
CONTROL DATA® 6000 SERIES COMPUTER SYSTEMS

INTERACTIVE GRAPHICS SYSTEM

Preliminary Reference Manual

RECORD OF REVISIONS

Revision Notes

01 Preliminar_y_ 6 -2 7 -6 9

02 Minor corrections on J:2aJte_a_ 7 -3_9_ _1_ -40_.._ 1-42 _J_-_l J-2 .1--1 and .M.-.2·
8-11-69

03 Changes have been made on pa_g_es iii, v, vi, vii, 1-3, 2-4, 2-5, 2-7, 2-15,

2-16, 2-24, 2-25, 2-26, 3-18, 4-5, 4-7, 4-10, 4-11_.L. 4-12_.L. 4-13_.f_ 4-14i

6-3, 6-6, 6-1, 7-8, 7-9, 7-12, 7-13, 7-14, 7-15, 7-16, 7-17, 7-18_.f_
7-19, 7-20, 7-21, 7-22, 7-23, 7-24, 7-25, 7-26_.f_ 7-30_.L. 7-3li 7-32i 7-36
7-38, 7-39, 7-40, 7-41, 7-42, 7-43, 7-44_.L. 7-45_.f_ 7-46_.f_ 7-50~ 7-52_.f_ 7-56

7-57, 7-58, 7-59, 9-1. 9-2, 9-8, 9-9, 9-17, Gloss-2i Gloss-3_.f_ Gloss-4_.f_
B-1, B-2, B-3, B-4, B-5, B-6, B-1i B-8_.f_C-l.L C-2_.f_ F-1_.f_ H-3_.f_ H-6_...

I-1, I-2, J-1, J-2. L-3, M-1, M-2, N-1_.L. N-2 to reflect the sxstem

design as of January 1, 1970.

Address comments concerning this manual to:

6000 Series Interactive Graphics System
Public_atio~ Number 44616 800
Copyright Control Data Corp., 196 9, 1970
Printed in the United States of America

Control Data Corporation
Special Systems Di vision
Technical Publications
215 Moffett Park Drive
Sunnyvale, California 94086

ii 44616800 Rev. 03

PREFACE

This manual is a general programming and reference guide for the Control Data® 6 000 Series

Interactive Graphics System. It contains a summary of software operation, as well as its

external characteristics. A background knowledge of Control Data 6000 Series software and

hardware is needed to properly use this manual.

This book is organized so that an applications programmer can quick-reference programming

information without sorting through the detailed background material provided for each sub­

division of the -system software; programming information does not occupy a separate sec­

tion, but is isolated within the section that describes the software involved in that particular

system function. The only information provided about the 6000 operating system concerns

Interactive Graphics modifications to the system.

At the end of Section 7 is a subsection containing summaries and calling formats for the indi­

vidual graphics routines of the system which are accessible to an applications programmer.

In addition, the first section contains a general outline of software operation and appropriate

hardware information.

The last section is a System operators 1 guide.

For more information related to the System's software, see the following publications:

Title

Control Data 6400 I 6500 I 66 00
SCOPE 3 Reference Manual

Control Data 6400 I 6500 I 6600
SCOPE Operating Guide

Control Data 6400 I 6500 I 66 00
Systems Reference Manual

Control Data 6400 I 6500 I 6600
Computer Systems FORTRAN
Reference Manual

Control Data 6400 I 6500 I 6600
Computer Systems COMPASS
Reference Manual

Control Data 6000 Series Interactive
Graphics System
General Information Manual

44616800 Rev. 03

Publication Number

60189400

60179600

60100000

60174900

60190900

60237200 I

iii

CONTENTS

1 INTRODUCTION 1-1 Graphics Control Points 2-29

Major Features 1-1 Initialization 2-29

Hardware Elements 1-2 Structure 2-30

General Software Operation 1-4 Number 2-30

6000 Software 1-4 Size 2-31

1700 Software 1-8 Files 2-31

General Process Chart 1-9 Graphics Common File 2-31

System Process Chart 1-10 Local Files 2-31

2 6000 INPUT/OUTPUT AND Input Files 2-31

GENERAL PROCESSING 2-1 Output Files 2-31

Control Points 2-1
3 EXPORT/IMPORT AND DATA

BAT CHIO 2-1 COMMUNICATION 3-1

Routine Functions 2-1 Introduction 3-1

Combined EXPORT and EXPORT 3-1
BATCHIO Control Point 2-3

Initialization 3-1
K Display 2-5

Processing Control 3-2
Dayfile Entries 2-5

Communication Control 3-2
Job Output 2-6

EXPORT Servicing Cycle 3-3
Job Input 2-7

EXPORT Counters 3-4
Graphics Program Card Deck 2-8

Data Transfer 3-4
Control Cards 2-8

Character Set 3-9
Program Cards 2-12

File Processing 3-10
Data Cards 2-13

Termination 3-10
Sample Program Decks 2-13

Job Flow 3-10
System Utility Functions 2-20

Initialization 3-10
Task File Creation 2-21

Input from Cards 3-10
Task Directory 2-22

Input from Graphics
Task File Maintenance 2-24 Console 3-11

Graphics Program Aborting 2-25 Output to Graphics

Scheduler 2-26 Console 3-11

Graphics Reformatter 2-26 Output to Printer and
Punch 3-11

Scheduling of Graphics
Error Detection Scheme 3-12 Control Points 2-27

Routine Communication IMPORT 3-13

and Housekeeping 2-29 Routines 3-14

Graphics Data Transfers 3-16

44616800 Rev. 03 v

4 GRAPHICS HARDWARE Programming Conventions 7-10
INFORMATION 4-1 Summary of User FORTRAN

General Description 4-1 Callable Routines 7-10

Graphics Console 4-1 Program Initiation 7-11

Controls 4-2 Program Console Control 7-11

Display Presentation 4-4 Program Task Control 7-12

Potential Phosphor Special ID Block Assign-
Damage 4-7 ment 7-13

1744 Digigraphics Controller 4-7 Control of Queue Handler

Registers 4-7 and Pick Processing 7-18

Command Bytes 4-8 Fetching ID Blocks from
Console Entries 7-21

Control Bytes 4-10 Control of Console
Display Macros 4-13 Alphanumeric Input 7-25

Display Buffer Frame-Scissoring
Memory Layout 4-13 Displays 7-26

5 1700 GRAPHICS FUNCTIONS 5-1 Display Item Generation 7-29

Buff er Translator 5-1 Storing and Displaying
Items 7-38

Program Aborting 5-1 Control and Use of the
1700 Basic Graphics Package 5-1 Tracking Cross 7-44

System Expansion 5-2 Use of the Data Handler 7-47

6 DISPLAY ITEMS AND PICK Example of Bead Use 7-54

PROCESSING 6-1 Voluntary Abortion of a

Display Item ID Block 6-1 Job 7-55

Queue Handler 6-2 Hardcopy File Creation 7-56

Pick Types 6-3 Additional Routines for
Display Font Creation 7-57

Queue Handler Functions 6-3

Fetch and Wait Queues 6-4 8 PROGRAMMING
CONSIDERATIONS 8-1

Queue Mechanism Time Accounting 8-1 Operation 6-4

6000 Computer Pick Memory Allotment and

Processing 6-7 List Processing Efficiency 8-1

Data Handler Component
7 6000 BASIC GRAPHICS Codes 8-1

PACKAGE 7-1 Display Item Addresses 8-2
Routine Types 7-1 Macro Handling 8-2

Graphics Hardware Optimum Task Length 8-3 Interface 7-1

Application Executive 7-2 Non-Graphics Data
Handler Use 8-3

Graphics Utilities 7-3 Data Handler Common
Data Handler 7-3 Files 8-5

Associative Addresses 7-9

vi 44616800 Rev. 03

9 SYSTEM OPERATOR'S GUIDE 9-1 1 700 Computer Console 9-8

6612 Console 9-1 Initialization and Restart

Control Point Assignment Procedure 9-8

and Release 9-1 Communications Failure 9-9

BAT CHIO, Band K Control Type-Ins 9-10
Displays 9-2

Output Messages 9-12
EXPORT 9-5

Error Codes 9-16
Dayfile/B Display
Messages 9-7 GLOSSARY Glossary-1

APPENDICES

A 6000 Basic Graphics Package J Creating Alphanumeric
Routine Index A-1 Display Fonts J-1

B Graphics System Error K Hexadecimal I Octal
Messages B-1 Conversion Table K-1

c Character Code Equivalents C-1 L Re-entering a Graphics

D Sample Data Handler File Dump D-1 Task Overlay L-1

E 6000 Series Central Memory M System Packing of IBUF

Word Organization E-1 Description Buffers M-1

F Card Formats F-1 N Omission of Main from
Program Coding N-1

G Cyclic Error Detection G-1
0 Coding Examples 0-1

H Samnle Graphics Programs H-1

I Differences Between 6000 Basic
Graphics Package and 3000 Digi-
graphics Control Package
Mark 4. 0 1-1

FIGURES

1-1 Remote Class, Hardware 2. 3. 1 Run, Creation and Execu-
Configuration 1-2 tion Deck 2-16

1-2 Intermediate Class, Hard- 2-4 Task Addition Maintenance
ware Configuration 1-3 Run Deck 2-17

1-3 Local Class, Hardware 2-5 Task Replacement Main -
Configuration 1-3 tenance Run Deck 2-18

1-4 Software Interactions 1-5 2-6 Sample Deck to Purge and
1-5 General Process Chart 1-9 Store File 2-19

1-6 System Process Chart 1-10 2-7 Sample Deck to Purge File
within System 2-19

2-1 BATCHIO Control Point Field 2-4
2-8 Execution Run Card Deck 2-20

2-2 File Creation Run Deck 2-15 2-9 Task Directory 2-23
2-3 UPDATE File Correction and

2-10 Typical Time-Slice 2-29 Creation Deck 2-16

44616800 Rev. 03 vii

2-11 Graphics Control Point Field 2-30 7-2 Four Cylinder Engine 7-5

3-1 Conditions Present During One 7-3 List Structure Example 7-6
EXPORT Service Cycle 3-3 7-4 Data Handler File

3-2 EXPORT Counters 3-4 Block Structure 7-8

3-3 EXPORT Graphics Transfer 7-5 Example of a Frame-
Buffers 3-6 Scissored Arc 7-28

3-4 Sample IMPORT Graphics 7-6 Example of Components
Tran sf er Buff er 3-16 in a Bead 7-54

4-1 Function Keyboard 4-2 7-7 Alphanumeric Display Font 7-58

4-2 Alphanumeric Keyboard 4-3 7-8 Numeric Display Font 7-58

4-3 Display Grid System 4-5 8-1 Sample Data Handler Batch

4-4 Sample Display Surface Deck Using RFL 8-4

Organization 4-6 8-2 Sample Data Handler Batch

4-5 Display Buff er Block Deck Using REDUCE 8-5

Diagram 4-14 9-1 DSD 6612 K Display 9-3

6-1 Display Item ID Block G-1 Typical Encoder /Decoder G-3
in 1700 6-1

N-1 MAIN Communications 7-1 Typical Bead Arrangement 7-4
Area N-2

TABLES

2-1 Printer Format Control 9-3 EXPORT Messages 9-6
Characters 2-6 9-4 IMPORT Control Type-Ins 9-10

3-1 Status Word Codes 3-7 9-5 Job Location 9-12
3-2 Directive Word Codes 3-17 9-6 Output Messages 9-13
4-1 Function Keyboard Status 9-7 Error Codes 9-16

in IH, IV 4-3

4-2 Sample Fr aines 4-7 M-1 IBUF /1744 Byte Comparison,
Item Description Byte

9-1 Equipment Mnemonics 9-4 Generators M-1

9-2 Buffer Messages 9-4 N-1 6000 Package External
Linkages N-3

viii 44616800 Rev. 01

INTRODUCTION

The Control Data 6000 Series Interactive Graphics System is designed to permit real-time

use of a large computer by a graphics console operator - without degrading the capabilities

of the machine.

1

Interactive Graphics accomplishes this by using a small machine, a Control Data 1700 Com­

puter, to control the basic functions of the graphics hardware; the system uses the 6000

series computer only to handle more difficult manipulations and to do the mathematical work

required by the applications programmer or the console user.

The Digigraphics 274 Display Consoles connected to the smaller computer permit the user to

create, display, store, retrieve, and modify any graphic forms necessary for the active an­

alysis of a problem - as well as giving him a means of entering data directly. These graphic

forms can then be expanded or changed by the user in a real-time environment through his

application program and the Interactive Graphics System.

The system can process the types of programs usually run in Batch-processing mode, but it

eliminates the user waiting time of that mode, and provides a user with much greater flexi­

bility in his use of the computer than batch-processing permits.

The system handles problems that:

• can best be represented in symbolic, graphic, or geometric form (such as schematics,

diagrams, layouts, lattice structures, geologic cross-sections, and paths of motion)

• can best be described using mathematical functions (dynamic analyses)

• require human intervention (such as transcribing data for digital processing, empir­

ical problem-solving, and geographic studies)

MAJOR FEATURES

Interactive Graphics includes these unique features:

• Graphics programming is done only on the 6000 Series computer - the 1700 Computer

software operates without programmer intervention.

• Graphics programs can be written in standard FORTRAN 2. 0, independent of display

hardware characteristics.

44616800 Rev. 01 1-1

• Data files can be tailored to fit the specific needs of an application programmer's job.

• Batch and graphic processing is performed concurrently; both types of jobs can be

entered through the 1700 Computer, as well as at the 6000 Series site.

• Interactive Graphics can simultaneously service 24 independent graphics consoles

through four 1700 Computers.

• The 1 700 Computers are not dedicated to graphics work, but can perform other func­

tions - even when graphics jobs are in the system.

HARDWARE ELEMENTS

The hardware configuration of the 6000 Series Interactive Graphics System is very versatile;

the system can be configured for either remote, local, or intermediate operation. Figures

1-1, 1-2, and 1-3 show typical systems for each type of configuration.

I -250- -,
: HAROCOPY :
._~Ef'¥'!!_E~_,

I

6000
SERIES COMPUTER

NOTE 3

I ~

lj
NOTES

66730R6674
DATA SET

CONTROLLER

NOTE 2

I 1706 DEDICATED TO 1747
2. 6673 HANDLES 2 1700s

6674 HANDLES 4 1700s
3. 6000 DATA CHANNEL DEDICATED

TO TAE 667X

301 B

GRAPHICS
CONSOLES

1747
DATA SET

CONTROLLER

r------1
PRINTER

1738
DISK

CONTROLLER

17D6
DATA

CHANNEL

NOTE 1

1706
DATA

CHANNEL

hm
CHANNEL

Figure 1-1. Remote Class, Hardware Configuration

1704
COMPUTER

5-1708's
STORAGE

24K
TOTAL

1713
TTY

1700 COMPUTER

1-2 44616800 Rev. 01

r-250-1
l HARD COPY :
LR!C...Q~~R_.

I

6000
SERIES COMPUTER

NOTES

NOTE 3

66730R 6674
DATA SET

CONTROL~ER

NOTE 2

J. 1706 DEDICATED TO 1747-QSE
2 6673 HANDLES 2 1700s

6674 HANDLES 4 1700s
3. 6000 DATA CHANNEL DEDICATED

TO THE 667X-QSE
4. LINE SPEED: MEMORY SPEED

(l.IJI SEC./12 BIT WORD) MINUS A
SMALL FACTOR FOR LINE LENGTH

OSE OSE

GRAPHICS
CONSOLES

1747
DATA SET

CONTROLLER

1738
DISK

CONTROLLER

1706
DATA

CHANNEL

NOTE 1

1706
DATA

CHANNEL

PRINTER

1705
DATA

CHANNEL

1704
COMPUTER

5-1708's
STORAGE

24K
TOTAL

1713
TTY

Figure 1-2. Intermediate Class, Hardware Configuration

6000
SERI ES COMPUTER

NOTE 3

66Jf.T~R&6J4r--------2_0o_' ________ -i DA~14lET
CONTROLLER CONTROLLER

NOTES
I. 1706 DEDICATED TO 1747
2 6673 HANDLES 2 1700s

6674 HANDLES 4 1700s

NOTE 2

3. 6000 DATA CHANNEL DEDICATED
TO THE 667X

GRAPHICS
CONSOLES

1706
DATA

CHANNEL

NOTE 1

,-----,
I PRINTER 1

............. J

1706
DATA

CHANNEL

1705
DATA

CHANNEL

Figure 1- 3. Local Class, Hardware Configuration

44616800 Rev. 03

1704
COMPUTER

5-1708°5
STORAGE

24K
TOTAL

1713
TTY

1700 COMPUTER

1700 COMPUTER

1-3

The full hardware capability of the Interactive Graphics System includes:

• Any standard 6000 Series hardware system, including a 6673 or 6674 Data Set

Controller

• Four 1700 Computers, each with a 1747 Data Set Controller and at least 24K memory

• One hardcopy recorder

• One 1 713 Teletypewriter per 1 700

• One 853 or 854 Disk Pack per 1700

• One card reader per 1 700

• One card punch per 1 700

• One printer per 1700

• Six 274 Digigraphics Consoles per 1700

GENERAL SORWARE OPERATION

Interactive Graphics software operates as two separate but communicating groups of rou­

tines - one in the 6000 Series computer, the other in each of the 1 700 Computers. Figure

1-4 shows the relationship between the groups.

6000 SOFTWARE

The 6000 Series portion of the System software includes:

• The SCOPE 3. 1. 2 operating system, with several added graphics features

• The standard FORTRAN 2. 0 compiler

• The 6000 Basic Graphics Package, for actual graphics programming

• The Scheduler, to provide time-sharing for graphics programs

• An EXPORT program, for communication between the 6000 Series and 1700 Computers

SCOPE FEATURES

Because graphics programs require a real-time environment, they cannot be allowed to com­

pete with batch jobs for the use of central memory control points; instead, one or two of

1-4 44616800 Rev. 01

A P P L I C A T I 0 N P R 0 G R A N N E R

,--------------1-----------------,
I I

1 APPLICATION LIBRARY (TASKS] 6000 SERIES I COMPUTER

6000 FORTF?AN
6000 BASIC GRAPHICS

PACKAGE

SCOPE OPERATING SYSTEM

[__ s~
I ExJ01n I :

: __ ----------~-~+-~-~ -------------_J
,- ----------------------i- -------,
I I

I r IMPORT I 1700 ,
' L_ I COMPUTER I

I
r BUFFER TF?ANSLRTG~

ROUTINE ------,--
' I

: r-f7oo H 8Asn:LG~RPHTcs 1 ,
I ~- ___ ,, __ "f81KAGE I [_ -------------+ ----------------J
,- - - - - - - - - - - - - _,_ - - - - - - - -1- - - - - - - -,
I .j, 27LJ I

I GRAPHICS I

~--------~~~- ~!s:l-BUt~E~ ------~~~o~ --I

t
0 l 5 P L R Y U S E R

Figure 1-4. Software Interactions

44616800 Rev. 01 1-5

SCOPE' s control points are dedicated to graphics use. The number can be varied as needed

by the 6000 operator, depending on the ratio of the graphics job load to the batch-processing

load. If graphics programs are not being run, all control points can be made available for

batch use.

The real-time requirements of graphics jobs also prohibit them from competing with batch

jobs for central memory storage space. Therefore, each graphics control point has a cer­

tain amount of memory reserved for the use of graphics programs. This amount is chosen

by the 6000 operator, and can be changed as needed for the most efficient distribution of mem­

ory between graphics jobs and batch jobs.

To further economize on the use of central memory, the SCOPE input/ output package is re­

placed by a multi-device input/output package called BATCHIO. BATCHIO performs the

same functions as the non-graphics package, and shares its control point area with EXPORT

(the non-graphics package requires the use of separate control points). In addition, BATCHIO

will read cards punched in three different coding systems.

The SCOPE library for Interactive Graphics includes three utility routines for the use of

graphics programs:

• The task file creater, AEFILE

• The task file dump routine, AEDUMP

• The random-access file creator, AELOAD

Graphics programs are written as a series of overlays, each performing a task. The AEFILE

routine places these overlays in mass storage as a random-access file with an index that can

keep track of hundreds of overlays. The applications programmer can make additions to and

deletions from this file; a task is located within the file and placed in central memory when

it is needed (location and loading is performed by 6000 Basic Graphics Package routines).

The AEDUMP routine is used to remove unneeded information from the task file and to re­

write the file in a form that can be stored outside the system.

The AELOAD utility program is used to restructure the file produced by AEDUMP into a

form that can be used as a task file.

All three utility routines are used at batch-processing control points so that file maintenance

does not tie up the System's graphics-processing resources.

PROGRAMMING FEATURES

The 6000 Basic Graphics Package allows the user to write programs in FORTRAN without

worrying about the maintenance of a display-oriented graphics data base or the mechanics of

1-6 44616800 Rev. 01

communicating with the display. The Package contains an expandable library of subroutines

that provide efficient and complete access to the graphics hardware (and two-way communica­

tion with it) without limiting application types or data structures. The Package is designed

so that the programmer's only concern is communication with the graphics console operator

and the computational requirements of the application; he is not aware of the internal functions

of the Package, since there are no system-specified data areas that must be manipulated.

REAL-TIME MULTIPROGRAMMING

If several graphics programs are in the system at the same time, a form of time-sharing

must be used so that each graphics console user believes that his program has sole use of

the 6000 Series computer.

Graphics programs share their use of the 6000 Series central memory through a mechanism

controlled by the Scheduler. The Scheduler looks at the programs waiting for execution in

its graphics input queue, the graphics input request of currently executing programs, and at

the programs themselves. The Scheduler then decides whether to roll out a program and roll

in a new one from the input queue, or to roll in an old program that was rolled out while

waiting for an input request to be serviced.

The Scheduler determines how long each program should be allowed to remain at a graphics

control point on the basis of the central and peripheral processor time the program used when

it last resided at a control point; this gives short graphics programs priority over longer ones.

A lower limit, chosen by each installation, is imposed on the Scheduler's determination of a

program's permitted resident time.

EXPORT FEATURES

EXPORT performs all data communication between the 1 700 Computers and the 6000 Series

computer. The Interactive Graphics version of EXPORT provides the same services for re­

mote batch programs as the non-graphics version, and has several additional features:

• EXPORT is automatically loaded by BATCHIO whenever it is needed, rather than

manually loaded as in the non-graphics version.

• EXPORT monitors the resident time of each graphics program, and calls the Schedul­

er into a peripheral processor when a program's permitted resident time has elapsed.

• EXPORT periodically scans each graphics control point for an input or output request

and automatically transfers graphics output data to its own output buffers for trans­

mission to the proper 1 700.

• Graphics data from a 1700 is queued by EXPORT when it is received for later use by

an application program (batch data is turned over to SCOPE for processing, as in the

non-graphics version).

44616800 Rev. 01 1-7

• EXPORT overlays are stored in Central Memory Resident, rather than in mass stor­

age, to reduce the overhead time of data communication processing.

• EXPORT processes remote batch data and graphics data concurrently.

1700 SOFTWARE

The 1 700 portion of the Interactive Graphics software consists of three groups of routines:

• An IMPORT program, to handle all communications between the 6000 Series computer

and the 1 700 Computer.

• The Buffer Translator

• The 1 700 Basic Graphics Package

IMPORT FEATURES

The Interactive Graphics version of IMPORT 1 700 has all of the data communication features

of the non-graphics version, and interfaces with drivers to run a line printer, card reader,

and card punch.

DAT A TRANSLATION

The Buffer Translator reformats the graphics data buffers received by IMPORT from the

6000 Series computer into calls to the 1 700 Basic Graphics Package. In this manner, data

from the 6000 Basic Graphics Package is translated into a display-oriented data base. The

Buffer Translator also formats data from the graphics consoles for transmission to the 6000

Series computer.

1700 GRAPHICS ROUTINES

The 1 700 software includes a group of graphics routines called the 1 700 Basic Graphics

Package. These routines act like drivers for the graphics consoles, sending display infor­

mation to the 1744 Controllers according to instructions received from the 6000 Basic Graph­

ics Package calls. The 1700 routines also process interrupts and data from the graphics

consoles, queueing the information until the program in the 6000 requests it. The application

programmer does not use the 1 700 Package routines when coding a job.

ADDITION OF SOFTWARE FUNCTIONS

Additional 1 700 functions can be incorporated in the Interactive Graphics System without alter­

ing the existing software; the 1 700 can be used to drive remote devices for specific applica­

tions, without hardware modification, other than the addition of memory.

1-8 44616800 Rev. 01

GENERAL PROCESS CHART

The General Process Chart in Figure 1-5 follows a user's program through the Interactive

Graphics System and shows the relationships between the hardware and software at various

stages in the program's processing.

REMOTE 1700

CARD
INPUT

JOB INPUT

BATCH JOB DAYFILE
(GRAPHIC) AND ANY
UTILITY LISTINGS

GRAPHIC

DATA

GRAPHIC DATA

LOCAL 6000

6000
INPUT
QUEUE JOB INPUT

CREATE TASKS

JOB INPUT

PREREAD TASKS

CARD
INPUT

CONNECT TASKS
(IF ANY) TO

GRAPHICS
JOB

SYSTEM OR GRAPHIC DATA
DISK

TASK OR
GRAPHIC DATA SCHEDULER ROLLS

JOB OUT AND LEAVES
ENTRY AT

BATCH I/O CONTROL
POINT

BATCH JOB DAYFILE (GRAPHIC)
ANO ANY UTILITY LISTINGS

EXPORT PPU CALLS SCHEDULER
TO SCHEDULE THE JOB AND LOOK

FOR GRAPHICS I/O TO AND
FROM THE JOB

GRAPHIC DAYFILE AND LISTINGS PLUS ANY NORMAL JOB
DATA DUMPS FROM THE DATA HANDLER COMPLETION PLUS

GRAPHIC OAYFILE ANO LISTINGS PLUS ANY
DATA DUMPS FROM THE DATA HANDLER

GRAPHIC TABLE 1--~~~~~~~~~~~~~~~~~~--'

UPDATES

Fig111·e 1-5. General Process Chart

44616800 Rev. 01 1-9

SYSTEM PROCESS CHART

The System Process Chart in Figure 1-6 also follows a program through the System, and

shows in more detail the interaction of the parts of the software with the hardware. This

chart is a schematic of the flow of data through the System during graphics program process-

ing.

CARD
PUNCH

CARD
READER

GRAPHIC DATA

IMPORT EXPORT
COMMU~JICATIONS COMMUNICATIONS

Gty4p / PACKAGE t PACKAGE
1-tic
~4.,.. /

GRAPHIC/
NON-GRAPHIC >~-:::
DATA ""/ ~ c,~

TRANSLATOR
/

BUFFER SCHEDULER / l PACKER TIME SHARE
GRAPHIC CONTROL ~ %~ POINTS

,... --.I"'
ii: r~~
<(<l tr >?.-?o a:: I- /..._

G'-? ct(« (.!) <(

"' 10 /..._'<:< '<:<
1700 8 GP '° "1,o Oc/1' z

GRAPHIC DRIVERS ~o 'S-/. l'' 0 Ii§

8 QUEUE HANDLER G'-? C'S'
z

"1~J'

1700 6000 PPU

Figure 1-6. System Process Chart

MAIN
TASK RETURN

ROUTINES

l
6000 BGP

1 DISPLAY CALLS
2 DATA PREPAR-

ATION
3 DATA HANDLER

6000 CPU

1-10 44616800 Rev. 01

6000 INPUT/OUTPUT AND GENERAL PROCESSING 2

CONTROL POINTS

Two to three of the seven control points provided by the standard SCOPE operating system

are reserved in the modified form of the system used by Interactive Graphics. One to two

can be designated as graphics control points by the installation and are then used exclusively

for graphics programs, although the system makes them available on command for batch use.

The third control point is reserved for the combined use of the BA TCHIO and EXPORT pro­

grams.

BATCHIO

BA TCHIO can simultaneously drive up to seven of the following Control Data devices in any

combination, through each peripheral processor it uses.

• 501 or 505 Line Printers

• 415 Card Punches

• 405 Card Readers

The BATCHIO package consists of three peripheral processor primary overlay programs,

plus ten secondary overlays; these programs are assigned to pool PPU' s as needed. The

primary overlays include:

• lIO (BA TCHIO Manager Program)

• lCD (Input/Output Driver)

• lPS (Service Program)

ROUTINE FUNCTIONS

110

The lIO routine monitors the input devices and the SCOPE output queue. When it detects a

need for input or output action, it assigns an appropriate available device to the 1 CD driver

and associates the device with one of the 16 buffers in the BATCHIO control point field. lIO

then assigns the proper output file to lCD.

44616800 Rev. 01 2-1

If 1 CD is not currently running when 1 IO detects a need for input or output action, it loads

lCD into another pool PPU. 110 also transfers 6612 operator END, REPEAT, or SUPPRESS

type-in commands (see Section 9) to the appropriate buffer area for execution by lCD; lIO

goes into recall every three-quarters of a second.

lCD

The PPU used by 1 CD remains dedicated to it while any input or output activity is occurring.

In addition, the driver calls transient PPU' s to perform 1 PS functions and manage buffers.

The 1 CD routine:

• Reads job input files from the card reader, performs code conversion and checksum­

ming, and places the file in the SCOPE input queue. 1 CD will perform a reread oper­

ation when a card read compare error is encountered, and displays error messages

when a checksum or validity error occurs.

• Reads print files from the disk, performs code conversion, executes END, REPEAT,

and SUPPRESS type-in commands, and prints files. lCD provides printer status mes­

sages on the K display.

• Reads PUNCH files from the disk, code converts them if necessary, executes END

and REPEAT commands, and punches the files. 1 CD provides card punch status mes­

sages on the K display, and will repunch any cards that have compare errors.

• Uses standard SCOPE circular buffering, generates request stack entries for disk ac­

cess, and calls 1 PS to perform housekeeping functions.

lCD goes into recall when all input and output activity is finished.

lPS

1 PS is called into another PPU by 1 CD to perform the following actions:

•
•
•
•
•

2-2

Call 2T J to translate job cards and create File Name Table entries for input files .

Call 2DF to drop output files after they have been printed or punched .

Access the dayfile to execute an END type-in command (see Section 9) .

Rewind print files and call 2LD to print a banner page (see Job Output) .

Rewind punch files and call 2CD to generate LACE card data .

44616800 Rev. 01

COMBINED EXPORT AND BATCHIO CONTROL POINT

ASSIGNMENT

The 6612 operator has the option of assigning BATCHIO and EXPORT to a control point either

automatically or manually (see Section 9). If he does it automatically, the two programs will

be assigned to control point one and the contents of the control point field will be preserved

in the event of a partial recovery dead start.

If the programs are assigned manually to any other control point, the contents of the control

point field will be lost when a partial recovery dead start is performed.

BA TCHIO cannot be assigned to run at more than one control point.

INITIALIZATION

After the control point is assigned, the BA TCHIO initialization routine is loaded into a PPU

and structures the three parts of the control point field. These parts are:

• Message buffers, flags, and pointers; used by BATCHIO and EXPORT for inter-com­

munication.

• Area used for graphics; contains status and Scheduler tables for graphics control

points at which programs are being executed, and contains communication buffers for

the graphics consoles of each 1700 Computer. Multiple buffers of data fit in each of

these communication buffers.

• Sixteen BATCHIO file environment tables and buffer areas; these are used by the

BATCHIO driver and by EXPORT for actual input and output.

After BATCHIO is loaded, it waits for a code signal from the 1700 Computer. This signal

tells the 6000 Series machine that the 1 700 is operational, and causes EXPORT to be loaded

into another PPU by BATCHIO.

STRUCTURE AND USE

Figure 2-1 shows the structure of the BATCHIO/EXPORT control point field. The sixteen

buffer areas are shared by BATCHIO and EXPORT. EXPORT assigns as many areas to each

1700 as are needed. When BATCHIO or EXPORT finishes using a buffer, it is returned to

the pool of idle buffers for reassignment.

44616800 Rev. 01 2-3

2-4

l COPIES OF 1CD INPuT

L REGISTER.ONE PER ACTIVE r ri ~VT f' ~
! - - - - - PROCESSOR IS ASSIGNED AS

J DRIVER IS DEDICATED

RA+~N+103

}

ASSIGNMENT WORDS

F 0 R 1 CD

*

**

I 2

20

3 0

200

20 1

400

401

76 3

7 6 4

76 5

766

7 6 7

7 7 0

772

7 75

7 76

1 000

1001

1 061

1 062

106 7

1074

1 075

1 1 00

1 1 1 0

1200

120 1

**x

1 05

x + 1 06

x + 2 1 3

x + 2 14

x + 321

x + 32 2

ALL SAME AS ABOVE

EQUIP. EQUIP. EQUIP. EQUIP }

I, ENTRY OR:::AL I FLAG o, OR::NTAL I FLAG o, OR::NTAL I FLAG o, OR::NTAL I FLAG ~. PRIVATE EQUIPMENT STATUS

>--------LI ___ ,_':.___• 2_:_,_o_R_3__l__ ___ L_1:._, 2_:_,_o_R_3__l__ ___ L1'---,2-'-,-0_R_3L__ __ :._L_1,_2_:_'_o_R~3 TABLE FOR CARD READERS.

ALL SAME AS ABOVE ~ LINE PRINTER, ETC.

f------------~-----------------------~~ EQUIP. FLAG

OVERLAY AREA I ~: ~~NRED :
1
:;:R

C 0 UN T

GRAPHIC

-----------~ 2= CARD READER

ADDRESS 1700 - 1

AC~ RE 3 S 2

ADDRESS 1700 - 3

1700 - 4

0 0 0

BUFFER ADDR.

RESERVATION TABLE (CONTAINS SERIAL NUMBER OF PROGRAM ATTACHED

EACH CONSOLE IN THE SYSTEM)

WORD COUNTS OF GRAPHICS OUTPUT BUFFERS TO BE

~ BLANK FOR FUTURE EXPANSION ~

~//////__L/////LLLL_LL//L/////////////// __ LLLr
~ PPU NUMBERS \SCHEDULER INTERLOCK TABLE I ~

~BLANK FOR FUTURE EXPANSION y
~/////////////////////////////////////~

l ::: '"" :::::: ? 1 "' '"" """'" ?
J "' '" """'" 1
~ BATCHIO BUFFERS J

3= EXPORT 6674, 6673, llUX

ENTRY COUNT :

TOTAL # OF Eo's IN TABLE

} """ '""" '"""'" '""

} ::: '~:: ';; ::: ;;~ '!, ~;: :~ :,
FRAME TIME VARIABLES

INPUT FLAGS

INTERLOCK USED FOR SCHED. TABLES

SER.# IDENTIFIES CURRENT PROGRAM

FB FLAG BITS FOR STATUS OF THIS NC-ON. IF FB :; 1XX, NCON AVAILABLE; IF FB :; 2XX OR 3XX, NCON ABORTED;

IF FB :; 4XX, AVAILABLE VACATED FILE~ FB :; iXXX THRU 7XXX IS A DYNAMIC PRIORITY WEIGHT.

X 120 1 + 1 0 Ce * NUMBER OF CONSOLES

Figure 2-1. BATCHIO Control Point Field

44616800 Rev. 01

K DISPLAY

A SCOPE DSD display presents the status of the sixteen BA TCHIO buffer areas and any mes­

sages associated with them. This K display is shown in Figure 9-1.

EQUIPMENT MNEMONICS

A mnemonic is provided for each piece of equipment which can be accessed through the

BA TCHIO control point. These mnemonics appear on the K display when the devices are

using the buffers. The mnemonics valid for this system are listed in Table 9-1.

BA TCHIO BUFFER MESSAGES

BATCHIO produces the messages in Table 9-2 on the K display when it encounters abnormal

conditions in the hardware it services. Each message appears in the message area of the

buffer used by the device; the last message to appear on the K display also appears on the

third line of the BA TCHIO control point entry for the B display (see Section 9).

EXPORT messages do not appear on the K display.

DA YFILE ENTRIES

STANDARD

A dayfile entry is made for every read, print, or punch operation. This entry gives the job

name and card or line count for accounting purposes.

DIAGNOSTICS

BATCHIO makes dayfile entries for certain equipment conditions at dead start time.

These entries may not require operator action, and do not appear on the K display; they

appear only on the third line of the B display and in the dayfile.

RESERVED MESSAGE

The dayfile entry:

EQxx, CHyy, RES.ERV .ED. TURNED OFF.

indicates that the piece of equipment with the Equipment Status Table ordinal xx on data chan­

nel yy has a hardware reserved status condition. This status is used only with dual access

controllers and indicates that the alternate controller is using the device. Device xx is auto­

matically turned off in the Equipment Status Table.

44616800 Rev. 03 2-5

REJECT MESSAGE

The dayf ile entry:

EQxx, CHyy, REJECT. TURJ\1ED OFF.

indicates that the device with the Equipment Status Table ordinal xx on channel yy has returned

a reject status. The device is automatically turned off in the table.

JOB OUTPUT

PRINTER FORMAT AND CONTROL CHARACTERS

A banner page, consisting of the file name in large characters, is printed at the beginning of

each file output. Files are printed until the End-of-Information on the disk is reached; no

printed indication of an End-of-File or End-of-Record is given.

A line of print may be 136 characters long. The first character is not printed if it is one of

the format control characters in Table 2-1, which follows:

2-6

TABLE 2-1. PRINTER FORMAT CONTROL CHARACTERS

Character I Operation

I Print on next line

0 Skip 1 line before printing

Skip 2 lines before printing

1

2

<
>
::;;;

~

8

7

6

5

4

3

R

Q

+

Print on top of next page

Advance to last line on page before printing

Skip to printer format channel 1 after printing

Skip to printer format channel 2 after printing

Skip to printer format channel 3 after printing

Skip to printer format channel 4 after printing

Skip to printer format channel 5 after printing

Skip to printer format channel 6 after printing

Skip to printer format channel 1 before printing

Skip to printer format channel 2 before printing

Skip to printer format channel 3 before printing

Skip to printer format channel 4 before printing

Skip to printer format channel 5 before printing

Skip to printer format channel 6 before printing

Set Auto Eject mode. (The perforation at the top or
the bottom of the page is skipped automatically.)

Clear Auto Eject mode. (Print continuously from
the top to the bottom of each page.)

Supress paper advance before print. (Overprint
the last line with this line.)

44616800 Rev. 01

The printer remains in Auto Eject mode until a control character is encountered, and returns

to it after that line has been printed. Printing occurs on consecutive lines in Auto Eject mode.

CARD PUNCHING FORMATS

A LACE card is punched at the beginning of each file. It contains the job name associated

with that file, and is similar in appearance to the banner page produced by the printer.

End-of-Record cards are punched without level numbers.

LACE, End-of-Record, End-of-File, and cards with compare errors are offset for easy

recognition.

Data cards are punched in one of five formats (see Appendix F):

• End-of-Record cards (level zero only)

• End-of-File cards

• Normal mode binary cards

• Free-form mode binary cards

• Standard 6000 Hollerith coded cards

JOB INPUT

HOLLERITH TYPES

BATCHIO can read coded cards that have been punched in one of two versions of Hollerith

code:

• Standard 6000 Hollerith

• ICT 1900 Hexadecimal Hollerith

These codes are given in Appendix C. Coded cards are assumed to be in standard 6000 Hol­

lerith code until a Hollerith Switch card is encountered. The format and use of Hollerith

Switch cards is described in Appendix F.

CARD READING FORMATS

BATCHIO reads cards that have been punched in either of two modes (see Appendix F) ·

BATCHIO begins reading each card file in Normal mode, and while in that mode can read:

• Standard 6000 binary cards

• End-of- Record cards

• End-of-File cards

• Enter Free-form cards

44616800 Rev. 03 2-7

• Hollerith Switch cards

• Coded cards

Coded cards are assumed to be in standard 6000 Hollerith code until a Hollerith Switch

card is encountered.

In Free-form mode, BATCHIO can read:

• Free-form mode binary cards

• Exit Free-form mode cards

• Absolute End-of-File cards (also serve as Exit Free-form mode cards)

CARD TRANSLATION

If BA TCHIO detects a character for which no internal display code equivalent exits, it will

translate the character as a $ {53 in internal display code); there is no maximum permissible

number of such validity errors.

If BATCHIO encounters a Mode changing card or Hollerith Switch card that it does not recog­

nize, it produces the message:

NOT RECOGNIZED

in the program's output file, followed by the image of the card. The job is then aborted.

Error messages produced during card translation appear nowhere in the system except in

the program's output file.

GRAPHICS PROGRAM CARD DECK

User programs are compilea and executed on the 6000 Series computer system. The user

submits his application program as a normal FORTRAN batch job card deck; the following

discussion assumes that the card deck is punched in standard 6000 Hollerith code.

The card deck consists of control cards, program cards, and data cards. The control cards

specify how the job is to be processed, and are followed by the FORTRAN program cards

and the data cards. The deck ends with an End-of-File card (6-7-8-9 quadruple-punched in

column one) .

CONTROL CARDS

JOB CARD

The first control card, the Job card, must indicate the job name, priority, central processor

time limit, and memory requirements of the program. Fields are separated by commas,

and the last field is terminated by a period. Fields other than the job name may appear in

any order. All capitalized letters must appear on the card; they are required by SCOPE.

2-8 44616800 Rev. 01

RUN CARD

(n, Pp, Tt, CMfl, ECfl.

n

Pp

Tt

CM fl

ECfl

Alphanumeric job name, which begins with a letter and is 1 to 7
characters long.

Equals priority level in octal, with a 1 as the lowest priority;
the upper limit on p is an installation option.

t equals central processor time limit for the whole job, including
compilation and execution, in seconds and is 1 to 5 octal digits.

fl equals total central memory field length of the job, with a maxi­
mum of 6 octal digits.

fl equals total extended core storage field length required in terms
of 1000

8
word blocks, with a maximum of 7777

8
; this parameter

may be omitted.

The RUN card is usually the second control card in the deck. It calls the FORTRAN compil­

er, and provides Compiler mode, field length, and file names as follows:

(RUN (cm,fl, bl, if, of, rf, le, as, cs)

cm =

fl

bl

if

of

rf

le

44616800 Rev. 01

G Indicates compile and execute without a list, unless explicit
LIST cards appear in the deck.

S Indicates compile with source list but do not execute; if execu­
tion is desired, LGO card must follow RUN card.

P Indicates compile with source list and punch deck on file
PUNCHB, but no execution.

L Indicates compile with source and object list, but no execution.

M Indicates compile with source and object list; produce a punch
deck on file PUNCHB, but do not execute.

Object program field length in octal; if omitted, it is set equal to
the field length at compile time.

Object program I/O buffer length in octal; if omitted, it is assumed
to be 2022.

File name for compiler input; if omitted, it is assumed to be INPUT

File name for compiler output; if omitted, it is assumed to be
OUTPUT.

File name on which the binary information is always written; if
omitted, it is assumed to be LGO.

Octal line-limit of an object program on the OUTPUT file. If the
line count exceeds the specified line limit, the job is terminated;
if omitted, it is assumed to be 10, 000.

2-9

LGO CARD

as ASA switch. If nonzero or nonblank, it causes the ASA I/O list/
format interaction at execution time.

cs Cross-reference switch. If nonzero, a cross-reference listing is
produced.

This card calls the SCOPE General Purpose System Loader and begins program execution

regardless of the parameters on the RUN card. The format for this card is:

(LGO.

AEFILE CARD

The AEFILE card calls the graphics task file creation utility routine, AEFILE, which re­

structures the program file identified by the second data card into an indexed random-access

COMMON file of primary overlays, identified by the name on the first data card. AEFILE

can also be used to add or replace overlays in the file, and make changes within overlays.

This card has the format:

(AEFILE,

AEDUMP CARD

This card calls the AEDUMP utility routine, which reads a random-access file (the graphics

task file), removes all rewritten records and indexes, and writes it as a serial-access file

with an index as its first record.

The format for this card is:

AELOAD CARD

(AEDUMP (s, o)

s Name of the random-access file to be used as a source; this is the
file created by AEFILE or AELOAD.

o Name of the serial-access file to be produced.

The AELOAD card caps the AELOAD utility routine, which reads a serial-access file (the

file produced by AEDUMP) with an index as its first record. AELOAD then writes the file as

a random-access file with an index of disk addresses as its last logical record. The file

produced by AELOAD can be used as a graphics COMMON file.

2-10 44616800 Rev. 01

The AELOAD card has the format:

(AELOAD (s, o)

s Name of the serial-access file to be read as a source; this is the
output file of AEDUMP

o Name of the random-access file to be produced

COMMON CARD

This card attaches any existing COMMON file named in its parameter field to the program,

and changes its status in the File Environment Table so that no other program will have ac­

cess to it while the current program is running. When the program the file is attached to

terminates, the file is returned to the system and may be reassigned by another program's

COMMON card. The COMMON card's format is:

RELEASE CARD

(COMMON, fn.

fn Name of the COMMON file (usually the graphics task file created
by AEFILE or AELOAD) to be assigned to the program.

The RELEASE card eliminates the COMMON file named in its parameter field from the sys­

tem. When SCOPE encounters a RELEASE card, it changes the file's File Environment

Table/File Name Table entry so that the file is reclassified as a local program file. When

the program ends, all of its local files are automatically destroyed. This card has the

format:

EXIT CARD

(RE LEASE, fn.

fn Name of the COMMON file (usually the graphics task file) to be
destroyed.

When SCOPE detects a program error, it searches the program's control card record for an

EXIT card. If it finds one, it performs any actions specified by the control cards following

the EXIT card, then terminates the program.

If an error occurs and no EXIT card exists, SCOPE simply terminates the job with a dayfile

message.

44616800 Rev. 01 2-11

If no error occurs, an EXIT card (and any control cards following it) is ignored. The EXIT

card format is:

(EXIT.

or

(EXIT (S)

If the S parameter is used, EXIT processing is also done when assembly or compilation

errors cause termination.

PROGRAM CARDS

Several program cards are required by Interactive Graphics. Program cards are separated

frora control cards and data cards by End-of--Rccord cards (7- 8-0 triple-punched in column

one), and are punched as standard FORTRAN cards.

MAIN (ZERO-LEVEL) OVERLAY CARD

This card causes the FORTRAN compiler to translate the program overlay following it as a

zero-level overlay. Zero-level overlays always reside in core when the program is at a

control point, and serve to link blank COMMON areas between higher level overlays.

The main overlay card has the format:

(OVERLAY(lfn, 0, O)

CALL MAIN CARD

lfn Name to be assigned to the source file of overlays (produced by the
SCOPE General Purpose System Loader).

This card calls the Application Executive MAIN program; when encountered at compile and

loading time, it causes the Executive 1 s MAIN program to be loaded into the zero-level over­

lay as a subprogram from the SCOPE system library.

If this card is not used, the programmer must supply his own executive zero-level overlay

to set up a call to AEFILE, load tasks, fetch buttons, and so forth. This card has the format:

(CALL l\IAIN

2-12 44616800 Rev. 01

TASK LEVEL OVERLAY CARD

This card is used to begin each task overlay and serves as an End-of-Record card for the

overlay preceding it. It has the format:

(OVERLAY (p, s)

p Primary overlay level number in octal; must be greater than zero
and less than 1008 .

s Secondary overlay level number in octal; must be positive and less
than 1008 .

Overlays need not be numbered sequentially in an input file; however, no overlay may have a

primary number smaller than that of the overlay preceding it, and no overlay may precede

another with the same primary number but a smaller secondary number.

DATA CARDS

If a graphics program uses the Application Executive MAIN program, there must be at least

one data record in its deck.

The first data record contains the file name parameter cards used by the Executive's MAIN

program. The file names on these cards are standard seven character alphanumeric names,

starting in column one of the card. The first card must contain the name assigned to the

graphics COMMON file; the second card (used only during a file creation run) must contain

the name of the file produced by the General Purpose System Loader. This source file name

must agree with the name given on the program's main overlay card (see above).

SAMPLE PROGRAM DECKS

Figures 2-2 through 2-8 depict program decks for various task file creation, maintenance,

and execution functions. The operation of the system utility routines called by the control

cards is explained in more detail later in this section.

ZERO-LEVEL OVERLAY CONTENT

The zero-level overlays in all runs of a job must be identical. The overlays in the task file

are linked to FORTRAN and Application Executive entry points within the zero-level overlay

and are relocated with respect to the first word address of the zero-level overlay' s blank

COMMON. Unless the same zero-level overlay is used for all runs, task loading and

COMMON linkage will not occur properly.

44616800 Rev. 01 2-13

1f the zero-level overlay, the size of blank COMMON, or the number of files used is changed,

a new file creation run should be made to alter the linkages and loading addresses for each

of the tasks in the task file.

If the name of a file or a blank COMMON location is changed without changing the zero-level

overlay' s core requirements, it is necessary only to change the task overlays affected by the

name changes; this can be done with a file maintenance run.

All file requirements (such as INPUT, OUTPUT, or TAPE6) must be listed on the zero-level

overlay's PROGRAM card; they may not appear on a PROGRAM card in any other overlay.

The FORTRAN compiler allocates File Environment Table entries and buffers for these files

and sets pointers to the allocations for use during the execution run. Each subsequent allo­

cation of a file with a given name is written over the previous one, so that a file listed in the

zero-level overlay and in another overlay will have pointers only in the latter. Therefore,

when the zero-level overlay is entered at execution time, the FORTRAN linkage routine will

try to find a File Environment Table entry for file but will fail; the pointers that it searches

for will be unavailable because they are in an overlay that has not yet been loaded.

When the linkage routine's search fails, the job is aborted with the diagnostic message:

NO OUTPUT FILE FOUND

This portion of a program would cause such a diagnostic:

OVERLAY (SOURCE, 0, 0)

PROGRAM ONE (TAPE6)

•
•
•

OVERLAY (1, O)

PROGRAM TWO (TAPES)

•
•
•

FILE CREATION RUNS

Figure 2-2 shows a typical card deck for an iI).itial file creation run, using the Application

Executive MAIN program and the system AEFILE routine. This deck can create a file with

a maximum of 63
10

primary or secondary overlays.

2-14 44616800 Rev. 01

(
DATA

RECORD

_

r
NEXT TASK

PRIMARY
OVERLAY

~
r

PROGRAM FIRST
RECORD TASK

PRIMARY
OVERLAY

~
r

MAIN
(ZERO-LEVEL)

OVERLAY

~

(
CONTROL

CARD
RECORD

l

SOURCE

OBJECT

END

END OF FILE CARD

CURRENT OVERLAY FILE NAME PARAMETER CARD

GRAPHICS COMMON FILE NAME PARAMETER CARD

END OF RECORD CARD

TASKS

TO BE

FILED

'"~~--==-~11111111
"'"" "·" I 11\ljllljl

END I 1 I I

CALL MAIN APPLICATION EXECUTIVE

MAIN PROGRAM CALL CARD

PROGRAM CREATE

OVERLAY CSOURCE,O,Ol

OF RECORD CARD

AEFILE.

LGO. l ---,,,, '''' ''''''' '''' ,,,,
I I w SCOPE LOADER CALL CARD

I ~ - - -

RUN(S l

GRAPH35,P17,T10000,CM40000.

~~,: ::::"' OOM""' me mo

~~~~~~~~~~~~~~~ 

Figure 2-2. File Creation Run Deck 

A graphics COMMON file containing more than 63 10 overlays can be created. A deck, such I 
as the one shown in Figure 2-4, can be used to build a task file that contains as many over­

lays as the installation- specified limit MNOVL will permit (see AEFILE routine). 

FILE MAINTENANCE RUNS 

If a program library has been created for graphics jobs, and it has the same format as the 

sample deck shown in Figure 2-2, then a task file can be created from it. By using the sys­

tem UPDATE program, the programmer can make corrections during the same run. Figure 

2-3 shows a deck that will form a corrected task file from an UPDATE library tape; the 

routines in card deck LBTASK will be placed in the file SOURCE from tape OLDPL, and task 

file OBJECT will be produced. 

44616800 Rev. 03 2-15 



/ 
( 

DATA 
RECORD 

~ 
PROGRAM 

RECORD 

r 
CONTROL 

CARD 
RECORD 

I 
\_ 

END OF FILE CARD 

I 

DBJE::URCE·-----------------'----1 = - - = . ·- ·- OVERLAY 50URCE FILE CON OLDPL l 

NAME PARAMETER CARD 

GRAPHlC5 COMMON FILE NAME 

PARAMETER CARD 

END OF RECORD CARD 

~ 
UPDATE AND 

*IDENT,LBTASK FORTRAN CARD5 

END OF RECORD CARD 

AEFILE. 

LGO. 

RUN < 5,,, COMPILE l 

TASK FILE CREATOR CALL CARD 

UPDATR1,P17,T10000,CM40000. 
FORTRAN COMPILER CALL CARn 

CALL UPDATE ROUTINE CARD 

OPERATOR TAPE ASSIGNMENT REQUEST CARD 

JOB CARD 

Figure 2-3. UPDATE File Correction and Creation Deck 

This deck is used to create, run, and execute the program in one pass through the computer. 

( 
CONTROL 

CARO 
RECORD 

l 

2-16 

r 
DATA 

RECORDS 

L 
( 

NEXT TASK 
PRIMARY 
0 VERLAY 

" ( 

FIRST TASK 
PRIMARY 
OVERLAY 

(._ 

( 
MAIN 

0 VER LAY 

" 

AEFILE 

LGO 

RUN (S) 

GRAPH ETC 

-- - END OF RECORD CARO 

- - - COMMON FILE NAME PARAMETER CARO 

,.--------------'---', - - - - - - - ENO OF RECORD CARO 

- - - CURRENT OVERLAY FILE PARAMETER CARO 

- -- -- - COMMON FILE NAME PARAMETER CARO 

~ ,-----------=-.- - - END OF RECORD CARD 

TASKS 
TO BE 

FILED 

) 

"l 
ERROR CONDITION 
EXIT PROCESSING 

SPECIFICATION CARO 

/ 
- - - - SOURCE CALL CARD 

- - -GRAPHIC COMMON FILE ATTACHMENT CARO 

- - - TASK FILE CREATOR CALL CARO 

- - - SC OPE LOADER CALL CARO 

- - - FORTRAN COMPILER CALL CARO 

- - - - JOB CARD 

Figure 2-3. 1. Run, Creation, and Execution Deck 

44616800 Rev. 03 



Task overlays can be added to an existing graphics COMMON file by using AEFILE. Figure 

2-4 shows a sample deck which adds a primary level overlay ADDTASK to the end of the file 

created by the deck in Figure 2-2. 

DA TA 
RECORD 

r 
PROGRAM 

RECORD 

L 
( 

CONTROL 
CARD 

RECORD 

l 
"---

SOURCE 

OBJECT 

PROGRAM ADDTASK 

OVERLAY (77,0) 

END 

CALL MAIN 

PROGRAM CREA TE 

OVERLAY \SOURCE,0,0) 

END OF FILE CARO 

SOURCE FILE NAME PARAMETER CARO 

GRAPHICS COMMON FILE NAME PARAMETER 

CARD 

END OF RECORD CARD 

NEW OVERLAY 

FOR TASK FILE 

MAIN 

I ZERO-LEVEL l 

OVERLAY 

) 
~~~~~~~~~~---~-~-~-~-~--- - - - - END OF RECORD CARD 
AEFILE.

