CONTROL DATA’
6000 SERIES COMPUTER SYSTEMS

274 INTERACTIVE GRAPHICS SYSTEM
Reference Manual

CONTROL DATA
[corPorATION]

CORPORATION

CONTROL DATA®
6000 COMPUTER SYSTEMS
274 INTERACTIVE GRAPHICS SYSTEM

e
REFERENCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
A Initial release. This manual describes the IGS software designed for use with the 6000 series
(2-1-71) SCOPE 3. 3 operating system.
B Final release, Revisions made by authority of PCO CF 1120 on various pages; revision lines
(4-1-71) omitted to avoid confugion produced by large-scale relocation of text within sections. Revision B
describes the final released form of the Version 2 software.
C Change to page 1-6 made by authority of PCO CF 1204 to correct an error regarding the reserva- |
(5-15-71) tion of central memory space for graphics control points.
D Changes made to pages 2-21, 5-7, 6-8, 6-9, 6-24, 6-26, 6-67, 6-72, 6-74, and B-1 by authority of
(10-15-71) PCO CF 1254 for minor editorial corrections and correction of errors in descriptions of mask

processing.

17303600

Publication No.

Additional copies of this manual may be
obtained from the nearest Control Data

Corporation sales office. - Address comments concerning this
. manual to:

6000 Series 274 Interactive Graphics System CONTROL DATA CORPORATION

Reference Manual Systems Publications

©1971 215 Moffett Park Drive

by Control Data Corporation

Sunnyvale, California 94086
or use Comment Sheet in the back of

Printed in the United States of America this manual.

ii

17303600 Rev. D

PREFACE

“

This manual is a general programming and reference guide for the CONTROL DATA® 6000
series 274 Interactive Graphics System, Version 2. It contains a summary of software oper-
ation and external characteristics. A background knowledge of Control Data 8000 series

software and hardware is needed to properly use this manual.

Version 2 of Interactive Graphics functions in a 6000 series SCOPE 3. 3 operating system

environment.

This manual is organized for quick-reference to programming information. Detailed back-
ground material is provided in each subdivision of the system software; programming infor-
mation is isolated within the section that describes the software involved in that particular

system function.

The first section contains a general outline of software operation and appropriate hardware
information. At the end of Section 6 is a subsection containing summaries and calling for-
mats for the individual graphics routines of the system which are accessible to an applica-
tions programmer. For more information related to the system's software, see the follow-

ing Control Data publications:

Title Publication Number
6000 Series SCOPE 3.3 Reference Manual 60305200
6000 Series SCOPE 3. 3 Operating Guide 60306400
6000 Series Systems Reference Manual 60100000
6000 Series Interactive Graphics System 44616700

General Information Manual

6000 Series EXPORT/IMPORT High-Speed 17303100
and 274 Interactive Graphics System
Operator's Guide

6000 Series 274 Interactive Graphics System 44629300
User's Guide

1700 Series 1744 Digigraphics Controller 60283300
Reference/Customer Engineering Manual

General Description of the 274 Display 17223000
Console and the 1744 Controller

17303600 Rev. B iii

CONTENTS

INTRODUCTION
Major Features
Hardware Elements
General Software Operation

6000 Series Software

1700 Series Software
General Process Chart

System Process Chart

INPUT/OUTPUT AND GENERAL
PROCESSING

Control Points
Scheduler

Scheduler Subroutines

Scheduling of Graphics

Control Points
Graphics Control Points

Initialization
Structure
Number
Size
Graphics Program Card Deck

Control Cards
Program Cards

Data Cards

Sample Program Decks

System Utility Functions

Task File Creation

Task Directory

17303600 Rev. B

2-10
2-19

2-19
2-20

Task File Maintenance

Graphics Program Aborting -

Files

Graphics Common File
Local Files

Input Files

Output Files
Permanent Files

GRAPHICS HARDWARE
INFORMATION

General Description
Graphics Console

Controls
Display Presentation

Potential Phosphor Damage

1744 Digigraphics Controller

1700 GRAPHICS FUNCTIONS
Buffer Translator
Program Aborting
1700 Basic Graphics Package

System Expansion

DISPLAY ITEMS AND PICK
PROCESSING

Display Item ID Block
Queue Handler

Pick Types
Queue Handler Functions
Fetch and Wait Queues

Queue Mechanism
Operation

6000 Series Computer Pick
Processing

Fetching ID Blocks from

5-5 Console Entries 6-29
Control of Console
5-8 Alphanumeric Input 6-33

Frame-Scissoring Displays 6-35

6000 BASIC GRAPHICS Display Item Generation 6-38
PACKAGE 6-1 Storing and Displaying
Routine Types 6-1 Items 6-48
Control and Use of the
Graphics Hardware Tracking Cross 6-54
Interface 6-1 Use of the Data Handler 6-57
Application Executive 6-2 _ Example of Bead Use 6-66
Graphics Utilities 6-3 Voluntary Abortion of a
Data Handler 6-3 Job 6-69
Associative Addresses 6-11 Hardcopy File Creation 6-69
Additional Routines for
Programming Conventions 6-11 Display Font Creation 6-71
ID Block Parameters 6-11 7 PROGRAMMING
Display Grid Coordinates 6-13 CONSIDERATIONS 7-1
Display ITEM, MACRO . . -
and BEAD Addresses 6-13 Time Accounting 7-1
NCON Address 6-13 Memory Allotment and List
IBEAM Address 6-14 Processing Efficiency 7-1
ISTYLE Address 6-14 Data Handler Component
Codes 7-1
ICODE Address 6-14
Optional Parameters 6-14 Display Item Addresses 7-2
Summary of User FORTRAN- Macro Handling 7-3
Callable Routines 6-17
Optimum Task Length 7-3
Program Initiation 6-17
Program Console Control 6-18 ggggraphlcs Data Handler 7-4
Program Task Control 6-19
Special ID Block pata Handler Common -
Assignment 6-20 1es -
Control of Queue Handler <
and Pick Processing 6-25 GLOSSARY Glossary-1
APPENDICES
A 6000 Basic Graphics Package 6000 Input/Output Errors B-1
Routine Index A-1
1700 Abort Errors B-1
B Graphics System Error Messages B-1
C Character Code Equivalents C-1

6000 Programming Diagnostics B-1

vi 17303600 Rev. B

6000 Series Central Memory
Word Organization

Hexadecimal/Octal Conversion
Table

Re-entering a Graphics Task
Overlay

AERTRN
Examples

C Parameters

System Packing of IBUF
Description Buffers

Omission of AEXEC from
Program Coding

Typical Interactive Graphics
Hardware System

Software Interactions
General Process Chart
System Process Chart
Graphics Control Point Field
File Creation Run Deck

UPDATE File Correction and
Creation Deck

Task Addition Maintenance
Run Deck

Task Replacement Main-
tenance Run Deck

Sample Deck to Purge and
Store File

Sample Deck to Purge File
within System

Execution Run Card Deck

Creation and Execution Run
Deck

17303600 Rev. B

D-1

1
E-1
F-1
F-1
F-1
F-1
G-1
H-1

FIGURES

2-10
1-3

2-11
1-5
1-9 2-12
1-10

3-1
2-3

3-2
2-12

3-3
2-13 3-4
2~14 5-1
2-15 6-1

6-2
2-16

6-3
2-16 6-4
2-17

6-5
2-18

Structure of AEXEC

Creating Alphanumeric Display
Fonts

Font Character Recognition
Special Characters

Backspace
Clear

Reset Sequence
Conserving ID Word Space

Dynamic Addition of
Characters

Sample Font Creation
Routines

Task Directory

Sample Deck to Create a
Permanent File

Sample Deck to Execute a
Permanent File Task

Function Keyboard
Alphanumeric Keyboard
Display Grid System

Sample Display Surface
Organization

Display Item ID Block in
1700

Typical Bead Arrangement
Four Cylinder Engine
List Structure Example

Data Handler File Block
Structure

Example of a Frame-
Scissored Arc

1-2
1-2
1-2

I-3

I1-3

2-21

2-26

2-21

3-4

3-6

3-1

6-5
6-6

6-6

6-10

3=-2

viii

Example of Pointer Use

Example of Components in
a Bead

Alphanumeric Display Font

Numeric Display Font

Function Keyboard Status
in IH, IV

Sample Frames

6-62 7-1
6-67 -2
6-72
H-1
6-74
TABLES
G-1
3-3
3-8
H-1

Sample Data Handler Batch
Deck Using RFL

Sample Data Handler Batch
Deck Using REDUCE

AEZEC Communications
Area

IBUF /1744 Byte Comparison
Item Description Byte
Generators

6000 Package External
Linkages

7-4

7-5

17303600 Rev. B

INTRODUCTION
—

The CONTROL DATA® 6000 series 274 Interactive Graphics System is designed to permit

real-time use of a large computer by a graphics console operator — without significantly
degrading the capabilities of the machine.

Interactive Graphics accomplishes this by using a small machine, a Control Data 1700 series
computer, to control the basic functions of the graphics hardware; the system uses the 6000
series computer only to handle more difficult manipulations and to do the mathematical work

required by the applications programmer or the console user.

The Digigraphics 274 Display Consoles connected to the smaller computer permit the user
‘to create, display, store, retrieve, and modify any graphics forms necessary for the active
analysis of a problem — as well as giving him a means of entering data directly. These
graphic forms can then be expanded or changed by the user in a real-time environment

through his application program and the Interactive Graphics System,

The system can process the types of programs usually run in batch-processing mode, but it
eliminates the user waiting time of that mode and provides a user with much greater flexi-
bility in his use of the computer than batch-processing permits.

The system handles problems that:

® Can best be repeated in symbolic, graphic, or geometric form (such as sche-
matics, diagrams, layouts, lattice structures, geologic cross-sections, and
paths of motion)

° Can best be described using mathematical functions (dynamic analyses)

® Require human intervention (such as transcribing data for digital processing,

empirical problem-solving, and geographic studies)

MAJOR FEATURES

Interactive Graphics includes these unique features:

e Graphics programming is done only on the 6000 series computer — the 1700

series computer software operates without programmer intervention.

17303600 Rev. B 1-1

Graphics programs can be written in standard FORTRAN Run or Extended, inde-
pendent of display hardware characteristics. At installation time, either Run or
Extended is specified; this manual assumes that Extended (FTN) is used. If an
installation chooses Run, however, each FTN card must be replaced by a RUN
control card in IGS jobs.

Data files can be tailored to fit the specific needs of an application programmer's
job.
Batch and graphic processing is performed concurrently; both types of jobs can

be entered through the 1700 series computer, as well as at the 6000 series site.

Interactive Graphics can simultaneously service 24 independent graphics consoles

through four 1700 series computers.

The 1700 series computers are not dedicated to graphics work, but can perform

other functions — even when graphics jobs are in the system.

HARDWARE ELEMENTS

The hardware configuration of the 6000 series Interactive Graphics System is very versatile;

the system can be configured for either remote, local, or intermediate operation. Figure

1-1 shows a typical Interactive Graphics hardware system; a fully expanded system would in-

clude the following Control Data equipment:

Any standard 6000 series hardware configuration, including a 6673
or 6674 Data Set Controller

- Four 1700 series computers

Six 274 Graphics Consoles per 1700
One 853 Disk Storage Unit per 1700
One card reader per 1700T

One card punch per 1700T

One printer per 1700

One 1713 Teletypewriter per 1700

A paper tape station (used with a 1711 Teletypewriter) is also optional at the 1700 series site.

TFor simultaneous graphics and remote batch processing, a buffered card reader (1725
Card Reader Controller and 405 Card Reader) or buffered card reader/punch (1728 Card
Reader/Punch Controller and 430 Card Reader/Punch) must be used. A 415 Card Punch
and Controller may be used with the 405 Card Reader. :

17303600 Rev. B

6000 SERIES COMPUTER

| HARD COPY
l RECORDER ; PPU
T Dedicated Data
l hannel
6673 0r6674
Rgﬁggg DATA SET
CONTROLLER
TS T 6673 Handles 2 1700 s
| PAPER M= = 6674 Handles 4 1700s
! TAPE ! LINE e 000 0] e00 00000 00
:STATION : PRINTER ° 3018
| S | o DATA
USED WITH o SET
7N TTY -]
1738 . I
CON?F'?SO.ELER (] 40,000 Bits/Second
[]
Dedicated to 1747 . T
1705 1706 | 1747 hd 3018
R DATA DATA SET N DATA
T CHANNEL CONTROLLER o SET N
A .
1700 c 1704
SERIES H BASIC 1 O 0060 00000000000 00
COMPUTER| A |COMPUTER 1713 1573
N FIVE TELETYPE- TIMER
N 1708 WRITER
L | STORAGE
MODULES
1744 O
CONTROLLER GRAZIZ:ICS
CONSOLE
1706 1744
DATA CONTROLLER 2re
CHANNEL e
1744
CONTROLLER P e FN
CONSOLE
Figure 1-1. Typical Interactive Graphics Hardware System

17303600 Rev. B

Figure 1-1 is a generalized remote configuration diagram for the system. In a local con-
figuration, the equipment within the dotted lines is replaced by a connecting line less than
200 feet long; in an intermediate configuration, the same equipment is replaced by two
special equipment units, joined by a line up to 1, 000 feet long. T 1f an SC1700 Computer
system is used, the basic computer in the diagram is a 1774 and 1772 units are used
for storage; a 1773 Storage Access Bus and a 1775 Data Channel replace the 1705.

GENERAL SOFTWARE OPERATION

Interactive Graphics software operates as two separate but communicating groups of
routines — one in the 6000 series computer, the other in each of the 1700 series computers.

Figure 1-2 shows the relationship between the groups.

6000 SERIES SOFTWARE
The 6000 series portion of the system software includes:
e The 6000 series SCOPE 3. 3 operating system, with several added graphics
featurestt
e A standard FORTRAN Run or FORTRAN Extended compiler
e The 6000 Basic Graphics Package, for actual graphics programming
e The Scheduler, to provide time-sharing for graphics programs

e An EXPORT High-Speed (HS) program, for communication between the 6000

series and the 1700 series computers

SCOPE FEATURES

Because graphics programs require a real-time environment, they cannot be allowed to
compete with batch jobs for the use of central memory control points; instead, one or two
of SCOPE's control points are dedicated to graphics use. The number can be varied as
needed by the 6000 series' operator, depending on the ratio of the graphics job load to the
batch-processing load. If graphics programs are not being run, all control points can be

made available for batch use.

The real-time requirements of graphics jobs also prohibit them from competing with

batch jobs for central memory storage space. Therefore, each graphics control point has

T Line speed for this configuration is memory speed (1.1 seconds per 12-bit word) minus a
small factor for line length. :

TT The operating system interface and some of the features vary with the version of SCOPE
used; the revision level notes of this manual indicate the operating system interface.

1-4 17303600 Rev. B

APPLICATION PROGRAMMER .

APPLICATION LIBRARY (TASKS) 6000 SERIES |
COMPUTER

FORTRAN

6000 BASIC GRAPHICS
PACKAGE

I SCHEDULER l

-
|

|

|

|

|

|

|

|

|

: SCOPE OPERATING SYSTEM
|

]

|

I

|

|

|

|

L

v
MSOS. 1700 SERIES
IMPORT COMPUTER

ROUTINE

A 4
1700 BASIC GRAPHICS
PACKAGE

]
I
|
|
|
|
BUFFER TRANSLATOR |
I
I
|
|
|
|

1

| / GRAal;’:lcs
! ,

, 1744 CONTROLLER DISPLAY BUFFER o aEHIes
I —4

]

DISPLAY USER

Figure 1-2. Software Interactions

17303600 Rev. B

the ability to roll out lower priority batch jobs to obtain central memory space. This rollout
is performed automatically, without operator intervention, to minimize response time at the

graphics control point.

The SCOPE library for Interactive Graphics includes three utility routines for the use of
graphics programs:

® The task file creator, AEFILE
® The task file dump routine, AEDUMP

°® The random-access file creator, AELOAD

Graphics programs are written as a series of overlays, each performing a task. The
AEFILE routine places these overlays in mass storage as a random-access file with an index
that can keep track of hundreds of overlays. The applications programmer can make addi-
tions to and deletions from this file; a task is located within the file and placed in central
memory when it is needed (location and loading is performed by 6000 Basic Graphics Package

routines).

The AEDUMP routine is used to remove unneeded information from the task file and to
rewrite the file in a form that can be stored outside the system.

The AELOAD utility program is used to restructure the file produced by AEDUMP into a
form that can be used as a task file.

PROGRAMMING FEATURES

The 6000 Basic Graphics Package allows the user to write programs in FORTRAN without
worrying about the maintenance of a display-oriented graphics data base or the mechanics of
communicating with the display. The Package contains an expandable library of subroutines
that provide efficient and complete access to the graphics hardware (and two-way communi-
cation with it) without limiting application types or data structures. The Package is designed
so that the programmer's only concern is communication with the graphics console operator
and the computational requirements of the application; he is not aware of the internal functions

of the package, since there are no system-specified data areas that must be manipulated.

REAL-TIME MULTIPROGRAMMING

If several graphics programs are in the system at the same time, a form of time-sharing
must be used so that each graphics console user believes that his program has sole use of
the 6000 series computer.

1-6 17303600 Rev. C

Graphics programs share their use of the 6000 series central memory through a mechanism
controlled by the Scheduler. The Scheduler looks at the programs waiting for execution in

its graphics input queue, the graphics input request of currently executing programs, and at
the programs themselves. The Scheduler then decides whether to roll out a program and roll
in a new one from the input queue, or to roll in an old program that was rolled out while

waiting for an input request to be serviced.

The Scheduler determines how long each program should be allowed to remain at a graphics
control point on the basis of the central and peripheral processor time the program used
when it last resided at a control point; this gives short graphics programs priority over
longer ones. A lower limit, chosen by each installation, is imposed on the Scheduler's

determination of a program's permitted resident time.

EXPORT HS FEATURES

EXPORT HS performs all data communication between the 1700 series computers and the
6000 series computer. The Interactive Graphics version of EXPORT HS provides the same
services for remote batch programs as the non-graphics version, and has several additional
features:

™ EXPORT HS is called to a control point by the 6000 series computer's operator.

e EXPORT HS monitors the resident time of each graphics program and calls
the Scheduler into a peripheral processor when a program's permitted resident
time has elapsed.

e EXPORT HS periodically scans each graphics control point for an input or output
request and automatically transfers graphics output data to its own output buffers
for transmission to the proper 1700.

e Graphics data from a 1700 series computer is queued by EXPORT HS when it is
received for later use by an application program (remote batch data is turned

over to SCOPE for processing, as in the non-graphics version).

) EXPORT HS overlays are stored in central memory resident, rather than in

mass storage, to reduce the overhead time of data communication processing.

e EXPORT HS processes remote batch data and graphics data concurrently.

1700 SERIES SOFTWARE
The 1700 portion of the Interactive Graphics software consists of three groups of routines:

e An MSOS IMPORT HS program, to handle all communications between the 6000

series computer and the 1700 series computer.

17303600 Rev. B 1-7

° The buffer translator

e The 1700 Basic Graphics Package

MSOS IMPORT HS FEATURES

The Interactive Graphics version of MSOS IMPORT HS has all of the data communication
features of the non-graphics version and interfaces with drivers to run a line printer, card

reader and card punch, or card reader/punch.

DATA TRANSLATION

The buffer translator reformats the graphics data buffers received by MSOS IMPORT HS
from the 6000 series computer into calls to the 1700 Basic Graphics Package. In this manner,
data from the 6000 Basic Graphics Package is translated into a display-oriented data base.
The buffer translator also formats data from the graphics consoles for transmission to the

6000 series computer.

1700 GRAPHICS ROUTINES

The 1700 software includes a group of graphics routines called the 1700 Basic Graphics
Package. These routines act like drivers for the graphics consoles, sending display infor-
mation to the 1744 Controllers according to instructions received from the 6000 Basic
Graphics Package calls. The 1700 routines also process interrupts and data from the graph-
ics consoles, queueing the information until the program in the 6000 series computer requests
it. The application programmer does not use the 1700 Package routines when coding a job.

ADDITION OF SOFTWARE FUNCTIONS

Additional 1700 functions can be incorporated in the Interactive Graphics System without
altering the existing software; the 1700 series computer can be used to drive remote devices
for specific applications, without hardware modification (other than the addition of memory).

1-8 17303600 Rev. B

GENERAL PROCESS CHART

The general process chart in Figure 1-3 follows a user's program through the Interactive

Graphics System and shows the relationships between the hardware and software at various

stages in the program's processing.

REMOTE 1700

CARD JOB INPUT
INPUT .

PRINTER
ouTPUT

BATCH JOB DAYFILE
(GRAPHIC) AND ANY
UTILITY LISTINGS

GRAPHIC
INPUT/
OUTPUT

CONNECT TASKS
(IF ANY) TO
GRAPHICS
JoB

LOCAL 6000
6000 JOB INPUT
QUEUE JOB INPUT
STANDARD
2ooNDARD | CREATE TASKS
EXECUTION PRINTER
OUTPUT |

PREREAD TASKS

SYSTEM OR GRAPHIC DATA

TASK OR

SCHEDULER ROLLS .
JOB OUT AND LEAVES
ENTRY AT

EXPORT HS CONTROL
POINT

GRAPHIC DATA

BATCH JOB DAYFILE (GRAPHIC)
AND ANY UTILITY LISTINGS

GRAPHIC
DATA EXPORT PPU CALLS SCHEDULER
TO SCHEDULE THE JOB AND LOOK
GRAPHIC DATA FOR GRAPHICS I/0 TO AND

FROM THE JOB

GRAPHIC DAYFILE AND LISTINGS PLUS ANY
DATA DUMPS FROM THE DATA HANDLER

NORMAL JOB
ICOMPLETION PLUS

Figure 1

17303600 Rev., B

-3.

GRAPHIC DAYFILE AND LISTINGS PLUS ANY
DATA DUMPS FROM THE DATA HANDLER

GRAPHIC TABLE
UPDATES

General Process Chart

SYSTEM PROCESS CHART

The system process chart in Figure 1-4 also follows a program through the system, and
shows in more detail the interaction of the parts of the software with the hardware. This
chart is a schematic of the flow of data through the system during graphics program process-
ing.

CARD
PUNCH

i

L GRAPHIC DATA
e IMPORT EXPORT ‘ AEXEC
READER COMMUNICATIONS COMMUNICATIONS k¢ | TASk RETURN
— PACKAGE T PACKAGE \’?4%/ _ ROUTINES
: &047. s
GRAPHIC/ ~A4 s /
PRINTER e NON-GRAPHIC | N ~
DATA o
&) &7 iy
TRANSLATOR Rig / TS| Tasks
BUFFER SCHEDULER P / OVERLAYS
PACKER TIME-SHARES |o ! o/ &
GRAPHIC CONTROL E /8
POINTS s /L
jag O/
HI: X /K
178 &'« 6000 BGP
1700 BG.P. | Z ‘\/Q 1. DISPLAY CALLS
GRAPHIC DRIVERS i3S Q 2.DAZ¢ICE>3EPAR—
UEUE HANDLER
&Q 3. DATA HANDLER

SYSTEM
DISK

274
GRAPHICS
CONSOLE

1700 6000 PPU 6000 CPU

Figure 1-4. System Process Chart

1-10 17303600 Rev. B

INPUT/OUTPUT AND GENERAL PROCESSING 2

CONTROL POINTS

Two to three of the control points provided by the standard SCOPE operating system are
reserved in the modified form of the system used by Interactive Graphics. One to two can
be designated as graphics control points by the installation and are then used exclusively
for graphics programs, although the system makes them available on command for batch
use. The third control point is reserved for the use of EXPORT High-Speed.

SCHEDULER

The Scheduler is a PPU program; when called into its peripheral processor, it provides dy-
namic scheduling and time-sharing for graphics jobs running at graphics control points.
Graphics jobs are queued; if a job is on console 1, another job for console number 1 can be
read in before the current graphics job on the console is aborted and detached from the

console.

Initially, a graphics job enters the Interactive Graphics System as a batch job and is
assigned to a batch-processing control point for execution (batch job scheduling is done by
SCOPE, not by the Scheduler)., At some point in its execution as a batch job, the graphics
job calls the graphics reformatter (see Application Executive, Section 6).

SCHEDULER SUBROUTINE S

A set of Scheduler subprograms puts a graphics job into the graphics rolled out format so
that the job can be scheduled at a graphics control point.

After a program's initial call to the Scheduler/reformatter, the Scheduler drops the CPU and
clears the program's EXPORT HS communication word. The Scheduler then rolls out the
program, its control point field, dayfile, and all of its associated local file name table
entries. Permanent and COMMON files are assigned to EXPORT's control point while the
job is rolled out, and the program is then assigned an initial priority and placed in a special
graphics input queue. When the program is rolled back in, the file name table entries are

replaced to reflect the new control point number.

17303600 Rev. B 2-1

SCHEDULING OF GRAPHICS CONTROL POINTS

The execution priority of each program in the Scheduler's graphics input queue is determined
by the program's current field length and whether or not it has any unsatisfied graphics input

requests; short programs with no unsatisfied requests have the highest priorities.
GRAPHICS CONTROL POINTS

INITIALIZATION

The operator of the 6000 series computer assigns one or two graphics control points manually,
using the procedure given in the Interactive Graphics System Operating Guide (see Preface).
The type-ins that he uses enter the control point number in a table (EXPORT HS must be

assigned first); this table identifies which control points EXPORT must service for graphics

processing.

STRUCTURE

Figure 2-1 shows the general structure of one graphics control point area. The uses of the
various words and subdivisions are described in other sections of this manual. Minimum

field length of a control point area is about 7000 octal words.

NUMBER

In order to best use the dedicated space available plus the idle time when graphics tasks are
being rolled in or out to mass storage, two graphics control points should be used. While
one control point is accessing the mass storage device, the other can be executing and/or

performing input and output to the graphics console.

SIZE

The field length of graphics jobs should be kept to a minimum (10 to 20K). The suggested
method of application programming and the random-access loading of tasks permit division
of large code modules into smaller ones which may be rapidly accessed sequentially. The
data handler provides the capability to maintain data without large in-core arrays or appli-

cation concern with disk input or output.

9_9 17303600 Rev. B

RA
SYSTEM AND GRAPHICS COMMUNICATIONS AREAS

LABELLED COMMON (IF PRESENT)

ONE OR MORE STANDARD ROUTINE FILE BUFFERS

SYSTEM (FORTRAN ERROR TRACING ROUTINE)

AEXEC (APPLICATION EXECUTIVE ROUTINES),
ASSUMING NOTHING ELSE IN 0,0 OVERLAY

BLANK COMMON AREA (IF PRESENT)

SIO$ (FORTRAN INPUT/OUTPUT ROUTINE)

TASK OVERLAY

IN-CORE DATA BASE (DATA HANDLER AREA)

Figure 2-1. Graphics Control Point Field

GRAPHICS PROGRAM CARD DECK

User programs are compiled and executed on the 6000 series computer system. The user
submits his application program as a normal FORTRAN batch job card deck; the following
discussion assumes that the card deck is punched in standard 6000 Hollerith code.

17303600 Rev. B 2-3

The card deck consists of control cards, program cards, and data cards. The control cards
specify how the job is to be processed; the FORTRAN program cards and the data cards
follow the control cards in a deck. The deck ends with an end-of-file card (6-7-8-9 quadruple-

punched in column one).

CONTROL CARDS

JOB CARD

The first control card, the job card, must indicate the job name, priority, central processor
time limit, and memory requirements of the program. Fields are separated by commas;

the last field is terminated by a period. Fields other than the job name may appear in any
order. All capitalized letters must appear on the card; they are required by SCOPE.

(n, Pp, Tt, CMfl, TPm, EC{l.

n Alphanumeric job name, which begins with a letter and is 1 to 7
characters long.

Pp Equals priority level in octal, with a 1 as the lowest priority; the
upper limit on p is an installation option.

Tt t equals central processor time limit for the whole job, including
compilation and execution, in seconds and is 1 to 5 octal digits.

CMf1 fl equals total central memory field length of the job, with a maximum
of 6 octal digits.

TPm m is the number of tape drives required; it may not be omitted.

ECfl fl equals total extended core storage field length required in terms of
1000? word blocks, with a maximum of 77778; this parameter may be
omitted.

FTN CARD

The FTN card is usually the second control card in the deck. It calls the FORTRAN com-

piler and provides compiler mode, field length, and file names as follows:

(FTN(I=fn, B=fn, E=fn, lp=fn, T)

I=fn File name of source input, assumed INPUT if =fn is omitted.
B=fn File name of binary output, assumed LGO if =fn is omitted.

E=fn Prepare file name for input to UPDATE; assumed COMPS if =fn is
omitted,

2-4 17303600 Rev. B

lp=fn Listing parameters; OUTPUT is assumed as the file name if =fn is
omitted.

lp may be replaced by:

L normal listing

X non-ASA usage listing

R assembler cross-reference table listing
O object code listing

T Test mode for maximum error checking and traceback information
of binary routines.

LGO CARD

This card calls the SCOPE general purpose system loader and begins program execution —
regardless of the parameters on the FTN card. The format for this card is:

(LGO.

AEFILE CARD

The AEFILE card calls the graphics task file creation utility routine, AEFILE, which
restructures the program file identified by the second data card into an indexed random-
access COMMON file or primary overlays, identified by the name on the first data card.

AEFILE can also be used to add or replace overlays in the file - and make changes within
overlays.

This card has the format:

(AEFILE.

NOTE

If AEFILE creates a local task file, use the
creation/execution run deck shown in

Figure 2-9 but insert a COMMON card between
AEFILE and the source call card. The COM-
MON card is described on the following pages.
The option to create a local file is provided

so the user can catalog it as a permanent file.

17303600 Rev. B 2-5

SOURCE CALL CARD

This card is used in combined creation and execution runs. SCR. requests that the program
beginning with OVERLAY (SCR, 0, 0) be placed in a file named KCB for execution (see Fig-
ure 2-9). This differs from separate creation and execution runs in that the creation run
places the program on a COMMON file called OBJECT, where it can be called later by the

execution run (see Figures 2-2 and 2-8).

The format for this card is:

(" sc.

AEDUMP CARD

This card calls the AEDUMP utility routine, which reads a random-access file (the graphics
task file), removes all rewritten records and indexes, and writes it as a serial-access file

with an index as its first record.

The format for this card is:

(AEDUMP (s, o)

S Name of the random-~-access file to be used as a source; this is the file
created by AEFILE or AELOAD.

o Name of the serial-access file to be produced.

AELOAD CARD

The AELOAD card calls the AELOAD utility routine, which reads a serial-access file (the
file produced by AEDUMP) with an index as its first record. AELOAD then writes the file
as a random-access file with an index of disk addresses as its last logical record. The file
produced by AELOAD can be used as a graphics COMMON file.

The AELOAD card has the format:

(AELOAD (s, o)

s Name of the serial-access file to be read as a source; this is the output
file of AEDUMP,

o Name of the random-access file to be produced.

2-6 17303600 Rev. B

COMMON CARD

This card attaches any existing COMMON file named in its parameter field to the program
and changes its status in the file environment table so that no other program will have
access to it while the current program is running. When the program the file is attached to
terminates, the file is returned to the system and may be reassigned by another program's
COMMON card. The COMMON card's format is:

(COMMON, fn.

fn Name of the COMMON file (usually the graphics task file created by
AEFILE or AELOAD) to be assigned to the program.

RELEASE CARD

The RELEASE card eliminates the COMMON file named in its parameter field from the
system. When SCOPE encounters a RELEASE card, it changes the file's file name table/
file status table entry so that the file is reclassified as a local program file. When the

program ends, all of its local files are automatically destroyed. This card has the format:

@E LEASE, fn.

in Name of the COMMON file (usually the graphics task file) to be destroyed.

EXIT CARD

When SCOPE detects a program error, it searches the program's control card record for
an EXIT card. If it finds one, it performs any actions specified by the control cards follow-

ing the EXIT card, then terminates the program.

If an error occurs and no EXIT card exists, SCOPE simply terminates the job with a dayfile

message.

If no error occurs, an EXIT card (and any control cards following it) is ignored; SCOPE sim-

ply terminates the job with a dayfile message. The EXIT card format is:

(EXIT.

or

EXIT (S)

17303600 Rev. B 2-1

If the S parameter is used, EXIT processing is also done when assembly or compilation

errors cause termination.

PROGRAM CARDS

Several program cards are required by Interactive Graphics. Program cards, which are
punched as standard FORTRAN cards, are separated from control cards and data cards by

end-of- record cards (7-8-9 triple-punched in column one).

MAIN (ZERO-LEVEL) OVERLAY CARD

This card causes the FORTRAN compiler to translate the program overlay following it as a
zero-level overlay. Zero-level overlays always reside in core when the program is at a
control point, and serve to link blank COMMON areas between higher level overlays. The

main overlay card has the format:

(OVERLAY(1fn, 0, 0)

1fn Name to be assigned to the source file of overlays (produced by the
SCOPE General Purpose System IL.oader).

CALL AEXEC CARD

This card calls the application executive AEXEC program; when encountered at compile and
loading time, it causes the executive's AEXEC program to be loaded into the zero-level

overlay as a subprogram from the SCOPE system library. This card has the format:

(CALL AEXEC

If this card is not used, the programmer must supply his own executive zero-level overlay
to setup a call to AEFILE, load tasks, fetch buttons, and so forth.

TASK LEVEL OVERLAY CARD

This card is used to begin each task overlay and serves as an end-of- record card for the

overlay preceeding it.

2-8 17303600 Rev. B

The format for this card is:

(OVERLAY (p, s)

p Primary overlay level number in octal; must be greater than zero and
less than 1008.
s Secondary overlay level number in octal; must be positive and less than
100,.
8

Overlays need not be numbered sequentially in an input file.

DATA CARDS

If a graphics program uses the AEXEC program, there must be at least one data record in
its deck.

The first data record contains the file name parameter cards used by the executive's AEXEC
program. The file names on these cards are standard seven-character alphanumeric names,
starting in column one of the card. The first card must contain the name assigned to the
graphics COMMON file; the second card (used only during a file creation run) must contain
the name of the file produced by the general purpose system loader. This source file name
must agree with the name given on the program's main overlay card (see page 2-9).

SAMPLE PROGRAM DECKS

Figures 2-2 through 2-9 depict program decks for various task file creation, maintenance,
and execution functions. The operation of the system utility routines called by the control

cards is explained in more detail later in this section.

ZERO-LEVEL OVERLAY CONTENT

The zero-level overlays in all runs of a job must be identical. The overlays in the task file
are linked to FORTRAN and application executive entry points within the zero-level overlay
and are relocated with respect to the first word address of the zero-level overlay's blank
COMMON. Unless the same zero-level overlay is used for all runs, task loading and
COMMON linkage will not occur properly.

If the zero-level overlay, the size of blank COMMON, or the number of files used is changed,
a new file creation run should be made to alter the linkages and loading addresses for each
of the tasks in the task file.

