optional. When
this phrase is used, MCS stores the serial number in
data-name; the data-name field must be large enough to
contain the serial number. When the IN phrase is omitted,
the serial number is not part of the message text and is
not available to message recipients or a COBOL program.

The WITH ECHO phrase can be included in the
SERIAL-NUMBER clause. When this phrase is used, the
serial number assigned to the message is echoed back to
the message source. No echoing occurs when this phrase
is omitted. i

SEGMENT Paragraph

The SEGMENT paragraph describes the data of a message
segment. This paragraph is a subdivision of a MESSAGE
paragraph, and a SEGMENT paragraph is associated with
the preceding MESSAGE paragraph. The SEGMENT

paragraph must begin in area A. There must be a
separate SEGMENT paragraph for each segment of an

input message that is enqueued based on contents.
Figure 4-21 shows the SEGMENT paragraph format.

SEGMENT IS data-name
[LENGTH clause]

[FIELD clause] . . .

Figure 4-21. SEGMENT Paragraph Format

SEGMENT Paragraph Syntax

The SEGMENT paragraph can include three clauses that
describe the format of the message segment and that
assign values on which routing decisions are made. These
clauses are the LENGTH clause, the FIELD clause, and
the CONDITION clause.

The LENGTH clause defines the length of a message
segment. This clause is optional. When the LENGTH
clause is present, it provides a cross-check of the format
and contents specified in FIELD and CONDITION clauses.
Figure 4-22 shows the LENGTH clause format.

LENGTH IS integer CHARACTERS

Figure 4-22. LENGTH Clause Format

The FIELD clause describes a field of a message segment.
A FIELD clause is included for the data fields in a
message segment that store serial numbers or contain
values on which routing decisions are based. Figure 4-23
shows the FIELD clause format. :

The STARTS phrase defines the beginning of the field
within the message segment. When this phrase is omitted,
MCS assumes the field begins at the first character of the
message segment named in the associatéd SEGMENT
paragraph. STARTS AT CHARACTER defines the field as
beginning at the character position denoted by integer-1.
Integer-1 cannot be greater than the length of the
segment. For example:

FIELD ISFIELD1
STARTS AT CHARACTER 5

means that the field named FIELD1 begins at the fifth
character of the message segment. The STARTS WITH or
AFTER options define the field as beginning with or after
the integer-2 occurrence of nonnumeric-literal-1 within
the segment. Nonnumeric-literal-1 must be one character
in length. For example:

FIELD ISFIELD2
STARTS WITH INSTANCE 1 OF ","

means that the field named FIELD2 begins with the first
comma in the message segment, and

FIELD ISFIELD3 :
STARTS AFTER INSTANCE 2 OF ":"

means that the field named FIELD3 begins at the
character after the second colon in the message segment.

The EXTENDS phrase defines the end of the field within
the message segment. When this phrase is omitted, MCS
assumes the field ends at the last character of the
message: segment named in the associated SEGMENT
paragraph. EXTENDS FOR defines the field as having a
length of integer-3 characters. For example: .

FIELD IS DATAM
EXTENDS FOR 12 CHARACTERS

means that the field named DATAM is 12 characters in
length. EXTENDS TO CHARACTER defines the field as
ending at the character position denoted by integer-4.
Integer-4 cannot be greater than the length of the
segment. For example:

FIELD IS DATAN .
EXTENDS TO CHARACTER 12

means that the field named DATAN ends at the twelfth
character of the message segment.

FIELD IS data-name

[AT CHARACTER integer-1

STARTS ¢ {WITH
AFTER

} INSTANCE integer-2 OF nonnumeric-literal-1

FOR integer-3 CHARACTERS
TO CHARACTER integer-4

EXTENDS :
= {TO } {INSTAN,CE integer-5

THROUGH{)NEXT INSTANCE

} OF nonnumeric-literal~2

Figure 4-23. FIELD Ciause Format

60480300 A

The TO or THROUGH options of the EXTENDS phrase
define the field as ending at (TO) or after (THROUGH) the
integer-5 occurrence of nonnumeric-literal-2 within the
segment. Nonnumeric-literal-2 must be one character in
length. For example:

FIELD IS DATAP
EXTENDS TO INSTANCE 1 OF *,"

means that the field named DATAP ends at the first
comma in the message segment, and

FIELD IS DATAR
EXTENDS THROUGH INSTANCE 2 OF "."

means that the field named DATAR ends after the second
period in the message segment. NEXT defines the field as
ending at or after the next occurrence of
nonnumeric-literal-2 within the segment. For example:

FIELD IS DATAS
EXTENDS TO NEXT INSTANCE OF ","

means that the field named DATAS ends at the next
comma in the segment, and

FIELD IS DATAT
EXTENDS THROUGH NEXT INSTANCE OfF "."

means that the field named DATAT ends after the next
period in the segment.

When both the STARTS phrase and the EXTENDS phrase
include the INSTANCE option, and nonnumeric-literal-l
and nonnumeric-literal-2 are the same character,
integer-2 must be less than integer-5. For example:

FIELD IS DATAZ
STARTS AFTER INSTANCE 1 OF ",
EXTENDS TO INSTANCE 3 OF ","

means that the field named DATAZ begins with the
character after the first comma in the segment; the field
ends at the third comma in the segment.

The CONDITION clause defines a value, set of values, or
range of values against which a message field is tested.
The clause is optional. When used, the clause defines a
condition or conditions to test data-name of the preceding
FIELD clause. Figure 4-24 shows the CONDITION clause
format.

Each literal named in a CONDITION clause must be
distinct. The literals can be nonnumeric when a value or
set of values (not a range of values) is specified. The
nonnumeric literals can be a maximum of 10 characters in
length. When a range of values is specified by use of the
THROUGH option, the literals must be integers, and the
beginning of the range must be less than the end of the
range (in figure 4-24, literal-2 must be less than literal-3,
and literal-5 must be less than literal-6). The values
specified in a CONDITION clause must fit in the message
field named in the associated FIELLD clause.

Comparison of the value of the FIELD clause data-name
with the value or values defined in a CONDITION clause is
based on actual algebraic value when integer values are
specified in the CONDITION clause. When the
CONDITION clause specifies nonnumeric values, the
comparison is based on the installation-defined collating
sequence (see appendix A). If data-name and the
nonnumeric ‘value are of unequal size, the shorter of the
two is extended on the right by blanks.

Application Data Division Example

Figure 4-25 shows an example of the Application Data
Division. This division is part of application EXAMPLE of
figure 4-11.

The end indicator for a group of messages in this
application is defined in the EGI paragraph as an
asterisk (¥). An asterisk in message text then signals the
end of a group of messages to MCS or to the COBOL
program MAWTEST.

Application EXAMPLE consists of two types of messages
that are routed based on message content. Both MSGI1
and MSG2 also contain fields to store serial numbers.
MCS assigns serial numbers to messages associated with
MSG1, and these numbers are stored in FIELDI11.
Messages associated with MSG2 are also assigned serial
numbers by MCS, and these numbers are stored in
FIELD21. In both cases, the serial numbers are echoed
back to the source.

In the first MESSAGE paragraph in this example, segment
SEG1 is defined as 15 characters in length. The first field
in this segment is FIELDI1l, which begins at the first
character of the segment and is 10 characters in length.
MCS stores serial numbers assigned to MSG1 messages in
FIELDI11l. The second field in SEG1 is named FIELDI12,
and it begins at the eleventh character of the segment and
is five characters in length. FIELD12 has an associated
CONDITION clause. Incoming FIELD12 message data is
tested against the value FIVES5 of the CONDITION clause.

In the second MESSAGE paragraph in this example,
segment SEG2 is defined as 20 characters in length. The
first field in this segment is FIELD21, which begins at the
first character of SEG2 and is 10 characters in length.
MCS stores serial numbers assigned to MSG2 messages in
FIELD21l. The second field in SEG2 is FIELD22. This
field begins at the eleventh character of the segment and
ends after the first comma appearing in SEG2. Message
data in FIELD22 is tested against the values 123 and 456,
defined in the two condition clauses associated with this
field. SEG2 has a third field, FIELD23, which begins with
the character after the first comma in the segment..
FIELD23 is six characters in length. FIELD23 message
data is tested against the values assigned to condition
name C-4 in the CONDITION clause.

literal-4
literal-56 THROUGH literal-6

CONDITION IS condition-name VALUE [IS] {

literal-1
literal-2 THROUGH literal-3

Figure 4-24,° CONDITION Ciause F ormat

60480300 A

APPLICATION DATA DIVISION
EGI IS "x"

MESSAGE IS MSG1

SEGMENT IS SEG1

FIELD IS FIELD11
FIELD IS FIELD12

MESSAGE IS MSG2

SEGMENT IS SEG2
LENGTH IS 20 CHARACTERS
FIELD IS FIELD21

FIELD IS FIELD22

FIELD IS FIELDZ23

SERIAL-NUMBER IS GENERATED IN FIELD11 WITH ECHO
LENGTH IS 15 CHARACTERS

STARTS AT CHARACTER 1
EXTENDS FOR 10 CHARACTERS

STARTS AT CHARACTER 11
EXTENDS FOR 5 CHARACTERS
CONDITION IS C-NAME VALUE "FIVES"

SERIAL-NUMBER IS GENERATED IN FIELD21 WITH ECHO

STARTS AT CHARACTER 1
EXTENDS FOR 10 CHARACTERS

STARTS AT CHARACTER 11

EXTENDS THROUGH INSTANCE 1 OF " ,"
" CONDITION IS C-2 VALUE "123,"

CONDITION IS C-3 VALUE "456,"

STARTS AFTER INSTANCE 1 OF ","
EXTENDS FOR 6 CHARACTERS
CONDITION IS C-4 VALUE "AB/CD." "EF/GH."

Figure 4-25. Application Data Division Example

SOURCE-DESTINATION DIVISION

The Source-Destination Division specifies names that
represent the sources (terminals), destinations (output
devices), interprogram queues, and journal files an
application uses. These names are called symbolic names
by ADL. This division also describes the characteristics
of the sources and destinations, and the MCS interface
with them. This division is made up of three types of
paragraphs: the SYMBOLIC-NAME, INVITATION-LIST,
and BROADCAST-LIST paragraphs. At least one
SYMBOLIC-NAME paragraph must appear in this division.
Any other paragraphs are included at user option. The
paragraphs can appear in-any order.

The division header is:

SOURCE-DESTINATION DIVISION

The header must appear on a separate line, beginning in
area A. Figure 4-26 shows a skeleton of the
Source-Destination Division.

SOURCE-DESTINATION DIVISION

- SYMBOLIC-NAME paragraph . . .
[INVITATION-LIST paragraph] . . .

[BROADCAST-LIST paragraph] . . .

Figure 4-26. Source-Destination Division Skeleton

SYMBOLIC-NAME Paragraph

The SYMBOLIC-NAME paragraph specifies
names for the application sources, destinations,
interprogram queues, and journal files. At least one
SYMBOLIC-NAME paragraph must appear in an ADL

program. The SYMBOLIC-NAME paragraph must begin in
area A. Figure 4-27 shows the SYMBOLIC-NAME

paragraph format.

symbolic

SYMBOLIC-NAME IS symbolic-name
[TYPE clause]
[ALIAS clause]
[MESSAGES clause]
[MODE clause]
[PASSWORD clause]}

[STATUS clause]

Figure 4-27. SYMBOLIC-NAME Paragraph Format

Symbolic-name must be a wunique name within an
application. The TYPE clause, if used, must appear first,
but the other clauses can appear in any order. The clauses
are described in this subsection following the paragraph
descriptions.

60480300 A

INVITATION-LIST Paragraph

The INVITATION-LIST paragraph names a group of

sources. A reference to an invitation list refers to all the
sources named in the INVITATION-LIST paragraph. This
paragraph provides a shorthand method of specifying
characteristics for a number of symbolic sources. This
paragraph also provides a way for MCS to reference a
number of symbolic sources collectively. For example,
MCS can reference a list in a USE paragraph in the
Application Processing Division, and a command can
reference a list; ENABLE list-name enables all the source
terminals in the list.

This paragraph is optional. When used, it must begin in
area A. Figure 4-28 shows the format of ‘the
INVITATION-LIST paragraph.

destinations collectively. For example, MCS can
reference the list in a USE paragraph in the Application
Processing Division, and a COBOL program SEND to a
broadcast list delivers the message text to all logged in
destinations included in the list.

This paragraph is optional. When. used, it must begin in
area A. Figure 4-29 shows the BROADCAST-LIST

paragraph format.

INVITATION-LIST IS symbolic-name-1

SOURCES ARE symbolic-name-2
[AND symbolic-name-3] . . .
[MESSAGES clause]
[MODE clause]
[PASSWORD clause]
[STATUS clause]

BROADCAST-LIST 1S symbolic-name-1

DESTINATIONS ARE symbolic~name-2
[AND symbolic-name-3] . . .
[MESSAGES clausel
[MODE clause]
[PASSWORD clause]

[STATUS clause]

Figure 4-28. INVITATION-LIST Paragraph Format

Symbolic-name-1 is the collective name used to reference
all the sources in the list. Symbolic-name-2,
symbolic-name-3, and so forth are the component sources
of the list. Each component source must be defined as a
source or as interactive in a separate SYMBOLIC-NAME
paragraph.

The characteristics named in the clauses associated with
an INVITATION-LIST paragraph apply to each of the
component sources. The same type of clause cannot be
used in an INVITATION-LIST paragraph and in the
SYMBOLIC-NAME paragraphs that define symbolic-
name-2, symbolic-name-3, and the other component
sources of the list. For example, if the INVITATION-LIST
paragraph has a STATUS clause associated with it, the
SYMBOLIC-NAME paragraph that defines symbolic-
name-2 cannot have a STATUS clause.

The clauses associated with an [INVITATION-LIST
paragraph can appear in any order. The clauses are
described in this subsection following the paragraph
descriptions.

BROADCAST-LIST Paragraph

The BROADCAST-LIST paragraph names a group of
destinations. A reference to a broadcast list refers to all
the destinations named in - the BROADCAST-LIST
paragraph. This paragraph provides a shorthand method of
specifying characteristics for a number of symbolic
destinations. This paragraph also provides a way for MCS
or a COBOL program to reference a number of symbolic

60480300 A

Figure 4-29. BROADCAST-LIST Paragraph Format

Symbolic-name-1 is the coliective name used to reference
all the destinations in the list. Symbolic-name-2,
symbolic-name-3, and so forth are the component
destinations of the list. Each component destination must
be defined as a destination or as interactive in a separate
SYMBOLIC-NAME paragraph.

The characteristics named in the clauses associated with a
BROADCAST-LIST paragraph apply to each of the
component destinations. The same type of clause cannot

- be used in a BROADCAST-LIST paragraph and in the

SYMBOLIC-NAME paragraphs that define symbolic-
name-2, symbolic-name-3, and the other component
destinations of the list. For example, if the
BROADCAST-LIST paragraph has a MODE clause
associated with it, the SYMBOLIC-NAME paragraph that
defines symbolic-name-2 cannot have a MODE clause.

The clauses associated with a BROADCAST-LIST
paragraph can appear in any order. The clauses are
described in the following paragraphs.

Source-Destination Division Clauses

The clauses described in this subsection are used in the
Source-Destination Division paragraphs. The clauses are:
TYPE clause, ALIAS clause, MESSAGES clause, MODE
clause, PASSWORD clause, and STATUS clause. These
clauses can appear in the Source-Destination Division
paragraphs as shown in table 4-1.

TYPE Ciause

The TYPE clause defines a symbolic name as representing
a certain type of source or destination. A symbolic name
can represent an external source (SOURCE), an external
destination (DESTINATION), both an external source and
an external destination (INTERACTIVE), an application
journal (JOURNAL), or an interprogram queue (QUEUE).

4-11

TABLE 4-1. SOURCE-DESTINATION DIVISION CLAUSE USAGE

BROADCAST-LIST INVITATION-LIST SYMBOLIC-NAME

Clause Paragraph Paragraph Paragraph
TYPE Clause X
ALIAS Clause X
MESSAGES Clause X X X
MODE Clause X X X
PASSWORD Clause X X X
STATUS Clause X X X
X - Clause can appear in this paragraph

The TYPE clause is associated with the SYMBOLIC-NAME
paragraph. The clause is optional. When the TYPE clause
is omitted, INTERACTIVE is assumed. When the TYPE
clause is used, it must be the . first clause in a
SYMBOLIC-NAME paragraph. Figure 4-30 shows the
TYPE clause format.

TERMINAL nonnumeric-literal-1 [DEDICATED]
USER nonnumeric-literal-2 [DEDICATED]
queue-name

file-name [OWNER IS nonnumeric-literal-3]}

ALIAS IS

SOURCE
DESTINATION
TYPE IS { INTERACTIVE
JOURNAL
QUEUE

Figure 4-30. TYPE Clause Format

When the TYPE clause specifies SOURCE, symbolic-name
of the associated SYMBOLIC-NAME paragraph represents
a source external to the application that can input
messages to the application. When this clause specifies
DESTINATION, symbolic-name represents a destination
external to the application that can receive messages
from the application. When this clause specifies
INTERACTIVE, symbolic-name represents a device
external to the application that can both input messages
to the application and receive messages from the
application.

When the TYPE clause specifies JOURNAL,
symbolic-name of the associated SYMBOLIC-NAME
paragraph represents an application journal file to which
messages are copied after they are enqueued or
dequeued. Symbolic-name also represents a destination to
which COBOL programs can send messages. When this
clause specifies QUEUE, symbolic-name represents a
destination that is an interprogram queue.

ALIAS Clause

The ALIAS clause relates symbolic-name of a
SYMBOLIC-NAME paragraph to some other application
entity by giving another name by which symbolic-name is
known either to the application itself or to the network.
Figure 4-31 shows the ALIAS clause format.

4-12

Figure 4-31. ALIAS Clause Format

The TERMINAL phrase of the ALIAS clause establishes a
relationship between a symbolic name and a network
terminal for automatic login purposes. The terminal
option can be used only when the symbolic name is
declared as SOURCE, DESTINATION, or INTERACTIVE in
the TYPE clause. Nonnumeric-literal-l must be a
legitimate network terminal identification from the local
configuration file. For example:

SYMBOLIC-NAME IS TERM1
TYPE IS INTERACTIVE
ALIAS IS TERMINAL TM104

means that symbolic name TERMI1 represents the
interactive network terminal named TMI104 in the local
configuration file. When a user of TM104 selects this
application, MCS automatically assigns symbolic name
TERMIL. When DEDICATED is included in the TERMINAL.
phrase, this reiationship between a symbolic name and a
network terminal applies to all running applications in an
application definition library, When a user selects
network application MCS, MCS searches all running MCS
applications for terminals declared as DEDICATED. When
the name of the network terminal matches the terminal
name in an ALIAS clause, MCS automatically logs the
terminal into the corresponding application and assigns
the symbolic name specified in the SYMBOLIC-NAME
paragraph. ‘A network terminal should not be declared as
DEDICATED in more than one application; undesirable
results may occur,

The USER phrase of the ALIAS clause establishes a
relationship between a symbolic name and a user. The
USER option can be used only when the symbolic name is
declared as SOURCE, DESTINATION, or INTERACTIVE in

60480300 A

the TYPE clause. Nonnumeric-literal-2 must be a
system-validated user name. For example:

SYMBOLIC-NAME IS TERM1
TYPE IS INTERACTIVE
ALIAS IS USER "MAW"

means that symbolic name TERMI represents system user
MAW. When user MAW logs in and selects network
application MCS, MCS automatically logs MAW in as
TERMI1. This relationship applies only to the specific
application selected at login time unless DEDICATED is
included in - the USER phrase. When DEDICATED is
included, the relationship between a symbolic name and a
system user applies to all running applications in an
application definition library. When a user selects
network application MCS, MCS searches all running MCS
applications for users declared as DEDICATED, When the
name of the user logging in matches the user name in an
ALIAS ciause, MCS automatically logs the user into the
corresponding application and assigns the symbolic name
specified in the SYMBOLIC-NAME paragraph.

The ALIAS IS queue-name option establishes a relationship
between a symbolic name and an interprogram queue. The
ALIAS clause must be used when the symbolic name is
declared as QUEUE in the TYPE clause, because a
symbolic name and a queue name cannot be the same
within an application. Queue-name of this option must be
a simple input queue defined in a QUEUE or
SUB-QUEUE-n paragraph of the Input Section of the
Queue Division. For example:

SYMBOLIC-NAME IS INTERQ
TYPE IS QUEUE
ALIAS IS PROGAQ

means that symbolic name INTERQ represents an
interprogram queue that is named PROGAQ in the Queue
Division.

The ALIAS IS file-name option establishes a relationship
between a symbolic name and an application journal file
to which messages are copied after they are enqueued or
dequeued. The ALIAS clause must be used when the
symbolic name is declared as JOURNAL in the TYPE
clause to define the file MCS uses as the journal. When
the OWNER phrase is present with this option,
nonnumeric-literal-3 must be a system-validated user
name. When the OWNER phrase is omitted, the system
assumes MCS is the file owner; the system takes the user
name from the MCS procedure file. An example of this
option is:

SYMBOLIC-NAME IS JRNFL
TYPE IS JOURNAL
ALIAS ISFILEL

where symbolic name JRNFL represents a destination that
is an application journal. The file name for this journal is
FILElL.

The ALIAS clause can be omitted when the TYPE clause
of the SYMBOLIC-NAME paragraph defines the symbolic
name as SOURCE, DESTINATION, or INTERACTIVE. The
symbolic name is then said to be transient. For example:

SYMBOLIC-NAME IS TERM1
TYPE IS INTERACTIVE

means that symbolic name TERM1 represents some

interactive terminal that can both send and receive
messages. No alias is given to associate the symbolic

60480300 A

name TERMI1 with an actual network terminal. Any
terminal in the network can log in, say it is TERMI, and
send or receive application messages.

MESSAGES Clause

The MESSAGES clause associates a particular source or
destination with a message format defined in a MESSAGE
paragraph of the Application Data Division. The
MESSAGES clause is optional. When used, this clause can
appear in a SYMBOLIC-NAME, INVITATION-LIST, or
BROADCAST-LIST . paragraph. Figure 4-32 shows the
MESSAGES clause format.

MESSAGES ARE data-name

Figure 4-32. MESSAGES Clause Format

Data-name must be defined in a MESSAGE paragraph of
the Application Data Division. The MESSAGES clause can
be used only when the source or destination with which it
is associated is declared as SOURCE, DESTINATION, or
INTERACTIVE in the TYPE clause. The MESSAGES
clause cannot be used when the source or destination is
declared as JOURNAL or QUEUE in the TYPE clause.

MODE Clause

The MODE clause specifies the mode a terminal is in when
login is complete. This clause is optional and can be used
only when the symbolic name is declared as SOURCE,
DESTINATION, or INTERACTIVE in the TYPE clause.
This clause can appear in a SYMBOLIC-NAME,
INVITATION-LIST, or BROADCAST-LIST paragraph.
When the MODE clause is omitted, MCS assumes the
terminal is in command mode after login is complete.
Figure 4-33 shows the MODE clause format.

COMMAND}

MODE IS { DATA

Figure 4-33. MODE Clause Format

MODE IS COMMAND means that MCS initially accepts as
input any of the commands listed in section 7, or
section 8 when the terminal is the AOP. MODE IS DATA
means that MCS initially accepts as input actual message
data that is routed to an input queue.

PASSWORD Clause

The PASSWORD clause names a password used for
validation when a COBOL program attempts to enable or
disable a source or destination. This clause is opticnal.
When used, the PASSWORD clause can appear in a
SYMBOLIC-NAME, INVITATION-LIST, or BROADCAST-
LIST .paragraph. When this clause is omitted, password
checking does not take place wunless there is a
SIGNATURE paragraph in the Application Global
Division. Figure 4-34 shows the PASSWORD clause
format. Nonnumeric-literal can be a maximum of 10
characters in length.

4-13

PASSWORD IS nonnumeric-literal

Figure 4-34. PASSWORD Clause Format,
Source-Destination Division

STATUS Clause

The STATUS clause specifies that a source or destination

"is enabled or disabled when the application is initiated.
This clause is optional and can be used only when the
symbolic name is declared as SOURCE, DESTINATION, or
INTERACTIVE in the TYPE clause. The STATUS clause
can appear in a SYMBOLIC-NAME, INVITATION-LIST, or
BROADCAST-LIST paragraph. When the STATUS clause
is omitted, MCS assumes the source or destination is
enabled when the application is initiated. Figure 4-35
shows the STATUS clause format.

ENABLED
1
STATUS 1S {DISABLED}

- Figure 4-35. STATUS Clause Format,
. Source-Destination Division

STATUS IS ENABLED means that the source or
destination is able to input and receive message data when
the application is initiated. STATUS IS DISABLED means
that the source or destination is not able to input or
receive message data when the application is initiated.

Source-Destination Division Example

Figure 4-36 shows an example of the Source-Destination
Division. This division is part of application EXAMPLE of
figure 4-11.

SOURCE-DESTINATION DIVISION

INVITATION-LIST IS TERMS
SOURCES ARE TERM1 AND TERM2

MODE IS COMMAND

STATUS IS DISABLED
BROADCAST-LIST IS OUTPUTS
DESTINATIONS ARE TERM1 AND TERMZ2
SYMBOLIC-NAME IS TERM1

TYPE IS INTERACTIVE

ALIAS IS USER "CDC123"
SYMBOLIC-NAME IS TERM2

TYPE IS INTERACTIVE

ALIAS IS USER "CDC123"
SYMBOLIC-NAME IS JRNL1

TYPE IS JOURNAL

ALIAS IS FILE1 OWNER IS "CDC123"
SYMBOLIC-NAME IS JRNLZ

TYPE IS JOURNAL

ALIAS IS FILE2 OWNER IS "CDC123"

Figure 4-36. Source-Destination Division Example

\

4-14

Application EXAMPLE can get message text from the
terminals represented in the INVITATION-LIST
paragraph. These terminals are given the collective name
TERMS. The list TERMS is made up of two terminals,
represented by the names TERM1 and TERM2. TERMS
also represents the AOP, as defined in the OPERATOR
aragraph of the Application Global Division. When either
ERM1 or TERM2 logs into EXAMPLE with the password
WRITER, this terminal is the AOP. TERM1 and TERM2
cannot both be the AOP at the same time. When
application EXAMPLE is initiated, TERM1 and TERMZ2 are
in command mode, and they are not able to input or
receive message data (STATUS IS DISABLED).

Application EXAMPLE can deliver message text to the
destinations represented in the BROADCAST-LIST
paragraph. These terminals are given the collective name
OUTPUTS. The list OUTPUTS is made up of two
terminals, represented by the names TERM1 and TERM2.
These two symbolic names are the same as those given the
two terminals of the invitation list. TERMl and TERM2
are defined as INTERACTIVE in the TYPE ciause of the
SYMBOLIC-NAME paragraphs that describe TERM1 and
TERM2; TERM1 and TERM2 are destinations of messages
as well as sources of messages. The clauses of the
INVITATION-LIST paragraph also apply to the
BROADCAST-LIST paragraph, because the same symbolic
names are in the list.

In addition to describing the terminals represented by
TERM1 and TERM2 as interactive, the SYMBOLIC-NAME
paragraphs that define these terminals declare that
TERMI1 and TERM2 are also known to the application and
the network as CDCI123. This = establishes a
correspondence between the two symbolic names
representing terminais and the user CDC123. When user
CDC123 logs in, MCS assigns symbolic name TERMI.
When a second user CDC123 logs in, MCS assigns symbolic
name TERM2.,

The other two SYMBOLIC-NAME paragraphs define
JRNL1 and JRNL2 as journals onto which messages are
written after they are enqueued or dequeued. The ALIAS
clauses in these paragraphs define the file names for these
journals as FILE]l and FILE2. The OWNER phrases specify
the owner of FILE1 and FILEZ as CDC123.

QUEUE DIVISION

The Queue' Division names and describes the input and
output queues that an application uses. This division also

- specifies the criteria MCS uses for message disposition

and message routing. The Queue Division is subdivided
into three sections. The Input Section and the Output
Section name the input and output queues, respectively,
and specify the characteristics of these queues. The
Routing Section specifies the relationships between input
queues and the symbolic sources that input messages
stored in these queues, and the relationships between
output queues and the symbolic destinations that receive
messages from these queues.

The division header is:
QUEUE DIVISION
The .header must appear on a separate line, beginning in

area A. Figure 4-37 shows a skeleton of the Queue
Division.)

60480300 A

QUEUE DIVISION
INPUT SECTION
OUTPUT SECTION
ROUTING SECTION

Figure 4-37. Queue Division Skeleton

The three sections of the Queue Division are required in
an ADL program, and they must appear in the order shown
in figure 4-37. At least one queue must be defined; a
QUEUE paragraph must appear in either the Input Section
or the Output Section.

Input Section

The Input Section names the input queues and specifies
the characteristics of these queues. The section is made
up of a QUEUE paragraph for each input queue. Each
QUEUE paragraph can have any number of SUB-QUEUE-n
paragraphs associated with it to define the input queue
hierarchy.

The Input Section must begin in area A. Figure 4-38
shows the Input Section format.

INPUT SECTION
QUEUE paragraph

[SUB-QUEUE-n paragraph} . . .

Figure 4-38. Input Section Format

QUEUE Paragraph of the Input Section

The QUEUE paragraph of the Input Section names an input
queue and specifies the queue characteristics. This
paragraph is omitted if input queues are not used by the
application. When present, the QUEUE paragraph must

begin in area A. Figure 4-39 shows the QUEUE paragraph -

format.

QUEUE IS queue-name
[JOURNAL clause]
[MEDIUM clause]
[PASSWORD clause]
[RESIDENCY clause}

[STATUS clause]

Figure 4-39. QUEUE Paragraph Format, Input Section

60480300 A

The clauses associated with a QUEUE paragraph can
appear in any order. Clauses specified at the queue level
apply to a subqueue of that queue only when the same
clause is not specified for the subqueue. For example:

QUEUE IS A
STATUS IS ENABLED
SUB-QUEUE-1 IS SUBLA

names a queue and a subqueue of that queue, and the
STATUS clause applies to both the queue and the
subqueue, and

QUEUE IS A

STATUS IS ENABLED
SUB-QUEUE-1 IS SUBLA
STATUS IS DISABLED

names a queue and a subqueue of that queue, and STATUS
IS ENABLED applies to the queue only. The subqueue is
initially disabled. The clauses are discussed in this
subsection following the paragraph descriptions. :

SUB-QUEUE-n Paragraph

The SUB-QUEUE-n paragraph specifies the input queue
hierarchy. Each input queue named in a QUEUE
paragraph can have as many as three leveis of subqueues
associated with . it, resulting in a four-level compound
queue structure. Each subqueue must be named, and its
characteristics defined, in a SUB-QUEUE-n paragraph.
The n represents the subqueue level; n must be 1, 2, or 3.
The SUB-QUEUE-n paragraph can be omitted if there are
no subqueues. When used, this paragraph must begin in
area A. Figure 4-40 shows the SUB-QUEUE-n paragraph
format. :

SUB-QUEUE-n IS queue-name
[JOURNAL clause]
[MEDIUM clausebl
[PASSWORD clause]
[RESIDENCY clause]

[STATUS clause]

Figufe 4-40. SUB-QUEUE-n Paragraph Format

The clauses associated with a SUB-QUEUE-n paragraph
can appear in any order. The clauses are discussed in this
subsection following the paragraph descriptions.

Compound Queue Definition

Figure 4-41 shows three examples of compound queues the
user can define. Example 1 shows a compound queue
structure in which all simple queues are sub-queue-3 level
queues. To write the QUEUE and SUB-QUEUE-n
paragraphs that define the queues shown in Example 1,
the user must write the appropriate level paragraphs
following the numerical order of the queues. The ADL
statements defining this queue structure are shown in
Figure 4-42, Example 1.

4-15

Example 1

Queue Level

Sub-queue-1 Level

Q2

Q1

Q9

Sub-queue-2

Q6 Q10 Q13

Sub-queue-3 Level

{
{
Level {
{

Example 2

Queue Level

Level

|
{
Level {
|

Sub-queue-1
Sub-queue-2

Sub-queue-3 Level

Example 3

Queue Level

Sub-queue-1

Q7 Q8| Q11| Q12

Q1 4] Q15

Qa1

Qé

Tsl

a1

Q2

Sub-queue-2 Level

Sub-queue-3 Level

|
|
|
{

Q7 an

A =FH

Figure 4-41. Compound Queue Structure Examples

Figure 4-41, Example 2 shows a compound queue that has
one simple queue at each of the three subqueue levels.
Q4, @5, and Q6 are simple queues; these queues have no
queues below them in the queue structure. To write the
QUEUE and SUB-QUEUE-n paragraphs that define the
queues shown in Example 2, the user must write the
appropriate level paragraphs following the numerical
order of the queues. The ADL statements defining this
queue structure are shown in Figure 4-42, Example 2.

Figure 4-41, Example 3 shows a compound queue that has

subqueues on only one side of the structure and more than

two branches at subqueue levels 2 and 3. To write the
QUEUE and SUB-QUEUE-n paragraphs that define the
queues shown in Example 3, the user must write the
appropriate level paragraphs following the numerical
order of the queues. The ADL statements defining this
queue structure are shown in figure 4-42, Example 3.

4-16

An application can use zero, one, or more compound
queues. As as aid in writing the ADL statements defining
a particular queue structure, the user should first draw
the queue structure and number the queues as shown in
figure 4-41. The user should then write the appropriate
QUEUE and SUB-QUEUE-n paragraphs following the
numerical order of the graphic representation.

Output Section

The Output Section names the output queues and specifies
the characteristics of these queues. The section is made
up of a QUEUE paragraph for each output queue used by
the application.

The Output Section must begin in area A. Figure 4-43
shows the Output Section format.