LGO.

COMMON, OBJECT. !
RlJNI S l

'=f I I I µ- -TASK FILE CREATOR ROUTINE CALL CARD

l

("GRAPH35,P17,T10000,CM40000. ~I I I ~ ~ :R:::::SL:::::Nc:::E c:::ACHMENT CARD

~---------'1- - - - -

FORTRAN COMPILER CALL CARD

OB CARD

Figure 2-4. Task Addition Maintenance Run Deck

44616800 Rev. 01 2-17

Task overlays may also be replaced within a graphics COMMON file by using AEFILE.

Figure 2 -5 shows a sample deck that will substitute the revised primary overlay TASK 1 for

the original primary overlay TASKl in the file created by the deck shown in Figure 2-2. The

substitution is made according to the name given on the new task's PROGRAM card - the new

task will replace the old task with the same name within the file.

(
DA TA

RECORD

I
PROGRAM

RECORD

L
(

CONTROL

2-18

CARD
RECORD

I

l

---- --

PROGRAM TA SK 1

2i l := P, ~:. v • v ,

1111 :Ii

SOURCE FILE NAME PARAMETER :ARD

GRAPHICS COMMON FILE NAME PARAMETER

CARD

END OF RECORD CARD

REVISED

"IRST TASK

OVERLAY

li ----~ I l'l' 1'l END

CALL MAIN

PROGRAM CREA TE

~ OVERLAY (SOURCE,O,O !

rr
I

/AEFILE.

LGO,

• (COMMON, OBJECT.

l_/ RUN\ SI
_l

/GRAPh35,P17,

r
1GOOO,CM40000,

:

MAIN

OVERLAY

I I I I

-1- I
1- ~lj - I- END OF RE:JRL CARD

CA. I RO

~
~ - - -I SCOFE LOADER CALL CARD

I L._ ~ GRAPHI S :J""lMCN F3:LE A1TACH~EN 1 C ·

I w ---
I_ r --_ -_ -_ - FQRTRA~ co~PlcER CAL- cARD

~- cOB CARC

_ _j

Figure 2-5. Task Replacement Maintenance Run Deck

44616800 Rev. 01

Figure 2-6 shows a deck that will take the file OBJECT created by any of the preceding decks

and store it in a purged form on magnetic tape as a file called SOURCE.

CONTROL

CARD

RECORD

6

7

8

9
AEDUMP (OBJECT, SOURCE)

COMMON, OBJECT.

REWIND, SOURCE.

REQUEST, SOURCE.

END OF FILE CARD

GRAPH35, P17, T10000, CM40000.

TASK FILE DUMP

ROUTINE CALL CARD

GRAPHICS COMMON FILE

ATTACHMENT CARD

TAPE REWIND CARD

l_JI
TAPE REQUEST CARD

JOB CARD

Figure 2-6. Sample Deck to Purge and Store File

Figure 2-7 shows a sample deck that purges the file OBJECTl (similar to OBJECT of

Figures 2-2 through 2-5) and recreates it as file OBJECT for use in a subsequent execution

run.

CONTROL

CARD

RECORD

------ ----- ----- -- ----1

F-----------------
(~A~~E~ - ---- --~~-----;

I

'--------</ AE,LOA"D I SOURCE 1, --~-T-1 ____ I
I I

~>~MP r OBJECT1, SOURCE1 I

~J___ ________ ----- ----- ~

: COMMON,OBJECT1.

'

J

- - END OF FILE CARO

ERROR
CONDIT:Cr\J

EX IT

PRJCESSING

l -· -----

ARAPH35, P17, T10000, CM4000~- I

c-----
1 ! I - - - - - - - - NEW TASK F•LE

r---_J CREA"'.":or-..

"'·~ [. TASK F, LE
PURG I r\iG

- - - GRAPM':::S TASK :::'.CMM~~

FILE ASSIGNMEi'.T CARC

- JOB CARD

Figure 2-7. Sample Deck to Purge File Within System

44616800 H.ev. 01 2-19

PROGRAM EXECUTION RUN

Figure 2-8 shows a typical program execution run card deck; the program uses the graphics

C'Ol\'ll\'lON file called OBJECT, which was created by the decks in the preceding figures.

(,,,-
DATA RECORD

\

~
DATA RECORD

~
(

PROGRAM
RECORD

~
i
I

CONTROL

CARD
RECORD

-----------------'--~

END

CALL MAIN

~AM XECUTE -

(ov'ERLAY(~-.-c_l ____ I (
1 I 7 ________ l I ____J___

i
./RELEASE, OBJECT.

~RELEASE,OBJECT.

I_ /LGQ: ____ _

/COMMO-N~O-BJEC T:

/qu~cs-,-------------
GRAPH35,P17,T10000,CM40000.

I - - END OF FILE CARD

END OF RECORD CARD

- - GRAPHICS COMMON FILE NAME PARAMETER CARD

APPLICATION EXECUTIVE

MAIN PROGRAM CALL CARD

END OF RECORD CARD

~

I
ERROR CONDITION

EXIT PROCESSING

SPECIFICATION

LARDS

r--1
-• ~

GRAPHICS COMMON FILE DETACHING CARD

SCOPE LOADER CALL CARC

GRAPHICS COMMON FILE ASSIGNMENT CARD

Figure 2-8. Execution Run Card Deck

SYSTEM UTILITY FUNCTIONS

In addition to the Scheduler and its subroutine, a graphics program uses SCOPE routines to

create and maintain the graphics task file, and to process abort conditions.

2-20 44616800 Rev. 01

TASK FILE CREATION

Initially, application programs can enter the system either through a remote card reader at

the 1700, or at the 6000's card reader. Remote entry gives the programmer a convenient

tool for program debugging.

After the program is submitted to the system, the control cards in its first logical

record determine further processing.

First, SCOPE queues the job in the batch input queue, according to the priority on its job

card, and creates the proper entries in the system File Environment Table /File Name Table

(FET/FNT).

When SCOPE assigns the program to a batch job control point, the next control card is pro­

cessed. This is the RUN card, which calls the FORTRAN compiler.

After compilation, the next control card is processed. For a graphics task file creation run,

this would be the LGO card.

The LGO card calls SCOPE' s General Purpose System Loader (G PSL), which takes the com­

piler's output, satisfies all 6000 Basic Graphics Package references from the system library,

and organizes this data into a serial-access scratch file of overlays. This file is given the

name specified on the main (or zero-level) OVERLAY card; it is written one overlay to a

record and positioned after the program's first record (the main or zero-level overlay record).

Each record of this file contains two tables. The first is the 77 or prefix table; the second

is the 50 or overlay table. The 50 table contains two header words with the format:

59 47 41 35 17 0

Primary Second-
Overlay ary FWA of Overlay Address of Overlay

5000 Level Overlay with Respect to Entry Point
Number Level Control Point RA with Respect to

Number Control Point RA

Overlay Entry Point Name Program Address

followed by the binary text of the overlay.

SCOPE continues processing the LGO card by starting program execution; the program is

initially treated as a batch job and executed at a batch job control point.

The first instructions executed are in the zero-level main overlay. These are supplied by

either the programmer or the Application Executive MAIN program (see Section 7), and

place file names in RA +2 and RA +3 of the program's current control point area.

44616800 Rev. 01 2-21

The program then passes control back to SCOPE for normal termination of LGO processing.

This consists of executing the next card in the control card record - which should be an

AEFILE card in a file creation run deck. This card calls the system i\EFILE routine.

AEFILE ROUTINE

AEFILE is the graphics task file creator; it reads the name of the loader-created overlay

file from RA+2 and then writes that file (without the zero-level overlay record) on the system

disk as absolute-addressed FORTRAN overlays.

This new file is the program's graphics COMMON file. It consists of named random

records, each containing a 50 table and a primary overlay (the 77 table is not written into

the graphics COMMON file). The record name is taken from the overlay entry point name in

the second word of the 77 table.

AEFILE catalogs the disk address of each overlay record, and writes a task directory con­

taining this information as the last logical record of the graphics COMMON file.

TASK DIRECTORY

The task directory (Figure 2-9) can contain pointers for lVINOVL overlays (lVINOVL is an in-

stallation parameter). The applications programmer can make additions to and deletions

from an existing task file, since each task is accessible through its name in the task directory.

The task directory contains two blocks of information, the first of which is a standard index

for a named random file.

The first block consists of one header word and two central memory words for each overlay

record in the graphics COMMON file. The header word is negative, to indicate that the infor­

mation block following it is a named random index.

The second block of information contains one entry (a single central memory word for each

overlay record). This block is treated as a suffix to the index in the first block, and is used

by the Application Executive routines (see Section 7) to load the task overlay during program

execution.

Only the first block of the task directory is used to read or write the graphics COMMON file,

but both blocks are included in the index pointers when the file is closed or opened, so that

they will be retained on the disk as a catalog.

2-22 44616800 Rev. 01

Header
Word

Index

l Block Entry 1
One

Index
Entry 2

Entry Suffix

Entry Suffix 2

Block 3 Two Entry Suffix

Entry Suffix 4

Entry Suffix 5

AEFILE ACTIONS

89

11

NAME

DISK ADDRESS OF RECORD 2

LENGTH OF RECORD *t fwa overlay
overlay entry
address

point

LENGTH OF RECORD *2 fwa overlay
over lay entry point
address

LENGTH OF RECORD * 3 fwa overlay
overlay entry point
address

LENGTH OF RECORD *4 fwa overlay
overlay entry point
address

LENGTH OF RECORD *5 fwa overlay
overlay entry point
address

ml= maximum length of overlay record= fwo +actual record length + 400B for rollin/rol lout

* actually the length of the record plus two of load

Figure 2-9. Task Directory

Before AEFILE can create a graphics COMMON file, it must make FET/FNT entries for both

the COMMON file and the loader-created overlay source file; AEFILE uses SCOPE library mac­

ros and the contents of RA +2 and RA +3 to do this. If AEFILE detects an error in the Table

entries when the macros finish, it produces a dayfile message <see Appendix B) and aborts the job.

44616800 Rev. 01 2-23

The graphics COMMON file entry defines the file as a system COMMON file and associates

the programmer's graphics COMMON file name with it. The source file entry is used to save

that file on the disk after the graphics COMMON file is written; the source file is treated as

a local file and is destroyed when program execution ends.

After the entries are made, AEFILF uses SCOPE library macros to open the COMMON file,

read the overlay source file, write the COMMON file, and close the overlay source file.

These SCOPE macros write the graphics COMMON file on the most easily accessed allocable

device (usually the system disk).

If AEFILE finds that FET /FNT entries already exist for the graphics COMMON file, it opens

the file, saves the index, adds or inserts the contents of the overlay source file to the

COMMON file, then writes a new task directory containing the latest index entries.

TASK FILE MAINTENANCE

If AEFILE is used to replace a task in an existing graphics COMMON file, it performs the

action logically but not physically. This means that the old copy of the task still occupies

storage space in the file, but is not listed in the new task directory index.

For example, the file OBJECT created by the decks in Figures 2-2 and 2-5 would contain:

TASKl

TASK2

•
•
•

TASK77

Old Index

New TASKl

New Index

A file like this should be purged after several debugging or updating runs, to keep it from

wasting mass storage and becoming unwieldy. Purging is done with the A ED UMP and

AELOAD routines at a regular batch processing control point.

AEDUMP ROUTINE

AEDUMP is a system library routine that is called by a control card; it requires 15K words

of memory. AEDUMP reads the indexed random file named by the first parameter on its

control card, and writes a new sequential file with the name specified by its second control

card parameter.

2-24 44616 800 Rev. 03

The sequential file created by AEDUMP contains the index of the random file as its first

record. Although the disk addresses in the index are meaningless, the record names and

index suffix entries do not have to be altered to recreate a random file.

The other records of the sequential file are the binary text task overlay records; these

records are written in the order that they are listed in the index. Only those records from

the random file that are listed in the index are written into the new file. Unlisted records

are skipped, so that the file created from the records in the example above would contain:

New Index

New TASKl

TASK2

•
•
•

TASK77

This sequential file could then be written on tape for storage outside of the system, or it

could be used immediately to recreate a random task file - using the AELOAD routine.

AELOAD ROUTINE

AELOAD is also a system library routine, and is called by a control card. AELOAD reads

the sequential-access file named in the first parameter of its control card and creates a

random-access COMMON file with the name specified by the second control card parameter.

I

The sequential-access files used by AELOAD need not be located in mass storage; AELOAD

will call a tape driver to read the file if the programmer has supplied a valid REQUEST con­

trol card in his job deck.

The file created by AE LOAD is structured exactly the same as one produced by AEFILE.

The new task directory contains new disk addresses; the name of each task record is checked

against the sequential file index as the record is written in the new file (if the names do not

agree, a diagnostic message is produced and the job is aborted).

The AE LOAD graphics task COMMON file can be used for prograrn execution by the card

deck shown in Figure 2-8.

AELOAD requires about 15K words of memory.

GRAPHICS PROGRAM ABORTING

If an applications programmer wants to cause a program abort, he usually creates a light

button at the graphices console to call GIABRT (see Section 7). This routine displays a dayfile

and console message, and calls the SCOPE Abort routine.

44616800 Rev. 03 2-25

When a 6000 Basic Graphics Package routine finds a programming error, it produces a day­

file and console message; the program's Application Executive routine then issues the mes­

sages and calls the SCOPE Abort routine.

If the 6000 Series computer detects an error condition during program execution, it sets a

control point flag which calls the SCOPE Abort routine and produces a dayfile message.

If the 1 700 Computer detects an error condition or an illegal request, it generates IMPORT

directive code 2 3 (the 1700 operator can also generate this code with a type-in command -

see Section 9). This sends a message to the affected console and informs EXPORT to flag

the program for abortion. The Scheduler detects EXPORT's flag during the next rollin of

the program, issues a dayfile message, and calls the SCOPE Abort routine.

EXPORT removes an aborted graphics program from the Scheduler's input queue and discon­

nects any graphics consoles assigned to it.

The SCOPE Abort routine releases all of the job's files to the system and sends output files

to the 1700 if the program originated there. It will dump a core listing with the output file if

the program requests it by using a control card.

After a graphics abort, the dedicated memory assigned to the program is not released to

batch jobs as is the normal system procedure, but is retained for future graphics programs.

SCHEDULER

The Scheduler is a PPU program that is called into its peripheral processor by EXPORT

whenever necessary to provide dynamic scheduling and time-sharing for graphics jobs run­

ning at graphic control points. Graphics jobs are not queued. If a job is on console # 1,

another job for console # 1 cannot be read in until the current graphics job on that console

is aborted and detached from the console.

Initially, a graphics job enters the Interactive Graphics System as a batch job, and is

assigned to a batch-processing control point for execution (batch job scheduling is done by

SCOPE, not by the Scheduler). At some point in its execution as a batch job, the graphics

job calls the graphics reformatter (see Application Executive, Section 7).

GRAPHICS REFORMA TIER

The graphics reformatter is a Scheduler subprogram; it puts a graphics job into the graphicE

rolled out format so that the job can be scheduled at a graphics control point.

After a program's initial call to the Scheduler/reformatter, the Scheduler drops the CPU and

clears the program's EXPORT communication word at RA+76
8

. The Scheduler then rolls out

the program, its control point field, dayfile, and all of its associated File Name Table Entries

The program is then assigned an initial priority and placed in a special graphics input queue.

2-26 44616800 Rev. 03

When the program is rolled back in, the File Name Table entries are replaced to reflect the

new control point number.

SCHEDULING OF GRAPHICS CONTROL POINTS

ROLLIN PRIORITY

The execution priority of each program in the Scheduler's graphics input queue is determined

by the program's current field length and whether or not it has any unsatisfied graphics input

requests; short programs with no unsatisfied requests have the highest priorities.

LONG PROGRAMS

At the beginning of graphics operation, the 6000 operator dedicates a fixed amount of core

memory to each graphics control point. A graphics program that requires more memory

than is available at the larger control point is then forced to wait in the graphics program

input queue until the space it requires becomes available; such a program would wait only

when there are batch jobs requesting or occupying all of the available core memory.

If a graphics program is larger than either dedicated graphics control point area,but has been

rolled in, and batch jobs request more memory after it is rolled out (see time-slicing, below),

then the program may be affected adversely. It will take on the lowest priority, because

other graphics programs fit in the dedicated area and they will be scheduled ahead of the

large graphics program. After all other rolled out and new graphics programs are executed,

a storage move request is made to allow the longer program back into the computer. There­

fore, the application programmer should write programs shorter than or equal to the desig­

nated length of the dedicated area, or else suffer the consequences of longer response time.

SCHEDULER ROLLOUT STRATEGY AND TIME-SLICING

Because the amount of CPU and PPU time required by a program varies widely from task to

task and application to application, Interactive Graphics uses a form of time-slicing that al­

lows several programs to time-share a control point without destroying the console user's

real-time environment.

The Scheduler determines how long each program will remain at a graphics control point.

This length of time, called the frame time, can never be less than a guaranteed minimum

value chosen by the installation when the Scheduler is assembled.

The frame time is computed by an algorithm, using the rollin/ rollout time as the variable

that must be equalized between programs. The algorithm includes the following variables:

44616800 Rev. 01 2-27

Rfinal

I

Calculated resident time (frame time)

Minimum resident time (installation parameter)

N Current program field length (multiples of 100
8

central memory words last
rolled out)

M Maximum allowable percentage of frame time to be used for rollin/rollout

The average hardware overhead time for reading or writing data in mass storage is 60 milli­

seconds, and each transfer of 100
8

central memory words requires . 4 milliseconds; there­

fore, the Scheduler calculates that the last rollout of the program required 60+. 4N millisec­

onds.

Since the next rollin of the program will require the same amount of time, the total roll in/

rollout overhead is 120+. 8N milliseconds. Because the total overhead should not use up an

appreciable amount of the frame time, the Scheduler chooses Rf. 1 so it has one of two ina
values. If:

120+. 8N ~MI, then Rfinal = 120~· 8N

however, if:

120+. 8N < MI, then Rf. l = I. ina

This formula allows large programs to remain in core longer than small programs, since

small ones are faster to roll in and out. If the difference in program lengths is not very

great, a word in the BA TCHIO control point area can be altered so Rf.
1

is not changed after ina
every rollout but has a pre- set value ~I. The value of I assembled into the Scheduler can

also be varied through this word (the larger the value of I chosen, the more uniform each

time-slice is).

NORMAL SCHEDULING

The frame time is calculated at the graphics control point; the Scheduler determines the new

Rf.
1

for each program after every rollout. When the program is rolled back in, the
ina

Scheduler writes this Rf.
1

in the job's graphics control point area. EXPORT then monitors ina
the length of time the program resides at the control point (see Figure 2-10).

If the program's actual resident time exceeds its frame time (or if the program terminates,

asks for graphics input, or aborts), EXPORT calls the Scheduler into an idle PPU; the

Scheduler then rolls out the program, calculates a new Rf. 1 if processing is to continue, ina
and rolls in another program.

Rollout/rollin is not performed if there is only one graphics program in the system for each

graphics control point.

2-28 44616800 Rev. 01

....___ _ __,v---1

ROLLIN TIME

ACTUAL RESIDENT TIME

time available
for CPU or

PPU use

frame time

Figure 2-10. Typical Time-Slice

ROUTINE COMMUNICATION AND HOUSEKEEPING

ROL LOUT TIME

The Scheduler rolls out a program by asking SCOPE Monitor to place the CPU in recall.

Monitor is then free to turn the CPU over to another graphics control point, or if there is no

other active graphics control point, to turn the CPU over to batch jobs.

While a graphics job is running, its control point asks SCOPE for PPU and CPU service in

the normal manner; graphics control points have the highest system priority for such service

(except when the Storage move or RESPOND programs are present).

The rollin/ rollout program of the Scheduler keeps track of graphics priorities, and of where

rolled out programs are to be found in mass storage. When the program is to be rolled in

from mass storage, the Scheduler will adjust the control point field length if a storage change

occurred during the time the program was rolled out. All the rules of 6000 Series program

protection keep each program independent.

GRAPHICS CONTROL POINTS

INITlALIZA TION

The 6000 operator assigns one or two graphics control points manually, using the procedure

given in Section 9. The type-ins that he uses enter the control point numbers in a table at

the BAT CHIO control point area (BA TCHIO must be assigned first); this table identifies

which control points EXPORT must service for graphics processing.

44616800 Rev. 01 2-29

STRUClURE

Figure 2-11 shows the general structure of one graphics control point area. The uses of the

various \vords and subdivisions are described in other sections of this manual. Minimum

field length of a control point area is about 7000 octal words.

RA

RA + FL

NUMBER

SYSTEM AND GRAPHICS COMMUNICATIONS AREAS

LABELLED COMMON (IF PRESENT)

ONE OR MORE STANDARD ROUTINE FILE BUFFERS

SYSTEM (FORTRAN ERROR TRACING ROUTINE)

MAIN (APPLICATION EXECUTIVE ROUTINES),

ASSUMING NOTHING ELSE IN 0,0 OVERLAY

BLANK COMMON AREA (IF PRESENT)

SIOS (FORTRAN INPUT/OUTPUT ROUTINE)

TASK OVERLAY

IN-CORE DATA BASE (DATA HANDLER AREA)

Figure 2-11. Graphics Control Point Field

In order to best use the dedicated space available plus the idle time when graphic tasks are

being rolled in or out to mass storage, two graphics control points should be used. While

one control point is accessing the mass storage device, the other can be executing and I or

performing input and output to the graphics console.

2-30 44616800 Rev. 01

SIZE

The total dedicated graphics area should be small (on the order of 1 OK - 20K) because of the

suggested method of application programming. Each installation determines how much core

storage will be dedicated to graphics. Thus, it is possible to assign a minimum amount of

memory to a graphics control point and make each graphics program request storage when

needed. However, this may also slow down the response time at the graphics console.

FILES

All files used by a graphics program must be attached to it by the programmer, using stan­

dard SCOPE control cards. A maximum of eight files per program can be handled by the

Scheduler. This number includes all local scratch files, the job's graphics COMMON file,

the overlay source file named in the zero-level overlay card parameter field, and all Data

Handler files (see Section 7).

Once a file is attached to a graphics program, the file is not available to other programs.

GRAPHICS COMMON FILE

The file created by the AEFILE and AELOAD routines is a graphics COMMON file.

Until there are permanent files in the graphics SCOPE system, COMMON file names will

have to be unique for each user. Using the last two digits of the file name to designate a user

graphics console would eliminate possible duplications.

LOCAL FILES

All files that are local are rolled out with a program, so that either graphics control point

can be used (if available).

INPUT FILES

Tape and card files other than the FORTRAN input file must be put in mass storage before

being used by a graphics program. These files are read in and made COMMON with names

different from that of the graphics task COMl\/ION file.

OUTPUT FILES

All tape output is through a disk file. After a graphics job completes, a SCOPE utility pro­

gram can be used to transfer the data to magnetic tape.

44616800 Rev. 01 2-31

EXPORT/IMPORT AND DATA COMMUNICATION 3

INTRODUOION

The EXPORT /IMPORT package is the set of routines on which all intercomputer communica­

tions of the Interactive Graphics System are based. Besides being a functional communica­

tions package, EXPORT /IMPORT has the advantage of allowing both graphics and non-graph­

ics remote jobs to enter the 6000 Series computer job queue.

The communications scheme of EXPORT /IMPORT is excellent for graphics requirements.

The EXPORT program optimizes the use of the intercomputer communications ~line by using

an asynchronous method of communicating with the 1700, and by allowing variable length data

transfers from IMPORT. In addition, EXPORT informs the 1 700 Computer of the optimum

time to send specific classes of data buffers. This tends to synchronize the lengths of trans­

fers.

The EXPORT /IMPORT package also contains an error recovery routine which handles such

errors as transmiss"ion noise bursts and sequence errors (produced when one of the com­

puters fails to receive a complete buffer). All errors that are detected by the hardware

are recovered by EXPORT /IMPORT; the error detection ability is very close to 100 percent.

Special features of SCOPE aid these two programs in the processing of remote jobs.

EXPORT

EXPORT (Executive Processor of Remote Tasks) resides in one 6000 Peripheral Processor

Unit (PPU), assigned to remote communication by central computer.

EXPORT consists of a resident program with several overlays. The resident program

handles communications and the processing of data; the overlays perform housekeeping.

In addition, one complementing SCOPE system overlay, 2TJ, which performs job card trans­

lation, is called as needed to assist in the processing preparation.

INITIALIZATION

When BAT CHIO is assigned to a control point, its initialization routine requests enough cen­

tral memory storage for the EXPORT counter area. Then, whenever a 1 700 commu­

nication line becomes active, BATCHIO automatically loads the EXPORT resident program

into an idle PPU.

44616800 Rev. 01 3-1

PROCESSING CONTROL

Processing accomplished by EXPORT is controlled by the EXPORT PPU resident program.

The resident program remains in PPU memory until all communication lines become inactive.

The main program loop cycles between several activities in the resident routine and the

functions performed by the specific central memory overlays. These activities include:

• Handling all communications with IMPORT

• Processing all directives requesting output data

• Processing card data directives

• Processing special request directives

• Scanning for new output files

• Making all CIO requests or stack entries

• Handling file manipulation requests

• Monitoring actual resident time for a program at a graphics control point

• Calling the Scheduler

• Processing input and output requests for graphics data

EXPORT employs the Circular Input/Output package (CIO), the Stack Processors and the

Close Files routine (CLO) to aid in performing its tasks. Using data received from IMPORT,

EXPORT prepares input files for processing under SCOPE and then intercepts output files for

return transmission to the remote terminal. Direct central operator communication with

the remote site is accomplished through the 6612 System Display Console of the 6000 Series

computer.

COMMUNICATION CONTROL

Although IMPORT initiates communication with the 6000, EXPORT controls all data commu­

nication operations. The 1700 terminal has a buffered data channel dedicated to the hard­

ware interface so that information from the 6000 can be received at any time, even when

other input/output or IMPORT processing operations are in progress. EXPORT, however,

accepts data only at specific time intervals because the 6000 does not have a hardware buffer

large enough for an entire transfer.

EXPORT requests data for the central computer by entering an output/ input routine, which

transmits a status word to all active terminals. While in this routine, EXPORT expects to

receive a directive word from each active terminal. Total time required for one output/input

operation is dependent on the terminal which has the longest transfer length for the given

operation (see Figure 3-1).

3-2 44616800 Rev. 01

EXPORT sequentially services up to four IMPORT terminals. If one of the active terminals

fails to transmit, EXPORT attempts automatic recovery of communication; if immediate

action fails to maintain communication, EXPORT considers the terminal inactive and requires

it to re-initiate communications.

EXPORT

IMPORT
0

IMPORT
I

IMPORT
2

IMPORT
3

I-_ TIME VARIES WITH SYSTEM------. TIME PERIOD DEPENDENT ON LONGEST DATA TRANSFER.s.....__J r AND REMOTE ACTIVITY --- I

EXPORT HOUSEKEEPING-~l+-EXPORT IN OUTPUT/INPUT ROUTINE FOR ALL TERMINALS

TIME REQUIRED FOR REMOTE
TO INITIATE TRANSMIT OPER.

RECEIVE AND INPUT BUFFER ACTIVE r JW.:A'~Tis --i
r--(CARD DATA) I

__, r- 2 TRANSMIT WORDS

RECEIVE AND I BA \ 11 /
..................... ~~~~~~~~-,VVVVVVVVVVVVVVV~~-.-RE-C-El-VE~~~-.~, A

• 322 WORDS JI

r-M·::~~~-,

rr\~I
RECEIVE AND IBA

RECEIVE 2 WORDS_J ~
-1 f4-TRANSMIT 2 WORDS

RECEIVE AND IBA \ 11 I ~~....__ __ vrW
_J l RECEIVE 2 WORDS (NOP)

(NOP)

Figure 3-1. Conditions Present During One EXPORT Service Cycle

EXPORT SERVICING CYCLE

Although all 1700 terminals possess the same line speed, not all transfers require the same

amount of time because of differences in transfer lengths. The EXPORT hardware and soft­

ware compensate for these variations by transmitting to one terminal while receiving from

another during each terminal servicing cycle.

The user can expect the best performance of EXPORT when all transfers are of the same

length.

Figure 3-1 illustrates one set of possible terminal conditions which may exist during one

EXPORT servicing cycle.

44616800 Rev. 01 3-3

EXPORT COUNTERS

Space has been allocated in central memory to maintain information needed for execution of

EXPORT I IMPORT. Beginning at the BA TCHIO control point, RA, four central memory

words are reserved for each connected terminal; these contain the first two words of the

current transfer to the 1700, the first two of the current transfer from the 1700, and the

number of sync errors for this terminal. The counters are cleared only when EXPORT is

dropped from the BATCHIO control point. Figure 3-2 is an illustration of this area.

12
CP + 0

} DIR
1700 ZERO

CP +4

1 DIR
1700 ONE

)

CP - CONTROL POINT ADDRESS

- TRANSFER LENGTH f'ROM CURRENT EXPORT STATUS TRANSFER

- STATUS WORD FROM CURRENT EXPORT STATUS TRANSFER

FW - TRANSFER LENGTH FROM CURRENT IMPORT DIRECTIVE TRANSFER

DIR - DIRECTIVE FROM CURRENT DIRECTIVE TRANSFER

- 24 -BIT TERMINAL TOTAL l/O PASSES COUNTER

- ACTUAL STATUS FROM DSC IF ERROR DETECTED IN STATUS WORD

- 12 - BIT TOTAL CYCLIC ERROR COUNTER

SE - 12 - BIT TOTAL SYNC ERROR COUNTER

- I 2 -BIT TOTAL RETRANSMISSION COUNTER

Figure 3-2. EXPORT Counters

DATA TRANSFER

When EXPORT and IMPORT are not actively communicating, an idle bit pattern continually

flows between the data set controller at the central site and the data set controller at the

remote site. Accompanying this data transfer is a sync word issued by the transmitting

controller.

3-4 44616800 Rev. 01

The receiving controller automatically acknowledges the sync word while the idle bit pattern

is being received; any other type of data transfer would occur after sync word acknowledge­

ment.

At the end of each data transmission, the controller generates and transmits a 12-bit cyclic

code word - which is appended to the transferred data. When the complete data block is

received, the receiving controller checks the cyclic code word against one it has generated.

If they do not agree, the receiving controller sets the cyclic code-error status bit.

RULES

Transfers of data between the 6000 Series computer and the 1 700 terminal include an ex­

change of control information in a fixed format. EXPORT sends information to IMPORT in

a 12-bit status word specifying the types of data that EXPORT is prepared to handle. A 12-bit

directive is returned to EXPORT, selecting one or more of the options offered to IMPORT

in the status word, or making a special request. Appropriate data may accompany the

status word or the directive word.

Non-graphics data included with a status word transfer must always correspond to the latest

directive received; the data in a directive transfer will always be of the type indicated in the

accompanying directive word.

EXPORT TRANSFER FORMATS

All data, except message and idle transfers, is sent in sector blocks.

EXPORT sends graphics data in the format shown in Figure 3-3. If there is no graphics

data available, EXPORT sends only the transfer length and status header words to IMPORT.

If data is sent to the 1 700, it is transferred in a block with a fixed length of 322 12-bit words;

i.e., 320 words of data (the EXPORT output buffer) and the two communication header words.

The communication header words in a graphics data transfer are similar to those of a non­

graphics transfer. The transfer length word tells IMPORT how many words of the fixed

block contain valid information; this length does not include the hardware-generated cyclic

code word.

44616800 Rev. 01 3-5

r- - - - - CALL POINTERS

r- FLAGS

I
I

EXPORT TRANSFER LENGTH

EXPORT STATUS WORD

---+ CALL NCON

PARAMETER LIST

---+ CALL NCON

EXPORT
PARAMETER LIST TRANSF"ER

LENGTH

---+ CALL NCON

PARAMETER LIST

---+ CALL NCON

PARAMETER LIST

322

Figure 3-3. EXPORT Graphics Transfer Buffer

3-6 44616800 Rev. 01

Table 3-1 illustrates the meanings for the status word in both graphics and non-graphics

transfers.

GRAPHICS DAT A

TABLE 3-1. STATUS WORD CODES

Bit

11

10

9

8

7

6

5

:}
2

1

Assignment':'

Card reader buffer empty

Output data stream 1 is available -.­

Output data stream 2 is available':"·'

Typewriter message available

Central display message buffer empty

JOB card error

Last output buffer

Used to indicate special conditions of

output data

Output data stream 3 is available':'>:,

Output data stream 4 is available':,>:,

>:'Not all of the status bits are used in every system,
but they are designated and reserved in order to re­
tain systems compatibility.

>:<>:<Graphics data is assigned to one of the data streams
by the installation.

Application program requests for output from a graphics console and output to a console are

queued at the BA TCHIO control point (see Section 2). If such requests arrive before EXPORT

transfers previous requests to the 1700, they are stacked until the maximum length of the

EXPORT graphics buffer is reached. The 6000 Basic Graphics Package routines perform

the program buffer setup for the actual input and output to the EXPORT graphics buffer area

(see Section 7).

EXPORT continually asks the 1 700 for graphics input data, but the 1 700 will not release any

of this data until the application program specifically requests it. Thus, data can never orig­

inate at the graphics console and reach the 6000 Series computer without the knowledge of the

application program.

EXPORT periodically scans RA+76
8

of each graphics control point for a data transfer"re­

quest. There are four such calls (see following page), each formatted by the 6000 Basic

Graphics Package routines and placed in the application program's EXPORT communication

word at RA+76 8 .

44616800 Rev. 01 3-7

EXPORT checks the console number specified in each of these four requests against the

numbers of those consoles which are assigned to the program making the request. If the

console designated is illegal, the job is aborted with an appropriate message in the Dayfile.

When EXPORT finds a request call with a valid console number at RA+76
8

, it performs the

function and clears RA+76
8

to notify the application program that it has completed the

request.

REQUEST TO ATTACH CONSOLE

The format for this request is:

59 53 0

xx

xx Console number NCON in octal (see GICNJB, Section 7)

REQUEST TO DETACH CONSOLE

The format for this request is:

59 53 47 0

xx I 00001 I

xx Graphics console number NCON in octal (see GICNRL, Section 7)

REQUEST TO OUTPUT DAT A

The format for this request is:

59 53 41 35 17 0

output address
xx word of output

count buffer

xx GraphiC s console number NCON in octal

The application program uses this call to request that data from its IBUF buffer be sent to

the graphics console. The application program will go into recall when this call is issued;

EXPORT recalls the CPU after the data transfer is completed.

The EXPORT program transfers the data block (starting at the designated address and con­

tinuing for the number of words indicated by the word count) to the EXPORT graphics output

buffer, and to the 1 700 when it requests graphics data. The console number in the format

tells EXPORT which 1700 should receive the data.

3-8 44616800 Rev. 01

REQUEST FOR INPUT

The format for this request is:

59 53 47 41 35 17 0

xx Input Output Input Output Re-
Word Word Address quest Buffer
Count Count Address

xx Graphics console number NCON in octal

This call to EXPORT generates a request to the 1 700 for those light buttons and legal picks

that the program is concerned with. When a request for input is sensed by EXPORT, the

output request buffer is put in the EXPORT output area and the application program is put

into a recall state, subject to being rolled out if another graphics program is ready to be

rolled in.

When the input from the graphics console is received at the 6000 Series computer, the appli­

cation program is reactivated, its input buffer is filled, and it is notified that it has the re­

quested input. If the program is rolled out, the input request will still be associated with

the program; EXPORT does not have to store the input buffer addresses, since they are at

RA+768 .

BUFFER PASSING

The data stream is the flow of a file or buffer of data from one computer to another. Input

and output, as defined below, arc used separately to refer to all data transmissions between

the remote terminal and the central site.

The two types of data streams are:

• Output data stream - the data flow from the central computer to the remote computer.

• Input data stream - the data flow from the remote computer to the central computer.

Each data stream is reserved by the installation for the use of a specific input or output

device.

CHARACTER SET

The EXPORT program processes all teletypewriter, card (except binary), and line printer

data in 6-bit display code using the standard SCOPE character set (Appendix C). Two display­

coded characters are packed into one 12-bit PPU word. Before transmission, IMPORT con­

verts card reader and teletypewriter input to display codes. IMPORT formats input data

according to SCOPE system requirements. Printer, punch, and teletypewriter data are con­

verted from display code to ASCII code for output to the peripheral equipment. Output data is

44616800 Rev. 01 3-9

received in the same manner as it is generated within the SCOPE system prior to output.

Binary information is accepted in either of the following formats and is transmitted to

EXPORT as column binary card images:

• 80 columns of free-form binary

• 6000 Normal mode binary

FILE PROCESSING

At the 6000 Series computer, files associated with jobs entered remotely are identified by the

remote bit (the highest-order bit) of the 12-bit disposition code and the fifth character of the

file name in the FNT /FST. The remote bit in the second byte of the third word of the FNT I
FST is normally not interpreted until the job has been completely processed. EXPORT is

responsible for disposing of all output files when the remote bit is set. Consequently, SCOPE

ignores these files. Remaining bits of the disposition code field identify the type of output file.

The fifth character of the file name contains the terminal identification. In all other consid­

erations, the job is processed the same as a nonremote job.

TERMINATION

Each terminal notifies EXPORT when communication is finished. When all lines become in­

active, EXPORT enters PP RECALL.

JOB FLOW

The steps listed below illustrate the flow of data and control from the beginning to the end of

a job in one terminal system.

INITIALIZATION

Remote operation:

• Loads IMPORT program

• Sets up to read cards

INPUT FROM CARDS

•
•

•

•

3-10

IMPORT reads cards

IMPORT converts Hollerith card data to display code and inputs 6000 formatted or
free-form binary card data

IMPORT packs data into buffers equal in size to one disk sector (64 central memory
words)

IMPORT transmits to EXPORT full data buffers with EOR and record level, or data
buffers with EOF

44616800 Rev. 01

• EXPORT inputs data and writes it to central memory buffers

• EXPORT requests SCOPE to write data from buffers to disk

• At EOF, the file is set to type INPUT and released to SCOPE for processing

INPUT FROM GRAPHICS CONSOLE

• IMPORT detects a 1700 Basic Graphics Package processing flag, and calls the
Buffer Translator

• The Buffer Translator repacks the queued information

• IMPORT reads the packed information into its data buffer and transmits the buffer

e EXPORT writes the data into the program's central memory buffers

OUTPUT TO GRAPHICS CONSOLE

• EXPORT scans RA+76 8 of the graphics control point and interprets any requests
found there

• EXPORT packs program buffers into its output data buffer

• EXPORT transmits the buffer to IMPORT

• IMPORT calls the Buffer Translator

• The Buffer Translator repacks the data

• The 1 700 Basic Graphics Package acts on the data

.OUTPUT TO PRINTER AND PUNCH

• EXPORT scans the File Name Table /File Status Table for remote files of type
OUTPUT. Output files are returned on a highest-priority and lowest SCOPE
sequence number basis. Sequence numbers are used only when priorities are
identical. (The standard SCOPE 3. 1 header pages are provided on output.)

• EXPORT disposes of punch card data in the manner indicated in the Equipment
Status Table entry for EXPORT. Disposition of data is handled in one of three
ways:

a. Data may be punched at the remote site when equipment is available.

b. Data may be punched at the central site in the event the ren10te site does
not have a card punch.

c. Punch data may be dropped completely.

• EXPORT transmits output to IM PORT in one- sector blocks.

• IMPORT converts output data to the proper code.

44616800 Rev. 01 3-11

• IMPORT deblocks print lines.

• IMPORT prints output in lines with carriage controls.

• IMPORT recognizes the Print mode control character (see Section 9).

ERROR DETECTION SCHEME

If, during transmission, data received does not correspond bit-for-bit with the data sent, an

error has occurred. Following are descriptions of several error types and conditions along

with methods of error detection. (Only errors in the communication facility are considered

here.)

• Message Lost Completely - The leading sync words may be lost or mutilated so that
the entire message is passed over as noise on the line.

• Message Garbled - Lightning, electrical disturbances, and random noise may intro­
duce errors on the communications line or between a modem and the Data Set
Controller (DSC).

• Bit Lost - Inaccurate timing in the modem may cause the entire message to be shifted
forward by one bit.

• Microwave Transmitter Switching - All or part of a message may be lost while micro­
\Vave transmitters are S\vitched.

DETECTION PROCEDURE AND CAPABILITIES

The 6673 or 6674 DSC and the 1747 DSC hardware provide the primary error detection capa­

bility in the form of a 12-bit cyclic code encoder. The transmitting data set controller con­

tinuously and automatically generates a 12-bit cyclic code word that is appended to the trans­

mission. Similarly, the receiving DSC generates a 12-bit word which is compared to the

last word received. The transmission is assumed to be correct as received if the two cyclic

code words are identical.

In some situations, detection of a transmission error occurs apart from the cyclic code

check. This happens when analysis of the control data received shows an impossible condi­

tion, as an invalid transfer length. In these cases, the transmission is treated as if a cyclic

code error has been detected.

EXPORT /IMPORT has the following capabilities in cyclic code error detection:

• Any odd number of errors

• All error bursts 12 bits or less in length

• 99. 95 percent of all error bursts 13 bits long

• 99. 98 percent of all error bursts longer than 13 bits

3-12 44616800 Rev. 01

An error burst is defined as any pattern of errors whose length is the number of bits between

the first and last errors of the transmission. (See Appendix G.)

ERROR COMPENSATION

An error recovery scheme provides a means of recovering from a sync word error. In the

event both computers are in the Transmit mode, the remote computer is placed in the Receive

mode when it has attempted to transmit 120 times without receiving a sync word acknowledge­

ment.

If for any reason the communication line goes down between transfers, the DSC' s will detect

and inform the affected computers of the malfunction. If communications go down, EXPORT

and IMPORT also output messages to their respective operators notifying them of malfunc­

tions.

If either computer goes down before or during an input or output operation, the other com­

puter detects this condition and informs its operator of the malfunction. For example, when

a computer goes down while transmitting, the receiving computer inputs idle characters for

the remainder of the transfer. Then, at the conclusion of the input, the cyclic code indicates

that a malfunction has occurred. Further attempts to retransmit will not fault the sending

computer, but the receiving computer continues to detect the down or off-line condition of the

other computer.

IMPORT

IMPORT (Input/Output Monitor for Processing of Remote Tasks) acts as a system monitor

program for the 1 700 Computer. It interprets all input I output requests made to the 1 700 and

calls those parts of the 1 700 Basic Graphics Package needed to service the application pro­

grams running in the 6000 Series computer.

IMPORT consists of a series of processing routines, subroutines, and related operating sys­

tem routines. The major processing routines are:

• Main status loop

• Communications active check

• Line printer data conversion

• Card reader data conversion

• Teletypewriter data conversion

• Card punch data conversion

• Interrupt processing

• Determine directive code

44616800 Rev. 01 3-13

ROUTINES

MAIN ST A TUS LOOP

The main status loop of IMPORT enters each of the major routines in sequence, executing

those routines from which particular functions are currently required. The Interrupt Pro­

cessing routine is entered automatically whenever the 1 700 computer senses a controller

interrupt.

The IMPORT program will recognize graphics data from both the 1700 and the 6000 Series

computer. The main status loop of the program checks to see if data is available for the

typewriter, card punch, card reader, printer, and graphics buffers. There are double­

buffered output buffers for Interactive Graphics use; these are loaded by drivers contained

in IMPORT.

COMMUNICATIONS ACTIVE CHECK

IMPORT designates to the Communications Active Check routine the following duties:

• Checkinc,, for .._,emote site shut down

• Determini11g if data is still being received

• Checking expiration of allowed input time

LINE PRINTER DAT A CONVERSION

The Line Printer routine is responsible for:

• Converting data from display code to ASCII and placing it in the printer buffer

CARD READER DATA CONVERSION

The activities of the Card Reader routine include:

• Acquiring card reader status

• Processing the job card

• Processing Hollerith, binary, EOR, and EOF cards

• Converting card image to display code

3-14 44616800 Rev. 01

TELETYPEWRITER DAT A CONVERSION

The teletypewriter routine responsibilities include:

• Controlling input and output with the remote operator

• Checking for manual interrupt by the operator

• Checking for error stack entries

• Checking for message(s) from the central computer

• Initiating appropriate display messages to the 6000

CARD PUNCH DATA CONVERSION

This routine is responsible for:

• Converting data from display code to ASCII and placing it in the punch buffer

INTERRUPT PROCESSING

When the 1 700 Computer recognizes a DSC interrupt, an Interrupt Processing routine within

the system is entered. After this routine saves the registers, control is transferred to the

proper routine within IMPORT for processing. Interrupts are disabled for a brief period

while the DSC is being serviced.

When a graphics console entry produces a 1 705 Controller interrupt, control of the 1700 is

turned over to the 1 700 Basic Graphics Package Digigraphics Interrupt Processor.

Input from the communications line is initiated immediately after the output is complete by

placing the DSC into Receive mode. When the interrupt processing routine is entered, a

cyclic code error check is made, and the output routine is initiated (if necessary) to retrans­

mit the data.

Output to EXPORT is similar for both a normal request and a retransmission. After acquir­

ing DSC status, the Transmit mode is selected, and the output is initiated. If no retrans­

mission is required, the following routine is entered prior to the next transmit operation.

DETERMINE DIRECTIVE CODE

The Directive Code routine's activities consist of:

• Examining last directive to determine if data was requested or sent

• Setting pertinent flags to indicate a course of action to the IMPORT data conversion
routine

• Determining next directive

44616800 Rev. 01 3-15

GRAPHICS DA TA TRANSFERS

Unlike the normal mechanics of an EXPORT /IMPORT data transfer, there is no status bit for

each graphics console. Instead, there is a status bit in one output stream for all graphics

consoles, so that it is possible to turn off output from the consoles as a group, but not indi­

vidually.

Unlike the data transfers from EXPORT, data transfers from IMPORT can be of variable

length; the smallest transfer is two words.

The amount of data, the data itself, and information about the disposition of the data are

passed from IMPORT to EXPORT using the format shown in Figure 3-4.

• Transfer Length (one 12-bit word)

• Directive Word Code (one 12-bit word)

• Up to 320 12-bit words of data

r­

' I

CALL POINTERS

FLAGS

IMPORT TRANSFER LENGTH

IMPORT DIRECTIVE WORD

---+ CALL NCON

BUTTON

PARAMETER LIST

---+ CALL NCON

SINGLE PICK

PARAMETER LIST

---+ CALL

STRING PICK

PARAMETER LIST

L_~ CALL

ALPHANUMERIC PICK

PARAMETER LIST

IMPORT
TRANSFER

LENGTH

Figure 3-4. Sample IMPORT Graphics Transfer Buffer

3-16 44616800 Rev. 01

IMPORT DIRECTIVE CODES

A summary of the directive word codes, with an abbreviated description indicating the mean­

ing of each, is given in Table 3-2. Not all of the directive codes are used by every system,

but they are designated and reserved in order to retain systems compatibility.

Directive codes in which the lower five bits equal 02, 07, 10, or 42 may take the form of

xx02, xx07, etc. to form a double directive indicating that the remote terminal is sending

input data and expects output data returned by the next transmission from the 6000 Series

computer. The xx is the directive word code that is to apply to the returned data.

TABLE 3-2.

Directiv:+;c \ Accompanying
Code Data

0001 None

0002 Packed card data

0102

0142

0202

0003

0004

0005

0404

0405

0006

0007

0010

0011

0012

0013

0014

0015

0016

44616800 Rev. 01

Card data
(optional)

EOR level; Card
data (optional)

Card data
(optional)

Job Name

None

None

None

None

None

Message

Graphics Data

Job Name

Job Name
Priority

n,x

None

Job Name

dt,x

Time

DIRECTIVE WORD CODES

Description of Instruction

No operation

Load card buffer

Load card buffer with End-of-Record
(EOR)

Load card buffer with EOR and EOR level

Load card buffer with End-of-File
(EOF)

Request for job status

Send output data stream 1

Send output data stream 2

Send output data stream 3

Send output data stream 4

Send message(s)

Load remote to central message

Load graphics data

Change time limit of named job to the
time supplied

Change the priority of the named job to
the priority supplied

If n=O, rewind current file of output stream
x. If nfO, backspace n sectors on output
stream x. If x=2 or 3, the output stream is
2 or 3; any other value of x implies output
stream 1.

Repunc h the current job

Abort the job if it is at control point

If dt=LP, terminate output 1
If dt=CP, terminate output 2
If dt=O, terminate output x

3-17

TABLE 3-2. (Cont'd)

Directive 1 Accompanying
Code Data Description of Instruction

0017 None Shut down remote, rewind any files being
output

0020 Disposition Word 1 = disposition of output data stream 1
codes (8 words) Word 2 = disposition of output data stream 2

Word 3 = disposition of output data stream 3
Word 4 = disposition of output data stream 4
If word 8 = 10

8
, divert all files to central

site
If dt=LP, divert line printer file to central
computer
If dt=CP, divert card punch file to central
computer
If dt=5555

8
, divert all output to central computer

(dt=LP or CP are valid only if the named
joh is in the output stack.)

0022 Reserved

0023 Console Abort the graphics job whether it is in mass
number storage or at a control point

3-18 44616800 Rev. 03

GRAPHICS HARDWARE INFORMATION 4

Proper use of the 6000 Basic Graphics Package routines by the applications programmer

requires a general knowledge of the graphics hardware. This section describes those system

characteristics which are used by the 6000 Series Interactive Graphics System applications

interface routines.

GENERAL DESCRIPTION

The graphics system provides an interface for the handling of graphic or alphanumeric infor­

mation; entries or modifications made at the console are placed into the 1 700 Computer in

digital form, and become available for use by the 6000 Series computer system. This graph­

ics input becomes visible on the cathode ray tube and can be used for information processing

by an applications program under console operator control. Results of such processing can

be immediately displayed on the screen. Static display of graphic and alphanumeric data at

the consoles is provided by buffer memories, so that the consoles are essentially off-line

devices. The 1 700 is used to process display-change information, thus saving transfer time

from the 6000 Series computer.

GRAPHICS CONSOLE

The graphics console is the input I output and control center for the Interactive Graphics user.

The complete range of system graphics capability can be controlled from the console without

recourse to other points of control. The console is designed for maximum operator utiliza­

tion and comfort, and can be used efficiently at normal room light levels.

The console cabinet is a desk-size unit which mounts a rectangular housing assembly, off­

centered to the left, and provides a writing surface to the right. The housing assembly con­

tains a magnetic shield and a 20-inch diameter cathode ray tube centered on the front panel

housing.

The cathode tube is a precision, 52-degree, high-resolution unit and has a nearly flat display

surface to minimize parallax error. The tube is equipped with an implosion shield for the

protection of the operator, and is coated with a two-layer P-7 phosphor. One layer produces

blue-violet light with a short persistence to facilitate light-pen tracking. The other layer

produces yellow-green light, and has a longer persistence to eliminate flicker. With a con­

tinuously refreshed display, the light from both phosphor components combines to appear

light blue to the human eye. The deflection yoke and driving circuitry of the console are

designed to make the entire 314 square inches of cathode ray tube surface available for dis­

play. The tube has a resolution of 1000 lines in 20 inches.

44616800 Rev. 01 4-1

Data can be entered on the cathode ray tube via the light-pen or one of three optional keyboards.

CONTROLS

The controls available to the console operator include the keyboards, light-pen, light regis­

ters, and light buttons. The light registers and light buttons are defined by the application

program and formed for display on the screen by the 1700 Basic Graphics Package routines.

FUNCTION KEYBOARD

The 16-key function keyboard can be used to tell the application program that an operation is

requested (see Figure 4-1).

