CONTROL DATA® 6000 SERIES COMPUTER SYSTEMS

INTERACTIVE GRAPHICS SYSTEM

Preliminary Reference Manual

RECORD OF REVISIONS

Revision Notes
01 Preliminary 6-27-69
02 Minor corrections on pages 7-39, 7-40, 7-42, J-1, J-2, 1-3, and M-2:
8-11-69
03 Changes have been made on pages iii, v, vi, vii, 1-3, 2-4, 2-5, 2-7, 2-15,

2-16, 2-24, 2-25, 2-26, 3-18, 4-5, 4-7, 4-10, 4-11, 4-12, 4-13, 4-14,
6-3, 6-6, 6-7, 7-8, 7-9, 7-12, 7-13, 7-14, 7-15, 7-16, 7-17, 7-18,
7-19, 7-20, 7-21, 7-22, 7-23, 7-24, 7-25, 7-26, 7-30, 7-31, 7-32, 7-36,
7-38, 7-39, 7-40, 7-41, 7-42, 7-43, 7-44, 7-45, 7-46, 7-50, 7-52, 7-56]
7-57, 7-58, 7-59, 9-1, 9-2, 9-8, 9-9, 9-17, Gloss-2, Gloss-3, Gloss-4,
B-1, B-2, B-3, B-4, B-5, B-6, B-7, B-8,C-1, C-2, F-1, H-3, H-6,
-1, 1-2, J-1, J-2, L-3, M-1, M-2, N-1, N-2 to reflect the system
design as of January 1, 1970.

Address comments concerning this manual to:

Control Data Corporation

6000 Series Interactive Graphics System Special Systems Division
Publicatiog Number 44616800 Technical Publications
Copyright™ Control Data Corp., 1969, 1970 215 Moffett Park Drive
Printed in the United States of America Sunnyvale, California 94086

ii 44616800 Rev. 03

PREFACE

This manual is a general programming and reference guide for the Control Data® 6000 Series
Interactive Graphics System. It contains a summary of software operation, as well as its
external characteristics. A background knowledge of Control Data 6000 Series software and
hardware is needed to properly use this manual.

This book is organized so that an applications programmer can quick-reference programming
information without sorting through the detailed background material provided for each sub-
division of the system software; programming information does not occupy a separate sec-
tion, but is isolated within the section that describes the software involved in that particular
system function. The only information provided about the 6000 operating system concerns

Interactive Graphics modifications to the system.

At the end of Section 7 is a subsection containing summaries and calling formats for the indi-
vidual graphics routines of the system which are accessible to an applications programmer.
In addition, the first section contains a general outline of software operation and appropriate

hardware information.
The last section is a System operators' guide.

For more information related to the System's software, see the following publications:

Title Publication Number

Control Data 6400/6500/6600 60189400
SCOPE 3 Reference Manual

Control Data 6400/6500/6600 60179600
SCOPE Operating Guide

Control Data 6400/6500/6600 60100000
Systems Reference Manual

Control Data 6400/6500/6600 60174900
Computer Systems FORTRAN
Reference Manual

Control Data 6400/6500/6600 60190900
Computer Systems COMPASS
Reference Manual

Control Data 6000 Series Interactive 60237200 '
Graphics System
General Information Manual

44616800 Rev. 03 iii

CONTENTS

-]
1 INTRODUCTION 1-1 Graphics Control Points 2-29
Major Features 1-1 Initialization 2-29
Hardware Elements 1-2 Structure 2-30
General Software Operation 1-4 Number 2-30
6000 Software 1-4 Size 2-31
1700 Software 1-8 Files 2-31
General Process Chart 1-9 Graphics Common File 2-31
System Process Chart 1-10 Local Files 2-31
2 6000 INPUT/OUTPUT AND Input Files 2-31
GENERAL PROCESSING - Output Files 2-31
Control Points - EXPORT/IMPORT AND DATA
BATCHIO 2-1 COMMUNICATION -
Routine Functions 2-1 Introduction -
Combined EXPORT and EXPORT 3-1
BATCHIO Control Point 2-3 Initialization 3.1
K Display 2-5 Processing Control 3-2
Dayfile Entries 2-5 Communication Control 3-2
Job Output 2-6 EXPORT Servicing Cycle 3-3
Job Input 2-1 EXPORT Counters 3-4
Graphics Program Card Deck 2-8 Data Transfer 3.4
Control Cards 2-8 Character Set 3-9
Program Cards 2-12 File Processing 3-10
Data Cards 2-13 Termination 3-10
Sample Program Decks 2-13 Job Flow 3-10
System Utility Functions 2-20 Initialization 3-10
Task File Creation 2-21 Input from Cards 3-10
Task Directory 2-22 Input from Graphics
" Task File Maintenance 2-24 Console 3-11
Graphics Program Aborting 2-25 Output to Graphics
Scheduler 2-26 Console 3-11
Graphics Reformatter 2-26 gﬁ;%‘;‘lt to Printer and 3-11
z‘i)iiggii?%iﬁfrapmcs 9-97 Error Detection Scheme 3-12
Routine Communication IMPORT 3-13
and Housekeeping 2-29 Routines 3-14
Graphics Data Transfers 3-16
44616800 Rev. 03 v

4

GRAPHICS HARDWARE
INFORMATION

General Description
Graphics Console
Controls
Display Presentation

Potential Phosphor
Damage

1744 Digigraphics Controller
Registers
Command Bytes
Control Bytes
Display Macros
Display Buffer
Memory Layout
1700 GRAPHICS FUNCTIONS
Buffer Translator
Program Aborting
1700 Basic Graphics Package
System Expansion
DISPLAY ITEMS AND PICK
PROCESSING
Display Item ID Block
Queue Handler
Pick Types
Queue Handler Functions
Fetch and Wait Queues

Queue Mechanism
Operation

6000 Computer Pick
Processing
6000 BASIC GRAPHICS
PACKAGE
Routine Types

Graphics Hardware
Interface

Application Executive
Graphics Utilities
Data Handler

Associative Addresses

4-7
4-7
4-17
4-8
4-10
4-13

4-13

Programming Conventions

Summary of User FORTRAN
Callable Routines

Program Initiation
Program Console Control
Program Task Control

Special ID Block Assign-
ment

Control of Queue Handler
and Pick Processing

Fetching ID Blocks from
Console Entries

Control of Console
Alphanumeric Input

Frame-Scissoring
Displays

Display Item Generation

Storing and Displaying
Items

Control and Use of the
Tracking Cross

Use of the Data Handler
Example of Bead Use

Voluntary Abortion of a
Job

Hardcopy File Creation

Additional Routines for

Display Font Creation
PROGRAMMING
CONSIDERATIONS

Time Accounting

Memory Allotment and

List Processing Efficiency

Data Handler Component
Codes

Display Item Addresses
Macro Handling
Optimum Task Length

Non-Graphics Data
Handler Use

Data Handler Common
Files

7-10

7-10
7-11
7-11
7-12

7-13

7-18

7-21

7-25

7-26
7-29

7-38

7-44
T-47
7-54

7-55
7-56

7-57

8-1

8-1
8-2
8-2
8-3

8-3

8-5

44616800 Rev. 03

9

H O

"naH

SYSTEM OPERATOR'S GUIDE
6612 Console

Control Point Assignment
and Release

BATCHIO, B and K
Displays

EXPORT

Dayfile/B Display
Messages

6000 Basic Graphics Package
Routine Index

Graphics System Error
Messages

Character Code Equivalents

Sample Data Handler File Dump

6000 Series Central Memory
Word Organization

Card Formats
Cyclic Error Detection
Sampole Graphics Programs

Differences Between 6000 Basic
Graphics Package and 3000 Digi-

graphics Control Package
Mark 4.0

Remote Class, Hardware
Configuration

Intermediate Class, Hard-
ware Configuration

Local Class, Hardware
Configuration

Software Interactions
General Process Chart
System Process Chart
BATCHIO Control Point Field

File Creation Run Deck

UPDATE File Correction and
Creation Deck

44616800 Rev. 03

1700 Computer Console
Initialization and Restart

9-8

Procedure 9-8
9-1 Communications Failure 9-9
Control Type-Ins 9-10
9-2 Output Messages 9-12
9-5 Error Codes 9-16
9-7 GLOSSARY Glossary-1
APPENDICES
J Creating Alphanumeric
A-1 Display Fonts J-1
K Hexadecimal/Octal
B-1 Conversion Table K-1
C-1 L Re-entering a Graphics
D-1 Task Overlay L-1
M System Packing of IBUF
E-1 Description Buffers M-1
F-1 N Omission of Main from
Program Coding N-1
G-1 o Coding Examples 0-1
H-1
I-1
FIGURES
2.3.1 Run, Creation and Execu-
1-2 tion Deck 2-16
2-4 Task Addition Maintenance
1-3 Run Deck 2-17
2-5 Task Replacement Main-
1-3 tenance Run Deck 2-18
1-5 2-6 Sample Deck to Purge and
1-9 Store File 2~-19
1-10 2-7 Sample Deck to Purge File
within System 2-19
2-4 2-8 Execution Run Card Deck 2-20
2-15 9.9 Task Directory 2-23
2-16 2-10 Typical Time-Slice 2-29

vii

2-11
3-1

Graphics Control Point Field

Conditions Present During One
EXPORT Service Cycle

EXPORT Counters

EXPORT Graphics Transfer
Buffers

Sample IMPORT Graphics
Transfer Buffer

Function Keyboard
Alphanumeric Keyboard
Display Grid System

Sample Display Surface
Organization

Display Buffer Block
Diagram

Display Item ID Block
in 1700
Typical Bead Arrangement

Printer Format Control
Characters

Status Word Codes
Directive Word Codes

Function Keyboard Status
in IH, IV

Sample Frames
Equipment Mnemonics
Buffer Messages

2-30 7-2
7-3
3-8 14
34
7-5
3-6
-6
3-16
4-2 -1
4-3 -
4-5 8-1
4-6 8-2
4-14 9-1
G-1
6-1
7_4 N-l
TABLES
9-3
2-6 9-4
3-7 9-5
3-17 4,
4-3 9-7
_ M-1
g-
9- N-1

Four Cylinder Engine
List Structure Example

Data Handler File
Block Structure

Example of a Frame-
Scissored Arc

Example of Components
in a Bead

Alphanumeric Display Font
Numeric Display Font

Sample Data Handler Batch
Deck Using RFL

Sample Data Handler Batch
Deck Using REDUCE

DSD 6612 K Display
Typical Encoder/Decoder

MAIN Communications
Area

EXPORT Messages
IMPORT Control Type-Ins
Job Location

Output Messages

Error Codes

IBUF /1744 Byte Comparison,

Item Description Byte
Generators

6000 Package External
Linkages

7-28

7-54
7-58
7-58

8-4

8-5
9-3
G-3

9-6

9-10
9-12
9-13
9-16

44616800 Rev. 01

INTRODUCTION 1

The Control Data 6000 Series Interactive Graphics System is designed to permit real-time
use of a large computer by a graphics console operator — without degrading the capabilities

of the machine.

Interactive Graphics accomplishes this by using a small machine, a Control Data 1700 Com-
puter, to control the basic functions of the graphics hardware; the system uses the 6000
series computer only to handle more difficult manipulations and to do the mathematical work

required by the applications programmer or the console user.

The Digigraphics 274 Display Consoles connected to the smaller computer permit the user to
create, display, store, retrieve, and modify any graphic forms necessary for the active an-

alysis of a problem - as well as giving him a means of entering data directly. These graphic
forms can then be expanded or changed by the user in a real-time environment through his

application program and the Interactive Graphics System.

The system can process the types of programs usually run in Batch-processing mode, but it
eliminates the user waiting time of that mode, and provides a user with much greater flexi-
bility in his use of the computer than batch-processing permits.

The system handles problems that:

° can best be represented in symbolic, graphic, or geometric form (such as schematics,

diagrams, layouts, lattice structures, geologic cross-sections, and paths of motion)
® can best be described using mathematical functions (dynamic analyses)

) require human intervention (such as transcribing data for digital processing, empir-

ical problem-solving, and geographic studies)

MAJOR FEATURES

Interactive Graphics includes these unique features:

® Graphics programming is done only on the 6000 Series computer — the 1700 Computer

software operates without programmer intervention.

® Graphics programs can be written in standard FORTRAN 2. 0, independent of display
hardware characteristics.

44616800 Rev. 01 1-1

Data files can be tailored to fit the specific needs of an application programmer's job.

Batch and graphic processing is performed concurrently; both types of jobs can be
entered through the 1700 Computer, as well as at the 6000 Series site.

Interactive Graphics can simultaneously service 24 independent graphics consoles
through four 1700 Computers.

The 1700 Computers are not dedicated to graphics work, but can perform other func-

tions — even when graphics jobs are in the system.

HARDWARE ELEMENTS

The hardware configuration of the 6000 Series Interactive Graphics System is very versatile;

the system can be configured for either remote, local, or intermediate operation. Figures

1-1, 1-2, and 1-3 show typical systems for each type of configuration.

= e " —
250

| HARDCOPY | FRINTER

LREC

1738

CARD
DISK
CONTROLLER READER
6000
SERIES COMPUTER
NOTE 3 704
i COMPUTER
P 673 0R6674] 3018 | 40KB 3018 1747 1706 1705 EAE
P DATA SET DATA SET DATA DA?A 1700 COMPUTER
v CONTROLLER CONTROLLER CHANNEL CHANNEL 2ax
NGTE 2 NOTE 4 TOTAL
O 1744 200’
274 CONTROL
1743
< oL
274 CONTROL
NOTES O 1744
| 1706 DEDICATED TO 1747
2. 6673 HANDLES 2 {700s 274 CONTROL 708
6674 HANDLES 4 1700s 1 O 1744 CHANNEL
36000 DATA CHANNEL DEDICATED —
TO THE 667X 274 CONTROL.
O 178
—
274 CONTROL —
O 1744
GRAPHICS CONTROL.
CONSOLES 274

GRAPHICS
CONSOLES

Figure 1-1. Remote Class, Hardware Configuration

44616800 Rev. 01

'_____

| AR Deopy '
LRECOROER

l
|

6000
SERIES COMPUTER

n
L

NOTE 3

68730R 6674

CONTROL Eﬁ
NOTE 2

NOTE

PRINTER

1704
COMPUTER

5-1708's
STORAGE

UP T 1708 198
1000 FEET CONTRGILER CHANNEL CHANREL
NOTE 1

Q 1744 200
274 CONTROL —
O 1744
274 CONTROL
NOTES O 1744 I
|. 1706 DEDICATED TO 1747-QSE
2. 6673 HANDLES 2 1700s 274 CONTROL = LRo8
6674 HANDLES 4 1700s O 1744 CHANNEL |
3 6000 DATA CHANNEL DEDICATED [S—
TO THE 667 274 CONTROL,
4 LINE SPEED! uzuonv SPEED O 1744
(11y SEC./)2 BIT WORD) MINUS A —
SMALL FACTOR FOR LINE LENGTH 274 CONTROL
O 1744
GRAPHICS 274 CONTROL
CONSOLES
GRAPHICS
CONSOLES

Figure 1-2.

r_ y i |
LN
HARDCOPY {
| RECORDER
s

1
1

6000
SERIES COMPUTER

24K
TOTAL

1713
TTY

Intermediate Class, Hardware Configuration

NOTE 3 1704,
COMPUTER
P [66730RE674 : 1708 705 Sronees
P DATA SET 200 Ao 3195 STORAGE
u CONTROLLER |co~mouen cHENEL HANNEL
24K
NOTE 2 NOTE 1 TOTAL
O 1744 200"
274 CONTROL. 1
1713
Q
274 CONTROL
NOTES
1744
I. 1706 DEDICATED TO 1747 O R
2. 6673 HANDLES 2 1700s 274 CONTROL Lio8
6674 HANOLES 4 1700s O 1744 CHANNEL
3 6000 DATA CHANNEL DEDICATED —1
TO THE 667X O 274 CONTROL,
1744
274 CONTROL.
O 1744
GRAPHICS CONTROL
CONSOLES 24
GRAPHICS
CONSOLES
Figure 1-3. Local Class, Hardware Configuration

44616800 Rev. 03

1700 COMPUTER

1700 COMPUTER

The full hardware capability of the Interactive Graphics System includes:

Any standard 6000 Series hardware system, including a 6673 or 6674 Data Set

Controller

Four 1700 Computers, each with a 1747 Data Set Controller and at least 24K memory
One hardcopy recorder

One 1713 Teletypewriter per 1700

One 853 or 854 Disk Pack per 1700

One card reader per 1700

One card punch per 1700

One printer per 1700

Six 274 Digigraphics Consoles per 1700

GENERAL SOFTWARE OPERATION

Interactive Graphics software operates as two separate but communicating groups of rou-

tines —one in the 6000 Series computer, the other in each of the 1700 Computers. Figure

1-4 shows the relationship between the groups.

6000 SOFTWARE

The 6000 Series portion of the System software includes:

The SCOPE 3.1.2 operating system, with several added graphics features
The standard FORTRAN 2.0 compiler

The 6000 Basic Graphics Package, for actual graphics programming

The Scheduler, to provide time-sharing for graphics programs

An EXPORT program, for communication between the 6000 Series and 1700 Computers

SCOPE FEATURES

Because graphics programs require a real-time environment, they cannot be allowed to com-

pete with batch jobs for the use of central memory control points; instead, one or two of

1-4

44616800 Rev,. 01

APPLICATL!O

N PROGRAMMER

e e |
| |
! APPLICATION LIBRARY (TRSKS) 6000 SERIES !
I COMPUTER |
I |
| |
! 6000 FORTRAN |
| 6000 BASIC GRAPHICS !
1 PACKAGE !
| |
| |
[| |
! SCOPE OPERATING SYSTEM l
| |
t |
I I
! L SCHEDULER

| |
| T |
i |
| _ |
I i EXPORT I
| {
| I
U J
0 I ________ A
| |
! IMPORT | 1700 '
i 1 COMPUTER |
! |
i i
| |
I | BUFFER TRANSLATCH . |
! | ROUTINE !
| |
1 |
i L L !
! [1700 BRSIC GRAPHICS I
| ! PACKAGE !
| |
S |
e S l
! 274 !
I GRAPHICS t
! 1744 DISPLAY BUHFER CONSOLE !
U R~ 3

DISPLAY UuseRr

Figure 1-4. Software Interactions

44616800 Rev. 01

SCOPE's control points are dedicated to graphics use. The number can be varied as needed
by the 6000 operator, depending on the ratio of the graphics job load to the batch-processing
load. If graphics programs are not being run, all control points can be made available for
batch use.

The real-time requirements of graphics jobs also prohibit them from competing with batch
jobs for central memory storage space. Therefore, each graphics control point has a cer-
tain amount of memory reserved for the use of graphics programs. This amount is chosen
by the 6000 operator, and can be changed as needed for the most efficient distribution of mem-

ory between graphics jobs and batch jobs.

To further economize on the use of central memory, the SCOPE input/output package is re-
placed by a multi-device input/output package called BATCHIO. BATCHIO performs the
same functions as the non-graphics package, and shares its control point area with EXPORT
(the non-graphics package requires the use of separate control points). In addition, BATCHIO

will read cards punched in three different coding systems.
The SCOPE library for Interactive Graphics includes three utility routines for the use of
graphics programs:

° The task file creater, AEFILE

° The task file dump routine, AEDUMP

° The random-access file creator, AELOAD
Graphics programs are written as a series of overlays, each performing a task. The AEFILE
routine places these overlays in mass storage as a random-access file with an index that can
keep track of hundreds of overlays. The applications programmer can make additions to and

deletions from this file; a task is located within the file and placed in central memory when

it is needed (location and loading is performed by 6000 Basic Graphics Package routines).

The AEDUMP routine is used to remove unneeded information from the task file and to re-

write the file in a form that can be stored outside the system.

The AELOAD utility program is used to restructure the file produced by AEDUMP into a

form that can be used as a task file.

All three utility routines are used at batch-processing control points so that file maintenance

does not tie up the System's graphics-processing resources.

PROGRAMMING FEATURES

The 6000 Basic Graphics Package allows the user to write programs in FORTRAN without

worrying about the maintenance of a display-oriented graphics data base or the mechanics of

1-6 44616800 Rev. 01

communicating with the display. The Package contains an expandable library of subroutines
that provide efficient and complete access to the graphics hardware (and two-way communica-
tion with it) without limiting application types or data structures. The Package is designed

so that the programmer's only concern is communication with the graphics console operator
and the computational requirements of the application; he is not aware of the internal functions

of the Package, since there are no system-specified data areas that must be manipulated.

REAL-TIME MULTIPROGRAMMING

If several graphics programs are in the system at the same time, a form of time-sharing
must be used so that each graphics console user believes that his program has sole use of

the 6000 Series computer.

Graphics programs share their use of the 6000 Beries central memory through a mechanism
controlled by the Scheduler. The Scheduler looks at the programs waiting for execution in
its graphics input queue, the graphics input request of currently executing programs, and at
the programs themselves. The Scheduler then decides whether to roll out a program and roll
in a new one from the input queue, or to roll in an old program that was rolled out while

waiting for an input request to be serviced.

The Scheduler determines how long each program should be allowed to remain at a graphics
control point on the basis of the central and peripheral processor time the program used when
it last resided at a control point; this gives short graphics programs priority over longer ones.
A lower limit, chosen by each installation, is imposed on the Scheduler's determination of a

program's permitted resident time.

EXPORT FEATURES

EXPORT performs all data communication between the 1700 Computers and the 6000 Series
computer. The Interactive Graphics version of EXPORT provides the same services for re-

mote batch programs as the non-graphics version, and has several additional features:

e EXPORT is automatically loaded by BATCHIO whenever it is needed, rather than

manually loaded as in the non-graphics version.

e EXPORT monitors the resident time of each graphics program, and calls the Schedul-

er into a peripheral processor when a program's permitted resident time has elapsed.

. EXPORT periodically scans each graphics control point for an input or output request
and automatically transfers graphics output data to its own output buffers for trans-

mission to the proper 1700.

e Graphics data from a 1700 is queued by EXPORT when it is received for later use by
an application program (batch data is turned over to SCOPE for processing, as in the

non-graphics version).

44616800 Rev. 01 1-7

° EXPORT overlays are stored in Central Memory Resident, rather than in mass stor-

age, to reduce the overhead time of data communication processing.

° EXPORT processes remote batch data and graphics data concurrently.

1700 SOFTWARE
The 1700 portion of the Interactive Graphics software consists of three groups of routines:

e An IMPORT program, to handle all communications between the 6000 Series computer
and the 1700 Computer.

) The Buffer Translator

° The 1700 Basic Graphics Package

IMPORT FEATURES

The Interactive Graphics version of IMPORT 1700 has all of the data communication features
of the non-graphics version, and interfaces with drivers to run a line printer, card reader,

and card punch.

DATA TRANSLATION

The Buffer Translator reformats the graphics data buffers received by IMPORT from the
6000 Series computer into calls to the 1700 Basic Graphics Package. In this manner, data
from the 6000 Basic Graphics Package is translated into a display-oriented data base. The
Buffer Translator also formats data from the graphics consoles for transmission to the 6000

Series computer.

1700 GRAPHICS ROUTINES

The 1700 software includes a group of graphics routines called the 1700 Basic Graphics
Package. These routines act like drivers for the graphics consoles, sending display infor-
mation to the 1744 Controllers according to instructions received from the 6000 Basic Graph-
ics Package calls. The 1700 routines also process interrupts and data from the graphics
consoles, queueing the information until the program in the 6000 requests it. The application

programmer does not use the 1700 Package routines when coding a job.

ADDITION OF SOFTWARE FUNCTIONS

Additional 1700 functions can be incorporated in the Interactive Graphics System without alter-
ing the existing software; the 1700 can be used to drive remote devices for specific applica-

tions, without hardware modification, other than the addition of memory.

1-8 44616800 Rev. 01

GENERAL PROCESS CHART

The General Process Chart in Figure 1-5 follows a user's program through the Interactive

Graphics System and shows the relationships between the hardware and software at various

stages in the program's processing.

REMOTE 1700 LOCAL 6000

] —_—
CARD JOB INPUT 6000 JOB INPUT cAmD
INPUT gs"_fge INPUT

JOB INPUT
STANDARD A
STANDARD | CREATE TASKS
PRINTER EXECUTION PRINTER
r OUTPUT__J BATCH JOB DAYFILE ouTPUT |
" (GRAPHIC) AND ANY
UTILITY LISTINGS PREREAD TASKS
ECT TASKS
CO('}? ANY) TO SYSTEM [OR GRAPHIC DATA
GRAPHICS DISK
JOB
GRAPHIC MAG
INPUT/ Ly
TASK OR INPUT

GRAPHIC DATA

OUTRUT

SCHEDULER ROLLS
JOB OUT AND LEAVES
ENTRY AT
BATCH I/0 CONTROL
POINT

BATCH JOB DAYFILE (GRAPHIC)
AND ANY UTILITY LISTINGS

GRAPHIC
DATA

GRAPHIC DATA

EXPORT PPU CALLS SCHEDULER
TO SCHEDULE THE JOB AND LOOK
FOR GRAPHICS I/0 TO AND
FROM THE JOB

GRAPHIC DAYFILE AND LISTINGS PLUS ANY
DATA DUMPS FROM THE DATA HANDLER

Figure 1-5.

44616800 Rev. 01

NORMAL JOB
COMPLETION PLUS

GRAPHIC DAYFILE AND LISTINGS PLUS ANY
DATA DUMPS FROM THE DATA HANDLER

GRAPHIC TABLE
UPDATES

General Process Chart

SYSTEM PROCESS CHART

The System Process Chart in Figure 1-6 also follows a program through the System, and
shows in more detail the interaction of the parts of the software with the hardware. This
chart is a schematic of the flow of data through the System during graphics program process-

ing.

CARD
PUNCH

}

L GRAPHIC DATA
READER IMPORT EXPORT MAIN
COMMUNICATIONS COMMUNICATIONS G | TASK RETURN
- PACKAGE A PACKAGE Wpﬁl pz ROUTINES
i] &) N ~
GRAPHIC/ g
NON-GRAPHIC | /\
DATA va\/ ~_/
TRANSLATOR \ e 7\ TASKS
BUFFER SCHEDULER P / OVERLAYS
PACKER TIME SHARE | /&
GRAPHIC CONTROL 2 ~/&
POINTS |z /3
|& -
|9 6000 BGP
1700 BG.P |z 1 DISPLAY CALLS
GRAPHIC DRIVERS |2 2 DATA PREPAR-
8 QUEUE HANDLER 5 DA“‘}Z‘?:NDLER

274
GRAPHICS
CONSOLE

1700 6000 PPU 6000 CPU

Figure 1-6. System Process Chart

1-10 44616800 Rev. 01

6000 INPUT/OUTPUT AND GENERAL PROCESSING 2

CONTROL POINTS

Two to three of the seven control points provided by the standard SCOPE operating system
are reserved in the modified form of the system used by Interactive Graphics. One to two
can be designated as graphics control points by the installation and are then used exclusively
for graphics programs, although the system makes them available on command for batch use.
The third control point is reserved for the combined use of the BATCHIO and EXPORT pro-

grams.

BATCHIO

BATCHIO can simultaneously drive up to seven of the following Control Data devices in any

combination, through each peripheral processor it uses.
° 501 or 505 Line Printers
e 415 Card Punches
) 405 Card Readers
The BATCHIO package consists of three peripheral processor primary overlay programs,

plus ten secondary overlays; these programs are assigned to pool PPU's as needed. The

primary overlays include:
e 110 (BATCHIO Manager Program)
e 1CD (Input/Output Driver)

° 1PS (Service Program)

ROUTINE FUNCTIONS
Ho

The 110 routine monitors the input devices and the SCOPE output queue. When it detects a
need for input or output action, it assigns an appropriate available device to the 1CD driver
and associates the device with one of the 16 buffers in the BATCHIO control point field. 1I0
then assigns the proper output file to 1CD.

44616800 Rev. 01 2-1

If 1CD is not currently running when 110 detects a need for input or output action, it loads
1CD into another pool PPU. 110 also transfers 6612 operator END, REPEAT, or SUPPRESS
type-in commands (see Section 9) to the appropriate buffer area for execution by 1CD; 110

goes into recall every three-quarters of a second.

1CD

The PPU used by 1CD remains dedicated to it while any input or output activity is occurring.
In addition, the driver calls transient PPU's to perform 1PS functions and manage buffers.

The 1CD routine:

Reads job input files from the card reader, performs code conversion and checksum-
ming, and places the file in the SCOPE input queue. 1CD will perform a reread oper-
ation when a card read compare error is encountered, and displays error messages
when a checksum or validity error occurs.

Reads print files from the disk, performs code conversion, executes END, REPEAT,
and SUPPRESS type-in commands, and prints files. 1CD provides printer status mes-
sages on the K display.

Reads PUNCH files from the disk, code converts them if necessary, executes END
and REPEAT commands, and punches the files. 1CD provides card punch status mes-

sages on the K display, and will repunch any cards that have compare errors.

Uses standard SCOPE circular buffering, generates request stack entries for disk ac-

cess, and calls 1PS to perform housekeeping functions.

1CD goes into recall when all input and output activity is finished.

1PS

1PS is called into another PPU by 1CD to perform the following actions:

Call 2TJ to translate job cards and create File Name Table entries for input files.
Call 2DF to drop output files after they have been printed or punched.

Access the dayfile to execute an END type-in command (see Section 9).

Rewind print files and call 2LD to print a banner page (see Job Output).

Rewind punch files and call 2CD to generate LACE card data.

44616800 Rev. 01

COMBINED EXPORT AND BATCHIO CONTROL POINT

ASSIGNMENT

The 6612 operator has the option of assigning BATCHIO and EXPORT to a control point either
automatically or manually (see Section 9). If he does it automatically, the two programs will
be assigned to control point one and the contents of the control point field will be preserved

in the event of a partial recovery dead start.

If the programs are assigned manually to any other control point, the contents of the control

point field will be lost when a partial recovery dead start is performed.

BATCHIO cannot be assigned to run at more than one control point.

INITIALIZATION

After the control point is assigned, the BATCHIO initialization routine is loaded into a PPU
and structures the three parts of the control point field. These parts are:

® Message buffers, flags, and pointers; used by BATCHIO and EXPORT for inter-com-

munication.

e Area used for graphics; contains status and Scheduler tables for graphics control
points at which programs are being executed, and contains communication buffers for
the graphics consoles of each 1700 Computer. Multiple buffers of data fit in each of

these communication buffers.

° Sixteen BATCHIO file environment tables and buffer areas; these are used by the
BATCHIO driver and by EXPORT for actual input and output.

After BATCHIO is loaded, it waits for a code signal from the 1700 Computer. This signal
tells the 6000 Series machine that the 1700 is operational, and causes EXPORT to be loaded
into another PPU by BATCHIO.

STRUCTURE AND USE

Figure 2-1 shows the structure of the BATCHIO/EXPORT control point field. The sixteen
buffer areas are shared by BATCHIO and EXPORT. EXPORT assigns as many areas to each
1700 as are needed. When BATCHIO or EXPORT finishes using a buffer, it is returned to

the pool of idle buffers for reassignment.

44616800 Rev. 01 2-3

RA«PN

RA+PN +1

RA

*
FB =

*H

03

+ o+

+ 4+

+

4

20

30

200
20t

400
404

763
764

1C66
1067

1074
1075

1100
110t

1110
(RN

1200
1201

105
106

2143
214

3214
322

59 a7 41 35 23 17 ARl 0
E x P O R T G © F L A G
1¢0 icp ;1' FROCESSOR # i ENTARY COUNT K 1 COPIES OF 40D INPOLT
%chxsuw,ons PER ACTIVE
~d N DEVICE
< ALL SAME AS ABOVE E |
~ N PROCESSOR iS ASSIGNED AS
J DRIVER IS DEDICATED
C000 OR 7777 /! BUFFER ADDRESS
N N ASSIGNMENT WORDS
~ [For 4co
~
esp | EQUIP. esr | EQUIP
ENTRY COUNT FLAG O FLAG © FLAG O FLAG © PRIVAT T STATU
oroINAL ' ‘lorornal ! "[orornaL : ORDINAL‘ ' IVATE EQUIPMEN s
1,2,0R 3 1,2,0R 3 11,2,DR 3 I|,2,0H 3 TABLE FOR CARD READERS,
LINE PRINTER, ETC.
\{\ ALL SAME AS ABOVE \l\
EQUIR FLAG:
‘[GRAPHIC OVERLAY AREA \L 0= LINE PRINTER
\[\ \’\ I'= CARD PUNCH
2= CARD READER
% DIRECT CouPLE OV ERLAY ARE A * 3= EXPORT 6674, 6673, MuX
ENTRY COUNT :
TA F EQ'S IN TABLE
\\E BL ANK FoR FUTURE EXPANSTION ﬁL TOTAL # OF EQS -
N
1700 -1 NCON ADDRESS SEE
(700 -2 NCoON ADDRES S SEE
NCON ABORT PROGRAM FLAGS
1700 - 3 NCON ADDRESS SEE
1700 - 4 NCOCN ADDRESS SEFE
% '] FET ADDRESS 1700 - 1 ‘|
.) FET ADTRESS 1750 - 2 FOR EXFORT GRAFAICS SUTRUT
] FET ADDRESS (700 -3 BUFFERS IF QUTPUT AVAILABLE
] FET AoDRESs (700 - 4
M I L [PRIORITY [oooooo [ooooo0o0 FRAME TIME VARIABLES
A 1700 - [. t700 - 2 | 1700 - 3 | 1700 - 4 INPUT FLAGS
1ST GRAPHICS CP # | FL OF 1ST CP 2ND GRAPHICS CP # | FL OF 2ND CP INTERLOCK BYTE INTERLOCK USED FOR SCHED. TABLES
RESIDENT TIME 1ST CP |RESIDENT TIME 2ND CP| ROLLOUT COUNT | SERIAL # ST CP | SERIAL # 2ND CP SER. # IDENTIFIES CURRENT PROGRAM
FNT NCON BUFFER FL |INPUT WORD COUNT FB ¥ NCON BUFFER ADDR,

ALL

SAME AS ABOVE

NCON RESERV

ATION TABLE
EACH CONSOLE

IN THE SYSTEM)

(CONTAINS SERIAL NUMBER OF PROGRAM ATTACHED TO

ayay

\R
$ WORD COUNTS OF GRAPHICS OUTPUT BUFFERS TO BE TRANSFERRED TO 1700'S
\\E 8L A NK F O R FUTURE E X P ANSTION PN
N s o
% PPU NUMBERS (SCHEDULER INTERLOCK TABLE) \]Q
- N
\P B L A NK F O R FUTURE E X P AN SION
$ ﬁ\
\I\ FET AN D B UFF ER \L
\l\ X
\J\ FE T AN D 8 u fF F ER
N
* FET AN D B UF F ER \\
il\\ FET A N D B UF F ER \{\\
* B ATCHIO 8 UF F ERS %
L
FLAG BITS FOR STATUS OF THIS NCON, IF FB = 1XX, NCON AVAILABLE; IF FB8 = 2XX OR 3XX, NCON ABORTED;
= 4XX,AVAILABLE VACATED FILE; FB = ¢XXX THRU 7xXxX IS A DYNAMIC PRIORITY WEIGHT,

IF

4201

F8

+ 10Cg % NUMBER OF CONSOLES

Figure 2-1,

BATCHIO Control Point Field

44616800 Rev. 01

K DISPLAY

A SCOPE DSD display presents the status of the sixteen BATCHIO buffer areas and any mes-
sages associated with them. This K display is shown in Figure 9-1.

EQUIPMENT MNEMONICS

A mnemonic is provided for each piece of equipment which can be accessed through the
BATCHIO control point. These mnemonics appear on the K display when the devices are

using the buffers. The mnemonics valid for this system are listed in Table 9-1.

BATCHIO BUFFER MESSAGES

BATCHIO produces the messages in Table 9-2 on the K display when it encounters abnormal
conditions in the hardware it services. Each message appears in the message area of the
buffer used by the device; the last message to appear on the K display also appears on the
third line of the BATCHIO control point entry for the B display (see Section 9).

EXPORT messages do not appear on the K display.

DAYFILE ENTRIES

STANDARD

A dayfile entry is made for every read, print, or punch operation. This entry gives the job

name and card or line count for accounting purposes.

DIAGNOSTICS |

BATCHIO makes dayfile entries for certain equipment conditions at dead start time.
These entries may not require operator action, and do not appear on the K display; they

appear only on the third line of the B display and in the dayfile.

RESERVED MESSAGE
The dayfile entry:
EQxx, CHyy, RESERVED. TURNED OFF.

indicates that the piece of equipment with the Equipment Status Table ordinal xx on data chan-
nel yy has a hardware reserved status condition. This status is used only with dual access
controllers and indicates that the alternate controller is using the device. Device xx is auto-

matically turned off in the Equipment Status Table.

44616800 Rev. 03 2-5

REJECT MESSAGE
The dayfile entry:

EQxx, CHyy,

indicates that the device with the Equipment Status Table ordinal xx on channel yy has returned

REJECT. TURNED OFF.

a reject status. The device is automatically turned off in the table.

JOB OUTPUT

PRINTER FORMAT AND CONTROL CHARACTERS

A banner page, consisting of the file name in large characters, is printed at the beginning of

each file output. Files are printed until the End-of-Information onthe disk is reached; no

printed indication of an End-of-File or End-of-Record is given.

A line of print may be 136 characters long. The first character is not printed if it is one of

the format control characters in Table 2-1, which follows:

TABLE 2-1.

PRINTER FORMAT CONTROL CHARACTERS

Character

Operation

;Uw»bmmqooJ,\/l/\\//\hw»—luo\

1)

+

Print on next line

Skip 1 line before printing

Skip 2 lines before printing

Print on top of next page

Advance to last line on page before printing
Skip to printer format channel 1 after printing
Skip to printer format channel 2 after printing
Skip to printer format channel 3 after printing
Skip to printer format channel 4 after printing
Skip to printer format channel 5 after printing
Skip to printer format channel 6 after printing
Skip to printer format channel 1 before printing
Skip to printer format channel 2 before printing
Skip to printer format channel 3 before printing
Skip to printer format channel 4 before printing
Skip to printer format channel 5 before printing
Skip to printer format channel 6 before printing

Set Auto Eject mode. (The perforation at the top or
the bottom of the page is skipped automatically.)

Clear Auto Eject mode.(Print continuously from
the top to the bottom of each page.)

Supress paper advance before print. (Overprint
the last line with this line.)

44616800

Rev. 01

The printer remains in Auto Eject mode until a control character is encountered, and returns

to it after that line has been printed. Printing occurs on consecutive lines in Auto Eject mode.

CARD PUNCHING FORMATS

A LACE card is punched at the beginning of each file. It contains the job name associated
with that file, and is similar in appearance to the banner page produced by the printer.
End-of-Record cards are punched without level numbers.
LACE, End-of-Record, End-of-File, and cards with compare errors are offset for easy
recognition.
Data cards are punched in one of five formats (see Appendix F):

e Fnd-of-Record cards (level zero only)

° End-of-File cards

e Normal mode binary cards

] Free-form mode binary cards

° Standard 6000 Hollerith coded cards

JOB INPUT
HOLLERITH TYPES

BATCHIO can read coded cards that have been punched in one of two versions of Hollerith

code:
° Standard 6000 Hollerith

) ICT 1900 Hexadecimal Hollerith

These codes are given in Appendix C. Coded cards are assumed to be in standard 6000 Hol-
lerith code until a Hollerith Switch card is encountered. The format and use of Hollerith

Switch cards is described in Appendix F.

CARD READING FORMATS

BATCHIO reads cards that have been punched in either of two modes (see Appendix F).
BATCHIO begins reading each card file in Normal mode, and while in that mode can read:

° Standard 6000 binary cards
° End-of-Record cards
° End-of-File cards

° Enter Free-form cards

44616800 Rev. 03 2-1

° Hollerith Switch cards

° Coded cards
Coded cards are assumed to be in standard 6000 Hollerith code until a Hollerith Switch
card is encountered.
In Free-form mode, BATCHIO can read:

° Free-form mode binary cards

° Exit Free-form mode cards

° Absolute End-of-File cards (also serve as Exit Free-form mode cards)

CARD TRANSLATION

If BATCHIO detects a character for which no internal display code equivalent exits, it will
translate the character as a $ (53 in internal display code); there is no maximum permissible
number of such validity errors.

If BATCHIO encounters a Mode changing card or Hollerith Switch card that it does not recog-
nize, it produces the message:

NOT RECOGNIZED
in the program's output file, followed by the image of the card. The job is then aborted.

Error messages produced during card translation appear nowhere in the system except in

the program's output file.

GRAPHICS PROGRAM CARD DECK

User programs are compilea and executed on the 6000 Series computer system. The user
submits his application program as a normal FORTRAN batch job card deck; the following

discussion assumes that the card deck is punched in standard 6000 Hollerith code.

The card deck consists of control cards, program cards, and data cards. The control cards
specify how the job is to be processed, and are followed by the FORTRAN program cards
and the data cards. The deck ends with an End-of-File card (6-7-8-9 quadruple-punched in

column one).

CONTROL CARDS
JOB CARD

The first control card, the Job card, must indicate the job name, priority, central processor
time limit, and memory requirements of the program. Fields are separated by commas,

and the last field is terminated by a period. Fields other than the job name may appear in

any order. All capitalized letters must appear on the card; they are required by SCOPE.

2-8 44616800 Rev. 01

ﬁa, Pp, Tt, CMf1, ECTl.

n

Pp

Tt

CMfl

ECfl

RUN CARD

Alphanumeric job name, which begins with a letter and is 1 to 7
characters long.

Equals priority level in octal, with a 1 as the lowest priority;
the upper limit on p is an installation option.

t equals central processor time limit for the whole job, including
compilation and execution, in seconds and is 1 to 5 octal digits.

fl equals total central memory field length of the job, with a maxi-
mum of 6 octal digits.

fl equals total extended core storage field length required in terms
of 1000, word blocks, with a maximum of 77778; this parameter
may be “omitted.

The RUN card is usually the second control card in the deck. It calls the FORTRAN compil-

er, and provides Compiler mode, field length, and file names as follows:

(ﬁJN (cm,fl, bl, if, of, rf, 1c, as, cs)

cm =

bl

if

of

rf

le

44616800 Rev. 01

G Indicates compile and execute without a list, unless explicit
LIST cards appear in the deck.

S Indicates compile with source list but do not execute; if execu-
tion is desired, LGO card must follow RUN card.

P Indicates compile with source list and punch deck on file
PUNCHB, but no execution.

L. Indicates compile with source and object list, but no execution.

M Indicates compile with source and object list; produce a punch
deck on file PUNCHB, but do not execute.

Object program field length in octal; if omitted, it is set equal to
the field length at compile time.

Object program I/O buffer length in octal; if omitted, it is assumed
to be 2022,

File name for compiler input; if omitted, it is assumed to be INPUT

File name for compiler output; if omitted, it is assumed to be
OUTPUT.

File name on which the binary information is always written; if
omitted, it is assumed to be LGO.

Octal line-limit of an object program on the OUTPUT file. If the
line count exceeds the specified line limit, the job is terminated;
if omitted, it is assumed to be 10, 000.

as ASA switch. If nonzero or nonblank, it causes the ASA I1/O list/
format interaction at execution time.

cs Cross-reference switch. If nonzero, a cross-reference listing is
produced.
LGO CARD

This card calls the SCOPE General Purpose System Loader and begins program execution -

regardless of the parameters on the RUN card. The format for this card is:

(LGO.

The AEFILE card calls the graphics task file creation utility routine, AEFILE, which re-

structures the program file identified by the second data card into an indexed random-access

AEFILE CARD

COMMON file of primary overlays, identified by the name on the first data card. AEFILE

can also be used to add or replace overlays in the file, and make changes within overlays.

This card has the format:

(’AEFL&L

AEDUMP CARD

This card calls the AEDUMP utility routine, which reads a random-access file (the graphics
task file), removes all rewritten records and indexes, and writes it as a serial-access file

with an index as its first record.

The format for this card is:

(fAEDUMP(&o)

IS Name of the random-access file to be used as a source; this is the
file created by AEFILE or AELOAD,

o Name of the serial-access file to be produced.

AELOAD CARD

The AELOAD card calls the AELOAD utility routine, which reads a serial-access file (the
file produced by AEDUMP) with an index as its first record. AEI.OAD then writes the file as
a random-access file with an index of disk addresses as its last logical record. The file
produced by AELOAD can be used as a graphics COMMON file.

2-10 44616800 Rev. 01

The AELOAD card has the format:

(AELOAD (s, o)

S Name of the serial-access file to be read as a source; this is the
output file of AEDUMP

o Name of the random-access file to be produced

COMMON CARD

This card attaches any existing COMMON file named in its parameter field to the program,
and changes its status in the File Environment Table so that no other program will have ac-
cess to it while the current program is running. When the program the file is attached to
terminates, the file is returned to the system and may be reassigned by another program's
COMMON card. The COMMON card's format is:

(COMMON, fn.

fn Name of the COMMON file (usually the graphics task file created
by AEFILE or AELOAD) to be assigned to the program.

RELEASE CARD

The RELEASE card eliminates the COMMON file named in its parameter field from the sys-
tem. When SCOPE encounters a RELEASE card, it changes the file's File Environment
Table/File Name Table entry so that the file is reclassified as a local program file. When

the program ends, all of its local files are automatically destroyed. This card has the

format:
(RELEASE, fn.
fn Name of the COMMON file (usually the graphics task file) to be
destroyed.
EXIT CARD

When SCOPE detects a program error, it scarches the program's control card record for an
EXIT card. If it finds one, it performs any actions specified by the control cards following

the EXIT card, then terminates the program.

If an error occurs and no EXIT card exists, SCOPE simply terminates the job with a dayfile

message.

44616800 Rev. 01 2-11

If no error occurs, an EXIT card (and any control cards following it) is ignored. The EXIT

card format is:

[EXIT.

or

(EXIT (S)

If the S parameter is used, EXIT processing is also done when assembly or compilation

errors cause termination.

PROGRAM CARDS

Several program cards are required by Interactive Graphics. Program cards are separated
from control cards and data cards by End-of-Record cards (7-8-9 triple-punched in column

one), and are punched as standard FORTRAN cards.

MAIN (ZERO-LEVEL) OVERLAY CARD

This card causes the FORTRAN compiler to translate the program overlay following it as a
zero-level overlay. Zero-level overlays always reside in core when the program is at a

control point, and serve to link blank COMMON areas between higher level overlays.

The main overlay card has the format:

[OVERLAY(1fn, 0, 0)

1fn Name to be assigned to the source file of overlays (produced by the
SCOPE General Purpose System lL.oader).

CALL MAIN CARD

This card calls the Application Executive MAIN program; when encountered at compile and
loading time, it causes the Executive's MAIN program to be loaded into the zero-level over-
lay as a subprogram from the SCOPE system library.

If this card is not used, the programmer must supply his own executive zero-level overlay
to setup a call to AEFILE, load tasks, fetch buttons, and so forth. This card has the format:

[CALL MAIN

2-12 ’ 44616800 Rev. 01

TASK LEVEL OVERLAY CARD

This card is used to begin each task overlay and serves as an End-of-Record card for the

overlay preceding it. It has the format:

(OVERLAY (p, s)

p Primary overlay level number in octal; must be greater than zero
and less than 1008.

S Secondary overlay level number in octal; must be positive and less
than 1008‘

Overlays need not be numbered sequentially in an input file; however, no overlay may have a
primary number smaller than that of the overlay preceding it, and no overlay may precede

another with the same primary number but a smaller secondary number.

DATA CARDS

If a graphics program uses the Application Executive MAIN program, there must be at least

one data record in its deck.

The first data record contains the file name parameter cards used by the Executive's MAIN
program. The file names on these cards are standard seven character alphanumeric names,
starting in column one of the card. The first card must contain the name assigned to the
graphics COMMON file; the second card (used only during a file creation run) must contain
the name of the file produced by the General Purpose System lL.oader. This source file name

must agree with the name given on the program's main overlay card (see above).

SAMPLE PROGRAM DECKS

Figures 2-2 through 2-8 depict program decks for various task file creation, maintenance,
and execution functions. The operation of the system utility routines called by the control

cards is explained in more detail later in this section.

ZERO-LEVEL OVERLAY CONTENT

The zero-level overlays in all runs of a job must be identical. The overlays in the task file
are linked to FORTRAN and Application Executive entry points within the zero-level overlay
and are relocated with respect to the first word address of the zero-level overlay's blank
COMMON. Unless the same zero-level overlay is used for all runs, task loading and

COMMON linkage will not occur properly.

44616800 Rev. 01 2-13

If the zero-level overlay, the size of blank COMMON, or the number of files used is changed,
a new file creation run should be made to alter the linkages and loading addresses for each

of the tasks in the task file.

If the name of a file or a blank COMMON location is changed without changing the zero-level
overlay's core requirements, it is necessary only to change the task overlays affected by the

name changes; this can be done with a file maintenance run.

All file requirements (such as INPUT, OUTPUT, or TAPEG) must be listed on the zero-level
overlay's PROGRAM card; they may not appear on a PROGRAM card in any other overlay.

The FORTRAN compiler allocates File Environment Table entries and buffers for these files
and sets pointers to the allocations for use during the execution run. Each subsequent allo-
cation of a file with a given name is written over the previous one, so that a file listed in the
zero-level overlay and in another overlay will have pointers only in the latter. Therefore,
when the zero-level overlay is entered at execution time, the FORTRAN linkage routine will
try to find a File Environment Table entry for file but will fail; the pointers that it searches

for will be unavailable because they are in an overlay that has not yet been loaded.

When the linkage routine's search fails, the job is aborted with the diagnostic message:
NO OUTPUT FILE FOUND

This portion of a program would cause such a diagnostic:

OVERLAY (SOURCE, 0, 0)
PROGRAM ONE (TAPES6)
°
.
°
OVERLAY (1, 0)
PROGRAM TWO (TAPES6)
°
.

FILE CREATION RUNS

Figure 2-2 shows a typical card deck for an ipitial file creation run, using the Application
Executive MAIN program and the system AEFILE routine. This deck can create a file with

a maximum of 6310 primary or secondary overlays.

2-14 44616800 Rev. 01

~

©® ® N o

DATA
RECORD

/’

N7

NEXT TASK
PRIMARY
OVERLAY

N/

PROGRAM FIRST
RECORD TASK
PRIMARY
OVERLAY

VA

MAIN
(ZERO-LEVEL)
OVERLAY

N

N/

CONTROL
CARD
RECORD

—

END OF FILE CARD

SOURCE
OBJECT

£ND. OF RECORD CARD

PROGRAM TASKZ

OVERLAY (2,0)

END

TASKS
To BE

FILED

fROGRAM TASK1

OVERLAY (1,0)

END

CALL MAIN

PROGRAM CREATE

OVERLAY (SOURCE,0,0)

7
8

APPLICATION EXECUTIVE
MAIN PROGRAM CALL CARD

- - END OF RECORD CARD

9 AEFILE.

/LGO.

RUN(S)

GRAPH35,P17,T710000,CM40000.,

A graphics COMMON file containing more than 6310 overlays can be created. A deck,

Figure 2-2.

o

g

F TASK FILE CREATOR CALL CARD

SCOPE LOADER CALL CARD

FORTRAN COMPILER CALL CARD

JOB CARD

File Creation Run Deck

CURRENT OVERLAY FILE NAME PARAMETER CARD

GRAPHICS COMMON FILE NAME PARAMETER CARD

such '

as the one shown in Figure 2-4, can be used to build a task file that contains as many over-

lays as the installation-specified limit MNOVL will permit (see AEFILE routine).