60480300 A

Example 1

QUEUE IS Q1
SUB-QUEUE-1 IS Q2
SUB-QUEUE-2 IS Q3
SUB-QUEUE-3 IS Q4
SUB-QUEUE-3 IS Q5
SUB-QUEUE-2 IS Q6
SUB-QUEUE-3 IS Q7
SUB-QUEUE-3 IS Q8
SUB-QUEUE-1 IS Q9
SUB-QUEUE-2 IS Q10
SUB-QUEUE-3 IS Q11
SUB-QUEUE-3 IS Q12
SUB-QUEUE-2 IS Q13
SUB-QUEUE-3 IS Q14
SUB-QUEUE-3 IS Q15

Example 2

QUEUE IS @1
SUB-QUEUE-1 IS Q2
SUB-QUEUE-2 IS Q3
SUB-QUEUE-3 IS Q4
SUB-QUEUE-2 IS Q5
SUB-QUEUE-1 IS @6

Example 3

QUEUE IS Q1

SUB-QUEUE-1 IS Q2
SUB-QUEUE-2 IS Q3
SUB-QUEUE-3 IS Q4
SUB-QUEUE-3 IS @5
SUB-QUEUE-3 IS Qé
SUB-QUEUE-2 IS Q7
SUB-QUEUE-3 IS Q8
SUB-QUEUE-3 IS Q9
SUB-QUEUE-3 IS @10
SUB-QUEUE-2 IS a1
SUB-QUEUE-3 IS Q12
SUB-QUEUE-3 IS Q13
SUB-QUEUE-3 IS Q14

QUEUE IS queue-name
[JOURNAL clause]
[MEDIUM clause]
[RESIDENCY clause]

[STATUS clause]

Figure 4-44. QUEUE Paragraph Format, Output Section

Routing Section

The Routing Section specifies in which queue MCS stores
a message. Routing to a specific queue is achieved by
relating a symbolic name to a queue. An input queue is
related to a symbolic source; an output queue is related to
a symbolic destination. The relationship between a queue
and a symbolic name can be based on message content,
time of day, message source, message destination, or a
combination of these criteria.

The Routihg Section must begin in area A. Figure 4~45
shows the Routing Section format.

ROUTING SECTION

SELECT paragraph . . .

Figure 4-42. ADL Compound Queue Definition Example

OUTPUT SECTION

[QUEUE paragraph] . . .

Figure 4-43. Out:pﬁt Section Format

QUEUE Paragraph of the Output Section

The QUEUE paragraph of the Output Section names an
output queue and specifies the queue characteristics. This
paragraph is omitted if output queues are not used by the
application. When present, the QUEUE paragraph must
begin in area A. Figure 4-44 shows the QUEUE paragraph
format. Output queues are simple queues and have no
subqueues.

The clauses associated with a QUEUE paragraph can

appear in any order. The clauses are discussed in this
subsection following the paragraph descriptions,

60480300 A

Figure 4-45. Routing Section Format

SELECT Paragraph

The SELECT paragraph specifies how MCS routes a
message to a particular queue. An ADL program must
include at least one SELECT paragraph, because at least
one queue must be defined. An ADL program can include
more than one SELECT paragraph, because a SELECT
paragraph must appear for each type of queue (input
and/or output), and for each nonsimple queue in the
application. When more than one SELECT paragraph
appears, these paragraphs can be in any order. The
SELECT paragraph must begin in area A. Figure 4-46
shows the SELECT paragraph format.

When the Queue Division defines one or more input
queues, a SELECT INPUT QUEUES paragraph must be
included. Only one SELECT INPUT QUEUES paragraph is
allowed.

When the Queue Division defines one or more compound
queues, a SELECT SUB-QUEUES paragraph must be
included. A SELECT SUB-QUEUES paragraph must
appear for each nonsimple queue defined in the Input
Section. Queue-name must be the name given the queue
in the QUEUE or SUB-QUEUE-n paragraph of this division.

‘When the Queue Division defines one or more output

queues, a SELECT OUTPUT QUEUES paragraph must be
included. Only one SELECT OUTPUT QUEUES paragraph

is allowed.

4-17

The BASED ON SOURCE, BASED ON TIME, BASED ON
CONTENTS phrases can be used only in a SELECT INPUT
QUEUES or a SELECT SUB-QUEUES paragraph.
Data-name of the BASED ON CONTENTS option must be
the name given in a FIELD clause of a SEGMENT
paragraph of the Application Data Division. The BASED
ON DESTINATION phrase can be used only in a SELECT
OUTPUT QUEUES paragraph.

The ROUTE clause specifies in which queue MCS stores a
particular message. This clause is discussed in the
following subsection.

Queve Division Clauses

The Queue Division paragraphs can include the clauses
discussed in this subsection. The clauses are: JOURNAL.
clause, MEDIUM clause, PASSWORD clause, RESIDENCY
clause, ROUTE clause, and STATUS clause. These clauses
can appear in the Queue Division paragraphs as shown in
table 4-2,

JOURNAL Clause

Any QUEUE or SUB-QUEUE-n paragraph can include a
JOURNAL clause. This clause names a file, or files, to
which copies of messages are written after they are
enqueued and/or dequeued. This journaling of messages
provides a record of application message routing. Actual
recording of messages occurs only for simple queues,
because messages are not stored in nonsimple queues.
When a JOURNAL clause appears in a paragraph naming a
queue or subqueue that is a compound queue, the journal

file is updated for any simple queues below the compound
queue. For example, QA is a queue level queue with
simple queues QB and QC below it at the sub-queue-1
level. A JOURNAL clause in the QUEUE paragraph
defining QA names a file that records messages from QB
and QC. The ADL statements for this example are as
follows:

QUEUE IS QA
JOURNAL IS JRNL
SUB-QUEUE-1 IS QB
SUB-QUEUE-1 IS QC

When this clause is omitted from a QUEUE or
SUB-QUEUE-n paragraph, no message recording is
performed for any simple queues associated with the
queue or subqueue. Figure 4-47 shows the JOURNAL
clause format.

Symbolic-name-1 and symbolic-name-2 cannot be the
same. Symbolic-name-1 and symbolic-name-2 must each
be defined in SYMBOLIC-NAME paragraphs in the
Source-Destination Division, and they must be declared as
JOURNAL in the TYPE clause.

When neither the ON INPUT, nor the ON OUTPUT phrase
is included in this clause, symbolic-name-1 records
messages both after they are enqueued and after they are
dequeued. For example:

QUEUE IS QA
JOURNAL IS FILEL

means that any message enqueued in or dequeued from
QA, a simple queue, is recorded on FILEI1.

INPUT QUEUES
SELECT < SUB-QUEUES OF queue-name
OUTPUT QUEUES

SOURCE
DESTINATION

BASE
BASED ON TIME

CONTENTS OF data-name

ROUTE clause [ROUTE clause] . . .

Figure 4-46. SELECT Paragraph Format

TABLE 4-2. QUEUE DIVISION CLAUSE USAGE

) QUEUE Paragraph, SUB-QUEUE-n QUEUE Paragraph, SELECT
Clause Input Section Paragraph Output Section Paragraph
JOURNAL Clause X X X
MEDIUM Clause X X X
PASSWORD Clause X X
RESIDENCY Clause X X X
ROUTE Clause X
STATUS CTlause X X X
X - Clause can appear in this paragraph

4-18

60480300 A

JOURNAL IS symbolic-name-1 | ON {

INPUT
ouTPUT

OUTPUT
bolic- -2 _
} [sym olic-name-2 ON {INPUT }]

Figure 4-47. JOURNAL Ciause Format

When the JOURNAL clause includes the ON INPUT
phrase, but not the ON OUTPUT phrase, symbolic-name-1
records messages only after they are enqueued. For
example:

QUEUE IS QA
JOURNAL IS FILEL ON INPUT

means that FILEl records messages after they are
enqueued in QA, a simple queue; but messages are not
recorded after they are dequeued.

When the JOURNAL clause includes the ON OUTPUT
phrase, but not the ON INPUT phrase, symbolic-name-1
records messages only after they are dequeued. For
example:

QUEUE IS QA
JOURNAL IS FILE2 ON OUTPUT

means that FILE2 records messages after they are
dequeued from QA, a simple queue; but messages are not
recorded after they are enqueued.

When the JOURNAL clause includes both the ON INPUT

and the ON OUTPUT phrases, symbolic-name-1 records.

messages after they are enqueued, and symbolic-name-2
records messages after they are dequeued. For example:

QUEUE IS QA
JOURNAL IS FILE1 ON INPUT
FILE2 ON OUTPUT

means that FILEl records messages after they are
enqueued in QA, a simple queue; and FILEZ records
messages after they are dequeued from QA.

MEDIUM Clause

Any QUEUE or SUB-QUEUE-n paragraph can include a
MEDIUM clause. This clause specifies where a queue is
stored. Figure 4-48 shows the MEDIUM clause format.

CENTRAL
1UM
MEDIUM IS {DISK }

Figure 4-48. MEDIUM Clause Format

When MEDIUM IS CENTRAL is specified, the queue
named in the associated QUEUE or SUB-QUEUE-n
paragraph resides in central memory and is not
permanent. When MEDIUM IS DISK is specified, the
- queue resides on mass storage. When this option is used,
there must also be a RESIDENCY clause for each simple
queue. When the MEDIUM clause is- omitted, MCS
assumes the queue resides in central memory.

60480300 A

PASSWORD Clause

Any QUEUE or SUB-QUEUE-n paragraph in the Input
Section can include a PASSWORD clause. This clause
names a password used for validation when a COBOL
program enables or disables a queue. When this clause is
omitted, password checking does not take place uniess
there is a SIGNATURE paragraph in the Application
Global Division. Figure 4-49 shows the PASSWORD
clause format. Nonnumeric-literal can be a maximum of
10 characters in length.

PASSWORD IS nonnumeric-literal

Figure 4-49. PASSWORD Clause Format, Queue Division

RESIDENCY Clause

Any QUEUE or SUB-QUEUE-n paragraph that names a
simple queue (a queue with no subqueues) must include a
RESIDENCY clause when the queue resides on mass
storage (MEDIUM IS DISK). The RESIDENCY clause
names the file on which messages are stored. Figure 4-50
shows the RESIDENCY clause format.

RESIDENCY IS file-name

[0WNER IS nonnumeric-literal]

Figure 4-50. RESIDENCY Clause Format

File-name must be unique; each disk resident queue must
be a separate file. When the OWNER phrase is used,
nonnumeric-literal must be a system-validated user
name. When the OWNER phrase is omitted, the system
assumes MCS is the file owner; the system takes the user
name from the MCS procedure file (see section 9 for
information on the procedure file).

ROUTE Clause

The ROUTE clause associated with the SELECT paragraph
specifies in which queue a message is stored. Several
options on which to base the routing decision are
available. At least one ROUTE clause must be associated
with each SELECT paragraph. The same queue can be
named in more than one ROUTE clause in the same
SELECT paragraph. Figure 4-51 shows the ROUTE clause
format.

4-19

ROUTE TO queue-name <

FROM symbolic-name-1
TO symbolic-name-2

AFTER
BEFORE

WHEN { } time-literal

FOR condition-name
OTHERWISE

Figure 4-51. ROUTE Clause Format

When the ROUTE clause is in a SELECT INPUT QUEUES
paragraph, queue-name must be defined as an. input queue
in a QUEUE paragraph of the Input Section. When the
ROUTE clause is in a SELECT SUB-QUEUES paragraph,
queue-name must be defined in a SUB-QUEUE-n
paragraph of the Input Section. Queue-name must be a
subqueue of the queue named in the SELECT
SUB-QUEUES paragraph. For example, in the paragraph:

SELECT SUB-QUEUES OF QUE1 BASED ON SOURCE
ROUTE TO SUBQUEL. . .

QUEL is a compound input queue. Messages are routed to
the queue named SUBQUEL that is a subqueue of QUEL.
When the ROUTE clause is in a SELECT OUTPUT
QUEUES paragraph, queue-name must be defined as an
output queue in a QUEUE paragraph of the Output Section.

The ROUTE clause in a SELECT INPUT QUEUES or
SELECT SUB-QUEUES paragraph can include the FROM,
WHEN, FOR, or OTHERWISE phrases. ROUTE TO
queue-name FROM can be used only when the SELECT
paragraph includes the BASED ON SOURCE phrase.
Symbolic-name-1 must be defined as a source in a
SYMBOLIC-NAME or INVITATION-LIST paragraph of the
Source-Destination Division. Incoming messages arriving
from symbolic-name-1 are enqueued in queue-name. For
example:

SELECT INPUT QUEUES BASED ON SOURCE
ROUTE TO QUELl FROM TERM1

enqueues in QUE] incoming messages from TERMI.

ROUTE TO queue-name WHEN can be used only when the
SELECT paragraph includes the BASED ON TIME phrase.
When the AFTER option is used, incoming messages
arriving after time-literal are enqueued in queue-name.
For example:

SELECT INPUT QUEUES BASED ON TIME
ROUTE TO INQUA WHEN AF TER "09.00.00"

enqueues in INQUA incoming messages arriving after
9:00 a.m. When the BEFORE option is used, incoming
messages arriving before time-literal are enqueued in
queue-name. For example:

SELECT INPUT QUEUES BASED ON TIME
ROUTE TO INQUA WHEN BEFORE "15.30.00"

enqueues in INQUA incoming messages arriving before
3:30 p.m. . .

ROUTE TO queue-name FOR can be used only when the

SELECT paragraph includes the. BASED ON CONTENTS
phrase. Condition-name must be named in a CONDITION

4-20

clause in a SEGMENT paragraph of the Application Data
Division. Incoming messages with contents making the
condition true are enqueued in queue-name. For example:

SELECT INPUT QUEUES BASED ON CONTENTS OF
FIELD1 ROUTE TO OKQ FOR OKMSG

enqueues incoming messages in OKQ when the message
field content is equal to the content of condition name
OKMSG, defined in a CONDITION clause.

ROUTE TO queue-name OTHERWISE in a SELECT INPUT
QUEUES or SELECT SUB-QUEUES paragraph specifies
the default routing for incoming messages. ROUTE TO
queue-name OTHERWISE must be specified last in a series
of ROUTE clauses in a SELECT paragraph.

For incoming messages, the routing conditions specified in
the SELECT INPUT QUEUES paragraph ROUTE clauses
are tested in the order they appear until a condition is
satisfied. When a routing condition is satisfied, the
message is routed to the queue named in that ROUTE
clause; the message is enqueued when the queue named is
a simple queue. When the input queue is a compound
queue, the SELECT ' SUB-QUEUES paragraph ROUTE
clauses are tested in the same manner. A message is
routed down the queue hierarchy until it arrives at a
simple queue. For example, a message routed to a
compound queue that has one queue at each of the three
subqueue levels is tested three times before arriving at
the sub-queue-3 level simpie queue where it is enqueued.

The ROUTE clause in a SELECT OUTPUT QUEUES
paragraph can include the TO or OTHERWISE phrases.
ROUTE TO queue-name TO can be used only when the
SELLECT paragraph includes the BASED ON DESTINATION
phrase. Symbolic-name-2 must be defined as a destination
in a SYMBOLIC-NAME or BROADCAST-LIST paragraph
of the Source-Destination Division. Outbound messages
sent from a COBOL program to symbolic-name-2 are
enqueued in queue-name while awaiting transmission. For
example:

SELECT OUTPUT QUEUES BASED ON DESTINATION
ROUTE TO OUTQ TO OUTERMS

enqueues in OUTQ messages sent from a COBOL. program
to destination OUTERMS.

ROUTE TO queue-name OTHERWISE in a SELECT
OUTPUT QUEUES paragraph specifies the default routing
for outbound messages; outbound messages are collected
in a common queue, and the destination to which the data
is sent is unpredictable. The OTHERWISE option should
be used with caution in a SELECT OUTPUT QUEUES
paragraph; if used, the OTHERWISE option must be the
last clause in a SELECT OUTPUT QUEUES paragraph.

60480300 A

For outbound messages, the routing conditions specified in
the ROUTE clauses are tested in the order specified until
a condition is satisfied. When a routing condition is
satisfied, the message is enqueued in the queue named in
that ROUTE clause. Only one level of testing is necessary
for outbound messages, because output queues are simple
queues.

If the routing conditions of any SELECT paragraph have
all been tested, and no condition is satisfied, the message
is'not enqueued. The message source is sent a diagnostic
that the message is not enqueued (see appendix B).

STATUS Cilause

Any QUEUE or SUB-QUEUE-n paragraph can include a
STATUS clause. This clause specifies that a queue is
enabled or disabled when the application is initiated. The
STATUS clause is optional. When this clause is omitted,
MCS assumes the queue is enabled when the application is
initiated. Figure 4-52 shows the STATUS clause format.

ENA
STATUS IS % BLED }

DISABLED

Figure 4-52. STATUS Clause Format, Queue Division

STATUS IS ENABLED means the queue is able to store
message data at application initiation. STATUS IS
DISABLED means the queue is not able to store message
data at application initiation; no messages can be
enqueued until the queue is enabled by the AOP ENABLE
command (see section 8).

Queue Division Example

Figure 4-53 shows an example of the Queue Division. This
division is part of application EXAMPLE of figure 4-11.

The Input Section defines one compound queue. The queue
structure is shown in figure 4-54. The name of the queue
is QA. Messages are recorded on journal file JRNL1 after
they are enqueued in QA, and on journal file JRNL2 after
they are dequeued from QA. JRNL1 and JRNL2 are
defined as symbolic destinations of the type JOURNAL in
SYMBOLIC-NAME paragraphs of the Source-Destination
Division. QA resides on mass storage and is able to
enqueue and dequeue messages when application
EXAMPLE is started, because QA is initially enabled.

QA has six subqueues, each named in a separate
SUB-QUEUE-n paragraph. Messages cannot be enqueued
in or dequeued from any of these subgqueues at application
initiation (STATUS IS DISABLED in each SUB-QUEUE-n
- paragraph). When messages are enqueued in any of these
subqueues, the messages are recorded on JRNLI;
messages are recorded on JRNL2 as they are dequeued.
The JOURNAL clause of the QUEUE paragraph applies to
all the subqueues. All subqueues reside on mass storage,
because the MEDIUM IS- DISK clause in the QUEUE
paragraph applies to all the subqueues.

60480300 A

@B, a sub-queue-1 level queue, has queues QC, QD, QE,
and GF below it in the hierarchy, so it is' not a simple
queue. One other nonsimple queue appears in this
example, and that is QC, a sub-queue-2 level queue that
has GD and QE below it. QD and QE are simple queues,
because they are sub-queue-3 level queues; this is the
lowest level in the queue hierarchy. The SUB-QUEUE-3
paragraphs defining GD and QE include RESIDENCY
clauses naming the mass storage files where these queues
are stored. Queues QF and QG are also simple queues
even though they are sub-queue-l1 and sub-queue-2 level
queues, respectively; they have no queues below them.
Their SUB-QUEUE-n . paragraphs inciude RESIDENCY
clauses.

There are three other QUEUE paragraphs in the Input
Section, each naming a special type of simple input
queue. Queue INJECQ is the injection queue named in the
INJECTION-QUEUE paragraph of the Application Global
Division. Queue COLLECQ is the collection queue named
in the COLLECTION-QUEUE paragraph of the Application
Global Division. Queue RESQ is the response queue
named in the RESPONSE-QUEUE clause in the PROGRAM
paragraph of the Application Program Division.

The Output Section of figure 4-53 defines two output
queues named OUTQ1 and OUTQ2. OUTQ1 and OUTQ2
reside on mass storage on files OUTFILEL and OUTFILE2,
respectively. Both output queues are able to enqueue and
dequeue messages at application initiation (STATUS IS
ENABLED). - o

The Routing Section of figure 4-53 includes five SELECT
paragraphs. A SELECT INPUT QUEUES paragraph
appears, because this division includes at least one input
queue. Incoming messages from invitation list TERMS
(composed of TERM1 and TERM2) are routed to QA, the
queue level queue in this example.

The next SELECT paragraph is a SELECT SUB-QUEUES
paragraph that is required because QA has subqueues.
Messages from TERM2 are routed to QB. Messages that
are not from TERM2 are routed to QG. The messages
routed to QG are those from TERMI. These messages
have now arrived at a simple queue and are enqueued
in QG.

@B has queues below it and requires a SELECT
SUB-QUEUES paragraph. The messages from TERM2Z that
are routed to QB are routed based on time. Messages
arriving at QB before 9:00 a.m. are routed to QC.
Messages arriving at QB after 9:00 a.m. are routed to
QF. These messages are enqueued in QF, a simple queue.

QC has queues below it and requires a SELECT
SUB-QUEUES paragraph. The messages originally from
TERMZ that have been routed to QB and then QC are now
routed based on message content. FIELD12 of each
message is tested, and messages matching the contents of
C-NAME are enqueued in QD, a simple queue. FIELD12 is
defined in a SEGMENT paragraph of the Application Data
Division. C-NAME is also defined in the Application Data
Division, and is assigned the value FIVE5. Messages not
matching this value are enqueued in QE, also a simple -
queue. All incoming messages have now been enqueued in
a simple queue.

The last SELECT paragraph is a SELECT OUTPUT
QUEUES paragraph that routes outbound messages from
the output queue OUTQ1 to TERM1 and from the output
queue OUTQ2 to TERM2.

4-21

QUEUE DIVISION
INPUT SECTION
QUEUE IS QA .
JOURNAL IS JRNL1 ON INPUT
JRNLZ ON OUTPUT
MEDIUM IS DISK
STATUS IS ENABLED
SUB-QUEUE-1 IS @B
STATUS IS DISABLED
SUB-QUEUE-2 IS QC
STATUS IS DISABLED
SUB-QUEUE-3 IS Qb
RESIDENCY IS QDFILE
STATUS IS DISABLED
SUB-QUEUE-3 IS QE
RESIDENCY IS QEFILE
STATUS IS DISABLED
SUB-QUEUE-2 IS QF
RESIDENCY IS QFFILE
STATUS IS DISABLED
SUB-QUEUE-1 IS Q6
RESIDENCY IS QGFILE
STATUS IS DISABLED
QUEUE IS INJEC@ '
QUEUE IS COLLECQ
QUEUE IS RESQ

OUTPUT SECTION

QUEVE 1S ouTa1
MEDIUM IS DISK
RESIDENCY IS OUTFL1
STATUS IS ENABLED

QUEUE IS OUTa2
MEDIUM IS PISK
RESIDENCY IS OUTFL2 .
STATUS IS ENABLED

ROUTING SECTION
SELECT INPUT QUEUES BASED ON SOURCE
ROUTE TO QA FROM TERMS

SELECT SUB-QUEUES OF QA BASED ON SOURCE
ROUTE TO QB FROM TERM2

ROUTE TO @G OTHERWISE
SELECT SUB-QUEUES OF @B BASED ON TIME
ROUTE TO QC WHEN BEFORE “09.00.00"
ROUTE TO QF WHEN AFTER "09.00.00"
SELECT SUB-QUEUES OF QC BASED ON CONTENTS OF FIELD12
ROUTE TO QD FOR C-NAME
ROUTE TO QE OTHERWISE
SELECT OUTPUT QUEUES BASED ON DESTINATION
ROUTE TO OUTQ1 TO TERM1
ROUTE TO 0UTQ2 TO TERM2

Figure 4-53. Queue Division Example

APPLICATION PROCESSING DIVISION

The Application Processing Division specifies events that
MCS monitors, and it defines actions taken when an event
occurs. The division is made .up of a number of USE
paragraphs, each specifying a particular event and one or
more verbs that define the action MCS takes when the
event occurs.

USE Paragraph ;

shows the USE paragraph format.
The division header is:

APPLICATION PROCESSING DIVISION

The USE paragraph names an event that MCS monitors.
The paragraph includes a condition statement that defines
the’ event and one or more verbs that execute when the
condition is true. The USE paragraph can be omitted if
there is no application event monitoring.
the USE paragraph must begin in area A.

When present,

The header must appear on a separate line, beginning in
area A. Figure 4-55 shows a skeleton of ‘the Application
Processing Division.

4-22

The USE EVERY option is used to specify recurring
conditions, such as an amount of elapsed time. A USE
paragraph with USE EVERY can be performed more than
once.

60480300 A

Queue Level

Sub-queue-1 Level

Sub-queue-2 Level

Sub-queue-3 Level Qb

aB QG

ac QF |

QE

Figure 4-54. Applicétion EXAMPLE Input Queue Structure

APPLICATION PROCESSING DIVISION

[USE paragraph] . ..

Figure 4-55. Application Processing Division Skeleton

usg { WHEN ndition
==) gveRy (MO

verb-1
[verb-2] . ..

Figure 4-56. USE Paragraph Format

The USE WHEN option specifies nonrecurring conditions,
such as a specific system clock time. A USE paragraph
with USE WHEN can be performed only once while an
application is running. When an application is shut down
and restarted, the condition is reset.

USE Paragraph Conditions

Various conditions define the events MCS monitors. When
a condition references a symbolic name that is an
- invitation list or broadcast list, the condition applies to
each component of the list. When a condition in a USE
. WHEN paragraph references a symbolic name that is an
invitation list or broadcast list, the condition is true once
for the entire list and not once for each component of the
list. When a condition references a symbolic name that is

60480300 A

an invitation list or broadcast list, and the same condition
also references a symbolic name that is a component of
the list, the component condition overrides the list
condition. For example, TERMl is a component of the
broadcast list BLIST, and the following statements are
defined:

USE WHEN condition TERM1

. verb

USE EVERY condition BLIST
verb

The verb immediately following the USE WHEN paragraph
is executed when condition is true for TERM1.

Conditions that can define an event are: CONNECT con- -
dition, CONNECTION-BROKEN condition, CONNEC-
TION-INACTIVE condition, DISCONNECT condition,
ELASPED-TIME condition, INITIATION condition, SIZE
EXCEEDS condition, . and TIME condition. Table 4-3
summarizes these conditions, which are discussed in the
following paragraphs.

CONNECT Condition

Figure 4-57 shows the CONNECT condition format. This
condition is true when the terminal or any of the group of
terminals named by symbolic name establishes a logical
connection with the application.

CONNECTION-BROKEN Condition

Figure 4-58 shows the CONNECTION-BROKEN condition
format. This condition is true when the terminal or any of
the group of terminals named by symbolic name is

4-23

involuntarily disconnected from the application. .The
execution of the DISCONNECT verb or the AOP
DISCONNECT command does not make this condition
true. This condition is true, for example, if a user at a
dialup terminal hangs up the phone without logging off.

TABLE 4-3. USE PARAGRAPH CONDITIONS

CONNECTION-INACTIVE FOR symbolic-name

Figure 4-59. CONNECTION-INACTIVE Condition Format

DISCONNECT Condition

Condition Event Monitored

Logical connection between
application and terminal or
group of terminals.

CONNECT

CONNECTION-BROKEN Terminal or group of termi-
nals involuntarily discon-

nected from an application.

CONNECTION-INACTIVE | Terminal or group of termi-
nals connected but not
sending or receiving commands
or messages.
DISCONNECT Terminal or group of termi-
: nals voluntarily ending con-
nection with an application.
ELAPSED-TIME Length of time an application
has been running.

INITIATION Application initiation.

SIZE EXCEEDS Number of messages in a queue

greater than defined Timit.

TIME ' 1 System clock time.

Figure 4-60 shows the DISCONNECT condition format.
This condition is true when the terminal or any of the
group of terminals named by symbolic name voluntarily
ends its logical connection with the application. A
DISCONNECT condition occurs, for example, when a
terminal user logs off.

DISCONNECT OF symbolic-name

Figure 4-60. DISCONNECT Condition Format

ELAPSED-TIME Condition

Figure 4-61 shows the ELAPSED-TIME condition format.
This condition is true when the MCS application elapsed
time counter exceeds time-literal.

ELAPSED-TIME IS time-literal

Figure 4-61. ELAPSED-TIME Condition Format

INITIATION Condition

CONNECT OF symbolic-name

Figure 4-57. CONNECT Condition Format

CONNECTION-BROKEN FOR symbolic-name

Figure 4-58. CONNECTION-BROKEN Condition Format

CONNECTION-INACTIVE Condition

Figure 4-59 shows the CONNECTION-INACTIVE condition
format. This condition is true when the terminal or any of
the group of terminals named by symbolic name is
inactive for an installation-defined period. An inactive
terminal or group of terminals is connected to the
application but is not sending or receiving any commands
or messages.

4-24

Figure 4-62 shows the INITIATION condition format. This
condition is true only when an application is initiated.
Application initiation is discussed in the Application
Global Division subsection.

INITIATION

Figure 4-62. INITIATION Condition Format

SIZE EXCEEDS Condition

Figure 4-63 shows the SIZE EXCEEDS condition format.
This condition is true when the message count for the
named queue becomes greater than the specified integer.

SIZE OF queue-name EXCEEDS integer MESSAGES

Figure 4-63. SIZE EXCEEDS Condition Format

60480300 A

TIME Condition

Figure 4-64 shows the TIME condition format. This
condition is true when the system clock time reaches
time-literal.

TIME IS time-literal

Figure 4-64. TIME Condition Format

USE Paragraph Verbs

The verbs discussed in the following paragraphs execute
when the USE paragraph condition is true. A USE
paragraph inciludes one or more verbs depending on the
action or actions the user desires. Table 4-4 summarizes
the verbs and their actions.

TABLE 4-4. USE PARAGRAPH VERBS

Verb Description
— — - — |

DISABLE Disables a terminal or group of
terminals.

DISCONNECT | Disconnects a terminal from MCS.

DISPLAY Displays status information.

DUMP Dumps environmental information about
the application to the dump file.

ENABLE Enables a terminal or group of
terminals.

IDLE Halts application processing.

INVOKE Initiates execution of the specified
COBOL program.

MESSAGE Sends a message string to a terminal
or group of terminals.

PURGE Deletes all partial messages sent to
specified destination.

REROUTE Reroutes output from one destination
to another destination.

REVOKE Terminates execution of the specified
COBOL program.

SHUTDOWN Terminates an application.

symbolic-name
queue-name
DISABLE ALL
INPUT QUEUES
OUTPUT

Any responses, including error responses, to USE
paragraph verbs are sent to the AOP. If no AOP is logged
in, the responses are discarded.

DISABLE Verb
When the DISABLE verb executes, a source, destination,

list, or queue becomes temporarily inactive. Figure 4-65
shows the DISABLE verb format.

60480300 A

Figure 4-65. DISABLE Verb Format

Symbolic-name must be defined as a source or destination
in a SYMBOLIC-NAME paragraph of the Source-
Destination Division. Symbolic-name can be an invitation
list or broadcast list. Queue-name must be defined as an
input or output queue in a QUEUE or SUB-QUEUE-n
paragraph of the Queue Division. When ALL is specified,
all input and output queues are disabled. When INPUT is
specified, all input queues are disabled. When OUTPUT is
specified, all output queues are disabled. It is illegal to
disable a collection queue, injection queue, or response
queue. Disabling an already disabled source, destination,
or queue results in a diagnostic message (see appendix B).

When a source is disabled, the source remains connected
to the application, but no incoming data messages are
accepted from this source. Incomplete messages from a
source are purged from the system when the source is
disabled. When a queue is disabled, no incoming or
outbound data messages are enqueued in or dequeued from
this queue. When a destination is disabled, it remains
connected to the application, but no outbound data
messages are sent to this destination. When
symbolic-name is an invitation list or broadcast list, no
data messages are accepted from or sent to any of the
components of the list. A disabled source or destination
can input commands to MCS.

DISCONNECT Verb

When the DISCONNECT verb executes, an external source
or destination is disconnected from the application untii
the source or destination logs in again (see section 2 for
login procedure). Figure 4-66 shows the DISCONNECT
verb format. Symbolic-name must be defined as a source
or destination in a SYMBOLIC-NAME paragraph of the
Source-Destination Division.

DISCONNECT symbolic-name

Figure 4-66. DISCONNECT Verb Format

When a source is disconnected, commands and data
messages are not solicited from this source.
DISCONNECT of a source causes all partial input
messages from this source to be purged from the system.
When a destination is disconnected, outbound messages
are not sent to this destination. Messages sent to a
destination that is disconnected remain in the output
queue until the destination is connected. Disconnecting
an aiready disconnected source or destination results in a
diagnostic message (see appendix B).

4-25

DISPLAY Verb

When the DISPLAY verb executes, a display of application

status - information is transmitted to the AOP. This-

display can also be written to a file for later application
analysis. Figure 4-67 shows the DISPLAY verb format.

When the MONITOR-FILE phrase is used, a monitor file
must be named in a MONITOR-FILE paragraph of the
Application Global Division. When the MONITOR-FILE
phrase is omitted, an AOP must be named in an
OPERATOR paragraph of the Application Global
Division. When the MONITOR-FILE phrase is omitted, the
display is transmitted to the AOP; if no AOP is connected,
this verb has no effect.

The displays generated when this verb executes are the
same as those generated in response to an AOP DISPLAY
command. See section 8 for examples of the displays
generated. When no display type is specified, a display of
the current application status is generated. When the
PROGRAMS option is used, a display of the current status
of all COBOL programs is generated. When TERMINALS
is specified, a display of the status of all application
terminals is generated. :

When the QUEUES option of the DISPLAY verb is used,
and INPUT is specified, a display of the current status of
all input queues is generated. When OUTPUT is specified,
a display of the current status of all output queues is
generated. When ALL is specified, a display of the
current status of all input and output queues is generated.

DUMP Verb

When the DUMP verb executes, an application dump is
performed and application environmental information is
written to the dump file. A dump file must be named in a
DUMP-FILE paragraph of the Application Global
Division. Figure 4-68 shows the DUMP verb format. See
section 5 for more information on the dump file.

ENABLE Verb

When the ENABLE verb executes, a source, destination,
list, or queue becomes active; this verb causes the reverse
of a DISABLE verb action. Figure 4-69 shows the
ENABLE verb format.

Symbolic-name must be defined as a source or destination
in a SYMBOLIC-NAME paragraph of the Source-
Destination Division. Symbolic-name can be an invitation

list or broadcast list. Queue-name must be defined as an
input or output queue in a QUEUE or SUB-QUEUE-n
paragraph of the Queue Division. When ALL is specified,
all input and output queues are enabled. When INPUT is
specified, all input queues are enabled. When OUTPUT is
specified, all output queues are enabled. It is illegal to
enable a collection queue, injection queue, or response
queue. Enabling an already enabled source, destination, or
queue results in a diagnostic message (see appendix B).)

When a source is enabled, incoming data messages are
accepted from this source. When a queue is enabled,
incoming and outbound data messages are enqueued in and
dequeued from this queue. When a destination is enabled,
outbound data messages can be sent to this destination.
When symbolic-name is an invitation list or broadcast list,
data messages are accepted from or delivered to any of

the components of the list.