17303600 Rev. B 2-9

If the name of a file or a blank COMMON location is changed without changing the zero-level
overlay's core requirements, it is necessary only to change the task overlays affected by

the name changes; this can be done with a file maintenance run.

All file requirements (such as INPUT, OUTPUT, or TAPEG6) must be listed on the zero-level
overlay's PROGRAM card; they may not appear on a PROGRAM card in any other overlay.

The FORTRAN compiler allocates file environment table entries and buffers for these

files and sets pointers to the allocations for use during the execution run. Each subsequent
allocation of a file with a given name is written over the previous one, so that a file listad

in the zero-level overlay and in another overlay will have pointers only in the latler. There-
fore, when the zero-level overlay is entered at execution time, the FORTRAN linkage routine
will try to find a file environment table entry for file but will fail; the pointers that it
searches for will be unavailable because they are in an overlay that has not yet been loaded.

When the linkage routine's search fails, the job is aborted with the diagnostic message:

NO OUTPUT FILE FOUND

This portion of a program would cause such a diagnostic:

OVERLAY (SOURCE, 0, 0)
PROGRAM ONE (TAPEG6)
o
[]
®
OVERLAY (1,0)
PROGRAM TWO (TAPES6)
[J
[]

FILE CREATION RUNS

Figure 2-2 shows a typical card deck for an initial file creation run, using the application
executive AEXEC program and the system AEFILE routine. This deck can create a file

with a maximum of 6310 primary or secondary overlays.
A graphics COMMON file containing more than 6310 overlays can be created. A deck, such

as the one shown in Figure 2-4, can be used to build a task file that contains as many over-
lays as the installation-specified limit MNOVL will permit (see AEFILE routine).

2-10 17303600 Rev. B

FILE MAINTENANCE RUNS

If a program library has been created for graphics jobs, and it has the same format as the
sample deck shown in Figure 2-2, then a task file can be created from it. By using the sys-
tem UPDATE program, the programmer can make corrections during the same run. Figure
9.3 shows a deck that will form a corrected task file from an UPDATE library tape; the
routine in card deck LBTASK will be placed in the file SOURCE from tape OLDPL, and task
file OBJECT will be produced.

Task overlays can be added to an existing graphics COMMON file by using AEFILE. Figure
2-4 shows a sample deck which adds a primary level overlay ADDTASK to the end of the file
created by the deck in Figure 2-2,

Task overlays may also be replaced within a graphics COMMON file by using AEFILE.
Figure 2-5 shows a sample deck that will substitute the revised primary overlay TASK1 for
the original primary overlay TASK1 in the file created by the deck shown in Figure 2-2. The
substitution is made according to the name given on the new task's PROGRAM card — the new

task will replace the old task with the same name within the file.

Figure 2-6 shows a deck that will take the file OBJECT created by any of the preceding decks
and store it in a purged form on magnetic tape as a file called SOURCE.

Figure 2-7 shows a sample deck that purges the file OBJECT! (similar to OBJECT of
Figures 2-2 through 2-5) and recreates it as file OBJECT for use in a subsequent execution

run,

17303600 Rev. B 2-11

GRAPH35,P17,T10000, CM40000, TP1, Job card

Control FTN, -——— FORTRAN compiler call card
card LGO. = SCOPE loader call card
record AEFILE, - Task file creator call card
7
8 End-of-record card
9
r OVERLAY (SOURCE, 0, 0)
Main
(zero-level) PROGRAM CREATE
overlay CALL AEXEC —=&————— Application executive main
L END program call card
r OVERLAY (1,0)]
Program First
record task PROGRAM TASKI1
primary °
overlay e
- END — Tasks to be filed
M OVERLAY (2,0)
ext PROGRAM TASK2
as
primary d
overlay b
END
7 _
8 End~of=-record card
9
OBJECT —== Graphics COMMON file
Data name parameter card
record SOURCE —= Current overlay file
6 name parameter card
78 End-of-file card
9

Figure 2-2. File Creation Run Deck

2-12 17303600 Rev. B

UPDATRI, P17,T10000, CM40000, TP1. Job card

REQUEST, OLDPL, ~=&— Operator tape assignment
Corgrol request card
car
record UPDATE (F) -~ Call UPDATE routine card
FTN (I=COMPILE) ——— FORTRAN compiler call card
LGO, - SCOPE loader call card
AEFILE, = Task file creator routine call card
7
8 End=-of-record card
9
P *|DENT, LBTASK
rogram
record .]— UPDATE and FORTRAN cards
°
7
8 End-of-record card
9
Data OBJECT ~—t— Graphics COMMON file name
record parameter card
SOURCE —— Overlay source file (on OLDPL)
6 name parameter card
78 End-of-file card
9

Figure 2-3. UPDATE File Correction and Creation Deck

17303600 Rev. B 2-13

GRAPH35, P17, T10000, CM40000, TP1. Job card

FTN, - FORTRAN compiler call card
Control COMMON, OBJECT, ~e———————— Graphics COMMON file
card attachment card
record LGO. —= SCOPE loader call card
AEFILE, - Task file creator routine
7 call card
8 End-of-record card
9
[OVERLAY (SOURCE, 0, 0)
Main PROGRAM CREATE
(zero-level)
overlay CALL AEXEC
L END
P OVERLAY (77,0)
rogram
record PROGRAM ADDTASK
o New overlay for task file
™
END
7
8 End-of-record card
? ———————— Graphics COMMON file
Data OBJECT name parameter card
record SOURCE —~-—- Source file name parameter card
6
7 .
8 End-of-file card
9

Figure 2-4., Task Addition Maintenance Run Deck

17303600 Rev. B

GRAPH35, P17, T10000, CM40000, TP1. Job card

FTN, —--= FORTRAN compiler call card
Control COMMON, OBJECT, ~————— Graphics COMMON file
card attachment card
record LGO. —=— SCOPE loader call card
AEFILE, - Task file creator routine
7 call card
8 End-of-record card
9
r OVERLAY (SOURCE, 0, 0)
Main
(zero-level) PROGRAM CREATE
overlay CALL AEXEC
Program L END
record OVERLAY (1,0)
PROGRAM TASK1
° Revised first task overlay
°
END
7
8 End-of-record card
9
OBJECT -~ Graphics COMMON file
Data name parameter card
record .
SOURCE ~==— Source file name parameter card
6
A End-of~file card
9

Figure 2-5. Task Replacement Maintenance Run Deck

17303600 Rev. B 2-15

GRAPH35, P17, T10000, CM40000, TP1. Job card

REQUEST, SOURCE, —= Tape request card
Control REWIND, SOURCE, -—-— Tape rewind card
card COMMON, OBJECT, —~——————— Graphics COMMON file
record attachment card
AEDUMP (OBJECT, SOURCE) —&———— Task file dump routine call card
6
7 .
8 End-of-file card
9

Figure 2-6. Sample Deck to Purge and Store File

GRAPH35, P17, T10000, CM40000, TP1. Job card

COMMON, OBIJECT!, —e————— Graphics task COMMON file
assignment card

AEDUMP (OBJECT1, SOURCE]) —-e—— Old task file purging

S::::]fml AELOAD (SOURCE1, OBJECT) —=e——— Card to detach old graphics task file
record RELEASE, OBJECTI.

EXIT. Error condition exit processing cards
RELEASE, OBJECT,

End-of-file card

©w®ON®

Figure 2-7. Sample Deck to Purge File Within System

2-16 17303600 Rev. B

PROGRAM EXECUTION RUN

Figure 2-8 shows a typical program execution run card deck; the program uses the graphics
COMMON file called OBJECT, which was created by the decks in the preceding figures.

GRAPH35,P17,T10000, CM40000, TP1. Job card

FIN, -~== FORTRAN compiler call card
COMMON, OBIJECT, —~e—————— Graphics COMMON file

assignment card

Control LGO, -= SCOPE loader call card
card RELEASE, OBJECT, —= Graphics COMMON file
record .
detaching card
EXIT.
RELEASE, OBJECT. Error condition exit processing cards
7
8 End-of-record card
9

OVERLAY (SOURCE, 0,0)
PROGRAM XECUTE

Program
record CALL AEXEC —=———————— Application executive main
END program call card

7

8 End-of-record card

9
Data } OBJECT —t Graphics COMMON file
record name parameter card

7

8 End-of-record card

9
Data } Data cards for program execution
record

6

7 .

8 End-of-file card

9

Figure 2-8. Execution Run Card Deck

COMBINED CREATION AND EXECUTION RUN

A graphics program can also create and execute its graphics COMMON file in one pass
through the computer. Figure 2-9 shows a program card deck that combines the previously
described creation and execution runs for the file called KCB. If the local file option is
being used, insert the card COMMON, KCB. after AEFILE,

17303600 Rev. B

GRAPH35,P17,T10000, CM40000, TP1. Job card

FTN, ~——— FORTRAN compiler call card
LGO, - SCOPE loader call card
AEFILE, —== Task file creator call card
S:rr:jfrol SCR, —= Source call card for execution
record RELEASE (KCB) - Graphics COMMON file
detaching card
EXIT,
RELEASE (KCB) Error condition exit processing cards
; .
8 End-of-record card
9
r OVERLAY (SCR,0,0)
o level) PROGRAM CREATE (INPUT, OUTPUT)
overlay CALL AEXEC
L END
[OVERLAY (1,0)
Program Firet PROGRAM TASKI
record primary e
overlay e
L END — Tasks to be filed
OVERLAY (2,0)
ext PROGRAM TASK2
primary L
overlay °
L END
. -
8 End-of-record card
9
KCB - COMMON file name card
SCR Current overlay file name card
7
8 End-of-record card
9
E:::rds KCB —== COMMON file name card
7
8 End=-of-record card
9
Data deck
6
7 .
8 End-of-file card
9

Figure 2-9. Creation and Execution Run Card Deck

2-18 17303600 Rev. B

SYSTEM UTILITY FUNCTIONS

In addition to the Scheduler and its subroutine, a graphics program uses SCOPE routines to
create and maintain the graphics task file and to process abort conditions.

TASK FILE CREATION

Initially, application programs can enter the system either through a remote card reader at
the 1700 site or at the 6000 series computer's card reader. Remote entry gives the pro-

grammer a convenient tool for program debugging.

After the program is submitted to the system, the control cards in its first logical record

determine further processing.

First, SCOPE queues the job in the batch input queue according to the priority on its job
card and creates the proper entries in the system file environment table/ file name table
(FET/FNT).

When SCOPE assigns the program to a batch job control point, the next control card is pro-
cessed. This is the FTN card, which calls the FORTRAN compiler.

After compilation, the next control card is processed. For a graphics task file creation run,
this would be the LGO card.

The LGO card calls SCOPE's general purpose system loader (GPSL), which takes the com-
piler's output, satisfies all 6000 Basic Graphics Package references from the system library
and organizes this data into a serial-access scratch file of overlays. This file is given the
name specified on the main (or zero-level) OVERLAY card; it is written one overlay to a
record and positioned after the program's first record (the main or zero-level overlay

record).

Each record of this file contains two tables. The first is the 77 or prefix table; the second
is the 50 or overlay table. The 50 table contains two header words with the format:

59 47 41 35 17 0
Primary Secondary Address of Overlay
Overlay Overlay FWA of Overlay Entry Point with
5000 with respect to
Level Level Control Point RA Respect to Control
Number Number ontrof Foi Point RA
Overlay Entry Point Name Program Address

followed by the binary text of the overlay.

17303600 Rev. B 2-19

SCOPE continues processing the LGO card by starting program execution; the program is
initially treated as a batch job and executed at a batch job control point.

These instructions, which are supplied by either the programmer or the application executive
AEXEC program (see Section 6), place file names in RA+3 and RA+4 of the program's current
control point area. ’

The program then passes control back to SCOPE for normal termination of LGO processing.
This consists of executing the .next card (which should be an AEFILE card in a file creation

run deck) in a control card deck.

AEFILE ROUTINE

AEFILE is the graphics task file creator; it reads the name of the loader-created overlay
file from RA+3 and then writes that file (without the zero-level overlay record) on the system
disk as absolute-addressed FORTRAN overlays.

T

This new file is the program's graphics COMMON file. It consists of named random records,
each containing a 50 table and a primary overlay (the 77 table is not written into the graphics
COMMON file). The record name is taken from the overlay entry point name in the second
word of the 77 table.

AEFILE catalogs the disk address of each overlay record and writes a task directory con-

taining this information as the last logical record of the graphics COMMON file.

TASK DIRECTORY

The task directory (Figure 2-10) contains pointers for MNOVL overlays (MNOVL is an in-
stallation parameter). Since each task is accessible through its name in the task directory,

the applications programmer can make additions to and deletions from an existing task file.

The task directory contains two blocks of information. The first block is a standard index
for a named random file. It consists of one header word and two central memory words for
each overlay record in the graphics COMMON file. The negative value of the header word

indicates that the information block following it is a named random index.

The second block of information contains one entry (a single central memory word for each
overlay record). This block is treated as a suffix to the index in the first block and is used

by the application executive routines to load the task overlay during program execution.

Y An installation parameter exists by which AEFILE creates local task files. The program-
mer, by use of the appropriate SCOPE control cards, may choose COMMON or PERMA-
NENT files (see Figures 2-11 and 2-12). For additional information, consult the installa-
tion procedures.

2-20 17303600 Rev. B

HEADER 59 4l 35 17 0

A /A Y R
INDEX f | NAME OF RECORD 1 '(ZERO-FILLED) 1/////////,
agggx(////////////////A///// DISK ADDRESS RECORD 1
g‘NQ‘% » f_ NAME OF RECORD 2 . (ZEROFILLED) /// / / / / / /// //
\ _/////////////////////// DISK ADDRESS OF RECORD 2

/
+ /, //// OVERLAY ENTRY
ENTRY SUFFIX 4§ |LENGTHOF RECORD 1 // FWA OVERLAY POINT ADDRESS
1V, OVERLAY ENTRY
ENTRY SUFFIX 2 |LENGTH OF RECORD 2 / / FWA OVERLAY POINT ADDRESS

—t

4
. OVERLAY ENTRY
QCK QENTRY SUFFIX 3 |LENGTHOFRECORD 3 /) /// A FWA OVERLAY | boiNT ADDRESS
OVERLAY ENTRY
FWA OVERLAY | oo INT ADDRESS
OVERLAY ENTRY
FWA OVERLAY | oo \NT ADDRESS

ENTRY SUFFIX 4 |LENGTH OF RECORD 4

S
S

ENTRY SUFFIX 5 |LENGTH OF RECORD
\

S

T

ML= MAXIMUM LENGTH OF OVERLAY RECORD=FWA+ACTUAL RECORD LENGT
+400B FOR ROLLIN/ROLLOUT

T ACTUALLY THE LENGTH OF THE RECORD PLUS FWA OF LOAD

Figure 2-10. Task Directory

17303600 Rev. D v 2-21

Only the first block of the task directory is used to read or write the graphics COMMON file,
but both blocks are included in the index pointers when the file is closed or opened so that
they will be retained on the disk as a catalog.

AEFILE ACTIONS

Before AEFILE can create a graphics COMMON file, it must make FET and FNT entries for
both the COMMON file and the loader-created overlay source file; AEFILE uses SCOPE
library macros and the contents of RA+3 and RA+4 to do this., If AEFILE detects an error
in the table entries when the macros finish, it produces a dayfile message (see Appendix

B) and aborts the job.

The graphics COMMON file entry defines the file as a system COMMON file and associates
the programmer's graphics COMMON file name with it. The source file entry is used to

save that file on the disk after the graphics COMMON file is written; the source file is treated
as a local file and is destroyed when program execution ends.

After the entries are made, AEFILE uses SCOPE library macros to open the COMMON file,
read the overlay source file, write the COMMON file, and close the overlay source file.
These SCOPE macros write the graphics COMMON file on the most easily accessed allocable
device (usually the system disk).

If AEFILE finds that FET and FNT entries already exist for the graphics COMMON file, it
opens the file, saves the index, adds or inserts the contents of the overlay source file to the

COMMON file, then writes a new task directory containing the latest index entries.

TASK FILE MAINTENANCE

If AEFILE is used to replace a task in an existing graphics COMMON file, it performs the
action logically but not physically. This means that the old copy of the task still occupies
storage space in the file, but is not listed in the new task directory index.

For example, the file OBJECT created by the decks in Figures 2~2 and 2-5 would contain:

TASK1
TASK2

°

°

°
TASKT7
Old Index
New TASK1
New Index

2-22 17303600 Rev. B

A file like this should be purged after several debugging or updating runs to keep it from
wasting mass storage and becoming unwieldy. Purging is done with the AEDUMP and

AEIOAD routines at a regular batch processing control point,

AEDUMP ROUTINE

AEDUMP is a system library routine that is called by a control card; it requires 15K words
of memory. AEDUMP reads the indexed random file named by the first parameter on its
control card and writes a new sequential file with the name specified by its second control

card parameter.

The sequential file created by AEDUMP contains the index of the random file as its first
record. Although the disk addresses in the index are meaningless, the record names and

index suffix entries do not have to be altered to recreate a random file.

The other records of the sequential file are the binary text task overlay records; these
records are written in the order that they are listed in the index. Only those records from
the random file that are listed in the index are written into the new file. Unlisted records

are skipped; therefore, the file created from the records in the example above would contain:

New Index
New TASK1
TASK2

°

.

°
TASKT77

This sequential file could then be written on tape for storage outside of the system, or it
could be used immediately to recreate a random task file — using the AELOAD routine.

AELOAD ROUTINE

AELOAD is also a system library routine and is called by a control card. AELOAD reads
the sequential-access file named in the first parameter of its control card and creates a

random-access COMMON file with the name specified by the second control card parameter.

The sequential-access file used by AELOAD need not be located in mass storage; AELOAD
will call a tape driver to read the file if the programmer has supplied a valid REQUEST con-
trol card in his job deck.

17303600 Rev. B 2-23

The file created by AELOAD is structured exactly as one produced by AEFILE. The new
task directory contains new disk addresses; the name of each task record is checked against

the sequential file index as the record is written in the new file (if the names do not agree,

a diagnostic message is produced and the job is aborted).

The AELOAD graphics task COMMON file can be used for program execution by the card

deck shown in Figure 2-8.

AELOAD requires 15K words of memory.

GRAPHICS PROGRAM ABORTING

If an applications programmer wants to abort a program, he usually creates a light-button
at the graphics console to call GIABRT (see Section 6). This routine displays a dayfile and

console message and calls the SCOPE abort routine.

When a 6000 Basic Graphics Package routine finds a programming error, it produces a day-
file and console message; the program's application executive routine then issues the

messages and calls the SCOPE abort routine.

If the 6000 series computer detects an error condition during program execution, it sets a

control point flag which calls the SCOPE abort routine and produces a dayfile message.

If the 1700 series computer detects an error condtion or an illegal request, it generates
MSOS IMPORT HS directive code 23 (the 1700 operator can also generate this code with a
type-in command). This sends a message to the affected console and informs EXPORT HS
to flag the program for abortion. The Scheduler detects EXPORT's flag during the next

rollin of the program, issues a dayfile message, and calls the SCOPE abort routine.

EXPORT HS removes an aborted graphics program from the Scheduler's input queue and

disconnects any graphics consoles assigned to it.

The SCOPE abort routine releases all of the job's files to the system and sends output files
to the 1700 if the program originated there. It will dump a core listing with the output file

if the program requests it by using a control card.

After a graphics abort, the dedicated memory assigned to the program is not released to

batch jobs, as is the normal system procedure, but is retained for future graphics programs.

2-24 17303600 Rev. B

FILES

The programmer uses standard SCOPE control cards to attach all files used in the graphics
program. A maximum of 51 files per program can be handled by the Scheduler; this number
includes all local scratch files, the job's graphics COMMON file, the overlay source file
named in the zero-level overlay card parameter field, and all data handler files (see Section 6).
Up to 28 of these files may be local, and the remaining 23 may be any combination of COMMON
and permanent files. See Figures 2-11 and 2-12 for sample creation and execution decks for

a permanent file.

Once a file is attached to the graphics program, the file is not available to other programs.

GRAPHICS COMMON FILE

The file created by the AEFILE and AELOAD routines is a graphics COMMON file.

COMMON file names must be unique for each user. Using the last two digits of the file name

to designate a user graphics console would eliminate possible duplications.

LOCAL FILES

All files that are local are rolled out with a program; thus, the remaining graphics control

point(s) can be used (if available).

INPUT FILES

Tape and card files other than the FORTRAN input file must be put in mass storage before
being used by a graphics program. These files are read in and made COMMON with names
different from that of the graphics task COMMON file.

OUTPUT FILES

All tape output is through a disk file. After a graphics job is completed, a SCOPE utility
program can be used to transfer the data to magnetic tape.

PERMANENT FILES

If the installation option for local files is used, the local files may be cataloged as permanent
files and later attached for execution.

17303600 Rev. B 2-25

GRAPH35, P17, T10000, CM40000, TP1,

FTN, ==
Control LGO. c
card
record AEFILE, —-=
CATALOG (TEST, MYLIB, ID=1GR)
7
8
9
[OVERLAY (SCR,0, 0)
Main PROGRAM CREATE
(zero-level)
overlay CALL AEXEC
L STOP
Program END
record r OVERLAY (1,0)
First PROGRAM TASK3
task
primary °
overlay o
STOP
I_ END
7
8
9
Data TEST
record SCR
6
7
8
9

Job card
FORTRAN compiler call card
SCOPE {oader call card

Task file creator routine call card

End-of-record card

End-of-record card

End-of-file card

Figure 2-11. Sample Deck to Create A Permanent File

17303600 Rev. B

Control
card
record

Program
record

Data
record

17303600 Rev. B

GRAPH35, P17, T10000, CM40000, TP1.

FTN, -

ATTACH (TEST,MYLIB)

LGO, —-——

7

8

9
OVERLAY (SCR,0,0)
PROGRAM EX
CALL AEXEC
STOP
END

7

8

9

TEST

6

7

8

9

Job card
FORTRAN compiler call card

SCOPE loader call card

End-of-record card

End-of-record card

End-of-file card

Figure 2-12, Sample Deck to Execute A Permanent File Task

GRAPHICS HARDWARE INFORMATION 3

Proper use of the 6000 Basic Graphics Package routines by the applications programmer
requires a general knowledge of the graphics hardware. This section describes those system
characteristics which are used by the 6000 series Interactive Graphics System applications

interface routines.

GENERAL DESCRIPTION

The graphics system provides an interface for the handling of graphic or alphanumeric infor-
mation; entries or modifications made at the console are placed into the 1700 series computer
in digital form and become available for use by the 6000 series computer system. This
graphics input becomes visible on the cathode-ray tube and can be used for information proc-
essing by an applications program under console operator control. Results of such processing
can be immediately displayed on the screen. Static display of graphic and alphanumeric data
at the consoles is provided by buffer memories because the consoles are essentially off-line
devices. The 1700 is used to process display-change information, thus saving transfer time
from the 6000 series computer.

GRAPHICS CONSOLE

The graphics console is the input/output and control center for the Interactive Graphics user.
The complete range of system graphics capability can be controlled from the console without
recourse to other points of control. The console is designed for maximum operator utilization
and comfort and can be used efficiently at normal room light levels,

The console cabinet is a desk-size unit which mounts a rectangular housing assembly, off-
centered to the left, and provides a writing surface to the right. The housing assembly con-
tains a magnetic shield and a 20-inch diameter cathode ray tube centered on the front panel

housing.

The cathode tube is a precision, 52-degree, high-resolution unit and has a nearly flat display
surface to minimize parallax error. The tube is equipped with an implosion shield for the
protection of the operator and is coated with a two-layer P-7 phosphor. One layer produces
blue-violet light with a short persistence to facilitate light-pen tracking. The other layer
produces yellow-green light and has a longer persistence to eliminate flicker. With a con-

tinuously refreshed display, the light from both phosphor components combines to appear

17303600 Rev. B 3-1

light blue to the human eye. The deflection yoke and driving circuitry of the console are
designed to make the entire 314 square inches of cathode-ray tube surface available for dis-
play. The tube has a resolution of 1000 lines in 20 inches.

Data can be entered on the cathode-ray tube via the lightpen or one of three optional keyboards.

CONTROLS

The controls available to the console operator include the keyboards, lightpen, light-registers,
and light-buttons. The light-registers and light-buttons are defined by the application pro-
gram and formed for display on the screen by the 1700 Basic Graphics Package routines.

FUNCTION KEYBOARD

The 16-key function keyboard can be used to tell the application program that an operation is

requested (see Figure 3-1).

(OO0
OOO®
(clolclclo)

ORC,

Figure 3-1. Function Keyboard

Fourteen buttons contain a snap-action switch that remains on after an initial press and off
after being pressed again. The remaining buttons must be held down to give an "'on" status.
Each button has an internal light that shows the operator when the button is on. Removable
plastic cards may be placed over the keys to label the function of each. All keys can be given
new functional assignements by the application program through the 6000 Basic Graphics

Package.

3-2 17303600 Rev. B

Any change in the status of a key produces an interrupt at the 1744 Controller. The 1700
Basic Graphics Package then fetches the on/off status of all 16 keys as bits in a status word.
These status bits are placed in the IH and IV coordinate locations of a display item ID block
(see Section 5) created for the keyboard by the application program through a call to the
GIKYBD routine of the 6000 Package. Table 3-1 shows the relation between the coordinate
bits and the keys; a 1 in a coordinate bit indicates that the button is on.

TABLE 3-1. FUNCTION KEYBOARD STATUS IH, IV

Coordinate Bit Keyboard Button
0 1
1 2
2 3
3 4
4 5
5 6
v 6 e
7 8
8 9
9 10
10 1
11 12
0 13
1 14
IH 9 2 15
3 16

The application program retrieves the ID block through the application executive, GIFID,
GIFSID, GIBUT, or AELBUT routines of the 6000 Package; it then determines the function

requested by testing the values of the coordinates.

ALPHANUMERIC KEYBOARD

The alphanumeric keyboard (see Figure 3-2) provides typewriter-like symbolic input to the
application program. The keyboard layout is similar to that of a conventional teletypewriter.
A key causes an interrupt at the 1744 Controller and enters an 8-bit ASCII character code

in the left-hand portion of a status word that is fetched by the 1700 Package. The characters
corresponding to those in the software alphanumeric font are collected into line images and

displayed on the 274 Console screen in the currently defined light-register.

17303600 Rev, B 3-3

] " # $ | % 8 ! () * =
1 2 3 4 5 6 7 8 9 0 :
WRU | TAPE TAB | « | @ |LINE| RE-
Q w E R T Y u I 0 P |FEED|TURN
X OFF| EOT | RU [BELL VT |FORM| + | RuUB
CTRL|{ A S D F G H J K L 3 |out
t < > ?
SHIFT| Z X c v B N M ’ / |SHIFT

‘SPACE BAR

Figure 3-2. Alphanumeric Keyboard

The application program can acquire the console's input through calls to the 6000 Package
GIANS and GIANE. If the package GIEOM routine has been used to assign an ID block to a
particular keyboard character, that character will clear the register when it is entered.

The RETURN key functions as an end-of-message character.

LIGHTPEN

The lightpen has two functions: tracking and picking. Tracking may be used to place a

light source (the tracking-cross) at any desired position on the console screen so that a
graphics entity may be created there or to designate that position as an area of interest to
the user. Picking may be used to select an entity currently being displayed, to define points

on a displayed entity, or to select a light-button or tracking-cross.

LIGHT-REGISTERS

The light-registers allow the user to input and retrieve alphanumeric information and permit
the Interactive Graphics System to display error diagnostic messages. The number and
locations of the registers are defined by the application program through 6000 Basic Graphics
Package GUAN calls. If none have been defined, the system defines its own at (-552, 1600)
on the screen (for error messages); otherwise, the last one defined by a call to a graphics

utility routine in the program is used for system messages.

3-4 17303600 Rev. B

LIGHT-BUTTONS

The light-buttons are light spots on the console screen that are identified by a letter, digit,
symbol, or instruction code specified by the application program. Any displayed entity or
physical control key can also be defined as a light-button. Buttons are used to control ID

block queueing (see Section 5) and to initiate tasks.

DISPLAY PRESENTATION

The entire 20-inch diameter cathode-ray tube screen can be used for display presentation.

Points on the screen are addressed by a Cartesian coordinate system called the display grid.

DISPLAY GRID

The display grid (see Figure 3-3) consists of 4095 addressable points on the horizontal (H)
axis,and 4095 addressable points on the vertical (V) axis; coordinates can be given either

octally or decimally when addressing a point. Coordinate 77778 equals coordinate 0000 on
both axes.

The grid is larger than the screen so that all points on the screen can be addressed; points
beyond the edge of the screen can be addressed by a programmer but are invisible to a user
directly in front of the screen (if viewed at an angle, such points can be seen reflected off
the side of the tube). There are approximately 20010 grid points per linear inch; however,
because the cathode beam is wider than the distance between adjacent points, the console

controller drops the least significant bit from each coordinate address of a point.

NOTE

The console controller address may vary over a
range of plus or minus five grid units per inch,
depending on the customer engineer's adjustments.

The distance between two adjacent grid points is called a display grid unit (dgu).

17303600 Rev. B 3-5

|
|

@ o <+ T O -] 5
¢ & @ o © © © © 9 <
oecmar & 2 B8 8 B Y 2 co2 i 2283 8 0RQ
1 1 1 [} [] 1 1 1
2833 388833888888tk
OCTAL § ¥ 8 & 8 $ 8 ¥ k8% © £ & & 8 % = OCTAL DECMAL
3777 2047
,/A \‘\‘ 3300 1792
/ \ 3000 1536
/ \ 2400 1280
\ 2000 1024
/ N
N\ | a0 78 A
/ 1000 512
0400 256
0000 0
77T -0 v
7400 —256
EDGE OF 7000 —s)2
SCREEN . /
/ 6400 —768 |
A 6000 —1024
N / 5400 —i280
\‘ / 5000 —Is36
\\ l/ 4400 ~i792
\
4000 -—2048

Figure 3-3. Display Grid System

SCREEN ORGANIZATION

The organization of the screen is completely up to the programmer. However, certain con-
ventions may be used for a wide variety of applications. These conventions allow a program-
mer to make maximum use of the screen area, yet help him avoid addressing grid coordinates

off the screen.

WORKING SURFACE

One convention is to divide the screen into a working surface and a control surface. The
working surface is reserved for the display of graphics forms and is contained within the
frame or frames defined by the programmer (see GULINE and GUARC, Section 6). The

frame may or may not be displayed.

3-6 17303600 Rev. B

CONTROL SURFACE

The control surface is defined as the area outside of the frame or frames and is normally
reserved for light-buttons, light-registers, and the tracking-cross (when it is not in use on

the working surface). Figure 3-4 shows a sample of one type of screen organization.

WORKING SURFACE

CONTROL SURFACE

DISPLAYED GRAPHIC

FRAME

LIGHT-BUTTONS
TRACKING-CROSS
LIGHT—REGISTER

Figure 3-4. Sample Display Surface Organization

17303600 Rev. B

FRAMES

Table 3-2 defines possible frames within the screen area of the display grid. Several frames
may exist on the screen at the same time; they may overlap, or each figure may have its own
frame. The system software defines all frames as right rectangular areas, and frames may

be centered anywhere on the screen.

TABLE 3-2, SAMPLE FRAMES

Frame Size Center Coordinates Right Corner Coordinates
Maximum square, approx. IHCEN = 0000B IHCOR = 25708 or]40010
14 by 14 inches IVCEN = 00008 IVCOR = 25708 or 1400,
Horizontal rectangle, approx. IHCEN = 0000B IHCOR = 32448B or 17()0]0
11 by 17 inches IVCEN = 0000B IVCOR = 2114B or 1100,
Vertical rectangle, approx. IHCEN = 0000B IHCOR = 2114B or 1100,
17 by 11 inches IVCEN = 00008 IVCOR = 32448 or 170010

POTENTIAL PHOSPHOR DAMAGE

It is possible for programming errors to cause endlessly repeated or excessively intense
display of an item at the same location on the screen. This may cause damage to the cathode
ray tube phosphor. When one of these conditions is detected by the console operator at pro-
gram debugging time, the console must be turned off immediately by use of the console power
switch above and to the right of the screen. Console power status does not affect the operation

of the computer or of the Interactive Graphics System.

1744 DIGIGRAPHICS CONTROLLER

The controller uses a standard 1700 memory module (1708) of 4096 16-bit words for a buffer
memory with an option for an additional 4096 words. A 1700 programmer may use the

buffer memory as a display buffer or as an auxilliary 1700 series computer storage device.

As a display buffer, only bits 00 through 12 (with the exception of function and status codes)
contain meaningful data, As an auxiliary random access storage device, all 16 bits can be

used. Refer to the 1744 Digigraphics Controller Reference/Customer Engineering Manual

(see Preface) for further details.

3-8 17303600 Rev. B

1700 GRAPHICS FUNCTIONS 4

BUFFER TRANSLATOR

The buifer translator is called by MSOS IMPORT HS when the 1700 receives a data buffer
from EXPORT HS or is ordered to send a data buffer to the 6000 series computer.

The translator program will unpack the EXPORT HS buffers and put the calling parameters
of the 6000 Basic Graphics Package into a format that the 1700 Basic Graphics Package will
recognize. The translator also loads buffers for transfer to the 6000 series computer from
the 1700 Basic Graphics Package. All alphanumeric characters are code converted by the

translator into or from 1700 internal code. Floating-point conversions are done in the 6000

series computer by the 6000 Package routines.

PROGRAM ABORTING

The translator is also responsible for aborting graphics programs at the 1700. If a 1700
Package routine attempts to communicate with a console but the console's driver routine
detects a communication error or failure, the Package routine sets a flag to inform the
translator of the condition. The translator then displays an appropriate message on the tele-
typewriter and sends IMPORT directive code 23 to the 6000 (see Graphics Program Aborting,
Section 2).

The translator also aborts programs if it detects an invalid IDDAD, IDDADI, or MAD pro-
gramming parameter while it is processing a buffer from EXPORT HS. In this case, the
translator returns a 1700 ABORT message to the 6000 series computer, displays an approp-
riate MSOS message (see Appendix B) on the screen of the affected consoles and at the tele-
typewriter, and sends the MSOS IMPORT HS directive code to EXPORT HS.

If the Digigraphic Interrupt Processor of the 1700 Package detects an error condition while
attempting to process console input or output, it also sets a flag for the translator. The
translator then types out one of the two reject messages given in the manual referenced

above and aborts the job in the same manner as given above for a console driver error.

1700 BASIC GRAPHICS PACKAGE

The 1700 Basic Graphics Package contains a set of graphics routines and a queue handler to

process lightpen/keyboard picks and save tracking-cross positions.

17303600 Rev, B 4-1

The functions of the 1700 Basic Graphics Package routines are similar to those of the graph-
ics utilities and graphics hardware interface routinesof the 6000 Basic Graphics Package.
The calling statements for both sets of routines are identical; two Packages are used solely
to prevent tying up the 6000 series computer with the detail work necessary to service a

display console.