FILE MAINTENANCE RUNS

If a program library has been created for graphics jobs, and it has the same format as the

sample deck shown in Figure 2-2, then a task file can be created from it.

tem UPDATE program, the programmer can make corrections during the same run.

By using the sys-

Figure

2-3 shows a deck that will form a corrected task file from an UPDATE library tape; the
routines in card deck LBTASK will be placed in the file SOURCE from tape OLDPL, and task
file OBJECT will be produced.

44616800 Rev. 03

2-15

END OF FILE CARD

SOURCE

OVERLAY SOURCE FILE
NAME PARAMETER CARD

{ON OLDPL)

GRAPHICS COMMON FILE NAME
PARAMETER CARD

END OF RECORD CARD

UPDATE AND

I/%IDENT.LBTASK

FORTRAN CARDS

Y /8
/ (7
DATA 8
RECORD 9
(/oaascr

> .

8

PROGRAM 9

RECORD

> ;

8

9

CONTROL

END OF RECORD CARD

AEFILE.

(LGO.

RUN (S,,, COMPILE)

RECORD

|

UPDATE(F)

TASK FILE CREATOR CALL CARD

/REQUEST,

OLDPL.

CARD

N

i
<~ UPDATR!,P17,

Tt0000,CM40000.
FORTRAN COMPILER CALL CARND

CALL UPDATE ROUTINE CARD

OPERATOR TAPE ASSIGNMENT REQUEST CARD

JOB CARD

s

Figure 2-3.

This deck is used to create,

UPDATE File Correction and Creation Deck

run, and execute the program in one pass through the computer.

© o~

DATA
RECORDS

L

P
NEXT TASK
PRIMARY
O VERLAY
AN
I
FIRST TASK
PRIMARY
OVERLAY
N

P
MAIN
ZERO - LEVEL
O VERLAY
N

(RELEASE (KcB)

— — — — END OF FILE CARD
OBJECT DECK

— — — END OF RECORD CARD

=~ — — COMMON FI{LE NAME PARAMETER CARD

END OF RECORD CARD

f— — — — CURRENT OVERLAY FILE PARAMETER CARD
COMMON FILE NAME PARAMETER CARD
r — — — END OF RECORD CARD

\

TASKS
TO 8E
FILED

PROGRAM TASKI
OVERLAY (1,0}
L eno
/CALL MAIN
(PROGRAM CREATE (INPUT, OUTPUT]

OVERLAY (SCR,0,0)
3

1

]
S RELEASE (KCB)
EXIT

ERROR CONDITION
EXIT PROCESSING

(s

SPECIFICATION CARD

R (RFL)

COMMON (KCB)

— — — — SOURCE CALL CARD

—= — — GRAPHIC COMMON FILE ATTACHMENT CARD

— — — TASK FILE CREATOR CALL CARD

CONTROL
CARD AEFILE
RECORD (teo
IRUN (s}
GRAPH ETC.

— — — SCOPE LOADER CALL CARD
— = — FORTRAN COMPILER CALL CARD
— — — — JOB CARD

Figure 2-3.1. Run, Creation, and Execution Deck

44616800 Rev. 03

Task overlays can be added to an existing graphics COMMON file by using AEFILE. Figure
2-4 shows a sample deck which adds a primary level overlay ADDTASK to the end of the file
created by the deck in Figure 2-2.

3 } END OF FILE CARD
S ettt
DATA 8 SOURCE SOURCE FILE NAME PARAMETER CARD
RECORD 9 f t 777777
OBJECT GRAPHICS COMMON FILE NAME PARAMETER
K ro-T-0 " CARD
7 R I END OF RECORD CARD
8
9
PROGRAM ADDTASK l NEW OVERLAY
H FOR TASK FILE
PROGRAM OVERLAY (77,0) J
RECORD 1 !
END [
CALL MAIN M;IN

(ZERO-LEVEL)

/ PROGRAM CREATE OVERLAY
(/OVERLAY (SOURCE, 0,0) , ///J

7
2 L -) —————————— END OF RECORD CARD

9 r/iEFILE.
CONTROL LGO.

CARD
RECORD COMMON, GBJECT.
RUNCS) |
o TASK FILE CREATOR ROUTINE CALL CARD
GRAPH35,P17,710000,CM40000,
~— { _ SCOPE LOADER CALL CARD

GRAPHICS COMMON FILE ATTACHMENT CARD

FORTRAN COMPILER CALL CARD

J0B CARD

Figure 2-4. Task Addition Maintenance Run Deck

44616800 Rev. 01 2-17

Task overlays may also be replaced within a graphics COMMON file by using AEFILE.

Figure 2-5 shows a sample deck that will substitute the revised primary overlay TASKI1 for

the original primary overlay TASKI1 in the file created by the deck shown in Figure 2-2.

substitution is made according to the name given on the new task's PROGRAM card -~ the new

task will replace the old task with the same name within the file.

//ﬂ

!

DA

TA

RECORD

!
PR

REC

OGRAM
ORD

F

CONT
CA
REC

ROL
RD
ORD

—

AN

© ® N ®

- "SOURCE

| END OF *1.€ CARD

SOURCE FILE NAME PARAMETER CARD

,70BJECT
7
8

T T T T T T T T T care
} END OF RECORD CARD

g -
— — 1 REVISED
ﬁRoan TASKI ‘H" FIRST TASK
[i
Airo 1w e - 1 | //’/
SNIROAY L,
It l I l}‘}[!\}
END
CALL MAIN
MAIN
PROGRAM CREATE ‘ GVERL AY

|

L»cvmuv (SGURCE,0,0)) /
{ |
|
L

AEFILE,

fL ***** END 0Of RECZIRG CARD
i

/LGO.

7
1 8
9
|
:

ﬁommcw, 0BJECT.

| /RUNtS)

[e
 GRAPH35,P17,116G00,CM40000,

\
|
\
i |
: | TASK FILE CRFATCR ROUTINE Cail CaRD
I
- - -

[{ L” GRAPHICS ZOMMCN FILE ATTACHMENT C -

FORTRAN COMPILER CALL CARD
J0B CARC

SCOFE LOADER CALL CARD

Figure 2-5.

Task Replacement Maintenance Run Deck

44616800 Rev. 01

GRAPHICS COMMON FILE NAME PARAMETER

Figure 2-6 shows a deck that will take the file OBJECT created by any of the preceding decks

and store it in a purged form on magnetic tape as a file called SOURCE.

CONTROL
CARD
RECORD

END OF FILE CARD

O o N O

/AEDUMP (OBJECT, SOURCE)

/COMMON, OBJECT,
/REWIND, SOURCE.

(REOUEST, SOURCE.

GRAPH35, P17, T10000, CM40000.

TASK FILE DuMP
ROUTINE CALL CARD

GRAPHICS COMMON FILE
ATTACHMENT CARD

JOB CARD

Figure 2-6.

TAPE REWIND CARD

TAPE REQUEST CARD

Sample Deck to Purge and Store File

Figure 2-7 shows a sample deck that purges the file OBJECT1 (similar to OBJECT of

Figures 2-2 through 2-5) and recreates it as file OBJECT for use in a subsequent execution

run.

|
CONTROL
CARD
RECORD

: & — — — — — —END OF FILE CARD
L7 D N
‘ g AEWASE,OBJECT ~.
|)
‘ ﬁxm E
— - i i ERROR
l RELEASE,OBJECT! CONDIT:CN
| { EXiT
,] PROCESSING
1 i AELOAD (SOURCE1T, OBJECT) ; I caros
AEDUMP (OBJECT!, SOURCE1!) ‘ . 1
U —— — /‘
//E;MMON,OBJECTE, — -

GRAPH35, P17, T10000, CM40000

| i ‘

; . S—

Figure 2-7.

44616800 Rev. 01

~ CARD TC DETACH OLD
GRAPHICS TASK FILE

------- NEW TASK FiLE
CREATION

— — QLD TASK FiLE
PURGING

—————— GRAPHICS TASK CCMMON
FILE ASSIGNMENT CARD

— —J0B CARD

Sample Deck to Purge File Within System

PROGRAM EXECUTION RUN

Figure 2-8 shows a typical program execution run card deck; the program uses the graphics
COMMON file called OBJECT, which was created by the decks in the preceding figures

END 0OF FILE CARD

© ® -4 »

A

r/DATA CARDS FOR PROGRAM EXECUTION ‘I~}‘i
|

DATA RECORD

~

7 RN ENC OF RECORD CARD
8
DATA RECORD 9/ OBJECT
. ——————— GRAPHICS COMMON FILE NAME PARAMETER CARD
HH'!‘J
1
e ’ i -
/ ra]~ - - = - - - END OF RECORD CARD
1 9 END
PROGRAM CALL MAIN APPLICATION EXECUTIVE
JR S
RECGRD MAIN PROGRAM CALL CARD
PROGRAM XECUTE
[
OVERLAY({ SOURCE,D,C? l

N

R |
ST

- B

| e /RELEASE, OBJECT.

| END OF RECORD CARD

|
e, T ,
{

I

|

RELEASE,OBJECT. l \

|

|

1 I

ERROR CONDITION
EXIT PROCESSING

CONTROL SPECIFICATION
S Fer

CARD | Leo. CARDS

RECORD ‘

/COMMON, 0BJECT.

SRUNE S]

{
I | _
GRAPH35,P17,T10000,CM40000, ‘
‘ i i o SCOPE LOADER CALL CART
| P .
| I
|
1

GRAPHICS COMMON FILE DETACHING CARC

GRAPHICS COMMON FILE ASSIGNMENT CARD

FORTRAN COMPILER CALL CARD

Figure 2-8. Execution Run Card Deck

SYSTEM UTILITY FUNCTIONS

In addition to the Scheduler and its subroutine, a graphics program uses SCOPE routines to

create and maintain the graphics task file, and to process abort conditions.

44616800 Rev. 01

TASK FILE CREATION

Initially, application programs can enter the system either through a remote card reader at
the 1700, or at the 6000's card reader. Remote entry gives the programmer a convenient

tool for program debugging.

After the program is submitted to the system, the control cards in its first logical

record determine further processing.

First, SCOPE queues the job in the batch input queue, according to the priority on its job
card, and creates the proper entries in the system File Environment Table/File Name Table
(FET/FNT).

When SCOPE assigns the program to a batch job control point, the next control card is pro-
cessed. This is the RUN card, which calls the FORTRAN compiler.

After compilation, the next control card is processed. For a graphics task file creation run,
this would be the I.GO card.

The LGO card calls SCOPE's General Purpose System Loader (GPSL.), which takes the com-
piler's output, satisfies all 6000 Basic Graphics Package references from the system library,
and organizes this data into a serial-access scratch file of overlays. This file is given the
name specified on the main (or zero-level) OVERLAY card; it is written one overlay to a

record and positioned after the program's first record (the main or zero-level overlay record).

Fach record of this file contains two tables. The first is the 77 or prefix table; the second

is the 50 or overlay table. The 50 table contains two header words with the format:

59 47 41 35 17 0
Primary | Second-
Overlay | ary FWA of Overlay Address of Overlay
5000 Level Overlay | with Respect to Entry Point
Number | Level Control Point RA with Respect to
Number Control Point RA
Overlay Entry Point Name Program Address

followed by the binary text of the overlay.

SCOPE continues processing the LGO card by starting program execution; the program is

initially treated as a batch job and executed at a batch job control point.

The first instructions executed are in the zero-level main overlay. These are supplied by
either the programmer or the Application Executive MAIN program (see Section 7), and

place file names in RA+2 and RA+3 of the program's current control point area.

44616800 Rev. 01 2-21

The program then passes control back to SCOPE for normal termination of LGO processing.
This consists of executing the next card in the control card record — which should be an

AEFILE card in a file creation run deck. This card calls the system AEFILE routine.

AEFILE ROUTINE

AEFILE is the graphics task file creator; it reads the name of the loader-created overlay
file from RA+2 and then writes that file (without the zero-level overlay record) on the system
disk as absolute-addressed FORTRAN overlays.

This new file is the program's graphics COMMON file. It consists of named random
records, each containing a 50 table and a primary overlay (the 77 table is not written into
the graphics COMMON file). The record name is taken from the overlay entry point name in
the second word of the 77 table.

AEFILE catalogs the disk address of each overlay record, and writes a task directory con-

taining this information as the last logical record of the graphics COMMON file.

TASK DIRECTORY

o

The task directory (Figure 2-9) can contain pointers for MNOVL overlays (MNOVL is an in-
stallation parameter). The applications programmer can make additions to and deletions

from an existing task file, since each task is accessible through its name in the task directory.

The task directory contains two blocks of information, the first of which is a standard index

for a named random file.

The first block consists of one header word and two central memory words for each overlay
record in the graphics COMMON file. The header word is negative, to indicate that the infor-

mation block following it is a named random index.

The second block of information contains one entry (a single central memory word for each
overlay record). This block is treated as a suffix to the index in the first block, and is used
by the Application Executive routines (see Section 7) to load the task overlay during program

execution.

Only the first block of the task directory is used to read or write the graphics COMMON file,
but both blocks are included in the index pointers when the file is closed or opened, so that

they will be retained on the disk as a catalog.

2-22 44616800 Rev. 01

Header 17

W T A TR TR 7777 -

L .44/
Index NAME OF RECORD 2 (zero filled) l////////

L2 vV ¥ |oisk aboress of mecoro 2

[entry Sutfix | |LENGTH OF RECORD *1 VA twa overlay Overlay ety point
Enry Suftix 2 |LENGTHOF RECORD *2 /] twa overlay ey, oMy point
B1ock < Entry Suffix 3 [LENGTH OF RECORD *3 /] twa_overiay Saragy 4"y point
Entry Suffix 4 |LENGTH OF RECORD ¥4 [/ // "] twa overlay gveriay, entry point
Entry Suttix 5 |LENGTH OF RECORD *s [/} twa overiay Sarer, STy point

ml = maximum length of overlay record= fwa +actual record length +400B for rollin/rollout

*
actually the length of the record plus fwa of load
Figure 2-9. Task Directory

AEFILE ACTIONS

Before AEFILE can create a graphics COMMON file, it must make FET/FNT entries for both
the COMMON file and the loader-created overlay source file; AEFILE uses SCOPE library mac-
ros and the contents of RA+2 and RA+3 to dothis. If AEFILE detects anerror inthe Table

entries whenthe macros finish, it produces a dayfile message (see Appendix B) and aborts the job.

44616800 Rev. 01 2-23

The graphics COMMON file entry defines the file as a systemm COMMON file and associates
the programmer's graphics COMMON file name with it. The source file entry is used to save
that file on the disk after the graphics COMMON file is written; the source file is treated as
a local file and is destroyed when program execution ends.

After the entries are made, AEFILE uses SCOPE library macros to open the COMMON file,
read the overlay source file, write the COMMON file, and close the overlay source file.

These SCOPE macros write the graphics COMMON file on the most easily accessed allocable
device (usually the system disk).

If AEFILFE finds that FET/FNT entries already exist for the graphics COMMON file, it opens
the file, saves the index, adds or inserts the contents of the overlay source file to the
COMMON file, then writes a new task directory containing the latest index entries.

TASK FILE MAINTENANCE

If AEFILE is used to replace a task in an existing graphics COMMON file, it performs the
action logically but not physically. This means that the old copy of the task still occupies

storage space in the file, but is not listed in the new task directory index.

For example, the file OBJECT created by the decks in Figures 2-2 and 2-5 would contain:

TASK1
TASK?2

°

.

.
TASKT77
Old Index
New TASK1

New Index

A file like this should be purged after several debugging or updating runs, to keep it from
wasting mass storage and becoming unwieldy. Purging is done with the AEDUMP and
AELOAD routines at a regular batch processing control point.

AEDUMP ROUTINE

AEDUMP is a system library routine that is called by a control card; it requires 15K words
of memory. AEDUMP reads the indexed random file named by the first parameter on its

control card, and writes a new sequential file with the name specified by its second control
card parameter.

2-24 44616800 Rev. 03

The sequential file created by AEDUMP contains the index of the random file as its first
record. Although the disk addresses in the index are meaningless, the record names and

index suffix entries do not have to be altered to recreate a random file.

The other records of the sequential file are the binary text task overlay records; these
records are written in the order that they are listed in the index. Only those records from
the random file that are listed in the index are written into the new file. Unlisted records

are skipped, so that the file created from the records in the example above would contain:

New Index
New TASK1 I
TASK?2

TASK77

This sequential file could then be written on tape for storage outside of the system, or it

could be used immediately to recreate a random task file — using the AELOAD routine.

AELOAD ROUTINE

AELOAD is also a system library routine, and is called by a control card. AELOAD reads
the sequential-access file named in the first parameter of its control card and creates a

random-access COMMON file with the name specified by the second control card parameter.

The sequential-access files used by AELOAD need not be located in mass storage; AELOAD
will call a tape driver to read the file if the programmer has supplied a valid REQUEST con-
trol card in his job deck.

The file created by AELOAD is structured exactly the same as one produced by AEFILE.
The new task directory contains new disk addresses; the name of each task record is checked
against the sequential file index as the record is written in the new file (if the names do not

agree, a diagnostic message is produced and the job is aborted).

The AELOAD graphics task COMMON file can be used [or prograimn execution by the card

deck shown in Figure 2-8.
AELOAD requires about 15K words of memory.

GRAPHICS PROGRAM ABORTING

If an applications programmer wants to cause a program abort, he usually creates a light
button at the graphices console to call GIABRT (see Section 7). This routine displays a dayfile

and console message, and calls the SCOPE Abort routine.

44616800 Rev. 03 2-25

When a 6000 Basic Graphics Package routine finds a programming error, it produces a day-
file and console message; the program's Application Executive routine then issues the mes-
sages and calls the SCOPE Abort routine.

If the 6000 Series computer detects an error condition during program execution, it sets a

control point flag which calls the SCOPE Abort routine and produces a dayfile message.

If the 1700 Computer detects an error condition or an illegal request, it generates IMPORT
directive code 23 (the 1700 operator can also generate this code with a type-in command -
see Section 9). This sends a message to the affected console and informs EXPORT to flag
the program for abortion. The Scheduler detects EXPORT's flag during the next rollin of
the program, issues a dayfile message, and calls the SCOPE Abort routine.

EXPORT removes an aborted graphics program from the Scheduler's input queue and discon-

nects any graphics consoles assigned to it.

The SCOPE Abort routine releases all of the job's files to the system and sends output files
to the 1700 if the program originated there. It will dump a core listing with the output file if

the program requests it by using a control card.

After a graphics abort, the dedicated memory assigned to the program is not released to

batch jobs as is the normal system procedure, but is retained for future graphics programs.

SCHEDULER

The Scheduler is a PPU program that is called into its peripheral processor by EXPORT
whenever necessary to provide dynamic scheduling and time-sharing for graphics jobs run-
ning at graphic control points. Graphics jobs are not queued. If a job is on console #1,
another job for console #1 cannot be read in until the current graphics job on that console

is aborted and detached from the console.

Initially, a graphics job enters the Interactive Graphics System as a batch job, and is
assigned to a batch-processing control point for execution (batch job scheduling is done by
SCOPE, not by the Scheduler). At some point in its execution as a batch job, the graphics
job calls the graphics reformatter (see Application Executive, Section 7).

GRAPHICS REFORMATTER

The graphics reformatter is a Scheduler subprogram; it puts a graphics job into the graphics

rolled out format so that the job can be scheduled at a graphics control point.

After a program's initial call to the Scheduler/reformatter, the Scheduler drops the CPU and
clears the program's EXPORT communication word at RA+768. The Scheduler then rolls out
the program, its control point field, dayfile, and all of its associated File Name Table Entries

The program is then assigned an initial priority and placed in a special graphics input queue.

2-26 44616800 Rev. 03

When the program is rolled back in, the File Name Table entries are replaced to reflect the

new control point number.

SCHEDULING OF GRAPHICS CONTROL POINTS

ROLLIN PRIORITY

The execution priority of each program in the Scheduler's graphics input queue is determined
by the program's current field length and whether or not it has any unsatisfied graphics input

requests; short programs with no unsatisfied requests have the highest priorities.

LONG PROGRAMS

At the beginning of graphics operation, the 6000 operator dedicates a fixed amount of core
memory to each graphics control point. A graphics program that requires more memory
than is available at the larger control point is then forced to wait in the graphics program
input queue until the space it requires becomes available; such a program would wait only

when there are batch jobs requesting or occupying all of the available core memory.

If a graphics program is larger than either dedicated graphics control point area,but has been
rolled in, and batch jobs request more memory after it is rolled out (see time-slicing, below),
then the program may be affected adversely. It will take on the lowest priority, because
other graphics programs fit in the dedicated area and they will be scheduled ahead of the
large graphics program. After all other rolled out and new graphics programs are executed,
a storage move request is made to allow the longer program back into the computer. There-
fore, the application programmer should write programs shorter than or equal to the desig-

nated length of the dedicated area, or else suffer the consequences of longer response time.

SCHEDULER ROLLOUT STRATEGY AND TIME-SLICING

Because the amount of CPU and PPU time required by a program varies widely from task to
task and application to application, Interactive Graphics uses a form of time-slicing that al-
lows several programs to time-share a control point without destroying the console user's

real-time environment.

The Scheduler determines how long each program will remain at a graphics control point.
This length of time, called the frame time, can never be less than a guaranteed minimum

value chosen by the installation when the Scheduler is assembled.

The frame time is computed by an algorithm, using the rollin/rollout time as the variable

that must be equalized between programs. The algorithm includes the following variables:

44616800 Rev. 01 2-27

R Calculated resident time (frame time)

final
1 Minimum resident time (installation parameter)
N Current program field length (multiples of 1008 central memory words last
rolled out)
M Maximum allowable percentage of frame time to be used for rollin/rollout

The average hardware overhead time for reading or writing data in mass storage is 60 milli-
seconds, and each transfer of 1008 central memory words requires . 4 milliseconds; there-
fore, the Scheduler calculates that the last rollout of the program required 60+. 4N millisec-

onds.

Since the next rollin of the program will require the same amount of time, the total rollin/
rollout overhead is 120+. 8N milliseconds. Because the total overhead should not use up an
appreciable amount of the frame time, the Scheduler chooses Rfinal so it has one of two
values. If:

120+. 8N > MI, then R _120+.8N

final = M ;
however, if:

120+, 8N < MI, then Rfinal =1
This formula allows large programs to remain in core longer than small programs, since
small ones are faster to roll in and out. If the difference in program lengths is not very
great, a word in the BATCHIO control point area can be altered so Rfinal is not changed after
every rollout but has a pre-set value >1I. The value of I assembled into the Scheduler can
also be varied through this word (the larger the value of I chosen, the more uniform each

time-slice is).

NORMAL SCHEDULING
The frame time is calculated at the graphics control point; the Scheduler determines the new

Rﬁnal
Scheduler writes this R

for each program after every rollout. When the program is rolled back in, the
final in the job's graphics control point area. EXPORT then monitors
the length of time the program resides at the control point (see Figure 2-10).

If the program's actual resident time exceeds its frame time (or if the program terminates,
asks for graphics input, or aborts), EXPORT calls the Scheduler into an idle PPU; the
Scheduler then rolls out the program, calculates a new Rfinal if processing is to continue,

and rolls in another program.

Rollout/rollin is not performed if there is only one graphics program in the system for each

graphics control point.

2-28 44616800 Rev, 01

ACTUAL RESIDENT TIME

14 —A \
(. J
\ v / \ V- / V-
ROLLIN TIME time available ROLLOUT TIME
for CPUor
PPU use
_J
\ \'4
frame time

Figure 2-10. Typical Time-Slice

ROUTINE COMMUNICATION AND HOUSEKEEPING

The Scheduler rolls out a program by asking SCOPE Monitor to place the CPU in recall.
Monitor is then free to turn the CPU over to another graphics control point, or if there is no

other active graphics control point, to turn the CPU over to batch jobs.

While a graphics job is running, its control point asks SCOPE for PPU and CPU service in
the normal manner; graphics control points have the highest system priority for such service

(except when the Storage move or RESPOND programs are present).

The rollin/rollout program of the Scheduler keeps track of graphics priorities, and of where
rolled out programs are to be found in mass storage. When the program is to be rolled in
from mass storage, the Scheduler will adjust the control point field length if a storage change
occurred during the time the program was rolled out. All the rules of 6000 Series program

protection keep each program independent.

GRAPHICS CONTROL POINTS

INITIALIZATION

The 6000 operator assigns one or two graphics control points manually, using the procedure
given in Section 9. The type-ins that he uses enter the control point numbers in a table at
the BATCHIO control point area (BATCHIO must be assigned first); this table identifies

which control points EXPORT must service for graphics processing.

44616800 Rev, 01 2-29

STRUCTURE

Figure 2-11 shows the general structure of one graphics control point area. The uses of the
various words and subdivisions are described in other sections of this manual. Minimum

field length of a control point area is about 7000 octal words.

RA
SYSTEM AND GRAPHICS COMMUNICATIONS AREAS

LABELLED COMMON (IF PRESENT)

ONE OR MORE STANDARD ROUTINE FILE BUFFERS

SYSTEM (FORTRAN ERROR TRACING ROUTINE)

MAIN (APPLICATION EXECUTIVE ROUTINES),
ASSUMING NOTHING ELSE IN 0,0 OVERLAY

BLANK COMMON AREA (IF PRESENT)

SIOS (FORTRAN INPUT/OUTPUT ROUTINE)

TASK OVERLAY

IN-CORE DATA BASE (DATA HANDLER AREA)

Figure 2-11. Graphics Control Point Field

NUMBER

In order to best use the dedicated space available plus the idle time when graphic tasks are
being rolled in or out to mass storage, two graphics control points should be used. While
one control point is accessing the mass storage device, the other can be executing and/or

performing input and output to the graphics console.

2-30 44616800 Rev. 01

SIZE
The total dedicated graphics area should be small (on the order of 10K - 20K) because of the

suggested method of application programming. FEach installation determines how much core
storage will be dedicated to graphics. Thus, it is possible to assign a minimum amount of
memory to a graphics control point and make each graphics program request storage when

needed. However, this may also slow down the response time at the graphics console.

FILES

All files used by a graphics program must be attached to it by the programmer, using stan-
dard SCOPE control cards. A maximum of eight files per program can be handled by the
Scheduler. This number includes all local scratch files, the job's graphics COMMON file,
the overlay source file named in the zero-level overlay card parameter field, and all Data

Handler files (see Section 7).

Once a file is attached to a graphics program, the file is not available to other programs.

GRAPHICS COMMON FILE
The file created by the AEFILE and AELOAD routines is a graphics COMMON file.

Until there are permanent files in the graphics SCOPE system, COMMON file names will
have to be unique for each user. Using the last two digits of the file name to designate a user

graphics console would eliminate possible duplications.

LOCAL FILES

A1l files that are local are rolled out with a program, so that either graphics control point

can be used (if available).

INPUT FILES

Tape and card files other than the FORTRAN input file must be put in mass storage before
being used by a graphics program. These files are read in and made COMMON with names
diffecrent from that of the graphics task COMMON file.

OUTPUT FILES

All tape output is through a disk file. After a graphics job completes, a SCOPE utility pro-

gram can be used to transfer the data to magnetic tape.

44616800 Rev, 01 2-31

EXPORT/IMPORT AND DATA COMMUNICATION 3

INTRODUCTION

The EXPORT/IMPORT package is the set of routines on which all intercomputer communica-
tions of the Interactive Graphics System are based. Besides being a functional communica-
tions package, EXPORT/IMPORT has the advantage of allowing both graphics and non-graph-

ics remote jobs to enter the 6000 Series computer job queue.

The communications scheme of EXPORT/IMPORT is excellent for graphics requirements.
The EXPORT program optimizes the use of the intercomputer communications line by using
an asynchronous method of communicating with the 1700, and by allowing variable length data
transfers from IMPORT. In addition, EXPORT informs the 1700 Computer of the optimum
time to send specific classes of data buffers. This tends to synchronize the lengths of trans-

fers.

The EXPORT/IMPORT package also contains an error recovery routine which handles such
errors as transmission noise bursts and sequence errors (produced when one of the com-
puters fails to receive a complete buffer). All errors that are detected by the hardware

are recovered by EXPORT/IMPORT; the error detection ability is very close to 100 percent.

Special features of SCOPE aid these two programs in the processing of remote jobs.

EXPORT

EXPORT (Executive Processor of Remote Tasks) resides in one 6000 Peripheral Processor

Unit (PPU), assigned to remote communication by central computer.

EXPORT consists of a resident program with several overlays. The resident program
handles communications and the processing of data; the overlays perform housekeeping.
In addition, one complementing SCOPE system overlay, 2TJ, which performs job card trans-

lation, is called as needed to assist in the processing preparation.

INITIALIZATION

When BATCHIO is assigned to a control point, its initialization routine requests enough cen-
tral memory storage for the EXPORT counter area. Then, whenever a 1700 commu-=-
nication line becomes active, BATCHIO automatically loads the EXPORT resident program
into an idle PPU.

44616800 Rev. 01 3-1

PROCESSING CONTROL

Processing accomplished by EXPORT is controlled by the EXPORT PPU resident program.
The resident program remains in PPU memory until all communication lines become inactive.
The main program loop cycles between several activities in the resident routine and the

functions performed by the specific central memory overlays. These activities include:

e Handling all communications with IMPORT

[Processing all directives requesting output data

) Processing card data directives

° Processing special request directives

] Scanning for new output files

e Making all CIO requests or stack entries

e Handling file manipulation requests

® Monitoring actual resident time for a program at a graphics control point

° Calling the Scheduler

° Processing input and output requests for graphics data
EXPORT employs the Circular Input/Output package (CIO), the Stack Processors and the
Close Files routine (CLO) to aid in performing its tasks. Using data received from IMPORT,
EXPORT prepares input files for processing under SCOPE and then intercepts output files for
return transmission to the remote terminal. Direct central operator communication with

the remote site is accomplished through the 6612 System Display Console of the 6000 Series

computer,

COMMUNICATION CONTROL

Although IMPORT initiates communication with the 6000, EXPORT controls all data commu-
nication operations. The 1700 terminal has a buffered data channel dedicated to the hard-
ware interface so that information from the 6000 can be received at any time, even when
other input/output or IMPORT processing operations are in progress. EXPORT, however,
accepts data only at specific time intervals because the 6000 does not have a hardware buffer

large enough for an entire transfer.

EXPORT requests data for the central computer by entering an output/input routine, which
transmits a status word to all active terminals. While in this routine, EXPORT expects to
receive a directive word from each active terminal. Total time required for one output/input
operation is dependent on the terminal which has the longest transfer length for the given
operation (see Figure 3-1).

3-2 44616800 Rev, 01

EXPORT sequentially services up to four IMPORT terminals. If one of the active terminals
fails to transmit, EXPORT attempts automatic recovery of communication; if immediate
action fails to maintain communication, EXPORT considers the terminal inactive and requires

it to re-initiate communications.

THAE VARIES WITH SYSTEM ___ . TIME PERIOD DEPENDENT ON LONGEST DATA TRANSFERS ’I

EXPORT T Je—— EXPORT HOUSEKEEPING EXPORT IN OUTPUT/INPUT ROUTINE FOR ALL TERMINALS 1
TIME REQUIRED FOR REMOTE
TO INITIATE TRANSMIT OPER. “"}
RECEIVE AND INPUT BUFFER ACTIVE Jgf"vfg%s ——)I
IMPORT (CARD DATA)
o /

L_sggcs,'g,gos _,I TRANSMIT SELECT

2 TRANSMIT WORDS
RECEIVE AND 1BA

IMPORT ; A’I r
' L_ RECEIVE \/*\/

322 WORDS ——>|
RECEIVE 2 WORDS —JVL—

TR WBRS
TRANSMIT 2 WORDS (NOP)
RECEIVE AND 1BA

’ Y,

RECEIVE 2 WORDS (NOP)

RECEIVE AND IBA

IMPORT
2

Figure 3-1. Conditions Present During One EXPORT Service Cycle

EXPORT SERVICING CYCLE

Although all 1700 terminals possess the same line speed, not all transfers require the same
amount of time because of differences in transfer lengths. The EXPORT hardware and soft-
ware compensate for these variations by transmitting to one terminal while receiving from

another during each terminal servicing cycle.

The user can expect the best performance of EXPORT when all transfers are of the same

length.

Figure 3-1 illustrates one set of possible terminal conditions which may exist during one
EXPORT servicing cycle.

44616800 Rev. 01 3-3

EXPORT COUNTERS

Space has been allocated in central memory to maintain information needed for execution of
EXPORT/IMPORT. Beginning at the BATCHIO control point, RA, four central memory
words are reserved for each connected terminal; these contain the first two words of the
current transfer to the 1700, the first two of the current transfer from the 1700, and the
number of sync errors for this terminal. The counters are cleared only when EXPORT is
dropped from the BATCHIO control point. Figure 3-2 is an illustration of this area.

24 |

N A :
A
W%W//A , ron 260

N 7
o 7 L s
A e o0 one
H/AIINAI NI,
- 00 c s |
' |
! I

—oiv
o

CP — CONTROL POINT ADDRESS

L -~ TRANSFER LENGTH FROM CURRENT EXPORT STATUS TRANSFER

S -~ STATUS WORD FROM CURRENT EXPORT STATUS TRANSFER

FW — TRANSFER LENGTH FROM CURRENT IMPORT DIRECTIVE TRANSFER

DIR — DIRECTIVE FROM CURRENT DIRECTIVE TRANSFER

P — 24-BIT TERMINAL TOTAL !/O PASSES COUNTER

1} — ACTUAL STATUS FROM DSC IF ERROR DETECTED iN STATUS WORD
c — 12-BIT TOTAL CYCLIC ERROR GOUNTER

SE — 12-BIT TOTAL SYNC ERROR COUNTER

R — 12—BIT TOTAL RETRANSMISSION COUNTER

Figure 3-2. EXPORT Counters

DATA TRANSFER

When EXPORT and IMPORT are not actively communicating, an idle bit pattern continually
flows between the data set controller at the central site and the data set controller at the
remote site. Accompanying this data transfer is a sync word issued by the transmitting

controller.

3-4 44616800 Rev. 01

The receiving controller automatically acknowledges the sync word while the idle bit pattern
is being received; any other type of data transfer would occur after sync word acknowledge-

ment.

At the end of each data transmission, the controller generates and transmits a 12-bit cyclic
code word — which is appended to the transferred data. When the complete data block is
received, the receiving controller checks the cyclic code word against one it has generated.

If they do not agree, the receiving controller sets the cyclic code-error status bit.

RULES

Transfers of data between the 6000 Series computer and the 1700 terminal include an ex-
change of control information in a fixed format. EXPORT sends information to IMPORT in

a 12-bit status word specifying the types of data that EXPORT is prepared to handle. A 12-bit
directive is returned to EXPORT, selecting one or more of the options offered to IMPORT

in the status word, or making a special request. Appropriate data may accompany the

status word or the directive word.

Non-graphics data included with a status word transfer must always correspond to the latest
directive received; the data in a directive transfer will always be of the type indicated in the

accompanying directive word.

EXPORT TRANSFER FORMATS

All data, except message and idle transfers, is sent in sector blocks.

EXPORT sends graphics data in the format shown in Figure 3-3. If there is no graphics

data available, EXPORT sends only the transfer length and status header words to IMPORT.
If data is sent to the 1700, it is transferred in a block with a fixed length of 322 12-bit words;
i.e., 320 words of data (the EXPORT output buffer) and the two communication header words.

The communication header words in a graphics data transfer are similar to those of a non-
graphics transfer. The transfer length word tells IMPORT how many words of the fixed
block contain valid information; this length does not include the hardware-generated cyclic

code word.

44616800 Rev. 01 3-5

3-6

e e e e e — o w— o e ama a— — ow—— w— m—— —

——————— CALL POINTERS

-— — — FLAGS

EXPORT TRANSFER LENGTH

EXPORT STATUS WORD

cae |1/ NeoN

PARAMETER LIST

L 7777777 Ao

PARAMETER LIST

EXPORT
TRANSFER

LENGTH

L 7777777 Ao

PARAMETER LIST

cawe |/ S o

N
N

N\
PARAMETER LIST NS

v

Figure 3-3. EXPORT Graphics Transfer Buffer

44616800 Rev. 01

Table 3-1 illustrates the meanings for the status word in both graphics and non-graphics

transfers.

TABLE 3-1. STATUS WORD CODES

Bit Assignment*

11 Card reader buffer empty

10 Output data stream 1 is available*
9 Output data stream 2 is available

Typewriter message available
Central display message buffer empty
JOB card error

Last output buffer

Used to indicate special conditions of
output data

Output data stream 3 is availables

Output data stream 4 is available’

= N W o O o =3

*Not all of the status bits are used in every system,
but they are designated and reserved in order to re-
tain systems compatibility.

**Graphics data is assigned to one of the data streams
by the installation.

GRAPHICS DATA

Application program requests for output from a graphics console and output to a console are
queued at the BATCHIO control point (see Section 2). If such requests arrive before EXPORT
transfers previous requests to the 1700, they are stacked until the maximum length of the
EXPORT graphics buffer is reached. The 6000 Basic Graphics Package routines perform
the program buffer setup for the actual input and output to the EXPORT graphics buffer area

(see Section 7).

EXPORT continually asks the 1700 for graphics input data, but the 1700 will not release any
of this data until the application program specifically requests it. Thus, data can never orig-
inate at the graphics console and reach the 6000 Series computer without the knowledge of the

application program.

EXPORT periodically scans RA+768 of each graphics control point for a data transfer re-
quest. There are four such calls (see following page), each formatted by the 6000 Basic
Graphics Package routines and placed in the application program's EXPORT communication

word at RA+768.

44616800 Rev. 01 3-1

EXPORT checks the console number specified in each of these four requests against the
numbers of those consoles which are assigned to the program making the request. If the

console designated is illegal, the job is aborted with an appropriate message in the Dayfile.

When EXPORT finds a request call with a valid console number at RA+768, it performs the
function and clears RA+768 to notify the application program that it has completed the

request.
REQUEST TO ATTACH CONSOLE

The format for this request is:

59 53 0
=

XX Console number NCON in octal {(see GICNJB, Section 7)

REQUEST TO DETACH CONSOLE

The format for this request is:

59 53 47 0
XX 00001

xx Graphics console number NCON in octal (see GICNRL, Section 7)

REQUEST TO OUTPUT DATA

The format for this request is:

59 53 41 35 17 0
output address
XX word of output
count buffer

xx Graphics console number NCON in octal

The application program uses this call to request that data from its IBUF buffer be sent to
the graphics console. The application program will go into recall when this call is issued;
EXPORT recalls the CPU after the data transfer is completed.

The EXPORT program transfers the data block (starting at the designated address and con-
tinuing for the number of words indicated by the word count) to the EXPORT graphics output
buffer, and to the 1700 when it requests graphics data. The console number in the format
tells EXPORT which 1700 should receive the data.

3-8 44616800 Rev. 01

REQUEST FOR INPUT

The format for this request is:

59 53 47 41 35 17 0
XX Input Output Input Output Re-
Word Word Address quest Buffer
Count Count Address

xx Graphics console number NCON in octal

This call to EXPORT generates a request to the 1700 for those light buttons and legal picks
that the program is concerned with. When a request for input is sensed by EXPORT, the
output request buffer is put in the EXPORT output area and the application program is put
into a recall state, subject to being rolled out if another graphics program is ready to be

rolled in.

When the input from the graphics console is received at the 6000 Series computer, the appli-
cation program is reactivated, its input buffer is filled, and it is notified that it has the re-
quested input. If the program is rolled out, the input request will still be associated with
the program; EXPORT does not have to store the input buffer addresses, since they are at

RA+768.

BUFFER PASSING

The data stream is the flow of a file or buffer of data from one computer to another. Input
and output, as defined below, arc used scparatcly to rcfer to all data transmissions between

the remote terminal and the central site.

The two types of data streams are:
) Output data stream - the data flow from the central computer to the remote computer.
. Input data stream - the data flow from the remote computer to the central computer.

Each data stream is reserved by the installation for the use of a specific input or output

device.

CHARACTER SET

The EXPORT program processes all teletypewriter, card (except binary), and line printer
data in 6-bit display code using the standard SCOPE character set (Appendix C). Two display-
coded characters are packed into one 12-bit PPU word. Before transmission, IMPORT con-
verts card reader and teletypewriter input to display codes. IMPORT formats input data
according to SCOPE system requirements. Printer, punch, and teletypewriter data are con-

verted from display code to ASCII code for output to the peripheral equipment. Output data is

44616800 Rev. 01 3-9

received in the same manner as it is generated within the SCOPE system prior to cutput.
Binary information is accepted in either of the following formats and is transmitted to
EXPORT as column binary card images:

° 80 columns of free-form binary

[6000 Normal mode binary

FILE PROCESSING

At the 6000 Series computer, files associated with jobs entered remotely are identified by the
remote bit (the highest-order bit) of the 12-bit disposition code and the fifth character of the
file name in the FNT/FST. The remote bit in the second byte of the third word of the FNT/
FST is normally not interpreted until the job has been completely processed. EXPORT is
responsible for disposing of all output files when the remote bit is set. Consequently, SCOPE
ignores these files. Remaining bits of the disposition code field identify the type of output file.
The fifth character of the file name contains the terminal identification. In all other consid-

erations, the job is processed the same as a nonremote job.

TERMINATION

Each terminal notifies EXPORT when communication is finished. When alllines become in-
active, EXPORT enters PP RECALL.

JOB FLOW

The steps listed below illustrate the flow of data and control from the beginning to the end of

a job in one terminal system.

INITIALIZATION
Remote operation:
. Loads IMPORT program

° Sets up to read cards

INPUT FROM CARDS
° IMPORT reads cards

. IMPORT converts Hollerith card data to display code and inputs 6000 formatted or
free-form binary card data

° IMPORT packs data into buffers equal in size to one disk sector (64 central memory
words)

° IMPORT transmits to EXPORT full data buffers with EOR and record level, or data
buffers with EOF

3-10 44616800 Rev. 01

. EXPORT inputs data and writes it to central memory buffers
° EXPORT requests SCOPE to write data from buffers to disk
e At EOF, the file is set to type INPUT and released to SCOPE for processing
INPUT FROM GRAPHICS CONSOLE
° IMPORT detects a 1700 Basic Graphics Package processing flag, and calls the
Buffer Translator
° The Buffer Translator repacks the queued information
° IMPORT reads the packed information into its data buffer and transmits the buffer
° EXPORT writes the data into the program's central memory buffers
OUTPUT TO GRAPHICS CONSOLE
° EXPORT scans RA+768 of the graphics control point and interprets any requests
found there
° EXPORT packs program buffers into its output data buffer
° EXPORT transmits the buffer to IMPORT
° IMPORT calls the Buffer Translator
) The Buffer Translator repacks the data
. The 1700 Basic Graphics Package acts on the data

OUTPUT TO PRINTER AND PUNCH

44616800 Rev. 01

EXPORT scans the File Name Table/File Status Table for remote files of type
OUTPUT. Output files are returned on a highest-priority and lowest SCOPE
sequence number basis. Sequence numbers are used only when priorities are
identical. (The standard SCOPE 3.1 header pages are provided on output.)
EXPORT disposes of punch card data in the manner indicated in the Equipment
Status Table entry for EXPORT. Disposition of data is handled in one of three
ways:

a. Data may be punched at the remote site when equipment is available.

b. Data may be punched at the central site in the event the remote site does
not have a card punch.

c. Punch data may be dropped completely.

EXPORT transmits output to IMPORT in one-sector blocks.

IMPORT converts output data to the proper code,

° IMPORT deblocks print lines.
. IMPORT prints output in lines with carriage controls.

. IMPORT recognizes the Print mode control character (see Section 9).

ERROR DETECTION SCHEME

If, during transmission, data received does not correspond bit-for-bit with the data sent, an
error has occurred. Following are descriptions of several error types and conditions along
with methods of error detection. (Only errors in the communication facility are considered

here.)

° Message Lost Completely -~ The leading sync words may be lost or mutilated so that
the entire message is passed over as noise on the line.

e DMessage Garbled ~ Lightning, electrical disturbances, and random noise may intro-
duce errors on the communications line or between a modem and the Data Set
Controller (DSC).

) Bit Lost — Inaccurate timing in the modem may cause the entire message to be shifted
forward by one bit.

® Microwave Transmitter Switching — All or part of a message may be lost while micro-

wave transmitters are switched.

DETECTION PROCEDURE AND CAPABILITIES

The 6673 or 6674 DSC and the 1747 DSC hardware provide the primary error detection capa-
bility in the form of a 12-bit cyclic code encoder. The transmitting data set controller con-
tinuously and automatically generates a 12-bit cyclic code word that is appended to the trans-
mission. Similarly, the receiving DSC generates a 12-bit word which is compared to the
last word received. The transmission is assumed to be correct as received if the two cyclic

code words are identical.

In some situations, detection of a transmission error occurs apart from the cyclic code
check. This happens when analysis of the control data received shows an impossible condi-
tion, as an invalid transfer length. In these cases, the transmission is treated as if a cyclic

code error has been detected.
EXPORT/IMPORT has the following capabilities in cyclic code error detection:

e Any odd number of errors
e All error bursts 12 bits or less in length
. 99. 95 percent of all error bursts 13 bits long

. 99. 98 percent of all error bursts longer than 13 bits

3-12 44616800 Rev. 01

An error burst is defined as any pattern of errors whose length is the number of bits between

the first and last errors of the transmission. (See Appendix G.)

ERROR COMPENSATION

An error recovery scheme provides a means of recovering from a sync word error. In the
event both computers are in the Transmit mode, the remote computer is placed in the Receive
mode when it has attempted to transmit 120 times without receiving a sync word acknowledge-

ment.

If for any reason the communication line goes down between transfers, the DSC's will detect
and inform the affected computers of the malfunction. If communications go down, EXPORT
and IMPORT also output messages to their respective operators notifying them of malfunc-

tions.

If either computer goes down before or during an input or output operation, the other com-
puter detects this condition and informs its operator of the malfunction. For example, when
a computer goes down while transmitting, the receiving computer inputs idle characters for
the remainder of the transfer. Then, at the conclusion of the input, the cyclic code indicates
that a malfunction has occurred. Further attempts to retransmit will not fault the sending
computer, but the receiving computer continues to detect the down or off-line condition of the

other computer,

IMPORT

IMPORT (Input/Output Monitor for Processing of Remote Tasks) acts as a system monitor
program for the 1700 Computer. It interprets all input/output requests made to the 1700 and
calls those parts of the 1700 Basic Graphics Package needed to service the application pro-

grams running in the 6000 Series computer.

IMPORT consists of a series of processing routines, subroutines, and related operating sys-
tem routines. The major processing routines are:

° Main status loop

[Communications active check

° Line printer data conversion

° Card reader data conversion

. Teletypewriter data conversion

° Card punch data conversion

° Interrupt processing

° Determine directive code

44616800 Rev. 01 3-13

ROUTINES

MAIN STATUS LOOP

The main status loop of IMPORT enters each of the major routines in sequence, executing
those routines from which particular functions are currently required. The Interrupt Pro-

cessing routine is entered automatically whenever the 1700 computer senses a controller

interrupt.

The IMPORT program will recognize graphics data from both the 1700 and the 6000 Series
computer. The main status loop of the program checks to see if data is available for the
typewriter, card punch, card reader, printer, and graphics buffers. There are double-

buffered output buffers for Interactive Graphics use; these are loaded by drivers contained
in IMPORT.

COMMUNICATIONS ACTIVE CHECK

IMPORT designates to the Communications Active Check routine the following duties:

[Checkin_ for remote site shut down
[Determinug if data is still being received

[Checking expiration of allowed input time
LINE PRINTER DATA CONVERSION
The Line Printer routine is responsible for:
° Converting data from display code to ASCII and placing it in the printer buffer
CARD READER DATA CONVERSION
The activities of the Card Reader routine include:

® Acquiring card reader status
° Processing the job card
® Processing Hollerith, binary, EOR, and EOF cards

° Converting card image to display code

3-14 44616800 Rev. 01

TELETYPEWRITER DATA CONVERSION

The teletypewriter routine responsibilities include:

° Controlling input and output with the remote operator
° Checking for manual interrupt by the operator

° Checking for error stack entries

® Checking for message(s) from the central computer

o Initiating appropriate display messages to the 6000

CARD PUNCH DATA CONVERSION

This routine is responsible for:

° Converting data from display code to ASCII and placing it in the punch buffer

INTERRUPT PROCESSING

When the 1700 Computer recognizes a DSC interrupt/, an Interrupt Processing routine within
the system is entered. After this routine saves the registers, control is transferred to the
proper routine within IMPORT for processing. Interrupts are disabled for a brief period

while the DSC is being serviced.

When a graphics console entry produces a 1705 Controller interrupt, control of the 1700 is

turned over to the 1700 Basic Graphics Package Digigraphics Interrupt Processor.

Input from the communications line is initiated immediately after the output is complete by
placing the DSC into Receive mode. When the interrupt processing routine is entered, a
cyclic code error check is made, and the output routine is initiated (if necessary) to retrans-

mit the data.

Output to EXPORT is similar for both a normal request and a retransmission. After acquir-
ing DSC status, the Transmit mode is selected, and the output is initiated. If no retrans-

mission is required, the following routine is entered prior to the next transmit operation.

DETERMINE DIRECTIVE CODE

The Directive Code routine's activities consist of:

e Examining last directive to determine if data was requested or sent

° Setting pertinent flags to indicate a course of action to the IMPORT data conversion
routine

e Determining next directive

44616800 Rev. 01 3-15

GRAPHICS DATA TRANSFERS

Unlike the normal mechanics of an EXPORT/IMPORT data transfer, there is no status bit for
each graphics console. Instead, there is a status bit in one output stream for all graphics
consoles, so that it is possible to turn off output from the consoles as a group, but not indi-

vidually.

Unlike the data transfers from EXPORT, data transfers from IMPORT can be of variable

length; the smallest transfer is two words.

The amount of data, the data itself, and information about the disposition of the data are

passed from IMPORT to EXPORT using the format shown in Figure 3-4,

e Transfer Length (one 12-bit word)
e Directive Word Code (one 12-bit word)

° Up to 320 12-bit words of data
——————— CALL POINTERS

-— — — FLAGS

| IMPORT TRANSFER LENGTH A
IMPORT DIRECTIVE WORD

- cawe |/ / /] NcoN

BUTTON
PARAMETER LIST

- caew [/ /] Ncow

SINGLE PICK IMPORT
PARAMETER LIST TRANSFER

- cae [/ /] Ncow

STRING PICK
PARAMETER LIST

- cace [/ /" /] NcoN

ALPHANUMERIC PICK
PARAMETER LIST

v—

Figure 3-4. Sample IMPORT Graphics Transfer Buffer

3-16 44616800 Rev. 01

IMPORT DIRECTIVE CODES

A summary of the directive word codes, with an abbreviated description indicating the mean-

ing of each, is given in Table 3-2.

but they are designated and reserved in order to retain systems compatibility.