00088 0
I 88G8
I lGGGGGj 8 I

I

l'. u
Figure 4-1. Function Keyboard

Fourteen buttons contain a snap-action switch that remains on after an initial press, and off

after being pressed again. The remaining buttons must be held down to give an "on" status,

Each button has an internal light that shows the operator when the button is on. Removable

plastic cards may be placed over the keys to label the function of each. All keys can be

given new functional assignments by the application program through the 6000 Basic Graphics

Package.

Any change in the status of a key produces an interrupt at the 1 744 Controller. The 1700

Basic Graphics Package then fetches the on/ off status of all 16 keys as bits in a status word.

These status bits are placed in the IH and IV coordinate locations of a display item ID block

(see Section 6) created for the keyboard by the application program through a call to the

GIKYBD routine of the 6000 Package. Table 4-1 shows the relation between the coordinate

bits and the keys; a 1 in a coordinate bit indicates that the button is on.

4-2 44 616800 Hev. 01

TABLE 4-1. FUNCTION KEYBOARD STATUS IN IH, IV

Coordinate Bit Keyboard Button

,..- 0 1
1 2
2 3
3 4
4 5

IV
5 6
6 7
7 8
8 g
g 10

10 11
....... 11 12

H
13

IH
14
15
16

The application program retrieves the ID block through the Application Executive, GIFID,

GIFSID, GIBUT, or AELBUT routines of the 6000 Package, and then determines the function

requested by testing the values of the coordinates

ALPHANUMERIC KEYBOARD

The alphanumeric keyboard (see Figure 4-2) provides typewriter-like symbolic input to the

application program. The keyboard layout is similar to that of a conventional teletypewriter.

Each key causes an interrupt at the 1744 Controller, and enters an 8-bit ASCII character

code in the left-hand portion of a status word that is fetched by the 1700 Package. The char­

acters are collected into line images and displayed on the 274 Console screen in the currently

defined light register.

** $ O/o 8 () * 2 3 4 5 6 7 8 9 0

LINE RE-
FEED TURN

X OFF
A s J

t < > ?
SHIFT z x c v B N M i SHIFT

SPACE BAR

Figure 4-2. Alphanumeric Keyboard

44616800 Rev. 01 4-3

The application program can acquire the console' s input through calls to the 6000 Package

GIANS and GIANE. If the Package GIEOM routine has been used to assign an ID block to a

particular keyhoard character, that character will clear the register when it is entered.

NUMERIC KEYBOARD

The numeric keyboard is used in the same manner as the alphanumeric board.

LIGHT PEN

The light pen has two functions: tracking, and picking. Tracking may be used to place a

light source (the tracking cross) at any desired position on the console screen so that a

graphic entity may be created there, or to designate that position as an area of interest to

the user. Picking may be used to select an entity currently being displayed, or to define

points on a displayed entity, and to select a light button or tracking cross.

LIGHT REGISTERS

The light registers allow the user to input and retrieve alphanumeric information, and per­

mit the Interactive Graphics System to display error diagnostic messages. The number and

locations of the registers are lefined by the application program through 6000 Basic Graphics

Package GUAN calls. If none have been defined, the System defines its own at the center of

the screen (for error messages); otherwise, the last one defined by the program is used for

System messages.

LIGHT BUTTONS

The light buttons are light spots on the console screen that are identified by a letter, digit.

symbol, or instruction code specified by the application program. Any displayed entity or

physical control key can also be defined as a light button. Buttons are used to control ID

block queueing (see Section 6) and to initiate tasks.

DISPLAY PRESENTATION

The entire 20-inch diameter cathode ray tube screen can be used for display presentation.

Points on the screen are addressed by a Cartesian coordinate system called the display grid.

DISPLAY GRID

The display grid (see Figure 4-3) consists of 4095 addressable points on the horizontal (H)

axis, and 4095 addressable points on the vertical (V) axis; coordinates can be given either

octally or decimally when addressing a point. Coordinate 7777
8

equals coordinate 0000 on

both axes.

4-4 44616800 Rev. 01

lL
j_

f

0
0
<t
on

v

0
0
0
<D

-----H

g 8
<t 0
ID ,.._

0
0
<t ,.._

l"-0 0 0
l"-0 0 0
,.._ 0 <t 0
l"-0 0

0
0
!

0
0
0
N

0
0
<t
N

0 0
0 0
0 <t
ft) ft)

3777

3400

3000

2400

2000

1400

1000

\
0400

-J..~+---+---!~-+---!~+---+~+---+~+---t~+--+~t--+---1t-~999

7400

EDGE OF-1 j_ 7000

SCREEN ._l--'"~--+--+----+-+--+--1--+----,~-t-------t-----t-r------r---r--_J_-t],7-r-l~
_J 6000

1---~+-~---t~-+----t~+--+~-t--+~-t---t~-t----r~ylL~r--, 5400

~ L__

6400

5000

4400

4000

Figure 4-3. Display Grid System

I
v

j

The grid is larger than the screen so that all points on the screen can be addressed; points

beyond the edge of the screen can be addressed by a programmer, but are invisible to a

user directly in front of the screen (if viewed at an angle, such points can be seen reflected

off the side of the tube). There are 200 grid points per linear inch; however, because the

cathode beam is wider than the distance between adjacent points, the console controller

drops the least significant bit from each coordinate address of a point. Note: The console

controller may vary a plus or minus five DGUs depending on the C. E. 's set adjustments.

SCREEN ORGANIZATION

The organization of the screen is completely up to the programmer. However, certain

conventions may be used for a wide variety of applications. These conventions allow a pro­

grammer to make maximum use of the screen area, yet help him avoid addressing grid

coordinates off the screen.

44616800 Rev. 03 4-5

WORKING SURFACE

One convention is to divide the screen into a working surface and a control surface. The

working surface is reserved for the display of graphic forms, and is contained within an

undisplayed frame or frames defined by the programmer (see GULINE and GUARC, Section 7).

CONTROL SURFACE

The control surface is defined as the area outside of the frame or frames, and is normally

reserved for light buttons, light registers, and the tracking cross (when it is not in use on

the working surface). Figure 4-4 shows a sample of one type of screen organization.

4-6

WORKING SURFACE----------

•TAN

•SQRT

LIGHT BUTTONS--_.

+

TRACKING CROSS------_.

LIGHT REGISTER----------~

Figure 4-4. Sample Display Surface Organization

44616800 Rev. 01

FRAMES

Table 4-2 defines possible frames within the screen area of the display grid.

Several frames may exist on the screen at the same time; they may overlap, or each figure

may have its own frame. The system software defines all frames as right rectangular

areas, and frames may be centered anywhere on the screen.

TABLE 4-2. SAMPLE FRAMES

Frame Size Center Coordinates Right Corner Coordinates

Maximum square, IHCEN = OOOOB IHCOR = 2570B 1434
14 by 14 inches IVCEN = OOOOB IVCOR = 2570B 1434

Horizontal rectangle, IHCEN = OOOOB IHCOR = 3244B 1741
11 by 1 7 inches IVCEN = OOOOB IVCOR = 2114B 1126

Vertical rectangle, IHCEN = OOOOB IHCOR = 2114B 1126
1 7 by 11 inches IVCEN = OOOOB IVCOR = 3244B 1 741

POTENTIAL PHOSPHOR DAMAGE

It is possible for programming errors to cause endlessly repeated or excessively intense

display of an item at the same location on the screen. This may cause damage to the cathode

ray tube phosphor. When one of these conditions is detected by the console operator at pro­

gram debugging time, the console must be turned off immediately by use of the console

power switch above and to the right of the screen. Console power status does not affect the

operation of the computer or of the Interactive Graphics System.

17 44 DIGIGRAPHICS CONTROLLER

The controller uses a standard 1 700 memory module (1 708) of 4096 16-bit words for a buffer

memory, with an option for an additional 4096 words. A 1 700 programmer may use the

buffer memory as a display buffer or as an auxilliary 1 700 Computer storage device.

As a display buffer, only bits 00 through 12 (with the exception of function and status codes)

contain meaningful data. As an auxilliary random access storage device, all 16 bits can be

used.

REGISTERS

The controller's 13-bit S register is used to address the memory module(s) and select the

locations which are to be read or written; its contents can be incremented by one or jumped

to a new value. Thirteen bits are required to add1 ess all 8192 memory locations.

44616800 Rev. 03 4-7

The P register is also a 13-bit register. Its function is to maintain the address of a pro­

gram within a main program. This register can also be incremented by one or jumped to a

new value.

The Z register is a 16-bit register and is the central data holding register of the controller.

All data except function codes and interrupt status passes through the Z register. The S, P,

and Z registers act and interact via sequence control logic in the controller to execute the S

jump, P jump, M jump, RTM, and end-of-display-byte-stream commands described below.

COMMAND BYTES

The Graphics Hardware Interface and Graphics Utilities routines of the 6000 Package in

effect write or erase two classes of bytes within the 1 744 memory - memory command

bytes and control bytes. These bytes are right-justified in the 16-bit memory word and

make up the display byte stream.

Command bytes are roughly equivalent to program instructions in a computer. There are

eight kinds of command bytes:

• S jump

• P jump

• M jump

• RTM

• EDE

• ROD

• sense

• no-sense

S JUMP

The S jump command byte is equivalent to an unconditional jump instruction. Its format is:

11 7 3 0

xOOl -- --_.1 ___ 1_1 o_o __ ~l ___ lx_x_x_=1_~
x Any value; this can be written as 0 71 OB

P JUMP

The P jump byte is used to exit from one macro routine to another. The format for this

byte is:

4-8 44616800 Rev. 01

11 7 3 0

xOOl 1101 lxxx

x Any value; this can be written as 0730B

M JUMP

The M jump byte corresponds to a return jump instruction. It's format is:

11 7 3 0

xOOl 1110 lxxx

x Any value; this can be written as 0750B

RTM

The RTM (return to main) command byte is used to exit from an M jump and return to the

main display program in the buffer memory. The format of RTM is:

11 7 3 0

L._~~-x_o_o_1~~~~1 ~~1_1_1_1~~~'~~-l~xlO~~J
x Any value; this can be written as 0772B

EDB

The EDE (end-of-display-byte-stream) byte signals the 1 700 that on-line editing by the 1 700

Basic Graphics Package can begin. The EDE format is:

11 7 3 0

xOOl 1111 1000

x Any value; this can be written as 0770B

ROD

The ROD (return-to-off-line-display) byte terminates 1 700 editing and returns control of the

1 744 to the contents of its buffer memory. The ROD byte has the format:

11 7 3 0

xOOl 1111 1100

x Any value; this can be written as 0774B

SENSE/NO-SENSE

The sense or no-sense command byte precedes each item's display byte stream to enable or

disable the item's sensitivity to a light-pen pick. The pick of an item with a sense byte

44616800 Rev. 01 4-9

preceding its display byte stream causes the controller to send an interrupt signal to the

1 700. The pick of an item having a no-sense byte is ignored. The formats for these bytes

are:

11 7 3 0

Sense xOOl 0100 1001

x Any value; this can be written as 051 lB

11 7 3 0

No-sense:!~ ~~-x_o_o_1~~~'~~-0_1_0_0~~~1~~~1-o_o_o~~~f
x Any value; this can be written as 0 51 OB

CONTROL BYTES

While the command bytes determine the order of item display, the control bytes form the

description of each item and determine how it appears on the screen.

There are three kinds of control bytes processed by the 1 744 Controller:

• Reset

• Control

• Increment

RESET

The reset byte (see GURSET, Section 7) is a secondary beam-.noving byte; it is usually

the first byte in any series, and is a positioning byte which moves the cathode ray tube

beam to an approximate position on the display surface. Reset bytes are usually fol­

lowed by increment bytes within the byte series and establish the precise point for dis­

play initiation. The reset byte resets the beam to one-half normal intensity.

The reset byte controls beam intensity, light pen sense, blink and terminate to reset.

The reset byte initiates a 25)1Sec time delay and processes the bytes as follows:

• The first byte is interpreted as a 12-bit X location which will be
transferred to the X console interface registero

• The second byte is interpreted as a 12-bit Y location which will be
transferred to the Y console interface register.

4-10 44616800 Rev. 03

The 30 µsec time delay has to elapse before the first increment byte is processed.

The format for the reset byte is:

11 7 3 0

1000 Ox xx

where:

s T i2 il io Condition

0 Light pen sense disable

1 Light pen sense enable

1 Terminate to nest reset

0 Blink disable

1 Blink enable

0 1 Intensity dim

1 0 Intensity medium

1 1 Intensity bright

When bits 11 through 8 equal 1000, bits 7 through 4 are placed in the high order bit positions

of the controller's X accumulator, with the remaining bits set to zero. Bits 3 through 0 are

placed in the high order positions of the controller's Y accumulator, with the remaining bi ts

set to zero. (The X and Y accumulators contain the H and V coordinates used to aim the

cathode beam.) The reset byte does not affect the on/ off state of the beam, which remains

in the same state as specified in the previous byte.

44616800 Rev. 03 4-11

INCREMENT

The increment byte is the primary beam-moving control byte. It is used for fine position­

ing of the cathode ray tube beam. In normal operation, an initializing reset byte is used for

coarse positioning of a displayed item. With the beam off, increment bytes establish the

precise display starting point (followed by an intensity byte if a change of intensity is desired).

Once the desired starting point is established, increment bytes (the first of which turns the

beam on) display the desired graphics.

The format for the increment byte is:

7 3 0

sf ~x ~y

Bit 11 controls the beam state (0 = off, 1 =on); bits 10, 9, and 8 are weighted scale factors,

used to multiply the ~x and ~y values that specify the precise position of the beam. The

scale factors range from two to seven, corresponding to changes of 1:1 to 32:1, respectively.

Bit 7 is the X sign bit and bits 6, 5, and 4 are added to the current X accumulator value after

being shifted right the number of bit places specified by the scale factor. Bit 3 is the Y sign

bit and bits 2, 1, and 0 are added to the current Y accumulator value after being shifted right

the number of bit places specified by the scale factor.

A delay function is performed by a special case increment byte. The format:

11 7 3 0

Oxxx 1111 1111

x Any valid scale factor

produces a 25 µsec delay to provide time for beam settling, and is used after a reset byte

(see GURSET, Section 7).

Table of Increments

SF 7, 32: 1 O. 16 inch

SF 6, 16. 1 O. 08 inch

SF 5, 8:1 0. 04 inch per 1 unit in ~x or ~y
SF 4, 4:1 0.02 inch

SF 3, 2:1 0.01 inch

SF 2, 1:1 0. 005 inch

The information on command and control bytes supplied in the preceding paragraphs is not

necessary for normal programming in the Interactive Graphics System; it is provided here

4-12 44616800 Rev. 03

for the convenience of a programmer using the GUBYTE routine described in Section 7. A

more detailed discussion of programming the graphics hardware is beyond the scope of this

manual.

DISPLAY MACROS

Often used display items can be placed in the buffer memory as macros to better utilize its

core space. The macros can then be called on command. A macro call stores a return ad­

dress in a hardware register, which leads to a transfer of display control to the addressed

macro. The macro either returns directly to the return address or transfers control to

another macro addressed from the stored location. Since the return address is held in a

hardware register, only one level of macro is provided. A macro may not include a call to

another macro. Macros provide efficient access to associated byte-streams such as alpha­

numeric strings.

Macros are used primarily to conserve memory in the 1 744 display buffer, although their

use benefits the application programmer as well. If the programmer req·J.ires the use of a

particular display item at more than one point on the screen, the most convenient way to

duplicate it is to classify the item as a display macro by generating its byte-stream wHh a

GIMAC call (see Section 7).

Subsequent calls to GUMACG then generate a short calling seq-J.ence for the macro; this se­

q'J.ence contains an M jump to the macro area of the 1 744, where the byte-stream of the item

is stored for execution. The RTM address byte at the end of the byte-stream returns con­

trol to the buffer area for regular display items.

The programmer can use macros in at least two ways. If it is necessary to display an item

intermittently at the same location on the console screen, the item can be defined as a

macro and can contain a reset sequence (see GUHSET, Section 7). Each time a regular dis­

play item calls the macro, it will be displayed at the same location; each time the calling

item is erased, display of the macro stops.

A macro can also be used without a reset sequence to define an item that is easily relocated

at any point on the screen. This type of macro is used with the tracking cross (see GITIMV

and GITMMV, Section 7).

DISPLAY BUFFER MEMORY LAYOUT

The first two-byte sequence of the display buffer contains an S jump when alphanumeric in­

formation is being entered at the console. The jump is made to the Alpha!lumeric Pick

Display Area to display the characters that have been entered. If there is nothing to display,

an S jump is made to continue processing the main display. Figure 4-5 illustrates the

memory via a block diagram.

44616800 Rev. 03 4-13

Word 0 NOP or Alphanumeric S Jump

NOP or Tracking Cross S Jump

NOP or Tracking Macro Move S Jump

Start of Regular Display Item

i-- _ ~ Buff~ A~ -!- __ -
1--- Free Area ____ --f- __ _
~sociativ~ddress Table~rea __

1
____ _

Macro Display Item Area

Tracking Cross Display Area

Alphanumeric Macro Display Area

Alphanumeric Pick Display Area
4095 or

81 9 0 Tracking Cross Attached Macro Area

Figure 4-5. Display Buffer Block Diagram

The second two-byte sequence of the buffer always contains an S jump when the tracking

cross is being displayed and no tracking is taking place. If the tracking cross is not up, an

S jump is made in the tracking display area to prevent the tracking cross bytes from being

processed.

The third two-byte sequence contains an S jump only when a macro is attached to the track­

, ing cross (see GITMMV, Section 7).

The first six bytes of the display buffer contain NOP (zero ID control) bytes for all other

cases. This allows the memory scan that produces the display to proceed into the regular

display item area without executing a jump.

The regular display item area floats in memory, and is expanded upward as needed.

The Associative Address Table (see Section 7) is stored at the end of the Macro Display

Item Area. This table also floats in memory, and is expanded downward as needed.

The Macro Display Item Area is fixed in memory but can be expanded downward as needed,

moving the Associative Address Area at the same time. When a macro is erased, no con­

traction of the macro area occurs.

The last four areas are fixed in memory, and are assigned to the 1 700 Basic Graphics

Package for use during tracking, alphanumeric output to the console, alphanumeric picking,

and tracking macro operation, respectively.

4-14 44616800 Rev. 03

1700 GRAPHICS FUNCTIONS

BUFFER TRANSLATOR

The buffer translator is called by IMPORT when the 1 700 receives a data buffer from

EXPORT or is ordered to send a data buffer to the 6000 Series computer.

5

The translator program will unpack the EXPORT buffers and put the calling parameters of

the 6000 Basic Graphics Package into a format that the 1 700 Basic Graphics Package will

recognize. The translator also loads buffers for transfer to the 6000 Series computer from

the 1 700 Basic Graphics Package. All alphanumeric characters are code converted by the

translator into or from 1 700 internal code. Floating-point conversions are done in the 6000

Series computer by the 6000 Package routines.

PROGRAM ABORTING

The translator is also responsible for aborting graphics programs at the 1700. lf a 1700

Package routine attempts to communicate with a console but the console' s driver routine

detects a communication error or failure, the Package routine sets a flag to inform the

translator of the condition. The translator then displays an appropriate message (see Table

9-6) on the teletypewriter and sends IMPORT directive code 23 to the 6000 (see Graphics

Program Aborting, Section 2).

The translator also aborts programs if it detects an invalid IDDAD, IDDADI, or MAD pro­

gramming parameter while it is processing a buffer from EXPORT. In this case, the

translator returns a 1 700 ABORT message to the 6000, displays an appropriate message

(Appendix B) on the screen of the affected consoles and at the teletypewriter, and sends the

IMPORT directive code to EXPORT.

If the Digigraphic Interrupt Processor of the 1 700 Package detects an error condition while

attempting to process console input or output, it also sets a flag for the translator. The

translator then types out one of the two reject messages given in Table 9-6, and aborts the

job in the same manner as given above for a console driver error.

1700 BASIC GRAPHICS PACKAGE

The 1 700 Basic Graphics Package contains a set of graphics routines and a queue handler to

process light-pen/keyboard picks and save tracking-cross positions.

44616800 Rev. 01 5-1

The functions and philosophy of the 1 700 Basic Graphics Package routines are similar to

those of the Graphics Utilities and Graphics Hardware Interface routines of the 6000 Basic

Graphics Package. The calling statements for both sets of routines are identical; two

Packages are used solely to prevent tying up the 6000 Series computer with the detail work

necessary to service a display console.

The applications programmer is concerned only with the 6000 Basic Graphics Package. He

writes his programs in parametric form, and the 6000 Package then passes these parameters

(via EXPORT /IMPORT and the Buffer Translator) to the 1 700 Basic Graphics Package, which

uses the data to actually drive the cathode ray tube of its associated graphics console.

Specific information regarding the functions of the 1 700 Package routines is beyond the scope

of this manual.

SYSTEM EXPANSION

The Interactive Graphics System can be expanded by the addition of routines to the Graphics

Utilities library of the 6000 Basic Graphics Package (Section 7). Although such additions

could be made without corresponding changes in the 1 700 Package, the efficiency of the

System would be increased by the addition of a corresponding 1 700 Package routine for each

routine added to the 6000 Package. This approach would simplify 1 700 error processing.

Additions to the two Packages can be made without changes in any of the other parts of the

System software.

5-2 44616800 Rev. 01

DISPLAY ITEMS AND PICK PROCESSING 6

Every item that the programmer creates on the display screen has identification information

associated with it in the 1 700 Computer's memory, as does every console input device that

he wishes to have his program service. This information includes parameters from the

6000 Basic Graphics Package calls which the programmer uses to create and manipulate the

item or to define the functions of the device. These parameters (and other pick processing

information) are organized into a structure called a display item ID block.

DISPLAY ITEM ID BLOCK

The 1 700 Basic Graphics Package maintains a buffer of the item ID blocks created by the

programmer (see Section 7) as shown in Figure 6-1.

15 13 12 11 10 8 7 0

word 0 I M S P/7J String Pointer

IDDAD

2 l//:7~1---------PICK_IH __ ___J

3

4

5

6

8

9

PICK IV

IDDC IDDT

IDWA 15-0

ID\lv'B~--~--~ IDWA 23 _16

IDWB23-8

T.CHOSSI!!="

T. CROSS IV = "

M = 1, Item Being !\larked (blinked when picked)

S c 1, Single Pick Type Item

S = 2, String Pick Type Item

S = 3, Button Pick Type Item

" = Tracking Cross Coonlinates (for a Button only)

Figure 6-1. Display Item ID Block in 1 700

bits

44616800 Rev. 01 6-1

"The ID block is the basis of all graphics input processing. The four ID quantities IDDT,

IDDC. IDWA, and IDWB are defined and used by the programmer. The display item type

code IDDT is also used by the queue handler and the 1 700 interrupt processor mask com­

parison routines (see GIMASK, Section 7).

The IDW A /IDWB of a light button would normally contain the name of a task to be called by

the Application Executive AETSKR routine; the task name is left-justified, beginning in IDWA.

The IDWA /IDWB of a graphic figure would contain a data bead address (see Data Handler,

Section 7) as its last five characters.

The contents of IDDT and IDDC cannot exceed 8 bits (3 77B) each; IDWA and IDWB cannot

exceed 24 bits (77777777B) each. IDDT = 0 is reserved for alphanumeric input only.

ID blocks may be associated with other graphic input devices, as well as the items on the

display. These are:

• The console function keyboard.

• An alphanumeric End-of-Message character.

• The switch on the light-pen.

• The pick of some display item of a particular type; this results in two ID blocks

being queued (for example: a regular display item may also be conditioned to act

as a button; see GIPBUT, Section 7).

To have an ID block from one of these devices input to the application program, the IDDT of

the device must classify it as one of the three types of pick information processed by the

queue handler:

• Single pick information

• String pick information

• Button pick information

QUEUE HANDLER

Since the console operator will get ahead of the application program's execution, it is

necessary to have a means of allowing the operator to use the light-pen, keyboard, and

tracking-cross at his own speed, but still enable the graphics software to keep track of the

picks and tracking-cross coordinates for later use by the application program. The queue­

ing mechanism which accomplishes this.reduces the time a console operator must wait after

making a request until he can make another request.

6-2 44616800 Rev. 01

PICK TYPES

The picks made by the console operator are queued as four types of ID blocks before being

passed to the application program:

• Single pick type - only the copy of the ID block for the latest single pick display item

chosen is kept in the queue, regardless of how many such items are picked.

• String pick type - one copy of a string pick display item ID block is kept in the queue

for each time such an item is picked.

• Alphanumeric type - includes alphanumeric characters picked by either the light-pen

or a keyboard key; queued in the same manner as a string pick type.

• Button pick type - one copy of the ID block for a light-button is kept in the queue for

each time such an item is picked. The button pick lD is similar to the string pick ID

except that a button pick may reactivate an idle application task.

The single pick ID block and the string pick ID block are associated with the button pick ID

block, and may contain tracking-cross coordinates along with other ID information.

QUEUE HANDLER FUNCTIONS

When the 1 700 Basic Graphics Package interrupt processor detects a light-pen or keyboard

pick.it turns control of the 1 700 Computer over to the queue handler. The queue handler

then performs three actions:

1. Does an ID read of display memory to determine which item has been picked.

2. Logical ANDs the IDDT of the pick ID block with the set of ID processor masks

(see GIMASK).

3. Performs the queue operation specified by the result of the ANDing.

If the logical AND of the IDDT and the set of masks is nonzero, the queue handler will place

the ID block of the picked item on the end of the appropriate queue string. For example,

after the AND of the following IDDT and masks values, the ID block involved is placed at the

end of the set of queued string picks and the blink byte in the reset sequence is complemented. I
That is, a nonblinking item will blink and a blinking item will no longer blink.

0 0 0 0 0 0 1 0 IDDT of picked item

0 0 0 0 0 1 0 0 Ignore Mask

0 0 0 0 1 0 0 0 Single Pick Mask

nonzero 0 0 0 0 0 0 1 0 String Pick Mask
AND

0 0 1 0 0 0 0 0 Button Mask

0 0 0 0 0 0 1 0 Marker Mask

44616800 Rev. 03 6-3

In each of the following cases, the ID read processing differs from that of a normal light-pen

strike. However, steps 2 and 3 above remain the same:

• If GILPKY has been called and a light-pen switch interrupt occurs, the queue handler

will read the assigned ID block from a table in 1 700 memory.

• If GIKYBD has been called and a keyboard interrupt occurs, a 1 700 memory ID read

will be performed.

• If GIEOM has been called and an EOM key press or an EOM font pick causes the

interrupt, a 1 700 memory ID read will be performed.

• If GIPBUT has been called and a prime button pick causes an interrupt, both a 1 700

memory and a 1 744 display memory ID read will be performed.

The queue handler also retrieves ID blocks from the FETCH queue (see below) when they

are requested by a 6000 Basic Graphics Package GIBUT or Application Executive AETSKR

call.

FETCH AND WAIT QUEUES

There are actually two separate queues maintained in the 1 700 's memory for each graphics

console - the FETCH queue and the WAIT queue.

The WAIT queue serves as a temporary console input buffer in which to arrange and complete

a set of picked ID blocks. The WAIT queue is not accessible to the application program;

this prevents the program from receiving an incomplete set or string of pick ID blocks if it

requests transfer of the blocks to the 6000 while the console user is still building a string or

editing a set of queued blocks.

A button pick automatically transfers the ordered blocks from the WAIT queue to the FETCH

queue. The blocks are then passed to the program in the 6000 Series computer from the

FETCH queue.

Whenever an item is erased from the display, both queues are scanned for a pick of the

erased item. If the item is a single pick type or string pick type and is erased, the ID block

is spliced out of the WAIT queue. If the erased item is in the FETCH queue as a button, the

button ID block and its associated single pick and string pick ID blocks are all removed.

QUEUE MECHANISM OPERATION

The following set of diagrams illustrates the logical mechanism used by the queue handler to

queue picks and buttons. Each square represents a core block of ID inf9rmation, pointers,

and coordinates. The queueing of ID blocks is controlled by the application program through

the setting and clearing of type code masks (see GIMASK, Section 7).

6-4 44616800 Rev. 01

Time History if maintained as a simple queue:

First_.r;-J jpl fSl ~ Isl Isl ~ /Pl ~ Isl
L:J-L:J--~-L~-_r~--~-L2J-L~_rL~ _ _r·~~

C1 iii-I r2 I-I i3l-I r4H i5H i6H .. ~:1--1 .. ~:l-[LH ~ol-Last
'' Tracking cross coordinates

Flow of execution

P Single Pick ID

S String Pick ID

B Button Pick ID

Representation after Single Picks 1 and 2:

WAIT

:~ ---___ :J ~I
FETCH

0

0

Single pick ID blocks are always placed at the start of the WAIT queue, and replace

whatever single pick ID block may have been there.

Representation after String Picks 5 and 6:

WAIT

I

FETCH

0

0

String pick ID blocks are always collected at the end of the WAIT queue.

44616800 Rev. 01 6-5

Representatjon after Button Pick 7:

WAIT

0

0

FETCH 11 7

--------.:=; w-w-rrrrnrw
Button pick ID blocks are always placed at the end of the FETCH queue followed by the

contents of the WAIT queue (which is then cleared).

Representation after String Picks 15 and 16:

WAIT

If two string pick ID blocks are the same (IDDAD all identical) both blocks are removed.

If string picks 11 and 16 were the same in the above example, block 11 would be spliced

out of the WAIT queue and block 16 would not be saved. This feature allows limited editing

of picked items without application program intervention.

Representation after Pick 20 Is Input and Button 9 Is Fetched by the Application:

WAIT

~' •IPl_.lsl
---'~~

FETCH

The tracking cross coordinates of each button ID are saved for application reference. The

tracking cross coordinates fetched by GITCOF are those from the last button ID pressed to

the application program U9 in the example above).

6-6 44616800 Rev. 03

ID blocks passed to the application program are always picked up from the start of the

FETCH queue (block 8 in the last example above), and are passed only as the result of a

specific request from the application. If a button fetch (CA LL GIBUT) is requested at the

time of the above representation, ID blocks 8 and 1 7 are made available to the application.

Next, the single, string and button masks are checked in that order. The first nonzero

product causes the designated queueing operation and a check of the marker mask. If the

marker mask also causes a nonzero product, the queue handler will perform the marking

function on the item. The blink byte will be reversed in order to change the appearance of

the item while it is queued until it is fetched.

As each ID block is removed from the queue, the marker bit is checked and the blink byte

is restored to the status it had before it was queued. This notifies the console user that

his pick has been sent to the 6000 Series Computer.

6000 COMPUTER PICK PROCESSING

The 6000 Series computer receives ID blocks from the 1700 Computer only after sending it

a GIBUT call, or an equivalent call from the Application Executive. Only the first button

ID block, and any single or string pick blocks preceding it in the FETCH queue, is sent to

the 6000's EXPORT program.

The ID blocks are all sent by EXPORT to the Application Executive area of the calling

graphics job, where GIBUT unpacks the button ID block information and stores it for later

use by the 6000 Basic Graphics Package AELBUT and GITCOF routines. The other ID

blocks are stored for later use by the GIFID and GIDSID routines.

Each time a button pick is fetched from the 1700, the new ID blocks are written over the

blocks stored in the 6000 by the previous fetch. The queue handler masking procedure is

ordered. The ignore mask is anded with IDDT first. If the product is nonzero, no further

action is taken.

44616d00 Rev. 03 6-7

6000 BASIC GRAPHICS PACKAGE

The 6000 Basic Graphics Package is a set of subroutines, written in COMPASS assembly

language, designed to provide an interface between the applications programmer and the

graphics hardware. The Package coexists with SCOPE; an applications programmer has

full access to both.

7

This Basic Graphics Package has four main functions: to provide the ability to manipulate

display items, to control light buttons, to input and output alphanumeric data, and to supply

the necessary tools for creating and handling a data structure.

Using the Basic Graphics Package routines, the simplest application program can send dis -

play items to the consoles. These display items are described in a language one level higher

than the standard display language. For instance, a circle in display language is a stream

of DXs and DYs; however, the Basic Graphics Package, using the 6000 Computer, describes

a circle in parameter form. The 1 700 has the ability, which it is more suited to accomplish,

to convert this parameterized data into display language - by using the 1 700 Basic Graphics

Package (see Section 5).

ROUTINE TYPES

The 6000 Basic Graphics Package routines are divided into four categories:

• Graphics Hardware Interface

• Application Executive

• Graphics Utilities

• Data Handler

GRAPHICS HARDWARE INTERFACE

The Graphics Hardware Interface is a set of library subroutines that permit application pro­

gram control of the display hardware. The functions performed by the Graphics Interface

define the graphics capabilities available to a user. The interface includes routines to edit

the display buffer display items, control light-pen and keyboard inputs, control light-pen

tracking, and collect alphanumeric text input. All interface routine names begin with GI.

44616800 Rev. 01 7-1

APPLICATION EXECUTIVE

The Application Executive controls the residence, sequencing, and execution of tasks; it

includes the equivalents of SCHEDR, GIB UT, and GIABRT.

The Executive is written as a single, eight-part program called MAIN. When a programmer

uses MAIN as part of his zero-level overlay, his subsequent calls to AETSKC and AETSKR

in any task overlay result in calls to the appropriate part of the MAIN program.

FUNCTIONS OF MAIN

MAIN is entered as a FORTRAN subroutine from the application program's zero-level over­

lay, using a CALL MAIN card (see Section 2), during both the file creation and execution

runs of the job.

MAIN first reads the file name parameter cards m the application program's next data

record.

If the data record contains two cards, MAIN:

• Writes the graphics task COMMON file name (from the first card) in RA+2 of the

program's current control point area

• Writes the overlay source file name (from the second card) in RA+3

• Terminates the LGO portion of the job so that AEFILE can create the program's

graphics COMMON file

If MAIN finds only one card in the first data record, it assumes that the job is to be executed

during the current run. MAIN then:

• Opens the task file named on the card

• Reads the task directory pointer to determine the amount of central memory needed

to load the longest over lay in the task file

• Changes the field length

• Calls the Scheduler to assign the program to a graphics control point

The Scheduler then rolls out the job (see Section 2). When the Scheduler rolls the job back

in, MAIN reads the first record of the task file into central memory. Control of the central

processor is then transferred to the task in that record.

MAIN is again entered when an AETSKC call occurs; it then locates the requested task within

the task file, reads it into central memory, and transfers control to it.

7-2 44616800 Rev. 01

When an AETSKR call occurs, MAIN requests a button fetch from the 1 700 FETCH queue,

and waits until one has been returned. When a button pick type ID block (and its associated

string and single pick blocks) is returned, control of the central processor is turned over to

the task overlay named in the IDWA and IDWB parameters of the button's ID block.

MAIN also contains an abort processor that is entered any time a 6000 Basic Graphics

Package routine produces an error message. The abort processor enters all diagnostic

messages supplied to it in the system dayfile; the processor aborts the application job only

if a fatal error or a GIABRT call has occurred.

GRAPHICS UTILITIES

The Graphics Utilities are an expandable library of subroutines for general graphics applica­

tions. Included as Graphics Utilities are routines to frame-scissor graphic figures, generate

graphic figure descriptions. and collect figure descriptions for display. The utilities routine

names supplied with the 6000 Basic Graphics Package all begin with GU.

DATA HANDLER

The Data Handler is a set of routines that optimize access to mass storage and perform in­

core list processing. The handler permits an application programmer to efficiently create

and manipulate his own unique data structure. The form of data organization used is a plex

data structure.

PLEX DAT A STRUCTURES

Graphics interaction places stringent demands upon the application programmer in the allo­

cation and handling of data. In general, graphics application data is completely random in

the order of its manipulation, and in the amounts of each data type stored. Conventional

allocation and management schemes, such as FORTRAN arrays or card image files, are

usually inappropriate and inefficient.

A concept of storage management has been defined* that meets all the requirements of inter­

active applications. The concept, called the Modelling Plex, involves the data, data struc­

ture, and data manipulating algorithms required to represent the physical actions required

of the application. The requirements of the data and algorithms are determined by the needs

of the application on one hand, and by the data structure on the other.

>:'Douglas T. Ross, AED-0 Programming Manual, Section 2. 2 Data Structure Language,
Preliminary Release No. 2, MIL-ESL, October 1964.

44616800 Rev. 01 7-3

A plex data structure is the most general form in a broad class of data management tech­

niques called list structuring. In a plex data structure, all data is contained in variable

length beads of contiguous computer words. The length, format, and data content of any

bead is completely under control of the application programs.

The Data Handler provides a pool of emp~y beads (free storage) from which the application

may obtain new beads and to which it can return those no longer needed. Each bead has a

unique addressing parameter (IBEAD) that is supplied by the system, and used by the appli­

cation programs as data. This bead address is used for referencing the data within the bead,

and may be used as data within other beads as a pointer to specify related information. In

general, a plex data structure contains a greater number of pointers than do more conven­

tional storage techniques. (See Figure 7-1 for typical bead arrangements.)

_fx'BEAD
BEAD ADDRESS ~

(A) A SINGLE BEAD

(Bl A STRING OF BE ADS

(C) A TREE STRUCTURE
OF BEADS

(Dl A RING STRUCTURE OF BEADS

Figure 7-1. Typical Bead Arrangement

7-4 44616800 Rev. 01

For a specific application, it is most efficient to include only the beads and pointers needed.

A formal structure that includes all possible relationships of a rigid class introduces in­

efficiencies that cannot be tolerated in an interactive system.

For a simple example of a plex data structure, consider the dynamic parts of an automobile

engine: the crankshaft, the connecting rods, and pistons. Each bead of the representation

contains the needed information about a particular item. Each bead of a particular type has

exactly the same length and format, but different data values; i.e., the mass parameter in

each connecting rod bead - CR in the exarriple - would appear in the same position within

the bead, but would reflect the actual mass of the particular connecting rod. Note that by

proper design of the plex data structure, the calculating algorithms may be quite independent

of the actual representational model. In the example (Figure 7-2), a 12-cylinder engine

could be handled with the same structure and programs by allowing the connecting rod string

of beads to be of variable length. By convention, the initial bead address in a string of beads

is called the state variable of the string, and the last bead of the string holds a zero string

pointer. In a plex data structure any number of strings may be passed through a bead.

105 MAX. H.P.
CS- CRANKSHAFT
CR-CONNECTING ROD
P-PISTON

Figure 7-2. Four Cylinder Engine

Beads are floating within blocks. The bead address lBEAD contains the block count and an

index to an array of pointers within the block as follows:

23 13 8 0

I Block Count I Index

For use as a string pointer, the location within the bead of the next pointer (hook) may be

placed in the cross -hatched area.

44616800 Rev. 01 7-5

The 9-bit hook limits string pointers to the first 511 locations in a bead. The Data Handler

accepts full 24-bit addresses as a bead address, and will ignore the low order 9 bits on all

but string operations.

The Data Handler allows simple FORTRAN programming string operations. Figure 7-3 is

an example of list structuring. Hooks are shown with a broken line.

STATE VARIABLE

_,,, __,,, ...::... (-- 7 ... LJ (-
I I I

(INITIAL STRING I \.~ I

POINTER) I I
I I

HOOK/I I

"'~ t----' \..~ ~ ETC.

BEAD

BEAD BEAD

Figure 7 - 3. List Structure Example

BLOCK STRUCTURE AND ACCESS

Data resides in standard SCOPE random files (in logical blocks). Specification of the block

length is an application programming function (see DMINIT, page 7-50).

The Data Handler maintains in-core duplicates of those blocks needed to allow efficient

access to the data. The number of in-core blocks is specified by the application program­

mer and may be changed dynamically.

The in-core blocks reside as IFILE in the application job's global data area of the graphics

control point. IFILE is rolled out and in automatically as a local file with the program.

Data is confined to beads within the blocks. Data Handler subroutines are provided to create

and destroy beads, as desired by the application programmer.

The data content of a bead is broken into components. A component is a specific bit or word

space within a bead and has a unique address code. Data Handler subroutines are provided

to set or fetch values of components of specified beads.

The application program does not reference mass storage blocks directly, so the block ac­

cessing process and format details are not a programming function.

7-6 44616800 Rev. 01

The Data Handler provides efficient automatic access to the mass storage blocks through an

algorithmic optimization procedure. Three decision parameters, kept for each in-core

block, are used in the algorithm:

• UC Usage count of the current in-core block from the time of the last decision

• ES Amount of empty space within the in-core block

• WE Indicator of in - core block content change

Three additional values are used to modify the decision parameters:

• NB Number of blocks in core

• TUC Total usage count of the Data Handler from the time of the last decision

• BS Block size

The decision process involves finding the in-core block with the minimum or maximum

value of the algorithm:

Bx UC
TUC

+ C x ES
BS+NB

+ D x WE

The weighing factors B, C, and D are integers between 0 and 100 with a combined sum of

100. These factors are chosen by the installation. The algorithm is used in each decision

to optimize use of the in-core block space (IFILE) and minimize mass storage references.

Figure 7-4 shows the structure of a Data Handler file block as it is stored in central memory.

The first word of the duplicate block contains the amount of empty space in the block and

a pointer to the empty space. When a bead is entered into a block, it is associated with a

bead pointer to which the bead address is related. The bead pointer is fixed in a block but

its contents can vary, since beads are floating in the block. The beads in a block move

when a bead is deleted in a block and the Data Handler closes up any space previously occu­

pied by a bead to maintain empty space contiguity. The bead address IBEAD, however,

remains inviolate for the life of a bead.

Beads are entered into a block starting from the bottom of the empty space. If a bead is too

large to fit in a single block, it is continued onto as many other blocks as necessary. (The

continuation process is designed to minimize the number of blocks per bead.) A continuation

bead address is added to the end of the bead segment to point to the next segment of the bead.

Bit F is set in the bead pointer to indicate that its segment is the first segment of a bead.

Bit G indicates the continuation of a bead.

44616800 Rev. 01 7-7

BLOCK
+o

RELATIVE
+1 ADDRESS

+2

+a

+c

+b

5958

F G

F G

F G

23
EMPTY SIZE

(NUMBER OF WORDS)

BEAD SIZE
(NUM.BER OF WORDS)

BEAD SIZE
{NUMBER OF WORDS)

BEAD SIZE

NUMBER OF WORDS

EMPTY SPACE

EMPTY SPACE

BEAD

BEAD

17 0

EMPTY POINTER a

BEAD POINTER

BEAD POINTER

BEAD POINTER

B

F -BEAD CONTINUED IN ANOTHER BLOCK (CONTINUATION BEAD ADDRESS IN LAST
WORD OF BEAD, IN WORD NUMBER = BEAD POINTER t BEAD SIZE -1)

G -CONTINUATION OF A BEAD

Figure 7-4. Data Handler File Block Structure

MAXIMUM DAT A UNIT SIZES

b

The addressing scheme used by the Data Handler limits the size of files, beads, and blocks.

The limits are:

• Maximum number of blocks per file 1,023

• Maximum number of beads per block 31

• Maximum number of words per bead 1,048,575 (218 -1)

7-8 44616800 Rev. 03

The number of words in a block depends on the device the system uses for mass storage.

The block size can be specified by the programmer in his DMINIT calls; if the programmer

omits the block size parameter from his calls, an installation parameter is used.

Another installation parameter (MAXBLKSP) defines the maximum number of words that can

be allocated for the in-core blocks. Since the Data Handler requires at least two in-core

blocks to function efficiently, this actually limits the maximum block size to MAXBLKSP I 2

central memory words.

General Summary

a. Components

• are bit or word spaces

• contain values

• re side in beads

• are addressed by a unique code

b. Beads

• are contiguous computer words

• contain components

• reside in blocks

• are addressed by a unique bit pattern

c. Blocks

• are mass storage logical blocks

• contain beads

• reside on mass storage and in core as !FILE

• are addressed by count

d. All Data Handler routine names begin with DM

ASSOCIATIVE ADDRESSES

The Basic Graphics Package also does internal bookkeeping, controlled by bit patterns called

associative addresses that are supplied to or by the application programmer. The major as -

sociative arldresses are:

• The console address NCON that is associated with the particular console(s) assigned

to an application program. More than one console address may be used by a program

to control several consoles at once. NCON is a two digit number; the first digit is

the number of the 1 700 to which the console is connected (1-4), and the second digit

is the number of the console itself (1-6). Thus, NCON can vary from 11 to 46. Both

digits are defined by the installation and supplied by the programmer.

44616800 Rev. 03 7-9

• The display item address IDDAD that is associated with a particular graphic item

being displayed. IDDAD is used for editing functions and is the relative address of

the item within a table containing the actual 1 744 display addresses of all such items

(see Section 4).

• The macro address MAD, which serves the same function for macro item informa­

tion as IDDAD,serves for display items.

• The bead address IBEAD, which is associated with a particular set of contiguous

computer words supplied by the Data Handler. The bead address is used for all

references within the bead, and is defined as the relative address of the first word

of the bead within the IFILE.

• The application task name NAME, is used to control program execution. A typical

program may consist of over 100 individual tasks or overlays, each performing a

function(s) or a computation(s). Each task resides in mass storage and is randomly

accessible. NAME is used by the Application Executive to associate the task with

its actual location in mass storage (see Task Directory, Section 2).

PROGRAMMING CONVENTIONS

To reduce application programming errors, the following calling sequence conventions are

imposed on all Basic Graphics Package routines:

• All externally supplied values are passed between the routines as parameters in the

calling statements. No specific COMMON configurations are imposed on the appli­

cations programmer.

• Needed values are specified as separate calling statement parameters. The code

inefficency of loading and unloading formatted arrays justifies the use of the longer

calling sequences that are produced by this convention.

• Separate subroutines are provided for each function of the Package. Code para­

meters are not used for function selection.

SUMMARY OF USER FORTRAN CALLABLE ROUTINES

These routines are all part of the 6000 Basic Graphics Package; all perform parameter

checking functions and may cause the system software to abort an application program if its

parameters are illegal. If a display item buffer exceeds the maximum length of the EXPORT/

IMPORT input or output buffers (320 12-bit bytes each), it is considered a fatal error. Diag­

nostic messages for these and other errors are given in Appendix B.

7-10 44616800 Rev. 01

All of the Package routines can be accessed through standard FORTRAN CALL statements.

Unless otherwise specified, all parameters in the statements are passed to the routines as

programmer-supplied arguments; integers may be either decimal or Boolean octal in form.

The programmer may choose his own parameter names. although use of the names supplied

in this manual would eliminate confusion when interpreting the diagnostic messages listed in

Appendix B. Because many of these diagnostics contain the parameter names used in this

manual. all parameter names throughout the book have been capitalized - a convention

normally used to indicate words or letters whose presence is required by the system.

PROGRAM INITIATION

SCHEDR rolls the program out to mass storage so that it can undergo real-time scheduling

and be rolled into a graphics control point for execution. A call to this routine must pre -

cede all Graphics Interface calls if the Application Executive MAIN program is not used.

When the SCHEDR call is made, the system Scheduler program rolls out the entire control

point and all associated files.

When MAIN is used, a call to SCHEDR serves no useful function.

Call Statement Format:

(CALL SCHEDR

PROGRAM CONSOLE CONTROL

The subroutines GICNJB and GICNRL flag the 1 700 Basic Graphics Package interrupt pro­

cessor to establish or break the correspondence between a console and the calling job. The

two routines also perform such housekeeping duties as clearing the 1 744 display buffer and

resetting interrupt tables.

Good programming practice dictates that a call to the console release subroutine GICNRL be

made before terminating the program. However, it is not mandatory to do so since a call

to GICN JB from a later job (in the time sequence of job runs) will perform the same function.

The functions performed by GICNJB and GICNRL are console-oriented. Any task of any job

may request initialization of the console/ job correspondence for a particular console number.

More than one console may be initialized for a job.

Once console/ job correspondence is made, any task of that job may address that console. If

a task addresses a console that has not been initialized through G ICN JB for the job of that

task (or if a task addresses a console that has been initialized for some other job). the task

and its job will be aborted.

44616800 Rev. 01 7-11

A console may be in one of three states with respect to a particular job:

1. Not attached to any job

2. Attached to some other job

3. Attached to a particular job

The purpose of GICNJB is to go from state 1 to state 3. The purpose of GICNRL is to go

from state 3 to state 1.

GICNJB

This subroutine assigns a programmer-specified graphics console to the calling program

and performs such initial clean-up duties as clearing the display buffer.

GICNJB aborts the calling job if the console number, NCON, is invalid, or if the console is

not available (i.e. , has been declared out of service by the 1 700 Computer operator or is

assigned to another job). GICNJB clears the tables and masks that have been set.

Call Statement Format:

r CALL GlCNJB (NCON)

NCON Number of the graphics console that should be assigned to
this job; only one console can be assigned through each call

NCON can easily be changed by loading data cards with the application program through

either the remote or local card reader.

GICNRL

This routine releases the specified graphics console from the control of the calling job.

GICNRL terminates internal display for console NCON and clears console-oriented tables

kept by the 1 700 Basic Graphics Package interrupt processor.

Call Statement Format:

(CALL GICNRL (NCON)

NCON Console number; the same constraints apply here as to
NCON in the GICNJB statement

PROGRAM TASK CONTROL

AETSKC and AETSKR establish the linkage between the Application Executive MAIN program

and/or individual tasks of the application job.

7-12 44616800 Rev. 03

AETSKC

This routine can be called from the zero-level overlay, any task overlay, or from any sub­

routine within an overlay. A call to AETSKC causes the named task overlay to be loaded into

core memory from the graphics task COMMON file. AETSKC then turns control of the 6000

Series computer over to the new task; there is no return from a call to AETSKC.

Call Statement Format:

(CALL AETSKC (NAME)

NAME Name of the task to be called; this is the 1 to 7 character
identifier on the PROGRAM card at the beginning of each
task overlay. The name in this call must be written in
6000 internal display code, left-justified within NAME,

AETSKR and blank or zero-filled.

An AETSKR call terminates execution of the current task, then performs the functions of

AETSKC for the task overlay named in the IDWA and IDWB parameters of the next button

pick type ID block in the 1 700 FETCH queue.

AETSKR determines which task to load by requesting that a button pick type ID block be

fetched from the 1 700, If no button ID block is queued there, AETSKR waits until one is

entered, then loads and executes the task indicated by the button picked. There is no return

from a call to AETSKR.

If a STOP or END card is encountered within a task before a call to AETSKR or AETSKC

occurs, the card will cause normal termination of the entire application job.

There is no console argument in the AETSKR calling sequence. AETSKR asks for a button

from the graphics console number used as the argument of the last call to a GIBUT or

GICNJB routine.

Call Statement Format:

(CALL AETSKR

SPECIAL ID BLOCK ASSIGNMENT

ID blocks similar to those described in Section 6 can be assigned to various input devices at

each console. These special ID blocks give the devices queuing and input significance that

they would not otherwise possess.

One such block may be assigned to a console for each of the following:

• All of the buttons on the function keyboard

• The switch on the light-pen

44616800 Rev. 03 7-13

• A specific alphanumeric character, which will be used to terminate the console 's

current alphanumeric input

• One display item that is not defined as a light-button, but is to be treated as one

GIKYBD

GIKYBD associates an ID block similar to that of Figure 6-1 with the function keyboard of a

particular graphics console. This block provides a means to examine the status of the key­

board's keys or to call a task overlay when a key is pressed.

Once GIKYBD has been called, a copy of the keyboard ID block is queued every time a key­

board key is pressed. Queueing is done according to the IDDT of the block.

Key status is contained in the IH and IV parameters of the block (see Table 4-1).

A GIKYBD call can also be used to change the ID parameters of an existing keyboard ID block.

GIKYBD cannot be used for a graphics console that is not equipped with a function keyboard.

Call Statement Format:

CALL GIKYBD (NCON, IDDT, IDDC, IDWA, IDWB)

Refer
to 7-41

NCON

IDDT

IDDC

{

IDWA

ID\VB

Number of the console to which the block should be assigned;
only one console can be referenced by each call

ID type code; used to specify how the queue handler will treat the
ID block

ID code word;
8

the contents assigned by the programmer can be
O~ IDDC ~ 2 -1

ID information word A; contents are arbitrary unless block is
referenced by an Application Executive routine

ID information vrnrd B; contents are arbitrary unless block is
referenced by an Application Executive routine

The ID block assigned to console NCON by GIKYBD contains the representation of the input

parameters IDDT through IDWB.

Only one keyboard ID block can be associated with a particular console; if several calls are

made to GIKYBD with the same NCON value, the parameters of the latest call will replace

all of the parameters previously entered in the block.

7-14 44616800 Rev. 03

GILPKY

GILPKY assigns an ID block to the switch on the light-pen of a particular graphics console.

If GILPKY has been called, the effect of releasing the key on the pen is identical to the act

of pointing to an item on the display; the ID block assigned to the key is processed by the

queue handler as if it were the ID block of a display item. This allows the programmer to

detect the use of the switch.

Call Statement Format:

CALL GILPKY (NCON,IDDT,IDDC,IDWA,IDWB)

NCON

IDDT

IDDC

IDWA

IDWB

Number of the console to which the block should be assigned;
only one console can be referenced with each call

ID type code; used to specify how the queue handler will treat the
ID block

ID code word:8 the contents assigned by the programmer can be
O~ IDDC~ 2 -1

ID information word A; contents are arbitrary unless the block is
referenced by an Application Executive routine

ID information word B; contents are arbitrary unless the block is
referenced by an Application Executive routine

The ID block generated by a GILPKY call contains the representation of the input parameters

IDDT through IDWB. If NCON is the only nonzero input parameter (or the only parameter

given in the call), the existing ID block for the light-pen switch of console NCON will be re­

moved from the 1 700 Computer's memory.