The applications programmer is concerned only with the 6000 Basic Graphics Package. He
writes his programs in parametric form, and the 6000 Package then passes these parameters
(via EXPORT/IMPORT HS and the buffer translator) to the 1700 Basic Graphics Package,

which uses the data to actually drive the cathode-ray tube of its associated graphics console.

Specific information regarding the functions of the 1700 Package routines is beyond the scope

of this manual.

SYSTEM EXPANSION

The Interactive Graphics System can be expanded by the addition of routines to the graphics
utilities library of the 6000 Basic Graphics Package (Section 6). Although such additions
could be made without corresponding changes in the 1700 Package, the efficiency of the sys-
tem increases by the addition of a corresponding 1700 Package routine for each routine added

to the 6000 Package. This approach simplifies 1700 error processing.

Additions to the two Packages can be made without changes in any of the other parts of the

system software.

The associative address table (AAT) is currently dimensioned at 400 words. Each display
item or macro requires two words of storage in this table. One word contains the IDDAD
and the other contains the item's location in memory. IDDADs and locations of 200 display
items or macros can now be stored in the AAT, but this table in the 1744 can be dimensioned
to store more information. If the table is dimensioned larger, the maximum number of

items and macros that can be erased with GIERAS and GIMACE is also larger.

4-2 17303600 Rev. B

DISPLAY ITEMS AND PICK PROCESSING 5

Every item that the programmer creates on the display screen has identification information
associated with it in the 1700 series computer's memory, as does every console input device
that he wishes to have his program service. This information includes parameters from the
6000 Basic Graphics Package calls which the programmer uses to create and manipulate the
item or to define the functions of the device. These parameters (and other pick processing

information) are organized into a structure called a display item ID block.

DISPLAY ITEM ID BLOCK

The 1700 Basic Graphics Package maintains a buffer of the item ID blocks created by the

programmer (see Section 6) as shown in Figure 5-1.

15 1312 11 10 87 0 BITS

WORD 0| M s //// STRING POINTER
1 IDDAD '

o

IDDC IDDT
IDWA | 5_o

IDWB IDWA 5 1,

7-0
IDWB,, ¢

////// Logss =

, Item Being Marked (blinked when picked)
S=], Single Pick Type Item
S =2, String Pick Type ltem
S =3, Button Pick Type Item

NV 0N O N

= Tracking Cross Coordinates (for a Button only)

Figure 5-1. Display Item ID Block in 1700

17303600 Rev. B 5-1

The ID block is the basis of all graphics input processing. The four ID quantities IDDT,
IDDC, IDWA, and IDWB are defined and used by the programmer. The display item type
code IDDT is also used by the queue handler and the 1700 interrupt processor mask compari-

son routines (see GIMASK, Section 6).

The IDWA/IDWB of a light button would normally contain the name of a task to be called by
the application executive AETSKR routine; the task name is left-justified beginning in
IDWA. The IDWA/IDWB of a graphic figure would contain a data bead address (see Data

Handler, Section 6) as its last five characters.

The contents of IDDT and IDDC cannot exceed 8 bits (377B) each; IDWA and IDWB cannot
exceed 24 bits (77777777B) each. IDDT = 0 is reserved for alphanumeric input only.

ID blocks may be associated with other graphics input devices and with the items on the dis-
play. These are:

® The console function keyboard

® An alphanumeric end-of-message character

° The switch on the lightpen

] The pick of some display item of a particular type. This results in two ID blocks
being queued, for example, a regular display item may also be conditioned to
act as a button (see GIPBUT, Section 6).

To have an ID block from a device input to the application program, the IDDT of the device

must classify it as one of the three types of pick information processed by the queue handler:

e Single pick information
. String pick information

] Button pick information

QUEUE HANDLER

Since the console operator will get ahead of the application program's execution, it is neces-
sary to have a means of allowing the operator to use the lightpen, keyboard, and tracking-
cross at his own speed while still enabling the graphics software to keep track of the picks and
tracking-cross coordinates for later use by the application program. The queueing mechanism

by which this is accomplished reduces the time a console operator must wait between requests.

5-9 17303600 Rev. B

PICK TYPES

The picks made by the console operator are queued as four types of ID blocks before being

passed to the application program:

e Single pick type — only the copy of the ID block for the latest single pick display

item chosen is kept in the queue, regardless of how many such items are picked.

° String pick type — one copy of a string pick display item ID block is kept in the

queue for each time such an item is picked.

° Alphanumeric type — includes alphanumeric characters picked by either the

lightpen or a keyboard key; queued in the same manner as a string pick type.

° Button pick type — one copy of the ID block for a light-button is kept in the queue
for each time such an item is picked. The button pick ID is similar to the string

pick ID except that a button pick may reactivate an idle application task.

The single pick ID block and the string pick ID block are associated with the button pick ID
block, and the button ID block may contain tracking-cross coordinates along with other ID
information.

QUEUE HANDLER FUNCTIONS

When the 1700 Basic Graphics Package interrupt processor detects a lightpen or keyboard
pick, it turns control of the 1700 series computer over to the queue handler. The queue
handler then performs three actions:

1. Does an ID read of display memory to determine which item has been picked.

2. Logical ANDs the IDDT of the pick ID block with the set of ID processor masks
(see GIMASK).

3. Performs the queue operation specified by the result of the ANDing.

If the logical AND of the IDDT and the set of masks is nonzero, the queue handler will place
the ID block of the picked item on the end of the appropriate queue string. For example,
after the AND of the following IDDT and mask values, the ID block involved is placed at the
end of the set of queued string picks and the blink byte in the reset sequence is complemented;

that is, a nonblinking item will blink and a blinking item will no longer blink.

17303600 Rev. B 5-3

00 00O0O0OT1DO IDDT of picked items
000001 00 Ignore Mask
000 01 0 00O Single Pick Mask
nonzero
AND 0000001 O String Pick Mask
0 01 00 0 OO Button Mask
000 0O0O0TO Marker Mask

In each of the following cases, the ID read processing differs from that of a normal lightpen

strike. However, steps 2 and 3 above remain the same:

o If GILPKY has been called and a lightpen switch interrupt occurs, the queue hand-
ler will read the assigned ID block from a table in 1700 memory.

° If GIKYBD has been called and a keyboard interrupt occurs, a 1700 memory ID
read will be performed.

o If GIEOM has been called and an EOM key press or an EOM font pick causes the
interrupt, a 1700 memory ID read will be performed.

° If GIPBUT has been called and a prime button pick causes an interrupt, both a

1700 memory and a 1744 display memory ID read will be performed.

The queue handler also retrieves ID blocks from the FETCH queue (see below) when they
are requested by a 6000 Basic Graphics Package GIBUT or application executive AETSKR
call,

FETCH AND WAIT QUEUES

There are actually two separate queues maintained in the 1700's memory for each graphics
console — the FETCH queue and the WAIT queue.

The WAIT queue serves as a temporary console input buffer in which to arrange and complete
a set of picked ID blocks. The WAIT queue is not accessible to the application program; this
prevents the program from receiving an incomplete set or string of pick ID blocks if it requests
transfer of the blocks to the 6000 while the console user is still building a stringor editing a
set of queued blocks.

A button pick automatically transfers the ordered blocks from the WAIT queue to the FETCH
queue. The blocks are then passed to the program in the 6000 series computer from the
FETCH queue.

5-4 17303600 Rev. B

Whenever an item is erased from the display, both queues are scanned for a pick of the
erased item. If the item is a single pick type or string pick type and is erased, the ID block
is spliced out of the WAIT queue. If the erased item is in the FETCH queue as a button, the

button ID block and its associated single pick and string pick ID blocks are all removed.

QUEUE MECHANISM OPERATION

The following set of diagrams illustrates the logical mechanism used by the queue handler to
queue picks and buttons. Each square represents a core block of ID information, pointers,
and coordinates. The queueing of ID blocks is controlled by the application program through

the setting and clearing of type code masks (see GIMASK, Section 6).

Time history is maintained as a simple queue:

ll7 ll9

FIRST-®| P

—

II'I7 ll'|8

S |l P [S |»P |[&fS (S |eB B | »P
1 12 13 14 15 16 17 18 19 20 | LAST

Tracking cross coordinates
- Flow of execution

P Single Pick ID

S String Pick ID

B Button Pick ID

Rule 1. Every time a single pick is made by the console operator, the ID block is placed at

the beginning of the WAIT queue and replaces one already there.

Representation after Single Picks 1 and 2:

WAIT
[,
—1—?

FETCH

[o]
Lo |

17303600 Rev. B 5-5

Rule 2, String pick ID blocks are always collected at the end of the WAIT queue and accumu-
late until the next button pick ID block is queued. There will never be more than one single
pick ID block on the WAIT queue, but there may be 16 string pick ID blocks on the queue — 16
is the total number of blocks allowed in the WAIT queue.

Representation after String Picks 5 and 6:

WAIT

[N

S S N EN MR SR
FETCH

Co

o

Rule 3. When the operator picks a button, the button pick ID block is always placed at the end
of the FETCH queue followed by the contents of the WAIT queue (which is then cleared). Al-
though the WAIT queue contains the ID block of only one single pick item, the FETCH queue

can contain as many single pick ID blocks as button pick ID blocks.

Representation after Button Pick 7:

WAIT
Lo 1
FETCH "7

Ly ——DP-D’:SS—D‘
l_l—L

Representation after String Picks 15 and 16:

N w
i

vy

WAIT

FETCH "7 "9

-\lw
E-N
wwn
(8]

(e W ¥2)
O
KA
0 U

5-6 17303600 Rev. B

An editing feature permits the console operator to nullify a étring pick, made since the last
button pick, by picking the string pick item again.

If two string pick ID blocks are the same (corresponding IDDAD, IDDT, IDDC, IDWA, and
IDWB identical) both blocks are removed. If string picks 11 and 16 were the same in the
~above example, block 11 would be spliced out of th» "WAIT queue and block 16 would not be

| saved. This feature allows limited editing of picked items without application program
intervention. Single pick 12 is replaced by single pick 14 since the operator makes single
pick 14 later and its block replaces any other single pick block that is at the beginning of
the WAIT queue. This allows the operator to partially edit the WAIT queue by overriding

a previous single pick.

Representation after Pick 20 is input and Button 9 is fetched by the application:
WAIT

FETCH "17 ug

l:l\—> B [P [®S | ®S [®S |[®S |»S (B
17 14 10 1 13 15 16 18
*9 [

The tracking cross coordinates of each button ID are saved for application reference. The

tracking cross coordinates fetched by GITCOF are those from the last button ID passed to
the application program (*9 in the example immediately above). All string and single pick

ID blocks associated with the button ID block are passed to the calling program at once.

ID blocks passed to the application program are always picked up from the start of the FETCH
queue (block 17 in the last example above) and are passed only as the result of a specific
request from the application. If a button fetch (CALL GIBUT) is requested at the time of the
above representation, ID blocks 17, 14, 10, 11, 13, 15, and 16 are made available to the
application.

Next, the button, string, and single masks are checked — in that order. The first nonzero
product causes the designated queueing operation and a check of the marker mask. If the
marker mask also causes a nonzero product, the queue handler performs the marking function
on the item. The blink byte is reversed in order to change the appearance of the item while

it is queued; its new appearance is maintained until the item is fetched.

As each ID block is removed from the queue, the marker bit is checked and the blink byte
is restored to the status it had before it was queued. This notifies the console user that
his pick has been sent to the 6000 series computer.

17303600 Rev. D 5-7

6000 SERIES COMPUTER PICK PROCESSING

Thé 6000 series computer receives ID blocks from the 1700 series computer only after
sending it a GIBUT call or an equivalent call from the application executive. Only the
first button ID block and any single or string pick blocks associated with it in the FETCH
queue are sent to the EXPORT program in the 6000 series computer.

The ID blocks are all sent by EXPORT to the application executive area of the calling graphics
job, where GIBUT unpacks the button ID block information and stores it for later use by the
6000 Basic Graphics Package AELBUT and GITCOF routines. The other ID blocks are stored
for later use by the GIFID and GIDISP routines.

Each time a button pick is fetched from the 1700, the new ID blocks are written over the
blocks stored in the 6000 by the previous fetch. The queue handler masking procedure is
ordered. The ignore mask is ANDed with IDDT first. If the product is nonzero, no further

action is taken.

5-8 17303600 Rev. B

6000 BASIC GRAPHICS PACKAGE 6

The 6000 Basic Graphics Package is a set of subroutines, written in COMPASS assembly
language, designed to provide an interface between the applications programmer and the
graphics hardware. The Package coexists with SCOPE; an applications programmer has full

access to both.

This Basic Graphics Package has four main functions: to provide the ability to manipulate
display items, to control light-buttons, to input and output alphanumeric data, and to supply

the necessary tools for creating and handling a data structure.

Using the Basic Graphics Package routines, the simplest application program can send dis-
play items to the consoles. These display items are described in a language one level higher
than the standard display language. For instance, a circle in display language is a stream
of AXs and AYs; however, the Basic Graphics Package, using the 6000 series computer,
describes a circle in parameter form. The 1700 has the ability to convert this parameterized

data into display language by using the 1700 Basic Graphics Package (see Section 4).

ROUTINE TYPES

The 6000 Basic Graphics Package routines are divided into four categories:

° Graphics hardware interface
° Application executive
e Graphics utilities

° Data handler

GRAPHICS HARDWARE INTERFACE

The graphics hardware interface is a set of library subroutines that permit application pro-
gram control of the display hardware. The functions performed by the graphics interface
define the graphics capabilities available to a user. The interface includes routines to edit
the display buffer display items, control lightpen and keyboard inputs, control lightpen track-

ing, and collect alphanumeric text input. All interface routine names begin with GI.

17303600 Rev. B 6-1

APPLICATION EXECUTIVE

The application executive controls the residence, sequencing, and execution of tasks; it
includes the equivalents of SCHEDR, GIBUT, and GIABRT.

The executive is written as a single, eight-part program called AEXEC. When a programmer
uses AEXEC as part of his zero-level overlay, his subsequent calls to AETSKC and AETSKR
in any task overlay result in calls to the appropriate part of the AEXEC program.

FUNCTIONS OF AEXEC

AEXEC is entered as a FORTRAN subroutine from the application program's zero-level
overlay, using a CALL AEXEC card (see Section 2), during both the file creation and execu-

tion runs of the job.

AEXEC first reads the file name parameter cards in the application program's next data

record.
If the data record contains two cards, AEXEC
e Writes the graphics task COMMON file name (from the first card) in RA+3 of the
program's current control point area.
° Writes the overlay source file name (from the second card) in RA+4

® Terminates the LLGO portion of the job so that AEFILE can create the program's
graphics COMMON file

If AEXEC finds only one card in the first data record, it assumes that the job is to be
executed during the current run. AEXEC then
° Opens the task file named on the card

e Reads the task directory pointer to determine the amount of central memory

needed to load the longest overlay in the task file

. Changes the field length

° Calls the Scheduler to assign the program to a graphics control point
The Scheduler then rolls out the job. When the Scheduler rolls the job back in, AEXEC reads

the first record of the task file into central memory. Control of the central processor is

then transferred to the task in that record.

6-2 17303600 Rev. B

AEXEC is again entered when an AETSKC call occurs; it then locates the requested task

within the task file, reads it into central memory, and transfers control to it.

When an AETSKR call occurs, AEXEC requests a button fetch from the 1700 FETCH queue
and waits until one has been returned. When a button pick type ID block (and its associated
string and single pick blocks) is returned, control of the central processor is turned over to
the task overlay named in the IDWA and IDWB parameters of the button's ID block.

AEXEC also contains an abort processor that is entered any time a 6000 Basic Graphics
Package routine produces an error message. The abort processor enters all diagnostic
messages supplied to it in the system dayfile; the processor aborts the application job only
if a fatal error or a GIABRT call has occurred.

GRAPHICS UTILITIES

The graphics utilities are an expandable Hbrary of subroutines for general graphics applica-
tions. Included as graphics utilities are routines to frame-scissor graphic figures, generate
graphic figure descriptions, and collect figure descriptions for display. The utilities routine
names supplied with the 6000 Basic Graphics Package all begin with GU.

DATA HANDLER

The data handler is a set of routines that optimize access to mass storage and perform in-
core list processing. The handler permits an application programmer.to efficiently create
and manipulate his own unique data structure. The form of data organization used is a plex

data structure.

PLEX DATA STRUCTURES

Graphics interaction places stringent demands upon the application programmer in the alloc-
ation and handling of data. In general, graphics application data is completely random in
the order of its manipulation and in the amounts of each data type stored. Conventional
allocation and management schemes, such as FORTRAN arrays or card image files, are
usually inappropriate and inefficient.

A concept of storage management has been definedt that meets all the requirements of inter-
active applications. The concept, called the modelling plex, involves the data, data structures,
and data manipulating algorithms required to represent the physical actions required of the
application. The requirements of the data and algorithms are determined by the needs of the

application on one hand and by the data structure on the other.

TDouglas T. Ross, AED-O Programming Manual, Section 2.2 Data Structure Language,
Preliminary Release No. 2, MIL-ESL, October 1964,

17303600 Rev. B 6-3

A plex data structure is the most general form in a broad class of data management tech-
niques called list structuring. In a plex data structure, all data is contained in variable
length beads of contiguous computer words. The length, format, and data content of any

bead is completely under control of the application programs.

The data handler provides a pool of empty beads (free storage) from which the application
may obtain new beads and to which it can return those no longer needed. Each bead has a
unique addressing parameter (IBEAD) that is supplied by the system and used by the applica-
tion programs as data. This bead address is used for referencing the data within the bead
and may be used as data within other beads as a pointer to specify related information. In
general, a plex data structure contains a greater number of pointers than do more conven-
tional storage techniques. (See Figure 6-1 for typical bead arrangements. The arrows in
the diagram represent a head address within the bead at the tail of the arrow, which points

to — contains the address of — the bead at the head of the arrow.)

For a specific application, it is most efficient to include only the beads and pointers needed.
A formal structure that includes all possible relationships of a rigid class introduces ineffi-

ciencies that cannot be tolerated in an interactive system.

For a simple example of a plex data structue, consider the dynamic parts of an automobile
engine: the crankshaft, the connecting rods, and pistons. FEach bead of the representation
contains the needed information about a particular item. Each bead of a particular type has
exactly the same length and format; while different data values (i.e., the mass parameter in
each connecting rod bead — CR in the example) would appear in the same positions within the
bead, they would reflect the actual mass of the particular connecting rod. Note that by
proper design of the plex data structure, the calculating algorithms may be quite independent
of the actual representational model. In the example (Figure 6-2), a 12-cylinder engine
could be handled with the same structure and programs by allowing the connecting rod string
of beads to be of variable length. By convention, the initial bead address in a string of beads
is called the state variable of the string, and the last bead of the string holds a zero string

pointer. In a plex data structure any number of strings may be passed through a bead.

Beads are floating within blocks. The bead address IBEAD contains the block count and an

index to an array of pointers within the block as follows:

.23 13

BLOCK COUNT INDEX 8////////////

For use as a string pointer, the location within the bead of the next pointer (hook) may be

0

placed in the cross-hatched area.

6-4 17303600 Rev. B

BEAD
BEAD ADDRESS >
(A) A SINGLE BEAD

(B) A STRING OF BEADS

(C) A TREE STRUCTURE OF BEADS

D) A RING STRUCTURE OF BEADS

(E) A COMBINATION STRUCTURE OF BEADS

Figure 6-1. Typical Bead Arrangement

17303600 Rev. B

6-5

CS— CRANKSHAFT
CR—CONNECTING ROD
P-PISTON

Figure 6-2. Four Cylinder Engine

The 9-bit hook limits string pointers to the first 511 locations in a bead. The data handler
accepts full 24-bit addresses as a bead address and will ignore the low order 9 bits on all
but string operations.

The data handler allows simple FORTRAN programming string operations. Figure 6-3 is
an example of list structuring. Hooks are shown with a broken line.

STATE VARIABLE

(INITIAL STRING

POINTER)
HOOK -7

SE—

-

y
f’_"_'—: |
¥

——=ETC.

BEAD

BEAD BEAD

Figure 6-3. List Structure Example

BLOCK STRUCTURE AND ACCESS

Data resides in standard SCOPE random files (in logical blocks). Specification of the block
length is an application programming function (see DMINIT, page 6-58).

6-6 17303600 Rev. B

MAXIMUM DATA UNIT SIZES

The addressing scheme used by the data handler limits the size of files, beads, and blocks.
Bead and block numbers are decimal. Word numbers and empty space values are octal in a
data handler-dump. The limits are:

° Maximum number of blocks per file 1,023
° Maximum number of beads per block 31

° Maximum number of words per bead 1,048,575 (2 20-1)

The number of words in a block depends on the device the system uses for mass storage.
The block size can be specified by the programmer in his DMINIT calls; if the programmer
omits the block size parameter from his calls, an installation parameter is used.

Another installation parameter (MAXBLKSP = 40, 000) defines the maximum number of
words that can be allocated for the in-core blocks. Since the data handler requires at least
two in-core blocks to function efficiently, this actually limits the maximum block size to
MAXBLKSP/2 central memory words.

GENERAL SUMMARY

° Components

- are bit or word spaces
- contain values
- reside in beads

- are addressed by a unique code

° Beads

- are contiguous computer words
- contain components
- reside in blocks

- are addressed by a unique bit pattern

- are mass storage logical blocks
- contain beads

- reside on mass storage and in core as IFILE
- are addressed by count

e All data handler routine names begin with DM

17303600 Rev. B 6-7

ADDITIONAL INFORMATION

This section describes the implementation of the data handler and is not needed by the
application programmer to begin writing data handler programs. It is included with the data
handler description so some insight into the system and choice of installation parameters
may be gained.

The data handler maintains in-core duplicates of those ID blocks needed to allow efficient
access to the data. The number of in-core blocks is specified by the application programmer
and may be changed dynamically. '

The in-core blocks reside as IFILE in the application job's global data area of the graphics

control point. IFILE is rolled out and in automatically as a local file with the program.

Data is confined to beads within the blocks. Data handler subroutines are provided so that

the application programmer can create and destroy beads as desired.

The data content of a bead is broken into components. A component is a specific bit or wofd
space within a bead and has a unique address code. Data handler subroutines are provided

to set or fetch values of components of specified beads.

The application program does not reference mass storage blocks directly; therefore, the

block accessing process and format details are not a programming function.

The data handler provides efficient automatic access to the mass storage blocks through an
algorithmic optimization procedure. Three decision parameters, kept for each in-core

block, are used in the algorithm:

) ucC Usage count of the current in-core block from the time of the last decision
° ES Amount of empty space within the in-core block
e WE Indicator of in-core block content change

Three additional values are used to modify the decision parameters:

e NB Number of blocks in core
e TUC Total usage count of the data handler from the time of the last decision

® BS Block size

The decision process involves finding the in-core block with the minimum or maximum

value of the algorithm:

ucC ES

Toc T C X BSxng T D X WE

B x

6-8 17303600 Rev. D

The weighting factors B, C, and D are real numbers between 0 and 100 with a combined sum
of 100, Typical values are B =15, C = 15, and D = 70. These factors are chosen by the
installation. If there is little or no new bead allocation and few data modifications, B is
greater than C, otherwise, C is greater than B. D should be greater than 50. The algorithm
is used in each decision to optimize use of the in-core block space (IFILE) and minimize
mass storage references.

Figure 6-4 shows the structure of a data handler file block as it is stored in central memory.

The first word of the duplicate block contains the amount of empty space in the block and a
pointer to the empty space. When a bead is entered into a block, it is associated with a bead
pointer to which the bead address is related, The bead pointer is fixed in a block but its
contents can vary, since beads are floating in the block. The beads in a block move when

a bead is deleted in a block and the data handler closes up any space previously occupied

by a bead to maintain empty space contiguity. The bead address IBEAD, however, remains
inviolate for the life of a bead.

Beads are entered into a block starting from the bottom of the empty space. If a bead is too
large to fit in a single block, it is continued onto as many other blocks as necessary. (The
continuation process is designed to minimize the number of blocks per bead.) A continuation
bead address is added to the end of the bead segment to point to the next segment of the bead.
Bit F is set in the bead pointer to indicate that its segment is the first segment of a bead.

Bit G indicates the continuation of a bead.

17303600 Rev. D 6-9

59 58 23 17 0o

BLock +© EMPTY SIZE (NUMBER OF WORDS) EMPTY POINTER Y
RELATINE +1 |F| 6| BEAD SsIZE (NUMBER OF WORDS) BEAD POINTER B
+2 |F| 6| BEAD SIZE (NUMBER OF WORDS) BEAD POINTER
S N I
_//"—__\ e]
F| 6| BEAD SIZE (NUMBER OF WORDS) BEAD POINTER c
A EMPTY SPACE |
\—/\——/\m
EMPTY SPACE
+C BEAD
- ‘/——_\
+B BEAD
23
CONTINUATION BEAD B
ADDRESS (IF F =1)

F-BEAD CONTINUED IN ANOTHER BLOCK{CONTINUATION BEAD ADDRESS IN LAST
WORD OF BEAD, IN WORD NUMBER = BEAD POINTER+BEAD SIZE-1)

G-CONTINUATION OF A BEAD

Figure 6-4. Data Handler File Block Structure

6-10 17303600 Rev. B

ASSOCIATIVE ADDRESSES

The Basic Graphics Package also does internal bookkeeping; the bookkeeping operation is

controlled by bit patterns called associative addresses that are supplied to or by the applica-

tion programmer. The major associative addresses are:

The console address NCON that is associated with the particular console(s) as-
signed to an application program. More than one console address may be used
by a program to control several consoles at once. NCON is a decimal or two-
digit octal number; the first octal digit is the number of the 1700 to which the
console is connected (0-3), and the second octal digit is the number of the con-
sole itself (1-6). Thus, NCON can vary from 0lg to 368 (excluding 075, 10g, 174,
208, 278, and 308) or from 110 to 3010 (excluding 7, 8, 15, 186, 23, and 24).
NCON values are defined by the installation and supplied by the programmer.

The display item address IDDAD that is associated with a particular graphic
item being displayed. IDDAD is used for editing functions and is the relative
address of the item within a table containing the actual 1744 display addresses

of all such items (see Section 4).

The macro address MAD, which serves the same function for macro item

information as IDDAD, serves for display items.

The bead address IBEAD, which is associated with a particular set of contiguous
computer words supplied by the data handler. The bead address is used for all
references within the bead and is defined as the relative address of the first
word of the bead within the IFILE.

The application task nafne, NAME, is used to control program execution. A
typical program may consist of over 100 individual tasks or overlays, each per-
forming a function(s) or a computation(s). Each task resides in mass storage
and is randomly accessible. NAME is used by the application executive to
associate the task with its actual location in mass storage (see Task Directory,
Section 2).

PROGRAMMING CONVENTIONS

To reduce application programming errors, the following calling sequence conventions are

imposed on all Basic Graphics Package routines:

All externally supplied values are passed between the routines as parameters in
the calling statements. No specific COMMON configurations are imposed on the

applications programimer.

17303600 Rev. B 6-11

® Needed values are specified as separate calling statement parameters. The code
inefficiency of loading and unloading formatted arrays justifies the use of the
longer calling sequences that are produced by this convention.

° Separate subroutines are provided for each function of the Package. Code param-

eters are not used for function selection.

The following is a general introduction to the major parameters which appear in the calling
sequences of the 6000 Basic Graphics Package routines. Although this subsection is designed
as a reference when questions arise about the format of frequently used parameters, it will

be useful for the user to read it for a general understanding of parameter usage and formats
before reading the rest of the section. Exceptions to these general conventions are mentioned

in the subsection concerning a specific routine.

This introduction assumes familiarity with IGS items and queue handli~.g (Section 5), macros
(Section 4), and the general features of the hardware.

ID BLOCK PARAMETERS

IDDT

IDDT is a FORTRAN variable representing an 8-bit, unsigned, right-justified quantity.
If IDDT is larger than 28 - 1, only the lower eight bits are used; when IDDT is a result

parameter, only the lower eight bits are returned.

For the special meaning of IDDT as the display item type, see Queue Handler (Section 5).

IDDC

IDDC is a FORTRAN variable representing an 8-bit, unsigned, right-justified quantity. If
IDDC is larger than 28 - 1, only the lower eight bits are used; when IDDC is a result param-

eter, only the lower eight bits are returned.

IDWA

IDWA is a FORTRAN variable representing a 24-bit, unsigned, right-justified quantity. If
IDWA is larger than 224 - 1 (more than four right-justified alphanumeric characters), only
the lower 24 bits are used; when IDWA is a result parameter, only the lower 24 bits are re-
turned. The content of this variable is arbitrary (except when used for task calling) and may
be used by the graphics programmer to store such information as bead addresses and

IDDADs for use when a button is picked.

6-12 17303600 Rev. B

IDWB

IDWB has the same format as IDWA. If IDWA is less than four characters, IDWB may be
used to store information such as bead addresses and IDDADs for use when a button is picked.
For the special use of IDWA and IDWB in graphics buttons that call tasks, see AETSKC.

DISPLAY GRID COORDINATES

Display grid coordinates are treated by the 6000 Basic Graphics Package as integer para-

11 .1 only the lower 12-bits

meters within the range 2047. If a coordinate is greater than 2
are used. (Note the exception in the tracking-cross routines, Section 6, and Appendix B).
When relative coordinates are used, it is a temptation to reference absolute coordinates

greater than 2047. See the User's Guide section on Coordinates — Absolute and Relative.

When a coordinate is a result parameter, it is returned as a 60-bit, sign-extended integer

within the range -2047 to +2047 decimal.

Coordinates are variously represented by IH, IV, IH1, IV1, [H2, IV2. Note that IHC and
IVC (the coordinates of the center of an arc in GUARCG) are not necessarily on the 274 con-
sole surface. GUARCG allows center coordinates in the range -32, 767 to +32, 767

(—215 -1 to +215 -1). If IHC or IVC is outside that range, only the lower 16 bits are used.

The coordinates in the scissoring routines are not output to the console and are not truncated

(see GULINE and GUARC).

DISPLAY ITEM, MACRO AND BEAD ADDRESSES

IDDAD and MAD are FORTRAN variables representing 21-bit, right-justified, system-
generated associative addresses, which are used by the application programmer to address
an item or a macro (respectively). The associative address is a result parameter returned

to the user when an item or macro is created.

IBEAD is a system-generated bead address used by the programmer to address a bead
within an application's data handler file. IBEAD is a result parameter generated by the

data handler at the programmer's request before data is set into a bead.

NCON ADDRESS

NCON is the associative address for the graphics console. It consists of two octal digits. The
upper digit runs from 0 to 3 and represents the 1700 being addressed. The lower digit ranges
between 1 and 6 representing the console on that 1700. For 1700 zero, the decimal console
addresses are 1 to 6; for 1700 one, 9 to 14; for 1700 two, 17 to 22; and for 1700 three, 25 to 30.

17303600 Rev. B 6-13

IBEAM ADDRESS

IBEAM, when it appears in a parameter list, governs whether the beam is on or off for a
particular line segment. If IBEAM is equal to £0 (beam off), the entire line segment will be
generated with beam off. If IBEAM is equal to 1 (beam on), the beam will be on in accord-
ance with the bit pattern in ISTYLE.

ISTYLE ADDRESS

ISTYLE is a FORTRAN variable representing a right-justified 12-bit byte. Each one in
ISTYLE corresponds to a portion of the line segment generated with the beam on. FEach zero
corresponds to a portion generated with the beam off. ISTYLE is most conveniently repre-
sented as an octal number (for example, 525 B corresponds to bit pattern 101010101010), If
IBEAM for the line segment (see above) is zero, the line segment will be generated — indepen-
dent of the ISTYLE value — with the beam off.

ICODE ADDRESS

ICODE is a FORTRAN variable representing a right-justified 7-bit byte which governs light-
pen sensitivity, blink, and brightness of a graphics display item. ICODE appears in calling
sequences where a reset sequence is generated (GURSET or GICOPY) or altered (GIMOVE).
See these routines for the format of ICODE. Because it is a bit pattern, ICODE is most con-

veniently represented as an octal number.

The other parameters appearing in 6000 Basic Graphics Package routines are described in

other portions of the manual.

PARAMETERS

In the following list of routines, the required parameters are underlined. Parameters follow-
ing the last one underlined are optional. The parameter sequences may be terminated by a
minus zero parameter or a right parenthesis. For the meaning of the truncated parameter

list, ‘see the individual routine description.

AELBUT (IDDT, IDDC, IDWA, IDWB, IH, IV)
DMINIT (IFILE, NBLK, NBSIZE)

DMRLBD (IBEAD, , IBEAD,,., IBEAD)

GIBUT (IR, NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

GICOPY (IDDADI, NCON, IH, 1V, ICODE, IDDAD, IDDT, IDDC, IDWA, IDWB)

6-14 17303600 Rev. B

GIDISP (NCON, IBUF, NBYTE, IDDAD, IDDT, IDDC, IDWA, IDWB)

GIEOM (NCON, IBCD, IDDT, IDDC, IDWA, IDWB)

GIERAS (IDDAD,, IDDAD . » IDDAD

1’ g e e e e 36’
GIFID (NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

GIFSID (NCON, N, IDDT, IDDC, IDWA, IDWB, IH, V)

GIKYBD (NCON, IDDT, IDDC, IDWA, IDWB)
GILPKY (NCON, IDDT, IDDC, IDWA, IDWB)

GIMACE (MAD,, MAD .+ e+ MAD

1’ P 36)
GIMOVE (IH, IV, ICODE, IDDAD, IDDT, IDDC, IDWA, IDWB)

GIPBUT (NCON, IIDDT, IDDT, IDDC, IDWA, IDWB)

GITCON (NCON, IH, I1V)

All parameters of the following routines are required in every case where they are employed.

AERTRN

AETSKC (NAME)

AETSKR

DMDMP

DMFLSH

DMGET (ICOMP, IBEAD, VAL)
DMGTBD (N, IBEAD)

DMSET (ICOMP, IBEAD, VAL)
GFONTA (NCON, IH, IV, IDADA, IDADN)
GFONTN (NCON, IH, IV, IDDAD)
GIABRT (NCON, IALF, NC)
GIANE (NCON, NC, IBUF)
GIANS (NCON, NC, IH, IV)
GICLR (NCON)

GICNJB (NCON)

GICNRL (NCON)

GIMAC (NCON, IBUF, NBYTE, MAD)

17303600 Rev. B 6-15

GIMASK (NCON, IDDTC, IDDTS, IMASK)
GIPLOT (NCON, IBUF, NBYTE, IDENT, ITYPE)
GITCOF (NCON, IH, IV)

GITIMV (NCON, IDDAD)

GITMMYV (NCON, MAD)

GUAN (IBCD, NC,V IBUF, NBYTE, MBYTE)

GUARC (IHCEN, IVCEN, IHCOR, IVCOR, HC, VC, H1, V1, H2, V2, KSHOW, IHC,
IvC, IH1, IV1, IH2, IV2)

GUARCG (KSHOW, IHC, IVC, IH1, IV1, IHZ2, IV2, ISTYLE, IBUF, NBYTE, MBYTE)
GUBYTE (IBYTE, L, IBUF, NBYTE, MBYTE)

GULINE (IHCEN, IVCEN, IHCOR, IVCOR, H1, V1, H2, V2, KSHOW, I[H1, IV1,
1H2, 1IV2)

GUMACG (MAD, L, IBUF, NBYTE, MBYTE)

GURSET (IH, IV, ICODE, IBUF, NBYTE, MBYTE)

GUSEG (IH, IV, IBEAM)

GUSEGA (IH, IV, IBEAM, N, ISTYLE, IBUF, NBYTE, MBYTE)
GUSEGI (IH1, IV1, ISTYLE, IBUF, NBYTE, MBYTE)

GUSEGS (IH1, IV1, IH2, IV2, IBEAM, ISTYLE, IBUF, NBYTE, MBYTE)

NOTE

Placing an extra parameter in the calling sequence
is just as fatal as omitting a required parameter.