Directive codes in which the lower five bits equal 02, 07, 10, or 42 may take the form of

Not all of the directive codes are used by every system,

xx02, xx07, etc. to form a double directive indicating that the remote terminal is sending

input data and expects output data returned by the next transmission from the 6000 Series

computer. The xx is the directive word code that is to apply to the returned data.
TABLE 3-2. DIRECTIVE WORD CODES
Directive Accompanying
Code Data Description of Instruction
0001 None No operation
0002 Packed card data Load card buffer
0102 Card data Looad card buffer with End-of-Record
(optional) (EOR)
0142 EOR level; Card Load card buffer with EOR and EOR level
data (optional)
0202 Card data Load card buffer with End-of-File
(optional) (EOF)
0003 Job Name Request for job status
0004 None Send output data stream 1
0005 None Send output data stream 2
0404 None Send output data stream 3
0405 None Send output data stream 4
0006 None Send message(s)
0007 Message Load remote to central message
0010 Graphics Data Load graphics data
0011 Job Name Time Change time limit of named job to the
time supplied
0012 Job Name Change the priority of the named job to
Priority the priority supplied
0013 n,x If n=0, rewind current file of output stream
x. If n#0, backspace n sectors on output
stream x. If x=2 or 3, the output stream is
2 or 3; any other value of x implies output
stream 1.
0014 None Repunch the current job
0015 Job Name Abort the job if it is at control point
0016 dt, x If dt=1L.P, terminate output 1
If dt=CP, terminate output 2
If dt=0, terminate output x

44616800 Rev. 01

3-17

TABLE 3-2. (Cont'd)

Directive Accompanying
Code Data Description of Instruction
0017 None Shut down remote, rewind any files being
output
0020 Disposition Word 1 = disposition of output data stream 1

codes (8 words) Word 2 = disposition of output data stream 2
Word 3 = disposition of output data stream 3
Word 4 = disposition of output data stream 4
If word 8 = 108’ divert all files to central
site

If dt=LP, divert line printer file to central
computer

If dt=CP, divert card punch file to central
computer

If dt=5555,, divert all output to central computer
(dt=LP or" CP are valid only if the named
job is in the output stack.)

0022 Reserved
0023 Console Abort the graphics job whether it is in mass
number storage or at a control point

3-18 44616800 Rev, 03

GRAPHICS HARDWARE INFORMATION 4

Proper use of the 6000 Basic Graphics Package routines by the applications programmer
requires a general knowledge of the graphics hardware. This section describes those system
characteristics which are used by the 6000 Series Interactive Graphics System applications

interface routines.

GENERAL DESCRIPTION

The graphics system provides an interface for the handling of graphic or alphanumeric infor-
mation; entries or modifications made at the console are placed into the 1700 Computer in
digital form, and become available for use by the 6000 Series computer system. This graph-
ics input becomes visible on the cathode ray tube and can be used for information p'rocessing
by an applications program under console operator control. Results of such processing can
be immediately displayed on the screen. Static display of graphic and alphanumeric data at
the consoles is provided by buffer memories, so that the consoles are essentially off-line
devices. The 1700 is used to process display-change information, thus saving transfer time

from the 6000 Series computer.

GRAPHICS CONSOLE

The graphics console is the input/output and control center for the Interactive Graphics user.
The complete range of system graphics capability can be controlled from the console without
recourse to other points of control. The console is designed for maximum operator utiliza-

tion and comfort, and can be used efficiently at normal room light levels,

The console cabinet is a desk-size unit which mounts a rectangular housing assembly, off-
centered to the left, and provides a writing surface to the right. The housing assembly con-
tains a magnetic shield and a 20-inch diameter cathode ray tube centered on the front panel

housing.

The cathode tube is a precision, 52-degree, high-resolution unit and has a nearly flat display
surface to minimize parallax error. The tube is equipped with an implosion shield for the
protection of the operator, and is coated with a two-layer P-7 phosphor. One layer produces
blue-violet light with a short persistence to facilitate light-pen tracking. The other layer
produces yellow-green light, and has a longer persistence to eliminate flicker. With a con-
tinuously refreshed display, the light from both phosphor components combines to appear
light blue to the human eye. The deflection yoke and driving circuitry of the console are
designed to make the entire 314 square inches of cathode ray tube surface available for dis-

play. The tube has a resolution of 1000 lines in 20 inches.

44616800 Rev. 01 4-1

Data can be entered on the cathode ray tube viathe light-penor one of three optional keyboards.

CONTROLS

The controls available to the console operator include the keyboards, light-pen, light regis-
ters, and light buttons. The light registers and light buttons are defined by the application
program and formed for display on the screen by the 1700 Basic Graphics Package routines.

FUNCTION KEYBOARD

The 16-key function keyboard can be used to tell the application program that an operation is

requested (see Figure 4-1).

(OO0
OOEE
lelolelolo)

Figure 4-1. Function Keyboard

Fourteen buttons contain a snap-action switch that remains on after an initial press, and off
after being pressed again. The remaining buttons must be held down to give an ''on'" status.
Each button has an internal light that shows the operator when the button is on. Removable
plastic cards may be placed over the keys to label the function of each. All keys can be
given new functional assignments by the application program through the 6000 Basic Graphics

Package.

Any change in the status of a key produces an interrupt at the 1744 Controller. The 1700
Basic Graphics Package then fetches the on/off status of all 16 keys as bits in a status word.
These status bits are placed in the IH and IV coordinate locations of a display item ID block
(see Section 6) created for the keyboard by the application program through a call to the
GIKYBD routine of the 6000 Package. Table 4-1 shows the relation between the coordinate

bits and the keys; a 1 in a coordinate bit indicates that the button is on.

4-2 44616800 Rev. 01

TABLE 4-1. FUNCTION KEYBOARD STATUS IN IH, IV

Coordinate Bit Keyboard Button
r 0 1
1 2
2 3
3 4
4 5
5 6
Vo 2 5
7 8
8 9
9 10
10 11
Lll 12
0 13
1 14
R 15
3 16

The application program retrieves the ID block through the Application Executive, GIFID,
GIFSID, GIBUT, or AELBUT routines of the 6000 Package, and then determines the function

requested by testing the values of the coordinates

ALPHANUMERIC KEYBOARD

The alphanumeric keyboard (see Figure 4-2) provides typewriter-like symbolic input to the
application program. The keyboard layout is similar to that of a conventional teletypewriter.
Each key causes an interrupt at the 1744 Controller, and enters an 8-bit ASCII character
code in the left-hand portion of a status word that is fetched by the 1700 Package. The char-
acters are collected into line images and displayed on the 274 Console screen in the currently

defined light register.

[| |

| " # $ % & ! () * =
1 2 3 4 5 6 7 8 9 0] -
WRU | TAPE TAB | <« 9 LINE| RE-
Q W E R T Y U I o] p FEED| TURN
X OFF| EOT | RU | BELL VT [FORM| + RUB
CTRL| A S D F G H J K L H ouT
t < > ?
SHIFT| 2z X C \ B N M ' / |SHIFT

SPACE BAR

Figure 4-2. Alphanumeric Keyboard

44616800 Rev. 01 4-3

The application program can acquire the console's input through calls to the 6000 Package
GIANS and GIANE. If the Package GIEOM routine has been used to assign an ID block to a

particular keyboard character, that character will clear the register when it is entered.

NUMERIC KEYBOARD

The numeric keyboard is used in the same manner as the alphanumeric board.

LIGHT PEN

The light pen has two functions: tracking, and picking. Tracking may be used to place a
light source (the tracking cross) at any desired position on the console screen so that a
graphic entity may be created there, or to designate that position as an area of interest to
the user. Picking may be used to select an entity currently being displayed, or to define

points on a displayed entity, and to select a light button or tracking cross.

LIGHT REGISTERS

The light registers allow the user to input and retrieve alphanumeric information, and per-
mit the Interactive Graphics System to display error diagnostic messages. The number and
locations of the registers are lefined by the application program through 6000 Basic Graphics
Package GUAN calls. If none have been defined, the System defines its own at the center of
the screen (for error messages); otherwise, the last one defined by the program is used for

System messages.

LIGHT BUTTONS

The light buttons are light spots on the console screen that are identified by a letter, digit,
symbol, or instruction code specified by the application program. Any displayed entity or
physical control key can also be defined as a light button. Buttons are used to control ID

block queueing (see Section 6) and to initiate tasks.

DISPLAY PRESENTATION

The entire 20-inch diameter cathode ray tube screen can be used for display presentation.

Points on the screen are addressed by a Cartesian coordinate system called the display grid. ‘

DISPLAY GRID

The display grid (see Figure 4-3) consists of 4095 addressable points on the horizontal (H)
axis, and 4095 addressable points on the vertical (V) axis; coordinates can be given either
octally or decimally when addressing a point. Coordinate 777‘78 equals coordinate 0000 on
both axes.

4-4 44616800 Rev. 01

H

Qo o (o]
£ 383 888¢8*r833¢888¢88t
2 I 83 3% 8 § R ¥ r8F 2 =33 33 5
3777
- ol 3400
\\\w 3000
/ N\
\\x 2000
N
\, 1400
\\ 1000
0400
0000
7777 v
7400
EDGE OF N 7000
SCREEN
6400
/ ¥
6000
//, 5400
\ 5000
.
,”// 4400
\ /
4000

Figure 4-3. Display Grid System

The grid is larger than the screen so that all points on the screen can be addressed; points
beyond the edge of the screen can be addressed by a programmer, but are invisible to a
user directly in front of the screen (if viewed at an angle, such points can be seen reflected
off the side of the tube). There are 200 grid points per linear inch; however, because the
cathode beam is wider than the distance between adjacent points, the console controller
drops the least significant bit from each coordinate address of a point. Note: The console

controller may vary a plus or minus five DGUs depending on the C, E. 's set adjustments.

SCREEN ORGANIZATION

The organization of the screen is completely up to the programmer. However, certain
conventions may be used for a wide variety of applications. These conventions allow a pro-
grammer to make maximum use of the screen area, yet help him avoid addressing grid

coordinates off the screen.

44616800 Rev. 03 4-5

WORKING SURFACE

One convention is to divide the screen into a working surface and a control surface. The
working surface is reserved for the display of graphic forms, and is contained within an

undisplayed frame or frames defined by the programmer (see GULINE and GUARC, Section 7).

CONTROL SURFACE

The control surface is defined as the area outside of the frame or frames, and is normally
reserved for light buttons, light registers, and the tracking cross (when it is not in use on

the working surface). Figure 4-4 shows a sample of one type of screen organization.

WORKING SURFACE

CONTROL SURFACE

DISPLAYED GRAPHIC

FRAME

LIGHT BUTTONS
TRACKING CROSS

LIGHT REGISTER

Figure 4-4. Sample Display Surface Organization

4-6 44616800 Rev. 01

FRAMES

Table 4-2 defines possible frames within the screen area of the display grid.
Several frames may exist on the screen at the same time; they may overlap, or each figure
may have its own frame. The system software defines all frames as right rectangular

areas, and frames may be centered anywhere on the screen.

TABLE 4-2, SAMPLE FRAMES

Frame Size Center Coordinates Right Corner Coordinates
Maximum square, INMCEN = 0000B IHCOR = 2570B 1434
14 by 14 inches IVCEN = 0000B IVCOR = 2570B 1434
Horizontal rectangle, THCEN = 0000B IHCOR = 3244B 1741
11 by 17 inches IVCEN = 0000B IVCOR = 2114B 1128
Vertical rectangle, IHCEN = 0000B IHCOR = 2114B 1126
17 by 11 inches IVCEN = 0000B IVCOR = 3244B 1741

POTENTIAL PHOSPHOR DAMAGE

It is possible for programming errors to cause endlessly repeated or excessively intense
display of an item at the same location on the screen. This may cause damage to the cathode
ray tube phosphor. When one of these conditions is detected by the console operator at pro-
gram debugging time, the console must be turned off immediately by use of the console
power switch above and to the right of the screen. Console power status does not affect the

operation of the computer or of the Interactive Graphics System.

1744 DIGIGRAPHICS CONTROLLER

The controller uses a standard 1700 memory module (1708) of 4096 16-bit words for a buffer
memory, with an option for an additional 4096 words. A 1700 programmer may use the

buffer memory as a display buffer or as an auxilliary 1700 Computer storage device.

As a display buffer, only bits 00 through 12 (with the exception of function and status codes)
contain meaningful data. As an auxilliary random access storage device, all 16 bits can be

used.

REGISTERS

The controller's 13-bit S register is used to address the memory module(s) and select the
locations which are to be read or written; its contents can be incremented by one or jumped

to a new value. Thirteen bits are required to address all 8192 memory locations,

44616800 Rev. 03 4-17

The P register is also a 13-bit register. Its function is to maintain the address of a pro-
gram within a main program. This register can also be incremented by one or jumped to a

new value.

The Z register is a 16-bit register and is the central data holding register of the controller.
A1l data except function codes and interrupt status passes through the Z register. The S, P,
and Z registers act and interact via sequence control logic in the controller to execute the S

jump, P jump, M jump, RTM, and end-of-display-byte-stream commands described below.

COMMAND BYTES

The Graphics Hardware Interface and Graphics Utilities routines of the 6000 Package in
effect write or erase two classes of bytes within the 1744 memory — memory command
bytes and control bytes., These bytes are right-justified in the 16-bit memory word and
make up the display byte stream.

Command bytes are roughly equivalent to program instructions in a computer. There are

eight kinds of command bytes:

e S jump

° P jump
. M jump
e RTM
e LEDB
e ROD

[] sense

[J no-sense

S JUMP
The S jump command byte is equivalent to an unconditional jump instruction. Its format is:

11 o 7 3 0
x001 1100 1xxx W

x Any value; this can be written as 0710B

P JUMP

The P jump byte is used to exit from one macro routine to another. The format for this

byte is:

4-8 44616800 Rev. 01

x001 1101 1xxx

x Any value; this can be written as 0730B

M JUMP
The M jump byte corresponds to a return jump instruction. It's format is:

11 7 3 0
x001 1110 1xxx

x Any value; this can be written as 0750B

RTM

The RTM (return to main) command byte is used to exit from an M jump and return to the

main display program in the buffer memory. The format of RTM is:

11 7 3 0
x001 1111 1x10

x Any value; this can be written as 0772B

EDB

The EDB (end-of-display-byte-stream) byte signals the 1700 that on-line editing by the 1700
Basic Graphics Package can begin. The EDB format is:

11 7 3 0
x001 1111 1000

x Any value; this can be written as 0770B

ROD

The ROD (return-to-off-line-display) byte terminates 1700 editing and returns control of the
1744 to the contents of its buffer memory. The ROD byte has the format:

11 7 3 0
x001 1111 1100

X Any value; this can be written as 07748

SENSE/NO-SENSE

The sense or no-sense command byte precedes each item's display byte stream to enable or

disable the item's sensitivity to a light-pen pick. The pick of an item with a sense byte

44616800 Rev, 01 4-9

preceding its display byte stream causes the controller to send an interrupt signal to the

1700. The pick of an item having a no-sense byte is ignored. The formats for these bytes

11 7 3 0
Sense x001 0100 1001

x Any value; this can be written as 0511B

11 7 3 0
No-sense: x001 0100 1000

x Any value; this can be written as 0510B

CONTROL BYTES

While the command bytes determine the order of item display, the control bytes form the

description of each item and determine how it appears on the screen.

There are three kinds of control bytes processed by the 1744 Controller:
° Reset

° Control

L] Increment

RESET

The reset byte (see GURSET, Section 7) is a secondary beam-.noving byte; it is usually
the first byte in any series, and is a positioning byte which moves the cathode ray tube
beam to an approximate position on the display surface, Reset bytes are usually fol-

lowed by increment bytes within the byte series and establish the precise point for dis-

play initiation, The reset byte resets the beam to one-half normal intensity.

The reset byte controls beam intensity, light pen sense, blink and terminate to reset,
The reset byte initiates a 25 usec time delay and processes the bytes as follows:
e The first byte is interpreted as a 12-bit X location which will be
transferred to the X console interface register,

e The second byte is interpreted as a 12-bit Y location which will be
transferred to the Y console interface register,

4-10 44616800 Rev,

03

The 30 pusec time delay has to elapse before the first increment byte is processed.

The format for the reset byte is:

11 7 3 0
1000 Oxxx t 12111O
where:
S T i, 11 10 Condition
0 Light pen sense disable
1 Light pen sense enable
1 Terminate to nest reset
0 Blink disable
1 Blink enable
0 1 Intensity dim
1 0 Intensity medium
1 1 Intensity bright

When bits 11 through 8 equal 1000, bits 7 through 4 are placed in the high order bit positions
of the controller's X accumulator, with the remaining bits set to zero. Bits 3 through 0 are
placed in the high order positions of the controller's Y accumulator, with the remaining bits
set to zero. (The X and Y accumulators contain the H and V coordinates used to aim the
cathode beam.) The reset byte does not affect the on/off state of the beam, which remains

in the same state as specified in the previous byte.

44616800 Rev. 03 4-11

INCREMENT

The increment byte is the primary beam-moving control byte. It is used for fine position-
ing of the cathode ray tube beam. In normal operation, an initializing reset byte is used for
coarse positioning of a displayed item. With the beam off, increment bytes establish the
precise display starting point (followed by an intensity byte if a change of intensity is desired).
Once the desired starting point is established, increment bytes (the first of which turns the

beam on) display the desired graphics.

The format for the increment byte is:

11 7 3 0
b sf X Ax y Ay
Bit 11 controls the beam state (0 = off, = on); bits 10, 9, and 8 are weighted scale factors,

used to multiply the Ax and Ay values that specify the precise position of the beam. The

scale factors range from two to seven, corresponding to changes of 1:1 to 32:1, respectively.

Bit 7 is the X sign bit and bits 6, 5, and 4 are added to the current X accumulator value after
being shifted right the number of bit places specified by the scale factor. Bit 3 is the Y sign
bit and bits 2, 1, and 0 are added to the current Y accumulator value after being shifted right

the number of bit places specified by the scale factor.

A delay function is performed by a special case increment byte., The format:

11 7 3 0
Oxxx 1111 1111

x Any valid scale factor

produces a 25 usec delay to provide time for beam settling, and is used after a reset byte
(see GURSET, Section 7).

Table of Increments

SF = 1, 32:1 = 0.16 inch
SF = 6, 16.1 = 0.08 inch
SF = 5, 8:1 = 0.04 inch \ per 1 unit in Ax or Ay
SF = 4, 4:1 = 0.02 inch
SF = 3, 2:1 = 0.01 inch
SF = 2 0. 005 inch

» 1:1 =

Y
The information on command and control bytes supplied in the preceding paragraphs is not

necessary for normal programming in the Interactive Graphics System; it is provided here

4-12 44616800 Rev. 03

for the convenience of a programmer using the GUBYTE routine described in Section 7. A
more detailed discussion of programming the graphics hardware is beyond the scope of this

manual.

DISPLAY MACROS

Often used display items can be placed in the buffer memory as macros to better utilize its
core space. The macros can then be called on command. A macro call stores a return ad-
dress in a hardware register, which leads to a transfer of display control to the addressed
macro. The macro either returns directly to the return address or transfers control to
another macro addressed from the stored location. Since the return address is held in a
hardware register, only one level of macro is provided. A macro may not include a call to
another macro. Macros provide efficient access to associated byte-streams such as alpha-

numeric strings.

Macros are used primarily to conserve memory in the 1744 display buffer, although their
use benefits the application programmer as well. If the programmer requiires the use of a
particular display item at more than one point on the screen, the most convenient way to
duplicate it is to classify the item as a display macro by generating its byte-stream with a
GIMAC call (see Section 7).

Subsequent calls to GUMACG then generate a short calling sequence for the macro; this se-
quence contains an M jump to the macro area of the 1744, where the byte-stream of the item
is stored for execution. The RTM address byte at the end of the byte-stream returns con-

trol to the buffer area for regular display items.

The programmer can use macros in at least two ways. If it is necessary to display an item
intermittently at the same location on the console screen, the item can be defined as a
macro and can contain a reset sequence (see GURSET, Section 7). Fach time a regular dis-
play item calls the macro, it will be displayed at the same location; each time the calling

item is erased, display of the macro stops.

A macro can also be used without a reset sequence to define an item that is easily relocated
at any point on the screen. This type of macro is used with the tracking cross (see GITIMV
and GITMMYV, Section 7).

DISPLAY BUFFER MEMORY LAYOUT

The first two-byte sequence of the display buffer contains an S jump when alphanumeric in-
formation is being entered at the console. The jump is made to the Alphanumeric Pick
Display Area to display the characters that have been entered. If there is nothing to display,
an S jump is made to continue processing the main display. Figure 4-5 illustrates the

memory via a block diagram.

44616800 Rev. 03 4-13

Word O NOP or Aiphanumeric S Jump
NOP or Tracking Cross S Jump

NOP or Tracking Macro Move S Jump

Start of Regular Display Item
Buffer Area l

—_— — —,—— ——

Macro Display Item Area

Tracking Cross Display Area

Alphanumeric Macro Display Area

Alphanumeric Pick Display Area

4095 or -
8190 | Tracking Cross Attached Macro Area

Figure 4-5. Display Buffer Block Diagram

The second two-byte sequence of the buffer always contains an S jump when the tracking
cross is being displayed and no tracking is taking place. If the tracking cross is not up, an
S jump is made in the tracking display area to prevent the tracking cross bytes from being

processed.

The third two-byte sequence contains an S jump only when a macro is attached to the track-
-ing cross (see GITMMYV, Section 7).

The first six bytes of the display buffer contain NOP (zero ID control) bytes for all other
cases, This allows the memory scan that produces the display to proceed into the regular

display item area without executing a jump.
The regular display item area floats in memory, and is expanded upward as needed.

The Associative Address Table (see Section 7) is stored at the end of the Macro Display

Item Area. This table also floats in memory, and is expanded downward as needed.

The Macro Display Item Area is fixed in memory but can be expanded downward as needed,
moving the Associative Address Area at the same time. When a macro is erased, no con-

traction of the macro area occurs.

The last four areas are fixed in memory, and are assigned to the 1700 Basic Graphics
Package for use during tracking, alphanumeric output to the console, alphanumeric picking,

and tracking macro operation, respectively.

4-14 44616800 Rev. 03

1700 GRAPHICS FUNCTIONS 5

BUFFER TRANSLATOR

The buffer translator is called by IMPORT when the 1700 receives a data buffer from
EXPORT or is ordered to send a data buffer to the 6000 Series computer.

The translator program will unpack the EXPORT buffers and put the calling parameters of
the 6000 Basic Graphics Package into a format that the 1700 Basic Graphics Package will
recognize, The translator also loads buffers for transfer to the 6000 Series computer from
the 1700 Basic Graphics Package, AIll alphanumeric characters are code converted by the
translator into or from 1700 internal code. Floating-point conversions are done in the 6000

Series computer by the 6000 Package routines.

PROGRAM ABORTING

The translator is also responsible for aborting graphics programs at the 1700. 1f a 1700
Package routine attempts to communicate with a console but the console's driver routine
detects a communication error or failure, the Package routine sets a flag to inform the
translator of the condition., The translator then displays an appropriate message (see Table
9-6) on the teletypewriter and sends IMPORT directive code 23 to the 6000 (see Graphics

Program Aborting, Section 2).

The translator also aborts programs if it detects an invalid IDDAD, IDDADI, or MAD pro-
gramming parameter while it is processing a buffer from EXPORT. In this case, the
translator returns a 1700 ABORT message to the 6000, displays an appropriate message
(Appendix B) on the screen of the affected consoles and at the teletypewriter, and sends the
IMPORT directive code to EXPORT,

If the Digigraphic Interrupt Processor of the 1700 Package detects an error condition while
attempting to process console input or output, it also sets a flag for the translator. The
translator then types out one of the two reject messages given in Table 9-6, and aborts the

job in the same manner as given above for a console driver error,

1700 BASIC GRAPHICS PACKAGE

The 1700 Basic Graphics Package contains a set of graphics routines and a queue handler to

process light-pen/keyboard picks and save tracking-cross positions.

44616800 Rev. 01 5-1

The functions and philosophy of the 1700 Basic Graphics Package routines are similar to
those of the Graphics Utilities and Graphics Hardware Interface routines of the 6000 Basic
Graphics Package. The calling statements for both sets of routines are identical; two
Packages are used solely to prevent tying up the 6000 Series computer with the detail work

necessary to service a display console.

The applications programmer is concerned only with the 6000 Basic Graphics Package. He
writes his programs in parametric form, and the 6000 Package then passes these parameters
(via EXPORT/IMPORT and the Buffer Translator) to the 1700 Basic Graphics Package, which

uses the data to actually drive the cathode ray tube of its associated graphics console.

Specific information regarding the functions of the 1700 Package routines is beyond the scope
of this manual.

SYSTEM EXPANSION

The Interactive Graphics System can be expanded by the addition of routines to the Graphics
Utilities library of the 6000 Basic Graphics Package (Section 7). Although such additions
could be made without corresponding changes in the 1700 Package, the efficiency of the
System would be increased by the addition of a corresponding 1700 Package routine for each

routine added to the 6000 Package. This approach would simplify 1700 error processing.

Additions to the two Packages can be made without changes in any of the other parts of the
System software,

5-2 44616800 Rev. 01

DISPLAY ITEMS AND PICK PROCESSING 6

Every item that the programmer creates on the display screen has identification information
associated with it in the 1700 Computer's memory, as does every console input device that
he wishes to have his program service. This information includes parameters from the
6000 Basic Graphics Package calls which the programmer uses to create and manipulate the
item or to define the functions of the device. These parameters (and other pick processing

information) are organized into a structure called a display item ID block.

DISPLAY [TEM ID BLOCK

The 1700 Basic Graphics Package maintains a buffer of the item ID blocks created by the

programmer (see Section 7) as shown in Figure 6-1,

15 13 12 11 10 8 7 0 bits
word 0 M I S V String Pointer
1 IDDAD
2 PICK 1H
s e s e
3 PICK {V
4 1DDC T IDDT |
5 IDWA 15-0
6 IDWB,_, l IDWA,,_ 14
7 IDWB, 4 ¢
8 T.CROSS IH = "
] T.CROSS IV ="

M = 1, Item Being Marked (blinked when picked)
S - 1, Single Pick Type Item
S = 2, String Pick Type Item
S = 3, Button Pick Type Item

" = Tracking Cross Coordinates (for a Button only)

Figure 6-1. Display Item 1D Block in 1700

44616800 Rev., 01 6-1

¥T'he ID block is the basis of all graphics input processing. The four ID quantities IDDT,
IDDC, IDWA, and IDWB are defined and used by the programmer. The display item type
code IDDT is also used by the queue handler and the 1700 interrupt processor mask com-
parison routines (see GIMASK, Section 7).

The IDWA /IDWB of a light button would normally contain the name of a task to be called by
the Application Executive AETSKR routine; the task name is left-justified, beginning in IDWA.
The IDWA /IDWB of a graphic figure would contain a data bead address (see Data Handler,
Section 7) as its last five characters,

The contents of IDDT and IDDC cannot exceed 8 bits (377B) each; IDWA and IDWB cannot
exceed 24 bits (77777777B) each. IDDT = 0 is reserved for alphanumeric input only.

ID blocks may be associated with other graphic input devices, as well as the items on the
display. These are:

) The console function keyboard.

e An alphanumeric End-of-Message character.

e The switch on the light-pen.

. The pick of some display item of a particular type; this results in two 1D blocks
being queued (for example: a regular display item may also be conditioned to act
as a button; see GIPBUT, Section 7).

To have an ID block from one of these devices input to the application program, the IDDT of
the device must classify it as one of the three types of pick information processed by the
queue handler:

e Single pick information
e String pick information

® Button pick information

QUEUE HANDLER

Since the console operator will get ahead of the application program's execution, it is
necessary to have a means of allowing the operator to use the light-pen, keyboard, and
tracking-cross at his own speed, but still enable the graphics software to keep track of the
picks and tracking-cross coordinates for later use by the application program. The queue-
ing mechanism which accomplishes this,reduces the time a console operator must wait after

making a request until he can make another request.

6-2 44616800 Rev. 01

PICK TYPES
The picks made by the console operator are queued as four types of ID blocks before being

passed to the application program:

° Single pick type - only the copy of the ID block for the latest single pick display item

chosen is kept in the queue, regardless of how many such items are picked.

. String pick type - one copy of a string pick display item ID block is kept in the queue

for each time such an item is picked.

° Alphanumeric type - includes alphanumeric characters picked by either the light-pen

or a keyboard key; queued in the same manner as a string pick type.

° Button pick type - one copy of the ID block for a light-button is kept in the queue for
each time such an item is picked. The button pick 1D is similar to the string pick 1D

except that a button pick may reactivate an idle application task.

The single pick ID block and the string pick ID block are associated with the button pick ID

block, and may contain tracking-cross coordinates along with other ID information.

QUEUE HANDLER FUNCTIONS

When the 1700 Basic Graphics Package interrupt processor detects a light-pen or keyboard
pick,it turns control of the 1700 Computer over to the queue handler. The queue handler

then performs three actions:
1. Does an ID read of display memory to determine which item has been picked.

2. Logical ANDs the IDDT of the pick ID block with the set of ID processor masks
(see GIMASK).

3. Performs the queue operation specified by the result of the ANDing,

If the logical AND of the IDDT and the set of masks is nonzero, the queue handler will place
the ID block of the picked item on the end of the appropriate queue string. For example,
after the AND of the following IDDT and masks values, the ID block involved is placed at the
end of the set of queued string picks and the blink byte in the reset sequence is complemented.

That is, a nonblinking item will blink and a blinking item will no longer blink.

0 0000GO0T1 0| IDDT of picked item
[o00o 00010 0] Ignore Mask
[0000100 0] Single Pick Mask
nonzero 000 000O0T1 0] String Pick Mask
AND [0 010000 0] Button Mask
0000001 0] Marker Mask

44616800 Rev, 03 6-3

In each of the following cases, the ID read processing differs from that of a normal light-pen

strike, However, steps 2 and 3 above remain the same:

° If GILPKY has been called and a light-pen switch interrupt occurs, the gueue handler
will read the assigned ID block from a table in 1700 memory.

. If GIKYBD has been called and a keyboard interrupt occurs, a 1700 memory ID read

will be performed.

° If GIEOM has been called and an EOM key press or an EOM font pick causes the

interrupt, a 1700 memory ID read will be performed.

° If GIPBUT has been called and a prime button pick causes an interrupt, both a 1700

memory and a 1744 display memory ID read will be performed.

The queue handler also retrieves ID blocks from the FETCH queue (see below) when they
are requested by a 6000 Basic Graphics Package GIBUT or Application Executive AETSKR

call.

FETCH AND WAIT QUEUES

There are actually two separate queues maintained in the 1700's memory for each graphics
console — the FETCH queue and the WAIT queue.

The WAIT queue serves as a temporary console input buffer in which to arrange and complete
a set of picked ID blocks., The WAIT queue is not accessible to the application program;

this prevents the program from receiving an incomplete set or string of pick ID blocks if it
requests transfer of the blocks to the 6000 while the console user is still building a string or

editing a set of queued blocks.

A button pick automatically transfers the ordered blocks from the WAIT queue to the FETCH
queue. The blocks are then passed to the program in the 6000 Series computer from the
FETCH queue,

Whenever an item is erased from the display, both queues are scanned for a pick of the
erased item. If the item is a single pick type or string pick type and is erased, the ID block
is spliced out of the WAIT queue. If the erased item is in the FETCH queue as a button, the

button ID block and its associated single pick and string pick ID blocks are all removed.

QUEUE MECHANISM OPERATION

The following set of diagrams illustrates the logical mechanism used by the queue handler to
queue picks and buttons. Each square represents a core block of ID information, pointers,
and coordinates. The queueing of ID blocks is controlled by the application program through
the setting and clearing of type code masks (see GIMASK, Section 7).

6-4 44616800 Rev. 01

Time History if maintained as a simple queue:

H7 119
First-»| P P S P S S. B P B S
1 ™2 ™3™ a ™ s [™ 6™ 7 8 9 10?
||17 ”18
< ol s P S P S S B B S P
1 2™ 137 14| 15]™] 16| 17 18 19 20 | —»Last

|

T © g

Representation after Single Picks 1 and 2:

WAIT

Flow of execution
Single Pick ID
String Pick 1D
Button Pick ID

g

Tracking cross coordinates

Single pick ID blocks are always placed at the start of the WAIT queue, and replace

whatever single pick ID block may have been there.

Representation after String Picks 5 and 6:

P
4

w

S
5

o N

"

String pick ID blocks are always collected at the end of the WAIT queue.

44616800 Rev. 01

Representation after Button Pick 7:
WAIT

Lo]
o]

FETCH "y
‘:—-—’B—’P—’s—’s-’s
—— I 0 O B R

Button pick 1D blocks are always placed at the end of the FETCH queue followed by the

contents of the WAIT queue (which is then cleared).

Representation after String Picks 15 and 16:

WAIT

6 ey
If two string pick ID blocks are the same (IDDAD 2all identical) both blocks are removed.
If string picks 11 and 16 were the same in the above example, block 11 would be spliced

out of the WAIT queue and block 16 would not be saved. This feature allows limited editing

of picked items without application program intervention.

Representation after Pick 20 Is Input and Button 9 Is Fetched by the Application:

WAIT

FETCH

L]
A 17 14| |10} |11 13| 15| | 16| e 18
= \ =

The tracking cross coordinates of each button ID are saved for application reference. The

tracking cross coordinates fetched by GITCOF are those from the last button ID pressed to
the application program (*9 in the example above).

® g

44616800 Rev, 03

ID blocks passed to the application program are always picked up from the start of the
FETCH queue (block 8 in the last example above), and are passed only as the result of a
specific request from the application. If a button fetch (CALL GIBUT) is requested at the

time of the above representation, ID blocks 8 and 17 are made available to the application,

Next, the single, string and button masks are checked in that order. The first nonzero
product causes the designated queueing operation and a check of the marker mask, If the
marker mask also causes a nonzero product, the queue handler will perform the marking
function on the item. The blink byte will be reversed in order to change the appearance of

the item while it is queued until it is fetched.

As each ID block is removed from the queue, the marker bit is checked and the blink byte
is restored to the status it had before it was queued. This notifies the console user that

his pick has been sent to the 6000 Series Computer,

6000 COMPUTER PICK PROCESSING

The 6000 Series computer receives ID blocks from the 1700 Computer only after sending it
a GIBUT call, or an equivalent call from the Application Executive. Only the first button
ID block, and any single or string pick blocks preceding it in the FETCH queue, is sent to
the 6000's EXPORT program.

The ID blocks are all sent by EXPORT to the Application Executive area of the calling
graphics job, where GIBUT unpacks the button ID block information and stores it for later
use by the 6000 Basic Graphics Package AELBUT and GITCOF routines. The other ID
blocks are stored for later use by the GIFID and GIDSID routines.

Fach time a button pick is fetched from the 1700, the new ID blocks are written over the
blocks stored in the 6000 by the previous fetch. The queue handler masking procedure is
ordered. The ignore mask is anded with IDDT first. If the product is nonzero, no further

action is taken.

44616300 Rev. 03 6-7

6000 BASIC GRAPHICS PACKAGE 7

The 6000 Basic Graphics Package is a set of subroutines, written in COMPASS assembly
language, designed to provide an interface between the applications programmer and the
graphics hardware. The Package coexists with SCOPE; an applications programmer has
full access to both.

This Basic Graphics Package has four main functions: to provide the ability to manipulate
display items, to control light buttons, to input and output alphanumeric data, and to supply

the necessary tools for creating and handling a data structure.

Using the Basic Graphics Package routines, the simplest application program can send dis-
play items to the consoles. These display items are described in a language one level higher
than the standard display language. For instance, a circle in display language is a stream
of DXs and DYs; however, the Basic Graphics Package, using the 6000 Computer, describes
a circle in parameter form. The 1700 has the ability, which it is more suited to accomplish,
to convert this parameterized data into display language — by using the 1700 Basic Graphics

Package (see Section 5).

ROUTINE TYPES

The 6000 Basic Graphics Package routines are divided into four categories:
e Graphics Hardware Interface
° Application Executive
o Graphics Utilities

° Data Handler

GRAPHICS HARDWARE INTERFACE

The Graphics Hardware Interface is a set of library subroutines that permit application pro-
gram control of the display hardware. The functions performed by the Graphics Interface
define the graphics capabilities available to a user. The interface includes routines to edit
the display buffer display items, control light-pen and keyboard inputs, control light-pen

tracking, and collect alphanumeric text input. All interface routine names begin with GI.

44616800 Rev. 01 7-1

APPLICATION EXECUTIVE
The Application Executive controls the residence, sequencing, and execution of tasks; it

includes the equivalents of SCHEDR, GIBUT, and GIABRT.

The Executive is written as a single, eight-part program called MAIN. When a programmer
uses MAIN as part of his zero-level overlay, his subsequent calls to AETSKC and AETSKR
in any task overlay result in calls to the appropriate part of the MAIN program.

FUNCTIONS OF MAIN

MAIN is entered as a FORTRAN subroutine from the application program's zero-level over-
lay, using a CALL MAIN card (see Section 2), during both the file creation and execution

runs of the job.

MAIN first reads the file name parameter cards in the application program's next data
record. '
If the data record contains two cards, MAIN:

e Writes the graphics task COMMON file name (from the first card) in RA+2 of the

program's current control point area
e Writes the overlay source file name (from the second card) in RA+3
° Terminates the LGO portion of the job so that AEFILE can create the program's
graphics COMMON file
If MAIN finds only one card in the first data record, it assumes that the job is to be executed
during the current run. MAIN then:
° Opens the task file named on the card

) Reads the task directory pointer to determine the amount of central memory needed

to load the longest overlay in the task file
. Changes the field length

° Calls the Scheduler to assign the program to a graphics control point

The Scheduler then rolls out the job (see Section 2). When the Scheduler rolls the job back
in, MAIN reads the first record of the task file into central memory. Control of the central

processor is then transferred to the task in that record.

MAIN is again entered when an AETSKC call occurs; it then locates the requested task within

the task file, reads it into central memory, and transfers control to it.

7-2 44616800 Rev. 01

When an AETSKR call occurs, MAIN requests a button fetch from the 1700 FETCH queue,
and waits until one has been returned. When a button pick type ID block (and its associated
string and single pick blocks) is returned, control of the central processor is turned over to
the task overlay named in the IDWA and IDWB parameters of the button's ID block.

MAIN also contains an abort processor that is entered any time a 6000 Basic Graphics
Package routine produces an error message. The abort processor enters all diagnostic
messages supplied to it in the system dayfile; the processor aborts the application job only

if a fatal error or a GIABRT call has occurred.

GRAPHICS UTILITIES

The Graphics Utilities are an expandable library of subroutines for general graphics applica-
tions. Included as Graphics Utilities are routines to frame-scissor graphicfigures, generate
graphic figure descriptions, and collect figure descriptions for display. The utilities routine

names supplied with the 6000 Basic Graphics Package all begin with GU.

DATA HANDLER

The Data Handler is a set of routines that optimize access to mass storage and perform in-
core list processing. The handler permits an application programmer to efficiently create
and manipulate his own unique data structure. The form of data organization used is a plex

data structure.

PLEX DATA STRUCTURES

Graphics interaction places stringent demands upon the application programmer in the allo-
cation and handling of data. In general, graphics application data is completely random in
the order of its manipulation, and in the amounts of each data type stored. Conventional
allocation and management schemes, such as FORTRAN arrays or card image files, are

usually inappropriate and inefficient.

A concept of storage management has been defined* that meets all the requirements of inter-
active applications. The concept, called the Modelling Plex, involves the data, data struc-
ture, and data manipulating algorithms required to represent the physical actions required
of the application. The requirements of the data and algorithms are determined by the needs

of the application on one hand, and by the data structure on the other,

*Douglas T. Ross, AED-O Programming Manual, Section 2.2 Data Structure Language,
Preliminary Release No. 2, MIL-ESL, October 1964.

44616800 Rev. 01 7-3

A plex data structure is the most general form in a broad class of data management tech-
niques called list structuring. In a plex data structure, all data is contained in variable
length beads of contiguous computer words. The length, format, and data content of any

bead is completely under control of the application programs.

The Data Handler provides a pool of empty beads (free storage) from which the application
may obtain new beads and to which it can return those no longer needed. Each bead has a
unique addressing parameter (IBEAD) that is supplied by the system, and used by the appli-
cation programs as data. This bead address is used for referencing the data within the bead,
and may be used as data within other beads as a pointer to specify related information. In
general, a plex data structure contains a greater number of pointers than do more conven-

tional storage techniques. (See Figure 7-1 for typical bead arrangements.)

BEAD
BEAD ADDRESS ——>@

(A) A SINGLE BEAD

OO0 O

{B) A STRING OF BEADS

{C) A TREE STRUCTURE
OF BEADS

(D) A RING STRUCTURE OF BEADS

(E) A COMBINATION STRUCTURE
OF BEADS

Figure 7-1. Typical Bead Arrangement

7-4 44616800 Rev, 01

For a specific application, it is most efficient to include only the beads and pointers needed.
A formal structure that includes all possible relationships of a rigid class introduces in-

efficiencies that cannot be tolerated in an interactive system.

For a simple example of a plex data structure, consider the dynamic parts of an automobile
engine: the crankshaft, the connecting rods, and pistons. Each bead of the representation
contains the needed information about a particular item. Each bead of a particular type has
exactly the same length and format, but different data values; i.e., the mass parameter in
each connecting rod bead — CR in the example — would appear in the same position within
the bead, but would reflect the actual mass of the particular connecting rod. Note that by
proper design of the plex data structure, the calculating algorithms may be quite independent
of the actual representational model. In the example (Figure 7-2), a 12-cylinder engine
could be handled with the same structure and programs by allowing the connecting rod string
of beads to be of variable length. By convention, the initial bead address in a string of beads
is called the state variable of the string, and the last bead of the string holds a zero string

pointer. In a plex data structure any number of strings may be passed through a bead.

105 MAX. H.P.
CS— CRANKSHAFT
CR—CONNECTING ROD
P-PISTON

Figure 7-2. Four Cylinder Engine

Beads are floating within blocks. The bead address IBEAD contains the block count and an

index to an array of pointers within the block as follows:

23 13

8
Block Count Index // /

For use as a string pointer, the location within the bead of the next pointer (hook) may be

placed in the cross-hatched area.

44616800 Rev. 01 7-5

The 9-bit hook limits string pointers to the first 511 locations in a bead. The Data Handler
accepts full 24-bit addresses as a bead address, and will ignore the low order 9 bits on all

but string operations.

The Data Handler allows simple FORTRAN programming string operations. Figure 7-3 is

an example of list structuring. Hooks are shown with a broken line,

STATE VARIABLE

(INITIAL STRING

POINTER)
HOOK/

P
A

|
|
!
|
N

—>>ETC.

BEAD

BEAD BEAD

Figure 7-3. List Structure Example

BLOCK STRUCTURE AND ACCESS

Data resides in standard SCOPE random files (in logical blocks). Specification of the block

length is an application programming function (see DMINIT, page 7-50).

The Data Handler maintains in-core duplicates of those blocks needed to allow efficient
access to the data. The number of in-core blocks is specified by the application program-

mer and may be changed dynamically.

The in-core blocks reside as IFILE in the application job's global data area of the graphics

control point. IFILE is rolled out and in automatically as a local file with the program.

Data is confined to beads within the blocks. Data Handler subroutines are provided to create

and destroy beads, as desired by the application programmer.

The data content of a bead is broken into components. A component is a specific bit or word
space within a bead and has a unique address code. Data Handler subroutines are provided

to set or fetch values of components of specified beads.

The application program does not reference mass storage blocks directly, so the block ac-

cessing process and format details are not a programming function.

7-6 44616800 Rev, 01

The Data Handler provides efficient automatic access to the mass storage blocks through an
algorithmic optimization procedure. Three decision parameters, kept for each in-core

block, are used in the algorithm:
[UC Usage count of the current in-core block from the time of the last decision
e ES Amount of empty space within the in-core block

e WE |Indicator of in-core block content change

Three additional values are used to modify the decision parameters:
e NB Number of blocks in core

e TUC Total usage count of the Data Handler from the time of the last decision

° BS Block size

The decision process involves finding the in-core block with the minimum or maximum

value of the algorithm:

B x UC + C x ES + D x WE
TUC BS+NB

The weighing factors B, C, and D are integers between 0 and 100 with a combined sum of
100. These factors are chosen by the installation. The algorithm is used in each decision

to optimize use of the in-core block space (IFILE) and minimize mass storage references,
Figure 7-4 shows the structure of a Data Handler file block as it is stored in central memory.

The first word of the duplicate block contains the amount of empty space in the block and

a pointer to the empty space. When a bead is entered into a block, it is associated with a
bead pointer to which the bead address is related. The bead pointer is fixed in a block but
its contents can vary, since beads are floating in the block. The beads in a block move
when a bead is deleted in a block and the Data Handler closes up any space previously occu-
pied by a bead to maintain empty space contiguity. The bead address IBEAD, however,

remains inviolate for the life of a bead.

Beads are entered into a block starting from the bottom of the empty space. If a bead is too
large to fit in a single block, it is continued onto as many other blocks as necessary. (The
continuation process is designed to minimize the number of blocks per bead.) A continuation
bead address is added to the end of the bead segment to point to the next segment of the bead.
Bit F is set in the bead pointer to indicate that its segment is the first segment of a bead.

Bit G indicates the continuation of a bead.

44616800 Rev, 01 7-7

59 58 23 17 0

EMPTY SIZE a
BLOCK +0 (NUMBER OF WORDS) EMPTY POINTER -
RELATIVE BEAD SIZE R
ADDRESS *+! |F|G (NUMBER OF WORDS) BEAD POINTER <
BEAD SIZE v
+2 [FI6 (NUMBER OF WORDS) BEAD POINTER
2 N S
T — A
BEAD SIZE
Fle (NUMBER _OF WORDS) BEAD POINTER
o
-

a V\//—{Ysi“://—_/

EMPTY SPACE

+C BEAD

%‘\,/\/,\
—

+b

BEAD

K_\/’_X_f\

lcommutmou BEAD B
ADDRESS (IF F =1)

F -BEAD CONTINUED IN ANOTHER BLOCK (CONTINUATION BEAD ADDRESS IN LAST
WORD OF BEAD, IN WORD NUMBER = BEAD POINTER + BEAD SIZE -1}

G ~CONTINUATION OF A BEAD

Figure 7-4. Data Handler File Block Structure

MAXIMUM DATA UNIT SIZES

The addressing scheme used by the Data Handler limits the size of files, beads, and blocks.

The limits are:
. Maximum number of blocks per file 1,023
° Maximum number of beads per block 31

° Maximum number of words per bead 1,048,575 (218 -1)

7-8 44616800 Rev, 03

The number of words in a block depends on the device the system uses for mass storage.
The block size can be specified by the programmer in his DMINIT calls; if the programmer

omits the block size parameter from his calls, an installation parameter is used.

Another installation parameter (MAXBLKSP) defines the maximum number of words that can
be allocated for the in-core blocks. Since the Data Handler requires at least two in-core
blocks to function efficiently, this actually limits the maximum block size to MAXBLKSP/2

central memory words,

General Summary

a. Components
° are bit or word spaces
o contain values
° reside in beads
°

are addressed by a unique code

b. Beads
° are contiguous computer words
° contain components
° reside in blocks
°

are addressed by a unique bit pattern

c. Blocks
e are mass storage logical blocks
. contain beads
] reside on mass storage and in core as IFILE
°

are addressed by count

d. All Data Handler routine names begin with DM

ASSOCIATIVE ADDRESSES

The Basic Graphics Package also does internal bookkeeping, controlled by bit patterns called
associative addresses that are supplied to or by the application programmer. The major as-

sociative addresses are:

® The console address NCON that is associated with the particular console(s) assigned
to an application program. More than one console address may be used byaprogram
to control several consoles at once. NCON is a two digit number; the first digit is
the number of the 1700 to which the console is connected (1-4), and the second digit
is the number of the console itself (1-6). Thus, NCON can vary from 11 to 46. Both

digits are defined by the installation and supplied by the programmer.

44616800 Rev. 03 7-9

The display item address IDDAD that is associated with a particular graphic item
being displayed. IDDAD is used for editing functions and is the relative address of
the item within a table containing the actual 1744 display addresses of all such items

(see Section 4).

The macro address MAD, which serves the same function for macro item informa-

tion as IDDAD,serves for display items.,

The bead address IBEAD, which is associated with a particular set of contiguous
computer words supplied by the Data Handler. The bead address is used for all
references within the bead, and is defined as the relative address of the first word
of the bead within the IFILE.

The application task name NAME, is used to control program execution. A typical
program may consist of over 100 individual tasks or overlays, each performing a
function(s) or a computation(s). Each task resides in mass storage and is randomly
accessible. NAME is used by the Application Executive to associate the task with

its actual location in mass storage (see Task Directory, Section 2).

PROGRAMMING CONVENTIONS

To reduce application programming errors, the following calling sequence conventions are

imposed on all Basic Graphics Package routines:

All externally supplied values are passed between the routines as parameters in the
calling statements., No specific COMMON configurations are imposed on the appli-

cations programmer,

Needed values are specified as separate calling statement parameters. The code
inefficency of loading and unloading formatted arrays justifies the use of the longer

calling sequences that are produced by this convention.

Separate subroutines are provided for each function of the Package. Code para-

meters are not used for function selection.

SUMMARY OF USER FORTRAN CALLABLE ROUTINES

These routines are all part of the 6000 Basic Graphics Package; all perform parameter

checking functions and may cause the system software to abort an application program if its

parameters are illegal. If a display item buffer exceeds the maximum length of the EXPORT/

IMPORT input or output buffers (320 12-bit bytes each), it is considered a fatal error. Diag-

nostic messages for these and other errors are given in Appendix B.

44616800 Rev. 01

All of the Package routines can be accessed through standard FORTRAN CALL statements.
Unless otherwise specified, all parameters in the statements are passed to the routines as
programmer-supplied arguments; integers may be either decimal or Boolean octal in form.
The programmer may choose his own parameter names, although use of the names supplied
in this manual would eliminate confusion when interpreting the diagnostic messages listed in
Appendix B. Because many of these diagnostics contain the parameter names used in this
manual, all parameter names throughout the book have been capitalized — a convention

normally used to indicate words or letters whose presence is required by the system.

PROGRAM INITIATION

SCHEDR rolls the program out to mass storage so that it can undergo real-time scheduling
and be rolled into a graphics control point for execution. A call to this routine must pre-
cede all Graphics Interface calls if the Application Executive MAIN program is not used.
When the SCHEDR call is made, the system Scheduler program rolls out the entire control
point and all associated files.

When MAIN is used, a call to SCHEDR serves no useful function.

Call Statement Format:

(CALL SCHEDR

PROGRAM CONSOLE CONTROL

The subroutines GICNJB and GICNRL flag the 1700 Basic Graphics Package interrupt pro-
cessor to establish or break the correspondence between a console and the calling job. The
two routines also perform such housekeeping duties as clearing the 1744 display buffer and

resetting interrupt tables,

Good programming practice dictates that a call to the console release subroutine GICNRL be
made before terminating the program. However, it is not mandatory to do so since a call

to GICNJB from a later job (in the time sequence of job runs) will perform the same function.

The functions performed by GICNJB and GICNRL are console-oriented. Any task of any job
may request initialization of the console/job correspondence for a particular console number.

More than one console may be initialized for a job.

Once console/job correspondence is made, any task of that job may address that console. If
a task addresses a console that has not been initialized through GICNJB for the job of that
task (or if a task addresses a console that has been initialized for some other job), the task

and its job will be aborted,

44616800 Rev. 01 7-11

A console may be in one of three states with respect to a particular job:
1. Not attached to any job
2, Attached to some other job
3. Attached to a particular job

The purpose of GICNJB is to go from state 1 to state 3. The purpose of GICNRL is to go

from state 3 to state 1.

GICNJB

This subroutine assigns a programmer-specified graphics console to the calling program

and performs such initial clean-up duties as clearing the display buffer.