When the light-pen key is released, the copy of the ID block queued in the 1 700 will contain

the current H-V coordinates of the tracking cross in the IH and IV words - which are used

for the coordinates of a light-pen pick in the ID block of a display item.

Only one light-pen key ID block can be associated with a particular console; if several calls

are made to GILPKY with the same NCON value, the parameters of the latest call will re -

place all of the parameters previously entered in that block.

GIEOM

This routine assigns an ID block to a single alphanumeric character at a specified graphics

console; the character may be part of the display font or on the alphanumeric keyboard.

When the character associated with a GIEOM call is pressed (or picked, in the case of the

display font) during an alphanumeric input operation, the ID block assigned to it is queued

as if it were the ID block of a display item. This gives the programmer a means to detect

an End-of-Message condition.

44616800 Rev. 03 7-15

An End-of-Message character is displayed on the screen and returned through a GIANE call

like any other character.

Call Statement Format:

CALL GIEOM (NCON, IBCD, IDDT, IDDC, IDWA, IDWB)

NCON

IBCD

IDDT

IDDC

IDWA

IDWB

Number of the console to which the ID block should be assigned;
only one console can be referenced with each call

A right justified display code character which is to act as an
End-of-Message indicator and to which the ID block should be
assigned

ID type code; used to specify how the queue handler will treat the ID
block

ID code word;8the contents assigned by the programmer are
0 L IDDC L 2 -1

::.D information word A; contents are arbitrary unless the ID block
is referenced by an Application Executive routine

ID information word B; contents are arbitrary unless the ID block
is referenced by an Application Executive routine

The ID block created by a GIEOM call contains the representation of the input parameters

IDDT through IDWB.

Only one End-of-Message character ID block can be associated with a particular console; if

several calls are made to GIEOM with the same NCON value, the parameters of the latest

call will replace all of the parameters previously entered in the block.

GIPBUT

GIPBUT will create an ID block and a Queue Handler mask for a prime button at a particular

console. Anything for which an ID block exists may be defined as a prime button, but the

prime button ID information and its associated mask are usually used to allow a display item

to activate a task when picked, even if the item is not defined as a button pick type.

When an item is defined as a prime button, two ID blocks for it exist in memory, and both

are queued according to their type code values when the item is picked. This allows the

programmer to simultaneously classify the item as two different types.

Call Statement Format:

CALL GIPBUT (NCON, IIDDT, IDDT, IDDC, IDWA, IDWB)

7-16 44616800 Rev. 03

NCON

IIDDT

IDDT

IDDC

IDWA

IDWB

Number of console to which the block should be assigned; only
one console can be referenced with each call

Value to be used as a mask to determine if an item is a prime
button type

ID type code; used to specify how the queue handler will treat the
prime button ID block

ID code word; the contents assigned by the programmer are
0 ~ I DDC L 2 B -1

ID information word A; if the IDDT of this ID block classifies it as
a button pick type, this parameter should contain a portion of the
name of the task overlay to be called by MAIN

ID information word B; contents are arbitrary unless the ID block
is referenced by an Application Executive routine

Only one prime button ID block can be created for a given console; if several calls to GIPBUT

occur with the same NCON value, the parameters from the latest call will replace all of the

parameters previously entered in the block. If NCON is the only nonzero parameter used,

the existing prime button ID block for console NCON will be removed from the 1 700 Com­

puter's memory.

The Prime Button mask is used in the following manner (the other queue handler processing

masks are explained in the paragraphs on GIMASK, below).

When a string pick or single pick entry is made at console NCON, the queue handler pro­

cessing mask comparisons are made. If the pick is not a button type and is not ignored,

then the following comparison is performed by the 1 700 interrupt processor:

IIDDT v IDDT

II DDT Prime button mask value

IDDT ID type code of picked item

Logical exclusive OR

If this algorithm equals zero, the picked item is considered to be a prime button. The IDDT

value in the prime button ID block is then compared with the programmer-defined masks to

see how the prime button ID block should be processed; the item's regular ID block is pro­

cessed separately, according to its own IDDT value.

The prime button ID block IDDT value can be any one (or none) of the valid mask values; it

does not have to equal the mask value established for buttons.

44616800 Rev. 03 7-17

CONTROL OF QUEUE HANDLER AND PICK PROCESSING

When an entry is made at a console, the 1 700 interrupt processor compares the IDDT

value in the entry's ID block with the value that the programmer has previously placed in

the Ignore mask. If the result equals zero, the entry is ignored. If the entry is not zero,

the IDDT value is compared with values in the Single Pick, String Pick, Button, and

Marker masks. If the IDDT values correspond to any of these mask values, the queue

handler performs the appropriate function; the ID block of the entry is either placed on one

of the appropriate queue strings (single pick, string pick, or button pick) or the item on

the screen is blinked (marker function). If the IDDT corresponds to more than one Pick

mask value, the ID block is queued according to the hierarchy: single, string, button.

The algorithm used for the mask comparisons are given here to further explain the mask

concept. In the following paragraphs:

IDDT ID type code parameter from the ID block of the entry

/\ Logical AND

V Logical inclusive OR

IGM Value set in Ignore mask

SPM Value set in Single Pick mask

STPM Value set in String Pick mask

BM Value set in Button mask

MM Value set in Marker mask

MASK COMPARISONS

The comparisons are listed below in the order in which they are made by the software.

IGNORE MASK

If IG M /\ IDDT f 0, the entry will be ignored, regardless of the contents of any other mask.

For example, if IDDT also equals the value in the Marker mask, indicating that the item

should be blinked when picked, the item will not be blinked.

SINGLE PICK MASK

If SPM /\ IDDT f 0, the ID block of this entry is a single pick type; the ID block queued for

the last single pick type entry is replaced by the ID block of this entry.

7-18 44616800 Rev. 03

STRING PICK MASK

If ST PM (\ IDDT -f 0. the ID block for this entry is a string pick type; the ID block for

this entry is queued after the ID block queued for the last string pick type entry.

BUTTON MASK

If BM /\ IDDT -f 0, the ID block for this entry is a button pick type; the ID block for this

entry and any associated tracking cross coordinates, single pick ID blocks, and string pick

ID blocks are queued after the information queued for the last button entry.

MARKER MASK

If (SPM V STPM V BM) /\ MM /\ IDDT -f 0, the picked display item reverses blink I
status until its queued ID block is fetched by the application program.

GIMASK

This routine sets and clears the bits in the pick processing masks defined above. Each

graphics console has its own set of masks, and the programmer establishes the values of

each according to the IDDT parameter values that he wishes to use in his current application

program.

Call Statement Format:

CA LL GI MASK (NCON, IDDTC, IDDTS, I MASK)

NCON

IDDTC

IDDTS

I MASK

Number of the graphics console for which the mask values will be
used; only one console can be referenced through each call

Value of the bit pattern to be cleared from the specified pick pro­
cessing masks

Value of the bit pattern to be set in the specified pick processing
masks

Mask indicator code; may be any one or any combination of the
following:

1, set or clear the indicated bits in the Ignore mask

2, set or clear the indicated bits in the Single Pick mask

4, set or clear the indicated bits in the String Pick mask

8, set or clear the indicated bits in the Button mask

= 16, set or clear the indicated bits in the Marker mask

Several masks can be cleared or set simultaneously by placing the appropriate values in

IDDTC and IDDTS, as in the following illustration. The IMASK value used is 248 • IDDTC is

223, and IDDTS is 1048 .

44616800 Rev. 03 7-19

The f bit in ICODE of GURSET, GICOPY and GIMOVE controls the original blinking status

of the item. If f is set to 1 (ICODE = sOOOlbb), the item will blink; if f is not set (ICODE

= sOOOObb) t.l-ie item \vill not blink. However, the original blinking status ·will be reversed

(i.e., a blinking item will stop blinking, a nonblinking item will blink) if the item is queued,

provided that the marker mask is set for the item. As soon as the item is fetched, it will

resume the original blinking status.

I MASK

0

0

1

0

1

IDDTC

IDDTS

New mask value

New mask value

I 0Jolol1lojol1lol

I 0111010101110101

Masks Before Call

1 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0

0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0

Masks After Call

1 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 1

0 1 0 0 0 1 0 0

Ignore Mask

Single Pick Mask

String Pick Mask

Button Mask

Marker Mask

Ignore Mask

Single Pick Mask

String Pick Mask

Button Mask

Marker Mask

As an example of mask operation, assume that a programmer has defined grid lines as pick

type 2. Each grid line has an ID block associated with it that contains an IDDT value of 2.

Every time a grid line is picked by the console operator, the programmer wants to place the

ID block for that grid line in the queue of string pick blocks and blink the grid line. To do

this, he would make a GIMASK call with IDDTC = 0, IDDTS = 2, and IMASK = 20. This call

would set both the String Pick mask and the Marker mask equal to two.

GICLR

The GICLR routine clears all ID blocks associated with a particular graphics console from

the FETCH and WAIT queues in the 1 700 Computer's memory. This prevents the applica­

tion program from acting upon the queued information after the programmer or console

operator has decided that it is no longer needed to solve his problem.

Call Statement Format:

(CALL GJCLR (NCON)

NCON

7-20

Number of the console that should have its queued pick
information destroyed; only one console can be referenced
with each call

44616800 Rev. 03

FETCHING ID BLOCKS FROM CONSOLE ENTRIES

ID information that has been queued as a result of console operator action can be retrieved

from two areas within the Interactive Graphics System. GIBUT (and AETSKR) fetches ID

blocks and ID information from the FETCH queues in the 1700 Computer. AELBUT, GIFSID,

and GIFID fetch ID information from the ID blocks stored in the 6000 machine by the last

GIBUT or AETSKR action.

Because the ID information is queued in two separate areas, the programmer must be care­

ful when he fetches or uses it after a call to GICLR; the GICLR call erases information from

the 1 700 queues only. This means that calls to GIB UT will always fetch ID information

queued after that last GICLR call occurred, but calls to AE LBUT, GIFID, and GIFSID may

reference information queued before the last GICLR call occurred. To avoid referencing

the wrong ID information, a call to GICLR should be followed by a GIBUT call with IR = O;

after this call, the other four routines can be used without causing confusion.

A EL BUT

This routine returns the ID information stored in the last button pick type ID block fetched

from the 1 700 Computer by a GIB UT or AETSKR call. AE LBUT enables the programmer to

investigate the parameters of the button which caused the calling of the current task overlay.

Call Statement Format:

CALL AELBUT (IDDT, IDDC, IDWA, IDWB, IH, IV)

IDDT

IDDC

IDWA

IDWB

IH

IV

ID type code; returned as a result of the call

ID code word; returned as a result of the call

ID information word A; returned as a result of the call

ID information word B; returned as a result of the call

H axis (horizontal) coordinate of the light-pen pick which caused
the button to be queued; returned as a result of the call

V axis (vertical) coordinate of the light-pen pick which caused the
button to be queued; returned as a result of the call

Parameters IDDC through IV are optional.

If a keyboard key, rather than a light-button, caused the calling of the current task, IH and

IV will contain the keyboard status bits (see Table 4-1).

44616800 Rev. 03 7-21

The IDDC parameter of any button referenced by AELBUT can be used to store the NCON

of the console to which the button is assigned. This would give the programmer a means of

determining which NCON value he should use in subsequent GIFID or GIFSID calls; if an

NCON value other than that of the last GIBUT or AETSKR call is given in a GIFID or GIFSID

call, a fatal error occurs (see Appendix B).

GIBUT

This routine fetches the first sequential button pick type ID block, and all related string pick

type and single pick type ID blocks, from the FETCH queue of a particular graphics console.

GIBUT also returns the parameters in the button ID information to the calling task. Once a

call to GIBUT has been made, the information in the button ID block can be accessed again

only through an AE LBUT call, because another call to GIBUT will cause the next set of

queued ID blocks to be fetched from the 1 700 and will write over the information stored in

the 6000 Series machine. If the ID block was created by GILPKY, i.e .• queued by a light-

pen key interrupt, IH and IV will contain the coordinates of the tracking cross at the time

of the interrupt.

Call Statement .Format:

CALL GIBUT (IR, NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

IR

NCON

IDDT

IDDC

IDWA

IDWB

IH

IV

Code to control return; if IR:

0, wait for a button pick type ID block to be queued

1, return to the calling task immediately

Number of the console from which the information
should be retrieved

ID type code; returned as a result of the call

ID code word; returned as a result of the ~all

ID information word A; returned as a result of the call

ID information word B; returned as a result of the call

H axis (horizontal) coordinate of the light-pen pick which
caused the block to be queued; returned as a result of the call

V axis (vertical) coordinate of the light-pen pick which caused
the block to be queued; returned as a result of the call

If there is no button pick type ID block queued for console NCON and the call parameter IR

equals zero, the application job will be rolled out until such a block is queued. If no such

block is queued but IR equals 1, IDDT is returned as a positive zero.

7-22 44616800 Rev. 03

GIFID

GIFID fetches the ID parameters from the last single pick type ID block stored in the 6000

input buffer area by an AETSKR or GIBUT call. This is usually the ID block of the last

single pick display item selected by the light-pen of the specified console. The NCON in a

GIFID call must agree with the NCON of the last AETSKR or GIBUT call (see AELBUT,

above).

Call Statement Format:

CALL GIFID (NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

NCON

IDDT

IDDC

IDWA

IDWB

IH

IV

Number of the console from which the ID block should be
retrieved

ID type code; returned as a result of the call

ID code word; returned as a result of the call

ID information word A; returned as a result of the call

ID information word B; returned as a result of the call

H axis (horizontal) coordinate of the light-pen pick which caused
the block to be queued; returned as a result of the call

V axis (vertical) coordinate of the light-pen pick which caused the
block to be queued; returned as a result of the call

IH and IV contain the keyboard status bits, if a keyboard key, rather than a display item

pick, caused the block to be queued. The IH and IV parameters returned are the coordinates

of the position where the beam was when the interrupt occurred and are in the vicinity of

the display item.

If no single pick type ID block is stored in the 6000, IDDT is returned as a positive zero;

the values returned for the other parameters cannot be predicted.

A call to GIFID destroys the queued ID block, so that a second call to GIFID will return

IDDT = O.

GIFSID

GIFSID fetches the ID parameters from the last string pick type ID block stored in the pro­

gram's Application Executive area by an AETSKR or GIBUT call. This is usually the ID

block of the last string pick display item selected by the light-pen of the specified console.

A single GIFSID call can be used to fetch the parameters from several associated ID blocks,

but the programmer must dimension the ID parameter and coordinate parameter names that

he uses in his calling statement.

44616800 Rev. 03 7-23

The NCON in a GIFSID call must agree with the NCON of the last AETSKR or GIB UT call

(see AE LBUT, above).

Call Statement Format:

CALL GIFSID (NCON, N, IDDT, IDDC, IDWA, IDWB, IH, IV)

NCON

N

IDDT

IDDC

IDWA

IDWB

IH

IV

Number of the graphics console from which the information
should be retrieved

The number of string pick type ID blocks from which the programmer
wishes to fetch parameters; if fewer than N blocks are queued in the
6000, N is returned equal to the number of blocks from which para­
meters could be returned. If N > 1, the following calling parameters
must be dimensioned

ID type code; returned as a result of the call

ID code word; returned as a result of the call

ID information word A; returned as a result of the call

ID information word B; returned as a result of the call

H axis (horizontal) coordinate of the light-pen pick which caused
the block to be queued; returned as a result of the call

V axis (vertical) coordinate of the light-pen pick which caused
the block to be queued; returned as a result of the call

Only 20g string pick blocks at a time are queued in the 6000.

IH and IV contain the keyboard status bits, if a keyboard key, rather than a display item pick,

caused the block to be queued. The IH and IV parameters returned after a display item pick

indicate the position where the beam was when the interrupt occurred and is in the vicinity

of the display item.

If no string pick type ID block is associated with the last button pick type ID block stored in

the 6000, IDDT is returned as a positive zero; the values returned for the other parameters

cannot be predicted.

Once retrieved, ID block parameters are lost, so that a second call to GIFSID will return

the ID parameters from the next string pick type ID block in the 6000 queue; this is the next

block in the time sequence of string pick type queue entries.

A GICNJB call cannot be made between two GIFSID calls that are intended to return values

from the same string of ID blocks; such a call would cause a conflict in NCON and result in

a fatal error.

7-24 44616800 Rev. 03

CONTROL OF CONSOLE ALPHANUMERIC INPUT

No alphanumeric information can be entered into the system unless the application program

first provides a place on the screen to enter it and then makes a call to the 1 700 requesting

it.

GIANS

This routine creates a light register on the screen so that the console operator can enter

alphanumeric information. The register can contain up to 8010 characters at a time, and

can appear anywhere on the screen.

GIANS displays a line, beginning at the screen coordinates supplied by the programmer, and

extending as far across the screen as he wishes. The area immediately above this line con­

stitutes the light register. When the console operator presses an alphanumeric keyboard

key or picks a font character with the light-pen, the individual letter, symbol, or number is

displayed in the register and the corresponding portion of the line disappears.

If GIANS is called again while the console operator is entering alphanumeric information,

the current contents of the register are destroyed; each call to GIANS defines a new register.

Call Statement Format:

GIANE

(CALL GIANS (NCON, NC, IH, IV)

NCON

NC

IH

IV

Number of the graphics console on which the light register
should be created; only one console can be referenced through
each call

Maximum number of characters that will be permitted in the
register (defines the line length)

H axis (horizontal) coordinate of the left end of the underline

V axis (vertical) coordinate of the left end of the underline

This routine performs three functions, in the following order:

1. It stops the entry of alphanumeric information into the currently defined light register.

2. It then transfers the characters currently in the register to the calling program as an

array buffer; this buffer contains 10 characters (in 6000 display code) per word. The

characters are left-justified within a word and blank-fill is provided for any word not

completely filled.

44616800 Rev. 03 7-25

3. It clears all characters from the register and removes any remaining portion of

the underline.

If the number of characters entered in the register is less than the maximum number speci­

fied by the NC parameter of this call. the number entered in the register will be returned as

a result parameter.

Call Statement Format:

(CA LL GIANE (NCON, NC, IBUF)

NCON

NC

IBUF

Number of the console from which the characters should be
fetched; only one console can be referenced through each call

Maximum number of characters in the character buffer. If more than
NC characters are entered, only NC characters are returned; if fewer
than NC characters are entered, NC is returned equal to the number
ot characters in the character buffer.

Array buffer of picked characters; returned as a result of the call

After GIANE has been called, the programmer must call GIANS before any further alpha­

numeric information can be entered.

FRAME-SCISSORING DISPLAYS

Before displaying a line or arc on the console screen, the programmer may want to assure

that it lie::; entirely within a specific area (see Display Presentation. Section 4). He can do

this by calling either the GULINE or GUARC frame-scissoring routine and then using the re­

sults of his call in subsequent calls to Display Item Generation routines. GULINE andGUARC

do not display anything on the console screen or create an item description that can be dis­

played; this must be done by other routines.

GULINE

This routine determines the points at which a given line intersects a given frame. If the

given line lies completely within the frame, the display grid coordinates of the end points of

the line are returned to the application program. If the line is partially within the frame,

the grid coordinates of the end points of that part of the line are returned.

G ULINE also scissors out lines that are too small for the graphics console operator to dis­

cern. This microscissoring is performed on any line less than six display grid units long.

The end point coordinates returned after such an operation are meaningless.

If the given line lies completely outside of the given frame, the end points returned by

GULINE are meaningless.

7-26 44616800 Rev. 03

Call Statement Format:

GU ARC

(1 KSHOW, IHl, IVl, IH2, IV2)

CALL GULINE (IHCEN, IVCEN, IHCOR, IVCOR, Hl, Vl, H2, V2,

IHCEN, IVCEN

IHCOR, IVCOR

Hl, Vl, H2, V2

KS HOW

Horizontal and vertical display grid coordinates of the
center of the frame

Horizontal and vertical display grid coordinates of the
upper right-hand corner of the frame

Horizontal and vertical display grid coordinates of the
left and right ends (respectively) of the line that the pro­
grammer wants scissored; these should be floating-point
values, not Boolean octal integers

Scissor flag, returned as a result of the call; if KS HOW:

0, the given line is either completely outside the
frame or has been microscissored

1, the given line is completely within the frame

2, the given line is partially within the frame and
has been scissored

IHl, IVl, IH2, IV2 Horizontal and vertical display grid coordinates of the left
and right end points (respectively) of that portion of the line
within the frame; returned as a result of the call, but mean­
ingless if KSHOW equals zero

This subroutine determines the points at which a given arc intersects a given frame. If the

given arc lies completely within the frame, the display grid coordinates of the arc's center

and end points are returned to the application program. If the arc is partially within the

frame, the grid coordinates of the arc's center and of the end points of those parts of the arc

within the frame are returned.

GUARC also scissors out arcs that are too small for the graphics console operator to dis­

cern. This microscissoring is performed on any arc with end points less than six grid units

apart. The end point values returned after such an operation are meaningless.

If the given arc lies completely outside of the given frame. the end point coordinates re­

turned by GUARC are meaningless.

G UARC is used for both arcs and circles. since the Interactive Graphics System defines only

circular arcs. If the programmer wants to frame-scissor an arc that is almost a complete

circle. the end point values returned to him may represent up to five separate arc segments,

as in Figure 7-5.

44616800 Rev. 01 7-27

...... ---- ,

5 -------

\

\
\
\

' I
I

I
I

I

Figure 7-5. Example of a Frame-scissored Arc

Call Statement Format:

(1 H2, V2, KSHOW, IHC, IVC, IH1 .. IV1, IH2, JV2)

CALL GUARC (IHCEN, IVCEN, IHCOR, IVCOR, HC, VC, Hl, Vl,

IHCEN, IVCEN

IHCOR, IVCOR

HC,VC

Hl,Vl,H2, V2

KS HOW

Horizontal and vertical display grid coordinates of the
center of the frame

Horizontal and vertical display grid coordinates of the
upper right-hand corner of the frame

Horizontal and vertical display grid coordinates of the
center of the circular arc that the programmer wants
scissored

Horizontal and vertical display grid coordinates of the
right and left ends (respectively) of the arc that the pro­
grammer wants scissored; arcs are defined counter­
clockwise

Scissor flag, returned as a result of the call; if KS HOW:

0, the given arc is either completely outside of the
frame or has been microscissored

1, through 5, it indicates the number of arc segments
within the frame

IHC, IVC Horizontal and vertical display grid coordinates of the
center of the arc; returned as a result of the call, but
meaningless if KSHOW equals zero

IHl, IVl, IH2, IV2 Horizontal and vertical display grid coordinates of the
end points of those portions of the arc within the frame;
returned as a result of the call, but meaningless if KSHOW
equals zero

7-28 44616800 Rev. 01

Each of the last four parameter names is the first word of an array KSHOW words in length.

The coordinate value in each word corresponds to the segment of the arc that follows se -

quentially, counterclockwise, after the coordinate of the segment corresponding to the word

before it. The first word in each array contains the coordinate of the first such segment

that occurs after the initial end point specified for the programmer's original arc.

DISPLAY ITEM GENERATION

The nine routines that generate display item descriptions can be used to create a figure com­

posed of lines, a figure composed of arcs (or any arbitrary figure combining lines and arcs),

to display alphanumeric information, to define an item as a display macro, and to change the

1 744 Controller's current control byte values (see Section 4).

These routines do not display anything on the graphics console screen; that can be done only

by a separate GIDISP call.

All but one of the nine routines have the following three programmer-defined parameters in

common:

IBUF

MBYTE

NBYTE

An array buffer used to contain description bytes produced by the
Display Item Generation routines. The contents of each IBUF
define one display item or display macro. IBUF must be dimen­
sioned by the programmer; the recommended size is 6410 60-bit
words.

Maximum number of 12-bit bytes which the programmer will allow
to be packed in the IBUF words.

Number of bytes currently in the IBUF words. NBYTE is set equal
to zero by the programmer every time he starts a new IB UF, and
its value is automatically corrected after each call to a generation
routine.

Each call to a generation routine produces bytes of information in addition to that supplied by

the programmer. These bytes are calls to the 1 700 Package equivalent of the 6000 Package

routine, and are the first bytes packed into IBUF by the call. Because of similar extra

bytes, the IBUF used in a call to GIDISP cannot be filled so that NBYTE is greater than

31210 before the call; the limit on an IBUF used in a call to GIMAC is 31810 bytes before

the call.

Under certain conditions, a non-fatal error may occur and cause a generation call to be

ignored (see Appendix B); in this case, the extra bytes are not placed in IBUF.

If a generation routine is called and its actions cause NBYTE to exceed MBYTE, IBUF will

only include the last MBYTE description bytes placed in it. This condition produces a non­

fatal error diagnostic and the overflow bytes are lost. A statement such as:

44616800 Rev. 01 7-29

IF (NBYTE. LT. MBYTE) 10, 1000

could be used to check for the buffer overflow condition and avoid later problems caused by

a truncated IBUF.

GURSET

This routine establishes the initial conditions for a display item which is described in sub­

sequent generation routine calls. GURSET places a reset sequence specified by the pro­

grammer in an IBUF description buffer - which is then filled with description bytes by

calling other Display Item Generation routines.

The reset sequence consists of bytes that set the cathode beam intensity, item light-pen

sensitivity, item blinking capability, and the display grid coordinates to which the beam

should be moved (with the beam off) but it mav cause flicker or blinking of the display as

well as fill up the refresh buffer in the controller if many GURSETS are used.

The reset sequence is the equivalent of several 1 744 command and control bytes (see Section

4).

A G URSET call should precede all other generation routine calls when a new display item

description buffer is started. GURSET can also be used to place reset information in a

partially filled IBUF if the programmer wishes to move the beam or change intensity in the

middle of a display item; an example of these uses is given in the paragraphs concerning

GUAN, below.

A display macro IBUF does not require a reset sequence.

Call Statement Format:

CALL G URSET (IH, IV, I CODE, IBUF, NBYTE, MBYTE)

IH,IV

I CODE

Horizontal and vertical display grid coordinates of the point at
which the cathode beam should be repositioned

Reset control code bit pattern of the form:
i.e.:

sOOtfbb B
1 0 3 B

s = 0, disable item's sensitivity to light-pen strike

1, enable item's sensitivity to light-pen strike

f 0, don't blink item when it is displayed

1, blink item when it is displayed

bb 01, display item with beam at low intensity

10, display item with beam at medium intensity

11, display item with beam at high intensity

t l, terminate to next Reset

0, no termination, next Reset
7-30 44616800 Rev. 03

l

GUAN

IBUF Description buffer for this display item; contains reset information
as a result of this call

NBYTE Number of bytes currently in IBUF

MBYTE Maximum number of bytes the programmer will allow in IBUF

This routine packs a description of alphanumeric information into a display item description

buffer. A subsequent GIDISP call will display the information as lines of characters on the

console screen.

Although a single GUAN call will pack up to 25510 characters into an IBUF, there is a

smaller practical limit for a single call. Each character occupies an area on the screen

that is 30g grid units square. This limits the maximum length of a line defined by a GUAN

call to 1 7010 characters; if more than 1 7010 characters are placed in IBUF for a single

line, wrap-around will occur on the display.

Because a GUAN call generates a return jump to a 1 700 macro, this routine cannot be used

to place alphanumeric information into a display macro IBUF.

Call Statement Format:

CALL GUAN (IBCD,NC,IBUF,NBYTE, MBYTE)

IBCD First word of the array of characters which are to be displayed;
10 per array word in left-justified 6000 internal display code

NC Number of characters from IBCD that should be packed by this call;
if NC > 255 10, the extra characters will not be packed in IBUF

IBUF Description buffer for this display item; the packed alphanumeric
data is returned as a result of the call

NBYTE Number of bytes currently in IBUF; updated as a result of the call

MBYTE Maximum number of bytes the programmer will permit in IBUF

Each line of alphanumeric information should be defined by a separate GUAN call, but at

least seven full lines can be placed in one IBUF as a single display item. The following

example illustrates this:

•
•

COMMON IBUF (63), IBCD (49)

44616800 Rev. 03 7-31

NBYTE = 0

MBYTE 312

ICODE 102B

READ 10, (IBCD (N),N=l,49)

10 FORMAT (8A10/)

CALL GURSET (4200B, 400B, ICODE, IBUF, NBYTE, MBYTE)

CALL GUAN (IBCD (1), 70, IBUF, NBYTE, MBYTE)

CALL GURSET (4200B, 350B, ICODE, IBUF, NBYTE, MBYTE)

CALL GUAN (IBCD (8), 70, IBUF, NBYTE, MBYTE)

•
•

Note that the lines of alphanumeric information in the above example are not 1 70 characters

long. Because the console screen is circular, the maximum line length depends on the

point of origin of the line on the screen; a 1 70 character line would have to originate at (or

very near) IH ~ -2047, IV = 0000. An 88-character line will fit almost anywhere on the

screen.

If the programmer wishes to display a character other than those defined for the 274 Console

screen (see Appendix C), he cannot use GUAN unless he changes the macro address table in

the 1 700 Basic Graphics Package equivalent of GUAN; each character is defined as a display

macro by the latter routine.

GUSEGS

This routine generates the description of a line segment and packs it in an IBUF description

buffer. GUSE GS can be used to generate the description of a single line, or the description

of the first line segment in a figure; in the latter case, the parameters in the G USEGS call

can be used to give this first line segment an appearance different from that of the rest of

the figure.

Although G USEGS can be used to initialize a figure (which is generated by later calls to

other routines), it does not place a reset sequence in IBUF. If IBUF does not already con­

tain a reset sequence, a GUSE GS call must be preceded by a G URSET call; a macro buffer

does not need a reset sequence.

Call Statement Format:

CALL GUSEGS (IHl, IVl, IH2, IV2, IBEAM, !STYLE, IBUF, NBYTE, MBYTE)

IHl,IVl

7-32

Horizontal and vertical display grid coordinates for starting
point of the line segment

44616800 Rev. 03

IH2, IV2

IBEAM

ISTYLE

IBUF

NBYTE

MBYTE

Horizontal and vertical d:i.,splay grid coordinates for the end
point of the line segment

Beam control parameter that determines the appearance of
this line segment only; if IBEAM:

= 0, this segment is not displayed

= 1, this segment is displayed according to ISTYLE

The following values can be used when figure generation is
finished; if IBEAM:

-0, turn beam off and leave off after last end point
coordinates are processed

-1, turn beam on and leave on after last end point
coordinates are processed

Style control parameter that determines the appearance of this
segment and any figure generated by subsequent G USEG calls;
the degree of solidity of the line depends on the number of set
bits in this parameter, as in the following sample values:

0, -0, or 7777B, segment is solid

5252B, segment is dashed

6666B, segment is broken

7272B, segment has appearance called center line by
engineers

Description buffer for this display item; contents returned depend
on the call

Number of bytes currently in IBUF; an updated value is returned
as a result of this call

Maximum number of bytes the programmer will permit in IBU.F

If the programmer wants to frame -scissor his figure, the IHl, IV 1, IH2, IV2 parameters

passed to this call should contain the values returned by a G ULINE call.

GUSEGI

This routine is used to initialize a figure that is generated by later calls to GUSEG. GUSEGI

does not generate the description of a line segment, as GUSE GS does, but merely determines

the starting point of a figure and controls its appearance.

GUSEGI does not place a reset sequence in IBUF. If IBUF does not already contain such a

sequence, a GURSET call must precede the call to GUSEGI; a macro IBUF need not contain

a reset sequence.

Call Statement Format:

CALL GUSEGI (IHl, IVl, !STYLE, IBUF, NBYTE, MBYTE)

44616800 Rev. 01 7-33

IHl, IVl

ISTYLE

IBUF

NBYTE

MBYTE

GUSEG

Horizontal and vertical display grid coordinates for the starting
point of the figure

Style control parameter that determines the appearance of the
entire figure; the solidity of the lines in the figure depends on the
number of set bits in this parameter, as in the sample values
given for GUSEGS

Description buffer for this display item; the contents returned
depend on the results of this call

Number of bytes currently in IBUF; an updated value is returned
as a result of this call

Maximum number of bytes that the programmer will permit in IBUF

Each call to GUSEG generates the description of a single line segment and packs it in an

IB UF description buffer. G USEG does not initialize a figure and must be preceded by either

a GUSEGS or GUSEGI call, or else a fatal error occurs.

The appearance of a figure generated by calls to GUSEG depends on the ISTY LE value used

in the initial GUSE GS or G USEG I call, and on the beam control code of each G USEG call.

The last point specified in a preceding call to GUSEGS, GUSEGI, or GUSEG is used as the

starting point for the line segment generated by the current G USEG call.

Call Statement Format:

(CALL GUSEG (JH, IV, !BEAM)

IH, IV

IBEAM

Horizontal and vertical display grid coordinates for end point
of this segment

Beam control parameter that determines the appearance of this
line segment only; if IBEAM:

0, this segment is not displayed

= 1, this segment is displayed according to ISTYLE

The following values can be used when figure generation is
finished; if IBEAM:

-0, turn beam off and leave off after last end point
coordinates are processed

= -1, turn beam on and leave on after last end point
coordinates are processed

The IBUF array and MBYTE parameter used by a GUSEG call are the ones specified in the

last GUSEGS or GUSEGI call; each GUSEG call also automatically updates the last NBYTE

value.

7-34 44616800 Rev. 01

GUSEGA

In contrast to the GUSEG routine, which must be used in conjunction with G USEGS or G USEGI,

the GUSEGA routine performs its own initialization and then generates the description of an

entire figure. One GUSEGA call can thus be used to replace many GUSEG calls if none of the

parameters defining the figure depend on a console operator's actions.

GUSEGA does not place a reset sequence in the IBUF description buffer. If IBUF does not

already contain such a sequence, a GURSET call must precede the call to GUSEGA; a macro

IBUF need not contain a reset sequence.

Call Statement Format:

CALL GUSEGA (IH, IV, IBEAM, N, ISTYIB, IBUF, NBYTE, MBYTE)

IH, IV

IBEAM

N

ISTYIB

IBUF

NBYTE

MBYTE

First words of arrays containing the horizontal and vertical
(respectively) display grid coordinates for the end point of each
figure segment; this routine uses the end point of the last segment
as the starting point of the next, so each segment after the first
requires only one pair of coordinates

First word of an array containing the beam control code for each
figure segment; if an array word:

= 0, the segment is not displayed

= 1, this segment is displayed according to ISTYLE

The following value::> can be u::>ed when figure generation is
finished; if IBEAM:

-0, turn beam off and leave off after last end point
coordinates are processed

-1, turn beam on and leave on after last end point
coordinates are processed

Number of figure segments to be generated by the current call

Style control parameter that determines the appearance of the
entire figure; the solidity of the lines in the figure depends on the
number of set bits in this parameter, as in the sample values
given for GUSEGS

Description buffer for this display item; the contents returned
depend on the results of the call

Number of bytes currently in IBUF; an updated value is returned
as a result of the call

Maximum number of bytes that the programmer will permit in IBUF

N should always be one less than the number of values in the IH and IV arrays, because the

first two words in IH and IV define only one line segment; i.e., IH(l), IV(l) is the starting

point and IH(2), IV(2) is the end point of the first segment in the figure. For the same

44616800 Rev. 01 7-35

reason, IBEAMi always describes the segment defined by IHi + 1 , IV i + 1; IBEAM (N + 1)

therefore does not describe a segment, but can be set equal to minus zero to turn the cathode

beam off when the figure is completed.

GUARCG

This routine generates a description of several arcs or a circle and packs the information in

an IBUF description buffer. GUARCG can define up to five separate or connected circular

arcs, deployed counterclockwise around a common center.

If the programmer wishes to frame-scissor a circular figure, the array of end points used

in the G UARCG call should be the same as the array produced by a previous call to GUARC.

G l_TARCG does not place a reset sequence in IBUF. If the description buffer does not already

contain such a sequence, a call to GURSET should precede the GUARCG call; a macro IBUF

need not contain a reset sequence.

Call Statement Format:

CALL GUARCG (KSHOW, IHC, IVC, IHl, IVl, IH2, IV2, !STYLE, IBUF, NBYTE, IVIBYTE)

KSHOW

IHC, IVC

IHl, IVl

IH2, IV2

!STYLE

IBUF

NBYTE

NBYTE

7-36

Number of arc segments to be generated by this call; must be
less than 6

Horizontal and vertical display grid coordinates for the common
center of the arcs

First words of arrays containing the horizontal and vertical
display grid coordinates for the starting point of each arc segment

First words of arrays containing the horizontal and vertical dis­
play grid coordinates for the end point of each arc segment

Style control parameter that determines the appearance of all the
arc segments; the solidity of the lines depends on the number of
bits set in the parameter, as in the sample values given for GUSE GS

Description buffer for this display item; the contents returned
depend on the call

Number of bytes currently in IBUF; an updated value is returned
as a result of the call

Maximum number of bytes that the programmer will allow in IB UF

44616800 Rev. 03

GU BYTE

This routine is a general purpose one. GUBYTE is used to place information into an IBUF

description buffer when the information is a type other than that processed by the regular

Display Item Generation routines.

The information packed by GUBYTE should consist solely of the command and control bytes

described in Section 4.

GUBYTE transfers the lowest 12 bits from each word in an input array to the specifiedIBUF.

Each 12-bit byte is left-justified next to the last byte entered in the buffer, so that IB UF is

packed with five bytes in each of its words (this is true of the buffers produced by all of the

Display Item Generation routines).

Call Statement Format:

CALL GUBYTE (IBYTE, L, IBUF, NBYTE, MBYTE)

IBYTE

L

IBUF

NBYTE

MBYTE

GU MA CG

First word of the array containing one description byte at the
lower end of each word

Number of consecutive words in IBYTE from which bytes are
to be transferred

Description buffer for this display item; contents returned
depend on the call

Number of bytes currently in IBUF; an updated value is re­
turned as a result of the call

Maximum number of bytes which the programmer will allow in IBUF

This routine places a macro call description into an IBUF description buffer. This allows

a display item to use display macros that were previously defined by calls to GIMAC. Each

call to GIMAC sends an IBUF to the 1 700, where its contents are translated, converted into

a display byte stream, and stored in the memory of the 1 744 Controller (see Section 4).

GIMAC then returns an associative address for that macro to the calling program. The

macro is not displayed until a GUMACG call and a subsequent GIDISP call place a calling

sequence for it into the display byte stream of a regular display item. This is done by in­

serting the sequence into the IBUF which describes the regular display item of which the

macro is to be a part.

44616800 Rev. 01 7-37

Call Statement Format:

CALL GUMACG (l\/IADl, L, IBUF, NBYTE, l\/IBYTE)

MADl

L

IBUF

NBYTE

MBYTE

First word of an array containing macro address MAD para­
meters returned by previous calls to GIMAC

Number of consecutive MAD parameters from l\/IADl that are
to be placed in IBUF by this call

Description buffer for this display item; the contents returned
depend on the call

Number of bytes currently in IBUF; an updated value is re -
turned as a result of this call

Maximum number of bytes that the programmer will allow to
be placed in IB UF

STORING AND DISPLAYING ITEMS

Once the description of a display item is finished, the filled IBUF is placed in the display

buffer of the 1 744 Controller through a GIDISP or GIMAC call; GIDISP defines the contents

of IBUF as a regular display item, which is then shown on the console screen; GIMAC defines

the contents as a display macro, which does not appear on the screen unless a call to it

occurs in a regular display item.

After the item is placed in the display buffer, it can be:

• Duplicated on another part of the screen, with a new reset sequence and a new ID

block

• Moved to another part of the screen, with a new reset sequence and a new ID block

• Erased from the screen and the display buffer

GIMAC

This routine sends the contents of an IBUF description buffer to the 1 700 Computer, where

its contents are translated and then converted into a display byte stream by the 1 700 Package

routines. The 1 700 version of GIMAC stores this display byte stream as a display macro

in the display buffer of the specified console' s controller.

GIMAC does not display the macro on the console screen, but returns the associative

address of the macro to the programmer. This address parameter is then used by

GUMACG to generate a macro call in the IBUF of a regular display item. A subsequent

call to GIDISP for the regular display item also displays the macro.

7-38
44616800 Rev. 03

Note that the ID block entered into the 1 700 queue, when a macro is picked,,is the ID block of

the regular display item which called the macro.

There is only one level of macros within the Interactive Graphics System. If an IBUF is

being used for the description of a macro, it cannot contain a call to another macro; this

means that GIMAC can never be called to process an IBUF that has been used for previous

calls to GUAN or GUMACG.

Call Statement Format:

(CALL GIMAC (NCON,IBUF,NBYTE,MAD)

NCON

IBUF

NBYTE

MAD

GIMACE

Number of the console to which the macro should be sent;
only one console can be referenced through each call

Description buffer for this macro; contents returned depend
on the call

Number of bytes currently in IBUF

Display buffer associative address of the new macro; returned
as a result of the call

GIMACE removes one or more macros from a consoh~ controller's display buffer, and frees

that area of the buffer for later use.

If GIMACE is called to erase a macro that is used by one of the regular display items, the

GIMACE call will have unpredictable - and probably chaotic - results on the screen. The

programmer can avoid this problem by preceding a GIMACE call with a call to GIERAS; the

GIERAS call erases all regular display items which use the macro that the programmer

wants to erase.

Call Statement Format:

(CALL GIMACE (MAD1, MAD2, ••• , MADn)

MAD.
1

Display buffer address of the macro to be erased; a right
parenthesis or a MAD. equal to minus zero may be used to
end the parameter lisf

If a MADi equal to positive zero occurs in the middle of the call's parameter list, the ad­

dresses following it will be ignored and their associated macros will not be erased. A zero

is returned in the MAD. parameter of each macro that has been erased.
1

44616800 Rev. 03 7-39

'GIDISP

This routine sends the contents of an IBUF description buffer to the 1 700 Computer, where

its contents are translated and then converted into a display byte stream by the 1 700 Package

routines. The 1 700 version of GIDISP stores this display byte stream in the display buffer

of the specified console's controller, and associates an ID block with it. GIDISP then re­

turns an associative address to the calling program.

This address is the relative address of the regular display item within a table of actual dis -

play buffer addresses maintained by the 1 700 Package equivalent of GIDISP; the associative

address is used by the programmer for all subsequent references to the display item.

GIDISP is the only routine in the 6000 Basic Graphics Package which can display a new item

on the console screen.

The IDDAD associative address parameter has the follO\ving structure:

21 15 0

I NCON I INDIRECT POINTER VALUE I

NCON Octal number of the console that the item is assigned to

Call Statement Format:

7-40

CALL GIDISP (NCON, IBUF, NBYTE, IDDAD, IDDT, IDDC, IDWA, IDWB)

NCON

IBUF

NBYTE

ID DAD

IDDT

IDDC

IDWA

IDWB

Number of the graphics console on which the item should be
displayed; only one console can be referenced through each call

Description buffer for this display item; contents returned depend
on the call parameters

Number of bytes currently in IBUF

System-defined associative address of the display item; returned
as a result of the call

ID type code; used to specify how the queue handler will treat the
item's ID block (see GIMASK)

ID code word;
8

the contents assigned by the programmer are
0 ~ IDDC ~ 2 - 1

ID information word A; contents are arbitrary unless the item ID
block is used by AETSKR

ID information word B; contents are arbitrary unless the item ID
block is used by AETSKR

44616800 Rev. 03

A standard display item identification byte stream is formed from parameters IDDT through

IDWB and is added to the end of the display byte stream for the item in the 1 744 's display

buffer; if any of the last four parameters is set equal to -0, that parameter and any sub­

sequent ones are omitted from the identification byte stream. An item defined as a button

and processed by AETSKR must have an IDWA; if none exists, AETSKR produces a diagnostic

(see Appendix B) and no task is loaded.

A task name used by AETSKR must be right-justified within both the IDWA and IDWB words,

but must be left-justified as a whole.

For example, the name TSK should be placed in bits 23 through 6 of word IDWA, with blank

fill in bits 5 through 0. This could be done by the statement

IDWA = 4RTSK

Note that the statement

IDWA = 3RTSK

would produce an invalid task name by placing OTSK in IDWA. AETSKR does not handle a

task name that begins with a blank, so this condition would abort the job.

A longer name such as TSKNAM would have to be stored so that TSKN filled IDWA and bits

23 through 12 of IDWB contained the characters AM. This could be done by the statements

IDWA = 4RTSKN

IDWB = 4RAM

Note that the statement

IDWB = 2RAM

would produce an invalid task name by placing OOAM in IDWB; AETSKR would not recognize

the resulting TSKNOOAM as the task called TSKNAM.

The programmer cannot allow NBYTE to exceed 31210 bytes. The EXPORT graphics output

buffer contains space for 320 bytes of information, and the identification bytes fill eight of

them (the equivalent GIMAC bytes fill two). Since the first two bytes of every IBUF are re­

served for a function code and the NBYTE value, no more than 3101 o description bytes can be

placed in the IBUF of a regular display item, and no more than 316 10 in a macro IBUF.

GIER AS

The GIERAS routine removes one or more display byte streams from the display buffers of

the consoles. This erases the display item associated with each byte stream, and also re -

moves any of the items' ID blocks currently in the FETCH or WAIT queues - regardless of

the blocks' pick types.

44616800 Rev. 03 7-41

The programmer uses the associative addresses (produced by previous calls to GIDISP) to

indicate the display items that he wants GIERAS to erase from the console screen.

Call Statement Format:

CALL GIERAS (IDDAD1 , IDDAD2, ... , IDDADn)

Associative address of the display item to be erased; an IDDAD.
equal to minus zero, 0, or a right parenthesis may be used to 1

end the parameter list

If an IDDADi equal to minus zero occurs in the middle of the call's parameter list, the

addresses following it are ignored and their associated display items are not erased; if an

IDDADi equal to positive zero occurs, it is not processed but subsequent addresses are.

A zero is returned in the IDD.ADi parameter of eacli display item that has been erased.

GICOPY

The GICOPY routine duplicates an existing display item, assigns a new ID block and a new

reset :5equence to the copy, and displays the copy at a nev1 location on the console screen or

on the screen of a different console. The duplication process does not affect the original

display item.

Note that the reset sequence changed by a GICOPY call is the first such sequence placed in

the IBUF of the original item; if the description of the original display item contains more

than one reset sequence, the values assigned to the reset sequence of the copy should not be

changed.

Display of the duplicate item begins at the same point within the item as it begins in the

original item; i.e., if the original item was described beginning in its lower left-hand

corner, then the duplicate will also begin there.

Call Statement Format:

CALL GI COPY (IDDADI, NCON, IH, IV, I CODE, IDDAD, IDDT, IDDC, IDWA, IDWB)

ID DA DI

NCON

7-42

Associative address of the item which is to be duplicated

Number of the graphics console on which the duplicate display
item should appear; only one console can be referenced through each
call

44616800 Rev. 03

I

IH, IV

I CODE

ID DAD

IDDT

IDDC

IDWA

IDWB

Horizontal and vertical display grid coordinates for the reset
sequence of the duplicate item; these are the absolute coordinates
of the copy's point of origin

Reset control code to be assigned to the copy; the sOOOfbb bit
pattern has the same meanings as those defined for GURSET

Associative address assigned by the system to the duplicate display
item; returned as a result of this call

ID type code to be assigned to the ID block of the duplicate item;
used to specify how the queue handler will treat the duplicate
item's ID block

ID code word for the ID block of the duplicate i~em; the contents
assigned by the programmer are 0 :::;; IDDC :::;; 2 - 1

ID information word A for the ID block of the duplicate item;
contents are arbitrary unless the item ID block is processed by
AETSKR (see GIDISP)

ID information word B for the ID block of the duplicate item; con­
tents are arbitrary unless the item ID block is processed by
AETSKR (see GIDISP)

Any of the call statement parameters IH through IDWB (not including IDDAD) may be set

equal to -0, which will cause that parameter for the copy to be left as it is in the original

display item. The parameters IDDT through DIWB may be omitted; this has the same effect

as setting them equal to -0.

If there is no controller memory available for the display byte stream of the copy,

a buffer overflow message will be produced at the 1700 operator's console (see Table

9-6).

GIMOVE

The GIMOVE routine can change the location, reset sequence, and/or ID block information

of an existing display item. This allows the programmer to change such features of a

display item as its pick type, intensity, sensitivity to light-pen pick, and whether or not it

can be blinked.

Note that the reset sequence changed by a call to GIMOVE is the first such sequence placed

in the item's IBUF; if the description of the item contains more than one reset sequence,

IH, IV, and ICODE in the following call should be set equal to -0, since the item cannot be

moved.

44616800 Rev. 03 7-43

t

Call Statement Format:

(CALL GIMOVE (IH, IV, !CODE, IDDAD, IDDT, IDDC, IDWA, IDWB)

I
IH, IV

I CODE

IDDAD

IDDT

IDDC

ID\VA

IDWB

New horizontal and vertical display grid coordinates for the reset
sequence of the item; these are the absolute coordinates of the
item's point of origin

New reset control code for the item; the sOOOfbb bit pattern has
the same meanings as those defined for GURSET

Associative address of the display item; not changed by the call

New ID type code for the item's ID block; used to specify how the
queue handler will treat the block

New ID code word for the item's ID block; contents assigned by the
programmer are 0 ~ IDDC ~ 2 8 - 1

Ne\'.' ID information word A for thP item's ID block; contents are
arbitrary unless the block is processed by AETSKR (see GIDISP)

New ID information word B for the item's ID block; contents are
arbitrary unless the block is processed by AETSKR (see GIDISP)

Any of the call statement parameters IH through IDWB (not including IDDAD) may be set

equal to -0, which will cause that parameter to retain its present value. The parameters

IDDT through IDWB may be omitted; this has the same effect as setting them equal to -0.

CONTROL AND USE OF THE TRACKING CROSS

Each graphics console in the Interactive Graphics System is equipped with a light-pen track­

ing feature called the tracking cross. This cross always exists somewhere on the console

screen, but can be made invisible if the programmer wishes. The cross is a system-defined

display item, described by a byte stream that is automatically placed in the display buffer

of each console 's controller whenever the console is initialized.

The display grid coordinates of the cross are kept in a fixed location in the display buffer

(see Section 4). The 6000 Basic Graphics Package contains routines that set and fetch these

coordinates, so that the cross location can be determined or changed by the programmer.

The cross and light-pen are used together in the following manner. The pen is used to pick

the cross at some location on the screen. The cross is then automatically "attached" to the

pen so that it moves with, or "tracks", the light-pen as the pen is moved across the screen.

When the pen is stopped and the cross comes to rest, the location of the cross defines the

point of a light-pen pick. If the pen and cross are moved across a display item, no light-pen

pick is recorded; the cross must be motionless before a pick can be detected. This feature

allows the cross to be moved across the screen without causing unwanted light-pen picks.

7-44 44616800 Rev. 03

Two routines are also provided in the 6000 Package to attach a display item or display macro

to the tracking cross. Such an item or macro is centered around the cross and moves with

it across the screen until detached by another call.

GITCON

GITCON turns the tracking cross on (makes it visible) and initially locates it anywhere on

the screen that the programmer wishes. The console operator can then use the cross for

the tracking procedure described above.

A call to GITCON will reposition the tracking cross at the location specified in the call, even

if the console operator is using it when the call is made. No repositioning will occur, how­

ever, if a button ID block is queued for the specified console; the assumption is made that a

queued button will initiate some action which requires the tracking cross to be at its present

coordinates.

Call Statement Format:

(CALL GITCON (NCON,IH,IV)

NCON

IH, IV

Number of the graphics console on which the tracking eras s
should appear or be relocated; only one console can be
referenced through each call

Horizontal and vertical display grid coordinates of the point at
which the cross should be placed; the cross is centered around
this point

The IH and IV parameters may be omitted from any call to GIT CON. If IH and IV are not

supplied ~n a call, GITCON will display the cross at the current coordinates.

GITCOF

GITCOF returns the display grid coordinates of the cross associated with the last button pick

ID block retrieved from the 1 700 FETCH queue. These coordinates represent the location

of the cross when that button was picked; they are not necessarily the coordinates of the

cross at the time of the call to GITCOF, or the coordinates of the last button picked.

Call Statement Format:

(CALL G!TCOF (NCON, IH, IV)

NCON

IH, IV

44616800 Rev. 03

Number of the graphics console to which the call is addressed:
only one console can be referenced through each call

Horizontal and vertical display grid coordinates of the tracking cross
from the last button pick ID block fetched; returned as a result of the
call

7-45

GITIMV

GITIMV attaches a previously defined display item to the tracking cross so that the item

moves with the cross across the screen. The item is centered around the point defining the

coordinates of the tracking cross; i.e., the cross and item have a common center point.

Call Statement Format:

(CA LL GITIMV (NCON, !DDAD)

NCON

ID DAD

Octal number of the graphics console to which this call is addressed;
only one console can be referenced through each call

Associative address of the display item which should be attached to
the tracking cross

The programmer should assure that the IDDAD value he supplies in his call is defined for

console NCON; if the same display item has been created at several different consoles, it

will have as many different associative addresses. Use of the wrong IDDAD value aborts

the job (see Appendix B).

A call to GITIMV can also be used to detach a display item from the tracking cross. If

IDDAD is set equal to zero, GITIMV will detach any item currently attached to the cross,

and the item will remain at the place on the screen that it occupied when the call occurred.