For example:

Correct

CALL GIDISP (NCON, IBUF, NBYTE, IDDAD, IDDT, IDDC, -0)

CALL GIDISP (NCON, IBUF, NBYTE, IDDAD, IDDT, IDDC)

Incorrect

CALL GIDISP (NCON, IBUF, NBYTE, -0)

CALL GIDISP (NCON, IBUF, NBYTE, IDDAD, IDDT, IDDC, IDWA, IDWB, -0)

6-16 17303600 Rev. B

Parameter lists which are too short or too long will not be specifically diagnosed; however,
they will cause mode errors or store meaningless data in a data area or the entry address
of an IGS system subroutine. Since these problems may be hard to diagnose, care should

be exercised in conforming to required conventions.

Care should also be exercised in calling subroutines whose calling sequence contain return
parameters. For example, IDDAD is the fourth parameter in the calling sequence to GIDISP;

the display associative address is returned to this variable location.
Example:

CALL GIDISP (NCON, IBUF, NBYTE, -0)

This example will cause the destruction of the contents of the location represented by the

literal -0.

SUMMARY OF USER FORTRAN-CALLABLE ROUTINES

These routines are all part of the 6000 Basic Graphics Package; all perform parameter
checking functions and may cause the system software to abort an application program if its
parameters are illegal. If a display item buffer exceeds the maximum length of the EXPORT/
IMPORT HS input or output buffers (320 12-bit bytes each), it is considered a fatal error.
Diagnostic messages for these and other errors are given in Appendix B.

All of the Package routines can be accessed through standard FORTRAN CALL statements.
Unless otherwise specified, all parameters in the statements are passed to the routines as
programmer-supplied arguments; integers may be either decimal or Boolean octal in form.
The programmer may choose his own parameter names, although use of the names supplied
in this manual would eliminate confusion when interpreting the diagnostic messages listed in
Appendix B. Because many of these diagnostics contain the parameter names used in this
manual, all parameter names throughout the book have been capitalized — a convention

normally used to indicate only those words or letters whose presence is required by the

system.

PROGRAM INITIATION

SCHEDR rolls the programout to mass storage so that it can undergo real-time scheduling
and be rolled into a graphics control point for execution. A call to this routine must precede
all Graphics Interface calls if the application executive AEXEC program is not used (see
Appendix H). When the SCHEDR call is made, the system Scheduler program rolls out the

entire control point and all associated files.

17303600 Rev. B 6-17

When AEXEC is used, a call to SCHEDR serves no useful function.

Call Statement Format:

(CALL SCHEDR

PROGRAM CONSOLE CONTROL

The subroutines GICNJB and GICNRL flag the 1700 Basic Graphics Package interrupt proc-
essor to establish or break the correspondence between a console and the calling job. The
two routines also perform such housekeeping duties as clearing the 1744 display buffer and

resetting interrupt tables.

Good programming practice dictates that a call to the console release subroutine GICNRL be
made before terminating the program. However, it is not mandatory to do so since a call
to GICNJB from a later job (in the time sequence of job runs) will perform the same function.

The functions performed by GICNJB and GICNRL are console-oriented. Any task of any job
may request initialization of the console-to-job correspondence for a particular console
number. More than one console may be initialized for a job.

Once console-to-job correspondence is made, any task of that job may address that console.
If a task addresses a console that has not been initialized through GICNJB for the job of that
task (or if a task addresses a console that has been initialized for some other job), the task
and its job will be aborted.

A console may be in one of three states with respect to a particular job:

1. Not attached to any job
2. Attached to some other job

3. Attached to a particular job

The purpose of GICNJB is to go from state 1 to state 3. The purpose of GICNRL is to go
from state 3 to state 1.

GICNJB

This subroutine assigns a programmer-specified graphics console to the calling program and
performs such initial clean-up duties as clearing the display buffer. GICNJB must be called

before any other GI routines are called, or an NCON error will result.

6-18 17303600 Rev. B

GICNJB aborts the calling job if the console number, NCON, is invalid, or if the console is
not available (i. e., has been declared out of service by the 1700 series computer operator
or is assigned to another job), GICNJB clears any tables and ID processor masks that have
been set. A call to GICNJB following a call to GICNRL can be used by the programmer to
erase the console at the end of a job.

Call Statement Format:

(CALL GICNJB (NCON)

NCON Number of the graphics console that should be assigned to this job;
only one console can be assigned through each call

NCON can easily be changed by loading data cards with the application program through
either the remote or local card reader.

GICNRL

This routine releases the specified graphics console from the control of the calling job.
GICNRL terminates internal display for console NCON and clears console-oriented tables
kept by the 1700 Basic Graphics Package interrupt processor. The programmer should
usually preceed a GICNRL call card with a FORTRAN STOP card.

Call Statement Format:

(CALL GICNRL (NCON)

NCON Console number; the same constraints apply here as to NCON in the
GICNJB statement

PROGRAM TASK CONTROL

AETSKC and AETSKR establish the linkage between the application executive AEXEC pro-
gram and/or individual tasks of the application job.

AETSKC

This routine can be called from the zero-level overlay, any task overlay, or from any sub-
routine within an overlay. A call to AETSKC causes the named task overlay to be loaded

17303600 Rev. B 6-19

into core memory from the graphics task COMMON file. AETSKC then turns control of the
6000 series computer over to the new task; there is no return from a call to AETSKC.

Call Statement Format:

(CALL AETSKC (NAME)

NAME Name of the task to be called; this is the 1 to 7 character identifier
on the PROGRAM card at the beginning of each task overlay. The
name in this call must be written in 6000 internal display code, left-
justified within NAME, and blank or zero-filled.

AETSKR

An AETSKR call terminates execution of the current task, then performs the functions of
AETSKC for the task overlay named in the IDWA and IDWB parameters of the next button
pick type ID block in the 1700 FETCH queue.

AETSKR determines which task to load by requesting that a button pick type ID block be.
fetched from the 1700. If no button ID block is queued there, AETSKR waits until one is
entered, then loads and executes the task indicated by the button picked. There is no return
from a call to AETSKR.

If a STOP or END card is encountered within a task before a call to AETSKR or AETSKC

occurs, the card will cause normal termination of the entire application job.

There is no console argument in the AETSKR calling sequence. AETSKR asks for a button
from the graphics console number used as the argument of the last call to a GIBUT or
GICNJB routine.

Call Statement Format:

(CALIL AETSKR

SPECIAL ID BLOCK ASSIGNMENT

ID blocks similar to those described in Section 6 can be assigned to various input devices at
each console. These special ID blocks give the devices queuing and input significance that
they would not otherwise possess.

6-20 17303600 Rev. B

One such block may be assigned to a console for each of the following:

e All of the buttons on the function keyboard
e The switch on the lightpen

° A specific alphanumeric character, which will be used to terminate the console's

current alphanumeric input

e One display item that is not defined as a light-button but is to be treated as one

GIKYBD

GIKYBD associates an ID block similar to that of Figure 5-1 with the function keyboard of
a particular graphics console. This block provides a means to examine the status of the

keyboard's keys or to call a task overlay when a key is pressed.

Once GIKYBD has been called, a copy of the keyboard ID block is queued every time a key-
board key is pressed. Queueing is done according to the IDDT of the block.

Key status is contained in the IH and IV parameters of the block (see Table 3-1).

A GIKYBD call can also be used to change the ID parameters of an existing keyboard ID
block.

GIKYBD cannot be used for a graphics console that is not equipped with a function keyboard.

Call Statement Format:

(CALL GIKYBD (NCON, IDDT, IDDC, IDWA, IDWB)

NCON Number of the console to which the block should be assigned; only
one console can be referenced by each call

IDDT ID type code; used to specify how the queue handler will treat the
ID block
IDDC ID code word; the contents assigned by the programmer can be

0 < IDDC < 28-1

IDWA ID information word A; contents are arbitrary unless block is
referenced by an application executive routine (see GIDISP)

IDWB ID information word B; contents are arbitrary unless block is
referenced by an application executive routine (see GIDISP)

The ID block assigned to console NCON by GIKYBD contains the representation of the input
parameters IDDT through IDWB.

17303600 Rev. B 6-21

Only one keyboard ID block can be associated with a particular console; if several calls are
made to GIKYBD with the same NCON value, the parameters of the latest call will replace
all of the parameters previously entered in the block.

GILPKY

GILPKY assigns an ID block to the switch on the lightpen of a particular graphics console.
If GILPKY has been called, the effect of releasing the key on the pen is identical to the act
of pointing to an item on the display; the ID block assigned to the key is processed by the
queue handler as if it were the ID block of a display item. This allows the programmer to
detect the use of the switch,

Call Statement Format:

(CALL GILPKY (NCON, IDDT, IDDC, IDWA, IDWB)

NCON Number of the console to which the block should be assigned; only
one console can be referenced with each call

IDDT ID type code; used to specify how the queue handler will treat the
ID block
IbDC ID code word; the contents assigned by the programmer can be

0 < IDDC < 28-1

IDWA ID information word A; contents are arbitrary unless the block is
referenced by an application executive routine

IDWB ID information word B; contents are arbitrary unless the block ig
referenced by an application executive routine

The ID block generated by a GILPKY call contains the representation of the input parameters
IDDT through IDWB. If NCON is the only nonzero input parameter (or the only parameter
given in the call), the existing ID block for the lightpen switch of console NCON will be
removed from the 1700 computer's memory.

When the lightpen key is released, the copy of the ID block queued in the 1700 will contain
the current H and V coordinates of the tracking cross in the IH and IV words — which are used
for the coordinates of a lightpen pick in the ID block of a display item.

Only one lightpen key ID block can be associated with a particular console; if several calls
are made to GILPKY with the same NCON value, the parameters of the latest call will
replace all of the parameters previously entered in that block.

6-22 17303600 Rev. B

GIEOM

This routine assigns an ID block to a single alphanumeric character at a specified graphics
console. The character may be part of the display font (excluding BKSP, SPC, and CLEAR)
or a corresponding character on the alphanumeric keyboard. RETURN or alphanumeric
characters which correspond to those in the alphanumeric font may be end-of-message
characters. When the character associated with a GIEOM call is pressed (or picked, in

the case of the display font) during an alphanumeric input operation, the ID block assigned
to it is queued as if it were the ID block of a display item. This gives the programmer a
means to detect an end-of-message condition.

An end-of-message character is displayed on the screen and returned through a GIANE call,

like any other character.

Call Statement Format:

(CALL GIEOM (NCON, IBCD, IDDT, IDDC, IDWA, IDWB)

NCON Number of the console to which the ID block should be assigned; only
one console can be referenced with each call

IBCD A right justified display code character which is to act as an end-of-
message indicator and to which the ID block should be assigned

IDDT ID type code; used to specify how the queue handler will treat the ID
block

IDDC ID code word; the contents assigned by the programmer can be

0 < IDDC < 28-1

IDWA . ID information word A; contents are arbitrary unless the ID block
is referenced by an application executive routine

IDWB ID information word B; contents are arbitrary unless the ID block

is referenced by an application executive routine

The ID block created by a GIEOM call contains the representation of the input parameters
IDDT through IDWB.

Only one end-of-message character ID block can be associated with a particular console; if
several calls are made to GIEOM with the same NCON value, the parameters of the latest
call will replace all of the parameters previously entered in the block.

17303600 Rev. B 6-23

GIPBUT

GIPBUT will create an ID block and a queue handler mask for a prime button at a particular
console. Anything for which an ID block exists may be defined as a prime button, but the
prime button ID information and its associated mask are usually used to allow a display item —
not defined as a button pick type — to activate a task when picked. A display item which is

a button pick type cannot be used as a prime button. In other words, IIDDT may not contain

the button mask value. If it does, the item will be treated as a normal button pick item.

A prime button can have an IDDT which identifies it as a single pick item, a button pick item,
a string pick item, or two of the three. A button, by contrast, can have only the IDDT that

identifies it as a button pick item (marked or not marked).

There are two ID blocks for a prime button in memory, which makes it possible for the pro-
grammer to simultaneously queue the item as two types. Both ID blocks are queued accord-
ing to their type code values when the item is picked.

Call Statement Format:

@ALL GIPBUT (NCON, IIDDT, IDDT, IDDC, IDWA, IDWB)

NCON Number of console to which the block should be assigned; only one
console can be referenced with each call

IIDDT Value to be used as a mask to determine if an item is a prime button
type

IDDT ID type code; used to specify how the queue handler will treat the

prime button ID block

IDDC ID code word; the contents assigned by the programmer can be
0 < IDDC < 28-1

IDWA ID information word A; if the IDDT of this ID block classifies it as
a button pick type, this parameter should contain a portion of the
name of the task overlay to be called by AEXEC

IDWB ID information word B; contents are arbitrary unless the ID block
is referenced by an application executive routine

Only one prime button ID block can be created for a given console; if several calls to GIPBUT
occur with the same NCON value, the parameters from the latest call will replace all of the
parameters previously entered in the block. If NCON is the only nonzero parafneter used,
the existing prime button ID block for console NCON will be removed from the 1700 series

computer's memory.

The prime button mask is used in the following manner (the other queue handler processing

masks are explained in the paragraphs on GIMASK).

6-24 17303600 Rev. D

When a string pick or single pick entry is made at console NCON, the queue handler proc-
" essing mask comparisons are made. If the pick is not a button type and is not ignored, then
the following comparison is performed by the 1700 interrupt processor:

IIDDT —4— IDDT

IIDpT Prime button mask value
IDDT ID type code of picked item
—\— Logical exclusive OR

If this algorithm equals zero, the picked item is considered to be a prime button. The IDDT
value in the prime button ID block is then compared with the programmer-defined masks to
see how the prime button ID block should be processed; the item's regular ID block is pro-

cessed separately, according to its own IDDT value.

The prime button ID block IDDT value can be any one (or none) of the valid mask values; it

does not have to equal the mask value established for buttons.

CONTROL OF QUEUE HANDLER AND PICK PROCESSING

When an entry is made at a console, the 1700 interrupt processor ANDs the IDDT value in

the entry's ID block with the value that the programmer has previously placed in the ignore
mask. If the result of the operation is not zero, the entry is ignored. If the result is zero,
the IDDT value is compared with values in the string pick, single pick, button, and marker
masks. If the IDDT values correspond to any of these mask values, the queue handler per-
forms the appropriate function; the ID block of the entry is either placed on one of the appro-
priate queue strings (string pick, single pick, or button pick) or the item on the screen is
blinked (marker function). If the IDDT corresponds to more than one pick mask value, the

ID block is queued according to the hierarchy: string, single, button. When one of the mask-

ing expressions is satisfied, no futher comparisons are made.

The algorithm used for the mask comparisons is given here to further explain the mask con-

cept. In the following paragraphs:

IDDT = ID type code parameter from the ID block of the entry
AN Logical AND
A4 Logical inclusive OR

IGM Value set in ignore mask

SPM Value set in single pick mask

17303600 Rev. B : 6-25

STPM Value set in string pick mask
BM Value set in button mask

MM Value set in marker mask

MASK COMPARISONS

The comparisons are listed below in the order in which they are made by the software.

IGNORE MASK

If IGM A\ IDDT # 0, the entry will be ignored, regardless of the contents of any other mask.
For example, if IDDT also equals the value in the marker mask (indicating that the item

should be blinked when picked), the item will not be blinked.

BUTTON MASK

If BM N\ IDDT # 0, the ID block for this entry is a button pick type; the ID block for this
entry and any associated tracking cross coordinates, single pick ID blocks, and string pick

ID blocks are queued after the information queued for the last button entry.

STRING PICK MASK

If STPM N\ IDDT # 0, the ID block for this entry is a string pick type; the ID block for this
entry is queued after the ID block queued for the last string pick type entry.

SINGLE PICK MASK

If SPM -\ IDDT # 0, the ID block of this entry is a single pick type; the ID block queued for
the last single pick type entry is replaced by the ID block of this entry.

MARKER MASK

If (IDDT A (SPM \v/ STPM \/ BM) #) /N (IDDT /\ MM # 0), the picked display item re-
verses blink status until its queued ID block is fetched by the application program. If IDDT
is to be queued (i.e., when ANDed with any of the pick masks, the result is non-z_ero), it is
compared with the marker mask. If the result of that comparison is non-zero, then the blink

status is reversed.

6-26 17303600 Rev. D

GIMASK

This routine sets and clears the bits in the pick processing masks defined above. Each
graphics console has its own set of masks, and the programmer establishes the value of each
according to the IDDT parameter values that he wishes to use in his current application pro-
gram, (If IMASK is not set, its default parameter is 1, for an ignore item. IMASK and
IDDT may be replaced in the parameter string by such values as 16+8, 24, or 30B.)

Call Statement Format:

(CALL GIMASK (NCON, IDDTC, IDDTS, IMASK)

NCON Number of the graphics console for which the mask values will be
used; only one console can be referenced through each call

IDDTC Value of the bit pattern to be cleared from the specified pick proc-
essing masks

IDDTS Value of the bit pattern to be set in the specified pick processing
masks

IMASK Mask indicator code; may be any one or any combination of the
following:

= 1, set or clear the indicated bits in the ignore mask

= 2, set or clear the indicated bits in the single pick mask
= 4, set or clear the indicated bits in the string pick mask
= 8, set or clear the indicated bits in the button mask

= 16, set or clear the indicated bits in the marker mask

Several masks can be cleared or set simultaneously by placing the appropriate values in
IDDTC and IDDTS, as in the following illustration. The IMASK value used is 248 (=20
IDDTC is 228 (=18 and IDDTS is 1048 (=6810).

10):
10)’

The f bit in ICODE of GURSET, GICOPY, and GIMOVE controls the original blinking status
of the item. If f (ICODE = s00tfbb) is set to 1, the item will blink; if f is not set, the item
will not blink. However, the original blinking status will be reversed (i. e., a blinking

item will stop blinking, a nonblinking item will blink) if the item is queued, provided that
the marker mask is set for the item. As soon as the item is fetched, it will resume its

original blinking status.

17303600 Rev. B 6-27

ootc {o]o]o]lilofo]1]0]

oots |o]1{olo]o]i]o]o]

Masks Before Call

IMASK
_O— Ignore 1]0{o0jojojofo]jo Ignore Mask
T Single Pick oj110]0j110]|1]0 Single Pick Mask
1] String Pick ojojojrjojojifo String Pick Mask
(0] Button Pick ofofrfofofolof1 Button Mask
T Marker ofofojilijojojtjo Marker Mask

Masks After Call

110{0l0]0]|0}0]0 Ignore Mask

ofj1to]loj1to0]1]|o0 Single Pick Mask
New mask value ofi1lolololilolo String Pick Mask

ololi1lololololi1 Button Mask
New mask value oli1lolololilolo Marker Mask

As an example of mask operation, assume that a programmer has defined grid lines as pick
type 2. Each grid line has an ID block associated with it that contains an IDDT value of 2.
Every time a grid line is picked by the console operator, the programmer wants to place the
ID block for that grid line in the queue of string pick blocks and blink the grid line. To do
this, he would make a GIMASK call with IDDTC = 0, IDDTS = 2, and IMASK = 16+4. This call
would set both the string pick mask and the marker mask equal to two. See the IGS User's

Guide and the IGS IMS Volume I for additional examples of mask manipulation by GIMASK.

GICLR

The GICLR routine clears all ID blocks associated with a particular graphics console from
the FETCH and WAIT queues in the 1700 series computer's memory. This prevents the
application program from acting upon the queued information after the programmer or con-
sole operator has decided that it is no longer needed to solve his problem.

6-28 17303600 Rev. B

Call Statement Format:

f CALL GICLR (NCON)

NCON Number of the console that should have its queued pick information
destroyed; only one console can be referenced with each call

FETCHING ID BLOCKS FROM CONSOLE ENTRIES

ID information that has been queued as a result of console operator action can be retrieved
from two areas within the Interactive Graphics System. GIBUT (and AETSKR) fetches ID
blocks and ID information from the FETCH queues in the 1700 series computer. AELBUT,
GIFSID and GIFID fetch ID information from the ID blocks stored in the 6000 series machine
by the last GIBUT or AETSKR action.

Because the ID information is queued in two separate areas, the programmer must be care-
ful when he fetches or uses it after a call to GICLR; the GICLR call erases information from
the 1700 queues only. This means that calls to GIBUT will always fetch ID information
queued after that last GICLR call occurred, but calls to AELBUT, GIFID, and GIFSID may
reference information queued before the last GICLR call occurred. To avoid referencing
the wrong ID information, a call to GICLR should be followed by a GIBUT call with IR = 0;

after this call, the other four routines can be used without causing confusion.

AELBUT

This routine returns the ID information stored in the last button pick type ID block fetched
from the 1700 series computer by a GIBUT or AETSKR call. AELBUT enables the
programmer to investigate the parameters of the button which caused the calling of the

current task overlay.

Call Statement Format:

(CALL AELBUT (IDDT, IDDC, IDWA, IDWB, IH, IV)

IDDT ID type code; returned as a result of the call
IDDC ID code word; returned as a result of the call
IDWA ID information word A; returned as a result of the call
IDWB 1D information word B; returned as a result of the call

17303600 Rev. B 6-29

IH H axis (horizontal) coordinate of the lightpen pick which caused
the button to be queued; returned as a result of the call

Iv V axis (vertical) coordinate of the lightpen pick which caused the
button to be queued; returned as a result of the call

Parameters IDDC through IV are optional.

If a keyboard key, rather than a light-button, caused the calling of the current task, IH and
IV will contain the keyboard status bits (see Table 3-1).

The IDDC parameter of any button referenced by AELBUT can be used to store the NCON

of the console to which the button is assigned. This would give the programmer a means of
determining which NCON value he should use in subsequent GIFID or GIFSID calls; if an
NCON value other than that of the last GIBUT or AETSKR call is given in a GIFID or GIFSID
call, a fatal error occurs (see Appendix B).

GIBUT

This routine fetches the first sequential button pick type ID block, and all related string pick
type and single pick type ID blocks, from the FETCH queue of a particular graphics console.
GIBUT also returns the parameters in the button ID information to the calling task. Once a
call to GIBUT has been made, the information in the button ID block can be accessed again
only through an AELBUT call, because another call to GIBUT will cause the next set of
queued ID blocks to be fetched from the 1700 and will write over the information stored in
the 6000 series machine. If the ID block was created by GILPKY, i.e., queued by a light-
pen key interrupt, IH and IV will contain the coordinates of the tracking cross at the time

of the interrupt.

Suppose the user displays three buttons with IDDCs of 1, 2, and 3; the names are RERUN,
ERASE, and STOP; and the IDWAs and IDWRBs are properly right-justified. He wishes to

branch to the corresponding routines when a button is picked so he uses the following code:

CALL GIBUT (0, NCON, IDDT, IDDC, IDWA, IDWB)
GO TO (1, 2, 3) IDDC
1 CALL AETSKC (5LRERUN)
GO TO 10
2 CALL AETSKC (5LERASE)
GO TO 10
3 CALL AETSKC (4LSTOP)

10 CONTINUE
e

6-30 17303600 Rev. B

Call Statement Format:

[CALL GIBUT (IR, NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

IR Code to control return; if IR:

0, wait for a button pick type ID block to be queued

1, return to the calling task immediately

NCON Number of the console from which the information should be
retrieved

IDDT ID type code; returned as a result of the call

IDDC ID code word; returned as a result of the call

IDWA ID information word A; returned as a result of the call

IDWB 1D information word B; returned as a result of the call

IH H axis (horizontal) coordinate of the lightpen pick which causéd the

block to be queued; returned as a result of the call

v V axis (vertical) coordinate of the lightpen pick which caused the
block to be queued; returned as a result of the call

If there is no button pick type ID block queued for console NCON and the call parameter IR
equals zero, the application job will be rolled out urtil such a block is queued. If no such

block is queued but IR equals 1, IDDT is returned as a positive zero.

GIFID

GIFID fetches the ID parameters from the last single pick type ID block stored in the 6000
series input buffer area by an AETSKR or GIBUT call. This is the ID block of the last
single pick display item associated with the last button returned to the 6000 series computer.
The NCON in a GIFID call must agree with the NCON of the last AETSKR or GIBUT call (see
AELBUT, above).

Call Statement Format:

l CALL GIFID (NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

NCON Number of the console from which the ID block should be retrieved

IDDT ID type code; returned as a result of the call

IDDC ID code word; returned as a result of the call

17303600 Rev. B 6-31

IDWA ID information word A; returned as a result of the call
IDWB ID information word B; returned as a result of the call

IH H axis (horizontal) coordinate of the lightpen pick which caused the
block to be queued; returned as a result of the call

v V axis (vertical) coordinate of the lightpen pick which caused the
block to be queued; returned as a result of the call
IH and IV contain the keyboard status bits if a keyboard key, rather than a display item
pick, caused the block to be queued. The IH and IV parameters returned are the coordinates
of the position where the beam was when the interrupt occurred and are in the vicinity of the
display item; because the beam position varies slightly from pick to pick of the same item,

IH and IV may also vary.

If no single pick type ID block is stored in the 6000 series computer, IDDT is returned as a
positive zero; the values returned for the other parameters cannot be predicted.

A call to GIFID destroys the queued ID block. Thus, a second call to GIFID will return
IDDT = 0.

GIFSID

GIFSID fetches the ID parameters from the last string pick type ID block stored in the pro-
gram's application executive area by an AETSKR or GIBUT call. This is the ID block of
the last string pick display item associated with the last button returned to the 6000 series

machine.

A single GIFSID call can be used to fetch the parameters from several associated ID blocks,
but the programmer must dimension the ID parameter and coordinate parameter names that

he uses in his calling statement.

The NCON parameter of a GIFSID call must agree with the NCON of the last AETSKR or
GIBUT call (see AELBUT).

Call Statement Format:

(CALL GIFSID (NCON, N, IDDT, IDDC, IDWA, IDWB, IH, IV)

NCON Number of the graphics console from which the information should
be retrieved.

N The number of string pick type ID blocks from which the programmer
wishes to fetch parameters; if fewer than N blocks are queued in the
6000, N is returned equal to the number of blocks from which param-
eters could be returned. If N > 1, the following calling parameters
must be dimensioned. N will always be the smaller of a) the number
requested and b) the number of string pick type ID blocks available.

6-32 17303600 Rev. B

IDDT ID type code; returned as a result of the call

IDDC ID code word; returned as a result of the call

IDWA ID information word A; returned as a result of the call

IDWB ID information word B; returned as a result of the call

IH H axis (horizontal) coordinate of the lightpen pick which caused the

block to be queued; returned as a result of the call.

v V axis (vertical) coordinate of the lightpen pick which caused the
block to be queued; returned as a result of the call

Only 16 (208) string pick blocks at a time are queued in the 6000 series computer.

If a keyboard key, rather thana display item pick, caused the block to be queued, then IH
and IV contain the keyboard status bits. The IH and IV parameters returned after a display
item pick indicate the position where the beam was when the interrupt occurred and is in

the vicinity of the display item.

If no string pick type ID block is associated with the last button pick type ID block stored in
the 6000 series computer, IDDT is returned as a positive zero and N is returned as 0; the

values returned for the other parameters cannot be predicted.

Once retrieved, ID block parameters are lost; thus, a second call to GIFSID will return the
ID parameters from the next string pick type ID block in the 6000 series queue (the next

block in the time sequence of string pick type queue entries).

A GICNJB call cannot be made between two GIFSID calls that are intended to return values
from the same string of ID blocks; such a call would cause a conflict in NCON and result in

a fatal error.

CONTROL OF CONSOLE ALPHANUMERIC INPUT

No alphanumeric information can be entered into the system unless the application program
first provides a place on the screen to enter it and then makes a call to the 1700 series

computer requesting it.

GIANS

This routine creates a light-register on the screen so that the console operator can enter
alphanumeric information. The register can contain up to 8010 characters at a time, and

can appear anywhere on the screen.

17303600 Rev., B 6-33

GIANS displays a series of underline segments beginning at the screen coordinates supplied
by the programmer and extending to the right across the screen up to the equivalent of 80
characters. The area immediately above this underline constitutes the light-register. When
the console operator presses an alphanumeric keyboard key or picks a font character with the
lightpen, the individual letter, symbol, or number is displayed in the register, starting at

the left, and the corresponding portion of the underline disappears.

If GIANS is called again while the console operator is entering alphanumeric information, the

current contents of the register are destroyed; each call to GIANS defines a new register.

Call Statement Format:

(CALL GIANS (NCON, NC, IH, IV)

NCON Number of the graphics console on which the light-register should
be created; only one console can be referenced through each call

NC Maximum number of characters that will be permitted in the register
(defines the number of underline segments)

IH H axis (horizontal) coordinate of the left end of the underline

v V axis (vertical) coordinate of the left end of the underline

GIANE
This routine performs three functions, in the following order:

1. It stops the entry of alphanumeric information into the currently defined light-

register,

2. It then transfers the characters currently in the register to the calling program
as an array buffer; this buffer contains 10 characters (in 6000 series display
code) per word. The characters are left-justified within a word, and blank-fiil
is provided for any word not completely filled. When 11 < NC < 20, word 2 is
blank-filled if not completely filled. When 0 < NC< 10, word 1 is blank-filled,

but word 2 is not; i.e.,

word 1 word 2
E

cccObbbbbb | xxxxxxxxxx
M

3. It clears all characters from the register and removes any remaining portion of

the underline.

6-~34 17303600 Rev. B

If the number of characters entered in the register is less than the maximum number speci-
fied by the NC parameter of this call, the number entered in the register will be returned as

a result parameter.

Call Statement Format:

(CALL GIANE (NCON, NC, IBUF)

NCON Number of the console from which the characters should be fetched;
only one console can be referenced through each call.

NC Maximum number of characters in the character buffer. If more
than NC characters are entered, only NC characters are returned;
if fewer than NC characters are entered, NC is returned equal to
the number of characters in the character buffer.

IBUF Array buffer of picked characters; returned as a result of the call.

After GIANE has been called, the programmer must call GIANS before any further alpha-

numeric information can be entered.
FRAME-SCISSORING DISPLAYS

Before displaying a line or arc on the console screen, the programmer may want to assure
that it lies entirely within a specific area (see Display Presentation, Section 3). He can do
this by calling either the GULINE or GUARC frame-scissoring routine and then using the
results of his call in subsequent calls to display item generation routines. GULINE and
GUARC do not display anything on the console screen or create an item description that can

be displayed; this must be done by other routines.

GULINE

This routine determines the points at which a given line intersects a given frame. If the
given line lies completely within the frame, the display grid coordinates of the end points of
the line are returned to the application program. If the line is partially within the frame,

the grid coordinates of the end points of that part of the line are returned.

GULINE also scissors out lines that are too small for the graphics console operator to
discern. This microscissoring is performed on any line less than six display grid units long.

The end point coordinates returned after such an operation are meaningless.

If the given line lies completely outside of the given frame, the end points returned by

GULINE are meaningless.

17303600 Rev. B 6-35

Call Statement Format:

(1 KSHOW, IH1, IV1, IHZ2, IV2)

(CALL GULINE (IHCEN, IVCEN, IHCOR, IVCOR, H1, V1, H2, V2,

IHCEN, IVCEN Horizontal and vertical display grid coordinates of the
center of the frame

IHCOR, IVCOR Horizontal and vertical display grid coordinates of the upper
right-hand corner of the frame

H1, V1,H2, V2 Horizontal and vertical display grid coordinates of the left
and right ends (respectively) of the line that the programmer
wants scissored; these should be floating-point values,
rather than integers

KSHOW Scissor flag, returned as a result of the call; if KSHOW:
= 0, the given line is either completely outside the frame
or has been microscissored
= 1, the given line is completely within the frame
= 2, the given line is partially within the frame and has

been scissored

IH1,1V1,1HZ, Horizontal and vertical display grid coordinates of the left
Ive and right end points (respectively) of that portion of the line
within the frame; returned as a result of the call, but mean-
ingless if KSHOW equals zero

GUARC

This subroutine determines the points at which a given arc intersects a given frame. If the
given arc lies completely within the frame, the display grid coordinates of the arc's center
and end points are returned to the application program. If the arc is partially within the
frame, the grid coordinates of the arc's center and of the end points of those parts of the

arc within the frame are returned.

GUARC also scissors out arcs that are too small for the graphics console operator to dis-
cern. This microscissoring is performed on any arc with end points less than six grid units

apart. The end point values returned after such an operation are meaningless.

If the given arc lies completely outside of the given frame, the end point coordinates
returned by GUARC are meaningless.

GUARC is used for both arcs and circles, since the Interactive Graphics System defines only
circular arcs. If the programmer wants to frame-scissor an arc that is almost a complete
circle, the end point values returned to him may represent up to five separate arc segments,

as in Figure 6-5.

6-36 17303600 Rev., B

FRAME —>| /4 }

Figure 6-5. Example of a Frame-scissored Arc

Call Statement Format:

(1 H2, V2, KSHOW, IHC, IVC, IH1, IV1, IH2, IV2)

(CALL GUARC (IHCEN, IVCEN, IHCOR, IVCOR, HC, VC, H1, V1

IHCEN, IVCEN Horizontal and vertical display grid coordinates of the
center of the frame

IHCOR, IVCOR Horizontal and vertical display grid coordinates of the

' upper right-hand corner of the frame

HC, VC Horizontal and vertical display grid coordinates of the
center of the circular arc that the programmer wants
scissored

H1, V1,H2, V2 Horizontal and vertical display grid coordinates of the

right and left ends (respectively) of the arc that the pro-
grammer wants scissored; arcs are defined counterclock-
wise

KSHOW Scissor flag, returned as a result of the call; if KSHOW:

0, the given arc is either completely outside of the
frame or has been microscissored

1

1 through 5, it indicates the number of arc segments
within the frame

IHC,IVC Horizontal and vertical display grid coordinates of the
center of the arc; returned as a result of the call, but
meaningless if KSHOW equals zero

1H1,IV1,IH2,1V2 Horizontal and vertical display grid coordinates of the
end points of those portions of the arc within the frame;
returned as a result of the call, but meaningless if KSHOW
equals zero

17303600 Rev. B 6-37

Each of the last four parameter names is the first word of an array KSHOW words in length.
The coordinate value in each word corresponds to the segment of the arc that follows sequen-
tially, counterclockwise, after the coordinate of the segment corresponding to the word
before it. The first word in each array contains the coordinate of the first such segment

that occurs after the initial end point specified for the programmer's original arc.