IDLE Verb

When the IDLE verb executes, application processing halts
temporarily. The application remains on-line, but MCS
does not solicit input from the network or deliver output.
MCS rejects any further COBOL program requests.
However, the IDLE verb does not affect the AOP; the
AOP is always active. The RESUME command reverses
the IDLE verb (see section 8). Figure 4-70 shows the
IDLE verb format.

DUMP

Figure 4-68. DUMP Verb Format

symbolic-name
queue-name
ENABLE ; ALL
INPUT QUEUES
l OUTPUT

Figure 4-69. ENABLE Verb Format

PROGRAMS
TERMINALS

DISPLAY ALL

OUTPUT

INPUT l QUEUES

[TO MONITOR-FILE]

Figure 4-67. DISPLAY Verb Format

4-26

60480300 A

IDLE

Figure 4-70. IDLE Verb Format

INVOKE Verb

When the INVOKE verb executes, execution of a COBOL
program is initiated. Figure 4-71 shows the INVOKE verb -
format.

INVOKE routine-name

Figure 4-71. INVOKE Verb Format

Routine-name must be a COBOL pregram name from a
PROGRAM paragraph of the Application Program
Division. “An invocation file for this COBOL program
must be named in an INVOCATION-FILE clause of the
PROGRAM paragraph. The invocation file is submitted to
the operating system job input queue when INVOKE
executes. When the control statements of the invocation
file execute, the COBOL program then executes.

MESSAGE Verb
When the MESSAGE verb executes, a message is sent to

the AOP, all external destinations, or a named recipient.
Figure 4-72 shows the MESSAGE verb format.

MESSAGE nonnumeric-literal

[TO symbolic-name]

Figure 4-72. MESSAGE Verb Format

When the TO phrase is used, symbolic-name must be
named as a destination in a SYMBOLIC-NAME paragraph
of the Source-Destination Division. Symbolic-name can
be a broadcast list. When symbolic-name is a broadcast
list, the message is sent to all currently connected
components of the list. When the TO phrase is omitted,
the message is sent to all currently connected application
destinations. This verb has no effect if no destinations
are connected. However, the message is delivered to a
destination that is connected but disabled (not able to
receive data messages).

PURGE Verb

When the PURGE verb executes, incomplete messages
sent to an external destination or group of destinations
are discarded. Complete messages are not affected.
Figure 4-73 shows the PURGE verb format.

Symbolic-name must be named as a destination in a
SYMBOLIC-NAME paragraph of the Source-Destination
Division. Symbolic-name can be a broadcast list.

REROUTE Verb

When the REROUTE verb executes, all output sent to an
external destination or group of destinations is sent to an
alternate destination. This verb allows alternate
destinations. for application output in case of a
CONNECTION-BROKEN or - DISCONNECT condition.
Figure 4-74 shows the REROUTE verb format.

REROUTE symbolic-name-1 TO symbolic-name-2

Figure 4-74. REROUTE Verb Format

Symbolic-name-1 and symbolic-name-2 must be named as
destinations in SYMBOLIC-NAME paragraphs of the
Source-Destination Division. Symbolic-name-1 can be a
broadcast list. A diagnostic message results if
symbolic-name-2 is not' connected to MCS (see
appendix B). The alternate destination condition is no
longer in effect when symbolic-name-1 reconnects to MCS.

REVOKE Verb

When the REVOKE verb executes, a COBOL program
terminates. Figure 4-75 shows the REVOKE verb format.

REVOKE routine-name

Figure 4-75. REVOKE Verb Format

Routine-name must be a COBOL program name from a
PROGRAM paragraph of the Application Program
Division. The COBOL program aborts on the next
program request to MCS. When the program is suspended
waiting for data, it is aborted as soon as the REVOKE
verb executes. The program can be ended gracefully by
including an EXIT card in its invocation file. If the named
COBOL program is not connected to MCS, the REVOKE
verb has no effect.

SHUTDOWN Verb

When the SHUTDOWN verb executes, an application
terminates. This verb must be the last verb in a series of
verbs in a USE paragraph. Figure 4-76 shows the
SHUTDOWN verb format. See section B for a list of the
actions that occur following execution of the SHUTDOWN
verb.

PURGE symbolicfname

Figure 4-73. PURGE Verb Format

60480300 A

SHUTDOWN

Figure 4-76. SHUTDOWN Verb Format

4-27

Application Processing Division Example

Figure 4-77 shows ‘an example of the Application
Processing Division. This division is part of application
EXAMPLE of figure 4-11.

In the first USE paragraph, when either TERM1 or TERM2
of invitation list TERMS connects to MCS, both TERM1
and TERM2 are enabled; they can input data messages and
MCS accepts these messages. The status of terminals
connected to EXAMPLE is then written to monitor file
MNTRF. COBOL program MAWTEST is executed after
the INVOKE verb causes the invocation file INVF to be
submitted to the operating system job input queue.

In the second USE paragraph, every time there are more
than 12 messages in QA, QA is disabled (can no longer
accept incoming data messages). The input queue display
is generated and sent to the AOP, and the message QA
FULL is sent to the connected components of broadcast
list OUTPUTS.

4-28

APPLICATION PROCESSING DIVISION
USE WHEN CONNECT OF TERMS
ENABLE TERMS
DISPLAY TERMINALS TO MONITOR-FILE
INVOKE MAWTEST
USE EVERY SIZE OF QA EXCEEDS 12 MESSAGES
DISABLE QA
DISPLAY INPUT QUEUES
MESSAGE "QA FULL" TO OUTPUTS
USE WHEN DISCONNECT OF OUTPUTS
REVOKE MAWTEST
PURGE OUTPUTS
SHUTDOWN

Figure 4-77. Application Processing Division Example

In the last USE paragraph, when any component of the
broadeast list OUTPUTS disconnects from MCS, COBOL
program MAWTEST is revoked (terminated). Incompiete
messages sent to OUTPUTS are discarded, and application
EXAMPLE is then shutdown.

60480300 A

COMPILATION AND EXECUTION

This section describes the MCS facilities for compiling a
program written in ADL, for testing a newly developed

MCS application, for monitoring the activities of an

executing application, and for recovering an application
after a shutdown.

COMPILATION

After an application definition has been written using
ADL, it must then be compiled by the Application
Definition Language processor (ADLP) before it can be
used to control an MCS application. The ADL processor
accepts as input a program written in ADL and produces
as output an application definition library.

The ADL processor is a two-pass processor: pass 1
ensures that the ADL program is syntactically correct;
pass 2 ensures that logic and usages are consistent within
the program. If errors are encountered during either pass
of ADL compilation, appropriate messages are written to
an output file, and no application definition library is
created. (Error messages are described in appendix B.)
When the application definition is syntactically correct
and logically consistent, the ADL processor transforms
the definition into a collection of tables usable by MCS,
and places the tables in the application definition library
file.

APPLICATION DEFINITION LIBRARIES

Upon successful compilation, the application definition
tables produced by the ADL processor are added to the
new application definition library specified on the ADLP
control statement. The application definition library is a
file containing a collection of compiled MCS application
definitions. Each application definition in a library file
constitutes a single record and is independent of all other
definitions in the library.

When MCS is initially started, the system operator or MCS
procedure file must specify the name of the library
containing the definitions of the applications to be
executed. The applications available for initiation by an
application operator at login time are the applications
contained in the library. Only one library can be active at
any given time. However, any number of applications
within a library can be active. The applications that have
been initiated by an application operator are available to
terminal users at login time.

ADLP CONTROL STATEMENT

The ADL processor is invoked by the ADLP system control
statement. Various processing options can be controlled
by parameters specified on the control statement. These
parameters have one of the following forms:

parameter=opt
parameter=optl [opt2 [opt3]]
parameter=optl [/opt2]. . .

When a parameter is omitted, a default value is assumed
by the processor. Parameters can appear in any order and

60480300 A

are separated by commas. Duplicate specification of
parameters is not allowed. :

The ADLP control statement has the forms shown in
figure 5-1. The form:

ADLP.

causes all parameters to assume default values.” Note that
specification of the parameter without an option causes
the I parameter to assume a second default value. For all
other parameters, specification of parameter without an
option is not allowed. For example:

ADLP(I=INFILE,LLO=SRL,0LD=0,NEW=NLIB)

compiles the ADL source program stored on file INFILE.
A source listing, reference map, and library maintenance
listing are produced and written to file OUTPUT
(L parameter omitted). A previous application library
does not exist.. A new library, NLIB, is created and the
output application definition tables are stored in this
library. The form:

ADLP(I:0,0LD=LIB6,NEW=LIB7,D=APP1/ APP2,L0=L)

deletes application definitions APP1 and APP2 from old
library LIB6, and creates a new library LIB7. No new
application definition tables are produced. A library
maintenance listing is written to file OUTPUT.

COMPILATION LISTINGS

The ADL processor produces three listings that can
provide assistance in debugging ADL programs and in
maintaining application definition libraries; these are:
source listing, cross reference listing, and library
maintenance listing. The processor produces any
combination of these listings, or none of them, as
determined by ADLP control statement parameters.
Examples of these listings are described in the following
paragraphs.

Source Listing

The ADLP source listing is specified by the LO=S control
statement parameter. This listing includes all source lines
submitted as input to the ADL processor. A header line at
the top of each page contains the processor version
number, date, time, and page number.

The source program is listed 60 lines per page. A line
number is printed at the beginning of each line. These
line numbers are used in the error messages and cross
reference listing.

Wherever possible, error messages generated during pass 1
of an ADL compilation appear immediately before the
statement containing the error; pass 2 error messages
appear immediately after the last statement of the source
listing. A complete list of ADL processor error messages
and an explanation of each message is included in
appendix B. '

5-1

ADLP.

ADLP paramq [,paramy] . . .
ADLP(paramq[,paramy] . . .)

param,, is one of the following parametersE

| Name of input file containing ADL source program
to be processed. Valid values are:

omitted ADL source program is on file INPUT.
| ADL source program is on file
COMPILE.
= No source file is input.
1=lfn ADL source program is on file Ifn.
1=0 should be specified for a delete-only run.
L Name of output listing file. Valid values are:

omitted Output listing is written to file

OUTPUT.

L=0 Output listing is written to file
OUTPUT and contains only error
messages.

L=Ifn Output listing is written to file Ifn.

LO . Output listing options. Any combination of S, R,
or L can be specified. Error messages are produced
regardless of LO specifications. Valid values are:

omitted Same as LO=S if OLD=0.
Same as LO=SL otherwise.

LO=0 Output listing contains only error
messages.

LO=V, [IV,ylV3

where V has one of the following values, and

V1 * Vz * V31

S ADL source listing is ptodubed as part
of the output listing.

R A cross reference map is produced as

part of the output listing.

L A library maintenance listing is produced
as part of the output listing.

OLD Name of file containing the old application defini-
tion library. Applications are copied from this file
to the new application definition library and are
added, deleted, or replaced, as directed. Valid
values are:

omitted Same as OLD=OLDLIB.

OLD=0 No application definition library
currently exists. :

OLD=ifn Old application definition library is on
file Hfn.

NEW Name of file to contain the new application defini-
tion library. This file is either an updated version
of the old application definition library or a newly
created library. Applications are copied from the
old application definition library to the new
application definition library and are added, deleted,
or replaced, as directed. The new library is accessed
by MCS during startup and can be used as input
for other ADLP runs. Valid values are:

omitted Same as NEW=ADLLIB.

NEW=0 No new application definition library is
created. (No application definition
tables are produced.)

NEW=Ifn The updated application definition
library is written to file Ifn.

D Applications to be deleted from the old application
definition library. Valid values are:

omitted No application definitions are deleted
from the old application definition
library.

D=appl[/appl] . . .
The specified applications are deleted.

For a delete only run, 1=0 should be specified so
that no input file is expected.

Figure 5-1. ADLP Control Statement

A compilation summary appearing at the end of the source
listing includes the following messages:

nnnnnnnnnn DIAGNOSTIC MESSAGES

indicates the total number of error messages
appearing in the source listing. :

nnnnnnnnnB CM REQUIRED

indicates the total number (octal) of central memory
words required for the compilation.

nnnnnn.nnn SECONDS CP TIME

indicates the total time (in central processor seconds)
required for compilation.

nnnnnnnnnB TOTAL TABLES SIZE
indicates the number (octal) of central memory words

required for the tables produced by the ADL
processor.)

Figure 5-2 illustrates a source listing for a simple ADL
program. Figure 5-3 iliustrates the same listing, except
that an error has been introduced. The misspeiling of
FIELD1I in line 12 has caused a fatal error. -

Cross Reference Listing

The cross reference listing is specified by the LO=R
control statement parameter. This listing includes an
alphabetical list of all symbolic names appearing in the
source program together with certain attributes of each
name. These attributes include the name type, the
number of the source line in which the name is defined,
and the numbers of all source lines in which the name is
referenced. The cross reference map follows the source
listing in the output file.

A symbolic name is defined when it is assigned to a
specific application entity, such as a queue or terminal. A
symbolic name that is referenced, but not defined in an
ADL program, constitutes a fatal error. . An undefined
name is indicated by the characters UNDEF in the TYPE

60480300 A

* SOURCE LISTING «
1 APPLICATION GLOBAL DIVISION
2 APPLICATION-NAME IS AD2
3
4 APPLICATION PROGRAM DIVISION
5 PROGRAM IS PROG1
6
7 APPLICATION DATA DIVISION
8 €61 IS "/"
9 MESSAGE IS MSG
10 SERIAL-NUMBER IS GENERATED IN FIELD1
11 SEGMENT IS SEG1 LENGTH IS 80 CHARACTERS
12 FIELD IS FIELD1 STARTS AT CHARACTER 1
13 EXTENDS FOR 3 CHARACTERS
14
15 SOURCE-DESTINATION DIVISION
16 SYMBOLIC-NAME IS TERM1
17 TYPE IS INTERACTIVE
‘18 MODE IS DATA
19 MESSAGES ARE MSG
20
21 QUEUE DIVISION
22 INPUT SECTION
23 QUEUE IS INQ
24 OUTPUT SECTION
25 QUEUE IS ouTa
26 . ROUTING SECTION
27 SELECT INPUT QUEUES
28 . BASED ON SOURCE
29 ROUTE TO INQ FROM TERMI1
30 SELECT OUTPUT QUEUES
31 BASED ON DESTINATION
32 ROUTE TO OUTQ TO TERM1
33
34 APPLICATION PROCESSING DIVISION

Figure 5-2. Source Listing

column of the reference listing. The cross reference
listing is, thus, a useful debugging tool, and should always
be examined after an ADL processor compilation.

An example of a cross reference listing is illustrated in
figure 5-4. Figure 5-5 shows a cross reference listing
generated by a program that contains an error. FIELDL is
flagged as an undefined name because it was misspelled
when defined in line 12,

Library Maintenance Listing

The library maintenance listing is specified by the LO=L
parameter. This listing includes the name of each
application definition in the new application definition
library, the length of each application definition in

physical record units (PRUs), and the creation date of-

each application definition. Application definitions are
listed in order of creation date, with the most recently
created application definition appearing first. If fatal
compilation errors oceur, a new. library is not created, and
the library maintenance listing is not produced.

An example of a library maintenance listing is illustrated
in figure 5-6.

60480300 A

APPLICATION DEFINITION LIBRARY
MAINTENANCE

After an application definition library has been created,
application definitions can be added to, deleted from, or
replaced in the library by specifying the appropriate
ADLP control . statement parameters. The following
paragraphs illustrate system control statements and ADLP
parameters necessary to perform these operations. Refer
to the NOS reference manual for detailed information on
system control statements.

CREATING AN APPLICATION DEFINITION LIBRARY

A new application definition library is created each time
an application definition is successfully. compited. If a
library does not currently exist, the application definition
becomes the first one in the new library.

Figure 5-7 illustrates a job structure that compiles an
application definition and creates. a new . application
definition library. The DEFINE control statement is
included to assign permanent file status to the library.
The OLD=0 parameter on the ADLP control statement
specifies that no old library exists. The NEW=ALIB
parameter specifies the name of the new library that is to
contain the application definition.

_* SOURCE LISTING *
1 APPLICATION .GLOBAL DIVISION
2 APPLICATION-NAME IS AD2
3
4 APPLICATION PROGRAM DIVISION
5 PROGRAM IS PROG1
6
7 _APPLICATION DATA DIVISION
8 EGI IS "/"
9 MESSAGE IS MSG
10 . SERIAL-NUMBER IS GENERATED IN FIELD1
11 SEGMENT IS SEG1 LENGTH IS 80 CHARACTERS
12 FIELD IS (FELD1) STARTS AT CHARACTER 1
13 EXTENDS FOR 3 CHARACTERS
14
15 SOURCE-DESTINATION DIVISION
16 SYMBOLIC-NAME IS TERM1
17 TYPE IS INTERACTIVE
18 MODE IS DATA
19 MESSAGES ARE MSG .
20
21 QUEUE DIVISION
22 INPUT SECTION
23 QUEUE IS INQ
24 OUTPUT SECTION
25 QUEUE IS ouTQ
26 ROUTING SECTION
27 SELECT INPUT QUEUES
28 BASED ON SOURCE
29 . ROUTE TO INQ FROM TERM1
30 SELECT OUTPUT QUEUES
31 , BASED ON DESTINATION
32 , ROUTE TO OUTQ TO TERM1
33 ’
34 APPLICATION PROCESSING DIVISION

PASS 2 DIAGNOSTICS -

0 « 061 F SERIAL NUMBER DATANAME INVALID

Figure 5-3. Source Listing Containing Error

* CROSS REFERENCE =*

NAME TYPE

AD2 SYSTEM
FIELD1 DATA

INQ QUEUE
MSG DATA
ouTe QUEUE
PROG1 ROUTINE
SEG1T DATA
TERM1 SYMBOLIC

NO DIAGNOSTIC MESSAGES
16600B CM REQUIRED
0.365 SECONDS CP TIME
236B TOTAL TABLES SIZE

DEF LINE REFERENCES

2
12
23

9
25

5
11
16

32

5-4

Figure 5-4. Cross Reference Listing

60480300 A

1 DIAGNOSTIC MESSAGES
* FATAL ERRORS - NO TABLES #

* CROSS REFERENCE «

NAME TYPE DEF LINE
Ad2 SYSTEM 2
FELD1 DATA 12
FIELD1 * UNDEF 0
INQ QUEVE 23
Ms6 DATA 9
ouTta QUEUE 25
PROG1 ROUTINE 5
SEGT DATA 1
TERMY SYMBOLIC 16

REFERENCES

- 10 7
29

19

32

29 32

Figure 5-5. Cross Reference Listing Showing Undefined Name

NEW LIBRARY CONTENTS

ADLPyI=COMPILEOLD=0LDLIByNEWN=AILLIB,L=0UTPUT,

NAME SIZZ/PRUS CREATIIN DATE
APPLYG 3 79707730,
APPLD3 3 79/07/30.
APPLO27 3 79707730,
APPLY2Z 3 79707730,
AP2L02) 3 73707730,
apPLI2C 3 79737730,
APPLO23 3 79707730,
aPPLO2A 3 797077340,
APPLI2 4 79707730,
APPLOL 3 79707730,

Figure 5-6. Library Maintenance Listing

JOoB1.
USER statement
CHARGE - statement)
DEFINE(ALIB/PW=AAA,CT=PU, M=W)
ADLP(OLD=0,NEW=ALIB)
7/8/9 in column 1
. ADL source program
6/7/8/9 in column 1

Figure 5-7. Creating an Application Definition Library

ADDING APPLICATIONS TO AN APPLICATION
DEFINITION LIBRARY

Once an application definition library has been created,
new application definitions can be added to the library.
Application definitions in the existing library are copied
to a new library, and the new application difinition is
added to the new library. The name of each application
definition in the library must be unique. If an application
definition to be added to the library has the same name as
an existing one, the new application definition replaces
the old one in the new library.

60480300 A

Figure 5-8 illustrates a job structure that compiles an
application definition and adds it to a library. Control
statements are included to attach the old library, to
allocate permanent file space for the new library, and to
purge the old library after the new one has been created.
The OLD and NEW parameters on the ADLP statement
specify the old and new library names respectively.)

JoB2.
USER statement
CHARGE statement
ATTACH(ALIB)
DEFINE(BLIB/PW=AAA,CT=PU, M=W) -
ADLP(OLD=ALIB, NEW=BLIB,LO=SRL,L=0UTLIST)
PURGE (ALIB)
7/8/9 in column 1
ADL source program
6/7/8/9 in column 1 .

Figure 5-8. Adding an Application Definition to a Library

5-5

" DELETING APPLICATION DEFINITIONS
FROM A LIBRARY

To prevent a library from attaining an excessive size,
unused applications should be deleted from the library.
Applications can be deleted from an application definition
library by specifying the D parameter on the ADLP
control statement. Applications can be deleted during a

. compilation run or in a run in which no applications are
compiled. A new library is created, and the applications
- from the old library are copied to the new library, except
for those being deleted.

. Figure 5-9 illustrates a delete-only run. The old library is"

attached and direct access permanent file status is
assigned to the new library. The I=0 parameter on the
ADLP control statement specifies that no input source
file is to be read. The OLD and NEW parameters specify
the names of the old and new libraries, respectively. Two
application definitions, AD1 and AD2, are deleted from
the library.

JOoB3,

USER statement

CHARGE statement

ATTACH(BLIB)

DEFINE (CLIB/PW=AAA,CT=PU,M=W)
ADLP(OLD=BLIB NEW=CLIB,I=0,D=AD1/AD2)
6€/7/8/9 in column 1

Figure 5-9. Deleting Application Definitions from a Library

APPLICATION TESTING

MCS provides a mode of execution, called test mode, in
which MCS applications execute independently of the
network. In test mode, MCS does not poll the network for
messages. Instead, messages are delivered to special
queues called collection queues and received from special
queues called injection queues, which function as
substitutes for terminals. Thus, test mode provides a
means of testing message routing and application program
logic before the terminals defined in the application are
included in the network or in the network definition files.

Individual MCS applications within an active library can
execute in test mode while others execute in normal
mode, or the entire library can be initiated in global test
mode. In the latter case, all applications within the
active library execute in test mode, and the network need
not be on-line.

To execute an application in test mode, the application

- developer must write one or more COBOL programs to

generate messages for input to the application and to
receive and analyze messages output by the application.
These programs interface with MCS through the COBOL
Communication Facility . in the same manner as other

COBOL programs. The message generation and analysis
programs send messages to the injection queue, and

receive messages from . the collection queue. The
symbolic source and destination names referenced in the
communication description areas of these programs are
associated with the collection and injection queues
defined in the application definition.

The message flow in test mode is illustrated in figure 5-10.

Test mode can be established by specifying the test option
in the INITIATION paragraph of the application
definition. Note that AUTOMATIC initiation is required.
This paragraph has the form:

INITIATION IS AUTOMATIC TEST

In this case, one or more applications can execute in test
mode while others execute in normal mode. To switch
back to normal mode, however, it is necessary to remove
the TEST parameter from the INITIATION paragraph in
the application definition, and recompile. Test mode can
also be established by system operator command for ali
applications or for a single application when MCS is
initiated (as described in section 9).

' COLLECTION QUEUES

In normal execution, MCS output messages are queued in
output queues and then delivered to the network. In test
mode, output messages are routed from the output queues
to a special queue called the collection queue. A
collection queue is a simple input queue that is defined in
the input section of the queue division and declared in the
COLLECTION-QUEUE paragraph- of the Application
Global Division in the application definition. The
collection queue serves as a substitute for the destinations
defined in the application definition. Messages in the
collection queue can then be received by the message
analysis program, which specifies the collection queue in
the program's input communication description area.

To establish a collection queue, the queue name must be

declared in the COLLECTION-QUEUE paragraph of the

Application Global Division. For example:
COLLECTION-QUEUE IS CQ

establishes CQ as the collection queue.

input
Queues

Injection
Queue

4————-7/—

Queues

Routing
o Algorithms - —
C?BOtL : Collection Message Generation
Appfl:);: ':'.m Output Queue and Analysis Program

Figure 5-10. Test Mode Message Flow

5-6

60480300 A

The queue name must then be declared in the Input
Section of the Queue Division. For example, the
paragraphs

INPUT SECTION
QUEUE IS CQ

defines CQ to be a simple input queue. If CQ is a
collection queue, all application messages to external
destinations are sent to CQ. .

Messages are routed to the collection queue according to
the procedures defined in the Routing Section of the
Queue Division. For example, the paragraph:

SELLECT OUTPUT QUEUES
BASED ON DESTINATION
ROUTE TO OUTQ TO TERMB

appearing in the Routing Section routes application
messages from output queue OUTQ to the destination

TERMB. In normal mode, the name TERMB would be’

associated with a terminal. In test mode, messages sent
to TERMB are actually sent to the collection queue.

The program to receive messages from the collection
queue must specify the collection queue name in the
appropriate field of the input communication description
area. : .

INJECTION QUEUES

In normal execution, messages originating at terminals are
routed to input queues, and then delivered to coBOoL
programs according to the procedures defined in the
Routing Section. In test mode, messages originate in the
message generation program, are queued in-a special
queue called the injection queue, and are then received by
the COBOL programs.

An injection queue is a queue that is defined in the Input
Section of the Queue Division and declared in the
INJECTION-QUEUE paragraph of the Application Global
Division. The injection queue is used as a source to
simulate terminal input. Messages are stored in the
injection queue by the message generation program and
then routed to input queues where they are received by
COBOL programs.

The message generation program can store messages in
the injection queue in the same manner as for output
queues, except that the first segment of each message
must consist of the symbolic source name being
represented. This establishes the source of the message
‘and enables MCS to route the message to the approriate
input queue according to the procedures set forth in the
Routing Section. The first segment of the message is then
discarded by MCS and does not form part of the message
text.

To establish an injection queue, the queue name must be

declared in the INJECTION-QUEUE paragraph of the

Application Global Division. For example, the paragraph:
INJECTION-QUEUE IS INJQ

appearing in the Application Global Division establishes

INJQ as the injection queue. The injection queue must .

then be assigned a symbolic name in the
Source-Destination Division. The message generation
program references this name in the destination field of

60480300 A

the output communication description area. The symbolic
name is of type QUEUE, and the alias is the name
declared in the INJECTION-QUEUE paragraph. For

- examples:

SYMBOLIC-NAME IS DESTB
TYPE IS QUEUE
ALIAS IS INJG@

associates the symbolic name DESTB with injection queue
INJQ. All messages sent to DESTB are stored in INJQ,
and all input from external sources is solicited from INJQ.

The injection queue must also be declared in the Input
Section of the Queue Division. For example:

INPUT SECTION
QUEUE IS INJQ

defines injection queue INJQ to be an input queue.

Messages sent to the injection queue in normal mode are
rejected.

When a source is defined in the application definition as
initially in command mode, messages attributable to that
source are treated as commands. Any of the commands
described in sections 7 and 8 can be issued, with the
exception of DISCONNECT and the login and logout
commands. MCS responses to these commands are stored
in the coliection queue. However, once the source is
switched to data mode, there is no provision for switching
back to command mode; that is, the break-2 sequence
cannot be entered in test mode.

APPLICATION DEFINITION FOR TEST
MODE OPERATION

The application definition of an application to be executed
in test mode must specify the injection queue, collection
queue, and message generation and analysis programs.

Figure 5-11 illustrates a simpie application definition for
an MCS application to be executed in test mode. In the
Application Global Division, the TEST option is specified
so that when the application is initiated it executes in test
mode. An injection queue (INJECQ) and a collection
queue (COLLQ) are defined. In the Application Data
Division, the area of memory to contain application
messages is defined and assigned the name MSG. In the
Source-Destination Division, terminal TERMA is defined
as interactive (capable of both sending and receiving
messages). The injection queue is assigned the symbolic
name QTERM. The terminal is initiated in command
mode. Messages sent to TERMA are contained in MSG. In
the Queue Division, COLLQ and INJECQ are defined as
input queues. In addition, an input queue (INQ) and an
output queue (OUTQ) are defined. The Routing Section
specifies that messages from TERMA are to be routed to
INQ. In test mode, messages in the injection queue that
contain the name TERMA in the first segment are
delivered to INQ. Messages sent to TERMA are delivered
to the collection queue COLLQ. The Application Program
Division specifies two COBOL programs, APPROG and
MSGPROG, to process application messages and to send
messages to the collection queue and receive messages
from the injection queue.

To execute this MCS application in normal mode, it is
necessary to remove the TEST option from the
INITIATION paragraph, and recompile. . The application
then interfaces with the network software. .

5-7

* SOURCE LISTING *

APPLICATION GLOBAL DIVISION
APPLICATION-NAME IS APPY
INJECTION-QUEUE IS INJECQ
COLLECTION-QUEUE IS COLL@
INITIATION IS AUTOMATIC TEST

APPLICATION PROGRAM DIVISION
PROGRAM IS APPROG
INVOCATION-FILE IS INVFILE
PROGRAM IS MSGPROG

-
DOV NS WN =

-
-l

APPLICATION DATA DIVISION

MESSAGE IS MS6
SERIAL-NUMBER IS SUPPLIED IN FIELD1
SEGMENT IS S1 LENGTH IS 100 CHARACTERS
FIELD IS FIELD1 STARTS AT CHARACTER 1
EXTENDS FOR 3 CHARACTERS

SOURCE-DESTINATION DIVISION
SYMBOLIC-NAME IS TERMA
TYPE IS INTERACTIVE
MODE IS COMMAND
MESSAGES ARE MSG

NANNN = o= = e e
WN=2DVRENOUVNFWUN

24 SYMBOLIC-NAME IS QTERM

25 TYPE IS QUEUE

26 ALIAS IS INJECQ

27

28 QUEUE DIVISION

29 INPUT SECTION

30 QUEUE IS INQ

31 QUEUE IS cCoLL®@

32 -QUEUE 1S INJECQ

33 OUTPUT SECTION

34 QUEUE IS OUTa

35 ROUTING SECTION

36 SELECT INPUT QUEUES BASED ON SOURCE

37 ROUTE TO INQ FROM TERMA.

38 . SELECT OUTPUT QUEUES BASED ON DESTINATION

39 ROUTE TO OUTQ TO TERMA

40

41 APPLICATION PROCESSING DIVISION

Figure 5-11. Application Definition for Test Mode Execution
MCS EVENTS Processing options described in this section that can be
controlled by the preceding events are COBOL program

MCS provides syntax for defining processing to be invocation, and the writing of monitor files and dump files. -

performed on the occurrence of certain events. The
events to be monitored and processing to be performed
are defined in the Application Processing Division of the

application definition, as described in section 4. The MCS APPLICATION PROGRAM EXECUTION
event conditions include:

Execution of COBOL programs that communicate with
MCS can be initiated either through batch job submission

e Involuntary breaking of a terminal connection or by MCS command. The MCS command to initiate
program execution can be issued from a terminal, by
e Connection inactive for a defined period : another application program or by MCS itself, according
to an application definition specification. For either
e Disconnecting a terminal method of initiation, the name of the program to be
) executed must be specified in the Application Program
e Elapsed time exceeding a specified value Division of the application definition.
e Application initiation ’
BATCH JOB SUBMISSION
® Message count for a specified queue exceeding a
specified value Batch-initiated job streams can contain programs that
communicate with MCS. The job stream containing
e System clock time reaching a specified value accounting statements, system control statements, and

5-8 60480300 A

data required by the program, is prepared in a normal
manner, as described in the COBOL reference manual.
The only special requirement is that the execution control
statement (typically LGO) must contain a parameter of
the forms:

*APPL=name

where name is the name of an MCS application. This
parameter identifies to MCS the particular MCS
application with which the program is to communicate.
The job can then be submitted as a card deck or stored on
a file and submitted via the appropriate system command.

An example of a batch job deck is illustrated in
figure 5-12. In this example, control statements are
included to attach an input file to be read by the COBOL
program and to define permanent storage space for an
output file to be written by the program. The execution
control statement (LGO) specifies the MCS application
APPZ. The COBOL Communication Facility requests
communicate with this application. Following the COBOL
source statements are data records to be read by the
program.

MCS-SUBMITTED JOBS

Program execution can be initiated by an INVOKE
command issued from a terminal (as described in
section 8) or from another application program, or by
execution of an INVOKE verb in the Application
Processing Division of the . application definition. The
INVOKE verb enables MCS to initiate program execution
when specified conditions are satisfied.

In either case, the user must prepare a file, called the
invocation file, associated with the program to be
executed. The syntax for defining this file is described in
section 4 under Application Program Division. The
invocation file can contain any valid system control
statement, and must contain the control statements
necessary for execution of the COBOL application
program. An invocation file must be an indirect access
permanent file.. When the INVOKE is issued, the
invocation file is submitted to the operating system for
execution. For example, the job stream in figure 5-12

could be written to an indirect access permanent file and

used as an invocation file.

Figure 5-13 illustrates another example of an invocation
file. In this example, the COBOL program is read from
the input file called SRCE, and EXIT error processing is
included. The COBOL. program and invocation file name
must be declared in the Application Program Division of
the application definition.

The association between the COBOL program and its
invocation file is established in the Application Program
Division. For example:

APPLICATION PROGRAM DIVISION
PROGRAM IS PROGA
INVOCATION-FILE IS INVFIL

defines program PROGA to be included in the application,
and declares that INVFIL is the invocation file associated
with PROGA.

JOBX.

CHARGE (4321 ,1098AAA)
ATTACHCINFILE) —-=
DEFINE(OUTFILE)
COBOLS . —==
LGO(*APPL=APPZ)
7/8/9 in column 1

7/8/9 in column 1
Data to be read by COBOL program
6/7/8/9 in column 1 .

USER(DEF ,PWRD,FAM305) }4—-— Accounting statements

Attach data file to be read by COBOL program

Define permanent file space for file to be written by COBOL program
Call COBOL 5 compiler

Initiate execution of COBOL program with MCS application APPZ

COBOL source program with COBOL Communication Facility statements

Figure 5-12. Sample Job Stream

JoB.
USER(ABC,PASSW,FAM1)
CHARGE (1234 ,5678901)
ATTACH(SRCE)

LGO (*APPL=APPZ)
EXIT.

DMP.

7/8/9 in column 1

6/7/8/9 in column 1

COBOLS5(I=SRCE) —e¢——————— Compile COBOL program contained in file SRCE

Data to be read by COBOL program

Figure 5-13. Invocation File Example

60480300 A

When the program name is specified in an INVOKE
command or verb, the invocation file is submitted to the
operating system for execution. For example:

?invoke,proga

when issued from a terminal, submits the invocation file
associated with program PROGA to the operating system.