GITMMV

This routine attaches a previously defined display macro to the tracking cross so that the

macro moves with the cross across the screen. A call to GITMMV displays the macro and

centers it around the tracking cross; i.e., the cross and the macro have a common center

point.

If the macro contains a reset sequence, it will not be moved when the tracking cross is moved.

Call Statement Format:

(CALL GITMMV (NCON, MAD)

NCON

MAD

Octal number of the graphics console to which this call is ad­
dressed; only one console can be referenced through each call

Associative address of the macro which should be attached to
the tracking cross

A call to GITMMV can also be used to detach a display macro from the tracking cross. If

MAD is set equal to zero, GITMMV will detach any macro currently attached to the cross,

and the newly displayed macro will remain at the place on the screen that it occupied when

the call occurred while the previous macro is erased.

7-46 44616 800 Rev. 03

The same restrictions on MAD/NCON agreement apply to this call as apply on IDDAD/NCON

agreement in a call to GITIMV.

USE OF THE DATA HANDLER

Seven of the routines in the 6000 Basic Graphics Package manipulate, store, and retrieve

data from files organized in a plex data structure. One or more such local files can be de -

fined for each graphics application job. There is an installation parameter, MAXNFILE,

which specifies the maximum number of files that can be used by a single job.

The programmer uses one file at a time, and does not access that one directly. Instead, he

uses in-core duplicates of the record blocks within the mass storage file (a block is a fixed­

length record; the programmer can specify an approximate length for each block in his

DMINIT call). He specifies the number of in-core duplicates to be kept, and the Data Handler

selects that number of the most frequently used blocks from the file and duplicates them in

central memory. The Data Handler determines on which block space is allocated so that

data can be written, and writes one in-core block into mass storage whenever it is necessary

to read another into central memory so that the data it contains can be accessed. The pro­

grammer does not need to know which blocks have duplicates in central memory at any given

time; for the purpose of data storage and retrieval, he can consider that the entire file always

resides in central memory.

COMPONENT CODES

Data is stored within the mass storage file in word or bit spaces of variable length; these

variable memory areas are called components, and make up the beads of the plex data struc -

ture. Each component within a bead is accessed according to the value of bit patterns called

component codes.

All component codes begin with an octal component type number (of which there are nine),

followed by the addressing needed for that component. These codes permit the programmer

to use every bit in every word of each bead - a capability that FORTRAN does not ordinarily

have. The codes enable him to enter bit pattern values in the bead without disturbing its

other contents.

A given value can be inserted in a bead or retrieved from it in a number of ways; the method

and component code used depend on the personal preference of the applications programmer

and the requirements of his program. For instance, code 6 can be used to perform the

functions of all the other component codes, but not necessarily in the most efficient manner.

An operation such as the retrieval of the connecting bead addresses is best done with com­

ponent code 10 and a call to DMGET.

44161800 Rev. 01 7-47

The programmer should use a shifting operation to dynamically define his component code

values, as opposed to the use of an expression such as

!COMP (I) = !COMP (l-1) ~'2)!'*N

which produces unpredictable results.

The component codes and their formats are:

35 29 17 0

Type 1 1 000001 Word Number

Type 1 code represents a 60-bit word as a bead component. The code can be written as

OlOOOOwordxxB in Boolean octal:

01 Component type

wordxx Position of the word within the bead, expressed as a word number;
the first word in a bead is word number 1

35 29 17 0

Type 2 I 000010 Word Number

Type 2 code represents a 120-bit double-precision floating-point value as a bead component;

this value is not checked for validity as a floating-point number when it is stored or retrieved.

The code can be written as 020000wordxxB in Boolean octal:

02 Component type

wordxx Position of the first 60-bit word of the value within the bead, expressed
a8 a word number; the first word in a bead is word number 1

35 29 17

Type 3 I 000011

0

Character Number=1

Type 3 code represents a 6-bit alphanumeric or special character as a bead component. The

code can be written as 030000charxxB in Boolean octal:

03 Component type

char xx Position of the character within the bead, expressed as a character
number; the first character in a bead is character number 0

35 29 17 0

Type 4 I 000100 I Character Number Word Number

Type 4 code represents a 6-bit alphanumeric or special character within a word or word

array as a bead component. The code can be written as 04charwordxxB in Boolean octal:

04

char

7-48

Component type

Position of the character within the word or word array, expressed as a
character number; the first character in the first array word is character
number 0

44616800 Rev. 01

wordxx Position of the first word of the array within the bead, expressed as a word
number; the first word in any bead is word number 1

35 29 23 17 0

Type 5 I 000101 I Shift Bits Word Number

Type 5 code represents a pattern of bits within a word as a bead component. The code can

be written as 05shbtwordxxB in Boolean octal:

05

sh

bt

Component type

Number of bits to shift right in order to right-justify the bit pattern
within the word

Number of bits in the bit pattern

word xx Position of the word containing the pattern within the bead, expressed as
a word number; the first word in any bead is word number 1

The bit pattern stored or retrieved by the type 5 code is not sign extended; the pattern stored

or retrieved by type 6 code is sign extended. In a bit pattern that is not sign extended, the

left-most bit in the pattern is part of the octal value of the pattern, while in a sign extended

pattern the left-most bit indicates the sign of the value represented by the rest of the pattern's

bits. For example: if the bits! 1!0!0!0 lor the bits !0!1/0!0!0! are retrieved as patterns that

are not sign extended, both groups of bits represent the value 103; however, if the same bits

are retrieved as sign extended patterns, l1iololo !represents the value -7s and loi1loioloJ

represents +10 8 . This means that a negative octal value can be stored in its 1 's complement

form by using type 6 code.

35 29 23 17 0

Type 6 000110 Shift Bits Word Number

Type 6 code represents a sign extended pattern of bits within a word as a bead component.

The code can be written as 06shbtwordxxB in Boolean octal:

06

sh

bt

Component type

Number of bits to shift right in order to right-justify the bit pattern
within the word

Number of bits in the bit pattern

wordxx Position of the first word containing the pattern within the bead, ex­
pressed as a word number; the first word in any bead is word number 1

35 29 17 0

Type 7 I 000111 I Array Length Word Number

Type 7 code represents an array of 60-bit words as a bead component. The code can be

written as 07arylwordxxB in Boolean octal:

44616800 Rev. 01 7-49

07

aryl
"IYTI""'\....., rl -.:r..,r
VVV.L UAA

Component type

Length of the array in words

Position of the first word of the array within the bead, expressed as a
word number; the first word in any bead is word number 1

35 29 17 0

Type 8 1 001000 Word Number

Type 8 code represents the 18-bit address portion of a word as a bead component. The code

can be written as lOOOOOwordxxB in Boolean octal:

10

wordxx

Component type

Position of the word within the bead, expressed as a word number;
the first word of any bead is word number 1

35 ~8 0

Type 10 l 001010

Type 10 code represents the hook (pointer) address of the next bead in a string. The code

can be written as 120000000000B.

A fragment of a sample program, showing the use of these component codes, is given after

the following routine descriptions.

DMINrT

This Data Handler initializing routine establishes new or changes previously defined mass

storage file and core storage parameters. DivIINIT is used to control the number of duplicate

blocks the Data Handler maintains in central memory, to specify which file the programmer

is currently using, and to establish an approximate length for each block in the file.

Call Statement Format:

CALL DMINIT (IFILE, NBLK, NBSIZE)

IFILE

NBLK

NB SIZE

7-50

Alphanumeric name of the file which the Data Handler should
use; this identifier is one to seven characters long, left-justified
within the IFILE word, and in a form :md format that SCOPE will
recognize as a valid file name

Number of in-core duplicate blocks to be maintained; must be ~
2 for the Data Handler to operate efficiently

Approximate size of the data blocks. expressed as
number of 60-bit words

44616800 Rev. 03

The NBSIZE value specified by the application programmer is rounded up to the next highest

multiple of 1008 -1; this rounding up provides for the most efficient use of the 6000 system

disk space and will not affect program execution. For example, if the programmer specifies

NBSIZE equal to 90 (1328), the blocks will be assigned a size of 12710 (177 8).

If the programmer omits NBSIZE from his DMINIT calling sequence, the Data Handler uses

an installation parameter to determine block size.

NBLK should be chosen carefully. If too many duplicates are maintained, the program ties

up an excessive amount of central memory with its data file; if NBLK is too small, the pro­

gram's response time deteriorates because the Data Handler must access mass storage so

often. The sole purpose of maintaining duplicate blocks in central memory is to avoid these

problems.

The programmer can use DMINIT to switch files during program execution. If DMINIT is

called with an !FILE different from the one used in a previous call, the Data Handler re­

places each mass storage block in the old file with its in-core duplicate if their contents

differ.~:' The Data Handler then uses the new file when processing all subsequent calls from

the programmer.

DMINIT can also be used to change the number of duplicate blocks maintained in central

memory for the current IFILE. Each call to DMINIT will change the field length of the job

as necessary to accommodate any additional blocks.

Any call to DMINIT may change the field length of the job, since the in-core portion of IFILE

is appended to the field length of the rest of the job (see Figure 2-11). However, if an IFILE

is already open at the time of a DMINIT call, the old file's central memory area is released

before space for the new one is allocated.

If the programmer dynamically changes the field length of the job after his first call to

DMINIT, the change is nullified by any subsequent calls; the Data Handler always begins

allocating space for its file at the same location, and always requests a change in field

length just large enough to accommodate it.

DMFLSH

This routine updates the mass storage file by writing the duplicate blocks from central

memory into it.~:'

~:'This is necessary because information entered in the file is actually written in the duplicate
blocks in central memory, so that the contents of the blocks in mass storage are not up-to­
date until the Data Handler writes the duplicates back into the file.

44616800 Rev. 01 7-51

Call Statement Format:

No Data Handler routine can be used after a DMFLSH call. unless another call is first made

to DMINIT to re-establish the file-processing parameters.

DMD MP

The DMDMP routine prints an octal dump of the entire IFILE data file. This dump enables

the applications programmer to examine the data contained in the blocks and beads of the

file, and is formatted for easy reference to beads and string addresses; empty spaces within

the file are indicated but not shown (see Appendix D).

The dump is always placPd in the standard OUTPUT file.

A call to DMD MP has no effect on the contents of the data file.

Call Statement Format:

r CA LL DIVIDivIP

DMGTBD

DMGTBD allocates a specified number of contiguous words from free space in the IFILE

data file. and defines those words as a bead. This provides the programmer with dynamic

working storage. DMGTBD zero's out each word of the bead (i.e., each word is full of

zeros before you do a DMSET).

Call Statement Format:

(CALL DMGTBD (N, !BEAD)

N

IBEAD

Number of 60-bit words to be allocated as a bead; N must be
less than 2>:(>:(18

Relative address of this bead within the block; returned as a
result of this call

If there is no space available in IFILE for a bead of N words, IBEAD is returned equal to

zero.

DMRLBD

The DMRLBD routine releases the space in IFILE occupied by beads that the programmer

no longer needs. This space then becomes available for the allocation of new beads.

7-52 44616800 Rev. 03

Call Statement Format:

CALL DMRLBD (IBEAD1, IBEAD 2, . . . , IBEADn)

IBEADi Relative bead addresses from one or more blocks, indicating the
beads that should be released; an IBEADi equal to minus zero can
be used to terminate the parameter string, in addition to a right
parenthesis

IBEADi is returned equal to zero when a bead is released.

DMSET

This routine places a given value in a specified position within a bead. If the value used in

the call does not occupy a full 60-bit word, the value must be right-justified within the call

parameter word.

Call Statement Format:

(CALL DMSET (ICOMP,IBEAD, VAL)

I COMP

IBEAD

VAL

DMGET

Component code specifying the position within the bead that the
value should occupy; ICOMP must contain one of the nine valid
type codes described above

Relative address of the first word of the bead in which the informa­
tion is to be placed

Component value to be placed in the bead; the contents of VAL
must be right-justified

This routine retrieves a previously defined value from a specific position within a bead. If

the value returned by the call does not occupy a full 60-bit word, it will be right-justified

within the returned call parameter word.

Call Statement Format:

(CALL DMGET (!COMP, !BEAD, VAL)

I COMP

IBEAD

VAL

44616800 Rev. 01

Component code specifying the position within the bead that the
value occupies; I COMP must contain one of the nine valid type
codes defined above

Relative address of the first word of the bead which contains the
information

Component value returned by this call; the value returned is
right-justified within VAL

7-53

A call to DMGET does not destroy the information within the bead.

EXAMPLE OF BEAD USE

Figure 7-6 illustrates a bead designed to use the nine different component codes; in several

cases, more than one code is used to pack a single bead word, as in words six and nineteen.

I BEAD
1

WORD

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

60 - Bl T INTEGER

60- BIT FLTG. PT. VALUE

0 1 I 1 2 l 3 l 4 I 5 1 6

10 I II I 12 I 13 I 14 I 15 T 16

1T1T10I 711 l 6623

T
T

I

\CHARACTE R 9

=s:
~

7 1 8 19
17 T 18 I 19

T HOOK

18- BIT ADDRESS

}

CHARACTER
ARRAY (STARTING
ATWORD3)

~BEAD ADDRESS

(FOR NEXT BEAD
IN STRING}

12- WORD
ARRAY

....-
I I I T 0 I I I CHAR. I l 267 I CHAR 2 I CHAR. 3 T 77777

Figure 7-6. Example of Components in a Bead

The bead shown in Figure 7-6 is created and filled by the calls below.

•
•
•

CALL DMINIT (7HDMFILE 1, 2)

CALL DMGTBD (19, IBEAD(l))

•
•

7-54

Explanation

Initializes file DMFI LE 1, with two duplicate
blocks in-core

Establishes a bead 19 words long with a bead
address returned in IBEAD(l)

44616800 Rev. 01

Call

CALL DMSET (040011000003B,
IBEAD(l), lRS)

•
•

CALL DMGTBD (50, IBEAD(2))

•
IHOOK = IBEAD(2) + 7B

•
•

Explanation

Sets character S in character position 9 in the
bead array starting at word three

Establishes a second bead, 50 words long, for
a bead string

Creates string pointer to word seven in the
second bead

CALL DMSET (010000000005B,
IBEAD(l), IHOOK)

Sets the string pointer in word 5 of the first bead

•
•
•

The other calls used are not shown because of space limitations.

Word six shows six components packed into one bead word by calls using six different com­

ponent codes. The components include a 1-bit value, a 3-bit value, a 5-bit value, a 9-bit

value (eight bits sign extended), a 12-bit value, and an 18-bit address.

Word 19 includes four individual bit states, three alphanumeric characters, an 8-bit value

and a 15-bit value. These nine components were placed by nine calls to DMSET.

These two words demonstrate the flexibility and utility of component code usage. As a

further example, the character S placed by the call shown above could also have been stored

by:

CALL DMSET (050006000003B, IBEAD(l), 23B)

VOLUNTARY ABORTION OF A JOB

The GIABRT routine allows the application programmer to terminate his job at any point he

wishes during execution. GIABRT can be used to abort the job if a non-fatal error or another

type of programming problem occurs; it can also be used to abort the job if the console user

is not obtaining the results he wishes during an application run.

GIABRT displays an abort message, supplied by the programmer, on the screen of the

graphics console; it then performs all of GICNRL's functions, enters the abort message in

the SCOPE dayfile, and calls the standard SCOPE abort processor.

There is no return from a call to GIABRT.

44616800 Rev. 01 7-55

Call Statement Format:

(CALL GIABRT (NCON, IBCD, NC)

I
NCON

IBCD

NC

Number of the graphics console that should receive the abort
message; only one console can be addressed

First word of an array buffer containing the abort message

Number of characters in IBCD; must be less than 4710

If the application job is servicing more than one console, one should be considered a master

console, so that all GIABRT messages are addressed to it.

HARDCOPY FILE CREATION

A console user often produces a display containing data for which he needs a permanent

record. The GIPLOT routine is designed so that such a hardcopy record can be made.

Because the type of hardcopy required varies according to the job and the equipment avail­

able, GIPLOT does not actually create a hardcopy record.

Instead, it creates a system file (called PLOT) of display information in a device-independent

format. This file can then be used by a special driver to duplicate the display. The driver

used depends upon the device at the installation, so that no information about it can be pro­

vided in this manual.

The following background information is needed to understand the use of GIP LOT.

An Interactive Graphics program intersperses a sequence of calls to the 6000 Basic Graphics

Package routines with manipulations of data residing in the mass storage IFILE. The dis­

plays produced by the program depend upon the console user's choice of call sequences and

call parameters; he chooses these variables by making task selections and data entrys from

the console. The display created by one set of choices is usually modified by a subsequent

set, until the user finally obtains the graphic forms and information that he \Vants.

When the user obtains a display for which he wants a hardcopy, he makes a console entry

requesting it.

The entry should then cause the program to repeat the sequence of operations that produced

the display, without repeating the intermediate steps. By repeating the sequence, the para­

meter string which resulted in the display is reproduced. This duplicate parameter string

is then used in calls to GIPLOT, rather than GIDISP or GIMAC.

An alternative to duplicating the parameter string would be the insertion of coding, similar

to the following, at the end of each task which creates a display:

7-56 44616800 Rev. 03

CALL GIBUT (0, NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

IF (IDWA. EQ. 4RPLOT) GO TO 500

CALL AETSKR

500 DO 501 I= 1, IDDC, IDWB

CALL GIPLOT (NCON, IBUF(I), NBYTE(I), IDENT, ITYPE)

501 CONTINUE

CALL AETSKR

END

This coding checks for an entry made by a light button called PLOT and returns control to

MAIN if the button has not been picked. If the button has been picked, the contents of several

display item buffers are sent to GIPLOT and then control is returned to MAIN and the next

task. The display item buffers might be stored in labelled COMMON before each GIDISP

call that creates a display item in its final form.

Call Statement Format:

CA LL GI PLOT (NCON, IBUF, NBYTE. IDENT, ITY PE)

NCON

IBUF

NBYTE

Number of the graphics console containing the display which
this file should reproduce; only one console can be specified by
each call

Description buffer of the item to be entered in the file

Number of bytes contained in IBUF

IDE NT,
ITYPE

Information used by the programmer to identify himself and his file
when it is later processed by the hardcopy driver

ADDITIONAL ROUTINES FOR DISPLAY FONT CREATION

Two routines have been added to the 6000 Basic Graphics Package library to facilitate the

creation and use of display fonts. These routines are written in FORTRAN, using the

other 6000 Package routines. One routine creates an alphanumeric font display resembling

a teletypewriter keyboard, and the other creates a numeric font display resembling a clock

face. The two routines actually display the fonts, but return address parameters so that

the programmer can manipulate the fonts as he would a regular display item.

GFONTA

This routine creates two alphanumeric font display items, which produce the keyboard-like

figure shown in Figure 7-7. The figure is created in two parts because the parameter string

describing it exceeds the length of a single EXPORT buffer.

44616800 Rev. 03 7-57

BKSP SPC CLEAR

* I $ = +
0 2 3 4 5 6 7 8 9

a w E R T y u I 0 p

A s D F G H J K L
z x c v B N M

Figure 7-7. Alphanumeric Display Font

BKSP is a special character for backspace (5F16 in 1 700 internal ASCII code), SPC is a

special character for space (2016 in 1 700 internal ASCII code), and CLEAR is a special

character for clear (7F 16 in 1700 internal ASCII code). See Appendix C,

Call Statement Format:

(CA LL GFONT A (NCON, IH, IV, !DDA, IDDN)

GFONTN

NCON

IH, IV

IDDA,
IDDN

Number of the graphics console that the font should appear on;
only one console can be addressed through each call

Horizontal and vertical display grid coordinates of the approximate
center of the display font; the font is displayed from IH - 336 to
IH + 336 and from IV + 300 to IV - 200

First and second associative addresses of the display font items
created by this call; returned as a result of the call

This routine creates a numeric font display item like the one shown in Figure 7-8.

BKSP SPC CLEAR

0

9

8 2

+
7 3

6 4

5

Figure 7-8. Numeric Display Font

7-58 44616800 Rev. 03

Call Statement Format:

(CALL GFONTN (NCON,IH,IV,IDDAD)

NCON

IH, IV

IDDAD

Number of the graphics console that the font should appear on;
only one console can be addressed through each call

Horizontal and vertical display grid coordinates of the decimal point
in the center of the circle; the figure is located between IH ± 244
and between IV + 310 and IV - 2 44

Associative address of the font display item; returned as a result
of the call

The characters BK.SP, SPC, and CLEAR have the same 1 700 internal ASCII code equivalents

as they have for the Alphanumeric Display Font described previously.

44616800 Rev. 03 7-59

I
I

PROGRAMMING CONSIDERATIONS

This section contains hints and warnings for the application programmer.

TIME ACCOUNTING

The standard SCOPE accounting procedure is used for all jobs, including graphics jobs.

Sufficient time must be requested on the Job card for each job to ensure its completion.

8

The hardware interrupt handlers of the 1 700 Basic Graphics Package operate on a "time

stealing" basis (i.e., the 6000 Series computer CPU time record is not incremented during

graphics hardware interrupt handling). When graphics consoles are heavily used, the time

indications in the SCOPE accounting records can be expected to lag behind clock time. Data

channel use time for graphics I /0 is not considered CPU time.

MEMORY ALLOTMENT AND LIST PROCESSING EFFICIENCY

The Data Handler is designed to make efficient use of the core space allotted to it by DMINIT.

The algorithm used to minimize mass storage references (see Section 7) is designed on the

assumption that the data structure for the application will be built and referenced as a local

file.

Application programs that use a widely scattered and cross-linked data structure should allot

larger amounts of core storage for data handling functions. Improper assignment of core

space causes slow response at the console and excessive referencing of mass storage.

DATA HANDLER COMPONENT CODES

The Data Handler offers powerful tools for the general handling of all types of application

data. The component codes required in the calls to DMSET and DMGET specify the exact

location of particular pieces of data within beads. However, the bit pattern form of the com­

ponent codes makes them awkward to use directly in FORTRAN programs and causes pro­

gramming errors.

To avoid this problem, the convention of naming the codes through FORTRAN labeled

COMMON may be used. The application programmer can lay out his bead formats and

specify a name for each component code. The name can then be typed INTEGER, and as­

signed a particular value by using a DAT A statement. The component code can be transmitted

44616800 Rev. 01 8-1

to each subroutine handling data through use of a COMMON /DAT A I statement. All DMSET

and DMGET calls may then refer to component codes by name.

The use of COMMON /DATA/ to name component codes also simplifies bead format changes.

The technique can be expanded to cover assignment of bead lengths and hook values.

DISPLAY ITEM ADDRESSES

The display item address parameter IDDAD is the link to all display buffer editing operations.

The application program should provide disposition for the address of each item it displays.

Display addresses of highly transient items, such as prompting messages, value registers.

and some lightbuttons, may be kept in programmer-reserved cells in COMMON.

Most display item addresses should be an integral part of the data structure of the applica­

tion and should reside in components of beads. Display items used for control or communi­

cation only, can be linked to an application data structure specifically designed for that

purpose. For example, light buttons can be represented in a bead containing a specific

identifier, class code, and display address (IDDAD):

!BEAD

IBEAD+l

IBEAD+2

I POINTER ~o NEXT BEAD

CLASS IDENTIFIER

DISPLAY ADDRESS

Simple subroutines can then be written to:

• Display a lightbutton and splice a bead into the lightbutton string

• Erase all lightbuttons of a class and splice out their beads in a string

• Erase a specific lightbutton and splice out its bead

MACRO HANDLING

When a programmer writes display macros, he conserves display buffer space and allows

more items to be displayed at one time. However, indiscriminate insertion and removal of

macros can lead to an inefficient fragmentation of the fixed address area of the 1 744 display

buffer. Further, these functions represent the greatest operational load of the graphic inter­

face and frequent use of them may affect response time.

The most frequently used macros should be placed at the beginning of the job coding. Tran­

sient macros should be removed immediately after use and before other transients are

inserted. Groups of transient macros should be removed in the reverse order of their

insertion for the fastest response time.

8-2 44616800 Rev. 01

OPTIMUM TASK LENGTH

One of the prime considerations in programming an Interactive Graphics application is to

organize the application as a series of short tasks. Interaction both implies and demands a

free flow of information in two directions; from operator to application and vice versa. The

operator, in his role as decision maker, should be given the ability to execute the tasks (by

way of button selection) in the most meaningful way within the framework of the objectives of

the application. For this reason, tasks should be concise and well defined; the operator

should be able to skip quickly ahead if the interactive processes show an obvious path to the

solution of the problem at hand. Similarly, the operator should be able to jump back and

forth through the application when divergence occurs, until convergence to a solution is

assured or it is apparent that major parametric changes are required. In either case, note

that it is the operator, not the computer or the application, that makes the decisions. It

then becomes obvious that the operator cannot make full use of his decision making capacity

if the application programmer does not provide the operator with a means of exercising that

capacity.

A job consisting of many small tasks (where many could be 300 tasks) permits SCOPE and

the Application Executive to operate with maximum efficiency and provides the best task

execution response.

This does not imply that one should make a job with 300 extremely short tasks if the logic of

the application best suits a configuration with 50 tasks that are somewhat longer but logically

more correct. What might be considered a short task on one job might be a long task on

another job. The best length for any task is the length consistent with what is required to

perform one phase of a job.

NON-GRAPHICS DATA HANDLER USE

The 6000 Basic Graphics Package Data Handler routines can be used by batch jobs that re -

quire a data file with a plex data structure. The programmer should bear in mind, however,

that the CM parameter on the Job card does not control the allocation of central memory

when the Data Handler is used; the Data Handler always appends the in-core data base to the

end of the job's current field length during job execution, so that the data base would begin

at the end of the memory field specified by the CM parameter.

Because the CM parameter is usually made arbitrarily large to assure enough space for

both the program coding and the loader, a great deal of central memory space could be

wasted when the Data Handler is used.

To eliminate the unneeded space between the regular coding and the data base, the program­

mer can use either a REDUCE or an RFL control card (see SCOPE Reference Manual).

44616800 Rev. 01 8-3

Figure 8-1 shows a sample deck that uses the RFL card. In this example, the field length

of the job is initially 60,0008 central memory words to provide space for the compiler. The

field length is then changed to 30,000s prior to execution; during execution, eight in-core

Data Handler file blocks are created beginning at RA + 30,000s.

(
PROGRAM
REC ORD

l
I

.CONTROL
CARD

6

7

8

9

7

8

9

PROGRAM ALPHA (INPUT,OUTPUT)

1:'1'
11·

END OF FILE CARD

·''' I~ ~ END OF RECORD CARD
~L-G-0-.~~~~~~__:_~_.:._~_:__,,

(RFL, 30000. I
(RUN (S) I

~rB-A~T-C_H_3_3~,-P-1_7_,_T_1_0_0_0~0-,-C-M_6_0_0_0_0~.~---.,

JJ__J SCOPE LOADER CALL CARD

FIELD LENGTH REDUCTION CARD

FORTRAN COMPILER CALL CARD

JOB CARD

Figure 8-1. Sample Data Handler Batch Deck Using RFL

When the programmer uses an RFL card, he must be careful to leave enough space for the

loader and program, yet not permit too much unused space. An easier method is shown by

the sample deck in Figure 8-2, which uses a REDUCE card.

In this example, the initial field length is the same, but it is shortened before execution so

that it is just large enough to accommodate the application program and the loader. The in­

core data base is then appended to that field length during execution, so that almost all

wasted space is eliminated.

8-4 44616800 Rev. 01

(
PROGRAM
RECORD

l
I

CONTROL
CARD

RECORD

6

7

8

9

7

8

9

- - ~ ~END OF FILE CARD

PROGRAM ALPHA lINPUT,OUTPUT)

1:'1'
11·

.'II - Iµ - END OF RECORD CARD

~L-G0-.~~~~~~~~~'--~--,1

REDUCE.

RUN(S)

BATCH34,P17, T10000,CM60000.
SCOPE LOADER CALL CARD

FIELD LENGTH REDUCTION CARD

FORTRAN COMPILER CALL CARD

JOB CARD

Figure 8-2. Sample Data Handler Batch Deck Using REDUCE

DATA HANDLER COMMON FILES

The files created by the Data Handler during the execution run of a job are local files and

are usually destroyed when the job is finished. However, these files can be declared

COMMON and subsequently used by other graphics or batch jobs.

The following steps are the suggested method for using a COMMON file as a Data Handler

file. First, to create the file:

1. Open the file by calling DMINIT.

2. Before allocating space in the file for data, use DMGTBD to obtain space in the

file where all bead addresses can be saved; this call should return a bead address

of 41000B.

3. On each subsequent call to DMGTBD, save the bead address in the area allocated

by the first DMGTBD call.

4. At the end of the job run, call DMFLSH to update the file in mass storage.

5. After the LGO card in the control card record, insert a COMMON card with the

name of the Data Handler !FILE on it.

44616800 Rev. 01 8-5

Then to use the file during a different run:

1. Insert a COMMON card, naming the proper file, in the control card record before

the LGO card.

2. Open the file using a DMINIT call, and assure that the NBSIZE parameter has the

same value as during the run that created the file.

3. Get the bead addresses for data from the first part of the file, using a DMGET call

with a bead address equal to 41000B (see above).

4. If any new data is stored in the file during the run, call DMF LSH at the end of the

job to assure that the mass storage version of the file is up-to-date.

The following programs are examples of using a Data Handler file as a COMMON file.

Sample program to create the file:

8-6

JOBl.
RUN(S).
LGO.
COMMON, DMFILE.

~
PROGRAM DivITESTl (INPUT, OUTPUT)
COMMON IBD (500), IPTR

C OPEN FILE DMFILE WITH 4 IN-CORE BLOCKS
CALL DMINIT (6LDMFILE, 4)

C GET SPACE ON FILE WHERE BEAD ADDRESSES WILL BE SAVED
CALL DMGTBD (500, IPTR)

C IPTR NOW EQUALS 41000B SINCE THIS IS FIRST CALL TO DMGTBD

• • •
CALL GETBEAD (Nl, Jl)

•
•
•

CALL GETBEAD (N2, J2)

• • •
CALL DMSET (ICO:'.'vIP, IBD(J2), VAL)

• •
•

CALL DMFLSH
END
SUBROCTINE GETBEAD (NUM, INDEX)
COMMON IBD(500), IPTR

C ALLOCATE 11 NUM" NUMBER OF WORDS IN DMFILE
CALL DMGTBD (NUM, IBD(INDEX))
IC = 1 OOOOOOOOOOB + INDEX

C SAVE BEAD ADDRESS RETURNED IN IBD(INDEX) IN FILE DMFILE
CALL DIVISET (IC, IPTR, IBD(INDEX))

44616800 Rev. 01

RETURN
END

• •
•

Sample program to use the file:

JOB2.
RUN(S).
COMMON, DMFILE.
LGO.

~
PROGRAM DMTEST2 (INPUT, OUTPUT)
DIMENSION IBEAD (500)

C OPEN FILE DMFILE WITH 4 IN-CORE BLOCKS
CALL DMINIT (6LDMFILE, 4)

• • •
C SET IPTR = 41000B SO BEAD ADDRESSES CAN BE RETRIEVED FROM
C DMFILE

IPTR = 41000B
ICOMP = 070764000001B
CALL DMGET (ICOMP, IPTR, IBEAD)

C ARRAY IBEAD NOW CONTAINS ALL BEAD ADDRESSES SET DURING
C CREATION RUN

•
• •

CALL DMGET (ICOMPA, IBEAD(J), VAL)

•
•
•

CALL DMFLSH
END

44616800 Rev. 01

• • •

8-7

SYSTEM OPERATORS' GUIDE

6612 CONSOLE

CONTROL POINT ASSIGNMENT AND RELEASE

AUTOMATIC INITIAL ASSIGNMENT

The type-in command:

AUTO. @
structures the 6000 Series system with BATCHIO at control point 1 and NEXT at 2 through

6. Control point 7 remains blank.

MANUAL ASSIGNMENT AND RELEASE

BATCHIO can be assigned to control point n by typing in:

n. BIO. @
EXPORT is automatically loaded by BATCHIO when needed.

To dedicate a vacant control point to graphics processing, make sure EXPORT is up, then

type in:

GRAPH, n, fl. @
n Control point number reserved for graphics use

fl Octal field length - the amount of core memory to be reserved for control
point n (fl is the actual field length divided by 100) Fl cannot be zero.

To dedicate two vacant control points to graphics, type in:

GRAPH, n, fln, m, flm. @
n First control point reserved for graphics use

fln Field length (divided by 100) reserved for control point n

m Second control point reserved for graphics use

flm Field length (divided by 100) reserved for m

(fln and flm cannot be zero.)

This entry can also be used to change control points and/ or field lengths.

9

44616800 Rev. 03 9-1

To assign control points that are currently running batch jobs, type in:

n. CLEAR. @
for each control point (n is the control point number); this type-in command prevents NEXT

and/ or another batch job from being brought to the control point when the current job termi­

nates. When the control point becomes vacant, assign it to graphics using either of the

type-ins above.

If only one control point is assigned to graphics, it can be released by typing:

GRAPH, 0, 1. @
If two control points are assigned and one is to be released, the type-in:

GRAPH, n, fln, 0, 1. @
will rPtain C'Ontro1 point n with field length fln (times 100), and release the other assigned

control point.

To release both graphics control points to the system, type in:

GRAPH, 0,1,0,1.
n. DROP

The NEXT package is brought to a released control point after normal termination of job

processing.

BATCHIO, B AND K DISPLAYS

CALLING THE K DISPLAY

The K display (see Figure 9-1) shows device assignments and problem messages for each

of the 16 buffer areas used by the BATCHIO drivers. The word IDLE appears in the job

name area of each buffer not currently assigned to a device, and the word EXPORT appears

in the .iob name area of a buffer currently being used to service a 1 700. All other job (or

file) names appearing on the K display are truncated and suffixed - as they are for the day­

file (A) display. Nothing appears in the message area of a buffer when its device is operating

normally.

The K display may be called to the left console screen with the type- in:

Kd.@

where d is the letter identifying the display that is to replace the one currently appearing on

the right screen. Similarly, the K display may be placed on the right screen by:

dK. @)

9-2 44616800 Rev. 03

BUFFER
AREAS -------

OR

SYSTEM
TAPE LABEL-------

~ DATE

s~~~\ I
, I
~ ,-~ \ ,-_}\------,

00. 1 5. O'i SCOPI:: 3. 1 . 2 7.21.69

BATCH IO STATl'S

01 le\ POR I sco 1

02 IDLE

03 E\POR1 SC0.2

04 IDLE

05 Sot'RC 1 5 CR.22 NOT READY

06 EXAMP16 CR23

07 OBJr:c17 LP12 ;\() PAPl::R

10 OBJl::Clll LP13

11 I DLL

12 l IJLL

13 OBJt:C17 CP32 FEED FAILLKL

14 !DU.

15 IDLE

16 JDLt:

~
' MESSAGE

MNEMONIC OF
DEViCE USING
THE BUFFER ------ EQUIPMENT STATUS

/EA
TABLE ORDINAL OF
ACTUAL DEVICE

Figure 9-1. DSD 6612 K Display

K DISPLAY EQUIPMENT MNEMONICS

Table 9-1 lists the mnemonics of all the devices that can be serviced by BATCHIO.

44616800 Rev. 01 9-3

TABLE 9-1. EQUIPMENT MNEMONICS

Mnemonic

CP

CR

LP

SC

Equipment

Card punch

Card reader

Line printer

Data Set Controller for
1 700's Data Channel

K DISPLAY BUFFER MESSAGES

Table 9-2 contains all of the equipment status messages which may appear in a buffer's

message area. Only messages that concern conditions requiring operator action appear on

the K dis play.

TABLE 9-2. BUFFER MESSAGES

Message Meaning and Action

FEED FAILURE

NO PAPER

NOT READY

RE-RD 1 CD.
COMPARE ERROR.

Card punch is either jammed or out
of cards.

Line printer is out of paper.

Something has occurred that produces
a "not ready" condition in this device;
check all controller and device switches.

The last card read must be put throughJ
again to compensate for a compare error.

'---~~~~~~~~~~_J_~~~~~---

OUTPUT CONTROL COMMANDS

BAT CHIO output processing can be controlled by the END, REPEAT, and SUPPRESS type­

in commands.

The END xx. @ type-in stops the printing or punching of the file at K display buffer area

xx, and starts outputting the dayfile entries for that file. Using the same type-in a second

time will stop dayfile output and drop the job completely.

The REP xx. @ type-in ends the printing or punching of the file at K display buffer area

xx, and places the file back in the SCOPE OUTPUT queue so that it can be rescheduled on

another device.

The SUP xx. @ type-in supresses the processing of all printer format control characters

for the file at K display buffer area xx; the file is printed in 136-character lines, and the

lines are single -spaced.

9-4 44616800 Rev. 01

BA TCHIO B DISPLAY AREA

The structure of the B display area used for the BAT CHIO control point is as follows:

n. BATCHIO

n

m

m BUFFERS ACTIVE

messages

RA aaaaaa FLwwwwww

EXPORT A. status B. status C. status D. status

communication messages

Control point number.

Number of buffers currently being used (the whole message is re­
placed by the word IDLE when there are no buffers in use).

messages Last K display message, or one of the connect/reject dayfile
messages mentioned in Section 2.

aaaaaa

wwwwwww

Current octal relocation address of the control point field.

Current octal length of the field.

EXPORT A Display messages generated by EXPORT. The letters A, B, C,
and D refer to the 1 700 's numbered 1, 2, 3, and 4, respectively.
(See the subsection on EXPORT below.)

communication
messages

Message from a remote operator identifying the sending terminal.
(See the subsection on EXPORT below.)

EXPORT

INST AllATION PARAMETERS

When the Interactive Graphics System is first configured, several installation parameters

must be set to prepare EXPORT for execution; one of which is the following:

INIT ALIZA TION

• Equipment Status Table entries for each 6673 or 6674 Data Set

Controller attached to the system configuration; the correct

equipment and channel numbers for each controller must be

known to correctly interpret the EXPORT entries on the K display.

Once the system is configured, no operator action is necessary to initialize EXPO.KT. The

EXPORT control point area is automatically structured by BATCHIO when that routine is

loaded, and all EXPORT routines are kept in Central Memory Resident. Communication

with the 1 700 Computer and IMPORT is initiated by the 1 700 operator.

44616800 Rev. 01 9-5

B DISPLAY ST A TUS MESSAGES

The fifth line of the BATCHIO B display area (EXPORT A. status B. status C. status D.

status) is used lo display rnessages generated by EXPORT. The letters A, B, C, and D refer

to the 1700's numbered 1, 2, 3, and 4, respectively. Table 9-3 contains all EXPORT mes­

sages, in alphabetical order; if a message does not pertain to a specific 1 700 terminal, it is

displayed on the sixth line of the BATCHIO area (communication messages).

9-6

Message

BAD CALL
PARAMETER

--DEAD--

DOWN

ERROR

IDLE

I/O

MESSAGE

TABLE 9-3. EXPORT MESSAGES

Meaning

A graphics job has issued an
EXPORT service request that
EXPORT cannot interpret; the
job is aborted.

The 1 700 has sent a directive
word which is not valid on the
basis of the current EXPORT
status word. In order to protect
the 6000 and the other 1 700 's,
EXPORT stops communicating
with this terminal. In a debugged
system, this should not occur.

This 1 700 was active but has
ended operations.

Operator Action

None

To recover, idle all 1 700
terminals, turn off all of
EXPORT's 6673 or 6674
Controllers, wait until
EXPORT drops, then turn
the equipment back on.

None

EithPr a loss of communication
or Data Set Controller hardware
error has occurred. This mes -
sage is displayed if EXPORT
receives no response from IlVI­
PORT after 64 consecutive re­
transmissions; it usually occurs
if the 1 700 has stopped communi­
cations without sending EXPORT
a ''shut down remote'' directive.

, Dependent on cause

Communication exists with this
1 700, but no data is currently
being transmitted.

Sending or receiving data.

A message from the operator of
1 700 currently appears on the
sixth line of the BATCHIO B
display area; this EXPORT mes­
sage identifies the sending
terminal.

If a message for a 1 700 has
been entered and IDLE ap­
pears, re-enter message
with the correct terminal ID
(see below).

None

Acknowledge message by @)
entering: n. GO. CR
where n is the BAT CHIO I
EXPORT control point
number.

44616800 Rev. 01

Message

NCON ERROR

TABLE 9-3. (Cont'd)

Meaning

A graphics program has issued
an EXPORT service request con­
taining an invalid NCON parameter;
the job is aborted.

Operator Action

None

-PAR-x A parity error has occurred on
output data stream x; output
stops for operator action.

To continue output, type in:
n. GO. {CR)
where n i~e BATCHIO

, EXPORT control point
number.

STORAGE A 1 700 is sending batch job data
and needs central rne1nory storage.

Free central memory stor­
age or wait until storage is
available.

NOTE

Whenever IMPORT ends operations or is declared
DOWN by EXPORT, all output files in transmission
for that terminal are rewound and returned to the
SCOPE output queue. If EXPORT is dropped, all
attached output files are rewound and returned to
the output queue. (The files are still considered
remote files, and are not output locally.)

INTER-COMPUTER OPERATOR COMMUNICATION

A message from a remote operator is displayed on the sixth line of the BATCHIO B display

area (communication messages), with the word MESSAGE entered on the fifth line after the

appropriate terminal designator. Before another remote operator message can be displayed,

the 6000 operator must acknowledge the displayed message by typing in:

n. GO. @
n BATCHIO/EXPORT control point number

To transmit a message to a particular 1 700, the 6000 operator types:

n. 0
:' x message 0

n BATCHIO/EXPORT control point number

x Terminal designator (A, B, C, or D - see above)

message Any alphanumeric or special characters - up to a maximum of 2710

DAYFILE/B DISPLAY MESSAGES

For DAYFILE /B DISPLAY messages concerning graphics jobs see Appendix B.

44616800 Rev. 01 9-7

1700 COMPUTER CONSOLE

INITIALIZATION AND RESTART PROCEDURE

Because the minimum 1 700 hardware configuration precludes the use of most of the 1 700

operating system, this manual has made no mention of it; the sections of that system which

are used will be treated in the following pages as a part of IMPORT.

TYPED-IN BOOTSTRAP LOADER

The 1 700 operator must perform the following activities to prepare IMPORT for remote pro­

cessing. This procedure assumes that all parameters are preset within the operating system

at loading time, and that the system is to be loaded from the 853 Disk Drive (it can also be

loaded from the card reader or paper tape reader).

9-8

1 . Set all console switches to neutral.

2. Verify that:

a. Previously prepared disk pack on the disk drive contains the operating
system and IMPORT;

b. Disk and controller are On and Ready;

c. DSC is on, all test switches are Off, and the data set is plugged in;

d. Card reader, printer(s), and teletypewriter power is On;

e. 1 713 Teletypewriter's right-hand selector switch is set in the ON LINE
position and that it is in K mode.

3. Depress the Clear switch on the computer console.

4. Momentarily depress the Auto Load button on the 1738 Disk Pack Controller.

5. Momentarily set the Hun-Step switch to Hun. At the teletypewriter, the typeout

PP appears.

6. Set the Protect switch to the Protect position.

7. Depress the Break Release button and type an asterisk (>:<), followed by a

cacriage return.

8. Depress the Manual Interrupt button on the teletypewriter; the system

responds by typing Tull.

9. Depress the Break Release button and type an asterisk followed by IGS and a

carriage return.

The Il\IPOHT program then loads, clears buffer areas, sets flags, adjusts for

system environment, and outputs:

I:'.VIPORT READY ... S, R, OR U>:<>:<

on the teletypewriter.

44616800 Rev. 03

10. Depress the Break Release button (do not depress the Manual Interrupt) and

type in one of the above options :

S Clear 1 700 job table and start IMPORT /EXPORT communications;

R Restart IMPORT/EXPORT communication and do not clear 1 700
job table;

U IMPORT

If the operator selects the S or R type-in, IMPORT attempts to begin com­

munication with the 6000 Series computer.

To initiate communications, the 1 747 DSC sends an interrupt status code word to

the 6000 DSC. The 1 700 Computer then delays for a short time on a two-word re­

ceive with an end-of-operation interrupt selected. If the central site computer does

not respond, the process is repeated. (This repetitive process can be observed by

noting the on/ off pattern of the overflow indicator on the 1 700 console.) The central

computer acknowledges the interrupt code word by transmitting two words.

11. IMPORT types IMPORT 1 700 when communications are established.

12. Depress the Manual Interrupt button on the teletypewriter. The system responds

by typing MI.

13. Depress the Break Release button and type GO followed by a carriage return.

The EXPORT /IMPORT system is now ready for remote processing. The teletypewriter

output produced by the preceding activities should appear as follows:

pp

MI

*IGS

IMPORT READY ... S, R, OR U ~:'* S

IMPORT 1700

MI

GO, 11

MI

ONGR

COMMUNICATIONS FAILURE

If a fatal transmission error occurs and EXPORT declares the 1700 inoperative, IMPORT

will output the message:

DSC REJECT

or

1706 REJECT

44616800 Rev. 03 9-9

Because EXPOHT aborts all jobs associated with an inoperative 1 700, there is no reason to

attempt recovery of the 1700's contents. Therefore, the only way to re-establish communi­

cation is to reload the system through the procedure above. When the system is reloaded,

all graphics console controllers are automatically initialized, and their contents lost.

CONTROL TYPE-INS

The 1 700 operator can request the execution of a variety of functions through the use of the

teletypewriter. Table 9-4 is a list of operator type-ins and their corresponding functions.

9-10

TABLE 9-4. IMPORT CONTROL TYPE-INS

Statement Function

STAT, job name

CPR, job name, priority

CPT, job name, seconds

RPNT, n, lu

DVT, job name (or)
DVT, job name, dt

TEl:-\M, lu

A BT, job name

DISP, message

LIST

END

GO (or) GO, lu (or)
GO, lu, x

STOP, lu

SEO.J, lu

Abort the graphics job using console n. More than
orie console can be specified as shmvn.

Obtain information on status of job.

Change priority of job.

Change CP run-time limit

Rewind entire file currently being output on lu, if n
is zero. If n is given, the output file is backed up n
sectors and then started from that point. (n is 63 10
sectors maximum; lu is logical unit number.)

Divert all remote output for job named to central
facility. If dt is given, divert only appropriate out­
put if job is in the output stack.

Terminate output on data stream specified by lu for
job currently being output.

Abort job named, if th2 job is at a control point.
(This has the sam2 action as central operator
DROP command.)

Transmit display message for central operator.

List current con tents of 11\IPOR T job table and
current status of each job.

Shut down remote communication.

Initiate data transfers on all data streams or the I
data stream associated \vith lu.

Stop data transfer on data stream associated with lu.1
Stop data transfer at end of the job on data stream I
associated with lu. I

44616800 Rev. 01

TABLE 9-4. (Cont'd)

Statement Functions

WAIT (or) WAIT, lu Suspend data transfer temporarily on all data
streams or the data stream associated with lu.
(Continue operation with the GO statement.)

RLSE Release all remaining jobs to central site for out­
put. The response to this statement is: xx PRINT
FILES DIVERTED, and/or yy PUNCH FILES
DIVERTED, and/or zz OTHER FILES DIVERTED.
If there are no files to release, the response is:
------NO REMOTE FILES----. These messages
are entered into the central site dayfile. (xx, yy,
and zz are decimal.)

Definition of terms in Table 9-4:

job name

priority

seconds

dt

message

Name on job card with SCOPE 3. 1 appended sequence number and

terminal ID. (i.e., name supplied with a job acknowledgement

message.)

Octal number with a maximum of 4 digits.

Octal number with a maximum of 5 digits.

LP or CP (line printer or card punch).

One line of 2710 characters maximum.

lu Logical unit numbers. Decimal numbers assigned to the computer

peripheral devices. The number assignments are present within the

operating system, and are determined during MSOS initialization.

n Number of graphics console (1 to 6). Also assigned during system

assembly.

x Parameter used with 430/1728 reader/punch; x = R, read; x = P, punch.

TELETYPEWRITER INPUT PROCEDURE

To enter a type-in command, the following steps must be followed:

1. Press the Manual Interrupt button (the resulting type-out is MI; a line feed

carriage return is activated and the Break indicator is lit).

2. Press the Break Release button.

3. Enter the statement.

4. End the statement with a carriage return.

44616800 Rev. 01 9-11

JOB LOCATION ON MESSAGE ACKNOWLEDGEMENT

Certain input statements are only valid when the specified job is in the input stack, at a

control point, in the output stack, in the process of being output, or when the output stream

is active. Depending on the input statements entered, acknowledgement is made in one of

three ways:

• Acknowledgement with the job name specified

• Acknowledgement with no job name specified

e INVALID REQUEST message

Table 9-5 lists these job locations.

i

Message

CPR

CPT

I ABT

'I
1

TERM
1

DVT

I blank

LP I
I

I
I CP

~PNT

OUTPUT MESSAGES

TABLE 9-5. JOB LOCATION

Input J

Stack At CP

x

I
I
I

x
x
x

Output
Stack

x

Being
Output

x

x

Acknowledgement

Without job name

Without job name

Without job name

vVithout job name

X 1

1

X X X With job name

1 L X X \Vith job name

L __ J . ----- __ , _: __ . l ... ~ _j_;:~~;;:j::;_m_e __

Certain phases of remote operator command and job processing cause IMPORT or the

Buffer T1~anslator to output teletype\\Titer messages informing the 1 700 site of jo~ adv~ance­

ment and of particular error conditions. The time read from the system clock on the 6000

Series computer precedes all teletypewriter messages received at the remote site in the

form: xxyy:zz (where xx=h.:rnr, yy=minutes, and zz=seconds). Table 9-6 lists all possible

messages and provides a brief description of each.

9-12 44616800 Rev. 01

Source

EXPORT

EXPORT

IMPORT

IMPORT

EXPORT

EXPORT

EXPORT

IMPORT

IMPORT

EXPORT

EXPORT

EXPORT

IMPORT

44616800 Rev. 01

TABLE 9-6. OUTPUT MESSAGES

Message

job name

(>:') job name IN STACK

JOB TABLE FULL

NO JOBS

(>:') job name IOSxxxx

(>:0~) job name lu C

(col. 1-7) JOB CARD
ERROR

CL

EXIT IMPORT

INVALID REQUEST

(>:0 :') job name DONE (or)
(OPER) DONE

(>:,>:')(>:') job name NOT IN
SYSTEM

DSC (or) 1 706 REJECT

Definition

Acknowledgement from EXPORT that the
indicated job is ready to be released to
the system. IMPORT places this job
name in its internal job table.

Job named has been released to SCOPE
by EXPORT and is waiting for a control
point.

IMPORT job table is full. Reading con­
tinues automatically as soon as a job
table entry is cleared (e.g. , printing
complete or a job is diverted). The job
table holds 2 5 jobs.

Response to list command when IMPORT
job table is empty.

Job named has completed execution and
has left the control point. It is in Output
Stack. The priority of this output file is
xxxx.

Output has completed for job named,for
logical unit numbers lu.

Columns 1- 7 contain the first seven
characters of what was sent as a iob
card. IMPORT passes the cards being
read until an EOF is reached, after which
IMPORT resumes sending jobs to EXPORT.

IMPORT has lost communication with
EXPORT. IMPORT automatically at­
tempts to re-establish communication.

IMPORT operation terminated.

EXPORT did not accept the last teletype­
writer request sent. (See Table 9-3).

EXPORT did process the last teletype­
writer request sent by IMPORT. (See
Table 9-3.)

Job named has completed output or
never existed.

An abnormal condition was detected in
the communications hardware. IMPORT
is aborted. (Check Power On and DSC
switches for the proper settings.)

9-13

Source

IMPORT

IMPORT

BUFFER
TRANS­
LATOR

BUFFER
TRANS­
LATOR

BUFFER
TRANS­
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

9-14

TABLE 9-6. (Cont'd)

Message

IMPORT READY.
S. R. OR A,:,,:,

IMPORT 1700

DIP EXTERNAL
REJECT

DIP INTERNAL
REJECT

GICOPY ADDR ERR,
NCON y

GIERAS ADDR ERR,
NCON y

GIMACE ADDR ERR,
NCON y

GIMOVE ADDR ERR,
NCON y

GITIMV ADDR ERR,
NCON y

GITIVIMV ADDR ERR,
NCON y

GUMACGADDR ERR,
NCON y

l Definition

IMPORT initialization message. Opera­
tor input required to acknowledge mes -
sage. (Depress Break Release button
and type either S, R, or A)

Indicates that communications have
been established with EXPORT.

A graphics console controller has re -
jected all attempts by the Digigraphic
Interrupt Processor to communicate
with it; either the data channel cannot be
cleared or a hardware failure has oc­
curred. The job associated with that
console is automatically aborted.

The Digigraphic Interrupt Processor
routine has received no response when
attempting to communicate with a con­
sole controller (check Power On and
controller switches for proper settings).
The job associated with that console is
automatically aborted.

The Buffer Translator has detected an in­
valid IDDAD, IDDADI, or MAD program­
ming parameter while processing a buffer
from EXPORT that contained a call to the
named routine and to console y.
This is a non-fatal condition.

See above.

See above.

See above.

See above.

See above.