DISPLAY ITEM GENERATION

The nine routines that generate display item descriptions can be used to create a figure com-
posed of lines or arcs (or any arbitrary figure combining lines and arcs), to display alphanu-
meric information, to define an item as display macro, and to change the 1744 Controller's

current control byte values.

These routines do not display anything on the graphics console screen; that can be done only
by a separate GIDISP call.

All but one of the nine routines have the following three programmer-defined parameters in

common:
IBUF An array buffer used to contain description bytes produced by the display
item generation routines. The contents of each IBUF define one display
item or display macro. IBUF must be dimensioned by the programmer;
the recommended size is 6410 60-bit words.
MBYTE Maximum number of 12-bit bytes which the programmer will allow to

be packed in the IBUF words. MBYTE should be = 31010.

NBYTE Number of bytes currently in the IBUF words. NBYTE is set equal to
zero by the programmer every time he starts a new IBUF, and its value

is automatically updated after each call to a generation routine.

Each call to a generation routine produces bytes of information in addition to that supplied
by the programmer. These bytes are calls to the 1700 Package equivalent of the 6000 Pack-
age routine and are the first bytes packed into IBUF by the call. Because of similar extra
bytes, the IBUF used in a call to GIDISP cannot be filled such that NBYTE is greater than
310 before the call; the limit on an IBUF used in a call to GIMAC is 31810 bytes before the

call.

Under certain conditions, a non-fatal error may occur and cause a generation call to be

ignored (see Appendix B); in this case, the extra bytes are not placed in IBUF.

6-38 . 17303600 Rev. B

If a generation routine is called and its actions cause NBYTE to exceed MBYTE, IBUF will
only include the last MBYTE description bytes placed in it. This condition producés a non-
fatal error diagnostic and the overflow bytes are lost. A statement such as

IF (NBYTE.LT.MBYTE) 10, 1000

could be used to check for the buffer overflow condition and avoid later problems caused by
a truncated IBUF.

GURSET

This routine establishes the initial conditions for a display item which is described in sub-
sequent generation routine calls. A call to GURSET turns the light beam off, initiates a

reset sequence, and drives the beam to the absolute screen coordinates given in the call.
GURSET places a reset sequence specified by the programmer in an IBUF description buffer —

which is then filled with description bytes by calling other display item generation routines.

The reset sequence consists of bytes that set the cathode beam intensity, item lightpen sensi-
tivity, item blinking capability, and the display grid coordinates to which the beam should be
moved (with the beam off). However, if many GURSETSs are used, the reset sequence may

cause flicker or blinking of the display as well as fill up the refresh buffer in the controller.
The reset sequence is the equivalent of several 1744 Controller command and control bytes.

A GURSET call should precede all other generation routine calls when a new display item
description buffer is started. GURSET can also be used to place reset information in a
partially filled IBUF if the programmer wishes to move the beam or change intensity in the
middle of a display item; an example of these uses is given in the paragraphs concerning
GUAN.

A display macro IBUF does not require a reset sequence.

Call Statement Format:

(CALL GURSET (IH, IV, ICODE, IBUF, NBYTE, MBYTE)

IH, IV Absolute horizontal and vertical display grid coordinates of the
point at which the cathode beam should be repositioned on the
screen (less than |[£2047| dgus)

17303600 Rev. B 6-39

ICODE Reset control code bit pattern of the form: s00tfbb B
i,e.: 1 0 3 B

disable item's sensitivity to lightpen strike
enable item's sensitivity to lightpen strike

w0
I ou

(=]

-

-

normal display processing
inhibit display processing until next reset sequence

I n
-

-

don't blink item when it is displayed
blink item when it is displayed

mon

03

bb » display item with beam at low intensity
display item with beam at medium intensity

» display item with beam at high intensity

-

HOM HO HO
-

Hon u
=)

IBUF Description buffer for this display item; contains reset information
as a result of this call

NBYTE Number of bytes currently in IBUF

MBYTE Maximum number of bytes the programmer will allow in IBUF

GUAN

This routine packs a description of alphanumeric information into a display item description
buffer. A subsequent GIDISP call will display the information as lines of characters on the
console screen. The first character is positioned with the lower left-hand corner of the
character's 24 by 24 (or optional 32 by 32) dgu square on the point defined by the most recent
GURSET call. The characters are left-justified within the square, with spacing at the top

and right side of the square.

Although a single GUAN call will pack up to 25510 characters into an IBUF, there is a smaller
practical limit for a single call. Each character occupies an area on the screen that is 2410
grid units square unless the installation has chosen the 3210 dgu character set option. This

limits the maximum length of a line defined by a GUAN call to 17010 characters; if more than

17010 characters are placed in IBUF for a single line, wraparound will occur on the display.

Because a GUAN call generates a return jump to a 1700 macro, this routine cannot be used to

place alphanumeric information into a display macro IBUF.

Call Statement Format:

‘ (CALL GUAN (IBCD, NC, IBUF, NBYTE, MBYTE)

IBCD First word of the array of characters which are to be displayed; 10
per array word in left-justified 6000 series internal display code

NC Number of characters from IBCD that should be packed by this call;
if NC > 25510, the extra characters will not be packed in IBUF

6-40 17303600 Rev. B

IBUF Description buffer for this display item; the packed avlphanumeric
data is returned as a result of the call

NBYTE Number of bytes currently in IBUF; updated as a result of the call

MBYTE Maximum number of bytes the programmer will permit in IBUF

Each line of alphanumeric information should be defined by a separate GUAN call, but at
least seven full lines can be placed in one IBUF as a single display item. The following
example illustrates this.

.

o
COMMON IBUF (63), IBCD (49)
NBYTE =0

MBYTE = 310
ICODE = 102B
READ 10, (IBCD (N), N=1,49)
10 FORMAT (8A10/)
CALL GURSET (4200B, 400B, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN (IBCD (1), 70, IBUF, NBYTE, MBYTE)
CALL GURSET (4200B, 350B, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN (IBCD (8), 70, IBUF, NBYTE, MBYTE)
[J
°

Note that the lines of alphanumeric information in the above example are not 170 characters
long. Because the console screen is circular, the maximum line length depends on the
point of origin or the line on the screen; a 170-character line would have to originate at (or
very near) IH = -2047, IV = 0000. An 88-character line will fit almost anywhere on the

screen.

If the programmer wishes to display a character other than those defined for the 274 console
screen (see Appendix C), he cannot use GUAN unless he changes the macro address table in
the 1700 Basic Graphics Package equivalent of GUAN; each character is defined as a display

macro by the latter routine.

GUSEGS

This routine generates the description of a line segment and packs it in an IBUF description
buffer. GUSEGS can be used to generate the description of a single line or the description
of the first line segment in a figure; in the latter case, the parameters in the GUSEGS call

17303600 Rev. B 6-41

can be used to give this first line segment an appearance different from that of the reset of

the figure. GUSEGS may be used to draw a line of minimum length (6 dgu) which will appear

on the console screen as a point. The width of the light beam is approximately 5 dgus (at

50% intensity).

Although GUSEGS can be used to initialize a figure (which is generated by later calls to other
routines), it does not place a reset sequence in IBUF. If IBUF does not already contain a

reset sequence, a GUSEGS call must be preceded by a GURSET call; a macro buffer does

not need a reset sequence.

Call Statement Format:

(CALL GUSEGS (IH1,1IV1,IH2, IV2, IBEAM, ISTYLE, IBUF, NBYTE, MBYTE)

IH1, IV1

IH2,1V2

IBEAM

ISTYLE

IBUF

NBYTE

MBYTE

Horizontal and vertical display grid coordinates for starting point
of the line segment. The coordinates are relative to the most recent
call to GURSET.

Horizontal and vertical display grid coordinates for the end point of
the line segment which must be at least 6 dgus from the starting
point of the segment if it is to appear on the console.

Beam control parameter that determines the appearance of this
line segment only; if IBEAM

= 0, this segment is not displayed

= 1, this segment is displayed according to ISTYLE
The following values can be used when figure generation is finished;
if IBEAM

= -0, turn beam off and stop the beam at the end
point

= -1, turn beam on and stop the beam at the end
point

Style control parameter that determines the appearance of this
segment and any figure generated by subsequent GUSEG calls; the
degree of solidity of the line depends on the number of set bits in
this parameter, as in the following sample values:

= T177B, 0, or -0, segment is solid (7777B is conventional)

= 5252B, segment is dashed

= 6666B, segment is broken

= 1272B, segment has appearance called center line by engineers

Description buffer for this display item; contents returned depend
on the call

Number of bytes currently in IBUF; an updated value is returned
as a result of this call

Maximum number of bytes the programmer will permit in IBUF

17303600 Rev. B

If the programmer wants to frame-scissor his figure, the IH1, IV1, IH2, IV2 parameters
passed to this call should contain the values returned by a GULINE call.

GUSEGI

This routine is used to initialize a figure that is generated by later calls to GUSEG, GUSEGI
does not generate the description of a line segment, as GUSEGS does, but merely determines

the starting point of a figure and controls its appearance.

GUSEGI does not place a reset sequence in IBUF. If IBUF does not already contain such a
sequence, a GURSET call must precede the call to GUSEGI; a macro IBUF need not contain

a reset sequence.

Call Statement Format:

(CALL GUSEGI (IH1, IV1, ISTYLE, IBUF, NBYTE, MBYTE)

IH1, IV1 Horizontal and vertical display grid coordinates for the starting
point of the figure. The coordinates are relative to those specified
in the last call to GURSET.

ISTYLE Style control parameter that determines the appearance of the entire
figure; the solidity of the lines in the figure depends on the number
of set bits in this parameter, as in the sample values given for
GUSEGS.

IBUF Description buffer for this display item; the contents returned
depend on the results of this call.

NBYTE Number of bytes currently in IBUF; an updated value is returned
as a result of this call.

MBYTE Maximum number of bytes that the programmer will permit in IBUF.

GUSEG

Each call to GUSEG generates the description of a single line segment and packs it in an
IBUF description buffer. GUSEG does not initialize a figuré and must be preceded by either
a GUSEGA, GUSEGS, or GUSEGI call; otherwise, a fatal error occurs.

The appearance of a figure generated by calls to GUSEG depends on the ISTYLE value used
in the initial GUSEGA, GUSEGS, or GUSEGI call and on the beam control code of each
GUSEG call. The last point specified in a preceding call to GUSEGS, GUSEGA, GUSEGI,

or GUSEG is used as the starting point for the line segment generated by the current GUSEG
call.

17303600 Rev. B 6-43

Call Statement Format:

(CALL GUSEG (IH, IV, IBEAM)

IH, IV Horizontal and vertical display grid coordinates for end point of
this segment

IBEAM Beam control parameter that determines the appearance of this
line segment only; if IBEAM:
= 0, this segment is not displayed
= 1, this segment is displayed according to ISTYLE

The following values can be used when figure generation is finished;
if IBEAM:

= -0, turn beam off and stop the beam at the end
point -

= -1, turn beam on and stop the beam at the end
point

The IBUF array and MBYTE parameter used by a GUSEG call are the ones specified in the
last GUSEGS or GUSEGI call; each GUSEG call also automatically updates the last NBYTE
value.

GUSEGA

In contrast to the GUSEG routine, which must be used in conjunction with GUSEGS or GUSEGI,
the GUSEGA routine performs its own initialization and then generates the description of an
entire figure. One GUSEGA call can thus be used to replace many GUSEG calls if none of the
parameters defining the figure depend on a console operator's actions.

GUSEGA does not place a reset sequence in the IBUF description buffer. If IBUF does not
already contain such a sequence, a GURSET call must precede the call to GUSEGA; a macro
IBUF need not contain a reset sequence. The coordinates in the call to GUSEGA are relative
to those in the last call to GURSET.

Call Statement Format:

(CALL GUSEGA (IH, IV, IBEAM, N, ISTYLE, IBUF, NBYTE, MBYTE)

IH, IV First words of arrays containing the horizontal and vertical
(respectively) display grid coordinates for the end points of each
figure segment; this routine uses the end point of the last segment
as the starting point of the next, so each segment after the first
requires only one pair of coordinates

6-44 17303609 Rev. B

IBEAM First word of an array containing the beam control code for each
figure segment; if an array word:
= 0, the segment is not displayed
= 1, this segment is displayed according to ISTYLE

The following values can be used when figure generation is finished;
if IBEAM:

= =0, turn beam off and stop the beam at the end
point

= =1, turn beam on and stop the beam at the end
point

N Number of figure segments to be generated by the current call

ISTYLE Style control parameter that determines the appearance of the
entire figure; the solidity of the lines in the figure depends on the
number of set bits in this parameter, as in the sample values given
for GUSEGS

IBUF Description buffer for this display item; the contents returned
depend on the results of the call

NBYTE Number of bytes currently in IBUF; an updated value is returned
as a result of the call

MBYTE Maximum number of bytes that the programmer will permit in
IBUF

N should always be one less than the number of values in the IH and IV arrays because the
first two words in IH and IV define only one line segment; that is, the first word identifies
the starting point and the second word identifies the end point of the first segment in the
figure. However, IBEAM(i) identifies a segment only by its end point IH(i+1) IV(i+1); thus
IBEAM (i+1) identifies, but does not describe, a segment. IBEAM(i) can be set equal to
turn the cathode beam off when the figure is completed.

GUARCG

This routine generates a description of several arcs or a circle and packs the information in
an IBUF description buffer. GUARCG can define up to five separate or connected circular

arcs, deployed counterclockwise around a common center.

If the programmer wishes to frame-scissor a circular figure, the array of end points used
in the GUARCG call should be the same as the array produced by a previous call to GUARC.

GUARCG does not place a reset sequence in IBUF. If the description buffer does not already
contain such a sequence, a call to GURSET should precede the GUARCG call; a macro IBUF
need not contain a reset sequence.

17303600 Rev. B 6-45

Call Statement Format:

(1 NBYTE, MBYTE)

(CALL GUARCG (KSHOW, IHC, IVC, IH1, IV1, IH2, IV2, ISTYLE, IBUF,

KSHOW Number of arc segments to be generated by this call; must be less
- than six

IHC,IVC Horizontal and vertical display grid coordinates for the common
center of the arcs

IH1,1V1 First words of arrays containing the horizontal and vertical display
grid coordinates for the starting point of each arc segment

IH2,1V2 First words of arrays containing the horizontal and vertical display
grid coordinates for the end point of each arc segment

ISTYLE Style control parameter that determines the appearance of all the
arc segments; the solidity of the lines depends on the number of
bits set in the parameter, as in the sample values given for GUSEGS

IBUF Description buffer for this display item; the contents returned depend
on the call

NBYTE Number of bytes currently in IBUF; an updated value is returned as
a result of the call

MBYTE Maximum number of bytes that the programmer will allow in IBUF

GUBYTE

GUBYTE is a general purpose routine. It is used to place information into an IBUF descrip-
tion buffer when the information is a type other than that processed by the regular display

item generation routines.

The information packed by GUBYTE is placed into the 1744 Controller. (See Appendix I,
page I-3, for example of GUBYTE calls. The octal equivalent of the hexadecimal column in
Appendix C gives equivalents of alphanumeric characters. These equivalents are used in
GUBYTE calls.)

GUBYTE transfers the lowest 12 bits from each word in an input array to the specified IBUF.
Each 12-bit byte is left-justified next to the last byte entered in the buffer. IBUF, as well as
any other buffer produced by a display item generation routine, is packed with five bytes in

each of its words.

6-46 17303600 Rev. B

Call Statement Format:

(CALL GUBYTE (IBYTE, L, IBUF, NBYTE, MBYTE)

IBYTE First word of the array containing one description byte at the lower
end of each word

L Number of consecutive words in IBYTE from which bytes are to be
transferred

IBUF Description buffer for this display item; contents returned depend

on the call

NBYTE Number of bytes currently in IBUF; an updated value is returned
as a result of the call

MBYTE Maximum number of bytes which the programmer will allow in
IBUF

GUMACG

This routine places a macro call description into an IBUF description buffer. This allows
a display item to use display macros that were previously defined by calls to GIMAC. Each
call to GIMAC sends an IBUF to the 1700, where its contents are translated, converted into
a display byte stream, and stored in the memory of the 1744 Controller. GIMAC then
returns an associative address for that macro to the calling program. The macro is not
displayed until a GUMACG call and a subsequent GIDISP call place a calling sequence for |
it into the display byte stream of a regular display item. This is done by inserting the
sequence into the IBUF which describes the regular display item of which the macro is to
be a part.

Call Statement Format:

(CALL GUMACG (MAD1, L, IBUF, NBYTE, MBYTE)

MAD1 First word of an array containing macro address MAD parameters
returned by previous calls to GIMAC

L Number of consecutive MAD parameters from MADI1 that are to be
placed in IBUF by this call

IBUF Description buffer for this display item; the contents returned
depend on the call

NBYTE Number of bytes currently in IBUF; an updated value is returned
as a result of this call

MBYTE Maximum number of bytes that the programmer will allow to be
placed in IBUF

17303600 Rev. B 6-47

STORING AND DISPLAYING ITEMS

Once the description of a display item is finished, the filled IBUF is placed in the display
buffer of the 1744 Controller through a GIDISP or GIMAC call; GIDISP defines the contents

of IBUF as a regular display item, which is then shown on the console screen; GIMAC defines
the contents as a display macro, which does not appear on the screen unless a call to it

occurs in a regular display item. After the item is placed in the display buffer, it can be

° Duplicated on another part of the screen, with a new reset sequence and a new
ID block

e Moved to another part of the screen, with a new reset sequence and a new ID
block

e Erased from the screen and the display buffer

e Turned off (i, e., not displayed) but not removed from the buffer so the user may
turn it on again at a later time with a reset

GIMAC

This routine sends the contents of an IBUF description buffer to the 1700 series computer,
where its contents are translated and then converted into a display byte stream by the 1700
Package routines. (There is a check for a valid call code and parameters before the contents
of IBUF are sent to the 1700 translator.) The 1700 version of GIMAC stores this display

byte stream as a display macro in the display buffer of the specified console's controller.

GIMAC does not display the macro on the console screen, but returns the associative
address of-the macro to the programmer. This address parameter is then used by GUMACG
to generate a macro call in the IBUF of a regular display item. A subsequent call to GIDISP
for the regular display item also displays the macro.

Note that the ID block entered into the 1700 queue, when a macro is picked, is the ID block

of the regular display item which called the macro.

There is only one level of macros within the Interactive Graphics System. If an IBUF is
being used for the description of a macro, it cannot contain a call to another macro; GIMAC
can never be called to process an IBUF that has been used for previous calls to GUAN or
GUMACG.

Call Statement Format:

(CALL GIMAC (NCON, IBUF, NBYTE, MAD)

NCON Number of the console to which the macro should be sent; only
one console can be referenced through each call

6-48 17303600 Rev. B

IBUF Description buffer for this macro; contents returned depend on the
call

NBYTE At the time of the call the number of bytes currently in IBUF;
NBYTE is returned = 0

MAD Display buffer associative address of the new macro; returned
as a result of the call

GIMACE

GIMACE removes one or more macros from a console controller's display buffer and frees

that area of the buffer for later use.

If GIMACE is called to erase a macro that is used by one of the regular display items, the
GIMACE call will have unpredictable — and probably chaotic — results on the screen. The
programmer can avoid this problem by preceding a GIMACE call with a call to GIERAS; the
GIERAS call erases all regular display items which use the macro that the programmer

wants to erase.

Call Statement Format:

(CALL GIMACE (MAD,, MAD,, ..., MAD)

1’ 2’

MADi Display buffer address of the macro to be erased; a right paren-
thesis or a MAD; equal to minus zero may be used to end the param-
eter list. The maximum value of n is 36.

If a MADi equal to positive zero occurs in the middle of the call's parameter list, the
addresses following it will be ignored and their associated macros will not be erased. A

zero is returned in the MADi parameter of each macro that has been erased.

GIDISP

This routine sends the contents of an IBUF description buffer to the 1700 series computer
where its contents are translated and then converted into a display byte stream by the 1700
Package routines. The validity of the call code and parameters is checked before the con-
tents of IBUF are sent to the 1700 translator. The 1700 version of GIDISP stores this display
byte stream in the display buffer of the specified console's controller and associates an ID

block with it. GIDISP then returns an associative address to the calling program.

This address is the relative address of the regular display item within a table of actual
display buffer addresses maintained by the 1700 Package equivalent of GIDISP; the associative

address is used by the programmer for all subsequent references to the display item.

17303600 Rev. B . 6-49

GIDISP is the only routine in the 6000 Basic Graphics Package which can display a new item

on the console screen.

The IDDAD associative address parameter has the following structure:

21 15 0

NCON INDIRECT POINTER VALUE

NCON Octal number of the console to which
the item is assigned

Call Statement Format:

(CALL GIDISP (NCON, IBUF, NBYTE, IDDAD, IDDT, IDDC, IDWA, IDWB)

NCON Number of the graphics console on which the item should be dis-
played; only one console can be referenced through each call

IBUF Description buffer for this display item; contents returned depend
on the call parameters

NBYTE At the time of the call the number of bytes currently in IBUF/
NBYTE is returned = 0

IDDAD System-defined associative address of the display item; returned
as a result of the call

IDDT ID type code; used to specify how the queue handler will treat the
item's ID block (see GIMASK)

IDDC ID code word; the contents assigned by the programmer are
0< IDDC < 28 -1

IDWA ID information word A; contents are arbitrary unless the item ID
block is used by AETSKR

IDWB ID information word B; contents are arbitrary unless the item ID
block is used by AETSKR

A standard display item identification byte stream is formed from parameters IDDT through
IDWB and is added to the end of the display byte stream for the item in the 1744's display
buffer; if any of the last four parameters is set equal to -0, that parameter and any sub-
sequent ones are omitted from the identification byte stream. (A parameter list may also be
terminated by a right parenthesis.) An item defined as a button and processed by AETSKR
must have an IDWA; if none exists, AETSKR produces a diagnostic (see Appendix B) and no
task is loaded. If IDDT, IDDC, IDWA, or IDWB are not used, it is good programming prac-
tice to terminate the argument list after the last variable used; this conserves display buffer

memory.

6-50 17303600 Rev. B

A task name used by AETSKR must be right-justified within both the IDWA and IDWB words,

but it must be left-justified as a whole.

For example, the name TSK could be placed in bits 23 through 6 of word IDWA, with zero
fill in bits 5 through 0. This could be done by the statement

IDWA = 4RTSK
Note that the statement
IDWA = 3RTSK

would produce an invalid task name by placing 0TSK in IDWA. AETSKR does not handle a

task name that begins with a zero, so this condition would abort the job.

A longer name such as TSKNAM would have to be stored so that TSKN filled IDWA and bits
23 through 12 of IDWB contained the characters AM. The statements

IDWA

I

4RTSKN

IDWB = 4RAM

illustrate how TSKNAM can be stored. Note that the statement

IDWB = 2RAM

will produce an invalid task name by placing 00AM in IDWB; AETSKR will not recognize

the resulting TSKNOOAM as the task called TSKNAM. Once GIDISP specifies a routine name
with IDWA and IDWB, a call to AERTRN can branch to that routine in another overlay level.
Then AELBUT can investigate the parameters of the item displayed in the original overlay
before the call to AERTRN.

The programmer cannot allow NBYTE to exceed 31210 bytes. The EXPORT HS graphics
output buffer contains space for 320, bytes of information, and the identification bytes fill
eight of them (the equivalent GIMAC bytes fill two). Since the first two bytes of every IBUF
are reserved for the function code and the NBYTE value, no more than 31010 description
bytes can be placed in the IBUF of a regular display item and no more than 31 610 in a macro
IBUF.

G IERAS

The GIERAS routine removes one or more display byte streams from the display buffers of
the consoles. This erases the display item associated with each byte stream and also
removes any of the items' ID blocks currently in the FETCH or WAIT queues — regardless
of the blocks' pick types.

17303600 Rev. B 6-51

The programmer uses the associative addresses (produced by previous calls to GIDISP) to
indicate the display items that he wants GIERAS to erase from the console screen. If he
plans to call GIERAS (IDDAD) before GIDISP has defined IDDAD (as in a loop), it is good
programming practice to initialize IDDAD to 0.

Call Statement Format:

(CALL GIERAS (IDDAD,, IDDAD IDDAD)

1° 2% v

IDDAD, Associative address of the display item to be erased; an IDDADi
equal to minus zero, zero, or a right parenthesis may be used
to end the parameter list. The maximum value of n is 36,

If an IDDADi equal to minus zero occurs in the middle of the call's parameter list, the
addresses following it are ignored and their associated display items are not erased; if an

IDDADi equal to positive zero occurs, it is not processed but subsequent addresses are.

A zero is returned in the IDDADi parameter of each display item that has been erased.

GICOPY

The GICOPY routine duplicates an existing display item, assigns a new ID block and a new
reset sequence to the copy, and displays the copy at a new location on the console screen or
on the screen of a different console. The duplication process does not erase or change the

original display item.

Note that thé reset sequence changed by a GICOPY call is the first such sequence placed in
the IBUF of the original item; if the description of the original display item contains more
than one reset sequence, the values assigned to the reset sequence of the copy should not be

changed.

Display of the duplicate item begins at the same point within the item as it begins in the
original item; i.e., if the original item was described beginning in its lower left~-hand corner,

then the duplicate will also begin there.

Call Statement Format:

(CALL GICOPY (IDDADI, NCON, IH, IV, ICODE, IDDAD, IDDT, IDDC, IDWA, IDWB)

IDDADI Associative address of the item which is to be duplicated

NCON Number of the graphics console on which the duplicate display item
should appear; only one console can be referenced through each call

6-52 17303600 Rev. B

IH, IV Horizontal and vertical display grid coordinates for the reset
sequence of the duplicate item; these are the absolute coordinates
of the copy's point of origin

ICODE Reset control code to be assigned to the copy; the s00tfbb bit
pattern has the same meanings as those defined for GURSET

IDDAD Associative address assigned by the system to the duplicate display
item; returned as a result of this call

IDDT ID type code to be assigned to the ID block of the duplicate item;
used to specify how the queue handler will treat the duplicate item's
ID block

IbDC ID code word for the ID block of the duplicate item; the contents

assigned by the programmer are 0 < IDDC < 28 -1

IDWA ID information word A for the ID block of the duplicate item; con-
tents are arbitrary unless the item ID block is processed by
AETSKR (see GIDISP)

IDWB ID information word B for the ID block of the duplicate item, con-
tents are arbitrary unless the item ID block is processed by
AETSKR (see GIDISP)

When one of the call statement parameters IH through IDWB (not including IDDAD) is set
equal to -0, that parameter for the copy will be left as it is in the original display item. The
parameters IDDT through IDWB may be omitted; this has the same effect as setting them
equal to -0.

If controller memory for the display byte stream of the copy is unavailable, a buffer overflow
message will be produced at the 1700 series operator's console and the 274 console.

GIMOVE

The GIMOVE routine can change the location, reset sequence, and/or ID block information
of an existing display item. This allows the programmer to change such features of a dis-
play item as its pick type, intensity, sensitivity to lightpen pick, and whether or not it can
be blinked. GIMOVE does not create a new item; it alters the location of the existing display
item.

Note that the reset sequence changed by a call to GIMOVE is the first such sequence placed
in the item's IBUF. When the description of the item contains more than one reset sequence,
the item cannot be moved; therefore, IH, IV, and ICODE in the following call should be set
equal to -0.

17303600 Rev. B 6-53

Call Statement Format:

(CALL GIMOVE (IH, IV, ICODE, IDDAD, IDDT, IDDC, IDWA, IDWB)

IH, IV New horizontal and vertical display grid coordinates for the reset
sequence of the item; these are the absolute coordinates of the
item's point of origin

ICODE New reset control code for the item; the s00tfbb bit pattern has
the same meanings as those defined for GURSET

IDDAD Associative address of the display item; not changed by the call

IDDT New ID type code for the item's ID block; used to specify how the

queue handler will treat the block

IDDC New ID code word for the item's ID block; contents assigned by the
programmer are 0 < IDDC < 28 -1

IDWA New ID information word A for the item's ID block; contents are
arbitrary unless the block is processed by AETSKR (see GIDISP)

IDWB New ID information word B for the item's ID block; contents are
arbitrary unless the block is processed by AETSKR (see GIDISP)

When one of the call statement parameters IH through IDWB (not including IDDAD) is set
equal to -0, that parameter for the copy will be left as it is in the original display item. The
parameters IDDT through IDWB may be omitted; this has the same effect as setting them
equal to -0.

CONTROL AND USE OF THE TRACKING CROSS

Each graphics console in the Interactive Graphics System is equipped with a lightpen tracking
feature called the tracking-cross. This cross always exists somewhere on the console
screen grid, but the programmer may move it off the visible screen area if he wishes. The
cross is a system-defined display item described by a byte stream that is automatically

placed in the display buffer of each console's controller whenever the console is initialized.

The display grid coordinates of the cross are kept in a fixed location in the display buffer
(see Section 3). The 6000 Basic Graphics Package contains routines that set and fetch these
coordinates; by using these routines, the programmer can determine or change the cross

location.

The cross and lightpen are used together in the following manner. The pen is used to pick
the cross at some location on the screen. The cross is then automatically attached to the
pen so that it moves with, or tracks, the lightpen as the pen is moved across the screen.

When the pen is stopped and the cross comes to rest, the location of the cross defines the

point of a lightpen pick. If the pen and cross are moved across a display item, no lightpen

6-54 17303600 Rev. B

pick is recorded; the cross must be motionless before a pick can be detected. This feature

allows the cross to be moved across the screen without causing unwanted lightpen picks.

Also provided in the 6000 Package are two routines which attach a display item or display
macro to the tracking-cross. Such an item or macro moves with the cross across the screen

until detached by another call.

GITCON

GITCON turns the tracking-cross on (makes it visible) and initially locates it at any program-
mer specified point on the screen. The console operator can then use the cross for the

tracking procedure described above.

A call to GITCON will reposition.the tracking-cross at the location specified in the call even
if the console operator is using the cross when the call is made. No repositioning will occur;
however, if a button ID block is queued for the specified console; the assumption is made that
a queued button will initiate some action which requires the tracking-cross to be at its present

coordinates.

Call Statement Format:

(CALL GITCON (NCON, IH, IV)

NCON Number of the graphics console on which the tracking-cross should
appear or be relocated; only one console can be referenced through
each call ’

IH, IV Horizontal and vertical display grid coordinates of the point at
which the cross should be placed; the cross is centered around
this point

The IH and IV parameters may be omitted from any call to GITCON. If IH and IV are not
supplied in a call, GITCON will display the cross at the current coordinates.

GITCOF

GITCOF returns the display grid coordinates of the cross associated with the last button pick
ID block retrieved from the 1700 FETCH queue. These coordinates represent the location
of the cross when that button was picked; they are not necessarily the coordinates of the
cross at the time of the call to GITCOF or the coordinates of the last button picked.

17303600 Rev. B 6-55

NOTE

Although the tracking-cross cannot be turned off,
the user can move it to an area off the screen but
within the 2047 to -2048 range, i.e., coordinates
(1792, 1792).

Call Statement Format:

(CALL GITCOF (NCON, IH, IV)

NCON Number of the graphics console to which the call is addressed: only
one console can be referenced through each call

IH, IV Horizontal and vertical display grid coordinates of the tracking-

cross from the last button pick ID block fetched; returned as a
result of the call

GITIMV

GITIMYV attaches a previously defined display item to the tracking-cross so that the item
moves with the cross across the screen. The initial point of the item coincides with the

writing point (center) of the tracking cross.

Call Statement Format:

(CALL GITIMV (NCON, IDDAD)

NCON Octal number of the graphics console to which this call is addressed
only one console can be referenced through each call

IDDAD Associative address of the display item which should be attached to
the tracking-cross

The programmer should assure that the IDDAD value he supplies in his call is defined for
console NCON; if the same display item has been created at several different consoles, it
will have as many different associative addresses. Use of the wrong IDDAD value aborts

the job (see Appendix B).

A call to GITIMV can also be used to detach a display item from the tracking-cross. If
IDDAD is set equal to zero, GITIMV will detach any item currently attached to the cross,

and the item will remain at the place on the screen that it occupied when the call occurred.

6-56 17303600 Rev. B

GITMMV

This routine attaches a previously defined display macro to the tracking-cross so that the
macro moves with the cross across the screen. A call to GITMMYV displays the macro
with the initial point of the macro coinciding with the writing point (center) of the tracking-
cross.

If the macro contains a reset sequence, it will not be moved when the tracking-cross is moved.

Call Statement Format:

(CALL GITMMYV (NCON, MAD)

NCON Octal number of the graphics console to which this call is addressed;
only one console can be referenced through each call

MAD Associative address of the macro which should be attached to the
tracking-cross

A call to GITMMYV can also be used to detach a display macro from the tracking-cross. If
MAD is set equal to zero, GITMMYV will detach any macro currently attached to the cross,
and the newly displayed macro will remain at the place on the screen that it occupied when

the call occurred while the previous macro is erased.

The same restrictions on MAD/NCON agreement apply to this call as apply on IDDAD/NCON
agreement in a call to GITIMYV,

USE OF THE DATA HANDLER

Seven of the routines in the 6000 Basic Graphics Package manipulate, store, and retrieve
data from files organized in a plex data structure. One or more such local files can be
defined for each graphics application job. The installation parameter, MAXNFILE, specifies

the maximum number of files that can be used by a single job.

The programmer uses one file at a time, To reduce the required number of disk accesses,
the data handler keeps in-core duplicates of the most used record blocks within the mass
storage file. (A block is a fixed-length record; the programmer can specify an approximate
length for each block in his DMINIT call.) He specifies the number of in-core duplicates to
be kept, and the data handler selects that number of the most frequently used blocks from the
file and duplicates them in central memory. The programmer does not need to know which
blocks have duplicates in central memory at any given time; for the purpose of data storage

and retrieval, he can consider that the entire file always resides in central memory.

17303600 Rev. B 6-57

COMPONENT CODES

Data is stored within the mass storage file in word or bit spaces of variable length: these
variable memory areas are called components and make up the beads of the plex data struc-
ture. Each component within a bead is accessed according to the value of bit patterns called

component codes.

All component codes begin with a component type number, of which there are nine, followed

by the particular data needed for that component type.

A given value can be inserted in a bead or retrieved from it in a number of ways; the method
and component code used depend on the personal preferénce of the applications programmer
and the requirements of his program. For instance, code 6 can be used to perform the
functions of all the other component codes, but not necessarily in the most efficient manner.
An operation such as the retrieval of the connecting bead addresses is best done with com-
ponent code 10 and a call to DMGET.