GICNJB aborts the calling job if the console number, NCON, is invalid, or if the console is
not available (i.e., has been declared out of service by the 1700 Computer operator or is

assigned to another job). GICNJB clears the tables and masks that have been set.

Call Statement Format:

(CALL GICNJB (NCON)

NCON Number of the graphics console that should be assigned to
this job; only one console can be assigned through each call

NCON can easily be changed by loading data cards with the application program through

either the remote or local card reader.

GICNRL

This routine releases the specified graphics console from the control of the calling job.
GICNRL terminates internal display for console NCON and clears console-oriented tables

kept by the 1700 Basic Graphics Package interrupt processor,

Call Statement Format:

(CALL GICNRL (NCON)

NCON Console number; the same constraints apply here as to
NCON in the GICNJB statement

PROGRAM TASK CONTROL

AETSKC and AETSKR establish the linkage between the Application Executive MAIN program

and/or individual tasks of the application job.

7-12 44616800 Rev. 03

AETSKC

This routine can be called from the zero-level overlay, any task overlay, or from any sub-
routine within an overlay. A call to AETSKC causes the named task overlay to be loaded into
core memory from the graphics task COMMON file. AETSKC then turns control of the 6000

Series computer over to the new task; there is no return from a call to AETSKC.

Call Statement Format:

r CALL AETSKC (NAME)

NAME Name of the task to be called; this is the 1 to 7 character
identifier on the PROGRAM card at the beginning of each
task overlay. The name in this call must be written in
6000 internal display code, left-justified within NAME,

AETSKR and blank or zero-filled.

An AETSKR call terminates execution of the current task, then performs the functions of
AETSKC for the task overlay named in the IDWA and IDWB parameters of the next button
pick type ID block in the 1700 FETCH queue.

AETSKR determines which task to load by requesting that a button pick type ID block be
fetched from the 1700, If no button ID block is queued there, AETSKR waits until one is
entered, then loads and executes the task indicated by the button picked. There is no return
from a call to AETSKR.

If a STOP or END card is encountered within a task before a call to AETSKR or AETSKC

occurs, the card will cause normal termination of the entirc application job.

There is no console argument in the AETSKR calling sequence. AETSKR asks for a button
from the graphics console number used as the argument of the last call to a GIBUT or
GICNJB routine.

Call Statement Format :

(CALL AETSKR

SPECIAL ID BLOCK ASSIGNMENT
ID blocks similar to those described in Section 6 can be assigned to various input devices at
each console. These special ID blocks give the devices queuing and input significance that
they would not otherwise possess.
One such block may be assigned to a console for each of the following:

e All of the buttons on the function keyboard

. The switch on the light-pen

44616800 Rev. 03 7-13

® A specific alphanumeric character, which will be used to terminate the console's

current alphanumeric input

e One display item that is not defined as a light-button, but is to be treated as one

GIKYBD

GIKYBD associates an ID block similar to that of Figure 6-1 with the function keyboard of a
particular graphics console. This block provides a means to examine the status of the key-

board's keys or to call a task overlay when a key is pressed,

Once GIKYBD has been called, a copy of the keyboard 1D block is queued every time a key-
board key is pressed. Queueing is done according to the IDDT of the block.

Key status is contained in the IH and IV parameters of the block (see Table 4-1),
A GIKYBD call can also be used to change the ID parameters of an existing keyboard ID block.
GIKYBD cannot be used for a graphics console thatis not equipped with a function keyboard.

Call Statement Format:

(CALL GIKYBD (NCON, IDDT, IDDC, IDWA, IDWB)

NCON Number of the console to which the block should be assigned;
only one console can be referenced by each call

1DDT 1D type code; used to specify how the queue handler will treat the
1D block
IDDC ID code word;, the contents assigned by the programmer can be

0= IDDC = 2°-1

IDWA 1D information word A; contents are arbitrary unless block is
Refer referenced by an Application Executive routine
to 7-41

IDWB ID information word B; contents are arbitrary unless block is

referenced by an Application Executive routine

The ID block assigned to console NCON by GIKYBD contains the representation of the input |
parameters IDDT through IDWEB.

Only one keyboard ID block can be associated with a particular console; if several calls are
made to GIKYBD with the same NCON value, the parameters of the latest call will replace

all of the parameters previously entered in the block.

7-14 44616800 Rev. 03

GILPKY

GILPKY assigns an ID block to the switch on the light-pen of a particular graphics console.
If GILPKY has been called, the effect of releasing the key on the pen is identical to the act
of pointing to an item on the display; the ID block assigned to the key is processed by the

queue handler as if it were the ID block of a display item. This allows the programmer to

detect the use of the switch.

Call Statement Format:

(CALL GILPKY (NCON,IDDT, IDDC, IDWA, IDWB)

NCON Number of the console to which the block should be assigned;
only one console can be referenced with each call

IDDT ID type code; used to specify how the queue handler will treat the
ID block

IDDC 1D code word:8 the contents assigned by the programmer can be I
0£ IDDC< 2°-1

IDWA ID information word A; contents are arbitrary unless the block is
referenced by an Application Executive routine

IDWB ID information word B; contents are arbitrary unless the block is
referenced by an Application Executive routine

The ID block generated by a GILPKY call contains the representation of the input parameters
IDDT through IDWB, If NCON is the only nonzero input parameter (or the only parameter
given in the call), the existing ID block for the light-pen switch of console NCON will be re-

moved from the 1700 Computer's memory.

When the light-pen key is released, the copy of the ID block queued in the 1700 will contain
the current H-V coordinates of the tracking cross in the IH and IV words — which are used

for the coordinates of a light-pen pick in the ID block of a display item.

Only one light-pen key ID block can be associated with a particular console; if several calls
are made to GILPKY with the same NCON value, the parameters of the latest call will re-

place all of the parameters previously entered in that block.

GIEOM

This routine assigns an ID block to a single alphanumeric character at a specified graphics
console; the character may be part of the display font or on the alphanumeric keyboard.
When the character associated with a GIEOM call is pressed (or picked, in the case of the
display font) during an alphanumeric input operation, the ID block assigned to it is queued
as if it were the ID block of a display item. This gives the programmer a means to detect

an End-of-Message condition.

44616800 Rev. 03 7-15

An End-of-Message character is displayed on the screen and returned through a GIANE call

like any other character.

Call Statement Format:

(CALL GIEOM (NCON, IBCD, IDDT, IDDC, IDWA, IDWB)

NCON Number of the console to which the ID block should be assigned; '
only one console can be referenced with each call

IBCD A right justified display code character which is to act as an
End-of-Message indicator and to which the ID block should be '
assigned

IDDT ID type code; used to specify how the queue handler will treat the ID
block

IDDC ID code word;gthe contents assigned by the programmer are ‘

0< IDDC £ 27-1

IDWA D information word A; contents are arbitrary unless the ID block
is referenced by an Application Executive routine

IDWB 1D information word B; contents are arbitrary unless the ID block
is referenced by an Application Executive routine

The ID block created by a GIEOM call contains the representation of the input parameters l
IDDT through IDWB,

Only one End-of-Message character ID block can be associated with a particular console; if
several calls are made to GIEOM with the same NCON value, the parameters of the latest

call will replace all of the parameters previously entered in the block.

GIPBUT

GIPBUT will create an ID block and a Queue Handler mask for a prime button at a particular
console. Anything for which an ID block exists may be defined as a prime button, but the
prime button ID information and its associated mask are usually used to allow a display item

to activate a task when picked, even if the item is not defined as a button pick type.

When an item is defined as a prime button, two ID blocks for it exist in memory, and both
are queued according to their type code values when the item is picked. This allows the

programmer to simultaneously classify the item as two different types.

Call Statement Format:

(CALL GIPBUT (NCON, 1IDDT, IDDT, IDDC, IDWA, IDWRB)

7-16 44616800 Rev. 03

NCON Number of console to which the block should be assigned; only |
one console can be referenced with each call

IIDDT Value to be used as a mask to determine if an item is a prime
button type

IDDT ID type code; used to specify how the queue handler will treat the
prime button ID block

IDDC ID code word; the contents assigned by the programmer are '
0< IDDC= 2°-1

iDWA ID information word A; if the IDDT of this ID block classifies it as
a button pick type, this parameter should contain a portion of the
name of the task overlay to be called by MAIN

IDWB ID information word B; contents are arbitrary unless the ID block
is referenced by an Application Executive routine
Only one prime button ID block can be created for a given console; if several calls to GIPBUT
occur with the same NCON value, the parameters from the latest call will replace all of the
parameters previously entered in the block. If NCON is the only nonzero parameter used,
the existing prime button ID block for console NCON will be removed from the 1700 Com-

puter's memory.

The Prime Button mask is used in the following manner (the other queue handler processing

masks are explained in the paragraphs on GIMASK, below).

When a string pick or single pick entry is made at console NCON, the queue handler pro-
cessing mask comparisons are made. If the pick is not a button type and is not ignored,

then the following comparison is performed by the 1700 interrupt processor:

IIDDT AVL IDDT

npDT Prime button mask value

IDDT ID type code of picked item

AVL Logical exclusive OR
If this algorithm equals zero, the picked item is considered to be a prime button. The IDDT
value in the prime button ID block is then compared with the programmer-defined masks to

see how the prime button ID block should be processed; the item's regular ID block is pro-

cessed separately, according to its own IDDT value.

The prime button ID block IDDT value can be any one (or none) of the valid mask values; it

does not have to equal the mask value established for buttons.

44616800 Rev. 03 T-17

CONTROL OF QUEUE HANDLER AND PICK PROCESSING

When an entry is made at a console, the 1700 interrupt processor compares the IDDT
value in the entry's ID block with the value that the programmer has previously placed in
the Ignore mask, If the result equals zero, the entry is ignored, If the entry is not zero,
the IDDT value is compared with values in the Single Pick, String Pick, Button, and
Marker masks, If the IDDT values correspond to any of these mask values, the queue
handler performs the appropriate function; the ID block of the entry is either placed on one
of the appropriate queue strings (single pick, string pick, or button pick) or the item on
the screen is blinked (marker function), If the IDDT corresponds to more than one Pick
mask value, the ID block is queued according to the hierarchy: single, string, button,

The algorithm used for the mask comparisons are given here to further explain the mask
concept, In the following paragraphs:

IDDT ID type code parameter from the ID block of the entry

/\ Logical AND

\/ Logical inclusive OR

IGM Value set in Ignore mask

SPM Value set in Single Pick mask

STPM Value set in String Pick mask

BM Value set in Button mask

MM Value set in Marker mask

MASK COMPARISONS

The comparisons are listed below in the order in which they are made by the software,

IGNORE MASK

If IGM/\ IDDT # 0, the entry will be ignored, regardless of the contents of any other mask.
For example, if IDDT also equals the value in the Marker mask, indicating that the item
should be blinked when picked, the item will not be blinked,

SINGLE PICK MASK

1t SPM /\ IDDT # 0, the ID block of this entry is a single pick type; the ID block queued for
the last single pick type entry is replaced by the ID block of this entry.

7-18 44616800 Rev. p3

STRING PICK MASK

1t STPM /\ IDDT # 0, the ID block for this entry is a string pick type; the ID block for
this entry is queued after the ID block queued for the last string pick type entry.

BUTTON MASK

If BM /\ IDDT # 0, the ID block for this entry is a button pick type; the ID block for this
entry and any associated tracking cross coordinates, single pick ID blocks, and string pick

ID blocks are queued after the information queued for the last button entry.

MARKER MASK

It (SPM \ / STPM \/ BM) /\ MM /\ IDDT # 0, the picked display item reverses blink
status until its queued ID block is fetched by the application program.

GIMASK

This routine sets and clears the bits in the pick processing masks defined above. Each
graphics console has its own set of masks, and the programmer establishes the values of
each according to the IDDT parameter values that he wishes to use in his current application

program,

Call Statement Format:

(CALL GIMASK (NCON, IDDTC, IDDTS, IMASK)

NCON Number of the graphics console for which the mask values will be l
used; only one console can be referenced through each call

IDDTC Value of the bit pattern to be cleared from the specified pick pro-
cessing masks

IDDTS Value of the bit pattern to be set in the specified pick processing
masks

IMASK Mask indicator code; may be any one or any combination of the
following:
= 1, set or clear the indicated bits in the Ignore mask
= 2, set or clear the indicated bits in the Single Pick mask
= 4, set or clear the indicated bits in the String Pick mask
= 8, set or clear the indicated bits in the Button mask

=16, set or clear the indicated bits in the Marker mask

Several masks can be cleared or set simultaneously by placing the appropriate values in
IDDTC and IDDTS, as in the following illustration. The IMASK value used is 24g, IDDTC is
22g, and IDDTS is 104g.

44616800 Rev. 03 7-19

The f bit in ICODE of GURSET, GICOPY and GIMOVE controls the original blinking status
of the item. If f is setto 1 (ICODE = s0001bb), the item will blink; if f is not set (ICODE
= s0000bb) the item will not blink, However, the original blinking status will be reversed
(i.e., a blinking item will stop blinking, a nonblinking item will blink) if the item is queued,
provided that the marker mask is set for the item. As soon as the item is fetched, it will

resume the original blinking status.

IDDTC [oJoJoJi1JoJOoJ1]0]
IDDTS [0J1]JOoJoJoJ1]0]O]
IMASK Masks Before Call
0] 1]ololofolo]o]o Ignore Mask
L
0 0j1{0{0j1j0]1|0 Single Pick Mask
_1— 0{0/0|1{0j0|1}0 String Pick Mask
Z 0j]0j1j0{0/0j0(1 Button Mask
| 1] 0j0{0j1]0l0}1]0 Marker Mask
Masks After Call
11/0/0{0/0]0]|0]O0 Ignore Mask
0{1j0j0f{1j0(|1}0 Single Pick Mask
New mask value 010001100 String Pick Mask
0,0j1(0[0[0f0}1 Button Mask
New mask value 0y{1;{0{0/0]1}]0]0 Marker Mask

As an example of mask operation, assume that a programmer has defined grid lines as pick
type 2. Each grid line has an ID block associated with it that contains an IDDT value of 2,
Every time a grid line is picked by the console operator, the programmer wants to place the
ID block for that grid line in the queue of string pick blocks and blink the grid line. To do
this, he would make a GIMASK call with IDDTC = 0, IDDTS = 2, and IMASK = 20, This call
would set both the String Pick mask and the Marker mask equal to two.

GICIR

The GICLR routine clears all ID blocks associated with a particular graphics console from
the FETCH and WAIT queues in the 1700 Computer's memory. This prevents the applica-
tion program from acting upon the queued information after the programmer or console

operator has decided that it is no longer needed to solve his problem.

Call Statement Format:

r CALL GICLR (NCON)

NCON Number of the console that should have its queued pick
information destroyed; only one console can be referenced
with each call

7-20 44616800 Rev. 03

FETCHING ID BLOCKS FROM CONSOLE ENTRIES

ID information that has been queued as a result of console operator action can be retrieved
from two areas within the Interactive Graphics System. GIBUT (and AETSKR) fetches ID
blocks and ID information from the FETCH queues in the 1700 Computer. AELBUT, GIFSID,
and GIFID fetch ID information from the ID blocks stored in the 6000 machine by the last
GIBUT or AETSKR action.

Because the ID information is queued in two separate areas, the programmer must be care-
ful when he fetches or uses it after a call to GICLR; the GICLR call erases information from
the 1700 queues only. This means that calls to GIBUT will always fetch ID information
queued after that last GICLR call occurred, but calls to AELBUT, GIFID, and GIFSID may
reference information queued before the last GICLR call occurred. To avoid referencing
the wrong ID information, a call to GICLR should be followed by a GIBUT call with IR = 0;

after this call, the other four routines can be used without causing confusion.

AELBUT

This routine returns the ID information stored in the last button pick type ID block fetched
from the 1700 Computer by a GIBUT or AETSKR call. AELBUT enables the programmer to

investigate the parameters of the button which caused the calling of the current task overlay.

Call Statement Format:

r CALL AELBUT (IDDT, IDDC,IDWA,IDWB, IH, IV)

IDDT ID type code; returned as a result of the call

1DDC ID code word; returned as a result of the call

IDWA ID information word A; returned as a result of the call

IDWB ID information word B; returned as a result of the call

TH H axis (horizontal) coordinate of the light-pen pick which caused

the button to be queued; returned as a result of the call

v V axis (vertical) coordinate of the light-pen pick which caused the
button to be queued; returned as a result of the call

Parameters IDDC through IV are optional. '

If a keyboard key, rather than a light-button, caused the calling of the current task, IH and I
IV will contain the keyboard status bits (see Table 4-1).

44616800 Rev. 03 7-21

The IDDC parameter of any button referenced by AELBUT can be used to store the NCON

of the console to which the button is assigned. This would give the programmer a means of
determining which NCON value he should use in subsequent GIFID or GIFSID calls; if an
NCON value other than that of the last GIBUT or AETSKR call is given in a GIFID or GIFSID
call, a fatal error occurs (see Appendix B).

GIBUT

This routine fetches the first sequential button pick type ID block, and all related stringpick
type and single pick type ID blocks, from the FETCH queue of a particular graphics console,
GIBUT also returns the parameters in the button ID information to the calling task. Once a
call to GIBUT has been made, the information in the button ID block can be accessed again
only through an AELBUT call, because another call to GIBUT will cause the next set of
queued ID blocks to be fetched from the 1700 and will write over the information stored in

the 6000 Series machine. If the ID block was created by GILPKY, i.e., queued by a light-
pen key interrupt, IH and IV will contain the coordinates of the tracking cross at the time
of the interrupt.

Call Statement Format:

(CALL GIBUT (IR, NCON, IDDT, IDDC, IDWA,IDWB, IH,IV)

IR Code to control return; if IR:

il

0, wait for a button pick type ID block to be queued

= 1, return to the calling task immediately

NCON Number of the console from which the information
should be retrieved

IDDT ID type code; returned as a result of the call

1DDC ID code word; returned as a result of the call

IDWA ID information word A; returned as a result of the call
IDWB 1D information word B; returned as a result of the call
IH H axis (horizontal) coordinate of the light-pen pick which

caused the block to be queued; returned as a result of the call
v V axis (vertical) coordinate of the light-pen pick which caused

the block to be queued; returned as a result of the call

If there is no button pick type ID block queued for console NCON and the call parameter IR
equals zero, the application job will be rolled out until such a block is queued. If no such
block is queued but IR equals 1, IDDT is returned as a positive zero.

7-22 44616800 Rev. 03

GIFID

GIFID fetches the ID parameters from the last single pick type ID block stored in the 6000
input buffer area by an AETSKR or GIBUT call. This is usually the ID block of the last
single pick display item selected by the light-pen of the specified console. The NCON in a
GIFID call must agree with the NCON of the last AETSKR or GIBUT call (see AELBUT,

above).

Call Statement Format:

(CALL GIFID (NCON, IDDT, IDDC,IDWA,IDWB, IH, 1V)

NCON Number of the console from which the ID block should be

retrieved
IDDT 1D type code; returned as a result of the call
IDDC ID code word; returned as a result of the call
IDWA ID information word A; returned as a result of the call
IDWB ID information word B; returned as a result of the call
1H H axis (horizontal) coordinate of the light-pen pick which caused

the block to be queued; returned as a result of the call

v V axis (vertical) coordinate of the light-pen pick which caused the
block to be queued; returned as a result of the call

IH and IV contain the keyboard status bits, if a keyboard key, rather than a display item
pick, caused the block to be queued. The IH and IV parameters returned are the coordinates
of the position where the beam was when the interrupt occurred and are in the vicinity of
the display item.

If no single pick type ID block is stored in the 6000, IDDT is returned as a positive zero;

the values returned for the other parameters cannot be predicted.

A call to GIFID destroys the queued ID block, so that a second call to GIFID will return
IDDT = 0,

GIFSID

GIFSID fetches the ID parameters from the last string pick type ID block stored in the pro-
gram's Application Executive area by an AETSKR or GIBUT call. This is usually the ID
block of the last string pick display item selected by the light-pen of the specified console.

A single GIFSID call can be used to fetch the parameters from several associated 1D blocks,

but the programmer must dimension the ID parameter and coordinate parameter names that

he uses in his calling statement.

44616800 Rev. 03 7-23

The NCON in a GIFSID call must agree with the NCON of the last AETSKR or GIBUT call
(see AELBUT, above).

Call Statement Format:

r CALL GIFSID (NCON, N, IDDT,1DDC,IDWA, IDWB, IH, 1V)

NCON Number of the graphics console from which the information
should be retrieved

N The number of string pick type ID blocks from which the programmer
wishes to fetch parameters; if fewer than N blocks are queued in the
6000, N is returned equal to the number of blocks from which para-
meters could be returned. If N > 1, the following calling parameters
must be dimensioned

1IDDT ID type code; returned as a result of the call

1IDDC ID code word; returned as a result of the call

IDWA 1D information word A; returned as a result of the call

IDWB ID information word B; returned as a result of the call

IH H axis (horizontal) coordinate of the light-pen pick which caused

the block to be queued; returned as a result of the call

v V axis (vertical) coordinate of the light-pen pick which caused
the block to be queued; returned as a result of the call

Only 20g string pick blocks at a time are queued in the 6000.

IH and IV contain the keyboard status bits, if a keyboard key, rather than a display item pick,
caused the block to be queued. The IH and IV parameters returned after a display item pick
indicate the position where the beam was when the interrupt occurred and is in the vicinity
of the display item.

If no string pick type ID block is associated with the last button pick type 1D block stored in
the 6000, IDDT is returned as a positive zero; the values returned for the other parameters
cannot be predicted.

Once retrieved, ID block parameters are lost, so that a second call to GIFSID will return
the ID parameters from the next string pick type ID block in the 6000 queue; this is the next
block in the time sequence of string pick type queue entries.

A GICNJB call cannot be made between two GIFSID calls that are intended to return values

from the same string of ID blocks; such a call would cause a conflict in NCON and result in
a fatal error.

7-24 44616800 Rev. 03

CONTROL OF CONSOLE ALPHANUMERIC INPUT

No alphanumeric information can be entered into the system unless the application program
first provides a place on the screen to enter it and then makes a call to the 1700 requesting
it.

GIANS

This routine creates a light register on the screen so that the console operator can enter
alphanumeric information. The register can contain up to 801y characters at a time, and

can appear anywhere on the screen.

GIANS displays a line, beginning at the screen coordinates supplied by the programmer, and
extending as far across the screen as he wishes, The area immediately above this line con-
stitutes the light register. When the console operator presses an alphanumeric keyboard

key or picks a font character with the light-pen, the individual letter, symbol, or number is

displayed in the register and the corresponding portion of the line disappears.

If GIANS is called again while the console operator is entering alphanumeric information,

the current contents of the register are destroyed; each call to GIANS defines a new register.

Call Statement Format:

rCALL GIANS (NCON, NC, IH, 1V)

NCON Number of the graphics console on which the light register
should be created; only one console can be referenced through
each call

NC Maximum number of characters that will be permitted in the
register (defines the line length)

IH H axis (horizontal) coordinate of the left end of the underline

v V axis (vertical) coordinate of the left end of the underline

GIANE
This routine performs three functions, in the following order:
1. It stops the entry of alphanumeric information into the currently defined light register.
2. It then transfers the characters currently in the register to the calling program as an
array buffer; this buffer contains 10 characters (in 6000 display code) per word. The

characters are left-justified within a word and blank-fill is provided for any word not
completely filled.

44616800 Rev, 03 7-25

3. It clears all characters from the register and removes any remaining portion of

the underline.

If the number of characters entered in the register is less than the maximum number speci-
fied by the NC parameter of this call, the number entered in the register will be returned as

a result parameter.

Call Statement Format:

CALL GIANE (NCON, NC, IBUF)

NCON Number of the console from which the characters should be
fetched; only one console can be referenced through each call

NC Maximum number of characters in the character buffer. If more than
NC characters are entered, only NC characters are returned; if fewer
than NC characters are entered, NC is returned equal to the number
of characters in the character buffer.

IBUF Array buffer of picked characters; returned as a result of the call

After GIANE has been called, the programmer must call GIANS before any further alpha-

numeric information can be entered.

FRAME-SCISSORING DISPLAYS

Before displaying a line or arc on the console screen, the programmer may want to assure
that it lies entirely within a specific area (see Display Prcsentation, Section 4). He can do
this by calling either the GULINE or GUARC frame-scissoring routine and then using the re-
sults of his call in subsequent calls to Display Item Generation routines. GULINE and GUARC
do not display anything on the console screen or create an item description that can be dis-

played; this must be done by other routines.

GULINE

This routine determines the points at which a given line intersects a given frame. If the
given line lies completely within the frame, the display grid coordinates of the end points of
the line are returned to the application program. If the line is partially within the frame,

the grid coordinates of the end points of that part of the line are returned.

GULINE also scissors out lines that are too small for the graphics console operator to dis-
cern. This microscissoring is performed on any line less than six display grid units long.

The end point coordinates returned after such an operation are meaningless.

If the given line lies completely outside of the given frame, the end points returned by

GULINE are meaningless.

7-26 44616800 Rev. 03

Call Statement Format:

(1 KSHOW, IH1, IV1, IH2, IV2)

(CALL GULINE (IHCEN, IVCEN,IHCOR,IVCOR, H1,V1,H2,V2,

IHCEN,IVCEN Horizontal and vertical display grid coordinates of the
center of the frame

IHCOR,IVCOR Horizontal and vertical display grid coordinates of the
upper right-hand corner of the frame

H1,V1,H2,V2 Horizontal and vertical display grid coordinates of the
left and right ends (respectively) of the line that the pro-
grammer wants scissored; these should be floating-point
values, not Boolean octal integers

KSHOW Scissor flag, returned as a result of the call; if KSHOW:

= 0, the given line is either completely outside the
frame or has been microscissored

= 1, the given line is completely within the frame
= 2, the given line is partially within the frame and
has been scissored

IH1,IV1,IH2,IV2 Horizontal and vertical display grid coordinates of the left
and right end points (respectively) of that portion of the line
within the frame; returned as a result of the call, but mean-
ingless if KSHOW equals zero

GUARC

This subroutine determines the points at which a given arc intersects a given frame. If the
given arc lies completely within the frame, the display grid coordinates of the arc's center
and end points are returned to the application program. If the arc is partially within the
frame, the grid coordinates of the arc's center and of the end points of those parts of the arc

within the frame are returned.

GUARC also scissors out arcs that are too small for the graphics console operator to dis-
cern. This microscissoring is performed on any arc with end points less than six grid units

apart, The end point values returned after such an operation are meaningless.

If the given arc lies completely outside of the given frame, the end point coordinates re-

turned by GUARC are meaningless,

GUARC is used for both arcs and circles, since the Interactive Graphics System defines only
circular arcs. If the programmer wants to frame-scissor an arc that is almost a complete
circle, the end point values returned to him may represent up to five separate arc segments,

as in Figure 7-5.

44616800 Rev, 01 =27

FRAME ——>

: ’
S/

~ P
N — -

Figure 7-5. Example of a Frame-scissored Arc

Call Statement Format:

(1 H2, V2, KSHOW, IHC, IVC, IH1, 1V1, 1IH2, TV2)

(CALL GUARC (IHCEN, IVCEN, IHCOR, IVCOR, HC, VC, H1, V1,

IHCEN, IVCEN

IHCOR, IVCOR

HC,VC

H1,V1,H2,V2

KSHOW

IHC,1VC

1H1,1V1,1H2,1V2

Horizontal and vertical display grid coordinates of the
center of the frame

Horizontal and vertical display grid coordinates of the
upper right-hand corner of the frame

Horizontal and vertical display grid coordinates of the
center of the circular arc that the programmer wants
scissored

Horizontal and vertical display grid coordinates of the
right and left ends (respectively) of the arc that the pro-
grammer wants scissored; arcs are defined counter-
clockwise

Scissor flag, returned as a result of the call; if KSHOW:

= 0, the given arc is either completely outside of the
frame or has been microscissored

=1, through 5, it indicates the number of arc segments
within the frame

Horizontal and vertical display grid coordinates of the
center of the arc; returned as a result of the call, but
meaningless if KSHOW equals zero

Horizontal and vertical display grid coordinates of the

end points of those portions of the arc within the frame;
returned as a result of the call, but meaningless if KSHOW
equals zero

44616800 Rev. 01

Each of the last four parameter names is the first word of an array KSHOW words in length.
The coordinate value in each word corresponds to the segment of the arc that follows se-
quentially, counterclockwise, after the coordinate of the segment corresponding to the word
before it. The first word in each array contains the coordinate of the first such segment

that occurs after the initial end point specified for the programmer's original arc.

DISPLAY ITEM GENERATION

The nine routines that generate display item descriptions can be used to create a figure com-
posed of lines, a figure composed of arcs (or any arbitrary figure combining lines and arcs),
to display alphanumeric information, to define an item as a display macro, and to change the

1744 Controller's current control byte values (see Section 4).

These routines do not display anything on the graphics console screen; that can be done only
by a separate GIDISP call.

All but one of the nine routines have the following three programmer-defined parameters in

common:

IBUF An array buffer used to contain description bytes produced by the
Display Item Generation routines. The contents of each IBUF
define one display item or display macro. IBUF must be dimen-
sioned by the programmer; the recommended size is 641 60-bit
words.

MBYTE Maximum number of 12-bit bytes which the programmer will allow
to be packed in the IBUF words.

NBYTE Number of bytes currently in the IBUF words. NBYTE is set equal

to zero by the programmer every time he starts a new IBUF, and
its value is automatically corrected after each call to a generation
routine.

Each call to a generation routine produces bytes of information in addition to that supplied by
the programmer. These bytes are calls to the 1700 Package equivalent of the 6000 Package
routine, and are the first bytes packed into IBUF by the call. Because of similar extra
bytes, the IBUF used in a call to GIDISP cannot be filled so that NBYTE is greater than
3121 before the call; the limit on an IBUF used in a call to GIMAC is 3181 bytes before
the call.

Under certain conditions, a non-fatal error may occur and cause a generation call to be

ignored (see Appendix B); in this case, the extra bytes are not placed in IBUF.

If a generation routine is called and its actions cause NBYTE to exceed MBYTE, IBUF will
only include the last MBYTE description bytes placed in it. This condition produces a non-

fatal error diagnostic and the overflow bytes are lost. A statement such as:

44616800 Rev. 01 7-29

IF (NBYTE.LT.MBYTE) 10, 1000

could be used to check for the buffer overflow condition and avoid later problems caused by
a truncated IBUF.

GURSET

This routine establishes the initial conditions for a display item which is described in sub-
sequent generation routine calls. GURSET places a reset sequence specified by the pro-
grammer in an IBUF description buffer — which is then filled with description bytes by

calling other Display Item Generation routines.

The reset sequence consists of bytes that set the cathode beam intensity, item light-pen
sensitivity, item blinking capability, and the display grid coordinates to which the beam
should be moved (with the beam off) but it mav cause flicker or blinking of the displayv as

well as fill up the refresh buffer in the controller if many GURSETS are used.

The reset sequence is the equivalent of several 1744 command and control bytes (see Section
4).

A GURSET call should precede all other generation routine calls when a new display item
description buffer is started. GURSET can also be used to place reset information in a
partially filled IBUF if the programmer wishes to move the beam or change intensity in the

middle of a display item; an example of these uses is given in the paragraphs concerning
GUAN, below.

A display macro IBUF does not require a reset sequence.

Call Statement Format:

(CALL GURSET (IH,IV,ICODE,IBUF,NBYTE, MBYTE)

IH, IV Horizontal and vertical display grid coordinates of the point at
which the cathode beam should be repositioned
ICODE Reset control code bit pattern of the form: s00tfbb B I
i.e.: 10 3 B
s = 0, disable item's sensitivity to light-pen strike
= 1, enable item's sensitivity to light-pen strike
f = 0, don't blink item when it is displayed I
= 1, blink item when it is displayed
bb = 01, display item with beam at low intensity
= 10, display item with beam at medium intensity
= 11, display item with beam at high intensity
t = 1, terminate to next Reset I
= 0, no termination, next Reset

7-30 44616800 Rev. 03

IBUF Description buffer for this display item; contains reset information
as a result of this call

NBYTE Number of bytes currently in IBUF |

MBYTE Maximum number of bytes the programmer will allow in IBUF

GUAN

This routine packs a description of alphanumeric information into a display item description
buffer. A subsequent GIDISP call will display the information as lines of characters on the

console screen.

Although a single GUAN call will pack up to 2551 characters into an IBUF, there is a
smaller practical limit for a single call. Each character occupies an area on the screen
that is 30g grid units square. This limits the maximum length of a line defined by a GUAN
call to 17019 characters; if more than 1701 characters are placed in IBUF for a single

line, wrap-around will occur on the display.

Because a GUAN call generates a return jump to a 1700 macro, this routine cannot be used

to place alphanumeric information into a display macro IBUF.

Call Statement Format:

[CALL GUAN (IBCD,NC,IBUF,NBYTE, MBYTE)

IBCD First word of the array of characters which are to be displayed;
10 per array word in left-justified 6000 internal display code

NC Number of characters from IBCD that should be packed by this call;
if NC > 2551, the extra characters will not be packed in IBUF

IBUF Description buffer for this display item; the packed alphanumeric
data is returned as a result of the call
NBYTE Number of bytes currently in IBUF; updated as a result of the call
MBYTE Maximum number of bytes the programmer will permit in IBUF
Each line of alphanumeric information should be defined by a separate GUAN call, but at

least seven full lines can be placed in one IBUF as a single display item. The following

example illustrates this:

o
®
COMMON IBUF (63), IBCD (49)

44616800 Rev. 03 7-31

NBYTE =0
MBYTE = 312
ICODE = 102B

READ 10, (IBCD (N),N=1,49)
10 FORMAT (8A10/)
CALL GURSET (4200B, 400B, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN (IBCD (1), 70, IBUF, NBYTE, MBYTE)
CALL GURSET (4200B, 350B, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN (IBCD (8), 70, IBUF, NBYTE, MBYTE)
°

Note that the lines of alphanumeric information in the above example are not 170 characters
long. Because the console screen is circular, the maximum line length depends on the
point of origin of the line on the screen; a 170 character line would have to originate at (or
very near) IH = -2047, IV = 0000, An 88-character line will fit almost anywhere on the |

screen.

If the programmer wishes to display a character other than those defined for the 274 Console
screen (see Appendix C), he cannot use GUAN unless he changes the macro address table in

the 1700 Basic Graphics Package equivalent of GUAN; each character is defined as a display
macro by the latter routine.

GUSEGS

This routine generates the description of a line segment and packs it in an IBUF description
buffer. GUSEGS can be used to generate the description of a single line, or the description
of the first line segment in a figure; in the latter case, the parameters in the GUSEGS call
can be used to give this first line segment an appearance different from that of the rest of
the figure.

Although GUSEGS can be used to initialize a figure (which is generated by later calls to
other routines), it does not place a reset sequence in IBUF. If IBUF does not already con-
tain a reset sequence, a GUSEGS call must be preceded by a GURSET call; a macro buffer

does not need a reset sequence.

Call Statement Format:

r CALL GUSEGS (IH1,1V1,IH2,1V2,IBEAM,ISTYLE,IBUF,NBYTE, MBYTE)

IH1,1IV1 Horizontal and vertical display grid coordinates for starting
point of the line segment

7-32 44616800 Rev. 03

IH2,1V2 Horizontal and vertical display grid coordinates for the end
point of the line segment

IBEAM Beam control parameter that determines the appearance of
this line segment only; if IBEAM:
= 0, this segment is not displayed
= 1, this segment is displayed according to ISTYLE

The following values can be used when figure generation is
finished; if IBEAM:

= -0, turn beam off and leave off after last end point
coordinates are processed

= -1, turn beam on and leave on after last end point
coordinates are processed

ISTYLE Style control parameter that determines the appearance of this
segment and any figure generated by subsequent GUSEG calls;
the degree of solidity of the line depends on the number of set
bits in this parameter, as in the following sample values:

=0, -0, or 7777B, segment is solid
5252B, segment is dashed
6666B, segment is broken

1

7272B, segment has appearance called center line by
engineers

IBUF Description buffer for this display item; contents returned depend
on the call

NBYTE Number of bytes currently in IBUF; an updated value is returned
as a result of this call

MBYTE Maximum number of bytes the programmer will permit in IBUF

If the programmer wants to frame-scissor his figure, the IH1, IV1, IH2, IV2 parameters

passed to this call should contain the values returned by a GULINE call.

GUSEGI

This routine is used to initialize a figure that is generated by later calls to GUSEG. GUSEGI
does not generate the description of a line segment, as GUSEGS does, but merely determines

the starting point of a figure and controls its appearance.

GUSEGI does not place a reset sequence in IBUF. If IBUF does not already contain such a
sequence, a GURSET call must precede the call to GUSEGI; a macro IBUF need not contain

a reset sequence.

Call Statement Format:

(CALL GUSEGI (IH1,1V1,ISTYLE,IBUF,NBYTE, MBYTE)

44616800 Rev. 01 7-33

IH1,IV1 Horizontal and vertical display grid coordinates for the starting
point of the figure

ISTYLE Style control parameter that determines the appearance of the
entire figure; the solidity of the lines in the figure depends on the
number of set bits in this parameter, as in the sample values
given for GUSEGS

IBUF Description buffer for this display item; the contents returned
depend on the results of this call

NBYTE Number of bytes currently in IBUF; an updated value is returned
as a result of this call

MBYTE Maximum number of bytes that the programmer will permit in IBUF

GUSEG

Each call to GUSEG generates the description of a single line segment and packs it in an
IBUF description buffer. GUSEG does not initialize a figure and must be preceded by either
a GUSEGS or GUSEGI call, or else a fatal error occurs.

The appearance of a figure generated by calls to GUSEG depends on the ISTYLE value used
in the initial GUSEGS or GUSEGI call, and on the beam control code of each GUSEG call.
The last point specified in a preceding call to GUSEGS, GUSEGI, or GUSEG is used as the
starting point for the line segment generated by the current GUSEG call.

Call Statement Format:

(CALL GUSEG (IH, v, IBEAM)

IH, IV Horizontal and vertical display grid coordinates for end point
of this segment

IBEAM Beam control parameter that determines the appearance of this
line segment only; if IBEAM:
= 0, this segment is not displayed
= 1, this segment is displayed according to ISTYLE

The following values can be used when figure generation is
finished; if IBEAM:

= -0, turn beam off and leave off after last end point
coordinates are processed

= -1, turn beam on and leave on after last end point
coordinates are processed

The IBUF array and MBYTE parameter used by a GUSEG call are the ones specified in the
last GUSEGS or GUSEGI call; each GUSEG call also automatically updates the last NBYTE

value.

7-34 44616800 Rev., 01

GUSEGA

In contrast to the GUSEG routine, which must be used in conjunction with GUSEGS or GUSEGI,
the GUSEGA routine performs its own initialization and then generates the description of an
entire figure. One GUSEGA call can thus be used to replace many GUSEG calls if none of the

parameters defining the figure depend on a console operator's actions.

GUSEGA does not place a reset sequence in the IBUF description buffer. If IBUF does not
already contain such a sequence, a GURSET call must precede the call to GUSEGA; a macro
IBUF need not contain a reset sequence.

Call Statement Format:

(CALL GUSEGA (IH,1V,IBEAM,N,ISTYLE,IBUF,NBYTE, MBYTE)

IH, IV First words of arrays containing the horizontal and vertical
(respectively) display grid coordinates for the end point of each
figure segment; this routine uses the end point of the last segment
as the starting point of the next, so each segment after the first
requires only one pair of coordinates

IBEAM First word of an array containing the beam control code for each
figure segment; if an array word;

= 0, the segment is not displayed
= 1, this segment is displayed according to ISTYLE

The following values can be used when figure generation is
finished; if IBEAM:

= -0, turn beam off and leave off after last end point
coordinates are processed

= -1, turn beam on and leave on after last end point
coordinates are processed

N Number of figure segments to be generated by the current call

ISTYLE Style control parameter that determines the appearance of the
entire figure; the solidity of the lines in the figure depends on the
number of set bits in this parameter, as in the sample values
given for GUSEGS

IBUF Description buffer for this display item; the contents returned
depend on the results of the call

NBYTE Number of bytes currently in IBUF; an updated value is returned
as a result of the call

MBYTE Maximum number of bytes that the programmer will permit in IBUF

N should always be one less than the number of values in the IH and IV arrays, because the
first two words in IH and IV define only one line segment; i.e., IH(1), IV(1) is the starting

point and TH(2), IV(2) is the end point of the first segment in the figure. For the same

44616800 Rev. 01 7-35

reason, IBEAM; always describes the segment defined by IH; | 1> Vi + 15 IBEAM (N+1)
therefore does not describe a segment, but can be set equal to minus zero to turn the cathode

beam off when the figure is completed.

GUARCG

This routine generates a description of several arcs or a circle and packs the information in
an IBUF description buffer. GUARCG can define up to five separate or connected circular

arcs, deployed counterclockwise around a common center.

If the programmer wishes to frame-scissor a circular figure, the array of end points used
in the GUARCG call should be the same as the array produced by a previous call to GUARC. l

GUARCG does not place a reset sequence in IBUF. If the description buffer does not already
contain such a sequence, a call to GURSET should precede the GUARCG call; a macro IBUF

need not contain a reset sequence.

Call Statement Format:

r CALL GUARCG (KSHOW, I1HC,IVC,IH1,1V1,IH2,IV2,ISTYLE, IBUF, NBYTE, MBYTE)
KSHOW Number of arc segments to be generated by this call; must be
less than 6

IHC,IVC Horizontal and vertical display grid coordinates for the common
center of the arcs

IH1,IV1 First words of arrays containing the horizontal and vertical
display grid coordinates for the starting point of each arc segment

IH2,1V2 First words of arrays containing the horizontal and vertical dis-
play grid coordinates for the end point of each arc segment

ISTYLE Style control parameter that determines the appearance of all the
arc segments; the solidity of the lines depends on the number of
bits set in the parameter, as in the sample values given for GUSEGS

IBUF Description buffer for this display item; the contents returned
depend on the call

NBYTE Number of bytes currently in IBUF; an updated value is returned
as a result of the call

NBYTE Maximum number of bytes that the programmer will allow in IBUF

7-36 44616800 Rev. 03

GUBYTE

This routine is a general purpose one., GUBYTE is used to place information into an IBUF
description buffer when the information is a type other than that processed by the regular

Display Item Generation routines.

The information packed by GUBYTE should consist solely of the command and control bytes

described in Section 4.

GUBYTE transfers the lowest 12 bits from each word in an input array to the specified IBUF.
Each 12-bit byte is left-justified next to the last byte entered in the buffer, so that IBUF is
packed with five bytes in each of its words (this is true of the buffers produced by all of the

Display Item Generation routines).

Call Statement Format:

(CALL GUBYTE (IBYTE, L, IBUF, NBYTE, MBYTE)

IBYTE First word of the array containing one description byte at the
lower end of each word

L Number of consecutive words in IBYTE from which bytes are
to be transferred

IBUF Description buffer for this display item; contents returned
depend on the call

NBYTE Number of bytes currently in IBUF; an updated value is re-
turned as a result of the call

MBYTE Maximum number of bytes which the programmer will allow in IBUF

GUMACG

This routine places a macro call description into an IBUF description buffer. This allows
a display item to use display macros that were previously defined by calls to GIMAC. Each
call to GIMAC sends an IBUF to the 1700, where its contents are translated, converted into
a display byte stream, and stored in the memory of the 1744 Controller (see Section 4).
GIMAC then returns an associative address for that macro to the calling program. The
macro is not displayed until a GUMACG call and a subsequent GIDISP call place a calling
sequence for it into the display byte stream of a regular display item. This is done by in-
serting the sequence into the IBUF which describes the regular display item of which the

macro is to be a part.

44616800 Rev. 01 7-37

Call Statement Format:

CALL GUMACG (MAD1, L, IBUF,NBYTE, MBYTE)

MAD1 First word of an array containing macro address MAD para-
meters returned by previous calls to GIMAC

L Number of consecutive MAD parameters from MADI that are
to be placed in IBUF by this call

IBUF Description buffer for this display item; the contents returned
depend on the call

NBYTE Number of bytes currently in IBUF; an updated value is re-
turned as a result of this call

MBYTE Maximum number of bytes that the programmer will allow to
be placed in IBUF

STORING AND DISPLAYING ITEMS

Once the description of a display item is finished, the filled IBUF is placed in the display
buffer of the 1744 Controller through a GIDISP or GIMAC call; GIDISP defines the contents

of IBUF as a regular display item, which is then shown on the console screen; GIMAC defines
the contents as a display macro, which does not appear on the screen unless a call to it

occurs in a regular display item.

After the item is placed in the display buffer, it can be:

° Duplicated on another part of the screen, with a new reset sequence and a new ID
block

° Moved to another part of the screen, with a new reset sequence and a new 1D block

e Erased from the screen and the display buffer

GIMAC

This routine sends the contents of an IBUF description buffer to the 1700 Computer, where
its contents are translated and then converted into a display byte stream by the 1700 Package
routines, The 1700 version of GIMAC stores this display byte stream as a display macro

in the display buffer of the specified console's controller.

GIMAC does not display the macro on the console screen, but returns the associative
address of the macro to the programmer. This address parameter is then used by
GUMACG to generate a macro call in the IBUF of a regular display item. A subsequent
call to GIDISP for the regular display item also displays the macro.

44616800 Rev. 03

Note that the ID block entered into the 1700 queue,when a macro is picked,is the ID block of

the regular display item which called the macro.

There is only one level of macros within the Interactive Graphics System. If an IBUF is
being used for the description of a macro, it cannot contain a call to another macro; this
means that GIMAC can never be called to process an IBUF that has been used for previous
calls to GUAN or GUMACG.

Call Statement Format:

[CALL GIMAC (NCON, IBUF,NBYTE, MAD)

NCON Number of the console to which the macro should be sent; '
only one console can be referenced through each call

IBUF Description buffer for this macro; contents returned depend
on the call

NBYTE Number of bytes currently in IBUF

MAD Display buffer associative address of the new macro; returned
as a result of the call

GIMACE

GIMACE removes one or more macros from a console controller's display buffer, and frees

that area of the buffer for later use.

If GIMACE is called to erase a macro that is used by one of the regular display items, the

GIMACE call will have unpredictable — and probably chaotic — results on the screen. The
programmer can avoid this problem by preceding a GIMACE call with a call to GIERAS; the
GIERAS call erases all regular display items which use the macro that the programmer

wants to erase.

Call Statement Format:

MADZ, ..., MAD)
n

(CALL GIMACE (MAD;,

MADi Display buffer address of the macro to be erased; a right
parenthesis or a MAD, equal to minus zero may be used to
end the parameter lis

If a MADi equal to positive zero occurs in the middle of the call's parameter list, the ad-
dresses following it will be ignored and their associated macros will not be erased. A zero

is returned in the MADi parameter of each macro that has been erased.

44616800 Rev. 03 7-39

GIDISP

This routine sends the contents of an IBUF description buffer to the 1700 Computer, where
its contents are translated and then converted into a display byte stream by the 1700 Package
routines. The 1700 version of GIDISP stores this display byte stream in the display buffer
of the specified console's controller, and associates an ID block with it. GIDISP then re-

turns an associative address to the calling program.

This address is the relative address of the regular display item within a table of actual dis-
play buffer addresses maintained by the 1700 Package equivalent of GIDISP; the associative

address is used by the programmer for all subsequent references to the display item.

GIDISP is the only routine in the 6000 Basic Graphics Package which can display a new item

on the console screen.
The IDDAD associative address parameter has the following structure:

21 15 0
NCON INDIRECT POINTER VALUE

NCON Octal number of the console that the item is assigned to

Call Statement Format:

(CALL GIDISP (NCON, IBUF,NBYTE, IDDAD, IDDT, IDDC, IDWA,IDWB)

NCON Number of the graphics console on which the item should be
displayed; only one console can be referenced through each call

IBUF Description buffer for this display item; contents returned depend
on the call parameters

NBYTE Number of bytes currently in IBUF

IDDAD System-defined associative address of the display item; returned
as a result of the call

IDDT ID type code; used to specify how the queue handler will treat the
item's ID block (see GIMASK)

I1DDC 1D code word;8 the contents assigned by the programmer are
0<IDDC< 2 -1

IDWA 1D information word A; contents are arbitrary unless the item ID
block is used by AETSKR

IDWB 1D information word B; contents are arbitrary unless the item ID
block is used by AETSKR

7-40 44616800 Rev. 03

A standard display item identification byte stream is formed from parameters IDDT through
IDWB and is added to the end of the display byte stream for the item in the 1744's display
buffer; if any of the last four parameters is set equal to -0, that parameter and any sub- |
sequent ones are omitted from the identification byte stream. An item defined as a button
and processed by AETSKR must have an IDWA; if none exists, AETSKR produces a diagnostic
(see Appendix B) and no task is loaded.

A task name used by AETSKR must be right-justified within both the IDWA and IDWB words,

but must be left-justified as a whole.

For example, the name TSK should be placed in bits 23 through 6 of word IDWA, with blank
fill in bits 5 through 0. This could be done by the statement

IDWA = 4RTSK
Note that the statement

IDWA = 3RTSK
would produce an invalid task name by placing 0TSK in IDWA, AETSKR does not handle a
task name that begins with a blank, so this condition would abort the job.

A longer name such as TSKNAM would have to be stored so that TSKN filled IDWA and bits
23 through 12 of IDWB contained the characters AM. This could be done by the statements
IDWA = 4RTSKN
IDWB = 4RAM
Note that the statement
IDWB = 2RAM

il

would produce an invalid task name by placing 00AM in IDWB; AETSKR would not recognize
the resulting TSKNOOAM as the task called TSKNAM.

The programmer cannot allow NBYTE to exceed 31219 bytes. The EXPORT graphics output
buffer contains space for 320 bytes of information, and the identification bytes fill eight of
them (the equivalent GIMAC bytes fill two). Since the first two bytes of every IBUF are re-
served for a function code and the NBYTE value, no more than 3101qg description bytes can be

placed in the IBUF of a regular display item, and no more than 3161 in a macro IBUF.

GIERAS

The GIERAS routine removes one or more display byte streams from the display buffers of
the consoles. This erases the display item associated with each byte stream, and also re-
moves any of the items' ID blocks currently in the FETCH or WAIT queues — regardless of
the blocks' pick types.

44616800 Rev. 03 7-41

The programmer uses the associative addresses (produced by previous calls to GIDISP) to

indicate the display items that he wants GIERAS to erase from the console screen.

Call Statement Format:

(CALL GIERAS (IDDAD,, IDDAD,, . . . , IDDAD,)

IDDAD; Associative address of the display item to be erased; an IDDAD.
equal to minus zero, 0, or a right parenthesis may be used to
end the parameter list
If an IDDADi equal to minus zero occurs in the middle of the call's parameter list, the
addresses following it are ignored and their associated display items are not erased; if an

IDDAD; equal to positive zero occurs, it is not processed but subsequent addresses are.

A zero is returned in the IDDADj parameter of each display item that has been erased.

GICOPY

The GICOPY routine duplicates an existing display item, assigns a new ID block and a new
reset sequence to the copy, and displays the copy at a new location on the console screen or
on the screen of a different console. The duplication process does not affect the original
display item.

Note that the reset sequence changed by a GICOPY call is the first such sequence placed in
the IBUF of the original item; if the description of the original display item contains more
than one reset sequence, the values assigned to the reset sequence of the copy should not be
changed.

Display of the duplicate item begins at the same point within the item as it begins in the
original item; i.e., if the original item was described beginning in its lower left-hand

corner, then the duplicate will also begin there.