See above.

c4 4 6 1 6 8 0 0 Rev. 01

Source

BUFFER
TRANS­
LATOR

BUFFER
TRANS­
LATOR

BUFFER
TRANS­
LATOR

BUFFER
TRANS­
LATOR

BUFFER
TRANS­
LATOR

BUFFER
TRANS­
LATOR

44616800 Rev. 01

TABLE 9-6. (Cont'd)

Message

Glxxxx BUFFER
OVERFLOW, NCON y

Glxxxx EXT REJ,
NCON y

G Ixxxx INT RE J,
NCON y

Gixxxx
ILLEGAL REQUEST

Glxxxx
NOT READY, NCON 0

Gixxxx
SHORT TRANSFER

NOTE

Definition

The driver routine for graphics console
y has detected a controller memory over­
flow condition while processing a request
from the Graphics Interface routine with
the mnemonic xxxx; this is a non-fatal
condition.

The driver routine for graphics console
y has detected a controller communica­
tion reject while processing a request
from the Graphics Interface routine with
the mnemonic xxxx; the job containing
xxxx is automatically aborted.

The driver routine for graphics console
y has attempted to process a request
from Graphics Interface routine xxxx
for a controller that either doesn't exist,
isn't turned on, or has suffered a com­
munications failure. The job containing
xxxx is aborted.

A graphics console driver has been
asked to perform an I/0 function it can­
not handle; the job containing the Graphics
Interface routine xxxx is aborted.

A graphics console driver has encountered
a Not Ready hardware condition (check J

console power switch) while attempting
to process an I/O request from Graphics
Interface routine xxxx; the job containing
Gixxxx is aborted.

A graphics console driver has detected
the premature termination of a data
transfer to or from a controller; be -
cause the transfer action requested by
Graphics Interface routine xx xx was
incomplete, the job containing the routine
is aborted.

Messages preceded by an asterisk (>:~) are generated in
response to a STAT request or a LIST command.

Messages preceded by two asterisks (>:n:~) cause the job
name to be cleared from the IMPORT internal job table.

9-15

ADDITIONAL STATEMENTS

The PM (SCOPE Print mode) control statements are printed on the teletypewriter with the

first two characters set equal to the logical unit of the printer affected. Printing stops to

allow operator intervention. The operator can resume printing with the GO command.

In addition to PM statements, all of the Class 2 error messages (Appendix B) produced at

the 6000 are printed on the teletypewriter.

ERROR CODES

IMPORT outputs informative codes to the 1 700 operator when error conditions occur that

are external to the system. Some of these error codes require operator action. Table 9-7

gives an explanation of each code and briefly describes possible operator action.

Code

9-16

TABLE 9-7. ERROR CODES

Explanation

Card reader checksum
error on a binary card

Device type error

Job name not found in
IMPORT job table

Free form input initiation
card error

Improper job card detected
by IMPORT

Display message length
error

Unidentified logical unit
number

Action

Card reading stops. The erroneous card
is the last card read into the computer.
(Non-buffered controllers: Last card in
stacker; buffer controllers: Second to
last card in stacker.) The operator may
reload card reader with erroneous card
for re -reading (1 or 2 cards) or ignore
the erroneous card. Use of the input
:statement GO or GO, lu will resume card
reading.

Entire input statement is ignored by
IMPORT.

Entire input statement is ignored by
IMPORT.

Card is ignored and operation continues.

IMPORT continues to read cards to end
of job. Card data transmission resumes
with the next job.

Entire input statement is ignored by
IMPORT.

Entire input statement is ignored by
IMPORT.

44616800 Rev. 01

Code

**M

**P

**R

**U

**SQ

TAB LE 9 - 7 (Cont'd)

Explanation

Message buffers full

Improper priority number
on a change priority com­
mand

Illegal EOR level on an EOR
card

Unidentified operator input
command

6000 format binary card
sequence error

Action

Three messages (see DISP 9-10) may be
queued; one displayed at the BA TCHIO
control point, one displayed by IMPORT
and one displayed by EXPORT. The fourth
cannot be displayed until one or more are
acknowledged by the 6000 operator. 'rhe
6000 operator may ac 1<.~ledge a mes­
sage by typing N. GO. C where N is
BATCHIO's control poin number.

Entire input statement is ignored by
IMPORT.

EOR level is set to zero and normal
operation continues.

Entire input statement is ignored by
IMPORT.

Card reading stops. The input statements
GO or GO, lu will resume card reading
with no further sequence checking prior
to reading an End-of-Record or End-of­
File. All data is transmitted to the cen­
tral site.

ERROR REPORTING FORMAT

The 1 700 operating system reports errors in the following format:

L, nn FAILED ee

ACTION

nn Logical unit number of the failed device

ee Error code

The 1 700 operator may dispose of the above error report with either of two responses:

RP @ Directs that the request be repeated.

or

cu@ Reports the error to the requesting program.

The device is allowed to continue processing requests.

Error codes are defined for each hardware driver and the appropriate manual should be

consulted.

44616800 Rev. 03 9-17

GLOSSARY

APPLICATION PROGRAMMER - The programmer who writes graphics programs through
the FORTRAN interface called the Basic Graphic Package. The programmer is
usually also the graphics console user.

ARGUMENT - Parameters entered by the graphics program in a call to the Basic Graphics
Package.

ASSOCIATIVE ADDRESS - Bit pattern that forms the parameter(s) for calls to the Basic
Graphics package, i.e., contents of NCON, IDDAD, MAD, IBEAD, NAME, and IFILE.

BASIC GRAPHICS PACKAGE - Collection of FORTRAN callable subroutines that allow
access to all the graphics hardware and the data handler.

BATCH JOBS - Programs that are non-real-time and run in the background of graphics.

BEAD - Group of contiguous computer words that may be related to other beads to make up
a data structure. Beads contain components and reside in blocks.

BLOCK - Mass storage logical blocks contain beads and are addressed by count. Reside on
mass storage and in core.

BUFFER, MEMORY - A storage device attached to the 1 744 Controller and used by the
Interactive Graphics System for storage of byte-streams during off-line display.

BUTTON - Used to initiate an action from the 274 Console. There are three kinds of buttons:

• Keyboard key

• Light button

• Prime button

BUTTON, PRIME - Allows a display item that is not defined as a button to activate a task
when picked, or, is used to temporarily allow a display item to have input significance
other than that written into the ID block of the item.

BYTE - A sequence of 12 adjacent binary digits (bits) operated upon as a unit.

COMMON FILE - A file of information that remains in the system, regardless of whether
or not it is attached to a program.

COMPONENT - A specific bit, character, or word space within a bead. Each component
has a unique address code.

DATA HANDLER - Package which optimizes the use of mass storage and of in-core data
file manipulation.

DATA STRUCTURE - A logical relation used in graphics to store relationships for data
retrieval.

DIRECTIVE - An IMPORT word code which informs EXPORT of the type of data that is
being sent and I or what type of return data is required.

44616800 Rev. 01 Glossary-1

DISPLAY BUFFER -A core memory buffer in the 1 744, used for refreshing displays on the
274 Console in an off-line manner.

DISPLAY BYTE-STREAM - Display controller description of the item to be displayed. A
serial train of control bytes (see Section 4).

DISPLAY, CORE - A method of graphic -display using information stored in computer core
memory. Core display is synonymous with on-line display.

DISPLAY ITEM -Any item displayed on 27 4 Console. Display items are byte-streams
placed in the floating address area of the buffer memory, and usually start with a
reset sequence and end with an ID block.

DISPLAY, OFF-LINE -A method of graphic display using information stored in 1744 buffer
memory which does not require direct computer intervention except to process display
change information. Off-line display is synonymous with buffer memory display.

DISPLAY, ON - LINE - See DISPLAY, CORE.

ERASE -An erase function not only removes a display but also removes the pointer from
the associative address table block label. The actual bytes of the item are removed
from the display controller.

EXPORT /IMPORT - Communications system which permits batch or graphics job sub­
mission to a 6000 Series computer from a remote computer.

FILE - 1. A collection of related records treated as a unit.
2. A peripheral devi.ce used by a computing system for storing data.

FRAME - A programmer -defined rectangular display on the CRT display surface which en­
closes the working surface. More than one frame can be specified and displayed at
one time.

FRAME-SCISSORING -The process of removing the portion of a display i. tern that exceeds
the frame limits. A form of micro-scissoring is done when an item is rescaled such
that the item is just a point.

FRAME TIME - Allowed time for any graphics program to remain at a graphics control
point. Calculated by the Scheduler routine.

GRAPHICS PROGRAMS - Programs, consisting of many graphic tasks, utilizing the Basic
Graphics Package subroutines.

GRAPHICS TASK -Overlay performing one operation, called by a light button or another
graphics task.

GRID, DISPLAY -An area consisting of 4096 addressable points on the Hand V axes. The
display grid circumscribes the display surface such that any combination of points on
the H and V axis can be addressed.

HOOK - A 9-bit pointer inserted into a bead address when stringing beads.

ID BLOCK - An identification block of coded information associated with a display item.
(See Section 6.)

INPUT, ALPHANUMERIC - Picking characters from a displayed font or inputting from
A/N keyboard.

KEYBOARD - Optional input device. There are two types:

• Function
• Alphanumeric

Glossary-2 44616 800 Rev. 03

LIGHT BUTTON - Software defined functions displayed on the control surface. They are
picked with the light pen and usually call a task to be executed. Light Buttons are
items directly related to graphics program options.

LIGHT PEN - A pencil-like bundle of optical fibers which senses the current vertical and
horizontal coordinates of the beam and makes them available to the program in order
to identify the item that the operator picked.

LIGHT REGISTER - Specific area on the control surface provided for operator input of
alphanumeric data. These registers may appear anywhere on the screen, according
to the application programmer's wish.

MACRO - The display byte stream for an item which can be displayed in a number of loca­
tions on the screen without duplication of the byte-stream.

PICK - The selection of an item with the light pen or function keyboard.

RESET SEQUENCE - Consists of a reset byte to control beam intensity, light pen sense,
and blink capabilities; followed by two bytes to establish horizontal and vertical dis­
play coordinates to which beam will be set with beam off. In conjunction with last
two bytes, a system imposed 25 µsec delay permits beam driving circuits to stabilize.

RESIDENT TIME - Actual time a program has run at a control point.

RESPONSE TIME - The time period between a graphics operator command and the answer
he receives.

RESULT - The output of parameters by the Basic Graphics Package.

ROLLIN - The function of transferring a graphics program from mass storage to a control
point for execution.

ROLLOUT - The function of transferring a graphics program from a control point to mass
storage.

SCHEDULER - A PPU program called by EXPORT to rollout or rollin a graphics program.

SCISSOR - The act of dropping an entity from the display when its coordinate parameters
exceed the range of the display grid. This is a software function.

SCISSORING, FRAME - Truncating display items to fit a user defined frame.

SCISSORING, MICRO - The act of non-displaying display items too small to be seen. The
cutoff point is 0. 025 inch.

SING LE PICK - A classification given to a display item to cause only the last one of this
type picked to remain on the queue.

STATUS CODE - An EXPORT data word which informs the IMPORT program what buffers
are available for data I/O.

STRING - A serial linking of display items, buttons, or beads.

STRING PICK - A classification given to a display item to cause each item of this type
picked to be put on the end of a string of picked items.

SURFACE, CONTROL - The area reserved for light buttons and light registers. The area
on the cathode ray tube display surface exclusive of the working surface. Program­
mer-defined.

44616800 Rev. D3 Glossary-3

SURF ACE, DISPLAY -A 20-inch diameter area on the cathode ray tube screen utilized for
man-machine communications. A light, blue, flicker-free display is presented to the I
operator due to components of the P7 phosphor coating deposited on the inside surface
of the cathode ray tube screen.

SURFACE, WORKING -One of two divisions made on the cathode ray tube display surface.
The working surface can be enclosed by a frame (viewing window) which is a displayed
graphic.

TASK -A program and its subprograms that perform a series of calculations or logical
operations. Graphic tasks are, of necessity, as short as possible to define one phase
of a multiphase job.

TRACKING - The 1 700 Basic Graphic Package function which maintains cognizance of the
position of the light pen as it moves across the display surface. A core-displayed
tracking cross is used as the light source for the light pen.

TRACKING CROSS - A software displayed item which allows the graphics operator to use
the light pen where otherwise no light exists.

UNIT, DISPLAY GRID - The spacing between the 40 9G points on the H and V axis of the
display grid. A display grid unit is fixed at O. 005 inches and there are 200 display
grid units per inch.

USER, CONSOLE - Person who operates a graphics console and uses an application program.

UTILITY PROGRAMS - Programs which support the graphics system, but are not directly
involved in graphics program execution.

Glossary 4 44616800 Rev. 03

6000 BASIC GRAPHICS PACKAGE ROUTINE INDEX A

Routine Page Routine Page

AELBUT 7-21 GIFSID 7- 23

AERTRN L-1 GIKYBD 7-14

AETSKC 7-13 GILPKY 7-15

AETSKR 7-13 GIMAC 7-38

DMD MP 7- 52 GIMACE 7-39

DMFLSH 7- 51 GIMASK 7-19

DMGET 7- 53 GIMOVE 7-42

DMGTBD 7- 52 GI PB UT 7-16

DMINIT 7- 50 GIP LOT 7-56

DMRLBD 7- 52 GITCOF 7-45

DMSET 7- 53 GIT CON 7-45

GFONTA 7- 57 GITIMV 7-46

GFONTN 7- 58 GITMMV 7-46

GIABRT 7- 55 GUAN 7-31

GIA NE 7-25 GUARC 7-27

GIA NS 7-25 GUARCG 7-36

GIB UT 7-22 GUBYTE 7-37

GICLR 7-20 GULINE 7-26

GICNJB 7-12 GUMACG 7-37

GICNRL 7-12 GURSET 7-30

GI COPY 7- 42 GUSEG 7-34

GIDISP 7- 40 GUSEGA 7-35

GIEOM 7-15 GUSEGI 7-33

GIERAS 7-41 GUSEGS 7-32

GIFID 7-23 SCHEDR 7-11

44616800 Rev. 01 A-1

GRAPHICS SYSTEM ERROR MESSAGES B

6000 PROGRAMMING DIAGNOSTICS

In addition to the standard FORTRAN compiler, SCOPE loader, and SCOPE execution error

diagnostics, the Interactive Graphics System produces several additional diagnostic mes­

sages. These diagnostics appear on one or all of the system consoles, and are all entered

into the SCOPE dayfile. Dayfile messages pertaining to a specific program are automati­

cally printed with the program's listing.

The special Interactive Graphics error messages are listed below in alphabetic order.

Class 1 messages appear only in the SCOPE dayfile (A) and/or job status (B) displays on the

6612 Console screen. Class 2 messages also appear at the 1713 Teletypewriter and on the

274 Console's display screen; they occur only during program execution runs. All mes­

sages issued by 6000 Basic Graphics Package routines contain the name of the Package call

in which the error was made, and are prefaced by a message which states the name of the

task overlay in which the erroneous call occurred.

6000 INPUT/OUTPUT ERRORS

BAT CHIO also produces some error messages; these appear only in a program's output

file.

1700 ABORT ERRORS

Class 4 error messages are produced by the Buffer Translator, and appear on the console

screen and the 1713 Teletypewriter, but are not sent to the 6000 Series machine. If a Class

4 message is associated with a fatal error, it sends an abort flag from the 1700 to the 6000.

The Scheduler detects the abort flag and issues the Class 1 error message 1 700 ABORT.

44616800 Rev. 03 B-1

l\les sage

AEFILE READ
ERROR

BAD CALL CODE
RETURNED-GIANE

BAD CALL
PARA METER

BAD NAME CHECK
rcrdnam

BYTE ARRAY
EXCEEDS 255-
GUBYTE

"Q"7'T'V f\ DD f\ V
..LJ...l.. .l.....L..J rl_l_\._L\.~ ...1...

INDEX ZERO­
GUBYTE

DISPLAY ITEM
BUFFER EXCEEDED
-GIDISP

DISPLAY ITEM
NBYTE EQUALS
ZERO-GIDISP

EMPTY FILE
filenam

EOR NOT READ
ON TASK LOAD

EXPORT IS NOT
lJP

B-2

Error
Type Class

Fatal

Fatal

Fatal

Fatal

Non­
Fatal

l'J on-
Fatal

Fatal

Non­
Fatal

Fatal

Fatal

Fatal

1

2

1

1

1

1

2

1

1

2

1

Meaning

Parameters in the File Environment
Table indicate a disk read error \Vhen
control is returned to AEFILE from
SCOPE.

Buffer returned by IMPORT at end of
console alphanumeric input does not
contain expected valid identification
code.

EXPORT has encountered a service
request (at RA +76 8 of a graphics job's
control point area) with meaningless
contents.

Issued by AE LOAD utility routine; the
name of record rcrdnam in source
file docs not correspond to any entry
in the file index.

There are only 8 bits in the 1 700
Package version of the N parameter,
so N in this call cannot exceed 255io·

The N parameter in this G UBYTE
call is zero, so the call is ignored.

The total number of bytes in the user's
IBUF (excluding G IDISP header bytes
and trailing ID bytes) exceeds the 310
decimal maximum.

Since the description buffer is empty,
the call is ignored.

Issued by AEDUMP; the first record Ln
source file filenam indicates that the
file was created from an empty random
file.

Parameters in the File Environment
Table indicate a disk read error during
a task call when control is returned to
MAIN from SCOPE.

The Scheduler has been called to begin
graphics job execution, but EXPORT
has not been loaded to handle the job's
communications; this message is pro­
duced by a communication failure, not
a programming error.

Page
References

2-21

3-8,
3-9

2-22,
2-25

7-36

7-'JO

7-37'

7-29,
7-40
M 1

7-29,
7-40

2-22

3-2,
9-1,
9-6

44616800 Rev. 03

Error Page
Message Type Class Meaning References

FORMAT ERROR Fatal 1 The first data record of the input file 2-13
FIRST DATA for the job contains no cards or an
RECORD illegal file name; names must be seven

o"r fewer characters, and must contain
no special characters. Produced by

I MAIN.

GICOPY ADDR Non- 4 The 6000 Package routine named has 7-42,
ERR, NCON y Fatal sent the Buffer Translator an invalid 9-14

IDDAD, IDDADI, or MAD parameter
for use on console y.

GICOPY BUFFER Non- 4 Console y controller memory has over- 9-15
OVERFLOW, Fatal flowed because of the named call.
NCON y

GIDISP BUFFER Non- 4 Console y controller memory has over- 9-15
OVERFLOW, Fatal flowed because of the named call.
NCON y

GIERAS ADDR Non- 4 The 6000 Package routine named has 7-41,
ERR, NCON y Fatal sent the Buff er Translator an invalid 9-14

IDDAD, IDDADI, or MAD parameter
for use on console y.

GIMAC BUFFER Non- 4 Console y controller memory has over- 9-15
OVERFLOW, Fatal flowed because of the named call.
NCON y

GIMAC CALL Non- 1 Since the programmer has specified
IGNORED- Fatal that his description buffer is empty,
NBYTE = 0 this call is ignored.

GIMAC ADDR Non- 4 The 6000 Package routine named has ?-38,
ERR, NCON y Fatal sent the Buffer Translator an invalid

IDDAD, IDDADI, or MAD parameter
for use on console y.

GIMOVE ADDR Non- 4 See above 7-43,
ERR, NCON y Fatal 9-14

GITIMV ADDR Non- 4 See above 7-46,
ERR, NCON y Fatal 9-14

GITMMV ADDR Non- 4 See above 7-46,
ERR, NCON y Fatal 9-14

GUAN CALL Non- 1 Self-explanatory. 7-29 J

IGNORED-NC is Fatal 7-31
ZERO OR NEGATIVE

44616800 Rev. 03 B-3

Message

GUARCG CALL
IGNORED-
KSHOW ILLEGAL

GUARCG CALL
IGNORED-ZERO
RADIUS ARC

GUMACG ADDR
ERR, NCON y

GUSEGA CALL
IGNORED-N
ZERO OR NEGATIVE

ILLEGAL
COORDINATE­
GITCON

ILLEGAL
COORDINATE
RETURNED­
GITCOF

ILLEGAL
IBEAD-DMGET

ILLEGAL
IBEAD-DMRLBD

ILLEGAL
IBEAD-DMSET

ILLEGAL
IBEAM-GUSEG

ILLEGAL
IBEAM-GUSEGS

ILLEGAL
I COMP- DMGE T

ILLEGAL
ICOMP-DMSET

B-4

Error
Type

Non­
Fatal

Non­
Fatal

Non­
Fatal

Non­
Fatal

Fatal

Fatal

Fatal

Non­
Fatal

Fatal

Non­
Fatal

Non­
Fatal

Fatal

Fatal

Class

1

1

4

1

2

2

2

1

2

1

1

2

2

Meaning

The KSHOW parameter is negative or
greater than 5

1-f IHl, IVl or IH2, IV2 equals IHC,
IVC no arc can be generated.

The 6000 Package routine named has
sent the Buffer Translator an invalid
IDDAD, IDDADI, or MAD parameter
for use on console y.

Self-explanatory

One of the programmer's tracking
cross coordinates is beyond the
extent of the display grid (not between
-2048 and +2048).

One of the tracking cross coordinates
from the last button pick is not with­
in the display grid (is less than -2048
or greater than +2048).

Programmer's bead address either:
• Has an index = 0
• Has a block number = 0
• Has a block number greater than

the number of existing blocks

Same as above.

Same as above.

The programmer's beam control
parameter is not either 0 or 1.

Same as above.

The programmer's component code
contained either:
• Type code = 0 or 9, or greater

than 10
• \Yord or character number greater

than the size of the bead specified
by the accompanying IBEAD value

Same as above.

Page
References

7-29,
7-36

7-3 7,
9-14

7-29,
7-35

4-5,
7-45

4-5,
7-45

7-5,
7-50
7-53

7-5,
7-52

7-5
7-53

7-34

7-32

7-47,
7-53

7-47,
7-53

44616800 Rev. 03

Error
Message Type Class

ILLEGAL Fatal 2
NBLK-DMINIT

ILLEGAL Fatal 2
NBSIZE-DMINIT

ILLEGAL NUMBER Fatal 2
OF WORDS RE-
QUESTED-DMGTBD

INCORRECT Non- 1
I CODE -GI COPY Fatal

INCORRECT Non- 1
I CODE -GIMOVE Fatal

INCORRECT Non- 1
ICODE-GURSET Fatal

INCORRECT Fatal 2
NCON-GIFID

INCORRECT Fatal 2
NCON-GIFSID

ITEM NOT Fatal 2
CREATED FOR THIS
NCON-GITIMV

JOB NOT Fatal 1
ATTACHED TO
RANDOM TASK
FILE

44616800 Rev. 03

Meaning

The number of Data Handler data
blocks that the programmer wishes
kept in core as copies is either:

• Less than the minimum of 2 the
Handler needs to function
properly

• Larger than the number that will
fit in core

The block size specified in this call
is larger than the maximum permissi-
ble si~e of an in-core data b~se.

The programmer is trying to define
a bead with a length (N parameter)
less than or equal to zero, or ~ 218

The programmer's reset control code
is not a form or value significant to
the 1 700 version of this routine; a
significant ICODE value will be sub-
stituted for the one supplied.

Same as above.

Same as above.

The programmer is trying to fetch a
single pick ID block from a console
other than the one from which the last
button pick ID was fetched. The GIFID
NCON must always agree with the
NCON of the last GIBUT call.

Same as above.

The IDDAD value given does not exist for
this console; either the NCON or the
IDDA D parameter supplied in this call is
wrong.

Either:

• AEDUMP couldn't find the file named
in its first parameter field

• MAIN couldn't find the file named on
its graphics COMMON file name
parameter card

If the file name is both legal and correct
as given, then the file has not been at-
tached to the job by a control card.

Page
References

7-50

7-9,
7-50

7-52

7-42

7-43

7-30

7-23

7-23

7-46

2-10,
2-11,
2-13,
2-24,
7-2

B-5

Message

lVLACRO BUFFER
LENGTH EXCEED­
E D-Gil\1AC

MACRO NOT
CREATED FOR
THIS NCON­
GITIVIIVIV

IVIAD ARRAY
INDEX ZERO­
GU:MACG

NBSIZE DIFFERS
FROM PREVIOUS
DEFINITION­
Dl\1INIT

NBYTE EXCEEDS
lVIBYTE-GUAN

NBYTE EXCEEDS
IVIBYTE-G UARCG

NBYTE EXCEEDS
MBYTE - GUBYTE

NBYTE EXCEEDS
MBYTE - GUMACG

NBYTE EXCEEDS
MBYTE - GURSET

NBYTE EXCEEDS
MBYTE - GUSEG

NBYTE EXCEEDS
l'v1BYTE - GGSEGA

NBYTE EXCEEDS
MBYTE - GuSEGI

NBYTE EXCEEDS
MBYTE - GUSEGS

:.JCON ERROR

NC RETCRNED
GREATER THAN
MAXIMlJM­
GIANE

B-6

Error
Type

Fatal

Fatal

Non­
Fatal

Fatal

Non­
Fatal

Non­
Fatal

Non­
Fatal

Non­
Fatal

Non­
Fatal

Non­
Fatal

Non­
Fatal

Non­
Fatal

Non­
Fatal

Fatal

Non­
Fatal

Class

2

2

1

2

1

1

1

1

1

1

1

1

1

1

1

Meaning

The total number of bytes in the user's
IBGF (excluding G IMA C header and
trailer bytes) exceeds the maximum of
31-0 decimal.

The MAD value given does not exist for
this console; either the NCON or the
MAD parameter supplied in this call is
wrong.

The N parameter given in this call
indicates that no macro should be
created, so this call is ignored.

DMINIT has been called with a block
size different from the block size de­
clared by a previous job using IFILE.

This Graphics Utilities call has pro­
duced more bytes in IBUF than the
programmer wants.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

EXPORT has detected a service request
(RA +76g of a graphics job's control
point area) with an invalid NCON para­
meter; either the console being
addressed does not exist, or it is not
attached to this job.

The number of characters picked ex­
ceeds the maximum the programmer
wants sent to the calling task; the ex­
cess trailing characters are dropped
automatically.

Page
References

7-29,
7-38
7-41:
M-1

7-46

7-29,
7-37

7-50

7-29,
7-31

7-29,
7~36

7-29
7-37'

7-29,
7-37

7-29,
7-30

7-29,
7-34

7-29
7- 35'

7-29,
7-33

7-29,
7-32

3-8,
3-9,
7-12

7-25

44616800 Rev. 03

Message

NC TOO LARGE
-GIA NE

NC TOO LARGE
-GIA NS

NO ACTIVE
GRAPHICS CP.

NO DATA
HANDLER FILE
OPEN-DMDMP

NO DATA
HANDLER FILE
OPEN-DMGET

NO DATA
HANDLER FILE
OPEN-DMGTBD

NO DATA
HANDLER FILE
OPEN-DMRLBD

NO DATA
HANDLER FILE
OPEN-DMSET

NO INITIAL POINT
GENERATED­
GUSEG

NO TASK NAME
lN BUTTON ID­
AETSKR

44616800 Rev. 03

Error
Type

Fatal

Fatal

Fatal

Fatal

Fatal

Fatal

Fatal

Fatal

Fatal

Non­
.Fatal

Class

2

2

1

2

2

2

2

2

2

1

Meaning

More characters have been picked
than can be passed to the task; EX­
PORT can handle a maximum of 62010
characters.

The programmer is willing to accept
more input characters than EXPORT
can handle; maximum is 62010.

The Scheduler cannot find a graphics
control point to which the program can
be assigned. The system operator has
not assigned a control point for graphics
use, so the job cannot be executed; no
programming error has occurred.

The programmer is trying to dump a
non-existent IFILE; either:
• DMINIT has not yet been called
• DMINIT has not been called since

the last DMF LSH call

The programmer is trying to obtain
data in a non-existant IFILE; see
above.

The programmer is asking for space
in a non-existant IFILE; see above.

The programmer is trying to clear
space in a non-existant IFILE; see
above.

The programmer is attempting to
place data in a non-existant IFILE;
see above.

G USEG has been called without a previ­
ous GUSEGI or GUSEGS call to initialize
the figure that the programmer wants
to generate.

Produced by MAIN when AETSKR has
been called; IDW A and IDWB of the
button in the FETCH queue do not con­
tain information that can be used to
load a task; either:
• IDWA = 0
• The ID block ends short of IDW A
e The bit pattern in IDWA and IDWB

does not match a task name in the
index

Page
References

7-25

7-25

9-1

7-50,
7-51,
7-52

7-50,
7-51,
7-52

7-50,
7-51,
7-52

7-50
7-51'

'
7-52

7-50,
7-51,
7-53

7-33,
7-34

7-13,
7-39

B-7

Error Page
Message '~ Class Meaning References

NO TC COORDI- Non- No tracking cross coordinates can be 7-44
NATES THIS Fatal returned because the NCON of the
NCON- GITCOF last button picked doesn't match the

NCON supplied in this call.

PREFIX TABLE Fatal 1 AEFILE has detected an illegal Prefix 2-21
FORMAT ERROR- table while creating the task file from
AEFILE the overlay scratch file.

PROGRi\M NAME Fatal 2 AETSKC cannot find the required task 2-22,
NOT IN FILE in the directory of the job's graphics 7-13
CATALOG COMMON file.

QUEUE TABLE Fatal 1 The Scheduler has no room in its
FULL graphics input queue for this job, so

the job cannot be assigned to a control
point. The iob should be run again when
there are fewer graphics jobs in the
system.

RETURN ADDRESS Non- 1 Either AETSKC has never been called or the
OVER LA YED OR Fatal return address of AETSKC has been over-
MISSING - AERTRN written by a task load since the last call.

After issuing the message, AERTRN exits
to AETSKR.

TASK 2 Issued by the MAIN error processor
tasknam before all fatal and nonfatal error mess-

ages; tasknam contains the name of the
task overlay in which the error occurred.

TASK 2 MAIN issues this when it appears that N-2,
==:<*:::}:>:c:::.:<::::c::::}::::!c: the contents of the reservation word in N-3

MAIN for the current task have been
destroyed or when jobs are being run
outside applications executive interface.

TOO MANY DATA Fatal 2 DMINIT has been called to create more 7-50
HANDLER FILES than the installation- specified number of
CREATED - DMINIT Data Handler files.

TOO MANY FILES Fatal 1 More than 8 files are attached to the
job which the scheduler is attempting
to roll out.

1700 ABORT Fatal 1 Either a Class 4 error or one of the
system problems mentioned in Section
9 has caused the 1 700 to abort the job.
Error correction may have to be done
through the 1 700.

B-8 44616800 Rev. 03

i-j:::i..
i-j:::i..
en
I-"
en
co
0
0

~
ro
~
0
VJ

n
I

I-"

6000
Internal
J)ispl~l\

('ocl('

01

02

0:1

04

0:1

06

07

10

11

12

1:1

H

1'1

16

17

20

21

22

2 :i

24

25

26

27

:io

'll

:i2

:n
:34

:l .')

36

:n

s
T
A
I\
!)

/\
H
J)

()

H
T
H
A
I\

('

11
/\
H
\
('

T
1:
H
s

Prrnted
Choractcr
(standard
6000 set)

A

ll

('

[)

L

(;

11

1,

I.

M

I\

()

!'

q

H

s
T

w
x

/.

1713 274
Tt>le- Display
type- Char-
w nter actcr1tt

c\

ll

('

fl

]·;

I·

II

f-..

I.

1\1

N

()

I'

(~

I{

s
T

i;

\

\\

x

/,

A

R

('

I)

E

F

G

ll

J

f-..

I.

M

N

()

p

(~

H

s
T

lJ

v
w
x
y

z
0

4

Alpha-
ASCII OR

1700
numeric Ilexa-

or decimal
Numeric Inter-
1'eyboardtrt nal Codet

A

B

c
D

E

F

G

H

.J

1'

L

M

N

()

p

Q

R

s
T

u
v
\,\'

x
y

z
0

41

42

43

44

45

46

47

4B

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

5B

59

5A

30

31

32

33

34

t B-b1t ASCII, used for communication with 1713 Teletypewriter

t t 0, 11 1s equivalent to 11, B, 2 and 0, 12 is equivalent to 12, B, 2

t t t CLEAR, TAB, BACKSPACE, and EOM have input control significance only

6000
Hollerith
(punched

card
rows)tt

12, 1

12,2

12, 3

12,4

12, 5

12, 6

12' 7

12,B

12. 9

11, 1

11, 2

11, 3

11, 4

11, 5

11, 6

11, 7

11, B

11, 9

0, 2

0,3

0,4

0, 5

0,6

0,7

O,B

0,9

0

ln­
terna l
BCD

21

22

23

24

2.')

26

27

:30

31

41

42

43

44

45

46

47

50

51

62

63

64

65

66

67

70

71

00

01

02

03

04

EBCDIC
Hollerith

Ex- (punched
ternal card
BCD rows)

61

62

63

64

65

66

67

70

71

41

42

43

44

45

46

47

50

51

22

23

24

25

26

27

30

31

12

01

02

03

04

12' 1

12,2

12. 3

12, 4

12, :1

12' 6

12' 7

12,B

12, 'l

11, 1

11, 2

11,:l

11, 4

11, 5

11, 6

11, 7

11, 8

11 ' !l

0,2

0, '.l

0,4

0, 5

0,6

0, 7

O,B
0, q

0

B-bit
EBCDIC
Hexa­

decimal
Code

Cl

C2

C3

C4

C5

C6

C7

CB

C9

DJ

D2

03

D4

05

06

1)7

DB

09

E2

E3

E4

E5

E6

E7

EB

E9

FO

Fl

F2

F3

F4

EBCDIC
Char­
acter

A

B

c
D

E

F

G

H

.J

K

L

M

N

0

p

Q

R

s
T

u
v
w
x
y

z
0

4

ICT moo
Hol1"1 ith
(pun. lied

card
rows)

12, 1

12, 2

12,3

12, 4

12, 5

12, 6

12' 7

12, B

12, !l

11, I

11, 2

11, 3

11, 4

11, 5

11, 6

11, 7

11, B

11, 9

0,2

0, 3

0,4

0, 5

0,6

0, 7

O,B

0,9

0

4

!CT 1900
Char­
acter

A

B

('

[)

E

F

G

H

}

J

K

L

M

N

0

p

Q

R

s
T

u
v
w
x
y

z
0

n
:I:
)>
~
)>
n
~
m
~

n
0
c
m
m
0
c -<
)> ,....
m
z
~

"'

n

n
I

[\.'.)

H::­
H::­
OJ
OJ
0:)

0
0

;:J:J
CD
<
0
w

6000
lnt<'rnal
ll1spl;w

C'!llk

40 s
T
A 41

42 N

4:; J)
/\

4·\

4;,

46

47

;,o
;l]

!):.!

;,:;

;,.1

;1:1

:1()

:17

60

61

62

6'l

64

6:1

66

67

70

7 l

72

7:l

7·1

7;)

7li

77

H
I) F

0
H
T
H
A
N ('

II
A
R
A
('

T
E
R
s

PrintPd
('hac1d<'r
(standard
GOOO set)

blank

V (()H)

II (ANIJ)

<

~

---. (]\(lT)

171 :l
TPk­
typP­
writer

sp~H't'

(o

"

<
'>

/<..

274
Display
Char­

adertr I

\J;1,·ksp:1<"'

tab

ck:11·

l·:lll\l

Alpha­
numeric

or
Numeric

J<..eyboardttt

space

TAB

HUB< JUT

HETllHN

<
>
&

1 f\-lnt ASCII, us<'cl for· communic:1tion with 171:1 Tektypewrit<T

I (I, 11 is c·qu1vaknt to l l, 8, 2 :ind 0, 1:2 1s c•quiv:dcnt to 12, 8, 2

ASCII OR
1700

Hexa­
decimal
Inter·­

nal Codet

:is
l6

:l7

:rn
:rn
2Tl

:rn
2A

21•

:rn
:!.')

:2:1

:iu

:~ 0

:.! (

2E

'JI•

:,n

:iD

lA

:~ 7

40

21

:n
:.! :i

'i('

w
:11·:

:26

'iE

7('

:m

t I I ('J.l•:A H, TA ll. BAC!..:SPACE, and EOl\I h:1ve input control significance only

6000
Hollerith
(punched

card
rows) 1 t

1:2

II

11, 4, 8

0, 1

0, 4, B

12, 4, 8

11, :1, 8

3,H

spac<'

0, :l, B

12, :1, B

0, 6, B

7. g

0, 2, B

2,B

4,B

0, :i, B

0, 11

0, 7,B

11, '1, B

11, G, 8

0, 12

11, 7, g

!'i, B

12, 'i, B

12,G,B

12, 7, B

In­
ternal
BCD

05

06

07

10

11

20

40

54

61

74

34

53

13

60

7:l

33

76

17

72

12

14

7;,

52

77

5;,

56

:l2

;,7

l:i

35

36

:n

Ex­
ternal
BCD

05

06

07

10

11

60

40

54

21

:34

74

53

13

20

:33

73

:rn
17

32

00

14

:15

52

:i7

55

56

72

.57

15

7;,

76

77

EBCDIC
Hollerith
(punched

car·d
rows)

13, 1:, 6

1

11, •f. 8

0,

12, 1:, 5

11,1:,s

11, :;, 8

B, Ii

spaC'e

0, :;, 8

12, :;, B

:i,:;

7, :;

0, i, 8

2, :;

5, :;

4, :)

7, :J

12' 11

12, 'l, 7

11, :l, 2

12, :l, 4

O,!l, 6

1 ~

0, :l, 7

11, :~. 7

11, .l, 6

8-bit
EBCDIC
Hexa-

decimal
Code

F5

F6

F7

F8

Pl

4E

60

5C

61

41)

fij)

fiB

7E

40

6B

4B

7/1.

4C

6E

!'iF

fiE

EBCDIC
Char­
acter

blank

underline

@

/\

I

<
>
&

JCT 1900
Hollerith
(punched

card
rows)

12, 8, 2

11

11, 8, 4

0, l

B,;,

8, 6

11, B, :l

0,8, 6

space

0, B, :l

12, 8, :l

8, :i

11, B, 2

8,7

12, 8,;,

12, 8, 6

8, 4

11, 0

O,B,2

11, B, 7

12, 8, 7

11, B, 6

11, 8,;,

12

0, 8,;,

0,8, 7

12, 8, 4

!CT 1900
Char­
acter

)

$

hlank

@

L

t

<
>
&

n
::r:
~
;:J:J
~
n
~
t:rj
;:J:J

n
0

~
t:rj
£)
c:j
~

<
~

~
z
~
'Cf)

n
0
::::l
~

0..

. •: .•

SAMPLE DATA HANDLER FILE DUMP

The task overlay shown below creates a Data Handler file called DMFILE c0ntaining five

blocks of information. It then prints the edited and labelled file dump reproduced on the

following pages. Although the call to DMDMP prints out all five file blocks, only the first

two are shown here because of space limitations.

4

3

2

OVERLAY (1, 0)

PROGRAM DMPT ASK

DIMENSION IB(8), IVAL (512)

CALL DMINIT (6LDMFILE, 5)

IC = 070000000001B

DO 4 I = 1, 8 }

CALL DMGTBD (64*I, IB(I))

DO 45 I = 1, 8

M = I * 64

IF (I. NE . 1) GO TO 2

IVAL (1) = 0

IVAL (2) = 1

IVAL (3) = 1

IVAL (4) = 1

IVAL (5) = 2

IVAL (6) = 2

IVAL (7) = 1

IVAL (8) = 1

IVAL (9) = 1

IVAL (10) = 0

IVAL (11) = 0

IVAL (12) = 1

IVAL (13) = 2

DO 3 IN = 14, 6 4

IVAL (IN) = 0

GO TO 43

MB = I':< 8 ** 5

DO 43 N = 1, M

42 IV AL (N) = MB + N

{
Initialize 5 duplicate blocks in
core for file DMFI LE
Set basic component code value

Obtains all needed beads from file

Arbitrary establishment of data
to be placed in file

D

44616800 Rev. 01 D-1

43

45

50

ICOMP = M * 8 ** 6 +IC Increment component code for each pass

CALL DMSET (ICOMP, IB(I), IVAL) Store value

DO 50 I = 1, 512

IVAL (I) = 0

CALL DMDMP

END

} Zero out value buffer for next use

Print dump of DMFILE

As the following printout shows, each dump produced by DMDMP is preceded by a line

stating the name of the dumped file; each block in the file is preceded by a line stating the

relative number of the dumped block and the amount of empty space within it; each bead in

a block is preceded by a line stating its relative index number within the block. Continuation

beads are marked and pointers to them are given after the printout of each file block.

OUMP o" DATa HANDLE:!" FILE - o .. <-ILI':

BLl'lCK 0001 l'"PTV Sf.'ACE 0000

Bead 001

noooo1
000005
000015

Bead nO?

000001
000005
00001 l
00!101 s
000021
nonn2s
!10(1031
oooo3s
000041
001\04'5
nonos1
ooonss
000061
000065
000071
II 0 0 0 75
00010 I
000105
OOll I I I
000115
noo 121
00012'5
000131
0011)35
000141
000145
oon 151
nont55
1100161
000165
non111
no1111c;

Bead 103

000001
0 0 0 0 05
000011
oonol5
000021
000025
1100031
noon35
nooo41
1100045
001\051
nooo55
000061
000065

D-2

Ornoo 000011 00000 ono-~
onnon oooon oonno nnOn?
Oonoo onon,1 onnoo noO·?

On non ononn onr·n2 01)0• 1
Onnno ooonn nuoo2 onor~
Onnno noo1in o.rno2 011011
0,nno ooonn o,,nn2 0110"':
Onooo onon() 00002 011o?i
Onnnn O(IOnn nnnn2 000?,;
OnnOO CIOO(ln n,1nn2 1100'>1
Onnno 0000° 1)()002 000'>~

Onrno onoon o 0 nn2 noo' i
On~nn noO"r rH)l)f\2 Pn01 ci:
Ono110 nnOnn n '1102 noor;,
Onnoo onoon onnn2 ono•:c•
Onn110 oooon 011nr2 0110 .. ;-
0nrnn 00000 0·1002 noo .. ~
Onono ooorn n°nn2 00011
Onnno OnOn1 nr'nn2 0007"
Onnno onoon nr,no2 n11 l •;
Onnon ooonn nnon2 nnl·r;
Ononn nooon nnoo2 00111
ornoo ooonn nr~n2 001;,;
000110 ononn ni:nn2 001;-;
Onrno ooonn onnn2 not""
ornoo ononr n.1002 nnl'>\
or.non ooonr o~on2 on!'"
o"nnn cnon.0 onr02 001, i
Onnon ooo.1n n·0 on2 on\,:
(l n "(Ii) 0('10] o'l (\ 1:1.(\2 (1("11 c..,
onnon ono"~ nrrio2 nnl"~
f\,..,..,,,.. O (' O" n n 11 11 n? "n 1,.. ,
o 1 n n O o O 0 ,, O n '! n n 2 o o I ~ r;
OnnOO ooonn o >nn2 no\ 71
Onnon OnOr1' Oilnn? r,n\7"

Onnnn OOOnr nnnn3 non·'
onnno 0001r n11on3 >oO•;:.
Onnoo ooorn or,on3 nnn11
Onnon ooor.r O'no3 nno1"
o " "'I r') 0 n n o n r 1 fl .., ') r1 3 n ,., o ? i
Onnnn OQOnn n11,03 uno;oc:
Or1"fl0 000,1r n(,nn3 nno11
Qn1'n() onorir Q,1 Jr3 ono~e
n"'"'l"l'l ono1 ·"' n"rr3 rnn,,
Onnon Of\Onn n"nn3 OOQ,,~
Onnn0 00010 0"003 nnnc1
0 n 1 n n 0 n 0 n" 0 r 1n3 11 0 n" ~
O,..nnn onon1i fl qJn3 unoir.. 1
Onnnn 000·1r n°nn3 nnO••

00000 nouno onoon nnoo1
1100001 .. onnoo oor.rn onoon 00001

oonoo ooono 00000 nnooo

onooo ooonn onon? nnnn2
oonoo noono ooon? nnoo~
onnoo nonoo oono? nnol2
onnoo nnnrn noon~ nrol"'
Ooooo OOGnn 00002 nn022
onnoo on0no 0001'? nnoc"'
00000 oouro 0000? nno32
onooo 001100 oooo;:i rno3"'
00000 000>'0 1100('" nn042
OonOO nnnrn On01? nn04~

oonoo nooro oonn? nro<;2
oonoo onnnn oooo;i nn051'>
00000 ooono 000,1? nno-.2
onooo onono ooon? ono1>1>
onnoo nnono 000112 nn07?
OonOO 00010 noon;> nnn7"
oonoo nO'JnO on on? rn 102
oooon oonnn 0001J? nnlnl'
00000 onono nnnr,? nn 112
Onooo onuno onon;> onl 11>
00000 0011n(1 OnOv? nn 122
00000 001.no 01100? 0012"'
00000 noono 01100" nn!32
OnoOO onr110 000"? nn!3"'
00000 OOJnO 000"? rn\42
oonoo 0011ro onon? nnl""'
Onnoo nor1r.n Ono•;> n' 152
Onnoo 001rn onou? on!""'
OnnOO OOOnn 000";> '"1"2
00000 OOOrli 0000? nnl"b
oooon non'n onon? nn\72
oonoo on1;0Q noon? nnJ7f,

00000 oooro ono,13 rnoo2

00000 00010 ooon noon"'
onooo ooono ono,n 00012
oonon 00010 ooor,l nnOl1>
00000 (lllqnn on0·'3 nro22
Onnoo oo JnO ooon3 nno2~
Onaoo nnono noor13 ''032
OnoOO non on OnOro3 nn03"'
Q(H)00 f"\('l'jl'\r QtH'l'l1 "1""0.:.2

On ooo oo u I' o no o c 3 n no~"'
Onooo ooonr 0001•3 nnn"i2
OnnOO nnnor onor,1 nnn">fl.
00000 oouro oooc3 nnn">2
00000 On,,n(J OOO!J3 nrQb~

nooo12 .. nooon oooon 00000 nnonn
onolon .. noooo 00000 onooo ~nn11·1

nonnn ooono 00002 nnnn3
nonnn 00000 00002 noii117
nnonn uoooo onoo2 nnn13
non11n ooonn 00002 nn1117
noono onono 00002 nnn?3
non110 ooono 00002 non?7
noonn 000110 onoo2 110033
nnonn 000110 onoo2 11nn:>11
nnnnn ooono 00002 nnn•3
nnonn ononn 00002 nnni.7
nonnn ooonn 00002 nn11c;3
nnnoo ooono onoo2 nonr;7
noono ooonn 00002 nrn,.,3
onnon ooono onoo2 onn,.,7
nnoon ononn 00002 nno13
ronnn onoon 00002 rno77
nonnn ooonn 00002 no) n3
nnnno ooonn 00002 oni0'
non no 000110 00002 ont 13
nnnoo ooono 00002 nn117
onnno ooon(I onoo2 nnj::>3
nnono ooono ooon2 nnt ?7
nnoro nnono 00002 nni:'.'13
nnnrn ooonn 00002 nn1'>7
nonr•n ooonn 00002 nni•.J
nnnoo onono 00002 on1i.1
nnnr.n ooonn unon2 nnic:3
nonnn 00000 onoo2 nnJ"7
nnnnn 011onn uo002 nni" .. 3
nonno ooonn 00002 no1~7
11ocno 000110 00002 00173
nnnno ononr unoo2 oni"77

nf\OnO OoOno 00003 nnon3

ooono ononn un003 nnnn7
onnno oooon onoo3 onn13
oonoo ooono 110003 ornt 7
nonno ooonn onoo3 nno?3
noon11 ooonn onoo3 n11n?7
nonon ooonn 00003 nnn"l3
nonnn 000°0 uooo3 onni7
nnnnn ooonn 00003 non43
no11no oooon onoo3 nnn47
nnnoo ononn onoo3 nnoc;3
11onoo ononn 00003 nnn'57
noonn ooonn 00003 oon,r.3
nonno ononn onoo3 nrn~7

onooo ,;roro ooon? ncoo4
00000 r11nno ooor? 00010
011000 rno 0 0 oooot> nool4
nnnoo nnorn nano? 00020
00000 onono ooon? noo24
onooo ,;no•.o ooont> noo3o
OnOOO rnooo noon? ono34
OoOOO n11onn noon? nn040
011000 ,;no, n noon? noo•4
OnOOO nr0°0 OOOn? onoSO
onooo ,;ro'n noon? nna54
onooo nrn°n noon? nn060
onooo rnn•10 norr? nnn64
00000 ,;nnnn noon? 00070
onooo rnn,,o noor? noo74
OnOOO rnO'O noon? on!OO
00000 rnorn noon? 011)04
onooo rnnno noon? nnl 10
nnOOO nn0"0 00Qn2 on! I'>
OnOOO nnn°n noon? 00120
00000 n00"n 000n? 00\24
00000 nnO"O noon? nnl30
onooo nno 'n noon2 onl3"
OnOOO nnn'n ooor,? 00140
00000 "no'~ noon? rn\4'>
00000 rr0°0 000°? On\50
anooo rrn ! noon? nol5'>
OnOOO rn0"0 nOOn? f•Ol60
OnOOO rnO•·O nOQn? nn\64
onooo rno"o noon? on\ 70
onooo nnn·'o noon? nnl 74
nnOOO rnO' n OOOr? 00200

onooo rnn' 0 onnn3 nnOO"
OnOOO nr()'O 000n3 nnnlO
onooo ~nn"n noon3 00014
00000 nnor.,1 ooon3 noo2o
OnUOO nnOr ~ noon3 nnQ21t
OoUOO rno 1 0 nooo3 00030
onooo -nn·,o 000°3 nno34
OnOOO nnfl 0 0 nOrn3 110040
00000 rnn°n r00"3 nn044
onooo rnor ,, noor.3 ono50
00000 nno·•i) noonl noos•
QnOOO nn0° l OOOn3 nnQ~O
OnOOO nnnro 00Cn3 nonfl>lt
On~OO rnil"O OOOn3 onn70

44616800 Rev. 01

000071 Onnoo 00000 00003 000'7i 001100 000110 00003 nnOT2 noooo 00000 ooooJ 011n1J 00000 nooo 00003 00074
000075 onnnn 00000 00003 ono1; 00000 ooono 00003 nn0'76 noono 00000 ooool onnT7 011000 nooo ooon3 00100
000101 onnoo 00000 00003

001 "'
00000 ooono 00003 nnlo2 noooo ooono 00003 ooiiiJ onooo no no 00003 00104

000105 onnoo 00000 onoo3 on1 •111 00000 00000 00003 nn 106 noooo 00000 ooool 001nT 00000 00110 000113 011110
000111 onnoo oooon 000113 11011; oonoo ooono 00003 no112 noooo 00000 ooool 011113 onooo oono 00003 00114
000115 on non 00000 00003 on 1; c 00000 ooono 00003 1111116 noono 00000 00003 00117 00000 00110 000!13 ootzo
000121 onnoo 00000 00003 OOll'l 00000 00000 00003 onl22 nnooo ooono ooool 001r3 011000 0000 000113 00124
000125 Onnoo ooono 00003 on ll'oi 00000 ooono 00003 nnl2fl nnooo ooono ooooJ on1r1 onooo oono 00003 oolJO
000131 0111100 ooono 00003 onl ~; oonoo 00000 00003 nol32 noooo ooono 00003 on133 OnOOO 11000 ooon3 00134
000135 0111100 oooon 00003 001~.: 00000 00000 00003 nnl3" 1)0000 ooono 00003 ooiJ' 00000 0000 OOOn3 00140
000141 Onnoo 00000 00003 001•; 001)00 ooono 00003 nn 1•2 noooo 0001!0 00003 00143 onooo oono 00003 00144
000145 0'1000 00000 110003 OOhli 00000 ooono 00003 noh6 110000 onono 00003 on147 onooo no no 00003 00150
000151 onnoo 00000 nooo3 00111i 00000 ooono 00003 nn 152 noono ooono 00003 oni53 011000 no no ooon3 00154
000155 onnno 00000 00003 onllic 00000 OOOnO 00003 nn l5fl nnooo 00000 00003 on151 onooo oono ooon3 00160
000161 onnoo 000~0 00003 0111,.; 00000 0001'10 00003 nn 162 1'10000 ooono 00003 onp.3 00000 11000 ooon3 00164
00016!5 01'11'100 00000 00003 001 ... ~ 00000 OllQl'IO 00003 "" 1"'" noooo 00000 00003 on1 "'7 onooo no no ooon3 001'10
oOnl71 Onnoo 00000 onoo3 00111 00000 ooono 00003 Ml72 noooo ooono 00003 nni'73 00000 no no ODOn3 0017•
000175 onnoo 00000 00003 0017111 00000 ooono 00003 nn 176 noooo 00000 00003 oni.,., onooo nooo 00003 00200
00020 I onnno 00000 onno3 002-1 00000 ooono 00003 nn21l2 noooo ooono 00003 nnzn3 onooo no no 000113 n112o4
00020!5 Oonou 0000'1 o~oo3 on2;oi 00000 ooono 00003 0020-. noooo ooono 00003 0~2a1 01)000 0000 000113 no210
000211 Onn110 onooo onno3 0021; 00000 ooono 00003 n~212 noooo 00000 00003 l)l'l;JJ 3 00000 no no noo113 00214
000215 ornoo 000111) 00003 0021 II 00000 ooono 00003 nn21" noooo onono 00003 00('1 '7 00000 11nno 00003 no2zo
000221 Onl\nO onooo 00003 on22i 00000 00000 00003 nn222 noooo 00000 00003 oo:n3 00000 nooo 000113 00224
000225 Onnoo 00000 00003 0022111 001)00 ooono 00003 n,,22,. nnono ooono 00003 ()ll;J;t'7 011000 no no 00003 00230
000231 Onl'lnO 00000 onoo3 0112i; onooo ooono 00003 nn232 noono onono 00003 on;J-,3 01)000 no no 000113 00234
000235 on,,no 00000 00003 002,; 00000 00000 OOOU3 l\n23t. nOOOO ooono 00003 n,,.,,7 00000 nooo ooon3 00240
0002•1 On'IOO 00000 1)0003 002•; 00000 ooono 00003 nn2•2 noono 00000 00003 on;•3 onooo no no ooon3 00244
noo245 ooono 0000'1 00003 002,,,; oonoo ooono 00003 nn2•6 noono 00000 onoo3 Ol'l;J4'7 onooo no no ooon3 00250
000251 onnoo DODOO onon3 ooze;; 00000 ooono 00003 ,,n252 l'IOnoo 00000 00003 nll;J53 onooo no no 00003 on254
0002!5!5 onnoo 00000 OfJ003 002111 .. 00000 ooono 00003 '11)2Sfl noono ooono onoo3 no;Jo;'7 onooo no no 00003 00260
000261 onnoo oooon 00003 002 ... ; 00000 0001\0 00003 nnz-.2 11onoo ooono 00003 onl'"'3 00000 no no 0001\3 on26•
!10026!5 001100 00000 00003 002 .. i; 00000 00000 00003 nn26" noooo 00000 onoo3 on;:o..,1 01'1000 nOnO 00003 ooz10
000271 llf\1'00 00000 onoo3 002'71 00000 ooono 00003 nn272 noooo onono 00003 nn;~3 011000 ~ono ooon3 no274
000275 o,,nno oooon 00003 002.,. 00000 ooono 00003 nn27f> non no 000110 00003 nn;J'7'7 0'1000 no no 00003 nn3oo

Bead 004

000001 oo noo ooono 00005 000•, 00000 ooono 00005 nn002 nnono 000'10 00005 nl'nn3 00000 ;, non o 000f'C, 0000•
00000!5 Onn11n 00000 ooon5 ooo-i: oonoo ooono 00005 nnOnfli noono ooono 011005 nn n n'7 onooo ;, non o noon"' 00010
oono 11 Oonno OoOnO 00005 onoi 1 00000 ooono ooooo; no012 11nono 00000 00005 onni 3 onooo i.nono noonr; nool4
000015 o nn no 00001' nnoos ooo,; onnoo 0001\0 onoo5 nn016 nnooo oooryo onoos nnnl., 00000 i.(lOnO OOOn"' nnozo
1100021 onnno ooo n n noons noO?l 00000 ooono 000•)5 l'n022 noonn ono n n On005 nl'lnl'3 onooo nnO<iO ooonc. 11002•
ooon2s onnoo 00000 00005 n no:>.- 00000 00000 00005 nno2" nooon 01101'10 00005 nnnl'1 onooo nnono OOOn"' ono3o
000031 onnoo 000 0 0 onoo5 000'1 00000 ononn 00005 noo32 nonoo onono oooos nnr,33 onooo i.nono 0001\C. noo34
noon35 Onnoo ooonn nroos 000'" 001100 ooono 00005 nno3" noooo 00000 00005 nnn:H 00000 nnono OD On"- ooo•o
nooo41 onr11n ono n n onno5 ono ., 1 onooo 000110 onoos nfl0"2 noono onono 00005 nnn•3 onooo nfl0<'0 ooonc. ooo••
nooo45 Onnoo OOODO oenos ooo.;; oonoo ooono 00005 nn0•6 noooo 000110 On005 oonu onooo i.nOl'O OOOn"' nnoso
nonos1 onnno oooon nonn5 nnoc.1 00000 ooono onooi; nno52 1\00110 onono oooos nnn53 onooo n11ono noon"- noo54
oonoss onnno 000% nnoo5 OOOo:o; onnoo 000110 onoor:; on056 nonoo ooono 00005 nnn5'7 onooo ;.nono 00011"- 00060
OOOOfll Onnnn 00000 nnoo5 000•; 00000 0001\0 00005 noo62 1)0000 onono 00005 nno"'3 00000 1111000 noooc; 00064
000065 On non ooonn onno5 ono,.; onnoo ooonn 00005 nnO"" nonno ooo~o 00005 nnn ... 7 onooo .;nonn 0001\C. noo7o
000071 Onnoo 0001, n 00005 000'71 00000 o non o 01)005 ~n0'7l' n oo no 00000 onoos nnn'73 onooo .; 1\0 n O ooon"' nooH
nooo75 onnoo ooonn 0()005 000'7c; 00000 ooono 00005 nn0'7"' noono ooonn 00005 onn'77 onooo ;.,,or•n ooonc; 00100
000101 01',,nO ononn 011005 Onl • 1 00000 000'10 00005 on ln2 nnnoo 000'10 oooos 011j nl onooo ;; non o noonr:; 001 o•
non 105 Onl\OO 000()0 noons Onl '~ oonoo ooono onoos n n 1 nf> nnoon 000'10 00005 on i 11'7 onooo i-nono noon"' 00110
000111 onnoo oooon onons oo l 1 i 00000 ooono 00005 "" 112 nnnon ooono 00005 onil3 0'1000 ;.nonn OOOnO:, no11•
000115 Onnno oooon onons on l i; 00000 ooono ooors on 11" noono ooono 00005 on 11 '7 onooo nnono 00011<; 00120
000121 unnoo oooon ()1()05 01'1 l ::>1 oonoo 00000 On005 nn 122 '10000 0001'10 oooos onj;i3 0'1000 ,..,nQrio 11001\" on12•
000125 onnno oooon ooon5 n,, l::>.: oonoo ooono 00005 nn 12,, nn11no 000110 00005 nn 1 l'7 00000 .;1101•0 oonnc. 00130
000131 Onnnn 00000 on nos oo l '>1 00000 ooono 00005 nn 132 l'IOnno onono onoo5 nn133 00000 nnono ooonc. 0013•
000135 onnno 00000 ooun5 01) 1 ~i; onnoo 0001\0 00005 nn 13-. nonno ooono 00005 nni:H onooo r.no,,o noon"' 001•0
000141 nnnno oooon 00005 no l • ;- 00000 00000 00005 nn 1•2 nonno ooono 00005 nn 143 011000 nl\On n noons no 144
noo 145 Ol'lnOO oooon nnnos on 1,.., 00000 oonno 00005 nnl•" nnooo noonn 00005 nn 14., 0'1000 nnO r O ODOn" 00150
0011151 On non noooo 011U!l5 on 1c. ;- onooo ooono 0(1005 nn 152 nnnoo ooono oooas nnii;3 00000 ;;no~o noon"' 0015•
000155 On non onono n ri!'ni; onlc;" oonoo ooono 011ons ,,,, 15,, non no ooono onoos nn 1 <;'7 onooo n no f· 0 no ore. 0!1160
000161 onnoo ooonn onoo5 nnl" 1 00000 ooono 00005 nn 1-.2 1'10000 ooonn oooos nn j ..,3 00000 i.nono noo11c. on 16•
non 165 onnoo onoon ll<'nOS 0I)1 ... ~ 00000 oovno 00005 nn 16-. nOOOO onono 00005 l'll'l)jl,'7 onooo n 1\0 r. 0 ooon"- on110
000171 onooo 00000 0"00<; on1 .,;

Cll•<T IN•JE A~ RLOCK 0002 INDEX On?