The component codes and their formats are:

35 3 18 0

N e IR

Type 1 code represents a 60-bit word as a bead component. The code can be written as

35 18 0

TYPE 2 000010 W // WORD NUMBER

Type 2 code represents a 120-bit double-precision floating-point value as a bead component;

this value is not checked for validity as a floating-point number when it is stored or retrieved.
The code can be written as 020000wordxxB in Boolean octal or as the arithmetic expression
24 2%%30+wordxx.

6-58 17303600 Rev. B

02 Component type

Position of the first 60-bit word of the value within the bead, expressed

wordxx
as a word number; the first word in a bead is word number 1

35 30 18 0

TYPE 3 000011 //////////////A CHARACTER NUMBER

Type 3 code represents a 6-bit alphanumeric or special character as a bead component. The

code can be written as 030000charxxB in Boolean octal or as the arithmetic expression

3#%2%%30+charxx.

03 Component type

Position of the character within the bead, expressed as a character

charxx
number; the first character in a bead is character number 0

35 30 18 _ 0
TYPE 4 000100 CHARACTER NUMBER WORD NUMBER

Type 4 code represents a 6-bit alphanumeric or special character within a word or word

array as a bead component. The code can be written as 04charwordxxB in Boolean octal or

as the arithmetic expression 4#2%%30+char*2*%18+wordxx.

04 Component type

Position of the character within the word or word array, expressed as a

char
character number; the first character in the first array word is character
number 0
wordxx Position of the first word of the array within the bead, expressed as a word
number; the first word in any bead is word number 1
35 30 23 18 0
TYPE 5 000101 SHIFT BITS WORD NUMBER

Type 5 code represents a pattern of bits within a word as a bead component. The code can

be written as 05shbtwordxxB in Boolean octal or as the arithmetic expression 5%2%3%30+sh*2

#x24+bt*2%%18+wordxx.

05 Component type

Number of bits to shift right in order to right-justify the bit pattern within
the word

sh

17303600 Rev. B

bt Number of bits in the bit pattern

wordxx Position of the word containing the pattern within the bead, expressed as
a word number; the first word in any bead is word number 1

The bit pattern stored or retrieved by the type 5 code is not sign extended; the pattern- stored
or retrieved by type 6 code is sign extended. In a bit pattern that is not sign extended, the
left-most bit in the pattern is part of the octal value of the pattern, while in a sign extended
pattern the left-most bit indicates the sign of the value represented by the rest of the pattern's

bits. For example if the bits mnn or the bits I 0 I 1 ,0 lO IO | are retrieved as

patterns that are not sign extended, both groups of bits represent the value 108; however, if

the same bits are retrieved as sign extended patterns, umn represents the value -78

and [Ol 1’ 0| OJ Oj represents +108. This means that a negative octal value can be stored in

its 1's complement form by using type 6 code.

35 30 24 18 0

TYPE 6 000110 SHIFT BITS WORD NUMBER

Type 6 code represents a sign extended pattern of bits within a word as a bead component.
The code can be written as 06shbtwordxxB in Boolean octal or as the arithmetic expression

642k 30+sh*2%*24+bt*2%*18+wordxx.

06 Component type

sh Number of bits to shift right in order to right-justify the bit pattern
within the word

bt Number of bits in the bit pattern

wordxx Position of the first word containing the pattern within the bead, expressed
as a word number; the first word in any bead is word number 1

35 30 18 0

TYPE 7 000111 ARRAY LENGTH WORD NUMBER

Type 7 code represents an array of 60-bit words as a bead component. The code can be
written as 07arylwordxxB in Boolean octal or as the arithmetic expression 7*2%%30+aryl#2::

18+wordxx.
07 Component type
aryl Length of the array in words

wordxx Position of the first word of the array within the bead, expressed as a
word number; the first word in any bead is word number 1

6-60 17303600 Rev. B

35 18 0

TYPE 8 001000 W/ WORD NUMBER

Type 8 code represents the 18-bit address portion of a word as a bead component. The code

can be written as 100000wordxxB in Boolean octal or as the arithmetic expression 8%2%%30+
wordxx.

10 Component type

wordxx Position of the word within the bead, expressed as a word number; the
first word of any bead is word number 1

35 0

O Tl Y,

Type 10 code represents the hook (pointer) address of the next bead in a string. The code
can be written as 120000000000B or as the arithmetic expression 10%2+%%30. When bits 0-29

are non-zero, they act as a pointer to a certain word in the next bead and/or block. Where
they are zero, they simply point to the zero word in the next reference block. See Figure 6-6

for an example of pointer use.

A fragment of a sample program, showing the use of these component codes, is given after

the following routine descriptions.

DMINIT

This data handler initializing routine establishes new or changes previously defined mass
storage file and core storage parameters. DMINIT is used to control the number of duplicate
blocks the data handler maintains in central memory, to specify which file the programmer

is currently using, and to establish an approximate length for each block in the file.

Call Statement Format:

f CALL DMINIT (IFILE, NBLK, NBSIZE)

IFILE Alphanumeric name of the file which the data handler should use;
this identifier is one to seven characters long, left-justified within
the IFILE word, and in a form and format that SCOPE will recognize
as a valid file name

17303600 Rev. B 6-61

59 29 0
0 41000
[

2
3
4q
5 | 0004

59 29 0
) 42000
[

2
3
L >4 | 0000
5
59 29 o
43000 oO<=—"
|
2
3
4
5

Figure 6-6.

Example of Pointer Use

17303600 Rev. B

NBLK Number of in-core duplicate blocks to be maintained; must be > 2
for the data handler to operate efficiently

NBSIZE Approximate size of the data blocks, expressed as an octal number
of 60-bit words

The NBSIZE value specified by the application programmer is rounded up to the next highest
multiple of 10()8-1 ; this rounding up provides for the most efficient use of the 6000 series
system disk space and does not affect program execution. For example, if the programmer
specifies NBSIZE equal to 90 (1 328), the blocks are assigned a size of 12710 (1 778).

If the programmer omits NBSIZE from his DMINIT calling sequence, the data handler uses

an installation parameter to determine block size.

NBLK should be chosen carefully. If too many duplicates are maintained, the program ties
up an excessive amount of central memory with its data file; if NBLK is too small, the pro-
gram's response time deteriorates because the data handler must access mass storage so

often. The sole purpose of maintaining duplicate blocks in central memory is to avoid these

problems.

The programmer can use DMINIT to switch files during program execution. If DMINIT is
called with an IFILE different from the one used in a previous call, the data handler
replaces each mass storage block in the old file with its in-core duplicate if their contents
differ. T The data handler then uses the new file when processing all subsequent calls from

the programmer.

DMINIT can also be used to change the number of duplicate blocks maintained in central
memory for the current IFILE. Each call to DMINIT will change the field length of the job

as necessary to accommodate any additional blocks.

Any call to DMINIT may change the field length of the job, since the in-core portion of IFILE
is appended to the field length of the rest of the job (see Figure 2-1). However, if an IFILE
is already open at the time of a DMINIT call, the old file's central memory area is released

before space for the new one is allocated.

If the programmer dynamically changes the field length of the job after his first call to
DMINIT, the change is nullified by any subsequent calls; the data handler always begins

allocating space for its file at the same location and requests a field length change just large
enough to accommodate it.

TInformation entered in the file is written in the duplicate blocks in central memory; conse-
quently, the contents of the blocks in mass storage are not up-to-date until the data handler
writes the duplicates back into the file.

17303600 Rev. B 6-63

DMFLSH

This routine updates the mass storage file by writing the duplicate blocks from central memory
into it.} DMFLSH closes the file. This routine must be used if permanent files are to be

created.

Call Statement Format:

(CALL DMFLSH

No data handler routine can be used after a DMFLSH call unless another call is first made to

DMINIT to re-establish the file-processing parameters.

DMDMP

The DMDMP routine prints an octal dump of the entire IFILE data file. This dump, which is
formatted for easy reference to beads and string addresses, enables the applications pro-
grammer to examine the data contained in the blocks and beads of the file; empty spaces with-

in the file are indicated but not shown.
The dump is always placed in the standard QUTPUT file.
A call to DMDMP has no effect on the contents of the data file.

Call Statement Format:

(CALL DMDMP

DMGTBD

DMGTBD allocates a specified number of contiguous words from free space in the IFILE data
file and defines those words as a bead. This provides the programmer with dynamic working
storage. DMGTBD zeros out each word of the bead (i.e., each word is full of zeros before

DMSET is called).

tInformation entered in the file is written in the duplicate blocks in central memory; conse-
quently, the contents of the blocks in mass storage are not up-to-date until the data handler
writes the duplicates back into the file.

6-64 17303600 Rev., B

Call Statement Format:

(CALL DMGTBD (N, IBEAD)

N Number of 60-bit words to be allocated as a bead; N must be less
than 2%%18

IBEAD Relative address of this bead within the block; returned as a result
of this call

If there is no space available in IFILE for a bead of N words, IBEAD is returned equal to

zero.,

DMRLBD

The DMRLBD routine releases the space in IFILE occupied by beads that the programmer

no longer needs. This space then becomes available for the allocation of new beads.

Call Statement Format:

(CALL DMRLBD (IBEAD , IBEAD,, . . . , IBEAD)

IBEADi Relative bead addresses from one or more blocks, indicating the
beads that should be released; an IBEAD; equal to minus zero can
be used to terminate the parameter string, in addition to a right

parenthesis. Up to 20 beads may be released with one call to
DMRLBD.

IBEADi is returned equal to zero when a bead is released.

DMSET

This routine places a given value in a specified position within a bead. If the value used in
the call does not occupy a full 60-bit word, the value must be right-justified within the call
parameter word.

Call Statement Format:

(CALL DMSET (ICOMP, IBEAD, VAL)

ICOMP Component code specifying the position within the bead that the
value should occupy; ICOMP must contain one of the nine valid type
codes described above

17303600 Rev. B 6-65

IBEAD Relative address of the first word of the bead in which the infor-
mation is to be placed

VAL Component value to be placed in the bead; the contents of VAL must
be right-justified

DMGET

This routine retrieves a previously defined value from a specific position within a bead. If
the value returned by the call does not occupy a full 60-bit word, it will be right-justified
within the returned call parameter word.

Call Statement Format:

(CALL DMGET (ICOMP, IBEAD, VAL)

ICOMP Component code specifying the position within the bead that the
value occupies; ICOMP must contain one of the nine valid type codes
defined above

IBEAD Relative address of the first word of the bead which contains the
information
VAL Component value returned by this call; the value returned is right-

justified within VAL

A call to DMGET does not destroy the information within the bead.

EXAMPLE OF BEAD USE

Figure 6-6 illustrates a bead designed to use the nine different component codes; in several

cases, more than one code is used to pack a single bead word, as in words six and nineteen.

6-66 17303600 Rev. B

| BEAD

0O O g 0O O b WN

17303600 Rev.

|
WORD ’

YCHARACTER 9

60 — BIT INTEGER

A\

60 —BIT FLTG. PT. VALUE

CHARACTER
ARRAY (STARTING

0) 2 3 4 5 6 7 8 | 9
ol nl ezl 3| w]| | €] 7|1

! Hook
i[7[10] 7 6623 [1s—8iT ADDRESS

AT WORD 3)

BEAD ADDRESS
(FOR NEXT BEAD
IN STRING)

12— WORD
ARRAY

|||[o]n|cmm.|| 267 | CHAR 2 | CHAR.3

7777

B

Figure 6-7. Example of Components in a Bead

The bead shown in Figure 6-6 is created and filled by the calls below:

Call

[]
[]
®
CALL DMINIT (THDMFILE1, 2)

CALL DMGTBD (19, IBEAD(1))
°
°

CALL DMSET (040011000003B,
IBEAD(1), 1RS)
)

°
®
CALL DMGTBD (50, IBEAD(2))
[]
o
[
IHOOK = IBEAD(2) + 7B
[]
[]
°

CALL DMSET (010000000005B,
IBEAD(1), THOOK)

Explanation

Initializes file DMFILE1l, with two
duplicate blocks in-core

Establishes a bead 19 words long with
a bead address returned in IBEAD(1)

Sets character S in character position
9 in the bead array starting at word
three

Establishes a second bead, 50 words
long, for a bead string

Creates string pointer to word seven
in the second bead

Sets the string pointer in word five of
the first bead

The other calls used are not shown because of space limitations.

Word six shows six components packed into one bead word by calls using six different com-
ponent codes. The components include a 1-bit value, a 3-bit value, a 5-bit value, a 9-bit

value (eight bits sign extended), a 12-bit value, and an 18-bit address.

Word 19 includes four individual bit states, three alphanumeric characters, an 8-bit value,
and a 15-bit value. These nine components were placed by nine calls to DMSET.

6-68 17303600 Rev. B

These two words (six and 19) demonstrate the flexibility and utility of component code usage.
As a further example, the character S placed by the call shown above could also have been
stored by:

(CALL DMSET (050006000003B, IBEAD(1), 23B)

VOLUNTARY ABORTION OF A JOB

The GIABRT routine allows the application programmer to terminate his job at any point
during execution. GIABRT can be used to abort the job if a non-fatal error or another type
of programming problem occurs; it can also be used to abort the job if the console user is

not obtaining the desired results during an application run.

GIABRT displays an abort message, supplied by the programmer, on the screen of the graphics
console at (-552, 1600); it then performs all of GICNRL's functions, enters the abort message
in the SCOPE dayfile, and calls the standard SCOPE abort processor. Any exit control cards,
such as DMP, are then processed.

There is no return from a call to GIABRT.

Call Statement Format:

(CALL GIABRT (NCON, IBCD, NC)

NCON Number of the graphics console that should receive the abort
message; only one console can be addressed

IBCD First word of an array buffer containing the abort message

NC Number of characters in IBCD; must be less than 4710

If the application job is servicing more than one console, one should be considered a master

console to which all GIABRT messages are addressed.

HARDCOPY FILE CREATION

A console user may require a permanent record of data contained in a display. The GIPLOT
routine provides a means by which such a hardcopy record can be made. Because the type
of hardcopy required varies according to the job and the equipment available, GIPLOT does
not actually create the hardcopy record. It creates a system file (called PLOT) of display
information in a device-independent format. This file can then be used by a special driver
to duplicate the display. The driver used depends upon the device at the installation; thus,

specific information may be found in the handbook pertaining to the particular device installed.

17303600 Rev. B 6-69

The following background information is needed to understand the use of GIPLOT.,

An Interactive Graphics program intersperses a sequence of calls to the 6000 Basic Graphics
Package routines with manipulations of data residing in the mass storage IFILE. The dis-
plays produced by the program depend upon the console user's choice of call sequences and
call parameters; he chooses these variables by making task selections and data entries from
the console. The display created by one set of choices is usually modified by a subsequent

set until the user obtains the desired graphics forms and information.

When the user obtains a display for which he wants a hardcopy, he makes a console entry

requesting it.

The entry should then cause the program to repeat the sequence of operations that produced
the display, without repeating the intermediate steps. By repeating the sequence, the param-
eter string which resulted in the display is reproduced. This duplicate parameter string is
then used in calls to GIPLOT, rather than GIDISP or GIMAC.

An alternative to duplicating the parameter string would be the insertion of coding, similar

to the following, at the end of each task which creates a display:

CALL GIBUT (0, NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

IF (IDWA. EQ. 4RPLOT) GO TO 500

CALL AETSKR
500 DO 501 I=1, IDDC, IDWB

CALL GIPLOT (NCON, IBUF(I), NBYTE(I), IDENT, ITYPE)
501 CONTINUE

CALL AETSKR

END

This coding checks for an entry made by a light button called PLOT and returns control to
AEXEC if the button has not been picked. If the button has been picked, the contents of
several display item buffers are sent to GIPLOT and then control is returned to AEXEC and
the next task. The display item buffers might be stored in labeled COMMON before each
GIDISP call that creates a display item in its final form.

6-70 17303600 Rev. B

Call Statement Format:

(CALL GIPLOT (NCON, IBUF, NBYTE, IDENT, ITYPE)

NCON Number of graphics console containing the display which this file
should reproduce; only one console can be specified by each call

IBUF Description buffer of the item to be entered in the file
NBYTE Number of bytes contained in IBUF

IDENT, Information used by the programmer to identify himself and his file
ITYPE when it is later processed by the hardcopy driver

ADDITIONAL ROUTINES FOR DISPLAY FONT CREATION

Two routines have been added to the 6000 Basic Graphics Package library to facilitate the
creation and use of display fonts. These routines are written in FORTRAN, using the other
6000 Package routines. One routine creates an alphanumeric font display resembling a tele-
typewriter keyboard, and the other creates a numeric font display resembling a clock face.
The two routines actually display the fonts and return address parameters so that the
programmer can manipulate the fonts as he would a regular display item.

GFONTA

This routine creates the keyboard-like figure shown in Figure 6-8. The alphanumeric dis-
play items IDDA and IDDN are the associative addresses of the two parts of the font. The
figure is created in two parts because the parameter string describing it exceeds the length
of a single EXPORT HS buffer.

BKSP is a special character for backspace (137B is the octal equivalent of the hexadecimal),
" SPC is a special character for space (40B is the octal equivalent of the hexadecimal), and
CLEAR is a special character for clear (177B is the octal equivalent of the hexadecimal).

Call Statement Format:

(CALL GFONTA (NCON, IH, IV, IDDA, IDDN)

NCON Number of the graphics console that the font should appear on;
only one console can be addressed through each call

IH, IV Horizontal and vertical display grid coordinates of the approximate

center of the display font; the font is displayed from IH -332 to
IH +332 and from IV +172 to IV -172.

IDDA, First and second associative addresses of the display font created
IDDN by this call; returned as a result of the call

17303600 Rev. B 6-71

juog Lerdsi(otgewnueydly °g-9 aandig

— . — —— — —— —— — — — — — — — ——

1"
|
4
Nors
™~
X

_8v3ilo 2dS dSA49.

2LI+Al

\

2EEHI) — e —

17303600 Rev. D

6-72

GFONTN
This routine creates a numeric font display item like the one shown in Figure 6-9.

Call Statement Format:

(CALL GFONTN (NCON, IH, IV, IDDAD)

NCON Number of the graphics console that the font should appear on;
only one console can be addressed through each call

IH, IV Horizontal and vertical display grid coordinates of the decimal
point in the center of the circle; the figure is located between
IH +268 and IH -244 and between IV +334 and IV -244

IDDAD Associative address of the font display item; returned as a result
of the call

The characters BKSP, SPC, and CLEAR have the same octal equivalents as they have for the
alphanumeric display font described previously.

17303600 Rev. B 6-73

v

|||||||||| r 892+H|

Numeric Display Font

Figure 6-9.

17303600 Rev. D

6-74

PROGRAMMING CONSIDERATIONS 7

This section contains hints and warnings for the application programmer.

TIME ACCOUNTING

The standard SCOPE accounting procedure is used for all jobs, including graphics jobs.

Sufficient time must be requested on the job card for each job to ensure its completion.

The hardware interrupt handlers of the 1700 Basic Graphics Package operate on a time-
stealing basis (i. e., the 6000 series computer CPU time record is not incremented during
graphics hardware interrupt handling)., When graphics consoles are heavily used, the time
indications in the SCOPE accounting records can be expected to lag behind clock time. Data

channel use time for graphics I/O is not considered CPU time.

MEMORY ALLOTMENT AND LIST PROCESSING EFFICIENCY

The data handler is designed to make efficient use of the core space allotted to it by DMINT,
The design of the algorithm used to minimize mass storage references (see Section 6)
presumes that the data structure for the application will be built and referenced as a

local file,

Application programs that use a widely scattered and cross-linked data structure should
allot larger amounts of core storage for data handling functions. Improper assignment of

core space causes slow response at the console and excessive referencing of mass storage.

DATA HANDLER COMPONENT CODES

The data handler offers powerful tools for the general handling of all types of application
data. The component codes required in the calls to DMSET and DMGET specify the exact
location of particular pieces of data within beads. However, the bit pattern form of the

component codes makes them awkward to use directly in FORTRAN programs and causes

programming errors.

One solution to the problem is the convention of naming the codes through FORTRAN labeled
COMMON. The application programmer can lay out his bead formats and specify a name for
each component code. The name, can be typed as an INTEGER, tape and assigned a parti-
cular value by using a DATA statement. The component code can be transmitted to each

17303600 Rev. B 7-1

subroutine handling data through use of a COMMON /DATA [statement, All DMSET and

DMGET calls may then refer to component codes by name.

The use of COMMON/DATA/ to name component codes also simplifies bead format changes,

The technique can be expanded to cover assignment of bead lengths and hook values.

Another solution to the problem is to create the component codes by multiplying the desired
contents for a field by the correct power of two to shift the value to its correct field position.
A positive number can be shifted left N bits by multiplying 2**N. For example, the component

code for

30 29 18 17 0

TYPE 4 -4 16 5

can be created by ICODE = 4%2%%30 + 16%2*%18 + 5, and the component code for
35 30 29 18 17 0

TYPE 8 8 352

can be created by ICODE = 8%2%%30 + 352.

Since the component code will never contain a negative number, shifting positive numbers N bits

by multiplying by 2**N will always be a satisfactory solution to the problem.

DISPLAY ITEM ADDRESSES

The display item address parameter IDDAD is the link to all display buffer editing operations.
The application program should provide disposition for the address of each item it displays.
Display addresses of highly transient items — such as prompting messages, value register,

and some light-buttons — may be kept in programmer-reserved cells in COMMON.

Most display item addresses should be an integral part of the data structure of the application
and should reside in components of beads. Display items used only for control or communica-
tion can be linked to an application data structure specifically designed for that purpose.
For example, light-buttons can be represented in a bead containing a specific identifier,

class code, and display address (IDDAD):

IBEAD POINTER TO NEXT BEAD
IBEAD + 1 CLASS IDENTIFIER
IBEAD + 2 DISPLAY ADDRESS

17303600 Rev. B

Simple subroutines can then be written to

° Display a light-button and splice a bead into the light-button string
e Erase all light-buttons of a class and splice out their beads in a string

° Erase a specific light-button and splice out its bead

MACRO HANDLING

When a programmer writes display macros, he conserves display buffer space and allows
more items to be displayed at one time. However, indiscriminate insertion and removal of
macros can lead to an inefficient fragmentation of the fixed address area of the 1744 display
buffer. Further, these functions represent the greatest operational load of the graphics

interface and frequent use of them may affect response time.

The most frequently used macros should be placed at the beginning of the job coding. Tran-
sient macros should be removed immediately after use and before other transients are
inserted. Groups of transient macros should be removed in the reverse order of their

insertion for the fastest response time.

OPTIMUM TASK LENGTH

A prime consideration in programming an Interactive Graphics application is to organize the
application as a series of short tasks. Interaction both implies and demands a free flow of
information in two directions: from operator to application and vice versa. For this reason,
tasks should be concise and well defined; the operator should be able to skip quickly ahead if
the interactive processes show an obvious path to the solution of the problem at hand. Similar-
ly, the operator should be able to jump back and forth through the application when divergence
occurs until convergence to a solution is assured or until it is apparent that major parametric
changes are required. In either case, it is the operator, not the computer or the application,
that makes the decisions. Thus, it is obvious that the operator cannot make full use of his
decision making capacity if the application programmer does not provide the operator (such as

by way of button selection) with a means of exercising that capacity.

A job consisting of many small tasks (as many as 300 tasks) permits SCOPE and the application

executive to operate with maximum efficiency and provides the best task execution response.

However, one should not describe 300 extremely short tasks if the logic of the application
best suits a configuration with 50 somewhat longer, but logically more correct tasks. A
short task on one job might be a long task on another job. The best length for any task is

the length consistent with the requirements to perform one phase of a job.

17303600 Rev. B 7-3

NONGRAPHICS DATA HANDLER USE

The 6000 Basic Graphics Package data handler routines can be used by batch jobs that re-
quire a data file with a plex data structure. The programmer should bear in mind, however,
that the CM parameter on the job card does not control the allocation of central memory when
the data handler is used. The data handler appends the in-core data base to the end of the
job's current field length during job execution; thus the data base would begin at the end of

the memory field specified by the CM parameter.

Because the CM parameter is arbitrarily large enough to assure space for both the program
coding and the loader, a great deal of central memory space may be wasted if the data

handler is used.

To eliminate the unneeded space between the regular coding and the data base, the program -
mer can use either a REDUCE or an RFL control card (see SCOPE Reference Manual).

Figure 7-1 shows a sample deck that uses the RFL card. In this example, the field length
of the job is initially 60, 000g central memory words to provide space for the compiler. The
field length is then changed to 30, 000g prior to execution; during execution, eight in-core

data handler file blocks are created beginning at RA+ 30, 000g.

6
(; '— — — — — END-OF-FILE CARD
8 /— i -
PROGRAM 9 CALL DMINIT (3HXYZ,8)
REC ORD

tf
|
PROGRAM ALPHA (INPUT,OUTPUT) H
Al
! l
8
9 LGO. |
4 4 -
/RFL, 30000.
FTN.
CONTROL /

CARD
r/BATCH33,PI7,T1000O,CM60000,TPL

—— END-OF-RECORD CARD

RECORD
SCOPE LOADER CALL CARD

FIELD LENGTH REDUCTION CARD

FORTRAN COMPILER CALL CARD

\ JOB CARD

Figure 7-1. Sample Data Handler Batch Deck Using RFL

7-4 17303600 Rev. B

When the programmer uses an RFL card, he must be careful to leave just enough but not
too much space. An easier method is shown by the sample deck in Figure 7-2, which uses
a REDUCE card.

In this example, the initial field length is the same, but it is shortened before execution so
that it is just large enough to accommodate the application program and the loader. The in-
core data base is then appended to that field length during execution, and almost all wasted

space is eliminated.

DATA HANDLER COMMON FILES OR PERMANENT FILES

The files created by the data handler during the execution run of a job are local files and are
usually destroyed when the job is finished. However, these files can be declared COMMON
and, if a DMFLSH has been used it can become a permanent file and subsequently used by
other graphics or batch jobs. DMFLSH is used to convert them to permanent files, sub-

sequently used by other graphics or batch jobs.

(/:]7 — — — — END-OF-FILE CARD
8 = = = =
s

PROGRAM CALL DMINIT (3HXYZ,8) ”
REC ORD

(PROGRAM‘ ALPHA (INPUT,OUTPUT) H

7] .
L_/ }_— —+ —|lty+| — eno-oF-RECORD cARD

N

(/EEBUCE.
FTN.
CONTROL

CARD /BATCH34,P17, T10000, CME0000, TPY
RECORD ' ' ' s
SCOPE LOADER CALL CARD

FIELD LENGTH REDUCTION CARD
VFORTRAN COMPILER CALL CARD
JOB CARD

Figure 7-2. Sample Data Handler Batch Deck Using REDUCE

17303600 Rev. B 7-5

To create a COMMON file for use as a data handler file, the following steps are suggested:

1.

2.

Open the file by calling DMINIT.

Before allocating space in the file for data, use DMGTBD to obtain space in the
file where all bead addresses can be saved; this call should return a bead ad-
dress of 41000B.

On each subsequent call to DMGTBD, save the bead address in the area allocated
by the first DMGTBD call.

At the end of the job run, call DMFLSH to update the file in mass storage.

After the LGO card in the control card record, insert a COMMON card with the
name of the data handler IFILE on it.

To use the file during a different run,

1.

Insert a COMMON card, naming the proper file, in the control card record before
the LLGO card.

Open the file using a DMINIT call, and assure that the NBSIZE parameter has
the same value as during the run that created the file.

Get the bead addresses for data from the first part of the file, using a DMGET
call with a bead address equal to 41000B (see above).

If any new data is stored in the file during the run, call DMFLSH at the end of
the job to assure that the mass storage version of the file is up-to-date.

The following programs are examples of using a data handler file as a COMMON file.

Sample program to create the file:

JOBL.

FTN.

LGO.

COMMON, DMFILE,

!

PROGRAM DMTEST1 (INPUT, OUTPUT)

COMMON IBD (500), IPTR

OPEN FILE DMFILE WITH 4 IN-CORE BLOCKS

CALL DMINIT (6LDMFILE, 4)

GET SPACE ON FILE WHERE BEAD ADDRESSES WILL BE SAVED

CALL DMGTBD (500, IPTR)

IPTR NOW EQUALS 41000B SINCE THIS IS FIRST CALL TO DMGTBD
[
.

17303600 Rev. B

CALL GETBEAD (N1, J1)
®
L J

°
CALL GETBEAD (N2, J2)

)

]

°)
CALL DMSET (ICOMP, IBD(J2), VAL)

°

.

° .
CALL DMFLSH
END

SUBROUTINE GETBEAD (NUM, INDEX)
COMMON IBD(500), IPTR
ALLOCATE "NUM" NUMBER OF WORDS IN DMFILE
CALL DMGTBD (NUM, IBD(INDEX))
IC = 10000000000B + INDEX
C SAVE BEAD ADDRESS RETURNED IN IBD(INDEX) IN FILE DMFILE
CALIL DMSET (IC, IPTR, IBD(INDEX)
RETURN
END
)
.

Sample program to use the file:

JOB2.
FTN.
COMMON, DMFILE.

LGO.
PROGRAM DMTEST2 (INPUT, OUTPUT)
DIMENSION IBEAD (500)

C OPEN FILE DMFILE WITH 4 IN-CORE BLOCKS
CALL DMINIT (ELDMFILE, 4)

.
[J

]

SET IPTR = 41000B SO BEAD ADDRESSES CAN BE RETRIEVED FROM
DMFILE
IPTR = 41000B
ICOMP = 070764000001 B
CALI, DMGET (ICOMP, IPTR, IBEAD)
ARRAY IBEAD NOW CONTAINS ALL BEAD ADDRESSES SET DURING
CREATION RUN

°

°

oJQ!

oXe!

®
CALL DMGET (ICOMPA, IBEAD(J), VAL)
°
°
°
CALL DMFLSH
END

17303600 Rev. A -7

See Figure 2-11 and 2-12 for sample permanent file creation and execution decks.
suggestions for using a COMMON file apply to using a permanent file.

The same

17303600 Rev. B

GLOSSARY

APPLICATION PROGRAMMER — The programmer who writes graphics programs through
the FORTRAN interface called the Basic Graphics Package. The programmer is
usually also the graphics console user.

ARGUMENT — Parameters entered by the graphics program in a call to the Basic Graphics
Package.

ASSOCIATIVE ADDRESS — Bit pattern that forms a parameter for calls to the Basic
Graphics Package, i.e., contents of NCON, IDDAD, MAD, IBEAD, NAME, and
IFILE.

BASIC GRAPHICS PACKAGE — Collection of FORTRAN-callable subroutines that allow
access to all the graphics hardware and the data handler.

BATCH JOBS — Programs that are non-real-time and run in the background of graphics.

BEAD — Group of contiguous computer words that may be related to other beads to make up
a data structure. Beads contain components and reside in blocks.

BLOCK — Mass storage logical blocks contain beads and are addressed by count; they re-
side on mass storage and in core

BOOLEAN OCTAL NUMBER — An octal number represented by ?s and 1s where the digit
values are powers of 8. 001 000 0012 = 1018 = 1%824+0%81 +1%80 = 64+0+1 = 6510

BUFFER MEMORY — A storage device attached to the 1744 controller and used by the
Interactive Graphics System for storage of byte-streams during off-line display.

BUTTON — Used to initiate an action from the 274 console. There are three kinds of buttons:
e Keyboard key
e Light-button
Y Prime button

BUTTON, LIGHT — Software-defined functions displayed on the control surface. They are
picked with the lightpen and usually call a task to be executed. Light-buttons are
items directly related to graphics program options.

BUTTON, PRIME — Allows a display item that is not defined as a button to activate a task
when picked, or, is used to temporarily allow a display item to have input significance
other than that written into the ID block of the item.

BYTE — A sequence of 12 adjacent binary digits (bits) operated upon as a unit.

COMMON FILE — A file of information that remains in the system, regardless of whether or
not it is attached to a program.

COMPONENT — A specific bit, character, or word space within a bead. FEach component
has a unique address code.

17303600 Rev. B Glossary-1

DATA HANDLER - Package which optimizes the use of mass storage and of in-core data file
manipulation.

DATA STRUCTURE — A logical relation used in graphics to store relationships for data
retrieval,

DIRECTIVE — An IMPORT word code which informs EXPORT of the type of data that is being
sent and/or what type of return data is required.

DISPLAY BUFFER — A core memory buffer in the 1744, used for refreshing displays on the
274 console in an off-line manner.

DISPIAY BYTE-STREAM — Display controller description of the item to be displayed; a
serial train of control bytes.

DISPLAY, CORE — A method of graphic display using information stored in computer core
memory. Core display is synonymous with on-line display.

DISPLAY ITEM — Any item displayed on the 274 console. Display items, which are byte-
streams placed in the floating address area of the buffer memory, usually start with
a reset sequence and end with an ID block.

DISPLAY, OFF-LINE — A method of graphic display using information stored in 1744 buffer
memory which does not require direct computer intervention except to process dis-
play change information. Off-line display is synonymous with buffer memory display.

DISPLAY, ON-LINE — See DISPLAY, CORE.

ERASE — An erase function not only removes a display but also removes the pointer from
the associative address table block label. The actual bytes of the item are removed
from the display controller.

EXPORT/IMPORT HIGH-SPEED (HS) — A communications system which permits batch or
graphics job submission to a 6000 Series computer from a remote computer.

FILE — 1. A collection of related records treated as a unit.
2. A peripheral device used by a computing system for storing data.

FRAME — A programmer-defined rectangular display on the CRT display surface which
encloses the working surface. More than one frame can be specified and displayed
at one time.

FRAME-SCISSORING — The process of removing the portion of a display item that exceeds
the frame limits. A form of microscissoring is done when an item is rescaled such
that the item is just a point.

FRAME TIME — Allowed time for any graphics program to remain at a graphics control
point. Calculated by the Scheduler routine.

GRAPHICS PROGRAMS — Programs, consisting of many graphics tasks, utilizing the Basic
Graphics Package subroutines,

GRAPHICS TASK — Overlay performing one operation, called by a light-button or another
graphics task.

GRID, DISPLAY — An area consisting of 4096 addressable points on the H and V axes. The
display grid circumscribes the display surface such that any combination of points on
the H and V axes can be addressed.

Glossary-2 17303600 Rev. B

HOOK — A 9-bit pointer inserted into a bead address when stringing beads.

ID BLOCK — An identification block of coded information associated with a display item.
(See Section 5.)

INPUT, ALPHANUMERIC — Picking characters from a displayed font or inputting from
alphanumeric keyboard.

KEYBOARD - Optional input device. There are two types:

° Function
° Alphanumeric

LIGHT-BUTTON — Software-defined functions displayed on the control surface. They are
picked with the lightpen and usually call a task to be executed. Light-buttons are
items directly related to graphics program options.

LIGHTPEN — A pencil-like bundle of optical fibers which senses the current vertical and
horizontal coordinates of the beam and makes them available to the program in order
to identify the item that the operator picked.