Call Statement Format:

(CALL GICOPY (IDDADI,NCON, IH,1V,ICODE,IDDAD, IDDT, IDDC,IDWA,IDWB)

IDDADI Associative address of the item which is to be duplicated
NCON Number of the graphics console on which the duplicate display

item should appear; only one console can be referenced through each
call

7-42 44616800 Rev. 03

IH, IV Horizontal and vertical display grid coordinates for the reset
sequence of the duplicate item; these are the absolute coordinates
of the copy's point of origin

ICODE Reset control code to be assigned to the copy; the s000fbb bit
pattern has the same meanings as those defined for GURSET

IDDAD Associative address assigned by the system to the duplicate display
item; returned as a result of this call

IDDT ID type code to be assigned to the ID block of the duplicate item;
used to specify how the queue handler will treat the duplicate
item's ID block

IDDC ID code word for the ID block of the duplicate item; the contents
assigned by the programmer are 0 < IDDC < 2° - 1

IDWA ID information word A for the ID block of the duplicate item;
contents are arbitrary unless the item ID block is processed by
AETSKR (see GIDISP)

IDWB ID information word B for the ID block of the duplicate item; con-
tents are arbitrary unless the item ID block is processed by
AETSKR (see GIDISP)

Any of the call statement parameters IH through IDWB (not including IDDAD) may be set
equal to -0, which will cause that parameter for the copy to be left as it is in the original
display item. The parameters IDDT through DIWB may be omitted; this has the same effect
as setting them equal to -0,

If there is no controller memory available for the display byte stream of the copy,

a buffer overflow message will be produced at the 1700 operator's console (see Table

9-86).

GIMOVE

The GIMOVE routine can change the location, reset sequence, and/or ID block information
of an existing display item. This allows the programmer to change such features of a
display item as its pick type, intensity, sensitivity to light-pen pick, and whether or not it

can be blinked,

Note that the reset sequence changed by a call to GIMOVE is the first such sequence placed
in the item's IBUF; if the description of the item contains more than one reset sequence,
1H, IV, and ICODE in the following call should be set equal to -0, since the item cannot be

moved,

44616800 Rev. 03 7-43

Call Statement Format:

(CALL GIMOVE (IH, 1V,ICODE, IDDAD, IDDT, IDDC, IDWA,IDWB)
|

IH, IV New horizontal and vertical display grid coordinates for the reset
sequence of the item; these are the absolute coordinates of the
item's point of origin

ICODE New reset control code for the item; the s000fbb bit pattern has
the same meanings as those defined for GURSET

IDDAD Associative address of the display item; not changed by the call

1IDDT New ID type code for the item's ID block; used to specify how the

queue handler will treat the block

IDDC New ID code word for the item's ID block; contents assigned by the
programmer are 0 < IDDC < 28 -1

IDWA New ID information word A for the item's ID block; contents are
arbitrary unless the block is processed by AETSKR (see GIDISP)

IDWB New ID information word B for the item's ID block; contents are
arbitrary unless the block is processed by AETSKR (see GIDISP)

Any of the call statement parameters IH through IDWB (not including IDDAD) may be set
equal to -0, which will cause that parameter to retain its present value. The parameters

IDDT through IDWB may be omitted; this has the same effect as setting them equal to -0.

CONTROL AND USE OF THE TRACKING CROSS

Each graphics console in the Interactive Graphics System is equipped with a light-pen track-
ing feature called the tracking cross. This cross always exists somewhere on the console
screen, but can be made invisible if the programmer wishes. The cross is a system-defined
display item, described by a byte stream that is automatically placed in the display buffer

of each console's controller whenever the console is initialized.

The display grid coordinates of the cross are kept in a fixed location in the display buffer
(see Section 4). The 6000 Basic Graphics Package contains routines that set and fetch these

coordinates, so that the cross location can be determined or changed by the programmer.

The cross and light-pen are used together in the following manner. The pen is used to pick
the cross at some location on the screen. The cross is then automatically "attached' to the
pen so that it moves with, or "tracks'', the light-pen as the pen is moved across the screen.
When the pen is stopped and the cross comes to rest, the location of the cross defines the
point of a light-pen pick. If the pen and cross are moved across a display item, no light-pen
pick is recorded; the cross must be motionless before a pick can be detected. This feature

allows the cross to be moved across the screen without causing unwanted light-pen picks.

7-44 44616800 Rev. 03

Two routines are also provided in the 6000 Package to attach a display item or display macro
to the tracking cross. Such an item or macro is centered around the cross and moves with

it across the screen until detached by another call.

GITCON

GITCON turns the tracking cross on (makes it visible) and initially locates it anywhere on
the screen that the programmer wishes. The console operator can then use the cross for

the tracking procedure described above.

A call to GITCON will reposition the tracking cross at the location specified in the call, even
if the console operator is using it when the call is made, No repositioning will occur, how-
ever, if a button ID block is queued for the specified console; the assumption is made that a
queued button will initiate some action which requires the tracking cross to be at its present

coordinates.

Call Statement Format:

CALL GITCON (NCON, IH, IV)

NCON Number of the graphics console on which the tracking cross l
should appear or be relocated; only one console can be
referenced through each call

IH,IV Horizontal and vertical display grid coordinates of the point at
which the cross should be placed; the cross is centered around
this point

The IH and IV parameters may be omitted from any call to GITCON. IfIH and IV are not
supplied in a call, GITCON will display the cross at the current coordinates.

GITCOF

GITCOF returns the display grid coordinates of the cross associated with the last button pick
ID block retrieved from the 1700 FETCH queue. These coordinates represent the location
of the cross when that button was picked; they are not necessarily the coordinates of the

cross at the time of the call to GITCOF, or the coordinates of the last button picked.

Call Statement Format:

(CALL GITCOF (NCON, IH,1V)

NCON Number of the graphics console to which the call is addressed: I
only one console can be referenced through each call

IH,1V Horizontal and vertical display grid coordinates of the tracking cross
from the last button pick ID block fetched; returned as a result of the
call

44616800 Rev. 03 7-45

GITIMV

GITIMV attaches a previously defined display item to the tracking cross so that the item
moves with the cross across the screen. The item is centered around the point defining the

coordinates of the tracking cross; i.e., the cross and item have a common center point.

Call Statement Format:

(CALL GITIMV (NCON, IDDAD)

NCON Octal number of the graphics console to which this call is addressed;
only one console can be referenced through each call

IDDAD Associative address of the display item which should be attached to
the tracking cross

The programmer should assure that the IDDAD value he supplies in his call is defined for
console NCON; if the same display item has been created at several different consoles, it
will have as many different associative addresses. Use of the wrong IDDAD value aborts
the job (see Appendix B).

A call to GITIMV can also be used to detach a display item from the tracking cross. If
IDDAD is set equal to zero, GITIMV will detach any item currently attached to the cross,

and the item will remain at the place on the screen that it occupied when the call occurred.

GITMMV

This routine attaches a previously defined display macro to the tracking cross so that the
macro moves with the cross across the screen. A call to GITMMYV displays the macro and
centers it around the tracking cross; i.e., the cross and the macro have a common center

point.
If the macro contains a reset sequence, it will not be moved when the tracking cross is moved.

Call Statement Format:

CALL GITMMV (NCON, MAD)

NCON Octal number of the graphics console to which this call is ad-
dressed; only one console can be referenced through each call

MAD Associative address of the macro which should be attached to
the tracking cross

A call to GITMMYV can also be used to detach a display macro from the tracking cross. If
MAD is set equal to zero, GITMMYV will detach any macro currently attached to the cross,
and the newly displayed macro will remain at the place on the screen that it occupied when

the call occurred while the previous macro is erased.

7-46 44616800 Rev. 03

The same restrictions on MAD/NCON agreement apply to this call as apply on IDDAD/NCON
agreement in a call to GITIMV.

USE OF THE DATA HANDLER

Seven of the routines in the 6000 Basic Graphics Package manipulate, store, and retrieve
data from files organized in a plex data structure. One or more such local files can be de-
fined for each graphics application job. There is an installation parameter, MAXNFILE,

which specifies the maximum number of files that can be used by a single job.

The programmer uses one file at a time, and does not access that one directly. Instead, he
uses in-core duplicates of the record blocks within the mass storage file (a block is a fixed-
length record; the programmer can specify an approximate length for each block in his
DMINIT call). He specifies the number of in-core duplicates to be kept, and the Data Handler
selects that number of the most frequently used blocks from the file and duplicates them in
central memory. The Data Handler determines on which block space is allocated so that

data can be written, and writes one in-core block into mass storage whenever it is necessary
to read another into central memory so that the data it contains can be accessed. The pro-
grammer does not need to know which blocks have duplicates in central memory at any given
time; for the purpose of data storage and retrieval, he can consider that the entire file always

resides in central memory.

COMPONENT CODES

Data is stored within the mass storage file in word or bit spaces of variable length; these
variable memory areas are called components, and make up the beads of the plex data struc-
ture. Each component within a bead is accessed according to the value of bit patterns called

component codes.

All component codes begin with an octal component type number (of which there are nine),
followed by the addressing needed for that component. These codes permit the programmer
to use every bit in every word of each bead — a capability that FORTRAN does not ordinarily
have. The codes enable him to enter bit pattern values in the bead without disturbing its

other contents.

A given value can be inserted in a bead or retrieved from it in a number of ways; the method
and component code used depend on the personal preference of the applications programmer
and the requirements of his program. For instance, code 6 can be used to perform the
functions of all the other component codes, but not necessarily in the most efficient manner.
An operation such as the retrieval of the connecting bead addresses is best done with com-

ponent code 10 and a call to DMGET.

44161800 Rev, 01 7-47

The programmer should use a shifting operation to dynamically define his component code
values, as opposed to the use of an expression such as
ICOMP (I) = ICOMP (I-1) *2%*N

which produces unpredictable results.
The component codes and their formats are:
35 29 17 0

Type 1 000001 / / // Word Number

Type 1 code represents a 60-bit word as a bead component. The code can be written as
010000wordxxB in Boolean octal:

01 Component type

wordxx Position of the word within the bead, expressed as a word number;
the first word in a bead is word number 1

35 29 17 0

Type 2 000010 / // Word Number

Type 2 code represents a 120-bit double-precision floating-point value as a bead component;

this value is not checked for validity as a floating-point number when it is stored or retrieved.

The code can be written as 020000wordxxB in Boolean octal:

02 Component type

wordxx Position of the first 60-bit word of the value within the bead, expressed
as a word nummber; the first word in a bead is word number 1

35 7 0

29 1
Type 3 000011 / /// £2§ Character Number

Type 3 code represents a 6-bit alphanumeric or special character as a bead component. The

code can be written as 030000charxxB in Boolean octal:

03 Component type

charxx Position of the character within the bead, expressed as a character
number; the first character in a bead is character number 0

35 29 17 0
Type 4 000100 Character Number Word Number

Type 4 code represents a 6-bit alphanumeric or special character within a word or word

array as a bead component. The code can be written as 0O4charwordxxB in Boolean octal:

04 Component type

char Position of the character within the word or word array, expressed as a
character number; the first character in the first array word is character
number 0

7-48 44616800 Rev, 01

wordxx Position of the first word of the array within the bead, expressed as a word
number; the first word in any bead is word number 1
35 29 23 17 0
Type 5 000101 Shift Bits Word Number

Type 5 code represents a pattern of bits within a word as a bead component.

The code can

be written as 05shbtwordxxB in Boolean octal:

05 Component type

sh Number of bits to shift right in order to right-justify the bit pattern
within the word

bt Number of bits in the bit pattern

wordxx Position of the word containing the pattern within the bead, expressed as

a word number; the first word in any bead is word number 1

The bit pattern stored or retrieved by the type 5 code is not sign extended; the pattern stored
or retrieved by type 6 code is sign extended. In a bit pattern that is not sign extended, the
left-most bit in the pattern is part of the octal value of the pattern, while in a sign extended
pattern the left-most bit indicates the sign of the value represented by the rest of the pattern's

bits. For example: if the bits Enu or the bits amma are retrieved as patterns that

are not sign extended, both groups of bits represent the value 10g; however, if the same bits

are retrieved as sign extended patterns, mmn represents the value -7g and mﬂmn

represents +10g. This means that a negative octal value can be stored in its 1's complement

form by using type 6 code.

35 29 23 17 0
000110 Shift Bits Word Number

Type 6

Type 6 code represents a sign extended pattern of bits within a word as a bead component.

The code can be written as 06shbtwordxxB in Boolean octal:

06 Component type

sh Number of bits to shift right in order to right-justify the bit pattern
within the word

bt Number of bits in the bit pattern

wordxx Position of the first word containing the pattern within the bead, ex-

pressed as a word number; the first word in any bead is word number 1

35 29 17 0
000111 Word Number

Type 7 Array Length

Type 7 code represents an array of 60-bit words as a bead component. The code can be

written as 07arylwordxxB in Boolean octal:

44616800 Rev, 01 7-49

07 Component type
aryl Length of the array in words

T

wordxx Position of the first word of the array within the bead, expressed as a
word number; the first word in any bead is word number 1

35 29 17 0
Type 8 001000 / A Word Number

Type 8 code represents the 18-bit address portion of a word as a bead component. The code

can be written as 100000wordxxB in Boolean octal:

10 Component type

wordxx Position of the word within the bead, expressed as a word number;
the first word of any bead is word number 1

N S N

Type 10 code represents the hook (pointer) address of the next bead in a string. The code
can be written as 120000000000B.

A fragment of a sample program, showing the use of these component codes, is given after

the following routine descriptions.

DMINTT

This Data Handler initializing routine establishes new or changes previously defined mass
storage file and core storage parameters. DMINIT is used to control the number of duplicate
blocks the Data Handler maintains in central memory, to specify which file the programmer

is currently using, and to establish an approximate length for each block in the file.

Call Statement Format:

(CALL DMINIT (IFILE,NBLK, NBSIZE)

IFILE Alphanumeric name of the file which the Data Handler should
use; this identifier is one to seven characters long, left-justified
within the IFILE word, and in a form and format that SCOPE will
recognize as a valid file name

NBLK Number of in-core duplicate blocks to be maintained; must be >
2 for the Data Handler to operate efficiently

NBSIZE Approximate size of the data blocks, expressed as
number of 60-bit words

7-50 44616800 Rev. 03

The NBSIZE value specified by the application programmer is rounded up to the next highest
multiple of 100g-1; this rounding up provides for the most efficient use of the 6000 system
disk space and will not affect program execution. For example, if the programmer specifies
NBSIZE equal to 90 (132g), the blocks will be assigned a size of 12719 (177g).

If the programmer omits NBSIZE from his DMINIT calling sequence, the Data Handler uses

an installation parameter to determine block size.

NBLK should be chosen carefully. If too many duplicates are maintained, the program ties
up an excessive amount of central memory with its data file; if NBLK is too small, the pro-
gram's response time deteriorates because the Data Handler must access mass storage so

often. The sole purpose of maintaining duplicate blocks in central memory is to avoid these

problems.,

The programmer can use DMINIT to switch files during program execution. If DMINIT is
called with an IFILE different from the one used in a previous call, the Data Handler re-
places each mass storage block in the old file with its in-core duplicate if their contents
differ.** The Data Handler then uses the new file when processing all subsequent calls from

the programmer,

DMINIT can also be used to change the number of duplicate blocks maintained in central
memory for the current IFILE. FEach call to DMINIT will change the field length of the job

as necessary to accommodate any additional blocks.

Any call to DMINIT may change the field length of the job, since the in-core portion of IFILE
is appended to the field length of the rest of the job (see Figure 2-11). However, if an IFILE
is already open at the time of a DMINIT call, the old file's central memory area is released

before space for the new one is allocated.

If the programmer dynamically changes the field length of the job after his first call to
DMINIT, the change is nullified by any subsequent calls; the Data Handler always begins
allocating space for its file at the same location, and always requests a change in field

length just large enough to accommodate it.

DMFLSH

This routine updates the mass storage file by writing the duplicate blocks from central

memory into it, *

*This is necessary because information entered in the file is actually written in the duplicate
blocks in central memory, so that the contents of the blocks in mass storage are not up-to-
date until the Data Handler writes the duplicates back into the file.

44616800 Rev. 01 ’ 7-51

Call Statement Format:

7 CALL DMFLSH

No Data Handler routine can be used after a DMFLSH call, unless another call is first made

to DMINIT to re-establish the file-processing parameters.

DMDMP

The DMDMP routine prints an octal dump of the entire IFILE data file. This dump enables
the applications programmer to examine the data contained in the blocks and beads of the
file, and is formatted for easy reference to beads and string addresses; empty spaces within
the file are indicated but not shown (see Appendix D).

The dump is always placed in the standard OUTPUT file.
A call to DMDMP has no effect on the contents of the data file.

Call Statement Format:

(CALL DMDMP

DMGTBD

DMGTBD allocates a specified number of contiguous words from free space in the IFILE
data file, and defines those words as a bead. This provides the programmer with dynamic
working storage. DMGTBD zero's out each word of the bead (i. e., each word is full of
zeros before you do a DMSET).

Call Statement Format:

[CALL DMGTBD (N, IBEAD)

N Number of 60-bit words to be allocated as a bead; N must be
less than 2%%18

IBEAD Relative address of this bead within the block; returned as a
result of this call

If there is no space available in IFILE for a bead of N words, IBEAD is returned equal to

Zero.

DMRLBD

The DMRLBD routine releases the space in IFILE occupied by beads that the programmer

no longer needs. This space then becomes available for the allocation of new beads.

7-52 44616800 Rev. 03

Call Statement Format:

(CALL DMRLBD (IBEAD;, IBEAD,, . . . , IBEAD)

IBEAD; Relative bead addresses from one or more blocks, indicating the
beads that should be released; an IBEADi equal to minus zero can
be used to terminate the parameter string, in addition to a right
parenthesis

IBEAD; is returned equal to zero when a bead is released.

DMSET

This routine places a given value in a specified position within a bead. If the value used in
the call does not occupy a full 60-bit word, the value must be right-justified within the call

parameter word,

Call Statement Format:

r CALL DMSET (ICOMP, IBEAD, VAL)

ICOMP Component code specifying the position within the bead that the
value should occupy; ICOMP must contain one of the nine valid
type codes described above

IBEAD Relative address of the first word of the bead in which the informa-
tion is to be placed

VAL Component value to be placed in the bead; the contents of VAL
must be right-justified

DMGET

This routine retrieves a previously defined value from a specific position within a bead. If
the value returned by the call does not occupy a full 60-bit word, it will be right-justified

within the returned call parameter word.

Call Statement Format:

r CALL DMGET (ICOMP, IBEAD, VAL)

ICOMP Component code specifying the position within the bead that the
value occupies; ICOMP must contain one of the nine valid type
codes defined above

IBEAD Relative address of the first word of the bead which contains the
information

VAL Component value returned by this call; the value returned is
right-justified within VAL

44616800 Rev. 01 7-53

A call to DMGET does not destroy the information within the bead.

EXAMPLE OF BEAD USE

Figure 7-6 illustrates a bead designed to use the nine different component codes; in several

cases, more than one code is used to pack a single bead word, as in words six and nineteen.

| BEAD|
WORD YCHARACTER 9
| 60 — BIT INTEGER
2 60 —BIT FLTG. PT. VALUE \
3 0 | 2 3 a4 5 6 7 8 | 9 CHARACTER
4 ARRAY (STARTING
10 " 12 13 14 15 16 17 18 19 AT WORD 3)
5 | HOOK
6 1710 7t [ee23 [1e—s8im avoRess |\
7 = “BEAD ADDRESS
(FOR NEXT BEAD
8 IN STRING)
9
{e]
1
12
13 12— WORD
” ARRAY
14
15
16
17
18
19 [1]o] 1] crar.i] 267 [cHarR 2 | cHaR.3 | 77777
Figure 7-6. Example of Components in a Bead
The bead shown in Figure 7-6 is created and filled by the calls below.
Call Explanation
°
°
.
CALL DMINIT (7THDMFILE1, 2) Initializes file DMFILE1, with two duplicate
blocks in-core
CALL DMGTBD (19, IBEAD(1)) Establishes a bead 19 words long with a bead
o address returned in IBEAD(1)
.

7-54 44616800 Rev.

01

Call Explanation

CALL DMSET (040011000003B, Sets character S in character position 9 in the
IBEAD(1), IRS) bead array starting at word three
.
°
CALL DMGTBD (50, IBEAD(2)) Establishes a second bead, 50 words long, for
. a bead string
THOOK = IBEAD(2) + 7B Creates string pointer to word seven in the
second bead
]
°
CALL DMSET (0100000000058, Sets the string pointer in word 5 of the first bead
IBEAD(1), IHOOK)
.
.
°

The other calls used are not shown because of space limitations.

Word six shows six components packed into one bead word by calls using six different com-
ponent codes. The components include a 1-bit value, a 3-bit value, a 5-bit value, a 9-bit

value (eight bits sign extended), a 12-bit value, and an 18-bit address.

Word 19 includes four individual bit states, three alphanumeric characters, an 8-bit value

and a 15-bit value. These nine components were placed by nine calls to DMSET.

These two words demonstrate the flexibility and utility of component code usage. As a
further example, the character S placed by the call shown above could also have been stored
by:

(CALL DMSET (050006000003B, IBEAD(1), 23B)

VOLUNTARY ABORTION OF A JOB

The GIABRT routine allows the application programmer to terminate his job at any point he
wishes during execution. GIABRT can be used to abort the job if a non-fatal error or another
type of programming problem occurs; it can also be used to abort the job if the console user

is not obtaining the results he wishes during an application run.

GIABRT displays an abort message, supplied by the programmer, on the screen of the
graphics console; it then performs all of GICNRL's functions, enters the abort message in
the SCOPE dayfile, and calls the standard SCOPE abort processor,.

There is no return from a call to GIABRT.

44616800 Rev. 01 7-55

Call Statement Format:

(CALL GIABRT (NCON, IBCD, NC)
|

NCON Number of the graphics console that should receive the abort
message; only one console can be addressed

IBCD First word of an array buffer containing the abort message

NC Number of characters in IBCD; must be less than 471

If the application job is servicing more than one console, one should be considered a master

console, so that all GIABRT messages are addressed to it.

HARDCOPY FILE CREATION

A console user often produces a display containing data for which he needs a permanent
record. The GIPLOT routine is designed so that such a hardcopy record can be made.
Because the type of hardcopy required varies according to the job and the equipment avail-

able, GIPLOT does not actually create a hardcopy record.

Instead, it creates a system file (called PLOT) of display information in a device-independent
format. This file can then be used by a special driver to duplicate the display. The driver
used depends upon the device at the installation, so that no information about it can be pro-

vided in this manual.
The following background information is needed to understand the use of GIPLOT,

An Interactive Graphics program intersperses a sequence of calls to the 6000 Basic Graphics
Package routines with manipulations of data residing in the mass storage IFILE. The dis-
plays produced by the program depend upon the console user's choice of call sequences and
call parameters; he chooses these variables by making task selections and data entrys from
the console. The display created by one set of choices is usually modified by a subsequent

set, until the user finally obtains the graphic forms and information that he wants.

When the user obtains a display for which he wants a hardcopy, he makes a console entry

requesting it.

The entry should then cause the program to repeat the sequence of operations that produced
the display, without repeating the intermediate steps. By repeating the sequence, the para-
meter string which resulted in the display is reproduced. This duplicate parameter string

is then used in calls to GIPLOT, rather than GIDISP or GIMAC.

An alternative to duplicating the parameter string would be the insertion of coding, similar

to the following, at the end of each task which creates a display:

7-56 44616800 Rev. 03

CALL GIBUT (0,NCON, IDDT, IDDC, IDWA, IDWB, IH, IV)

IF (IDWA.EQ.4RPLOT) GO TO 500

CALL AETSKR
500 DO 501 I =1, IDDC, IDWB

CALL GIPLOT (NCON, IBUF(I), NBYTE(I), IDENT, ITYPE)
501 CONTINUE

CALL AETSKR

END

This coding checks for an entry made by a light button called PLOT and returns control to
MAIN if the button has not been picked. If the button has been picked, the contents of several
display item buffers are sent to GIPLOT and then control is returned to MAIN and the next
task. The display item buffers might be stored in labelied COMMON before each GIDISP

call that creates a display item in its final form.

Call Statement Format:

CALL GIPLOT (NCON, IBUF,NBYTE, IDENT, ITYPE)

NCON Number of the graphics console containing the display which

this file should reproduce; only one console can be specified by
each call

IBUF Description buffer of the item to be entered in the file
NBYTE Number of bytes contained in IBUF

IDENT, Information used by the programmer to identify himself and his file
ITYPE when it is later processed by the hardcopy driver

ADDITIONAL ROUTINES FOR DISPLAY FONT CREATION

Two routines have been added to the 6000 Basic Graphics Package library to facilitate the
creation and use of display fonts. These routines are written in FORTRAN, using the
other 6000 Package routines. One routine creates an alphanumeric font display resembling
a teletypewriter keyboard, and the other creates a numeric font display resembling a clock
face. The two routines actually display the fonts, but return address parameters so that

the programmer can manipulate the fonts as he would a regular display item.

GFONTA

This routine creates two alphanumeric font display items, which produce the keyboard-like
figure shown in Figure 7-7. The figure is created in two parts because the parameter string
describing it exceeds the length of a single EXPORT buffer.

44616800 Rev. 03 7-57

BKSP SPC CLEAR
() * / : $ = + -

Figure 7-7. Alphanumeric Display Font

BKSP is a special character for backspace (5F1g in 1700 internal ASCII code), SPC is a
special character for space (201g in 1700 internal ASCII code), and CLEAR is a special
character for clear (7Fgin 1700 internal ASCII code). See Appendix C,

Call Statement Format:

(CALL GFONTA (NCON, IH, IV, IDDA,IDDN)

NCON Number of the graphics console that the font should appear on;
only one console can be addressed through each call

1H,1V Horizontal and vertical display grid coordinates of the approximate
center of the display font; the font is displayed from IH - 336 to
IH + 336 and from IV + 300 to IV - 200

IDDA, First and second associative addresses of the display font items
IDDN created by this call; returned as a result of the call

GFONTN

This routine creates a numeric font display item like the one shown in Figure 7-8,

BKSP SPC CLEAR
0
9 1
8 2
- . +
7 3
6 4
5

Figure 7-8. Numeric Display Font

7-58 44616800 Rev, 03

Call Statement Format:

(CALL GFONTN (NCON, IH, IV, IDDAD)

NCON Number of the graphics console that the font should appear on;
only one console can be addressed through each call

IH, 1V Horizontal and vertical display grid coordinates of the decimal point

in the center of the circle; the figure is located between IH = 244
and between IV + 310 and IV - 244

IDDAD Associative address of the font display item; returned as a result
of the call

The characters BKSP, SPC, and CLEAR have the same 1700 internal ASCII code equivalents

as they have for the Alphanumeric Display Font described previously.

44616800 Rev. 03 7-59

PROGRAMMING CONSIDERATIONS 8

This section contains hints and warnings for the application programmer.

TIME ACCOUNTING

The standard SCOPE accounting procedure is used for all jobs, including graphics jobs.

Sufficient time must be requested on the Job card for each job to ensure its completion.

The hardware interrupt handlers of the 1700 Basic Graphics Package operate on a 'time

stealing'' basis (i.e., the 6000 Series computer CPU time record is not incremented during
graphics hardware interrupt handling). When graphics consoles are heavily used, the time
indications in the SCOPE accounting records can be expected to lag behind clock time. Data

channel use time for graphics 1/O is not considered CPU time.

MEMORY ALLOTMENT AND LIST PROCESSING EFFICIENCY

The Data Handler is designed to make efficient use of the core space allotted to it by DMINIT.
The algorithm used to minimize mass storage references (see Section 7) is designed on the
assumption that the data structure for the application will be built and referenced as a local
file.

Application programs that use a widely scattered and cross-linked data structure should allot
larger amounts of core storage for data handling functions. Improper assignment of core

space causes slow response at the console and excessive referencing of mass storage.

DATA HANDLER COMPONENT CODES

The Data Handler offers powerful tools for the general handling of all types of application
data. The component codes required in the calls to DMSET and DMGET specify the exact
location of particular pieces of data within beads. However, the bit pattern form of the com-
ponent codes makes them awkward to use directly in FORTRAN programs and causes pro-

gramming errors,

To avoid this problem, the convention of naming the codes through FORTRAN labeled
COMMON may be used, The application programmer can lay out his bead formats and
specify a name for each component code. The name can then be typed INTEGER, and as-

signed a particular value by using a DATA statement. The component code can be transmitted

44616800 Rev,O01 8-1

to each subroutine handling data through use of a COMMON/DATA /statement. All DMSET

and DMGET calls may then refer to component codes by name.

The use of COMMON/DATA/ to name component codes also simplifies bead format changes.

The technique can be expanded to cover assignment of bead lengths and hook values.

DISPLAY ITEM ADDRESSES

The display item address parameter IDDAD is the link to all display buffer editing operations.
The application program should provide disposition for the address of each item it displays.
Display addresses of highly transient items, such as prompting messages, value registers,

and some lightbuttons, may be kept in programmer-reserved cells in COMMON.

Most display item addresses should be an integral part of the data structure of the applica-
tion and should reside in components of beads. Display items used for control or communi-
cation only, can be linked to an application data structure specifically designed for that
purpose. For example, lightbuttons can be represented in a bead containing a specific
identifier, class code, and display address (IDDAD):

IBEAD POINTER TO NEXT BEAD
IBEAD+1 CLASS | IDENTIFIER
IBEAD+2 DISPLAY ADDRESS

Simple subroutines can then be written to:
° Display a lightbutton and splice a bead into the lightbutton string
° Erase all lightbuttons of a class and splice out their beads in a string

e [Erase a specific lightbutton and splice out its bead

MACRO HANDLING

When a programmer writes display macros, he conserves display buffer space and allows
more items to be displayed at one time. However, indiscriminate insertion and removal of
macros can lead to an inefficient fragmentation of the fixed address area of the 1744 display
buffer. Further, these functions represent the greatest operational load of the graphic inter-

face and frequent use of them may affect response time.

The most frequently used macros should be placed at the beginning of the job coding. Tran-
sient macros should be removed immediately after use and before other transients are
inserted. Groups of transient macros should be removed in the reverse order of their

insertion for the fastest response time.

8-2 44616800 Rev. 01

OPTIMUM TASK LENGTH

One of the prime considerations in programming an Interactive Graphics application is to
organize the application as a series of short tasks. Interaction both implies and demands a
free flow of information in two directions; from operator to application and vice versa. The
operator, in his role as decision maker, should be given the ability to execute the tasks (by
way of button selection) in the most meaningful way within the framework of the objectives of
the application. For this reason, tasks should be concise and well defined; the operator
should be able to skip quickly ahead if the interactive processes show an obvious path to the
solution of the problem at hand. Similarly, the operator should be able to jump back and
forth through the application when divergence occurs, until convergence to a solution is
assured or it is apparent that major parametric changes are required. In either case, note
that it is the operator, not the computer or the application, that makes the decisions. It
then becomes obvious that the operator cannot make full use of his decision making capacity
if the application programmer does not provide the operator with a means of exercising that

capacity.

A job consisting of many small tasks (where many could be 300 tasks) permits SCOPE and
the Application Executive to operate with maximum efficiency and provides the best task

execution response,

This does not imply that one should make a job with 300 extremely short tasks if the logic of
the application best suits a configuration with 50 tasks that are somewhat longer but logically
more correct. What might be considered a short task on one job might be a long task on
another job. The best length for any task is the length consistent with what is required to

perform one phase of a job.

NON-GRAPHICS DATA HANDLER USE

The 6000 Basic Graphics Package Data Handler routines can be used by batch jobs that re-
quire a data file with a plex data structure. The programmer should bear in mind, however,
that the CM parameter on the Job card does not control the allocation of central memory
when the Data Handler is used; the Data Handler always appends the in-core data base to the
end of the job's current field length during job execution, so that the data base would begin

at the end of the memory field specified by the CM parameter.

Because the CM parameter is usually made arbitrarily large to assure enough space for
both the program coding and the loader, a great deal of central memory space could be

wasted when the Data Handler is used.

To eliminate the unneeded space between the regular coding and the data base, the program-

mer can use either a REDUCE or an RFL control card (see SCOPE Reference Manual).

44616800 Rev, 01 8-3

Figure 8-1 shows a sample deck that uses the RFL card. In this example, the field length
of the job is initially 60,000g central memory words to provide space for the compiler. The
field length is then changed to 30,000g prior to execution; during execution, eight in-core

Data Handler file blocks are created beginning at RA + 30,000g.

6
(7 }—— — — — — END OF FILE CARD
8 = —— = = .
PROGRAM 9 CALL DMINIT (3HXYZ,8) '
REC ORD "

r/bROGRAM ALPHA (INPUT,OUTPUT) ll
7
ﬁ/ |—— 4+ - H-ﬁ — END OF RECORD CARD

LGO.]

e

(RFL,3000O.
RUN (S
.CONTROL [N()

CARD
oo /BATCH33,P17, T10000,CM60000.
RL\JU“ N

N

<

SCOPE LOADER CALL CARD

‘FIELD LENGTH REDUCTION CARD

FORTRAN COMPILER CALL CARD

—

JOB CARD

Figure 8-1. Sample Data Handler Batch Deck Using RFL

When the programmer uses an RFL card, he must be careful to leave enough space for the
loader and program, yet not permit too much unused space. An easier method is shown by

the sample deck in Figure 8-2, which uses a REDUCE card.

In this example, the initial field length is the same, but it is shortened before execution so
that it is just large enough to accommodate the application program and the loader. The in-
core data base is then appended to that field length during execution, so that almost all

wasted space is eliminated.

8-4 44616800 Rev. 01

o

PROGRAM °
REC ORD

/

CONTROL

}— — — — — END OF FILE CARD

P —

/cm.L DMINIT (3HXYZ,8)

ﬁocnm ALPHA (INPUT,OUTPUT)

— |l-rk — END OF RECORD CARD

: -
9 Fco.

ﬁnucs.
fw(s»

CARD
RECORD

BA

o

TCH34,P17,T10000,CM60000.

Figure 8-2.

DATA HANDLER COMMON FILES

The files created by the Data Handler during the execution run of a job are local files and

are usually destroyed when the job is finished.

SCOPE LOADER CALL CARD

FIELD LENGTH REDUCTION CARD

FORTRAN COMPILER CALL CARD

JOB CARD

Sample Data Handler Batch Deck Using REDUCE

However, these files can be declared

COMMON and subsequently used by other graphics or batch jobs.

The following steps are the suggested method for using a COMMON f{ile as a Data Handler

file., First, to create the file:

1. Open the file by calling DMINIT.

2, Before allocating space in the file for data, use DMGTBD to obtain space in the

file where all bead addresses can be saved; this call should return a bead address

of 410008,

3. On each subsequent call to DMGTBD, save the bead address in the area allocated

by the firs

t DMGTBD call.

4. At the end of the job run, call DMFLSH to update the file in mass storage.

5. After the LGO card in the control card record, insert a COMMON card with the
name of the Data Handler IFILE on it.

44616800 Rev. 01

Then to use the file during a different run:

1. Insert a COMMON card, naming the proper file, in the control card record before
the LGO card.

2. Open the file using a DMINIT call, and assure that the NBSIZE parameter has the

same value as during the run that created the file,

3. Get the bead addresses for data from the first part of the file, using a DMGET call
with a bead address equal to 41000B (see above).

4. If any new data is stored in the file during the run, call DMFLSH at the end of the

job to assure that the mass storage version of the file is up-to-date.
The following programs are examples of using a Data Handler file as a COMMON file,

Sample program to create the file:

JOBL1.

RUN(S).

LGO.

COMMON, DMFILE.

PROGRAM DMTEST1 (INPUT,OUTPUT)
COMMON IBD (500), IPTR

C OPEN FILE DMFILE WITH 4 IN-CORE BLOCKS
CALL DMINIT (6LDMFILE, 4)

C GET SPACE ON FILE WHERE BEAD ADDRESSES WILL BE SAVED
CALL DMGTBD (500, IPTR)

C IPTR NOW LEQUALS 41000B SINCE THIS IS FIRST CALL TO DMGTBD

.
.
.
CALL GETBEAD (N1, J1)
°
.

[]
CALIL GETBEAD (N2, J2)
[]
[]
[}
CALL DMSET (ICOMP, IBD(J2), VAL)
[]
[
[)
CALL DMFLSH
END
SUBROUTINE GETBEAD (NUM, INDEX)
COMMON IBD(500), IPTR
C ALLOCATE "NUM'" NUMBER OF WORDS IN DMFILE
CALL DMGTBD (NUM, IBD(INDEX))
IC = 10000000000B + INDEX
C SAVE BEAD ADDRESS RETURNED IN IBD(INDEX) IN FILE DMFILE
CALL DMSET (IC, IPTR, IBD(INDEX))

8-6 44616800 Rev, 01

RETURN
END
.
°
.

Sample program to use the file:

JOB2,
RUN(S).

COMMON, DMFILE,

LGO.

§

C

[oXe!

o)P!

PROGRAM DMTEST?2 (INPUT, OUTPUT)
DIMENSION IBEAD (500)
OPEN FILE DMFILE WITH 4 IN-CORE BLOCKS
CALL DMINIT (6LDMFILE, 4)
°
°
]
SET IPTR = 41000B SO BEAD ADDRESSES CAN BE RETRIEVED FROM
DMFILE
IPTR = 41000B
ICOMP = 070764000001B
CALL DMGET (ICOMP, IPTR, IBEAD)
ARRAY IBEAD NOW CONTAINS ALL BEAD ADDRESSES SET DURING
CREATION RUN
]
[]
.
CALL DMGET (ICOMPA, IBEAD(J), VAL)
.
[]
°
CALL DMFLSH
END
[]
]
.

44616800 Rev. 01

SYSTEM OPERATORS’ GUIDE 9

6612 CONSOLE
CONTROL POINT ASSIGNMENT AND RELEASE

AUTOMATIC INITIAL ASSIGNMENT

The type-in command:

AUTO.

structures the 6000 Series system with BATCHIO at control point 1 and NEXT at 2 through

6. Control point 7 remains blank.

MANUAL ASSIGNMENT AND RELEASE

BATCHIO can be assigned to control point n by typing in:

n. BIO.

EXPORT is automatically loaded by BATCHIO when needed.

To dedicate a vacant control point to graphics processing, make sure EXPORT is up, then

type in:
GRAPH, n, fl.
n Control point number reserved for graphics use
f1 Octal field length - the amount of core memory to be reserved for control

point n (f1 is the actual field length divided by 100) F1 cannot be zero.

To dedicate two vacant control points to graphics, type in:

GRAPH, n, fln, m, flm.

n First control point reserved for graphics use

fln Field length (divided by 100) reserved for control point n
m Second control point reserved for graphics use

flm Field length (divided by 100) reserved for m

(fln and flm cannot be zero.)

This entry can also be used to change control points and/or field lengths.

44616800 Rev. 03 9-1

To assign control points that are currently running batch jobs, type in:

n. CLEAR. @

for each control point (n is the control point number); this type-in command prevents NEXT
and/or another batch job from being brought to the control point when the current job termi-
nates. When the control point becomes vacant, assign it to graphics using either of the
type-ins above.

If only one control point is assigned to graphics, it can be released by typing:

GRAPH, 0, 1. @ l

If two control points are assigned and one is to be released, the type-in:

GRAPH, n, fln, 0,1. I

will retain control point n with field length fln (times 100), and release the other assigned

control point.

To release both graphics control points to the system, type in: l
GRAPH, 0,1,0,1.
n. DROP

The NEXT package is brought to a released control point after normal termination of job

processing.

BATCHIO, B AND K DISPLAYS

CALLING THE K DISPLAY

The K display (see Figure 9-1) shows device assignments and problem messages for each

of the 16 buffer areas used by the BATCHIO drivers., The word IDLE appears in the job
name area of each buffer not currently assigned to a device, and the word EXPORT appears
in the job name area of a buffer currently being used to service a 1700. All other job (or
file) names appearing on the K display are truncated and suffixed — as they are for the day-
file (A) display. Nothing appears in the message area of a buffer when its device is operating

normally,

The K display may be called to the left console screen with the type-in:

where d is the letter identifying the display that is to replace the one currently appearing on

the right screen. Similarly, the K display may be placed on the right screen by:

9-2 44616800 Rev. 03

SYSTEM

TAPE LABEL\

SYSTEM
TiM

/——A—\ /-‘-'A'T /-"A'_\

% 00.15.05 SCOPE 3.1.2 7.21.69

BATCHIO STATUS

01 EXPORI SCO1
02 IDLE
03 EXPORT SCO2
04 IDLE

05 SOURC1S5 CR22 NOT READY
06 EXAMP16 CR23

07 OBJEC17 LP12 NO PAPER
5 10 OBJEC13 LP13

BUFFER e 11 IDLE
AREAS — 12 iDLk
13 OBJEC17 CP32 FEED FAILURE
14 IDLE
15 IDLE
16 IDLE

A G —

\ \
~. .
\\\
\\
;\\
OR FILE NAME > MESSAGE
AREA

MNEMONIC OF

THE BUFFER EQUIPMENT STATUS /

DEVICE US
TABLE ORDINAL OF
ACTUAL DEVICE

Figure 9-1. DSD 6612 K Display

K DISPLAY EQUIPMENT MNEMONICS

Table 9-1 lists the mnemonics of all the devices that can be serviced by BATCHIO.

44616800 Rev, 01

TABLE 9-1. EQUIPMENT MNEMONICS

Mnemonic Equipment
CcP Card punch
CR Card reader
LP Line printer
SC Data Set Controller for
1700's Data Channel

K DISPLAY BUFFER MESSAGES

Table 9-2 contains all of the equipment status messages which may appear in a buffer's
message area., Only messages that concern conditions requiring operator action appear on

the K display.

TABLE 9-2., BUFFER MESSAGES

Message Meaning and Action
FEED FAILURE Card punch is either jammed or out
of cards.
NO PAPER Line printer is out of paper.
NOT READY Something has occurred that produces

a ''not ready' condition in this device;
check all controller and device switches.

RE-RD 1 CD. The last card read must be put through
COMPARE ERROR. again to compensate for a compare error.

OUTPUT CONTROL COMMANDS

BATCHIO output processing can be controlled by the END, REPEAT, and SUPPRESS type-

in commands.

The END xx. type-in stops the printing or punching of the file at K display buffer area
xx, and starts outputting the dayfile entries for that file. Using the same type-in a second

time will stop dayfile output and drop the job completely.

The REP xx. type-in ends the printing or punching of the file at K display buffer area
xx, and places the file back in the SCOPE OUTPUT queue so that it can be rescheduled on

another device.

The SUP xx. type-in supresses the processing of all printer format control characters
for the file at K display buffer area xx; the file is printed in 136-character lines, and the

lines are single-spaced.

9-4 44616800 Rev. 01

BATCHIO B DISPLAY AREA
The structure of the B display area used for the BATCHIO control point is as follows:

n. BATCHIO
m BUFFERS ACTIVE
messages
RA aaaaaa FLwwwwww
EXPORT A. status B. status C. status D. status

communication messages

n Control point number.

m Number of buffers currently being used (the whole message is re-
placed by the word IDLE when there are no buffers in use).

messages Last K display message, or one of the connect/reject dayfile
messages mentioned in Section 2,

aaaaaa Current octal relocation address of the control point field.

WWWWWWW Current octal length of the field.

EXPORT A..... Display messages generated by EXPORT. The letters A, B, C,

and D refer to the 1700's numbered 1, 2, 3, and 4, respectively.
(See the subsection on EXPORT below.)

communication DMessage from a remote operator identifying the sending terminal.
messages (See the subsection on EXPORT below.)

EXPORT

INSTALLATION PARAMETERS

When the Interactive Graphics System is first configured, several installation parameters

must be set to prepare EXPORT for execution; one of which is the following:

e Equipment Status Table entries for each 6673 or 6674 Data Set
Controller attached to the system configuration; the correct
equipment and channel numbers for each controller must be

known to correctly interpret the EXPORT entries on the K display.

INITALIZATION

Once the system is configured, no operator action is necessary to initialize EXPORT. The
EXPORT control point area is automatically structured by BATCHIO when that routine is
loaded, and all EXPORT routines are kept in Central Memory Resident. Communication
with the 1700 Computer and IMPORT is initiated by the 1700 operator.

44616800 Rev. 01 9-5

B DISPLAY STATUS MESSAGES

The fifth line of the BATCHIO B display area (EXPORT A. status B. status C. status D,

status) is used lo display messages generated by EXPORT.

The letters A, B, C, and D refer

to the 1700's numbered 1, 2, 3, and4, respectively. Table 9-3 contains all EXPORT mes-

sages, in alphabetical order; if a message does not pertain to a specific 1700 terminal, it is

displayed on the sixth line of the BATCHIO area (communication messages).

TABLE 9-3. EXPORT MESSAGES

Message Meaning Operator Action

BAD CALL A graphics job has issued an None

PARAMETER EXPORT service request that
EXPORT cannot interpret; the
job is aborted.

--DEAD-- The 1700 has sent a directive To recover, idle all 1700
word which is not valid on the terminals, turn off all of
basis of the current EXPORT EXPORT's 6673 or 6674
status word. In order to protect Controllers, wait until
the 6000 and the other 1700's, EXPORT drops, then turn
EXPORT stops communicating the equipment back on.
with this terminal. In a debugged
system, this should not occur.

DOWN This 1700 was active but has None
ended operations.

ERROR Either a loss of communication Dependent on cause
or Data Set Controller hardware
error has occurred. This mes-
sage is displayed if EXPORT
receives no response from IM-

PORT after 64 consecutive re-
transmissions; it usually occurs
if the 1700 has stopped communi-
cations without sending EXPORT
a "'shut down remote' directive.

IDLE Communication exists with this If a message for a 1700 has
1700, but no data is currently been entered and IDLE ap-
being transmitted. pears, re-enter message

with the correct terminal ID
(see below).

1/0 Sending or receiving data. None

MESSAGE A message from the operator of Acknowledge message by !
1700 currently appears on the entering: n. GO. @*
sixth line of the BATCHIO B where n is the BATCHIO/
display area; this EXPORT mes- EXPORT control point
sage identifies the sending number,
terminal.

44616800 Rev, 01

TABLE 9-3. (Cont'd)

Message Meaning Operator Action

NCON ERROR A graphics program has issued None
an EXPORT service request con-
taining an invalid NCON parameter;
the job is aborted.

-PAR-x A parity error has occurred on To continue_output,type in:
output data stream x; output n. GO.

stops for operator action. where n isThe BATCHIO
"EXPORT control point

number.
STORAGE A 1700 is sending batch job data Free central memory stor-
and needs central memory storage. age or wait until storage is
available,

NOTE

Whenever IMPORT ends operations or is declared
DOWN by EXPORT, all output files in transmission
for that terminal are rewound and returned to the
SCOPE output queue. If EXPORT is dropped, all
attached output files are rewound and returned to
the output queue. (The files are still considered
remote files, and are not output locally.)

INTER-COMPUTER OPERATOR COMMUNICATION

A message from a remote operator is displayed on the sixth line of the BATCHIO B display
area (communication messages), with the word MESSAGE entered on the fifth line after the
appropriate terminal designator. Before another remote operator message can be displayed,

the 6000 operator must acknowledge the displayed message by typing in:

n. GO.

n BATCHIO/EXPORT control point number

To transmit a message to a particular 1700, the 6000 operator types:

n. * x message
n BATCHIO/EXPORT control point number
X Terminal designator (A, B, C, or D - see above)

message Any alphanumeric or special characters - up to a maximum of 271

DAYFILE/B DISPLAY MESSAGES

For DAYFILE /B DISPLAY messages concerning graphics jobs see Appendix B.

44616800 Rev. 01 9-7

1700 COMPUTER CONSOLE

INITIALIZATION AND RESTART PROCEDURE

Because the minimum 1700 hardware configuration precludes the use of most of the 1700
operating system, this manual has made no mention of it; the sections of that system which

are used will be treated in the following pages as a part of IMPORT.

TYPED-IN BOOTSTRAP LOADER

The 1700 operator must perform the following activities to prepare IMPORT for remote pro-
cessing. This procedure assumes that all parameters are preset within the operating system
at loading time, and that the system is to be loaded from the 853 Disk Drive (it can also be

loaded from the card reader or paper tape reader).
1, Set all console switches to neutral.

2. Verify that:

a. Previously prepared disk pack on the disk drive contains the operating
system and IMPORT;

b. Disk and controller are On and Ready;

c. DSC is on, all test switches are Off, and the data set is plugged in;

d. Card reader, printer(s), and teletypewriter power is On;

e. 1713 Teletypewriter's right-hand selector switch is set in the ON LINE
position and that it is in K mode.

Depress the Clear switch on the computer console.

(™)
.

4, DMomentarily depress the Auto Load button on the 1738 Disk Pack Controller.

5. Momentarily set the Run-Step switch to Run. At the teletypewriter, the typeout

PP appears.
6. Set the Protect switch to the Protect position.

7. Depress the Break Release button and type an asterisk (%), followed by a
carriage return.
8. Depress the Manual Interrupt button on the teletypewriter; the system

responds by typing MI,

9. Depress the Break Release button and type an asterisk followed by IGS and a '
carriage return.
The IMPORT program then loads, clears buffer areas, sets flags, adjusts for

system environment, and outputs:
IMPORT READY. . . S, R, OR Usx , |

on the teletypewriter.

9-8 44616800 Rev. 03

10. Depress the Break Release button (do not depress the Manual Interrupt) and
type in one of the above options:
S Clear 1700 job table and start IMPORT/EXPORT communications;

R Restart IMPORT/EXPORT communication and do not clear 1700
job table;

U IMPORT

If the operator selects the S or R type-in, IMPORT attempts to begin com-

munication with the 6000 Series computer.

To initiate communications, the 1747 DSC sends an interrupt status code word to

the 6000 DSC. The 1700 Computer then delays for a short time on a two-word re-
ceive with an end-of-operation interrupt selected. If the central site computer does
not respond, the process is repcated. (This repetitive process can be observed by
noting the on/off pattern of the overflow indicator on the 1700 console.) The central

computer acknowledges the interrupt code word by transmitting two words.
11. IMPORT types IMPORT 1700 when communications are established.

12, Depress the Manual Interrupt button on the teletypewriter. The system responds

by typing MI.

13. Depress the Break Release button and type GO followed by a carriage return.

The EXPORT /IMPORT system is now ready for remote processing. The teletypewriter

output produced by the preceding activities should appear as follows:

PP

MI

*IGS

IMPORT READY. . . S, R, OR U *¢§5
IMPORT 1700

MI

GO, 11

MI

ONGR

COMMUNICATIONS FAILURE

If a fatal transmission error occurs and EXPORT declares the 1700 inoperative, IMPORT

will output the message:

DSC REJECT
or
1706 REJECT

44616800 Rev. 03 9-9

Because EXPORT aborts all jobs associated with an inoperative 1700, there is no reason to
attempt recovery of the 1700's contents. Therefore, the only way to re-establish communi-
cation is to reload the system through the procedure above. When the system is reloaded,

all graphics console controllers are automatically initialized, and their contents lost.

CONTROL TYPE-INS

The 1700 operator can request the execution of a variety of functions through the use of the

teletypewriter. Table 9-4 is a list of operator type-ins and their corresponding functions.

TABLE 9-4. IMPORT CONTROL TYPE -INS

Statement Function

GABT, NCON = ny, ng, (etc.) Abort the graphics job using console n. More than
one console can be specified as shown,

STAT, job name Obtain information on status of job.