ADL provides for initiating program execution on the
occurrence of MCS events. For example:

APPLICATION PROCESSING DIVISION
USE WHEN TIME IS "12.00.00"
INVOKE PROGA

initiates execution of the invocation file associated with
program PROGA at noon system clock time.

APPLICATION MONITORING

MCS provides facilities for writing a formatted summary
of application status information to a special file, called a
monitor file, on the occurrence of an MCS event. This
file can be used to analyze the .activities of the
application. ADL provides syntax for describing
information to be monitored, the frequency with which
information is written, and the name of the monitor file
on which information is written. Information can also be
written to the monitor file by direct terminal command,
as described in section 7.

The name of the monitor file must be declared in the
MONITOR-FILE paragraph of the Application Global
Division. For example:

APPLICATION GLOBAL DIVISION

MONITOR-FILE IS MFILE
OWNER IS "USER1"

defines a monitor file called MFILE under user name
USER]1,

The information to be monitored and the conditions under
which it is written are defined in the Application
Processing Division by a statement of the form:

USE condition
DISPLAY item TO MONITOR-FILE

where condition is the condition that must be satisfied for
DISPLAY to be executed, and item specifies the
information to be written. For example:

APPLICATION PROCESSING DIVISION
USE EVERY ELAPSED-TIME IS "00.05.00"
DISPLAY ALL QUEUES TO MONITOR-FILE
DISPLAY TERMINALS TO MONITOR-FILE

writes queue and terminal status information to the
monitor file at 5 minute intervals,

The terminal command to write to the monitor file is:
DISPLAY item TO MONITOR-FILE

where item can have any of the values described in
section 7 for the DISPLAY command.

5-10

The format of the information written to the monitor file
is identical to that described in section 7 for the
DISPLAY command.

The monitor file is a direct access file. Each DISPLAY
constitutes one record on the monitor file. In a subsequent
job or terminal session, the user can attach and display or
print the contents of this file. For example:

ATTACH,MFILE/UN=USER1.
COPYSBF ,MFILE,OUTPUT.

attaches file MFILE and copies it to file OQUTPUT, with
right shift for carriage control, to produce a printed copy
of the monitor file.

RECOVERY

MCS provides facilities that can be used to aid in the
recovery and restart of MCS applications. These facilities
provide information about the status of all aspects of an
application including the queues, terminals, programs, and
internal tables that comprise the application. MCS
produces this information at selected times, on the
occurrence of selected events, or through direct terminal
command.

It is important to note that when an MCS session is to be
continued after an application restart, the MEDIUM IS
DISK clause must be specified for each queue in the
application in order to preserve the contents of the
queues; otherwise, queue contents are lost when the
shutdown occurs.

DUMP FILE

An application dump file containing essential application
status information can be created either according to

_ procedures established in the application definition or by a

terminal command entered by the application operator.
This dump contains detaited information about the status
of the internal tables used by MCS and is intended for use
mainly by a system analyst in determining the cause of
internal MCS errors.

The name of the dump file must be declared in the
DUMP-FILE paragraph of the Application Global
Division. For example:

APPLICATION GLOBAL DIVISION

bUMP-FILE IS DFILE OWNER IS "ABC"

declares file DFILE to be an application dump file under
user name ABC.

Application dumps can be written according to conditions
established in the Application Processing Division of the
application definition. When the specified MCS event
occurs, the dump is initiated. For example: .

APPLICATION PROCESSING DIVISION
USE EVERY ELAPSED TIME IS "00.02.00"
DUMP

writes dumps to the application dump file at 2-minute
intervals.

60480300 A

Application dumps can also be initiated by the application
operator through the DUMP command described in
section 8.

Each time a DUMP verb or command is executed, a
complete application dump is written to the dump file.
Each dump constitutes one record of the file.

bQUEUE RECOVERY

MCS provides facilities that can be used to recover the
contents of application queues in the event of an
application shutdown and subsequent restart. These
facilities include message serial numbers, a command to
retrieve messages in queues, and journal files on which
messages are recorded after they are enqueued and
dequeued.

It is important to note that when an MCS session is to be
continued after an application restart, the MEDIUM IS
DISK ciause must be specified for each queue in the
application in order to preserve the contents of the
queues; otherwise, queue contents are lost when the
shutdown occurs.

Message Serial Numbers

Serial numbers can be assigned to input messages either
by MCS or by the terminal user when the message is
entered. ADL provides statements for specifying:

e The location of the serial number

e Whether the serial number is supplied by MCS or by
the terminal that originates the message

e Whether the serial number is echoed to the source of
the message

Details for defining these message characteristics are
described in section 4 under Application Data Division.

MCS assigns serial numbers in ascending order, starting
with 1. When the terminal user assigns serial numbers,
this same convention should be followed because MCS
assumes that the largest serial number is associated with
the last message entered. ADL provides an option that
causes serial numbers to be echoed to the source
terminal. This enables a terminal user to know which
numbers MCS has assigned to messages. For example:

APPLICATION DATA DIVISION

MESSAGE IS MSG

SERIAL-NUMBER IS GENERATED IN F1 WITH ECHO
SEGMENT IS S1 LENGTH IS 100 CHARACTERS
FIELD IS F1 STARTS AT CHARACTER 1

EXTENDS FOR 10 CHARACTERS

specifies that messages contained in MSG have serial
numbers generated by MCS in character positions 1
through 10 of the first message segment. The serial
number is echoed to the terminal after a message is
entered.

When an application shutdown and subsequent restart
occur, the user can determine the serial number of the
last message entered from the terminal by entering a
DISPLAY LAST command. For example, assume that
terminals T1 and T2 are connected to an MCS application
and that Tl enters message 1, T2 enters messages 2 and 3,
and Tl enters message 4. When the application is shut

60480300 A

down and later restarted, the terminal wusers can
determine which messages were the last messages
entered. When T1 enters DISPLAY LAST, MCS responds:

LAST SERIAL NUMBER =4
When T2 enters DISPLAY LAST, MCS responds:
LAST SERIAL NUMBER =3

The users can then continue the session at the point of
interruption.

When GENERATED IN FIELD or SUPPLIED IN FIELD is
specified in the application definition, then serial numbers
known to the terminal user are also contained in the
message text, The user can then determine if any
messages have been lost by comparing the last number
issued from the terminal with the last number received by
the application program.

RETRIEVE Command

The RETRIEVE command, described in section 8,
retrieves and displays messages from a specified queue.
This command is used to determine the contents of
application queues, and can be helpful in determining
queue status following a shutdown and restart. The
MEDIUM IS DISK clause must be specified for a queue if
its contents are to be preserved following an application
restart; otherwise, queue contents are lost when the
shutdown occurs.

Journal Files

Journal files are files to which formatted copies of
messages being enqueued or dequeued are written. These
files can be used to maintain a record of queue activity
for a given application. Journal files contain formatted
information and can be printed, displayed at a terminal, or
input to a user-written program for the purpose of
analyzing the file contents. Separate journals should be
used for input and output queues.

The symbolic name of a journal file must be declared in
the Source-Destination Division to be of type JOURNAL
and must be assigned an alias. The alias is the logical file
name of the journal file. For example:

SOURCE-DESTINATION DIVISION
SYMBOLIC-NAME IS JOURN
TYPE IS JOURNAL

ALIAS IS JFILE

defines a journal file with internal symbolic name JOURN
and file name JFILE.

Input and output messages for a given queue can be
written to the same journal or to separate journals.
Journals are associated with specific queues in the Queue
Division. For example:

QUEUE DIVISION

INPUT SECTION

QUEUE IS @XYZ

JOURNAL IS JOURN ON INPUT
QOUT ON OUTPUT

specifies that messages enqueued in QXYZ are to be

copied - to journal JOURN, .and messages dequeued from
QXYZ are to be copied to journal QOUT.

5-11

EXAMPLES

Application MAILBOX is a mail service for four users
named Beob G., Sue C., Tom R., and Leo W. The four
users are at four different locations where each has
access to an interactive terminal. The users can leave
messages (mail) for each other, and they can receive
messages from the other users. For purposes of this
example, only one user can access MAILBOX at any one
time.

This section includes the ADLP source listing of
MAILBOX (figure 6-1) with comments explaining each
division. The compound input queue structure for this
application "is shown in figure 6-2. MAILBOX has two
COBOL programs: MSGDROP and TOOMANY. Both of
these programs are invoked using MCS. The invocation
file for MSGDROP is named MSGFILE and is shown in

figure 6-3. To save time when MSGDROP is invoked, this
program is compiled and saved on the binary file named
MDBIFIL. The invocation file for TOOMANY 'is named
TOOFILE and is shown in figure 6-4. TOOMANY is also
compiled and saved on the binary file named TMBIFIL.
The COBOL source listing of MSGDROP is shown in
figure 6-5; figure 6-6 shows the COBOL source listing of
TOOMANY. :

A terminal session in which one user leaves messages for

the other users and collects messages that have been left

for him is shown in figure 6-7. Program TOOMANY is
invoked when a user's queue contains more than 12
messages. Figure 6-8 shows an input queue display with
12 messages in SUECQ. Figure 6-9 shows the output from
program TOOMANY.,

1
2
3 APPLICATION GLOBAL DIVISION
4 *
S * THE NAME OF THIS APPLICATION IS MAILBOX.
6 * THE PASSWORD REQUIRED WHEN A COBOL PROGRAM ENABLES OR DISABLES
7 * A SOURCE, DESTINATION, OR QUEUE IS MAIL.
8 * ANY TERMINAL FROM INVITATION LIST TERMS CAN BE THE AOP
9 * BY ENTERING IAMAOP AT LOGIN.
10 * THIS APPLICATION IS INITIATED WHEN ONE OF THE TERMINALS
11 * IN LIST TERMS LOGS IN AS THE AOP.
12 *
13 APPLICATION-NAME IS MAILBOX
14 SIGNATURE IS "MAIL"
15 DUMP-FILE IS DMPFL OWNER IS "MCS0469"
16 MONITOR~FILE IS MNTRFL OWNER IS "MCS0469"
17 OPERATOR IS TERMS PASSWORD IS "IAMAOP"
18 INITIATION IS EXPLICIT
19
20
21 APPLICATION PROGRAM DIVISION
22 *
23 * THERE ARE 2 COBOL PROGRAMS IN THIS APPLICATION -
24 * MSGDROP AND TOOMANY.
25 * THEIR INVOCATION FILES ARE NAMED MSGFILE AND TOOFILE.
26 * THIS DIVISION ALSO NAMES THE PROGRAMS' RESPONSE QUEUES.
27 *
28 PROGRAM IS MSGDROP
29 INVOCATION-FILE IS MSGFILE OWNER IS "MCSO0469"
30 RESPONSE-QUEUE IS QRESP1
31 PROGRAM IS TOOMANY i
32 INVOCATION-FILE IS TOOFILE OWNER IS "MCS0469"
33 RESPONSE-QUEUE IS QRESP2
34
35
36 APPLICATION DATA DIVISION
37 *
38 * INPUT MESSAGES ARE ASSIGNED A SERIAL NUMBER BY MCS -
39 * IT IS ECHOED BACK TO THE SOURCE.
40 * INPUT MESSAGES ARE ENQUEUED BASED ON THE CONTENTS OF THE
41 * FIRST SEVEN CHARACTERS.
42 *

Figure 6-1. ADLP Source Listing of Application MAILBOX (Sheet 1 of 4)

60480300 A 6-1

MESSAGE IS MSG1
SERIAL-NUMBER IS GENERATED HITH ECHO
SEGMENT IS SEG1
LENGTH IS 60 CHARACTERS
FIELD IS FIELD?1 STARTS AT CHARACTER 1
EXTENDS FOR 7 CHARACTERS
CONDITION IS COND1 VALUE "TO BOBG"
CONDITION IS COND2 VALUE "TO SUEC"
CONDITION IS COND3 VALUE "TO TOMR"
CONDITION IS COND4& VALUE "TO LEOW"
CONDITION IS CONDS
VALUE "BOBG" "SUEC" "TOMR'" "LEOW"

SOURCE-DESTINATION DIVISION
INVITATION LIST TERMS CONSISTS OF FOUR INTERACTIVE TERMINALS,

WHICH ARE ALSO INCLUDED IN BROADCAST LIST OUTPUTS.
INQLOG, OUTQLOG, AND NAMQLOG ARE JOURNALS.

* % % X W

INVITATION-LIST IS TERMS
SOURCES ARE TERM?1 AND TERM2
AND TERM3 AND TERM4
MESSAGES ARE MSG1
MODE IS COMMAND
STATUS IS ENABLED
BROADCAST-LIST IS OUTPUTS
DESTINATIONS ARE TERM1 AND TERM2
AND TERM3 AND TERM&

SYMBOLIC-NAME IS TERM1
TYPE IS INTERACTIVE
SYMBOLIC-NAME IS TERM2
TYPE IS INTERACTIVE
SYMBOLIC-NAME IS TERM3
TYPE IS INTERACTIVE
SYMBOLIC-NAME IS TERM&
TYPE IS INTERACTIVE
SYMBOLIC-NAME IS INQLOG
TYPE IS JOURNAL
ALIAS IS FILE1
SYMBOLIC-NAME IS 0UTQLOG
TYPE IS JOURNAL
ALIAS 1S FILE2
SYMBOLIC-NAME IS NAMQLOG
TYPE IS JOURNAL
ALIAS IS FILE3

QUEUE DIVISION
INPUT SECTION

DATA IN INPUT QUEUE NAMEQ IS USED BY MSGDROP TO DETERMINE

WHICH USER'S MESSAGES TO PROCESS.

MESSAGES FOR USERS ARE STORED IN DISK RESIDENT QUEUES

BOBGAQ, SUECQ, TOMRQ, LEOWQ.

THE COBOL PROGRAMS' RESPONSE QUEUES ARE DEFINED IN THIS SECTION.

* %k N % %k F ¥

QUEUE IS NAMEQ
JOURNAL IS NAMQLOG
STATUS 1S ENABLED

Figure 6-1. ADLP Source Listing of Application MAILBOX (Sheet 2 of 4)

60480300 A

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

QUEUE IS INQ
JOURNAL IS INQLOG ON INPUT OUTQLOG ON OUTPUT
MEDIUM IS DISK
STATUS IS ENABLED
SUB-QUEUE-1 IS INQ1
SUB-QUEUE-2 IS INQ12
SUB-QUEUE-3 IS BOBGAQ
RESIDENCY IS BGFILE
SUB-QUEUE-3 1S SUECQ
RESIDENCY IS SCFILE
SUB-QUEUE-2 IS TOMRQ
RESIDENCY IS TRFILE
SUB-QUEUE-1 IS LEOWQ
RESIDENCY IS LWFILE
QUEUE IS QRESP1
QUEUE IS QRESP2

OUTPUT SECTION

EACH USER'S MESSAGES ARE SENT TO A TERMINAL THROUGH
OUTPUT QUEUES BOUTQ, sSouTaQ, TouTa, LOUTA.

THE OTHER OUTPUT QUEUE IS USED WHEN MSGDROP RECEIVES AN
INVALID MESSAGE, INITIATES PROCESSING, AND

TERMINATES PROCESSING.

* Ok % % %k ¥ %

QUEUE IS BOUTAQ

STATUS IS ENABLED
QUEUE IS souTa

STATUS IS ENABLED
QUEUE IS TOUTQ

STATUS IS ENABLED
QUEUE IS LOUTQ

STATUS IS ENABLED
QUEUE IS ouTa

STATUS IS ENABLED

ROUTING SECTION

INPUT MESSAGES ARE ENQUEUED BASED ON THE CONTENTS OF THE
FIRST SEVEN CHARACTERS.

MESSAGES CONSISTING OF A USER'S NAME FOLLOWED BY THREE BLANKS
ARE ROUTED TO NAMEQ AND ENQUEUED.

OTHER MESSAGES ARE ROUTED TO INQ AND ENQUEUED IN THE SIMPLE
QUEUES ASSOCIATED WITH EACH USER. :

MESSAGES NOT MATCHING ONE OF THE FIVE CONDITIONS

ARE DISCARDED.

OUTBOUND MESSAGES ARE ROUTED THROUGH THE OUTPUT QUEUES

TO EACH TERMINAL OR TO THE LIST OUTPUTS.

* ok % Ok Ok Ok % % ¥ ¥ X ¥

SELECT INPUT QUEUES BASED ON CONTENTS OF FIELD1
ROUTE TO NAMEQ FOR CONDS
ROUTE TO INQ OTHERWISE
SELECT SUB-QUEUES OF INQ BASED ON CONTENTS OF FIELD1
ROUTE TO LEOWQ FOR COND4
ROUTE TO INQ1 OTHERWISE
SELECT SUB-QUEUES OF INQ1 BASED ON CONTENTS OF FIELD1
ROUTE TO TOMRQ FOR COND3
ROUTE TO INQ12 OTHERWISE
SELECT SUB-QUEUES OF INQ12 BASED ON CONTENTS OF FIELD1
ROUTE TO SUECQ FOR COND2
ROUTE TO BOBGQ FOR COND1
SELECT OUTPUT QUEUES BASED ON DESTINATION
ROUTE TO BOUTQ TO TERM1
ROUTE TO SOUTQ TO TERM2
ROUTE TO TOUTQ TO TERM3
ROUTE TO LOUTQ TO TERM&4
ROUTE TO OUTQ@ TO OUTPUTS

60480300 A

Figure 6-1. ADLP Source Listing of Application MAILBOX (Sheet 3 of 4)

6-3

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

APPLICATION PROCESSING DIVISION

*

* PROGRAM TOOMANY IS INVOKED WHEN ANY USER HAS MORE THAN

* 12 MESSAGES IN A QUEUE.

* .

USE WHEN SIZE OF BOBGQ EXCEEDS 12 MESSAGES
INVOKE TOOMANY

USE WHEN SIZE OF SUECQ EXCEEDS 12 MESSAGES
INVOKE TOOMANY

USE WHEN SIZE OF TOMRQ EXCEEDS 12 MESSAGES
INVOKE TOOMANY

USE WHEN SIZE OF LEOWQ EXCEEDS 12 MESSAGES
INVOKE TOOMANY

Figure 6-1. ADLP Source Listing of Application MAILBOX (Sheet 4 of 4)

Queue Level { INQ
Sub-queue-1 Level { INQ1 LEOWQ
Sub-queue-2 Level { INQ12 TOMRQ
Sub-queue-3 Level { BOBGQ SUECQ

Figure 6-2. Compound Input Queue Structure for Application MAILBOX

JOB Statement.

USER Statement

PACKNAM, MCS. —= Directs permanent file requests to MCS mass storage device.
GET,MDBIFIL, wu——0r0r Get binary file on which program MSGDROP is compiled.
MDBIFIL,*APPL=MAILBOX. —«——— Initiate execution of MSGDROP and call MCS application MAILBOX.
--EOR--

END OF FILE

Figure 6-3. Invocation File MSFFILE

JOB Statement.
USER Statement.
PACKNAM,MCS . s ~ Directs permanent file requests to MCS mass storage device.

GET,TMBIFIL . s Get binary file on which program TOOMANY is compiled.

TMBIFIL ,*¥APPL=MAILBOX. —«——— Initiate execution of TOOMANY and call MCS application MAILBOX.
-~EOR-~

END OF FILE

6-4

Figure 6-4. Invacation File TOOFILE

60480300 A

NV O~NOVHWN =

IDENTIFICATION DIVISION.
PROGRAM-ID. MSGDROP.
* .
* PROGRAM MSGDROP IS INVOKED FROM A TERMINAL BY USE OF THE
* AOP INVOKE COMMAND.

‘K

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
_SOURCE-COMPUTER. CYBER.
OBJECT-COMPUTER. CYBER.

DATA DIVISION.

WORKING-STORAGE SECTION.

*

* SETS UP STORAGE AREAS TO STORE VARIOUS MESSAGES AND TO
* SEND A MESSAGE WHEN AN ERROR OCCURS.

*

01 MSG-SLOT PIC X(80) VALUE SPACES.
01 SHORT-SLOT PIC X(20) VALUE SPACES.
01 NAME PIC X(05) VALUE SPACES.
01 1 PIC 9(01) VALUE ZERO.
01 ERR-MSG.

05 FILLER PIC X(49)

VALUE "ERROR DURING EXECUTE OF LAST SEND, STATUS KEY IS "
05 E-STAT-KEY PIC X(02) VALUE SPACES.

05 FILLER PIC X(15) VALUE ", ERROR KEY IS ".
05 E-ERR-KEY PIC X(01) VALUE SPACE.
COMMUNICATION SECTION.
*
* THE AREA PROGRAM MSGDROP USES TO COMMUNICATE WITH MCS.
* IN THE INPUT CD AREA, THE SYMBOLIC QUEUE FIELDS MUST BE SET
+* BEFORE A MESSAGE IS RECEIVED.
* MCS UPDATES THE OTHER INPUT CD AREA FIELDS
* WHEN RECEIVE EXECUTES.
*
CD IN-MSG; FOR INPUT
SYMBOLIC QUEUE IS INPUT-Q
SYMBOLIC SUB-QUEUE-1 IS SUB-Q1
SYMBOLIC SUB-QUEUE-2 IS SuB-Q2
SYMBOLIC SUB-QUEUE-3 IS SuUB-Q3
MESSAGE DATE IS IN-DATE
MESSAGE TIME IS IN-TIME
SYMBOLIC SOURCE IS IN-SOURCE
TEXT LENGTH IS IN-LENGTH
END KEY IS IN-KEY
STATUS KEY IS IN-STATUS
MESSAGE COUNT IS IN~COUNT.
*
* THE AREA MSGDROP USES WHEN SENDING MESSAGES TO TERMINALS
* THROUGH MCS QUEUES. .
* DESTINATION COUNT, TEXT LENGTH, AND SYMBOLIC DESTINATION
* FIELDS MUST BE SET - ERROR KEY AND STATUS KEY FIELDS
* ARE UPDATED BY MCS WHEN SEND EXECUTES.
*

CD O0UT-MSG; FOR OUTPUT
DESTINATION COUNT IS D-COUNT
TEXT LENGTH IS OUT-LENGTH
STATUS KEY IS OUT-STATUS
DESTINATION TABLE OCCURS 4 TIMES
INDEXED BY D-TABLE
ERROR KEY IS OUT-KEY
SYMBOLIC DESTINATION IS OUT-DEST.

60480300 A

Figure 6-5. Source Listing of Program MSGDROP (Sheet 1 of 4)

125
126
127
128
129

PROCEDURE DIVISION.

PROMPT-TERM.

*
* SET THE OUTPUT CD AREA.
* SEND THE PROMPT "NAME?" TO THE LOGGED IN TERMINAL
* THAT INVOKED MSGDROP.
*

PERFORM SET-0UTCD

MOVE "OUTPUTS'" TO OUT-DEST (1)

MOVE "NAME?" TO SHORT-SLOT

MOVE 6 TO OUT-LENGTH

SEND OUT-MSG FROM SHORT-SLOT WITH EMI.
GET-NAME.
*
* MOVE SPACES TO INPUT CD AREA.
* SET INPUT CD AREA TO RECEIVE A MESSAGE FROM NAMEQ.
* RECEIVE LOGGED IN USER'S NAME.
* GO TO THE PROCEDURE TO PROCESS THE USER'S MESSAGES.
* WHEN THE USER'S NAME 1S NOT VALID, GO TO
* INVALID NAME PROCEDURE.
*

PERFORM CLEAR-INCD

MOVE. "NAMEQ" TO INPUT-Q

RECEIVE IN-MSG MESSAGE INTO NAME.

IF NAME EQUALS "BOBG" PERFORM BOBG-MSG

ELSE IF NAME EQUALS "SUEC" PERFORM SUEC-MSG
ELSE IF NAME EQUALS "TOMR" PERFORM TOMR-MSG
ELSE IF NAME EQUALS "LEOW" PERFORM LEOW-MSG
ELSE PERFORM INVALID-NAME.

WRAP-UP.

*
% ALL MESSAGES HAVE BEEN PROCESSED AND SENT TO A TERMINAL.
* SET THE OUTPUT CD AREA AND SEND A MESSAGE NOTIFYING
* USER THAT PROCESSING IS COMPLETE.
*

PERFORM SET-0QUTCD

MOVE “OUTPUTS" TO OUT-DEST (1)

MOVE "“END OF RUN" TO SHORT-SLOT

MOVE 11 TO OUT-LENGTH

SEND OUT-MSG FROM SHORT-SLOT WITH EMI

AFTER ADVANCING 1 LINES
STOP RUN.

BOBG-MSG.

MOVE SPACES TO THE INPUT CD AREA, AND THEN MOVE 1IN

QUEUE NAMES TO RECEIVE MESSAGES FROM BOBGQ.

SET THE OUTPUT CD AREA TO SEND BOB'S MESSAGES TO HIM AT TERM1.
GET A COUNT OF THE NUMBER OF MESSAGES TO PROCESS.

* % * % % ¥

PERFORM CLEAR-INCD

MOVE "INQ" TO INPUT-Q

MOVE "INQ1" TO SuB-Q1

MOVE "INQ12" TO SuB-Q2

MOVE "BOBGQ" TO SUB-Q3

PERFORM SET-0UTCD

MOVE "TERM1" TO OUT-DEST (1)
ACCEPT IN-MSG MESSAGE COUNT
PERFORM MOVE-MSG IN-COUNT TIMES.

Figure 6-5. Source Listing of Program MSGDROP (Sheet 2 of 4)

60480300 A

130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172

173

174

175

176
177
178
179
180
181

182
183
184
185
186
187
188
189

*

SUEC-MSG.

*

* MOVE SPACES TO THE INPUT CD AREA, AND THEN MOVE IN

* QUEUE NAMES TO RECEIVE MESSAGES FROM SUECQ.

* SET THE OUTPUT CD AREA TO SEND SUE'S MESSAGES TO HER AT TERM2.
* GET A COUNT OF THE NUMBER OF MESSAGES TO PROCESS.

PERFORM CLEAR-INCD

MOVE "INQ" TO INPUT-Q

MOVE "INQ1" TO SuB-Q1

MOVE "INQ12" TO SUB-Q2

MOVE "SUECQ" TO SuB-Q3

PERFORM SET-0UTCD

MOVE "TERM2" TO OUT-DEST (1)
ACCEPT IN-MSG MESSAGE COUNT
PERFORM MOVE-MSG IN-COUNT TIMES.

TOMR-MSG.

*
* MOVE SPACES TO THE INPUT CD AREA, AND THEN MOVE 1IN
* QUEUE NAMES TO RECEIVE MESSAGES FROM TOMRa.
* SET THE OUTPUT CD AREA TO SEND TOM'S MESSAGES TO HIM AT TERM3.
* GET A COUNT OF THE NUMBER OF MESSAGES TO PROCESS.
*

PERFORM CLEAR-INCD

MOVE "INQ" TO INPUT-Q

MOVE "INQ1" TO SUB-Q1

MOVE "TOMRQ" TO SUB-Q2

MOVE "TERM3" TO OUT-DEST (1)

ACCEPT IN-MSG MESSAGE COUNT

PERFORM MOVE-MSG IN-COUNT TIMES.

LEOW-MSG.

* MOVE SPACES TO THE INPUT CD AREA, AND THEN MOVE IN

QUEUE NAMES TO RECEIVE MESSAGES FROM LEOWQ.

SET THE OUTPUT CD AREA TO SEND LEO'S MESSAGES TO HIM AT TERM4.
GET A COUNT OF THE NUMBER OF MESSAGES TO PROCESS.

*

* % %

PERFORM CLEAR-INCD

MOVE "INQ" TO INPUT-Q

MOVE "LEOWQ@" TO suB-aQ1

PERFORM SET-0UTCD

MOVE “TERM4" TO OUT-DEST (1)
ACCEPT IN-MSG MESSAGE COUNT
PERFORM MOVE-MSG IN-COUNT TIMES.

INVALID-NAME.

WHEN AN INVALID NAME IS ENTERED FROM A TERMINAL,
SEND A MESSAGE TO THE TERMINAL AND TERMINATE THE PROGRAM.

* ¥ * %

PERFORM SET-OUTCD
MOVE "OUTPUTS"™ TO OUT-DEST (1)
MOVE "INVALID NAME, PROGRAM TERMINATING" TO MSG-SLOT
MOVE 33 TO OUT-LENGTH
SEND OUT-MSG FROM MSG~-SLOT WITH EMI
AFTER ADVANCING 1 LINES
PERFORM WRAP-UP.

60480300 A

Figure 6-5. Source L.isting of Program MSGDROP (Sheet 3 of 4)

6-7

190
191
192
193

195
196
197

198

199
200
201
202
203
204
205
206

- 207

208
209
210

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

CLEAR-INCD.

* THIS PROCEDURE MOVES SPACES TO THE INPUT CD AREA PRIOR TO
* SETTING IT WITH QUEUE AND SUBQUEUE NAMES.

MOVE SPACES TO INPUT-Q
MOVE SPACES TO suB-Q1
MOVE SPACES TO SUB-Q2
MOVE SPACES TO SUB-Q3
MOVE ZEROES TO IN-DATE
MOVE ZEROES TO IN-TIME
MOVE SPACES TO IN-SOURCE
MOVE ZEROES TO IN-LENGTH
MOVE SPACES TO IN-KEY
MOVE SPACES TO IN-STATUS
MOVE ZEROES TO IN-COUNT.

SET-TABLE.

THIS PROCEDURE CLEARS OUT THE TABLE THAT
REFERENCES SYMBOLIC DESTINATIONS.

* ¥ & %

MOVE SPACES- TO OUT-KEY (I)
MOVE SPACES TO OUT-DEST (I)
ADD 1 TO I.

SET-0UTCD.

THIS PROCEDURE PREPARES THE OUTPUT CD AREA PRIOR TO
SENDING A MESSAGE.

* % ok *

MOVE 1 TO D-COUNT

MOVE SPACES TO OUT-STATUS
MOVE 1 70 I

PERFORM SET-TABLE 4 TIMES.

ERR-RTN.
*

* WHEN THE OUTPUT CD AREA STATUS KEY OR ERROR KEY.
* INDICATES AN ERROR, SEND A MESSAGE TO THE TERMINAL.
*

MOVE OUT-STATUS TO E-STAT-KEY

MOVE OUT-KEY (1) TO E-ERR-KEY

MOVE 77 TO OUT-LENGTH

SEND OUT-MSG FROM ERR-MSG WITH EMI

AFTER ADVANCING 1 LINES.

MOVE-MSG.
RECEIVE A USER'S MESSAGES FROM A QUEUE,

AND THEN SEND THE MESSAGES TO THE USER AT THE TERMINAL.
CHECK TO SEE IF ERROR MESSAGE SHOULD BE SENT.

* * ¥k ¥ H

MOVE SPACES TO MSG-SLOT
RECEIVE IN-MSG MESSAGE INTO MSG-SLOT
MOVE IN-LENGTH TO OUT-LENGTH)
SEND OUT-MSG FROM MSG-SLOT WITH EMI
AFTER ADVANCING 1 LINES.
IF OUT-STATUS IS NOT EQUAL TO "0O0"
OR OUT-KEY (1) IS NOT EQUAL TO "O"
PERFORM ERR-RTN. :)

END-MSGDROP.

6-8

Figure 6-5. Source Listing of Program MSGDROP (Sheet 4 of 4)

60480300 A

IDENTIFICATION DIVISION.
PROGRAM-ID. TOOMANY.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER.
OBJECT-COMPUTER. CYBER.

10 INPUT-QUTPUT SECTION.

11 FILE-CONTROL.

12 SELECT PRINT-FILE ASSIGN TO "OUTPUT".

13

14 DATA DIVISION.

1S FILE SECTION.

16 *

17 * DEFINES THE FILE TO WHICH MESSAGES ARE WRITTEN.

18 *

19 FDO PRINT-FILE

20 LABEL RECORDS ARE OMITTED.

21 a1 PRINT-REC PIC X(133).

22

23 WORKING-STORAGE SECTION.

24 *

25 * SETS UP A STORAGE AREA TO RECEIVE MESSAGES FROM A QUEUE.
26 *

27 01 STORE-IT PIC X(80).

28 :

29 COMMUNICATION SECTION.

30 *

31 * THE AREA PROGRAM TOOMANY USES TO COMMUNICATE WITH MCS.
32 * TOOMANY IS INVOKED BY MCS WHEN THE NUMBER OF MESSAGES IN
33 * A QUEUE IS GREATER THAN 12.

34 * THE QUEUE AND SUBQUEUE NAMES OF THE QUEUES REACHING MESSAGE
35 * THRESHOLD ARE ENTERED IN THE SYMBOLIC QUEUE FIELDS BY MCS.
36 * NO OUTPUT CD IS DEFINED BECAUSE TOOMANY ONLY RECEIVES
37 * MESSAGES FROM QUEUES - IT DOES NOT SEND MESSAGES TO QUEUES.
38 *

39 CD IN-COMING; FOR INITIAL INPUT

40 SYMBOLIC QUEUE IS INIT-Q

41 SYMBOLIC SUB-QUEUE-1 IS INIT-SQ1

42 SYMBOLIC SUB-QUEUE-2 IS INIT-SQ2

43 ' SYMBOLIC SUB-QUEUE-3 IS INIT-SQ3

44 MESSAGE DATE IS MSG-DATE

45 MESSAGE TIME IS MSG-TIME

46 SYMBOLIC SOURCE IS MSG-SOURCE

47 TEXT LENGTH IS MSG-LEN

48 END KEY IS E-KEY

49 STATUS KEY IS S-KEY

S0 MESSAGE COUNT IS MSG-CNT.

51

52 PROCEDURE DIVISION.

53 BEGIN.

54 OPEN OUTPUT PRINT-FILE.

55

56 GET-MSG.

57 *

583 * TOOMANY RECEIVES MESSAGES AND PRINTS THEM OUT.

59 * PROCESSING CONTINUES UNTIL ALL MESSAGES HAVE BEEN

6N * PRINTED OUT.

61 : *

62 MOVE SPACES TO STORE-IT.

63 RECEIVE IN-COMING MESSAGE INTO STORE-IT

64 NO DATA PERFORM END-IT.

65 MOVE SPACES TO PRINT-REC.

66 MOVE STORE-IT TO PRINT-REC.

67 WRITE PRINT-REC AFTER 2.

68 GO TO GET-MSG.

69

70 END-IT.

71 CLOSE PRINT-FILE

72 STOP RUN.

Figure 6-6. Source Listing of Program TOOMANY

60480300 A

FAMILY: family name, user name, password, mcs
McsS 1.0 79/10/12. 15.19.07.