~LOCK noo2 no•TY SPACF: noon

Bead 00 I

000001 0".nOO o non n nn 0 04 on o, ;- oonoo ooono 0000• nl'I002 noono onono 00004 nntlii3 onooo i.nono oooni. onoo•
000005 01'11\110 ooonn on o oi. fJ no,.: 00000 onono 01)00• n n OOf. nnooo 000'10 On004 onnn1 onooo n110nO OOOn4 nool 0
oono 11 onroo oooon 0 JO oi. ~no 1 ! onooo ooono 0 oo 04 nnOl2 non,,o ooono onoo4 nnn 13 onooo i.nOl'O 0001\4 0001•
000015 Onnoo o oon n no no• ono ,., onooo 0001\0 0 00 04 nnO lfli non no 00000 0000• onn 17 onooo ,; 110 n 0 ooori. 011020
000021 on,,1'10 ooonn noon• 0110?1 oonoo ooono 0000• noo22 nonno ooono 01100• ono;J3 onooo •nono ooon• no oz•
000025 onnoo onono nnoo• 0002;: 00000 onuno ooou• nn02"' noooo onono 00004 ono;J1 OnOOO rl'OOO 00004 00030
000031 On n oo ooonn oonn• 000~ 1 00000 ooono ooo.i• nn032 nnnnn ooono 0000• nno33 onooo ;;nooo 0001\4 0003•
oooo3s ornno ononr o·.100• ooo~~ oonoo ooono 00 0 04 Ol'03fli nooon ooonn 00004 n"ii'H 00000 nn or o ooon• ooo•o
0000•1 Onnnn onoo o on no• ono1. i oonoo 000110 0000• nnoi.2 non no OnOl'IO 0000• 11n~·3 onooo nl'IOllO oooni. ooo••
u000"S on no 11 oooon o o nc" 0004 - 00000 00 0 I\ 0 0000• , '04"' "on no Ooo no 0000• nnn4'7 00000 n nor o ooo~• nooso
1100051 oonno oooon 0000• oooc1 oonoo ooono 00004 nn052 n oo no ooono 0000• onn53 00000 n n ono oooni. noos•
000055 0 n non 0 ooo 0 001'114 oooc;i< 00000 oooro 0000• n n O'il" nOOllO On on o 0000• onnli'7 00000 nl\0"0 nooni. OOOflO
000061 On11110 00000 0000• ono .. 1 00000 onono ooooi. n,,0-.2 nonoo ooono 0000~ nnn"'3 onooo nnono ooon• nno6•
1100065 0 n nno 00000 onoo• OnO,i.I\ onooo ooono 0000• no06fli noooo ooonn 0000, non ... 7 00000 ;, non o ooori. 00070
000071 01\nnO oooon 00004 0007; 00000 00000 00004 nn0'72 nnooo ooono 011004 nnn'73 onooo "non o oooni. 00014
000075 Onnn11 0001111 00004 non.,; 011000 ooono ooon• n no'7-. nnnno ooono 00004 nnn'7'7 onooo rnono ooon• nnl oo
0001 Ol onnoo OM or onoo• onl' i OonOO noooo 0000• no l n2 nnooo ooono 0000• "" i nl 00000 nnO r O oooni. on104
000105 on,,nn o o o n-n onoo• 0 0 l;"' 00000 ooono 00004 n n 101'> noon o ooono 0000• on1 n'7 00000 n non n noon• 00110
000111 Ornoo 00000 00004 0011; 00000 ooono 00004 nn 112 noooo 00000 0000• nn 113 onooo n no(\ 0 ooon4 001 l•
1100115 onnoo onono 00004 oo 11 .. 00000 ooono 0000• n n 11"' n 110 o o ooono 0000• onjj7 00000 .; non o noon" 00120
000121 Onnoo oooon onoo4 001?1 oonoo ooono 00011• "" 122 1'101\no ooono onoo• "" j";J3 onooo i.oono oooni. 0012•
o~o 125 on,,no 000 QI' 000l•• no 11c: 00000 ooon o 00004 n n l i!fli nnooo 000110 0 0 00" nop7 00000 n non o 000n4 00130
00~13 I Onnoo onoon orinn• oo 1 ~; oonoo ooo no 0000• nn 132 noon o ooono 00004 011 i33 onooo nnoro ooon• onl34
1)00135 Onnno 000 00 o~oo• 0 0 I '>C: 00000 000 no ooooi. nn 136 1'10000 ooono onoo• 11n1:H onooo ~nooo 00011• 00140
oonii.1 On n11n ono no onoo• on 1,. 1 0 00 0 0 oo u r o oo 0 04 nn 1 .. 2 nnooo ooo no onoo• nr i•3 onooo ;, non o 0000" no 144
non 145 Onnoo oooon ooon• on 11."' 00000 0 0 On 0 ooooi. n n l 4"' nOOOO ooono 0000• nn 1 •1 011000 ~non o oooni. nn 1so
nool 51 Onnoo ooon n 0000• on l "! oonoo OOOnO ooooi. nn 152 nonoo ooono 00004 on)1\3 onooo ;, nn no ooori. 00154
1)00155 On non noo on on o n4 On l.,;; 00000 oo or o 00004 "n l c;fli nonnn 0001'10 0000• n'liC.1 oonoo n non 0 oooni. 00160
non 161 On nno ooo no nnon• 0n1.; oonoo 0001'0 ono oi. nr 1112 noono ooono 00004 n~ 1 ,.3 0~000 n 1\0 I' 0 ooon• 00164
1)00165 Onnnn ooon o onoo• 001 00000 oooro 000 "" n" 1-.fli n oo o o ooo no 00004 nni, onooo n n!' n 0 OOOn4 00170
oon111 0 n n no ooo on o 0 o o• on l ,; o on o o on n no o on oi. nnl 12 n no o o 000 n 0 0000• on 1 '73 onooo ~r on o oooni. 00114

44616800 Rev. 01 D-3

1100175 0 n n 00 ooono on on• 001 'Pc 00000 000 n O 00004 nn l 76 nonno ooono 00004 On j"l"I onooo non n 000n4 00200
oon201 onnno ooonn 0<1004 on2· 1 00000 noono 0 c 004 nn2o2 noooo ooono 00004 on;>n3 onooo n ooo noon• 0020•
000205 On no o ooono nnoo• 01)2•; 00000 ooono 00004 nn206 nnooo 00000 00004 on;>n7 onooo non o noon• 00210
noo211 On n oo ooonn 00004 on211 OooOO ooono 00004 nn212 nnooo ooono 00004 nn::>13 onooo n Ono ooon• on21•
00021'!1 OMOO oooon 1\0004 0021;: 00000 ooono 00004 nn2l~ noono oooon 00004 nn::o17 onooo non o ooon• onzzo
0002Zl Onnno 00001\ onoo• 002:» 00000 00000 00004 n~222 ttOOOO ooono 00004 n~::>::>l 00000 r':O"O noon• 0022•
000225 onnoo ooonn noon• nn2:0: 00000 ooono 00004 nn22~ noooo ooono 00004 oni>::o7 onooo nor 0 ooor• nn230
000231 Onnno 00000 0000• 002"1 00000 ooono 00004 nn232 noooo 0001'10 onoo4 00?33 OnOOO nnono 00004 on23•
000235 Onnoo onooo ooon• on2 .. ;, onooo ooono 00004 nn236 nooon 00000 onoo• on;o~"I OnOOO n non o 0000• 00240
000241 Onnoo oooon 00004 00241 00000 o o on o 00001+ nn2"2 non oo ooono 00004 oniJ43 00000 ;,non 0 00004 00244
000245 0 nn 00 ono0n 00004 Oo2•,; 00000 ooono 00004 nn2•fl. noooo OoOnO 00004 011;>4"1 OnOOO nnono 00004 nn250
non25 l onono oooon onoo• no2c; 1 00000 ooo 0 0 00004 no252 n no no ooono 00004 oni>53 00000 ,; non o 0000• 00254
oon255 Onnnn 000110 on on• 002 .. ;; 00000 ooono 00004 nn25-. noooo ooono 00004 on;51 OoOOO ;,rono 00004 on260
000261 On no o oooon 00004 002 .. 1 00000 ooor.o 00004 no262 noono ooono 00004 on:o-.3 00000 n nOnO ooon• 00264
000265 0 n n 00 ooon n o~oo• 002 onooo ooono 00004 nn26f. nnooo 00000 0000• nn:o-.7 00000 ;, II 0 n 0 noon• on270
!100271 onnoo oooc n 0000• Oo271 00000 00 oo 0 00004 nn272 nnnno ooono 00004 on:o13 OnOOO n 110 r 0 00004 00274
DOn275 onnoo ooono 0000• 002.,; onnoo o oo no ooon4 nn27f. n oo no ooono 0000• 011:>"1"1 00000 ;, non a ooon• 00300
001)301 Onnoo ooo on 00004 003, i 00000 o oo no 0 0 004 n n3n2 noono ooonr. OOOO" nn3n3 011000 ;, non n ooon• no3o4
!100305 Onnno ooorn 00004 003,; 00000 ooono 0 oo 04 nn3of'. nOOOO ooono 00004 nn3n7 011000 ;, non o ooon4 no31 o
000311 Onnoo ooonn nooo• 00311 00000 ooono 00004 no312 nOOOO ooono 0000• on313 00000 n non 0 ooon4 00314
000315 On n n O oooon 0000• 0031; 00000 onono 00004 nn3lf. ooono ooono 00004 on317 onooo nno no ooon4 00320
000321 on n no 00000 onoo4 on3:>1 OooOO ooono 00004 nn322 noo oo 00000 onoo• on3;>3 O!lOOO ,;nono 00004 no324
!100325 0 n n 0 0 ooocr 00004 0113::ic; 00000 ooono 00004 nn32f. noooo ooono 0000• nn3:>7 onooo n non o noon• 00330
000331 o~noo o non~ 000 04 00311 oo 0 00 ooo n O 00004 no33Z nOOOO ooonn 00004 00333 0 0 000 n nor 0 ooori. 00334
000335 Onnoo ooonn 00004 01131il 00000 ooono 00004 nn33"' 110000 ooono 00004 00317 00000 nnooo ooor4 00340
000341 Onnoo 0000 0 00004 On3• 1 00000 o oo n 0 00004 nn3i.2 n oo oo onono 00004 00343 00000 ,; non o 0 oo 04 00344
000345 on non ooono 00004 on3• ~ 00000 0 0 On 0 ooo 04 nn34f. noooo 00000 0000" on341 OnOOO ,; n ono ooon4 00350
000351 0 n n 00 ooon o 00004 ~n3c;i" 00000 oo on o 0 0 004 nn352 non no ooono 0000• nn3c;3 OnOOO non n n 000n4 no354
000355 onnoo 00000 onnn4 nn3.,;; 00000 OOOnO 00004 n n3Sf. noooo 00000 00004 on3c,7 011000 nno no 00004 00360
000361 onroo ooon n 00004 on3L 1 00000 00 0 n O 011004 "nn3b2 noooo 0000 0 00004 0031'.3 00000 nnor o ooon• 00364
oon3ti5 0 n noo ooon o nonr4 on3 .. : 00000 on n no 00004 nn361'. noooo ooono 00004 on3.,1 onooo ,; n ono 000 n4 on370
(100371 on no o 0 0000 ooo n4 0031;· oo n oo o oo n O 000 04 nn37Z ooono ooono 00004 003"13 OnOOO nno r: 0 000 04 00374
000375 On n no O oo on n.oon• no3T~ oo o o o 00 0 0 (I on 001+ nr371\ no 000 ooo no 00004 nn377 OnOOO ~ n n n n 000n4 00400

Be c d ~ C?
COlllTilllllATlt'I•· IH.AO

!10000 I on n no noon o nnoo5 OOl'P::> 00000 oooro ooooo; nol73 noooo ooono 00005 nni .,,. onooo ,;nor o noons 00175
oonoo5 On no o 00000 nnoo5 On 17& 00000 000 n 0 oooos n n l "1"1 noooo ooono 00005 on;>nn noooo ;, on no noon" 00201
no no 11 onnoo 00000 noons no2-? oo ~ 00 oo u no onoos nn2n3 n ooo n ooono 00005 0 o::>n<. 011000 ,; non o ooonc; on2o5
000015 Onnoo ooonn 00005 002, . .;. 00000 oouno 00005 nn2o"I nOflnO ooono 00005 on?i n OnOOO ,;nono ooons 00211
nooo21 onnoo ooonr. no0os 0021 i' 00000 ooono 00005 nr213 n n ooo ooono 00005 00~1" 011000 ,;no no ooons 00215
000025 on n no ooon o nnno5 002; L OonOO ooono 00005 nn217 ooono ooono 00005 ooi>?o 00000 ;,nono ooons 00221
000031 onnoo 00000 00005 002:>2 oo o oo oo o on 00005 n •223 non on oooon Oo005 o n;>;>4 01'1000 nno r 0 OOOn'i 00225
000035 on n oo ooo on oono5 no2:>. on oo o oonno onons nn22"1 noono ooono 00005 oni>3n onooo ,; nor o ooooc; 00231
0000•1 Onnoo OOOnO oono5 002"? oonoo noon o noons nn233 nOOOO ooono 00005 nn;>~4 OnOOO ;.. n Or, O 000 nr:, 00235
000045 onnoo 00000 oono5 002~~ onooo 00 on O 00005 nn237 nOOOO 00000 00005 On:>40 011000 ;, OO n 0 ooon" 00241
000051 Onnoo 00000 00005 002.,. oonoo oo or o 00005 nn2•3 non oo 00000 00005 on;u 011000 ;,nor n ooon-. 00245
000055 on n oo 000 0 0 onoos 0021.; 00000 o o on o 00005 n n2i.7 noooo onono 00005 On::>ll\n OnOOO ;; nor o ooon5 no251
000061 onnoo 000 0 0 nnoo5 on2c:; 00000 o oon o oooos nn253 noooo 00000 00005 onzc;4 OoOOO nnono ooor5 00255
000065 On n oo 00000 onro5 002c: .. 00000 O oo no 00005 nn2"i7 noooo 00000 oooos on::ol'-n 00000 ;.nnno ooonc; 00261
000071 on n no oooon ooon5 002 .. 2 00000 ooono oooos nn263 nnono ooono oooos nn?"'" 00000 ;, non o 000n5 00265
000075 onnoo 00000 noons 002 00000 00000 onoo5 nn267 noooo 00000 00005 00?70 00000 ,;oono oooos 00271
000101 oonoo 00000 ouoo5 On272 00000 OOOnO 00005 on273 nooon ooono 00005 ooiJ7i. 00000 ,;OOPO ooon5 00275
000105 onnoo 00000 onoo5 002 00000 onono 00005 nn277 noooo ooono onoo5 003nn 00000 ,;ooro OOOnS 00301
000111 on nno 00000 00005 003·,? 00000 ooono oooos on3o3 110000 oooon 00005 on3n• OoOOO nonno ooons oo3o5
000115 On n 00 00000 00005 on3,., 00000 ooono ooooc; no3n"I 00000 ooono 00005 on3i o 00000 ,;nono 00005 0031 l
1100121 on non 0 ooo 0 onno5 0031 2 OOnOO 00000 00005 nn313 noooo 00000 00005 on3J" 00000 ,;non o 00005 00315
000125 onnno 00000 00005 0031 ~ 00000 00000 Oo005 on317 110000 00000 00005 on1::on onooo ,;oooo ooon!\ 00321
000131 on n no 00000 oono5 On3:>:> 001)00 ooono 00005 nn323 noooo 00000 onoo5 On3l',. onooo i-nono 0000<. 00325
000135 on no o 00000 00005 Oo3:>fl. 00000 ooono 00005 o n32"1 noon o ooono onoo5 003311 00000 ,; no no ooonc, 00331
000141 onnoo oooon 00005 0033? 00000 ooono onoos nn333 noooo 00000 00005 0033" 00000 ,;nooo ooooc. 00335
000145 oonoo 00000 00005 0033~ oonoo onono 00005 no33"1 noooo 00000 00005 On340 onooo noooo OOOo" 00341
000151 on n no oo 0 0 0 00005 0034;> 00000 OOOnO ooooc; nn343 oonoo 00000 oooos 00344 011000 ,; n ono ooonc. 00345
0001!55 Onnoo 00000 000()5 003•; 00000 00000 00005 no3•"1 noooo 00000 00005 00350 onooo ~nooo oooos 00351
000161 onnno onoon onoo5 003•::> oonoo ooono 00005 nn353 noono ooono 00005 00354 onooo ,;no no 0000'5 00355
!100165 Onnno oooor 00005 on3~l'i 00000 ooono 00005 nn35"1 nOOOO 00000 00005 003"'0 00000 .=.nono ooon"> 00361
000171 On1100 00000 00005 on3 .. ::o 00000 00000 00005 nn363 noooo 00000 00005 nn3-.• 00000 ,; o on o oooos 00365
000115 onooo oooon 00005 011311,-. 00000 ooono 00005 nn36"1 noooo 00000 00005 003"10 OoOOO ~nonn OOOn!\ 00371
00020 l 00000 oooon 00005 003"1::> 00000 00000 00005 nn3"13 ooono ooono 00005 Oll3T4 onooo ,;oono noon5· on375
000205 oonoo 00000 00005 0031-. 00000 00000 00005 nn3"17 00000 00000 0000! on•110 OnOOO .=.oono 00005 00•01
000211 oonno 00000 00005 oo••? 00000 ooono 00005 no4n3 110000 00000 00005 on•r• 00000 .=.nooo 0001'!5 00405
000215 oonoo ooonn 00005 Oo4~i. 00000 ooono 00005 nn•o7 nOOOO ooono 00005 on•i o 00000 ,;non o 0000'5 no•ll
000221 0111100 00000 00005 00•1 i' 00000 00000 00005 nn413 onooo 00000 00005 00•1 • 00000 ~nono 00005 00415
000225 onnoo ooono 00005 on•i-. OOnOO 00000 00005 l)n417 noono 00000 00005 004111 00000 ~ o or o 00005 oo•Zl
0011231 OollOO 00000 00005 00•22 00000 ooono 00005 on42J 110000 00000 00005 00414 llnOOO ,;oono ooon5 00425
000235 01)1100 onono 00005 on•::>~ 00000 00000 00005 on42"1 noooo 00000 00005 oo43n OoOOO ,;nooo 0000'5 on431
000241 onr,oo 00000 00005 00431 00000 ooono 00005 nn433 noooo 00000 00005 01143• OoOOO nnooo 0000"> 00435
000245 OnoOO 00000 00005 0043 .. 00000 00000 00005 110437 110000 000110 00005 00440 OnOOO ~nono ooon5 00441
000251 onnoo 00000 00005 on••;; 00000 00000 00005 nn443 1)0000 ooono 00005 00444 OnOOO rnono 0000'5 nn••5
non2s5 u ri "'n n nn on r ,, "r n., ,, ;)41,i.. on no o fl 0 u ,._Ci r no' c; • n•i. 1 non n n u non~ on on~ "'"'4".:i 1 on u o o no 1111t;, nni.51
00026 l on n n n ooo or nnoos nr,4,.. :> on no o no o" o 0 00 .,c; "•4'>3 n 0 0 n 0 oo On n onoo5 f'l('l.4c;1. OnOOO """ n•·,., 00 On" o n455
000265 0 n r 0 0 ooo n n nr.nn5 0 n•c:. ... 0 0 ~ 0 0 on u n a n no 1c; 1104'"17 non on o non r 00005 0 04.,, OnilOO I'\ r Or 11 0 0 r r<- nn46l
000271 0 n n n 0 ono n1· O ·' n 05 0 n41 ;> o on oo 00 u 0 0 ooooc; '•4'>3 noon o Oo on r, 00005 nri4,._4 onooo "" 0 .~ '1 n 0 0 e" 00465
000275 n 0 en 0 on on r 0·10ns 0(14"'" on n oo 001J n 0 000f·5 r o4'-7 nn on n On On n 00005 On4'PO 00000 I'\"{)",) 0 00 'c nn• 71
000301 0 r n 0 n O 0 On n n"n05 0047? o on o o n n 0 no on o ic; 0 ,473 no nnn ono no 00005 ~, . ., .. onooo I'\"' on n ooooc nn415
ooo3oc; 0 0 n n 0 0000 'f o ·1 r no; "l/14..,.,. on no o 0 0 I) 0 0 0 0 0 I<<; n n471 n n n n 0 ooonn onoo5 o nc;n n

Bead n O '.'

(10000 l on" n r on or n o" o In r, n I) ... ;- on n oo on On n 0 0 0 l 0 0 r.002 n 0 n n n Ono n n ono Io n "'nn3 on oo o ;.,,..()'·() 00 n 1 r• nnOo4
ooooos 0 "If\ f\f) on or c n • n l O n fl ('l r i: 0 n n 0 I) n n 'J" r O 00 In ""' 00~ n non o O oo n n o no lo o"\11('1"7 OoOOO I'\,.. n 1 n no 0 1 r nnOl 0
000011 on o on o noon Ou 0 l 0 n no, , oo ~ 0 0 on Jn o o oo lo on O 12 non no o ooo v On 0 I 0 n n n l 3 onnoo ;. ,. n r- n 00 0 1 r nno 14
00001!'1 on n no on on n O '' n IO nn O i e- 00000 00 0 n 0 On 0 Io n no 1 .. noono ooono 000 l 0 onn 17 011000 n n 0 e 0 0001 n 00020
000021 0 n 0 no ooonn n r o Io 0nO:>1 00000 noon o ono l n nnn22 noonn ooono 0 oo l 0 no n;>3 OnOOO ~" n .1 o ooo 1 n 0002•
000025 o in no ooonn on o IO nno:o .. onnoo 000 n 0 O o O l n 0002 .. no o in o non o oo 0 l 0 ono:>1 0 n 00 O r\f'\ n r 0 no o 1 n ono3o
nono31 onnoo oooon oon lo on n i 1 onnoo OOl•nO ono l n nn032 non no ono no on o lo nnn~3 onooo ""n n ,., n nooi r. 00034
000035 onnoo ooonn 0001 0 oooi;: 00000 ooono noo lo nn03fl. nnnno onono 00010 nnn1., OnflOO no Q n 0 0001 n on040
000041 On n nO 000 On on n Io 0004, 00000 ooono oo o l n ,, "0~2 n 0 n no OoO no ooo l 0 n n 043 OnOOO ,.. "o,.., n 0001 n ono••
000045 on non ooo on one 1 o ono, ~ onooo OOCnO on o l n ,.. ,.., o.-~ nonrn o oo no 000 Io onn•" onooo I'\" nri o 0001 n 00050
000051 oonoo onono on n Io On Oc 1 00000 oo on o oo o l n noOS2 nnooo ooon o 0oo1 0 nnn'53 onooo ~ f'! 0 '\ 0 non 1 n noo5•
000055 On n n O onono nun 1 o OnOc~ 00000 000 n 0 0 00 l 0 nnOSfi noon o o non o 000 l 0 n n n'5"1 OnOOO n n On 0 ooo 1 n nnot.o
000061 onnon onoon 0110 IO ono,r.1 00000 ooono ooo lo n nOl'.2 1\0000 On Ono 000 I 0 nno .. 3

CO';Tff\111[A<: BLOCK 0005 Ill.DE~ on I

D-4 44616800 Rev. 01

INTEGER

59 58

~
SIGN

LOGICAL

59

6000 SERIES CENTRAL MEMORY
WORD ORGANIZATION

I

59

0

I

0

FA Ls E to_o_o_o _ --__ o _o o_o~
TRUE . I I I I I I I I

HOLLERITH BCD AND DISPLAY CODE

59 53 47 41 35 29 23 17 11 5 0

I o, I o2 I o3 I o4 I os I os I o7 I os I o9 I o,o I
'--v-1 '-y-J

6 6

OCTAL

57 54 51 48 45 42 39 9 6 3 0

44616800 Rev. 01

E

E-1

E-2

REAL

59 58

SIGN

BIA SEO

EXP

47 0

FRACTION (M)

'-----v------1~~~~~~~~~~~~~~~~~~~~

II

DOUBLE PRECISION

59 58

SIGN

59 58

n+I~
SIGN

COMPLEX

59 58

SIGN

59 58

BIASED

EXP

BIASED

EXP-48

BIASED

EXP

48

47 0

m

MOST SIGN IF IC ANT

47 0

ml

LEAST SIGNIFICANT

47 0

m

REAL

47 0

n + I~ ._......._ __ B-~A-xs_:_D __ -'--------m----~
SIGN IMAGINARY

44616800 Rev. 01

CARD FORMATS

Columns

1 2 3 4 5 77 79 80

12
f--

11

0 c ({')
6 Cl

u ~ f---+-+--+--+------------~
-0 ..-;-

'""' (l)

6

8

'""' 0

~ ~
r--1~
f- ~

(/)

1----4 ~
~

f-U

NORMAL MODE

Card Type

Enter Free­
Form Mode

*
End-of-File

End-of-Record

Standard 6000
Binary Card

Coded Card

Column 1 Punch

All rows

6,7,8,9

7, 8, 9

7. 9

Not 7, 9

t------+--+-~ a
..:<:

t--------+------1 s:: ro
:D

::i z
(l)
u
s::
C!
::i
c:r
C!

[f;

t------+--+-~ ~ ~
ro ro u u

t------+--+-~

Other Columns

All of one other column punched,
other columns blank.

A 11 other columns ignored.

All other columns ignored.

See below

See below

*References to ICT, EBCDIC and Hollerith switch cards apply only to the BA TCHIO 6000
card reader driver and not to IMPORT.

44606800 Rev. 03 F-1

F

BINARY CARDS

A Normal ri1ode binary card can contain 15 central memory words of data, starting in column

3. Rmvs 0, 1, 2 and 3 of column 1 contain the number of central memory words on the card;

if no punch occurs in row 4 of column 1, then column 2 contains a binary checksum (modulo

4, 095) for the card.

Columns 3 through 7 7 contain the central memory data words.

Column 78 is blank; columns 79 and 80 contain a 24-bit binary card sequence number, which

starts at 1 on the first card of each record.

CODED CARDS

Coded cards contain up to 80 characters per card. When the system reads coded cards, it

converts the data to display code from the Hollerith type specified on the last Hollerith Switch

card; if no Hollerith Switch card has been read, the system assumes that conversion is to be

made from standard 6000 Hollerith code.

When the system converts 6000 Hollerith code, it packs the data 10 card columns per central

memory word. Trailing blanks are suppressed during all types of code conversions, and an

end-of-line terminator is forced for each card.

FREE-FORM MODE

Card Type

Exit Free­
Form Mode

Absolute End­
of- File

Column 1 Punch

All rows

6, 7, 8, 9

Other Columns

Must be identical to last card used
to enter free-form mode

Columns 2 through 80 all blank.

All other cards are read as SO-column binary, with 16 central memory words of data ~er

card. An Absolute End-of-File card writes an End-of-File mark and causes processing to

return to Normal mode.

F-2 44616800 Rev. 01

CYCLIC ERROR DETECTION G

To ensure reliable transmission of binary data via a Telpak-A line, or a coaxial cable, it

is necessary to transmit redundant information which enables the receiving Data Set Con­

troller (DSC) to determine if any errors have occurred. Noise generated at switching

centers, lightning, electrical disturbances, or random line noise cause errors.

The DSC utilizes a cyclic code as a method for detecting transmission errors. This type of

code is defined in terms of a generating polynomial, G(x), of degree n-k, where n =total

bits transmitted and k = the data bits transmitted. Using this polynomial, k information

bits can be augmented with n-k redundant bits in such a way that n bits can be described by a

code polynomial of a degree ~n-1, that makes possible the detection of most error patterns.

Binary da!a can readily be associated with an algebraic polynomial. For instance, the

binary information 1, 0, 1, 1, 0, 0, 1, is used to describe the generating polynomial (reading

from left to right) G(x) = x6 + Ox5 + x 4 + x3 + Ox2 + Ox + 1, or omitting the terms with zero

coefficients, G(x) = x 6 + x4 + x
3

+ 1. The rules of ordinary algebra permit the addition, sub-

traction, multiplication, or division of this polynomial.

modulus 2; i.e. , it obeys the following laws:

0 + 0 = 1 + 1 - 0, -1 = +1, 1 + 0 = 0 + 1 = 1

The arithmetic is based on the

The code polynomial is generated in the following manner: first, multiply the information

polynomial, I(x), representing the information to be transmitted by xn-k. The product,

xn-k I(x) is then divided by the generating polynomial G(x). The operation can be denoted as

follows:

n-k x I(x) = Q(x) + R (x)
G(x) G(x)

n-k or x I(x) = Q(X) G(x) + R (x) where

Q(x) is the quotient and R(x) is the remainder of the code polynomial. Using the modulua 2

arithmetic operations, (1) can be written in the following manner:

xn-kI(x) - R(x) = Q(x) A(x)

But since -1 +l, the left side can also be written as:

xn-kI(x) + R(x) = Q(x) A(x)

This equation states that if the remainder is added to xn-kl(x), a polynomial divisible byG(x)

results since the right side is obviously divisible by G(x). For example, suppose the bit

44616800 Rev. 01 G-1

sequence 1, 0, 1, 1, 0, 1 is to be sent as a data message with three redundant bits (the DSC uses

12 bits) added for error-checking purposes. The information can be represented by I(x) =

x 5 + x 3 + x 2 + 1. Since three redundant bits are going to be userl, T(x) must be multiplied by

x 3 . This yields x8 + x6 + x 5 + x 3 . Suppose G(x) = x 3 + x + 1 is chosen as a third degree

generating polynomial, then:

3 x I(x) x
3 + x + 1 I

G(x)

"5
x + 1 = Q(x)

8 + 6 + 5 + 3 x x x x
8 + 5 + 5 x x x

3
x

3
x + x + 1

x + 1 = R(x)

3 8 6 5 3
Thus, x I(x) + R (x) = x + x + x + x + x + 1 is the coded polynomial divisible by G(x). The

information actually transrnitterl would be 1, 0, 1, 1, 0, 1, 0, 1, 1.

The data is checked for divisibility by G(x) at the receiving station as follows:

x
5 + 1

x 3 + x + 1 lx 8 + x 6 + x
5

+ x
3

+ x + 1
8 , 6 I 5

X TX TX

x 3 + x + 1

x
3 + x + 1

0

If instead of 1, 0, 1, 1, 0, 1, 0, 1, 1 being received, suppose the sequence 1, 0, 0, 1, 0, 1, 0, 0, 1

is received. Checking this yields:

x 5 + x 3 + x
3 8 5 3 x +x+l x +x +x +1

8 + 6 + 5 x x x
6 + 3 + 1 x x
6 4 3 x + x + x

x 4 + 1
4 2 x + x + x

x 2 + x + 1 R(x)

The remainder is R(x) = x 2
+ x + 1. Since the remainder is not zero, an error occurred

during transmission and was detected. Undetected errors occur when the received poly­

nomial is divisible by G(x), the generating polynomial, even though it is not necessarily the

intended code. The rarity of this occurrence gives the cyclic code detection high reliability.

G-2 44616800 Rev. 01

The multiplication of the information polynomial by xn-k and then division by the generating

polynomial G(x) is implemented by using shift registers with suitable linear feedback con­

nections. Detection of errors is accomplished by sensing the shift register for "1 's" after

the data message and information has been received at the receiving end.

A block diagram of a typical encoder-decoder is shown in Figure G-1 below. The generating

polynomial actually utilized is G(x) = x
12 + x 11 + x 3 + x 2 + x + 1 and the feedback connections

12
shown perform the multiplication of information polynomial, I (x), by x , and then add the

remainder of I(x) /G(x) to I(x). Control gate 2 is activated all during the time l(x) is being

shifted through the encoder. This gate is deactivated after the last bit of I(x) is in the first

stage of the encoder. At this time, control gate 1 is activated and the contents of the shift

register are shifted out, augmenting the data. At the receiving end, control gate 2 is acti­

vated all during the time the information and redundant bits are being transmitted. When the

last transmitted bit has been shifted into the first stage of the register, the entire register

is sampled and if a "1" does not occur in any stage, it is assumed that the information re­

ceived is identical to that which was transmitted. If any stage contains a "1 ", at least one

bit was aborted during transmission.

DATA
IN

A(x)=x
12

+x
11

+x
2

+x+1

0 00 11
= HALF ADDER = Q _!_ QJ...

0 I I 0
0 = ENCODER BIT STAGES

Figure G-1. Typical Encoder I Decoder

ENCODED
MESSAGE

44616800 Rev. 01 G-3

SAMPLE GRAPHICS PROGRAMS H

The following printout lists all of the cards needed for the file creation and execution runs

of a simple graphics job. This job consists of one short primary overlay that draws a star

and a square at one console, then creates two light buttons. The console user is informed

that the square is supposed to be within the star; he then picks the proper button to center

the square within the star, and the figure is moved. If the button he picks is invalid, he

receives a message and the job aborts.

CARD SEQUENCE FOR GRAPHICS FILE CREATION

XMPL, P37, TlOOO, CM60000.
RUN(S)
LGO.
AEFILE.

~
OVERLAY(SCR, 0, 0)
PROGRAM CREATE
CALL MAIN
STOP
END

OVERLAY (1, 0)
PROGRAM LITTLE
DIMENSION IBUF (64), IBCD(30)
NCON=l

C CONNECT CONSOLE
CALL GICNJB(NCON)

C SET ITEM MASKS
DO 10 I=l, 5
IDDTS =2':~* (I-1)
IMASK=IDDTS
CALL GIMASK(NCON, -0, IDDTS, IMASK)

10 CONTINUE

C SET DISPLAY CONSTANTS
!CODE =103B
!STYLE =7777B
MBYTE=310
NBYTE=O

C START DRAWING SQUARE
CALL GURSET (200, 200, I CODE, IBUF, NBYTE, MBYTE)
CALL GUSEGI (200, 200, ISTY LE, IBUF, NBYTE, MBYTE)
CALL GUSEG(200, -200, 1)

44616800 Rev. 01 H-1

CALL GUSEG(-200,. -200,. 1)
CALL GUSEG(-200,. 200,. 1)
CALL GUSEG(200,. 200,. 1)
IDDT=2

C DISPLAY SQUARE AS SINGLE PICK ITEM
CALL GIDISP(NCON, IBUF, NBYTE, IDD~t1D, IDDT, 1,. -0)
IDRSV=IDDAD

C DRAW STAR OF DAVID (TWO TRIANGLES)
NBYTE=O
CALL GURSET (-500,. 300, ICODE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (-500,.300, 500, 300, 1, !STYLE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (500, 300, 0, -600, 1, !STYLE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (0, -600, -500, 300, 1, !STYLE, IBUF,. NBYTE, MBYTE)

C DRAW SECOND TRIANGLE
CALL GUSEGS {-500, -300, 500, -300, 1, !STYLE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (500, -300, 0, 600, 1, !STYLE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (0, 600, -500, -300,.1, !STYLE, IBUF, NBYTE, MBYTE)
IDDT=24B

C DISPLAY STAR AS STRING PICK WITH MARKER MASK SET
CALL GIDISP(NCON, IBUF, NBYTE, IDDAD, IDDT, 2, -0)

C LABEL THE FIGURES
NBYTE=O
ENCODE (37,. 20, IBCD)

20 FORMAT(37HSUPPOSED TO BE A SQUARE INSIDE A STAR)
NC=37
CALL GURSET(-300, -700, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN(IBCD, NC, IBUF, NBYTE, MBYTE)

C DISPLAY ITEM AS AN IGNORE ITEM
CALL GIDISP(NCON, IBUF, NBYTE, IDDAD, 1, 3, -0)

C MAKE TWO BUTTON CHOICES
NBYTE=O

H-2

CALL GURSET(-400, -900, ICODE, IBUF, NBYTE, MBYTE)
ENCODE (16, 30, IBCD)

30 FORMAT(16HMOVE SQUARE LEFT)
NC=l6
CALL GUAN(IBCD, NC, IBUF, NBYTE, MBYTE)
IDDT=8
CALL GIDISP(NCON, IBUF, NBYTE, IDDAD, IDDT, 4, -0)
NBYTE=O
CALL GURSET(300, -900, I CODE, IBUF, NBYTE, MBYTE)
ENCODE (17, 35, IBCD)

35 FORMAT(l 7HMOVE SQUARE RIGHT)
NC=l 7
CALL GUAN(IBCD, NC, IBUF, NBYTE, MBYTE)
CALL GIDISP(NCON, IBUF, NBYTE, IDDAD, IDDT, 5, -0)
CALL GIBUT(O, NCON, IDDT, IDDC)
IF (IDDC. EQ. 4) GO TO 41
IF (IDDC. EQ. 5) GO TO 42
ENCODE (10, 40, IBCD)

40 FORMAT(lOHWRONG IDDT)
NC=lO
CALL GIABRT(NCON, IBCD, NC)
STOP

44616800 Rev. 01

41 IH=-600
GO TO 43

42 IH=lOOO

C MOVE ITEM AS SPECIFIED BY OPERATOR
43 CALL GIMOVE (IH, 200, 107B, IDRSV, 2, 6, -0)

C MOVED ITEM WILL BLINK

C RELEASE CONSOLE
CALL GICNRL(NCON)
STOP
END

Two file names cause MAIN to recognize the file creation job:

XMPL
SCR

;
CARD SEQUENCE FOR GRAPHICS EXECUTION JOB

LPMX, P37, T200, CM60000.
COMMON, XMPL.
RUN(S)
LGO.
RELEASE, XMPL.
EXIT.
RELEASE, XMPL.

~
OVERLAY(SCR, 0, 0)
PROGRAM EXECUTE
CALL MAIN
STOP
END

One file name causes MAIN to recognize the file execution job:

XMPL

~
The following example consists of a program which sets the ID processor mask, generates

a line and a circle with subroutines, and generates four light buttons; one to display a line,

one to display a circle, one to erase a picked line or circle, and one to terminate the appli­

cation. Coordinate information for display item position will be furnished by calls to the

tracking cross position fetch routine GITCOF.

44616800 Rev. 03 H-3

The console number, NCON, is input from a card and stored in COMMON location NCON.

The program is designed to terminate automatically when 10 components have been created.

PROGRAM CLASDEM

The program starts by reading a card for the console number and storing it in COMMON

location NCON. Console NCON is assigned to the job with a call to GICNJB.

The byte-stream for the line is generated and stored in IE UF with a call to GUSE GS; it is

made a macro and stored in the macro area of the display buffer with a call to GIMA C. The

macro address is returned in TvLil.D (1).

The byte-stream for the circle is generated and stored in IBUF with a call to GU~il.RCG; it is

made a macro and stored in the macro area of the display buffer with a call to GIMAC. The

macro address is returned in MAD (2). The macro addresses are needed when the line or

circle is to be displayed. The 1\ILAD parameters are used in calls to GUMACG which gener­

ates the macro call. The macro call, provides access to the line and circle byte -streams

for dis play.

Once the byte-streams are taken care of, the next step is to set up the ID processor mask

for the light buttons and components. This is done with calls to GIMASK. Light buttons are

designa:ed type 1 and are set to blink when picked as operator feedback. Lines and circles

designated type 2, are set to blink when picked, and are further designated as single pick

items. This last means that if more than one line or circle is picked for erasure, only the

last one picked has its ID block retained; the preceding ID blocks are deleted.

The next step is to create and display four light buttons:

e LINE

e CRCL

e ERAS

• O\TER

The first three light buttons call subroutines LINE, CIRCLE, and ERASE, respectively.

OVER calls GICNRL to terminate the application.

The operator at this time sees the light buttons displayed along with the tracking cross. He

responds by picking up the cross \Vith the light pen and moves the cross to where he wants

a line or circle to be displayed. His next step is to select either the LINE or CHCL light

button to indicate whether he wants a line or circle to be displayed at the tracking cross

position.

H-4 44616800 Rev. 01

GIBUT has been called and is waiting for a light button pick. Once the operator has respond­

ed, the ID block of the selected light button is returned; a computed GO TO is executed,

based on the IDDC parameter which indicates which particular light button was selected. It

is safe to assume that either LINE or CRCL was selected since there is nothing to erase and

its not likely that the operator would terminate at this time. The following paragraphs ana­

lyze the functions of subroutines LINE, CIRCLE, and ERASE which are called as a result of

the execution of the computed GO TO.

SUBROUTINE LINE

LINE retrieves the horizontal and vertical coordinates of the tracking cross with a call to

GITCOF. The coordinates are returned in ITH and ITV. A reset sequence is created using

ITH and ITV for the position at which the line will start. This is followed with a call to

G UMA CG to generate the macro call which provides access to the line byte -stream in the

macro area of buffer memory. Note that the macro address given in the call is the one for

the line (MAD [lJ).

The bytes for the reset sequence and the subroutine call are temporarily stored in IBUF.

Now GIDISP is called to transfer NBYTE bytes of IBUF to the display item area of buffer

memory. The display address is stored in IDDAD (K + 1) to enable the operator to erase the

line if he desires. Note that the ID block contains the line type (2), the line code (1), and

K + 1. K + 1 will be used in subroutine ERASE to determine which particular display item

is to be erased. K is then incremented to be ready for the next itern to be displayed. K is

also tested for equality to 11 to see if all ten locations of IDD~A. D have been used. If not, the

program continues. If all the locations have been used, GICNRL is called to terminate the

application.

SUBROUTINE CIRCLE

CIRCLE is identical to LINE except that MAD (2) is used instead of MAD (1) and the circle

code (2) is used in the call to GIDISP instead of code (1) (as was the case with LINE). Both

LINE and CIRCLE could easily be combined into one routine; however, the redundancy re­

inforces the learning process.

SUBROUTINE ERASE

ERASE fetches the ID block of the line or circle picked by the operator for erasure. IDWA

contains the K parameter set into the ID block by GIDISP when the subroutine call sequence

was generated, GIERAS is then called to erase the line or circle whose display address is

found in IDDAD (IDWA),where IDWA once again is the K parameter. This does not remove

the byte -stream from the display item area; however, it merely removes a particular reset

and macro call sequence from the macro area. A printout of these routines is shown below.