CPR, job name, priority Change priority of job.

CPT, job name, seconds Change CP run-time limit

RPNT, n, lu Rewind entire file currently being output on lu, if n

is zero. If n is given, the output file is backed up n
sectors and then started from that point. (nis 631
sectors maximum; lu is logical unit number.)

DVT, job name (or) Divert all remote output for job named to central
DVT, job name, dt facility. If dt is given, divert only appropriate out-
put if job is in the output stack.

TERM, lu Terminate output on data stream specified by lu for
job currently being output.

ABT, job name Abort job named, if thz job is at a control point.
(This has the same action as central operator
DROP command.)

DISP, message Transmit display message for central operator.

LIST List current contents of IMPORT job table and
current status of each job.

END Shut down remote communication.

GO (or) GO, 1lu (or) Initiate data transfers on all data streams or the

GO, 1lu, x data stream associated with lu.

STOP, 1lu Stop data transfer on data stream associated with lu.

SEOJ, 1lu Stop data transfer at end of the job on data stream

associated with lu.

9-10 44616800 Rev. 01

TABLE 9-4. (Cont'd)

Statement Functions

WAIT (or) WAIT, lu Suspend data transfer temporarily on all data
streams or the data stream associated with lu.
(Continue operation with the GO statement.)

RLSE Release all remaining jobs to central site for out-
put. The response to this statement is: xx PRINT
FILES DIVERTED, and/or yy PUNCH FILES
DIVERTED, and/or zz OTHER FILES DIVERTED.
If there are no files to release, the response is:
------ NO REMOTE FILES----. These messages
are entered into the central site dayfile. (xx, yy,
and zz are decimal.)

Definition of terms in Table 9-4:

job name Name on job card with SCOPE 3.1 appended sequence number and
terminal ID. (i.e., name supplied with a job acknowledgement

message.)

priority Octal number with a maximum of 4 digits.

seconds Octal number with a maximum of 5 digits.

dt LP or CP (line printer or card punch).

message One line of 271y characters maximum.

lu Logical unit numbers. Decimal numbers assigned to the computer

peripheral devices. The number assignments are present within the

operating system, and are determined during MSOS initialization.

n Number of graphics console (1 to 6). Also assigned during system
assembly.
X Parameter used with 430/1728 reader/punch; x = R, read; x = P, punch,

TELETYPEWRITER INPUT PROCEDURE
To enter a type-in command, the following steps must be followed:

1. Press the Manual Interrupt button (the resulting type-out is MI; a line feed

carriage return is activated and the Break indicator is lit).
2. Press the Break Release button.
3. Enter the statement.

4. End the statement with a carriage return.

44616800 Rev. 01 9-11

JOB LOCATION ON MESSAGE ACKNOWLEDGEMENT

Certain input statements are only valid when the specified job is

in the input stack, at a

control point, in the output stack, in the process of being output, or when the output stream

is active.

three ways:

Acknowledgement with the job name specified

Acknowledgement with no job name specified

INVALID REQUEST message

Table 9-5 lists these job locations.

Depending on the input statements entered, acknowledgement is made in one of

TABLE 9-5. JOB LOCATION
Input Output Being

Message Stack At CP Stack Output Acknowledgement
CPR X X X X Without job name
CPT X Without job name
ABT X Without job name
TERM X Without job name
DVT

blank X X X X With job name

LP X X With job name

Ccpk X X With job name
RPNT X | Without job name

OUTPUT MESSAGES

Certain phases of remote operator command and job processing cause IMPORT or the

Buffer Translator to output teletypewriter messages informing the 1700 site of job advance -

ment and of particular error conditions.

The time read from the system clock on the 6000

Series computer precedes all teletypewriter messages received at the remote site in the

form: xxyy:zz (where xx=hour, yy=minutes, and zz=seconds).

messages and provides a brief description of each.

Table 9-6 lists all possible

44616800 Rev. 01

TABLE 9-6. OUTPUT MESSAGES

Source Message Definition

EXPORT job name Acknowledgement from EXPORT that the
indicated job is ready to be released to
the system. IMPORT places this job
name in its internal job table.

EXPORT (*) job name IN STACK Job named has been released to SCOPE
by EXPORT and is waiting for a control
point.

IMPORT JOB TABLE FULL IMPORT job table is full. Reading con-

tinues automatically as soon as a job
table entry is cleared (e.g., printing
complete or a job is diverted). The job
table holds 25 jobs.

IMPORT NO JOBS Response to list command when IMPORT
job table is empty.

EXPORT (*) job name IOSxxxx Job named has completed execution and
has left the control point. It is in Output
Stack. The priority of this output file is

XXXX.
EXPORT *%) job name 1lu C Output has completed for job named,for
logical unit numbers lu.
EXPORT (col. 1-7) JOB CARD Columns 1-7 contain the first seven
ERROR characters of what was sent as a job

card. IMPORT passes the cards being
read until an EOF is reached, after which
IMPORT resumes sending jobs to EXPORT.

IMPORT CL IMPORT has lost communication with
EXPORT. IMPORT automatically at-
tempts to re-establish communication.

IMPORT EXIT IMPORT IMPORT operation terminated.
EXPORT INVALID REQUEST EXPORT did not accept the last teletype-
writer request sent. (See Table 9-3).
EXPORT (*%*) job name DONE (or) EXPORT did process the last teletype-
(OPER....) DONE writer request sent by IMPORT. (See
Table 9-3.)
EXPORT (%¥)(*) job name NOT IN Job named has completed output or
SYSTEM never existed.
IMPORT DSC (or) 1706 REJECT An abnormal condition was detected in

the communications hardware. IMPORT
is aborted, (Check Power On and DSC
switches for the proper settings.)

44616800 Rev, 01 9-13

TABILE 9-6. (Cont'd)
Source Message Definition
IMPORT IMPORT READY. . . IMPORT initialization message, Opera-
S. R. OR A tor input required to acknowledge mes-

sage. (Depress Break Release button
and type either S, R, or A)

IMPORT IMPORT 1700 Indicates that communications have
been established with EXPORT.

BUFFER DIP EXTERNAL A graphics console controller has re-

TRANS - REJECT jected all attempts by the Digigraphic

LATOR Interrupt Processor to communicate
with it; either the data channel cannot be
cleared or a hardware failure has oc-
curred. The job associated with that
console is automatically aborted.

BUFFER DIP INTERNAL The Digigraphic Interrupt Processor

TRANS- REJECT routine has received no response when

LATOR attempting to communicate with a con-
sole controller (check Power On and
controller switches for proper settings),
The job associated with that console is
automatically aborted.

BUFFER GICOPY ADDR ERR, The Buffer Translator has detected an in-

TRANS- NCON y valid IDDAD, IDDADI, or MAD program-

LATOR ming parameter while processing a buffer
from EXPORT that contained a call to the
named routine and to console y.
This is a non-fatal condition.

BUFFER GIERAS ADDR ERR, See above.

TRANS- NCON y

LATOR

BUFFER GIMACE ADDR ERR, See above,

TRANS- NCON y

LATOR

BUFFER GIMOVE ADDR ERR, See above.

TRANS- NCON y

LATOR

BUFFER GITIMV ADDR ERR, See above.

TRANS- NCON y

LATOR

BUFFER GITMMYV ADDR ERR, See above.

TRANS- NCON y

LATOR

BUFFER GUMACG ADDR ERR, See above.

TRANS- NCON y

LATOR

9-14 c44616800 Rev. 01

TABLE 9-6,

(Cont'd)

Source

Message

Definition

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

BUFFER
TRANS-
LATOR

Glxxxx BUFFER
OVERFLOW, NCON y

Glxxxx EXT REJ,
NCON y

Glxxxx INT REJ,
NCON y

GIxxxx
ILLEGAL REQUEST

GIxxxx
NOT READY, NCON 0

Glxxxx
SHORT TRANSFER

The driver routine for graphics console

y has detected a controller memory over-
flow condition while processing a request
from the Graphics Interface routine with
the mnemonic xxxx; this is a non-fatal
condition.

The driver routine for graphics console
y has detected a controller communica-
tion reject while processing a request
from the Graphics Interface routine with
the mnemonic xxxx; the job containing
xxxx 18 automatically aborted.

The driver routine for graphics console
y has attempted to process a request
from Graphics Interface routine xxxx
for a controller that either doesn't exist,
isn't turned on, or has suffered a com-
munications failure. The job containing
xxxx is aborted.

A graphics console driver has been

asked to perform an I/O function it can-
not handle; the job containing the Graphics
Interface routine xxxx is aborted.

A graphics console driver has encountered
a Not Ready hardware condition (check
console power switch) while attempting

to process an I/O request from Graphics
Interface routine xxxx; the job containing
Glxxxx is aborted.

A graphics console driver has detected
the premature termination of a data
transfer to or from a controller; be-
cause the transfer action requested by
Graphics Interface routine xxxx was
incomplete, the job containing the routine
is aborted.

Messages preceded by an asterisk (*) are generated in
response to a STAT request or a LIST command.

name to be cleared from the IMPORT internal job table.

44616800 Rev. 01

ADDITIONAL STATEMENTS

The PM (SCOPE Print mode) control statements are printed on the teletypewriter with the

first two characters set equal to the logical w

it of the printer affected. Printing steps to

allow operator intervention. The operator can resume printing with the GO command.

In addition to PM statements, all of the Class 2 error messages (Appendix B) produced at

the 6000 are printed on the teletypewriter,

ERROR CODES

IMPORT outputs informative codes to the 1700 operator when error conditions occur that

are external to the system. Some of these error codes require operator action. Table 9-7

gives an explanation of each code and briefly describes possible operator action.

TABLE 9-7. ERROR CODES
Code Explanation Action
#xC Card reader checksum Card reading stops. The erroneous card

error on a binary card

kD Device type error

EE Y Job name not found in
IMPORT job table

o Free form input initiation
card error

Sk J Improper job card detected
by IMPORT

dok Display message length
error

okl BB} Unidentified logical unit
number

is the last card read into the computer.
(Non-buffered controllers: Last card in
stacker; buffer controllers: Second to
last card in stacker.) The operator may
reload card reader with erroneous card
for re-reading (1 or 2 cards) or ignore
the erroneous card. Use of the input
statement GO or GO, lu will resume card
reading.

Entire input statement is ignored by
IMPORT.

Entire input statement is ignored by
IMPORT.

Card is ignored and operation continues.
IMPORT continues to read cards to end
of job., Card data transmission resumes

with the next job.

Entire input statement is ignored by
IMPORT.

Entire input statement is ignored by
IMPORT.

44616800 Rev. 01

TABLE 9-7 (Cont'd)

Code Explanation Action

kM Message buffers full Three messages (see DISP 9-10) may be
queued; one displayed at the BATCHIO
control point, one displayed by IMPORT
and one displayed by EXPORT. The fourth
cannot be displayed until one or more are
acknowledged by the 6000 operator. The
6000 operator may acknowledge a mes-
sage by typing N.GO. @ where N is

BATCHIO's control point number,
** P Improper priority number Entire input statement is ignored by
on a change priority com- IMPORT.
mand
**R Illegal EOR level on an EOR EOR level is set to zero and normal
card operation continues.
*%U Unidentified operator input Entire input statement is ignored by
command IMPORT.
*xSQ 6000 format binary card Card reading stops. The input statements
sequence error GO or GO, 1lu will resume card reading

with no further sequence checking prior

to reading an End-of-Record or End-of-

File. All data is transmitted to the cen-
tral site.

ERROR REPORTING FORMAT
The 1700 operating system reports errors in the following format:

L, nn FAILED ee

ACTION
nn Logical unit number of the failed device
ee Error code

The 1700 operator may dispose of the above error report with either of two responses:

RP @ Directs that the request be repeated.

or

CuU Reports the error to the requesting program.
The device is allowed to continue processing requests.

Error codes are defined for each hardware driver and the appropriate manual should be

consulted.

44616800 Rev. 03 9-17

GLOSSARY

APPLICATION PROGRAMMER — The programmer who writes graphics programs through
the FORTRAN interface called the Basic Graphic Package. The programmer is
usually also the graphics console user.

ARGUMENT — Parameters entered by the graphics program in a call to the Basic Graphics
Package.

ASSOCIATIVE ADDRESS — Bit pattern that forms the parameter(s) for calls to the Basic
Graphics package, i.e., contents of NCON, IDDAD, MAD, IBEAD, NAME, and IFILE,

BASIC GRAPHICS PACKAGE — Collection of FORTRAN callable subroutines that allow
access to all the graphics hardware and the data handler.

BATCH JOBS — Programs that are non-real-time and run in the background of graphics.

BEAD — Group of contiguous computer words that may be related to other beads to make up
a data structure. Beads contain components and reside in blocks,

BLOCK — Mass storage logical blocks contain beads and are addressed by count. Reside on
mass storage and in core.

BUFFER, MEMORY — A storage device attached to the 1744 Controller and used by the
Interactive Graphics System for storage of byte-streams during off-line display.

BUTTON — Used to initiate an action from the 274 Console. There are three kinds of buttons:
) Keyboard key
° Light button
° Prime button

BUTTON, PRIME — Allows a display item that is not defined as a button to activate a task

when picked, or, is used to temporarily allow a display item to have input significance
other than that written into the ID block of the item.

BYTE — A sequence of 12 adjacent binary digits (bits) operated upon as a unit.

COMMON FILE — A file of information that remains in the system, regardless of whether
or not it is attached to a program.

COMPONENT — A specific bit, character, or word space within a bead. Each component
has a unique address code.

DATA HANDLER — Package which optimizes the use of mass storage and of in-core data
file manipulation.

DATA STRUCTURE — A logical relation used in graphics to store relationships for data
retrieval.

DIRECTIVE — An IMPORT word code which informs EXPORT of the type of data that is
being sent and/or what type of return data is required.

44616800 Rev. 01 Glossary-1

DISPLAY BUFFER — A core memory buffer in the 1744, used for refreshing displays on the
274 Console in an off-line manner.

DISPLAY BYTE-STREAM — Display controller description of the item to be displayed. A
serial train of control bytes (see Section 4).

DISPLAY, CORE — A method of graphic display using information stored in computer core
memory. Core display is synonymous with on-line display.

DISPLAY ITEM — Any item displayed on 274 Console. Display items are byte-streams
placed in the floating address area of the buffer memory, and usually start with a
reset sequence and end with an ID block.

DISPLLAY, OFF-LINE — A method of graphic display using information stored in 1744 buffer
memory which does not require direct computer intervention except to process display
change information. Off-line display is synonymous with buffer memory display.

DISPLAY, ON-LINE — See DISPLAY, CORE.

ERASE — An erase function not only removes a display but also removes the pointer from
the associative address table block label. The actual bytes of the item are removed
from the display controller.

EXPORT/IMPORT — Communications system which permits batch or graphics job sub-
mission to a 6000 Series computer from a remote computer.

FILE — 1. A collection of related records treated as a unit.
2. A peripheral device used by a computing system for storing data.

FRAME — A programmer-defined rectangular display on the CRT display surface which en-
closes the working surface. More than one frame can be specified and displayed at
one time.

FRAME-SCISSORING — The process of removing the portion of a display item that exceeds
the frame limits. A form of micro-scissoring is done when an item is rescaled such
that the item is just a point.

FRAME TIME — Allowed time for any graphics program to remain at a graphics control
point. Calculated by the Scheduler routine.

GRAPHICS PROGRAMS — Programs, consisting of many graphic tasks, utilizing the Basic
Graphics Package subroutines.

GRAPHICS TASK — Overlay performing one operation, called by a light button or another
graphics task.

GRID, DISPLAY — An area consisting of 4096 addressable points on the H and V axes. The
display grid circumscribes the display surface such that any combination of points on
the H and V axis can be addressed.

HOOK — A 9-bit pointer inserted into a bead address when stringing beads.

ID BLOCK — An identification block of coded information associated with a display item.
(See Section 6.)

INPUT, ALPHANUMERIC — Picking characters from a displayed font or inputting from
A /N keyboard.

KEYBOARD — Optional input device. There are two types:

° Function
° Alphanumeric

Glossary-2 44616800 Rev. 03

LIGHT BUTTON — Software defined functions displayed on the control surface. They are
picked with the light pen and usually call a task to be executed. Light Buttons are
items directly related to graphics program options.

LIGHT PEN - A pencil-like bundle of optical fibers which senses the current vertical and
horizontal coordinates of the beam and makes them available to the program in order
to identify the item that the operator picked.

LIGHT REGISTER — Specific area on the control surface provided for operator input of

alphanumeric data. These registers may appear anywhere on the screen, according
to the application programmer's wish.

MACRO — The display byte stream for an item which can be displayed in a number of loca-
tions on the screen without duplication of the byte-stream.

PICK — The selection of an item with the light pen or function keyboard.

RESET SEQUENCE — Consists of a reset byte to control beam intensity, light pen sense,
and blink capabilities; followed by two bytes to establish horizontal and vertical dis-
play coordinates to which beam will be set with beam off. In conjunction with last
two bytes, a system imposed 25 psec delay permits beam driving circuits to stabilize.

RESIDENT TIME — Actual time a program has run at a control point.

RESPONSE TIME — The time period between a graphics operator command and the answer
he receives.

RESULT — The output of parameters by the Basic Graphics Package.

ROLLIN — The function of transferring a graphics program from mass storage to a control
point for execution.

ROLLOUT - The function of transferring a graphics program from a control point to mass
storage,

SCHEDULER — A PPU program called by EXPORT to rollout or rollin a graphics program.

SCISSOR — The act of dropping an entity from the display when its coordinate parameters
exceed the range of the display grid. This is a software function.

SCISSORING, FRAME — Truncating display items to fit a user defined frame.

SCISSORING, MICRO — The act of non-displaying display items too small to be seen. The
cutoff point is 0. 025 inch.

SINGLE PICK — A classification given to a display item to cause only the last one of this
type picked to remain on the queue.

STATUS CODE — An EXPORT data word which informs the IMPORT program what buffers
are available for data I/O.

STRING — A serial linking of display items, buttons, or beads.

STRING PICK — A classification given to a display item to cause each item of this type
picked to be put on the end of a string of picked items.

SURFACE, CONTROL — The area reserved for light buttons and light registers. The area

on the cathode ray tube display surface exclusive of the working surface. Program-
mer -defined.

44616800 Rev. 03 Glossary-3

SURFACE, DISPLAY — A 20-inch diameter area on the cathode ray tube screen utilized for
man-machine communications. A light, blue, flicker-free display is presented to the

operator due to components of the P7 phosphor coating deposited on the inside surface
of the cathode ray tube screen.

SURFACE, WORKING — One of two divisions made on the cathode ray tube display surface.

The working surface can be enclosed by a frame (viewing window) which is a displayed
graphic.

TASK — A program and its subprograms that perform a series of calculations or logical

operations. Graphic tasks are, of necessity, as short as possible to define one phase
of a multiphase job.

TRACKING — The 1700 Basic Graphic Package function which maintains cognizance of the
position of the light pen as it moves across the display surface. A core-displayed
tracking cross is used as the light source for the light pen.

TRACKING CROSS — A software displayed item which allows the graphics operator to use
the light pen where otherwise no light exists.

UNIT, DISPLAY GRID — The spacing between the 4056 points on the H and V axis of the

display grid. A display grid unit is fixed at 0.005 inches and there are 200 display
grid units per inch.

USER, CONSOLE — Person who operates a graphics console and uses an application program.

UTILITY PROGRAMS — Programs which support the graphics system, but are not directly
involved in graphics program execution.

Glossary 4 44616800 Rev. 03

6000 BASIC GRAPHICS PACKAGE ROUTINE INDEX A
Routine Page Routine Page
AELBUT 7-21 GIFSID 7-23
AERTRN L-1 GIKYBD 7-14
AETSKC 7-13 GILPKY 7-15
AETSKR 7-13 GIMAC 7-38
DMDMP 7-52 GIMACE 7-39
DMFLSH 7-51 GIMASK 7-19
DMGET 7-53 GIMOVE 7-42
DMGTBD 7-52 GIPBUT 7-16
DMINIT 7-50 GIPLOT 7-56
DMRLBD 7-52 GITCOF 7-45
DMSET 7-53 GITCON 7-45
GFONTA 7-51 GITIMV 7-46
GFONTN 7-58 GITMMV 7-46
GIABRT 7-55 GUAN 7-31
GIANE 7-25 GUARC 7-27
GIANS 7-25 GUARCG 7-36
GIBUT 7-22 GUBYTE 7-37
GICLR 7-20 GULINE 7-26
GICNJB 7-12 GUMACG 7-37
GICNRL 7-12 GURSET 7-30
GICOPY 7-42 GUSEG 7-34
GIDISP 7-40 GUSEGA 7-35
GIEOM 7-15 GUSEGI 7-33
GIERAS 7-41 GUSEGS 7-32
GIFID 7-23 SCHEDR 7-11

44616800 Rev. 01 A-1

GRAPHICS SYSTEM ERROR MESSAGES B

6000 PROGRAMMING DIAGNOSTICS

In addition to the standard FORTRAN compiler, SCOPE loader, and SCOPE execution error
diagnostics, the Interactive Graphics System produces several additional diagnostic mes-
sages. These diagnostics appear on one or all of the system consoles, and are all entered
into the SCOPE dayfile. Dayfile messages pertaining to a specific program are automati-

cally printed with the program's listing.

The special Interactive Graphics error messages are listed below in alphabetic order.
Class 1 messages appear only in the SCOPE dayfile (A) and/or job status (B) displays on the
6612 Console screen. Class 2 messages also appear at the 1713 Teletypewriter and on the
274 Console's display screen; they occur only during program execution runs. All mes-
sages issued by 6000 Basic Graphics Package routines contain the name of the Package call
in which the error was made, and are prefaced by a message which states the name of the

task overlay in which the erroneous call occurred.

6000 INPUT/OUTPUT ERRORS

BATCHIO also produces some error messages; these appear only in a program's output
file.

1700 ABORT ERRORS

Class 4 error messages are produced by the Buffer Translator, and appear on the console
screen and the 1713 Teletypewriter, but are not sent to the 6000 Series machine. If a Class
4 message is associated with a fatal error, it sends an abort flag from the 1700 to the 6000.
The Scheduler detects the abort flag and issues the Class 1 error message 1700 ABORT.

44616800 Rev. 03 B-1

Message

AEFILE READ
ERROR

BAD CALL CODE
RETURNED-GIANE

BAD CALL
PARAMETER

BAD NAME CHECK
rcrdnam

BYTE ARRAY
EXCEEDS 255-
GUBYTE

BYTE ARRAY
INDEX ZERO-
GUBYTE

DISPLAY ITEM

BUFFER EXCEEDED

~-GIDISP

DISPLAY ITEM
NBYTE EQUALS
ZERO-GIDISP

EMPTY FILE
filenam

EOR NOT READ
ON TASK LOAD

EXPORT IS NOT
UP

Error
Type

Fatal

Fatal

Fatal

Fatal

Non-
Fatal

Non-
Fatal

Fatal

Non-
Fatal

Fatal

Fatal

Fatal

Class

oo

.

Meaning

Parameters in the File Environment
Table indicate a disk read error when
control is returned to AEFILE from
SCOPE.

Buffer returned by IMPORT at end of
console alphanumeric input does not
contain expected valid identification
code.

EXPORT has encountered a service
request (at RA+76g of a graphics job's
control point area) with meaningless
contents.

Issued by AELOAD utility routine; the
name of record rcrdnam in source
file does not correspond to any entry
in the file index.

There are only 8 bits in the 1700
Package version of the N parameter,
so N in this call cannot exceed 255.

The N parameter in this GUBYTE
call is zero, so the call is ignored.

The total number of bytes in the user's
IBUF (excluding GIDISP header bytes
and trailing ID bytes) exceeds the 310
decimal maximum.

Since the description buffer is empty,
the call is ignored,

Issued by AEDUMP; the first record in
source file filenam indicates that the
file was created from an empty random
file.

Parameters in the File Environment
Table indicate a disk read error during
a task call when control is returned to
MAIN from SCOPE.

The Scheduler has been called to begin
graphics job execution, but EXPORT
has not been loaded to handle the job's
communications; this message is pro-
duced by a communication failure, not
a programming error.

44616800

Page

References

2-21

7-29,
7-40
M1

.

©w o w
1
D =N

Rev. 03

Error

Message Type
FORMAT ERROR Fatal
FIRST DATA
RECORD
GICOPY ADDR Non-
ERR, NCON y Fatal
GICOPY BUFFER Non-
OVERFLOW, Fatal
NCON y
GIDISP BUFFER Non-
OVERFLOW, Fatal
NCON y
GIERAS ADDR Non-
ERR, NCON y Fatal
GIMAC BUFFER Non-
OVERFLOW, Fatal
NCON y
GIMAC CALL Non-
IGNORED- Fatal
NBYTE =0
GIMAC ADDR Non-
ERR, NCON y Fatal
GIMOVE ADDR Non-
ERR, NCON y Fatal
GITIMV ADDR Non-
ERR, NCON y Fatal
GITMMV ADDR Non-
ERR, NCONy Fatal
GUAN CALL Non-
IGNORED-NC is Fatal

ZERO OR NEGATIVE

44616800 Rev. 03

Meaning

The first data record of the input file
for the job contains no cards or an
illegal file name; names must be seven
or fewer characters, and must contain
no special characters. Produced by
MAIN.

The 6000 Package routine named has
sent the Buffer Translator an invalid
IDDAD, IDDADI, or MAD parameter
for use on console y.

Console y controller memory has over-
flowed because of the named call.

Console y controller memory has over-
flowed because of the named call.

The 6000 Package routine named has
sent the Buffer Translator an invalid
IDDAD, IDDADI, or MAD parameter
for use on console y.

Console y controller memory has over-

flowed because of the named call.

Since the programmer has specified
that his description buffer is empty,
this call is ignored.

The 6000 Package routine named has
sent the Buffer Translator an invalid
IDDAD, IDDADI, or MAD parameter
for use on console y.

See above
See above
See above

Self-explanatory.

Page

References

2-13

9-15

9-15

7-38,

Message

GUARCG CALL
IGNORED-
KSHOW ILLEGAL

GUARCG CALL
IGNORED-ZERO
RADIUS ARC

GUMACG ADDR
ERR, NCON y

GUSEGA CALL
IGNORED-N

ZERO OR NEGATIVE

ILLEGAL
COORDINATE -
GITCON

ILLEGAL
COORDINATE
RETURNED-
GITCOF

ILLEGAL
IBEAD-DMGET

ILLEGAL
IBEAD-DMRLBD

ILLEGAL
IBEAD-DMSET

ILLEGAL
IBEAM-GUSEG

ILLEGAL
IBEAM-GUSEGS

ILLEGAL
ICOMP-DMGET

ILLEGAL
ICOMP-DMSET

Error

Type Class

Non-
Fatal

Non-
Fatal

Non-
Fatal

Non-
Fatal

Fatal

Fatal

Fatal

Non-
Fatal

Fatal
Non-
Fatal

Non-
Fatal

Fatal

Fatal

Page
Meaning References
The KSHOW parameter is negative or 7-29,
greater than 5 7-36
¥ IH1, 1IV1 or IH2, IV2 equals IHC, 7-29,
IVC no arc can be generated. 7-36
The 6000 Package routine named has 7-37,
sent the Buffer Translator an invalid 9-14
IDDAD, IDDADI, or MAD parameter
for use on console y.
Self-explanatory 7-29,
7-35
One of the programmer's tracking 4-5,
cross coordinates is beyond the T-45
extent of the display grid (not between
-2048 and +2048).
One of the tracking cross coordinates 4-5,
from the last button pick is not with- 7-45
in the display grid (is less than -2048
or greater than +2048).
Programmer's bead address either: 7-5,
e Has an index = 0 7-50
e Ias a block number = 0 7-53
e Has a block number greater than
the number of existing blocks
Same as above. 7-5,
7-52
Same as above. 7-5,
7-53
The programmer's beam control 7-34
parameter is not either 0 or 1.
Same as above. 7-32
The programmer's component code 7-47,
contained either: 7-53
e Typecode = 0 or 9, or greater
than 10
e Word or character number greater
than the size of the bead specified
by the accompanying IBEAD value
Same as above. 7-417,
7-53

44616800

Rev. 03

Error

Message Type

ILLEGAL Fatal
NBLK-DMINIT

ILLEGAL Fatal
NBSIZE -DMINIT

ILLEGAL NUMBER Fatal
OF WORDS RE -
QUESTED-DMGTBD

INCORRECT Non-
ICODE -GICOPY Fatal
INCORRECT Non-
ICODE -GIMOVE Fatal
INCORRECT Non-
ICODE-GURSET Fatal
INCORRECT Fatal

NCON-GIFID

INCORRECT Fatal
NCON-GIFSID

ITEM NOT Fatal
CREATED FOR THIS
NCON-GITIMV

JOB NOT Fatal
ATTACHED TO

RANDOM TASK

FILE

44616800 Rev. 03

Meaning

The number of Data Handler data
blocks that the programmer wishes
kept in core as copies is either:

e Lessthanthe minimum of 2 the
Handler needs to function
properly

e Larger thanthe number that will
fit in core

The block size specified in this call
is larger than the maximum permissi-
ble size of an in-core data base.

The programmer is trying to define
a bead with a length (N parameter)
less than or equal to zero, or > 218

The programmer's reset control code
is not a form or value significant to
the 1700 version of this routine; a
significant ICODE value will be sub-
stituted for the one supplied.

Same as above,
Same as above.

The programmer is trying to fetch a
single pick ID block from a console
other than the one from which the last
button pick ID was fetched. The GIFID
NCON must always agree with the
NCON of the last GIBUT call.

Same as above.

The IDDAD value given does not exist for
this console; either the NCON or the
IDDAD parameter supplied in this call is
wrong.

Either:

e AEDUMP couldn't find the file named
in its first parameter field

e MAIN couldn't find the file named on
its graphics COMMON file name
parameter card

If the file name is both legal and correct

as given, then the file has not been at-

tached to the job by a control card.

Page

References

7-50

7-42

2-10
2-11
2-13,
2-24,
7-2

Message

MACRO BUFFER
LENGTH EXCEED-
ED-GIMAC

MACRO NOT
CREATED FOR
THIS NCON-
GITMMV

MAD ARRAY
INDEX ZERO-
GUMACG

NBSIZE DIFFERS
FROM PREVIOUS
DEFINITION -
DMINIT

NBYTE EXCEEDS
MBYTE ~GUAN

NBYTE EXCEEDS
MBYTE -GUARCG

NBYTE EXCEEDS
MBYTE — GUBYTE

NBYTE EXCEEDS
MBYTE — GUMACG

NBYTE EXCEEDS
MBYTE — GURSET

NBYTE EXCEEDS
MBYTE — GUSEG

NBYTE EXCEEDS
MBYTE — GUSEGA

NBYTE EXCEEDS
MBYTE — GUSEGI

NBYTE EXCEEDS
MBYTE — GUSEGS

NCON ERROR

NC RETURNED
GREATER THAN
MAXIMUM~-
GIANE

B-6

Error

Type Class

Fatal

Fatal

Non-
Fatal

Fatal

Non-
Fatal

Non-
Fatal

Non-
Fatal

Non-
Fatal

Non-
Fatal

Non-
Fatal

Fatal

Non-
Fatal

2

Meaning

The total number of bytes in the user's
IBUF (excluding GIMAC header and
trailer bytes) exceeds the maximum of
310 decimal.

The MAD value given does not exist for
this console; either the NCON or the
MAD parameter supplied in this call is
wrong.

The N parameter given in this call
indicates that no macro should be
created, so this call is ignored.

DMINIT has been called with a block
size different from the block size de-
clared by a previous job using IFILE.

This Graphics Utilities call has pro-
duced more bytes in IBUF than the
programmer wants.

Same as above.
Same as above.
Same as above.
Same as above.
Same as above.
Same as above.
Same as above,
Same as above.

EXPORT has detected a service request
(RA+76g of a graphics job's control
point area) with an invalid NCON para-
meter; either the console being
addressed does not exist, or it is not
attached to this job.

The number of characters picked ex-
ceeds the maximum the programmer
wants sent to the calling task; the ex-
cess trailing characters are dropped
automatically.

44616800 Rev.

Page

References

03

Message

NC TOO LARGE
-GIANE

NC TOO LARGE
—GIANS

NO ACTIVE
GRAPHICS CP.

NO DATA
HANDLER FILE
OPEN-DMDMP

NO DATA
HANDLER FILE
OPEN-DMGET

NO DATA
HANDLER FILE
OPEN-DMGTBD

NO DATA
HANDLER FILE
OPEN-DMRLBD

NO DATA
HANDLER FILE
OPEN-DMSET

NO INITIAL POINT
GENERATED~-
GUSEG

NO TASK NAME
IN BUTTON ID~-
AETSKR

44616800 Rev. 03

Error

Type

Fatal

Fatal

Fatal

Fatal

Fatal

Fatal

Fatal

Fatal

Fatal

Non-
Fatal

Meaning

More characters have been picked
than can be passed to the task; EX-
PORT can handle a maximum of 6201¢
characters.

The programmer is willing to accept
more input characters than EXPORT
can handle; maximum is 62010.

The Scheduler cannot find a graphics
control point to which the program can
be assigned. The system operator has
not assigned a control point for graphics
use, so the job cannot be executed; no
programming error has occurred.

The programmer is trying to dump a

non-existent IFILE; either:

e DMINIT has not yet been called

e DMINIT has not been called since
the last DMFLSH call

The programmer is trying to obtain
data in a non-existant IFILE; see
above.

The programmer is asking for space
in a non-existant IFILE; see above.

The programmer is trying to clear
space in a non-existant IFILE; see
above.

The programmer is attempting to
place data in a non-existant IFILE;
see above.

GUSEG has been called without a previ-
ous GUSEGI or GUSEGS call to initialize
the figure that the programmer wants

to generate.

Produced by MAIN when AETSKR has

been called; IDWA and IDWB of the

button in the FETCH queue do not con-

tain information that can be used to

load a task; either:

e IDWA =0

e TheIDblock ends short of IDWA

e The bit pattern in IDWA and IDWB
does not match a task name in the
index

Page

References

7-25

7-50,
7-51,
7-52

I'rror

Message Tyvpe
NO TC COORDI- Non-
NATES THIS Fatal

NCON- GITCOF

PREFIX TABLE Fatal
FORMAT FRROR-
AEFILE

PROGRAM NAME Fatal
NOT IN FILE
CATALOG

QUEUE TABLE Fatal
FULL

RETURN ADDRESS Non-
OVERLAYED OR Fatal
MISSING - AERTRN

TASK
tasknam

TASK

Siskosioskoskosikok sk

TOO MANY DATA Fatal
HANDLER FILES
CRFATED - DMINIT

TOO MANY FILES Fatal

1700 ABORT Fatal

Class

Page
Meaning References

No tracking cross coordinates can be T-44
returned because the NCON of the
last button picked doesn't match the
NCON supplied in this call.
AEFILE has detected an illegal Prefix 2-21
table while creating the task file from
the overlay scratch file.
AETSKC cannot find the required task 2-22,
in the directory of the job's graphics 7-13

COMMON file.

The Scheduler has no room in its
graphics input queue for this job, so

the job cannot be assigned to a control
point. The job should be run again when
there are fewer graphics jobs in the
system.

FEither AETSKC has never been called or the
return address of AETSKC has been over-
written by a task load since the tast call.
After issuing the message, AERTRN exits
to AETSKR.

Issued by the MAIN error processor
before all fatal and nonfatal error mess-
ages; tasknam contains the name of the
task overlay in which the error occurred.

MAIN issues this when it appears that N-2,
the contents of the reservation word in N-3
MAIN for the current task have been

destroyed or when jobs are being run

outside applications executive interface. l

DMINIT has been called to create more 7-50
than the installation-specified number of
Data Handler files.

More than 8 files are attached to the
job which the scheduler is attempting
to roll out.

Fither a Class 4 error or one of the
system problems mentioned in Section
9 has caused the 1700 to abort the job.
Error correction may have to he done
through the 1700.

44616800 Rev. 03

€0 *49Yd 008919%%

-2

ASCIIOR
Alpha - 1700
6000 Printed 1713 274 numeric Hexa-
Internal Character Tele- Display or decimal
Display (standard type- Char- Numeric Inter-
Code 6000 sct) writer acterttf Keyboard?!! nal Codet

01 A A A A 41
02 B B B B 42
03 ¢ ¢ C c 43
04 D D) D 44
05 D I I E 45
06 ? 8 I ¥ F 46
07 A G G G G 47
10 [\) i1 I H H 48
11 A 1 | I 1 49
12 '[‘) 1 1 7 b 4A
13 IN 1N K K 48
14 (') I. 1. I L ac
15 R M M M M 4D
16 }‘(N N N N 4B
17 A 4)) O O 4¥
20 A P P P P 50
21 C Q Q Q Q 51
22 T\' R R R R 52
23 R S S S S 53
24 ;\ T T T T 54
25 T L v U U 55
26 :{ \ v v v 56
27 S w W W W 57
30 X X X X 58
31 \ 3 Y Y 59
32 v 7z Z Z 5A
33 0 0 0 0 30
34 1 1 1 1 31
35 2 2 2 2 32
36 3 3 3 3 33
37 L 4 4 4 4 34

T 8-bit ASCII, usecd for communication with 1713 Teletypewriter
110,11 1s equivalent to 11, 8,2 and 0, 12 is equivalent to 12,8, 2
t 11 CLEAR, TAB, BACKSPACE, and EOM have input control significance only

6000
Hollerith
(punched
card
rows)t1

12,1
12,2
12,3
12,4
12,5
12,6
12,17
12,8
12,9
11,1
11,2
11,3
11,4
11,5
11,8
11,17
11,8
11,9
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
0

oW N e

In-
ternal
BCD

21
22
23
24
25
26
217
30
31
41
42
43
44
45
46
47
50
51
62
63
64
65
66
67
70
71
00
01
02
03
04

Ex-
ternal
BCD

61
62
63
64
65
66
67
70
71
41
42
43
44
45
46
47
50
51
22
23
24
25
26
27
30
31
12
01
02
03
04

EBCDIC

Hollerith

(punched
card
rows)

12,1
12,2
12,3
12,4
12,5
12,6
12,7
12,8
12,9
11,1
11,2
11,3
11,4
11,5
11,6
11,7
11,8
11,9
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
0

Bw N

8-bit
EBCDIC

Hexa-
decimal

Code

C1
Cc2
3
4
5
Q]
[§)
8
C9
D1
D2
D3
D4
D5
D6
D7
D8
D9
E2
E3
E4
ES5
E6
E7
E8
E9
Fo
F1
F2
F3
F4

EBCDIC
Char-
acter

>

BN - O NK X< o3RO TCZE DRSS "D EoN®

ICT 1900
Hollerith
(punched
card
rows)

12,1
12,2
12,3
12,4
12,5
12,6
12,7
12,8
12,9
11,1
11,2
11,3
11,4
11,5
11,6
11,7
11,8
11,9
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

Bw N = O

ICT 1900
Char-
acter

BN - ONRKME<LCHLTLOTYWOZEE RS~ T O

SINITVAINO3I 3A0D ¥31DOVIVHO

¢-D

‘ASY 008919%¥%

€0

ASCIIOR
Alpha- 1700 8000 EBCDIC 8-bit ICT 1900

6000 Printed 1713 274 numeric Hexa- Hollerith Hollerith EBCDIC Hollerith

Internal Character Tele- Display or decimal (punched In- Ex- (punched Hexa- EBCDIC (punched ICT 1900

Display (standard type- Char- Numeric Inter- card ternal ternal card decimal Char - card Char-
Code 6000 set) writer actertii keyboardfft nal Codef rows} it BCD BCD rows) Code acter rows) acter
40 S (5 5 5 5 35 5 05 05 5 ¥s5 5 5 5
41 /l\ 6 6 6 6 36 6 06 06 6 ¥6 6 6 6
42 N 7 7 7 7 37 7 07 07 a ¥1 7 7 7
43 Il\) 8 8 8 8 38 8 10 10 & F8 8 8 8
41 R . a 9 9 9 39 a9 11 11 o 1 3] 9 9 9
40 P :) + + + + 2R 12 20 60 13,4,6 41 + 12,8,2 +
46 R - - - - 20 11 40 40 11 60 - 11 -
47 -}5 h 2A 11,4,8 54 54 11,4,8 5C 11,8, 4
50 A) / / / / 2k 0,1 61 21 0, i 61 / 0,1 /
51 N](‘ ((((28 0,4,8 74 34 12,8,5 4D (8,5 (
52 A)) i) 20 12,4, 8 34 74 11,8,5 5D) 8,6)
53 /}z $ $ % $ 23 11,3,8 53 53 11, 3,8 5B $ 11,8, 3 $
5.4 C 3D 3,8 13 13 8,6 71 : 0,8,6 =
50 }{- blank space space 20 space 60 20 space 40 blank space ' blank
56 R , s , , 2¢ 0,3,8 73 33 0,3,8 6B , 0,8,3 ,
57 5 21 12,3,8 33 73 12,34,8 4B . 12,8,3 .
60 b = # backspace - 5K 0,6,8 76 36 3,0 # 8,3 #
61 [[2 ? 5B 7,8 17 17 7,8 ¢ 11,8,2 {
62]] S5 0,2,8 72 32 0,5,8 underline 8,17]
63 : : : : 3A 2,8 12 00 2,8 7A : 12,8,5
64 7 . 27 4,8 14 14 5,8 ! 12,8, 6 '
65 @ tab TAR 40 0,5,8 75 35 4,3 @ 8,4 @
66 v (OR) N clear RUBOUT 21 0,11 52 52 7,8 " 11,0 "
687 A(AND) % FOM RETURN B3 0,17,8 M 37 12,11 A 0,8,2 £
70 t 1 t 23 11,5,8 55 55 12,8,17 | 11,8, 7 i
71 ! ! ! 5C 11,6,8 56 56 11,3,2 ! 12,8,7 !
72 < < < 3¢ 0,12 32 72 12,4, 4 4C < 11,8,6 <
73 E > it 11,7,8 57 57 0,3,6 6F > 11,8,5 >
74 < & & 26 5,8 15 15 12 & 12 &
75 T i 51 12,5,8 35 75 0,3,7 ? 0,8,5 ?
76 — (NOT) -~ - ¢ 12,6,8 36 76 11,3,7 5F - 0,8,7 -
77 : : : 3B 12,17,8 37 77 11,3,6 5E ; 12,8,4

' 8-bit ASCH, used for communication with 1713 Teletypewriter
f 10,1115 equivalent to 11, 8,2 and 0,12 15 cquivalent to 12,8, 2

PP CLEAR, TAB, BACKSPACKE, and EOM have input control significance only

(P,3U0D) SINTIVAINDHE 0D HALDTVUVHD

SAMPLE DATA HANDLER FILE DUMP D

The task overlay shown below creates a Data Handler file called DMFILE containing five
blocks of information. It then prints the edited and labelled file dump reproduced on the
following pages. Although the call to DMDMP prints out all five file blocks, only the first

two are shown here because of space limitations.

OVERLAY (1,0)
PROGRAM DMPTASK
DIMENSION IB(8), IVAL (512)
Initialize 5 duplicate blocks in
CALL DMINIT (6LDMFILE, 5) {core for file DMFILE
IC = 070000000001B < Set basic component code value

DO4I=1, 8 } Obtains all needed beads from file
4 CALL DMGTBD (64%*1,1B(1))

DO 451=1, 8 b
M =1 * 64
IF (I.NE.1) GO TO 2
IVAL (1)
IVAL (2)
IVAL (3)
IVAL (4)
IVAL (5)
IVAL (6)
IVAL (7)
IVAL (8)
IVAL (9)
IVAL (10)
IVAL (11)
IVAL (12)
IVAL (13)
DO 3 IN = 14,

3 IVAL (IN) = 0
GO TO 43

2 MB = I % 8 #% 5
DO 43N =1, M

42 IVAL (N) = MB + N J

1

]
o= = NN R e O

Arbitrary establishment of data
to be placed in file

il

n "
N = O O

o))
o~

44616800 Rev. 01 D-1

43 ICOMP = M * 8 **x 6§ + IC Increment component code for each pass

45 CALL DMSET (ICOMP, IB(I),IVAL) Store value
DO501=1, 512

50 IVAL (1) = 0 Zero out value buffer for next use
CALL DMDMP Print dump of DMFILE
END

As the following printout shows, each dump produced by DMDMP is preceded by a line
stating the name of the dumped file; each block in the file is preceded by a line stating the
relative number of the dumped block and the amount of empty space within it; each bead in

a block is preceded by a line stating its relative index number within the block. Continuation

beads are marked and pointers to them are given after the printout of each file block.