MCS APPLICATION ?mailbox iamaop
APPLICATION INITIATED
SYMBOLIC~NAME ?term1

COMMAND MODE

HELLO - YOU'RE THE AOP

?data Terminal user completes
DATA MODE login to MCS, switches
?to suec have you started work on the new project yet? bob to data mode, and enters
SERIAL NUMBER = 10 several messages.

?to suec the repairman will be there to fix the printer on tues. bob

SERIAL NUMBER = 11 '

?to suec our machine time on thursday is now 3:00. bob

SERIAL NUMBER = 12

?to suec the bill from the phone co. is $135. please pay it. bob

SERIAL NUMBER = 13 Typing error
?to Loew from bob - the journal with the paper in it is the jan. 79 issue.-e— causesarout-
ROUTING FAILURE - MESSAGE DISCARDED ing failure.
?to leow from bob - the journal with the paper in it is the jan. 79 issue.

SERIAL NUMBER = 14

?)

COMMAND MODE — Break-2 character to switch to command mode.

?invoke msgdrop - Execution of program MSGDROP initiated.

?data

DATA MODE - Terminal switched to data mode to receive program output.

”

NAME? bobg

SERIAL NUMBER = 15

"

TO BOBG THE_CLASS ON" WED. HAS BEEN CHANGED TO RM. 112. LEO

TO BOBG I HAVE SENT YQUR BOOKS VIA AIRMAIL. TOM 10/11, 11:00.

TO BORG OUR PLANE RESERVATIONS ARE NOW ON FARAWAY, FLIGHT 17. LEO

TO BOBG THE CATALOG YOU ORDERED WILL BE SENT MONDAY. SUE

TO BOBG THE NEW CODE CORRECTS THAT PROBLEM WE FOUND. SUE

END OF RUN - Message from program indicating all of user’s messages processed.
?) :

;2:'??:0 MODE Terminal userswitcr_lesto command
MCS ENDED 79/10/12. 15.37.37.MCsS CONNECT TIME 00.18.41., ™Mode ends connection to MCS, and

prepares to log into another network
application program.

Figure 6-7. Application MAILBOX Terminal User Session

INPUT QUEUE DISPLAY 15.32.46.

QUEUE NAME SUB QUEUE 1 SUB QUEUE 2 SUB QUEUE 3 NUMBER LAST
NAMEQ........E : ‘ 0 0
INQevu-uuo...E 21 21
INQ..........E INQT.........E INQ12........E BOBGR........E 5 5
INQo E INQT..uueuo o E INQT12.cueeuooE SUECQuunn....E 12 17

N

INR..........E INQT.........E TOMRQ........E 19
INR..........E LEOWQ........E 2 21
QRESP1.......E 0 0
SRESPZ.......E .) 0

6-10

Figure 6-8. Application MAILBOX Input Queue Display

60480300 A

SUEC
SUEC
SUEC
SUEC
SUEC
SUEC
SUEC
SUEC
SUEC
SUEC
SUEC
SUEC
SUEC

PLEASE SEND ME THE MINUTES OF LAST WEEK'S MEETING. TOM

THE CLASS ON WED. HAS BEEN CHANGED TO RM. 112. LEO

OUR MACHINE TIME ON THURSDAY IS NOW 3:00. BOB

CAN YOU MAIL THE REGISTRATION FOR THE SEMINAR FOR US? LEO
HAVE YOU STARTED WORK ON THE NEW PROJECT YET? BOB

THE REPAIRMAN WILL BE THERE TO FIX THE PRINTER ON TUES. BOB
YOU CAN PICK UP THE TAPES YOU ORDERED ANY TIME AFTER 10/11.
FROM LEO - ARE YOU AVAILABLE FOR A MEETING THURS. AT 5:00°?
LUNCH TUESDAY AT THE PINES IS OK. TOM

THE BILL FROM THE PHONE CO. IS $135. PLEASE PAY IT. BOB

THE AAC MEETING HAS BEEN POSTPONED UNTIL FURTHER NOTICE. LEO
CALL ME BEFORE NOON TODAY (MON.). I HAVE SOME NEWS. LEO

HOW COME I HAVEN'T HEARD FROM YOU? TOM

TOM

60480300 A

Figure 6-9. Output From Program TOOMANY

6-11

USER COMMANDS | 7

M

MCS provides a set of commands that allows terminal
users to control the operation of terminals connected to
an MCS application. These commands can be entered only
when the terminal is in command mode (as described in
section 2). The user commands are summarized in
table 7-1.

TABLE 7-1. USER COMMANDS

Command Description
DATA Switches terminal from command
mode to data mode.
DISABLE Disables the terminal.

DISPLAY INPUT Displays information about

input queues.
DISPLAY OUTPUT Displays information about
output queues.

DISPLAY LAST Displays serial number of last
message enqueued from terminal.
DISPLAY ALL Displays information about
input and output queues.
DISPLAY name Displays information about the
specified queue.

ENABLE Enables the terminal.

END . Terminates the terminal's
connection to MCS.

LOGIN, LOGON,
HELLO

Begins LOGIN dialog.

LOGOUT, LOGOFF,
GOODBYE, BYE

Terminates the connection to
MCS and exits the network.

MESSAGE
“string"

Sends a message to the AOP.

The MCS commands consist of a verb followed by one or
more keywords; certain commands can also include one or
more user-supplied names or literals. Each verb, keyword,
name, or literal in a command must be separated by one
or more blanks. :

The commands described in this section, with the
exception of DATA, END, and the login and logout
commands, are also available to the COBOL programs
that are included in an MCS application. Messages
treated as commands must be sent to a special
destination. The name of this destination is the MCS
application name. Thus, a SEND to the application name
sends the message text to MCS where it is processed as a
command. MCS responses to these commands are

enqueued in. the program's response queue. An illegal or .

unrecognizable command results in an error message. A
complete list of error messages appears in appendix B.

60480300 A

DATA COMMAND

The DATA command switches the terminal from command
mode to data mode. This command has the form:

DATA

When a terminal is in data mode, messages entered at the
terminal are routed to an input queue, and output
messages are sent to the terminal. The terminal can be
returned to command mode by entering break-2. The
following example illustrates the use of this command:

MCS 1.0 79/07/05. 15:45:30
MCS APPLICATION ? able
SYMBOLIC NAME ? xyz
COMMAND MODE

7data '

DATA MODE

DISABLE COMMAND

The DISABLE command breaks the logical path between
an MCS application and the terminal. This command has
the forms:

DISABLE

While a terminal is disabled, it remains connected to the
MCS application. When the terminal is defined in the
application definition as a source, it cannot send messages
to the application. When the terminal is defined as a
destination, it does not receive messages from the
application. When the terminal is defined as interactive
(both a source and a destination), it neither sends nor
receives application messages. A disabled terminal can,
however, perform all command mode activities.

DISPLAY COMMAND

The DISPLAY command displays information about the
the current status of input and output queues defined for
an application. The status of the queue (enabied or
disabled), the number of messages in the queue, and the
serial number of the last message enqueued can be
displayed. This command has the following forms:

e DISPLAY LAST

displays the serial number of the last message
received from the terminal.

e DISPLAY INPUT

displays information about the status of all the input
queues. The format of this display ‘is shown in
figure 7-1.

e DISPLAY OUTPUT

displays information about the status of all the output
queues. The format of this display is shown in
figure 7-2.

INPUT QUEUE DISPLAY hh.mm.ss.

QUEUE NAME SUB QUEUE 1 SUB QUEUE 2 SUB QUEUE 3
aaaaaaaa s bbbbbbbb S CCCCCCCe s dddddddd
aaaaaaaa s bbbbbbbb S CCCCCCCC s dddddddd
aaaaaaaa s bbbbbbbb s ccceccee s dddddddd
J
hh.mm.ss Time (hour.minute.second) command was executed
asaaaaaa Queue name
bbbbbbbb Name of level 1 subqueue
cccceccece Name of level 2 subqueue
dddddddd Name of level 3 subqueue
s Queue status; one of the following:
E enabled
D disabled
nn Number of complete messages in queue
kk Serial number of last message enqueued

NUMBER LAST

nn

kk
kk

kk

Figure 7-1. Input Queue Display Format

OUTPUT QUEUE DISPLAY hh.mmss.
QUEUE NAME NUMBER
aaaaaaaa s .nn
aaaaaaaa H nn’
aaaaaaaa s nn
hh.mm.ss Time (hour.minute.second} command was executed
aaaaaaaa Queue name
s ~ Queue status; one of the foilowing:
E enabled
D disabled
nn Number of complete messages in queue

Figure 7-2. Output Queue Display Format

60480300 A

e DISPLAY ALL

displays information about the status of both the
input and output queues. This command combines the
displays shown in figures 7-1 and 7-2.

e DISPLAY gname

where gname is the name of an input or output queue
defined in the application definition, displays
information about the specified queue. When an input
queue is specified, the display shown in figure 7-1 is
generated. When an output queue is specified, the
display shown in figure 7-2 is generated.

Any of the preceding DISPLAY commands can be used to
write information to a monitor file. The command form:

DISPLAY name TO MONITOR-FILE

where name is LAST, INPUT, OUTPUT, ALL, or a queue
name, writes the specified display to the monitor file.
The syntax for defining a monitor file is described in
section 4.

An example of the DISPLAY command is illustrated in
figure 7-3. .

ENABLE COMMAND

The ENABLE command reestablishes the logical path
between MCS and the terminal after it has been broken by
a DISABLE command. This command has the form:

ENABLE

While a terminal is enabled, it can send and receive
application messages.

END COMMAND

The END command terminates the terminal's connection
to MCS. This command has the form:

END [application]

where application is a network application program name.
When an END command is entered without the application
parameter, MCS operations are terminated, control is
transferred to NVF, and the following message and prompt
are displayed:

MCS ENDED yy/mm/dd. hh.mm.ss.
MCS CONNECT TIME hh.mm.ss.
xxxxxxx - APPLICATION:

The MCS connect time is the total time that has elapsed
since the connection was established. In response to the
APPLICATION prompt, the terminal user can enter an
application name or log out.

Structure of Queue QUEA:

QUEA QUEUE
QUEB QUIEC SUB-QUEUE-1
QUED QUlEE SUB-QUEUE-2
QUEF QUEG SUB-QUEUE-3
Terminal Display:
display quea
INPUT QUEUE DISPLAY 07.46.42)
QUEUE NAME SUB QUEUE 1 SUB QUEUE 2 SUB QUEUE 3 NUMBER LAST
QUEA......... E . 15 104
QUEA...ccecnn E QUEB.........E 8 104
QUEA....ccuuve £ QUEC.........E 7 103
QUEA....caccn E QUEC.........E QUED....c.....E 4 103
QUEA...ceu-.ee E QUEC.ccewsuaas.E QUEE..e......E 3 102
QUEA....cv2e-FE QUEL =es-e-e-E QUEE..... wieaE QUEF.........E 2 102
QUEA....cunun E QUEC..evceeceE QUEE...eeeeeeE QUEG.........E 1 101

Figure 7-3. Input Queue Display Example

60480300 A

Between the time the END command is entered and the
APPLICATION prompt is displayed, the terminal is in a
transitional state while network applications are
switched. Commands entered during this transitional
state are ignored.

When the END application form is used, the terminal is
automatically connected to the specified application. For
example:

END RBF

disconnects the terminal from MCS and establishes a
connection to the Remote Batch Facility.

LOGIN COMMANDS

The login commands terminate the terminal's connection
to MCS and initiate the login dialog. These commands
have the forms:

LOGN [application]
LOGON [application]
HELLO [application]

When any of the preceding forms are entered without the
application parameter, MCS operations are terminated (as
with the END command) and control is transferred to
NVF, which begins the login dialog. When an application
name is specified, the terminal is connected to the
requested network application program. For example:

login

MCS ENDED 79/07/13. 08.44.29.
MCS CONNECT TIME 00.32.14.
CONTROL DATA CORP. NOS 1
FAMILY: faml

USER NAME: xyz

PASSWORD: pass2
APPLICATION: iaf

transfers control from MCS, and establishes a connection
to the Interactive Facility. '

LOGOUT COMMANDS

The logout commands disconnect the terminal from MCS
and from the network. These commands have the forms:

LOGOUT [application]
LOGOFF [application]
. BYE [application]

GOODBYE [application]

When one of the preceding forms is entered, MCS
operations are terminated as described under END
Command, and control is transferred to NVF for the
logout procedure described in section 2 under Disconnect
Procedure. When an application is specified, the terminal
is then connected to the requested network application
program. For examples

logout
MCS ENDED 79/08/02. 14.02.25.
MCS CONNECT TIME 01.29.54.

terminates MCS and transfers control to NVF.

MESSAGE Command

The MESSAGE command sends a message to the
application operator. This command has the form:

MESSAGE "string"
where string is a character string of 80 characters or
less. When a MESSAGE command is entered, the specified
character string is displayed at the application operator's

console. An example of this command is:

message "from joe at terml: when is lunch?"
FROM AOP - LUNCH AT 2 OCLOCK

60480300 A

APPLICATION OPERATOR

The application operator (AOP) for an MCS application is
the operator of a terminal that is logged in to the
application as the AOP terminal. The AOP is provided
with a set of commands in addition to those described in
section 7. These commands allow the AOP to control
various aspects of application operation including
initiating, idling, and shutting down the application.

ADL includes syntax for defining the terminals eligible for
AOP status and for defining a password to protect this
status.

DEFINING AOP ELIGIBILITY

The application definition for an MCS application that is
to have an AOP must include an OPERATOR paragraph
and either a SIGNATURE paragraph or a PASSWORD
clause in the Application Global Division.

The OPERATOR paragraph specifies the terminals that
are eligible for designation as AOP terminals at login
time. A single symbolic name, or a broadcast list or
invitation list, can be declared; however, only a single
AOP can exist at a given time for a given application.

Password protection for AOP status is provided by the
SIGNATURE paragraph or PASSWORD clause. The
SIGNATURE paragraph provides a password to be used for
all application activities requiring one; the PASSWORD
clause in the OPERATOR paragraph specifies a password
to be used only for AOP designation.

Refer to section 4 for syntax descriptions and examples of
the OPERATOR and SIGNATURE paragraphs, and the
PASSWORD clause.

AOP LOGIN PROCEDURE

The terminal designated as the AOP terminal is logged in
to the network in the same manner as other terminals, as
described in section 2; however, the procedure -for
connecting to MCS differs slightly.

In response to the MCS APPLICATION prompt, enter the
application name and password, separated by one or more
blanks, as follows:

MCS APPLICATION ? application password
This password is the one defined in the application

definition, and is distinct from the password specified
when logging in to the network.

When a valid application name and password are entered,

and when the requested application is already running,
MCS issues the next prompt. When the requested
application- is not currently running, MCS initiates the
application and displays the message:

APPLICATION INITIATED _
MCS then . issues the SYMBOLIC-NAME prompt. In

response to this prompt, enter either one or two symbolic
names, as described in section 2. However, these

60480300 A

symbolic names must be eligible for AOP status (that is,
they must be declared in the OPERATOR paragraph).
When a valid symbolic name is entered, MCS displays the
messages described in section 2. In addition, the
following message signifies that the user has successfully
lagged in as the AOP:

HELLO - YOURE THE AOP

This completes the AOP login procedure.

AOP LOGIN DIAGNOSTICS

The user attempting to log in as the AOP can receive any
of the diagnostic messages described in section 2. In
addition, invalid entries can result in the messages
described in the following paragraphs.

As with other login entries, the user is allowed a limited
number of tries (installation option with a default of 3) to
correctly enter the password. Each time an incorrect
password is entered, MCS issues the message:

INVALID PASSWORD

and reissues the APPLICATION prompt. When the limit is
exceeded, the message:

SOLICITATION LIMIT EXCEEDED

appears, and control returns to NVF, which reissues the
APPLICATION prompt.

Only one AOP can be active at a time for a given MCS
application. If a user enters a valid password, but an
application operator is already active for the requested
application, MCS issues the message:

APPLICATION OPERATOR ACTIVE

and reissues the APPLICATION prompt. The user must
then log in as a non-AOP or wait until the current AOP
logs out.

If the user enters a valid password and then, in response to
the SYMBOLIC-NAME prompt, enters a symbolic name
that is not eligible for AOP status (that is, a name not
defined in the OPERATOR paragraph), MCS issues the
message:

NOT VALIDATED AS AOP, NON-AOP ASSUMED

and the user is connected to the application as a non-AOP.

AOP COMMANDS

AOP commands can be issued only by the application
operator (AOP). These commands provide the AOP with
control over an application and the terminals connected to
the application. AOP commands, which are summarized
in- table 8-1, have the same format as the user commands
described in section 7.

8-1

TABLE 8-1. AOP COMMANDS

Command

Description

Command

Description

DISABLE
DISABLE INPUT

DISABLE OUTPUT

DISABLE ALL

DISABLE name

DISCONNECT name
DISPLAY

DISPLAY LAST

DISPLAY INPUT
DISPLAY QUTPUT
DISPLAY ALL
DISPLAY TERMINALS
DISPLAY PROGRAMS

DISPLAY name
DUMP

ENABLE

Disables the AOP terminal.

- Disables all of an applica-

tion's input queues.

Disables all of an applica-
tion's output queues.

Disables all of an applica-
tion's input and output
queues.

Disables the specified
source, destination, input
queue, output queue, or
Tist.

Disconnects a terminal
(other than AOP) from MCS.

Displays application status
information.

Displays serial number of
last message received from
terminal.)

Displays input queue status
information.

Displays output queue
status information.

Displays input and output
queue status information.

Displays terminal status
information.

Displays application
program status information.

Displays status information
for the specified input
queue, output queue, source,
destination, or list.

Dumps environmental infor-
mation about the MCS appli-

cation to the application

dump file.
Enables the AOP terminal.

ENABLE INPUT

ENABLE OUTPUT

ENABLE ALL

ENABLE name

IDLE

INVOKE name

MESSAGE "string"

MESSAGE "string"
TO name

PURGE name

REROUTE namel TO
name2

RESUME

RETRIEVE name
number

REVOKE name

SHUTDOWN

Enables all of the applica-
tion's input queues.

Enables all of the applica-
tion's output queues.

Enables all of the applica-
tion's input and output
queues.

Enables the specified input
queue, output queue, source,
or destination.

Causes the application to
suspend processing.

Initiates execution of the
specified application pro-
gram. .

Sends a message to all ter-
minals connected to the
application.

Sends a message to the
specified terminal.

Deletes all partial mes-
sages from the specified
destination.

Reroutes output destined
for the terminal specified
by namel to the terminal
specified by name2.

Resumes processing of an
idled application. .

Retrieves (displays) a
message or group of mes-
sages from a queue.
Terminates execution of the
specified application pro-
gram.

Disconnects terminals from
MCS and immediately deacti-
vates the application.

The commands described in this section, - with the
exception of the login and logout commands, DATA, END,
RETRIEVE, and RESUME are also available to COBOL
programs that are part of an MCS application. Messages
treated as commands must be sent to a special
destination. The name of this destination is the MCS

application name. Thus, a SEND to the application name
sends the message text to MCS where it is processed as a
command. Responses to MCS commands are enqueued in
the program's - response queue. An illegal or
unrecognizable command results in an error message. A
complete list of error messages appears in appendix B.

60480300 A

DISABLE COMMAND

The DISABLE command breaks the logical connection
between MCS and a source, destination, invitation list,
broadcast list, or queue. When a source or input queue is
disabled, MCS does not accept application messages from
the source or queue. When a destination or output queue
is disabled, MCS does not deliver application messages to
the destination or queue. The DISABLE command has the
following forms:

e DISABLE

disables the AOP terminal. When the AOP terminal
is disabled, it cannot communicate with MCS. It can,
however, continue to perform command mode
activities.

e DISABLE INPUT
disables all of the application's input queues.
e DISABLE OUTPUT

disables all of the -application's input and output
queues.

e DISABLE ALL

disables all of the application's input and output
queues.

e DISABLE name

disables the source, destination, broadcast list,
invitation list, input queue, or output queue identified
by the specified name; name must be a valid source,
destination, list, input queue, or output queue name
defined in the application definition. Note that when
a terminal is identified by separate source and
destination names, the terminal can be enabled as a
destination and disabled as a source, and vice-versa.
For example, if a terminal is associated with the
source name SRC1 and the destination name DSTJ,
and the AOP enters:

DISABLE DST1

the terminal can send, but cannot receive, application
data messages.

Injection queues, collection queues, and response queues
cannot be disabled.

DISCONNECT COMMAND

The DISCONNECT command disconnects a terminal (other
than the AOP terminal) from MCS. This command has the
form:

DISCONNECT name

where name is the symbolic name associated with a
terminal. The effect of a DISCONNECT command is the
same as if the specified terminal had entered an END
command. When the AOP enters a DISCONNECT
command, the following message is displayed at the
disconnected terminal: i

DISCONNECTED 8Y AOP

60480300 A

Disconnecting a terminal causes any partial message
entered by that terminal to be purged. For example, when
the AOP enters disconnect tll the following message is
displayed at terminal T1l:

DISCONNECTED BY AOP

MCS ENDED 79/11/25. 10.18.06.
MCS CONNECT TIME 00.15.36.
TERM201-APPLICATION:

DISPLAY COMMAND

The DISPLAY command displays information about the
status of the MCS application. This command has the
following forms:

o DISPLAY LAST

displays the serial number of the last message
received from the AOP terminal. (Message serial
numbers are described in section 4.)

e DISPLAY

displays the following information about the current
status of the MCS application:

State of the application (RUN or IDLE)
Number of messages in input queues
Number of messages in output queues
Number of terminals connected

Number of programs executing within the MCS
application

The format of the display generated by the DISPLAY
command is shown in figure 8-1.

e DISPLAY INPUT

displays information about the status of all of the
input queues defined for the current MCS
application. The format of the display is identical to
that of the DISPLAY INPUT command described in
section 7.

e DISPLAY OUTPUT
displays information about the status of all of the
output queues defined for the current MCS
application. The format of the display is identical to

that generated by the DISPLAY OUTPUT command
described in section 7. :

e DISPLAY ALL
displays information about the status of the input and
output queues defined for the current MCS
application. This command produces a DISPLAY
INPUT and a DISPLAY OUTPUT display.

e DISPLAY TERMINALS
displays information about the status of all terminals
connected to the current MCS application. This
information includes:

Source name

Destination name

8-3

APPLICATION DISPLAY hh.mmiss. STATE = sss

it INPUTS, ij OUTPUTS, mm TERMINALS,
“hh.mm.ss ’ Time (hour.minute.second) command was executed
sss Application status; one of the following:
RUN application running
IDLE application idle
ii Total number of messages in all input queues
ji Total number of messages in all output queues
mm Number of terminals connected to this application
nn Number of programs currently executing (running or idle)

nn PROGRAMS

Figure 8-1. Application Status Display Format

Network terminal name defined by NAM

User name defined in MCS application definition
Operating mode (command mode or data mede)
Operating state (enabled or disabled)
Connection status (connected or disconnected)

The format of the display produced by the DISPLAY
TERMINALS command is shown in figure 8-2.

DISPLAY PROGRAMS

displays information about the status of all COBOL
programs within the environment of the current MCS
application. This information includes the following:

Program name

Program status (running, suspended, stopping,
terminated, or inactive)

Number of times the program has been invoked
by MCS

Number of send requests issued by the program
Number of receive requests issued by the program

The display generated by DISPLAY PROGRAMS has
the format shown in figure 8-3.

DISPLAY name

displays information about the status of the specified
input queue, output queue, source, destination,
broadcast list, or invitation list. When an input queue
is specified, a DISPLAY INPUT display is generated.
When an output queue is specified, a DISPLAY
OUTPUT display is generated. When a source,
destination, or list is specified, a DISPLAY
TERMINALS display is generated.

Any of the preceding DISPLAY commands can be used to
write information to a monitor file. The command to
write to a monitor file has the form:

DISPLAY name TO MONITOR-FILE

where name is INPUT, OUTPUT, ALL, TERMINALS,
PROGRAMS, a queue name, source name, destination
name, broadcast list, or invitation list. This command
writes the specified display to the monitor file. The
display has the same format as that described in the
preceding paragraphs. The syntax for defining a monitor
file is described in section 4.

An example of a DISPLAY command is illustrated in
figure 8-4.

DUMP COMMAND

The DUMP command dumps application status information
to the application dump file (described in section 5). The
information contained in the application dump file can be
used for error analysis. The DUMP command has the forms:

DUMP

The DUMP command provides the AOP with the capability
of producing a snapshot of application activity to be used
for tracing MCS errors.

ENABLE COMMAND

The ENABLE command reestablishes the logical
connection between MCS and a source, destination, list, or
queue after it has been broken by a DISABLE command.
When an input queue or source is enabled, MCS accepts
messages from the queue or source. When an output

60480300 A

TERMINALS DISPLAY hh.mmsss.

SOURCE DESTINATION NAM USER MODE STATE CONN
$S§SSSSS dddddddd ttt uuu mmm ffff ccee
$555SSSS dddddddd ttt uuu mmm fEff ccee
$§555SSS dddddddd ttt uuu mmm fiff ccce
hh.mm.ss Time (hour.minute.second) command was executed

$S5SSSSS Symbolic source name

dddddddd Symbolic destination name

ttt Network terminal name assigned by ALIAS clause in application definition if dedicated, or network terminal

name in local configuration file if connected to MCS; blank if terminal not connected to this application

uuu User name associated with terminal; blank if no user name
mmm Terminal mode; one of the following:

COMD command mode

DATA data mode
fHf Terminal status; one of the following:

ENABLED

DISABLED "
cece Connection status; one of the following:

CONN terminal is connected to this application

DISC terminal is not connected to this application

Figure 8-2, Terminal Status Display Format

queue or destination is enabled, MCS delivers messages to
the queue or destination. The ENABLE command has the
following forms:
e ENABLE
enables the AOP terminal. When the AOP terminal is
enabled, it can send and receive application data
messages.
e ENABLE INPUT
enables all of the MCS application's input queues.
e ENABLE OQUTPUT

enables all of the MCS application's output queues.

60480300 A

e ENABLE ALL
enables all of the MCS application's input and output
queues.

e ENABLE name
enables the specified source, destination, input queue,
output queue, invitation list, or broadcast list.

IDLE COMMAND

The IDLE command causes the MCS application to cease

processing. The application remains active, but no
processing occurs. This command has the form:

DLE

PROGRAMS DISPLAY hh.mm.ss.
PROGRAM STATE INVOKE. SEND RECEIVE
PPPPPPP $SS ii mm nn
‘ PPPPPPP sss i mm nn
PPPPPPP sss 1] mm nn
bh.mm.ss Time (hour.minute.second) command was executed
ppppppp Program name
sSS Program status; one of the following:
RUNNING
SUSPENDED
STOPPING
TERMINATED
INACTIVE
ii Number of times program has been invoked
mm Number of SEND requests issued by program
nn Number of RECEIVE requests issued by program
Figure 8-3. COBOL Program Status Display Format
?display terminals
TERMINALS DISPLAY 07.48.57.
SOURCE DESTINATION NAM USER MODE STATE CONN
"TERM1 TERM1 TM101A MCS0463 COMD ENABLED CONN
TERM2 COMD DISABLED DISC
TERM3 . DATA DISABLED DISC
TERM4 TERMSG COMD - ENABLED DISC
" :

Figure 8-4. Terminal Status Display Example

When an IDLE command is entered, the following message
is sent to all terminals connected to the MCS application:

where pname is the name of a COBOL program. The
program must be defined in the application definition
along with a job invocation file that is submitted to the
operating system when the program is invoked. The job
invocation file contains appropriate control statements
for executing the program. Refer to section 5 for a
description of this file.

APPLICATION IDLE

When an application is idle, only the AOP terminal is
polled by MCS. Al commands, data, requests from
non-AOP terminals, and COBOL Communication Facility

requests are rejected. All output to the terminals

connected to the application is halted until the application
is resumed by the AOP, :

INVOKE COMMAND

The INVOKE command initiates execution of a specified
program. This command has the form:

INVOKE pname

8-6

MESSAGE COMMAND
The MESSAGE command sends a message to a terminal or
group of terminals. This command has the following
forms:
e MESSAGE "string"

sends the specified character string to all terminals

connected to the application.

60480300 A

e MESSAGE "string" TO sname

sends the specified character string to the terminal
or list of terminals identified by sname; sname must
be a symbolic source name, destination name,
interactive name, invitation list, or broadcast list
defined in the application definition.

The maximum length of the message string is 80
characters. An example of this command is:

From terminal T11: HOW ARE YOU?
?message "i am fine" to t11

The MESSAGE command can send messages to terminals
that have been disabled. i .

PURGE COMMAND

The PURGE command deletes all partial messages
(messages that have been partially transmitted) from a
specified destination or broadcast list. Complete
messages (as indicated by an end-of-message indicator or
end-of-group indicator) and message segments are not
affected. This command has the form:

PURGE sname

where sname is a symbolic destination or interactive name
defined in the application definition.

- REROUTE COMMAND

The REROUTE command reroutes the output for a
destination to another destination. The form of this
command is:

REROUTE snamel TO sname2

where snamel and sname2 are destination names or
interactive names; sname2 can be a broadcast list. After
a REROUTE is entered, all output for the destination
identified by snamel is delivered to the destination
identified by sname2, Destination sname2 must be
connected to MCS. When snamel is the same as sname2,
the rerouting is cleared. This command can be used as
follows:

REROUTE T11 TO T12
reroutes output destined for terminal T11 to terminal T12.
~ REROUTE T1L TO T11

clears the rerouting; output is again sent to terminal T1l.
RESUME COMMAND

The RESUME command allows an MCS application to
resume processing after an idle. This command has the
form:

RESUME

When a RESUME is issued, the following message is sent
- to all terminals connected to the application:

APPLICATION RESUMED

60480300 A

All terminals connected to the application are again
prompted by MCS for input, and output to the terminals is

resumed.

RETRIEVE COMMAND

The RETRIEVE command retrieves and displays a message
or group of messages from a specified queue. The
retrieved messages remain in the queue, and the queue is
in no way altered. The transition is not journaled. This
command has the form:

RETRIEVE gname number

where gname is a queue name defined in the application
definition, and number is the number of messages to be
displayed. An example of this command is as follows:

?retrieve Q25 5

THIS IS THE FIRST MESSAGE IN QUEUE Q25
THIS IS THE SECOND MESSAGE IN QUEUE Q25
THIS IS THE THIRD MESSAGE IN QUEUE Q25
THIS IS THE FOUR TH MESSAGE IN QUEUE Q25
THIS IS THE FIF TH MESSAGE IN QUEUE Q25

If a number greater than the number of messages in a
queue is entered, all messages in the queue are retrieved.

Messages are retrieved from the subqueues of a compound’
queue in the default search order. Thus, the messages
might not be displayed in the order they were entered.
For example, assume a compound queue, Q, has two
level 1 subqueues, SQ11 and SQ22. If there are three
messages in both SQ11 and $Q22, then the command:

RETRIEVE Q 5

retrieves three messages from SQll1 and two messages
from SQ22, regardless of the order in which the messages
were entered.

REVOKE COMMAND

The REVOKE command revokes (stops execution of) a
specified program. This command has the forms:

REVOKE name

where name is the name of a COBOL program executing
under MCS. When a REVOKE command is issued,
execution of the specified program terminates, not
immediately, but when the next COBOL Communication
Facility statement in the program is executed. If the
program is waiting to receive data, it is immediately
aborted.

An EXIT statement can be included in the job invocation
file to specify processing to occur after the REVOKE.
Refer to the NOS reference manual for a description of
the EXIT statement.

SHUTDOWN COMMAND

The SHUTDOWN command logs out ali terminals
connected to the MCS application, including the AOP
terminal, . and takes -the .application off-line. This
command has the form: i

SHUTDOWN

When a SHUTDOWN command is issued, the following
message is sent to all terminals connected to the current
application:

APPLICATION SHUTDOWN
A SHUTDOWN command causes the following events to

occur for the application:

e Al terminals connected to the application are
disconnected.

e All MCS operations in progress are completed.
o Central memory queues are released.
e Attached files are returned.

e Empty queue files are purged.

8-8

o Application table space is released.

e Further application COBOL program requests are
rejected.

When all application activity has ceased, application
execution is terminated. The following example
illustrates this command:

?message "**¥*shutdown in 5 min,*%*"

?shutdown
APPLICATION SHUTDOWN

To connect a given terminal to an application that has

‘been shut down, the AOP or system operator must

reactivate the application, and the terminal user must
repeat the login dialog.

60480300 A

SYSTEM OPERATOR INTERFACE 9

’

This section describes the procedure files used to initiate
MCS, and the system console commands available to the
system operator for controlling MCS operation.

INITIATION PROCEDURE FILE

MCS is initiated by a procedure file invoked by the system
operator. The procedure file contains control statements
specifying various parameters necessary to initiate MCS.
This file can be created by the system operator or site
analyst.

Information required by the operating system to initiate
MCS includes a user name, family name, and password;
the name of the application definition library file
containing the applications to be executed; and the mode
of MCS operation (test mode or normal mode). Also
required in the procedure file are a header statement, an
RFL statement, and an MCS call statement. Certain of
these statements are optional; when they are omitted, the
system assumes default values for parameters specified on
these statements. If errors occur during procedure file
processing, a message is displayed on the system console
and is written to the MCS dayfile. A complete list of
MCS error messages is included in appendix B.

The following paragraphs describe the procedure file
control statements, and default values where applicable.
Refer to the NOS reference manual for more information
on procedure files.

HEADER STATEMENT

The header statement specifies the name used in the
procedure file call. This statement has the form:

MCS ffff

where ffff is one through four nonblank characters. This
statement is required, and must be the first statement in
the procedure file.

USER STATEMENT

The USER statement must specify a valid user name,
password,-and family name. This statement has the form:

USER(,usernam,passwrd,familyname)

The USER statement can be omitted; in which case, the
default user name SYSTEMX is used.

NOTE

In order to execute the procedure file at a
system control point, the user name must have
system origin access word privileges. Refer to
~ the NOS Maintenance reference manual for
more information on the system origin
access word. .