LIGHT-REGISTER - Specific area on the control surface provided for operator input of
alphanumeric data. These registers may appear anywhere on the screen, according
to the application programmer's wish.

MACRO — The display byte-stream for an item which can be displayed in a number of loca-
tions on the screen without duplication of the byte-stream.

PICK — The selection of an item with the lightpen or function keyboard.

RESET SEQUENCE - Consists of a reset byte to control beam intensity, lightpen sense, and
and blink capabilities; followed by two bytes to establish horizontal and vertical display
coordinates to which beam will be set with beam off. In conjunction with the last two
bytes, a system-imposed 25 psec delay permits beam driving circuits to stabilize.

RESIDENT TIME — Actual time a program has run at a control point.

RESPONSE TIME — The time period between a graphics operator command and the answer
he receives.

RESULT — The output of parameters by the Basic Graphics Package.

ROLLIN — The function of transferring a graphics program from mass storage to a control
point for execution.

ROLLOUT — The function of transferring a graphics program from a control point to mass
storage.

SCHEDULER — A PPU program called by EXPORT to rollout or rollin a graphics program.

SCISSOR — The act of dropping an entity from the display when its coordinate parameters
exceed the range of the display grid. This is a software function.

SCISSORING, FRAME — Truncating display items to fit a user-defined frame.

SCISSORING, MICRO — The act of removing items too small to be seen from the display.
The cutoff point is 0. 025 inch.

SINGLE PICK — A classification given to a display item to cause only the last one of this
type picked to remain on the queue.

17303600 Rev. B Glossary-3

STATUS CODE — An EXPORT data word which informs the IMPORT program what buffers
are available for data I/O.

STRING — A serial linking of display items, buttons, or beads.

STRING PICK — A classification given to a display item to cause each item of this type
picked to be put on the end of a string of picked items.

SURFACE, CONTROL — The area reserved for light-buttons and light-registers. The
area on the cathode ray tube display surface exclusive of the working surface.
Programmer-defined.

SURFACE, DISPLAY — A 20-inch diameter area on the cathode ray tube screen utilized for
man-machine communications. A light, blue, flicker-free display is presented to
the operator due to components of the P7 phosphor coating deposited on the inside
surface of the cathode ray tube screen.

SURFACE, WORKING — One of two divisions made on the cathode ray tube display surface.
The working surface can be enclosed by a frame (viewing window) which is a displayed
graphic.

TASK — A program and its subprograms that perform a series of calculations or logical op-
erations. Graphics tasks are, of necessity, as short as possible to define one phase
of a multiphase job.

TRACKING — The 1700 Basic Graphics Package function which maintains cognizance of the
position of the lightpen as it moves across the display surface. A core-displayed
tracking-cross is used as the light source for the lightpen.

TRACKING-CROSS — A software-displayed item which allows the graphics operator to use
the lightpen where otherwise no light exists.

UNIT, DISPLAY GRID — The spacing between the 4096 points on the H or V axes of the dis-
play grid. A display grid unit is fixed at 0. 005 inch and there are 200 display grid
units per inch.

USER, CONSOLE — Person who operates a graphics console and uses an application program.

UTILITY PROGRAMS — Programs which support the graphics system, but are not directly
involved in graphics program execution.

Glossary-4 17303600 Rev. B

APPENDICES

6000 BASIC GRAPHICS PACKAGE ROUTINE INDEX A

Routine Page Routine Page
AELBUT 6-29 GIFSID 6-32
AERTRN H-1 GIKYBD 6-21
AETSKC 6-19 GILPKY 6-22
AETSKR 6-20 GIMAC 6-48
DMDMP 6-64 GIMACE 6-49
DMFLSH 6-64 GIMASK 6-27
DMGET 6-66 GIMOVE 6-53
DMGTBD 6-64 GIPBUT 6-24
DMINIT 6-61 GIPLOT 6-69
DMRLBD 6-65 GITCOF 6-55
DMSET 6-65 GITCON 6-55
GFONTA 6-71 GITIMV 6-56
GFONTN 6-73 GITMMV 6-57
GIABRT 6-69 GUAN 6-40
GIANE 6-34 GUARC 6-36
GIANS 6-33 GUARCG 6-45
GIBUT 6-30 GUBYTE 6-46
GICLR 6-28 GULINE 6-35
GICNJB 6-18 GUMACG 6-47
GICNRL 6-19 GURSET 6-39
GICOPY 6-52 GUSEG 6-43
GIDISP 6-49 GUSEGA 6-44
GIEOM 6-23 GUSEGI 6-43
GIERAS 6-51 GUSEGS 6-41
GIFID 6-31 SCHEDR 6-17

17303600 Rev. B A-1

GRAPHICS SYSTEM ERROR MESSAGES B

6000 PROGRAMMING DIAGNOSTICS

In addition to the standard FORTRAN compiler, SCOPE loader, and SCOPE execution error
diagnostics, the Interactive Graphics System produces several additional diagnostic mes-
sages. These diagnostics appear on one or all of the system consoles, and all are entered
into the SCOPE dayfile. Dayfile messages pertaining to a specific program are automati-
cally printed with the program's listing. Diagnostics are displayed at the consoles reserved
by the program.

The special Interactive Graphics error messages are listed below in alphabetic order.
Class 1 messages appear only in the SCOPE dayfile (A) and/or job status (B) displays on
the 6612 console screen. Class 2 messages also appear on the 274 console's displé.y screen
at screen coordinates (-552, 1600); they occur only during program execution runs. All
messages issued by 6000 Basic Graphics Package routines contain the name of the Package
call in which the error was made and are prefaced by a message which states the name of
the task overlay in which the erroneous call occurred. Class 3 messages are generated by

the 6000 software and appear only on the 274 console screen.

6000 INPUT/OUTPUT ERRORS

JANUS also produces some error messages; these appear only in a program's output file.

1700 ABORT ERRORS

Class 4 error messages are produced by the 1700 software and appear on the 274 console
screen, but are not sent to the 6000 series machine. If a Class 4 message is associated
with a fatal error, it sends an abort flag from the 1700 to the 6000, The Scheduler detects
the abort flag and issues the Class 1 error message GRAPHICS ABORT.

The routine sending each message is specified at the end of the paragraph titled Meaning.

17303600 Rev. B B-1

Message

AEFILE READ
ERROR

BAD CALL CODE
RETURNED
—GIANE

BAD CALL
PARAMETER

CONTROL CARD
ERROR

BAD NAME
CHECK
rcrdnam

PP CALL ERROR —
AUTO RECALL

BYTE ARRAY
EXCEEDS 255 —
GUBYTE

BYTE ARRAY
INDEX ZERO —
GUBYTE

ARITHMETIC
MODE ERROR

CP TIME LIMIT
ABORT

DISPLAY ITEM
BUFFER
EXCEEDED
—GIDISP

DISPLAY ITEM
NBYTE EQUALS
ZERO — GIDISP

DUPLICATE FILE
NAMES

Error

Type Class
Fatal 1
Fatal 2
Fatal 1
Fatal 3
Fatal 1
Fatal 3
Non- 1
Fatal

Non- 1
Fatal

Fatal 3
Fatal 2
Fatal 2
Non- 1
Fatal

Fatal 1

Meaning

Parameters in the file environment
table indicate a disk read error when
control is returned to AEFILE from
SCOPE; sent by AEFILE,

Buffer returned by IMPORT at end of
console alphanumeric input does not
contain expected valid identification’
code; sent by GIANE,

EXPORT has encountered a service
request (at RA+76g of a graphics job's
control point area) with meaningless

. contents; sent by EXPORT.

During scheduling a bad control card
has been detected or an EXIT card is
detected; sent by ERPRO.

The name of record rcrdnam in source
file does not correspond to any entry
in the file index; sent by AELOAD.

During autocall, a bad PP call is
detected; sent by ERPRO.

There are only 8 bits in the 1700
Package version of the N parameter,
so N in this call cannot exceed 25510;
sent by GUBYTE.

The N parameter in this GUBYTE
call is zero, so the call is ignored;
sent by GUBYTE.

Arithmetic error causes the job to
abort; sent by ERPRO.

The central processor uses the
maximum amount of time specified,
then aborts; sent by ERPRO.

The total number of bytes in the user's
IBUF (excluding GIDISP header bytes
and trailing ID bytes) exceeds the 310
decimal maximum; sent by GIDISP,

Since the description buffer is empty,
the call is ignored; sent by GIDISP.

An executive program has detected
two COMMON files with the same name;
sent by AELOAD or AEFILE.

Page

References

2-22

2-20

6-46

6-38
6-46

17303600 Rev. B

Message

ECS PARITY
ERROR

EMPTY FILE
filenam

EOR NOT READ
ON TASK LOAD

EXHS NOT
ACTIVE

FORMAT ERROR
FIRST DATA
RECORD

GICOPY ADDR
ERR, NCON y

GIDISP BUFFER
OVERFLOW,
NCON y

GIERAS ADDR
ERR, NCON y

GIMAC BUFFER
OVERFLOW,
NCON y

GIMAC CALL
IGNORED —
NBYTE = 0

GIMAC ADDR
ERR, NCON y

17303600 Rev. B

Error

Type Class
Fatal 2
Fatal 1
Fatal 1
Fatal 1
Fatal 1
Non- 4
Fatal

Non- 4
Fatal

Non- 4
Fatal

Non- 4
Fatal

Non- 1
Fatal

Non- 4
Fatal

Meaning

There was a parity error during an

external storage move; sent by ERPRO.

Issued by AEDUMP; the first record
in source file filenam indicates that
the file was created from an empty
random file; sent by AELOAD.

Parameters in the file environment

table indicate a disk read error during
a task call when control is returned to
AEXEC from SCOPE; sent by AEXEC.

There is no communication between
EXPORT and IMPORT when an initial
graphics roll-out or control point
initialization is requested. To con-
tinue, the operator may initialize
EXHS or drop the job issuing the
message; sent by SCH or IGS.

The first data record of the input file
for the job contains no cards or an il-
legal file name; names must be seven
or fewer characters, and must contain
no special characters. Produced by
AEXEC.

The 6000 Package routine named has
sent the buffer translator an invalid
IDDAD, IDDADI, or MAD parameter
for use on console y; sent by buffer
translator.

Console y controller memory has
overflowed because of the named call;
sent by buffer translator.

The 6000 Package routine named has
sent the buffer translator an invalid
IDDAD, IDDADI, or MAD parameter
for use on console y; sent by buffer
translator.

Console y controller memory has
overflowed because of the named call;
sent by buffer translator.

Since the programmer has specified
that his description buffer is empty,
this call is ignored; sent by GIMAC.

The 6000 Package routine named has
sent the buffer translator an invalid
IDDAD, IDDADI, or MAD parameter
for use on console y; sent by buffer
translator.

Page

References

2-23

6-52

Message

GIMOVE ADDR
ERR, NCON y

GITIMV ADDR
ERR, NCON y

GIMOVE ADDR
ERR, NCON y

ITEM DESCRIP-
TION BUFFER
TRUNCATED

GUAN CALL
IGNORED — NC
IS ZERO OR
NEGATIVE

GUARCG CALL
IGNORED —

KSHOW ILLEGAL

GUARCG CALL

IGNORED — ZERO

RADIUS ARC

GUMACG ADDR
ERR, NCON y

GUSEGA CALL
IGNORED —
N ZERO OR
NEGATIVE

IGS CTL PT nn
INITIALIZED

IGS CONTROL
POINT
nn RELEASED

ILLEGAL CALL
TO IGS

ILLEGAL CALL
TO SCH

ILLEGAL
COORDINATE —
GITCON

Error
Type

Class

Non-
Fatal

Non-
Fatal

Non-
Fatal

Non-
Fatal

Non-
Fatal

Non-
Fatal

Non-

Fatal

Non-
Fatal

Fatal

Non-
Fatal

Non-
Fatal

Fatal

Fatal

4

Meaning

See above; sent by buffer translator.
See above; sent by buffer translator.
See above; sent by buffer translator.

NBYTE is changed because of invalid
data. The last parameter in the buffer
is truncated or an invalid call code is
found; sent by GVAL (called by GIDISP,
GIMACQC).

Self-esplanatory; sent by GUAN.

The KSHOW parameter is negative or
greater than 5; sent by GUARCG.

If IH1, IV1 or IH2, IV2 equals IHC,
IVC no arc can be generated; sent by
GUARCG.

The 6000 Package routine named has
sent the buffer translator an invalid
IDDAD, IDDADI, or MAD parameter
for use on console y; sent by buffer
translator.

Self-explanatory; sent by GUSEGA.

It is initialized from PPU program
IGS, where nn is the control point
initialized; sent by IGS.

nn is the number of the IGS control
point which was released; sent by SCH.

The routine IGS detects an illegal call
to itself; sent by IGS.

The Scheduler has been called
illegally; sent by SCH.

One of the programmer's tracking-
cross corrdinates is beyond the
extent of the display grid (not between
-2048 and +2048); sent by GITCON.

Page
References

6-53

6-55, -56

17303600 Rev. B

Message

ILLEGAL
COORDINATE
RETURNED —
GITCOF

ILLEGAL
IBEAD — DMGET

ILLEGAL
IBEAD —
DMRLBD

ILLEGAL
IBEAD — DMSET

ILLEGAL
IBEAM — GUSEG

ILLEGAL
IBEAM — GUSEGS

ILLEGAL
ICOMP — DMGET

ILLEGAL
ICOMP — DMSET

ILLEGAL
NBLK — DMINIT

ILLEGAL
NBSIZE —
DMINIT

ILLEGAL NUM-
BER OF WORDS
REQUESTED —
DMGTBD

17303600 Rev. B

Error

Type Class
Fatal 2
Fatal 2
Non- 1
Fatal
Fatal 2
Non- 1
Fatal
Non- 1
Fatal
Fatal 2
Fatal 2
Fatal 2
Fatal 2
Fatal 2

Meaning

One of the tracking-cross coordinates
from the last button pick is not within
the display grid (is less than -2048 or
greater than +2048); sent by GITCOF.

Programmer's bead address either:

e Has an index = 0

e Has a block number = 0

e Has a block number greater than
the number of existing blocks

Sent by DMGET.

Same as above; sent by DMRLBD.

Same as above; sent by DMSET.

The programmer's beam control
parameter is not either 0 or 1; sent
by GUSEG.

Same as above; sent by GUSEGS.

The programmer's component code
contained either:

Page

e Type code = 0 or 9, or greater than 10

e Word or character number greater
than the size of the bead specified
by the accompanying IBEAD value
Sent by DMGET.

Same as above; sent by DMSET.

The number of data handler data
blocks that the programmer wishes
kept in core as copies is either:
e Less than the minimum of 2 that

6-63

the handler needs to function properly

e Larger than the number that will fit

in core
Sent by DMINIT.

The block size specified in this call
is larger than the maximum permis-
sible size of an in-core data base;
sent by DMINIT.

The programmer is trying to define a
bead xirith a length (N parameter) s0
or 2218; sent by DMGTBD.

6-64

References

Message

INCORRECT
ICODE - GICOPY

INCORRECT
ICODE —-GIMOVE

INCORRECT
ICODE — GURSET

INCORRECT
NCON - GIFID

INCORRECT
NCON — GIFSID

INVALID IDDADI —
GICOPY

ITEM NOT DIS-
PLAYED ON THIS
NCON - GITIMV

ITEM DESCRIP-
TION BUFFER
TRUNCATED

ITEM NOT
CREATED FOR
THIS NCON —
GITIMV

JOB ABORT —
SYSTEM

JOB HUNG IN
AUTO RECALL

JOB NOT AT-
TACHED TO
RANDOM
TASK FILE

Error
Type Class

Non- 1
Fatal

Non- 1
Fatal

Non- 1
Fatal

Fatal 2
Fatal 2
Fatal 2
Non- 2
Fatal

Non- 1
Fatal

Non- 2
Fatal

Fatal 2
Fatal 3
Fatal 1

Meaning

The programmer's reset control code
is not a form or value significant to
the 1700 version of this routine; a
significant ICODE value will be sub-
stituted for the one supplied; sent by
GICOPY.

Same as above; sent by GIMOVE,

Same as above; sent by GURSET

The programmer is trying to fetch

a single pick ID block from a console
other than the one from which the last
button pick ID was fetched. The GIFID
NCON must always agree with the
NCON of the last GIBUT call; sent by
GIFID.

Same as above; same as GIFSID;
sent by GIFSID.

The user has specified an incorrect
associative address of the item to be
duplicated by GICOPY; sent by GICOPY.

Item to be attached to the tracking-
cross is not on the console referenced;
sent by GITIMM.

When an invalid call code or a trun-
cated call is found in a buffer submitted

Page

References

6-52

6-53

6-39

6-32

to GIDISP or GIMAC for output to the 1700,
this message is displayed; sent by GVALID.

The IDDAD value given does not exist
for this console; either the NCON or
the IDDAD parameter supplied in this
call is wrong; sent by GITIMM.

The SCOPE system has aborted the job;
sent by ERPRO.

A job in autorecall has no PPU activity.

Either:

e AEDUMP could not find the file
named in its first parameter field

e AEXEC could not find the file named
on its graphics COMMON file name
parameter card

If the file name is both legal and cor-

rect as given, then the file has not been

attached to the job by a control card;

sent by AEDUMP or AEXEC.

17303600 Rev.

6-56

2-6,

2-8,
6-23,
6-2

Error

Message Type
JOB WILL BE Fatal
RERUN

MACRO BUFFER Fatal
LENGTH EXCEEDED
— GIMAC

MACRO NOT Fatal
CREATED FOR

THIS NCON —

GITIMV

MAD ARRAY Non-
INDEX ZERO — Fatal
GUMACG

NBSIZE DIFFERS Fatal
FROM PREVIOUS
DEFINITION —

DMINIT

NBYTE EXCEEDS Non-
MBYTE — GUAN Fatal
‘NBYTE EXCEEDS Non-
MBYTE — GUARCG Fatal

NBYTE EXCEEDS Non-
MBYTE — GUBYTE Fatal

NBYTE EXCEEDS Non-
MBYTE — GUMACC Fatal

NBYTE EXCEEDS Non-
MBYTE — GURSET Fatal

NBYTE EXCEEDS Non-
MBYTE — GUSEG Fatal

NBYTE EXCEEDS Non-
MBYTE — GUSEGA Fatal

NBYTE EXCEEDS Non-
MBYTE — GUSEGI Fatal

NBYTE EXCEEDS Non-
MBYTE — GUSEGS Fatal

NCON ERROR Fatal

17303600 Rev. B

Meaning

The 6612 operator has made a rerun
request for this job; sent by ERPRO.

The total number of bytes in the user's
IBUF (excluding GIMAC header and
trailer bytes) exceeds the maximum
of 310 decimal; sent by GIMAC.

The MAD value given does not exist
for this console; either the NCON or
the MAD parameter supplied in this
call is wrong; sent by GITIMM.,

The N parameter given in this call
indicates that no macro should be
created, so this call is ignored; sent
by GUMACG.

DMINIT has been called with a block
size different from the block size de-~
clared by a previous job using IFILE;
sent by DMINIT.

This graphics utility call has produced

Page
References

6-51

6-63

more bytes in IBUF than the programmer 6-39

wants; sent by GUAN.

Same as above; sent by GUARCG.

Same as above; sent by GUBYTE,

Same as above; sent by GUMACC,

Same as above; sent by GURSET.

Same as above; sent by GUSEG.

Same as above; sent by GUSEGA.

Same as above; sent by GUSEGI.

Same as above; sent by GUSEGS

EXPORT has detected a service request

6-44

6-43

6-38,
6-41

6-19

(RA + 76g of a graphics job's control point

area) with an invalid NCON parameter;

either the console being addressed does not
exist, or it is not attached to this job; sent

by ERPRO.

Message

NC RETURNED
GREATER THAN
MAXIMUM-
GIANE

NC TOO LARGE
— GIANE

NC TOO LARGE
— GIANS

NC ZERO OR
NEGATIVE —
GIANE

NC ZERO OR
NEGATIVE —
GIANS

NO ACTIVE
GRAPHICS CP.

NO DATA
HANDLER FILE
OPEN — DMDMP

NO DATA
HANDLER FILE
OPEN — DMGET

NO DATA
HANDLER FILE
OPEN — DMGTBD

NO DATA
HANDLER FILE
OPEN - DMRLBD

NO DATA
HANDLER FILE
OPEN — DMSET

NO INITIAL
POINT
GENERATED
— GUSEG

Error

Type Class
Non- 1
Fatal

Fatal 2
Fatal 2
Non- 2
Fatal

Non- 2
Fatal

Fatal 1
Fatal 2
Fatal 2
Fatal 2
Fatal 2
Fatal 2
Fatal 2

Page

Meaning References
System error; more characters were 6-34
returned than were requested; sent by
GIANE,
NC can be no greater than 80. 6-34
The programmer is willing to accept 6-34

too many characters; the maximum is
80; sent by GIANS.

Self-explanatory.

Self-explanatory.

The Scheduler cannot find a graphics
control point to which the program can
be assigned. The system operator has
not assigned a control point for graphics
use, so the job cannot be executed; no
programming error has occurred; sent

by SCH.

The programmer is trying to dump a 6-61,
non-existent IFILE; either: 6-63,
e DMINIT has not yet been called 6-64

e DMINIT has not been called since
the last DMFLSH call
Sent by DMDMP.

The programmer is trying to obtain 6-61,
data in a non-existent IFILE; see 6-63,
above, Sent by DMGET. 6-64
The programmer is asking for space 6-61,
in a non-existent IFILE; see above. 6-63,
Sent by DMGTBD. 6-64
The programmer is trying to clear 6-61,
space in a non-existent IFILE; see 6-63,
above. Sent by DMRLBD. 6-65
The programmer is attempting to place 6-61,
data in a non-existent IFILE; see 6-63,
above. Sent by DMSET. 6-65
GUSEG has been called without a 6-42,
previous GUSEGI or GUSEGS call to 6-43

initialize the figure that the program-
mer wants to generate; sent by GUSEG.

17303600 Rev. B

Message

NO TASK NAME
IN BUTTON
ID — AETSKR

NO TC CO-
ORDINATES
THIS NCON —
GITCOF

OPERATOR
DROP

PP CALL ERROR
— ABORT

PREFIX TABLE
FORMAT ERROR
— AEFILE

PROGRAM
NAME NOT IN
FILE CATALOG

QUEUE TABLE
FULL

RETURN ADDRESS
OVERLAYED OR
MISSING — AE

TASK taskname
ADDRESS nnnnnn

17303600 Rev. B

Error

Type Class
Non- 1
Fatal
Non- 1
Fatal
Fatal 1
Fatal 2
Fatal 1
Fatal 2
Fatal 1
Non- 1
Fatal

2

Page
Meaning References

Produced by AEXEC when AETSKR 6-20,
has been called; IDWA and IDWB of 6-438,
the button in the FETCH queue do not 6-49
contain information that can be used
to load a task; either:
e IDWA =0
e The ID block ends short of IDWA
e The bit pattern in IDWA and IDWB

does not match a task name in the

index

No tracking-cross coordinates can 6-55
be returned because the NCON of the

last button picked does not match the

NCON supplied in this call; sent by

GITCOF.

The 6612 operator used a type-in
to abort an IGS job; sent by GABT.

Self-explanatory; sent by ERPRO.

AEFILE has detected an illegal
prefix table while creating the task
file from the overlay scratch file.

AETSKC cannot find the required task 2-20,
in the directory of the job's graphics 6-20
task file; sent by AETSKC.,

The Scheduler has no room in its
graphics input queue for this job, so
the job cannot be assigned to a control
point. The job should be run again
when there are fewer graphics jobs

in the system; sent by SCH.

Either AETSKC has never been called

or the return address of AETSKC has
been overwritten by a task load since

the last call. After issuing the message,
AERTRN exits to AETSKR; sent by
AERTRN.

Issued by the AEXEC error processor

before all fatal and nonfatal error messages;
taskname contains the name of the task -
overlay in which the error occurred. nnnnnn
is the octal return address of the routine
which discovered the error. It will normally
occur in the user's program; sent by AEXEC.

Message

TASK skskskoskskskskok
ADDRESS nnnnnn

TOO MANY DATA
HANDLER FILES
CREATED — DMINIT

TOO MANY FILES
ATTACHED TO A
GRAPHICS JOB

TOCO MANY IGS
CONTROL POINTS

1700 ABORT

Error

Type Class
2

Fatal 2

Fatal 3

Non- 1

Fatal

Fatal 1

Page

Meaning References
AEXEC issues this when it appears H-2,
that the contents of the reservation H-3

word in AEXEC for the current task
have been destroyed or when jobs are
being run outside applications execu-
tive interface; sent by AEXEC.

DMINIT has been called to create 6-63
more than the installation-specified

number of data handler files; sent by

DMINIT.

More than eight files are attached to
the job which the Scheduler is attempt-
ing to roll out; sent by SCH.

The operator has assigned more than
two control points to IGS; sent by IGS.

Either a Class 4 error or one of the
system problems mentioned in the

IGS Operator's Guide has caused the
1700 to abort the job. Error correction
may have to be done through the 1700;
sent by SCH.

17303600 Rev. B

CHARACTER CODE EQUIVALENTS C

1700 6000

6000 Printed 1713 274 Hexa- Octal Hollerith

Internal Character Tele- Display Alpha- decimal | Equiv- (punched
Display (Standard type- Charac- numeric Internal alent card

Code 6000 set) writer | terttt Keyboardttf¥| Codet | of Hex. rows)tt
01 (A A A A 41 101 12, 1
02 B B B 42 102 12, 2
03 C C C C 43 103 12, 3
04 D D D D 44 104 12, 4
05 E E E E 45 105 12, 5
06 F F F F 46 106 12, 6
07 G G G G 47 107 12, 7
10 @ H H H H 48 110 12, 8
11 g1 I I I 49 111 12, 9
12 s | J J J J 4A 112 11, 1
13 f;‘; K K K K 4B 113 11, 2
14 ; L L L L 4c 114 11, 3
15 ;g M M M M 4D 115 11, 4
16 ;ﬁ N N N N 4F 116 11, 5
17 8 (e (@] O (o} 4F 117 11, 6
20 o P P P P 50 120 11, 7
21 3| q Q Q Q 51 121 11, 8
22 il =R R R R 52 122 11, 9
23 “ s S S S 53 123 0, 2
24 T T T T 54 124 0, 3
25 U U U U 55 125 0, 4
26 v Vv v A% 56 126 0, 5
27 w w W w 57 127 0, 6
30 X X X X 58 130 o, 7
31 Y Y Y Y 59 131 0, 8
32 Z Z Z Z 5A 132 0,9

r

t8-bit ASCII, used for communication with 1713 Teletypewriter
110, 11 is equivalent to 11, 8,2 and 0, 12 is equivalent to 12, 8, 2
tt1CLEAR, SPC, BACKSPACE, TAB and EOM have input control significance only and
are not available for software alphanumeric pick processing.
11T The only legal EOM characters are RETURN and the characters in the alphanumeric

font. BKSP, SPC and CLEAR are not legal EOM characters.

17303600 Rev. B

CHARACTER CODE EQUIVALENTS (Cont'd)

1700 6000
6000 Printed 1713 274 Hexa- Octal Hollerith
Internal Character Tele- Display Alpha- decimal | Equiv- (punched
Display (Standard type- Charac- numeric Internal alent card
Code 6000 set) writer terttt Keyboardftit| Codet | of Hex. rows)tT
33 (0 0 0 0 30 60 0
34 1 1 1 1 31 61 1
35 2 2 2 2 32 62 2
36 3 3 3 3 33 63 3
37 4 4 4 4 34 64 4
40 0 5 5 5 5 35 65 5
41 2 6 6 6 6 36 66 6
42 g 7 7 7 7 37 67 7
o
43 6 8 8 8 8 38 70 8
44 2z, 9 9 9 9 39 71 9
45 é ﬁ + + + + 2B 53 12
=
46 faet - - - - 2D 55 11
47 8 * 2A 52 11, 4, 8
50 g / / / / 2F 57 0, 1
51 2 ((((28 50 0, 4,8
o
52 %)))) 29 51 12, 4, 8
53 3 $ 3 3 23 43 i1, 3, 8
54 = = = = 3D 75 3,8
55 blank space space 20 40 Space
56 s , s , 2C 54 0, 3,38
57 Y . 2E 56 12, 3, 8
60 = # backspace - 5F 137 0, 6, 8
61 [[? ? 5B 133 7, 8
62]] 5D 135 0, 2,8
63 : 3A 72 2, 8
64 # 27 47 , 8
65 - @ tab TAB > 40 100 0,5,8
66 v (OR) / clear RUBOUT ki 177 0, 11
T8-bit ASCII, used for communication with 1713 Teletypewriter
110, 11 is equivalent to 11, 8,2 and 0, 12 is equivalent to 12,8, 2
tTTCLEAR, SPC, BACKSPACE, TAB and EOM have input control significance only and
are not available for software alphanumeric pick processing.
T71f The only legal EOM characters are RETURN and the characters in the alphanumeric
font. BKSP, SPC and CLEAR are not legal EOM characters.

17303600 Rev. B

CHARACTER CODE EQUIVALENTS (Cont'd)

1700 6000
6000 Printed 1713 274 Hexa- Octal Hollerith
Internal Character Tele- Display Alpha- decimal | Equiv- (punched
Display (Standard type- Charac- numeric Internal alent card
Code 6000 set) writer | terfft Keyboardtfft| Codet | of Hex. rows)t?
67 A (AND) % EOM RETURN 3F 77 0,7,8
70 t t 1 23 43 11, 5, 8
71 + +) 5C 134 11, 6, 8
72 < < < 3cC 74 0, 12
73 > > > 3E 76 11, 7, 8
74 < & & 26 46 5, 8
75 > ? 5E 136 12, 5, 8
76 —(NOT) - - 7C 174 12, 6, 8
77 ; ; ; 3B 73 12, 7, 8
t8-bit ASCII, used for communication with 1713 Teletypewriter
710, 11 is equivalent to 11,8, 2 and 0, 12 is equivalent to 12, 8, 2
TTTCLEAR, SPC, BACKSPACE, TAB and EOM have input control significance only and
are not available for software alphanumeric pick processing.
Tt The only legal EOM characters are RETURN and the characters in the alphanumeric
font. BKSP, SPC and CLEAR are not legal EOM characters.

17303600 Rev. B

6000 SERIES CENTRAL MEMORY D
WORD ORGANIZATION
INTEGER
59 58 o]
/
7 I
/]
SlGN\; J
v
59
LOGICAL
59 (o]
FALSE | 0000 > 0000
TRUE [N > {11}
HOLLERITH BCD AND DISPLAY CODE
59 53 47 4| 35 29 23 17 i S 0
a [o] a a a a qa a a
I 2 3 q 5 6 9 10
OCTAL
57 54 51 48 45 42 39 ' 3 0
201 19|18 |17 |16 |15)14 3 2 1
v SN
3 3 3 3 3
17303600 Rev. B D-1

REAL

59 58 47 0
[~
-
L] BIASED FRACTION (M)
L] EXP
[
SIGN
\ J\ /
V \" 2
1] 48
DOUBLE PRECISION
59 58 47
~ BIASED
n ; EXP m
SIGN MOST SIGNIFICANT
5958 a7
[~
BIASED
n+l 4 m!
XP -
2 E 48
SIGN LEAST SIGNIFICANT
COMPLEX
5958 47
BIASED
n m
- EXP
SIGN REAL
59 58 47
-
BIASED
n+l m
EXP
SIGN IMAGINARY

17303600 Rev.

B

HEXADECIMAL/OCTAL CONVERSION TABLE E
Hexadecimal Octal Hexadecimal Octal Hexadecimal Octal
0 00 28 50 50 120
1 01 29 51 51 121
2 02 2A 52 52 122
3 03 2B 53 53 123
4 04 2C 54 54 124
5 05 2D 55 55 125
6 06 2E 56 56 126
7 07 2F 57 57 127
8 10 30 60 58 130
9 11 31 61 59 131
A 12 32 62 5A 132
B 13 33 63 5B 133
C 14 34 64 5C 134
D 15 35 65 5D 135
E 16 36 66 5E 136
F 17 37 67 5F 137
10 20 38 70 60 140
11 21 39 71 61 141
12 22 3A 72 62 142
13 23 3B 73 63 143
14 24 3C 74 64 144
15 25 3D 75 65 145
16 26 3E 76 66 146
17 27 3F 7 67 147
18 30 40 100 68 150
19 31 41 101 69 151
1A 32 42 102 6A 152
1B 33 43 103 6B 153
1C 34 44 104 6C 154
1D 35 45 105 6D 155
1E 36 46 106 6E 156
1F 37 47 107 6F 157
20 40 48 110 70 160
21 41 49 111 71 161
22 42 4A 112 72 162
23 43 4B 113 73 163
24 44 4C 114 74 164
25 45 4D 115 75 165
26 46 4F 116 76 166
27 47 4F 117 77 167
17303600 Rev. B E-1

Hexadecimal Octal Hexadecimal Octal Hexadecimal Octal
78 170 AA 252 DC 334
79 171 AB 253 DD 335
TA 172 AC 254 DE 336
B 173 AD 255 DF 337
7C 174 AE 256 EO0 340
7D 175 AF 257 E1 341
E 176 BO 260 E2 342
F 177 B1 261 E3 343
80 200 B2 262 E4 344
81 201 B3 263 E5 345
82 202 B4 264 E6 346
83 203 B5 265 E7 347
84 204 B6 266 ES8 350
85 205 B7 267 E9 351
86 206 B8 270 EA 352
87 207 B9 271 EB 353
88 210 BA 272 EC 354
89 211 BB 273 ED 355
8A 212 BC 274 EE 356
8B 213 BD 275 EF 357
8C 214 BE 276 FO 360
8D 215 BF 277 F1 361
SE 216 (@]4] 300 F2 362
SE 217 C1 301 F3 363
90 220 C2 302 F4 364
91 221 C3 303 F5 365
92 222 C4 304 F6 366
93 223 CbH 305 F17 367
94 224 C6 306 F8 370
95 225 Cc7 307 F9 371
96 226 C8 310 FA 372
97 227 Cc9 311 FB 373
98 230 CA 312 FC 374
99 231 CB 313 FD 375
9A 232 ccC 314 FE 376
9B 233 CD 315 FF 377
9C 234 CE 316
9D 235 CFr 317
9E 236 DO 320
9F 237 Di1 321
A0 240 D2 322
Al 241 D3 323
A2 242 D4 324
A3 243 D5 325
A4 244 D6 326
A5 245 D7 327
A6 246 D38 330
A7 247 D9 331
A8 250 DA 332
A9 251 DB 333

E-2 17303600 Rev. B

RE-ENTERING A GRAPHICS TASK OVERLAY F

A graphics task overlay consists of a FORTRAN program and its associated subroutines in
absolute format. FEach task is entered by an unconditional jump to the entry address of the

overlay, and normally no provision is made to return to the statement following the task call,
AERTRN

Under certain circumstances, the programmer may wish to return from a graphics task to
the statement following the CALL AETSKC card which caused entry to the task; he might do
this if he wanted to call several tasks in a row. A routine called AERTRN is provided for
this purpose.