DUMP OF DATa WANDLER FILE = OnclLE

BLNCK 0001 FMPTY SpACE 0000

Bead 001

000001 0nng0 00000 00000 000~A 00000 000N0 0n00O AnOOD1

000005 0nnAR 00000 00000 000~2 000007400000 00GFD 00000 naDO1 N00012ANDONN 000n0 00000 HNNAAY 00N016m0A000 ANOND NOOAL NNOOYL
000015 0nn0N ONONYD ONNOO NNO-P 00000 00000 00000 ANOOO 00010NANDNNN 000ONC 00000 AnAND

Bacd 002

000001 Onnon 0n0AN NARDN2 NAOAT 00000 00GNN 0NDO2 AHDN2 A00ND 00000 00002 nnnnld 0N000 ANDNO 00NNZ NOOOS
000005 0nn00 0000N NuOB2 0NOr= 0nn00 00000 00002 nNONG nonon 00000 00002 nnpn? 00000 An0NO 000r2 NNOLO
00nnll 0nAnNO0 NNOND 02602 0001T 00000 00000 00002 An0l2 nonan 0n0ND 00002 nnntd 00000 ~n0TD NOON2 NOOLS
000015 0sanp 0000n ninn2 0001e 0aA00 0ANFD NO0N? nrOLA AnAnN 00000 00002 nnnt? 00000 An0N0 000N2 NDO20
000021 0rp00 00000 0NGO2 0002 00000 00CAD 0N002 ANOD22 n0ONo 00000 00002 nnn23 00000 AN0NO 00ON? NDO2%
000025 0nn00 NOOON 00NN2 2007w 00700 00900 000¢2 npDEk noano 000n0 00002 nnnp7 07000 An0~0 00002 00030
000031 0nnOn 00GON NNNO2 ONO 00000 000NN 00002 nnp32 A00N0 000n0 0Nn002 Anp33 00000 ~nDND 000n2 NAD34
000035 0nnnO 00007 NNANZ 00D3E 00000 00000 00002 n0036k n0000 000n0 00002 nnax? 00000 ANDND 000NZ NNOSO
000041 0n600 0DAONN 0N002 000/) 00000 00000 ANOCD AnNs? ANOAA 000AD 0N002 nnnéld 0n000 ~nDiN 000N NNOGE
nNoNoAS Onann 0p0nn AODA2 PR e 0AN0O NANAD ONDI2 nANsk ADAND ONOAN 0NO02 nnna? 8A000 AFONO N00N? 0NDS0
00n0S1 0nnnn BNONO N1ND2 NAORY 0nA0D 00000 00002 AN0S2 ANNON 0n0NG 00002 nnns3 00000 ~r0"0 000n2 NNOSH
n00NSS 0rn00 00000 NNNN2 0N0ES 00000 00NND 00002 ANOS6 ARONA 000NN ON002 AARRT 0A000 ~r0AN A00N? OND6D
000061 0nano 0000D NUAC2 ONORT 4noon 00090 0NO0N2 nnO&2 nO0ND 00070 00002 nnrned 07000 AnNnG A0CR? NNDGE
000065 Onran 000N 000N2 0NOK- 0nNG0 0NOAD 00002 NNOD6A nONNO 00000 00002 nnna? 00000 ~An0DNO 60002 00070
nooonTl 0nAap0 000N 0NoR2 00T 00000 N0ON0 0NOU2 nn0T2 anona 0p0nn 00002 nnnv3 0A000 AnDPO 000NR? NOOTS
nonoTS Onnpn 000NN NOAN2 §NOTE 00AD0 Q00AN ONOO02 ANOTE ABNNO 000ND 00002 cAnT? 09000 ~n0~N 000n2 0N100
000101 0nnan 000NN NnnE2 0Al-Y 00000 N09n0 0000 nnln2 nONND 00000 00002 nnya3 00000 ~ADND 0000? 00104
000108 Onnon 000NN nina2 nnl-s 00000 000NAD 0001P nnlnk ABO00 00000 00002 nnja” 00000 ~n0NO NOON? 0N110
nonill Nnapo 00000 n0002 0011 00000 00000 NOOD? Anll2 ANOND 0n0n0 00002 nnyyd 00000 AnNCO 000N2 NN11&
000115 0rn0n 000ne n0e002 NAldE 0nN00 00un0 00007 nalle AONNO 00000 00002 nn1y? 00000 ~n0~D A00N? 00120
nootal Onnna 000AN nean2 nol2d 00000 0o0are 0n0LP ~nll2 ANNAG 00000 00002 nn)»3 00000 ~n0"N 000N? 00124
00012% 0nnn0 0000N ANND2 0Nl2- 00000 006n0 0N0G2 Anl2a Apnnn 00000 00002 nny2? 0000 Ar0~0 000~2 ON130
000131 0rng0 000NN niON2 013y 00000 N00NN 00002 ~n132 AnNRO 000NN 00002 nn1ad 0A000 AnC>N 000N2 nnl3é
000135 0nnn0 00000 02002 Onlawr 0nN00 N0r 0 000u? nnlle nnneA 00000 00002 nn1a? 00000 An0~0 AOON? NOL1&0
000141 0aran £O0NN 00002 00l/) 00900 00070 00072 ~nle2 nQNOO 00040 0N002 An]43 0n000 ~n0"N 000N2 NNl&s
000145 Dnagn 000N n00N2 Aal, = 0nN00 00NRD 0NOC? nAnlek A00ND 000nG 0N002 nnyaT 67000 ~r0~D 000~? AN1SO
00n151 OnAQD 0A0NA AIAAR AR 0nn0N NOGAD 0A0HR AnlS2 AfAAn 0N0N0 (N0N2 nn1&3 DADO0 ~nAN3 NONNZ NN1S&
non15sS 0nag0 000r2 APGO2 OAle- 00n00 00IrD 0AOU2 nnlRe ADNAN 00000 0ND02 nnys&? 0n000 rrO2G N00N? (N160
nonie6l frrAf GOONAND ANAND NAlky 0nAN0D0 000NH ON0HD Anls? ARDAA 00000 UN002 nn1ad 0000 ~nn"D AOONR? NN16ES
000165 0nnnn 00000 0unn2 0nles 00000 000F0 00002 Anlhsk na000 00000 00002 nnjs? 04000 ~n0-0 q00r2 60170
noNnlTY 0ane0 000nN 0)0N2 0nlTY 00NO0 BDDAD 0NON2 nnrl72 n00NN 0NONN 0N002 nny73 0n000 AnNnh 000N NDLITH
000178 0nang 000°N NuNN2 nnlve 00000 00LN0 00002 nnlTéE ADADN 0NOAD 0N002 ANYTT 00000 ~nn~=n 000n2 NN200
Bead 103

000001 0nrnnN 0AONE NANN3 ann-v 0pN00n 00000 0ON0VI AnON2 AOONO DOOAN 0N003 nnnald 0A000 ~nN7 0 0ONA3 NNDOE
000005 0raNng DNOYC 00AN3 Np0- = 00000 00070 0N0I3 Apnnna a00A0 0n0ND 4n003 nnAnT 0000 ~PH~0 N0OA3 NANLO
000011 0anan 000r" 06003 ANDYT 00000 0N0OAD 0ANG3 AA0OL2 Annnp 00000 00003 Arn13 60000 An0rD 0003 NOOLE
nonnl1s 0na0n 000n" 0 0n3 Np0YE 00n00 0PUND 00003 AnOlA ADNOA 00000 w0003 Nrny? 0AN00 ~n0f) 006A3 NN0O20
00nn21 asann 00005 07903 000 0nN0O 0Nonn QD13 Anneg2 AQNND 000080 0N003 nnp»3 00000 ~n0rY A00N3 NNO2H
000025 0nnann 00000 4%0603 unore 0nPNOO 00900 00003 nnoee ApnAn 000n0 00003 nnnp? 6A000 ~nC" N 000n3 00030
600031 0nnng 0000r ninn3 an0ay 00000 ©N3n0 000G3 ~aD32 AONND 00080 00003 nnn33 6n000 ~nN"0 00C~3 NO034
000035 Qnnno 000NC 6.9r3 0n07e 0nAn00 DOGAN 00013 ARDIA AONNN 000N 00003 0np3? 00000 AANNN 000N3 NNOGO
nonoel Naann 000> noer3 cans 90000 ANIAL 00NN ARQL2 ADNAN 000RN 00003 nanald 07000 ~n0"A 0ONN3 NOQSS
000045 0an0n 0000r A°0N3 OnOue 00000 00UrD 000C3 AnDek A0N0O 00000 00003 nnrpa? 0n000 ~n0ry n00R3 00050
000051 0nnpg 00030 0NnaN3 nNnney 0p000 HNNANM DOON3 ANNS2 AnANAD 000N 00003 AnnR3 04000 An0"0 NOONY 0NOSE
noN05S 0nnnn 0NONn 0r1r3 dpnes 0NN00 DNOAC 0NOD3 AnNSE AONNO 0N0AD 0N0O0I Anps? 0n000 An0") 00003 NAOKD
000061 0nnnn 00006 0 an3 up0e) 00000 00UN0 00003 nnNk2 A0NNO 00000 00003 annsd 0A000 Ar0A0 OO0CK3 NONKS
000065 Onann 0NO05C 0nAN3 A0k~ 00n00 00uNG 00003 AnDke annNna 000nn 0N003 nnnk? 0n100 ~An0~0 600n3 NONTO

D-2 44616800 Rev. 01

000071 0nn00 00000 00003 00077 00000 00000
000075 00n0n 00000 00003 0007= 00000 00000
000101 00n00 00000 00003 001~7 00000 00000
000105 00000 00000 00003 0nl-e 00000 00000
000111 00000 00000 00003 00l1)7 00000 00000
000115 0nn0o 00000 00003 00lV& 00000 00000
000121 00000 00000 00003 00l12) 00000 00000
000125 0nn00 00000 00003 0nl>w 00000 00000
000131 0nn0oo0 00000 00003 0nlNY 00000 00000
000135 00000 00000 00003 00laZ 00000 00000
000141 00000 00000 00003 00la] 00000 00000
000145 01000 00000 00003 00148 00000 00000
000151 00n00 00000 00003 Onlx] 00000 00000
00015S 0nnn0 00000 00003 0nlsae 00000 000n0
000161 0nn00 00000 00003 OnlmY 00000 00000
00016% 0nnpo 00000 00003 00la- 00000 00Qn0
000171 0nn00 00000 00003 00177 00000 00000
000175 0nn00 00000 00003 0017% 00000 00000
000201 0nnno 00000 0N003 002~1 00000 00000
000205 0nnou 00005 07003 002°% 00000 00000
600211 0rA0O 00000 00003 00217 00000 00000
000215 0nrno0 00000 00003 Oo2re 00000 00000
000221 0nr00 00000 00003 00221 00000 00000
000225 0nno0 00000 00003 0022x 00000 00000
000231 0nAn0 00000 00003 00217 00000 00000
000235 0nnn0 00000 00003 0023~ 00000 00000
0600241 0nn0O0 00000 00003 00247 00000 00000
000245 00000 00000 00003 00247 00n00 00000
0002%1 0nnO0 00000 00003 0p2=7 00000 00000
000255 0nn00 00000 00003 002xe 00000 000n0
000261 00n0O 00000 00003 002x71 00000 00000
000265 00000 00000 00003 o2& 00000 00000
000271 0An00 00000 00003 00273 00000 000n0
000275 0nnAB 00000 00003 Do2v% 00000 00000
Bead 004

000001 0rno0 00000 00005 000~Y 00000 00000
00000% 0nnn0 00000 00005 000-% 00000 00000
000011 0nnNO 00040 00005 00031 00000 00060
000018 0AnND 0000M NNOOGS 0001~ 00000 000n0
000021 0nnOC 00000 D00NS N0021 00000 00000
000025 0nnOO 00000 00005 0NO>e 00000 00000
000031 0nn0O 00020 00005 0003] 00000 00000
000035 0nnn0 00000 00005 0003& 00000 00000
000041 00n0AN 00000 00005 00047 00000 00000
000045 0nANO 00000 00GOS 000s= 00000 00000
nonos) 0nnN0 00000 ADNNS NAOSY 00000 00000
000055 0nnN0 000NC NNONS 000ex 00n00 00000
000061 0nnO0 00000 NNOOS 000+ 00000 000n0
000065 0nnDO 00000 0NNOS 0NO= 00000 00000
000071 06000 00000 HU00S NAOTT 00000 00000
500075 04n00 00000 00005 00078 00100 00000
000101 0AnNO 000NN 00005 0Al-Y 00000 00000
000105 0nnAOC 00000 000NS 061~ 00000 00000
000111 0nnNO 00000 0N0OS 0011 00000 00000
000115 0nnoo 00000 0NONS 0N13- 00000 00000
nool2l 0nano 00000 095305 0nl2y 00000 00000
000125 0nnpO 00000 00005 Nnln- 00000 00000
000131 0nnpn 00000 00005 017 00000 00000
000135 0nnN0 00000 000NS 09178 00N00 000n0
000141 0an00 00000 00005 Nolad 00000 00000
n00145 0nn00 00000 AGNOS 0Nlar 00000 00700
600151 0nnon 06000 00005 0n1SY 00000 00000
000155 0nnOoN 00000 NNONS NNlRe 00000 000nO
000161 0An00 000NN 00005 Nnley 00000 00000
aonles 00000 00000 ACONS 0Nk~ 00000 00GNO

000171 0nN00 00000 07005 00177
CONTINIE Ae RLOCK 0002 INDEX Gn2

RLOCK n002 FMPTY SPACF 0000

Bead 001

000001 0nn0D 00000 NNDN& 0NDAY 00000 00000
000005 0nanD 00000 0ND0O4 0NDAZ 00000 000N0
000011 0nrpD 00000 02004 0n0YY 00000 00000
000015 0nn00 000nN 00PD& 0n01E 00000 00000
000021 0nanD 00000 000NE 0002 00000 00000
000025 0nnoh 00000 0NND& 0n02F 00000 00000
000031 0nn0O 000nH 000N& 0007 00000 00000
000035 0nAN0 00000 02004 0003= 00000 00000
0600041 0nnON 0N000 0NO0& 0AOAT 00000 00000
400045 0nnpN 06000 NONCE 0004~ 00000 000n0
Aa000S51 0rAND 00060 00004 0008 001000 00000
000055 0nnnn 00000 0ONNG OnOsE 00000 000r0
000061 0nAND 00000 00004 0n0AY 00000 00000
000065 0nnnD 00000 00004 0n0kS 00000 00000
000071 0nnn0 00000 00004 00077 00000 00000
00007S 0nnON 00000 00004 0pOTF 00000 000n0
00o0to0l Gnno0 000NN 0DO04 0nle) 00000 00000
000105 0AnON 00000 0NDO& 00l-& 00000 00000
000111 0fnDO 00000 00004 00117 00000 00000
000115 0nn00 00000 00004 O0l1e 00000 00000
000121 0nn00 00000 06004 0nl121 00000 00000
000125 0nan0 00050 000U O0plrs 00000 00000
009131 0000 00000 000N& 0p1aY 00000 00000
700135 0nnAnD 00000 00004 0nl=c 00000 00000
000141 0nnp0 00000 00004 0nlal 00000 00000
000145 0nand 00000 000N& 0plux 00000 00000
000151 0nnpo 00000 00004 ONlel 00000 00000
000155 0nant 000nN 00DNSG Onler 00000 000r0
000161 0nnAD 00000 ANONG 0nled 00000 00000
000165 0nnaN 000n0 00004 00lks 00000 000rD
000171 0nAnD 00000 0NCOS 00177 00000 000n0

44616800 Rev. 01

00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
80003
00003
00003
00003
00003
00003
00003
00003
00003
00003
60003
00003

00005
00005
00005
0n00S
00095
0n00s
00005
00005
00005
00005
00005
00005
0000S
00005
00005
00005
00005
00005
00005
0n0cS
0n00S
00005
00005
00005
00005
00005
00005
0n00S
00005
00005

00004
00004
00004
00004
00004
000ué
000U
00004
00004
00004
00004
00004
00004
0noo0e
00004
00004
onooe
00004
00004
00004

co0né
00004
00004
00004
00004
00004
00004
00004
00004
00004
00NC4

an072
anové
anlo2
anloé
noll2
nanlle
nnl22
nnlae
noll32
nnlds
anle2
anlee
anlse
nnlsSe
Anléz
Anleg
anlr2
Anl76
an2n2
an20s
nn212
no2lée
an222
nn22e
np232
an23e6
An2e2
nn2es
An252
An2se
nn2a2
nn2es
an272
an27e

nnoo2
an006k
nnol2
nnole
nno22
Ano2e
no032
ano3s
An042
nn0&es
nnos2
an0S6
00062
LLI LTS
An072
AnDTA
Anlo2
Anlne
anll2
nalle
Anla2
nnl2e
an132
nnl3s
nnla2
Anlen
nnls52
LEL%-1)
nnlk2
nnlés

An0o2
LI
ano0l2
Anola
nno2z
Ano2a
An0d2
nno3s
AN042
anQak
anosS2
LG LTS
An0R2
no066
AnOT2
ANOTA
anlna
nolne
nnlle
nnlle
nnlé2
nnlee
anl132
nnl3e
Anle2
anles
AnlsSz
nAnl1Sa
nrle2
Anlak
nnlr2

00000
a00nN0
n0000
00000
00000
noono
nnooo
nnooo
00000
n0000
neooo
A0000
00000
aN000
neoono
no0o00
noo000
00000
n0a00
060000
00000
00000
n0ooo
ANONO
a0oNo
00000
00000
noo0no
nonoo
00000
nonoo
nonono
anono
nonono

nnono
aoono
n0O00
LLLTT]
anono
60000
anooo
n0000
apono
no0NO
a0000
noooe
n0o000
aonnNo
noonNo
nonno
nonoo
nnaeno
a0non
LIS
aAQONo0
nonnn
noono
nonoo
60000
ABONO
agon0
LA
50000
no000

noono
nno0o0
noono
AQO00
nonno
80000
aBo00n
nonoo
noonn
rOAND
noono
ngonn
no0o0n
nOODO
A0000
anono
anooo
noono
00000
nnooo
nQoONG
nonoeg
no0NO
noONNO
L)
noo00
nnnoo
nonnn
ADNN0
noonNo
AROND

00000
00000
000no
00000
00000
00000
0o00no
000n0
0o0no
00000
00010
00000
000n0
00000
0o0no
00000
00000
00000
000n0
00000
00000
00000
00000
00000
000n0
000n0
00000
00000
00000
00000
0o0no
00000
00000
00000

00000
000n0
00000
00090
000nn
000nn
0n0nn
00000
00000
00000
0n000
000n0
00000
00050
0a0no
aoo0no
000n0
00000
0o0nn
00000
000n0
00000
000no
00000
000n0
np0n0
00000
000no
0o00an
00000

0n0nn
00000
0o0no
00000
0o0no
oa0nn
0n0no
00000
[LILL)
000no
00000
0non0
00000
0nono
000no0
000n0
00000
00000
00000
00000
4n0no
Q00n0
000n0
00000
000n0
00000
00000
00000
000n0
000n0
0n0n0

00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003

00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00085
00005
00005
00005

0nooe
00004
00004
00004
00004
00004
00004
00004
00006
00004
00004
00004
00008
00004
00004
00004
00004
0004
00004
00004
00004
0000%
00004
0no0é
00004
00004
00004
00004
00004
00004
00004

01207
nn;?:
00217
00223
00227
00233
nn317
0n3ed
0nze?
an?s3
002%7
00263
LLETS
n0293
60277

nonnld
anAnY
nna1d
0any?
nap23
nna>7
ang3ld
ann3?
nnpaed
00ne7
anns3
anns?
angkld
0nna?
nnn7d
0nn7?
0nynd
00191
00313
LLER R
on}?3
nn127
nny133
0n137
nnyad
nnyat
any1s3
nﬂ}sv
na1ad
ANy RT

nann3
nnan?
nnn13
6nn1?
0np2d
00027
nng3ld
nnn3?
nnpaeld
nnne’
0nnsS3
00ns7
napmd
noas?
ann73
onnr?
anynld
0n)n?
any13
an11?
any23
nny27
00133
nn137
nry1ad
nnye?
nnys3
nnys7?
nnyed
[IS4
60173

00000
00000
0n000
00000
00000
00000
00000
0n000
00000
00000
00000
00000
00000
00000
00000
0noo0o0
an000
00000
00000
00000
00000
00000
00000
00000
00000
00000
0nooo
00000
00000
00000
00000
0n000
00000
00000

00000
00000
00000
00000
0n000
00000
00000
00000
0n000
00000
00000
00000
00000
00000
0no0oo
00000
00000
0n000
00000
0n000
00000
00000
00000
00000
00000
00000
00000
0n000
00000
00000

00000
00000
0n000
ono000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
0n000
00000
00000
00000
0no000
00000
00000
00000
0n000
0n000
00000
0n000
an000
00000
049000
00000
onooo

AN0O0
40000
an000
#0000
A0000
A00N0
#0000
A0ONO
A0000
A0000
70000
A00NO
AB0ND
A00N0
AN0N0
ANODO
A0000
A0000
LLILL]
40000
XILL]
AN0NO
AN000
AnONO
ANONO
AB000
AB0NO
ANDND
AQ0NO
LLILL
anONno
ANONO
AROND
An0NoO

ANONO
ANONOD
ANDNO
ADDDD
Anpno
aAp0No
ANONO
ANOND
ApOCO
ANONO
AROND
AN0NO
An0N0
ANOND
ARONO
ADOND
ANOOD
ANDNO
ARONO
andnn
ABOND
ANDNO
ANDND
ANRDND
angnn
AnOCO
AODND
An0CO
ANOND
AROGO

ANOND
a00n0
ADOND
AOONO
ANONO
~r00N0
ANONOD
An0eD
LG
anoeo
nOONOD
AnGNOD
ANONOD
ARONO
ANONO
ANONO
an0C0
ApOND
An000
AN0N0
ANOND
an0dNQ
AROOO
ANDNOD
ARONGD
ANONO
ANDNO
ANDNO
ApONND
ANCNO
ACOND

00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
000n3
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
00003
000n3
00003
00003
000n3
00003
00003
000n3

00005
000n=
000n%
000ns
000n%
aoens
000n%
0000
000n%
000n=
000n%
0000%
000nS
000ns
60nns
000nS
00005
00005
00005
00nns
00005
000nS
00005
0000%
000n%
000n%
noons
noonrs
0oons
000n=

000n4
000n&
000n4
00004
000n&
00004
000ns
00004
000ns
00004
000re
00004
00006
00004
00004
00004
00004
noons
000n4
n00ne
00004
00004
00004
00004
00006
00004
0o0ocre
00004
00004
000né
00004

00074
60100
00106
00110
00114
00120
ool2¢
00130
00134
00140
00144
00150
00184
00160
00164
00170
00174
00200
00204
00210
00214
no220
00224
00230
00234
00240
00244
00250
00254
00260
00264
00270
nn27e
00300

00004
00010
00014
00020
00024
00030
00034
00040
00046
n00%90
00054
00060
00064
00070
no0Té
00100
00104
nnlto
nnlle
00120
0n12é
00130
00134
00140
00146
00150
00154
00160
nnlee
00170

00004
n0010
00014
00020
no02é
00030
00034
00040
00066
00050
00054
00060
nno6s
0no70
nooTe
nntoo
onloé
00110
00114
00120
onl2é
00130
0n13e
00140
00144
00150
00154
00160
00l6e
00170
no1Té

D-3

000175
000201
0600205
000211
00021%
000221
00022%
000231
000235
000241
000245
000251
000255
noo2el
000268
000271
000275
000301
000305
000311
000315
000321
000325
000331
000335
000341
000345
000351
000355
000361
000365
000371
000375

Bead 1°C?
CONTINUAT

000001

000005
000011
000015
00002}
000025
000031
000035
000041

000045
000051
00008%
000061
000065
000071
000075
000101
000105
000111
000115
000121
000128
000131
000135
000141
000145
000151
000185
000161
000165
0600171
000175
000201
000208
000211
000218
000221
000228
00023)
000238
00024}
000245
000251
non2ss
000261

000265
000271

000275
000301

000305

Bead N03

000001
000005
000011
000015
00002}
000025
000031
000035
000041
000045
000051
000055
000061

0nnno
0nnno
onnoo
onnoo
0nnoo0
0nn6o
annon
0nnoo
0nnoo
0nao00
0nno0
onnoo
0nnon
0nnno
0nnno
0nro0
onapo
onnno
onnnn
orn00
0nnno
onnno
0nnno
ornno
ananp0n
0nnno
onnon
0nroo0
0an00
onrnn
onnng
onnoo
anano

00000
00000
000n0
00000
0o00n
00000
000nn
00000
00000
0000n
00010
00000
00000
00000
00000
ogoon
00000
00000
oo0nn
00000
0000n
00000
000coH
000nn
0n0nn
00000
00000
goone
00000
000nn
00000
000010
00000

Ins BEAD

onnno
0nnpo0
onnnn
00n00
0nnon
0nanno
onnoo
0neoo0
0nnno
onnoo
tnnoo
canno
0nnDO
onrnoo
0nnno
0nnoo
0nnoo
0nnon
0nnng
0nap0
PLETL
onnng
0nno0
onnoo
0nnoo
0nnoo
onnno
00000
0nnoo
onnno
onnoo
annoo
00000
0nnoo
onnpo
0nnoo
0nnoo
onnno
00000
00000
onnoo
00000

onnoo
unnnn

onnpn
annon
onnno
annng
O0nnrnn
Dannp

anmpe
0~nnn
0nnnn
0nnno
LI}
01000
0nngn
0nnon
orrno
Onnon
onnno
0anno
onnon

opoeq
00000
00000
0000n
00000
000n0
00000
6oponn
00000
o00o0n
00000
60000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
anonc

onone
ononn
000ng
anone
00000
0000n

0norn
0000
0n0ne
ononn
00000
oo0one
0000n
00000
0000n
0n0on
onono
¢nono
onoo0

onone
00004
anone
0N004s
00004
00004
ANO0A
00004
00004
00004
00004
0nons
onooe
00004
nnoos
00004
00004
00004
00004
n0oos
00004
00004
000ne
00004
noo04
00004
00004
00004
nonne
00004
nones
09nnée
Aanne

nnpos
annos
0npo5
00005
n0noS
aonosS
00005
00005
00nns
00005
00005
01005
nn00S
0noos
00005
n000S
00005
00005
00005
00005
00005
06005
00005
00005
00005
00005
00005
00005
00005
00005
00005
0noos
n000%S
00005
00005
00005
00005
00005
00005
0000%
00005
00005

00005
AuANG

nnoos
nnnns
9005
ngans
nangs
nInNas

nnotlo
n~n1o
ouolo
0nnlo
nnote
onnto
00010
00010
010
onclo
ann10
noolo0
nnoio

00l17¢
on2-)
0n2n~=
o211
0n21=
00227
DLy
0027}
on22x
00247
002.-
on2ey
0n2er
0n2a3
0024ac
0027y
0027~
003-3
0nd-=
00311t
0031=
0n3?
LLEEL]
0n3a
0n3ae
on3ai
0n3a-
90383
ondee
0037
on3az
00377
np37e

0nl7>
0017
0n2-2
0024
00212
0023 ¢
02722
na22.
0p21?
0023
00242
0026 ¢
0n2es
002=4
00242
0n2ea
00272
0p2~a
0n3-2
003-4
00312
00312
00372
00376
00332
0033c
00342
0034,
003>
0n3g6
00342
003ea
00372
00376
004r2
004 s
00412
ondr4
00422
00426
00422
00434
0ndss
b
nnar>
Nnéce
0née?
LILYYS
0ner2
Nné7s

Ay
nAld-e
LGIAR]
on0 e
nno2y
0ndpe
on6ay
0003e
0nGan
0ndar
nnoeY
0n0ee
000k

00000
00000
00000
00000
00000
60000
90000
00000
00000
00000
0nooo
00n00
00000
00000
00000
00000
0nnoo0
00000
00000
00000
00000
0n000
00000
00000
00000
00000
00000
0nnoo
00000
00000
00000
00000
00000

00000
00000
0onoo
00000
09000
0nnoo0
00000
0npo0
06000
0nnoo
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00no0
00000
00000
00000
00000
00000
0an0o
0nnoo
00900
00n00
00000
oonoo
00n00

onnoo
annon
00100
00n00
00000
onnoo
onnoo
00000
0nooo
00n00
00000
00600
00000

000n0
00000
00000
00000
00000
00500
00000
000n0
00000
00000
000n0
0nono
00000
00000
000nn
000r0
00000
00000
00000
00000
nnongd
00000
000n0
00000
ooo0no
00000
00000
000n0
00000
0o0no
onono
00000
00000

0000
00000
000Nn0
ooonn
00000
00000
00000
000n0
0poe0
00000
000r0
000nr0
00000
000r0
00000
00000
000n0
0nong
00000
00000
00070
00000
0n0n0
onono
00010
0no0o
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
nouna
0nnne
oound
aound
ooune
0nang
00Uny

oognn
0nGro
oound
000N0
noono
000n0
onunn
000n0
00000
oocno
000n0
00000
000n0

CONTINIE Ac BLOCK 0005 INDEX Onl

00004
00004
00004
00006
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00006
00006
00004
0n004
00004
00004
00004
00004
00004
00004
00004

00005
00005
00008
00005
00005
0p00%S
00005
onoos
0000%
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
0000S
0000S
00008
00005
00005
00008
00008
00005
00008
00005
00005
00005
f0oes
0nons
00079
00005
[udg)
0n0NS
0001

00010
000ln
00010
0nolo
onolo
0001n
onoln
noolo
00010
0001n
00010
o000la
00010

anlre
an2o2
An206
nnel2
nn2le
nn222
nnaae
nn232
1n236
0n2e2
An2ak
nn2se
An2Sek
ap262
An26k
An2r2
An276
nn3n2
LLEDTY
nndle
nn3la
nn322
nn326
nn332
an33e
Ande2
nn3ask
nn3s2
nnd54
nn3e2
An3em
an372
nr3TA

nnl73
[10%44
nn203
nr2n7
nr213
nn217
nn223
nn227
nn233
An237
An243
LLYL%4
nn2s3
An2%7
nn2e6l
nn26?
nn27r3
nn2r7
nn303
An3n7
an313
0n31?
nn32d
andar
nn333
nn337
nn3ad
on3der
nn353
nn38y
nn36d
nn3e67
nn373
an377
nnenl
LILZa
nnél3
nnély
nne2ld
nné2y
nne33
nos3y
nréald
Ap4er
n~453
Ane37
EEY Y %)
frRGRT
A 473
nneTY

~n002
AnO06
an0l2
noole
nenaz
ApD2k
An032
LI
nrQe2
AAD&K
np0sS2
nnoSéE
LLX LY

noooo
LLLEL
noooo
nnooo
noON0
aoonos
aBNOO
LLLT
noono
60000
nOOOO
anono
noono
a00ON0
nO0OO
nonne
noonNo
ADONO
70000
nosOO
nonno
noono
no0O0
no000
a00N0
no00o
LLLDIY
nnono
60000
noono
nonoo
60000
np000

nonoaon
nO00C
nooan
LLDL LT
ANDOO
noono
noonn
LI
noono
n0000
ADODO
nNOOO
no0o0
noooo
nnono
nonNoo
a0000
n0000
00000
noONOO
60000
n0000
n0000
noONO
D000
00000
LI
A0000
noono
n0000
n0000
n0000
noooo
noo00
noooo
n0000
noooo
noooO0
no000
00000
n0000
noooo
60000
ANNDO
A00N0
LA
nnonn
anoon
apnnn
ANNND

Apnno
AnONo
anano
AOOND
apnno
noONN
anonn
nonno
apnno
nonen
nnono
noONO
noono

00000
000n0
00000
000n0
0ooo0n
860ns
000800
00000
00000
00000
00000
000n0
00000
000n0
00000
00000
000n0
0n0ne
00000
00000
0o0n0
00000
00000
000n0
0p0no
0nono
00000
00000
000n0
00000
00000
00000
00000

00000
000no
00000
000n0
0o0no
00000
00000
00000
0p0no
00000
000n0
0n0n0
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00090
006000
00000
00000
00000
00000
000n0
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
uoonn
000nn
ononr
on0ne
0n0nn
0n0no
00000

a00nn
0o0nn
00000
00000
0p0n0
0n0n0
ano0no
0n0no
000no
00010
00000
0p0no
0n0nO

00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00004
00006
00004
00004
00004
00004
00004
00004
06004
00004
00004

00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005
00008
00008
00005
00005
00005
00005
00005
00008
00008
00005
0n0nNs
00005
00005
00005
00005
00005
00005

onolo
00010
00010
onolo
0oo0lo0
00010
00010
0000
00010
00010
00010
00010
00010

0ny77
0n2n3
0n2a?
0n2)3
00217
60223
00227
0n233
onzar
0npe3
onpe?
0nps3
an3s7
00283
LLETYS
0n273
0n>77
00303
onan7
00313
0n317
on3p3
nn3nxT
60333
nn3ar
nn3e3
nn3a7
nA353
00387
00343
003AT
no373
nnavy

onire
0n2nn
nnzne
0n2in
00214
00220
LLEEDS
onz3n
nopas
00240
0nses
0nssn
nngse
0n2k0
LLELYS
00274
0n274
003an
003n4
0n31n
nn3ye
00320
006324
0033n
00334
0n34n
00346
00350
003%¢
00340
0n3as
00370
00374
0néno
onacs
00410
00414
00420
LLLY.23
00430
00434
00440
0044a
nNAes
LT
PRIYS
nNnéks
0nern
LETS 2N
0ngan

an6n3
Aapn?
nnn13
onn1?
nnn2l3
90027
nan3l3
LLYER
pNped
onne?
anns3
nons?
anna3

00000
00000
0n000
0n000
0n000
8g000
00000
0n000
0no000
00000
0n000
00000
0n000
00000
0n000
00000
060000
0a000
0n000
0no000
00000
00000
00000
00000
00000
0n000
0n000
aQno00
0n000
0noo00
00000
00000
00000

00000
00000
00000
an000
0n000
00000
an000
00000
00000
0n000
00000
00000
00000
00000
0n000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
6n000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
006000
00000
00000
00000
0no00
0nv00
0n000
0h000
0nnoo
0ncoo
0n000

0n000
nneooo
0an00
0n000
0n000
0n000
00000
0nno0
00000
0n0o0
0n000
0n000

44616800 Rev. 01

An0O0D
AN0OO
ANONO
ANOND
ANOCO
an0n0
ANOCrN
AnNOND
ANOND
ARONO
ANOND
AnonD
AROND
AROND
AROND
aAn0r0
ANOND
AnoND
AROND
ANOND
apnng
AA0NO
ANOND
ANONO
anonn
AN00O
ANDND
apOnO
an0no
ABNCO
ARGNQ
AB0T0
Anonn

ANDRO
LLLLU]
ANODO
ANDNO
ANDND
ANDNO
anoro
ANDRO
ANDNO
ADONO
AROCO
ARONO
ANDNO
ANDND
AROND
ANODNOD
AND0O
AQOCO
annno
AN000
A0000
AN0OO
ANONO
ANONO
ARDNO
no0no
ABOND
#0000
aANOND
AN0NO
ANONO
ARONN
ANONO
ANOND
AN000
AN0ND
AN00D
A000D
LLI
40000
ADONO
A0000
ABOND
LXaN Rl
Annra
argen
anpcn
ARG
AnQND

AR
ARD O
Arnrn0
AngrO
ARNDYQ
ARDCG
aAnnnn
ANDNOD
ARONO
ArnNQ
ARD"D
LLE

000n4
n0one
nooné
00004
00004
o0ona
000rs
00004
00004
00004
0000ée
00004
00004
00004
00o0nsa
00004
000né
000n4
00094
000n4
00006
00004
00006
000re
00004
a0ona
000né
00004
00004
000ne
000n4
00006
000n4

00005
nopns
000ns
000nS
00005
00005
00005
0000%
000nS
00005
000n%
00005
00005
0000%
00005
00005
00005
00005
00005
00005
00005
0000S
00005
00005
000n%S
0000%
000ns
0000S
00005
00005
00005
00005
00005
0000%
000nS
0000%
00005
0000%
0000S
00005
00005
00005
00005
nonn=
nopn=
nopne
000prs
00gnc
000nre

000
noprn
00p1r
00010
noota
00010
LI ANS
00010
0001
0001tn
oogye
00010

00200
00204
00210
an21e
0n220
oo2ae
00230
00234
00240
00244
nn250
00254
0n260
00264
0n270
00274
00300
nolos
00310
00314
no320
npd2s
00330
00334
00340
nn3eé
00350
0p354
00360
00364
00370
00374
00400

00175
00201
no20%
0021}
00218
0n221
o022%
0023l
00235
00241
00245
0o02%1
00255
0n2el
00265
00271
00278
00301
00305
00311
0031%
00321
0n32s
0033}
00335
00341
00345
00381
00355
on3el
00365
00371
00378
00401
00405
00411
00415
ona2l
00425
0ned)
00638
00441
00445
nnesl
NNess
nne6l
Nness
LY 3}
ane?s

npooe
nno10
nnole
ono2o
nno2e
0no30
00034
00080
00044
00050
0nosSe
nnoe6o

6000 SERIES CENTRAL MEMORY
WORD ORGANIZATION

INTEGER

LOGICAL

59 0
FALSE | 0000 0000

TRUE [> 1111

HOLLERITH BCD AND DISPLAY CODE

59 53 47 4l 3. 29 23 7 I 5 0
a a a a Q a a a a a
| 2 3 a 5 6 7 8 9 10
6 6 6
OCTAL
57 54 51 48 45 42 39 s 6 3 O
20 19|18 (17|16 |15 |14 4 3 2 |
3003 303

44616800 Rev. 01 E-1

REAL

59 58 47 0
L] 1A
L] BIASED FRACTION (M)
L1 EXP
=
SIGN
Vv I\ vV ~
T 48
DOUBLE PRECISION
59 58 47
L BIASED
L]
N EXP m
SIGN MOST SIGNIFICANT
5958 a7
s BIASED
L] |
N+ exp-as m
SIGN LEAST SIGNIFICANT
COMPLEX
5958 47
BIASED
n m
EXP
SIGN REAL
59 58 47
BIASED
n+l m
EXP
SIGN IMAGINARY

44616800 Rev.

01

CARD FORMATS

Columns

1 2 3

4

5

77 79 80

12

11

S

Column Binary Information

Rows
[\
il Word Count l l

blank

V

Checksum (Modulo 4, 093)

|

Card Sequence Number (binary)
Card Sequence Number (binary)

NORMAL MODE

Card Type

Enter Free-
Form Mode

*
End-of-File
End-of-Record

Standard 6000
Binary Card

Coded Card

Column 1 Punch

All rows

6,7,8,9

7,8,9

Not 7, 9

Other Columns

All of one other column punched,
other columns blank.

All other columns ignored.
All other columns ignored.

See below

See below

*References to ICT, EBCDIC and Hollerith switch cards apply only to the BATCHIO 6000
card reader driver and not to IMPORT.

44606800 Rev. 03

BINARY CARDS

A Normal mode binary card can contain 15 central memory words of data, starting in column
3. Rows 0, 1, 2 and 3 of column 1 contain the number of central memory words on the card;
if no punch occurs in row 4 of column 1, then column 2 contains a binary checksum (modulo
4,095) for the card.

Columns 3 through 77 contain the central memory data words.

Column 78 is blank; columns 79 and 80 contain a 24-bit binary card sequence number, which

starts at 1 on the first card of each record.

CODED CARDS

Coded cards contain up to 80 characters per card. When the system reads coded cards, it
converts the data to display code from the Hollerith type specified on the last Hollerith Switch
card; if no Hollerith Switch card has been read, the system assumes that conversion is to be
made from standard 6000 Hollerith code.

When the system converts 6000 Hollerith code, it packs the data 10 card columns per central
memory word. Trailing blanks are suppressed during all types of code conversions, and an

end-of-line terminator is forced for each card.

FREE-FORM MODE

Card Type Column 1 Punch Other Columns

Exit Free- All rows Must be identical to last card used
Form Mode to enter free-form mode

Absolute End- 6, 7, 8, 9 Columns 2 through 80 all blank.
of- File

All other cards are read as 80-column binary, with 16 central memory words of data per
card. An Absolute End-of-File card writes an End-of-File mark and causes processing to

return to Normal mode.

F-2 44616800 Rev. 01

CYCLIC ERROR DETECTION G

To ensure reliable transmission of binary data via a Telpak-A line, or a coaxial cable, it
is necessary to transmit redundant information which enables the receiving Data Set Con-
troller (DSC) to determine if any errors have occurred. Noise generated at switching

centers, lightning, electrical disturbances, or random line noise cause errors.

The DSC utilizes a cyclic code as a method for detecting transmission errors. This type of
code is defined in terms of a generating polynomial, G{x), of degree n-k, where n =total
bits transmitted and k = the data bits transmitted. Using this polynomial, k information
bits can be augmented with n-k redundant bits in such a way that n bits can be described bya

code polynomial of a degree <n-1, that makes possible the detection of most error patterns.

Binary data can readily be associated with an algebraic polynomial. For instance, the
binary information 1,0,1,1,0,0,1, is used to describe the generating polynomial (reading

from left to right) G(x) = 8+ 0x° + x4 + x3 +0x? + 0x + 1, or omitting the terms with zero

coefficients, G(x) = x6 + x4 + x3 + 1. The rules of ordinary algebra permit the addition, sub-

traction, multiplication, or division of this polynomial. The arithmetic is based on the

modulus 2; i.e., it obeys the following laws:

0+0=1+1-0, -1=+1,1+0=0+1-=1
The code polynomial is generated in the following manner: first, multiply the information
polynomial, I(x), representing the information to be transmitted by K. The product,

x?"K1(x) is then divided by the generating polynomial G(x). The operation can be denoted as
follows:

xn_kl(x) = Q(x) + R(x)
G(x) G(x)

or xn_kI(x) = Q(X) G(x) + R(x) where

Q(x) is the quotient and R(x) is the remainder of the code polynomial. Using the modulus 2

arithmetic operations, (1) can be written in the following manner:
LK) - R(x) = Qx) Ax)
But since -1 = +1, the left side can also be written as:

P Kl(x) + R(x) = Q(x) A(x)

This equation states that if the remainder is added to xn'kl(x), a polynomial divisible by G(x)

results since the right side is obviously divisible by G(x). For example, suppose the bit

44616800 Rev, 01 G-1

sequence 1,0,1,1,0,1 is to be sent as a data message with three redundant bits (the DSC uses
12 bits) added for error-checking purposes. The information can be represented by I(x) =

x2 + x5+ x2 + 1. Since three redundant bits are going to be used, T(x) must be multiplied by
x3. This yields %8+ x6 + x5 + 3, Suppose G(x) = x3 + x + 1 is chosen as a third degree

generating polynomial, then:

x5+1=Q(x)
xgl(x)= x3+x+1[x8+x6+x5+x3
G(x) x8+x5+x5
X
x3+x+1

x +1=R(x)

Thus, x°1(x) + R(x) = x° + x0 + x° + x> + x + 1 is the coded polynomial divisible by G(x). The
information actually transmitted would be 1,0,1,1,0,1,0,1,1.
The data is checked for divisibility by G(x) at the receiving station as follows:

X5+l
x3+x+1| x8+x6+x5+X3+x+1

8 ., 6,
x tx t+x

x3+x+1

x3+x+1
0

If instead 0of 1,0,1,1,0,1,0,1,1 being received, suppose the sequence 1,0,0,1,0,1,0,0,1

is received. Checking this yields:

x5+x3+x

x3+x+1|x8+x5+x3+1
X +x6+x5
X6+x3+1
x6+x4+x3
x4+l
4

2
X +x tx

x2+x+1=R(x)

. . 2 . . .
The remainder is R(x) = x~ + x + 1. Since the remainder is not zero, an error occurred
during transmission and was detected. Undetected errors occur when the received poly-
nomial is divisible by G(x), the generating polynomial, even though it is not necessarily the

intended code. The rarity of this occurrence gives the cyclic code detection high reliability.

44616800 Rev. 01

The multiplication of the information polynomial by Xn-k and then division by the generating
polynomial G(x) is implemented by using shift registers with suitable linear feedback con-
nections. Detection of errors is accomplished by sensing the shift register for "1's' after

the data message and information has been received at the receiving end.

A block diagram of a typical encoder-decoder is shown in Figure G-1 below. The generating
polynomial actually utilized is G(x) = 24433 4 x2 + x + 1 and the feedback connections
shown perform the multiplication of information polynomial, I(x), by xlz, and then add the
remainder of I(x)/G(x) to I(x). Control gate 2 is activated all during the time I(x) is being
shifted through the encoder. This gate is deactivated after the last bit of I(x) is in the first
stage of the encoder. At this time, control gate 1 is activated and the contents of the shift
register are shifted out, augmenting the data. At the receiving end, control gate 2 is acti-
vated all during the time the information and redundant bits are being transmitted. When the
last transmitted bit has been shifted into the first stage of the register, the entire register
is sampled and if a ''1"" does not occur in any stage, it is assumed that the information re-
ceived is identical to that which was transmitted, If any stage contains a ''1", at least one

bit was aborted during transmission.

ENCODED
MESSAGE
1.2;:]
[72]
o CONTROL
xS GATE I [
25
=
DATA %
IN v m ° E
CONTROL
GATE 2
AyexZ x4 x24x 41
(X)
00 1|
: HALF ADDER=0 | O | [17] - encover &1t sTaces
o110

Figure G-1. Typical Encoder/Decoder

44616800 Rev, 01 G-3

SAMPLE GRAPHICS PROGRAMS H

The following printout lists all of the cards needed for the file creation and execution runs
of a simple graphics job. This job consists of one short primary overlay that draws a star
and a square at one console, then creates two light buttons. The console user is informed
that the square is supposed to be within the star; he then picks the proper button to center
the square within the star, and the figure is moved. If the button he picks is invalid, he

receives a message and the job aborts,

CARD SEQUENCE FOR GRAPHICS FILE CREATION

XMPL, P37, T1000, CM60000.
RUN(S)

LGO.

AEFILE.

§

OVERLAY(SCR, 0, 0)
PROGRAM CREATE
CALL MAIN

STOP

END

OVERLAY (1, 0)

PROGRAM LITTLE
DIMENSION IBUF (64),IBCD(30)
NCON=1

C CONNECT CONSOLE
CALL GICNJB(NCON)

C SET ITEM MASKS
DO 10 I=1,5
IDDTS=2%% (I-1)
IMASK=IDDTS
CALL GIMASK(NCON, -0,IDDTS, IMASK)
10 CONTINUE

C SET DISPLAY CONSTANTS
ICODE=103B
ISTYLE=7777TB
MBYTE=310
NBYTE=0

C START DRAWING SQUARE
CALL GURSET (200, 200,1CODE, IBUF,NBYTE, MBYTE)
CALL GUSEGI (200, 200,ISTYLE, IBUF,NBYTE, MBYTE)
CALL GUSEG(200, -200, 1)

44616800 Rev. 01 H-1

20

30

35

40

CALL GUSEG(-200, -200, 1)
CALL GUSEG(-200, 200, 1)
CALL GUSEG(200, 200, 1)
IDDT =2

DISPLAY SQUARE AS SINGLE PICK ITEM
CALL GIDISP(NCON, IBUF,NBYTE, IDDAD, IDDT, 1, -0)
IDRSV=IDDAD

DRAW STAR OF DAVID (TWO TRIANGLES)

NBYTE=0

CALL GURSET (-500, 300, ICODE,IBUF,NBYTE, MBYTE)

CALL GUSEGS (-500,7300, 500, 300, 1,ISTYLE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (500,300, 0, -600,1,ISTYLE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (0, -600, -500,300,1,ISTYLE, IBUF,NBYTE, MBYTE)

DRAW SECOND TRIANGLE

CALL GUSEGS (-500, -300, 500, -300, 1, ISTYLE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (500, -300, 0, 600, 1,ISTYLE, IBUF, NBYTE, MBYTE)
CALL GUSEGS (0, 600, -500, -300, 1, ISTYLE, IBUF, NBYTE, MBYTE)
IDDT=248

DISPLAY STAR AS STRING PICK WITH MARKER MASK SET
CALL GIDISP(NCON, IBUF,NBYTE, IDDAD, IDDT, 2, -0)

LABEL THE FIGURES

NBYTE=0

ENCODE (37, 20, IBCD)

FORMAT (37THSUPPOSED TO BE A SQUARE INSIDE A STAR)
NC=37

CALL GURSET(-300, -700, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN(IBCD, NC, IBUF, NBYTE, MBYTE)

DISPLAY ITEM AS AN IGNORE ITEM
CALL GIDISP(NCON, IBUF,NBYTE,IDDAD, 1, 3, -0)

MAKE TWO BUTTON CHOICES

NBYTE=0

CALL GURSET(-400, -900,ICODE, IBUF, NBYTE, MBYTE)
ENCODE (16, 30,IBCD)

FORMAT(16HMOVE SQUARE LEFT)

NC=16

CALL GUAN(IBCD,NC,IBUF,NBYTE, MBYTE)

1IDDT=8

CALL GIDISP(NCON, IBUF, NBYTE, IDDAD, IDDT, 4, -0)
NBYTE=0

CALL GURSET(300, -900,ICODE, IBUF,NBYTE, MBYTE)
ENCODE (17, 35,IBCD)

FORMAT (1THMOVE SQUARE RIGHT)

NC=17

CALL GUAN(IBCD,NC,IBUF,NBYTE, MBYTE)

CALL GIDISP(NCON, IBUF, NBYTE, IDDAD, IDDT, 5, -0)
CALL GIBUT(0,NCON, 1DDT, IDDC)

IF (IDDC.EQ.4) GO TO 41

IF (IDDC.EQ.5) GO TO 42

ENCODE (10, 40,IBCD)

FORMAT (10HWRONG IDDT)

NC=10

CALL GIABRT(NCON, IBCD, NC)

STOP

44616800 Rev. 01

41 IH=-600
GO TO 43
42 TH=1000

C MOVE ITEM AS SPECIFIED BY OPERATOR
43 CALL GIMOVE(IH, 200, 107B, IDRSV, 2, 6, -0)

C MOVED ITEM WILL BLINK

C RELEASE CONSOLE
CALL GICNRL(NCON)
STOP
END

§

Two file names cause MAIN to recognize the file creation job:

XMPL
SCR

:

CARD SEQUENCE FOR GRAPHICS EXECUTION JOB

LPMX, P37,T200, CM60000.
COMMON, XMPL.

RUN(S)

LGO.

RELEASE, XMPL,

EXIT.

RELEASE, XMPL.,

:

OVERLAY(SCR, 0, 0)
PROGRAM EXECUTE
CALL MAIN

STOP

END

§

One file name causes MAIN torecognize the file execution job:

XMPL

The following example consists of a program which sets the ID processor mask, generates

a line and a circle with subroutines, and generates four light buttons; one to display a line,
one to display a circle, one to erase a picked line or circle, and one to terminate the appli-
cation. Coordinate information for display item position will be furnished by calls to the

tracking cross position fetch routine GITCOF,

44616800 Rev. 03 H-3

The console number, NCON, is input from a card and stored in COMMON location NCON,

The program is designed to terminate automatically when 10 components have been created.

PROGRAM CLASDEM

The program starts by reading a card for the console number and storing it in COMMON
location NCON. Console NCON is assigned to the job with a call to GICNJB.

The byte-stream for the line is generated and stored in IBUF with a call to GUSEGS; it is
made a macro and stored in the macro area of the display buffer with a call to GIMAC. The

macro address is returned in MAD (1).

The byte-stream for the circle is generated and stored in IBUF with a call to GUARCG; it is
made a macro and stored in the macro area of the display buffer with a call to GIMAC. The
macro address is returned in MAD (2). The macro addresses are needed when the line or
circle is to be displayed. The MAD parameters are used in calls to GUMACG which gener-
ates the macro call. The macro call, provides access to the line and circle byte-streams

for display.

Once the byte-streams are taken care of, the next step is to set up the 1D processor mask
for the light buttons and components. This is done with calls to GIMASK. Light buttons are
designated type 1 and are set to blink when picked as operator feedback. Lines and circles
designated type 2, are set to blink when picked, and are further designated as single pick
items. This last means that if more than one line or circle is picked for erasure, only the

last one picked has its ID block retained; the preceding ID blocks are deleted.

The next step is to create and display four light buttons:

¢ LINE
e CRCL
e ERAS
e OVER

The first three light buttons call subroutines LINE, CIRCLE, and ERASE, respectively.
OVER calls GICNRL to terminate the application.

The operator at this time sees the light buttons displayed along with the tracking cross. e
responds by picking up the cross with the light pen and moves the cross to where he wants
a line or circle to be displayed. His next step is to select either the LINE or CRCL light
button to indicate whether he wants a line or circle to be displayed at the tracking cross

position.

H-4 44616800 Rev, 01

GIBUT has been called and is waiting for a light button pick. Once the operator has respond-
ed, the ID block of the selected light button is returned; a computed GO TO is executed,
based on the IDDC parameter which indicates which particular light button was selected. It
is safe to assume that either LINE or CRCL was selected since there is nothing to erase and
its not likely that the operator would terminate at this time. The following paragraphs ana-
lyze the functions of subroutines LINE, CIRCLE, and ERASE which are called as a result of
the execution of the computed GO TO.

SUBROUTINE LINE

LINE retrieves the horizontal and vertical coordinates of the tracking cross with a call to
GITCOF. The coordinates are returned in ITH and ITV. A reset sequence is created using
ITH and ITV for the position at which the line will start. This is followed with a call to
GUMACG to generate the macro call which provides access to the line byte-stream in the
macro area of buffer memory. Note that the macro address given in the call is the one for
the line (MAD [1]).

The bytes for the reset sequence and the subroutine call are temporarily stored in IBUF.
Now GIDISP is called to transfer NBYTE bytes of IBUF to the display item area of buffer
memory. The display address is stored in IDDAD (K + 1) to enable the operator to erase the
line if he desires., Note that the 1D block contains the line type (2), the line code (1), and

K +1. K + 1 will be used in subroutine ERASE to determine which particular display item

is to be erased. K is then incremented to be ready for the next item to be displayed. K is
also tested for equality to 11 to see if all ten locations of IDDAD have been used. If not, the
program continues. If all the locations have been used, GICNRL is called to terminate the

application,

SUBROUTINE CIRCLE

CIRCLE is identical to LINE except that MAD (2) is used instead of MAD (1) and the circle
code (2) is used in the call to GIDISP instead of code (1) (as was the case with LINE), Both
LINE and CIRCLE could easily be combined into one routine; however, the redundancy re-

inforces the learning process,.

SUBROUTINE ERASE

ERASE fetches the ID block of the line or circle picked by the operator for erasure. IDWA
contains the K parameter set into the 1D block by GIDISP when the subroutine call sequence
was generated., GIERAS is then called to erase the line or circle whose display address is
found in IDDAD (IDWA), where IDWA once again is the K parameter., This does not remove
the byte-stream fromthedisplay item area; however, it merely removes a particular reset

and macro call sequence from the macro area. A printout of these routines is shown below.