60480300 A

RFL STATEMENT

The RFL statement specifies the initial field length to be
occupied by MCS. This statement has the form:

RFL(n)

where n must be equal to or greater than 30 000. This
statement is required in the initiation procedure file.

ONSW STATEMENT

The ONSW statement initiates MCS in test mode. This
statement has the form:

ONSW(1)

This statement is optional. When it is present, all
applications in the attached library execute in test mode.
(In test mode, MCS executes independently of the
network. Refer to section 5 for information on test mode
operation.) When the ONSW statement is omitted, MCS
communicates with the network in a normal manner.

ATTACH OR GET STATEMENT

The ATTACH or GET statement attaches the application
definition library file containing the MCS applications to
be executed. These statements have the forms:

ATTACH(ADLLIB=pfn/param-list)
GET(ADI_LIB=pfn/param-list)

where pfn is the permanent file name of the application
definition library file to be initiated, and param-list
specifies additional file information. Refer to the NOS
reference manual for more information on these
statements.

The ATTACH or GET statement is optional. When it is
omitted, the system searches for a local file named
ADLLIB; when this file is not found locally, the system
attempts to attach the file. If file ADLLIB cannot be
found, an error message is displayed on the system console
and the operator can then enter a library name as
described under System Console Commands.

MCS CALL STATEMENT

The MCS call statement initiates MCS. This statement
has the forms:

MCS.
MCS(GO)

When the form MCS(GO) is specified, MCS is initiated
without operator interaction. When the form MCS. is
specified, MCS pauses before initiation. The system
operator can then enter commands to change certain
parameters in the procedure - file before resuming
execution of MCS. These commands are described in this
section under System Console Commands.

9-1

SYSTEM-SUPPLIED PROCEDURE FILE

The default procedure file is established when MCS is
installed. A suggested version is shown in figure 9-1. The
last two statements in this example provide for reprieve
processing in the event of an MCS abort; the NAM trace
 file ZZZZZDN is formatted and printed on file OUTPUT
by the DLFP statement, as described in the NAM
reference manual. :

‘mMcs
RFL(30000)
MCS(GO)
EXIT.
DLFP(I=0)

Figure 9-1. System-Default Procedure Fiie

PROCEDURE FILE CALL

The MCS procedure file is called by a console command of
the form:

n.MCS ffff .,

where MCSffff is the MCS procedure file name. When the
characters ffff are omitted, the system default file is
used. When this command is entered, the operating
system searches first for the procedure file in the system
library, then for an indirect access file under user name
SYSTEMX. When the file is found, the procedure is
started at control paint n with subsystem privileges.

PROCEDURE FILE EXAMPLE

Figure 9-2 illustrates an example of an MCS initiation
procedure file,

MCSTEST
USER(AAA789,,SYS172)
RFL(30000)

ONSW(1)
ATTACH(ADLLIB=APPLS/UN=MCS123)
MCS.

Figure 9-2. Procedure File Example

In this example, MCS is initiated in test mode. The name
of the application definition library is APPLS, under user
name MSCI123. All files created by MCS have a default
user name of AAA789 and reside on family SYS172. Since
the GO parameter is omitted from the MCS call,
execution of MCS is suspended before. initiation, allowing
the system operator to change parameter values. This
procedure file is called by the command:

n.MCSTEST.

SYSTEM CONSOLE COMMANDS

MCS provides a set of system console commands which
allows the system operator to:

o Initiate MCS (MCS command)

9-2

® Change parameters specified in the initiation
procedure file (CFO.ADL, ONSW, OF FSW commands)

e Resume execution of MCS (CFO.GO command)

e Initiate an inactive MCS application (CFO.START
command)

o Idle MCS (CFO.IDLE command)
e Shut down MCS (CFO.DISABLE command)

These commands are described in the following
paragraphs. The parameter n. prefixing each command is
the number of the control point where MCS is initiated.

If an invalid command is entered, an error message is
displayed on the system console. Refer to appendix B for
a complete list of MCS error messages.

MCS

The MCS command initiates execution of the specified
procedure file. This command has the form:

n.MCS ffff .

where MCSffff is the name appearing on the header
statement of the initiation procedure file. The procedure
file is executed at control point n. When the characters
ffff are omitted, the system-supplied default file is used.

CFO.ADL

The CFO.ADL command specifies the name of the

application definition library to be initiated. This
command has the form:

n.CFO.ADL,pfn,un,pw.
where pfn is the permanent file name of the application
definition library, un is the user name, and pw is the
password. The file must be public. If un or pw are

omitted, the system defauit user name and password are
assumed. i

The CFO.ADL command can be entered only when MCS
execution is suspended prior to initiation, as described in
the preceding subsection. The parameters specified on

this command override corresponding parameters on an
ATTACH or GET statement included in the procedure file.

ONSWI1

The ONSW1 command sets sense switch 1 so that MCS
executes in test mode. This command has the form:

n.ONSW1.
The ONSW1 command can be entered only when execution

of MCS is suspended prior to initiation.

OFFSW1

The OFFSW1 command turns off sense switch 1. This
command has the form:

n.OFFSW1.,

60480300 A

The OFFSW1 command has effect only when MCS is
suspended prior to initiation. When an ONSW statement
has been included in the procedure file, the OFFSW1
command overrides this statement; when MCS is resumed,
it is initiated in normal mode.

CFO.GO

The CFO.GO command resumes execution of MCS. This
command has the form:

n.CFO.GO.

The CFO.ADL, ONSW1, and OFFSW1 commands are
ignored if entered after CFO.GO.

CFO.START

The CFO.START command initiates an inactive MCS
application. This command has the form:

n.CFO.START,appl ,TEST

where appl is the application name as specified in the
application definition, and TEST causes the application to
execute in test mode. The specified application must
reside in an application definition library that has been
initiated as described in the preceding subsection.

CFO.IDLE

The CFO.IDLE performs a graceful shutdown of MCS.
This command has the form:

n.CFO.IDLE.

60480300 A

All applications in the active library are shut down, and
connected terminals are logged out of MCS and the
network. COBOL programs executing in the MCS
environment are allowed to complete an MCS request in
progress, and can continue to execute non-MCS logic, but
all subsequent MCS requests are rejected. MCS performs
a NETOFF, and the message:

LOGGED OUT

is displayed at connected terminals.

CFO.DISABLE

The CFO.DISABLE command immediately drops MCS
from the control point. This command has the form:

n.CFO.DISABLE.

All connected terminals are logged out, and executing
COBOL programs are immediately aborted. The message:

APPLICATION FAILED

is displayed at connected terminais.

NOTE

Since the DISABLE command causes an
immediate drop, the IDLE command is
recommended for normal MCS shutdowns.

STANDARD CHARACTER SETS A

”

OPERATING SYSTEM CHARACTER SETS

Control Data operating systems offer the following
variations of a basic character set:

CDC 63-character set
CDC 64-character set
ASCII 63-character set
ASCII 64-character set

The set in use at a particular installation is specified when
the operating system is installed or deadstarted.

Depending on another installation option, the system
assumes an input deck has been punched in either 026 or
029 mode (regardless of the character set in use).

The alternate mode can be specified by a 26 or 29 punched
in columns 79 and 80 of any 6/7/9 card or 7/8/9 card. The
specified mode remains in effect through the end of the
job ‘unless it is reset by specification of the alternate
mode on a subsequent 7/8/9 card or 6/7/9 card. In

60480300 A

addition, 026 mode can be specified by a card with 5/7/9
multipunched in column 1, and 029 mode can be specified
by a card with 5/7/9 multipunched in column 1 and a 9
punched in column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic
column of table A-1 are applicable to BCD terminals;
ASCII graphic characters are applicable to ASCII-CRT and
ASCII-TTY terminals.

128-CHARACTER ASCII SET

Table A-4 contains the 128-character ASCII set supported
by the Network Access Method (NAM). A 96-character
subset consists of the rightmost six columns; a
64-character subset consists of the middle four columns.
Note that display code equivalents exist for the
characters in this 64-character subset only.

TABLE A-1, APPLICATION DEFINITION LANGUAGE (ADL) AND STANDARD CHARACTER SETS

cbe ASCII
Display Hollerith External N
ADL Code Graphic " Punch BCD c;"&';': ':g‘z‘g')‘ Code
{octal) (026) Code (octal)
oot : (colon) Tt 82 00 : (colon) 11 8.2 072
A o1 A 12-1 61 A 1241 101
B 02" B 122 62 B 122 102
c 03 c 123 63 c 12-3 103
D 04 D 1244 64 D 124 104
E 05 E 125 65 E 125 105
F 06 F 12-6 66 F 126 106
G 07 G 127 67 G 127 107
H 10 H 12-8 70 H 128 110
I 1 I 12-9 71 1 129 111
J 12 J 11-1 41 J 11-1 112
K 13 K 11-2 42 K 112 13
L 14 L 11-3 43 L 11-3 114
M 15 M 11-4 44 M 114 115
N 16 N 115 45 N 115 116
0 17 0 11-6 46 o) 11-6 117
P 20 P 11-7 47 P 117 120
Q 21 Q 118 50 Q 118 121
R 22 R 119 51 R 119 122
s 23 S 0-2 22 s 0-2 123
T 24 T 0-3 23 T 03 124
U 25 U 04 24 u 04 125
v 26 v 05 25 v 05 126
w 27 w 0-6 26 w 06 127
X 30 X 07 27 X 07 130
Y 31 Y 08 30 Y 08 131
z 32 z 09 31 z 09 132
0 33 0 0 12 0 0 060
1 34 1 1 01 1 1 061
2 35 2 2 02 2 2 062
3 36 3 3 03 3 3 063
4 37 4 4 04 4 4 064
5 40 5 5 05 5 5 065
6 41 6 6 06 6 6 066
7 42 7 7 07 7 7 067
8 43 i 8 10 8 8 070
9 44 g] 11 9 9 071
45 + 12 60 + 1286 053 .
; 46 ; 1 40 : 1 055
47 11-8-4 54 1184 052
/ 50 / 0-1 21 / 0-1 057
51 (084 34 (1285 050
52) 1284 74) 1185 051
53 $ 11-8-3 53 $ 1183 044
54 = 83 13 = 8-6 075
blank 55 blank no punch 20 blank no punch 040
56 , {comma) 08-3 33 , {comma) 0-8-3 054
57 . {period) 128-3 73 . (period) 12-8-3 056
" (quote) 60 = 08-6 36 # 83 043
61 [87 17 Y 12-8-2 133
62] 08-2 32] 1182 135
63 9% T1 86 16 % 1t 084 o5
64 = 8-4 14 " {quote) 8-7 042
65 ~ 0-8-6 35 _ ({underline) 085 137
66 v 110 or 11-82111 52 ! 1287 or 110' 11 041
67 A 087 37 & 12 046
70 t 1185 55 ' (apostrophe) 85 047
7 i 11-8-6 56 ? 087 ., 077
72 < 12-0 or 1282711 72 < 12-8-4 or 120 074
73 > 1187 57 > 086 076
.74 < 85 15 @ 84 100
75 2 12-8-5 75 \ 082 134
76 . 12-8-6 76 ~ {circumflex) 1187 136
77 ; (semicolon) 128-7 77 ; {semicolon) 11-8-6 073

TTwere zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than two colons.
t¥in installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch),

The % graphic and related card codes do not exist and translations yield a blank (55g).
T11The alternate Hollerith (026) and ASCH (029) punches are accepted for input only.

60480300 A

TABLE A-2, CDC CHARACTER SET COLLATING SEQUENCE

Collating Collating
Sequence CcDC Display External Sequence CcDC Disptay | External
Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD
?=======— — —— == e —————_|
00 00 blank 55 20 32 40 H 10 70
01 01 < 74 15 33 4 | 11 71
02 02 % 637 167 34 42 v 66 52
‘03 03 [61 17 35 43 J 12 41
04 04 - 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 ! 70 55 39 47 N 16 45
08 10 { 71 56 40 50 0 17 46
09 11 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
1 13 — 76 76 43 53 R 22 51
12 14 . 57 73 44 54] 62 32
13 15) 52 74 45 55 S 23 22
14 16 ; 77 77 46 56 T 24 23
15 17 + 45 60 47- 57 U 25 24
16 20 s 53 53 48 60 Y, 26 25
17 21 * 47 54 49 61 w 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 p4 32 31
21 25 (51 34 53 65 : o0t nonet
22 26 = 54 13 54 66 ¢ 33 12
23 27 # 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 11
+In installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,
External BCD code 16.
60480300 A A-3

TABLE A-3. ASCII CHARACTER SET COLLATING SEQUENCE

Collating ASCI.I Display | ASCII Collating ASCI.I Display | ASCII
Sequence Graphic Code Code Sequence Graphic : Code Code
Decimal/Octal | Subset Decimal/Octal Subset
00 00 btank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 Cc 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63+ 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ' 70 27 39 47 G 07 47
08 10 (51 28 40 50 H 10 48
09 1) 52 29 41 51 1 1 49
10 12 * 47 2A 42 52 J 12 4A
11 13 + 45 2B 43 53 K 13 4B
12 14) 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 2E 46 56 N 16 4E
15 17 / 50 2F 47 57 o} 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q - 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 U 25 55
22 26 6 41 36 54 66 Vv 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 : 00+ 3A 58 72 Z 32 5A
27 33 : 77 3B 59 73 [61 5B
28 34 < 72 3C 60 74 \ 75 5C
29 35 = - 54 - 3D 61 75 | 62 5D
30 36 > 73 | 3E 62 76 ~ 76 5E
31 37 ? 71 3F 63 77 65 5F

+In installatians-using a 63-graphic set, the % graphic does not exist. The : graphic is display cade 63. .

60480300 A

TABLE A-4. FULL ASCII CHARACTER SET

128-Character Set

96 -Character Subset s

-w— 64-Character Subset ———mm

— -
— 7nrqrstuvwxyz{lo}~_.r_
— =3
o
_ o l7 © A 0O VW V Y O £ =~ "™ X ~ £ £ O
4
° 5PQRSTUVNXYZ[\]A
o
1.0 o+ |l@e €« o O o W w ¢ T = ™ ¥ a9 = =Z= O
-t
o™ m o = & M g 1B W N 0 O Y A VA S
o a
01 N = =2 kR ® W B = o/~ ke ~
— Ww — &N M ¥ Z Mo = [- S}
o - O 0 O YW W L > = < = 2 N VB W UV
(=] o 8 6 8 6 2 »n W O W »n W uw o o 2
o o |3 3 EFE &5 2 8 @ v & u -
o NwSEEEABBHLWFCSS
£t
=
f:U
3
o O = N ™M g W O~ 0O £ o0 O W b
—
=
o
=3
—l
a=*lo A O - O - O ~H O = O = O = o
N
o loc © H -2 0 O +H 4 0 O - 4 O O ~
S
aoa?*lo O O O MmN = «H = 0O O O O ™« = e~ -~
NI
o ®lo o o 0o 0 O O O «H M e = et - o o
LO
o
[t)
F-)
)
+~
~ -
o ==

A-5

60480300 A

DIAGNOSTICS B

ﬂ

MCS issues diagnostic -messages = indicating errors
occurring during application definition compilation and
during execution of an application.

ADLP ERROR MESSAGES

Error messages issued by ADLP are listed in table B-1.
These messages inform the application developer of errors
oceurring during compilation of an application definition.
ADLP error messages are written to the output listing fite
specified by the L parameter on the ADLP control
statement.

Each error message is preceded by a number indicating
the source line in which the error occurred. The message
text is preceded by a 3-digit number and a l-letter
severity level indicator. The error number can be used to
locate the error message in the table. The severity level
indicator is either T, signifying a trivial error, or F,
signifying a fatal error. If fatal errors occur during
compilation, no application definition tables are
produced. Trivial errors result in informative error
messages; if only trivial errors occur, compilation
completes successfully and valid tables are produced.

ADLP is a two-pass processor. The first pass checks for
syntactical errors; the second pass checks for errors in
logic and consistency of usage. The numbers of first and
second pass errors detected during compilation are printed
in an error summary that appears at the end of the source
listing. If fatal errors occur on the first pass, no second
pass scanning is performed. Certain fatal errors result in
immediate termination of compilation, while others allow
compilation to continue. If fatal errors occur, no
application definition tables are produced.

After compilation has completed, ADLP writes a
compilation summary consisting of one or more of the
messages listed in table B-2. These messages appear on
the output listing file immediately after the source listing.

ADLP DAYFILE MESSAGES

The messages listed in table B-3 appear in the job dayfile
produced by an ADLP run. ADLP generates these
messages when a control statement error or an internal
error causes compilation to terminate prematurely.

EXECUTION ERROR MESSAGES

Error messages issued during the login procedure and
during execution of an MCS application appear at the
terminal. These messages are listed alphabetically in
table B-4. Certain of the execution messages are issued
by a network software component other than MCS. The
issuing routine is indicated in the table. The following
abbreviations are used:

NVF Network Validation Facility
ccep Communications Control Program

TIP Terminal Interface Program

Refer to the Network Access Method reference manual
for rore information on these programs.

SYSTEM CONSOLE AND
DAYFILE MESSAGES

The messages listed in table B-5 appear on the system
operator's console and on the system dayfile. The
messages issued by MCS are generated during startup or
shutdown, or as a result of an invalid operator command.
The messages issued by ADLP are generated as a result of
errors on the ADLP control statement or errors occurring
during ADL compilation.

TABLE B-1. ADLP ERROR MESSAGES

Message

Significance

Action

e T

000 F ERROR LIMIT EXCEEDED

001 F EMPTY SOURCE FILE

002 F SOURCE WORD LONGER THAN 80
CHARACTERS

003 F APPLICATION GLOBAL DIVISION
MISSING

60480300 A

—

Too many errors occurred so com-
pilation was aborted.

The file input to ADLP contained
no information.

Names used in the application
definition must not exceed 80
characters.

An Application Global Division
must be included in an applica-
tion definition.

Correct as many errors as pos-
sible and rerun.

The input file is bad. Create
a new input source file.

Replace the name with a shorter
name. Note that different
types of names have different
maximum lengths.

Check for missing header.

Ensure that the necessary Appli-
cation Global Division state-
ments are present. Ensure that

‘the Application Global Division

appears in the proper sequence.

TABLE B-1. ADLP ERROR MESSAGES (Contd)

Message

Significance

=

005

006

007

008

009

010

011

012
013

014

015

016

017

B-2

.

F

r—— e

004 F APPLICATION-NAME PARAGRAPH
MISSING

INVALID CHARACTERS IN FILE NAME

INVALID CHARACTERS IN DATA NAME

INVALID CHARACTERS IN SYMBOLIC
NAME

INVALID CHARACTERS IN ROUTINE
NAME
INVALID CHARACTERS IN

CONDITION NAME

INVALID CHARACTERS IN QUEUE
NAME

USER-DEFINED NAME TOO LONG FOR
ITS TYPE

INVALID NON-NUMERIC LITERAL
NON-NUMERIC LITERAL TOO LONG

INITIATION MUST SPECIFY
AUTOMATIC OR EXPLICIT

TEST MAY ONLY BE USED WITH
AUTOMATIC

APPLICATION PROGRAM DIVISION

MISSING

SEARCHING FOR NEXT AREA A
STATEMENT

‘number of characters.

The Agp]ication—Name paragraph
must be included in the Applica-
tion Global Division.

A file name can contain only the
characters A through Z, 0 through
9.

The name of the data item can
contain only the characters A
through Z, 0 through 9, and - .

The last character must not be - .

The symbolic name of a source or
destination can contain only the
characters A through Z, 0 through
9, and - . The last character
must not be - .

The name of an external routine
can contain only the characters
A through Z and 0 through 9.

Names defined in CONDITION
clauses can contain only the
characters A through Z, 0 through
9, and - . The last character
must not be - .

Names assigned to queues can
contain only the characters A
through Z, 0 through 9, and - .

The last character must not be - .

A name supplied by the user con-
tains more than the allowable
The limit
is different for different types
of names. .

A non-numeric literal was not
supplied where one was required.

A non-numeric literal exceeds 80
characters.

Required syntax is INITIATION IS
AUTOMATIC or INITIATION IS
EXPLICIT.

In the INITIATION paragraph, the

TEST phrase can be specified only

with the AUTOMATIC phrase.

An application definition re-
quires an Application Program
Division, even if no application
programs are included.

ADLP expected a division or
section header or a paragraph.

Action

m:

Ensure that a correct Applica-
tion-Name paragraph is present
and that it appears in the
correct sequence.

Replace the file name with a
valid name.

Replace the data name with a
valid name.

Replace the symbolic name with
a valid name.

Replace the routine name with
a valid name.

Replace the condition name with
a valid name.

Replace the queue name with a
valid name.

Refer to section 4 for maximum
length and shorten name.

Supply a valid non-numeric
Titeral.

Shorten the non-numeric
literal.

Supply the correct INITIATION
paragraph. :

Correct the INITIATION para-
graph.

Supply Application Program
Division. Check for missing
header or header in incorrect
sequence.

Check for missing statements or
area A statements that do not
begin in column 8 through 1l.

60480300 A

TABLE B-1. ADLP ERROR MESSAGES (Contd)

Message

Significance

Action

020

021

022

023

024
025
026
027

028

029

030

03t

032

F

018 F UNEXPECTED EOF ON SOURCE FILE

019 F DIVISION, SECTION, PARA BEGIN

coLs 8-11

DUPLICATE USER-DEFINED NAME

OPERATOR CLAUSE REQUIRES
SIGNATURE OR PASSWORD

APPLICATION DATA DIVISION
HEADER MISSING

SERIAL NUMBER REQUIRES SUPPLIED
OR GENERATED

SUPPLIED SERIAL NUMBER REQUIRES
IN PHRASE

REQUIRED KEYWORD MISSING
INVALID INTEGER LITERAL

MAXIMUM INTEGER VALUE IS 32767

STARTS PHRASE REQUIRES AT, WITH
OR AFTER

STARTING CHARACTER BEYOND
SEGMENT

FIELD LENGTH BEYOND SEGMENT

"EXTENDS REQUIRES FOR, TO OR

THROUGH

LITERAL MUST BE INTEGER OR
NONNUMERIC

60480300 A

ADLP encountered an end-of-file
indicator while reading the

input source file.

A division header, section
header, or paragraph, was en-
countered that did not begin in
columns 8 through 11.

Each user-supplied name in the
application definition must be
unique.

If the PASSWORD clause is omitted
from the OPERATOR paragraph of
the Application Global Division,
a SIGNATURE paragraph must be
supplied. '

An Application Data Division
header statement is required and
it must follow the last statement
of the Application Program Divi-
sion.

A SERIAL NUMBEk clause must con-
tain a SUPPLIED or a GENERATED
phrase.

The correct form is SERIAL-
NUMBER SUPPLIED IN data-name.

ADLP expected a keyword.

An integer literal consists of
digits 0 through 9.

An integer literal exceeded the
maximum allowable value.

The phrase FIELD IS data-name
STARTS must be followed by AT,
WITH, or AFTER.

The first character of a field is
defined to occur beyond the end
of a segment.

A field within a segment is
defined to extend beyond the end
of the segment. ’

The EXTENDS phrase of a FIELD
clause must specify FOR, TO, or
THROUGH

The specified literal is invalid
or is of wrong type.

The file is probably bad. It
might be necessary to recreate
the source file.

Ensure that all division
headers, section headers, and
paragraphs begin in columns 8
through 11.

Check the cross reference list-
ing for assistance in locating
the duplicate name. Change to
a unique name.

Include the PASSWORD clause in
the OPERATOR paragraph or
supply a SIGNATURE paragraph.

Supply the missing header and
ensure that the Application
Data Division is in the proper
sequence.

Supply the missing phrase.

Correct the SERIAL-NUMBER
clause.

Determine missing keyword from
context and supply.

Supply a correct integer
literal.

Supply a smaller integer
literal.

Supply the missing syntax;

Check LENGTH clause in SEGMENT
paragraph and STARTS phrase in
associated FIELD clause. The
field must begin within the
segment.

Check LENGTH clause in SEGMENT
paragraph and EXTENDS phrase in
associated FIELD clause. The
field must be contained within
the segment.

Supply the correct syntax.

Supply a valid integer or non-
numeric literal.

TABLE B-1. ADLP ERROR MESSAGES (Contd)

033 F

034 F

035 F

036 F

037 F

038 F

039 F

040 F

041 F

042 F

043 F

044 F

045 F

046 F

B-4

m

Message

SOURCE-DESTINATION DIVISION
HEADER MISSING

INVALID SYMBOLIC NAME TYPE

QUEUE DIVISION HEADER MISSING

STARTS/EXTENDS INSTANCE RANGE
ERROR

SELECT MUST SPECIFY INPUT,
OUTPUT OR SUBQUEUES

BASED REQUIRES SOURCE/
DESTINATION/CONTENTS/TIME

SELECT REQUIRES ROUTE CLAUSE
INVALID TIME LITERAL

MEDIUM REQUIRES CENTRAL OR DISK
STATUS REQUIRES ENABLED OR
DISABLED

APPLICATION PROCESSING DIVISION
HEADER MISSING

USE REQUIRES WHEN OR EVERY

SELECT PARAGRAPH MISSING

INVALID NAME TYPE

Significance

A1l application definitions re-
quire a Source-Destination
Division header statement. The
Source-Destination Division must
follow the Application-Data
Division and precede the Queue
Division.

A symbolic name is limited to 12
characters selected from A through
Z, 0 through 9, and - . The last
character must not be a - .

A1l application definitions re-
quire a Queue Division header
statement. The Queue Division
must follow the Source-Desti-
nation Division and precede the
Application Processing Division.

STARTS INSTANCE must be Tess than
EXTENDS INSTANCE.

A SELECT clause must include an
INPUT-QUEUES, OUTPUT-QUEUES, or
SUB-QUEUES phrase.

The BASED phrase in a SELECT
paragraph must include a SOURCE,
DESTINATION, CONTENTS, or TIME
phrase. .

A SELECT paragraph must include
at least one ROUTE clause.

The syntax requires a time
literal. Correct form is
"hh.mm.ss".

A MEDIUM clause in a SELECT
paragraph must include a CENTRAL
or DISK phrase.

A STATUS clause in a SELECT
paragraph must include an ENABLED
or DISABLED phrase.

A1l application definitions re-
quire an Application Processing
Division header statement. This
statement must follow the Queue
Division.

A USE statement must specify a
WHEN or EVERY phrase.

SELECT INPUT QUEUES or SELECT
INPUT SUB-QUEUES must be speci-
fied if input queues are defined,
SELECT OUTPUT QUEUES must be
specified if output queues are
defined.

The user-supplied name is invalid
in this context.

Action

Supply the header statement.

Supply a valid symbolic name.

Supply the header statement.

Supply correct values.

Supply the correct phrase.
Supply the correct phrase.
Supply the correct clause.
Supply a va]id time literal.
Supply the correct phrase.
Supply the correct phrase.

Supply the header statement.

Supply the correct phrase.

Supply the correct SELECT
paragraph.

Refer to section 4 to determine
correct name type.

60480300 A

TABLE B-1. ADLP ERROR MESSAGES (Contd)

Message

Significance

Action

.

047

048

049

050

051

052

053

054

055

056

057

058

F

F

F

INITIATION MAY BE SPECIFIED
ONLY ONCE

INVALID SYMBOLIC NAME OR TYPE

INVALID QUEUE NAME OR TYPE

SIZE MAY BE SPECIFIED ONLY ONCE
PER QUEUE

INVALID NAME IN COMMAND

ROUTING ALREADY SPECIFIED FOR
QUEUE NAME

CONTENTS REQUIRES FIELD NAME

QUEUE IN ROUTE IS NOT SUBQUEUE
OF SELECT

FROM USED ONLY WITH SOURCE
CRITERION ‘

TO USED ONLY WITH DESTINATION
CRITERION

BEFORE-AFTER USED ONLY WITH
TIME CRITERION

INVALID CONDITION NAME

60480300 A

An application definition cannot
contain more than one INITIATION

paragraph.

ADLP expected a symbolic source
or destination name. Symbolic
names are restricted to 12 char-
acters selected from A through Z,
0 through 9, and - . The last
character must not be - .

ADLP expected a queue name.
Queue names are limited to 12
characters selected from A
through Z, O through 9, and - .
The last character must not

be - .

In a USE WHEN or USE EVERY state-
ment in the Application Process-
ing Division, a SIZE OF queue-
name EXCEEDS integer MESSAGES
phrase cannot be specified more
than once.

An ADL verb specified a name that
wasbof the wrong type for that
verb.

The same queue name was specified
in more than one ROUTE phrase in
different SELECT paragraphs.

The CONTENTS phrase of a SELECT
paragraph must specify the name
of a .data field. The specified
field must be defined in the
Application Data Division.

The queue specified in the ROUTE
clause must be defined as a sub-
queue of the queue specified in
the associated SELECT paragraph.

In the phrase FROM name, name
must be defined as a source in
SYMBOLIC-NAME paragraph of the
Source-Destination Division.

In a TO phrase, the specified
name must be defined as a
destination in a SYMBOLIC-
NAME paragraph of the Source-
Destination Division.

The name specified in a BEFORE
or AFTER phrase must be a valid
time literal.

The name specified in a FOR
phrase must be defined in a
CONDITION clause in a MESSAGE
paragraph of the Application
Data Division.

Check for multiple occurrences
of SELECT paragraph and remove
all but one.

Supply a valid symbolic name.

Supply a valid queue name.

Check for multiple occurrences
of SIZE phrase in a USE WHEN or
USE EVERY statement.

Refer to section 4 to determine
valid name types for the verb
and supply a correct name.

Specify correct routing.

Supply a valid field name.

Define the correct queues and
sub-queues in the INPUT
section.

Either supply a defined source -
name in the FROM phrase, or de-
fine the specified name in the
Source-Destination Division.

Either specify a defined desti-
nation name in the TO phrase,

or define the specified name
as a destination.

Supply a valid time literal.

Specify a valid condition name.

TABLE B-1. ADLP ERROR MESSAGES (Contd)

Message

Significance

Action

=

059

060

061

062

063

064

065

066

067

068

069

F FOR USED ONLY WITH CONTENTS
CRITERION

F CONDITION NAME NOT DEFINED IN

BASED PHRASE

F SERIAL NUMBER DATA NAME INVALID

F ON INPUT, ON OUTPUT LIMITED TO
ONE EACH

F INJECTION/COLLECTION/RESPONSE
QUEUE INVALID

F INVALID OPERATOR NAME

F. RANGE VALUES MUST BE INTEGER

F INVALID DATA NAME OR TYPE

F ALIAS REQUIRED FOR TYPE QUEUE
OR JOURNAL

F NO DESTINATIONS FOR OTHERWISE
ROUTING

F DUPLICATE OR INVALID USE OF
TYPE

A ROUTE FOR clause can be speci-
fied only if the BASED ON
CONTENTS phrase was used in the
SELECT paragraph.

If a field is tested for a con-
dition in the Routing Section

of the Queue Division, the con-
dition name and field name must
be associated in a SEGMENT para-
graph of the Application Data
Division,

The IN phrase of a SERIAL-
NUMBER clause must specify a
valid data name. The data name
must be defined as a message
field in a SEGMENT paragraph.

In a JOURNAL clause in the QUEUE
paragraph of the Queue Division,
at most one ON INPUT and one ON
OUTPUT phrase can appear.

An invalid name was used for an
injection, collection, or re-
sponse queue.

The name specified in the
OPERATOR IS paragraph of the
Application Global Division can-
not be used as an operator name.

The names specified in the VALUE
phrase of a CONDITION clause must
be valid integers.

A user-supplied name does not
conform to the rules for data
names, or a conflict in name
usage has occurred.

If the SYMBOLIC-NAME paragraph
of the Source-Destination Divi-
sion specifies a queue name or
a journal name, an ALIAS clause
must be included.

The OTHERWISE phrase in a SELECT
paragraph will never be executed
because all routing possibilities
are covered by previous ROUTE
clauses in the same SELECT para-
graph. ’

A user-supplied name was used in
an invalid context.

Either eliminate the FOR clause
or specify BASED ON CONTENTS in
the SELECT‘paragraph.

Supply correct condition name
and field name in Application
Data Division and Queue Divi-
sion.

[

Ensure that data name is a
valid name as described in
section 4. Ensure that the
name is correctly defined in a
SEGMENT paragraph.

Correct the JOURNAL clause.

Check for usage conflict, e.g.,
a queue name being used in
another context as a symbolic
name.

Check ALIAS clause in Source-
Destination Division. Operator
cannot be dedicated.

Refer to section 4 for integer
format and supply valid
integers.

Ensure that the data name is
valid as described in section
4. Check for usage conflicts,
e.g., a name defined as a queue
name being used in a context
where a data name is required.

Supply an ALIAS clause.

Delete the OTHERWISE phrase.

Check cross reference listing
and check all usages of the
name. Ensure that the name is
unique and that no conflicts
occur, e.g., name used as data
name and symbolic name.

60480300 A

TABLE B-1. ADLP ERROR MESSAGES (Contd)

070

071

072

073

074

075

076

077

078

079

080

081

:

Message

Significance

Action

F EXPLICIT INITIATION REQUIRES
OPERATOR

F INVALID LIST COMPONENT TYPE

F DUPLICATE MESSAGES CLAUSE-SYMB
NAME AND LIST

F DUPLICATE MADE CLAUSE-SYMBOLIC
NAME AND LIST

F DUPLICATE PASSWORD CLAUSE-SYMB
NAME AND LIST

F DUPLICATE STATE CLAUSE-
SYMBOLIC NAME AND LIST

F OUTPUT BASED ON DESTINATION
ONLY

F THROUGH VALUE < or = START
VALUE

F MEDIUM DISK REQUIRES RESIDENCY

F INVOKE REQUIRES INVOCATION
FILE

F NO STATUS/MESSAGES FOR TYPE
QUEUE OR JOURNAL

F OPERATOR MAY NOT BE DEDICATED

60480300 A

If INITIATION IS EXPLICIT is
used, the OPERATOR paragraph must

be specified.

Names specified in a BROADCAST-
LIST or INVITATION-LIST paragraph
must be symbolic names in
SYMBOLIC-NAME paragraphs.

A MESSAGE clause appears in both

a SYMBOLIC-NAME paragraph and in

an INVITATION-LIST or BROADCAST-

LIST paragraph which includes the
symbolic name.