44616800 Rev. 01 H-5

~0~003
000003
no~oo4

000003

000003
000011
nono11
600013
000014
noools
5Q0016
000026
000031

Q0~032
nono45
ooooso

~00051

nooo56
000063
t\00067
000073
000077

006100
000104
non110

H-6

c
c
c
c
c
c
c
c
c
c
c
e
c
c
c
c

c

c

c

c

c

c

OVERLAY (SCR, 0, 0)
PROGRAM M(lNPlJTtOUTPUT>
COMMON IRUF (100>• MAO (?), IDDAn <ln>t NBYTEe MRYTE, NCON, K
CALL MAIN
END

OVERLAY <ltO)

PROGRAM CLASOEM
COMMON !RUF (100)t MAO (2), TDDAn (10) 9 NHYTE, MHYTE, NCON, K

MAD (1)
MA0(2l

LINE MACRO ADDRESS
CIRCLE MACRO ADORES!:;

I PDAr)(U TO IO DAD C 10 > 0 I <;PLAY ITEM AOORESS

OISPLAY ITEM BLOCK
WOROl DISPLAY TYPE

t= BUT.TON
2= SINGU: PICK

WOR02 DISPLAY ITFM
l= LINE
2= CIRCLF

WnR03 DISPLAY lTFM MATRIX AOORESS

SIGN ON CONSOLE
~EAO lt NCON

1 FORMAT (J2)
CALL GICNJB (NCON>
~BYTF. = 320
NAYTF = 0
K = 0
GENtRATE LINE MACRO
CALL GUSEGS ((), Ot 600t n, 1, •Ot IBUF, NHYTEt MBYTE>
CALL GIMAC(NCONtIBUFtNRYTEtMAO<l>>
NRYH: = 0
GENERATE CIRCLE MACRO
CALL GUARCG <lttitOt300• Ot 300• Ot ·o• lBUf, NAYTEt MRYTE>
CALL GIMACCNCONtlHUFtNRYTEtMADC2>>
t\AYTf = 0
SET HUTTON MASK
CALL GIMASK <NC0Nt-Otl•1~+8)
SET SINGLE PICK ~ASK
CALL GIMASK (NC0Nt-O•?•i~+2)
DISPLAY LI~E RUTTON
CALL GURSET <o. -1500• 1n2Bt IBUF, NRYTE, MBYTE>
CALL GUAN (4HLINEt 4, lRtlFt NBYT~t MRYTE>
CALL GIDtSP (NCOr,1, !HUF, N~YTE, tnA, i. ll
NBYTF = O
DISPLAY CIRCLE BUTTON
CALL GURSET <o. -1600• tn2At IRUF, N4YTE, ~RYTE>
CALL GUAN (4HCRCLt 4, rn11F, NAYH:, MRYTE>
CALL GIDISP (NCON, IRtJF", ~BYTEt TDAt lt 2)

44616800 Rev. 03

oooi1•

oooi1s
oon121
00012s
000131

oooi32
000136

000142
000146

000147

~ij~js2
~0()155
000165
oooi66
000167
000170
906J11
('Ont72

aooi13
f'\On 175

000002
000002
noooo2
606002
000003
000006
000012
noool6
~ono21
t'ooo31

000035
000036
000042
'.l00046
000051
f\onosJ
000055
nooo56

c

c

c

c

c

c

c

NRYTE II 0
DISPLAY ERASE BUTTON
CALL GURSET Co, •1700• 1020, l8tJF, NAYTE, MAYTE>
CALL GUAN (4HF.RAS• 4, TRllF• NBYTEt MHYTE>
CALL GIDISP (NCON, IBUF, NBYTE, TOA, 1, 3>
NBYTE = 0
DISPLAY OVER RUTTON
CALL GURSET CO• •1800• 1028• IBUF, NAYTEt MBYTE>
CALL GUAN (4HOVER• 4, l811Ft NBYTF.:t MRYTE>

CALL GIDISP CNCON, IBUFt NBYTEt JOA• l• 4)
NBYTE = 0
TURN ON TRACKING CROSS

2 CALL GITCON (NCON•O•O>
WAIT TO PICK AUTTON
CALL GIBUT (Q,NCON,IDDT,TDDC>
GO To <3, 4, s, 6>, Ione

3 CALL LINE
GO To 2

4 CALL CIRCLE
GO To 2

S CALL ERASE
GO TO 2
JOB OONE. RELEASE CONSOLE

6 CALL GICNRL (NCON>
ENO

SUBROUTINE CIRCLE
DISPLAY CIRCLE'
DIMENSION MESS(4)
DATA MESS/40H TOO MANY FIGURES• CONSOLE RELEASED I.
COMMON IRlJF <100>, MAD (2), !DOAf) (10), NAYTEt MRYTE, NCON, K

t-4BYTE = 0
CALL GITCOf CNCONt ITMt TTV>
CALL GURSET CITH, ITVt 1028, IBUF~ NRYTEt MBYTE>
CALL GUMACG<MAD<2>•l•TRUF,NBYTE,MRYTE>
CALL GIOISP (NCON, lAUF, N9YTEt TDOAO (K+l)t 2, 2, K+l)
K : K+l
IF (t<.Ec~.11) lt 2
TOO MANY FIGURES, RELEASF CONSOLE

1 NBYTE=O
CALL GURSET cn,-1400, ?,TBuF,NBYTEtMBYTE>
CALL (;!JAN (MESS• 35,YRlJF,NHYTEt MAYTE>
CALL GlO!SP(NcoN.IsUFtNRYTEtIOOAn>
CALL GICNRL (NCON)
STOP

2 RETLIP.N
END

44616800 Rev. 01 H-7

600002
000002
noooo2
'306002
000003 oono06
QQ~Ol2
000016
no~nn
~ono31

000035
'100036
000042
oono46
nooos1
nooo53
nonoss
nooos6

ilonoo2

000002
nonoos
000010
~00011

H-8

c

c

c

c

~

SUBROUTINE LINE
DISPLAY LINE
COMMON l8UF <lOO>t MAO <?>t tUDAn (lO>• NRYTEt MBYTE, NCON, K
DIMENSION MESS(4)
DATA MESS/40H TOO MANY FIGURES. CONSOLE PELEASED I
NBYTE = O
CALL GITCOF <NCONt ITH, TTV>
CALL GURSET <ITH, Irv. l02Bt IBUF, NBYTE. MBYTE)
CALL GUMACG(MAO(l>tltlRUFtNBYTEtMRYTE>
CALL GIDISP (NCONt lRlJF, NRYTEt TODAO (K+l), 2t lt K+l>
K = t<+l
IF <K.EQ.11) lt 2
TOO MANY FIGURES. RELEASE CONSOLF

1 NBYTE =O
CALL GURSET co,-1400, 2tlBUF,NBYTEtMRYTE>
CALL GlJAN (MESSt35t IRUF, NBYTEtMRYTE>
CALL GIOISPCNCQN,IBUFtNRYTEtIDDAO>
CALL GICNRL CNCON)
STOP

2 RETURN
ENO

SUHl-<OUTINE ERASE
CLEAR DISPLAY ITEM
COM~Ol'I I RlJF C 100 > t MAI) (? > • TOD AO (l 0) t NHYTE t MBYTE, NCON, K
READ DISPLAY TfEM ID qLOCK PtCKEO
CALL GIFJO (~CONt IDOT, TODC, IDWA)
CALL GIERAS (!OOAO(JOWA))
RETURN
ENO

XMPL
SCR

~

44616800 Rev. 01

DIFFERENCES BETWEEN 6000 BASIC GRAPHICS PACKAGE
AND 3000 DIGIGRAPHICS CONTROL PACKAGE MARK 4.0

The differences between the graphics routines of the 6000 Series Interactive Graphics System

and the 3000 Series Master Graphics System can be grouped in three categories:

• Graphics processing differences

• Hardware-produced variations

• Operating system differences

Because of these differences, a program written for one system may not run in the other

unless changes are made in the coding. Although complete compatibility between the systems

is a desirable feature, such compatibility cannot be achieved without serious restrictions to

both systems. Consequently, a programmer converting jobs from one system to the other

must bear in mind the differences listed below.

PROCESSING VARIATIONS

The subroutines discussed here exist in both systems, have identical calling sequences, and

perform similar functions. The majority of incompatibilities exist in interpretation of the

parameters and I or the processing of the functions.

ALPHANUMERIC FONT SIZE

The 3000 graphics system uses a standard font size requiring each character to occupy a

square of 30
8

display grid units per side. The 6000 system can use either this size font or

a larger one of 40
8

units per side; the choice of font size is a system assembly option, and

affects the number of characters that can be displayed on one line by a GUAN call.

USE OF MINUS ZERO

The 6000 system allows various routine calling sequences to be truncated with a minus zero

parameter or a right parenthesis; the 3000 system permits truncation only by a right paren­

thesis.

The 6000 system allows a -0 to indicate a no change option for GIMOVE and GICOPY sub­

routines; the 3000 system allows a -0 to indicate a no change option only for the GIMOVE

subroutine.

44616800 Rev. 03 1-1

IBUF SIZE

There are also differences between the two systems in the maximum number of bytes allowed

on calls to GIDISP and GIMAC. The 3000 system returns an error indication if the number

of bytes is greater than 4095, while the 6000 system has a limit of 310 bytes on calls to

GIDISP and 316 bytes on calls to GIMAC.

This difference arises because the graphics consoles communicate directly with the com­

puter in the 3000 system, but must use EXPORT /IMPORT in the 6000 system. EXPORT I
IMPORT has a limit on the number of 12-bit words which can be communicated in one trans­

mission between computers.

ATTRACT MASK

The 3000 system has an attract tracking cross mask (IMASK = 32) which causes the tracking

cross to be positioned under the light-pen when an entity is picked which has the attract mask

set. The 6000 system does not have this feature because the tracking cross is a software

(rather than a hardware) controlled entity in systems that use the 1 700 graphics hardware.

TASK PROCESSING

The 3000 system allows 4-character task names and uses only the IDWA word in the graphics

buffer memory for such names; whereas, the 6000 system allows 7-character task names

and can use both the IDWA and IDWB words in the graphics buffer memory for such names.

The Application Executives of the two Packages also differ; the 6000 routines perform

slightly different functions than the 3000 routines, and are part of a SCOPE library sub­

routine called MAIN. While the Executive routines need not be used in either system, it is

very difficult to write a program for the 6000 without using MAIN.

The 6000 system MAIN program loads the first task on the multi-task file as the initial appli­

cation task, while the 3000 system allows the user to specify the application task to be loaded

first by a control card parameter.

The 3000 system allows one task to call another task and then automatically have the called

task return control to the original task following that task's CALL AETSKC statement. The

6000 implements this feature through a separate call AERTRN.

In addition, the 3000 system permits a subroutine to be called as a separate task, while the

6000 system requires a subroutine to be part of a task overlay.

These differences result from the separate multiprogramming characteristics of the 6000

Series and 3000 Series computer operating systems.

I-2 44616800 Rev. 03

DISPLAY SUBROUTINES

Because of differences between the graphics console controllers used in the two systems,

the 6000 Basic Graphics Package does not permit the use of display subroutines. The

GUSUBG, GISUB, and GITSMV subroutines which are available in the 3000 system to allow

use of the subroutine feature are not available in the 6000 system.

HARDWARE-PRODUCED VARIATIONS

DATA HANDLER ROUTINES

The 6000 Series computer's large word size causes differences between the systems in Data

Handler operation. The Data Handlers of both systems have almost identical calling

sequences, but the Data Handler routines of the 6000 Basic Graphics Package have different

component codes and do not access their files in the same manner as the 3000 routines; the

structures of the files are identical, except for word size.

The 6000 Data Handler also has an additional optional parameter in the CALL DMINIT state­

ment to allow more efficient multiprogramming use of the 6000 hardware.

HARDWARE TESTING AND CONTROL

The GIBWRT, GIBRD, GIBERS, and GISTAT subroutines which are available in the 3000 sys­

tem to allow both on-line hardware testing and low-level user control over the graphic sys­

tem are not provided in the 6000 system. These functions are not needed or desirable in the

6000 system, because the 6000 Series computer is not directly connected to the console

controllers.

CONTROLLER MEMORY SIZE

The 3000 system allows display buffer sizes from 4K to 16K, and possibly 32K. The 6000

system allows display buffer sizes from 4K to SK because of 1 700 Computer addressing lim­

itations. Therefore, a programmer converting from the 3000 system to the 6000 system

must be sure that his display generation calls do not cause controller memory overflow.

GIDISP /GIMAC ERRORS

Since the 3000 system has a channel/ controller interface, the software returns a zero value

in the identification parameter (IDDAD or MAD) if a graphic display buffer memory overflow

occurs. The 6000 system cannot efficiently provide this capability because it does not

directly interface with the console controllers.

44616800 Rev. 01 I-3

CONTROLLER MEMORY DUMP

The GUDDMP utility subroutine in the 3000 system provides for a dump of the display buffer

1nemory. This is not provided in the 6000 systern for reasons sirnilar to those given under

GIDISP/GIMAC errors.

OPERATING SYSTEM DIFFERENCES

The 3000 computer system has multiprogramming features which are significantly different

from those of the 6000 system. The two areas which produce the majority of additional sub­

routines in the 3000 graphics system are the 3000 Chapter Two COMMON and task processing

concepts.

USE OF COMMON

The AEADDM and AECOPC subroutines for COMMON manipulations on the 3000 system are

not available on the 6000 system. The AETSKC and AETSKR routines exist in both systems

but are different because of the multiprogramming and Chapter Two characteristics of the

3000 Series computer. An additional difference results from the 4-character limit on task

names for the 3000 system and 7-character limit for task names on the 6000 system.

TASK CONTROL

The AETSKT and AETSKW routines perform 3000 system functions which are not available

on the 6000 system. The 3000 AEOFF subroutine provides for a voluntary termination of

a graphic application on the 3000 system. This can be done on the 6000 system by using a

STOP statement in the FORTRAN program.

TASK FILES

The random access task file building and processing is different. The 3000 system uses the

AETG subroutine and the 6000 system uses the AEFILE subroutine. These task building

differences are considered utility areas.

HARDCOPY FILES

The 6000 system GIPLOT subroutine provides a method for a 6000 application program to

produce a file which can be put on microfilm using a 2 50 microfilm system. The 3000 system

does not presently have this capability. The 3000 system could have this feature added in

the future if 2 50 microfilm on the 3000 systems becomes a requirement.

I-4 44616800 Rev. 01

6000 ROUTINES NOT IN 3000 SYSTEM

The following list contains the subroutines which are presently available on the 6000 system

but not on the 3000 system:

GIPLOT

GITIMV

GITMMV

SCHEDR

MAIN

AEFILE

AELOAD

A ED UMP

GFONTA

GFONTN

Creates hardcopy file

Moves item with tracking cross

Moves macro

Transfers job from batch control point to graphics
control point

System supplied overlay processor

System supplied utility

System supplied utility

System supplied utility

Creates alphanumeric font

Creates numeric font

3000 ROUTINES NOT IN 6000 SYSTEM

The list below contains subroutines which are presently available on the 3000 system but not

on the 6000 system. The majority of subroutines which were not discussed previously can

be considered utility routines and are not deemed necessary on the 6000 system at this time.

AEADDM

AECOPC

AEID

AEIT

A EOFF

AESO

AETG

AETSKT

AETSKW

AEXF

GIBE RS

GIB RD

GIBWRT

GIST AT

GISUB

GITSMV

GUCONV

GUDDMP

GUKM

GUSUBG

44616800 Rev. 01

Extend Chapter 2 COMMON

Copy COMMON

Not called by application, a system program task
proce&sor

Not called by application

Voluntary graphic termination

Not called by application

Not called by application

Indirect task call

Task wait

Not called by application

Display buffer erase

Display buff er read

Display buffer write

Console status

Subroutine insert

Tracking subroutine move

BCD to floating-point conversion

Display buffer dump

Keyboard maker

Subroutine call generator

I-5

CREATING ALPHANUMERIC DISPLAY FONTS J

For certain applications, the programmer may wish to provide the console user with a dis -

play font other than the two supplied in the 6000 Basic Graphics Package (see Section 7,

GFONTA and GFONTN). The following discussion covers some of the more important points

that a programmer should consider when creating his own display font.

FONT CHARACTER RECOGNITION

The 1 700 Basic Graphics Package recognizes a sequence of display generation bytes

followed by a one-word ID as a display font character. When the character is picked

with the light-pen and GIANS has been called, the ID word is queued on an alphanumeric

string so that it can be sent to the application program when a GIANE call occurs. Each

8-bit ID word in the 1700 is an ASCII character and is converted to 6000 display code be­

fore being sent to the 6000 application program.

Because of this processing, the application programmer can create font characters by

supplying the one-word ASCII ID through a call to G UBYTE. For example, the three calls:

CALL GURSET(IH, IV, I CODE, IBUF, NBYTE, MBYTE)

CALL GUAN(lLA, 1, IBUF, NBYTE, MBYTE)

CALL GUBYTE(lOlB, 1,IBUF,NBYTE, MBYTE)

create an alphanumeric font of one character, A, at screen coordinates IH and IV. The

ASCII code for A is 101 8 or 41 16 .

The call:

CALL GIDISP(NCON, IBUF, NBYTE, IDDAD, -0)

then displays this one character font. After the font appears on the screen, the call:

CALL GIANS (NCON, 10. IHl. IVl)

creates a light register at screen coordinates IHl and IVl; this register can contain up to

10 of the A's, if the character is picked that many times.

If the character A is picked once and GIANE is called, the parameters returned to the call

will be:

NC 1

IBCD Abbbbbbbbb

where the letter b indicates a blank.

44616800 Rev. 03 J-1

SPECIAL CHARACTERS

Two special characters are defined for the 1 700 Package. These two characters, backspace

and clear, allow the console operator to remove characters which have been queued since

the call to GIA NS and before the next call to GIA NE occurs.

BACKSPACE

Any display followed by a one-word ID of 137B (or 5F16) is defined as a backspace character.

When such a character is picked with the light-pen, the last picked character in the light

register is erased from the display and the underline is restored; the ID of the erased char­

acter is also removed from the buffer of queued alphanumeric information.

CLEAR

Any display followed by a one-word ID of 177B (or 7F 16) is defined as a clear character.

When such a character is picked with the light-pen, all of the characters currently in the

light register are erased and the entire underline is restored; in addition, the ID' s for all of

the erased characters are removed from the buffer of queued alphanumeric information.

Backspace and clear have no other effect on alphanumeric picking.

RESET SEQUENCES

When a GURSET call is used in the definition of a font character, the I CODE 's bit (bit 26)

must be set. The s bit of the reset sequence is the enable light-pen bit; if it is not set, the

character's ID word is not read when a pick is made, and the character consequently cannot

be entered into the light register or queued for 6000 processing.

A font character can be generated without a reset sequence by using a GUAN call with NC set

equal to one, but a no-operation instruction must precede the GUAN call in the character's

IBUF. This no-op may be supplied by a GUBYTE call of one byte, where the byte is a posi­

tive zero value.

CONSERVING ID WORD SPACE

The ID words IDDT, IDDC, IDWA, and IDWB of the GIDISP call or calls which display font

characters need not be referenced; the 1 744 buffer space they normally occupy can be con­

served by truncating the parameter list with a closing or right parenthesis after IDDAD.

J-2 44616800 Rev. 03

DYNAMIC ADDITION OF CHARACTERS

Characters may be added to an existing console display font by successive calls to GIDISP at

any time; duplicates of the same character, i.e., characters with the same ASCII code ID

words, may be present in a font.

SAMPLE FONT CREATION ROUTINES

The following subroutine creates a display font containing

0 1 2 3 4 5 6 7 8 9 x

SUBROUTINE NFONT (NCON, IBUF, NBYTE, M3YTE, IDDAD)
DIMENSION IBCD (10)
DATi\ (IBCD(I),I=l, 10)/lLO, lLl, 1L2, 1L3, 1L4, 1L5, 1L6, 1L7, lLS, 1L9/
CALL GURSET (0, -600, 103B,IBUF,NBYTE, 310)
ICONl = 60B
ICON2 = 71B
DO 1 I = ICONl, ICON2
J = I -57B
CALL GUBYTE(O, 1,IBUF, NBYTE, MBYTE)

C THE PRECEDING CALL PROVIDES A NO-OP BEFORE EACH GUAN CALL TO
C GENERATE A CHARACTER AND IS NECESSARY ONLY WHEN EACH CHARACTER
C IS GENERATED BY A SEPARATE GUAN CALL

CALL GUAN (IBCD(J), 1, IBUF, NBYTE, MBYTE)

C THE PRECEDING CALL GENERATES ONE OF THE FONT CHARACTERS
CALL GUBYTE (I, 1, IBUF, NBYTE, MBYTE)

C THE FOLLOWING CALL PROVIDES SPACING BETWEEN CHARACTERS AND
C COULD BE REPLACED BY A GURSET CALL

1 CALL GUAN (lL, 1, IBUF, NBYTE, MBYTE)
CALL GUAN (2L , 2, IBUF, NBYTE, MBYTE)
CALL GUBYTE (0, 1, IBUF, NBYTE, MBYTE)
CALL GUAN (lLX, 1, IBUF, NBYTE, MBYTE)
CALL GUBYTE (130B, 1, IBUF, NBYTE, MBYTE)

C THE THREE PRECEDING CALLS CREATE AND IDENTIFY THE CHARACTER X
C AS AN END-OF-MESSAGE CHARACTER FOR USE IN GIEOM ASSIGNMENT
C THE FOLLOWING CALL DISPLAYS THE FONT

CALL GIDISP (NCON, IBUF, NBYTE, IDDAD, -0)
RETURN
END

The programmer can also create display font characters of any size he wishes; he need not

use the size characters that are defined by the 1 700 Basic Graphics Package alphanumeric

macros. For example, the three following calls create a circle with a center at IHC and

IVC, and an initial/termination point at IH and IV. This circle is queued as an alphanumeric

0 when picked with the light-pen.

CA LL G UR SET (IH, IV, I CODE, IBUF, NBYTE, MBYTE)

CALL GUARCG (1, IHC, IVC, IH, IV, IH, IV, IBUF, NBYTE, MBYTE)

CALL GUBYTE (ll 7B, 1, IBUF, NBYTE, MBYTE)

44616800 Hev. 02 J-3

Note that the ASCII code equivalent of 0 is 117B (4F 16).

The programmer can create a true /false font with coding like the following:

CALL GURSET (IHl, IVl, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN (4HTRUE, 4, IBUF, NBYTE, MBYTE)
CALL GUBYTE (124B, 1, IBUF,- NBYTE, MBYTE)

C THE PRECEDING CALLS CREATE THE WORD TRUE BEGINNING AT IHl/IVl
C AND QUEUE AN ALPHANUMERIC T (=124B) WHEN IT IS PICKED

CALL GURSET (IH2, IV2, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN (5HFALSE, 5, IBUF, NBYTE, MBYTE)
CALL GUBYTE (106B, 1, IBUF, NBYTE, MBYTE)

C THE PRECEDING 3 CALLS CREATE THE WORD FALSE BEGINNING AT IH2/IV2
C AND QUEUE AN ALPHANUMERIC F (=106B) WHEN IT IS PICKED

J -4 44616800 Rev. 01

HEXADECIMAL/OCTAL CONVERSION TABLE K

Hexadecimal Octal Hexadecimal Octal Hexadecimal Octal

8 10 5B 133 AE 256
9 11 5C 134 AF 257

A 12 5D 135 BO 260
B 13 5E 136
c 14 5F 137 B8 270
D 15 60 140 B9 271
E 16 BA 272
F 17 68 150 BB 273

10 20 69 151 BC 274
6A 152 BD 275

18 30 6B 153 BE 276
19 31 6C 154 BF 277
lA 32 6D 155 co 300
lB 33 6E 156
lC 34 6F 157 C8 310
lD 35 70 160 C9 311
1E 36 CA 312
lF 37 78 170 CB 313
20 40 79 171 cc 314

7A 172 CD 315
28 50 7B 173 CE 316
29 51 7C 174 CF 317
2A 52 7D 175 DO 320
2B 53 7E 176
2C 54 7F 177 D8 330
2D 55 80 200 D9 331
2E 56 DA 332
2F 57 88 210 DB 333
30 60 89 211 DC 334

8A 212 DD 335
38 70 8B 213 DE 336
39 71 8C 214 DF 337
3A 72 8D 215 EO 340
3B 73 8E 216
3C 74 8F 217 E8 350
3D 75 90 220 E9 351
3E 76 EA 352
3F 77 98 230 EB 353
40 100 99 231 EC 354

9A 232 ED 355
48 110 9B 233 EE 356
49 111 9C 234 EF 357
4A 112 9D 235 FO 360
4B 113 9E 236
4C 114 9F 237 F8 370
4D 115 AO 240 F9 371
4E 116 FA 372
4F 117 A8 250 FB 373
50 120 A9 251 FC 374

AA 252 FD 375
58 130 AB 253 FE 376
59 131 AC 254 FF 377
5A 132 AD 255

44616800 Rev. 01 K-1

RE-ENTERING A GRAPHICS TASK OVERLAY L

A graphics task overlay consists of a FORTRAN program and its associated subroutines in

absolute format. Each task is entered by an unconditional jump to the entry address of the

overlay, and normally no provision is made to return to the statement following the task call.

AERTRN

Under certain circumstances, the programmer may wish to return from a graphics task to

the statement following the CALL AETSKC card which caused entry to the task; he might do

this if he wanted to call several tasks in a row. A routine called AERTRN is provided for

this purpose.

When the programmer wants to return from one task to another, he places a card with the

format:

(CALL AERTRN

in the task he wishes to return from. When this card is encountered, control is passed to

the return address of the last executed return jump to AETSKC.

Note that i\ERTRN does not provide for reloading the task that called AETSKC; it provides

only the jump to pass control and the record of the last call to AETSKC. The programmer

must insure that the tasks do not overload each other, and that the AERTRN call occurs

whenever the return feature is desired.

EXAMPLES

The following examples show how secondary overlays and the C parameter on the overlay

card may be used to set up a task file so that AER TRN can be used.

C PARAMETER

The standard FORTRAN overlay card has the format:

(OVERLAY (lfn, p, s, Cnnnnnn)

where lfn, p, and s have the meanings given in the overlay card definition of Section 2. The

quantity nnnnnn after the letter C in the parameter field is an octal value that specifies the

first word address of the overlay with respect to the beginning of blank COMMON; i.e., the

44616800 Rev. 01 L-1

overlay coding is loaded and entered at a location nnnnnn words after the beginning of the

program's blank COMMON area. This C parameter cannot be used on the zero-level over­

lay card, but is optional on all other overlay cards.

Since the first word address of blank COMMON is constant for any given overlay or task file,

all overlays with the same C parameter will have the same first word address in core.

For example, assume that AP and BP are primary overlays, and AS and BS are secondary

overlays; all four have been written into a task file by AEFILE.

These four overlays would appear in core as:

OVERLAY (A, 0, 0) OVERLAY (A, 0, 0)

• • • •
BLANK COMMON BLANK COMMON

OVERLAY (1, 0) OVERLAY (2, 0)
PROGRAM AP PROGRAM BP

• • • • • • •
CALL AETSKC (BS)

• • l OVERLAY (2, 1)
PROGRAM BS

•
OVERLAY (1, 1) •
PROGRAM AS • • CALL AERTRN

• •
Program AS has been relocated with respect to the last word address plus one of program

AP because they have the same primary level number. Program BS has been relocated with

respect to the last word address plus one of program BP because they also have the same

primary level number.

OVERLOD, the standard SCOPE overlay loader, will not allow overlays (1, 0) or (1, 1) to

call overlay (2, 1). Primary overlays and overlays with the same primary number may call

each other; no other calls are allowed. However, a call to AETSKC allows any of the four

overlays to call any of the others by using their program name.

If a programmer places a task call to BS from AP, part of the called task will be loaded

over the calling task. If a call to AERTRN is then made at the end of BS, AERTRN will

return control to the core address following the last AETSKC call, but the return will have

chaotic results because the core locations that contained the code which the programmer

wished to execute have been overlayed by the beginning of program BS. The following para­

graphs describe one method of avoiding this problem.

L-2 44616800 Rev. 01

Assume that overlay (1, 1) is loaded 20008 words from the first word address of blank

COMMON. If the secondary overlay cards are written with the C parameter so that they

appear as:

OVERLAY (1, 1, C002000)

and

OVERLAY (2, 1, C002000)

the routines in the overlays will have the same first word address and will appear in core as:

OVERLAY (A,0,0)

• •
BLANK COMMON

OVERLAY (1, 0)
PROGRAM AP

• • • •
CALL AETSKC (BS)

• •
OVERLAY (1,1,C002000)
PROGRAM AS

•
•
•

OVERLAY (A, 0, 0)

• •
BLANK COMMON

OVERLAY (2, 0)
PROGRAM BP

•
• •

OVERLAY (2, 1, C002000)
PROGRAM BS

• • •
CALL AERTRN

} unused

Now each of the programs is free to call the others and to use a CALL AERTRN card to re­

turn to the address following the last call to AETSKC.

It is up to the programmer to keep track of the overlay core relationships when using

AERTRN. A task which calls another with the expectation of returning should be located so

that the two do not overlay each other. AERTRN provides limited capability for constructing

tasks which may be called by AETSKR and also entered as subroutines. If logic requires the

use of AERTRN in some cases and AETSKC or AETSKR in others, a flag may be set in blank

COMMON by the calling task and interrogated before each return is executed.

An error message, RETURN ADDRESS OVERLAYED, will be sent to the dayfile and a task

return will be executed only if the return address of AERTRN is within the overlay calling

AERTRN.

Note that linkage of external symbols is not provided for by the G PSL Loader between over­

lays with different primary level overlay numbers. If overlays 2. 1 and 2. 0 have subroutine

linkages in common, the overlay 2. 1 will probably not run correctly unless 2. 0 is in core

at the same time. AERTRN should primarily be used in secondary overlays with the same

primary number while the primary is in core.

44616800 Rev. 03 L-3

SYSTEM PACKING OF IBUF DESCRIPTION BUFFERS M

Nine Graphics Utilities routines of the 6000 Basic Graphics Package place item description

bytes in IBUF; in addition, both GIDISP and GIMAC place header and trailer bytes into the

description buffer before sending it to the 1 700 Buffer Translator through EXPORT.

Table M-1 lists all of the routines that place bytes into IBUF and gives the number of bytes

packed by each; all 12-bit bytes are packed five to a 60-bit central memory word, starting

in byte zero.

TABLE M-1.

IBUF/1744 BYTE COMPARISON, ITEM DESCRIPTION BYTE GENERATORS

(Octal) Number of
Routine Call Code Bytes Packed Explanation

GUAN 02 l +NC+ 1 NC is the character number 2
parameter in the call

GUARCG 06 6 + 4*KSHOW KSHOW is the arc segment
number parameter in the call

GUBYTE 08 1 + L Lis the byte number para-
meter in the call

GUlVIACG 07 1+2>!~L Lis the macro address
number parameter in the call

GURSET 01 3 (4 Bits)

GUSEG 04 3

GUSEG 05 2 + 3*(N+1) N is the line segment number
(4 Bits) parameter in the call

GUSEGI Tl 4

GUSEGS 03 6

GIDISP 01 10 (6 Bits) Eight trailer and two header
bytes; explained below

GIMAC 05 4 (6 Bits) Two header and two trailer
bytes; explained below

Each Graphics Utilities call packs a call code for the corresponding 1 700 Basic Graphics

Package routine into the upper four bits of the first 12-bit byte it places in IBUF; if a

Graphics Utilities routine is called with NBYTE equal to zero, the routine will leave two

44616800 Rev. 03 M-1

bytes empty at the beginning of the next unfilled central memory word in IBUF. The two

empty bytes are usually used by GIDISP or GIMAC for the two header bytes which each packs

in IBUF.

NOTE

The call codes of all GU routines are in the upper 4 bits of a 12-bit byte and are within a

GIDISP, GIMAC, or GIPLOT buffer. The call codes of all GI routines are in the upper 6

bits of a 12-bit byte at the beginning of a 60-bit central memory word.

These bytes have the structure:

11 5 0 11 7 0

I Call code I NCON ™ Byte count I

where the byte count excludes the header and trailer bytes.

The two trailer bytes packed by GIMAC are placed in IBUF immediately after the last item

description byte. The first of these two bytes contains bits 15 through 8 of the lower 16 bits

of MAD, right-justified; the second byte contains bits 7 through 0 of MAD, also right-justi­

fied, as shown:

11 7 0 11 7 0

MAD15-8 ™
GIDISP places a variable number of trailer bytes (three to eight) in TBt~F_. immediately

following the last packed item description byte. The number packed depends on the numbei·

of parameters present in the GIDISP calling sequence before a minus zero parameter or a

right parenthesis is encountered.

The three trailer bytes always packed by GIDISP contain bits 15 through 8 of I DDA lJ right -

justified in the first, bits 7 through 0 of IDDAD right-justified in the second, and IJJJJT m

the third, as follows:

11 7 0 11 7 0 11 0

IDDAD15 _8 ™ IDDAD
7

_
0 IDDT _J

In a full calling sequence, five more bytes would be packed. These \Vould contain: IDDC in

the first additional byte, bits 23 through 12 of ID\\-A in the second, bits 11 through 0 of ID\\-A

in the third, bits 23 through 12 of IDWB in the fourth, and bits 11 through 0 of ID\\-B in the

fifth. These bytes appear as follows:

M-2 44616800 Rev. 03

11 0 11 0 11 0 11 0 11 0

IDDC IDWA23-12 IDWAll-0 IDWB23-12 IDWB
11

_
0

GIDISP terminates packing with the first minus zero parameter. If a right parenthesis ter­

minates the calling sequence before IDWB, the first missing parameter is replaced by a

minus zero and packing is terminated.

Both GIMAC and GIDISP issue a fatal error diagnostic if the IBUF description buffer result­

ing from the call is longer than 64 central memory words (including header and trailer bytes).

Both routines process a non-fatal error and issue an informative dayfile message if the

NBYTE parameter is equal to zero when the routine is called.

44616800 Rev. 01 M-3

OMISSION OF MAIN FROM PROGRAM CODING N

Although the procedure is not recommended, the Application Executive MAIN program can

be omitted from a graphics program. If the programmer does not use MAIN, he must either

provide substitutes for each of its routines or else resign himself to the use of an inordinately

large amount of central memory by his job. This appendix provides an outline of the struc­

ture and functions of MAIN so that a programmer can write replacement routines if he wishes.

STRUCTURE OF MAIN

The first 748 words in MAIN are entry points and buffer areas shared by the 6000 Basic

Graphics Package routines (see Figure N-1).

MAIN has seven formal entry point names:

AERTRN

AETSKC

AETSKR

BGP

DATBUF

MAIN

RIDDAD

The entry point MAIN is called only once during a job and is not referenced by any of the

routines in the 6000 Basic Graphics Package. MAIN is the entry point used by the CA LL

MAIN card in the program's zero-level overlay and provides access to coding that provides

AEFILE with the file names it uses during a task file creation run; the coding associated

with entry point MAIN also initiates loading and execution of the first overlay in the task

file during an execution run.

The entry points AETSKR, AERTRN, and AETSKC are used by the respective 6000 Basic

Graphics Package routines. Both entry points provide unconditional jumps to appropriate

subroutines within the MAIN program.

The entry points BGP, DATBUF, and RIDDAD are used by the 6000 Basic Graphics Package

routines to share access to common pointers.

44616800 Rev. 03 N-1

17
59 53 41 23 15 7 0

BGP/RIDDAD to odd. BGP

RETURN Enter Task Return Routine BGP+I

KILL Enter Error ProcessinQ Routine BGP+2

{Entered by Return Jump)

INPBUF Reserved for Lost Button Input Block BGP+4

378 Words LonQ

DATBUF Doto Handler Pointers

RSLBUT IL-.o'-+--.+-.L...,1.::..,L..~~+-.4+-+-~~-yL.,~'-"'.+-.~~+-..._r_D_D_T~ BGP+578

STAT nc

GCOMO

T

IDWB

Pick IH Coordinate

Pick IV Coordinate

TrockinQ Cross IH Coordinate

TrockinQ Cross IV Coordinate

np nb

Common Output Buffer

4 Words Long

IDDC

T

BGP+67a

BGP+70a

to =Address of Display Code Nome of Current Task in Memory

odd= RIDDAD /MAD Counter

nc =Lost NCON Argument of GICNJ B or GI BUT

nb = GIFSID Pointer (Number of Bytes Returned)

np = GIFSID Pointer (Number of Picks Returned)

Figure N -1. MAIN Communications Area

The last four entry points described above are all linked to the presence of MAIN in the pro­

gram's zero-level overlay. If MAIN is not called there, and the application program con­

tains no subroutines with entry points named BGP, RIDDAD and DA TBUF, then the entire

MAIN program will be loaded from the system library into every overlay that contains

Package routines which reference any of these entry points.

If the application program does contain a subroutine (in place of MAIN) with the proper entry

points, all 6000 Package routine references to the points are linked to the locations listed in

Table N-1.

N-2 44616800 Rev. 03

TABLE N-1. 6000 PACKAGE EXTERNAL LINKAGES

Entry Type of
Point Name Purpose Reference

FOR TRAN Callable:

AETSKC Load an overlay by name Relocatable

AERTRN Return from task to calling address Relocatable
plus one

MAIN Initialize Application Executive Relocatable

Not
FORTRAN Callable:

BGP Used to reference first 748 words
of MAIN relatively

Relocatable

RETURN Perform task return (AETSKR) Relative to BGP

KILL Process errors and messages Relative to BGP

INPBUF Reserve last button input block Relative to BGP

RID DAD Reserve task name address and Relative to BGP
IDDAD/MAD counter

RS LB UT Reserve last button ID parameters Relative to BGP

STAT Reserve NCON and single /string Relative to BGP
pick counters

GCOMO Common EXPORT output buffer Relative to BGP

44616800 Rev. 01 N-3

CODING EXAMPLES

This appendix contains examples of code for creating such things as light buttons, lines,

circles, arcs, figures, etc. For the most part, assume that dimensioning has been per­

formed; special cases will include dimension statements.

CONSOLE TO JOB ASSIGNMENT

READ 1, NCON

1 FORMAT (02)

CALL GICNJB (NCON)

0

A data card is read from the card reader and the octal contents of the card (the console

number) is placed in NCON. GICNJB is called to make the console available to the calling

job.

CREATEA LIGHT BUTION

NAME = 8HDISPLAY

CALL GURSET (-1500, 0, 102B, IBUF, NBYTE, MBYTE)

CALL GUAN (NAME, 8, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON,IBUF,NBYTE,IDDAD, 1, l)

NBYTE = 0

The characters to be displayed are DISPLAY. G URSET is called to generate a reset se­

quence byte-stream which is placed in temporary user buffer IBUF. GUAN is called to

generate the byte-stream which will cause the alphanumerics to be displayed. This byte­

stream follows the reset sequence byte-stream in IBUF. Parameter NBYTE is automati­

cally updated to reflect the number of bytes in IBUF.

GIDISP is called to send a copy of the contents (NBYTE bytes) of IBUF to the 1700 Buffer

Translator. NBYTE is then set back to zero by the application program to initialize IBUF

for the next byte-stream. The Buffer Translator calls the 1 700 graphics BGP which generates

a display byte -stream and places it in the display controller. Once the byte -stream is in

the display buffer, it is displayed. Note that parameters IDDT and IDDC in the call to GIDISP

are both one. For IDDT = 1 to be meaningful to the system (i.e. , when the button is picked

with the light pen by the operator, the system interprets IDDT for the action it is to perform)

the following call must be executed prior to the pick of the button:

CALL GIMASK (NCON, 0, 1, 16+8)

44616800 Rev. 01 0-1

This call defines items with the IDDT designation of 1 as buttons and the buttons so designated

will have the marker mask set such that when the button is picked, it will blink (assuming

that the button is not already blinking).

There are several means by which alphanumeric input can be provided. The above example

uses a dimensioned array. A data statement could be used instead, as in this example:

COMMON/DATA/NAME (2)

DATA NAME (I,I = 1,2)/8HDISPLAY, 6HBUFFER)

or an ENCODE and FORMAT statement used as follows:

ENCODE (16, 1, NAME)

FORMAT (16HDISPLAY BUFFER)

CREATE A LIGHT BUTTON - UNDER APPLICATION EXECUTIVE

NAME = 8HDISPLAY

NAME (2) = 4RDISP

CALL GURSET (-1500, 0, 102B, IBUF, NBYTE, MBYTE)

CALL GUAN (NAME, 8, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF, NBYTE, IDDi~D, 1, 1, NA1\1E(2))

NBYTE = 0

Note that the calls are essentially the same as those in the next example.

GENERATE AND DISPLAY A LINE - NOT FRAME-SCISSORED

The only difference is that in this call to GIDISP, an additional parameter is used to identify

the task to be called by the application executive when the button is picked. To simplify

matters, the first four characters of the light button name are used as the task name; thus,

if button DISPLAY is picked, the application executive brings task DISP into core from mass

storage for execution.

C~4.LL GURSET (-1000,0, 102B,IBUF,NBYTE,MBYTE)

CALL GUSEGS (-1000, 0, 1000, 0, 1, O,IBUF, NBYTE, MBYTE)

CALL GIDSP (NCON, IBUF, NBYTE, IDDAD, 2, 1, 0, O)

NBYTE = 0

These calls will display a line from -1000 H, 0 V to 1000 H, 0 V. The line is solid, light

pen sensitive, and does not blink.

A previous call to GIMASK was made for type 2 as follows:

CALL GIMASK (NCON, 0, 2, 16+4)

0-2 44616800 Rev. 01

This call associates the marker mask with type 2 and makes all type 2 display items string

pick items.

Note that all ID block parameters are used.

One might like to store things such as the item display address and/or bead address in the

ID block. For instance, the display address for the line is in IDDAD. GIMOVE can be used

to insert this display address into the ID block as follows:

CALL GIMOVE (-0, -0, -0, IDDAD, 2, 1, 0, IDDAD)

The display address is now in the IDWB word of the ID block for that line. The display ad­

dress can be extracted from the block by GIFSID, any time the line is picked. It is impor­

tant to have access to the display addresses of the items if they are to be erased, copied, or

have their ID blocks modified (as was the case above in the call to GI MOVE).

If the Data Handler is used, and a bead is formed for this line, the bead address could be

placed in IDWA; it is usually handier to put the display address in the bead rather than in

the ID block, but these decisions are up to the individual.

GENERATE AND DISPLAY A FRAME-SCISSORED LINE

CALL GULINE (0, 0, 1000, 1000, 500., O., -600., -500., KSHOW, IHS, IVS, IHF, IVF)

CALL GURSET (IHS, IVS, 102B, IBUF, NBYTE, MBYTE)

CALL GUSE GS (IHS, IVS, IHF, IVF, 1, 0, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF, NBYTE, IDISPAD, 2, 2, 0, 0)

NBYTE = 0

GULINE is called to set up the size and position of the frame for frame scissoring. Floating­

point coordinates for the beginning and end of the line are given in the call and converted by

the system to fixed-point coordinates. Although not shown in this example, it is a good idea

to test KSHOW for equality to zero to see if the described line can be displayed. If KSHOW =O,

there is no reason to call GURSET, GUSEGS, and GIDISP.

The following code will perform the check and skip to statement 2 if the line cannot be dis­

played:

CALL GULINE (0, 0, 1000, 1000, 500., 0., -600., -500., KSHOW, IHS, IVS, IHF, IVF)

IF (KS HOW . EQ. 0) GO TO 2

CALL GURSET (IHS, IVS, 102B, IBUF, NBYTE, MBYTE)

CALL GUSEGS (IHS, IVS, IHF, IVF, 1, 0, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF, NBYTE, IDISPAD, 2, 2, 0, O)

NBYTE = 0

2 CONTINUE

44616800 Rev. 01 0-3

GENERATE AND DISPLAY A CIRCLE - NOT FRAME-SCISSORED

CALL GURSET (0, 0, 102B, IBUF, NBYTE, MBYTE)

CALL GUARCG (1, 0, 0, 300, 0, 300, 0, -0, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF, NBYTE, ICRCDSPD, 2, 3, 0, O)

NBYTE = 0

This code generates a circle with solid line style; the origin of the circle is displaced from

the reset coordinates by 300 display grid units. (There are 200 such units per inch in the

scope coordinate system.) This is so because circles and arcs are displayed in a counter­

clockwise manner from the initial point to the terminal point. Thus, the center of this circle

is at -300, O.

The reader should note that parameter KSHOW is set to one, since all of the circle can be

displayed on the display surface; the arc scissoring routine GUARC was not used to make

that determination. An example of arc scissoring is given in the next paragraph.

GENERATE AND DISPLAY A FRAME -SCISSORED CIRCLE

DIMENSION IHS(5), IVS(5), IHF(5), IVF(5)

CALL GUARC (0, 0, 1000, 1000, O., 0., 1125., 0., 1125., O., KSHOW, IHC, IVC, IHS, IVS,

IHF, IVF)

IF (KSHOW .EQ. 0) GO TO 3

CALL GURSET (IHS, IVS, 102B, IBUF, NBYTE, MBYTE)

CALL GUARCG (KSHOW, IHC, IVC, IHS, IVS, IHF, IVF, -0, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF, NBYTE, ICRCAD, 2, 4, 0, 0)

NBYTE = 0

3 CONTINUE

Since it is possible to have a circle scissored into four segments and an arc into five seg­

ments, arrays had to be dimensioned to accept the starting and ending points of the arc

segments. The coordinates used in the call to GU ARC are deliberately chosen to generate

four arc segments for the subject circle. As a formality, KSHOW is examined here for

equality to zero, since it is known in advance that four arc segments will be displayed; how­

ever, this is not very often the case and the test for KS HOW should be made as a matter of

good programming practice.

The remainder of the code merely resets the CRT beam to the start of the first arc segment.

G UARCG is called to generate the four arc segments, and GIDISP transfers the byte-stream

from IBUF to the display buffer.

0-4 44616800 Rev. 01

GENERATE AND DISPLAY A 2-INCH SQUARE - NOT FRAME-SCISSORED

CALL GURSET (0, 0, 102B, IBUF, NBYTE, MBYTE)

CALL GUSEGS (0, 0, 400, 0, 1, 0, IBUF, NBYTE, MBYTE)

CALL GUSEG (400, -400, 1)

CALL GUSEG (0, -400, 1)

CALL GUSEG (0, 0, 1)

CALL GIDISP (NCON, IBUF, NBYTE, ISQDSPAD, 2, 6, 0, 0)

NBYTE = 0

This square starts at the origin of the scope display grid. The first line segment goes right

2 inches, the second segment goes down 2 inches, the third goes left 2 inches, and the last

is drawn up 2 inches to complete the square.

GENERATE AND DISPLAY A COLUMN OF FIVE HORIZONTAL LINES

CALL GURSET (0, 0, 102B, IBUF, NBYTE, MBYTE)

CALL GUSEGS (0, 0, 400, 0, 1, -0, IBUF, NBYTE, MBYTE)

CALL GUSEG (0, -100, O)

CALL GUSEG (400, -100, 1)

CALL GUSEG (0, -200, 0)

CALL GUSEG (400, -200, 1)

CALL GUSEG (0, -300, 0)

CA LL GUSEG (400, -300, 1)

CALL GUSEG (0, -400, 0)

CALL GUSEG (400, -400, 1)

CALL GIDISP (NCON, IBUF, NBYTE, ILNDSPAD, 2, 7, 0, 0)

NBYTE = 0

The first line is drawn from the scope display grid origin to a point 2 inches to the right.

The first call to GUSEG positions the beam for the next line. Note that the GUSEG call turns

the beam off and thus nothing is displayed. The second call to GUSEG generates the byte­

stream for the second of the five lines to be displayed. From this point it is a repetition of

the first two calls to GUSEG until the entire byte-stream is generated. GIDISP is then called

to transfer the byte-stream to the display buffer for subsequent display.

An alternate method for generating the same five lines uses a call to GUSEGA, as follows:

DIMENSION IH(lO), IV(lO), IBEAM(lO)

IH(l)=IH(3) = (IH(5) =IH(7) =IH(9) =IV (1) =IV(2) =O

IH(2) =IH(4) =IH(6) =IH(S) =IH(l 0) =400

IV(3)=IV(4}= -100

(V(5) =IV (6) = -200

44616800 Rev. 01 0-5

IV(7)=IV(8)=-300

IV (9) =IV (10) = -400

IBEAM(l)=IBEAM(3)=IBEAM(5)=IBEAM(7)=IBEAM(9)=1

!BE AM (2) =!BEAM (4) =!BE AM (6) =!BE AM (8) =!BEAM (10) = 0

CALL GURSET (IH, IV, 102B, IBUF, NBYTE, MBYTE)

CALL GUSEGA (IH, IV, !BEAM, 9, -0, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF, NBYTE, ILNDSPAD, 2, 7, 0, 0)

NBYTE = 0

In this example the single call to GUSEGA generates the byte-streams for all the line seg­

ments by referring to the IH, IV and !BEAM arrays.

GENERATE AND DISPLAY A LINE AS A MACRO

CALL GUSEGS (0, 0, 400, 500, 1, -0, IBUF, NBYTE, MBYTE)

CALL GIMAC (NCON, IBUF, NBYTE, MAD)

NBYTE = 0

The above code generates the byte-stream for the line, transfers a copy of the byte-stream

to the fixed address area of the display buffer .. and returns a macro address in MAD. The

line is not displayed at this time. To display the line, the following code is required:

CALL GURSET (100, 200, 102B, IBUF, NBYTE, MBYTE)

CALL GUMACG (MAD, 1, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF, NBYTE, MACDSPAD, 2, 8, 0, O)

NBYTE = 0

The call to GURSET determines where the macro is displayed.

DISPLAY AN ID BLOCK RETURNED FROM A CALL TO GIFSID

GIFSID is used to return the ID blocks of string pick items in the FETCH queue. This

example shows the use of GIFSID in conjunction with calls to display the contents of the ID

block. Assume that the proper calls to GIMASK have been made and the console operator

has picked at least one string pick item and a button.

DIMENSION !BCD (20)

N = 1

CALL GIFSID (NCON, 1, IT, IC, IA, IB, IH, IV)

CALL GURSET (-1200, 1300, 102B,IBUF, NBYTE, MBYTE)

ENCODE (49, 30, !BCD) NCON, IT, IC, IA, IB, IH, IV

30 FORMAT (7HGIFSID(3(I5, lH,) , 2(1X, R4, lH,), I5, lH, I5, lH))

CALL GUAN (!BCD, 49, IBUF, NBYTE, MBYTE)

0-6 44616800 Rev. 01

CALL GIDISP (NCON, IBUF, NBYTE, IDMESS, 2, 0, 0, 0)

NBYTE = 0

GIFSID is called to extract one string pick ID block and return it to IT, IC, IA, IH, and IV.

GURSET is used to set the point at which the A /N display starts. The ENCODE and FORMAT

statements assemble the indicated characters into array IBCD, which GUAN uses as input

to generate the byte-stream for the display. GIDISP transfers the byte-stream to the display

buffer and appends the indicated ID block to the byte-stream. This display consists of the

call to GIFSID with its calling and result parameters.

MOVE A DISPLAY ITEM

Assume that a line has been displayed as a display item and has its display address stored in

IDSPAD(12). Further, it is required that the line be displayed at new coordinates IH = 1000,

IV = -400. It is coded as follows:

CALL GIMOVE (1000., -400, -0., IDSPAD(12))

ICODE as -0 indicates that the ICODE already associated with the line is not to be changed.

The call is truncated after IDSPAD(12), since the ID block for the line is not to be changed

either.

The line could have been moved and had its ID block changed as well by including those ID

parameters to replace the existing ones. Remember that the ID block cannot be expanded

beyond the size already in existence for the line. For instance, if only parameters IDDT

and IDDC were used in the call to GIDISP for this line, GIMOVE cannot be used to add ID

parameters IDWA and I or IDWB since space has not been allocated for these parameters.

COPY A DISPLAY ITEM

This is similar to using GIMOVE except that a copy is moved and the original still exists.

To copy the line described in the last example, use the following code:

CALL GICOPY (IDSPAD(12), NCON, 1000, 400, 106B, ICPYADD, IT, IC, IA, IB)

This will cause a copy of the line (with display address IDSPAD(12)). to be displayed four

inches higher on the scope, and the copy will blink. The display address of the copy will be

put in ICPYADD.

ERASE A DISPLAY ITEM

To erase the line made as a result of the call to GICOPY that was just described, use the

following code:

CA LL GIERAS(ICPYADD)

44616800 Rev. 01 0-7

ERASE A MACRO
As a review. a macro is displayed in two steps:

1. Generate the byte-stream and call GIMA C to put the byte-stream in the fixed-address

area of the display buffer. The address of the macro is returned in an output para­

meter referred to as MAD.

2. Generate a reset sequence with a call to GURSET; call GUMACG giving the MAD

parameter. G UMA CG will generate a calling sequence for that macro. Call GIDISP

to transfer the byte-stream generated in this second step to the display buffer and

the item is displayed.

The object now is to erase the macro from both the fixed- and floating-address areas of the

display buffer. The procedure is inflexible because the calling sequence in the floating­

address area must be erased first. then the display item byte -stream from the fixed-address

area. If the calling sequence remains while the macro is erased, the display jumps to a

non-existent macro and the result is chaos. The following code will correctly erase a macro:

CALL GIERAS (ISBDSPAD)

CALL GIMACE (MADDSPAD)

ISBDSPAD

MADDSPAD

Display address in the floating-address area for the calling
sequence.

Macro address in the fixed-address area.

To erase a specific display of a macro and still retain its byte-stream in the final address

area, call GIERAS and not GIMACE.

0-8 44616800 Rev. 01

COMMENT SHEET

MANUAL TITLE ---------------------
PUBLICATION NO. REVISION _____ _

FROM· NAME=~------------------------~---------

COMMENTS:

BUSINESS
ADDRESS=~--~---------------------------------

This form is not intended for use as an order blank. Your evaluation of this manual
is welcomed by Control Data Corporation. Any errors, suggested additions or de­
letions, or general comments may be noted below. Please include page number ref­
erences and fill in the publication revision level as shown by the last entry on the
Record of Revision page at the front of the manual. Customer Engineers are urged to
use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

STAPLE

FOLD

STAPLE

FOLD I -- -- ------ ---- -- -- ----;

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Systems Publications

215 tv\offett Park Drive

Sunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
I

lw
I~
Ii

I~
la

I

I
__________________________ J

FOLD FOLD I

STAPLE STAPLE

I
I

I

I
I
I
I

-\'CCWA~~1
~!i!iiiii!i!i:

:: ,_'i_1,i,'_.1,:_:1.1,l,' .. !,i_il,_,'_.1.1

~,:'·:,.:···,:'·,,_:··',.:1 __ .='·',.:1 __ ,··',:'···.='·l,.:1,, .. =.':·:··',:;_l_,·.=.:_.:',_.=··i __ ,·.1_.:·.1 __ ,·.!,:'·',:···,:'_.:'·:,:~·' .. ='·',:·.1_.='·',:··1,.:1,:1,.:1_.:1,.:1,:1,.:1,:1,: .. 1,:1,.:1,_:1,:'·1,1:,:'.1 __ ,·.1,.:1,_:'·' .. =1,,··',:·.1 __ ,'·'.=·.= .. _,:1,:'·1_,:1_,·.=.1_,··',:'··_:··',:~·· .. :'·',·,=.:_,:_,_1 __ ,'.: __ :'_.='·· ... '',.:'_.:'·,.:'_.='·,.:'_,:',:'·,:'·,:',.:',:'_.=···,::_.='·,:',:'·._,' .. =',:'· .. =',,'·,:'·._.:'_.='· .. :',:'·._,'·,.:' .. :',:'· .. ,'·,:··' .. ,'·,.:==.:.·_::_·:.:_·:.:_=.:.·:.:_·:.:_·:.: .. ·::.: .. ·:· .. ::.::.:_:=.:.'.: .. ::.·.·:.= .. :=.:.·.'·',· :','.:','.=','.:','.:','.='·:·:·:·:·: :::::::\I~~~~~!~I~~f !~~~ff f ~i~_!1 .. ~i:_~i~.:~1.·i .. !~=.1~=-~i1.:i:_!i:_!~-~i=.~=.: __ !;_:=.~.!:_~-.~.!=.;_i=.==.~-~~i.·i.!~.:=.~~:.=!:_:~_1i:_11:.~~~.\.!~_1! .. !i:.:i_:i_!! __ ii,_:i_!,_!!,_:::_~
·::::;:;:::::::::::::::'.:·:·:·:-::·.;.;.;:·:·:·:·

i r t " 1/2" 3/4
11 1" 1-1/4

11

t i i 1
CONTROL DATA

~~ CUT OUT FOR USE AS LOOSE- LEAF BINDER TITLE TAB

CONTROL DATA
- -. - . . CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

PRINTED IN U.S.A.

c
(
c c
CJ
r

' -r
~ --
"'
r

')
(

<
r
c -~
) .,
--(
CJ

CJ
...
CJ

n
~
~
n ,
f1
A
f1
2
(
f1

~
):
2
c
):
r

...,
c
!'""
z
0

~
~

0.

0.
CD
0
0