44616800 Rev. 01 H-5

OVERLAY (SCR, 0, 0)
PROGRAM M (INPUT OUTPUT)

100003 COMMON TRUF (100)s MAD (2)s IDDAD (1n)s NRYTE, MRYTE, NCON, K
000003 CALL MAIN
AONOO0G END

OVERLAY (1,0)

PROGRAM CLASDEM

000003 COMMON IRUF (100)s MAD (2), TDDAD (l0), NBYTE, MHBYTE, NCON, K
c
c MAD (1) LINE MACRO ADDRESS
c MAD (2) CIRCLE MACRO ADDRESS
c
o IDDAD(1) To IDDAD(1ny DISPLAY ITEM ADDRESS
¢
C DISPLAY ITEM BLOCK
Cc WORD1 DISPLAY TYPE
¢ 1= BUTTON
c 2= SINGLF PICK
c WORND2 DISPLAY ITFM
c 1= LINE
c 2= CIRCLF
C WORD3 DISPLAY TTFM MATRIX ADDRESS
C
- c SIGN ON CONSOLE
000003 READ 19 NCON
000011 1 FORMAT (12)
000011 CALL GICNJB (NCON)
000013 MBYTE = 320
000014 NBYTF = 0
noNN1S K = ¢
o c GENERATE LINE MACRO
n000nl6 CALL GUSEGS (0s 0s 600s Ny 1, =0y IBUFy NBYTE, MEYTE)
000026 CALL GIMAC(NCONs IRUFoNRYTE +MAD (1))
nNono3l NRYTE = 0
R C GENERATE CIRCLE MACRO
006032 CALL GUARCG (190+093009 N 3009 09 =0 IBUFy NBYTEs MBYTE)
n00045 CALL GIMAC(NCNN9 IBUF+NRYTEsMAD(2))
000050 NBYTE = 0
c SET BUTTON MASK
n0N0S1 CALL GIMASK (NCONs=091s16+8)
c SET SIMGLE PIcK “ASK
nonn56 CALL GIMASK (NCONs=(092s]1h*2)
c DISPLAY LINE gUTTON
000063 CALL GUKSET (ny =1500+ 1n2Bs IBUF, NRYTE, MBYTE)
00067 CALL GUAN (4HLINEs 49 TR'IFy NBYTE, MRYTE)
000073 CALL GIDISP (NCOW, IBUF, NRYTEy IDAs 1, 1)
000077 NBYTF = o
c DISPLAY CIRCLFE BUTTON
000300 CALL GURSET (0s =1600+ 1n2Bs IRUF, NBYTE, MBYTE)
000104 CALL GUAN (4HCRCLs 49 TRUF, NBYTE, MARYTE)
noNn110 CALL GIDISP (NCON, IRUF, NRYTEs TDAs 1, 2)

H-86 44616800 Rev. 03

000114 NBYTE = ¢
o c DISPLAY ERASE BUTTON
000115 CALL GURSET (0s =1700+ 102By IBUFy NBYTE, MBYTE)
000121 CALL GUAN (4HFRASs 49 TR!IIFs NBYTEs MBYTE)
000125 CALL GIDISP (NCON, IBUF, NBYTEs TDAy 1, 3)
000131 NBYTE = ¢
R DISPLAY OVER RUTTON
000132 CALL GURSET (0s ~1800+ 102Bs IBUF, NRYTE, MBYTE)
000136 CALL GUAN (4HOVERe 43 1BIFs NBYTFs MRYTE)
000142 CALL GIDISP (NCONs IBUFs NBRYTEs IDAs 1y 4)
000146 NBYTE = 0
. c TURN ON TRACKING CROSS
nonlavt 2 CALL GITCON (NCON9090)
L C WAIT TO PICK RUTTON
700152 CALL GIBUT (0sNCON,IDDT,1DDC)
000155 GO T0 (3, 49 S5y 6)y IDNC
000165 3 CALL LINE
000166 GO0 To 2
000167 4 CALL CIRCLE
000170 GO To 2
000171 5 CALL ERASE
000172 GO To 2
L c JOB DONE, RELEASE CONSOLE
000173 6 CALL GICNRL (NCON)
000175 END
SUBROUTINE CIRCLE
. c NISPLAY CIRCLE
700002 DIMENSTION MESS (4)
000002 DATA MESS/40H TOO MANY FIGURESe CONSOLE RELEASED /-
000002 COMMON IRUF (100)¢ MAD (2), IDDAN (l0)y NRYTE, MBYTE, NCON, K
n0N002 NBYTE = ¢
000003 CALL GITCOF (MCONs ITHs TTV)
000006 CALL GURSET (ITHy ITv, 102B, IBUF, NRYTE, MBYTE)
000012 CALL GUMACGI(MAD(2) 31,4 TRUFsNBYTEsMRYTE)
100016 CALL GIDISP (NCONs IRIIFy NBYTEs TDDAD (Kel)y 2y 24 Kel)
000027 K = Kel
00003) IF (KeEQell) 19 2
¢ TOO MANY FIGURESs RELFASF CONSOLE
000035 1 NBYTE=0
000036 CALL GURSET (Ny=1400y 24 TBUFNBYTE,MBYTE)
000042 CALL GUAN (MESSs 35+ IRUF.NBYTEs MBYTE)
000046 CALL GIDISP(NCON.IBUFs+NRYTESIDDAN)
700051 CALL GICNRL (NCON)
000053 STOP
000055 2 RETURN
noonseé END

44616800 Rev. 01 H-7

Dt

002
0002
002
002

2

Q000 OO0 0O

So0o0
-0 O
N oW

016
ne?
031

DIDIDIDID DI
D1DID D 1DIDDIO 1IN

035

DIDEDIDIDIO DD
OO0 QD0
DD DD 1 DIDD

ODODODIOO
v e sw
PV W= N

00N002

=2
O 00O

1002
005
0010

011

DrDe D
D+ DD D

c
c
1
2
C
c
XMPL

SCR

SUBRQUTINE LINE

DISPLAY LINE

COMMON I8UF (100)s MAD (2)s TDDAD (10)9s NRBYTE,
DIMENSTION MESS(4)

MBYTE, NCON, K

CATA MESS/40H TOO MANY FIGURES, CONSOLE RELEASED /

NBYTE = o
CALL GITCOF (NCONy ITHe T1TV)

CALL GURSET (ITH, ITv, 1028, IBUF, NBYTE, MBYTE)

CALL GUMACG(MAD(1) 919 TRUF ¢NBYTEsMBYTE)

CALL GIDISP (NCONs IRUFs NRYTEs TDDAD (K+l)y 29 1y Kel)

K = Kel

IF (KeERW11) 1y 2

TOO MANY FIGURESe. RELEASFE CONSOLF
NBYTE =0

CALL GURSET (04=1400, 24 TBUF 4yNBYTEJMRYTE)
CALL GUAN (MESS»3S5y IRUF, NBYTEsMRYTE)
CALL GIDISP(NCON,IBUFNBYTE, IDDAD)
CALL GICNRL (NCON)

STOP

RETURN

END

SURKOUTINE ERASE

CLEAR DISPLAY ITEM

COMMON TRUF (100)s MAD (2)s IDDAD (10)9 NBYTE,
READ DISPLAY TTEM ID 810K PICKED

CALL GIFID (NCONy IDDT, TODC, 1DWA)

CALL GIERAS (IDDAD(IDWA))

RETURN

END

MBYTEs NCON,s K

44616800 Rev. 01

PHICS PACKAGE |

DIFFERENCES BETWEEN 6000 BASIC GRAPHICS
PACKAGE MARK 4.0

AND 3000 DIGIGRAPHICS CONTROL

The differences between the graphics routines of the 6000 Series Interactive Graphics System

and the 3000 Series Master Graphics System can be grouped in three categories:

® Graphics processing differences
e Hardware-produced variations

e Operating system differences

Because of these differences, a program written for one system may not run in the other
unless changes are made in the coding. Although complete compatibility between the systems
is a desirable feature, such compatibility cannot be achieved without serious restrictions to
both systems. Consequently, a programmer converting jobs from one system to the other

must bear in mind the differences listed below.

PROCESSING VARIATIONS

The subroutines discussed here exist in both systems, have identical calling sequences, and
perform similar functions. The majority of incompatibilities exist in interpretation of the

parameters and/or the processing of the functions.

ALPHANUMERIC FONT SIZE

The 3000 graphics system uses a standard font size requiring each character to occupy a
square of 308 display grid units per side. The 6000 system can use either this size font or
a larger one of 408 units per side; the choice of font size is a system assembly option, and

affects the number of characters that can be displayed on one line by a GUAN call.

USE OF MINUS ZERO

The 6000 system allows various routine calling sequences to be truncated with a minus zero
parameter or a right parenthesis; the 3000 system permits truncation only by a right paren-

thesis.

The 6000 system allows a -0 to indicate a no change option for GIMOVE and GICOPY sub-
routines; the 3000 system allows a -0 to indicate a no change option only for the GIMOVE

subroutine.

44616800 Rev. 03 1-1

IBUF SIZE

There are also differences between the two systems in the maximum number of bytes allowed
on calls to GIDISP and GIMAC. The 3000 system returns an error indication if the number
of bytes is greater than 4095, while the 6000 system has a limit of 310 bytes on calls to
GIDISP and 316 bytes on calls to GIMAC,

This difference arises because the graphics consoles communicate directly with the com-
puter in the 3000 system, but must use EXPORT/IMPORT in the 6000 system. EXPORT/
IMPORT has a limit on the number of 12-bit words which can be communicated in one trans-

mission between computers.

ATTRACT MASK

The 3000 system has an attract tracking cross mask (IMASK = 32) which causes the tracking
cross to be positioned under the light-pen when an entity is picked which has the attract mask
set. The 6000 system does not have this feature because the tracking cross is a software

(rather than a hardware) controlled entity in systems that use the 1700 graphics hardware.

TASK PROCESSING

The 3000 system allows 4-character task names and uses only the IDWA word in the graphics
buffer memory for such names; whereas, the 6000 system allows 7-character task names

and can use both the IDWA and IDWB words in the graphics buffer memory for such names.

The Application Executives of the two Packages also differ; the 6000 routines perform
slightly different functions than the 3000 routines, and are part of a SCOPE library sub-
routine called MAIN. While the Executive routines need not be used in either system, it is

very difficult to write a program for the 6000 without using MAIN,

The 6000 system MAIN program loads the first task on the multi-task file as the initial appli-
cation task, while the 3000 system allows the user to specify the application task to be loaded
first by a control card parameter.

The 3000 system allows one task to call another task and then automatically have the called
task return control to the original task following that task's CALL AETSKC statement. The
6000 implements this feature through a separate call AERTRN,

In addition, the 3000 system permits a subroutine to be called as a separate task, while the

6000 system requires a subroutine to be part of a task overlay.

These differences result from the separate multiprogramming characteristics of the 6000

Series and 3000 Series computer operating systems.

I-2 44616800 Rev. 03

DISPLAY SUBROUTINES

Because of differences between the graphics console controllers used in the two systems,
the 6000 Basic Graphics Package does not permit the use of display subroutines. The
GUSUBG, GISUB, and GITSMV subroutines which are available in the 3000 system to allow

use of the subroutine feature are not available in the 6000 system.

HARDWARE-PRODUCED VARIATIONS

DATA HANDLER ROUTINES

The 6000 Series computer's large word size causes differences between the systems in Data
Handler operation. The Data Handlers of both systems have almost identical calling
sequences, but the Data Handler routines of the 6000 Basic Graphics Package have different
component codes and do not access their files in the same manner as the 3000 routines; the

structures of the files are identical, except for word size.

The 6000 Data Handler also has an additional optional parameter in the CALL DMINIT state-

ment to allow more efficient multiprogramming use of the 6000 hardware.

HARDWARE TESTING AND CONTROL

The GIBWRT, GIBRD, GIBERS, and GISTAT subroutines which are available in the 3000 sys-
tem to allow both on-line hardware testing and low-level user control over the graphic sys-

tem are not provided in the 6000 system. These functions are not needed or desirable in the
6000 system, because the 6000 Series computer is not directly connected to the console

controllers.

CONTROLLER MEMORY SIZE

The 3000 system allows display buffer sizes from 4K to 16K, and possibly 32K. The 6000
system allows display buffer sizes from 4K to 8K because of 1700 Computer addressing lim-
itations. Therefore, a programmer converting from the 3000 system to the 6000 system

must be sure that his display generation calls do not cause controller memory overflow.

GIDISP/GIMAC ERRORS

Since the 3000 system has a channel/controller interface, the software returns a zero value
in the identification parameter (IDDAD or MAD) if a graphic display buffer memory overflow
occurs. The 6000 system cannot efficiently provide this capability because it does not

directly interface with the console controllers,

44616800 Rev. 01 I-3

CONTROLLER MEMORY DUMP

The GUDDMP utility subroutine in the 3000 system provides for a dump of the display buffer
memory. This is not provided in the 6000 system for reasons similar to those given under
GIDISP/GIMAC errors.

OPERATING SYSTEM DIFFERENCES

The 3000 computer system has multiprogramming features which are significantly different
from those of the 6000 system. Thetwo areas which produce the majority of additional sub-
routines in the 3000 graphics system are the 3000 Chapter Two COMMON and task processing

concepts.

USE OF COMMON

The AEADDM and AECOPC subroutines for COMMON manipulations on the 3000 system are
not available on the 6000 system. The AETSKC and AETSKR routines exist in both systems
but are different because of the multiprogramming and Chapter Two characteristics of the
3000 Series computer. An additional difference results from the 4-character limit on task

names for the 3000 system and 7-character limit for task names on the 6000 system.

TASK CONTROL

The AETSKT and AETSKW routines perform 3000 system functions which are not available
on the 6000 system. The 3000 AEOFF subroutine provides for a voluntary termination of
a graphic application on the 3000 system. This can be done on the 6000 system by using a
STOP statement in the FORTRAN program.

TASK FILES

The random access task file building and processing is different., The 3000 system uses the
AETG subroutine and the 6000 system uses the AEFILE subroutine. These task building

differences are considered utility areas.

HARDCOPY FILES

The 6000 system GIPLOT subroutine provides a method for a 6000 application program to
produce a file which can be put on microfilm using a 250 microfilm system. The 3000 system
does not presently have this capability. The 3000 system could have this feature added in

the future if 250 microfilm on the 3000 systems becomes a requirement.

1-4 44616800 Rev. 01

6000 ROUTINES NOT IN 3000 SYSTEM

The following list contains the subroutines which are presently available on the 6000 system

but not on the 3000 system:

GIPLOT Creates hardcopy file

GITIMV Moves item with tracking cross

GITMMV Moves macro

SCHEDR Transfers job from batch control point to graphics
control point

MAIN System supplied overlay processor

AEFILE System supplied utility

AELOAD System supplied utility

AEDUMP System supplied utility

GFONTA Creates alphanumeric font

GFONTN Creates numeric font

3000 ROUTINES NOT IN 6000 SYSTEM

The list below contains subroutines which are presently available on the 3000 system but not
on the 6000 system. The majority of subroutines which were not discussed previously can

be considered utility routines and are not deemed necessary on the 6000 system at this time.

AEADDM Extend Chapter 2 COMMON

AECOPC Copy COMMON

AEID Not called by application, a system program task
processor

AEIT Not called by application

AEOFF Voluntary graphic termination

AESO Not called by application

AETG Not called by application

AETSKT Indirect task call

AETSKW Task wait

AEXF Not called by application

GIBERS Display buffer erase

GIBRD Display buffer read

GIBWRT Display buffer write

GISTAT Console status

GISUB Subroutine insert

GITSMV Tracking subroutine move

GUCONV BCD to floating-point conversion

GUDDMP Display buffer dump

GUKM Keyboard maker

GUSUBG Subroutine call generator

44616800 Rev. 01 I-5

CREATING ALPHANUMERIC DISPLAY FONTS J

For certain applications, the programmer may wish to provide the console user with a dis-
play font other than the two supplied in the 6000 Basic Graphics Package (see Section 7,
GFONTA and GFONTN). The following discussion covers some of the more important points

that a programmer should consider when creating his own display font.

FONT CHARACTER RECOGNITION

The 1700 Basic Graphics Package recognizes a sequence of display generation bytes
followed by a one-word ID as a display font character. When the character is picked
with the light-pen and GIANS has been called, the ID word is queued on an alphanumeric
string so that it can be sent to the application program when a GIANE call occurs. FEach
8-bit ID word in the 1700 is an ASCII character and is converted to 6000 display code be-

fore being sent to the 6000 application program.

Because of this processing, the application programmer can create font characters by
supplying the one-word ASCII ID through a call to GUBYTE. For example, the three calls:

CALL GURSET(IH,IV,ICODE, IBUF,NBYTE, MBYTE)
CALL GUAN(iLA,1,IBUF,NBYTE, MBYTE)
CALL GUBYTE(101B,1,IBUF,NBYTE, MBYTE)

create an alphanumeric font of one character, A, at screen coordinates IH and IV. The

ASCII code for A is 1018 or 41yg.

The call:
CALL GIDISP(NCON,IBUF,NBYTE, IDDAD, -0)

then displays this one character font. After the font appears on the screen, the call:
CALL GIANS (NCON, 10, IH1,1V1)

creates a light register at screen coordinates IH1 and IV1; this register can contain up to

10 of the A's, if the character is picked that many times.

If the character A is picked once and GIANE is called, the parameters returned to the call
will be:

NC =1

IBCD = Abbbbbbbbb

where the letter b indicates a blank.

44616800 Rev, 03 J-1

SPECIAL CHARACTERS

Two special characters are defined for the 1700 Package. These two characters, backspace
and clear, allow the console operator to remove characters which have been queued since
the call to GIANS and before the next call to GIANE occurs.

BACKSPACE

Any display followed by a one-word ID of 137B (or 5Fg) is defined as a backspace character.
When such a character is picked with the light-pen, the last picked character in the light
register is erased from the display and the underline is restored; the ID of the erased char-

acter is also removed from the buffer of queued alphanumeric information.

CLEAR

Any display followed by a one-word ID of 177B (or 7F) is defined as a clear character.
When such a character is picked with the light-pen, all of the characters currently in the
light register are erased and the entire underline is restored; in addition, the ID's for all of

the erased characters are removed from the buffer of queued alphanumeric information.

Backspace and clear have no other effect on alphanumeric picking.

RESET SEQUENCES
When a GURSET call is used in the definition of a font character, the ICODE's bit (bit 26)

must be set, The s bit of the reset sequence is the enable light-pen bit; if it is not set, the
character's ID word is not read when a pick is made, and the character consequently cannot

be entered into the light register or queued for 6000 processing.

A font character can be generated without a reset sequence by using a GUAN call with NC set
equal to one, but a no-operation instruction must precede the GUAN call in the character's
IBUF. This no-op may be supplied by a GUBYTE call of one byte, where the byte is a posi-

tive zero value.

CONSERVING ID WORD SPACE

The ID words IDDT, IDDC, IDWA, and IDWB of the GIDISP call or calls which display font
characters need not be referenced; the 1744 buffer space they normally occupy can be con-

served by truncating the parameter list with a closing or right parenthesis after IDDAD.

J-2 44616800 Rev, 03

DYNAMIC ADDITION OF CHARACTERS

Characters may be added to an existing console display font by successive calls to GIDISP at
any time; duplicates of the same character, i.e., characters with the same ASCII code ID

words, may be present in a font.

SAMPLE FONT CREATION ROUTINES

The following subroutine creates a display font containing

0 1 2 3 4 5 6 7T 8 9 X

SUBROUTINE NFONT (NCON, IBUF,NBYTE, M3YTE, IDDAD)
DIMENSION IBCD (10)

DATA (IBCD(1),1=1,10)/1L0,10L.1,10.2,101.3,10.4,1L.5,11.6,11.7,11.8, 1 1.9/
CALL GURSET (0, -600,103B,IBUF,NBYTE, 310)

ICON1 = 60B

ICON2 = 71B

DO 11 = ICON1,ICON2
J=1-57B

CALL GUBYTE(0,1,IBUF,NBYTE, MBYTE)

THE PRECEDING CALL PROVIDES A NO-OP BEFORE EACH GUAN CALL TO
GENERATE A CHARACTER AND IS NECESSARY ONLY WHEN EACH CHARACTER
IS GENERATED BY A SEPARATE GUAN CALL

CALL GUAN (IBCD(J), 1, IBUF, NBYTE, MBYTE)

aonn

C THE PRECEDING CALL GENERATES ONE OF THE FONT CHARACTERS
CALL GUBYTE (I, 1, IBUF, NBYTE, MBYTE)

C THE FOLLOWING CALL PROVIDES SPACING BETWEEN CHARACTERS AND
C COULD BE REPLACED BY A GURSET CALL

CALL GUAN (1L, 1, IBUF, NBYTE, MBYTE)

CALL GUAN (2L , 2, IBUF, NBYTE, MBYTE)

CALL GUBYTE (0, 1, IBUF, NBYTE, MBYTE)

CALL GUAN (1LX, 1, IBUF, NBYTE, MBYTE)

CALL GUBYTE (130B, 1, IBUF, NBYTE, MBYTE)

—

THE THREE PRECEDING CALLS CREATE AND IDENTIFY THE CHARACTER X
AS AN END-OF-MESSAGE CHARACTER FOR USE IN GIEOM ASSIGNMENT

THE FOLLOWING CALL DISPLAYS THE FONT

CALL GIDISP (NCON, IBUF, NBYTE, IDDAD, -0)

RETURN

END

ana

The programmer can also create display font characters of any size he wishes; he need not
use the size characters that are defined by the 1700 Basic Graphics Package alphanumeric
macros, For example, the three following calls create a circle with a center at IHC and
IVC, and an initial/termination point at IH and IV. This circle is queued as an alphanumeric

0 when picked with the light-pen.

CALL GURSET (IH,1V,ICODE,IBUF,NBYTE, MBYTE)
CALL GUARCG (1,IHC,IVC,IH,1V,IH,1V,IBUF,NBYTE, MBYTE)
CALL GUBYTE (117B, 1,IBUF,NBYTE, MBYTE)

44616800 Rev. 02 J-3

Note that the ASCII code equivalent of 0 is 117B (4Fg4).

The programmer can create a true/false font with coding like the following:

CALL GURSET (IH1, IV1, ICODE, IBUF, NBYTE, MBYTE)
CALL GUAN (4HTRUE, 4, IBUF, NBYTE, MBYTE)
CALL GUBYTE (124B, 1, IBUF, NBYTE, MBYTE)

THE PRECEDING CALLS CREATE THE WORD TRUE BEGINNING AT IH1/1V1
AND QUEUE AN ALPHANUMERIC T (=124B) WHEN IT IS PICKED

CALL GURSET (IH2, IV2, ICODE, IBUF, NBYTE, MBYTE)

CALL GUAN (5HFALSE, 5, IBUF, NBYTE, MBYTE)

CALL GUBYTE (106B, 1, IBUF, NBYTE, MBYTE)

aan

THE PRECEDING 3 CALLS CREATE THE WORD FALSE BEGINNING AT IH2/1V2
AND QUEUE AN ALPHANUMERIC F (=106B) WHEN IT IS PICKED

a0

J-4 44616800 Rev. 01

HEXADECIMAL/OCTAL CONVERSION TABLE K
Hexadecimal Octal Hexadecimal Octal Hexadecimal Octal
8 10 5B 133 AE 256
9 11 5C 134 AF 257
A 12 5D 135 BO 260
B 13 5E 136
C 14 5F 137 B8 270
D 15 60 140 B9 271
E 16 BA 272
F 17 68 150 BB 273
10 20 69 151 BC 274
6A 152 BD 275
18 30 6B 153 BE 276
19 31 6C 154 BF 277
1A 32 6D 155 Cco 300
1B 33 6E 156
1C 34 6F 157 C8 310
1D 35 70 160 C9 311
1E 36 CA 312
1F 37 78 170 CB 313
20 40 79 171 CcC 314
7A 172 CD 315
28 50 B 173 CE 316
29 51 7C 174 CF 317
2A 52 7D 175 DO 320
2B 53 E 176
2C 54 e 177 D8 330
2D 55 80 200 D9 331
2E 56 DA 332
2F 57 88 210 DB 333
30 60 89 211 DC 334
8A 212 DD 335
38 70 8B 213 DE 336
39 71 8C 214 DF 337
3A 72 8D 215 EO 340
3B 73 8E 216
3C 74 8F 217 ES 350
3D 75 90 220 E9 351
3E 76 EA 352
3F 77 98 230 EB 353
40 100 99 231 EC 354
9A 232 ED 355
48 110 9B 233 EE 356
49 111 9C 234 EF 357
4A 112 9D 235 FoO 360
4B 113 9E 236
4C 114 9F 237 F8 370
4D 115 A0 240 F9 371
4E 116 FA 372
4F 117 A8 250 FB 373
50 120 A9 251 FC 374
AA 252 FD 375
58 130 AB 253 FE 376
59 131 AC 254 FF 377
5A 132 AD 255
44616800 Rev. 01 K-1

RE-ENTERING A GRAPHICS TASK OVERLAY L

A graphics task overlay consists of a FORTRAN program and its associated subroutines in
absolute format. Each task is entered by an unconditional jump to the entry address of the

overlay, and normally no provision is made to return to the statement following the task call.

AERTRN

Under certain circumstances, the programmer may wish to return from a graphics task to
the statement following the CALL AETSKC card which caused entry to the task; he might do
this if he wanted to call several tasks in a row. A routine called AERTRN is provided for

this purpose.

When the programmer wants to return from one task to another, he places a card with the

format:

f CALL AERTRN

in the task he wishes to return from. When this card is encountered, control is passed to

the return address of the last executed return jump to AETSKC,

Note that AERTRN does not provide for reloading the task that called AETSKC; it provides
only the jump to pass control and the record of the last call to AETSKC. The programmer
must insure that the tasks do not overload each other, and that the AERTRN call occurs
whenever the return feature is desired.

EXAMPLES

The following examples show how secondary overlays and the C parameter on the overlay

card may be used to set up a task file so that AERTRN can be used.

C PARAMETER

The standard FORTRAN overlay card has the format:

(OVERLAY (Ifn, p, s, Cnnnnnn)

where Ifn, p, and s have the meanings given in the overlay card definition of Section 2. The
quantity nnnnnn after the letter C in the parameter field is an octal value that specifies the

first word address of the overlay with respect to the beginning of blank COMMON; i.e., the

44616800 Rev, 01 L-1

overlay coding is loaded and entered at a location nnnnnn words after the beginning of the
program's blank COMMON area. This C parameter cannot be used on the zero-level over-

lay card, but is optional on all cther overlay cards.

Since the first word address of blank COMMON is constant for any given overlay or task file,

all overlays with the same C parameter will have the same first word address in core.

For example, assume that AP and BP are primary overlays, and AS and BS are secondary
overlays; all four have been written into a task file by AEFILE.

These four overlays would appear in core as:

OVERLAY (A, 0,0) OVERLAY (A,0,0)
° °
° °
™ | BLANK COMMON BLANK COMMON
OVERLAY (1, 0) OVERLAY (2,0)
PROGRAM AP PROGRAM BP
20008 ° °
® °
° °
°
CALL AETSKC (BS) OVERLAY (2,1)
° PROGRAM BS
L) °
OVERLAY (1,1) °
PROGRAM AS °
® CALL AERTRN
°
°

Program AS has been relocated with respect to the last word address plus one of program
AP because they have the same primary level number. Program BS has been relocated with
respect to the last word address plus one of program BP because they also have the same

primary level number.

OVERLOD, the standard SCOPE overlay loader, will not allow overlays (1,0) or (1,1) to
call overlay (2,1). Primary overlays and overlays with the same primary number may call
each other; no other calls are allowed. However, a call to AETSKC allows any of the four

overlays to call any of the others by using their program name.

If a programmer places a task call to BS from AP, part of the called task will be loaded
over the calling task. If a call to AERTRN is then made at the end of BS, AERTRN will
return control to the core address following the last AETSKC call, but the return will have
chaotic results because the core locations that contained the code which the programmer
wished to execute have been overlayed by the beginning of program BS. The following para-

graphs describe one method of avoiding this problem.

L-2 44616800 Rev. 01

Assume that overlay (1, 1) is loaded 20005 words from the first word address of blank
COMMON. If the secondary overlay cards are written with the C parameter so that they

appear as:

OVERLAY (1,1, C002000)
and
OVERLAY (2,1, C002000)

the routines in the overlays will have the same first word address and will appear in core as:

OVERLAY (A,0,0) OVERLAY (A, 0,0)
® []
[[]

- | BLANK COMMON BLANK COMMON
OVERLAY (1,0) OVERLAY (2,0)
PROGRAM AP PROGRAM BP

[]]

| cand amsice s //// %}

)
OVERLAY (1,1,C002000) OVERLAY (2,1,C002000)

20008 9

PROGRAM AS PROGRAM BS
. °
° .
° °

CALL AERTRN

Now each of the programs is free to call the others and to use a CALL AERTRN card to re-
turn to the address following the last call to AETSKC.

It is up to the programmer to keep track of the overlay core relationships when using
AERTRN. A task which calls another with the expectation of returning should be located so
that the two do not overlay each other. AERTRN provides limited capability for constructing
tasks which may be called by AETSKR and also entered as subroutines. If logic requires the
use of AERTRN in some cases and AETSKC or AETSKR in others, a flag may be set in blank
COMMON by the calling task and interrogated before each return is executed.

An error message, RETURN ADDRESS OVERLAYED, will be sent to the dayfile and a task
return will be executed only if the return address of AERTRN is within the overlay calling
AERTRN,

Note that linkage of external symbols is not provided for by the GPSL Loader between over-
lays with different primary level overlay numbers, If overlays 2.1 and 2.0 have subroutine
linkages in common, the overlay 2.1 will probably not run correctly unless 2.0 is in core
at the same time. AERTRN should primarily be used in secondary overlays with the same

primary number while the primary is in core.

44616800 Rev. 03 L-3

SYSTEM PACKING OF IBUF DESCRIPTION BUFFERS

M

Nine Graphics Utilities routines of the 6000 Basic Graphics Package place item description
bytes in IBUF; in addition, both GIDISP and GIMAC place header and trailer bytes into the

description buffer before sending it to the 1700 Buffer Translator through EXPORT.

Table M-1 lists all of the routines that place bytes into IBUF and gives the number of bytes

packed by each; all 12-bit bytes are packed five to a 60-bit central memory word, starting

in byte zero.

TABLE M-1.
IBUF/1744 BYTE COMPARISON, ITEM DESCRIPTION BYTE GENERATORS

(Octal) Number of

Routine Call Code Bytes Packed Explanation

GUAN 02 1 +N—C2-—i—1 NC is the character number
parameter in the call

GUARCG 06 6 + 4 * KSHOW KSHOW is the arc segment
number parameter in the call

GUBYTE 08 1+ L L is the byte number para-
meter in the call

GUMACG 07 1+2 %L L is the macro address
number parameter in the call

GURSET 01 3 (4 Bits)

GUSEG 04 3

GUSEG 05 2+3%(N+1) N is the line segment number

(4 Bits) parameter in the call

GUSEGI 11 4

GUSEGS 03 6

GIDISP 01 10 (6 Bits) Eight trailer and two header
bytes; explained below

GIMAC 05 4 (6 Bits) Two header and two trailer
bytes; explained below

Each Graphics Utilities call packs a call code for the corresponding 1700 Basic Graphics

Package routine into the upper four bits of the first 12-bit byte it places in IBUF; if a

Graphics Utilities routine is called with NBYTE equal to zero, the routine will leave two

44616800 Rev. 03

M-1

bytes empty at the beginning of the next unfilled central memory word in IBUF. The two
empty bytes are usually used by GIDISP or GIMAC for the two header bytes which each packs
in IBUF.

NOTE
The call codes of all GU routines are in the upper 4 bits of a 12-bit byte and are within a
GIDISP, GIMAC, or GIPLOT buffer. The call codes of all GI routines are in the upper 6
bits of a 12-bit byte at the beginning of a 60-bit central memory word.

These bytes have the structure:

11 5 0 11 7 0
Call code NCON Byte count

where the byte count excludes the header and trailer bytes,

The two trailer bytes packed by GIMAC are placed in IBUF immediately after the last item
description byte. The first of these two bytes contains bits 15 through 8 of the lower 16 bits
of MAD, right-justified; the second byte contains bits 7 through 0 of MAD, also right-justi-

fied, as shown:

11 7 0 11 7 0

%
/| MADg . MAD, o

GIDISP places a variable number of trailer bytes (three to eight) in IBUF, immediately

following the last packed item description byte. The number packed depends on the number
of parameters present in the GIDISP calling sequence before a minus zero parameter or a

right parenthesis is encountered.

The three trailer bytes always packed by GIDISP contain bits 15 through 8 of IDDAD right-
justified in the first, bits 7 through 0 of IDDAD right-justified in the second, and IDDT in
the third, as follows:

11 7 0 11 7 0 11

0
2 7 : i
/ IDDAD, . _g /] 1DDAD, 4 IDDT |

In a full calling sequence, five more bytes would be packed. These would contain: IDDC in
the first additional byte, bits 23 through 12 of IDWA in the second, bits 11 through 0 of IDWA
in the third, bits 23 through 12 of IDWB in the fourth, and bits 11 through 0 of IDWB in the
fifth. These bytes appear as follows:

M-2 44616800 Rev, 03

11 011 011 011 011 0
IDDC IDWA,, 1y IDWA 4 o IDWBy, 1, IDWB,,

GIDISP terminates packing with the first minus zero parameter. If a right parenthesis ter-
minates the calling sequence before IDWB, the first missing parameter is replaced by a

minus zero and packing is terminated.

Both GIMAC and GIDISP issue a fatal error diagnostic if the IBUF description buffer result-
ing from the call is longer than 64 central memory words (including header and trailer bytes).

Both routines process a non-fatal error and issue an informative dayfile message if the

NBYTE parameter is equal to zero when the routine is called.

44616800 Rev. 01

OMISSION OF MAIN FROM PROGRAM CODING N

Although the procedure is not recommended, the Application Executive MAIN program can

be omitted from a graphics program. If the programmer does not use MAIN, he must either
provide substitutes for each of its routines or else resign himself to the use of an inordinately
large amount of central memory by his job. This appendix provides an outline of the struc-

ture and functions of MAIN so that a programmer can write replacement routines if he wishes.

STRUCTURE OF MAIN

The first 74g words in MAIN are entry points and buffer areas shared by the 6000 Basic
Graphics Package routines (see Figure N-1).

MAIN has seven formal entry point names: ’

AERTRN

AETSKC

AETSKR l
BGP

DATBUF

MAIN

RIDDAD

The entry point MAIN is called only once during a job and is not referenced by any of the
routines in the 6000 Basic Graphics Package. MAIN is the entry point used by the CALL
MAIN card in the program's zero-level overlay and provides access to coding that provides
AEFILE with the file names it uses during a task file creation run; the coding associated
with entry point MAIN also initiates loading and execution of the first overlay in the task

file during an execution run.

The entry points AETSKR, AERTRN, and AETSKC are used by the respective 6000 Basic
Graphics Package routines. Both entry points provide unconditional jumps to appropriate
subroutines within the MAIN program.

The entry points BGP, DATBUF, and RIDDAD are used by the 6000 Basic Graphics Package

routines to share access to common pointers.

44616800 Rev. 03 N-1

17

59 53 4§ 23 15 0
BGP/RIDDAD ta W/////////l add. BGP
RETURN Enter Task Return Routine BGP+ 1
KILL Enter Error Processing Routine BGP+2
(Entered by Return Jump)
INPBUF Reserved for Last Button Input Block BGP+4
d dn
“ “
37g Words Long
DATBUF Data Handier Pointers
(V2N ~
“~ &

l14g Words Long

CC

RSLBUT //////////////////////// IDDT | BGP+57g
s s o
s Towa
A Tows

STAT | nc W}//A 0::1']"0“ nb BGP+67g
T &

4 Words Long

ta = Address of Display Code Name of Current Task in Memory
add = RIDDAD /MAD Counter
Last NCON Argument
nb= GIFSID Pointer
np = GIFSID Pointer

GICNJB GIBUT
{Number of Bytes Returned)
(Number of Picks Returned)

nc of or

Figure N-1. MAIN Communications Area

The last four entry points described above are all linked to the presence of MAIN in the pro-
gram's zero-level overlay. If MAIN is not called there, and the application program con-
tains no subroutines with entry points named BGP, RIDDAD and DATBUF,

MAIN program will be loaded from the system library into every overlay that contains

then the entire

Package routines which reference any of these entry points.

If the application program does contain a subroutine (in place of MAIN) with the proper entry
points, all 6000 Package routine references to the points are linked to the locations listed in
Table N-1,

N-2 44616800 Rev. 03

TABLE N-1. 6000 PACKAGE EXTERNAL LINKAGES
Entry Type of
Point Name Purpose Reference
FORTRAN Callable:

AETSKC Load an overlay by name Relocatable

AERTRN Return from task to calling address Relocatable
plus one

MAIN Initialize Application Executive Relocatable

Not
FORTRAN Callable:

BGP Used to reference first 74g words Relocatable
of MAIN relatively

RETURN Perform task return (AETSKR) Relative to BGP

KILL Process errors and messages Relative to BGP

INPBUF Reserve last button input block Relative to BGP

RIDDAD Reserve task name address and Relative to BGP
IDDAD/MAD counter

RSLBUT Reserve last button ID parameters Relative to BGP

STAT Reserve NCON and single/string Relative to BGP
pick counters

GCOMO Common EXPORT output buffer Relative to BGP

44616800 Rev. 01

CODING EXAMPLES o

This appendix contains examples of code for creating such things as light buttons, lines,
circles, arcs, figures, etc. For the most part, assume that dimensioning has been per-

formed; special cases will include dimension statements,

CONSOLE TO JOB ASSIGNMENT

READ 1, NCON
1 FORMAT (02)
CALL GICNJB (NCON)

A data card is read from the card reader and the octal contents of the card (the console
number) is placed in NCON. GICNJB is called to make the console available to the calling
job.

CREATE A LIGHT BUTTON

NAME = 8HDISPLAY

CALL GURSET (-1500,0,102B,IBUF,NBYTE, MBYTE)
CALL GUAN (NAME, 8,1BUF,NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF,NBYTE,IDDAD, 1,1)
NBYTE =0

The characters to be displayed are DISPLAY. GURSET is called to generate a reset se-
quence byte-stream which is placed in temporary user buffer IBUF. GUAN is called to
generate the byte-stream which will cause the alphanumerics to be displayed. This byte-
stream follows the reset sequence byte-stream in IBUF, Parameter NBYTE is automati-

cally updated to reflect the number of bytes in IBUF.

GIDISP is called to send a copy of the contents (NBYTE bytes) of IBUF to the 1700 Buffer
Translator. NBYTE is then set back to zero by the application program to initialize IBUF
for the next byte-stream. The Buffer Translator calls the 1700 graphics BGP which generates
a display byte-stream and places it in the display controller. Once the byte-stream is in

the display buffer,it is displayed. Note that parameters IDDT and IDDC in the call to GIDISP
are both one. For IDDT = 1 to be meaningful to the system (i.e., when the button is picked
with the light pen by the operator, the system interprets IDDT for the action it is to perform)
the following call must be executed prior to the pick of the button:

CALL GIMASK (NCON, 0,1, 16+8)

44616800 Rev. 01 O-1

This call defines items with the IDDT designation of 1 as buttons and the buttons so designated
will have the marker mask set such that when the button is picked, it will blink (assuming
that the button is not already blinking).

There are several means by which alphanumeric input can be provided. The above example

uses a dimensioned array. A data statement could be used instead, as in this example:

COMMON/DATA /NAME (2)
DATA NAME (1,1 = 1,2)/8HDISPLAY, 6HBUFFER)

or an ENCODE and FORMAT statement used as follows:

ENCODE (16,1, NAME)
FORMAT (16HDISPLAY BUFFER)

CREATE A LIGHT BUTTON — UNDER APPLICATION EXECUTIVE

NAME = 8HDISPLAY

NAME (2) = 4RDISP

CALL GURSET (-1500, 0, 102B, IBUF, NBYTE, MBYTE)
CALL GUAN (NAME, 8, IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF,NBYTE,IDDAD, 1, 1, NAME(2))
NBYTE = 0

Note that the calls are essentially the same as those in the next example.

GENERATE AND DISPLAY A LINE — NOT FRAME-SCISSORED

The only difference is that in this call to GIDISP, an additional parameter is used to identify
the task to be called by the application executive when the button is picked. To simplify
matters, the first four characters of the light button name are used as the task name; thus,
if button DISPLAY is picked, the application executive brings task DISP into core from mass

storage for execution.

CALL GURSET (-1000,0,102B,IBUF,NBYTE, MBYTE)
CALL GUSEGS (-1000, 0, 1000, 0, 1, 0, IBUF, NBYTE, MBYTE)
CALL GIDSP (NCON, IBUF,NBYTE, IDDAD, 2,1, 0, 0)

NBYTE = 0

These calls will display a line from -1000 H, 0 V to 1000 H, 0 V. The line is solid, light

pen sensitive, and does not blink,

A previous call to GIMASK was made for type 2 as follows:

CALL GIMASK (NCON, 0,2, 16+4)

0-2 44616800 Rev. 01

This call associates the marker mask with type 2 and makes all type 2 display items string

pick items.
Note that all ID block parameters are used.

One might like to store things such as the item display address and/or bead address in the
1D block. For instance, the display address for the line is in IDDAD, GIMOVE can be used
to insert this display address into the ID block as follows:

CALL GIMOVE (-0, -0, -0,IDDAD, 2,1, 0,IDDAD)

The display address is now in the IDWB word of the ID block for that line. The display ad-
dress can be extracted from the block by GIFSID, any time the line is picked. It is impor-
tant to have access to the display addresses of the items if they are to be erased, copied, or
have their ID blocks modified (as was the case above in the call to GIMOVE),

If the Data Handler is used, and a bead is formed for this line, the bead address could be
placed in IDWA; it is usually handier to put the display addressin the bead rather than in
the ID block, but these decisions are up to the individual.

GENERATE AND DISPLAY A FRAME-SCISSORED LINE

CALL GULINE (0, 0,1000, 1000, 500,,0.,,-600., -500, ,KSHOW, IHS, IVS, IHF,IVF)
CALL GURSET (IHS,IVS,102B,IBUF,NBYTE, MBYTE)

CALL GUSEGS (IHS,IVS,IHF,IVF,1,0,IBUF, NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF,NBYTE, IDISPAD, 2, 2,0, 0)

NBYTE =0

GULINE is called to set up the size and position of the frame for frame scissoring. Floating-
point coordinates for the beginning and end of the line are given in the call and converted by
the system to fixed-point coordinates. Although not shown in this example, it is a good idea
to test KSHOW for equality to zero to see if the described line can be displayed. If KSHOW =0,
there is no reason to call GURSET, GUSEGS, and GIDISP.

The following code will perform the check and skip to statement 2 if the line cannot be dis-

played:

CALL GULINE (0, 0, 1000, 1000, 500.,0., -600., -500, , KSHOW, IHS,IVS,IHF,IVF)
IF (KSHOW .EQ. 0) GO TO 2
CALL GURSET (IHS,1VS, 102B,IBUF,NBYTE, MBYTE)
CALL GUSEGS (IHS, 1VS,IHF,I1VF,1,0,I1BUF,NBYTE, MBYTE)
CALL GIDISP (NCON, IBUF, NBYTE, IDISPAD, 2, 2,0, 0)
NBYTE = 0
2 CONTINUE

44616800 Rev. 01 O-3

GENERATE AND DISPLAY A CIRCLE — NOT FRAME-SCISSORED

CALL GURSET (0,0, 102B,IBUF, NBYTE, MBYTE)

CALL GUARCG (1,0,0, 300,0,300,0,-0,IBUF,NBYTE, MBYTE)
CALL GIDISP (NCON, IBUF,NBYTE,ICRCDSPD, 2, 3,0, 0)
NBYTE =0

This code generates a circle with solid line style; the origin of the circle is displaced from
the reset coordinates by 300 display grid units. (There are 200 such units per inch in the
scope coordinate system.) This is so because circles and arcs are displayed in a counter-
clockwise manner from the initial point to the terminal point. Thus, the center of this circle
is at -300,0.

The reader should note that parameter KSHOW is set to one, since all of the circle can be
displayed on the display surface; the arc scissoring routine GUARC was not used to make

that determination. An example of arc scissoring is given in the next paragraph.

GENERATE AND DISPLAY A FRAME -SCISSORED CIRCLE

DIMENSION IHS(5),1VS(5), IHF(5),IVF(5)
CALL GUARC (0, 0,1000, 1000,0.,0.,1125.,0.,1125,,0.,KSHOW, IHC, IVC, IHS, IVS,
IHF,IVF)
IF (KSHOW .EQ. 0) GO TO 3
CALL GURSET (IHS,1VS, 102B,IBUF,NBYTE, MBYTE)
CALL GUARCG (KSHOW, IHC,IVC,IHS,IVS, IHF,IVF, -0,IBUF, NBYTE, MBYTE)
CALL GIDISP (NCON, IBUF,NBYTE,ICRCAD, 2, 4,0, 0)
NBYTE =0
3 CONTINUE

Since it is possible to have a circle scissored into four segments and an arc into five seg-
ments, arrays had to be dimensioned to accept the starting and ending points of the arc
segments. The coordinates used in the call to GUARC are deliberately chosen to generate
four arc segments for the subject circle. As a formality, KSHOW is examined here for
equality to zero, since it is known in advance that four arc segments will be displayed; how-
ever, this is not very often the case and the test for KSHOW should be made as a matter of
good programming practice.

The remainder of the code merely resets the CRT beam to the start of the first arc segment.
GUARCG is called to generate the four arc segments, and GIDISP transfers the byte-stream
from IBUF to the display buffer.

O-4 44616800 Rev. 01

GENERATE AND DISPLAY A 2-INCH SQUARE — NOT FRAME-SCISSORED

CALL GURSET (0,0,102B,IBUF, NBYTE, MBYTE)

CALL GUSEGS (0,0, 400,0,1,0,IBUF,NBYTE, MBYTE)
CALL GUSEG (400, -400,1)

CALL GUSEG (0, -400,1)

CALL GUSEG (0,0,1)

CALL GIDISP (NCON, IBUF,NBYTE, ISQDSPAD, 2,6,0,0)
NBYTE =0

This square starts at the origin of the scope display grid. The first line segment goes right
2 inches, the second segment goes down 2 inches, the third goes left 2 inches, and the last

is drawn up 2 inches to complete the square.

GENERATE AND DISPLAY A COLUMN OF FIVE HORIZONTAL LINES

CALL GURSET (0,0, 102B,IBUF, NBYTE, MBYTE)
CALL GUSEGS (0, 0, 400,0,1, -0, IBUF, NBYTE, MBYTE)
CALL GUSEG (0, -100, 0)

CALL GUSEG (400, -100, 1)

CALL GUSEG (0, -200, 0)

CALL GUSEG (400, -200, 1)

CALL GUSEG (0, -300, 0)

CALL GUSEG (400, -300, 1)

CALL GUSEG (0, -400, 0)

CALL GUSEG (400, -400, 1)

CALL GIDISP (NCON, IBUF, NBYTE, ILNDSPAD, 2, 7, 0, 0)
NBYTE = 0

The first line is drawn from the scope display grid origin to a point 2 inches to the right.

The first call to GUSEG positions the beam for the next line. Note that the GUSEG call turns
the beam off and thus nothing is displayed. The second call to GUSEG generates the byte-
stream for the second of the five lines to be displayed. From this point it is a repetition of
the first two calls to GUSEG until the entire byte-stream is generated. GIDISP is then called

to transfer the byte-stream to the display buffer for subsequent display.

An alternate method for generating the same five lines uses a call to GUSEGA, as follows:

DIMENSION IH(10),IV(10), IBEAM(10)
TH(1)=IH(3)=(IH(5)=IH(7)=IH(9)=IV(1)=IV(2)=0
TH(2)=IH(4)=IH(6)=IH(8)=IH(10)=400
IV(3)=IV(4)=-100

(V(5)=IV(6)=-200

44616800 Rev. 01 O-5

IV(7)=1v(8)=-300

IV(9)=1V(10)=-400
IBEAM(1)=IBEAM(3)=IBEAM(5)=IBEAM(7)=IBEAM(9)=1
IBEAM(2)=IBEAM(4)=IBEAM(6)=IBEAM(8)=IBEAM(10)=0
CALL GURSET (IH,1V, 102B,IBUF, NBYTE, MBYTE)

CALL GUSEGA (IH,1V,IBEAM,9, -0,IBUF,NBYTE, MBYTE)
CALL GIDISP (NCON, IBUF,NBYTE, ILNDSPAD, 2,7,0,0)
NBYTE =0

In this example the single call to GUSEGA generates the byte-streams for all the line seg-
ments by referring to the IH,IV and IBEAM arrays.

GENERATE AND DISPLAY A LINE AS A MACRO

CALL GUSEGS (0, 0,400, 500, 1, -0, IBUF, NBYTE, MBYTE)
CALL GIMAC (NCON, IBUF, NBYTE, MAD)
NBYTE = 0

The above code generates the byte-stream for the line, transfers a copy of the byte-stream
to the fixed address area of the display buffer, and returns a macro address in MAD. The
line is not displayed at this time. To display the line, the following code is required:

CALL GURSET (100, 200, 102B, IBUF, NBYTE, MBYTE)
CALL GUMACG (MAD, 1,IBUF,NBYTE, MBYTE)

CALL GIDISP (NCON, IBUF, NBYTE, MACDSPAD, 2, 8, 0, 0)
NBYTE =0

The call to GURSET determines where the macro is displayed,

DISPLAY AN ID BLOCK RETURNED FROM A CALL TO GIFSID

GIFSID is used to return the ID blocks of string pick items in the FETCH queue. This
example shows the use of GIFSID in conjunction with calls to display the contents of the 1D
block. Assume that the proper calls to GIMASK have been made and the console operator
has picked at least one string pick item and a button.

DIMENSION IBCD (20)
N =1
CALL GIFSID (NCON, 1,1IT,IC,IA,IB,IH,1V)
CALL GURSET (-1200, 1300, 102B, IBUF, NBYTE, MBYTE)
ENCODE (49, 30,IBCD) NCON, IT,IC,IA,IB,IH, IV

30 FORMAT (7THGIFSID(3(15, 1H,) , 2(1X,R4, 1H,),15, 1H,15, 1H))
CALL GUAN (IBCD, 49, IBUF, NBYTE, MBYTE)

44616800 Rev., 01

CALL GIDISP (NCON, IBUF, NBYTE, IDMESS, 2,0, 0, 0)
NBYTE =0

GIFSID is called to extract one string pick ID block and return it to IT,IC,IA,IH, and IV.
GURSET is used to set the point at which the A/N display starts. The ENCODE and FORMAT
statements assemble the indicated characters into array IBCD, which GUAN uses as input

to generate the byte-stream for the display. GIDISP transfers the byte-stream to the display
buffer and appends the indicated ID block to the byte-stream. This display consists of the
call to GIFSID with its calling and result parameters.

MOVE A DISPLAY [TEM

Assume that a line has been displayed as a display item and has its display address stored in
IDSPAD(12). Further, it is required that the line be displayed at new coordinates IH = 1000,
IV = -400. 1t is coded as follows:

CALL GIMOVE (1000, -400, -0,IDSPAD(12))

ICODE as -0 indicates that the ICODE already associated with the line is not to be changed.
The call is truncated after IDSPAD(12), since the ID block for the line is not to be changed

either.

The line could have been moved and had its ID block changed as well by including those ID
parameters to replace the existing ones. Remember that the ID block cannot be expanded
beyond the size already in existence for the line. For instance, if only parameters IDDT
and IDDC were used in the call to GIDISP for this line, GIMOVE cannot be used to add 1D
parameters IDWA and/or IDWB since space has not been allocated for these parameters.

COPY A DISPLAY ITEM

This is similar to using GIMOVE except that a copy is moved and the original still exists.

To copy the line described in the last example,use the following code:
CALL GICOPY (IDSPAD(12), NCON, 1000, 400,106B,ICPYADD, IT, IC, IA,IB)
This will cause a copy of the line (with display address IDSPAD(12)), to be displayed four

inches higher on the scope, and the copy will blink. The display address of the copy will be
put in ICPYADD.

ERASE A DISPLAY [TEM

To erase the line made as a result of the call to GICOPY that was just described, use the

following code:

CALL GIERAS(ICPYADD)

44616800 Rev. 01 O-17

ERASE A MACRO

As a review, a macro is displayed in two steps:

1. Generate the byte-stream and call GIMAC to put the byte-stream in the fixed-address
area of the display buffer. The address of the macro is returned in an output para-
meter referred to as MAD,

2. Generate a reset sequence with a call to GURSET; call GUMACG giving the MAD
parameter. GUMACG will generate a calling sequence for that macro. Call GIDISP
to transfer the byte-stream generated in this second step to the display buffer and '
the item is displayed.

The object now is to erase the macro from both the fixed- and floating-address areas of the
display buffer. The procedure is inflexible because the calling sequence in the floating-
address area must be erased first, then the display item byte-stream from the fixed-address
area. If the calling sequence remains while the macro is erased, the display jumps to a

non-existent macro and the result is chaos. The following code will correctly erase a macro:

CALL GIERAS (ISBDSPAD)
CALL GIMACE (MADDSPAD)

ISBDSPAD Display address in the floating-address area for the calling
sequence.
MADDSPAD Macro address in the fixed-address area,.

To erase a specific display of a macro and still retain its byte-stream in the final address
area, call GIERAS and not GIMACE.

O-8 44616800 Rev, 01

COMMENT SHEET

MANUAL TITLE

PUBLICATION NO. REVISION
FROM- NAME:

BUSINESS

ADDRESS:
COMMENTS:

This form is not intended for use as an order blank. Your evaluation of this manual
is welcomed by Control Data Corporation. Any errors, suggested additions or de-
letions, or general comments may be noted below. Please include page number ref-
erences and fill in the publication revision level as shown by the last entry on the
Record of Revision page at the front of the manual. Customer Engineers are urged to

use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

STAPLE STAPLE

FOLD FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

L]

BUSINESS REPLY MAIL —
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. —
L]

—

POSTAGE WILL BE PAID BY ——
CONTROL DATA CORPORATION —
Systems Publications Sn—
215 Moffett Park Drive —
Sunnyvale, California 94086 —
S——

L]

—

—

-~ fOo - T T T T T T T T T TFowp

STAPLE STAPLE

CUT ON THIS LINE

.

172" 3/4" 1" 1—1/4"

k

»—3 CUT OUT FOR USE AS LOOSE—LEAF BINDER TITLE TAB

CONTROL DATA

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
CORPORATION

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

PRINTED IN U.S.A,

TIWARNIYIAI TIANTAMAATAM IAIT IO 1 O OALLLIWNIA TTALL AWM AL OTHUTIS ANNN

008919yy ‘oN "qng