A MODE clause appears in both a
SYMBOLIC-NAME paragraph and in an
INVITATION-LIST or BROADCAST-LIST
paragraph which includes the sym-
bolic name.

A PASSWORD clause appears in both
a SYMBOLIC-NAME paragraph and in
an INVITATION-LIST or BROADCAST-
LIST paragraph which includes the
symbolic name.

A STATE clause appears in both a
SYMBOLIC-NAME paragraph and in an
INVITATION-LIST or BROADCAST-
LIST paragraph which includes the
symbolic name.

The BASED ON DESTINATION phrase
can be used only in a SELECT
OUTPUT QUEUES paragraph.

In the clause CONDITION IS VALUE
nl THROUGH n2, n2 must be greater
than nl.

If a MEDIUM IS DISK clause is
specified in a QUEUE paragraph
of the Queue Division, the)
RESIDENCY clause must also be
specified.

If an INVOKE verb is used in the
Application Processing Division,
an invocation file must be de-
fined for the invoked program.

| The invocation file name must be

declared in the Application Pro-
gram Division.

The STATUS and MESSAGE clauses
cannot appear with a TYPE IS
QUEUE or TYPE IS JOURNAL clause
in a SYMBOLIC-NAME paragraph of
the Source-Destination Division.

A terminal declared in the

"OPERATOR paragraph of the Appli-

cation Global Division cannot be
declared DEDICATED in a SYMBOLIC-
NAME paragraph of the Source-
Destination Division.

‘Refer to the discussion of

Specify the OPERATOR paragraph.

Ensure that the necessary
SYMBOLIC-NAME paragraphs are
present. Check for conflicts
in name usages.

Delete one of the MESSAGE
clauses.

Delete one of the MODE clauses.

Delete one of the PASSWORD
clauses.

Delete one of the STATE
clauses. .

Correct the SELECT paragraph.
Supply correct values.
Supply a RESIDENCE clause.

Program Initiation in sec-
tion 5.

Delete the STATUS or MESSAGE
clause.

Delete the DEDICATED phrase or
define a different operator
terminal.

TABLE B-1. ADLP ERROR MESSAGES (Contd)

Message

Significance

Action

082 F INVALID OR MISPLACED SYNTAX

083 F ALIAS IS NAME ONLY WITH TYPE
QUEUE OR JOURNAL

084 F AT LEAST ONE SYMBOLIC NAME
REQUIRED

085 F AT LEAST ONE QUEUE REQUIRED

086 F NO RESIDENCY FOR COMPOUND

Determine from context.

In a SYMBOLIC-NAME paragraph,
ALIAS IS name can be specified
only if name is type QUEUE or
JOURNAL. If symbolic name type
is SOURCE, DESTINATION, or
INTERACTIVE, the correct form is
Ggées IS TERMINAL or ALIAS IS

At least one SYMBOLIC-NAME para-
graph must appear in the Source-
Destination Division.

The Queue Division must contain
at least one QUEUE paragraph.

A RESIDENCY clause can be speci-

Correct the error.

Correct the SYMBOLIC-NAME
paragraph.

Supply a SYMBOLIC-NAME
paragraph.

Supply a QUEUE paragraph.

Correct the RESIDENCY clause.

QUEUE : fied only for simple queues.
087 F VALUE NOT REPRESENTABLE IN A Titeral is too long for a Supply a valid Titeral or
FIELD field. change field definition.
TABLE B-2. COMPILATION SUMMARY MESSAGES
Message Significance Action

nnnnnnnnnn DIAGNOSTIC MESSAGES
nnnnannnnB C M REQUIRED

, nnnnnn.nnn SECONDS Cé TIME
nnnnnnnnnB TOTAL TABLES SIZE

* FATAL ERRORS - NO TABLES *

The indicated number of diagnostic
messa?es was issued during
compilation.

The indicated octal number of central
memory words was required for the
compilation.

The indicated number (decimal) of
central processor seconds was
required for compilation.

The indicated octal number of central
memory words was required for the
tables generated by ADLP.

Because of fatal errors detected by
ADLP during compilation, no applica-
tion definition tables were produced.

If messages were issued, refer to
table B-1 for significance and
action.

None.
None.
None.

Correct the errors and
recompile.

TABLE B-3. ADLP DAYFILE MESSAGES

Message

Significance

Action

=

=

54 TABLE NOT PRESENT

ADLP ABORTED

BAD OLD LIBRARY HEADER

B-8

Internal ADLP error.

Internal ADLP error.

formatted.

The Tibrary file header is not properly

Follow site-defined pro-
cedures for reporting
~ software problems.

Follow site-defined pro-
cedures for reporting
software problems.

The old library cannot be
recovered. Recreate the
library.

60480300 A

TABLE B-3. ADLP DAYFILE MESSAGES (Contd)

\

Message

Significance

Action

CALL STATEMENT ERROR

COMPILER ERROR - STD STACK OVERFLOW
COMPILER ERROR - 'STD STACK UNDERFLOW

DELETE WITHOUT OLD AND NEW LIBS

NO SOURCE, OLD, OR NEW LIBRARY
OLD LIBRARY NOT FOUND

OLD LIB-DIRECTORY DO NOT MATCH

TSB LOGICAL ERROR

* FATAL ERRORS - NO TABLES *

xxxxxxxxxx OVERLAY LOAD ERROR

One or more ADLP control statement
parameters contains an error.

Internal ADLP error.
Internal ADLP error.

In order to delete files from an old
library, the old library name (OLD
parameter) and new library name (NEW
parameter) must be specified on the
ADLP control statement.

ADLP could not find the source file,
old 1ibrary, or new library specified
on the ADLP control statement.

ADLP could not find the old Tibrary
specified on the ADLP control state-
ment.

01d library directory does not match
file structure.

Internal ADLP error.

Because of fatal errors in the ADL
program, no application definition
tables are produced.

The named MCS overlay could not be
loaded so program aborted.

Correct the ADLP control
statement.

Follow site-defined pro-
cedures for reporting
software problems.

Follow site-defined pro-
cedures for reporting
software problems.

Specify OLD=oldname and
NEW=newname on the ALDP
control statement.

Correct the ADLP control
statement.

Correct the ADLP control
statement.

Recreate old library.

Follow site-defined pro-
cedures for reporting
software problems.

Correct the errors listed
in the ADLP source listing
and rerun.

Follow site-defined pro-
cedures for reporting
software problems.

TABLE B-4. MCS AND NETWORK ERROR MESSAGES

Message

Significance

WW.

Issued

Action By

APPLICATION FAILED.
MCS CONNECT TIME hh.mm.ss
XXxxxxX - APPLICATION:

APPLICATION FAILED.
aaaaaaa CONNECT TIME
hh.mm. ss
XXXXXXX-APPLICATION:

APPLICATION HAS NO DUMP FILE
DEFINED

APPLICATION IDLE

60480300 A

MCS has failed: hh.mm.ss specifies
the length of time terminal xxxxxxx
was connected to MCS.

The application has failed. The
parameter aaaaaaa is the name of
the failed application. The param-
eter hh.mm.ss specifies the length
of time terminal xxxxxxx was con-
nected to the application.

For a DUMP command, a dump file
must be defined in the application
definition.

Attempt was made to log in to an
idled application. Also issued
following an IDLE command.

MCS is not available. NVF
Enter another application
name or wait a short time
and enter MCS.

Enter the name of another NVF
application.
Specify a DUMP-FILE para- MCS

graph in the Application
Global Division.

The application operator MCS
must RESUME thefapp1ication.

B-9

TABLE B-4. MCS AND NETWORK ERROR MESSAGES (Contd)

B-10

Message Significance Action Isg;ed
o e—
APPLICATION INITIATED Informative. Issued after the None. MCS
application operator initiates an
application.
APPLICATION NOT PRESENT The requested network application Enter the name of another NVF
xxxxxxx-APPLICATION: program is not executing at a con- application, or try again
trol point. xxxxxxx represents later.
the terminal name.
APPLICATION NOT RUNNING An attempt was made to log in to an The application operator MCS
MCS application that has not been must initiate the
initiated. application.
APPLICATION OPERATOR ACTIVE The user cannot log in as the Log in as non-application MCS
application operator because one is operator.
already active.
APPLICATION RESUMED Informative. Issued following a None. MCS
RESUME command.
APPLICATION RETRY LIMIT Four unsuccessful attempts to enter Hang up and get help. NVF
a legal network application name
have been made.
APPLICATION SHUTDOWN An attempt was made to Tog in to an The application must be MCS
MCS application that has been shut reinitiated by the AQP
down by the application operator. or console operator.
Also issued following a SHUTDOWN
command. .
APPLICATION START FAILED An internal error occurred when the Consult system analyst. MCS
: application operator attempted to
initiate the apptication.
COMMAND INVALID FROM PROGRAM DATA, END, LOGIN, LOGOUT, RETRIEVE, Correct program. MCS
RESUME cannot be entered from a
user program.
COMMAND MODE Informative. The terminal is in None. MCS
comnand mode.
CONNECTION PROHIBITED, . Another terminal user with the same Enter the name of another NVF
TRY AGAIN LATER user name is currently logged into application, or try again
xxxxxxx - APPLICATION: MCS. Tater. :
CONNECTION REJECTED. MCS has refused connection with the MCS is saturated (all re- NVF
XXXXXxx - APPLICATION terminal xxxxxxx. sources in maximum usage).
Try again later.
DATA MODE Informative. The terminal is in None. MCS
» data mode.
DEDICATED TERMINAL Informative. The terminal is dedi- None. MCS
APPLICATION=XXXXXXX cated to application xxxxxxx, or to
SYMBOLIC NAME=XXXXXXXXXXXX symbolic name xxxxxxxxxxxx for this
STATUS=xXXXXX application. :
XXxxxxx MODE
DESTINATION ALREADY IN USE The symbolic destination name spec- Specify a different desti- MCS
ified in login sequence is being nation name.
used by another terminal.
ERROR IN ROUTE, PROGRAM NOT MCS was unable to initiate execu- Invocation file might be MCS
INVOKED tion of the specified program. direct access; if so, change
to indirect.

60480300 A

TABLE B-4. MCS AND NETWORK ERROR MESSAGES (Contd)

Message Significance Action Is;;ed

ERR.. Unrecognized TIP command syntax. Reenter command correctly. TIP

EXPECTING MONITOR FILE This form of the DISPLAY command Specify a monitor file. MCS
must specify a monitor file name.

FAMILY: Normal system prompt for family Enter a valid NOS family NVF
name. name.

FROM EVENT TABLE - string Informative. The string was sent None. MCS
by MCS when an event described in
the application definition occurred.

FROM LOP...{string) A message from the local operator None. TIP
is displayed as (string).

FROM PROG xxxxxxx - string Informative. The string was sent None. MCS
from program xxxxxxx, via MESSAGE i
command.

FROM TERMINAL UNKNOWN The source terminal specified in a Specify a valid source MCS
REROUTE command is not known to the terminal.
application.

FROM THE AOP - string Informative. The string was sent None. MCS
by the application operator.

HELLO - YOU'RE THE AOP Informative. The correct password None. MCS
was specified in login sequence,
and the terminal is now the AQP
terminal. :

HOST UNAVAILABLE Unable to communicate with host None. cce
computer.

ILLEGAL APPLICATION, The name uséd to request a network Correct the entry, or enter NVF

TRY AGAIN application program is unknown to the name of another appli-

XXXXXXX~-APPLICATION: NVF. cation program.

ILLEGAL USER Four unsuccessful Togin attempts Hang up and get help. NVF
have been made.

IMPROPER LOGIN, TRY AGAIN An unacceptable family name, user Restart the login procedure NVF

FAMILY: name, or file access password has by entering a valid family
been entered. name.

INCORRECT SYMBOLIC NAME The name specified in a PURGE Specify -a valid symbolic des-| MCS
command is not defined in the ap- tination or interactive name.
plication definition as a symbolic
destination or interactive name.

INVALID COMMAND MCS could not recognize the command, | Enter a valid command. MCS
or an AOP command was entered from
a non-AOP terminal.

INVALID JOB FILE The invocation file associated with Correct the invocation file. MCS
the program specified in the INVOKE
command contains a job statement
error.

60480300 A B-11

TABLE B-4. MCS AND NETWORK ERROR MESSAGES (Contd)

Message

Significance

Action

Issued
By

INVALID KEYWORD
INVALID PARAMETER

INVALID PASSWORD

INVALID RETRIEVE COUNT

INVOCATION FILE NOT FOUND

LOGIN ABORTED, TRY LATER

MCS 1.x date time
MCS APPLICATION ?

MCS ENDED dd/mm/yy hh.mm.ss

NEXT BLOCK MAY BE OUT OF
SEQUENCE

NO MONITOR FILE DEFINED

NOT VALIDATED AS AOP,
NON AOP ASSUMED

OVER..
INVALID SYMBOLIC NAME

PARITY ERROR IN MESSAGE

PASSWORD:

B-12

"MCS could not recognize a required

word in the command.

‘ MCS could not recognize a parameter

in the command.

The specified MCS application
password does not match the one de-
fined in the application definition.

The message count specified in the
RETRIEVE command was an invalid
number.

MCS could not find the invocation
file associated with the program
specified in the INVOKE command.

Insufficient system resources are
available to allow the terminal to
gain access to the network.

Informative.

Prompt requesting MCS application
name. '

Informative. Issued after termi-
nal'’s connection to MCS is broken.
Indicates date and time of discon-
nect. ’

A message output transmission
error has occurred.

Information cannot be written to
a monitor file because none is de-
fined in the application definition.

The user entered an AOP password,
but the symboiic name was not
validated in the application
definition as an AOP name.

Page wait has occurred. More out-
put is available.

An invalid name was entered in re-
sponse to the SYMBOLIC-NAME prompt.

MCS could not transmit the message
because of an internal error.

Normal system prompt for file
access password.

Enter the correct keyword.
Enter the correct command.

Enter the correct password.

Enter a valid retrieve
count.

Create an invocation file
and ensure that it is
properly defined in the
application definition
and that it is a public
indirect access file.

Wait a short time for
system resources to become
available, then reinitiate
login.

None.

Respond with name of
desired application.

None.

If error recurs, follow
site-defined procedure for
reporting software problems.

No user action. The appli-
cation definition must be
rewritten to include a mon-
itor file definition.

None.

Enter an empty line.

Enter a valid symbolic
name.

Reenter the message. If

error recurs, follow site-
defined procedures for re-
porting software problems.

Enter a valid password.

MCS

MCS

MCS

MCS

MCS

NVF

MCS

MCS

MCS

MCS

MCS .

Mcs

TIP

MCS

MCS

NVF

60480300 A

TABLE B-4. MCS AND NETWORK ERROR MESSAGES (Contd)

Message

Significance

Action

Issued
By

PROGRAM ALREADY RUNNING
PROGRAM HAS NO INVOCATION
FILE

PROGRAM NAME NOT KNOWN

PROGxxx - CHECKPOINT TAKEN
AT hh.mm,ss

QUEUE DISABLED - MESSAGE
DISCARDED

REPEAT..

ROUTING FAILURE - MESSAGE
DISCARDED

SERIAL NUMBER = XXXXXXXXXX

SERIAL NUMBER FIELD MISSING

SERIAL NUMBER INVALID
SERIAL NUMBER NOT FOUND
SERIAL NUMBER TOO LARGE

SOLICITATION LIMIT EXCEEDED

SOURCE ALREADY IN USE

SYMBOLIC-NAME ?

60480300 A

The program specified in the INVOKE
command is already executing.

The program cannot be initiated by
an INVOKE command because no invo-
cation file is defined in the ap-

plication definition.

The program name specified in the
INVOKE command is not defined in
the application definition.

Informative. The COBOL program has
initiated a checkpoint dump.

Issued in data mode. The message
could not be delivered because the
input queue is disabled.

Due to a temporary overload con-
dition, the last logical line of
input has been discarded.

Message entered did not meet any of
the routing criteria specified in
the application.definition.

Informative. The message just
entered was assigned serial number
XXXXXXXXXX s

The message description in the
application definition requires
that input messages contain a
serial number.

Serial numbers must be valid
integers and must not exceed
1 073 741 823.

The serial number field in the
message could not be found.

The maximum value of message serial
numbers is 1 073 741 823.

The 1imit on the number of attempts
for entering a valid application
name or symbolic name has been
exceeded.

The symbolic source name is being
used by another terminal.

MCS prompt requesting symbolic name.
The symbolic name is the name to be
associated with the terminal in the
application definition.

None.

No user action. The
application definition must
be rewritten to include an
invocation file definition
for the program.

Ensure that correct program
name is specified. Other-
wise, no user action. Ap-
plication definition must
be rewritten to include
program name.

No action.

The application operator
must enable the queue.

Repeat input.
Use correct message format.
No action.

Supply a serial number in
the appropriate field of
the input message.

Supply a valid serial
number.

Use correct serial number
format as defined in the
application definition.

Supply a smaller serial
number.

The Togin procedure must be
repeated.

Enter a different source
name.

Enter either one or two
symbolic names.

MCS

MCS

MCS

MCS

MCS

TIP

MCS

MCS

MCS

MCS

MCS

MCS

MCS

MCS

MCS

B-13

TABLE B-4. MCS AND NETWORK ERROR MESSAGES (Contd)

Message Significance Action Isg;ed
= = ' — -;_¥=A
SYNTAX ERROR MCS could not recognize the command. | Enter a correct command. MCS
TERMINAL DESTINATION ONLY - The symbolic name under which the Repeat login procedure and MCS
MESSAGE DISCARDED terminal is logged in is defined in select a symbolic name
the application definition to be a defined as source or inter-
destination. Therefore, the termi- active.
nal cannot send messages.
TERMINAL DISABLED - MESSAGE The terminal has been disabled by Enable the terminal in MCS
DISCARDED the application operator and there- command mode.
fore cannot receive messages.
TERMINAL NOT CONNECTED The terminal specified in the Wait for terminal to MCS
MESSAGE command is not connected to connect.
the application.
TIMEQUT The most recent prompting message If the terminal disconnects, NVF
was not responded to within 2 min- a new telephone connection
utes. Terminal disconnect is must be established before
requested. login can begin.
TO KEYWORD EXPECTED The keyword TO was omitted from the Enter the correct command. MCS
MESSAGE command.
TO TERMINAL MUST BE The terminal to which the message Send message to a con- MCS
CONNECTED was rerouted is not connected to nected terminal
the application.
TO TERMINAL UNKNOWN The symbolic name to which the Specify a defined symbolic MCS
: message was rerouted is not defined name.
in the application definition.
UNKNOWN APPLICATION MCS could not find the specified Enter a valid application MCS
application. The application name name.
might be spelled incorrectly or it
might not reside on the currently
active library.
UNKNOWN COMMAND MCS could not recognize the command. | Enter a correct command. MCS
UNKNOWN DESTINATION The symboTic destination name Enter a valid destination MCS
(second name if two names entered) name. ,
is not defined in the application
definition.
UNKNOWN PARAMETER The DISPLAY option contains an Enter the correct DISPLAY MCS
' error. command.
UNKNOWN PROGRAM NAME The program name specified in the Specify a defined program MCS
REVOKE command is not defined in name.
the application definition.
UNKNOWN QUEUE NAME The specified quéue name is not de- Ensure that queue name is MCS
fined in the application definition. | spelled correctly.
UNKNOWN SYMBOLIC NAME The specified symbolic name is not Enter a defined symbolic MCS
: defined in the application defini- name.
tion, '
UNKNOWN TERMINAL NAME The terminal name specified in the Specify a defined symbolic MCS
MESSAGE command is not defined in name.
the application definition.
B-14 60480300 A

TABLE B-4. MCS AND NETWORK ERROR MESSAGES (Contd)

~ Message Significance Action Is;;ed
E
USER NAME: Normal system prompt for -user name, Enter the assigned user NVF
issued during login. name.
YOU CAN'T DISCONNECT AOP DISCONNECT command cannot None. MCS
YOURSELF specify AOP terminal.
aaaaaaa CONNECT TIME Control of the terminal has been Enter the name of another NVF
hh.mm.ss returned to NVF from an application. | application.
XxXXXXXX-APPLICATION: The parameter aaaaaaa is the name
‘ of the application previously
selected. The parameters hh.mm.ss
indicate the length of time termi-
nal xxxxxxx was connected to the
application.
Xxxxxxxx-APPLICATION: Prompt for application program. Enter name of desired NVF
: Xxxxxxxx represents the terminal application program.
name.
xxxxxxx - INVALID TEST MODE For applications in test mode, the Correct program that loads MCS
SOURCE first segment of a message in the injection queue.
injection queue must be a valid
symbolic name.
TABLE B-5. SYSTEM CONSOLE AND DAYFILE MESSAGES
Message Significance Action Isg;ed
ADL ASSIGNED PFN= XXXXxx Informative - indicates Application None. MCS
UN=XXXXXX. Definition file attached by MCS.
ADL CREATED YY/MM/DD. Informative - creation date and None. MCS
HH.MM.SS time of ADL file.
ADL NOT AVAILABLE System could not attach ADL file. Assign correct ADL file. MCS
PFN=XXXXXXX, UN=XXXXXXX
ADLP ABORTED. The ADLP control statement or the Correct error and rerun job. ADLP
input source file contains errors.
APPL - xxxxxxx INITIALIZED. Informative - indicates application None. MCS
was started and is now active.
APPL - xxxxxxx JOURNAL Journaling was turned off due to Correct owner if MCS
yyyyyyy DISABLED CIO errors or bad owner name in ADL appropriate.
' definition of the file,
APPL - xxxxxxx MONITOR Monitor file is not used due to CIO Correct owner if MCS
yyyyyyy DISABLED errors or bad owner name in ADL appropriate.
definition of the file.
APPL - xxxxxxx PROG yyyyyyy Informative - a test mode program None. MCS
CONNECTED. has connected to MCS.
APPL - xxxxxxx PROG yyyyyyy Informative - a test mode program None. MCS
DISCONNECT. has disconnected from MCS.
APPL - xxxxxxx PROG yyyyyyy MCS has revoked (aborted) the named None. MCS
REVOKED. -~ program.
60480300 A B-15

TABLE B-5. SYSTEM CONSOLE AND DAYFILE MESSAGES (Contd)

B-16

Message Significance Action Isg;ed
APPL - xxxxxxx Q The named queue file was purged None. MCS
Yyyyyyyyyyyy PURGED. because it could not be verified
upon recovery.
APPL - xxxxxxx QUEUE Named disk queue was moved to CM Correct owner name in ADL. MCS
YYyyyyyyyyyy IN CM due to bad owner name in ADL
definition of the file.
APPL - xxxxxxx RECOVERED Informative - displayed for each None. MCS
FILE yyyyyyy. file when application is initiated.
APPL. - xxxxxxx SHUTDOWN. The application was successfully None. MCS
shutdown.
APPL - xxxxxxx START No memory is available to start the Try again later. MCS
FAILED, NO MEMORY application.
APPL - xxxxxxx START Errors occurred while trying to Recreate ADL file. MCS
FAILED, I/0 ERROR. read ADL for the application.
APPL - xxxxxxx START The application file is busy so Return the busy file and try MCS
FAILED, FILE BUSY. application startup was aborted. start up again.
This message is preceded by file ‘ ;
busy message specifying the name
of the busy file.
APPL - xxxxxxx Q Memory saturation forced the None. MCS
Yyyyyyyyyyyy FLUSHED. indicated queue to disk.
APPLICATION ALREADY RUNNING. An attempt was made to start an None. MCS
already active application.
BAD DIRECTORY ON ADL. Bad ADL file during MCS start up. Recreate ADL file. MCS
BAD OLD LIBRARY HEADER 0ld ADL file header is not properly Recreate old ADL library AULP
formatted. :
ESE VERIFICATION RECORD ON Bad ADL file during MCS start up. Recreate ADL file. Mcs
CALL STATEMENT ERROR. One or more of the ADLP parameters Correct ADLP call statement. ADLP
is invalid.
COMMAND ILLEGAL AFTER GO. The console command entered is None. MCS
illegal after n.CF0.GO.
DELETE WITHOUT OLD AND NEW Cannot delete an ADL file from an Add OLD and NEW parameters ADLP
LIBS old Tibrary unless both library to ADLP call.
files are specified.
* FATAL ERRORS - Due to fatal errors no new ADL Correct errors and rerun. ADLP
NO TABLES * library was written.
FILE BUSY PFN = XXXXxxXx Informative - MCS could not attach None. . MCS
UN = XXXXXXX., the named file.
GO ALREADY RECEIVED. Informative. None. - MCS
GO RECEIVED. Informative. None. MCS
ILLEGAL COMMAND. Informative. Reenter the correct command. MCS
I0 ERROR xxxx ON ROLLOUT. Rollout aborted due to IO errors. Consult system analyst. MCS
Further roll outs will not be
attempted.

60480300 A

TABLE B-5. SYSTEM CONSOLE AND DAYFILE MESSAGES (Contd)

Message Significance Action Is;;ed
10 ERROR xxxx ON yyyyyyy. CI0 error xxxx encountered on file An additional message will MCS
' YYyyyyy. provide the disposition of
file. Consult system
analyst.
MCS DISABLED BY NETWORK. MCS .cannot NETON to NAM. Enter LOP.command to enable MCS
: MCS in the network.

MCS iDLE DOWN STARTED. Informative - operator entered None. MCS
CFO.IDLE command.

MCS INITIATED INCORRECTLY - Operator entered X.MCS command. Enter n.MCS MCS

TRY N.MCS

MCS NETON COMPLETE. Informative. None. MCS

MCS REPRIEVE. Fatal error encountered by MCS. Inform site analyst. MCS

MCS SHUTDOWN COMPLETE. Informative. None. MCS

NO SOURCE, OLD OR NEW A11 of the files mentioned could Correct ADLP call statement. ADLP

LIBRARY. not be found.

OLD LIBRARY NOT FOUND. 01d library was specified but could Correct ADLP call statement. ADLP
not be found. .

. OLD LIB-DIRECTORY DO NOT 01d 1library directory does not Recreate old Tibrary file. ADLP

MATCH match file structure.

PFM ERROR xx PFN = XXXXXXX MCS could not attach file as - Refer to NOS reference MCS

UN = XXXXXXX. indicated. manual for error codes.

REASSIGN ADL. Informative message that follows Enter n.CFO.ADL command. MCS
ADL NOT AVAILABLE message.

STRING TOO LONG. CFO command contains string longer Reenter command. MCS
than 7 characters.

TEST MODE, NETWORK NOT USED. MCS was started in global test None. MCS
mode.

UNKNOWN APPLICATION. Invalid application name was speci- Enter correct name. MCS
fied on a n.CFO.START.

WAITING FOR CF0.GO. MCS processing is suspended until Enter n.CFO0.GO. MCS
GO is entered.

WAITING FOR NETWORK. NAM was not active when MCS tried Bring NAM up. MCS

: to NETON.
XXXXxxxxxx OVERLAY LOAD Overlay could not be loaded so pro- Consult system analyst. MCS,
ERROR gram aborted. ADLP
60480300 A B-17

GLOSSARY C

#

Alias - :
Another name by which a symbolic name is known,
either to the MCS application or to the operating
system. Aliases are defined in the ALIAS clause of
the Source-Destination Division. See Symbolic Name.

Application -
See MCS Application and Network Application.

Application Data Division -
The ADL division that describes the format of
application message text that is enqueued based on
contents or contains a field to store serial numbers.

Application Definition Language (ADL) -
" The language that defines and describes all
application components to MCS.

Application Definition Language Processor -
The software that compiles ADL programs and
produces as output an application definition.

Application Definition Library -
The collection of application definitions that have
been compiled by the Application Definition
Language processor. The library consists of a
multi-record file plus a directory.

Application Global Division -
The ADL division that names an application and
specifies certain aspects of it that apply to the entir
. application. :

Application Operator (AOP) -
The terminal or group of terminals that can control
an application. The AOP is the primary source of
commands to MCS, and the primary destination of
status messages from MCS. Only one AOP can be
active at a time for an application.

Application Processing Division -
The ADL division that specifies application events
that MCS monitors and defines actions MCS takes
when the events occur.

Application Program Division -
The ADL division that names the COBOL programs in
the application and specifies their interface with
MCS.

Application Signature -
The password that provides access security for the
entire application. This password is specified in the
SIGNATURE paragraph of the Application Global
Division. See Password..

Automatic Login - :
The process whereby one or more of the Network
Validation Facility login dialog parameters are
supplied to NVF from the local configuration file.
Parameters supplied through automatic login suppress
prompting for the corresponding dialog entries and
override any entries made from the terminal. Also,
MCS automatic login where MCS supplies the

60480300 A

symbolic name when a network terminal or user is
named in an ALIAS clause; MCS supplies the
application name in addition to the symbolic name
when the terminal or user is declared as DEDICATED
in the ALIAS clause. See Login.

Break-1 -
A character used by a terminal operator to terminate

terminal output.

Break-2 -
A character used by a terminal operator to switch a
terminal in data mode to command mode.

Broadcast List -
A group of destinations of messages referred to
collectively by MCS or a COBOL program.

COBOL Communication Facility (CCF) -
The COBOL language feature that enables COBOL
programs to use MCS to receive messages for
processing and to send processed messages to a
terminal.

Collection Queue - .
The network destination substitute that stores
messages copied from output queues when an MCS
application is in test mode.

Command Mode -
The mode of operation of a terminal that accepts as
input MCS user commands or AOP commands and
accepts as output MCS responses to these commands.

Comment Line -
A source program line with an asterisk or a slash in
column 7 and any characters from the 64-character
display code set in area A and area B of that line.
The line is documentary. A slash in column 7 ejects
the page before the comment line is listed.

Communication Description Area -
The area of a COBOL program that interfaces with
MCS; part of the COBOL Communication Facility.

Compound Queue -
A queue that has subqueues. A hierarchal structure

of queues. See Queue.

Condition Name -
A user-defined name that is assigned a specific value,
set of values, or range of values within a complete
set of values that a data name can assume. See Data
Name.

Data Mode -
The mode of operation of a terminal that accepts as
input data messages for processing and accepts as
output processed data messages.

Data Name -
A user-defined name that represents a unit of storage
that can assume different values. See User-Defined
Name.

Dedicated -
A relationship between a symbolic name and a
terminal or a user applying to all running applications
in an application definition library. The relationship
is defined in the ALIAS clause of the
Source-Destination Division. See Symbolic Name.

Dequeue -
The process of removing a message from a queue.

Destination -
The terminal or group of terminals to - which
application messages can be sent.

Disable -
The process of deactivating the logical connection
between an MCS application and a terminal. A
disabled terminal cannot enter or receive data
messages. See Logical Connection.

Disconnect -
The process of ending a logical connection between a
terminal and an MCS application. See Logical
" Connection.

Division -
One of the six required parts of an ADL program.
The divisions are the Application Global Division,
Application Program Division, Application Data
Division, Source-Destination Division, Queue
Division, and Application Processing Division.

Enable -
The process of activating or reactivating the logical
connection between an MCS application and a
terminal. An enabled terminal can enter and receive
data messages. See Lagical Connection.

End-of-Group Indicator (EGI) -
A character that is ‘defined in the application
definition and logically separates a. group of several
messages from succeeding messages and signals the
end of a group of messages to MCS or a COBOL
program.

End-of-Message Indicator (EMI) -
A conceptual indicator delimiting one message from
the next message and notifying MCS or a COBOL
program that the end of message condition exists.

End-of-Segment Indicator (ESI) -
A conceptual indicator delimiting one segment within
a message from the next segment within the message
and notifying MCS or a COBOL program that the end
of segment condition exists. :

Enqueue -
The process of storing a message in a queue.

Echo -
The process of returning the serial number assigned
to a message to the message source.

Event - :
An application occurrence that MCS monitors;
specified. in the Application Processing Division.

File Name -
A user-defined name that represents a storage
medium used by MCS in cooperation with the
operating system to record relevant information. See
User-Defined Name.

C-2

Initiation -

The manner in which an MCS application is started.
Specified in the INITIATION paragraph of the
Application Global Division. Initiation can be defined
as automatic or explicit. When automatic initiation
is specified, the application is started in normal mode
or test mode at MCS startup time. When explicit is
specified, the application is started in normal mode
when a terminal gains AOP status.

Injection Queue -
The network source substitute that stores incoming
messages from a COBOL message generation program
when an MCS application is in test mode.

Input Queue -
A storage area for incoming messages awaiting
disposition by a COBOL message processing program.

Integer - :
A numeric literal that does not include any character
positions to the right of the assumed decimal point;
must not be signed. See Numeric Literal.

Interprogram Queue -
An input queue that stores messages destined far
other COBOL programs until the other programs
request them.

Invitation List -
A group of sources of messages referred to
collectively by MCS or a COBOL program,

Invocation File -
A job submission file containing control statements
and job statements necessary to execute a COBOL
program; must be an indirect access public permanent
file. This file is submitted to the operating system
job input queue when the COBOL program is called by
the INVOKE verb or the AOP INVOKE command.

Journal File -
A file onto which messages are copied after they are
enqueued or dequeued.

Journaling - .
The process of copying a message onto a journal file.

Keyword -
An ADL reserved word that is required when the
format in which the word appears is used in an ADL
program. See Reserved Word.

Literal -
A character string whose value is implied by the
ordered set of characters that make up the string.

Local Configuration File -
A file in the host computer system that contains
information on the physical and logical makeup of the
communication elements in the system. The file
tontains a list of network application programs
available for execution in the host computer, and
lines and terminals that can access it.

Logical Connection -
A logical message path established between a COBOL.
program and an MCS application. or between a
terminal and an MCS application. Until terminated
or deactivated, the logical connection allows
messages to pass between the two entities.

60480300 A

Login -
The procedure used to connect a terminal with the
network and access MCS. Parameters must be
entered by the user in response to prompts from the
Network Validation Facility. See Network Validation
Facility.

Mass Storage -
A disk pack or other rotating mass storage device;
not a magnetic tape.

MCS Application -

The COBOL programs, sources, destinations, queues,
and journals required to accomplish message routing
between the COBOL programs and the user. A
complete application is defined in one Application
Definition Language program. In this manual, use of
the term application implies MCS application.
Contrast with Network Application.

Message -
A string of characters with an implied beginning and
end. To MCS, a message is the data associated with
" an EMI or EGL

Message Indicators -
See End-of-Group Indicator, End-of-Message Indi-
cator, End-of-Segment Indicator.