When the programmer wants to return from one task to another, he places a card with the

format

(CALL AERTRN

in the task he wishes to return from. When this card is encountered, control is passed to
the return address of the last executed return jump to AETSKC.

Note that AERTRN does not provide for reloading the task that called AETSKC; it provides
only the jump to pass control and the record of the last call to AETSKC. The programmer
must insure that the tasks do not overload each other, and that the AERTRN call occurs

whenever the return feature is desired.

EXAMPLES

The following examples show how secondary overlays and the C parameter on the overlay
card may be used to set up a task file so that AERTRN can be used.

C PARAMETERS

The standard FORTRAN overlay card has the format

(' OVERLAY (lin, p, s, Cnnnnon)

17303600 Rev. B F-1

where 1fn, p, and s have the meanings given in the overlay card definition of Section 2. The
quantity nnnnnn after the letter C in the parameter field is an octal value that specifies the
first word address of the overlay with respect to the beginning of blank COMMON; i.e., the
overlay coding is loaded and entered at a location nnnnnn words after the beginning of the
program's blank COMMON area. This C parameter cannot be used on the zero-level over-

lay card, but is optional on all other overlay cards.

Since the first word addréss of blank COMMON is constant for any given overlay or task file,

all overlays with the same C parameter will have the same first word address in core,

For example, assume that AP and BP are primary overlays, and AS and BS are secondary

overlays; all four have been written into a task file by AEFILE.

These four overlays would appear in core as:

OVERLAY (A, 0, 0) OVERLAY (A, 0, 0)
® [)
® ®
® []
BLANK COMMON BLANK COMMON
OVERLAY (1, 0) OVERLAY (2, 0)
PROGRAM AP PROGRAM BP
[] []
20008 i g
[] []
CALL AETSKC (BS)
o OVERLAY (2, 1)
o PROGRAM BS
° ®
o
OVERLAY (1, 1) °
PROGRAM AS CALL AERTRN
[]
[]
[]

Program AS has been relocated with respect to the last word address plus one of the program
AP because they have the same primary level number. Program BS has been relocated with
respect to the last word address plus one of program BP because they also have the same

primary level number,

OVERLOD, the standard SCOPE overlay loader, will not allow overlays (1, 0) or (1, 1) to call
overlay (2, 1). Primary overlays and overlays with the same primary number may call each
other; no other calls are allowed. However, a call to AETSKC allows any of the four over-

lays to call any of the others by using their program name,

F-2 17303600 Rev. B

If a programmer places a task call to BS from AP, part of the called task will be loaded over
the calling task. If a call to AERTRN is then made at the end of BS, AERTRN will return
control to the core address following the last AETSKC call, but the return will have chaotic
results because the core locations that contained the code which the programmer wished to
execute have been overlayed by the beginning of program BS. The following paragraphs de-
scribe one method of avoiding this problem.

Assume that overlay (1, 1) is loaded 2000g words from the first word address of blank COM-
MON. If the secondary overlay cards are written with the C parameter so that they appear
as

OVERLAY (1,1, C002000)
and
OVERLAY (2,1, C002000)

the routines in the overlays will have the same first word address and will appear in core as

OVERLAY (A, 0, 0) OVERLAY (A, 0, 0)
° °
° ™
° °
BLANK COMMON BLANK COMMON
OVERLAY (1, 0) OVERLAY (2, 0)
PROGRAM AP PROGRAM BP
° ™
2000g ® °
° °
CALL AETSKC (BS)
°
° UNUSED
°
OVERLAY (1, 1, C002000) OVERLAY (2, 1, C002000)
PROGRAM AS PROGRAM BS
™ °
° ™
™ .
CALL AERTRN

Now each of the programs is free to call the others and to use a CALL AERTRN card to
return to the address following the last call to AETSKC.

It is up to the programmer to keep track of the overlay core relationships when using
AERTRN. A task which calls another with the expectation of returning should be located so
that the two do not overlay each other. AERTRN provides limited capability for constructing
tasks which may be called by AETSKR and also entered as subroutines. If logic requires the

17303600 Rev. B F-3

use of AERTRN in some cases and AETSKC or AETSKR in others, a flag may be set in blank
COMMON by the calling task and interrogated before each return is executed.

An error message, RETURN ADDRESS OVERLAYED, will be sent to the dayfile and a task
return will-be executed only if the return address of AERTRN is within the overlay calling
AERTRN.

Note that linkage of external symbols is not provided for by the GPSL Loader between over-
lays with different primary level overlay numbers. If overlays 2.1 and 2.0 have subroutine
linkages in common, the overlay 2.1 will probably not run correctly unless 2.0 is in core
at the same time. AERTRN should primarily be used in secondary overlays with the same

primary number while the primary is in core.

F-4 17303600 Rev. B

SYSTEM PACKING OF IBUF DESCRIPTION BUFFERS G

Nine graphics utilities routines of the 6000 Basic Graphics Package place item description
bytes in IBUF; in addition, both GIDISP and GIMAC place header and trailer bytes into the
description buffer before sending it to the 1700 buffer translator through EXPORT.

Table G-1 lists all of the routines that place bytes into IBUF and gives the number of bytes
packed by each; all 12-bit bytes are packed five to a 60-bit central memory word, starting

in byte zero.

The first byte generated would be packed into bits 59 through 48.

After the

fifth byte is packed into bits 1 and 0 of the CM word, a new word is started.

TABLE G-1.

IBUF/1744 BYTE

COMPARISON, ITEM DESCRIPTION BYTE GENERATORS

(Octal) Number of Bytes Packed
Routine Call Code Bytes Packed in 1744 Explanation
GUAN 02 1+ &;] NC+2 NC is the character number
parameter in the call
GUARCG 06 6 +4 * KSHOW 3/inch (large) KSHOW is the arc segment
6/inch (small) number parameter in the call
GUBYTE 08 1+1L - L is the macro address num-
ber parameter in the call
GUMACG 07 14+2*L 2
GURSET 01 3 3
GUSEG 04 3 4 + (2 or 3/inch)
GUSEGA 4+3*N - Calls GUSEG! once, GUSEG
(4 Bits) N times, where N is the line
segment number
GUSEGI 11 4 -
GUSEGS 03 6 Same as GUSEG
GIDISP 01 10 2+3to7, de- Eight trailer and two header
pending upon bytes; explained below
parameter
GIMAC 05 4 3 Two header and two trailer
bytes; explained below
17303600 Rev. B G-1

Each graphics utilities call packs a call code for the corresponding 1700 Basic Graphics
Package routine into the upper four bits of the first 12-bit byte it places in IBUF; if a
graphics utilities routine is called with NBYTE equal to zero, the routine will leave two
bytes empty at the beginning of the next unfilled central memory word in IBUF. The two
empty bytes are usually used by GIDISP or GIMAC for the two header bytes which each packs
in IBUF.

NOTE

The call codes of all GU routines are in the upper 4 bits
of a 12-bit byte and are within a GIDISP, GIMAC, or
GIPLOT buffer. The call codes of all GI routines are in
the upper 6 bits of a 12-bit byte at the beginning of a 60-
bit central memory word.

These bytes have the structure

11 5 01 7 0

1
CALL CODE] NCON /////// BYTE COUNT

where the byte count excludes the header and trailer bytes.

The two trailer bytes packed by GIMAC are placed in IBUF immediately after the last item
description byte. The first of these two bytes contains bits 15 through 8 of the lower 16 bits
of MAD, right-justified; the second byte contains bits 7 through 0 of MAD, also right-justi-

fied, as shown:

11 7 0 7 0

/// MAD, ;¢ / MAD,_

GIDISP places a variable number of trailer bytes (three to eight) in IBUF, immediately
following the. last packed item description byte. The number packed depends on the number

of parameters present in the GIDISP calling sequence before a minus zero parameter or a

right parenthesis is encountered.

The three trailer bytes always packed by GIDISP contain bits 15 through 8 of IDDAD right-
justified in the first, bits 7 through 0 of IDDAD right-justified in the second, and IDDT in
the lower 8 bits of the third, as follows:

11 7 011 7 011 0

| 1o0AD 54 / / IDDAD, _, \DDT

G-2 17303600 Rev. B

In a full calling sequence, five more bytes would be packed. These would contain: IDDC in
the lower 8 bits of the first additional byte, bits 23 throyugh 12 of IDWA in the second, bits
11 through 0 of IDWA in the third, bits 23 through 12 of IDWB in the fourth, and bits 11
through 0 of IDWB in the fifth. These bytes appear as follows:

11 7 011 011 011 0 0

/% IDDC IDWA,2_ 12 IDWA{; o IDWBys 19 IDWB,; o

If IDDT and IDDC are not defined, a minus zero value is stored in their respective bytes.

GIDISP terminates packing with the first minus zero parameter. If a right parenthesis
terminates the calling sequence before IDWB, the first missing parameter is replaced by
a minus zero and packing is terminated.

Both GIMAC and GIDISP issue a fatal error diagnostic if the IBUF description buffer result-

ing from the call is longer than 64 central memory words (including header and trailer bytes).

Both routines process a non-fatal error and issue an informative dayfile message if the
NBYTE parameter is equal to zero when the routine is called.

17303600 Rev. B G-3

OMISSION OF AEXEC FROM PROGRAM CODING H

Although the procedure is not recommended, the application executive AEXEC program can
be omitted from a graphics program. If the programmer does not use AEXEC, he must
either provide substitutes for each of its routines or else resign himself to the use of an
inordinately large amount of central memory by his job. The large amount of central
memory is necessary because AEXEC must reside in the zero-zero overlay since it is
designed to be called only once. There is no return from AEXEC. It could not be loaded
as needed since it opens the random task file, calls Scheduler, loads the one-zone overlay
and transfers control to it. This appendix provides an outline of the structure and functions

of AEXEC so that a programmer can write replacement routines if he wishes.

STRUCTURE OF AEXEC

The first 748 words in AEXEC are entry points and buffer areas shared by the 6000 Basic
Graphics Package routines (see Figure H-1).

AEXEC has seven formal entry point names:

AERTRN
AETSKC
AETSKR
BGP
DATBUF
AEXEC
RIDDAD

The entry point AEXEC is called only once during a job and is not referenced by any of the
routines in the 6000 Basic Graphics Package. AEXEC is the entry point used by the CALL
AEXEC card in the program's zero-level overlay and provides access to coding that pro-
vides AEFILE with the file names it uses during a task file creation run; the coding associ-
ated with entry point AEXEC also initiates loading and execution of the first overlay in the
task file during an execution run.

The entry points AETSKR, AERTRN, and AETSKC are used by the respective 6000 Basic
Graphics Package routines. These entry points provide unconditional jumps to appropriate
subroutines within the AEXEC program.

17303600 Rev. B H-1

17

59 53 15 7 o
BGP/RIDDAD TA ////]/ ADD. BGP
RETURN ENTER TASK RETURN ROUTINE BGP+ |
KILL ENTER ERROR PROCESSING ROUTINE BGP+2
(ENTERED BY RETURN JUMP)
INPBUF RESERVED FOR LAST BUTTON INPUT BLOCK BGP +4
¥ -

37g WORDS LONG

DATBUF DATA HANDLER POINTERS

14g WORDS LONG

RSLBUT W/ // /// IDDT | BGP+57g
/// 1000

PICK IH COORDINATE

\

PICK IV COORDINATE

TRACKING -CROSS IH COORDINATE

TRACKING-CROSS IV COORDINATE

STAT | NC W//////////////////////////////////////A NP NB BGP+67g

GCOMO COMMON OUTPUT BUFFER BGP+ 70g

~

4 WORDS LONG

TA=ADDRESS OF DISPLAY CODE NAME OF CURRENT TASK IN MEMORY

ADD=RIDDAD/MAD COUNTER

NC =LAST NCON ARGUMENT OF GINCJB OR GIBUT

NB =GIFSID POINTER (NUMBER OF BYTES RETURNED)
NP =GIFSID POINTER (NUMBER OF PICKS RETURNED)

Figure H-1. AEXEC Communications Area

H-2 17303600 Rev. B

The entry points BGP, DATBUF, and RIDDAD are used by the 6000 Basic Graphics Package

routines to share access to common pointers.

The last four entry points described above are all linked to the presence of AEXEC in the
program's zero-level overlay. If AEXEC is not called there and the application program
contains no subroutines with entry points named BGP, RIDDAD, and DATBUF, then the entire
AEXEC program will be loaded from the system library into every overlay that contains
Package routines which reference any of these entry points.

If the application program does contain a subroutine (in place of AEXEC) with the proper
entry points, all 6000 Package routine references to the points are linked to the locations
listed in Table H-1.

TABLE H-1. 6000 PACKAGE EXTERNAL LINKAGES

Entry Point Name Purpose Type of Reference

FORTRAN-Callable:

AETSKC Load an overlay by name Relocatable
AERTRN Return from task to calling address Relocatable
plus one
AEXEC Initialize Application Executive Relocatable
Not
FORTRAN-=Callable:
BGP Unused to reference first 748 words Relocatable
of AEXEC relatively
RETURN Perform task return (AETSKR) Relative to BGP
KILL Process errors and messages Relative to BGP
INPBUF Reserve last button input block Relative to BGP
RIDDAD Reserve task name address and Relative to BGP
IDDAD/MAD counter
RSLBUT Reserve last button ID parameters Relative to BGP
STAT Reserve NCON and single/string Relative to BGP

pick counters

GCOMO Common EXPORT output buffer Relative to BGP

17303600 Rev. B H-3

CREATING ALPHANUMERIC DISPLAY FONTS |

For certain applications, the programnier may wish to provide the console user with a dis-

- play font other than the two supplied in the 6000 Basic Graphics Package (see Section 6,
GFONTA and GFONTN). The following discussion covers some of the more important points
that a programmer should consider when creating his own display font.

FONT CHARACTER RECOGNITION

The 1700 Basic Graphics Package recognizes a sequence of display generation bytes followed
by a one-word ID as a display font character. When the character is picked with the lightpen
and GIANS has been called, the ID word is queued on an alphanumeric string so that it can be
sent to the application program when a GIANE call occurs. Each 8-bit ID word in the 1700
is an ASCII character and is converted to 6000 display code before being sent to the 6000

application program.

Because of this processing, the application programmer can create font characters by
supplying the one-word ASCII ID through a call to GUBYTE. For example, the three calls:

CALL GURSET(IH, IV, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN(1LA, 1, IBUF, NBYTE, MBYTE)

CALL GUBYTE(101B,1, IBUF, NBYTE, MBYTE)

create an alphanumeric font of one character, A, at screen coordinates IH and IV. The

ASCII code for A is 1018 or 4116.
The call

CALL GIDISP(NCON, IBUF, NBYTE, IDDAD, -0)

then displays this one character font. After the font appears on the screen, the call

CALL GIANS(NCON, 10, IH1,IV1)

creates a light-register at screen coordinates IH1 and IV1; this register can contain as
many A's as are picked up to a limit of 10.

17303600 Rev. B I-1

If the character A is picked once and GIANE is called, the parameters returned to the call
will be
NC =1

IBCD Abbbbbbbbb

where the letter b indicates a blank.

SPECIAL CHARACTERS

Two special characters are defined for the 1700 Package. These two characters, backspace
and clear, allow the console operator to remove characters which have been queued since
the call to GIANS and before the next call to GIANE occurs.

BACKSPACE

@

Any display followed by a one-word ID of 137B (or 5F16) is defined as a backspace character.
When such a character is picked with the lightpen, the last picked character in the light-
register is erased from the display and the underline is restored; the ID of the erased char-

acter is also removed from the buffer of queued alphanumeric information.

CLEAR

Any display followed by a one-word ID of 177B (or 7F16) is defined as a clear character.
When such a character is picked with the lightpen, all of the characters currently in the
light-register are erased and the entire underline is restored; in addition, the ID's for all

of the erased characters are removed from the buffer of queued alphanumeric information.

Backspace and clear have no other effect on alphanumeric picking.

RESET SEQUENCE

When a GURSET call is used in the definition of a font character, the ICODE s bit (bit 26)
must be set. The s bit of the reset sequence is the enable lightpen bit; if it is not set, the
character's ID word is not read when a pick is made, and the character consequently cannot

be entered into the light-register or queued for processing by the 6000 series computer.

A font character can be generated without a reset sequence by using a GUAN call with NC
set equal to one, but a no-operation instruction must precede the GUAN call in the character's
IBUF. This no-op may be supplied by a GUBYTE call of one byte, where the byte is a posi-

tive zero value.

1-2 17303600 Rev. B

CONSERVING ID WORD SPACE

The ID words IDDT, IDDC, IDWA, and IDWB of the GIDISP call or calls which display font
characters need not be referenced; the 1744 buffer space they normally occupy can be con-

served by truncating the parameter list with a closing or right parenthesis after IDDAD.

DYNAMIC ADDITION OF CHARACTERS

Characters may be added to an existing console display font by successive calls to GIDISP
at any time; duplicates of the same character, i.e., characters with the same ASCII code

ID words, may be present in a font.

SAMPLE FONT CREATION ROUTINES

The following subroutine creates a display font containing:
o 1 2 3 4 5 6 7 8 9 X

SUBROUTINE NFONT (NCON, IBUF, NBYTE, MBYTE, IDDAD)
DIMENSION IBCD (10)

DATA (IBCD(I),I-1,10)/1L0,1L1.1,11.2,11.3,11.4,11.5,1L.6,1L.7,11.8, 1 L.9/
CALL GURSET (0, -600,103B, IBUF, NBYTE, 310)

ICON1 = 60B

ICON2 = 71B

DO11I = ICON1,ICON2
J = 1-57B

CALL GUAN (IBCD(J), 1, IBUF, NBYTE, MBYTE)

C THE PRECEDING CALL GENERATES ONE OF THE FONT CHARACTERS.
CALL GUBYTE (I, 1, IBUF, NBYTE, MBYTE)

THE FOLLOWING CALL PROVIDES SPACING BETWEEN CHARACTERS AND
COULD BE REPLACED BY A GURSET CALL

1CALL GUAN (1L , 1, IBUF, NBYTE, MBYTE)

CALIL GUAN (2L , 2, IBUF, NBYTE, MBYTE)

CALL GUBYTE (0, 1, IBUF, NBYTE, MBYTE)

CALL GUAN (1LX, 1,IBUF, NBYTE, MBYTE)

CALL GUBYTE (130B, 1, IBUF, NBYTE, MBYTE)

THE THREE PRECEDING CALLS CREATE AND IDENTIFY THE CHARACTER X
AS AN END-OF-MESSAGE CHARACTER FOR USE IN GIEOM ASSIGNMENT
THE FOLLOWING CALL DISPLAYS THE FONT

CALL GIDISP (NCON, IBUF, NBYTE, IDDAD, -0)

RETURN .

END

oke!

naaon

If the programmer wishes to generate each character with a separate GUAN call, he must
provide a no-op instruction before each GUAN call. CALL GUBYTE(0, 1, IBUF,NBYTE,
MBYTE) provides the appropriate no-op.

The programmer can also create display font characters of any size he wishes; he need not
use the size characters that are defined by the 1700 Basic Graphics Package alphanumeric

17303600 Rev. B I-3

macros. For example, the three following calls create a circle with a center at [HC and
IVC, and an initial/termination point at IH and IV. This circle is queued as an alphanumeric

O when picked with the lightpen.

CALL GURSET (IH, IV, ICODE, IBUF, NBYTE, MBYTE)
CALL GUARCG (1, IHC, IVC, IH, IV, IH, IV, IBUF, NBYTE, MBYTE)
CALL GUBYTE (117B, 1,IBUF, NBYTE, MBYTE)

Note that the ASCII code equivalent of O is 117B (4F16).
The programmer can create a true/false font with coding like the following:

CALL GURSET (IH1, IV1l, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN (4HTRUE, 4, IBUF, NBYTE, MBYTE)
CALL GUBYTE (124B, 1, IBU¥, NBYTE, MBYTE)

THE PRECEDING CALLS CREATE THE WORD TRUE BEGINNING AT IH1/IV1
AND QUEUE AN ALPHANUMERIC T(=124B) WHEN IT IS PICKED

CALL GURSET (IH2, IV2, ICODE, IBUF, NBYTE, MBYTE)

CALL GUAN (5HFALSE, 5, IBUF, NBYTE, MBYTE)

CALL GUBYTE (106B, 1, IBUF, NBYTE, MBYTE)

THE PRECEDING 3 CALLS CREATE THE WORD FALSE BEGINNING AT IH2/1V2
AND QUEUE AN ALPHANUMERIC F (=106B) WHEN IT IS PICKED

o

an

1-4 17303600 Rev. B

INDEX

Address Blocks: 6-6, 6-8, Glossary-1
Associative 6-11, Glossary-1
BEAD 6-13 Buffer
Bead 5-2 Memory: Glossary-1
IBEAM 6-14 Translator 1-8, 4-1
ICODE 6-14
IDDAD 6-11, 6-13 Button: 5-4, 5-5, 5-6, Glossary-1
IFILE 6-13 Mask 6-26
ISTYLE 6-14 Light 3-5, Glossary-3
MACRO 6-13 Prime 2-23, Glossary-3
MAD 6-11, 6-13
NCON 6-11, 6-13 Byte: Glossary-1
AEDUMP: 1-6, 2-23
Card 2-6 Cards
Control 2-4
AEFILE: 1-6, 2-20, 2-22 Data 2-9
Card 2-5 Program 2-8, 2-9, 2-12 through 2-18
AELBUT: 6-29, 6-30 Character Codes: C-1
AEIL.OAD: 1-8, 2-23, 2-24 Codes
Card 2-6 Character C-1
Component 6-57 through 6-61,
AERTRN: F-1, F-2, F-3, F-4, H-1 Glossary-1

Status: Glossary-4
AETSKC: 6-19, 6-20
COMMON Card: 2-7
AETSKR: 6-20
Common File 2-7, Glossary-1

AEXEC: 6-2, 6-3, H-1 Data Handler 7-5
Card 2-8
Communication Area H-2 Control
AEDUMP 2-6
Alphanumeric Keyboard: 3-3, 3-4 AEFILE 2-5
AELOAD 2-7
Application Cards 2-4
AEXEC 2-20, 6-2, 6-3, H-1, H-3 COMMON 2-7
Executive 6-2, 6-3, H-1, H-3 EXIT 2-7
Programmer Glossary-1 Graphics Control Points 2-1, 2-2
Job 2-4
Argument: Glossary-1 LGO 2-5
RELEASE 2-8
ASCII Characters: 3-3, C-1, C-2, C-3 Source Call 2-6

Surface 3-7, Glossary-4

Batch Jobs: Glossary-1 Controller
1744 Digigraphics 3-8
BEAD: 6-10, 6-12, 6-13, Glossary-1
Arrangement 6-4, 6-5, 6-6, 6-8 Console
Use 6-66, 6-67, 6-68 Control 3-2

17303600 Rev. B Index-1

Control Routines 6-33
Graphics 3-1

Keyboards 3-2, 3-3, 3-4
Conversion Table
Hexidecimal/Octal E-1

Data Cards: 2-9

Data Handler: 6-1, 6-3, 6-54

Block Structure 6-6, 6-9
Common Files 7-5, 7- 7-7
Component Codes 7-1, 7-2

Maximum Data Size 6-7
Nongraphics Use 7-4, 7-5
Plex Data 6-3, 6-4

Data Translation: 1-8

Diagnostic Messages: B-1

Directive: Glossary-2
Display
Alphanumeric Font
Buffer: Glossary-2
Core: Glossary-2
Damage 3-8
Frames 3-8
Frame-Scissoring 6-~35
Font 1I-1
Font Creation Routines 6-71, 6-73
Grid 3-5, 6-13, Glossary-2
Item Address 7-2
Item Generation 6-38
Item ID Block 5-1, 5-2
MACRO and BEAD Address
Numeric Font 6-73
Presentation 3-5
Queue Handler 5-2
Screen Organization 3-5, 3-6

6-71

6-13

Surface 3-6, Glossary-4
DMDMP: 6-64
DMFLSH: 6-64
DMGET: 6-66
DMGTBD: 6-64, 6-65
DMINIT: 6-61, 6-62
DMRLBD: 6-65
DMSET: 6-65, 6-66
Index-2

Erase: Glossary-2

EXIT Card: 2-7
EXPORT HS Features: 1-T7

External Linkages

6000 Package H-3
Features
Major 1-1, 1-2

EXPORT HS 1-7
MSOS IMPORT HS 1-8
Programming 1-6
SCOPE 1-4

FETCH: 5-4, 5-5

File Creation: 2-10
Hardcopy 6-69, 6-70, 6-71
Task 2-19, 2-20

File: Glossary-2

File Maintenance:; 2-11
Task 2-22, 2-23

2-25
Graphics COMMON 2-25
Input 2-25
Local 2-25
Output 2-25

Files:

Fonts (GFONTA 6-71, GFONTN
Additional Characters I-3
Character Recognition I-1
ID Word Space 1I-3
Reset Sequences 1I-2
Sample Routines 1-3, I-4
Special Characters I-3

FORTRAN-Callable Routines, User:

Frames: 3-8, Glossary-2
Arcs 6-36, 6-37, 6-38
Scissoring 6-35, Glossary-3

FTN Card: 2-4

Function Keyboard: 3-2, 3-3
Functions
- FORTRAN-Callable
System Utility 2-19
1700 Graphics 4-1, 4-2
6000 Graphics 6-1

6-17

17303600 Rev. B

6-73)

6-17

General Description, Graphics: 3-1
General Process Chart: 1-9

General Purpose System Loader: 2-19
GFONTA: 6-71

GFONTN: 6-73

GIABRT: 2-24, 6-69

GIANE: 6-34, 6-35
GIANS: 6-33, 6-34
GIBUT: 6-30, 6-31
GICLR: 6-28, 6-29

" GICNJB: 6-18, 6-19
GICNRL: 6-19

GICOPY: 6-27, 6-52, 6-53
GIDISP: 6-46, 6-47, 6-48, G-1
GIEOM: 6-23

GIERAS: 6-51, 6-52
GIFID: 6-31, 6-32
GIFSID: 6-32, 6-33
GIKYBD: 6-21, 6-22
GILPKY: 6-22
GIMAC: 6-48, 6-49, G-1
GIMACE: 6-49

GIMASK: 6-27, 6-28
GIMOVE: 6-28, 6-53, 6-54
GIPBUT: 6-24, 6-25, 6-26
GIPLOT: 6-69, 6-70, 6-71
GITCOF: 6-55, 6-56
GITCON: 6-55

GITIMV: 6-56

GITMMV: 6-57

17303600 Rev. B

Graphics: Glossary-2
Basic Package:
Card Deck 2-3
Console 3-1
Control Points 2-1

Initialization 2-2
Number 2-2
Hardware Information 3-1
Hardware Interface 6-1
Messages B-1
Program Aborting 2-24, 4-1
Reformatter 2-1
Size 2-2
Structure 2-2
System Expansion 4-2
Task Overlay F-1
Utilities 6-1, 6-3
1700 Package 1-8, 4-1
6000 Package 1-4, 6-1, H-3

Glossary-1

Grid: 3-5, Glossary-2
Display Coordinates 6-13
GUAN: 6-40, 6-41, G-1
GUARC: 6-36, 6-37
GUARCG: 6-45, 6-46, G-1
GUBYTE: 6-46, 6-47, G-1

GULINE: 6-35, 6-36

GUMACG: 6-47, G-1
GURSET: 6-27, 6-39, 6-40, G-1
GUSEG: 6-43, 6-44, G-1

GUSEGA: 6-44, 6-45, G-1
GUSEGI: 6-43, G-1
GUSEGS: 6-41, 6-42, 6-43, G-1

Graphics Reformatter: 2-1

Hardware Elements: 1-2, 1-3, 1-4

Hexadecimal/Octal
Conversion Table E-1

Hook: Glossary-3

IBEAD: 6-11, 6-13
IBEAM: 6-14

Index-3

IBUF: G-1
ICODE: 6-14, 6-17
ID Block: Glossary-3
Console Entries 6-29
Display Item 5-1, 5-2
Parameters 6-12, 6-13
Special Assignment 6-20, 6-21
IDDAD: 6-11, 6-15

IDDADI: 6-14, 6-15

IDDC: 6-12
IDDT: 6-12
IDWA: 6-12
IDWB: 6-13
IFILE: 6-8

IMASK: 6-27
Input File: 2-25

Input /OQutput: 2-1
Messages B-1

Item Generation
Display 6-38, 6-48

ISTYLE: 6-14

Job Aborting
Voluntary 6-69

Job Card: 2-4

Keyboard: Glossary-3
Functions 3-2
Alphanumeric 3-3
Numeric 3-4

L.GO Card: 2-5

Lightpen: 3-4, Glossary-3

Light-Registers: 3-4, Glossary-3

List Processing
Consideration 7-1

Local File: 2-25

Index-4

Macro: Glossary-3
Handling 7-3

MAD: 6-11, 6-13

Mask
Button 6-26
Comparison 6-26
Ignore 6-26
Marker 6-26
Single Pick 6-26
String Pick 6-26

MAXBLKSP: 6-7

Memory Allotment
Considerations 7-1

Messages: B-1 through B-9

Diagnostics B-1

6000 Input/Output B-1

1700 Abort B-1

Modeling Plex: 6-3, 6-4

MSOS IMPORT HS: 1-8, 4-

NAME: 6-11

NCON: 6-11, 6-13

Numeric Keyboard: 3-4
Light-Button 3-5

Lightpen 3-4
Light-Registers 3-4

Octal/Hexadecimal

1

Conversion Table E-1

Optimum Task Length: 7-3
Output File: 2-25
OVERLAY Card: 2-8, F-1

Overlays
Zero Level 2-9
Graphics Task F-1

Parameter Addresses
IBEAM 6-14
ICODE 6-14
IDDC 6-12
IDDAD 6-13
IDDT 6-12
IDWA 6-12

17303600 Rev. B

IDWB 6-13
ISTYLE 6-14

Pick Processing: 5-1, 6-25, 6-26
6000 Series Computer 5-8

Plex Data Structure: 6-3

Process Chart
General 1-9
System 1-10

Program

AEXEC 2-8, 2-20, H-1

Card Decks 2-3, 2-8, 2-9, 2-12
through 2-18

Console Control 6-18

Control 2-4

Data 2-9

Execution 2-17

Initiation 6-17, 6-18

OVERLAY 2-8

Sample Program Decks 2-9

Task Control 6-19, 6-20

Utility: Glossary-4

Programming
Considerations 7-1
Conventions 6-11, 6-12
Data Handler 7-1
Display Item Addresses 7-2, 7-3
List Processing Efficiency 7-1
Macro Handling 7-3
Memory Allotment 7-1
Nongraphics Data Handler Use 7-4
Optimum Task Length 7-3
Time Accounting 7-1

Queue Handler: 5-2
Control 6-25
FETCH and WAIT 5-4 through 5-7
Functions £-3

Mechanism Operation 5-5
Pick Types 5-3

Real-Time
Multiprogramming 1-6, 1-7

RELEASE Card: 2-7
ROLLIN: Glossary-3
ROLLOUT: Glossary-3

Routines
AEDUMP 2-23

17303600 Rev. B

AEFILE 2-20, 2-22
AELBUT 6-29, 6-30
AELOAD 2-23, 2-24
AERTRN F-1, H-1
AETSKC 6-19, 6-20
AETSKR 6-20

DMDMP 6-64

DMFLSH 6-64

DMGET 6-66

DMGTBD 6-64, 6-65
DMINIT 6-61, 6-62
DMRLBD 6-65

DMSET 6-65, 6-66
GFONTA 6-171

GFONTN 6-73

GIANE 6-34, 6-35

GIANS 6-33, 6-34

GIBUT 6-30, 6-31
GICLR 6-28, 6-29
GICNJB 6-18, 6-19
GICNRL 6-19, 6-69
GICOPY 6-52, 6-53
GIDISP 6-47, 6-48, 6-49
GIEOM 6-23

GIERAS 6-51, 6-52
GIFID 6-31, 6-32
GIFSID 6-32, 6-33
GIKYBD 6-21, 6-22
GILPKY 6-22

GIMAC 6-48, 6-49, G-1
GIMACE 6-49

GIMASK 6-27, 6-28
GIMOVE 6-53 6-54
GIPBUT 6-24, 6-25
GIPLOT 6-69, 6-70, 6-71
GITCOF 6-55, 6-56
GITCON 6-55

GITIMV 6-56

GITMMV 6-57

GUAN 6-40, 6-41, G-1
GUARC 6-34, 6-35, 6-36
GUARCG 6-45, 6-46, G-1
GUBYTE 6-46, 6-47, G-1
GULINE 6-35, 6-36
GUMACG 6-47, G-1
GURSET 6-39, 6-40, G-1
GUSEG 6-43, 6-44, G-1
GUSEGA 6-44, 6-45, G-1

GUSEGS 6-41, 6-42, 6-43, G-1

GUSEGI 6-43, G-1
SCHEDR 6-17, 6-18

Sample Program Deck: 2-9
File Creation 2-10
File Maintenance 2-11
Program Execution 2-17

Index-5

Scheduler: 2-1, Glossary-3

Scheduling
Graphics Control Points 2-2

Scissoring
Frame 6-32, Glossary-2 and -3

Software Functions
Additions 1-8

Software Operations: 1-4
SCOPE Features 1-

4
Source Call Card 2-6
System Packing: G-1
System Process Chart: 1-10
System Utility

Functions 2-19

Task: Glossary-4
Directory 2-20
File Creation 2-19
File Maintenance 2-22

Time Accounting
Considerations 7-1

Tracking-Cross: Glossary-4
Control 6-54, 6-55
Use 6-54, 6-55
WAIT: 5-4

Word Organization: D-1

Index-6 17303600 Rev. B

COMMENT SHEET

MANUAL TITLE 6000 Series Interactive Graphics System Version 2 Reference Manual

PUBLICATION NO. 17303600 REVISION D
FROM- NAME:

BUSINESS

ADDRESS:
COMMENTS:

This form is not intended for use as an order blank. Your evaluation of this manual
is welcomed by Control Data Corporation. Any errors, suggested additions or de-
letions, or general comments may be noted below. Please include page number ref-
erences and fill in the publication revision level as shown by the last entry on the

Record of Revision page at the front of the manual. Customer Engineers are urged to
use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

STAPLE

STAPLE

STAPLE

FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLLS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Systems Publications

215 Moffett Park Drive
Sunnyvale, California 94086

STAPLE

CUT ON THIS LINE

.

NTROL DATA /2" 3747 1" 1—1/4”

:

—>-> CUT OUT FOR USE AS LOOSE—LEAF BINDER TITLE TAB

CONTROL DATA
— CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440

CORPORATION SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

PRINTED IN U.S,A,

TVANVW IDONIY¥I438 W3ILSAS SOIHAVIO FAILDVIILNI v LT

009€0€Z1 °N9d

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	A-00
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	I-01
	I-02
	I-03
	I-04
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB
	xBack