Message Segment -
Data that forms a logical subdivision of a message.

Monitor File -
A file onto which application status displays are
written. The displays written to this file are those
generated when the DISPLAY verb or command is
used. This file is named in the MONITOR-FILE
paragraph of the Application Global Division.

Network Access Method (NAM) -
A software package of interface routines that MCS
uses for shared access to a network of terminals.

Network Application -
In the context of network software, a program
resident in a host computer that is a terminal
servicing facility and provides a specific processing
capability such as remote job entry or transaction
processing. MCS is a network application program.
Contrast with MCS Application.

Network Definition File -
An NDL program output file that determines the
configuration of the network; a local configuration
file.

Network Definition Language (NDL) -
The compiler-level language used to define the iocal
configuration file contents.

Network Processing Unit (NPU) -
The collection of hardware and software that
switches, buffers, and transmits data between
terminals and host computers.

Network Validation Facility (NVF) -
The portion of the network software that provides
login access security processing.

Nonnumeric Literal -
A literal bounded by quotation marks. Can include
any character in the 64-character display code set.
To represent a single quotation mark within a
nonnumeric literal, two contiguous quotation marks
must be used. See Literal. :

60480300 A

Numeric Literal -
A literal composed of one or more numeric
characters; can contain a decimal point, unary sign or
both. See Literal.

Off-Line -
Not interacting directly with the network or not
connected to the network.

On-Line -)
Interacting with the network; connected to the
network.

Output Queue -
A storage area for outbound messages awaiting
transmission to a terminal.

Password -

A word chosen by the user to provide access security
for an application. Passwords can be specified in an
ADL program in the Application Global Division to
provide access security for the AOP, in the
Source-Destination Division to provide access
security when a COBOL program enables or disables a
source or destination, and in the Queue Division to
provide access security when a COBOL program
enables or disables an input queue. One password to
provide all of the access security can be specified in
the SIGNATURE paragraph of the Application Global
Division. Also, a word assigned to a terminal user by
a site administrator to provide access security for
login to the network. This password is a NOS
validation file parameter.

Physical Record Unit (PRU) -
The amount of information transmitted by a single

physical operation of a specified device. MCS
application definitions reside on mass storage; a PRU
is sixty-four 60-bit words.

Purge -
The process of discarding incomplete messages sent
to an external destination.

Queue -
A storage area for messages; resides in central
memory or on mass storage. See Compound Queue,
Input Queue, Interprogram Queue, Output Queue, and
Simple Queue. .

. Queue Division -

The ADL division that names and describes the input
and output queues that an application uses. This
division also specifies the criteria MCS uses for
message disposition and message routing.

Reserved Word -
An ADL word listed in appendix E that can be used in
a source ADL program, but which must not appear in
a program as a user-defined name.

Response Queue -
A simple input queue defined in the
RESPONSE-QUEUE clause of a PROGRAM
paragraph. This queue stores MCS' responses to
commands that a COBOL program can send to MCS.

Routine Name -
A user-defined name that represents an executable
code -module (program) external to MCS. See
User-Defined Name.

C-3

Serial Number -
A number identifying each input data message. Serial
numbers can be supplied by the user or generated by
MCS. The SERIAL-NUMBER clause of the
Application Data Division specifies how serial
numbers are assigned.

Simple Queue -
A queue with no subqueues. Contrast with Compound
Queue.

Source -
A terminal from which messages can be received by
an MCS application,

Source-Destination Division -
The ADL division that specifies symbolic names that
represent the sources and destinations of an MCS
application, and describes the characteristics of the
sources and destinations.

Source Program -
A set of ADL statements beginning with an
Application Global Division and ending with an
Application Processing Division.

Subqueue -
A subdivision of a compound queue; a lower level in
the queue hierarchy. See Compound Queue.

Symbolic Name -
A user-defined name representing a source,
destination, interprogram queue, or journal file.
Symbolic names are defined in the SYMBOLIC-NAME
paragraphs of the Source-Destination Division. See
User-Defined Name.

C-4

System Name - .
A user-defined name used to communicate with the
operating system. File names and routine names are
system names. See User-Defined Name.

System Operator -
The computer operator who controls operations at the
host computer console. This operator initializes the

MCS subsystem and sends certain commands to MCS.

Test Mode -
An MCS mode of execution in which MCS applications
execute independently of the network. This provides
a means of testing message routing.

Time Literal -
A special type of nonnumeric literal that represents a
chronological quantity. See Nonnumeric Literal.

Transient Terminal -
A terminal that is not associated with a particular
symbolic name in an MCS application; a terminal not
named in an ALIAS clause in a SYMBOLIC-NAME
paragraph. See Alias. i

User-Defined Name -
A word supplied by the programmer to satisfy the
ADL format of a paragraph or clause.

User Name -

A NOS validation file parameter identifying a valid
system user.

60480300 A

APPLICATION DEFINITION LANGUAGE SUMMARY D

A summary of Application Definition Language formats appears in this appendix. Detailed information for each format is
referenced by page number. The following elements are alphabetized in one list:

Division structure, by division name

Section structure, by section name

Paragraph header and contents, by paragraph name
Clauses, by clause name

Verbs, by verb name

Conditions, by condition name

ALIAS Clause 4-12

(TERMINAL nonnumeric-literal-1 [DEDICATED]

USER nonnumeric-literal-2 [DEDICATED]
queue-name

l file-name [OWNER IS nonnumeric-literal-3]

ALIAS IS

Application Data Division : 4-7

APPLICATION DATA DIVISION

[EGI paragraph]
[MESSAGE paragraph] N

Application Global Division 4-3

APPLICATION GLOBAL DIVISION

APPLICATION-NAME paragraph
[SIGNATURE paragraph]
[DUMP-FILE paragraph]
[MONITOR-FILE paragraph]
[INJECTION-QUEUE paragraph]
[COLLECTION-QUEUE paragraph]
[OPERATOR paragraph]

[INITIATION paragraph]

APPLICATION-NAME Paragraph ‘ 4-3
APPLICATION-NAME IS routine-name

60480300 A) D-1

Application Processing Division thru CONNECTION-BROKEN

Application Processing Division

APPLICATION PROCESSING DIVISION

[use paragraph] N

Application Program Division

APPLICATION PROGRAM DIVISION

[PROGRAM paragraph] ..

BROADCAST-LIST Paragraph
BROADCAST-LIST IS symbolic-name-1

DESTINATIONS ARE symbolic-name-2 [AND symbolic-name-3] ...
[MESSAGES clause]

[moDbE claﬁse]

[PASSWORD clause]

[sTATUS clause]

COLLECTION-QUEUE Paragraph
COLLECTION-QUEUE IS queue-name

CONDITION Clause

CONDITION IS condition-name VALUE [is] {iora? o }

{ literal-4 : }
literal-5 THROWGH literal-6

CONNECT Condition
CONNECT OF symbolic-name

CONNECTION-BROKEN Condition
 CONNECTION-BROKEN FOR symbolic-name

D-2

4-22

4-11

4-4

4-9

4-23

423

60480300 A

CONNECTION-INACTIVE thrv EGI

CONNECTION-INACTIVE Condition : 4-24

CONNECTION-INACTIVE FOR symbolic-name

DISABLE Verb 4-25

symbolic-name
queue-name
DISABLE ALL
INPUT }GIUEUES
OUTPUT :

DISCONNECT Condition 4-24

DISCONNECT OF symbolic-name

DISCONNECT Verb 4-25

DISCONNECT symbeolic-name

DISPLAY Verb ‘ 4-26
PROGRAMS
TERMINALS
DISPLAY ALL [TO MONITOR-FILE]
INPUT }QUEUES -
OUTPUT

DUMP-FILE Paragraph 4-4
DUMP-FILE IS file-name [OWNER IS nonnumeric-literal] l

DUMP Verb 4-26
pumP |
EGI Paragraph 4-7

EGI IS nonnumeric-literal

60480300 A : D-3

ELAPSED-TIME thru INJECTION-QUEUE

ELAPSED-TIME Condition
ELAPSED-TIME IS time-literal

ENABLE Verb

symbolic-name
queue-name
ENABLE ALL
INPUT } QUEUES
OUTPUT

FIELD Ciause

FIELD 1S data-name

-

STARTS { { WITH
AFTER

EXTENDS
THROUGH

AT CHARACTER integer-1
} INSTANCE integer-2 OF nonnumeric-literal-1

(FOR integer-3 CHARACTERS
TO CHARACTER integer-4
{TO } { INSTANCE integer-5

NEXT INSTANCE } OF nonnumeric-literal-z

L

[CONDITION clause] . ..

IDLE Verb

IDLE

INITIATION Condition
INITIATION

INITIATION Paragraph

AUTOMATIC [TEST] }

INITIATION IS {EXPLIC!T

INJECTION-QUEUE Paragraph

INJECTION-QUEUE IS queue-name

D-4

4-24

4-26

4-26

4-24

4-5

4-4

60480300 A

Input thru MEDIUM

Input Section of Queue Division N 4-15
INPUT SECTION
QUEUE paragraph

[SUB-QUEUE-n paragraph] .o

INVITATION-LIST Paragraph 4-11

INVITATION-LIST IS symbolic-name-1

SOURCES ARE symbolic-name-2 [AND symbolic-name-3] .. .
[MESSAGES clause]

[MODE Clause]

[PASSWORD clause]

[STATUS clause]

INVOCATION-FILE Clause 4-6

INVOCATION-FILE IS file-name [OWNER IS nonnumeric-literal]

INVOKE Verb 4-27

" INVOKE routine-name

JOURNAL Clause ‘ 4-18

. INPUT . oUTPUT
JOURNAL IS symbolic-name-1 [cl\l {BU'TFUT} [symbonc-name-z ON {W }]]

LENGTH Clause , 4-8

LENGTH IS integer CHARACTERS

MEDIUM Clause ' 419

MEDIUM 1S { CENTRAL }

DISK

60480300 A D-5

MESSAGE thru PASSWORD

MESSAGE Paragraph 4-7
MESSAGE IS data-name
[SERIAL-NUMBER clause]

[SEGMENT paragraph] ...

MESSAGE Verb 4-27

MESSAGE nonnumeric-literal [E symbolic-name]

MESSAGES Clause 4-13

" MESSAGES ARE data-name

MODE Clause 4-13
MODE IS {%-M}
MONITOR-FILE Paragraph 4-4

MONITOR-FILE IS file-name [OWNER IS nonnumeric-literal]

Output Section of Queue Division 4-16

QUTPUT SECTION

[QUEUE paragraph] cee

OPERATOR Paragraph 4-4

OPERATOR 1S symbolic-name [PASSWORD IS nonnumeric-literal]

PASSWORD Clause _ 4.5, 4-13, 4-19

PASSWORD IS nonnumeric-literal

D-6 60480300 A

PROGRAM Paragraph
PROGRAM IS routine-name
[INVOCATION-FILE clause]
[RESPONSE-QUEUE clause]

PURGE Verb

PURGE symbolic-name

Queue Division
QUEUE DIVISION
INPUT SECTION
OUTPUT SECTION
ROUTING SECTION

QUEVUE Paragraph
QUEUE IS queue-name
[JOURNAL clause]
[MEDIUM clause]
[PASSWORD clause]
[RESIDENCY clause]
[STATUS clause]

REROUTE Verb

RERQUTE symbolic-name-1 TO symbolic-name-2

RESIDENCY Clause

RESIDENCY IS file-name [OWNER IS nonnumeric-literal]

RESPONSE-QUEUE Clause

RESPONSE-QUEUE IS queue-name

60480300 A

PROGRAM thru RESPONSE-QUEUE

4-6

4-27

4-14.

4-15, 4-17

4-27

4-19

4-6

REVOKE thru SHUTDOWN

REVOKE Verb

REVOKE routine-name

ROUTE Clause

FROM symbolic-name-1
TO symbolic-name-2

AFTER .. .
ROUTE TO queue-name ¢ WHEN {[fl?O_RE } time-literal
FOR condition-name

OTHERWISE

Routing Section of Queue Division

ROUTING SECTION

SELECT paragraph ...

SEGMENT Paragraph
SEGMENT IS data-name
[LENGTH clause]

[FIELD clause] ...

SELECT Paragraph

INPUT QUEUES %TION
SELECT { SUB-GUEUES OF queue-name | BASED ON | PESTINATION
—— | GUTPUT QUEUES —

ROUTE clause-1
[ROUTE clause-2] ...

SERIAL-NUMBER Clause

SUPPLIED
SERIAL -NUMBER IS {MA—TED} [IN data-name] [WITH ECHO]

SHUTDOWN Verb

SHUTDOWN

D-8

CONTENTS OF data-name

4-27

4-19

4-17

4-17

4-27

60480300 A

SIGNATURE Paragraph

SIGNATURE IS nonnumeric-literal

SIZE EXCEEDS Condition

SIZE OF queue-name EXCEEDS integer MESSAGES

Source-Destination Division

SOURCE-DESTINATION DIVISION

[SYMBOLIC-NAME paragraph] ...
{INVITATION-LIST paragraph] . ..
[BROADCAST-LIST paragraph] .. .

STATUS Clause

STATUS IS {E———NABLED }

DISABLED

SUB-QUEUE-n Paragraph
SUB-QUEUE-n IS queue-name
[30URNAL clause]
[MEDIUM clause]
[PASSWORD clause]
[RESIDENCY clause]
[STATUS clause]

SYMBOLIC-NAME Paragraph

SYMBOLIC-NAME IS symbolic-name

[TYPE clause]
[ALIAS clause]
[MESSAGES clause]
[moDE ciaﬁse]
[PASSWORD clause]
[STATUS clause]

60480300 A

SIGNATURE thru SYMBOLIC-NAME

4-3

4-24

4-10

4-14, 4-21

4-15

4-10

TIME thru USE

TIME Condition

TIME IS time-literal

TYPE Clause
SOURCE
DESTINATION
TYPE IS INTERACTIVE
JOURNAL

QUEUE

USE Paragraph

WHEN

USE {F_T\EEY} condition verb-1 [verb-2] ...

D-10

4-25

4-2

4-22

60480300 A

APPLICATION DEFINITION LANGUAGE RESERVED WORDS E

f

This appendix contains a list of reserved words. Reserved words must be spelled correctly including any hyphens. Reserved

words cannot be used in an ADL program except as specified in the language format.

AFTER

ALIAS

ALL

AND

APPLICATION
APPLICATION-NAME
ARE

AT

AUTOMATIC

BASED

BEFORE
BROADCAST-LIST
CENTRAL
CHARACTER
CHARACTERS
COLLECTION-QUEUE
COMMAND
CONDITION
CONNECT
CONNECTION-BROKEN
CONNECTION-INACTIVE
CONTENTS

DATA

DEDICATED
DESTINATION
DESTINATIONS
DISABLE

DISABLED
DISCONNECT

DISK

DISPLAY

DIVISION

DUMP

DUMP-FILE

ECHO

EGI

ELAPSED-TIME
ENABLE

ENABLED

60480300 A

EVERY
EXCEEDS
EXPLICIT
EXTENDS
FIELD

FOR

FROM
GENERATED
GLOBAL

IDLE

IN

INITIATION
INJEC TION-QUEUE
INPUT
INSTANCE
INTERACTIVE
INTO
INVITATION-LIST
INVOCATION-FILE
INVOKE

IS

JOURNAL
LENGTH
MEDIUM
MESSAGE
MESSAGES
MODE
MONITOR-FILE
NEXT

OF

ON

OPERATOR
OTHERWISE
OUTPUT
OWNER
PASSWORD
PROCESSING
PROGRAM
PROGRAMS

PURGE

QUEUE

QUEUES
REROUTE
RESIDENCY
RESPONSE-QUEUE
REVOKE

ROUTE

ROUTING
SECTION
SEGMENT
SELECT
SERIAL-NUMBER
SHUTDOWN
SIGNATURE

SIZE

SOURCE
SOURCES
SOURCE-DESTINATION
STARTS

STATUS
SUB-QUEUES
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUPPLIED
SYMBOLIC-NAME
TERMINAL
TERMINALS

TEST

THROUGH

TIME

T0

TYPE

USE

USER

VALUE

WHEN

WITH

’ .

Abbreviated login (see Login)
ACCEPT MESSAGE COUNT statement 1-4
ADL
Names 4-2
Processor 1-2, 5-1
ADLP
Control statement 5-1
Dayfile messages (see Diagnostics)
Error messages (see Diagnostics)
Alias 4-12, 5-11
ALIAS clause 4-12, D-1
AOP
Application initiation 4-5
Commands (see Commands)
Defined 1-4, 8-1
DISPLAY verb 4-26
Login 8-1
Login diagnostics 8-1
MESSAGE command 7-4
OPERATOR paragraph 4-4, 8-1
Password 8-1
Symbolic name 8-1
Terminal 8-1
Application
Definition 1-2
Development 1-4
Dump 5-10
Initiation 4-5
MCS 1-2, 4-1
Monitoring 5-10
Network 1-1, 2-1
Organization 1-2
Recovery 5-10
Signature 4-3
Testing 5-6
Application Data Division 4-7, D-1
Application Definition Language
Defined 1-2, 4-1
Divisions 4-1
Functions 1-2, 4-1
Syntax summary D-1
Usage . 4-1
Application definition library
Defined 1-2, 5-1
Initiation
Procedure file statement 9-1
System console command 9-2
Maintenance
Adding applications 5-5
Creation 5-3, 5-5
Deleting applications 5-6
Listing 5-3
Application definition tables 1-2, 5-1
Application Global Division 4-3, D-1
APPLICATION-NAME paragraph 4-3, D-1
Application operator (see AOP)
Application Processing Division 4-22, 5-8, D-2
Application Program Division 4-6, D~2
Area A 4-3
Area B 4-3
ATTACH statement 9-1
Automatic application selection
MCS 2-2
Network 2-2
Automatic login (see Login)

60480300 A

INDEX

Batch execution 5-8
Break sequences
Break-1 2-5
Break-2 2-5, 5-7, 7-1
Cancel 2-5
Control x 2-5
Broadcast list 4-11
BROADCAST-LIST paragraph 4-11, D-2
BYE command (see Logout commands)

Cancel (see Break sequences)
CCP B-1
Central memory queues 3-2, 4-19
CFO.ADL command 9-2
CFO.DISABLE command 9-3
CFO.GO command 9-3
CFO.IDLE command 9-3
CFO.START command 9-3
Character sets A-1
coBOL
Communication description area 3-1, 3-3, 5-6
Communication Facility 1-3, 5-6, 5-9
Language statements 1-3
PROGRAM-ID paragraph 4-6
Programs
AOP commands to MCS 1-5, 4-3, 8-2
Application Program Division 4-6
Display 4-26, 8-4
Enable/disable 4-13, 4-19
Example 6-5, 6-9
Execution 5-8
Invocation file 4-6, 5-9
Invoke 4-27,5-9, 8-6
MCS application 1-2
Network relationship 1-1
RECEIVE 3-1, 3-3
Revoke 4-27, 8-7
Test mode 5-6
User commands to MCS 1-5, 4-3, 7-1
Coding Format 4-2
Collating sequence 4-9, A-3, A-4
Collection queue 3-2, 4-4, 5-6
COLLECTION-QUEUE paragraph 4-4, D-2
Command mode (see Operating modes)
Commands
AOP 1-4, 2-5, 8-1
Login 2-4, 7-4
Logout 2-4, 7-4
System console 1-4, 9-2
Test mode 5-7
User 1-4,2-5,7-1
Comment line 4-3
Communication description area (see COBOL.)
Communication devices (see Source)
Communication Facility (see COBOL)
Communications line adapter 1-2
Communications Supervisor 1-1
Compilation 5-1
Compilation listing (see Listing)
Compound queue 3-3, 4-15, 4-18
CONDITION clause 4-9, D-2
Condition
Names 4-2
Statement 4-23, 5-10

Index-1

Configuration

Hardware 1-2

Software 1-1
CONNECT condition - 4-23, D-2
CONNECTION-BROKEN condition 4-23, D-2
CONNECTION-INACTIVE condition 4-24, D-3
Continuation line 4-3
Control point 1-2, 4-5, 9-1
Control x (see Break sequences)

DATA command 7-1
Data mode (see Operating modes)
-Data names 4-2
Dayfile messages (see Diagnostics)
Dedicated
Terminal 2-2, 4-12
User 4-13
Dequeue 3-1
Destination
Application name 4-3, 7-1, 8-2
Alternate 4-27, 8-7
Broadcast list 4-11
Defined 4-1
Disabled 7-1, 8-3
Journal file 4-13
Symbolic name 2-2, 4-10
Test mode " 5-6
TYPE clause 4-11
Diagnostics
ADLP
Dayfile messages B-1, B-8
Error messages 5-1, B-1
Compilation summary messages B-1, B-8
Execution error messages B-1, B-9
System console
Dayfile messages B-1, B-15
Error messages B-1, B-15
DISABLE
Command
AOP 8-3
User 7-1
Statement 1-4
Verb 4-25, D-3
Disabled 4-14, 4-21
DISCONNECT -
Command 8-3
Condition 4-24
Verb 4-25, D-3
Disconnected 4-24, 4-25, 8-3
Disconnect procedure (see Logout)
Disk queue files 4-19
Disk resident queues (see Mass storage queues)
DISPLAY
Command
ALL 7-3, 8-3
INPUT 7-1, 8-3
LAST 5-11, 7-1, 8-3
name 7-3, 8-4
OUTPUT 7-1, 8-3
PROGRAMS 8-4
TERMINALS 8-3
Verb 4-25, 4-26, D-3
Division 4-1
DUMP
‘Command 5-10, 8-4
Verb 4-26, 5-10, D-3
Dump file 4-4, 5-10, 8-4
DUMP-FILE paragraph 4-4, D-3

EGI 3-1, 4-7
EGI paragraph 4-7, D-3

Index-2

ELAPSED-TIME Condition 4-24, D-4

EMI 3-1

ENABLE
Command 7-3, 8-4
Statement 1-4
Verb 4-25, 4-26, D-4

Enabled 4-14, 4-21

END command 2-4, 7-3, 8-3

Enqueue 3-1, 4-7

Error messages (see Diagnostics)

ESI 3-1

Event monitoring 4-23, 5-10

Events 4-23, 5-8

Example
ADLP source listing 6-1
Application Data Division 4-9
Application Global Division 4-5
Application Processing Division 4-28
Application Program Division 4-6
COBOL program 6~5, 6-9
Compound queue 3-3, 4-16, 6-2
Compound queue definition 4-17
DISPLAY command

DISPLAY INPUT 6-10, 7-3
DISPLAY TERMINALS 8-6

Invocation file 5-9, 6-4
Procedure file 9-2
Queue Division 4-21
Source-Destination Division 4-14
Terminal session 6-10
Test mode 5-8

Execution 5-8

EXIT statement 4-27, 8-7

Family name 2-1

FIELD clause 4-8, D-4

Field length 9-1

File names 4-2

File owner
Disk queue 4-19
Dump file 4-4
Invocation file 4-6
Journal 4-13
Monitor file 4-4

GET statement 9-1

GOODBYE command (see Logout commands)

Hardware configuration (see Configuration)
Header statement 9-1

HELL.O command (see Login commands)
Host computer 1-2

IDLE

Command 8-5

Verb 4-25, 4-26, D-4
Indicator area 4-3
Initiation

Application 4-5

MCS 5-1, 9-1
INITIATION

Condition 4-24, D-4

Paragraph 4-5, 5-6, D-4
Injection queue 3-2, 4-4, 5-7
INJECTION-QUEUE paragraph 4-4, D-4
Input queue 3-2, 4-15
Input Section 4-15, D-5
Integer (see Literal)
Interactive 4-2, 4-11, 7-1

60480300 A

Interactive Virtual Terminal classes 1-2
Interprogram queue

ALIAS clause 4-13

Defined 3-2

Symbolic name 4-10

TYPE clause 4-12
Invitation list 4-11
INVITATION-LIST paragraph 4-11, D-5
Invocation file 4-6, 4-27, 5-9
INVOCATION-FILE clause 4-6, D-5
INVOKE

Command 5-9, 8-6

Verb 4-27, 5-9, D-5

JOURNAL clause 4-18, D-5
Journal file
ALIAS clause 4-13
JOURNAL clause 4-18, 5-11
Queue recovery 5-11
TYPE clause 4-11
Journaling 4-18, 5-11

Keyword 4-1

Language (see Application Definition L.anguage)

LENGTH clause 4-8,D-5
Listing
ADL source 5-1
Compilation summary 5-2
Cross reference 5-2
Library maintenance 5-3
Literal
Integer 4-2
Nonnumeric 4-2
Time 4-2
Local configuration file 4-12
Logical connection 4-23
‘Login
Abbreviated 2-2
ACP 8-1
Automatic
MCS 2-2, 4-12, 4-13
Network 2-2
Commands
HELLO 2-4, 7-4
LOGIN 2-4, 7-4
LOGON 2-4, 7-4
Diagnostics 2-3
MCS 2-2
Standard 2-1
Logout
Commands
BYE 2-4,7-4
GOODBYE 2-4, 7-4
LOGOFF 2-4,7-4
LOGOUT 2-4, 7-4
Disconnect procedure
MCS 2-4, 7-4
Network 2-4, 7-4
Without disconnection 2-4

Mass storage queues 3-2, 4-19
MCS .
Application 1-2, 4-1
Call statement 9-1
COBOL names 4-2
Command 9-2
Initiation 5-1, 9-1

60480300 A

MEDIUM clause 4-18, 4-19, D-5
Message

Concept 3-1

Display 8-7.

Error (see Diagnostics)

Field 4-8

Flow 1-3,3-2

Indicators 3-1

Length 4-8

Queue 1-3, 3-1

Recording 4-18, 5-11

Retrieval 5-11, 8-7

Routing 2-5, 4-7, 4-19

Segment 3-1, 4-8

Size 3-1

Transmission 3-1
MESSAGE

Command 7-4, 8-6

Paragraph 4-7,D-6

Verb 4-25, 4-27,D-6
MESSAGES clause 4-12, 4-13, D-6
MODE clause 4-12, 4-13, D-6
Modes (see Operating modes)
Monitor file 4-4, 4-26, 5-10
MONITOR-FILE paragraph 4-4, 5-10, D-6

NAM
Login 2-1
MCS interface 1-1
Software 1-1
Terminal names 1-4, 2-2
Trace file- 9-2

Network application program 1-1, 2-1, 7-3

Network Definition Language 1-4
Network terminal name 1-4, 2-1, 4-12
Nonnumeric literal (see Literal)

NOS validation file 2-1

NPU 1-2

NVF

Automatic network apphcatxon program selection 2-2

Disconnect 2-4, 7-4
Login -2-1, 7-4, 8-1
Login diagnostics 2-3
MCS interface 1-1

OFFSW1 command 9-2
ONSW statement 9-1
ONSW1 command 9-2
Operating modes
Command mode
DATA command 7-1
Defined 2-4
MODE clause 4-13
Terminal 1-4
Test mode 5-7
Data mode
DATA command 7-1
Defined 2-4
MODE clause 4-13
Terminal 1-4
Test mode 5-7
Operator commands (see Commands)
OPERATOR paragraph 4-4, 8-1, D-6
Optional words 4-1
Output device (see Destination)
Output queue 3-2, 4-16
Output Section 4-16, D-6
OWNER phrase (see File owner)

Index-3

Password

AOP 4-5,8-1
Application 4-3
Login 2-1

PASSWORD clause
OPERATOR paragraph 4-5, 8-1, D-6
Queue Division 4-18, 4-19, D-6
Source-Destination Division 4-12, 4-13, D-6
Priority queuing 3-4
Procedure file
Call 9-2
Example 9-2
Execution 9-1
Initiation 9-1
MCS 9-1
System supplied 9-2
PROGRAM paragraph 4-6, D-7
PRU 5-3
Punctuation 4-3
“URGE
Command 8-7
Statement 1-4
Verb 4-25, 4-27, D-7

Queue
Alias 4-13
Collection 3-2, 4-4, 5-6
Compound 3-3, 4-15
Definition 4-15
Division 4-14, D-7
Files 4-19
Hierarchy 3-3, 4-15
Injection 3-2, 4-4, 5-7
Input 3-2, 4-15
Interprogram 3-2, 4-11, 4-13
Message 1-3, 3-1
Names 4-2
Output 3-2, 4-17
Permanence 3-2, 5-10
Priority 3-4
Recovery 5-11
Residence 3-2, 4-19
Response 1-5, 4-6
Simple 3-3, 4-15, 4-18
Size 4-24
Subqueue 3-3, 4-15
QUEUE paragraph
Input Section 4-15, D-7
Output Section 4-17, D-7
Quotation Mark 4-2

RECEIVE statement 1-4, 3-1, 3-3
Recovery 5-10
REROUTE

Command 8-7

Verb 4-25, 4-27, D-7
Reserved words 4-1, E-1
RESIDENCY clause 4-18, 4-19, D-7
Response queue 1-5, 4-6
RESPONSE-QUEUE clause 4-6, D-7
RESUME command 8-7
RETRIEVE command 5-11, 8-7
REVOKE

Command 8-7

Verb 4-25, 4-27,D-8
RFL statement 9-1
ROUTE clause 4-18, 4-19, D-8
Routine names 4-2
Routing

Conditions 4-20

Message 2-5, 4-7, 4-19

Section 4-17, D-8

Test mode 5-6

Index-4

Segment

Indicator 3-1

Message 3-1, 4-8
SEGMENT paragraph 4-8, D-8
SELECT paragraph 4-17, 4-19, D-8
SEND statement 1-4
Serial number

Assigned 4-7, 5-11

DISPLAY LAST 5-11, 7-1, 8-3

Echoing 2-5, 4-7, 5-11

Size 4-7
SERIAL-NUMBER clause 4-7, D-8
SIGNATURE paragraph 4-3, 8-1, D-9
Simple queue 3-3, 4-15, 4-18
SIZE EXCEEDS condition 4-24, D-9
SHUTDOWN

Command 8-7

Verb 4-27,D-8
Software configuration (see Configuration)
Source)

Defined 4-1

Disabled 7-1, 8-3

Invitation list 4-11

Symbolic name 2-2, 4-10

TYPE clause 4-12
Source-Destination Division 4-10, D-9
Source listing (see Listing)
Startup (see Initiation)
STATUS clause

Queue Division 4-18, 4-21, D-9

Source-Destination Division 4-12, 4-14, D-9
Switching network applications 2-4, 7-4
Subqueue 3-3, 4-15
SUB-QUEUE-n paragraph 4-15, D-9
Symbolic name’

Alias 4-12, 5-11

"AOP 8-1

Dedicated 2-2, 4-12

Defined 1-3, 4-1

Source-Destination Division 4-10

Terminal 2-2, 4-10

Transient 4-13

TYPE clause 4-13

Undefined 5-2

User-defined 4-2
SYMBOLIC-NAME paragraph 4-10, D-9
System console

Commands (see Commands)

Messages (see Diagnostics)

Operator 9-1
System control point (see Control point)
System names 4-2

Tables (see Application definition tables)
Terminal)
Action 3-1
Alias 4-12
AOP 8-1
Broadcast list 4-11
Classes 1-2
Dedicated 2-2, 4-12
Destination 2-2, 4-10
Display 8-3
Interactive 2-2, 4-11
Invitation list 4-11
Network name 1-4, 2-1, 4-12
Session example 6-10
Source 2-2, 4-10
Source-Destination Division 4-10
Symbolic name 1-4, 2-2, 4-10
Transient 4-13

60480300 A

Test mode USE paragraph

Collection queue 3-2, 4-4, 5-6 Application Processing Division 4-22, D-10
INITIATION paragraph 4-5, 5-6 Conditions 4-23
Injection queue 3-2, 4-4, 5-7 Verbs 4-25
Message flow 5-6 User
Procedure file statement 9-1 Alias 2-3, 4-12
System console command 9-2 Commands (see Commands)
TIME condition 4-24, 4-25, D-10 Dedicated 4-13
Time literal (see Literal) : Name 2-1
TIP B-1 Statement 9-1
TYPE clause 4-11, D-20 User-defined names 4-1 -

60480300 A) Index-5

LU ALUING LINL

AA3419 REV. 4/79 PRINTED IN U.S5.A.

@ 5 CONTROL DATA
CORPORATION
COMMENT SHEET
MANUAL TITLE: Message Control System Version 1 Reference Manual

PUBLICATION NO.: 60480300 - REVISION: A

NAME:

COMPANY:

STREET ADDRESS:

CIry: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND STAPLE

APE

TAPE

NGO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

B U U N —

CUT ALONG LINF

- | H

BUS'NESS REPLY MAIL [H
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]
]
POSTAGE WILL BE PAID BY S
CONTROL DATA CORPORATION E——
; |
. Publications and Graphics Division [
215 Moffett Park Drive TR
Sunnyvale, California 94086 TR
L]
L]
I

]

1

]

]

o T --—_F;)LD

-~

-

BYE

DATA

DISABLE
DISPLAY ALL
DISPLAY INPUT
DISPLAY LAST
DISPLAY name
DISPLAY OUTPUT
ENABLE

DISABLE

DISABLE ALL
DISABLE INPUT
DISABLE name
DISABLE OQUTPUT
DISCONNECT
DISPLAY

DISPLAY ALL
DISPLAY INPUT
DISPLAY LAST
DISPLAY name
DISPLAY OUTPUT
DISPLAY PROGRAMS
DISPLAY TERMINALS
DUMP

60480300 A

7-3
7-1
7-1

7-3

7-3

8-3
8-3
8-3
8-3
8-3
8-3
8-3
8-3
8-3
8-3

8-4

8-4
8-3

8-4

USER COMMANDS

END
GOODBYE
HELLO
LOGIN
LOGOFF
LOGON
LOGQUT

MESSAGE

AOP COMMANDS

ENABLE
ENABLE ALL
ENABLE INPUT
ENABLE name
ENABLE OUTPUT
IDLE

INVOKE
MESSAGE
MESSAGE TO
PURGE |
REROUTE
RESUME
RETRIEVE
REVOKE
SHUTDOWN

1-3
-4
7-4

7-4
7-4
7-4

7-4

8-5
8-5
8-5
8-5

8-5

1 8-5

8-6
8-6
8-7
8-7
8-7 ;
877
8-7

'8-7

8-7

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 ' LITHO §
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@5

CONTROL DATA CORPORATION

J O & 4?*’:7?’206?/

